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This document provides a comprehensive description of 
the CLIPPER 32-bit microprocessor module including a 
functional description, signal description, timing 
waveforms, module dimensions with connector pinout, 
and AC/DC parametric values. The CLIPPER module, 
as shown in the photograph above, contains three 
CMOS VLSI chips and clock circuitry implemented on 
a small multilayer printed circuit board. 

The three VLSI chips include a CPU/FPU and two 
combined memory management/cache units, one for 
data and one for instructions. In addition, the module 
contains all appropriate bypass capacitors and pull-up 
resistors. The module interfaces to the CLIPPER bus via 
the 96 pin connector. 
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Features 

High Performance 
• 33 MHz single-phase clock 

33 MIPS peak execution rate 
• Separate CPU data and instruction buses 
• Full 32-bit internal and external architecture 
• 3-stage integer execution pipeline and IEEE 

floating-point execution unit with overlapped 
instruction fetch and decode operations 

• On-chip IEEE Floating-Point Execution Unit 

Streamlined Instruction Set 
• 9 addressing modes 
• Most frequently used instructions execute in one 

clock cycle 
• Macro instructions for operating system support and 

optimal use of bus bandwidth 
• Multiple programmable register sets for efficiency 

- 16 32-bit user registers 
- 16 32-bit supervisor registers 
- 8 64-bit floating-point registers 

8K Byte Total Instruction and Data Caches 
• 4 K-byte instruction cache 
• 4 K-byte data cache 
• 256 line two-way set-associative, 16-byte line size 

cache organization 
• User-enabled instruction prefetCh for maximum hit 

rate and performance of the pipeline 
• Bus Watch for system data integrity 
• Write-through, copy-back, and noncacheable 

caching policies on a per-page basis 

Memory Management 
• Demand paged virtual memory 
• 4 G-byte virtual address space per process 
• 4 G-byte real memory address space 
• Separate user and supervisor modes 
• 128 line two-way set-associative Translation 

Lookaside Buffer each for data and instructions 
• Memory read, write, and execute access protection 

on a per-page basis 
• Dynamic Translation Unit and page table update 

High·Speed and Flexible Bus 
• High-bandwidth synchronous bus 
• Byte, halfword, word, and quadword transfers 
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Interrupt/Exception Processing 
• Macro instructions for exception processing 
• 256 vectored interrupts with 16 priority levels 
• Separate interrupt bus for high-speed interrupt 

processing 
• 18 predefined traps 
• 128 system calls 

The CLIPPER C100 Module is an architecturally ad­
vanced, very high-performance CMOS 32-bit 
microprocessor compute engine consisting of a CPU, 
two Cache/MMU chips, and clock control circuitry. The 
CPU includes an IEEE standard Floating-Point Execu­
tion Unit. 

The CLIPPER Compute Engine is a Single Instruo­
tionlSingle Data architecture with instruction prefetch 
overlapped on multiple execution units. The basic in­
struction set is streamlined and hardwired for maximum 
performance. Because the control section of the CPU is 
a hardwired logic state machine, rather than a 
microcoded engine, instructions execute at a maximum 
rate of one per clock cycle. The CPU contains two 32-
bit buses: one for data ;md one for instructions. Multi­
stage pipelined instruction processing, combined with a 
dual cachelMMU design, permit concurrency at all 
stages of program exe\cution. In addition, the integrated 
Floating-Point Unit executes instructions concurrently 
with the integer execution unit. A high-bandwidth 
synchronous bus architecture easily interfaces to high­
speed peripherals, 110, and memory subsystems. 

1. Introduction 
The CLIPPER C100 32-bit Microprocessor Module (see 
Figure 1) consists of three CMOS VLSI chips together 
with a Clock Control chip. The VLSI chips are: 1) a high­
performance, dual bus CPUlFPU, 2) an instruction 
cache/MMU chip (I-CAMMU), and 3) a data cache/MMU 
chip (D-CAMMU). The CLIPPER Module interface is a 
96-pin connector which is buffered through a set of user­
supplied drivers. 

The CLIPPER Module interface signals comprise the 
CLIPPER Bus and consist of a 32-bit, multiplexed 
data/address bus, bus arbitration control, bus control, 
clock control, interrupt control, error signalling, diagnos­
tics, and reset. 
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Figure 1 CLIPPER C100 Module Block Diagram 
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1.1. CPU 
The CLIPPER CPU is a high-performance, full 32-bit in­
ternal and external (via separate 32-bit instruction and 
data buses) processor with a loadlstore architecture. 
The CPU is highly pipelined for maximum instruction ex­
ecution and contains a 32 x 32-bit general register file, 
two ALUs (one for integer execution and one for floating­
point execution), a streamlined instruction set, a Macro 
Instruction Unit (for exception processing instructions, in­
terrupt handling instructions, and macrocoded instruc­
tions), and a complete Floating-Point Unit. Figures 2 
and 3 show simplified and detailed block diagrams of 
the CPU. 

1.1.1. Plpellnlng and Concurrency 
The CPU utilizes a fetch, decode; and execution 
pipeline as shown in Figure 4. The CPU two-stage in­
struction control unit (see Figure 2) supports two 

Figure 2 Simplified CPU Block Diagram 
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instruction execution units that operate in parallel, per­
mitting up to four instructions (three integer and one 
floating-point) to be in the execution stage concurrently. 
Instruction control (the upper pipeline) includes both 
fetch and decode, decode includes both resource 
management and issue. The parallel execution units 
(lower pipeline) execute integer and floating-point opera­
tions concurrently. Program counter values accompany 
instructions through the upper pipeline for exception 
processing and branch control by the CPU. 

There are two stages of instruction fetch, namely, from 
memory to the instruction cache (ahead of actual CPU 
demand) and from the cache to the CPU's Instruction 
Buffer. The Instruction Buffer can hold up to four instruc­
tions. Immediate values are sent from the Instruction 
Buffer via the J register to an L register in the ALU 
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pipeline, for use as address offsets or data values. The 
J register and L register stages are shown in Figure 3. 

Instruction decode and resource management are per­
formed in the B stage. The B stage obtains instruction 
parcels from either the Instruction Buffer or the Macro In­
struction Unit. Resource management is accomplished 
by comparing an instruction request for a resource 
against a table of resources busy. 

In the final stage of the upper pipeline (decoded and as­
sembled instruction is in the C stage), instructions are is­
sued for execution to the integer execution unit or the 
floating-point execution unit if no resource conflict exists. 

The lower pipeline consists of two parallel execution 
units, an integer execution unit and a floating-point ex­
ecution unit. The integer execution pipeline has three 
stages. In the first stage, operands are read from the 
general register file. The general register file has three 
ports that operate concurrently in a single clock period; 
two ports are for reading and the third is for writing. 
Thus, two reads and a write may be performed in a 
single clock. In the second stage, the ALU output is writ­
ten to the A register, and in the third stage, the contents 
of the A register are output to the FPU, the bypass mux 
(to the ALU), to the general register file or to the 
O-CAMMU interface. 

Figure 3 Detailed CPU Block Diagram 
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1.1.2. Integer Execution Unit 
The Integer Execution Unit executes all instructions ex­
cept those handled by the FPU. It contains a register 
file (supervisor and user sets), a serial double-bit shifter, 
and a 32-bit Arithmetic Logic Unit (ALU). 

The ALU is used for address computation as well as 
data manipulation. Nine addressing modes are sup­
ported, each requiring only one pass through the ALU. 

When the result output by the ALU is needed by the in­
struction immediately following it, a feedback mecha­
nism allows the result from the current ALU operation to 
be fed back into the ALU for the next operation. 

1.1.3. Floating-Point Execution Unit (FPU) 
An integrated Floating-Point Unit performs single-and 
double- precision floating-point operations concurrently 
with the integer execution unit, using its own ALU and 
set of eight 64-bit registers. These registers are acces­
sible to either the user or supervisor. Because the Float­
ing-Point Unit is on the CPU chip, CLIPPER Bus 
accesses are usually not required. This reduces bus traf­
fic and improves performance. 

All CLIPPER floating-point arithmetic operations support 
the IEEE 754 Standard. For more information, refer to 
Section 4, Floating-Point Unit. 
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1.1.4. Macro Instruction Unit 
The Macro Instruction (MI ROM) Unit stores instruction 
sequences of the basic hardwired instruction set. When 
a macro instruction is encountered in the instruction 
stream, an instruction sequence is read from the MI 
ROM and inserted into the B stage of the upper 
pipeline. The width of the ROM word is such that the in­
struction pipeline can be maintained at the maximum of 
one parcel (one halfword) every clock. When the MI se­
quence ends, the instruction stream is switched back to 
the Instruction Buffer as the source. 

Figure 4 CLIPPER Pipeline 
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The MI Unit provides three types of instruction 
sequences: 

- Those that provide direct support for the operating 
system: for example, context switching and 
trap/interrupt entry and return; 

- Those that perform certain floating-point operations 
not directly implemented in the Floating-Point Unit: 
for example, single to double and double to 
single-precision floating-point conversions; 

LOWER PIPELINE 
(MUL TIPLE EXECUTION UNITS) 

FETCH DECODE EXECUTE 

----------~---------- --------- ----------~, I ,----------- ----------~ 

I INTEGER EXECUTION UNIT 

I I GENERAL REGISTER FILE -(32 X 32) 

I I 
I ALU I IMMEDIATE R1W WRITE I OPERANDS 

OPERANDS I I RESUL T5 i---+ 
LOAD ALU SHIFTER 

I I L 1 L2 A REGS 

I J 
I 

I I 
I I 
I INSTRUCTION DECODE AND [> -- PREFETCH 

--t- BUFFER r; RESOURCE f- ISSUE --(8 PARCELS) 
(4 PARCELS) MANAGEMENT 

I 
1 B B C 

I 
I 
I 
I 
I MACRO FLOATINQ-POINT EXECUTION UNIT 

I INSTRUCTION -
UNIT 

I 
ARITHMETIC UNIT ,.... 

I FPU REGISTER FILE N 

(8 X 64) ~ 

I .. 

5 



- Commonly used complex instructions which are 
typically found in so-called "complex instruction set 
computers:" for example, character string 
manipulations. 

Instructions from the MI ROM are provided with addition­
al MI register files, thus avoiding resource conflicts with 
the floating-point and general-purpose registers. 

1.2. CAMMU 
In addition to the CPU, the CLIPPER Module includes 
two Cache/Memory Management Unit (CAMMU) chips, 
an Instruction Cache/MMU, and a Data Cache/MMU. 
The CAMMUs interface to the CPU via a high-speed, 
32-bit internal module bus and interface to main 
memory and I/O devices via the CLIPPER Bus. 

1.2.1. Instruction and Data Caches 
Two separate, 4 K-byte cache memories, one for data 
and one for instructions, act as transparent high-speed 
buffers between the CPU and main memory. Each 
cache is two-way set-associative, containing 256 quad­
word lines of frequently used instructions or data. For 
fast CPU access, each cache also contains a virtual ad­
dress cache consisting of a 16-byte buffer containing 
the quadword that was most recently accessed from the 
cache, and a register containing the virtual address of 
the quadword. 

Because most CPU fetches are satisfied directly from 
the cache, the access time of real memory has far less 
effect on total system performance. Minimizing fetches 
from main memory also reduces bus traffic and allows 
greater bandwidth for other bus masters or I/O 
processors. 

Bus Watch is the monitoring of the CLIPPER Bus trans­
actions by the CAMMUs. It is used to ensure data con­
sistency between the cache and main memory, and to 
ensure that the latest data is always transferred to an 
I/O device reading main memory. Bus Watch is 
transparent to software. 

A demand fetch algorithm is implemented in both the 
I-CAMMU and D-CAMMU. A prefetch algorithm is also 
implemented in the I-CAMMU; it can be enabled or dis­
abled under program control. 

6 
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1.2.2. Memory Management Unit (MMU) 
The Memory Management Unit translates CPU virtual 
addresses to real addresses in one of three separate 
real spaces (I/O, Boot, or Main Memory) using transla­
tion tables located in main memory. In order to minimize 
the time required to obtain these translations, an addi­
tional two-way set-associative Translation Lookaside Buf­
fer (TLB) in each CAMMU holds 128 of the most 
frequently used values from the translation tables for 
both instructions and data. 

When the TLB does not contain the required translation 
entry, the MMU fetches the required value from main 
memory and updates the TLB. 

The MMU also supports main memory access protec­
tion (read, write, and execute). 

1.3. Clock Control Unit 
The CLIPPER clock chip provides two clock signals. 
MCLK is an internal clock not available to the user. The 
MCLK frequency is the rate of operation of the CPU 
and CAMMUs. BCLK is the CLIPPER Module bus 
clock. The BCLK frequency is the rate of operation of 
the CLIPPER bus. With an externally supplied 
66.7 MHz oscillator, MCLK is 33.3 MHz, and BCLK is 
either 16.7 MHz or 8.3 MHz depending on the state of 
the RATE control pin on the CLIPPER Bus. See Section 
9, CLIPPER Bus, for details. 

2. Memory Organization 
The real memory of a CLIPPER system is organized as 
a sequence of 32-bit words, each word consisting of 
four 8-bit bytes. Each byte is assigned a unique ad­
dress ranging from 0 to 4,294,967,295 (4 G-bytes). 

By using virtual memory techniques, a CLIPPER system 
can appear to have a full 4 G-bytes of physical memory 
available to each user program. See Section 9, 
CLIPPER Bus, for details. 

There are three real address spaces defined in the 
CLIPPER architecture: 

- Main memory space 
- I/O space 
- Boot space 



Main memory, I/O space, and Boot space are acces­
sible in both user and supervisor modes. The memory 
space accessed by a given address is de18nnined by 
the System Tag associated with the page. 

The Harct.Nired Translation Lookaside Buffer (HTLB) is a 
feature of the CAMMU which guarantees TLB hits of 
special memory pages by the supervisor. The first four 

Figure 5 Real Add ..... Spac:ea-HTLB Mapping 
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pages of real main memory space have HTLB entries in 
the CAMMUs, as do the first two pages of both I/O 
space and Boot space. The HTLB is used in supervisor 
mode only. The HTLB is described in detail in Section 
7.2.2, Fixed Address Translation. CLIPPER's three 
memory spaces and the mapping of the HTLB are 
shown in Ftgure 5. 
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2.1. Data Types 
The CLIPPER architecture supports the primitive data 
types shown in Figure 6. There are signed and un­
signed bytes, halfwords (16 bits), words (32 bits), and 
longwords (64 bits), as well as single-precision (32-bit) 
and double-precision (64-bit) IEEE Standard floating­
point numbers. 

Figure 6 CUPPER Primitive Data Types 
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The rules for the storage and alignment of memory data 
types are illustrated in Figure 7 and summarized below: 

1. Bit 0 is the least-significant bit (LSB) of all data types. 
Bit numbers increase from right to left. 

2. The least-significant byte of multiple-byte data types is 
stored at the lowest memory address. 

3. The most-significant byte of multiple-byte data types 
is stored at the highest memory address. 

4. All data types must begin at an address that is a 
multiple of their size. For example, a halfword must 
begin on a halfword boundary. 

3. Programming Model 
The basic programming model for the CLIPPER Com­
pute Engine is shown in Figure 8. CPU registers are dis­
cussed in this section; CAMMU registers are discussed 
in Section 7, Cache and MMU. 

Figure 7 Addressing and Alignment of Data In 
Memory 
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Figure 8 CUPPER Programming Model 
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3.1. Register Sets 
The CPU contains three sets of registers: 16 user 
registers (rO-r15), 16 supervisor registers (rO-r15) and 8 
floating-point registers (fO- f7). 

The user and floating-point registers are accessible in 
both user and supervisor modes; the supervisor 
registers are accessible only in supervisor mode. 

There are two status and control registers: the Program 
Status Word (PSW) and the System Status Word 
(SSW). The PSW is accessible in both user and super-

Figure 9 Program Status Word 
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visor modes. The SSW is writable only in supervisor 
mode; it should not be read in user mode to ensure 
compatibility with future Intergraph CLIPPER products. 

The Program Counter (PC) contains the address of the 
current instruction. This is interpreted as a virtual ad­
dress if CLIPPER is operating in mapped mode, and as 
a physical address if CLIPPER is operating in un­
mapped mode (see Section 3.3, Mapped and Un­
mapped Addresses). The PC is accessible by both the 
user and the supervisor. 
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7 Write protect fault 
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3.1.1. User and Supervisor Registers 
The user and supervisor registers, rO-r1S, are general­
purpose, 32-bit registers. They are used for word (32-
bit) and longword (64-bit) integer operations. 

Bytes and halfwords used in load and store instructions 
are sign- or zero-extended to 32 bits before they are put 
in registers. Longword values are stored in register 
pairs, with the least significant word in the even-num­
bered register. When double-precision (64-bit) floating­
point data types are moved to an integer register pair, 
the least-significant fraction occupies the even num­
bered register. 

3.1.2. Floating-Point Registers 
The floating-point registers, fO-f7, are used by the FPU 
for floating-point instructions, which are executed concur­
rently with instructions in the ALU. These 64-bit 
registers are used for floating-point operands in both 
single- and double-precision IEEE format. Single­
precision operands stored in floating-point registers 
have zeros in the 29 least significant fraction bits and in 
the three most significant exponent bits. 

The integer multiply, divide, and mod instructions are ex­
ecuted by the FPU, but use registers rO-r15 (user or su­
pervisor). 

3.1.3. Program Status Word (PSW) 
The PSW, shown in Figure 9, contains flags which iden­
tify and together with the SSW, control a program's 
response to various exceptions resulting from integer 
and floating-point operations (see Section 6, Excep­
tions, for more details). 

On hardware reset, the trace trap (T) flag is cleared; the 
remaining PSW bits are undefined. 

C,V,Z,N: Condition Codes 
The condition codes are modified only by the register-to­
register integer instructions, string instructions, floating 
comparison, and by directly writing the PSW. They are 
tested by the branch on condition instruction. 

FX, FU, FD, FV, FI: Floating-Point Exception Flags 
The floating-point exception flags are set by hardware 
on exceptions arising from floating-point operations, in 
accordance with the IEEE 754 Floating-Point Standard. 
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Once set, they are cleared only by user software or, for 
those conditions for which the corresponding trap is 
enabled (i.e., when both EFT and the individual enable 
flag are set) by the trap handler. They are tested by the 
branch on floating exception instruction (see Section 
6.2.2, Floating-Point Arithmetic Trap Group, for more 
details). 

EFX, EFU, EFD, EFV, EFI: Enable Floating Flags 
The IEEE floating-point trap enable flags are set by 
software to request the result that would be given to a 
trap handler on an exception, rather than the IEEE 
default (no-trap) result. If the EFT bit is set, enabled ex­
ceptions also cause traps. See Section 6.2.2, Floating­
Point Arithmetic Trap Group, for a description of the use 
of this field by trap handler routines. 

EFT: Enable Floating Trap 
When set, the enable floating trap flag enables traps to 
occur whenever an exception is signalled by the FPU 
and that exception's trap enable flag is also set. When 
this bit is clear, floating-point traps are disabled and 
program execution continues regardless of the values of 
the floating trap enable flags. 

FR: Floating Rounding Mode 
The floating-point rounding mode field is set by software 
to select the IEEE rounding' mode for floating-point 
operations. 

The default is round to near~st, in which the rounded 
result is the closest representable number to the exact 
result, with ties decided in favor of the representable 
number with zero as its least-Significant fraction field bit. 

When rounding toward + 00, the result is the format's 
value (possibly + 00) closest to and no less than the in­
finitely precise result. When rounding toward - 00, the 
result is the format's value (poSSibly - 00) closest to and 
no greater than the infinitely precise result. When round­
ing toward 0, the result is the format's value closest to 
and no greater in magnitude than the infinitely precise 
result. 

T: Trace Trap Enable 
The trace trap enable flag is set by the user or super­
visor to request a trace trap following execution of the 



next instruction. It is cleared by the user or supervisor 
to disable the trace. 

CTS: CPU Trap Status 
The CPU trap status field is set by the hardware to indi­
cate the cause of a CPU-related trap (see Section 6.2, 
Traps). 

MTS: Memory Trap Status 
The memory trap status field is set by the hardware to 
indicate the cause of a memory-related trap (see Sec­
tion 6.2, Traps). 

3.1.4. System Status Word (SSW) 
The SSW controls the CLIPPER Module's mode of 
operation (user or supervisor) and provides status and 
control for program protection and the response to inter­
rupts (see Figure 10). It may be written in supervisor 
mode only. Reset clears the following SSW flags: EI, 
TP, M, U, K, KU, UU and P. The remaining flags are un­
defined. This represents unmapped supervisor mode 
with all maskable interrupts disabled. 

The SSW is written using the movwp (move word to 
processor register) instruction. When used with the 
SSW, this instruction can take as its second operand 

Figure 10 System Status Word 
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either processor register 1 (ssw) or processor register 3 
(sswf). movwp using processor register 1 behaves like 
a branch instruction, causing the upper pipeline to be 
flushed. movwp with processor register 3 does not 
cause the pipeline to be flushed, is thus faster, but must 
only be used in cases where the modification of the 
SSW will not compromise the memory mapping of the 
subsequent code in the upper pipeline. That is, because 
the K, U, KU, and UU protection bits are compared with 
the PL field of the TLB or HTLB entry for memory ac­
cess protection, a memory reference that would have 
failed may succeed or vice versa, or it may fail different­
ly, or it may succaad for the wrong reasons. Therefore, 
processor register 3 may only be used when modifying 
the IN, IL, EI, FRO, TP, ECM, KU and UU flags; 
modifications of the M, K. U and P flags must use the 
movwp instruction with processor register 1 . 

Descriptions of IN, IL, EI, TP, and ECM are given below 
and in Section 6, Exceptions. M, KU, UU, K, U, and P 
are described below and in Section 7.2.1, Translation 
Lookaside Buffer (see Protection Level field description). 

IN: Interrupt Number 
The interrupt number field is set by hardware (INTRAP 
and retl) and by software (movwp) to indicate the 

9 8 7 4 3 0 

I ~ I IL IN I 
A066 

FIELD MEANING 

M Mapped mode 
KU User protect key 
UU User data mode 
K Protect key 
U User mode 
P Previous mode 



system's current interrupt number. If an interrupt of 
equal or higher priority occurs during the service of an 
interrupt, this value (along with the interrupt level) will 
be pushed on the stack, and this field will be updated 
with a new interrupt number value. Interrupt numbers 
are not prioritized. 

IL: Interrupt Level 
The interrupt level field is set by hardware (INTRAP and 
reti) and by software (movwp) to establish the system's 
current interrupt priority level. Only interrupts of equal or 
higher priority (equal or lesser value) than this value will 
be recognized. If an interrupt of equal or higher priority 
occurs during an interrupt service routine, this value will 
be pushed on the stack, and this field will be updated 
with the new interrupt level. 

EI: Enable Interrupts 
The enable interrupt flag is set by software to enable in­
terrupts. It is cleared by software to disable interrupts. 

FRO: Floating Registers Dirty 
The floating register dirty flag is set by hardware when­
ever a floating-point register is written. This flag may be 
cleared by software. Its purpose is to permit operating 
systems to reduoe context switching overhead. 

TP: Trace Trap Pending 
The trace trap pending flag is automatically set by 
hardware whenever a trap or interrupt occurs during an 
instruction and the T flag is set. This ensures that the 
trace trap is taken immediately after the trap or interrupt 
handler has finished executing, and that a single instruc­
tion is traced exactly once. 

On data page faults, the supervisor must clear TP 
before restarting the faulting instruction in order to en­
sure that the instruction is traced exactly once. 

ECM: Enable Corrected Memory Error Trap 
The enable corrected memory flag is set by software to 
request a trap whenever a corrected memory error oc­
curs. When this flag is set, a logic low on the 
MSBE/RETRY signal line (indicating a single-bit 
memory error) causes a trap. 
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M: Mapped Mode 
The mapped mode flag is set by software to cause all 
address references to be mapped through the page 
tables. When set, virtual address (VA) to real address 
(RA) translation by the CAMMUs is enabled (mapped 
mode). When cleared, VA to RA translation by the 
CAMMUs is disabled (unmapped mode). The only ex­
ceptions are the first eight pages when in supervisor 
mode. These pages are always mapped via the HTLB, 
regardless of the state of this flag. 

U:User Mode 
The user mode flag is set by the supervisor to indicate 
user mode of operation and cleared to indicate super­
visor mode of operation. 

K: Protect Key 
The protect key flag is set and cleared by the super­
visor to select one of two sets of memory access protec­
tion codes for memory access validation and protection 
during program execution. This flag is used for the ac­
cess protection code selection in user mode, and in su­
pervisor mode when the UU flag is clear (see Table 10 
in Section 7.2, Memory Management Unit ). 

KU: User Protect Key 
The user protect key flag is set and cleared by the su­
pervisor program to select one of two sets of memory 
access protection codes for memory access validation 
and protection during program execution. This flag is 
used for the access protection code selection only 
during supervisor program execution when the UU flag 
is set (see Table 10 in Section 7.2, Memory Manage­
ment Unit). 

UU: User Data Mode 
The user data mode flag is set and cleared by the su­
pervisor to select either supervisor or user data address 
space access when memory data is referenced in super­
visor mode, and to select either the K or KU key flags 
for selection of the access protection codes used during 
supervisor memory references. When the UU flag is set, 
supervisor data references access user data space, and 
the KU flag is used for access protection code selec­
tion. When the UU flag is clear, supervisor data referen-



ces access supervisor data space, and the K flag is 
used for access protection code selection. This flag is 
significant only in supervisor mode (see Table 10 in Sec­
tion 7.2, Memory Management Unit). 

P: Previous Mode 
The previous mode flag is copied from the U flag when­
ever the INTRAP sequence is executed. 

3.2. Supervisor and User Modes of Operation 
The CLIPPER Module has two modes of operation, 
user and supervisor, as selected by the SSWs U flag. 
User and supervisor modes are distinguished by the set 
of instructions which they are permitted to execute, and 
by the registers and logical address space they are per­
mitted to access. 

