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THE PEGASUS PROGRAMMING MANUAL

PREFACE

Digital computers are being put to more and more diverse uses and their numbers are rapidly
increasing. The programmer has a key role to play in this technological explosion. He and his
fellows are needed in ever greater numbers since the machines are useless without their skill,

This handbook describes the programming techniques used with Pegasus, a medium-sized computer
of which about forty are being used in business and commercial data-processing, in technical and
scientific calculations and in educational work. It is hoped that many of these techniques will be
of use also to those concerned with programming and applying other machines of similar scope.

This manual originated in a series of programming courses for Pegasus which started in October
1955, for which an earlier manual (Ferranti document CS 50) was written by Mr, P.M. Hunt and the
author. The need for a more comprehensive manual, including descriptions of the facilities provided
in Pegasus 2, has led to the present volume. While attendance at one of these courses is desirable
for anyone wishing to prepare programmes for Pegasus, an attempt has been made to keep this manual
self-contained except for a set of programming exercises, which is available separately from the
publishers (Ferranti document CS 204). At the same time it should be stressed that no one can expect
to master a subject such as this one without writing programmes and running them on a computer.

This book was originally written for Pegasus 1. The author is grateful to Mrs, Mary Blyton, who
adapted it to include Pegasus 2 and collected the material for most of the Appendices, as well as pre-
paring the manuscript for printing., He is also indebted to Mr, M.J. Marcotty, whoc wrote the whole of
Chapter 11 and advised on the additional material relating to Pegasus 2. The author would also like to
thank many of his other colleagues, too numerous to name, with whom he has had many fruitful discussions.
The editing and printing of a book of this kind raise many problems; the author is grateful to the
following, who have contributed much to their solution: Mr. J.W. Moffatt, Mr. J.F. Nicholson, who has
also compiled the Index, and Mr. H.G. Stanton (of Specialised Printing Services Ltd.), whose careand
helpful advice havebeen invaluable. Special thanks are due to Mr. B.B. Swann, whose encouragement and
practical support have made this book possible., Lastly the author wishes to thank his wife, who
loyally endured much interference with their home life while he was writing the book.

G.E.F.
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Chapter 1

Introduction — Digital Computers

In this Chapter we describe digital computers in general and introduce some of the basic ideas of
programming and the way numbers are represented in a computer.

1.1 Computers

This book is concerned with automatic electronic digital computers. A digital computer is a machine
which can perform arithmetical operations on numbers represented in digital form. This way of
representing numbers is the one with which we are most familiar, since it is in everyday use. For
example the number 53 might be represented (in a mechanical digital machine) by two gear wheels, each
with 10 teeth, one turned through 5 teeth and the other 3 teeth, relative to some standard position.

In an electronic machine this number might be represented by two trains of pulses containing & and 3
pulses respectively. The ordinary way of writing numbers is digital. )

By contrast, in analogue computers numbers are represented by some physical quantity, such as
length, angle or electrical potential. In an analogue machine arithmetical operations are performed
by using some law of Physics, e.g. Ohm’s law, and then making a measurement to find the answer. The
most familiar analogue computing device is a slide rule, which uses lengths to represent numbers (the
lengths are proportional to the logarithms of the numbers they represent); these lengths are added and
subtracted mechanically to give lengths corresponding to products and quotients. 1In an electronic
analogue computer numbers are usually represented by electrical potentials and the machine contains
circuits for producing potentials proportional to sums, products and so on; these potentials can be
measured to provide the results.

The precision of an analogue machine is limited by the precision with which the physical quantity
used can be measured; it is seldom greater than two or three decimal figures. To increase this
precision may be very difficult, and certainly expensive. In a digital machine the precision can be
increased as much as desired simply by allowing enough digits in the numbers; this is usually quite
easy at the time the design of the machine is being laid down., Most digital computers use numbers
having from 8 to 12 decimal digits; this may seem over-generous since the raw data of a problem may
.be given to only three digits and this may be enough in the results. But it should be remembered that
a computer may perform thousands of operations before arriving at these results, and rounding errors may
therefore build up alarmingly. Further, the starting numbers and the intermediate quantities and
results may vary over a very wide range.

This is not the place for a comparison of analogue and digital machines; it is enough to say that
each has its uses. An analogue machine will perform certain restricted operations with great speed and
efficiency but it cannot have the range and flexibility of a digital computer, :

Probably the most familiar of digital machines is the ordinary desk calculator. This is a
mechanical or electro-mechanical device; it is not fully automatic since it has to be individually set
up for each arithmetical operation. Some of these machines can divide or evaluate a square root at a
single setting but these are automatic only in a very limited sense.

1.2 Automatic digital computers

Automatic digital computers originated in the work of Charles Babbage in the early nineteenth
century. Babbage proposed a digital machine capable of doing extended calculations without human
intervention. This machine was, of course, to be purely mechanical. Its inventor’s ideas seem to have
been ahead of the technical possibilities of his day and it was never built. The first automatic
digital computer to be made was the Automatic Sequence Controlled Calculator, an electro-mechanical
machine which was not finished until 1944. Since this date the situation has been transformed by the
speed, flexibility and reliability of electronics.

An automatic digital computer is a digital machine which can perform a large number of arithmetical
operations when once set up. Generally such a machine will have a single arithmetical unit which is
used repeatedly to do different operations on various numbers. This unit is sometimes called the mill,
a term originated by Babbage. Since there is usually only one mill there must be arrangements for
storing numbers, for selecting them and passing them to the mill, and for storing the results produced
by the mill (since these may be required again at a later stage).

An automatic digital computer of this kind is performing only one operation at any given moment;
after completing one operation it proceeds to do another, and in general it will perform a long sequence
of operations with great rapidity. The machine must therefore have a store of some sort in which can be
placed orders or instructions (the term command is sometimes used); the control unit of the machine
.extracts these orders one by one from its order-store and obeys them. As a rule a single order will
cause the computer to carry out a single operation, e.g. adding two numbers together or moving a number
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from one part of the number-store to another. In most digital computers the orders are expressed in a
numerical code and they can therefore be stored in the same store as the numbers, 1in general a part of
this store will hold numbers and another part orders. The store is sometimes referred to as the memory
of the machinet.

The store of a digital computer must be capable of “remembering” numbers and orders until they are
required. It must be able to give up any item of stored information and to record new information in
place of the old. The use of electronics in the mill means that a pair of numbers can be added in
considerably less than a millisecond (a thousandth of a second, often abbreviated to millisec). If this
speed is not to be wasted the storage devices must also operate at high speed. These requirements have
in the past been a major source of difficulty in the design of computers and developments in storage
have as a rule lagged behind those in other parts of the computer.

A computer must be able to communicate with the rest of the world. We must be able to “tell” the
machine what operations it is to perform, to supply it with the numbers on which to operate, and to
extract from it the results of its work. The machine must therefore have input and output devices, and
these must be fast and reliable in operation.

We see, therefore, that there are the following main parts of a digital computer:

(a) a store for holding numbers and orders, '

() a control unit which can extract orders from the store, interpret them, and direct the

operations of the rest of the machine, )

(c) a mill, or arithmetical unit, which can operate on numbers from the store and send its

results back to the store.

(d) input equipment (e.g. punched card or paper tape reader),

(e) output equipment (e.g. printer or card or tape punch). .
These parts and their interconnections are shown in Fig.1.1. It will be seen that the input and output
devices are shown as connected to the mill; this is usually the most convenient arrangement. The
connection labelled “discrimination’” is described below.

STORE l
\
\

numbers orders

discrimination N CONTROL
T T T T T A UNIT
’-",—’;’/,//
.——"“///

———% Information paths
—————p Control paths

Fig.1.1 Block-diagram of a Digital Computer

1.3 Programming
Let us consider how a digital computer is applied to the solution of a problem. The first essential

step is to formulate the whole problem precisely and unembiguously; 1if the problem is a scientific one
this formulation should preferably be in mathematical terms, and an equivalent degree of precision
should be aimed at in other kinds of problem. This step is usually the hardest part of the whole
process and the one where skill and experience are most important; it may well require considerable
time and study. We shall not discuss this subject further here since it belongs properly to the field
of study which gave rise to the problem.

The next step is the examination of this precise formulation of the problem in order to find the
method of solution best adapted to the available computing tools. This step may, in scientific
problems, require a knowledge of Numerical Analysis; and it may in any case be combined with the .
previous step. This subject also is outside the scope of this book, but there is one point which must
be made in this connection. A digital computer can, at least in principle, undertake any task which
can be expressed precisely as a finite sequence of finite arithmetical operations. It must be
emphasised that it is only problems of this sort which can be handled by a computer; but this is not
such a severe restriction as might appear at first sight and there are many non-numerical problems
which can be reduced to arithmetic; for example, much work is now being done on the automatic transla-
tion of languages by computers. The practical limits on the range of problems which can be dealt with
are largely imposed by the storage capacity and speed of the computer and its ancilliary equipment.

We shall assume, therefore, that we are presented with a definite numerical process, which we must
express in a form assimilable by the computer. That is, we have to programmeH the problem, or prepare
the programme of orders for the computer. In some circumstances it may be useful to subdivide this
process into two stages. 1In the first stage, programming in a narrower sense of the word, the numerical
process is converted into a flow-diagram, or flow-chart, showing what steps the machine is to take and
how one operation leads to another. In the second stage, which is often called coding, the actual
orders which the computer will have to obey are written down in some convenient code; this is
relatively simple, once the flow-diagram has been prepared. The exact way in which programming and
coding are distinguished (if at all) depends very much on individual preference and no inviolable
rules can be laid down - except that great care is needed at all stages. The next step is to punch out
the programme, order by order, on paper tape or cards and to feed the result into the computer, along

t Such anthropomorphisms are perhaps to be deprecated, but they sometimes provide the simplest way of
describing the operations of the computer.

tt The spelling program is sometimes used.
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with the numerical data (though these may be fed in as a separate operation). At this stage the orders
and numbers appearing on the tape or cards are simply read by the computer, converted into its own
internal code, and placed in the store. When this input process is complete the store of the machine
will contain the whole of the programme and some or all of the numerical data; at this point the
computer starts to select and obey the orders of the programme one by one. Some of these orders will
ultimately cause the machine to print or punch the results of the calculation.

It will be clear that the preparation of the programme for a particular calculation may well be
time~consuming. When it has been written the programme will have to be checked and got working on the
computer; this stage is usually called the development of the programme. When the preparation and
development are complete the programme may be used repeatedly with different numerical data. This
means that it may be uneconomic to write a programme for a calculation which has to be done once only;
but if a calculation has to be done many times, perhaps at regular intervals, the cost of preparing the
programme can be distributed and it will usually be found that a digital computer offers by far the
cheapest method of doing the work.

The orders which the computer obeys in the course of executing a programme are selected from the
set of available types of order built into the machine. This set of orders is called the order-code of
the computer; it is important for the programmer that a comprehensive set of orders should be available,
and that the exact effects of each of them should be known to him. It is very helpful if the orders
are systematically arranged and are free from objectionable exceptions and omissions. Many of the
orders in the order-code of any computer are concerned with simple arithmetical operations; but there
are others (for example, those for transferring blocks of numbers from one part of the store to another)
which are needed only because the machine is automatic.

The orders in many computers are normally obeyed sequentially; that is to say, they are extracted
one after another from adjacent places in the store and are obeyed. Certain orders, called jump orders,
may break this regular sequence and cause the machine to start selecting its orders from some other
specified place in the store; whether this jump occurs may be conditional on, for example, the sign of
some numbers. In some computers the jump orders are called control-transfer orders since they can be
sald to transfer control to some other part of the programme. Other names are test or discrimination
orders. All automatic digital computers have jump orders of some kind and they add enormously to the
flexibility of the machine. When a conditional jump order is obeyed certain information is passed from
the mill into the control unit; this information is used to determine whether or not the jump occurs
(the information passes along the path labelled “discrimination” in Fig.1.1).

Nearly all calculations are, at some stage or other, highly repetitive and the programmer can take
advantage of this by writing groups of orders and arranging (with the aid of jump orders) that the
machine obeys the orders in each group several times. This is of great importance, as will shortly
become evident.

A book devoted to programming loses realism unless it is related to a specific machine. In this
book, the operations are described in terms of the Ferranti Pegasus Computer. They are, however,
readily adaptable to other digital computers and the reader who masters the techniques described in the
pages which follow can approach any modern computer with confidence.

1.4 Comparison with desk calculators

An analogy with other methods of computing may be useful here. Let us suppose we have a desk
calculating machine equipped with an unintelligent, though extremely reliable, operator and we have some
particular numerical problem to be solved. A suitable numerical process for arriving at the solution
must be found and this must be written down as a series of simple operations and given to the operator
as a precise sequence of orders or instructions. Provided this work has been done correctly and the
operator follows slavishly the instructions he has been given the solution of the problem will eventually
be obtained. It should be noted that the operator need not understand the reasoning which led to his
instruction list nor the significance of his operations. Furthermore the same set of instructions can
be used again on another occasion to solve a similar problem involving different numerical data. It is
usually advisable to include a few checks in the calculations, and this can be done by giving extra
instructions to the operator.

The procedure for solving a problem with the aid of an automatic digital computer is similar;
the operator is replaced by the control unit of the computer, his desk calculating machine becomes the
_ mill, and his list of instructions becomes the programme of orders for the machine to obey. The
work-sheet on which the operator writes his intermediate numbers can be likened to the store of the
computer.

It will be seen that the whole process is in principle very much the same. The main practical
points of difference arise from the fact that most desk calculator operators have a fair amount of
intelligence (they will not, for example, attempt to divide a number by zero as some automatic
machines may). A digital computer may well be 10,000 times as fast as the operator with his desk
machine so that the difference of speed is of great importance. There are two main points of
consequence resulting from this enormous speed ratio; first, problems can now be tackled efficiently
which have hitherto been beyond the reach of computation or have been otherwise uneconomic; and
second, & numerical process might well be chosen which would not be used on a desk calculator, In
fact the digital computer is so much faster than a desk calculator as to make a qualitative, rather
than quantitative, difference.

1.5 Flow-diagrams
We shall now illustrate some of the points mentioned above with the aid of flow-diagrams. In
these diagrams each “box’ represents a simple operation or a group of such operations.

(a) Let us first suppose we have in the store of the machine a list of whole numbers, each of which
may have any value from 1 to 100, except that the last number in the list is known to be zero. Suppose
that the computer is equipped with a printer as an output device and we wish to use this to print all
those numbers in the list which are not less than 50. The flow-diagram of Fig.1.2 shows a possible
sequence of operations.
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Select the first
number in the list

START

Test if zero f yes »

no

STOP

Test sign \ negative }
/ v

positive or zero

Add 50

Print

I

Select the next

number in the list N
( J

Fig.1.2 Flow-diagram of a programme to print those
numbers in a list which are not less than 50.

It will be noted that the process consists simply of exa' ining each number in turn; if the
number is zero we know we have reached the end of the list, and if it is not we arrange to avoid the
“print’ operation if the number selected is less than 50. The importance of the test or conditional
jump operations is clear.

(b) In the next example, we shall assume that an input device is provided which can be used to read
numbers into the computer one at a time. These numbers might, for example, be punched on paper tape or
cards. Suppose that there are 1000 positive numbers waiting to be read and we wish to print the
largest of them. It is convenient to use an algebraic notation; the letter x denotes one of the
numbers read in from the input device and y stands for the largest number so far read. We read in

each number in turn and compare it with y; 1if it is less than y or equal to it we simply pass on to the
next number. If, however, the number is greater than y we must increase the value of y to the new
number before reading in the next one. We also have to arrange to count the numbers as they are read

in (a quantity ¢ is used for this) so that we know when we have finished, at which point y is to be
printed since it is now the largest of all the numbers, The flow-diagram is shown in Figure 1.3.

The technique shown in this flow-diagram for counting should be particularly noted as it occurs
frequently. The main part of the above programme consists of a loop or cycle of orders which the
computer is to obey exactly 1000 times; after each repetition a counter (in this case ¢) is reduced by
unity until, after the orders of the cycle have been obeyed 1000 times, it is reduced to zero and the
computer passes on to the next part of the programme. The details of this counting process depend very
much on the facilities available in a particular computer; it may, for example, be more convenient on
some machines to start with a negative counter and to increase it by unity at each repetition until it is
no longer negative.

(¢) As a further example let us find the smallest prime factor of a positive whole number N, i.e. the
least number (other than 1) which divides exactly into N, We shall assume that N is greater than 1. A
process which may be used is first to test if N is even, in which case the answer is Z; if N is not
even we try dividing it by 3,5,7,9,..... (i.e. by consecutive odd numbers) until we find a divisor.
Strictly speaking we need try only prime divisors but it is simpler to include composite numbers, such
as 9, than to omit them, even though we know when we reach one that it cannot divide N exactly (for if
N is not divisible by 3 then it is not divisible by 9). If N is a prime the first divisor we shall find
will be N itself, but there is no need to go as far as this. As the trial divisor (d, say) steadily
increases, the quotient (g, say) will steadily decrease; in the absence of a successful trial d will
ultimately exceed ¢q. Note that if d is a factor of N then so also is g, so that each trial with d is in
effect also a trial with gq. It is consequently pointless to go beyond the stage at which d becomes
equal to or greater than ¢, for any quotient obtained after this must be one of the numbers already tried
unsuccessfully as a divisor (or else the quotient is even, and we know N cannot have an even divisor).
We need therefore a cycle of orders which tests whether our trial divisor d divides N; if it does not
we increase d by 2 and re-enter the cycle provided d is less than the quotient q. The flow-diagram of
Fig. 1.4 (page 6) shows the process. Note that it will in fact work even if N = 1,

-4 -
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Set ¢ = 1000

.

Set y = 0

Read in one

:

Form Difference
y - x

Test sign \

COMPUTERS

positive

—

negative

Replace y
by x

or zero )

Replace ¢
by ¢ -1

Test if new value
no ] . )
of ¢ is zero

yes

Print y

of 1000 positive numbers read in one by one,

1.5

(d) Another illustration is provided by a programme to evaluate the square root of a positive number a.

We shall use Newtan’s process

is a better approximation.
approximation x5, and so on.

X

ot

= = 4
To T % (xl * xl)

this is based on the fact that if x, is an approximation to va, then

This calculation can be repeated with E in place of % to yield a further
The successive approximations are in general connected by the relation

- 1 a
nti 2 (xn * R;) .

If we are fortunate and>if a is a perfect square we may ultimately arrive at the exact value x, = va and

the process may be said to have terminated.

have to be content with an approximation;
tions differ by not more than some small preassigned quantity h.

and

and

The correct value to 6 decimal places is 1,732051.

But as a general rule this will not happen and we shall

for example we could stop whenever two successive approxima-

As an illustration let us obtain an approximation to v3.

We may take %, = 1 as a first guess;

S ACES A A S DA

= 1 3y = 1L =
‘. = 2(2+2> ! 1.75,

_ 171 3 _ 51
%, = 3<T+ WTD = 21 = 1.7321428...

It will be seen that this process converges very

then

rapidly - it is in fact an example of what is known as a “second-order” iterative process, in which the
number of significant figures is approximately doubled at each step.
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of Test if N yes _
START 4l is even 5 Set d = 2

no

Set d = 1

—————— 3 Increase d by 2

Divide N by d;
quotient = ¢
remainder = r

Test if 0 ) yes

r =

.

Evaluate d - ¢

\__neeative { Test sign

positive or zero 4'

Set d = N Print d

Fig.1.4 Flow-diagram of a programme to find the
smallest prime factor of a number N

Returning to the general process for va, the difference between two successive approximations is

1 a 1 [a
-— = e + - = — i — =
Tty %n 2 (xn xn> *n 2 (:n xn> Y, Say.

We can therefore readily compute this quantity from the value of x, and examine it. If it is greater
than h in absolute value we simply add it to x, to get x,,, and then repeat the process; if it is less
than h (or equal to it) we have finished. )

Any of these flow-diagrams forms a suitable basis for a programme or a part of a programme. It will
be remarked how each process has been broken down into very simple steps and how each step leads
unambiguously to the next. Programming has been described as “explaining the problem to the computer
in words of one micro-syllable”.

The notation used for these flow-diagrams has been chosen to be self-explanatory. If the prepara-
tion of flow-diagrams is to be undertaken systematically as a preliminary to the programming or coding
of a process it is probably advisable to use a more rigid system to exclude possible ambiguities.

1.6 Numbers

The ordinary way of writing numbers may be called a decimal (or denary) system, since it is based
on the number 10, which is called the radix of the system. For example the number written 5428 is an
integer (or whole number) whose value is

5428 = (5 x 10°) + (4 x 109 + (2 x 10)+ 8,
which may alternatively be written
({Is x 10) + 4] x 10} +2) x 10 + 8.
In this number 5 is the most-significant (or left-most) digit and 8 is the least-significant (or right-

most) digit. The contribution made by each digit to the value of the number is just the value of the
digit multiplied by a power of 10 determined by the position of the digit in the written form of the
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Fig.1.5 A process for evaluating Va, the result is z.
number. Fractions and mixed numbers may be expressed by writing digits to the right of a decimal point,
for example

27,93 = (2x10) + 7T+ (9 x ) + (3 xp,
which may be writtent
1 0 -1 -2
(2 x 107) + (7T x 107) + (9 x 107 ) + (3 x 107 ).

The decimal point is not usually written in integers, it is understood to lie to the right (e.g. 5428
could be written 5428. or 5428.0).

This is not of course the only way of representing numbers. Sums of money in sterling and periods
of time in hours, minutes and seconds are examples of mixed-radix systems; for example £461.16.8
represents

{(a x 102 +6 x 10 + 1) x 20 + (1 x 10 + 6)} x 12 + 8 pence,
and 3 hours 24 minutes 52 seconds represents

{(3 x 60) + (2 x 10 +4)} x 60 + (5 x 10 + 2) seconds.

t The negative exponent in expressions such as 10~3 and 2°% simply means that we have to take the
reciprocal. For example 10-3 is simply another way of writing 1/10%, and 2-% = 1/24 = 1/16.
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Various combinations of such radices as 5, 12, 14, 16, 20, 60 are in general use for weights and
measures in many parts of the world; such systems are widely understood despite their complexity.

A simple system which finds some application in computers is the octel system. This is similar to
the ordinary decimal system but is based on the radix 8 instead of 10; thus the number- written 2736 in
the octal system has the value

2 x8%) + (1x8% +(3x 8 +86,

li

(2 x 512) + (7 x 64) + (3 x 8) + 6,

1024 + 448 + 24 + 6,

1502

in the usual decimal system. In this system only 8 different digits are needed (0,1,2...,7) instead of
the usual 10. Octal fractions may be written by introducing an octal point, for example 3.5 means 3%.
This is clearly much simpler than some of the mixed-radix systems with which we are familiar.

The simplest system of all, and one which is used in most digital computers (including Pegasus) is
the binary system, which is based on the radix 2. This has the great advantage of needing only two
different digits (0 and 1) for writing any number. The number written 1101 in binary has the value

@ax2h +@ax2h +ox2 +1,

i

8+4+0+1,
= 13,

in the decimal system. We may write fractions and mixed numbers if we introduce a binary point, for
example

il

10. 101 (Ix2) +0+ (1x2h +@x2% +ax2Y,

i

(Ix2)+0+ (I xP +@OxH+axd,

1 5
= + = = =
2+ 5 = 2%

o)

It might appear at first sight that any departure from the usual decimal system would introduce
many grave disadvantages to the programmer and user of the computer. This is not so however; in fact
one need seldom be conscious that the machine is operating in binary. This is because all the numbers
fed into the machine and all those which come out of it are in decimal (or in some other convenient
system). All the necessary conversions to and from the binary system are merely arithmetical operations,
which the computer itself does efficiently. When considering the internal operations of the computer
it is usually enough to think of them as being carried out simply on numbers; one need not usually
consider the way in which these numbers are represented inside the machine.

Table 1.1 shows several numbers in binary together with their decimal equivalents. It will be
noticed that integers (whole numbers) have more digits when represented in binary than in decimal; as
a rough rule 10 binary digits are about equivalent to 3 decimal digitst. The word bit is often used as

“an abbreviation of binary digit.

It is, of course, essential for the computer to be able to use negative numbers as well as
positive ones. The ways in which negative numbers are usually represented will be described later.

It should be noted that the octal system described above is closely related to the binary system.
In fact, since 8 = 23, a single octal digit is exactly equivalent to three binary digits. An octal
number can be converted to binary by simply writing down the binary equivalent of each of its digits,
thus 473 in octal is 100 111 011 in binary. Conversely, the binary number

1011. 101

is 13.5 in octal (or 11% in decimal). Note that one cannot use such a simple process for converting
from binary to decimal, or vice versa. It is sometimes more convenient to write binary numbers in
octal form since the conversion is easy and the result is more compact and more easily remembered.

While it is as well for the programmer of a binary computer to be familiar with the elements of
binary arithmetic, fluency in handling binary numbers is not at all necessary. One point worth noting
is that if we move the binary point one place to the right in a binary number we shall effectively
double the value of the number, e.g.

10.101 is 23
and 101,01 is 5k

In the decimal system such an operation multiplies the number by 10 of course. In the same way if we
move the binary point one place to the left we shall halve the value of the number.

1.7 Words
The numbers normally handled in a computing machine contain a certain fixed number of digits. It

is convenient to use the term word for such a number. A word is a group of digits normally handled
together by the computer. Words may be used to represent either numbers or orders, and this is the
chief reason for introducing the term. In most computers the words representing numbers and those

t This is because 210 = 1024 = 103; a more exact ratio is log,10, which is about 3.3.

-~ g -
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Binary Decimal Binary Decimal

1o0r 1.0 1 0.1 0.5 =é—

10 or 10.00 2 0.01 0.25 =-%

11 3 0.11 0.75 =4

100 4 0.001 0.125 = &

101 5 ' 0.101 0.625 = 2

110 6 0.0101 0.3125= >

111 7 1.01 1.25 = 1%

1000 8 4 1.1 1.5 =13

1001 9 10.1 2.5 = 2.12_

1010 10 110.1 6.5 = 6%

1011 11 101. 001 5.125 = 5%
10001 17
11001 25
100001 33
1100100 100

Table 1.1 Some binary numbers with their decimal equivalents

representing orders are indistinguishable in appearance, each is merely a string of digits. Words of
these two kinds are usually stored in the same store, but the programmer often allocates certain
parts of the store to numbers and other parts to orders.

In binary computers, words of 32 to 40 or more binary digits are generally used; the word-length
is usually fixed by the construction of the machine. Pegasus has a word-length of 39 binary digits,
which is equivalent to rather more than 11 decimal digits. In most such computers a word is
represented by a train of pulses of electrical potential; the presence of a pulse indicates a “rr
digit and its absence a “0" digit. The pulses representing a word follow one another at an interval
called the digit-time; in Pegasus this is 3 microsecondst, Digit-times of 1 to 30 microsec are in
general use. The digit-time is fundamental to the design of the computer; it is derived from a clock
waveform, which has a frequency of about 333000 cycles per second (i.e. 333 kiloecycles per second) in
Pegasus. The operation of the whole computer is synchronised by the clock waveform. Computers of this
kind are called serial machines; since the pulses representing a word may be sent serially along a
single channel. This is in contrast to parallel machines in which, for example, 39 channels would be
used to transmit simultaneously all the pulses of a 39-bit word. It is obvious that a parallel machine
will as a rule be faster than a serial one and will contain very much more equipment. Some computers
strike a compromise by operating in a mixed mode, known as series-parallel, in which, for example, one
might use three channels, each carrying a train of 13 pulses. All small and medium-sized computers
operate in the serial or series-parallel modes; some large machines work in the parallel mode.
Pegasus is a medium-sized serial computer.

In a serial computer the time needed for the transfer of a word from one part of the machine to
another is called a word-time (the term beat is also used)., In Pegasus a word-time is equal to 42
digit-times (i.e. 126 microsec) since there are three unused gap digits between the end of one. 39-bit
word and the start of the next. The duration of any operation in the computer is always an integral
number of word-times. When finding out how long some particular programme is going to take on the
computer, we usually count the number of word-times and finally convert the total into seconds or
minutes.

1.8 Words representing numbers
. A word may be used to represent a number, in fact this is one of the major uses for words. If the
digits of the word are written out side by side in the usual way (with the most-significant digit on
the left) we shall get an integer (or whole number). This is one way of interpreting the word, or
assigning a value to it, and we shall call it the integer convention. There is an implied binary point
just to the right of the least-significant digit. ’

In Pegasus, as in most binary computers, the left-hand (or most-significant)tt digit in a number-
word is used to indicate the sign of the number; it is called the sign-digit, (or sign-bit) and is 0 in
a positive number (or zero) and 1 in a negative number. We shall explain shortly how negative numbers

t A microsecond is amillionth of asecond; it is usually written microsec or, sometimes, psec.

tt The abbreviations ms and ls will often be used with the meanings most (or more) significant and least
(or less) significant, respectively. When we write words out it is always understood that the ms
digit is on the left, as is cusiomary when writing ordinary decimal numbers.
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are represented by words. The digits of a word are numbered from left to right for reference purposes:
the sign-digit is digit 0, the digit to the right of it is digit 1, and so on. The last or 1s digit is
digit 38. We shall often write D in front of the digit-number so that, for example, D12 means digit 12.
Instead of using the integer convention we could insert a point (a binary point in Pegasus of
course) between two specified digits of the word., This point is not represented in the word and its
position is largely a matter of convention. In Pegasus the binary point is normally placed between DO
and D1, i.e. immediately to the right of the sign-digit, so that a typical 39-bit word may be written

0.10001 10111 11001 00010 10000 01001 10001 001

which is a binary fraction. This way of assigning a value to the word will be called the fractional
convention.
The word
0. 00000 00000 00000 00000 00000 00000 00000 000

represents the number zero on either the fractional or the integer convention. The smallest positive
number is represented by the word

0.00000 00000 00000 00000 00000 00000 00000 001

whose value is 1 on the integer convention, and 1/2°® (or 2738) on the fractional convention (this is
about 0.00000 00000 036 in decimal). The largest positive number is represented by the word

0.11111 11111 11111 11111 11111 11111 11111 111

On the fractional convention this has a value just less than unity, in fact 1-273% (0.99999 99999 964
approximately in decimal). On the integer convention it can be shown that its value is

238 -1 = 27 48779 06943, i.e. rather more than 250 000 million. Thus, a word representing a non-
negative numbert can take values from 0 to 27 48779 06943 on the integer convention, or from 0 to 1-2-38
in steps of 2738 on the fractional convention. These numbers are therefore expressed by the equivalent
of rather more than 11 decimal digits.

HY The value of a non-negative word can be found by adding up contributions from each of its digits
which are 1's. On the fractional convention digit D1 contributes % if it is a 1; D2 contributes Y4, and
80 on; in general digit k contributes 2% to the numerical value of the word if it is a 1. On the

A integer convention each digit contributes 2°® times as much.

Let us now consider negative numbers. If we use a desk calculator which handles numbers of 10
decimal digits and we subtract 48 from 0 we shall get the result 99999 99952. This may be regarded as
an alternative way of writing the negative number -48. If negative numbers are written in this way
they may be added and subtracted correctly on the calculator, provided the results are consistently
interpreted. We say that negative numbers written in this way are represented in complementary form.
The complementary form of a negative number may be obtained by subtracting the absolute (unsigned)
value (in this case 48) from 1010, which is the number lying just outside the capacity of the
calculator. The usual way of writing signed numbers is by means of a sign (+ or -) and the modulus#
of the number,

Either of these ways of representing signed numbers may be used in a digital computer; and other
systems are occasionally employed. If a computer uses the sign and modulus representation there may be
two different ways of representing zero (i.e. as +0 and -0); it is important that these should be
treated in the same way.

