GE-625/635
- Programming
Reference Manual

GENERAL @3 ELECTRIC

CPB-1004F

NOTICE

For your convenience, the following Technical Information
Bulletins have been incorporated in this manual:
TIB No. 600-214

600-228
1004F -3

GE-625/635
Programming
Reference Manual

July 1964
Rev. April 1968

GENERAL @D ELECTRIC

Rev. July 1969

@ 1964, 1965, 1966, 1967, 1968, 1969 by General Electric Company

(3M 4-70)

CPB-1004F

PREFACE

The GE-625/635 Programming Reference Manual is the basic document for programming the

GE-625/635. It essentially describes programming-related GE-625/635 machine features, the
instruction repertoire, and the symbolic machine language oriented Macro Assembler. The
Assembler chapter and the examples in Chapter IV describe how the programmer may
write Processor instructions using a symbolic notation.

The Programming Reference Manual is one of a set of user publications for programming the
GE-625/635 computer. The others of the set, together with pertinent and necessary program-

ming information contained in each, are:

PUBLICATION

GE-625/635 FORTRAN IV
Reference Manual, CPB-1006

GE-625/635 COBOL
Reference Manual, CPB-1007

GE-625/635 File and Record Control
Reference Manual, CPB-1003
(GEFRCQC)

GE-625/635 Comprehensive Operating
Supervisor Reference Manual, CPB-
1195 (GECOS II)

GE~-625/635 Comprehensive Operatin
Supervisor GECOS-III Reference
Manual, CPB-1518

GE-625/635 General Loader
Reference Manual, CPB-1008,
(GELOAD)

PROGRAMMING INFORMA TION

FORTRAN IV language specifications, coding
rules and restrictions, and compiler informa-
tion for the GE-625/635

COBOL-61 Extended language specifications,
coding rules and restrictions, and compiler
information for the GE-625/635

Standard input/output coding by use of calling
sequences to software system input/output
routines.

1. Descriptions and functions of the Compre-
hensive Operating Supervisor modules and
submodules

Use of Operating Supervisor control cards

3. Coding for information exchange between
the programmer and the Operating Super-
visor

4. Alternative coding techniques for input/
output operations

5. Preparation of the user program fault
transfer table

1. Use of Loader control cards

2. Use of the Loader debugging option and
program segment overlays

3. Descriptions of relocatable and absolute
decks and their loading

CPB-1004F
Rev. October 1968

iii

PUBLICATION PROGRAMMING INFORMATION

GE-625/635 Sort/Merge Program 1. Descriptions of the sort and merge pro-
Reference Manual, CPB-1005 grams

9. Use of the sort/merge and supplemental
system MACROS

GE-625/635 Bulk Media Conversion Description of deck preparation for bulk media
Reference Manual, CPB-1096 conversion run

This reference manual is addressed to programmers experienced with coding in the
environment of a large-scale computer installation. It assumes some knowledge and
experience in the use of address modification with indirection, hardware indicators, fault
interrupts and recovery routines, macro operations, pseudo-operations, and other features
normally encountered in a fast, large memory capacity computer with a very flexible
instruction repertoire--under control of a master executive program. It is also assumed
that the programmer is familiar with the 2’s complement number system as used in a
sign-number machine.

Suggestions and criticisms relative to form, content, purpose, or use of this manual are
invited. Comments may be sent on the Document Review Sheet in the back of this manual
or may be addressed directly to General Electric Company, Information Systems Equipment
Division, C-83, 13430 North Black Canyon Highway, Phoenix, Arizona 85029.

This manual includes features implemented
in Systems Development Letter 2.

'CPB-1004F
Rev, October 1968

iv

I.

II.

CONTENTS

SUMMARY OF SYSTEM FEATURES, 1
Computer COmPOnents . . . v vttt vttt ettt e et e e e e e 1
Basic System and Functions. i, e 1
Memory Module. it it i e e e e 1
Processor Module ittt e e e e e 2
Input/Output Controller Module. . . v o v v v v vt e et e et e e 3
Peripheral Subsystems o it e e 3
Software System. e e 4
Objectives . . . v i i i e e e e e e e e e e e, 4
Multiprogramming . . v . v v v vt ittt e e e e e e e e e e e 4
On-Line Media Conversion v it vt vm it in o ie et e eennn 5
Centralized Input/Output i i it ittt et e e 6
Master/Slave RelationshiD. . . . v v v vt vt v e e e e e e e e e 6
Master Mode ENtry . . . oo i it ittt e et e e e e e e e e e 7
Mass Storage Orientation en.. 7
Program File Orientation, 7
Software Reference Documentationt n... 8
GE-635 PRCCESSOR e e e e e e e e e e e 9
General Characteristics i ittt ittt e e e 9
Major Functional Units oo it it i it it e e it e e e 9
Master/Slave Mode of Operationo i it v v e, 9
Operation Overlappingo v it ittt it ettt e et et i ae e 10
Address Range Protection oo vttt i 11
Execution of Interrupts i e . 11
Interval Timer i it i i it ittt sttt et e e 12
Registers . . oo i i e e e e e e e e e e 13
Program Accessible Registers. 13
Program Nonaccessible Registers, 15
Adders e e e e e e e e 16
Processor Indicatorsttt e 16
General e e e e e e e e 16
ZeroIndicator. e e e e e 17
Negative Indicator i i it e i et e e 17
Carry Indicator0 it i e e e e e e e 18
Overflow Indicator 0 ittt it it et e et ettt et e 18
Exponent Overflow Indicator00 nnu... 18
Exponent Underflow Indicator v v v vt it it e e e e e e 18
Overflow Mask Indicator e e e e e e e e e e e e e e e 18
Tally Runout Indicator. oo o i it ittt it et e e e en 19
Parity Error Indicator i 19
Parity Mask Indicator it i, 19
Master Mode Indicator i e . 19
CPB-1004F

Faull TrapS . .« v i v v vttt e st o n ot ot s e s m e oo ns o soessssoooeacs 20

Trapping Procedure vttt vt vt o ittt e it e e 20
Fault Categories v v v v it ittt it it ei i i s e i 20
Instruction Generated Faults et 21
Program Generated Faultsc0ii e 21
Hardware Generated Faults o v ittt i it i i i a oo 22
Manually Generated Faultsy 23

Fault Priority . .« v v v vttt et it it e e s it s st 23
Fault Recognition. . . . « v v v vt it it it i s it i et st e e 23
Instruction Counter (IC) . v v v v v v it it i vttt e i et e aenae e 24
The Number SYyStem . . « v v v v v v vt i v it et st ottt ne st a s en e 24
Representation of Information i 25
Position NUMbering . . « . v v v v vt v v vt vt et v o v oo o nnonseasons 25
The Machine Word . « v v v v vt v e vt v ettt st v o v onsaanoessonons 25
Alphanumeric Data v vttt it ittt e e 26
Binary Fixed-Point Numbersot onn 28
Binary Floating-Point Numberst 30
Normalized Floating-Point Numbersot 31
Decimal NUMDEIS . v v v v o vt o v ot s oottt a oo s o toanaesansssenss 31
INSEPUCHIONS. & v v v v v v v e e e et b e e et e e e e 32
Address Translation and Modificationt eeroeens 32
Address Translationottt ittt o te it inoeneseoonssns 32
Tag Field .. . vt it it i i it it et e ittt v et esoneennn 33
Modification TYPES . v v v v v vt ittt it e i ettt ae s oo st s s oo 34
Register Designator v v vt vt it v et e e eeiaaa sttt oo ean 35
Tally Designator . . .o v v v v i i ittt e vt et oot as o tsnesoesans 35
Address Modification Flowcharts ¢ o vt ittt it sosen 37
Explanation of Symbols Used on Flowcharts 39
Detailed Descriptionof Flowchartso 39
Calculation of Instruction Execution Timesottt vt e oo oo 42
The Instruction Repertoire ittt ittt 43
Format of Instruction Descriptiono 44
Abbreviations and Symbols ittt e e e e e e 45
Effective Address and Memory Locations 000 45
Register Positions and Contentso, 45
Memory ACCESSING .« . v v v v it vt i ittt et e 46
Floating-Point Arithmetic i ittt ii e 47
Descriptions of the Machine Instructions 48
Data Movement--Load v et o ovteennnoeennenesaasoss 48
Data Movement--Store . . . o v v v i vttt vt sttt vt a s ooooassesaoos 55
Data Movement--Shift v v v v it ittt it i ittt saasons 63
Fixed-Point Arithmetic--Addition.ttt i e 68
Fixed-Point Arithmetic--Subtraction v 76
Fixed-Point Arithmetic--Multiplication ¢ .00 83
Fixed-Point Arithmetic--Division.ttt ittt 85
Fixed-Point Arithmetic--Negate 87
Boolean Operations--AND ittt it ittt it e ittt ie s ne s 88
Boolean Operations-~OR ittt it ittt it ittt e e 91
Boolean Operations--EXCLUSIVE ORttt ii it ivannns 92
CompariSon--COMmMPATE .« « v v v v v vt v v s o o s v v s o v e ooneoennnssas 95
Comparison--Comparative AND0t ittt it vttt o vennnas 102
Comparison--Comparative NOT ittt 104
Floating-Point--Load vt ittt ittt ontnoteenensasas 105
Floating-Point--Storettt it ittt nonenson 106
Floating-Point--Addition it 107
Floating-Point--Subtraction i, 110
Floating-Point--Multiplication i i i i i i i 111
Floating-Point--Divisiont ittt 114
Floating-Point--Negatettt ittt ittt 118
CPB-1004F

vi

Floating-Point--Normalize vttt i ittt ittt ee e 118

Floating-Point--Compare . . . v v v v v vttt vt ettt et te e eee e e 119
Transfer of Control--Transfer v v it m o e enennnnn. 124
Transfer of Control--Conditional Transfer.o uu... 126
Miscellaneous Operationsttt i i it vt it b e teoene s 129
Master Mode Operations .,v'e'vvvensvnnnneeennneennnn. 145

III. SYMBOLIC MACRO ASSEMBLER--GMAP ittt ittt it nen s naen 149
General DesCription . o v v v v v vt vt ettt e e e e e e e e e e 149
Relocatable and Absolute ASSemblieS . . . v v v v vt v v vt o v et ee e 150
Assembly Language Programming vvv it oenennenneeeennns. 151
Location Field.o it ittt ittt it et e et et e e e e 151
Operation Field . . . v it i it it it it et ettt te e e e e e 151
Variable Field. o ot ittt it it ittt ettt et te ettt e 152
Comments Fieldttt it ittt e ettt e et e anen 152
Identification Field i ittt ittt ittt e et teene s 152
Symbolic Card Formatttt ittt it i s, 153
2410) - 153
Types of Symbols . . . i i e e e e e e e 154
Expressions in Generalttt e e 154
Elements . .. vt ittt ittt e e e e e e e e e e e 154
Terms and OpPerators v v v v v v v vt vt vttt ettt et ettt e teen e 154
Asterisk Usedas an Element vt i i ittt vttt oo enen e 155
Algebraic Expressions e s e e et e e ettt 155
Evaluation of Algebraic EXpressions v v v v vt i v vt v e oo e eene 155
Boolean ExXpressions . .o v v vt ittt tn vt ittt ettt 156
Evaluation of Boolean EXpressions v v v v v v vttt oo v o e neeenn. 156
Relocatable and Absolute EXpressions . . . v v v v v v e v o v s v e v e oo ee 157
Special Relocatable EXPressions . « v v v v v v v v vttt vt oot o ee e 158
Literals i e e e e e e e e e e 159
Decimal Literals v ittt ittt e it e et et e e 160
Octal Literals i it i i it vttt et st e e e e e e e 161
Alphanumeric Literals . . . v v v i vt it n e et e e e e e e 161
Instruction Literals ittt ittt it ittt et e 161
Variable Field Literals v ittt ittt ettt et i eennnn 162
Literals Modified by DU Or DL ittt ittt sttt et neennn 162
Operations and Operation Coding v v ittt vttt it it et e e 162
Processor Instructions o v i it it it i e s e e e e e e e 162
Address Modification Featureso ittt it m e e enenen.. 163
Register (R) Modificationo it vt ittt et e e e e e iee e 164
Register Then Indirect (RI) Modificationcu'euunuene... 166
Indirect Then Register (IR) Modification o' ovveuewn.o.. 167
Indirect Then Tally (IT) Modification. « . « v v v v v vt vt v e e e e e e e owns 169
Indirect (T) =I Variation . . v v v v v vt vttt ot o e e e te e on oo 170
Increment Address, Decrement Tally (T) = ID Variation 170
Decrement Address, Increment Tally (T) = DI Variation 171
Sequence Character (T) =SC Variationc0uouuvu.. 171
Character From Indirect (T) = CI Variation 172
AddDelta (T) = AD Variation . « « v v v v v v vt vt it vt et eeeeenens 173
Subtract Delta (T) =SD Variation . .« « v v v v v vt vt i e ot o et ne e 173

Fault (T) = FVariation uv ittt seieee e 173

Increment Address, Decrement Tally and Continue (T) = IDC Variation 174
Decrement Address, Increment Tally and Continue (T) = DIC Variation 174

Pseudo-0perations . ..o v v v v it it e e e e e e 175
Control Pseudo-Operations vt v i vt it it ittt et e asoeae e 176
Location Counter Pseudo-Operations v v evvn v eeenennn, 188
Symbol-Defining Pseudo-0perations « « v v v v v v v v e vt vt v et e e 190

CPB-1004F

vii

Data-Generating Pseudo-Operationsot 196

Storage-Allocation Pseudo-Operationsccovonn, 201
Conditional Pseudo-0Operations« oot vt ittt tnnsonenesas 203
Special Word FOrmats . . . v v v v v v v vttt i ittt sennssaaeans s 205
Address Tally Pseudo-Operations ccetteenennoeesoons 206
Repeat Instruction Coding Formatsc 00t cnn s 2017
Macro OpPerations . « v v v v v v v vt o v vt ittt bt n e o o e 208
51 oY L0 L 5 Lo o YA 208
Definition of the Prototype i ittt ittt i it teonenan 209
Usinga Macro Operation v iinntinneeeennroooeenesan 212
Pseudo-Operations Used Within Prototypes 214
Notes and Examples on Defining a Prototype 218
Program Linkage Pseudo-Operationscuouvuennonenneanss 220
CALL (Call--Subroutines)eeeeeuunoeoenanenenessos 220
SAVE (Save--Return Linkage Data) . . « v v v« e v v v v vt i it et et o ne s 221
RETURN (Return-From Subroutines)o eeveveenenennn 222
ERLK (Error Linkage--to Subroutines)ovv et nn 223
System (Built-In) MACROS and SymbOolS. « + « « v v v vt v et it eneennon 224
Source Program INPUL « v v v v v v v v v o v oo n s ceeneneetoteerasaenens 224
Activity Definition . .« « o v v vttt ittt e e e e e e 224
Compressed Decksot v i ittt ittt it et 225
Source Deck COrrections . .« c v v v v vt ottt et ot s o nnvsoosenssoas 226
AsSembly OutPULS .+ . v v v vttt e e e 228
Binary DECKS & v v v v v v v vt vt e seen et et e st oo 228
Preface Card FOrmat . . . v v v vt v o vt ot oo ot a s onoeessonnoesens 230
Relocatable Card FOormat o v o v vt o v vt ot v oot o nvnnsoeoenas 231
Relocation SCHEME . . v v v v v vt vt vt et oot st s e os e asasononas 232
Absolute Card Format ittt ittt v oeesonoeneonesas 233
Transfer Card Format it ittt ienenens 234
Assembly Listings vttt it i i e i et e e e 234
Full Listing Formato it v it ittt e it et st neteanoensas 234
Preface Card Listing it ittt o it o vttt enesosnsononneos 235
BLANK COMMON Entry . ..o vttt ot it oo vt enoeosssocesnsas 236
Symbolic Reference Tablettt i ittt nnnn 236
Error COAES . v v v v vt vttt vt e e s ot oo nonsososnensesosasnssas 237

IV. CODING EXAMPLES . .t ottt vt vaveoaennaneonnnsenoneenenneess 239
Preliminary v v v v ot v e et onneeenoneesonsssennosonsasonas 239
B &= 44}) Y- e T 239
Fixed Point to Floating Point (Integer)ottt as 239
Floating Point to Fixed Point (Integer)ttt venernns 240
Real Logarithm it ittt ittt i it tne toneeeannnas 241
BCD AdAition . ..o v v vt vt ittt tsneae s eonsoseasonenaennssas 243
BCDSubtractiont ittt ittt et nonaneeenansoses 244
Character Transliteration it i it ittt it eenn 245
Table LOOKUD . .« vt v v v ot ot vt oo oot o s a oo ononossseososesos 247
Binary to BCD . ot ittt ittt et it e | 249
CPB~1004F.

viii

APPENDIXES

A. GE-625/635 Instructions Listed by Functional Class with
Page References and Timingsttt it ittt ittt en e 251
B. GE-625/635 Mnemonics in Alphabetical Order with Page References 259
C. GE-625/635 Instruction Mnemonics Correlated with Their Operation Codes 261
D. Pseudo-Operations by Functional Class with Page References 263
E. Master Mode Entry, System Symbols, and Input/Output Operations 267
F. GE-625/635 Standard Character Seto i vt nn e ie i ee e 271
G. Conversion Table of Octal-Decimal Integers and Fractions 273
H. Tables of Powers of Two and Binary Decimal Equivalents 281
I. The Two's Complement Number SyStem v v vt vt vt e vt vt eene s 283
ILLUSTRATIONS

Figure Page
1 Block Diagram of Principal Processor Registers, 14
2 Table of Faultst i ittt ittt ittt 24
3 Ranges of Fixed-Point Numbersttt ienenennn. 29
4 Ranges of Floating-Point Numberst 31
5A Address Modification Flowchart 0. 37
5B Address Modification Flowchart 0., 38
6 GE-625/635 Macro Assembler Coding FOrm.ovuuuuun 153
CPB-1004F

ix

. SUMMARY OF SYSTEM FEATURES

The GE-600 Information Systems provide processing and input/output capabilities across
a wide performance range. Systems are tailored to the specific workload and processing
environment of an installation through the selection of the appropriate system model and
by the configuration of central system modules and peripheral devices. The particular
system model is determined by the speed of the central system components, and include
the GE-615 and GE-635 systems. The Comprehensive Operating System, GECOS*, is the
same for all models and configurations and provides 3-dimensional processing capabilities
from the smallest to the largest system.

SYSTEM MODELS

System modules differ only in terms of their speed of operation, not in functional capability.
The primary characteristics which identify each model are summarized in the following
table:

Memory No. of Words Instruction
System Cycle Time Per Memory Access Overlap
615 2 microseconds 2 No
635 1 microsecond 2 Yes

Comparative instruction execution times for each system model are shown in Appendix A.
Calculation of instruction execution time is shown on page 42.

COMPUTER COMPONENTS

Typical System and Functions

A typical GE-600 Line computer system offering the three dimensional processing capa-
bilities -~ batch, remote batch, and time-sharing -consists of the following components:

Memory module 128K, 1 microsecond
Processor module (GE-635)

The Input/Output Controller module
Peripheral subsystems

e

*GECOS - Trademark of General Electric Company, U.S.A.

CPB-1004F
Rev. July 1969

Each of the items perform specialized functions to be elaborated upon under separate
headings that follow., For purposes of this discussion, we consider the typical computer

system to be comprised of items 1 through 3 and the following complement of peripheral
devices:

A Disc Storage Subsystem (90M characters)
A Dual Magnetic Tape Subsystem

Two Printers

Communications Processor {(DATANET-30%)
Card Punch

Two Card Readers

Operator’s Console with Typewriter

This system can be expanded in a variety of ways to develop multiprocessor and multi-
computer systems that are restricted in size only by practical application considerations.
(The computer system itself is theoretically capable of unlimited expansion, see the GE-615/
635 Information Systems Manual, CPB-371),

Memory Module

The Memory module, unlike most computer systems which are processor-oriented, is the
overall system control agency. It serves as a passive coordinating component that provides
interim information storage and general system communication control. The module
comprises two major functional units: the System Controller and the Magnetic Core
Storage Unit. The principal featurs of the module and the performing units are:

FEATURE FUNCTIONAL UNIT

1. Control of the selection and enabling System Controller (eightpriority-linked channel
of theeight or fewer channels between control cells plus an associated mask register)
the Memory and Processor or Input/

Gutput Controller modules

*DATANET, Registered Trademark of General Electric Company, U.S. A

CPB-1004F
Rev. July 1969

1.1

FEATURE

Recognition of program interrupts
within the multiprogram environ-
ment

Selection of the type of Core Storage
Unit memory cycle to be used--Read-
Restore, Clear-Write, or Read-
Alter-Rewrite

Control of information transfers to
and from the Core Storage Unit and
on the selected system communica-
tion channel

Storage of information

Processor Module

FUNCTIONAL UNIT

System Controller (32 priority-relatedprogram
interrupt cells plus an associated mask register)

System Controller (control logic subunit)

System Controller (control logic subunit)

Magnetic Core Storage Unit

The Processor module is composed of two principal functional units: the Program Control

Unit and the Operations Unit.
are:

1.

Decoding of instructions and indirect
words with associated directions of
the Operations Unit

Development of effective addresses

Memory protection of all executive
routines and user programs not
currently under execution

Dynamic relocation of user and
other programs

Master and Slave Modes of operation
whereby in the Master Mode all
machine instructions can be executed,
but in the Slave Mode the LBAR,
LDT, SMIC, RMCM, SMCM, and CIOC
instructions cannot be executed

Performance of arithmetic, logical,
shifting, and other operations involv-
ing fixed- and floating-point numbers
in single or double precision

The chief

features of the module and the performing units

Program Control Unit (operations decoder)

Program Control Unit (address modification
registers, adder, location counter, and control
circuitry)

Program Control Unit (Base Address register
and adder)
Program Control Unit (Base Address register

and adder)

Program Control Unit (Master Mode Indicator
and mode control circuitry)

Operations Unit (control logic subunit, main and
exponent adders, and associated registers)

CPB-~1004F

Input/Output Controller Module

The Input/Output Controller module is the coordinator of all input/output data transfers
between the complement of peripheral subsystems and the Memory module. It is in fact
a separate processor which, when provided with certain required information from the
Comprehensive Operating Supervisor and the user program, works independently of the
Processor module under control of its own permanently-wired program.

The major functional units of the Input/Output Controller are (1) the Memory Interface,
(2) the Buffer Storage, (3) the Micro-Program Generator, (4) the I/O Processor, and
(5) the PUB* Interrupt Service. The main features of this module and the performing units
are:

FEATURE FUNCTIONAL UNIT
1. Transfer of characters and words Memory Interface (with the Buffer Storage as
to and from memory controlled by the Micro-Program Generator and

1/0 Processor)

2. Transfer of characters only to and PUB Interrupt Service (with the Buffer Storage
from the programmer-designated as controlled by the Micro-Program Generator
peripheral type and Comprehensive and the 1I/0 Processor)

Operating Supervisor selected
physical device

3. Memory protection of all executed 1I/O Processor (as controlled by the Micro-
routines and user programs, not Program Generator)
currently involved in input/output
operations, on all data transfers

4. Sensing and storing, in appropriate Micro-Program Generator and I/O Processor
input/output queue lists of executive
system (protected) memory, the
status of every peripheral operation
and/or device involved in input/
output transfers

Peripheral Subsystems

Peripheral subsystems used with the GE-625/635 are described in the following manuals:

GE-400/600 Series Punched Card Subsystems, CPB-1288
PRT201 Printer Reference Manual, CPB-1292

DSU200 Disc Storage Subsystem, CPB-4302

PTS200 Perforated Tape Subsystem, CPB-1100
MDS200/201 Magnetic Drum Subsystem, CPB-1123
Magnetic Tape Subsystems, CPB-1044

Seven/Nine Track Magnetic Tape Subsystems, CPB-1205

Noopene

* Peripheral Unit Buffer; that is, peripheral device channel

CPB-1004F

SOFTWARE SYSTEM
Objectives
The primary objectives of the GE-635 software system are:
1. To reduce user-program “turn-around” time in large-scale installations (elapsed
time from program submission to the machine room up to return of program solu-

tions).

2. To assure that accounting information is based only on such time as the user
program activity is worked upon by the Processor and peripheral devices

3. To increase the total “throughput” of the computer (the amount of work that may
be performed in any given time)

4, To reduce computer operation “overhead” time in running the installation pro-
grams

5. To provide easyto-use programmer and operator interfaces with the executive

software

The attainment of these objectives is achieved by the General Comprehensive Operating
Supervisor (GECOS) (the overall manager of the software system) through efficient use of
the hardware features and the supervision of a multiprogramming environment (which is
the normal operating mode of the GE-625/635). The significant features provided by the
Operating Supervisor as related to the several primary objectives above are summarized
in the list following. These features are implemented by the modules and submodules within
the Comprehensive Operating Supervisor.

1. Scheduling and coordination of jobs

2. Memory allocation for data and programs

3. Assignment of input/output peripherals

4. Input/Ouput supervision on an interrupt-oriented basis

5. File-oriented programming (instead of device-oriented)

6. Fault detection with standard Operating Supervisor or optional programmer-
supplied corrective actions

7. Modular construction to simplify maintenance
8. Maximum system throughput via multiprogramming
9. Maximum efficiency of core memory by dynamic program relocation, and by

system-controlled subprogram overlays

Multiprogramming

Although each user-programmer writes his job program as though he had exclusive use of
the computer, he is in fact generating a program that will reside concurrently in memory
with other user programs and will be executed in a time-shared manner; that is, any given
program is processed until it is held up (usually because of the need for some input/output

CPB-1004F

to be completed) at which time the next most urgent program is processed, Transfer between
programs under multiprogram execution is performed by means of the hardware interrupt
facility (in the System Controller) working with the Dispatcher routines in the Input/Output
Supervisor. The ways by which a user program can be temporarily delayed in execution
are:

DELAY TYPE REASON
Roadblock Program cannot progress until all input/output

requests have terminated

Relinquish Program relinquishes control so that some other
program may be executed

Forced Relinquish - Program was interrupted because a timer
runout occurred.

Each time a program yields control to the Operating Supervisor by means of Roadblock,
Relinquish or by Forced Relinquish listed above, the Supervisor has the opportunity to
give control to another program in core which can make effective use of the Processor.

In giving such control, the Supervisor examines the following conditions:

Program urgency compared to other programs that reside in memory

Roadblock status involving completion of all input/output

Completion of input/output that was pending when the last Relinquish was given
Request present for use of the Processor

b e

On-Line Media Conversion

Media conversions are of two basic types (1) bulk media conversion, whereby large volumes
of data in a single format and for a single purpose are processed and, (2) system media
conversion where low-volume sets of data--each with its own format and purpose--are
processed.

Bulk media conversion is performed by a system routine which may be called into execution
by use of a control card. Other control cards will direct the routine as to where to find
the input and where to place the output.

On-line media conversions for both input and output are performed as a normal part of the
multiprogramming environment of the GE-625/635. Normal job input is carried out by
input media conversion, which reads card input from the card reader, scans the control
cards for execution information, and records the job on the input queue located on the
system drum.

System media conversions of program output data are automatically performed by the
Output Media Conversion routine executed in protected memory. The programmer specifies
that a particular output file be written on the permanently assigned system output (SYSOUT)
file by use of the PRINT, PUNCH, or WTREC calling sequences described in the GE-625/635
File and Record Control Reference Manual. Once on the SYSOUT file, the output is converted
to hard copy or punched cards by the Output Media Conversion routine, concurrently with
other user programs under execution in the multiprogramming environment.

CPB-1004F

Centralized Input/Output

In the multiprogramming environment where several programs may concurrently request
input/output, a facility must be provided (1) for processing such multiple requests in terms
of the efficient use of the entire peripheral complement and, (2) for maintaining continuous
processing of the multiple programs in core storage. The Comprehensive Operating
Supervisor module that performs these general functions is the Input/OQutput Supervisor.

The main functions of the Input/Output Supervisor are to initiate an input/output activity
and to respond to the termination of an input/output activity. In addition, the Input/Output
Supervisor provides the following functions:

1. File code to physical unit translation

2. File protection of user files

3. Pseudo-tape processing on disc/drum

4. Supervision of all input/output interrupts

5. Queueing of input/output requests

6. Utilization of crossbarred magnetic tape channels

7. Maintenance of an awareness of the status of each peripheral

8. Accounting of time spent by the Processor and all peripherals for each program

executed

When the Input/Output Supervisor receives a request to perform an input/output function,
it looks at the communication cells and issues a connect instruction. If the particular
channel is busy, the request is placed in a waiting queue. If the request queue is full or
if the program indicated that it should be roadblocked until all input/output is complete, then
control is given to another program residing in memory.

When the input/output operation terminates, control is given to the Input/Output Supervisor
to perform all necessary termination functions. Atthis point, the request queue is examined
and if any requests for the channel are in queue, they will be executed.

Master/Slave Relationship

Each Processor has the capability of operating in the Slave Mode or in the Master Mode.
Master Mode is established for exclusive use by the Operating Supervisor. When executing
a user program, a Processor is in Slave Mode. The prime reason for the Master Mode of
operation is to protect the Operating Supervisor and user programs as well from modifica-
tion by other user programs. This feature is vital in the multiprogramming environment
and is closely tied in with memory protection, accounting determinations, multiprogram
interrupt management, intermodule communications control, and input/output operations.
Each of these functions is implemented by a Processor instruction that requires the Master
Mode. These are listed below.

All instructions available to the Processor in Slave Mode are available in Master Mode.
The following instructions can be executed only when the Processor is in Master Mode.

CPB-1004F

Load Base Address Register (LBAR)

Load Timer Register (LDT)

Set Memory Controller Interrupt Cells (SMIC)
Read Memory Controller Mask Registers (RMCM)
Set Memory Controller Mask Registers (SMCM)
Connect Input/Output Channel (CIOC)

Izl

The last of these instructions, Connect Input/Output Channel, is the beginning of every
peripheral operation. Thus, all peripheral operations are reserved for execution in Master
Mode, and in particular by the Input/Output Supervisor within the Comprehensive Operat-
ing Supervisor.

Master Mode Entry

Although Master Mode operation by the Procesor is a primary safeguard for executive
routines and user programs in memory, the applications programmer can force the Processor
into this mode but only for accessing routines that are part of the Operating Supervisor.
This is done by use of the Master Mode Entry (MME) instruction and one of the system-
symbol operands listed in Appendix E and described fully in the General Comprehensive
Operating Supervisor Manual. Any other use of MME causes an abort of the user program.
Thus, through the MME instruction, the programmer can communicate with modules of
the Operating Supervisor to exchange any necessary information for the execution of
his program.

Mass Storage Orientation

“Compute overhead” time is reduced and multiprogramming is enhanced through the use
of an external disc (mass) storage unit. The disc (and optionally a drum storage device)
enables optimized accessing of system routines and performs data transfers at higher
rates than other external storage media,

The disc and/or drum is used primarily for the following purposes:

1. System storage area--Least used submodules of the Operating Supervisor and all
system programs are stored on the disc. Included in this storage area are the
Assembler, compilers (FORTRAN and COBOL), portions of the operating system,
subroutine library, sort/merge, utility routines used by system routines, tables
associated with storage allocation and file/record assignments, operational statis-
tics, hardware diagnostics, and the General Loader with its debugging routines.

2. Temporary data storage--Temporary data files used during a single activity can
be stored on the disc or drum for fast access.

3. Permanent user files--Permanent data files can be stored on the disc or drum
and accessed through the software system.

Program File Orientation

The software system is further described as file oriented because (1) the Comprehensive
Operating Supervisor assigns peripheral devices to an activity and (2) it manages all
assigned peripherals during input or output operations so that the programmer never
deals directly with input/output subsystems or devices. The programmer references
all peripherals by use of file code designators, two alphanumeric characters, that are

CPB-1004F
Rev. July 1969

referenced in two ways: (1) on file control cards used by the Allocator in the Operating
Supervisor to specify those files needed to execute the activity and, (2) in communicating
to the File and Record Control program or to the Input/Output Supervisor. The file code
designators and their assigned peripheral devices are maintained in the Peripheral Assign-
ment Table (PAT) used by the Input/Output Supervisor for peripheral identification.

Software Reference Documentation

The following manuals and documents contain detailed descriptions of items mentioned in
this chapter.

GE-625/635 Comprehensive Operating Supervisor Reference Manual, CPB-1195
GE-625/635 File and Record Control Reference Manual, CPB-1003

GE-625/635 General Loader Reference Manual, CPB-1008

GE-625/635 FORTRAN IV Reference Manual, CPB-1006

GE-625/635 COBOL Reference Manual, CPB-1007

GE-625/635 Sort/Merge Program Reference Manual, CPB-1005

GE-625/635 FORTRAN IV Mathematical Routine Library, CPB-1083

GE-625/635 Operator’s Reference Manual, CPB-1045

® N e

CPB-1004F

Il. GE-635 PROCESSOR

GENERAL CHARACTERISTICS

Major Functional Units

The Processor consists of two relatively independent units: the Control Unit and the
Operations Unit.

The Control Unit provides Processor control functions and also serves as an interface
between the Operations Unit and memory. Inaddition, the Control Unit performs the follow-
ing principal functions:

Address modification

Address relocation

Memory protection for user and executive programs
Fault recognition

Interrupt recognition

Operation decoding

OGN

Since the Control Unit runs independently of the Memory module, a single Processor can
be connected to memories with different cycle times. The Processor is designed to elimi-
nate adverse interaction when memories with different cycle times are employed.

The Operations Unit performs all arithmetic and logical operations as directed by the
Control Unit. The Operations Unit contains most of the registers available to a user pro-
gram. This unit performs such functions as:

Fractional and integer divisions and multiplications

Automatic alignment of fixed-point numbers for additions and subtractions
Inverted divisions on floating-point numbers

Automatic normalization of floating-point resultants

Separate operations on the exponents and mantissas of floating-point numbers
Shifts

Indicator Register loading and storing

Base Address Register loading and storing

Timer Register loading and decrementing

CENPUR WP

Master/Slave Mode of Operation

To permit separation of control and object programs with corresponding protection of
control programs from undebugged object programs, two modes of operation, Master and
Slave, are provided in the Processor. Control programs will run in the Master Mode,
and object programs will run in the Slave Mode. Programs running in Master Mode have

CPB-1004F

access to the entire memory, can initiate peripheral and internal control functions, and do
not have base address relocation applied. Programs running in Slave Mode have access to
a limited portion of the memory, cannot generate peripheral control functions, and have the
Base Address Register added to all relative memory addresses of the object program.
Master Mode operation is the state in which the Processor:

1. Presents an “unrelocated” address to the memory

2. Has an unbounded access to memory

3. Causes the memory to be in the unprotected state when accessed by the Processor

a. This permits setting of execute interrupt cells.

b. When this Processor is designated the “control” Processor by the memory,
as set by Memory module switches, this also permits generation of execute
interrupts.

4. Permits setting the timer and Base Address Register by the appropriate instructions

(Load Timer Register or Load Base Register, LDT and LBAR)

The Processor is in the Master Mode when any of the following exists:
1. The Master Mode Indicator is in the master condition
2. An execute interrupt is recognized
3. A fault is recognized

Slave Mode operation is the state in which the Processor:

1. DPresents a relocated address to Memory as specified by bit positions 0-8 of the
Base Address Register.

2. Restricts the effective address formed to the bounds specified by bit positions
9-17 of the Base Address Register.

3. Causes the memory to be in the “protected” state when accessed by the Processor.
This prohibits generation of peripheral commands, interrupt masks, or setting of
execute interrupt cells, even if the Processor is designated the control Processor
by the Memory module.

4. Prohibits setting of the timer and Base Address Register by the instructions
LDT or LBAR.

The Processor is in the Slave Mode when the Master Mode Indicator is in the slave condition
or when the Transfer and Set Slave (TSS) instruction is being executed. (See page 19.)

Operation Overlapping

Instruction words are fetched in pairs and sequentially transferred to the Control Unit
of the Processor where the instructions are directed to the primary and secondary instruc-
tion registers of theinstruction decoder. If required, address modification is then performed
using the first of the two instructions.

CPB-1004F

10

As soon as this is accomplished, the operand specified by the first instruction is requested
from memory while the Control Unit concurrently performs any address modification required
by the second of the instruction pair.

When the operand called for by the first instruction is obtained, the Control Unit transfers
the operand to the Operations Unit, thus initiating the specified operation to be carried out.
While this operation is being carried out by the Operations Unit, the operand specified by
the second instruction is requested by the Control Unit. As soon as the second operand
is received and the Operations Unit has finished with the first operand, the Control Unit
signals the Operations Unit to carry out the second operation. Finally, while the second
operation is being carried out, the next instruction pair is requested from memory.

Address Range Protection

Any object program address to be used in a memory access request while the Processor is
in the Slave Mode is checked, just prior to the fetch, for being within the address range
allocated by the Comprehensive Operating Supervisor (GECOS) to the program for this
execution. This address range protection is commonly referred to as memory protection.

For the purpose of memory protection, the 18-bit Processor Base Address Register is
loaded by GECOS with an address range in bit positions 9-16. The check takes place only
in the Slave Mode. It consists of subtracting bit positions 0-7 of the program address from
this address range, using the boundary comparator, when the result is zero or negative
then the) program address is out of range; and a Memory Fault Trap occurs. (Refer to
page 22,

More specifically, the checking is actually based on nine bits, namely the Base Address
Register positions 9-17 and the bit positions 0-8 of the program address. This permits
address range allocation to job programs in multiples of 512 words. Because of a software
requirement, bits 8 and 17 of the Base Address Register have been wired in such a way that
they contain zeros permanently and cannot be altered by the LBAR instruction. Thus,
memory allocation and protection is performed in multiples of 1024 words.

In the Master Mode no checking takes place; thus, any memory location (in those Memory
modules that are connected to this Processor) can be accessed.

Execution of Interrupts

When an execute interrupt request present signalis received froni a Memory module system
controller for which the Processor is the control Processor, the Processor carries out the
interrupt procedure as soon as an instruction from an odd memory location has been
executed that:

1. Did not have its interrupt inhibit bit position 28 set to a 1
2. Did not cause an actual transfer of control (A transfer of control is effected if

the instruction is an unconditional transfer, a conditional transfer with the condition
satisfied, or a programmed fault such as ZOP, MME, DRL, Fault Tag, Connect).

CPB-1004F

11

3. Was not an Execute or Execute Double (XEC or XED) instruction (Note than an
XEC or XED instruction and the one or two instructions carried out under its
control are regarded as a single instruction execution.)

4. Was accessed while in the repeat mode or the instruction following the termination
of the repeat mode.
The interrupt procedure consists of the following steps:
1. Enter the Master Mode (the Master Mode Indicator is not affected).

2. Return the Execute command code to the system controller that sent the interrupt
request present signal.

3. Receive a five-bit interrupt code on the data lines from this Memory module
(bit positions 12-16), specifying the number of the highest priority nonmasked
interrupt cell that was set to ON when the transfer interrupt number command
code was recognized at the system controller.

4, Carry out a “wired in” XED.

XED Y
Y = 000 000 000 Memory Interrupt 0
No. Cell No.
0 8 9 11 12 16 17

The cell number is determined by the highest priority unmasked interrupt cell (in
the system controller) causing the execute interrupt.

5. Return to the mode specified by the Master Mode Indicator (see below) and continue
with the instruction from the memory location specified by the Instruction Counter.
Each of the two instructions executed by the XED may affect the Master Mode Indicator

as follows:

1. If this instruction results in an actual transfer of control and is not the Transfer
and Set Slave instruction (TSS), then ON (that is, Master Mode).

9. If this instruction is either the Return instruction (RET) with bit 28 of the (RET)
operand equal to 0 or the TSS instruction, then OFF (Slave Mode).

The first of the two instructions from the memory location Y must not alter the contents
of the location of the second instruction, and must not be an XED instruction. If the first
of the two instructions alters the contents of the Instruction Counter, then this transfer of
control is effective immediately; and the second of the two instructions is not executed.

Interval Timer

The Processor contains a timer which provides a program interrupt at the end of a variable
interval. The timer is loaded by GECOS and can be set to a maximum of approximately
four minutes total elapsed time. (See pages 15 and 21.)

CPB-1004F

12

REGISTERS

The Processor block diagram (Figure 1} shows the program accessible registers as well
as the major nonprogram accessible registers, adders, and switches. Only data and infor-
mation paths are shown. The block diagram also shows the division between the Operations
Unit and Control Unit.

The switches (rounded figures on the block diagram) control the flow of information between
the registers, adders, and the memory interface.

Program Accessible Registers

The following table shows the registers accessible to the program.,

Name Mnemonic Length
Accumulator Register AQ 72 bits
Eight Index Registers Xn 18 bits each
(n=0,...,7)

Exponcent Register E 8 bits

Base Address Register BAR 18 bits
Indicator Register IR 18 bits
Timer Register TR 24 bits
Instruction Counter I1C 18 bits

1. The AQ-register is used as follows:

a. In floating-point operations as a mantissa register for single and double
precision

b. In fixed-point operations as an operand register for double precision

¢. In fixed-point operations as operands for single precision where each AQ
half serves independently of the other. The halves then are called the A-
register, (namely AQ,_,;) and the Q-register, (namely AQ,s_-,).

d. In address modification each half of A as well as of Q is an index register.
These halves then are called AU (namely A,_;,), AL (namely A,q_ =),
QU (namely Q,_,,), and QL (namely Q, ;_;5).

2. The Xn-registers are used as follows:
a. In fixed-point operations as operand registers for half precision

b. In address modification as index registers

3. The E-register supplements the AQ-register in floating-point operations, serving
as the exponent register.

CPB~1004F

13

OPERATI
UNIT

H
S
H 72
S 72
| N 72
. N
(Y s
» W,
/E| 18 T
il

ONS
B

oaz

#s

CONTROL
UNIT

.| ADR I[.f

/
\

C 7Y Sw

,———Lﬂi *
YE 1Bic°Ew[Y° ISECOYBI

LI, INST!
& TAG
DECODE
\ — \
DATA FROM ADDRESS DATA TO
MEMORY TO MEMORY MEMORY

Figure 1. Block Diagram of Principal Processor Registers

CPB-1004F
Rev. July 1969

14

4. The Base Address Register (BAR) is used in address translation and memory
protection. It stores the base address and the number of 1024-word blocks
assigned to the object program being executed.

5. The Indicator Register (IR) is a generic term for all the program-accessible
indicators within the Processor. The name is used where the set of indicators
appears as a register, that is, as source or destination of data.

6. The Timer Register (TR) is decremented by one each 15.625 microseconds, and
a Timer Runout Fault Trap occurs whenever its contents reach zero. If Timer
Runout occurs in Master Mode, the trap does not occur until the Processor
returns to Slave Mode; but decrementation continues beyond zero.

7. The Instruction Counter holds the address of the next instruction to be executed.

Program Nonaccessible Registers

The following listed registers are used in Processor operations but are not referenced
in machine instructions.

Mnemonic Length
M 72 bits

H 72 bits

N 72 bits

D 8 bits

G 8 bits
ADR 18 bits
YE 18 bits
YO 18 bits
COE 18 bits
Coo 18 bits

1. The M-register is an intermediate register used to buffer operands coming in
from memory.

2. The H- and N-registers are intermediate registers used to hold the operands
which are presented to the main, 72-bit (S) adder.

3. The D-register is used to hold the exponent of the operand from memory in floating-
point operations.

4. The G-register contains the number 6f shifts necessary in shifting, floating-
point, and fixed-point multiply and divide operations.

5. The ADR (Address)-register is used to hold the absolute address of memory
cells when making memory accesses.

6. The YE- and YO-registers contain the address portions of the even and odd
instruction respectively of an accessed instruction pair.

7. The COE- and COO-registers contain the lower half of each instruction word and
include the operation code and the tagfieldportions of the even and odd instructions
respectively of an instruction pair.

CPB-1004F

15

Adders

The following table lists the Processor adders.

Name Length
S 72 bits
YS 18 bits
ES 10 bits
BC(Comparator) 9 bits
RS 9 bits

1. The S-adder is the main adder in the Processor. It is used for fixed- and floating-
point additions, subtractions, multiplications, and divisions.

2. The YS-adder is used to compute the effective addresses of instructions and
operands.

3. The ES-adder is the exponent adder; it is used for exponent operations in floating-
point operations.

4. The RS-adder is used to compute the absolute addresses of instructions and
operands.

5. The BC-adder, although not implemented as a complete adder, is used to determine
if an effective address is out of the range allocated to the operating program
(memory protection).

PROCESSOR INDICATORS
General

The indicators can be regarded as individual bit positions in an 18-bit half-word Indicator
Register (IR).

An indicator is set to the ON or OFF state by certain events in the Processor, or by certain
instructions. The ON state corresponds to a binary 1 in the respective bit position of the
IR; the OFF state corresponds to a 0.

The description of each machine instruction on pages 39 through 148 includes a statement
about (1) those indicators that may be affected by the instruction and (2) the condition
under which a setting of the indicators to a specific state occurs. If the conditions stated
are not satisfied, the status of this indicator remains unchanged.

CPB-1004F
Rev. July 1969

16 -

The instruction set includes certain instructions which transfer data between the lower half
of a storage location and the Indicator Register. The following table lists the indicators that
have been implemented, their relation to the bit positions of the lower half of a memory
location, and the instructions directly affecting indicators. (A detailed explanation of indicator
settings is given with each machine instruction.)

Implementation Bit Position Indicator Indicator Instructions
18 Zero 1. Load Indicators (LDI)
19 Negative .
20 Carry 2. Store Indicators (STI)
21 Overflow 3. Store Instruction Counter
Assigned 22 Exponent Overflow Plus 1 and Indicators (STC1)
23 Exponent Underflow
24 Overflow Mask 4. Return (RET)
25 Tally Runout
26 Parity Error
27 Parity Mask
28 Master Mode
[P e m— e e — — — — — o— S— — D Gt— — — —e— S— — S E—— S — —— — tw— ———|
29
30
31
Unassigned - 32 Must be
33 Zero
34
35

The following descriptions of the individual indicators are limited to general statements
only.

Zero Indicator

The Zero Indicator is affected by instructions that change the contents of a Processor
register (A, Q, AQ, Xn, BAR, IR, TR) or adder, and by comparison instructions.

The indicator is set ON when the new contents of the affected register or adder contains
all binary 0’s; otherwise the indicator is set OFF.

Negative Indicator

The Negative Indicator is affected by instructions that change the contents of a Processor
register (A, Q, AQ, Xn, BAR, IR, TR) or adder, and by comparison instructions.

The indicator is set ON when the new contents of bit position 0 of this register or adder
is a binary 1; otherwise it is set OFF.

CPB-1004F

17

Carry Indicator

The Carry Indicator is affected by left shifts, additions, subtractions, and comparisons.

The indicator is set ON when a carry is generated out of bit position 0; otherwise it is
set OFF. Ifbitposition0 ever changes during the shift, set the indicator ON, otherwise OFF.

Overflow Indicator

The Overflow Indicator is affected by the arithmetic instructions, but not by compare
instructions and Add Logical (ADL(R)) or Subtract Logical (SBL(R)) instructions.

Exponent Overflow Indicator

The Exponent Overflow Indicator is affected by arithmetic operations with floating-point
numbers or with the exponent register (E).

The indicator is set ON when the exponent of the result is larger than +127 which is the
upper limit of the exponent range.

Since it is not automatically set to OFF otherwise, the Exponent Overflow Indicator reports

any exponent overflow that has happened since it was last set OFF by certain instructions
(LDI, RET, and Transfer on Exponent Overflow (TEO)).

Exponent Underflow Indicator

The Exponent Underflow Indicator is affected by arithmetic operations with floating-point
numbers, or with the exponent register (E).

The indicator is set ON when the exponent of the result is smaller than -128 which is the
lower limit of the exponent range.

Since it is not automatically set to OFF otherwise, the Exponent Underflow Indicator

reports any exponent underflow that has happened since it was last set OFF by certain
instructions (LDI, RET, and Transfer on Exponent Underflow (TEU)).

Overflow Mask Indicator

The Overflow Mask Indicator can be set ON or OFF only by the instructions LDI and RET.

When the Overflow Mask Indicator is ON, then the setting ON of the Overflow Indicator,
Exponent Overflow Indicator, or Exponent Underflow Indicator does not cause an Overflow
Fault Trap to occur. When the Overflow Mask Indicator is OFF, such a trap will occur.

Clearing of the Overflow Mask Indicator to the unmask state does not generate a fault from
a previously set Overflow Indicator, Exponent Overflow Indicator, or Exponent Underflow
Indicator. The status of the Overflow Mask Indicator does not affect the setting, testing, or
storing of the Overflow Indicator, Exponent Overflow Indicator, or Exponent Underflow
Indicator.

CPB-1004F

18

Tally Runout Indicator

The Tally Runout Indicator is affected by the Indirect Then Tally (IT) address modification
type (all designators except Indirect and Fault) and by the Repeat, Repeat Double, and
Repeat Link instructions (RPT, RPD, and RPL),

The termination of a Repeat instruction because a specified termination condition is met
sets the Tally Runout Indicator to OFF.

The termination of a Repeat instruction because the tally count reaches 0 (and for RPL
because of a O link address) sets the Tally Runout Indicator to ON; the same is true for
tally equal to 0 in some of the IT address modifications.

Parity Error Indicator

The Parity Error Indicator is set to ON when a parity error is detected during the access
of one or both words of Y-pair from memory.

It may be set to OFF by the LDI or RET instruction.

Parity Mask Indicator

The Parity Mask Indicator can be set to ON or OFF only by the instructions LDI and RET.,

When the Parity Mask Indicator is ON, the setting of the Parity Error Indicator does not
cause a Parity Error Fault Trap to occur. When the Parity Mask Indicator is OFF, such a
trap will occur.

