
Mark II
Time-Sharing Service

Reference Manual

{.ig"J Information
~ Systems

••

GENERAL ~' ELECTRIC
INFORMATION SERVICE DEPARTMENT

711224A

BASIC
Language

November 1967
Reprinted 1-68,7-68

Revised 12-68

INFORMATION SYSTEMS

GENERAL fI ELECTRIC

Preface

This manual, which supersedes the Preliminary Reference Manual of the same title and
number, describes the version of the BASIC language used with the Mark n Time-Sharing
Service. Mark IT includes the following extensions and additions to the versatile BASIC
language:

• Data files

• string processing, which permits manipulation of alphanumeric data

• Chaining, which permits a program to stop and begin execution of another program
without direct intervention

• Liberal definitions of variables in a function statement

• Capability for formatting output

• Ability to initialize all variables, lists, and tables to zero

Mark n BASIC also incorporates instructions such as a compound version of LET; ON,
which provides a powerful conditional branch; and RANDOMIZE, for initializing the random
number generator.

Another manual, Mark IT Time-Sharing Service Command System: Reference Manual (711223)
explains all of the system commands that are a part of the Mark n Time-Sharing Service.

The development of the BASIC language was supported by the National Science Foundation
under the terms of a grant to Dartmouth College. Under this grant, Dartmouth College de
veloped, under the direction of Professors John G. Kemeny and Thomas E. Kurtz, the BASIC
language compiler. Since that development, BASIC· has been offered as part of the Time
Sharing Service of General Electric's Information Service Department.

o General Electric Company and the Trustees of Dartmouth College 1968

1. WHAT IS A PROGRAM?

Contents

Page
1

2. A BASIC PRIMER

An Example•................••..............•..•..•. 2
Formulas • • • • . • . . . • 5

Numbers • • . • • 7
Variables . • . • • • • . . . • • • . 7

Loops•••......•..........•................ 7
Lists and Tables . • • • • . • • . . • . . . • • • • • • 9
Errors and Debugging. • • •• 11
Summary of Elementary Basic Statements • . • • • • • • 15

LET•.••. . . . • • • . . • . • • • • • •• 15
READ aIld DATA • • • • . • • • • • • . •. 15
PRmT • • • • . . • . • • • • . • • • • • . . . • • • • • • • . . • . . • • • • • . • • • •• 16
Gfl) Tfl) ...••...................•.........•.•.......••• 16
IF-THEN or IF-Gfl) Tfl). . • • • • • • • • • • .• 16
Ffl)R and NEXT • . . • . • • • • 17
DIM. • • . . . • . • • . • • • . . • . • •• 17
END•...............•..•..•.•.... • •• 17

3. ADVANCED BASIC

More About Print. • • • • . • . • . • • . . • . . • . .. 18
FUnctions • • • • . • . • • .. 20
RANDfl)MIZE . • . • • • • • • • . • 29
DE F ..•........... . • • . • • . • . • . • • . . • • • • . • • • • • •. 29
GfZ)SUB and RETURN .•.......................••••.•......•.. 30
fl)N • • • • • • • • • .• 31
mpUT • . . . • • • • . • • • • • • • • • •. 32
CHAIN . . • . • • • • • . . • . • • • 32
Other Useful Statements • • . . . • • • • 34

STfl)P. . • • • . . . • • • • • • • • . • . . • • • 34
REM . . • • • . . . • • . . . • . . . • • • • • • • .. 34
RESTfl)RE. • • . • . . . • • • • • . . • •• 35
TRACE fl)N and TRACE fl)FF . . . • • . • • . . • • 35

Matrices••. • . • • . . . • •• 36
Alphanumeric Data and string Manipulation ..•.•.••..... . . . • • • •• 41

DIM Statement••..•......•........•..•..........•• 41
LET statement .•. . . . • . • • . • • . • • .• 41
IF-THEN Statement • • • • . . . •• 42
CHANGE Statement • • • . • .• 42
DATA, mPUT, and MAT INPUT Statements. . . . • • . . . • • • • . • • . .. 44
READ and PRmT statements • . • • • . .. 44

Data Files .•••...•••••..•.•....•••.•.••...••••••.••.••••• 44
Initial File Preparation. . . • • . • • . • • • • 45
File Reference•..•• 45
File Designator • • . . • . . • • • 46
File Modes • • • • • • • . . • . . . •. 46
File Read • • . . • • • • • • • •. 46
Reading Internal Data . • • • • • • . • . . •. 48
File Write•.•..• 49
Reading with INPUT Statement. . . • . . . • .. 51
Writing with PRINT Statement • • • 52

iii

CONTENTS (Cont'd)

Page

3. ADVANCED BASIC (Cont'd)

MAT READ statement•....•.............. 53
MAT WRITE Statement•....•.....••...•........... 54
RESTf2)RE statement ••.•...•..•....•......•.....•........• 55
SCRATCH statement ••.............•.......••.....•....•.. 55
FILE Statement • • • • 56
DELIMIT Statement • • . . • . . • • 57
APPEND statement•....•••....•.....•....•.......•. 59
MARGIN statement ..•...•.....•....•....•.........•...... 59
IF END Statement • • . . . • . • • • • .. 60
IF Mf2)RE Statement • • . • • : .. 61
BACKSPACE statement•.••••....•..•......•.•...•..... 63

APPENDIXES

A. ERROR MESSAGES . . . • • • . . • • • • • • • • . . . • . • • . • . . • •• 65

B. LIMITATIONS ON BASIC .•....••....•.....••.............•••. 70

iv

MARK II BASIC LANGUAGE

1. What Is A Program?

A program is a set of directions that is used to tell a computer how to provide an answer to
some problem. It usually starts with the given data, contains a set of instructions to be per
formed or carried out in a certain order, and ends up with a set of answers.

Any program must meet two requirements before it can be carried out. The first is that it
must be presented in a language that is understood by the computer. If the program is a set
of instructions for solving a system of linear equations and the computer is an English
speaking person, the program will be presented in some combination of mathematical
notation and English. If the computer is a French-speaking person, the program must be in
his language; and if the computer is a high-speed digital computer, the program must be
presented in a language which the computer understands.

The second requirement for all programs is that they must be completely and precisely
stated. This requirement is crucial when dealing with a digital computer, which has no
ability to infer what you mean--it does what you tell it to do, not what you meant to tell it.

We are, of course, talking about programs which provide numerical answers to numerical
problems. It is easy for a programmer to present a program in the English language, but
such a program poses great difficulties for the computer because English is rich with
ambiguities and redundancies, those qualities which make computing impossible. Instead,
you present your program in a language which resembles ordinary mathematical notation,
which has a simple vocabulary and grammar, and which permits a complete and precise
specification of your program. The language you will use is BASIC (Beginner's All-purpose
Symbolic Instruction Code) which is, at the same time, precise, simple, and easy to under-
stand. - -

A first introduction to writing a BASIC program is given in Chapter 2. This chapter includes
all that you will need to know to write a wide variety of useful and interesting programs.
Chapter 3 deals with more advanced computer techniques, and the Appendixes contain a
variety of reference materials.

1

2. A Basic Primer

AN EXAMPLE

The following example is a complete BASIC program for solving a system of two simul
taneous linear equations in two variables:

ax+by=c
dx + ey = f

and then solving two different systems, each differing from this system only in the constants
c and f.

You should be able to solve this system, if ae - bd is not equal to 0, to find that:

ce . bf
x=-ae - bd and af - cd

y =ae - bd

If ae - bd = 0, there is either no solution or there are infinitely many, but there is no unique
solution. If you are rusty on solving such systems, take our word for it that this is correct.
For now, we want you to understand the BASIC program for solving this system.

study this 'example carefully - in most cases the purpose of each line in the program is
self-evident - and then read the commentary and explanation.

10 READ A, B,D,E
15 LET G = A * E - B * D
20 IF G = 0 THEN 65
30 READ C,F
37 LET X = (C*E - B*F) / G
42 LET Y ::: (A*F - C*D) / G
55 PRINT X,Y
60 00 T0 30
65 PRINT "N0 UNIQUE s0LUTI0N"
70 DATA 1, 2, 4
80 DATA 2, -7, 5
85 DATA 1, 3, 4, -7
90 END

A first observation is that each line of the program begins with a number. These numbers
are called line numbers and serve to identify the lines, each of which is called a statement.
Thus, a program is made up of statements, most of which are instructions to the computer.
Line numbers also serve to specify the order in which the statements are to be performed
by the computer. This means that you may type your program in any order. Before the pro
gram is run, the computer sorts out and edits the program, putting the statements into the
order specified by their line numbers. (This editing process facilitates the correcting and
changing of programs, as we shall explain later.)

2

AN EXAMPLE

A second observation is that each statement starts, after its line number, with an English
word. This word denotes the type of the statement. There are several types of statements
in BASIC, nine of which are discussed in this chapter. Seven of these nine appear in the
sample program of this section.

A third observation, not at all obvious from the program, is that spaces have no significance
in BASIC, except in messages which are to be printed out, as in line number 65 on the pre
ceding page. Thus, spaces may be used at will to make a program more readable. Statement
10 could have been typed as 10READA,B,D,E, and statement 15 as 15LETG=A*E-B*D.

With this preface, let us go through the example, step by step. The first statement, 10,
is a READ statement. It must be accompanied by one or more DATA statements. When the
computer encounters a READ statement while executing your program, it will cause the
variables listed after the READ to be given values according to the next available numbers
in the DATA statements. In the example, we read A in statement 10 and assign the value 1
to it from statement 70 and similarly with Band 2, and with D and 4. At this point, we have
exhausted the available data in statement 70, but there is more in statement 80, and we
pick up from it the number 2 to be assigned to E.

We next go to statement 15, which is a LET statement, and first encounter a formula to be
evaluated. (The asterisk is used to denote multiplication.) In this statement we direct the
computer to compute the value of AE - BD, and to call the result G. In general, a LET state
ment directs the computer to set a variable equal to the value of the formula on the right
side of the equals sign. We know that if G is equal to zero, the system has no unique solution.
Therefore, we next ask, in line 20, if G is equal to zero. If the computer discovers a lIyes"
answer to the question, it is directed to go to line 65, where it prints "N0 UNIQUE S0LU
TI0N." From this point, it would go to the next statement. But lines 70, 80, and 85 give it
no instructions, since DATA statements are not "executed," and it then goes to line 90
which tells it to IIEND" the program.

If the answer to the question Ills G equal to zero?" is "no," as it is in this example, the
computer goes on to the next statement, in this case 30. (Thus, an IF-THEN tells the com
puter where to go if the IF condition is met, but to go on to the next statement if it is not met.)
The computer is now directed to read the next two entries form the OATA statements,
-7 and 5,(both are in statement 80) and to assign them to C and F respectively. The computer
is now ready to solve the system

x + 2y = -7 4x + 2y =5

In statements 37 and 42, we direct the computer to compute the value of X and Y according
to the formulas provided. Note that we must use parentheses to indicate that CE - BF is
divided by G; without parentheses, only BF would be divided by G and the computer would
let X = CE - BF/G.

The computer is told to print the two values computed, that of X and that of Y, in line 55.
Having done this, it moves on to line 60 where it is directed back to line 30. If there are
additional numbers in the OATA statements, as there are here in 85, the computer is told
in line 30 to take the next one and assign it to C, and the one after that to F. Thus, the
computer is now ready to solve the system

x + 2y = 1
4x + 2y = 3.

As before, it finds the solution in 37 and 42 and prints the values of X and Y in 55, and then
is directed in 60 to go back to 30.

In line 30 the computer reads two more values, 4 and -7, which it finds in line 85. It then
proceeds to solve the system

x + 2y = 4
4x + 2y = -7

3

and to print out the solutions. It is directed back again to 30, but there are no more pairs of
numbers available for C and F in the DATA statements. The computer then informs you
that it is out of data, printing on the paper in your teletypewriter 0UT 0F DATA IN 30,
and stops.

For a moment, let us look at the importance of the various statements. For example, what
would have happened if we had omitted line number 55? The answer is simple: the computer
would have solved the three systems and told us when it was out of data. However, since it
was not asked to tell us (PRINT) its answers, it would not do it, and the solutions would be
the computer's secret. What would have happened if we had left out line 20? In this problem
just solved, nothing would have happened. But, if G were equal to zero, we would have set the
computer the impossible task of dividing by zero in 37 and 42, and it would tell us so em
phatically, printing DIVISI0N BY ZER0 IN 37 and DIVISI0N BY ZER0 IN 42. Had we left
out statement 60, the computer would have solved the first system, printed out the values of
X and Y, and then gone on to line 65 where it would be directed to print N0 UNIQUE S0LU
TI0N. It would do this and then stop.

One very natural question arises from the seemingly arbitrary numbering of the statements:
why this selection of line numbers? The answer is that the particular choice of line numbers
is arbitrary, as long as the statements are numbered in the order which we want the machine
to follow in executing the program. We could have numbered the statements 1, 2, 3, •••, 13,
although we do not recommend this numbering. We would normally number the statements
10, 20, 30, ••• , 130. We put the numbers such a distance apart so that we can later insert
additional statements if we find that we have forgotten them in writing the program originally.
Thus, if we find that we have left out two statements between those numbered 40 and 50, we
can give them any two numbers between 40 and 50 - say 44 and 46; and in the editing and
sorting process, the computer will put them in their proper place.

Another question arises from the seemingly arbitrary placing of the elements of data in
the DATA statements: why place them as they have been in the sample program? Here again,
the choice is arbitrary and we need only put the numbers in the order that we want them read
(the first for A, the second for B, the third for D, the fourth for E, the fifth for C, the sixth
for F, the seventh for the next C, etc.). In place of the three statements numbered 70, 80,
and 85, we could have put

75 DATA 1,2,4,2,-7,5,1,3,4,-7

or we could have written, perhaps more naturally,

70 DATA 1,2,4,2
75 DATA -7,5
80 DATA 1,3
85 DATA 4, -7

to indicate that the coefficients appear in the first data statement and the various pairs of
right-hand constants appear in the subsequent statements.

The program and the resulting run is shown below exactly as it appears on the teletypewriter:

10 READ A.B.D.E
ISLET G = A*E - 8*D
20 I-F G • 0 THEN 6S
30 READ C.F
37 LET X • (C*E - a*F),G
~2 LET Y c CA*F - C*D)/G
S5 PRINT X.Y
60 G0 T0 30
65 PRINT "N0 UNIQUE S0LUTJ0N"
70 DATA J.2.~

80 DATA 2.-7,,5
85 DATA 1,,3.~.. -7
99 END

4

AN EXAMPLE
FORMULAS

RUN

LINEAR 1SI 07 12/06/68

4 -5.5
0.666667 0.166667

- 3.66667 3.83333
0UT 0F DATA IN 30

Mter typing the program, we type RUN followed by a carriage return. Up to this point the
computer stores the program and does nothing with it. It is this command which directs the
computer to execute your program.

Note that the computer, before printing out the answers, printed the name which we gave to
the problem (LINEAR) and the time and date of the computation.

The message OUT OF DATA IN 30 here may be ignored. But sometimes it would indicate an
error in the program. For more detail see the paragraph "READ and DATA."

FORMULAS

The computer can do a great many things - it can add, subtract, multiply, divide, extract
square roots, raise a number to a power, and find the sine of a number (on an angle measured
in radians), etc. We shall now learn how to tell the computer to do these things in the order
that we want them done.

The computer computes by evaluating formulas which are supplied in a program. These
formulas are similar to those used in standard mathematical calculation, except that all
BASIC formulas must be written on a single line. Five arithmetic operations can be used to
write a formula. These are listed in the following table:

Symbol

+

*
I

Example

A+B

A-B

A*B

AlB

X, B

Meaning

Addition (add B to A)

Subtraction (subtract B from A)

Multiplication (multiply B by A)

Division (divide A by B)

Raise to the power (find X 2
)

Note: Some teletypewriters use a/\ in place of the,

We must be careful with parentheses to make sure that we group together those things which
we want together. We must also understand the order in which the computer does its work.
For example, if we type A + B * C 'D, the computer will first raise C to the power D,
multiply this result by B, and then add A to the resulting product. This is the same convention
as is usual for A + B CD. If this is not the order intended, then we must use parentheses
to indicate a different order. For example, if it is the product of Band C that we want
raised to the power D, we must write A + (B * C h D; or, if we want to multiply A + B by
C to the power D, we write (A + B) * C, D. We could even add A to B, multiple their sum
by C, and raise the product to the power D by writing «A+B) *C) T D.