Pegasus uses the complementary system for negative numbers and we shall now describe this in more
detail. The complements are taken with respect to 23°, which plays a role corresponding to 1010 in the
above example of a decimal desk calculator. Consequently a negative number which is small in absolute
value is represented by a word having a string of 1’s on the left (corresponding to the string of 9's
sbove). For example, the integer 44 is represented by the word##

0.00000 00000 00000 00000 00000 00000 00101 100
We can find the word representing -44 by subtracting the above word from 0. The result is
1.11111 11118 112141 11111 11111 11111 11010 100

One way of determining the value of a negative number-word is to subtract it from 0 and evaluate the
resulting positive word according to the usual rules. The process of subtracting a number from 0 is
usually called negating the number, or changing its sign. It should be particularly noted that this

is not done by simply changing the sign-digit (as it would be if the sign and modulus representation
were used). An easy way of changing the sign of a given word on paper is to start at its ls digit (on
the right) and, proceeding to the left, to copy all the 0's (if any) until we find a 1; this 1 is also
copied. The remaining digits are then reversed, i.e. we write 1 for 0, and 0 for 1, Tables 1.2 and
1.3 illustrate how numbers are represented by words in the two important conventions.

t A non-negative number is a number which is either positive or zero. Zero is regarded as being neither
positive nor negative.
tt

z The text between these symbols may be omitted at a first reading.

# The modulus of a number is simply its magnitude or absolute value. The modulus of 48 is 48; the
modulus of -48 is 48, Moduli are conventionally indicated by vertical lines on each side of the
number, thus |48/ means “the modulus of 48’ and we can write

13l = 38, 1% = 1%, [|-21 = 2, o} = o.

## We shall adhere to the convention of writing the point in number-words and grouping the digits in the

way shown, regardless of the convention used to assign a value to the word.

- 10 -



INTRODUCTION TO DIGITAL COMPUTERS 1.8

It will be seen from these tables that the word whose value is 13 according to the integer
convention has the value 13 x 2-38 according to the fractional convention. The small quantity 2-38
oceurs frequently and we shall often denote it by e (the Greek letter epsilon)t; thus 13 x 2738
may be more conveniently written 13e. We shall refer to number-words as integers or fractions .
according to the convention used to interpret them. Suppose that xp is the value of some word inter-
preted as a fraction, and that x; is the value of the same word as an integer; these are connected
by the equations
PEL

= 38 _
xp = Xg, xp 11/2 = xe.

It is important to realise that x; and xp have the same digits .in binary, but that their decimal
representations would be quite dissimilar.

Fraction ' Word representing the fraction
é— 0. 10000 00000 00000 00000 00000 00000 00000 000
—é— = 273 0.00100 00000 00000 00000 00000 00000 00000 000
- %— 1.11100 00000 00000 00000 00000 00000 00000 000
e = 2798 0.00000 00000 00000 00000 00C00 00000 00000 001
13¢ = 13 x 27938 0. 00000 00000 000600 00000 00000.00000 00001 101
- 13e 1.11111 11111 111313 11111 11111 11111 11110 011
é% 0.11000 00000 00000 00000 00000 00000 00000 000
- %— 1.01000 00000 00000\00000 00000 00000 00000 000
- 1.0 1.00000 00000 00000 00000 00000 00000 00000 000

Table 1.2 39-bit words representing numbers (fractional convention)

Integer Word representing the integer
1 0.00000 00000 00000 00000 00000 00000 00000 001
13 0.00000 00000 00000 00000 00000 00000 00001 101
-1 - 1.11111 11111 11111 111311 113113 11111 11111 111
- 13 1.11111 11111 11111 11111 11111 11111 11110 011
128 = 27 0.00000 00000 00000 00000 00000 00000 10000 00O
- 128 1.11111 11111 11111 11111 11111 11111 10000 000
237 = 137438953472 0.10000 00000 00000 00000 00000 00000 00000 000

Table 1.3 39-bit words representing numbers (integer convention)

We can define the numerical value of a word according to the fractional convention by defining the
contributions made by its various digits (if they are 1's) as follows:

(a) the sign-digit contributes -1,

(by digit k contributes 27k (if k if not zero).
These rules may be expressed in a more compact way if we write d, = O or 1 according as digit k is O
or 1 (0 € k < 38). The value of the word on the fractional convention may then be defined as

38 \
-d, +2 d,.27
k
O =1

Its value on the integer convention is

38
2°0 + 3 d4,.2%0°k,
k=1

-do.

t For estimating the approximate sizes of numbers we can take € = 0,00000 00000 036.

- 11.-
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A word representing a negative fraction may take values from -1.0 to —e in steps of €, It
follows that a number x can be represented on the fractional convention only ift

-1<x<1 - ¢

i.e. x must be numerically less than unity, except that the value x = -1 is allowed. A word may
represent an integer n provided

238 < ng2%8 g

1.e. -27 48779.06944 < n < 27 48779 06943,

A fraction x can be represented exactly by a word only if it is an integral multiple of ¢ = 92-38
in general we shall have to approximate. Any fraction can be represented with an error of at most
t %e by correct rounding of the last digit. Table 1.4 shows a few such approximations.

Fraction Approximate representation by a 39-bit word
%— 0.10101 01010 10101 01010 101C1 01010 10101 011
7% 0.01010 10101 01010 10101 01010 10101 01010 101
%— 0.00110 01100 11001 10011 00110 01100 11001 101
%— 0.00100 10010 01001 00100 10010 01001 OOiOO 101
fs 0.00011 00110 01100 11001 10011 00110 01100 110

Table 1.4 Rounded approximations to fractions

If the numbers occurring in a calculation are integers or fractions they would normally be
represented according to the appropriate convention. Otherwise they must be scaled in some way. This
scaling must be done in such a way that all the intermediate quantities formed in the machine during
the course of the programme are within range; and, if fractions are used, the scaling must be such
that accuracy is not lost. This is usually possible; but when it is not, or when it is very difficult
to determine the scaling factors, then there are well-established programming techniques, such as
floating-point working, which can be used. Occasionally we may want more precision than can be got
by the normal representation of numbers, i.e. we may need more than 11 decimal digits: we can then use
double-length (or double-precision) arithmetic, in which each number is represented by two words.

These and other techniques will be described later.

If we say that a word has the value 0.75 then we obviously mean that the word is to be
interpreted on the fractional convention; and if we say its value is 94 we intend the integer
convention to be used. As a rule the fractional convention is regarded as the standard one.

The word whose value is -1 according to the fractional convention will usually be written —-1.0 to
prevent confusion with the integer -1; this word has a 1 in the sign digit position (D0) only, and has
the value -238 on the integer convention.

Nearly all of this Section applies, with only small changes, to other binary computers using the
complementary representation (as most of them do). The fractional range -1 < x < 1 applies to most
computers, though other ranges are occasionally used. The integer range depends, of course, on the
word-length.

t The following useful mathematical symbols will be employed often; they are tabulated here for the
convenience of those to whom they may be unfamiliar.

+ 3 means +3 or -3 (read as “plus or minus 3"),

i

WV VA AN
RR R R e R

x means x is equal to y,

x means x is not equal to y,
x means x is less than y,
x means x is less than or equal to y (or x does not exceed y),
x means x is greater than y (or x exceeds y),
x means z is greater than or equal to y,

x~y Or x ¥ y means x is approximately equal to y.
It should be noted that » < y is equivalent to saying that x - y is negative. For example, the
following are all true statements:

2<3, 2<3, -2<-1,86>0, 0> -1, 52%, -% <%
We shall write, for example, -1 € x < 1 to mean that both -1 €z and x < 1, The symbol 2 means
the sum of, for example,

' 38
kE; dk.z'* = d.27t+d.2Tfrd 27 L 4 d

~-38
38‘2 .
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Chapter 2

Pegasus

This Chapter contains a brief description of a Pegasus installation and its main components. This
is followed by a description of the store of the computer and the way in which orders are obeyed and
vritten. A discussion of the order-code then leads into an uccount of the simpler orders.

2.1 A Pegasus installation

In Section 1.2 we described briefly the main parts of a typical digital computer; let us now
examine a Pegasus installation. The store in Pegasus is split into two parts; the main store, which
is large, and the computing store, which is a small, fast, working store; these will be described in
thelnext two sections. The control unit, which may be thought of as the “central nervous system’ of
the computer, obeys orders taken from the computing store; its mode of operation will be discussed
further in Section 2.4. When it is obeying orders the control unit selects numbers from one of the
stores (generally the computing store) and makes use of the mill to perform arithmetical operations.
In Pegasus 2 the computing store, control unit and mill are housed in the main cabinet, on the front of
which are the control panels and desk (see Plates 1,2).

There are three control panels; (a) the monitor (Plate 12), on which are two cathode ray tubes
which may be switched so as to exhibit various words and waveforms; (b) the programmers’ switches
(Plate 11) which are the principal controls for the computer; and (c) the engineers’ switches under a
hinged flap on the desk which are not of great concern to the programmer. The control panels are
described in Section 6.7. Above the monitor panel is a clock (timepiece).

On the desk stands the basic input and output equipment comprising two tape-readers (Plate 3)
and the output punch (Plate 4). These devices handle punched paper tape, a useful medium for carrying
information (see Plate 5). Either of the tape-readers can be operated by the computer itself so as to
“read” the tape; this is the way in which programmes, numbers and other data are supplied to the
computer. The input tape which is to be read by the computer may be prepared manually by using the
tape-editing equipment, which includes a teleprinter with a keyboard and perforating device (Plates
7, 8, 9). The computer punches the results of the calculation into paper tape by using the output
punch. The output tape so obtained is usually printed out almost immediately by an interpreter
(Plate 4), which reads the holes in the tape and prints the corresponding characters on a roll of
paper. The output tape may, if desired, be used as an input tape to the computer on another occasion.

Among the programmers’ switches the most important controls are the Start key and the Run key.
The Start key is used mainly to cause the computer to read a programme tape, i.e. to read in and store
the orders making up a programme. The Run key can be used to stop the computer at any time or to
allow it to carry on.

We shall be concerned for most of this book with the basic Pegasus 2 computer, which has just
been briefly described, and certain ancillary equipment. We cannot provide here a full description of
every item of ancillary equipment as the range of available equipment is continually being extended.

A Pegasus installation may include some or all of the ancillary equipment according to the nature of
the tasks it is required to perform. The following are items of ancillary equipment to which we shall
refer; further details are given in Chapters 10 and 11.

(a) Magnetic tape auxiliary storage.

(b) Punched card input and output equipment.

(c) A converter for linking punched cards, magnetic tape and a high-speed printer.

(d) Multiple output punches.

Although we refer specifically to Pegasus 2, much of.the text which follows is relevant to both the
original Pegasus 1 with the small drum and the present Pegasus 1 with the larger drum. It will, however,
be clear from the footnotes how these versions of Pegasus differ from the Pegasus 2.

2.2 The Main store

The first 128 words of the main store of Pegasus 2 are held on delay-lines, and the rest of the
main store is a magnétic drum revolving at about 3720 revolutions per minutef. We shall first of all
discuss the drum storage.

One revolution of the drum takes exactly 128 word-times, or roughly 16 milliseconds.tt The
surface of the drum is coated with a magnetisable iron oxide, and just clear of it are a number of
fixed heeds containing coils. Parts of the drum surface may be magnetised by passing pulses through
the coils in the heads: we can therefore record a word magnetically (or write the word) by passing
the corresponding train of pulses through one of the heads, The resulting small areas of magnetisation
will occupy a 128-th part of the track swept out by the head. By virtue of a property of the iron
oxide, this magnetisation will remain until the next time this particular head is used to write on to
the same part of its track, The heads used for writing may also be used for reading the recorded

t In Pegasus 1, the magnetic drum constitutes the whole of the main store.

tt A millisecond is a thousandth of a second; it is usually abbreviated to millisec or msec. ‘CIearly
1 millisec = 1000 microsec.
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words, since the small magnetised areas will induce pulses in the heads as they are carried past by
the rotation of the drum. The reading process may be repeated as often-as desired, since it does not
disturb the magnetisation of the drum.

Information recorded on the drum is, for engineering reasons, split up into channels of odd and
even digits which are recorded separately, thus, 2 heads are needed for each track of information.
There are 71 head pairs and each sweeps out a track on which 128 words may be recorded; thus, with
128 words on delay~lines, the total capacity of the main store is 9216 words.t Each of the places where
a word may be recorded is called a storage location or simply a location (the term cell is sometimes
used). In order to write a word into some particular storage location on the drum the computer has to
select the appropriate heads and then energise them at the correct time. The word may be read later
by selecting the same heads and extracting the pulses from them at the appropriate moment. Any
particular storage location is thus identified by specifying the heads or track to be selected and
the time (or angular position of the drum). The selection and timing are performed quite automatically
by electronic circuits associated with the drum; they are derived from the address of the storage
location, which can be thought of as a label permanently attached to the location and used to identify
it. The address of a storage location may be compared with the address of a house in a city, which
can be specified by means of a street name (corresponding to the track) and the number of the house in
the street; the analogy is even closer if we imagine the streets to be numbered (as in some American
cities) and we suppose there are exactly 128 houses in each street. The word stored in a particular
location is called the content of the location; it must not be confused with the address of the
location, just as one must not confuse the inhabitants of a house with its address.

. The storage locations are grouped into blocks, each consisting of 8 locations; there are
consequently 16 blocks round each of the 71 tracks and 16 blocks of delay-line storage, making a total
of 1152 blocks.

There are two addressing systems used in the main store. 1In the simpler system the locations are
numbered straight through from 0 to 8191; these addresses will be called decimal addresses. In the
other system, which is more generally useful, each location is specified by giving its block-number
and its position within the block. The blocks are numbered 0 to 1023. Within each block the eight
individual locations are given position-numbers between 0 and 7. Thus we may refer to a certain
location as being in block 342 in position 5; this would be written 342.5, which is the block-and-
position form of the address (this word would also have a decimal address 2741). The position-number
may be thought of as an octal digit.

The block-numbers are sometimes referred to as block-addresses; this is an extension of the term
“address’ since it is here used to identify blocks rather than individual locations. The block-addresses

-are often prefixed by the letter B, thus we may refer to block 342 as B342.

It has been arranged that sixteen of the tracks are isolated, i.e. the corresponding heads may be
used for reading but not writing. These 16 tracks form two isolated stores, each of 128 blocks (1024
locations) and both addressed from 896.0 to 1023.7 (or 7168 to 8191 on the decimal address system)
either store may be selected by means of one of the engineers’ switches on the control desk under the
hinged flap. These isolated blocks are used to store permanently certain useful programmes; the
Initial Orders, which are of great value to the programmer, are in one of the stores, and in the other
are the engineers’ test programmes, When the appropriate switch is in the normal position, the
isolated store containing the Initial Orders is selected. The rest of the main store consisting of
896 blocks (or 7168 locations) addressed from 0.0 to 895.7 (or 0 to 7167 on the decimal address system),
is available for other programmes. tt

It should be noted that information stored on the drum, but not in the delay-lines, is not
“volatile”, i.e. it remains there even when the computer is switched off at the mains; in particular
the programmes in the isolated part of the main store are always there and can be considered almost a
part of the machine.

A magnetic drum combines economy with a reasonably large storage capacity; this is why it is
used in many computers. It suffers however, from the disadvantage of a relatively long access-tinme,
which is the time needed for information to become available. One will usually have to wait until
some particular part of the drum is under the heads before one can actually read or write. This time
will never exceed one revolution time (16 millisec in Pegasus) and this is therefore called the
maximum access-time; the average waiting time will be about half a revolution (8 millisec in Pegasus)
and is called the mean access-time, if we neglect the time occupied by the actual reading or writing.
On some machines the head selection is done by relatively slow relays and time must be allowed for
these to operate when changing from one head to another; on Pegasus this switching operation is done
electronically and no time need be allowed for it.

If the speed of a magnetic drum computer is not to be severely limited by the access-time of the
drum it is essential to provide as well some other kind of storage having a shorter access-time. This
is sometimes called the “fast’” store and various other terms are used, such as “working’” store or “quick
access” store or “high-speed” store; but it is referred to as the computing store in Pegasus, for
reasons which will become apparent later.

As a consequence of investigations into the amount of waiting time spent in some of the standard
programmes run on Pegasus 1 (i.e. the time spent in waiting for the drum to be in the correct position
for a word to be read or written), the first 16 blocks of main store in Pegasus 2 are held on 8-word
delay-lines.* This has the effect that the transfer of words between the computing store and this
part of the main store is carried out almost immediately without having to wait for the drum to come

t Pegasus 1 has a drum storage capacity of 9216 words, but the earlier model of Pegasus 1 has a
smaller drum which has a storage capacity of 5120 words. In what follows we refer specifically to
Pegasus 2.

tt on the small drum version of Pegasus 1, there is one isolated store of 128 blocks: the non-isolated
part of the store has a capacity of 512 blocks (4096 words) and is referred to as the 4096-word
store. (The main store on the present Pegasus 1 and Pegasus 2 is referred to as the 7168-word store).
A version of the Initial Orders, which lacks some of the facilities of the 7168-word store Initial
Orders, is stored in the first part of the isolated store from B512, and the engineers' test
programmes are stored beyond this.

# Afurther 16 blocks of main store held on 8-word delay lines may be provided in Pegasus 2 as anoptional extra.
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into position. These 16 blocks (BO to B15) have exactly the same addressing system as they would have
if they were held on the drum, so that to the programmer the only difference is the increase of speed.
(Further details of the time are given in section 3, 10).

2.3 The computing store

The computing store of Pegasus is made up of registers, each of which can store one word (its
content); the registers correspond to the storage locations in the main store.

Most of the registers are-made up of circulating magnetostrictive delay-lines and amplifiers. Each
delay-line consists of a length of nickel wire with a coil near each end. When a pulse is passed
through one of these coils the nickel inside it shrinks momentarily (magnetostrictive effect) and
compression waves (i.e. sound waves) travel along the nickel wire in both directions away from the
coil. One of these waves is absorbed and the other one travels down the nickel wire to the second
coil, in which it induces a small pulse. This small pulse can be amplified and, after having any
distortions removed, can be fed back to the first coil; the whole process is then repeated. In this
way a pulse can be kept circulating indefinitely, provided the power is switched on to the amplifier.
The circulation-time is one word-time, i.e. 126 microsec, so that a whole word of pulses can be kept in
circulation; any gaps in the train of pulses will of course persist. At any particular instant the
39 pulses (and “no-pulses’) making up a word (together with the three gap pulses) will be strung out
along the nickel wire, travelling down it with constant velocity.

The word stored in the delay-line is available at the output of the amplifier; it may be read as
many times as desired without disturbing it. In order to replace it by another word we have only to
break the circulation loop for exactly one word-time while the new word is being fed into the delay-
line. This is shown diagrammatically in Fig.2.1.

Delay line
J—
Amplifier
1
Read out Write in

Fig.2.1 A delay-line storaege unit

~ Many computers incorporate delay-line stores of one form or another. In some of these each delay-
line holds more than one word (as in the 8-word delay-lines comprising the first 16 blocks of main store
in Pegasus 2); this increases the storage capacity at the expense of increasing the access-time. With
single-word delay-lines, such as are used in the computing store in Pegasus, each stored word can be
regarded as available at any time.

The registers making up the computing store are divided into three groups:

(a) the ordinary registers,

(b) the accumulators,

(c) the special registers.

The ordinary registers meke up the bulk of the computing store; there are 48 of them, arranged in
six blocks, each of eight registers. The addresses of the ordinary registers are written in the same
way as the addresses of locatlons in the main store, e.g. the register in position 3 of block 4 has the
address 4.3. If there is any danger of confusion we shall prefix computing store addresses by the letter
U and main store addresses by the letter B; thus U5.2 is the address of an ordinary register, and B5.2
that of a storage location in the main store. The blocks in the computing store are numbered U0 to U5
so that the first of the ordinary registers is U0.0 and the last is U5.7.

The eight registers called accumulators bear the addresses 0 to 7; these addresses are often
prefixed by the letter X (e.g. X2). The accumulators have special properties which single them out from
the other registers; these will be described later. Accumulator O is sometimes called the dummy
accumulator, its content is always zero and cannot be changed; this accumulator is not made up of a
delay-line. Each of the seven other accumulators can be used to store any word required.

The special registers have the addresses 15, 16, 17, 24, 32, 33, 34, 35, 36 and 37.1 They are not
made up of delay-lines and are used for special purposes which will be described later (see Section
2.9).

We shall often need to refer to the content of a register, i.e. to the word held there. We shall
write C(5.2) for the content of ordinary register 5.2, C(6) (or sometimes z,) for the content of accumula-
tor 6, and so on. :

There are facilities for transferring words from the main store to the computing store and vice-
versa. These words may be transferred either singly or in blocks of eight words.

Fig.2.2 (page 16) shows the two stores of the basic Pegasus computer; some of the details will be
explained later. In this figure the address of each of the registers of the computing store is shown;
these addresses are always written in the way indicated; for example 3 means accumulator 3, and 3.0
means ordinary register 3.0. The reader should endeavour to keep this picture of the computing store
in his mind while he reads the next few chapters; he should also note particularly that the word
register applies not only to the ordinary registers but also to the accumulators (as well as the special
registers).

t In the small drum Pegasus 1, registers 24 and 37 are not present, and register 36 only on those
installations with magnetic tape. Both registers 36 and 37, but not 24, are included in the large
drum Pegasus 1.
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2.4 Outline of operation

The orders or instructions which the computer obeys in the course of carrying out a programme are
represented in coded form by words; such words are referred to as order-pairs in Pegasus, since they
each represent two orders.

The control unit of the computer, which controls the whole machine, selects the orders to be
obeyed exclusively from the ordinary registers in the computing store. The address of the ordinary
register concerned is called the order-number and is held in a special order-number register (or O.N.R.)
in the control unit. There is also an order-register (or O.R.) to hold the orders currently being
obeyed.

The sequence of operations while the computer is obeying a programme is as follows:

(a) The control unit determines the order-number (from the O.N.R.) and connects the ordinary
registér specified to the order-register (O0.R.). This causes a copy of the specified
order-pair to flow into the order-register. This operation requires one word-time.

(b) The first order (a-order) of the order-pair is obeyed, i.e. the computer carries out an
elementary operation determined by the digits of the order. This operation usually takes
two word-times, but some orders (e.g. multiplication) require more than this.

(¢) The second order (b-order) 1is obeyed in a similar way, which also takes two word-times as a
rule. While this order is being obeyed the order-number in the O.N.R. is increased by
unity, so that the next order-pair will be selected from the next ordinary register.

This cycle of operations is normally repeated a number of times. It will be seen that it usually
occupies 5 word-times, during which two orders are obeyed; we can say therefore that the average time
of obeying one (simple) order is 2% word-times, or 0.315 millisec. Alternatively we can think of the
a~order as occupying 3 word-times and the b-order 2 word-times; this is often a more useful approach,
and it is the one we shall adopt. The orders obeyed are selected from consecutive registers and are
therefore said to be obeyed sequentially.

Certain orders, called jump orders, may interrupt the regular sequential selection of orders and
cause the machine to start obeying orders from some specified register. They do this by changing the
order-number in the O.N.R., and there are arrangements for jumping to or from either order of a pair.

It is important to realize that the computer selects its orders exclusively from the ordinary
registers. in the computing store; there are no arrangements for taking orders directly from the
accumulators or from the main store. The usual process is to place the programme in the main store
and then to transfer a few blocks of it into the computing store to be obeyed; when these orders have
all been used up a further instalment is brought in from the main store, and so on.

Apart from a few orders effecting transfers to and from the main store, all the orders are
concerned only with the computing store.- All the arithmetical operations and organisational work are
carried out in the computing store, and it is here that sections of the programme and numbers currently
required are stored. Since there are no problems of access-time in the computing store it follows that
the speed of operation of the machine is high. The computer is thus organised on the basis of a two-
level store; all the work is done in the “working space’” of the computing store, the main store being
used largely to hold orders and numbers not immediately required. '

In this way a high speed of operation is obtained despite the use of a magnetic drum and without
resorting to optimum coding (this is an alternative system in which orders and numbers are placed in a
long delay-line or round a drum in such a way as to be available when required). If the programmer has
to use optimum coding then he must consider timing matters while he is writing the programme. Some
computers are provided with a single-level store, i.e. there is only one store; this is much simpler
from the programmer’s point of view, but in most such computers the size of the store is limited because
of its high cost (if it has immediate access) or there may be the necessity for optimum coding. In
larger computers than Pegasus different considerations apply, of course.

2.5 The written form of an order
A single Pegasus order is made up of four parts, a typical one is written as follows:

3.1 2014

In this order 3.1 is the N-address (or first address); it is here the address of one of the ordinary
registers in the computing store. The second part of the order is called the X-address (or second
address); in this order it is 2, indicating that the accumulator X2 is concerned. The function of
this order is 01, which specifies a certain addition operation. The last part of the order is 4,
which shows that the action of the order is to be modified by the content of X4 before being obeyed;
this part of the order may be called the modifier-address (or M-part).

We shall confine ourselves at present to unmodified orders, i.e. those whose modifier-address
is zero. 1In such orders the content of X0 is used for modification and no change occurs (it will be
remembered that X0 is the dummy accumulator, whose content is always zero). If the modifier-address
is zero there is no need to write it in; this part of the order may be left blank. For the moment
therefore we shall write down only orders containing three parts.

Let us consider the effect of the order

3.1 201
when it is obeyed. This order causes the computer to take the word in the ordinary register 3.1 and
to add it to the word in accumulator 2, leaving the result in X2. 1In other words, the content of X2
after the order has been obeyed is the sum of the previous content of X2 and the content of 3.1. This
process does not disturb the content of 3.1 which will be the same before and after the operation of

the order. After obeying the order in this way the computer will proceed to the next order. The
order written

0.7 601

will similarly add C¢0.7) and C(6) and leave the sum in X6, the expression C( ) denoting the content.
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Both these orders have the function 01; in such orders the X-address (the second part of the order) is
always the address of one of the accumulators. The N-address, on the other hand, may be the address of
any register in the computing store (i.e. it may refer to an ordinary register, an accumulator, or a
special register). For example, the order written

3 501
causes the computer to add C(3) and C(5) and leave the result in X5, and the order
7 701

will add C(7) to itself, i.e. it will double C(7). .
We shall now introduce a notation which is useful for writing down the effects of various orders.
We shall write N and X for the N-address and X-address respectively in an order. Thus in the order

3.1 201

N is 3.1 and X is 2, or we may write N = 3.1 and X = 2. In general N and X represent the addresses of
whichever register and accumulator are written in the order. The content of N will be written as n, and
the content of X as x, so that in the above order n = (C(3.1) and x = C(2)t. These represent of course
the contents before the action of the order; we shall use n’ and x' to represent the contents after the
order has been obeyed. With the aid of this notation we can write the effect of an order with the
function 01 as follows:

01 ' = x+n.

This equation simply states that the content of the accumulator specified by the X-address after the
order has been obeyed is equal to the content of this accumulator before the operation of the order plus
the content of the register specified by the N-address. Since n' is not referred to it is implied that
the content of the register specified by the N-address is unaltered by the order: except of course for
the special case in which N = X, as in the order

7 701

It is of course also understood that all the remaining registers are undisturbed.

The words on which an order operates are called the operends. In an order with function 01 the
operands are the contents of the register and accumulator specified in the order. When describing the
effects of various orders it is often convenient to refer to them by their function parts; thus we
shall talk of an 0Of-order when we mean an order whose function part is 01. The function part of an order
is sometimes denoted by F.

It should be noted that the equation defining the effect of an Ol-order is not affected by the
conventional position of the binary point in the word, provided of course that we put it in the same
position in all the words occurring. In particular, the words may be interpreted as numbers in either
the fractional or the integer convention.

All the orders so far described have been Ol-orders. In general the function of an order is
written as a pair of octal digits, i.e. digits having values between O and 7. We may therefore get
orders whose functions are 00, 01, 24, 53, 10, 65, 77, and so on. The operations caused by these
different orders will be described in this and the next chapter, whose subject is the order-code of
Pegasus, i.e. the catalogue or list of available functions and their effects.

The various operations which can be carried out by obeying an order fall naturally into groups.

The group to which an order belongs is identified by its first function digit; thus the orders of group
6 are those whose function parts are written 60, 61, 62,...,67. The Ol-order belongs to group 0. The
effects of the orders in various groups may be roughly summarised as follows:

group 0 Simple copying or arithmetical operations, the result being left in an
accumulator.

group 1 Similar to group 0 but the result is left in a register.

group 2 Multiplication and division,

group 3 Unassigned (i.e. a spare group) except for 37, see chapter 11.

group 4 Simple operations with integers.

group 5 Shifts (i.e. multiplication and division by powers of 2).

group 6 Jumps.

group 7 Transfers between the main and computing stores.

Some of the functions are not used, e.g. 07, 30, 75; orders with these functions are referred to
as unassigned orders. The computer stops if if encounters such an order, and illuminates a special
light (marked “unassigned order') on the control panel.

The whole order-code is summarized, for reference, in Appendix 1 and on a single sheet at the back
of the book, and it is recommended that a beginner should refer to these frequently when starting to
write programmes; it is not necessary to make the effort of learning the whole order-code by heart.
The systematic arrangement of the orders make them easy to remember.

Before discussing any further how orders are written and what they do we shall describe briefly
how orders are represented inside the computer.

2.6 The internal form of an order
Inside the computer an order is represented by 19 binary digits; these we shall number 1 to 19,
counting as usual from the left (i.e. from the most-significant or ms digit). The 7 bits numbered 1 to

t Occasionally it is useful to write %, instead of C(2), etc.
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7 are used to represent the N-address in the order; they may be called the N-digits of the order.
The next 3 bits (digits 8,9, 10) represent the X-address directly in binary; thus if X =5 these three
bits are 101. The function of the order is represented by the six F-digits (11 to 16) three of which

are used for each octal digit in the written form of the order; this is illustrated by the following
table: -

Written function F-digits
01 000 001
24 010 100
53 101 011
67 110 111

The last 3 bits of an order (digits 17, 18,19) represent the modifier-address directly in binary; they
are all zero in an unmodified order; these digits are sometimes called the M-digits in the order. The
way in which the 19 bits of an order are allocated may be shown diagrammatically as follows.

1} 2| 3| 4| 5| 6] 7| 8| 9[10{11}{12]|13 [14|15|16{17|18{19

~ e me? AN -

N X F M

We shall describe later, in detail, the way in which the N-digits are used to represent the N-address
(see Section 3.12); at present we need only state that if the N-address is one of the accumulators
then the N-digits give the address directly in binary. For example, the order written 2 5 01 is
represented in the computer by the following 19 binary digits:

0000010 101 000001 000

L — et

N=2 X=5 F=01 M=0

Each of the two orders in a 39-bit order-pair occupies 19 bits. The left-hand or ms binary digit
of the word does not belong to either of the orders; this digit (number 0) corresponds to the sign-
digit of a number-word and is called the stop/go digit, its use will be described in Section 3.9. The
a-order of the order-pair occupies digits 1 to 19 of the word, as described above; the b-order
similarly occupies digits 20 to 38, these being used in the same way as corresponding digits of the

a-order. The way in which the digits of an order-pair are allocated may be shown diagrammatically as
follows.

O 1} 24 3} ..... 18|19|20(21122{ ..... 36{37{38
a-o;ﬂer b-o;der
stop/go
digit

It will be recalled that a simple order (such as an Ol-order) is obeyed in two word-times. We
shall now briefly describe the sequence of operations which occur when the order

3.1 201

is obeyed. The order will at this point be held in the order-register, and here its function digits
(000 001) are decoded and used to set in motion a train of events. The first thing which occurs is that
the mill is set up to do an addition; simultaneously the registers containing the two operands (i.e.
3.1 and X2) are connected to the input of the mill, these operands enter the mill and are added during
the first word-time. During the second word-time the result of the operation comes out of the mill and
is sent to its proper destination, viz. X2, where it replaces the previous content.

