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This document provides a comprehensive description of
the CLIPPER 32-bit microprocessor module including a
functional description, signal description, timing
waveforms, module dimensions with connector pinout,
and AC/DC parametric values. The CLIPPER module,
as shown in the photograph above, contains three
CMOS VLSI chips and clock circuitry implemented on
a small multilayer printed circuit board.

The three VLSI chips include a CPU/FPU and two
combined memory management/cache units, one for
data and one for instructions. In addition, the module
contains all appropriate bypass capacitors and pull-up
resistors. The module interfaces to the CLIPPER bus via
the 96 pin connector.
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Features

High Performance

* 33 MHz single-phase clock

33 MIPS peak execution rate

Separate CPU data and instruction buses
Full 32-bit internal and external architecture
3-stage integer execution pipeline and IEEE
floating-point execution unit with overlapped
instruction fetch and decode operations

* On-chip IEEE Floating-Point Execution Unit

Streamlined Instruction Set

* 9 addressing modes

* Most frequently used instructions execute in one
clock cycle

* Macro instructions for operating system support and
optimal use of bus bandwidth

* Multiple programmable register sets for efficiency
— 16 32-bit user registers
— 16 32-bit supervisor registers
— 8 64-bit floating-point registers

8K Byte Total Instruction and Data Caches

* 4 K-byte instruction cache

* 4 K-byte data cache

= 256 line two-way set-associative, 16-byte line size
cache organization )

* User-enabled instruction prefetch for maximum hit
rate and performance of the pipeline

¢ Bus Watch for system data integrity

* Wirite-through, copy-back, and noncacheable
caching policies on a per-page basis

Memory Management

* Demand paged virtual memory

4 G-byte virtual address space per process

4 G-byte real memory address space

Separate user and supervisor modes

128 line two-way set-associative Translation

Lookaside Buffer each for data and instructions

* Memory read, write, and execute access protection
on a per-page basis

* Dynamic Translation Unit and page table update

High-Speed and Flexible Bus
¢ High-bandwidth synchronous bus
* Byte, halfword, word, and quadword transfers

Interrupt/Exception Processing

* Macro instructions for exception processing

* 256 vectored interrupts with 16 priority levels

* Separate interrupt bus for high-speed interrupt
processing

* 18 predefined traps

* 128 system calls

The CLIPPER C100 Module is an architecturally ad-
vanced, very high-performance CMOS 32-bit
microprocessor compute engine consisting of a CPU,
two Cache/MMU chips, and clock control circuitry. The
CPU includes an |IEEE standard Floating-Point Execu-
tion Unit.

The CLIPPER Compute Engine is a Single Instruc-
tion/Single Data architecture with instruction prefetch
overlapped on multiple execution units. The basic in-
struction set is streamlined and hardwired for maximum
performance. Because the control section of the CPU is
a hardwired logic state machine, rather than a
microcoded engine, instructions execute at a maximum
rate of one per clock cycle. The CPU contains two 32-
bit buses: one for data and one for instructions. Multi-
stage pipelined instruction processing, combined with a
dual cache/MMU design, permit concurrency at all
stages of program execution. In addition, the integrated
Floating-Point Unit executes instructions concurrently
with the integer execution unit. A high-bandwidth
synchronous bus architecture easily interfaces to high-
speed peripherals, I/O, and memory subsystems.

1. Introduction

The CLIPPER C100 32-bit Microprocessor Module (see
Figure 1) consists of three CMOS VLSI chips together
with a Clock Control chip. The VLSI chips are: 1) a high-
performance, dual bus CPU/FPU, 2) an instruction
cache/MMU chip (I-CAMMU), and 3) a data cache/MMU
chip (D-CAMMU). The CLIPPER Module interface is a
96-pin connector which is buffered through a set of user-
supplied drivers.

The CLIPPER Module interface signals comprise the
CLIPPER Bus and consist of a 32-bit, multiplexed
data/address bus, bus arbitration control, bus control,
clock control, interrupt control, error signalling, diagnos-
tics, and reset.
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Figure 1 CLIPPER C100 Module Block Diagram
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1.1. CPU

The CLIPPER CPU is a high-performance, full 32-bit in-
ternal and external (via separate 32-bit instruction and
data buses) processor with a load/store architecture.
The CPU is highly pipelined for maximum instruction ex-
ecution and contains a 32 x 32-bit general register file,
two ALUs (one for integer execution and one for floating-
point execution), a streamlined instruction set, a Macro
instruction Unit (for exception processing instructions, in-
terrupt handling instructions, and macrocoded instruc-
tions), and a complete Floating-Point Unit. Figures 2
and 3 show simplified and detailed block diagrams of
the CPU.

1.1.1. Pipelining and Concurrency

The CPU utilizes a fetch, decode; and execution
pipeline as shown in Figure 4. The CPU two-stage in-
struction control unit (see Figure 2) supports two

Figure 2 Simplified CPU Block Diagram
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pipeline, for use as address offsets or data values. The
J register and L register stages are shown in Figure 3.

Instruction decode and resource management are per-
formed in the B stage. The B stage obtains instruction
parcels from either the Instruction Buffer or the Macro In-
struction Unit. Resource management is accomplished
by comparing an instruction request for a resource
against a table of resources busy.

In the final stage of the upper pipeline (decoded and as-
sembled instruction is in the C stage), instructions are is-
sued for execution to the integer execution unit or the

floating-point execution unit if no resource conflict exists.

The lower pipeline consists of two parallel execution
units, an integer execution unit and a floating-point ex-
ecution unit. The integer execution pipeline has three
stages. In the first stage, operands are read from the
general register file. The general register file has three
ports that operate concurrently in a single clock period;
two ports are for reading and the third is for writing.
Thus, two reads and a write may be performed in a
single clock. In the second stage, the ALU output is writ-
ten to the A register, and in the third stage, the contents
of the A register are output to the FPU, the bypass mux
(to the ALU), to the general register file or to the
D-CAMMU interface.

Figure 3 Detailed CPU Block Diagram
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1.1.4. Macro Instruction Unit

The Macro Instruction (Ml ROM) Unit stores instruction
sequences of the basic hardwired instruction set. When
a macro instruction is encountered in the instruction
stream, an instruction sequence is read from the Mi
ROM and inserted into the B stage of the upper
pipeline. The width of the ROM word is such that the in-
struction pipeline can be maintained at the maximum of
one parcel (one halfword) every clock. When the MI se-
quence ends, the instruction stream is switched back to
the Instruction Buffer as the source.

Figure 4 CLIPPER Pipeline
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— Commonly used complex instructions which are
typically found in so-called “complex instruction set
computers:" for example, character string
manipulations.

Instructions from the Ml ROM are provided with addition-
al Ml register files, thus avoiding resource conflicts with
the floating-point and general-purpose registers.

1.2. CAMMU

In addition to the CPU, the CLIPPER Module includes
two Cache/Memory Management Unit (CAMMU) chips,
an Instruction Cache/MMU, and a Data Cache/MMU.
The CAMMUs interface to the CPU via a high-speed,
32-bit internal module bus and interface to main
memory and I/O devices via the CLIPPER Bus.

1.2.1. Instruction and Data Caches

Two separate, 4 K-byte cache memories, one for data
and one for instructions, act as transparent high-speed
buffers between the CPU and main memory. Each
cache is two-way set-associative, containing 256 quad-
word lines of frequently used instructions or data. For
fast CPU access, each cache also contains a virtual ad-
dress cache consisting of a 16-byte buffer containing
the quadword that was most recently accessed from the
cache, and a register containing the virtual address of
the quadword.

Because most CPU fetches are satisfied directly from
the cache, the access time of real memory has far less
effect on total system performance. Minimizing fetches
from main memory also reduces bus traffic and allows
greater bandwidth for other bus masters or 1/0
processors.

Bus Watch is the monitoring of the CLIPPER Bus trans-
actions by the CAMMUs. It is used to ensure data con-
sistency between the cache and main memory, and to
ensure that the latest data is always transferred to an
1/O device reading main memory. Bus Watch is
transparent to software.

A demand fetch algorithm is implemented in both the
I-CAMMU and D-CAMMU. A prefetch algorithm is also
implemented in the I-CAMMU; it can be enabled or dis-
abled under program control.

1.2.2. Memory Management Unit (MMU)

The Memory Management Unit translates CPU virtual
addresses to real addresses in one of three separate
real spaces (//O, Boot, or Main Memory) using transla-
tion tables located in main memory. In order to minimize
the time required to obtain these translations, an addi-
tional two-way set-associative Translation Lookaside Buf-
fer (TLB) in each CAMMU holds 128 of the most
frequently used values from the translation tables for
both instructions and data.

When the TLB does not contain the required translation
entry, the MMU fetches the required value from main
memory and updates the TLB.

The MMU also supports main memory access protec-
tion (read, write, and execute).

1.3. Clock Control Unit

The CLIPPER clock chip provides two clock signals.
MCLK is an internal clock not available to the user. The
MCLK frequency is the rate of operation of the CPU
and CAMMUs. BCLK is the CLIPPER Module bus
clock. The BCLK frequency is the rate of operation of
the CLIPPER bus. With an externally supplied

66.7 MHz oscillator, MCLK is 33.3 MHz, and BCLK is
either 16.7 MHz or 8.3 MHz depending on the state of
the RATE control pin on the CLIPPER Bus. See Section
9, CLIPPER Bus, for details.

2. Memory Organization

The real memory of a CLIPPER system is organized as
a sequence of 32-bit words, each word consisting of
four 8-bit bytes. Each byte is assigned a unique ad-
dress ranging from O to 4,294,967,295 (4 G-bytes).

By using virtual memory techniques, a CLIPPER system
can appear to have a full 4 G-bytes of physical memory
available to each user program. See Section 9,
CLIPPER Bus, for details.

There are three real address spaces defined in the
CLIPPER architecture:

— Main memory space
— /O space
— Boot space
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Main memory, I/O space, and Boot space are acces-
sible in both user and supervisor modes. The memory
space accessed by a given address is determined by
the System Tag associated with the page.

The Hardwired Translation Lookaside Buffer (HTLB) is a

feature of the CAMMU which guarantees TLB hits of
special memory pages by the supervisor. The first four

Figure 5 Real Address Spaces—HTLB Mapping

pages of real main memory space have HTLB entries in
the CAMMUs, as do the first two pages of both I/O
space and Boot space. The HTLB is used in supervisor
mode only. The HTLB is described in detail in Section
7.2.2, Fixed Address Translation. CLIPPER's three
memory spaces and the mapping of the HTLB are
shown in Figure 5.
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2.1. Data Types

The CLIPPER architecture supports the primitive data
types shown in Figure 6. There are signed and un-
signed bytes, halfwords (16 bits), words (32 bits), and
longwords (64 bits), as well as single-precision (32-bit)
and double-precision (64-bit) IEEE Standard floating-
point numbers.

Figure 6 CLIPPER Primitive Data Types
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The rules for the storage and alignment of memory data
types are illustrated in Figure 7 and summarized below:

1. Bit 0 is the least-significant bit (LSB) of all data types.
Bit numbers increase from right to left.

2. The least-significant byte of multiple-byte data types is
stored at the lowest memory address.

3. The most-significant byte of multiple-byte data types
is stored at the highest memory address.

4. All data types must begin at an address that is a
multiple of their size. For example, a halfword must
begin on a halfword boundary.

3. Programming Model

The basic programming model for the CLIPPER Com-
pute Engine is shown in Figure 8. CPU registers are dis-
cussed in this section; CAMMU registers are discussed
in Section 7, Cache and MMU.

Figure 7 Addressing and Alignment of Data in
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Figure 8 CLIPPER Programming Model
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3.1. Register Sets

The CPU contains three sets of registers: 16 user
registers (r0-r15), 16 supervisor registers (r0-r15) and 8
floating-point registers (f0- 7).

The user and floating-point registers are accessible in
both user and supervisor modes; the supervisor
registers are accessible only in supervisor mode.

There are two status and control registers: the Program
Status Word (PSW) and the System Status Word
(SSW). The PSW is accessible in both user and super-

Figure 9 Program Status Word

visor modes. The SSW is writable only in supervisor
mode; it should not be read in user mode to ensure
compatibility with future Intergraph CLIPPER products.

The Program Counter (PC) contains the address of the
current instruction. This is interpreted as a virtual ad-
dress if CLIPPER is operating in mapped mode, and as
a physical address if CLIPPER is operating in un-
mapped mode (see Section 3.3, Mapped and Un-
mapped Addresses). The PC is accessible by both the
user and the supervisor.

31 2827 24 2322 1716151413 121110 98 7 6 5 4 3 2 1 0
MTS CTs |T 0 FR |\EJE|F|EJE|E]JF|FJF|F{FICIV]Z|N
FIFIFJFIF]FlI jJV|DJU]X
T jV]DlU]X
FIELD MEANING CTS MEANING
N Negative 0 No CPU trap
V4 Zero 1 Reserved)
v Overflow ) 2 ivide by zero
C Carrx outor borrow in 3 (Reserved)
FX  Floating inexact 4 lllegal operation
FU Floating underflow 5 Privileged instruction
FD Floating divide by zero 6 (Reserved)
FV Floating overflow 7 Trace trap
Fl Floating invalid operation 8-15 (Reserved)
EFX  Enable floating inexact trap
EFU Enable floating underflow trap
EES Enag:e 20ating dividf? by zero trap
nable floating overflow trap
EFI Enable floating invalid operation trap MTS MEANING
EFT  Enable foating trap 0 No memory trap
FR Floating rounding mode 1 Corrected memory error
T Trace trap 2 Uncorrectable memory error
CTS  CPU trap status 3 (Reserved)
MTS  Memory trap status 4 (Reserved)
5 Page fault
6 Read or execute protect fault
7 Write protect fault
FR MEANING 815 (Reserved)

0 Round to nearest

1 Round toward + infinity
2 Round toward - infinity
3 Round toward zero
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3.1.1. User and Supervisor Registers

The user and supervisor registers, r0-r15, are general-
purpose, 32-bit registers. They are used for word (32-
bit) and longword (64-bit) integer operations.

Bytes and halfwords used in load and store instructions
are sign- or zero-extended to 32 bits before they are put
in registers. Longword values are stored in register
pairs, with the least significant word in the even-num-
bered register. When double-precision (64-bit) floating-
point data types are moved to an integer register pair,
the least-significant fraction occupies the even num-
bered register.

3.1.2. Floating-Point Registers

The floating-point registers, f0-f7, are used by the FPU
for floating-point instructions, which are executed concur-
rently with instructions in the ALU. These 64-bit

registers are used for floating-point operands in both
single- and double-precision |EEE format. Single-
precision operands stored in floating-point registers

have zeros in the 29 least significant fraction bits and in
the three most significant exponent bits.

The integer multiply, divide, and mod instructions are ex-
ecuted by the FPU, but use registers r0-r15 (user or su-
pervisor).

3.1.3. Program Status Word (PSW)

The PSW, shown in Figure 9, contains flags which iden-
tify and together with the SSW, control a program’s
response to various exceptions resulting from integer
and floating-point operations (see Section 6, Excep-
tions, for more details).

On hardware reset, the trace trap (T) flag is cleared; the
remaining PSW bits are undefined.

C,V,Z,N: Condition Codes

The condition codes are modified only by the register-to-
register integer instructions, string instructions, floating
comparison, and by directly writing the PSW. They are
tested by the branch on condition instruction.

FX, FU, FD, FV, Fl: Floating-Point Exception Flags
The floating-point exception flags are set by hardware
on exceptions arising from floating-point operations, in
accordance with the IEEE 754 Floating-Point Standard.
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Once set, they are cleared only by user software or, for
those conditions for which the corresponding trap is
enabled (i.e., when both EFT and the individual enable
flag are set) by the trap handler. They are tested by the
branch on floating exception instruction (see Section
6.2.2, Floating-Point Arithmetic Trap Group, for more
details).

EFX, EFU, EFD, EFV, EFl: Enable Floating Flags

The |EEE floating-point trap enable flags are set by
software to request the result that would be given to a
trap handler on an exception, rather than the IEEE
default (no-trap) result. If the EFT bit is set, enabled ex-
ceptions also cause traps. See Section 6.2.2, Floating-
Point Arithmetic Trap Group, for a description of the use
of this field by trap handler routines.

EFT: Enable Floating Trap

When set, the enable floating trap flag enables traps to
occur whenever an exception is signalled by the FPU
and that exception’s trap enable flag is also set. When
this bit is clear, floating-point traps are disabled and
program execution continues regardless of the values of
the floating trap enable flags.

FR: Floating Rounding Mode

The floating-point rounding mode field is set by software
to select the IEEE rounding mode for floating-point
operations.

The default is round to nearest, in which the rounded
result is the closest representable number to the exact
result, with ties decided in favor of the representable
number with zero as its least-significant fraction field bit.

When rounding toward + «, the result is the format's
value (possibly + «) closest to and no less than the in-
finitely precise result. When rounding toward - «, the
result is the format's value (possibly - «) closest to and
no greater than the infinitely precise result. When round-
ing toward 0, the result is the format's value closest to
and no greater in magnitude than the infinitely precise
result.

T: Trace Trap Enable
The trace trap enable flag is set by the user or super-
visor to request a trace trap following execution of the
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next instruction. It is cleared by the user or supervisor
to disable the trace.

CTS: CPU Trap Status

The CPU trap status field is set by the hardware to indi-
cate the cause of a CPU-related trap (see Section 6.2,
Traps).

MTS: Memory Trap Status

The memory trap status field is set by the hardware to
indicate the cause of a memory-related trap (see Sec-
tion 6.2, Traps).

3.1.4. System Status Word (SSW)

The SSW controls the CLIPPER Module’s mode of
operation (user or supervisor) and provides status and
control for program protection and the response to inter-
rupts (see Figure 10). It may be written in supervisor
mode only. Reset clears the following SSW flags: El,
TP, M, U, K, KU, UU and P. The remaining flags are un-
defined. This represents unmapped supervisor mode
with all maskable interrupts disabled.

The SSW is written using the movwp (move word to
processor register) instruction. When used with the
SSW, this instruction can take as its second operand

Figure 10 System Status Word

either processor register 1 (ssw) or processor register 3
(sswf). movwp using processor register 1 behaves like
a branch instruction, causing the upper pipeline to be
flushed. movwp with processor register 3 does not
cause the pipeline to be flushed, is thus faster, but must
only be used in cases where the modification of the
SSW will not compromise the memory mapping of the
subsequent code in the upper pipeline. That is, because
the K, U, KU, and UU protection bits are compared with
the PL field of the TLB or HTLB entry for memory ac-
cess protection, a memory reference that would have
failed may succeed or vice versa, or it may fail different-
ly, or it may succeed for the wrong reasons. Therefore,
processor register 3 may only be used when modifying
the IN, IL, El, FRD, TP, ECM, KU and UU flags;
modifications of the M, K, U and P flags must use the
movwp instruction with processor register 1.

Descriptions of IN, IL, El, TP, and ECM are given below
and in Section 6, Exceptions. M, KU, UU, K, U, and P
are described below and in Section 7.2.1, Translation
Lookaside Buffer (see Protection Level field description).

IN: Interrupt Number
The interrupt number field is set by hardware (INTRAP
and retl) and by software (movwp) to indicate the

31 30 29 28 27 26 25 24 23 22 21 9 8 7 43 0
PI[UIK|UJK|M]O]E|T|F 0 E IL IN
uiju CIP|R I
M D
A088
FIELD MEANING FIELD MEANING
IN Interrupt number M Mapped mode
IL Interrupt level KU User protect key
El Enable interrupts uu User data mode
FRD Floating registers dirty K Protect key
TP Trace trap pending U User mode
ECM Enable corrected memory P Previous mode
error

12
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system’s current interrupt number. If an interrupt of
equal or higher priority occurs during the service of an
interrupt, this value (along with the interrupt level) will
be pushed on the stack, and this field will be updated
with a new interrupt number value. Interrupt numbers
are not prioritized.

IL: Interrupt Level

The interrupt level field is set by hardware (INTRAP and
reti) and by software (movwp) to establish the system’s
current interrupt priority level. Only interrupts of equal or
higher priority (equal or lesser value) than this value will
be recognized. If an interrupt of equal or higher priority
occurs during an interrupt service routine, this value will
be pushed on the stack, and this field will be updated
with the new interrupt level.

El: Enable interrupts
The enable interrupt flag is set by software to enable in-
terrupts. It is cleared by software to disable interrupts.

FRD: Floating Registers Dirty

The floating register dirty flag is set by hardware when-
ever a floating-point register is written. This flag may be
cleared by software. Its purpose is to permit operating
systems to reduce context switching overhead.

TP: Trace Trap Pending

The trace trap pending flag is automatically set by
hardware whenever a trap or interrupt occurs during an
instruction and the T flag is set. This ensures that the
trace trap is taken immediately after the trap or interrupt
handler has finished executing, and that a single instruc-
tion is traced exactly once.

On data page faults, the supervisor must clear TP
before restarting the faulting instruction in order to en-
sure that the instruction is traced exactly once.

ECM: Enable Corrected Memory Error Trap

The enable corrected memory fiag is set by software to
request a trap whenever a corrected memory error oc-
curs. When this flag is set, a logic low on the
MSBE/RETRY signal line (indicating a single-bit
memory error) causes a trap.

13

M: Mapped Mode

The mapped mode flag is set by software to cause all
address references to be mapped through the page
tables. When set, virtual address (VA) to real address
(RA) translation by the CAMMUs is enabled (mapped
mode). When cleared, VA to RA translation by the
CAMMUs is disabled (unmapped mode). The only ex-
ceptions are the first eight pages when in supervisor
mode. These pages are always mapped via the HTLB,
regardless of the state of this flag.

U:User Mode

The user mode flag is set by the supervisor to indicate
user mode of operation and cleared to indicate super-
visor mode of operation.

K: Protect Key

The protect key flag is set and cleared by the super-
visor to select one of two sets of memory access protec-
tion codes for memory access validation and protection
during program execution. This flag is used for the ac-
cess protection code selection in user mode, and in su-
pervisor mode when the UU flag is clear (see Table 10
in Section 7.2, Memory Management Unit ).

KU: User Protect Key

The user protect key flag is set and cleared by the su-
pervisor program to select one of two sets of memory
access protection codes for memory access validation
and protection during program execution. This flag is
used for the access protection code selection only
during supervisor program execution when the UU flag
is set (see Table 10 in Section 7.2, Memory Manage-
ment Unit).

UU: User Data Mode

The user data mode flag is set and cleared by the su-
pervisor to select either supervisor or user data address
space access when memory data is referenced in super-
visor mode, and to select either the K or KU key flags
for selection of the access protection codes used during
supervisor memory references. When the UU flag is set,
supervisor data references access user data space, and
the KU flag is used for access protection code selec-
tion. When the UU flag is clear, supervisor data referen-
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ces access supervisor data space, and the K flag is
used for access protection code selection. This flag is
significant only in supervisor mode (see Table 10in Sec-
tion 7.2, Memory Management Unit ).

P: Previous Mode
The previous mode flag is copied from the U flag when-
ever the INTRAP sequence is executed.

3.2. Supervisor and User Modes of Operation

The CLIPPER Module has two modes of operation,
user and supervisor, as selected by the SSW's U flag.
User and supervisor modes are distinguished by the set
of instructions which they are permitted to execute, and
by the registers and logical address space they are per-
mitted to access.

All instructions can be executed in supervisor mode. In-
structions which can be executed only in supervisor
mode are called privileged instructions. When a

program in user mode attempts to execute these instruc-
tions, a privileged instruction trap occurs.

Programs executing in user mode have access only to
the user registers (r0-r15), floating-point registers (f0-f7),

Figure 11 Address Mapping—Mapped/Unmapped Modes

the PSW, and the PC. Supervisor mode programs have
access to all programmer-accessible registers.

Memory address spaces are distinct for user and super-
visor modes. Different translation tables may be used
for translating user and supervisor mode addresses,
and the access protection provided by the memory
management mechanism allows access by supervisor
programs to memory locations inaccessible to user
mode programs.

Supervisor mode is entered only via the INTRAP se-
quence, or when the system is reset.

3.3. Mapped and Unmapped Addresses

CLIPPER can operate in two modes: mapped and un-
mapped. In mapped mode, the CAMMU translates user
and supervisor virtual addresses to real addresses
using the TLB or the HTLB (for supervisor virtual
addresses 0 - 777F Hex); in unmapped mode, only the
HTLB is used for translation. The mode is selected by
the M (mapped mode) flag in the SSW. When this flag
is set, CLIPPER operafes in mapped mode; when this
flag is clear, CLIPPER operates in unmapped mode.
The two modes are shown in Figure 11. Virtual to real
address translation is discussed in Section 7.2, Memory
Management Unit..

SUPERkVISOR USER
e A ~ p A N
UNMAPPED MAPPED UNMAPPED MAPPED
PAGES MODE MODE MODE MODE
UNMAPPED VA MAPPED
VA=RA TO RA
UNMAPPED VA MAPPED
VA=RA TO RA
7
HTLB HTLB
0 MAPPED MAPPED 3
<
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4. Floating-Point Unit

The CLIPPER Floating-Point Unit (FPU) executes addi-
tion, subtraction, multiplication, and division operations
conforming to the IEEE Standard for Binary Floating-
Point Arithmetic (ANSI/IEEE Std 754-1985) in the single-
and double-precision formats. In addition, the
floating-point comparison operations are provided for
both precisions. The floating-point execution unit also
performs integer multiplication, division, and mod opera-
tions.