All instructions can be executed in supervisor mode. In­
structions which can be executed only in supervisor 
mode are called privileged instructions. When a 
program in user mode attempts to execute these instruc­
tions, a privileged instruction trap occurs. 

Programs executing in user mode have access only to 
the user registers (rO-r15), floating-point registers (to-f?), 

Figure 11 Address Mapping-Mapped/Unmapped Modes 
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the PSW, and the PC. Supervisor mode programs have 
access to all programmer-accessible registers. 
Memory address spaces are distinct for user and super­
visor modes. Different translation tables may be used 
for translating user and supervisor mode addresses, 
and the access protection provided by the memory 
management mechanism allows access by supervisor 
programs to memory locations inaccessible to user 
mode programs. 

Supervisor mode is entered only via the INTRAP se­
quence, or when the system is reset. 

3.3. Mapped and Unmapped Addresses 
CLIPPER can operate in two modes: mapped and un­
mapped. In mapped mode, the CAMMU translates user 
and supervisor virtual addresses to real addresses 
using the TLB or the HTLB (for supervisor virtual 
addresses 0 - n?F Hex); in unmapped mode, only the 
HTLB is used for translation. The mode is selected by 
the M (mapped mode) flag in the SSW. When this flag 
is set, CLIPPER operafes in mapped mode; when this 
flag is clear, CLIPPER operates in unmapped mode. 
The two modes are shown in Figure 11. Virtual to real 
address translation is discussed in Section 7.2, Memory 
Management Unit .. 

USER 

I 
r-------------~-------------~, 

UNMAPPED 
MODE 

MAPPED 
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4. Floating-Point Unit 
The CLIPPER Floating-Point Unit (FPU) executes addi­
tion, subtraction, multiplication, and division operations 
conforming to the IEEE Standard for Binary Floating­
Point Arithmetic (ANSI/IEEE Std 754-1985) in the single­
and double-precision formats. In addition, the 
floating-point comparison operations are provided for 
both precisions. The floating-point execution unit also 
performs integer multiplication, division, and mod opera­
tions. 

Comparisons of floating-point numbers can result in the 
familiar trichotomy of b < a, b = a, b < a, as well as the 
condition b .unordered. a, which arises when either b or 
a is a non-numeric value (NaN). Results of the com­
parison are indicated in the PSW condition codes at the 
conclusion of a floating-point comparison. Conditional 
branch instructions allow these condition codes to be 
used. 

The floating-point execution unit performs one operation 
at a time, reusing internal resources over a number of 
CPU clocks in order to complete the operation, includ­
ing the handling of special case operands and results 
mentioned below. 

4.1. Floating-Point Register Usage 
All of the floating-point arithmetic instructions are 
register-to-register operations, using the eight floating­
point registers available to software. These registers are 
capable of holding either single or double format 
operands interchangeably. The floating-point registers 
may be directly loaded from memory or may be loaded 
by transfer from the integer register file. Storing of 
operands may be direct to memory or by transfer to the 
integer register file. Additional ·scratch pad" registers, 
transparent to the user, are available to the Macro In­
struction Unit. 

Integer multiplication, division, and mod operations are 
also register-to-register, but in this case the registers 
used are in the integer register file; no floating-point 
registers are involved. 

Because separate instructions are provided for single­
and double-precision operations, a rounding precision 
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mode field is not required because the precision is 
defined by the instruction field. All four rounding modes 
called for in the Standard are provided by the FR field 
in the PSw. 

4.2. Floating-Point Exceptions and Traps 
Exceptional operands and operation results are handled 
in conformity with the requirements of the IEEE Stan­
dard. The special operands include signalling and quiet 
Not-a-Number (NaN), signed infinities, signed zeros, 
and denormal numbers, as well as the wealth of ordi­
nary normalized numbers. 

If the corresponding trap enable flag in the PSW is set, 
and the PSWs floating-point trap group enable flag is 
also set, then a floating-point trap occurs. The CPU 
then invokes a program called a trap handler, which 
may be user-specified. When a trap handler is entered, 
the load floating status (Ioadfs) instruction can be ex­
ecuted to acquire useful information about the instruc­
tion causing the exception. Floating-point exceptions are 
discussed in greater detail in Section 6, Exceptions. 

4.3. FPU Software Initialization 
The I EEE Standard requires the following initial condi­
tions: 

- The rounding mode must be round nearest. 

- The floating-point exception flags must all be cleared. 

- All floating-point traps must be disabled, and default 
results for all exceptions must be enabled. 

This initialized state is accomplished by clearing all FPU­
related bits in the PSw. 

The contents of to-f7 should be set to a known value. 
Some programming languages require that these values 
be initialized to zero. The IEEE Standard, on the other 
hand, provides for special reserved values and calls 
these NaN, or Not-A-Number. Whichever of these is 
chosen, this value should be created and loaded into 
each of the floating-point registers. 



An example FPU initialization is as follows: 
loadq $0, rO # Create zero 
movwp rO, psw # Load PSW with rounding 

# mode 00 (nearest) and 
# clear all exception 
# flags and trap enable bits 

loadi $Ox7ffbad75, r1 # Load high half of hex 
# NaN 1.bad75a 

loadi $OxOOOOOOOO, rO # Load low half of NaN 
movld rO,fO # Store in floating register 0 
movld rO, f1 # Store in floating register 1 
movld rO, f2 # Store in floating register 2 
movld rO, f3 # Store in floating register 3 
movld rO, f4 # Store in floating register 4 
movld rO, f5 # Store in floating register 5 
movld rO, f6 # Store in floating register 6 
movld rO, f7 # Store in floating register 7 

The NaN used in the initialization above is a quiet NaN. 
A quiet NaN propagates through arithmetic operations 
unchanged, except for the sign bit, which is undefined 
for NaNs. Thus, any user who operates on a register 
not yet defined will receive this NaN as a result. 

5. Instruction Set 
The CLIPPER instruction set of 101 basic and 67 macro 
instructions is streamlined for speed and the most effec­
tive use of the system's resources and register sets. 
This smaller, faster instruction set is especially useful to 
high-level language compilers that optimize register 
usage, branch timing for maximum speed, and pipeline 
sequencing. 

Memory access is by load/store instructions to minimize 
memory-dependent execution delays. All data opera­
tions are performed on registers by hardwired instruc­
tions. 

There are two units in the CLIPPER CPU that execute 
instructions: the Integer Execution Unit (lEU) and the 
Floating-Point Execution Unit (FPU). The integer instruc­
tions (with the exception of integer multiplies and 
divides) are executed by the lEU. Floating-point instruc­
tions (and the integer mUltiplies and divides) are ex­
ecuted by the FPU. 

Most instructions are fetched from main memory. Each 
instruction is fetched (through the instruction cache), 
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decoded, then executed, either by the lEU or by the 
FPU. The only exceptions are the macro instructions. 

A macro instruction opcode selects a sequence of in­
structions in the macro instruction ROM (MI ROM). 
When a macro instruction is decoded, execution control 
is switched to the MI ROM, and the sequences of the 
macro instruction are executed. 

The instruction set is listed in Table 1. 

5.1. Instruction Formats 
The information encoded in each instruction specifies 
the operation to be performed, the type of operands to 
use (if any), and the location of the operands. The 
mnemonic and operands of the assembly language 
source statement determine the instruction format used. 

Most instructions require one or more operands in the 
source statement. These operands can be located in a 
register or in memory. For example, the loadb instruc­
tion contains operands that reference memory and a 
register. If an operand is located in memory, the instruc­
tion must calculate the address of the operand accord­
ing to the address mode specified in the instruction 
format. 

An operand can also be encoded within the instruction. 
The immediate and quick instructions use this type of 
format for efficient operation. 

All instructions are constructed in multiples of halfwords 
called parcels (see the general instruction format 
below). Depending on the instruction format used, the 
size of an instruction varies from one to four parcels. 

MSB LSB 

63 48 47 32 31 16 15 8 7 0 

FOURTH 
PARCEL 

THIRD 
PARCEL 

SECOND 
PARCEL 

FIRST 
PARCEL 

Figure 12 shows CLIPPER instruction formats. Notice 
that the formats are divided into two main categories, 
non-memory referencing instructions (NO ADDRESS) 
and memory referencing instructions (WITH ADDRESS). 



CLIPPER™ C100 
32-Bit Compute Engine 

Advance Information 

Figure 12 Instruction Formats 
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16-BIT ABSOLUTE 
15 8 7 43 I OPCODE 111 0 1 1 I R2 
s I ADDRESS 

31 30 

o 

16 

o 

48 

o 

16 

PC-RELATIVE PLUS 32-BIT DISPLACEMENT 

17 

o 

46 

RELATIVE INDEXED 

15 8 7 43 0 

1 OPCODE 
o ~11 1 1 

01 
R1 

1 o 0 0 0 0 0 RX R2 
31 24 23 2019 16 

PC INDEXED 
15 8 7 4 3 0 

OPCODE 111 1 0 11 0 ~20 01 o 0 0 0 0 0 0 RX 
31 24 23 20 19 16 

A022 



Table 1 Instruction Set, by Function 

LOAD/STORE INSTRUCTIONS 

Load Address 
Load Byte 
Load Byte Unsigned 
Load Double Floating 
Load Floating Status 
Load Hallward 
Load Hallward Unsigned 
Load Immediate 
Load Quick 
Load Single Floating 
Load Word 

Store Byte 
Store Double Floating 
Store Hallward 
Store Single Floating 
Store Word 

DATA MOVEMENT INSTRUCTIONS 

Move Double Floating 
Move Double to Longword 
Move Longword to Double 
Move Processor Register to Word 
Move Single Floating 
Move Supervisor to User (privileged) 
Move Single to Word 
Move User to Supervisor (privileged) 
Move Word 
Move Word to Processor Register 
Move Word to Single Floating 
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ARITHMETIC INSTRUCTIONS 

Add Double Floating 
Add Immediate 
Add Quick 
Add Single Floating 
Add Word 
Add Word with Carry 

Subtract Double Floating 
Subtract Immediate 
Subtract Single Floating 
Subtract Word 
Subtract Word with Carry 

Multiply Double Floating 
Multiply Single Floating 
Multiply Word 
Multiply Word Unsigned 
Multiply Word Extended 

Divide Double Floating 
Divide Single Floating 
Divide Word 
Divide Word Unsigned 

Negate Double Floating 
Negate Single Floating 
Negate Word 

Modulus Word 
Modulus Word Unsigned 

Scale by, Double Floating 
Scale by, Single Floating 



/ 

Table 1 Instruction Set, by Function (cont.) 

LOGICAL INSTRUCTIONS 

AND Immediate 
AND Word 

OR Immediate 
OR Word 

Exclusive-OR Immediate 
Exclusive-OR Word 

Not Quick 
Not Word 

CHARACTER STRING INSTRUCTIONS 

Compare Characters 

Initialize Characters 

Move Characters 

CONVERSION INSTRUCTIONS 

Convert Double to Single 
Convert Double to Word 
Convert Rounding Double to Word 
Convert Rounding Single to Word 
Convert Single to Double 
Convert Truncating Double to Word 
Convert Truncating Single to Word 
Convert Word to Double 
Convert Word to Single 

COMPARE AND TEST INSTRUCTIONS 

Compare Double Floating 
Compare Immediate 
Compare Quick 
Compare Single Floating 
Compare Word 

Test and Set 

• 
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SHIFT/ROTATE INSTRUCTION 

Shift Arithmetic Immediate 
Shift Arithmetic Longword 
Shift Arithmetic Longword Immediate 
Shift Arithmetic Word 
Shift Logical Immediate 
Shift Logical Longword 
Shift Logical Longword Immediate. 
Shift Logical Word 

Rotate Immediate 
Rotate Longword 
Rotate Longword Immediate 
Rotate Word 

STACK MANIPULATION INSTRUCTIONS 

Pop Word 
Push Word 

Restore Registers fn-f7 
Restore User Registers (privileged) 
Restore Register rn-r14 

Save Registers fn-f7 
Save User Registers (privileged) 
Save Registers rn-r14 

CONTROL INSTRUCTIONS 

Branch on Condition 
Branch on Floating Exception 

Call Subroutine 
Call Supervisor 

No Operation 

Return From Subroutine 
Return From Interrupt (privileged) 

Trap on Floating Unordered 

Wait for Interrupt (privileged) 



5.1.1. Instruction Formats-No Address Register 
The Register format is used for most instructions that 
take just one or two register arguments. 

EXAMPLE INSTRucnON INSTIIUClION FORMAT 

- r3,r6 

T 1 L 
1 

~ 
l 

OPCODE R1 112 I. 
The opcode specifies the interpretation of the R1 and 
R2 fields. Usually the R1 field contains the source 
operand register number, and R2 contains the destina­
tion operand register number. For example, in the 
movsw instruction, the R1 field contains the number of 
the single-precision floating-point register containing the 
source operand, and the R2 field contains the number 
of the general register in which to store the result. 

Quick 
The Quick format encodes constant, 4-bit unsigned 
source operands directly in the instruction. The quick 
value is always zero-filled at the left before use. 

EXAMPLE INSTRucnON INSTfIUClION FORMAT 

T 
$15 , r10 

1 L 
l 1 

·1 OPCODE QUICK 112 

16-blt Immediate 
The 16-bit Immediate format encodes a 16-bit source 
operand constant directly in the instruction. The im­
mediate value is always sign-extended before use. 

EXAMPLE INSTRucnON INSTIIUC110N FORMAT 

Ii 
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32·blt Immediate 
The 32-bit Immediate format encodes a constant, 32-bit 
source operand directly in the instruction. 

EXAMPLE INSTRUCTION INSTRUCllON FORMAT 

andl $0_, r6 T-r-T 

1 
OPCODE 

10011 1 
112 

{ sl 
IMMEDIATE LOW 

IMMEDIATE ItOH 

Control 
The Control format encodes up to 8 bits of a constant 
value that is used by several special instructions. For ex­
ample, the byte operand specifies the system call num­
ber in the calls instruction. 

EXAMPLE INSTRucnON INSTRUClION FORMAT 

t 517 

T 
·1 OPCODE BYTE 

Macro 
The Macro format is used by those instructions that are 
implemented as macros rather than directly in the 
hardware. The P bit in the opcode, bit 9 of the first in­
struction parcel, selects a privileged macro. 

EXAMPLE INSTRUCTION INSTIIUClION FORMAT 

~ t3 , ,7 

OPCODE P 0 

00000000 



5.1.2. Instruction Formats-With Address 
The remaining instruction formats specify an address 
operand and a register operand. Several address for­
mats, or modes, are provided to support typical high­
level language operations. The address mode is 
selected first by the opcode (bit 8 of the first instruction 
parcel), and if necessary, by the AM field (bits <7:4> of 

Table 2 Memory Addressing Modes 

Memory Addressing Mode 

Relative 
Relative plus 12-bit displacement 
Relative plus 32-bit displacement 
16-bit Absolute 
32-bit Absolute 
PC Relative plus 16-bit displacement 
PC Relative plus 32-bit displacement 
Relative Indexed 
PC Indexed 

Notes: 
All displacements are signed. 
PC addresses the first parcel of the current instruction. 

CLIPPER™ C100 
32-Bit Compute Engine 

Advance Information 

the first instruction parcel). Displacements and absolute 
addresses are always sign-extended. 

The address modes used in the memory referencing in­
structions are summarized in Table 2 and explained in 
the following pages. 

Address Formation 

Address ~ (R1) 
Address ~ (R 1) + 12-bit displacement 
Address ~ (R 1) + 32-bit displacement 
Address ~ 16-bit displacement 
Address ~ 32-bit displacement 
Address ~ (PC) + 16-bit displacement 
Address ~ (PC) + 32-bit displacement 
Address ~ (R1) + (RX) 
Address ~ (PC) + (RX) 

RX is any general register containing the index modifying the effect of the source register. 
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Relative 
The Relative format uses the address in a register (R1) 
to compute an address. 

EXAMPLE INSTRucnON INSTRucnON FORMAT 

loadw (r2), r2 

OPCOOE o 

Relative Plus 12·blt Displacement 
The Relative Plus 12-bit Displacement format uses the 
address in a register (R1), plus a signed 12-bit displace­
ment, to compute an address. The displacement is sign­
extended to 32 bits before the address calculation. 

EXAMPLEINSTRUCnON INSTRucnON FORMAT 

atorw r8, 4 (ap) - r-T T 
I 

• 
OPCODE 1 11 o 1 0 R1 

L, S I DISPLACEMENT R2 

I 

CLIPPER™ C100 
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ADDRESS FORMAnON 

31 o 

i 
~--------------------------~ 

ADDRESS 

ADDRESS FORMAnON 

31 0 

..I ADDRESS FROM REGISTER J L 

I-" + 
31 12 11 10 0 

J. - EXTEND SIGN J S J DISPLACEMENT J L 

31 o 

~ __________ AD_D_R_ESS ____________ ~II 
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Relative Plus 32-blt Displacement 
The Relative Plus 32-bit Displacement format uses the 
address in a register (R1), plus a signed 32-bit displace­
ment, to compute an address. 

EXAMPLE INSTAUC110N INSTFIUC110N FORMAT 

loodo huge (,5) • ,0 - r-- - -T T 
... 

OPCODE 1 11 010 I'll 

o 0 0 0 o 0 000 0 o 0 112 

~{ DISPLACEMENT LOW 

sl DISPLACEMENT HIGH 

16-bit Absolute 
The 16-bit Absolute format uses the signed 16-bit ad­
dress, which is sign-extended to 32 bits before use. Be­
cause the address field is signed, the range of 
addresses that can be accessed with this format is _2'5 
~ address ~ 2'5 -1. 

EXAMPLE INSTRUCTION INSTRUCTION FORMAT 

ISIS lock, n 
-,.- - ,..... T 

~ 
OPCODE 1 11 0 1 1 I R2 

L---. sl ADDRESS 

CLIPPER™ C100 
32-Bit Compute Engine 

Advance Information 

ADDAESS FORMA11ON 

31 0 

_I ADDAESS FROM AEGISTEA I 
I-- + 
} 31 

0 

l--J SIGNED DISPLACEMENT I 

31 

~ __________ AD_D_A_ES_S ____________ ~li 

ADDRESS FORMATION 

31 16 15 14 0 

J EXTEND SIGN I S I DISPLACEMENT I I 

31 o 

...... ___________ A_D_D_RE_S_S ______________ ..... I i 
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32·blt Absolute 
The 32-bit Absolute fonnat uses the 32-bit displacement 
portion of the instruction as an address. 

EXAMPLE INSTRUCTION INSTRUCTION FORMAT 

~- 1'T 

OPCODE 1 I 0 0 1 1 I 
~{ ADDRESS lOW 

sl ADDRESSI-IGH 

PC Relative Plus 16·blt Displacement 
The PC Relative Plus 16-bit Displacement fonnat adds 
a signed 16-bit displacement to the contents of the 
Program Counter (PC) to compute an address. 

EXAMPLE INSTRUCTION INSTRUCTION FORMAT 

b .-8 T -

1 
R2 

OPCODE 1 11 0 1 01 R2 

L...-to sl DISPlACEMENT 

I 

CLIPPER™ C100 
32-Bit Compute Engine 
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ADDRESS FORMATION 

} 

31 

>---... ~"' ______ A_D_D_R_ESS ______ ---ill i 
o 

ADDRESS FORMATION 

31 j 0 

I ADDRESS FROM PROGRAM COUNTER J 
+ 

31 16 15 14 0 

J EXTEND SIGN 1 S 1 DISPlACEMENT J -L 

31 o 

"'-______ A_D_DR_~_S _____ ~I i 
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PC Relative Plus 32-blt Displacement 
The PC Relative Plus 32-bit Displacement format adds 
a signed 32-bit displacement to the contents of the 
Program Counter (PC) to compute the address. 

EXAMPLE INSTRUCTION INSTRUCTION FORMAT 

call ap, far (pc) 

I T 

OPCODE 11 0001 1 

{ 'I DISPLACEMENT HIGH 

DISPLACEMENT LOW 

Relative Indexed 
The Relative Indexed format uses the address in a 
register (R1), plus the contents of an index register 
(RX), to compute an address. 

EXAMPLE INSTRUCTION INSTRUCTION FORMAT 

loadbu Ir3) (fp) , r1 - r- ~ 

r- T T 

OPCODE 1 1 110 

00000 0 o 0 RX 

t I 

• 
R1 

R2 

• 
R2 

CLIPPER™ C100 
32-Bit Compute Engine 
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ADDRESS FORMATION 

31 0 

ADDRESS FROM PROGRAM COUNTER 

~, + 
0 

SIGNED DISPLACEMENT 

31 0 

I ADDRESS Ii 

ADDRESS FORMATION 

31 0 

I ADDRESS FROM REGISTER I 
I- + 31 0 

.I 
I 

ADDRESS FROM REGISTER I 

31 o 

~ __________ A_D_DR_E_S_S __________ ~li 
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PC Indexed 
The PC Indexed format adds the contents of an index 
register (AX) to the contents of the PC to compute an 
address. 

EXAMPLE INSTRUCTlON INSTRUC110N FORMAT 

CLIPPERTII C100 
32-Bit Compute Engine 

Advance Information 

ADDRESS FORMATION 

'~~--------------------~ 
1 

OPCODE 

00000000 

5.2. Instruction Set Summary 
Table 5 is a summary of the instruction set. Each instruc­
tion is described by several columns in the table. The 
columns are as follows: 

Instruction Name 
The full name of the instruction. 

Syntax 
Assembler instruction name and operand formats. The 
left letter of the operand code specifies the operand's 
type and size. The right letter of the operand code 
specifies the operand's field within the instruction and 
its location in the machine (immediate value, register, 
memory, etc.). 

Operand Type Operand Field 

b byte s single floating 1 R1 a address 

h halfword d double floating 2 R2 b byte 

w word p processor register q quick 

longword immediate 

For example, the operand code w1 indicates a word 
operand in the general register whose number is en­
coded in the R1 field of the instruction. The code sa indi­
cates a single floating operand in the memory location 
whose address is given by one of the addressing 
modes in Section 5.1.2, Instruction Formats -With Ad-

26 

31 a 

I ADDRESS FROMIIEo/STEII I 
31 + 

ADDRESS FROM REO/STEil 

31 0 

I ADDRESS Ii 
dress. Quick and immediate operand types are always 
w because these directly encoded values are always 
zero or sign extended to a word before use. 

Opcode 
Hexadecimal opcode. Address format instructions use 
two opcodes; the first one listed is for relative mode, 
and the second is for all other addressing modes. 
Macro format instructions show the entire first parcel. 

Format 
Instruction format. See Section 5.1, Instruction Formats. 

Operation 
Basic operation of the instruction. The operations of 
complex instructions like movc are simplified or ab­
breviated. Fixed registers are given by name, e.g., rO, f1. 

CVZN 
Effect of the instruction on condition codes in the PSW. 

o always set to o. 
1 always set to 1. 

unaffected. 
* = set according to the operation. 

FI, FY, FD, FU, FX 
Effect of the instruction on the floating-point exception 
flags in the PSw. Same key as CVZN. 



Traps 
Traps that can be caused by the instruction. 

C Corrected Memory Error 
U Uncorrectable Memory Error 
P Page Fault 
R Read Protect Fault 
W = Write Protect Fault 
D Divide by Zero 
I Illegal Operation 
S Supervisor Only (privileged)linstruction 

All instructions can cause traps from the Instruction 
Memory Trap group in the I-CAMMU (for example, an 

Table 3 Assembler Operand Syntax 

rO .. r15 

to .. f7 

psw, ssw, 
sswf 
$n 
n 
n(rm) 

[rx](rn) 
n(pc) 
or .±n 
[rx](pc) 
label 

General registers. The even general 
registers address long operands. sp, fp, 
and ap are synonyms for r15, r14, and 
r13. Not to be confused with R 1 or R2, 
which are register fields within an 
instruction. 
Floating registers. Each register may 
contain a single or double floating value. 
Processor registers 0, 1 ,and 3. 

Quick, byte or immediate value. 
Absolute address. 
Relative or relative with displacement 
address. n may be 0 or absent. 
Relative indexed address. 
PC relative address. 

PC indexed address. 
Absolute or PC relative address depend­
ing on the circumstances. 
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execute protect fault), so these are not shown. Possible 
floating-point traps are indicated by an asterisk ( • ) in 
the FI .. FX columns. 