It is most important to distinguish the written form of a programme from its representation
inside the computer. The written orders of a programme consist. of ink or pencil marks on paper, and
they are expressed in a way which has been chosen for the convenience of the programmer. Inside the
machine the programme is represented in the form of trains of pulses or as magnetised areas on the drum.
A conversion process has to be applied to the written orders before they can be stored or obeyed by the
computer. The first step in this process is the “typing” out of the programme on & teleprinter (or a
keyboard perforator), which provides a length of punched paper tape and a printed sheet (for checking
purposes). The paper tape can be “read” by placing it in a tape-reader attached to the computer and
calling in the Initial Orders. These are a permanently available programme stored in the isolated part
of the main store; the computer can be caused to obey this programme by operating a special key on the
control panel; this key is called the Start key, and the way in which it is used will be described in
Section 4.3. The Initial Orders cause the computer to read the tape, one character at a time, and to
build up the orders, which it places in the mein store in the form required by the machine, The way in
which the punched form of the orders is converted to the stored form depends entirely on the Initial
Orders, and has been chosen so as to make the programme as convenient as possible to write and to punch.
The main function of the Initial Orders is to read, convert and store programmes; it is used every
time a programme is put into the computer. When the whole programme has been stored in the main store
the Initial Orders can be caused to transfer a part of it to the computing store and to start the com-
puter obeying it. This subject is discussed further in Section 4.3.
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2.7 The orders of groups 0 and 1
The orders of groups 0 and 1 are concerned with simple operations such as copying, addition and
subtraction. The Ol-order has already been described; it will be recalled that its effects may be
briefly summarized by the equation x' = x + n., The 0O-order is even more simple; it is described by
the equation
00 x! = n,

which means that the content of the specified accumulator is replaced by a copy of the content of the
specified register. For example, the order
5.4 3 00
causes the word in ordinary register 5.4 to be copied into X3, the previous content of X3 being lost.
The word in 5.4 is not changed by this order.
For example, if we have two numbers in ordinary reglsters 5.0 and 5.1, we cen add them and leave
the sum in X5 by the following two orders:
5.0 5 00 first number to X5
5.1 5 01 add second number
The result of any order of group 0 is always left in the specified accumulator. The first five

orders of this group may be summarized as follows. Here the word “register” indicates the register
(i.e. ordinary or speclal register, or accumulator) specified by the N-address written in the order,

F Effect Description

00 ' = n Replace content of accumulator by copy of content
of register.

01 ! = x+n Add content of register into accumulator.

02 ' = on Replace content of accumulator by minus content
of register.

03 ! = x-n Subtract content of register from accumulator,

04 ' = n-=x Subtract content of accumulator from content of

register, leaving the difference in the accumulator.

For example, suppose we have three numbers a, b and ¢ in the ordinary registers 4.0, 4.1 and 4.2
respectively. We can form the quantity a« + b - ¢ in X2 by the orders
4.0 200 a to X2
4.1 201 add b, result is a + b in X2
4.2 2 03 subtract ¢, final result in X2.

Alternatively the following orders could be used:
4.2 202 -c to X2
4.0 201 add a, result a - ¢
4.1 201 add b, result ¢ + b - ¢
It is clear that there are many equally good ways of doing this operation. -
The orders of group 1 are similar to those of group 0 but the result of the operation is always

left in the specified register. . The most important order of group 1 is the 10-order (read as ‘“one-oh”,
not as ten):

10 n' = &z,
which means that the word in the register is replaced by a copy of the word in the accumulator. For
example, the order
2.4 710
replaces C(2.4) by a copy of C(7). The content of the accumulator is unchanged by this order.

As an example, suppose the numbers a, b and ¢ are, as before, in 4.0, 4.1 and 4.2; we can place
the guantity ¢ - b - ¢ in 5.0 by the orders:

4.0 5 00 a to X5
4,1 5 03 subtract b, result a - b in X5
4.2 5 03 subtract ¢, result «a ~ b - ¢ in X5
5.0 5 10 a-b~-c to5.0
In this illustration we have used X5 to form the result; we have to use an accumulator for this, but
any accumulator would have served equally well.
It will be seen that the 10-order is similar to the 00-order except that the roles of register and

accumulator are interchanged. This analogy holds good for the remaining orders of group 1. The effect
of any order of this group can be derived from the corresponding order of group 0 by interchanging the
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words “accumulator” and “register” in the verbal description, or by interchanging the letters a and x
in the defining equation. For example, the Ol-order is defined by the equation

01 2! = =z +n,
and the li-order (read as ‘“one-one”) by the equation
11 n' = n+a2,
In this order the number in the accumulator is added into the register. Thus, the order
0.6 3 11

causes the sum C(0.6) + C(3) to appear in 0.6; the content of X3 i unchanged. It will be seen that
the ordinary registers may be used for addition and subtaction. The first five orders of group 1 may
be summarized as follows.

F Effect Description

10 nl = x Replace content of register by copy of content of
accumulator.

11 n' = n+x Add content of accumulator into register.

12 nl = x Replace content of register by minus content of
accumulator, :

13 n' = n-x Subtract content of accumulator from register.

14 n' = x-n Subtract content of register from content of

accumulator, leaving the difference in the register.

As an illustration, suppose we have two numbers in 4.0 and 4.1, and we have to replace the second

number by their sum. We must use an accumulator for intermediate storage, let us use X4, and the
following orders will do:

4.0 4 00 first number to X4
4.1 4 11 sum to 4.1

As a further example, suppose a, b and ¢ are the numbers in 4,0, 4.1 and 4.2; the following orders
will replace b by a + b in 4.1, and ¢ by ¢ -~ a - b in 4.2:

4.0 3 00 a to X3

4.1 3 01 atbto X3
4,1 3 10 atbtodl
4.2 3 13 ¢~ (a+b) = ¢-a->bto4.2

It sometimes happens that we wish to clear a register, i.e. to replace its content by zero. We
use the dummy accumulator X0 for this. To clear an accumulator, say X4, we can use the order

0 4 00
and to clear an ordinary register, say 2.0, we use the order
2.0 010

There are, in nearly all these examples, many other solutions which are equally “good”, i.e. which
require as few orders. If possible we always prefer the most direct and simple method. Thus to form
in X4 the difference a — b of a (in 4.0) and b (in 4.1) we would prefer the orders

4.0 4 00 a to X4
, 4.1 4 03 a-bto X4
to the orders
| 4.1 4 00 b to X4
4.0 4 04 a - b to X¢
If the numbers we are dealing with are in accumulators we prefer orders of group 0 to those of group 1;
thus the orders
3 210
6 5 13
are equivalent to the orders
2 300
5 603

but the latter would be preferred. The choice between such alternative orders is largely an aesthetic
matter, but if unconventional methods are used the checking of programmes is made much more difficult.
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In the equations, such as

T = x4 n,

which define the effects of the orders of groups 0 and 1, the letters x and n represent the contents of
the registers used; these may be interpreted according to either the fractional or the integer
convention, provided of course that only one cenvention is used throughout any particular equation. 1In
the orders 00 and 10 the operands need not have any particular significance - they may be fractions or
integers or words to which no numerical value is attached (e.g. order-pairs).

Note that it takes two orders to add together two numbers in ordinary registers but only one
order to add two numbers in accumulators. This is just one of the differences between the accumulators
and the other registers.

The remaining orders of groups 0 and 1 are described in Section 3.11.

2.8 Writing the programme

The orders of a programme are written on printed programme sheets in the columns provided; an
order-pair occupiles two lines on the sheet. When the programme is eventually obeyed the order-pairs
occupy ordinary registers in the computing store, and we usually write to the left of each order-pair
the address of the register which will hold it at that time. For example, two order-pairs obeyed from
0.0 and 0.1 in the computing store, might be written as follows:-

5.0 1 00
0.0

5.1 101

5.2 103
0.1

3.6 110

Since the computing store is seldom large enough to hold the entire programme and the numbers on
which it is to operate, these are all placed in the main store during the input process. When the
whole programme (and, probably, the numbers) have been read in and placed in the main store, it is
arranged that the first four blocks of the programme are copied into the computing store. This is all
done by the Initial Orders programme, which also arranges for the computer to start obeying the orders
at a specified point (this is called entering the programme). Consequently the programme has to be
divided up into blocks, each of 8 order-pairs (i.e. 16 orders), and the programmer has to insert block-
transfer orders in the programme at suitable places so as to read fresh blocks of orders from the main
store into the computing store when those already in the computing store are no longer needed. Two or
three of the six blocks of ordinary registers in the computing store are usually reserved for those
parts of the programme which are currently being obeyed; the remaining blocks are used for constants,
data, intermediate results, etc.

When starting to write a programme one cannot usually forsee exactly how best to divide it up into
blocks. Parts of the programme are therefore sketched out in pencil on squared paper before being laid
out in blocks on one of the printed programme sheets.

Figure 4.3 on page 72 shows a four~block programme sheet with the orders written in. It will be
noticed that the addresses of the registers holding the order-pairs are abbreviated; the address is
written in full against the first order-pair only in each block. The “box” above each block is used to
indicate the main store block-number where the block of orders is held. Many of the details of this
programme will be explained in later chapters. Programme sheets in geperal use are laid out with 2, 4
or 6 blocks.

Sometimes the orders needed will not completely fill a block. In this case unused words may be
filled with zeros, or extra “dummy” orders may be inserted, A dummy order is one which has no effect,
e.g. the order

0 000

which simply copies C(0) into X0. This order is the one conventionally used as a dummy order; it may
be written on a programme sheet simply as a zero in the N-address column.

Numbers may be written on the programme sheets as well as orders. They may be either fractions or
integers and each number will of course occupy the whole of a register in the computing store (i.e. two
lines on the programme sheet). A number must be preceded by its sign (+ or -) since this is used to
distinguish it from orders. 1If it is a fraction the decimal point must be written. Numbers and order-
pairs may be intermingled on the programme sheets, but the programmer must take care that the computer
does not try to “obey” a number; unconditional jumps may be used to avoid this. As an illustration of
how numbers may be written, let us suppose that the fractions 1/4 and -1/8, and the integer 1000 are to be
placed in X2, 3 and 4 respectively at some stage in a calculation. The relevant part of the programme
sheet might appear as shown on the facing page, where we assume that the computer starts to obey the
orders in 0.3 (as indicated by the arrow). ’

Numbers written as a part of a programme in this way are often called constants, since their values
are not altered. Usually only occasional constants that are required at some stage in a calculation are
written on programme sheets. If the problem uses many numbers they would not be written on the programme
sheets but all together on other sheets of paper.

The numbers and order-pairs are punched more or less as written on the programme sheets, and the
resulting tape is read by the Initial Orders programme, which converts the items on the tape into the
appropriate binary form and places them in the main store. We shall describe later the details of the
punching; at present all we need say is that every number must be preceded by its sign and must be
either a fraction (with a decimal point) or an integer. A fraction may have up to 11 decimal digits after
the point, and will be converted to the nearest binary equivalent (with an error of at most % €, see
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Section 1.8). An integer is converted into binary without error, as also is a fraction which can be
precisely represented by a 39-bit word (e.g. 0.25 or -0.625).

B 2
0.0 [+0.25 = 1/4"
AU | NS S fractions
1 [-0. 125 = ~1/8
-2 |1+1000 integer
—l0.0 [2]o0 1 Pplace 1/4 in X2
3
0.1 3|00 Place -1/8 in X3
4 0.2 4 |00 Place 1000 in X4
L1 1.

We often rule a vertical line to the left of a number written on a programme sheet: this is done
to emphasise that it is not an order.

2.9 The special registers

The special registers are a group of registers in the computing store which are used for special
purposes, they are not made up of delay-lines and cannot be used for storing words in the same way as
the accumulators or the ordinary registers. They have the addresses 15, 16, 17, 24, 32, 33, 34, 35, 36,
37 (some other addresses are used when certain extra equipment is fitted to the basic computer). These
registers are shown in the diagram of the store of the computer (Fig.2.2). .

Registers 32 to 37 hold permanently certain useful constants. For example, register 33 holds % so
that the order

33 4 01

has the effect of adding % to the number in X4. The order
33 4 10

has no effect. The contents of these constant registers are as follows:

32 -1.0
33 1/2
34 2-10
35 2-13
36 2-16
37 7/8

It would of course be easy to place one of these constants in a register by writing it on the programme
sheet along with the orders which need it. These particular numbers are needed fairly often however,

as will appear later; it should be noted that each of them (except that in 37) is represented by a word
only one of whose 39 digits is a one.

The content of register 15 is determined by the settings of a row of switches on the control panel;
these are referred to as the handswitches. Twenty of these switches are referred to as HO, H1, H2, ...,
H19 and each of them may be either up or down. The up-position of each switch corresponds to 0 and the
down-position to 1, so that we may set up anj twenty-digit binary number by pressing down the switches
where ones appear in the number. When this has been done an order such as

15 4 00

will place in X4 a word whose first 20 digits are determined by the handswitches; the remaining 19
bits of this word are all zero. For example, if H19 only is down the above order will place 2°19 in X4.
We write H19 = 1 to indicate that the switch H19 is down. This kind of order is said to read the
handswitches. An order such as

15 4 10

has no effect. The handswitches can be very useful to the programmer for manually directing the
operations of the programme; how they are used will be explained later.

Registers 16 and 17 are used for input and output and will be described later. Register 24 stores
the current setting of the external conditioning relays (described at the end of Section 3.10).
Registers 20 and 21 are used only on those computers equipped with magnetic tape auxiliary storage.
The content of any other register, such as 31, is always zero; such registers have the unallocated
addresses between 8 and 63. The addresses 64 onwards are actually those of the ordinary registers; it
is much more convenient to use the customary notation for these, however.
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2.10 The orders of group 4

By using the orders of groups 0 and 1 together with numbers placed in ordinary registers along with
the programme we can carry out many useful operations. In fact most of the orders in the majority of
programmes are concerned with simple operations such as addition, subtraction and copying. The special
constant registers relieve us of the need to punch and store certain useful numbers.

Most programmes require small integers for a variety of purposes. Such integers could of course be
punched on the programme tape and read into the computer along with the programme; but this would be
wasteful of storage, especially in the computing store, since many small integers are required during the
course of a programme. This procedure would also be inconvenient. The orders of group 4 can be used to
produce any small integers as they are needed. These orders closely resemble the orders of group 0; but
the N-address (or first address) in the order is not any longer an address, but is actually the integer
required. For example, the order

@340

causes the integer 27 to be placed in X3. The number written on the left in the order is usually
encircled so as to emphasize the fact that it is not the address of any register. This number can have
any value from 0 to 127 (since it is represented by 7 binary digits inside the computer).

The effect of the 40-order may be written

where N stands for the encircled number written first in the order. Note that N is to be carefully
distinguished from n, which is the content of a register. In this equation the words are, of course, to
be interpreted on the integer convention. '

The order

4 6 00

copies C(4) into X6, and the order

(:) 6 40

places the integer 4 in X6. The circle round the number is merely an aid when reading programme-sheets,
no special punching is used to indicate that the number is encircled. 1In fact the above two orders are
differentiated only by their function digits when they are punched on tape or stored inside the computer,

It will be seen that the 40-order is similar to the 00-order in that the result is left in the
specified accumulator. The first operand is, however, explicitly written in the order and is not the
content of any specified register. This analogy also holds for the remaining orders of group 4. The
effect of any order of this group can be derived from the corresponding order of group 0 by replacing
the words “content of register” by “number written in the order” in the verbal description. This is
equivalent to replacing n by N in the defining equation. For example, the Ol-order is defined by the
equation

01 ' = x4+ n,

and the 4l-order by the equation
41 ! = x + N,
where it is understood that the numbers concerned are integers.
Where necessary we shall put a suffix ; or p on letters such as n or x to denote that the

corresponding words are to be interpreted as integers or fractions respectively. For example xp means
the fraction x, and x; means the integer x. The above equation could be written:

xI' = ZI + N.
The first five orders of group 4 may be summarised as follows.

F Effect ’ Description

40 x} = N Replace content of accumulator by integer written
in the order,

41 I =

xy xr +N Add integer written in the order to integer
in accumulator.
42 xf = N Replace content of accumulator by minus the
integer written in the order.
43 x; = xp - N Subtract in@eger written in the order from
integer in accumulator.
44 x} = N - xp Subtract integer in accumulator from integer

written in order; result in accumulator.

In this summary the equations are all written on the integer convention; if we use the fractional
convention they must be written differently, for example the equation of the 41-order becomes

41 xp = xp + N.279%8,
or -
zp = ap * Ne,
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As an example suppose we wish to use the integer 49 for counting purposes, it can be set initially
into accumulator 2 by the order

@9 240

To subtract 1 from the integer in X2 we would write

<:> 2 43

The remaining orders of group 4 are described in Section 3. 11.

2.11 Overflow
According to the standard fractional convention any number x represented by a word must be between
-1 and +1, in fact such a number must satisfy the inequalities

-1 €z <1,

It may happen during arithmetical operations that numbers are produced which exceed capacity, i.e. lie
outside the permitted range of values, This is called overflow. For example, overflow will occur if we
add 0.71 to 0.95. In such an event the computer will produce a wrong result and a warning is given by

a special overflow-indicator. This overflow-indicator is usually referred to as OVR; it is a two-state
device which is normally clear but will be set when overflow occurs. Once OVR has been set it will
remain set, regardless of other operations, until certain special orders are obeyed (see Section 3.8).
One of the lights on the control panel shows the state of the overflow-indicator.

A “Stop on Overflow” key is provided which, when depressed, will cause the computer to stop on the
completion of an order during which OVR has been set. On switching to STOP and RUN the computer will
continue working as though the stop had not occurred, and OVR must be cleared and set again before the
stop can occur againt,

When OVR is set it is impossible to transfer words to the main store; the computer will stop if
it comes to an order calling for such an operation. This means that the numbers obtained from a sequence
of calculations cannot be written away into the main store if overflow has occurred at any stage. Since,
as a rule, the programmer will not want numbers to overflow this stop prevents the wastage of machine
time which would occur if much further calculation were done with the wrong numbers. A special light
on the control panel indicates this kind of stop; it is marked “writing with overflow”.

If overflow occurs during any order except a division order, then the result actually obtained w111
differ from the correct result by 2 or a multiple of 2 (on the fractional convention). For example, if
we attempt to add 0.71 to 0.95 we shall get -0,34, which is 2 less than the correct sum 1,66, and OVR
will be set., Overflow can, of course, also occur with integers; in this case the result actually
obtained will differ from the correct result by a multiple of 239,

Overflow can be thought of as a loss of significant digits at the left (or ms) end of the word;
this is usually a serious matter unless the programmer has foreseen it, which may be difficult in a
complicated programme. Overflow is usually caused by insufficient scaling-down of the numbers occurring
in the calculation. One cannot lay down any definite rules about the action to be taken if overflow
occurs, but the overflow-indicator can be sensed by the programme and it may be possible to arrange that
the offending numbers are all automatically scaled down and the appropriate part of the calculation
repeated.

Apart from orders causing writing into the main store (functions 71 and 73), the only orders
affected by the setting of OVR are those with functions 23 (justify) (see Section 3.4), 64 and 65 (see
Section 3.8). The results obtained from any other order will be the same whether OVR is set or clear.
Note that the orders 00, 10, 40 and 42 cannot set OVR; the orders 02 and 12 will set OVR only if the
number concerned is —1.0 (on the fractional convention). ’

When the computer obeys an order such as

33 511

the sum, i.e. C(33) + C(5) = % + C(5), is actually formed in the mill, although C(33) is, of course,
unaffected. An order of this kind may, however, set OVR. Similar remarks apply to the other constant
registers and to register 15 (handswitches). This can sometimes be turned to good account; the above
order will, for example, set OVR only if C(5) 2 % and can be used to indicate this fact without
disturbing the contents of any registers. The order

32 0 02

is occasionally useful; it sets OVR but has no other effect.

t+ In the case where overflow is caused by a 20- or a 21-order (i.e. -1.0 x -1.0) which is obeyed in an
g-order, the stop will occur after the b-order, i.e. the computer will be waiting to obey the next
a-order. 1In all other cases the stop will occur immediately on completion of the order causing the
overflow.

The Stop on Overflow key is not present on Pegasus 1.
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Chapter 3
The Order—Code

This chapter is concerned with all the orders in the Pegasus order-code with the exception of
those in groups 0, 1 and 4, which are described in Chapter 2, and a few less commonly used orders, which
are described in later chapters.

3.1 Multiplication

In Pegasus most of the orders of group 2 are concerned with multiplication and division; the
structure of this group is different from that of groups 0, 1.and 4.

If we multiply together two decimal numbers having each the same number of digits we get a product
which contains up to twice as many digits. For example,

381 x 6156 = 234315
.381 x .615 = 234315

The numbers on the left are the factors in the multiplication. In the same way if we multiply together
two binary fractions, each having 38 bits after the point, we shall get a product with 76 bits after
the point. If we add a sign-bit we get a 77-bit product. This requires two computer words for its
representation and a number of this kind is therefore called a double-length or double-precision number.
It is important that the computer should be able to form the full product of two words and generally
to manipulate double-length numbers. In Pegasus, accumulators 6 and 7 can be used in the usual way like
any of the other accumulators, but they have some special properties as well. They can be coupled
together to form a double-length accumulator, in which double-length numbers can be conveniently handled.
The full double-length product is placed there when the computer performs a multiplication.

There are three multiplicat'on orders, of which the simplest is the 20-order (read as “two-oh”,
not twenty). Let us consider the action of the order

5.3 4 20

This order takes the number in ordinary register 5.3 and multiplies it by the number in X4, the full
product being left in X6 and 7 (in place of the previous contents): the contents of 5.3 and X4 are
undisturbed. In carrying out this multiplication the machine of course takes note of the signs of the
two factors (i.e. the operands) and ensures that the product is correctly signed. The 20-order always
places the product in X6 and 7, whatever the N-address and X-address written in the order; in fact the
computer is so built that the multiplication is actually carried out in accumulators 6 and 7 and not in
the mill at all. Let us now consider the way in which the product occupies the space available (78 bits)
in X6 and 7.

The product has 77 binary digits, of which the left-most is the sign-bit. For convenience we shall
number these digits from the left: 0, 1, 2, ..., 76; so that digit 0 is the sign-bit and digit 76 is the
least~-significant bit of the product (this is an extension of the usual way of numbering the digits of a
single word - see Section 1.8). When the product is placed in X6 and 7, digits 0 to 38 of the product
occupy X6 and the remaining digits (39 to 76) occupy X7, except that the sign-digit position in X7 is
not used and the digit there is always made zero. We can think of X6 as receiving the left (or ms) half
of the product, including the sign-digit, whereas X7 receives the right (or 1s) half. This is illustrated
in Pig.3.1, in which the digit-numbers are shown.

X6 X1
0111213{4{5] .... 36|37| 38 39{40(41{42|43 |44} ... T4|75|76
Digits 1 to 38 Digits 39 to 76
of product of product
sign-digit
of product always zero

Fig.3.1. A double-length product in accumulators 6 and 7.

Since accumulators 6 and 7 are often used for special purposes it is convenient to introduce a
special notation for their contents. We shall write-p for C(6) and g for C(7). The double-length number
formed by placing the digits of p and ¢ side by side will be denoted by (pq), but when we write this we
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usually imply that the sign-digit in X7 does not belong to the number and is zero (i.e. a 2 0). With
the aid of this notation we can indicate the effect of the 20-order by means of the equation*

20 (pq)’ = nXzx,

where (pg)’ means the double-length number after the order has been obeyed. The order can be
described as:

20 Multiply the content of the specified register by the content of the specified accumulator and
place the product in accumulators 6 and 7. .

Just as with the orders of groups 0 and 1, the N-address can refer to any register (e.g. to an
accumulator).

If there are two numbers in 5.0 and 5.1 and we wish to find their full double-length product, we
could use the orders

5.0 3 00 First number to X3
5.1 3 20 multiply by second number

One of the two factors must be in an accumulator, and we have here used X3. The product will be placed
automatically in X6 and 7 and we could, for example, store it in 5.2 and 5.3 by adding the following
extra orders

5.2 6 10 ms half of product to 5.2
5.3 710 1s half of product to 5.3.

A sequence of orders like this may be used whenever we wish to form the full product of two words; it
is unaffected by whether we interpret the operands as fractions or as integers.

Before going any further we must consider carefully how we are to interpret the double-length
number (pg). To illustrate these interpretations we shall use products of 3-digit decimal numbers; and
to avoid complications we assume at first that all the numbers concerned are positive. )

If we multiply two integers the product will be an integer, tt for example,

381. x 615. = 234315.
and if the two factors are fractions the product is a fraction:
.381 x .615 = 234315

and if one factor is an integer and the other a fraction then the product will be a mixed number with
its point in the middle:

381. x .6156 = ,381 x 615. = 234.315

In other words, if the point is to the left (or right) in both factors then it lies on the left (or
right) in the product; 1if the point is to the left in one factor and to the right in the other then it
lies in the middle in the product. All this applies to binary numbers just as well as to decimal ones;
it is illustrated diagrammatically in Fig.3.2, (page 28) where the boxes represent the digits and the
position of the binary point is marked.

The equation defining the effect of the 20-order can consequently be written

20 (pq); = npoxp,
where the 7 suffixes indicate that the quantities are integers, or
20 (pq)} = ng.xp,

where the  suffixes indicate that the quantities are fractions. In other words, this means that the
double-length product is a fraction if both factors are fractions; it is an integer if both factors
are integers. ’

Frequently both factors are “small” positive integers, in which case the left half (i.e. p) of
the full product is zero. We can then take the right half (i.e. g) as the product (single-length).
Examination of the top line of Fig.3.2 should help to clarify this. For example, suppose we have
two “small” positive integers in 5.0 and 5.1, we can place their product in the single register 3.2
by the following orders

5.0 6 00 first integer to X6
5.1 6 20 multiply by second integer
3.2 710 product to 3.2 (X6 will be clear).

In this example X6 is used for two purposes; it first holds one of the numbers to be multiplied, but
this gets overwritten (i.e. replaced) by the left half of the product (which is in fact zero). A

f It is common practice to leave out multiplication signs or to replace them by points, so we shall
often write nx or n.x instead of n X x. But the special symbol (pq) does not, of course, mean the
product p X gq.

tt We have written the decimal point in these integers merely to emphasize that it really lies to the
right of the ls digit.
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FACTORS PRODUCT
X6 X1
i
o X . = | .
1
Integer Integer Integer
T
. X 1. = |. |
I
Fraction Fraction Fraction
x|. , !
» |
Integer Fraction Mixed Number
X o= !
[
Fraction Integer Mixed Number

Fig.3.2 How the position of the binary point in a double-length product
is determined by its position in each of the two factors.

sequence of orders like this can be used whenever the product is non-negative and less than 288 (which
is about 250 000 million); for example, one factor could be as large as 250 000 and the other a million.
If the product is greater than or equal to 23% the above sequence of orders will not place the correct
product in 3.2, but only its 38 1s bits (such products cannot in fact be placed in a single register).
Alternatively, if the product is single-length but may be negative then steps must be taken to correct
the sign-bit in X7 before the product is used; this will be explained in Section 3.8.

When we multiply two integers it 1s usually the right half only of the product which is of
interest. When we are dealing with fractions it is usually the left half that we wish to retain; this
should be clear after looking at the second line in Fig.3.2. For example, if the two factors are 3/4 and
5/8 the product is 15/32, and all but the first few bits of the double-length product will be zero. As
a rule the digits appearing in X7 will not all be zero but they can often be neglected. We shall discuss
the multiplication of fractions in the next Section,

Let us now consider the multiplication of an integer by a fraction. It should be clear from Fig.3.2
that we must now regard the binary point in the product as lying between p and ¢q. The integer in X6
(i.e. p;) after the multiplication is the integral partt of the product, and the fractional part is the
fraction in X7 (i.e. gg). For example, suppose an integer a (= 9 say) is stored in 4.0 and a fraction
y (= % say) is in 4.1; the following orders will place in 4.2 the integral part (= 6) of the product
a.y (= 6%).

4.0 600 a to X6
4.1 6 20 multiply by y
4.2 6 10 integral part [a.y] to 4.2

The fractional part (= %) of the product will be left in X7.
If we write (pg)y for the number in the double-length accumulator interpreted as a mid-point
number, we can get another form of the defining equation of the 20-order

20 (PQdy = np.xp = np.xg.

t The integral part of a number is the greatest integer which does not exceed the number, e.g. the
integral part of 3,27 is 3 and the integral part of 2 is 2. 1Integral parts are sometimes denoted by
square brackets; thus we can write [x]for the integral part of x, and

[1s%] = 15, [6] = 6 [o] = o, [¥] = o.
We must note carefully how the above definition applies to negative numbers; in fact
[-6] = -8, [-24] = -3, and [-15%] = -16.

The fractional part is the number minus its integral part; it is never negative. For example, the
integral part of 3.456 is 3 and the fractional part is 0,456.
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Before describing the multiplication of fractions we must examine further the double-length number
(pg). Suppose we know the values of p and g, what is the value of (pq)? We shall for the moment adhere
to the fractional convention and write pg, gp and (pq)p for the fractions concerned. It is easy to
find the value of (pq)p by a simple extension of the rules given in Section 1.8 for evaluating a single-
length fraction. The sign-digit (if it is 1) contributes ~1 to the value, and if digit k of the product
is 1 it contributes 2°% (we must now consider k as running from 1 to 76). Now the total contribution
from all the digits in X6 is simply pp. When we consider gp as the right half of a double-length fraction
we see that each of its digits is 38 places further to the right than usual; and consequently the
contribution made by these digits to the double-length fraction is qp X 238 j.e. €qp. The value to be
assigned to the double-length fraction is therefore

(pddp = pp *+ €qp

with gr 2 0. If qp is negative we can still assign the value pp + €gp to the double-length number. On
the integer convention the two halves of the number, p; and ¢y, are integers and the point in (pg)y is
76 places further to the right than in (pq)p. The value of (pq)y is therefore

as
pe)r = 27 7°prtgqp

on the integer convention. When the product is a mid-point number we can write it (pq)y; clearly
(pa)y = p; ¥ gp

3.2 Rounded multiplication

We have explained in the preceding section that when we multiply two fractions together it is
usually only the left half (i.e. p) of the product that is of interest. The error committed in
disregarding the right half entirely is always less than €, which is about 0.00000 00000 036. If this
is small compared with the value of the product we can often legitimately take the single-length
fraction pp (in X6) to be the product. It is important to realise that as a rule py is only an
approximation to the product; it is true that it is normally a very good approximation (the error is
in fact only €qf), but it is nevertheless subject to bias. This is because ¢ is non-negative, which
means that pp may (exceptionally) be equal to the product but will normally be too small by any amount
up to €. This bias may lead to considerable error in the later stages of an extended calculation, and
to avoid it we must round the product.

This rounding process is automatically carried out by the computer if the 21-order is used for
multiplication instead of the 20-order. Thus if we have two fractions in registers 5.3 and 5.4 and we
wish to place their rounded product in 5.5, we can use the following orders

5.3 2 00 first fraction to X2

5.4 2 21 multiply by second fraction and round
5.5 6 10 rounded product to 5.5.

The 21-order may be described as follows:

21 Multiply the fraction in the specified register by the fraction in the specified accumulator and
place the rounded product in X6 (X7 receives the rest of the product).

The content of X7 after this order is seldom wanted, we shall shortly explain just what it is. The
rounding can be thought of as putting into X6 the best single-length approximation to the true double-
length product. This approximation may be larger or smaller than the correct product but the error
never exceeds t %€ and is unbiased.