Clearing of the Parity Mask Indicator to the unmasked state does not generate a fault from

a previously set Parity Error Indicator. The status of the Parity Mask Indicator does not
affect the setting, testing, or storing of the Parity Error Indicator.

Master Mode Indicator

The Master Mode Indicator can be changed only by an instruction. For a description of
how the indicator can be changed, refer to the following instruction descriptions:

Instruction Reference
Master Mode Entry (MME) Page 132
Return (RET) Page 125
Derail (DRL) Page 133
Transfer and Set Slave (TSS) Page 124 .

When the Master Mode Indicator is ON, the Processor is in the Master mode; however,
the converse is not necessarily true. (See the MME and DRL descriptions.)

CPB~1004F

19

FAULT TRAPS

Trapping Procedure

Sixteen types of faults and other events each have a fault trap assigned. Some of these
events have nothing to do with actual faults; they are included here because they are treated
the same as faults.

The fault trap procedure is similar to the interrupt procedure (page 12) except that the
effective address is defined differently. The fault trap procedure consists of the following
steps:

1. Automatically enter the Master Mode (the Master Mode Indicator is not affected).

2. Carry out an Execute Double (XED) instruction (page 131) with an effective
address (Y) as defined for bits 0-17 of a machine word as follows:

ZEROS : Constant : Code : 0
0 56 12 13 16 17
Constant: Set up by the fault switches in the Processor (also see the descrip-

tion of the instructions Master Mode Entry (MME) and Derail (DRL).

Code: The four-bit fault trap code which identifies the respective fault
trap (see Figure 2).

3. Return to the mode specified by the Master Mode Indicator, and continue with the
instruction from the memory location specified by the Instruction Counter.

Each of the two instructions from the memory location Y-pair may affect the Master Mode
indicator as follows: If this instruction results in any actual transfer of control and is not
the Transfer and Set Slave instruction (TSS), then ON; If this instruction is either a return
instruction (RET) with bit 28 of the operand (RET) equal to 0 or the TSS instruction, then
OFF (Slave Mode).

The first of the two instructions from the memory location Y must not alter the contents
of the location of the second instruction, and must not be an Execute Double instruction
(XED). If the first of the two instructions alters the contents of the Instruction Counter,
then this transfer of control is effective immediately; and the second of the two instructions
is not executed.

Fault Categories

There are four general categories of faults:

Instruction generated (by execution of instruction)
Program generated
Hardware generated
Manually generated

Ll S

CPB-1004F

20

e Instruction Generated Faults. The Instruction generated faults are:

1.

Master Mode Entry (MME)

The

instruction Master Mode Entry has been executed (page 132).

Derail (DRL)

The instruction Derail has been executed (page 133).
Fault Tag
The address modifier IT where T=F has been recognized. The indirect cycle

will not be made upon recognition of F, nor will the operation be completed.

Connect (CON)

The Processor has received a Connect from a Control Processor via a System
Controller.

Illegal OP Code (ZOP)

An operation code of all zeros has been executed.

® Program Generated Faults. Program generated faults are defined as:

1.

The

a.

The

Arithmetic Faults

Overflow (FOFL)--An arithmetic overflow, exponent overflow, or exponent
underflow has been generated. The generation of this fault is inhibited when
the Overflow Mask is in the mask state. Subsequent clearing of the Overflow
Mask to the unmasked state will not generate this fault from previously set
indicators. The Overflow Fault Mask state does not affect the setting, testing,
or storing of indicators.

Divide Check (FDIV)--A divide check fault occurs when the actual division
cannot be carried out for one of the reasons specified with each divide
instruction.

Elapsed Time Interval Faults

Timer Runout (TROF)--This fault is generated when the timer count reaches
zero. If the Processor is in Master Mode, recognition of this fault will be
delayed until the Processor returns to the Slave Mode; this delay does not
inhibit the counting in the Timer Register.

Lockup (LUF)--The Processor is in a program lockup which inhibits recogniz-
ing an execute interrupt or interrupt type fault for greater than 16 milli-
seconds. Examples of this condition are the coding TRA*, the continuous
use of inhibit bit, or Repeat Mode loops exceeding 16 milliseconds.

Operation Not Completed (FONC)-~-This fault is generated due to one of the
following:

1) No System Controller attached to the Processor for the address. .

2) Operation Not Completed. (See Hardware Generator Faults, page 22,)

CPB-~1004F

21

3.

The Memory Faults

a.

Command (FCMD)--This fault is interpreted as an illegal request by the
Processor for action of the System Controller. These illegal requests are:

1) The Processor is in the Slave Mode, and issues a CIOC, RMCM, SMCM,
or SMIC. The CIOC, SMCM, and SMIC commands will not be executed.
(Refer to page 257 for descriptions and references concerning these
instruction mnemonics.)

2) The Processor has issued a connect to a channel that is masked off (by
program or switch).

3) The Processor is in the Slave Mode and encounters a Delay until Interrupt
Signal (DIS) instruction.

Memory (FMEM)--This fault is generated when:
1) No physical memory existed for the address.

2) An address (in Slave Mode) is outside the program boundary.

e Hardware-Generated Faults. The hardware-generated faults are defined as:

1.

Operation Not Completed (FONC)-~This fault is generated due to one of the following:

a.

c.

The Processor has not generated a memory operation within 1 to 2 milli-
seconds and is not executing the Delay Until Interrupt Signal (DIS) instruction.

The System Controller closed out a double-precision or read-alter-rewrite
cycle.

See Operation Not Completed under Program Generated Faults (page 21).

Parity (FPAR)--This fault is generated when a parity error exists in a word which
is read from a core location:

a.

Single- or double-instruction word fetch--if the oddinstruction contains a parity
error, the instruction counter retains the location of the even instruction.

Indirect word fetch--if a parity error exists in an indirect and tally word in
which the word is normally altered and replaced, the contents of that memory
location are destroyed.

Operand fetch--when a single-precision operand, C(Y) is requested, the
contents of the memory pair location at Y, Y+1 where Y is even, or Y-1, Y,
where Y is odd are read from memory. The System Controller will not report
a parity error if it occurs in C(Y+1) or C(Y-1), but will restore the C(Y+1) or
C(y-1) with its parity bit unchanged.

If a parity error occurs on any instruction for which the C(Y) are taken from
a core location (this includes “to storage” instructions, ASA, ANSA, etc.,) the

Processor operation is completed with the faulty operand before entering the
fault routine.

CPB-1004F

22

The generation of this fault is inhibited when the Parity Mask Indicator is in
the mask state. Subsequent clearing of the Parity Mask to the unmasked state
will not generate this fault from a previously set Parity Error Indicator.
The Parity Mask does not affect the setting, testing, or storing of the Parity
Indicator.

¢ Manually Generated Faults. Manually generated faults are:

1. Execute (EXF)
a. The EXECUTE pushbutton on the Processor maintenance panel has been
activated.
2. The Power Turn On/Off Faults
a. Startup (SUF)--A power turn-on has occurred.

b. Shutdown (SDF)--Power will be turned off in approximately 1 millisecond.

Fault Priority

The 16 faults are organized into five groups to establish priority for the recognition of a
specific fault when faults occur in more than one group. Group 1 has highest priority.

Only one fault within a priority group is allowed to be active at any one time. In the event
that two or more faults occur concurrently, only the fault which occurs first through
normal program sequence is permitted.

Fault Recognition

Faults in Groups I and II cause the operations in the Processor to abort unconditionally.

Faults in Groups III and IV cause the operations in the Processor to abort when the operation
currently being executed is completed.

Faults in Group V are recognized under the same conditions that Program interrupts
are recognized. (See page 12,) Faults in Group V have priority over Program Interrupts
and are also subject to being inhibited from recognition by use of the inhibit bit in the
instruction word.

CPB-1004 F

23

Instruction Counter (IC)

Upon recognition of a fault, the contents of the Instruction Counter (IC) are as shown in the
Table of Faults below.

Group I
Fault Code Fault Name (Priority) IC Contents

1100 Startup I M0, +1, or +2
1111 Execute I N+O, +1, or 42
1011 Operation Not Completed 11 N+O, +1, or +2
0111 Lockup 11 N+0, 41, or +2
1110 Divide Check 111 N(3)
1101 Overflow I1T N
1001 Parity v ~(2)
0101 Command Iv N
0001 Memory v n(3)
0010 Master Mode Entry v N(3)
0110 Derail v N(3)
0011 Fault Tag v n(3)
1010 Illegal Op Code v N
1000 Connect \ N
0100 Timer Runout \ N
0000 Shut Down A N

Notes:
M N = Last operation
(2 If parity occurred on operand fetch, operation N+1 was completed with faulty data.
If parity occurred on instruction fetch, operation M1 was not completed
If parity occurred on IT, IT was not completed.
(3)

These operations are considered complete when the fault is recognized.

Figure 2. Table of Faults

THE NUMBER SYSTEM

The binary system of notation is used throughout the GE-625/635 information processing
system,

Many of the instructions, mainly additions, subtractions, and comparisons, can be used in
two ways: either operands and results are regarded as signed binary numbers in the 2’s
complement form (the “arithmetic” case), or they are regarded as unsigned, positive binary
numbers (the “logic” case). The Zero and the Negative Indicators facilitate the general
interpretation of the results in the arithmetic case; the Zero and the Carry Indicators, in
the logic case. The instruction set contains instruction types “Add Logic” and “Subtract
Logic” which particularly facilitate arithmetic of the logic type with half-word, single-word,
and double-word precision, See Appendix I for a description of the two’s complement
number system,

CPB-~1004F

24

Subtractions are carried out internally by adding the 2’s complement of the subtrahend.* It
is a characteristic feature of the 2’s complement representation that a “no borrow” condition
in the case of true subtraction corresponds to a “carry” condition in the case of addition of
the 2’s complement, and vice versa.

A statement on the assumed location of the binary point has significance only for multi-
plications and divisions. These two operations are implemented for integer arithmetic as
well as for fractional arithmetic with numbers in 2’s complement form, “integer” meaning
that the position of the binary point may be assumed to the right of the least-significant
bit position (that is, to the right of bit position 35 or 71, depending on the precision of the
respective number) and “fractional” meaning that the position of the binary point may be
assumed to the left of the most-significant bit position (that is, between the bit positions
0 and 1).

REPRESENTATION OF INFORMATION

The Processor is fundamentally organized to deal with 36-bit groupings of information.
Special features are also included for ease in manipulating 6-bit groups, 9-bit groups, 18-
bit groups, and 72-bit, double-precision groups. These bit groupings are used by the hard-
ware and software to represent a variety of forms of information.

Position Numbering

The numbering of bit positions, character positions, words, etc., increases in the direction
of conventional reading and writing: from the most- to the least-significant digit of a number,
and from left to right in conventional alphanumeric text.

Graphical presentations in this manual show registers and data with position numbers
increasing from left to right.

The Machine Word

The machine word consists of 36 bits arranged as follows:
0 17,18 35

1
One Machine |Word
{

Upper Half word ! Lower Half word

Data transfers between the Processor and memory are word oriented: 36 bits are trans-
ferred at a time for single-precision data and two successive 36-bit word transfers for
double-precision data. When words are transferred to a Magnetic Core Storage Unit, this
unit adds a parity bit to each 36-bit word before storing it. When words are requested

*When the subtrahend is zero, the algorithm for forming the 2’s complement is still
carried out. Thus, each bit of the subtrahend is complemented, and a 1 is added into the
least-significant position of the parallel adder.

CPB-1004F

25

from a Magnetic Core Storage Unit, this unit verifies the parity bit read from the store and
removes it from the word transferred prior to sending each word to the Processor.

The Processor has many built-in features for transferring and processing pairs of words.
In transferring a pair of words to or from memory, a pair of memory locations is accessed;
these addresses are an even and the next-higher odd number.

0 3536 71
A Pair of Ma::hine Words
|

Even Address : Odd Address

In addressing such a pair of memory locations in an instruction that is intended for handling
pairs of machine words, either of the two addresses may be used as the effective address (Y).
Thus,

If Y is even, the pair of locations (Y, Y+1) is accessed. If Y is odd, the pair of locations
(Y-1, Y) is accessed. The term “Y-pair” is used for each such pair of addresses.

Alphanumeric Data

Alphanumeric data are represented by six-bit or nine-bit characters. A machine word
contains either six or four characters:

Character positions .
within a word: 0 1 2 3 4 5 six=-bit
0 5,6 11,12 17,18 23,24 29,30 35
0 1 2 3 nine-bit
0 8,9 17,18 26,27 35
Bit positions 3 .
within a character: 0 ! 2 3 4 > } six-bit

0 1 2 3 4 5 6 7 8 } nine-bit

CPB~1004F

26

Six-Bit Character Nine-Bit Character

Operand from memory

T T T L) L
1 1 1 1 [
Operand from X : x ! ox iChar.] X ' X X X |Char. X
memory: H 1 ! 1 !
0 1 2 0 1 2 3
T T ¥
I L]
0 ! 0 : o 0 0 0 Char.
1 1 :
0 1 2 0 1 2 3
Operand for the operation
Result of the operation
T T T L] L)
Result to : : ' : i
€ X + X 1 X | X) X Ichar. X X X |char.
memory: 1 1 1] H
0 1 2 3 4 5 0 1 2 3
T T T T T
[1] []
X 1 X RS :Char.: X ! X X X |Char.| X
] 1 1 1 l
0 1 2 3 4 5 0 1 2 3

Result in memory

For six-bit character operations in which the operand is taken from memory, the effective
operand from memory is presented as a single word with the specified character justified
to character position 5; position 0-4 are presented as zero. For operations in which the
resultant is placed in memory, character 5 of the resultant replaces the specified character
in memory location Y; the remaining characters in memory location Y are not changed.

For nine-bit character operations in which the operand is taken from memory, the effective
operand from memory is presented as a single word with the specified character justified
to character position 3; positions 0-2 are presented as zero. For operations in which the
resultant is placed in memory, character 3 of the resultant replaces the specified character
in memory location Y; the remaining characters in memory location Y are not changed.

The character set used is the Computer Equipment Department Standard Character Set,
which is readily convertible to and from the ASCII character set.

CPB-1004F

27

Binary Fixed-Point Numbers

The instruction set comprises instructions for binary fixed-point arithmetic with half-
word, single-word, and double-word precision.

PRECISION REPRESENTATION
—————— 1
Upper Half |
______]
Half=-word 0 17
———— — — —
|
Lower Half e o e o o —
18 35
Single-word
0 35
Double-word
0 Even Address 35,36 0dd Address 71

Instructions can be divided into two groups according to the way in which the operand is
interpreted: the “logic” group and the “algebraic” group.

For the “logic” group, operands and results are regarded as unsigned, positive binary
numbers. In the case of addition and subtraction, the occurrence of any overflow is reflected
by the carry out of the most-significant (leftmost) bit position:

1. Addition -- If the carry outof the leftmost bit position equals 1, then the result
is above the range.

2. Subtraction -- If the carry out of the leftmost bit position equals 0, then the
result is below the range.

In the case of comparisons, the Zero and Carry Indicators show the relation.

For the “algebraic” group, operands and results are regarded as signed, binary numbers,
the leftmost bit being used as a sign bit, (a 0 being plus and 1 minus). When the sign is
positive all the bits represent the absolute value of the number; and when the sign is
negative, they represent the 2’s complement of the absolute value of the number.

In the case of addition and subtraction the occurrence of an overflow is reflected by the
carries into and out of the leftmost bit position (the sign position). If the carry into the
leftmost bit position does not equal the carry out of that position then overflow has occurred.
If overflow has been detected and if the sign bit equals 0, the resultant is below range; if
with overflow, the sign bit equals 1, the resultant is above range.

An explicit statement about the assumed location of the binary point is necessary only for
multiplication and division; for addition, subtraction, and comparison it is sufficient to
assume that the binary points are “lined up.”

CPB~1004F

.28

In the GE-625/635 Processor, multiplication and division are implemented in two forms for
2’s complement numbers: integer and fractional.

In integer arithmetic, the location of the binary point is assumed to the right of the least-
significant bit position, that is, depending on the precision, to the right of bit position
35 or 71. The general representation of a fixed-point integer is then:

n-1 n-2 1 0

n
- +
an2 an_12 +an_22 +...+a12 +a02

where a is the sign bit.

In fractional arithmetic, the location of the binary point is assumed to the left of the most-
significant bit position, that is, to the left of bit position 1. The general representation of
a fixed-point fraction

_ 50, -1 -2 -(n-1) -n
a02 }a12 +a22 +...+an_12 +an2

The number ranges for the various cases of precision, interpretation, and arithmetic are
listed in Figure 3.

Precision
Inter- . ;
pretation Arithmetic Half-Word Single-Word Double~Word
(Xn, YO.'.17) (4,Q,Y) (AQ, Y-pair)
Algebraic | Integral --217 £ N < (217-1) -235 <N < (235-1) -271 <N < (271-1)
Fractionalj| -1l < N < (1-2-17) -1 <N £(1-2-35) -1 = Ng (1-2-71)
Logic Integral < Ns= (218-1) 0 <Ng« (236-1) 0 <N=s< (272-1)
Fractional < N < (1-2718 0 < Ns (1-273% 0<N< (1-277%
Figure 3. Ranges of Fixed-Point Numbers
CPB=~1004F

29

Binary Floating-Point Numbers

The instruction set contains instructions for binary floating-point arithmetic with numbers
of single-word and double-word precision. The upper 8 bits represent the integral exponent
E in the 2’s complement form, and the lower 28 or 64 bits represent the fractional mantissa
M in 2’s complement form. The notation for a floating-point number 7 is:

E(2)
Z =M X 2

(2 (2)
Single=-Word 0 3 / 8'9 35
Precision: I75{]S ; l

[P —p—— M >|

1
Double=Word 0 } 7 8;9 /
P |

Precision: S' S 4 J

fe——- £ —po}e- M -

where S = Sign bit

Before doing floating-point additions or subtractions, the Processor aligns the number which
has the smaller positive exponent. Tomaintainaccuracy, the lowest permissible exponent of
~128 together with the mantissa equal to 0.00....0 has been defined as the machine represen-
tationof the number zero (which has no unique floating-point representation). Whenever a
floating-point operation yields a resultant untruncated machine mantissa equal to zero (71
bits plus sign because of extended precision), the exponent is automatically set to -128.

The general representation of the exponent for single and double precision is:

-e 27+e 26+...+e

1 0
7 6 12 +e02

where e, is the sign.

The general representations of single- and double-precision mantissas are:

Single Precision: -m020+m12'1+m22'2+. .otm, 2726 =27

and

1

Double Precision: -m020+m 2" +m22-2+...+m 277 %m,_ .2

1

where m Ois the sign in both cases.

CPB-1004F

30

Normalized Floating-Point Numbers

For normalized floating-point numbers, the binary point is placed at the left of the most-
significant bit of the mantissa (to the right of the sign bit). Numbers are normalized by
shifting the mantissa (and correspondingly adjusting the exponent) until no leading zeros
are present in the mantissa for positive numbers, or until no leading ones are present
in the mantissa for negative numbers. Zeros fill in the vacated bit positions. With the
exception of the number zero (represented as 0 x 2 ~12 8), all normalized floating-point
numbers will contain a binary 1 in the most-significant bit position for positive numbers

and a binary 0 in the most-significant bit position for negative numbers. Some examples
are:

Unnormalized positive number (0]0001101)x2”

Same number normalized (0= 1101000)x2%

Unnormalized negative number (1 ' 1 10 1011 1)x2

Same number normalized (él 01011100)x2'6
|

The number ranges resulting from the various cases of precision, normalization, and
sign are listed in the table following:

Sign Single Precision Double Precision
Positive 27129 < N < (1-27%7y, 127 2 7129 o N < (1-2 703y, 177
Normalized
Negative ~(142720yp "129 5 5127 -(142 8297129 L1
Positive 27135 ¢ N g (1-2727y, 177 27191 oy o (1-273) 127
Unnormalized
Negative -2-155 2N = -2127 -2-'191 =N 2 -2127

NOTE: The floating-point number zero is not included in the table.

Figure 4. Ranges of Floating-Point Numbers

Decimal Numbers

The instruction set does not comprise instructions for decimal arithmetic. The representa-
tion of decimal numbers in the machine therefore depends entirely on the programs used
for performing the decimal arithmetic required.

CPB-~1004F

31

The representation of the decimal digits as a subset of the character set is shown in
Appendix F.

Instructions

Machine instructions have the following general format:

y Op Code 0 ijo Tag
0 17,18 26,27,28,29,30 35
Where
y = the address field; also used in some cases to augment the Op Code as
in shift operations where it specifies the number of shifts
Op Code = the operation code, usually stated in the form of a 3-digit octal number
i = interrupt inhibit bit
Tag = the tag field, generally used to control the address modification
0 = the two bit positions 27 and 29 have no function at this time; however,

they must be zero for compatibility with other 600-line Processors.

The three repeat instructions, Repeat, Repeat Double, and Repeat Link (RPT, RPD, and
RPL), use a different instruction format. (See pages 134, 137, and 141.)

Indirect words have the same general format as the instruction words; however, the fields
are used in a somewhat different way. (See page 35 and following.)

ADDRESS TRANSLATION AND MODIFICATION

Address Translation

Any program address to be used in a memory access request while the Processor is
in the Slave Mode isfirsttranslatedinto an actual address and then submitted to the memory.
The term “program address” is used for the following addresses:
1. An instruction address which is the address used for fetching instructions
2. A tentative address which is the address used for fetching an indirect word
3. An effective address, which is the final address produced by the address modifica-
tion process, is the address used for obtaining an operand, for storing a result, or

for other special operations during which the memory is accessed using the
effective address.

CPB-1004F

32

For the purpose of address translation, the Processor Base Address Register
contains a base address in bit positions 0-7. The translation takes place only in the
Slave Mode of operation. It consists of adding this base address to bit positions
0-7 of the program address, using the Relocation Adder (RS).

In the Master Mode no address translation takes place. Any program address to
be used in a memory access request while the Processor is in the Master Mode is
used directly as an actual address and submitted to the memory without any
translation.

Address translation is actually based on nine bits, namely the Base Address
Register positions 0~8 and the bit positions 0-8 of the program address; this
permits address relocation by multiples of 512 words. Because of a software
requirement, bit positions 8 and 17 of the Base Address Register have been wired
in such a way that they contain 0’s permanently and cannot be altered by the Load
Base Address Register (LBAR) instruction. Thus, address relocation is performed
in multiples of 1024.

Tag Field

Before the operation of an instruction is carried out, an address modification procedure
generally takes place as directed by the tag field of the instruction and of indirect words.
Only the repeat mode instructions (RPT, RPD, RPL) and character store instructions
(STCA, STCQ, STBA, STBQ) do not provide for an address modification. (See pages 134,
127, 129, and 56-59 respectively.)

The tag field consists of two parts, tm and t & that are located within the instruction word
as follows:

> . = - o
o o o =
o e e . et o]
hoe e i m s

30 35

A

Where

t,, specifies one of the four possible modification types: Register (R), Register then

Indirect (RI), Indirect then Register (IR), and Indirect then Tally (IT)

t 4 specifies further the action for each modification type:

1. In the case of t R, RI, orIR, t,is called the register designator and generally
specifies the register to be used in indexing.

2. Inthe case of t =1IT,t, is calledthe tally designator and specifies the tallying
in detail.

CPB~1004F

33

Modification Types

The following table gives a general characterization of each of the four modification types.

t Binary Modification Type
== =ﬂ
R 00 Register

Indexing according to t, as register designator and termination of
the address modification procedure.

Register then Indirect

RI 01
Indexing according to t, as register designator, then substitution
and continuation of the modification procedure as directed by the
Tag field of this indirect word.

IR 11 Indirect then Register
Saving of t. as final register designator, then substitution and
continuation of the modification procedure as directed by the Tag
field of this indirect word.
Indirect then Tally

IT 10

Substitution, then use of this indirect word according to ty as
tally designator.

CPB-1004F

34

Register Designator

Each of the three modification types R, RI, IR includes an indexing step which is further
specified by the register designator ty. In most cases, t4 really specifies the register from
which the index is obtained. However, t; may also specify a different action, namely that the
effective address Y is to be used directly as operand and not as address of an operand
(DU,DL), or that nothing takes place at all (N). Nevertheless, t 41s called “register
designator” in these cases.

Register Designatorgﬂ
Action

Symbolic Binary

N 0000 y =y

X0 1000

X1 1001

. . |

y =y + C(Xn)

X7 1111

AU 0001 y =y + C(A)0 17

AL 0101 y=y+ C(A)18 35

QU 0010 y=yv+ C(Q)0 17

QL 0110 y=y+ C(Q)18 35

IC 0100 y =y + C(IC)

DU 0011 y,00...0 is the operand

DL 0111 00...0,y is the operand

Tally Designator

The modification type IT causes the word at Y to be fetched and used as an indirect word
as specified by the t, of the word (instruction or previous indirect word) which contains Y.

The format of the indirect word is:

y Tally Tag
0 17,18 29,30 35

Where
y = address field
Tally = tally field

Tag = tag field

CPB~1004F

35

Depending upon the prior tally designator, the tag field is used in one of three ways:

Tally Designator (Table Follows)

I, DI, ID, and F

Tag Field
Ignored
] i i J Il
T T T T T
: I
H |
tm td
L L L L
l Ll T T L N
1 1
[} |
|
tb 0 0 Cf
—t : :
' :
|
Delta
1 " L N)
L ¥ L} T L4
30 31 32 33 34 35

character size (0 = 6-bit, 1 = 9-bit)

DIC and IDC
CI, SC
AD, SD
Where
t = modifier
m
ty = designator
tb =
C ¢ = character field
Delta = delta field

The following table gives the possible tally designators under IT type modification.

Tally Designator

Symbolic Binary Name
I 1001 Indirect only
DI 1100 Decrement Address, Increment Tally
AD 1011 Add Delta (to address field)
SD 0100 Subtract Delta (from address field)
ib 1110 Increment Address, Decrement Tally
DIC 1101 Decrement Address, Increment Tally, and Continue
IDe 1111 Increment Address, Decrement Tally, and Continue
CI 1000 Character from Indirect
SC 1010 Sequence Character
F 0000 Fault

36

CPB-1004F

Address Modification Flowcharts

All possible types and sequences of address modification are shown on the following two
flowcharts.

Modification Type Flowchart
R, IR, and RI address modification Figure 5A
IT address modification Figure 5B

See explanation of symbols and descriptions of modifications immediately following these
figures.

Instruction @

containing
t ,t
Y’ m’ d

O

e

y, modified 3 = IR v, moElified @
according to t according to

d =
=y t. =g % 6 Eq =Y

l’ d d
= & J =T
yEY v y=y @
y=Yi @ See

_________ IT Address
(Y:tm:td)=y’tm’td @ Fetch ¢ (Yj_) Modification Flowchart

(y), modified

. according to
= IR -
e td* = (y) q RI
(t) =t * (y), modified
d d according to

(t) = ()

|
@ n =x

@ O =Y,
@ Fetch C (Y;,)

D i e Tl i ———

@ ((y,tm,td))=(y,tm,td)

: »

Figure 5A. Address Modification Flowchart

CPB-1004F

37

8¢

A%00T1-9d0

Instruction
containing @
yoty = IT,Ey

O—
(@

E

= cr anc

¥y in

o

£\

/) =

y ey

y »

O
]

ln DI

y s

y =¥

T If (Tally) - 0, ser |
Tally Run %ot Indicator
ON; else Orr

(Cf) +1)(Cf)

® 0 0

(Tally +1 »(Tally)
[(failyy = 0, st
Tally Run Out Indicator
ON; elae OFF

) 2
N

Store (y, Tally)

®®

®

into Indirect Word
T

(Tally) -1 » (Tally)
1T (Tally} <0, set |
Tally Run Out lndicator
ON; else OFF

G ———

[©GREJO)

Store (y, Delta, Tally)
into Indirect Word

®

(Tally) -1 » (Tally)

[T (TeTiy} =0, set . |
Tally Bun Out Indicator
ON; else OFF

Store (y, Tally)
into Indirect Word

® 6066

ITe T =0, st —
Tally Run Out Indicator
ON; else OFF

fm

QOO
|
|
I
|
|
|
!

Store (y, Tally)
into Indirect Word

®

(Tally) +1 » (Tally)

®

(:DGIQ

Fetch C(¥;) Fetch C(¥,) Feteh G(Y,) & 4] fetch ety Fetch €(¥,) 2N reren oty
(Tally) -1 # (Tally) -1 (y)+ (Deita) = (y) W+ & () o -1 »

)+ >

(Tally) -1 » (Tally)
1f (Tally) = 0, set

Tally Run Out Indicator

ON; else OFF

Store (y, Tally)
into Indirect Word

& = RT

(v, Tally, Cp)
back intol @

Indirect Word

y s
Ferch c(¥) {&

!

[13

&)

Original (y) »Y

Original (y) »¥

End)

Original (y,t .t,)

[S2ER
ii
Fetch C(Y,,) @

Uyataed) > yae oty @

NOTE
Operation on -
character is performed @ . aper.uonfon .
according to Original character is performe
(CH) according to (Cg)
= IR
=t %
3 td :d
@ o > ¥,
| Feeeh oty]
St
@“Y art)) B 9Tt

To on

R, IR, and RI Address
Modification Flowchart

D

IR

= RI

Uriginal n 2,
Fetch C(Y;,)

(et) & vat by

To on
R, IR. and RI Address
Modification Flow Chart

1] (»n *Y

&)

Cause

Fauli Tag 28
Fault Trap

Original (y)

Fetch C('X')ii

(y,e) Syt .t

Y

©®

Figure 5B. Address Modification Flowchart

!

Original (y)»

y * Y
Fetch c%yi)

y o+
Fetch C(¥,)

v - (Delta) » (y)

(Tally) =1 » (Tally)

[©)E)O]

Tally Run Out Indicator
ON; else OFF

store (y, Delta, Tally)
into Indirect Word

I

y DY 14

®

o Explanation of Symbols Used on Flowcharts

Vot oty
Cg¢, Tally, Delta

C(---)

Original

End

is the original address, tag modifier, and tag designator, respectively.

is the value of the character field, tally field, and delta field of an
indirect word.

should be read “replaces.”
should be read “the contents of---.”

is the final effective address to be used in carrying out an instruction
operation.

is the address of an indirect word which will be used for further
modification.

is the address, obtained from another indirect word, of an indirect word
which will be used for further modification.

represents quantities obtained from the contents of an indirect word.

represents quantities obtained from the contents of an indirect word
which was obtained through another indirect word.

is the register designator to beusedas a final register modifier under
IR modification.

Most indirect words which are used under IT modification utilize the
read-alter-rewrite (RAR) memory cycle. This RAR cycle must be
completed before ancther indirect cycle can occur. The word original
refers to the quantity contained in anindirect word before that quantity
is incremented (during the alter part of the RAR cycle). Omission
of the word original refers to the quantity after it is incremented or
decremented during the alter portion of the RAR cycle.

indicates that the modification procedure for that instruction has
terminated and the effective address Y, developed up to that point,
is used to carry out the instruction operation.

e Detailed Description of Flowcharts

@ The instruction word address field serves as the initial value of the tentative
address y, and its tag field supplies the initial modifier t ,as well as initial
designator t;.

® O

t ,is one of the four modification types: R, RI, IR, or IT.

y modified by t, replaces the former tentative addressy. If ty=DUor DL, DU
or DL is ignored and the modification proceeds as if ty = N.

The tentative address y, developed up to that point, becomes the address Y; to be
used in accessing an indirect word which will be used for further modification.

Using Y ;, the indirect word is fetched.

CPB~1004F

39

e G ® 0O W OO

® 6 6

® ©

The address and tag fields of the last indirect word replace the tentative address
and the tag of the instruction.

The last designator t o becomes the final designator t 4% to be used as a final
register modifier under IR modification.

The ty, of the indirect word, designates one of the four modification types: R, RI,
IR, or IT.

The address of the indirect word (y), modified by the final register modifier t g*,
replaces the former tentative address.

The tentative indirect address (y), developedup to that point, is used as the effective
address Y for carrying out the instruction operation.

The designator of the indirect word (t,) replaces the final register designator t o

The tentative indirect address (y), developed up to that point becomes the address
Yii , to be used in accessing another indirect word which will be used for further
modification. Using Y;,, the indirect word is fetched.

The address (y), contained in the indirect word and modified by the designator of
the indirect word (t j), replaces the tentative indirect address (y).

The y modified by t 4 replaces the former tentative address y.

The tentative address y, developed up to thatpoint, is used as the effective address
Y for carrying out the instruction’s operation.

The t ;is one of the 10 tally designators: SC, CI, DIC, AD, IDC, F, DI, I, ID, or SD.

A value one less than or one greater than the value of the tally field loaded from the
indirect word becomes the new value of the tally field, depending on the use of the
AD or SD designator.

The Tally Runout Indicator is setto ONif the tally field equals zero after incremen-
tation or decrementation; the Indicator is setof OFF if the tally field does not equal
zero after incrementation or decrementation.

A value one greater than the value of the character field loaded from the indirect
word becomes the new value of the character field.

If the value of the character field C ; equals six, the character field is set to zero;
and a value one greater than the value of the address field loaded from the indirect
word becomes the new value of the address field.

During the rewrite portion of the read-alter-rewrite cycle used for updating an
indirect word, the updated fields--(y), (C;), (Tally), (Delta), (t,), (tj), where
applicable--are returned to storage in memory.

The original value of the address field (y), as loaded from the indirect word before

any incrementation or decrementation, becomes the effective address Y which is
used to carry out the instruction operation.

CPB-~1004F

40

ONONONNG

®

® 66 6

® ®

NOTE:

The original value of the character field C., as loaded from the indirect word
before any incrementation (or setting to zerog, is the value used in carrying out
the instruction operation. (See note at end of this listing.)

A value one less than the value of the address field loaded from the indirect word
becomes the new value of the address field.

A value one greater than the value of the tally field loaded from the indirect word
becomes the new value of the tally field.

Under IDC or DIC types of modification, the modifiers permitted within the indirect
are:

t, =R ty =N
t, =IR tg = any
t, =RI ty =N
t =1IT t = any
m d

t n= R effectively terminates the modification procedure while
tm = RI, IR, or IT seeks at least an additional level of modification.

The original value of the address field (y), as loaded from the indirect word before
incrementation, becomes the address Y;; to be used in accessing the next indirect
word which will be used for further modification.

The address and tag fields of Y ;i replace the address and tag fields of the original
instruction, and modification proceeds.

Occurs when t, =1IT and t ;= F, or when Fault tag fault is initiated and no further
indirect addressing occurs.

A value one greater than the value of the address field loaded from the indirect
word becomes the new value of the address field.

A value equal to the value of the address field (loaded from the indirect word)
plus or minus Delta (a constant also loaded from the indirect word) replaces the
value of the address field. The constant is positive for the AD designator and
negative for the SD designator.

The value of the character field Cg, after incrementation (or setting to zero), is
used in carrying out the instruction operation. (See the note at the end of this
listing.)

The original value of the address field and the tag field of the last indirect word

replace the tentative address and tag of the instruction.

When the tally designator is CI or SC, the character field of the last indirect word
is an octal number which specifies the character position of the memory location
Y to be used in carrying out the instruction operation (the example uses a value of
3 in the character field).

CPB-1004F

41

CALCULATION OF INSTRUCTION EXECUTION TIMES

The instruction execution times are based on fetching of instructions in pairs from storage,
and in the case of overlap type instructions* on overlap between the operation execution
of the overlap type instruction and the fetching and address modification of the next in-
struction.

Certain operations prevent the fetching of instructions in pairs and certain instructions
prevent overlapping. Under these conditions the following time adjustments should be made.

1.

If an instruction from an

even storage location alters

a register, and the next
instruction (from the
successive odd location)
begins its address modi-
fication procedure with
an R or RI type of modi-
fication which uses this
same register, then

If an instruction from an
even storage location
alters the next instruction,
then

If a transfer of control
instruction is located
at an odd storage loca~-
tion, then

If a transfer of control
transfers to an instruc-
tion located at an odd
storage location, then

If a store type** in-
struction located in an
odd storage location is
preceded by a nonstore
type instruction, then

Single Precision Store
Read- Alter-Rewrite
Double Precision Store

*Overlap type instructions include multiplications,

operations except loads and stores.

GE-615

Add 0 microseconds

Add 2.2 microseconds

Add 0.5 microsecond

Add 1.3 microseconds

Add 0.6 microsecond
Add 0.6 microsecond
Add 0.9 microsecond

divisions,

GE-635

Add 1.8 microseconds

Add 2.7 microseconds

Add 0.5 microsecond

Add 0.8 microsecond

Add 1.1 microseconds
Add 1.2 microseconds
Add 1.2 microseconds

shifts, and floating-point

**Store type instructions = store, floating store, add and subtract stored, AND, OR, and
EXCLUSIVE OR to storage, etc.

42

CPB-1004F
Rev. July 1969

If an overlap type in-
struction is followed either
by a store type instruc-
tion from an odd storage
location or by a trans-

fer of control instruction,
then (depending on the
particular instruction
sequence)

The instruction execution
times of shift and floating-
point operations are listed
as “average” times based
on a number of 4 shift steps.
Note that a single shift
step may effect a shift by
one, four, or sixteen po-
sitions. Actual times for
these instructions may
vary by up to + 0.8 micro-
second. Where unnormal-
ized operands are used

in normalizing floating-
point operations, worst
case conditions can add

as much as 1.5 micro-
seconds.

Address modifications do not
require any time adjustments
except of the following cases:

RI - type, for the indirect
cycle

IR - type, for the indirect
cycle

IT - type, for the indirect
cycle with restoring
of the indirect word

IT Even
IT Odd

IT - type, for the indirect
cycle with nonrestoring
of the indirect word
(CI and I)

Index designator DU or DL
except when used with
a first modification of
the R or RI type and the
preceding instruction
being an overlap type
instruction.

GE-615

Add 2-3 microseconds

Add 1.7 microseconds

Add 1.7 microseconds

Add 3.3 microseconds
Add 3.3 microseconds

Add 1.7 microseconds

Subt 1.4 microseconds

43

GE-635

Add 1-2 microseconds

Add 1.7 microseconds

Add 1.7 microseconds

Add 3.2 microseconds
Add 4.9 microseconds

Add 1.7 microseconds

Subt 0.5 microsecond

CPB-1004F
Rev. July 1969

THE INSTRUCTION REPERTOIRE

The GE-625/635 instruction set described under this heading is arranged by functional
class, as listed in Appendix A. Appendix A together with Appendix B, which lists the
instructions in alphabetical order by mnemonic, afford convenient page references to the
instructions in this section. Appendix C presents the instruction mnemonics grouped by
operation code.

CPB-1004F
Rev. July 1969

43.1

For the description of the machine instructions that follow it is assumed that the reader is
familiar with the general structure of the Processor, the representation of information,
the data formats, and the method of address modifications, as presented in the preceding
paragraphs of this chapter.

FORMAT OF INSTRUCTION DESCRIPTION

Each instruction in the repertoire is described in the following pages of this chapter. The
descriptions are presented in the standardized format shown below.

Mnemonic: Name of the Instruction: Op Code (Octal)

SUMMARY:

MODIFICATIONS:

INDICATORS:

NOTES:] : |

‘/_’—-—’/\

Line 1: Mnemonic, Name of the Instruction, Op Code (octal)
This line has three headings that appear over boxes containing the following:

1. Mnemonic--The mnemonic code for the Operation field of the programming
form.

2. Name of the Instruction--The name of the machine instruction from which
the Mnemonic was derived.

3. Op Code (octal)--The octal operation code for the instruction.

Line 2: SUMMARY
The change in the status of the information processing system effected by the
execution of the instructions operation is described in a short and generally
symbolic form. If reference is made here to the status of an indicator, then it
is the status of this indicator before the operation is executed.

Line 3: MODIFICATIONS
Those designators are listed explicitly that shall not be used with this instruction

either because they are not permitted with this instruction or because their effect
cannot be predicted from the general address modification procedure.

CPB~1004F

44

Line 4: INDICATORS

Only those indicators are listed whose status can be changed by the execution of this
instruction. In most cases, a condition for setting ON as well as one for setting OFF is
stated. If only one of the two is stated, then this indicator remains unchanged. Unless
explicitly stated otherwise, the conditions refer to the contents of registers, etc., as
existing after the execution of the instruction’s operation.

Line 5: NOTES
This part of the description exists only in those cases where the SUMMARY is not sufficient

for an understanding of the operation.

Abbreviations and Symbols

The following abbreviations and symbols will be used for the description of the machine
operations.

Registers:
A = Accumulator Register (36 bits)
Q = Quotient Register (36 bits)
AQ = Combined Accumulator-Quotient Register (72 bits)
Xn = Index Register n (n =0, 1,...,7) (18 bits)
E = Exponent Register (8 bits)
EA = Combined Exponent-Accumulator Register (8 + 36 bits)
EAQ = Combined Exponent-Accumulator-Quotient Register (8 + 72 bits)
BAR = Base Address Register (18 bits)
IC = Instruction Counter (18 bits)
IR = Indicator Register (18 bits, 11 of which are used at this time)
TR = Timer Register (24 bits)
Z = Temporary Pseudo-result of a non-store comparative Operation.

Effective Address and Memory Locations

Y
Y-pair

The effective address (18 bits) of the respective instruction.

A symbol denoting that the effective address Y designates a pair of
memory locations (72 bits) with successive addresses, the lower one
being even. When the effective address is even, then it designates the
pair (Y, Y+1), and when it is odd, then the pair (Y-1, Y). In any case the
memory location with the lower (even) address contains the more signifi-
cant part of adouble-precision number or the first of a pair of instructions.

Register Positions and Contents:

(“R” standing for any of the registers listed above as well as for a memory location or a
pair of memory locations.)

R = the ith position of R

Ri..5 = the positions i through j of R

C(R) = the contents of the full register R

C(R); = the contents of the ith position of R
C(R)i...jz the contents of the positions i through j of R

CPB-1004F

45

When the description of an instruction states a change only for a part of a register or memory
location, then it is always understood that the part of the register or memory location which
is not mentioned remains unchanged.

Other Symbols:

= = replaces

= compare with

AND = the Boolean connective AND (symbol A)
OR = the Boolean connective OR (symboly)
;é = the Boolean connective NON-EQUIVALENCE (or EXCLUSIVE OR)

Memory Accessing

It is a characteristic feature of the GE-625/635 computer that an address translation takes
place with each memory access when the Processor operates in the Slave Mode.

During the execution of a program a base address is contained in the bit positions 0-7
of the Processor Base Address Register. With each memory access, this base address
is added to bit positions 0-7 of the program address supplied by this program in order to
generate the actual address used in accessing the memory. In this way, the address trans-
lation provides complete independence of the program address range that is used with a
specific execution of this program.

Only when the Processor is in the Master Mode is the program address used directly as an
actual address; in this case, program addresses generally refer to the Comprehensive
Operating System which has allocated to it the actual address range beginning at zero.

The descriptions of the individual machine instructions in this chapter do not mention the
address translation. It is understood here that an address translation has to be performed
immediately prior to each memory access request (in the Slave Mode) regardless of whether:

1. The program address is an instruction address, and the memory is accessed for
fetching an instruction.

2. The program addressis a tentative address, and the memory is accessed for fetching
an indirect word

3. The program address is an effective address, and the memory is accessed for
obtaining an operand or for storing a result.

CPB-~1004F

46

No address translations take place for effective addresses which are used either as operands
directly or in other ways (for example, shifts).

Floating-Point Arithmetic

Numbers in floating-point representation are stored in memory as follows:

Integer Fractional
Exponent Mantissa
S le= | isi
ingle=word precision C(Y)0 7 C(Y)8 35
D - 1 i -pai —-Dai
ouble-word precision Cc(Y palr)o 7 c(y pa.].r)8 71

When a floating-point number is held in the register EAQ, its mantissa length is allowed to
increase to the full length of the register AQ.

ron— Y-pair .
Y B
T
|
1
0 71 8 35] 36 71
0 710 27128 63 71
i
1
1
jt—— E —Pojugt A —P| it Q -

In storing a floating-point number, a truncation of the mantissa takes place. With single-

word precision store instructions, only C(AQ),_,, will be stored as mantissa, and with
double-word precision store instructions, only C(XQZ) 0-63

CPB~1004F

47

DATA MOVEMENT

LOAD

DESCRIPTIONS OF THE MACHINE INSTRUCTIONS

Mnemonic: Name of the Instruction:

Op Code (Octal)

LDA Load A

235

SUMMARY: C(Y) = C(A)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(A)g - 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)
LDQ Load Q 236

SUMMARY: C(Y) = C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)
Zero If ¢(Q =0, then ON; otherwise OFF
Negative If C(Q)0 = 1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
LDAQ Load AQ 237
SUMMARY: C(Y-pair) = C(AQ)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)0 = 1, then ON; otherwise OFF
CPB-~1004F

48

DATA MOVEMENT
LOAD

Mnemonic: Name of the Instruction: Op Code (Octal)
LDXn Load Xn from Upper (n=0, 1, ...,7) 22n
SUMMARY: C(Y)O > C(Xn)
MODIFICATIONS: All except CI, SC, DL
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) =0, then ON; otherwise OFF
Negative If C(Xn)0 = 1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
LXLn Load Xn from Lower (n=0, 1,...,7) 72n
SUMMARY: C(Y)18 35 = C(Xn)
MODIFICATIONS: All except DU, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) =0, then ON; otherwise OFF
Negative It C(Xn)o = 1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
LREG Load Registers 073

SUMMARY: C(Y,Y+l,....Y+6) = C(X0,X1,...X7,A,Q,E)

where Y]5-17 = 000 for the first location only and increases by one for

each succeeding location.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

NOTE: C(M)g_17 = C(X0) C(Y+3)y_17 >
C(Y)1g_35 = C(X1) C(Y+3)1g.35 =
C(YH)g 47 = C(X2) C(Y+) g5 =
C(Y+l) ;g g5 = C(X3) C(Y+5)_g5 >
C(YR)y 47 = C(X4) C(Y+6)¢_y =
C(Y+2)yg 35 = C(X5)

49

C(X6)
C(X7)
C(A)
c(Q
C(E)

CPB~1004F

DATA MOVEMENT

LOAD
Mnemonic: Name of the Instruction: Op Code (Octal)
LCA Load Complement A 335
SUMMARY: - C(Y) = C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(A)0 =1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON; otherwise OFF
NOTE: This instruction changes the number to its negative
(if # 0) while moving it from the memory to A,
The operation is executed by forming the two's com-~
plement of the string of 36 bits.
CPB-1004F

50

DATA MOVEMENT

LOAD
Mnemonic: Name of the Instruction: Op Code (Octal)
LCQ Load Complement Q 336
SUMMARY: - C(Y) » C(Q)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) =0, then ON; otherwise OFF
Negative 1t C(Q)0 =1, then ON; otherwise OFF
Overflow If range of Q is exceeded, then ON
NOTE: This instruction changes the number to its negative
(if # 0) while moving it from Y to Q. The operation
is executed by forming the two's complement of the
string of 36 bits.
Mnemonic: Name of the Instruction: Op Code (Octal)
LCAQ Load Complement AQ 337
SUMMARY: - C(Y-~pair) = C(AQ)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)0 =1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON
NOTE: This instruction changes the number to its negative (if # 0) while moving

it from Y-pair to AQ. The operation is executed by forming the two's
complement of the string of 72 bits.

CPB-1004F

51

DATA MOVEMENT

LOAD
Mnemonic: Name of the Instruction: Op Code (Octal)
LCXn Load Complement Xn (n=0,1,...,7) 32n
SUMMARY: - C(Y)0 177 C(Xn)
MODIFICATIONS: All except CI, SC, DL
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) =0, then ON; otherwise OFF
Negative It C(Xn)o =1, then ON; otherwise OFF
Overflow If range of Xn is exceeded, then ON
NOTE: This instruction changes the number to its negative (if # 0) while moving
it from Yg 17 to Xn. The operation is executed by forming the two's
complement of the string of 18 bits.
Mnemonic: Name of the Instruction: Op Code (Octal)
EAA Effective Address to A 635
SUMMARY: Y= CA)y 17:00...0 = CA);g 4o
MODIFICATIONS: All except DU, DL
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(A)O = 1, then ON; otherwise OFF
NOTE: This instruction, and the instructions EAQ and EAXn, facilitate

interregister data movements; the data source is specified by the
address modification, and the data destination by the operation
code of the instruction.

CPB~1004F

52

DATA MOVEMENT

LOAD
Mnemonic: Name of the Instruction: Op Code (Octal)
EAQ Effective Address to Q 636
SUMMARY: Y= C(Q)O. AT 00...0 = C(Q)lg. 35
MODIFICATIONS: All except DU, DL
INDICATORS; (Indicators not listed are not affected)
Zero If ¢(Q) =0, then ON; otherwise OFF
Negative If C(Q)0 =1, then ON; otherwise OFF
NOTE: This instruction, and the instructions EAA and EAXn, facilitate
interregister data movements; the data source is specified by
the address modification, and the data destination by the operation
code of the instruction.
Mnemonic: Name of the Instruction: Op Code (Octal)

EAXn Effective Address to Xn (n=0,1,...,7) 62n

SUMMARY: Y = C(Xn)

MODIFICATIONS: All except DU, DL
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) =0, then ON; otherwise OFF
Negative b C(Xn)0 = 1, then ON; otherwise OFF
NOTE: This instruction, and the instructions EAA and EAQ facilitate

interregister data movements; the data source is specified by
the address modification, and the data destination by the operation
code of the instruction.