The instruction operand codes described above also 
describe the syntax of each instruction operand. As­
sembler operand syntax is given in Table 3 below. As­
sembler instruction operands are generally given in 
source, destination order independent of their positions 
in the machine representation. Table 4 lists the 
operators used in the operation field 

Table 4 Operators 

Notation 

rot 
sha 
shl 
+ 

x 
+ 

mod 

+­
& 

I 
e 
( ) 
[ I 

<> 

t 

Meaning 

Rotate operator 
Shift arithmetic operator 
Shift logical operator 
Add operator 
Subtract operator 
Multiply operator 
Divide operator 
Modulus operator 
Logical complement operator 
Equal operator 
Assignment operator 
AND logical operator 
OR logical operator 
Exclusive-OR logical operator 
Contents of operand within 
Separators used to indicate value inside as 
a unit 
Bit field of previous value 
Indicates a range of values 
Exponentiation 
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Table 5 Instruction Operations 
FFFFF 

Instruction Name Syntax Opcode Format Operation IVDUX CVZN Traps 

Add Double Floating addd dl,d2 22 Register d2 ~ (d2) + (dl) · .... 
Add Immediate addi wi,w2 83 Immediate w2 ~ (w2) + wi • ••• 
Add Quick addq wq,w2 82 Quick w2~ (w2) +wq • ••• 
Add Single Floating adds s1,s2 20 Register s2 ~ (52) + (51) • •••• 
Add Word addw w1,w2 80 Register w2 ~ (w2) + (Wl) • ••• 
Add Word with Carry addwc W1,w2 90 Register w2 ~ (w2) + (wl) + C • ••• 
And Immediate andi wi,w2 8b Immediate w2 ~ (w2) & wi 00 •• I 
And Word andw w1,w2 88 Register w2 ~ (w2) & (wl) 00·. 
Branch Conditional b* ha 48,49 Address IF cond, PC ~ ha A,I 
Branch on Floating Exception bf ha 4c,4d Address IF cond, PC ~ ha A,I 
Call Routine call w2,ha 44,45 Address w2 ~ (w2) - 4, (w2) ~ (PC).. • . . . A,P,W 

PC~ha 
Call Supervisor calls bb 12 Control trap 400 + 8 x bb<7:0> 
Compare Characters cmpc b401 Macro while [(rO)..o) & [«r2»=«rl))), ... • ••• C,U,P,R 
rO=length, rl..string1, r2..string2 rO~ (rO)-1, rl ~ (rl) + 1, 

r2 ~ (r2) + 1 
Compare Double Floating cmpd d1,d2 27 Register (d2) - (d1) 00·· 
Compare Immediate cmpi wi,w2 a7 Immediate (w2) - wi • ••• 
Compare Quick cmpq wq,w2 as Quick (w2) -wq • ••• 
Compare Single Floating cmps s1,s2 25 Register (52) - (51) 00·. 
Compare Word cmpw w1,w2 a4 Register (w2) - (Wl) • ••• 
Convert Double Floating to Single cnvds d1,s2 b439 Macro s2 ~ (dl) · .... 
Convert Double Floating to Word cnvdw d1,w2 b434 Macro w2 ~ (dl) · ...• 
Convert Rounding Double to Word cnvrdw d1,w2 b435 Macro w2~ (dl) · ...• 
Convert Rounding Single 10 Word cnvrsw s1,w2 b4 31 Macro w2 ~ (51) · ...• 
Convert Single Floating 10 Double cnvsd sl,d2 b438 Macro d2 ~ (sl) · .... 
Convert Single Floating 10 Word cnvsw s1,w2 b430 Macro w2~ (51) · ...• 
Convert Truncating Double to Word cnvtdw dl,w2 b436 Macro w2~ (d1) · .... 
Convert Truncating Single to Word cnvtsw s1,w2 b432 Macro w2~ (51) · ...• 
Convert Word to Double Floating cnvwd wl,d2 b437 Macro d2~ (wl) 
Convert Word to Single Floating cnvws wl,s2 b433 Macro s2~ (wl) · ...• 
Divide Double Floating divd dl,d2 2b Register d2 ~ (d2) + (dl) • •••• 
Divide Single Floating divs s1,s2 29 Register s2 ~ (52) + (51) • •••• 
Divide Word divw w1,w2 9c Register w2 ~ (w2) + (Wl) 0·00 D 
Divide Word Unsigned divwu wl,w2 ge Register w2 ~ (w2) + (wl) 0000 D 
Initialize Characters initc b40e Macro while (rl )..0, P,W 
rO=length, r1 =dest, r2=pattern (rl) ~ (r2<7:0», 

rO ~ (rO) - 1, rl +- (rl) + 1, 
r2 ~ (r2) rot -6 

Load Address Ioada ba,w2 62,63 Address w2~ba 

Load Byte Ioadb ba,w2 68,69 Address w2~ (ba) C,U.A,P,R.I 
Load Byte Unsigned Ioadbu ba,w2 6a,6b Address w2~ (ba) C,U.A,P,R,I 
Load Double Floating Ioadd da,d2 66,67 Address d2 +- (da) C,U.A,P,R,I 
Load Floating Status Ioadfs w1,d2 b43f Macro wl ~ (FP PC), 

d2 +- (FP dest) 
Load Halfword Ioadh ha,w2 6c,6d Address w2~ (ha) C,U.A,P,R,I 
Load Halfword Unsigned Ioadhu ha,w2 6e,6f Address w2 +- (ha) C,U,A,P,R,I 
Load Immediate Ioadi wi,w2 87 Immediate w2 ~ wi 00 •• I 
Load Quick Ioadq wq,w2 86 Quick w2~wq 00·0 
Load Single Floating loads sa.s2 64,65 Address s2~ (sa) C,U.A,P,R,I 
Load Word Ioadw wa,w2 60,61 Address w2~ (wa) · . . . C,U.A,P,R,I 
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Table 5 Instruction Operations (cont.) 
FFFFF 

Instruction Nam. Syntax Opcode Format Operation IVDUX CVZN Traps 

Modulus Word modw w1,w2 9d Register w2 +- (w2) mod (w1) 0.00 D 
Modulus Word Unsigned modwu W1,w2 91 Register w2 +- (w2) mod (w1) 0000 D 
Move Characters move b40d Macro while (rO) = 0, (r2) +- «r1», · ... C,U,P,R,W 
rO=length, r1=source, r2=<lest rO +- (rO) - 1, r1 +- (r1) + 1, 

r2 +- (r2) + 1 
Move Double Floating movd d1,d2 26 Register d2 +- (d1) 
Move Double Floating 10 Longword movdl d1,/2 2e Register 12 +- (d1) 
Move Longword 10 Double Floating movld 11,d2 2f Register d2+- (11) 
Move Processor Register to Word movpw p1,w2 11 Register w2 +- (p1) 
Move Single Floating moys 51,52 24 Register s2 +- (51) 
Move Supervisor to User (privileged) moysu w1,w2 b6 01 Macro w2 +- (w1) 00·· S 
Move Single Floating to Word moysw 51,w2 2c Register w2+- (51) 
Move User to Supervisor (privileged) movus w1,w2 b600 Macro w2+- (W1) 00 •• S 
Move Word movw w1,w2 84 Register w2+- (W1) 00 •• 
Move Word to Processor Register movwp w2,p1 10 Register p1 +- (w2) • ••• 
Move Word to Single Floating movws w1,s2 2d Register s2 +- (w1) 
Multiply Double Floating muld d1,d2 2a Register d2 +- (d2) x (d1) ... .. 
Multiply Single Floating muls s1,s2 2a Register 52 +- (52) x (51) ... .. 
Multiply Word mulw w1,w2 98 Register w2 +- (w2) x (w1) 0·00 
Multiply Word Unsigned mulwu W1,w2 9a Register w2 +- (w2) x (w1) 0·00 
Multiply Word Unsigned Extended mulwux W1,/2 9b Register 12 +- (w2) x (w1) 0*00 
Multiply Word Extended mulwx W1,/2 99 Register 12 +- (w2) x (w1) 0·00 
Negate Double Floating negd d1,d2 b43b Macro d2 +- -{d1) 
Negate Single Floating negs 51,52 b43a Macro s2 +- -{s1) 
Negate Word negw w1,w2 93 Register w2 +- -{w1) • ••• 
No Operation noop bb 00 Control none 
NotOuick notq wq,w2 ae Quick w2 +- --wq 0001 
Not Word notw w1,w2 ac Register w2+- ~(W1) 00 •• 
Or Immediate ori wi,w2 al Immediate w2 +- (w2) I wi 00·· 
Or Word orw w1,w2 8c Register w2 +- (w2) I (w1) 00·· 
Pop Word popw W1,w2 16 Register w1 +- (W1) + 4, C,U,A,P,R 

w2 +- «w1) - 4) 
Push Word pushw w2,w1 14 Register w1 +- (W1) - 4, A,P,W 

(w1) +- (w2) 
Restore Registers In - f7 restdn b428 Macro In .. f7 +- «r15) .. C,U,A,P,R 
0!$;n!$;7 «r15) + a x [7-n]), 

b42F r15 +- (r15) + a x [8-n) 
Restore User Registers (privileged) restur w1 b603 Macro rO .. r15+- «w1» C,U,A,P,R,S 

.. «w1) +60) 
Restore Registers r n - r14 restwn b410 Macro rn .. r14 +- «r15» .. C,U,A,P,R 
o sns 12 «r15) + 4 x [14-nD, 

b41C r15 +- (r15) + 4 x [15-n] 
Retum From Routine ret w2 13 Register PC+- «w2» · ... C,U,A,P,R 

w2+- (w2) + 4 
Retum From Interrupt (privileged) red w1 b604 Macro Restore SSW, PSW and PC . . · ... S 
Rotate Immediate roti wi,w2 3c Immediate w2 +- (w2) rot wi 00·· I 
Rotate Longword rod W1,/2 35 Register 12 +- (12) rot (W1) 00·· 
Rotate Longword Immediate rotli wi,l2 3d Immediate- 12 +- (12) rot wi 00 •• 
Rotate Word rotw w1,w2 34 Register w2 +- (w2) rot (W1) 00 •• 
Save Registers In - f7 savedn b420 Macro (r15) - a x [a - n) .. . ... A,P,W 
OSnS7 (r15) - a +- (In) .. (17), 

b427 r15+- (r15)-ax[a-n) 
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Table 5 Instruction Operations (cont.) 
FFFFF 

Instruction Name Syntax Opcode Format Operation IVDUX CVZN Traps 

Save User Registers (privileged) saveur w1 b602 Macro (W1) - 4 .. (wl) - 64 +- (r15) . A,P,W,S 
•• (rO) 

Save Registers rn - r14 saVf?JNn b400 Macro (r15) - 4 x [15 -n) .. A,P,W 
OS ns 12 (r15) - 4 +- (rn) .. (r14), 

b40C r15 +- (r15) - 8 x [8 - n) 
Scale by, Double Floating scalbd W1,d2 b43d Macro d2 +- (d2) x 2(W1) • •. *. 
Scale by, Single Floating scalbs w1,s2 b43c Macro s2 +- (s2) x tw') · .. .. 
Shift Arithmetic Immediate shai Wi.'N2 38 Immediate w2 +- (w2) sha wi o· + • 
Shift Arithmetic Longword shal w1,/2 31 Register 12 +- (12) sha (W1) O· •• 
Shift Arithmetic Longword Immediate shali wi,l2 39 Immediate 12 +- (12) sha wi o· •• 
Shift Arithmetic Word shaw w1,w2 30 Register w2 +- (w2) sha (W1) 0··· 
Shift Logical Immediate shli wi,w2 3a Immediate w2 +- (w2) shl wi 00 •• 
Shift Logical Longword shU w1,/2 33 Register 12 +- (12) shl (w1) 00.· 
Shift Logical Longword Immediate shlli wi,l2 3b Immediate 12 +- (12) shl wi 00 •• 
Shift Logical Word shlw w1,w2 32 Register w2 +- (w2) shl (w1) 00*. 
Store Byte s10rb w2,ba 78,79 Address ba+- (w2) A,P,W,I 
S10re Double Floating s10rd d2,da 76,77 Address da +- (d2) A,P,W,I 
Store Halfword s10rh w2,ha 7c,7d Address ha +- (w2) A'p,W,1 
Store Single Floating S10rs s2,sa 74,75 Address sa +- (s2) A,P,W,I 
Store Word s10rw w2,wa 70,71 Address wa+- (w2) P,W,I 
Subtract Double Floating subd d1,d2 23 Register d2 +- (d2) - (d1) · .... 
Subtract Immediate subi wi,w2 a3 Immediate w2 +- (w2) - wi • ••• 
Subtract Quick subq wq,w2 a2 Quick w2 +- (w2) - wq • * •• 
Subtract Single Floating subs s1,s2 21 Register 82 +- (s2) - (Sl) * •.•• 
Subtract Word subw w1,w2 aO Register w2 +- (w2) - (w1) • ••• 
Subtract Word with Carry subwc w1,w2 91 Register w2 +- (w2) - (w1) - C • ••• 
Test and Set ISIS wa,w2 72,73 Address w2 +- (wa), wa +- 1 I 
Trap on Floating Unordered trapfn b43e Macro IF PSW<ZN> indicates C,U,A,P, 

unordered, illegal instruction R,W,I 
trap 

Wait for Interrupt (privileged) wait b605 Macro Wait for interrupt S 
Exclusive-OR Immediate xori wi,w2 ab Immediate w2 +- (w2) (+) wi 00 •• I 
Exciusive-OR Word xorw w1,w2 a8 Register w2 +- (w2) (+) (w1) 00·· 
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Table 6A Integer Branch Conditions 

PSW Flags 

cond clvlzlN Name Condition 

0 xlXIXlx b Branch always 

PSW Flags 

cond C V Z N Name Compare R1 :R2 

1 
X 0 0 0 

belt Less Than 
X 1 0 1 

X 0 X 0 
bele 2 Less or Equal 

X 1 0 1 

3 X X 1 0 bceq Equal 

X 0 0 1 
begt Greater Than 4 

X 1 X 0 

X 1 X 0 

5 X 0 0 1 bcge Greater or Equal 

X X 1 0 

X X 0 X 
Not Equal 6 bcne 

X X 1 1 

7 0 X 0 X bcltu Less Than Unsigned 

8 0 X X X beleu Less or Equal Unsigned 

9 1 X X X bcgtu Greater Than Unsigned 

A 
1 X X X 

X X 1 X 
begeu Greater or Equal Unsigned 

PSW Flags 

cond C V Z N Name Condition 

8 0 X X X bnc Not Carry 

9 1 X X X bc Carry 

B X 1 X X bv Overflow 

C X 0 X X bnv Not Overflow 

D X X 0 1 bn Negative 

E X X X 0 bnn Not Negative 

F X X 1 1 bfn Floating Unordered 
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Name Result R2:0 

brgt Greater Than 

brge Greater or Equal 

breq Equal 

brlt Less Than 

brle Less or Equal 

brne Not Equal 

brgtu Greater Than Unsigned 

brgeu Greater or Equal Unsigne 

brltu Less Than Unsigned 

brleu Less or Equal Unsigned 

The R2 field of the branch on condition instruction 
selects the conditions on which to branch. When a 
choice of mnemonics is shown, use the ones begin­
ning with bc if the condition codes to be tested were 
set by a compare instruction. Use the mnemonics 
beginning with br is they were set by move or logical 
instructions (those instructions that set only N or Z). 

Table 6B Floating Branch Conditions 

cond 

o 
1 

2-F 

Name 

bfany 
bfbad 

Condition 

Floating ANY exception 
Floating BAD result 
Reserved 

d 



6. Exceptions 
The CLIPPER architecture supports 402 exception con­
ditions: 18 hardware traps, 128 programmable super­
visor call traps, and 256 vectored interrupts. 

Traps are exceptions recognized by the CPU during ex­
ecution of single instructions (e.g., divide by zero, page 
fault). A trap causes all instructions in both the upper 
and lower pipelines to either be backed out or com­
pleted in a manner consistent with program restart. 

Interrupts are events signalled by devices external to 
the CLIPPER Module and input to the module via the in­
terrupt pins. Interrupts are taken when the following con­
ditions are met: 

- Interrupts are enabled. 

- The Interrupt Level (IVEC<7:4» is less than or equal 
to the IL field in the SSw. 

- All instructions in the lower pipeline have finished 
executing. String instructions have either completed 
execution or have detected the interrupt and saved 
sufficient state information for continuation. 

- No traps are pending. 

A flow chart showing the necessary conditions for inter­
rupts is shown in Figure 14. 

The address of the service routine for each trap, super­
visor call, and interrupt is stored in an Exception Vector 
Table (see Table 7), located in the first real page of 
main memory. The Exception Vector Table (EVT) con­
tains a two-word entry for each exception, consisting of 
the starting address of the exception's service routine 
and an SSW value associated with the routine. Unas­
signed EVT addresses are reserved for future use by In­
tergraphand must be initialized to point to a valid 
handler routine. 

The priority of exceptions is the order shown in the EVT 
(in the order from highest to lowest priority), except that 
the trace trap has the lowest priority. The CLIPPER 
Module's internal priority logic ensures that exception 
service is always granted to the highest priority event. 
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Table 7 Exception Vector Table 

Real Address 
(Hex) 

Description 

Data Memory Trap Group 
108 Corrected Memory Error 
110 Uncorrectable Memory Error 
128 Page Fault 
130 Read Protect Fault 
138 Write Protect Fault 

Floating-Point Arithmetic Trap Group 
180 Floating Inexact 
188 Floating Underflow 
190 Floating Divide by Zero 
1 AO Floating Overflow 
1 CO Floating Invalid Operation 

Integer Arithmetic Trap Group: 
208 Integer Divided by Zero 

Instruction Memory Trap Group 
288 Corrected Memory Error 
290 Uncorrectable Memory Error 
2A8 Page Fault 
280 Execute Protect Fault 

Jlegal Operation Trap Group 
300 Illegal Operation 
308 Privileged Instruction 

Diagnostic Trap Group 
380 Trace Trap 

Supervisor Calls 
400 
408 

Supervisor Call 0 
Supervisor Call 1 

7F8 Supervisor Call 127 
Prioritized Interrupts: 

800 Non-Maskable Interrupt 
808 Interrupt Level 0 Number 1 
810 Interrupt Level 0 Number 2 

878 
880 
888 

FF8 

Interrupt Level 0 Number 15 
Interrupt Levell Number 0 
Interrupt Levell Number 1 

Interrupt Level 15 Number 15 



6.1. INTRAP and retl Sequences 
Two macro instruction sequences, INTRAP and retl, 
manage the entry to and exit from both traps and inter­
rupts. The INTRAP sequence performs a non-interrup­
table context switch to supervisor mode, and then 
transfers control to the trap or interrupt handler. The reti 
sequence is an interrupt/trap return, also non-interrupt­
ible, which restores the system to the correct user or su­
pervisor environment. 

During the INTRAP and retl sequences, all interrupts 
are disabled; traps are not disabled, but only serious 
system faults can occur, as explained below. 

The INTRAP sequence begins by saving the PC, SSW, 
and PSW on the supervisor stack as shown in Figure 
13. The saved PSW will have MTS or CTS set to indi­
cate the cause of the trap. INTRAP then copies the 
SSW's user mode flag (U) into the previous mode flag 
(P). In order to access the Vector Table, INTRAP sets 
the user mode flag to supervisor mode and clears the 
protect key (K), user data mode (UU), and user protect 
key (KU). The PSW is cleared. 

The address of the required Exception Vector Table 
entry, V, is then obtained in one of three ways: 1) For 
traps and the non-maskable interrupt, the address is 
generated from internal trap logic. 2) For supervisor 
calls, the address is generated from the lower 7 bits of 
the instruction. This value is multiplied by 8 and 400H is 
added to it. 3) For priority interrupts, a number is read 
from the Interrupt Bus lines, IVEC<7:0>. This value is in­
verted, multiplied by 8, and 800H is added to it. 

Figure 13 Supervisor Stack After INTRAP 

HIGHER ADDRESSES 

r ~ r 

PC 

ssw 

r15 PSW 

~ ~ 
~ .... LOWER ADDRESSES 
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INTRAP uses V to obtain the new PC value and V + 4 
to obtain the associated SSW value. The new SSW 
value is transferred to the SSW, overwriting the pre­
vious contents of SSW except for the previous mode 
flag (P), which is retained in order to indicate the mode 
of the interrupted program. INTRAP then exits, and con­
trol is passed to the trap or interrupt service routine. 

After completing its service, the trap or interrupt handler 
executes the reti sequence. ret! restores the PSW, 
SSW and PC to their contents prior to INTRAP. 

6.1.1. Faults During INTRAP and reti 
The occurrence of a trap during INTRAP or reti results 
in an Unrecoverable Fault (URF). The CLIPPER Module 
halts in a controlled suspended state, drives the URF 
signal low as an alarm, and waits until restarted by the 
RESET signal. (In the URF state, all inputs other than 
RESET are ignored.) 

To avoid the occurrence of a page fault during INTRAP 
or ret! (and the resulting URF condition), the supervisor 
stack must always have a valid Page Table entry that 
permits both reading and writing. This will prevent page 
faults from occurring during INTRAP or retl, because 
the supervisor stack is the only memory area 
referenced by these sequences. 

6.2. Traps 
Traps are signalled in the CPU chip or by either of the 
CAMMUs. There are 18 predefined traps, shown in 
Table 7. 

Both conditional and unconditional traps are supported 
(see Table 8). Conditional traps are enabled by flags in 
the PSW and occur only when enabled. Conditional 

Table 8 Conditional and Unconditional Traps 

Conditional Traps Unconditional Traps 

Corrected Memory Error Uncorrectable Memory 
Floating-Point Arithmetic Error 

Trap Group Page Fault 
Trace Protect Faults 

Privileged Instruction 
Illegal Operation 
Integer Divide by Zero 
Supervisor Call 
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Table 9 Trap Handler Environment Summary 

Trap When Trap Is Taken Return Address 
(Saved In Supervisor Stack) 

Data Memory Trap Group During Execution Faulting Instruction 
Floating-Point Arithmetic Trap Group After Execution Next Instruction To Be Executed 
Integer Arithmetic Trap Group After Execution Next Instruction To Be Executed 
Instruction Memory Trap Group Before Execution Faulting Instruction 
Illegal Operation Trap Group Before Execution Faulting Instruction 
Diagnostic Trap Group After Execution 
Supervisor Call After Execution 

traps that are disabled can be detected and handled by 
the executing program. 

Traps may be generated at various stages of instruction 
processing, as shown in Table 9. The CLIPPER 
Module's internal trap logic ensures that the saved 
program counter points to the instruction at which the 
trapped program may be correctly restarted. 

6.2.1. Data Memory Trap Group 
Data memory traps occur when the data cache inter­
face reports a fault. These traps cause the faulted in­
struction, as well as subsequent instructions already in 
the upper pipeline, to be backed out. 

Data memory traps are recorded in the PSW's memory 
trap status (MTS) field. The MTS field is also used by 
the instruction memory trap group for the same fault 
conditions. Interpretation is not ambiguous because in­
struction memory traps are deferred until data memory 
traps have been serviced, and they are serviced by dif­
ferent trap handlers. 

In the case of the pushw and popw instructions, the 
stack pointer is decremented or incremented in parallel 
with the instruction'S memory access. Thus, when a 
data memory trap occurs during a pushw or popw in­
struction, the operating system must, before restarting 
the program, restore the stack pointer to the value it 
had prior to the trapping instruction, i.e., decrement the 
stack pointer by 4 for popw, or increment the stack 
pointer by 4 for pushw. 

Corrected/Uncorrectable Memory Errors 
Corrected and uncorrectable data memory errors are 
detected by memory and communicated to the CAMMU 
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via the two system bus signals, MSBE/RETRY and 
MMBE respectively. It is the responsibility of memory to 
save the real memory address of the location that failed 
in a predetermined location, where it may be accessed 
for maintenance by the operating system. 

The operating system may ignore indications of cor­
rected memory errors (MSBE/RETRY) by clearing the 
ECM flag in the SSW. 

Page Fault 
A page fault occurs when a program attempts to access 
a page for which there is no valid entry in the currently 
assigned Page Directory or Page Tables. The operating 
system uses this fault to allocate pages to user or super­
visor programs. The address saved on the supervisor 
stack is the program address of the instruction that 
caused the page fault. The virtual address of the data 
memory location that generated the fault is saved in the 
CAMMU's Fault register. 

Read/Write Protection Faults 
Read/write accesses to each page are validated by a 
comparison of the U, K, UU, and KU flags in the SSW 
with the protection code in the TLB or user page tables. 
When an access violation occurs, the address saved on 
the supervisor stack is the program address of the in­
struction that caused the fault. The virtual address of 
the data memory location that generated the fault is 
saved in the CAMMU's Fault register. 

6.2.2. Floating-Point Arithmetic Trap Group 
There are five distinct floating-point exceptions which 
are specified in the IEEE Standard 754. These excep­
tions are signalled by the FPU in the case of invalid 
operation, inexact result, overflow, underflow, or divide 



by zero. For each exception, there corresponds a float­
ing-point exception flag in the PSw. The corresponding 
bit is set on any occurrence of the exception. 

In addition, for each exception there exists a floating­
point trap enable flag. There is also a floating-point 
group trap enable flag. When an exception arises for 
which the individual trap enable flag is true and the 
group trap enable flag is true, then a floating-point trap 
is invoked and control is transferred to a user-specified 
trap handler. If the group trap enable is false, then the 
trap is not invoked. If the individual trap enable flag is 
false, then the trap is not invoked. 

For the underflow and overflow exceptions, the behavior 
of the FPU is determined by the values of the floating­
point trap enable flags as specified in the Standard. In 
particular, overflows with the overflow trap disabled 
deliver infinity or max_real, whereas the result with the 
trap enabled is the normalized result with the exponent 
distorted, as discussed below. Underflows are handled 
similarly. 

The software knows which floating-point trap has oc­
curred because each floating-point trap invokes a 
separate trap handler (each has .its own entry in the Ex­
ception Vector Table). It is not sufficient to examine the 
floating-point exception flags, since the state of these im­
mediately before executing the exceptional operation is 
generally unknown. 

Floating Overflow 
The floating overflow exception is signalled when the 
biased exponent of the result (after rounding) is greater 
than the largest finite representable exponent. With addi­
tion and subtraction, overflow occurs when two large 
numbers are added. At least one of them must have a 
biased exponent of +126 (single-precision) or +1022 
(double-precision) and the fraction addition (or the sub­
sequent rounding) has a carry out of the msb position. 
The overflow may coincide with the fraction sum being 
inexact, though this is not necessarily the case. With 
multiplication, overflow occurs if, after normalization and 
rounding, the product of two finite non-zero numbers 
has an exponent greater than + 127 (single-precision) or 
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+ 1023 (double-precision). Overflow for multiplication 
may be exact or inexact. 

If the EFV flag is set, the computed result is delivered 
to the destination with the normalized rounded fraction 
of the true result (though the delivered exponent is 
usually wrong because of missing additional leading bits 
in the exponent field). For single-precision overflows, if 
the biased exponent of the true result is 255, then 
biased exponent 255 is delivered to the destination. If 
the true biased exponent of the result is 256 . . 408, 
then the true biased exponent minus 256 is delivered to 
the destination. Note that this is not the exponent 
wrapped result called for by the IEEE 754 specification; 
the wrap must be adjusted by system software before 
delivery to a user's trap handler. This is done to allow 
the user to provide software that handles traps in an ap­
plication-specific way. For double-precision, the overflow 
exponents (biased) lie in the range 2047 .. 3120. 
These are mapped to 2047 and 0 .. 1072 respectively. 
These must be adjusted by (3/4)x211 (1536) to obtain 
the IEEE Standard wrapped exponent. 