5

The order of priorities is summarized in the following rules:

1. The formula inside parentheses is computed before the parenthesized quantity is
used in further computations.

2. In the absence of parentheses in a formula involving addition, multiplication, and the
raising of a number to a power, the computer first raises the number to the power,
then multiplies, then adds. Division has the same priority as multiplication, and sub
traction the same as addition.

3. In the absence of parentheses in a formula involving only multiplication and division,
the operations are done from left to right, as they are read. Addition and subtraction
are also done from left to right.

These rules are illustrated in the previous example. The rules also tell us that the computer,
faced with A - B - C, will (as usual) subtract B from A and then C from their difference;
faced with AlBic, it will divide Aby B and that quotient by C. Given A T B T C, the computer
will raise the number A to the power B and take the resulting number and raise it to the
power C. If there is any question inyour mind about the priority, put in more parentheses to
eliminate possible ambiguities.

In addition to these five arithmetic operations, the computer can evaluate several mathe
matical functions. These functions are given special3-letter English names, as the following
list shows:

Functions Interpretation

Find the natural logarithm of X (In X)

Find the absolute value of X (I X I)

Find the square root of X ('IX)

SIN (X)

COS (X)

TAN (X)

COT (X)

ATN (X)

EXP (X)

LOG (X)

ABS (X)

SQR (X)

Find the sine of X

Find the cosine of X

Find the tangent of X

Find the cotangent of X

Find the arctangent of X

Find eX

X interpreted as
a number, or as
an angle measured
in radians

Two special functions, NUM and DET, are explained under "Matrices" in Chapter 3. Three
other mathematical functions are also available in BASIC: INT, SGN, and RND. These are
explained under llFunctions" in Chapter 3. In place of X, we may substitute any formula
or any number in parentheses following any of these formulas. For example, we may ask
the computer to find V4 + X3 by writing SQR (4 + X T 3), or the arctangent of 3X - 2ex + 8
by writing ATN (3*X-2*EXP(X) + 8).

If, sitting at the teletypewriter, you need the value of <!) 17, you can run the two-line pro
gram:

10 PRINT (5/6) T 17
20 END

Since we have mentioned numbers and variables, we should be sure that we understand how
to write numbers for the computer and what variables are allowed.

6

FORMULAS
LOOPS

Numbers

A number may be positive or negative and it may contain up to nine digits, but it must be
expressed in decimal form. For example, all of the following are numbers in BASIC:
2, -3.675 123456789, -.987654321, and 483.4156. The following are not numbers in BASIC:
14/3, \if and .00123456789. The first two are formulas, but not numbers, and the last one
has more than nine digits. We may ask the computer to find the value of 14/3 or V7 and
to do something with the resulting number, but we may not include either in a list of DATA.

We gain further flexibility by use of the letter E, which stands for "times ten to the power."
Thus, we may write .00123456789 in a form acceptable to the computer in any of several
forms: .123456789E-2 or 123456789E-l1 or 1234.56789E-6. We may write ten million as
lE7 and 1965 as 1.965E3. We do not write E7 as a number, but must write lE7 to indicate
that it is 1 that is multiplied by 107

• Numbers cannot be larger than 1.70141E38 or smaller
than 1.49637E-39.

When entering a series of numbers, separate them by commas. The comma following the
last number is optional.

Variables

A variable in BASIC is denoted by any letter, or by any letter followed by a single digit.
Thus, the computer will interpret E7 as a variable, along with A, X, N5, 10, and 01. A
variable in BASIC stands for a number, usually one that is not known to the programmer
at the time the program was written. Variables are given or assigned values by F0R,
LE~ READ, or INPUT statements. The value assigned will not change until the next time
a FVJR, LET, READ, or INPUT statement is encountered with a value for that variable.

Note that, since all variables are set to zero before a RUN, it is necessary to assign a value
to a variable only when you do not want it to be zero.

Six mathematical symbols are provided for in BASIC. These are symbols of relation used in
IF-THEN statements where it is necessary to compare values. An example of the use of these
relation symbols was given in the sample program in Chapter 1. Any of the following six
standard relations may be used:

Symbol

<

<=

>

>=

<>

LOOPS

Example

A=B

A<B

A <= B

A>B

A >= B

A <> B

Meaning

Is equal to (A is equal to B)

Is less than (A is less than B)

Is less than or equal to
(A is less than or equal to B)

Is greater than (A is greater than B)

Is greater than or equal to
(A is greater than or equal to B)

Is not equal to (A is not equal to B)

We are frequently interested in writing a program in which one or more parts are done not
just once but a number of times, perhaps with slight changes each time. In order to write
the simplest program, the one in which the part to be repeated is written just once, we use
the programming device known as a loop.

7

Programs which use loops can be illustrated and explained by two programs for the simple
task of printing but a table of the first 100 positive integers together with the square root of
each. Without a loop, our program would be 101 lines long and read:

10 PRINT 1, SQR (I)
20 PRINT 2, SQR (2)
30 PRINT 3, SQR (3)

990 PRINT 99, SQR (99)
1000 PRINT 100, SQR (100)
1010 END

With the following program, using one type of loop, we can obtain the same table with far
fewer lines of instruction, 5 instead of 101:

10 LET X =1
20 PRINT X, SQR (X)
30 LET X = X + 1
40 IF X< = 100 THEN 20
50 END

statement 10 gives the value of 1 to X and "initializes" the loop. In the line 20 is printed
both 1 and its square root. Then, in line 30, X is increased by 1, to 2. Line 40 asks whether
X is less than or equal to 100; an affirmative answer directs the computer back to line 20.
Here it prints 2 and V2:" and goes to 30. Again X is increased by 1, this time to 3, and at
40 it goes back to 20. This process is repeated--line 20 (print 3 and \'3), line 30 (X = 4),
line 40 (since 4:: 100 go back to line 20), etc.--until the loop has been traversed 100 times.
Then, after it has printed 100 and its square root has been printed, X becomes 101. The
computer now receives a negative answer to the question in line 40 (X is greater than 100,
not less than or equal to it), does not return to 20 but moves on to line 50, and ends the
program. All loops contain four characteristics: initialization (line 10), the body (line 20),
modification (line 30), and an exit test (line 40).

Because loops are so important and because loops of the type just illustrated arise so often,
BASIC provides two statements to specify a loop even more simply. They are the FOR and
NEXT statements and their use is illustrated in the program:

10 F0R X =1 T0 100
20 PRINT X, SQR (X)
30 NEXT X
50 END

In line 10, X is set equal to 1, and a test is set up, like that of line 40 above. Line 30 carries
out two tasks: X is increased by 1, and the test is carried out to determine whether to go
back to 20 or go on. Thus lines 10 and 30 take the place of lines 10, 30, and 40 in the previous
program--and they are easier to use.

Note that the value of X is increased by 1 each time we go through the loop. If we wanted a
different increase, say 5, we could specify it by writing

10 F0R X =1 T0 100 STEP 5

and the computer would assign 1 to X on the first time through the loop, 6 to X on the
second time through, lIon the third time, and 96 on the last time. Another step of 5 would
take X beyond 100, so the program would proceed to the end after printing 96 and its square
root. The STEP may be positive or negative, and we could have obtained the first table,
printed in reverse order, by writing line 10 as

10 F0R X = 100 T0 1 STEP -1

In the absence of a STEP instruction, a step size of +1 is assumed.

8

LOOPS
LISTS AND TABLES

More complicated FOR statements are allowed. The initial value, the final value, and
the step size may all be formulas of any complexity. For example, if Nand Z have been
specified earlier in the program, we could write

F0R X = N + 7*Z T0 (Z-N) / 3 STEP (N-4*Z) / 10

For a positive step-size, the loop continues as long as the control variable is less than
or equal to the final value. For a negative step-size, the loop continues as long as the
control variable is greater than or equal to the final value.

If the initial value is greater than the final value (less than for negative step-size), then
the body of the loop will not be performed at all, but the computer will immediately pass to
the statement following the NEXT. As an example, the following program for adding up the
first n integers will give the correct result 0 when n is O.

10 READ N
20 LET S = 0
30 F0R K = 1 T0 N
40 LET S = S + K
50 NEXT K
60 PRINT S
70 G0 T0 10
90 DATA 3, 10, 0
99 END

It is often useful to have loops within loops. These are called nested loops and can be ex
pressed with F0R and NEXT statements. However, they must actually be nested and must
not cross, as the following skeleton examples illustrate:

Allowed Allowed

F0R X F0R X

[roRY F0R Y

[F0R ZNEXT Y

NEXT X NEXT Z

Not Allowed [F0R W

F0R X NEXT W

F0R Y NEXT Y

NEXT X [F0R Z

NEXT Y NEXT Z
NEXT X

LISTS AND TABLES
In addition to the ordinary variables used by BASIC, there are variables which can be used
to designate the elements of a list or of a table. These are used where we might ordinarily
use a subscript or a double subscript, for example the coefficients of a polynomial
(ao, aI, a2, •••) or the elements of a matrix (hi' j). The variables which we use in BASIC
consist of a single letter, which we call the name of the list, followed by the subscripts in
parentheses. Thus, we might write A{l), A(2), etc. for the coefficients of the polynomial and
B{l,l), B{1,2), etc. for the elements of the matrix.

9

We can enter the list A(O), .•. A(lO) into a program very simply by the lines:

10 F0R I :::: 0 T0 10
20 READ A(I)
30 NEXT I
40 DATA 2, 3, -5, 7, 2.2, 4, -9, 123, 4, -4, 3

We need no special instruction to the computer if no subscript greater than 10 occurs.
However, if we want larger subscripts, we must use a dimension (DIM) statement, to indicate
to the computer that it has to save extra space extra space for the list or table. When in
doubt, indicate a larger dimension than you expect to use. For example, if we want a list
of 15 numbers entered, we might write:

10 DIM A(25)
20 READ N
30 F0R I :::: 1 T0 N
40 READ A(I)
50 NEXT I
60 DATA 15
70 DATA 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

Statements 20 and 60 could have been eliminated by writing 30 as F0R I:::: 1 T0 15, but
the form as typed would allow for the lengthening of the list by changing only statement
60, so long as it did not exceed 25.

We would enter a 3y~ table into a program by writing:

10 F0R I:::: 1 '1'0 3
20 F0R J = 1 T0 5
30 READ B (I,J)
40 NEXT J
50 NEXT I
60 DATA 2, 3, -5, -9, 2
70 DATA 4, -7, 3, 4, -2
80 DATA 3, -3, 5,7,8

Here again, we may enter a table with no dimension statement, and it will handle all the
entries from B(O,O) to B(10,10). If you try to enter a table with a subscript greater than 10,
without a DIM statement, you will get an error message telling you that you have a subscript
error. This is easily rectified by entering the line:

5 DIM B(20, 30)

if for instance, we need a 20 by 30 table.

The single letter denoting a list or a table name may also be used to denote a simple
variable without confusion. However, the same letter may not be used to denote both a list
and a table in the same program. The form of the subscript is quite flexible, and you might
have the list item B(I + K) or the table items B(I,K) or Q(A(3,7), B - C).

The sample program which follows illustrates a LIST and RUN of a problem which uses both
a usi arid a tab'ie: The program computes the total sales of each of five salesmen, all of
whom sell the same three products. The list P gives the price/item of the three products
and the table S shows the quantity of each item sold by each man. You can see from the
program the product number 1 sells for $1.25, number 2 for $4.30, and number 3 for $2.50
per item; and also that salesman number 1 sold 40 items of the first product, 10 of the
second, and 35 of the third, and so on. The program reads in the price list in lines 10,
20, 30, using data in line 900, and the sales table in lines 40-80, using data in lines 910-930.
The same program could be used again, modifying only line 900 if the prices change, and
only lines 910-930 to enter the sales in another month.

10

LISTS AND TABLES
ERRORS AND DEBUGGING

This sample program did not need a dimension statement, since the computer automatically
saves enough space to allow all subscripts to run form 0 to 10. A DIM statement is nor
mally used to save more space. But in a long program, requiring many small tables, DIM
may be used to save less space for tables, in order to leave more for the program.

Since a DIM statement is not executed, it may be entered into the program on any line before
END; it is convenient, however, to place DIM statements near the beginning of the program.

SALESI 08: 59

10 "'0 R 1= 1 T0 3
20 RFAD PCI)
30 NEXT I
tlO F0R 1=1 T0 3
50 F0H J=1 T0 5
6 0 k~:Al) SC I" J)
10 NExt J
80 NEXT I
90 F0R J= I te 5
100 LET S=O
1 10 Fe R I = I T0 3
120 LF.:T S=S+PCI)*SCI"J>
1 30 NE:XT I
I tlO PRIN T "T0 TAL SAL~.~ F 0 R SAL E: SMAN It; J" "!oil S
150 NEXT J
900 uATA 1.25,,4.30,,~.~0

910 DATA 40,,20.37,,29,,49
920 DATA 10.16.3.2t.A
930 DATA 35,,47,29.16,,33
999 END

REAlJY

RUN

SALESI 09:00

T~TAL SALf.S F9R SALES~AN 1 ~. 180.5
T0TAL SALES .'9H SALESNIAN ~ ~ 211.3
T0TAL SALF.:S F'0R SAL ESr.IAN 3 !o 131.65
T0TAL SALES FOJR SALESMAN Ll $ 166.55
TeTAL SALES F0H SALESMAN 5 ! 1~9.Ll

ERRORS AND DEBUGGING
It may occasionally happen that the first run of a new problem will be free of errors and
give the correct answers. But it is much more common that errors will be present and will
have to be corrected. Errors are of two types: errors of form (or grammatical errors) which
prevent the running of the program; and logical errors in the program which cause the com
puter to produce wrong answers or no answers at all.

Errors of form will cause error messages to be printed, and the various types of error
messages are listed and explained in Appendix A. Logical errors are often much harder to
uncover, particularly when the program gives answers which seem to be nearly correct. In
either case, after the errors are discovered, they can be corrected by changing lines, by
inserting new lines, or by deleting lines from the program. As indicated in the last section,
a line is changed by typing it correctly with the same line number; a line is inserted by
typing it with a line number between those of two existing lines; and a line is deleted by typing
its llne number and pressing the RETURN key. Notice that you can insert a line only if
the original line numbers are not consecutive integers. For this reason, most programmers

11

will start out using line numbers that are multiples of five or ten, but that is a matter of
choice.

These corrections can be made at any time--whenever you notice them--either before or
after a run. Since the computer sorts lines out and arranges them in order, a line may be
retyped out of sequence. Simply retype the incorrect line with -its origtnal line number.

Although the computer does little in the way of Itcorrecting, 11 during computation, it will
sometimes help you when you forget to indicate absolute value. For example, if you ask for
the square root of -7 or the logarithm of -5, the computer will give you the square root of
7 with the error message that you have asked for the square root of a negative number, or
the logarithm of 5 with the error message that you have asked for the logarithm of a negative
number.

As with most problems in computing, we can best illustrate the process of finding the errors
(or bugs) in a program, and correcting (or debugging) it, by an example. Let us consider
the problem of finding the value of X between 0 and 3 for which the sine of X is a maximum,
and ask the system to print out this value of X and the value of its sine. If you have studied
trigonometry, you know that iT /2 is the correct value; but we shall use the system to test
successive values of X from 0 to 3, first using intervals of .1, then of .01, and finally of
.001. Thus, we shall ask the system to find the sine of 0, of .1, of .2, of .3 •••• , of 2.8,
of 2.9, and of 3, and to determine which of these 31 values is the largest. It will do it by
testing SIN (0) and SIN (.1) to see which is larger, and calling the larger of these two
numbers M. Then it will pick the larger of M and SIN (.2) and call it M. This number will
be checked against SIN (.3) and so on down the line. Each time a larger value of M is found,
the value of X is "remembered" in XO. When it finishes, M will have been assigned to the
largest of the 31 sines, and XO will be the argument that produced that largest value. It
will then repeat the search, this time checking the 301 numbers 0, .01, .02, .03, .•• ,
2.98, 2.99, and 3, finding the sine of each and checking to see which sine is the largest.
Lastly, it will check the 3001 numbers 0, .001, .002, .003, •.•• , 2.998, 2.999, and 3, to find
which has the largest sine. At the end of each of these three searches, we want the com
puter to print three numbers: the value XO which has the largest sine, the sine of that number,
and the interval of search.

