COMPUTERS

Time-Sharing
FORTRAN

TIME-SHARING FORTRAN

REFERENCE MANUAL

August 1966

GENERAL @B ELECTRIC

INFORMATION SYSTEMS DIVISION

PREFACE

This manual explains and tells how to use the FORTRAN language available on the GE-265
Time-Sharing System. The Time-Sharing System is described in the Time-Sharing System
Manual (CPB-11824).

Users familiar with FORTRAN should consult the two lists given in the Introduction that
indicate incompatibilities between the Time-Sharing FORTRAN lanugage and FORTRAN II
and FORTRAN IV, respectively. The Introduction may also be of interest in calling attention
to unusual features of the Time-Sharing FORTRAN Language. Chapter 2, “Statement
Form”, and Chapter 10, “Input/Output” should also be read.

Users unfamiliar with FORTRAN should read all chapters. Prior or parallel reading of
any of the elementary texts on FORTRAN is often helpful for an understanding of the material
in this manual, Writing and running trial programs on the time-sharing system is encouraged
as a means of learning the language.

When a statement is reported to be miswritten, users may wish to refer to the entry for
that kind of statement in Appendix A, This Appendix lists the rules for writing each kind
of statement and supplies a page reference to a discussion of the statement in the body
of the manual,

An additional convenience provided is an alphabetical index of statements which is located
immediately following the table of contents. This index shows the statement form and lists
the page numbers for the statement rules and the statement discussions.

The elements of the FORTRAN language--constants, names, operators, and labels--that
may be used in any of severalkinds of statements, are described in Chapter 3. Two common
sources of difficulty in FORTRAN, subprograms and subscripting, are discussed in Chapters
4 and 5, respectively. Chapters 6 through 10 contain descriptions of the different kinds of
FORTRAN statements. Formatted input/output is discussed in Chapter 11 and monitor lines
in Chapter 12. A discussion of errors is contained in Chapter 13.

@ 1966 by General Electric Company

COMPUTER TIME-SHARING SERVICE . FORTRAN

CONTENTS

Page
1 INTRODUCTION, . .. ittt ittt eetovonososesssssnsassnacenssnss 1
2 FORM FOR TIME-SHARING FORTRAN STATEMENTS. ¢ ¢t eee oo 4

3. ELEMENTS OF THE FORTRAN LANGUAGE
General Description i i i it it it ittt ittt i sttt e 8
Use Oof BlanKs ., . v v v v v vttt vt oo ot s oo oo sssoeassssseeoes ves 8
Realsand Integers i v vt it it it it st o o onosoooneas 8
L0703 471 = 11 2 9
Decimal Numbers i vt eeonnteseseseosonnnsecesas 9
OctalIntegersvveeveuas e 10
Quoted CharaCters & . v v v v v vt v it et et e et ot onnsoensnessosess 10
B\ 5 1< 10
Spelling Rules i ittt it i it i ittt i it e e 11
Indication of Integer or Real Mode e 11
ArrayNames c e st s e e e e et e e e 12
SUbpProgram NameS . ..o v v oo v vt oo oeoeseessanesnssensasss 13
Variable Names et e s e e e e e e e e e 13
Arithmetic Operators ot i it ittt t i ittt ettt e e s as sz 14
Characters Usedot v it v s oo voosasnnsosss et e e 14
Priority of Application it ittt s s s . 14
EXPressionseoo0 00000 e e e ettt e 15
Exponentiation. e e et et i . 16
Statement Labels e e et i c e e e e 16
Definition . v v v v v vt et e e et et e e s e e e e s et e e 16
Statement Label Reference et e e et e e 17
Label Variables ... v v v v v vttt ot ot en oo osnooeonceceessss 18

4. SUBPROGRAMS

General Description« v o v i vt it it it i e e e .o 19
Intrinsic Functions. et s e s e s e et e e et et 19
Table of Intrinsic FUNCtionS . « + v« « c ¢« v v o o o v v v v o et v o oo oeeneos 20
Dummy ArgumentS . .. v v oo vt vt et i ae st e e e e 22
External SUDPIOSTAMS . ¢ v v v o o o o oo o v v v oo oo o s ososossoensnsnsss 25
External Functions. vttt it it i v it et oo s e s oeosasnas 25
External Subroutines« v v v v v ot vt s o oo oo s oot oo eooeenos 26
Main Program. . . o v v v v v ottt ot oo v v oo noosoessoeesoeensss 26
Internal FUNCLIONS . . v v v v v v v e ot e o st e s e s oo oo o s oo o e anonoenesos 27
Arithmetic Statement Functions vt ittt it t v 28
GeneralInternal Function v vt c v v v v o o v ot ot vt o e oo v oo 28
s 30

COMPUTER TIME-SHARING SERVICE FORTRAN

1ii

5. SUBSCRIPTING

Array Element Reference .,t vt et o i innnenneseanesssas 32
Missing Statement |, i i e e e e e e e e 32
Subscript Restrictions it ittt et e et e e 32
Subscript ChecKing., . . . v v v i v i ittt et et it ot s s st s o aannenoeeass 33
Subscript Truncationo v v i s oo v oo o oo nstosononnonneesnssas 33

0. ARITHMETIC STATEMENTS | ittt e ettoeooesssonenssos 34
1. DECLARATIONS
Mode Declarationttt it oeteeecsossooessoosas 35
Common Declaration e 36
Array Storage . & . vt it i i e e s e e e e s e s e e 38
Dimension Declaration i ittt ittt in et osoeoeceonons 38
Equivalence Declaration ittt i it vt vt veeaocosseonsss 39
Subscripted Equivalance0ttt i it ettt e 39
Equivalence Errors e s s s s s s e e e s s e s e et a s e e e 40
External Declarationo ittt ittt oeneeeoassaossososeens 41
8. SUBPROGRAM DEFINITION STATEMENTS
External SUDPIrOgrams . . . o v o v o v o v v o s oo s o ooasococasosososnsas 42
Introduction of Definitions ¢ i v it it ittt i ot n ot oneon 42
Termination of Definitions i i i it it i i ittt oo 42
Internal SUDPIOZIamS & & v v v v v v v o o v oo o oo s oot o no o s oo oesosnssoes 43
Arithmetic Statement Function Definition. oo v v v v oot 43
Internal Function Definition« . ¢ v i v o vt v v vttt it o s ot e oo 43
Entry Statement. vttt it i i e s e i e 44
9. CONTROL STATEMENTS
Directing Control To Statements In The Same Subprogram 46
GO TO Statement . v v v v v v e v v o et s o s o s s oo s s oassonoososssos 46
ASSIGN Statement . . v v v v v v oo o o ot o s oo oo oo s s oo oo v o oasenan 47
IF Statement . o . v v v v v v e v e s e s e s e et s e e s e e e s e e 47
DOStatement . .. i v v v v v v v o s ot s ot o s s e v v s s oot o e e 49
SUIMIMATY « v« o v e s s s s s o s s oo oo s s e s o s oo sossansosesss 49
DOENd venneeeesan e et e e e e e 50
CONTINUE Statement . . . v v v v v v o vt e e v s oot s oo oo oo ososn 51
DO NAME .« v o s e o o et e ot e ettt s s o s st s oo v s oo s seeos 51
DO Parameter ValueS. . + v v v v v v o o o st s s s o e v o v o s o s oo o 52
Control Variable Value« v v o v et s s e o s oot e s oo oo anoan 52

COMPUTER TIME-SHARING SERVICE FORTRAN

iv

Directing Control to Statements in Another Subprogramc...o. 52
Function Call | . . i v v e v e oo vuonnnennasosoeessnonssssses 52
Repeated vs Recursive Call oo i v i e e 53

CALL Statement oveevuoeennnoessneessnansssenes 54
RETURN Statement00t et eeensenctneesascnsennn 54
Directing Control To The Operating System oo 55
STOP Statement. . . v v v oo v v o v o vt ot oasosonosonssoeeesosns 55
PAUSE Statement0ttt ecesecsenen . 55

10. INPUT/OUTPUT

TPUt/OUtPUt LiStS o v v v v v v e v e oo as s na e ee e 56
Unformatted INPut . . v v v v v it e vt e ettt e s e naas oo osnnse s cenon 59
Standard Format OQUutput . . . v v v v v vt v o v v oo v e s s o s e onossaossseses 61
Terminal Input/Output 0o e e e 61
PRINT Statement . . . v v v v v v v v et e oo s v oo oo s soosasacooses 61
INPUT Statement . . . v v v v v v vt ot v o oo oo s o ososaosoesosssssns 63

File Statements & o v v v v v v s o oo s o oo s s s s s s o s s oo et s oo s e e et 64
Permanent File Definition oo v v vttt ot oo v v oo oo 65
Rewriting File Operationso v v v v it v e e 66

$FILE - Permanent File Reference. 67

Linked Files o v v v i e o e e e e e e e et e i s ettt 67

Record Length. v i it ittt oneeseen 68

"Off-line' File Operations. v v v v v vt oot v et i o i oo 69

End of File o v v v v o e it s s s oo aasososanasasssssonsss 69

Rewinding and Backspacingo v v v v v v iece oo 71
Temporary File Definition i 72
$DATA - Temporary File Defxmtmn e e s e e e e ee e e e s 72

File Reference and Operations e e e e 13

11. FORMATTED INPUT/OUTPUT

Format Definition c v e e vt v oot eeoens et e e e 75
Format Statement . . v v v v e v v o v o o v oo s ot e st e oo e s 75
Format Reference et e e e e e e e ettt e 76
Numeric Format Specification it 76
Numeric Field Widening v v vt v v v e v v oo e e e e 7
T-FOTTNAL o v vt o o o o o o o s s o s o oo s s o s s s o s aess oo s s oossoessn 78
FoFOormat .« v v v v v e o o et oo ot o noasssoseesssvsonnsssssass 79
) o 3 o+ =7 A R R 80
G-Formatt oosnnsonsssonss C et e e et e e 82
Scale Factors . v v v v v v e v o o v oo s s o ot aa st s oo s vassessososoo 83
Octal Format Specification i it 84
O-FOTINAL . « « » + v o s o e o s s s oo oot o et s o s oo a s n oo ne ot oo oo 84
Alphabetic Format Specificationo vv i 86
HoF O mMat. o « o o « o o s o o s o o oo s s oo e o ansanasssssannssssssan 86
AT OTINAL. « + o o e v o s v st o o oo oot e e e 87
Format Statements Read At Execution v v v o v o v v oo v v v v v v oo oo 89

COMPUTER TIME-SHARING SERVICE LORTRAN

Variable Format Specification , ., e e e it e . 89
T-Format ,......... e 90
*Format ,.........c.0000 e e e e e ce.. 90
Format - List Correspondence ., ... e e s s s e s e s e e e e et e 90
Format Specification Groups o v v v v v vt ittt ettt e o s oo 90
Multiple Record Format e et i e e e e 91
12, MONITOR LINES

$USE ., e e e e e et e s e 93
$OPT,c.v... et et e e e e e e e e e 95
Options Available e e e e e e e e e e et e 95
Subscripting Checking. v vt e e e 96
Modes ,......coveeunvnos e et et e e s e e 96
Conditional Compilation e e et 96
Size and Time Announcements et e 97
Compilation Listing e e et ..o 917

13. HANDLING OF ERRORS
Composition Errors ., ettt e e e e 99
Execution Errors, e et e e e e ... 1lo1

APPENDIXES

A. FORTRAN STATEMENT RULES. i ittt iiniie e ... 108
B, CHARACTER SET & i it it et et et bt et it oo e eea s e st anos o e s ... 116
C. TABLE OF INTRINSIC FUNCTIONS it i i it e et e ensan 118
D. SAMPLE PROBLEMS i i i it it it et ettt et ta e ae s st aee s 120
E, SUMMARY . . . it i ittt e it et ot et bttt it s a o s oo oo e e e .. 122
INDEX ettt e e e et e e e e 124

COMPUTER TIME-SHARING SERVICE FORTRAN

vi

ALPHABETIC SUMMARY OF FORTRAN STATEMENTS

Page References
Statement | Rules Detailed
General Statement Form Category (App. A) Discussion
variable or array element = expression Arithmetic 108 34
mode qualifier, arithmetic statement function (dummy argument Subprogram
list) = expression Definition 109 27 & 43
mode qualifier, internal function (dummy argument list) : first Subprogram
statement Definition 109 27 & 43
ASSIGN label or label variable, TO label variable Control 109 47
BACKSPACE file reference 1/0 File 109 71
CALL subprogram or entry (actual argument list) Control 109 56
mode qualifier COMMON array, array (dimension specification), Declaration 110 36
variable, . .
CONTINUE Control 110 53
mode qualifier DIMENSION array (dimension specificationm), Declaration 110 38
variable
DO label control variable = initial value, finmal value, increment |Contrel 110 49
END Declaration 110 55
END internal function Declaration 111 43
ENTRY entry (dummy argument list) Subprogram
Definition 111 Lt
mode qualifier EQUIVALENCE (array, array element, variable, .),} Declaration 111 39
(equivalence),
EXTERNAL subprogram entry, . . Declaration 112 41
FORMAT (format specification sequence) Input/Output 112 75
FORTRAN

COMPUTER TIME-SHARING SERVICE

-vii-

ALPHABETIC SUMMARY OF FORTRAN STATEMENTS cont'd.

Page References
Statement Rules Detarled
General Statement Form Category (App. A) Discussion
mode qualifier FUNCTION external function (dummy argument list) Subprogram
Definition 112 25
GOTO label or label variable Control 112 46
GOTO (label, label variable, .), control variable Control 112 46
IF (expression) label reference, . .[negative, zero, positive] Control 112 47
IF (END FILE file reference) label reference, . .[end of file, I/0 File 112 48
no end of file]
INPUT format reference, input list I/0 Terminal 113 63
INTEGER array, array (dimension specification), external Declaration 113 25
subprogram, variable,
PAUSE constant or variable Control 113 55
PRINT format reference, output list I/0 Terminal| 113 61
READ format reference, input list 1/0 File 114 73
READ (file reference, format reference) input list 1/0 File 114 64
REAL array, array (dimension specification), external Declaration 114 25
subprogram, variable, . . .
RETURN Control 115 54
REWIND file reference I/0 File 115 71
STOP constant or variable Control 115 55
SUBROUTINE subroutine (dummy argument list) Subprogram
Definition 115 26
WRITE format reference, output list 1/0 File 115 73
WRITE (file reference, format reference) output list 1/0 File 115 64
FORTRAN

COMPUTER TIME-SHARING SERVICE

-viii-

1. INTRODUCTION

The Time-Sharing FORTRAN language described in this manual is an enrichment of
FORTRAN II, like the Card FORTRAN language developed for the GE-200 series on which
it is Dbased. It has been specially adapted for remote terminal and time-shared use.

To point out the difference from more traditional FORTRAN languages, a list of the capa-
bilities not strictly a part of FORTRAN II that have been added in Time-Sharing FORTRAN
language follows:

Mixed real and integer expressions, parameters, library function calls, and
input/output

Unformatted input and standard format output as well as extended formatting
facilities

Unrestricted subscripting with or without subscript checking

Extended subprogram facilities provided by internal subprograms (a generalization
of the statement function) and entry statements

Alphabetic capabilities based on short quoted literals in expressions and quoted
literals of unlimited length for input or output

Temporary and permanent file, and terminal input/output using FORTRAN IV
style statements

Relaxed naming rules including--

acceptance of longer names

specific and general mode declarations

both FORTRAN II and FORTRAN IV style library and statement function names
statement label names as well as numbers

Simplified statement form that does not require starting in a particular column
and allows--

multiple statements per line
unlimited continuation of a statement from line to line
embedded comments

Monitor system facilities that allow--
selection of compilation listing detail

paging and conditional compilation of source programs
naming of data and permanent files

COMPUTER TIME-SHARING SERVICE EORTRAN

FORTRAN Il Incompatibilities

Statements that must be omitted or altered:

READ TAPE
WRITE TAPE
READ OUTPUT TAPE

WRITE OUTPUT TAPE use

use READ (file)
use WRITE (file)
use READ (file, format)

WRITE (file, format)

READ DRUM omit
IF ACCUMULATOR OVERFLOW omit
IF QUOTIENT OVERFLOW omit
IF DIVIDE CHECK omit

IF (SENSESWITCH)
IF (SENSELIGHT)

use variable called SENSESWITCH
use variable called SENSE LIGHT

FREQUENCY omit
PUNCH omit
F-card use EXTERNAL

Facilities not available:

Boolean statement
Double precision statement
Complex statement

Slew control by first character of the output record
Intrinsic or library functions: DIMF, XDIMF, TANHF

Changed facilities:

Largest common declaration must precede other common and all dimension dec-

larations

Arithmetic Statement Function (ASF)
function

name beginning with X does not imply integer

Equivalence does not reorder common storage

Formatted output is subject to field widening rather than value truncation

FORTRAN 1V Incompatibilities

Statements that must be omitted or altered:

COMPLEX omit
DOUBLE PRECISION omit
LOGICAL omit
IF (logical) omit
NAMELIST omit
DATA

PUNCH omit
BLOCKDATA omit
DEBUG omit

use $DATA and READ temporary file

FORTRAN

COMPUTER TIME-SHARING SERVICE

Facilities not available:
Block common
Intrinsic and library subprograms: all complex, double precision, machine indicator
tests, DIM, IDIM, TANH, ALOG10, EXIT
Adjustable dimensions
Slew control by first character of the output record
Changed facilities:
Largest common declaration must precede other common and all dimension declarations

Mode of ASF dummy arguments cannot be declared

Formatted output subject to field widening rather than value truncation

COMPUTER TIME-SHARING SERVICE FoRTRAY

2. FORM FOR TIME-SHARING
FORTRAN STATEMENTS

In Time-Sharing FORTRAN, a source program is entered in a sequence of numbered lines,
In addition to the required line numbers, each line may contain:

One or more FORTRAN statements

A continuation of the statement on the previous line

One or more labels (numbers or names) for each statement (or, there may be none.)
Comments, either embedded within each statement or comprising the entire line
Control information

The rules for writing each of these entries follow.

Line Number

Each line must begin with a 1 to 5 digit sequence number. The operating system uses this
number to sequence the lines, The FORTRAN system uses the number to refer to parts
of the program written on the line, The line number cannot, however, be referred to from
within the program, as it can in a BASIC program, and should not be confused with the
FORTRAN statement number,

Unless the entire line is a comment, the first character after the line number must be a

blank,

Statement

A line may contain one or more statements. If more than one statement is entered on the
same line, each statement except the last must be terminated by a semicolon. A semi-
colon may, but need not, terminate the only or last statement on the line,

Example

140 1=12; J=15; K=0
150 5 A(I)=B(I)=F(1);
160 B(I)=B(I)/C(I); 6 T=T-B(I)

Semicolons separate the three statements in line 140. The semicolon after the statement
in line 150 is optional. Notice thata blank between the line number and statement number in
line 150 is required, but that none is required between the semicolon and statement number
in line 160,

COMPUTER TIME-SHARING SERVICE FoRTRAN

Continuation

A statement may be continued on as many lines as desired. Following the line number, the
first nonblank character of each continuation line must be a plus sign. The plus sign only
indicates continuation and is not a part of the statement,

Example

200 A(K)=A(I)+ROUTE (
210 + ARSIN'FUNCTION NAME
220 +, F(16), T)

These lines show how a statement begun on line 200 is continued on lines 210 and 220. The
plus signs, as the first nonblank characters after the blank following the line numbers 210
and 220, indicate the continuation,

Statement Labels

A statement may or may not be labelled. The label may be a 1 to 5 digit number or a 1 to
30 character name. A colon must separate a label name and the statement it labels., A
colon may but need not separate a label number and the statement. A statement may be
given more than one label, and in this case, a colon mustbe written after all but the last
statement number as well as after statement names. An empty statement may be labelled.

Example

280 ZERO:XB=XC=0 ; 3: XD=XE;4:TICK: XA=XA+1
290 LOC: 5 : B(XA)=0

300 FILL: REC: B(XA+J)=C(XA)3 7:8 C(XA)=0
310 END: ; 6; END

These lines show various ways in which statements can be labelled. Line 280 shows that
a statement may have a statement name, a statement number, or both, Line 290 shows
statements multiply labelled with names and with numbers. Notice that the last or only
statement number may have a colon after it, as in line 290, but need not, as in line 300,
Line 310 shows empty statements labelled with a name and with a number.

Comments

An entire line may be devoted to a comment. Comment lines are indicated by entering any
nonblank character as the first character after theline number. By this means, traditional
FORTRAN comment lines, as well as source-included non- FORTRAN lines may be entered.

In addition to a comment line, a comment may be embedded anywhere within a line (even
in the middle of a name if it suits your fancy). An embedded comment is introduced by
an apostrophe and terminated by the next apostrophe, a semicolon, or the end of the line.
An embedded comment may contain any characters, excepta semicolon or apostrophe which
would terminate the comment.

FORTRAN

COMPUTER TIME-SHARING SERVICE

Examples

2 50+++H+
260$COMDEK, NOLIST
270' PROGRAM ACCEPTS THREE KINDS OF INPUT

These three lines illustrate lines takento be comment lines because the first character after
the line number is not a blank.

170 'FOR THE LAST THREE' J=J+1
180 IF (J-12)6 'ELSE FOR ALL; P=J%2
190 IF (I=P+1) 7, 7, 5 "END OF INITIALIZATION

These three lines illustrate the three ways in which an embedded comment may be terminated:

e By an apostrophe, as in line 170
e By a semicolon, as in line 180
e By an end of line, as in line 190

Note: If an apostrophe is the first character after the line number, the entire line is taken
to be a comment,

120COMMON ARRAYS
130 COMMON A(R), B(16), C(6)

Because the first character after the line number in line 120 is not a blank, the entire line

is taken to be a comment, The blank after the line number, in line 130, indicates that the
line is not a comment.

Control Information

Information which directs the compilation or execution of a program is entered in control
lines. In Time-Sharing FORTRAN, a control line is indicated by writing a dollar-sign
preceded control word as the first nonblank character after the line number,

Example

230 $FILE STA, ROUTE, SALES
240 S$OPT SIZE

These lines illustrate how control information is entered. The $-preceded words in
lines 230 and 240 are interpreted as control words.

Note: If the first character after the line number is a dollar sign, the entire line is taken
to be a comment.

Sample Program

An example of a program using some of the unconventional features of Time-Sharing
FORTRAN is shown below. Following the example, notes describe the features illustrated.

COMPUTER TIME-SHARING SERVICE EORTRAN

Example

100
110
120
130
140
150
160
170
180

Notes

COMPUTER TIME-SHARING SERVICE

" PROGRAM PROVIDES ROOTS OF QUADRATIC IF REAL
PRINT"PROVIDE COEFICIENTS"

INPUT, A, B,C

PRINT''FOR COEFICIENTS:",A,B,C;PRINT"ROOTS ARE:",
1F (DISCRIMINANT=B1t 2 -4 xA%C) IMAGINARY

PRINT, (-B+(X=SQRT (DISCRIMINANT)))/ (Y=A+A),

+ -(B+X)/Y'SKIP AROUND; GOTO DONE
IMAGINARY : PRINT" IMAGINARY"

DONE ' EMPTY STMT.':

Line 100 shows a comment line. The character after the line number is not a blank,
so that the entire line is taken to be a comment,

Line 110 shows how a quotation is transmitted to the terminal.

Line 120 shows how terminal input is done. Unformatted input is indicated by
omitting a format reference. Notice that the comma normally written after the
format reference is retained.

Line 130 shows two statements separated by a semicolon on the same line. The
extra comina at the end of the second output list suppresses slewing,

Line 140 shows an expression with an equal sign. Notice that it is a mixed mode
expression. The integer 4 is automatically changed to a real 4.0. Notice also
that long names may be used (as long as 30 characters). Only one label reference
needs to be given, as it is in the example; or two or three may be given. Omitted
references are assumed to be to the next statement. Labels may be either names
or numbers.

Line 150 shows another terminal output statement., Since the format reference
is omitted, standard output format is used. Expressions may be included in the
output list, and expressions may use embedded equal signs. In this example X
and Y name partial expressions so that the second item in the list can be written
without repetition,

Line 160 shows how a plus sign at the beginning of the line is used to indicate a
continuation of the previous line.

Line 170 shows how a statement label name is separated by a colon from the
statement,

Line 180 shows a labelled empty statement. Notice that neither an END nor a STOP

statement is required. An apostrophe enclosed comment is shown in this line,
An apostrophe introduced comment closed by a semicolon is shown in line 160.

FORTRAN

3. ELEMENTS OF THE FORTRAN LANGUAGE

GENERAL DESCRIPTION

A program written in FORTRAN language consists of statements. These may either be
arithmetic statements which resemble mathematical formulas or control, declaration,
and input/output statements. All of these statements may be composed of the following
kinds of elements:

Constants

Variable, array, or subprogram names
Arithmetic operators

Statement labels

Punctuation

This chapter describes these elements and provides the rules to be observed in using each
of them. Subsequent chapters describe the different kinds of statements in which these
elements are used.

Use of Blanks

In FORTRAN statements, blanks are not used for punctuation. Words need not be separated
by blanks, and the characters in a word may be written with blanks between them. In
Time-Sharing FORTRAN, aside from the blank required after the line number, statements
may be written with or without blanks and any blanks are simply ignored.

Reals and Integers

Reals are distinguished from integers in FORTRAN. An integer is a real, of course, but
a variable that has only integer values is distinguished from one that may have fractional
(or large) values so that the integer can be handled specially. Calculating with an integer
is faster and requires less space than calculating with a real. (In Time-Sharing FORTRAN
an integer requires half the space to store as a real.) Another term for “real” is “floating-
point variable.”

A feature of Time-Sharing FORTRAN is that a user unconcerned with the space required
for his program or the time required to execute it may use only reals, without distinguishing
those variables that can only have integer values. Ordinarily, a user will be concerned
with how much space his program requires and how much time it takes, and he will want
to distinguish integers from reals.

FORTRAN

COMPUTER TIME-SHARING SERVICE

In Time-Sharing FORTRAN, a signed integer must remain within the range:
-524287 < integer < 524287

If the integer does not remain within this range, the variable should be handled as a real.
Reals can be handled with a magnitude within the range:

863616852 x10 " < |real|<.578960444 x10

CONSTANTS
Three kinds of constants can be represented:
e Decimals (both integer and real)

e Octal integers
e Quoted characters

Decimal Numbers
A decimal number may be written with (in this order):

A sign (plus (+) or minus (-))
An integral part
A fractional part
A ten’s exponent

If no sign is written, a plus sign is assumed. Either an integral or fractional part, or both,
must be written. The fractional part is introduced by a period (.} to indicatc the decimal
point,

The ten’s exponent, if any, is introduced by the letter E or a dollar sign (§). A signed integral
part is written after the introductory character; if no sign is given a plus sign is assumed.
The signed integer is the power of ten by which the preceding number is to be multiplied.
Either an integral or fractional part, or both, must precede the multiplicative factor.

The decimal representation is interpreted as a real if any of the following exist:

e There is a fractional part
e There is a multiplicative factor
o The integral part is> 524287 in magnitude

The entire representation is restricted to 30 characters, but the integral part, fractional
part, and multiplicative factor may each contain any number of digits subject to this restric-
tion. If a number is represented thatis larger in magnitude than can be handled, the largest
real that can be handled isused. If the fractional part has more than 10 digits (the maximum
precisionthat can be handled) the superfluous digits are ignored. (Leading zeros do not count.)

COMPUTER TIME-SHARING SERVICE EORTKAN

Examples

47 (integer)
+1. (real)
.5 (real)
-0.500 (real)
750000 (real, too large for integer)
5617 (real)

.3E-15 (real)
1.537E3 (real)
-2 (integer)
.01E+10 (real)

Octal Integers

From one to seven octal digits (0,1, ..., 7) may be used to represent an unsigned integer.
The integer must be within the range:

O<octal integer<3777777s

A slash (/) precedes the representation., If the number represented has more than seven
digits or contains either an 8 or 9, the constant is marked as erroneous,

Quoted Characters

From one to three characters may be enclosed in quotation marks and used in expressions.
If more than three characters are quoted in an expression, the constant is marked as
erroneous. Use of longer quotations is restricted to output statements and formats.