Comparisons of floating-point numbers can result in the
familiar trichotomy of b < a, b = a, b < a, as well as the
condition b .unordered. a, which arises when either b or
a is a non-numeric value (NaN). Results of the com-
parison are indicated in the PSW condition codes at the
conclusion of a floating-point comparison. Conditional
branch instructions allow these condition codes to be
used.

The floating-point execution unit performs one operation
at a time, reusing internal resources over a number of
CPU clocks in order to complete the operation, includ-
ing the handling of special case operands and results
mentioned below.

4.1. Floating-Point Register Usage

All of the floating-point arithmetic instructions are
register-to-register operations, using the eight floating-
point registers available to software. These registers are
capable of holding either single or double format
operands interchangeably. The floating-point registers
may be directly loaded from memory or may be loaded
by transfer from the integer register file. Storing of
operands may be direct to memory or by transfer to the
integer register file. Additional "scratch pad" registers,
transparent to the user, are available to the Macro In-
struction Unit.

Integer multiplication, division, and mod operations are
also register-to-register, but in this case the registers
used are in the integer register file; no floating-point
registers are involved.

Because separate instructions are provided for single-
and double-precision operations, a rounding precision
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mode field is not required because the precision is
defined by the instruction field. All four rounding modes
called for in the Standard are provided by the FR field
in the PSW.

4.2. Floating-Point Exceptions and Traps
Exceptional operands and operation results are handled
in conformity with the requirements of the IEEE Stan-
dard. The special operands include signalling and quiet
Not-a-Number (NaN), signed infinities, signed zeros,
and denormal numbers, as well as the wealth of ordi-
nary normalized numbers.

If the corresponding trap enable flag in the PSW is set,
and the PSW's floating-point trap group enable flag is
also set, then a floating-point trap occurs. The CPU
then invokes a program called a trap handler, which
may be user-specified. When a trap handler is entered,
the load floating status (loadfs) instruction can be ex-
ecuted to acquire useful information about the instruc-
tion causing the exception. Floating-point exceptions are
discussed in greater detail in Section 6, Exceptions.

4.3. FPU Software Initialization
The IEEE Standard requires the following initial condi-
tions:

— The rounding mode must be round nearest.
— The floating-point exception flags must all be cleared.

— All floating-point traps must be disabled, and default
results for all exceptions must be enabled.

This initialized state is accomplished by clearing all FPU-
related bits in the PSW.

The contents of f0-f7 should be set to a known value.
Some programming languages require that these values
be initialized to zero. The IEEE Standard, on the other
hand, provides for special reserved values and calls
these NaN, or Not-A-Number. Whichever of these is
chosen, this value should be created and loaded into
each of the floating-point registers.
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An example FPU initialization is as follows:

loadg $0, r0 # Create zero

movwp r0, psw # Load PSW with rounding
# mode 00 (nearest) and
# clear all exception
# flags and trap enable bits

loadi  $0x7ffbad75, r1  # Load high half of hex
# NaN 1.bad75a

loadi  $0x00000000, r0 # Load low half of NaN

movid r0, fO # Store in floating register 0
movid r0, f1 # Store in floating register 1
movid r0, f2 # Store in floating register 2
movid 10, {3 # Store in floating register 3
movid r0, f4 # Store in floating register 4
movld r0, f5 # Store in floating register 5
movld 10, f6 # Store in floating register 6
movld r0, {7 # Store in floating register 7

The NaN used in the initialization above is a quiet NaN.
A quiet NaN propagates through arithmetic operations
unchanged, except for the sign bit, which is undefined
for NaNs. Thus, any user who operates on a register
not yet defined will receive this NaN as a resuilt.

5. Instruction Set

The CLIPPER instruction set of 101 basic and 67 macro
instructions is streamlined for speed and the most effec-
tive use of the system’s resources and register sets.
This smaller, faster instruction set is especially useful to
high-level language compilers that optimize register
usage, branch timing for maximum speed, and pipeline
sequencing.

Memory access is by load/store instructions to minimize
memory-dependent execution delays. All data opera-
tions are performed on registers by hardwired instruc-
tions.

There are two units in the CLIPPER CPU that execute
instructions: the Integer Execution Unit (IEU) and the
Floating-Point Execution Unit (FPU). The integer instruc-
tions (with the exception of integer multiplies and
divides) are executed by the IEU. Floating-point instruc-
tions (and the integer multiplies and divides) are ex-
ecuted by the FPU.

Most instructions are fetched from main memory. Each
instruction is fetched (through the instruction cache),
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decoded, then executed, either by the IEU or by the
FPU. The only exceptions are the macro instructions.

A macro instruction opcode selects a sequence of in-
structions in the macro instruction ROM (Ml ROM).
When a macro instruction is decoded, execution control
is switched to the Ml ROM, and the sequences of the
macro instruction are executed.

The instruction set is listed in Table 1.

5.1. Instruction Formats

The information encoded in each instruction specifies
the operation to be performed, the type of operands to
use (if any), and the location of the operands. The
mnemonic and operands of the assembly language
source statement determine the instruction format used.

Most instructions require one or more operands in the
source statement. These operands can be located in a
register or in memory. For example, the loadb instruc-
tion contains operands that reference memory and a
register. |f an operand is located in memory, the instruc-
tion must calculate the address of the operand accord-
ing to the address mode specified in the instruction
format.

An operand can also be encoded within the instruction.
The immediate and quick instructions use this type of
format for efficient operation.

All instructions are constructed in multiples of halfwords
called parcels (see the general instruction format
below). Depending on the instruction format used, the
size of an instruction varies from one to four parcels.

MSB LsB

63 48 47 32 31 16 15 8 7 0
OPCODE g
— AL A ~ A _
FOURTH THIRD SECOND FIRST

PARCEL PARCEL PARCEL PARCEL

Figure 12 shows CLIPPER instruction formats. Notice
that the formats are divided into two main categories,
non-memory referencing instructions (NO ADDRESS)

and memory referencing instructions (WITH ADDRESS).
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Figure 12 Instruction Formats

INSTRUCTION FORMATS - NO ADDRESS

REGISTER CONTROL
15 8 7 43 0 15 8 7 0
| T P [ OPCODE T BYTE ]
QUICK MACRO
15 8 7 43 0 15 98 76 0
[_opcobE Tauick T rz_ ] OPCODE__P0J00 _ CODE
00000000 R1 | R2
3 24 23 2019 16
16-BIT IMMEDIATE 32-BIT IMMEDIATE
15 8 7 4 3 0 15 87 43 0
OPCODE [7011] R OPCODE To o1 1] Rz
S TMMEDIATE IMMEDIATE LOW
31 30 T S | IMMEDIATE HIGH
47 a6 32

INSTRUCTION FORMAT - WITH ADDRESS

RELATIVE PC-RELATIVE PLUS 16-BIT DISPLACEMENT
15 8 7 43 0 15 8 7 43 0
[ opPcobE of] R1__| R2 | OPCODE__ 1]1 0 0 1] R2
S DISPLACEMENT
3 32 16
RELATIVE PLUS 12-BIT DISPLACEMENT
15 87 43 0 PC-RELATIVE PLUS 32-BIT DISPLACEMENT
OPCODE 11 0 1 0] R1 15 8 7 43 0
S ] DISPLACEMENT R2 OPCODE __1J0 0 0 1] R2
31 30 20 19 T DISPLACEMENT LOW
S| DISPLACEMENT HIGH
RELATIVE PLUS 32-BIT DISPLACEMENT 47 46 3z
15 8 7 43 0
OPCODE Jo110 R1
0000000O0O0OCOLO R2 RELATIVE INDEXED
DISPLACEMENT LOW 15 87 43 0
S|  DISPLACEMENT HIGH OPCODE__1]1 1 1 o] Ri1
63 62 a8 0000000 O] RX R2
3 24 23 20 19 16
16-BIT ABSOLUTE
15 8 7 43 0 PC INDEXED
OPCODE 11 0 1 1] R2 15 8 7 43 0
(5] ADDRESS OPCODE__1]1 1 0 1]J0 0 0 0
31 30 1 00000000| RX R2
31 2423 2019 16
32-BIT ABSOLUTE
15 8 7 43 0
OPCODE 170 0 1 1] R2
ADDRESS LOW
S| ADDRESS HIGH
47 46 32 Aoz
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Table 1 Instruction Set, by Function

LOAD/STORE INSTRUCTIONS

ARITHMETIC INSTRUCTIONS

Load Address

Load Byte

Load Byte Unsigned
Load Double Floating
Load Floating Status
Load Halfword

Load Halfword Unsigned
Load Immediate
Load Quick

Load Single Floating
Load Word

Store Byte

Store Double Floating
Store Halfword

Store Single Floating
Store Word

DATA MOVEMENT INSTRUCTIONS

Move Double Floating

Move Double to Longword

Move Longword to Double

Move Processor Register to Word
Move Single Floating

Move Supervisor to User (privileged)
Move Single to Word

Move User to Supervisor (privileged)
Move Word

Move Word to Processor Register
Move Word to Single Floating

Add Double Floating
Add Immediate

Add Quick

Add Single Floating
Add Word

Add Word with Carry

Subtract Double Floating
Subtract Immediate
Subtract Single Floating
Subtract Word

Subtract Word with Carry

Multiply Double Floating
Multiply Single Floating
Multiply Word

Multiply Word Unsigned
Multiply Word Extended

Divide Double Floating
Divide Single Floating
Divide Word

Divide Word Unsigned

Negate Double Floating
Negate Single Floating
Negate Word

Modulus Word
Modulus Word Unsigned

Scale by, Double Floating
Scale by, Single Floating
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Table 1 Instruction Set, by Function (cont.)

LOGICAL INSTRUCTIONS

SHIFT/ROTATE INSTRUCTION

AND Immediate
AND Word

OR Immediate
OR Word

Exclusive-OR Immediate
Exclusive-OR Word

Not Quick
Not Word

CHARACTER STRING INSTRUCTIONS

Compare Characters
Initialize Characters

Move Characters

CONVERSION INSTRUCTIONS

Convert Double to Single

Convert Double to Word

Convert Rounding Double to Word
Convert Rounding Single to Word
Convert Single to Double

Convert Truncating Double to Word
Convert Truncating Single to Word
Convert Word to Double

Convert Word to Single

COMPARE AND TEST INSTRUCTIONS

Compare Double Floating
Compare Immediate
Compare Quick
Compare Single Floating
Compare Word

Test and Set
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Shift Arithmetic Immediate

Shift Arithmetic Longword

Shift Arithmetic Longword Immediate
Shift Arithmetic Word

Shift Logical Immediate

Shift Logical Longword

Shift Logical Longword Immediate_
Shift Logical Word

Rotate Immediate

Rotate Longword

Rotate Longword Immediate
Rotate Word

STACK MANIPULATION INSTRUCTIONS

Pop Word
Push Word

Restore Registers fn-f7
Restore User Registers (privileged)
Restore Register rn-r14

Save Registers fn-f7
Save User Registers (privileged)
Save Registers rn-r14

CONTROL INSTRUCTIONS

Branch on Condition
Branch on Floating Exception

Call Subroutine
Call Supervisor

No Operation

Return From Subroutine
Return From Interrupt (privileged)

Trap on Floating Unordered

Wait for Interrupt (privileged)
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5.1.1. Instruction Formats—No Address Register
The Register format is used for most instructions that
take just one or two register arguments.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

The opcode specifies the interpretation of the R1 and
R2 fields. Usually the R1 field contains the source
operand register number, and R2 contains the destina-
tion operand register number. For example, in the
movsw instruction, the R1 field contains the number of
the single-precision floating-point register containing the
source operand, and the R2 field contains the number
of the general register in which to store the resuit.

Quick

The Quick format encodes constant, 4-bit unsigned
source operands directly in the instruction. The quick
value is always zero-filled at the left before use.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT
loadq  §15 , ri0
T
1
J’L OPCODE l Quick I R2 I3

16-bit Immediate

The 16-bit Immediate format encodes a 16-bit source
operand constant directly in the instruction. The im-
mediate value is always sign-extended before use.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

addl 817 ,

|1n11J R2

] l IMMEDIATE ;

32-bit Inmediate
The 32-bit Immediate format encodes a constant, 32-bit
source operand directly in the instruction.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

andl_ sOxitttt , 16
=

|
ro o11i R2

IMMEDIATE LOW

OPCODE

—A

s | IMMEDIATE HIGH 3

Control

The Control format encodes up to 8 bits of a constant
value that is used by several special instructions. For ex-
ample, the byte operand specifies the system call num-
ber in the calls instruction.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT
calls $17
¥
OPCODE J BYTE ] .
3
Macro

The Macro format is used by those instructions that are
implemented as macros rather than directly in the
hardware. The P bit in the opcode, bit 9 of the first in-
struction parcel, selects a privileged macro.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

cwew 18 , 17

¥ ] X
OPCODE P 0|00  CODE
00000000| Rt ] R2
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5.1.2. Instruction Formats—With Address

The remaining instruction formats specify an address
operand and a register operand. Several address for-
mats, or modes, are provided to support typical high-
level language operations. The address mode is
selected first by the opcode (bit 8 of the first instruction
parcel), and if necessary, by the AM field (bits <7:4> of

Table 2 Memory Addressing Modes

the first instruction parcel). Displacements and absolute
addresses are always sign-extended.

The address modes used in the memory referencing in-
structions are summarized in Table 2 and explained in
the following pages.

Memory Addressing Mode

Address Formation

Relative

Relative plus 12-bit displacement
Relative plus 32-bit displacement
16-bit Absolute

32-bit Absolute

PC Relative plus 16-bit displacement
PC Relative plus 32-bit displacement
Relative Indexed

PC Indexed

Notes:
All displacements are signed.
PC addresses the first parcel of the current instruction.

Address « (R1)

Address « (R1) + 12-bit displacement
Address « (R1) + 32-bit displacement
Address « 16-bit displacement
Address « 32-bit displacement
Address « (PC) + 16-bit displacement
Address « (PC) + 32-bit displacement
Address « (R1) + (RX)

Address « (PC) + (RX)

RX is any general register containing the index modifying the effect of the source register.
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Relative
The Relative format uses the address in a register (R1)
to compute an address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION

losdw () , P2

OPCODE 0 R R2 31 0
L ADDRESS $
<
Relative Plus 12-bit Displacement
The Relative Plus 12-bit Displacement format uses the
address in a register (R1), plus a signed 12-bit displace-
ment, to compute an address. The displacement is sign-
extended to 32 bits before the address calculation.
EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
storw 16 , 4 (sp)
31 [
OPCODE 1{1010 R1 ADDRESS FROM REGISTER
=B DISPLACEMENT R2 e _l_
31 12 11 10 0

EXTEND SIGN S | DISPLACEMENT

31 0

ADDRESS g
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Relative Plus 32-bit Displacement

The Relative Plus 32-bit Displacement format uses the
address in a register (R1), plus a signed 32-bit displace-
ment, to compute an address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION

loada huge (r5) , 0

¥ 31 0
OPCODE 1 1010 R1 =ll ADDRESS FROM REGISTER J
0 000 0OCOOOOUOT OO R2 -
DISPLACEMENT LOW 1 31 + o
S [ DISPLACEMENT HIGH J |——-| SIGNED DISPLACEMENT ]

[ ADDRESS s

16-bit Absolute

The 16-bit Absolute format uses the signed 16-bit ad-
dress, which is sign-extended to 32 bits before use. Be-
cause the address field is signed, the range of
addresses that can be accessed with this format is -2'°
< address < 2'5 -1.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION

tsts lock , r

OPCODE 111011 R2 2 16 15 14 0
S ADDRESS EXTEND SIGN S| DISPLACEMENT
31 0
o
ADDRESS §
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32-bit Absolute
The 32-bit Absolute format uses the 32-bit displacement
portion of the instruction as an address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
loadd » 14
OPCODE 1|0 011 R2
31 (]
L ADDRESS LOW
ADDRESS 3
s ADDRESS HIGH g
PC Relative Plus 16-bit Displacement
The PC Relative Plus 16-bit Displacement format adds
a signed 16-bit displacement to the contents of the
Program Counter (PC) to compute an address.
EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
b . 8
31 l (]
OPCODE 1 /1010 R2 ADDRESS FROM PROGRAM COUNTER
s DISPLACEMENT _I__
31 16 15 14 0
EXTEND SIGN S| DISPLACEMENT
31 0
ADDRESS g
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PC Relative Plus 32-bit Displacement

The PC Relative Plus 32-bit Displacement format adds
a signed 32-bit displacement to the contents of the
Program Counter (PC) to compute the address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

call sp , far (pc)

ADDRESS FORMATION

31 l 0

OPCODE 1 ] 000 1i R2 I ADDRESS FROM PROGRAM COUNTER |
s DISPLACEMENT HIGH
- +
DISPLACEMENT LOW
31 0
SIGNED DISPLACEMENT 1
31 0
I ADDRESS h
Relative Indexed
The Relative Indexed format uses the address in a
register (R1), plus the contents of an index register
(RX), to compute an address.
EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
loadbu [r3] (fp) , py
loacou [ L
¢ 31 (]
OPCODE 1 {1110 R ADDRESS FROM REGISTER
000000 0O RX R2 +
L) 31 9
ADDRESS FROM REGISTER
31 0
ADDRESS g
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PC Indexed

The PC Indexed format adds the contents of an index
register (RX) to the contents of the PC to compute an
address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT
T OPCODE 111110 Rt -J
00000000 RX R2

5.2. Instruction Set Summary

Table 5 is a summary of the instruction set. Each instruc-
tion is described by several columns in the table. The
columns are as follows:

Instruction Name
The full name of the instruction.

Syntax

Assembler instruction name and operand formats. The
left letter of the operand code specifies the operand's
type and size. The right letter of the operand code
specifies the operand's field within the instruction and
its location in the machine (immediate value, register,
memory, etc.).

Operand Type Operand Field
b byte s single floating 1 R1 a address
h halfword d double floating [2 R2 b byte
w word p processor register|q quick
| longword i immediate

For example, the operand code w1 indicates a word
operand in the general register whose number is en-
coded in the R1 field of the instruction. The code sa indi-
cates a single floating operand in the memory location
whose address is given by one of the addressing

modes in Section 5.1.2, Instruction Formats —With Ad-
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31 1 0

’ ADDRESS FROM REGISTER I

31 + 0
ADDRESS FROM REGISTER I

[ ADDRESS ] §

dress. Quick and immediate operand types are always
w because these directly encoded values are always
zero or sign extended to a word before use.

Opcode

Hexadecimal opcode. Address format instructions use
two opcodes; the first one listed is for relative mode,
and the second is for all other addressing modes.
Macro format instructions show the entire first parcel.

Format
Instruction format. See Section 5.1, Instruction Formats.

Operation

Basic operation of the instruction. The operations of
complex instructions like move are simplified or ab-
breviated. Fixed registers are given by name, e.g., 10, f1.

*

CVZN
Effect of the instruction on condition codes in the PSW.
0 = alwayssettoO.
1 = always setto 1.
= unaffected.

set according to the operation.

Fl, FV, FD, FU, FX
Effect of the instruction on the floating-point exception
flags in the PSW. Same key as CVZN.
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Traps

Traps that can be caused by the instruction.
Corrected Memory Error
Uncorrectable Memory Error

Page Fault

Read Protect Fault

Write Protect Fault

Divide by Zero

lllegal Operation

Supervisor Only (privileged)linstruction

NW—OSDVTVTCO
o nnonn

All instructions can cause traps from the Instruction
Memory Trap group in the I-CAMMU (for example, an

Table 3 Assembler Operand Syntax

execute protect fault), so these are not shown. Possible
floating-point traps are indicated by an asterisk ( * ) in
the FL..FX columns.

The instruction operand codes described above also
describe the syntax of each instruction operand. As-
sembler operand syntax is given in Table 3 below. As-
sembler instruction operands are generally given in
source, destination order independent of their positions
in the machine representation. Table 4 lists the
operators used in the operation field

Table 4 Operators

Notation Meaning

r0..ri6 General registers. The even general rot Rotate operator

registers address long operands. sp, fp, sha Shift arithmetic operator

and ap are synonyms for r15, r14, and shi Shift logical operator

r13. Not to be confused with R1 or R2, + Add operator

which are register fields within an - Subtract operator

instruction. X Multiply operator
fo..f7 Floating registers. Each register may + Divide operator

contain a single or double floating value. mod Modulus operator
psw, ssw, | Processor registers 0, 1,and 3. ~ Logical complement operator
sswf = Equal operator
$n Quick, byte or immediate value. « Assignment operator
n Absolute address. & AND logical operator
n(rm) Relative or relative with displacement | OR logical operator

address. n may be 0 or absent. @ Exclusive-OR logical operator
[rx](rn) Relative indexed address. () Contents of operand within
n(pc) PC relative address. [] Separators used to indicate value inside as
or .in a unit
[rx)(pc) PC indexed address. <> Bit field of previous value
label Absolute or PC relative address depend- Indicates a range of values

ing on the circumstances. T Exponentiation
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Table 5 Instruction Operations

FFFFF

Instruction Name Syntax Opcode Format Operation IVDUX CVZN Traps
Add Double Floating addd d1,d2 22 Register d2 « (d2) + (d1) LI L B
Add Immediate addi wiw2 83 Immediate w2 « (W2) + wi .. «xxs |
Add Quick addq wqw2 82 Quick w2 « (W2) +wq .- LR ER
Add Single Floating adds 51,82 20 Register 82 « (s82) + (s1) L IO 1 JEREPIPE
Add Word addw wiw2 80 Register W2 « (W2) + (w1) .. LR R
Add Word with Carry addwe wiw2 90 Register W2 « (W2) + (w1) +C LR R R
And Immediate andi wi,w2 8b Immediate W2 « (W2) & wi 00#=* |
And Word andw wiw2 88 Register w2 « (w2) & (w1) 00+
Branch Conditional b* ha 48,49 Address IF cond, PC « ha .- AJ
Branch on Floating Exception bf* ha 4c,4d Address IF cond, PC « ha cee e - - Al
Call Routine call w2,ha 44,45 Address W2 « (W2) — 4, (W2) « (PC),- - - - - - APW

PC « ha
Call Supervisor calls bb 12 Control  trap 400 + 8 x bb<7:0> cee e
Compare Characters cmpc b4 of Macro while [(r0)=0] & [((r2))=((r1))}, - - - -- *+++ CUPR
ro=length, ri=string1, r2=string2 Me(r0)—1,r &« (r1) +1,

Re(r2) +1
Compare Double Floating cmpd d1,d2 27 Register (d2) — (d1) 00*=*
Compare Immediate cmpi wiw2 a7 Immediate (W2) — wi senw |
Compare Quick cmpqg wqw2 aé Quick (W2) - wq e ke
Compare Single Floating cmps  s1,s2 25 Register (s2) - (s1) ceee 00%s=
Compare Word cmpw  wiw2 aéd Register  (wW2) — (w1) e LR
Convert Double Floating to Single cnvds  d1,s2 b4 39 Macro 82 « (d1) LN 1
Convert Double Floating to Word  cnvdw di,w2 b4 34 Macro w2 « (d1) ...k
Convert Rounding Double to Word cnvrdw diw2 b4 35 Macro w2« (d1) ...
Convert Rounding Single to Word  cnvrsw  s1,w2 b4 31 Macro W2 & (s1) * *
Convert Single Floating to Double cnvsd  s1,d2 b4 38 Macro d2 « (s1) * . .
Convert Single Floating to Word cnvsw  st,w2 b4 30 Macro w2« (s1) ...
Convert Truncating Double to Word cnvidw  d1,w2 b4 36 Macro W2 « (d1) ...
Convert Truncating Single to Word cnvtsw st,w2 b4 32 Macro w2« (s1) ...
Convert Word to Double Fioating cnvwd w1,d2 b4 37 Macro  d2 « (w1) .. .
Convert Word to Single Floating cnvws wils2  b4a33 Macro 82 « (W1) .. *
Divide Double Floating divd d1,d2 2b Register d2 « (d2) + (d1) IR EE L
Divide Single Floating divs §1,82 29 Register 82 « (82) + (s1) LR L I
Divide Word divw wiw2 9c Register w2 « (W2) + (w1) 0+00 D
Divide Word Unsigned dwu wiw2 9e Register W2 « (W2) + (w1) 0000 D
Initialize Characters initc b4 Oe Macro  while (r1)=0, -+« PW
r0=length, ri=dest, r2=pattern (r1) « (r2<7:05),

MNe(r0)~-1,rM e (1) +1,

2 « (r2) rot -8
Load Address loada baw2 6263 Address W2 « ba -
Load Byte loadb baw2 68,69 Address w2 « (ba) - - CUAPR|
Load Byte Unsigned loadbu baw2  6a6b Address w2 « (ba) - - CUAPR,|
Load Double Floating loadd dad2 66,67 Address d2 « (da) - CUAPR,
Load Floating Status loadfs w1,d2 b4 3f Macro w1 « (FP PC),

d2 « (FP dest)
Load Halfword loadh haw2  6c6d Address w2 « (ha) - CUAPR,|I
Load Halfword Unsigned loadhu haw2  6e6f Address w2 « (ha) -+..- CUAPR|
Load Immediate loadi wiw2 87 Immediate W2 <wi ... .. 00+= |
Load Quick loadq wgw2 86 Quick w2 « wq 00+0
Load Single Floating loads  sas2 64,65 Address 82 « (sa) ---+- CUAPR,|
Load Word loadw waw2 60,61 Address W2 « (wa) ---+. CUAPR|
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Table 5 Instruction Operations (cont.)