Before going to the teletypewriter, we write a program and let us assume that it is
the following:

10 READ D
20 LET XO = 0
30 F0R X =a T0 3 STEP D
40 IF SIN (X) < = M THEN 100
50 LET XO =X
60 LET M =SIN (XO)
70 PRINT XO, X, D
80 NEXT XO
90 G0 T0 20

100 DATA .1, .01, .001
110 END

We shall list the entire sequence on the teletypewriter and make explanatory comments on
the right side.

12

NEW 0R 0LD--NEW
NEW rILE NAME-- MAXSIN
READY

10 READ 0
20 LWR XO= 0
30 r0R x = 0 T0 3 STEP 0
40 Ir SINE~CX) <= M THEN 100
SO LET XO=X
60 LET M = SINCX)
70 PRINT X0~ X~ 0
80 NEXT Z~XO

90 G0 T0 20
20 LET XO=O
100 DATA .1~ .01 •• 001
110 END
RUN

ERRORS AND DEBUGGING

Notice the use of the backwards arrow (on
some teletypewriters, an underline) to erase a
character in line 40, which should have started
IF SIN(X) etc., and in line 80.

After typing line 90, we notice that LET was
mistyped in line 20, so we retype it, this time
correctly.

MAXSIN 11: 10

ILLEGAL VARIABLE IN 70
NEXT WITH0UT r0R IN 80
r0R WITH0UT NEXT IN 30

70 PRINT XO. X. 0
40 Ir SINCX) <= M THE~ 80
80 NEXT X
RUN

After receiving the first error message, we
inspect line 70 and find that we used X0 for a
variable instead of XO. The next two error
messages relate to lines 30 and 80, where we
see that we mixed variables. This is corrected
by changing line 80.

We make both of these changes by retyping
lines 70 and 80. In looking over the program,
we also notice that the IF-THEN statement in
40 directed the computer to a DATA statement
and not to line 80 where it should go.

MAXSIN 11: 12

0.1 0.1
0.2 0.2
0.3

TIME: .07 SEes.

20
RUN

MAXSIN 11:13

O. 1 This is obviously incorrect. We are having
O. 1 every value of X printed, so we direct the

machine to cease operations by pressing control,
shift, and P, even while it is running. We ponder
the program for a while, trying to figure out
what is wrong with it. We notice that SIN(O) is
compared with M on the first time through the
loop, but we had assigned a value to XO but
not to M. However we recall that all variables
are set equal to zero before a RUN so that
line 20 is unnecessary.

UNDErINED LINg NUMBER 20 I~ 90

TIME: • 07 SEes.

Of course, line 90 sent us back to line 20 to
repeat the operation and not back to line 10
to pick up a new value for D•

90 GeJ T~ 10
RUN

13

,/".

70
as PRINT XOI MI 0
5 PRINT tlX VALUE··I "SINtll RES0LUTI2JN"
RUN

MAXSIN

TIME:

MAXSIN

11113

O. 1
0.2

.07 SEes.

1 1 : 18

0.1
0.1

We are about to print out the same table
as before. It is printing out XO, the
current value of X, and the interval
size each time that it goes through the
loop.

We fix this by moving the PRINT state
ment outside the loop. Typing 70 deletes
that line, and line 85 is outside of the
loop. We also realize that we want M
printed and not X. We also decide to
put in headings for our columns by a
PRINT statement.

ILLEGAL VARIABLE IN 5 There is an error in our PRINT state
ment: no left quotation mark for the third
item.

TIME: .06 SEes.

5 PRINT ux VALUEul uSINEul uRES0LUTI0N"
RUN

Retype line 5, with all of the required
quotation marks.

MAXSIN 11: 19

x VALUE SINE
1.6 0.999574
1.57 1.
1.57099 1.

3UT 0F DATA IN 10

TIME: 1.68 SEes.

LIST

MAXSIN 11:19

RES0LUTI0N
O. 1
0.01
0.001

Exactly the desired results. Of the 31
numbers (0, .1, .2, .3, ••• , 2.8, 2.9,
3), it is 1.6 which has the largest sine,
namely .999574. Similarly for the finer
subdivisions.

The whole process took 1.68 seconds
of the computer's time.

Having changed so many parts of the
program, we ask for the corrected pro
gram.

5 PRINT"X VALUEtll ··SINEtll "RES~LUTI0N"

10 READ D
30 F0R X = 0 T0 3 STEP D
40 IF SINCX) <= M THEN 80
50 LET XO=X
60 LET M = SINCX)
80 NEXT X
85 PRINT XOI MI D
90 G0 T0 10
100 DATA .1 •• 01 •• 001
110 END

READY

SAVE
READY

14

The program is saved for later use.This
should not be done unless future use is
necessary.

ERRORS AND DEBUGGING
SUMMARY OF ELEMENTARY BASIC STATEMENTS

In solving this problem, there are two common devices which we did not use. One is the
insertion of a PRINT statement when we wonder if the machine is computing what we think
we asked it to compute. For example, if we wondered about M, we could have inserted 65
PRINT M, and we would have seen the values. The other device is used after several cor
rections have been made and you are not sure just what the program looks like at this
stage - in this case type LIST, and the computer will type out the program in its current
form for you to inspect.

SUMMARY OF ELEMENTARY BASIC STATEMENTS
In this section we shall give a short and concise description of each of the types of BASIC
statements discussed earlier in this chapter. In each form, we shall assume a line number,
and shall use underlining to denote a general type. Thus, variable refers to a variable, which
is a single letter, possibly followed by a single digit.

LET

This statement is not a statement of algebraic equality, but is rather a command to the
system to perform certain computations and to assign the answer to a certain variable.
LET statements may be of the form: LET variable = formula.

Examples: 100 LET X = X + 1
259 LET W7 = (W-X4 3)*(Z - A/(A - B» - 17

Multiple assignments may be made with a single LET statement. For example,

LET X =Y3 =A(3,I) = 1

READ and DATA

We use a READ statement to assign to the listed variables values obtained from a DATA
statement. Neither statement is used without one of the other type. A READ statement causes
the variables listed in it to be given, in order, the next available numbers in the collection
of DATA statements. Before the program is run, the system takes all of the DATA state
ments in the order in which they appear and creates a data block. Each time a READ state
ment is encountered anywhere in the program, the data block supplies the next available
number or numbers. If the data block runs out of data, with a READ statement still asking
for more, the program is assumed tobedone and we get an OUT OF DATA message.

Since we have to read in data before we can work with it, READ statements normally occur
near the beginning of a program. The location of DATA statements is arbitrary, as long as
they occur in the correct order. A common practice is to collect all DATA statements and
place them just before the end statement.

Each READ statement is of the form: READ sequence of variables and each DATA statement
of the form: DATA sequence of numbers

Examples: 150 READ X, Y, Z, Xl, Y2, Q9
330 DATA 4, 2, 1.7
340 DATA 6.734E-3, -174.321, 3.14159265

234 READ B (K)
263 DATA 2, 3, 5, 7, 9, 11, 10, 8, 6, 4

10 READ R (I,J)
440 DATA -3, 5, -9, 2.37, 2.9876, -437.234E-5
450 DATA 2.765, 5.5576, 2.3789E2

When entering numeric values, remember that only numbers are put in a DATA statement,
and that 15/7 and V3 are expressions, not numbers.

o

15

PRINT

The PRINT statement has a number of different uses and is discussed in more detail in
Chapter 3. The common uses are:

a. To print out the result of some computations
b. To print out verbatim a message included in the program
c. To perform a combination of a and b
d. To skip a line

We have seen examples of only the first two in our sample programs. Each type is slightly
different in form, but all start with PRINT after the line number.

Examples of type a: 100 PRINT X, SQR (X)
135 PRINT X, Y, Z, B*B - 4*A*C, EXP (A - B)

The first will print X and then, a few spaces to the right of that number, its square
root. The second will print five different numbers: X, Y, Z, B2 - 4AC, and e A _B •

The system will compute the two formulas and print them for you, as long as you
have already given values to A, B, and C. It can print up to five numbers per line
in this format.

Examples of type b: 100 PRINT "N~ UNIQUE S~LUTI~N"

430 PRINT "X VALUE", "SINE", "RES~LUTI~N"

Both have been encountered in the sample programs. The first prints that simple
statement; the second prints the three labels with spaces between them. The labels
in 430 automatically line up with three numbers called for in a PRINT statement
as seen in MAXSIN.

Examples of type c: 150 PffiNT "THE VALUE ~F X IS", X
30 PRINT "THE SQUARE R¢~T ~F" X, "IS" SQR (X)

If the first has computed the value of X to be 3, the system will print out: THE
VALUE ~F X IS 3. If the second has computed the value of X to be 625, the system
will print out: THE SQUARE R~~T ~F 625 IS 25.

Example of type d: 250 PRINT

The system will advance the paper one line when it encounters this command.

G(/J T(/J

There are times in a program when you do not want all commands executed in the order
that they appear in the program. An example of this occurs in the MAXSIN problem where
the system has computed XO, M, and D and printed them out in line 85. We did not want the
program to go on to the END statement yet, but to go through the same process for a differ
ent value of D. So we directed the system to go back to line 10 with a G~ T~ statement.
Each is of the form G~ T~ line number.

Example: 150 G~ T~ 75

IF-THEN or IF-G(/J T(/)

There are times that we are interested in jumping the normal sequence of commands, if a
certain relationship holds. For this we use an IF--THEN statement, sometimes called a
conditional G~ T~ statement. Such a statement occurred at line 40 of MAXSIN. Each such
statement is of the form

IF formula relation formula THEN line number or IF formula relation formula G~ T~
line number

16

SUMMARY OF ELEMENTARY BASIC STATEMENTS

Examples: 40 IF SIN (X) < = M THEN 80 or 40 IF SIN (X)< =M G~ T~ 80
20 IF G = 0 THEN 65 or 20 IF G = 0 G~ T~ 65

Line 40 asks if the sine of X is less than or equal to M, and directs the system to
skip to line 80 if it is. Line 20 asks if G is equal to 0, and directs the system to
skip to line 65 if it is. In each case, if the answer to the question is No, the system
will go to the next line of the program.

F(l)R and NEXT
We have already encountered the F~R and NEXT statements in our loops, and have seen that
they go together, one at the entrance to the loop and one at the exit, directing the system
back to the entrance again. Every F~R statement is of the form

F~R variable = formula T~ formula STEP formula

Most commonly, the formulas will be integers and the STEP omitted. In the latter case, a
step size of one is assumed. The accompanying NEXT statement is simple in form, but the
variable must be precisely the same one as that following F~R in the F~R statement. Its
form is NEXT variable.

Examples: 30 F~R X = 0 T~ 3 STEP D
80 NEXT X

120 F~R X4 = {17 + C~S (Z»/3 T~ 3*SQR (10) STEP 1/4
235 NEXT X4

240 F~R X = 8 T~ 3 STEP -1

456 F~R J = -3 T~ 12 STEP 2

Notice that the step size may be a formula (1/4), a negative number (-1), or a positive num
ber (2). In the example with lines 120 and 235, the successive values of X4 will be .25 apart,
in increasing order. In the next example, the successive values of X will be 8, 7, 6, 5, 4, 3.
In the last example, on successive trips through the loop, J will take on values -3, -1, 1, 3,
5, 7, 9, and 11.

If the initial, final, or step-size values are given as formulas, these formulas are evaluated
only once, upon entering the F~R statement. The control variable can be changed in the body
of the loop; of course, the exit test always uses the latest value of this variable.

If you write 50 F~R Z = 2 T~ -2, without a negative step size, the body of the loop will not
be performed and the system will proceed to the statement immediately following the corre
sponding NEXT statement.

F~R statements cannot be nested to a depth greater than 20 levels.

DIM
Whenever we want to enter a list or a table with a subscript greater than 10, we must use a
DIM statement to instruct the system to save us sufficient room for the list or the table.

Examples: 20 DIM H (35)
35 DIM Q (5,25)

The first would enable us to enter a list of 36 items and the second a table 6 x 26.

END
Every program must have an END statement, and it must be the statement with the highest
line number in the program. Its form is simple: a line number with END.

Example: 999 END

17

3. Advanced Basic

MORE ABOUT PRINT

The uses of the PRINT statement were described in Chapter 2, but we shall give more detail
here. Although the format of answers is automatically supplied for the beginner, the PRINT
statement permits a greater flexibility for the more advanced programmer who wishes a
different format for his output.

The teletypewriter line is divided into five zones of fifteen spaces each. Some control of
use of these comes from the use of the comma: a comma is a signal to move to the next
print zone or, if the fifth print zone has just been filled, to move to the first print zone of
the next line.

A closer grouping of numbers can be obtained by use of the semicolon. Numbers printed next
to each other by use of the semicolon will be in closest readable format. For example, if
you were to type the program

10 F0R 1=1 T0 15
20 PRINT I
30 NEXT I
40 END

the teletypewriter would print 1 at the beginning of a line, 2 at the beginning of the next line,
and so on, finally printing 15 on the fifteenth line. But, by changing line 20 to read

20 PRINT I,

you would have the numbers printed in the zones, reading

1
6
11

2
7
J2

3
8
J3

4
9
14

5
10
J 5

If you wanted the numbers printed in this fashion, but more tightly packed, you would change
line 20 to replace the comma by a semicolon:

20 PRINT I J

and the result would be printed

2 3 4 5 6 7 8 9 to JJ 12 J3 14 15

You should remember that a label inside quotation marks is printed just as it appears and
also that the end of a PRINT line signals a new line, unless a comma or semicolon is the last
symbol. When a label is followed by a semicolon, the label is printed with no space after it.

Thus, the instruction

50 PRINT X, Y

18

MORE ABOUT PRINT

will result in the printing of two numbers and the return to the next line, while

50 PRINT X, Y,

will result in the printing of these two values and no return--the next number to be printed
will occur in the third zone, after the values of X and Y in the first two.

Since the end of a PRINT statement signals a new line, you will remember that

250 PRINT

will cause the teletypewriter to advance the paper one line. It puts a blank line in your pro
gram, if you want to use it for vertical spacing of your results, or it causes the completion
of a partially filled line, as illustrated in the following fragment of a program:

50 F0R M = 1 T0 N
110 F0R J = 1 T0 M
120 PRINT B(M,J);
130 NEXT J
140 PRINT
150 NEXT M

This program will print B(l,I). Without line 140, the teletypewriter would then go on printing
B(2,1), and B(2,2) on the same line, and even B(3,1), B(3,2), etc., if there were room. Line
140 directs the teletypewriter, after printing the B(l, 1) value corresponding to M = 1, to start
a new line and to do the same thing after printing the value of B(2,2) corresponding to M = 2,
etc.

The following rules for the printing of numbers will help you in interpreting your printed
results:

1. If a number is an integer, the decimal point is not printed. If the integer contains more
than nine digits, the teletypewriter will give you the first digit, followed by (a) a
decimal point, (b) the next five digits, and (c) and E followed by the appropriate inte
ger. For example, it will take 32,437,580, 259 and write it as 3.24376 E 10.

2. For any decimal number, no more than six significant digits are printed.

3. For a number less than 0.1, the E notation is used unless the entire significant part
of the number can be printed as a six decimal number. Thus, .03456 means that the
number is exactly .0345600000, while 3.45600 E -2 means that the number has been
rounded to .0345600.

4. Trailing zeros after the decimal point are not printed.

The following program, in which we print out the first 45 powers of 2, shows how numbers
are printed. Note that the semicolon lIpacked" form sometimes causes the last few charac
ters in a number to be printed on top of each other. BASIC checks to see if there are 12 or
more spaces at the end of a line before printing a number there, but some numbers require
15 spaces.

