NX 200

Network Executive
Reference Manual

Publication No. 4200036-00
Revision A May 28, 1986

Excelan Inc.
2180 Fortune Drive
San Jose, CA 95131

Copyright © 1986 Excelan, Inc. All rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means — electronic, mechanical,
magnetic, optical, chemical, manual or otherwise — without the prior written permission
of Excelan, Inc., 2180 Fortune Drive, San Jose, CA 95131.

Excelan makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any
particular purpose. Furthermore, Excelan reserves the right to revise this publication
and to make changes from time to time in the content hereof without obligation of
t:xcelan to notify any person of such revision or changes.

EXOS is a registered trademark of Excelan, Inc.

Excelan, and NX 200 are trademarks of Excelan, Inc.

Ethernet is a trademark of Xerox Corporation.

UNIBUS is a trademark of Digital Equipment Corporation.

Muitibus is a trademark of Intel Corporation.

Q-bus and VMEbus is a trademark of Digital Equipment Corporation.

NX 200
Network Executive
Reference Manual

REVISION

A

REVISION HISTORY

DATE

05-28-86

SUMMARY OF CHANGES

Initial Release.

NX 200

Network Executive
Reference Manual
Publication No. 4200036-00

NX 200: Preface

PREFACE

This document describes the NX 200 Network Executive. It covers information
necessary to integrate the EXOS Intelligent Ethernet Controller in a computer
system, and to design software both for the host and the EXOS Intelligent Ethernet
Controller. Ethernet and the various supported buses are described in readily
available documents; this manual makes no special effort to explain these
standards.

By design, the NX 200 operating system kernel insulates user protocol software
from hardware implementation details. This approach simplifies software design,
and facilitates portability to future products. Therefore this manual primarily
describes the NX 200 kernel, with reference to hardware design only where
necessary. It is intended only as a reference manual, and does not undertake to
explain the product’s design philosophy.

The following documents provide related reference and study material for NX 200
users.
NX 200, which is designed to be used in conjunction with the EXOS
Intelligent Ethernet Controller, conforms to the following specification:

(11 Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
Access Method and Physical Layer Specifications (Standard 802.3-
1985/International Standard 8802/3), The Institute of Electrical and
Electronics Engineers, Inc., 1985.

[2] The Ethernct: A Local Arca Network: Data Link Layer and Physical
Layer Specifications, Document no. T588.B/1080/15K, iIntel Corp.,
September 1980.

[8] The Ethernet: A Local Area Network: Data Link Layer and Physical
Layer Specifications, Version 2.0, November 1982

NX 200 uses the services of Intel's 82856 LAN Coprocessor (present on the
EXOS Intelligent Ethernet Controller board), for implementation of Ethernet
Data Link protocol:

[4] LAN Components User’'s Manual, Document No. 230814-001, Intel
Corp., 1984.

NX 200 code and user written protocol software executes on the EXOS
Intelligent Ethernet Controller, which uses an Intel 80186 CPU.

[6] iAPX 86/88, 186/188 Uscr's Manual, Document No. 210911-001,
Intel Corp., 1983.

The following reference describes the C language, which is used for
procedural specifications in this manual:

[6] Kernighan, B.W. and Ritchie, D.M, The C Programming Language,
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

The following reference describes the 1SO Open Systems Model:

[7]1 Reference Model of Open Systems Interconnection, Document no.
ISO/TC97/SC16 N227, June 1979.

NX 200: Preface

_ Chapter 1 of this manual outlines the principle features of NX 200, and describes
conventions and restrictions which are crucial to successful application of the
NX 200 operating system kernel.

Chapter 2 describes initialization of the EXOS 201 Intelligent Ethernet Controller
for Multibus systems, including software download from the host.

Chapter 3 describes initialization of the EXOS 202 Intelligent Ethernet Controller
for VMEbus systems, including software download from the host.

Chapter 4 describes initialization of the EXOS 203 Intelligent Ethernet Controller
for Q-Bus systems, including software download from the host.

Chapter 5 describes initialization of the EXOS 204 Intelligent Ethernet Controller
for UNIBUS systems, including software download from the host.

Chapter 6 discusses using NX 200 in the intelligent link level controller mode. In
this mode, no software is downloaded, so that only glancing reference to Chapters
7 through 9 will be necessary.

Chapters 7, 8, and 9 describe the NX 200 firmware, which provides support for
software downloaded to the EXOS intelligent Ethernet controller. Chapter 7
describes the real-time, multitasking OS kernel services, and describes the
programming environment aboard the EXOS intelligent Ethernet controller.
Chapters 8 and 9 cover the [Ethernet and host interface facilities, which are
implemented in NX 200. They are broken out into separate chapters because
NX 200’s design makes them conceptually detachable.

Chapter 10 defines the NX 200 kernel calls, and is intended for ready reference
once NX 200 services are understood functionally.

Chapter 11 describes NX 200's network bootstrap protocol, which can be used to
automatically download software to the EXOS Intelligent Ethernet Controller over
the Ethernet at initialization time.

Appendix A describes the self-diagnostics and configuration error messages
performed by the NX 200 firmware.

-V -

Chapter

1

NX 200: Contents

TABLE OF CONTENTS

INTRODUCTION

1.1.
1.2.
1.3.

1.4.
1.5.

1.6.

1.7.

1.8.
1.9.
1.10.
1.11.

1.13.
1.14.
1.15.
1.16.

OVERVIEW

NX 200 FIRMWARE DESCRIPTION
EXOS INTELLIGENT ETHERNET
CONTROLLER HARDWARE DESCRIPTION
ETHERNET COMPATIBILITY
COMPATIBLE HOST BUSES

1.5.1. Multibus Compatibility

1.5.3. VMEbus Compatibility

1.5.2. Q-bus Compatibility

1.5.4. UNIBUS Compatibility
NX-TO-HOSTBUS INTERFACE
1.6.1. Multibus Interface

1.6.3. VMEbus Interface

1.6.2. Q-bus Interface

1.6.4. UNIBUS Interface
ETHERNET FUNCTIONS

1.7.1. Address Recognition

1.7.2. Frame Format

1.7.3. Error Handling

1.7.4. High Level Protocol Support
INITIALIZATION

MULTITASKING SUPPORT

THE CLOCK

HOST INTERFACE

1.11.1 Ethernet Interface

1.11.2 Ethernet Link Level Controlier Mode

. NOTATIONS AND CONVENTIONS

1.12.1 Number Base

1.12.2. Data Object Terminology

1.12.3. Message Format Specification

1.12.4. Procedural Specifications

1.12.5. Bit Position and Value Specifications

1.12.6. Data Storage Order

INTEGRATION WITH 68000-BASED SYSTEMS
DATA ALIGNMENT

MEMORY ADDRESS FORMAT

SHARED BUS MEMORY ACCESS RESTRICTIONS

- Vit -

Page

1-10
1-10
1-10
1-11
1-11
1-11
1-11
1-11
1-12
1-12
1-12
1-13
1-14
1-14
1-16

NX 200: Contents

Chapter Page
1.17. SHARED BUS MEMORY ACCESS RESTRICTIONS 1-16

2 INITIALIZATION AND HOST INTERFACE
FOR MULTIBUS SYSTEMS

2.1. INTRODUCTION 2-1
2.2. HARDWARE COMMUNICATIONS CHANNELS 2-2
2.2.1. Host Access to the EXOS 201 Multibus Board 2-2
2.2.2. EXOS 201 Multibus Board Access to the Host 2-3
2.3. HOST DATA ORDER CONVERSION OPTION 2-3
2.4. RESET AND CONFIGURATION PROCEDURE 2-4
2.5. CONFIGURATION MESSAGE FORMAT 2-8
2.5.1. Peserved Field 2-8
2.5.2. EXOS Version Code Field 2-8
2.5.3. Configuration Completion Code Field 2-8
2.5.4. NX 200 Operation Mode Field 2-11
2.5.5. Host Data Order Option Field 2-11
2.5.6. EXOS Context 2-11
2.5.7. Host Address Mode Field 2-12
2.5.8. Reserved Field 2-12
2.5.9. Memory Map Size Field 2-12
2.5.10. Test Pattern/Memory Map Field and
Maximum packet Size 2-12
2.5.11. NX 200 Movable Block Address Field 2-13
2.5.12. Number of Processes Field 2-13
2.5.13. Number of Mailboxes Field 2-13
2.5.14. Number of Multicast Slots Field 2-13
2.5.15. Number of Hosts Field 2-13
2.5.16. Host-to-EXOS Message Queue Base Address Field 2-14
2.5.17. Host-to-EXOS Message Queue Header Address Field 2-14
2.5.18. Host-to-EXOS Message Queue Interrupt Type Field 2-14
2.5.19. Host-to-EXOS Message Queue Interrupt Value Field 2-15
2.5.20. Host-to-EXOS Message Queue Interrupt Address Field 2-15
2.5.21. EXOS-to-Host Message Queue Base Address Field 2-15
2.5.22. EXOS-to-Host Message Queue Header Address Field 2-15
2.5.23. EXOS-to-Host Message Queue Interrupt Type Field 2-15
2.5.24. EXOS-to-Host Message Queue Interrupt Value Field 2-16
2.5.25. EXOS-to-Host Message Queue Interrupt Address Field 2-16
2.6. MESSAGE QUEUE FORMAT 2-16
2.6.1. Link Field 2-17
2.6.2. Reserved Field 2-17
2.6.3. Status Field 2-17
2.6.4. Length Field 2-17
2.6.5. Data Field 2-17
2.7. MESSAGE QUEUE INITIALIZATION 2-18

2.8. MESSAGE QUEUE PROTOCOL 2-19

= Vi

Chapter

2.9.

NX 200: Contents

2.8.1. - Host-to-EXOS Message Transfer
2.8.2. EXOS-to-Host Message Transfer
DOWNLOADING SOFTWARE FROM THE HOST
2.9.1. Host Download Request
2.9.1.1. Reserved Field
2.9.1.2. User Id Code Field
2.9.1.3. Request Code Field
2.9.1.4. Return Code Field
2.9.1.5. Data Length Field
2.9.1.6. Source Address Field
2.9.1.7. Destination Address Field
2.9.2. Start Execution Request
2.9.2.1. Reserved Field
2.9.2.2. User Id Code Field
2.9.2.3. Request Code Field
2.9.2.4. Return Code Field
2.9.2.5. Starting Address Field

INITIALIZATION AND HOST INTERFACE

FOR VMEBUS SYSTEMS

3.1
3.2.

3.3.
3.4.
3.5.

INTRODUCTION
HARDWARE COMMUNICATIONS CHANNELS
3.2.1. Host Access to the EXOS 202 VMEbus Board
3.2.2. EXOS 202 VMEbus Board Access to the Host
HOST DATA ORDER CONVERSION OPTION
RESET AND CONFIGURATION PROCEDURE
CONFIGURATION MESSAGE FORMAT
3.5.1. Reserved Field
3.5.2. EXOS Version Code Field
3.5.3. Configuration Completion Code Field
3.5.4. NX 200 Operation Mode Field
3.5.5. Host Data Order Option Field
3.5.6. EXOS Context
3.5.7. Host Address Mode Field
3.5.8. Reserved Field
3.5.9. Memory Map Size Field
3.5.10. Test Pattern/Memory Map Field and

Maximum Packet Size
3.5.11. NX 200 Movable Block Address Field
3.5.12. Number of Processes Field
3.5.13. Number of Mailboxes Field
3.5.14. Number of Multicast Slots Field
3.5.15. Number of Hosts Field
3.5.16. Host-to-EXOS Message Queue Base Address Field
3.5.17. Host-to-EXOS Message Queue Header Address Field
3.5.18. Host-to-EXOS Message Queue Interrupt Type Field
3.5.19. Host-to-EXOS Message Queue Interrupt Value Field
3.5.20. Host-to-EXOS Message Queue Interrupt Address Field
3.5.21. EXOS-to-Host Message Queue Base Address Field
3.5.22. EXOS-to-Host Message Queue Header Address Field
3.5.23. EXOS-to-Host Message Queue Interrupt Type Field

Page

2-19
2-22
2-23
2-23
2-23
2-23
2-23
2-23
2-24
2-24
2-24
2-25
2-25
2-26
2-26
2-26
2-26

3-1
3-2
3-2
3-3
3-3
3-4
3-7
3-7
3-7

3-10
3-10
3-11
3-11
3-11
3-11

3-11
3-12
3-12
3-12
3-12
3-12
3-13
3-13
3-13
3-13
3-13
3-14
3-14
3-14

NX 200: Contents

Chapter

3.5.24. EXOS-to-Host Message Queue Interrupt Value Field
3.5.25. EXOS-to-Host Message Queue Interrupt Address Field
3.6. MESSAGE QUEUE FORMAT
3.6.1. Link Field
3.6.2. Reserved Field
3.6.3. Status Field
3.6.4. Length Field
3.6.5. Data Field
3.7. MESSAGE QUEUE INITIALIZATION
3.8. MESSAGE QUEUE PROTOCOL
3.8.1. Host-to-EXOS Message Transfer
3.8.2. EXOS-to-Host Message Transfer
3.9. DOWNLOADING SOFTWARE FROM THE HOST
3.9.1. Host Download Request

3.9.1.1. Reserved Field
3.9.1.2. User Id Code Field
3.9.1.3. Request Code Field
3.9.1.4. Return Code Field
3.9.1.5. Data Length Field
3.9.1.6. Source Address Field
3.9.1.7. Destination Address Field
3.9.2. Start Execution Request

3.9.2.1. Reserved Field
3.9.2.2. User |d Code Field
3.9.2.3. Request Code Field
3.9.2.4. Return Code Field
3.9.2.5. Starting Address Field

INITIALIZATION AND HOST INTERFACE
FOR Q-BUS SYSTEMS

4.1. INTRODUCTION
4.2. HARDWARE COMMUNICATIONS CHANNELS
4.2.1. Host Access to the EXOS 203 Q-bus Board
4.2.2. EXOS 203 Q-bus Board Access to the Host
4.3. HOST DATA ORDER CONVERSION OPTION
4.4. RESET AND CONFIGURATION PROCEDURE
4.5. CONFIGURATION MESSAGE FORMAT
4.5.1. Reserved Field
4.5.2. EXQOS Version Code Field
4.5.3. Configuration Completion Code Field
4.5.4. NX 200 Operation Mode Field
4.5.5. Host Data Order Option Field
4.5.6. EXOS Context
4.5.7. Host Address Mode Field
45.8. Reserved Field
4.5.9. Memory Map Size Field
4.5.10. Test Pattern/Memory Map Field and
Maximum Packet Size
4.5.11. NX 200 Movable Block Address Field

Page

3-14
3-14
3-14
3-15
3-15
3-16
3-16
3-16
3-16
3-19
3-19
3-20
3-21
3-21
3-22
3-22
3-22
3-23
3-23
3-23
3-24
3-24
3-24
3-24
3-24
3-24
3-24

4-1
4-2

4-3
4-3
4-6
4-8
4-8
4-8

4-11
4-11
4-11
4-12
4-12
4-12

4-12
4-13

Chapter

4.6.

4.7.
4.8.

4.9.

4.5.12.
4.5.13.
4.5.14.
4.5.15.
4.5.16.
4.5.17.
4.5.18.
4.5.19.
4.5.20.
4.5.21.
4.5.22.
4.5.23.
4.5.24.
4.5.25.

NX 200: Contents

Number of Processes Field

Number of Mailboxes Field

Number of Multicast Slots Field

Number of Hosts Field

Host-to-EXOS Message Queue Base Address Field
Host-to-EXOS Message Queue Header Address Field
Host-to-EXOS Message Queue Interrupt Type Field
Host-to-EXOS Message Queue Interrupt Value Field
Host-to-EXOS Message Queue Interrupt Address Field
EXOS-to-Host Message Queue Base Address Field
EXOS-to-Host Message Queue Header Address Field
EXOS-to-Host Message Queue Interrupt Type Field
EXOS-to-Host Message Queue Interrupt Value Field
EXOS-to-Host Message Queue Interrupt Address Field

MESSAGE QUEUE FORMAT

4.6.1.
4.6.2.
4.6.3.
4.6.4.
4.6.5.

Link Field
Reserved Field
Status Field
Length Field
Data Field

MESSAGE QUEUE INITIALIZATION
MESSAGE QUEUE PROTOCOL

4.8.1.
4.8.2.

Host-to-EXOS Message Transfer
EXOS-to-Host Message Transfer

DOWNLOADING SOFTWARE FROM THE HOST

4.9.1.

4.9.2.

Host Download Request

4.9.1.1. Reserved Field
4.9.1.2. User Id Code Field
4.9.1.3. Request Code Field
4.9.1.4. Return Code Field
4.9.1.5. Data Length Field
4.9.1.6. Source Address Field
4.9.1.7. Destination Address Field
Start Execution Request
4.9.2.1. Reserved Field
4.9.2.2. User ld Code Field
4.9.2.3. Request Code Field
4.9.2.4. Return Code Field
4.9.2.5. Starting Address Field

INITIALIZATION AND HOST INTERFACE

FOR UNIBUS SYSTEMS

INTRODUCTION
HARDWARE COMMUNICATIONS CHANNELS

5.1.
5.2

5.2.1.
5.2.2.

Host Access to the EXOS 204 UNIBUS Board
EXOS 204 UNIBUS Board Access to the Host

X! -

Page

4-13
4-13
4-13
4-13
4-14
4-14
4-14
4-15
4-15
4-15
4-15
4-15
4-15
4-16
4-16
4-16
4-16
4-17
4-17
4-18
4-18
4-19
4-21
4-22
4-23
4-23
4-23
4-23
4-23
4-24
4-24
4-25
4-25
4-25
4-25
4-25
4-25
4-26
4-26

5-1

5-2
5-3

Chapter

5.9.2.

NX 200: Contents

5.9.1.5. Data Length Field
5.9.1.6. Source Address Field

5.9.1.7. Destination Address Field

Start Execution Request
5.9.2.1. Reserved Field
5.9.2.2. User Id Code Field
5.9.2.3. Request Code Field
5.9.2.4. Return Code Field
5.9.2.5. Starting Address Field

LINK LEVEL CONTROLLER MODE

6.1. INTRODUCTION
6.2. THE CONTROLLER MODE INTERFACE
6.3. TRANSMIT REQUEST/REPLY MESSAGE

6.3.1.
6.3.2.
6.3.3.
6.3.4.
6.3.5.
6.3.6.
6.3.7.
6.3.8.

Reserved Field

User Id Code Field

Request Code Field

Return Code Field

Address Slot Field

Number of Data Blocks Field
Data Block Length Field
Data Block Address Field

6.4. RECEIVE REQUEST/REPLY MESSAGE

6.4.1.
6.4.2.
6.4.3.
6.4.4.
6.4.5.
6.4.6.
6.4.7.
6.4.8.

Reserved Field

User Id Code Field

Request Code Field

Return Code Field

Address Slot Field

Number of Buffer Blocks Field
Buffer Block Length Field
Data Address Field

6.5. NET_MODE REQUEST/REPLY MESSAGE

6.5.1.
6.5.2.
6.5.3.
6.5.4.
6.5.5.
6.5.6.
6.5.7.

Reserved Field
User Id Code Field
Request Code Field
Return Code Field
Request Mask Field
Options Mask Field
Mode Field

6.6. NET_ADDRS REQUEST/REPLY MESSAGE

6.6.1.

6.6.2.
6.6.3.

Reserved Field
User Id Code Field
Request Code Field

- XIH -

Page

5-23
5-23
5-24
5-24
5-25
5-25
5-25
5-25
5-25

6-10
6-10
6-10
6-10
6-11
6-11
6-11
6-11
6-12
6-12
6-13
6-13

Chapter

6.7.

6.8.

6.6.4.
6.6.5.
6.6.6.
6.6.7.

NX 200: Contents

Return Code Field
Request Mask Field
Address Slot Field
Net Address Field

NET_RECV REQUEST/REPLY MESSAGE

6.7.1.
6.7.2.
6.7.3.
6.7.4.
6.7.5.
6.7.6.

Reserved Field
User Id Code Field
Request Code Field
Return Code Field
Request Mask Field
Address Slot Field

NET_STSTCS REQUEST/REPLY MESSAGE

6.8.1.
6.8.2.
6.8.3.
6.8.4.
6.8.5.
6.8.6.
6.8.7.
6.8.8.
6.8.9.

Reserved Field

User Id Code Field
Request Code Field
Return Code Field
Request Mask Field
Reserved Field

Number of Objects Field
Objects index Field
Buffer Address Field

THE NX 200 PROGRAMMING ENVIRONMENT

INTRODUCTION
MEMORY ORGANIZATION

7.1.
7.2.

7.3

7.4.

7.5.

7.21.
7.2.2.
7.2.3.
7.2.4.
7.2.5.
7.2.6.