When fewer than three characters are enclosed in quotation marks, the characters are left-
justified and blank-filled, (This is the same way that values transmitted using the A3 format
are stored. Refer to page 87 .)

Examples (Refer to “Character Set,” page 116.)

""ABC" is stored as 0212223
""AB" is stored as 0212260y
AN is stored as 0216060,

Character constants are treated as integers in calculations, If the calculation involves a
real, the character constant will be converted to a real which will usually not be useful in
comparisons,

NAMES

The user assigns names to arrays, subprograms, and variables. The following rules must
be observed in constructing these names.

FORTRAN

COMPUTER TIME-SHARING SERVICE

-10-

Spelling Rules

Names may be composed from letters, digits, and the dollar sign.
The first character must be a letter.

As few as one character and as many as 30 characters may be used. Note: I
blanks are included in the name they are ignored and the name is considered
identical to the same one without blanks.

When the name follows a statement word (for example, DIMENSION or SUB-
ROUTINE) without intervening punctuation, the characters in the statement word
plus those in the name must not exceed 30 characters.

To ensure that a subscripted name is not taken for a statement word, array names
whose first letters spell the following statement words should be avoided:

CALL EXTERNAL
COMMON FUNCTION
DIMENSION INTEGER
ENTRY REAL
EQUIVALENCE SUBROUTINE

For the same reason array names identical with the following statement words
should be avoided:

FORMAT READ
GOTO WRITE
IF

Moreover, a variable name should be avoided of the form:
DO nn...naa.. .a,

where n’s represent digits and a’s represent letters.

Indication of Integer or Real Mode

The mode of an element can be indicated by one of three ways:

1.

The mode can be implied real or integer by the first letter of the name. If the
first letter is L J, K, L, M, or N, the name implies that the element is integer.
Otherwise the name implies that the element is real.

The implied mode may be overridden by a declared mode. This is done by
mentioning the element in an INTEGER or REAL statement before any other use
of the element in the program. The declared mode is then used instead of the
implied mode.

The implied mode may also be overridden by a control option which specifies that
all elements for which no mode has been declared are to be interpreted as of the
same mode--all integer or all real.

COMPUTER TIME-SHARING SERVICE FoRTRAN

-11-

For any name, the declared mode aiways takes precedence over the implied or assumed
modes. (Naturally, a declared mode may confirm as well as override an implied or assumed
mode.)

Examples:

REAL IMAGE, MANDATORY, OFFICE
INTEGER FIRST, SECOND, LAST

The names in these mode declarations may be variable, array, or external subprogram
names, If array names, they may have dimensioning information appended.

Array Names

A name is indicated to refer to an array by mentioning it first in one of the following
kinds of statements:

DIMENSION
COMMON
INTEGER
REAL

Appended to the mention is a parenthesized list of positive integers which indicate the dimen-
sion of the array and the size of each dimension.

If no parenthesized list follows the name in REAL or INTEGER statements, the name is
assumed to refer to a subprogram or variable, not an array.

The number of dimensions is indicated by the number of positive integers in the paren-
thesized list:

) One number in the list indicates one dimension
° Two numbers in the list indicate two dimensions and so on

If there is more than one number, each is separated from the next by a comma. As few
as one number and as many as 15 numbers may be given to indicate 1-dimension, 2-
dimension, ..., 15-dimension arrays.

The size of each dimension is given by the number representing the dimension. The first
number indicates the number of rows, the second indicates the number of columns, and
so on. The product of all dimension sizes for one name must not exceed 8191.

Note: Because an integer array of 6000 elements takes more space than is available for the
entire program, smaller arrays (much smaller if there are many arrays) have to be used if
the program is to be executed. The restriction of a single array to 8191 elements is required
even if the program is only to be trial-compiled for use on another computer.

COMPUTER TIME-SHARING SERVICE FoRTRAN

-12-

Examples:

DIMENSION A(3), B(100), C35(12,12), ANTHRAX (3,5,1)
COMMON SPECIAL (10,3,2,1)

When the dimension specifications of one array are the same as those of another, the
second array maybe written with a quote mark in place of its dimension specification, to
indicate ditto.

Example:
COMMON A (20,20), B", C" is the same as

COMMON A(20,20), B(20,20), €(20,20)

Every element of an array has a value of zero before execution of the program begins.

Subprogram Names
A name is indicated to refer to a subprogram by any of the following:

Its use in a function call

Its use after the word CALL in a CALL statement
Its mention in an EXTERNAL statement

Its use in a subprogram definition statement

A function call is an occurrence in an expression of a name which is suffixed by a paren-
thesized list of arguments and was not previously declared to be an array. (Parentheses
may possibly be empty.)

Examples
J=MAGI (3): S=SUMP() function calls
CALIL TOST; CALL ROSTER(3) call statements
EXTERNAL ANTON, BUXT external statement
SUBROUTINE KROG external subprogram definition
PUN(X,Y) = X*SIN(Y) + Y*SIN(X) internal function definition

Note that, in the first example, failure to first mention an array name in an array dec-
laration may cause subscripted reference to the array to appear to be a function call.
In the last example, such failure to mention may cause the array name to appear as an
internal function definition,

Variable Names

A name is indicated to refer to a variable if it is not declared as an array nor used as a
subprogram or statement label,

Like array elements, the initial value of variables is zero.

FORTRAN

COMPUTER TIME-SHARING SERVICE

-13-

ARITHMETIC OPERATORS

Characters Used

The table below lists the expressions used to indicate the specified operation.

Operator Operation Specified
= Assignment
+ Addition
- Subtraction or negation
* Multiplication
/ Division
ort Exponentiation
Examples
=X negation of x
xty addition of x and y
x-y subtraction of y from x
X%y multiplication of x and y
x/y division of x by y
xty xwxy x raised to the y power
x=y assign the value of y to x

In this list, the operands x and y may be constants, variable names, array elements, function
calls, or expressions involving these operands and the operators in the list. In the last
entry in the list, however, the x in x=y may designate only a variable or array element,

Priority of Application

When multi-operator expressions are written, parentheses are used, as they are in mathe-
matical formulas, to indicate to which operands the operators apply. For example:

x*(y+z) means multiplication of x and the sum of y and z

(x*y)+z means addition of z and the product of x and y

In the absence of parentheses, operators are applied according to the priority of applica-
tion each has. These priorities are:

Highest: -X negation
X1y, x**y exponentiation
x*y, x/y multiplication or division
X+y, X-y addition or subtraction
Lowest: X=y assignment

The rule is: If the priority of the present operator is higher than that of the previous
operator, the present operator is applied first, but if the priority of the present operator
is the same as or lower than that of the previous operator, then the previous operator is
applied first. An exception is that multiple assignments are done from right to left.

COMPUTER TIME-SHARING SERVICE EQRTRAN

-14-

Examples:

A=B/C+D means A=((B/C) + D)
A=-BxC means A=((-B) * C)
A=B=C+D means A=(B=(C+D))
A=B+C-D means A=((B+C)-D)
A=BtCtD means A=((BtC)tD)

Expressions

An expression consists of a sequence of operands and operators. The expression is
evaluated by applying the operators to the operands according to the rules discussed under
“Priority of Application.” If the operands are all real, only real operations are performed.
If all operands are integer, only integer operations are performed. When both integer
and real operands occur within an expression, not only are both integer and real operations
performed, but also a conversion operation from one mode to the other is required. In
Time~-Sharing FORTRAN, the conversion is automatically provided.

If a real operand is assigned to an integer operand, the real is truncated to an integer,
and any fractional part is ignored. For example:

3.5 is truncated to 3,
0.57 is truncated to 0,
-8.7 is truncated to -8,

-0.61 is truncated to O.

If the integer part of the real is too large to express as an integer (greater than 524287 in
magnitude), a substitution notice is printed, and 524287 is then used as the magnitude.

When there are multiple assignments, the mode of the operand to be assigned is adjusted
to the mode of the operand to which it is assigned.

Example:
A=1=3B= 3.5 1is the same as
A=3.5; 1I=3; A=30

Except for assignment of a real to an integer, for all operations involving an integer and
real operand, the integer is first expressed in a form suitable for real calculation. In
Time-Sharing FORTRAN, this conversion to real form is performed automatically, without
user specification.

The result of an integer operation is expressed as a real operand only when used as an
operand of an operation also involving a real operand.

Example:

4.5 + 5/2 is 6.5, not 7.0

COMPUTER TIME-SHARING SERVICE FORTRAN

-15-

Exponentiation

Exponentiation is performed in three different ways, dependingon the modes of the operands:

integer ** integer successive multiplication
real ** integer successive multiplication
real ** real base ** exponent = EXP (exponent * LOG(base))

When the exponent is large, and the base is a real, expressing exponentiation as “real ** real”
provides greater accuracy at the expense of speed.

STATEMENT LABELS
Definition
A statement must be labeled if it is to be referenced. The label is written at the beginning
of the statement. In FORTRAN, the statement label may be a non-negative integer. In
Time-Sharing FORTRAN, the following range must be used:

0= statement number< 100,000

A statement number should not be confused with the number of the line on which the statement
is written.

In addition to statement label numbers, Time-Sharing FORTRAN allows the use of statement
label names. The following rules apply to statement label names:

1. The name is suffixed with a colon to indicate that it is a statement label.

2. Like a statement number, the name is written at the beginning of the statement.
3. The name is subject to the same spelling rules as a variable or array name.
4, A statement label name need not differ from names used elsewhere in the program

except that a label variable or format array should not be given the same name
as a statement label.

In Time-Sharing FORTRAN a statement may be labeled with more than one label. Empty
statements may be labeled.

A statement number may be suffixed with a colon and must be colon suffixed if another
label follows it.

COMPUTER TIME-SHARING SERVICE FORTRAN

-16-

Examples:

47 A=B+1

47: A=B+1

47: TICK: A=B+1

TICK: 47 A=B+1

TICK: 47: A=B+1

SIX: ; 6 ; (these are labelled empty statements)

Statement Label Reference

Reference may be made to statements only in control and input/output statements. The
reference is made by mentioning the name or number by which the statement is labeled.
Naturally, if a statement is referred to, there must be one (and only one) statement with
that label in the same subprogram as the reference.

In most statements, the statement reference is separated from other parts of the statement
by a comma. In two statements (DO and ASSIGN...TO...) which do not require a comma after
a statement label number, Time-Sharing FORTRAN requires a comma after a statement
label name. For uniformity, a comma is allowed after a statement label number. The list
below illustrates all possible contexts.

DO 61I=1, 10

DO 6, I =1, 10

D0 SIX ,I=1, 10

ASSIGN 25 TO J

ASSIGN 25, TO J

ASSIGN QUARTER , TO J

IF (A-B) 3, 4, 5

IF (A-B) LESS, EQUAL, MORE
GO TO 15

G0 TO QUINCE

GO TO (1, TWO, 3, FOUR) , N
READ 8, A

READ EIGHT , A

Note that a comma is required after a statement name whenever more of the statement
follows the statement name.

In an input/output statement, as illustrated in the last example, the name given as a statement
label could be interpretedinone of two ways. It could be taken as the name of an array which
holds the format to be used, or it could be taken as the name of the statement in which
the format is given. A name is interpreted as an array name only if it has previously
been declared to be an array.

COMPUTER TIME-SHARING SERVICE EORTRAN

-17-

Labe!l Variables

A label variable is declared by means of an ASSIGN...TO...statement. The variable named
after the word “TO” is a label variable.

The traditional use of a label variable is in a GO TO statement. It is used to direct control
to the statement whose label was most recently assignedto the label variable. For example,

GO TO QUINCE

If the most recently executed ASSIGN...TO QUINCE statement was ASSIGN 6 TO QUINCE,
the above example woulddirect control to the statement labeled 6. However, if the statement
ASSIGN ELSE, TO QUINCE was more recently executed, the above example would direct
control to the statement labeled ELSE.

In addition, a label variable may be referred to anywhere a statement label may be, with
one exception. The exception is the DO statement in which the label reference obviously
must be to a statement.

A name used as a label variable must not also be used as a statement label. Such use
would provide multiple definitions of the same name. However, label variable names need
not differ from names used for arrays, variables, and subprograms.

Examples:

ASSIGN 6 TO FORMA
READ FORM A

ASSIGN ANTI, TO MINUS
IF (A) MINUS

ASSIGN 6 TO LVA
ASSIGN LVA, TO MINUS

COMPUTER TIME-SHARING SERVICE FORTRAN

-18-

4. SUBPROGRAMS

GENERAL DESCRIPTION

Three kinds of subprograms are used in Time-Sharing FORTRAN:
e Intrinsic functions
e External subprograms

° Internal functions

Intrinsic functions are available in any program without any definition: they are a part of
FORTRAN.,

By contrast, both external subprograms and internal functions are available to a program
only through definition within the program.

The difference between external subprograms and internal functions is in the way they
share names. External subprograms do not share names with one another. The only
names that they use which have common referents are the names of the external sub-
programs themselves. One external subprogram may use a particular name in an entirely
different way than another subprogram may use the same name. Because of this
independence, this kind of subprogram is termed “external” to other subprograms.

On the other hand, internal functions do share names with other functions internal to the
same subprogram, as well as with the subprogram in which they are included. The way
they use a name depends on how the name is used elsewhere throughout the including
subprogram. Because of this dependence, these functions are termed “internal” to the
including subprogram.

Note: Internal functions are a Time-Sharing FORTRAN generalization of Arithmetic
Statement Functions.

INTRINSIC FUNCTIONS

The intrinsic functions available in Time-Sharing FORTRAN are listed on the following
page. The various FORTRAN II and IV names by which they may be called, the number and
assumed mode of arguments, and the result mode are shown.

COMPUTER TIME-SHARING SERVICE FORTRAN

-19-

The modes of arguments are automatically adjusted to the required argument mode for
each library function. The mode of the result is automatically converted to an integer value,
if used in an integer expression (as a subscript expression for example), or to a real, if
used in a real expression.

Table of Intrinsic Functions for Time-Sharing FORTRAN

No. of Arguments Result
Name and Assumed Mode Mode Definition
ABS 1 Real Real Absolute Value
ABSF 1 Real Real of argument
XABSF 1 Integer Integer
LABS 1 Integer Integer
ATAN 1 Real Real Principal angle in radians
ATANF 1 Real Real whose tangent is argument
Ccos 1 Real Real Cosine of angle in radians
COSF 1 Real Real
EXP 1 Real Real e raised to the given
EXPF 1 Real Real power
FIX 1 Real Integer Given real converted to an
FIXF 1 Real Integer integer
IFIX 1 Real Integer
XF IXF 1 Real Integer
FLOAT 1 Integer Real Given integer converted to
FLOATF 1 Integer Real a real
AINT 1 Real Real Sign of argument times
INTF 1 Real Real largest integer less

than or equal to argument
in magnitude

LOG 1 Real Real Natural Logarithm of
LOGF 1 Real Real argument
ALOG 1 Real Real

COMPUTER TIME-SHARING SERVICE

FORTRAN

-920-

Table of Intrinsic Functions for Time-Sharing FORTRAN, Continued

No. of Arguments Result
Name and Assumed Mode Mode Definition
AMAX1 22 Real Real Maximum of arguments
MAX1F 22 Real Real
MAX1 22 Real Integer
XMAX1F 22 Real Integer
AMAXO 22 Integer Real
MAXOF 22 Integer Real
MAXO 22 Integer Integer
XMAXOF 22 Integer Integer |
AMIN1 22 Real Real Minimum of arguments
MINLF 22 Real Real
MIN1 22 Real Integer
XMINLF 22 Real Integer
AMINO =2 Integer Real
MINOF 22 Integer Real
MINO 22 Integer Integer
XMINOF 22 Integer Integer '
AMOD 2 Real Real Remainder on dividing argument 1 by
MODF 2 Real Real argument 2
MOD 2 Integer Integer
XMODF 2 Integer Integer
RND 2 Real Real 1. If arg = 0, provides next in
sequence of pseudo-random
numbers uniformly distributed,
0<n=1
2. 1If arg >0, initiates a new
sequence and provides a
number as above; starting
value of sequence depends on
arg
3. If arg <0, as above except
starting value chosen
arbitrarily
SIGN 2 Real Real Magnitude of argument 1 with sign
SIGNF 2 Real Real of argument 2
ISIGN 2 Integer Integer
XSIGNF 2 Integer Integer
SIN 1 Real Real Sine of angle given in radians
SINF 1 Real Real
SQRT 1 Real Real Square root of argument
SQRTF 1 Real Real
TIMEZ 1 Real Real 1. 1If arg <0, gives elapsed
chargeable time for execution
(including compilation).
2. 1f arg = 0, gives hours since
midnight.
3. If arg >0, now same as above

COMPUTER TIME-SHARING SERVICE

but reserved for future
different use.

FORTRAN

-21-

The names of intrinsic functions may be used for naming variables or arrays or internal
functions, but in these cases, no reference within that subprogram can be made to the
intrinsic function whose name has been usurped. The names of intrinsic functions cannot
be used to name external subroutines or functions or as entry names.

DUMMY ARGUMENTS

Both internal and external functions and subroutines may be defined in terms of dummy
arguments. The dummy (that is formal) arguments are written in a list after the name
of the subprogram in the definition of the subprogram. There may be as few as none or
as many as 14 dummy arguments.

The first listed dummy argument is the name by which references are made within the
subprogram to the first actual argument with which the subprogram is called. The second
is the name by which the second call argument is referred, and so on. For example, when
a subprogram named CRUST is defined with a dummy argument list, CRUST (X,Y):

means reference

The call within CRUST to is a reference to
CRUST (A+B, 3.2) X A+B
Y 3.2
CRUST(C(I), D) X c(I)
Y D
CRUST (SIN(L),EXP) X SIN(L)
Y EXP
CRUST(C, "E") X C
Y "E"
CRUST(C(F+D/2), 2) X C(F+D/2)
Y 2

Dummy arguments can represent the following program elements:
e An expression, for example, A+B or SIN(L)
e A constant, for example, 3.2 or “E” or 2
e An array element, for example, C(I) or C(F+D/2)
e A variable, for example, D
° An array, for example, C

® A subprogram, for example, EXP

COMPUTER TIME-SHARING SERVICE FORTRAN

-99.

When a dummy argument represents an expression, it stands for the value of the expression
as calculated at the time the subprogram is called. Similarly, when a dummy argument
represents an array element, it stands for the array element selected by evaluating the
subscript expression at the time the subprogram is called.

When a dummy argument represents an array, the dummy argument should be declared in
the subprogram in the following manner. It should be declared to be an array with the same
number of dimensions and with the same dimension sizes as contained in the array declaration
in the calling program.

A dummy argument should be named in a --

° REAL or INTEGER statement: to declare a mode if the mode of the corresponding
call argument is different than an assumed mode or one implied by the dummy
argument name.

° DIMENSION or mode statement: to declare the number of dimensions and the size
of each dimension, ifr the corresponding call arguments are arrays.

A dummy argument may be named in an --

. EXTERNAL statement: todeclare the corresponding call arguments are subprogram
names; intrinsic, internal, or external. (This information is not required, but if
given is used to confirm that the dummy argument name is not used except as a
subprogram in the subprogram definition statements.)

e COMMON or EQUIVALENCE statement: to indicate that the corresponding call
arguments are in common storage or equivalent to something. (This information
is actually ignored, but because it is sometimes given mistakenly, it is allowed
in Time-Sharing FORTRAN.)

Any declarations in whichdummy arguments are named must be given in statements following
the statement that contains the dummy argument list. This list is the one in which the
dummy argument isfirstnamed. No statements except declaration statements may intervene.

In every call to a subprogram the following rules should be observed:

° The number of arguments in the call should be the same as the number of dummy
arguments in the subprogram.

. The mode of each call argument should match the mode of the corresponding dummy
argument.

° The type of call argument should conform to the way the corresponding dummy
argument is used in the subprogram definition statements.

FORTRAN

COMPUTER TIME-SHARING SERVICE

- =-23-

This conformity is as follows:

When the dummy argument The corresponding call argument should
is... be...

used as a value but not constant, expression, array element, or
assigned one variable

assigned a value, perhaps in array element or variable

addition to being used as a

value

assigned a set of values perhaps array
in addition to being used as a set
of values, and declared an array

used as the name of a subprogram subprogram; intrinsic, internal, or external

used as a call argument in calling any of the above
another subprogram

No check, however, is made to see that the number of call arguments matches the number
of dummy arguments. When a subprogram is called with more arguments than the dummy
arguments that have been defined for it, the extra call arguments are provided by the
calling program, but they are ignored by the called subprogram. When called with fewer
arguments, the dummy arguments for which no corresponding call arguments have been
provided refer to the instructions after the call.

Furthermore, no check is made to see that a call argument has the same mode as the
dummy argument, or that it is the kind of program element implied by use of the dummy
argument in the subprogram. A real variable can be provided by the calling program for
a dummy argument whose mode is integer. Or, an integer constant can be provided for a
dummy argument declared to be a real array. The consequences of such mismatching can
be foreseen and, thus, perhaps used to some advantage by a tricky programmer, but
clearly this is not recommended.

In Time-Sharing FORTRAN, three kinds of checks are made to protect programs which
share the machine at the same time. When a value is assigned to a subscripted dummy
argument name, by either an input or assignment statement, the assignment is checked
to ensure that it is to a space within the dimensioned and common storage for the entire
program. An assignment to an unsubscripted dummy name is also checked to ensure
that the assignment is to a variable or array element. In addition, a call to a dummy
argument is checked to confirm that the corresponding call argument is a subprogram.

COMPUTER TIME-SHARING SERVICE FORTRAN

-24-

EXTERNAL SUBPROGRAMS

There are three types of external subprograms:
e External functions
e External subroutines
e Main program

A description of each type follows.

External Functions

An external function shares no names with those used in other subprograms except for the
names of other external functions and subroutines. For this reason, use of values assigned

in another subprogram or assignment of values to be used in another subprogram is -

restricted to that provided by two kinds of correspondence.

One is the correspondence between the dummy argumentin the called function and the actual
argument in the calling subprogram which has been described above.

The other kind of correspondence that provides for sharing of values between external
subprograms is obtained by declaring variables or arrays in one subprogram to use the
same storage as declared for variables or arrays in another. This declaration is done
by means of the COMMON statement. Whether a variable has the same name in one
subprogram as in another is immaterial in establishing this correspondence: only the
use of the same storage establishes the correspondence.

The definition of an external function may occur anywhere in the program, before or after
the first reference to it. An external function is defined as follows: The name of the
function is written after the word FUNCTION. The name of the function must be distinct
from names of intrinsic functions and from those used for other external functions or
subroutines, After the name, a parenthesized list of dummy arguments is written. If
there are no dummy arguments, the parenthesized list may be omitted.

The name of the function may determine the mode of the result it returns. If the name
begins with the letter I, J, K, L, M, or N, its implied mode is integer. Otherwise, the
implied mode is real. The implied mode may be overridden by an optional specification
that one mode is assumed for all names. Either the implied mode or the assumed one
may be overridden by writing the word REAL or INTEGER in front of the word FUNCTION.

Examples:

FUNCTION ASK (X,Y)

INTEGER FUNCTION SEEK (P)
REAL FUNCTION TORQUE

REAL FUNCTION MAKESHIFT (T,S)

COMPUTER TIME-SHARING SERVICE EORTRAN

-25-

This first statement in the definition of an external function is followed by the statements
comprising the function. An END statement (with no characters after it) indicates the last
of the statements defining the function. The END statement may be omitted if the next
statement is a FUNCTION or SUBROUTINE statement or the last executable statement in
the program.

Within the statements comprising the external function definition, the name of the function
refers to a variable. This variable isof the same mode as the function and its value may be
used or assigned. Initially, the value of this result variable is the last result provided
by the function, in response to the last call to the function. If there has been no previous
call, the result variable has the value zero.

When a RETURN statement in an external function is executed, it causes the current
value of the result variable to be supplied to the calling program, and control to be returned
there. If no RETURN statement is executed, execution of the END statement (or in its
omission, the last statement comprising the function) has the same effect.

External Subroutines

An external subroutine is identical to an external function except that an external subroutine
does not have a result variable. In an external function, execution of a RETURN statement
causes control to be returned and the currentvalue of the result to be supplied to the calling
program. In an external subroutine there is no result variable, and execution of a RETURN
statement merely causes control to be returned to the calling program.

The name of an external subroutine when used within the subroutine refers to a variable
to which a value may be assigned and whose value may be used. But, the value of this
variable is not supplied to the calling program when control is returned to it.

A mode qualifier--REAL or INTEGER--prefixed to the word “subroutine” in a SUBROUTINE
statement, does not declare the mode of a variable with the same name, as it does in an
external function. If a mode qualifier is given in a SUBROUTINE statement, as sometimes
mistakenly is done, it is ignored.

Main Program

A main program is an external subprogram without a name. It is called only once, upon
initial execution of the program in which it is a subprogram. There must be one main
program to which control can be initially passed, and there must be only one.

Like external functions and subroutines, a main program shares no names with those
used in other external subprograms. A main program may share values with other external
subprograms only by establishing a shared storage for the values, or by call argument,
dummy argument correspondence.

COMPUTER TIME-SHARING SERVICE EORTRAN

-26-

A main program is defined by writing statements, without preceding them with a FUNCTION
or SUBROUTINE statement, either at the beginning of the program or after the END state-
ment terminating the definition of another external subprogram.

Note: Accidental omission of a FUNCTION or SUBROUTINE statement or misplacement
away from the beginning of a subprogram definition can cause definition of more than one
main program. This is marked as erroneous.

Execution of the RETURN statement, the END statement, or the last statement in a main
program ordinarily stops execution of the entire program, of which the main program
may be only a subprogram.

If the main program has been re-entered by execution of an ENTRY statement (a special
statement provided by Time-Sharing FORTRAN) execution of a RETURN, END, or the last
statement causes control to return to the point from which it was last called. Refer to
“Entry Statement,” page 44.

INTERNAL FUNCTIONS

Any external subprogram--function, subroutine, or main program--may contain one or
more internal functions. An internal function is then a part of the external subprogram in
which it is included. It shares names with the including subprogram, but its own name
is unknown to any other external subprograms.

THE DEFINITION OF AN INTERNAL FUNCTION MUST PRECEDE ANY STATEMENTS
CONTAINING REFERENCES TO THE INTERNAL FUNCTION.

The definition consists of three parts:
e A function name
e A parenthesized list of dummy arguments (possibly empty)

e The statement or statements comprising the function

The function name may imply the mode of the result returned by the function. An assumed
mode may be applied by the controloption. The implied or assumed mode may be overridden
by means of a mode declaration REAL or INTEGER written in front of the internal function
name and separated from it by a comma.

There are two kinds of internal functions in Time-Sharing FORTRAN. One is the traditional
Arithmetic Statement Function (ASF). The definition of an ASF is confined to a single
arithmetic assignment statement. The other is a function not usually provided. It
is a generalization of the ASF. The definition of this type of function may consist of as
many statements of any kind as required. These functions are referred to as “general
internal functions.”

FORTRAN

COMPUTER TIME-SHARING SERVICE

-27-

Arithmetic Statement Functions

An Arithmetic Statement Function is defined as follows: An equal sign (=) is written after
the parenthesized list of dummy arguments. The =is followed by the expression, the
evaluation of which provides the function result.

Examples:

NOT(L) = 1-L

SINH(X) = .54 (EXP(X) -EXP(-X))

FIBONACCI () = F2 = (F1) + (F1 = F2)

INTEGER, KEY (NUMBER) = MOD (FIBONACCI, NUMBER)

UP (X) = X = X+1

INTEGER, FIRST (I) = IABS(LIT(I)-"FIR")+IABS(LIT(I+1)-"ST")
REAL, ISO(FUNC,X)=SQRT(1-(FUNC(X) % FUNC(X)))

INTEGER, UNIT () = MOD(UNIT,MAXU) +1

These examples illustrate the kinds of call arguments to which an ASF dummy argument
may correspond. Notice that an ASF dummy argument cannot correspond to an array
because there is no way of declaring its dimension within the single statement comprising
the ASF.