FFFFF
Instruction Name Syntax Opcode Format Operation IVDUX CVZN Traps
Modulus Word modw wiw2 Od Register w2 « (w2) mod (w1) 0+00D
Modulus Word Unsigned modwu wiw2  of Register W2 « (w2) mod (w1) 0000D
Move Characters move b4 od Macro while (r0) = 0, (r2) « ((r1)), -... CUPRW
r0=length, r1=source, r2=dest Me(r0)-1,r e« (r)+1,
Re(2)+1
Move Double Floating movd  d1,d2 26 Register d2 « (d1)
Move Double Floating to Longword movdl  d1,/2 2e Register 12 « (d1)
Move Longword to Double Floating movid  /1,d2 2f Register d2 « (I1)
Move Processor Register to Word  movpw p1,.w2 11 Register w2 « (p1)
Move Single Floating movs  §1,52 24 Register  s2 « (s1) cee
Move Supervisor to User (privileged) movsu  wiw2 b6 O1 Macro W2 « (w1) 00#++ S
Move Single Floating to Word movsw  s1,w2 2c Register W2 « (s1) coee e
Move User to Supervisor (privileged) movus wi1,w2 b6 00 Macro W2 « (W1) 00++ S
Move Word mow wiw2 84 Register w2 « (w1) 00+ =
Move Word to Processor Register mowwp w2,p1 10 Register p1 « (W2) LR R
Move Word to Single Floating mows wi1,s2 2d Register s2 « (w1) -
Multiply Double Floating muld d1,d2 2a Register d2 « (d2) x (d1) LI 1
Multiply Single Floating muls 51,82 28 Register 82 « (s2) x (s1) LI EEE
Multiply Word mulw wiw2 98 Register w2 « (W2) x (w1) .. 0+00
Multiply Word Unsigned muwu  wiw2 9a Register w2 « (W2) x (w1) 0+00
Multiply Word Unsigned Extended  mulwux w1,/2 9b Register 12 « (W2) x (w1) 0+00
Multiply Word Extended muwx w12 99 Register 12 « (W2) x (w1) 0+00
Negate Double Floating negd d1,d2 b4 3b Macro d2 « «d1) cee e
Negate Single Floating negs 51,52 b4 3a Macro 22—ty ...
Negate Word negw wiw2 93 Register w2 « —(w1) LR R
No Operation noop bb 00 Control  none cee e
Not Quick notq wqw2 ae Quick W2 « ~wq 0001
Not Word notw wiw2 ac Register w2 « ~(w1) 00*+
Or Immediate ori wiw2 8f Immediate W2 « (W2) | wi 00=*+ |
Or Word ow wiw2 8¢ Register w2 « (W2) | (w1) 00=*=
Pop Word popw  wiw2 16 Register w1 « (w1) + 4, ---. CUAPR
W2  ((w1) - 4)
Push Word pushw w2w! 14 Register W1 « (w1) -4, - APW
(W1) « (W2)
Restore Registers fn - {7 restdn b4 28 Macro fn.f7e(r15).. ... - CUAPR
0sn<7 . ((r15) + 8 x [7-n)),
b4 2F r15 « (r15) + 8 x [8-n]
Restore User Registers (privileged) restur wi b6 03 Macro 0 .. 115 « ((w1)) - CUAPRS
.. ((w1) + 60)
Restore Registers rn-ri4 restwn b4 10 Macro mn..r14 « ((r15)) .. - CUAPR
0sn<i12 . ((r15) + 4 x [14-n}),
b4 1C 15 « (r15) + 4 x [15-n]
Return From Routine ret w2 13 Register PC « ((w2)) - CUAPR
W2 e (W2) +4
Return From Interrupt (privileged)  reti w1 b6 04 Macro Restore SSW,PSWandPC - - . .. .... §
Rotate Immediate roti wiw2 3c Immediate W2 « (W2) rot wi . 00+ |
Rotate Longword rotl w12 35 Register 12 « (12) rot (w1) 00*+=
Rotate Longword Immediate rotli wil2 3d Immediate- 12 « (12) rot wi 00+ |
Rotate Word rotw wiw2 34 Register w2 « (w2) rot (w1) 00+*=
Save Registers fn - f7 savedn b4 20 Macro (r15)-8x[8-nj.. ...« APW
0<ng7 . (r15) - 8 « (fm) .. (f7),
b4 27 5 e (r15)-8x[8 - n}
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Table 5 Instruction Operations (cont.)

FFFFF
Instruction Name Syntax Opcode Format Operation 1VDUX CVZN Traps
Save User Registers (privileged) saveur wi b6 02 Macro wi)—4.Wl)-64&(15)----- .... APWS
.. (r0
Save Registers rn - ri4 savewn b4 00 Macro (r15) -4 x [15-n] .. ceeee ... APW
0<ns<12 . (r15) = 4 « (rn) .. (r14),
b4 0C 15 « (r15) -8 x [8 - n]
Scale by, Double Floating scabd w1,d2 b43d Macro  d2 e (d2) x 2"V T
Scale by, Single Floating scabs w1,s2 b43c Macro 52« (s2) x 2™V awwr L.
Shift Arithmetic Immediate shai wi,w2 38 Immediate w2 « (w2) sha wi B R |
Shift Arithmetic Longword shal w12 31 Register 12 « (12) sha (w1) B R ]
Shift Arithmetic Longword Immediate shali wi l2 39 Immediate 12 « (12) sha wi N EE RN
Shift Arithmetic Word shaw wiw2 30 Register W2 « (w2) sha (w1) e es QExs
Shift Logical Immediate shii wiw2 3a Immediate W2 « (w2) shl wi s e 00%# ]
Shift Logical Longword shil w12 33 Register 12 « (I2) shl (w1) e s 00%=
Shift Logical Longword Immediate  shlli wil2 3b Immediate 12 « (12) shi wi e 00|
Shift Logical Word shiw wiw2 32 Register W2 « (w2) shi (w1) ceees 00%#
Store Byte storb w2,ba 78,79 Address ba « (W2) cee e ..o APWI
Store Double Floating stord d2,0a 76,77 Address da « (d2) .. oo APWI
Store Halfword storh w2,ha 7¢,7d Address  ha « (W2) s ..o APWI
Store Single Floating stors s2,sa 74,75 Address sa « (82) cee e s APWI
Store Word stow  w2wa 70,71 Address wa « (W2) N AL A
Subtract Double Floating subd d1,d2 23 Register d2 « (d2) — (d1) LI I L PR
Subtract Immediate subi wiw2 a3 Immediate W2 « (W2) — wi R L LN
Subtract Quick subq wqw2 a2 Quick W2 « (W2) —wq e kA EX
Subtract Single Floating subs 51,52 21 Register 82 « (s2) — (s1) LT L I
Subtract Word subw wiw2 a0 Register w2 « (W2) — (w1) R A
Subtract Word with Carry subwec wiw2 91 Register w2 « (w2) — (w1)-C B S
Test and Set tsts waw2 7273 Address w2 e (wa),wae1 - ... IR |
Trap on Floating Unordered trapfn b4 3e Macro IF PSW<ZN> indicates veeee ... CUAP,
unordered, illegal instruction RW,I
trap
Wait for Interrupt (privileged) wait b6 05 Macro Wait for interrupt ceees ... 8
Exclusive-OR Immediate xori wi,w2 ab Immediate w2 « (W2) (+) wi ce e 00%x |
Exclusive-OR Word XOrw wiw2 a8 Register W2 « (W2) (+) (w1) cee s 00 %
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Table 6A Integer Branch Conditions
PSW Flags
cond |[C|V|(Z [N| Name | Condition
0 X[X|X[X b Branch always
PSW Flags
cond [C{V|Z|N| Name | Compare R1:R2 Name Result R2:0
0
1 x|0|0 belt Less Than brgt Greater Than
X[(1({0]1
X|0 0
2 X bcle Less or Equal brge Greater or Equal
X{1]0}1
3 X[{X]|1]0]| bceq Equal breq Equal
X 1
4 0|0 begt Greater Than brit Less Than
X|1|X]|0
X{t1|{X|o0
5 X[0{0|1]| bcge Greater or Equal brie Less or Equal
X|X|1]|o0
X|X|0|X
6 bcne | Not Equal brne Not Equal
X{X[{1]1
0|X|{0|X]| bcltu Less Than Unsigned brgtu Greater Than Unsigned
0|X|X|[X] bcleu Less or Equal Unsigned brgeu Greater or Equal Unsigned
1|X|X|[X] begtu | Greater Than Unsigned britu Less Than Unsigned
11X X]|X
A xIxl1lx begeu | Greater or Equal Unsigned brieu Less or Equal Unsigned
PSW F The R2 field of the branch on condition instruction
lags selects the conditions on which to branch. When a
cond |C|V|Z|N| Name | Condition choice of mnemonics is shown, use the ones begin-
8 o|[x|[x[x] bnc | Notcarry ning with be if the condition codes to be tested were
set by a compare instruction. Use the mnemonics
9 TIX]X|X]| be Carry beginning with br is they were set by move or logical
B X11]X[X bv Overflow instructions (those instructions that set only N or Z).
c X|O|X|X] bnv Not Overflow Table 6B Floating Branch Conditions
D X{X|0]|1 bn Negative
E X|X{X|0 bnn Not Negative cond :ame (I:ondition
0 - -
F|X|X|1[1] b | Floating Unordered X b;f;;‘f, E,g::;g QQ[Y) f;‘:j?m"
2-F Reserved
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6. Exceptions

The CLIPPER architecture supports 402 exception con-
ditions: 18 hardware traps, 128 programmable super-
visor call traps, and 256 vectored interrupts.

Traps are exceptions recognized by the CPU during ex-
ecution of single instructions (e.g., divide by zero, page
fault). A trap causes all instructions in both the upper
and lower pipelines to either be backed out or com-
pleted in a manner consistent with program restart.

Interrupts are events signalled by devices external to
the CLIPPER Module and input to the module via the in-
terrupt pins. Interrupts are taken when the following con-
ditions are met:

— Interrupts are enabled.

— The Interrupt Level (IVEC<7:4>) is less than or equal
to the IL field in the SSW.

— Allinstructions in the lower pipeline have finished
executing. String instructions have either completed
execution or have detected the interrupt and saved
sufficient state information for continuation.

— No traps are pending.

A flow chart showing the necessary conditions for inter-
rupts is shown in Figure 14.

The address of the service routine for each trap, super-
visor call, and interrupt is stored in an Exception Vector
Table (see Table 7), located in the first real page of
main memory. The Exception Vector Table (EVT) con-
tains a two-word entry for each exception, consisting of
the starting address of the exception’s service routine
and an SSW value associated with the routine. Unas-
signed EVT addresses are reserved for future use by In-
tergraphand must be initialized to point to a valid
handler routine.

The priority of exceptions is the order shown in the EVT
(in the order from highest to lowest priority), except that
the trace trap has the lowest priority. The CLIPPER
Module's internal priority logic ensures that exception
service is always granted to the highest priority event.

32

Table 7 Exception Vector Table
Real Address
(Hex)
Data Memory Trap Group

Description

108 Corrected Memory Error
110 Uncorrectable Memory Error
128 Page Fault

130 Read Protect Fault

138 Write Protect Fault

Floating-Point Arithmetic Trap Group

180 Floating Inexact

188 Floating Underflow

190 Floating Divide by Zero
1A0 Floating Overflow

1CO Floating Invalid Operation

Integer Arithmetic Trap Group:
208 Integer Divided by Zero
Instruction Memory Trap Group

288 Corrected Memory Error
290 Uncorrectable Memory Error
2A8 Page Fault

2B0 Execute Protect Fault

llegal Operation Trap Group

300 lllegal Operation
308 Privileged Instruction
Diagnostic Trap Group
380 Trace Trap
Supervisor Calls
400 Supervisor Call 0
408 Supervisor Call 1
7F8 Supervisor Call 127
Prioritized Interrupts:
800 Non-Maskable Interrupt
808 Interrupt Level 0 Number 1
810 Interrupt Level O Number 2
878 Interrupt Level 0 Number 15
880 Interrupt Level 1 Number O
888 Interrupt Level 1 Number 1
FF8 Interrupt Level 15 Number 15
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6.1. INTRAP and reti Sequences

Two macro instruction sequences, INTRAP and reti,
manage the entry to and exit from both traps and inter-
rupts. The INTRAP sequence performs a non-interrup-
table context switch to supervisor mode, and then
transfers control to the trap or interrupt handler. The reti
sequence is an interrupt/trap return, also non-interrupt-
ible, which restores the system to the correct user or su-
pervisor environment.

During the INTRAP and reti sequences, all interrupts
are disabled; traps are not disabled, but only serious
system faults can occur, as explained below.

The INTRAP sequence begins by saving the PC, SSW,
and PSW on the supervisor stack as shown in Figure
13. The saved PSW will have MTS or CTS set to indi-
cate the cause of the trap. INTRAP then copies the
SSW's user mode flag (U) into the previous mode flag
(P). In order to access the Vector Table, INTRAP sets
the user mode flag to supervisor mode and clears the
protect key (K), user data mode (UU), and user protect
key (KU). The PSW is cleared.

The address of the required Exception Vector Table
entry, V, is then obtained in one of three ways: 1) For
traps and the non-maskable interrupt, the address is
generated from internal trap logic. 2) For supervisor
calls, the address is generated from the lower 7 bits of
the instruction. This value is multiplied by 8 and 400H is
added to it. 3) For priority interrupts, a number is read
from the Interrupt Bus lines, IVEC<7:0>. This value is in-
verted, multiplied by 8, and 800H is added to it.

Figure 13 Supervisor Stack After INTRAP
HIGHER ADDRESSES
L

L

1 1
PC
SSW
ns ———» PSW
p ~
T T

AS8 LOWER ADDRESSES

INTRAP uses V to obtain the new PC value and V + 4
to obtain the associated SSW value. The new SSW
value is transferred to the SSW, overwriting the pre-
vious contents of SSW except for the previous mode
flag (P), which is retained in order to indicate the mode
of the interrupted program. INTRAP then exits, and con-
trol is passed to the trap or interrupt service routine.

After completing its service, the trap or interrupt handler
executes the reti sequence. reti restores the PSW,
SSW and PC to their contents prior to INTRAP.

6.1.1. Faults During INTRAP and reti

The occurrence of a trap during INTRAP or reti results
in an Unrecoverable Fault (URF). The CLIPPER Module
halts in a controlled suspended state, drives the URF
signal low as an alarm, and waits until restarted by the
RESET signal. (In the URF state, all inputs other than
RESET are ignored.)

To avoid the occurrence of a page fault during INTRAP
or reti (and the resulting URF condition), the supervisor
stack must always have a valid Page Table entry that
permits both reading and writing. This will prevent page
faults from occurring during INTRAP or reti, because
the supervisor stack is the only memory area
referenced by these sequences.

6.2. Traps

Traps are signalled in the CPU chip or by either of the
CAMMUs. There are 18 predefined traps, shown in
Table 7.

Both conditional and unconditional traps are supported
(see Table 8). Conditional traps are enabled by flags in
the PSW and occur only when enabled. Conditional

Table 8 Conditional and Unconditional Traps

Conditional Traps Unconditional Traps

Corrected Memory Error | Uncorrectable Memory

Floating-Point Arithmetic Error

Trap Group Page Fault

Trace Protect Faults
Privileged Instruction
lllegal Operation
Integer Divide by Zero
Supervisor Call




CLIPPER™ C100
32-Bit Compute Engine

Advance Information

Table 9 Trap Handler Environment Summary

Trap

When Trap Is Taken

Return Address
(Saved In Supervisor Stack)

Data Memory Trap Group
Floating-Point Arithmetic Trap Group
Integer Arithmetic Trap Group
Instruction Memory Trap Group
lllegal Operation Trap Group
Diagnostic Trap Group

Supervisor Call

During Execution
After Execution
After Execution
Before Execution
Before Execution
After Execution
After Execution

Faulting Instruction

Next Instruction To Be Executed
Next Instruction To Be Executed
Faulting Instruction

Faulting Instruction

Following Instruction

Following Instruction

traps that are disabled can be detected and handled by
the executing program.

Traps may be generated at various stages of instruction
processing, as shown in Table 9. The CLIPPER
Module's internal trap logic ensures that the saved
program counter points to the instruction at which the
trapped program may be correctly restarted.

6.2.1. Data Memory Trap Group

Data memory traps occur when the data cache inter-
face reports a fault. These traps cause the faulted in-
struction, as well as subsequent instructions already in
the upper pipeline, to be backed out.

Data memory traps are recorded in the PSW's memory
trap status (MTS) field. The MTS field is also used by
the instruction memory trap group for the same fault
conditions. Interpretation is not ambiguous because in-
struction memory traps are deferred until data memory
traps have been serviced, and they are serviced by dif-
ferent trap handlers.

In the case of the pushw and popw instructions, the
stack pointer is decremented or incremented in parallel
with the instruction's memory access. Thus, when a
data memory trap occurs during a pushw or popw in-
struction, the operating system must, before restarting
the program, restore the stack pointer to the value it
had prior to the trapping instruction, i.e., decrement the
stack pointer by 4 for popw, or increment the stack
pointer by 4 for pushw.

Corrected/Uncorrectable Memory Errors
Corrected and uncorrectable data memory errors are
detected by memory and communicated to the CAMMU
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via the two system bus signals, MSBE/RETRY and
MMBE respectively. It is the responsibility of memory to
save the real memory address of the location that failed
in a predetermined location, where it may be accessed
for maintenance by the operating system.

The operating system may ignore indications of cor-
rected memory errors (MSBE/RETRY) by clearing the
ECM flag in the SSW.

Page Fault

A page fault occurs when a program attempts to access
a page for which there is no valid entry in the currently
assigned Page Directory or Page Tables. The operating
system uses this fault to allocate pages to user or super-
visor programs. The address saved on the supervisor
stack is the program address of the instruction that
caused the page fault. The virtual address of the data
memory location that generated the fault is saved in the
CAMMU’s Fault register.

Read/Write Protection Faults

Read/write accesses to each page are validated by a
comparison of the U, K, UU, and KU flags in the SSW
with the protection code in the TLB or user page tables.
When an access violation occurs, the address saved on
the supervisor stack is the program address of the in-
struction that caused the fault. The virtual address of
the data memory location that generated the fault is
saved in the CAMMU's Fault register.

6.2.2. Floating-Point Arithmetic Trap Group

There are five distinct floating-point exceptions which
are specified in the |IEEE Standard 754. These excep-
tions are signalled by the FPU in the case of invalid
operation, inexact result, overflow, underfiow, or divide
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by zero. For each exception, there corresponds a float-
ing-point exception flag in the PSW. The corresponding
bit is set on any occurrence of the exception.

In addition, for each exception there exists a floating-
point trap enable flag. There is also a floating-point
group trap enable flag. When an exception arises for
which the individual trap enable flag is true and the
group trap enable flag is true, then a floating-point trap
is invoked and control is transferred to a user-specified
trap handler. If the group trap enable is false, then the
trap is not invoked. If the individual trap enable flag is
false, then the trap is not invoked.

For the underflow and overflow exceptions, the behavior
of the FPU is determined by the values of the floating-
point trap enable flags as specified in the Standard. In
particular, overflows with the overflow trap disabled
deliver infinity or max_real, whereas the result with the
trap enabled is the normalized result with the exponent
distorted, as discussed below. Underflows are handled
similarly.

The software knows which floating-point trap has oc-
curred because each floating-point trap invokes a
separate trap handler (each has its own entry in the Ex-
ception Vector Table). It is not sufficient to examine the
floating-point exception flags, since the state of these im-
mediately before executing the exceptional operation is
generally unknown.

Floating Overflow

The floating overflow exception is signalled when the
biased exponent of the result (after rounding) is greater
than the largest finite representable exponent. With addi-
tion and subtraction, overflow occurs when two large
numbers are added. At least one of them must have a
biased exponent of +126 (single-precision) or +1022
(double-precision) and the fraction addition (or the sub-
sequent rounding) has a carry out of the msb position.
The overflow may coincide with the fraction sum being
inexact, though this is not necessarily the case. With
multiplication, overflow occurs if, after normalization and
rounding, the product of two finite non-zero numbers
has an exponent greater than +127 (single-precision) or
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+1023 (double-precision). Overflow for multiplication
may be exact or inexact.

If the EFV flag is set, the computed result is delivered
to the destination with the normalized rounded fraction
of the true result (though the delivered exponent is
usually wrong because of missing additional leading bits
in the exponent field). For single-precision overflows, if
the biased exponent of the true result is 255, then
biased exponent 255 is delivered to the destination. If
the true biased exponent of the result is 256 . . 408,
then the true biased exponent minus 256 is delivered to
the destination. Note that this is not the exponent
wrapped result called for by the IEEE 754 specification;
the wrap must be adjusted by system software before
delivery to a user’s trap handler. This is done to allow
the user to provide software that handles traps in an ap-
plication-specific way. For double-precision, the overflow
exponents (biased) lie in the range 2047 . . 3120.
These are mapped to 2047 and 0 . . 1072 respectively.
These must be adjusted by (3/4)x2"" (1536) to obtain
the IEEE Standard wrapped exponent.

If the EFV flag is clear, then the computed result is dis-
carded, and the properly signed default value (infinity or
max_real, depending on rounding mode) is delivered to
the destination. Max_real is the maximum representable
value in the given floating-point format; single

max_real = 22 - 2'%: double_max_real = 2102 - 2571,
The floating inexact exception is also signalled. If the
rounding mode is round toward zero, the value
delivered to the destination is the maximum finite repre-
sentable number (max_real) with the appropriate sign. If
the rounding mode is round toward + o, then a positive
signed overflow is replaced with + -, while a negative
signed overflow is replaced by minus max_real. For
round toward - -, a positive overflow goes to plus
max_real, while a negative overflow goes to - .

Floating Inexact

The floating inexact exception is signalled when the
result of an operation cannot be exactly represented in
the precision of the destination. The result is rounded
according to the rounding mode specified in the PSW



CLIPPER™ C100
32-Bit Compute Engine

Advance Information

so that it has the precision of the destination, and then
the rounded result is delivered to the destination.

Floating Underflow

The conditions under which the floating underflow excep-
tion condition is signalled differ according to the setting
of the EFU flag. If EFU is set, the floating underflow ex-
ception is signalled when the result of an operation
(before rounding) has a biased exponent less than the
minimum representable biased exponent for a normal-
ized number. If the true biased exponent of the result is
zero, then biased exponent zero is delivered to the des-
tination. If the true biased exponent is less than zero,
then the exponent delivered to the destination is true
biased exponent plus 256 (2048 for double.) The ex-
ponent must be adjusted by system software before
delivery to the program’s trap handler in order to con-
form to the IEEE 754 Specification. The range of under-
flowed biased exponents for single-precision is 0 . .
-275; for double-precision the range is 0 . . -1125.

If the EFU flag is clear, then the underflowed fraction is
right shifted as the exponent is incremented until the
biased exponent equals one. At this point, the result has
been restated as a denormal number. If this repre-
sentation is exact, then no underflow exception is sig-
nalled. If the representation is inexact, then the result is
rounded and delivered to the destination, and both the
inexact and underflow exceptions are signalled.

Floating Divide by Zero

The floating divide by zero exception is signalled when
the divisor is zero and the dividend is non-zero and
finite. If the dividend is also zero, the result is the
default quiet NaN (all ones in the fraction and exponent
fields), and the Fl flag is set. If the dividend is infinite,
the result is infinite, and no condition flags are set. The
defauit result is a correctly signed infinity.

Floating Invalid Operation
The floating invalid operation exception is signalled in
the following cases:

1. One of the operands is a signalling NaN.
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2. Add/Subtract, magnitude subtraction of infinities:
(+00) — (+ )
or (+ o) + (=)
or (+ ) — (=)
or (+ )+ (+ )

3. Multiplication
0 X oo
or ox0
4. Division
0+0

OF oo + oo

The value written to the destination is always a NaN.
The NaN is either the NaN operand (the second
operand if both are NaNs) made quiet if it were
signalling (by setting the msb of the explicit fraction
field), or the default NaN created by the hardware. The
default NaN is quiet, and its fraction field is all ones.

6.2.3. Integer Arithmetic Trap Group
The CPU trap status field in the saved PSW indicates
the cause of the integer arithmetic trap.

Integer Divide by Zero

The integer divide by zero exception is signalled when
an integer divide or mod instruction is executed with
zero divisor.

Integer divide by zero cannot be disabled. The result of
the trapped instruction will not be written to the
specified register.

6.2.4. Instruction Memory Trap Group

Instruction memory faults are detected and signalled by
the instruction interface. These traps are not acted upon
when first sensed, i.e., if a branch instruction or other
sequence altering event occurs between the time that
the instruction interface detects the trap condition and
when that instruction arrives at the C stage, then the
pending trap condition is cleared and the trap is
deferred. A deferred trap will not trap until it is ready to
be issued for execution. If pre-empted by another trap,
it may trap later if the code is restarted.
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The faulting instruction has not yet entered the lower
pipeline when the trap is taken. The program address
saved is that of the faulting instruction.

For instruction memory traps, the memory trap status
(MTS) field in the saved PSW indicates the reported
error.

Corrected/Uncorrectable Memory Error

Corrected and uncorrectable data memory errors are
detected by memory and communicated to the CAMMU
via the two system bus signals, MSBE/RETRY and
MMBE respectively. It is the responsibility of the
memory system to save the real memory address of the
location that failed in a predetermined location in
memory, where it can be accessed for maintenance by
the operating system.