Interrupt Vector Table
Movable NX 200 Data Area
Fixed NX 200 Data Area
Dual-Ported User RAM
Optional Dual-Ported RAM
Reserved Address Space

INTERRUPT TYPES
PROCESSES

7.41.
7.4.2.
7.4.3.
7.4.4.
7.4.5.

Process Address Space
Process-id

Process Stack

Process Scheduling
implicit Scheduling Factors

MAILBOXES

7.5.1.
7.5.2.
7.5.3.

Mailbox-id
Messages
Null Messages

- XIv -

Page

6-13
6-13
6-13
6-13
6-14
6-14
6-14
6-14
6-14
6-15
6-15
6-15
6-15
6-16
6-16
6-16
6-17
6-17
6-17
6-17
6-17

7-1
7-1
7-1
7-2
7-3
7-3
7-3
7-3
7-3
7-4
7-4
7-4
7-4
7-4
7-6

7-6
7-6
7-6
7-7

Chapter

7.6.
7.7.

7.8.

8.1.
8.2

8.3.

8.4.
8.5.
8.6.
8.7.

9.1.
9.2.

NX 200: Contents

7.5.4. Sending and Receiving Messages
7.5.5. Mailboxes as Semaphores
PROCESS LOCKS

SYSTEM MAILBOXES

7.7.1. Link Field

7.7.2. Reply Mailbox Field

7.7.3. Request Code Field

7.7.4. Return Code Field

THE CLOCK DEVICE

NX 200: INTERFACING TO ETHERNET

INTRODUCTION

ETHERNET TRANSMIT REQUEST
8.2.1. Link Field

8.2.2. Reply Mailbox Field

8.2.3. Request Code Field

8.2.4. Return Code Field

8.2.5. Address Slot Field

8.2.6. Reserved Field

8.2.7. Data Length Field

8.2.8. Data Address Field
ETHERNET RECIEVE REQUEST
8.3.1. Link Field

8.3.2. Reply Mailbox Field

8.3.3. Request Code Field

8.3.4. Return Code Field

8.3.5. Address Slot Field

8.3.6. Reserved Field

8.3.7. Buffer Length Field

8.3.8. Buffer Address Field
ETHERNET CONTROLLER MODES

ETHERNET CONTROLLER OPTION MASK

ADDRESS SLOTS
NET STATISTICS

THE NX 200 HOST INTERFACE

INTRODUCTION

HOST TRANSMIT REQUEST -
9.2.1. Link Field

9.2.2. Reply Mailbox Field
9.2.3. Request Code Field
9.2.4. Return Code Field
9.2.5. Data Length Field

- XV -

Page

7-10
7-10

NX 200: Contents

Chapter

10

11

9.2.6. Data Field
9.3. HOST RECEIVE REQUEST

9.3.1. Link Field

9.3.2. Reply Mailbox Field

9.3.3. Request Code Field

9.3.4. Return Code Field

9.3.5. Data Length Field

9.3.6. Data Field
9.4. DIRECT ACCESS TO HOST SYSTEM MEMORY
9.5. HOST DATA ORDER CONVERSION

NX 200 KERNEL CALL REFERENCE
INTRODUCTION
PROC_CREATE
PROC_DELETE
PROC_SLPCNT
PROC_PRIOR
PROC_TIMSLC
PROC_STATUS
PROC_LOCK
PROC_UNLOCK
MLBX_CREATE
MLBX_DELETE
MLBX_SEND
MLBX_RECV
TIME_GET
TIME_SET
NET_MODE
NET_ADDRS
NET_RECV
NET_STSTCS
MEM_READ
MEM_WRITE
VERSION
CVT_WORD
CVT_LWORD

INITIALIZING AND DOWNLOADING FROM THE ETHERNET

11.1. INTRODUCTION

11.2. NETWORK BOOTSTRAP PROTOCOL DESCRIPTION

11.3. DATA TRANSMISSION ORDER

11.4. NETWORK BOOTSTRAP PROTOCOL MESSAGE HEADER
11.4.1. Subtype Field
11.4.2. Message ID Field

- XVI -

Page

10-1

10-3

10-5

10-6

10-7

10-8

10-9

10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-20
10-21
10-22
10-23
10-24
10-25
10-26
10-27

11-1
11-1
11-8
11-9
11-9
11-9

NX 200: Contents

Chapter Page
11.4.3. Request Code Field 11-10
11.4.4. Reply Code Field 11-10
11.4.5. Message Length Field 11-10
11.4.6. Request-Specific Fields 11-10

11.5. MESSAGE ENCAPSULATION 11-10
11.6. FIND AND SELECT REQUEST/REPLY MESSAGES 11-11
11.6.1. Standard Message Header Fields 11-11
11.6.2. Protocol Version Field 11-12
11.6.3. Number of Buffers Field 11-13
11.6.4. Buffer Length Field 11-13
11.6.5. Station ID Field 11-13
11.6.6. Session ID Field 11-13
11.6.7. Receive Wait Timeout Field 11-13
11.6.8. Configuration Message Field 11-14
11.7. DOWNLOAD REQUEST/REPLY MESSAGE 11-14
11.7.1. Standard Message Header Fields 11-14
11.7.2. Load Length Field 11-15
11.7.3. Reserved Field 11-15
11.7.4. EXOS Download Address Field 11-15
11.7.5. Data Field 11-15
11.8. UPLOAD Request/Reply Message 11-16
11.8.1. Standard Message Header Fields 11-16
11.8.2. Load Length Field 11-17
11.8.3. Reserved Field 11-17
11.8.4. EXOS Upload Address Field 11-17
11.8.5. Data Field : 11-17
11.9. CONFIGURE REQUEST/REPLY MESSAGE 11-17
11.9.1. Standard Message Header Fields 11-17
11.9.2. Configuration Message Field 11-18
11.10. EXECUTE REQUEST/REPLY MESSAGE 11-18
11.10.1.Standard Message Header Fields 11-18
11.10.2.Starting Address Field 11-19
Appendix

A SELF-DIAGNOSTIC and CONFIGURATION ERRORS A-1

- xvii -

Figure

2-4a:

3-4a:

NX 200: Contents

LIST OF FIGURES

An NX 200 Front-End Processor Mode Implementation
NX 200 Software Architecture

EXOS Intelligent Controller Block Diagram

Mapping of Segmented Address into Longword Data Type
Mapping of Absolute Address into Longword Data Type
VMEbus Mapping of Segmented Address into Longword
Data Type

Host Data Order Conversion Option Test Pattern

Host Data Format Test Pattern Initialization

Typical Reset and Configuration Procedure
Configuration Request/Reply Message

Configuration Request/Reply Message (con't)

Message Buffer Format

Message Queue Data Structures at Initialization Time
Example EXOS-to-Host Message Queue, at Initialization
NX 200 Download Request/Reply Message

NX 200 Start-Execution Request/Reply Message

Host Data Order Conversion Option Test Pattern

Host Data Format Test Pattern Initialization

Typical Reset and Configuration Procedure
Configuration Request/Reply Message

Configuration Request/Reply Message (con't)

Message Buffer Format

Message Queue Data Structures at Initialization Time
Example EXOS-to-Host Message Queue, at Initialization
NX 200 Down-Load Request/Reply Message

NX 200 Start-Execution Request/Reply Message

Host Data Order Conversion Option Test Pattern

Host Data Format Test Pattern Initialization

Typical Reset and Configuration Procedure
Configuration Request/Reply Message

Configuration Request/Reply Message (con't)

Message Buffer Format

Message Queue Data Structures at Initialization Time
Example EXOS-to-Host Message Queue, at Initialization
NX 200 Down-Load Request/Reply Message

NX 200 Start-Execution Request/Reply Message

- XViil -

Page

1-2
1-4
1-5
1-14
1-15

1-16

2-5
2-6
2-7

2-10
2-16
2-18
2-21
2-24
2-25

3-15
3-17
3-18
3-22
3-23

4-4
4-5
4-7
4-9
4-10
4-17
4-18
4-20
4-24
4-26

Figure

5-4a:

11-1:
11-2:
11-3:
11-4:
11-5:
11-6:
11-7:
11-8:

NX 200: Contents

LIST OF FIGURES (continued)

Host Data Order Conversion Option Test Pattern

Host Data Format Test Pattern Initialization

Typical Reset and Configuration Procedure
Configuration Request/Reply Message

Configuration Request/Reply Message (con't)

Message Buffer Format

Message Queue Data Structures at Initialization Time
Example EXOS-to-Host Message Queue, at Initialization
NX 200 Down-Load Request/Reply Message

NX 200 Start-Execution Request/Reply Message

Encapsulation of Request/Reply Message in Message Buffer
Link Level Controller Mode Request Processing Scheme
TRANSMIT Request/Reply Message

RECEIVE Request/Reply Message

NET_MODE Request/Reply Message

NET_ADDRS Request/Reply Message

NET_RECV Request/Reply Message

NET_STSTCS Request/Reply Message

Default NX 200 Memory Allocation
Standard Header for System Messages

Ethernet Packet Format
Ethernet Transmit Request/Reply Message
Ethernet Receive Request/Reply Message

Host Transmit Request/Reply Message
Host Receive Request/Reply Message

State Diagram of Network Bootstrap Protocol

Network Bootstrap Protocol Request/Reply Message Header
Encapsulation of Request/Reply Message

Network Bootstrap FIND/SELECT Request/Reply Message
Network Bootstrap DOWNLOAD Request/Reply Message
Network Bootstrap UPLOAD Request/Reply Message
Network Bootstrap CONFIGURE Request/Reply Message
Network Bootstrap EXECUTE Request/Reply Message

- XiX -

Page

5-16
5-17
5-19
5-23
5-24

6-2
6-3

6-8

6-10
6-12
6-14
6-16

7-2
7-9

8-2

8-6

9-2
9-3

11-2

11-9

11-11
11-12
11-15
11-16
11-17
11-18

Chapter 1
INTRODUCTION

1.1. OVERVIEW

Excelan's NX 200 Network Executive is a high performance, multitasking,
message-oriented, operating system kernel especially designed for use with
Excelan’s EXOS 200 Series Intelligent Ethernet Controller boards. Additionally,
it contains modules for diagnostics for EXOS boards, interfaces to the host and
Ethernet, network bootstrap code, and Data Link Controller functions.

NX 200, which provides software access to Ethernet/|[EEE 802.3 networks, is
supplied as firmware resident on two 16-kbyte EPROMS that are an integral part
of each EXOS 200 Series board. Accordingly, NX 200 Network Executive is
also referred to as NX 200 firmware.

In a typical local area network (LAN) based on Ethernet/IEEE 802.3 standard, a
host computer system is connected to the network through an EXOS board and
a transceiver. The host can then operate in two basic modes: front-end and
link-level.

In the front-end processor mode, the host system downloads protocol software
to the EXOS board at initialization time (or optionally, the EXOS Intelligent
Ethernet Controller board bootstraps itself from the Ethernet). This software
then uses NX 200's real-time, multitasking process management services and
/0 drivers to control the EXOS board's Ethernet interface and manage
communications with the host system. Standard protocol modules for the EXOS
intelligent controller, such as the DARPA TCP/IP protocols, are available from
Excelan. Figure 1-1 shows such an implementation in relation to the ISO Open
Systems Integration model.

Alternatively, users can develop, or port, their own protocols to run under NX
200 on the EXOS board. This manual contains all information required to write
software for the EXOS intelligent controller utilizing the NX 200 operating system
function calls.

In the Link-level controller mode; NX 200 firmware brings the EXOS board's
Data Link controller functions out to the host interface. This is useful for
applications where host-resident protocol software has already been developed,
or where it is not otherwise feasible to download high-level protocols to run on
the EXOS board. The host system obtains Data Link services through standard
NX 200 request/reply messages; the EXOS board’s RAM being entirely
available for buffering packets.

NX 200 is designed to support network protocol software, such as TCP/IP, that
executes on Excelan's EXOS Intelligent Ethernet Controller. It provides
multitasking, message-oriented operating system environment that includes a
set of kernel calls and several data structures for communication between the
host and the network.

An application running on the host system communicates with the EXOS board
primarily through request and reply messages located in host memory
accessible from the host bus. NX 200, which directly manages the EXOS board
resources through the on-board CPU, interprets the request messages and
generates the replies, while supporting execution of high-level network protocols
software on the EXOS board.

11

NX 200: Introduction

| |
| MEMORY [
I | | HOST I
| | | | SYSTEM |
I | | | cpPu |
_________ I R R R
| I I I I |
I | | ! | |
| | e
I HOST BUS
1SO LAYERS | | e
I | | I
7 APPLICATION | | | |
I I [P
6 PRESENTATION [--------- I | EXOS BOARD |
| | [I
5 SESSION I I | | FRONT-END |
I I | | PROTOCOL [
4 TRANSPORT | I I | | PROCESSOR | |
R | [|
3 NETWORK | | I [I
I [I
2 DATA LINK fomem e | | | ETHERNET [
I | | DATA LINK []
1 PHYSICAL [ceeeeeas | | | CONTROLLER |
I | [I
! [R
| I I
| I |
! [
b | ETHERNET I
I | TRANSCEIVER |
I
|
I

Figure 1-1: An EXOS Board Front-End Processor Mode Implementation

NX 200 provides a set of kernel calls, which perform system tasks necessary for
the processing and/or transfering of data between the host and EXOS intelligent
controller board, as well as, execution of user processes, and system and
interprocess communication.

NX 200 also includes functions that assist in network management, determine
the Ethernet controller mode, define which memory locations to accept, provide
host data order conversions, and collect network statistics.

Programs and processes (that is, protocol software) intended to be executed
under NX 200 can be written in any language compatible with the Intel
80186 CPU.

1-2

NX 200: Introduction

Communication between NX 200 and the host is transacted via an NX 200
system process that passes messages through circular, singly-linked buffers in
shared host memory. Two ring buffers are shared by the host and NX 200
firmware, one for each direction of transfer. Once NX 200 has been configured
and initialized, these buffers serve all further communications with the host.
This includes communication with downloaded protocol code, link level controller
mode service requests, and software download.

Network and interprocess communications are supported primarily by mailboxes.
A user process obtains system process services by sending a request message
to a system mailbox associated with the desired service. Additionally, processes
can "share" data utilizing the mailbox calls, allowing processes to communicate
with each other. The system mailboxes are created by NX 200 at initialization.
Process mailboxes for communication and synchronization, like processes, can
be created or deleted by the user.

NX 200 accesses host bus memory by mapping part of its own CPU’s address
space to bus memory addresses. Sharing or accessing objects, messages,
processes and other data can be performed, without jeopardizing portability, by
directly utilizing the NX 200 memory access mechanisms.

The NX 200 self-diagnostic tests, which are performed at host initialization time,
exersise and verify the hardware and software components of the EXOS board
and host interface. Included in the self-diagnostics are such tests as, memory
reads and writes, send and receive, CRC, hard and soft interrupts, and a
checksum of the NX 200 firmware. If an error occurs or a test fail, an error code
is flashed on one of the three LEDs present on the EXOS board. These error
codes are also useful for debugging procedures in user-created software.

1.2. NX 200 FIRMWARE DESCRIPTION

NX 200 resides in 32-Kbytes of EPROM memory, two 16-Kbyte EPROMs, which
resides at the high end of the 1M byte address space of the CPU. NX 200 data
structures use 4K of the RAM space; the rest is available for higher level
software. Figure 1-2 illustrates the NX 200 software architecture.

Principle Features

e Self-diagnostics for testing the integrity of EXOS 200 Series board
hardware.

e Booting process that allows higher level software to be downloaded
either from the host or from the network.

e A real-time kernel that provides a multitasking environment, enabling
the protocol software to be constructed in a structured manner as a
set of cooperating processes.

o Device drivers for the Ethernet controller and host computer
interface. Access through message queues simplifies pipelined
communications.

e Supports network management functions by collecting network
statistics.

o Allows the EXOS 200 Series board to be used as a simple Data Link
controller, giving direct access to the network without downloading
any software.

1-3

NX 200:

Introduction

DOWN - LOADED | HIGH-LEVEL [-
SOFTWARE | PROTOCOL [-
| PROCESSES .

NX 200 KERNEL
INTERFACE
NX 200 KERNEL | HOST SYSTEM | | REAL-TIME f | ETHERNET
F | RMWARE | INTERFACE r | MULTI-TASK | | DATA LINK
MODULES | DRIVER | | PROCESS | | DRIVER

| l | SUPPORT | l
EXOS BOARD | HOST BUS | | PROTOCOL J | DATA LINK
HARDWARE | INTERFACE | | PROCESSING | | CONTROLLER
MODULES | | | ENGINE | |

Figure 1-2: NX 200 Software Architecture

1.3. EXOS INTELLIGENT ETHERNET CONTROLLER HARDWARE DESCRIPTION

Figure 1-3 shows a block diagram of the EXOS Intelligent Ethernet Controller
logical arrangement. Architecturally, the EXOS 200 Series board consists of two
loosely-coupled elements: an Ethernet Data Link Level controller, and a
microprocessor-based protocol processing engine. These components
communicate with each other through an internal bus and dual-ported RAM.
Components of the protocol processing engine occupy the left half of the block
diagram; the Ethernet controlier occupies the right half.

NX 200, uses the 82586 LANCoprocessor on the EXOS 200 Series board to
implement the Ethernet Data Link protocol. In order to insure that the CPU is
fully available for front-end processing applications, functions such as address
recognition, CRC check, and buffer chaining are managed in hardware. The
protocol processing engine is supported by on-board RAM. Two 16-Kbyte
EPROMs contain Excelan's NX 200 firmware. For additional hardware
descriptions and features refer to the applicable EXOS Intelligent Ethernet
Controller Reference Manual.

1-4

NX 200: Introduction

| |
| 8088 |
| cpPu [I
| and | T e R
| SUPPORT |___ I
| CHIPS | T
| | - I | | I I
| | oo | 128 KBYTE | | BUFFER | | ADDRESS
--------- [| DUAL - I | MANAGEMENT | | RECOGNITION
[| PORTED | I | I
--------- | ---1 Ram |
I | I | | [[
| HOST I I I [
| BUS | [| | .
| INTER- |--- I I | (. Lo
| FACE (1 [e
I | N LR | [|
| | P | TRANS | | CRC | | RECEIVE
| | [| MIT | | CHECK & | |
--------- | | 128 KBYTE | (|---] GENER- |---]|
[| DUAL - | | I | ATE | |
......... . | PORTED | | | | | |
| I I | RAM e
| 16 I I ---1 (OPTION)
| kBYTE | | ___| | e
| EPROM |--- I | | | I
I [| | | ENCODE | | Loop- | | DECODE
I I I | | | |---1 BACK | I
| L oo | | BUFFER | |

ETHERNET TRANSCEIVER INTERFACE

Figure 1-3: EXOS Intelligent Controller Block Diagram

1.4. ETHERNET COMPATIBILITY

The NX 200 operating system kernel functions conform fully with the IEEE
Standard 802.3. NX 200, in conjunction with the EXOS 200 Series board, is
also compliant with Ethernet version 1.0 (September 1980) and version 2.0
(November 1982) specifications published by DEC, Intel and Xerox. Integrated
with the EXOS 200 Series Intelligent Ethernet Controller board and a standard
Ethernet transceiver, it provides all Data Link and physical layer services.

1-5

NX 200: Introduction

1.5. COMPATIBLE HOST BUSES

1.5.1.

1.5.2.

1.5.3.

1.5.4.

The EXOS Intelligent Ethernet Controller boards listed below are currently
available for the indicated buses.

e EXOS 201 for Multibus systems
e EXOS 202 for VMEbus systems
e EXOS 203 for Q-bus systems

e EXOS 204 for UNIBUS systems

The following sections describe NX 200's compatibility and compliance with the
currently supported buses.

Multibus Compatibility

The NX 200 operating system kernel, in conjunction with the EXOS 201,
Intelligent Ethernet controller, conforms with IEEE 796 (Multibus) specifications,
as a 16-bit master. Compliance is D16 M24 116 VO L (16-bit transfers, 24-bit
addressing, and non-bus vectored interrupts).

VMEbus Compatibility

The NX operating system kernel, in conjunction with the EXOS 202 Intelligent
Ethernet Controller conforms with VMEbus specifications (by Mostek, Motorola,
and Signetics) as an Option D16, A24 VMEbus (16-bit) master. IEEE P1024
compliance is 8-bit and/or 16-bit transfers, 24-bit addressing, and bus-vectored
interrupts.

Q-bus Compatibility

The NX operating system kernel, in conjunction with the EXOS 203 Intelligent
Ethernet Controller conforms with Q-bus (also known as LSI-11 BUS)
specifications by DEC as a 16-bit master. Compliance is 8-bit and/or 16-bit
transfers, 22-bit addressing, and bus-vectored interrupts.