Two conventions for establishing modes in ASF’s are specifically not followed in Time-
Sharing FORTRAN. In FORTRAN II, peculiar rules are used to infer from the name of
the ASF, the mode of the result returned by the ASF:

o The name has to have four or more characters.

e The name must end with the letter “F”.

° The name is implied to have real mode unless the name begins with the letter

“x”
.

In FORTRAN IV, regular naming rules are used for the name of an ASF. But, the modes
of ASF dummy arguments may be declared in mode declarations preceding the ASF definition.

Neither the peculiar ASF naming rules of FORTRAN II nor the mode declarations of ASF
dummy arguments given prior to the ASF definition, permitted in FORTRAN 1V, are used
in Time-Sharing FORTRAN.

General Internal Functions
In Time-Sharing FORTRAN, the concept of the ASF is generalized to an internal function

whose definition may consist of more than one statement.

Like an ASF, a name used in a general internal function refers to the same element referred
to by other uses of the same name throughout the including external subprogram. This
holds true both within other internal functions included in the same external subprogram
and in the “main” part of the external subprogram.

COMPUTER TIME-SHARING SERVICE FORTRAN

-28-~

Dummy arguments and statement labels are not so shared, however. Like an ASF, an
internal function definition may have a dummy argument list. The names in this list are
dummy argument names and do not usually refer to the same thing referred to by the same
name outside the internal function.

Similarly, statement labels are internal to the general internal function. References to a
statement name or number within a generalinternal function are taken to refer to statements
within the internal function labeled with the name or number. If no statement so labeled
occurs within the internal function, the label references are marked as erroneous. Label
variables are similarly interpreted as internal only.

A general internal function is defined as follows. The name of the internal function is
written in the first statement. This is followed by a parenthesized list of dummy arguments
(possibly empty). The list is followed by a colon. Like an ASF name, the name of an
internal function may be preceded by the word REAL or INTEGER, separated from the
name by a comma. This declares the mode of the result returned by the internal function..

After the first statement in the definition of the general internal function, the statement or
statements comprising the internal function are written. The last statement should be an
END statement in which one or more characters are written after the word “end.” For
example: END...or END INTERNAL

The END statement may be omitted if the next statement is the first one of another internal
function definition. This convention prevents nesting of internal functions. The attempt to
include an internal function within another internal function merely concludes the definition
of one and initiates the definition of the other.

The parenthesized list of dummy arguments may be empty if there are no arguments.
However, the empty parentheses must be given. Otherwise the colon-terminated name
will be interpreted as a label.

The modes of dummy arguments may be declared and the kind of call arguments they
correspond to may be declared. The declaration is done in the same way as for dummy
arguments for an external subprogram. Notice that a dummy argument may correspond
to an array in a general internal function, for, unlike an ASF, the definition of a general
internal function may include a dimension declaration.

An internal function returns a result in the same way that an external function does. The
name of the internal function when used within the definition of the internal function refers
to a result variable, the value of which is supplied to the calling statement upon return.
Control is returned, as in an external subprogram upon execution of either a RETURN
statement or the END statement, or by the last statement in the internal function definition.

FORTRAN

COMPUTER TIME-SHARING SERVICE

29

Examples

110 ROOT1 = (-B+(S=SQRT(T)))/(A2=A+A)
120 ROOT2 = -(B+S)/A2 ; RETURN
130 MINUS : ROOT1 = ROOT2 = 0

100 QUAD() : IF(T=B#B-4%A%C) MINUS

140 INTEGER, CHAR(AY) : INTEGER AY (70)

150 0 CHAR = 70

160 1 IF(AY(CHAR) - " ') ALFA 2,ALFA 'FIND FIRST NON-BLANK
170 2 IF(CHAR = CHAR -1) 3,3,1

180 3 PRINT "NONSENSE, WHAT IS IT?"

190 ENTRY INALFA(AY)

200 INPUT ALFA, AY 'USED FOR INTIAL INPUT ; GO O

210 ALFA : FORMAT (Al)

220 END INTERNAL EXAMPLES

ENTRY

External subprograms and internal functions may contain ENTRY statements. ENTRY
statements provide for calling the subprogram at other than the first statement in the
subprogram. The call is to the entry name. Like a callto a subprogram, the call may be

accompanied by an actual argument list with which dummy arguments named in the ENTRY
statement are to correspond,

The ENTRY statement may occur anywhere ina subprogram. It consists of the word ENTRY
followed by the entry name and an optional parenthesized list of dummy arguments,

The ENTRY name must be distinct from:

e Other entry names in the same or different subprograms

e Names of external subprograms

e Names of intrinsic functions

e Names of internal functions included in the same subprogram
The dummy arguments listed in an ENTRY statement may be the same as or different from
those listed in the statement which introduces the subprogram definition or those listed in
other ENTRY statements in the same subprogram. Naturally, if a subprogram is entered

via an entry for which a dummy argument is not listed, the entry does not change the
correspondence previously established for any dummy argument,

COMPUTER TIME-SHARING SERVICE FORTRAN

-30-

If a subprogram has been last entered via an ENTRY statement, return is to the point
from which the ENTRY statement was last called. If an ENTRY statement is one of the
defining statements for an internal function, entry via it affects return from the internal
However, this entry does not affect return from the subprogram containing the
internal function,

function.

Example

100
110
120
130
140
150
160
170
180
190
200
210
220

COMPUTER TIME-SHARING SERVICE

SR:

A:
B:

INPUT, I

PRINT, I,""MEANS"',
IF(I)SR:A,B

CALL SUBR; STOP "SR
CALLA ; STOP "A"
CALLB ; STOP "B"

SUBROUTINE SUBR

PRINT '"'SUBR ENTRY'"
ENTRY A

PRINT "A ENTRY"

ENTRY B

PRINT "B ENTRY"

PRINT "RETURN TO CALLER"

FORTRAN

-31~

5. SUBSCRIPTING

ARRAY ELEMENT REFERENCE

A particular element of an array can be referenced by means of a subscript. The name of
the array is written followed by a parenthesized list of subscript expressions. In this
list there is one expression for each dimension, The integer value of the first expression
gives the ordinal of the row in which the referenced element is located, the second, the
column, and so on, Counting of rows, columns, and so on always starts with one,

Any expression may be used as a subscript expression. In Time-Sharing FORTRAN,
expressions involving subscripting or requiring real calculations are acceptable. (Tradi-
tional FORTRAN restricts the expressions to linear combinations of integers.)

MISSING SUBSCRIPT

When a subscript expression is not given for a dimension, a value of one is assumed.
Thus, with a dimension declaration--

DIMENSION A(3,4,2,2), B(4,4,4)
A(J,K)+B means A(J,K,1,1) + B(1,1,1)

A(L#+2/N, R(P))*B(3,3) means A(L+2/N, R(P),1,1)%B(3,3,1)
B/A means B(1,1,1) / A(1,1,1,1)

In some contexts, missing subscript expressions are not assumed to be 1. When only the
name of the array appears as an item in an input/output or argument list, or as a format
specification, the entire array (not just its first element) is assumed to be referenced.

SUBSCRIPT RESTRICTIONS
In Time-Sharing FORTRAN it is considered an error:

1. To give more subscript expressions than there are dimensions declared for an
array

2. To give any subscript expressions for a variable

3. For an array of three or more dimensions, to give a subscript expression whose
value is:

nonpositive, or

greater than the size declared maximum for the
corresponding dimension

COMPUTER TIME-SHARING SERVICE FORTRAN

-32-

4, To give subscript expressions whose values, taken together with the dimensioning
information provided for the array, would cause an assignment to be made outside
all arrays.

SUBSCRIPT CHECKING

The third subscript restriction together with the assumption of one for missing subscript
expressions provides the basis for two degrees of subscript validation. A single or double
dimensioned array can be dimensioned to be three, with the extra dimension having the size
of one, Then, every subscripted reference to this array is subjected to a subscript valida-
tion. This validation confirms two things, First, it confirms that the expressions are
always positive, and second, that they are not greater than the maximum declared for the
corresponding dimension,

An optional control statement, $OPT SS, is also available that automatically treats all
single and double dimensioned arrays as though they had been extended to three dimensions,
By means of this treatment, all subscripting can be subjected to validation,

The fourth subscript restriction is detected principally to provide protection to other pro-
grams sharing the computer at the same time. In addition, it can be useful for program
checkout, by detecting erroneous subscripted assignment,

SUBSCRIPT TRUNCATION

A subscript value for an integer array is used modulo 8192; for a real array 4096 (since
the subscript is doubled to select a two-word array) element, Because of this truncation,
negative subscripting does not work. For example, a subscript of -2, when used modulo
8192, is changed to 8190 (because negative valves are held in complemented form).

FORTRAN

COMPUTER TIME-SHARING SERVICE

_33-

6. ARITHMETIC STATEMENT

An arithmetic statement is written like a formula: a name is written first, followed by an
equal sign and an expression,

name = expression
In FORTRAN, the arithmetic statement indicates that the expression is to be evaluated

and this value assigned to the name,

The name may be that of a variable or an array element (subscripted array name), If
an unsubscripted array name is given on the left of the equal sign, it is assumed to refer
to the first element of the array,

In Time-Sharing FORTRAN, more than one name may be written to the left of the equal
sign, Each name is separated from the other by an equal sign, to indicate that the value
of the expression is to be assigned to each of the names.

name = name = .,. hame = expression

If the name and expression are of different modes, the value of the expression is converted
to the mode of the name upon assignment.

Examples
A=2,
A = A2

L(I) = (A+2.)/SIN(A-2.)
C(2+L(I)+K) = (T=A+2.)/SIN(T)
F(I) =C=1L-= -1/S
CIRCUMFERENCE = PI%*DIAMETER

COMPUTER TIME-SHARING SERVICE O

-34-

7. DECLARATIONS

A declaration provides information needed to allocate storage for an array or variable,
to indicate what names are used for arrays or external subprograms, and to indicate mode.

The declaration must contain the first mention of the name in the subprogram.

Sometimes the information about a name is given in more than one declaration statement,
In this case, no nondeclarative statements must intervene.

Examples

DIMENSION A(5)
INTEGER A
COMMON A

is a permissible, if round-about, way of making
declarations about the array A, but

DIMENSION A(5)
J=J+1

INTEGER A
COMMON A

is not permissible sincc a nondeclarative statement

intervenes.

If a declaration provides dimension information for an array, no other declaration in that
external subprogram may also provide dimension information for the same array. If a
declaration provides mode information for a variable or array, no other declaration may
provide different mode information,

MODE DECLARATION
The mode qualifiers, INTEGER or REAL, may be used to declare the following:

) Modes of program elements named in any of the declaration statements

® Modes of the statements introducing function definitions to declare the mode
of the result returned by the function.

FORTRAN

COMPUTER TIME-SHARING SERVICE

-35-

The list below shows all possible contexts in which they may be used, and to what the
declared mode applies.

Declarations (declared mode applies to program elements named)

REAL array, variable¥*

INTEGER

REAL .

INTEGER } DIMENSION array, variable

REAT 3

INTE } COMMON array, variable

INTEGER J ¥s

REAL EXTERNAL external subpr trv. intrinsic functi
INTEGER external subprogram or entry, intrinsic function
REAL)

INTEGER } EQUIVALENCE array, variable

Subprogram Definition (declared mode applies to subprogram being defined)

INTEGER } FUNCTION external®
%EGER } , arithmetic statement function, internal function

A declared mode confirms or overrides a mode implied by the first letter in the name,
or assumed because of a single mode option. The mode declaration is required only to
override an implied or assumed mode.

Mode declarations are not required for intrinsic functions.

If an external function mode is different than an assumed or implied mode, a mode declara-
tion is required in subprogram in which the function is referenced. And a mode qualifier
is required in the FUNCTION statement that begins the definition of the function,

COMMON DECLARATION

An array or variable is declared to use common storage to enable it to share storage
with arrays or variables declared in common storage in another external subprogram,

* In many FORTRAN systems these are the only declarations allowed.

COMPUTER TIME-SHARING SERVICE FORTRAN

-36-

The sharing is done for one of two reasons:

1. To conserve storage. If anarraydeclaredin one subprogram is required only when
an array declared in another isnot required, space for only one is needed when they
share storage.

2. To share the values stored in shared storage. By declaring arrays used by more
than one external subprogram to share storage, the values of these arrays can
be referenced in each subprogram.

Reference in each subprogram is made to the name given the shared storage in that sub-
program, The names may be the same in each subprogram but it is the sharing of storage,
not the use of the same name, that provides for sharing of values,

The basis for this sharing is provided by starting allocation of common storage at the same
space in each external subprogram. Common storage is started at the end of the available
space and is allocated backward. For example:

An array A in one subprogram is allocated the last 100 spaces.
An array B in a second subprogram is allocated the last 100 spaces.
Therefore, the arrays A and B are allocated the same space.

To declare that common storage is to be allocated for a variable or array, it is named in
a COMMON statement. The first named is allocated the last space, or spaces; the second
is allocated the next to last space, or spaces, and so on,

IN TIME-SHARING FORTRAN, ALL COMMON STORAGE REQUIRED FOR
THE ENTIRE PROGRAM MUST BE DECLARED IN THE FIRST SUBPROGRAM
or in the first in which any common or dimensioned storage is declared, to
ensure that adequate space for all common storage is reserved.

When two arrays are to be allocated the same space as used by a single array in another
subprogram, the array to share storage with the last elements is named first and the one
to share storage with the first elements is named second.

Example

COMMON A(4) 1in one external subprogram, and
COMMON C(2), B(2) in another subprogram causes
A(l) and B(l), A(2) and B(2)
A(3) and C(1), A(4) and C(2) to share storage.

The number of spaces required depends on the mode and dimension of the variable or array.
An integer variable requires one space and a real variable, two. An integer array requires
as many spaces as the product of its dimension sizes, and a real array, twice the product
of its dimension sizes. :

Example:
COMMON A(12), B, C(3,2), K, J(4,3,2,2)

allocates first 24 spaces for A (twice 12)
next 2 spaces for B (twice 1)
next 12 spaces for C (twice 3*2)
next 1 space for K (once 1)
next 48 spaces for J (once 4*3*2*2)

COMPUTER TIME-SHARING SERVICE PORTRAN

-37-~

If in another external subprogram, the statement below is given:

COMMON I (10,4),N(12)

it allocates the
first 40 spaces for I (once 10*4)
next 12 spaces for N (once 12)

Together these common declarations cause:

I to share storage with A, B, C, K, J(1, 1, 1, 1)
N to share storage with J(2, 1, 1, 1) through J(1, 1, 2, 1)

As this example shows, causing an array to share storage with another with different
dimensions or dimension sizes, requires knowledge of how elements of an array are stored.
ARRAY STORAGE

Storage of arrays is “column-wise.” Thatis, the first column is stored first, then the second

if there is one, and so on., After all columns of the first plane are stored, any columns of
the second plane are stored in the same order, and so on.

Example
J(4, 3, 2, 2) is stored

J(1, 1,1, 1) first column, first plane, first hyperplane
J2, 1,1, 1)
I3, 1, 1, 1)
J(4, 1, 1, 1)
J(1,2,1,1) second column, first plane, first hyperplane
J(1, 3,1, 1) third column, first plane, first hyperplane
J(1, 1,2 1) first column, second plane, first hyperplane
31,2, 2, 1) second column, second plane, first hyperplane
J(1, 3,2, 1) third column, second plane, first hyperplane

repeated for the second hyperplane

DIMENSION DECLARATION

An array is declared in dimensioned storage to provide it unique storage. This storage
is not shared with arrays or variables declared in other external subprograms.

The basis for unique storage is sequential allocation of dimensioned storage. The first
space, after the last one used in the previous subprogram for dimensioned storage, is used
for dimensioned storage in the present subprogram. Thus, if an array A is declared in
dimensioned storage in one subprogram, and an array B is declared in the next, B is
allocated space immediately after the spaces allocated for A.

IN TIME-SHARING FORTRAN, ALL COMMON STORAGE REQUIRED
FOR THE ENTIRE PROGRAM MUST BE DECLARED BEFORE DIMEN-
SIONED STORAGE CAN BE ALLOCATED,

An array is declared in dimensioned storage by naming it in a DIMENSION, INTEGER
or REAL statement. The number of spaces required and the way an array is stored are
the same for dimensioned as for common storage.

COMPUTER TIME-SHARING SERVICE FoRTRAN

~-38-

EQUIVALENCE DECLARATION

The equivalence declaration is used to cause variables or arrays to share storage with
other arrays or variables in the same external subprogram. Unlike common declarations
which are used to cause variables or arrays in different subprograms to share storage,
the equivalence declaration is used to cause those in the same subprogram to share storage.

There are two reasons for such sharing of storage:

1. To conserve storage. If the values of an array are not required at the same time
as those of another array, in the same subprogram, declaring them as equivalent
causes them to use the same storage.

2. To cause two or morenames torefer to the same variable or array. If two or more
names have, by mistake, been used torefer to the same array or variable, declaring
them as equivalent causes them to use the same storage. In this way, reference to
any of the names refers to the storage referred to by any of the other names,

The variables or arrays to be declared equivalent are named within a parenthesized list
in an EQUIVALENCE statement. Names in the list are separated by commas.

Example
EQUIVALENCE (BEGIN, START, INITIATE), (FINALIZE, TERMINATE)

If more than one equivalence is to be declared in the same statement, commas are used
to separate the parenthesized lists which declare each equivalence.

Subscripted Equivalence

To indicate that only certain array elements are to share storage with other arrays, part-
arrays, or variables named in the same equivalence declaration, these array names are
subscripted with a single signed integer. The array elements that are included in the
equivalence are those stored from the array element indicated by the subscript through
the end of the array. (Refer to “Array Storage” on page 38.)

Example
EQUIVALENCE (A(10), B)

DIMENSION A(40),B(40)

The last 31 elements of the A array (A(10), A(11), ... A(40)) share storage
with the first 31 elements of the B array (B(1), B(2), ..., B(31))

When negative or zero subscripts are given, reference is made to the array allocated storage
before the array subscripted.

Example

EQUIVALENCE (E(10), G(-4))
DIMENSION E(6,3), F(20), G(20)

COMPUTER TIME-SHARING SERVICE EORTRAN

-39-

The last 9 elements of the E array share storage with the last 5 elements of the
F array and the first 4 elements of the G array.

E(10) = E(4,2) = G(-4) = F(16)
E(11) = E(5,2) = G(-3) = F(17)
E(12) = E(6,2) = G(-2) = F(18)
E(13) = E(1,3) = G(-1) = F(19)
E(14) = E(2,3) = G(0) = F(20)
E(15) = E(3,3) = G(1)
E(16) = E(4,3) = G(2)
E(17) = E(5,3) = G(3)
L{18) = E{(6,3) — G{&)

Notice that since the equivalence declaration in Time-Sharing FORTRAN accepts only a
single subscript, the two-dimension E array has to be subscripted as though it were a
single dimension array.

Equivalence Errors

An array or variable declared to use common storage may also be declared to be equiv-
alent to other arrays or variables. In Time-Sharing FORTRAN, however, only one of the
arrays or variable names in an equivalence can be declared to use common storage.

Examples

1. COMMON A(20)
EQUIVALENCE (A,B)

2. COMMON A(20), B(20)
EQUIVALENCE (A, B)

The second example is erroneous because in Time-Sharing FORTRAN, as in FORTRAN IV,
common storage is allocated without regard for equivalence declarations that affect it.

Similarly, an equivalence declaration may include only one name for which a previous
equivalence declaration has caused storage to be allocated.

Example

DIMENSION R(10), S(10)
EQUIVALENCE (R,S), (R(2), S(-2))

Obviously both equivalence declarations cannot be satisfied, so the second is marked
erroneous.

A third kind of equivalence error occurs when both integer and real arrays or variables
are declared in the same equivalence and one of them is also declared in common storage.
If an extra space is inserted in common storage to satisfy the equivalence or if a real is
made equivalent to an odd-numbered space, the equivalence is marked erroneous. (The
hardware requires that reals occupy even-numbered spaces.)

COMPUTER TIME-SHARING SERVICE EORTRAN

-40-

Examples

1. INTEGER COMMON J(3), I(10)
REAL DIMENSION A(10)
EQUIVALENCE (A(2), I(4))

2. INTEGER J(3), I(10)

REAL A(10)
EQUIVALENCE (A(2), I(4))

In the second example, since J and I arrays are not declared in common, a storage space
is left between them. In this way the element I(4) is allocated an even-numbered space if
necessary. In the first example, a space would have to be left between the J and I arrays
if I(4) were to be allocated an even-numbered space (Common storage starts at an odd-
numbered space). Rather that do this, the equivalence is marked erroneous.

EXTERNAL DECLARATION

If an external or intrinsic subprogram is used as an argument, it must be named in an
external statement before it is used. This is required to identify the call argument as
a subprogram name.

Examples

1. EXTERNAL HUNCH
CALL DRAG (HUNCH)

2. EXTERNAL HUNCH
CALL DRAG (HUNCH (3.))

In the first example, the external declaration is required. In the second example, external
declaration is not required because the name of the subprogram occurs in an expression
used as a call argument and not as the call argument itself,
A name declared external:

e Must not also be declared common

e Must not be dimensioned

e Must not appear in an equivalence declaration.

e Must be either an external subprogram or entry name or an intrinsic function

e

name (and not an internal function or ntry name).

An internal function or entry name may be passed as an argument to another subprogram,
but it must not be named in an external statement to identify it as a subprogram.,

COMPUTER TIME-SHARING SERVICE FORTRAN

-41-

8. SUBPROGRAM DEFINITION STATEMENTS

EXTERNAL SUBPROGRAMS

The definition of external subprograms may occur anywhere within the program, either
before or after references to the subprograms.

Introduction of Definitions

FUNCTION and SUBROUTINE statements introduce definitions of external functions and
external subroutines, respectively. The qualifiers REAL or INTEGER may precede the
word “function” to indicate the mode of the result returned by the external function, (A
mode qualifier may also precede the word “subroutine,” but since there is nothing to
qualify, it is ignored.)

After the word “function” or “subroutine,” the name of the external subprogram is written.
I there are dummy arguments, their names are supplied after the subprogram name,
within a parenthesized list.

Examples

FUNCTION AFT

REAL FUNCTION SUMP (I,A)
SUBROUTINE BACK (TO, FROM, UNLESS)
INTEGER FUNCTION RINSE

The main program is not introduced by a special kind of statement. If the first statement in
the entire program is neither a SUBROUTINE nor a FUNCTION statement, it is regarded
as the first statement of the main program, Similarly, if the first statement after an exter-
nal subprogram definition is neither a SUBROUTINE nor a FUNCTION statement, it is
regarded as the first of the main program,

Termination of Definitions

An external subprogram definition is terminated in one of the following ways:
e By an END statement
e By the end of the entire program

e By a FUNCTION or SUBROUTINE statement introducing the next external sub-
program definition,

COMPUTER TIME-SHARING SERVICE FORTRAN

-42.

If an END statement is used, nothing is written after the word “end,” neither words nor
punctuation. This prevents its confusion with an internal function definition termination.

INTERNAL SUBPROGRAMS

Unlike external subprograms, the definition of an internal subprogram, either Arithmetic
Statement Function or internal function, must precede reference to the function.

Arithmetic Statement Function Definition

An arithmetic statement function definition consists of a single arithmetic statement, It
is recognized by the occurrence of a parenthesized list of dummy arguments (possibly
empty) appended to a name, not previously declared to be an array. This list appears on
the left of the equal signinanarithmetic statement. The name may be preceded by the mode
qualifier REAL or INTEGER. The mode qualifier is separated from the name by a comma,
to indicate the mode of the result returned by the ASF,

HAV(X) = .5% (1-COS(X))

REAL, LOG10 (X) = LOG(X).43429448

INTEGER, CATENATE (I,J,K) = 4096xI + 64#J+K
DET3(A,B)=(S=.5%B)%S+(C=.333333333xA)«C*C

An arithmetic statement function definition is terminated by the end of the arithmetic
statement of which it consists.

Internal Function Definition

A general internal function definition consists of one or more statements, The first
statement which introduces the definition is written, and recognized, in the same way
as an Arithmetic Statement Function. In a general internal function, however, the equal
sign and expression to the right of the equal sign are replaced by a colon:

® A name is written with an appended parenthesized list (possibly empty) of dummy
arguments.

e A colon follows the parenthesized list.

® A mode qualifier may precede the name. If it does it is separated from the name
by a comma.

Example (Ellipsis stands for first statement, which may be empty.)

RUST (X): . . .
KANS(A,B): . .

REAL, JUST (): . . .
INTEGER, FIRST (L): . . .

COMPUTER TIME-SHARING SERVICE FORTRAN

-43-

An internal function definition is terminated by:

° An END statement
e The end of the external subprogram to which it is internal
° The definition of another internal function

If an END statement is used to terminate the definition of an internal function, the word
“end” must be followed by punctuation or another word or both, For example, “END
INTERNAL,” “END*** ” or “ENDRUST” may be used.

ENTRY STATEMENT

In Time-Sharing FORTRAN, an ENTRY statement provides a means of directing control to
other than the first executable statement in a subprogram. The ENTRY statement does not
introduce the definition of a subprogram, but like them it may include a parenthesized list
of dummy arguments, The dummy argument list serves the same purpose in the ENTRY
statement as it does in the subprogram definition introduction statements. It provides the
names by which the actual arguments in the call to the subprogram or entry are referred
to in the subprogram,

The ENTRY statement is written with the entry name after the word “entry.” The name
is followed by a parenthesized list of dummy arguments when the entry name is called with
arguments. The entry name must not be the same as any external or intrinsic subprogram
name or any other entry name in the entire program; furthermore, the entry name must not
be the same as any function name internal to the subprogram containing the ENTRY state-
ment,

The ENTRY statement is written just prior to the statements that are to be executed when
the entry is called.

Examples

ENTRY BACKALWAYS (TO, FROM)
ENTRY AFT1(X)

ENTRY SUMPKB

ENTRY REPEAT (N)

If a dummy argument name in an ENTRY statement is the same as one in the subprogram
definition introduction statement, or in a previously given ENTRY statement, no declara-
tion providing information about the dummy argument can be given, If the name is used for
the first time in the dummy argument list of an ENTRY statement, however, declarations
should be given as for a subprogram definition introduction. Such a declaration should
immediately follow the ENTRY statement.

An ENTRY statement can be used in either an external subprogram, including the main
program, or an internal function. When control is directed to a subprogram because of a
call to an ENTRY statement, the return from the subprogram is to the statement containing
the call to the ENTRY statement. In other words, return is made just as if it were a call to
the subprogram definition introduction statement. On the other hand, if the call is a function
call, the result returned is the value of the result variable referred to by the external or
internal function name. The value is not a variable referred to by the entry name. A mode
jualification of the entry name, therefore, serves no purpose.

FORTRAN

COMPUTER TIME-SHARING SERVICE

-44-

Example

F=PONS (D(I)+2.)-1
REAL FUNCTION PON (X,Y)

IF (X) XN

IF (Y) YN

T=Y*SIN(Y)

EX:PON = T / XCOS(X)
RETURN

XN: X=ABS(X);GOTO EX

ENTRY PONS (X)

YN: T=1, GOTO EX

Return is to the expression PONS (D(I)+2.)-1. with the value of PON, Evaluation of the
expression continues, subtracting 1 from this value and assigning it to F.

FORTRAN

COMPUTER TIME-SHARING SERVICE

-45-

9. CONTROL STATEMENTS

Execution of a program begins with the first executable statement in the main program,
Execution continues with each succeeding statement unless control is directed elsewhere
by means of a control statement. The control statement may direct control to another state-
ment in the same subprogram, to a statement in another subprogram, or to the operating
system, .