The operating system may ignore indications of cor-
rected memory errors by clearing the ECM flag in the
SSW.

Page Fault

A page fault occurs when a program tries to access a
page for which there is no valid entry in the currently as-
signed Page Directory or Page Tables. The operating
system uses this fault to allocate pages to user and su-
pervisor programs. The address saved on the super-
visor stack is the program address of the instruction that
caused the page fault. The virtual address of the
memory location that caused the fault is saved in the
CAMMU's Fault register. (The two addresses may differ
for multiple-parcel instructions.)

Execute Protect Fault

Instruction fetches from each page are validated by a
comparison of the U, K, UU and KU flags in the SSW
with the protection level in the TLB or user’s page
tables. When an instruction fetch violation occurs, the
address saved on the supervisor stack is the program
address of the instruction that caused the fault. The vir-
tual address of the memory location that caused the
fault is saved in the CAMMU’s Fault register.

6.2.5. lllegal Operation Trap Group
lllegal operation traps are taken before the instruction is
executed. The program address saved on the super-
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visor stack is the address of the instruction which
caused the trap. The CPU trap status field in the saved
PSW indicates the type of trap.

lllegal Operation Fault

An illegal operation trap results from the attempted ex-
ecution of any undefined instruction opcode or the occur-
rence of an addressing mode which is not specifically
allowed.

Privileged Instruction Fault
A privileged instruction trap occurs when a privileged
macro instruction is encountered in user mode.

6.2.6. Diagnostic Trap Group

Trace Trap

Unless pre-empted by another trap or interrupt, the
trace trap occurs following the execution of an instruc-
tion whenever the PSW's T (trace trap enable) flag is
set. For traced instructions which are interrupted or
cause traps, the TP flag is set by hardware when the in-
terrupt or trap occurs to ensure that the trace trap will
occur immediately after the interrupt or other trap has
been serviced. In the case of data page faults, TP must
be cleared by the supervisor before restarting the fault-
ing instruction to ensure that the instruction is traced
exactly once.

MI ROM sequences are treated as a single instruction
for trace purposes so that the entire sequence executes
before the trace trap is taken.

At the time of the trap, the CPU trap status field in the
saved PSW indicates that a trace trap has occurred.
The saved PC is the address of the instruction following
the instruction that caused the trace trap.

6.2.7. Supervisor Calls

A supervisor call is an instruction executed as a trap,
and is made using the calls instruction. Its purpose is to
provide controlled access to system-level functions.
There are 128 supervisor call codes, with separate Vec-
tor Table entries for each. The PC value saved on the
stack is the address of the instruction following the calls
instruction.
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6.2.8. Multiple Traps

Only traps in the data memory and floating-point groups
can be signalled at the same time. CLIPPER internal
trap logic permits correct recovery of both faulting in-
structions. INTRAP transfers control to the floating-point
trap handler, and the loadfs instruction can be used to
access the floating-point instruction that caused the
trap. The MTS field in the saved PSW may be read by
the floating-point trap handler to determine which data
memory trap occurred.

6.3. Interrupts

The CLIPPER Module supports 16 prioritized interrupt
levels, with each level containing interrupt numbers of
equal priority. Level O (highest priority) contains 15 num-
bers; levels 1-15 each contain 16 numbers. In addition
to the 16 interrupt levels, there is a non-maskable inter-
rupt which has a higher priority than all interrupt levels
and cannot be disabled by software. Level 0 Number 0
vectors to the NMI interrupt handler.

The CPU contains the logic necessary to arbitrate inter-
rupt requests according to the priority of the interrupt
level. The interrupt level currently being processed is
stored in the Interrupt Level (IL) field of the SSW. The
CPU accepts interrupts only for interrupt levels of equal
or higher priority than the current interrupt level.

Interrupts are serviced between instructions, that is, in-
terrupt requests are not acknowledged until instructions
in the lower pipeline have finished executing, any result-
ing traps have been serviced, and memory transactions
have concluded. Thus, interrupts are not normally per-
mitted during a macro sequence, which is considered a
single instruction. However, some macro sequences (for
example, the string instructions) permit interrupts peri-
odically during their execution.

6.3.1. Maskable Interrupt Request/Acknowledge
Protocol

Priority interrupts are requested by the activation of the

IRQ input line and the assertion of the vector number

on IVEC<7:0>. The vector number includes the interrupt
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level on IVEC<7:4> and the interrupt number on
IVEC<3:0>.

An interrupt request will be acknowledged by the CPU if
interrupts are enabled (the interrupt enable flag in SSW
is set) and the interrupt level (IVEC<7:4>) is of equal or
higher priority than the interrupt level contained in the
SSW's Interrupt Level (IL) field. To maximize interrupt
responsiveness following the assertion of IRQ and
IVEC, the interrupt level can change to higher priority
on any BCLK until IRQ is released. See Figure 14.

The CPU samples IRQ on the rising edge of every
BCLK if interrupts are enabled and the priority condition
is met. The CPU then enters the pre-trap state, in which
the execution pipeline is emptied by withholding issue of
the instruction in the issue and control phase. The in-
structions in the execution pipeline complete executing;
if their execution causes a trap to be signalled, the inter-
rupt is deferred and the (higher priority) trap is serviced.
The CPU then asserts IACK.

The CPU latches the interrupt number and level on the
BCLK following the release of IRQ, and releases IACK
during the following BCLK.

The maskable interrupt request/acknowledge timing is
shown in Figure 59. See also Section 9.4.8, Interrupt
Bus.

6.3.2. Non-Maskable Interrupt .

The non-maskable interrupt is signalled on the NMI
input to the CPU which is sampled on the rising edge of
every BCLK. An active low on NMI greater than the
BCLK period will trigger this interrupt. NMI remains ac-_
tive until acknowledged by the CPU on NMIACK. If NMI
is asserted after another interrupt has already been ac-
knowledged, the non-maskable interrupt is serviced
after completion of the INTRAP sequence for the ac-
knowledged interrupt. The NMI request/acknowledge
timing is shown in Figure 60. See also Section 9.4.8, In-
terrupt Bus.
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Figure 14 Interrupt Flow Diagram
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7. Cache and MMU

The CLIPPER Module contains two Cache/Memory
Management Unit (MMU) combination VLSI chips called
CAMMUs which are designed to optimize CLIPPER per-
formance.

Each CAMMU contains a 4 K-byte data cache, and a
memory management unit which translates CPU 32-bit
virtual addresses into 32-bit real addresses. One
CAMMU is used for CPU instruction fetching and cach-
ing and is interfaced to the CPU Instruction Bus; the
second CAMMU is used for CPU data transfers and
caching and is interfaced to the CPU Data Bus. Both
CAMMUs also interface to main memory and 1/0
devices via the CLIPPER Bus.

The two CAMMUs are functionally identical, but each is
hardware programmed via an external chip pin for use

The CAMMUs feature several caching policy and Bus
Watch options which allow optimum performance
tailored to specific applications. A prefetch option is
available for the -CAMMU; and fixed address transla-
tion is used in both the -CAMMU and the D-CAMMU
for guaranteed access of selected locations in main
memory, Boot, and /O spaces. In addition, CAMMU in-
ternal registers and register fields are easily accessed
for efficient CAMMU configuration and control.

7.1. Functional Overview

The two main functional units of the CAMMU are the
cache and the Memory Management Unit (MMU), with
the MMU comprised of the Dynamic Translation Unit
(DTU), the Translation Lookaside Buffer (TLB), and the
Hardwired Translation Lookaside Buffer (HTLB) (see
Figure 15). The CAMMU also utilizes a cache control
unit which controls CAMMU data fetches from main

as either an instruction CAMMU (I-CAMMU) or a data memory.
CAMMU (D-CAMMU).
Figure 15 CAMMU Interface
I-CAMMU
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I—— o —] | ——| REAL ADDRESS/DATA T K1
}__ ne — I MMu | INSTRUCTIONS
I—HLLB -—! _I f ” ’: s
A070 MAIN
MEMORY

40



CLIPPER™ C100
32-Bit Compute Engine

Advance Information

Figure 16 Basic CAMMU Functional Flow CAMMU operation begins when the CPU asserts a vir-
tual address on the CPU-CAMMU address/data bus.
BEGIN The task of the CAMMU is to translate the CPU virtual

address (bits <31:12>) into a real address and to use
the translated real address to find the data.

The CAMMU compares the virtual address with a virtual
address of the data stored in a 16-byte (Quadword) Buf-
fer containing the most recently accessed cache line. If
there is a match, the data is fetched directly from the
Quadword Buffer and no additional cache or TLB action
is performed. If there is no Quadword Buffer match, the
CAMMU attempts to translate the address by using the
TLB, which is a look-up table containing Virtual Address
Tags and associated Real Address fields which point to
locations in the cache. If the CAMMU finds a Virtual Ad-
dress Tag in the TLB which matches the CPU virtual ad-
dress, it compares the associated Real Address field in
the TLB with the Real Address fields of a cache line set,

AccessTLB already selected by virtual address bits <10:4>, to deter-
CONCURRENTLY mine whether the data is in the cache. If the data is not
in the cache, the CAMMU accesses main memory for

the data.

If the CAMMU cannot find a matching Virtual Address
Tag in the TLB, it invokes the DTU to search declared
blocks of main memory (Page Directory Tables and

Page Tables) in an attempt to translate the virtual ad-

dress.
UPDATE 1SSUE The DTU, upon successful translation of the virtual ad-
s TRAP dress, updates the TLB with the new Virtual Address
Tag/real address association. The CAMMU then con-

‘ | ! tinues with data access. If the DTU cannot find the valid

v @ translation in main memory, the CAMMU asserts a CPU
page fault trap for resolution by the operating system.

CACHE iad P DATE Each CAMMU cache consists of 256 quadwords of data
(4 K-bytes) with associated Real Address Tags in a con-
figuration similar to the TLB. The CAMMU searches the

Phld Quadword Buffer and the onboard cache first, then

- main memory for addressed data locations if required.
TRANSFER A basic logic flow of CAMMU operation is shown in
DATA/INSTR Flgure 16.

Gg ao7t
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Figure 17 CPU Virtual Address Format
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Figure 17 depicts the format of the CPU virtual address
and indicates how the various virtual address fields are
used by the CAMMU. Figures 18 and 79 show CAMMU
operation. These figures should be referred to while
reading the following CAMMU descriptions.

7.2. Memory Management Unit (MMU)

The Memory Management Unit translates CPU virtual
addresses into real addresses and supports address
space access protection by the operating system on a
per-page basis.

Figure 19 CAMMU Block Diagram

Address translation is executed by three functional units
within the MMU: the Translation Lookaside Buffer (TLB),
the Hardwired TLB (HTLB), and the Dynamic Transla-
tion Unit (DTU). Address space access protection and
memory management support are performed by logic
within the MMU which utilizes system tags and protec-
tion codes associated with the virtual memory pages.

7.2.1. Translation Lookaside Buffer (TLB)
The TLB is a two-way set-associative memory array
that is used by the CAMMU for fast, on-board virtual ad-

CACHE

VA = RA

: CACHE
<10:4> w X TLB CONTROL["]
COMPARTMENT | COMPARTMENT
w X DT
N ™ COMPARTMENT | CoMPARTMENT [*] U
WOy W1 szws WOyW1 W2LW VA
<17:125
v |ouapworp ||auabworp J
_[cwr]| BUFFER BUFFER r-CMLIP e T
f 4 VA<31:18>
A - EA SELECT l ; SELECT
A= <3:2> MUX w WX X
RA<31:12>
SELECT W MUX SELECT X
g skl VA<31:12>
VA = RA<11> —
VA = RA<10:2>

| AR |cor]| | cir ] csor| [caIR]

NOTES:

AIR = address input register

COR = CPU output register

CIR = CPU input register

CBOR = CLIPPER bus output register
CBIR = CLIPPER bus input register
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dress to real address translation. It consists of 64 sets
of lines, with each set consisting of a W and an X com-
partment line, and an associated U flag (see Figure 20).
The CAMMU uses bits <17:12> of the CPU virtual ad-
dress to select a TLB line set, then compares bits
<31:18> of the virtual address with the VA (Virtual Ad-
dress) Tag of both the W and X Compartment lines of
the selected set.

If there is a match, and if the appropriate access protec-
tion code allows the data/instruction access, the 20-bit
RA (Real Address) field of the matching W or X line is
multiplexed and transferred to the cache as real ad-
dress bits <31:12> where they, along with virtual/real ad-
dress bit 11 (this bit is not translated), are used to
validate the data.

If there is no TLB match, the DTU attempts address
translation, as explained in Section 7.2.3, Dynamic
Translation Unit.

Figure 20 CLIPPER TLB

TLB Line Description

TLB line format is shown in Figure 21. Equivalent RA,
ST, PL, D and R flags are located in the Page Tables.
The CAMMU ensures that the D and R flags in the
Page Table entries are updated with flag changes in the
TLB.

The TLB line field definitions are as follows:

SV: Supervisor Valid

The SV flag when set indicates that the TLB line is
used for address translation only during supervisor
mode operation. All TLB SV flags can be cleared as a
group by writing to the CAMMU Reset Register and by
CLIPPER Module hardware reset.

UV: User Valid

The UV flag when set indicates that the TLB line is
used for address translation only during user mode
operation. All TLB UV flags can be cleared as a group

SET #63 [
62
61
: w X u
: COMPARTMENT COMPARTMENT
'+
/ | AN N N
/ | AN N N
/ I AN N AN
/ | AN N N
/ | AN AN N
p 7/ I AN NN
y W LINE : X LINE N h N h N
iENT sviuviva I RA}l sT| s fPL|D|R|sviuv]va|lra]st|] s ] ]o]r [ v I;
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by writing to the CAMMU Reset Register and by CLIP-
PER Module hardware reset.

VA: Virtual Address Tag

This 14-bit field is used for W or X line selection once
TLB set selection is complete. The VA Tag of each line
is compared with CPU virtual address bits <31:18>. If
there is a match, the matching line is used for the ad-
dress translation.

RA:Real Address

This 20-bit field is used as real address bits <31:12>
once the TLB line has been matched, and access
protection and validation checks have been completed
(see UV, SV, and PL descriptions).

ST:System Tag

This is a three-bit field which identifies the caching type,
caching policy, and address space associated with the
page referenced by the TLB line as follows:

ST<2:0> Description

private, write-through, main memory space
shared, write-through, main memory space
private, copy-back, main memory space
noncacheable, main memory space
noncacheable, 1/0 space

noncacheable, Boot space

cache purge

noncacheable, main memory space, slave
1/0 mode

NOO S, ONMD—-O

Figure 21 TLB Line Format and Description

This field is used only in mapped mode. In unmapped
mode, the UST (Unmapped System Tag) field in the
CAMMU Control Register is used, as described in
Section 7.6.4.

The System Tag is asserted on CLIPPER Bus lines
TG<2:0> during CAMMU external accesses. Further in-
formation on the System Tag field is provided in Section
7.4, System Tag.

S: System Reserved
This is a general-purpose, two-bit field reserved for use
by the operating system.

PL: Protection Level

Associated with each virtual address is a function code
asserted by the CPU which identifies each memory
reference as a read, write, or instruction fetch operation,
and indicates the states of the U, UU, K, and KU flags
in the CPU’'s SSW. These SSW flags indicate whether
the memory access is by the supervisor or by a user,
which protect key is to be used for access verification
(K or KU), and the state of the key. The CAMMU com-
pares the function code with the 4-bit PL field of a
selected TLB line to determine whether read access,
write access, and instruction fetching is allowed.

The Protection Level fields are used only for CPU
mapped addresses (addresses asserted while the
mapped mode bit of the SSW is set). Unmapped
addresses invoke no access protection.

20 3 2 4 11
AN A o A e A A A A
46 45 44 31 30 1110 87 65 21 0
svjuv VA RA ST s PL plR|S
N 2
SUPERVISOR _T T L
VALID SYSTEM REFERENCED
USER VALID RESERVED oIRTY
VIRTUAL REAL SYSTEM PROTECTION
ADDRESS TAG ADDRESS TAG LEVEL
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Table 10 shows allowed accesses according to the
SSW's K, U, UU, and KU flags, and the PL field.

D: Dirty Flag

The Dirty flag is set by the CAMMU to indicate that the
4 K-byte page in main memory referenced by the TLB
line has been altered. Typically the operating system
uses this flag to determine whether the referenced data
page must be copied to secondary storage (such as a
hard disk) when the data in the page is replaced.

R: Referenced Flag
The CAMMU sets the R flag to indicate that the page
associated with the line has been accessed. Typically

Table 10 Page Access Encoding

Supervisor Mode User Mode
(U=0) (U=1)
uu=0 Uu=t
D- and
Dy | P | Sy
PL | K=1 =0 | KU=1 |KU=0 | K=1 K=0
0| RW - - - - -
1| RW RW - - - -
2| RW RW RW - RW -
3| RW RW RW RW RW RW
4| RW RW RW R RW R
5| RW RW R R R R
6| RW R R R R R
7| RWE | RWE | RWE |RWE | RWE | RWE
8| RE - - - - -
9] R RE - - - -
10 R R RE - RE -
11| R R RE RE RE RE
12| - RE - RE - RE
13 - - RE - RE -
14 - - - RE - RE
15 - - - - - -
Notes: - No Access Allowed

R Read Only Allowed

RW Read and Write Allowed

RE Read and Execute Allowed

RWE Read, Write, and Execute Allowed
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the operating system uses this flag as part of a main
memory page replacement algorithm by periodically
clearing all the TLB R flags via the Reset Register (see
Section 7.6.5, Reset Register), then allowing them to be
set during normal program execution. When the operat-
ing system replaces a main memory page, it selects an
"unreferenced" page for replacement based on the
states of the R flags.

U: Used Flag

Associated with each TLB line set is a U (Used) flag
which is set by the CAMMU to indicate that the W line
of the set was last accessed and cleared to indicate
that the X line was last accessed. When a new line has
to be entered into the TLB as a result of a TLB miss,
the least recently used line in the selected set is
replaced based on the state of this flag.

7.2.2. Fixed Address Translation

The CAMMUs feature hardwired TLB lines which en-
sure TLB hits of special memory pages by both mapped
and unmapped addresses while the CPU is executing in
supervisor mode. These hardwired entries eliminate
page faults during INTRAP and reti sequences, and
allow access of Boot and I/O space before the Page
Table Directories and Page Tables have been initialized
during system booting.

The hardwired TLB (HTLBY), implemented in random
logic and not visible to software, contains the functional
equivalents of the VA, RA, ST and PL fields found in the
writable TLB. However, equivalents to other TLB fields
are not used in the HTLB. The HTLB can be accessed
only during CPU supervisor mode, so UV and SV flags
are not required. HTLB lines cannot be replaced, so no
Used flags are required. Pages referenced by the HTLB
are dedicated pages not subject to general replacement
by the operating system, so no Referenced or Dirty
flags are required.

HTLB Mapping

The hardwired TLB is invoked only when supervisor
pages 0-7 are addressed by the CPU. With the excep-
tion of CAMMU 1/O space (the upper half of page 0 of
I/O space), these pages can also be mapped through
the writable TLB. Virtual pages other than supervisor
pages 0 - 7 must be mapped through the writable TLB.
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When a CAMMU detects a supervisor page 0 - 7 virtual purposes. These page assignments are shown in
address, it selects the Real Address, System Tag, and Table 11.

Protection Level fields from the appropriate HTLB line.

Pages 0 - 3 and 6 - 7 are protection free, allowing read, The CPU fetches interrupt and trap vectors from super-
write and execution accesses. Pages 4 and 5 allow only visor virtual page 0. The CAMMUs translate this page

read and write access, and attempted execution of Test

and Set instructions in these pages results in a protec-

tion fault. The real address translation and system tag Figure 22 Hardwired TLB Mapping
assigned to each page is shown in Table 11.

The address space assigned to each of the virtual

pages is also shown in Table 11. These address space SUPERVISOR REAL BOOT
assignments are determined by the System Tag, which VIRTUAL SPACE SPAcE
is asserted on CLIPPER Bus lines TG<2:0> during PAGET PAGE1
CLIPPER Bus access. These lines function as main REAL /O SPACE PAGE 6 PAGE 0
memory, /0 and Boot space selects and must be PAGE 1 PAGE 5 REAL
decoded by system hardware for proper device " MAIN MEMORY
selection. PAGE® FhcE SPACE
PAGE 3 PAGE3

Figure 22 contains a pictorial overview of Hardwired PAGE 2 PAGE 2
TLB mapping showing the three distinct real address PAGE 1 PAGE 1
spaces into which virtual pages 0 - 7 are mapped. v Py .
Virtual Page 0 - 7 Assignments
Three of the "hardwired" virtual pages are available for
general use. The other five are dedicated for specific
Table 11 Hardwired TLB Address Translations

Virtual Real Page Protection System Tag

Page Page Assignment Level pe ot
Number {Number (U=0) , TG Description
0 0 General-Purpose and 7 1 shared, write-through, main memory space

Interrupt and Trap Vectors
General-Purpose
General-Purpose
General-Purpose

/0, CAMMUS and Reserved
110
General-Purpose
General-Purpose

private, copy-back, main memory space
noncacheable, main memory space
noncacheable, main memory space
noncacheable, /0O space
noncacheable, 1/0 space
noncacheable, Boot space
noncacheable, Boot space

N oA 0N =
-~ OO0 WMN =
NN® NN
aoA A ®®N

Note: The ST field is decoded by the CAMMU during page access. The bits are transferred to the CLIPPER Bus lines
TG<2:0> during CLIPPER Bus access.
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into page 0 of main memory where the vectors must be
located.

Similarly, following CLIPPER reset, the CPU fetches ini-
tial boot code from virtual page 6, which the CAMMUs
translate into page O of Boot space. The CAMMUs also
translate virtual page 7 into Boot space (page 1) to
allow a total of 8 K-bytes of HTLB-translated Boot ad-
dresses.

The first Boot instructions must be located at supervisor
virtual address 6000 Hex, which translates to address 0
of Boot space. The rest of the boot code should be lo-
cated in pages 0 and 1 of Boot space as required.

Virtual page 4 is reserved by Intergraph for CAMMU in-

ternal register addressing and for future use (see Sec-
tion 7.6, Internal Registers). Virtual page 5 is available

Figure 23 DTU Virtual Address Translation

for 1/0. The D-CAMMU translates these virtual pages
into pages 0 and 1 of real I/O space. Attempted access
of virtual pages 4 or 5 for instruction fetch results in a
protection fault.

Additional pages can be created in Boot or I/O space by
assigning the appropriate System Tag (5 or 4) to virtual
pages other than 0 - 7. Translation of these pages,
however, is by the writable TLB or the DTU, not by the
Hardwired TLB.

Virtual pages 1- 3 are general-purpose pages which are
translated into main memory pages 1- 3 by the HTLB.

7.2.3. Dynamic Translation Unit (DTU)

The DTU translates virtual address bits <31:12> into
real address bits <31:12> in two steps. First it fetches a
Page Table Origin from a Page Table Directory located

VIRTUAL ADDRESS

31 22 21 12 11 0
PAGE TABLE DIRECTORY INDEX | PAGE TABLE INDEX I PAGE OFFSET 1
10
PAGE TABLE DIRECT! 10 2
ENTRY CTORY 1 enray PAGE TABLE
1023 | I 1023 I I I l I I
L] (]
° [}
® L]
. 20 " : 20 3 2 4 1 1 1
® 131 12 11 1 0 ® 31 1211987 63 2 1 0
REAL REAL
memory ¢ — [PT0 | 0 IF] memory { — ra_ |s1s [po [r]F
. I .
L[] 20 L)
° o
L) L]
. . 20
L) e
L] L]
N arT il I r C ° l I I I I I
31 12 11 0
ﬂ PDO I 0 —l
31 1211 0
PAGE DIRECTORY ORIGIN REGISTER | I I
“ ~ J
1 1 REAL ADDRESS
1 32
T T A073
4 G-BYTE

REAL MEMORY
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in main memory; then it fetches an entry from a Page
Table, also located in main memory. This sequence is
depicted in Figure 23.

Once the DTU has completed address translation, the
CAMMU updates the TLB and provides the real address
to validate the cache data, then searches the cache for
the data. If the data is not cached, the CAMMU
accesses main memory for the data using the con-
catenation of translated address bits <31:12> and un-
translated virtual address bits <11:0>.

Note that because the DTU accesses only main
memory and not the cache during address translation,
all Page Table Directories and Page Tables must be lo-
cated in noncacheable pages (see Section 7.4,
System Tag).

Page Table Directory Entry Selection

Two 20-bit PDO (Page Directory Origin) registers each
contain the base address of a Page Table Directory.
One PDO register is used by the CAMMU during super-
visor mode operations; the other PDO register is used
during user mode operations. The DTU concatenates
bits <31:22> of the virtual address with the contents of
the appropriate PDO register to form the most sig-
nificant 30 bits of a Page Table Directory entry address.
(Page Table Directory entries are word-aligned; there-
fore bits <1:0> are forced LOW.) In effect, the PDO

Figure 24 Page Table Format

register points to the Page Table Directory, and bits
<31:22> of the virtual address select one of 1024 Page
Table Directory entries.

Page Table Directory Format

Each Page Table Directory consists of 1024 32-bit
words located in main memory. Page Table Directory
entries (see Figure 24) are comprised of two fields.

PTO: Page Table Origin
This field is used by the DTU during address translation
to locate the Page Table in main memory.