If the EFV flag is clear, then the computed result is dis­
carded, and the properly signed default value (infinity or 
max_real, depending on rounding mode) is delivered to 
the destination. Max_real is the maximum representable 
value in the given floating-point format; single 
max_real = 2128 - 2104; double_max_real = 21024 _ 2971. 
The floating inexact exception is also signalled. If the 
rounding mode is round toward zero, the value 
delivered to the destination is the maximum finite repre­
sentable number (max_real) with the appropriate sign. If 
the rounding mode is round toward + 00, then a positive 
signed overflow is replaced with + 00, while a negative 
signed overflow is replaced by minus max_real. For 
round toward - 00, a positive overflow goes to plus 
max_real, while a negative overflow goes to - 00. 

Floating Inexact 
The floating inexact exception is signalled when the 
result of an operation cannot be exactly represented in 
the precision of the destination. The result is rounded 
according to the rounding mode specified in the PSW 



so that it has the precision of the destination, and then 
the rounded result is delivered to the destination. 

Floating Underflow 
The conditions under which the floating underflow excep­
tion condition is signalled differ according to the setting 
of the EFU flag. If EFU is set, the floating underflow ex­
ception is signalled when the result of an operation 
(before rounding) has a biased exponent less than the 
minimum representable biased exponent for a normal­
ized number. If the true biased exponent of the result is 
zero, then biased exponent zero is delivered to the des­
tination. If the true biased exponent is less than zero, 
then the exponent delivered to the destination is true 
biased exponent plus 256 (2048 for double.) The ex­
ponent must be adjusted by system software before 
delivery to the program's trap handler in order to con­
form to the IEEE 754 Specification. The range of under­
flowed biased exponents for single-precision is 0 .. 
-275; for double-precision the range is 0 .. -1125. 

If the EFU flag is clear, then the underflowed fraction is 
right shifted as the exponent is incremented until the 
biased exponent equals one. At this point, the result has 
been restated as a denormal number. If this repre­
sentation is exact, then no underflow exception is sig­
nalled. If the representation is inexact, then the result is 
rounded and delivered to the destination, and both the 
inexact and underflow exceptions are signalled. 

Floating Divide by Zero 
The floating divide by zero exception is signalled when 
the divisor is zero and the dividend is non-zero and 
finite. If the dividend is also zero, the result is the 
default quiet NaN (all ones in the fraction and exponent 
fields), and the FI flag is set. If the dividend is infinite, 
the result is infinite, and no condition flags are set. The 
default result is a correctly signed infinity. 

Floating Invalid Operation 
The floating invalid operation exception is signalled in 
the following cases: 

1. One of the operands is a signalling NaN. 
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2. Add/Subtract, magnitude subtraction of infinities: 
(+ 00) - (+ 00) 

or (+ 00) + (- 00) 
or (+ 00) - (- 00) 
or (+ 00) + (+ 00) 

3. Multiplication 
Oxoo 

or 00 x 0 
4. Division 

0+0 
or 00+00 

The value written to the destination is always a NaN. 
The NaN is either the NaN operand (the second 
operand if both are NaNs) made quiet if it were 
signalling (by setting the msb of the explicit fraction 
field), or the default NaN created by the hardware. The 
default NaN is quiet, and its fraction field is all ones. 

6.2.3. Integer Arithmetic Trap Group 
The CPU trap status field in the saved PSW indicates 
the cause of the integer arithmetic trap. 

Integer Divide by Zero 
The integer divide by zero exception is signalled when 
an integer divide or mod instruction is executed with 
zero divisor. 

Integer divide by zero cannot be disabled. The result of 
the trapped instruction will not be written to the 
specified register. 

6.2.4. Instruction Memory Trap Group 
Instruction memory faults are detected and signalled by 
the instruction interface. These traps are not acted upon 
when first sensed, i.e., if a branch instruction or other 
sequence altering event occurs between the time that 
the instruction interface detects the trap condition and 
when that instruction arrives at the C stage, then the 
pending trap condition is cleared and the trap is 
deferred. A deferred trap will not trap until it is ready to 
be issued for execution. If pre-empted by another trap, 
it may trap later if the code is restarted. 



The faulting instruction has not yet entered the lower 
pipeline when the trap is taken. The program address 
saved is that of the faulting instruction. 

For instruction memory traps, the memory trap status 
(MTS) field in the saved PSW indicates the reported 
error. 

Corrected/Uncorrectable Memory Error 
Corrected and uncorrectable data memory errors are 
detected by memory and communicated to the CAMMU 
via the two system bus signals, MSBEIRETRY and 
MMBE respectively. It is the responsibility of the 
memory system to save the real memory address of the 
location that failed in a predetermined location in 
memory, where it can be accessed for maintenance by 
the operating system. 

The operating system may ignore indications of cor­
rected memory errors by clearing the ECM flag in the 
SSW. 

Page Fault 
A page fault occurs when a program tries to access a 
page for which there is no valid entry in the currently as­
signed Page Directory or Page Tables. The operating 
system uses this fault to allocate pages to user and su­
pervisor programs. The address saved on the super­
visor stack is the program address of the instruction that 
caused the page fault. The virtual address of the 
memory location that caused the fault is saved in the 
CAMMU's Fault register. (The two addresses may differ 
for multiple-parcel instructions.) 

Execute Protect Fault 
Instruction fetches from each page are validated by a 
comparison of the U, K, UU and KU flags in the SSW 
with the protection level in the TLB or user's page 
tables. When an instruction fetch violation occurs, the 
address saved on the supervisor stack is the program 
address of the instruction that caused the fault. The vir­
tual address of the memory location that caused the 
fault is saved in the CAMMU's Fault register. 

6.2.5. Illegal Operation Trap Group 
Illegal operation traps are taken before the instruction is 
executed. The program address saved on the super-
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visor stack is the address of the instruction which 
caused the trap. The CPU trap status field in the saved 
PSW indicates the type of trap. 

Illegal Operation Fault 
An illegal operation trap results from the attempted ex­
ecution of any undefined instruction opcode or the occur­
rence of an addressing mode which is not specifically 
allowed. 

Privileged Instruction Fault 
A privileged instruction trap occurs when a privileged 
macro instruction is encountered in user mode. 

6.2.6. Diagnostic Trap Group 

Trace Trap 
Unless pre-empted by another trap or interrupt, the 
trace trap occurs following the execution of an instruc­
tion whenever the PSWs T (trace trap enable) flag is 
set. For traced instructions which are interrupted or 
cause traps, the TP flag is set by hardware when the in­
terrupt or trap occurs to ensure that the trace trap will 
occur immediately after the interrupt or other trap has 
been serviced. In the case of data page faults, TP must 
be cleared by the supervisor before restarting the fault­
ing instruction to ensure that the instruction is traced 
exactly once. 

MI ROM sequences are treated as a single instruction 
for trace purposes so that the entire sequence executes 
before the trace trap is taken. 

At the time of the trap, the CPU trap status field in the 
saved PSW indicates that a trace trap has occurred. 
The saved PC is the address of the instruction following 
the instruction that caused the trace trap. 

6.2.7. Supervisor Calls 
A supervisor call is an instruction executed as a trap, 
and is made using the calls instruction. Its purpose is to 
provide controlled access to system-level functions. 
There are 128 supervisor call codes, with separate Vec­
tor Table entries for each. The PC value saved on the 
stack is the address of the instruction following the calls 
instruction. 



6.2.8. Multiple Traps 
Only traps in the data memory and floating-point groups 
can be signalled at the same time. CLIPPER internal 
trap logic permits correct recovery of both faulting in­
structions. INTRAP transfers control to the floating-point 
trap handler, and the loadfs instruction can be used to 
access the floating-point instruction that caused the 
trap. The MTS field in the saved PSW may be read by 
the floating-point trap handler to determine which data 
memory trap occurred. 

6.3. Interrupts 
The CLIPPER Module supports 16 prioritized interrupt 
levels, with each level containing interrupt numbers of 
equal priority. Level 0 (highest priority) contains 15 num­
bers; levels 1-15 each contain 16 numbers. In addition 
to the 16 interrupt levels, there is a non-maskable inter­
rupt which has a higher priority than all interrupt levels 
and cannot be disabled by software. Level 0 Number 0 
vectors to the NMI interrupt handler. 

The CPU contains the logic necessary to arbitrate inter­
rupt requests according to the priority of the interrupt 
level. The interrupt level currently being processed is 
stored in the Interrupt Level (IL) field of the SSw. The 
CPU accepts interrupts only for interrupt levels of equal 
or higher priority than the current interrupt level. 

Interrupts are serviced between inst~uctions, that is, in­
terrupt requests are not acknowledged until instructions 
in the lower pipeline have finished executing, any result­
ing traps have been serviced, and memory transactions 
have concluded. Thus, interrupts are not normally per­
mitted during a macro sequence, which is considered a 
single instruction. However, some macro sequences (for 
example, the string instructions) permit interrupts peri­
odically during their execution. 

6.3.1. Maskable Interrupt Request/Acknowledge 
Protocol 

Priority interrupts are requested by the activation of the 
IRQ input line and the assertion of the vector number 
on IVEC<7:0>. The vector number includes the interrupt 
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level on IVEC<7:4> and the interrupt number on 
IVEC<3:0>. 

An interrupt request will be acknowledged by the CPU if 
interrupts are enabled (the interrupt enable flag in SSW 
is set) and the interrupt level (IVEC<7:4» is of equal or 
higher priority than the interrupt level contained in the 
SSW's Interrupt Level (IL) field. To maximize interrupt 
responsiveness following the assertion of IRQ and 
IVEC, the interrupt level can change to higher priority 
on any BCLK until IRQ is released. See Figure 14. 

The CPU samples IRQ on the rising edge of every 
BCLK if interrupts are enabled and the priority condition 
is met. The CPU then enters the pre-trap state, in which 
the execution pipeline is emptied by withholding issue of 
the instruction in the issue and control phase. The in­
structions in the execution pipeline complete executing; 
if their execution causes a trap to be signalled, the inter­
rupt is deferred and the.Jb!aher priority) trap is serviced. 
The CPU then asserts lACK. 

The CPU latches the interrupt number and level on the 
BCLK following the release of IRQ, and releases lACK 
during the following BCLK. 

The maskable interrupt request/acknowledge timing is 
shown in Figure 59. See also Section 9.4.8, Interrupt 
Bus. 

6.3.2. Non-Maskable Interrupt 
The non-maskable interrupt is signalled on the NMI 
input to the CPU which is sampled on the rising edge of 
every BCLK. An active low on NMI greater than the 
BCLK period will trigger this interrupt. NMi remains ac­
tive until acknowledged by the CPU on NMIACK. If NMI 
is asserted after another interrupt has already been ac­
knowledged, the non-maskable interrupt is serviced 
after completion of the INTRAP sequence for the ac­
knowledged interrupt. The NMI request/acknowledge 
timing is shown in Figure 60. See also Section 9.4.8, In­
terrupt Bus. 



Figure 14 Interrupt Flow Diagram 
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7. Cache and MMU 
The CLIPPER Module contains two Cache/Memory 
Management Unit (MMU) combination VLSI chips called 
CAMMUs which are designed to optimize CLIPPER per­
formance. 

Each CAMMU contains a 4 K-byte data cache, and a 
memory management unit which translates CPU 32-bit 
virtual addresses into 32-bit real addresses. One 
CAMMU is used for CPU instruction fetching and cach­
ing and is interfaced to the CPU Instruction Bus; the 
second CAMMU is used for CPU data transfers and 
caching and is interfaced to the CPU Data Bus. Both 
CAMMUs also interface to main memory and 1/0 
devices via the CLIPPER Bus. 

The two CAMMUs are functionally identical, but each is 
hardware programmed via an external chip pin for use 
as either an instruction CAMMU (I-CAMMU) or a data 
CAMMU (D-CAMMU). 

Figure 15 CAMMU Interface 
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The CAMMUs feature several caching policy and Bus 
Watch options which allow optimum performance 
tailored to specific applications. A prefetch option is 
available for the I-CAMMU; and fixed address transla­
tion is used in both the I-CAMMU and the D-CAMMU 
for guaranteed access of selected locations in main 
memory, Boot, and 110 spaces. In addition, CAMMU in­
ternal registers and register fields are easily accessed 
for efficient CAMMU configuration and control. 

7.1. Functional Overview 
The two main functional units of the CAMMU are the 
cache and the Memory Management Unit (MMU), with 
the MMU comprised of the Dynamic Translation Unit 
(DTU), the Translation Lookaside Buffer (TLB), and the 
Hardwired Translation Lookaside Buffer (HTLB) (see 
Figure 15). The CAMMU also utilizes a cache control 
unit which controls CAMMU data fetches from main 
memory. 
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Figure 16 Basic CAMMU Functional Flow 
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CAMMU operation begins when the CPU asserts a vir­
tual address on the CPU-CAMMU address/data bus. 
The task of the CAMMU is to translate the CPU virtual 
address (bits <31 :12» into a real address and to use 
the translated real address to find the data. 

The CAMMU compares the virtual address with a virtual 
address of the data stored in a 16-byte (Ouadword) Buf­
fer containing the most recently accessed cache line. If 
there is a match, the data is fetched directly from the 
Ouadword Buffer and no additional cache or TLB action 
is performed. If there is no Ouadword Buffer match, the 
CAMMU attempts to translate the address by using the 
TLB, which is a look-up table containing Virtual Address 
Tags and associated Real Address fields which point to 
locations in the cache. If the CAMMU finds a Virtual Ad­
dress Tag in the TLB which matches the CPU virtual ad­
dress, it compares the associated Real Address field in 
the TLB with the Real Address fields of a cache line set, 
already selected by virtual address bits <10:4>, to deter­
mine whether the data is in the cache. If the data is not 
in the cache, the CAMMU accesses main memory for 
the data 

If the CAMMU cannot find a matching Virtual Address 
Tag in the TLB, it invokes the DTU to search declared 
blocks of main memory (Page Directory Tables and 
Page Tables) in an attempt to translate the virtual ad­
dress. 

The DTU, upon successful translation of the virtual ad­
dress, updates the TLB with the new Virtual Address 
Tag/real address association. The CAMMU then con­
tinues with data access. If the DTU cannot find the valid 
translation in main memory, the CAMMU asserts a CPU 
page fault trap for resolution by the operating system. 

Each CAMMU cache consists of 256 quadwords of data 
(4 K-bytes) with associated Real Address Tags in a con­
figuration similar to the TLB. The CAMMU searches the 
Ouadword Buffer and the on board cache first, then 
main memory for addressed data locations if required. 

A basic logic flow of CAMMU operation is shown in 
Figure 16. 
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Figure 17 CPU Virtual Address Format 
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Figure 18 Simplified CAMMU Block Diagram 
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Figure 17 depicts the format of the CPU virtual address 
and indicates how the various virtual address fields are 
used by the CAMMU. Figures 18 and 19 show CAMMU 
operation. These figures should be referred to while 
reading the following CAMMU descriptions. 

7.2. Memory Management Unit (MMU) 
The Memory Management Unit translates CPU virtual 
addresses into real addresses and supports address 
space access protection by the operating system on a 
per-page basis. 

Figure 19 CAMMU Block Diagram 
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Address translation is executed by three functional units 
within the MMU: the Translation Lookaside Buffer (TLB). 
the Hardwired TLB (HTLB). and the Dynamic Transla­
tion Unit (DTU). Address space access protection and 
memory management support are performed by logic 
within the MMU which utilizes system tags and protec­
tion codes associated with the virtual memory pages. 

7.2.1. Translation Lookaslde Buffer (TLB) 
The TLB is a two-way set-associative memory array 
that is used by the CAMMU for fast. on-board virtual ad-

TLB 
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dress to real address translation. It consists of 64 sets 
of lines, with each set consisting of a Wand an X com­
partment line, and an associated U flag (see Figure 20). 
The CAMMU uses bits <17:12> of the CPU virtual ad­
dress to select a TLB line set, then compares bits 
<31 :18> of the virtual address with the VA (Virtual Ad­
dress) Tag of both the Wand X Compartment lines of 
the selected set. 

If there is a match, and if the appropriate access protec­
tion code allows the data/instruction access, the 20-bit 
RA (Real Address) field of the matching W or)( line is 
multiplexed and transferred to the cache as real ad­
dress bits <31: 12> where they, along with virtuaVreal ad­
dress bit 11 (this bit is not translated), are used to 
validate the data. 

If there is no TLB match, the DTU attempts address 
translation, as explained in Section 7.2.3, Dynamic 
Translation Unit. 

Figure 20 CLIPPER TLB 
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TLB Une Description 
TLB line format is shown in Figure 21. Equivalent RA, 
ST, PL, 0 and R flags are located in the Page Tables. 
The CAMMU ensures that the 0 and R flags in the 
Page Table el)tries are updated with flag changes in the 
TLB. 

The TLB line field definitions are as follows: 

SV: Supervisor Valid 
The SV flag when set indicates that the TLB line is 
used for address translation only during supervisor 
mode operation. All TLB SV flags can be cleared as a 
group by writing to the CAMMU Reset Register and by 
CLIPPER Module hardware reset. 

UV: User Valid 
The UV flag when set indicates that the TLB line is 
used for address translation only during user mode 
operation. All TLB UV flags can be cleared as a group 
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by writing to the CAMMU Reset Register and by CLIP­
PER Module hardware reset. 

VA: Virtual Address Tag 
This 14-bit field is used for W or X line selection once 
TLB set selection is complete. The VA Tag of each line 
is compared with CPU virtual address bits <31 :18>. If 
there is a match, the matching line is used for the ad­
dress translation. 

RA:Real Address 
This 20-bit field is used as real address bits <31:12> 
once the TLB line has been matched, and access 
protection and validation checks have been completed 
(see UV, SV, and PL descriptions). 

ST:System Tag 
This is a three-bit field which identifies the caching type, 
caching policy, and address space associated with the 
page referenced by the TLB line as follows: 

ST<2:0> 
o 
1 
2 
3 
4 
5 
6 
7 

Description 
private, write-through, main memory space 
shared, write-through, main memory space 
private, copy-back, main memory space 
noncacheable, main memory space 
noncacheable, 1/0 space 
noncacheable, Boot space 
cache purge 
noncacheable, main memory space, slave 
1/0 mode 

Figure 21 TLB Une Format and Description 
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This field is used only in mapped mode. In unmapped 
mode, the UST (Unmapped System Tag) field in the 
CAMMU Control Register is used, as described in 
Section 7.6.4. 

The System Tag is asserted on CLIPPER Bus lines 
TG<2:0> during CAMMU external accesses. Further in­
formation on the System Tag field is provided in Section 
7.4, System Tag. 

S: System Reserved 
This is a general-purpose, two-bit field reserved for use 
by the operating system. 

PL: Protection Level 
Associated with each virtual address is a function code 
asserted by the CPU which identifies each memory 
reference as a read, write, or instruction fetch operation, 
and indicates the states of the U, UU, K, and KU flags 
in the CPU's SSW. These SSW flags indicate whether 
the memory access is by the supervisor or by a user, 
which protect key is to be used for access verification 
(K or KU), and the state of the key. The CAMMU com­
pares the function code with the 4-bit PL field of a 
selected TLB line to determine whether read access, 
write access, and instruction fetching is allowed. 

The Protection Level fields are used only for CPU 
mapped addresses (addresses asserted while the 
mapped mode bit of the SSW is set). Unmapped 
addresses invoke no access protection. 
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Table 10 shows allowed accesses according to the 
SSW's K, U, UU, and KU flags, and the PL field. 

D: Dirty Flag 
The Dirty flag is set by the CAMMU to indicate that the 
4 K-byte page in main memory referenced by the TLB 
line has been altered. Typically the operating system 
uses this flag to determine whether the referenced data 
page must be copied to secondary storage (such as a 
hard disk) when the data in the page is replaced. 

R: Referenced Flag 
The CAMMU sets the R flag to indicate that the page 
associated with the line has been accessed. Typically 

Table 10 Page Access Encoding 

PL 

0 
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7 

8 
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10 
11 

12 

13 

14 

15 

Notes: 

Supervisor Mode User Mode 
(U=O) (U=1) 

UU:O UU=1 
D- and D-CAMMU D- and 

I-CAMMU Only I-CAMMU 

K=1 K=O KU=1 KU:O K=1 K=O 
RW - - - - -
RW RW - - - -
RW RW RW - RW -
RW RW RW RW RW RW 
RW RW RW R RW R 
RW RW R R R R 
RW R R R R R 

RWE RWE RWE RWE RWE RWE 

RE - - - - -
R RE - - - -
R R RE - RE -
R R RE RE RE RE 
- RE - RE - RE 
- - RE - RE -
- - - RE - RE 

- - - - - -
No Access Allowed 
Read Only Allowed R 

RW 
RE 
RWE 

Read and Write Allowed 
Read and Execute Allowed 
Read, Write, and Execute Allowed 
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the operating system uses this flag as part of a main 
memory page replacement algorithm by periodically 
clearing all the TLB R flags via the Reset Register (see 
Section 7.6.5, Reset Register'), then allowing them to be 
set during normal program execution. When the operat­
ing system replaces a main memory page, it selects an 
"unreferenced" page for replacement based on the 
states of the R flags. 

U: Used Flag 
Associated with each TLB line set is a U (Used) flag 
which is set by the CAMMU to indicate that the W line 
of the set was last accessed and cleared to indicate 
that the X line was last accessed. When a new line has 
to be entered into the TLB as a result of a TLB miss, 
the least recently used line in the selected set is 
replaced based on the state of this flag. 

7.2.2. Fixed Address Translation 
The CAM MUs feature hardwired TLB lines which en­
sure TLB hits of special memory pages by both mapped 
and unmapped addresses while the CPU is executing in 
supervisor mode. These hardwired entries eliminate 
page faults during INTRAP and retl sequences, and 
allow access of Boot and 110 space before the Page 
Table Directories and Page Tables have been initialized 
during system booting. 

The hardwired TLB (HTLB), implemented in random 
logic and not visible to software, contains the functional 
equivalents of the VA, RA, ST and PL fields found in the 
writable TLB. However, equivalents to other TLB fields 
are not used in the HTLB. The HTLB can be accessed 
only during CPU supervisor mode, so UV and SV flags 
are not required. HTLB lines cannot be replaced, so no 
Used flags are required. Pages referenced by the HTLB 
are dedicated pages not subject to general replacement 
by the operating system, so no Referenced or Dirty 
flags are required. 

HTLB Mapping 
The hardwired TLB is invoked only when supervisor 
pages 0-7 are addressed by the CPU. With the excep­
tion of CAMMU 1/0 space (the upper half of page 0 of 
110 space), these pages can also be mapped through 
the writable TLB. Virtual pages other than supervisor 
pages 0 - 7 must be mapped through the writable TLB. 



When a CAMMU detects a supervisor page 0 - 7 virtual 
address, it selects the Real Address, System Tag, and 
Protection Level fields from the appropriate HTLB line. 
Pages 0 - 3 and 6 - 7 are protection free, allowing read, 
write and execution accesses. Pages 4 and 5 allow only 
read and write access, and attempted execution of Test 
and Set instructions in these pages results in a protec­
tion fault. The real address translation and system tag 
assigned to each page is shown in Table 11. 

The address space assigned to each of the virtual 
pages is also shown in Table 11. These address space 
assignments are determined by the System Tag, which 
is asserted on CLIPPER Bus lines TG<2:0> during 
CLIPPER Bus access. These lines function as main 
memory, I/O and Boot space selects and must be 
decoded by system hardware for proper device 
selection. 

Figure 22 contains a pictorial overview of Hardwired 
TLB mapping showing the three distinct real address 
spaces into which virtual pages 0 - 7 are mapped. 

Virtual Page 0 - 7 Assignments 
Three of the "hardwired" virtual pages are available for 
general use. The other five are dedicated for specific 

Table 11 Hardwired TLB Address Translations 

Virtual Real Page Protection 

Page Page Assignment Level 

Number Number (U=O) 

0 0 General-Purpose and 7 
Interrupt and Trap Vectors 

1 1 General-Purpose 7 
2 2 General-Purpose 7 
3 3 General-Purpose 7 
4 0 110, CAMMUS and Reserved 3 

5 1 11O 3 

6 0 General-Purpose 7 
7 1 General-Purpose 7 
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purposes. These page assignments are shown in 
Table 11. 

The CPU fetches interrupt and trap vectors from super­
visor virtual page o. The CAMMUs translate this page 

Figure 22 Hardwired TLB Mapping 
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into page 0 of main memory where the vectors must be 
located. 

Similarly, following CLIPPER reset, the CPU fetches ini­
tial boot code from virtual page 6, which the CAMMUs 
translate into page 0 of Boot space. The CAMMUs also 
translate virtual page 7 into Boot space (page 1) to 
allow a total of 8 K-bytes of HTLB-translated Boot ad­
dresses. 

The first Boot instructions must be located at supervisor 
virtual address 6000 Hex, which translates to address 0 
of Boot space. The rest of the boot code should be lo­
cated in pages 0 and 1 of Boot space as required. 

Virtual page 4 is reserved by Intergraph for CAMMU in­
temal register addressing and for future use (see Sec­
tion 7.6, Intemal Registers). Virtual page 5 is available 

Figure 23 DTU Virtual Address Translation 
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for 110. The D-CAMMU translates these virtual pages 
into pages 0 and 1 of real I/O space. Attempted access 
of virtual pages 4 or 5 for instruction fetch results in a 
protection fault. 

Additional pages can be created in Boot or I/O space by 
assigning the appropriate System Tag (5 or 4) to virtual 
pages other than 0 - 7. Translation of these pages, 
however, is by the writable TLB or the DTU, not by the 
Hardwired TLB. 

Virtual pages 1- 3 are general-purpose pages which are 
translated into main memory pages 1- 3 by the HTLB. 