DIRECTING CONTROL
TO A STATEMENT IN THE SAME SUBPROGRAM

To direct control to a statement in the same subprogram, the control statement refers to
the label of the statement to which control is to be directed. A label variable may be
referenced in place of the statement label, except in the DO statement,

GO TO Statements

There are two forms of the GO TO statement. In one, control is directed to the statement
whose label is referenced, or whose label was last assigned to the label variable referenced
in the GO TO statement,

Examples

GOTO 13

GO TO 0

GO TO EXTRA

GO TO WHEREVER, (2, EXTRA, 13)

In the last example, the parenthesized expression may contain labels that may be assigned to
the label variable WHEREVER, If given, the list must be separated by a comma from the
label variable name. In Time-Sharing FORTRAN, the list is ignored and, in fact,
WHEREVER may be the label of a statement. Statement label names and label variables
are indistinguishable in a GO TO statement. In Time-Sharing FORTRAN, EXTRA and
WHEREVER may be either statement labels or label variables.

In the other form of the GO TO statement, control is directed to one of the statement labels
(or label variables) listed inside parentheses in a GO TO statement. The statement label to
which control is directed is determined by the value, when the statement is executed, of the
variable named after the list. If the integer value of this variable is 1, control is directed
to the first listed label reference. If the value is 2, control is directed to the second listed,
and so on.

COMPUTER TIME-SHARING SERVICE EORTRAN

-46-

Examples

GOTO (12, LAST, KONLY, 15) AFTER
GOTO (M1, M2, MI3), M

GOTO (7, 3, 6, 9), RAST

GOTO (7, M1, LAST, 9, 3) TAG

The parenthesized list is written after the words “go to.” The name of the variable whose
value determines which label reference is used, may or may not be separated from the
parenthesized list by a comma. The variable may be either an integer or real variable.
If the value is real, it istruncatedto an integer. If the value is negative, zero, or more than
the number of label references in the list, execution stops.

ASSIGN Statement

The ASSIGN statement, while not in itself causing control to be directed to another statement,
does establish the value of a label variable. A label is assigned to a label variable as follows.
The label is written first, after the word “assign.” Then the word “to” is written, followed
by the name of the label variable.

Examples

ASSIGN 6 TO J
ASSIGN FORMAL, TO R
ASSIGN A5, TO A6
ASSIGN 1273, TO LING6

In the second and third examples, a comma is required after the statement label name to
separate it from the word TO. The comma may be used after a statement label number as
in the last example, but this is not required.

The label variable may have either an implied real or integer name since it has no mode.
Reference to a variable with the same name as a label variable in any context except a label
reference context is not a reference to a label variable, In particular, the label variable
cannot be used in an expression as a call argument or transmitted as output because none
of these are label reference contexts.

IF STATEMENTS

The IF statement includes a parenthesized expression, the value of which at the time of
execution determines which statement is next executed.

The parenthesized expression is followed by a list of label references that name the alter-
native statements. The list gives, in order, the label of the statement to be executed next if
the value of the expression is:

e Negative
° Zero
° Positive

COMPUTER TIME-SHARING SERVICE EORTRAN

~-47-

Examples

IF(A) 25,26,27

IF (A*SIN(B)) AGAIN, EXCEPT, AGAIN
IF (J=K/3)3, NOW, 5

IF (L-"END") NEXT, DONE, NEXT

IF (B*B-4 . *A%C) IMAG

IF(F+R/P) LOOP, LOOP

In the first

Py

control is directed to the statement labeled 25 if A is nnu‘ahva tn 26

examnle
if A is zero, or to 27 if A is positive. In the last two examples, fewer than three label
references are listed after the expression. When only one is listed, execution continues
with the next statement after the IF statement, if the expression value is either zero or
positive, When two are listed, execution continues with the next statement if the expression

value is positive,

IF (ENDFILE)STATEMENT. The IF(ENDFILE) statement in Time-Sharing FORTRAN provides
a way of testing whether an end-of-file condition was encountered in reading from or writing
on a designated file, The end-of-file condition is described with other file statements.
(Refer to “File Statements,” page 64.)

One or two label references are given after the parentheses to indicate what statement is
to be executed next if:

° There is not an end-of-file condition
° There is an end-of-file condition
Examples

IF (ENDFILE 3) MORE
IF (ENDFILE J) LOOP, EOF
IF (ENDFILE) DATA, ALL

The file to be tested for an end-of-file condition is designated by writing after the word
“endfile” an unsigned constant or variable whose integer value designates a file. When no
file designation is given, as in the last example, file O (the temporary file) is designated.
(Refer to “File Statements,” page 64 .)

IF (SENSESWITCH switch) and IF(SENSELIGHT light) Statements. These two statements,
often provided in FORTRAN II systems, are not provided in Time-Sharing FORTRAN, In
many cases, naming a variable SENSESWITCH 3, for example, or SENSELIGHT 1, will
provide both the ability to set a switch and test for its setting,

The variable should be assigned a negative value to indicate ON, or a zero or positive value
to indicate OFF. For compatibility, a testof a senselight should, if the ON condition is met,
set it OFF, but a test of a senseswitch should not reset the condition.

COMPUTER TIME-SHARING SERVICE EORTRAN

-48-

IF ACCUMULATOR OVERFLOW AND IF DIVIDE CHECK STATEMENTS. These statements
are not provided in Time-Sharing FORTRAN. In real calculations, overflow and divide
check conditions are automatically sensed. A substitution value is used, and a notice of
the substitution is transmitted to the terminal.

In integer calculations, overflows have the following result:

524287 + 1
-524287 - 1

-5242817
0

I

Integer division by zero produces a quotient equal to the dividend.

DO Statement

SUMMARY, The DO statement is used to repeat one or more subsequent statements.
Indicate the statements to be repeated by giving the label of the last statement: this
statement together with all between it and the DO statement are to be repeated. The number
of times to repeat the statements is indicated indirectly by giving an initial, final, and
increment value for a control variable, The control variable is assigned the initial value,
The first time the statements are repeated, the initial value is used, After execution of the
last statement, the control variable value is increased by the increment, and the increased
value is tested against the final value. As long as it remains less than or equal to the final
value, the statements are repeated. Repetition is achieved by directing control back to the
first statement after the DO statement,

The five DO parameters are written after the word “do” in the order:

Label of last statement
Name of control variable
Initial value

Final value

Increment

O DN

These parameters are written with the punctuation shown in the model below. Underneath
the model of the DO statement is a model composed of FORTRAN statement models which
shows how the control variable is used to count repetitions.

DO last, control variable = initial value, final value, increment

control variable = initial value
first: . . .
last:

control variable = control variable + increment
IF (control variable - final value) first, first

Examples

FORTRAN

COMPUTER TIME-SHARING SERVICE

-49-

Notes

1. A comma must be given after a label name. A comma may be given after a label
number,

2. A control variable may be either realor integer. It may be a dummy argument, but
not an array element.

3. Final, initial, and increment values may be real or integer constants or variables,
They may be dummy arguments, but not array elements or expressions.

4. An increment value may be omitted in which case an integer constant increment
of 1 is assumed.

DO-END. The statements to be repeated consist of those between the DO statement
and the statement whose label is referred to in the DO statement, including that labeled
statement.

The label reference may be either a statement number or a name. If it is a name, it must
be followed by a comma. If it is a number, it may be followed by a comma. The reference
must be to a statement label, not a label variable. The statement so labeled must:
e Come after the DO statement
e Not precede the ending statement for another DO statement given after this one
e Not follow the ending statement for another DO statement given before this one
Examples
DO 16
Do 25
D0 35
< 25 must not precede 35
35'end of DO 35

«~ 25 must be between 35 and 16
16'end of DO 16 -

— 25 must not be after 16

If a statement is labeled with several DO-end labels, they may be in any order because they
all refer to the same statement.

Example

DO 40

COMPUTER TIME-SHARING SERVICE FORTRAN

-50-

Increasing the control variable value and testing against the final value is not done until
after execution of the last statement. Therefore, the statement labeled with the DO-end
label should not be a control statement that causes control to be diverted from this testing.
For this reason, the last statement should usually not be either of the following:

e GOTO
e RETURN

The last statement must be in the same subprogram as the DO statement. A statement like
a SUBROUTINE or FUNCTION statement which would begin another subprogram must neither
intervene before nor be used as the last statement, However, an END statement that marks
the end of the subprogram containing the DO statement may be used as the DO end.

CONTINUE STATEMENT, The CONTINUE statement is often used as the statement
labeled with a DO-end label. It performs no other purpose.

The CONTINUE statement is unnecessary in Time-Sharing FORTRAN since labeled empty
statements can be used. However, it may be used.

Example
DO 101 . .
101 CONTINUE
DO 102
102
DO-NAME. The control variable whose value isused to count repetitions is named after the
DO-end label reference., The DO-name:
May be an integer variable
May be a real variable

May be a dummy argument of either mode
Must not be an array element

The DO-name must not be the same as one given in a prior DO statement which is not yet
ended,

Example

DO 44 J

DO 45 J must not be used here since J is already in use as DO-name

44 s 45
DO 51 J
51

DO 52 J may be used here since J is no longer in use as a DO-name

COMPUTER TIME-SHARING SERVICE FORTRAN

-51-

DO PARAMETER VALUES. In a DO statement, the initial, final, and increment values may
be real or integer constants, variables, or dummy arguments. They must not be array
elements or expressions.

Quoted constants may be used, but constants may not be written with preceding slash (to
indicate octal) and neither constants nor variables may have a preceding minus sign (to
indicate negation).

Considering the way the testing for the end of repetition is done, it can be seen that “back-
ward” counting does not work, The final value must be greater than the initial value,
otherwise the first test will show the control variable value to be greater than the final
value and no repetition will occur.

When the final or increment values are variables, their values may be altered by statements
being repeated. These new values will be used thereafter to determine whether to repeat.

CONTROL VARIABLE VALUE, When control leaves repeated statements because the in-
creased control variable value is greater than the specified final value, the control variable
has that increased value. When a control statement for example, an IF statement, is one of
the repeated statements, control may leave the repeated statements by means of the control
statement, In this case, the value of the control variable equals the result of the last
increase,

Example
DO NEXT J, J = 1, 10
READ, A(J)
IF (A(J)) Ml exit here means J has the value 1, 2..., 10 last assigned

NEXT J :
exit here means J = 11

The value of the control variable can be changed by means of statements included in the
repeated statements or to which control is directed. For example, the statement whose
label “M1” is given in the IF statement above might perform:

ML : J=J -1 ; GO TO NEXTJ

DIRECTING CONTROL TO STATEMENTS
IN ANOTHER SUBPROGRAM

Function Call

A function call is used to direct control to an intrinsic, external, or internal function. The
result returned by the function is then used in place of the function call.

Example

AX = AY * FAN (AZ)

COMPUTER TIME-SHARING SERVICE FORTRAN

~592-

The function FAN is called with the argument AZ, The result returned by that function is
multiplied by AY and the product is assigned to AX,

A function call is recognized by the occurrence of a parenthesized list of arguments
(possibly empty) appended to a name not declared to be an array.

Example
T = X(L)
§s=J3J ()
R = YAW (P, 5, L/V, A(J))

Note: Forgetting to declare an array may cause the array name to be mistaken for a function
name, its subscript to be mistakenfor an argument list, and the array element to be mistaken
for a function call,

The name in a function call may be:

An intrinsic function name

An internal function name in the same subprogram
. An external function name

A dummy argument

An external subroutine name

An entry name

When the name is not a function name, the result returned is equal to the value of the last
expression evaluated before returning. The result is not the value of a result variable in
the subprogram. When the name is an entry name, the result returned is that of the sub-
program (external or internal function, subroutine, or main program) in which the entry
occurs,

REPEATED VS RECURSIVE CALL, A function call may contain in its argument list a call
to itself. The call in the argument list is made first to evaluate the expression in which it
appears. Then the value of this expressionis supplied as an argument in calling the function
a second time. This is repeated use,

Example

T = LOG (LOG(X))
The value of LOG (X) is first obtained and used as an argument in calling LOG again.

Recursive use of a function occurs when a function is called, either directly or indirectly,

in statements used to define the function. In Time-Sharing FORTRAN, recursive calling
disables the mechanism by which control is returned so that control may cycle endlessly.

Example

FUNCTION CURSE (R)
X = CURSE (1.5)
CURSE = X + 1.
RETURN

COMPUTER TIME-SHARING SERVICE EORTRAN

-53.

In this example, the call to CURSE within the definition of CURSE sets the return mechanism
to return control to the expression X = CURSE (0.). Now when the RETURN statement is
executed, instead of control returning to a call to CURSE from outside the subprogram,
control is returned to the expression X = CURSE (1.5).

CALL Statement

A CALL statement may be used to call either a function or a subroutine. Ordinarily, a
CALL statement is used to call a subroutine which does not return a result, When a
function is called with a CALL statement, the result it returns is not used, since there is
no expression for the result value to affect. The call statement is written with the name of
the subprogram called after the word «call.” If there are arguments, they are written
in a parenthesized list after the name.

Example

CALL FEN (S, A(5), B(L/2))
CALL OUT
CALL B(N)

The name may be that of:

An external subroutine
A dummy argument
An external function
An internal function
An entry

Recursive use of CALL should be avoided for the same reason that recursive function
calls are avoided.

RETURN Statement

Execution of a RETURN statement in a subprogram causes control to return to the last call
made to the subprogram. Execution of an END statement or the last statement in a sub-
program has the same effect.

The RETURN statement serves no other purpose.

If a subprogram was called using an entry in it, return is to the call to the entry. Also,
if the main program was called by using an entry, return is to the call to the entry.

The main program is first entered without any call. If the main program was not sub-
sequently entered by calling an entry in it, execution of a RETURN statement or the END
or last statement has the same effect as the execution of a STOP statement.

COMPUTER TIME-SHARING SERVICE FORTRAN

-54.

DIRECTING CONTROL TO THE OPERATING SYSTEM

STOP Statement

Execution of a STOP statement anywhere in the program halts execution of the program.
A message is output to the terminal which gives the line number of the STOP statement
and the time charged to the execution of the program in 1/6 seconds.

If the STOP statement is written with a variable name or a constant after the word “stop,”
its character value is transmitted to the terminal also. If nothing is written after the word
“stop,” blanks are transmitted. If the stop was the result of the execution of a return in
a main program, “END” is transmitted.

Examples
STOP (G " is output)
STOP "'UGH" (UGH" is output)
STOP 3 ("3" is output
STOP 33 ("J" is output since 3310 = 418 = "Jm)
STOP /33 ("." is output since 338 =".")
STOP V (the value of V, truncated to an integer, is output as

a character)
END or last statement ("END" is output)
in main program

PAUSE Statement

Execution of a PAUSE statement anywhere in the program causes execution of the program
to be suspended until the user resumes execution, A line is transmitted to the terminal
consisting of the word “pause” and the line number of the line containing the statement,
A second line is transmitted containing a question mark. If the user transmits a carriage
return after the second line, execution of the program is resumed with the statement after
the PAUSE statement. If the user transmits the word “STOP,” execution stops.

The first output line also contains a legend derived from what is written after the word
“pause” in the PAUSE statement. This legend is derived as for the STOP statement.
The legend is either the character value of the variable name or constant given, or blanks
if nothing is given,

If a variable name is written after the word “pause,” any characters transmitted after the
question mark and before the carriage return are assigned to the variable as a character
value, If a negative value is transmitted, it is transmitted as a numeric value.

FORTRAN

COMPUTER TIME-SHARING SERVICE

-55-

10. INPUT/OUTPUT

There are four kinds of statements in Time-Sharing FORTRAN that may be used to perform
input or output. Two are for terminal input/output, and two for file input/output,

INPUT ... is used for input from the terminal
PRINT ... is used for output to the terminal
READ ... is used for input from a file

WRITE ... is used for output to a file

All of these statements may specify a format to be used in conjunction with the trans-
mission., If the format specification is not given in any of these statements, unformatted
input or standard output format is provided.

All these statements may include a list to indicate which values are to be transmitted as
output or which variables, array elements, or arrays are to receive values that are trans-
mitted as input. When no list is included in an output statement, all the values are included
in the specified format. When no list is included in an input statement, all the values are
received by the specified format. :

File input/output statements may also include an indication of which file is to be used. If
no file indication is given, a standard temporary file is used.

INPUT/OUTPUT LISTS

The list included in an input/output statement may contain one or more list items separated
from each other by commas. The kinds of program elements which can be used, either
for input or output, or both, follow:

1. Constant --Input or Output

Decimal integer, Octal integer, Decimal real, Quoted character
(1, 2, or 3 characters)

2. Variable or array element --Input or Output
3. Array --Input or Output
4, Part array (indicated by --Input or Output
using a special repetition
form)

COMPUTER TIME-SHARING SERVICE EORTRAN

~-56-

5. Expression --Output only

6. Quoted legend (of any length) --Output only

7. Slew control characters --Output only
Constants are used in output lists to transmit constant values as output. In an output list,
constants may occur for use with a T-type or *-type specification in the specified format.
(Refer to “Variable Format Specifications” on Page 89.)

READ VARY, "E", 16, 5, B

PRINT ANS, 1., SCORE (1), 2., SCORE (2)
Variables or array elements are used in outputlists to transmit their values. In input lists,
they are used to receive input values. There are no restrictions placed on the kinds of

expressions that may be used to subscript the array name to indicate a particular array
element.

Example

PRINT, A (It2, N(L(I))), V, M
Input or output of an entire array is indicated by writing the name of the array without an
appended subscript expression. Array values are transmitted and received in the same order
as they are stored. (Refer to “Array Storage” on page 38.)
Example

READ, B, L

Input or output of part of an array is indicated by using a special repetition form for input
or output lists. The repetition form includes the DO parameters:

Control variable

Initial value

Final value

Increment value (an integer 1 is used if none is given)

These DO parameters are written in the repetition form exactly as they are in the DO
statement:

control variable = initial value, final value, increment value
In the special repetition form, the DO parameters are written after array elements that
are to be transmitted repeatedly. They are separated from the array elements by a comma.

Both array elements and DO parameters are included within parentheses,

(array element, array element, ..., control variable = initial value,
final value, increment value)

COMPUTER TIME-SHARING SERVICE

<57~

Example
INPUT, (L(I), B(I*2),I =1, 25)
READ , ((A(I,7), I=1, 10), J=1, 10)

As with DO statements, repetition forms may be nested. Notice the positioning of paren-
theses and the comma separating the final DO parameters from the previous repetition form,

A I U = + T 3 . i
A common use of repeated input is for count contro ut of 2 variable number of array

1 inn
! input ur
elements. In this use, the list names the DO parameter final value prior to the repetition
form in the input list,

Example
READ, K, (L(I), I =1, K)
provides for reading of as many array elements as the first value read indicates.

If the first value is 25, for example, 25 subsequent values are entered and stored
as the first 25 array elements.

In Time-Sharing FORTRAN, an expression may be included in an output list to provide
for output of the value of the expression.
Example

PRINT, SIN (X) + V * B(J)13.1
In addition, a gquotation may be used in an output list in Time-Sharing FORTRAN. The
quotation is wriften with a quotation mark (”). The quotation may consist of any characters,
except a quotation mark which would terminate it.

Example

PRINT "EASY TO USE, FREQUENTLY DESIRED"
PRINT "NOT"

INPUT 6’ ”C”, A

PRINT 6, "I', A

PRINT, (T/64) * 64 + g

Two slew control characters are used in Time-Sharing FORTRAN:

e Anup arrow (*) in front of an output list item
e An extra comma (,) at the end of the list.

The preceding up arrow causes a line feed to be transmitted. Only a line feed is trans-
mitted, not a carriage return line feed combination, When the up arrow precedes the first
item in the list, the carriage has usually been returned so that slewing is accomplished.
However, the line feed may be transmitted anywhere in the output by preceding any list
item with an up arrow. The effect of this is a stepping of the output.

COMPUTER TIME-SHARING SERVICE FORTRAN

-58-~

Example
PRINT’ IIDII,T IIOII’T val,t HNII

Produces: D 0

LY

The extra comma at the end of an output list prevents the current output record, either
terminal or file record, from being ended. The next output to the terminal or same file,
transmits values to the same record.

Example
PRINT, '"ONE",
PRINT, "AND ONLY ONE"
Produces:
ONE AND ONLY ONE

UNFORMATTED INPUT

If no format specification occurs in an input statement, each value is transmitted with
conversion based on the characters appearing in the representation of each value.

One value is separated from another value in the same input record by blanks or commas
or both,

As much of an input record is transmitted as is required to satisfy the input list., If the
list requires fewer values than contained in the current record, the remaining values in the
record are used as the first values for the next request for unformatted input from the same
source-~terminal or file,

Each record, unless it is a terminal input record, is assumed to begin with a line number
which is skipped. Consequently, except for terminal input, if the first character in the input
record is a digit, it and succeeding digits are interpreted as a line number.

Line numbers are not transmitted in unformatted input. Therefore, if a record to be
transmitted via unformatted input begins with a value, and not a line number, it is important
that it be preceded by a nondigit to prevent it from being mistaken for a line number,

Apostrophe-introduced comments may be included in the input record. Such comments are
terminated by the end of the record or by the next apostrophe. Comments are not trans-
mitted.

Any value may be indicated to be duplicated by writing a count of the number of times the
value is to occur and an asterisk (*) in front of the value. By this means, a single input
record sufficesfor anentire array when all the array elements are to receive the same value.

COMPUTER TIME-SHARING SERVICE FoRTRAN

~59-

Example

625%-2

Provides 625 values, each of which is a negative real two

A duplication count of zero supplies a practically unlimited number of values.

There is no provision for continuing a value from one record to another. The end of record
indicates the end of the last value in the record.

Values are converted to one of three types:

° Decimal
° Octal
e Alphabetic

Conversion depends on what characters appear in the value representations.

Decimal. If the first character in a record is a digit, decimal point, or sign (+) or (-),
the value is interpreted as a decimal, integer, or real. If the input list requests a real the
value is converted as a real, otherwise it is converted as an integer. Notice that a blank
must be omitted in a multiplicative factor since it would indicate the end of the value.
Use ’25E3’ not '25E 3’.

Octal. If the first character is a slash (/), succeeding characters in the value are inter-
preted as an octal, integer or real.

Alphabetic, If the first character is nota digit, period, sign, slash, apostrophe, or asterisk,
the value is interpreted as alphabetic, Notice that the alphabetic value may not include blanks
or commas. It may not begin with a digit, period, sign, slash, apostrophe, or asterisk.
However, these characters may be included by enclosing the alphabetic within quotation
marks, If the list item is an integer, a maximum of three characters are received. If
the list item is real, a maximum of six are received. Remaining characters in the alpha-
betic value are discarded.

For more details on how conversion is handled, refer to the discussion given for different
format specifications:

o Decimal - refer to “F-Format” on page 19.

e Octal - refer to “O-Format” on page 84.

e Alphabetic - refer to “A-Format” on page 87.
Example

1. -14.5, 32, 6E12, 5+1, -13, .2$-3, 100%0.
These are all decimals

2, /17777771777777, /37760000000000

These are the largest and smallest positive reals in octal.

COMPUTER TIME-SHARING SERVICE FORTRAN

-60-

3. JAN,FEB,MAR, APR,MAY, JUN, JUL,AUG, SEP, OCT ,NOV, DEC

These are all alphabetic.
4. ” II’ I'/ll’ S, T, U, lll.ll

These are also all alphabetic. Quotation marks are used to enclose characters that
would otherwise be interpreted as non-alphabetic or be skipped.

‘5. 1350 150 'COUNT' 150%-1. 'VALUES'

This record begins with a line number which will be skipped; it shows how comments
may be included.

STANDARD OUTPUT FORMAT

If no format specification occurs in an output statement, values are transmitted as output with
a conversion based onthe mode of the item in the list, The spacing used provides for decimal
point alignment except when the numbers are too large to express without a multiplicative
factor. If the statement is for file output, the spacing also provides room for a line number
and a line number is supplied.

Values transmitted in standard output format can be transmitted as input using unformatted
input,

To provide for use with dollar and cent values, zeros after the first two digits after the
decimal point are suppressed.

The standard output format provides for five values per output record, For a file output
record, there are five values and alinenumber. The line number is provided automatically;
it begins with 1000 and is increased by 10 for each record.

Examples
373.45 0.20 143721.25 1857.60 42.14
14172.15 -136.16 2.00 117.25

3.7821E+06 270 -43 32.1417-1.72150E-05

e ———

p—

TERMINAL INPUT/OUTPUT
Records transmitted to or from a terminal are restricted to a maximum of 72 characters.

This is all that many teletypewriters can display, The 72-character size is a maximum,;
shorter records can also be transmitted,

PRINT Statement
The PRINT statement is used to transmit values to the terminal. Its general form is:

PRINT format reference, output list

COMPUTER TIME-SHARING SERVICE EORTRAN

-61-

If the format reference is missing, standard output format is used. When no format reference
is given, the comma normally written after the format reference, must be written after the
word “print.”

PRINT, output list

If the comma is omitted, the first item in the output list is mistaken for the format reference.
When the first item in the outputlistis a quotation, the comma may, but need not be, omitted
after the word “print,” since it cannot be mistaken for a format reference.

PRINT quotation

- The form
PRINT format reference

is also allowed, The referenced format may consist of only those format specifications that
are not used in conjunction with list values. Such format specifications are the H-format,
the X-format, and the slash (/) used to indicate beginning of a new record. When there is
no output list, transmission consists of only the characters provided by these format
specifications,

Examples
PRINT 45, A
PRINT REP, (A(I), I = 1, 10)
PRINT, A
PRINT, (A(I), I =1, 10)
PRINT, '"MONTHLY SUMMARY"
PRINT "VERTICAL VALUE = ", A(3)
PRINT VAR, "E", A
PRINT HDS, "PAYNO", '"SCORE", "Q-FACTOR"
PRINT LUBE, VIS,1"VISCOSITY", API, "API NO."
PRINT, t QUAN, RATE,
PRINT TITLE
Traditional FORTRAN uses the first character in a display output record as a slew control

character and does notdisplay it. The characters shown below are sometimes used to indicate
slewing,

blank to slew one line

0 to slew two lines

1 to slew to the top of the page
+ ‘ to slew no line

Time-Sharing FORTRAN does not use the first character as a slew control character.
The first character in the record is displayed like any others.

FORTRAN

COMPUTER TIME-SHARING SERVICE

62~

Slewing can be controlled in Time-Sharing FORTRAN by using either the slash (/) spec-
ification in a format or the preceding up arrow and extra comma in the output list, (Refer
to “Input/Output Lists” on page 56.)

Terminal output records are not directly transmitted. Records are stored internally for
subsequent transmission, Actual transmission to the terminal occurs when:

e There is no more internal space to store terminal output records., (Space accommo-
dates about thirteen 72-character records.)

e Execution of the program is suspended for terminal input.

° Execution of the program is suspended to give another program a “turn” at
execution.

e Execution of the program stops.

When the internal space available for terminal output is filled before transmission occurs,
about a minute and one-half of teletypewriting is required to empty it. Execution of the
program is not resumed until all of the output transmission is completed.

INPUT Statement

The INPUT statement is used to transmit values from the terminal. Its general form is:
INPUT format reference, input list

If the format reference is missing, unformatted input is used. When no format reference

is given, the comma normally written after the format reference, must be written after the

word “input,”

INPUT, input list

If the comma is omitted, the first item in the input list is mistaken for the format
reference,

The form
INPUT format reference

is also allowed. The referenced format may consist of an H-format. In this case,
transmission is from the terminal to the format sequence. (Refer to “H-Format” on
page 86.)

Examples

INPUT REPLY, QUAN

INPUT, (COEF (I), I =2, L, 2)
INPUT NAME

INPUT 17, CITY, STATE

INPUT, TL, RELOC, BONUS, SS
INPUT 36, &, "I", 3, M, T
INPUT, SENSESWITCH3

COMPUTER TIME-SHARING SERVICE FORTRAN

=63-

When an input statement is executed, a question mark (? is transmitted to the terminal,
At the same time, execution of the program is suspended, and it is not resumed until an
input record is provided.