F: Page Fault

The F flag is set or cleared by the operating system to
indicate the absence or presence of a valid Page Table
pointed to by the PTO field in the entry. A set F flag indi-
cates absence of a valid Page Table, and attempted
DTU address translation with a Page Table directory
entry having a set F flag forces a CPU page fault trap.

Page Table Entry Selection

The selected Page Table Directory entry contains a 20-
bit PTO field (see Figure 24) which holds the base ad-
dress of a Page Table that is to be used for address
translation. The DTU concatenates bits <21:12> of the
virtual address with the contents of the PTO field to
form bits <31:2> of the Page Table entry address (bits
<1:0> are forced LOW). In effect, the PTO field points

31 12 11 1 0
PTO 0
B E
T T (
PAGE TABLE PAGE
ORIGIN FAULT



CLIPPER" C100
32-Bit Compute Engine

Advance Information

Figure 25 Page Table Entry Format

31 12 11 98 76 3 2 1
RA ST S PL D R F |s
<
4 Iy A A
PAGE
FAULT
REFERENCED
FLAG
DIRTY
FLAG
PROTECTION
LEVEL
REAL SYSTEM SYSTEM
ADDRESS TAG RESERVED
Figure 26 Cache Set-Associative Memory Array
LINE SET #
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]
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to the appropriate Page Table, and bits <21:12> of the
virtual address select one of 1024 Page Table entries.

The CAMMU then uses the 20-bit RA (Real Address)
field in the Page Table entry, shown in Figure 25, as
bits <31:12> of the real address.

Page Table Format

Each Page Table consists of 1024 32-bit words com-
prised of six fields, as shown in Figure 25. Equivalent
ST, S, PL, D, and R fields are located in the TLB
registers. See Section 7.2.1, Translation Lookaside
Buffer.

The following are the Page Table entry field descriptions:

RA: Real Address

The 20-bits of the RA field are used as real address bits
<31:12> following address translation. These bits con-
stitute a 4 K-byte page address.

ST: System Tag

This field identifies the caching policy, caching type, and
address space of the page (see Section 7.4, System
Tag).

S: System Reserved
This is a general-purpose 2-bit field reserved for the
operating system.

PL: Protection Level

The CAMMU uses this field to determine whether data
read, data write, and instruction fetching are allowed
to/from the page (see Section 7.2.1, Translation
Lookaside Buffer).

Figure 27 CLIPPER Cache Line Format

D: Dirty Flag
The Dirty flag is set by the CAMMU to indicate that the
page has been altered.

R: Referenced Flag
The CAMMU sets the R flag to indicate that the page
has been accessed.

F: Page Fault

The F flag is set/cleared by the operating system to indi-
cate the absence/presence of a valid page. A set F flag
indicates absence of a valid page, and attempted DTU
address translation with a Page Table entry having a set
F flag forces a CPU page fault trap.

7.3. Cache

The cache architecture is similar to that of the TLB, as
shown in Figure 26. It is a 4 K-byte cache composed of
128 sets of lines, with each set consisting of a W com-
partment line and an X compartment line.

Associated with each cache line set is a U bit which is
set to indicate that the W line of the entry was last ac-
cessed, and cleared to indicate that the X line was last
accessed. When, as a result of cache miss, a new data
quadword has to be cached, the least recently used line
in the selected line set is replaced based on the state of
this bit.

7.3.1. Cache Line Description

Figure 27 shows the cache W and X compartment line
format. Each line consists of four 32-bit data words and
LV, LD, and RA fields defined as follows:

1 1 21 32 32 32 32
150 149 148 128 127 96 85 64 63 32 31 0
v Lo RA wo w1 w2 w3
b
LINE
VALID
LINE
DIRTY
2
REAL 2
ADDRESS
TAG WORD 0 WORD 1 WORD 2 WORD 3
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LV: Line Valid

The LV bit, when set, indicates that the data in the as-
sociated line is valid; when clear, it indicates that the
data is invalid.

Aline LV bit is set by the CAMMU when it loads new
data into the cache line. The bit is cleared by the
CAMMU, operating as a slave, in response to CLIPPER
Bus activity when its Bus Watch modes are enabled, or
by a cache purge operation (TG = 6) as described in
Section 7.4.2, System Tag 6. Individual LV flags are
also cleared by hardware when the CV (Clear Valid) bit
in the CAMMU Control Register is set, and the cache
provides more current (dirty) data for a quadword /O
Read (see Section 7.5, Bus Watch Modes, Watch I/O
Reads).

In the case of Bus Watch, LV is cleared during a quad-
word write to a main memory address that matches the
particular cache location. During the Bus Watch opera-
tion, the CAMMU asserts the CBSY signal on the
CLIPPER Bus. The CBSY signal prevents another bus
transaction from beginning until Bus Watch operation
has completed. If the CPU has addressed this same
cache line prior to the CLIPPER Bus’s write operation,
the CPU has priority and the bit is not cleared until the
CPU access is completed. This is described in more
detail in Section 7.5, Bus Watch Modes.

All cache LV flags can be cleared as a group by writing
to the CAMMU Reset Register (see Section 7.6, Internal
Registers), and by CLIPPER hardware reset.

LD: Line Dirty

The LD bit is set by the CAMMU to indicate that data in
the cache line has not been updated in main memory.
This occurs when the CAMMU is operating in the copy-
back mode (see Section 7.4, System Tag), and a CPU
write to memory resuilts in a cache hit. In this case, the
data is written to the cache but not to main memory,
resulting in “dirty" cache data, i.e., data which is more
current than main memory data. This bit is cleared by
the CAMMU when the copy-back data is copied back to
memory.

RA: Real Address Tag
The RA tag is used for cache line selection. The RA
tags of both the W and X compartment lines are com-
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pared with translated address bits <31:12> and bit 11 of
the virtual address. Accessed data is located in a match-
ing line.

WO0-W3: Word 0 - 3
Words 0 - 3 are the four 32-bit data words in the cache
line.

7.3.2. Cache Data Selection

Virtual address bits <11:2> are used directly by the
CAMMU as real address bits <11:2> to access cache
data (refer to Figure 19).

The CAMMU uses address bits <10:4> to select one of
the 128 cache line sets. The CAMMU compares the con-
catenation of translated address bits <31:12> and ad-
dress bit 11 with the RA field of both the W line and the
X line of the selected line set. If there is no match, a
cache miss has occurred, and the CAMMU accesses
main memory for the data transfer. If there is a match,
the CAMMU uses address bits <3:2> to select one of
the four data words in the matching line for the data
transfer.

7.3.3. Prefetch

The D-CAMMU implements a "demand” data fetching al-
gorithm. Data fetching for the cache is "on demand" by
the CPU; that is, a new data quadword is fetched from
main memory only as a result of a cache miss.

The I-CAMMU also supports demand fetching which
functions identically to D-CAMMU data fetching, but fea-
tures an optional prefetching algorithm not available in
the D-CAMMU. This algorithm prefetches the next four
words of instructions from main memory for line N + 1
of the cache when line N has been accessed by the
CPU.

I-CAMMU prefetching is controlled by bit 0 of the
CAMMU Control Register. When bit 0 is clear, prefetch
is disabled; when set, prefetch is enabled.

I-CAMMU prefetch enable/disable should be based on
the general structure of the code being executed. If the
instructions are in general executed sequentially as
stored in main memory, the probability of cache hits of
prefetched instructions is high; therefore, prefetch
should be enabled for increased CPU throughput. If the
instructions are branch intensive, the probability of
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cache hits of prefetched instructions is reduced; there-
fore, prefetch may be disabled to reduce system bus
traffic.

7.3.4. Quadword Data Transfers

The CAMMU cache lines each contain four words. The
CAMMUs transfer data/instructions between the caches
and main memory four words (one quadword) at a time.
(Single-word transfers are used for data/instructions in
noncacheable pages.)

7.4. System Tag

Associated with each virtual page is a three-bit ST (Sys-
tem Tag) field which determines the caching policy that
applies to the page, the page caching type (private or
shared), and the page’s address space (I/O, Boot, or
main memory). In addition, the System Tag can be used
to identify two special operations: Cache Purge and
Slave /0O mode. This field is found in the Page Table
entries (see Figure 25) and in the TLB (see Figure 21).

The System Tags for supervisor pages O - 7 are
hardware-selected by the CAMMU (see Section 7.2.2,
Fixed Address Translation and Table 11). All other vir-
wal address page System Tags are assigned by the
operating system according to system requirements
when it creates the Page Tables. The CAMMUs decode
the ST fields during address translation and transfer the
bits to the CLIPPER Bus lines TG<2:0> during
CLIPPER Bus access. (If the system is being operated
in unmapped mode, the UST field (Unmapped System
Tag) in the CAMMU Control Register determines the
System Tag.)

7.4.1. System Tags0-5

System Tags O - 5 encode the following information

about a virtual page:

(1) Address space— main memory, Boot, or /O

(2) Caching type—private or shared.

(3) Caching policy—cacheable or noncacheable; write-
through or copy-back.

Address Space

"Address space" identifies the real address space of the
page as either main memory space, Boot space or /O
space. The CAMMUSs map all virtual addresses into one
of these spaces.
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Caching Type

Two types of page caching are recognized by the
CAMMU: private and shared. Private caching pages are
accessed and cached by one CAMMU only. Shared
caching pages are accessed and cached by more than
one CAMMU. (Pages that are cached by both the
I-CAMMU and D-CAMMU of a CLIPPER Module are
shared pages.)

Note that the terms "shared" and "private" relate only to
CAMMU access. In fact, a page may be private to a
CAMMU but accessible by non-CAMMU devices. This
page, though private, is common to one or more
devices other than the CAMMU, and should therefore
receive special consideration when assigning System
Tags.

Caching Policy

Caching policy is a set of attributes assigned to a page
by the System Tag which identifies the page as cache-
able or noncacheable, and, if cacheable, defines the
caching mode which applies to the page as copy-back
or write-through. Combinations of write-through or copy-
back caching to private pages, and write-through cach-
ing to shared pages are possible.

Cacheable data can be entered into a cache; noncache-
able data cannot be entered into a cache. Pages can
be tagged as cacheable or noncacheable according to
system requirements.

Write-through and copy-back are two schemes for updat-
ing main memory with data in the D-CAMMU cache.
Selection of these modes is based on system require-
ments and page caching type. Private pages may be
write-through or copy-back; shared pages must be write-
through.

During a CPU write, the CAMMU searches the cache
for the accessed location. If the location is not in the
cache (a cache miss), the CAMMU operates according
to the caching mode as follows:

(1) Wirite-through—the CAMMU updates main memory
with the CPU data but does not update the cache be-
cause the data is not cached.
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(2) Copy-back—the CAMMU reads the quadword con-
taining the addressed data from main memory into the
cache, then updates the cache, but does not update
main memory.

If the data is in the cache (a cache hit), the CAMMU
operates according to caching mode as follows:

(1) Write-through—the CAMMU updates both the
cache and the main memory.

(2) Copy-back—the CAMMU updates only the cache,
but does not update main memory.

Write-through mode forces the D-CAMMU to access the
CLIPPER Bus and update main memory immediately fol-
lowing a cache write. Write-through mode thus ensures
that main memory data is current with the cache at all
times. Shared pages (those that can appear in more
than one cache) must be write-through.

Copy-back mode inhibits updating of main memory with
the new data until the cache line written into is
replaced. When a copy-back write hit to the cache oc-
curs, the LD (Line Dirty) flag in the hit line is set to indi-
cate that the line data must be written to main memory
when the line is replaced. Since copy-back mode does
not assure data consistency between main memory and
the cache at all times, copy-back mode cannot be used
for pages that are shared by another CAMMU.

Write-through mode eases the task of data manage-
ment because main memory is always "up to date” but
increases CLIPPER Bus traffic because the CAMMU
must access the bus following each cache write. Copy-
back requires more careful data management considera-
tion but decreases system bus traffic, thereby
significantly improving system performance. These fac-
tors should be considered when assigning System Tags.

7.4.2. System Tag 6—Cache Purge
System Tag 6, Cache Purge, forces invalidation (purg-
ing) of cache lines that are hit during CPU write opera-
tions that are tagged TG = 6. The lines are invalidated
by clearing of the Line Valid (LV) bits.

A CPU write with the ST field in the TLB set to a 6 will
purge hit cache lines of its own caches. The write

proceeds as normal with TG lines = 6 on the CLIPPER
Bus, causing hit lines in other module caches (having
Watch CPU writes enabled) to be purged. Any cache
with Watch CPU writes enabled will purge hit lines
(regardless of the state of the TLB system tag field)
when a write is detected on the CLIPPER Bus with

TG =6.

The Cache Purge feature facilitates the re-use of pages
by allowing invalidation of data belonging to a replaced
page which is left in a cache. In multiple CLIPPER
Module applications, for example, a page might be
replaced in main memory which may leave unpurged
data in a cache of the module not initiating the page re-
placement. The CAMMU initiating the page replacement
can invalidate that cache data by writing to the cached
data locations using the Cache Purge tag.

7.4.3. System Tag 7—Slave I/O

System Tag 7, Slave /O Mode, in effect allows the
module to act as a DMA controller. It supports transfer
of data between 1/O and main memory in DMA-like
fashion, but is not intended to replace DMA controllers.

During Slave I/O operation, the CLIPPER Module
accesses an individual word, halfword, or byte from a
source (such as main memory) which is simultaneously
read by a destination device. Both read and write opera-
tions can be tagged Slave I/O mode.

Slave I/0 read operations are used to transfer data from
main memory to an I/O device. The CLIPPER Module
executes a read from memory with TG = 7, and the
memory responds with the data which is read by the I/O
but can be ignored by the CPU. The I/O must recognize
TG = 7 as Slave /0O mode and assert RDYi to terminate
the operation. Timing for the Slave /O read operation is
the same as for a standard read.

Slave /O write operations are used to transfer data
from 1/O to main memory. The CLIPPER Module ex-
ecutes a write to memory with TG = 7 using arbitrary
data that will not be asserted on the bus. The I/O must
recognize TG = 7 as slave /O mode and assert data on
the bus. The main memory asserts RDYi to terminate
the operation.



CLIPPER™ C100
32-Bit Compute Engine

Advance Information

Timing for the Slave 1/O write operation is the same as
for a standard write, with the exception that DIR transi-
tions after the address phase of the operation as if for a
read. This prevents the CLIPPER Module bus
transceivers from driving the bus during the data trans-
fer phase of the operation, allowing the I/O to send data
without bus contention.

7.5. Bus Watch Modes

Bus Watch modes are used by the CAMMU to ensure
data consistency between the cache and main memory,
and to transfer the "latest” data to an external device
reading main memory.

When Bus Watch is enabled in a CAMMU, it monitors
main memory accesses by other bus masters. Depend-
ing on the Bus Watch mode enabled and the type of
main memory access (identified by decoding the
CLIPPER Bus TG<2:0> and CT<5:0> lines, as
described in Section 9, CLIPPER Bus), the CAMMU in-
tervenes to update the cache with data that is written to
main memory, to invalidate cache data, or to transfer up-
dated data from the cache to a bus master that is read-
ing main memory. This Bus Watch monitoring occurs in
parallel with the memory access in order to eliminate or
minimize the Bus Watch operation effect on CLIPPER
Bus throughput. Each CLIPPER Bus master must
generate the appropriate TG<2:0> tag when accessing
the CLIPPER Bus.

The three Bus Watch modes featured by the CAMMU
are:

(1) Watch CPU Writes (CPU writes to shared cacheable
pages)

(2) Watch 1/O Writes (I/O writes to cacheable pages)

(3) Watch 1/0O Reads (I/O reads from private copy-back

pages)

These Bus Watch modes are controlied by bits <3:1> of
the CAMMU Control Register, as explained in Section
7.6, Internal Registers.

Watch CPU Writes
Watch CPU Writes is enabled in a CAMMU to ensure
that data in the CAMMU cache is updated with new
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data written by another CAMMU into its shared main
memory pages, or to invalidate cache lines (cache data)
in the case of quadword writes.

The CPU transfers data to/from main memory via the
D-CAMMU. The D-CAMMU transfers the data using
either single-word (byte, halfword, or word) transfers, or
quadword transfers. When, with Watch CPU Writes
enabled, a slave CAMMU (a CAMMU that is not access-
ing the bus) detects a CPU write to one of its shared
main memory pages by a master CAMMU (a D-
CAMMU that is accessing the bus), the slave CAMMU
determines whether the accessed location is in its
cache, and whether the write involves one word for four
words. If a single word write, the CAMMU updates the
matched cache line. If a quadword write, the CAMMU
does not update the matched cache line but instead in-
validates the line by clearing the LV bit.

Watch VO Writes

Watch I/0O Writes, when invoked, functions identically to
Watch CPU Writes. The two modes differ in that Watch
1/0 Writes responds to 1/O writes rather than to CPU
writes.

When a CAMMU with Watch 1/O Writes enabled detects
an //O write to one of its cacheable pages, the CAMMU
determines whether the accessed data is cached in the
CAMMU, and whether the write involves one word or
four words. If a single-word write, the CAMMU updates
the matched cache line. If a quadword write, the
CAMMU does not update the matched line but instead
invalidates the line by clearing the LV bit.

Watch /O Reads

Watch I/O Reads is enabled to ensure that data read by
I/O devices from private, copy-back pages is always cur-
rent data. This mode functions identically for both single-
word and quadword I/O reads.

When this mode is enabled in a D-CAMMU, the D-
CAMMU monitors the system bus for reads by 1/O of
private, copy-back pages. When the D-CAMMU detects
such a read, it searches its cache for the data. If the
data is not cached or the cached data LD bit is clear,
the /O device reads the data directly from main
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memory. If the data is cached and the LD bit is set, the 7.6.2. User PDO Register
D-CAMMU aborts the assertion of data by main The User PDO (Page Directory Origin) Register is a 20-
memory and asserts the current cache data on the bit read/write register that holds the base address of a
CLIPPER Bus. The D-CAMMU thus intervenes in the Page Table Directory address which is used by the DTU
I/0 read operation to provide the more current cached during user mode address translation (see Section
data. If the Clear Valid bit in the Control Register is set, 7.2.3, Dynamic Translation Unif).
then the CAMMU will also clear the Line Valid bit in the
cache line used to supply the data; the memory inter- 7.6.3. Fault Register
face can use the cache data to update its own contents, The Fault Register is a 32-bit read-only register which
as described in Section 9.4.7. holds the virtual address of the data or instruction
memory location that generated a page fault. It is in-
Note that because the copy-back caching mode applies tended for use by trap handling routines for fault
only to private pages not shared by CAMMUS, this Bus recovery.
Watch mode is invoked only during /O reads of copy-
back pages. 7.6.4. Control Register
The Control Register is a 9-bit read/write register used
7.6. Internal Registers to enable prefetching in the I-CAMMU, to selectively
Each CAMMU contains five software-accessible enable the Bus Watch modes, to assign a system tag to
registers used for initialization and control. Two of these unmapped memory addresses, and to enable the clear-
registers, the Supervisor PDO and User PDO, are used ing of cache line LV bits during Bus Watch of I/O
in address translation; they contain the base addresses Reads. The Control Register is shown in Figure 28 and
of the supervisor and user Page Table Directories. The is described below.
Fault register is loaded with the virtual address as-
sociated with certain fault conditions and is used by the CV: Clear Valid
operating system to implement virtual memory. The Con- When this bit is set, the LV (Line Valid) bit in a copy-
trol and Reset registers are used to control various back cache line is cleared by hardware when the more
aspects of CAMMU operation. These registers are dis- current (dirty) data contained within that line is supplied
cussed in the following sections. by the CAMMU for an /O quadword read (as a result of
Bus Watch of /O Reads). This permits pages that are
7.6.1. Supervisor PDO Register swapped by /O back to disk to be simultaneously
The Supervisor PDO (Page Directory Origin) Register is purged from the cache. Use of this option requires the
a 20-bit read/write register that holds the base address memory interface to use the data sent to the /O device
of a Page Table Directory address which is used by the to update its own contents, except in cases where the
DTU during supervisor mode address translation (see data will not be read by another I/O device (see Section

Section 7.2.3, Dynamic Translation Unit).

Figure 28 CAMMU Control Register

31 9 8 7 6 § 4 3 2 1 0

0 cv 0 UsT EWIR EWIW | EWCW EP

A077

NOTE: BITS <6:7> AND <31:9> MUST ALWAYS BE PROGRAMMED 0 OR UNDEFINED WILL OCCUR.
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9.4.7). The Clear Valid option is disabled by clearing
this bit. On reset, this bit is cleared by hardware.

Note: The Clear Valid bit was called the "Clear Dirty" bit
in previous documents.

UST: Unmapped System Tag

When the Mapped Mode bit in the CPU System Status
Word is clear, all CPU addresses, except supervisor vir-
tual addresses 0 - 7FFF Hex which are mapped by the
HTLB, are treated by the CAMMUs as real addresses
requiring no translation. These unmapped addresses
therefore have no TLB or Page Table source of system
tags. The CAMMUs, therefore, use the two-bit UST field
to tag pages referenced with unmapped addresses as
follows:

UST Description
0 private, write-through, main memory space
1 shared, write-through, main memory space
2 private, copy-back, main memory space
3 noncacheable, main memory space

The UST bits map to TG<1:0> CLIPPER Bus lines.
TG<2> is forced to 0.

UST is set to 3 by CLIPPER Module reset.

Figure 20 CAMMU Reset Register

31 7 6

EWIR: Enable Watch I/O Reads

EWIR, when set, enables Watch I/O Reads operation.
This bit is ignored by the I-CAMMU. EWIR is set by
CLIPPER Module reset.

EWIW: Enable Watch I/O Writes
EWIW, when set, enables Watch I/O Writes operation.
EWIW is set by CLIPPER Module reset.

EWCW: Enable Watch CPU Writes
EWCW, when set, enables Watch CPU Writes opera-
tion. EWCW is set by CLIPPER Module reset.

EP: Enable Prefetch

EP, when set, enables I-CAMMU prefetching. When EP
is clear, I-CAMMU prefetching is disabled, and the
I-CAMMU fetches instructions "on demand.” The state
of this bit is ignored by the D-CAMMU, which always
fetches on demand. EP is set by CLIPPER Module
reset.

7.6.5. Reset Register

The Reset Register is a 7-bit, write-only register that al-
lows selective resetting of the CAMMU cache and TLB
(see Figure 29). The cache LV (Line Valid) and U
(Used) flags, and the TLB SV (Supervisor Valid), UV
(User Valid), D (Dirty) and R (Referenced) flags can be
cleared by setting individual Reset Register bits.

RR RD RUV RSV RLVX RLVW

NOTE: BITS <31:7> MUST ALWAYS BE PROGRAMMED 0 OR UNDEFINED RESULTS WILL OCCUR.
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Figure 30 CAMMU Access Map

RESERVED

GLOBAL
CAMMU

I-CAMMU

D-CAMMU

-

N 7

VIRTUAL ADDRESS
0x00004E00 — Ox00004FFF

0x00004D81 — 0x00004DFF
0x00004D80
0x00004D41 — 0x00004D7F
0x00004D40
0x00004D11 — 0x00004D3F
0x00004D10
0x00004D09 — 0x00004DOF
0x00004D08
0x00004D05 — 0x00004D07
0x00004D04
0x00004D00 — 0x00004D03
0x00004CFF
0x00004CFE
0x00004CFD
0x00004CFC
0x00004C04 — Ox00004CFB
0x00004C03
0x00004C02
0x00004C01
0x00004C00

DESCRIPTION
Reserved.

Reserved

Giobal CAMMU, Reset register

Reserved.

Global CAMMU, Control register

Reserved

Global CAMMU, Fault register

Reserved.

Global CAMMU, User Page Directory Offset register
Reserved

Global CAMMU, Supervisor Page Directory Offset register.
Reserved

Global CAMMU, TLB Line Set 63, X Line, VA Field.
Global CAMMU, TLB Line Set 63, X Line, RA Fisld.
Global CAMMU, TLB Line Set 63, W Line, VA Field.
Global CAMMU, TLB Line Set 63, W Line, RA Field.
Global CAMMU, Line Sets 1 through 62.