CPB-1004F

53

DATA MOVEMENT

LOAD
Mnemonic: Name of the Instruction: Op Code (Octal)
LDI Load Indicator Register 634

MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)
Master Mode Not Affected!
All other If corresponding bit in C(Y) is ONE, then ON;
indicators otherwise OFF
NOTE: 1. The relation between bit positions of C(Y) and the indicators is as
follows:
Bit Position Indicators
18 Zero
19 Negative
20 Carry
21 Overflow
22 Exponent Overflow
23 Exponent Underflow
24 Overflow Mask
25 Tally Runout
26 Parity Error
27 Parity Mask
— 28 _ __|— _ Master Mode _ __ __
29
30
31
32 00...0
33
34
35

2. The Tally Runout Indicator will reflect C(Y)g5 regardless of
what address modification is performed on the LDI instruction
(for Tally Operations).

CPB-1004F

54

DATA MOVEMENT
STORE

Mnemonic: Name of the Instruction: Op Code (Octal)
STA Store A 755

SUMMARY: C(A) = C(Y)

MODIFICATIONS: All except DU, DL

INDICATORS: None affected

Mnemonic: Name of the Instruction: Op Code (Octal)
STQ Store Q 756

SUMMARY: C(Q) - C(Y)

MODIFICATIONS: All except DU, DL

INDICATORS: None affected

Mnemonic: Name of the Instruction: Op Code (Octal)
STAQ Store AQ 757

SUMMARY: C(AQ) = C(Y-pair)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction: Op Code (Octal)
STXn Store Xn into Upper (n=0,1...,7) T4n

SUMMARY: C(Xn) » C(Y) 0...17

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

CPB-~1004F

55

DATA MOVEMENT

STORE
Mnemonic: Name of the Instruction: Op Code (Octal)
SXLn Store Xn into Lower (n=0,1,...,7 44n
SUMMARY: C(Xn) = C(Y);g 35
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: None affected
Mnemonic: Name of the Instruction: Op Code (Octal)
SREG Store Registers 753
SUMMARY: C(X0,X1,X2,....X7,A,Q,E,TR) = C(Y,Y+1,....Y+7)
where Yi5_g7= 000 for the first location only and increases by one for
each succeeding location
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: None affected
NOTE: C(X0) = C(Y)o_17 C(X6) = C(Y+3)0_17
C(X1) - C(W)g.35 C&XN = C(Y43), o0
C(X2) = C(Y+1)0_17 Cc(A) = C(Y+4)0_ 35
C(X3) = C(Y+1)18-35 Cc(Q) - C(Y+5)O_35
c(x4) C(Y+2)0_17 C(E) - C(Y+6)0_ 7 00..0 _, C(Y+6) 8-35
C(X5) = C(Y+2)jg g5 C(TR) . C(Y#7))_gq; 00...0 5 C(Y4T)y, o

56

CPB-1004F
Rev. July 1969

DATA MOVEMENT

STORE
Mnemonic: Name of the Instruction: Op Code (Octal)
STCA Store Character of A (Six Bit) 751

SUMMARY: Characters of C(A) = corresponding characters of C(Y), the character

positions «ffected being specified in the Tag field.

MODIFICATIONS: No modification can take place
INDICATORS: None affected
NOTE: Binary ones in the tag field of this instruction specify the character-

positions of A and Y that are affected by this instruction. The control
relation is shown in the diagram below,
17 18 26 30

35 st t: f
Address lOp Code I()lilol Tag l ructure o

this Instruction
0 '12'3'4'5

Bit positions
within Tag fiel
0 17 18 23 24 29 30

Structure ! |
of A and Y Char. #O}Char. #1 :Char., #2 :Char. #3 :Charo #4: Char. #5
EXAMPLE: 1 8 16 32
[I'sTca I'Loc, 07 I

The mstruct'lon in this e}&le moves the 6-bit characters #3, #4, and #5 from
C(A) to the corresponding character positions of memory 1ocat10n LOC Character
positions #0, #1, and #2 of LOC are unaffected.

Mnemonic: Name of the Instruction: Op Code (Octal)

STCQ

Store Character of Q (Six Bit) 752

SUMMARY: Characters of C(Q) =» corresponding characters of C(Y), the character

positions affected being specified by the Tag field.

MODIFICATIONS: No modification can take place

INDICATORS: None affected

NOTE: Binary ones in the Tag field of this instruction specify the character
positions of Q and Y that are affected by this instruction. See the
example for STCA. The control relation is shown in the diagram below.

0 17 18 26 30 35 Structure of
10t
l Address ' Op Code '0 0 . l’I:ag' this Instruction
Bit positions 12345
/wmtag field ’T//
Structure | o, 401 Char. #11Char. #2]Char, #3 Char. #4i Char. #5
of Q and Y! L t) L I

CPB-1004 F

57

DATA MOVEMENT

STORE
Mnemonic: Name of the Instruction: Op Code (Octal)
STBA Store Character of A (Nine Bit) 551

SUMMARY: Characters of C(A) = corresponding characters of C(Y),
the character positions affected being specified in the Tag field.

MODIFICATIONS: No modification can take place
INDICATORS: None affected
NOTE: Binary ones in the Tag field of this instruction specify the character

positions of A and Y that are affected by this instruction. The control
relation is shown in the diagram below:

0 17 18 26 30 35
T TT1TT7
Address { Op Code [01il0} Tag
012345

Bit positions
within Tag field [

] I !
Structure Char. #0 |Char. #1 |Char. #2¢Char. #3
| 1 L

Structure of
this Instruction

of Aand Y
EXAMPLE: 1 8 16 32
I STBA I'Loc, 04

The instruction in this e:'cample moves the low order 9-bit character #3 from
C(A) to the corresponding character position of memory location LOC. Character
positions #0, #1, and #2 of LOC are unaffected.

Bit positions 4 and 5 of the Tag field are ignored.

CPB-1004F

58

DATA MOVEMENT
STORE

Op Code (Octal)

Mnemonic: Name of the Instruction:
STBQ Store Character of Q (Nine Bit) 552
SUMMARY: Characters of C(Q) ~ corresponding characters of C(Y), the character
positions affected being specified in the Tag field.
MODIFICATIONS: No modification can take place
INDICATORS: None affected
NOTE: Binary ones in the Tag field of this instruction specify the character
positions of A and Y that are affected by this instruction. See the
example for STBA, The control relation is shown in the diagram
below:
0 1718 26 30 35
¥ PRI PN Structure of
Address gOp Code =0=1=0= Tag this Instruction

LI
012345
Bit positions
within Tag field

A

Structure 1

of Aand Y

1
Char, #0 | Char. #1 | Char. #2 ! Char, #3
1 [} 1

Bit positions 4 and 5 of the Tag field are ignored.

59

CPB-1004 F

DATA MOVEMENT

STORE
Mnemonic: Name of the Instruction: Op Code (Octal)
STI Store Indicator Register 754
SUMMARY: C(IR) = C(Y)l& .35
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: None affected
NOTE: 1. The relation between bit positions of C(Y) and the indicators

is as follows:

Bit Position Indicators
18 Zero
19 Negative
20 Carry
21 Overflow
22 Exponent Overflow
23 Exponent Underflow
24 Overflow Mask
25 Tally Runout
26 Parity Error
27 Parity Mask
28 _ | Master Mode __ __
-T2 B
30
31
32 00...0
33
34
35

The ON state corresponds to a ONE bit, the OFF state to a ZERO
bit.

The C(Y)2 will contain the state of the Tally Runout Indicator
prior to ac?dress modification of the STI instruction (for Tally
operations).

CPB-1004F
Rev. July 1969

60

Mnemonic:

Name of the Instruction:

DATA MOVEMENT
STORE

Op Code (Octal)

STT

Store Timer Register

454

SUMMARY: C(TR) - C(Y)

~ 0...23
00...0= C(¥)yy " "5
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: None affected
Mnemonic: Name of the Instruction: Op Code (Octal)
SBAR Store Base Address Register 550

SUMMARY: C(BAR) = C(Y), ;7 C(Y) ;4 55 Unchanged

MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: None affected
Mnemonic: Name of the Instruction: Op Code (Octal)
STZ Store Zero 450
SUMMARY: 00...0 - C(Y)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: None affected
CPB~1004F

61

Rev. July 1969

DATA MOVEMENT

STORE
Mnemonic: Name of the Instruction: Op Code (Octal)
STC1 Store Instruction Counter plus 1 554

SUMMARY: c(ic) +0...01 = C(Y)0 17 (Note the difference between STC1 and

STC2)
C(IR) = C(W)yg.. .35

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

NOTES: 1. The relation between bit positions of C(Y) and the indicators is as

follows: \
Bit Position) Indicators
18 Zero
19 Negative
20 Carry
21 Overflow
22 Exponent Overflow
23 Exponent Underflow
24 Overflow Mask
25 Tally Runout
26 Parity Error
27 Parity Mask
28 | _ Master Mode __ __
—— 5 —

30
31
32 00...0
33
34
35

2, The ON state corresponds to a ONE bit, the OFF state to a ZERO

bit.

3. The C(Y)y5 will contain the state of the Tally Runout Indicator
prior to agdress modification of the STC1 instruction (for Tally
operations).

Mnemonic: Name of the Instruction: Op Code (Octal)
STC2 Store Instruction Counter plus 2 750

SUMMARY: C(IC) + O... 0102 = C(Y)0 17 (Note the difference between STC1

C(Y);g.35 remain unchanged and STC2)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

CPB-1004F

62

DATA MOVEMENT
SHIFT

Mnemonic: Name of the Instruction: . Op Code (Octal)
ARS A Right Shift 731

SUMMARY: Shift right C(A) by Y, qq positions; fill vacated positions with C(A)o

MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative It C(A)O =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
QRS Q Right Shift 732

SUMMARY: Shift right C(Q) by Y1 1., 17 Positions; fill vacated positions with C(Q)0

MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) =0, then ON; otherwise OFF
Negative i C(Q)O =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
LRS Long Right Shift 733

SUMMARY: Shift right C(AQ) by Yy, 17 bositions; fill vacated positions with C(AQ)O

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative It C(AQ)0 =1, then ON; otherwise OFF

CPB-~1004F

63

DATA MOVEMENT

SHIFT
Mnemonic: Name of the Instruction: Op Code (Octal)
ALS A Left Shift 735

SUMMARY: Shift left C(A) by Y 7 positions; fill vacated positions with zeros

11...1

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative It C(A)0 =1, then ON; otherwise OFF
Carry If C(A)0 ever changes during the shift, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
QLS Q Left Shift 736

SUMMARY: Shift left C(Q) by Yii 17 positions; fill vacated positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) =0, then ON; otherwise OFF
Negative If C(Q)0 =1, then ON; otherwise OFF
Carry If C(Q)o ever changes during the shift, then ON; otherwise OFF

CPB~1004F

64

DATA MOVEMENT
SHIFT

Mnemonic: Name of the Instruction: Op Code (Octal)

LLS Long Left Shift 737

SUMMARY: Shift left C(AQ) by Y11 17 positions; fill vacated positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)0 =1, then ON; otherwise OFF
Carry If C(AQ)O ever changes during the shift, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
ARL A Right Logic 771

SUMMARY: Shift right C(A) by Y11 17 positions; fill vacated positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(A)0 =1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)
QRL Q Right Logic 772

SUMMARY: ghift right C(Q) by Y,y 17 bositions; fill vacated positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) =0, then ON; otherwise OFF
Negative It C(Q)0 =1, then ON; otherwise OFF

CPB-~1004F

65

DATA MOVEMENT

SHIFT
Mnemonic: Name of the Instruction: Op Code (Octal)
LRL Long Right Logic 773
SUMMARY: Shift right C(AQ) by Y117 positions; fill vacated positions with zeros
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)0 =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
ALR A Left Rotate 775
SUMMARY: Rotate C(A) by Y11 17 positions; enter each bit leaving position 0 into
position 35 tT
MODIFICATIONS: All except DU, DL, CI, 8C
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(A)O =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
QLR Q Left Rotate 776
SUMMARY: Rotate C(Q) by Y11 17 positions; enter each bit leaving position 0 into
position 35 e
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q =0, then ON; otherwise OFF
Negative If C(Q)0 =1, then ON; otherwise OFF

CPB-~1004F

66

DATA MOVEMENT
SHIFT

Mnemonic: Name of the Instruction: Op Code (Octal)
LLR Long Left Rotate 777

SUMMARY: Rotate C(AQ) by Y 11 17 positions; enter each bit leaving position 0 into
position 71 to

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative It C(AQ)O =1, then ON; otherwise OFF

CPB-1004F

67

FIXED-POINT ARITHMETIC

ADDITION
Mnemonic: Name of the Instruction: Op Code (Octal)
ADA Addto A 075

SUMMARY: C(A) + C(Y) = C(4)

MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(A)0 =1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
Carry If a carry out of A0 is generated, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
ADQ Add to Q 076

SUMMARY: C(Q) +C(Y) =»C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) =0, then ON; otherwise OFF
Negative I C(Q)0 =1, then ON; otherwise OFF
Overflow If range of Q is exceeded, then ON
Carry If a carry out of Q0 is generated, then ON; otherwise OFF

CPB-1004 F

68

FIXED-POINT ARITHMETIC

ADDITION

Mnemonic: Name of the Instruction: Op Code (Octal)

ADAQ Add to AQ 077
SUMMARY: C(AQ) + C(Y-pair) = C(AQ)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) =0, then ON; otherwise OFF

Negative If C(AQ)O =1, then ON; otherwise OFF

Overflow If range of AQ exceeded, then ON

Carry If a carry out of AQO is generated, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)

ADXn Add to Xn (n=0,1,...,7 06n
SUMMARY: C(Xn) + C(Y), 17 = C(Xn)
MODIFICATIONS; All except CI, SC, DL
INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) =0, then ON; otherwise OFF

Negative If C(Xn)0 =1, then ON; otherwise OFF

Overflow If range of Xn is exceeded; then ON

Carry If a carry out of Xn0 is generated, then ON; otherwise OFF

CPB-1004F

69

FIXED-POINT ARITHMETIC

ADDITION
Mnemonic: Name of the Instruction: Op Code (Octal)
ASA Add to Storage from A 055
SUMMARY: ca) +c(Y) =¢(Y) C(A) unchanged

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) =0, then ON; otherwise OFF

Negative If C(Y)o = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of Y0 is generated, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)

ASQ Add to Storage from Q 056
SUMMARY: C(Q + C(Y) = C(Y) C(Q) unchanged
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) =0, then ON; otherwise OFF

Negative If C(Y)0 =1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of Y0 is generated, then ON; otherwise OFF

CPB-~1004F

70

FIXED-POINT ARITHMETIC

ADDITION
Mnemonic: Name of the Instruction: Op Code (Octal)
ASXn Add to Storage from Xn 04n
SUMMARY: C(Xn) + C(Y)Oo 17 C(Y)O. 17 C(Xn) unchanged
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y)O. 17 0, then ON; otherwise OFF
Negative If C(Y)O =1, then ON; otherwise OFF
Overflow If range of YO 17 exceeded, then ON
Carry If a carry out of Y0 is generated, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
ADLA Add Logic to A 035
SUMMARY: c(A) + C(Y) = C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(A)0 = 1, then ON; otherwise OFF
Overflow Not Affected!
Carry If a carry out of A0 is generated then ON, otherwise OFF
NOTE: This instruction is identical to the ADA instruction with the exception

that the Overflow Indicator is not affected by this instruction. Operands
and results are regarded as unsigned, positive binary integers. (See ‘
page 28, 72, and 73.)

CPB~1004F

71

FIXED-POINT ARITHMETIC

ADDITION
Mnemonic: Name of the Instruction: Op Code (Octal)
ADLQ Add Logic to Q 036

SUMMARY: c(Q +C(Y) = C(Q

MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) =0, then ON; otherwise OFF
Negative I C(Q)0 =1, then ON; otherwise OFF
Overflow Not Affected!
Carry If a carry out of QO is generated then ON; otherwise OFF
NOTE: This instruction is identical to the ADQ instruction with the exception that

the Overflow Indicator is not affected by this instruction. Operands and -
results are regarded as unsigned, positive binary integers. (See page 28.)

Mnemonic: Name of the Instruction: Op Code (Octal)
ADLAQ Add Logic to AQ 037

SUMMARY: C(AQ) + C(Y-pair) = C(AQ)

MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) =0, then ON; otherwise OFF

Negative If C(AQ)0 =1, then ON; otherwise OFF

Overflow Not Affected!

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF
NOTE: This instruction is identical to the ADAQ instruction with the exception

that the Overflow Indicator is not affected by this instruction. Operands.
and results are regarded as unsigned, positive binary integers. (See
page 28.)

CPB-~1004F

72

FIXED-POINT ARITHMETIC
ADDITION

Mnemonic: Name of the Instruction: Op Code (Octal)
ADLXn Add Logic to Xn (n=0,1,...,7) 02n
SUMMARY: C(Xn) + C(Y)0 T C(Xn)
MODIFICATIONS: All except CI, SC, DL
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) =0, then ON; otherwise OFF
Negative If C(Xn)0 =1, then ON; otherwise OFF
Overflow Not Affected!
Carry If a carry out of Xn0 is generated, then ON; otherwise OFF
NOTE: This instruction is identical to the ADXn instruction with the exception
that the Overflow Indicator is not affected by this instruction. Operands
and results are regarded as unsigned, positive binary integers, (See
page 28.)
Mnemonic: Name of the Instruction: Op Code {Octal)
AWCA Add with Carry to A 071
SUMMARY: Carry Indicator OFF; C(A) + C(Y) = C(A)
Carry Indicator ON: C(A) + C(Y) + 0,..01 = C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(A), =1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
Carry If a carry out of AO is generated, then ON; otherwise OFF
NOTE: This instruction is identical to the ADA instruction with the exception

that, when the Carry Indicator is ON at the beginning of the instruction,
then a + 1 is added to the least-significant position.

CPB-1004F

73

FIXED-POINT ARITHMETIC

ADDITION

Mnemonic: Name of the Instruction: Op Code (Octal)

AWCQ Add with Carry to Q 072
SUMMARY: Carry Indicator OFF: C(Q) + C(Y) = C(Q)

Carry Indicator ON: C(Q) + C(Y) + 0...01 = C(Q)

MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) =0, then ON; otherwise OFF

Negative If C(Q)0 =1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If carry out of Qo is generated, then ON; otherwise OFF
NOTE: This instruction is identical tothe ADQ instruction with the exception

that, in case the Carry Indicator is ON at the beginning of the instruction,
then a + 1 is added to the least-significant position.

CPB-~1004F

74

FIXED-POINT ARITHMETIC

ADDITION
Mnemonic: Name of the Instruction: Op Code (Octal)
ADL Add Low to AQ 033
SUMMARY: C(AQ) + C(Y), right adjusted, ., C(AQ)
(See the description below.)
MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ), =1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON
Carry If a carry out of AQ0 is generated, then ON; otherwise OFF
DESCRIPTION: A 72-bit number is formed:
C(YO), C(Yo), s C(YO), Cc(Y).
“ J
TN
36 bits

Its lower half (bits 36-71) is identical to C(Y), and each of the bits
of its upper half (bits 0-35) is identical to the sign bit of C(Y),
i.e., to C(Yo)°

This number is added to the contents of the combined AQ-register,
effecting the addition of C(Y) to the lower half of the combined
AQ-register, with a possible carry out of the Q-part being passed
on to the A-part.

Mnemonic: Name of the Instruction: Op Code (Octal)

AOS Add One to Storage 054

SUMMARY: C(Y) + 0...01 = C(Y)

MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero ' If C(Y) =0, then ON; otherwise OFF
Negative If C(Y)0 =1, then ON; otherwise OFF
Overflow If range of Y is exceeded, then ON
Carry If a carry out of YO is generated, then ON; otherwise OFF

CPB~1004F

75

FIXED-POINT ARITHMETIC

SUBTRACTION
Mnemonic: Name of the Instruction: Op Code (Octal)
SBA Subtract from A 175
SUMMARY: c(a) - C(Y) » C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(A)0 =1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
Carry If a carry out of A0 is generated, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
SBQ Subtract from Q 176
SUMMARY: C(Q - C(Y) » €@
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(Q)0 =1, then ON; otherwise OFF
Overflow If range of Q is exceeded, then ON
Carry If a carry out of Qo is generated, then ON; otherwise OFF

 CPB-1004F

76

FIXED-POINT ARITHMETIC

SUBTRACTION
Mnemonic: Name of the Instruction: Op Code (Octal)
SBAQ Subtract from AQ 177
SUMMARY: C(AQ) - C(Y-pair) = C(AQ)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ), = 1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON: otherwise OFF
Carry If carry out of AQO'is generated, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
SBXn Subtract from Xn (n=0,1,...,7) 16n
SUMMARY: C(Xn) - C(Y) 0...17 C(Xn)
MODIFICATIONS: All except CI, SC, DL
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) =0, then ON; otherwise OFF
Negative If C(Xn), = 1, then ON; otherwise OFF
Overflow If range of Xn is exceeded, then ON
Carry If a carry out of Xno is generated, then ON; otherwise OFF
CPB~1004F

Rev. July 1969
77

FIXED-POINT ARITHMETIC

SUBTRACTION
Mnemonic: Name of the Instruction: Op Code {Octal)
SSA Subtract Stored from A 155
SUMMARY: c(a) - () = c(Y) C(A) unchanged
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) =0, then ON; otherwise OFF
Negative It C(Y)0 =1, then ON; otherwise OFF
Overflow If range of Y is exceeded, then ON
Carry If a carry out of Y0 is generated, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
SSQ Subtract Stored from Q 156
SUMMARY: c(Q - c(Y) = c(Y) C(Q) unchanged
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) =0, then ON; otherwise OFF
Negative If C(Y)0 =1, then ON; otherwise OFF
Overflow If range of Y is exceeded, then ON
Carry I a carry out of Y0 is generated, then ON; otherwise OFF

CPB-~1004F

78

FIXED-POINT ARITHMETIC

SUBTRACTION
Mnemonic: Name of the Instruction: Op Code (Octal)
SSXn Subtract Stored from Xn 14n
SUMMARY: C(Xn) - C(Y)O. e C(Y)O. 17 C(Xn) unchanged
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y)0 7= 0, then ON, otherwise OFF
Negative If C(Y)0 =1, then ON, otherwise OFF
Overflow If range of Y0 17 exceeded, then ON
Carry If a carry out of YO is generated, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
SBLA Subtract Logic from A 135
SUMMARY: c(a) - c(Y) = c(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(A)0 =1, then ON; otherwise OFF
Overflow Not Affected!
Carry If a carry out of A0 is generated, then ON; otherwise OFF
NOTE: This instruction is identical to the SBA instruction with the exception

that the Overflow Indicator is not affected by this instruction. Operands.
and results are regarded as unsigned, positive binary integers. (See
page 28.)

CPB-1004F

79

FIXED-POINT ARITHMETIC

SUBTRACTICN
Mnemonic: Name of the Instruction: Op Code (Octal)
SBLQ Subtruct Logic from Q 136

SUMMARY: c(Q - c(y) » ¢(Q

MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) =0, then ON; otherwise OFF

Negative I C(Q)O =1, then ON; otherwise OFF

Overflow Not Affected!

Carry If a carry out of QO is generated, then ON; otherwise OFF
NOTE: This instruction is identical to the SBQ instruction with the exception

that the Overflow Indicator is not affected by this instruction. Operands
and results are regarded as unsigned, positive binary integers. (See

page 28.)
Mnemonic: Name of the Instruction: Op Code (Octal)
SBLAQ Subtract Logic from AQ 137

SUMMARY: C(AQ) - C(Y-pair) = C(AQ)

MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) =0, then ON; otherwise OFF

Negative If C(AQ)0 =1, then ON; otherwise OFF

Overflow Not Affected!

Carry If a carry out of AQO is generated, then ON; otherwise OFF
NOTE: This instruction is identical to the SBAQ instruction with the exception

that the Overflow Indicator is not affected by this instruction. Operands
and results are regarded as unsigned, positive binary integers. (See
page 28.)

CPB-1004F

80

F]XED-POINT ARITHMETIC

SUBTRACTION
Mnemonic: Name of the Instruction: Op Code (Octal)
SBLXn Subtract Logic from Xn (n=0,1,...,7 12n
SUMMARY: C(Xn) - C(Y)0 1 C(Xn)
MODIFICATIONS: All except CI, SC, DL
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) =0, then ON; otherwise OFF
Negative If C(Xn) 0= 1, then ON;otherwise OFF
Overflow Not Affected!
Carry If a carry out of XnO is generated, then ON; otherwise OFF
NOTE: This instruction is identical to the SBXn instruction with the exception

that the Overflow Indicator is not affected by this instruction. Operands
and results are regarded as unsigned, positive binary integers. (See

page 28.)
Mnemonic: Name of the Instruction: Op Code (Octal)
SWCA Subtract with Carry from A 171
SUMMARY: Carry Indicator ON: C(A) - C(Y) = C(A)
Carry Indicator OFF: C(A) - C(Y) - 0...01 > C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(A)0 =1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
Carry If a carry out of A0 is generated, then ON; otherwise OFF
NOTE: 1. This instruction is identical to the SBA instruction with the exception

that, when the Carry Indicator is OFF at the beginning of the
instruction, then a + 1 is subtracted from the least-significant
position.

CPB-1004F

81

FIXED-POINT ARITHMETIC

SUBTRACTION

2. This instruction is used for multiple-word precision arithmetic.
The SUMMARY can also be worded as follows in order to show

the intended use:

Carry Indicator ON; C(A) + 1's complement of C(Y)

+ 0...01 = C(A)

Carry Indicator OFF: C(A) + 1's complement of C(Y)

= C(A)

(The +1 which is added in the first case represents the carry from
the next lower part of the multiple-length subtraction.)

Mnemonic: Name of the Instruction: Op Code (Octal)
SWCQ Subtract with Carry from Q 172
SUMMARY: Carry Indicator ON: C(Q) - C(Y) > C(Q)
Carry Indicator OFF: C(Q) - C(Y) - 0...01 = C(Q)

MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) =0, then ON; otherwise OFF

Negative If C(Q)0 =1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If carry out of QO is generated, then ON; otherwise OFF

NOTES: 1. This instraction is identical to the SBQ instruction with the exception

that, in case the Carry Indicator is OFF at the beginning of the
instruction, then a +1 is subtracted from the least-significant

position.

2, This instruction is used for multiple-word precision arithmetic.
The SUMMARY can also be worded as follows in order to show the

intended use:

Carry Indicator ON: C(Q) + 1's complement of C(Y)

+0...01 , C(Q

Carry Indicator OFF: C(Q) + 1's complement of C(Y)

= CQ

(The +1 which is added in the first case represents the carry from
the next lower part of the multiple-length subtraction).

82

CPB-1004F

FIXED-POINT ARITHMETIC

MULTIPLICATION
Mnemonic: Name of the Instruction: Op Code (Octal)
MPY Multiply Integer 402

SUMMARY: C(Q) x C(Y) = C(AQ), right-adjusted
MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) =0, then ON; otherwise OFF

Negative It C(AQ)O =1, then ON; otherwise OFF
NOTES: 1. Two 36-bit integer factors (including sign) are multiplied to form a

71-bit integer product (including sign), which is stored in AQ, right-
adjusted. Bit position AQO is filled with an "extended sign bit'".

01 35 01 35

St s!

-« factor——— | x -J-—-—- factor e
[] 1

Q-register Memory Location Y

01 71

is,
=| sttt product -

]

Combined AQ-register

2, In the case of (—235) x (-235) = 4 270, the position AQ, is used to
represent this product without causing an overflow.

CPB-~1004F

83

FIXED-POINT ARITHMETIC

MULTIPLICATION
Mnemonic: Name of the Instruction: Op Code (Octal)
MPF Multiply Fraction 401
SUMMARY: C(A) x C(Y) = C(AQ), left-adjusted
MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)O =1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON
NOTES: 1. Two 36-bit fractional factors (including sign) are multiplied to form
a T1-bit fractional product (including sign), which is stored in AQ,
left-adjusted. Bit position AQ.71 is filled with a zero bit.
01 35 01 35
EH s]
4:——- factor — | X qi—factor _—
A-register Memory Location Y
01 70 71
EH 1
= |gt— product »i0
1} [l
Combined AQ-register
2. An overflow can occur only in the case (-1) x (-1).
CPB-1004F

84

FIXED-POINT ARITHMETIC

DIVISION
Mnemonic: Name of the Instruction: Op Code (Octal)
DIV Divide Integer 506
SUMMARY: C(Q) + C(Y); integer quotient - C(Q)
integer remainder = C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
If division takes place: If no division takes place:
Zero If C(Q) =0, then ON; otherwise OFF [If divisor = 0, then ON; otherwise OFF]
Negative It C(Q)() =1, then ON; otherwise OFF | If dividend < 0, then ON;otherwise OFE
NOTES: 1. A 36-Dbit integer dividend (including sign) is divided by a 36-bit
integer divisor (including sign) to form a 36-bit integer quotient
(including sign) and a 36-Dbit fractional remainder (including sign).
The remainder sign is equal to the dividend sign unless the
remainder is zero.
01 35 01 35
s 3
43——__-._.dividend___.__> * | g——— divisor >
]
Q-register Memory Location Y
01 35 01 35
5 5|
= <’-———-——remainder »4} quotient >
A-register Q-register
2. If dividend = -2°° and divisor = -1 or if divisor = 0, then the division

itself does not take place.
Instead, a Divide-Check Fault Trap occurs; the divisor C(Y) remains

unchanged, C(Q) contains the dividend magnitude in absolute, and the
Negative Indicator reflects the dividend sign.

CPB-1004F

85

FIXED-POINT ARITHMETIC

DIVISION
Mnemonic: Name of the Instruction: Op Code (Octal)

DVF Divide Fraction 507
SUMMARY: C(AQ) : C(Y); fractional quotient = C(A)

remainder » C(Q)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
If division takes place: If no division takes place:

Zero If C(A) =0, then ON; otherwise OFF |If divisor = 0, then ON; otherwise OFK
Negative |[If C(A)O = 1, then ON; otherwise OFF | If dividend <0, then ON;otherwise OFF
NOTES: 1. A 71-bit fractional dividend {including sign) is divided by a 36-bit

fractional divisor (including sign) to form a 36-bit fractional
quotient (including sign) and a 36-bit remainder (including sign),
bit position 35 of the remainder corresponding to bit position 70
of the dividend. The remainder sign is equal to the dividend sign
unless the remainder is zero.

01 70 71
T
: dividend >=
1 1
Combined AQ-register Not used
in division
01 35
ST
+ _L____.___— divisor ————«—
Memory Location Y
01 35,01 35
S |] :
- |e#}———quotient ———»=lgt———————remainder —————~
l 1
A-register Q-register

2, I |dividend | = | divisor | or if divisor = 0, then the division itself
does not take place.

Instead, a Divide-Check Fault Trap occurs; the divisor C(Y) remains
unchanged, C(AQ) contains the dividend magnitude in absolute, and
the Negative Indicator reflects the dividend sign.

CPB-~1004F

86

Mnemonic:

Name of the Instruction:

FIXED-POINT ARITHMETIC
NEGATE

Op Code (Octal)

NEG Negate A 531
SUMMARY: - C(A) = C(A)
MODIFICATIONS: Are without any effect on the operation
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative It C(A)O =1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
NOTE: This instruction changes the number in A to its negative (if # 0). The
operation is executed by forming the two's complement of the string of
36 bits.
Mnemonic: Name of the Instruction: Op Code (Octal)
NEGL Negate Long 533
SUMMARY: - C(AQ) = C(AQ)
MODIFICATIONS: Are without any effect on the operation
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)0 =1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON
NOTE: This instruction changes the number in AQ to its negative (if #0). The

operation is executed by forming the two's complement of the string of

72 bits.

87

CPB-1004F

BOOLEAN OPERATIONS

AND
Mnemonic: Name of the Instruction: Op Code (Octal)
ANA AND to A 375
SUMMARY: C(A)i AND C(Y)i = C(A)i foralli=0,1,...,35
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(A)O =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
ANQ AND to Q 376
SUMMARY: C(Q)i AND C(Y)i - C(Q)i foralli=0,1,...,35
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) =0, then ON; otherwise OFF
Negative It C(Q)0 =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
ANAQ AND to AQ 377
SUMMARY: C(AQ)i AND C(Y-pair)i = C(AQ)i foralli =0,1,...,71
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)0 =1, then ON; otherwise OFF
CPB-~1004F

88

BOOLEAN OPERATIONS

AND

Mnemonic: Name of the Instruction: Op Code (Octal)
ANXn AND toXn{n =0, 1,...,7) 36n
SUMMARY: C(Xn)i AND C(Y)i = C(Xn)i for alli =0, 1,...,17
MODIFICATIONS: All except CI, SC, DL
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) =0, then ON; otherwise OFF
Negative If C(Xn)0 =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
ANSA AND to Storage A 355
SUMMARY: C(A)i AND C(Y)i = C(Y)i foralli=0,1,,..,35
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) =0, then ON; otherwise OFF
Negative If C(Y)O =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
ANSQ AND to Storage Q 356
SUMMARY: C(Q); AND C(Y); = C(¥); for alli =0, 1,...,35
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) =0, then ON; otherwise OFF
Negative If C(Y)O =1, then ON; otherwise OFF
CPB-~1004F

.89

BOOLEAN OPERATIONS

AND

Mnemonic: Name of the Instruction: Op Code (Octal)

ANSXn AND to Storage Xn (n=0,1,...,7 34n
SUMMARY: C(Xn)i AND C(Y)i = C(Y)i foralli=0,1,...,17
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero i C(Y)0 = 0, then ON; otherwise OFF

Negative If C(Y), =1, then ON; otherwise OFF

BOOLEAN OPERATIONS

OR

Mnemonic: Name of the Instruction: Op Code (Octal)

ORA OR to A 275
SUMMARY: C(A); ORC(Y); = C(A); forall i =0, 1,...,35
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)

Z.ero If C(A) =0, then ON; otherwise OFF

Negative It C(A)0 =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)

ORQ OR to Q 276

SUMMARY: C(Q,)i OR C(Y)i = C(Q)i foralli=0,1,...,35
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) =0, then ON; otherwise OFF

Negative If C(Q)0 =1, then ON; otherwise OFF

CPB=1004F

90

BOOLEAN OPERATIONS
OR

Mnemonic: Name of the Instruction: Op Code (Octal)

ORAQ OR to AQ 277
SUMMARY: C(AQ)i OR C(Y-pail‘)i ES C(AQ)i foralli=0,1,,..,71
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) =0, then ON; otherwise OFF

Negative it C(AQ)0 =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)

ORXn OR to Xn (n=0,1,...,7 26n

SUMMARY: C(Xn); OR C(Y); = C(Xn), for alli =0, 1,...,17
MODIFICATIONS: All except CI, SC, DL
INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) =0, then ON; otherwise OFF

Negative If C(Xn)0 =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)

ORSA OR to Storage A 255

SUMMARY: C(A)i OR C(Y)i = C(Y)i foralli=0,1,,..,35
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) =0, then ON; otherwise OFF

Negative It C(Y)0 =1, then ON; otherwise OFF

CPB-1004F

91

BOOLEAN OPERATIONS

OR
Mnemonic: Name of the Instruction: Op Code (Octal)
ORSQ OR to Storage Q 256

SUMMARY: C(Q)i OR C(Y)i N C(Y)i foralli=0,1,...,35
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) =0, then ON; otherwise OFF

Negative If C(Y)0 =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)

ORSXn OR to Storage Xn n=0,1,...,7 24n

SUMMARY: C(Xn)i OR C(Y)i = C(Y)i for alli =0, 1,...,17
MODIFICATIONS: For all except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(Y)g,,.17 =0, then ON; otherwise OFF

Negative If C(Y), =1, then ON; otherwise OFF

BOOLEAN OPERATIONS

EXCLUSIVE OR

Mnemonic: Name of the Instruction: Op Code (Octal)
ERA EXCLUSIVE OR to A 675

SUMMARY: C(A)i # C(Y)i = C(A)i fori=0,1,...,35
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)

Zero If C(A) =0, then ON; otherwise OFF

Negative It C(VA)0 =1, then ON; otherwise OFF

CPB-1004F

92

BOOLEAN OPERATIONS
EXCLUSIVE OR

Mnemonic: Name of the Instruction: Op Code (Octal)
ERQ EXCLUSIVE OR to Q 676
SUMMARY: C(Q)i # C(Y)i - C(Q)i fori=0,1,...,35
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)o =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
ERAQ EXCLUSIVE OR to AQ 677
SUMMARY: C(AQ)i # C(Y-pair)i = C(AQ)i foralli=0,1,...,71
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative It C(AQ)O =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
ERXn EXCLUSIVE OR to Xn (n=0,1,...,17 66n
SUMMARY: C(Xn)i £ C(Y)i - C(Xn)i fori=0,1,...17
MODIFICATIONS: All except CI, SC, DL
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) =0, then ON: otherwise OFF
Negative If C(Xn)0 =1, then ON; otherwise OFF
CPB-1004F

93

BOOLEAN OPERATIONS

EXCLUSIVE OR

Op Code (Octal)

Mnemonic: Name of the Instruction:

ERSA EXCLUSIVE OR to Storage A 655
SUMMARY: C(a), £ C(V); = C(Y), fori=0,1,...,35
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) =0, then ON; otherwise OFF
Negative If C(Y)0 =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)

ERSQ EXCLUSIVE OR to Storage Q 656
SUMMARY: C(Q)i # C(Y)i > C(Y)i fori=0,1,...,35
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) =0, then ON; otherwise OFF
Negative If C(Y)0 =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)

ERSXn EXCLUSIVE OR to Storage Xn (n =0,1,...,7) 64n
SUMMARY: C(Xn)i £ C(Y)i > C(Y)i fori=0,1,.,.,17
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(Y)p. . .17 =0, then ON; otherwise OFF
Negative If C(Y)0 =1, then ON; otherwise OFF
CPB-1004F

‘94

COMPARISON
COMPARE

Mnemonic: Name of the Instruction: Op Code (Octal)

CMPA Compare with A 115
SUMMARY: Comparison C(A) :: C(Y)
MODIFICATION: All
INDICATORS: (Indicators not listed are not affected)

4

o '*3 2 Algebraic (Signed Fixed-Point) Comparison

5 o A

N A O Relation Sign

0 0 0 C(A) > C(Y) C(A)0 =0, C(Y)0 =1

0 0 1 C(A) > C(Y)

1 0 1 C(A) = C(Y) C(A)0 = C(Y)0

0 1 0 C(A) < C(Y)

0 1 1 C(A) < C(Y) C(A)0 =1, C(Y’)0 =0

o " Logic (Unsigned Fixed-Point) Comparison

o &

b H Relation

N @)

0 0 C(A) < C(Y)

1 1 c(a) = c(Y)

0 1 C(A) > C(Y)

CPB-1004F

95

COMPARISON

COMPARE
Mnemonic: Name of the Instruction: Op Code (Octal)
CMPQ Compare with Q 1i6
SUMMARY: Comparison C(Q) : : C(Y)
MODIFICATION: All
INDICATORS: (Indicators not listed are not affected)
2
o = & Algebraic (Signed Fixed-Point) Comparison
& o R
Nz O Relation Sign
0 0 0 c(Q > (V) C(Q), =0, C(V)g _ 4
0 0 1 c(Q > (Y)
1 0 1 c(Q) =c(Y) C(Q)o =C(¥),
0 1 0 C(Q) < C(Y)
o Logic (Unsigned Fixed-Point) Comparison
o o]
& £ .
g 8 Relation
0 0 Q) < C(Y)
1 1 Cc(Q) =C(Y)
0 1 c(Q > Cc(Y)

CPB-~1004F

96

COMPARISON

COMPARE

Mnemonic: Name of the Instruction: Op Code (Octal)

CMPAQ Compare with AQ 117
SUMMARY: Comparison C(AQ) :: C(Y-pair)
MODIFICATION: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

2

o '*§D = Algebraic (Signed Fixed-Point) Comparison

- ~

) () o

N Z O Relation Sign

0 0 0 C(AQ) > C(Y-pair) C(AQ)O =0, C(Y—pair)o =1

0 0 1 C(AQ) > C(Y-pair)

1 0 1 C(AQ) = C(Y-pair) C(AQ)g = C(Y—pair)o

1 0 C(AQ) < C(Y-pair)
0 1 1 C(AQ) < C(Y-pair) C(AQ)0 =1, C(Y-pair)0 =0
- Logic (Unsigned Fixed-Point) Comparison

o £

=~ 4

N 3 Relation

0 0 C(AQ) < C(Y-pair)

1 1 C(AQ) = C(Y-pair)

0 1 C(AQ) > C(Y-pair)

CPB-1004F

97

COMPARISON

COMPARE
Mnemonic: Name of the Instruction: Op Code (Octal)
CMPXn Compare with Xn (n =0, 1,...,7) 10n
SUMMARY: Comparison C(Xn) :: C(Y)O. 1
MODIFICATION: A1l except CI, SC, DL
INDICATORS: (Indicators not listed are not affected)
2
o '{é & Algebraic (Signed Fixed-Point) Comparison
g o & ‘
N Z O Relation Sign
0 0 ¢] C(Xn) > C(Y)O. 17 C(Xn)0 =0, C(Y)0 =1
0 0 1 C(Xn) > C(Y)(). 17
1 C(Xn) = C(Y)O. L 17 C(Xn)o = C(Y)o
0 1 0 C(Xn) < C(V)g 47
0 1 1 C(Xn) < C(Y)O. .17 C(Xn)0 =1, C(Y)0 =0
> Logic (Unsigned Fixed-Point) Comparison
o ~
-~ ~ .
g 8 Relation
0 0 C(Xn) < C(Y)0° 17
1 1 C(Xn) = C(Y)O. .17
0 1 C(Xn) > (Yo, , .17

98

CPB-1004F

COMPARISON

COMPARE
Mnemonic: Name of the Instruction: Op Code (Octal)
CWL Compare with Limits 111
SUMMARY: Algebraic comparison of C(Y) with the closed interval
[c(A); c(Q)] and also with the number C(Q)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) is contained in the closed interval
Lc@); c@l, i.e.,
either C(A) = C(Y) = C(Q)
or C(A) = C(Y) = C(Q),
then ON; otherwise OFF
Q
e o Relation between Signs of
g.) E C(Q) and C(Y) C(Q) and C(Y)
Z (&)
0 0 C(Q) > C(Y) C(Q)O =0, C(Y)O =1
0 1 =
1 0 (@) < C(Y)
1 1 c(Q < C(Y) C(Q), =1, C(¥), =0
CPB-1004F

99

COMPARISON

COMPARE
Mnemonic: Name of the Instruction: Op Code (Octal)
CMG Compare Magnitude 405
SUMMARY: Comparison |C(A)| H IC(Y)l
MODIFICATION: All
INDICATORS: (Indicators not listed are not affected)
()
2
o ®
~ on
@ 3
N Z Relation
0 0 lcw)| > |cw)
1 0 le@)| = ||
0 1 lcw)| < |cm)|
Mnemonic: Name of the Instruction: Op Code (Octal)
SZN Set Zero and Negative Indicators from Memory 234
SUMMARY: Test the number C(Y)
MODIFICATION: All
INDICATORS: (Indicators not listed are not affected)
(]
2
o =
= an
'] ()
N Z Relation
0 0 Number C(Y) > 0
1 0 Number C(Y) = 0
0 1 Number C(Y) < 0

CPB-1004F

100

Mnemonic:

Name of the Instruction:

COMPARISON
COMPARE

Op Code (Octal)

CMK Compare Masked 211
SUMMARY: Z; =C(Q), AND [C(a), # C(V),] foralli=0,1,...,35
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)

Zero If Z =0, then ON; otherwise OFF
Negative If Z, = 1, then ON; otherwise OFF
NOTE: This instruction compares those corresponding bit positions of A and Y

for identity that are not masked by a 1 in the corresponding bit position

of Q

The Zero Indicator is set ON, if the comparison is successful for bit
positions; i. e, if for alli =0, 1,...,35 there is

either C(A)i EC(Y)i or

(identical)

@), =1
(masked)

Otherwise it is set OFF

The Negative Indicator is set ON, if the comparison is unsuccessful

for bit position0, i.e. if

ca), # c¥),

(nonidentical)

as well as

C@, =0

(nonmasked)

Otherwise it is set OFF.

CODING EXAMPLE:

In the following example, the comparison is equal after execution of CMK, and the TZE

exit is taken.

Only the 1's in NUMBER AND DATA are compared,

0 g 16
i LDQ | MASK
| LDA | NUMBER
CMK | DATA
| TzE | OUT
| Continue :
| |
MASK | OCT b rrrrrrrnon
NUMBER | OCT I 300333333316
DATA OoCT : 666666666615

|

101

CPB-1004 F

COMPARISON
COMPARATIVE AND

Mnemonic:

Name of the Instruction: Op Code (Octal)

CANA Comparative AND with A 315
SUMMARY: 7. = C(A), AND C(Y). for alli =0, 1,...,35
i i i
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If Z =0, then ON; otherwise OFF
Negative I Z0 = 1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
CANQ Comparative AND with Q 316
SUMMARY: Zi = C(Q)i AND C(Y)i for alli =0, 1,...,35
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If Z =0, then ON; otherwise OFF
Negative Kz, = 1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
CANAQ Comparative AND with AQ 317
SUMMARY: Zi = C(AQ)i AND C(Y-p.':lir).1 foralli =0, 1...,71
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If Z =0, then ON; otherwise OFF
Negative If Z, = 1, then ON; otherwise OFF
CPB-1004F

102

COMPARISON

COMPARATIVE AND

Op Code (Octal)

Mnemonic: Name of the Instruction:

CANXn Comparative AND with Xn (n =0,1,...,7) 30n
SUMMARY: Zi = C(Xn)i AND C(Y)i foralli =0, 1,,..,17
MODIFICATIONS: All except CI, SC, DL
INDICATORS: (Indicators not listed are not affected)

Zero If Z =0, then ON; otherwise OFF
Negative If ZO =1, then ON; otherwise OFF
COMPARISON

COMPARATIVE NOT

Mnemonic: Name of the Instruction: Op Code (Octal)
CNAA Comparative NOT with A 215

SUMMARY: Zi = C(A)i AND CiY’)i for alli =0, 1,...,35
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)

Zero It Z =0, then ON; otherwise OFF

Negative If Z0 = 1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)

CNAQ Comparative NOT with Q 216

SUMMARY: Zi = C(Q)i AND C(Y)i for alli =0, 1,...,35
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)

Zero If Z =0, then ON; otherwise OFF

Negative If Z0 =1, then ON; otherwise OFF

CPB~1004F

103

COMPARISON
COMPARATIVE NOT

Mnemonic: Name of the Instruction: Op Code (Octal)
CNAAQ Comparative NOT with AQ 217
SUMMARY: Zi = C(AQ)i AND C(Y-pair)i foralli=0,1,...,71
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If Z =0, then ON; otherwise OFF
Negative If ZO =1, then ON; otherwise OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
CNAXn Comparative NOT with Xn 20n
SUMMARY: Zi = C(Xn)i AND C(Y)i for alli =0, 1,...,17
MODIFICATIONS: All except CI, SC, DL
INDICATORS: (Indicators not listed are not affected)
Zero If Z =0, then ON; otherwise OFF
Negative If Z0 =1, then ON; otherwise OFF

CPB~1004F

104

FLOATING POINT
LOAD

Mnemonic: Name of the Instruction: Op Code (Octal)
FLD Floating Load 431
SUMMARY: C(Y), 00...0 = C(EAQ)
MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)O =1, then ON; otherwise OFF
NOTE: c(Y) 7 = C(E)
C(Vg ~"g5 = ClAQ, o7
00...0 = C(AQ)28.”,71
Mnemonic: Name of the Instruction: Op Code (Octal)
DFLD Double-Precision Floating Load 433
SUMMARY: C(Y-pair), 00...0 = C(EAQ)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)0 - 1, then ON; otherwise OFF
NOTE; C(Y-pair) 7 CéE))
C(Y-pair)," " = C(AQ
8...71 0...63
00...0 = C(AQ)64.“71
Mnemonic: Name of the Instruction: Op Code (Octal)
LDE Load Exponent Register 411
SUMMARY: C(Y)y, .7 = C(E)
MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero Set OFF
Negative Set OFF
CPB=-1004F

105

FLOATING POINT

STORE
Mnemonic: Name of the Instruction: Op Code (Octal)
FST Floating Store 455
SUMMARY: C(EAQ) = C(Y)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: None affected
NOTE: This instruction is executed as follows:
C(E) = C(Y)g g
ClA) g, ..27 = C(Wg. . .35
Mnemonic: Name of the Instruction: Op Code (Octal)
DFST Double-~Precision Floating Store 457
SUMMARY: C(EAQ) = C(Y-pair)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: None affected
NOTE: This instruction is executed as follows:
C(E) = C(Y-pa,ir)0 7
ClAQ)g, g3 = C(Y-pair)g’ "~ gy
Mnemonic: Name of the Instruction: Op Code (Octal)
STE Store Exponent Register 456
SUMMARY: C(E) » C(Y)y ;00...0 = CMg 17
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: None affected
CPB-1004F

106

FLOATING POINT

STORE
Mnemonic: Name of the Instruction: Op Code (Octal)
FSTR Floating Store Rounded 470
SUMMARY: C(EAQ) rounded = C(Y)
MODIFIC ATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

EXP. Overflow If exponent above +127, then ON

NOTE:

During single-precision floating point stores, this instruction rounds
the number (positive or negative) as it is stored.

The instruction is executed by adding a binary one to bit position 28 of AQ,

truncating, then storing the contents of AQ. Steps in the execution are as
follows:

-2

CAQ)y g2 = CAQ)y . o7

CE) » C()y, .7

CA)g, .. 27 = CMg 35
Restore C(EAQ) to original values

All registers remain unchanged.

An exponent overflow occurs only if C(E) = +127 and C(AQ) =0,111,..111
- - 0...28

before rounding.

If the original operand is a negative number [C(AQ)0 28 = 1,0111,,,111 and

C(AQ)gg. LT 0] , the number is rounded towards zero, not towards a more

negative value, and the result becomes unnormalized.