7.2.3. Dynamic Translation Unit (DTU) 
The DTU translates virtual address bits <31 :12> into 
real address bits <31: 12> in two steps. First it fetches a 
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in main memory; then it fetches an entry from a Page 
Table, also located in main memory. This sequence is 
depicted in Figure 23. 

Once the DTU has completed address translation, the 
CAMMU updates the TLB and provides the real address 
to validate the cache data, then searches the cache for 
the data. If the data is not cached, the CAMMU 
accesses main memory for the data using the con­
catenation of translated address bits <31 :12> and un­
translated virtual address bits <11 :0>. 

Note that because the DTU accesses only main 
memory and not the cache during address translation, 
all Page Table Directories and Page Tables must be lo­
cated in noncacheable pages (see Section 7.4, 
System Tag). 

Page Table Directory Entry Selection 
Two 20-bit PDO (Page Directory Origin) registers each 
contain the base address of a Page Table Directory. 
One PDO register is used by the CAMMU during super­
visor mode operations; the other PDO register is used 
during user mode operations. The DTU concatenates 
bits <31 :22> of the virtual address with the contents of 
the appropriate PDO register to form the most sig­
nificant 30 bits of a Page Table Directory entry address. 
(Page Table Directory entries are word-aligned; there­
fore bits <1 :0> are forced LOW.) In effect, the PDO 

Figure 24 Page Table Format 
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register points to the Page Table Directory, and bits 
<31 :22> of the virtual address select one of 1024 Page 
Table Directory entries. 

Page Table Directory Format 
Each Page Table Directory consists of 1024 32-bit 
words located in main memory. Page Table Directory 
entries (see Figure 24) are comprised of two fields. 

PTO: Page Table Origin 
This field is used by the DTU during address translation 
to locate the Page Table in main memory. 

F: Page Fault 
The F flag is set or cleared by the operating system to 
indicate the absence or presence of a valid Page Table 
pointed to by the PTO field in the entry. A set F flag indi­
cates absence of a valid Page Table, and attempted 
DTU address translation with a Page Table directory 
entry having a set F flag forces a CPU page fault trap. 

Page Table Entry Selection 
The selected Page Table Directory entry contains a 20-
bit PTO field (see Figure 24) which holds the base ad­
dress of a Page Table that is to be used for address 
translation. The DTU concatenates bits <21:12> of the 
virtual address with the contents of the PTa field to 
form bits <31 :2> of the Page Table entry address (bits 
<1 :0> are forced LOW). In effect, the PTa field points 
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Figure 25 Page Table Entry Format 
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to the appropriate Page Table, and bits <21 : 12> of the 
virtual address select one of 1024 Page Table entries. 

The CAMMU then uses the 2O-bit RA (Real Address) 
field in the Page Table entry, shown in Figure 25, as 
bits <31 :12> of the real address. 

Page Table Format 
Each Page Table consists of 1024 32-bit words com­
prised of six fields, as shown in Figure 25. Equivalent 
ST, S, PL, D, and R fields are located in the TLB 
registers. See Section 7.2.1, Translation Lookaside 
Buffer. 

The following are the Page Table entry field descriptions: 

RA: Real Address 
The 20-bits of the RA field are used as real address bits 
<31: 12> following address translation. These bits con­
stitute a 4 K-byte page address. 

ST: System Tag 
This field identifies the caching policy, caching type, and 
address space of the page (see Section 7.4, System 
Tag). 

S: System Reserved 
This is a general-purpose 2-bit field reserved for the 
operating system. 

PL: Protection Level 
The CAMMU uses this field to determine whether data 
read, data write, and instruction fetching are allowed 
lo/from the page (see Section 7.2.1, Translation 
Lookaside Buffer'). 

Figure 27 CLIPPER Cache Line Format 
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D: Dirty Flag 
The Dirty flag is set by the CAMMU to indicate that the 
page has been altered. 

R: Referenced Flag 
The CAMMU sets the R flag to indicate that the page 
has been accessed. 

F: Page Fault 
The F flag is set/cleared by the operating system to indi­
cate the absence/presence of a valid page. A set F flag 
indicates absence of a valid page, and attempted DTU 
address translation with a Page Table entry having a set 
F flag forces a CPU page fault trap. 

7.3. Cache 
The cache architecture is similar to that of the TLB, as 
shown in Figure 26. It is a 4 K-byte cache composed of 
128 sets of lines, with each set consisting of a W com­
partment line and an X compartment line. 

Associated with each cache line set is a U bit which is 
set to indicate that the W line of the entry was last ac­
cessed, and cleared to indicate that the X line was last 
accessed. When, as a result of cache miss, a new data 
quadword has to be cached, the least recently used line 
in the selected line set is replaced based on the state of 
this bit. 

7.3.1. Cache Line Description 
Figure 27 shows the cache Wand X compartment line 
format. Each line consists of four 32-bit data words and 
LV, LD, and RA fields defined as follows: 

32 32 32 

96 95 64 63 32 31 0 

I W1 W2 I W3 I 

~ 
WORD 1 WORD 2 WORD 3 



LV: Line Valid 
The LV bit, when set, indicates that the data in the as­
sociated line is valid; when clear, it indicates that the 
data is invalid. 

A line LV bit is set by the CAMMU when it loads new 
data into the cache line. The bit is cleared by the 
CAMMU, operating as a slave, in response to CLIPPER 
Bus activity when its Bus Watch modes are enabled, or 
by a cache purge operation (TG = 6) as described in 
Section 7.4.2, System Tag 6. Individual LV flags are 
also cleared by hardware when the CV (Clear Valid) bit 
in the CAMMU Control Register is set, and the cache 
provides more current (dirty) data for a quadword 1/0 
Read (see Section 7.5, Bus Watch Modes, Watch I/O 
Reads). 

In the case of Bus Watch, LV is cleared during a quad­
word write to a main memory address that matches the 
particular cache location. During the Bus Watch opera­
tion, the CAMMU asserts the CBSY signal on the 
CLIPPER Bus. The CBSY signal prevents another bus 
transaction from beginning until Bus Watch operation 
has completed. If the CPU has addressed this same 
cache line prior to the CLIPPER Bus's write operation, 
the CPU has priority and the bit is not cleared until the 
CPU access is completed. This is described in more 
detail in Section 7.5, Bus Watch Modes. 

All cache LV flags can be cleared as a group by writing 
to the CAMMU Reset Register (see Section 7.6, Internal 
Registers), and by CLIPPER hardware reset. 

LD: Line Dirty 
The LD bit is set by the CAMMU to indicate that data in 
the cache line has not been updated in main memory. 
This occurs when the CAMMU is operating in the copy­
back mode (see Section 7.4, System Tag), and a CPU 
write to memory results in a cache hit. In this case, the 
data is written to the cache but not to main memory, 
resulting in "dirty" cache data, i.e., data which is more 
current than main memory data. This bit is cleared by 
the CAMMU when the copy-back data is copied back to 
memory. 

RA: Real Address Tag 
The RA tag is used for cache line selection. The RA 
tags of both the Wand X compartment lines are com-
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pared with translated address bits <31 : 12> and bit 11 of 
the virtual address. Accessed data is located in a match­
ing line. 

WO-W3: Word 0 - 3 
Words 0 - 3 are the four 32-bit data words in the cache 
line. 

7.3.2. Cache Data Selection 
Virtual address bits <11 :2> are used directly by the 
CAMMU as real address bits <11:2> to access cache 
data (refer to Figure 19). 

The CAMMU uses address bits <10:4> to select one of 
the 128 cache line sets. The CAMMU compares the con­
catenation of translated address bits <31 :12> and ad­
dress bit 11 with the RA field of both the W line and the 
X line of the selected line set. If there is no match, a 
cache miss has occurred, and the CAMMU accesses 
main memory for the data transfer. If there is a match, 
the CAMMU uses address bits <3:2> to select one of 
the four data words in the matching line for the data 
transfer. 

7.3.3. Prefetch 
The D-CAMMU implements a "demand" data fetching al­
gorithm. Data fetching for the cache is "on demand" by 
the CPU; that is, a new data quadword is fetched from 
main memory only as a result of a cache miss. 

The I-CAMMU also supports demand fetching which 
functions identically to D-CAMMU data fetching, but fea­
tures an optional prefetching algorithm not available in 
the D-CAMMU. This algorithm prefetches the next four 
words of instructions from main memory for line N + 1 
of the cache when line N has been accessed by the 
CPU. 
I-CAMMU prefetching is controlled by bit 0 of the 
CAMMU Control Register. When bit 0 is clear, prefetch 
is disabled; when set, pre fetch is enabled. 

I-CAMMU prefetch enableldisable should be based on 
the general structure of the code being executed. If the 
instructions are in general executed sequentially as 
stored in main memory, the probability of cache hits of 
prefetched instructions is high; therefore, prefetch 
should be enabled for increased CPU throughput. If the 
instructions are branch intensive, the probability of 



cache hits of prefetched instructions is reduced; there­
fore, prefetch may be disabled to reduce system bus 
traffic. 

7.3.4. Quadword Data Transfers 
The CAMMU cache lines each contain four words. The 
CAMMUs transfer data/instructions between the caches 
and main memory four words (one quadword) at a time. 
(Single-word transfers are used for data/instructions in 
noncacheable pages.) 

7.4. System Tag 
Associated with each virtual page is a three-bit ST (Sys­
tem Tag) field which determines the caching policy that 
applies to the page, the page caching type (private or 
shared), and the page's address space (1/0, Boot, or 
main memory). In addition, the System Tag can be used 
to identify two special operations: Cache Purge and 
Slave I/O mode. This field is found in the Page Table 
entries (see Figure 25) and in the TLB (see Figure 21). 

The System Tags for supervisor pages 0 - 7 are 
hardware-selected by the CAMMU (see Section 7.2.2, 
Fixed Address Translation and Table 11). All other vir­
tual address page System Tags are assigned by the 
operating system according to system requirements 
when it creates the Page Tables. The CAM MUs decode 
the ST fields during address translation and transfer the 
bits to the CLIPPER Bus lines TG<2:0> during 
CLIPPER Bus access. (If the system is being operated 
in unmapped mode, the UST field (Unmapped System 
Tag) in the CAMMU Control Register determines the 
System Tag.) 

7.4.1. System Tags 0·5 
System Tags 0 - 5 encode the following information 
about a virtual page: 
(1) Address space- main memory, Boot, or 1/0 
(2) Caching type-private or shared. 
(3) Caching policy---cacheable or noncacheable; write­

through or copy-back. 

Address Space 
"Address space" identifies the real address space of the 
page as either main memory space, Boot space or I/O 
space. The CAMMUs map all virtual addresses into one 
of these spaces. 
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Caching Type 
Two types of page caching are recognized by the 
CAMMU: private and shared. Private caching pages are 
accessed and cached by one CAMMU only. Shared 
caching pages are accessed and cached by more than 
one CAMMU. (Pages that are cached by both the 
I-CAMMU and D-CAMMU of a CLIPPER Module are 
shared pages.) 

Note that the terms "shared" and "private" relate only to 
CAMMU access. In fact, a page may be private to a 
CAMMU but accessible by non-CAMMU devices. This 
page, though private, is common to one or more 
devices other than the CAMMU, and should therefore 
receive special consideration when assigning System 
Tags. 

Caching Policy 
Caching policy is a set of attributes assigned to a page 
by the System Tag which identifies the page as cache­
able or noncacheable, and, if cacheable, defines the 
caching mode which applies to the page as copy-back 
or write-through. Combinations of write-through or copy­
back caching to private pages, and write-through cach­
ing to shared pages are possible. 

Cacheable data can be entered into a cache; noncache­
able data cannot be entered into a cache. Pages can 
be tagged as cacheable or noncacheable according to 
system requirements. 

Write-through and copy-back are two schemes for updat­
ing main memory with data in the D-CAMMU cache. 
Selection of these modes is based on system require­
ments and page caching type. Private pages may be 
write-through or copy-back; shared pages must be write­
through. 

During a CPU write, the CAMMU searches the cache 
for the accessed location. If the location is not in the 
cache (a cache miss), the CAMMU operates according 
to the caching mode as follows: 

(1) Write-through-the CAMMU updates main memory 
with the CPU data but does not update the cache be­
cause the data is not cached. 



(2) Copy-back-the CAMMU reads the quaclword con­
taining the addressed data from main memory into the 
cache, then updates the cache, but does not update 
main memory. 

If the data is in the cache (a cache hit), the CAMMU 
operates according to caching mode as follows: 

(1) Write-through-the CAMMU updates both the 
cache and the main memory. 

(2) Copy-back-the CAMMU updates only the cache, 
but does not update main memory. 

Write-through mode forces the D-CAMMU to access the 
CLIPPER Bus and update main memory immediately fol­
lowing a cache write. Write-through mode thus ensures 
that main memory data is current with the cache at all 
times. Shared pages (those that can appear in more 
than one cache) must be write-through. 

Copy-back mode inhibits updating of main memory with 
the new data until the cache line written into is 
replaced. When a copy-back write hit to the cache oc­
curs, the LD (Line Dirty) flag in the hit line is set to indi­
cate that the line data must be written to main memory 
when the line is replaced. Since copy-back mode does 
not assure data consistency between main memory and 
the cache at all times, copy-back mode cannot be used 
for pages that are shared by another CAMMU. 

Write-through mode eases the task of data manage­
ment because main memory is always "up to date" but 
increases CLIPPER Bus traffic because the CAMMU 
must access the bus following each cache write. Copy­
back requires more careful data management considera­
tion but decreases system bus traffic, thereby 
significantly improving system performance. These fac­
tors should be considered when assigning System Tags. 

7.4.2. System Tag 6-Cache Purge 
System Tag 6, Cache Purge, forces invalidation (purg­
ing) of cache lines that are hit during CPU write opera­
tions that are tagged TG = 6. The lines are invalidated 
by clearing of the Line Valid (LV) bits. 

A CPU write with the ST field in the TLB set to a 6 will 
purge hit cache lines of its own caches. The write 
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proceeds as normal with TG lines = 6 on the CLIPPER 
Bus, causing hit lines in other module caches (having 
Watch CPU writes enabled) to be purged. Any cache 
with Watch CPU writes enabled will purge hit lines 
(regardless of the state of the TLB system tag field) 
when a write is detected on the CLIPPER Bus with 
TG =6. 

The Cache Purge feature facilitates the re-use of pages 
by allowing invalidation of data belonging to a replaced 
page which is left in a cache. In multiple CLIPPER 
Module applications, for example, a page might be 
replaced in main memory which may leave unpurged 
data in a cache of the module not initiating the page re­
placement. The CAMMU initiating the page replacement 
can invalidate that cache data by writing to the cached 
data locations using the Cache Purge tag. 

7.4.3. System Tag 7-Slave 1/0 
System Tag 7, Slave 110 Mode, in effect allows the 
module to act as a DMA controller. It supports transfer 
of data between 1/0 and main memory in DMA-like 
fashion, but is not intended to replace DMA controllers. 

During Slave 110 operation, the CLIPPER Module 
accesses an individual word, hallword, or byte from a 
source (such as main memory) which is simultaneously 
read by a destination device. Both read and write opera­
tions can be tagged Slave 1/0 mode. 

Slave 1/0 read operations are used to transfer data from 
main memory to an 1/0 device. The CLIPPER Module 
executes a read from memory with TG = 7, and the 
memory responds with the data which is read by the 110 
but can be ignored by the CPU. The I/O must recognize 
TG = 7 as Slave 110 mode and assert RDYi to terminate 
the operation. Timing for the Slave I/O read operation is 
the same as for a standard read. 

Slave 110 write operations are used to transfer data 
from 1/0 to main memory. The CLIPPER Module ex­
ecutes a write to memory with TG = 7 using arbitrary 
data that will not be asserted on the bus. The 110 must 
recognize TG = 7 as slave 1/0 mode and assert data on 
the bus. The main memory asserts RDYi to terminate 
the operation. 



• 

liming for the Slave I/O write operation is the same as 
for a standard write, with the exception that DIR transi­
tions after the address phase of the operation as if for a 
read. This prevents the CLIPPER Module bus 
transceivers from driving the bus during the data trans­
fer phase of the operation, allowing the 1/0 to send data 
without bus contention. 

7.5. Bus Watch Modea 
Bus Watch modes are used by the CAMMU to ensure 
data consistency between the cache and main memory, 
and to transfer the "latest" data to an external device 
reading main memory. 

When Bus Watch is enabled in a CAMMU, it monitors 
main memory accesses by other bus masters. Depend­
ing on the Bus Watch mode enabled and the type of 
main memory access (identified by decoding the 
CLIPPER Bus TG<2:0> and CT <5:0> Hnes, as 
described in Section 9, CUPPER Bus), the CAMMU in­
tervenes to update the cache with data that is written to 
main memory, to invalidate cache data, or to transfer up­
dated data from the cache to a bus master that is read­
ing main memory. This Bus Watch monitoring occurs in 
parallel with the memory access in order to eHminate or 
minimize the Bus Watch operation effect on CLIPPER 
Bus throughput. Each CLIPPER Bus master must 
generate the appropriate TG<2:0> tag when accessing 
the CLIPPER Bus. 

The three Bus Watch modes featured by the CAMMU 
are: 

(1) Watch CPU Writes (CPU writes to shared cacheable 
pages) 

(2) Watch I/O Writes (I/O writes to cacheable pages) 
(3) Watch I/O Reads (I/O reads from private copy-back 

pages) 

These Bus Watch modes are controlled by bits <3:1> of 
the CAMMU Control Register, as explained in Section 
7.6, Internal Registers. 

Watch CPU WrIt .. 
Watch CPU Writes is enabled in a CAMMU to ensure 
that data in the CAMMU cache is updated with new 
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data written by another CAMMU into its shared main 
memory pages, or to invalidate cache Hnes (cache data) 
in the case of quadword writes. 

The CPU transfers data tolfrom main memory via the 
D-CAMMU. The D-CAMMU transfers the data using 
either single-word (byte, halfword, or word) transfers, or 
quadword transfers. When, with Watch CPU Writes 
enabled, a slave CAMMU (a CAMMU that is not access­
ing the bus) detects a CPU write to one of its shared 
main memory pages by a master CAMMU (a D­
CAMMU that is accessing the bus), the slave CAMMU 
determines whether the accessed location is in its 
cache, and whether the write involves one word for four 
words. If a single word write, the CAMMU updates the 
matched cache line. If a quac:lword write, the CAMMU 
does not update the matched cache line but instead in­
validates the line by clearing the LV bit. 

Watch 110 Wit ... 
Watch 1/0 Writes, when invoked, functions identically to 
Watch CPU Writes. The two modes differ in that Watch 
1/0 Writes responds to I/O writes rather than to CPU 
writes. 

When a CAMMU with Watch I/O Writes enabled detects 
an 1/0 write to one of its cacheable pages, the CAMMU 
determines whether the accessed data is cached in the 
CAMMU, and whether the write involves one word or 
four words. If a single-word write, the CAMMU updates 
the matched cache line. If a quadword write, the 
CAMMU does not update the matched line but instead 
invaHdates the line by clearing the LV bit. 

Watch 110 Reads 
Watch 110 Reads is enabled to ensure that data read by 
1/0 devices from private, copy-back pages is always cur­
rent data This mode functions identically for both single­
word and quac:lword I/O reads . 

When this mode is enabled in a D-CAMMU, the D­
CAMMU monitors the system bus for reads by I/O of 
private, copy-back pages. When the D-CAMMU detects 
such a read, it searches its cache for the data. If the 
data is not cached or the cached data LD bit is clear, 
the I/O device reads the data directly from main 



memory. If the data is cached and the LD bit is set, the 
D-CAMMU aborts the assertion of data by main 
memory and asserts the current cache data on the 
CLIPPER Bus. The D-CAMMU thus intervenes in the 
110 read operation to provide the more current cached 
data. If the Clear Valid bit in the Control Register is set, 
then the CAMMU will also clear the Line Valid bit in the 
cache line used to supply the data; the memory inter­
face can use the cache data to update its own contents, 
as described in Section 9.4.7. 

Note that because the copy-back caching mode applies 
only to private pages not shared by CAMMUs, this Bus 
Watch mode is invoked only during I/O reads of copy­
back pages. 

7.6. Internal Registers 
Each CAMMU contains five software-accessible 
registers used for initialization and control. Two of these 
registers, the Supervisor PDO and User PDO, are used 
in address translation; they contain the base addresses 
of the supervisor and user Page Table Directories. The 
Fault register is loaded with the virtual address as­
sociated with certain fault conditions and is used by the 
operating system to implement virtual memory. The Con­
trol and Reset registers are used to control various 
aspects of CAMMU operation. These registers are dis­
cussed in the following sections. 

7.6.1. Supervisor PD~ Register 
The Supervisor PDO (Page Directory Origin) Register is 
a 20-bit readlwrite register that holds the base address 
of a Page Table Directory address which is used by the 
DTU during supervisor mode address translation (see 
Section Z2.3, Dynamic Translation Unit). 

Figure 28 CAMMU Control Register 
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7.6.2. User PD~ Register 
The User PDO (Page Directory Origin) Register is a 20-
bit readlwrite register that holds the base address of a 
Page Table Directory address which is used by the DTU 
during user mode address translation (see Section 
7.2.3, Dynamic Trans/ation Uni~. 

7.6.3. Fault Register 
The Fault Register is a 32-bit read-only register which 
holds the virtual address of the data or instruction 
memory location that generated a page fault. It is in­
tended for use by trap handling routines for fault 
recovery. 

7.6.4. Control Register 
The Control Register is a 9-bit readlwrite register used 
to enable preletching in the I-CAMMU, to selectively 
enable the Bus Watch modes, to assign a system tag to 
unmapped memory addresses, and to enable the clear­
ing of cache line LV bits during Bus Watch of I/O 
Reads. The Control Register is shown in Figure 28 and 
is described below. 

CV: Clear Valid 
When this bit is set, the LV (Line Valid) bit in a copy­
back cache line is cleared by hardware when the more 
current (dirty) data contained within that line is supplied 
by the CAMMU lor an I/O quadword read (as a result of 
Bus Watch of I/O Reads). This permits pages that are 
swapped by I/O back to disk to be simultaneously 
purged from the cache. Use of this option requires the 
memory interface to use the data sent to the I/O device 
to update its own contents, except in cases where the 
data will not be read by another 110 device (see Section 

6 5 4 3 2 o 

UST EWIR EWIW EWCW 
EP I~ 

NOTE: BITS <6:7> AND <31 :9> MUST ALWAYS BE PROGRAMMED 0 OR UNDEFINED WILL OCCUR. 
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904.7). The Clear Valid option is disabled by clearing 
this bit. On reset, this bit is cleared by hardware. 

Note: The Clear Valid bit was called the "Clear Dirty" bit 
in previous documents. 

UST: Unmapped System Tag 
When the Mapped Mode bit in the CPU System Status 
Word is clear, all CPU addresses, except supervisor vir­
tual addresses 0 - 7FFF Hex which are mapped by the 
HTLB, are treated by the CAM MUs as real addresses 
requiring no translation. These unmapped addresses 
therefore have no TLB or Page Table source of system 
tags. The CAMMUs, therefore, use the two-bit UST field 
to tag pages referenced with unmapped addresses as 
follows: 

UST Descrlpdon 
o private, write-through, main memory space 
1 shared, write-through, main memory space 
2 private, copy-back, main memory space 
3 noncacheable, main memory space 

The UST bits map to TG<1 :0> CLIPPER Bus lines. 
TG<2> is forced to o. 

UST is set to 3 by CLIPPER Module reset. 

Figure 29 CAMMU Re ... Reglater 
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EWIR: Enable Watch 1/0 Reads 
EWIR, when set, enables Watch VO Reads operation. 
This bit is ignored by the I-CAMMU. EWIR is set by 
CLIPPER Module reset. 

EWIW: Enable Watch I/O Writes 
EWIW, when set, enables Watch UO Writes operation. 
EWIW is set by CLIPPER Module reset. 

EWCW: Enable Watch CPU Writes 
EWCW, when set, enables Watch CPU Writes opera­
tion. EWCW is set by CLIPPER Module reset 

EP: Enable Prefetch 
EP, when set, enables I-CAMMU prefetchinQ. When EP 
is clear, I-CAMMU prefetching is disabled, and the 
I-CAMMU fetches instructions "on demand." The state 
of this bit is ignored by the D-CAMMU, which always 
fetches on demand. EP is set by CLIPPER Module 
reset 

7.8.5. Re .. t Reglater 
The Reset Register is a 7-bit, write-only register that al­
lows selective resetting of the CAMMU cache and TLB 
(see Figure 29). The cache LV (Une Valid) and U 
(Used) flags, and the TLB SV (Supervisor Valid), UV 
(User Valid), D (Dirty) and R (Referenced) flags can be 
cleared by setting individual Reset Register bits. 