As an example, suppose we have three fractions x, y and z in registers 5.0, 5.1 and 5.2
respectively, and we wish to place in 5.3 the quantity x + yz. Since the result is to be a single-
length fraction it must be rounded to get the closest approximation. The following orders will do what
is required

5.1 6 00 y to X6
5.2 6 21 yz (rounded) to X6
5.0 6 01 x + yz (rounded)
5.3 6 10 result to 5.3.
The addition of the single-length fraction x to the product cannot affect the rounding.

The 21-order is intended mainly for multiplying fractions; but it is sometimes useful when one
factor is an integer and the other a fraction, when the product is a mid-point double-length number
(see Fig.3.2). That part of the product which appears in X6 will now be the integer closest to the
product; if a 20-order had been used i1t would have been the integral part of the product. For example,
suppose an integer a« (= 9 say) is stored in 4.0 and a fraction y (= % say) is in 4.1; the following
orders will place in 4.2 the nearqst integer (7) to the product a.y (= 6%).

4.0 6 00 a to X6
4.1 6 21 multiply by y and round
4.2 610 nearest integer to a.y to 4.2

The reader should compare this example with a similar one in the previous Section.
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To explain how the rounding is done in a 2l-order it is simplest to consider the product as a mid-
point number. Suppose we have used a 20-order to produce the product (PQ)y, i.e. a double-length number
with integral part pr and fractional part gp.- This number is now to be adjusted so that C(6) will be
the integer nearest in value to (pq)y. Clearly we need not alter pp if gp <, and we should increase p
by 1 if gp > % This can be done by adding % to g, and adding any carry which then occurs to the least-
significant digit of py, i.e. we must add % to (pq)y. This is shown in Fig.3.3 (adding 1 to digit 39 of
the product is equivalent to adding % to (pq)y). This rounding is done automatically by the

X6 possible carry X7
YT\
0111213 |4]5] ..... 36{37{38 39(40141|42}43 cens 74175176

\

Fig.3.3 Rounding a double-length fraction to produce a single-length
fraction in X6.

sign-digit zero ‘add one here

of number

21-order. The order may thus be defined by means of the equation
21 (pq)é = npoxp th = npoxp th (q' 2 0,
if the product of an integer and a fraction is being formed; or by means of the equation
21 (P} = np.xp + %e (q' 2 0y,

if we are multiplying two fractions.t

_One of the reasons for providing special register 33, whose content is % (see Section 2.9), is to
facilitate the rounding of double-length fractions which are not obtained by a simple multiplication.
The rounding of a double-length number should be done only when the closest single-length approximation
to its left half is needed.

3.3 Cumulative multiplication
The 22-order is the third of the multiplication orders in the Pegasus order-code; it facilitates
the accumulation of products, which is a frequently needed operation. This order may be defined astt

22 (pq)' = (pg) + n.x,
or verbally as follows:

22 Multiply the content of the specified register by the content of the specified accumulator and
add the resulting double-length product into the double-length accumulator (X6 and 7).

In this order the factors may be integers or fractions provided (pq) and (pq)’ are properly interpreted.
For example, suppose a, b, ¢, d are four positive integers stored in 3.0 to 3.3, and we have to
place the integer ab + c¢d in 3.4, we could use the following orders
3.0 500 a to X5
A 3.1 5 20 ab to X7
3.2 5 00 ¢ to X5
3.3 5 22 add c¢d to ab in X7
3.4 710 ab + cd to 3.4.
As another illustration, suppose u, v, w, %, y, z are six fractions held in 5.0 to 5.5, and we
wish to evaluate the fraction uv + wx + yz and place it in 5.6. . In this case we want a rounded single-
length result and we must therefore arrange to add %€ to the sum of products before storing the ms

half, this is most easily done by using a 21-order to form the first product, since it does not
matter at which stage the addition of %€ is done.

L

t 1t is instructive to compare .this method of rounding with that applicable to decimal numbers.
Suppose we wish to discard the last 3 digits of the number 0,142857. The result we should retain
is 0.143, and this can be got by adding 0.0005 to the number before discarding the unwanted digits.
The amount to be added is % in the last place to be retained.

tt Strictly speaking this equation should read
22 (p)| = p +eq *n.x,

on the fractional convention, since there is no restriction on the sign of the original C(7).
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5.0 100 u to X1

5.1 121 (" = uv + %e

5.2 100 w to X1

5.3 122 add wx to (pq)

5.4 100 y to X1

5.5 1 22 add yz

5.6 6 10 rounded result to 5.6.

Sequences of orders like this are useful in the evaluation of the scalar product of two vectors.

It should be noted that the three multiplication orders are all correctly signed; they will give
arithmetically correct results regardless of the signs of the operands. This of course assumes that we
require either the full double-length product or the single-length rounded product in X6. If the right
half of the product (in X7) is all that is wanted, as when multiplying “small” integers, special
arrangements (described in Sections 3.8 and 5.10) will have to be made if the result is likely to be
negative; this does not often occur.

Overflow (see Section 2.11) may occur as a result of a multiplication. The 20 and 21 orders can
cause overflow only if the fraction -1.0 is squared, the true result should be +1.0 (or +1.0 + %€ for the
21-order) which is outside the permitted range; the result actually obtained in this case will be -1.0
(or =1.0 + %€ for the 21-order) and OVR will be set. With the 22-order there are of course more
possibilities for overflow; but it should be noted that it is only the final result which determines
whether OVR gets set, i.e. overflow will not occur if -1.0 is squared and added to a negative number
standing in the double-length accumulator.

. Multiplication is, not unnaturally, a slower operation than addition or subtraction. A single
order of groups 0, 1 or 4 is obeyed in 3 word-times if it is an g-order, or in 2 word-times if it is a
b-order (see Section 2.4). A 20- or 2l-order takes 13 extra word-times, and a 22-order takes 14 extra
word-times. Thus a 20-order takes altogether 16 word-times if it is an a-order, or 15 if it is a b-
order. As a rough figure one can say that multiplication takes about 2 milliseconds, 1In timing a
section of programme containing multiplication orders it is usually simplest to find the time on the
assumption that multiplication is as fast as addition, and one can then add in 13 word-times. for each
20- and 2l-order and 14 word-times for each 22-order. .

3.4 Double-length addition and subtraction :

The numbers normally handled by Pegasus are represented by single words and have 39 binary digits.
We have seen how double-length numbers can arise as a result of multiplications. It is sometimes
desirable to operate entirely with double-length numbers, which contain the equivalent of nearly 23
decimal digits. When adding or subtracting double-length numbers we must arrange for carries to take
place between the two words. The 23-order is provided to facilitate this; it is called the justify
order,

Operations on double-length numbers are usually carried out in the double-length accumulator formed
by X6 and X7. A fraction in this accumulator is denoted by p + €q in general, but the notation (pq) is
preferred when g is non-negative. It is usually desirable to adjust a double-length number so that its
right (or 1s) half is non-negative (this is essential when shifting, as will be explained in Section 3.7),
such a number is said to be in stendard form.

Let us consider the addition of a double-length number in registers 5.0 and 5.1 to another such
number in X6 and 7; we need not assume that these numbers are in standard form. We must first add the
right halves:

5.1 701

This is the operation which may give rise to a carry which is to be added to the 1s end of the left half
of the sum. A carry will be necessary if the above order sets OVR, or if C(7) is negative. The justify
order therefore examines OVR and the sign bit in X7, determines from them, and effects, the required carry,
and then clears OVR and the sign bit in X7. There are the following four possibilities.

OVR Sign of C(7) : Carry required
' clear + 0
clear. - €
set + ~2€
set - +€ *

This table may easily be checked by noting that if OVR is set then theésign of C(7) is incorrect. The
23-order adds the carry into the 1s end of the register specified by its N-address (the X-address is
not used and we usually write zero here). The complete sequence for adding the above two double-length
numbers is therefore as follows.
5.1 7 01 add right halves
6 0 23 justify into X6
5.0 6 01 add left halves.

Subtraction may be done by replacing the two Ol-orders in this sequence by 03-orders.
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A verbal description of the 23-order reads as follows:

23 Put into standard form the double-length number in the specified register and X7, on the
assumption that a preceding addition or subtraction in X7 has determined C(T) and the state
of OVR, Leave C(7) non-negative, and leave OVR clear unless the left half of the number
(in the register) overflows.t

The 23-order takes the same time as an 00-order.
The operation of the order may be defined algebraically as follows:

23 (ng)' = a + €q + contribution from OVR, (7' 20,

where (ng)' is the double-length fraction in N and X7 with ¢’ 2 0, and the “contribution from OVR” is
zero if OVR is clear but is + 2€ if OVR is set (the sign being opposite to that of g4); OVR is left
clear unless n' overflows.

The sequence given above for the addition of two double~length numbers will as a rule leave OVR
set only if the double-length sum exceeds capacity. There are exceptional cases in which the carry
causes overflow in the intermediate partial sum while the complete sum (after the last addition) is
within capacitytt,

The 23-order may also be used when operating with numbers more than two words long (multi-length
numbers). -

3.5 Division

Division and multiplication are normally thought of as inverse processes and it is desirable that
the correspondence between them should be reflected in the way the computer operates. We should therefore
expect that if we divide the product of two numbers by one of them, then the resulting quotient should
be the other number; or, in symbols, we expect that

a.b

a

= b,

One consequence of this apparently trivial statement is that, since the product a«.b is a double-length
number, we must be prepared to divide a double-length number by a single-length number. It is also
useful on many occasions to get not only the quotient but also the remainder after a division (in the
above example the remainder is zero). In general, therefore, we require to take a double-length
dividend and a single~length divisor and from them to find a quotient and remainder, which will both be
single-length numbers, and we must provide for negative numbers as well as positive ones.

To take a simple example, consider the division of 43 by 5. Here 43 is the dividend and 5 is the
divisor; and we can see that 5 goes 8 times into 43 with 3 left over, so that the quotient is 8 and the
remainder is 3. We should note that the remainder is less than the divisor and is non-negative (i.e.

0 € 3 <5), and there is a simple relationship between these numbers which can be written as

3

43 3 i<

—_— = +
5 8+3

or, what amounts to the same thing,
43 = 5x8+3 (0<€3<5)

The quotient can usefully be thought of as the integral part of the fraction 43/5. 1In general, if we
write u and v for the dividend and divisor, and ¢ and r for the quotient and remainder, we can write

= = g+ <Ly, (1)
v v v

or
u = wv.gtr < r <. . (2)

These two statements are equivalent provided the divisor v i1s positive. Assuming that the divisor is
positive for the moment, either statement completely determines g and r when u and v are specified (it
is assumed that all these quantities are integers and that v is not zero).

The 24-order may be used to carry out this kind of division process. Let us consider the order

5.2 3 24

In this division order the double-length dividend is formed by taking C(3) for the left half and C(7)

+ 1t is assumed throughout that N # 7. The sign-bit in X7 will not be cleared by the order
‘ T 0 23
tt For example, with the numbers
p = l-€, g = % C€5.0) = -% CB.1) = %
More elaborate sequences of orders can be written down for handling such numbers.
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for the right half. The divisor is C(5.2). Thus

C(3) c(n

Dividend

C(5.2)

Divisor

The left half of the dividend is taken from the accumulator specified in the order; it is made into a
double-length number by adjoining the content of X7 as shown above. If the dividend were in the double-
length accumulator (X6 and 7) we would simply specify X6 in the division order., The divisor is the
content of the specified register. The 24-order always places the quotient in X7 (the mnemonic “g for
quotient” may help in remembering this) and the remainder in X6. )

For example, to divide a double-length integer u in X6 and 7 by a single-length integer v in 3.0,
placing the quotient ¢ in 4.0 and the remainder r in 4.1, we could use the following sequence of orders.

3.0 6 24 divide u by v
4.0 7 10 quotient to 4.0
4.1 6 10 remainder to 4. 1.

The quantities u, v, ¢, r satisfy the relationships given above.

Frequently the dividend is a single-length integer, when we put it into X7 and specify X0 in the
division order; the left half of the double-length dividend is then zero. For example, to find the
quotient and remainder when 43 is divided by 5 we could use the orders

(43) 740 43 to X7

@640 5 to X6

Here the dividend is formed from C(0) and C(7), and the divisor is C(6); as always the quotient (in
this case 8) appears in X7 and the remainder (3 here) in X6. Note that the quotient and remainder always
replace the previous contents of X7 and X6.

The double-length dividend in a 24-order may be denoted by (xq), since it is formed from x, the
content of the specified accumulator, and ¢, the content of X7. This notation strictly implies, however,
that g is not negative, and in fact there is no restriction on the sign of q; so that to be precise we
should write the dividend x,2%8 + ¢ on the integer convention, or xz + €q on the fractional convention.
Since this notation is clumsy we shall continue to write (xq) for the dividend, with the understanding
that in this case g may be negative.t

The operation of the 24-order may be described, on the integer convention, by either of the
relationships

7 ! .
S A 0 <E <, @
n n n
or
(xq) = n.g" +p' (0 <p’ <ny, (4)

which the reader should compare with those numbered (1) and (2) at the beginning of this Section. Since
we must allow the divisor n to be negative we prefer the form (3) above (the inequality in (4) is

impossible when n is negative). The definition of the 24-order on the integer convention is therefore
as follows: tt

14 I4

It may be described verbally as follows:

24 Divide the double-length number in the specified accumulator and X7 by the number in the
register; place the aquotient in X7 and the remainder in X6.

These descriptions are valid even for negative divisors or dividends; note that the remainder (unless
it be zero) always has the same sign as the divisor. It is not often that negative remainders are of
interest. The quotient produced by the 24-order is always the integral part of the number (xq)/n, 1i.e.
the greatest integer not exceeding this number (see Section 3.1).

t At the start of the division process the divisor is placed in a special multiplicand/divisor register;
the left half (x) of the dividend is simultaneously copied into X6 and a partial justification occurs
in which ¢ is made non-negative and C(6) correspondingly corrected (if necessary). During the
division the divisor gets added and subtracted into X6, the altered dividend is shifted up (double-
length), and the quotient is built up, digit by digit, in X7.

¥t We adhere to the convention that the results of an order (p’ and q’ in this case) appear on the left
in the defining equation.
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The diagram shows the five words concerned in the order.

x q
Dividend
n
Divisor
p’ in X6 q' in X7
Remainder Quotient

The overflow-indicator will be set on attempting to divide by zero or if the quotient exceeds capacity.
The quotient can never exceed capacity if the dividend is a single-length integer (unless ¢ = -238% and
n = =1),

As an illustration of the use of the 24-order, let us suppose that a positive integer stored in
5.0 represents a sum of money expressed in units of a penny, and that we require to convert it to
£.s.d., placing the number of £'s in 4.0, the number of shillings in 4.1 and the number of pence in 4.2.
If we denote these last three quantities by I, s and d respectively, and p is the sum involved then

p = 2400 + 12s + d,

12(201 + s) + d,

so that d is the remainder when p is divided by 12 and 20l + s is the quotient; if this quotient is
in turn divided by 20 we can find ! and s. Thus the following sequence of orders can be used.

(@ 640 12 to X6
5.0 700 ptoX7

6 024  divide p by 12
4.2 610  dto 4.2

@) 6 40

6 0 24 divide (201 + s) by 20
4.0 710 1to 4.0
4.1 6 10 s to 4.1.
3.6 Rounded division

We have so far considered the d1vision of integers, where the 24-order takes a dividend (xq); and
a divisor ny and evaluates a quotient qI and remainder pI connected by the relationships

2 (zq) Py
24 df ,,’ = —L <k (1
I T I

The suffixes indicate that the quantities are all integers. These relationships must be supplemented
by the information that all the numbers concerned are integers. If we wish to divide fractions we must
interpret all the words concerned as fractions and the above relationships must be written

PE _ (x9)p P
24 q; + eﬁ; = —76;—- (0 <~H;-< 1). (2)
We must also supplement these relationships by the information that all the numbers concerned are
“fractions”, in the sense that they are expressible by words according to the usual conventions; this
implies that they are all integer multiples of €.

In general 1f we express in binary the ratio of two numbers (xq) and n we cbtain an infinitely
long number, which can be called their “true quotient”. For example, if the dividend (xq) is 1/8 and
the divisor n is 7/8, the true quotient is 0.001001001001001... (this corresponds in decimal to the
fact that 0.1/0.7 = 0.142857142857....). In the 24-order the division process is stopped when the
first word-full of this true quotient has been evaluated; and it is at this stage that we get a
remainder, which is the number we could use as a new dividend (with the original divisor) to continue
the division process. Apart from the exceptional case when the remainder p' is zero, the quotient q'
obtained in this way is an approximation which is always less than the true (infinitely long)
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quotient.t In fact the value of the true quotient always lies between q' and ¢’ + € on the fractional
convention, and sometimes ¢’ + € is a better approximation than q’. When we are.dividing fractions.it
is this best single-word approximation to the true quotient that is usually wanted; it never differs
from the true quotient by more than %€ and is unbiased. We here have a situation similar to that
arising in the 21-order; in both cases we wish to get the best single-word approximation to a long
number, and this is done by rounding the long number. )

The 25-order is provided to give rounded quotients. It is generally similar to the 24-order but
it yields a quotient ¢’ which never differs from the true quotient by more than %€. The 25-order may
be defined by the relationships

i !
25 gleck = BD (B o<y, @)

on the fractional convention. The only difference from the relationships (2) is in the inequality
satisfied by p'/n. As with the 24-order, there is no restriction on the sign of g in the dividend. A
verbal descriptiop is as follows:

25 Divide the double-length number in the specified accumulator and X7 by the number in the
register; place the rounded quotient in X7 (end the corresponding remainder in X6).

When dealing with fractions the remainder is not often needed but p’ is still a “true” remainder, in
the sense that it may be used as a new dividend to continue the division process; if this is done
the result will be a fraction numerically not exceeding Y% which may have either sign.

As an example, suppose u, v and w are three fractions stored in 4.0, 4.1 and 4.2, and we wish to
place in 5.0 the fraction uv/w. Since we are dealing with fractions it is understood that we require
the rounded value. We can use a 20-order to evaluate the full double-length product uv since the
25~-order can deal with this as dividend.

4.0 6 00 u to X6

4.1 6 20 uv to X6 and 7

4.2 6 25 divide uv by » (rounded)

5.0 7 10 quotient to 5.0.
In this example the double-length dividend is in X6 and 7. Note that the rounding is deferred as long
as possible,

Frequently the dividend, as well as the divisor, in a single-length fraction. Suppose, for example,
we have to divide a fraction in X3 by another fraction in 5.0 and place the rounded quotient in 5.1. We
could use the following orders:

0 700 clegr right half of dividend

50 325 divide

5.1 710 quotient to 5. 1.
This kind of division occurs so often in practiéal calculations that a special order, function 26, has
been provided for it. In the 26-order the dividend is simply the single-length fraction in the
specified accumulator, in other respects the order resembles the 25-order. Thus in the above example
the following orders provide a solution:

5.0 3 26 divide C(3) by C(5.0)

5.1 710 quotient to 5. 1.

The 26-~order may be defined by the relationships
' x '
26 ¢+ el =X (y<E <y, (5
n n n

on the fractional convention (it is of little use with integers). A verbal description is:

26 Divide the fraction in the specified accumulator by the fraction in the register; place
the rounded quotient in X7 (and the corresponding remainder in X6).

The overflow-indicator (OVR) will be set by any of the three division orders if the divisor is
zero, or if the quotient exceeds capacity.
The 25-order is sometimes useful with integers, when its defining relations become

A ]

14 !
25 qr+_gn_= (an) (_%g_ﬁ_:‘_<%).

#
The quotient q' is then the integer nearest in value to (xq)/n.

t In fact
g Sq' v el = LD <t yg (3)

'
since 0 éf;l- <1.
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Suppose e and b are the dividend and divisor respectively in a division; the 24-order produces s
rounded-down approximation to a/b, i.e. on the integer convention the quotient given by the order is
the greatest integer not exceeding a/b. The 25-order gives an approximation which is rounded to the
nearest integer (in case of ambiguity it rounds up). Occasionally we want a quotient which is rounded
up, i.e. 1t is the smallest integer not less than a/b. We can get this by dividing ~a by & (or a by -b)
and changing the sign of the quotient. For example, if « and b are %ptegers in 5.0 and 5.1 we can place
a rounded-up quotient in 4.0 by means of the orders:

5.0 7 02 -a to X7
5.1 0 24 divide by b
4.0 7 12 minus quotient to 4.0.

A rounded-down quotient would be obtained by replacing the 02 and 12 orders by 00 and 10 orders
respectively.

It is sometimes useful to use a double-length dividend in which the binary point is between the
two halves. If such a number is divided by an integer then the quotient must be interpreted as a
fraction, and vice versa. This fact can be derived either from the appropriate defining equations or
by consideration of the inverse process of multiplication. For example, suppose we have a fraction u
in 5.0 and we wish to replace it by 7u/13 we could use the following sequence of orders

(M) 640 7toxe
5.0 6 20 Tu to X6 and 7
(13 5 40 13 to X5
5 625 divide Tu by 13
5.0 710 rounded quotient to 5.0.

To divide a fraction u in 5.0 by 18 we could use the following orders

5.0 700
6 40
6 025
5.0 710

To place in 4.0 the integral part of u/v, where u and v are the fractions in 5.0 and 5.1 we could use
this sequence.

5.0 700
5.1 0 24
4.0 7 10

Any division order takes a time of about 5% milliseconds, or precisely 41 word-times longer than
an 00-order.
The 27-order is described in chapter 11.

3.7 Shifts, the orders of group 5

The orders of group 5 are concerned with shifting the digits of words, i.e. taking the binary
digits of a word and moving them to the left or right. Let us consider the equivalent operation on a
decimal number, for example,

0.00123

If we move the decimal point two places to the right in this number we get 0.123 (discarding extra
zeros), l.e. a number 102 = 100 times as big as the original number. We prefer to think of this
operation as moving the digits of the number two places to the left (past the fixed decimal point).
In general, if we move.the digits of a decimal number N places to the left we shall have multiplied
the number by -10¥; movement in the opposite direction corresponds to division by 10¥ (or multiplication
by 10°¥). In binary the effects are similar but we must use powers of 2 rather than powers of 10.
For example, if we take the binary fraction 0.00101, which has the value 5/32, and shift its digits
two places to the left we get 0.101, which has the value 5/8 = 4 x 5/32 (since 22 = 4). If we had
shifted the digits one place to the right we would have got 0.000101, whose value is 5/64 = Y% x 5/32.
To prevent confusion we shall often talk of shifting a number up or down instead of shifting its
digits left or right. If we shift a number up it becomes numerically larger.

The 50-order is the order normally used for shifting a number up. For example, the order

(3 5 50

causes the number in X5 to be shifted up 3 places, i.e. multiplied by 2% = 8. The number of places
through which it is to be shifted is called the shift-number and is written in the N-address position
in the order; as with the orders of group 4, this number is encircled since it is not an address.
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The 51-order is written in a similar way and is used to shift numbers down. For example the order

@251

will shift the number in X2 down six places, or divide it by 26.= 64.
The 50— and 51-orders may be defined by the equations

50 xf = oWy,
51 ' = 2Ny = g,
or, verbally, as follows.
50 Multiply the content of the specified accumulator by 2, where N is the number written first
in the order.
51 Divide the content of the specified accumulator by N, where N is the number written first in
the order.

These descriptions and equations apply to both integers and fractions. The shift-number (N) may be
anything from 0 to 127, inclusive; a shift of zero places does not, of course, affect the number being
shifted.

" The 50~ and 51-orders are collectively called the single-length arithmetical shifts since they can
be used for shifting single-length numbers. Apart from the movement of digits which these orders cause
there are a few other effects which have been provided in order to facilitate their use.

If the 50-order is used to shift up a non-zero number then overflow will occur if the shift-
number is sufficiently large; thus OVR will be set if 2¥x exceeds capacity.Jf For example, overflow
will occur if x =% and N 2 1, or if x = % and N 2> 2. The computer maintains the word-length of 39
bits by (a) discarding the N digits shifted up beyond the sign-digit position, and (b) by supplying N
extra zeros at the right-hand (least-significant) end of the word. The result of the shift is exactly
2Nx provided overflow does not occur; if overflow does take place the result obtained differs from the
correct one by a multiple of 2 (on the fractional convention).

The 51-order cannot set OVR but it has two special effects. 1In order to keep the result arithmeti-
cally correct the sign-digit is repeated during the shift, i.e. N copies of the sign-digit are supplied
at the left-hand end of the word. For example, if the binary numbers

0. 101000, .. and 1.011000... ,
whose values are 5/8 and -5/8 respectively, are shifted down two places by a 5i-order we get
0.00101000... and 1.11011000...

respectively, having the values 5/32 and -5/32.

In general the result of a 5l-order will not be exactly z/2¥ since significant digits may be
shifted out of the word at the right-hand (1s) end. 1In order to minimize the error the result is
rounded, ¥t The method adopted is to add %€ (on the fractional convention) to the number before dis-
carding the unwanted digits; this is equivalent to adding € to the result if the first discarded
digit is a one. In this way the error does not exceed * %€, in fact

dhe K /W~ o < Ye,

on the fractional convention. Consequently the result is identical with that obtained from a rounded
multiplication by the fraction 2'", or from a rounded division by the integer oV,

For example, suppose we have two fractions u and » in 5.0 and 5.1, and we have to put the
fractions u/16, 4v and 5v in 4.0 to 4.2.j§We mist do the shifting in one of the accumulators, say X6.

/

5.0 6007 uto X6

(D 651 divide by 2% = 16

4.0 610 /16 to 4.0

5.1 600 v to X6

(® 650  multiply by 2% = 4
, 4.1 610  4vtod.1

6§01  add v
4.2 610  5vto 4.2

Note that the order -

(:) 3 51

t To shift N places the computgr shifts one place N times. If at any stage the sign-digit is
changed then OVR is set. The shifts take place in the mill, and the computer counts the shifts
in the order-register.

tt The situation is analogous to that obtaining in multiplication and division; in all these cases
we have a number which is too long to be fitted into one word.
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has the effect of halving the content of X3, and the order

(1) 3 50

is equivalent to the order
3 3 01,

which doubles C(3). The order

(0) 3 50
has no effect.

The orders with functions 52 and 53 are called the logical shifts;, they closely resemble the
orders 50 and 51 respectively and are written in a similar way. These orders simply shift the digits
of the word without any of the special effects of the 50— and 5l-orders. They are not primarily
intended for use on words representing numbers but on words used for special purposes which will be
described later. The 52-order is similar to the 50-order, the main difference being that OVR is not
affected., The 53-order is generally similar to the 51-order but there is no rounding and no
repetition of the sign-digit (N extra zeros are supplied at the left-hand end of the word). Thus the

orders
(10 4 52
453

have the effect of replacing the 10 left-hand digits of C(4) by zeros. The 53-order may be used to
effect an unrounded arithmetical shift down provided the operand is non-negative.
The 52- and 53-orders may be described as follows.

52 Shift the binary digits of the word in the accumulator to the left (up) N places (N being
written in the first position in the order). Discard the N digits vhich are shifted beyond
the ms position; make the last N digits of the word all zeros. Do not affect OVR.

53 Shift the binary digits of the word in the accumulator to the right (down) N places (N being
wvritten in the first position in the order). Discard the N digits which are shifted beyond the
Is position; make the first N digits of the word all zeros.

The orders with functions 54 and 55 are the double-length arithmetical shifts. The shifting
always occurs in the double-length accumulator formed from X6 and 7; the X-address in the order is
not used by the computer and we usually write zero here. Thus the order

@054

multiplies the double~length number (pg) by 26 = 64, and the order

(2) 055

divides it by 22 = 4, Since these shift orders are intended primarily for use with numbers, the overflow-
indicator may be set by a 54~order, and the sign-digit is repeated with the 55-order. There is,

however, no rounding when shifting down with a 55-order. ! The double-length shift orders may be

defined by the equations

i}

54 (! MNpg),

55 ()’ = 2°N(pg) = (pg)/2¥  (unrounded).
A verbal description of the 54-order is as follows.

54 Multiply the double-length number in X6 and 7 by N, vhere N is the number written first in
the order.

A description of the 55-order can be obtained by changing the first word to “divide”. These equations
and descriptions are valid on either the integer or the fractional conventions.
As an example, suppose three fractions u, v, v are stored in 5.0, 5.1 and 5.2, and we have to
place in 4.0 the fraction 2uv/w, We first form uv, double it with a 54-order and then divide by w.
5.0 6 00 u to X6

5.1 6 20 uv

0 54 2uv
@

5.2 625 divide by » (rounded)
4.0 710 2uv/w to 4.0.

It is important to note that g, the content of X7, must not be negative if arithmetically correct
results are required. It is only with the double-length shift orders (54 and 55) that we have to be

t The main reason for this is the absence of any double-length logical shifts, so that the 54- and
55~-orders are often used for logical purposes, where rounding would be very inconvenient.
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careful about the sign of C(7); if there is any doubt then the order
6 0 23 (see Section 3.4)

should be inserted immediately before the shift. It is only rarely that this need concern the programmer
since double-length numbers commonly occur only as a result of multiplication; they then always have a
non-negative right half,

In the two double-length shift orders the sign-digit in X7 does not take part in the shift and is
made zero before any shifting occurs. t fThis digit is by-passed during the shift, so that digit 38 of
the double-length number (digit 38 in X6) can be thought of as lying immedlately to the left of digit 39
(i.e. digit 1 in X7). This is shown in Fig.3.4.

may set X6 ‘__//////—_\\\\\___ X7
OVR +—— <+ ¢

011213145 ..... 36(37|38 39/40)41 e T4(75|76 | 4——
. extra
T Zeros
sign-digit Zero
of number

The action of the H4-order. Digits shifted up from X7 hop over the sign-digit
in X7 (which is always zero), and appear at the right end of X6.

X6 —/_\ X7
—_— s —_— > —> _—

—® 0 (112]3]14}5 cerans 3613738 39{40|41) ..... 747576 | ———»
copies digits
of R\ ) T shifted
sign- sign~-digit : Zero off
digit of number (No rounding)

The action of the 55-order. Digits shifted down from X6 hop over the sign-digit in
X7 (which is always zero) and appear in the next position in X7,

Fig.3.4 The double-length arithmetical shifts.

since in all the above shift orders the computer operates by repeatedly shifting one place at a
time, it follows that a long shift (of many places) is slower than a short shift. In fact the time
required by almost any order 50 to 55 to shift N places is just N word-times longer than a simple order
such as an 00-order. For example the order

(19 3 51

requires 10 extra word-times. There is an exception in the order.

(@5) x 52

which takes no longer than a simple 00-order. This fast 25-place logical shift up (or Counter-to-
Modifier Shift) has a particular application when the technique of modification is used, and is
described further in Section 5.5.% In a 52-order, where the shift is of N places, N > 25, there will
be a slow shift of N-25 places followed by a fast shift of the remaining 25 places. In this case the
order will take N-25 extra word-times, for N < 25, the order takes N extra word-times.

Most computers are provided with shift orders because they require little extra equipment and are
very useful. Since Pegasus is a binary machine the arithmetical shifts correspond to multiplication
and division by powers of 2; and it is perhaps when using a shift order that one is most conscious of
the binary nature of the machine’s operations. Apart from this numbers often have to be doubled or
halved. Longer shifts are very useful if the scaling of numbers is done in powers of 2. In addition
to their purely arithmetical applications, shifts are indispensable for the so-called logical operations,
in which words are treated as strings of binary digits which may have no numerical significance but
which are used to represent all kinds of information.

As an aid to remembering the shift orders we may note that the even orders (50,52,54) shift up
and the odd orders (51,53,55) shift down. The 56-order is called the normalize order and is described
in Section 9.1. The 57-order is described in chapter 11.