10 F0R 1=) 10 45
20 PRINT 2tl;
30 NEXT I
40 END

READY

19

RUN

PRINT 09:0il

2 4 8 16 32 6il 128 256 512 1024 20~8 il096 8192 16384 3~78

65536 131072262144524288 IOtl8576 2097152 LtI9t130.4 ~38860~

16777216 33554432 6710RR64 1.3~218 E+8 ?68435 E+8 5.36871 E+B
1.07374 E+9 2-14748 £+9 4.29497 F:+9 8.58993 E+9 1.71799 E+I0
3.il3597 E+I0 6.87195 E+IO 1.37439 E+l1 2.74878 E+ll 5.Lt9756 E+II
1.09951 E+12 2.19902 F.+12 t1.39805 F.+12 8.79609 E+12 1.75922 f+13
3.51844 £+13

The TAB function permits you to specify tabulated formating. For example, TAB (17) would
cause the teletypewriter to move to column 17. Positions on a line are numbered 0 through
74; 75 is assumed to be position 0 again.

TAB may contain any formula as its argument. The value of the formula is computed, and its
integer part is taken. This in turn is treated modulo 75, to obtain a value 0 through 74. The
teletypewriter is then moved to this position. If it has already passed this position, the TAB
is ignored. For example, inserting the following line in a loop:

PRINT X; TAB (12); Y; TAB(27); Z

causes the X-values to start in column 0, the Y-values to start in column 12, and the Z-values
in column 27.

FUNCTIONS
There are three functions which were listed in Chapter 2 but not described. These are INT,
SGN, and RND. Also there are ten other functions that will sometimes be useful: TIM, e LK$,
DAT$, HPS, VPS, LIN, ASe, STR$, VAL, and LEN.

INT
The INT function is the function which frequently appears in algebraic computation [x] , and
it gives the greatest integer not greater than x. Thus INT(2.35) = 2, INT(-2.35) = -3, and
INT(12) = 12.

One use of the INT function is to round numbers. We may use it to round to the nearest inte
ger by asking for INT (X + .5). This will round 2.9, for example, to 3, by finding:

!NT (2.9 + .5) = INT (3.4) = 3

You should convince yourself that this will indeed do the rounding guaranteed for it (it will
round a number midway between two integers up to the larger of the integers).

It can also be used to round to any specific number of decimal places. For example, INT
(lO*X + .5)/10 will round X correct to one decimal place, INT (lOO*X + .5)/100 will round X
correct to two decimal places, and !NT (X*10 1D + .5/10 t D will round X correct to D decimal
places.

SGN
The function SGN (argument) yields +1, -1, or 0 depending on the value of the argument.
These are the options:

Function Argument Value Yield

SGN Zero 0
SGN Positive, not zero +1
SGN Negative, not zero -1

20

FUNCTIONS

Examples:

SGN (0) yields 0
SGN (-1.82) yields -1
SGN (989) yields +1
SGN (-.001) yields -1
SGN (-0) yields 0

RND

The function RND produces a random number between (not including) 0 and 1. No argument is
required. For example you may type: LET A ::: RND.

If we want the first twenty random numbers, we write the program below and we get twenty
six-digit decimals. This is illustrated in the following program.

10 F0R L=1 T0 20
20 PRINT HND..
30 NEXT L
~O END

READY

RUN

RNDTES

0.406533
0.863799
0.570427
5. 005~8 E-2

09: 07

0.813445
0.880238
0.897931
0.393226

0.681969
0.63831 1
0.628126
0.680?19

0.939<462
0.602898
0.613262
O.6322i.l6

o. ?53358
0.990032
O.303P17
O. 66F<21~

On the other hand, if we want twenty random one-digit integers, we could change line 20 to
read

20 PRINT INTUO*RND),

and we would then obtain

RNDTES

4
8
5
o

10:51

8
8
8
.3

6
6
6
6

9
6
6
6

2
9
.3
6

We can vary the type of random numbers we want. For example, if we want 20 random num
bers ranging from 1 to 9 inclusive, we could change line 20 as shown

20 PRINT INT(9*RNU+1);
RUN

R NDTES 10:53

4 '3 1 9 .3 ~ g 6 6 9 6 9 6 6 .3 4 1 6 7

21

or we can obtain random numbers which are the integers from 5 to 13 inclusive by changing
ling 20 as in the example which follows:

20 PRI NT I NT (9*R ND+5') ;
RUN

RNDTES 10: 59

~ I? 11 13 7 12 12 10 10 13 10 13 10 10 7 5 8 11 10

In general, if we want our random numbers to be chosen from the A integers of which B is
the smallest, we would call for

!NT (A*RND + B).

TIM

The TIM function provides the elapsed execution time in seconds.

Example:

10 F0R X = 1 T0 5E5
20 LET A = X
30 NE)(T X
40 PRINT "ELAPSED TIME IS: ttJ TIM
99 END

RUN

EXAMP 17127

ELAPSED TIME IS: 14.95

The execution time may be assigned a variable name.

Example:

10 FeR x • 1 T0 SES
20 LET A =X
30 NEXT X
40 LET 8 • TIM
50 PRINT "ELAPSED TIME ISI".8
99 END

RUN

EXAMP 15104

......

ELAPSED TIME lSI 14.9508

The execution times provided by the TIM function will not agree with the total time printed
out at the end of a program run. This is so because TIM provides only execution time, but
the total time includes compilation, execution, and termination times.

CLK$

The CLK$ function provides the time of day as a string.

22

FUNCTIONS

Example:

10 LET AS = CLK$
20 PRINT A$;
99 Et\l 0

This program will print the time of day, such as

10:34

The CLK$ function may be printed out without assigning it to a string variable.

Example:

10 PRINT CLK$;
99 END

will print out the time of day as a string, exactly as in the previous example.

DAT$

The DAT$ function provides the calendar date as a string.

Example:

10 LET A$ = OAT$
20 PRINT A$l
99 END

will print the date in the form

10/08/68

Like the CLK$ function, the DAT$ function need not be assigned to a string variable.

Example:

10 PRINT OATSJ
99 END

will also print the date, exactly as in the previous example.

HPS

The form of the HPS function is

HPS (file designator)

and it gives the character position in the current line of the file being read or written, start
ing after the line number.

Example:

The program

10 F'0 R X = 1 T0 20
20 PRINT Xl
30 NEXT X
40 PRINT HPSCO)
99 END

23

RUN

P3SIT 17: 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
71

The character position when the HPS(O) statement was reached was 71.

The character position may be assigned a variable name.

Example:

lOr" R x = 1 T0 25
20 PRINT XJ
30 NEXT X
40 LET 8 = HPSC 0>
50 PRINT
60 PRINT "CHARACTER P0 51 Tl 0N IS: U; B
99 END

VARNAME 17:36

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25

CHARACTER P0S1TI0N IS: 20

VPS

The form of the VPS function is

VPS (file designator)

and it gives the current number of lines in a file being read or written.

Example:

The program

10 rILES A
20 SCRATCH "1
30 "'0 R X = 1 T0 60
40 WRITE #J.,X
50 NEXT X
60 L E1 N = VPSC 1)
70 PRINT uN0. 0,.. LINES IN A =u;N
99 END

prints out

N0. 01'" LINES IN A = 60

A zero file designator will refer to the teletypewriter.

LIN

The form of the LIN function is

LIN (file designator)

and it provides the last line number encountered in reading from or writing to a file.

24

Example:

10 rILES A
20 SCRATCH # 1
30 ,3 R X = 1 T0 60
40 ~JRI TE # b X
50 NEXT X
60 PRINT LINe 1)
99 END

This program will print out the last line number written to file A:

690

The listing of file A

A 17:44

100 1 ~

110 2 6

120 3 6

130 4 6

140 5 6

150 6 6

160 7 6

170 8 6

180 9 6

190 10 6

200 11 6

210 12 6

220 13 6

230 14 6

240 15 #

250 16 #

260 17 #

270 18 #

280 19 6

290 20 6

300 21 #

310 22 #

320 23 #

330 24 6

340 25 ~

350 26 #

360 27 #

370 28 ~

3.~0 29 ~

390 30 6

400 31 #

410 32 6

420 33 #

430 34 6

440 35 #

450 36 #

460 37 #

470 38 #

480 39 ~

490 40 #

500 41 #

510 42 #

520 43 #

530 44 #

540 45 6

550 46 6

560 47 6

570 48 ~

580 49 #

590 50 6

600 51 #

FUNCTIONS

25

610 52 #

620 53,
630 54,
640 55,
650 56 #

660 57,
670 58,
fRO 59,
690 60 #

verifies that the last line number in the file is 690.

A variable may be assigned the value of the function LIN.

Example:

10 FILES A
20 SCRATCH fJ I
30 F0 R X = I T0 60
40 WRITE #I,X
50 NEXT X
6OLETA=LINCI)
70 PRINT AJ
99 E.'4 D

In this program the variable named A is assigned the value of LIN(l). The program when
run would produce the same results as the previous example.

ASC

The form of the ABC function is

Ase (character)

or

Ase (abbreviation)

and it provides the numeric value of the specified ASen character or (for non-printing
characters) abbreviation.

Example:

The program

10 PRINT ASCC?)
20 PRIN T ASCC CR)
30 PRINT ASCCLF)
40 PRINT Asce R)
99 END

will produce results of

63

13

10

82

which are the numeric representations of the specified characters, ?, carriage return,
line feed, and R.

A variable may be assigned the value of the function ASC.

26

FUNCTIONS

Example:

10 LET C = ASCCCR)
20 PRINT CJ
99 END

This program will assign the variable named C -the numeric representation of the ASCII
carriage return. The program when run will print out

13

STR$

The STR$ function has the form

STR$(N)

where N is a number. The function produces a string corresponding to the value of the num
ber N.

Example:

The program

10 INPUT N
20 LET X$ = STR$(N)
30 PRINT X$
99 END

will print out, if the value 12 is entered when input is requested, the string

12

Example:

The program

10 INPUT X.. V
20 LET N = X*V
30 LET C$ = STR$(N)
40 PRINT "THE STRING C0RRESP0NDING T0 N IS:";C$
99 END

produces the output

? 20.. 35
lliE STRING C0RRESP0NDING T0 N IS: 700

In this example the number N, computed by the program, is converted to a string.

VAL

The form of the VAL function is

VAL(S$)

where S$ is a proper number. This function produces a number corresponding to the value
of the string represented by S$. This allows string variables to be used in arithmetic ex
pressions.

27

Example:

The program

10 LET AS = "12"
20 LET B = VAL (AS)
30 LET Q = 2* VAL (AS)
40 PRINT QJ
50 PRINT BJ
99 EN D

will give results of

24 12

for Q and B respectively.

Example:

The program

10 INPUT AS
20 LET Z = VALC AS)
30 PRINT Z.
99 END

will produce, with the input 5E5, the corresponding number

500000

If the string does not represent a number, an error message is printed out.

LEN

The form of the LEN function is

LEN(X$)

where X$ is the name of any string. The function gives the number of characters in the
specified string. The value of LEN may be assigned to a variable or used directly.

Example:

The program

10 READ AS~BS~C$

20 LET A = LEN(AS)
30 LET B = LENC BS)
40 LET C = LEN(CS)
50 PRINT "AS ="JAS," LENGTH 01' AS =tI.A
60 PRINT "BS =tI. BS, It LEN GTH 01' BS =tI. B
70 PRINT "CS ="JCSJ It LENGTH 01' CS ="JC
80 DATA ABC~DEF'GH~IJKLMN0PQRST

99 END

produces the results

AS =ABC LENGTH 0F' AS = 3
BS =DEF'GH LEi~GTH 0F' BS = 5
CS =IJKLMN0P"lRST LENGTH 0F' CS = 12

28

FUNCTIONS

Example:

The program

10 READ A$.B$.C$
20 PRI;-.J T LEN CA$)
30 PRINT LEN (B$)
40 P RI NT LEN (C$)
50 DATA ABC.DEFG.HIJKLMN
99 Et\l D

produces

3
4
7

RAND¢MIZE
The RANOOMIZE (or RAND0M) statement can be used in conjunction with the random number function to induce variance. It augments the function RND by causing it to produce different sets of random numbers. For example, if this is the first instruction in the programusing random numbers, then repeated program execution will generally produce differentresults. When this instruction is omitted, the II standard list" of random numbers is obtained.
It is suggested that a simulation model should be debugged without RAND0M, so that youalways obtain the same random numbers for test runs. After your program is debugged, youmay insert

1 RANOOM

before starting execution runs.

DEF

In addition to the standard functions, you can define other functions which you expect to usea number of times in your program by use of a DEF statement. The name of the definedfunction must be three letters, the first two of which are FN. Hence, you may define up to26 functions, e.g., FNA, FNB, etc.

If a function can be defined in a single line, it takes the following form:

30 DEF FNE (X) = EXP(-XT 2)

Later on you can call for various values of the function by FNE(.l), FNE(3.45), FNE(A + 2),etc. Such a definition can be a great labor saver when you want values of some function fora number of different values of the variable.

Each function may have zero, one, two, or more variables, providing the definition fits onone line. For example, we may type:

DEF FNB(X, Y) = 3*X*Y - Yt 3
DEF FNC (X,Y, Z, W) = FNB(X,Y)/FNB(Z, W)

The DEF statement may occur anywhere in the program, and the expression to the right ofthe equal sign may be any formula whichcan be fitted onto one line. It may include any combination of other functions, including ones defined by different DEF statements, and it caninvolve other variables besides the one denoting the argument of the function. Thus, assuming FNR is defined by

70 DEF FNR(X) = SQR (2 + LOG (X) - EXP (y*Z) * (X + SIN (2*Z»)

29

if you have previously assigned values to Y and Z, you can ask for FNR (2.175). You can give
new values to Y and Z before the next use of FNR.

If a function requires more than one line for its definition, introduce the function with a DEF
statement containing no =and endthe definition with a statement FNEND. For example:

10 DEF FNM (X,Y)
20 LET FNM = X
30 IF Y = X THEN 50
40 LET FNM = Y
50 FNEND

The function will assume the last value assigned to the function name (i.e. lines 20 or 40).

Multiple line DEF's may not be nested, and there must not be a transfer from inside the DEF
to outside its range, nor vice-versa.

Variables other than the arguments can be used and assigned values in multistatement func
tions. These variables may be global, which means that they can be used both inside and
outside the function definition on either side of the equals sign; or they may be local, which
means they are defined only within the function definition. Normally they are global. To
specify a variable as being local, list the variable name in the DEF statement following the
function name and arguments, for example:

DEF FNMO',Y) P,Q

P and Q are specified as local variables, and bear no relation to P or Q used outside of the
function definition.

G¢SUB and RETURN

When a particular part of a program is to be performed more than one time, or possibly at
several different places in the over-all progra_~ it is most efficiently programmed as a
subroutine. The subroutine is entered with a WSUB statement, where the number is the
line number of the first statement in the subroutine. For example,

80 OOSUB 200

directs the system to line 200, the first line of the subroutine. The last line of the subroutine
should be a RETURN statement directing the system to return to the earlier part of the
program. For example,

310 RETURN

will tell the system to go back to the first line numbered greater than 80 and to continue the
program there.

The following example, a program for determining the greatest common divisor (GCD) of
three integers using the Euclidean Algorithm, illustrates the use of a subroutine. The first
two numbers are selected in lines 30 and 40 and their GCD is determined in the subroutine,
lines 200-310. The GCD just found is called X in line 60, the third number is called Y in
line 70, and the subroutine is entered from line 80 to find the GCD of these two numbers.
This number is, of course, the greatest common divisor of the three given numbers and is
printed out with them in line 90.

You may use a OOSUB inside a subroutine to perform yet another subroutine. This would be
called ltnested OOSUBs." In any case, it is absolutely necessary that a subroutine be left
only with a RETURN statement; using a OOT0 or an IF-THEN to get, out of a s~broutine will
not work properly. You may have several RETURNs in the subroutine. The first RETURN
statement executed in a subroutine causes a return to the earlier part of the program.

30

FUNCTIONS

You must be very careful not to write a program in which a OOSUB appears inside a sub
routine which refers to one of the subroutines already entered. (Recursion is not allowed I)

10 PRINT" A"... Btl... C.. " "GCD"
20 REAO A"B"C
30 LET X=A
40 LET Y=8
50 G0 SUB ~OO

60 LET X=G
70 LET Y=C
80 G0 SUB 200
90 PRINT A.8"C"G
100 G0 T0 20
110 DATA 60.90" 120
120 OATA 38456,,64872.98765
130 DATA 32.384.72
200 LET Q=INT(X/Y'
210 LET R=X- Q*Y
220 IF R=O G0 T0 300
230 LET X=Y
240 LET Y=R
250 G0 T0 200
300 LET G=Y
310 F<~TURN

320 END

READY

RUN

GCN3N0 09: 14

¢N

A B
60 90
38456 64872
32 384

0UT 0F OATA IN 20

C.
120
98765
72

GCD
30
I
8

The IF ••• THEN statement discussed in Chapter 2 allows a two-way conditional switch in a
program. The 0N statement provides a multiple switch. For example, consider the following:

0N X 00 T0 100, 200, 150

If X = 1 the program branches to line number 100.
If X 2 it goes to line 200.
If X = 3 it goes to line 150.