UNIBUS Compatibility

The NX operating system kernel, in conjunction with the UNIBUS version of the
EXOS Intelligent Ethernet Controller conforms with UNIBUS specifications by
DEC as a 16-bit master. Compliance is 8-bit and/or 16-bit transfers, 18-bit
addressing, and bus-vectored interrupts.

1.6. NX-TO-HOSTBUS INTERFACE

The following sections provide information that describes bus system memory
space accessibility to NX 200. In each case, access to system memory space
differs according to individual bus-type specifications.

The EXOS 200 Series boards and host processors can interrupt each other by
writing or reading an /O port. The EXOS 200 Series board also provides a
status bit, in case interrupt polling is required. For additional information refer to
the applicable EEXOS Intelligent Ethernet Controller Reference Manual.

1-6

NX 200: Introduction

1.6.1. Multibus Interface

NX 200 can access the entire Multibus system memory space (16 Mbyte) and
the full 64K 1/O space, as a 16-bit bus master. During initialization, an additional
one-byte communication path is provided from the Multibus to the EXOS
processor via an I/O port. This path is used to transmit the address of a
communication area in the shared Multibus memory.

The board generates non-bus vectored interrupts to interrupt the host. Interrupt
priority can be set via jumper selection.

1.6.2. VMEbus Interface

NX 200 can access the entire 16 Mbytes VMEbus system memory space as a
16-bit bus master. A One-byte communication path is provided from the
VMEbus to the EXOS processor via a memory-mapped 1/O port. This is used
during initialization to transmit the address of a communication area in the
shared VMEbus memory.

The board generates bus-vectored interrupts to interrupt the host. Interrupt
priority can be set from level 4 to level 7, via jumper selection.

1.6.3. Q-bus Interface

NX 200 can access the entire Q-bus system memory space (4 Mbyte) including
the full 8-Kbyte 1/O space, as a 16-bit bus master. A One-byte communication
path is provided from the Q-bus to the EXOS processor via an 1/0O port. This is
used during initialization to transmit the address of a communication area in the
shared Q-bus memory.

The board generates bus-vectored interrupts to interrupt the host. Interrupt
priority is set from level 4 to level 7, via jumper selection.

1.6.4. UNIBUS Interface

NX 200 can access the entire UNIBUS system memory space (256-Kbytes)
including the full 8-Kbyte I/O space, as a 16-bit bus master. A One-byte
communication path is provided from the UNIBUS to the EXOS processor via an
I/O port. This can be used during initialization to transmit the address of a
communication area in the shared UNIBUS memory.

The board generates bus-vectored interrupts to interrupt the host. Interrupt
priority can be set from level 4 to level 7, via jumper selection.

1.7. ETHERNET FUNCTIONS

Together, NX 200 and an EXOS 200 Series board perform all physical and Link
Level Ethernet functions except for transceiver functions. The functions
performed include:

e Serial/parallel and parallel/serial conversion
e Address recognition
e Framing and unframing of messages

& Manchester encoding and decoding

1-7

NX 200: Introduction

¢ Preamble generation and removal
e Carrier sense and deference

e Collision detection and enforcement, including jamming, backoff
timing and retry

& FCS (CRC) generation and verification

e error detection and handling

1.7.1. Address Recognition

Each board has a unique 48-bit Ethernet address, which is stored in EPROM
(host software can override this address at run time). Recognition of physical,
broadcast and multicast addresses is fully supported. Up to 252 multicast
addresses can be assigned to a station; a very efficient filtering scheme
reduces processing overhead. The EXOS 200 Series board also provides a
promiscuous mode, in which it accepts all addresses.

1.7.2. Frame Format

Link level frames are formatted as per the Ethernet specification, with a
preamble (64 bits) providing synchronizing sequence, destination address (48
bits), source address (48 bits), message type (16 bits), data (46 to 1500 bytes)
and FCS (32 bits). The preamble is generated and removed in hardware.
Generation and checking of the Frame Check Sequence (FCS) is also handled
in hardware.

1.7.3. Error Handling

The EXOS 200 Series boards handle all Ethernet error conditions, including
CRC, alignment, and length errors. Packets containing these errors can
optionally be received. Refer to the applicable EXOS Intelligent Ethernet
Controller Reference Manual for further detaits.

1.7.4. High Level Protocol Support

NX 200 Network Executive Firmware supplied with the board provides simplified
Ethernet and host interface device drivers, and a multitasking environment for
high-level network protocols.

On-board processing power supports execution of the higher level
communications protocols, beyond the Ethernet link level. The elements of this
programming environment are:

e 32 Kbytes of EPROM, containing NX 200 firmware

e 8 MHz CPU, with on-chip clock timer and interrupt controller,
operating at 8 MHz

¢ 128K dual-port RAM (256K and 512K available)

1.8. INITIALIZATION

Upon EXOS 200 Series board reset, the NX 200 firmware performs a series of
self tests which confirm hardware integrity. In case of failure, the firmware
communicates diagnostic codes through an LED display. After successful

1-8

NX 200: Introduction

completion of the tests, NX 200 either boots itself from the Ethernet, or awaits
initialization by the host system, depending on a board jumper option.

If the jumper selects initialization by a host system, the host then uses a
configuration message to select NX 200's mode of operation, and specify
several other parameters. The host can download software directly, tell NX 200
to boot itself from the Ethernet, or select link level controller mode. If
initialization includes downloading software, NX 200 spawns a process and
enters the front-end processor mode of operation.

The following sections describe the execution environment for software which is
downloaded to the EXOS 200 Series board.

1.9. MULTITASKING SUPPORT

NX 200 includes a real-time kernel that implements a multitasking environment
for construction of higher level software in a modular manner. This kernel is fast
by design, and imposes very little overhead. It supports two types of objects —
processes and mailboxes. The number supported of either object is
configurable at start-up time.

A process is a unit of execution in the conventional sense. All processes share
the same memory address space and can thus communicate via shared
memory. Other than for NX 200's reserved memory there are no restrictions on
how memory is used. Processes access NX 200 functions by executing the
CPU’s "INT n" instruction, where n is a 2-digit number that identifies the service
being requested.

A priority-based preemptive round robin scheduling algorithm allocates CPU
time among processes. As many as 256 priority levels are supported, and the
highest priority executable process will always be scheduled. Among processes
of the same priority, CPU time is allocated in time slices. A time slice is either
infinity, or between 1 and 254 ticks, where each tick is 20 milliseconds. Any
process can examine and change the priority and time slice of any process.
Whether a process is executable is determined solely by a sleep count, from 0
to 64K, and driven by the same clock as the time slice. Through this parameter,
any process can suspend, delay or resume any other process.

Interprocess communication and synchronization are implemented through
mailboxes. Messages sent or received from the mailboxes can be either null or
pointers to buffers in the common memory. A message buffer format is arbitrary
except for the first field, which NX 200 uses to chain the messages in the
mailbox queue. The sending and receiving of messages is fully synchronized.
A process executing a receive call on a mailbox can specify the maximum time
interval it is wiling to wait. Waiting is implemented with the sleep count
mechanism described above. If the specified time expires before a message
arrives the process is resumed and given an error code instead of a message.
If only null messages are used, then the mailbox is identical to a conventional
semaphore. The receive operation in this case is equivalent to the P operation
and the send operation is equivalent to the V operation. The mailbox can be
thus used as a synchronization mechanism both for a producer-consumer
relationship and a critical section.

1-9

NX 200: Introduction

In addition to the mailbox, the NX 200 has a simpler and more efficient
synchronization mechanism intended for short critical sections: the process lock.
This operation postpones scheduling decisions until a corresponding unlock is
executed, thereby excluding all other processes from running. Calls to lock can
be nested up to 32K levels deep.

1.10. THE CLOCK

NX 200's clock driver provides the abstraction of a 64-bit clock with a resolution
of 20 milliseconds. Processes can read or set the time at will. On initialization
the clock is set to zero.

1.11. HOST INTERFACE

1.11.1.

NX 200 provides a uniform interface to the host regardless of the nature of the
actual hardware host interface. The abstraction of the host is presented as a
mailbox and read/write operations on host memory. The mailbox acts as a
source and sink for messages and also provides synchronization between the
processes on the host and the processes controlled by NX 200.

This interface appears to host system software as two circular queues of
message buffers, one for each direction of transfer. Sending a message to the
NX 200 host mailbox causes the message to be transferred to the host memory,
where it can be read by the host processes. Similarly, receiving a message
from the host mailbox causes any messages placed in the host memory by host
processes to be transferred to the NX 200 process.

Apart from transferring data by means of messages, processes controlled by NX
200 can also directly read and write the the host memory by means of NX 200
calls. The contents of messages sent and received from the host is not
interpreted by the NX 200, and is strictly a matter of protocol between the host
and the user software.

Ethernet Interface

The Ethernet interface also appears as a special dedicated mailbox. An NX 200
process sends a packet over the Ethernet by sending the packet’s address in a
message to the special mailbox. The packet is formatted according to Ethernet
specifications. The preamble and CRC are generated by the hardware
automatically and need not be supplied by the user. After the packet is
transmitted a reply message is returned to a user-specified mailbox, returning
the packet buffer. Similarly, packets are received from the Ethernet by sending
an empty buffer's address in a message to the special mailbox. When the
Ethernet controller receives a message, it is stored in the buffer and a reply
message is returned to the user-specified mailbox.

Packets arriving over the Ethernet are filtered based on the destination address.
Only those packets whose destination address matches one of addresses
specified by the user are received. The address filter is implemented in
hardware, but for multicast addresses, it is not perfect. Therefore NX 200
supplements the hardware filter with a somewhat slower software filter which
completes the filtering of multicast addresses.

The user specifies receive addresses by means of address slots. Each slot
carries one destination address. The user can selectively enable/disable receive
on address slots. One address slot is reserved for the physical address and one
slot is reserved for the broadcast address. The remaining address slots contain

1.11.2.

NX 200: Introduction

multicast addresses only. The number of multicast address slots is defined by
the configuration of the NX 200.

The Ethernet controller can operate in one of several possible modes selectable
by the user. Specifically, the user can disconnect the controller from the
network, disable/enable the software multicast address filter, enable to receive
all packets from the network (promiscuous mode), and reject/accept packets
received with errors.

The network management functions are supported by NX 200 by keeping a tally
of various events such as the number of packets transmitted/received, packet
errors etc.

Ethernet Link Level Controller Mode

If NX 200 is to be used in link level controller mode, then most of the description
above of NX 200 can be disregarded. In this mode, the host does not download
any code to the board. Instead, the host sends command requests to the board
which drive the Ethernet interface described above. When a request completes,
NX 200 returns a reply message. Transmit and receive commands can be
pipelined — NX 200 uses 60 Kbytes of the dual-ported RAM for buffering
packets.

1.12. NOTATIONS AND CONVENTIONS

1.12.1.

1.12.2.

1.12.3.

The following subsections describe the notations and conventions adhered to
throughout this manual. Any restrictions presented here are applicable to all
situations unless otherwise specified. The contents of these subsections should
be carefully read first since the constraints mentioned here will not always be
repeated in following sections.

Number Base

All numbers in this manual are decimal unless postfixed with the letter H, in
which case they are hexadecimal.

Data Object Terminology

The following terms are used to describe data objects of various sizes:

byte: 8 bits
word: 16 bits
longword: 32 bits

Message Format Specification

The NX 200 provides access to some hardware functions by means of
request/reply message pairs. Message formats are specified both in figures and
descriptive paragraphs. The figures show the order of data fields, field length,
offset from the message beginning, and include a brief description of the field's
purpose. Descriptive paragraphs, keyed to the order of fields in the message,
provide all necessary details not supplied in the figures.

One column in the message figures, labeled "Request," specifies what value, if
any, the field should have in the request message. Another column, labeled
"Reply,” specifies what value, if any, the reply message returns. When some
definite value is specified for a field in a request message, this value must be

1.12.4.

1.12.5.

1.12.6.

NX 200: Introduction

used, or undefined effects may occur. If a field is designated as "undefined”
then it can have any arbitrary value. In the reply message, a field designated as
“preserved” will return the same value as was supplied in the original request
message. Where more comment is required, the entry "see text,” directs the
reader to a paragraph labeled with the same index as the field.

Procedural Specifications

Where it is necessary to describe a procedure, this manual uses the C
programming language. Where appropriate, the language has been adapted in
the style of pseudo-code. Such departures from the formal specification of C
are denoted by enclosure in right-angle brackets, as in this example:

init_toxq () {
for (i=0; i< QLEN; i+ +) {
toxq[i].link = -7 16-bit offset of next buffer address >;
toxqli].rsrvd = 0:
toxqli].status = TOXINITSTAT;
toxqli].length = TOXDATALEN;
- initialize any user-specified fields - ;

Bit Position and Value Specifications

When any data object is described in terms of separate bit fields, the Least
Significant Bit (LSB) is designated as bit 0 and the Most Significant Bit (MSB) as
bit n, where the object’s size is n+1 bits. For instance, bit 7 is the MSB of an
8-bit data object.

For programming convenience, bit fields are often described in terms of their
OR-maskable numeric value instead of their position, as described above. For
instance, if the description of a request mask reads:

01 write request bit.
02 read request bit.

then a write is specified by bit 0 and a read by bit 1. The value 03 specifies
both read and write.

Data Storage Order

Many applications of NX require the consideration of two different programming
environments: that of software on the EXOS Intelligent Ethernet Controller
itself, and that of software on a host computer which communicates with NX
200. In either environment, it is crucial that user software store data objects
which are known to NX 200 firmware in the order which NX 200 expects — and
that the programmer understand how NX 200 stores data objects which are
known to user software.

In NX 200's own memory address space, NX always interprets data in the
CPU's native order. This means that in any data object of more than one byte,
the most significant byte is stored at the higher memory address. For instance,

NX 200: Introduction

a memory dump of the 32-bit value 0103070FH stored at NX 200 memory
address 1C83H would appear as follows:

1C83: OF
1C84: 07
1C85: 03
1C86: 01

NX 200 can interpret data either in the CPU’s native order, or optionally in the
host system CPU's native order. This is controlled by the host data order
conversion option, described fully in the EXOS Intelligent Ethernet Controller
Reference Manual. If the conversion option is not enabled, then any data
objects in host memory which NX 200 interprets must appear in the CPU’s
native order.

If the conversion option is enabled, then NX 200 will automatically translate
between its native order and the host CPU's native order when it reads and
writes data to and from the host's memory. It decides what conversions are
necessary by examining a constant pattern in host memory at initialization time.
Conversions work independently on three data types: byte strings, words,
and longwords.

Note that because NX 200 must know the data type to apply the appropriate
conversion, the word and longword conversion are applied only to data objects
which NX 200 itself interprets, such as configuration information or Ethernet
Data Link protocol parameters. Other data objects, such as an Ethernet
packet's data field, are subject only to the byte string conversion applied to any
data transferred between host memory and NX 200 memory.

1.13. INTEGRATION WITH 68000-BASED SYSTEMS

The host data order conversion for the byte string data type is intended primarily
to accomodate microcomputer designs using the 68000 microprocessor (such
as those based on the Stanford University Network (SUN) workstation design.)
One idiosyncrasy of such processor implementations is that they invert bit 0 of
the memory address when performing byte-wide memory operations on
some systems.

On the Multibus system, this has a more complex effect than a simple byte
swap on a word data type. For example, a byte quantity written at logical
address 0003H appears at physical address 0002H in Multibus memory. NX
200 automatically compensates for this peculiarity when the host data order
conversion option is enabled. It will invert bit 0 of host memory addresses, if
required, on all Multibus memory access operations.

For VMEDbus, the majority of 68000 microcomputers are fully compatible with the
VMEbus host data order. Therefore, when the EXOS 202 intelligent Ethernet
controller is used on such systems, there should be no need for compensation
or conversion to the host data order.

The EXOS 203 Q-bus board is designed to communicate with the DEC Series of
processors, and as such, does not need specific host data order conversion to
be Q-bus compatible.

Although the majority of 68000 microcomputers are not UNIBUS compatible.
The EXOS 204 UNIBUS board is designed with the capability to perform host
data

NX 200: Introduction

order conversion, automatically compensating for the host's data order, when
the host data order conversion option is enabled.

1.14. DATA ALIGNMENT

All data structures defined by NX 200 firmware are designed so that they can be
efficiently supported by processors and high-level languages which require even
alignment of word and longword data types.

While NX 200 does not generally require even byte address alignment, this
practice is still recommended, in order to obtain the optimum performance.

In only one instance, does NX 200 require special data alignment; the
configuration message (see Chapter 2.4) must begin on an even logical address
in host memory.

1.15. MEMORY ADDRESS FORMAT

All memory addresses are 32-bit objects unless otherwise specified. They are
stored in memory in the same order as the longword data type. When NX 200's
host data order conversion option is enabled, it will apply the same conversions
to addresses stored in shared memory.

The interpretation of memory addresses by NX 200 depends on context. Any
address which refers to a location in NX 200 memory, whether the address
value itself is stored in NX 200 memory or in host memory, is always interpreted
as a segmented address. This term refers to the CPU's native address format.
A segmented address consists of a 16-bit segment base and a 16-bit offset
address. At run time, the CPU forms a 20-bit absolute address by shifting the
segment base left by four places (multiply by 16) and adding the offset to the
result. Therefore a segmented address can access 1 Mbyte of memory. Figure
1-4 shows how a segmented address is mapped into the longword data type.

BIT
NUMBER

3 2 1

0

1098765432 1098765432109876543210
B e e s e e S e e N e A e ar e S T o S SN Sy S Sy S Ao
SEGMENT BASE l OFFSET ADDRESS
B s e e e st A T S S S S S S S L L L E L E L E e e

Figure 1-4: Mapping of Segmented Address into Longword Data Type

When a segmented address is stored in NX 200 memory, it appears in the
following order:

Byte 0: Offset, low order
Byte 1: Offset, high order
Byte 2: Segment, low order
Byte 3: Segment, high order

Storage order in the host system memory should appear the same to the NX
200 operating system, unless the host data order conversion option is enabled,
in which case it should appear in the host CPU’s native order for the longword
data type.

NX 200: Introduction

The interpretation of addresses which refer to host system memory locations
depends on the NX 200's host address mode option. For a complete
explanation of host access and memory addressing see the applicable EXOS
Intelligent Ethernet Controller Reference Manual. In segmented mode, they are
interpreted in the same manner as addresses referring to NX 200 memory
locations. This restricts access to a 1 Mbyte .range of host system memory,
from 00000H to OFFFFFH. In order to provide access to the full 16 Mbyte
Multibus memory address space, the NX 200 also provides an absolute host
address mode. An absolute address is a simple 24-bit physical memory
address, mapped into the longword data type as shown in Figure 1-5.

BIT
NUMBER

3 2 1

o

1098765432109 876543210987¢6%543210
B S E b o o e e e e e S S T i il st S S o

| RESERVED | ABSOLUTE ADDRESS

B L Lk T e e R e IEE T L SR SRR e o

Figure 1-5: Mapping of Absolute Address into Longword Data Type

As shown in the figure, the most significant 8 bits are reserved, and should be
set to 0. When an absolute address is stored in NX 200 memory, it appears in
the following order:

Byte 0: least significant byte
Byte 1: somewhat significant byte
Byte 2: most significant byte
Byte 3: reserved, must be 0

Storage order in the host system memory should appear the same to NX 200
unless the host data order conversion option is enabled, in which case it should
appear in the host CPU's native order for the longword data type.

VMEbus Memory Address Format

For VMEbus compatibility, NX 200 requires that the addresses which refer to the
host system memory locations be specified in absolute address mode. An
absolute address is a simple 24-bit physical memory address, mapped into the
longword data type as shown in Figure 1-6. As shown, the 6-bit VMEbus
address modifier should be provided in bits 24 through 29. The address
modifier must be specified whenever a host system address is passed
to NX 200.

NX 200: Introduction

BIT 3 2 1 0
NUMBER 1 0 9 876 5432 1098765432109876543210
B R e R S e i e At SR e S e R S e e S S R R
[0 0|ADDRESS | ABSOLUTE ADDRESS |
| IMODIFIER | |
B R R e R SR e R i i e sl SR S e e S e S i S N s Sh T S S SR A

Figure 1-6: VMEbus Mapping of Absolute Address into Longword Data Type

As shown in the figure, the most significant 2 bits should be set to 0. When a
host memory address is stored in EXOS Intelligent Ethernet Controller memory,
it appears in the following order:

Byte O (bits 0-7): least significant byte

Byte 1 (bits 8-15): somewhat significant byte

Byte 2 (bits 16-23): most significant byte

Byte 3 (bits 24-31): VMEbus address-modifier (bits 24-29);
(bits 30-31 are reserved and must be 0)

Storage order in the host system memory should appear the same to the EXOS
Intelligent Ethernet Controller unless the host data order conversion option is
enabled, in which case it should appear in the host CPU’s native order for the
longword data type.