5 4 3 2 1 o 

RR RD RUV RSV RLVX RLVW Ii 
NOTE: BITS <31:7> MUST ALWAYS BE PROGRAMMED 0 OR UNDEFINED RESULTS WILL OCCUR. 
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Figure 30 CAMMU Access Map 

RESERVED 

GLOBAL 

CAMMU 

I-CAMMU 

D-CAMMU 

VIRTUAL ADDRESS 

OxOOOO4Eoo - o.ooo04FFF 

0x00004D81 - OxOOOO4DFF 
OxOoo04D80 

0x00004D41 - OxOoo04D7F 
Oxooo04D40 

OxOOOO4DII - Oxooo04D3F 
OxOOOO4Dl0 

OxOOOO4oo9 - OxOOOO4ooF 
OxOOOO4D08 

OxOOOO4oo5 - 0x00004007 
OxOOOO4D04 

OxOOOO4ooo - 0.00004003 
OxOOOO4CFF 

o.OOOO4CFE 
o.OOOO4CFD 
OxOOOO4CFC 

Ox00004C04 - OxOOOO4CFB 
o.OOOO4C03 
o.OOOO4C02 
o.OOOO4COl 
OxOOOO4COO 

0x00004B81 - Ox00004BFF 
OxOOOO4B80 

o.OOOO4B41 - OxOOOO4B7F 
Ox0OOO4840 

o.OOOO4Bll - 0x00004B3F 
OxOOOO4Bl0 

o.OOOO4B09 - OxOOOO4BOF 
OxOOOO4B08 

OxOOOO4805 - OxOOOO4807 
OxOOOO4B04 

OxOOOO4BOO - OxOOOO4B03 
OxOOOO4AFF 
OxOOOO4AFE 
OxOOOO4AFD 
OxOOOO4AFC 

0x00004A04 - OxOOOO4AFB 
Ox00004A03 

OxOOOO4A02 
OxOOOO4A01 
OxOOOO4Aoo 

0x00004981 - OxOOOO49FF 
OxOOOO4980 

0.00004941 - Ox0000497F 
0x00004940 

0x00004911 - o.OOOO493F 
0x00004910 

0x00004909 - o.000049OF 
0x00004908 

0.00004905 - Ox00004907 
Ox00004904 

0.00004900 - 0.00004903 
o.OOOO48FF 
OxOOOO48FE 
OxOOOO48FD 
OxOOOO48FC 

Ox00004804 - OxOOOO48FB 
0x00004803 

0x00004B02 
0x00004801 
0x00004800 
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DESCRIPTION 

ReMrved. 

Reserved 
Global CAMMU, _, regIS"" 

ReMrved. 
Global CAMMU, C_oI regl_ -Global CAMMU, Faull rO!lls"" 
Ro_. 
Global CAMMU, Us .. Page D.oday ~ regl_ 
Ra_ 
Global CAMMU, SUpervosor Pago Directory 011001 reglo"". 
Ra_ 
Global CAMMU, TLB Uno Sol 63, X Uno, VA FIeld. 

Global CAMMU, TLB Uno Sol 83, X Un .. RA FI4Id. 

Global CAMMU, TLB Uno Set 63, W Uno, VA Field. 

Global CAMMU, TLB lJne Sol 63, W Uno, RA Field. 

Global CAMMU, Uno Sots 1 Ihraugh 62. 

Global CAMMU, TLB lJno SolO, X Une, VA FIeld 

Global CAMMU, TLB lJno SolO, X une, RA Foeid. 

GI_I CAMMU, TLB Uno SolO, W Une, VA Relel. 

Global CAMMU, TLB Un. SolO, W Uno, RA FIeld 

Ro_. 
I-CAMMU, _'r09l_. 
Ro_. 
I-CAMMU, Conb'oI ragl_. -. I-CAMMU, Faullro!lloter. -I-CAMMU, User Pego Dlrecklry Ollsot regISter 
Ra_ 
I-cAMMU, SUpervisor Page Dlroday O_'r09l_ 
ReMrved. 
I-cAMMU, TLB lJneSo163, X uno, VA Field 

I-cAMMU, TLB lJneSo163, X Uno, RA Field 

I-cAMMU, TLB lJnoSoI63, WUne, VA Foeid. 

I-cAMMU, TLB lJnoSoI63, W uno, RA Foeid. 

I-CAMMU, Uno Sots llhrough 62. 

I-CAMMU, TLB Uno SolO, X Une, VA Reid 

I-cAMMU, TLB Uno SolO, X lJne, RA Rold. 
I-cAMMU, TLB lJneSoIO, W Uno, VA Field 

I-cAMMU, TLB Uno Set 0, W uno, RA Field -. D-CAMMU, _, regIS"" -D-CAMMU, C_oI r09l-. 

ReMrved 
D-CAMMU, Faull rogl_. -. D-CAMMU, U .. Pago Dlroday OfliIot raglster -D-CAMMU, SUpervilOf Pego Dlrect>ry 0_' regoslor -. D-CAMMU, TLB lJno Sol 63, X uno, VA FIeld. 

D-CAMMU, TLB Uno Sot 63, X Uno, RA Field 

D-CAMMU, TLB Uno Sol 63, W une, VA Field. 

D-CAMMU, TLB lJno Sol 63, W uno, RA Field 

D-CAMMU, lJn. Sots 1 Ihraugh 62. 

D-CAMMU, TLB lJno SolO, X uno, VA Fooid 

D-CAMMU, TLB Uno SolO, X uno, RA Fooid 

D-CAMMU, TLB lJnoSoIO, W Une, VA Reid 

D-CAMMU, TLB Un. Sot 0, W Uno, RA FIeld 
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The Reset Register bits and their associated reset 
operations are as follows: 

Bit # 
6 
5 
4 
3 
2 
1 
o 

Bit Name 
RU 
RR 
RO 

RUV 
RSV 

RLVX 
RLVW 

Reset Operation 
Reset All U Flags in Cache 
Reset All R Flags in TLB 
Reset All 0 Flags in TLB 
Reset All UV Flags in TLB 
Reset All SV Flags in TLB 
Reset All "X" Line LV Flags in Cache 
Reset All "W· Line LV Flags in Cache 

The reset operations shown are performed by writing to 
the Reset Register with the appropriate data pattern. 

These CAMMU registers. as well as the CAMMU TLBs. 
are located in virtual page 4. which is translated by the 
Hardwired TLB into Page 0 of 110 space. A map of 
CAMMU 110 space is shown in Figure 30. 

The CPU accesses the O-CAMMU 110 space directly. 
The CPU accesses the I-CAMMU 110 space indirectly 
via the O-CAMMU. because the I-CAMMU/CPU Instruc­
tion Bus is tied to CPU instruction buffers which only 
transfer instructions. 

7.6.6. CAMMU Register Access 
The O-CAMMU registers are located in virtual address 
4800-49FF (Hex). The I-CAMMU registers are located 

Figure 31 CAMMU Addressing 
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O. D-CAMMU TLB 
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3 = I-CAMMU REG 
4 _ GLOBAL TLB 
5 • GLOBAL REG 
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7- RESERVED 
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in virtual address 4AOO-4BFF. These addresses are 
used to access registers in individual CAMMUs. 

The CAMMUs can also be addressed as a group using 
global addresses for TLB writes. register writes. and 
TLB/cache reset. In systems utilizing multiple CLIPPER 
Modules. for example. a CPU can execute global writes 
to CAM MUs other than its companion O-CAMMU by ac­
cessing virtual address locations 4Cnn (Hex. TLB write). 
and 40nn (Hex. register write. and TLBlcache reset). 
110 devices can execute the global writes by accessing 
Cnn and Onn (Hex). 

Global writes are typically used in multi-CPU systems 
when main memory pages that are shared by more 
than one CLIPPER Module are replaced. If the virtual 
address of a page being replaced is identical for all 
modules sharing the page. a single global write to 
CAMMU 110 space can be used to invalidate the TLB 
entry corresponding to the outgoing page in all 
CAMMUs. 

Register Addressing 
CAMMU 110 space addresses are shown in Figure 31. 
Virtual address bits <31 :11> comprise the CAMMU 
Base Address field. which must point to the upper half 
of virtual page 4 for CAMMU access. 

Virtual address bits <10:8> comprise the CAMMU 
Select field. This field identifies the following: 

~ 
TLBUNESETSELECT 

XIW UNE SELECT Ir (1 = x SELECn 

v AlRA SELECT r (1 = VA SELECn 

) 

IF 
TLB 
ACCESS 

87 2 1 0 

REGISTER SELECT 

04 = SUPERVISOR PDO REGISTER ) 
08 = USER PDO REGISTER 
10 _ FAULT REGISTER 
20 - RESERVED 
40 = CONTROL REGISTER 
80 = RESET REGISTER 
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Bit No. CAMMU 
10 9 8 Selected Operation/Access 

0 0 0 D-CAMMU RlWTLB 
0 0 1 D-CAMMU RIW Registers; Reset 

TLBlCache 
0 0 I-CAMMU RlWTLB 
0 1 I-CAMMU RIW Registers; Reset 

TLBlCache 
0 0 Global Write TLB 
0 1 Global Write Registers; Reset 

TLBlCache 

Note: 
The TLBs and caches are reset by writing to the Reset 
Register. 

The first four entries show individual 1- and D-CAMMU 
addressing. The last two entries show global address-

Figure 32 TLB Acceaa Data Formats 

(a) TLB RA FIELD ACCESS FORMAT 
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RESERVED 
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ing, intended for use in systems utilizing more than one 
CLIPPER Module. A CPU uses global addressing in 
such a system to access a specific register or to reset 
the TLB and cache in all CAM MUs in the system other 
than its own D-CAMMU. 

Bits <7:0> of the virtual address comprise the Register 
Select field. This field identifies the register or the TLB 
field being accessed. All five CAMMU registers, and in­
dividual VA (Virtual Address) and RA (Real Address) 
fields of the TLB can be addressed. 

If the operation is a TLB access, virtual address bits 
<7:2> address one of the 64 TLB entries, bit <1> ad­
dresses the W or X line of the TLB entry, and bit <0> ad­
dresses the VA or RA field of the addressed TLB line. 

If the operation is a register access, virtual address bits 
<7:0> address the registers as follows: 

L...-__ USED FLAG 

L...-____ REFERENCED FLAG 

'------- DIRTY FLAG 

REAL 
ADDRESS 

SYSTEM 
TAG 

PROTECTION 
LEVEL 

(b) TLB VA FIELD ACCESS FORMAT 

31 18 17 3 2 1 0 

I VA I o ISVluVlol 

t 
VIRTUAL 

ADDRESS 
TAG 

i 
RESERVED 1 t RESERVED 

USER VAUD FLAG 

A081 '------- SUPERVISOR VALID FLAG 
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Bits 
<7:0> 

00000000 
00000001 
00000010 
00000100 
00001000 
0001 0000 
00100000 
01000000 
10000000 

Register 
Addressed 

Reserved, Must Be Zero 
Reserved, Must Be Zero 
Reserved, Must Be Zero 
Supervisor PD~ (readiwrite) 
User PD~ (read/write) 
Fault (read only) 
Reserved, Must Be Zero 
Control (readlwrite) 
Reset (write only) 

CAMMU Data Format 
The format of data written to and read from the 
CAM MUs varies according to the register or TLB field 
addressed. Both the fields and the number of data bits 
used in the 32-bit data words written to the CAMMUs dif­
fer to accommodate individual CAMMU registers and 
register types. 

TLB Access Data Format 
TLB access data formats are shown in Figure 32. Two 
formats are used. One format is used when accessing a 
TLB RA field; the second is used when accessing a 
TLB VA field. 

Figure 32A shows the data format used when accessing 
a TLB RA field. When accessing an RA field, the Sys-

Figure 33 PDO Register Access Format 
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tem Tag and Protection Level fields and the Rand D 
flags of the addressed TLB line are also accessed, as 
well as the U flag of the TLB set containing the TLB line. 

Figure 328 shows the data format used when accessing 
a TLB VA field. The UV and SV flags of the TLB line are 
also accessed. Note that several data bits are not used. 
These bits are reserved by Intergraph and must be zero. 

PDO Register Access Data Format 
Figure 33 shows the data format used when accessing 
either the supervisor or the user PD~ register. Bits 
<31:12> are used to transfer the 20-bit PD~ data; bits 
<11 :0> are reserved by Fairchild and must be zero. 

Fault Register Data Format 
The 32-bit address in the Fault Register is read as a 32-
bit data word. 

Control Register Access Data Format 
The least-significant nine bits are used when accessing 
the Control Register; bits <31 :9> are reserved by 
Intergraph and must be zero. 

Reset Register Access Data Format 
The seven least-significant bits are used when access­
ing the Reset Register; bits <31 :7> are reserved by 
Intergraph and must be zero. 

1211 o 

I PDO I 0 ~------------------------~----------------~I~ 
i 

PAGE DIRECTORY 
ORIGIN 

NOTE: 
This format is used for both the user and supervisor PD~ register access. 
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8. CLIPPER Hardware Reset 
The CLIPPER Module is reset when power is initially ap­
plied to the module (power-on reset), and when RESET 
is asserted lOW during operation. 

The response of the CPU to a hardware reset is as 
follows: 

(1) The T flag in the PSW is cleared; the remaining 
flags in the PSW are undefined. 

(2) The following SSW flags are cleared: EI, TP, 
M, U, K, KU, UU, and P; the remaining SSW 
flags are undefined. 

The response of each CAMMU to reset is as follows: 

(1) All lV (Line Valid) flags in the cache are cleared. 
(2) All U (Used) flags in the cache are cleared. 
(3) All UV (User Valid) flags in the TLB are cleared. 
(4) All SV (Supervisor Valid) flags in the TLB are 

cleared. 

Figure 34 CLIPPER Module Following Reset 

PROGRAM STATUS WORD 
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(5) All D (Dirty) flags in the TlB are cleared. 
(6) All R (Referenced) flags in the TlB are cleared. 
(7) Bits <8:0> of the Control Register are set to 3F. 
(8) The Reset Register is cleared. 

Reset therefore places the CLIPPER Module in un­
mapped supervisor mode with all traps and conditional 
interrupts disabled and with Bus Watch and prefetching 
enabled. Figure 34 shows the state of the CLIPPER 
Module's CPU control registers, and the CAMMU's 
registers, TLB, and cache lines following reset. While 
RESET is asserted, all CLIPPER Module Bus active 
LOW signals are pulled HIGH (via pull-up resistors), 
and all active HIGH signals are forced lOW. BCLK con­
tinues clocking normally. 

RESET must be held low for a minimum of 100 BCLK 
cycles after Voo reaches Voo min when power is initially 
applied to the CLIPPER Module (see Figure 35). This 
ensures adequate module reset time. It must be 
released in synchronization with BClK. RESET must be 

MTS CTS T 0 FR EFT EFO EFV EFX F1 FV FD FU FX C v Z N 

Ix Ix 10 10 Ix Ix Ix Ix Ix Ix Ix I x I x I x 
SYSTEM STATUS WORD 

P U K 

I 0 I 0 I 0 

PDO REGISTER 

PDO 0 

I x I 0 I 
FAULT REGISTER 

VIRTUAL ADDRESS 

UU KU M 

o I 0 I 0 

I x x I 
CONTROL REGISTER 

0 cv 0 UST EWIR EWIW EWCW 

I a I a I a 111 I 1 I 1 I 1 

RESET REGISTER 

0 RU RR RD RUV RSV RLVX 

I 0 I 0 I a I 0 I 0 0 I a 

TLS LINES 
SV UV VA RA ST S PL 

I 0 I 0 I x I x I x x I x 
CACHE LINES 

LV LD RA WO W1 W2 W3 

I 0 I x I x x x I x x 
X= UNDEFINED 

ECM TP FRO o EI IL IN 

I x I a I a ololxlx 

EP 

I 1 

RLVW 

I 0 

D R U 

I a 0 I x I 0 

U 

I 0 
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held lOW for a minimum of 100 BClK cycles when as­
serted during operation, and both the assertion and 
release of RESET must be synchronized with BClK. 

The CLIPPER Module executes diagnostic routines fol­
lowing release of RESET if URDIAG is asserted during 
the two BClK cycles following the release of RESET 
(see Section 9.4.9, Diagnostics Contro~. Then it begins 
execution at supervisor virtual address 6OooH, which is 
mapped by the HTlB to real address 0 of Boot space. 

9. CLIPPER Bus 
The CLIPPER Module interfaces to external system 
devices and functional units such as main memory, 110 
devices and peripherals, and other CLIPPER Modules 
via the CLIPPER Bus-a high-speed, synchronous bus 
designed to support multiple bus masters. 

Figure 35 Reset Timing 

100 BCLKS MIN 

CLIPPER™ C100 
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Advance Information 
The bus includes 32 bidirectional, multiplexed ad­
dress/data lines which support byte, halfword, word, and 
quadword transfers. A separate interrupt bus allows fast 
interrupt management by the CLIPPER Module with no 
address/data line loading or contention, thereby increas­
ing the effective bus bandwidth. The bus protocol allows 
devices that are clocked at different rates to interface to 
the CLIPPER Module through the use of wait states as 
required, and bus arbitration to be centralized in a 
simple, fast bus arbiter. The bus supports Bus Watch, 
which monitors the bus and takes corrective action to 
ensure data consistency between the CAM MUs and 
main memory. 

The bus utilizes a single clock (BClK), generated by 
the Clock Control Unit, for system clocking. All CLIP­
PER Module signal sampling and signal assertion are 

RESET L....-I __ ° __ ----11 -1 0 r-
, J0L I 

BUS ~~ _____________ Q)_2 __________________ _')x(~------~-------
\. 

URDIAG, 0 
~(--------------~~------------------~ 

Notes: 

1. RESET transitions must be synchronized with BCLK rising edges. 

2. CLIPPER Bus is inactive until first instruction fetch. 

3. Internal CPU startup time. 

4. CPU diagnostics execution ff URDIAG was asserted during the 2 BCLK cycles following release of RESET. 

5. Fetch from boot space. 

6, URDIAG is asserted during RESET ff CPU diagnostics execution prior to instruction execution is desired. URDIAG 
must remain asserted for at least 2 BCLK periods following release of RESET to assure recognition and can 
then either remain asserted or be released with no further effect on CLIPPER Module operation. 
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gated on the rising edge of this clock. All module out­
puts except BCLK are open drain and are tied to pullup 
resistors inside the module. These signals are tied to a 
96-pin connector for interfacing to user-designed sys­
tems, where they may be buffered. 

The CLIPPER Module Bus consists of the following 
groups of bus lines and signals: 

- Address/Data multiplexed lines used for address and 
data transfer 

The signals tied to the CLIPPER Module connector con­
stitute the CLIPPER Bus, shown in Figure 36. These sig­
nals are interfaced through buffers and logic devices as 
shown in Figure 37. Note that this interface includes 
ORed logic and address/data signal transceiver control 
(DIR). 

- Cycle Type signals used to identify the number of 
bytes or words transferred during a bus operation, to 
identify the operation as a read, write, or global 
write, and to identify the bus master executing the 
operation as a CPU or an 1/0 device 

Figure 36 CLIPPER Bus Signals 
_ AO,.< 32 __ ADDRESS/DATA 

-- OIR ---..., .. ~ BUFFER CIR CONTROL 

_ CT,.<6 ---.~ CYCLE TYPE 

_ TG,.<3 • MEMORY SPACE SYSTEM TAG 

-- CBSYd _ O·CAMMU CACHE BUSY 

-- CBSYi __ I.CAMMU CACHE BUSY 

-- LOCK -----l.~ BUS LOCK 

- Tii ----.. TRANSFER REO (BUS ACTIVE CYCLE) 

-- ROYol __ READY OUTPUT I.CAMMU 

-- ROYo -----l.~ READY OUTPUT O·CAMMU 

_ROYi---- READY INPUT 

-- BRd ----i.~ BUS REO O.CAMMU 

_BGd---- BUS GRANT O·CAMMU 

-- BRI ---~.. BUS REO I.CAMMU 

_ BGI BUS GRANT I.CAMMU 

_ MSBE/RETRY- SINGLE BIT ERROR/RETRY 

_MMBE--­

_BERR----

MULTIPLE BIT ERROR 

BUS ERROR 

- IVEC,.<B --- INT VECTORS 

_ IRO ---- INT REO 

-- lACK ---.. INT ACK 

_ NMT NON.MASK INT 

-- Ni.IiACi( __ NON.MASK INT ACK 

OSCILLATOR INPUT _OSC---­

_RATE---- BCLK CONTROL (60 OR 120NS) 

-- BCLK --~.. BUS CLOCK 

_ RESET --- MASTER RESET 

-- URF---_ .. ~ UNRECOVERABLE FAULT 

_ URDIAG --- APPLY DIAGNOSTICS 
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Figure 37 Module to CLIPPER Bus Interface 
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- Memory Space System Tags used to identify 
address space being accessed and the caching 
policy which applies to the accessed data 

- Error signals used to report memory errors and bus 
errors 

- Bus arbitration handshaking signals 
- Interrupt control lines 

Figure 38 Example CUPPER System (Block Diagram) 
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- Interrupt vector bus 
- Bus protocol control lines 

An example CLIPPER Module system implementation 
showing these signals is depicted in Figure 38. Table 12 
contains detailed descriptions of the CLIPPER Bus 

BCLK 

~ 
/32 

6 

3 MEMORY MAIN 
INTERFACE MEM 

2 

3 
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~ 
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Table 12 CLIPPER Bus Signal Descriptions 

Signal 

AD 
<31:0> 

TG 
<2:0> 

Type 

1/0 

o 

1/0 

Description 

ADDRESS/DATA. This is a positive logic (HIGH = logic 1) multiplexed address and data 
bus which is tied to the CAMMUs. 

DIRECTION CONTROL. This control signal can be used to control the drive direction of 
TIL tranceivers interfacing AD <31 :0> to the CLIPPER Bus. A master CAMMU asserts DIR 
during an entire write operation and during the first two cycles of a read operation. A slave 
D-CAMMU asserts this signal when transferring data during an 1/0 read; a slave I-CAMMU 
asserts this signal when transferring data to a companion D-CAMMU. Drive direction is 
from CAMMU to the CLIPPER Bus when DIR is low. 

MEMORY SPACE SYSTEM TAGS. These three CAMMU Signals identify the address 
space being accessed, the page type, and the caching policy which applies to the ac­
cessed page. In addition, they signal two special operations, Cache Purge and Slave I/O 
mode. System tags are derived from one of four sources. In mapped mode, they are 
selected during address translation from the TLB, the HTLB, or from page tables in main 
memory. In unmapped mode, TG<2> is zero and TG<1 :0> is selected by the UST bits in 
the CAMMU Control Register.TG<2:0> tag encoding is as follows: 

TG2 TG1 TGO Encoding 
o 0 o main memorylprivate cacheablel write-through 
o 0 1 main memorylshared cacheablelwrite-through 
o 1 o main memorylprivate cacheable/copy-back 
o 1 1 main memory/noncacheable 
1 0 o 1/0 space/noncacheable 
1 0 1 boot space/noncacheable 

o cache purge 
1 slave 1/0 modelmain memory/noncacheable 

Note: The slave CAMMU can continually monitor the Memory Space System Tag and 
check for cache/main memory data consistency when the Bus Watch modes are enabled. 
The Bus Watch modes, when enabled, are invoked during the following CLIPPER Bus 
operations: 

(1) 1/0 writes to shared or private pages. 
(2) CPU writes to shared pages. 
(3) 1/0 reads from private copy-back pages. 

Frequently systems require the transfer of data between main memory and an 1/0 device. 
This type of data transfer is normally implemented by a CPU as a read operation into a 
CPU register, followed by a CPU write operation to the 1/0 device. This type of operation is 
accelerated by the CLIPPER Module through the use of slave 1/0 mode identified by the 
Memory Space System Tag. The slave 1/0 mode allows an 1/0 device to capture data 
being read by the CPU during the read portion of the operation. The 1/0 device must be 
able to interpret TG = 7 as slave 1/0 mode, then read the transferred data as it is being 
read by the CPU. The data read by the CPU is discarded. 
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Table 12 CLIPPER Bus Signal Descriptions (cont.) 

Signal 

CT 
<5:0> 

CBSYi, 
CBSYd 

Type Description 

1/0 CYCLE TYPE. These six CAMMU signals indicate the type of CLIPPER Bus operation in 
progress. CT <5:0> signal encoding is as follows: 

o 

o 

1/0 

Signal 
CT5 

CT4 

CT<3:2> 

CT<1:0> 

Notes: 

State 
o 
1 
o 
1 
00 
01 
10 
11 
00 
01 
10 
11 

Operation 
CPU master. 
1/0 master. 
Write operation. 
Read operation. 
Wordlhalfwordlbyte transfer. 
Quadword transfer. 
Reserved. 
Global CAMMU write. 
Whole word transfer; AD<1 :0> must be O. 
Reserved. 
Byte transfer; AD<1 :0> define the byte position. 
Halfword transfer; AD<1> defines the halfword position; 
AD<O> must be O. 

(a) CT <1 :0> have meaning only for single word transfers, with AD<1 :0> pointing to 
transferred wordlbytes. 

(b) In halfwordlbyte mode, the data must be written in the location specified by AD<1 :0>. 
(c) During a quadword transfer, the master must assert AD<3:0> all 0 to point to a 

quadword boundary. 

CACHE BUSY (I-CAMMU, D-CAMMU). A CAMMU asserts CBSY to indicate execution of in­
ternal operations associated with Bus Watch operations. Main memory data must not be as­
serted on the CLIPPER Bus while CBSYi or CBSYd is asseo1ed. If a D-CAMMU asserts 
RDYo while asserting CBSY, indicating that it is asserting more recent cache data on the 
CLIPPER Bus, main memory must abort the data transfer operation. 

BUS LOCK. LOCK is asserted by a bus master when it requires the CLIPPER Bus for more 
than one operation. LOCK is asserted by the CAMMUs during the following operations: 

(1) DTU Page Table Directory and Page Table accesses. 
(2) DTU R or 0 bit modifications in Page Tables. 
(3) Read-modify-write (test and set) operations. 
(4) Cache line replace and fetch on cache miss (quadword write followed by 

quadword read). 

TRANSFER REQUEST. TR is asserted by a bus master to indicate that a CLIPPER Bus 
operation is in progress. 
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Table 12 CLIPPER Bus Signal Descriptions (cont.) 

Signal Type 

ROYi 

ROYo o 

ROYoi 0 

BRi,BRd 0 

BGi,BGd 

MSBEI 
RETRY 

Description 

READY INPUT. ROY! is tied to both CAMMUs. During read operations, the slave with the ad­
dressed data asserts ROY! to indicate that it has asserted the data on the AD bus. During 
single word, byte or halfword write operations, the slave asserts ROY! to indicate that it.has 
latched (read) the data. During quadword write operations, the slave asserts ROY! to indi­
cate that it has latched the data word currently on the AD bus, and is ready to latch the ,next 
word. 