Normalization occurs only if the mantissa overflows when it is rounded,

CPB-1004F
Rev. June 1968

106.1

FLOATING POINT

ADDITION

Mnemonic: Name of the Instruction Op Code (Octal)

FAD Floating Add 475
SUMMARY: [C(EAQ) + C(Y)]normalized = C(EAQ)
MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) =0, then ON; otherwise OFF

Negative It C(AQ)0 =1, then ON; otherwise OFF

Exp. Overflow If Exponent above +127, then ON

Exp. Underflow If Exponent below -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF
Mnemonic: Name of the Instruction Op Code (Octal)

UFA Unnormalized Floating Add 435
SUMMARY: [C(EAQ) + C(¥)] not normalized = C(EAQ)
MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) =0, then ON; otherwise OFF

Negative If C(AQ)g = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

Carry If a carry out of AQO is generated, then ON; otherwise OFF

CPB-1004F

107

FLOATING POINT

ADDITION
Mnemonic: Name of the Instruction Op Code (Octal)
DFAD Double-Precision Floating Add 477

SUMMARY: [C(EAQ) + C(Y-pair)] normalized = C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)(= 1, then ON; otherwise OFF

Exp. Overflow

If exponent above +127, then ON

Exp. Underflow

If exponent below -128, then ON

Carry If a carry out of AQO is generated, then ON; otherwise OFF
Mnemonic: Name of the Instruction Op Code (Octal)
DUFA Double-Precision Unnormalized Floating Add 437

SUMMARY: [C(EAQ) + C(Y-pair)] not normalized = C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON: otherwise OFF
Negative If C(AQ)Q = 1, then ON; otherwise OFF

Exp. Overflow

If exponent above +127, then ON

Exp. Underflow

If exponent below -128, then ON

Carry

If a carry out of AQ is generated, then ON; otherwise OFF

108

CPB-1004F

FLOATING POINT
ADDITION

Op Code (Octal)

Mnemonic: Name of the Instruction
ADE Add to Exponent Register 415
SUMMARY: C(E) + C(Y)q ., = C(E)
MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero Set OFF
Negative Set OFF

Exp. Overflow

If exponent above +127, then ON

Exp. Underflow

If exponent below -128, then ON

FLOATING POINT

SUBTRACTION
Mnemonic: Name of the Instruction Op Code (Octal)
FSB Floating Subtract 575

SUMMARY: [C(EAQ) - C(Y)]normalized = C(EAQ)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)g = 1, then ON; otherwise OFF

Exp. Overflow

If exponent above +127, then ON

Exp. Underflow

If exponent below -128, then ON

Carry

If a carry out of AQ is generated, then ON; otherwise OFF

109

CPB~1004F

FLOATING POINT

SUBTRACTION
Mnemonic: Name of the Instruction Op Code (Octal)
UFS Unnormalized Floating Subtract 535

SUMMARY: [C(EAQ) - C(Y)]not normalized » C(EAQ)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)g =1, then ON; otherwise OFF

Exp. Overflow

If exponent above +127, then ON

Exp. Underflow

If exponent below -128, then ON

Carry If a carry out of AQO is generated, then ON; otherwise OFF
Mnemonic: Name of the Instruction Op Code (Octal)
DFSB Double-Precision Floating Subtract 577

SUMMARY: [C(EAQ) - C(Y-pair)] normalized = C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)q = 1, then ON; otherwise OFF

Exp. Overflow

If exponent above +127, then ON

Exp. Underflow

If exponent below -128, then ON

Carry

If a carry out of AQq is generated, then ON; otherwise OFF

110

CPB-1004F

FLOATING POINT

SUBTRACTION

Mnemonic: Name of the Instruction Op Code (Octal)
DUFS Double-Precision Unnormalized Floating Subtract 537
SUMMARY: [C(EAQ) - C(Y-pair) | not normalized » C(EAQ)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: {Indicators not listed are not affected)

Zero If C(AQ) =0, then ON: otherwise OFF

Negative If C(AQ)g = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

Carry If a carry out of AQq is generated, then ON; otherwise OFF

FLOATING POINT

MULTIPLICATION
Mnemonic: Name of the Instruction Op Code (Octal)
FMP Floating Multiply 461

SUMMARY: [C(EAQ) x C(Y)]normalized = C(EAQ)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)q = 1, then ON; otherwise OFF
Exp. Overflow If exponent above +127, then ON
Exp. Underflow If exponent below ~128, then ON

NOTES: This multiplication is executed as follows:

1. C(E) +C(Y)0.“7 = C(E)

2. CAQ) x C(Y)g, .. 35 results in a 98-bit product plus sign, the leading
71 bits plus sign of which =» C(AQ)

3. C(EAQ) normalized = C(EAQ) .

CPB-~1004F

111

FLOATING POINT

MULTIPLICATION

Mnemonic: Name of the Instruction Op Code (Octal)
UFM Unnormalized Floating Multiply 421

SUMMARY: [C(EAQ) x C(Y)] not normalized = C(EAQ)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON: otherwise OFF
Negative If C(AQ)g =1, then ON, otherwise OFF

Exp. Overflow

If exponent above +127, then ON

Exp., Underflow

If exponent below -128, then ON

NOTE: This multiplication is executed like the instruction FMP with the exception
that the final normalization is performed only in the case of both factor
mantissas being = -1,00°°°0,

Mnemonic: Name of the Instruction Op Code (Octal)

DFMP Double-Precision Floating Multiply 463

SUMMARY: [C(EAQ) x C(Y-pair)]normalized = C(EAQ)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) =0, then ON; otherwise OFF

Negative If C(AQ)g = 1, then ON; otherwise OFF

Exp. Overflow

I exponent above +127, then ON

Exp. Underflow

If exponent below -128, then ON

NOTE:

This multiplication is executed as follows:

1. C(E) + C(Y-pair)0 7 = C(E)

2. C(AQ) x C(Y-pair) results in a 134-bit product plus sign, the
leading 71 bits plus sign of which » C(AQ)

3. C(EAQ) normalized = C(EAQ).

CPB-1004F

112

FLOATING POINT

MULTIPLICATION
Mnemonic: Name of the Instruction Op Code (Octal)
DUFM Double-Precision Unnormalized Floating Multiply 4323
SUMMARY: [C(EAQ) X X(Y—pair)] not normalized = C(EAQ)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)g =1, then ON; otherwise OFF
Exp. Overflow If exponent above +127, then ON
Exp. Underflow If exponent below -128, then ON
NOTE: This multiplication is executed like the instruction DFMP, with the
exception that the final normalization is performed only in the case of
both factor mantissas being = - 1,00...0 .
CPB-1004F

113

FLOATING POINT

DIVISION
Mnemonic: Name of the Instruction Op Code {Octal)
FDV Floating Divide 565
SUMMARY: C(EAQ) : C(Y) = C(EA) ; 00...0 = C(Q)
MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)
If division takes place: If no division takes place: I
Zero If C(A) =0, then ON; otherwise | If divisor mantissa = 0, then ON;
OFF otherwise OFF
Negative If C(A)0 =1, then ON; otherwise | If dividend < 0, then ON; other-

OFF

wise OFF

Exp. Overflow

If exponent above +127, then ON

Exp. Underflow

If exponent below -128; then ON

NOTES: 1.

This division is executed as follows:

The dividend mantissa C(AQ) is shifted right and the dividend
exponent C(E) increased accordingly until

ClaQ), o7 |<| CWyg, .. 35|

C(E) - C(Y)O. L1 = C(E) 5
00...0 = CQ .

If mantissa of divisor = 0, then the division itself does not take
place. Instead, a Divide-Check Fault Trap occurs. The divisor
C(Y) remains unchanged, C(AQ) contains the dividend magnitude
in absolute, and the Negative indicator reflects the dividend sign.

CPB-1004F

114

FLOATING POINT

DIVISION
Mnemonic: Name of the Instruction Op Code {Octal)
FDI Floating Divide Inverted 525
SUMMARY: C(Y) . C(EAQ) = C(EA) ; 00...0 - C(Q)
MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)
If division takes place: If no division takes place: J
Zero If C(A) =0, then ON; otherwise | I divisor mantissa =0, then ON;
OFF otherwise OFF
Negative If C(A)0 =1, then ON; otherwise |If dividend < 0, then ON; other-
OFF wise OFF
Exp. Overflow If exponent above +127, then ON
Exp. Underflow If exponent below -128, then ON
NOTES: 1. This division is executed as follows:
The dividend mantissa C(Y) 5 is shifted right and the dividend

exponent C(Y)O. 7 increased accordingly until I c(Y) 8...35 l
< |CAQq o] 5
C(¥)y. ;- C(B) = CE) ;
C(¥)g 45 + CAQ) = C(A) ;
00...0 = CQ .
2, If mantissa of divisor = 0, the division itself does not take place.

Instead, a Divide-Check Fault Trap occurs; and all the registers
remain unchanged.

CPB~1004F

115

FLOATING POINT

DIVISION
Mnemonic: Name of the Instruction Op Code (Octal)
DFDV Double-Precision Floating Divide 567

SUMMARY: C(EAQ) . C(Y-pair) = C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

If division takes place: If no division takes place:

Zero If C(AQ) =0, then ON; otherwise| If divisor mantissa = 0, then ON;
OFF otherwise OFF

Negative If C(AQ)0 =1, then ON; otherwisd If dividend < 0, then ON; other-
OFF wise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow I exponent below ~128, then ON

NOTES: 1. This division is executed as follows:

The dividend mantissa C(AQ) is shifted right and the dividend exponent
C(E) increased accordingly until 'C(AQ)0 63 |< lC(Y-pair)8 71| .
cos ves ;

C(E) - C(Y-pair)0 v C(E) ;
CAQ) + CY-pairlg gy = ClAQ) g3
00...0 = C(AQ)64‘,.,71
2. If mantissa of divisor =0, then the division itself does not take place.
Instead, a Divide-Check Fault Trap occurs. The divisor C(Y) remains

unchanged, C(AQ) contains the dividend magnitude in absolute, and the
Negative indicator reflects the dividend sign.

CPB~1004F

116

FLOATING POINT

DIVISION
Mnemonic: Name of the Instruction Op Code (Octal)
DFDI Double-Precision Floating Divide Inverted 527

SUMMARY: C(Y-pair) : C(EAQ) = C(EAQ)
N{ODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

If division takes place: If no division takes place:

Zero If C(AQ) =0, then ON; otherwise|If divisor mantissa = 0, then ON;
OFF otherwise OFF

Negative If C(AQ)0 =1, then ON; otherwisqIf dividend < 0, then ON; otherwise
OFF - OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

NOTES: 1. This division is executed as follows:

The dividend mantissa C(Y-pair) 8...71 is shifted right and the dividend
exponent C(Y-pair)0 q increased accordingly until C(Y-pa.ir)8 7
< C(AQ)O...GS

C¥-pair)y v _ cm) = @ ;
C(Y-pair)g 7y = C(AQ) = C(AQ), 43 ;

00...0 = C(AQ)64 7

2. If mantissa of divisor = 0, then the division itself does not take place.
Instead, a Divide-Check Fault Trap occurs; and all the registers
remain unchanged.

CPB-1004F

117

FLOATING POINT

NEGATE
Mnemonic: Name of the Instruction Op Code (Octal)
FNEG Floating Negate 513
SUMMARY: - C(AQ) normalized = C(AQ)
MODIFICATIONS: Are without any effect on the operation
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)g = 1, then ON; otherwise OFF
Exp. Overflow If exponent above +127, then ON
Exp. Underflow If exponent below -128, then ON
NOTES: 1. This instruction changes the number in EAQ to its normalized
negative (if C(AQ) # 0). The operation is executed by first
forming the two's complement of C(AQ), and then normalizing
C(EAQ).
2. Even if originally C(EAQ) were normalized, an exponent over-
flow can still occur, namely when originally C(AQ) =-1,00,..0
and C(E) = +127,
FLOATING POINT
NORMALIZE
Mnemonic: Name of the Instruction Op Code (Octal)
FNO Floating Normalize 573
SUMMARY: C(EAQ) normalized = C(EAQ)
MODIFICATIONS: Are without any effect on the operation
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)y =1, then ON; otherwise OFF
Exp. Overflow If exponent above +127, then ON
Exp. Underflow If exponent below -128, then ON
Overflow Set OFF
See NOTE on following page.
CPB-~1004F

118

FLOATING POINT
NORMALIZE

NOTE: The instruction normalizes the number in EAQ.
If the Overflow Indicator is ON, then the number in EAQ is
normalized one place to the right; and then the sign bit C(AQ)g
is inverted in order to reconstitute the actual sign. Furthermore,
the Overflow Indicator is set OFF.

This instruction can be used to correct overflows that occurred
with fixed-point numbers.,

FLOATING POINT

COMPARE
Mnemonic: Name of the Instruction: Op Code (Octal)
FCMP Floating Compare 515
SUMMARY: Algebraic comparison C I:(E)(AQ0 27)] o C(Y)
MODIFICATION: All except CI, SC
INDICATORS: (Indicators not listed are not affected)
[+))
2
o =
£ an
() (]
N Z Relation
0 0 c [(B)aQy 472> c(W)
1 0 c [(BaQ, ,,)]=cm
0 1 c [(B)(aQq, . .97)] < (V)
NOTE: This comparison is executed as follows:

1. Compare (C(E) :: C(Y)O , select the number with the lower
exponent, and shift its m’a‘nlissa right as many places as the
difference of the exponents. If the number of shifts equals or
exceeds 72, the number with the lower exponent is defined as
ZEero.

2. Then compare the mantissas and set the indicators accordingly.

CPB-1004F

119

FLOATING POINT

COMPARE
Mnemonic: Name of the Instruction: Op Code {Octal)
FCMG Floating Compare Magnitude 425
SUMMARY: Comparison |C [(E)(AQO. Y)]l : |C(Y)|
MODIFICATION: All except CI, SC
INDICATORS: (Indicators not listed are not affected)
Q
=
3 2
N Z Relation
0 o | lc [mxagy, 5)][> Je]
1 0 |C [(E)(AQOO 27)_'H = IC(Y)'
0 1| |c [(maqy]| < [cw]
NOTE: This comparison is executed as follows:

1, Compare C(E) : C(Y)O 7 select the number with the lower exponent,

and shift its mantissa right as many places as the difference of the
exponents, If the number of shifts equals or exceeds 72, the number
with the lower exponent is defined as zero.

2. Then compare the absolute value of the mantissas and set the indicators
accordingly.

CPB-1004F

120

FLOATING POINT
COMPARE

Op Code (Octal)

Mnemonic: Name of the Instruction:
DFCMP Double-Precision Floating Compare 517
SUMMARY: Algebraic comparison C [(E) (AQO 63):] : C(Y-pair)
MODIFICATION: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
[<}]
2
© 5
&)
(9] ()
N Z Relation
0 0 C[(EXAQ, 45)] > C(Y-pair)
1 0 c[(E)AQy)] = C(Y-pair)
0 1 c[(B)(AQ, 4] < C(Y-pair)
NOTE: This comparison is executed as follows:

1, Compare C(E) :: C(Y)O. ..7» select the number with the lower exponent,

and shift its mantissa right as many places as the difference of the
exponents, If the number of shifts equals or exceeds 72, the number

with the lower exponent is defined as zero.

2, Then compare the mantissas and set the indicators accordingly.

CPB~1004 ¥

121

FLOATING POINT

COMPARE
Mnemonic: Name of the Instruction: Op Code (Octal)
DFCMG Double-Precision Floating Compare Magnitude 427
SUMMARY: Comparison IC [(E)(AQO. . 63)] I :: I C(Y-pair)
MODIFICATION: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
[«3]
.
g %
N Z Relation
0 0 I C [(E)(AQO‘, . 63)]' > | C(Y-pair) |
0 |c [(E)(AQO.“63)]| = IC(Y-pair)I
0 1 |c [(BExAQy “63)]| < IC(Y—pair)'
NOTE: This comparison is executed as follows:

1. Compare C(E) :: C(Y)g, , 7, select the number with the lower exponent,
and shift its mantissa right as many places as the difference of the
exponents. If the number of shifts equals or exceeds 72, the number
with the lower exponent is defined as zero.

2. Then compare the absolute value of the mantissas and set the

indicators accordingly.

CPB-1004F

122

FLOATING POINT
COMPARE

Op Code (Octal)

Mnemonic: Name of the Instruction:
FSZN Floating Set Zero and Negative Indicators from Memory 430
SUMMARY: Test the Number C(Y)
MODIFICATION: All except CI, SC
INDICATORS: (Indicators not listed are not affected)
(]
2
o =
o &n
() [
N Z Relation
0 0 Mantissa C(Y)S. .35 > 0
1 0 Mantissa C(Y)B. 357 0
0 1 Mantissa C(Y)8. .35 < 0
CPB-1004F

123

TRANSFER OF CONTROL

TRANSFER
Mnemonic: Name of the Instruction: Op Code (Octal)
TRA Transfer Unconditionally 710

SUMMARY: Y =

c(1C)

MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: None affected
Mnemonic: Name of the Instruction: Op Code (Octal)
TSXn Transfer and Set Xn (n=0,1,...,7) T0n
SUMMARY: C(IC) +0...01 = C(Xn); Y= C(IC)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: None affected
Mnemonic: Name of the Instruction: Op Code (Octal)
TSS Transfer and Set Slave 715
SUMMARY: Y = C(IC)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Master Mode Set OFF
CPB-~1004F

124

TRANSFER OF CONTROL

TRANSFER
Mnemonic: Name of the Instruction: Op Code (Octal)
RET Return 630
SUMMARY: C(Y)O. 17 = <oy C(Y)l&_ 35 = C(R)
MODIFICATIONS: All except CI, SC, DU, DL
INDICATORS: (Indicators not listed are not affected)
Master Mode If C(Y)2g is 1, then no change; otherwise OFF
All other If Corresponding bit in C(Y) is 1, then ON; otherwise OFF
indicators
NOTES: 1. The relation between bit position of C(Y) and the indicators is as
follows:
Bit Position Indicator
18 Zero
19 Negative
20 Carry
21 Overflow
22 Exponent Overflow
23 Exponent Underflow
24 Overflow Mask
25 Tally Runout
26 Parity Error
27 Parity Mask
28 |- — . Master Mode __ __
29
30
31
32 00...0
33
34
35

2. A possible change of the status of the Master Mode Indicator
takes place as the last part of the instruction execution.

3. The Tally Runout Indicator will reflect C(Y), . regardless of
what address modification is performed on the RET instruction
(for tally operations).

CPB~1004F

125

TRANSFER OF CONTROL
CONDITIONAL TRANSFER

Mnemonic: Name of the Instruction:

Op Code (Octal)

TZE

Transfer on Zero

600

SUMMARY: If Zero Indicator ON, then Y = C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction: Op Code (Octal)
TNZ Transfer on Not Zero 601

SUMMARY: If Zero Indicator OFF, then Y = C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction: Op Code (Octal)
TMI Transfer on Minus 604

SUMMARY: If Negative Indicator ON, then Y = C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction: Op Code (Octal)
TPL Transfer on Plus 605

SUMMARY: If Negative Indicator OFF, then Y = C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

CPB-1004F

126

TRANSFER OF CONTROL
CONDITIONAL TRANSFER

Mnemonic: Name of the Instruction: Op Code (Octal)
TRC Transfer on Carry 603
SUMMARY: If Carry Indicator ON, then Y = C(IC)
MODIFICATIONS: All except DU, DL, CL, SC
INDICATORS: None affected
Mnemonic: Name of the Instruction: Op Code (Octal)
TNC Transfer on No Carry 602

SUMMARY: If Carry Indicator OFF, then Y » C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction: Op Code (Octal)
TOV Transfer on Overflow 617

SUMMARY: If Overflow Indicator ON, then Y = C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)
Overflow Set OFF

CPB-~1004F

127

TRANSFER OF CONTROL
CONDITIONAL TRANSFER

Mnemonic:

Name of the Instruction: Op Code (Octal)

TEO

Transfer on Exponent Overflow 614

SUMMARY: If Exponent Overflow Indicator ON, then Y - C(IC)

MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Exp. Overflow Set OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
TEU Transfer on Exponent Underflow 615
SUMMARY; If Exponent Underflow Indicator ON, then Y = C(IC)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Exp. Underflow Set OFF
Mnemonic: Name of the Instruction: Op Code (Octal)
TTF Transfer on Tally Runout Indicator OFF 607
SUMMARY: If Tally Runout Indicator OFF, then Y = C(IC)
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: None affected

CPB-~1004F

128

MISCELLANEOUS

OPERATIONS
Mnemonic: Name of the Instruction: Op Code (Octal)
NOP No Operation 011
SUMMARY: No operation takes place
MODIFICATIONS: Generally the only modification that should be used is DU or DL
(see NOTES)
INDICATORS: None affected
NOTES: 1. The use of a modification ID, DI, IDC, DIC, SC causes the respective
changes in the address and the tally.
Mnemonic: Name of the Instruction: Op Code (Octal)
BCD Binary to Binary-Coded-Decimal 505
SUMMARY: Shift C(A) left 3 positions . ' .
' C(A)L C(Y) = 4-bit quotient; C(A)-C(Y) x quotient » remainder
Shift C(Q) left 6 positions; 4-bit quotient = C(Q) and remainder
’ 32,..35
= C(A).
MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If before execution C(A)0 =1, then ON; otherwise OFF
Restrictions:

The largest number which can be converted with the BCD instruction
is that which is represented by 33 bits.

One 6-bit character is produced each time the BCD instruction is
executed.

The character produced represents a decimal digit from 0 to 9.

One full 36-bit word cannot be directly converted by the BCD

instructions,

CPB~1004F
Rev. July 1969

129

MISCELLANEOUS

OPERATIONS
NOTE: This instruction carries out one step of an algorithm for the conversion
of a binary number to the equivalent binary-coded decimal, which requires
the repeated short division of the binary number or last remainder by a
36-bit constant from store.
c, =8 x 10" (for i=1, 2,...),
with n being defined by
10 ™1 §| numberl < 10" -1,
Mnemonic: Name of the Instruction: Op Code (Octal)
GTB Gray to Binary 174
SUMMARY: C(A) converted from Gray Code to binary representation = C(A)
MODIFICATIONS: Are without any effect on the operation
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) =0, then ON; otherwise OFF
Negative If C(A)0 =1, then ON; otherwise OFF
NOTE: This conversion is defined by the following algorithm, when R, and Si

denote the contents of bit positions i of the A-register before and
after the conversion:
SO = Ro
S. =(R, ANDS, ,) OR (R, ANDS, ,)
i -1 i i-1
fori=1i, 2,...,35.

CPB~1004F

130

MISCELLANEOUS

OPERATIONS
Mnemonic: Name of the Instruction: Op Code (Octal)
XEC Execute 716

SUMMARY: Obtain and execute the instruction stored at the memory location Y
MODIFICATIONS: All except DU, D1, CI, SC
INDICATORS: (Indicators not listed are not affected)

The XEC instruction itself does not affect any indicator. However,
the execution of the instruction from Y may affect indicators.

NOTES: 1. After the execution of the instruction obtained from location Y, the
next instruction to be executed is obtained from C(IC) + 1. This is
the one stored in memory right after this XEC instruction, unless
the contents of the Instruction Counter have been changed by the
execution of the instruction obtained from memory location Y.

2. To Execute (XEC) a Repeat Double (RPD) instruction, the XEC
instruction must be in an odd location. Note that the instructions
that are repeated are those which immediately follow the XEC

instruction.
Mnemonic: Name of the Instruction: Op Code (Octal)
XED Execute Double 17

SUMMARY: Obtain and execute the two instructions stored at the memory Y-pair
locations

MODIFICATIONS: All except DU, DL, CIL, SC

A

INDICATORS: (Indicators not listed are not affected)

The XED instruction itself does nof affect any indicator. However,
the execution of the two instructions from Y-pair may affect
indicators.

NOTES: 1. The first instruction obtained from Y-pair MUST NOT alter
the memory location from which the second instruction is
obtained, and MUST NOT be another XED instruction.

2, If the first instruction obtained from Y-pair alters the contents
of the Instruction Counter, then this transfer of control is
effective immediately; and the second instruction of the pair is
not executed.

3. After the execution of the two instructions obtained from Y-pair,
the next instruction to be executed is obtained from C(IC) +1,
This is the instruction stored in memory right after this XED
instruction unless the contents of the Instruction Counter have
been changed by the execution of the two instructions obtained
from the memory locations Y-pair.

4. To Execute Double (XED) a pair which has Repeat Double (RPD)
as the odd instruction of the pair, XED must be located at the
odd address. Note that the instructions that are repeated are those
which immediately follow the XEC instruction.

5. I RPD is specified anywhere within a sequence of XED's, the
original and all subsequent XED's in the sequence must be in
odd locations.

CPB-1004F

131

MISCELLANEOUS

OPERATIONS
Mnemonic: Name of the Instruction: Op Code (Octal)
MME Master Mode Entry 001
SUMMARY: Causes a fault which obtains and executes, in the Master Mode, the two
instructions stored at the memory locations 4 + Cand 5 + C (decimal)
MODIFICATIONS: Are without any effect on the operation.
INDICATORS: (Indicators not listed are not affected)
The MME instruction itself does not affect any indicator. However,
the execution of the two instructions from 4 + C and 5 + C may
affect indicators; particularly, each one in turn will affect the
Master Mode Indicator as follows:
Master If the instruction obtained actually results in a transfer of control
Mode and is not the TSS instruction, then ON
If the instruction obtained is either the RET instruction with bit
28 of the RET operand = ZERO or the TSS instruction, then OFF
NOTES: 1. The value of the constant C is set up in the FAULT switches.

2. During the execution of this MME instruction and the two instructions
obtained, the Processor is in the Master Mode, independent of the
value of its Master Indicator. The Processor will stay in the Master

Mode if the Master Indicator is set ON after the execution of
three instructions.

these

3. The instruction from 4 + C MUST NOT alter the memory location

5 + C, and MUST NOT be an XED instruction.

4, If the instruction from 4 + C alters the contents of the Instruction
Counter, then this transfer of control is effective immediately;

and the instruction from 5 + C is not executed.

5, After the execution of the two instructions obtained from Y-pair, the
next instruction to be executed is obtained from C(IC) + 1. This is
the instruction stored in memory right after this MME instruction
unless the contents of the Instruction Counter have been changed by

the execution of the two instructions obtained from 4 + C and

132

5+C.

CPB-1004F

MISCELLANEOUS

OPERATIONS
Mnemonic: Name of the Instruction: Op Code (Octal)
DRL Derail 002

SUMMARY: Causes a fault which obtains and executes in the Master Mode the two
instructions stored at the memory locations 12 + C and 13 + C (decimal)

MODIFICATIONS: Are without any effect on the operation

INDICATORS: (Indicators not listed are not affected)

The DRL instruction itself does not affect any indicator. However)
the execution of the two instructions from 12 + C and 13 + C may
affect indicators; particularly, each one in turn will affect the
Master Mode Indicator as follows:

Master If the instruction obtained actually results in a transfer of control

Mode and is not the TSS instruction, then ON

If the instruction obtained is either the RET instruction with bit
28 of the RET operand = ZERO or the TSS instruction, then OFF

NOTES: 1. The value of the constant C is set up in the FAULT switches.

2, During the execution of this DRL instruction and the two instructions
obtained, the Processor is in the Master Mode, independent of the
value of its Master Indicator. The Processor will stay in the Master
Mode, if the Master Indicator is ON after the execution of these
three instructions.

3. The instruction from 12 + C MUST NOT alter the memory location
13 + C, and MUST NOT be an XED instruction.

4. If the instruction from 12 + C alters the contents of the Instruction
Counter, then this transfer of control is effective immediately; and
the instruction from 13 + C is not executed.

5. After the execution of the two instructions obtained from Y-pair, the
next instruction to be executed is obtained from C(IC) + 1. This is
the instruction stored in the memory right after this DRL in-
struction unless the contents of the Instruction Counter have been
changed by the execution of the two instructions obtained from 12 +
Cand 13 + C.

CPB~1004F

133

MISCELLANEOUS

OPERATIONS
Mnemonic: Name of the Instruction: Op Code (Octal)
RPT Repeat (See page 207 for coding format) 520

SUMMARY: Execute the next instruction until an exit condition is met.

MODIFICATIONS: No modifiers are allowed.

INDICATORS: The RPT instruction itself does not affect any of the indicators;
however, the execution of the repeated instruction may affect
indicators.

NOTES: 1. The RPT instruction has the following format:

0 789 10 11 17 18 26 27 28 29 30 35
T T T T T T v 1]
Tally I~ l~} c! Term. Cond. i Op Code i oi 15 og Delta
14 1 [|

2. I C =1, then bits 0-17 of the RPT instruction = XO0.

3. In the normal case, the Terminate Condition(s) and Tally
from X0 control the repetition loop for the instruction
following the RPT instruction. Initial Tally = 0 is interpreted
as 256. A fault also causes an exit from the loop.

4, The repetition loop which does not contain a fault consists of
the following steps:

(a) Execute the repeated instruction
(b) CX0)y 4-1>CX0), 4

(¢) I a Termination Condition is met (see Tb), then set
Tally Runout Indicator OFF and exit.

(d) I C(X0)0...7 = 0 and no Terminate Condition is met, then set
Tally Runout Indicator ON and exit.

(e) Go to (a) if (c) or (d) conditions are not met,
5. The instructions which cannot be repeated are:
(a) All transfer-of-control instructions

(b) Al miscellaneous instructions except BCD and GTB,
which are permitted.

(c) The instructions STCA, STCQ, STBA, STBQ, SREG,
LREG, DIS, CIOC,

6. Address modification for the repeated instruction:

For the repeated instruction, only the modifiers R and RI
and only the designators specifying X1, ..., X7 are permitted.

CPB~1004F

134

MISCELLANEOUS
OPERATIONS

The effective address Y (in the case of R) or the address yI of the
indirect word to be referenced (in the case of RI) is:

(a) For the first execution of the repeated instruction

y + C(R) = Y, or yIl; Y1 oryl, = C(R)
(b) For any successive execution
Delta + C(R) = Yn or yIn ; Yn or yIn = C(R), wheren s 1

In the case of RI, only one indirect reference is made per repeated
execution. The Tag portion of the indirect word is not interpreted
as usual but is ignored., Instead the modifier R and the designator
R =N are applied.

The Exit Conditions:

An exit is made from the repeat loop if one of the Terminate

Conditions exists or if Tally = 0 after the execution of the repeated

instruction. Also, an exit is made any time a fault occurs.

The program-controlled exit conditions are:

(a) Tally =0

(b) Terminate Conditions:
The bit configuration in bit positions 11 - 17 of the RPT
instruction defines the Terminate Conditions. If more than
one condition is specified, the repeat terminates if any one
of them is met.
The Carry, Negative, and Zero Indicators each use 2 bits,
one for the OFF condition and one for ON. A zero in both
positions for one indicator causes this indicator to be
ignored as a Termination Condition. A one in both positions
causes an exit after the first execution of the repeated
instruction.
Bit 17 = 0: any overflow is completely ignored, i.e., the
respective Overflow Indicator is not set ON, and an Over-
flow Trap does not occur.

Bit 17 = 1: any overflow is treated as usual. If the Overflow
Mask is ON, then exit from the repetition loop.

Bit 16 = 1: if Carry Indicator is OFF, then exit.
Bit 15 = 1: if Carry Indicator is ON, then exit.

Bit 14 = 1: if Negative Indicator is OFF, then exit.
Bit 13 =1: if Negative Indicator is ON, then exit.
Bit 12 = 1: if Zero Indicator is OFF, then exit.

Bit 11 =1: if Zero Indicator is ON, then exit.

CPB-~1004F

135

MISCELLANEOUS
OPERATIONS

(¢) Overflow Fault Trap:

If bit 17 = 1 and anoverflow occurs with the Overflow Mask
OFF, an Overflow Fault Trap occurs and an exit is made
from the repetition loop upon completion of the fault
instruction.

A nonprogram-controlled exit from the repetition loop occurs if any
Fault Trap other than Overflow occurs (i.e., Divide Check, Parity
Error on indirect word or operand fetch, etc.).

At the time of exit from the repetition loops:

X0gp, . n contains the Tally Residue, i.e., the number of repeats
remaining until a Tally Runout would have occurred. The Terminate
Conditions in bits 11 - 17 remain unchanged.

If the exit was due to Tally = 0 or a Terminate Condition, the X
specified by the designator of the repeated instruction will contain
the contents of the designated Xn after the last execution plus delta.

If the exit was due to a Fault Trap, the Xn specified by the designator
of the repeated instruction may contain either:

(a) The contents of the designated Xn at the time the Fault Trap
occurred, or

(b) The contents of the designated Xn at the time the Fault Trap
occurred plus delta.

CPB~1004F

136

MISCELLANEOUS

OPERATIONS

Mnemonic: Name of the Instruction: Op Code (Octal)

RPD Repeat Double (See page 207 for coding format) 560

SUMMARY: The instructions from the next Y-pair are fetched and saved in the

processor and are executed repeatedly until an exit condition is met.

MODIFICATIONS: No modifiers are allowed.

INDICATORS: The RPD instraction itself does not affect any of the indicators.
However, the execution of the repeated instructions may affect
indicators,

NOTES: 1. The RPD instruction must be stored in an odd memory

location except when accessed via the XEC instruction. In
this case, the RPD instruction can be either even or odd,
but the XEC instruction must be in an odd location,

2. The RPD instruction has the following format:

0 7 8 91011 17 18 26 27 28 29 30 35

Cy Term. Cond, Op Code 011,;0 Delta

e e e . e
e e e e o
o e e
= o oo

T T T
Tally i A E B
11

-

3. If C =1, then bits 0-17 of the RPD instruction = XO0.

4. In the normal case, the Terminate Condition(s) and Tally from
X0 control the repetition loop for the instructions following
the RPD instruction. Initial Tally = 0 will be interpreted as
256, A fault also causes an exit from the loop.

5. The repetition loop which does not contain a fault consists
of the following steps:

(a) Execute the pair of repeated instructions

(b) C(X0)y -1 »CXO),

7

(c) If a Termination Condition is met (see 8b), then set the
Tally Runout Indicator OFF and exit.

(d) If C(X0)p, .7 =0 and no Terminate Condition is met,
then set Tally Runout Indicator ON and exit.

(e) Go to (a) if conditions (c) or (d) are not met.
6. The instructions which cannot be repeated are:
(a) All transfer-of-control instructions

(b) All miscellaneous instructions except BCD and GTB,
which are permitted.

(c) The instructions STCA, STCQ, STBA, STBQ, SREG,
LREG, DIS, CIOC

CPB-~1004F

137

MISCELLANEOUS
OPERATIONS

7.

Address modification for the pair of repeated instructions:

For each of the two repeated instructions, only the modifiers R
and RI and only the designators specifying X1,..., X7 are per-
mitted.

The effective address Y (in the case of R) or the address yI of
the indirect word to be referenced (in the case of RI) is:

(a) For the first execution of each of the two repeated
instructions
y + C(R) =Y, oryl; Y1l or yI1 =« C(R)

(b) For any successive execution of

the first of the two repeated instructions

if A =1, then Delta + C(R) = Y_ or yI
Y oryl = C(R) n

if A =16, then C(R) = Y oryl , wherens1

n’

the second of the two repeated instructions

if B=1, then Delta + C(R) =Y_or yI_;
Ynor yIn = C(R) n n

if B =0, then C(R) = Yn or yI , wheren > 1

where A and B are the contents of bit positions 8 and 9 of
Index Register Zero (XRO).

In the case of RI, only one indirect reference is made per
repeated execution, The Tag portion of the indirect word
is not interpreted as usual but is ignored. Instead, the
modifier R and the designator R = N are applied.

The Exit Conditions:

An exit is made from the repeat loop if one of the Terminate
Conditions exists or if Tally = 0 after the execution of the odd
instruction of the repeated pair. Also, an exit is made any time
a fault occurs.

The program-controlled exit conditions are:
(a) Tally =0
(b) Terminate Conditions

The bit configuration in bit positions 11-17 of the RPD
instruction defines the Terminate Conditions. If more than
one condition is specified, the repeat terminates if any one of
them is met.

The Carry, Negative, and Zero Indicators each use two bits,
one for the OFF condition and one for ON., A zero in both
positions for one indicator causes this indicator to be ignored
as a Terminate Condition. A one in both positions causes

an exit after the first execution of the repeated instruction
pair.

CPB<1004F

138

MISCELLANEOUS
OPERATIONS

Bit 17 = 0: any overflow is completely ignored, i.e., the
respective Overflow indicator is not set ON, and an Overflow
Trap does not occur.

Bit 17 = 1: any overflow is treated as usual. If the Overflow
Mask is ON, then exit from the repetition loop.

Bit 16 = 1: if Carry Indicator is OFF, then exit.

Bit 15 =1: if Carry Indicator is ON, then exit.

Bit 14 = 1: if Negative Indicator is OFF, then exit.

Bit 13 = 1: if Negative Indicator is ON, then exit.

Bit 12 = 1: if Zero Indicator is OFF, then exit.

Bit 11 =1: if Zero Indicator is ON, then exit.
(c) Overflow Fault Trap

If bit 17 =1 and an overflow occurs with the Overflow Mask

OFF, an Overflow Fault Trap occurs and an exit is made

from the repetition loop upon completion of the fault instruction.
A nonprogram-controlled exit from the repetition loop occurs if any
Fault Trap other than an Overflow occurs. Note that if any Fault
Trap (i. e., Overflow, Divide Check, Parity Error on indirect word
or operand fetch, etc.) occurs on the even instruction, the odd
instruction will not be executed.
At the time of exit from the repetition loop:
X0g, , .7 contains the Tally Residue, i. e., the number of repeats
remaining until a Tally Runout would have occurred. The Terminate
Conditions in bits 11-17 remain unchanged.
If the exit was due to Tally = 0 or a Terminate Condition, the X
specified by the designator of each of the two repeated instructions
will contain either:
(a) The contents of the designated X, after the last execution of

the repeated pair plus the delta associated with each instruction

A and B (bits 8 and 9 of Xg) =1, or

(b) The contents of the designated X, after the last execution of the
repeated pair of Z and B =0,

If the exit was due to a Fault Trap, the X, specified by the designator
of each of the two repeated instructions may contain either:

(a) The contents of the designated Xp's at the time the Fault Trap
occurred plus the delta associated with each instruction A and
B=1, or

{b) The contents of the designated Xn's at the time the Fault Trap
occurred.

CPB-~1004F

139

(b) The contents of the designated X, 's at the time the Fault
Trap occurred.

10. A repeat double of instructions that have long execution times

may cause a LUF, if the time involved is greater than 16
milliseconds,

CPB-~1004F

140

MISCELLANEOUS

OPERATIONS
Mnemonic: Name of the Instruction: Op Code (Octal)
RPL Repeat Link (See page 207 for coding format) 500
SUMMARY: Execute the next instruction until an exit condition is met.
MODIFICATIONS: No modifiers are nllowed.
INDICATORS: The RPL instruction itself does not affect any of the indicators.

However, the execution of the repeated instructions may affect
the indicators,

NOTES: 1. The RPL instruction has the following format:
0 7 8 9 10 11 1718 26 27 28 29 30 35

T T L] L} 1 1J 1)

1}] ’ 1 1 1 2]

Tally i~1~1C} Term. Cond. ! Op Code 1011 103 ~
N T T 1 [
i1 L 1 [} H i
2. If C =1, then bits 0-17 of the RPL instruction = XO.

3.

In the normal case, the Terminate Condition(s) and Tally
from X0 control the repetition loop for the instruction
following the RPL instruction. Initial Tally =0 will be
interpreted as 256. A fault also causes an exit from the
loop.

The repetition loop that does not contain a fault consists of
the following steps:

(a)
()
(c)

(d)

(e)

Execute the repeated instruction

C(X0)g, 7 -1 =(CX0)y

If a Termination Condition is met (see 7¢), then set
Tally Runout Indicator OFF and exit.

If the Tally C(XO)O 7= 0 or the Link Address

C(Y)g, ..17 = 0 and n6 Termination Condition is
met, then set Tally Runout Indicator ON and exit.

Go to (a) if conditions (c) or (d) are not met,.

The instructions which cannot be repeated are:

(a)

(b)

Instructions that could alter the Link Address of a
linked word.

Example -

1. LDX type instruction with the same X
specified as is specified in a modifying register

2, STORES or READ-ALTER-REWRITE 's

The instructions EAA, EAQ, EAXn, NEG, NEGL, FNO,
FNEG, LREG, DIS, CIOC,

CPB-~1004F

141

MISCELLANEOUS
OPERATIONS

(¢) All miscellaneous operations instructions.
(d) Al transfer-of-control instructions.
(e) All shift instructions,

Note: All instructions that would normally alter the
contents of an index register (except (LXLy))
result in the specified register either being
cleared to zero or remaining unchanged when
in the RPL mode., This is because bits 0-17
of the operand are zero.

Address modification for the repeated instruction:

For the repeated instruction, only the modifier R and the
designators specifying R = X1, ..., X7 are permitted. The
modifier is effective only for the first execution of the re-
peated instruction.

The effective address Y is:

(a) For the first execution of the repeated instruction
Y, =y, +C(R); ¥; = C(R)

(b) For any successive execution of the repeated instruction
¥y =C¥g,,.173 Y2 = CR)

Yy = C(Yn -1) 0...17 Yn = C(R) if Yn (0...17) #0

The effective address Y is the address of the next list word.
The lower portion of the list word contains the operand to be
used for this execution of the repeated instruction. The oper-
and is:

00...0, c(Y) for single precision
\) 18...35

bits 0-17 C(Y)18 7 for double precision

The upper 18 bits of the list word contain the Link Address,
i.e., the address of the next successive list word, and thus the
effective address for the next successive execution of the
repeated instruction.

The Exit Conditions:
An exit is made from the repeat loop if one of the Terminate
Conditions exists or if Tally = 0 or Link Address = 0 after the

execution of the instruction being repeated. Also an exit is
made any time a fault occurs.

CPB-1004F

142

MISCELLANEOUS
OPERATIONS

The program-controlled exit conditions are:

(a) Tally =0

(b) Link Address =0

(c) Terminate Conditions
The bit configuration in bit positions 11-17 of the RPL
instruction defines the Terminate Conditions. If more
than one condition is specified, the repeat terminates
if any one of them is met.
The Carry, Negative, and Zero Indicators each use two bits,
one for the OFF condition and one for ON. A zero in both
positions for one indicator causes this indicator to be
ignored as a Termination Condition. A one in both positions
causes an exit after the first execution of the repeated
instruction,
Bit 17 = 0: any overflow is completely ignored, i.e., the

respective Overflow Indicator is not set ON and the Over-
flow Trap does not occur,

Bit 17 = 1: any overflow is treated as usual. If the Over-
flow Mask is ON, then exit from the repetition loop.

Bit 16 =1: if Carry Indicator is OFF, then exit.
Bit 15 =1: if Carry Indicator is ON, then exit.
Bit 14 = 1: if Negative Indicator is OFF, then exit.
Bit 13 =1: if Negative Indicator is ON, then exit.
Bit 12 =1: if Zero Indicator is OFF, then exit.
Bit 11 = 1: if Zero Indicator is ON, then exit.
(d) Overflow Fault Trap
If bit 17 =1 and an overflow occurs with the Overflow
Mask OFF, an Overflow Fault Trap occurs and an exit
is made from the repetition loop upon completion of
the fault instructions.
A nonprogram-controlled exit from the repetition loop
occurs if any Fault Trap other than Overflow occurs (i.e.,
Divide Check, Parity Error on indirect word or operand fetch,
etc.).
At the time of exit from the repetition loop:
X0q, 7 contains the Tally Residue, i.e., the numbers of

repéats remaining until a Tally Runout would have occurred.
The Terminate Conditions in bits 11-17 remain unchanged.

CPB-~1004F

143

MISCELLANEOUS
OPERATIONS

The Xn specified by the designator of the repeated instruction
contains the address of the list word that contains

in its lower half: the operand used in the last execution of
the repeated instruction

in its upper half: the address of the next list word
An exit will not occur if the effective address = 0 for the first
execution of the linked instruction. This address specifies

the location of the first word in the Link Table and is not
interpreted as a Link Address.

CPB~1004F

144

MASTER MODE OPERATIONS

Mnemonic: Name of the Instruction: Op Code (Octal)
DIS Delay Until Interrupt Signal 616
SUMMARY: No operation takes place, and the Processor does not continue with the

next instruction but waits for a program interrupt signal

MODIFICATIONS: Are without any effect on the operation

INDICATORS: None affected
NOTE: This instruction can be used in the Master Mode only. I this instruction

is attempted by a Processor that is in the Slave Mode, a Command Fault
Trap occurs.

Mnemonic: Name of the Instruction: Op Code (Octal)

LBAR Load Base Address Register 230

SUMMARY: C(Y)O i = C(BR)

MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)

Zero If C(BR) =0, then ON; otherwise OFF

Negative Iif C(BR)0 =1, then ON; otherwise OFF
NOTE: This instruction can be used in the Mastef Mode only. If its use is

. attempted in the Slave Mode, the instruction functions like the NOP
instruction.
Mnemonic: Name of the Instruction: Op Code (Octal)
LDT Load Timer Register 637

SUMMARY: C(Y)y 93 = C(TR)

MODIFICATIONS: All except CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(TR) =0, then ON; otherwise OFF
Negative If C(TR)O =1, then ON; otherwise OFF
NOTE: This instruction can be used in the Master Mode only. If its use is
attempted in the Slave Mode, the instruction functions like the NOP
instruction,

CPB-1004F

145

MASTER MODIS OPERATIONS

Mnemonic:

Name of the Instruction: Op Code (Octal)

SMIC

Sel Memory Controller Interrupt Cells 451

SUMMARY: C(A) is used o set selected Interrupt Cells ON in the System Controller of
the Memory unit selected by YO-Z

MODIFICATIONS:

INDICATORS:

NOTES: 1.
2.

All excepl DU, DL, SC, and CI

None affected

The elfective address Y is used in selecting a Memory module as with
a normal memory access request. However, the selected module does
not store the data rececived in a memory location, but uses it to set
selected Interrupt Cells ON,

Fori=0,1,...,15 AND C(A)35 =0;
if C(A)i =1, then set Interrupt Cell i ON

Fori=0,1,...,15 AND C(A)35 =1:
if C(A)i =1, then set Interrupt Cell (16+i) ON.

This instruction can be used in the Master Mode ouly. If the use of
this instruction is attempted by a Processor that is in the Slave Mode,
a Commmand Fault Trap will occur,

Mnemonic: Name of the Instruction: Op Code (Octal)
RMCM Read Memory Controller Mask Register 233
SUMMARY: C (Memory Controller Interrupt Mask Register)
C (Memory Controller Access Mask Register) s C(AQ)
of Memory Unit specifiedby Y, _o
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) =0, then ON; otherwise OFF
Negative If C(AQ)0 =1, then ON; otherwise OFF
NOTES: 1. The effective address Y is used in selecting a Memory module as with

a normal memory access request. However, the selected module
does not transmit the contents of an addressed memory location, but
the contents of its Memory Controller Interrupt Mask Register and
Memory Controller Access Mask Register.

CPB-1004F

146

MASTER MODE OPERATIONS

Interrupt Mask Access Mask
Register \ \7'<—/’Regist_er r
l l Zeros Zeros
10 15, o 316 31! ba
1 \ 1 | | | !
! 1 ! 1 1 (|
T 1 S VA O S %
0 15116 3132 35/36 51152 67'68 71!
; 1 | 1 |
I | i L
Combined AQ-register
2. This instruction can be used in the Master Mode only. If the use
of this instruction is attempted by a Processor that is in the Slave
Mode, a Command Fault Trap will occur.
Mnemonic: Name of the Instruction: Op Code (Octal)
SMCM Set Memory Controller Mask Register 553
SUMMARY: C (Memory Controller Interrupt Mask Register)
CAQ) = C (Memory Controller Access Mask Register)
of Memory Unit specified by Y0-2
MODIFICATIONS: All except DU, DL, CI, SC
INDICATORS: None affected
NOTE: 1. The effective address Y is used in selecting a Memory module as
with a normal memory access request, However, the selected -
module does not store the data received in a memory location but
in its Memory Controller Interrupt Mask Register and Memory
Controller Access Mask Register.
Combined AQ-register
L) T T
] | [
0 15: ;32 35,36 51: :68 I,
!] I
| .LL ! ! J,L I U : : 1L i
Yo 151 0 316 31 T i
Interrupt Mask; "‘>< Accégs Mask
Register Register

2. This instruction can be used in the Master Mode ounly. If the use
of this instruction is attempted by a Processor that is in the Slave
Mode, a Command Fault Trap will occur.

147

CPB~1004F

MASTER MODE OPERATIONS

Mnemonic: Name of the Instruction: Op Code (Octal)
CIoc Connect I/O Channel 015
SUMMARY: C(Y) are transferred from the Memory module via the channel that is
specified by C(Y)
MODIFICATIONS: All except DU, DL, SC, and CI
INDICATORS: None affected
NOTES: L. The effective address Y is used to access a memory location as:

usual. However, the Memory module does not transmit the contents
of this location to the Processor that submitted the effective
address; it uses C(Y)33__ . 35 to select one of its eight channels,
sends a connect pulse to the unit on this channel, and transmits

C(Y) on the data lines to this unit

2. This instruction can be used in the Master Mode only. If the use
of this instruction is attempted by a Processor that is in the Slave
Mode, a Command Fault Trap will occur,

CPB-1004F

148

. SYMBOLIC MACRO ASSEMBLER--GMAP

GENERAL DESCRIP TION

The GE-625/635 macro assembly program is a program which will translate symbolic
© machine language convenient for programmer use into absolute or relocatable binary machine
instructions. The symbolic language is sufficiently like machine language to permit the pro-
grammer to utilize all the facilities of the computer which would be available to him if he
were to code directly in machine language.