Any formula may replace X and there may be any number of line numbers in the instruction
providing it fits on one line.

The value of the formula is computed and its integer part is taken. If this equals 1, the pro
gram transfers to the first specified number in the list.

If the integer part equals 2 the program transfers to the second number and so forth. .If the
integer part is less than 1 or larger than the number of line numbers spe'cified, an error
message is printed.

31

Note the use of 0N - G0 T0 in line 120 of the following example:

100 IF X>O G0 T~ 900
I 10 F0 f(x=1 T0 3
120 0N X G0 T0 200,300,400
200 PRINT ?OO
21 0 G~ 10 500
300·t-'kINT 300
310 (;0 T0 500
AOO PRINT AOO
500 NEXT X
600 ST0P
900 END

READY

RUN

0Nr,0T0

200
300
400

INPUT

09: 1A

There are times when it is desirable to have data entered during running of a program. This
is particularly true when one person writes the program and enters it into memory, and other
persons are to supply the data. This may be done by an INPUT statement, which acts as a
READ statement but does not draw numbers from a DATA statement. If, for example, you
want the user to supply values for X and Y into a program, you will type

40 INPUT X, Y

before the first statement which is to use either of these numbers. When it encounters this
statement, the system will type a question mark. The user types two numbers, separated by
a comma, presses the return key, and the system goes on with the rest of the program.

Frequently an INPUT statement is combined with a PRINT statement to make sure that the
user knows what values to put in. You might type

20 PRI NT "~.'HAT ARE Y0UR VALUES 0 ..' X, Y, AND Z"J
30 INPUT X, Y, Z
40 END

and the system will type

l,o}HAT ARE Y0UR VALUES 0F X, Y, ANI) Z?

Without the semicolon at the end of line 20, the question mark would have been printed on
the next line.

Data entered via an INPUT statement is not saved with the program. Furthermore, it may
take a long time to enter a large amount of data using INPUT. Therefore, INPUT should be
used only when small amounts of data are to be entered, or when it is necessary to enter
data during the running of the program such as with game-playing programs.

CHAIN

The CHAIN statement allows the user to stop execution of the current program and begin

32

FUNCTIONS

compilation and execution of another program without direct intervention. It has the same
effect as giving the commands ST0P, 0LD, a program name, and RUN. The form of the
statement is

CHAIN "new file name"

or

CHAIN X$

The name of the file to be accessed is enclosed in quotation marks unless a string variable
is used. Both the file containing the CHAIN statement and the file to be accessed must be
saved before chaining can be done.

Example:

NEW

NEW FILE NAME-- CHAIN

READY

10 CHAIN IINEXTl"

20 END

SAVE

READY

RUN

or 10 LET A$ = llNEXTI"

20 CHAIN A$

30 END

In this example, the program CHAIN chains to the program NEXTI. Both programs must
have been saved. If SAVE had been omitted in the example, the error message

CURRENT FILE MUST BE SAVED BEF0RE CHAIN CA~ BE PERF0RMED

would have been printed out. If the file NEXT1 had not been saved, the error message

FlLE N0T SAVED

would have been printed out.

In the above example, the file CHAIN would now no longer be active, and would have to be
re -called if corrections to it were necessary.

If a file with a password is named in a CHAIN statement, the password must be given before
execution of the named program can begin.

Example:

10 CHAIN ··rAT"
20 END

PASS J8: 30

GIVE PASSW0RD RAT

Be careful when specifying a file in a CHAIN statement. No leading blanks are allowed in the

33

file name, but trailing blanks are allowed.

Example:

The program

lO CHAIN "N EXTl "
20 END

will successfully chain to NEXTl, but a program such as

lO CHAIN " NEXTl "
20 END

will produce the error message

FILE N0T SAVED

The CHAIN function does not allow you to chain to a line number within a file. Because there
is no logic path to any statement following the CHAIN statement, all needed current program
statements must be executed before the CHAIN statement.

OTHER USEFUL STATEMENTS

Several other BASIC statements that may be useful from time to time are ST0P, REM,
REST0RE, TRACE 0N, and TRACE 0FF.

ST0P is equivalent to G0T0 XXXXX, where xxxxx is the line number of the END statement in
the program. It is useful in programs having more than one natural finishing point. For
example, the following two program portions are exactly equivalent.

250 GeJ.T0 999 250 ST0P

340 G0:T0 999 340 ST0P

999 END 999 END

REM
REM provides a means for inserting explanatory remarks in a program. The system com
pletely ignores the remainder of that line, allowing the programmer to follow the REM with
directions for using the program, with identifications of the parts of a long program, or with
anything else that he wants. Although what follows REM is ignored, its line number may be
used in a OOSUB, IF-THEN, G0 T0, or 0N-G0 T0 statement.

100 REM INSERT DATA- IN LINES 900-998. THE FIRST
110 REM NUMBER IS N, THE NUMBER 0F P0INTS. THEN
120 REM THE DATA P0INTS THEMSELVES ARE ENTERED, BY

200 nE~ THIS IS A SUBR0UTINE F0R S0LVING EQUATI0NS

300 RETURN

520 G0SUB 200

Explanatory remarks may be located following a statement on a line, by using the character
" , ". Anything on the line following the 11 , 11 will be treated as an explanatory remark. For
example, the statement

34

OTHER USEFUL STATEMENTS

250 LET Y = 1 I INITIALIZE Y TO ONE

includes the remark INITIALIZE Y TO ONE without affecting the running of the program.

REST.0RE

Sometimes it is necessary to use the data in a program more than once. The REST0RE
statement permits reading the data as many additional times as it is used. Whenever
REST0RE is encountered in a program, the system restores the data block pointer to the
first number. A subsequent READ statement will then start reading the data all over again.
A word of warning--if the desired data is preceded by code numbers or parameters, super
fluous READ statements should be used to pass over these numbers. As an example, the
following program portion reads the data, restores the data block to its original state, and
reads the data again. Note the use of line 570 to ltpass over" the value of N, which is al
ready known.

100 READ N
110 F'0R I = 1 T0 N
120 READ X

200 NEXT I

560 REST0RE
570 READ X
580 F'0R I = 1 T0 N
590 READ X

~ TRACE ~N and TRACE 0FF

TRACE 0N and TRACE 0FF statements may be useful in debugging programs. The TRACE
0N statement causes the line number of each subsequent statement that is executed to be
printed out. The TRACE 0FF statement causes the printing out of line numbers to stop.

Example:

10 READ x. Y. Z
20 TRACE 0N
30 LET A = X+(Y*Z)
40 I F' A = 0 mEN 99
50 PRINT" A Nl2lT ZERl2l"
60 60 Tl2l 10
88 DATA -9.3.4. -12.3.. 4
99 TRACE I2l J'J'
100 END

RUN

TRC 18: 41

*AT 30
*AT 40
*AT 50

A Nl2lT ZER0
*AT 60
*AT 30
*AT 40
*AT 99

TRACE 0N may be used without TRACE 0FF.

35

Example:

10 READ X,Y,Z
20 TRACE 0N
30 LET A = X+(Y*Z)
40 I F' A = 0 THEN 99
50 PRINT " A N0T ZER0"
60 G0 T0 10
88 DATA - 9, 3.. 41 - 1~ 3.. 4
99 END

TRC 18142

*AT 30
*AT 40
*AT 50

A N0T ZER0
*AT 60
*AT 30
*AT 40
*AT 99

MATRICES
Although you can work out for yourself programs which involve matrix computations, there
is a special set of statements for such computations. These statements must start with the
word MAT. They are:

36

MAT READ A, B, C, •••

MAT PRINT A, B; C, •••

MAT B = A

MAT C = A + B

MAT C A - B

MAT C ;A * B

MAT C INV (A)

MAT C = TRN (A)

MAT C (K) * A

MAT C CON

MAT C = ZER

MAT C = IDN

Read the matrices A, B, C, •••• , their dimensions hav
ing been previously specified. Data is read in row-wise
sequence.

Print the matrices A, B, C, •••, with A and C in the
regular format, but B closely packed.

Set the matrix B equal to the matrix A.

Add the two matrices A and B and store the result in
matrix C.

Subtract the matrix B from the matrix A and store the
result in matrix C.

Multiply the matrix A by the matrix B and store the
result in matrix C.

Invert the matrix A and store resulting matrix in C.

Transpose the matrix A and store the resulting matrix
in C.

Multiply the matrix A by the value represented by K. K
may be either a number or an expression, but in either
case it must be enclosed in parentheses.

Each element of matrix C is set to one.

Each element of matrix C is set to zero.

The diagonal elements of matrix C are set to one's
yielding an identity matrix.

MAT INPUT V The input of a vector is called in.

MATRICES

Special rules apply to the dimensioning of matrices which occur in MAT instructions. DIM
statements indicate what the maximum dimension of a matrix is to be. Thus if we write

DIM M(20, 35)

then M may have up to 20 rows and up to 35 columns. If a matrix reference occurs without a
DIM statement, a ten-by-ten matrix is established.

The actual dimension of a matrix may be determined either when it is first set up, or when
it is computed. For example,

MAT READ M

reads a matrix Mof the dimension previously declared in a DIM statement. On the other hand,

MAT READ M (17,3)

reads a 17 -by-3 matrix providing sufficient space has been saved for it.

Four of the MAT statements explicitly accomplish redimensioning:

MAT READ C (M, N)
MAT C = ZER (M, N)
MAT C = C0N (M, N)
MAT C = IDN (N)

The first three statements would specify matrix C as consisting of M rows and N columns.
The fourth statement would specify matrix C as a square matrix of N rows and N columns.
These same instructions may be used to redimension a matrix during running. A matrix may
be redimensioned to either a larger or a smaller matrix provided the new dimensions do not
require more space than was originally reserved by the DIM statement. To illustrate, as
sume the following statements exist:

10 DIM A (8,8), B(8,8), C (8,8)

50 MAT READ A (2, 2), B (2, 2)
60 MAT C = ZER (2, 2)

100 MAT A = IDN (8, 8)
110 MAT READ B (4, 4), C (4, 4)

From these statements observe that the DIM statement reserves sufficient storage to ac
commodate three matrices each consisting of sixty-four (64) elements. The initial MAT
READ specifies the dimensions of both matrices A and B as two rows and two columns. The
MAT READ also reads the number of values required by the dimensions into the storage
which was reserved by the DIM statement. The MAT READ reads the values in row-wise
sequence. In the initial MAT READ, the elements in the order read are A(l, 1), A(I, 2),
A(2, 1), A(2, 2), B(l, 1) B(l, 2), B(2, 1) and B(2, 2). (Matrix statements use 1 to n subscript
ing, not 0 to n.)

statement 60 illustrates the use of ZER to specify dimensions and to zero the elements of
the matrix C. statements 100 and 110 illustrate redimensioning: matrix A is redimensioned
as an eight row, eight column identity matrix, and matrices Band C are redimensioned as
four row, four column matrices into which data is to be read.

While the combination of ordinary BASIC instructions and MAT instructions makes the

37

language much more powerful, you must be very careful about dimensions. In addition to
having both a DIM statement and a declaration of current dimension, you must be careful
with the MAT statements. For example, a matrix product MAT C = A * B may be illegal for
one of two reasons: A and B may have dimensions such that the product is not defined, or
even if it is defined, C may not have reserved enough space for the answer. In either case,
a DIMENSI0N ERR0R message results.

Matrices consisting of a single row or single column of elements (i.e., vectors) are per
missible in MAT instructions. As is true with all other matrices, the dimensions for such
matrices should be explicitly stated before use in a MAT instruction. Thus:

10 DIM A(3, 1), B(3, 3), C(3, 1)
20 MAT C = ZER (3, 1)
30 MAT READ A(3, 1), B(3, 3)

70 MAT C = B*A

illustrates the requirements for multiplying a (3x3) matrix by a (3x1) matrix (vector). Column
vectors should always be considered as (nx1) matrices and row vectors must always be con
sidered as (1 xn) matrices.

The same matrix may occur on both sides of a MAT equation in case of replacement, addi
tion, subtraction, or constant multiplication; but not in any of the other instructions. Legal
forms are:

MAT A = B
MAT A = A + B
MAT A = (2.5) *A
MAT A = A - B

nlegal forms are:

MAT A = B*A
MAT A = INV (A)
MAT A = TRN (A)
MAT A = A+B-C

The last example is an attempt to use more than one matrix operator in a MAT statement.
Two MAT statements must be used to do two matrix operations.

The determinant of a matrix can be obtained by first inverting the matrix, and then using
DET. For example:

MAT B = INV (A)
LET D = DET

The determinant of A is stored inDo You may then decide whether the determinant was large
enough for the inverse to be meaningful.

Attempting to invert a singular matrix does. not cause the program to stop, but DET is set
equal to zero.

Two programs follow which illustrate some of the capabilities of the MAT instructions. In
the first example, the values for M and N are read. Using these values as indexes, statement
30 sets the dimensions for matrices A, B, D, and G respectively. Also the values for the
elements of these matrices are read. In sequence then, the dimensions of matrix Care
specified and the elements set to zero (statement 40). Matrix A is printed (statement 60);
matrix B is printed (statement 80). The sum of matrices A and B is found and stored in C
(statement 90). Matrix C is printed (statement 110). The dimensions' for matriX F (a vector)
are set and the elements set to zero (statement 120). The product of matrices C and D is

38

MATRICES

computed and stored in F (statement 130). The dimensions for matrix H (single value) are
specified and the elements set to zero (statement 140). Finally the product of matrices G and
F is found and stored in H and printed (statements 150, 170).

In the second example, a value N is read which determines the order of the Hilbert Matrix
segment to be computed, stored, and printed. Next this matrix is inverted and printed. Finally
the Hilbert Matrix is multiplied by its own inverse and the resulting product matrix is
printed. Notice that in the example N=2 then N=3 is run, demonstrating the ability to re
dimension larger during running.

BASICT 10145

10 DIM A(5.5>.B(5.5).C(5.5>.D(5,5),E(5.5>,F(5,5).G(5.5>.H(5,5)
20 READ II'J,N
30 MAT READ A(II'J,II'J),B(M,M>,D(M,N>,G(N,M)
40 MAT C: ZER(M,M)
50 PRINT "MATRIX A 0F 0RDER -M
60 MAT PRINT AI '
70 PRINT "MATRIX B 0F 0ROER "M
80 MAT PRINT B;
90 I'2AT C= A+B
100 PRINT" C=A+B
110 MAT PRINT C;
120 MAT F=ZER(M,N>
130 MAT F= C*O
140 MAT H=ZER(N,N)
150 MAT H:G*F
160 PRINT" H
170 MAT PRINT H;
1800 DATA 3.1
1810 DATA 1,2,3,4,5,6,7,8,9,9.8,7,6,5,4,3,2,1,1,2,3,3,2,1
1999 END

READY

RUN

BASICT 10146

MATRIX A IF 0RDER 3

123
456
789

MATRIX B 0F 0ROER 3

987
654
321

C=A+B

10 10 10
10 10 10
10 10 10
H

360

39

HILTST 11:01

10 DIM AC20.20>.BC20.20).CC20.20)
20 READ N
30 MAT A =C0NCN.N)
40 MAT B =C0NCN.N)
45 MAT C =C0NCN.N)
50 F0R I =1 T0 N
60 F0R J=1 T0 N
70 LET ACI , J) =1/ (1 +J -1)
80 NEXT J
90 NEXT I
93 PRINT - HILBERT MATRIX 0F 0RDER -N
95 MAT PRINT A
100 MAT B=INVCA)
105 PRINT -INVERSE 0F HILBERT MATRIX 0F 0RDER -N
110 MT PRINT B
115 MAT C=A*B
117 PRINT -HILBERT MATRIX TIMES ITS aWN INVERSE 0RDER-N
118 MAT PRINT C
120 G0 T0 20
190 DATA 2.3
1999 END

READY

RUN

HILTST 11:02

HILBERT MATRIX 0F 0RDER 2

1 0.5
0.5 0.333333

INVERSE 0F HILBERT MATRIX 0F 0RDER 2

4 -6
-6 12
HILBERT MATRIX TIMES ITS 0WN INVERSE 0RDER 2

1 0
7.45058 E-9 1.
HILBERT MATRIX 0F 0RDER 3

1 0.5 0.333333
0.5 0.333333 0.25
0.333333 0.25 0.2

INVERSE 0F HILBERT MATRIX 0F 0RDER 3

9. -36. 30.
-36. 192. -180.
30. -180. 180.