READY OUTPUT. ROYo is asserted by the O-CAMMU during Watch 110 Reads operations 
to indicate to the 110 device that it has asserted data on the AD bus for reading. This occurs 
when the data location being accessed in main memory is cached, and the cache data is 
more "recent" than the main memory data. ROYo can be tied to ROY on the CLlt:'PER Bus. 

READY OUTPUT. ROYoi is asserted by the I-CAMMU when it is being accessed by its com­
panion D-CAMMU. ROYoi is not interfaced to the CLIPPER Bus. 

BUS REQUEST (I-CAMMU, D-CAMMU). These signals are asserted by the respective 
CAMMUs to obtain control of the CLIPPER Bus. 

BUS GRANT (I-CAMMU, O-CAMMU). Bus Grant is asserted by the CLIPPER Bus arbitra­
tion logic in response to a Bus Request by a CAMMU, and indicates that the requesting 
CAMMU has control of the bus. 

MEMORY SINGLE BIT ERROR/RETRY. The main memory interface asserts MSBEIRETRY 
when it detects a corrected error in main memory during a read operation~lIy, in sys­
tems utilizing error correction, only single-bit errors are corrected.) MSBEIRETRY is tied to 
both CAM MUs, and is sampled by the CAMMUs when RDY! is sampled. A master CAMMU 
issues a trap to the CPU when it detects MSBEIRETRY asserted. The main memory inter­
face must not assert an interrupt when it detects a corrected data error. The MSBE/RETRY 
signal must be presented to the CAMMU by the memory interface along with (during the 
same BCLK as) ROY! and the data to indicate a corrected error. MSBEIRETRY may not be 
asserted when ROY! is inactive during main memory accesses. 

The MSBEIRETRY signal is also used to abort and retry CLIPPER Bus operations. If the sig­
nal is asserted during access of 110 space (TG=4) while ROY! is inactive, the current bus 
operation is aborted by the master CAMMU with no trap assertion to the CPU. 

Thus, if this pin is active during the same BCLK that ROY! is HIGH, an MSBE condition is 
recognized; if this pin is active during a BCLK when ROY! is LOW (for an 110 space access), 
a RETRY condition is recognized. 
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Table 12 CLIPPER Bus Signal Descriptions (cont.) 

Signal Type 

o 

NMIACK o 

RATE 

Description 

MEMORY MULTIPLE BIT ERROR. The main memory interface asserts MMBE when it 
detects an uncorrectable error in main memory during a read operation. (Typically, these will 
be multiple-bit errors, because in systems using error correction, only single-bit errors are 
corrected.) This signal must be asserted during the same BCLK cycle that nRDY is as­
serted. MMBE is tied to both CAM MUs, and is sampled by the CAMMUs when RDYi is 
sampled. A master CAMMU issues a trap to the CPU when it detects nMMBE asserted. The 
main memory interface must not assert an interrupt when it detects an uncorrectable 
data error. 

BUS ERROR. BERR should be asserted by user-designed logic to indicate a CLIPPER Bus 
error condition such as a bus timeout. BERR is tied to both CAMMUs. Upon assertion of 
BERR, the master CAMMU terminates the bus operation and indicates to the CPU that the 
operation is completed. (If the bus error occurs during a read operation, the data asserted 
on the AD bus at the time BERR is asserted is transferred by the CAMMU to the CPU). The 
CAMMU does not issue a trap in response to a bus error; the bus error logic should assert 
an interrupt. 

INTERRUPT VECTORS. This is an inverted logic (LOW=logic 1) bus, tied directly to the 
CPU. It transfers interrupt vector numbers associated with interrupt requests. 

INTERRUPT REQUEST. This signal, tied directly to the CPU, is asserted by system devices 
for interrupt service requests. Once asserted, IRQ must remain asserted until lACK is as­
serted by the CPU. An interrupt level and number must be asserted on IVEC<7:0> with 
each interrupt request. IRQ is maskable. 

INTERRUPT ACKNOWLEDGE. lACK is asserted by the CPU in response to an interrupt re­
quest (IRQ) to acknowledge that servicing of the interrupt is in progress. 

NON-MASKABLE INTERRUPT. This signal, tied directly to the CPU, is asserted by system 
devices for non-maskable interrupt service requests. Once asserted, NMI must remain as­
serted until NMIACK is asserted by the CPU. 

NON-MASKABLE INTERRUPT ACKNOWLEDGE. This signal is asserted by the CPU in 
response to an NMI request to acknowledge that servicing of the interrupt is in progress. 

BCLK RATE CONTROL. This input to the CLIPPER Module controls the CLIPPER Bus 
BCLK frequency. When RATE is tied to GND, BCLK frequency is 1/2 MCLK frequency. 
When RATE is tied to VDD, BCLK frequency is 1/4 MCLK frequency. If the standard 66.7 
MHz crystal is used in the CLIPPER Module, BCLK frequency is 16.7 MHz if RATE is tied to 
GND, and 8.3 MHz if RATE is tied to VDD. 
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Table 12 CUPPER Bus Signal Descriptions (cont.) 

Signal 

BCLK 

URDIAG 

OSC 

Type Description 

o BUS CLOCK. BCLK clocks all devices on the CLIPPER Bus. All signals must be clocked 
onto the CLIPPER Bus on the rising edge of BCLK; all signals must be latched/sampled 
from the CLIPPER Bus on the rising edge of BCLK. The propagation delay of signals 
asserted on the system bus must be less than one BCLK period and more than the BCLK 
skew between devices in order to ensure proper operation of the synchronous 

o 

CLIPPER Bus. 

RESET. This is the master reset signal which is asserted by system logic to reset the 
CLIPPER Module and other devices on the CLIPPER Bus. Upon release of RESET, the 
CPU begins instruction fetching at Boot space address O. 

UNRECOVERABLE FAULT. This signal is asserted by the CPU to indicate that it has 
stopped program execution as a result of an unrecoverable fault condition. An un­
recoverable fault occurs when the CPU encounters an error condition during execution of on­
chip diagnostic routines, or when a trap occurs during the execution of INTRAP or retl. 

APPLY DIAGNOSTICS. This input to the CPU is asserted to force the CPU to execute on­
chip diagnostic routines resulting in the following: 

(1) The diagnostics detected no error conditions. The CPU begins program execution at 
Boot space address 0 (supervisor virtual address 6000 hex). 
(2) The diagnostics detected an error condition. The CPU asserts URF and stops execution. 

RESET must be asserted when URDIAG is asserted. 

OSCILLATOR INPUT. This signal is used by the CLIPPER Clock Control Unit to derive 
MCLK and BCLK. MCLK is the CLIPPER intemal clock; BCLK is the CLIPPER Bus clock. 
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Table 13 Signal Summary 

Signal Mnemonic Input/Output 1 Active State 

Address/Data Bus AD I/O HIGH 

Direction Control DIR 0 HIGH = input 

LOW = output 

Memory Space System Tag TG I/O HIGH 

Cycle Type CT I/O HIGH 

Cache Busy CBSYi, CBSYd 0 HIGH 

Bus Lock LOCK 0 LOW 

Transfer Request TR I/O LOW 

Ready RDYi I HIGH 

RDYo, RDYoi 0 HIGH 

Bus Request BRi, BAd 0 HIGH 

Bus Grant BGi, BGd L HIGH 

Memory Single Bit Error/Retry MSBEIRETRY I LOW 

Memory Multiple Bit Error MMBE I LOW 

Bus Error BERR I LOW 

Interrupt Vector Bus IVEC I LOW 

Interrupt Request IRQ I LOW 

Interrupt Acknowledge lACK 0 LOW 

Non-Maskable Interrupt NMI I LOW 

Non-Maskable Interrupt Acknowledge NMIACK 0 LOW 

BCLK Rate Selea2 RATE I HIGH = 120 ns 

LOW = 60 ns 

Bus Clock BCLK 0 -
Master Reset RESET I LOW 

Unrecoverable Fault URF 0 LOW 

Apply Diagnostics URDIAG I LOW 

Oscillator Input OSC I -

Notes: 
1. Inputs are designed with a nominal switching threshold of 1.3 V and are therefore referred to as TTL compatible. All 

outputs (excluding BCLK, and URF) are open drain structures with pull-up resistors (220 Ohms) to Vee on the 
module. BCLK and URF are standard CMOS output signals. If an extemal pull-up is used for URF, it must be at 
least 220 Ohms. Timing parameters are referenced to standard TTL levels. 

2. The BCLK period values shown are for an OSC frequency of 66.7 MHz. 
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signals, and Table 13 contains a summary of the bus 
signals. 

9.1. System Clock 
The CLIPPER Module is clocked by an extemal oscil­
lator signal, OSC. A Clock Control Unit derives two 
clocks from OSC: MCLK and BCLK. 

MCLK (Module Clock) is the internal CLIPPER master 
clock, used to drive the CPU, the CAMMUs, and 
associated module logic. The frequency of MCLK is 
one half the frequency of esC. Therefore, if the typical 
MHz esc frequency is used, the MCLK frequency is 
33.3 MHz. 

BCLK (Bus Clock) is the CLIPPER Module system 
clock, used to clock devices interfaced to the CLIPPER 
Bus. The CLIPPER Bus is synchronous: all data and 
control signals are asserted and sampled on the rising 
edge of BCLK. BCLK frequency is either one half or 
one fourth the frequency of MCLK, depending on the 
state of the CLIPPER Module Rate control pin. If RATE 
is tied to GND, BCLK frequency is one half the frequen­
cy of MCLK; if RATE is tied to VCC, BCLK frequency is 
one fourth the MCLK frequency. Therefore, assuming 
an OSC frequency of 66.7 MHz, BCLK frequency is 
either 16.7 MHz (60ns) or 8.3 MHz (12Ons). BCLK is in 
phase with MCLK, with the LOW to HIGH transitions of 
the clocks occurring in phase with a skew of less 
than ± 5ns. 

9.2. System Configuration 
Any device (or functional unit) which meets the 
CLIPPER Bus protocol and electrical requirements 
(timing, threshold, and loading) can be interfaced to the 
CLIPPER Bus. Such devices include memory, I/O 
devices, and subsystems as well as the CLIPPER 
Module. A typical CLIPPER system configuration is 
shown in Figure 39. 

Up to 4 G-bytes of memory can be addressed by the 
CLIPPER Module via its 32-bit address bus. This 
memory can be interfaced directly to the CLIPPER Bus 
if required. 
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I/O devices such as disk controllers, bus translators, 
data communications devices, and associated control 
logic such as bus arbitration units and interrupt control-

Figure 39 CLIPPER System 
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lers, can also be interfaced to the bus. Such-Elevices 
may be "off-the-shelf" or user-designed. I/O devices are 
typically located in I/O space, but can also be located in 
main memory space. 

9.3. Definitions 
Several terms are used in the following text which may 
not have universally accepted meanings. These terms 
and their defintions as used in this text are as follows: 

Master: 
A device which has control of the CLIPPER Bus. A 
master gains control of the bus by asserting BR (Bus 
Request), then receiving BG (Bus Grant) from bus 
arbitration logic. 

Slave: 
A device that is being addressed via the CLIPPER 
Bus. A slave is addressed by a master. 

Memory interface: 
Logic which controls data transfer to and from main 
memory. 

1/0 Write: 
Write by an I/O device. 

I/O Read: 
Read by an I/O device. 

Figure 40 Cache Line Replacement 
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9.4. Bus Protocol 
CLIPPER Bus operations are governed by the following 
rules: 

(1) A bus master cannot introduce wait states. This 
requires that a bus master be able to transfer data at 
the maximum rate allowed by the bus protocol. 

(2) Slaves may introduce wait states by delaying the 
assertion of ROY (Ready) on the CLIPPER Bus. 
Wait states can be introduced between the address 
and data cycles of an operation by delaying ROY 
and between data words in a quadword transfer by 
toggling ROY. 

(3) All CLIPPER Bus signals must be sampled on the 
positive edge of BCLK. 

(4) All signals must meet required set-up and hold 
times with respect to the positive transition edge of 
BCLK.Signals must not transition within the Tsu set­
up time of BCLK rising edge or undefined states 
within the CLIPPER Module can result. 

(5) If ROYo (Ready out) is asserted on the CLIPPER 
Bus by a CAMMU while CBSY is active, the memory 
interface must abort its data transfer. 

9.4.1. Bus Arbitration 
A bus arbitration unit which arbitrates control of the 
CLIPPER Bus must be implemented in systems utilizing 
the CLIPPER Module. The unit must be capable of 
receiving bus requests from each of the possible bus 
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masters via Bus Request lines (BRx, where 'x' ic:len­
tifies a particular bus master), and must be able to as­
sert a Bus Grant (BGx) for each bus master. The unit 
may support priority assignment such that in cases of 
multiple requests for the bus, the bus arbitration unit 
grants the bus to the highest-priority requesting device. 

A bus master should hold BRx asserted during its entire 
access of the CLIPPER Bus, then should release BRx 
as soon as possible after completion of its data transfer 
in order to maintain high system throughput. The bus ar­
bitration unit should hold BGx asserted until the bus 
master has released BRx. 

Multiple Bus Operations 
A bus master can execute multiple bus operations by 
holding its BRx signal asserted until it has completed all 
its data transfers. Read-modify-write operations, for ex­
ample, require that the bus masters executing the opera­
tions maintain control of the bus during the reads and 
following writes, and the bus master maintains this con­
trol by holding BRx asserted until after completion of the 
write. Another example of a multiple-bus operation is 
the replacement of a cache line as a result of a cache 
miss. As shown in Figure 40, the operation consists of a 
quadword write of the cache line to memory if the line is 
dirty, followed by a quadword read of the replacement 
line into the cache. 

9.4.2. Bus Control 
The bus control signals indicate CLIPPER Bus opera­
tion status which is used to implement bus protocol and 
control, support Bus Watch, and give a bus master the 
means to secure the bus indefinitely in order to com­
plete multiple bus operations. 

A Ready Input (ROYi) tied to each CAMMU is used to 
synchronize data transfers between CLIPPER, 110, and 
memory. When a CAMMU reads data, it holds the bus 
in a read state until the responding device asserts 
ROYi, indicating that the data to be read is on the bus. 
When a CAMMU writes data, it provides data on the 
clock following the address phase of the operation until 
the device being written to asserts ROYi, indicating that 
it has latched the data. ROYi is thus used to accom­
modate various response times of devices on the bus. 
This eliminates the need to introduce for all data trans-
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fers the number of wait states necessary to accom­
modate the slowest device on the bus. 

Ready Out (ROYo) is asserted by the O-CAMMU during 
Bus Watch operation in response to an I/O read of 
memory data that is cached. ROYo is active only during 
this operation. If the memory page being read is tagged 
as a copy-back page, then changes to the page data in 
the cache are not copied to the page in main memory 
until the page is replaced by the operating system. If an 
I/O device reads data from memory that is cached, and 
if the cache has updated data that has not been copied 
to the memory location being read, the O-CAMMU as­
serts ROYo while asserting CBSYd. This aborts asser­
tion of memory data. (The memory interface must be 
designed to abort the memory operation when both 
CBSYd and ROYo are asserted.) The O-CAMMU in­
stead asserts the updated cache data on the CLIPPER 
Bus, which is read by the I/O device, and ROYo. In this 
way, transfer of valid data to I/O devices is assured. 

Ready Out I-CAMMU (ROYoi) is asserted by the 
I-CAMMU to indicate assertion or latching of data in 
response to access by the O-CAMMU. Since only the 
O-CAMMU can access the I-CAMMU, this signal is tied 
only to the O-CAMMU. 

Two Cache Busy signals, one for the I-CAMMU (CBSYi) 
and one for the O-CAMMU (CBSYd), are used to indi­
cate CAMMU internal operations associated with Bus 
Watch. CBSYi and CBSYd may be ORed to form a 
single Cache Busy (CBSY) signal on the CLIPPER Bus 
as shown in Figure 37. When a CAMMU Bus Watch 
mode is invoked during a memory access, the affected 
CAMMU asserts Cache Busy to indicate that it is check­
ing whether the accessed data location is cached (see 
Figures 55 and 56). 

If the bus operation is a write, the memory interface 
must not assert ROYi until CBSY is released by the 
CAMMU. This ensures that the CAMMU has time to up­
date data in its cache before the bus operation is com­
pleted. If the operation is a read, the memory interface 
must not drive the drive the Address/Data bus until 
CBSY is released. This allows the CAMMU to abort 
assertion of data by the memory interface, and to 
provide cached data if required (see Ready Out 
description). 



Transfer Request (TR) is asserted by bus masters to in­
dicate that CLIPPER Bus operations are in progress. 
While Transfer Request is asserted, no bus master 
other than the one controlling the bus can gain bus ac­
cess. 

Lock (LOCK) is used in dual-bus applications in which 
the CLIPPER Bus is interfaced to a separate I/O bus 
through a bus adapter or a dual port memory, this 
provides CLIPPER Bus masters with a means of main­
taining control of the I/O bus or dual port memory 
throughout successive bus operations. LOCK becomes 
active during DTU page table access, cache line re­
placement, and read-modify-write operations. 

Direction Control (DIR) is used to control drive direction 
of TIL transceivers buffering the CLIPPER Module Ad-

Figure 41 Single Word Read (1 Walt State) 
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dress/Data bus. This signal controls the transceivers 
with proper timing for all bus operations, eliminating the 
need for such logic in the system. 

9.4.3. Memory Errors 
Memory data errors ar~rted with the Memory 
Single Bit Error/Retry (MSBE/RETRY) and the Memory 
Multiple Bit Error (MMBE) signals. These signals are as­
serted by error detection and correction logic within the 
memory interface to indicate that a single-bit error has 
been detected and corrected (MSBE/RETRY), or that 
an uncorrectable multiple-bit error has occured (MMBE). 
The signals, tied directly to the CAMMUs for fast 
response, force traps t~handling routines. Timing 
for MSBEIRETRY and MMBE is shown in Figure 41. 
Note that the signals are asserted during the same 
cycle that RDYi is active. 
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In cases of multiple-bit and single-bit errors, the 
CAMMU Fault Register does not capture the addresses 
causing the errors. It is therefore necessary to design 
an address snapshot register into the system to capture 
addresses for use by the trap routine servicing single-bit 
errors if analysis of the errors is required. 

The MSBEIRETRY signal is also used to abort and 
retry CLIPPER Bus operations. If the signal is asserted 
during access of 110 space (TG = 4) while RDYi is inac­
tive, the current bus operation is aborted and retried 
with no trap assertion. This feature is intended to 
resolve Bus Lockout in dual-bus systems, which occurs 
when a CLIPPER Bus master and an I/O processor 
(lOP) bus master simultaneously request access to 
each other's buses. For example, if CLIPPER has con­
trol of the CLIPPER Bus for attempted access of the I/O 
bus at the same time that an 110 bus master has control 

Figure 42 Bua Retry (Single Word Read Example) 
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of the 110 bus for attempted access of the CLIPPER 
Bus, each bus master waits for the other to release its 
bus. Each bus master is therefore "locked out" from the 
other bus until one of the masters is forced to release 
its bus. Simple logic in the interbus interface logic can 
be used to assert MSBEIRETRY whenever a CLIPPER 
request for the I/O bus occurs simultaneously with an 
lOP request for the CLIPPER Bus. This forces the CLIP­
PER to abort its bus operation and release the CLIP­
PER Bus, then re-arbitrate access to the CLIPPER Bus 
for a retry of the aborted operation. The lOP can gain 
access to the CLIPPER Bus after the abort by the 
Module but before the retry, thus eliminating the Bus 
Lockout condition. The CLIPPER then waits for comple­
tion of the I/O operation before gaining access to the 
1/0 bus for the retry. Timing for bus retry is shown in 
Figure 42. 

__ ABORTED OPERATION __ •• -----WAIT-----•• _RETRY--

RDYi 

MSBE/RETRY 

Tarb 

I 
' .. ~ 

~--------7--;---------;-" Llr"'---:'-
~-;-----------;---------;....--,I \ Ijr-i---I -

I "'j\-
-~~-~~~~_,-~---------71------- I ~SS 

~ __ ~ ____ ~7 I~ 

~_---;-I _ ____'_'I !r--"'~ 
I -- ... ------------,-------------.. ·----·------v,..-------

NOTE: ____ _ 
Retry occurs when MSBE/RETRY is asserted while RDYi is released 
during access of 110 space only (TG = 4). 

77 

A087 



In summary, the Memory Single Bit Error/Retry signal 
operates as follows: 

1. If the signal is asserted during any time other than ac­
cess to I/O space and during the same clock cycle that 
ROY! is active, the signal reports a corrected memory 
single-bit error. This causes the CAMMU to generate a 
trap to the CPU. 

2. If the signal is asserted during access of I/O space 
(TG = 4) while ROY! is inactive, the current bus opera­
tion is aborted and retried by the master CAMMU with 
no trap assertion to the CPU. 

9.4.4. Bus Error 
A bus operation can be aborted by the assertion of 
BERR (Bus Error) by user-designed logic implemented 
in the CLIPPER system (see Figure 43). Bus error con­
ditions should be detected by the bus error logic, which 
should then assert BERR and an interrupt request (via 
the interrupt logic). The CAMMU terminates the system 
bus access and releases the bus when it detects the 

Figure 43 Bus Error 
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assertion of BERR. The CPU should use the interrupt re­
quest to vector to a routine designed to resolve the bus 
error condition. 

BERR must be asserted by the bus error logic for one 
BCLK cycle. The state of the CLIPPER Bus associated 
with the bus error may be stored by the bus error logic 
for use by the bus error interrupt service routine. 

9.4.5. Unrecoverable Fault 
Some errors allow no clean means of recovery for con­
tinuation of program execution. These errors include the 
occurrence of a trap during execution of INTRAP or 
reti, and the detection of a fault during self-test (see 
Section 9.4.9). A trap during execution of INTRAP or 
retl can be avoided by ensuring that the Exception Vec­
tor Table is set up prior to the occurrence of a trap con­
dition, and that the supervisor stack pointer always 
points to a valid page. No other conditions generate an 
unrecoverable fault. 

Were the CPU to ignore these error conditions and con­
tinue execution, effects on the system could be 
catastrophic. A faulty or "lost" CPU could execute ran­
dom writes to memory and I/O, for instance, corrupting 
data in both main memory and secondary storage. The 
CLIPPER CPU offers protection from catastrophic 
failure by stopping program execution immediately upon 
detection of one of the unrecoverable fault conditions, 
before the system is corrupted. It then asserts the Un­
recoverable Fault signal (URF) as a hardware indication 
that the CPU is halted due to an unrecoverable error, 
and that human intervention is required to correct the 
problem. 

9.4.6. Walt Siaies 
Slow devices can introduce wait states by delaying 
assertion of ROY on the CLIPPER Bus during bus 
operations. Wait states consist of an integral number of 
BCLK periods during which time the master device 
remains in a "waiting" state until the slave device as­
serts ROY to indicate that it has asserted data on the 
bus (if a read operation by the master), or has read 
data from the bus (if a write). Wait states are further ex­
plained in the following descriptions of bus operations. 



9.4.7. CUPPER Bus Operations 
Unless otherwise noted, the signal nomenclature used 
in this section describe the signals as shown in 
Figure 37. 

- ROY is tied to ROYo to form a single ready signal 
(ROY). ROY is gated with ROYoi on the CLIPPER 
Module Interface. 

- CBSYd and CBSYi on the CLIPPER Module 
Interface are gated to form a single ORed CBSY 
signal on the CLIPPER Bus. 

A CLIPPER Bus operation begins when a bus master re­
quests the bus by asserting its Bus Request signal and 
receives Bus Grant from the bus arbitration unit. The 
bus master can then execute one of four bus opera­
tions: a read operation, a write operation, a global write 
operation, or a multiple memory access operation. 

Figure 44 Quadword Read (No Walt States) 
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Read Operation 
Upon receiving Bus Grant (BGx), the master (possibly a 
CAMMU) asserts TR, Memory Space System Tag 
(TG<2:0», Cycle Type (CT <5:0», and a real address 
(AO<31:0» on the bus. The Memory Space System 
Tag, Cycle Type, and TR signals remain asserted during 
the entire operation. However, the bus master three­
states the multiplexed address/data lines (AO<31 :0» 
after two BLCK cycles to make the lines available for 
data transfer by the slave device (see Figures 41 and 
44). 

The bus master then waits for the slave device to assert 
ROY (CAMMU ROYi signal), indicating that the data is 
on the bus. The master latches the data on the same 
positive transition of BCLK that it detects assertion of 
ROY. The slave device can respond with data im­
mediately after the address/data lines are three-stated 
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by the bus master, or can respond later as required by 
delaying assertion of ROY thereby introducing wait 
states. 

The minimum number of BCLK cycles required for a 
read operation is three, excluding bus arbitration require­
ments: two cycles are required for assertion of address, 
and at least one cycle is required for the data transfer. 
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the cached data is not dirty, the affected CAMMU 
releases CBSY, allowing transfer of main memory data 
to the bus master. This Bus Watch sequence applies to 
both single-word reads and quadword reads. If Bus 
Watch intervention occurs during quadword reads, 
however, the affected CAMMU will return all four data 
words if one or more data words is dirty. 

Bus Watch During Read Operations 
Ouring 1/0 reads of private, copy-back main memory 
space (i.e., TG=2), each CAMMU with Watch 1/0 Reads 
enabled asserts CBSY, indicating to other bus devices 
that it is checking for dirty cached data (cached data not 
yet written to main memory) corresponding to the main 
memory location being accessed by the 1/0 device. If it 
finds dirty data, it asserts the data on the AO bus, as­
serts ROYo, and releases CBSY. The 1/0 master must 
then latch the data on the positive BCLK transition fol­
lowing assertion of ROYo. If the data is not cached or 

The main memory interface must monitor the CLIPPER 
Bus CBSY and ROYo (which can be tied to the ROY sig­
nal) lines and allow main memory data response on 
AO<31 :0> only if CBSY (CBSYi or CBSYd on the 
CLIPPER Module Interface) is not asserted, indicating 
that there will be no CAMMU intervention resulting from 
CAMMU Bus Watch. If ROYo is asserted by the 

Figure 45 Memory Interface eBSY Monitoring 
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CAMMU while CBSY is asserted, the memory interface 
must abort the memory read because the CAMMU is 
responding with more recent cache data. Memory 
monitoring of CBSY is summarized in Figure 45. 
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NOTES: 

(1) Single Word Writes: CAMMU updates cache on hit; memory interface must not assert RDY until after CBSY 
is released. 