An Assembler resembles a compiler in that it produces machine language programs. It
differs from a compiler in that the symbolic language used with an Assembler is closely
related to the language used by the computer, while the source language used with a compiler
resembles the technical language in which problems are stated by human beings.

Compilers have several advantages over Assemblers. The language used with the compiler is
easier to learn and is oriented toward the problem to be solved. The user of a compiler
usually does not need an intimate knowledge of the inner workings of the computer. Pro-
gramming is faster. Finally, the time required to obtain a finished, working program is
greatly reduced since there is less chance for the programmer to make mistakes., The
Assembler compensates for its disadvantages by offering those programmers, who need a
great degree of flexibility in writing their programs, that flexibility which is not currently
found in compilers.

The GE-625/635 Macro Assembler is being provided to give the professional programmers
some of the conveniences of a compiler and the flexibility of an Assembler. The ability to
design desired MACROs in order to provide convenient shorthand notations plus the use of
all GE-625/635 machine instructions aswellasa complete set of pseudo-operations provides
the programmer with a very powerful and flexible tool. The output options enable him to
obtain binary text in relocatable as well as absolute formats.

This Assembler is implemented in the classic format of Macro Assemblers with several
variations. There are two passes over the external text: the first pass allows for updating
and/or merging of an ALTER package to apreviously prepared assembly input. The ALTER
package consists of changes to be made to the previous assembly under control of ALTER
cards. During pass one, all symbols are collected and assigned their absolute or relocatable
values relative to the current location counter. MACRO prototypes are processed and
placed in the MACRO skeleton table immediately ready for expansion. All MACRO calls,
therefore, are expanded inpass one, allowing the MACRO skeleton table to be destroyed prior
to pass two.

Machine operation codes, pseudo-operations, and MACRO names are all carried in the

operation table during pass one.

CPB-1004F

149

This implies that all operation codes, machine or pseudo, along with MACROs are looked
up during pass one, and that the general operation table is destroyed at the end of pass one.
The literal pool is completely expanded during pass one, avoiding duplicates (except for
V, M, and nH literals where n is greater than 12), which are assigned unique locations in
pass one and will be later expanded in pass two. Double-precision numbers in the literal
pool start at even locations.

At the end of pass one, the symbol table is sorted; and a complete readjustment of symbols
by their relative location counter is performed. The preface card is then punched.

All instructions are generated during pass two. This is accomplished by performing a
scan over the variable fields and address modifications. This information is then combined
with the operation code from pass one by using a Boolean OR function. Apparent errors
are flagged.

The symbolic cross-reference table is created as the variable fields are scanned and
expanded. The final edit of the symbol table is done at the end of pass two. Generative
pseudo-operations are processed with the conversion being done in pass two. Pseudo-
operations are available to control punching of binary cards and printing images of source
cards. Images of source cards in error will be printed, regardless of control pseudo-
operations. Undefined symbols, and error conditions will be noted at the end of the printer
listing.

The classic format of a variable field symbolic assembly program is used throughout the
GE-625/635 Macro Assembler. Typically, a symbolic instruction consists of four major
divisions; location field, operation field, variable field, and comments field.

The location field normally contains a name by which other instructions may refer to the
instruction named. The operation field contains the name of the machine operation, pseudo-
operation or Macro. The variable field normally contains the location of the operand.
The comments field exists solely for the convenience of the programmer and plays no part
in the assembly process. An identification field is provided to give a means of identifying
the location of a card within a deck.

RELOCATABLE AND ABSOLUTE ASSEMBLIES

The Macro Assembler program processes inputs of several types: (1) FORTRAN IV
compilations that have been translated into the Assembler language, (2) COBOL-61 compila-
tions translated into the Assembler language, (3) source programs written originally in the
Assembler language, (4) compressed source decks (COMDK) for any of items (1) through
(3), and (5) correction (ALTER) cards for any of (1) through (3).

The normal operating mode of the Assembler in processing input subprograms of the types
indicated above is relocatable; that is, each subprogram in a job stream is handled individ-
ually and is assigned memory locations nominally beginning with zero and extending to the
upper limit required for that subprogram. Since a job stream can contain many such
subprograms, it is apparent that they cannot all be loaded into a memory area starting with
location zero; they must be loaded into different memory areas. Furthermore, they must be
movable (relocatable) among the areas. Then for relocatable subprograms, the Assembler
must provide (1) delimiters identifying each subprogram, (2)information specifying that
the subprogram is relocatable, (3) the length of the subprogram, and (4) relocation control
bits for both the upper and lower 18 bits of each assembled word.

CPB-1004F

150

Subprogram delimiters are the Assembler output cards $§ OBJECT, heading the subprogram
assembly, and $ DKEND, ending the assembly. An assembly is designated as relocatable
on a card-to-card basis by a unique 3-bit Assembler punched code value in each binary
output card. (See Binary Decks, page 228.) The subprogram length is punched in the
preface card(s) which immediately follows the $ OBJECT card of each subprogram., The
relocation control bits are grouped together on the binary card and are referenced by
GELOAD while it is loading the subprogram into absolute memory locations.

The Assembler designates that the assembly output is absolute on a card-to-card basis by
punching a unique 3-bit code value in each card. This value causes GELOAD to regard
all addresses on a card as actual (physical) memory address relative to the Base Address
Register and to load accordingly. Each absolute subprogram assembly begins with a $
OBJECT card and terminates with the $ DKEND card, as in the case of relocatable
assemblies.

The normal Assembler operating mode is relocatable; it is set to the absolute mode by
programmer use of ABS (page 183).

ASSEMBLY LANGUAGE PROGRAMMING
Location Field

In machine instruction or MACROs this location may contain a symbol or may be left
blank, if no reference is made to the instruction. (With certain pseudo-operations, this
field has a special use and is described later in this publication.) Associated with the
location field is a one-character field which allows the programmer to specify whether this
generated machine word should fall in a special memory location, If this is left blank, then
the instruction will be located in the next available location. But, if there is an O in this
field, the instruction will be located at the next available odd location; if an E, then at the
next available even location; if the number 8, then in the next location which is a multiple
of eight.

Operation Field

The operation field may contain from zero to six characters taken from the set 0-9, A-Z,
and the period (.). The group of characters must be: (1) a legal GE-625/635 operation,*
(2) a Macro Assembler pseudo-operation or (3) programmer macro operation code. The
character group must begin in column eight (left-justified) and must be followed by at least
one blank.

A blank field or the special code ARG will be interpreted as a zero operation, the opera-
tion field will be all zeros in the assembly coding. Anything appearing in the operation
field which is not in (1), (2), or (8) above is an “illegal” operation and will result in an
error flag in the assembly listing.

*All indexing instructions (LDX, STX, ADX, etc.) may be used without the index register
number appended. In this case there are three subfields in the variable field. The first
subfield is an expression which when evaluated will designate the proper index register. Thus,

LDX 1, 5, DU

is equivalent to
LDX1 5, DU

also, the following is admissible:
LDX B+A, 5, DU

CPB-1004F

151

Variable Field

The variable field contains one or more subfields that are separated by the programmer
through the use of commas placed between subfields. The number and type of subfields
vary depending upon the content of the operation field: (1) machine instruction, (2) Macro
Assembler pseudo-operation, or (3) macro operation.

The subfields within the variable field of GE-625/635 machine instructions consist of the
address and the tag (modifier). The address may be any legitimate expression or a literal.
This is the first subfield of the variable field and is separated from the tag by a comma.
Through address modification, as directed by the tag, a program address is defined. This
program address is either (1) an instruction address used for fetching instructions, (2) a
tentative address used for fetching an indirect word, or (3) an effective address used for
obtaining an operand or storing a result,

The subfields used with pseudo-operations vary considerably; they are described individually
in this publication under each pseudo-operation. Subfields used with macro operations are
substitutable arguments which, in themselves, may be instructions, operand addresses,
modifer tags, pseudo-operations, or other macro operations. All of these types of subfields
are presented in the discussion on macro operations.

The first character of the variable field must begin by column 16. The end of the variable
field is designated by the first blank character encountered in the variable field (except for
the BCI instruction and in the use of Hollerith literals). If any subfield is null (no entry
given when one is needed), it is interpreted to be zero.

Comments Field

The comments field exists solely for the convenience of the programmer; it plays no part
in the assembly process. Programmer comments follow the variable field and are separated
from that field by at least one blank column.

Identification Field

This field is used or not used according to programmer option. Its intended use is for
instruction identification and sequencing.

CPB-1004F

152

Symbolic Card Format

Symbolic instructions are punched one per card, each card representing one line of the
coding sheet (Figure 6). Thefollowingis a breakdown of the card columus normally used.

Columns 1- 6 Location field

Column 7 Even/odd/eight subfield

Columns 8 - 13 Operation field (left justified)

Column 14 - 15 Blank

Columns 16 - Blank* Variable field

Column Blank - 72 Comments field (separated from variable field by at least
one blank)

Columns 73 - 80 Identification field

When columns 1-16 are all blank, the symbolic card is treated as a remarks card. The

first blank column encountered within an expression terminates the processing of the
variable field.

GENEHM’@ ELECTRIC SYMBOLIC CODING FORMS

PROBLEM

PROGRAM R DATE PAGE OF

LOCATION |E| OPERATION VARIABLE COMMENTS 1DENTiF|—
CATION

~NO

12 sf7ls 1411516 2 72(73 80|

—
NW .

Figure 6. GE-625/635 Macro Assembler Coding Form

Symbols

A symbol is a string of from one to six nonblank characters, at least one of which is non-
numeric, and the first of which is non-zero. The characters must be taken from the set
made up of 0-9, A-Z and theperiod(.). Symbols can appear in the location and variable fields
of the Assembler coding form. (Symbols are also known as location symbols and symbolic
addresses.)

Symbols are defined by:

1. Their appearance in the location field of an instruction, pseudo-operation, or
MACRO.

2. Their use as the name of a subprogram in a CALL pseudo-operation.

3. Their appearance in the SYMREF pseudo-operation.

CPB~1004F

153

Every symbol used in a program must be defined exactly once, except for those symbols
which are initially defined and redefined by the SET pseudo-operation. An error will be

indicated by the Assembler if any symbol is referenced but never defined, or if any symbol
is defined more than once.

The following are examples of permissible symbols:

A A1000 E1XP3 A.....
Z FIRST .XP3 B.707
B1 ALOGI10 ADDTO 1234X
ERR BEGIN ERROR 3.141p

Types of Symbols

Symbols are classified into four types:
1. Absolute--A symbol which refers to a specific number.

2. Common--A symbol which refers to a locationin common storage. These locations
are defined by the use of the BLOCK pseudo-operation.

3. Relocatable--A symbol which appears in the location field of an instruction.
Symbols that appear in the location field of symbol defining pseudo~

operations are defined as the same type as the symbol in the variable
field. '

4. SYMREF--A symbol which appears in the variable field of a SYMREF pseudo-

operation; it is considered to be defined external to the subprogram being
assembled and is to be considered specially by the Loader.

Expressions In General

In writing symbolic instructions, the use of symbols only in the allowable subfields pre-
sents the programmer with too restrictive a language. Therefore, in the notation of sub-
fields of machine instructions and in the variable fields of pseudo-operations (and by
following specific rules), the use of expressions as well as symbols is permitted. Before
discussing expressions, it is necessary to describe the building blocks used to construct
them. These building blocks are elements, terms, and operators.

Elements

The smallest component of a complete expression is an element. An element consists of a
single symbol or an integer less than 235 (The asterisk may also be used as an element.)

Terms and Operators

A term is a string composed of elements and operators. It may consist of one element or,
generally speaking, n elements separated by n - 1 operators of the type * and / where *
indicates multiplication and / indicates division. Ifa term does not begin with an element or
end with an element, then a null element will be assumed. It is not permissible to write two
operators in succession or to write two elements in succession.

CPB-1004F

154

Examples of terms are:

M MAN*T T*Y
436 BETA/3 A*B*C/X*Y*7Z
START 4*AB/ROOT ONE*TWO/THREE

Asterisk Used as an Element

An asterisk (*) may be used as an element in addition to being used as an operator. When
it is used as an element, it refers to the location of the instruction in which it appears. For
example, the instruction

Al0 TRA *+2
is equivalent to
AlO TRA Al10+2

and represents a transfer to the second location following the transfer instruction. There
is no ambiguity between this usage of the asterisk as an element and its use as the operator
for multiplication since the position of the asterisk always makes clear what is meant. Thus,
**M means “the location of this instruction multiplied by the element M”, and the ** means
“the location of this instruction times the null element” and would be equal to zero. The
notation *-* means “the location of this instruction minus the location of this instruction.”
(See description of + and - operators below.)

Algebraic Expressions

An algebraic expression is a string composed of terms separated by the operators +
(addition) and - (subtraction). Therefore, an expression may consist of one term or,
more generally speaking, n terms separated by n - 1 operators of the type + and -, It
is permissible to write two operators, plus and minus, in succession and the Assembler
will assume a null element between the two operators. If no initial term or final term is
stated, it will be assumed to be zero, except when the divisor is zero, in which case
the divisor is assumed to be 1, An expression may begin with the operator plus or minus
but if not explicitly given + willbe assumed, Examples of permissible algebraic expressions
are:

A B+4 CX*DY+EX/FY-100

SINE 7 -EXP*FUNC/LOGX+XYZ/10-SINE

XYZ +99 -X/Y *+5*X (Note: the first asterisk refers to the
instruction location)

A-3 -88 X*Y --(N;)te: equivalent to zero minus zero minus
zero

Evaluation of Algebraic Expressions

An algebriac expression is evaluated as follows: first, each symbolic element is replaced
by its numerically-defined value; then, eachtermis computed from left-to-right in the order
of its occurrence. In division, the integral part of the quotient is retained; the remainder
is immediately discarded. For example, the value of the term 7/3 * 3 is 6. In the evaluation
of an expression, division by zero is equivalent to division by one and is not regarded as an
error. After the evaluation of terms, they are combined in a left-to-right order with the
initial term of the expression assumed to be zero followed by a plus operator. If there is
no final term, a null term will be used. At the completion of the expression evaluation, the
Assembler reduces the result by module 2* where n is the number of binary bits in the field
being defined, 18 for address field evaluations and variable according to specified field size
for the VFD pseudo-operation, (page 199). Grouping by parentheses is not permitted, but
this restriction may often be circumvented.

CPB-1004F

155

Boolean Expressions

A Boolean expression is defined similarly to an algebraic expression except that the
operators *, /, +, or - are interpreted as Boolean operators. The meaning of these operators
is defined below:

1. The expression that appears in the variable field of a BOOL pseudo-operation uses
Boolean operators.

2. The expression that appears in the octal subfield of the variable field of a VFD
pseudo-operation uses Boolean operators.

Evaluation of Boolean Expressions

A Boolean expression is evaluated following the same procedure used for an algebraic
expression except that the operators are interpreted as Boolean.

In a Boolean expression, the form operators +, -, *, and / have Boolean meanings, rather
than their normal arithmetic meanings, as follows:

Operator Meaning Definition

+ OR, INCLUSIVE OR, 0+0=0
union 0+1=1

140=1

1+1=1

- EXCLUSIVE OR 0-0=0
symmetric difference 0-1-=1

1-0=1

1-1=0

* AND, intersection 0*0=0
0*1=0

1*0=0

1*1=1

/ 1’s complement, /0 =1
complement, NOT /1 =0

Although / is a unary operation involving only one term, by convention A/B is taken to mean
A*/B; and the A is ignored. This is not regarded as an error by the Assembler. Thus, the
table for / as a two-term operation is:

0/0 =0 1/0=1
0/1=0 1/1=0
other conventions are:
+A=A+ = A
-A=A-=A
A=A=0 (possible error--operand missing)
A/ =A/0=A

CPB-1004F

156

Relocatable and Absolute Expressions

Expression evaluation can result in either relocatable or absolute values. There are three
types of relocatable expressions; program relocatable (R}, BLANK COMMON relocatable
(C), and LABELED COMMON relocatable (L). The rules by which the Assembler determines
the relocation validity of an expression are of necessity a little complex, and the presence
of multiple location counters compounds the problem somewhat. Certain of the principal
pseudo-operations impose restriction as to type of expression that is permissible; these are
described separately under each of the affected pseudo-operations. These are:

EQU MAX BFS DUP
SET BOOL ORG FEQU
MIN BSS BEGIN

The following rules summarize the conditions and restrictions governing the admissibility
of relocation:

1. Division involving a relocatable element(s) is not valid.
2. Multiplication of two relocatable elements is not valid.
3. The asterisk(*) symbol (implying current location counter)is a relocatable element.

4. When the result of the evaluation of an expression is an absolute element, the
expression is absolute.

5. When the result of the evaluation of an expression is a relocatable element, the
expression is relocatable.

6. When the result of the evaluation of an expression is the sum or difference of a
relocatable element and an absolute element, the expression is relocatable.

7. When the result of the evaluation of an expression is the difference between two
relocatable elements, the expression is absolute.

As the result of the evaluation of an expression:
1. The sum of two or more relocatable elements is not valid.

2. The product of an absolute element and a relocatable element is ot valid.

3. A negative relocatable element is not valid.

4. The difference of two different types of relocatable elements is not valid.

These rules are not a complete set of determinants but do serve as a basis for establishing
a method of defining relocation admissibility of an expression.

CPB~1004F

157

Let Rr denote a program-text relocatable element, R, denote a BLANK COMMON element,
and Rl denote a LABELED COMMON element. Next, take any expression and process it as

follows:
1.

2.

Replace all absolute elements with their respective values.

Replace any relocatable element with the proper R, where i =r, ¢, or L. This
yields a resulting expression involving only numbers and the terms Ry,R] , and Re.

Discard all terms in which all elements are absolute.

Evaluate the resulting expression. Ifitiszero or numeric, the original expression
is absolute; if it is explicitly Ry, R, or R}, then the original exprsssion is normal
relocatable. BLANK COMMON, relocatable, or LABELED COMMON reloctable,
respectively.

If the resulting expression is notasgivenin 4 above, it is a relocation error and/or
an invalid expression.

In the illustrative examples following, assume ALPHA and BETA to be normal relocatable
elements (Rp), GAMMA and DELTA to be BLANK COMMON relocatable elements (R}, and
EPSILON and ZETA to be LABELED COMMON relocatable elements (Ry). Let N and K be
absolutely equivalent to 5 and 8, respectively.

1.

4*ALPHA-7-4*BETA

reduces to

4*R,. - 4*R, =0,

thus indicating a valid absolute expression.

N*ALPHA+8*GAMMA+21 - K*DELTA
reduces to

5*R,+8*R . -8*R , = 5R..,

thus indicating an inva’iid expression.

EPSILON+N-ZETA

reduces to

R1+5-R =5,

thus indicating a valid absolute expression.

ALPHA-GAMMA+DELTA+7

reduces to

R,~R C+R =R,

thus indicating a valid relocatable expression.

Special Relocatable Expressions

Since all symbols defined as other than equal to some number (A EQU 4), are defined
relative to some explicit or implied location counter (USE, BLOCK), and are subject to
adjustment at the end of pass 1, they are considered to be relocatable in pass 1, even in
an absolute assembly.

CPB-1004F

158

Thus, special action must be taken, if they are to be referenced and used in pass 1 by
certain pseudo-operations--those which call for an expression evaluation for the deter-
mination of some count subfield, the result of which must be absolute. As an example,
consider

BCI 3,HOLLERITH TEXT
DUP 5,2

Normally, the count fields in the above are nonvariant and there is no problem. Consider
however

M BCI N,HOLLERITH TEXT
DUP N,M-1

The Assembler is equipped to handle expressions in these count fields, provided the result
is absolute. But, since M in the above example is a location symbol, and its value relative
to the origin of the USE is all that is known in pass 1, a relocation error would result. The
solution to this problem is simply to define some symbol at the first available location of the
counter in question. It has a value of zero relative to the origin of that counter and may be
used as follows:

USE CTR
FIRST NULL

M BéI N, HOLLERITH TEXT
DUP N, M-FIRST-1

The result of this expression is now absolute, and truly represents the pass 1 value of the
symbol M (less 1).

Literals

A literal in a subfieldis defined as being the data to be operated on rather than an expression
which points to a location containing the data.

A programmer must refer frequently to a memory location containing a program constant.
For example, if the constant 2 is to be added to the accumulator, the number 2 must be
somewhere in memory. Data generating pseudo-operations in the Macro Assembler enable
the programmer to introduce data words and constants into his program; but often the intro-
duction is more directly accomplished by the use of the literal that serves as the operand
of a machine instruction. Thus, the literal is data itself.

The Assembler retains source program literals by means of a table called a literal pool.
When a literal appears, the Assembler prepares a constant which is equivalent in value to
the data in the literal subfield. This constant is then placed in the literal pool, providing an
identical constant has not already been so entered. If the constant is placed in the literal
pool, it is assigned an address; and this address then replaces the data in the literal sub-
field, the constant being retained in the pool. If the constant is already in the literal pool,
the address of the identical constant replaces the data in the literal subfield.

CPB=1004F

159

The Assembler processes five types of literals: decimal, octal, alphanumeric, instructionf
and variable field. The appearance of an equal sign (=) in columns 16 of the variable field
instructs the Assembler that the subfield immediately followingis a literal. The instruction
and variable-field literal are placed in the literal pool. Because they cannot be evaluated
until pass two of the assembly, no attemptis made to check for duplicate entries into the pool.
Literals on the CALL and TALLY pseudo-operation are restricted to decimal, octal, and
alphanumeric where the character count is less than 13.

Decimal Literals

1. Integers
A decimal integer is a signed or unsigned string of digits. It is differentiated
from the other decimal types by the absence of a decimal point, the letter B, the
letter E, and the letter D.

2. Single-Precision Floating-Point

A floating-point number is distinguished by the presence of an E, a decimal point,
or both. A floating-point number consists of two parts: a principal part and an
exponent. The presence of the exponent is optional. The principal part is a signed
or unsigned decimal number with a decimal point in any position of the number or
with an assumed decimal point at the right-hand end of the number. If there is no
exponent part, the decimal point may not be assumed, but must be present.

The exponent part follows the principal part and consists of the letter E followed
by a signed or unsigned decimal integer.

3. Double-Precision Floating-Point

The format of the double-precision floating-point number is identical to the single-
precision format with two exceptions:

1. There must always be an exponent
2. The letter E must be replaced by the letter D

The Assembler will ensure that all double-precision numbers begin in even memory loca-
tions. Ambiguity of storage assignment as to even or odd will always cause the Assembler
to force double-precision word pairs to even locations; it will then issue a warning in the
printout listing,

4. Fixed-Point

A fixed-point quantity possesses the same characteristics as the floating-point--
with one exception: it must have a third part present. This is the binary scale
factor denoted by the letter B, followedby a signed or unsigned integer. The binary
point is initially assumed at the left-hand endof the word between bit position 0 and
1. Itisthen adjustedby the binary scale factor, designated with plus implying a shift
to the right and with minus, a shiftto the left. Double-precision fixed-point follows
the rules of double-precision floating-point with addition of the binary scale factor.

1The equal sign preceding a literal may appear in any column (following the left parenthesis)
of the variable field of a CALL pseudo-operation. This allows the specification in a CALL
pseudo-operation of one or more literal arguments.

CPB-1004F

160

Examples of decimal literals are:

=10 Integer

=26.44167E-1 Single-precision floating-point
=1.27743675385D0 Double-precision floating-point
=22.5B5 Fixed-point

Octal Literals

The octal literal consists of the character O followed by a signed or unsigned octal integer.
The octal integer may be from one to twelve digits in length plus the sign. The Assembler
will store it in a word, right-justified. The word will be stored in its real form and will
not be complemented if there is the presenceof a minus sign. The sign applies to bit 0 only.

Examples of octal literals are:
=01257
=0-3777177777742

Alphanumeric Literals

The alphanumeric, or Hollerith literal consists of the letters H or kH, where k is a char-
acter count followed by the data. If there is no count specified, a literal of exactly six 6-
bit characters including blanks is assumed to follow the letter H. If a count exists, the k
characters following the character H are to be used as the literal. If the value k is not a
multiple of six, the last partial word will be left-justified and filled in with blanks. The
value k can range from 1 through 53. (Embedded blanks do not terminate scanning of the
cards by the Assembler.)

Examples of alphanumeric literals are:

=HALPHA1

=HGONE (6 represents a blank)
=4HGONEhb

=THTHEDEND

Instruction Literals

The instruction literal consists of the character =followed by the letter M. This is followed
in turn by an operation code, one blank, and a variable field. (The embedded blank does not
terminate scanning of the card in this instance.) Only the machine instructions and one
pseudo-operation (ARG) are legal in an instruction literal.

Examples of instruction literals are:

=MARGbBETA
=MLDAP5,1

Instructions containing instruction literals cannot make use of any of the forms of a tag
modifier, since if a modifier is encountered it is assumed to be part of the instruction
literal.

CPB~-1004F

161

Variable Field Literals

The variable field literal begins with the letter V. Reference should be made to the descrip-
tion of the VFD pseudo-operation for the detailed description of using variable field data
description. The subfields of a variable field literal may be one of three types: Algebraic,
Boolean, and Alphanumeric.

Examples of variable field literals are:
=V10/895,5/37,H6/C,15/ALPHA

=V18/ALPHA,012/235,6/0

Instructions containing variable field literals cannot make use of any of the forms of a
tag modifier.

Literals Modified by DU or DL

When a literal is used with the modifier variations DU or DL, the value of the literal is
not stored in the literal pool but is truncated to an 18-bit value, and is stored in the address
field of the machine instruction. Normally, a literal represents a 36-bit number. For the
DU or DL modifier variations, if the literal is a floating-point number or Hollerith, then
bits 0-17 of the literal will be stored in the address field. In the case of all other literals,
bits 18-35 of the literal will be stored in the address field.

Examples of literals modified by DU and DL are:

CODED LITERAL RESULTANT ADDRESS FIELD (OCTAL)
=100,DL 000144
=-1.0,DU 001000
=320.,DU 022500
=0.,DU 400000
=077,DU 000077
=2B25,DU 004000
=3H00A,DL 000021

OPERATIONS AND OPERATION CODING

Processor Instructions

Processor instructions written for the Assembler consist of a symbol (or blanks) in the
location field, a 3- to 6-character alphanumeric code representing a GE-625/635 operation
in the operation field, and an operand address, (symbolicor numeric), plus a possible
modifier tag in the variable field. (Legal symbols used in the location field and as operand
addresses in the variable field are described on page 153 and following.)

Standard machine mnemonics are entered left-justified in the operation field. These are
any instruction mnemonic, as presented in the listings comprising Appendices A and C.

CPB-1004F

162

Several Assembler pseudo-operations are closely related to machine instructions. These are:

1. OPSYN (operation synonym)--redefinition of a machine instruction by equating a
new mnemonic to one already existing in the Assembler operation table.

2. OPD (operation definition)--definition of a new machine instruction to the Assembler.

3. MACRO (macro instruction definition)--define a mnemonic operation code to cause
one or more standard operations to be generated by the Assembler.

The operand address and modifier tag of most machine instructions comprise the subfield
entries of the variable field. The address portion may be any legitimate expression,
described earlier. The addressisthe first subfield in the variable field and begins in column
16. The modifier tag subfield is separated from the address subfield by a comma. Coding
of the modifier tag subfield entries is described on the pages following.

Address Modification Features

e Summary. The GE-625/635 performs address modification in four basic ways:
Register modification (R), Register then Indirect modification (RI), Indirect then Register
modification (IR), and Indirect then Tally modification (IT). Each of these basic types has
assoclated with it a number of variations in which selectable registers can be substituted
for R in R, RI, and IR and in which various tallying or other substitutions can be made
for T in IT. 1 always indicates indirect address modification and is represented by the
asterisk * placed in the variable field of the Macro Assembler coding sheet as *R or R* when
IR or RI is specified. To indicate IT modification, only the substitution for T appears in
the coding sheet variable field; that is, the asterisk is not used.

e Indirect Addressing. In indirect addressing, the contents of the instruction address y
are treated as another address, rather than as the operand of the instruction code. In the
GE-625/635, indirect address modification is handled automatically as a hardware function
whenever called for by program instruction. This form of modification precedes directly
address modification for IR and IT: for RI, it follows. When the I modification is called for
by a program instruction, an indirect word is always obtained from memory. This indirect
word may call for continued I modification, or it may specify the effective address Y to be
used by the original instruction. Indirect addressing for RI, IR and IT is performed by the
Processor whenever a binary 1 appears in either position of the t,,field (bit position 30
and 31) of an instruction or an applicable indirect word. The four bas1c modification types,
their mnemonic substitutions as used in the variable field of the coding sheet, and the binary
forms presented to the Processor by the Assembler are as follows:

CPB-1004F

163

MODIFICATION CODING SHEET BINARY

TYPE MNEMONIC FORMS
Tag
z|1i] =z tm td
30,31,32 35
Tag
R BETA, (R) z|1i} z] O Ol
30,31,32 35
Tag
RT BETA, (R) * z|i| z[0 1|
30,31,32 35
Tag
IR BETA,*(R) z| 1] z| 1 1|
30,31,32 35
Tag
IT BETA, (T) z] il zf 1 OI
30,31,32 35

The parentheses in (R) and (T) indicate that substitutions are made by the programmer for
R and T; these are explained under the separate discussions of R, IR, RI, and IT modification.
Binary equivalents of the substitution are used in the tq subfield.

Register (R) Modification

Simple R-type address modificationisperformedby the Processor whenever the programmer
codes an R-type variation (listed below) and causes the Assembler to place binary zeros
in both positions of the modifier subfield ty, of the general instruction. Accordingly, one
among 16 variations under R will be performed by the Processor, depending upon bit
configurations generated by the Assembler and placed in the designator subfield (td) of the
general instruction. The 16 variations, their mnemonic substitutions used on the Assembler
coding sheet, the tg field binary forms presentedto the Processor, and the effective address
Y generated by the Processor are indicated in the following table.

A special kind of address modification variation is provided under R modification. The
use of the instruction address field as the operand is referred to as direct operand address
modification, of which there are two types; (1) Direct Upper and (2) Direct Lower. With
the Direct Upper variation, the address field of the instruction serves as bit positions
0-17 of the operand and zeros serve as bit positions 18-35 of the operand. With the Direct
Lower variation, the address field of the instruction serves as bit positions 18-35 of the
operand and zeros serve as bit positions 0-17 of the operand.

CPB-1004F

164

BINARY

MODIFICATION MNEMONIC FORM EFFECTIVE
VARIATION SUBSTITUTION (td FIELD) ADDRESS
(R)=X0 0 1000 Y=y+C(XO)0_17
=X1 1 1001 Y=y+C(X1)O.17
=X2 2 1010 Y=y+C(X2)O_17
=X3 3 1011 Y=y+C(X3)0_17
=X4 4 1100 Y=y+C(X4) 5 14
=X5 5 1101 Y=y+C(X5)0_17
=X6 6 1110 Y—y+C(X6)O_17
=X7 7 1111 Y=y+C(X7)O_17
=A0_17 AU 0001 Y=y+C(A)O_17
=A18_35 AL 0101 Y=-~y+C(A)18_35
=Q0_17 QU 0010 Y=y+c(Q)0_17
“s-35 o oLl =yt Q1535
=ICO_17 IC 0100 Y-y+C(IC)0_17
=IR0-17 DU 0011 C(Y)0_17=y
=IR.O_17 DL 011l C(Y)18_35=y
=None Blank or N 0000 Y=y
=Any symbolic Any defined

index register symbol¥

* Symbol must be defined as one of the index registers X0-X7 by use of an applicable pseudo-
operation. (See discussion of EQU, page 191, and BOOL, page 192.)

The examples following show how R-type modification variations are entered in the variable
field and their resultant control effects upon Processor development of effective addresses.

LOCATION OPERATION VARIABLE FIELD COMMENTS
(ADDRESS, TAG) MODIFICATION EFFECTIVE
TYPE ADDRESS
1. B, 0 R) Y=B+C(X0), .
2. C, AL R) Y=C+C(A),9-3¢
3. M, QU R) Sf:hd+(:(ca0_17
4, -2,IC R) Y=C(IC)-2
5. *,DU (R) Operand _17=IC
6. 17 ®) y=1+c(x}
7. 2,DL (R) Operand) g.35=2
8. B (R) Y=
9. B, N (R) Y=B
10. C, ALPHA (R) Y=C+C(X2)
ALPHA EQU 2
CPB-1004F

165

Register Then Indirect (RI) Modification

Register then Indirect address modification inthe GE-625/6351is a combination type in which
both indexing (register modification) and indirect addressing are performed. For indexing
modification under RI, the mnemonic substitutions for R are the same as those given under
the discussion of Register (R) modification with the exception that DU or DL cannot be substi-
tuted for R. For indirect addressing (I), the Processor treats the contents of the operand
address associated with the original instruction or with an indirect word as described on
page 163.

Under RI modification, the effective address Y is found by first performing the specified
Register modification on the operand address of the instruction; the result of this R modi-
fication under RI obtains the address of an indirect word which is then retrieved.

After the indirect word has been accessed from memory and decoded, the Processor
carries out the address modification specified by this indirect word. If the indirect word
specifies RI, IR, or IT modification (any type specifying indirection), the indirect sequence
is continued. When an indirect word is found that specifies R modification, the Processor
performs R modification, using the register specified by the t field of this last encountered
indirect word and the address field of the same word, to form the effective address Y.

It should be observed again that the variations DU and DL of Register modification (R)
cannot be used with Register then Indirect modification (RI).

If the programmer desires to reference an indirect word from the instruction itself without
including Register modification, he specifies the “no modification” variation; under RI
modification, this is indicated on the coding form by an asterisk alone placed in the variable
field tag position.

The examples below illustrate the use of R combined with RI modification, including the use
of (R) = N (no register modification). The asterisk (*) appearing in the modifier subfield
is the Assembler symbol for I (Indirect). The address subfield, single-symbol expressions
shown are not intended as realistic coding examples but rather to show the relation between
operand addresses, indirect addressing, and register modification.

LOCATION OPERATION VARIABLE FIELD COMMENTS
(ADDRESS, TAQG) MODIFICATION EFFECTIVE
TYPE ADDRESS
1. - 7,AU* (R)* Y=B+C(X1)g_17
9. - Z,* (R)* Y=B+C(Q)O_17
Z - B,QU (R)
3. - Z,* (R)* Y=M
Z -- B,5* (R)*
B+C(X5) 917 ~-- C,3* (R)*
C+C(X3) 9-17 - M (R)

CPB-1004F

166

Indirect Then Register (IR) Modification

Indirect then Register address modification is a combination type in which both indirect
addressing and indexing (register modification) are performed. IR modification is not a
simple inverse type of RI; several important differences exist.

Under IR modification, the Processor first fetches an indirect word (obtained via I or IR)
from the core storage location specified by the address field y of the machine instruction;
and the C(R) of IR are safe-storedfor use in making the final index modification to develop Y.

Next, the address modification, if any, specified by this first indirect word is carried out.
If this modification is againIR, another indirectword is retrieved from storage immediately;
and the new C(R) are safe-stored, replacing the previously safe-stored C(R). If an IR loop
develops, the above process continues, each new R replacing the previously safe-stored R,
until something other than IR is encountered in the indirect sequence--R, IT, or RIL

If the indirect sequence produces an RI indirect word, the R-type modification is performed
immediately to form another address; but the I of this RI treats the contents of the address
as an indirect word. The chain then continues with the R of the last IR still safe-stored,
awaiting final use. At this point the new indirect word might specify IR-type modification,
possibly renewing the IR loop noted above; orit might initiate an RI loop. In the latter case,
when this loop is broken, the remaining modification types are R or IT.

When either R or IT is encountered, it is treated as type R where R is the last safe-stored
C(R) of an IR modification. At this point the safe-stored C(R) are combined with the y of
the indirect word that produced R or IT, and the effective address Y is developed.

If an indirect modification without Register modification is desired, the no-modification
variation (N) of Register modification should be specified in the instruction. This normally
will be entered on the coding sheets as *N in the modifier part of the variable field. (The
entry * alone is equivalent to N* under RI modification and must be used in this way.) The
mnemonic substitutions for (R) are listed under the Register modification description.

CPB-1004F

167

The examples below illustrate the use of IR-type modification, intermixed with R and RI
types, under the several conditions noted above.

COMMENTS
VARIABLE FIELD MODIFICATION EFFECTIVE
LOCATION OPERATION (ADDRESS, TAG) TYPE ADDRESS
1. -- Z,*QL *(R) Y=M+C(Q)18-35
Z . M (R)
2. -- Z, *3 *(R) Y=C+C(X3)g_17
z -- B,5* (R)*
B+C(X5)o_17 -- C, IC (R)
3. -- Z, *3 *(R) Y=M+C(Q)g_17
Z -- B, *5 *(R)
B -- C,*QU *(R)
C -- M, 7 (R)
4, -- Z, *DL *(R) C(Y)qa_ar=M
z - B 3% (B)* 18-35
B+C(X3)g_17 -- M, QL (R)
5. -- Z, *AL *(R) Y=B+C(A){ q_
z - B, AD (T) 18-35
6. -- Z, *N *(R) Y-B
z -- B, 3 (R)
1. -- Z, *N *(R) Y=M+C(X5)g-17
z -- B, *5 *(R)
B - M, DU (R)
8. -- Z,* (R)* Y=M+C(X5)y_17
z -- B, *5 *(R)
B -- M, DU (R)
CPB-1004F

168

Indirect Then Tally (IT) Modification

® Summary. Indirect then Tally address modification in the GE-625/635 is a combination
type in which both indirect addressing and indexing (register modification) are performed.
In addition automatic incrementing/ decrementing of fields in the indirect word are done as
hardware features, thus relieving the programmer of these responsibilities. The automatic
tallying and other functions of the IT type modification greatly enhance the processing of
tabular data in memory, provide the means for working upon character data, and allow
termination on programmer-selectable numerical tally conditions. (Refer to page 206
for the special word formats TALLYB, TALLYD, and TALLYC for Assembler coding of
the indirect words used with IT; and refer to Figure 5B for Tally Runout status.)

The ten variations under IT modification are summarized in the following table. It should
be noted that the mnemonic substitution for IT on the Macro Assembler coding sheet is
simply (T); the designator I for indirect addressing in IT is not represented. (Note that
one of the substitutions for T is I.)

CODING FORM BINARY
NAME OF THE SUBSTITUTION FORM EFFECT UPON THE
VARIATION FOR I(T) (tq FIELD) INDIRECT WORD

Indirect 1 1001 None.

Increment address, ID 1110 Add one to the address;

Decrement tally subtract one from the
tally.

Decrement address, DI 1100 Subtract one from the ad-

Increment tally dress; addone to the tally.

Sequence Character SC 1010 Add one to the character
position number; subtract
one from the tally; add one
to the address when the
character count crossesa
word boundary.

Character from Indirect CI 1000 None.

Add Delta AD 1011 Add an increment to the
address; decrement the
tally by one.

Subtract Delta SD 0100 Subtract an increment

from the address; in-
crease the tally by one.

Fault F 0000 None; the Processor is
forced to a fault trap
starting at a predeter-
mined, fixed location

Increment address IDC 1111 Same as ID variation ex-
Decrement tally, cept that furtheraddress
and Continue modification can be per-
formed.

Decrement address, DIC 1101 Same as DI except that
Increment tally, further address modifi-
and Continue cation can be performed.

CPB-1004F

Rev. July 1969
169

e Indirect (T) =1 Variation. The Indirect (I) variation of IT modification is in effect a
subset of the 1D and DI variations described below in that all three--I, ID, and DI--make use
of one indirect wordinorder to reference the operand. The I variation is functionally unique,
however, in that the indirect word referenced by the program instruction remains unaltered--
no incrementing/decrementing of the address field. Since the t,, and tq subfields of the
indirect word under Iare notinterrogated, this word will always terminate the indirect chain.

The following differences in the coding and effects of *, *N, and I should be observed:
1. RI modification is coded as R* for all cases, excluding R=N.

For R=N under RI, the modifier subfield canbe written as N* or as * alone, accord-
ing to programmer preference.

When N* or just * is coded, the Assembler generates a machine word with 20g in
positions 30-35; 20 causes the Processor to add O to the address y of the word
containing the N* or * and then to access the indirect word at memory location y
of the N* or * word.

2. IR modification is coded as *R for all cases, including R=N.
For R=N under IR, the modifier subfield must be written as *N.

When *N is coded, the Assembler generates 60gin positions 30-35 of the associated
machine word; 60g causes the Processor to (1) retrieve the indirect word at location
y of the machine word, and (2) effectively safe-store zeros (for possible final index
modification of the last indirect word--to develop the effective address Y).

3. IT modification is coded using only a variation designator (I, ID, DI, SC, CI, AD,
SD, F, IDC, DIC); that is, the asterisk (*) is not written (for I). Thus, a written
IT address modification appears as ALPHA, DI; BETA, AD; etc.

For the variation I under IT, the Assembler generates a machine word with 51
in bit positions 30-35; 51 causes the Processor to perform one and only one
indirect word retrieved from memory location y (of the word with I specified)
to obtain the effective address Y. For example:

COMMENTS
VARIABLE FIELD MODIFICATION EFFECTIVE
LOCATION OPERATION (ADDRESS, TAG) TYPE ADDRESS
-- Z, 1 (T) Y=B

7 -- B, *5 *(R)

e Increment Address, Decrement TALLY (T) = ID Variation.The IDvariation under IT
modification provides the programmer with automatic (hardware) incrementing/decrementing
of an indirect word that is best used for processing tabular operands (data located at con-
secutive memory addresses). The indirect word always terminates the indirect chain.

In the ID variation the effective addressisthe address field of the indirect word obtained via
the tentative operand address of the instruction or preceding indirect word, whichever
specified the ID variation. Each time such a reference is made to the indirect word,
the address field of the indirect word is incremented by one; the tally portion of the indirect
word is decremented by one. The incrementing and decrementing are done after the
effective address is provided for the instruction operation. When the tally reaches zero, the
Tally Runout indicator is set.

CPB-~1004F

170

The example following shows the effect of 1D.

COMMENTS
VARIABLE FIELD MODIFICATION EFFECTIVE
LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE
-- Z, 1D (T) B 1
Z - B B+1 2
Assuming an initial tally of j, the tally runout indicator is B+n n+l

set on the jth reference.

e Decrement Address, Increment Tally (T) = DI Variation. The DI variation under IT
modification provides the programmer with automatic (hardware) incrementing/decrementing
of an indirect word that is best used for processing tabular operands (data located at con-
secutive memory addresses). The indirect word always terminates the indirect chain.

In the DI variation the effective address is the address field minus one of the indirect word
obtained via the tentative operand address of the instruction or preceding indirect word,
whichever one specified the DI variation. Each time a reference is made to the indirect
word, the address field of the indirect word is decremented by one; and the tally portion is
incremented by one. The incrementing and decrementing is done prior to providing the
effective address for the current instruction operation. -

The effect of DI when writing programs is shown in the example following.

COMMENTS
VARIABLE FIELD MODIFICATION EFFECTIVE
LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE
- Z, DI (T) B-1 1
Z -- B B-2 2
Assuming an initial tally of 4096-j the tally runout is B-n n

set on the jth reference.

e Sequence Character (T) = SC Variation. The Sequence Character (SC) variation is
provided for programmed operations involving 6-bit or 9-bit characters that are accessed
sequentially in memory. Processor instructions that exclude character operations are
indicated in the individual instruction description. For the SC variation, the effective
operand address is the address field of the indirect word obtained by the tentative operand
address of the instruction or preceding indirect word that specified the SC variation.

CPB~1004F
Rev. July 1969

171

Characters are operated on in sequence from left to right within the machine word. The
character position field of the Tally indirect word is used to specify the character to be
involved in the operation. This variation is intended for use only with those operations
that involve the A-and Q-registers, The tally - runout indicator is set when the tally field
of the indirect word reaches zero. The following is an example of the coding sequence for
the SC variation:

ADD1 LDA ADDR, SC
ADDR TALLY ADD,12,3 6-bit characters
or ADDR TALLYB ADD,12,3 9-bit characters
TTF ADD1

The effective address is ADD. The character in character position 3 is loaded into the A-
register in position 5 for 6-bit characters and position 3 for 9-bit characters.

The tally field of the indirect word is used to count the number of times a reference is
made to a character in the tally indirect word. Each time an SC reference is made to the
tally indirect word, the tally is decremented by one and the character position is in-
cremented by one to show the next character position, When C=5 (or 3 for 9-bit characters),
it is changed to zero and the address field of the tally indirect word is incremented by
one. All incrementing and decrementing is done after the effective address has been pro-
vided for the instruction execution.

e Character From Indirect (T) = CI Variation, The Character from Indirect (CI) variation
is provided for programmer operations on 6-bit or 9-bit characters in any situation where
repeated reference to a single character in memory is required,

For this variation substitution, the effective address is the address field of the CI indirect
word obtained via the tentative operand address of the instruction or preceding indirect word
that specified the CI variation. The character position field of the indirect word is used to
specify the character to be involved in the operation and is intended for use only with the
operations that involve the A~ or Q-register,

This variation is similar to the SC variation except that no incrementing or decrementing of
the address or character position is performed.

CPB-1004F
Rev. July 1969

172

A CI example is:

COMMENTS
VARIABLE FIELD MODIFICATION EFFECTIVE
LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE
-- Z, CI (T) Y=B

Z -- B

e Add Delta (T) = AD Variation. The Add Delta (AD) variation is provided for pro-
gramming situations where tabular data to be processedis stored at equally spaced locations,
such as data words, eachoccupying twoor more consecutive memory addresses. It functions
in a manner similar to the ID variation, but the incrementing (delta) of the address field
is selectable by the programmer.

Each time such a reference is made to the indirect word, the address field of the indirect
word is increased by delta and the tally portion of the indirect word is decremented by one.
The addition of delta and decrementing is done after the effective address is provided for
the instruction operation.

The example following shows the effect of AD.

COMMENTS
VARIABLE FIELD MODIFICATION EFFECTIVE
LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE
-- Z, AD (T) B 1
Z -- B (R) B+ 2
B+26 3
E—n [} n+1

Assuming an initial tally of j, the tally runout is set on the jth reference.

® Subtract Delta (T) = SD Variation. The Subtract Delta (SD) variation is useful in
processing tabular data in a manner similar to the AD variation except that the table can
eagily be scanned from back to front using a programmer specified increment, The
effective address from the indirect word is decreased by delta and the tally is increased
by one each time the indirect word is used, This applies to the first reference to the
indirect word, making the SD variation analogous to the DI variation,

e Fault (T) = F Variation, The fault variation enables the programmer to force program
transfers to Comprehensive Operating Supervisor routines or tohis own corrective routines
during the execution of an address modification sequence. (This will usually be an indication
of some abnormal condition against which the programmer wishes to protect himself. For
an explanation of how faults are handled in the GE-625/635, refer to the reference manual
on the Comprehensive Operating Supervisor.)

CPB~1004 F

173

® Increment Address, Decrement Tally and Continue (T) = IDC Variation. The IDC
variation under IT modification functions in a manner similar to the ID variation except
that, in addition to automatic incrementing/decrementing, it permits the programmer to
continue the indirect chain in obtaining the instruction operand. Where the ID variation is
useful for processing tabular data, the IDC variation permits processing of scattered
data by a table of indirect pointers. More specifically, the ID portion of this variation
gives the sequential stepping through a table; and the C portion (continuation) allows
indirection through the tabular items. The tabular items may be data pointers, subroutine
pointers or possibly a transfer vector.

The address and tally fields are used as described under the ID variation. The tag field uses
the set of GE-625/635 instruction address modification variations under the following
restrictions: No variation is permitted which requires an indexing modification in the IDC
cycle since the indexing adder is in use by the tally phase of the operation. Thus, permissible
variations are any form of I(T) or I(R); but if (R)I or (R) is used, R must equal N.

The effect of IDC is indicated in the following example:

COMMENTS
VARIABLE FIELD MODIFICATION EFFECTIVE
LOCATION OPERATION ADDRESS, TAG TYPE _ADDRESS REFERENCE
Effective Character
Address Position
- Z, IDC (T) B 1
Z -- B (R) B+l 2
Assuming an initial tally of j, the tally runout indicator B+n . n+1

is set on the jth reference.

e Decrement Address, Increment Tally, and Continue (T) = DIC Variation. The DIC
variation under IT modification works in much the same way as the DI variation except
that in addition to automatic decrementing/incrementing it allows the programmer to
continue the indirect chain in obtaining an instruction operand. The continuation function
of DIC operates in the same manner and under the same restrictions as IDC except that
(1) it increments in the reverse direction, and (2) decrementing/incrementing is done prior
to obtaining the effective address from the tally word. (Refer to the example under IDC;
work from the bottom of the table to the top.) DIC is especially useful in processing last-
in, first-out lists.

CPB-1004F

174

COMMENTS
VARIABLE FIELD MODIFICATION EFFECTIVE

LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE
- Z, DIC (T)
Z - B, *3 *(R) C+C(X3) 1
B-1 - C, QU (R) A+C(X38) 2
B-2 - M,5* (R)* Q+C(AR)0-17 3
B-3 -- D,*AU *(R)) .

(R)

iVl+C(X5)0_17 - A
D -- Q (R)

Assuming an initial tally of 4096-j, the tally runout
indicator is set on the jth reference.

PSEUDO-~-OPERATIONS

Pseudo-operations are so-called because of their similarity to machine operations in an
object program. In general, however, machine operations are produced by computer instruc-
tions and perform some task, or part of a task, directly concerned with solving the problem
at hand. Pseudo-operations workindirectly on the problem by performing machine condition-
ing functions, such as memory allocating, and by directing the Macro Assembler in the
preparation of machine coding. A pseudo-operation affecting the Assembler may generate
several, one, or no words in the object program.