Global CAMMU, TLB Line Set 0, X Line, VA Field
Global CAMMU, TLB Line Set 0, X Line, RA Field.
Global CAMMU, TLB Line Set 0, W Line, VA Field.
Global CAMMU, TLB Line Set 0, W Line, RA Field

0x00004B81 — Ox00004BFF Reserved.
0x00004B80 I-CAMMU, Resetregster.
0x00004B41 — Ox00004B7F Reserved.
0x00004B40 1-CAMMU, Control register.
0x00004B11 — 0x00004B3F Reserved.
0x00004B10 I-CAMMU, Faultregister.
0x00004B09 — 0x00004BOF Reserved
0x00004B08 I-CAMMU, User Page Directory Offset register
0x00004B05 — 0x00004B07 Reserved
0x00004B04 I-CAMMU, Supervisor Page Dwectory Offset register
0x00004B00 — 0x00004B03 Reserved.
Ox00004AFF I-CAMMU, TLB Line Set 63, X Line, VA Field
O0x00004AFE 1-CAMMU, TLB Line Set 63, X Line, RA Field
0x00004AFD I-CAMMU, TLB Line Set 63, W Line, VA Field.
0x00004AFC I-CAMMU, TLB Line Set 63, W Line, RA Field.
0x00004A04 — OxOC004AFB I-CAMMU, Line Sets 1 through 62.
0x00004A03 I-<CAMMU, TLB Line Set 0, X Line, VA Field
0x00004A02 I-CAMMU, TLB Line Set 0, X Line, RA Field.
0x00004A01 I-CAMMU, TLB Line Set0, W Line, VA Field
0x00004A00 I-CAMMU, TLB Line Set 0, W Line, RA Field
0x00004981 — OxO00049FF Reserved.
0x00004980 D-CAMMU, Reset register
0x00004941 — 0x0000497F Reserved
0x00004940 D-CAMMU, Control register.
0x00004911 — Ox0000493F Reserved
0x00004910 D-CAMMU, Faultregister.
[0} - R .
0x00004908 D-CAMMU, User Page Directory Offset register
0x00004905 — 0x00004907 Reserved
0x00004904 D-CAMMU, Supervisor Page Directory Offset register
0x00004900 — 0x00004903 Reserved.
Ox000048FF D-CAMMU, TLB Line Set 63, X Line, VA Field.
0x000048FE D-CAMMU, TLB Line Set 83, X Line, RA Field
0x000048FD D-CAMMU, TLB Line Set63, W Line, VA Field.
0x000048FC D-CAMMU, TLB Line Set 63, W Line, RA Field
0x00004804 — Ox000048FB D-CAMMU, Line Sets 1 through 62.
0x00004803 D-CAMMU, TLB Line Set 0, X Line, VA Field
0x00004802 D-CAMMU, TLB Line Set 0, X Line, RA Field
0x00004801 D-CAMMU, TLB Line Set 0, W Line, VA Field g
0x00004800 D-CAMMU, TLB Line Set 0, W Line, RA Fieid <
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The Reset Register bits and their associated reset
operations are as follows:

Bit # Bit Name Reset Operation

6 RU Reset All U Flags in Cache

5 RR Reset All R Flags in TLB

4 RD Reset All D Flags in TLB

3 RUV Reset All UV Flags in TLB

2 RSV Reset All SV Flags in TLB

1 RLVX  Reset All "X" Line LV Flags in Cache
0 RLVW  Reset All "W" Line LV Flags in Cache

The reset operations shown are performed by writing to
the Reset Register with the appropriate data pattern.

These CAMMU registers, as well as the CAMMU TLBs,
are located in virtual page 4, which is translated by the
Hardwired TLB into Page 0 of I/O space. A map of
CAMMU 1/O space is shown in Figure 30.

The CPU accesses the D-CAMMU /O space directly.
The CPU accesses the I-CAMMU 1/O space indirectly
via the D-CAMMU, because the I-CAMMU/CPU Instruc-
tion Bus is tied to CPU instruction buffers which only
transfer instructions.

7.6.6. CAMMU Register Access

The D-CAMMU registers are located in virtual address
4800-49FF (Hex). The I-CAMMU registers are located

Figure 31 CAMMU Addressing

in virtual address 4A00-4BFF. These addresses are
used to access registers in individual CAMMUs.

The CAMMUs can also be addressed as a group using
global addresses for TLB writes, register writes, and
TLB/cache reset. In systems utilizing multiple CLIPPER
Modules, for example, a CPU can execute global writes
to CAMMUs other than its companion D-CAMMU by ac-
cessing virtual address locations 4Cnn (Hex, TLB write),
and 4Dnn (Hex, register write, and TLB/cache reset).
1/0O devices can execute the global writes by accessing
Cnn and Dnn (Hex).

Global writes are typically used in multi-CPU systems
when main memory pages that are shared by more
than one CLIPPER Module are replaced. If the virtual
address of a page being replaced is identical for all
modules sharing the page, a single global write to
CAMMU I/O space can be used to invalidate the TLB
entry corresponding to the outgoing page in all
CAMMU:s.

Register Addressing

CAMMU /O space addresses are shown in Figure 31.
Virtual address bits <31:11> comprise the CAMMU
Base Address field, which must point to the upper half
of virtual page 4 for CAMMU access.

Virtual address bits <10:8> comprise the CAMMU
Select field. This field identifies the following:

TLB LINE SET SELECT

X/W LINE SELECT IF
(1 = XSELECT) B
ACCESS
VA/RA SELECT
[ (1=VASELECT)
31 16 15 12 11 10 87 2 1 0
VA <31:0> o 4 1
CAMMU SELECT REGISTER SELECT
0 = D-CAMMU TLB 04 = SUPERVISOR PDO REGISTER
1 = D-CAMMU REG 08 = USER PDO REGISTER
2= I-CAMMU TLB 10 = FAULT REGISTER IF
3= -CAMMU REG 20 = RESERVED REGISTER
4 - GLOBAL TLB 40 = CONTROL REGISTER ACCESS
5 = GLOBAL REG 80 = RESET REGISTER
6 = RESERVED As80

7 = RESERVED
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BitNo. CAMMU

10 9 8 Selected Operation/Access

0 0 0 D-CAMMU RMWTLB

0 0 1 D-CAMMU R/W Registers; Reset
TLB/Cache

0 1 0 I-CAMMU RW TLB

0 1 |-CAMMU R/W Registers; Reset
TLB/Cache

0 0 Global Write TLB

1 01 Global Write Registers; Reset
TLB/Cache

Note:

The TLBs and caches are reset by writing to the Reset
Register.

The first four entries show individual I- and D-CAMMU
addressing. The last two entries show global address-

Figure 32 TLB Access Data Formats

(a) TLB RA FIELD ACCESS FORMAT

ing, intended for use in systems utilizing more than one
CLIPPER Module. A CPU uses global addressing in
such a system to access a specific register or to reset
the TLB and cache in all CAMMUs in the system other
than its own D-CAMMU.

Bits <7:0> of the virtual address comprise the Register
Select field. This field identifies the register or the TLB
field being accessed. All five CAMMU registers, and in-
dividual VA (Virtual Address) and RA (Real Address)
fields of the TLB can be addressed.

If the operation is a TLB access, virtual address bits
<7:2> address one of the 64 TLB entries, bit <1> ad-
dresses the W or X line of the TLB entry, and bit <0> ad-
dresses the VA or RA field of the addressed TLB line.

If the operation is a register access, virtual address bits
<7.0> address the registers as follows:

31 12 11 98 76 3 1
RA ST 0 PL DJR}JU
4 [ A J A A
USED FLAG
REFERENCED FLAG
RESERVED :
DIRTY FLAG
REAL SYSTEM PROTECTION
ADDRESS TAG LEVEL
(b) TLB VA FIELD ACCESS FORMAT
31 18 17 3 2 1 0
VA 0 SV juv}i o
VIRTUAL RESERVED L- RESERVED
ADDRESS
TAG USER VALID FLAG
Aoet SUPERVISOR VALID FLAG
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Bits Register

<7:0> Addressed
0000 0000 Reserved, Must Be Zero
0000 0001 Reserved, Must Be Zero
0000 0010 Reserved, Must Be Zero
0000 0100 Supervisor PDO (read/write)
0000 1000 User PDO (read/write)
0001 0000 Fault (read only)
0010 0000 Reserved, Must Be Zero
0100 0000 Control (read/write)
1000 0000 Reset (write only)

CAMMU Data Format

The format of data written to and read from the
CAMMUs varies according to the register or TLB field
addressed. Both the fields and the number of data bits
used in the 32-bit data words written to the CAMMUs dif-
fer to accommodate individual CAMMU registers and
register types.

TLB Access Data Format

TLB access data formats are shown in Figure 32. Two
formats are used. One format is used when accessing a
TLB RA field; the second is used when accessing a
TLB VA field.

Figure 32A shows the data format used when accessing
a TLB RA field. When accessing an RA field, the Sys-

Figure 33 PDO Register Access Format

31

tem Tag and Protection Level fields and the R and D
flags of the addressed TLB line are also accessed, as
well as the U flag of the TLB set containing the TLB line.

Figure 32B shows the data format used when accessing
a TLB VA field. The UV and SV flags of the TLB line are
also accessed. Note that several data bits are not used.
These bits are reserved by Intergraph and must be zero.

PDO Register Access Data Format

Figure 33 shows the data format used when accessing
either the supervisor or the user PDO register. Bits
<31:12> are used to transfer the 20-bit PDO data; bits
<11:0> are reserved by Fairchild and must be zero.

Fault Register Data Format
The 32-bit address in the Fault Register is read as a 32-
bit data word.

Control Register Access Data Format

The least-significant nine bits are used when accessing
the Control Register; bits <31:9> are reserved by
Intergraph and must be zero.

Reset Register Access Data Format

The seven least-significant bits are used when access-
ing the Reset Register; bits <31:7> are reserved by
Intergraph and must be zero.

1211 0

PDO

PAGE DIRECTORY
ORIGIN

NOTE:

This format is used for both the user and supervisor PDO register access.
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8. CLIPPER Hardware Reset
The CLIPPER Module is reset when power is initially ap-
plied to the module (power-on reset), and when RESET
is asserted LOW during operation.

The response of the CPU to a hardware reset is as
follows:

(1) The T flag in the PSW is cleared; the remaining
flags in the PSW are undefined.

(2) The following SSW flags are cleared: El, TP,
M, U, K, KU, UU, and P; the remaining SSW
flags are undefined.

The response of each CAMMU to reset is as follows:

(1) All LV (Line Valid) flags in the cache are cleared.

(2) All U (Used) flags in the cache are cleared.

(3) All UV (User Valid) flags in the TLB are cleared.

(4) All SV (Supervisor Valid) flags in the TLB are
cleared.

Figure 34 CLIPPER Module Following Reset

PROGRAM STATUS WORD

MTS CTS T 0
X X ] []

FR
X

EFT EFO

X

EFV

EFX

(5) All D (Dirty) flags in the TLB are cleared.

(6) All R (Referenced) flags in the TLB are cleared.
(7) Bits <8:0> of the Control Register are set to 3F.
(8) The Reset Register is cleared.

Reset therefore places the CLIPPER Module in un-
mapped supervisor mode with all traps and conditional
interrupts disabled and with Bus Watch and prefetching
enabled. Figure 34 shows the state of the CLIPPER
Module's CPU control registers, and the CAMMU's
registers, TLB, and cache lines following reset. While
RESET is asserted, all CLIPPER Module Bus active
LOW signals are pulled HIGH (via pull-up resistors),
and all active HIGH signals are forced LOW. BCLK con-
tinues clocking normally.

RESET must be held low for a minimum of 100 BCLK
cycles after Vpp reaches Vpp min when power is initially
applied to the CLIPPER Module (see Figure 35). This
ensures adequate module reset time. It must be
released in synchronization with BCLK. RESET must be

SYSTEM STATUS WORD
P U K
o o 0

PDO REGISTER
PDO 0

FAULT REGISTER
VIRTUAL ADDRESS

l X

CONTROL REGISTER

0 Ccv 0
] o 0

x ]

UST EWIR EWIW EWCW EP
1 1 1 1 1

RESET REGISTER
0 RU RR
[ o ]

RD
[

RUV RSV _RLVX RLVW
[ o o o

TLB LINES
SV uv

u

VA _RA__ST S _PL__D R
] x | x Jx ] x]xJo] o]

X

0
1o

CACHE LINES

LV LD RA W0 W1 w2 W3 U
X

IOIXIX'XIXIXI lDI

X = UNDERNED
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held LOW for a minimum of 100 BCLK cycles when as-
serted during operation, and both the assertion and
release of RESET must be synchronized with BCLK.

The CLIPPER Module executes diagnostic routines fol-
lowing release of RESET if URDIAG is asserted during
the two BCLK cycles following the release of RESET
(see Section 9.4.9, Diagnostics Control). Then it begins
execution at supervisor virtual address 6000H, which is
mapped by the HTLB to real address 0 of Boot space.

9. CLIPPER Bus

The CLIPPER Module interfaces to external system
devices and functional units such as main memory, /O
devices and peripherals, and other CLIPPER Modules
via the CLIPPER Bus—a high-speed, synchronous bus
designed to support multiple bus masters.

Figure 35 Reset Timing

The bus includes 32 bidirectional, multiplexed ad-
dress/data lines which support byte, halfword, word, and
quadword transfers. A separate interrupt bus allows fast
interrupt management by the CLIPPER Module with no
address/data line loading or contention, thereby increas-
ing the effective bus bandwidth. The bus protocol allows
devices that are clocked at different rates to interface to
the CLIPPER Module through the use of wait states as
required, and bus arbitration to be centralized in a
simple, fast bus arbiter. The bus supports Bus Watch,
which monitors the bus and takes corrective action to
ensure data consistency between the CAMMUs and
main memory.

The bus utilizes a single clock (BCLK), generated by
the Clock Control Unit, for system clocking. All CLIP-
PER Module signal sampling and signal assertion are

y {: 100 BCLKS MIN —_— >

olOT

\
BUS
| ®

X ®

URDIAG N @

\

Notes:

CLIPPER Bus is inactive until first instruction fetch.
Internal CPU startup time.

Fetch from boot space.

I T A e

A084

RESET transitions must be synchronized with BCLK rising edges. -

CPU diagnostics execution if URDIAG was asserted during the 2 BCLK cycles following release of RESET.

URDIAG is asserted during RESET if CPU diagnostics execution prior to instruction execution is desired. URDIAG

must remain asserted for at least 2 BCLK periods following release of RESET to assure recognition and can
then either remain asserted or be released with no further effect on CLIPPER Module operation.
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gated on the rising edge of this clock. All module out- The CLIPPER Module Bus consists of the following
puts except BCLK are open drain and are tied to pullup groups of bus lines and signals:
resistors inside the module. These signals are tied to a
96-pin connector for interfacing to user-designed sys- — Address/Data multiplexed lines used for address and
tems, where they may be buffered. data transfer

— Cycle Type signals used to identify the number of
The signals tied to the CLIPPER Module connector con- bytes or words transferred during a bus operation, to
stitute the CLIPPER Bus, shown in Figure 36. These sig- identify the operation as a read, write, or global
nals are interfaced through buffers and logic devices as write, and to identify the bus master executing the
shown in Figure 37. Note that this interface includes operation as a CPU or an |/O device
ORed logic and address/data signal transceiver control

(DIR).

Figure 36 CLIPPER Bus Signals

<— AD#32 ———p» ADDRESS/DATA
DIR —————% BUFFER DIR CONTROL

«4— CT#6 ————» CYCLE TYPE
<«4— TG#3 ————p» MEMORY SPACE SYSTEM TAG

——— CBSYd ———— D.CAMMU CACHE BUSY

CBSYi ————3 |.CAMMU CACHE BUSY
LOCK ———— BUS LOCK

I <«— TR————— TRANSFER REQ (BUS ACTIVE CYCLE) 2gﬁmm

——— RDY0oi ————3p READY OUTPUT I-CAMMU

RDYo — 3 READY OUTPUT D-CAMMU

I-CAMMU

<4— RDYi——  READY INPUT

\ﬂ__J

—— BRd ——————» BUS REQ D-CAMMU

<—— BGd ———————— BUS GRANT D-CAMMU

BUS
CPU ARBITRATION

—— BRI ———— 9 BUS REQ I-CAMMU

.< <4— BGl ————— BUS GRANT I-CAMMU

<—— MSBE/RETRY-— SINGLE BIT ERROR/RETRY

D-CAMMU

<¢—— MMBE ——————— MULTIPLE BIT ERROR FNRDegARﬂoN

MCLK

<«— BERR———— BUS ERROR

BCLK SEe
cLocK * <+—— |VEC+8

CONTROL iRG
UNIT osc IR

INT VECTORS

!

INT REQ

ACK—————» |INT ACK
I NMI —————— NON-MASK INT
——— NMIACK ——p NON-MASK INT ACK

INTERRUPT
CONTROL

!

4—— 0SC —————— OSCILLATOR INPUT
44— RATE—————— BCLK CONTROL (60 OR 120NS)

BCLK —————» BUS CLOCK

MASTER RESET
URF ——————» UNRECOVERABLE FAULT

APPLY DIAGNOSTICS
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Figure 37 Module to CLIPPER Bus Interface

CLIPPER MODULE
INTERFACE CLIPPER BUS
________________ |
D-CAMMU BRd I > Rd
BGd ‘ <P BGd
CBSYd J »—— CBSY
RDY o [>o— —»RDYo
RDY i @-——0—- RDY
> ocK

TR, CT<5:0>, TG<2:0> = TR, CT<5:0>, TG<2:0>
| BGWBGd
AD<31:0> & pmedp AD<31:00>
|
MSBE/RETRY, MMBE, ] M MSBE/RETRY, MMBE
BERR <l BERR
bR RESET ! < RESET
4
CPU RESET [
IVEC<7:0> , <} IVEC<7:0>
RQ } < IRQ
1ACK } > 1ACK
NMI } <} NI
NMIACK + > NMIACK
URDIAG ; < URDIAG
URF t > URF
CLOCK !
BCLK - > BCLK
RATE } < RATE
osc t < osc
b |
DIR |
RESET |
'MSBE/RETRY, MMBE, |
BERR
AD<31:0> |& |
TR, CT<5:0>, TG<2:0> & :
TGCK |
RDY i |
CBSYi :
RDY oi I P>
BGi | <p BGi
I-CAMMU BRi L Do 5
l'g
.- __ =
Notes:

1 RDY and RDYo can be connected together on the CLIPPER Bus
2 —O— =pullup resister
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— Memory Space System Tags used to identify
address space being accessed and the caching
policy which applies to the accessed data

— Error signals used to report memory errors and bus

errors

— Bus arbitration handshaking signals
— Interrupt control lines

Figure 38 Example CLIPPER System (Block Diagram)

CLIPPER
MODULE

— Interrupt vector bus
— Bus protocol control lines

An example CLIPPER Module system implementation
showing these signals is depicted in Figure 38. Table 12

contains detailed descriptions of the CLIPPER Bus

NUMBERS

BCLK ———»

n
t——+— IRQ REQUESTS
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1 2
v 4
E MEMORY ERRORS
A 3
) CONTROL SIGNALS
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L
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Table 12 CLIPPER Bus Signal Descriptions

Signal Type Description
AD 110 ADDRESS/DATA. This is a positive logic (HIGH = logic 1) multiplexed address and data
<31:0> bus which is tied to the CAMMUs.
DIR fo) DIRECTION CONTROL. This control signal can be used to control the drive direction of
' TTL tranceivers interfacing AD <31:0> to the CLIPPER Bus. A master CAMMU asserts DIR
during an entire write operation and during the first two cycles of a read operation. A slave
D-CAMMU asserts this signal when transferring data during an 1/O read; a slave -CAMMU
asserts this signal when transferring data to a companion D-CAMMU. Drive direction is
from CAMMU to the CLIPPER Bus when DIR is low.
TG 110 MEMORY SPACE SYSTEM TAGS. These three CAMMU signals identify the address
<2:0> space being accessed, the page type, and the caching policy which applies to the ac-

cessed page. In addition, they signal two special operations, Cache Purge and Slave 1/0
mode. System tags are derived from one of four sources. In mapped mode, they are
selected during address translation from the TLB, the HTLB, or from page tables in main
memory. In unmapped mode, TG<2> is zero and TG<1:0> is selected by the UST bits in
the CAMMU Control Register. TG<2:0> tag encoding is as follows:

TG2 TG1 TGO Encoding

main memory/private cacheable/ write-through
main memory/shared cacheable/write-through
main memory/private cacheable/copy-back
main memory/noncacheable

I/O space/noncacheable

boot space/noncacheable

cache purge

slave /0 mode/main memory/noncacheable

B e e NeoNeoNe)
Wow o

-~ O -20-=-20~-0

Note: The slave CAMMU can continually monitor the Memory Space System Tag and
check for cache/main memory data consistency when the Bus Watch modes are enabled.
The Bus Watch modes, when enabled, are invoked during the following CLIPPER Bus
operations:

(1) /O writes to shared or private pages.
(2) CPU writes to shared pages.
(3) I/0 reads from private copy-back pages.

Frequently systems require the transfer of data between main memory and an I/O device.
This type of data transfer is normally implemented by a CPU as a read operation into a
CPU register, followed by a CPU write operation to the /O device. This type of operation is
accelerated by the CLIPPER Module through the use of slave I/O mode identified by the
Memory Space System Tag. The slave I/O mode allows an 1/O device to capture data
being read by the CPU during the read portion of the operation. The 1/O device must be
able to interpret TG = 7 as slave I/O mode, then read the transferred data as it is being
read by the CPU. The data read by the CPU is discarded.
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Table 12 CLIPPER Bus Signal Descriptions (cont.)

Signal

Type

Description

CT
<5:0>

110

CYCLE TYPE. These six CAMMU signals indicate the type of CLIPPER Bus operation in
progress. CT<5:0> signal encoding is as follows:

Signal State Operation
CTs 0 CPU master.
1 I/0 master.
CT4 0 Write operation.

1 Read operation.

CT<3:2> 00 Word/halfword/byte transfer.
01 Quadword transfer.
10 Reserved.
1 Global CAMMU write.

CT<1:.0> 00 Whole word transfer; AD<1:0> must be 0.
01 Reserved.
10 Byte transfer; AD<1:0> define the byte position.
11 Halfword transfer; AD<1> defines the halfword position;

AD<0> must be 0.
Notes:
(a) CT<1:0> have meaning only for single word transfers, with AD<1:0> pointing to
transferred word/bytes.
(b) In halfword/byte mode, the data must be written in the location specified by AD<1:0>.
(c) During a quadword transfer, the master must assert AD<3:0> all 0 to point to a
quadword boundary.

CBSYi,
CBSYd

CACHE BUSY (I-CAMMU, D-CAMMU). A CAMMU asserts CBSY to indicate execution of in-
ternal operations associated with Bus Watch operations. Main memory data must not be as-
serted on the CLIPPER Bus while CBSYi or CBSYd is asserted. If a D-CAMMU asserts
RDYo while asserting CBSY, indicating that it is asserting more recent cache data on the
CLIPPER Bus, main memory must abort the data transfer operation.

LOCK

BUS LOCK. LOCK is asserted by a bus master when it requires the CLIPPER Bus for more
than one operation. LOCK is asserted by the CAMMUSs during the following operations:

(1) DTU Page Table Directory and Page Table accesses.

(2) DTU R or D bit modifications in Page Tables.

(3) Read-modify-write (test and set) operations.

(4) Cache line replace and fetch on cache miss (quadword write followed by
quadword read).

170

TRANSFER REQUEST. TR is asserted by a bus master to indicate that a CLIPPER Bus
operation is in progress.
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Table 12 CLIPPER Bus Signal Descriptions (cont.)

Signal Type Description

RDYi | READY INPUT. RDYi is tied to both CAMMUs. During read operations, the slave with the ad-
dressed data asserts RDYi to indicate that it has asserted the data on the AD bus. During
single word, byte or halfword write operations, the slave asserts RDYi to indicate that it has
latched (read) the data. During quadword write operations, the slave asserts RDYi to indi-
cate that it has latched the data word currently on the AD bus, and is ready to latch the next
word.

RDYo e} READY OUTPUT. RDYo is asserted by the D-CAMMU during Watch I/O Reads operations
to indicate to the I/O device that it has asserted data on the AD bus for reading. This occurs
when the data location being accessed in main memory is cached, and the cache data is
more "recent" than the main memory data. RDYo can be tied to RDY on the CLIPPER Bus.

RDYoi o) READY OUTPUT. RDYoi is asserted by the I-CAMMU when it is being accessed by its com-
panion D-CAMMU. RDYoi is not interfaced to the CLIPPER Bus.

BRi,BRd fo) BUS REQUEST (I-CAMMU, D-CAMMU). These signals are asserted by the respective
CAMMUs to obtain control of the CLIPPER Bus.

BGi,BGd | BUS GRANT (I-CAMMU, D-CAMMU). Bus Grant is asserted by the CLIPPER Bus arbitra-
tion logic in response to a Bus Request by a CAMMU, and indicates that the requesting
CAMMU has control of the bus.

MSBE/ | MEMORY SINGLE BIT ERROR/RETRY. The main memory interface asserts MSBE/RETRY
RETRY when it detects a corrected error in main memory during a read operation. (Typically, in sys-

tems utilizing error correction, only single-bit errors are corrected.) MSBE/RETRY is tied to
both CAMMUs, and is sampled by the CAMMUs when RDYi is sampled. A master CAMMU
issues a trap to the CPU when it detects MSBE/RETRY asserted. The main memory inter-
face must not assert an interrupt when it detects a corrected data error. The MSBE/RETRY
signal must be presented to the CAMMU by the memory interface along with (during the
same BCLK as) RDYi and the data to indicate a corrected error. MSBE/RETRY may not be
asserted when RDYi is inactive during main memory accesses.

The MSBE/RETRY signal is also used to abort and retry CLIPPER Bus operations. If the sig-
nal is asserted during access of I/0 space (TG=4) while RDYi is inactive, the current bus
operation is aborted by the master CAMMU with no trap assertion to the CPU.

Thus, if this pin is active during the same BCLK that RDYi is HIGH, an MSBE condition is

recognized, if this pin is active during a BCLK when RDYi is LOW (for an I/O space access),
a RETRY condition is recognized.
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Table 12 CLIPPER Bus Signal Descriptions (cont.)

Signal

Type

Description

MMBE

MEMORY MULTIPLE BIT ERROR. The main memory interface asserts MMBE when it
detects an uncorrectable error in main memory during a read operation. (Typically, these will
be multiple-bit errors, because in systems using error correction, only single-bit errors are
corrected.) This signal must be asserted during the same BCLK cycle that nRDY is as-
serted. MMBE is tied to both CAMMUs, and is sampled by the CAMMUs when RDYi is
sampled. A master CAMMU issues a trap to the CPU when it detects nMMBE asserted. The
main memory interface must not assert an interrupt when it detects an uncorrectable

data error.