3.8 Jumps, the orders of group 6
The vital role of jump orders (sometimes called test, discimination, control transfer or branch
orders) in even very simple programmes should be clear from the illustrations of Section 1.5. 1In a

t The sign-digit of C(7) is not cleared by a null double-length shift, i.e. one in which the shift-
number is zero, such as
© o 54

or ® o ss.

After such an order C(6) and C(7) are unaltered.

t1 This shift order is not fast in Pegasus 1.
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typical calculation there are many points at which a choice has to be made between a number of alter-
native procedures; which one of these is selected depends on results obtained earlier. A multiple
choice can always be broken down into a number of simple two-way alternatives and the selection at
each of these can be made to depend on a very simple yes-no attribute of some number, such as its sign
(negative or not) or its zero-ness (i.e. whether it 1s zero or not). In Pegasus the orders are
normally obeyed sequentially and the jump orders provide the possibility of interrupting the regular
sequence and causing the computer to start obeying orders elsewhere. This jump is usually conditional;
the content of one of the accumulators may be tested in a certain way and the jump occurs if the test
is satisfied, if it is not the computer carries on with the next order as though the jump order had not
been there.

The first four orders of group 6 may be used to test the content of any accumulator. Consider,
for example, the order

0.7 5 60

which tests C(5). This order will cause a jump if C(5) is zero, in which case the computer will start
obeying orders from the a-order in 0.7. As an illustration, let us suppose we are in the middle of a
programme and we have two alternative processes to be followed; the second of which is to be chosen only
if a previously calculated number stored in 4.5 is zero. The following sequence shows how this might

be written.

———p| 4.5 6 00 number to be tested to X6
0.0
——12.0 6 60 jump if C(6) = 0
5.0 4 00 First alternative process
0.1
5.1 4 21
T T "—I
[N}
[
1
I !
| 1
I !
{ I
1 [}
i (:) 6 40 Second alternative process
2.0
5.0 6 20

The number to be tested must first be put into one of the accumulators, here X6 is used. The
b-order in 0.0 will cause a jump to the a-order in 2.0 if C(6) is zero, and in this case the computer
obeys orders sequentially from 2.0 onwards. If C(6) is not zero no jump occurs and the computer
carries on with the a-order in 0.1 as usual. It is customary to draw an arrow, as in the above
illustration, to show the path of a jump; these arrows are very helpful when one is studying a
programme. ‘

We may wish to jump to a b-order instead of an g¢-order; in this case we simply write a + sign
after the address. For example, the order

2.0+ 4 60
will cause a jump to the b-ordér in 2.0 if C(4) = 0. This way of writing addresses is used with all

the orders of group 6, and is not normally used with any other orders.
The first four orders of group 6 may be summarized as follows.

o O O o

60 Jump to N if x
61 Jump to N if x #
62 Jump to N if x 2
63 Jump to N if z <

(jump if number in accumulator is zero)
(jump if number is not zero)
(jump if positive or zero)

(jump if negative).

In this description N stands for the a-order or b-order specified in the way described above. The
jump may be to any order held in one of the ordinary registers in the computing store; there is no
provision for obeying orders anywhere else (e.g. in the accumulators or the main store).

It will be noted that these orders can be grouped into pairs with contrary sense (60 and 61;
62 and 63). If, for example, the order 0.2 7 60 causes a jump under certain circumstances then the
order 0.2 7 61 will, in the same circumstances, not cause a jump, and vice versa. This pairing of
the jump orders is a great convenience to the programmer. The 62- and 63-orders test the sign-bit
only.

As an example, suppose we have an integer in 5.0 which should be 13; if it is 13 we take no
special action and carry on with the programme; if, on the other hand, the integer is not 13 we wish
to obey a special sequence of orders starting at the b-order in 3.3.
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—»| 5.0 7 00 integer to X7
0.0
(::) T 43 subtract 13
3.3+ 7 61 jump if not zero (i.e. if integer # 13)
1
to b-order
in 3.3.

As another example, suppose we have a number z in 5.1 which may be negative, and if so we have to
replace it by its absolute value (-z, which will of course be positive).*

—»| 5.1 100 z to X1
0.0
0.1+ 1 62 jump if z is non-negative
5.1 1 12 replace z by -z if z is negative
1

Sometimes we want to jump unconditionally; there are several ways of doing this but the one
conventionally used is to test X0 to see if its content is zero, which it always is, of course. Thus
to jump unconditionally to the g-order in 3.0 we would write

3.0 060

and this order would be underlined on the programme sheet to emphasize the break in the sequence of
orders. Such unconditional jumps may be used, for example, to prevent the computer from “obeying”
numbers or other constants. '

Consider now the problem of finding the smallest prime factor of a positive whole number N. This
problem was discussed in Section 1.5 (Example (C)) and a flow-diagram of a possible process is given in
Fig.1.4. 1In order to write a programme corresponding to this flow-diagram let us assume that N is
stored in 5.0; we shall use X5 to hold our trial divisor d. We ultimately require to print this and
stop;, and, since we have not yet described how this can be done, we shall simply assume that the
necessary group of orders starts in 4.0 in the computing store.

START —p | 5.0 7 00 N to X7
0.0
@ 5 40 set d = 2 in X5 test if
N is even
5 024 divide N by 2 and set
1 d =2
— { 4.0 660 . jump if remainder is zero
Cj) 5 40 set d = 1 in X5
2
—» (:) 5 41 increase d by 2
5.0 7 00 N to X7
3
5 0 24 divide N by d (quotient = q, say, to XT)
4.0 6 60 jump if remainder is zero
4
5 7 04 d - g to X7
~— | 0.2+ 7.63 jump if d - ¢ is negative (i.e. d < q)
5
5.0 500 set d = N in X5 Obeyed only
e ——— - s :
—— 1 4.0 0 60 unconditional jump 1f N is prime
6
0 dummy order (= 0 0 00)
v e ]
Print d in X5
and ?top
t The absolute value of z is called the modulus of z and is written lz]. For example, the absolute
values of % and <% are both % so we can write
%l = |-%l = %. Clearly |7} = 17, |-12] = 12,
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It was pointed out in Section 3.1 that the product of two integers can be put into X7 by using
a 20~-order. This product will be correct provided it is not negative and does not exceed about 250 000
million. We can now show how negative products of “small” integers can be correctly obtained., The full
double-length product in X6 and 7 is always correct; but if the product is “small” and we take it
from X7 we must insert the missing 1-digit in the sign-position in X7 if the product is negative
(il.e. if C(6) is negative), but not if C(6) is positive or zero. Suppose we have two integers in 5.0
and 5.1, and we have to place in 4.0 their (possible negative) single-length product.

—»| 5.0 7 00

0.0 multiply two integers
‘ 5.1 7 20 as usual
0.2 6 62 jump if product is non-negative
1
32 701 if product is negative add in a “1”

o o e e — ] in sign-bit of X7
4.0 710

Special register 32 is used to provide the missing 1-digit. It will be seen that we have to insert two
extra orders if the product can be negative: by use of a trick which we shall describe later (Section
5.10) we can do this with the aid of only one extra order,

As a further example of the use of jumps let us consider the flow-diagram of Fig.1.3 (Example (B)
of Section 1.5); this programme is designed to read in 1000 positive numbers via the input equipment,
select the largest of them, print it and stop. Since we have not yet described how input and output
are done, we shall assume that the group of orders needed to read in a single number is in the
computing store, and that all we have to do to read in a number is to jump to 3.0: we shall suppose
further that this group of orders, which may be called the input subroutine (this subject will be
discussed in Chapter 6), places the number read in (x, say) into X6 and then jumps to 0.3. 1In the
same way we assume that in order to print a number we need only put it in X6 and jump to 4.0, where
the necessary group of orders (the output routine) starts; these orders cause the computer to stop
when it has completed the printing. The quantity y, which at each stage is the largest number read
in thus far, will be stored in X2. The integer ¢, which is used to count the numbers as they are read
in, will be stored in X3. We assume that these are not disturbed by the input subroutine.

START —»{ 0.2 3 00 set ¢ = 1000 (for counting) in X3
0.0
0 200 set y = 0 in X2
To ——— e e e
Input 4+— 3.0 0 60 jump to Input subroutine (x to X6)
Subroutine 1
l (1} dummy order (equivalent to 0 0 00)
I
| 2 11+ 1000
From =
Input - 2 604 formy - z in X6
Subroutine 3
0.4+ 6 62 jump if positive or zero (i.e. if y > x)
| 6 203 or y - (y -—2x) =x in X2 (i.e. replace y by x)
4
I (:) 3 43 replace ¢ by ¢ - 1
I
To! = e e ] count
Input 4+—13.0 3 61 enter Input subroutine if ¢ # 0
Subroutine 5
2 600 y to X6 ready for printing
4¢——| 4.0 0 60 jump to Output routine to print y and stop
6
0 dummy order
L e

The g-orders in 0.1 and 0.6 are unconditional jumps. The b-orders in 0.1 and 0.6 are dummy orders-
inserted to make up the order-pairs; any orders would have done here but we have used the conventional
0 0 00 order (which may be written simply as 0). The two orders labelled ‘‘count” should be noted
particularly; the content of X3 is initially 1000 and these orders reduce it by 1 each time a number
is read in, the result being tested; ~eventually C(3) will be reduced to zero and the jump will not
occur. We shall see later that these two orders can be replaced by one order (with function 67).

When one is sketching out a sequence of orders which includes a number of jumps it is often
impossible to fill in immediately the N-addresses of some of the jump-orders; these can be left blank
and written in afterwards. The use of arrows to show the paths of the jumps is of especial value in
helping one to insert the correct addresses.
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The orders with functions 64 and 65 test the overflow-indicator (OVR). Either of these orders
clears OVR, even if no jump occurs, they may be defined as follows.

64 Jump to N if OQVR is clear; clear OVR,
65 Jump to N if OVR is set, clear OVR.

The X-digits of the order are not used and we usually write zero here.
For example, the order

3.6+ 0 65

will cause a jump to the b-order in 3.6 if the overflow-indicator is set; after the order has been
obeyed OVR will be clear, whether the jump took place or not. If we except writing into the main store
(when the computer stops if OVR is set), the only orders affected by the setting of OVR are the two
jump orders just described and the justify order (function 23, see Section 3.4); any of these orders
will clear OVR. The overflow-indicator can be thought of as a very “sensitive” device which clears
itself whenever it is looked at. There is no other order which clears OVR, though it can of course be
set in a number of ways.

It is impossible to lay down any universally applicable course of action should overflow occur in
the course of a programme. Sometimes overflow will not matter, in which case OVR may be cleared by,
for example, a 64— or 65-order jumping to the next order. Sometimes it may be possible to adjust the
sizes of certain numbers and repeat a part of the programme. Sometimes the only sensible action is to
print some information and stop. The choice of & suitable course of action is bound to be considerably
affected by the details of the particular problem.

The orders with functions 66 and 67 are used mainly in connection with the facility of modifying
orders and will be described in detail later. The 67-order has, however, other uses and we shall
therefore give now a brief description of it which is not quite precise. The 67-order is called the
unit-count order; roughly, its effect is to subtract one from a count-number, or counter, in the
specified accumulator and then test the result; if this is not zero a jump occurs to the order
specified in the N-address. For example, suppose we have .a small group of orders which have to be
obeyed a definite number of times, say 9 times. The relevant part of the programme could be written
as follows.

START —b| @ 2 40 set counter = 9 in X2
0.0

it

Loop or cycle of
orders, to be
obeyed 9 times
0.0+ 2 67 Unit-count in X2
1.2

e R —

Here the counter in X2 is initially set equal to 9, just before entering the cycle of orders which have
to be obeyed 9 times. At the end of the cycle is a 67-order which reduces the counter by one at each
repetition, and causes a jump back to the beginning of the cycle until the counter has been reduced to
zero, when no jump takes place and the computer carries on with the next stage of the programme. On
examination it will be found that the cycle will be traversed exactly nine times. Of course, any
accumulator (other than X0) may be used for counting in this way provided its content is not disturbed
during the cycle (or, of course, the counter can be temporarily stored elsewhere at the beginning of
the cycle and reset in X2 just before the end).

The time taken by any jump order is usually the same as the time for a simple 00-order, i.e. 3
word-times if it is an a-order or 2 if it is a b-order, whether the order causes a jump or not. If
however there is a jump to a b-order (i.e. the address in the order ends with a + sign and the jump
actually occurs) then the computer obeys a dummy e-order just before obeying the b-order, such a jump
therefore takes 3 extra word-times. For example, consider the sequence:

0.0

[

Here the two orders shown take a total of 5 word-times, whether or not the jump occurs. In the
following example there is a jump to a b-order; if the jump takes place the total time is 8 word-times,
if there is no jump the time is 23 word-times (N.B. a 21-order needs 13 extra word-times).

10. 1+ 3 63
0.0
3 602
3 621
1
5.1 6 10
L e e e

In a loop which is traversed many times, jumps to ae-orders are to be preferred.
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3.9 Stopping the computer

We may wish to stop the computer for any one of a number of reasons. For example, the machine may
have reached the end of the programme, or we may wish to change the tape in one of the tape-readers or
the setting of the handswitches, or perhaps an error has been detected (e.g. unexpected overflow, or a
mis-punched tape).

The computer can be stopped manually at any moment by means of one of the keys (or switches) on the
control panel. This key is called the Run key, or sometimes, the Stop/Run key (it is visible near the
centre of Plate 11); it has three positions. When the key is up, in the position labelled RUN, the
computer obeys orders successively in the usual way. When the key is placed in the middle position,
which is labelled STOP, the computer finishes the order it is currently obeying and then stops; if the
key is returned to the RUN position the machine will continue with the next order as usual. If the key
is pushed down from the STOP position into the position labelled SINGLE SHOT and then released, it will
spring back into the STOP position and the computer will have obeyed a single order; by doing this
repeatedly the computer will obey the orders of a programme one at a time.t

There are a number of orders which can stop the machine. We have already mentioned the fact that
the computer stops if trying to obey an order causing writing into the main store when OVR is set (this
is called a writing-with-overflow stop). An unassigned order also causes a stop. There are special
lights on the control panel (Plate 11)to indicate these two kinds of stop (and some others), and there
i8 a hooter which can be turned on as an additiomal warning (the key for this is labelled HOOT ON STOP
and is mounted on the left of the control panel).

Another order which stops the computer is a jump order which jumps to itself, for example:

C» 0.4 0 60
0.4

When this order is encountered the computer will take its next order from 0.4, i.e. the order will be
repeatedly obeyed. It is reasonable to say that the machine has been stopped by this order since there
is no change in any stored word. A stop of this kind is called a loop stop (or dynaemic stop); the
only way of getting the computer out of the loop is by operating the Start key (this will be described
later). Conditional loop-stops are useful; for example, the following pair of orders

-—#| 5.0 600
0.0

0.0+ 6 63

will stop the computer only if C(5.0) is negative. Such loop stops are often used to detect errors in
the input data (e.g. punching errors or numbers that have the wrong sign). Any of the orders 60 to 64
(but not 65) can be used to produce a loop stop. An unconditional loop stop may be used to terminate a
complete programme.

Although there is no warning light associated with a loop stop, the fact that the computer has
stopped is usually immediately evident. Input and output cease and the monitors show a static display
in all registers. 1In fact the machine seems to be ‘“dead”.

Frequently we wish the computer to stop temporarily at a certain point in the programme, for
example to allow us to change an input tape, after which we want to allow the machine to continue. One
way of doing this is to use the 77-order. In this order only the function digits matter, so it is is
usually written:

0 077

When obeyed it stops the computer and lights one of the special warning lamps on the control panel
(and sounds the hooter if it is on). The machine can be caused to continue with the next order by
moving the Run key to STOP and then back to RUN; this process is called operating the Run key. The
stop caused by this order is essentially a temporary one; it is usually called a 77-stop.

Another kind of stop is the cptional stop. In Section 2.6 we described how the 39 bits of an
order-pair are allocated; 19 bits are used for each order. The bit corresponding to the sign-digit
in a number-word belongs to neither of the orders; it is called the stop/go digit, and can be used to
stop the computer. It is usual for this digit to be a one, in which case the order-pair is called a
go order-pair; the computer obeys go order-pairs in the usual way as has been described. If the
stop/go digit is a zero then the order-pair is called a stop order-pair and the computer will normally
stop just before obeying either of the orders. When it stops the order-pair will just have entered the
order-register, There is a key on the control panel labelled INHIBIT OPTIONAL STOP; when this key is
down the computer will disregard the stop/go digit and will treat all order-pairs as go order-pairs.
This is why the stop is described as optional. When the computer has stopped optionally in this way it
can be made to continue by operating the Run key as described above for the T7-order. There is also a
special light (and the hooter) to indicate the stop.

It is usual, when a programme is being developed, i.e. when it is being tested and made to work
for most of the order-pairs to be go order-pairs; here and there will be a few stop order-pairs at
strategic points. When the computer stops the monitors can be used to check the contents of various
registers, or a specially-prepared checking programmne can be called in to print out some information.

t This facility is intended primarily for use by the maintenance engineers; but it is sometimes
useful when testing a new programme.
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When the programme is known to be correct the optional stops can be inhibited or, alternatively, all
the stop order-pairs can be changed into go order-pairs (this is easy to do by using certain special
features of the Initial Orders).

On the programme sheet go order-pairs are not specially indicated. A stop order-pair is indicated
by writing a full-stop after either the a-order or the b-order (but not both). This full stop must be
written after the M-address (modifier address) of the order; if one of the orders is modified the full-
stop would be written after it; if neither of the orders is modified the full-stop is usually written
after the a-order (it is customary, and advisable, to write a zero in the M-address of the order in such
a case). For example, here are two stop order-pairs:

5.0 6 00
0.0
4.0 6 21 4.
3.0 6010
1
6 601

If the computer jumps to a stop order-pair then there will be an optional stop as usual, even if the
jump is to the b-order.
There are therefore the following three main ways of programming the computer to stop.

(a) Loop Stop. This is used when it is not desired to carry on with the next order; for example at
the end of the programme, or because an error has been detected which cannot be put right automatically
(e.g. tape punching error).

(b) 77-8top. This is used when some manual operation may be needed before the computer is to carry on
with the next order; for example the handswitch-setting or the input tape may have to be changed. It
should not be used unless it is reasonable to continue the programme.

(¢) Optional Stop. This is most useful when developing & new programme but has other uses.

The writing-with-overflow stop and the unassigned-order stop normally occur because of a programming
error or incorrect data. Like the loop stop they can be cleared only by operating the Start key, which
is normally used to call in the Initial Orders to read in further tape.

The computer will also stop if an attempt is made to read tape when there is none in the tape-
reader or when the tape is incorrectly positioned (e.g. upside down); this is called an input busy stop
and has its own special warning light (but the hooter does not sound). The input busy light usually
flickers on and off during normal input. Apart from a manual stop (the Run key at STOP), all the
other kinds of stop are due to machine faults. For convenience the stops are tabulated in Table 3.1;
some of the details will be described in later chapters. The hooter will sound only if it is switched
on and if the Run key is in the RUN position. )

Kind of Stop ' Reason w:igizg Hooter Action to continue
Loop No No Start Key
77-order Programmed Yes Yes Run key (or Start)
Optional stop Yes Yes Run key (or Start)
Writing-with-OVR Error in Yes Yes Start key
programme
Unassigned order or data Yes Yes Start key
Stop on Overflow Programmed Yes Yes Run key (or Start)
indicator
or error
Run key at STOP Operator No No Run key (or Start)
Paper tape busy Operator or Yes No Ensure that input tape is in
' computer fault reader. If computer fault,
hand over to maintenance
engineer.
Parity failure Computer fault Yes(2) Yes Hand over to maintenance
engineer.
Magnetic tape failure Programme, Yes(2) Yes
operator or Clear or repeat order or hand
Magnetic tape busy equipment fault Yes No over to maintenance engineer
Card Reader Yes Start key (or hand over to
maintenance engineer)
Card Reader Magazine Yes More cards
empty
Card Reader Stacker full Yes Clear stacker
Card Reader Wreck Yes Hand over to maintenance
engineer

Table 3.1 Summary of stops
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It should be noted that if, due to a programming error, the computer starts to “obey” numbers
instead of orders then it will probably stop fairly quickly for one reason or another. In the majority
of programmes nearly all the numbers used are positive, so that they appear as stop order-pairs if
interpreted as orders; this is why the computer was so designed that a stop order-pair is shown by a
zero sign-bit. If the numbers are small and negative then the a-order will represent a 77-stop: also
many numbers will represent unassigned orders, so the computer is likely to stop when obeying numbers
even if optional stops are inhibited.

The “non-existent” ordinary registers 6.0 to 6.7 and 7.0 to 7.7 can all be regarded as storing
zero permanently (like the dummy accumulator X0 and the unused special registers, see Section 2.9). The
number zero, if interpreted as an order-pair, is two dummy orders (0 0 00) and is a stop order-pair.
If the computer is obeying orders from U5 and “runs off the end” after obeying the b-order in 5.7 it
will therefore immediately encounter an optional stop. If optional stops are inhibited the computer
will quickly run through all the dummy orders in the non-existent ordinary registers and will then
return to start obeying orders at the a-order in 0.0.

3.10 Main-store transfers, the orders of group 7

There are four orders concerned with the transfer of words between the computing store and the
main store, these are the orders with functions 70 to 73 and are the only orders concerned with the
main store. The transfers may be done either in blocks of 8 words or one word at & time, and they may
take place in either direction., Since these transfers involve both stores the numbers written in the
N- and X-positions of the orders are interpreted in a special way, they are not simply the addresses of
registers and accumulators. In connection with computers the word transfer is used in the sense of
copying (or posting); the place from which the information is taken is net cleared and its content
after the transfer will be the same as before. The original content of the place into which informa-
tion is transferred is simply lost and replaced by the new words.

Before describing the transfer orders a summary of the main store addressing system ﬁight be
helpful. The block-and-position form of the address of a storage location is the one usually used;
this is similar to the notation used for the ordinary registers in the computing store. A letter B is
often written in front of addresses in the main store to prevent confusion with those in the computing
store. The blocks in the main store are numbered BO to B1023, of which B0 to B895 are in the non-
isolated part of the store. The blocks in the computing store are referred to as U0 to US.

The 70-order is the single-word read order; it causes the computer to read one word from a
specified location in the main store and to place a copy of it in accumulator 1. For example, the
order

34 6170

places in X1 a copy of the word in B34.6. The block-number in the main store is written in the N-part
of the order and the position-number is written in the X-part. Because the N- and X-parts of the
order are now both parts of a single address it is usual to write a “box” round them; the above order
would therefore usually be written

e aho

The box is merely a visual aid on the programme sheet; it is not punched on the tape. The word read
is always placed in X1; this restriction is required because all the binary digits in the N- and
X-parts of the order are needed to specify the main store address. In fact there are only 10 bits in
these two parts of the order so that the address written can be from B0.0 to B127.7 only. These
locations will be referred to as the first part of the main store (they are the first 1024 locations
of the 7168 in the non-isolated part). Access is obtained to the rest of the main store by means of
modified orders; these will be described later.

A location in the main store may, if desired, be specified by its decimal address instead of its
block-and-position address. Thus the location whose block-and-position address is 34,6 has a decimal
address of 3¢ x 8 + 6 = 278. 'This kind of address may be written in a single-word transfer order in
the N-position; & minus sign is then written in the X-position. For example, the order '

278 -I70

is equivalent to the order [34 670 and in fact these are merely two different ways of. writing the
same order; they are both converted to the same internal form when read in by the Initial Orders., The
decimal address written in the order may not exceed 1023.

The Tl-order is the single-word write order; the address is written in the same way as in a
70-order. The transfer occurs in the reverse direction; for example, the order

e

causes a copy of the word in X1 to be placed in B12.4 in the main store. The previous content of
B12.4 is lost. As before, decimal addresses may be used, and locations in the first part only of the
store may be directly specified. This order causes the computer to stop, light a warning lamp (and
sound the hooter) if it is encountered with the overflow-indicator set; this stop occurs instead of
the writing operation.

The 70- and 7l-orders may be described as follows.

70 (single-word read) Place in X1 a copy of the word in the main store whose block-number is in
the N-part and position number in the X-part of the order.

t The blocks are numbered BO to B639 on the 4096-word store, of which BO to B511 are non-isolated.
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71 (single-word write) Place a copy of the word in X1 in the main store location whose block-
number is in the N-part and position-number in the X-part of the order; but stop if OVR is set.

As an illustration suppose we wish to copy into B83.2 and B83.3 the words in U5.0 and U5.1
respectively, and copy into B0.6 the word in the location whose decimal address is 981:

—»|5.0 100 C(5.0) to X1
>0 7 ¢ranster to B83.2
5.1 100 | C(5.1) to Xt
' 71 transfer to B83.3
';(;__d read word from 981 into X1
: o gmn transfer to B0.6

The two single-word transfer orders are useful for the occasional transfer of odd words. For
example, it may take a considerable amount of calculation to arrive at a single number, which could
then be transferred to the main-store by a 7l-order until it is needed later. Before any transfer can
take place the appropriate location must be available; the computer will usually have to wait until the
drum has turned so that the location is under the read/write heads. This waiting time may be as long
16 milliseconds but is on the average about half this. It is usually more efficient to use the block-
transfer orders, and this is the normal practice.

For blocks 0-15 of the main store, a single-word transfer may take up to 1.25 milliseconds, but
an average of .75 milliseconds should be allowed.

The T2-order is the block-read order; it may be used to read any block in the main store and
place a copy of it in any block in the computing store. For example, the order

51 3 72

causes the eight words in B51 to be copied into the corresponding registers of U3. After obeying the
order the word in I/3.0 will be a copy of the word in B51.0, that in U3.1 will be a copy of the word in
B51.1, etc. The main store block-number is written in the N-part of the order (as with the single-word
transfer orders); the X-part of the order specifies the block in the computing store. In order to
emphasize that the X-part of the order is not the address of an accumulator we usually write a “box”
round it on the programme sheet. The above order would therefore usually be written

51 [3]72

These boxes are very helpful when one is scanning a programme sheet either to pick out block-
transfer orders or to find out when a certain accumulator is used.

The 73-order is the block-write order; it is generally similar to the 72-order but writes the
content of a computing store block into a main store block. Thus the order

2¢ [0]73

stores the eight words of U0 in the corresponding locations in B24; the original words in B24 are
lost, but the contents of the registers 0.0 to 0.7 are unchanged.' If OVR is set when a 73-order is
encountered the computer will stop instead of writing.

The 72- and 73-orders may be described as follows.

72 (block- read) Read the block in the main store whose address (block-number) is in the N-part
of the order and place a copy of its contents in the computing store block specified by the
X-part of the order.

73 (block-uvrite) Take the computing store block specified by the X-part of the order and write a
copy of its contents into the main store block specified by the N-part of the order.

With the 72- and 73-orders, as with the single-word transfers, access can be obtained directly only
to the first part of the main store (BO to B127); we shall describe later how the remaining blocks are
transferred by using modified orders.

The 73-order is used mainly for writing newly-computed numbers or other information into the main
store for later use. The 72-order has two principal uses; it is used to read in new data from the
main store which are required in a computation, and it is also used to read in fresh blocks of programme
as required. It is the latter, important, application that we shall now discuss a little further.

Suppose the computer is obeying orders in U0 and that the next section of programme which we wish
the computer to obey is in the main store, in B10 say. This kind of situation arises frequently since
it is quite exceptional for a whole programme to fit into the computing store. The following orders
¢an be used to read B10 into U0 and start obeying the new orders at 0.0

Read B10 into U0

jump to 0.0
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It should be noted that these two orders must form an order-pair, i.e. they must be held in the same
register when obeyed (0.6 is used here for illustration). The reason for this is that the computer
normally operates by placing an order-pair in its order-register, and then obeying the two orders in
it successively before returning to extract another order-pair from an ordinary register (see Section
2.4). When the a-order of the above order-pair is obeyed it causes all the words in U0 to be over-
written by the new words from B10. In particular C(0.6) is overwritten, but the b-order is still in
the order-register and is correctly obeyed as written, causing a jump to 0.0. Should we wish to read
in more than one block of programme the extra block-read orders can be written at the end of the old
block or at the beginning of the first new block; for example, in the above illustration the first
two orders of B10 could read

B 10

—| 11 [1]72 read B1l into Ul
0.0

12 [2]72 read B12 into U2

Thetmain store block-number (B10 here) may be written in the small “box* printed on the programme sheets
at the top right corner of each block. It will be seen that the complete programme has to be divided
into blocks, at most six of which can be in the computing store at a time (as a general rule there will
be only three or four since some space will be needed for numbers). The main aim is to ensure that,
8o far as possible, speed is not lost by including programme-transfers in the “inner loops’ of pro-
grammes, i.e. in those loops which are traversed many times and which would be fast if there were no
programme~transfers. If possible the division of a programme into blocks should be made logically so
that the break between two fairly distinct stages of a programme does not occur in the middle of a block.
Order-pairs consisting of a block-read and a jump as illustrated above occur frequently in most
programmes. Occasionally the jump can be dispensed with and the computer can run-on into the new
block. Consider, for example, the following sequence.

0.7 200
0.3
<+—| 18 [0]72 read B18 into U0
0.0 6 03
4
1.0 3 10

The b-order in 0.3 causes the whole of U0 to be overwritten, including C(0.4), so that when the computer
places the next order-pair (from 0.4) in its order-register this will not be the order-pair written
above but the new order-pair in 0.4 (i.e, that from B18.4). The above block read-order resembles an
unconditional jump, inasmuch as the next orders on the programme sheet are not obeyed after it, and it
is therefore underlined on the programme sheet and marked like an unconditional Jjump.

There are no ordinary registers with addresses 6.0 to 6.7 or 7.0 to 7.7, although such addresses
may be written in orders since there are enough binary digits to specify them. Like the unused special
registers (see Section 2.9) and the dummy accumulator X0, the non-existent ordinary registers always
hold zero. This fact can be put to good use if we require to clear a block in the main store (i.e.
replace its content by zeros). Thus the block-write order

62 [6]73

will transfer U6 to B62, i.e, it will clear B62. The corresponding 72-order has no effect. )

If U7 is specified in a block-transfer order then the computer will transfer to or from the block
of accumulators. This is a very useful facility. At a certain stage in a programme it may be
convenient to transfer the contents of the accumulators to a block in the main store, do some auxiliary
calculation needing a number of accumulators, and finally to restore the original contents of the
accumulators by a block read-order. It is conventional to use BO to store the accumulators in this way.
Thus the order

o [7]73

transfers C(0) to B0.0, C(1) to BO.1, ..., C(7) to B0.7; and the order

o [T]72

sets all the accumulators from the contents of BO (e.g. X4 will contain the word from BO.4; any word
sent to X0 is, of course, lost).