HILBERT MATRIX TIMES ITS aWN INVERSE BRDER 3

1. 5.41409 E-7
-2.33452 £-7 1.
-1.92473 E-7 1.78814 E-7
0UT 0F DATA IN 20

The statement

MAT INPUT V

40

-1.57456 E-6
-7.69893 E-7

0.999999

MATRICES
ALPHANUMERIC DATA AND STRING MANIPULATION

will call for the input of a vector. The number of components in the vector need not be
specified. Normally the input is limited by having to be typed on one line. However if you
end the line of input with & (before carriage return) the machine will ask for more input
on the next line. Note that, although the number of components need not be specified, if
we wish to put in more than 10 numbers we must save sufficient space with a DIM statement.
After the input NUM will equal the number of components and Vel), V(2), •••, V(NUM) will
be the numers entered. This allows variable length input. For example

5 LET X = 0
10 MAT INPUT V
20 LET N = NUM
30 IF N = 0 THEN 99
40 F0R I = 1 T0 N
45 LET S ;: S + V(I)
50 NEXT I
60 PRINT siN
70 G0 T0 5
99 END

allows the user to type in sets of numbers, which are averaged. The program takes ad
vantage of the fact that zero numbers may be put in, and uses this as a signal to stop.
Thus, the user can stop by simply pushing "carriage return" on an input request.

ALPHANUMERIC DATA AND STRING MANIPULATION

Alphanumeric data, names, and other identifying information can now be handled in the
BASIC language using string variables. You can input, store, compare and output alpha
numeric and certain special characters.

A STRING is any sequence of alphanumeric and certain special characters not used for
control purposes in the system.

STRING SIZE is limited to 119 valid characters.

Any variable followed by a tl$" represents a string. For example: A$, B$. A subscripted
string variable refers to a particular string in a list of strings. For instance, B$(4) would
refer to the fourth string in the B$ list.

Let's consider the BASIC statements where strings can be used.

01 M Statement

strings can be set up as one-dimensional lists only. Requests for two-dimensional lists
are not allowed.

Examples:

10 DIM A(5), C$(20), A$(l2), 0(10,5)
20 DIM R$(35)
30 DIM M$(15), B$(15)

In statement 10, only C$ and A$ are string variables. R$, as dimensioned in statement 20,
will set aside space in memory for 35, 119 character lists. Any or all of these strings may
be less than 119 characters; then only the space in memory required for the strings will
be allocated.

LET Statement

strings and string variables may appear in only two forms of the LET statement. The first
is used to replace a string variable with the contents of another string variable:

41

Example:

56 LET G$ = H$

and the second is used to assign a string to a string variable:

Example:

60 LET J$ = tlTHIS STRING"

Arithmetic operations may not be performed on string variables. Requests for addition,
subtraction, multiplication, or division involving string variables produce an error message.

IF-THEN Statement

Only one string variable is allowed on each side of the IF-THEN relation. All of the six
standard relations (=,<> ,<,> ,<=,>=) are valid. When strings of different lengths are com
pared, the shorter string is filled with blanks so that it is the same length as the other string,
then the comparison is made. For the collating sequence, refer to the BASIC Code Table,
page 43.

Examples:

100 IF N$ = "SMITH" THEN 105
200 IF A$<>B$ THEN 205
300 IF "JUNE" <= M$ THEN 305
400 IF D$ >= IIFRIDAY" THEN 600

CHANGE Statement

The CHANGE statement is used to convert upto 60 string characters into numerical IIcode"
characters or the reverse. (See BASIC Code Table.)

In the following example the instruction CHANGE A$ TO A in line 30 has caused the vector
A to have as its zero component the number of characters in the string A$ and to have code
numbers in the other components.

10 DIM A(65)
20 READ A$
30 CHANGE A$ T~ A
40 F0R 1=0 T0 ACO)
50 PRINT AU);
60 NEXT I
70 DATA ABCDEFGHIJKLMN0PQRSTUVWXYZ
80 END

READY

RUN

CHANGE 11: 38

26 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
82 83 84 85 86 87 88 89 90

To reverse the process and convert code characters to string characters, you must specify
a value for the zero component. The value should be equal to the number of stored code
characters you want to convert.

The following example reverses the process of the previous program. Note that the zero
component is given the value 26 by line 50.

42

ALPHANUMERIC DATA AND STRING MANIPULATION

10 DIM A(26)
20 F0R I = 1 T0 26
30 LET AC!) = 64+1
40 NEXT I
50 LET A CO) = 26
60 CHAN GE A T0 AS
70 PRINT AS
99 END

The above program will produce the string

ABCOEFGHIJKLMN0PQRSTUVWXYZ

BASIC Code Table

Characters BASIC Code No. Characters

(blank)
32 @
33 A

" 34 B
35 C
$ 36 D
% 37 E
& 38 F

39 G
(40 H
) 41 I

* 42 J
+ 43 K

44 L
45 M

. 46 N
/ 47 0
0 48 P
1 49 Q
2 50 R
3 51 S
4 52 T
5 53 U
6 54 V
7 55 W
8 56 X
9 57 Y

58 Z
59 [

< 60 "-
61 J

> 62
? 63

Additional symbols useful on output are:

~ (backward arrow) 95
EOT (end of transmission) 4
BELL (rings bell in teletype) 7
LF (line feed) 10
CR (carriage return) 13
RUB - OUT (tape use only) 127

BASIC Code No.

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Notes: (1) This is not a complete list - there are 128 characters numbered 0 through 127.
Some of these numbers duplicate the above (on some teletypes) and some are just
spaces.

(2) The EOT character will hang up the phone if it is sent to a Model 33 Teletype.

43

DATA, INPUT, and MAT INPUT Statements

In the DATA statements numbers and strings may be intermixed. Numbers will be assigned
only to numerical variables, and strings only to string variables. strings in DATA statements
are recognized by the fact that they start with a letter. If a string does not start with a letter,
or contains a comma, it must be enclosed in quotes. For example:

90 DATA 10, ABC, 5, 114FG", tlSEPT. 22, 1967", 2

The only convention on INPUT is that a string containing a comma must be enclosed in
quotes.

With a MAT INPUT a string containing a comma or an ampersand must be enclosed in quotes.
For example:

tlMR. & MRS. SMITH", MR. JONES

is the correct format for a response to a MAT INPUT A$, B$.

In any of the three ways of getting string information into a program - DATA, INPUT, or
MAT INPUT - leading blanks are ignored unless the string, including the blanks, is enclosed
in quotes.

If in doubt use quotes; they will not cause any errors.

READ and PRINT Statements

strings may be read and printed in the usual manner. For example,

10 READ A$, B$, C$
20 PRINT C$; B$: A$
30 DATA lNG, SHAR, TlME
40 END

will print the word "TIME-SHARING." Note that the effect of ';' in the print statement is
consistent with that discussed in the section on PRINT; that is, with alphanumeric output
the semi-colon causes close packing whether that output is in quotes or is a string variable.
(In contrast, recall that with numeric output the semi-colon causes space to be left between
the numbers printed.) Commas and TAB's may be used as in any other PRINT statement.
The loop

70 FOR I ; 1 TO 12
80 READ M$(I)
90 NEXT I

will read a list of 12 strings. In place of the READ and PRINT, the corresponding MAT
instructions may be used for lists. For example, MAT PRINT M$; will cause the elements of
the list to be printed without spaces between them.

As usual, lists are assumed to have no more than 10 elements; otherwise a DIM statement
is required.

Note: Numeric and string data are kept in two separate blocks, which act independently
of each other. The command RESTORE will restore both numeric and string data. RESTORE*
will restore only the numeric data. RESTORE$ will restore only the string data.

DATA FILES
Data files may be used by BASIC language programs. Files may be created from the tele
typewriter, saved, listed, and edited. Under program control, files may be read or written

44

DATA FILES

for further use by the same or other programs. The end of data condition can be tested,
and file rewinding, appending, backspacing, and other capabilities are provided.

Initial File Preparation

A data file must be prepared in advance and saved in your catalog before being used in
a program.

If a file with initial values is to be read, you must prepare it before program execution and
save it.

Example (user-supplied data is underline):

NEW
NEW rILE NAME-- RrILE
READY
10 1#2#3#4#5#6#7
20 8#9# 10# 11# 12# 13# 14
SAVE
READY

Note that the word DATA is not needed in these files. The first number on each line is the
line number. The comma is the standard data delimiter. You can specify a non-standard
delimiter, as described on page 57.

If a file is to be written during program execution, you must have previously saved it in
your catalog. At the minimum, the file must contain one line number followed by a space.
In Mark n BASIC you do not have to preset the size of the file. File size is limited to
50400 characters of source program.

File Reference

Before the first use of any files in a program, their names must be specified in a file
reference statement. The form of the file reference statement is

FILES name 1; name 2; ••. ; name n

or

FILES name 1, password; ••• ; name n, password

You can reference up to eight files in any program. If you reference more than eight
files, the error message TOO MANY FILES will be printed out.

Multiple FILES statements are permitted, as long as the total number of files referenced
does not exceed eight.

File naming must conform to the conventions for naming programs except:

• File names must not contain semicolons. Semicolons are interpreted as file separators.

• Leading spaces are ignored.

• File names should not contain slashes, 11/", or commas, II,".

An asterisk may be used in place of a file name in the FILES statement, so that the file may
be designated at a later time (see FILE statement, page 56). The file used to replace the
*-designated file must already be saved in the same catalog.

45

Example:

10 FILES AJ*JCJDATA
20 READ (Ilb A, B, C
30 FILE 112, "S"
40 SCRATCH #2
50 WRITE 112.. A;SJC
99 END

The *-designated file must be replaced with a saved file before any operations can be done
on it.

File names may not appear twice in the same file reference statement.

File Designator
The file designator is a numeric argument used in all file input and output statements. It
selects the file to be used for the current operation.

The file designator is preceded by a number sign, "#e" It may be an integer, variable, sub
scripted variable, or arithmetic expression.

Example:

10 FILES AJBJC.D

20 READ It..)(

30 READ IF.. Y

40 READ 'H(I) .. Z

In statements 30, 40, and 50 above, the value of the designator specifies the file to be used.
For example, if the value of F in statement 30 were 2, a data item would be read from file B.

If the value of a variable, subscripted variable, or arithmetic expression used as a file
designator is a non-integer, the truncated value is used as the designator.

File Modes
All files to be processed by BASIC must be considered as being in either read mode or write
mode. A file in the read mode cannot be written. A file in the write mode cannot be read.
Initially, the FILES statement results in all files being set to read mode. Before you can write
to a file, you must place it in the write mode by using a SCRATCH statement (see SCRATCH
Statement, page 55). To change a file from write mode to read mode, you must use a RE
STORE statement (see RESTORE Statement, page 55).

File Read
The form of the read file statement is

READ # file designator, input list

or

READ # file designator: input list

where the file designator is as described previously.

46

DATA FILES

The input list consists of the variables, separated by commas, into which the data in the file
is to be read. The list may contain non-string and string variables, and any of them may be
subscripted.

The following example shows the use of three files, RFILE, DATA, and STRING, by a pro
gram, READ.

Example (user-supplied data is underlined):

0LD
0LD FILE NAME--RFILE
READY
LIST

RFILE 18:56

READY

0LD
0LD FILE NAME--DATA
READY
LIST

DATA 18:56

10 1# 2.. 3.. 4.. 5.. 6.. 7
20 8 .. 9 .. 10# 1 1.. 12# 13.. 14

READY

0LD
0lD FILE NAME--STRING
READY
lIST

STRING 18: 57

10 ABC.. DEF.. GHI .. JKL.. MN0.. PQR# STU# VWX.. YZ

READY

0LD
0lD FILE NAME--READ
READY
LIST

READ 19:01

100 FILES RFILEJDATAJSTRING
110 F0R I :: 1 T0 7
J20 READ #J#ACI) .. BCI)
J30 PRINT ACI) .. BCI)
J40 NEXT I
150 PRINT
1.60 PRINT
170 READ #2# T# U# V# X# y# Z
J80 PRINT TJ UJ VJ XJ YJ Z
190 PRINT
200 PRINT
21 0 F0 R X = 1 T0 9
220 READ H3#C$(X)
230 PRINT C$(X)
240 NEXT X
999 EN 0

47

READY

READ

I
2
3
4
5
6
7

19: 02

1.5
2.5
3.5
4.5
5.5
6.5
7.5

2 3 456

ABC
DEF'
Gil
JKL
M'J0
PQR
STU
VWX
YZ

For each execution of the READ statement, one value is read into the variable specified in
the input list. If the entire file has not been read, the file pointer will remain positioned fol
lowing the last read data item until additional statements designating that file are executed.
For instance, in the example, if in the program READ you added a statement:

175 READ '2. R. S. T

R, S, and T would have the respective values 7, 8, and 9 assigned to them from the file DATA.
Then the file DATA would have the pointer positioned at 10, the next data item in the file.
Notice that the line number is not part of the data read by a READ statement.

Reading Internal Data
Zero will be accepted as a file designator in the READ statement. A READ statement with
zero as a file designator refers to data contained inside the program in a DATA statement.

Example:

10 READ flO. A. B" C
20 DA TA 1. 2. 3
30 PRINT AJ BJ C
99 END

RUN

ZER0 19: OS

2 3

There is an important difference between reading internally with a READ #0 statement to
read DATA, and using a READ :# statement with a file designator other than zero to read
from an external data file. When reading internally, string and pon-string variab1e§ in th~

input list need not have the same order as string and QQ"I!:!t~i?~ ~t~~.. in.. the DATA state~erit.
.....-....

',.Exa_~l:?~
10 READ fJO.A"G$"8,,H$.C
20 DATA t. ABC. 2. DEI'. 3

or

10 READ #0. A" B" C. G$. H$
20 DATA 1. ABC. 2. DEI'. 3

48

DATA FILES

In both cases in the above example, the data items will be read correctly, with A, B, and C
having values of 1, 2, and 3, and G$ and H$ having values of ABC and DEF.

But when reading an external file there must be a one-to-one correspondence between string
and non-string items in the file and in the input list. Otherwise an INCORRECT FORMAT
error message will be printed out.

Example (user-supplied data is underlined):

MIX 08:21

k EADY

NEW
NE\oI fiLE NAME-- READMIX
k EADY
10 fILES MIX
20 READ #I#A,GS#B,HS#C
30 PRINT AJG$JBJH$JC
99 END

RUN

READMIX 08:20

1 ABC 2 DEr 3

The file MIX is correctly read. But if you change line 20 to put all the non-string variables
in the input list (A, B, and C) before the string variables (G$ and H$), the file cannot be read.

Example:

10 fILES MIX
20 READ #l,A#B#C,GS#H$
30 PRINT AJG$JBJH$JC
99 END

kUN

READMX 08:22

INC0RRECT r0RMAT IN fILE MIX

File Write

The form of the write file statement is

WRITE # file designator, output list

or

WRITE # file designator: output list

IN 20

where the file designator is as described previously.

49

The output list consists of variables, arithmetic expressions, or strings, separated by
commas or semicolons, that indicate the data from which the file is to be generated. The
variables may be either numeric or string, and any of them may be subscripted.

Example:

25 WRITE #1.Bh4.S*CC/O)."STRING..·.GS(6)

The WRITE # statement generates one line of output unless the teletypewriter line limit is
exceeded or the last output list item is followed by a comma or a semicolon. When the line
limit is exceeded, writing will continue on the next line with the next item of data. When the
last item in the output list is followed by a comma or a semicolon, subsequent writing occurs
on the same line if space is available. This arrangement permits listing the file on the tele
typewriter.