1.16. SHARED BUS MEMORY ACCESS RESTRICTIONS

It is the user's responsibility to ensure that a specified bus memory address
exists in functional memory. If an invalid address is specified and the EXOS
Intelligent Ethernet Controller attempts to access it, then, depending on whether
or not the "time out" option has been jumper-selected or not, one of the two
things can happen:

If the time out option is not selected, then the EXOS Intelligent Ethernet
Controller does not time out if no memory response is received on the
bus. To aid diagnostics, three bus Status LEDs are provided. Their
location is shown in the appropriate EXOS Inteiligent Ethernet Controller
Reference Manual. When the LED DS3 is lit, the EXOS Intelligent
Ethernet Controller is accessing the bus. Thus if DS3 is constantly lit
then most likely the EXOS Intelligent Ethernet Controller has been given
a non-existent address and is stuck waiting for the response.

If the time out option is selected, then after 30 milliseconds the EXOS
Intelligent Ethernet Controller goes offline and the status LEDs flash the
error code BA (Hex) at regular intervals.

The EXOS Intelligent Ethernet Controller can access data structures anywhere
in the 16 Mbyte bus memory space. It accesses this address space by
dynamically mapping two consecutive 64-Kbyte windows of its own CPU's
address space into bus memory. User software does not perform either the
mapping or the data transfer; it simply gives addresses to NX 200 firmware,
which effects the transfer. Data structures that straddle beyond the 64-Kbyte
bound are automatically accessed via the second window without any
remapping.

Chapter 2
INITIALIZATION AND HOST INTERFACE
FOR MULTIBUS SYSTEMS

2.1. INTRODUCTION

The EXOS 201 Intelligent Ethernet Controller is specifically designed for use in a
Multibus system. This section contains information pertinent to the design of
host-resident software, such as an /O driver, which communicates through
NX 200 with the EXOS 201 Intelligent Ethernet Controller installed in a
Multibus-based system.

Note that EXOS Intelligent Ethernet Controllers are available for use with
different computer buses; such as, Multibus, Q-bus, UNIBUS, VMEbus, and PC
Bus. In addition, the EXOS controllers can be ordered for proprietary buses.
While logically the NX 200 operating system functions remain the same, the
specific procedures for initialization vary for different EXOS board-to-host
combinations. Because of this variance, refer to the host system documentation
to confirm the appropriate bus-type.

The host interface can be broken down into two aspects, the initialization
procedure, and the communication method subsequently used. Initialization
refers to the process which begins upon resetting the EXOS 201, and concludes
either with entering the Link Level Controller mode, or with the execution of
downioaded software. During the process of initialization, the host system sets
up the host message queue data structures. The host message queue protocol,
defined by NX 200 firmware, uses these queues for all further communications
between the host processor and NX 200.

The following paragraphs give an overview of the Multibus initialization process:

1. The host system resets the EXOS 201, then NX 200 executes
self-diagnostics which exercise various board components and
functions. If the diagnostics fail, then the EXOS Multibus board
displays an error code on the NX 200 status LED (see Appendix A,
Self-Diagnostic and Configuration Errors) until the board is reset
again. If the diagnostics pass, then NX 200 awaits configuration by
the host.

2. The host system passes NX 200 the address of a configuration
message in host memory. NX 200 examines this message, and
modifies some fields according to the results of configuration. If
configuration is unsuccessful, the EXOS 201 displays an error code
on the NX 200 status LED until reset. If the configuration message
is valid, then the EXOS 201 enters one of three modes, as
specified by the operation mode field in the message.

3. Initialization for each of the three different modes proceeds
as follows:

a. In Link Level Controller Mode, the EXOS 201 begins to execute
firmware which brings NX 200's Ethernet Data Link driver
interface out to the host system interface. No software is
downloaded to the EXOS 201; instead the host system passes
Data Link commands to the board and receives replies through
the standard host message queue protocol. This mode is
described fully in Section 6.

2-1

NX 200: Initialization and Host Interface for Multibus Systems

b. In Front-End Mode 1, the host system proceeds to download
software to the EXOS 201, by passing download request
messages through the standard host message queue protocol.
After the software has been downloaded, it passes an execute |
request to the board, which then begins to execute the
downloaded software. Subsequent actions depend entirely on
the software which has been downloaded, .although the host
message gueue protocol remains in place.

c. In Front-End Mode 2, the EXOS 201 proceeds to bootstrap
itself from the Ethernet interface, as described in Section 11.
Depending on how the bootstrap server configures NX 200, it
may stil communicate with the host system through the
standard host message queue protocol. Network bootstrap is
quite similar in many ways to initialization by a host processor;
the configuration message described in this section
is identical.

2.2. HARDWARE COMMUNICATIONS CHANNELS

Communication between the host processor and the EXOS 201 is conducted via
a coordinated exchange of interrupts, I/O instructions, and data transfers
through shared memory on the Multibus. The following sections define these
primitive channels of communication. These channels are used during the
process of initialization and, subsequently, to implement the message
queue protocol.

2.2.1. Host Access to the EXOS 201 Multibus Board

The host's means of active access to the EXOS 201 are solely through two /O
ports, named port A and port B here for the sake of reference. These ports are
accessed over the Multibus, and can be both read and written. Their addresses
are selected by jumpers on the EXOS 201, as described in the EXOS 201
Intelligent Ethernet Controller Reference Manual.

The effects of reading and" writing ports A and B in a Multibus system are
summarized below:

Read A: Resets the EXOS 201 (refer to Section 2.4).

Write A: Causes NX 200 to drop the interrupt line, when it has asserted a
non bus-vectored interrupt on the Multibus. This also clears the
interrupt bit in port B. The value written is arbitrary, and is not
accessible to software on the EXOS 201.

Read B: Returns the EXOS 201 status byte:

Bit 0: (Error Bit) when 0, indicates a fatal error in EXQOS 201.
When the EXOS 201 is reset, this bit is 0, but will be
set to 1 if the self test completes successfully. [f this
bit is not set within 3 seconds, then the EXOS 201 has
failed the self-diagnostics.

Bit 1: (Interrupt Bit) is set whenever the EXOS 201 asserts a
Multibus level interrupt. This is useful when an
interrupt line is shared and polling is required.

"
ny

NX 200: Initialization and Host Interface for Multibus Systems

An I/0 write to port A clears this bit. The interrupt bit is
defined only when level interrupts are selected.

Bit 2: Undefined.

Bit 3: (Ready Bit) when 0, indicates that NX 200 is ready to
accept a byte written into port B. When 1, NX 200 has
not yet read the byte last written into port B.

Bits 4,5: Undefined.

Bit 6: {Loopback Test Bit) when 0, indicates loopback test
passed. When 1, indicates loopback test failed,
possibly due to faulty transceiver or faulty transceiver
cable.

Bit 7: Undefined.

Write B: Interrupts the EXQOS 201 CPU, and communicates a 1-
byte value. This is the only way to communicate a
value to the EXOS 201 other than through
shared memory.

2.2.2. EXOS 201 Multibus Board Access to the Host

The EXOS 201 functions as a master on a Multibus system. It can access the
full 16-Mbyte memory address space and 64K I/O address space, and interrupt
the host processor. User software on the EXOS 201 does not directly control
these resources. Instead, it calls NX 200’s host interface driver, described in
Section 9.

In general, data is transferred between the host and the EXOS 201 via shared
memory. Shared memory can be any portion of system memory accessible to
both processors on the Multibus. The EXOS 201's CPU performs the transfer
by dynamically mapping part of its own address space into the Multibus memory
address space, and executing a block transfer instruction. Note that the
EXOS 201's on-board memory cannot be shared; it is not directly accessible by
the host processor. '

The EXOS 201 can interrupt the host either through I/O addresses, memory
addresses, or the Multibus interrupt lines. The type which will be used is
selected at initialization time. Memory and I/O-mapped interrupt addresses are
configured by software; the interrupt line is selectable by means of a jumper
option, described in the EXOS 201 Intelligent Ethernet Controller Reference
Manual. Unless 1/O-mapped interrupts are selected, the NX 200 firmware will not
normally generate /O operations on the Multibbus. User software on the
EXOS 201 can use I/O instructions to control other peripheral cards.

2.3. HOST DATA ORDER CONVERSION OPTION

The host data order conversion option determines whether NX 200 will interpret
data read from host memory according to its own native ordering, or according
to the host CPU’'s native ordering. This option is selected by a field in the
configuration message (refer to Section 2.5.5). If enabled, then NX 200 inspects
a known data pattern in the configuration message, written in the host CPU’s
native order. it determines what conversions are necessary to make this pattern
appear in the order it expects, for several different data types: byte array, word

2:3

NX 200: Initialization and Host Interface for Multibus Systems

array, and longword. NX 200 will then apply the appropriate conversion to all
data objects subsequently read from host memory.

For the byte array data type, NX 200 knows how to convert data stored
according to the SUN design’s byte addressing idiosyncrasies. This means that
it will invert the least significant address bit when addressing host system
memory, to reverse the effects of common 68000 CPU board designs. For the
word data type, NX 200 can swap bytes if necessary. For the longword data
type, NX 200 can swap words, swap bytes, or both. Therefore /O driver
software for any reasonably normal host CPU can store data objects in its native
order, and leave conversion up to NX 200.

Naturally, NX 200 must know the type of a data object to apply the appropriate
conversion. All data objects described in this section are known to NX 200,
except for the actual contents of messages between the host and the
EXOS 201. NX 200 does apply the byte array conversion (if necessary) to
message contents, and to all data transferred. How the contents of messages
should be further interpreted is the function of user-level software running on the
EXOS 201. For instance, the firmware which drives the Link Level Controller
Mode (refer to Section 6) runs at user level under NX 200, and converts word
and longword data objects which are known to itself, but not to NX 200. NX 200
assists this process by praviding kernel calls (refer to Section 9.5) which convert
word and longword data types as required by the host data order conversion
option.

Whether or not the host data order conversion option is enabled, the host
system must still write the required data pattern in the configuration message.
This pattern occupies 12 bytes of the 32-byte test pattern/memory map field
(refer to Section 2.5.10). It should be initialized as shown in Figure 2-1. Note
that while the relative position of subfields in the test pattern is specified, the
order of bytes within those subfields is dependent on the host CPU architecture.
Figure 2-2 shows how this pattern might be initialized in the C language, both
statically and dynamically.

Note that memory addresses, regardless of the host address mode, are stored
and interpreted as the longword data type. For instance, the longword test
pattern can also be regarded as a memory address in the host's native format
for the absolute address 0103070FH (if absolute address mode is selected) or
for segment 070FH, offset 0103H (if segmented mode is selected).

If NX 200 cannot make any sense of the test pattern presented by the host,
then initialization is aborted, and the appropriate error code displayed on the
status LED. For error code value assignments, see Appendix A, Self-Diagnostic
and Configuration Errors.

2.4. RESET AND CONFIGURATION PROCEDURE

This section describes initialization by a host system up to the completion of
configuration. Figure 2-3 shows a typical procedure which implements as much.

The EXOS 201 is reset by the Multibus INIT signal, or whenever port A is read
from the Multibus. Host software should use the latter method to be sure. On
reset of the EXOS 201, NX 200 performs a Series of self tests to confirm
hardware integrity. While these tests run, the NX 200 status LED (see Appendix
A, Self-Diagnostic and Configuration Errors) will remain lit constantly.

2-4

NX 200: Initialization and Host Interface for Multibus Systems

#

1)
2)
3)
4)

5)

6)

7)

8)

Length Offset Sub-Field Name Value
1 0 | Byte 0 , 01H
[oe e e F
1 1 | Byte 1 I 03H
P
1 2 | Byte 2 | o7H
I I
1 3 | Byte 3 , OFH
| o m e e e eeeeaaaan
2 4 | Word 0 | 0103H
I I
R R |
2 6 | Word 1 | O070FH
I I
R e I I
4 8 | Longword | 0103070FH
| I
I I
| |
R |
20 12 : Reserved : zero
R 1 byte------------ >

Figure 2-1: Host Data Order Conversion Option Test Pattern

When the self-diagnostics complete successfully, the EXOS Multibus board sets
the error bit in /O port B and flashes the status LED at regular intervals.

If the error bit is not set within 3 seconds of reset, the host may assume that
self-diagnostics turned up a problem. In this case, the EXOS 201 repeatedly
reports an error code through the NX 200 status LED (for error code values, see
Appendix A, Self-Diagnostic and Configuration Errors The EXOS 201 will remain
in this state until reset again.

A jumper option, described in the EXOS 201 Intelligent Ethernet Controller
Reference Manual, determines how initialization will proceed after reset and
seif-diagnostics. If the jumper selects network bootstrap, then the EXOS 201
will attempt to download software over the Ethernet (refer to Section 11.7).
Otherwise the EXOS 201 awaits configuration by the host processor.

The host configures the EXOS 201 by passing it the address of a configuration
message, located in shared memory. This message establishes various NX 200
parameters and selects among several modes of operation. Parameters include
memory allocation for NX 200 objects, the address of NX 200's movable data
area in EXOS 201 memory, and the location of message queues in shared
memory.

Among the optional operation modes, the host can select network bootstrap.
This will proceed as though the net boot jumper option had been installed,
except that NX 200 will first note the contents of the host configuration
message. Other configuration options include host data order conversion and
the host address mode.

2-5

NX 200: Initialization and Host Interface for Multibus Systems

/* constants for test pattern *.
#define BYTEO 0x01

#define BYTE1 0x03

#define BYTE2 0x07

#define BYTE3 OxOF

#define WORDO 0x0103
#define WORD1 0x070F
#define DWORD 0x0103070F

/* static initialization of test pattern *:
struct tstptrn {
char byteptrn[4];
short wordptrn[2];
long Iwordptrn;
char rsrvd{20};
b
struct tstptrn tp = |
BYTEOQ. BYTE1, BYTE2, BYTES,
WORDO, WORD1,
DWORD,

0,0,0.0.0.0.0.0,0,0.0,0.0.0,0,00.0.0.0
b
/* dynamic initialization of test pattern */
initptrn ()
{
register int i;
tp.byteptrn[0] = BYTEO:;
tp.byteptrn{1] = BYTE1;
tp.byteptrn[2] = BYTEZ2;
tp.byteptrn[3] = BYTES;
tp.wordptrn[0] = WORDO;
tp.wordptrn[1} = WORD1;
tp.lwordptrn = DWORD;
for (i==0; i<20; i+ +) tp.rsrvd[i] = O;
[\
!

Figure 2-2: Host Data Format Test Pattern Initialization

The host processor communicates the address of the configuration message to
the EXOS 201 by writing a sequence of 8 bytes into port B. Each byte should
be written after checking to confirm the ready bit of the EXOS 201’s port B
is clear.

This ensures NX 200 is ready to accept the next address byte. The first four
bytes of the sequence must be FF-FF-00-00 (sent from left to right). The next
four bytes are the configuration message’s absolute Multibus memory address
(least significant byte first). The configuration message must be aligned on a
even address boundary. When the last byte is written, NX 200 reads and
interprets the configuration message.

If the address for the initialization message is not valid, then NX 200 will display
an error code on the status LED (see Appendix A, Self-Diagnostic and
Configuration Errors

When NX 200 has finished processing the configuration message, it writes a
completion code into the appropriate field of the message. Any value other than
OFFH indicates completion; the value 0 indicates successful configuration.
Other values denote specific erfors in configuration (refer to Section 2.5.3).

2-6

NX 200: Initialization and Host Interface for Multibus Systems

extern read_port(Port_Num) /* returns value read from port Port_Num */
extern write_port(Port_Num, Val) /* writes Val to port Port_Num */
extern start_clock() /* starts an interval timer */

extern clock() /* returns the current value of the interval timer */

/* bit value definitions for status byte read from port B */
#define ERROR_BIT 1

#define READY_BIT 8

#define ERRNON 0

struct { /* configuration message */
short reserved;
char version[4];
char comp_code;
<etc...>
} init_msg;

char init_addrs[8] = {0xFF, OxFF, 0, 0, <absolute address of init msg> }:
/* refer to Section 1 for absolute address format */

initialize () {
<2 set up init_msg and the message queues (refer to Section 2.6) >
write-port(A); /- reset the EXOS 201 */
start_clock(); /” start timer, clock cou}its real time */

/* wait until self test completes */
while ((read_port(B) & ERROR_BIT) == 0) {
if (clock() > 2_SECONDS) {
return (malfunctioning_board).
}
}

/* write the configuration message address */
for (i=0, i<8; i++){
while (read_port(B) & READY_BIT);
write_port(B,init_addrsi])
}

/* wait for the reply message */
while (init_msg.comp_code == OxFF),

i* ensure no errors */

if (init_msg.comp_code != ERRNON)
return (error);

else
return (success);

}

Figure 2-3: Typical Reset and Configuration Procedure

Normally, configuration should complete within 3 seconds, but network bootstrap
might take longer, depending on circumstances. NX 200 also returns a few
parameters to the host in the configuration message, notably its version number
and a map of available memory.

Once configuration is complete, the memory space occupied by the
configuration message can be used for any other purpose. After configuration,
communication between the host and NX 200 is carried out solely by means of
message queues, described in Section 2.5.

NX 200: Initialization and Host Interface for Multibus Systems

2.5. CONFIGURATION MESSAGE FORMAT

Figure 2-4 shows the format of the configuration request/reply message. This is
used identically by either a host system or a network bootstrap server. The
following paragraphs explain the individual fields in detail. Note that reply values
other than the completion code field itself are defined only if configuration

is successful.

2.5.1. Reserved Field

The first field is reserved for use by NX 200. Its value in the request message
must be 1, and its return value is undefined.

2.5.2. EXOS Version Code Field

The EXOS version code field is undefined in the request message. In the reply
message, it returns version codes for NX 200 and the EXOS 201 in the form
X.Y and A.B, respectively. These are expressed as ASCI| digits, one per byte
in the order X-Y-A-B, starting from the lower address.

2.5.3. Configuration Completion Code Field

The completion code field must be OFFH in the request message. The
EXOS 201 signals that configuration is complete, and returns the completion
code, by writing one of the following codes into this field:

00H
A4dH
A5H

A7H

A8H
A9H
AAH
ABH
ACH
ADH

Successful completion.
Invalid operation mode.

invalid host data format test pattern. This occurs when NX 200
cannot find any reasonable conversion to derive the expected
data pattern from that supplied in the test pattern. In practice,
this might imply that the host has given NX 200 the wrong
address for the configuration message.

invalid configuration message format. This may occur if
reserved fields contain an improper value. In practice, this error
message may indicate that the host has given NX 200 the
wrong address for the configuration message.

Invalid movable block address.
Invalid number of processes.
Invalid number of mailboxes.
Invalid number of address slots.
Invalid number of hosts.

Invalid host message queue parameter. NX 200 returns this
error if it detects any inconsistency in the message queue
specifications. This might include a bad interrupt type, invalid
segment address, bad linking of the message queue buffers, or
similar conditions.

2-8

NX 200: Initialization and Host Interface for Multibus Systems

Length Offset Field Name Request Reply

1) 2 0 | Reserved ‘ I undetfined
| |
I T EETEEE |

2) 4 2 EXQOS Version Code undefined see text

3) 1 6 | Configuration Completion Code | OFFH see text
I |
4) 1 7 .| EXOS Operation Mode [see text preserved
R |
5) 2 8 | Host Data Format Option | see text see text
» | |
' e [
6) 3 10 | EXOS Context | zero see text
| l
| |
R R R |
7) 1 13 | Host Address Mode | see text see text
[e e |
8) 1 14 | Reserved | zero undefined
I !
9) 1 15 | Memory Map Size | zero see text
I R R R R |
10) 32 16 : Test Pattern/Memory Map . see text see text
R R I |
11) 4 48 | NX Movable Block Address | see text see text
| |
l !
| |
R I e |
12) 1 52 | Number of Processes | see text see text
R R I
13) 1 53 | Number of Mailboxes | see text see text
I I |
14) 1 54 | Number of Multicast Slots | see text see text
I R l
15) 1 55 | Number of Hosts | see text preserved

continued on next page....