All pseudo-operations for the Macro Assembler are grouped according to function and
described (in this chapter) as to composition and use. The pseudo-operation functional
groups and their uses are:

FUNCTIONAL GROUP PRINCIPAL USES

Control pseudo-operations Selection of printout options for the assembly
listing, direction of punchout of absolute/re-
locatable binary program decks, selection of
format for the absolute binary deck.

~ Location counter pseudo-operations Programmer control of single or multiple
instruction counters.

Symbol defining pseudo-operations Definition of Assembler source program
symbols by means other than appearance in the
location field of the coding form

Data generating pseudo-operations Production of binary data words for the assem-
: bly program.

Storage allocation pseudo-operations Provision of programmer control for the use of
memory.

CPB-~1004F

175

FUNCTIONAL GROUP PRINCIPAL USES

Special pseudo-operations Generation of zero operation code instructions,
of binary words divided into two 18-bit fields,
and of continued subfields for selected pseudo-
operations.

MACRO pseudo-operations Begin and end MACRO prototypes; Assembler
generation of MACRO-argument symbols; and
repeated substitution of arguments within
MACRO prototypes.

Conditional pseudo-operations Conditional assembly of variable numbers of
input words based upon the subfield entries of
these pseudo-operations.

Program linkage pseudo-operations Generation of standard system subroutine calling
sequences and return (exit) linkages.

Address, tally pseudo-operations Control of automatic address, tally, and charac-
ter incrementing/decrementing.

Repeat mode coding formats Control of the repeat mode of instruction ex-

ecution (coding of RPT, RPD, and RPL instruc-
tions).

The above pseudo-operation functional groups, together with their pseudo-operations, are
given as a complete listing with page references in Appendix D.

Control Pseudo-Operations

The On/Off switch type pseudo-operation

The subset of the control pseudo-operations consisting of those operations which may best
be described as switches (which current state may be ‘on’ or ‘off’) are comprised of the
following:

DETAIL, LIST, PCC, REF, PMC, INHIB, PUNCH, EDITP, CRSM

Provisions have been made to allow the user to treat these switches in a push-down pull-
up manner so that he may recall prior states of a switch and retrieve that state at some later
- point. The depth to which this may be accomplished is 35; a switch may therefore have a
current state plus 35 “remembered” states.

The mnemonic representing the push-down feature is SAVE; pull-up or retrieve prior is
designated by the mnemonic RESTORE. The mnemonic for turning the current state of a
switch on is ON; its counterpart is OFF. If a switch alteration is implied but not explicitly
given, its current state willbe alternated (i.e., if off, turn on); if alteration is not implied, its
current state will be unchanged (see example 4 on the following page).

CPB=1004F

176

The eight possible variable field representations are:

1. CRSM* ON (turn switch on)

2. CRSM* OFF (turn switch off)

3. CRSM* (alternate current status of switch)

4. CRSM* SAVE (push down--remember current state and leave
unchanged)

5. CRSM* SAVE, ON (push down, and set switch on)

6. CRSM* SAVE, OFF (push down, and set switch off)

7. CRSM* SAVE, (push down, and alternate current switch setting)

8. CRSM* RESTORE (pull up prior state of switch)

*CRSM is used for illustrative purposes only.

The Assembler has been preset with a ‘current’ state for each switch, and 35 remembered
states which are the same. Restorespastthis point will pull up an ON state for all switches.
The initial setting is given in the discussion of each of the pseudo-operations in question,
and corresponds to normal mode of operation.

DETAIL ON/OFF (Detail Output Listing)

12 8 16 32

| | ! i

|Blanks | DETAIL | ON | Normal mode
| |
| OFF |
|

I Blanks : DETAIL
] |

Some pseudo-operations generate no binary words; however, several of them generate more
than one. The generative pseudo-operations are; OCT, DEC, BCI, DUP, CALL, SAVE,
RETURN, ERLK, LIT, and VFD. The DETAIL pseudo-operation provides control over the
amount of listing detail generated by the generative pseudo-operations.

The use of the DETAIL OFF pseudo-operation causes the assembly listing to be abbreviated
by eliminating all but the first word generated by any of the above pseudo-operations. In the
case of the DUP pseudo-operation, only the first iteration will be listed. The DETAIL ON
pseudo-operation causes the Assembler to resume the listing which had been suspended by
a DETAIL OFF pseudo-operation.

" If at the end of the listing the Assembler is in the DETAIL OFF mode, the literal pool will
not be printed, but a notation will be made as to its presence.

If the Assembler is already ina specified ON/OFF mode, then the pseudo-operation request-
ing the same ON/OFF mode is ignored.

LIST ON/OFF (Control Output Listing)
12 8 16 32

ON Normal mode

— e — — —

CPB=~1004F

17

The use of LIST in the operation field with OFF in the variable field causes the normal
listing to change as follows: the instruction LIST OFF will appear in the listing; thereafter,
only instructions which are flagged in error will appear. If the assembly ends in the LIST
OFF mode, only the error messages will appear.

The use of LIST in the operation field with ON in the variable field causes the normal
listing, which was suspended by a LIST OFF pseudo-operation, to be resumed. If the
Assembler is already in a specified ON/OFF mode, then the pseudo-operation requesting
the same ON/OFF mode is ignored.

PCC ON/OFF (Print Control Cards)
8 16 32

|
Blanks | PCC OFF Normal Mode

|

|

|
|
I
I
I ! I

The PCC pseudo-operation affects the listing of the following pseudo-operations:

DETAIL LIST *TTL PMC
EJECT *TTLS PUNCH
*LBL REF CRSM IDRP
INE IFE IFG IFL

PCC ON causes the affected pseudo-operations to be printed. PCC OFF causes the affected
pseudo-operations to be suppressed; this is the normal mode at the beginning of the assembly.
If the Assembler is already ina specified ON/OFF mode, then the pseudo-operation request-
ing the same ON/OFF mode is ignored.

REF ON/OFF (References)
1 8 16 32

ON

]
Blanks REF Normal mode

The REF pseudo-operation controls the Assembler in making entries into the symbol
reference table and controls the listing of nonreferenced symbols. REF ON (the normal
mode) causes the Assembler to begin making entries into the symbol reference table.
REF OFF causes the Assembler to suppress making entries into the symbol reference
table. If the Assembler is already in a specified ON/OFF mode, another request for the
same mode is ignored.

" The entry LNRSM (list nonreferenced symbols) canalsobe used as a subfield of the variable
field, to cause listing of nonreferenced symbols whenthe Assembler is in the REF ON mode.
The variable field scan is terminated when either an ON, OFF or RESTORE subfield is en-
countered. Therefore, these entries should always be last when used in a series of subfields.

EXAMPLES: REF ON or the absence of a REF pseudo-operation causes a listing of only
referenced symbols and references to those symbols.

REF LNRSM,ON or REF LNRSM causes listing of all symbols and references.

REF OFF causes listing of all symbols, but no references. (REF LNRSM,
OFF has the same effect because the LNRSM entry is only effective when the
assembler is in the REF ON mode.)

* Not affected if alter number is three or less (1, 2, or 3).

CPB-~1004F

178

PMC ON/OFF (Print MACRO Expansion)

1 8 16 32
| I
Blanks | PMC | OFF : Normal mode

The PMC pseudo-operation causes the Assembler to list or suppress all instructions
generated by a MACRO call.

PMC ON causes the Assembler to print all generated instructions. PMC OFF causes the
Assembler to suppress all but the MACRO call.

If the Assembler is already ina specified ON/OFF mode, then the pseudo-operation request-
ing the same ON/OFF mode is ignored.

INHIB ON/OFF (Inhibit Interrupts)
1 8 16 32
Blanks | INHIB OFF

: Normal mode

|

|

| |

The instruction INHIB ON causes the Assembler to set the program interrupt inhibit bit
in bit position 28 of all machine instructions which follow the pseudo~operation. The setting

of the instruction interrupt inhibit bit continues for the remainder of the assembly, unless
the pseudo-operation INHIB OFF is encountered.

The INHIB OFF causes the Assembler to stop setting the inhibit bit in each instruction, if
used when the Assembler is in the INHIB ON mode.

If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation
requesting the same ON/OFF mode is ignored.

~ PUNCH ON/OFF (Control Card Output)
1 8 16 32

Blanks

PUNCH ON Normal mode

I
! .
| !
| |
| |
Subject to the DECK/NDECK option of the GMAPF call card, the normal mode of the Assemb-
ler is to punch binary cards for everything it assembles. If PUNCH is used in the operation

field with OFF in the variable field, the binary deck will not be punched, beginning at the
point the Assembler encounters the pseudo-operation.

CPB-1004F

179

These conventions hold true for both the output binary deck, and the load file counterpart,
in the case of assemble and execute activities.

If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation
requesting the same ON/OFF mode is ignored.

EDITP (Edit Print Lines)
1 8 16 32

EDITP Normal mode

This pseudo-operation has a special application. It is for the program which includes the
character ? (17) and/or ! (77) punched somewhere on a symbolic card. In normal operation
these characters have special meaning to the printer subsystem and may cause character
shifting, line suppression, slewing, or buffer overflow. As such, an EDITP ON instruction,
causes the output routine to issue printer commands which will treat these as non-special
characters. The Assembler will then remain in this mode until an EDITP OFF instruction
is encountered.

EJECT (Restore Qutput Listing)
1 8 16 32

Blanks : EJECT
|
|

: Column 16 must be blank
|
|

The EJECT pseudo-operation causes the Assembler to position the printer paper at the top
of the next page, to print the title(s), and then print the next line of output on the second line
below the title(s).

REM (Remarks)

1 8 16 32

]
| Remarks and comments in the variable
| field start at column 12 or later

Blanks { REM
or |
remarks |

The REM pseudo-operation causes the contents of this line of coding to be printed on the
assembly listing (just as the comments appear on the coding sheet). However, for purposes
of neatness, columns 8-10 are replaced by blanks before printing.

REM is provided for the convenience of the programmer; it has no other effect upon the
assembly.

CPB-~1004F

180

* (In Column One--Remarks)

1

8 16 32

*

Remarks and comments in columns 2-80

T T
. : i
' |

| | |
I [|

A card containing an asterisk (*) in column 1 is taken as a remark card. The contents of
columns 2-80 are printed on the assembly listing (just as they appear on the coding sheet);
the asterisk has no other effect on the assembly program.

LBL (Label)

1

8 16 32
1 |
Blanks | LBL | XY :X=null or up to 8 alphabetic and
I 1 Inumeric characters. Y=null or up
| | lto 42 alphabetic and numeric
| | characters.

LBL causes the Assembler to serialize the binary cards using columns 73-80, except when
punching full binary cards by use of the FUL pseudo-operation. The LBL pseudo-operation
allows the programmer to specify a left-justified alphabetic label for the identification
field and begin serialization with some initial serial number other than zero. The LBL
pseudo-operation also allows the programmer to specifyup to 42 characters of comments on
the $§ OBJECT card of the binary deck. The comment, if present, begins in column 16 of
the $ OBJECT card. The following conditions apply:

1

If the first sub-field is null, the Assembler discontinues serialization of the binary
deck.

If the first sub-field is not blank, serialization begins with the characters appearing
in the first sub-field; the characters are left-justified and filled in with terminating
zeros up to the position(s) used for the sequence number. Serialization is incre-
mented until the rightmost nonnumeric character is encountered, at which time the
sequence recycles to zero.

If no LBL pseudo-operation appears in the symbolic deck, the Assembler begins
serializing with 00000000.

If the second sub-field is blank, the Assembler inserts blanks in the variable field
of the § OBJECT card.

If the second sub-field is not blank, the characters in this sub-field are inserted on
the $ OBJECT card in column 16 through column 57.

CPB-~1004F

181

TTL (Title)

1 8 16 32
I
Blanks | TTL } | Title in the variable field
oran | I |
integer : |
| |

The TTL pseudo-operation causes the printing of a title at the top of each page of the
assembly listing. In addition, when the Assembler encounters a TTL card, it causes the
output listing to be restored to the top of the next page and the new title to be printed. The
information punched in columns 16-72 is interpreted as the title.

The title may be redefined by use of repeated TTL pseudo-operations as often as the
programmer desires. The title may be deleted by a TTL pseudo-operation with a blank
variable field. If a decimal integer appears in the location field, the page count is re~
numbered beginning with the specified integer.

TTLS (Subtitle)

1 8 16 32
Blanks l TTLS } : Subtitle in the variable field
or an I
integer [: :
| | |

The TTLS pseudo-operation is identical in function to the TTL pseudo-operation except that
it causes subtitling to occur. When a TTLS pseudo-operation is encountered, the subtitle
provided in columns 16-72 replaces the current subtitle; the output listing is restored to
the top of the next page. The title and new subtitle are then printed.

The maximum number of subtitles that may follow a title is one.

DATE (Current Date)
1 8 16 32

Blanks DATE Column 16 must be blank

-— ema em— —

The DATE pseudo-operation is used to enter the current date into a program. The 6-char-
acter current date in the form mmddyy is inserted into an assembled program at this point.

Example:
Location Contents Relocation
001021 000601050607 000 DATE

This example shows the results of a DATE pseudo-operation assembled on 6/15/67.

CPB-1004F

182

ABS (Output Absolute Text)
1 8 16 32

Blanks ABS Column 16 must be blank

—_——— o —— i

|

| |
| |
| |
! |

The ABS pseudo-operation causes the Assembler toproduce an output of absolute binary text.

The normal mode of the Assembler is relocatable; however, if absolute text is required for a
given assembly, the ABS pseudo-operation should appear in the deck before any instructions
or data. It may be preceded only by listing pseudo-operations. It may, however, appear
repeatedly in an assembly interspersed with the FUL pseudo-operation. It should be noted
that the pseudo-operations affecting relocation are considered errorsin an absolute assembly.

Pseudo-operations that will be in error if used in an absolute assembly are:

BLOCK SYMDEF
ERLK SYMREF

(Refer to the descriptions of binary punched card formats in this chapter for details of
the absolute binary text.)

FUL (OUTPUT Full Binary Text)
1 8 16 32

Blanks : FUL :
|
|

l Column 16 must be blank

The FUL pseudo-operation is used to specify absolute assembly and the FUL format for
absolute binary text.

The FUL pseudo-operation has the same effect and restrictions on the Assembler as ABS,
except for the format of the binary text output. The format of the text is of continuous
information with no address identification; thatis, the absolute binary cards are punched with
program instructions in columns 1-78 (28 words). Such cards can be used in self-loading
operations or other environments where control words are not required on the binary card.

TCD (Punch Transfer Card)

1 8 16 32
T | |
Blanks | TCD I | An expression in the variable field
or a i | |
symbol | I |
1 1

In an absolute assembly, the binary transfer card, produced at the end of the deck as a
result of the END card, directs the loading program to cease loading and turn control
over to the program at the point specified by the transfer card. Sometimes it is desirable
to cause a transfer card to be produced before encountering the end of the deck. This is the
purpose of the TCD pseudo-operation. Thus, a binary transfer card is produced generating
a transfer address equivalent to the value of the expression in the variable field.

TCD is an error in the relocatable mode.

CPB-1004F

183

HEAD (Heading)

1 8 16 32
Blanks HEAD

From 1 to 7 subfields in the variable field,
each containing a single, nonspecial char-
acter used as a heading character

— e - ——
— e — —]
- = — —

In programming, it is sometimes desirable to combine two programs, or sections of the
same program, that use the same symbols for different purposes. The HEAD pseudo-
operation makes such a combination possible by prefixing each symbol of five or fewer
characters with a heading character. This character must not be one of the special charac-
ters; that is, it must be one of the characters A-Z, 0-9, or the period(.). Using different
heading characters, in different program sections later to be combined for assembly,
removes any ambiguity as to the definition of a given symbol.

The effect of the HEADpseudo-operation is to cause every symbol of five or less characters,
appearing in either the locationfield or the variable field, to be prefixed by the current HEAD
character. The current HEAD character applies to all symbols appearing after the current
HEAD pseudo-operation and before the next HEAD or END pseudo-operation.

Deheading is accomplished by a zero or blanks in the variable field. To understand more
thoroughly the operation of the heading function, it is necessary to know that the Assembler
internally creates a six-character symbol by right-justifying the characters of the symbol
and filling in leading zeros. Thus, if the Assembler is within a headed program section
and encounters a symbol of five or fewer characters, it inserts the current HEAD character
into the high~order, leftmost character position of the symbol. Each symbol, with its
inserted HEAD character, then can be placed in the Assembler symbol table as unique
entries and assigned their respective location values.

It is also possible to head a program section with more than one character. This is done
by using the pseudo-operation HEAD in the operation field with from two to seven heading
characters in the variable field, separated by commas. The effect of a multiple heading
is to define each symbol of that sectiononce for each heading character. Thus, for example,
if the symbols SHEAR, SPEED, and PRESS are headed by

HEAD X, Y,z
nine unique symbols
XSHEAR XSPEED XPRESS
YSHEAR YSPEED YPRESS
ZSHEAR ZSPEED ZPRESS

are generated and placed in the Assembler symbol table. This allows regions by HEADX,
HEADY, or HEADZ to obtain identical values for the symbols SHEAR, SPEED, and PRESS.

Cross-referencing among differently headed sections may be accomplished by the use of
six-character symbols or by the use of the dollar sign ($). Six character symbols are
immune to HEAD; therefore, they provide a convenient method of cross-referencing among
differently headed regions.

CPB~1004F

184

When a symbol within a headed section is also to be a SYMDEF symbol, it must be a six-
character symbol (immune to HEAD).

To allow the programmer more flexibility to cross-referencing, the Assembler language
includes the use of the dollar sign ($) to denote references to an alien-headed region.

If the programmer wishes to reference a symbol of less than six characters in another
program section, he merely prefixes the symbol by the HEAD character for that respective
section, separating the HEAD character from the body of the symbol by a dollar sign ($).

To reference from a headed region into a region that is not headed (zero heading), the
programmer can use either the heading character zero and the dollar sign (0$) preceding
the symbol; or, if the symbol is the initial value of the variable field, then the appearance
of only the leading dollar sign will cause the zero heading to be attached to the symbol.

EXAMPLE OF HEAD PSEUDO-OPERATION

START LDA A Initial instruction (no heading)
TRA B$SUM Transfer to new headed section
A BSS 1
HEAD B
SUM LDA $A
——— Section headed B
TRA 08START + 2
END

The LDA $A could have been written as LDA 0$A, as they both mean the same.

DCARD (Punch BCD Card)
1 8 16 32

T
Blanks

I

:DCARD | NN M ITwo subfields in the variable field

| | I

| | |

| | |

The first subfield contains a decimal integer N (limited only by the size of available
memory), and the second subfield (M) contains a single BCD character used as a decimal
data identifier. The Assembler punches the next N cards after the DCARD instruction

with the specified BCD identifier in column one of each of these N cards and with the BCD
information taken from the corresponding source cards on a one-for-one basis.

There are no restrictions on the BCD information that can be placed in columns 2-72 of
the source cards. (One of the significantuses of DCARD is to generate Operating Supervisor
(GECOS) $ control cards.)

The DCARD has the further effect of suppressing the normal automatic generation of a
$ OBJECT and $ DKEND card.

CPB~1004F

185

END (End of Assembly)

1 8 16 32

'Blanks or an expression in the
Ivariable field

Blanks : END
or a |
symbol |

The END pseudo-operation signals the Assembler thatithas reached the end of the symbolic
input deck; it must be present as the last physical card encountered by the Assembler.

If a symbol appears in the location field, it is assigned the next available location.

In a relocatable assembly, the variable field must be blank; in an absolute assembly, the
variable may contain an expression. In relocatable decks, the starting location of the pro-
gram will be an entry location and the location specified is given to the General Loader
(GELOAD) by a special control card used with the GELOAD. (Refer to the GELOAD
manual.) Absolute programs require a binary transfer card which is generated by the
END pseudo-operation. The Transfer address is obtained from the expression in the
variable field of the END card.

OPD (Operation Definition)

1 8 16 32
New 'OPD I lOne or more subfields, separated by commas,
oper- | I lin the variable field. The subfields define
ation | Ithe bit configuration of the new operation
code | : lcode
|

The OPD pseudo-operation may be used to define or redefine machine instructions to the
Assembler. This allows programmers to add operation codes to the Assembler table of
operation codes during the assembly process. This is extremely useful and powerful in
defining new instructions or special bit configurations, unique in a particular program, to

- the Assembler.

The variable field subfields are bit-oriented and have the same general form as described

under the VFD pseudo-operation. In addition, the variable field, considered in its entirety,

requires the use of either of two specific 36-bit formats for defining the operation.
1. The normal instruction format

2. The input/output operation format

CPB~1004F

186

The normal instruction-defining format and subfields are shown below:

op 1 {0 | mq| mg| mg| my) ms|mgfaq|ayjag|ay agas |y PP

0 11 12 17 18 26 30 31 32 33 34 35

op--new operation code (bits 18 through 29 of instruction)
m--modifier tag type (0O=allowed; 1=not allowed)

my: register modification (R)

mg: indirect addressing (*)

mg: indirect and tally (T)

my: Direct Upper (DU)

mg: Direct Lower (DL)

mg: Sequence Character (SC) and Character from Indirect (CI)
instruction(s) in a repeat loop

a--ac}dress field conditions (0=not required; l=required)

ay: address required/not required

ag: address required even

ag: address required absolute

ay: symbolic index required

ap: 2-octal digit tag field required

ag: address required mod 8

p--octal assembly listing format (x represents one octal digit)

00: XX XXKX XXXKXXX

0l: XXXXXXXXXXXX

10: XXXXXX XXXXXX

11: XXXXXX XXXX XX

The assembly listing types 00, 01, 10, and 11 are used for input/output commands, data-
generating pseudo-operations (OCT, DEC, BCI, etc.), special word-generating pseudo-
operations (such as ZERO), and machine instructions.

To illustrate the use of OPD, assume one wished to define the current machine instruction,
Load A (LDA). Using the preceding format and the octal notation (as described under the
VFD pseudo-operation), one could code OPD as

LDA OPD 012/2350, 6/,02/2,6/,03/4,5/,02/3
or LDA OPD 018/235000,02/2,6/,03/4,5/,02/3
LDA OPD 036,/235000401003

or in other forms, providing the bit positions of the instruction-defining format are
individually specified to the Assembler.

- The input/output operation defining format and subfields for types 00, 01, and 10 are as follows:

op op
(bit positions 18-35) 1 (bits 0-5) a |a, |ag i plp

=

0 17 18 19 20 25 26 27 28 29 30 31 33 34 35

The input/output operation-defining format and subfields for type 11 are as follows:
. 7
zeros op /

111 ay |as jas i Pl P

0 = = = = = = = = = o =@« = e a o 0 (bits 18-23) /

17 18 19 20 25 26 27 28 31 33 34 35

CPB-1004F

187

op--new operation code for bit positions 18-35 and 0-5 (or bit positions 18~23 for type

11), see Appendix E

a--address field conditions (0=not required; l1=required)
aq: address required/not required
ag: address required even
ag: address required absolute

i--type of input/output command (see Appendix E, /O Command Formats)
00: OP da,ca kkdacakkkkkk
01: OP nn,da,ca kkdacakkkknn
10: OP cc,da,ca kkdacakkcckk
11: OP a,c aaaaaakkccce

p--see preceding normal instruction format

Input/output operation types 00, 01, and 10 are the formats for the commands; type 11 is
the format for a Data Control Word (DCW).

As an example of the use of OPD to generate an input/output command (using the above
format for the variable field and defining the bits according to the rules for VFD), assume
one wanted to generate the extant command, Write Tape Binary (WTB--Appendix E). This
could be written as

WTB OPD 18/,02/3,06/15,10/0

or in various other bit-oriented forms.

OPSYN (Operation Synonym)

1 8 16 32
A sym- =OPSYN : 'A mnemonic operation code in the
bol or I [lvariable field.
opera- I [
tion !
| | |
code

The OPSYN pseudo-operation is used for equating either a newly defined symbol or a
presently defined operation to some operation code already in the operation table of the
Assembler. The operation code may have been defined by a prior OPD or OPSYN pseudo-
operation; in any case, it must be in the Assembler operation table. The new symbol to
be defined is entered in the location field and the operation code that must be in the
Assembler operation table is entered in the variable field. The new symbol must be
defined (and so entered into the operation table) by the OPSYN pseudo-operation code before
- it is used as an operation code,

REFMA ON/OFF (Reference Macros)

1 2 8 16 32
] 1

T
1 |

| Blanks IREFMA | OFF ! Normal Mode
| |

The use of the REFMA ON psuedo-operation causes the Assembler to create a separate
symbol reference table for MACRO’s. Each entry of this table consists of a MACRO
name and the alter number(s) at which the name is referenced. If a MACRO is present
but not referenced, it will not appear in the table.

CPB-1004F
Rev. July 1969

188

For a MACRO to be referenced, REFMA ONmust be specified prior to defining the MACRO.,
However, since the GMAP MACRO’s are loaded automatically by the Assembler before this
pseudo-operation appears, the LODM pseudo-operation must be used to load these MACRO’s

again if it is required to reference them, REFMA OF¥ causes the Assembler to stop refer-
encing MACRO’s.

Examples
1. To reference GECOS System MACROS:

REFMA ON
LODM .G3MAC

All MACRO’s under the name .G3MAC will be referenced until REFMA OFF is
encountered.
2. To reference GMAP System MACROS:

REFMA ‘ON
LODM .JMAC

All MACRO’s under the name .JMAC (GMAP MACRO’s) will be referenced until
REFMA OFF is encountered.

3. To reference program MACROS:

REFMA ON
SPLL. MACRO

#1 1,DU
STA 43
LDQ 0,DU
ENDM

The symbolic name of the macro (in the location field of the MACRO identification) must
be unique for the program in which the REFMA pseudo-operation is used. The use of this
name in the location field at any other instruction, pseudo-operation, or macro-operation
will result in a multidefined symbol error.

Location Counter Pseudo-Operations

USE (Use Multiple Location Counters)
1 8 16 32

T
Blanks | USE

|

1
The Assembler provides the ability to employ multiple location counters via the USE pseudo-
operation. The use of this pseudo-operation causes the Assembler to place succeeding
instructions under control of the location counter represented by the symbol in the variable

1
1A single symbol, blanks, or the word
| PREVIOUS in the variable field

CPB-1004F
Rev. July 1969
188.1

field. Each location counter begins with the value of zero, and its size is determined as
being the highest value assumed by it (that is, occupied by some instruction assembled
under it). This is not always the last instruction under the USE, as an ORG may have
occurred within it. At the completion of the first pass through the symbolic program, the
length of each USE will be a known value, and the order of their memory allocation will be
implied by the order of their first presentation to the Assembler. Thus, the origin of each
location counter may be computed basedon the origin and size of the one preceding it. There
is an assumed location counter, called the blank USE, implied in all assemblies, which has
a natural origin of zero.

Automatic determination of a counter origin may be overridden with the BEGIN pseudo-
operation. In this case, the chain of location counters will be made, completely ignoring
those counters which had an associated BEGIN. In more general terms, then, the origin
of a non-begin location counter is taken as one more than the highest value taken by the
next prior non-begin counter. The first of these non-begin counters has an origin of zero,
by definition. The location counter which is in control at the time that a USE is encountered
is suspended at its current value and is preserved as the PREVIOUS counter. It may be
called back into operation at any later point in the program without confusion as to its
current state, and will begin counting at the address which is one higher than the last
location used under it.

If the word PREVIOUS appears in the variable field, the Assembler reactivates the location
counter which appeared just before the present one. It is not possible to go back more than
one level via the USE PRKEVIOUS command, as the one in control when the USE PREVIOUS
is encountered is made previous.

BEGIN (Origin of a Location Counter)
1 8 16 32

Blanks BEGIN

Two subfields in the variable field

e | '
I] :
| | |
I | I

The BEGIN pseudo-operation is used to arbitarily specify the origin of a given location
counter. As such, it will not be tied into the chain of location counters as described in
USE. Its origin, however, may be an expression involving some symbol or symbols defined
under another location counter, in which case it will be linked to the chain at the specified
point. The user must beware of overlaying code with this pseudo-operation. It is primarily
intended for the more sophisticated user. Under normal programming circumstances its
power is not needed.

The location counter symbol is specified in the first subfield and is given the value specified
by the expression found in the second subfield. Any symbol appearing in the second subfield
must have been previously defined and must appear under one location counter, The BEGIN
pseudo-operation may appear anywhere in the deck. It does not invoke the counter, however.
A USE must be given to bring a location counter into effect.

CPB-~1004F

189

ORG (Origin Set by Programmer)

1 8 16 32
Blanks : ORG : : An expression in the variable field
g;na:bol : : :
| |

The ORG pseudo-operation is used by the programmer to change the next value of a counter,
normally assigned by the Assembler, to a desired value. If ORG is not used by the pro-
grammer, the counter is initially set to zero.

All symbols appearing in the variable field must have been previously defined. If a symbol
appears in the location field, it is assigned the value of the variable field. If the result of
the evaluation of a variable field expression is absolute, the instruction counter will be
reset to the specified value relative to the current location counter. If an expression result
is relocatable, the current location counter will be suspended, and the counter to which
the expression is relocated will be invoked with the value given by the expression.

LOC (Location of Qutput Text)
1 8 16 32

T
Blanks LOoC | An expression in the variable field

I
I I

| ! I

The LOC pseudo-operation functions identically to the ORG pseudo-operation, with one
exception; it has no effect on the loading address when the Assembler is punching binary
text. That is, the value of the location counter will be changed to that given by the variable
field expression, but the loading will continue to be consecutive. This provides a means of
assembling code in one area of memory while its execution will occur at some other area
of memory.

— — e

All symbols appearing in the variable field of this pseudo-operation must have been pre-
viously defined.

The sole purpose of this pseudo-operation is to allow program coding to be loaded in one
section of memory and then to be subsequently moved to another section for execution.

Symbol-Defining Pseudo-Operations

Increased facility in program writing frequently can be realized by the ability to define
symbols to the Assembler by means other than their appearance in the location field of an
instruction or by using a generative pseudo-operation. Such a symbol definition capability
is used for (1) equating symbols, or (2) defining parameters used frequently by the program
but which are subject to change. The symbol-defining pseudo-operations serve these and
other purposes.

It should be noted that they do not generate any machine instructions or data but are available
merely for the convenience of the programmer.

CPB-1004F

190

EQU (Equal To)
1 8 16 32

|) !
Symbol I EQU I I An expression in the variable field

| | I
I I |

I | I
The purpose of the EQU pseudo-operation is to define the symbol in the location field to
have the value of the expression appearing in the variable field. The symbol in the location
field will assume the same mode as that of the expression in the variable field, that is,
absolute or relocatable. (See Relocatable and Absolute Expressions.)

All symbols appearing in the variable field must have been previously defined and must fall
under the same location counter. SYMDEF or SYMREF symbols cannot appear in the
variable field.

If the asterisk (*) appears in the variable field denoting the current location counter value,
it will be given the value of the next sequential location not yet assigned by the Assembler
with respect to the unique location counter presently in effect.

FEQU (Special FORTRAN Equivalence)
1 8 16 32

|
A symbol in the variable field

Symbol : FEQU !
|
|
[

The purpose of the FEQU pseudo-operation is to equate the symbol in the location field with
the symbol inthe variable field, the latter of which is as yet undefined. It was initially imple~
mented to allow the FORTRAN IV compiler of the GE-600 Series software to generate more
efficient code in certain cases where the value of a certain symbol was not immediately
known. It was known that it would be defined before the compilation was complete, and as
such, offers one advantage over the EQUpseudo-operations though it does carry restrictions
as well.

The most stringent restriction is that the variable field may not contain an expression.
Secondly, the symbol in the variable field may not subsequently appear in either field of
another FEQU pseudo-operation. A third restriction is that if HEAD characters are in
effect, both symbols (or neither symbol) must be able to be headed.

As implemented, both symbols are essentially held in abeyance until the variable field
symbol is defined. At that point, both symbols take on the same value and characteristics,
and are available for normal functions.

It should be noted that the symbol in the variable field does not have to be undefined. Nor
does it have to be a symbol. It could be a number, or the current location counter value
symbol (*). However, in these cases FEQU acts just as EQU, and the location symbol will
be immediately defined with the indicated value.

CPB~1004F

191

BOOL (Boolean)

1 8 16 32

Symbol | BOOL

A Boolean expression in the variable field

The BOOL pseudo-operation defines a constant of 18 bits and is similar to EQU except
that the evaluation of the expression in the variable field is done assuming Boolean operators.
By definition, all integral values are assumed in octal and are considered to be in error
otherwise. The symbolin the location field will always be absolute, and the presence of any
expression other than an absolute one in the variable field will be considered an error.
(See Relocatable and Absolute Expressions.)

All symbols appearing in the variable field must have been previously defined.

SET (Symbol Redefinition)

1 8 16 32
1

e | |
I 1 :
l |
! |

An expression in the variable field

The SET pseudo-operation permits the redefinition of a symbol previously defined to the
Assembler. This ability is useful in Macro expansions where it may be undesirable to use
created symbols (CRSM).

All symbols entered in the variable field must have been previously defined and must fall
under the same location counter. SYMDEF or SYMREF symbols cannot be used in the
variable field.

The symbol in the location field is given the value of the expression in the variable field.
The SET pseudo-operation may not be used to define or redefine a relocatable symbol.
(See Relocatable and Absolute Expressions.)

When the symbol occurring in the location field has been previously defined by a means
other than a previous SET, the current SET pseudo-operation will be ignored and flagged
as an error.

The last value assigned to a symbol by SET affects only subsequent in-line coding instruc-
tions using the redefined symbol.

CPB~1004F

192

MIN (Minimum)

1 8 16 32

T
MIN | A sequence of expre ssions, separated by
commas, in the variable field -- all of the

' same type; that is, relocatable or absolute

Symbol

The MIN pseudo-operation defines the symbol in the location field as having the minimum
value among the various values of all relocatable or all absolute expressions contained in
the variable field.

All symbols appearing in the variable field must have been previously defined and must

fall under the same location counter. SYMDEF or SYMREF symbols cannot be used in the
variable field.

MAX (Maximum)

The MAX pseudo-operation is coded in the same format as MIN above. It defines the symbol
in the location field as having the maximum value of the various expressions contained in
the variable field.

All symbols appearing in the variable field must have been previously defined and must
fall under the same location counter. SYMDEF or SYMREF symbols cannot be used in the
variable field.

SYMDEF (Symbol Definition)
1 8 16 32

| |
Blanks { SYMDEF I ! Symbols separated by commas in the
| I I variable field
|
1

The SYMDEF pseudo-operation is used to identify symbols which appear in the location
field of a subprogram when these symbols are referred to from outside the subprogram (by
SYMREF), Also, the programmer must provide a unique SYMDEF for use by the Loader to
denote each subprogram entry point for the loading operations. The symbols used in the
variable field of a SYMDEF instruction will be called SYMDEF symbols, Multiple defined
SYMDEF symbols cannot occur since the Assembler ignores the current definition if it
finds the same symbol previously entered in the SYMDEF table,

The appearance of a symbol in the variable field of a SYMDEF instruction indicates that:

1. The symbol must appear in the location field of only one of the instructions within
the subroutine in which SYMDEF occurs.

2. The Assembler will place each such SYMDEF symbol along with its relative
address in the preface card.

3. At load time, the Loader will form a table of SYMDEF symbols to be used for
linkage with SYMREF symbols.

CPB~1004F

193

It is possible to classify SYMDEF symbols asprimary and secondary. A secondary SYMDEF
symbol is denoted by a minus sign in front of the symbol. The Loader will provide linkage
for a secondary SYMDEF symbol only after linkage has been required to a primary SYMDEF
within the same subprogram. The use of secondary SYMDEF symbols is intended for pro-
grammers who are specifically concerned with using the system subroutine library and
generating routines for accessing the library. Secondary SYMDEF symbols are normally
thought of as secondary entries to subroutines contained within a subprogram library package
that will be used as an entire package. (The use of primary and secondary SYMDEF symbols
is further described in the General Loader--GELOAD--manual.)

SYMREF (Symbol Reference)

1 8 16 32
l | |
Blanks | SYMREF | | A sequence of symbols separated by commas
|
!

| | entered in the variable field
I [
| | |
The SYMREF pseudo-operation is used to denote symbols which are used in the variable
field of a subprogram but are definedin a location field external to the subprogram. Symbols
used in the variable field of a SYMREF instruction will be called SYMREF symbols,

When a symbol appears in the variable field of a SYMREF instruction, the following items
apply:

1. The symbol should occur in the variable field of at least one instruction within the
subroutine.

2. At assembly time the Assembler will enter the SYMREF symbol in the preface card
of the assembled deck and place a special entry number (page 230) in the variable
fields of all instructions in the referenced subroutine which contain the symbol.

3. At load time the Loader will associate the SYMREF symbol with a corresponding

SYMDEF symbol and place the appropriate addressin all instructions that have been
given the special entry number.

Symbols appearing in the variablefieldof a SYMDEF instruction must not appear in the loca-
tion field of any instruction within the subroutine in which SYMREF is used.

EXAMPLE OF SYMDEF AND SYMREF PSEUDO-OPERATIONS

Base Program or Subprogram Referencing Subprogram

SYMDEF ATAN,ATAN2 SYMREF ATAN,ATAN2
ATAN2 STC2 INDIC :
ATANS SAVE 0,1

SZN INDIC :

TZE START POLYX FLD X
ATAN STZ INDIC TSX1 ATAN

TRA ATANS :

TSX1 ATAN2

CPB-~1004F

194

NULL (Null)

1 8 16 32

I
{ The variable field is not interpreted.

Symbol : NULL

|
|
|

The NULL pseudo-operation acts as an NOP machine instruction to the Assembler in that
no actual words are assembled. A symbol on a NULL will be defined as current value of
the location counter.

EVEN (Force Location Counter Even)

1 8 16 32
T 1 |
Symbol : EVEN I ; The variable field is not interpreted
or i
blanks | I |
I I |

The EVEN pseudo-operation accomplishes the same end result as the E in column 7.
If the location counter is odd, a NOP is generated, thereby making it even. If there is a
Symbol in the location field it will be defined at the even address.

ODD (Force Location Counter Odd)

1 8 16 32
Symbol : ODD : : The variable field is not interpreted
gfanks ' ‘ } |
| !

The ODD pseudo-operation acts as if an O has been punched in column 7. If the location
counter is even, a NOP is generated, thereby making it odd. If there is a symbol in the
location field it will be defined at the odd address.

CPB-1004F

195

EIGHT (Force Location Counter to a Multiple of 8)

1 8 16 32
Symbol : EIGHT : : The variable field is not interpreted
(t))fanks : : I
! |

The EIGHT pseudo-operation behaves as an 8 punched in column 7. If the location counter
is not a multiple of 8, a TRA *in is generated, where the value of *+n is the next location
which is a multiple of 8, and the location counter is bumped by n. If there is a symbol in
the location field it will be defined at the mod-8 address.

NOTE: In each of the 3 pseudo-operations, (EVEN, ODD, and EIGHT) the origin of the
location counter will also be forced to a related address. For EVEN and ODD, it will be
forced even, and for EIGHT, it will be forced to a multiple of eight.

Data Generating Pseudo-Operations

The Assembler language provides six pseudo-operations which can be used to generate
data in the program at the time of assembly. These are BCI, OCT, DEC, ASCII, UASCI
and VFD. The first five, BCI, OCT, ASCII, UASCI and DEC, are word-oriented while VFD
is bit-oriented. There exists a fifth pseudo-operation, DUP, which in itself does not generate
data, but through its repeat capability causes symbolic instruction and pseudo-operations
to be iterated.

OCT (Octal)

1 16 32

8
|

Symbol | OCT One or more subfields separated by

or | commas appearing in the variable field,
| each one containing a signed or unsigned
l

I octal integer.

blanks

The OCT pseudo-operation is used to introduce data in octal integer notation into an
assembled program. The OCT pseudo-operation causes the Assembler to generate n
locations of OCT data where the variable field contains n subfields (n-1 commas). Con-
secutive commas in the variable field cause the generation of a zero data word, as does a
comma followed by a terminal blank. Up to 12 octal digits plus the leading sign may make
up the octal number.

The OCT configuration is considered true and willnot be complemented on negatively signed
numbers. The sign applies onlytobit0. All assembly program numbers are right-justified,
retaining the integer form.

CPB-~1004F
Rev. July 1969
196

EXAMPLE OF OCT PSEUDO-OPERATION

ocT 1,-4,7701,+3,,-77731,04

If the current location counter were set at 506, the above would be printed out as follows
(less the column headings):

Location Contents Relocation

000506 000000000001 000 OCT 1,-4,7701,+3,,-77731,04
000507 400000000004 000

000510 000000007701 000

000511 000000000003 000

000512 000000000000 000

000513 400000077731 000

000514 000000000004 000

DEC (Decimal)

1 8 16 32
| I
Symbol | DEC | : One or more subfields in the variable
or | | I field, separated by commas, each
blanks | | I ontaining a decimal entry.
| |

The Assembler language provides four types of decimal information which the programmer
may specify for conversion to binary data to be assembled. The various types are uniquely
defined by the syntax of the individual subfields of the DEC pseudo-operation. The basic types
are single-precision, fixed-point numbers; single-precision, floating-point numbers; double-
precision fixed point number. All fixed-point numbers are right-justified in the assembly
binary words; floating-point numbers are left-justified to bit position eight with the binary
point between positions 0 and 1 of the mantissa. (The rules for forming these numbers
are described under Decimal Literals, page 160.)

EXAMPLES OF SINGLE-PRECISION DEC PSEUDO-OPERA TION

GAMMA DEC 3,-1,6.,.2E1,1B27,1.2E1B32,-4

The above would print out the following data words (without column headings), assuming
that GAMMA is located at 1041.

Location Contents Relocation
001041 000000000003 000 GAMMA DEC 3, -1, 6., .2E1, 1B27,
1.2E1B32, -4

001042 TN 000

001043 006600000000 000

001044 004400000000 000

001045 000000000400 000

001046 000000000140 000

001047 T7ITNNN74 000

CPB-1004F

197

The presence of the decimal point and/or the E scale factor implies floating-point, while the
added B (binary scale) implies fixed-point binary numbers. The absence of all of these ele-
ments implies integers. Several more examples follow (see decimal literals for further
explanation):

DEC -1B17,-1.,1000

With the location counter at 1050, the above would generate:

Location Contents Relocation

001050 777777000000 000 DEC -1B17,-1.,1000
001051 001000000000 000

001052 000000001750 000

EXAMPLE OF DOUBLE-PRECISION DEC PSEUDO-OPERATION

BETA DEC .3D0,0.D0,1.2D1B68,1D-1

The location counter is at the address BETA (1060); the above subfields generate the follow-
ing double words:

Location Contents Relocation

001060 776463146314 000 BETA DEC .3D0,0.DO0,
1.2D1B68,1D-1

001061 631463146314 000

001062 400000000000 000

001063 000000000000 000

001064 000000000000 000

001065 000000000140 000

001066 772631463146 000

001067 314631463146 000

BCI (Binary Coded Decimal Information)

1 8 16 32
Symbol { BCI : : Two subfields in the variable field: a
or I I | count subfield and a data subfield
blanks I I
| 1

The BCI pseudo-operation is used by the programmer to enter binary-coded decimal (BCD)
character information into a program.

The first subfield is numeric and contains a count that determines the length of the data
subfield. The count specifies the number of 6-character machine words to be generated; thus,
if the count field contains n, the data subfield contains 6n characters of data. The maximum
value which n can be is 9. The minimum value for n is 1,

The second subfield contains the BCD characters, six per machine word.

CPB-1004F

198

EXAMPLE OF BCI PSEUDO-OPERATION

BETA BCI 3,NO ERROR CONDITION

Again assume the location counter set at 506 (location of BETA); the above would print
out (less column headings):

Location Contents Relocation

000506 454620255151 000 BETA BCI 3,NO ERROR
CONDITION

000507 465120234645 000

000510 243163314645 000

ASCII, UASCI (ASCII Coded Information)

1 8 16 32
. } ' '
Symbol | ASCII } : Two subfields in the variable field: a
or : or i) count subfield and a data subfield.
Blanks) UASCI : :
!

The ASCII and UASCI pseudo-operations are used by the programmer to enter lower case
(ASCII pseudo-operation) and upper case ASCII character information into a program,

Appendix F contains the standard GE-625/635 conversion character set and the code gen-
erated by these pseudo-operations.

The first subfield is numeric and contains a count that determines the length of the data
subfield. This count specifies the number of 4-character machine words to be generated.
If the count is n, the data field contains 4 n characters, The maximum value for n is 14
and the minimum is 1,

The second subfield contains the ASCII characters, four per machine word,

EXAMPLE OF ASCII PSEUDO-OPERATION

BETA ASCII 2, NO ERROR

Again assume the location counter set at 506 (location of BETA); the above would print out
(less column headlings):

Location Contents Relocation
000506 156157040145 000 BETA ASCII 2,
000507 162162157162 000 NO ERROR

CPB-1004 F
Rev. October 1968

199

VFD (Variable Field Definition)

1 8 16 32
I .
Symbol | VFD : : One or more subfields in the variable
or] | | field separated by commas.
blanks | I |
| |

The VFD pseudo-operation is used for generation of data where it is essential to define the
data word in terms of individual bits. It is used to specify by bit count certain information
to be packed into words.

In considering the definition of a subfield, it is understood that the unit of information is a
single bit (in contrast with the unit of information in the BCI pseudo-operation which is
six bits). FEach VFD subfield is one of three types: an algebraic expression, a Boolean
expression, or alphanumeric (H or R). Each subfield contains a conversion type indicator
and a bit count, the maximum value of which is 36. The bit count is an unsigned integer
which defines the length of the subfield; it is separated from the data subfield by a slash
(/). If the bit count is immediately preceded by an O or H, the variable-length data subfield
is either Boolean or alphanumeric, respectively. In the absence of both the type indicators,
O and H, the data subfield is an algebraic field. A Boolean subfield contains an expression
that is evaluated using the Boolean operators (*,/,4,-).

R is an alphanumeric indicator which specifies right adjustment of the argument. Unused
bit positions are zero filled, R can be used only in a VFD pseudo operation.

The data subfield is evaluated according to its form: algebraic, Boolean, or alphanumeric.
A 36-bit field results. The low-order n bits of the algebraic or Boolean expression deter-
mine the resuitant field value; whereas for the alphanumeric subfield the high-order n
bits are used for H, and low-order n bits are used for R.

If the required subfields cannot be contained on one card, they must be continued by the use
of the ETC pseudo-operation. This is done by terminating the variable field of the VFD
pseudo-operation with a comma. The next subfield is then given as the beginning expression
in the variable field of an ETC card. If necessary, subsequent subfields may be continued
onto following ETC cards in the same manner. Except for the H type alphanumeric, the
scanning of the variable field is terminated upon encountering the first blank character.

199.1 CPB-1004 F
Rev. July 1969

The VFD may generate more than one machine word; if the sum of the bit counts is not a
multiple of a discrete machine word, the last partial string of bits will be left-justified and
the word completed with zeros.

EXAMPLES OF VFD PSEUDO-OPERATION

Assume one would like to have the address ALPHA packed in the first 18 bits of a word,
decimal 3 in the next 6 bits, the literal letter B in the next 6 bits, and an octal 77 in the
last 6 bits. One could easily define it as follows:

VFD 18/ALPHA,6/3,H6/B,06/77

With the location counter at 1053 and the location 731g assigned for ALPHA, this would
print out (without column headings):

Location Contents Relocation
001053 000731032277 000 VFD 18/ALPHA,6/3,H6/B,06/77

NOTE: Relocation digits 000 refer to binary code data for A, BC, and DE of the relocation
scheme. (Page 229.)

If ALPHA had been a program relocatable element, the relocation bits would have been
010; that is, the relocation scheme would have specified the left half of the word as contain-
ing a relocatable address. The relocation is only assigned if the programmer specifies
a field width of 18 bits and has it left- or right-justified; 1n all other cases the fields are
considered absolute. The total number of bits under a VFD need not be a multiple of full
words nor is the total field (sum of all subfields) restricted to one word. The total field
width, however, for a single subfield is 36 bits.

Consider a program situation where one wishes to generate a three-word identifier for a
table. Assume n is the word length of the table and is equal to 12. You wish to place twice
the length of the table in the first 12 bits, the name of the table in the next 60 bits, the
location of the table (where TABLE is a program relocatable symbol equal to 23518) in the
next 18 bits, zero in the next 8 bits, and -1 in the next 6 bits~--all in a three-word key.

With the location counter at 1054.
VFD 12/2*12,H36/PRESSU,H24/RE, 18/ TABLE,8/,6/-1

will generate

Location Contents Relocation

001054 003047512562 000 VFD 12/2*12,H36/PRESSU,H24
/RE,18/ TABLE, 8/, 6/~1

001055 626451252020 000

001056 002351001760 010

where 010 specifies the relocatability of TABLE.

CPB~1004F

200

DUP (Duplicate Cards)

1 8 16 32
Symbol : DUP : : Two subfields in the variable field,
or 1 1 I separated by a comma
blanks | | |
I |]

The DUP pseudo-operation provides the programmer with an easy means of generating
tables and/or data. It causes the Assembler to duplicate a sequence (range) of instructions
or pseudo-operations a specified number of times.

The first subfield in the variable fieldis an absolute expression which defines the count. The
value of the count field specifies the number of cards, following the DUP pseudo-operation,
that are included in the group to be duplicated. The value in the count field must be a
decimal integer less than or equal to ten.

The second subfield of the pseudo-operation is an absolute expression which specifies the
number of iterations. The value in the iteration field specifies the number of times the
group of cards, following the DUP pseudo-operation, is to be duplicated. This value can
be any positive integer less than 2 8.1. The groups of duplicated cards appear in the
assembled listing immediately behind the original group.

If either the count field or the iteration field contains 0 (zero) or is null, the DUP pseudo-
operation will be ignored.