In response to the question mark request, an input record is provided by entering the
characters in the record and following it with a carriage return to indicate that all have
been entered., The characters between the question mark and the carriage return comprise
the terminal input record.

If the input list in the INPUT statement requires fewer values than the record contains, the
remaining values are discarded. If the input transmission is unformatted, however, the
remaining values are retained for use in satisfying the requirements of the input list in the
next INPUT statement that is executed. (Refer to “Unformatted Input” on page 60.)

If the input list requires more values than the record contains, a request is made for another
terminal input record.

An exception occurs when transmitting alphabetic values using either H-format or A-format.
When transmitting any input records under H-format or A-format, blanks are inserted in
the record after the last character entered to fill the record to 84 characters. If the input
list does not require as many characters, the extra ones are ignored. However, if fewer
characters are entered than required by the input list, blanks are supplied automatically to
satisfy the list. (Refer to “Alphabetic Format” on page 86 .)

When the execution of an INPUT statement requests a terminal input record by transmitting
a question mark (9 to theterminal, the user may elect to stop rather than resume execution.
To indicate that execution isto stop the user enters the word “STOP,” as the first characters
after «?”7,

FILE STATEMENTS

The kinds of statements used to perform file operations are listed below in two groups;
one for permanent file operations and one for temporary file operations.

Permanent Files:

READ (file reference, format reference) input list

READ (file reference) input list

WRITE (file reference, format reference) output list

WRITE (file reference) output list

BACKSPACE file reference

ENDFILE file reference

IF (ENDFILE file reference) label reference, label reference

REWIND file reference

FORTRAN

COMPUTER TIME-SHARING SERVICE

-64-

Temporary File:

READ format reference, input list

READ, input list

WRITE format reference, output list

WRITE, output list

BACKSPACE

ENDFILE

IF (ENDFILE) label reference, label reference

REWIND

Permanent File Definition

Permanent files are defined by saving an item in the user’s time-sharing system catalog.
The saving is performed the same way as when a user saves a program. This is done
by means of the operating system command SAVE,

If the file has initial values, a file large enough to hold them can be defined by entering the
initial values, naming them with the file name, and saving them. Like saved programs, file
initial values must have line numbers. After the line number, the values should be entered
on the line in a format consistent with that by which the file is read. The values should be
separated from the line number by a blank. If the file is read without format, the values
should be separated from each other by either blanks or commas. As many values as con-
venient may be entered on each line; no value should be continued from one line to the next.
(Refer to “Unformatted Input,” page 59.)

If the file is to be read with a format, each line is interpreted as an input record. The
format should provide for the line number and for as many values as are entered on the
line. In addition, the format should be consistent with the kinds of values entered.

If the file has some initial values, but not enough to fill the file, extra lines should be
entered after the initial values until there are enough to reserve a file space of the right
size, The operating system command LENGTH may be used to obtain a count of the
number of characters so far entered. Only six different size items are distinguished. Their

o

sizes are shown in the table given on the following page.

On the other hand, if the file is empty, a space for the file must be reserved by saving
an item of the same size as the space that is required. For convenience, the library includes
items of the six different sizes that are distinguished. The user may request one of these
items, rename it with the file name, and save it in his own catalog. The names by which
these items are saved in the library and the sizes of each are shown in the table on the
following page.

FORTRAN

COMPUTER TIME-SHARING SERVICE

-65-~

LIBRARY NAME NO. OF CHARS. MAX. NO. OF
72-CHR. RECORDS

CHO192%%%* 0-192 2
CHO384%%* 193-384 5
CHO768%%* 385-768 10
CH1536%** 769-1536 21
CH3072%%* 1537-3072 42
CH6144%%% 3073-6144 ' 85

The smaller size files are useful for operations with single records. The larger size
files are useful for multi-record operations similar to short tape operations,

Moreover, Time-Sharing FORTRAN may be instructed to consider some files as
successors to others. By this means, multi-record operations similar to the more usual
length tape operations can be performed. (Refer to “Linked Files” page 69.)

REWRITING FILE OPERATIONS, Like tape operations, file operations in Time-Sharing
TORTRAN may require rewriting of all records in the file following one that is changed.
When the file has only one record, there are no other records to rewrite. However, a file
might, by means of successor files, consist, for example, of 120 records and if the 20th
record is changed or removed, the last 100 records may need to be rewritten. In many
applications, therefore, it is an advantage to have numerous short files, since only the
remainder of the shorter file need be rewritten when a record in it is changed.

Rewriting of individual file records without rewriting subsequent records in the file may be
done only if the number of characters in the replacing and replaced records are equal,
Note that the size of a record may be lengthened because of field widening. (Refer to
«Numeric Field Widening” on page 79.) If the replacing record is longer, part of the record
after the replaced one will be lost and this subsequent record will be shortened. If the
replacing record is shorter, the part of the record not replaced remains as an extra
record that follows the replacing record.

Deletion of a record always requires rewriting of subsequent records if the space required
for the deleted record is to be recovered.

Insertion of a record always requires rewriting of subsequent records.

The rewriting of the records subsequent to one that is changed, deleted, or inserted may be
best performed by the operating system. To do so requires that each record begin with
a line number, To use this facility, in the program, write the changes to a file at the end
of the file. Then, after all the changes have been written and the program has stopped,
reference the file from the terminal, using the command OLD. Make a dummy change
to the file and save it using the command SAVE. For example, a dummy change might
be an empty line with a line number not used by any of the records in the file, The dummy
change is required to cause the operating system to reorder the file prior to saving it.

COMPUTER TIME-SHARING SERVICE EORTRAN

-66-

$FILE - (PERMANENT FILE REFERENCE). Permanent files are referred to by naming
them In a $FILE control line, The names given must be present in the user’s catalog
of saved items. Moreover, the names must also be acceptable FORTRAN names:

o Begin with a letter
o Contain only alphanumeric characters

Saved file names are restricted to six characters. When names exceeding six characters
are given in the $FILE line, a name consisting of the first six characters is what is looked
for in the catalog.

The general form for the $FILE line is:

$FILE name, name, ..., name

There may be several $FILE lines in the program only if they follow one another, or if
only declaration statements intervene. The $FILE line or lines must be given near the
front of the program. There is no restriction on how many names may be listed in a $FILE
line, and a line may be continued to list as many as are required. File names need not be
distinct from names used in the program.

The order in which the names are listed in the $FILE line is used to provide ameans
of referring to files in the program, Outside of the $FILE line, files are referred to in the
program by numbers, not names, The numbers indicate the order of the file names in the
$FILE line. Program reference to file 1 is a reference to the file whose name is first
in the list of names in the $FILE line. File 2 refers to the file whose name is second, and
so on,

The program reference to a file may be by means of a constant or variable. The value of
the constant or the current value of the variable is truncated to an integer if it is a real.
A zero value is taken to be a reference to the temporary file. (Refer to “Temporary
File” on page 72.) If the file reference is omitted, a zero value is assumed.

Example
$FILE SUMMARY, TEST, MANPOW
WRITE (1) ... means write in the file saved by the name '"SUMMAR"
READ(I) ... when I means read from the file saved by the name '"SUMMAR";

=1
when I = 2, from file "TEST"; and, when I = 3, from file '"MANPOW."

Error messages are given if the file reference is a
e Positive value larger than the number of files defined for the program, or

e Negative value

LINKED FILES. To indicate that one file is to be used as a successor to another, the names
are listed with a slash (/) between them, instead of a comma.

COMPUTER TIME-SHARING SERVICE FORTRAN

-67-~

Example
$FILE PERS1/PERS2/PERS3/PERS4/PERS5, SUM, EXCEPT

The files named first, PERS 1 through PERS 5, are indicated to be a single file. Except
for the last file of a succession, when no more values are available from one of these files,
or no more space is available to put values in, the file named after the exhausted one is used.
Similarly, backspace or rewind operations that refer to the first file in a sequence of linked
ones, work as though the entire sequence of files were one.

Reference to file 1 in the preceding example, is a reference to the entire linked file PERS1
through PERS5, and reference to file 6 is a reference to a file named SUM. Reference to
file 2 is a reference to PERS2, a part of the succession of files.

RECORD LENGTH, Records written on a file by means of the standard output format
consisting of 72 characters,

4 characters for a line number

1 space

65 characters for 5 numbers, each represented in 13 characters
1 fill character

1 carriage return

Records written by means of user-supplied formats may consist of 71 or fewer characters
plus a carriage return. The carriage return is provided by the file output program To
conform to requirements of the time-sharing operating system, the carriage return is placed
as the 6th, 12th, 18th, ..., 66th, 72nd character. Fill characters are inserted as required
between the last data character and the carriage return. The table below gives the record
length resulting from different numbers of data characters.

Number of Data Characters Record Length in Characters
1-5 6
6-11 . 12

12-17 18
18-23 : 24
24-29 30
30-35 36
36-41 42
42-47 48
48-53 54
54-59 60
60-65 66
66-71 72

When a file record write of more than 71 data characters is attempted, only 71 characters
are written. The exception message “LONG RECORD” is transmitted to the terminal.
Numeric field widening permits the record length to exceed that specified in a format.
When this occurs, the exception message “WIDEN” precedes the “ LONG RECORD” message.
(Refer to “Numeric Field Widening, page 77).

COMPUTER TIME-SHARING SERVICE FORTRAN

-68~

«QFF-LINE” FILE OPERATIONS. Files written by executing FORTRAN programs may be
listed using the time-sharing system LIST command. The listing of records will be in the
order in which they were written whether the records have a record sequence number or
not. (The time-sharing system does not reorder lines according to line numbers if the
lines are all saved ones, that is, no new lines have been entered from the terminal.)

When each record begins with a record number, the file can be edited using the facilities
of the time-sharing system. The file can be merged with others using the EDIT commands,
copied using the RENAME and SAVE commands, and reordered according to record numbers
using the SAVE command (after making a change to the file from the terminal.) Records
can be renumbered using the EDIT RESEQUENCE command, and deleted, inserted, or
replaced using their record numbers as line sequence numbers.

A record number is included in each record when the standard output format is used, and
can be provided when a format is specified. To meet the requirements of the time-sharing
operating system, the record number must be a one to five-digit number (separated by a
space from the next datum in the record if it is numeric).

There are no provisions in the time-sharing system for listing or editing entire linked
files. Each file in a succession of linked files must be listed or edited separately. To
facilitate listings of linked files, the standard output format produces an integral number
of records in each link, that is, does not split a record across a file and its successor,

END OF FILE

Definition. The end of file is either a mark indicating the end of data in the file or it is
The end of the space in the file. The mark is the octal integer 777755 (in an even location).
It is written in one of the following ways:

e By the operating system at the end of the values saved in the file by means of the
command SAVE,

e Throughout the files saved in the library that may be used to establish the size
of files saved in the user’s catalog by means of the commands RENAME and
SAVE. (Refer to "Permanent File Definition, " page 65.)

e By the FORTRAN statement ENDFILE (described below).

The size of the file is established at the time the file is defined and cannot be changed
except by redefining the file. (Refer to “Permanent File Definition”, page 65.) The file
space that can be written in is shorter than its defined size by six characters to ensure
that every file has at least one end-of-data mark.

End-of-File Writing. An end-of-data mark may be written by means of the ENDFILE
statement, The form for the statement is:

ENDFILE file reference
The end-of-data mark written by the ENDFILE statement will:

Terminate listing of the file by means of the LIST command
Terminate editing of the file by means of the EDIT commands
Cause reading to continue with the successor file when the file is linked

® Provide an end-of-data response to a test or read statement when the file is not
linked,

COMPUTER TIME-SHARING SERVICE FORTRAN

-69-

The end-of-data mark does not mark the end of the space in the file, The file size, as
mentioned previously, can be changed only be redefining the file,

A request to perform an ENDFILE statement is treated like a request to perform a WRITE,
Once completed, it establishes the last operation on the file to be a write.

The record written by executing an ENDFILE statement consists of three characters, the octal
integer 777755, placed in an even-numbered location,

Testing, An IF (ENDFILE) statement is available in Time-Sharing FORTRAN for testing
for the end of data or end of space in a file. If the last operation performed on the file (by
the current program) was a WRITE, the IF (ENDFILE) statement tests to see whether there
is space in the file for atleastone more 72-character record. Otherwise, the IF (ENDFILE)
statement tests to see whether the next record is an end-of-data mark. The form for this
statement is: -

IF (ENDFILE file reference) label reference, label reference

If the second label reference is omitted, reference is to the statement following the IF
(ENDFILE) statement. The first label reference is used when there is not an end of file,
The second is used when there is an end of file. The table below explains statement use:

1. previous WRITE: IF (ENDFILE file reference) not end of space, end of space

2. otherwise: IF (ENDFILE file reference) not end of data, end of data

In a linked file, the IF (ENDFILE) statement tests for an end of space or end of data in the
entire file. When there is a successor file, there is more space in the linked file, When
there is data in a successor file, there is more data in the linked file.

Effect on Reading and Writing. Writing is affected only by an end of space condition.
When the space in a file is exhausted and a WRITE in that file is required, the data is
written in the successor file. I no successor file has been defined, the data is not written,
and the exception notice “NO FILE SPACE?” is transmitted to the terminal,

Reading is affected by an end-of-data mark, When the next file datum is an end-of-data
mark, reading continues from the successor file. If no successor file has been defined, the
exception notice “OUT OF DATA?” is transmitted to the terminal, and any existing data after
the end-of-data mark, or if there is none, 524287 is transmitted.

The exception notice “OUT OF DATA” can be avoided by including a test for the end of
data before each read in the program. Upon encountering an end-of-data mark, the pro-
gram can write past it using an ENDFILE statement and then continue reading. (If the
end-of-data mark encountered is at the end of the file space, the attempt to write past it
using the ENDFILE statement will cause the exception notice “NO FILE SPACE” to be
transmitted to the terminal.)

COMPUTER TIME-SHARING SERVICE FORTRAN

«T70=

Examples
1. Writing new data after old:

R:READ(3)
IF (ENDFILE3) R
WRITE (3) list

2. Reading vectors entered by user; entering minus ones for data not entered:

DOR, J=1,M

IF (ENDFILE 3)R

MN=M*N

DO END, L=J, MN; END: A(L) =-1; GO TO X
R: READ (3) (A(J,K), K=1,N)

X: 'VECTORS ENTERED

3. Writing on a non-linked file; linking done by programmer:

1=1

DO MORE, J=1, 450 5

WRITE (1) A(J), A(J+41), A(J+2), A(J+4)
IF (ENDFILE I) MORE

I=I+1 'WHEN FILE IS FULL, USE NEXT FILE
MORE: 'CONTINUE WRITING

4. Reading past end of data mark

DOR, J=1,N
IF (ENDFILE 3) R
ENDFILE 3

R: READ (3) A(J)

REWINDING AND BACKSPACING. A file may be rewound or backspaced using the
REWIND and BACKSPACE statements, respectively. Their general forms are:

REWIND file reference
BACKSPACE file reference

Execution of a REWIND statement causes the current position of the referenced file to be
moved so that the next transmission is to or from the beginning of the file. When execution
of the program begins, each file is rewound. It remains rewound until the file is positioned
by execution of a READ, WRITE, or ENDFILE statement. Execution of a BACKSPACE
statement when the file is rewound has no effect and is ignored.

Execution of a BACKSPACE statement causes the current position of the file to be moved
to the point where it was positioned before the last transmission of a record to or from the
file. If the next file operation is a read, the next record read is the last one read or
written. If the next operation is a write, the next record written erases the last one read

or written.

Note: When a file written with no format specifications is backspaced, execution via
Time-Sharing FORTRAN gives results which differ from those provided by traditional
FORTRAN execution. An unformatted write in Time-Sharing FORTRAN creates multiple
records, each with a maximum of five values. In traditional FORTRAN, however, a write

FORTRAN

COMPUTER TIME-SHARING SERVICE

“T1-

creates a single record large enough to hold all values transmitted by the one WRITE
statement. This difference is noticeable only when the file is subsequently backspaced.
With Time-Sharing FORTRAN, the backspace is over the last of several written records;
with traditional FORTRAN the backspace is over the single long record,

For example, the program

DIMENSION ARRAY (10)
WRITE (3) (I,TI = 1,10)
BACKSPACE #

WRITE (3) ARRAY

when executed in traditional FORTRAN causes file 3 to hold only the ten elements of the
array. In Time-Sharing FORTRAN, the resulting file has five values 1, 2, ..., 5 preceding
the ten elements of the array,

Examples

WRITE (I) A, B

READ (I) A, B

WRITE (2,30) ((A(I, J), I =1, 10),J =1, N), T
WRITE (3, TITLE)

READ (3, TITLE)

BACKSPACE N

1F (ENDFILE2) LOOP,EOS

READ (N, 12) VAL, COST, PRICE

REWIND 1

WRITE(3) “"MONTHLY SUMMARY"

WRITE(3,12) tt , LNO, "REPORT TO DATE", Fl, F2, F4, F7
READ(5, 20) LNO, (A(K), K= 1, M)

Temporary File Definition

$DATA - (Temporary File Definition). A single temporary file is available. It is obtained
by including a $DATA line after the last statement in the entire program. If any lines
follow the $DATA line, such lines are taken to contain initial values for the temporary
file,

The $DATA line may contain as many as six names after the word “data”. They are
separated from each other by commas. Each name in a $DATA line must be the name
of a saved item in the user’s catalog. The $DATA line may not be continued since the
continuation lines would be interpreted as containing initial values. The general form for
the $DATA line follows:

$DATA name, name, ...

The names must be acceptable FORTRAN names which begin with a letter and contain
only alphanumeric characters.

Any characters exceeding six are ignored since the time-sharing system only catalogs
six character names.

Each line of each saved item is interpreted as containing initial values for the temporary
file. These values are included after the values contained in any lines following the $DATA
line. Values from lines of the first named item are included first, then those from lines
of the second, and so on.

COMPUTER TIME-SHARING SERVICE ' EORTRAN

-T2~

The space available for operations on the temporary file equals the space required for the
initial values. The space available for entering the initial values in the temporary file
depends on the size of the program compiled. A space large enough to contain about 17,000
characters is available for both the (compiled) program and the temporary file.

To make a temporary file of larger size than the space required for the initial values of
the file, a saved item of appropriate size may be named in the $DATA line. The item may
be a renaming of one of the library items of a different size or it may be any item of the
right size.

Example (Numbers on the left are line numbers.)

200 READ, N,(ARRAY (I), I =1, N)

1000 $DATA

1010 52, 10 * 1.2, 25 % .3, 15 % - .3, 2 % O,

FILE REFERENCE AND OPERATIONS.

The temporary file is referenced by omitting the file reference in the statements:
READ format reference
WRITE format reference
IF (ENDFILE)
ENDFILE
REWIND

BACKSPACE

The temporary file may also be referenced by supplying a file reference whose value is
zero in any of the permanent file statements,

The file operations using the temporary file are the same as those using the permanent
files. Except for any initial values of a temporary file that are already saved, the temporary
file values are unavailable when execution of the program stops. Any values written in the
temporary file during the execution of the program will not be available after the execution
stops unless they are also written in a permanent file.

Examples

READ, A. F. G
READ 16, B, D
READ TITLE

READ VAR, "G'", TABLEl, TABLE3

FORTRAN

COMPUTER TIME-SHARING SERVICE

=73

READ, (A(I), I =1, 10)

READ SOME, (B(K), K= 1, M, L)
IF (ENDFILE) MORE, EOS, EOD
REWIND

BACKSPACE

ENDFILE

WRITE, (A(I), I =1, N)
WRITE 16, B, D

WRITE TITLE

If no format reference is given unformatted input and standard output format are assumed,
The comma normally written after the format reference must appear after the statement
word “read” or “write” to prevent the firstitem in the input/output list from being mistaken
for the format reference. When the first item in an output list is a quotation, the comma
after the word “write” may be omitted.

Reading from the temporary file is much faster than reading from either permanent files
or from the terminal. Writing in it has limited usefulness, since whatever is written only
in the temporary file will be lost when the program stops. For this reason, it is best used
as a buffer for transmission between permanent files or between permanent files andthe
terminal,

COMPUTER TIME-SHARING SERVICE FORTRAN

-T4-

11. FORMATTED INPUT/OUTPUT

FORMAT DEFINITION

Input/output may be performed by using a sequence of specifications called a FORMAT.
The specifications indicate the method of conversion to be used between internal and
external representation of values. For example, the external representation “35” can be
converted to various internal values:

Integer 35, treating “35” as a decimal integer

Integer 29, treating “35” as an octal integer

Integer 197, treating “35” as an alphabetic (197, = 0305,)
Real .35, treating “35” as a decimal fraction

Real 3.5, treating “35” as a mixed decimal

Real 35, 000, 000, treating six blanks after “35” as zeros

The format sequence consists of a parenthesized list of conversion specifications. They
are usually written with a comma separating them, and except for quoted or counted
characters, blanks may be used as desired.

The format sequence may be written in a FORMAT statement as discussed below, or it
may be stored in an array. Since a format sequence is a sequence of characters, it can
be transmitted alphabetically as input and received in an array. (Refer to the discussion
of "Format Statements Read at Execution'’ on page 89.)

Individual characters in a format sequence can be referred to as array elements when the
format is stored in an array. By this reference, the format can be changed during execution.
A format sequence in a FORMAT statement, on the other hand, cannot be changed except
as noted below in the discussion of the H-format on page 86, Also, refer to the discussion
of “Variable Format Specifications” on page 89 .

FORMAT STATEMENT

A FORMAT statement is always given a statement label so that the input/output statements

may reference the contents of the format sequence by its label. The FORMAT statement
consists of the word “format” followed by the format sequence written in parentheses.

Examples
27 FORMAT (14, 4I113,)

HEAD1: FORMAT ("'NO. OF CASES TREATED')
AFORM: FORMAT (6 (5E13.4), 2E13.4/)

COMPUTER TIME-SHARING SERVICE FORTRAN

~75-

A FORMAT statement may occur anywhere in a program, It is not executed, but its
statement label may be referred to within control statements to direct control to subsequent
statements.

FORMAT REFERENCE

In each of the four Time-Sharing FORTRAN input/output statements, a format may be
referred to.

hY
INPUT format reference, list :
PRINT format reference, list J terminal

READ (file reference, format reference) list .
WRITE (file reference, format reference) list } permanent file

READ format reference, list

WRITE format reference, list } temporary file

If the format reference is a number, it is interpreted as the label number of a FORMAT
statement in the same subprogram, If the format reference is a name, it is interpreted as:

e The name of an array containing a format sequence

e The name of a label variable, the current value of which is the label of a FORMAT
statement

e The label name of a FORMAT statement

A format reference name is interpreted as an array name only if the array has been
previously declared.

NUMERIC FORMAT SPECIFICATION

Four types of conversion are available in Time-Sharing FORTRAN for input or output
of numeric values. Each type is indicated by a different format specification. The table
which follows shows the kinds of conversion and how each is specified. The examples show
typical number representations that can be transmitted to a file or the terminal using
each type.

Format Internal
Specification Name External Form Examples Form
Iw Integer Decimal whole 49, -3 Integer
number
Fw.d Fixed . Decimal with 49., -.30, 87.351 Real
point decimal point
Ew.d Exponent Decimal with -1.5E+03, .257E-49 Real
tens exponent 48E+12, .1E+05
multiplier
Gw.d General Decimal with 87.351, .1E+05 Real
or without -.30, 48.E+12
tens exponent
multiplier

COMPUTER TIME-SHARING SERVICE FORTRAN

-76-

The letters used in the preceding table have the following meaning:

W a positive integer giving the number of character positions in the external
representation., It should be large enough to include all characters appearing
in the representation:

sign

digits

decimal point

four character tens-exponent multiplier

In Time-Sharing FORTRAN, w need not provide room for a sign unless the
number is negative.

d anon-negative integer giving the number of digits in the fractional part.

For output, a number is considered to be right-justified within the field specified.
Character positions to the left that are not used for the number representation are blank
filled. The w_ specifications can thus be used to provide appropriate spacing between
successive numbers in the same output record.

For input, a number is also considered to be right-justified within the field specified. But
blanks anywhere within the field, totheleftor right, or in the midst of the number represen-
tation are treated as zeros.

Input is the same, whether an F, E, or G format specification is used. However, a scale
factor specification affects only F type input.

Numeric Field Widening

In Time-Sharing FORTRAN, when an I, F, E, or G format specification does not provide
a wide enough field to contain all of the characters required to represent an output number,
rather than suppress some of the characters, the field is temporarily widened, and all of
the characters are transmitted,

This field widening may cause the values in one output record to be misaligned with values
in other records being transmitted with the same format. Moreover, the field widening
may cause the inclusion of too many characters in an output record. If this occurs, another
record is automatically provided.

For file output, the widening of a field is performed and an exception notice is transmitted
to the terminal. For terminal output, the only notice of field widening is the misalignment
it may produce.

Note: With I or F format specification, too narrow a field width is often due to a value
having a larger than anticipated number of digits. And, with either of these or E or G
format specifications, the width specified often does not provide room for a minus sign
because a negative value is not anticipated.

FORTRAN

COMPUTER TIME-SHARING SERVICE

o

Another common omission is space for the multiplicative factor which is required only
sometimes in a G-format.

Another record is automatically provided when a terminal output record either because of
field widening or specification, exceeds the maximum of 72 characters allowed in a terminal
output record. Rather than split a field contents across two records, the entire last field
of the current record is deleted from it and placed at the beginning of the next record,

I-Format

General Form: Iw
nlw

where n represents the number of times the field is repeated
w represents the total number of characters within the field

Examples 15
217

INPUT. Input numbers to be converted under type I specifications may consist of from 1
to 6 decimal digits, with or without a preceding plus or minus sign. If no sign is provided,
a number is considered to be positive.

The magnitude of a number must be less than (524288). Numbers exceeding this are
received as +524287.

The variables to receive values converted under-type I specifications may be either integer
or real. Integer numbers are automatically converted to real form before being stored as
real variables,

Examples

If the next record in the temporary file held values represented as follows:
1 2 3
Column Nos. 123456789012345678901234567890
020 30 -1009874 38 3

and it were read by the following FORTRAN statements:

READ 10, L A, J, K, B, M
10 FORMAT (213, 16, 314)
the values would be stored in memory as I=20, A=0.3x10° , J=-100, K=98174, B=0.38x102,
and M=300.

OUTPUT. Either integer or real values may be transmitted for I format output, Real
Values are automatically truncated to integers before conversion to output characters.

COMPUTER TIME-SHARING SERVICE FORTRAN

-78=-

Examples

If the values I=-1263, J=200, A=0.207x10%, and M=-2 were contained in memory and printed
by the following FORTRAN statements

PRINT 10, I, J, A, M
10 FORMAT (I3, 2I5, 13)

the numbers would appear within the following columns of the record:

1 2 3
Column Nos. 123456789012345678901234567890
-1263 200 20 -2

Note that the width of the first field is extended from three to five characters in length
to avoid truncation of the value of 1.

F-Format

General Forms: Fw.d
nFw.d

where n represents the number of times the field is repeated
w represents the total number of characters within the field
d represents the number of digits in the fractional part

Examples F12.2
3F10.2

INPUT. Input specifications for F, G, and E are exactly the same. The input is a real
number from the terminal consisting of from 1 to 11 decimal digits with optional sign,
decimal point, and exponent. Blanks are treated as zeros. Digits after the first 11 are
ignored except as place markers. If no decimal point appears, its position is indicated
by the fraction width parameter, d. The decimal point is then assumed to be d places
to the left of the end of the mantissa field. The mantissa field is the entire field unless an
exponent appears, in which case, it is the part of the field to the left of the exponent.

Decimal scale factors are of four forms:
Ezee $tee tee E ee

These supply the power of ten by which the number must be multiplied to produce the true
value.