Figure 2-4: Configuration Request/Reply Message

2-9

NX 200: Initialization and Host Interface for Multibus Systems

#

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

Length Offset

..continued

4 56 | Host-to-EXOS Message Queue

| Base Address

|

|

| o e e e
2 60 | Host-to-EXOS Message Queue

| Header Address

| m e e e e
1 62 | Host-10-EXOS MQ Interrupt Type

| o e e e
1 63 | Host-10-EXOS MQ Int. Value

| e e e e e e
4 64 | Host-to-EXOS Message Queue

[Interrupt Address

|

|

| o e e e e e
4 68 | EXOS-to-Host Message Queue

| Base Address

I

|

| o e e e e e
2 72 | EXOS-to-Host Message Queue

| Header Address

| o e e e e e e e e e e e
1 74 | EXOS-to-Host MQ Interrupt Type

| e e e e e e
1 7 | EXOS-to-Host MQ Int. Value

[o e e e
4 76 EXOS-to-Host Message Quecue

I
| interrupt
|
|

Field Name

Address

from previous page

Figure 2-4a: Configuration Request/Reply Message (continued)

Request

see

see

see

see

see

see

see

see

see

see

text

text

text

text

text

text

text

text

text

text

Reply

preserved

preserved

preserved
preserved

preserved

preserved

preserved

preserved
preserved

preserved

AEH Insufficient memory for movable data block.

AFH Net boot failed.

The codes defined above will also be displayed on the status LED if

configuration is not successful.

NX 200: Initialization and Host Interface for Multibus Systems

2.5.4. NX 200 Operation Mode Field

The NX 200 operation mode field determines the mode in which the EXOS 201
is to be used. Three different modes are supported:

0 Link Level Controller Mode. This mode brings the Ethernet Data
Link interface out to the host interfface. No software is
downloaded. It would typically be used when the EXOS 201 is
substituted for the traditional non-programmable Ethernet
controller board. For details, refer to Section 6.

1 Front-End Mode, download from the host. In this mode the
EXOS 201 is used as a front-end processor. Higher level
software is downioaded by the host.

2 Front-End Mode, download from the net. [n this mode NX 200
is used as a front-end processor and higher level software is
downloaded from the network. For details, refer to
Section 11.

All other values for the mode are reserved-and their effects are not defined. If
NX 200 is already in the process of network bootstrap (meaning that the
configuration message has been received from a bootstrap server) then only
mode 2 is permitted.

2.5.5. Host Data Order Option Field

The host data order option field enables the host data order conversion option
(refer to Section 2.3). Because the byte order of the host CPU will not be
known before initialization, this field is actually treated as two one-byte fields.
The host should load the same value into each sub-field in the request
message. This value is defined bitwise:

Bit 0: Deduce Format Bit. If 0, NX 200 will apply the conversions
currently in force. If the board has not been previously
configured, then the default conversion will be in force,
meaning that no format conversions are applied to data read
from the host. If this bit is 1, then NX 200 examines a
constant data pattern written by the host in the configuration
message'’s test pattern/'memory map field, and deduces what
format conversion are necessary to interpret various data
types stored in the host CPU's native format.

Bits 1-7: Reserved. These bits must be 0 in the request message.

When initialized, NX 200 examines this field first, and interprets all other fields in
the configuration message accordingly. This field is undefined in the
reply message.

2.5.6. EXOS Context

This 3-byte field returns the EXOS context information. In the request message
the value of this field must be zero. In the reply message, the middle byte
(offset 11) returns the context value; the other two bytes are undefined. For
NX 200 the context value must be 01.

NX 200: Initialization and Host Interface for Multibus Systems

2.5.7. Host Address Mode Field

The host address mode field determines how NX 200 will interpret addresses
which refer to objects in host memory. It is defined bitwise:

Bit 0: Set Moce Bit. If 0, NX 200 will use the address mode
currently in force. If the board has not been previously
configured, then the default mode will be in force, meaning
that NX 200 will interpret all addresses as 80186-style
segmented addresses. If this bit is 1, then the next bit
determines the new address mode.

Bit 1: Address Mode Bit. The value O selects segmented address
mode. The value 1 selects absolute address mode.

Bits 2-7: Reserved. These bits must be zero in the request message.

This field is undefined in the reply message.

2.5.8. Reserved Field

This field is reserved for future use. Its value in the request message must be
0. Hs value in the reply- message is undefined.

2.5.9. Memory Map Size Field

2.5.10.

The memory map size field must be 0 in the request message. In the reply
message, it returns the number of segments available in EXOS 201 memory for
user software. This field contains a valid value only if the EXOS 201 is
configured in mode 1 or mode 2.

Test Pattern/Memory Map Field and Maximum Packet Size

The test pattern/memory map field serves different purposes in the request and
reply messages. In the request message, it must contain the test pattern
described in Section 2.3, stored in the host CPU’s native format.

In the reply message, the test pattern/memory map field contains a map of
memory available for user software on the EXQOS 201. This map consists of up
to 4 segment descriptors, where the actual number is indicated by the last field.
Each segment descriptor specifies a memory segment in terms of the lowest
address and the highest address included within the segment. Each address is
four bytes long, in the segmented format. The lower bound is given first, then
the upper bound.

This field contains a valid value only if NX 200 is configured in mode 1 or mode
2. If the optional 128K of RAM between 20000H and 3FFFFH is either absent
or is malfunctioning, then the map will not contain this segment.

The above feature is also available to customers using NX 200, Versions 5.3 or
later, in link-level controller and download modes. The host software may load
the word at offset 34 from the beginning of the configuration message with a
maximum packet size, excluding the CRC field. If the specified size is greater
than 1514 bytes, NX 200 allows larger packets to be transmitted and received
over Ethernet. The maximum packet size for non-buffer-chaining is 3FFFH.
This mode, however, should be used with caution, since it allows for violating
Ethernet specifications.

2-12

2.5.11.

2.5.12.

2.5.13.

2.5.14.

2.5.15.

NX 200: Initialization and Host Interface for Multibus Systems

NX 200 Movable Block Address Field

The NX 200 movable block address field can be used to redefine the location of
NX 200’s movable data area, described in Section 7.3. If the EXOS 201 is
configured in mode 0, this field must be OFFFFH, OFFFFH. In modes 1 or 2, the
value OFFFFH, OFFFFH specifies that the default location be used. If a non-
default address is specified, the segment base must be 0. The offset must
place the entire block either between 200H and 3FFH, or between 1000H
and OFFFFH.

In the reply message, this field returns the actual address of the NX 200
movable data area. The reply value is not defined in mode 0.

Number of Processes Field

The number of processes field configures the maximum number of processes
which NX 200 will support. If the EXOS 201 is configured in mode 0, this field
must be OFFH. In modes 1 or 2, the value OFFH specifies that the current value
be used. The default value, after reset, is 12. Optionally, a value between 1
and 138 can be specified. In the reply message, this field returns the actual
number of processes which NX 200 will support. The reply value is not defined
in mode 0.

Number of Mailboxes Field

The number of mailboxes field configures the maximum number of mailboxes
which NX 200 will support. Note that this number does not include system
mailboxes. If the EXOS 201 is configured in mode 0, this field must be OFFH.
In modes 1 or 2, the value OFFH specifies that the current value be used. The
default value, after reset, is 16. Optionally, a value between 1 and 128 can be
specified. In the reply message, this field returns the actual number of
mailboxes which NX 200 will support. The reply value is not defined in mode 0.

Number of Multicast Slots Field

The number of muiticast slots field configures the maximum number of multicast
address slots which NX 200 will support. Note that this number does not include
the physical, broadcast, universal, or null slots, which are permanently allocated.
if the EXOS 201 is configured in mode 0, this field must be GFFH. In modes 1
or 2, the value OFFH specifies that the current value be used. The default
value, after reset, is 8. Optionally, a value between 0 and 252 can be specified.
In the reply message, this field returns the actual number of address slots which
NX 200 will support. The reply value is not defined in mode 0.

Number of Hosts Field

The number of hosts field specifies the number of host CPUs on the Multibus
interface. Permissible values depend on the mode of operation. In all modes,
the value OFFH will retain the value currently in force. Upon first configuration,
the default value is 0. In operation modes 0 and 1, only the value 1 may be
specified. However in mode 2 (network bootstrap), this field can be either 0 or
1. If 0, then the host message queues are undefined and the configuration
message fields pertaining to them will not be examined. lIts value is preserved
in the reply message.

2.5.16.

2.5.17.

2.5.18.

NX 200: Initialization and Host Interface for Multibus Systems

Host-to-EXOS Message Queue Base Address Field

The host-to-EXOS message queue base address field specifies the base
address of the shared memory which contains the queue data structures for
transferring messages from the host to the EXOS 201 (refer to Section 2.6).
Addresses for all message queue data structures are 16-bit offsets, calculated
relative to this base. NX 200's interpretation of this base address depends on
the host address mode selected (see the EXOS 201 Intelligent Ethernet
Controller Reference Manual.

In segmented mode, this field must contain an 8086-style segmented address,
stored according to the convention described for the longword data type (lower-
order 16 bits contain the offset, higher-order 16 bits contain the segment). The
offset value of this address must be 0; therefore the segment begins on some
even 16-byte address boundary. Note that this format is sufficient only to
describe a 20-bit address, or 1 Mbyte of host memory.

In absolute mode this field contains a 24-bit absolute memory address, also
stored as a longword. The lower-order 24 bits contain the address; the
remaining high-ordér 8 bits are reserved and must be 0. Furthermore, the
lower-order 4 bits of the address must also be 0, so that the segment begins on
some even 16-byte address boundary. This format can describe 16 Mbytes of
host memory.

This field's value is preserved in the reply message.

Host-to-EXOS Message Queue Header Address Field

The host-to-EXOS message queue header address field specifies the offset of
the queue header. This offset must be calculated relative to the base address
specified for the host-to-EXCS message queue. Its value in the reply message
is preserved.

Host-to-EXOS Message Queue Interrupt Type Field

The host-to-EXOS message queue interrupt type field specifies the type of
interrupt which NX 200 will use to alert the host of a change in the status of the
Host-to-EXOS 201 message queue. Options are:

0 No interrupt. The host polls the message queues.

1 I/0 mapped. NX 200 writes a specified value at the specified
I/0 port address.

2 Memory mapped. NX 200 writes a specified value at the
specified memory address.

3 Level interrupt. NX 200 raises one of the Multibus interrupt
lines. The line is selectable by jumpers described in the EXOS
201 Intelligent Ethernet Controller Reference Manual. Note that
the interrupt remains asserted until the host explicitly clears it,
by writing to the EXOS 201's port A (refer to Section 2.6).

If interrupt type 3 is selected, then NX 200 will set the interrupt bit, readable
from port B, whenever it asserts a level interrupt. This bit is not defined when
other interrupt types are selected. The value of this field is preserved in the
reply message.

2.5.19.

2.5.20.

2.5.21.

2.5.22,

2.5.23.

NX 200: Initialization and Host Interface for Multibus Systems

Host-to-EXOS Message Queue Interrupt Value Field

The host-to-EXOS message queue interrupt value field is defined only for 1/0
mapped or memory mapped interrupt types. If these interrupt types are
selected, then this value will be written to the specified /O port or memory
address when an interrupt is asserted. The value of this field is preserved in the
reply message.

Host-to-EXOS Message Queue Interrupt Address Field

The host-to-EXOS message queue interrupt address field is defined only for I/O
mapped or memory mapped interrupt types. If interrupt type 1 is selected, then
it contains an 8 or 16-bit Multibus 1/O port address in the first word, and the
remaining word is undefined. If interrupt type 2 is selected, then this field
contains a Multibus memory address, which NX 200 will interpret according to
the host address mode. The value of this field is preserved in the
reply message.

EXOS-to-Host Message Queue Base Address Field

The EXOS-to-host message queue base address field specifies the base
address of the shared memory which contains the queue data structures for
transferring messages from the EXOS 201 to the host (refer to Section 2.6).
This is exactly equivalent to the host-t0-EXOS message queue base address
field (refer to Section 2.5.16). lts value in the reply message is preserved.

EXOS-to-Host Message Queue Header Address Field

The EXOS-to-host message queue header address field specifies the offset of
the queue header. This offset must be calculated relative to the base address
specified for the EXOS-to-host message queue. lIts value in the reply message
is preserved.

EXOS-to-Host Message Queue Interrupt Type Field

The EXOS-to-host message queue interrupt type field specifies the type of
interrupt which NX 200 will use to alert the host of a change in the status of
EXOS 201-to-host message queue. Options are:

0 No interrupt. The host polls the message queues.

1 /O mapped. NX 200 writes a specified value at the specified
I/0 port address.

2 Memory mapped. NX 200 writes a specified value at the
specified memory address.

3 Level interrupt. NX 200 raises one of the Multibus interrupts
lines. The line is selectable by jumpers described in the EXOS
201 Intelligent Ethernet Controller Reference Manual. Note that
the interrupt remains asserted until the host explicitly clears it,
by writing to the EXOS 201's port A (refer to Section 2.2).

If interrupt type 3 is selected, then NX 200 will set the interrupt bit, readable
from port B, whenever it asserts a level interrupt. This bit is not defined when
other interrupt types are selected. The value of this field is preserved in the
reply message.

2-15

2.5.24.

2.5.25.

NX 200: Initialization and Host Interface for Multibus Systems

EXOS-to-Host Message Queue Interrupt Value Field

The EXOS-to-host message queue interrupt value field is defined only for 110
mapped or memory mapped interrupt types. If these interrupt types are
selected, then this value will be written to the specified I/O port or memory
address when an interrupt is asserted. The value of this field is preserved in the
reply message. ‘

EXOS-to-Host Message Queue Interrupt Address Field

The EXOS-to-host message queue interrupt address field is defined only for /O
mapped or memory mapped interrupt types. If interrupt type 1 is selected, then
it contains an 8 or 16-bit Multibus /O port address in the first word, and the
remaining word is undefined. If interrupt type 2 is selected, then it contains a
Multibus memory address, which NX 200 will interpret according to the host
address mode. The value of this field is preserved in the reply message.

2.6. MESSAGE QUEUE FORMAT

Once the EXOS 201 is configured, message queues in shared memory serve all
further communications with the host. This includes software down-load, link
level controller mode service requests, and communication with downloaded
protocol code. Two message queues are maintained by the NX 200 firmware,
one for each direction of transfer. This section describes the format of the data
structures which compose a message queue. Following sections describe how
these must be initialized, and then the protocol which ensues after configuration.

Length Offset Field Name

1) 2 0 [Link |
| |
e |

2) 1 2 | Reserved |
T !

3) 1 3 | Status l
| e e |

4) 2 4 | Length |
i |
T |

5) n 6 Data :

Figure 2-5: Message Buffer Format

Each message queue necessarily includes one queue header and a singly-
linked, circular list of message buffers. The required queue header belongs to
the EXOS 201: it reads and modifies its value during message exchange. The
host may read it, but must not modify it. The EXOS 201 queue header and all
message buffers must lie within a single 64K area of memory, called the
queue segment.

2-16

NX 200: Initialization and Host Interface for Multibus Systems

Message queue data structures are described here as viewed by NX 200. The
configuration message provides NX 200 with the queue segment base and the
offset address of the queue header, for each queue. NX 200 regards the queue
header value and link field values as 16-bit offsets calculated relative to the
queue segment base. As long as this view is preserved for NX 200, users are
perfectly free to augment these data structures in any manner necessary to
implement the desired mechanisms for the host message handling software.

Figure 2-5 shows the format of a message buffer, and the following paragraphs
describe the individual fields in detail.

2.6.1. Link Field

The link field contains the address of the next buffer in the circular queue. This
address must be an offset calculated relative to the queue segment base
specified in the configuration message. This field is static and should not be
changed after configuration.

2.6.2. Reserved Field

This field is reserved. It must be initialized with the value 0, and set to 0 in
Host-t0-EXOS messages. lts value in reply message is undefined.

2.6.3. Status Field

The status field is used to implement the message protocol, and is defined bit
by bit:

Bit O: Owner bit. If 0 then the buffer is owned by the host; if 1 then
the buffer is owned by NX 200. The host may alter a
message buffer only while it has ownership.

Bit 1: Done bit. The EXOS 201 sets this to 0 along with the owner
bit every time it passes a buffer to the host. Host software
can use the done bit to distinguish between buffers newly
received from NX 200 and buffers it has already processed.

Bit 2: Overflow Bit. The EXOS 201 sets this bit to 1 if an EXOS-
to-Host message had to be truncated because the host
buffer's data field was shorter than the
message sent.

Bits 3-7: Undefined. These bits are reserved for NX 200, and should
not be used for any purpose by the host.

2.6.4. Length Field

The length field specifies the number of bytes in the data field. The maximum
length of the data field is a matter of agreement between the host and the user
software on the EXOS 201. There is no restriction on the size of the data field
as long as the buffers satisfy the queue segment constraints. Most applications
will transfer small amounts of control information via messages, and use direct
memory access to move larger data buffers.

In Host-to-EXOS messages, set this field's value before passing the message to
the EXOS. In EXOS-to-Host messages, this field tells the host how many bytes
were written after a message is transferred. The host must reset its value to the
data field’s size before returning a buffer to NX 200.

NX 200: Initialization and Host Interface for Multibus Systems

2.6.5. Data Field

The data field contains the actual message data passed between the host and
NX 200. NX 200 does not interpret its contents in any way — it is exactly
equivalent to the data field in messages as seen by processes on the EXOS 201
(refer to Section 7). However, if the host data order conversion option is
enabled, and SUN-style address bit inversion is required, this conversion will be
applied to the contents of the data field.

2.7. MESSAGE QUEUE INITIALIZATION

The host must initialize the message queues and the queue headers prior to
configuring the EXOS 201. Figure 2-6 shows the relation between queue
headers and message queue buffers at initialization time for a typical
implementation. In each queue, the host and NX 200 queue headers should
point to the same buffer.

HOST-TO- EXOS MESSAGE QUEUE EXOS- TO-HOST MESSAGE QUEUE
HOST J je—] EXOS EXOS ———l L——— HOST
Q HEADER MESSAGE Q HEADER Q HEADER 'MESSAGE Q HEADER
BUFFER l BUFFER I

JL

] r
I MESSAGE l MESSAGE
BUFFER BUFFER

L J L

A
MESSAGE MESSAGE
BUFFER I IBUFFER

5—

Figure 2-6: Message Queue Data Structures at Initialization Time

JL

i

For each queue, the link fields should be initialized to form a circular, singly-
linked list. This ring structure should not be modified after configuration. Each
queue may contain an arbitrary number of buffers, so long as at least one is
supplied. The reserved field of all message buffers in both queues should be
set to O.

In the host-to-EXOS queue the status field of all buffers should contain the value
02H, which indicates that they are owned by the host. The length and data
fields are not defined at initialization.

2-18

NX 200: Initialization and Host Interface for Multibus Systems

In the EXOS-to-host queue the status field of all buffers should contain the value
03H, which indicates that they are owned by NX 200. The length field of each
buffer should not exceed the size of the data buffer. Note that the length field
must be initialized to accommodate the length of the largest message expected
from NX 200, or the message will be truncated upon reception. The data field is
not defined at initialization. :

Figure 2-7 is a snapshot of an example EXOS-to-host message buffer queue at
the time of initialization. This example assumes an 8086-based host system,
where the EXOS 201 is configured in the segmented host address mode. The
configuration message describing the queue is also shown in part. Data
structures are shown as vectors containing hexadecimal byte values. The
Multibus physical address of each data structure is shown to the left (slightly
above the location), and its name to the right. According to the configuration
message in this example, writing the value 40H at memory location 0E2044H
will interrupt the host. NX 200 will assert this interrupt when the status of the
EXOS-to-host message queue changes, as described in the following section.
The circular message queue shown here contains three buffers of equal length,
each providing a 32-byte data field. The queue header points to one of the
buffers, arbitrarily chosen, at its link field address.

2.8. MESSAGE QUEUE PROTOCOL

This section describes the protocol which NX 200 follows in sending messages
to, and receiving messages from, the host processor. As it happens, host
software can follow the same procedure, so that the exchange is symmetrically
defined. The description below assumes such an implementation, but certainly
other methods are possible, within the constraints of NX 200’s behavior.

In a typical implementation, the host system and NX 200 each maintain private
queue headers for both queues (see Figure 2-6). NX 200's host-to-EXQOS
message queue's header points to the message buffer which NX 200 will
receive next. NX 200's EXOS-to-host message queue’'s header points to the
message buffer which NX 200 will send to next. NX 200 maintains these queue
headers after configuration. Although NX 200 queue headers are kept in host
memory, after initialization the host should not refer to these. Similarly, the
NX 200 will not refer to the host's own queue headers. Host queue headers
may be of any format which is most convenient to the host software (16-bit
offset, 32-bit virtual address, array index,etc.).

For the host-t0-EXOS queue, the host's queue header should always point to
the next buffer in which the host will send a message. NX 200's queue header
will always point to the next buffer in which NX 200 will look for a message.
Both pointers will always move sequentially through the message queue. Note
that unless a message arrives on the next buffer, NX 200 will not scan any
further in the queue. This means that the host should always write the message
in the next buffer where NX 200 expects it to be rather than in any arbitrary
position in the queue. During the course of message processing, the host’s
queue header may end up several buffers ahead of NX 200's queue header, but
should never "lap" it from behind. Any difference between the headers
represents buffers which NX 200 has not yet consumed.