BERR

BUS ERROR. BERR should be asserted by user-designed logic to indicate a CLIPPER Bus
error condition such as a bus timeout. BERR is tied to both CAMMUs. Upon assertion of
BERR, the master CAMMU terminates the bus operation and indicates to the CPU that the
operation is completed. (If the bus error occurs during a read operation, the data asserted
on the AD bus at the time BERR is asserted is transferred by the CAMMU to the CPU). The
CAMMU does not issue a trap in response to a bus error; the bus error logic should assert
an interrupt.

INTERRUPT VECTORS. This is an inverted logic (LOW=logic 1) bus, tied directly to the
CPU. It transfers interrupt vector numbers associated with interrupt requests.

INTERRUPT REQUEST. This signal, tied directly to the CPU, is asserted by system devices
for interrupt service requests. Once asserted, IRQ must remain asserted until IACK is as-
serted by the CPU. An interrupt level and number must be asserted on IVEC<7:0> with
each interrupt request. IRQ is maskable.

INTERRUPT ACKNOWLEDGE. IACK is asserted by the CPU in response to an interrupt re-
quest (IRQ) to acknowledge that servicing of the interrupt is in progress.

NON-MASKABLE INTERRUPT. This signal, tied directly to the CPU, is asserted by system
devices for non-maskable interrupt service requests. Once asserted, NMI must remain as-
serted until NMIACK is asserted by the CPU.

NMIACK

(0]

NON-MASKABLE INTERRUPT ACKNOWLEDGE. This signal is asserted by the CPU in
response to an NMI request to acknowledge that servicing of the interrupt is in progress.

RATE

BCLK RATE CONTROL. This input to the CLIPPER Module controls the CLIPPER Bus
BCLK frequency. When RATE is tied to GND, BCLK frequency is 1/2 MCLK frequency.
When RATE is tied to Vpp, BCLK frequency is 1/4 MCLK frequency. If the standard 66.7
MHz crystal is used in the CLIPPER Module, BCLK frequency is 16.7 MHz if RATE is tied to
GND, and 8.3 MHz if RATE is tied to Vpp.
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Table 12 CLIPPER Bus Signal Descriptions (cont.)

Signal

Type

Description

BCLK

o

BUS CLOCK. BCLK clocks all devices on the CLIPPER Bus. All signals must be clocked
onto the CLIPPER Bus on the rising edge of BCLK; all signals must be latched/sampled
from the CLIPPER Bus on the rising edge of BCLK. The propagation delay of signals
asserted on the system bus must be less than one BCLK period and more than the BCLK
skew between devices in order to ensure proper operation of the synchronous

CLIPPER Bus.

RESET

RESET. This is the master reset signal which is asserted by system logic to reset the
CLIPPER Module and other devices on the CLIPPER Bus. Upon release of RESET, the
CPU begins instruction fetching at Boot space address 0.

UNRECOVERABLE FAULT. This signal is asserted by the CPU to indicate that it has
stopped program execution as a result of an unrecoverable fault condition. An un-
recoverable fault occurs when the CPU encounters an error condition during execution of on-
chip diagnostic routines, or when a trap occurs during the execution of INTRAP or reti.

URDIAG

APPLY DIAGNOSTICS. This input to the CPU is asserted to force the CPU to execute on-
chip diagnostic routines resulting in the following:

(1) The diagnostics detected no error conditions. The CPU begins program execution at
Boot space address O (supervisor virtual address 6000 hex).
(2) The diagnostics detected an error condition. The CPU asserts URF and stops execution.

RESET must be asserted when URDIAG is asserted.

osc

OSCILLATOR INPUT. This signal is used by the CLIPPER Clock Control Unit to derive
MCLK and BCLK. MCLK is the CLIPPER internal clock; BCLK is the CLIPPER Bus clock.
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Table 13 Signal Summary

Signal Mnemonic Input/Output’ Active State
Address/Data Bus AD /0 HIGH
Direction Control DIR (o} HIGH = input
LOW = output
Memory Space System Tag TG 110 HIGH
Cycle Type CcT 110 HIGH
Cache Busy CBSYi, CBSYd (o] HIGH
Bus Lock LOCK o LoW
Transfer Request TR 110 LOW
Ready RDYi | HIGH
RDYo, RDYoi o HIGH
Bus Request BRi, BRd (o) HIGH
Bus Grant BGi, BGd l. HIGH
Memory Single Bit Error/Retry MSBE/RETRY | LOW
Memory Multiple Bit Error MMBE 1 LOW
Bus Error BERR | LOW
Interrupt Vector Bus IVEC I LOW
Interrupt Request RQ | Low
Interrupt Acknowledge 1ACK o) Low
Non-Maskable Interrupt NMI | LOW
Non-Maskable Interrupt Acknowledge NMIACK (o] LOW
BCLK Rate Select? RATE 1 HIGH = 120 ns
LOW =60 ns
Bus Clock BCLK o -
Master Reset RESET ! Low
Unrecoverable Fault URF o LOW
Apply Diagnostics URDIAG | LOW
Oscillator Input osC | —

Notes:

1. Inputs are designed with a nominal switching threshold of 1.3 V and are therefore referred to as TTL compatible. All

outputs (excluding BCLK, and URF) are open drain structures with pull-up resistors (220 Ohms) to Vcc on the
module. BCLK and URF are standard CMOS output signals. If an external pull-up is used for URF, it must be at
least 220 Ohms. Timing parameters are referenced to standard TTL levels.

2. The BCLK period values shown are for an OSC frequency of 66.7 MHz.
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signals, and Table 13 contains a summary of the bus
signals.

9.1. System Clock

The CLIPPER Module is clocked by an external oscil-
lator signal, OSC. A Clock Control Unit derives two
clocks from OSC: MCLK and BCLK.

MCLK (Module Clock) is the internal CLIPPER master
clock, used to drive the CPU, the CAMMUs, and
associated module logic. The frequency of MCLK is
one half the frequency of OSC. Therefore, if the typical
MHz OSC frequency is used, the MCLK frequency is
33.3 MHz.

BCLK (Bus Clock) is the CLIPPER Module system
clock, used to clock devices interfaced to the CLIPPER
Bus. The CLIPPER Bus is synchronous: all data and
control signals are asserted and sampled on the rising
edge of BCLK. BCLK frequency is either one half or
one fourth the frequency of MCLK, depending on the
state of the CLIPPER Module Rate control pin. If RATE
is tied to GND, BCLK frequency is one half the frequen-
cy of MCLK; if RATE is tied to VCC, BCLK frequency is
one fourth the MCLK frequency. Therefore, assuming
an OSC frequency of 66.7 MHz, BCLK frequency is
either 16.7 MHz (60ns) or 8.3 MHz (120ns). BCLK is in
phase with MCLK, with the LOW to HIGH transitions of
the clocks occurring in phase with a skew of less

than * 5ns.

9.2. System Configuration

Any device (or functional unit) which meets the
CLIPPER Bus protocol and electrical requirements
(timing, threshold, and loading) can be interfaced to the
CLIPPER Bus. Such devices include memory, /O
devices, and subsystems as well as the CLIPPER
Module. A typical CLIPPER system configuration is
shown in Figure 39.

Up to 4 G-bytes of memory can be addressed by the
CLIPPER Module via its 32-bit address bus. This
memory can be interfaced directly to the CLIPPER Bus
if required.
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/O devices such as disk controllers, bus translators,
data communications devices, and associated control
logic such as bus arbitration units and interrupt control-

Figure 39 CLIPPER System
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lers, can also be interfaced to the bus. Such-devices 9.4. Bus Protocol
may be "off-the-shelf" or user-designed. /O devices are CLIPPER Bus operations are governed by the following
typically located in 1/O space, but can also be located in rules:

main memory space.
(1) A bus master cannot introduce wait states. This

9.3. Definitions requires that a bus master be able to transfer data at
Several terms are used in the following text which may the maximum rate allowed by the bus protocol.
not have universally accepted meanings. These terms (2) Slaves may introduce wait states by delaying the
and their defintions as used in this text are as follows: assertion of RDY (Ready) on the CLIPPER Bus.
Wait states can be introduced between the address
Master: and data cycles of an operation by delaying RDY
A device which has control of the CLIPPER Bus. A and between data words in a quadword transfer by
master gains control of the bus by asserting BR (Bus toggling RDY.
Request), then receiving BG (Bus Grant) from bus (3) All CLIPPER Bus signals must be sampled on the
arbitration logic. positive edge of BCLK.
(4) All signals must meet required set-up and hold
Slave: times with respect to the positive transition edge of
A device that is being addressed via the CLIPPER BCLK.Signals must not transition within the Tsu set-
Bus. A slave is addressed by a master. up time of BCLK rising edge or undefined states
within the CLIPPER Module can result.
Memory interface: (5) If RDYo (Ready out) is asserted on the CLIPPER
Logic which controls data transfer to and from main Bus by a CAMMU while CBSY is active, the memory
memory. interface must abort its data transfer.
1/0 Write: 9.4.1. Bus Arbitration
Write by an 1/O device. A bus arbitration unit which arbitrates control of the
CLIPPER Bus must be implemented in systems utilizing
I/0 Read: the CLIPPER Module. The unit must be capable of
Read by an 1/0O device. receiving bus requests from each of the possible bus

Figure 40 Cache Line Replacement
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masters via Bus Request lines (BRx, where "x" iden-
tifies a particular bus master), and must be able to as-
sert a Bus Grant (BGx) for each bus master. The unit
may support priority assignment such that in cases of
multiple requests for the bus, the bus arbitration unit
grants the bus to the highest-priority requesting device.

A bus master should hold BRx asserted during its entire
access of the CLIPPER Bus, then should release BRx
as soon as possible after completion of its data transfer
in order to maintain high system throughput. The bus ar-
bitration unit should hold BGx asserted until the bus
master has released BRx.

Multiple Bus Operations

A bus master can execute multiple bus operations by
holding its BRx signal asserted until it has completed all
its data transfers. Read-modify-write operations, for ex-
ample, require that the bus masters executing the opera-
tions maintain control of the bus during the reads and
following writes, and the bus master maintains this con-
trol by holding BRx asserted until after completion of the
write. Another example of a multiple-bus operation is
the replacement of a cache line as a result of a cache
miss. As shown in Figure 40, the operation consists of a
quadword write of the cache line to memory if the line is
dirty, followed by a quadword read of the replacement
line into the cache.

9.4.2. Bus Control

The bus control signals indicate CLIPPER Bus opera-
tion status which is used to implement bus protocol and
control, support Bus Watch, and give a bus master the
means to secure the bus indefinitely in order to com-
plete multiple bus operations.

A Ready Input (RDYi) tied to each CAMMU is used to
synchronize data transfers between CLIPPER, I/O, and
memory. When a CAMMU reads data, it holds the bus
in a read state until the responding device asserts
RDYi, indicating that the data to be read is on the bus.
When a CAMMU writes data, it provides data on the
clock following the address phase of the operation until
the device being written to asserts RDYi, indicating that
it has latched the data. RDYi is thus used to accom-
modate various response times of devices on the bus.
This eliminates the need to introduce for all data trans-
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fers the number of wait states necessary to accom-
modate the slowest device on the bus.

Ready Out (RDYo) is asserted by the D-CAMMU during
Bus Watch operation in response to an 1/O read of
memory data that is cached. RDYo is active only during
this operation. If the memory page being read is tagged
as a copy-back page, then changes to the page data in
the cache are not copied to the page in main memory
until the page is replaced by the operating system. If an
1/0 device reads data from memory that is cached, and
if the cache has updated data that has not been copied
to the memory location being read, the D-CAMMU as-
serts RDYo while asserting CBSYd. This aborts asser-
tion of memory data. (The memory interface must be
designed to abort the memory operation when both
CBSYd and RDYo are asserted.) The D-CAMMU in-
stead asserts the updated cache data on the CLIPPER
Bus, which is read by the I/O device, and RDYo. In this
way, transfer of valid data to /O devices is assured.

Ready Out I-CAMMU (RDYoi) is asserted by the
I-CAMMU to indicate assertion or latching of data in
response to access by the D-CAMMU. Since only the
D-CAMMU can access the I-CAMMU, this signal is tied
only to the D-CAMMU.

Two Cache Busy signals, one for the I-CAMMU (CBSYi)
and one for the D-CAMMU (CBSYd), are used to indi-
cate CAMMU internal operations associated with Bus
Watch. CBSYi and CBSYd may be ORed to form a
single Cache Busy (CBSY) signal on the CLIPPER Bus
as shown in Figure 37. When a CAMMU Bus Watch
mode is invoked during a memory access, the affected
CAMMU asserts Cache Busy to indicate that it is check-
ing whether the accessed data location is cached (see
Figures 55 and 56).

If the bus operation is a write, the memory interface
must not assert RDYi until CBSY is released by the
CAMMU. This ensures that the CAMMU has time to up-
date data in its cache before the bus operation is com-
pleted. If the operation is a read, the memory interface
must not drive the drive the Address/Data bus until
CBSY is released. This allows the CAMMU to abort
assertion of data by the memory interface, and to
provide cached data if required (see Ready Out
description).
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Transfer Request (TR) is asserted by bus masters to in-
dicate that CLIPPER Bus operations are in progress.
While Transfer Request is asserted, no bus master
other than the one controlling the bus can gain bus ac-
cess.

Lock (LOCK) is used in dual-bus applications in which
the CLIPPER Bus is interfaced to a separate 1/O bus
through a bus adapter or a dual port memory, this
provides CLIPPER Bus masters with a means of main-
taining control of the 1/O bus or dual port memory
throughout successive bus operations. LOCK becomes
active during DTU page table access, cache line re-
placement, and read-modify-write operations.

Direction Control (m') is used to control drive direction
of TTL transceivers buffering the CLIPPER Module Ad-

Figure 41 Single Word Read (1 Wait State)
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dress/Data bus. This signal controls the transceivers
with proper timing for all bus operations, eliminating the
need for such logic in the system.

9.4.3. Memory Errors

Memory data errors are reported with the Memory
Single Bit Error/Retry (MSBE/RETRY) and the Memory
Multiple Bit Error (MMBE) signals. These signals are as-
serted by error detection and correction logic within the
memory interface to indicate that a single-bit error has
been detected and corrected (MSBE/RETRY), or that
an uncorrectable multiple-bit error has occured (MMBE).
The signals, tied directly to the CAMMUs for fast
response, force traps to error-handling routines. Timing
for MSBE/RETRY and MMBE is shown in Figure 41.
Note that the signals are asserted during the same
cycle that RDYi is active.

Tadd2

M%—L

BR /
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DIR

AD

ADDRESS D

I |

TG,CT - MEMORY SPACE SYSTEM TAG, CYCLE TYPE /

TR

ACTIVE CYCLE

RDYi

| 5

MSBE/RETRY, MMBE

NOTES:

1. Timing for SINGLE WORD READ with NO WAIT STATES
1s shown in Figure 53.

2. These signals are asserted here by the memory interface
to indicate memory data errors.
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In cases of multiple-bit and single-bit errors, the
CAMMU Fault Register does not capture the addresses
causing the errors. It is therefore necessary to design
an address snapshot register into the system to capture
addresses for use by the trap routine servicing single-bit
errors if analysis of the errors is required.

The MSBE/RETRY signal is also used to abort and
retry CLIPPER Bus operations. If the signal is asserted
during access of /O space (TG = 4) while RDYi is inac-
tive, the current bus operation is aborted and retried
with no trap assertion. This feature is intended to
resolve Bus Lockout in dual-bus systems, which occurs
when a CLIPPER Bus master and an |/O processor
(IOP) bus master simultaneously request access to
each other’s buses. For example, if CLIPPER has con-
trol of the CLIPPER Bus for attempted access of the 1/O
bus at the same time that an I/O bus master has control

Figure 42 Bus Retry (Single Word Read Exampie)

<+— ABORTED OPERATION —» =

of the I/O bus for attempted access of the CLIPPER
Bus, each bus master waits for the other to release its
bus. Each bus master is therefore "locked out" from the
other bus until one of the masters is forced to release
its bus. Simple logic in the interbus interface logic can
be used to assert MSBE/RETRY whenever a CLIPPER
request for the I/O bus occurs simultaneously with an
IOP request for the CLIPPER Bus. This forces the CLIP-
PER to abort its bus operation and release the CLIP-
PER Bus, then re-arbitrate access to the CLIPPER Bus
for a retry of the aborted operation. The IOP can gain
access to the CLIPPER Bus after the abort by the
Module but before the retry, thus eliminating the Bus
Lockout condition. The CLIPPER then waits for comple-
tion of the 1/O operation before gaining access to the
I/0 bus for the retry. Timing for bus retry is shown in
Figure 42.
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Retry occurs when MSBE/RETRY is asserted while RDYi is released
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In summary, the Memory Single Bit Error/Retry signal
operates as follows:

1. If the signal is asserted during any time other than ac-
cess to 1/O space and during the same clock cycle that
RDYi is active, the signal reports a corrected memory
single-bit error. This causes the CAMMU to generate a
trap to the CPU.

2. If the signal is asserted during access of /O space
(TG = 4) while RDYi is inactive, the current bus opera-
tion is aborted and retried by the master CAMMU with
no trap assertion to the CPU.

9.4.4. Bus Error

A bus operation can be aborted by the assertion of
BERR (Bus Error) by user-designed logic implemented
in the CLIPPER system (see Figure 43). Bus error con-
ditions should be detected by the bus error logic, which
should then assert BERR and an interrupt request (via
the interrupt logic). The CAMMU terminates the system
bus access and releases the bus when it detects the

Figure 43 Bus Error

f~————— ABORTED OPERATION ——————» l

BCLK

] |
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TG,CT
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assertion of BERR. The CPU should use the interrupt re-
quest to vector to a routine designed to resolve the bus
error condition.

BERR must be asserted by the bus error logic for one

BCLK cycle. The state of the CLIPPER Bus associated
with the bus error may be stored by the bus error logic
for use by the bus error interrupt service routine.

9.4.5. Unrecoverable Fault

Some errors allow no clean means of recovery for con-
tinuation of program execution. These errors include the
occurrence of a trap during execution of INTRAP or
reti, and the detection of a fault during self-test (see
Section 9.4.9). A trap during execution of INTRAP or
reti can be avoided by ensuring that the Exception Vec-
tor Table is set up prior to the occurrence of a trap con-
dition, and that the supervisor stack pointer always
points to a valid page. No other conditions generate an
unrecoverable fault.

Were the CPU to ignore these error conditions and con-
tinue execution, effects on the system could be
catastrophic. A faulty or "lost” CPU could execute ran-
dom writes to memory and I/O, for instance, corrupting
data in both main memory and secondary storage. The
CLIPPER CPU offers protection from catastrophic
failure by stopping program execution immediately upon
detection of one of the unrecoverable fault conditions,
before the system is corrupted. It then asserts the Un-
recoverable Fault signal (URF) as a hardware indication
that the CPU is halted due to an unrecoverable error,
and that human intervention is required to correct the
problem.

9.4.6. Wait States

Slow devices can introduce wait states by delaying
assertion of RDY on the CLIPPER Bus during bus
operations. Wait states consist of an integral number of
BCLK periods during which time the master device
remains in a "waiting" state until the slave device as-
serts RDY to indicate that it has asserted data on the
bus (if a read operation by the master), or has read
data from the bus (if a write). Wait states are further ex-
plained in the following descriptions of bus operations.
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9.4.7. CLIPPER Bus Operations

Unless otherwise noted, the signal nomenclature used
in this section describe the signals as shown in
Figure 37.

— RDVY is tied to RDYo to form a single ready signal
(RDY). RDY is gated with RDYoi on the CLIPPER
Module Interface.

— CBSYd and CBSYi on the CLIPPER Module
Interface are gated to form a single ORed CBSY
signal on the CLIPPER Bus.

A CLIPPER Bus operation begins when a bus master re-
quests the bus by asserting its Bus Request signal and
receives Bus Grant from the bus arbitration unit. The
bus master can then execute one of four bus opera-
tions: a read operation, a write operation, a global write
operation, or a multiple memory access operation.

Figure 44 Quadword Read (No Walit States)

rb Tadd1 Tadd2

Read Operation

Upon receiving Bus Grant (BGx), the master (possibly a
CAMMU) asserts TR, Memory Space System Tag
(TG<2:05), Cycle Type (CT<5:0>), and a real address
(AD<31:0>) on the bus. The Memory Space System
Tag, Cycle Type, and TR signals remain asserted during
the entire operation. However, the bus master three-
states the multiplexed address/data lines (AD<31:0>)
after two BLCK cycles to make the lines available for
data transfer by the slave device (see Figures 41 and
44).

The bus master then waits for the slave device to assert
RDY (CAMMU RDYi signal), indicating that the data is
on the bus. The master latches the data on the same
positive transition of BCLK that it detects assertion of
RDY. The slave device can respond with data im-
mediately after the address/data lines are three-stated
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by the bus master, or can respond later as required by
delaying assertion of RDY thereby introducing wait
states.

The minimum number of BCLK cycles required for a
read operation is three, excluding bus arbitration require-
ments: two cycles are required for assertion of address,
and at least one cycle is required for the data transfer.

Bus Watch During Read Operations

During /O reads of private, copy-back main memory
space (i.e., TG=2), each CAMMU with Watch 1/O Reads
enabled asserts CBSY, indicating to other bus devices
that it is checking for dirty cached data (cached data not
yet written to main memory) corresponding to the main
memory location being accessed by the /O device. If it
finds dirty data, it asserts the data on the AD bus, as-
serts RDYo, and releases CBSY. The I/O master must
then latch the data on the positive BCLK transition fol-
lowing assertion of RDYo. If the data is not cached or

Figure 45 Memory Interface CBSY Monitoring

the cached data is not dirty, the affected CAMMU
releases CBSY, allowing transfer of main memory data
to the bus master. This Bus Watch sequence applies to
both single-word reads and quadword reads. If Bus
Watch intervention occurs during quadword reads,
however, the affected CAMMU will return all four data
words if one or more data words is dirty.

The main memory interface must monitor the CLIPPER
Bus CBSY and RDYo (which can be tied to the RDY sig-
nal) lines and allow main memory data response on
AD<31:0> only if CBSY (CBSYi or CBSYd on the
CLIPPER Module Interface) is not asserted, indicating
that there will be no CAMMU intervention resulting from
CAMMU Bus Watch. If RDYo is asserted by the
CAMMU while CBSY is asserted, the memory interface
must abort the memory read because the CAMMU is
responding with more recent cache data. Memory
monitoring of CBSY is summarized in Figure 45.

cPU /0
READ WRITE READ WRITE
SINGLE | QUADW | SINGLE | QUADW | SINGLE | QUADW | SINGLE | QUADW | TG<2:0s:
PRIVATE W.T. - - - - - m(1) -(3) 000
PRIVATE C.B. - - - m(2) m(2) m(1) -(3) 010
SHARED (W.T.) - - m(1) -(3) - - m(1) -(3) 001
NONCACHEABLE| - - - - - - - 011 g
__ =
CT <5:2> | 0100 | o101 | oooo | o001 | 1100 | 1101 | 1000 | 1001 |

m=mohnitor CBSY

NOTES:

(1) Single Word Writes: CAMMU updates cache on hit; memory interface must not assert RDY until after CBSY

is released.

(2) /0 Reads: CAMMU provides data on cache hit; memory interface must not assert RDY until after CBSY is
released, and may enter into memory data that is supplied by the CAMMU (indicated by assertion of RDY and
CBSY by the CAMMU) in order to support Clear Dirty operation if required.

(3) Quadword Writes: The memory interface proceeds normally (doesn’t monitor CBSY) if the bus arbiter inhibits
granting of the bus again while CBSY is asserted; otherwise the memory interface must not assert RDY until

after CBSY is released.
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The Clear Valid option, if enabled, requires memory to
update its contents with the more current (dirty) data
supplied by the cache for an /O quadword read, unless
the data will not be read by another I1/O device (see Sec-
tion 7.6.4). Use of this option saves a write of the dirty
data to memory when the cache line is replaced. The
Clear Valid option is enabled by setting the Clear Valid
flag in the Control Register. Memory support for this op-
tion requires that the memory transition from a memory
read operation to a memory write operation when both
CBSY and RDY are asserted by the D-CAMMU, and
that the memory not be allowed any wait states be-
tween the individual quadwords supplied by the
CAMMU.

CAMMUs normally require 4 MCLK (120ns @ 66.7 MHz

OSC frequency) cycles for Bus Watch checking. During
this time the memory interface can proceed with the

Figure 46 Single Word Write (1 Wait State)
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read operation without delay up to, but not including,
assertion of RDY. As a result of this parallelism,
CAMMU Bus Watch operation results in little impact on
CLIPPER Bus utilization.

Write Operation

Signal assertion and timing associated with a write
operation are similar to those associated with a read
operation. Upon receiving Bus Grant (BGx), the master
(possibly a CAMMU) asserts TR, Memory Space Sys-
tem Tag (TG<2:0>), Cycle Type (CT<5:0>), and a real
address (AD<31:0>) on the CLIPPER Bus. The Memory
Space System Tag, Cycle Type, and TR signals remain
asserted during the entire operation (see Figures 46-48).

After two BCLK cycles, however, the bus master
replaces the address on the AD lines with the data to
be written, and holds the data on the lines until the
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Timing for SINGLE WORD WRITE with NO WAIT STATES

is shown in Figure 54.
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slave acknowledges latching of the data by asserting
RDY (CAMMU RDYi signal) on the CLIPPER Bus. The
slave can assert RDY when ready, allowing wait states
as required.