Most programmes can be divided up into fairly well marked stages, and during one of these certain
blocks of numbers will probably be read into the computing store, used and replaced by fresh blocks of
numbers; there will also, as a rule, be a continual flow of numbers into the main store. Programme
(i.e. orders) and numbers are as a rule kept in the computing store only as long as they are wanted;
when no longer needed for some stage of a calculation, programme blocks are overwritten by new matter
and numbers are transferred to the main store (if they are wanted later). If overflow occurs this is
usually a symptom of a programming error (e.g. the scaling of numbers may be wrong or a certain
combination of circumstances may not have been anticipated), or it may be due to incorrect data or a
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mis-punched data-tape. Since block-write orders are usually frequent the computer will normally stop
fairly soon after overflow has occurred. This stop prevents the machine from carrying on with a,
perhaps extensive, calculation using wrong numbers; it may therefore prevent the waste of much valuable
computer time. '

The block-transfer orders, 72 and 73, like the single-word transfers, can be obeyed only when the
drum is in the right position, and the computer may therefore be held up before the transfer can occur.
As a rule block-transfer orders are to be preferred to single-word transfers since eight times as much
information is transferred for the same waiting time. By counting word-times it is possible to find out
the exact angular position of the drum at any stage in a programme, and hence to determine the waiting
time before any particular word or block can be transferred, This 1s, however, a laborious undertaking
and 1s not often worth doing. It is usually adequate to allow half a drum revolution (i.e. about 8
milliseconds) waiting time for an isolated transfer order; to this should be added about 1% milli-
seconds (for a 72- or 73-order) to allow for the time of the actual transfer, Very often we wish to
transfer several consecutively-numbered blocks; in this case we can take the first transfer order to be
an isolated one and allow about 9% milliseconds for it. Subsequent transfers are rather faster though,
and we need allow only 3 milliseconds for each of them; this is because consecutively-numbered blocks
are arranged in a special way on the drum and become available fairly quickly after the first of them
has been transferred (see Appendix 4). 1In fact the blocks are so arranged that there is always time
between the transfer of two consecutive blocks for four simple orders (e.g. 00- or 10-orders) to be
obeyed without losing any time. For example, the following sequence will require about 12% milliseconds
(agsuming it to start at a random moment).

- 19 [@]72 read B19
0.0
1.2 600
(3 6 41
1 four simple orders
3 603
1.7 610
2
20 [5]72 read B20

For blocks 0-15 of the main store, a block-transfer order takes 1.25 milliseconds and there is no
waiting time. .

The remaining orders of group 7 are not concerned with the main store. We have already described
the 77-order (Section 3.9), which is the temporary stop order.

The 74-order is the external-conditioning order which may be used to select a number of alternative
input and output devices or generally to control equipment external to the computer proper. 1In a
standard Pegasus installation the order is used to select which of the two tape-readers is to be used
(see Section 6.3). The seven N-bits of the order are used to determine the settings of seven relays
(the external-conditioning relays), which perform the necessary switching; the right-hand (1s bit) is
used to select the tape-reader so that the order

®owu

switches in the second tape-reader in place of the main tape-reader; and the order

© o

selects the main tape-reader, The X-digits of the order are not used, The state of the seven external-
conditioning relays is shown by a set of seven lights on the monitor panel. The T4-order takes 2 word-
times (i.e. the same as a simple order).t

A special sensing register, 24, is provided to hold in its least-significant end the N-digits
(subsequent to modification) of the 74-order last obeyed. It is thus possible for the programmer to
ensure that previous selections of input and output devices can be taken into account during any new
setting, without having to record such settings by programme.ff

The use of the'74-order is further discussed in Chapter 10. The 75-order is unassigned and will
cause the computer to stop. The 76-order is used to transfer blocks of words between the computing
store and the magnetic tape, card or line printer buffer stores. For example, the order

2 [4]76

causes the contents of U4 and magnetic tape buffer-store block 2 to be interchanged. This order takes
8 word-times longer than a simple order such as an 00-order (i.e. in all, about 1.3 milliseconds).
The 76-order and its use are further described in Chapters 10 and 11%,

t on Pegasus 1, the T74-order is much slower, and an average of 40 milliseconds should be
allowed for it.

t1 Note that register 24 is not present in Pegasus 1.

¥ ina Pegasus 1 without magnetic tape, the 76-order is unassigned.

- 49 -



3.11 THE ORDER-CODE

3.11 Logical operations

In a typical programme a high proportion of the orders will be those transferring information from
one part of the store to another, or doing such operations as counting, testing, reading or punching
tape, and generally ensuring that the useful arithmetical operations carried out are those appropriate
to the data. These operations are often called “administrative” “organisational” or “red tape”
operations, and frequently large sections of a programme will be concerned entirely with them. 1If,
instead of programming the calculation for a digital computer, we were to specify it to the operator of
a desk machine, many of these organisational operations would not be mentioned; they would be either
unnecessary or implied. A computer programme is consequently much longer and more detailed than a sheet
of instructions for human use. In order to facilitate the organisational parts of a programme the
computer is equipped with a number of special orders. Certain of these are usually called logical
orders. This term is not well defined; some authorities would apply it to many of the organisational
orders, such as the jumps. But we shall restrict it to those orders where the numerical values of the
words taking part are only of secondary significance and where the words are primarily thought of
simply as strings of binary digits. We have already described the two logical shift orders, functions
52 and 53 (see Section 3.7); we shall now describe the remaining orders of groups 0.1 and 4, which were
not included in Sections 2.7 and 2.10. We shall illustrate some of the uses of these orders by examples.

The simplest and most useful of these orders are the collating or and orders, with functions 05, 15
and 45; they can be used to pick out binary digits or groups of digits in words. They each operate
on two words (operands) and produce one new word as the result; this resultant word has 1 digits only
in those binary positions where both of the-operands have 1’s. This collating operation is sometimes
called logical multiplication since the result may be got by a digit-by-digit multiplication. It is
best described by an example: the result of collating

u = 0,11110 00011 10011 0000 10101 01111 10110 110
with v 0.11000 11000 10101 10100 00000 10110 11111 010
0.11000 00000 10001 00000 00000 00110 10110 010

i

is w

A digit of » is 1 only where the corresponding digits of u and v are 1's. The operation may be written
symbolically as

w = u& v,
Note that the operation is symmetrical, so that

u&v = v &u,

for any two words u and p. The operation is also assoctiative, i.e., if x, y and z denote any three
words, then

& (y&z2) (x & y) & 2,

so that we can leave out the brackets; in fact the word
x&y & z
will have a 1 digit only where x and y and z all have 1 digits. In most of the actual applications one
of the operands will have a block of consecutive 1's and will have 0’s elsewhere; the order will then

pick out from the other operand the group of digits corresponding to the block of 1’s., For example,
if

i

0. 00000 00000 00000 00000 00000 11111 11111 000
and v 1.,10110 11011 10000 00110 10011 01101 00111 001
then u&v = 0,00000 00000 00000 00000 00000 01101 00111 000.

u

i

In this example 10 of the bits of v have been left unchanged, but the others have all been replaced by
0's. A word (like u in this example) which is used to pick out certain digits in other words is some-
times called a collating mask (or collating constant).

It is useful to introduce an abbreviated notation which can be used to write down collating masks
and the like. We shall write OB or 1M to indicate a group of n 0's or 1l's, respectively. The word u
above, consisting of 26 0’s, 10 1's and 3 0’s, can be denoted by 02612003, A collating mask consisting
of 20 1's followed by 19 0's will be written 120019,

The orders with functions 05, 15 and 45 are analogous to the other orders in their respective
groups and may be defined as follows.

F Effect Description

05 = x&n In the binary digital positions where the
word in the register has 1's, leave the
digits in the accumulator unchanged;
elsewhere replace them by 0’s.

i5 n = né&x. In the binary digital positions where the
word in the accumulator has 1's, leave the
digits in the register unchanged;
elsewhere replace them by 0’s.
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F Effect Description

45 ' = x&N In the binary digital positions where the
integer written first in the order has 1's,
leave the digits in the accumulator
unchanged; elsewhere replace them by
0’s (N.B. the result can have 1's only in
the 7 right-hand digits).

None of these orders can cause overflow.

As an illustration suppose we wish to divide into two parts the word a in 5.0; the left half (b)
ig to consist of the first 30 bits of a, and the right half (c¢) is to consist of the last 9 bits of a.
We need a collating mask having 30 1's followed by 9 0's (i.e., 13°0%)

1.11111 11111 111131 131111 11111 11110 00000 000
which has the numerical value -272% on the fractional convention, or -2° = -512 as an integer. Let us

assume that b and ¢ (made up to complete words by adjoining enough 0’'s) are to be put into 5.1 and 5.2
respectively.

0.0 {|-512 collating mask (13009)
—i5.0 6 00 a to X6
1
0.0 6 05 replace 1s 9 bits of a by zeros, result b.
5.1 6 10 b to 5.1
2
5.0 6 04 a-b=c¢
5.2 6 10 ¢ to 5.2
3
L

Alternatively the complementary collating mask (0391%, i.e. 30 0’s followed by 9 1's) could have been
used; this could be written on the programme sheet as the integer +511, since it is 2% — 1, We shall
describe in the next section how other sorts of collating masks may be written.

As another illustration, suppose we have to jump to 3.0 if the integer (k) in 5.7 is odd. Here
we wish to examine the last digit of k, which will be 1 only if k is odd.

—{5.7 700 k to X7
0.0
@ 7 45 leave last bit of k in X7
+«—} 3.0 7T 61 jump if last bit is 1
1
e e e o e e e e e}

Some calculations require the manipulation of many small integers. Now a small integer does not
require many digits for its representation; for example if all the integers to be handled are known
to be between zero and 1000 then they may be represented by only 10 binary digits (because 210 = 1024 >
1000); if the integers lie between -50 and +50 then 7 bits may be used to represent them (there are
101 different integers and this is less than 27 = 128). It is obviously wasteful of storage space to
use a whole 29-bit word for a single such integer and one may instead pack several integers into one
word. The collating orders can be used to unpack such a word into its component parts, or to pack up
several components into a word. The packing and unpacking operations take time of course, but this may
be more than counterbalanced by the more efficient use that can be made of such orders as block-transfers.

If a component of a packed word represents a signed number it is natural to use its left-hand bit
to indicate the sign in much the same way as the ordinary sign-bit of a word, i.e. 0 for positive (or
zero) and 1 for negative. This can easily be done, but it sometimes simplifies the packing and
unpacking operations if the sign-bit is reversed, i.e. it is 0 in a negative number and 1 in a positive
one (or zero). This corresponds to adding a constant (a power of 2 in fact) to every component, so as
to ensure it is non-negative, and packing the components as unsigned; the constant is easily subtracted
during the unpacking process. For example, suppose an integer k lies in the range

-64 € k < 63,

so that it can be represented by 7 bits. For simplicity let us assume the integer is stored as

k + 64 in the 7 1s bits of a word in 5.0; note that k + 64 is non-negative. The following orders will
place k in X6.
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5.0 6 00

@645 k + 64 in X6
643 k in X6.

As a rule, when unpacking the components of a word, we require to place each component at the ls
end (or, sometimes, the ms end) of a word. The logical shifts are useful for this (their use can
eliminate some collating), and they can also be used to shift the various components during the packing
process. The double-length arithmetical shifts (functions 54 and 55) can often be used for logical
purposes; though one should not forget that OVR may get set by a 54-order, that the sign-bit in X6 will
be repeated in a 55-order, and that the sign-bit in X7 is cleared and does not take part in the shift
(see Section 3.7). When using double-length shifts we can often dispense entirely with collating orders.
For example, suppose that in 5.0 digits 1 to 9 and digits 10 to 14 represent two unsigned integers which
are to be unpacked and placed at the ls end in 4.0 and 4.1 respectively:

5.0 7 00

(:) 0 54 shift first integer into ls end of X6

4.0 6 10 first integer to 4.0

(:> 0 54 shift second integer into X6
4.1 6 10 second integer to 4.1

A similar technique can be used for packing.

The packing of several items of information into a word is not, of course, restricted to
integers; the components of such a word may be interpreted in a variety of ways, and may be of
different length. Even single binary digits may sometimes be useful; for example, they can be used
to indicate whether or not.a certain event has occurred; the sign-bit of a word can easily be used in
this way since a digit in thils position is always available (in special register 32) and its presence
or absence in a word can easily be sensed by a 62- or 63-order. Alphabetical information has often to
be stored; for example, we may wish to print names of persons or the headings to columns of numbers.
Since there are fewer than 32 letters in the alphabet, a letter can be represented by 5 bits (e.g.

A = 00001, B = 00010, € = 00011, ..., Z = 11010), though there are some advantages in using 6 bits if
other than purely alphabetical information is to be included. 1In general, any information which is
to be represented inside the computer must be encoded in some way.

Another logical operation provided in Pegasus is the not-equivalent operation; this is perhaps
less useful than the collating process, but has some applications., The orders are those with functions
06, 16 and 46. As with the collating orders there are two operands which are combined, digit-by-digit,
to give a result; but in the not-equivalent process the resultant word has a 1 only in those positions
where the corresponding bits of the operands differ. For example, the result of performing the not-
equivalent operation between

H

0.11110 00G11 10011 00010 10101 01111 10110 110
0. 11000 11000 10101 10100 00000 10110 11111 010
0.00110 11011 00110 10110 10101 11001 01001 100

n

i

and v

is w

The process is sometimes called logical addition since the result may be got by a digit-by-digit
addition (or subtraction) with no carry. Where the digits of v are 0’s the digits of w are the same
as those of u; where the digits of v are 1’s the digits of w are the reverse of those of u.

The operation may be written symbolically as

w» = u # v

(read as “u not-equivalent v”), As with the and operation, this is symmetrical and associative, i.e.
if x, y and z are any three words then

tEy = ¥y #x

and

z #(y #2) (x#y) # 2z,

so that we can leave out the brackets. The word
xFEy £z

will have a 1 digit where either all three operands have 1's or just one of them has a 1 (i.e. where
an odd number of the operands have 1’s).

- B2 ~



THE ORDER-CODE 3.11
The relevant orders may be defined as follows.

F Effect Description

06 ' = xgn In the binary digital positions where the
word in the register has 1's, reverse the
digits in the accumulator; elsewhere leave
them unchanged.

16 nl = n#x In the binary digital positions where the
word in the accumulator has 1°s, reverse
the digits in the register; elsewhere
leave them unchanged.

46 = x#N In the binary digital positions where the
integer written first in the order has 1's,
reverse the digits in the accumulator;
elsewhere leave them unchanged (N.B. at
most the 7 right-hand digits will be changed).

None of these orders can cause overflow.

One of the most straightforward applications of the not-equivalent operation is the comparison of
two words, u and v say, to determine whether or not they are equal. If u and v are equal, digit for
digit, then u # y will be zero. Suppose, for example, that u and v are in 5.0 and 5.1, and we wish to
jump to 2.0 if they are exactly equal.

5.0 6 00 u to X6
5.1 6 06 u #v to X6
2.0 6 60 jump if u = v

0f course we could have subtracted the two words, the result would again be zero only if the operands
were equal (even if they have no numerical significance); the disadvantage of subtracting is that
overflow may occur.

The order 32 4 06 will reverse the sign-bit in accumulator 4 and leave all the other bits
unchanged. Note that if this order, or, in fact, any not-equivalent order,f is obeyed twice then there
is no change in any word (in this respect such an order resembles an 04, 14 or 44 order, except that
these may cause overflow). This may be expressed symbolically as follows, if u and v denote any two
words,

u?*—('uri-v)

v,

or

v # (u & v)

u,

This process is useful if we wish to interchange two words. Suppose, for example, that we have to
interchange u = C(6) and » = C(5.0).
5.0 6 06 u % v in X6
5.0 6 16 v# (u # v)
5.0 6 06 u # (u g v

v in 5.0
v in X6

Interchanging can be done in other ways but this method has the advantages that no working space is
used and overflow cannot occur.

It is convenient to introduce a special notation to indicate certain other logical operations which
can be performed by combining several orders. We shall write O to mean a word all of whose digits are
zero, and (—1) for the word whose digits are all 1’s ‘these are the values of the words as integers).

In the following, u, v and w represent any three words. Clearly
u&u = u, ué&0 =0 and u& (~1) = u,
also

uF¥u = 0, u#z0 = u.
A bar over a letter will denote the not operation, i.e. the reversal of all the digits, so that
u ¥ (-1 = 4q, u&u = 0, uFu = (-1).

For example, to reverse all the digits of C(5.0) we could use the orders

L6442 (1) to X6
5.0 616 @ = (u# (-1)) in 5.0
Note that & = —u ~ 1.

t We exclude such orders as 4 4 06 of course.
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3.11 THE ORDER-CODE

The and not operation can be programmed by using either of the identities
u&v = (u&v) £u = (u#v) &u,

which can easily be proved; it is equivalent to collating with a complementary mask. If, for example,
u and v are in 5.0 and 5.1 respectively, we can put u & ¥ in Y6 by the orders

5.0 6 00 u
5.1 6 05 u & v
5.0. 6 06 ut(W&v) = u& v

The last order here could be replaced by an 0O4-order.
The or (or mix) operation is sometimes useful, it may be denoted by

uv v,

the resulting word has 1’s where either or both of the operands have 1’s. It can be proérammed by using
one of the identities

uvy = (uteo)~-(ué&v),
vy = &N Zv = {(uév) &u v = (W&v) & #ov,

which can be easily proved. For example, if u and v are in 5.0 and 5.1, the following orders will put
u , v in X6.

5.0 6 00 u

5.1 6 06 (u Zv)

5.0 6 05 (u #v) & u
5.1 6 06 u v

As another example, suppose u is in X6 and » in 5.0, and we have to mix the last 5 bits of u into 5.0,
i.e. we wish to insert in the last 5 bits of C(5.0) any 1's there may be in the last 5 bits of C(6)
without disturbing any other digits. The result may be written
v v (U&al),
and may be programmed in the form
Haw & v) #u} &31] # 0.
5.0 7 00 v to X7

6 7 05 u& v

6 7 06 (u & v) #u
@745 {(u & v) & u} & 31
5.0 7 16

The algebra of these logical operations is called Boolean algebrs; it has applications in the
logical design of digital computers. Some elementary results are quite useful; the reader may like to
consider the following relations.

ud& (v v w) (u&v) v (u&w),

uv, (v & w) (uv v) & (uv v),

u&v = Uy v,

uvwv = ud&v,

uZv = (u&7v) v (& & v,

1l

u & (v # v) (u & v) # (u & w),
u& (uvv) = uav (W&v) = u
A certain operation that can be used with packed words is called extract (though this word is
sometimes used for other purposes). This operation combines three operands to give a result; it may
be defined symbolically as

(v & w) v (v & ).
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THE ORDER-CODE 3.12

Here w can be thought of as a kind of mask; where the mask has 1's the digits of the resultant word
are the same as those of u; where the mask has 0's the result has the digits of v. For example, if
0,11110 00011 10011 00010 10101.01111 10110 110,
0. 11000 11000 10101 10100 00000 10110 11111 010,
0. 00000 00000 11111 11111 11111 O00OC 00000 000,

~1
I

<
L]

it

and v

then the result is
0. 11000 11000 10011 00010 10101 10110 11111 010,

This operation can be used to replace one component of a packed word by a new group of digits forming a
part of another word. It can be programmed by using the identity

(u&w) v (v &w) = &u%u)&w}?v.,

To prove this we note that (u & w) & (v & ») = 0, so that

"

(u & w) v (v & ¥) (u & v) # (v & B),

(v & v) # {v ;ﬁ-(v&w)},

which follows from one of the and not identities. The result is therefore equal to
(W&w) Z@&w #v = {(usv) &} #v.
As an example of the use of this operation, let us replace digits 11 to 16 of the word (v) in 5.0 by the

corresponding digits of the word (u) in 5.1. We shall need a mask (w) having I’s in digits 11 to 16
and 0’ s elsewhere (i.e. 01116022),

0 01770.
0.0 mask v (pseudo order-pair)
0
—b 5-:-(-)"—6—;)-0“— v to X6 from 5.0
' 5.1 606 i
—(;.‘_(;_;-(-)-5“— (u # v) & v in X6
2L5,0 6 16 | {tu# v) & v} # v in 5.0

Note that if we add the order 5.1 6 16 we shall have interchanged digits 11 to 16 of u and the
corresponding digits of y. The mask 1s here written as a pseudo order-pair since this is a very
convenient way of specifying its individual binary digits; & pseudo order-pair may be defined as
something which is written (and punched) according to the rules for order-pairs, but which is not
intended to be obeyed by the computer. We shall discuss this subject further in the next Section.
There is a useful general theorem in Boolean algebra which can be used to prove or discover
identities. We write f(u) to mean a Boolean function of u, i.e. any finite combination of u with

other letters and constants effected with the operations not, and, or, not-equivalent. The theorem
asserts that

fw = {wafent , 5e o,

and can easily be generalized to include functions of more than one variable. It is the fundamental
theorem of Boolean algebra. We can apply it to prove the extract identity above by writing

fwy = {(u#v) & v} # v,
so that f(—l) =u#Eyvgov=u and f(0) =0 # v = v. In this case the theorem shows that
flw) = (w&u) v (¥ & v),

which is the result of the extract operation. Note that if two functions f(u) and g(u) are to be proved
equal for all u, it is enough to prove that f(-1) = g(-1) and f(0) = g(0).

Each.of the orders introduced in this Section requires only the basic time to be obeyed, i.e. 3
word-times if it is an a-order and 2 word-times if it is a b-order.

3.12 Orders in binary, pseudo order-pairs

It is occasionally useful to know the way in which the written form of an order-pair is represented
in binary inside the computer. This knowledge is chiefly useful when reading the monitor tubes, or when
we wish to write collating masks or certain other constants on a programme sheet for input by the
computer.

In Section 2.6 we described the way in which the 39 bits of an order-pair are used. We shall now

complete this description by an account of the way the N-address of an order is represented by the 7
bits used for this purpose.
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3.12 THE ORDER-CODE

If a decimal number is written in the N-position of an order then it is directly represented in
binary. Such numbers will usually correspond to one of the following.

(a) an accumulator address

(b) the address of a special register } groups 0, 1, 2.

(c) a small integer in a group 4 order,

(d) a shift-number in a group 5 order,

(e) =& main store (or buffer store) block-number in a group 7 order.

If the N-address is the address of an ordinary register then the left-hand bit is alwsys 1, the
next three bits give the block-number in the computing store and the last three bits the position-
number. The following-examples should make this clear.

Written form of N Binary digits representing N
0.3 1 000 011
2.6 1 010 110
5.2 1 101 010

In a jump-order the address of the register is followed by a + sign if the jump is to a b-order;
in this case the N-address is represented as above except that the left-hand bit is always 0. These
examples should clarify this.

Written form of N Binary digits representing N
0.3+ 0 000 011
2.6+ 0 010 110
5.2+ 0 101 010

The following are examples of the way the 19 bits of an order correspond with its written form.
Order as written Binary form inside computer

N X F M

(:) 5 42 0001101 101 100010 000
27 []72 6 0011011 010 111010 110
0.7 621 1000111 110 010001 000
3.2 3 66 1011010 011 110110 000
1.5+ 0 60 4 0001101 000 110000 100

When the written form of an order-pair is being converted to the binary form by the Initial Orders,
the way in which the conversion is carried out is not affected by the function parts of the orders. A
complete order-pair is assembled by shifting up the s-order and adding the b-order and stop/go digit.

We can, if we wish, write down “abnormal” forms of orders and get them converted to binary and
stored; the following are examples.

“Order” as written Binary form inside computer

N X F M

0.3 6 40 1000011 110 100000 000
7.5+ 2 70 3 0111101 010 111000 011
48 0367 0110000 000 011110 111

Usually orders that are written like this are not intended to be obeyed by the computer. They can
however be used to express certain constants, e.g. collating masks, as pseudo order-pairs. A pseudo
order-pair may be defined as a group of symbols written on a programme sheet and punched in accordance
with the rules governing order-pairs, but which is not intended to be obeyed by the computer. A
pseudo order-pair is usually used when we wish to specify each binary digit of a constant. 1In Table
3.2 (page 57) are given a few examples of such constants and the way in which they can be written as
pseudo order-pairs. Note that the sign-bit (or stop/go bit) is 1 unless the pseudo order-pair is
marked as a stop order-pair, For clarity we have written dots for 0’°s in the binary representation,
and written the a-order above the b-order (this is the way words appear on the monitor tube).
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Collating Mask

Pseudo
Abbreviated . Order-Pair
Notation Binary
010312917 ¢ eeeesse o1 111111 111 0 17717

) T 4.0 0000

1%g1611297 L 5 R 6.0 0000
1111111 111 1L... ... 127 7600

013113p13 C eeeeees ee. L1111 111 0 0177
111111, +v'e 2vvuee oo | 7.6 0000

Table 3.2 Some representative pseudo order-pairs.

It is customary to rule a heavy vertical line on the programme sheet to the left of a pseudo
order-pair, as with other constants. Sometimes collating masks can be conveniently written as numbers,
a few examples appear in the previous Section.

We have described earlier how a dummy order may be written simply as 0 in the N-position of the
order, the other parts being left blank. In general we can, if we wish, write some integer (unsigned)
in the N-position and leave the rest of the order blank; such an integer will be stored at the right-
hand end of the corresponding order. For example the last of the collating masks in Table 3.2 could
alternatively be written as follows:

127

7.6 0 00 0.

When writing a single-word transfer order (function 70 or 71) a decimal main-store address can be
written in the N-position of the order and a minus sign in the XY-position (see Section 3.10). The
effect of such a minus sign is to cause the preceding part(s) of the order to occupy 3 extra binary
digits to the right (i.e. to be shifted down 3 places), If desired, up to four minus signs may be
written in an order, each occupying the space reserved for an octal digit in the written form of the
order (i.e. X, either of the F-digits, or M). This facility is useful primarily in pseudo order-pairs
used with modified orders and the Assembly part of the Initial Orders, which will be described later.
The following are illustrations.

Order as written Binary form inside computer

N X F M

31_-]71 0000011 111 111001 000
3771 0000011 111 111001 000
31 --01 0000000 011 111000 001
31 - 01 - 0000000 011 111000 001.
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Chapter 4

Some Simple Programmes

In order to put the subjects so far discussed into their proper relationship with one another we
shall now describe some simple complete programmes. Before doing this we shall discuss briefly certain
subjects which will be more fully covered in later Chapters.

4.1 Outline of output

The output device in a basic Pegasus installation is a paper tape punch (Plate 4). When certain
orders are obeyed by the computer this punch perforates a row of holes across a hlank strip of tape,
and moves the tape forward a tenth of an inch in readiness for the next row of holes. Each row of holes
is called a tape-character; there is room across the tape for up to 5 holes; each of the 32 possible
combinations of hole and no-hole is regarded as a distinct character. The tape produced by the punch
is called the output tape, in order to distinguish it from the input taepe, which is the tape read by
the input tape-readers. The output tape normally goes immediately into an interpreter, which senses
the holes produced by the output punch and prints certain characters (e.g. decimal digits or letters)
corresponding to the tape characters. When it has been printed out in this way the output tape is
often no longer needed and is thrown away. There are two main reasons for using this indirect procedure
for printing the results of a calculation:

(a) the punch is about six times as fast as the printer or interpreter,

(b) it is sometimes useful to feed the output tape back into the computer, i.e. to use it as an

input tape, on a later occasion.
To avoid circumlocution it is common to talk of the computer printing its results, whereas strictly it
only punches them for subsequent printing by an interpreter.

In order to print a number we usually have to cause the printer to print several characters; the
individual decimal digits must each be printed and we shall probably have to include a few extra
characters such as a sign (+ or -) or some spaces. Each character has to be printed as a separate
operation.

For our present purposes we can think of special register 16 (see Sec. 2.9) as connected to the
printer. In order to print any particular character all we have to do is to send a certain small
integer to register 18, For example to print the character 5 the computer could obey the orders

(3) 3 40 5 to X3

16 3 10 print 5
The integer we must send to register 16 to cause any particular character to be printed is called the
velue of the character. The value of the character 5 is 5; the value of the character + is 10. The

characters we shall need in this chapter are tabulated, with their values, in Table 4.1, it will be
seen that values up to 9 are allocated to the decimal digits. Some of the characters call for further

Printed character Value
0 0
1 1
2 2
9 9
+ 10
- 11
decimal point (@) 12
line feed (LF) 13
space (Sp) 14
multiplication sign 24
equals sign 26
carriage return (CR) 30

Table 4.1 Summary of printer code
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explanation., A decimal point is referred to as ® to prevent confusion, it is of course printed simply
as a point. The character spece (abbreviated to Sp) causes the carriage of the printer to move forward
unit distance without anything being printed; its effect resembles that of the space bar on a type-
writer. The character carriage return (abbreviated to CR) causes the carriage of the printer to return
so that the next printing occurs at the extreme left of the line; line feed (LF) causes the paper to be
moved up one line so that the next printing occurs on a new line. These last two characters are usually
printed successively (as CR followed by LF, denoted by CRLF) so that the next printing occurs at the
extreme left of a new line; they could logically be combined but have to be kept separate for technical
reasons connected with the design of the printer. The characters Sp, CR, LF are sometimes collectively
called layout characters.

One should not assume that the carriage of the printer is in any particular position at the start
of the programme, and consequently most programmes start off with some such sequence as the following.

(30) 6 40

} Print CR

16 6 10 Print two LF's
16 6 10

Note that the first two orders in the above sequence send the integer 30 to register 16 and consequently
cause the “printing” of a carriage return (CR). In order to print the integer 30 we should have to
print the characters 3 and 0 separately, for example by means of the following orders.

(3) 6 40

} Print 3
16 6 10

16 0 10 Print 0

Of the 39 bits sent to register 16 to print a character only the 1s 5 bits matter, the first 34
bits of the word do not affect the character printed.

To print a number we have to calculate from the number the values of its individual decimal
digits. To illustrate how this is done we shall construct a sequence of orders for printing a non-
negative fraction x to 3 decimal places. It is, of courseé, less than 1.0 and can be written 0.rst.
where r, s and t are its first 3 decimal digits. For example, if x = 0,123456... then r = 1,
§ =2, t =3. We can easily find the value of r, the first digit, by multiplying x by 10; the
integral part of the product is just r (e.g. if x = 0.123456... then 10x = 1.23456...). After printing
r we can then replace x by the fractional part of the product and repeat the process. The following
steps should make this clear.

0. 123456...

®»
1

10x 1.23456..., integral part = 1,

fractional part = 0.23456...

10 x fractional part 2.3456..., integral part = 2,

fractional part = 0,3456...

10 x fractional part 3.456..., integral part = 3,

fractional part = 0.456...

After each multiplication the integral part is the next decimal digit which is to be printed. This
process requires the multiplication of a fraction by an integer; if we use a 20-order we shall get the
integral part of the product in X6 and the fractional part in X7 (see Sec. 3.1). The following
sequence of orders can thus be used to print r, s and ¢ if the fraction x is in 5.0:

5 40 10 to X5

5.0 5 20 10x to X6 and 7
16 6 10 print r
5 720 fractional part x 10
16 6 10 print s
5 720 fractional part x 10
6

16 10 print ¢

It would be better to print a zero and a decimal point first and rearrange the above orders into
a small loop as follows.
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—p| 16 0 10 print zero
0.0

5 40 10 to X5
—@—;ZO_—— set counter = 4 in X¢

' (:) 6 40 12 = code for decimal point, to X6
5.0 700 | «xtoxt

2 16 6 10 Print decimal point or digit
——5_—7_2—0——— fractional part (or z) x 10

? 0.2+ 4 67 count down from 4 (o and 3 digits)

In practice other points would be taken into account. For example, we should print either CRLF or
SpSp before the number; and we would probably arrange to print the sign so as to allow x to be
negative (if x < 0 we must change its sign before entering the above loop of orders). We should also
take care to round the value of x before printing (by adding 0.0005 to it) since we are only printing
the first few digits of a long number (c.f. the use of rounding in multiplication, division and
shifting). We must then consider the possibility of overflow caused by the rounding or the change of
sign. When all these points (and others) have been taken into account we get a self-contained piece
of programme of moderate complexity. Such a piece of programme is called a subroutine;, & routine is
simply another name for a programme, and a subroutine is a fairly independent, self-contained part of a
routine. We shall discuss this subject further in the next Section.

Let us now consider how integers may be printed. To start with we shall consider the printing of
a non-negative integer a less than 100, One way is simply to divide the integer by 100 to convert it
into a fraction and then to use a cycle of orders similar to the one given above; this method is
awkward for larger integers so we shall not consider it further. If r and s denote the two digits of a,
then a = 10r + s, and we can find r and s by dividing a by 10. For example, the following orders
could be used, supposing « to be in 5.0 at the outset.