If a symbol appears in the location field of the pseudo-operation, it is given the address of
the next location to be assigned by the Assembler.

If an odd/even address is specified for an instruction within the range of a DUP pseudo-
operation, the instruction will be placed in odd/even address and a filler used when needed.
The filler will be an NOP instruction.

All symbols appearing in the variable field of the DUP pseudo-operation must have been
previously defined. Any symbols appearing in the location field of the instructions being
duplicated are defined only on the first iteration, thus avoiding multiply-defined symbols.
SET would of course be the exception to this rule.

The only instructions or pseudo-operations which may not appear in the range of a DUP
instruction are END, MACRO, and DUP. ETC may not appear as the first card after the
range of a DUP.

Storage Allocation Pseudo-Operations

These pseudo-operations are used to reserve specified core memory storage areas within
the coding sequence of a program for use as storage areas or work areas.

CPB~1004F

201

BSS (Block Started by Symbol)

1 8 16 32
T
Symbol I BSS : | A permissible expression in the variable
or I I field defines the amount of storage to be
blanks { I ' reserved.
| |

The BSS pseudo-operation is used by the programmer to reserve an area of memory within
his assembled program for working and for data storage. The variable field contains an
expression that specifies the number of locations the Assembler must reserve in the program.

If a symbol is entered in the locationfield, it is assigned the value of the first location in the
block of reserved storage. If the expressionin the variable field contains symbols, they must
have been previously defined and must yield an absolute result. No binary cards are gener-
ated by this pseudo-operation.

BFS (Block Followed by Symbol)

1 8 16 32
Symbol : BFS } : A permissible expression in the variable
or | I l field defines the amount of storage to be
blanks | I I reserved
| |

The BFS pseudo-operation is identical to BSS withone exception. If a symbol appears in the
location field, it is assigned the value of the first location after the block of reserved storage
has been assigned. .

BLOCK (Block Common)
1 8 16 32

1
Blanks :BLOCK |
I
|

I' A symbol in the variable field

|

|

| |
The purpose of the BLOCK pseudo-operation is to specify that program data following
the BLOCK entry is to be assembled in the LABELED COMMON region of the user program
under the symbol appearing in the variable field. BLOCK is, in effect, another location
counter external to the text of the program.

The symbol in the variable field specifies the label of the COMMON area to be assembled.
If the variable field is left blank, the normal FORTRAN BLANK COMMON is specified; and
data following the BLOCK pseudo-operation will be assembled relative to the unlabeled
(BLANK COMMON) memory area of the user program. It is not possible to assemble data
or instructions into BLANK COMMON. Storage labeling and reservation is all that is
permitted.

CPB-1004F

- 202

The pseudo-operations which take the program out of BLOCK mode and into some other
mode are:

1. BLOCK (for some other LABELED COMMON)

2. USE

3. ORG/LOC, where the value of the expression is relocatable
4. END

It should be noted that BLOCK does not cause the Assembler to make the current USE
location counter PREVIOUS. As such, a USE PREVIOUS following a BLOCK will cause the
location counter which was in effect prior to the last USE to be invoked. A maximum of 63
labeled commons are permitted in a program.

LIT (Literal Pool Origin)
1 8 16 32
l
Columu 16 must be blank

|
Symbol | LIT
or |
blanks |

[
|
|
l

The LIT pseudo-operation causes the Assembler to punch and print out all the previously
developed literals. If the LIT instruction occurs in the middle of the program, the literals
up to that point are output and printed out starting with the first available location after
LIT; the literal pool is reinitialized as if the assembly had just begun.

If there are literals remaining in the pool when the END card is encountered, the origin of
the literal pool will be one locationpast the final word defined by the program. The maximum
number of LIT pseudo-operations that can occur in a program is 63.

Conditional Pseudo-Operations

The pseudo-operations INE, IFE, IFL, and IFG, which follow, are useful within MACRO
prototypes to add flexibility to variable-length or conditional expansions of the MACRO
prototype. When used within a MACRO, the conditional pseudo-operation can only be used
to affect cards within the MACRO itself. The use of these pseudo-operations, however,
is not limited to MACRO’s; they can be used elsewhere in coding a subprogram to effect
conditional assembly of segments of the program.

The programmer must avoid using noncomparable elements within these pseudo-operations.
He must remember that the first comma encountered in the variable field is considered
as separating the first subfield from the second subfield (the fields to be compared).
Symbols used in the variable field will normally have been previously defined. On the other
hand, one of the primary uses of conditionals is to test whether or not a symbol has been
defined at a given point in an assembly. Consequently, undefined symbols within a condi-
tional are not flagged in the left margin of the listing. If the symbol is never defined
within the assembly, the symbol will be listed as undefined at the end of the listing; if the
symbol is defined later in the assembly, it is not listed as undefined.

CPB-~1004F
Rev. October 1968

203

INE (If Not Equal)

1 8 16 32
I
Blanks INE X, Y, n | Two or three subfields in the variable

The INE pseudo-operation provides for conditional assembly of the next n cards depending
on the relationship of the first two subfields of the variable field, The value of the ex-
pression in the first subfield is compared to the value of the expression in the second
subfield. If they are not equivalent, the next n cards are assembled, where nis specified
in the third subfield; otherwise, the next n cards are bypassed, resumption beginning at
the (n+1)th card. I the third subfield is not present, n is assumed to be one.

— - e —

1

] ;

| | tield
|

|

Two types of comparisons are possible in the subfields of the INE pseudo-operation. The
first is an algebraic comparison after the expression has been evaluated. The second
is alphanumeric comparison and the relation is the collating sequence. Alphanumeric
strings in the variable field of INE are denoted by placing the subfield within apostrophe
marks. If either the first or second subfield is designated as an alphanumeric string, the
other will automatically be classified as such. Each alphanumeric subfield is right justified
(with zero fill) within a 12-character field before comparison is made.

IFE (X Equal)

1 8 16 32
1

Blanks Two or three subfields in the variable

] |
] | o
I | field
! |
| |

The IFE pseudo-operation provides for conditional assembly of the next n cards depending
on the relationship of the first two subfields of the variable field. The next n cards are
assembled if and only if the expression or alphanumeric string in the first subfield is equal
to the expression or alphanumeric string in the second subfield, If the compared subfields
are not equal, the next n cards are bypassed. Resumption begins at card n+1l. The n is
specified in the third subfield and is assumed to be one if not present.

Two types of comparisons are possible in the subfields of the IFE pseudo-operation. The
first is an algebraic comparison after the expression has been evaluated. The second is an
alphanumeric comparison and the relation is the collating sequence. Alphanumeric strings
in the variable field of IFE are denoted by placing the subfield within apostrophe marks.
If either the first .or the second subfield is designated as an alphanumeric string, the other
is automatically classified as such. Each alphanumeric subfield is right justified (with
zero fill) within a 12-character field before comparison is made.

IFL (If Less Than)

1 8 16 32

Blanks : IFL :
| |
§
|

Two or three subfields in the variable field

CPB-1004F

204

The IFL pseudo-operation provides for conditional assembly of the next n cards, depending
on the value of the first two subfields of the variable field. The next n cards are assembled
if and only if the expression or alphanumeric string in the first subfield is less than the
expression or alphanumeric string in the second subfield. If the first subfield is not
less, the next n cards are bypassed. Resumption begins at card n+1. The n is specified
in the third subfield and is assumed to be one if not present.

Two types of comparisons are possible in the subfields of the IFL pseudo-operation. The
first is a straight numeric comparison after the expression has been evaluated. The second
is an alphanumeric comparison, using the relation of the collating sequence. Alphanumeric
strings in the variable field of IFL are denoted by placing the subfield within apostrophe
marks. If either the first or second subfield is designated as an alphanumeric string,
the other is automatically classified as such. Each alphanumeric subfield is right justified
(with zero fill) within a 12-character field before comparison is made.

IFG (If Greater Than)
1 8 16 32

Blanks } IFG : X, Y n : Two or three subfields in the variable field
! | |
I | [

The IFG pseudo-operation provides for conditional assembly of the next n cards, depending
on the value of the first two subfields of the variable field. The next n cards are assembled
if and only if the expression or alphanumeric string in the first subfield is greater than
the expression or alphanumeric string in the second subfield. If the first subfield is not
greater, the next n cards are bypassed. Resumption begins at card n+1. The n is specified
in the third subfield and is assumed to be one if not present.

Two types of comparisons are possible in the subfields of the IFG pseudo-operation, The
first is a straight numeric comparison after the expression has been evaluated. The second
is an alphanumeric comparison, using the relation of the collating sequence. Alphanumeric
strings in the variable field of the IFG are denoted by placing the subfield within apostrophe
marks. If either the first or the second subfield is designated as an alphanumeric string,
the other is automatically classified as such. Each alphanumeric subfield is right justified
(with zero fill) within a 12-character field before comparison is made.

Special Word Formats

ARG A, M (Argument--Generate Zero Operation Code Computer Word)
1 8 16 32

Symbol : ARG :
| |
|
I

Two subfields in the variable field

The use of ARG in the operation field causes the Assembler to generate a binary word with
bit configuration in the general instruction format. The operation code 000 is placed in the
operation field. The variable field is interpretedin the same manner as a standard machine
instruction.

NONOP (Undefined Operation)

When an undefined operation is encountered, NONOP is looked up in the operation table and
used in place of the undefined operation. NONOP is initially set as an error routine, but
the programmer through the use of OPD, OPSYN OR MACROQO may redefine NONOP to his
own purpose. For example, NONOP could be redefined by the use of a MACRO to be a
MME to GECHEK with a dump sequence, or it could be made equivalent to the ARG pseudo-
operation.

CPB-1004F

205

ZERO B, C (Generate One Word With Two Specified 18-bit Fields)

1 8 16 32
Symbol } ZERO : : Two subfields in the variable field
gfanks l : :
I I

The pseudo-operation ZERO is provided primarily for the definition of values to be stored in
either or both the high- or low-order 18-bit halves of a word. The Assembler will generate
the binary word divided into the two 18-bit halves; hit positions 0-17 and 18-35. The equiv-
alent binary value of the expression in the first subfield will be in bit positions 0-17. The
equivalent binary value of the expression in the second subfield will be in bit positions
18-35. Literals are not allowed in the variable field of the ZERO pseudo-operation.

MAXSZ (Maximum Size of Assembly)

1 8 16 32
T I
Blank : MAXSZ | A decimal number in the variable field
| |
| 1 |

The decimal number represents the programmer’s estimate of the largest number of
assembled instructions and data in his program or subprogram. The variable field number
is evaluated, saved, and printed out at the end of the assembly listing. It can then be com-
pared with the actual size of the assembly.

MAXSZ is provided as aprogrammer convenience and can be inserted anywhere in his coding.

Address Tally Pseudo-Operations

The Indirect then Tally (IT) type of address modification in several cases requires special
word formats which are not instructions and do not follow the standard word format. The
following pseudo-operations are for this purpose. (Refer to page 169 and following.)

e TALLY A,T,C (Tally) Used for ID, DI, SC, and CI type of tally modification, where SC
and CI are for 6 bit characters. The first subfield is the address for the indirect reference,
T is the tally count, and C is the character position (0 < C <5). When used with the CI
modifier the contents of the tally count subfield (T) is not interpreted.

e TALLYB A,T,B (Tally Byte) Used for SC and CI type of tally modification, where 9
bit bytes (characters) are desired. A and T are the same as for TALLY and B indicates
the byte position (0 < B = 3).

¢ TALLYD A,T,D, (Tally and Delta) Used for Add Delta (AD) and Subtract Delta (SD)
modification. A is the address, T the tally, and D the delta of incrementing.

e TALLYC A,T,mod (Tally and Continue) Usedfor Address, Tally, and Continue. A is the
address, T the tally count, and mod the address modification as specified under normal
instructions.

CPB-1004F

206

Repeat Instruction Coding Formats

The Repeat (RPT), Repeat Double (RPD), and Repeat Link (RPL) machine instructions and
variations of these instructions use special formats and have special tally, terminate
repeat, and other conditions associated with them. The machine instructions describing
these conditions appear on pages 134 through 144. There is no address modification for
the repeat instructions (see pages 134 through 144). Address modifications for the repeated
instructions are limited to R and RI with designators specifying X1,,X7. Index register
zero is used to control terminate conditions and tally. The coding formats for this family
of instructions are as follows:

RPT N, I, ki, Ko, + ., k» The command generated by the Assembler from this format will
cause the instruction immediately following the command to be iterated N times and that
instruction’s effective address to be incremented by the value I for each of N iterations.
The range for N is 0-225. If N=O, the instruction will be iterated 256 times. If N is greater
than 256, the instruction will cause an error flag (A) to be produced in the assembly listing,
The fields ki1, k=,. . ., k> mayor maynot be present. They represent conditions for termina-
tion which, when needed, are declared by the conditional transfer symbols TOV, TNC,
TRC, TMI, TPL, TZE, and TNZ. These symbols affect the termination condition bits in
positions 11 through 17 of the repeat instruction.

It is also possible to use anoctal number rather than the special symbols to denote termina-
tion conditions. Thus, if the field for ki, k»,. .., k» is found to be numeric, it will be
interpreted as octal and the low order seven bits will be ORed into bit positions 11 through
17 of the repeat instruction. The variable field scan will be terminated with the octal field,

RPTX ,I This instruction behaves just as the RPT instruction with the exception that N
and the conditions for termination are loaded by the programmer into bit positions 0 through
7 and 11 through 17, respectively, of Index register zero (imstead of embedded in the in-
struction),

RPD N, I ki1, ko, + . ., kv The command generated by the Assembler from this format will
cause the two instructions immediately following the RPD instruction to be iterated N
times and the effective address of those two instructions to be incremented by the value
I for each of N iterations. The meaning of ki, ks,..., k» is the same as for the RPT
instruction. Since the double repeat must fall in an odd location, the Assembler will force
this condition and use a NOP instruction for a filler when needed.

RPDX ,1 This instruction behaves just as the RPD instruction with the exception that N
and the conditions for termination are loaded by the programmer into the index register zero.

RPDA N, I ki, ks, « .., ko This instruction behaves just as the RPD instruction with the
exception that only the effective address of the first instruction following the RPDA instruc-
tion will be incremented by the value of I for each of N iterations.

RPDB N, I, ki, ks «..,k» This instruction behaves just as the RPD instruction with the
exception that only the effective address of the second instruction following the RPDB
instruction will be incremented by the value I for each of N iterations.

RPL N, ki, ks,..., ko This format will cause the instruction immediately following it
to be repeated N times or until one of the conditions specified in ki, . . ., k» is satisfied.
The address effectively used by the repeated instruction is the linked address described
on pages 141 through 144.

RPLX This instruction behaves just as the RPL instruction with the exception that N and
the conditions for termination are loaded by the programmer into index register zero.

CPB-1004F
Rev. July 1969

207

MACRO-OPERATIONS

Introduction

Programming applications frequently involve (1) the coding of a repeated pattern of instruc-
tions that within themselves contain variable entries at each iteration of the pattern and (2)
basic coding patterns subject to conditional assembly at each occurrence. The macro-
operation gives the programmer a shorthand notation for handling (1) and (2) through the use
of a special type of pseudo-operation referred to in the GE-625/635 Macro Assembler as a
MACRO. Having once determined the iterated pattern, the programmer can, within the
MACRO, designate selectable fields of any instruction of the pattern as variable. Thereafter,
by coding a single MACRO instruction, he canuse the entire pattern as many times as needed,
substituting different parameters for the selected subfields on each use.

When he defines the iterated pattern, the programmer gives it a name, and this name then
becomes the operation code of the MACRO instruction by which he subsequently uses the
macro-operation.

As a generative operation, the macro-operation causes n card images (where n is normally
greater than one) to be generated; these may have substitutable arguments. The MACRO
is known as the prototype or skeleton, and the card images that may be defined are relatively
unrestricted as to type.

They can be:

1. Any Processor instruction
2. Almost any Assembler pseudo-operations
3. Any previously defined macro-operation

Card images of these types are subject to the same conditions and restrictions when generated
by the macro processor as though they hadbeen produced directly by the programmer as in-
line coding.

To use the MACRO prototype, once named, theprogrammer enters the macro-operation code
in the operation field and arguments in the variable field of the MACRO instruction. (The
arguments comprise variable field subfields and refer directly to the argument pointers
specified in the fields of the card images of the prototype.) By suitably selecting the argu-
ments in relation to their useintheprototype, the programmer causes the Assembler to pro-
duce in-line coding variations of the n card images defined within the prototype.

The effect of a macro-operation is the same as an open subroutine in that it produces in-
line code to perform a predefined function. The in-line code is inserted in the normal flow
of the program so that the generated instructions are executed in-line with the rest of the
program each time the macro-operation is used.

An important feature in specifying a prototype is the use of macro-operations within a given
prototype. The Assembler processes such “nested” macro-operations at expansion time only.
The nesting of one macro definition within another prototype is not permitted. If macro-
operation codes are arguments, they must be used in the operation field for recognition.
Thus, the MACRO must be defined before its appearance as an argument; that is, the pro-
totype must be available to the Assembler before encountering a demand for its usage.

CPB-1004F

208

Definition of the Prototype

The definition of a MACRO prototype is made up of three parts:

1. Creation of a heading card that assigns the prototype a name
2. Generation of the prototype body of n cardimages with their substitutable arguments
3. Creation of a prototype termination card

These parts are described in the following three paragraphs.
MACRO (MACRO Identification)

1 8 16 32
Symbol ;| MACRO

|
| Blanks in the variable field
|
|
[

The MACRO pseudo-operation code is used to define a macro-operation by symbolic name.
The symbol in the location field conforms to standard symbol formation rules and defines the
name of a MACRO whose prototype is given on the next n lines, (The prototype definition
continues until the Assembler encounters the proper ENDM pseudo-operation,) The name of
the MACRO is a required entry. If the symbol is identical to an operation code already in
the table, the macro-operation will be used as a new definition for that operation code.
It is entered in the Assembler operation table with a pointer to its associated prototype that
is entered in the MACRO prototype table,

ENDM (End MACRO)
1 8 16 32

| 1
| | A symbol in the variable field
| |
| |
| |
The symbol in the variable field is the symbolic name of the MACRO instruction as defined

in the location field of the corresponding MACRO heading card. Every MACRO prototype
must contain both the terminal ENDM pseudo-operation and the MACRO pseudo-operation.

Thus, every prototype will have the form

Heading card { opnaMmE MACRO

Prototype body * ________

ENDM OPNAME

where OPNAME represents the prototype name that is placed in the Assembler operation
table.

Terminal card {T

CPB-1004F

209

e Prototype Body.

program. Thus, for example, if the iterated coding pattern

The prototype body contains a sequence of standard source-card
images (of the types listed earlier) that otherwise would be repeated frequently in the source

LOCATION |E| OPERATION ADDRESS, MODIFIER COMMENTS
(o]
12 6 7L 14]15116 2
LDA 5, DL
LDQ , DL
CWL ALPHA, 2 '
TZE FIRST |
LDA U
LDQ v
CWL BETA, 4
TZE SCND
LDA W+X
LDQ Y+7Z
_| |cwL GAMMA
TZE NEXT1

appeared in a subprogram, it could be represented by the following prototype body (preceded
by the required prototype name):

1 8 16 32
CMPAR : MACRO { : MACRO prototype with substitutable
LDA #1 | arguments in the variable field
Pipg | # '
Fewn | o#
A I 44 '
ENDM CMPAR"

210

CPB~1004F

Then the previous coding examples could be represented by the macro-operation CMPAR as
follows:

CMPAR (5,DL),(13,DL),(ALPHA,2),FIRST
CMPAR U,V,(BETA,4),SCND
CMPAR W+X,Y+Z,GAMMA,NEXT1

The Assembler recognizes substitutable arguments by the presence of the number-sign
identifer (#). Having sensed this identifier, it examines the next one or two digits. (Sixty-
three is the maximum number of arguments usable in a single prototype.)

MACRO prototype arguments can appear in the location field, in the operation field, in the
variable field, and coincidentally in combinations of these fields within a single card image.
Substitutions that can be made in these fields are:

1. Location field--any permissible locaticn symbol (see comments below)

2. Operation field--all machine instructions, all pseudc-operations (exceptthe MACRO
pseudo-operation) and previously defined macro operations

3. Variable field--any allowable expression followed by an admissible modifier tag and
separated from the expression by a delimiting comma.

In general, anything appearing to the right of the first blank in the variable field will not be
copled into the generated cardimage. For example, a substitutable argument appearing in the
comments field of a card image--that is, separated from the variable field by one or more
blanks--willnot be interpreted by the Assembler (exceptin the case of the ASCII, BCI, REM,
TTL, TTLS, and UASCI pseudo-operations). This means that only pertinent information
in the location, operation and variable fields is recognized, that internal blanks are not
allowed in these fields, and that the first blank in these fields causes field termination.

When specifying a symbol in a location field of an instruction within a prototype the pro-
grammer must be aware that this MACRO can be used only once since on the second use the
same symbol will be redefined, causing a multiple-defined symbol. Consequently, the use of
location symbols within the prototype is discouraged. Alternatively, for cases where repeated
use of a prototypeisnecessary, two techniques are available: (1) use of Created Symbols and
(2) placement of substitutable argument in the location field and use of a unique symbol in
the argument of the macro operation each time the prototype is used. These techniques are
described under Using a MACRO operation, on the following page.

The location field, operation field, and variable field may contain text and arguments which
can be linked by simply entering the substitutable argument (for example, AB#3) directly in
the text with no blanks or special symbols preceding or following the entry, Linking is
especially useful in the operation field and in the partial subfields of the variable field,
(Refer tothe discussion of ASCII, BCI, REM, TTL, TTLS, and UASCI immediately following.)
As an example of the first use, comsider a machine instruction such as LD(R) where R
can assume the designators A, Q, AQ, and X0-X7,

CPB-1004F
Rev. October 1968

211

The prototype NAME

NAME MACRO
LD#2
------- A1
ENDM NAME

contains a partial operation field argument; and when the in-line coding is generated, LD#2
becomes LDA, LDQ, etc.,, as designated by the argument used in the macro operation.

The ASCII, BCI, REM, TTL, TTLS, and UASCI pseudo-operations used within the prototype
are scanned in full for substitutable arguments, The variable field of these pseudo-
operations can contain blanks and argument pointers, The following illustrates a typical use:

ALPHA MACRO
NOTE#1 REM IGNORED #2bERRORSbONb#3
ENDM ALPHA

An asterisk (*) type comment card cannot appear in a MACRO prototype.

Using a MACRO Operation

Use of a MACRO operation can be divided into two basic parts; definition of the prototype
and writing the MACRO operation. The firstpart has been described on the preceding pages;
writing the macro operation to call upon the prototype is the process of using the MACRO
and is described in the following paragraphs.

The macro operation card is made up of two basic fields; the operation field that contains
the name of the prototype being referenced and the variable field that contains subfield
arguments relating to the argument pointers of the prototype on a sequential, one-to-one
basis. For example, the defined prototype CMPAR, mentioned earlier, could be called for
expansion by the MACRO instruction

CMPAR U,V,(BETA,4),SCND

where the variable field arguments, separated by commas and taken left-to-right, correspond
with the prototype pointers #1 through #4. These arguments are then substituted in their
corresponding positions of the prototype to produce a sequence of instructions using these
arguments in the assigned location, operation, and variable fields of the prototype body.
(The above MACRO instruction expands to the coding shown on page 210.)

The maximum number of MACRO call arguments is 63; arguments greater than 63 are
treated modulo 64. For example, the 70th argument is the same as the 6th argument and
would be so recognized by the Assembler. Each such argument can be a literal, a symbol,
or an expression (delimited by commas) that conforms to the restrictions imposed upon the
field of the machine instruction or pseudo-operation within the prototype where the argument
will be inserted.

CPB-1004F
Rev. October 1968

212

The following conditions and restrictions apply to the expansion of MACROs:

1. Anything appearing in the location field of a prototype card image, whether text
or a substitutable argument, causes generation to begin in column 1 for that
text or argument.

2. Location field text generated from an argument pointer (in a prototype location
field) so as to produce a resultant field extending beyond column 8 causes the
operation field to begin in the next position after the generated text. Normally,
the operation field will begin in column 8.

3. Operation field text generated from an argument pointer (in a prototype operation
field) so as to produce a resultant field extending beyond column 16 causes the
variable field to start in the next position after the generated text. Normally, the
variable field will begin in column 16.

4. The variable field may begin after the first blank that terminates the operation
field but not later than column 16 in the absence of the condition in 3 above.

5. No generated card image can have more than 72 characters recorded; that is, the
capacity of one card image cannot be exceeded (columns 73-80 are not part of the
card image).

6. No argument string of alphanumeric characters can exceed 57 characters.

7. Up to 63 levels of MACRO nesting are permitted.

An argument can also be declared null by the programmer when writing the MACRO instruc-
tion; however, it must be declared explicitly null. Explicitly null arguments of the MACRO
instruction argument list can be specified in either of two ways; by writing the delimiting
commas in succession with no spaces between the delimiters or by terminating the argument
list with a comma with the next normal argument of the list omitted. (Refer to the CRSM
description, following.) A null argument means that no characters will be inserted in the
generated card image wherever the argument is referenced. When a macro operation
argument relates to an argument pointer and the pointer requires the argument to have
multiple entries or contains blanks, the corresponding argument must be enclosed within
parentheses with the parenthetical argument set off by the normal comma delimiters.
The parenthetical argument can contain commas as separators. Examples of prototype
card images that require the use of parentheses in the MACRO call are pseudo-operations
such as IDRP, VFD, BCI, and REM, as well as the variable field of an instruction where the
address and tag may be one argument, In these cases the elements of the arguments con-
tained within the parentheses are called subarguments,

It is also possible to enclose an argument within brackets, making them subarguments, in
which case blanks are ignored as part of the argument. For example the MACRO call of
the MACRO named ABC can be written as

ABC [A,
ETC 24,
ETC 2*D)

and is equivalent to

ABC (A, 24, 2*D)

CPB-~1004F
Rev. October 1968

213

even though numerous blanks occur after the arguments A, and 24,. Thus, the Assembler
packs everything it finds within brackets and suppresses all blanks therein. The above
manner of writing the MACRO call permits the programmer additional flexibility in placing
one subargument per card by means of using ETC, the blanks no longer being significant.

It can happen that the argument list of a macro operation extends beyond the capacity of
one card. In this case, the ETC pseudo-operation is used to extend the list on to the next
card. In using ETC, the last argument entry of the macro operation is delimited by a
following comma, and the first entry of the ETC card is the next argument in the list.
Within the prototype, as many ETC cards as required can be used for internal MACROs or
VFD pseudo-operations.

Pseudo-Operations Used Within Prototypes

® Need for Prototype Created Symbols. In case of a MACRO prototype in which an ar-
gument pointer is used in the location field, the programmer must specify a new symbol
each time the prototype is called. In addition, for those cases where a nonsubstitutable
symbol is used in a prototype location field, the programmer can use the macro operation
only once without incurring an Assembler error flag on the second and all subsequent
calls to the prototype (multiply-defined symbol). Primarily to avoid the former task
(having to repeatedly define new symbols on using the macro operation) and to enable
repeated use of a prototype with a location field symbol (nonsubstitutable), the created
symbol concept is provided.

[Use of Created Symbols. Created symbols are of the type .xxx. where xxx runs from
001 through 999, thus making possible up to 999 created symbols for an assembly. The
periods are part of the symbol. The Assembler will generate a created symbol only if
an argument in the macro operation is implicitly null; that is, only if the macro operation
defines fewer arguments than given in the related MACRO prototype or if the designator
is used as an argument. Explicitly null arguments will not cause created symbols to be
generated. The example given clarifies these ideas.

Assume a MACRO prototype of the form

NAME MACRO
"""" # 1;#2
#4 e X
#5 —mmeee- ALPHA #3
_______ #4
TMI #5
ENDM NAME

with five arguments, 1 through 5. The macro operation NAME in the form
NAME A7,,,B

specifies the third and fourth arguments as explicitly null; consequently, no created sym-
bols would be provided. The expansion of the operation would be

....... AT
------- X

B eeeemee ALPHA, (Unless a specified modification is given,
------- X, will be assumed,)
TMI B

The macro operation card
NAME AT,

indicates the third argument is explicitly null, while arguments four and five are implicitly

CPB-1004F
Rev. October 1968

214

null. Consequently, created symbols would be provided for arguments four and five but not
for three. This is shown in the expansion of the macro operation as follows:

------- A7
011, eeeeees X
012, e ALPHA, (Unless a specified modification is given,
------- .011, XRO will be assumed.)
T™MI .012

A created symbol could be requested for argument three simply by omitting the last comma.
The programmer can conveniently change an explicitly null argument to an implicitly null one
by inserting the # designator in an explicitly null position. Thus, for the preceding example

NAME AT,,4#,B

the fourth argument becomes implicitly null and a created symbol will be generated.

CRSM ON/OFF (Created Symbols)
1 8 16 32

Blanks CRSM

]

ON | Normal mode
|
|

Created symbols are generated only within MACRO prototypes. They can be generated for
argument pointers in the location, operation, and variable fields of instructions or pseudo-
operations that use symbols. Accordingly, the created symbols pseudo-operation affects
only such coding as is produced by the expansion of MACROs. CRSM ON causes the Assem-
bler to initiate or resume the creation of symbols; CRSM OFF terminates the symbol
creation if CRSM ON was previously in effect. If the Assembler is already in the specified
mode, the pseudo-operation is ignored.

ORGCSM (Origin Created Symbols)
1 8 16 32

Blanks ORGCSM

IOne expression in the variable field.

The variable field is evaluated and becomes the new starting value between the decimal
points of the created symbols.

— e o— —

IDRP (Indefinite Repeat)
1 8 16 32

Blanks IDRP

| T

| #3 | An argument number or blanks in the

I I variable field, depending on the IDRP of
| | the IDRP pair

|

I

The purpose of the IDRP is to provide an iteration capability within the range of the MACRO
prototype by letting the number of grouped variables in an argument pointer determine
the iteration count.

CPB-1004F

215

The IDRP pseudo-operation must occur in pairs, thus delimiting the range of the iteration
within the MACRO prototype. The variable field of the first IDRP must contain the argu-
ment number that points to the particular argument used to determine the iteration count
and the variables to be affected. The variable field of the second IDRP must be blank.

At expansion time, the programmer denotes the grouping of the variables (subarguments)
of the iteration by placing them, contained in parentheses, as the nth argument where n
was the argument value contained in the initial IDRP variable field entry.

IDRP is limited to use within the MACRO prototype, and nesting is not permitted. However,
as many disjoint IDRP pairs may occur in one MACRO as the programmer wishes.

For example, given the MACRO skeleton

NAME MACRO
IDRP 42
ADA 42
IDRP
ENDM NAME

the MACRO call (with variables X1, X2, and X3)
A NAME Q+2, (X1, X2, X3), B

would generate

A
ADA. X1
ADA X2
ADA X3

In the example, arguments #1 and #3, Q+2, and B respectively, are used in the skeleton
ahead of and after the appearance of the IDRP, range-iteration pair.

DELM (Delete MACRO)

Blanks I
I

1 8 16 32
Symbol : DELM : : A symbol in the variable field
or
| I l
| |
| |

CPB-1004F

216

The function of this pseudo-operation is to delete the MACRO named in the variable field
from the MACRO prototype area, and disable its corresponding operation table entry.
Through the use of this pseudo-operation, systems which require many, or large MACRO
prototypes, or which have minimal storage allocation at assembly time, can re-use storage
in the prototype area for redefining or defining new MACROs. Redefinition of a deleted
MACRO will not produce an M multiple defined flag on the assembly listing.

Implementation of System MACRO’s

GMAP can load a unique set (or sets) of MACRO’s under control of a pseudo-operation.
This permits the various langauge processors to uniquely identify the standard system
MACRO’s required for the assembly of their generated code.

GMAP itself has a set of system MACRO’s which it loads as part of its initialization
procedures. This includes FILCB, the GEFRC File Control Block MACRO (see GE-625/635
File and Record Contrcl, CPB-1003), SORT and MERGE (see GE-625/635 Sort/Merge Pro-
gram, CPB-1005) and the DEBUG Symbol Table MACRO’s VTAB and LTAB (see GE-625/
635 General Loader, CPB-1008). Loading of these MACRO’s is dependent upon the elected
option on the $§ GMAP control card. The option GMAC/NGMAC instructs GMAP to load or
not load its own system MACRO’s in initializing for assembly. The absence of either
option is equivalent to having elected GMAC, hence the normal user of GMAP does not need
to be aware of the fact that GMAP MACRO’s are optionally loaded.

System MACRO’s are, by definition, located on the System File on the high speed drum. They
are put there by the System Editor, in System Loadable Format, as a freestanding system
program. Their catalog name is that which is to be used by GMAP in the loading operation.
For proper implementation, the MASTER option of the System Editor parameters card must
be elected. It may be in absolute or relocatable System Loadable Format.

This implementation technique permits any unit, or functionally related group of users of
GMAP to define and implement a unique set of System MACROQ’s; or on a larger scale, it
allows various GE-600 installations to installlocal standard sets of MACROQ’s, without chang-
ing the Assembler.

PUNM (Punch MACRQ Prototypes and Controls)
1 8 16 32

Blanks PUNM

The variable field is not examined

|
|
I
[
|

- — — — e

This pseudo-operation causes the Assembler, in pass one, to scan the operation table for
all MACRO’s defined. It then appends their definitions to the end of the prototype table
and constructs a control word specifying the length of this area and the number of MACRO’s
defined therein.

At the beginning of pass two, thisinformationis punched onto relocatable binary instruction
cards, along with § OBJECT, preface, and $ DKEND cards. The primary SYMDEF of this
deck will arbitrarily be .MACR. .

CPB-1004F

217

In the normal preparation of System MACRO’s, it would not be desirable to include the GMAP
System MACRO’s. For this reason, the assembly of a set of System MACRO’s should have

NGMAC elected on its $ GMAP card.

L.ODM (Load System MACROs)
1 8 16

32

Blanks

I
| A symbol in the variable field
|
|
I

This pseudo-operation causes the Assembler to issue an MME GECALL for a set of System
MACROs. The name used in the GECALL sequence is the symbol taken from the variable
field of the LODM pseudo-operation. MACROs thus loaded will be appended to (not overlay)
the MACRO prototype table, They will be defined and made available for immediate use.
If a MACRO is redefined by this operation the LODM instruction will be flagged with an M.

Notes and Examples on Defining a Prototype

The examples following show some of the ways in which MACROs can be used.

® Field Substitution

Prototype definition:

ADDTO MACRO
LDA #1
ADA #2
STA #3
ENDM ADDTO
Use:
ADDTO A,(1,DL),B+5

e Linkage of Text and Arguments

Prototype definition:

INCX MACRO
ADLX#2 #3,DU
INE #1,7*+1’
TRA #1
ENDM INCX
Use:
INCX LOCA/4,1
or
INCX *11,4,1

CPB-1004F

218

Argument in a BCI Pseudo-Operation

Use:

Prototype definition:
ERROR MACRO
TSX1
ARG
BCI
ENDM

ERROR

MACRO Operation in a Prototype

Use:

Prototype definition:
TEST MACRO
LDA
CMPA
#3
ERROR
ENDM

TEST

Indefinite Repeat

Use:

DIAG

#1

5, ERROR) # 1bCONDITIONHPIGNORED
ERROR

A,B,TZE,ALPHA,3

Prototype definition (for generating a symbol table):

SYMGEN MACRO
IDRP
BCI
IDRP

ENDM

#1

SYMGEN

Subroutine Call MACRO

Use:

Prototype definition:

DOO
K

MACRO
SET
IDRP
SET
IDRP
TSX1
TRA
IDRP
ARG
IDRP
ENDM

K

DOO

#1
1,#1

SYMGEN

(LABEL, TEST,ERROR,MACRO)

0

#2
K+l
#1

*+ 14K
#2

#2
DOO

SRT,(ARG1,ARG2,ARG3)

CPB-~1004F

219

PROGRAM LINKAGE PSEUDO-OPERATIONS

CALL (Call--Subroutines)

1 8 16 32
T 1 1
Symbol | CALL | | Subfields in the variable field with
or | | | contents and delimiters as described
| | below
|

blanks |
(|

The CALL pseudo-operation is used to generate the standard subroutine calling sequence.

The first subfield in the variable field of the instruction is separated from the next n sub-
fields by a left parenthesis. This subfield contains the symbol which identifies the subroutine
being called. It is possible to modify this symbol by separating the symbol and the modifier
with a comma. (In a Relocatable Assembly the symbol entered in this subfield is treated as
if it were entered in the variable field of a SYMREF instruction.)

The next n subfields are separated from the first subfield by a left parenthesis and from
subfield n+1 by a right parenthesis. Thus the next n subfields are contained in parentheses
and are separated from each other by commas. The contents of these subfields are argu-
ments which will be used in the subroutine being called.

The next m subfields are separated from the previous subfields by a right parenthesis and
from each other by commas. These subfields are used to define locations for error returns
from the subroutine. If no error returns are needed, then m=0.

The last subfield is used to contain an identifier for the instruction. This identifier is used
when a trace of the path of the program is made. The identifier may be an expression
contained in apostrophes. Thus the last subfield is separated from the previous subfields
by an apostrophe. If the last subfield is omitted, the assembly program will provide an
identifier which is the assigned alter number of the CALL pseudo-operation itself.

In the examples following, the calling sequences generated by the pseudo-operation are listed
below the CALL pseudo-operation. For clarification AAAAA defines the location the CALL
instruction; SUB is the name of the subroutine called; MOD is an address modifier; Al
through An are arguments; E1 through Em define error returns; E.I is an identifier; and
.E.L.. defines a location where error linkage information is stored. The number sequences
1,2,...,n and 1,2,...,m designate argument positions only.

AAAAA CALL SUB,MOD(A1,A2,....,An)EL,E2,......... Em’E.L’
AAAAA TSX1 SUB,MOD

TRA * 2+n+m

ZERO E.L..,E.L

ARG Al

ARG A2

ARG An

TRA Em

TRA E2

TRA El

CPB-1004F

220

The preceding example of instructions generated by the CALL pseudo-operation was in the
relocatable mode. The following example is in the absolute mode.

AAAAA CALL SUB,MOD(A1,A2,....,An)E1,E2,..... ,Em’E.1.’
AAAAA TSX1 SUB,MOD

TRA *+240+m

ZERO 0,E.1

ARG Al

ARG A2

ARG An

TRA Em

TRA E2

TRA El

If the variable field of the CALL cannot be contained on a single line of the coding sheet,
it may be continued onto succeeding lines by use of the ETC pseudo-operation. This is done
by terminating the variable field of the CALL instruction with a comma (,). The next
subfield is then placed as the first subfield of the ETC pseudo-operation. Subsequent sub-
fields may be continued onto following lines in the same manner.

When a CALL to an external subprogram appears within a headed section, the external sub-
program must be identified by a six-character symbol (immune to HEAD).

If a CALL is being used to access an internally defined subroutine, the subroutine must be
placed ahead of the CALL in the program deck. Also, a SYMDEF pseudo-operation with the
symbol identifying the subroutine in its variable field must be placed ahead of the CALL in
the program deck. Starting the subroutine with a SAVE pseudo-operation automatically
provides the SYMDEF.

SAVE (Save--Return Linkage Data)

1 8 16 32
I !
Symbol | SAVE | | Blanks or subfields separated by commas
} | in the variable field--as described below
I

The SAVE pseudo-operation is used to produce instructions neccessary to save specified
index registers and the contents of the error linkage index register.

The symbol in the location field of the SAVE instruction is used for referencing by the
RETURN instruction. (This symbol is treated by the Assembler as if it had been coded in
the variable field of a SYMDEF instruction when the Assembler is in the relocatable mode.)

CPB-~1004F

221

The subfields in the variable field, if present, will each contain an integer 0-7. Thus each
subfield specifies one index register to be saved.

When the SAVE variable field is blank, the following coding is generated:

NAME TRA *4+2
RET .E.L. .
STI .E.L. .
STX1 .E.L. .

The instructions generated by the SAVE pseudo-operation are listed below, The symbols iy
through iy, are integers 0-7. .E.L..defines the location provided for the contents of the error
linkage register,

BBBBB is a symbol that must be present; it is always a primary SYMDEF.

Example one is in the relocatable mode, and example two is in the absolute mode.

EXAMPLE ONE EXAMPLE TWO
BBBBB SAVE iy, igy .oy BBBBB SAVE i, dg, .oy
BBBBB TRA 4240 BBBBB TRA *+34n
LDX(i) **,DU ZERO
. LDX(iy) **,DU
LDX(iz) **DU
LDX(iy) ** DU .
RET .E.L..
STI .E.L.. .
STX1 .E.L.. LDX(i,) **,DU
STX(i1) BBBBB+1 RET BBBBB+1
STX(i5) BBBBB+2 STI BBBBB: 1
. STX1 BBBBB:+1
STX(iq) BBBBB+2
. STX(ip) BBBBB+3
STX(ip) BBBBB+n .
STX(i,) BBBBB+n+1

RETURN (Return--From Subroutines)

1 8 16 32
] ! [
Symbol I RETURN | | One or two subfields in the
y or l | | variable field
lanks ' l
| |

CPB-~1004F

222

The RETURN pseudo-operation is used for exit from a subroutine. The instructions gen-
erated by a RETURN pseudo-operation must make reference to a SAVE instruction within
the same subroutine. This is done by the first subfield of RETURN. The first subfield in
the variable field must always be present. This subfield must contain a symbol which
is defined by its presence in the location field of a SAVE pseudo-operation.

The second subfield is optional and, if present, specifies the particular error return to
be made; that is, if the second subfield contains the value k, then the return is made to the
kth error return.

In the examples following, the assembled instructions generated by RETURN are listed
below the RETURN instruction. For both examples the group of instructions on the left are
generated when the Assembler is in the relocatable mode, and the instructions on the right
when the Assembler is in the absolute mode.

EXAMPLE ONE

RETURN BBBBB
Generated Generated
TRA BBBBB+1 } Instructions TRA BBBBB+2 } Instructions
EXAMPLE TWO

RETURN BBBBB,k
LDX1 E,L..* LDX1 BBBBB+1,*
SBX1 k,DU Generated SBX1 k,DU Generated
STX1 E.L.. Instructions STX1 BBBBB+1 Instructions
TRA BBBBB+1 TRA BBBBB+2

ERLK (Error Linkage--to Subroutines)
! 8 16 32

1
| Column 16 must be blank

|
|

| I
The normal operation of the Assembler istoassign a location for error linkage information,
as referenced by .E.L..in the examples of the CALL, SAVE, and RETURN pseudo-operations,
If the programmer wishes to specify the location for error linkage information, he must do
so by using ERLK since the symbol .E.L,, may not appear to the right of an EQU pseudo-
operation., The appearance of ERLK causes the Assembler to generate two words of the
following form:

Blanks | ERLK

—— e —— el

.E.L.. ZERO
BCI 1,NAME

These words will be placed in the assembly at the point the Assembler encountered ERLK.
Note that if the programmer has placed all program data under the BLOCK pseudo-operation,
he must use ERLK since in this case automatic error linkage is suppressed.

CPB-1004F

223

NAME, as selected by the Assembler, will be the first SYMDEF defined in the routine.
This may have been accomplished explicitly through use of the SYMDEF pseudo-operation,
or implicitly through SAVE.

Error linkage will be generated for all relocatable assemblies, except in the case mentioned
above, where all assembling has been relative to BLOCK counters.

SYSTEM (BUILT-IN) SYMBOLS

It is possible to include additional permanently defined system symbols in the Assembler.
This is done by a reassembly of the Macro Assembler and by placing the proper information
in the required tables.

SOURCE PROGRAM INPUT

Activity Definition

The input job stream managed by the Comprehensive Operating Supervisor (GECOS) can
comprise assembled object programs, Macro Assembler language source programs,
and FORTRAN or COBOL compiler-language source programs. Such programs of a job
are referred to as activities. Comments to follow in this section pertain to an Assembler
language input activity.

The Assembler language activity is composed of the following parts, in order:

1. $ GMAP control card (calls the Assembler into Memory from external storage and
provides Assembler output options)

2. Text of the subprogram
3. END pseudo-operation card (terminates the input subprogram)

The $ GMAP control card is prepared as shown below:

Card Column 1 8 16 32 ‘
| I

Symbolic Example $ | GMAP | Option 1, Option 2, . :

Actual Example $:GMAP : NDECK, LSTOU, Nco%va

The operand field specifies the system options which may be listed in any random order.
When an option, or its converse, does not appear in the operand field, the standard option
is assumed. (The standard entries are underlined.)

CPB~1004F

224

The options available with GMAP are as follows:

LSTOU Prepare a listing of the GMAP output

NLSTOU Do not prepare a listing of the GMAP output

DECK Prepare a program deck as part of the output of this processor

NDECK Do not prepare a program deck as part of the output of this processor
COMDK Prepare a compressed deck of the source program

NCOMDK No not prepare a compressed deck of the source program

GMAC Use GMAP System Macros for this assembly

NGMAC Do not use GMAP System Macros for this assembly

DUMP Dump all of slave core if a GMAP activity terminates abnormally

NDUMP Dump only program registers if a GMAP activity terminates abnormally
NXEC Turn off the execution bit (bit 5) in the Program Switch Word if any

fatal errors are encountered in the assembly.

SYMTAB Prepare a listing of the Symbol Reference Table (if one has been built)
even though NLSTOU is specified.

ON5 Print all source images regardless of any pseudo-operations that might
otherwise result in their not being printed,

The contents of columns 73-80 are used as an identifier to uniquely identify the binary
object programs resulting from the assembly,

Compressed Decks

The Assembler program contains routines and tables for compressing source subprogram
cards from a one-instruction-per-card input to a multiple-instruction-per-card input.
This Assembler feature is provided primarily for reducing the size of input source decks
as concerns handling and correcting (altering) the input subprogram. (For details of the
compression and the compressed deck card format, refer to the next paragraph and the
GE-625/635 File and Record Control reference manual, CPB-1003.)

The compressed deck (COMDK) option is specified inthe operand field of the $ GMAP control

card. The normal mode of Assembleroperationis NCOMDK; that is, no compressed deck is

produced. To use the Assembler COMDK feature, the § GMAP control card would appear as
$ GMAP COMDK

and be placed as the first card of the deck. When combined with the standard output options,

the above control card would cause the Assembler to produce:

1. An output listing containing in its format a complete listing of the source card
image (See the listing and symbolic reference table formats, page 236.)

2. A compressed deck of the source card images, column-binary, alphanumeric.

CPB-1004F

225

The COMDEK format is produced by a procedure which compresses any Hollerith-coded
card image by removing sequences of 3 or more blanks and packing the information in
standard column binary form.

To accomplish the compression, the Hollerith card is consideredasbeing made up of a
series of fields and strings. A field is defined as a segment of the card containing no
sequences of more than 2 blanks except at the beginning, A string is that portion of a field
obtained by deleting any leading blanks.

Each field specification starts with the octal value of A(0<A<67g) followed by the octal value
of B(0<As<67g) followed by the B characters constituting the string. (A=the number of
characters in the field; B=the number of characters in the string.)

CPB~1004F

225.1

The size of A and B is limited, as indicated above, in order to reserve a set of codes to
serve as flags when found in a position in which a count had been expected. If a given length
exceeds the maximum length, it is segmented into separate fields. For example, given
70 (decimal) consecutive nonblank characters, itisnecessaryto treat this as two fields with:

Field1 A =617, B = 67 (octal values)
Field2 A =17, B = 17 (octal values)

The field specifications (A,B,string) are packed sequentially on a binary card in the format
indicated below. A field specification may be started on a COMDEK card (X) and may be
completed on the following card (X+1).

The following codes for A are used to designate specific conditions. The B character is
not present in such cases.

A=0 End of a compressed card; continue decoding on the next card
A =Tig End of encoded string for a given Hollerith card image

A = "6g End of the compressed deck segment

A =T0g Available for extension

The COMDEK card layout consists of:

Word 1: 0-2 Column binary card type 5
3-8 Zeros
9-11 101 (7-9 punches)
12-35 Binary sequence number
Word 2: Checksum of word 1 or words 3-24
Words 3-24: ' Compressed card image
Words 25-27: Hollerith-coded label or zeros

The binary sequence number is maintained when a COMDEK output is produced and is
checked when the deck isusedasinput. When a sequence error is found in an input COMDEK
file, the activity will be terminated.

The label words of the card are supplied in uncompressed form by the I/O Editor and give
identification data from columns 73-80 of the standard binary deck cards.

Source Deck Corrections

Corrections to an Assembler language source deck are made by the use of $§ ALTER control
cards. A source program correction deck consists of the following parts in order:

1. $ GMAP control card
2. Text of the subprogram in either of two forms:

a. Standard one-instruction-per-card deck
b. Compressed deck

CPB~1004 F

226

3. § UPDATE control card (notifies the Comprehensive Operating Supervisor that the
cards to follow are to be placed on the A* (alter) file for use by the Assembler

4. ALTER Information
a. ALTER cards (contain the updating delimiting information)
b. New source cards which are to be inserted into the source deck as additions

or replacement instructions

The operand field of the ALTER card uses alter numbers that are obtained from the previous

assembly listing of the deck now being processed. (See page 235.) The format of the
ALTER card is:

Card Column 1 8 16 32
Symbolic Example | $: ALTER n, m
$ |ALTER | 07364, 07464

Actual Example
|
|

The entries define whether the cards following are to be added or to replace cards in the
primary input file. These numbers are simply consecutive card numbers starting with
00001 and increasing by one for each source input card.

When it is desired to insert cards into a deck the m subfield is not used. In this case, the
cards following this ALTER card, up to butnot including the next ALTER card will be inserted
just prior to the card corresponding to alter number n.