For the EXOS-to-host queue, the host's queue header should always point to
the next buffer in which the host will look for a message. The NX 200’s queue
header will always point to the next buffer in which NX 200 will send a message.
As above, both pointers will always move sequentially through the message

2-19

NX 200: [nitialization and Host Interface for Multibus Systems

queue. Note that unless a message arrives on the next buffer, the host should
not scan any further in the queue. This means that NX 200 will always write the
message in the next buffer where the host expects it to be rather than in any
arbitrary position in the queue. During the course of message processing,
NX 200’s queue header may end up several buffers ahead of the host's queue
header, but again, should never "lap” it from behind. Any difference between
the headers represents buffers which the host has not yet consumed.

2.8.1. Host-t0-EXOS Message Transfer

Host software can use the following sequence of steps to transfer messages to
NX 200:

1. Test the owner bit of the buffer to which the host queue header
points. If NX 200 still owns this buffer, then wait until it is returned
(either poll the owner bit, or wait for the interrupt which
accompanies each buffer turnover event).

2. Advance the host queue header, so that it now points to the next
buffer in the queue.

3. Load the message into the data field of the current buffer, and set
the length field appropriately.

4. Set the current buffer's owner bit, so that the buffer now belongs to
NX 200. :

5. Interrupt NX 200 by writing to port B, to notify it that a new
message is available.

The EXOS 201 can process more than one message from the host upon
receiving a single interrupt. Therefore it is important that the host change the
buffer's owner bit only after preparing the other fields. Otherwise, if NX 200 is
still processing a previous interrupt from the host, it may consume a half-baked
message. Note that the host may prepare more than one message buffer at a
time, and send a single interrupt, if sufficient buffers are available.

When NX 200 receives an interrupt from the host, it will:

1. Examine the owner bit of the buffer to which its own queue header
points. If the buffer belongs to NX 200, then it will process it, as
described in the following steps. (Otherwise, the interrupt could
mean that the host is returning an EXOS-to-host message buffer, or
couid be spurious.)

2. Load the link field of the current buffer into its queue header, so that
it now points to the next buffer in the queue.

3. Extract the message from the current buffer. If there is no
consumer for this data (no receive request on the NX 200's host
interface mailbox), then wait.

4. Reset the current buffer's owner bit, so that the buffer is returned to
the host. Set the buffer's done bit to 0.

5. Interrupt the host to notify it that a buffer has been returned. The
type of interrupt is specified by the configuration message. Repeat
from step 1, until the owner bit shows that no new messages
are pending.

2-20

NX 200: Initialization and Host Interface for Multibus Systems

E0000H —
i {
E0044H
OOH
00H
OFH
3DH
E0048H
D2H
14H
E004AH
. 02H
E0048H
40H
E004CH
44H
20H
OEH
~——— | 3DH
E2044H

Contiguration.
Message
Queue Base Address FOOOOH Queue Segment
e Base
Queue Header Address F14D2H Queue Header
L D2H
15H
Interrupt Type
Interrupt Value F15D2H Link Field
‘ e D2H
Interrupt Address 16H = -
F15D4H Reserved Field
00H
F15D5H Status Field
03H
F15D6H Length Field
20H
OOH
F15D8H Data Field
F15F8H i |
Memory-mapped
Interrupt F16D2H Link Field
Location —- D2H
17H
F16D4H Reserved Field
OOH
F16D5H Status Field
O3H
F16D6H Length Field
20H
00H
F16D8H Data Field
F16F8H | l
F17D2H Link Field
—_— D2H
15H
F17D4H- Reserved Field
0O0H
F17D5H Status Field
" O3H
F17D6H Length Field
20H
O0H
F17D8H Data Fieid
F17F8H | :
1

Figure 2-7: Example EXOS-to-Host Message Queue, at Initialization

2-21

NX 200: (initialization and Host Interface for Multibus Systems

Note that the interrupt described in step 5 is the same interrupt which the host
waits upon when no message buffers are available.

2.8.2. EXOS-to-Host Message Transfer

When NX 200 has a message to transfer to the host, it will:

1.

Test the owner bit of the buffer to which its queue header points. If
the buffer belongs to NX 200, then process it, as described in the
following steps. Otherwise, wait for an interrupt from the host which
indicates that a buffer has been returned (NX 200 can process
other jobs in the mean time).

Load the link field of the current buffer into its queue header, so that
it now points to the next buffer in the queue.

Load the message into the data field of the current buffer, and set
the length field to the length actually transferred (it will not exceed
data field length). If the data field was too short for the entire
message, then it sets the overflow bit.

Reset the current buffer's owner bit, so that the buffer now belongs
to the host. Set the buffer's done bit to 0.

Interrupt the host to notify it that a new message is available. The
type of interrupt is specified by the configuration message.

When the host receives an interrupt from NX 200, it can:

1.

Examine the owner bit of the buffer to which the host queue header
points. If the buffer belongs to the host, then it should process it,
as described in the following steps. (Otherwise, the interrupt could
mean that NX 200 is returning a host-to-EXOS message buffer, or
could be spurious.)

Advance the host's own queue header, so that it now points to the
next buffer in the queue.

Extract the message from the current buffer. It may check the
overflow bit to be certain that the entire message was sent. If there
is no consumer for this data, then wait.

Set the length field to the size of the data field.

Set the current buffer's owner bit, so that the buffer is returned to
NX 200.

Interrupt NX 200 by writing to port B, to notify it that a message
buffer has been returned. Repeat from step 1, until the owner bit
shows that no new messages are pending.

Note that whenever the host receives a non bus-vectored interrupt from NX 200,
it should write to the EXQOS 201's port A before processing any message queue
events. This causes NX 200 to drop its interrupt line, permitting the host to
recognize another interrupt. During the host's interrupt service routine, it is
assumed that further interrupts from NX 200 are disabled, but that the host’s
interrupt controller will still buffer one interrupt from NX 200 until leaving the
service routine and re-enabling interrupts at that level.

2-22

NX 200: Initialization and Host Interface for Multibus Systems

NX 200 will assert an interrupt whether or not the host has cleared its interrupt
line — therefore interrupts may merge together, so far as the host can tell. This
is why the host should be prepared, whenever it receives an interrupt, to
process multiple messages and/or buffers returned by NX 200. Furthermore,
the host should be prepared to receive a spurious interrupt from NX 200.

Although the above description assumes that the EXOS 201 is programmed to
interrupt the host to signal message queue events, the host also has the option
of simply polling the message queue.

2.9. DOWNLOADING SOFTWARE FROM THE HOST

Normally, if the EXOS 201 is configured in mode 1, host software would then
download and run higher level protocol software. Two message formats are
provided for this purpose, one to copy user code and data to NX 200, and
another to start code execution. For each message NX 200 sends a
corresponding reply message which confirms the completion of the request.

2.9.1. Host Download Request

2.9.1.1.

2.9.1.2.

2.9.1.3.

2.9.1.4.

The host can copy code to any location in NX 200 memory which is normally
available to the user. The download request copies buffers up to 64K-1 each in
size, in any order, without modification. NX 200 does not protect the user area
against un-intentional overlays.

Figure 2-8 shows the format of the download request/reply message, and the
following paragraphs describe the individual fields in detail.

Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in
the reply message is undefined.

User Id Code Field

The user id code field is not interpreted by NX 200, and is returned unmodified
in the reply message. It can be used to establish a correspondence between
request and reply messages.

Request Code Field

The request code field defines the request. Its value in the request message
must be 0. This value is preserved in the reply message.

Return Code Field

The reply code field is undefined in the request message. In the reply message,
it reports the status of the download request:

0 successful completion.

A3H destination memory block overlaps the memory reserved for
NX 200, no copy done.

A1H invalid request, the EXOS 201 is not in front end mode.

2-23

NX 200: Initialization and Host Interface for Multibus Systems

#

1)

2)

3)

4)

5)

6)

7)

Length

Offset

10

14

Field Name

User |Id Code

Figure 2-8: EXOS 201 Down-Load Request/Reply Message

zero

undefined

00H

undefined

see

see

see

Request

text

text

text

Reply

undefined

preserved

preserved

see text

see text

undefined

undefined

2.9.1.5. Data Length Field

The data length field specifies the number of bytes to be copied into NX 200
memory. This may be any value between 0 and 64K-1. In the reply message,
this field returns the number of bytes actually copied.

2.9.1.6. Source Address Field

The source address field specifies the starting address in shared memory from
which to copy the user code image. This may be either a segmented or an
absolute address, depending on the host address mode option. Its value in the
reply message is undefined.

2.9.1.7. Destination Address Field

The destination address field specifies the starting address in NX 200 memory
to which the user code image will be copied. This must be a segmented
address. Its value in the reply message is undefined.

2-24

NX 200: Initialization and Host Interface for Multibus Systems

2.9.2. Start Execution Request

After downloading protocol software, the host processor starts it executing with
a single start execution request message. Once this command has been issued

and the reply received, NX 200 does not itself process any more messages.

#

1)

2)

3)

4)

5)

Length Offset Field Name
2 0 | Reserved for NX Usage
l I
| e e |
4 2 User Id Code

1 6 | Request Code
I R |
1 7 | Return Code |
R e |
4 8 Starting Address

Figure 2-9: NX 200 Start-Execution Request/Reply Message

Request

zero

undefined

02H

undefined

see

text

Reply

undefined

preserved

preserved

see text

preserved

Instead, all messages sent to NX 200 will be queued up for user processes

running under the NX 200 kernel.

The start execution request specifies the location at which execution of user
code begins. User code is entered as a single process with priority 255 and
infinite time slice. All registers except for the PC and stack pointer are
undefined. The initial process stack is provided from the NX 200 data area and
is guaranteed to be at least 100H bytes deep. The process is free to switch to a
bigger stack if desired. In all other respects, it is a normal process, as defined

in Section 7.5.

Figure 2-9 shows the format of the start execution request/reply message, and

the following paragraphs describe the individual fields in detail.

2.9.2.1. Reserved Field

The first field is reserved for use by NX 200, and must be initialized as 0. Its

value in the reply message is undefined.

2-25

2.9.2.2.

2.9.2.3.

2.9.2.4.

2.9.2.5.

NX 200: Initialization and Host Interface for Multibus Systems

User Id Code Field

The user id code field is not interpreted by NX 200, and is returned unmodified
in the reply message. It can be used to establish a correspondence between
request and reply messages.

Request Code Field

The request code field defines the request. Its value in the request message
must be 2. This value is preserved in the reply message.

Return Code Field

The reply code field is undefined in the request message. In the reply message,
it reports the status of the start execution request.

0 Successful completion.
A2H Invalid starting address, execution not started.

A1H Invalid request, the EXOS 201 is not in front end mode.

Starting Address Field

The starting address field specifies the initial value of the initial process's
program counter. This must be a segmented address. Its value is preserved in
the reply message.

2-26

Chapter 3
INITIALIZATION AND HOST INTERFACE
FOR VMEBUS SYSTEMS

3.1. INTRODUCTION

The EXOS 202 Intelligent Ethernet Controller is specifically designed for use in a
VMEbus system. This section contains information pertinent to the design of
host-resident software, such as an 1/O driver, which communicates with the
EXOS 202 Intelligent Ethernet Controller installed in a VMEbus-based system.

Note that EXOS Intelligent Ethernet Controllers are available for use in different
computer buses, such as, Multibus, Q-bus, UNIBUS, VMEbus, and PC bus.
While logically the NX 200 operating system functions remain the same, the
specific procedures for initialization vary for different EXOS board-to-host
combinations.

The host interface can be broken down into two aspects, the initialization
procedure, and the communication method subsequently used. Initialization
refers to the process which begins upon resetting the EXOS 202, and concludes
either with entering the Link Level Controller mode, or with the execution of
downloaded software. During the process of initialization, the host system sets
up the host message queue data structures. The host message queue protocol,
defined by NX 200 firmware, uses these queues for all further communications
between the host processor and NX 200.

The following paragraphs give an overview of the initialization process:

1. The host system resets the EXOS 202, then NX 200 executes
self-diagnostics which exercise various board components and
functions. If the diagnostics fail, the EXOS 202 displays an error
code on the NX 200 status LED (see Appendix A) until reset again.
If the diagnostics pass, the EXOS 202 awaits configuration by
the host.

2. The host system passes NX 200 the address of a configuration
message in host memory. The EXOS 202 examines this message,
and modifies some fields according to the resuits of configuration.
If configuration is unsuccessful, the EXOS 202 again displays an
error code on the NX200 status LED until reset. It the
configuration message is valid, then the EXOS 202 enters one of
three modes, as specified by the message's operation mode field.

3. Initialization for each of the three different modes proceeds as
follows:

a. In Link Level Controller Mode, the EXOS 202 begins to execute
firmware which brings NX 200's Ethernet Data Link driver
interface out to the host system interface. No software is
downloaded; instead the host system passes Data Link
commands to the board, and receives replies, through the
standard host message queue protocol. This mode is
described fully in Section 6.

b. In Front-End Mode 1, the host system proceeds to download
software to the EXOS 202, by passing download request
messages through the standard host message queue protocol.

3-1

NX 200: Initialization and Host Interface for VMEbus Systems

request to the board, which then begins to execute the
downioaded software. Subsequent actions depend entirely on
the software which has been installed, although the host
message queue protocol remains in place.

c. In Front-End Mode 2, the EXOS 202 proceeds to bootstrap
itself from the Ethernet interface, as described in Section 11.
Depending on how the bootstrap server configures NX 200, it
may still communicate with the host system through the
standard host message queue protocol. Network bootstrap is
quite similar in many ways to initialization by a host processor;
the configuration message described in this section is
exactly identical.

3.2. HARDWARE COMMUNICATIONS CHANNELS

Communication between the host processor and the EXOS 202 is conducted via
a coordinated exchange of interrupts, /O instructions, and data transfers
through shared memory on the VMEbus. The following sections define these
primitive channels of communication which are used during the process of
initialization and, subsequently, to implement the message queue protocol.

3.2.1. Host Access to the EXOS 202 VMEbus Board

The host's means of active access to the EXOS 202 are solely through two
memory mapped I/O ports, named port A and port B here for the sake of
reference. These ports are accessed over the VMEbus, and can be both read
and written. Their addresses are selected by jumpers on the EXOS 202,
described in the EXOS 202 intelligent Ethernet Controller Reference Manual.

The effects of reading and writing ports A and B are summarized below:
Read A: No Operation.

Write A: Resets the EXOS 202 (refer to Section 3.4).

Read B: Returns the EXOS 202 status byte:

Bit 0: (Error Bit) when 0, indicates a fatal error in EXOS 202.
When the EXOS 202 is reset, this bit is 0, but will be
set to 1 if the self test completes successfully. If this
bit is not set within 3 seconds, then the EXOS 202 has
failed the self-diagnostics.

Bits 1-2: Undefined.

Bit 3: (Ready Bit) when 0, indicates that NX 200 is ready to
accept a byte written into port B. When 1, NX 200 has
not yet read the byte last written into port B.

Bits 4-7: Undefined.

Write B: Interrupts the EXOS 202 CPU, and communicates a 1-byte value.
This is the only way to communicate a value to the EXOS 202
ather than through shared memory.

3-2

NX 200: Initialization and Host Interface for VMEbus Systems

3.2.2. EXOS 202 VMEbus Board Access to the Host

The EXOS 202 functions as a master on a VMEbus system. It can access the
full 16-Mbyte memory address space and interrupt the host processor. User
software on the EXOS 202 does not directly control these resources. Instead, it
calls NX 200's host interface driver, described in Section 9.

In general, data is transferred between the host and the EXOS 202 via shared
memory, which may be any portion of system memory accessible to both
processors on the VMEbus. The EXOS 202's CPU performs the transfer by
dynamically mapping part of its own address space into the VMEbus memory
address space, and executing a block transfer instruction. Note that the
EXOS 202’s on-board memory cannot be shared; it is not directly accessible by
the host processor.

The EXOS 202 can interrupt the host either through memory addresses or the
VMEbus interrupt lines. The type which will be used is selected at initialization
time. Memory interrupt addresses are configured by software; the interrupt line
is selectable by means of a jumper option, described in the EXOS 202 Intelligent
Ethernet Controller Reference Manual.

3.3. HOST DATA ORDER CONVERSION OPTION

The host data order conversion option determines whether NX 200 will interpret
data read from host memory according to its own native ordering, or according
to the host CPU's native ordering. This option is selected by a field in the
configuration message (refer to Section 3.5.5). If enabled, then the NX 200
inspects a known data pattern in the configuration message, written in the host
CPU's native order. It determines what conversions are necessary to make this
pattern appear in the order it expects, for several different data types: byte
array, word array, and longword. NX 200 will then apply the appropriate
conversion to all data objects subsequently read from host memory.

For the word data type, NX 200 can swap bytes if necessary. For the longword
data type, NX 200 can swap words, swap bytes, or both. Therefore 1/O driver
software for any reasonably normal host CPU can store data objects in its native
order, and leave conversion up to the EXOS 202.

Naturally, the EXOS 202 must know the type of a data object to apply the
appropriate conversion. All data objects described in this section are known to
NX 200, except for the actual contents of messages between the host and the
EXOS 202. NX 200 does apply the byte array conversion (if necessary) to
message contents, and to all data transferred. How the contents of messages
should be further interpreted is the function of user-level software running on the
EXOS 202. For instance, the firmware which drives the Link Level Controller
Mode (refer to Section 6) runs at user level under NX 200, and converts
word/longword data objects which are known to itself, but not to NX 200.

NX 200 assists this process by providing kernel calls (refer to Section 9.5) which
convert word and longword data types as required by the host data order
conversion option.

Whether or not the host data order conversion option is enabled, the host
system must still write the required data pattern in the configuration message.
This pattern occupies 12 bytes of the 32-byte test pattern/memory map field
(refer to Section 3.5.10). It should be initialized as shown in Figure 3-1. Note
that while the relative position of subfields in the test pattern is specified, the
order of bytes within those subfields is dependent on the host CPU architecture.

3-3

NX 200: Initialization and Host Interface for VMEbus Systems

Figure 3-2 shows how this pattern might be initialized in the C language, both
statically and dynamically.

Note that memory addresses, regardless of the host address mode, are stored
and interpreted as the longword data type. For instance, the longword test
pattern can also be regarded as a memory address in the host’'s native format
for the absolute address 0103070FH (if absolute address mode is selected) or
for segment 070FH, offset 0103H (if segmented mode is selected).

If NX 200 cannot make any sense of the test pattern presented by the host,
then initialization is aborted, and the appropriate error code displayed on the
status LED. For error code value assignments; see Appendix A: Seif-
Diagnostics and Configuration Errors.

#

1)
2)
3)
4)

5)

6)

7)

8)

Length Offset Sub-Field Name Value

1 0 | Byte 0 | 01H
[e |

1 1 | Byte 1 | O3H
| e e 1

1 2 | Byte 2 | o7H
| o e e |

1 3 | Byte 3 | OFH
R TR TR . |

2 4 | Word 0 | 0103H
| |
e |

2 6 [Word 1 | 070FH
| |
[e e e e e il [

4 8 | Longword | 0103070FH
| |
| |
I |
| e e e e e |

20 12 . Reserved : zero
R 1 byte------------ >

Figure 3-1: Host Data Order Conversion Option Test Pattern

3.4. RESET AND CONFIGURATION PROCEDURE

This section describes initialization by a host system up to the completion of
configuration. Figure 3-3 shows a typical procedure which implements as much.

The EXOS 202 is reset by the VMEbus SYSRESET signal, or whenever port A
is written from the VMEbus. Host software should use the latter method to be
sure. On reset of the EXOS 202, NX 200 performs a Series of self tests to
confirm hardware integrity. While these tests run, the NX 200 status LED (see
the EXOS 202 Intelligent Ethernet Controller Reference Manual) will remain lit
constantly. When self-diagnostics complete successfully, the EXOS 202 sets
the error bit in I/O port B and flashes the status LED at regular intervals.

3-4

NX 200: Initialization and Host Interface for VMEbus Systems

If the error bit is not set within 3 seconds of reset, the host may assume that
self-diagnostics turned up a problem. In this case, the EXOS 202 repeatedly
reports an error code through the NX 200 status LED (for error code values, see
Appendix A: Self-Diagnostics and Configuration Errors). The EXOS 202 will
remain in this state until reset again.

A jumper option, described in the EXOS 202 Intelligent Ethernet Controller
Reference Manual, determines how initialization will proceed after reset and
self-diagnostics. If the jumper selects network bootstrap, then the EXOS 202
will attempt to download software over the Ethernet (refer to Section 11.7).
Otherwise the EXOS 202 awaits configuration by the host processor.