—»|5.0 700 a to X7
0.0
(10) 6 40 10 to X6
6 024 divide a by 10
1
16 7 10 print r
16 6 10 print s
2
_______ -

This sequence would probably not be used in practice since it does not incorporate any suppression of
left-hand zeros, i.e. an integer such as 7 would be printed as 07. We must arrange that the first
digit is not printed if it is zero. The following sequence shows how this can be done.

—|5.0 7 00
0.0 ’
6 40 divide a by 10
6 0 24
1
0.2+ 7 60 omit first digit if zero
16 7 10 print first digit if not zero
2
L-16 6 10 print second digit

This device is known as left-hand zero omission. Even this sequence would not be acceptable in most
programmes, since the width of the printing is not constant, i.e. sometimes the printing will be two
units wide and sometimes only one. This is disadvantageous when several numbers are printed on the
same line and similar lines are printed repeatedly: the layout of the printed page is then irregular.
To obviate this we must arrange to print a space instead of the first digit if it is zero; this is
called zero suppression.
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—p 5.0 7 00
0.0
(10) 6 40 divide a by 10
6 0 24
1
0-2v 761 }u first digit is zero replace it
@ 7 40 by 14 (code for space)
2
16 7 10 Print first digit or space (=14)
16 6 10 Print second digit
3

Generally speaking we should.want to print larger integers than can be handled by the above
sequence of orders. To see how this can be done consider the printing of the integer « = 123456. If
we divide it by 10 the remainder will be 6 and the quotient 12345; if this quotient is then divided by
10 the remainder will be 5 and the quotient 1234. This process can be repeated, but has the disadvantage
of producing the digits (as the remainders) in the reverse order. A better way is to divide a by 100000
to give a quotient of 1 and & remainder of 23456. The quotient can then be printed and the remainder
multiplied by 10 to give 234560. This number is in turn divided by 100000 to give a quotient of 2 and a
remainder of 34560. The quotient is printed and the remainder multiplied by 10 again, and so on. The
following table shows how the successive quotients give the required digits.

quotient remainder remainder x 10
123456 <+ 100000 1 23456 234560
234560 <+ 100000 2 34560 345600
345600 <+~ 100000 3 45600 456000
456000 + 100000 4 56000 560000
560000 + 100000 5 60000 600000
600000 + 100000 6 0 0

The following orders will carry this process out for any 6-digit non-negative integer.

0.0 i+100000
—_— (:) 4 40 Set counter for 6 digits
' 5 40 10 to X5
5.0 700 | atoxs
? 0.0 0 24 divide by 100000
16 7 10 print digit
? 5 6 20 remainder x 10 to X7
_0—-2-::1—_67—_— count digits
4

As before, we must arrange for left-hand zero omission or suppression, the details of which are left tq
the reader. 1In Section 4.4 below we give an example of a sequence for printing single-length positive
integers of any magnitude. As when printing fractions there are a number of complications and in
general the whole process is best left to a subroutine.

As a rule the printing produced by a programme will consist of a great many numbers, some of these
will be printed as integers, some as fractions, some as mixed numbers, some in sterling, some will be
signed, etc. It is well to arrange that the printing is neatly laid out in columns, blocks, and so on,
and this can be arranged by suitable counting and printing of layout symbols. It shouldbe noted that
there is room for printing up to 69 characters on one line of the printer.

In this section we have described the way in which numbers can be printed using the equipment in a
basic Pegasus installation. One can also easily arrange to print alphabetical and some other
characters, and we describe this in Section 6.2. The normal output punch operates at-60f characters

t Many installations will still be using the slower output punch which operates at 33 characters per
second.
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per second and this is adequate for most scientific and technical calculations. Sometimes, however,
greater speed is necessary and the basic installation must then be supplemented by some ancillary
equipment: this is most needed in large-scale commercial and statistical work. Some of the extra input
and output facilities are described in Chapters 10 and 11,

4.2 Subroutines and the organisation of a programme

A reader new to the subject could be forgiven if, at this stage, he felt that the task of preparing
& complete programme was altogether too difficult to be contemplated. It is true that the preparation
of a large and complicated programme is an operation which may take a year or more; but there are many
ways of lightening and spreading the labour, and much of it is, by any standards, interesting. Nearly
all programmes can be subdivided into self-contained parts, each doing some job which can be regarded as
more or less complete and independent: these parts are often called subroutines. If a flow-diagram of
the whole programme is available then each box, or some convenient group of boxes, can be thought of as
a subroutine. The importance of the idea is that, provided a sufficiently precise specification of its
function can be written, each subroutine can be programmed and tested separately, without much reference
to the rest of the programme, In this way the programme can be tackled piecemeal, if necessary by
several people. -Afterwards the various subroutines can be linked together to make up the complete
programme,

This procedure is of the greatest value in the preparation of a complicated programme. We can
visualize a programme organized in this way as a collection of subroutines so arranged that when one
has finished its task it leads into (or calls in) the next. As a rule there will be a few *“red tape”
or organisational orders to be obeyed between one subroutine and the next, especially if they have been
written by different people, and it is therefore often more convenient to have, in addition to the
subroutines, a master-programme, (Or master-routine) which includes most of the organisational orders
and whose main purpose is to call in the various subroutines in the right sequence. If the programme is
organised in this way, which is usually the case, the subroutines must be so written that they re-enter
(or return control to) the master-programme when they have finished their work. 1In addition to calling
in the various subroutines, the master-programme usually performs & few other operations, such as counting,
moving numbers from one part of the store to another or doing a small amount of arithmetic. It often
happens that some of the subroutines may themselves call in other subroutines for some subsidiary calcu-
lation (these are sometimes referred to as sub-subroutines) so that the whole structure of the programme
may be on several levels as illustrated in the diagram (Fig. 4.1).%1

MASTER-PROGRAMME
&

Subroutine Subroutine |Subroutine Subroutine
A B (o} A

l

Subroutine D
(used by
subroutine B)

Fig.4.1 Structure of a typical progremme

It will be noticed that subroutine A has been called in (or entered) twice from two different
points in the master-programme.

The orders used to call in a subroutine are called the cue to the subroutine. A cue is normally
an order-pair consisting of a block-read order and an unconditional jump. For example, the following
is a typical cue:

B37 to U0

jump to 0.1

When such a cue is obeyed a block of the subroutine (usually, but not always, the first block) is
copied into the computing store and entered (i.e. a jump to one of its orders occurs). After this the
computer is obeying the orders of the subroutine, which will include any further block-read orders
needed. Eventually the subroutine will have finished 1ts task (e.g. printing a number, evaluating a
square-root, reading in a list of numbers, etc.), and it then obeys a link, which is the order used to
leave (or exit from) the subroutine, usually so as to return to the master-programme. The link is
often an order-pair made up, like the cue, of a block-read order and a jump.

As an illustration, suppose that there is a subroutine for printing C(7) as an integer which is
to be entered by the cue written above. At the relevant point in the master-programme we might have
the following orders.

t In this diagram the box representing the master-programme has, of necessity, been made larger than
those representing the subroutines. This is not intended to reflect the amount of storage space
occupied,
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B 10
START——|5.0 7 00
0.0 (:)
5 40
—————— .
37 [0]72
1 cue to subroutine

Agq——— 0.1 0 60

B———#|5.0 7 00

7T 720

In the subroutine there could be the following orders.

B 37

0,0 |}+1000000

A—~——->44o

' 38 [I}72 B38 to Ul
0.0 0 24
etc...
0 @z
1.5 link

B4——0.2 0 60

When the link is obeyed in the subroutine the original block (B10) of the master-programme is put back
in U0 and re-entered at the a-order in 0.2 (marked B). A subroutine written like this can, of course,
be entered from several different places in the master-programme but, since it always obeys. the same
link, it will on every occasion return to the same point in the master-programme. Frequently this
would not be what was wanted and in a programme like that of Fig.4.1 would necessitate the storing of
two (or more) copies of a subroutine, each with its own fixed link. It is better to arrange that the
link obeyed by the subroutine can be changed so that return to the master-programme is to different
points on-different occasions.

The usual arrangement is as follows. The master-programme places the appropriate link in
accumulator 1 just before obeying the cue which calls in the subroutine; this process is called setting
the link. The subroutine is written in such a way that, when it has finished its task, it copies the
link into an ordinary register (this is called planting the link) and obeys it. For example, the
master-programme might contain the following sequence of orders.

B 10
5.0 7 00
0.0
0.2 100 set link from 0.2 in X1
37 [0)72
1 cue to subroutine

A¢q—| 0.1 0 60

2 link for subroutine

B—————p! 5.0 7 00

And in the subroutine there could be the following orders.
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B 37
0.0 [[+1000000
A———p| (10 4 40
1
38 [[J72 B38 to Ul
0.0 0 24
etc..
0.7 110 plant link from X1 in 0.7
1.5
¢———10.7 0 60 obey link

It will be noticed that the link is written in the master-programme (in 0.2) immediately after the cue:
this is often a convenient place to write it. The link is marked with a heavy line on the left like a
constant or a pseudo order-pair; this is to draw attention to the fact that it 1s not obeyed in the
master-programme, where it is written, but in the subroutine (actually in U0.7). With this device the
subroutine can be entered from several different points in the master-programme; on each occasion the
master-programme can set a different link in X1. Of course, there is no need to use X1 for the link
in this way, another accumulator (or an ordinary register) could be used but it is conventional to use X1.
It is essential that the subroutine should carefully preserve the link until it is needed. If the
subroutine requires to use X1 then it should copy the link elsewhere first; this may happen because the
subroutine requires a single-word transfer order, or perhaps because it calls in a further subroutine.
When a subroutine has been written it is advisable to prepare a specification of it. This is simply
a catalogue of the properties and effects of the subroutine as viewed from outside. The specification '
would state, for example, which blocks in the computing store were used by the subroutine, what cue
(or cues) are to be used to enter it, which accumulators it uses as working space, what its precise
effects are, and so on. There are a number of conventions relating to subroutines, among which the
following are important.

(a) the link is to be in X1 on entry,
(b) OVR is to be clear on entry,

(c) nothing should be assumed about the contents of any registers or storage locations used as
working space by the subroutine,

(d) 1if possible, the subroutine should use blocks U0 and Ul only in the computing store, and also as
few accumulators as possible.

All these things are purely conventional. It is important to distinguish between the rules of
programming, which are necessary because of the way the computer works, and conventions, which form a
body of accepted practice. An adequate set of programming conventions is an essential prerequisite
for the satisfactory use of a computer.

It is usually necessary to enter a subroutine by a proper cue as described above (i.e. a block-read
and jump) even if the subroutine is used several times in quick succession. This is because most sub-
routines write over some of their own orders when these are no longer needed; consequently a fresh
copy of the routine must be brought in from the main store on each occasion when it is used. Since some
subroutines use X1 as working space, the link must be set each time the subroutine is used, even if the
same link is required again. '

The following are some imaginary, but plausible, brief specifications of subroutines.

¢)) Print three-digit non-negative integer in X7, preceded by SpSp.

Cue: 40 [0] 72

0.0 060

Uses: U0, BO.
Link: In X1, obeyed in 0.3.
Time: about 100 milliseconds.

(2)  Evaluate V(pq)p and leave result in X6.

Cue: 43 [0} 72

0.0 0 60
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Uses: UO; X5, 6, 7.
Link: in X1, obeyed in 0.7.
Time: about 45 milliseconds.

(3) Read a sum of money in sterling from the input tape, convert it to pence and leave the
result in X86.

Cue: ' 44 [0] 72

0.1 0 60

Uses: U0; X4, 5, 6, 7.
Link: in X1, obeyed in 0.7.
Time: about 108 milliseconds.
Some subroutines may usefully be written so as to have two or more alternative entry-points, each

with its own cue. For example, a print subroutine could precede the main printing by CRLF if entered
by the cue

40 [0]72

0.0 0 60

or by SpSp if entered by the cue

40 [0]72

0.2+ 0 60

Sometimes it is advantageous to use a device known as a programme-parameter. This is usually a
number set in an accumulator by the master-programme just before calling in a subroutine. The effects
of the subroutine are then determined to some extent by the parameter. A straightforward example is
provided by a subroutine for printing a fraction;, the subroutine could be so written that the number
of decimal places printed is determined by, say, an integer in X2. The number of places required is
then set in X2 by the master-programme at the time it sets the link in X1, i.e. just before obeying the
cue to the subroutine. Like the link (which is really only a special kind of programme-parameter), the
number of decimals wanted is set each time the subroutine is called in and can easily be changed.

We have already pointed out that the use of subroutines can greatly simplify the task of preparing
a complete programme by enabling the whole job to be broken down into parts which can be dealt with more
or less independently. There is a further advantage: some subroutines may be used in more than one
programme. For example, many programmes will need a subroutine for printing an integer. Such a
subroutine can be written by an experienced programmer in such a way as to be efficient and to have
features making it widely useful. Many generally useful subroutines like this have been written, they
together form the Library of the computer and there are volumes available which contain their
specifications. The specification of a library subroutine provides all the information needed for the
normal use of the subroutine (e.g. details of cues, working space, and so on); it does not indicate,
nor need the user know, how the subroutine works. Since the use of the library requires a knowledge of
the Assembly section of the Initial Orders, we defer further discussion until Chapter 8.

In most scientific and technical calculations functions of various kinds are needed. For example,
square-roots, logarithms, exponentials, sines, cosines, and so on, enter into many calculations. When
carrying out a computation by hand it is usual to use books of tables for such functions. Witha
digital computer one could, of course, store a table, together with a subroutine for looking up entries
in the table and interpolating in it. This is sometimes a useful technique but it should be realized
that such a table may occupy a considerable amount of storage space; furthermore the interpolation
routine is by no means trivial and may be relatively slow. It is usually best to evaluate functions as
they are needed; for example, sin x may be evaluated by means of a truncated Taylor series

3 5 2n+1
siny vy -2 + I L 4" e
el e T ) G

Only six or even seven terms are needed to give the full precision attainable with 39-bit words, and one
can therefore construct a fast subroutine to evaluate sinx (the numerical values of the coefficients
being stored within the subroutine). (This is, in fact, not the best way to evaluate sinx.)

As a simple illustration of how subroutines can be used let us prepare a table of powers of 2.
We shall print two columns giving the values of n and 2", respectively, starting at n = 1 and going on
until 2" is no longer a single-length number (the last value will be 237). We shall assume that a
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subroutine is available with the following brief specificationt:

(4) Print integer in X7 (with zero suppression).

Cues: 50 [0)72 to precede integer by CR L@
(1)
0.0 0 60
50 [0]72 to precede integer by Sp
or (2)
0.3 0 60

Uses: U0, BO.
Link: in X1, obeyed in 0. 3.

Programme-parameter: integer in X2 specifies maximum number of decimal digits
in number being printed.

We know that n will have at most 2 digits and 2" at most 12, so we can set the programme~parameter to
these values. We shall keep the current value of n in X5 and that of 2" in X3. The master-programme
is a little under two blocks long; we shall suppose it occupies B2 and B3 and can be entered by
copying these two blocks into U0 and U1 and jumping to 0.0; we shall describe how this is done, with
the help of the Initial Orders, in the next Section.

B2
START —% (j) 6 40
070 16 6 10 print LF LF (CR unnecessary here
because it is done by the subroutine)
16 6 10
1
(D s 40 set n = 1 in X5
S initial values
3 40 set 2" = 2 in X3
2
A——3p| 5 700 n to X7 )
2 40 parameter = 2
3
0.5 100 set link 1 in X1
_________ print n on a
- 50 [0]72 > new line (maximum
4 cue (1) to subroutine of 2 digits)
ié——-—- 0.0 0 60
|
1 2 [0]72
| 5 link 1
: 0.6 0 60 |
[
S——» 3 700 2" to X7
6
~ print 27
(::) 2 40 parameter = 12 on same 1ine
"""""""" (maximum of
. 1.1 100 set link 2 in X1 12 digits)
0 dummy order

1 It will be noticed that this print subroutine uses only UQ in the computing store. This is typical
of output subroutines in general, which are usually written so as to preserve all the accumulators
by writing them into .B0 on entry (there is an order 0 fJ 73 at the beginning of the subroutine);
the accumulators are reset from B0 just before the link is obeyed. The time required by these extra
block-transfers (and others in the subroutine) is generally small compared with the time needed to
operate the output punch.
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B3
Lo 50 @72 cue (2) to
: subroutine print 27
{‘ 0.3 060 on same line
| (maximum of
| 2 [gJ72 12 digits
1 link 2 gits)
: 1.2 060
]
e (:) 5 41 increase n by 1 in X5
2
3 301 double 2" in X3
Ag———|0.2+ 0 64 repeat if OVR clear
3
<:: 1.3+ 0 60 stop if OVR set

Note the dummy order (in 0.7+) inserted to make the second cue to the subroutine an order-pair (although
this is strictly not necessary here). On each occasion the link restores B2 in U0 and this is all we
need to do after using the subroutine since it uses only U0 in the computing store.

4.3 Putting a programme into the computer

We have so far described the effects of various orders and how they can be written, together with
some numbers, on programme sheets. We have also discussed the way in which programmes can be organised
with the aid of subroutines, and how the results are printed. Let us now consider how a complete
programme and the numerical data for it can be supplied to the computer. We shall suppose that the
complete programme (including all the subroutines) is available and that we wish to place it all in
specified places in the main store, after which the beginning of the master-programme is to be copied
into the computing store and the machine is to start obeying its orders at some specified pcirt.

We must first of all prepare the programme tepe. This is usually done with a teleprinter forming
part of the tape-editing equipment (see Plates 7,10). This can be thought of as a kind of typewriter
on which the orders and numbers of the programme can be typed out; as a result of this the teleprinter
produces a printed sheet and a length of punched paper tape. With few exceptions, each time one of
the keys on the teleprinter keyboard is pressed a single character is printed and the corresponding
tape-character (i.e. a certain row of holes) is punched. We shall not at present describe the rules for
operating the teleprinter and punching the tape; they are such that the way in which the orders and
numbers appear on the printed sheet differs only slightly from the way they are written on the
original programme sheets. The punching rules are consequently natural, and easy to learn and apply.

The printed sheet (known as & print-out) can be proof-read against the programme sheet, and this
is usually an adequate way of checking the punching of the programme. Fig.4.3 shows a programme sheet,
and Fig.4.4 the corresponding print-out. The data on which the programme is to operate are punched in
much the same way but must be much more carefully checked; it is usual to punch the data twice and to
- compare the resulting tapes automatically in the comparator section of the tape-editing equipment.
Should the checking of the tapes reveal any errors in the punching, these can easily be corrected in
various ways with the help of the tape-editing equipment. If the programme is a long one it may be
punched in sections (for example, each subroutine could be punched separately) and the several lengths
of paper tape joined together (or spliced) afterwards. When the programme tape is complete it is
spooled up on a hand spooler (Plate ) and placed in a box (Plste 5).

When the programme is to be run on the computer the programme tape is usually put into a tape
trough and its start is placed in the main tape-reader on the computer desk (Plate 3). There is always
a leader of blank tape at the beginning of the tape and it is this which is placed in the tape-reader.
The Initial Orders are then called in by operating the Start key on the control panel.

The Initial Orders are the principal means by which programmes and numbers are fed into the
computer;, they form a complicated programme stored permanently in the isolated part of the main store.
They are complicated because they are both easy to use and comprehensive in function. To call them in
we must first put the Run key to the STOP position and then push the Start key up to the position
labelled START (this key springs back to the NORMAL position when released). This operation clears
OVR and the external-conditioning relays (see Sec, 3.10) and certain stops (write-with-overflow, and
unassigned order, see Sec. 3.9), prepares the computer to obey an ae-order next, and places the start
order-pair, which is

896 [0]72
0.0 0 60

in the order-register. Now B896 is the first block in the isolated part of the main store; it
contains the beginning of the Initial Orders programme, so that when the Run key is put back to RUN
and the start order-pair is obeyed it causes the computer to start obeying the Initial Orders. t
Assuming the handswitches to be clear, which is usually so, the Initial Orders then read the tape in
the main tape-reader, taking in the various orders and numbers punched in it, converting them to the

t For the 4096-word store, the start order-pair is
512 [0) 72
0.0 0 60
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internal form required by the computer and placing them in the main store. The process of calling in
the Initial Orders in the way just described is called the Normal Start.

We must be able to direct the operations of the Initial Orders in at least two important ways:

(a) we must control where, in the main store, the orders and numbers read from

the tape are placed,
and (b) we must arrange that, on reaching the end of the tape, the computer starts to obey
(i.e. enters) the programme just read in.

These and other operations of the Initial Orders are controlled by special groups of characters,
called -directives or warning characters, punched along with the programme in the tape. The directives
are used exclusively to direct the operations of the Initial Orders, they are not stored. Before
discussing them further we must introduce the Transfer Address. '

The Transfer Address (usually abbreviated to T.A.) is simply the main store address where the next
order-pair or number on the tape 1s about to be placed by the Initial Orders. Every time an order-pair
or number has been read in and converted into a binary word, this word is written into the storage
location specified in the Transfer Address: as soon as this has been done the Transfer Address is
increased by unity in readiness for the next word. Consequently the order-pairs and numbers punched
in the tape are placed in consecutive storage locations in the order in which they are punched. We can
easily set the Transfer Address to any value we please at the beginning of the tape, or in the middle
of it, by using the warning character T (for transfer). Suppose, for example, that we wish to place the
first order-pair on the tape in B51.2; all we do is to punch T 51.2 at the beginning of the tape
before the first order. The T 51.2 is a directive (in which T is the warning character and 51.2 the
address) and is not stored; it merely causes the Initial Orders to set the Transfer Address equal to
51.2 and then carry on to read more tape. If there is a subroutine on the tape which has to be stored
in B19.0 onwards, then we can punch the directive T 19.0 in the tape just before the subroutine.

The Transfer Address is set equal to 2.0 during a Normsl Start; consequently if there is no
T-directive at the head of the tape, the first order-pair or number read will be placed in B2.0,

When the Initial Orders reach the end of the tape we usually want the computer to enter the
programme (i.e. to start obeying it); this can be done by using another directive consisting of the
letter E (for enter) followed by an address. The effects of this are best explained by an example:
consider, therefore, the result of the directive E 51.2, which means enter (start obeying orders) at
the e-order in B51.2. As soon as this has been read by the Initial Orders (probably at the end of
the programme tape) there is a 77-stop; this is to allow the input tape to be changed or the hand-
switches to be set, etc. When the Run key is operated, B51 (the block containing the specified order)
is copied into U0, and the next three blocks (B52, 53 and 54) are copied into 01, 2 and 3,
respectively. The Initial Orders thus transfer the first four blocks of the programme into the
computing store. After this there is a jump to the specified order, now the a-order in U0.2, and
the computer leaves the Initial Orders and starts to obey the programme. There are a few other effects
of less importance which we shall describe later, but it will be seen that when the Initial Orders
read E 51,2 from the input tape the effect is similar to that of the following sequence of orders.

E————%| 0 077 stop, wait for Run key.
4.0
51 [o]72
52 '72 transfer four consecutive
4.1 blocks of programme into
53 [2]72 the computing store.
54 [3]72
4,2
4—|0.2 0 60 enter the programme.

If we want to enter the programme at the b-order in 51,2, instead of the a-order, all we need do is to
use E 51,2+, i.e. we write a plus sign after the address (like we do with jump orders).

Usually the directives associated with a programme are written in the appropriate places on the
programme sheets; but it is important to realize that they do not form part of the programme when it
is obeyed. The directives are concerned only with the process of input of the programme and not with
its execution.

As an illustration of the use of these directives, suppose we have a programme consisting of three
parts:

(a) 4a master-programme which is to go into blocks B5 to 24,

(b) a list of numbers which is to go into B233.5 onwards, and

(¢) a subroutine to go into B50 and 51.

Suppose the programme starts at the b-order in 5.2. The tape could be punched as follows:

T 5.0
(master-programme)
T 233.5

(list of numbers)
T 50.0
(subroutine)

E 5.2+
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The address in a directive always refers to the main store. The address in a T-directive can be
the address of any location in the main store. That in an E-directive can be the address of any order
in the main store, but this order must be obeyed in U0. There are many other directives which will be
described in detail in later chapters, but we shall summarize three of them briefly here.

The J-directive (J for jump) is very similar to the E-directive; the only difference being that
there is no T7T7-stop before the programme is entered. Thus the directive J 51.2+ punched in the tape
causes a programme to be entered at the b-order in B51.2 as soon as it has been read.

In order to prevent wrong tapes being used every tape should have a name. This name should be
written in ink or pencil on the blank leader at the beginning of the tape. As a valuable extra pre-
caution the name is usually alsc punched before the first order or number in the tape; it is then
preceded by N (for naeme). The warning character N, followed by the name and a short length of blank
tape, form an N-directive (there is no address). When this is read by the Initial Orders the whole
name is copied from the input tape on to the output tape, i.e. the name is printed; the end of the name
is signalled by the short length of blank tape. The name itself can be made up of any of the available
characters but must not, for obvious reasons, include any lengths of blank tape. It is advisable to have
names for each part of a complete programme, e.g. for each subroutine; normally each name would start
with CRLF so that it gets printed during input on a line to itself,

It is desirable that the output of the programme should bear the date, and to this end each complete
programme tape should be headed by a D-directive, punched immediately after the blank leader before
anything else in the tape. This consists simply of a letter D; there is no address. When the Initial
Orders read a D-directive they cause the date and e serial number to be printed; the serial number is
increased by one every time it is used. In this way the printed page produced by the programme is
headed automatically by the date and serial number on each occasion the programme is used. It is then
easy, on a later occasion, to determine the dates when various runs of a programme were made. This is
especially useful when a new programme is being developed; the effects of various alterations made to
the programme between successive runs can be studied without risk of confusing the runs.t

The directives so far described are summarized below; here the address is written as a if it is
the address of a storage location, or as a(+) if it is the address of a single order.

Ta set Transfer Address = a
E a(+) enter programme at «(+) after T7-stop
J a(+) enter programme at a(+)
N print the following name
D print the date and serial number
As an illustration, suppose a programme is made up as follows:
(a) the master-programme is to occupy B2 to B12.
(b) a subroutine to go into B18 onwards has the name SPECIAL PRINT 3,
(c) a list of numbers with the name CONST. PZ is to go into B54.3 onwards.
If the name of the programme is DTRY 73 and it is to be entered in B2.0 then its tape could be
punched as follows.
D
N
DTRY 73
T 2.0
(master-programme)
T 18.0
N
SPECIAL PRINT 3
(subroutine)
T 54.3
N
CONST. PZ
(numbers)
E 2.0

When this tape is read by the Initial Orders there is printing like thistt before the programme starts
to be obeyed.

t The date and serial number (initially zero) are set in B895.7 and B895.6 respectively as a part
of the daily maintenance process. These are the last two storage locations before the isolated
part of the main store, and programmers should avoid writing into them. In the 4096-word store,
B511.7 and B511.6 are used.

tt we assume here that HO = 1, i.e. that the sign-digit key of the handswitches is down. If HO = O

then some extra printing occurs when certain directives are read; this is called optional printing
and will be described later.
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14/8/60-~-~89
DIRY 73
SPECIAL PRINT 3
CONST. PZ

Here the top line consists of the date and serial number. The directive T 2.0 punched before the
master-programme can be omitted because the Transfer Address is always set to 2.0 at the beginning by
the Normal Start operation.

4.4 A simple complete programme - “Special Factorize”
We shall now describe a simple complete programme for factorizing whole numbers. For example, if
supplied with the number 420 it will cause the computer to print.

420 = 2 x 2x3 x5 x17

The process used may be described by the flow-diagram of Fig.4.2, in which the folloWing notation
is used.

N At first this is the number to be factorized, but it is reduced by having factors removed as
they are found,

d Trial factor, initially 3, then successive odd numbers,
q The quotient when N is divided by d,
r The remainder when N is divided by d.

This process falls naturally into three stages, as follows.
Stage A The number (N) to be factorized is printed on a new line, and followed by an equals sign.

Stage B The number is repeatedly divided by 2 as many times as possible (if any), and ‘2° is printed
for each factor. A multiplication sign is also printed after each factor if there are any more factors,
i.e. if the quotient is not 1. As each factor is found it 1s removed from N, i.e. N is replaced by the
quotient.

Stage C The number (N), which is by now odd, is divided by a trial factor (denoted by d). This trial
factor is at first 3, and is then increased by 2 repeatedly so that we try dividing N by successive

odd numbers 3, 5, 7, 9, ... If one of these trial divisions leaves a remainder of zero then d is a
factor of N and it is printed and removed from N (i.e. N is replaced by the quotient). A multiplication
sign 1s also printed after each factor if the quotient is not 1. After each unsuccessful trial

division d is compared with the quotlent ¢; if d is less than ¢ we try the next value of d, but
otherwise N is prime and is in turn printed (see the discussion in example (c¢) of Sec. 1.5).

To get a natural layout in the printing we must put a space on either side of the equals and
multiplication signs, and we must arrange to omit left-hand zeros in the numbers (see Sec. 4.1). To
show how integers may be printed with left-hand zero omission we have incorporated the necessary
sequence of orders in the programme instead of using a proper subroutine of the kind described in
Sec. 4.2. This particular sequence 1s especially simple because the integers to be printed are known
to be positive (no special treatment of the last digit is needed) and it is called in at only two
points in the programme, firstly to print N and later to print the factors, Instead of using a link,

X1 1s used as an indicator to steer the computer to the right part of the programme: X1 is clear when the
the sequence is printing N, but thereafter X1 holds 14 (the value of Sp).

The whole programme fits into four blocks which are placed in B2 to B5 in the main store and are
copied into U0 to U3 when the E-directive is read (see Sec. 4.3). Consequently the programme proper
is concerned exclusively with the computing store. The number to be factorized is placed in B2.0
along with the programme and 1s therefore avallable in U0.0 on entry; this number is initially 420
but can be changed as we shall shortly describe. The programme is entered when the Initial Orders read
E 2.1 0or J 2.1. A facsimile of the programme sheet is shown in Fig. 4.3.