For example: 1.32E4 represents a number with the value 1.32x10"
0.05-4 represents a number with the value 5.0x10™°
75803 represents a number with the value 7.5x10"

The magnitude of a real number must be less than (approximately 5.0x10"°). Numbers
which are larger are received as approximately y =5.0%10 . A maximum of nine
significant digits may be retained internally. The variables which are to receive values
converted with type F specifications may be either integer or real. Real values are
automatically truncated to integer before being stored as integer variables,

TORTRAN

COMPUTER TIME-SHARING SERVICE -

79

Example
If the next record in the temporary file held values represented as follows:
3 4

1 2
Column Nos. 1234567890123456789012345678901234567890
4720 146321 - 2.3 88.13 67 . 4

and the file was read by the following statements:

READ 10, LNO,A, B,
10 FORMAT (14, 2F8.3,

The values would be stored internally as LNO = 4720
A = 0.146321x10°, B = -0.23x10", I =8, C =0.13, D = .67004x10°

OUTPUT. Variables which supply values to be converted with type F specifications may
be either integer or real. Integer values are automatically converted to real before con-
version to ouput characters. A maximum of nine significant digits are available in a real
value, The field width, w, should include a space for a decimal point, a space for the sign
if negative values can occur, as well as space for blanks between successive numbers.

Examples

If the values I1--200, A=0.30266x10°, B=-0.1003x10°, C=0.1x10" and D=-0.047x10"° were
contained in storage and printed by the following FORTRAN statements:

PRINT 10, I, A, B, C, D
10 FORMAT (F6,2, 2F8.2, F7.3, F10.3)

the numbers would appear within the following columns of the record:

1 2 3 4
Column Nos. 1234567890123456789012345678901234567890
-200.00 30.27 -100.30 1.000 -.000

Note that the width of the first field is extended from six to seven characters in length to
provide room for the sign.

E-Format

General Forms: Ew.d

nEw.d
where n represents the number of times the field is repeated
‘w represents the total number of characters within the field
d represents the number of digits in the fractional part.
Examples
E12.2
3E10.2

FORTRAN

COMPUTER TIME-SHARING SERVICE

=80~

INPUT. Input via E-format is the same as input via F-format. The input is a real number
from the terminal consisting of from 1 to 11 digits with optional sign, decimal point, and
exponent. Blanks are treated as zeros. Digits after the first 11 are ignored except as
place markers. If no decimal point appears, its position is indicated by the fraction width
parameter, d. The decimal point is then d places to the left of the end of the mantissa
field. The mantissa field is the whole field unless an exponent appears, in which case it
is the part of the field to the left of the exponent.

The four forms an exponent may take are the same as in types F and G:
Etee $zee tee E ee
Examples

If a terminal transmitted information as follows:

1 2 3
Column Nos. 123456789012345678901234567890
1.33E4 -434E-3 2.0 5

and it was read by the following FORTRAN statements:

INPUT 10, A, B, I, C
10 FORMAT (E7.4, E9.2, E7.4, E5.1)

the values would be stored in memory as A=0.133x10", B=-,0434x107 1=2, and C=0.50x10".

OUTPUT. Variables which supply values to be converted with type E specifications may
be either integer or real, Integer values are automatically converted to real before
conversion to input numbers.

Type E specifications have the advantage that information is not lost due to large varia-
tions in the size of numbers. Large, as well as small numbers may be made to fit into
a relatively small field of the output record.

Examples

If the values A=-0.14432x10°, B=0.146x10", and I=2341 were contained in storage and
printed by the following FORTRAN statements:

PRINT 10, A, B, I
10 FORMAT (E10.4, E10.2, E.12.4)

the numbers would appear within the following columns of the record:

n a

1 Z 3 4
Column Nos. 1234567890123456789012345678901234567890
-0.1443E+09 O0.15E+01 0.2341E+04

Note that the width of the first field is extended from ten to eleven characters in length
to provide for the sign.

COMPUTER TIME-SHARING SERVICE FoRTRAN

-81-

G-Format

General Forms: Gw.d
nGw.d

where n represents the number of times the field is repeated
W represents the total number of characters within the field
d represents the number of significant figures

Examples: G12.3

INPUT. The input via G-format is the same as input via F-format. The input is a real
number from the terminal, consisting of 1 to 11 digits with optional sign, decimal point,
and exponent. Blanks are treated as zeros. Digits after the first 11 are ignored except
as place markers. If no decimal point appears, its position is indicated by the fraction
width parameter, d. The decimal point is then d places to the left of the end of the man-
tissa field. The mantissa field is the entire field unless an exponent appears, in which case,
it is the part of the field to the left of the exponent.

The four forms an exponent may take are the same as in types F and E:

E:ee $ree ree E ee
Examples
Refer to the input example under F conversion,
OUTPUT. The G-format is used to provide numbers having a specified number of sig-
nificant figures no matter what the magnitude of the number. The d in the format speci-
fication:

Gw.d

indicates how many significant figures are to be provided. The number is right-justified
in the space of w character positions.

When the number is either too large or too small to represent without supplying zeros
before or after the decimal point, a multiplicative factor is used. The table below shows
how G-format output uses either F- or E-format output depending on the magnitude of
the number.

Magnitude Representation
magnitude<0.1 Ew.d
0.1lsmagnitude<1.0 Fw.d
1.0smagnitude<10. Fw. (d-1)
10.smagnitude<100. Fw. (d-2)
103:§§magni.tude<10d-1 Fw.1
10, sSmagnitude<l0 Fw.0
10 sSmagnitude Ew.d

COMPUTER TIME-SHARING SERVICE FORTRAN

-82-

Notice that the w specified as the field width should allow four spaces for the multiplicative
factor.

If a scale factor (refer to “Scale Factors” on page 84) is specified, it affects only cases where
the E-format conversion is used.

Example

When the internal values A = 34.756, B = .004763, C = .5, D =-3.777, I = -936 are trans-
mitted for output using the statements:

PRINT GG, A, B, C, D, I
GG :FORMAT (G8.4, G12.3, 2G6.3, G9.2)

the output record would have the appearance shown below,

1 2 3 4
Column Nos. 12345678901234567890123456789012345678901
34.76 0.476E-02 .500 -3.78-0.93E+02

Scale Factors

Scale factors may precede F, E, or G format specifications, A scale factor is written
using a signed integer followed by the letter “P” which stands for “power.” If the sign
is omitted, a positive integer is assumed. If the integer is omitted, an integer +1 is
assumed,

Examples

3PF12.2
OP2E10.1
-2P4F10.6
PE14.3
P3G16.5

When used with a type F specification, the scale factor gives the power of ten by which
values are to be multiplied prior to transmission., For example, if numbers in a file
represent thousands, values like 4.35, or .3 can be stored in the file and converted to 4000,
35000, 300 by input transmission using a 3P scale factor. Similarly, transmission to a
file or the terminal can use a -3P scale factor to represent values in terms of thousands,

When used with either an E or G format specification, the scale factor works differently.
The scale factor does not affect input transmission under E or G format, and does not
affect output transmission under G-format unless E-type representation is used.

The scale factor with E-format output transmission and E-type output representation
for G-format does not change the output value. Instead, the scale factor changes the
position of the decimal point in the representation but adjusts the multiplicative factor in
the representation so that the same value is represented. For example, to provide the
more familiar representation 1,372E+02, instead of the usual E-type representation
0.1372E+03, a scale factor of +1P, or P is used.

FORTRAN

COMPUTER TIME-SHARING SERVICE

-83~

Whenever a scale factor is indicated for one format specification by writing the scale
factor in front of that format specification, it also is indicated for all format specifica-
tions between that one and another scale factor. For example, in the format

(PE14.3, F10.2, G16.2, 0P4F13.2)
the 1P scale factor applies to the E14.3 format specification and also to the F10 E)2 and G16.2
format specifications, The OP scale factor restores the normal scaling (10" = 1) to the
subsequent specification 4F13.2.
Examples

If a terminal transmitted information as follows

1 2 3
Column Nos. 123456789012345678901234567890
200 3.3 9726 83.41

and it was read by the following FORTRAN statements

INPUT 10,A,B,C,D
10 FORMAT (-2PF5.1,1PF5.2,2PE6.0,-PE6.0)

the values would be stored in memory as A=0.2x10°, B=0.33x10°, C=0.9726x10%, and
D=0.8341x10 .

Note that the scale factor has no affect on E-format input transmission.

If the values A=0.6328x10%, B=-0.926x10"*, C=0.1x10°, and D=0.45102x10" were contained
internally and printed by the following FORTRAN statements

PRINT 10,A,B,C,D
10 FORMAT (-1PF6.2, 2PF8.1, 1PE10.2, -1PE10.4)

the numbers would appear within the following columns of the record:

1 2 3 4
Column Nos. 1234567890123456789012345678901234567890
6.33 -9.3 1.00E+020. 0451E-01

Note that the scale factor does not change values of E-format output transmission, only the
position of the decimal point in the representation.

OCTAL FORMAT SPECIFICATION

O-Format

General Forms: Ow
nOow

where w represents the number of characters within the field
n represents the number of times the field is repeated

COMPUTER TIME-SHARING SERVICE FORTRAN

-84~

Examples 05
- 3010

Notes

1. Only blanks and octal digits may appear within type O fields.

2. The maximum number of octal digits and imbedded blanks allowed within a type O
field is 7 if the value is to be assigned to an integer variable, or 14 if the value
is to be assigned to a real variable. If more are provided for input, the right
most are transmitted,

3. The seventh and fourteenth digits from the right should be less than 4. High-
order portions of digits larger than this are lost.

4. Variables which supply or receive values to be converted with type O specifications
may be either integer or real.

5. Integer values produce 7 octal digits. Real values produce 14 octal digits.
6. Leading zeros are not suppressed.
7. Blanks are treated as zeros.

Examples

If the next record of the temporary file contained:

1 2
Column Nos. 123456789012345678901234567
0020 64 773777777 7777766

and it were read by the FORTRAN statements

READ 10, I, A, B, K
10 FORMAT (204, 011, 08)

the values would be stored in memory as follows:

LOCATION VALUE
I 000002 08
A 00000008
A+l 00000648
B 0000077 8
B+1 37777177 8
K 3777766 8

If the values of A=0.1x10" , 1=52,,, and K=524287,, were contained in memory and printed
by the following FORTRAN statement:

PRINT 10, A, I, K
10 FORMAT (015 208)

FORTRAN

COMPUTER TIME-SHARING SERVICE

-85~

the numbers would appear within the following columns of the record:

1 2 3
Column Nos. 1234567890123456789012345678901
00060000000000 0000064 1777777

ALPHABETIC FORMAT SPECIFICATION

Two types of specifications are available for input and output of alphabetic (Hollerith)
information: H and A. Both of these specifications transmit alphabetic information between
storage and terminal devices. The difference between the two is that information trans-
mitted under control of type A specification is assigned to a variable or array but information
transmitted under type H is contained or received in a FORMAT statement or array.

H-Format

General Form 1: wHxxx...x

where w represents the total number of characters, x...x, which follow the H,

including blanks,

Example 14HEND OF PROGRAM
16H"END OF PROGRAM'

General Form 2: “xxx...x”

Example "END OF PROGRAM"
" 'END OF PROGRAM' "

Notes

1. Type H specifications in FORMAT sequences may be written within quotation
marks instead of with a count of the number of characters followed by an H and
then the characters.

2. Type H specification in a FORMAT statement, whether counted or quoted, may be
continued on the next statement line. In this case, the carriage return, line feed,
intervening comment lines (if any), line number, and blanks up to the continuation
mark are not included in the counted or quoted characters.

3. Commas which normally separate specifications with a FORMAT sequence are
not necessary following a type H field. They may be used if desired.

4., When used with input, the characters following the type H specification are replaced
by an equal number of characters from the input record. Only the wH form may
be used for this purpose.

5. When used with output statements, the type H specification causes the Hollerith
information to be inserted into the output record at the place called for in the
FORMAT statement.

COMPUTER TIME-SHARING SERVICE EORTRAN

- 86~

Examples

If the value of A were 0.5x10° and the following output statement were executed

10

PRINT 10, A
FORMAT (22HLARGEST VALUE OF A IS ,F8.1)

The following line would be transmitted to the terminal:

1 2 3 4

Column Nos. 1234567890123456789012345678901234567890

LARGEST VALUE OF A IS 500.0

If a terminal input record was:

1 2 3 4

Column Nos. 1234567890123456789012345678901234567890

SMALLEST VALUE OF A IS -2.00

and it was transmitted using the same format statement, the FORMAT statement would

become:

10

FORMAT (22HSMALLEST VALUE OF A IS, F8.1)

and A would become -0.2x10" .

A-Format

General Forms: Aw

nAw

where W represents the total width of the field
n represents the number of times the field is repeated.

Examples A7
242
24A4
Notes
1. The maximum number of characters which may be stored within an integer

variable is three. If w is greater than three, only the three right-most characters
are considered. If w is less than three, the characters are left-justified and
filled with blanks.

The maximum number of characters which may be stored within a real variable
is six. If w is greater than six, only the six right-most characters are considered.
If w is less than six, the characters are left-justified and filled with blanks.

Variables which supply values for A specification conversion may be either integer
or real, Integer variables supply a maximum of three characters. Real variables
supply a maximum of six characters.

COMPUTER TIME-SHARING SERVICE EQRTRAN

=87~

4, Transmission to field widths larger than three or six fills the field from the
left with w-3 or w-6 blank characters. Fields with width of less than three or
six characters receive the w left-most characters.

5. For input, blanks are supplied on the right of any characters included to {ill to
84 characters. The program below, for example, can be used to receive a
variable length string of characters.

INTEGER ALPHA (84)
PRINT, "NAME"
INPUT Al, ALPHA

Examples
If a terminal transmitted information as follows:

1 2 3
Column Nos 123456789012345678901234567890
ERROR IS END VALUES GONOGO

and it was read by the following FORTRAN statements:

INPUT 10, A, I, K, B, C
10 FORMAT (A6, A2, A4, 2A9)

the values would be stored in memory as follows:

Variable Alphabetic Octal

Value Value
A ERR 0255151
OR 0465160
1 Is 0316260
K END 0254524
B VAL 0652143
UES 0642562
C NOG 0454627
0 0466060

If the value of A was stored as read in the example above and I = 524287, then the follow-
ing FORTRAN statements

PRINT 10, I, A
10 FORMAT ("I=" I8, A6)

would produce the following printed record:

1 2
Column Nos. 12345678901234567890
I= 524287ERROR

COMPUTER TIME-SHARING SERVICE EORTRAN

-88-

FORMAT STATEMENTS READ AT EXECUTION

FORMAT sequences may be read as alphabetic values, and received in an array. The name
of the array may then be used as a format reference in an input/output statement. Note
that the array must be previously declared, Otherwise the format reference is taken to
be the label name of a FORMAT statement,

The FORMAT sequence in an array is used exactly as one in a FORMAT statement, It
must begin with an open parenthesis and end with a close parenthesis. The open paren-
thesis may be preceded by the word “format,” or any other words, but this is not required
because the first open parenthesis signals the beginning of the FORMAT sequence. And
the close parenthesis ending the FORMAT sequence may be succeeded by any characters
since these are not used as part of the FORMAT.

Example
The following program illustrates how a FORMAT sequence may be read during execution,

DIMENSION J(6)
INPUT 10, J
10 FORMAT (6A3)

If a terminal transmitted information as follows:
1 2
Column Nos. 12345678901234567890
(E15.4,F10.2,18)

the FORMAT sequence in that record can be used within the program by referring to
J in a format reference.

Type X

General Form: nX
where n represents an unsigned, decimal integer.

Example: 5X

Notes

1. The type x specification is used to skip characters of an input record and insert
blank characters in an output record.

2. The count n, gives the number of characters to be skipped or the number of

blanks to be inserted.

VARIABLE FORMAT SPECIFICATIONS

Two additional types of format specifications are available that allow varying the format
during execution.

COMPUTER TIME-SHARING SERVICE FORTRAN

-89~

T-Format

A T-specification indicates that the next item in the list is to be interpreted as an alpha-
betic character to replace the T in the format. For example, if the list supplies an “E”
the “E” is then used in place of the “T” in the format specification. The revised format
specification is then used for the next list item.

A * gpecification is used in the same way to indicate that the integer value of the next item
in the list replaces the * in the format. For example, the statements:

PRINT 10, J, IW, IDP, A
10 FORMAT (T*.%)

could be used to print array A with F16.5 format by giving statements J = “F”; IW = 16,
IDP = 5 and with E20.6 by giving statements J = “E”; IW = 20; IDP = 6.

FORMAT-LIST CORRESPONDENCE

When a formatted input/output statement is first executed, the first format specification
in the referenced format sequence is used to transmit the first item in the input or output
list. Transmission is to or from the beginning of the next record. If the item has multiple
elements, each element requires a format specification.

A format specification may be prefixed with a count that indicates for how many elements
it is to serve. When the list contains more elements than the first format specification is
to serve, the next format specification is used for the next element.

When either the H-type and X-type format specification is encountered, it is applied but
does not serve for any list element. (Refer to “H Format” on page 86, and “X Format”
on page 89.)

When all list elements are served, transmission ceases. If there are any format spec-
ifications that have not been used, they remain unused.

When all format specifications have been used, and there remain list elements to be served,
the sequence is repeated, The first format specification in the sequence is used again, this
time to serve the next list element. If the sequence contains groups of format specifica-
tions, described below, the entire sequence is not repeated.

FORMAT SPECIFICATION GROUPS
A format sequence may contain groups of format specifications. The group is written
by enclosing one or more format specifications in parentheses. A count may prefix the

group to indicate how many times it is to be used before subsequent specifications in the
sequence, if any, are to be used.

COMPUTER TIME-SHARING SERVICE FORTRAN

-90-

Examples
FORMAT (16, F10.4, 2(E20.8, A6))

indicates that the format specifications are to be used in the
order: I6, F10.4, E20.8, A6, E20.8, A6

FORMAT (F16.3, 3X, 3(14, A4), (E20.8))
indicates that the format specifications are to be used in the
order: F16.3, 3X, 14, A4, 14, A4, 14, A4, E20.8

If a group is included in a format sequence and all format specifications have been used
without exhausting the input/output list, the last group in the sequence, and not the entire
sequence, is repeated. In the second example, the group with the single specifications
E20.8 is repeated.

Example
FORMAT (3110, 2(F16.3), A6)
indicates that the format specifications are to be used in the

order: I10, I10, I10, F16.3, F16.3, A6 and thereafter, F16.3
is used since it is the last group in the sequence.

MULTIPLE RECORD FORMAT

In a format sequence both the slash and right parentheses characters indicate the end
of a record. If items of a list remain to be considered at that point, the format repeats
from the last left parenthesis.

The statement

PRINT M, (A(I), I =1, 23)
M: FORMAT (E20.8, 2F12.4/(5E20.8))

provides for one record of information with the format:

E20.8, Fl12.4, F12.4

followed by records of information with the format:

E20.8, E20.8, E20.8, E20.8, E20.8

The statement

PRINT MM, (A(L), I = 1, 27)
MM: FORMAT (E20.8, F10.2/3E20.8)

FORTRAN

COMPUTER TIME-SHARING SERVICE

-91-~

would provide alternate records of information:

E20.8, F10.2

E20.8, E20.8, E20.8

E20.8, F10.2

E20.8, E20.8, E20.8
and so on

If the sum of the field specified for a terminal output record exceeds 72 characters, another
record is automatically provided. T holds only the excess from the previous recerd, and
not any fields from the next specified record. (Refer to “Numeric Field Widening” on
page 717.)

FORTRAN

COMPUTER TIME-SHARING SERVICE

-92-

12. MONITOR LINES

In Time-Sharing FORTRAN, four types of monitor lines are provided. Two of these
have already been discussed:

o $FILE -- used to refer to permanent files
e $DATA -- used to obtain the temporary file
(Refer to pages 67 and 72 respectively.)
This chapter describes the remaining two monitor lines:
o 3JUSE -- used as an aid to program composition

e 3OPT -- provides options for compiling and executing programs

$USE

The $USE line may be used to compose a program from statements saved separately.
A subprogram, for example, saved separately, in one’s own catalog or in the library, may
be referenced in a $USE line to include that subprogram in one’s own program, In addition
to a subprogram, the items referred to ina $USE line may be statements, such as COMMON
declarations. In a punched card environment, such statements would be reproduced several
times and included with each of several subprogramsto ensure that all subprograms declare
common storage identically.

The $USE line must contain only a single name, The name must be the name of an item
saved either in one’s own catalog or in the library. To indicate a library name, append
one or more asterisks to the name:

$USE name -an item saved in one’s own catalog
$USE name* -an item saved in the library

The name must be an acceptable FORTRAN name, It must begin with a letter and contain
only alphanumeric characters. Only the first six characters given are used, since the
operating system catalogs items by names no longer than six characters. Note that the
operating system treats leading or embedded blanks as significant, but that these are ignored

in FORTRAN,

When a $USE line is encountered, the Time-Sharing FORTRAN system interrupts the
compiling of statements in the present item and continues compiling with the first state-
ment in the saved item. When all the statements in that item have been compiled,

FORTRAN

COMPUTER TIME-SHARING SERVICE

-93-

compiling resumes with the first statement on the line after the $USE line in the original
item. It is as though the statements in the saved item were inserted in the original item in
place of the $USE line.

Compiling does not mean executing, In the Time-Sharing FORTRAN system all statements
are compiled to an executable program. If there are no errors detected in the statements,
the executable program that has been compiled is executed. This two-phase operation--
compilation and execution--occurs every time the operating system command RUN is given,

The $USE line simply permits the statementsthat are compiled to be in more than one saved
item. It does not allow the executable program to be saved and then included with a newly

prepared executable program.

An illustration of how $USE lines provide for program composition from several saved items
follows.

A
100
140
150 $USE B B
160
. 200
190 .
240
250 $SUSE C C
260 $SUSE E E
270 300
. . 500
290 380 .
390 SUSE D 590
D
400
490

When the $USE lines occur in the places shown in the illustration above, statements are
compiled in the following order:

100-140 (from A)
200-240 (from B)
300-380 (from C)
400-490 (from D)
500-590 (from E)
270-290 (from B)
160-190 (from A)

Only as many as six locations of the next statement to compile can be remembered at a
time, In the example illustrated above, the most that are remembered at one time is
four: one location in each of A, B, C, D.

COMPUTER TIME-SHARING SERVICE FoRTRAN

-94-

In the example above, each saved item from which the program is composed has different
line numbers. This is advisable, since an exception or error report made by the FORTRAN
system during execution refers only to the line number of the statement and not to both
line number and name of saved item.

During compilation, the names of the saved items are transmitted to the terminal as
compilation begins or resumes with the statements in each saved item, If composition
error is detected during compilation, the transmitted name points out in which saved
item the erroneous statement is detected. In the above example, the following messages
would occur on the terminal in the order shown:

IN B
IN C

222
1w

IN . FIRST

The last message indicates a resumption of compiling in the item in which compilation
began (the name of which is not known).

$OPT

The monitor supplied with Time-Sharing FORTRAN provides a number of options for
compiling and executing programs. These options are obtained by writing a monitor line
in the following format. The line begins with the word $OPT and continues with one or
more words denoting options. An option has effect on the next and subsequent lines until
cancelled by a reversing option order or by the end of the program.

The words used to order options are listed below. A more complete description follows
the list. Although full words are shown in the list, only the first three characters of each
word are significant. Abbreviations may be used. For example, INT serves as well as
INTEGER, SUM as well as SUMMARY,

Options Available

$OPT SS causes all subscripting to be checked for conformance with declared
dimensions.

$OPT NO SS causes subscripting not to be checked.

$OPT REAL causes all names to be assumed real,

$OPT INTEGER causes all names to be assumed integer.

$OPT MIXED causes names to be assumed real or integer in the usual FORTRAN
manner,

$OPT IFF name causes compilation of subsequent lines to be suspended if there is

no previous mention of the name given after IFF, If no name is
given, compilation is unconditionally suspended,

FORTRAN

COMPUTER TIME-SHARING SERVICE

~95-

$OPT* causes resumption of compilation if it has been suspended, either
conditionally or unconditionally

$OPT SIZE causes the size of the part of the program so far compiled to be
announced.

$OPT TIME causes the time spent so far in compiling the program to be
announced,

$OPT SUMMARY causes a summary of each subprogram to be listed.

$OPT SOURCE causes each line of the program as well asthe summary to be
listed.

$OPT LIST causes each instruction as well as each line of the program and
summary to be listed.

The qualifier “NO” before any of the last three options, causes that which would have been
listed because of the option name to be cancelled. For example, $OPT LIST, NO SOURCE
causes each instruction to be listed, but neither the program nor the summary to be,

Subscripting Checking $OPT SS, $OPT NO S8

Subscripted assignments are always checked to see that assignment outside of dimen-
sioned storage is not made. Furthermore, all subscripting of arrays declared to have
three or more dimensions is always checked for conformance with the declared dimen-
sions. For example, for a mention A(], J, K) when the dimensions A(12, 7, 2) are given,
an error indication is transmitted unless 1<1<12, I<J<7, 1< K<2., The SS option merely applies
this checking to all arrays dimensioned after the option is ordered, whatever their dimen-
sions are.

The NO SS option discontinues the checking for one- or two-dimensioned arrays declared
after the NO SS option is given. It does not discontinue the checking on subsequent
mentioned arrays previously declared.

Modes 3OPT REAL, $OPT INTEGER, $OPT MIXED

Names are implied to be real unless their initial letter is I, J, K, L, M or N; in which
case they are implied to be integer. This implication is overridden by the REAL or
INTEGER options and restored by the MIXED option. This only applies for names whose
first mention is subsequent to the option. Names can be declared to be real or integer
by mentioning them in REAL or INTEGER statements. Such a declaration overrides an
implication based on initial letter or an assumed mode.

The mode options have no effect on constants or intrinsic function names.

Conditional Compilation $OPT IFF; $OPT *

Parts of a program may be effectively deleted by means of the IFF option. The deletion can
be unconditional or conditional, depending upon whether prior mention of the name has been
made of the word appearing after IFF.

FORTRAN

COMPUTER TIME-SHARING SERVICE

-96-

The deleted part consists of the lines after the IFF line up to and including a deletion
end line. The deletion end line is written $OPT or with punctuation after the word
OPT, for example $OPT ****** or $OPT //////.

Instructions are not compiled for the deleted lines. Errors are not detected in the deleted
lines, nor are the lines listed, regardless of what listing has been requested. Monitor
lines are ignored, up to the $OPT*,

If a name is written after the word IFF, deletion is conditional, depending on prior mention
of the name. If the name has been mentioned in the same external subprogram (SUBROUTINE,
FUNCTION, or MAIN PROGRAM) in lines prior to the IFF line, the IFF and the deletion
end line are ignored, and the lines between them are compiled in the usual way. If the name
has not been previously mentioned in the same external program, however, the lines
between are deleted. To be recognized, the name must be a variable or array name.
Constants, labels, or external subprogram names are treated as though not previously
mentioned, whether they are or not.

Use of a name after the word IFF is not considered a mention of the name by subsequent
IFF lines, nor, of course, are mentions of a name within deleted lines.

When no name is written after the word IFF, subsequent lines are unconditionally deleted.

Size and Time Announcements $OPT SIZE, $OPT TIME

- The size announcement contains three decimal integers indicating the number of machine
words used so far for the following three purposes.

1. The number of words used for instructions, undeclared storage, and constants.

2. The number of words used for dimensioned storage not declared to be COMMON,
3. The number of words used for COMMON storage,

The time announcement contains a single decimal number giving the number of 1/6 seconds
spent so far in compiling the program,

For convenience, both the size and time announcements provide the number of the $-line to
which the announcement is a response.