/* constants for test pattern */
#define BYTEOQ 0x01

#define BYTE1 0x03

#define BYTE2 0x07

#define BYTE3 OxOF

#define WORDO 0x0103
#define WORD1 0x070F
#define DWORD 0x0103070F

/* static initialization of test pattern */
struct tstptrn {

char byteptrn{4];

short wordptrn{2);

long Iwordptrn;

char rsrvd[20];
h

struct tstptrn tp = {
BYTEO, BYTE1, BYTE2, BYTES,
WORDO, WORD1,
DWORD,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
h

/" dynamic initialization of test pattern */
initptrn ()
{
register int i;
tp.byteptrn[0] = BYTEOQ;
tp.byteptrn{1] = BYTET1;
tp.byteptrn[2] = BYTE2;
tp.byteptrn[3] = BYTES;
tp.wordptrn[0] = WORDO;
tp.wordptrn[1] = WORD1;
tp.lwordptrn = DWORD;
for (i=0; i<<20; i+ +) tp.rsrvd[i] = 0;
}

Figure 3-2: Host Data Format Test Pattern Initialization

The host configures the EXOS 202 by passing it the address of a configuration
message, located in shared memory. This message establishes various NX 200
parameters and selects among several modes of operation. Parameters include
memory allocation for NX 200 objects, the address of NX 200's movable data
area in EXOS 202 memory, and the location of message queues in shared
memory. Among the optional operation modes, the host can select network
bootstrap. This will proceed as though the net boot jumper option had been
installed, except that NX 200 will first note the contents of the host configuration

3-5

NX 200: Initialization and Host Interface for VMEbus Systems

message. Other configuration options include host data order conversion and
the host address mode.

extern read_port(Port_Num) i~ returns value read from port Port_Num */
extern write_port(Port_Num, Val) /* writes Val to port Port_Num */
extern start_clock() /* starts an interval timer */)

extern clock() /* returns the current value of the interval timer */

/* bit value definitions for status byte read from port B */
#define ERROR_BIT 1

#define READY_BIT 8

#define ERRNON 0

struct { /* configuration message */

short reserved;

char version|4].

char comp_code;

<etc...>

} init_msg;
char init_addrs([8] == {0xFF, OxFF, 0, 0, <absolute address of init msg=> IR
/* refer to Section 1 for absolute address format */

initialize () {
< set up init_msg and the message queues (refer to Section 3.6) >;
write-port(A); /* reset the EXOS 202 */
start_clock(); /* start timer, clock counts real time */

/* wait until self test completes */
while ((read_port(B) & ERROR_BIT) == 0) {
if (ctock() > 2_SECONDS) {
return (malfunctioning_board);
}
}

/~ write the configuration message address */
for (i=0; i<8; i+ +) {
while (read _port(B) & READY _BIT):
write_port(B,init_addrsli]);

\
!

/* wait for the reply message */
while (init_msg.comp_code == 0xFF).

/* ensure no errors */

if (init_msg.comp_code != ERRNON)
return (error);

else
return (success).

Figure 3-3: Typical Reset and Configuration Procedure

The host processor communicates the address of the configuration message to
NX 200 by writing a sequence of 8 bytes into port B. Each byte should be
written after checking that the ready bit of the EXOS 202's port B is clear. This
ensures that the EXOS VMEbus board is ready to accept the next address byte.
The first four bytes of the sequence must be FF-FF-00-00 (sent from left to
right). The next four bytes are the configuration message’'s absolute VMEbus
memory address (least significant byte first). Note that the VMEbus address
modifier must be passed in the low-order 6 bits of the last byte passed to
EXOS 202 and that the high order 2 bits of this byte must be zero. The
configuration message must be aligned on a even address boundary. When the

3-6

NX 200: Initialization and Host Interface for VMEbus Systems

last byte is written, NX 200 reads and interprets the configuration message. If
the address for the initialization message is not valid, then NX 200 will display
an error code on the status LED (see Appendix A; Self-Diagnostics and
Configuration Errors)

When NX 200 has finished processing the configuration message, it writes a
completion code into the appropriate field of the message. Any value other than
OFFH indicates completion. The value 0 indicates successful configuration while
other values denote specific errors in configuration (refer to Section 3.5.).
Normally, configuration should complete within 3 seconds, but network bootstrap
might take longer, depending on circumstance. NX 200 also returns a few
parameters to the host in the configuration message, notably its version number
and a map of available memory.

Once configuration is complete, the memory space occupied by the
configuration message can be used for any other purpose. After configuration,
communication between the host and NX 200 is carried out solely by means of
message queues, described in Section 3.5.

3.5. CONFIGURATION MESSAGE FORMAT

Figure 3-4 shows the format of the configuration request/reply message. This is
used identically by either a host system or a network bootstrap server. The
following paragraphs explain the individual fields in detail. Note that reply values
other than the completion code field itself are defined only if configuration
is successful.

3.5.1. Reserved Field

The first field is reserved for use by NX 200. Its value in the request message
must be 1, and its return value is undefined.

3.5.2. EXOS Version Code Field

The EXOS version code field is undefined in the request message. In the reply
message, it returns version codes for NX 200 and the EXOS 202 in the form
X.Y and A.B, respectively. These are expressed as ASCI| digits, one per byte
in the order X-Y-A-B, starting from the lower address.

3.5.3. Configuration Completion Code Field

The completion code field must be OFFH in the request message. The
EXOS 202 signals that configuration is complete, and returns the completion
code, by writing one of the following codes into this field:

OCH successful completion.
A4H invalid operation mode.

A5H invalid host data format test pattern. This occurs when NX 200
cannot find any reasonable conversion to derive the expected
data pattern from that supplied in the test pattern. In practice,
this might imply that the host has given NX 200 the wrong
address for the configuration message.

3-7

NX 200: [nitialization and Host Interface for VMEbus Systems

Length Oftset Field Name Request Reply

1) 2 0 | Reserved o1 undefined

2) 4 2 | EXOS Version Code | undefined see text
| [
| |
| |
R e R R |
3) 1 6 | Configuration Completion Code | OFFH see text
I e I I l
4) 1 7 | EXOS COperation Mode | see text preserved
| e e |
5) 2 8 | Host Data Format Option | see text see text
| !
I I I I |
6) 3 10 | EXOS Context | zero see text
| |
I !
I R R |
7) 1 13 | Host Address Mode | see text see text
e e |
8) 1 14 | Reserved | zero undefined
I |
9) 1 15 | Memory Map Size | zero see text
[R |
10) 32 16 . Test Pattern/Memory Map : see text see text
I R R I
11) 4 48 | NX Movable Block Address | see text see text
| l
| [
| |
I l
12) 1 52 | Number of Processes | see text see text
R e l
13) 1 53 | Number of Mailboxes | see text see text
I I |
14) 1 54 | Number of Multicast Slots | see text see text
I i I |
15) 1 55 | Number of Hosts | see text preserved

continued on next page....

Figure 3-4: Configuration Request/Reply Message

3-8

NX 200: Initialization and Host Interface for VMEbus Systems

#

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

Length

Offset

56

60

62

63

64

68

72

74

75

76

Field Name

..continued from preVious page

Host-t0-EXOS Message Queue
Base Address

Host-to-EXOS Message Queue
Header Address

Host-to-EXOS MQ Int. Value

Host-to-EXOS Message Queue
Interrupt Address

EXOS-to-Host Message Queue
Base Address

EXOS-to-Host Message Queue
Header Address

EXOS-to-Host MQ Int. Value

EXOS-to-Host Message Queue
Interrupt Address

Figure 3-4a: Configuration Request/Reply Message (continued)

Request

see

see

see

see

see

see

see

see

see

see

text

text

text

text

text

text

text

text

text

text

Reply

preserved

preserved

preserved

preserved

preserved

preserved

preserved

preserved

preserved

preserved

NX 200: initialization and Host Interface for VMEbus Systems

A7H Invalid configuration message format. This may occur if reserved fields
contain an improper value. In practice, this error message may indicate
that the host has given NX 200 the wrong address for the configuration
message.

A8H Invalid movable block address.
A9H Invalid number of processes.
AAH Invalid number of mailboxes.
ABH Invalid number of address slots.
ACH Invalid number of hosts.

ADH Invalid host message queue parameter. NX 200 returns this error if it
detects any inconsistency in the message queue specifications. This
might include a bad interrupt type, invalid segment address, bad linking
of the message queue buffers, etc.

AEH Insufficient memory for movable data block.
AFH Net boot failed. -

The above codes will also be displayed on the status LED if configuration is not
successful.

3.5.4. NX 200 Operation Mode Field

NX 200 operation mode field determines the mode in which the EXOS 202 is to
be used. Three different modes are supported:

0 Link Level Controller Mode. This mode brings the Ethernet Data
Link interface out to the host interface. No software is
downloaded. It would typically be used when the EXOS 202 is
substituted for the traditional non-programmable Ethernet
controller board. For details, refer to Section 6.

1 Front-End Mode, download from the host. In this mode the
EXOS 202 is used as a front-end processor. Higher level
software is downloaded by the host.

2 Front-End Mode, download from the net. In this mode the
EXOS 202 is used as a front-end processor and higher level
software is downloaded from the network. For details, refer to
Section 11.

All other values for the mode are reserved and their effects are not defined. If
NX 200 is already in the process of network bootstrap (meaning that the
configuration message has been received from a bootstrap server) then only
mode 2 is permitted.

3.5.5. Host Data Order Option Field

The host data order option field enables the host data order conversion option
(refer to Section 3.3.). Because the byte order of the host CPU will not be
known before initialization, this field is actually treated as two one-byte fields.
The host should load the same value into each sub-field in the request
message. This value is defined bitwise:

3-10

3.5.6.

3.5.7.

3.5.8.

3.5.9.

3.5.10.

NX 200: Initialization and Host Interface for VMEbus Systems

Bit O: Deduce Format Bit. If 0, NX 200 will apply the conversions
currently in force. If the board has not been previously
configured, then the default conversion will be in force,
meaning that no format conversions are applied to data read
from the host. If this bit is 1, then NX 200 examines a
constant data pattern written by the host in the configuration
message's test pattern/memory map field, and deduces what
format conversion are necessary to interpret various data
types stored in the host CPU’s native format.

Bits 1-7: Reserved. These bits must be 0 in the request message.

When initialized, NX 200 examines this field first, and interprets all other fields in
the configuration message accordingly. This field is undefined in the
reply message.

EXOS Context

This 3-byte field returns the EXOS context information. In the request message
the value of this field must be zero. In the reply message, the middle byte
(offset 11) returns the context value; the other two bytes are undefined. For the
EXOS 202 the context value must be 02.

Host Address Mode Field

Each of the bits 0 and 1 of this field must be set to 1 to indicate absolute
address mode. The remaining bits are reserved and must be zero in the
request message.

This field is undefined in the reply message.

Reserved Field

This field is reserved for future use. Its value in the request message must be
0. Its value in the reply message is undefined.

Memory Map Size Field

The memory map size field must be 0 in the request message. In the reply
message, it returns the number of segments available in EXOS 202 memory for
user software. This field contains a valid value only if the EXOS 202 is
configured in mode 1 or mode 2.

Test Pattern/Memory Map Field and Maximum Packet Size

The test pattern/memory map field serves different purposes in the request and
reply messages. In the request message, it must contain the test pattern
described in Section 3.3 stored in the host CPU’s native format.

In the reply message, the test pattern/memory map field contains a map of
memory available for user software on the EXOS 202. This map consists of up
to 4 segment descriptors, where the actual number is indicated by the last field.
Each segment descriptor specifies a memory segment in terms of the lowest
address and the highest address included within the segment. Each address is
four bytes long, in the segmented format. The lower bound is given first, then
the upper bound. This field contains a valid value only if the EXOS 202 is
configured in mode 1 or mode 2.

3.5.11.

3.5.12.

3.5.13.

3.5.14.

3.5.15.

NX 200: Initialization and Host Interface for VMEbus Systems

NX 200 Movable Block Address Field

The NX 200 movable block address field can be used to redefine the location of
NX 200's movable data area, described in Section 7.3. If the EXOS 202 is
configured in mode 0, this field must be OFFFFH, OFFFFH. In modes 1 or 2, the
value OFFFFH, OFFFFH specifies that the default location be used. If a non-
default address is specified, the segment base must be 0. The offset must
place the entire block either between 200H and 3FFH, or between 1000H and
OFFFFH.

In the reply message, this field returns the actual address of the NX 200
movable data area. The reply value is not defined in mode 0.

Number of Processes Field

The number of processes field configures the maximum number of processes
which NX 200 will support. if the EXOS 202 is configured in mode 0, this field
must be OFFH. In modes 1 or 2, the value OFFH specifies that the current value
be used. The default value, after reset, is 12. Optionally, a value between 1
and 128 can be specified. In the reply message, this field returns the actual
number of processes which NX 200 will support. The reply value is not defined
in mode 0.

Number of Mailboxes Field

The number of mailboxes field configures the maximum number of mailboxes
which NX 200 will support. Note that this number does not include system
mailboxes. If the EXOS 202 is configured in mode 0, this field must be OFFH.
In modes 1 or 2, the value OFFH specifies that the current value be used. The
default value, after reset, is 16. Optionally, a value between 1 and 128 can be
specified. In the reply message, this field returns the actual number of
mailboxes which NX 200 will support. The reply value is not defined in mode 0.

Number of Multicast Slots Field

The number of multicast slots field configures the maximum number of multicast
address slots which NX 200 will support. Note that this number does not include
the physical, broadcast, universal, or null slots, which are permanently allocated.
The value OFFH specifies that the current value be used. The default value,
after reset, is 8. Optionally, a value between 0 and 252 can be specified. In the
reply message, this field returns the actual number of address slots which
NX 200 will support.

Number of Hosts Field

The number of hosts field specifies the number of host CPUs on the VMEbus
interface. Permissible values depend on the mode of operation. In all modes,
the value OFFH will retain the value currently in force. Upon first configuration,
the default value is 0. In operation modes 0 and 1, only the value 1 may be
specified. However in mode 2 (network bootstrap), this field can be either 0 or
1. If 0, then the host message queues are undefined and the configuration
message fields pertaining to them will not be examined. Its value is preserved
in the reply message.

3-12

3.5.16.

3.5.17.

3.5.18.

3.5.19.

3.5.20.

NX 200: Initialization and Host Interface for VMEbus Systems

Host-to-EXOS Message Queue Base Address Field

The host-to-EXOS message queue base address field specifies the base
address of the shared memory which contains the queue data structures for
transferring messages from the host to the EXOS 202 (refer to Section 3.6.).
Addresses for all message queue data structures are 16-bit offsets, calculated
relative to this base. '

This field contains a VMEbus address modifier concatenated with absolute
memory address stored as a longword. The lower-order 3 bytes contain the
24-bit physical address; the low-order 6 bits of the most significant byte contain
the VMEbus address modifier and the remaining 2 bits are reserved and must
be zero. Furthermore, the lower-order 4 bits of the address must also be 0, so
that the segment begins on some even 16-byte address boundary.

This field’s value is preserved in the reply message.

Host-to-EXOS Message Queue Header Address Field

The host-to-EXOS message queue header address field specifies the offset of
the queue header. This offset must be calculated relative to the base address
specified for the host-to-EXOS message queue. lIts value in the reply message
is preserved.

Host-to-EXOS Message Queue Interrupt Type Field

The host-to-EXOS message queue interrupt type field specifies the type of
interrupt which NX 200 will use to alert the host of a change in the status of the
Host-to-EXOS 202 message queue. Options are:

0 No interrupt. The host polls the message queues.

1 Undefined.

2 Memory mapped. The EXOS 202 writes a specified value at the
specified memory address.

3 Undefined.

4 Bus-vectored interrupt.

The value of this field is preserved in the reply message.

Host-to-EXOS Message Queue Interrupt Value Field

The host-to-EXOS message queue interrupt value field is defined only for
memory mapped interrupt type. [f interrupt type 2 is selected, then this value
will be written to the specified memory address when an interrupt is asserted.
The value of this field is preserved in the reply message.

Host-to-EXOS Message Queue interrupt Address Field

The host-to-EXOS message queue interrupt address field is defined only for
memory mapped and bus-vectored interrupt type. If interrupt type 2 is selected,
then it contains a VMEbus memory address, which must follow the host address
format described in Section 1, Memory Address Format. If interrupt type 4 is
selected, then the first word contains an interrupt vector; contents of the second
word are undefined. The value of this field is preserved in the reply message.

3-13

3.5.21.

3.5.22.

3.5.23.

3.5.24.

3.5.25.

NX 200: I[nitialization and Host Interface for VMEbus Systems

EXOS-to-Host Message Queue Base Address Field

The EXOS-to-host message queue base address field specifies the base
address of the shared memory which contains the queue data structures for
transferring messages from NX 200 to the host (refer to Section 3.6). This is
exactly equivalent to the host-to-EXOS message queue base address field (refer
to Section 3.5.16). lts value in the reply message is preserved.

EXOS-to-Host Message Queue Header Address Field

The EXOS-to-host message queue header address field specifies the offset of
the queue header. This offset must be calculated relative to the base address
specified for the EXOS-to-host message queue. Its value in the reply message
is preserved.

EXOS-to-Host Message Queue Interrupt Type Field

The EXOS-to-host message queue interrupt type field specifies the type of
interrupt which NX 200 will use to alert the host of a change in the status of the
EXOS 202-to-host message queue. Options are:

0 No interrupt. The host polls the message queues.

1 Undefined.

2 Memory mapped. The EXOS 202 writes a specified value at the
specified memory address.

3 Undefined.

4 Bus-vectored interrupts.

The value of this field is preserved in the reply message.

EXOS-to-Host Message Queue Interrupt Value Field

The EXOS-to-host message queue interrupt value field is defined only for
memory mapped interrupt type. If interrupt type 2 is selected, then this value
will be written to the specified memory address when an interrupt is asserted.
The value of this field is preserved in the reply message.

EXOS-to-Host Message Queue Interrupt Address Field

The EXOS-to-host message queue interrupt address field is defined only for
memory mapped and bus-vectored interrupt types. If interrupt type 2 is
selected, then it contains a VMEbus memory address, which must follow the
host address format described in Section 1. If interrupt type 4 is selected, then
the first word contains an interrupt vector; contents of the second word are
undefined. The value of this field is preserved in the reply message.

3.6. MESSAGE QUEUE FORMAT

Once the EXOS 202 is configured, message queues in shared memory serve all
further communications with the host. This includes software download, link
level controller mode service requests, and communication with downloaded
protocol code. Two message queues are maintained by the NX 200 firmware,
one for each direction of transfer. This section describes the format of the data
structures which compose a message queue. Following sections describe how
these must be initialized, and then the protocol which ensues after configuration.

3-14

NX 200: Initialization and Host Interface for VMEbus Systems

Each message queue necessarily includes one queue header and a singly-
linked, circuiar list of message buffers. The required queue header belongs to
the EXOS 202; it reads and modifies its value during message exchange. The
host may read it, but must not modify it. The EXOS 202 queue header and all
message buffers must lie within a single 64K area of memory, called the queue
segment. (

Message queue data structures are described here as viewed by NX 200. The
configuration message provides NX 200 with the queue segment base and the
offset address of the queue header, for each queue. NX 200 regards the queue
header value and link field values as 16-bit offsets calculated relative to the
queue segment base. As long as this view is preserved for NX 200, users are
pertectly free to augment these data structures in any manner necessary to
implement the desired mechanisms for the host message handling software.

Figure 3-5 shows the format of a message buffer, and the following paragraphs
describe the individual fields in detail.

#

1)

2)

3)

4)

5)

Length Offset Field Name

2 0 | Link l
| [
[« e |

1 2 | Reserved !
| @ |

1 3 | Status |
R e |

2 4 | Length |
| f
I |

n 6 . Data
R 1 byte------------ >

Figure 3-5: Message Buffer Format

3.6.1. Link Field

The link field is the address of the next buffer in the circular queue. This
address must be an offset calculated relative to the queue segment base
specified in the configuration message. This field is static and should not be
changed after configuration.

3.6.2. Reserved Field

This field is reserved. It must be initialized with the value 0, and set to 0 in
Host-to-EXOS messages. lIts value in reply message is undefined.

3-15

NX 200: Initialization and Host Interface for VMEbus Systems

3.6.3. Status Field

The status field is used to implement the message protocol, and is defined
bit by bit:

Bit 0: Owner bit. If 0 then the buffer is owned by the host; if 1 then
the buffer is owned by NX 200. The host may alter a
message buffer only while it has ownership.

Bit 1: Done bit. NX 200 sets this to 0 along with the owner bit
every time it passes a buffer to the host. Host software can
use the done bit to distinguish between buffers newly
received from NX 200 and buffers it has already processed.