The WRITE # statement generates a file beginning with line number 100, and increments by
10 for each additional line. The standard field delimiter, the comma, is used.

The format conventions of the regular PRINT statement apply to the WRITE # statement. The
comma and semicolon, used to separate data items in the output list, cause the data to be
written in regular or close-packed format. The TAB function can be used. But in counting for
tabbing the line number is not included.

Example (user-supplied data is underlined):

Note--Files DATA and STRING are as shown on page 47.

10 FILES DATAJSTRINGJA
20 READ #1.A.B.C.D.E.F.G
30 READ #2ITS,USIVS,WS,XS,¥S,ZS
40 SCRATCH #3
50 WRITE #3.A.B.C.DIEIF.G
60 WRITE #3.AJBJCJDJEJFJG
70 WRITE #3ITS.US.VS.WSJXSJYSJVS
99 END

RUN

XAMPLE 08:44

USED .54 UNITS

0LD
0LD FILE NAME--A
READY
LIST

A 08:46

100 I. 2 I 3 #

110 6 I 7 •
I 20 1, 2 • 3 • 4 • 5. 6 • 7 •
130 ABC. DEF. GHI.

Example using TAB:

10 FILES Z
20 READ 'l.A,B.C
30 PRINT TAB(2)JA,TABCIS),B.TABC30)JC
99 END

RUN

4 • 5 •

JKL, MN0. PQR, GHI,

50

ZREAD 15rll

2 3

DATA FILES

A zero file designator used with a WRITE# statement will be accepted and cause the file to
be written to the teletypewriter. In this case no SCRATCH statement is required, and no line
numbers are supplied.

Example (user-supplied data is underlined):

10 FILES DATA. A
20 READ 'I.A.8.C.D.E.F.G
30 WRITE 'O.A.B.CJD.E.F.G
99 END

RUN

ZER0DES 151 15 121'061'68

1.2.3 • .,.5.6.7.

Reading with INPUT Statement

An alternative method for reading data from a file is provided by the INPUT statement. The
form of the INPUT statement is

INPUT # file designator, input list

or

INPUT # file designator: input list

where the file designator and input list are as previously described.

The INPUT statement, unlike the READ statement, does not ignore the line numbers of a file.
It treats line numbers as data items.

Example:

If file B contains
1 0 1. 2. 3• .,. 5

then the program
10 FILES 8
20 INPUT 'I.A.8.C.D.E
30 PRINT AJ8.CJD.E
99 END

will give a printout
10.1.2.3• .,.5

This happens because the line number is treated as part of the first data item, 1. If B con
tained

10 2 3 ~

then the printout would be

10 I 2 3 4

with the line number being assigned to the variable name A. Thus when using the INPUT
statement, you must include a delimiter immediately following each line number in the file.
Otherwise the line number will be taken as part of the first data item on the line, with any
imbedded spaces ignored. To avoid the inclusion of the line number in the first data item,
INPUT statements should be used primarily with files that were written by the PRINT state
ment.

51

When using the INPUT statement to read data from a file with no line numbers or delimiters
(see Writing with PRINT statement, below), you must specify a blank delimiter. Otherwise
the file will not be read correctly.

Example:

If file B contains

1 2 3 4 5

then the program

10 FILES B
15 DELI MIT , I • ()
20 INPUT II.A.B.C.D.E
30 PRINT AJB.C.D.E
99 END

will produce

2 345

Writi ng with PR INT Statement

A file may be written without line numbers or delimiters by using the PRINT statement. The
form of the PRINT statement is

PRINT # file designator, output list

or

PRINT # file designator: output list

where the file designator and output list are as previously described.

The PRINT statement has the same result asthe WRITE statement, except that no line num
bers or delimiters are written.

Example (user-supplied data is underlined):

10 FILES DATA. B
20 READ II.A.B.C.D.E.F.G
30 SCRATCH 12
40 PRINT 12.A.B.C.D.E'F'G
99 END

RUN

PFILE

USED

15135

.36 UNITS

0LD
0LD FILE NAME--B
READY -
LIST

B 15136

234\ 5 6 7

In general, you cannot WRITE to a file to which you have been printing. But you can PRINT
to a file to which you have been writing.

52

DATA FILES

MAT READ Statement

Data in matrix for may be read from a file with the MAT READ statement. The form of the
statement is

MAT READ # file designator, input list

or

MAT READ # file designator: input list

where the file designator is as previously described and the input list contains matrix names.

The MAT READ statement will readfrom the designated file the matrices specified in the list.
The file must have line numbers. Matrices in the list should have their dimensions specified,
either in a DIM statement or in the MAT READ statement itself. When no dimensions are
specified, a 10 x 10 matrix is assumed.

Data is read from the file in row-wise sequence. A zero file designator will cause the data
to be read from an internal DATA statement.

Example:

10 FILES MATAIMATB
20 DIM C<3.3).DCS.7)
30 MAT READ II.C.D
99 END

In this example, the matrices C and D, dimensioned 3 x 3 and 5 x 7, will be read from the file
MATA. Since data is read in row-wise sequence, if MATA contains

1, 2, 3, ..• , 44

then matrices C and D will contain

I 2 3 10 11 12 13 14 IS 16
4 5 6 17 18 19 20 21 22 23
1 8 9 24 25 26 27 28 29 30

31 32 33 34 3S 36 37
38 39 40 41 42 43 44

Here is an example of reading from an internal DATA statement.

Example:

I 0 01 M XC 4. 6) • Y<3.5)
20 MAT READ lO"X.Y
25 MAT PRINT XJYJ
30 DATA 1.2.3. 4. S. 6" 7.8" 9. 10. II. 12. 13. 14. I Sol 16. 17. 18. 19.20.21. 22
40 DATA 23.24.25.26.27.28.29.30.31.32.33.. 34.. 35.. 36. 37. 38.39.40.. 41
99 END

In this example, matrix X will contain

123
7 8 9
13 14
19 20

456
10 II 12

15 16 17 18
21 22 23 24

53

Here is an example where no dimensions are specified for the matrix.

Example:

10 FILES MATA
20 MAT READ 'I.X.Y
30 MAT PRINT XI
.,0 PRINT
SO PRINT
60 MAT PRINT rl
99 END

Since no dimensions are specified for X and Y, each is assumed to be a 10 x 10 matrix. If
there are not enough data items in file MATA to complete a 10 x 10 matrix, matrix X will be
filled out with zeroes. The second matrix specified, Y, will then also be filled with zeroes.
If MATA contains

1,2,3,4,5,6,7,8,9

then the above program will read X as

I 2 3 .0 5 6 7 8 9 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

and will read Y as

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Q 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

The dimensions can be specified in the MAT READ statement rather than in a DIM statement.

Example:

10 FILES DATA
20 MAT READ 'I,XC3,3)
30 MAT PRINT XI
99 END

Here, X will be read as a 3 x 3 matrix.

MAT WRITE Statement
Data in matrix form may be written to a file with the MAT WRITE statement. The form of
the statement is

MAT WRITE # file designator, output list

or

MAT WRITE # file designator: output list

54

DATA FILES

where the file designator is as previously described and the output list contains matrix names.

The MAT WRITE statement will write the matrices specified in the output list to the desig
nated file. You cannot specify the dimensions of the matrices in the MAT WRITE statement.

Data is written to the file in row-wise sequence, and may be either packed or unpacked. A
zero file designator will be accepted and will refer to the teletypewriter.

In the following example, the matrices X, Y, and Z will be read from file A, and then written
in matrix form to files Band C. Matrices Y and Z will be tightly packed.

Example:

10 FILES AJBJC
20 DIM XC3,3),yeJi.6) .. ZeS.1)
30 MAT READ 'l,X.. Y.. Z
Jj 0 SCRATCH '2
SO SCRATCH 13
60 MAT WRITE 12,X.. YJ
70 MAT WRITE 13.. Z.
99 END

REST.¢RE Statement

The REST(>RE statement causes the data pointer for the designated file to be repositioned at
the beginning of the file. The form of the statement is

REST(>RE # file designator

where the file designator is as previously described.

In addition to repositioning the data pointer, the REST¢)RE statement resets the file to the
read mode. This makes it possible to read a file that has been previously written by the same
program, or to read the same data more than once during a program run.

In the following example, line 40 will read the same values from the file DATA that were read
by line 20. Line 70 sets file B to the read mode and the data pointer at the beginning of the
file.

Example:

10 FILES DATAJBJC.D
20 READ 61 .. X.V.. Z
30 RESTeRE 1 I
JiO READ Il .. M.. N.. e
SO WRITE lO,M.N.. 0,X,V.. Z
99 END

RUN

RES

I ..
3 •

16106

2 .. 3 .. 1 • 2 ..

SCRATCH Statement

Files specified in a program are initially opened in the read mode. Before you can write to
a file, it must be placed in the write mode. This can be done with the SCRATCH statement.
The form of the statement is

SCRATCH # file designator

55

where file designator is as previously described. When a file is scratched, all data that was
contained in the file before is lost.

In the following example, line 20 places file B in the write mode and positions the data pointer
at the beginning of the file.

Example:

10 FILES AJBJC

20 SCRATCH 12

99 END

FI LE Statement

The identification of a file by a particular file designator may be changed within a program
by use of the FILE statement. The form of the statement is

FILE # file designator, IIfile name"

or

FILE # file designator: IIfile name"

or, if the named file has a password,

FILE :# file designator, "file name, password"

or

FILE :# file designator: IIfile name, password"

The following example illustrates use of the FILE statement.

Example:

10 FILES DATA.A.S
20 READ II .. X#Y#Z
30 READ 13# Q" R. S
40 FILE '3. "STRING"

60 READ 13" T. U.. V
99 END

In the example above, the file specified by the file designator 3 is changed from file B to the
file STRING, using the FILE statement in line 40. Line 30 has already indicated that file B
was to be read. Line 40 specifies that the file designator 3 will now indicate file STRING.
Thus, in line 60, T, U, and V are assigned values from file STRING.

The file name used in a FILE statement may be a regular file name enclosed in quotation
marks, as above; an asterisk enclosed in quotation marks; or a string variable, which may
be subscripted.

Example:

10 FILES AI B
20 FI L.E '2••t •••

56

DATA FILES

In this example the use of the tt*" closes file A, which means that file A cannot be used
unless it is named in another file reference statement. The asterisk, when used as the file
name, invalidates the associated file designator--2 in the example--until it is validated by a
subsequent file statement.

The following example illustrates the use of a string variable as a file name in a FILE state
ment.

Example:

10 FILES AlBIC
20 LET XS II "DATA"
30 FILE #2.XS

In this example X$ is assigned the value of a file name, DATA. In line 30 file designator 2 is
changed to specify the file DATA instead of the file B. The file DATA must already have been
saved in the user's catalog. Note that in line 30 X$ is not enclosed in quotation marks.

The file named in a FILE statement cannot appear in a file reference statement in the same
program, unless the file has been released before its use in the FILE statement.

Example:

10 FILES DATAIAIB
20 FILE 12,"DATA"

This example will cause an error message to be printed out, because DATA appears in the
file reference statement and is not released before its use in line 20. A file cannot be opened
twice in succession without being released in the interval.

In the following example, line 20 replaces DATA with C, and therefore DATA can be used in
the later FILE statement, line 30.

Example:

10 FILES DATA.A.S
20 FILE II.-C"
30 FILE 12."DATA"

DELI MIT Statement

The standard delimiter used to separate items when reading from or writing to a file is the
comma. Sometimes it may be useful to have a non-standard file delimiter. Non-standard
delimiters are specified by the DE LIMIT statement. The form of the statement is

DELIMIT # file designator, (character)

or

DE LIMIT # file designator: (character)

or

DE LIMIT # file designator, (abbreviation)

or

DE LIMIT # file designator: (abbreviation)

where the file designator is as previously described, and the character is the non-standard
delimiter to be used. The abbreviation is used for a non-printing character such as a line
feed. Abbreviations for non-printing characters are those used in the USA standard Code

57

for Information Interchange, and in common use: LF for line feed, CR for carriage return,
etc.

Example (user-supplied data is underlined):

NEW
NEW FILE NAME-- DEL
READY
10 FILES DATA. B
20 READ #l,A.B,C.D,E,F
30 DELIMIT #2,(LF)
~O SCRATCH '2
50 WRITE .2.AJBJCJDJEJF
99 END
RUN

DEL 16113

USED .~O UNITS

fJLD
0LD FILE NAME--~

READY
LIST

B

100
2

3

1611 ~

5
6

Whenever a file with a non-standard delimiter is to be read or written, the non-standard
delimiter must be specified in a DE LIMIT statement before the READ or WRITE statement.
The PRINT statement will write the specified file with no delimiters or line numbers, re
gardless of whether non-standard delimiters or the comma are used.

Example:
DEL 16: 17

10 1&2&3&4&5&6&7

READY

0LD
SLD FILE NAME--DELTEST
READY
LIST

DELTEST 16118

10 FILES DELI DATA
2 0 DELI MI TIl, (&)

30 READ '!lA,B,C.D,E.F
~O PRINT AJBJCJDJE.F
99 END

READY

~

DELTEST 16118

2 3 .a 5 6

58

DATA FILES

In the above example, line 20 is required to specify the non-standard delimiter used in file
DEL. If it were not present, an INCORRECT FORMAT message would be printed out upon the
attempt to execute the READ statement in line 30.

A zero file designator will be accepted and interpreted to refer to the teletypewriter.

Example (user-supplied data is underlined):

NEW
NEW FILE NAME-- DEL2
READY --
I 0 FILES DATA
2 0 READ , I ~ A.. B, C, D, E, F, G
30 DELIMIT '0.. (&)

40 WRITE 'O,AJBJCJDJEJFJG
99 END
RUN

DEL2 16120

1 & 2 & 3 & 4 & 5 & 6 & 7 &

APPEND Statement

Data may be added to a file with the APPEND statement. The form of the statement is

APPEND # file designator

where the file designator is as previously described.

The APPEND statement causes the data pointer for the designated file to be located after the
last item of data in the file, and sets the file to the write mode. This allows you to release,
recall, and write to files without losing previously stored data.

In the following example, X, Y, and Z$ are written to file B following any data already in the
file.

Example:

1 0 FILES AJ BJ C
20 READ 'I.X.Y.ZS
30 APPEND '2
40 WRITE '2.X.. Y"Z$
99 END

MARGIN Statement

The MARGIN statement enables you to specify the rightmost character position for a desig
nated file. The form of the statement is

MARGIN # file designator, expression

or

MARGIN # file designator: expression

where the file designator is as preViously described, and the expression is evaluated to de
termine the value at which the right margin is to be set.

The following program will write file A with the right margin set at character position 25.

59

Example:

10 FILES A
20 SCRATCH '1
30 MARGIN 11,25
40 F8R X D 1 T0 60
50 WRI TE II,XJ
60 NEXT X
99 END

If line 30 in the above example were

30 MARGIN 11,C*D

then the value of the expression C*0 would determine the right margin for file A. The integer
part of the value is taken. If in the example the value of C*D is 28.365, the margin in file A
will be set to 28.

Zero will be accepted as a file designator, and will indicate the teletypewriter. For files
other. than the teletypewriter, the maximum margin size cannot exceed 118. A margin of 118
will be set if a greater value is used. A margin size of 0 will generate a margin of 118 for
files other than the teletypewriter. For the teletypewriter, in this case the margin is as
sumed to be infinite.

IF END Statement

The IF END statement enables you to test, when reading a file, for the end of data, or, when
writing a file, for the end of file space. The form of the statement is

IF END # file designator THEN line number
>

or

IF END # file designator: THEN line number

or

IF END # file designator, THEN line number

When reading a file, the IF END statement tests the designated file to determine whether any
valid data items remain. If not, the indicated path is taken.

Example:

If file B contains

then the program

10 FILES 8
20 READ II,A
30 PRINT AI
40 IF END II THEN 60
50 60 T0 20
60 PRINT ''BUT BF DATA IN NUMBER 0NE"
99 END

will produce the result

2 3 4 5 6 7 0 0UT 0F DATA IN NUMBER eNE

60

DATA FILES

In the above example, after the eighth time the READ statement in line 20 is executed, the
IF END statement finds that no valid data remains in file B, and the indicated path to line 60
is taken.