Compilation Listing $OPT SUMMARY, $OPT SOURCE, $OPT LIST

The object program is listed one word on a line. Two numbers are provided. The first
is the octal location of the word, and the second is the word in octal. The character in
front of the octal location indicates what kind of word it is, as follows:

* Indicates space for variable, initialized zero

= Indicates constant

/ Indicates instruction

+ Indicates a change to a previously listed instruction

COMPUTER TIME-SHARING SERVICE FORTRAN

-97-

The source program is listed line by line. Appended to the end of each line is the first
location in which instructions for the statements on the line will be placed, if any are
needed,

The summary lists each name or constant referred to in each external subprogram.
Names of intrinsic functions and of constants or subprograms whose first reference was
in a previous subprogram are not listed., Names and numbers used as labels are colon
suffixed. One or two words are printed after each name or number. The first gives the
octal location assigned to the name or number and the kind of program element the name or
number refers to, The second if given, indicates that the name is dimensioned and in
addition, gives one of the following. If the array is single dimensioned, the line has the
size in octal of the array. Otherwise, the line has the octal location in the object program in
which the array’s dimensioning information is kept.

Each summary is preceded by a size legend and a count of the number of entire line comments
in the subprogram being summarized.

The qualifier NO in front of any of the words, LIST, SOURCE, or SUMMARY, causes a
cancellation of that listing request. By this means, various combinations of listings can
be specified. The list below shows all combinations and how each is specified:

Object, source, summary $OPT LIST

Object, source $OPT LIST, NO SUMMARY

Object, summary $OPT LIST, NO SOURCE, SUMMARY
Object $OPT LIST, NO SOURCE

Source, summary $OPT SOURCE

Source $OPT SOURCE, NO SUMMARY
Summary $OPT SUMMARY

No listing $OPT NO LIST

Unless a listing option is used, no listing is provided. But, once a listing option is used,
subsequent listing options combine with it. For example, the order: $OPT SUMMARY
requests only a summary listing if there has been no previous request. However, if the
previous request was $OPT SOURCE, NO SUMMARY, then the summary and the source
are requested.

Use $OPT NO LIST to cancel previous requests and return to no listing.

COMPUTER TIME-SHARING SERVICE FoRTRAN

~98-

13. HANDLING OF ERRORS

Most programs contain errors. Some errors are detected during compilation, for example,
a call to a subprogram whose definition is not included. Others are detected only during
execution, for example, seeking the logarithm of a negative value, Many errors remain
undetected because the Time-Sharing FORTRAN system attends only to the form and not
to the purpose of a program.

A program may be thought of as a sequence of written directions, Errors may be detected
in the writing of the directions. Punctuation may be used incorrectly; names may be used
inconsistently; numbers may appear where names should appear . . . and so on,

Other errors may be noted as the directions are being followed: the directions may ask
for impossible or inconsistent actions. But because the directions are followed without
considering their purpose, detection of many errors remain for the writer to discover.

COMPOSITION ERRORS

When a composition error is detected, it is reported and compilation continues. But when
compilation is finished, execution of the compiled program does not start if there are
any composition errors.

The Time-Sharing FORTRAN system detects and accepts as correct many nonstandard
FORTRAN idioms, for example, mixed mode expressions. However, about 130 ways of mis-
writing are detected and reported.

In most cases, the miswriting is detected as the statement is being compiled and the mis-
written statement is transmitted to the terminal. Underneath it, a line is transmitted that
contains an up arrow (t) pointing to the punctuation that is miswritten or that marks the end
of a miswritten name or number. Beforeor after the arrow is a message, that may indicate
in what way the statement is miswritten,

FORTRAN

COMPUTER TIME-SHARING SERVICE

-99-

Examples

140 FAR (3) = 3.2/J
..... t UNDIM. ARRAY?

150 DO 25, INDEX = JOB + 4, N
ONLY COMMA - - - - - - t

160 NAMELIST A, B, C, K
WHAT? - - - - 1

oMM LAINK HOAs DLANE ArlER LINE RUMBRR

180 SUR = CHANGE (ABO (I+12)
UNPAIRED PAREN., - - - - -~ =~ 1

Whenever a name is mentioned in a declaration, that name must not have been referred
to before in the same external subprogram, except in another declaration. If a name is
mentioned in more than one declaration:

e No statements other than declarations may intervene between these declarations.
e The name must be dimensioned in only one of these statements.
e The mode and equivalence, if declared, must be consistent with any previous
mode and equivalence declarations.
Examples

In a

200 SUM = ARRAY (1)
210 DIMENSION ARRAY (45)

NAME USED PREV. - - - - - t (previous use of name)

220 COMMON FAULT (12)

230 FAULT (2) = 25.2 (nondeclaration intervenes)
240 INTEGER ANTY, FAULT

NAME USED PREV, - - - - - t

250 COMMON SELF (12), OTHERS (12)
260 EQUIVLAENCE (SELF (3), OTHERS) (inconsistent with previous declaration)
NAME USED PREV, - - - - - - = - - - t

few cases the miswriting is not detected until all statements in a group have been

compiled. In such cases, the line number of the last statement in the group, or the first
statement in the next group, is transmitted. After the line number, the name that is not
used correctly is transmitted, and then a message indicating what is incorrect.

COMPUTER TIME-SHARING SERVICE FORTRAN

-100-

Example

AT LINE NO. 180: AFT: IS UNDEF. --- Undefined statement name.

AT LINE NO. 180: 16: IS UNDEF. - - - - Undefined statement no.

AT LINE NO. 400: DART EXCEEDS STORAGE - - Not enough space for array

AT LINE NO. 8020: FANT IS UNDEF. - - - Undefined external subprogram or perhaps

an undeclared array

When the compiled program is too large, compiling continues with all counting restarted.
Before continuing, a size legend is transmitted to indicate the size of the part of the
program already compiled. This size check is made only at the end of each external sub-
program,

Example

AT LINE NO. 600: SUBPROG. EXCEEDS STORAGE
SIZE AT LINE NO. 600: 2614, 1528, 1158

The message written before or after the up arrow may or may not indicate what is miswritten.
I in doubt about what is wrong with the statement, consult first the list of composition
error messages given below, and then, the statement checklist on page 108 for that kind
of statement.

When a statement contains more than one miswriting, only the first error in the statement
may be discovered. In many cases, scrutiny of the miswritten statement is continued to
see if there are other composition errorsinthe same statement. But when further scruntiny
might erroneously mark something as miswritten, the remainder of the statement is
skipped.,

EXECUTION ERRORS

There are two kinds of execution errors. With one kind, execution continues, and with the
other, execution is aborted. If there is some chance that a standard remedial action will
allow execution to continue usefully, the trouble is reported, the remedial action taken, and
execution continued. When no standard remedial action is likely to work, however, the
trouble is reported and execution stopped.

Messages for conditions which permit execution to continue contain the word WARN,
Messages for conditions which stop execution contain the word QUIT,

The lists on the following page, show the word or words used to report each kind of
trouble. In the case of WARN messages, the remedial action taken is described. Also
listed are the two other messages, STOP and PAUSE, which have the same form as WARN
and QUIT messages.

COMPUTER TIME-SHARING SERVICE FORTRAN

-101-

Examples

AT LINE NO. 430: QUIT, BEYOND; RAN 7/6 SEC.
AT LINE NO. 140: QUIT, FORMAT; RAN 41/6 SEC.

AT LINE NO. 960: WARN, I t I; RAN 25/6 SEC.
AT LINE NO. 1150: WARN, WIDEN; RAN 35/6 SEC.

AT LINE 170: STOP RUN; RAN 4/6 SEC.
AT LINE 1030: STOP END; RAN 102/6 SEC.

AT LINE 50: PANSF (1); RAN 12/6 SEC.
? (this is the request for terminal input)

AT LINE 315: PAUSE ROW; RAN 62/6 SEC.

Execution Not Started NO EXEC.,

Message

2nd MAIN PROG.?

CHAR. CONSTANT ?

COMMENT ?

COMMON LARGER
THAN FIRST

EQUIV, ODD

EVIL DO-END

EVIL SUBSCRIPT

LATE

MISSING

NAME USED PREV,

Meaning

A statement not preceded by a SUBROUTINE or
FUNCTION. Previous statement has already been
taken as the first of the main program so another
such occurrence is marked erroneous.

More than three characters quoted in a context where
a longer quotation is not permitted. (Refer to page 10.)

A string of characters longer than 30 characters.
Might be a miswritten comment or perhaps punctuation
has been omitted between two strings.

Present common declaration specifies more storage
than the first common declaration in the program.
(Refer to page 36.)

Real value declared equivalent to a value assigned an
odd-numbered location. (Refer to page 39.)

Refer to page 50.

More subscripts given for an array name than there
are dimensions declared.

A $FILE line placed too late in program to be pro-
cessed. Move it closer to front of program.

A label reference or do-parameter omitted.

Name appearing in a declaration has already appeared
in a nondeclaration or in a declaration inconsistent
with the present one. Or a DO-name already in use.
(Refer to page 51.)

COMPUTER TIME-SHARING SERVICE FORTRAN

-102-

Message

NO MAIN PROG.
NO.?

NOT A STMT.
NOT SAVED

ONLY COMMA

STMT. NAME
USED PREV,

SUBPROG. ?

SUBSCRIPT TOO BIG

SYS. MALFUNCTION

TOO BIG

TOO MUCH

TOO MUCH TO
REMEMBER

UGl

UG2

Meaning

All statements included within subprogram definitions;
hence no statement with which to begin execution,

String taken to be a numeric constant not written
properly.

Expression on left of equal sign or unrecognized use
of comma,

$FILE, $DATA, or $USE name not in catalog.

Punctuation other than comma used where only a comma
is acceptable. Perhaps an expression used in place
of a DO-parameter. (Refer to page 52.)

Name now used as statement name already in use as
name of another statement or as label variable name,

Name previously used in a way that made it appear
to be a subprogram name, Name now used in a context
where a subprogram name is not permitted. (Refer
to page 13))

A constant subscript given which if applied would cause
storage outside dimensioned storage.

Hardware trouble; hopefully temporary.

Subprogram just ended exhausted space available for
instructions, constants, and storage. (Size legend
given afterwards shows size of excess.) If preceded
by name, array requires more storage than available.

Too much nesting for the compiler to handle:

More than 6 $USE ’ started, not finished

More 10 DO’s started, not finished

More than 14 function calls started, not finished
More than 14 subscripts started, not finished

More than 110 specifications started, not finished
More than 15 dimensions specified for an array
More than 4 repeated I/O lists started, not finished

Too many names for the compiler to keep track of.
Split into subprograms or reduce length or quantity of
names: label, variable or array names.

More than 4500 instructions and words of source
included data.

More than 64 edits required for instructions compiled
in the last segment of about 1500 instructions.

COMPUTER TIME-SHARING SERVICE FoRTRAN

~103-

Message
UNDEF,

UNENDED QUOTE

UNPAIRED PAREN,

USE FORTRAN

WHAT?

Execution Aborted

Meaning

If preceding name or number is colon suffixed, statement
label referred to but no statement withthat label given in
subprogram just ended.

If preceding name not colon suffixed, subprogram or
entry name referred to but not defined. (May be an
undimensioned array mistaken to be function call))

car t
ear t

@]

rr

used in a wayv thatmakes ltap an ar

Narma he X7
EAr-R PR UOoLVw air o« Y Liien AL AT ~o =J

P
name but no dimension declaration has been given for
it. (Refer to page12.)
End of statement seen before quotation begun in it has
been concluded. Perhaps a missing continuation mark
or too large a Hollerith count in FORMAT,
Number of open and close parentheses must be the same.
Attempt to use FORTRAN version not available to public.
Indicates a condition the compiler does not understand:
e A statement or option word not recognized
e Unrecognized punctuation
e Operator or operand missing

e Number used where only a name is understood

e Name or expression used where only a number is
understood

° Miswritten octal constant

° Zero dimension

QUIT

ARG, CALL

ARG. STORE

BEYOND

FILE NO,

Attempt made to call other than a subprogram using
a call to a dummy argument, Line number is of state-
ment in which call is attempted.

Attempt made to store in other than a variable by means
of a store in a argument, Line number is of statement
in which storage is attempted.

Attempt made to store outside storage space. Line
number is of statement in which storage is attempted.

File reference error. Value of file number smaller
than zero or exceeds number of files named in $FILE
statements.

COMPUTER TIME-SHARING SERVICE EORTRAN

-104-

Message

FORMAT

GOTO

NOTREAL

SUBSCRIPT

BAD DATA

Execution Continued

Meaning

Format sequence miswritten. Line number is of state-
ment that references the format.

Computed GOTO error. Value of GOTO control variable
is smaller than one or exceeds number of label references
given in GOTO list.

Output data supposed to be real not in correct form for
a real number. Line number is of output statement.
Data may be alphabetic or obtained from outside of
storage space.

Subscript error. Value of subscript smaller than one
or exceeds size specified for dimension. Line number
is of statement in which the subscript is given.

Input data unrecognizable. Does not conform to format

or requirements for unformatted input. Line number is
of read statement.

WARN

DIVBYZERO

EXP

INTEGER

LOG

Real division by zero. The largest possible positive
number is provided. Line number is of statement in
which division occurs.

Raising of e to a magnitude greater than 176. Zero
is provided if raising to a negative value. Largest
possible number provided if raising to a positive value.
Line number is of statement containing call to EXP.

Raising of zero integer to zero or negative integer.
Zero is provided,

Raising of integer to integer power results in number
with magnitude too large for an integer. Number of
same sign and magnitude 524287 provided. Line
number is of statement in which integer t integer occurs.

Real value of too large a magnitude to be used as an
integer. Number of same sign and magnitude 524287 is
used. Line number is of statement in which one of the
following occurs:

e Storage as integer
e Call to intrinsic function requiring integer argument
e Subscript

Logarithm requested for zero or negative value, Zero
or logarithm of positive number of same magnitude,
respectively, is provided. Line number is of statement
containing call to LOG.

COMPUTER TIME-SHARING SERVICE EORTRAN

-105-

Message

LONG RECORD

MOD

NO FILE SPACE

OUT OF DATA

OVERFLOW

tR

REALINPUT

SIN/COS

Meaning

Write of file record requested where record contains
more than 71 data characters. Only the first 71
characters are written. Line number is of WRITE
statement,

Call to MOD in which (argument one/argument two)
is too large in magnitude. Quotient of largest possible
magnitude and same sign is used, Line number is of
statement containing eall to MOD.

Attempt to write on a file whose space is exhausted.
Attempt is ignored. Line number is a WRITE statement,

Attempt to read from a file positioned at an end of data
mark. Data read is that whichfollows end-of-data mark,
if any, or is 524287 if no data follows. Line number is
of READ statement.

Any real calculation, not reported elsewhere, that results
in too large a magnitude, The largest possible magnitude
is used. Line number is of statement containing calcula-
tion,

Raising to a real power of a negative real or integer.
Positive real or integer of same magnitude is used,
Raising of a real or integer zero to a zero or negative
real, Zero is provided,

Raising of a real or integer to a real power results
in too large or too small a number to be represented.
If too large, largest possible magnitude is provided;
if too small, zero is provided. Line number is of
statement in which realtreal or integer treal occurs.

Raising of a real zero to a zero or negative integer
zero is provided.

Raising of a real to an integer power results in too
large or too small a magnitude to be represented.
If too large, largest possible magnitude is provided; if
too small, zero is provided. Line number is of state-
ment in which real t integer occurs.

Real input data has magnitude too large or too small to
be represented. If too large, the largest possible mag-
nitude is used; if too small, zero is used. Line number
is of input statement.

Sine or cosine requested for value with magnitude too
large. Result of same sign and largest possible magni-
tude is provided. Line number is of statement containing
call to SIN or COS.

COMPUTER TIME-SHARING SERVICE EQRTRAN

~-106-

Message

SQRT

UNDERFLOW

WIDEN

Execution Stops

Meaning

Square root requested for negative value, Square root
of positive value with same magnitude provided. Line
number is of statement containing call to SQRT.

Any real calculation, not reported elsewhere, that results
in too small a magnitude. A zero is used. Line number
is of statement containing calculation,

An output format specifies a field too narrow to rep-
resent a value transmitted to a file., Field is widened
as necessary to represent all the value, Line number
is of file output statement referencing the format,

STOP

STOP END

STOP xxx

Execution Suspended

Execution of the last statement in the main program,
Execution of a RETURN statement in the main program
when main program has not been called (via an ENTRY
statement),

Where xxx represent any three quotable characters.
Execution of a STOP statement with xxx as the alpha-
betic value of the constant or variable written after
the word STOP.

PAUSE

PAUSE xxx

Where xxx represent three quotable characters.
Execution of a PAUSE statement with xxx as the alpha-
betic value of the constant or variable written after
the word PAUSE,

Execution resumed when carriage return is provided.
If a value is entered before the carraige return, and xxx
is the value of a variable, the entered value replaces

xxx as the value of that variable,

I the value entered is negative, it is stored as a
numeric value, Otherwise, as an alphabetic.

COMPUTER TIME-SHARING SERVICE EQRTRAN

-107-

APPENDIX A. FORTRAN STATEMENT RULES

This appendix provides a list of rules for each of the Time-Sharing FORTRAN statements.
The page number following each statement heading refers to the individual statement
discussions.

1. Every Statement

1. If first name is not statement word, statement is interpreted as arithmetic
statement or internal function definition introduction.

2. If comment line is written with blank after line number, it is interpreted as
a statement.

2. Labelled Statement (page 17)

1. Label number must be distinct from all other label numbers in the sub-
program,

9 Label name must be distinct from all other label names or label variable
names in the subprogram.

3. DO-end label must be properly nested with other DO-ends. (Refer to page 50.)

3. First Nondeclaration after Declaration Statements (page 35). .

1. Common storage must be no larger than first declared common storage.
Dimensioned storage must be declared after largest common storage
declaration.

2. Declared storage must not exceed space available.

3. The size declared for single array must not exceed 8191.

4. Real name must not be assigned odd storage space by common and equiv-

alence declarations,

4. Arithmetic Statement (page 34)

1. There must be an equal sign after the first operand.

2. Only a name or name followed by parenthesized list may precede equal sign,
¥ name followed by list is previously declared an array, list is subscript
list. Otherwise, statement is interpreted as introducing internal subprogram
definition. (Refer to “Internal Subprogram Definition,”s.)

COMPUTER TIME-SHARING SERVICE EORTRAN

~108-

3. Every operator must be followed by an (possibly signed) operand.
4. The number of left and right parentheses must be equal.

5. Only characters used for operators may be used between operands.
6. Comma may occur only in parenthesized list.

7. Colon may occur only after statement label.

5. Internal Subprogram Definition (pages 27 and 43)

1. Name must not be previously used.

2. There must be a (possibly empty) dummy argument list.

3. Dummy argument list must consist of only unsigned names separated by
commas,

4. If an Arithmetic Statement Function, dummy argument list is followed by equal
sign and expression. End of expression is end of ASF definition,

5. If an Internal Function, dummy argument list is followed by colon and first

statement of function definition, End of Internal Function definition is first
END statement (refer to “END,” 13) or next internal subprogram definition.

6. ASSIGN label or label variable, TO label variable (page 47)

1. There must be a comma after label or label variable name in front of
TO.

2. The word TO must be present.
3. The label variable named after TO must be distinct from label name.

4. The label variable named after TO must not be DO-end label.

7. BACKSPACE file reference (page 71)

The file reference must be either an unsigned integer or a variable, or it may
be omitted.

8. CALL subprogram or entry (actual argument list) (page 54)

1. The subprogram or entry must be named after the CALL,

2. The argument list may be omitted.

COMPUTER TIME-SHARING SERVICE FORTRAN

-109-~

10.

11.

12,

13.

mode qualifier COMMON array, array (dimension specification), variable, ...
(page 36.)

1. Any name previously used must be used only in program definition or in
declaration statements; none but declaration statements may intervene,

2. A name, if dimensioned here, must not have been previously dimensioned.

3. If name is mode qualified, mode must agree with previous mode qualifications,
if any.

4. A name, if previously used in an equivalence, must not be used in an equiv-
alence containing any other name declared to use common storage,

CONTINUE (page 51)

Refer to “Labeled Statement,” 2,

mode qualifier DIMENSION array (dimension specification), variable,
(page 38)

1. Any name previously used must be used only in program definition or in
declaration statements; none but declaration statements may intervene.

2. A name, if dimensioned here, must not have been previously dimensioned.
3. If name is mode qualified, mode must agree with previous mode qualifications,

if any.

DO label control variable = initial value, final value, increment (page 49)

1. A DO-end label must be of a subsequent statement.

2. Label name must be comma suffixed.

3. Control variable must not be negated nor a subprogram name.

4. Control variable must not be in use as DO name.

5. Initial, final, and increment value must be unsigned constants or variables.

6. Increment may be omitted. If it is, comma after final value must be omitted.

END (page 55)

1. If END is followed by any character or characters, it is interpreted to be the
end of the internal function definition. Otherwise, it is interpreted to be the
end of external subprogram definition.

2. (Refer to “End of Subprogram,” 14 or “End of Entire Program,” 15.)

COMPUTER TIME-SHARING SERVICE FORTRAN

~110-~

14. End of Subprogram (External or Internal)

1.

Every number referred to in label reference must be defined by its use
to label statement,

Every name referred to in label reference must be defined by its use to label
statement or as label variable. Check unformatted input/output statement
for comma after statement word.

15. End of Entire Program

1.

Definition of all referenced external subprograms must be included. Omitt-
ing the dimension of an array may cause the array to be mistaken for an
external function,

There must be a main program,

16. ENDFILE file reference (page 69)

File reference must be either an unsigned integer or variable; or it may be
omitted.

17. ENTRY entry (dummy argument list) (page 44)

1.

Entry name must be distinct from intrinsic, external subprogram, and other
entry names in the entire program. It must also be distinct from internal
subprogram names in the present subprogram.

Dummy argument list must consist of only unsigned names separated by
commas; or may be omitted.

I any name in the dummy argument list has been previously used in the
program, the first such previous use must have been in a dummy argument
list,

18. mode qualifier EQUIVALENCE (array, array element, variable, ...), (equivalence),

... (page 39)

1,
2,

w

Parentheses must enclose each equivalence,

An array element may be named using only a possibly signed integer, as
single subscript.

Any name previously used must be used only in program definition or in

v
J
declaration statements; none but declaration statements may intervene.

Only one name in an equivalence may be previously named in another
equivalence,

Only one name in an equivalence may be declared to use common storage.

If name is mode qualified, mode must agree with previous mode qualifications,
if any.

COMPUTER TIME-SHARING SERVICE PORTRAN

-111-

19.

20.

21.

22.

23.

24.

25,

EXTERNAL subprogram, entry (page 41)

1. Names must not be dimensioned.

2. Any name previously used, must be used only in program definition or mode
declaration statement.

FORMAT (format specification list) (page 75)

If a counted or quoted Hollerith specification is included, it must be terminated

before end of tlv1e list.

mode qualifier FUNCTION external function (dummy argument list)(page 25.)

1. Function name must be distinct from intrinsic, external subprogram, and
entry names in the entire program.

2. Dummy argument list must consist of only unsigned names separated by
commas; or may be omitted.

GOTO label or label variable (page 46)

If parenthesized listis given after label or label variable; comma must intervene,

GOTO (label, label variable, ...), control variable (page 46)

1. List must contain only labels or label references separated by commas,
2., Comma may or may not appear after list.

3. Control variable must not be negated nor may it be subprogram name.

IF (expression) label reference, ... (page 47)

1. Expression may contain equal sign. I it does, it must conform to require-
ments for arithmetic statements. (Refer to “Arithmetic Statements,” 4.)

2. One, two, or three label references must be given. There may be no more
and no less.

IF(ENDFILE file reference) label reference, ... (page 48)

1. File reference must be either unsigned integer or variable; or may be
omitted.

2. One or two label references must be given, There may be no more and
no less.

COMPUTER TIME-SHARING SERVICE FORTRAN

-112-~

26. INPUT format reference, input list (page 63)

1.

2.

The format reference may be omitted.

Comma must precede the input list, whether there is a format reference
or not.

Input list must not contain expressions, quotations longer than three characters,
nor slew control characters (preceding up arrow, extra comma,)

Repeated input must conform to requirements for repeated input/output lists.
(Refer to “Repeated Input/Output List,” 33,)

All list items must be separated by commas.

Input list may be omitted.

27. INTEGER array, array(dimension specification), external subprogram, variables,

... (page 25)

1.

Any name previously used must be used only in a program definition or
declaration statement; none but declaration statements may intervene.

Name, if dimensioned here, must not have been previously dimensioned.

Mode must agree with previous mode qualifications for names, if any.

28. PAUSE constant or variable (page 55)

Constant or variable must be unsigned; or it may be omitted.

29. PRINT format reference, output list (page 61)

1.
2.

The format reference may be omitted.

Comma must precede output list whether there is format reference or
not. Comma may be omitted if first item in list is quotation.

The output list may contain expressions. In expression, every operator
must be followed by an (possibly signed) operand. The number of left and
right parentheses must be equal.

Slew control characters (preceding up arrow and extra comma at end of a
list) may be used.

Quotations of any length may be used.

Repeated output must conform to requirements of repeated input/output
lists. (Refer to “Repeated Input/Output List,” 33.)

All list items must be separated by commas,

There may be no list if there is a format reference.

COMPUTER TIME-SHARING SERVICE FORTRAN

-113-

30. READ format reference, input list (page 73)

The format reference may be omitted.

Comma must precede input list whether there is format reference or not.

Input list must not contain expressions, quotations longer than three characters,
or slew control characters (preceding up arrow and extra comma),

Repeated input must conform to requirements for repeated input/output lists.

Nkt 7
M,

At Tiasaid /
U LipuUL vulpue

[= S R RN o I
Lnelesr w ncpcalc

All list items must be separated by commas.

Input list may be omitted.

31. READ (file reference, format reference) input list (page 64)

1.

Format reference may be omitted. If omitted, the preceding comma also must
be omitted.

File reference must be an unsigned constant or variable; or may be omitted if
comma after it is given.

Input list must conform to requirements for input list given for READ above.
(Refer to READ, 33)

32. REAL array, array (dimension specification), external subprogram, variable,

... (page 25)
1. Any name previously used must be used only in a program definition or a
declaration statement; none but declaration statements may intervene.
2. A name, if dimensioned here, must not have been previously dimensioned.
3. Mode must agree with previous mode qualifications for names, if any.
32. Repeated Input/Output List (list item, list item, ..., control variables = initial

value, final value, increment) (page 91)

1.

COMPUTER

Repeated list may occur only in INPUT, PRINT, READ, and WRITE state-
ments.

The entire list must be parenthesized and comma separated from other
items.

Nested repetition is confined to depth of four and has the form:
((repeated 1I/0 list), control variable=initial value,
final value, increment)

Repetition parameters must coaform to requirements for DO parameters,
(Refer to “DO,” 12.)

TIME-SHARING SERVICE

-114-

34.

35.

36.

37.

38.

39.

RETURN (page 54)

If anything is written after word RETURN, statement is interpreted as arithmetic
statement.

REWIND file reference (page 71)

File reference must be unsigned constant or variable; or may be omitted.

STOP constant or variable (page 55)

Constant or variable must be unsigned; or may be omitted.

SUBROUTINE subroutine (dummy argument list) (page 26)

1.

Subroutine name must be distinct from intrinsic, external subprogram, and
entry names in the entire program.

Dummy argument list must consist of only unsigned names separated by
commas; or may be omitted.

WRITE format reference, output list (page 73)

The format reference may be omitted.

Comma must precede output list whether there is a format reference or not.
Comma may be omitted if first item is quotation.

The output list must conform to requirements for output list given for WRITE
(). (Refer to “WRITE,” 39)

WRITE (file reference, format reference) output list (page 64)

1.

The format reference may be omitted. If omitted, the preceding comma must
be omitted.

The file reference must be an unsigned constant or variable; or may be omitted
if comma after it is given.

The output list may contain expressions. In expression, every operator must
be followed by a (possibly signed) operand. The number of left and right
parentheses must be equal.

Slew control characters (preceding an up arrow and extra comma at end
of list) may be used.