When it is desired to delete and/or replace one or more cards from a deck, the m subfield
is given as shown above. When n and m are equal card n will be deleted. When m identifies
a cardfollowing n all cards n throughm will be deleted. In addition, any cards following this
ALTER card up to but not including the next ALTER card will be inserted in place of the
deleted cards.

The end of an alter file is designated by the normal end-of-file convention appropriate to
the media containing the file.

The $ UPDATE control card is prepared as indicated below.

Card Column 1 8 16 32
J 1

Symbolic Example $ | UPDATE I
|

Actual Example $ | UPDATE :
| |

List Option

CPB-1004F

227

The UPDATE control cardis used when supplying alter input to a compiler or the Assembler.
In the input sequence for a job the $ UPDATE control card and associated ALTER card with
its alter statements must follow and be contiguous to the source program to which the alter
statements apply.

The operation field contains the word UPDATE. The variable field may contain the word
LIST, in which case a listing of the Alter input will be included with the output.

ASSEMBLY OUTPUTS
Binary Decks

When the $ GMAP control card specifies the DECK option, the Assembler punches a binary
assembly output deck. Since the normal mode of the Assembler is relocatable or is implied
as a standard option, all addresses punched in the output cards are relative to zero. Alter-
natively, still considering the DECK option the Assembler can operate in the absolute mode
and punch only absolute addresses in the output cards.

The first card generated by GMAP for every subprogram object deck is a $ OBJECT card.
The format of the $ OBJECT card is as follows:

1 8 16 59 60 61 66 67 72 173
1 1 1)
$:OBJECT 10ptional Comment, : : Time of :Date 10ptional
| | Sequence Option | | Assembly |of !Label
I 1 : [: Assembly
1

Source Identification

The Optional Comment and Sequence Option subfield (columns 16-59) are either a product
of the second subfield of the LBL pseudo-operation or they can be added by the programmer,
When a sequence checking option is not specified, the Optional Label subfield of all cards
in a $ OBJECT deck will be sequence checked and the activity deleted in case of an error.
When an error is detected, a message willbe printed on the execution report. The following
sequence checking options may be specified. The standard option, SEQ, is assumed if no
option is specified,

SEQ Check sequence and delete the activity if an error occurs,
CKSEQ Sequence check and flag errors but do not delete the activity.
NSEQ No sequence check,

CPB~1004F
Rev. October 1968

228

Soufce Identification is the source of the object deck as follows:

A = ALGOL

C = COBOL

F = FORTRAN
G = GMAP

I =1IDS

Time of Assembly in columns 61-66 is in hours and thousandths of hours (thousandths are
in columns 64-66) in the form XX, XXX, This time appears in the page heading of the

associated listing,

Date of Assembly in columns 67-72 is of the form mm dd yy,

The source identification, time and date of assembly are provided by the system.

The Optional Label in columns 73-80 is a product of the first subfield of the LBL pseudo-
operation, It is an alphanumeric identification number designating the object program or

subprogram, If not specified, it is produced as starting at 00000000,

This binary information may be represented on four types of binary cards. These cards and
their uses are summarized below. GE-625/635 Loader functions performed by using the
information from these cards are described in the Loader Manual. In addition, that manual
describes the memory map layouts applicable to each user subprogram. The user sub-
program memory map blocks are (1) the subprogram region (2) the LABELED COMMON
region and (3) the BLANK COMMON region. -

CPB-1004F
Rev. October 1968

228,1

CARD TYPE

Preface

Relocatable
Binary Text

Absolute
Binary Text

Transfer

USE

Provides the Loader with (1) the length of the subprogram
text region; (2) the length of the BLANK COMMON region;
(3) the total number of SYMDEF, SYMREF, and LABELED
COMMON symbols; (4) the type identification of each symbol
in (3); and (5) the relative entry value or the region length
for each symbol in (3).

Supplies the Loader with relocatable binary text by using
preface card information and relocation identifiers where the
relocation identifiers specify whether the 18-bit field refers
to a subprogram, LABELED COMMON, or BLANK COMMON
regions (of the assembly core-storage area) and will allow
the loader to relocate these fields by an appropriate value.

Provides the Loader with absolute binary text and the absolute
starting-location value for Loader use in assigning core-
storage addresses to all words on the card.

Can be generated only in an absolute assembly and causes the
Loader to transfer control to the routine atthe location given
on the card. (The transfer card is generated automatically
as the last card of an absolute subprogram assembly by the
END pseudo-operation; however, use of the TCD pseudo-
operation can cause the card to appear anywhere in the
assembly.)

The formats in which the Assembler punches the above cards are described in the paragraphs

to follow.

CPB-1004F

229

Preface Card Format

Preface card symbolic entries are primary SYMDEF symbols secondary SYMDEF symbols,
SYMREF symbols, LABELED COMMON symbols (from the BLOCK pseudo-operation), and
the .SYMT. LABELED COMMON symbol. These symbols appear on the card in a precise
order. All SYMDEF symbols appear before any other symbol. Following the SYMDEF
symbols are any LABELED COMMON symbols. The SYMREF symbols are then recorded.

The format and content of the preface card are summarized as follows:

Word One: 100 n 101 n n

0 23 89 11 12 17 18 35

n;--Vis a value withinthe range 5< V= 17 and represents the
size of the field within a special relocation entry needed to
point to the specific preface card entry. Thus, V=log,N+1,
where N is the number of LABELED COMMON and SYMREF
entries.

n,- -Word count of the preface card text

nj3--Length of the subprogram

Word Two: Checksum of co;umns 1-3 and 7-72
Word Three: A M N
0 17 18 19 35

The value A is the length of BLANK COMMON; and N is two times the total number of
SYMDEFs, SYMREFs, and LABELED COMMONSs. The M bit indicates, when set to 1, that
the subprogram must be loaded beginning at a location which is a multiple of eight.

Words Four,

Five: Symboll; Al, K1
Words Six,
Seven: Symbol » A2, K2

CPB-~1004F

230

Words 2n+2,
2nt+3

Symboln;An’Kn

Char. Char. Char. Char. Char. Char.
1 2 3 4 5 6
0 56 11 12 17 18 23 24 29 30 35
A K
0 17 18 35

The even-numbered word contains the symbol in BCD. The value K defines the type symbol
in the even-numbered word; A is a value associated with K as explained in the following list.

If K equals zero, then the symbol is a primary SYMDEF symbol; A is the entry value
relative to the subprogram region origin.

If K equals one, then the symbol is a secondary SYMDEF symbol; A is the entry value
relative to the subprogram region origin.

If K equals five, then the symbol is a SYMREF symbol; A is zero.

If K equals six, then the symbol is a LABELED COMMON symbol; A is the length
of the region.

If K equals seven, then the symbol is a .SYMT. LABELED COMMON symbol; A is the
length of the region reserved for debug information.

NOTE: If preface continuation cards are necessary, word three will be repeated unchanged
on all continuation cards.

Relocatable Card Format

A relocatable assembly card has the format and contents summarized in the following

comments.

Word One:

010

101 n n

23

89 11 12 17 18 35

n --0 indicates that loading is within the subprogram region
of the user subprogram core-storage area

n,--Word count of the data words to be loaded using the
origin and relative address in this control word

n ,--Loading address, relative to the subprogram region
origin,

CPB-1004F

231

or for the alternative cases:

n,--i, where i#0 indicates that the ith entry (beginning with
the first LABELED COMMON entry in the preface card text)
has been used and that n, is relative to the origin of that entry.

Word Two: Checksum of columns 1-3 and 7-72
Three - H H
Five: 111 I 3 4 l 5 6
A :B c{ D E r - > - -
o | I
1 i
0 4 5 9 10 14 15 19 20 24 25 29 30
P
1.8 1 9 10 11 I 12 13
A|BC;DE > > » » >
L l l
[{
0 4 5 9 10 14 15 19 20 24 25 29 30 34 35
s | l 16 17 I 18 |
A : B c: D E - > -
I | |
I 1
0 45 9 10 14 15 19 20
Relocation data--words three and four comprise seven 5-bit
relocation identifiers, while word five holds 5 such identi-
fiers. The five bits of each identifier carry relocation
scheme data for eachof the card words (7+7+5=19, or fewer).
The identifiers are placed in bit positions 0-34 of words
three and four and in 0-24 of word five. (Refer to the
Relocation Scheme description in the paragraph following.)
Words Six- Instructions and data (up to 19 words per card). If the card
Twenty- Four: is not complete and at least two words are left vacant, then

after the last word entered, word one may be repeated with
a new word count and loading address. The loading is then
continued with the new address, and the relocation bits are
continuously retrieved from words three through five. This
process may be repeated as often as necessary to fill a card.

Relocation Scheme

For each binary text word in a relocatable card, the five bits--A, BC, and DE--of each
relocation scheme identifier are interpreted by the Loader as follows:

Bit A--0 (reserved for future use)
Bits BC--Left half-word

Bits DE--Right half-word

CPB=1004F

232

To every 18-bit half-word one of four code values apply; these are:

CODE VALUE MEANING
xx = 00 Absolute value that is not to be modified by the Loader,
=01 Relocatable value that is to be added to the origin of the
subprogram region by the Loader,
= 10 BLANK COMMON, relative value that is to be added to the
origin of the BLANK COMMON region by the Loader,
=11 Special entry value (to be interpreted as described in the

next paragraph.

apply where xx stands for BC or DE,

If special entry is required, the Loader decodes and processes the text and bits of the 18-bit
field (left/right half of each relocatable card word) as follows:

Bit 1 --This is the sign of the addend; 0 implies a plus (+) and 1
implies a minus (-),

Bits 27V+1 --The value V that was specified in word 1 of the preface
card dictates the length of the field, The contents of the
field is a relative number which points to a LABELED
COMMONregionor a SYMREF that appeared in the preface
card. The value one in this field would point to the first
symbol entry after the last SYMDEF,

Bits V+2- 18 --The value in this field is the addend value that appeared in
the expression, If the field is all bits then the corresponding
18 bits of the next data word are interpreted as the addend.
In this special case there will be no relocation bits for the
addend word,

All references to each undefined special symbol are chained together. When the symbol is

defined, the Loader can rapidly insert the proper value of the symbol in all relocatable
fields that were specified in the chain,

Absolute Card Format

The absolute binary text card appears as shown below,

Word One:

001 n 101 n n

0 23 8 9 11 12 17 18 35
nl--O
n,--Word count of the card text

nj3--Loading address relative to the absolute core-storage
origin zero (of allocated memory).

CPB-1004F

233

Word Two: Checksum of columns 1-3 and 7-72

Words Three- Instructions and text (22 words per card, maximum), If the

Twenty- Four: card is not complete and at least two words are left vacant,
then after the last word entered, word one may be repeated
with a new word count and loading address.

Transfer Card Format

The transfer card is generated by the Assembler only in an absolute assembly deck. Its
format and contents are:

Word One:
000 n, 101 n, n,
0o 23 89 11 12 17 18 35
n;--0
nz--O
ny--Transfer address (in absolute only).
Words Two- Not used

Twenty- Four:

Assembly Listing

Each Assembler subprogram listing is made up of the following parts:

1. Execution Report (See GE-625/635 Comprehensive Operating Supervisor Reference
Manual)

2. The contents of all preface cards (primary SYMDEF symbols, secondary SYMDEF
symbols, SYMREF symbols, LABELED COMMON symbols--from the BLOCK
pseudo-operation--and the .SYMT. LABELED COMMON symbol), This section
is omitted from an absolute assembly.

3. The sequence of instructions in order of input to the Assembler.

4. The symbolic reference table,

Full Listing Format

Each instruction word produced by the Assembler is individually printed on a 120-character
line. The line contains the following items for each such word of all symbolic cards:

1. Error flags--one character for each error type (see “Error Codes” page 237).

2. Octal location of the assembled word,

CPB-1004F
Rev. July 1969

234

4]

Octal representation of the assembled word

4. Relocation bits for the assembled word (see the topic, Relocation Scheme, Loader
manual)

5. Reproduction of the symbolic card, including the comments and identification fields,
exactly as coded

The exact format of the full listing is as follows:

Ficlds A B C D E F G H

Print line 1-6 7-12 15-20 22=-25 27,28 31-33 35-39 41-120

Columns — J —
Machine Source Card

A--Error flags
B--Relative/absolute location
C-=-Operand address
D--Operation code

Instruction

Image

E--Tag field modifier
F--Relocation bits
G--Alter statement number
H-=-Card image

Several variations appear for bit positions 15 through 28, (The six, four, two subfield
groups C, D, and E shown above is the octal configuration for machine instructions,) These
are summarized in the table below in which the X represents one octal digit,

Type of Machine Word

1.

2.

Processor instruction
and indirect address

Data

Data Control
Special 18-bit field data

Input/output command

Listing Format

XXXXXX XXXX XX

XXXKXXXXXXXXX

XXXXXX XX XXXX

XXXXXX XXXXXX

XX XXXX XXXXXX

Source Program Instruction

Processor instruction and
indirect address word

Data generating pseudo-
operations (OCT, DEC,
BCI, etc.)

Data Control Word (DCW)
ZERO pseudo-operation

Input/output pseudo-
operation (See Appendix E.)

Error flags are summarized at the end of this section. The interpretation of the relocation
bits is described in the Loader manual. That field (F) will be blank in an absolute assembly.

Preface Card Listing

The listing of the preface information is in a self-explanatory format, with each major
subdivision of preface symbols preceded by a heading. The order is the same as that of
the card(s) produced.

235

CPB~1004F
Rev. July 1969

Primary SYMDEFs, secondary SYMDEFs, LABELED COMMON, and SYMREFs. The
LABELED COMMONs and SYMREFs are numbered sequentially 1 through n, where this
number represents the special relocation entry number employed in referencing these
special symbols.

BLANK COMMON Entry

Prior to the listing of the special symbols, the Assembler enters a statement of the amount
of BLANK COMMON storage requested by the subprogram. The statement format is self-
explanatory.

Symbolic Reference Table

The symbol table listing contains all symbols used, their octal values (normally, the location
value), and the alter numbers of allinstructions that referenced the symbol. The table format
is as follows:

OCTAL SYMBOL REFERENCES BY ALTER NO,

364 BETA 103 103 1027 1761 3767 7954

The above sample indicates that the symbol BETA has been assigned the value 364g and is
referenced in five places: namely, at alter number positions 103, 1027, 1761, 3767, and
7954 in the listing of instructions. The first alter number is the point in the instruction
listing where the symbol was defined. If an instruction contains a symbol twice, the alter
number for that point in the instruction listing is given twice, The alter numbers are
assigned sequentially in the subprogram listing, one per instruction. Because of this fact,
it is easy for the programmer to locate in the listing those card images that referenced any
particular symbol as well as locate the card image that caused the symbol to be defined.

The symbolic reference table will contain symbols referenced in the DUP pseudo~-operation.

A separate symbolic reference table is generated for MACRO’s (when the REFMA ON
pseudo-operation is specified) that contains an entry of the MACRO name and alter number
for each MACRO reference.

CPB-~1004F
Rev. July 1969

236

Error Codes

The following list comprises the error flags for individual instructions and pseudo-operations,

ERROR FLAG
Undefined U
Multidefined M
Address A
Index X
Relocation

Phase p
Even E
Conversion C
Location

Operation (o]
Table

CAUSE
Undefined symbol(s) appear inthe variable field,

Multiple-defined symbol(s) appear in the location
field and/or the variable field,

Illegal value or symbol appears in the variable
field, Alsousedtodenote lackof a requiredfield,

Illegal index or address modification.

Relocation error; expression in the variable field
will produce a relocatable error upon loading,

Phase error; this implies undetected machine
error or symbols becoming defined in Pass two
with a different value from Pass one.

Inappropriate character in column 7.

Error in conversion of either a literal constant
or a subfield of a data-generative pseudo-
operation, Illegal character,

Error in the location field.

Illegal operation,

An assembly table overflowed not permitting
proper processing of this card completely. Table

overflow error information will appear at the end
of listing.

GMAP also prints out the following error messages which are self explanatory:

Symbol Table Overflow

Macro Expansion Table Overflow
Macro Prototype Table Overflow

No END Card on Input File

Symbol Reference Table Overflow
Execution not Possible, no SYMDEFS.

Too Many Cards to be Duplicated
Operation Table Overflow
Unexpected EOF on Intermediate File

NXEC Option Specified. Fatal Errors
Not Enough Cards to be Skipped

... Execution Deleted

CPB-1004F
Rev. July 1969

237

IV. CODING EXAMPLES

PRELIMINARY

This chapter contains examples of coding techniques for performing typical program
functions. These examples:

1. Indicate how certain very efficient Processor instructions can be used

2. Illustrate the use of address modification variations for indexing, indirection and
automatic tallying

3. Demonstrate operations performed on characters
4. Show operations on fixed- and floating-point numbers
5. Present the use of the BCD instruction
The list of examples is by no means complete in that it does not present all of the processor

capabilities; however, the examples provided can serve as convenient references for
programmers newly acquainted with the GE625/635.

Each example is self-contained and self-explanatory. In most cases, questions that may be
raised can be answered by referring to the descriptions of particular instruction or pseudo-
operations. Convenient references are contained in Appendixes A through D,

EXAMPLES

Fixed Point to Floating Point (Integer)

The following example illustrates the conversion of a fixed-point integer to floating point
(float an integer). The integer to be converted is in the location M,

Step 01 resets the Overflow Indicator.

Step 02 places the binary integer to be converted in the accumulator,
Step 03 places zeros in the quotient register.

Step 04 sets the exponent register to 35 10.
Step 05 converts the number in the accumulator to floating point,

CPB-1004F

For example, if the contents of M equal 000000000002g, then the contents of the floating-
point register will be E = 2;5, and AQ = 200000000000000000000000 , at the completion of
step 05.

01 TOV 1,Ic

02 LDA M FLOAT AN INTEGER M
03 LDQ ,DL C(AQ) = M AT B35.
04 LDE =35B25,DU C(E) = 35.

05 FNO NORMALIZE M

Floating Point to Fixed Point (Integer)

The following example illustrates the conversion of a double-precision, floating-point
number to a fixed-point number, binary point 71. The result will be only the integral part
of the number. The number to be converted must lie between -2 "Tand 271 -1 inclusive.

Step 01 loads the floating-point number to be converted into the floating-point register.

Step 02, an unnormalized floating add of zero (exponent of 71), causes the contents of AQ
to be shifted right a number of places equal to the difference between 71 and the exponent of
the number to be converted. This will leave in AQ the binary integer (binary point 71)
equal to the integral part of the floating-point number in X and X+1.

For example, if prior to executing step 02, the floating-point register contained -2, that
is, if the exponent register contained 2,, and AQ contained 600000000000000000000000 g, then
the result in AQ after the addition of zero (exponent 71) would be 777777777777777777777776 g

01 DFLD X COMPUTE THE INTEGER PART OF
A FLOATING-POINT NUMBER CON-
TAINED IN X AND X+1.

02 UFA =71B25,DU FIX THE RESULT IN AQ, BINARY
POINT 71.

CPB-~1004F

240

Real Logarithm

Purpose:

Method:

Compute log X for ALOG(X) or ALOG10(X) in an expression,

1.

Use:

10g2X = logoy (ZI*F) = I + logyF, where X=21*F.

- (log,X) _ 5 -
logeX 1oge2 2 (logzx) * (logQZ), and similarly log10X= (1og2X) * (10g102).

V2 F-.707

F -
= 7% = L = iy = —
logzx Z <§+ <]23 >> 10ng+2, where Z — ;\fz—; 707
z -C (—)
2

A = 1.2920070987
B =-2.6398577031
C = 1.6567626301

N

X and log X are real numbers, with values of X from 271295 2127 5100 jpctugive.

log X is accurate to 8 decimal places.

Calling Sequence -- CALL ALOG(X) for logeX

CALL ALOG10(X) for log ;,X

CPB-1004F

241

SYMDEF
LOGS SAVE
FLD
FNO
TZE
TMI
BEGIN FCMP
TZE
STE
LDE
DFAD
DFST
DFSB
DFDV
DFST-
DFMP
DFSB
DFDI
DFAD
DFMP
DFST
I LDA
LDQ
LDE
FSB
DFAD
INDIC DFMP
RETURN
ERR! CALL
UNITY FLD
RETURN
ERR2 CALL
FNEG
TRA

ALOG10ESTC2
TRA
DEC

ALOG ESTC2
TRA
DEC

EALN1 DEC

EALN2 DEC

A DEC

B DEC

C DEC

SRHLF DEC

SRIWO DEC

Z BSS
END

ALOG10 ,ALOG

*-% DU
0,DU
=7B25,DU
=0.5,DU

Z

%

LOGS

.FXEM. (EALN1)
=0.0,DU

LOGS

.FXEM. (EALN2)

BEGIN

INDIC

LOGS
.301029996D0
INDIC

LOGS
6.93147180559D-1
9

10
.12920070987D1
-.26398577031D1
.16567626301D1
.707106781187D0
.1414213562374D1
2

REAL LOGARITHM FUNCTIONS
X = (2%%I) * F = ARGUMENT

ERROR IF X=0
ERROR IF X NEGATIVE

LOG(1) = 0
STORE I AT BINARY POINT 7
OBTAIN F

z2= (F - SQRT(1/2))/(F + SQRT(1/2))
Z

z2-C

B/(22-C)

A+B/(22-C)

Z(A+B/(Z2-C))

Z = Z%(A + B/(Z%%2-C)) = LOG2(F) + 1/2

FLOAT I
LOG2(X) = I + LOG2(F)
CONVERT TO BASE 10 OR E

ERROR EXIT NUMBER 1 (X=0)

ERROR EXIT NUMBER 2 (X IS NEGATIVE)

REAL COMMON LOGARITHM

REAL NATURAL LOGARITHM

SQUARE ROOT OF TWO DIVIDED BY TWO
SQUARE ROOT OF TWO

CPB-1004F

242

BCD_Addition

The following example illustrates the addition of two words containing BCD integers. The
example limits the result to 999999,

Step 01 places the number in A into the accumulator.

Step 02 adds the number in B to the accumulator, Column V in the table, following,
shows the possible results for any digit. It should be noted that there are 19 possible
results, indicated by lines 0-18,

Step 03 forces any carries into the units position of the next digit, Lines 10-18 of Column
V contain the sums that will carry into the next digit. Column W contains the 20 possible
results for each digit position. The additional possibility (line 19) arises from the fact that
there can be a carry of one into a digit.

Step 04 stores the intermediate result in C.

Step 05 extracts an octal 60 from each non-carry digit. The results are indicated in column
X. The digits that did not force a carry (lines 0-9) result in an octal 60, the digits that had
a carry into the next digit (lines 10-18) result in 00,

Step 06 performs an exclusive OR of the contents of the accumulator with the contents of
C. This in effect subtracts octal 60 from each digit that did not have a carry (lines 0-9).
The results are indicated in Column Y.

Step 07 shifts the octal 60s to the right three places.

Step 08 negates the contents of the accumulator.

Step 09 is an add to storage the contents of the accumulator to the contents of C. This in
effect subtracts a 06 from each digit that did not have a carry, the results of which are
indicated in Column Z,

01 LDA A TO ADD C = A+B IN BCD.

02 ADILA B COMPUTE A+B

82 ggiA =0666666666666 ADD OCTAL 66 TO EACH DIGIT TO FORCE CARRIES
C

05 ANA =0606060606060 EXTRACT OCTAL 60 FROM EACH NON=-CARRY

06 ERSA [¢ SUBTRACT OCTAL 60 FROM EACH NON~CARRY

07 - ARL 3 SUBTRACT OCTAL

08 NEG 06 FROM EACH

09 ASA C NON-CARRY

CPB-1004F

243

ADDITION RESULTS

LINE \ W X Y Z
0 00 66 60 6 00
1 01 67 60 7 01l
2 02 70 60 10 02
3 03 71 60 11 03
4 04 72 60 12 04
5 05 73 60 13 05
6 06 75 60 14 06
7 07 75 60 15 07
8 10 76 60 16 10
9 11 77 60 17 11

10 12 00 00 0 00
11 13 01 00 1 01
12 14 02 00 2 02
13 15 03 00 3 03
14 16 04 00 4 04
15 17 05 00 5 05
16 20 06 00 6 06
17 21 07 00 7 07
18 22 10 00 10 10
19 - 11 00 11 11

BCD Subtraction

The following is an example of subtracting one BCD number from another BCD number,
The contents of A must be equal to or greater than the contents of B.

Step 01 loads the accumulator with the contents of A,

Step 02 subtracts the contents of B from the accumulator. The possible results for each
digit are indicated in Column W of the table that is included with this example.

Step 03 stores the intermediate result in C.
Step 04 extracts an octal 60 from each digit that required a borrow. This will leave an
octal 60 in each digit position where there was a borrow. The possible results of this

instruction are indicated in Column X, lines 0-19 (10-19 refer to those which result in
octal 60.)

Step 05, an exclusive ORto storage, in effect subtracts the octal 60’s in the accumulator from
the corresponding digit in C. The possible results for each digit are displayed in Column Y,
Step 06 shifts the octal 60’s in the accumulator right three places.

Step 07 negates the contents of the accumulator.

Step 08, an add to storage, is in effect a subtraction of 06 from each digit that required a

borrow, the result being placed in C, Column Z of the table reflects the possible results
for each digit.

CPB-1004F

244

0l LDA A TO SUBTRACT C = A-B IN BCD.

02 SBLA B { COMPUTE A-B

03 STA C

04 ANA =0606060606060 EXTRACT OCTAL 60 FROM EACH BORROW
05 ERSA C SUBTRACT OCTAL 60 FROM EACH BORROW
06 ARL 3 SUBTRACT OCTAL

07 NEG } {06 FROM EACH

08 ASA C BORROW

SUBTRACTION RESULTS

LINE W X Y Z
0 11 0 11 11
1 10 0 10 10
2 07 0 07 |07
3 06 0 06 06
4 05 0 05 |05
5 05 0 04 04
6 03 0 03 103
7 06 0 02 102
8 01 0 01 |01
9 00 0 00 |00

10 77 60 17 11
11 76 60 16 10
12 75 60 15 107
13 74 60 14 106
14 73 60 13 105
15 72 60 12 |04
16 71 60 11 {03
17 70 60 10 02
18 67 60 7 |Jo1
19 66 60 6 00

Character Transliteration

The following example illustrates a method of transliterating each character of a card
image that has been punched in the FORTRAN Character Set to the octal value of the
corresponding character in the General Electric Standard Character Set. There are
48 characters in the FORTRAN Set and 64 characters in the General Electric Standard
Character Set, Each character that is punched invalidly (not a standard punch combination
in the FORTRAN Set) is converted to a blank, The card is origined at IMAGE.

Steps 01 and 02 initialize the indirect word TALLY2,

Step 03 picks up the character to be transliterated by referencing the word TALLY2 with
the Character from Indirect (CI) modifier. This will place the character specified by bits
33-35 of TALLY2 from alocation specified by bits 0-17 of TALLY2 into the accumulator, bits
29-35. Bits 0-28 of the accumulator will be set to zero. Step 03 is forced even so as to
place the four-step loop (step 03-06) in two even/odd pairs. This decreases run time,

Step 04 picks up the corresponding General Electric standard character from the address
TABLE modified by the contents of accumulator, bits 18-35,

Step 05 places the transliterated character back in the card image where it was originally
picked up. The Sequence Character (SC) modifier increments the character specified in
bits 33-35 of the word TALLY2,

CPB-1004F

245

Each time the character position becomes greater than 5, it is reset to zero; and the address
specified in bits 0-17 of TALLY2 is incrementedby one. The tally in bits 18-29 of the same
word is decremented by 1 with each SC reference. Whenever a tally reaches zero, the Tally
Runout Indicator is set ON, Otherwise, it is set OFF.

Step 06 tests the Tally Runout Indicator. If it is OFF, the program transfers to LOOP; if
not, the next sequential instruction is taken.

The table, TABLE, is 64 locations long. The character in each location is a General Electric
standard character that corresponds to a FORTRAN character in the following manner. The
relative location of a particular character to the start of the table is equal to the binary value
of the corresponding FORTRAN character. For example, an A punched in the FORTRAN
Character Set has the octal value 21(1710). The relative location 17 to TABLE contains an A
in the General Electric Standard Character Set. A 3-8 punch in the FORTRAN Set represents
an = character. The 3-8 punch would be read as an octal 13(11 ;). The relative location 11
to TABLE contains an octal 75 (see line 21) which represents the = character in the General
Electric Standard Character Set.

01 LDA TALLY1 INITIALIZE TALLY WORD

02 STA TALLY2

03 Loop ELDA TALLY2,CI PICK UP CHARACTER TO BE TRANSLITERATED
04 LDQ TABLE,AL LOAD OR WITH TRANSLITERATED CHARACTER
05 STQ TALLY2,SC STORE BACK ON CARD IMAGE
06 TTF LOOP IF TALLY HAS NOT RUN OUT CONTINUE LOOP
07 TALLY1l TALLY IMAGE, 80,0

08 TALLY2 ZERO

09 IMAGE BSS 14

10 TABLE OCT 0

11 OCT 1

12 OCT 2

13 OCT 3

14 oCcT 4

15 OCT 5

16 OCT 6

17 OCT 7

18 OCT 10

19 OCT 11

20 OCT 20

21 OCT 75 3-8 PUNCH = IN FORTRAN SET
22 OCT 57 4-8 PUNCH ' IN FORTRAN SET
23 OCT 20

24 OCT 20

25 OCT 20

26 OCT 20

27 OCT 21

28 OCT 22

29 OCT 23

30 OCT 24

31 OCT 25

32 OCT 26

33 OCT 27

CPB-1004F

246

34 OCT 30

35 OCT 31

36 OCT 60 12 PUNCH + IN FORTRAN SET

37 OoCT 33 12-3=8 PUNCH . IN FORTRAN SET
38 OCT 55 12-4-8 PUNCH) IN FORTRAN SET
39 oCcT 20

40 OoCT 20

41 OCT 20

42 OoCT 20

43 oCT 41

44 ocT 42

45 OCT 43

46 OCT 44

47 oCcT 45

48 OCT 46

49 OCT 47

50 ocT 50

51 OCT 51

52 OCT 52 11 PUNCH - IN FORTRAN SET

53 OCT 53 11-3-8 PUNCH $ IN FORTRAN SET
54 OCT 54 11-4~8 PUNCH * IN FORTRAN SET
55 OoCcT 20

56 OCT 20

57 OoCT 20

58 OCT 20

59 OCT 61 0-1 PUNCH / IN FORTRAN SET

60 OoCT 62

61 OCT 63

62 OCT 64

63 OCT 65

64 OCT 66

65 OCT 67

66 OCT 70

67 ocT 71

68 OCT 20

69 OCT 73 0-3-8 PUNCH , IN FORTRAN SET
70 OCT 35 0-4=-8 PUNCH (IN FORTRAN SET
71 0CT 20

72 OCT 20

73 OCT 20

Table Lookup

The following example illustrates a method of searching an unordered table for a value equal
to the value in the accumulator. Prior to entering the routine given below, the user must
load the accumulator with the search argument, load the quotient register with the size of
the table to be searched (the size should be scaled at binary point 25), and initialize index
register 1 with the first location of the table to be searched. The user enters the routine
by executing a transfer and set index register 2 (TSX2) to the symbolic location TLU (see
step 05, below). Return from the routine is to the instruction following the TSX2. The
Zero Indicator will tell the user whether or not a match has occurred, Zero Indicator
ON indicates a match; Zero Indicator OFF indicates no match, If a match was made, the
contents of index register 1 will be W locations (W being the increment specified in the
RPTX command, step 15) higher than the location of the equal argument.

CPB-1004F

Steps 01-11 are comment cards.

Step 12 places the contents of the lower half (bits 18-35) of the quotient register plus 64,
in index register 0. The number 64, in effect, set the TZE terminate repeat condition on.
The instruction also places the last 8 bits of the size of the table in index register 0, bits
0-7. Thus, if the size of the table is a multiple of 256 words, zeros will be loaded into bits
0-7 of index register 1. Zeros in those bit positions will cause the repeat to execute 256
times. If, however, the size of the table to be searched is of the form 256n+m, where n=0,
and 0 < m< 256, then m would be placed in bits 0-7 of index register 0. This will cause the
repeat instruction to be executed a maximum of m times on the first pass through,

Step 13 subtracts 1024 from the quotient register. This, in effect, subtracts 1 from the
size of the table to be searched. The subtracting of 1 becomes meaningful in two places:
(1) it provides a test to be sure the table is not zero words long (see step 14) and (2) if
the table is a multiple of 256 words long, it effectively subtracts 1 from bits 0-17 (a
look-ahead to steps 18 and 19 points out the importance of this).

Step 14 causes the routine to return to the main program if the size of the table was zero.

Step 15, an RPTX, executes step 16 anumber of times equal to the contents of index register
0, bits 0-7, at the start of the instruction execution, Each time step 16 is executed, the
contents of the accumulator (the search argument) are compared with the contents of the
location specified by index register 1. Atthe same time, index register 1 is incremented by
W as is specified in the repeat instruction; and the contents of index register 0, bits 0-7,
are decremented by 1. The repeat sequence terminates when the compare causes the Zero
Indicator to be set or when bits 0-7 of index register 0 are set to zero.

Step 17 tests the Zero Indicator and returns to the main program if it is set. It should be
noted that index register 1 will be set W locations higher than when the equal argument was
found because of the sequence of events described above.

Step 18. I the Zero Indicator was not set by step 16, then step 18 will be executed. This
instruction subtracts 1 frombits0-17 of the quotient register. In effect, this is subtracting
256 from the size of the table, The size of the table can be expressed in the form 256n+m.
If m=0 and n=1, then the contents of the quotient register would also go zero at this point.
This is because step 13 would have caused a borrow of 1 from n when m equals zero.
Further inspection of these instructions will reveal that positive values of n and m, other
than those expressed above, will only cause the routine to loop until the contents of the
quotient register are reduced to a negative value.

Step 19 transfers control to step 15 if the contents of quotient register remained positive.
If the quotient register became negative, step 20 is executed and the routine returns to the
main program,

CPB-1004F

248

It should be noted that when control is transferred back to step 15, index register 0, bits 0-7,
contains zeros (causes the repeat to be executed a maximum of 256 times); and index
register 1 contains the address of the next location in the table that is to be searched.

01 * CALLING SEQUENCE IS

02 * LDA ITEM SEARCH ITEM.

03 * LDQ SIZE NUMBER OF TABLE ENTRIES--AT B25.

04 i LDX1 FIRST,DU LOCATION OF FIRST SEARCH WORD IN TABLE.
05 * TSX2 TLU CALL TABLE LOOKUP SUBROUTINE,

06 * TZE FOUND TRANSFER IF SEARCH ITEM IS IN TABLE, OR
07 * TNZ ABSENT TRANSFER IF SEARCH ITEM IS NOT IN TABLE.
08 * USE ONE OF THE TWO INSTRUCTIONS IMMEDIATELY ABOVE.

09 * IF IN TABLE, C(X1)~-W WILL BE THE LOCATION OF THE MATCHING SEARCH
10 * WORD. OTHERWISE, C(X1)=-W WILL BE THE LOCATION OF THE LAST

11 * SEARCH WORD IN THE TABLE. W IS THE NUMBER OF WORDS PER ENTRY.

12 TLU EAXO 64,QL PICKUP SIZE (MOD 256) AND TZE-BIT

13 SBLQ 1024 ,DL SIZE = SIZE-1.

14 ™I »2 EXIT IF SIZE WAS 0--EMPTY TABLE.

15 TLU1 RPTX SW NOTE THAT O REPRESENTS 256 (MOD 256).
16 CMPA , 1 PERFORM TABLE LOOKUP

17 TZE 52 EXIT IF SEARCH ITEM IS IN TABLE.

18 SBLQ 1,pU SIZE = SIZE=256.

19 TPL TLUL CONTINUE TABLE LOOKUP IF MORE ENTRIES.
20 TRA »2 EXIT--SEARCH ITEM IS NOT IN TABLE.

Binary to BCD

The following example illustrates a method of converting a number from binary to BCD.
The example converts a number that is in the range of -10%+1 to +106—1, inclusive,

Step 01 places zeros in index register 2.
Step 02 loads the accumulator with the binary number that is to be converted.

Steps 03 and 04 perform the conversion of the binary number in the accumulator to the
Binary-Coded Decimal equivalent, Step 03 will repeat step 04 six times. It will also
increment the contents of index register 2 by one after each execution,

The BCD instruction, step 04, is designed to convert the magnitude of the contents of the
accumulator to the Binary-Coded Decimal equivalent, The method employed is to effectively
divide this number by a constant, place the result in bits 30-35 of the quotient register
and leave the remainder in the accumulator, The execution of the BCD instruction allows
the user to convert a binary number to BCD, one digit at a time, with each digit coming
from the high-order part of the number, The address of the BCD instruction refers to a
constant to be used in the division; a different constant is needed for each digit. In the
process of the conversion, the number in the accumulator is shifted left three positions.
The C(Q),_ as are shifted left 6 positions before the new digit is stored.

CPB-1004F

249

In this example, the constants used for dividing are located at TAB, TAB+1, TAB+2,...,
TAB+5, If the value in X were 0000005222415, the quotient register would contain
0107030201075 at the completion of the repeat sequence. Step 05 stores the quotient
register in Y,

The values in the table below are the conversion constants to be used with the Binary to
BCD instruction. Each vertical column represents the set of constants to be used depending
on the initial value of the binary number to be converted to its decimal equivalent. The
instruction is executed once per digit, using the constant appropriate to the conversion step
with each execution.

An alternate use of the table for conversion involves the use of the constants in the row
corresponding to conversion step 1. If after each conversion, the contents of the accumulator
are shifted right 3 positions, the constants in the conversion step 1 row may be used one
at a time in order of decreasing value until the conversion is complete.

BINARY TO BCD CONVERSION CONSTANTS

—
Starting ! ~ ~
Ra S ~
AN Y SO S S O B Y O ANy LY
(] QS o~ Q ~N S
w/)55 F)i F)F
,S’* ~ ~ ~ " ~ nd ~ ¥ g
4 ot o™ AT “’Q i ¥ o c\é ~F
Conversion v S S ,S v’ S 7 < v ',S
Step
1] 8%10% | & x108 | 8 x107 |8 x10° | 8 x10° | 8 x10% | 8 x10° |8 x102| 8 x10*| &
2 | 8%x108 | 82x107 | 82x10° | 8%x10° | 8%x10% | 82x10° | 8%x102 |82x10' | 82
3 | 83x107 | 83x10° | 83x10° | 83x10% | 8%x10° | 83x10? | 83x10" |83
4 | 8%x10°% | 8%x10° | 8%x10% | 8%x103 | 8%x102 | 8%x10! | 8%
5 | 8°x10° | 8°x10% | 87x103 | 8°x102 [&°x10! | 8°
6 | 8%%10% | 8%x103 | 8%x102 | 8®x10! | 8°
7 8714103 87}{1(')2 87x101 87
8 | 885102 | 88510t | 88
9 |8%x10" | &°
10 | 810
01 LDX2 0,DU PLACE ZEROS IN X2
02 A X LOAD ACCUMULATOR WITH VALUE TO BE CONVERTED
03 RPT 6,1 REPEAT 6 TIMES, INCREMENT BY 1
04 BCD TAB, 2 DIVIDE BY TAB, TAB+1, EIC.
05 sTQ Y STORE CONVERTED NUMBER IN Y
06TAB DEC 800000, 640000, 512000, 409600, 327680
DEC 262144

CPB-1004F

250

APPENDIX A. GE-615/635 INSTRUCTIONS LISTED BY
FUNCTIONAL CLASS WITH PAGE REFERENCES AND TIMINGS

GE-615 GE-635

DATA MOVEMENT Timing Timing Reference
Load (usec)# (usec)# (Page)
LDA 235 Load A 4.0 1.9 48
LDQ 236 Load Q 4.0 1.9 48
LDAQ 237 Load AQ 4.3 1.9 48
LDXn 22n Load Xn from Upper 4.3 1.9 49
LXLn 72n Load Xn from Lower 4.0 1.9 49
LREG 073 Load Registers 14.3 6.7 49
LCA 335 Load Complement A 4.0 1.9 50
LCQ 336 Load Complement Q 4.0 1.9 51
LCAQ 337 Load Complement AQ 4.3 1.9 51
LCXn 32n Load Complement Xn 4.0 1.9 52
EAA 635 Effective Address to A 2.6 1.6 52
EAQ 636 Effective Address to @ 2.6 1.6 53
EAXn 62n Effective Address to Xn 2.6 1.6 53
LDI 634 Load Indicator Register 4.0 1.9 54
Store

STA 755 Store A 3.2 2.1 55
STQ 756 Store Q 3.2 2.1 55
STAQ 757 Store AQ 4.2 3.0 55
STXn T4n Store Xn into Upper 3.2 2.1 55
SXLn 44n Store Xn into Lower 3.2 2.1 56
SREG 753 Store Register 14.2 9.5 56
STCA 751 Store Character of A (6 Bit) 3.2 2.1 57
STCQ 752 Store Character of Q (6 Bit) 3.2 2.1 57
STBA 551 Store Character of A (9 Bit) 3.2 2.1 58
STBQ® 552 Store Character of Q (9 Bit) 3.2 2.1 59
ST1 754 Store Indicator Register 3.5 2.5 60
STT 454 Store Timer Register 3.0 2.1 61
SBAR 550 Store Base Address Register 3.5 2.5 61
STZ 450 Store Zero 3.5 2.5 61
STC1 554 Store Instruction Counter plus 1 3.5 2.5 62
STC2 750 Store Instruction Counter plus 2 3.5 2.5 62
Shift

ARS 731 A Right Shift 6.5 2.1 63
QRS 732 Q Right Shift 6.5 2.1 63
LRS 733 Long Right Shift 6.5 2.1 63

#See Calculation of Instruction Execution Times, page 42.

CPB-~1004F
Rev. July 1969

251

GE-615 GE-635

DATA MOVEMENT Timing Timing Reference
Shift (usec)t (usec)# (Page)
ALS 735 A Left Shift 6.5 2.1 64
QLS 736 Q Left Shift 6.5 2.1 64
LLS 737 Long Left Shift 6.5 2.1 65
ARL 71 A Right Logic 6.5 2.1 65
QRL 772 Q Right Logic 6.5 2.1 65
LRL 773 Long Right Logic 6.5 2.1 66
ALR 775 A Left Rotate 6.5 2.1 66
QLR 776 Q Left Rotate 6.5 2.1 66
LLR 17 Long Left Rotate 6.5 2.1 67

FIXED-POINT ARITHMETIC

Addition
ADA 075 Addto A 4.0 1.9 68
ADQ 076 Add to Q 4.0 1.9 68
ADAQ 077 Add to AQ 4.3 1.9 69
ADXn 06n Add to Xn 4.0 1.9 69
ASA 055 Add Stored to A 4.0 1.9 70
ASQ 056 Add Stored to Q 4.9 3.3 70
ASXn 04n Add Stored to Xn 4.9 3.3 71
ADLA 035 Add Logic to A 4.0 1.9 71
ADLQ 036 Add Logic to Q 4.0 1.9 72
ADLAQ 0317 Add Logic to AQ 4.0 1.9 72
ADLXn 02n Add Logic to Xn 4.0 1.9 73
AWCA 071 Add with Carry to A 4.0 1.9 73
AWCQ 072 Add with Carry to Q 4.0 1.9 74
ADL 033 Add Low to AQ 4.0 1.9 75
AOS 054 Add One to Storage 4.9 3.3 75
Subtraction
SBA 175 Subtract from A 4.0 1.9 76
SBQ 176 Subtract from Q 4.0 1.9 76
SBAQ 177 Subtract from AQ 4.0 1.9 ™
SBXn 16n Subtract from Xn 4.0 1.9 M
SSA 155 Subtract Stored from A 4.9 3.3 78
SSQ 156 Subtract Stored from Q 4.9 3.3 78
SSXn 14n Subtract Stored from Xn 4.9 3.3 79
#See Calculation of Instruction Execution Times, page 42.

CPB~1004F

Rev. July 1969
252

GE-615 GE-635
FIXED-POINT ARITHMETIC Timing Timing Reference
(usec)t (usec)# (Page)

Subtraction

SBLA 135 Subtract Logic from A 4.0 1.9 79
SBLQ 136 Subtract Logic from Q 4.0 1.9 80
SBLAQ 137 Subtract Logic from AQ 4.0 1.9 80
SBLXn 12n Subtract Logic from Xn 4.0 1.9 8l
SWCA 171 Subtract with Carry from A 4.0 1.9 81
SWCQ 172 Subtract with Carry from @ 4.0 1.9 82
Multiplication
MPY 402 Multiply Integer 19.2 7.6 83
MPF 401 Multiply Fraction 19.2 7.6 84
Division
DIV 506 Divide Integer 29.4 15.1 85
DVF 507 Divide Fraction 29.4 15.1 86
Negate
NEG 531 Negate A 2.6 1.6 87
NEGL 533 Negate Long 2.6 1.6 87
BOOLEAN OPERATIONS
AND
ANA 375 AND to A 4.0 1.9 88
ANQ 376 AND to Q 4.0 1.9 88
ANAQ 377 AND to AQ 4.0 1.9 88
ANXn 36n AND to Xn 4.0 1.9 89
ANSA 355 AND to Storage A 4.9 3.3 89
ANSQ 356 AND to Storage Q 4.9 3.3 89
ANSXn 34n AND to Storage Xn 4.9 3.3 90
OR
ORA 275 OR to A 4.0 1.9 90
ORQ 276 OR to Q 4.0 1.9 90
ORAQ 277 OR to AQ 4.0 1.9 91
ORXn 26n OR to Xn 4.0 1.9 91
ORSA 255 OR to Storage A 4.9 3.3 91
ORSQ 256 OR to Storage Q 4.9 3.3 92
ORSXn 24n OR to Storage Xn 4.9 3.3 92
#See Calculation of Instruction Execution Times, page 42.

CPB-1004F

Rev. July 1969
253

GE-615 GE-635
BOOLEAN OPERATIONS Timing Timing Reference
(usec)# (usec)# (Page)

EXCLUSIVE OR

ERA 675 EXCLUSIVE OR to A 4.0 1.9 92
ERQ 676 EXCLUSIVE OR to Q 4.0 1.9 93
ERAQ 677 EXCLUSIVE OR to AQ 4.0 1.9 93
ERXn 66n EXCLUSIVE OR to Xn 4.0 1.9 93
ERSA 655 EXCLUSIVE OR to Storage A 4.9 3.3 94
ERSQ 656 EXCLUSIVE OR to Storage Q 4.9 3.3 94
ERSXn 64n EXCLUSIVE OR to Storage Xn 4.9 3.3 94
COMPARISON
Compare
CMPA 115 Compare with A 4.0 1.9 95
CMPQ 116 Compare with Q 4.0 1.9 96
CMPAQ 117 Compare with AQ 4.0 1.9 97
CMPXn 10n Compare with Xn 4.0 1.9 98
CWL 111 Compare with Limits 4.8 1.9 99
CMG 405 Compare Magnitude 4.0 1.9 100
SZN 234 Set Zero and Negative Indicators

from Memory 4.0 1.9 100
CMK 211 Compare Masked 4.8 1.9 101
Comparative AND
CANA 315 Comparative AND with A 4.0 1.9 102
CANQ 316 Comparative AND with Q 4.0 1.9 102
CANAQ 317 Comparative AND with AQ 4.0 1.9 102
CANXn 30n Comparative AND with Xn 4.3 1.9 103
Comparative NOT
CNAA 215 Comparative NOT with A 4.0 1.9 103
CNAQ 216 Comparative NOT with Q 4.0 1.9 103
CNAAQ 217 Comparative NOT with AQ 4.0 1.9 104
CNAXn 20n Comparative NOT with Xn 4.3 1.9 104
FLOATING POINT
Load
FLD 431 Floating Load 4.0 1.9 105
DFLD 433 Double-Precision Floating Load 4.3 1.9 105
LDE 411 Load Exponent Register 4.0 1.9 105
#See Calculation of Instruction Execution Times, page 42.

CPB-1004F

Rev. July 1969
254

GE-615 GE-635

FLOATING POINT Timing Timing Reference
(usec)# (usec)# (Page)

Store
FST 455 Floating Store 3.2 2.1 106
DFST 457 Double-Precision Floating Store 4.2 3.0 106
STE 456 Store Exponent Register 3.2 2.1 106
FSTR* 470 Floating Store Rounded 4.8 2.9 106.1
Addition
FAD 475 Floating Add 6.5 2.8 107
UFA 435 Unnormalized Floating Add 6.5 2.8 107
DFAD 477 Double-Precision Floating Add 6.2 2.8 108
DUFA 437 Double-Precision Unnormalized

Floating Add 6.2 2.8 108
ADE 415 Add to Exponent Register 4.0 1.9 109
Subtraction
FSB 575 Floating Subtract 6.5 2.8 109
UFS 535 Unnormalized Floating Subtract 6.5 2.8 110
DFSB 5717 Double-Precision Floating Subtract 6.5 2.8 110
DUFS 537 Double-Precision Unnormalized

Floating Subtract 6.5 2.8 111
Multiplication
FMP 461 Floating Multiply 16.2 6.5 111
UFM 421 Unnormalized Floating Multiply 16.0 6.3 112
DFMP 463 Double-Precision Floating Multiply 31.0 12.7 112
DUFM 423 Double-Prec. Unnormal. Floating

Multiply 31.0 12.4 113
Division
FDV 565 Floating Divide 31.0 15.6 114
FDI 525 Floating Divide Inverted 31.0 15.1 115
DFDV 567 Double-Precision Floating Divide 48.0 25.1 116
DFDI 527 Double-Precision Floating Divide

Inverted 47.0 24.7 117

Negate, Normalize

FNEG 513 Floating Negate
FNO 573 Floating Normalize

118
118

w
NN
=N

O w

#See Calculation of Instruction Execution Times, pag