The three orders starting atthe b-order in U3.5 atthe end of the programme require some explanation.
A jump to these orders occurs if N is negative or when N has been completely factorized. Since U3.6
holds a stop order-pair (see Sec.3.9) the first effect isto cause an optional stop. When the Run key is
operated to allow the computer to continue, the effect of these orders is to call in the Initial Orders,
exactly as though a Normal Start operation had been done. Why this happens will be described in a
later chapter since a knowledge of modification is needed. The reader will recall that in a Normal
Start the Transfer Address is set to 2.0, after which the Initial Orders read tape. If therefore we now
put in the tape-reader a tape such as the following

+ 996
J 2.1

then the Initial Orders will put the integer +996 (or whatever other number is on the tape) into

B2.0 (overwriting the previous number there) and then enter the factorizing programme as soon as the

J 2.1 is read. We can therefore factorize several numbers in succession by simply preparing an input
tape on which each number is followed by J 2.1. If this is done then it is best to inhibit the optional
stops by means of the special key on the control panel. This input tape should be placed in the main
tape~reader when the programme tape has all been read in by the Initial Orders. Note that we are

in effect using the Initial Orders as a kind of subroutine to read in the numbers; this subject is
further discussed in Chapter 7.
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Print the value of N followed by “="

START

R |

]
: A Print “Carriage Return” and two “Line-Feeds” |
| ¢ |
| Test sign of N negative 4 STOP |

I
i positive I
| (or zero) I
[ A

— — " — ——— s ——— ————r— — — ——— —— ——r — —— — oy — oo tm——— — . ot i o oot i iy ittt et

l
| B Divide N by 2 (quotient = g, remainder = r) |
| Print '
I multiplication |
| bl I ? % Repl N b e |

S r zero? - ® Replace N by ¢ : I
| i YES (N is even) Print “9o" J |
| Is g = 1? |
| No |
I
l . :
| I
| STOP |
[ |
| |
| v '
| C Set d =1 l

N.B. d is the trial divisor
| —— Increase d by 2 :
|
l ' 1 |
| Divide N by d (quotient = ¢, remainder = r) Print |
| multiplication |
sign
l Is r zero? A I
} YES (i.e. d is a factor of N) |
, |
| NO . I
(i.e. d is not Replace N by ¢
: a factor of N)’ /—’-’ Print value of d I
|
| } |
= 1? |
I v ) Is ¢ \ l
Evaluate d - ¢
; Test sign of d - ¢ l YES No :
I Positive or zero STOP ' l
l (N is prime) |
| A |
I Negative |
| |
I Try next Replace d by N !
| value of d - Bet ¢g=1 |
| l
! l

Fig.4.2 Flow-diagram of the programme ‘Special Factorize’
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- PEGASUS PROGRAMME SHEET.
.

|

pace  18.5.57 sheet @
D
N
SPECIAL FACTORIZE
B2 B4
1l N 4-20 msnber 432 Fortn q-1 §vor :
0.0 || +420 be factorized. 20 O 17 i =1 f
=l 3.5+ 7| 60| [Jump ifzem | ¥
AR , Y Print - / : .
() R I - G L KA
(A} 1 Jle11o] |, t @ |40 ]m':dkif‘{c‘.ﬁon
] 2 @ 6|40 Prink two 2 16 [[6]10 sigu
! 16 |[6]10 Line Feeds 16 [|1]40 Print Space
! s 16 610 | -B"‘_'; 1.5+f0 | 6o Relicen {;r next ‘Fat‘—far
| 0.0 7000 |Copy N atex7 TG @ |[5140] |Ser &1 (ix X5) ©
= I,—-;- 3.54||7 163 SToP if negative . @ 5041 % Increase d L} 2
! i 0 |[1100] |Clar X1 (indicator) —>{ 0.0 |7 |00 :’“‘:&‘:‘&“’_?b -
| & 5 @ 2 |40 P \ s 5 o124 remaindesr = r t:»x(w
: 3 |40 —~{ 3.0 [l6]¢o {JT;“';“,_Z"{;E?’.,,E;,
! ¢ © ||4]o0 ' ol 5 ||7]|04 Form d-q n X7
, ¥ ump if weq abive | .€. &
I 0 6 |00 i"(’m"""“ 2.4 17163 ™ {; xmf(sd—-'ﬁyncxl“:\glu
! Lo ] - o
lr-——7> 3.7 6|24 [+ Prink ) ® |7]40 Set g=1 in X7 |tast
f 7 |4]ot positive 0.0 |5]00]| |Setd-Ninxs JEH
| Omit | iobeqer
! l‘kﬁl in %7
| B3 2208 |, BS
' 1.1 ||4 |60 M o.o[[7]10 Replace N in 0.0 by ¢
HE KR 30 g, d infts X7
{ 16 |I710] |"igeg| 5 |7 [e0 { - 7::whru
rem. X 40 L 0. Enter subreubive &
: . 3 6 20 c.“: ' 1 o 5‘ o 60 fnn(' value oFd
lk—-— 0.7 12|67] |dgs 0.0 [ 7]00| | GpyN ik x7) sfrop’
Do [ 34411 Pl f Xt b lear| | @ [7]23] | N=t inx7 p LR
} 140 Prink ,~13.5+]7]60 Jumy if zero | ds 1.
S (R L R Space Pl J1]t0 nm s,,m YRebirm for
I 1G9 Je |40 ]w TR (AT L
| 16 {6 |10 =" - 16 |6 |10 Sgn if
b4 =R 4 Heunt
. 16 |1 ]10 Print Space / 16|14 |10 Prik Space }:"mb 1
® |54 Set d =2 2.4+l 0|60 J
s Divide N by 2; LS : "
@—* 0.0 {7 |00 ]«‘uoh'cuk =g fo’xy ol 37 {4 |00 St[‘:g- (ol‘,tf;:;{'))' en
5 |o |24 remainder =+ b X6. o 1@ 72 |4 cath n St rlecs
6 B read in a new
C < 2.3+ 16 |61 Juu-', {.'r- is not Zero(Ndd) 0.0 ||lo]|6o| 4 value DJ. N.
. b/ '
.90 7|10 Replace N by ¢ (in0.0) ’c‘ 7 14 100000000000 | = 10" (used for
16 |5|10 Prink "2~ is | rinking )
J .mu r .3
2.0 ! E 2-1

‘Fig.4.3 The programme sheet for ‘Special Factorize’.

- 72 -



SOME SIMPLE PROGRAMMES

- Directives:-
D (Date & serial No.) D
(N (Name) N
These cause printing SPECIAL FACTORIZE
when the programme
tape is read into +420 ]
the computer. 30 640
16 610
13 640
16 610
16 610
0e0 700 L Read into block
3e5+763 B2 of main store
o 100
12 240
10 340
o 400
o 600
3e¢7 624
q 401 ]
Ie1 460 )
16 710
3 630
0s7 269
3e1+161
14 140
16 110
26 640 4 Read into block
16 610 B3 of main store
16 110
a 540
0s0 1700
5 0324
3.3“‘661
0s0 710
16 510 )
I 743 )
3¢ 5+760
16 110
24 640
16 610
16 110
1. 5+060
I 540 X Read into block
2 541 B4 of main store
0«0 700
5 034
340 660
5 704
2¢4 763
I 740
0s0 500 Y,
0e0 1710 )
5 700
Oe§ 060
0e0 700
1 743
‘ 3e5+760
Directive E 2. 1— 16 110
(causes stop, after 24 6340 r Read int(') block
which B2 of main store 16 610 B5 of main store
is copied into block O 16 110
of computing store; 2e 4t0bo
B3, B4 & B5 are 37 400
similarly transferred o] 072 40
to blocks 1, 2 & 3 0e0 060
resp. in computing +100000000000 J
store;. then jump
to 0.1). —E 2.1 These stars mark tail

/ end of tape
XXXXEXXXK

Fig.4.4 Print-out of the programme tape for ‘Special Factorize’.
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Fig.4.4 is a reproduction of the print-out obtained when the programme is punched; this should
be compared with the programme sheet of Fig.4.3. Note the Stars punched at the end of the tape -
these are used to distinguish one end of the tape from the other. The print-out shown in Fig.4.5 is
of a typical input tape carrying various numbers to be factorized: in this print-out each J 2.1
appears on the same line as the number; this is permissible, as will be explained later, since a
number may be terminated either by CRLF or by Sp when it is to be read by the Initial Orders. After
the last number on this tape is punched a Z-directive; the effect of this is simply to cause the
Initial Orders to encounter a 77-stop; it is punched here just to stop the computer when all the
numbers have been factorized. The results of running this programme are shown in Fig.4.6, which is
a reproduction of the output.

N

TEST NUMBERS

+4 J 2e1X

+5 J 2e1

+6 J 2.1

+10 J 2e1

+28 J aex

+98 J 2e1
+1001 J 2.1
+2662 J 2e1
+12345 J 301
+34567 J 2.1
+10001 J 2.1
+1234567 J 2e1
+7654321 J 2.1
+r1000001 J 21
+99009901 J 2.1
-9 J 2er
+9 J 2er
+14641 J 2.1
+512 J 2.1
+96 J 21

Z

XEXXXXX

Fig.4.5 Print-out of an input tape for ‘Special Factorize’.

In view of the crudeness of the process used it might be thought that the programme would be very
slow. This is not so, however. For most of the numbers shown the factorization takes a hardly per-
ceptible time and the output punch is running nearly continuously. For ‘difficult’ numbers having large
prime factors the running time can be easily calculated since it takes about 7 milliseconds to try each
value of d. Thus all values of d less than 1000 (i.e. 3, 5, 7, ..., 999) can be tried in about 3%
seconds, and it therefore takes at most this time to factorize any number up to 1000000. The number
99009901 shown takes about 12% seconds. t

4.5 Another complete programme
We shall now.give an example of a programme using several subroutines. Suppose we have to tabulate
the values of

= L=t = 3%2x
z e\/y2 71 ‘“here y 1+4x ' M

for x =0, %, 1, 1%, ...... 6%}t Since some of the quantities concerned cannot be represented directly

as fractions in the range -1 to +1, we must manipulate the formulae to a certain extent and introduce
scale factors, Instead of storing x we shall use the fraction f = 1/8 x, which is always in range (a
possible alternative would be to store 2x as an integer). The quantity y attains its largest value, of
rather less than 3%, when x = 6% so we can safely evaluate 1/4 y without overflow; we shall write 7= 1/4 y
The value of y is a minimum, y = 1, when x = 1 so that

1
T<n<

@]~
0

¥ fThis number is actually a divisor of 1010 +1 and more refined processes can be used on such numbers.
In this case, for example, it is known that any factor must be of the form 20k + 1, so we are actually
trying ten times too many trial factors. With general numbers it is easy to omit multiples of 3 and
5, which roughly doubles the speed of factorizing.

tt This can usefully be written x = 0(%)6%, meaning that x takes values from O to 6% in steps of Y.
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13/5/60-==6 Date & Serial No. | Printed during
input of the
SPECIAL FACTORIZE Name of programme | programme tape.

430 = 32 X 3 X 3 X § X 7 & Test number

TEST NUMBERS «— Name of input tape
4 = 2 X 2

5=35

6 = 3 X 13

10 = 2 X §

28 = 3 X 3 X 7

98 = 2 X 7 X 1

1001 = 7 X 11 X 14

2663 = 2 X 11 X 11 X 11
13345 = 3 X 5 X 823
34567 = 13 X 3659

10001 = 73 X 137
1334567 = 127 X ¢7a1
7654321 = 19 X 403859
1000001 = 101 X QQOI

99009901 = 3541 X 27961

9 =3 X3
14641 = 11 X 11 X 11 X 112
512 = 3 X 2 X 3 X a X a X3 XaXa3Xa

96 = 2 X 2 X 2 X 3 X 3 X 3

Fig.4.6 Output produced by the “Special Factorize’ programme.
If we substitute x = 8 and y = 47 in the formula for y we get

B, e
% * ¢

N ) (2)
3 76
and we can see that the numerator and denominator and the result are all within the permissible range.
In terms of 7) the formula for :z becomes

2 .2
I il Y Uil )
s[T67 + 1 8|72 + & C

since 1/16 € 772 <7 < 7/8 both numerator and denominator are within range and are never negative.
Clearly also the numerator is always less than the denominator. We shall therefore deal with the
formulae (2) and (3) rather than (1).

There are 14 values of x and we shall therefore arrange the printing of the results on 14 lines
and in two columns; on each line there will be a value of x and the corresponding value of 2. We
shall write a special subroutine for printing x (= 8) preceded by CRLF, given the value of &, since
this is very simple.f The reader should have no difficulty in understanding this subroutine, which
is as follows. The value of f’is held as a fraction in X4, and no rounding is needed since & is
represented exactly and printed in full.

t Some library subroutines could be used for this but it would be inappropriate at present to describe
them in the necessary detail.
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B 4.
—| (0 6 40
0.0 -
16 6 10
_________ print CR LF
(::) 6 40
1
16 6 10
(8) 7 40
2 Py = 85 = x
4 720
16 6 10 print integral part of «
3
(12 6 40
e e o o e e e ] print decimal point
16 6 10
4
(19 640
6 720 print first digit of fractional part
5
16 6 10
0.7 110 plant link in 0.7
6
0 dummy (then obey link in 0.7)

The brief specification of this subroutine is:-

Print 8C(4) to one decimal (unrounded) preceded by CR LF.

Cue: 4 [0 72

0.0 0 60

Uses: U0, X8, 7.
Link: X1, obeyed in 0.7.

Note: C(4) must be non-negative.

So that we can print z we shall suppose that a subroutine is available with the following brief
specification.

Print C(7) as a fraction (unrounded) preceded by Sp.

Cue: 51 [0 72

0.3 0 60

Uses: U0; BO.
Link: X1, obeyed in 0.7.

Programme-parameter in X2 specifies the number of digits to be printed after the decimal
point. The sign is printed as Sp or a minus sign.

Since we have to evaluate a square-root we shall assume that the following subroutine is available.

Put into X6 the square root of the double-length fraction in X6 and 7 (or, briefly, p' = Vkpq)).

Cue: 74 [0 72

0.0 0 60

Uses: U0; X5, 6, 1.
Link: X1, obeyed in 0.7.
There is a loop stop if (pg) is negative.
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We shall construct a special subroutine to evaluate z from & according to the formulae (2) and (3)
above. It is convenient to keep the current value of & in X4 during this programme; this subroutine
therefore takes ﬁ'in X4 and places z in X7 (ready for printing). There are a few points to watch.
First, the subroutine will itself have to call in a subroutine to evaluate a square root; it will
therefore have to remove the link from X1 and preserve it until it is needed. Second, although &£ is
stored exactly (in X4), 7 will have to be represented approximately, since it is calculated from the
formula (2) above. Consequently the minimum value of 7)°> may not be exactly 1/16 (as it should be)
and the numerator of the fraction in formula (3) may go slightly negative when it should be zero.
Since we do not wish to intrgduce spurious imaginary numbers we must make sure that the numerator in
formula (3) is replaced by zero if it goes negative. Apart from these points the subroutine is simply
a straightforward evaluation of formulae (2) and (3). We suppose the subroutine to occupy B5 and 6.

BS
0.0 ”+o.03125 = 1/32, becomes 1/32 + &
1 || +0. 0234375 = 3/128
______ e
2 || +0. 0625 = 1/16
—i 6 [1]72 Read next block of subroutine into Ul
3
1.7 110 plant link for return to master-programme
4 4 20 £2 to X6 and 7
4 .
0.1 601 3/128 + £2 to X6 and 7
0.0 4 11 1/32 + £ to 0.0
5
0.0 6 25 7 to X7, see formula (2)
7 721 77 to X6
6
6 700 72 to X7
0.2 601 T2 + 1/16 to X6
17
0.2 703 7% - 1/16 to X7
B 6
6 1726
1.0 T 600 (1R - 1/16)/ (72 + 1/16)
to double-length accumulator
0 700
1
1.4 100 Set link for square~root subroutine
1.3 6 62
2 Replace fraction by zero if negative
0 6 00
3 ™ []72 cue to square-root subroutine
2 _ 2
, 0.0 0 60 V{m? - 1/16)/(m2 + 1/16)} to X6
: 1.5 6 21 multiply by 7/8, link for
i 4 result z in X6 square-root
} 1.6 0 60 subroutine
|
| 5 {{+0.875 =7/8
i
. ke ]
. S——| 6 T 00 z to X7
6
(1]
7 (;0 overwritten by link to master-programme

- 77 -



\

4.5 SOME SIMPLE PROGRAMMES

The brief specification of this subroutine is as follows.

Place z in X7, evaluated from £ in X4 according to the formulae (2) and (3) for 0 € £ < 13/16.

Cue: 5 [0]72

0.3 0 60

Uses: U0, 1, X1, 5, 6, 1.
Link: X1, obeyed in 1.7.

We must now draw up the master-programme; this has merely to set a few starting values, call in
the subroutines as required, move one or two numbers asbout and do some counting., The current value of
& is kept in X4; it is initially zero. We keep a count in X3 to indicate the end of the programme
after 14 cycles through the main loop. 1In following the master-programme the reader should carefully
note the reasons for the various 72-orders resetting blocks of the programme in the computing store.

B 2
START ——>| (1 6 40
0.0
16 6 10 print LF LF
———————— ~
16 6 10
1
@ 3 40 set counter = 14 in X3
0 4 00 initial value of & = 0
2
f—‘——"o.‘l 100 set link
4 [0]72 cue to special print
3 subroutine (print
[ 0.0 0 60 CRLF and value of x) b Print x
|
| 4 2 [072 link for special
I : .
| 0.5 0 60 print subroutine J
I ~
t——1 0.7 100 set link
5
0
5 [G172 cue to special function
6 subroutine (evaluate :z
,,H- 0.3 0 60 and leave it in X7)
: 3 [I172 link for special
| 7 L0 060 function subroutine )
!
|
[
| B3
| \
C—P @ 2 40 programme-parameter = 6 in X2
1.0
1.2 1 00 set link
51 [@72 cue to print subroutine
1 (print Sp and value of ¢ Print 2
'-e—-— 0.3 0 60 z to 6 decimals)
: 2 [@)72
| 2 link for print subroutine
| 1.3 060 )
| . .
H increase £ by 1/8 (corresponding
; 1.5 401 to increasing x by 1/2)
‘1 0.2+ 3 67 count down from 14
c 1.4 0 60 stop at end of programme
4
0
5 140,125 =‘1/8_
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The tape for this programme is made up as follows.

D Date and Serial Number

N
Name of programme
TABULATE SPECIAL FUNCTION

(Master-programme) starts in B2.0

T 4.0 Set T.A. = 4.0

N

SPECTAL PRINT } Name of subroutine to print x
(Subroutine to print x) Starts in B4.0.

T 5.0 set T.A. = 5.0

N Name of subroutine to evaluate z from &
EVALUATE Z

(Subroutine to evaluate z2) Starts in B5.0

T 51.0 1

(Print fraction subroutine)

T 74.0 Standard subroutines
(Square-root subroutine) J

E 2.0 Enter programme

The reader should note that no assumptions are made in this programme about the contents of any
parts of the main or computing stores unless the programme has itself placed something there. One should
take care not to assume, for example, that any unused registers or locations will be clear when the
programme is entered. 1In fact, when the programme has been read in, the unused parts of the main store
will contain whatever was left in them by the previous programme.

4.6 Relative addresses

A subroutine will usually occupy several consecutive blocks in the main store and the address of
the first of these is called the address of the subroutine, Most subroutines are so written that they
can be called in by a simple cue consisting of a block-read order and a jump. This cue brings only one
of the blocks of the subroutine into the computing store, and there will consequently be further block-
read orders in most subroutines which will bring in the remaining blocks as they are needed. In the
last Section we gave an example of a subroutine to evaluate a function z determined by a number & this
subroutine occupied B5 and B6 and its first order (the a-order in B5.3) was 6 [i} 72 to bring in its
second block., If we decided, for some reason or other, to place the subroutine in say B10 and Bl1l this
order would have to be changed to 11 72 but we need make no other change in the subroutine. This is
typical of most subroutines: as a rule the addresses in certain orders (usually 72-orders) will require
changing in a simple way if the subroutine is moved. This is quite a serious disadvantage because it
means that some of the orders in subroutines cannot be written in until it has been decided just where
the subroutines are to be stored; and this is a decision which often cannot be made at the time the
subroutine is written. Until we know where a subroutine is to be stored its tape cannot be prepared
and it cannot therefore be tested. This is most serious in library subroutines since it is
impracticable to allocate different parts of the main store to each subroutine.

To remove these difficulties a system of relative block-numbering has been introduced. The first
(lowest-numbered) block of a subroutine is called O+, the next block 1+, and so on. These relative
block-numbers are written in the subroutine. For example, the order written 6 [i]72 in the subroutine
of the last Section would be written

1+[1]72

and punched like this. When the subroutine tape is read by the Initial Orders the relative block-
numbers are convertéd into the correct absolute block-numbers; this is done by adding the address of
the subroutine (i.e. the block-number of its first block) to each relative block-number. Thus if the
subroutine is stored in B5 onwards then 5 has to be added to each relative block-number to coavert it
into the correct absolute number; if the subroutine is stored in B10 onwards then 10 must be added.
The number to be added is called the relativizer; it is simply the address of the subroutine’s first
block.

As a rule there will be several subroutines in a programme, and each of them may contain orders
such as

1+ {1)72

requiring the addition of a relativizer. It is obviously essential that the Initial Orders should be
informed of the start of a subroutine tape during input of the programme so that the appropriate
block-number is used as a relativiser., This is done with the aid of a B-directive (B for block).

At the head of each subroutine tape the letter B is punched, before any of the orders or numbers
of the subroutine. This directive has no address. When the B is read by the Initial Orders there are
two main effects. First, the Transfer Address is increased (if necessary) to the beginning of a
block, and, second, the number of this block is recorded as a relativizer for subsequent addition to
relative block-numbers. For example, if the T.A. is 4.6 when a B is read, then the T.A, will be
changed to 5.0 and the relativizer will be set equal to 5. If the T.A, is 11.0 it will be unchanged
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but the relativizer will be set equal to 11. These two effects ensure that every subroutine starts at
the beginning of a block, and that the correct relativizer is used within each subroutine. Provided the
Assembly Routine is not being used, the B-directive is normally the only way of changing the relativizer:
when once the relativizer has been set by a B then it will remain fixed in value until the next B is
read. During a Normal Start (see Sec. 4.3) the T.A. is set to 2.0 and the relativizer is set to 2;

the effect is the same as if every complete programme tape were headed by

T 2.0
B

The relative numbering of blocks can usefully be used not only in all subroutines but also in the
master-programme. It gives a certain amount of flexibility and routines can be moved if necessary.

It should be noted that a relative address is something which exists only in the external form of
the programme (i.e. in its written or punched form). The computer proper knows nothing of relative
addresses, every order it obeys has an absolute address, which is represented by certain binary digits.
Since there are only 7 bits in the N-address of an order we must be careful that the absolute block-
number obtained by adding the relativizer to a relative block-number does not exceed 127. Note also
that block 0+ in one part of a programme will often be different from block O+ in another part.

The addresses in directives such as T, E or J can, if desired, be relative addresses. For example
we could use a directive -

T 3+.4
to set the T.A. so that the next word read from the tape goes into the location whose position-number

is 4 in block 3+ (the relativizer used is, of course, that set by the last preceding B). If we use the
directive

T 2+
this will set T.A. to the start of block 2+, i.e. it is equivalent to the directive
T 2+.0

Such directives are useful if, for example, some working space is required by a subroutine.
It is important to distinguish the various uses of the + sign. In a jump order such as

1.5+ 2 63

the + sign is used to indicate a jump to a b-order. 1In a transfer order such as
2+[0]72

the + sign denotes a relative block-number. The Initial Orders can distinguish these during input of
the programme tape because a ® is punched before the + sign in the former order. In a number we must
punch the sign before any of the digits, e.g.

+12 or +0,1234,
and it is this fact which differentiates order-pairs from numbers on the tape. A special “address-
input” section of the Initial Orders is used to read the addresses in directives; if a + sign is read
before a ©® is encountered, then the number is treated as a relative block-number, e.g.

T1+.3 or T 4+ or E 0+.2

If a + sign 1s read after a ® as in the directive

E 2.6+

the address is taken to refer to a b-order.t
We can summarize as follows the directives so far described.

T a set Transfer Address = a

B set T.A. to new block, record new block-number as relativizer
E a(+) enter programme at a(+) after 77-stop

J a(+) enter programme at a(+)

N print the following name

print the date and serial number

77-stop.

t Occasionally we need such directives as E 0+,2+ in which the address refers to the b-order in
position 2 of block 0+,
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Chapter 5

Modification

Because nearly all calculations are repetitive, almost every programme will contain loops or
cycles of orders in which the same sequence of operations is repeated, perhaps hundreds of times or
more, with different numbers. In this chapter we discuss these loops and the way in which their orders
can be changed or modified so that slightly different operations can be performed on successive
repetitions.

5.1 Modification and counting

. Most programmes contain several loops or cycles which have to be traversed many times; and
usually some of the orders in the loop will have to be changed slightly in successive repetitions. For
example, when adding together the numbers in a list or set by means of a loop of orders, there will be
an addition order, probably an Ol-order, which adds one of the numbers into an accumulator. In order to
add together all the numbers we must arrange that this basic order is obeyed the correct number of times
and that it somehow adds in the next number of the set each time it is obeyed. The technique of counting,
which has already been discussed (Sec. 3.8), can be applied here to ensure that the loop is traversed
the correct number of times. We must also arrange that the addition order is modified so that_on the
first occasion when the loop is obeyed it adds in the first number, on the second occasion it adds in
the second number, and so on. The facility of modification allows the addresses in orders to be readily
changed in a systematic way so that different numbers of a set or list can be handled successively by
the same sequence of orders.

We shall use the word processing to describe the systematic treatment of sets of numbers; for
example the numbers may successively take part in arithmetical operations and may perhaps be replaced
by other numbers. If we are processing successively the numbers in a fairly large set we cannot in
general hold all of them in the computing store; as a rule a set of numbers like this will be spread
over several blocks in the main store. Usually we shall keep in the computing store only one block of
the numbers (i.e. eight of them); we proceed by working through these numbers, one at a time, until all
eight of them have been used and we then bring in a further block from the main store. The whole process
is then repeated until the last number of the set has been dealt with. The following facilities are
therefore needed:

(a) We must be able to change the N-address in arithmetical orders (i.e. the orders of groups 0,

1 and 2) so that we can work systematically through a block of eight numbers in the computing
store, processing each number in turn.

(b) We must be able to determine when the last number of a block has been processed.

(c) We must then be able to read the next block of numbers from the main store (we may also have
to write back into the main store the numbers which have just been processed, since they may
have been altered). This requires the facility of changing the first address in block-
transfer orders.

(d) We must be able to determine when the last number of the whole set has been processed, in
order to carry on with the next part of the programme.

These four facilities are provided in the following way:

(a) The orders of groups 0, 1 and 2 may be modified in a certain way which is described below.

(b) A special unit-modify order (the 66-order) has been introduced which can be used to determine
when the last number of a block has been processed.

(c) The block-transfey orders (72 and 73) may be modified, but in a different way from the
arithmetical “orders.

(d) The unit-count order (the 67-order) can be used to determine when the last number of the whole
set has been processed.

The techniques of counting and modification are usually needed together. We shall require two
numbers, a counter and a modifier. At the start of a loop of orders we put the counter equal to the
number of times we wish to obey the orders of the loop (i.e. to the number of numbers in the set), and
we usually put the modifier equal to the main store address of the first number of the set. Every time
we go round the loop we reduce the counter by one; when it reaches zero we have processed all the
numbers. We also arrange to increase the modifier by one each time the loop is obeyed so that it is
always equal to the main store address of the number being processed. We can arrange that a modifier,
or a part of it, is added to the address in an order before the order is obeyed.

A single accumulator may be used to hold both a modifier and a counter. This is possible because
only 13 binary digits are needed in the modifier to specify the address of any location in the main
store. The modifier is made up of digits 1 to 13 in the accumulator. The counter consists of the
right-hand 25 binary digits in the accumulator (i.e. digits 14 to 38). The sign-bit (digit 0) is not
included in either the modifier or the counter. The diagram (Fig. 5.1) shows how the digits are
allocated. The modifier in accumulator X will be denoted by xy and the counter by xg. If we are
considering a particular accumulator, say X4, we shall write 4y and 4¢ for the modifier and counter,
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5.2 MODIFICATION

Often the modifier will represent a main store address and we shall write ip and xp (or, for example,
4p and 4p) for the block~number and position-number respectively. Actually zp 1s represented by the
right-hand three bits of the modifier (digits 11, 12 and 13) and xp by the left-hand 10 bits (digits
1 to 10).

1 13 25

- v
-~ o

sign-bit modifier =xy counter zg

Fig.5.1 The counter and modifier in an accumulator

It is convenient to introduce a notation for the composite number made up of a modifier and a
counter. Suppose, for example, that the word in X5 has 51.6 in its modifier position (or modifier part)

C(8) = (51.6, 83);

which means that 5y = 51.6, 53 = 51, 5p = 6 and 5, = 83. A similar notation can also be used if the
modifier is an integer. The sign-bit is not indicated by this notation; it frequently does not matter
whether it is a 1 or a 0.

A word having a 1 in the modifier part only may be dencted by (1, 0) or by (0.1, 0). Since the
1 appears in digit 13 such a word has the value 27'3 on the fractional convention. This word is
permanently available in special register 35 (see Sec., 2.9); it can be used to increase a modifier
by 1. The word in special register 34 has the value 2°19; it may be denoted by (1.0, 0) since it has
a 1 in the block part of the modifier,

Before we continue with modification we shall describe the 67-order (unit-count)., The description
of this order given earlier (in Sec. 3.8) was not quite accurate. The following is an accurate definition.

67 Reduce by one the counter x¢ in the specified accumulator, without affecting xy;, jump to the order
specified in the N-address if the new value of the counter is not zero.

For example, if C(38) = (119.4, 17) then the order
1.3+ 3 67

will change C(3) to (119.4, 16) and will cause a jump to the b-order in 1.3. If C(3) had been (119.4, 1)
then the above order would have changed it to (119.4, 0) and no jump would have occurred.

The 67-order cannot affect xy, the modifier in the accumulator, because there is a carry-suppression
between x; and xy when this order is obeyed. This matters only if the original value of x¢ is zero, in
which case the final value (xé) is 225 —~ 1 and a jump occurs. In fact the operation of the order does
not affect, nor is it affected by, either x, or the sign-bit in X or the overflow-indicator. The
67-order carries out a test on the 25 bits of xé only.

Consider now the orders needed to put into X3, say, the word in the main store location B51.6. The
following two orders could be used. '

51 (4] 72 B51 to U4
4.6 3 00 word in 4.6 to X3

In general the word in B.P in the main store can be put into X3 by means of the orders

B [4]72
4.P 3 00

since the 72-order copies the eight words of block B into the eight registers of U4 without changing
their position-numbers. This is the kind of operation we shall often have to do when we use modified
orders. If a modifier represents B.P, the address of a location in the main store, we shall want B
(the block part of the modifier) to appear as the first address in a 72-order; and we shall want the
arithmetical order (00 in the above) to have the position part of its N-address equal to P (the
position part of the modifier). This gives the clue to the way in which the modification of
arithmetical and block-transfer orders takes place.

5.2 Modification of the arithmetical orders

The orders of groups 0, 1 and 2 are often called arithmetical orders, though this is not strictly
accurate. These orders can be modified in such a way that their N-addresses have the position part of
a modifier added to them. To do this we write the number of the accumulator holding the modifier in the
M position (i.e. the modifier address) of the order. For example, suppose that C(5) = (51.6, 83) and
the computer cbeys the order

4.0 600 5

Just, before this order is obeyed the position part of the modifier in X5 (i.e. 5p) is added to the
N-address. 1In this case 5p = 6, so the order will have the same effect as if it had been written

4.6 6 00
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With the same modifier in X5 the order

2.1 1105
will have the same effect as

2.7 110
and the order

0.3 4265
will have the same effect as

1.1 4 26

since 0.6 + 0.3 = 1.1 in octal arithmetic. It is important to realise that the addition of the
position part of the modifier takes place inside the order-register just before the order is obeyed;
the order is left unchanged in the computing store.

As -a simple example, suppose we have five numbers in the ordinary registers 4.1 to 4.5, which have
to be added up, and we then have to place the sum in 5.0. We shall do the addition in X3, which must-
First be cleared, and we shall use X2 to hold the modifier and counter. Before entering the loop we
must set 2, = 5 since the loop is to be obeyed five times, and we can put 2y = 1 (or 2p = 1, which is
the same),

— (:) 2 40 set 2¢c = 5 and clear 2y
0.0
35 2 01 C(2y = (0.1, 5)
e e e e e e ¢ preliminaries
0 300 clear X3 to receive sum
1 3
4.0 3 01 2 add one number into X3
35 201 Increase 2y by 1 ( loop
2
0.1+ 2 67 unit-count in 2, J
5.0 3 10 sum to 5.0
3

The first three orders simply clear X3 and set a counter and modifier in X2. The next order (in
0.1+) is the modified add order which adds one of the numbers into X3: when it is obeyed for the
first time 2p = 1 so it has the same effect 