(2) 1/0 Reads: CAMMU provides data on cache hit; memory interface must not assert RDY until after CBSY is 
released, and may enter into memory data that is supplied by the CAMMU (indicated by assertion of RDY and 
CBSY by the CAMMU) in order to support Clear Dirty operation if required. 

(3) Quadword Writes: The memory interface proceeds normally (doesn't monitor CBSY) if the bus arbiter inhibits 
granting of the bus again while CBSY is asserted; otherwise the memory interface must not assert RDY until 
after CBSY is released. 
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The Clear Valid option, if enabled, requires memory to 
update its contents with the more current (dirty) data 
supplied by the cache for an VO quadword read, unless 
the data will not be read by another I/O device (see Sec­
tion Z6.4). Use of this option saves a write of the dirty 
data to memory when the cache line is replaced. The 
Clear Valid option is enabled by setting the Clear Valid 
flag in the Control Register. Memory support for this op­
tion requires that the memory transition from a memory 
read operation to a memory write operation when both 
CBSY and ROY are asserted by the D-CAMMU, and 
that the memory not be allowed any wait states be­
tween the individual quadwords supplied by the 
CAMMU. 

CAMMUs normally require 4 MCLK (12Ons @ 66.7 MHz 
OSC frequency) cycles for Bus Watch checking. During 
this time the memory interface can proceed with the 

Figure 46 Single Word Write (1 Walt State) 
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read operation without delay up to, but not including, 
assertion of ROY. As a result of this parallelism, 
CAMMU Bus Watch operation results in little impact on 
CLIPPER Bus utilization. 

Write Operation 
Signal assertion and timing associated with a write 
operation are similar to those associated with a read 
operation. Upon receiving Bus Grant (BGx), the master 
(possibly a CAMMU) asserts TR, Memory Space Sys­
tem Tag (TG<2:0», Cycle Type (CT <5:0», and a real 
address (AO<31:0» on the CLIPPER Bus. The Memory 
Space System Tag, Cycle Type, and TR signals remain 
asserted during the entire operation (see Figures 46-48). 

After two BCLK cycles, however, the bus master 
replaces the address on the AO lines with the data to 
be written, and holds the data on the lines until the 
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slave acknowledges latching of the data by asserting 
ROY (CAMMU ROYi signal) on the CLIPPER Bus. The 
slave can assert ROY when ready, allowing wait states 
as required. 

If the operation is a single-word write, the bus master 
releases the bus immediately following detection of as­
serted ROY (CAMMU ROYi signal). If the operation is a 
quadword write, the bus master asserts the second, 
third, and fourth data words of the quadword data trans­
fer during successive BCLK cycles following detection 
of asserted ROY The slave device can introduce wait 
states between assertion of the quadword address by 
the master and latching of the first data word, and be­
tween latching of the individual data words 

The minimum number of BCLK cycles required for a 
write operation is three, excluding bus arbitration require-

Figure 47 Ouadword Write (No Walt States) 
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ments. Two cycles are required for assertion of the ad­
dress, and at least one cycle is required for the data 
transfer. 

Bus Watch During Write Operations 
A CAMMU invokes Watch I/O Writes, if enabled, when 
an I/O device writes to its cache able main memory 
space; and invokes Watch CPU Writes, if enabled, 
when a CPU (via a O-CAMMU) writes to its shared 
cacheable main memory space. Both Bus Watch 
modes, when invoked, function identically. If the write 
operation invoking one of these modes is a single-word 
write operation, the affected CAMMU updates the cache 
with the data written to the main memory if the main 
memory data has been cached. If the write operation is 
a quadword write, the affected CAMMU invalidates the 
cache line containing the data addressed in main 
memory. 
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A CAMMU normally requires 4 MCLK (120ns @ 66.7 
MHz OSC frequency) cycles to complete one of these 
Bus Watch operations. However, if the Bus Watch opera­
tion occurs while the CPU is accessing the CAMMU, 
the CAMMU may require more time to complete the 
operation and will keep asserting CBSY to inhibit further 
bus operations until it has completed the task. The bus 
master, however, can complete the write operation while 
the CAMMU executes its Bus Watch operation, so Bus 
Watch impact on CLI PPER Bus utilization is 
minimal. 

If CBSY is asserted during a byte, halfword, or word 
memory write operation, the memory interface must not 
assert ROY until after CBSY is released. This ensures 
that the data remains on the bus long enough for entry 
by a CAMMU into its cache in case of a hit 

If CBSY is asserted during a quadword write, the 
memory interface can assert ROY normally without 
regard to the state of CBSY because in case of a cache 
hit, the affected CAMMU invalidates the hit line and 
does not require data to be present on the bus. 
However, the system bus arbiter must not grant the bus 
to a new bus master until CBSY is released, indicating 

Figure 48 Quadword Write (4 Wait States) 
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that all CAMMUs are ready for a new operation. Alterna­
tively, the memory interface can delay assertion of ROY 
until CBSY is released as in the byte/halfword/word 
write case, eliminating the need for the bus arbiter to 
monitor CBSY. In any case, a new CLIPPER Bus opera­
tion should not be allowed to begin while CBSY is 
asserted. Memory monitoring of CBSY is summarized in 
Figure 45. 

Global Write Operation 
A global write is used in a system utilizing multiple 
CLIPPER Modules to reset the TLBs or caches, or to 
write to specific TLB lines or registers in all CAMMUs in 
the system except the companion O-CAMMU of the 
CLIPPER CPU executing the global write. CLIPPER 
Module global addressing is explained in Section 7.6.6, 
CAMMU Register Access. Non-CLIPPER bus masters 
can execute global writes by setting CT <3:2> HIGH 
during the otherwise normal write operations. Note, 
however, that CAMMUs respond only to global writes to 
CAMMU I/O space real addresses Cnn and Onn (Hex). 

Each CAMMU being written to by a global write asserts 
CBSYi (if an I-CAMMU) or CBSYd (if a O-CAMMU) 
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during the write to inhibit further bus activity until it has 
completed internal tasks associated with the write. Sys­
tem logic is required which detects global writes and as­
serts RDY when CBSY is released. 

Read-Modlfy-Write Operation 
A read-modify-write bus operation is a combination of a 
read operation, followed by a write operation. Timing 
and protocol associated with the read and the write 
phases of a read-modify-write operation are the same 
as for single reads and writes; however, Bus Request 
(BR) must be asserted by the bus master during the en­
tire operation. 

Read-modify-write operations are performed during ex­
ecution of the tsts (test-and-set instruction). However, 
the write part of the read-modify-write is performed only 
if the bit to be tested is zero; if the bit has already been 
set (AD<31 > = 1), the bus operation is terminated. 
Timing for this operation is shown in Figure 49. 

Figure 49 Read-Modify-Write (Test and Set) 
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Read-modify-write operations are also performed during 
address translation when the DTU accesses main 
memory twice to read the Page Table Directory and 
Page Table in main memory, and follows with a write to 
the Page Table if the Referenced or Dirty flags must be 
modified. Timing for this operation is shown in 
Figure 50. 

9.4.8. Interrupt Bus 
The CLIPPER Bus includes a separate interrupt bus, 
IVEC<7:0>, tied directly to the cpu. This bus allows in­
terrupt levels and numbers to be transferred to the cpu 
without regard to CLIPPER Bus activity, thereby reduc­
ing CPU interrupt response time and increasing effec­
tive CLIPPER Bus bandwidth. (See Section 6.3, 
Interrupts. ) 

An interrupt controller must be implemented in a 
CLIPPER system. In cases of multiple interrupt re­
quests, it must select between the interrupts, asserting 
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the interrupt with highest priority. The interrupt controller 
must assert an interrupt request and its associated inter­
rupt vector number together on the same positive transi­
tion edge of BClK. The interrupt vector number can 
change to a higher priority on any BClK. The CPU 
uses the interrupt level and number present on the 
IVEC bus when it detects IRQ release on a rising edge 
of BClK, then releases lACK during the following BClK 
period. 

9.4.9. Diagnostics Control 
The CLIPPER Module executes diagnostic routines fol­
lowing release of RESET if Apply Diagnostics 
(URDIAG) is asserted during the two BClK cycles fol­
lowing the release of RESET. Then it begins execution 
at supervisor virtual address 6000H, which is mapped 
by the HTlB to real address 0 of Boot space. 

The state of URDIAG during the two BClK cycles follow­
ing release of RESET determines whether the CLIPPER 
Module CPU executes internal diagnostics before ex­
ecuting from boot code (see Figure 35). This is a power­
ful feature of the module which allows self test of major 
functions of the CPU without test equipment, and 
without removal of the chip. Failure during diagnostics is 
reported by assertion of the Unrecoverable Fault (URF) 
CLIPPER Bus signal. 

The CLIPPER Module self test checks most, but not all, 
of the major functions of the CPU. It is intended to be a 

Figure 50 Read-Modify-Write (DTU Operation) 
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first-level check of the CPU, and in fact is used to initial­
ly test individual CPU die during fabrication. The test ex­
ecutes approximately 700 instructions in about 4500 
MClK periods, using operands which test the CPU 
under worst-case conditions where possible. For ex­
ample, worst-case carries, overflows, and sign exten­
sions are tested. 

The following CPU operations and functions are tested: 

- Pipeline resource management 
- Integer and floating-point execution units 
- General-purpose register files 
- Integer bypass mechanism 
- Transition between supervisor and user modes 
- Temporary (hidden) registers 
- Macro branches 
- All addressing mode computations 
- Arithmetic shift, logical shift, and rotate instructions 
- Integer multiply and divide 
- Single- and double-precision floating-point 

instructions 
- Floating-point status bits 

CPU operations which require external response to in­
struction execution are generally not tested. These in­
clude exception conditions, branches, loads, stores, 
pushes and pops, and I-CAMMU and D-CAMMU 
interfaces. 
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9.4.10. Bus Timing 
Figures 51-66 show CLIPPER Bus signal timing and 
test loads. Values for parameters indicated in the 
figures are listed in Tables 15 and 17. 

BCLK is CMOS-compatible. All timing relationships in 
the timing figures are referenced to the 1.5 V midpoints 
of BCLK positive transitions. 

The following are definitions of terms used in the figures: 

Tarb (arbitration time) 
BCLK cycle used for bus arbitration 

Tadd1 (address time 1) 
First BCLK cycle during which address is asserted 
on the bus 

Tadd2 (address time 2) 
Second BCLK cycle during which address is as­
serted on the bus 

Td (data time) 
BCLK non-wait state cycle during which data is as­
serted on the bus. For a quadword transfer, a 
numerical subscript (e.g., Td2) indicates which data 
word is asserted. 

Tw (wait state time) 
BCLK cycle during which the CLIPPER Module is in 
a wait state. 
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9.4.11. CLIPPER C100 Module Configurations 
There are three CLIPPER C100 Module configurations, 
shown in Figures 67 - 72. 

The C100 Module C100C1MLX is shown in Figure 67. 
Its connector mates with a user-supplied type BIC-Vero 
905-72178F, or equivalent, male connector. Note that 
the numbering on the male connector is reversed rela­
tive to the CLIPPER Module connector. 

The C100 Module C100C1BLX (Figure 6!l) mates with 
a user-supplied Samtec SO-125-T-18, or a McKenzie 
SBU-2X25-STGT-0131-VLI female socket connector, or 
the equivalent. 

The C100 Module C100C1DLX (Figure 71) mates with 
a user-supplied McKenzie PH1-2251100 - 32G male con­
nector or the equivalent. 

9.4.12. Oscillator Connection 
An external oscillator must be provided by the user to 
drive the clock control chip on the CLIPPER Module. 
The oscillator frequency must be twice the required 
MCLK frequency, with a duty cycle between 60/40 and 
40/60. The oscillator should be placed as close to the 
connector as possible. 
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Table 15 AC Characteristics Vee = 5.0 V ± 5%, TA = 0 to +55°C 

33 MHz C100 
Symbol Characteristic Min 

tsu Setup Time 15.0 

IH Hold Time 0 

tco1 0 

tc02 Clock to Transition Time 1 0 

tco3 0 

tR Output Rise Time 1,2 

tF Output Fall Time1,2 

Notes: 
1.Transition, rise, and fall times are for a 50pF external capacitive load (see Figure 64 ). 
2.AII outputs except BCLK. 
3.To guarantee setup times, the input signals must have rise and fall times:s; 4ns. 

Table 16 DC Characteristics Vee = 5.0 V ± 5%, TA = 0 to +55°C 

Symbol Characteristic Conditions 

VIH Input HIGH Voltage 

Vil Input LOW Voltage 

Vee = 4.75 V 

VOH Output HIGH Voltage1 IOH = -20~ 

Vee = 4.35 V 

IOH = -2mA 

Vee = 5.25 V 

VOL Output LOW Voltage 1 IOl = +20~ 
Vee = 5.25 V 

IOl = +2mA 

liN Input Leakage Current VIN = 0 to 5.25 V Inputs Only 

ilH Input HIGH Current Rp = 220 ohms Bidirectional 110 Only 

III Input LOW Current Rp = 220 ohms Bidirectional I/O Only Vil = 0.55 V 

CIN Input Capacitance Inputs 

Bidirectional 110 

lee Supply Current TA = OOC, Vee = 5.25 V 

PD Power Dissipation fose = 66.7 MHz 

BCLK load = 100pF 

1. IOH, IOl and ill parameters are a function of the value of Module pull-up resistor Rp. 
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Table 17 AC Characteristics· OSC, BCLK Vee = 5.0 V ± 5%, CL = 200pF, TA = 0 to +SSoC 

Symbol( Characteristic Conditions 
33 MHzC100 

Min Max 
Unit 

fose Oscillator Frequency 2.0 66.7 MHz 

lose Oscillator Cycle Time 15 SOO ns 

toseH Oscillator Pulse Width tose = Min 6 9 ns 

toseL 

loseR Oscillator Rise and 6.0 ns 

toseF Fall Time 

tc BCLK Cycle Time RATE = LOW 60 ns 

RATE = HIGH 120 ns 

tcH BCLK Pulse Width tc = Min (RATE = LOW) 27 33 ns 

te = Min (RATE = HIGH) 54 66 ns 

tR BCLK Rise 5.0 ns 

tF and Fall Time (BCLK) 

Note 
BCLK rise and fall times are for a 100pF capacitive load (see Figure 65). This load should not be exceeded to 
ensure proper operation. 

Table 18 DC Characteristics· BCLK Vee = 5.0 V ± 5%, TA = 0 to +55°C 

Symbol Characteristic Conditions Min Max Unit 

VOH Output HIGH Voltage1 IOH = +100mA 4.3 V 

VOL Output LOW Voltage;.! IOL = +100mA 0.45 V 

Notes: 
1. VOH worst case occurs with Vee = 4.75 V. 
2. VOL worst case occurs with Vee = 5.25 V. 

Table 19 DC Characteristics· OSC Vce = 5.0 V ± 5%, TA = 0 to +55°C 

Symbol Characteristic Conditions Min Max Unit 

VIH Input HIGH Voltage 4.0 Vee +0.5 V 

VIL Input LOW Voltage GND -0.5 0.5 V 
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Figure 51 AC Measurement Points 
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Figure 52 AC Measurement Points, OSC and BCLK 
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Figure 53 Read Timing Diagram 
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NOTE: 
Timing measurements are referenced to and from a signal midpoint voltage of 1.5 volts unless 
otherwise stated. 
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Figure 54 Write Timing Diagram 
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Timing measurements are referenced to and from a signal midpoint voltage of 1.5 volts unless 
otherwise stated. 

91 



CLIPPER™ C100 
32-Bit Compute Engine 

Advance Information 
Figure 55 Watch 1/0 Reads 
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NOTES: 
1. 1/0 READ: Device reads from main memory (e.g.. main memory to disk). 
2. Timing measurements are referenced to and from a midpoint signal voltage of 1.5 volts unless 

otherwise stated. 
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Figure 56 Watch CPU and 1/0 Writes 
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otherwise stated. 
4. RDYi is asserted by the memory interface. 
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Figure 57 D-CAMMU Read from Companion I-CAMMU 
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Figure 58 D·CAMMU Write Into Companion I·CAMMU 
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NOTES: 

1. Timing measurements are referenced to and from a midpoint signal voltage of 1.5 volts unless 
otherwise stated. 

2. I-CAMMU internal registers can be accessed through the companion D-CAMMU 
(D-CAMMU of same CLIPPER module). 
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Figure 59 Maskable Interrupt Request/Acknowledge Timing 
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CPU LATCHES IVEC 

1. After lACK retu~ high the IRQ line must be high for one clock before another interrupt 
request returns IRQ low. 

2. The IVEC lines can change only to a higher priority when IRQ is low. The higher priority value 
must be on the IVEC lines by "a". 

3. CPU latches IVEC on the rising edge of BCLK following release of IRQ. The CPU releases 
lACK during the BCLK period following release of IRQ. 

4. Timing measurements are referenced to and from midpoint voltages of 1.5 volts unless 
otherwise stated. 

Figure 60 Non-Maskable Interrupt Request/Acknowledge Timing 
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nonmaskable interrupt request returns NMI low. 

2. Timing measurements are referenced to and from midpoint signal voltages of 1.5 volts 
unless otherwise stated. 
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Figure 61 LOCK Timing 
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Figure 64 Module Output Teat Load 
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Figure 65 BLCK Output Test Load 
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Figure 66 Maximum Output Delay vs. Capacitive Loading 
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Figure 67 CUPPER C100 Module C10OC1MLX 
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CLIPPER™ C100 
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Figure 68 Pinout of CLIPPER C100 Module C10OC1MLX 
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NOTES: 1. Numbering on the CLIPPER Module female connector may not correspond 
to numbering on user-supplied male connectors. 

2. Pin 831 (RSV) should be tied to pin A32 (BClK) to ensure compatibility with 
future enhanced versions of the CLIPPER Module. AI24 
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Figure 69 CLIPPER C100 Module C100C1BLX 
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Figure 70 Pinout of CLIPPER Cl00 Module Cl00C1BLX 
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NOTE: 
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Pin 831 (RSV) should be tied to pin A32 (8CLK) to ensure compatibility with 
future enhanced versions of the CLIPPER Module. 

A126 
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Figure 71 CUPPER C100 Module C100C1DLX 
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Figure 72 Pinout of CLIPPER C100 Module C100C1DLX 

TOP VIEW OF MODULE 
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RDYol o-BRI GND--o TGO 

CBSYI a BGI TG2 a TG1 
DIR o-VCC AD01--o ADOO 

TR a BCLK AD03 a AD02 
LOCK o-GND AD04--o Vee 

BRd a RDYo AD06 a AD05 
CBSYd o-RSV AD08--o AD07 

RDYI a BGd ADIO a AD09 
BERR o-Vee GND--oo AD11 

MMBE a MSBE AD13 a AD12 
RESET o-URF AD15--o AD14 
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NMIACK o-IRQ AD18--oo Vee 
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49 50 49 50 

NOTE: PIN J3-8 SHOULD BE TIED TO BCLK (PIN J2-1) TO ENSURE COMPATIBILITY 
WITH FUTURE ENHANCED VERSIONS OF THE CLIPPER MODULE. A128 
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U.S. Offices 
Region I - West Coast 

Regional OffIce -Irvine 
Irvme, CA (714) 863-9170 
Los Angeles, CA (213) 479-3400 
Phoemx, AZ (602) 263-0363 
San Jose, CA (408) 287-2522 
Seattle (Bellevue), W A (206) 455-9945 

Region II - Western 

Regional Office - Dallas 

Dallas, TX (214) 669-9680 
Englewood, CO (303) 220-9010 
New Orleans (Metame), LA (504) 837-8282 
Tulsa, OK (918) 622-6891 
Houston, TX (713) 978-7337 
San Antomo, TX (512) 646-7711 

Region III - Midwest 

Regional Office - DetrOIt 

Intergraph Corporation 
One Madison Industrial Park 
Huntsville, Alabama 35807-4201 

Advanced Processor 
Division 
Embarcadero Place 
Building D 
2400 Geng Road 
Palo Alto, California 94303 

DetrOIt (Farmmgton HIlls), MI (313) 851-3520 ., 
ChlcagO (Schaumburg), IL (312) 885-0110 :-to;. .... '. 
lndlanapohs, IN (317) 845-7455 ,. 
South Bend (Crown Pomt), IN (219) 662-1820 .. 
Lansmg, MI (517) 485-5577 
Mmneapohs (Mendota Helghts), MN (612) 681-1795 
St LoUls (Ballwm), MO (314) 256-3200 
Cleveland (Mlddleburg Helghts), OH (216) 572-0056 -. 
Columbus, OH (614) 431-1168 t 
Dayton, OH (513) 433-0195 
Brookfield, WI (414) 355-1900 

Region IV - Southeast 

RegIonal Office - Atlanta 

Atlanta, GA (404) 434-5598 
Bmnmgham, AL (205) 822-1454 
Orlando (Casselberry), FL (305) 260-5997 
Tampa, FL (813) 885-8925 
Lexmgton, KY (606) 223-4433 
Cary, NC (919) 467-0021 
Wmston Salem, NC (919) 721-0068 
Memphls, TN (901) 767-8641 
NashvIlle, TN (615) 331-9603 

Region y - Northeast 

Regional Office - Washmgton D C 
Washmgton, D_C. (Reston, VA) (703) 264-5IiOO 
Westborough, MA (617) 870-5970 
Lyndhurst, NJ (201) 460-7421 
Clmton, NY (315) 733-2199 
Rochester, NY (716) 424-7230 
Kmg of PruSSia, P A (215) 265-3562 
Plttsburgh, PA (412) 391-6551 

Federal Sales 

Regional Office - Washmgton D C 
Washmgton, D_C. (Reston, VA) (703) 264-5600 
HuntsvIlle, AL (205) 772-6862 
Los Angeles, CA (213) 479-3400 
Nashvllle, TN (615) 331-9603 

Intergraph Europe 
European Headquarters: 
Intergraph Europe, Inc_ 
Hoofddorp, The Netherlands 
TeL (31) 2503-66333 
Belgium: Intergraph (Benelux) BV 
Brussels, Tel. (32) 2-217-5122 

Denmark: Intergraph (Scandmavia) A/S 
Fredenksberg, Tel. (45) 1-875888 

Finland: Intergraph (Finland) Oy 
Espoo, Tel. (358) 0-455-4744 

France: Intergraph (France) S.A.R.L. 
Rungls Cedex, Tel. (33) 1-45603000 
Software Development Center (33) 1-46871562 
Yvette, Tel. (33) 1-6907-7802 

Haly: Intergraph ltalla S.p.A. 
Milanofion, Tel. (39) 2-824-3043 

The Netherlands: Intergraph (Benelux) BV 
Aalsmeer, Tel. (31) 2977-21511 

Norway: Intergraph (Norge) A/S 
Asker, Tel. (47) 2-787980 

Spain: Intergraph (Espana) SA 
Barcelona, Tel. (34) 3-200-5299 
Madrid, Tel. (34) 1-455-6446 

Sweden: Intergraph (Scandinavia) AB 
Taby, Tel. (46) 8-792-1150 

Switzerland: Intergraph (Switzerland) AG 
ZOrich, Tel. (41) 1-3025202 

United Kingdom: Intergraph (Great Britain) Ltd. 
Swindon, Tel. (44) 793-619999 
Derby, TeL (44) 332-384815 

West Germany: Intergraph (Deutschland) GmbH 
Munich, Tel. (49) 89-461040 
DUsseldorf, TeL (49) 211-742076 
Frankfurt, Tel. (49) 069-664001-0 
Hamburg, TeL (49) 40-630-4035 

Other Intergraph 
International Operations 
Intergraph Corporation 
International Operations HQ036 
One Madison Industrial Park 
Huntsville, Alabama 35807-4201 
(205) 772-2000/Ext 2206 
Australia: Intergraph Corporanon Pty_, Ltd. 
Sydney (North Ryde), Tel. (61) 2-888-9900 
Adelaide, Tel. (61) 8-239-0413 
Brisbane, TeL (61) 7-239-8905 
Perth, Tel. (61) 9-368-2522 
Melbourne, Tel. (61) 3-859-9421 

Canada: Intergraph Systems, Ltd_ 
Calgary, Tel. (403) 250-6100 
Edmonton, Tel. (403) 424-7431 
Misslssauga, Tel. (416) 625-2081 
Montreal (Verdun), TeL (514) 766-1292 
Ottawa, Tel. (613) 230-8385 
Vancouver (Burnaby), Tel. (604) 434-2677 

Cyprus: Intergraph Middle East Ltd. 
Larnaca, Tel. (357) 41-28700 

Hong Kong: Intergraph Graphics Systems 
Hong Kong, Ltd_ 

Hong Kong, Tel. (852) 5-284012 

Japan: Nlhon Intergraph KK 
Tokyo, TeL (81) 03-576-1881 

Korea: Intergraph Korea. Inc. 
Seoul, Tel. (82) 2-784-8725 

Mexico: Jntergraph de Mexlco, SA de C.V_ 
Mexlco City, TeL (905) 531-0862 

New Zealand: Intergraph Corporabon (N.Z_), Ltd. 
Wellington, Tel. (64) 4-734005 

Republic of Singapore: 
Intergraph Systems South-East Asia (Pte), Ltd. 
Singapore, TeL (65) 733-9511 

Taiwan: Intergraph Corporatlon Taiwan 
Taipei, Tel. (886) 2-716-4458 

Venezuela: Intergraph ServiClos de Venezuela CA 
Caracas, Tel. (58) 2-925552 

For more information, call 1·800-826·3515 or 205·772·2700. 
For sales information .in countries not listed above, call 205·772·2206. 