Example:

If file B contains

then the program

10 FILES B
20 READ 'I~A~B~C

30 PRINT AI BJ CJ
40 IF END II THEN 60
SO G0 T0 20
60 PRINT "0UT 0F DATA IN 0NE"
99 END

will produce the result

2 3 4 5 0 0UT 0F DATA IN 0NE

In this example, the first READ in line 20 assigns variables A, B, and C the values of 1, 2,
and 3. The IF END statement then finds that there is more data in the file, and line 50 is
executed. The second READ in line 20 assigns the last two items in the file, 4 and 5, to the
variables A and B, and assigns the value 0 to C. The IF END test then finds that there is no
more data in the file, and the indicated path to line 60 is taken.

When writing to a file, you can use the IF END statement to test for the end of file space. If
the end of file space is detected, the indicated path is taken.

Example:

The program

10 FILES D
20 SCRATCH , 1
30 LET X = 0
40 LET X :3 X+ 1
SO WRITE 'I~XJ

60 IF END #1 THEN 80
70 G0 T0 40
80 PRINT "IF END TEST INDICATES END 0F FILE"
99 END

will repeatedly write the value of X to file D until the end of file space is detected by the
IF END statement in line 60. Then the path to line 80 will be taken, and IF END TEST IN
DICATES END OF FILE will be printed out.

IF M0RE Statement

The IF M(>RE statement enables you to test, when reading a file, for more data, or, when
writing a file, for more space. The form of the statement is

IF MORE # file designator THEN line number

or

IF MeRE # file designator, THEN line number

or

IF MeRE # file designator: THEN line number

61

When reading a file, the IF Mt>RE statement can be used to test whether there is any more
data in the file and to act upon the result of the test.

Example:

If file Y contains

then the program

10 FILES y,B
20 READ IhA.. B,C
30 PRINT AlBIC
~o IF MIRE #1 THEN 60
50 G9 T8 80
60 PRINT ·'MIRE DATA IN 'I"
70 G9 Te 20
8 0 PRI NT "RAN IUT"
99 END

will give the results

123
MIRE DATA IN II
~ 5 6

MeRE DATA IN #1
700

RAN eUT

In the above example, the last data item in the file, 7, was read on the third execution of line
20. Then the variables Band C were assigned values of zero, because there was no more
data after 7. The IF Mt>RE statement then found no more data in the file and caused RAN OUT
to be printed out. If lines 20 and 30 in the above example were:

20 READ II .. A
30 PRINT A

then the program would have produced the results:

I
MeRE DATA IN #1

2
MIRE DATA IN #1

3
""RE DATA IN '1

4
MeRE DATA IN #1

5
M8RE DATA IN '1

6
M8RE DATA IN '1

7
RAN eUT

When writing to a file, the IF Mt>RE statement can be used to test whether there is room to
write any more to the file, and to act upon the result of the test.

Example:

The program

10 FILES B
20 SCRATCH '1
30 LET X :a I
40 LET X :I X+I

62

DATA FILES

SO WRITE 'l.X
60 IF MIRE '1 TMEN 40
70 PRINT "Ne HeRE ReIH"
99 END

will print, after file B is completely filled

Ne MeRE RIIM

The program writes X to file B as long as the IF M(>RE statement in line 60 finds that more
space remains in the file. When the file is full, the IF M(>RE detects the end of space and
causes N(> M(>RE R(>(>M to be printed out.

BACKSPACE Statement

The BACKSPACE statement, when used while in the read mode, causes the data pointer to
be stepped backward over one delimiter (and line number if present) to the previous data
item. When used while in the input mode, the BACKSPACE statement causes the data pointer
to be stepped backward to the beginning of the current line. Files being printed or written
cannot be backspaced and then written to, because backspacing places the file in the read
mode. The form of the statement is

BACKSPACE # file designator

You can use this statement to backspace to a particular data item or 'to the beginning of a
file.

Example:

If the file DATA contains

I 0 1" 2" 3" 4. 5" 6" 7.8
2 0 9" J 0" J 1. J2" I 3" 14. I s. J 6

then in the program

10 FILES DATAl B
20 READ IJ"A"B"C.D
3 0 BACK SPACE , I
40 READ 'I"E"F"G"H
99 END

line 20 will read the values 1, 2, 3, and 4 into variables A, B, C, and D, and the data pointer
will be advanced to the next item, 5. Line 30 will then backspace the data pointer to the
previous item, the number 4. Line 40 will then assign values of 4, 5, 6, and 7 to variables
E, F, G, and H.

It is possible to backspace past the beginning of a file. When this happens, the first line in the
file is used again and again.

Example:

J 0 FILES DATA
20 READ '1"A"B"C"D"E"F.G.H"I"J"K"L"M"N,,0
3 0 FeR x II I T0 16
40 BACKSPACE II
SO NEXT X
60 READ 'I"R"S"T
99 END

In the above example, after line 20 the data pointer is positioned to indicate 16, the next item
in the file. The loop in lines 30-50 backspaces 16 times, mOVing the data pointer past the be
ginning of the file. This causes the data pointer to begin backspacing from the end of the first
line of data. In this case, the pointer will indicate 8, and line 60 assigns the values 8, 9, and

63

10 to R, S, and T. If the backspace loop had been greater, the first line of data in the file would
have been repeatedly backspaced over and the data pointer would have been positioned at some
item in the first line.

The following example illustrates backspacing of a file in the input mode.

Example:

10 FILES DATA
20 INPUT #IIA.. B.. C.. D.. E.. F.. G,H
30 BACKSPACE '1
40 INPUT '1 .. I .. J.K.. L.M.. N.0.. P
50 PRINT "FIRST SET IF VALUES"
60 PRINT A.B.C.O.E.F.G.H
70 PRINT
80 PRINT "SEC0ND SET 0F VALUES"
90 PRINT I.J.K,LJMJN.0,P
99 END

RUN

x 16159

FIRST SET IF VALUES
101 2 3 4 5 6 7 8

SEC0ND SET SF VALUES
101 2 3 4 5 6 7 8

Note that in the above example the line number is included in the first data item.

64

COMPILATION ERRORS

Appendix A-Error Messages

Because most programs contain errors, a series of diagnostic messages is included in
BASIC. Some of these messages occur during compilation and others during execution of a
program. Many of the messages not only identify the type of error, but indicate the line
number where the error occurred. We expect that as the development of the BASIC language
continues these error messages will be revised.

During execution, certain messages occur which do not stop execution, but inform you of
irregular conditions existing in identified lines of your program. Other messages, however,
point out serious errors which stop execution.

COMPILATION ERRORS

MESSAGE

CUT PR0GRAM 0R DIMS

DIMENSI0N T00 LARGE
AT (LINE #)

END IS N0T LAST

EXPRESSI0N T00 C0MPLICATED
IN (LINE #)

FOR'S NESTED T00 DEEPLY
AT (LINE #)

F0R WITH0UT NEXT IN (LINE #)

ILLEGAL CHARACTER IN (LINE #)

ILLEGAL C0NSTANT IN
(LINE #)

MEANING

Either the program is too long, or the amount
of space reserved by the DIM statements is
too large, or a combination of these exists.
This message can be eliminated by cutting
the length of the program, reducing the size
of the lists and tables, reducing the length of
of the lists and tables, reducing the length of
printed labels, or reducing the number of
simple variables.

The size of a list or table is too large for the
available storage at the line indicated.

Self-explanatory; it also occurs if there are
two or more END statements in the program.

Too many operations have been attempted in
a single expression. Probably too many pa
rentheses have been used. Use two or more
simpler expressions instead.

Corresponding NEXT statement for preceding
F0R statement must occur before another
F0R statement can be used.

A NEXT statement is missing.

Use a valid character in place of an illegal
character.

More than nine digits or incorrect form in a
constant number, or a number out of bounds
(>1.70141E38).

65

MESSAGE

ILLEGAL F0RMULA IN
(LINE #)

ILLEGAL INSTRUCTI0N IN
(LINE #)

ILLEGAL LINE NUMBER
AFTER (LINE #)

ILLEGAL LINE REFERENCE
IN (LINE #)

ILLEGAL MAT FUNCTI0N IN
(LINE #)

ILLEGAL MAT MULTIPLY IN
(LINE #)

ILLEGAL MAT TRANSP0SE IN
(LINE #)

ILLEGAL VARIABLE IN
(LINE #)

INC0RRECT F0RMAT IN (LINE #)

INC0RRECT NUMBER 0F
ARGUMENTS IN (LINE #)

INC0RRECT NUMBER 0F
SUBSCRIPTS IN (LINE #)

MISMATCHED STRING 0PERATI0N
IN (LINE #)

MEANING

This may indicate missing parentheses, il
legal variable names, missing multiply signs,
illegal numbers, or many other errors.

Other than one of the legal BASIC instructions
has been used in the line indicated.

Line number is of incorrect form, or contains
more than five digits.

There is some character other than a number
in a transfer statement (such as a 00 T0>
where the line number should be.

A matrix function which is not possible has
been attempted.

A matrix has not been multiplied correctly.
MAT A = A*B is illegal.

A matrix has not been transposed correctly.
MAT A = TRN(A) is illegal.

An illegal variable name has been used.

The format of an instruction is wrong.

The number of arguments when defined must
equal the number of arguments when ref
enced.

Indicates a matrix with one subscript or a
vector with two.

You have attempted to combine two strings
algebraically, to compare a stringandanum
ber, or to assign a number to a string vari
able or vice versa.

*UNDEFINED FUNCTION FN
(LETTER) IN (LINE #)

NESTED DEF IN (LINE #)

NEXT WITH0UT F0R IN
(LINE #)

N0 END INSTRUCTION

SYSTEM ERR0R IN (LINE #)

T00 MANY C0NSTANTS AT
(LINE #)

T00 MANY FILES AT
(LINE #)

*UNDEFINED LINE NUMBER
(LINE #) IN (LINE #)

Multiple-line DEF's cannot be nested.

A NEXT statement has been used without an
accompanying F0R statement.

The program has no END statement.

An error in BASIC; please report to your IPC.

There are too many constants. Put some in
as DATA

More than 8 files are specified in a FILES
statement.

The line number appearing in a OOT0 or IF
THEN statement does not appear as a line
number in the program.

A function such as FNF () has been used
without appearing in a DEF statement. Check
for typographical errors.

*These errors are not detected until run- time initialization.

66

MESSAGE

UNFINISHED DEF

EXECUTION ERRORS

ABS0LUTE VALUE RAISED
T0 P0WER IN (LINE #)

CAN'T 0PEN FILE (FILE NAME) IN
(LINE #)

CAN'T WRITE FILE (FILE NAME)
IN (LINE #)

CHANGE ERR0R IN (LINE #)

DIMENSI0N ERR0R IN
(LINE #)

DIVISI0N BY ZER0 IN
(LINE #)

EXP T00 LARGE IN (LINE #)

ILLEGAL FILE C0MMAND F0R
(FILE NAME) IN (LINE #)

ILLEGAL FILE NAME 0R PASSW0RD
IN (LINE #)

ILLEGAL IVAL' ARGUMENT IN
(LINE #)

INC0RRECT F0RMAT IN FILE
(FILE NAME) (LINE #)

INC0RRECT F0RMAT--RETYPE IT

INVALID FILE NUMBER IN
(LINE #)

EXECUTION ERRORS

MEANING

A multiple-line DEF has not been ended with
FNEND.

A computation of the form (-3) , 2.7 has
been attempted. The system supplies {ABS
(-3» , 2.7 and continues.
Note: (-3) , 3 is correctly computed to give

-27.

You have tried to access a file that doesn't
exist.

Out of space.

In converting numerical code characters into
string characters, using the CHANGE state
ment, you have probably made an error in
the character count. Check the zero element
of the string.

A dimension inconsistency has occured in
connection with a MAT statement in the indi
cated line. Execution stops.

A division by zero has been attempted. The
system assumes the answer is + CD (about
1.70141E38) and continues running the pro
gram.

The argument of an exponential function is
> = 88.029. + CD (1.70141E38) is supplied for
the value of the exponential and the running
is continued.

You have tried to write to a file that has not
been set to the write mode, or read from a
file that has not been set to the read mode.

File name or password violates rules for
naming.

You have used something other than a numeric
argument in a VAL function.

You have tried to read a string with a nu
meric variable.

Correct the input data.

File number is less than 0 or greater than 8,
or otherwise outside the range of acceptable
file numbers, or the referenced file is not
open.

67

68

MESSAGE

L0G 0F NEGATIVE NUMBER
IN (LINE #)

L0G 0F ZER0 IN (LINE #)

N0T EN0UGH INPUT--ADD M0RE

0N EVALUATED 0UT 0F RANGE
IN (LINE #)

0UT 0F DATA IN (LINE #)

0UT 0F R00M AT (LINE #)

0VERFL0W IN (LINE #)

PR0GRAM HALTED

RETURN BEF0RE G(sUB
IN (LINE #)

SQUARE R00T 0F NEGATIVE
NUMBER IN (LINE #)

SUBSCRIPT ERR0R IN
(LINE #)

SYSTEM ERR0R IN (LINE #)

T00 MUCH INPUT--EXCESS
IGNORED

UNDERFL0W IN (LINE #)

MEANING

The program has attempted to calculate the
logarithm of a negative number. The system
supplies the logarithm of the absolute value
and continues.

The program has attempted to calculate the
logarithm of O. The system supplies - = (about
-1.70141E38) and continues running the pro
gram.

Self-explanatory.

The integer part of the variable in the 0N-G0
T0 statement is less than 1 or greater than
the number of line numbers supplied by the
statement.

A READ statement for which there is no
DATA has been encountered. This may mean
a normal end of your program. otherwise, it
means you haven't supplied enough DATA.
Execution stops.

The space reserved was not large enough.
Try a dummy DIM statement, such as DIM A$
(1000).

A number larger than about 1.70141E38 has
been generated. The system supplies + (or -)
co (about :'1.70141E38) and continues running
the program.

S or STOP was typed when a numeric input
was requested.

This occurs if a RETURN is encountered be
fore a G0SUB. (The G0SUB does not require
a lower statement number, but must be per
formed before a RETURN.) Execution stops.

The program has attempted to extract the
square root of a negative number. The sys
tem supplies the square root of the absolute
value and continues running the program.

A subscript has been called for that lies out
side the range specified in the DIM state
ment' or if no DIM statement applies, outside
the range 0 through 10. Execution stops.

An error in BASIC; please report to your IPC.

Self-explanatory.

A number in absolute size smaller than about
1.46937E-39 has been generated. The sys
tem supplies 0 and continues running the pro
gram. In many circumstances underflow is
permissible and may be ignored.

MESSAGE

USELESS L00P IN (LINE #)

ZER0 T0 NEGATIVE
P0WER IN (LINE #)

EXECUTION ERRORS

MEANING

Execution stops. Check the line indicated.

A computation of the form 0 1 (-1) has been
attempted. The system supplies + 0:> (about
1.70141E38) and continues running the pro
gram.

69

Appendix B-Limitations on Basic

There are no pre-assigned limitations imposed on BASIC, but limitations do exist related
to memory size. Certain combinations of BASIC language elements can generate a program
which exceeds memory size limits. The list below indicates the extent of some of these
limitations.

70

ELEMENT

Length of program

Constants

Data

00 T0 and IF-THEN statements

Lists and tables

OOSUB and DEF statements

Length of file

LIMITATION

Difficult to relate to the BASIC program, but
in general limited to about 6 to 8 feet of tele
typewriter paper filled with BASIC statements.

No definite limit.

No definite limit.

No definite limit.

No definite limit.

There may be no more than 100 nestings of
G0SUB or DEF statements, nor may any com
binations of G0SUB and DEF statements ex
ceed 100 nestings. A combination of these
statements could exist where a G0SUB state
ment called for a subroutine which contained
additional OOSUB or DEF statements.

50400 characters.

711224A (lOM) 12-68

•

·,..

Computer Centers and offices of the Information Service
Department are located in principal cities throughout the
United States.

Check your local telephone directory for the address and
II telephone number of the office nearest you. Or write ...

General Electric Company
Information Service Department
7735 Old Georgetown Road
Bethesda, Maryland 20014

GENERAL. ELECTRIC
INFORMATION SERVICE DEPARTMENT

	Preface
	Contents
	1. What Is A Program?
	2. A Basic Primer
	3. Advanced Basic
	Appendixes
	A. Error Messages
	B. Limitations on BASIC