Quotations of any length may be used.

Repeated output must conform to requirements of repeated input/output
lists. (Refer to “Repeated Input/Output List,” 33.)

All list items must be separated by commas.

Output list may be omitted.

COMPUTER TIME-SHARING SERVICE FORTRAN

-115-

APPENDIX B. CHARACTER SET

The Time-Sharing FORTRAN system uses part of the American Standard Communication
Information Interchange (ASCII) character set. Figure 1 shows what part is used and gives the
input, internal and output characters.

The Input Character column shows the terminal keys which, when depressed, produce
internally the number shown in the Internal Octal column,

The Input ASCII column lists the ASCII code (in octal) which, when transmitted as input,
will produce internally the number shown in the Internal Octal column,

The Output Character column shows what terminal character will be displayed or what
action will be displayed or what action will be performed when the number in the Internal
Octal column is transmitted for output.

v

The Output ASCII column lists the ASCII code (in octal) which is transmitted to the terminal
when the number shown in the Internal Octal column is output,

Depressing any terminal keys or transmitting any ASCII input codes other than those
listed, does not produce any internal number that can be used within a Time-Sharing
FORTRAN program.

INPUT INTERNAL OUTPUT
CHAR ASCII OCTAL CHAR ASCII
0 260 00 0 260
1 261 01 1 261
2 262 02 2 262
3 263 03 3 263
4 264 04 4 264
5 265 05 5 265
6 266 06 6 266
7 267 o7 7 267
8 270 10 8 270
9 271 11 9 271
! 247 12 ! 247
: 272 13 : 272
(250 14 (250
; 2173 15 ; 273
= 275 16 = 275
243 17 \ 334
Figure 1. Time-Sharing FORTRAN Character Set
COMPUTER TIME-SHARING SERVICE L

-116-

INPUT INTERNAL OUTPUT

CHAR ASCII OCTAL CHAR ASCII
% 245 17 \ 334
& 246 17 \ 334
@ 300 17 \ 334
+ 253 20 + 253
A 301 21 A 301
B 302 22 B 302
C 303 23 C 303
D 304 24 D 304
E 305 25 E 305
F 306 26 F 306
G 307 27 G 307
H 310 30 H 310
1 311 31 I 311
cannot input 32 fill 377
! 241 33 . 256
. 256 33 . 256
" 242 34 " 242
cannot input 35 bell 207
? 271 36 ? 271
< 274 36 < 274

cannot input 37 crand if | 215/212
- 255 40 - 255
J 312 41 J 312
K 313 42 K 313
L 314 43 L 314
M 315 44 M 315
N 316 45 N 316
(0] 317 46 o] 317
P 320 47 P 320
Q 321 50 Q 321
R 322 51 R 322
cannot input 52 fill 377
$ 244 53 $ 244
* 252 54 * 252
cannot input 55 eom 203
> 276 56 > 276
1 336 57 1 336
space 240 60 space 240
/ 257 61 / 257
S 323 62 S 323
T 324 63 T 324
U 325 64 U 325
A2 326 65 \' 326
w 327 66 w 3217
X 330 67 X 330
Y 331 70 Y 331
A 332 71 Z 332
cannot input 72 1f 212
s 254 73 s 254
) 251 74) 251
[333 75 r 333
1 335 76] 335
cannot input 77 fill 371

FORTF
COMPUTER TIME-SHARING SERVICE =

~-117-

APPENDIX C. TABLE OF INTRINSIC FUNCTIONS

No. of Arguments Result

Name and Assumed Mode Mode Definition

ABS 1 Real Real Absolute Value

ABSF 1 Real Real of argument

XABSF 1 Integer Integer

LABS 1 Integer Integer

ATAN 1 Real Real Principal angle in radians

ATANF 1 Real Real whose tangent is argument

cos 1 Real Real Cosine of angle in radians

COSF 1 Real Real

EXP 1 Real Real e raised to the given

EXPF 1 Real Real power

FIX 1 Real Integer Given real converted to an

FIXF 1 Real Integer integer

IFIX 1 Real Integer

XFIXF 1 Real Integer

FLOAT 1 Integer Real Given integer converted to

FLOATF 1 Integer Real a real

AINT 1 Real Real Sign of argument times

INTF 1 Real Real largest integer less
than or equal to argument
in magnitude

LOG 1 Real Real Natural Logarithm of

LOGF 1 Real Real argument

ALOG 1 Real Real

COMPUTER TIME-SHARING SERVICE

FORTRAN

-118-

No. of Arguments

Result

Name and Assumed Mode Mode Definition
AMAX1 22 Real Real Maximum of arguments
MAX1F 22 Real Real
MAX1 22 Real Integer
XMAX1IF 22 Real Integer
AMAXO 22 Integer Real
MAXOF 22 Integer Real
MAXO 22 Integer Integer
XMAXOF z2 Integer Integer)
AMIN1 22 Real Real Minimum of arguments
MIN1F 22 Real Real
MIN1 22 Real Integer
XMIN1F z2 Real Integer
AMINO 22 Integer Real
MINOF 22 Integer Real
MINO 22 Integer Integer
XMINOF 22 Integer Integer)
AMOD 2 Real Real Remainder on dividing argument 1 by
MODF 2 Real Real argument 2
MOD 2 Integer Integer
XMODF 2 Integer Integer
RND 2 Real Real 1. If arg = 0, provides next in
sequence of pseudo-random
numbers uniformly distributed,
0<n=<l
2. 1If arg >0, initiates a new
sequence and provides a
number as above; starting
value of sequence depends on
arg
3. 1If arg <0, as above except
starting value chosen
arbitrarily
SIGN 2 Real Real Magnitude of argument 1 with sign
SIGNF 2 Real Real of argument 2
ISIGN 2 Integer Integer
XSIGNF 2 Integer Integer
SIN 1 Real Real Sine of angle given in radians
SINF 1 Real Real
SQRT 1 Real Real Square root of argument
SQRTF 1 Real Real
TIMEZ 1 Real Real 1. If arg <0, gives elapsed
chargeable time for execution
(including compilation).
2., 1If arg = 0, gives hours since
midnight.
3. If arg 0, now same as above

COMPUTER TIME-SHARING SERVICE

but reserved for future
different use.

FORTRAN

-119-

APPENDIX D. SAMPLE PROBLEMS

To illustrate the versatility of Time-Sharing FORTRAN, samples of scientific/engineering
and business problems follow.

A scientist or engineer may need to evaluate a series for several sets of arguments.
He could enter his program as follows. Note that no format specifications are given for
input or output.

19' FORTRAN PROGRAM TO EVALUATE THE SERITES:

2¢' T(RHO, THETA)=1Q@/PLt3%

30' (RHO/12%SINCTHETA)-1/513%(RHO/12)15%SINC(SXTHETA)+

4¢' 1/9 3%(RHO/12)t9%¥SINCI®THETA)-+,..)

1)

6¢

1690 PRINT'"RHO AND THETA (BOTH IN RADIANS)=",

11¢ INPUT,RHO, THETA

120 PRINT, t1""FOR RHO='",RHO; PRINT" THETA=",THETA;PRINT, 1" TEMP=",
139 ALMOST=1E-6

149 TERMS=@;X=RHO/12;X4=X14;ANGLE=THETA; FACTOR=SIGN=1 'INITIALIZE
15¢ DO LOOP,I=1,4p

160 IF(CTEST=X/FACTOR$3)-ALMOST) ENOUGH

17¢ TERMS=TERMS+SIGN®TEST®SINCANGLE) 'ACCUMULATE

180 X=X¥XU4;ANGLE=ANGLE+4*THETA; FACTOR=FACTOR+4 'INCR. BY &

199 LOOP: SIGN==SIGN 'ALTERNATE SIGN

209 ENOUGH: PRINT,108/3.141592613%TERMS

219 PRINTttttt

After the engineer types RUN, the programmed message entered in line 100 above would
be printed, followed by a question mark (? requesting input data. He would enter his
data followed by a carriage return,

RHO AND THETA (BOTH IN RADIANS)=?1¢,.7

The answers would be typed as follows:

FOR RHO= 190.00
THETA= .70
TEMP= 1,735

An accountant might wish to calculate a 12-month moving average. An example of a
program which performs this calculation follows. Data for the program is included with
the program. The table of moving totals and averages prepared by the program for this
data is also shown,

FORTRAN

COMPUTER TIME-SHARING SERVICE

-120-

1¢6@' FORTRAN PROGRAM TO CALCULATE 12 MO, MOVING AVERAGES

110

12 REAL MONTHLY VALUES(12,2)

13¢ READ,(MONTHLY VALUES(1,2),1=1,12)

149 DO FIRST YEAR, 1=1,12

15¢ READ,MONTHLY VALUES(I,1)

160 FIRST YEAR: TOTALS=TOTALS+MONTHLY VALUES(I,1)

170 PRINT, ¢t " MONTH VALUE MOVING TOTAL MOVING AVG."
18¢ PRINT, ¢+ " FIRST YEAR = ",TOTALS, t

199 DO ALL,1=1,12

20@ TOTALS=TOTALS-MONTHLY VALUES(CI,1)+MONTHLY VALUES(I,2)

21¢ PRINT, I,MONTHLY VALUES(I,2),TOTALS,

215 PRINT ALL,TOTALS/12

216 ALL: FORMAT(F12,2) 'FINISH DO LOOP HERE AND PRINT CENTS ONLY

22¢ $DATA 'FIRST 12 VALUES ARE FIRST YEAR, SECOND 12 ARE SECOND YEAR
239 1249,45,2345,12,1876,34,2001,75,1457,23,1650.00,1763.36,1925.1¢
24p 1368.38,2107.34,1834,24,1765,90

245 1340.95,25¢8.75,1763.24,1962,10,1561.0¢3,17¢5.91,1822,54,2018,00
25¢ 1700.19,1569.77,2077.32,1654,92

MONTH VALUE MOVING TOTAL MOVING AVG.

FIRST YEAR = 21684,72
1 1249.45 21593.22 1799.43
2 2345,12 21429,59 1785.80
3 1876.34 21542,69 1795.22
4 2001.75 21582,34 1798.53
5 1457.23 21478.54 1789.88
6 1650.00 21422,63 1785.22
7 1763.36 21363.45 1789.29
8 1925.1¢ 21279.55 1772.55
9 1368,38 2¢938.74 1744,89
1¢ 2107.34 21476.31 1789.69
11 1834,24 21233,23 1769.44
12 1765.90 21344,21 1778.68

FORTRAN

COMPUTER TIME-SHARING SERVICE

-121-

APPENDIX E. SUMMARY

(.?\ STATEMENTS cont’d
G E N E R A I' Qg_’é) E LE c T R ' c Statements Examples
FUNCTION 100 FUNCTION AFT
TIME SHAR'NG FORTRAN 110 INTEGER FUNCTION HUNCH(L,T)
GOTO 100 GOTO 13
STATEMENTS 110 GOTO EXTRA
GOTOf ...) 100 GOTOf12.LAST.KONLY. 15)AFTER
Statements Fxamples
110 GOTO (M1,M2,MT3),M
Arithmetic 100 A=B=1. ; C=D=E=5. ; GC=AS/1+2/TLA
IF(...) 100 IF(A) 25, 26, 27
110 F(T+B/3) = FR+(FI=FS*GS/3)*COS(FI)
110 IF(A*SIN(B))} AGAIN, EXCEPT
120 ML=MAN-"LIC"
120 IF(J=K/3) 3
Arithmetic Statement 100 SINH(X)=.5*(EXP(X)-EXP(-X))
Function 130 IF(IFR-"YES") TRUST,UNT
Internal Function 100 RUST(X): ... IF(ENDFILE) 100 IF(ENDFILE 3) 45, EOF
110 KANS(A,B): ... 110 IF(ENDFILE J) MORE
120 REAL,JUST(): ... INPUT 100 INPUT REPLY, QUAN
(terminal)
130 INTEGER,FIRST(L): ... 110 INPUT,(COEF(I), I=2, L,2)
ASSIGN ...TO ... 100 ASSIGN 6 TO J INTEGER 100 INTEGER J{3), TRUD(12,2,3)
110 ASSIGN FORMAL, TOR 110 INTEGER A, S, TLA(16), TLB(16)
120 ASSIGN A5, TO A6 $OPT 100 $OPT SS
BACKSPACE 100 BACKSPACE 110 $OPT SIZE
110 BACKSPACE 3 120 $OPT REAL
120 BACKSPACE T 130 $OPT LIST
CALL 100 CALL FEN(S, A(5), B(L/2)) 140 $OPT IFF BOTH
110 CALL OUT PAUSE 100 PAUSE
120 CALL B(N) 110 PAUSE SENSESWITCH3
COMMON 100 COMMON A(12). B.C(3.2), K, J(4,3;2,2) 120 PAUSE "YES”
110 INTEGER COMMON SUM, LINE, BSL(15) PRINT 100 PRINT 45,A
(terminal)
CONTINUE 100 25 CONTINUE 110 PRINT REP, (A(l), I=1,10)
(Not needed because empty statements may be labelled.)
120 PRINT, A, A*B, A/BCA+3.2
110 NEXT:CONTINUE
130 PRINT "MORE OR LESS'", 4 TABLE, T(1+2)*B
120 NEXT:
READ 100 READ, A, F, G
$DATA 100 $DATA (temporary file)
110 READ TITLE
110 $DATA PAYNOS, CASES
120 READ 12, F, SYT
DIMENSION 100 DIMENSION A(5), LOST(45,12)
READ(...) 100 READ (3,TITLE)
DO 100 DO 161 = 1,10 (permanent file)
110 READ (N, 12) VAL, COST, PRICE
110 DO ALL, L = K,J,2
120 READ (UNIT) (T(3), J=1,N),§
120 DO 25, X = 3.5,17., .5
REAL 100 REAL A(10), K, NET(6,2.2)
END 100 END (Not needed except before main program.) =
RETURN 100 RETURN
END internal 100 END INTERNAL
REWIND 100 REWIND
110 END RUST
110 REWIND 2
ENDFILE 100 ENDFILE
120 REWIND KRAK
110 ENDFILE 5
STOP 100 STOP
120 ENDFILE UNIT
110 STOP "UGH"
ENTRY 100 ENTRY BACKALWAYS (TO,FROM)
120 STOP V
110 ENTRY AFTI1(X)
SUBROUTINE 100 SUBROUTINE KRUG
120 ENTRY SUMPKB
110 SUBROUTINE LIMP(V,W,X)
130 ENTRY REPEAT(N)
$USE 100 $USE EXCEPN
EQUIVALENCE 100 EQUIVALENCE(BEGIN, START, INITIATE), (D(3), B(5),
L(2), K(-5)) 110 $USE MATRIX*
110 INTEGER EQUIVALENCE (TFG, TFD, TFR} WRITE 100 WRITE 16, B. D
(temporary file)
EXTERNAL 100 EXTERNAL HUNCH, DRAG 110 WRITE "FIRST TABLE VALUE
SFILE 110 SFILE MP,MCOST,VENDOR,INV1 INV2/INV3/INV4,SUM 120 WRITE, (T(K),K=1,25),X,X43
FORMAT 100 LINE:FORMAT (14, 4E12.5) WRITE (...) 100 WRITE (3) "MONTHLY SUMMARY"
I {permanent file)
110 77 FORMAT ("NO. OF CASES", 12, 3A3) 110 WRITE (3,12)44 LNO, "REPORT TO DATE",F1,F2 F4,F7

FORTRAN

COMPUTER TIME-SHARING SERVICE

-122-

INPUT /OUTPUT

GENERAL ELECTRIC COMPUTER TIME SHARING SERVICE

SYSTEM COMMANDS

Uses FORTRAN-IV style 1/0 statements

Terminal I/0; temporary and permanent file 1/O

May use unformatted input and standard format output (including list-directed
slewing)

Or may use extensive formatting facilities:

Alphabetic Qctal

Exponential Power

Fixed-point Type (substituted type)

General (E or F) X (blanks)

Hollerith

Integer

* (substituted number)

" (quoted rather than counted Hollerith)

SUBPROGRAMS

Intrinsic

External

Internal

Entry

Accepts all the FORTRAN 1 closed and open functions with either
FORTRAN II or FORTRAN IV names

FUNCTION, SUBROUTINE, main program

Arithmetic Statement Function (FORTRAN IV naming rules)
Internal Functions (a generalization of ASF)

ENTRY statement allows multiple entry to external and internal
subprograms and to main program

MODES (INTEGER OR REAL)

COMMANDS USE
DIRECTIVE

Control@ To cause the computer to stop whatever it is doing with the
program when printing is occurring.

BYE To disconnect from the System.

GOODBYE To disconnect from the System.

HELLO To address the System or to change user number.

NEW To introduce a new program and destroy the working copy of the
current program.

OLD To retrieve from saved store a previously saved file and destroy
the working copy of the current program.

Return® To terminate a program line, cause the System to take action
based upon input provided, and act as a normal carriage return.

RUN To compile and execute a program.

SAVE To save permanently the working copy of a program.

SCRATCH To eliminate from the working copy of a program everything but
the program name.

STOP To cause the computer to stop whatever it is doing with the
program except when printing is occurring.

UNSAVE To release and destroy a previously saved program.

User Number

Six characters that identify the user to the System.

Implied

Assumed

Declared

If first letter of user-supplied name is I, J, K, L, M, or N, named
variable, array, or subprogram has implied mode INTEGER.
Otherwise i} « mwde REAL

If an optional si » mode $OPT REAL or $OPT INTEGER is «

A1l USEL-HAMEU ILEHS 1€ addWled W b e tial mode.,

Items named in INTEGER or REAL statements (or INTEGER or
REAL qualified declarations or subprogram definition statements)
have declared mode whether or not it agrees with implied or
assumed mode,

nteger values used in real caleulations are automatically converted
to real form; and, real values used in a context where an integer
value is required are automatically truncated.

OPERATORS

Operator Symbol Operation Specified

w0

Assignment

Addition

Subtraction or negation
Multiplication

Division

** or 4 Exponentiation

EDIT

Alt Mode® or
Escape® or

Arrow (e)

EDIT DELETE
EDIT EXTRACT

EDIT MERGE

To delete an input line as if nothing had been typed.

Te erase the last character(s) typed. SHIFT key must alsc be

e emsrsis

To erase portions of a program.
To retain portions of a program.

To combine saved files into working store and to resequence line
numbers.

CONSTANTS

Integers within the range: -524287 < integer = 524287

Reals within the range: .863616852 x 10-77 = |real| s.578960444x10""

Octal integers within the range: 0 = octal integer < 3777777,

Quoted characters from one to three characters

NAMES

Composed from letters, digits and $
First characler must be a letier

May be from 1-30 characters in length
Blanks are ignored

ARRAYS

May have from 1-15 dimension arrays

EDIT To resequence line numbers in program in working store.

RESEQUENCE

LIST To list the current working copy of a program.

LIST--X To list the current working copy of a program beginning at line X
(X = 1-5 digits).

RENAME To change program name but not working copy contents.

INFORMATIVE

CATALOG To list a user's catalog of saved programs.

LENGTH To request the number of characters in working copy of program.

STATUS To request status of user on system.

TTY To learn which channel of the DATANET-30* is being used for
your connection and to print current user number, problem name,
system name, and status.

MODE

ALGOL To denote programming language.

BASIC To denote programming language.

FORTRAN To denote programming language.

KEY To reset terminal operation to normal after reading in paper tape.

SYSTEM To change name of the system under which you are working.

TAPE To inform the System that paper tape will be read in,

For more information about Time-Sharing FORTRAN offered
by General Electric's Information Processing Centers refer
to TIME-SHARING FORTRAN Reference Manual (IPC-206046).

*®

Special key on Teletype unit
DATANET is a Reg. Trademark of the General Electric Company

1PC-102046 A

GENERAL §B ELECTRIC

COMPUTER TIME-SHARING SERVICE

FORTRAN

INDEX

A D
A-Format, 87, 88 $DATA (temporary file definition), 72, 73, 93
Accumulator overflow, 49 Decimal numbers, 9, 60
Alphabetic characters, 60 Declarations, 35-41
Alphabetic format specification, 86 Declaration statement rules, 108
Arguments, 22 Dimension specification, 13
Arguments, dummy, 22, 29, 53 DIMENSION statement, 12, 23, 35, 38-40, 89,
Array elements, 32, 56 110
Array names, 12 DO-End, 50
Array storage, 38, 39 DO-Name, 51
Arithmetic operators, 14 DO parameter values, 52
Arithmetic statement, 34 DO statement, 49-52, 110
Arithmetic Statement Function (ASF), 28-30, 43 Dummy arguments, 22, 28-30

Arithmetic statement rules, 108
ASCII character set, 119, 120
ASSIGN statement, 47, 109 E
*(asterisk) format, 90
E-Format, 76-78, 80-83
ENDFILE statement, 69-71, 73-74, 111

B End of entire program rules, 111
End of subprogram rules, 111
BACKSPACE statement, 71, 73, 109 END statement, 42, 43, 110
Backspacing and rewinding, 71 ENTRY statement, 29, 30, 44, 45, 53, 111
Blanks, Use of, 8 EQUIVALENCE statement, 23, 39-40, 111

Equivalence, Subscripted, 39, 40
Errors, Composition, 99, 100

C Errors, Execution, 101, 102
Every statement rules, 108

Call, Function, 52 Execution errors, 101, 102
Call, Repeated and recursive, 53 Exponentiation, 16
CALL statement, 54, 109 Expressions, 15, 34
Characters, Alphabetic, 10, 11 External declaration, 41
Characters, Quoted, 9 External functions, 25, 52, 53
Character set, 116 EXTERNAL statement, 23, 25, 41, 112
Comma, Extra (slew control), 59 External subprograms, 19, 29, 30, 41, 42, 44
Comment lines, Counted, 98 External subroutines, 26, 53
Comments, statement, 5 Extra comma (slew control), 58, 59
COMMON statement, 12, 23, 35, 36-38, 40-41,

93, 110
Composition errors, 99
Compilation listing, 97, 98
Conditional compilation, 96, 97
Constants, 9, 56
CONTINUE statement, 51, 110,
Continuation, Statement, 5
Control monitor information, 6, 93-98
Control statements, 46-55

COMPUTER TIME-SHARING SERVICE FORTRAN

-124-

F

F-Format, 76, 77, 79-80
Field widening, 77, 78
File definition,
Permanent, 65-66
Temporary, 72-73
Files, Linked, 67, 68
File input/output, 64-74
File rewriting, 66
Files, Permanent, 64-67
$FILE, 67-68, 93
File record length, 68
File references and operations,
File statements, 64-74
Files, Temporary, 65, 72, 74
Format list correspondence, 90
Format definition, 75-76
Format, read at execution, 89
Format specifications, 90, 91
FORMAT statement, 75, 84, 89, 90, 112
Form for writing statements, &
Formatted input/output, 75-92
FORTRAN II incompatibilities, 2
FORTRAN IV incompatibilities, 3
Function call, 52, 53

73

Functions, Arithmetic Statement (ASF), 28
Functions, External, 25, 26, 52-54
Functions, General internal, 28, 29
Functions, Internal, 27-30, 41, 42
Functions, Intrinsic, 19-21, 29, 52, 53,

120
FUNCTION statement, 25, 42

G

G-Format, 76, 77, 82-84
General internal functions, 28, 29
GOTIO statement, 46, 47, 112

Groups, Format specification, 89-90

H-Format, 86, 87

76-79
accumulator, 49
divide check, 49
ENDFILE, 48, 73, 112

sense light, 48

IF sense switch, 48

IF statement, 47-49, 112
Incompatibilities, FORTRAN II, 2
Incompatibilities, FORTRAN IV, 3
Input/output lists, 56, 57
Input/output, Terminal, 61-64
INPUT statement, 36, 58, 63, 64
Input, Unformatted, 59, 60
INTEGER statement, 12, 23, 35,
Integers, 8, 11, 12, 75
Integer, Octals, 9
Integers, Quoted, 9
Integer variables,

I-Format,
IF
IF
IF
IF

87, 88

113

Internal functions, 27-30, 41, 43, 44, 52,

53
Internal subprograms, 43
Internal subprogram rules,
Intrinsic functions,

108

L
Labelled statement rules, 108
119, Label variables, 19, 29
5, 16-18, 29

Labels, Statement,

for statements

for statements, 1

, for data, 61

, for files, 61, 67
Linked files, 68
List, Input/output, 56-59
List, Format correspondence, 90

M

Main program, 26, 27, 44

Mixed mode, 1, 96
Modes, 96
Mode, Integer, 11, 12, 35, 36
Mode, Real, 11, 12, 35, 36
Monitor lines, 6,93-98
Multiple record format, 91

N
Names, 10, 11
Names, Array, 12
Negative subscripting, 33
Numeric field widening, 77, 78

Numeric format specification, 76,

18, 30, 54, 55,

127

77

FORTRAN

COMPUTER TIME-SHARING SERVICE

-125-

O-Format, 84, 85

Octal characters, 60

Octal integers, 9

"OFF-line" file operations, 69
Operating system, control directed to, 55
Operators, Arithmetic, 14
$OPT, 93, 95-98

$OPT*, 96, 97

$OPT IFF, 96, 97

SOPT INTEGER, 96

$OPT LIST, 97, 98

$OPT MIXED, 96

$OPT NO SS, 96

$OPT REAL, 96

$OPT SIZE, 97

$OPT SOURCE, 97, 98

$OPT SUMMARY, 97, 98

$OPT TIME, 97

Output, Standard format, 61
Output, Terminal input/, 61-64
Overflow, Accumulator, 49

P

PAUSE statement, 55, 113

Permanent files, 65-72

PRINT statement 56-58, 62, 67, 76, 84, 87, 113
Priority of arithmetic operators, 14

Q

Quotations, in output list, 58
, in formats, 86
Quoted characters, 9, 10

R

READ statement, 56-58, 64-74, 76, 85, 114
REAL statement, 12, 23, 114

Real qualification, 8, 11, 75

Record length, 68

Repeated and recursive call, 53, 54
Repeated input/output list rules, 114
RETURN statement, 54, 115

Rewinding and backspacing, 71

REWIND statement, 71, 73, 115
Rewriting file operations, 66

Rules, Spelling, 11

S

Scale factor, 83, 84

Sense light, 48

Sense switch, 48

Size and time announcement, 97
Slew control characters 58, 59
Spelling rules for names, 11l
Standard output format, 61
Statements, File, 64-74
Statement format, 4

Statement labels, 5, 16-18
Statement rules, 108

Storage of arrays, 38-40

STOP statement, 55, 115
Subprograms, 19, 36
Subprogram names, 12
Subprograms, External, 19, 30, 31
Subprograms, Internal, 43
Subroutines, External, 26, 44
SUBROUTINE statement, 42, 115
Subscript checking, 33, 96
Subscript, Missing, 32
Subscript, Negative, 33
Subscript, restrictioms, 32
Subscript truncation, 33
Subscripted equivalence, 39, 40

T-Format, 90

Temporary Files, 65, 72-74
Terminal Input/Output, 61-64
Time and size announcement, 94

U
Unformatted Input, 59-61
Up-arrow, preceding (slew control), 58
$ USE, 93-95
v
Variable names, 13
Variables, Label, 18, 29
Variable, DO-control, 52
W

Widening of numeric output fields, 77, 78
WRITE Statement, 56, 64-74, 76, 115

FORTRAN

COMPUTER TIME-SHARING SERVICE

-126-

READER'S COMMENTS

| TITLE
IPC #
Name:
Position: Check whether you are--
Address: Customer personnel

GE personnel

Do you think that this manual--

Easy to read

Well organized

Complete

Well illustrated

Provided you with usable
information

Check One:

Yes

D Additional information would be helpful on following subjects.

D Errors indicated and pages where errors occur. -

D Usefulness of manual could be improved as noted.

My comments are:

Return to:

Technical Publi
General Electri
2725 North Central Avenue
Phoenix, Arizona 85004

(eI ¢]
Q
g
=]
5
<

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	xBack