If the operation is a single-word write, the bus master
releases the bus immediately following detection of as-
serted RDY (CAMMU RDYi signal). If the operation is a
quadword write, the bus master asserts the second,
third, and fourth data words of the quadword data trans-
fer during successive BCLK cycles following detection
of asserted RDY The slave device can introduce wait
states between assertion of the quadword address by
the master and latching of the first data word, and be-
tween latching of the individual data words

The minimum number of BCLK cycles required for a
write operation is three, excluding bus arbitration require-

Figure 47 Quadword Write (No Wait States)

t Tarb | Tadd1 ‘ Tadd2 |

ments. Two cycles are required for assertion of the ad-
dress, and at least one cycle is required for the data
transfer.

Bus Watch During Write Operations

A CAMMU invokes Watch I/O Writes, if enabled, when
an |/O device writes to its cacheable main memory
space; and invokes Watch CPU Writes, if enabled,
when a CPU (via a D-CAMMU) writes to its shared
cacheable main memory space. Both Bus Watch
modes, when invoked, function identically. If the write
operation invoking one of these modes is a single-word
write operation, the affected CAMMU updates the cache
with the data written to the main memory if the main
memory data has been cached. If the write operation is
a quadword write, the affected CAMMU invalidates the
cache line containing the data addressed in main
memory.
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A CAMMU normally requires 4 MCLK (120ns @ 66.7
MHz OSC frequency) cycles to complete one of these
Bus Watch operations. However, if the Bus Watch opera-
tion occurs while the CPU is accessing the CAMMU,
the CAMMU may require more time to complete the
operation and will keep asserting CBSY to inhibit further
bus operations until it has completed the task. The bus
master, however, can complete the write operation while
the CAMMU executes its Bus Watch operation, so Bus
Watch impact on CLIPPER Bus utilization is

minimal.

If CBSY is asserted during a byte, halfword, or word
memory write operation, the memory interface must not
assert RDY until after CBSY is released. This ensures
that the data remains on the bus long enough for entry
by a CAMMU into its cache in case of a hit

If CBSY is asserted during a quadword write, the
memory interface can assert RDY normally without
regard to the state of CBSY because in case of a cache
hit, the affected CAMMU invalidates the hit line and
does not require data to be present on the bus.
However, the system bus arbiter must not grant the bus
to a new bus master until CBSY is released, indicating

Figure 48 Quadword Write (4 Wait States)

I Tarb ‘Tadd1 lTadd2 I Tw l Tdo } Tw | Td1 ]

that all CAMMUs are ready for a new operation. Alterna-
tively, the memory interface can delay assertion of RDY
until CBSY is released as in the byte/halfword/word
write case, eliminating the need for the bus arbiter to
monitor CBSY. In any case, a new CLIPPER Bus opera-
tion should not be allowed to begin while CBSY is
asserted. Memory monitoring of CBSY is summarized in
Figure 45.

Global Write Operation

A global write is used in a system utilizing multiple
CLIPPER Modules to reset the TLBs or caches, or to
write to specific TLB lines or registers in all CAMMUs in
the system except the companion D-CAMMU of the
CLIPPER CPU executing the global write. CLIPPER
Module global addressing is explained in Section 7.6.6,
CAMMU Register Access. Non-CLIPPER bus masters
can execute global writes by setting CT<3:2> HIGH
during the otherwise normal write operations. Note,
however, that CAMMUs respond only to global writes to
CAMMU 1/O space real addresses Cnn and Dnn (Hex).

Each CAMMU being written to by a global write asserts
CBSYi (if an -CAMMU) or CBSYd (if a D-CAMMU)
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during the write to inhibit further bus activity until it has
completed internal tasks associated with the write. Sys-
tem logic is required which detects global writes and as-
serts RDY when CBSY is released.

Read-Modify-Write Operation

A read-modify-write bus operation is a combination of a
read operation, followed by a write operation. Timing
and protocol associated with the read and the write
phases of a read-modify-write operation are the same
as for single reads and writes; however, Bus Request
(BR) must be asserted by the bus master during the en-
tire operation.

Read-modify-write operations are performed during ex-
ecution of the tsts (test-and-set instruction). However,
the write part of the read-modify-write is performed only
if the bit to be tested is zero; if the bit has already been
set (AD<31> = 1), the bus operation is terminated.
Timing for this operation is shown in Figure 49.

Figure 49 Read-Modify-Write (Test and Set)

«4————TESTPART

Read-modify-write operations are also performed during
address translation when the DTU accesses main
memory twice to read the Page Table Directory and
Page Table in main memory, and follows with a write to
the Page Table if the Referenced or Dirty flags must be
modified. Timing for this operation is shown in

Figure 50.

9.4.8. Interrupt Bus

The CLIPPER Bus includes a separate interrupt bus,
IVEC<7:0>, tied directly to the CPU. This bus allows in-
terrupt levels and numbers to be transferred to the CPU
without regard to CLIPPER Bus activity, thereby reduc-
ing CPU interrupt response time and increasing effec-
tive CLIPPER Bus bandwidth. (See Section 6.3,
Interrupts.)

An interrupt controller must be implemented in a
CLIPPER system. In cases of multiple interrupt re-
quests, it must select between the interrupts, asserting
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the interrupt with highest priority. The interrupt controller
must assert an interrupt request and its associated inter-
rupt vector number together on the same positive transi-
tion edge of BCLK. The interrupt vector number can
change to a higher priority on any BCLK. The CPU

uses the interrupt level and number present on the

IVEC bus when it detects IRQ release on a rising edge
of BCLK, then releases IACK during the following BCLK
period.

9.4.9. Diagnostics Control

The CLIPPER Module executes diagnostic routines fol-
lowing release of RESET if Apply Diagnostics
(URDIAG) is asserted during the two BCLK cycles fol-
lowing the release of RESET. Then it begins execution
at supervisor virtual address 6000H, which is mapped
by the HTLB to real address 0 of Boot space.

The state of URDIAG during the two BCLK cycles follow-
ing release of RESET determines whether the CLIPPER
Module CPU executes internal diagnostics before ex-
ecuting from boot code (see Figure 35). This is a power-
ful feature of the module which allows self test of major
functions of the CPU without test equipment, and
without removal of the chip. Failure during diagnostics is
reported by assertion of the Unrecoverable Fault (URF)
CLIPPER Bus signal.

The CLIPPER Module self test checks most, but not all,
of the major functions of the CPU. It is intended to be a

Figure 50 Read-Modify-Write (DTU Operation)

first-level check of the CPU, and in fact is used to initial-
ly test individual CPU die during fabrication. The test ex-
ecutes approximately 700 instructions in about 4500
MCLK periods, using operands which test the CPU
under worst-case conditions where possible. For ex-
ample, worst-case carries, overflows, and sign exten-
sions are tested.

The following CPU operations and functions are tested:

— Pipeline resource management

— Integer and floating-point execution units

— General-purpose register files

— Integer bypass mechanism

— Transition between supervisor and user modes

— Temporary (hidden) registers

— Macro branches

— All addressing mode computations

— Arithmetic shift, logical shift, and rotate instructions

— Integer multiply and divide

— Single- and double-precision floating-point
instructions

— Floating-point status bits

CPU operations which require external response to in-
struction execution are generally not tested. These in-
clude exception conditions, branches, loads, stores,
pushes and pops, and -CAMMU and D-CAMMU
interfaces.
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9.4.10. Bus Timing

Figures 51-66 show CLIPPER Bus signal timing and
test loads. Values for parameters indicated in the
figures are listed in Tables 15and 17.

BCLK is CMOS-compatible. All timing relationships in
the timing figures are referenced to the 1.5 V midpoints
of BCLK positive transitions.

The following are definitions of terms used in the figures:

Tarb (arbitration time)
BCLK cycle used for bus arbitration

Tadd1 (address time 1)
First BCLK cycle during which address is asserted
on the bus

Tadd2 (address time 2)
Second BCLK cycle during which address is as-
serted on the bus

Td (data time)

BCLK non-wait state cycle during which data is as-
serted on the bus. For a quadword transfer, a
numerical subscript (e.g., Td2) indicates which data
word is asserted.

Tw (wait state time)
BCLK cycle during which the CLIPPER Module is in
a wait state.
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9.4.11. CLIPPER C100 Module Configurations
There are three CLIPPER C100 Module configurations,
shown in Figures 67 - 72.

The C100 Module C100C1MLX is shown in Figure 67.
Its connector mates with a user-supplied type BIC-Vero
905-72178F, or equivalent, male connector. Note that
the numbering on the male connector is reversed rela-
tive to the CLIPPER Module connector.

The C100 Module C100C1BLX (Figure 69) mates with
a user-supplied Samtec SD-125-T-18, or a McKenzie
SBU-2X25-STGT-D131-VLI female socket connector, or
the equivalent.

The C100 Module C100C1DLX (Figure 71) mates with
a user-supplied McKenzie PH1-225/100 - 32G male con-
nector or the equivalent.

9.4.12. Oscillator Connection

An external oscillator must be provided by the user to
drive the clock control chip on the CLIPPER Module.
The oscillator frequency must be twice the required
MCLK frequency, with a duty cycle between 60/40 and
40/60. The oscillator should be placed as close to the
connector as possible.
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Table 15 AC Characteristics Vcc = 5.0 V + 5%, Ta = 0 to +55°C

Symbol Characteristic __ 33 MHz €100 Unit
Min Max
tsu Setup Time 15.0 ns
tH Hold Time 0 ns
tco1 0 20 ns
tcoz Clock to Transition Time' 0 17 ns
tcos 0 15 ns
R Output Rise Time'? 11 ns
tr Output Fall Time'? 7 ns
Notes:
1.Transition, rise, and fall times are for a 50pF external capacitive load (see Figure 64 ).
2.All outputs except BCLK.
3.To guarantee setup times, the input signals must have rise and fall times < 4ns.
Table 16 DC Characteristics Vcc = 5.0 V + 5%, Ta = 0 to +55°C
Symbol Characteristic Conditions Min Max Unit
VH Input HIGH Voltage 20 Vee \"
ViL Input LOW Voltage -0.5 08 | V
Vec =475V \'
VoH Output HIGH Voltage' loH = -20pA 4.7
Vec =435V \%
loH = -2mA 43
Vec =525V 2 0.4 \'
VoL Output LOW Voltage' loL = +20pA
Vec =525V 045| V
loL = +2mA
IIN Input Leakage Current ViIN=01t0 525V Inputs Only +10 LA
liH Input HIGH Current Rp = 220 ohms | Bidirectional /O Only +10 pA
I Input LOW Current Rp = 220 ohms | Bidirectional I/0 Only ViL =0.55V -22 mA
CiN Input Capacitance Inputs 18 pF
Bidirectional 1/0 28
lcc Supply Current Ta=0°C, Vcc =5.25V 12 | A
Po Power Dissipation fosc = 66.7 MHz 6.0 w
BCLK load = 100pF

1. low, loL and liL parameters are a function of the value of Module pull-up resistor Rp.
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Table 17 AC Characteristics - OSC, BCLK Vcc = 5.0 V + 5%, CL = 200pF, Ta = 0 to +55°C
Symbol" Characteristic Conditions i 33 MHz C100 Unit
\ n Max
fosc Oscillator Frequency 2.0 66.7 MHz
tosc Oscillator Cycle Time 15 500 ns
toscH Oscillator Pulse Width tosc = Min 6 9 ns
toscL
toscr Oscillator Rise and 6.0 ns
toscr Fall Time
tc BCLK Cycle Time RATE = LOW 60 ns
RATE = HIGH 120 ns
tcH BCLK Pulse Width tc = Min (RATE = LOW) 27 - 33 ns
tc = Min (RATE = HIGH) 54 66 ns
tr BCLK Rise 5.0 ns
tF and Fall Time (BCLK)
Note

BCLK rise and fall times are for a 100pF capacitive load (see Figure 65 ). This load should not be exceeded to
ensure proper operation.

Table 18 DC Characteristics - BCLK Vcc =5.0V + 5%, Ta =0 to +55°C

Symbol Characteristic Conditions Min Max Unit

VoH Output HIGH Voltage' loH = +100mA 4.3 \

Vou Output LOW Voltage® loL = +100mA 0.45 v
Notes:

1. Vo worst case occurs with Vcc = 4.75 V.
2. VoL worst case occurs with Vecc = 5.25 V.

Table 19 DC Characteristics - OSC Vcc =5.0 V £ 5%, Ta = 0 to +55°C

Symbol Characteristic Conditions Min Max Unit
ViH Input HIGH Voltage 4.0 Vce +0.5 \
ViL Input LOW Voltage GND-05| 05 \)
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Figure 51 AC Measurement Points
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Figure 52 AC Measurement Points, OSC and BCLK
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Figure 53 Read Timing Diagram
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— — Tco2 Tco2 —-| |<—
MEMORY SPACE SYSTEM TAG,
SK CYCLE TYPE )Z
—

[+— Tco2 Tco2 _,'
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il

Tsu

!
A
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Timing measurements are referenced to and from a signal midpoint voltage of 1.5 volts unless
otherwise stated.
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Figure 54 Write Timing Diagram
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BK ACTIVE CYCLE 1
Tsu —’( —’IG—— TH
RDYi ... o , m__
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NOTE:

Timing measurements are referenced to and from a signal midpoint voltage of 1.5 volts unless
otherwise stated.
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Figure 55 Watch I/O Reads

| Tadd1 , Tadd2 | BUS WATCH | Td l

| Tco3 —'| |'- ,'—Tcoa

l
S
AD lk ADDRESS % ¥ DATA }Z
wd T N
TG,CT * VO READ, COPY—BA(?I.(. SPACE /
B Tsu »| |-
T S

Tco3 —» |~— | _’I lt— Tco3
CBSYd 7’[ CACHE MEMORY
Access k
Tco I‘— Tco3
RDYo j (HIT*DIRTY) lk

A1t

NOTES:

1. 1/0 READ: Device reads from main memory (e.g., main memory to disk).
2. Timing measurements are referenced to and from a midpoint signal voltage of 1.5 volts unless
otherwise stated.
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Figure 56 Watch CPU and I/O Writes

| Tadd1 | Tadd2 | BUSWATCH | Tw | Td |

e p— T p— | |

AD lk ADDRESS >|<: DATA /
|

/

w— f— | |

TG.CT 1/O WRITE, WRITE-THROUGH OR COPY-BACK
' CPU WRITE, SHARED WRITE-THROUGH

=]

i ——
|

—

CBSYid CACHE PURGE
7’Z OR

MODIFY ON HIT

RDYi / \
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NOTES:

1. VO WRITE: I/O device writes into main memc'oa( (e.g., disk to main memory).

2. WRITE TO SHARED PAGE One of the CAMMUs writes into the shared area of main memory.

3. Timing measurements are referenced to and from a midpoint signal voltage of 1.5 volts unless
otherwise stated.

4. RDYi is asserted by the memory interface.
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Figure 57 D-CAMMU Read from Companion I-CAMMU

| Tarb l Tadd1 I Tadd2

e N\ A\ F N\ A\ F O\
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= feton|
_#

Tsu —ol — TH —ol |¢—
BG —_% Tco3 — '¢~ Teo3 — Llcos —ol I¢- k
Teo3 — I’_ (D-CAMMU) (HFCAMMU)
o X A
- |‘—Tco1 Tco1 —'I I'— Teo1— l'——ul |-— Teol
AD 5{\[ ADDRESS ¥ ¥ DATA )[
— |4—Tc02 — l'—Tcoz
TG, CT ¥ MEMORY SPACE SYSTEM TAG, CYCLE TYPE )F
Tco2 —» '4— —> Tco2
™ X S
Tco3 —b| IQ— I —.‘ Tco3
cBSYi j[ Teo3 —sl lk
—'I It— Tco3
Tsu A'I “I'— [—Th
RDYi f_L
A3
NOTES:

1. Timing measurements are referenced to and from a midpoint signal voltage of 1.5 volts unless

otherwise stated.

2.1-CAMMU internal registers can be accessed through the companion D-CAMMU
(D-CAMMU of same CLIPPER module).
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Figure 58 D-CAMMU Write into Companion I-CAMMU

Tarb I Tadd1 | Tadd2 |

CAMMU BUSY Td |

—» |“Tco3 I | | Tco3 —’l I‘—
BR Sk
Tsu —ol «— TH—J 'q—
e ¥ X
—> Tco3 Tco3 —» |4—
o X ) A
- l‘—Tco1 Tcot —b| "— l | —" l‘— Tco1
AD ¥ X DATA j[
Tco2 —» Iﬂ— l I ' ' —-1 I‘—TcoZ
TG, CT N( MEMORY SPACE SYSTEM TAG, CYCLE TYPE )[
Tco2 —» ‘4~ ‘ l " __J Tco2
?F; BK ACTIVE CYCL.E“ i’
Tco3 —" I "— | —’1 "‘Tco3
CBSYi 7\( lk
Tco3 —¥ l'* —> l'-Tco3
RDYoli % \R
T
o _'l = i'—TH
RDYi ;l L_
Al14
NOTES:

1. Timing measurements are referenced to and from a midpoint signal voltage of 1.5 volts unless
otherwise stated.

2. -CAMMU internal registers can be accessed through the companion D-CAMMU

(D-CAMMU of same CLIPPER module).
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Figure 59 Maskable Interrupt Request/Acknowledge Timing

CPU LATCHES IVEC

NOTES:
1. After TACK returns rns high the IRQ line must be high for one clock before another interrupt
request returns IRQ low.

2. The IVEC lines can an change only to a higher priority when IRQ is low. The higher priority value
must be on the IVEC lines by "a".

3. CPU latches IVEC on the rising edge of BCLK following release of IRQ. The CPU releases
TACK during the BCLK period following release of IRQ.
4. Timing measurements are referenced to and from midpoint voltages of 1.5 volts unless
otherwise stated. A115

Figure 60 Non-Maskable Interrupt Request/Acknowledge Timing

e I R I

ch.:‘:i-.! |¢— Tco3 |-
NMIACK NK_" %[—__

NOTES: Amne

1. After NMIACK returns high the NMI line must be high for one clock before another
nonmaskable interrupt request returns NMI low.

2. Timing measurements are referenced to and from midpoint signal voltages of 1.5 volts
unless otherwise stated.
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Figure 61 LOCK Timing

Figure 63 RESET and URDIAG Timing

= A\ AN\

—] ’4— Tsu ——»I +—Th

RESET —5k %
-——DI ’4— Tsu T —>| !4——
URDIAG \ % e
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Figure 64 Module Output Test Load
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Figure 65 BLCK Output Test Load
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Figure 66 Maximum Output Delay vs. Capacitive Loading
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Figure 67 CLIPPER C100 Module C100C1MLX

F——— === === ==
554 |
MATED
(INVERSE DIN 436 |
SIDE VIEW OF MODULE RECEPTACLE) R
FEMALE DIN | 720 ]
com oo | 7
APPROXIMATE | (STANDARD DIiN
COMPONENT HEIGHTS I | PIN ASSEMBLY)
417 271 437 ALE
S REFI 1 1 I DIN CONN.
_J_ REF e 1 P 1 |
A’ | P d
COMPONENT  -.060 : | 20
.062 | REF a21
3.000
e D - D - - - - - - -
3.026
USER PC BOARD
CONNECTION EXAMPLE
3.302
TOP VIEW OF MODULE
100 — |~—
— | ¥
A
A EE——
4350
4.500
3928

A123

|
»
$

— 1% %
2850 150
1SOT 3.000

A = 0.125 DIAMETER

NOTE:
Package dimensions are given in inches.
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Figure 68 Pinout of CLIPPER C100 Module C100C1MLX

END VIEW OF MODULE
C B A
Vee 1 [ ? o SATE GND
cBSYl 2 —e ¢ @ GND 0oscC
Ulm 3 * 9 o G0 GND
IVE 4 —e ¢ o RSV RSV
IVEC4 5 —e ¢ o VEe GND
IVEﬂ 6 —e ¢ e VEes NMT
IACK 7 —e ¢ o VEG BRI
RESET 8 —e ¢ o o :DYol
AD18 9 . . cc
ADZ0 10 - ; U_":t X Ve
AD22 11 —e ADTT VEC3
AD24 12 —e ¢ o ADZ1 AD19
GND 13 —e ¢ @ ADZ3 GND
AD28 14 —e ¢ o AD28 AD25
AD29 15 —e ¢ o Voo AD27
AD31 16 —e ¢ o AD% AD16
MSBE/RETRY 17 —e ¢ o D15 GND
AD13 18 —e o o D12 AD14
AD10 19 —e ¢ e GND AD11
ADO9 20 —e o @ ADOS ADO7
Vee 21 —o ¢ o— ADOS Vee
ADO5 22 —e ¢ o ADOs ADO3
ADO2 23 —e ¢ o Voo ADO1
ADOO 24 —o ¢ o R MMBE
GND 25 —e ¢ o Toz GND
TG1 26 —o ¢ o 70 BERR
CT1 27 —e 9 @ aND BGd
CTo 28 —e 9 o oTs RDYI
CT4 28 —e ¢ o T3 Vee
CT2 30 —e ¢ o " CcBSYd
RDYo 31 —e ¢ o RSV GND
LOCK 32 —e ¢ @ BRd BLCK
|

NOTES: 1. Numbering on the CLIPPER Module female connector may not correspond
to numbering on user-supplied male connectors.
2. Pin B31 (RSV) should be tied to pin A32 (BCLK) to ensure compatibility with
future enhanced versions of the CLIPPER Module. A124
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Figure 69 CLIPPER C100 Module C100C1BLX

SIDE VIEW OF MODULE .200 MAX

]
BOX CONNECTOR —I I f T
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NOTE:
Package dimensions are given in inches. A125
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Figure 70 Pinout of CLIPPER C100 Module C100C1BLX

C B A
\/ 1 . . GND
c? 2 ! RATE osc
CBSYi . e 9 o GND onD
Uw \ U BGI hsv
IVEC2 ) ° o RSV D
'VEg" . ° 1 IVEC1 —
'V_EC_7 , S IVEC5 Sl
_IAck . N IVEC6 Ao
' ] L2 — ol
RESET : ? IRQ v
o . ccC
Ab2g 10 ! NMIACK _ iveco
Aoes 11 . = URF VECS
AD22 * ¢ o AD17
AD24 12 —e ¢ o AD19
GND 13 —e . AD21 GND
R S AD23
AD28 14 —e ¢ o AD25
AD26
AD29 15 - o o AD27
Vce
AD31 16 —e ¢ ® AD16
- AD30
MSBE/RETRY 17 > ¢ o GND
AD15
AD13 18 - ¢ o AD14
AD12
AD10 19 —e ¢ o AD11
GND
ADO9 20 s ¢ o ADO7
ADO8
Vce 21 e ¢ o Vce
ADO6
ADOS5 22 ° * . ADO3
ADO4
ADO2 23 * ¢ o ADO1
Vee _
ADOO 24 * ¢ o — MMBE
GND 25 ° . DIR GND
R TG2 o
TG1 26 . o o BERR
TGO
CT1 27 —e ¢ o BGd
GND
CT0 28 s ¢ o RDYi
CT5
CT4 29 - ¢ o Vee
CcT3
CT2 30 e o o — CcBSYd
TR
RDYo 31 * ¢ o GND
RSV
LOCK 32 —o ¢ » BLCK
BRd
NOTE: Pin B31 (RSV) should be tied to pin A32 (BCLK) to ensure compatibility with

future enhanced versions of the CLIPPER Module.
A126
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Figure 71 CLIPPER C100 Module C100C1DLX
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Figure 72 Pinout of CLIPPER C100 Module C100C1DLX

TOP VIEW OF MODULE
J2 J1
12
BCLK ——o0 o——— GND @ VCC ——oo0——GND
GND 00 RSV CcT1 0o CTo
RSV ——o0 o—— GND CT3——oo—+—CT2
RATE —0 0— RSV CT5 ToXeS CT4
RDYol ——o0 o—— BRI GND ——o o—+— TGO
cBSYi — 0 o BGI TG2 —o o0 TG1
_ DIR ——0 o—— VCC ADO1 ——0 o—— ADOO
TR S—— 0 o BCLK ADO3 o0 ADO2
LOCK —1—0 o——— GND ADO4 —— o o0——Vee
BRd 00— RDYo ADO6 00 ADO5
CBSYd —{—o0 0—— RSV ADO8 ——o o—— ADO7
RDYI o0 BGd ADIO 00 ADO9
- BERR —}—0 o——— Vce GND—o o—— AD11
MMBE 0o — MSBE AD13 0o AD12
RESET —}—o0 o——— URF AD15 — o1 AD14
IACK o — GND AD17 00 AD16
—— NMIACK —f—o0o—— IRQ AD18 — o o——Vce
IVEC7 —— 00— IVEC6 AD20 oo AD19
—_— IVEC5 —1—o0 o0—— Vce AD22 ——o o—1— AD21
IVECS ——— 00— IVEC4 AD24 oo AD23
_______ IVEC1 —}—o0o—— IVEC2 GND ——o o—1— AD25
URDIAG 0o GND AD26 0 O— AD27
Vec —}—o o—— IVECO AD28 ———o0 o—— AD29
RSV oo NMI AD30 oo AD31
GND — 00— GND o) ® GND ——o0—— GND
49 50 49 50
NOTE: PIN J3-8 SHOULD BE TIED TO BCLK (PIN J2-1) TO ENSURE COMPATIBILITY
WITH FUTURE ENHANCED VERSIONS OF THE CLIPPER MODULE. A128
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