Bit 2: Overflow Bit. NX 200 sets this bit to 1 if an EXOS-to-Host
message had to be truncated because the host buffer's data
field was shorter than the message sent.

Bits 3-7: Undefined. These bits are reserved for NX 200, and should
not be used for any purpose by the host.

3.6.4. Length Field

The length field specifies the number of bytes in the data field. The maximum
length of the data field is a matter of agreement between the host and the user
software on the EXQOS 202. There is no restriction on the size of the data field
as long as the buffers satisfy the queue segment constraints. Most applications
will transfer small amounts of control information via messages, and use direct
memory access to move larger data buffers.

In Host-to-EXOS messages, set this field's value before passing the message to
NX 200. In EXOS-to-Host messages, this field tells the host how many valid
bytes were wriiten into the data field. The host must reset its value to the data
field's size before returning a buffer to NX 200.

3.6.5. Data Field

The data field contains the actual message data passed between the host and
the EXOS 202. NX 200 does not interpret its contents in any way - it is exactly
equivalent to the data field in messages as seen by processes on the EXOS 202
(refer to Section 7).

3.7. MESSAGE QUEUE INITIALIZATION

The host must initialize the message queues and the queue headers prior to
configuring the EXOS 202. Figure 3-6 shows the relation between queue
headers and message queue buffers at initialization time for a typical
implementation. In each queue, the host and EXOS 202 gueue headers should
point to the sarne buffer.

For each queue, the link fields should be initialized to form a circular, singly-
linked list. This ring structure should not be modified after configuration. Each
queue may contain an arbitrary number of buffers, so long as at least one is
supplied. The reserved field of all message buffers in both queues should be
set to 0.

3-16

NX 200: Initialization and Host Interface for VMEbus Systems

HOST-TO-EXOS MESSAGE QUEUE

3

EXOS-TO-HOST MESSAGE QUEUE

J

HOST ———»l j+——] EXOS EXOS —>f I-q—
Q HEADER IMESSAGE Q HEADER Q HEADER IMESSAGE
BUFFER I BUFFER I

Il

L
—

,J

MESSAGE | [MESSAGE |
BUFFER BUFFER
- |
l"— vy
MESSAGE MESSAGE
BUFFER I BuFFeR |

L |
LT

[

Figure 3-6: Message Queue Data Structures at Initialization Time

HOST
Q HEADER

In the host-to-EXOS queue the status field of all buffers should contain the value
02H, which indicates that they are owned by the host. The length and data
fields are not defined at initialization.

In the EXOS-to-host queue the status field of all buffers should contain the value
03H, which indicates that they are owned by NX 200. The length field of each
buffer should not exceed the size of the data buffer.

Note that the length field must be initialized to accommodate the length of the
largest message expected from NX 200, or the message will be truncated upon
reception. The data field is not defined at initialization.

Figure 3-7 is a snapshot of an example EXOS-to-host message buffer queue at
the time of initialization. The configuration message describing the queue is also
shown in part. Data structures are shown as vectors containing hexadecimal
byte values. The VMEbus physical address of each data structure is shown to
the left (slightly above the location), and its name to the right. The example
assumes that the host system's memory is so partitioned that 3DH is the
VMEbus address modifier which NX 200 should use to address host system
memory. As a result, all of the 4-byte pointers contain the 3DH address modifier
concatenated with the 24-bit physical address. According to the configuration
message in this example, writing the value 40H at memory location 0E2044H
will interrupt the host. NX 200 will assert this interrupt when the status of the
EXOS-to-host message queue changes, as described in the following section.
The circular message queue shown here contains three buffers of equal length,

NX 200: Initialization and Host Interface for VMEbus Systems

E0000H [————
i 1
E0044H
00H
00H
OFH
30H
E0048H
D2H
14H
E004AH
02H
E004BH
40H
E004CH
44H
20H
OEH
- 3DH
E2044H

Configuration
Message

Queue Base Address

Queue Header Address

Interrupt Type
Interrupt Value

Interrupt Address

Memory-mapped
Interrupt
Location

Figure 3-7: Example EXOS-to-Host Message Queue, at Initialization Time

FOOO0OH Queue Segment
— Base
F14D2H Queue Header
t D2H
15H
F1502H Link Field
———g{ D2H
16H d
F1504H Reserved Field
O0H
F15D5H Status Field
03H
F15D6H Length Field
20H
00H
F1508H Data Field
F15F8H i :
F16D2H Link Field
el D2H
| 17H
F16D4H Reserved Field
00H
F16D5H Status Field
03H
F16D6H Length Field
20H
00H
F16D8H Data Field
F16F8H : '
F17D2H Link Field
. o D2H
15H
F17D4H Reserved Field
O0H
F1705H Status Field
03H
F17D6H Length Field
20H
0OH
F17D8H Data Field'
F17F8H : i

3-18

NX 200: Initialization and Host Interface for VMEbus Systems

each providing a 32-byte data field. The queue header points to one of the
buffers, arbitrarily chosen, at its link field address.

3.8. MESSAGE QUEUE PROTOCOL

This section describes the protocol which NX 200 follows in sending messages
to, and receiving messages from, the host processor. As it happens, host
software can follow the same procedure, so that the exchange is symmetrically
defined. The description below assumes such an implementation, but certainly
other methods are possible, within the constraints of NX 200's behavior.

In a typical implementation, the host system and NX 200 each maintain private
queue headers for both queues (see Figure 3-6). The EXOS 202’s host-to-
EXOS message queue’s header points to the message buffer which NX 200 will
receive next. The EXOS 202's EXOS-to-host message queue’s header points
to the message buffer which NX 200 will send to next. NX 200 maintains these
queue headers after configuration. Although the EXOS 202 queue headers are
kept in host memory, after initialization the host should not refer to these.
Similarly, NX 200 will not refer to the host's own queue headers. Host queue
headers can be in any format (16-bit offset, 32-bit virtual address, array index,
etc.) which may be convenient for the host software.

For the host-to-EXOS queue, the host's queue header should always point to
the next buffer in which the host will send a message. NX 200's queue header
will always point to the next buffer in which NX 200 will look for a message.
Both pointers will always move sequentially through the message queue. Note
that unless a message arrives on the next buffer, NX 200 will not scan any
further in the queue. This means that the host should always write the message
in the next buffer where NX 200 expects it to be rather than in any arbitrary
position in the queue. During the course of message processing, the host's
queue header may end up several buffers ahead of NX 200’s queue header, but
should never “lap” it from behind. Any difference between the headers
represents buffers which NX 200 has not yet consumed.

For the EXOS-to-host queue, the host's queue header should always point to
the next buffer in which the host will look for a message. NX 200’s queue
header will always point to the next buffer in which NX 200 will send a message.
As above, both pointers will always move sequentially through the message
queue. Note that unless the next buffer is available to the EXOS 202, it will not
scan any further to find a free buffer to write the message. This means that
NX 200 will always write the message in the next buffer where the host expects
it to be rather than in any arbitrary position in the queue. During the course of
message processing, NX 200's queue header may end up several buffers ahead
of the host's queue header, but again, should never "lap" it from behind. Any
difference between the headers represents buffers which the host has not
yet consumed.

3.8.1. Host-to-EXOS Message Transfer

Host software can use the following sequence of steps to transfer messages
to NX 200:

1. Test the owner bit of the buffer to which the host queue header
points. If NX 200 still owns this buffer, then wait until it is returned
(either poll the owner bit, or wait for the interrupt which
accompanies each buffer turnover event).

3-19

NX 200: Initialization and Host Interface for VMEbus Systems

Advance the host queue header, so that it now points to the next
buffer in the queue.

Load the message into the data field of the current buffer, and set
the length field appropriately.

Set the current buffer's owner bit," so that the buffer now belongs
to NX 200.

Interrupt NX 200 by writing to port B, to notify it that a new
message is available.

The EXOS 202 can process more than one message from the host upon
receiving a single interrupt. Therefore it is important that the host change the
buffer's owner bit only after preparing the other fields. Otherwise, NX 200 if is
still processing a previous interrupt from the host, it may consume a half-baked
message. Note that the host may prepare more than one message buffer at a
time, and send a single interrupt, if sufficient buffers are available.

When NX 200 receives an interrupt from the host, it will:

1.

3.

Examine the owner bit of the buffer to which its own queue header
points. If the buffer belongs to NX 200, then it will process it, as
described in the following steps. (Otherwise, the interrupt could
mean that the host is returning an EX0S-to-host message buffer, or
could be spurious.)

Load the link field of the current buffer into its queue header, so that
it now points to the next buffer in the queue.

Extract the message from the current buffer. If there is no
consumer for this data (no receive request on the NX 200’s host
interface mailbox), then wait.

Reset the current buffer's owner bit, so that the buffer is returned to
the host. Set the buffer's done bit to 0.

Interrupt the host to notify it that a buffer has been returned. The
type of interrupt is specified by the configuration message. Repeat
from step 1, until the owner bit shows that no new messages are
pending.

Note that the interrupt described in step 5 is the same interrupt which the host
waits upon when no message buffers are available.

3.8.2. EXOS-to-Host Message Transfer

When NX 200 has a message to transfer to the host, NX 200 will:

Test the owner bit of the buffer to which its queue header points. If
the buffer belongs to NX 200, then process it, as described in the
following steps. Otherwise, wait for an interrupt from the host which
indicates that a buffer has been returned (NX 200 can process
other jobs in the mean time).

Load the link field of the current buffer into its queue header, so that
it now points to the next buffer in the queue.

Load the message into the data field of the current buffer, and set
the length field to the length actually transferred (will not exceed

3-20

NX 200: Initialization and Host Interface for VMEbus Systems

data field length). If the data field was too short for the message,
then it sets the overflow bit.

4. Reset the current buffer's owner bit, so that the buffer now belongs
to the host. Set the buffer's done bit to 0.

5. Interrupt the host to notify it that a new message is available. The
type of interrupt is specified by the configuration message.

When the host receives an interrupt from NX 200, it can:

1. Examine the owner bit of the buffer to which the host queue header
points. If the buffer belongs to the host, then it should process it,
as described in the following steps. (Otherwise, the interrupt could
mean that NX 200 is returning a host-to-EXOS message buffer, or

could be spurious.) J

2. Advance the host's own queue header, so that it now points to the
next buffer in the queue.

3. Extract the message from the current buffer. It may check the
overflow bit to be certain that the entire message was sent. If there
is no consumer for this data, then wait.

4. Set the length field to the size of the data field.

5. Reset the current buffer's owner bit, so that the buffer is returned
to NX 200.

6. Interrupt NX 200 by writing to port B, to notify it that a message
buffer has been returned. Repeat from step 1, until the owner bit
shows that no new messages are pending.

While the host is processing an interrupt, NX 200 may in the meantime write
more messages into the queue. The host may elect to process these messages
in addition to the message associated with the interrupt being serviced. Note,
however, that at least one interrupt will remain pending, so that when interrupts
are re-enabled, the host will be again interrupted by NX 200, although the
corresponding message would have already been processed.

Although the above description assumes that the EXOS 202 is programmed to
interrupt the host to signal message queue events, the host also has the option
of simply polling the message queue.

3.9. DOWNLOADING SOFTWARE FROM THE HOST

Normally, if the EXOS 202 is configured in mode 1, host software would then
download and run higher level protocol software. Two message formats are
provided for this purpose, one to copy user code and data to NX 200, and
another to - start code execution. For each message NX 200 sends a
corresponding reply message which confirms the completion of the request.

3.9.1. Host Download Request

The host can copy code to any location in EXOS 202 memory which is normally
available to the user. The download request copies buffers up to 64K-1 each in
size, in any order, without modification. NX 200 does not protect the user area
against un-intentional overlays. Figure 3-8 shows the format of the download
request/reply message, and the following paragraphs describe the individual
fields in detail.

3-21

3.9.1.1. Reserved Field

NX 200: Initialization and Host Interface for VMEbus Systems

The first field is reserved for use by NX 200, and must be set to 0. Its value in
the reply message is undefined.

3.9.1.2. User Id Code Field

The user id code field is not interpreted by NX 200, and is returned unmodified
in the reply message. It can be used to establish a correspondence between
request and reply messages.

3.9.1.3. Request Code Field

The request code field defines the request. Its value in the request message
must be 0. This value is preserved in the reply message.

#

1)

2)

3)

4)

5)

6)

7)

Length Offset

2 0
4 2
1 6
1 7
2 8
4 10
4 14

Field Name

User Id Code

Figure 3-8: EXOS 202 Down-Load Request/Reply Message

Request

zero

undefined

00H

undefined

see text

see text

see text

Reply

undefined

preserved

preserved

see text

see text

undefined

undetfined

3-22

NX 200: Initialization and Host Interface for VMEbus Systems

3.9.1.4. Return Code Field

The reply code field is undefined in the request message. In the reply message,
it reports the status of the download request:

0
A3H

A1H

Successful completion.

Destination memory block ovérlaps the memory reserved for

NX 200, no copy done.

Invalid request, the EXOS 202 is not in front end mode.

3.9.1.5. Data Length Field

The data length field specifies the number of bytes to be copied into EXOS 202
memory. This may be any value between 0 and 64K-1. In the reply message,
this field returns the number of bytes actually copied.

3.9.1.6. Source Address Field

The source address field specifies the starting address in shared memory from
which to copy the user code image. This is the absolute address with the
VMEbus address modifier provided at bit positions 0-5 in the most significant
byte. Its value in the reply message is undefined.

#

1)

2)

3)

4)

5)

Length Offset

2 0
4 2
1 6
1 7
4 8

Field Name

User

Id Code

Figure 3-9: EXOS 202 Start-Execution Request/Reply Message

Request

zZero

undefined

02H

undefined

see text

Reply

undefined

preserved

preserved
see text

preserved

3-23

3.9.1.7.

NX 200: Initialization and Host Interface for VMEbus Systems

Destination Address Field

The destination address field specifies the starting address in EXOS 202
memory to which the user code image will be copied. This must be a
segmented address. Its value in the reply message is undefined.

3.9.2. Start Execution Request

3.9.2.1.

3.9.2.2.

3.9.2.3.

3.9.2.4.

3.9.2.5.

After downloading protocol software, the host processor starts it executing with
a single start execution request message. Once this command has been issued
and the reply received, NX 200 does not itself process any more messages.
Instead, all messages sent to the EXOS 202 will be queued up for user
processes running under the NX 200 kernel.

The start execution request specifies the location at which execution of user
code begins. User code is entered as a single process with priority 255 and
infinite time slice. All registers except for the PC and stack pointer are
undefined. The initial process stack is provided from the NX 200 data area and
is guaranteed to be at least 100H bytes deep. The process is free to switch to a
bigger stack if desired. In all other respects, it is a normal process, as defined
in Section 7.5.

Figure 3-9 shows the format of the start execution request/reply message, and
the following paragraphs describe the individual fields in detail.

Reserved Field

The first field is reserved for use by NX 200, and must be initialized as 0. Its
value in the reply message is undefined.

User Id Code Field

The user id code field is not interpreted by NX 200, and is returned unmodified
in the reply message. It can be used to establish a correspondence between
request and reply messages.

Request Code Field

The request code field defines the request. Its value in the request message
must be 2. This value is preserved in the reply message.

Return Code Field

The reply code field is undefined in the request message. In the reply message,
it reports the status of the start execution request.

0 Successful completion.
A2H Invalid starting address, execution not started.

A1H Invalid request, the EXOS 202 is not in front end mode.

Starting Address Field

The starting address field specifies the initial value of the initial process's
program counter. This must be a segmented address. its value is preserved in
the reply message.

3-24

Chapter 4
INITIALIZATION AND HOST INTERFACE
FOR Q-BUS SYSTEMS

4.1. INTRODUCTION

The EXOS 203 Intelligent Ethernet Controller is specifically designed for use in a
Q-bus system. This section contains information pertinent to the design of
host-resident software, such as an I/O driver, which communicates with the
EXOS 203 intelligent Ethernet controller installed in a Q-bus-based system.

Note that the EXOS 203 Intelligent Ethernet Controllers are available for use in
different computer buses, such as, Multibus, Q-bus, UNIBUS, VMEbus, and PC
bus. While logically the NX 200 operating system functions remain the same, the
specific procedures for initialization vary for different EXOS board-to-host
combinations.

The host interface can be broken down into two aspects, the initialization
procedure, and the communication method subsequently used. Initialization
refers to the process which begins upon resetting the EXOS 203, and concludes
either with entering the Link Level Controller mode, or with the execution of
downloaded software. ‘During the process of initialization, the host system sets
up the host message queue data structures. The host message queue protocol,
defined by NX 200 firmware, uses these queues for all further communications
between the host processor and NX 200.

The following paragraphs give an overview of the initialization process:

1. The host system resets the EXOS 203, then the NX 200 executes
self-diagnostics which exercise various board components and
functions. If the diagnostics fail, then the EXOS 203 displays an
error code on the NX 200 status LED (see Appendix A, Self-
Diagnostic and Configuration Errors) until the board is reset again.
If the diagnostics pass, then NX 200 awaits configuration by
the host.

2. The host system passes NX 200 the address of a configuration
message in host memory. NX 200 examines this message, and
modifies some fields according to the results of configuration. If
configuration is unsuccessful, the EXOS 203 displays an error code
on the NX 200 status LED until reset. If the configuration message
is valid, then the EXOS 203 enters one of three modes, as
specified by the operation mode field in the message.

3. Initialization for each of the three different modes proceeds as
follows:

a. In Link Level Controller Mode, the EXOS 203 begins to execute
firmware which brings NX 200's Ethernet Data Link driver
interface out to the host system interface. No software is
downloaded to the EXOS 203; instead the host system passes
Data Link commands to the board and receives replies through
the standard host message queue protocol. This mode is
described fully in Section 6.

4-1

NX 200: Initialization and Host Interface for Q-bus Systems

b. In Front-End Mode 1, the host system proceeds to download
software to the EXOS 203, by passing download request
messages through the standard host message queue protocol.
After the software has been downloaded, it passes an execute
request to the board, which then begins to execute the
downloaded software. Subsequent actions depend entirely on
the software which has been downloaded, although the host
message queue protocol remains in place.

c. In Front-End Mode 2, the EXOS 203 proceeds to bootstrap
itself from the Ethernet interface, as described in Section 11.
Depending on how the bootstrap server configures NX 200, it
may still communicate with the host system through the
standard host message queue protocol. Network bootstrap is
quite similar in many ways to initialization by a host processor;
the configuration message described in this section is identical.

4.2. HARDWARE COMMUNICATIONS CHANNELS

Communication between the host processor and the EXOS 203 is conducted via
a coordinated exchange of interrupts, /O instructions, and data transfers
through shared memory on the Q-bus. The following sections define these
primitive channels of communication. These channels are used during the
process of initialization and, subsequently, to implement the message queue
protocol.

4.2.1. Host Access to the EXOS 203 Q-bus Board

The host's means of active access to the EXOS 203 are solely through two 1/O
ports, named port A and port B here for the sake of reference. These ports are
accessed over the Q-bus, and can be both read and written. Their addresses
are selected by jumpers on the EXOS 203, as described in the EXOS 203
Intelligent Ethernet Controller Reference Manual.

The effects of reading and writing ports A and B in Q-bus systems are
summarized below:

Read A: No Operation.
Write A: Resets the EXOS 203 (refer to Section 4.4).
Read B: Returns the EXOS 203 status byte:

Bit O: (Error Bit) when 0, indicates a fatal error in EXOS 203.
When the EXOS 203 is reset, this bit is 0, but will be
set to 1 if the self test completes successfully. If this
bit is not set within 3 seconds, then the EXOS 203 has
failed the self-diagnostics.

Bits 1-2: Undefined.

Bit 3: (Ready Bit) when 0, indicates that NX 200 is ready to
accept a byte written into port B. When 1, NX 200 has
not yet read the byte last written into port B.

Bits 4-5: Undefined.

4.2

NX 200: Initialization and Host Interface for Q-bus Systems

Bit 6: (Loopback Test Bit) when 0, indicates loopback test
passed. When 1, indicates loopback test failed,
possibly due to faulty transceiver or faulty transceiver

cable.
Bit 7: Undefined
Write B: Interrupts the EXOS 203 CPU, and communicates a 1-byte value.

This is the only way to communicate a value to the EXOS 203
other than through shared memory.

4.2.2. EXOS 203 Q-bus Board Access to the Host

The EXOS 203 functions as a master on a Q-bus system. It can access the full
4-Mbyte memory address space which includes the 8K I/O address space, and
interrupt the host processor. User software on the EXOS 203 does not directly
control these resources. Instead, it calls NX 200's host interface driver,
described in Section 9.

In general, data is transferred between the host and the EXOS 203 via shared
memory, which may be any portion of system memory accessible to both
processors on the Q-bus. The EXOS 203's CPU performs the transfer by
dynamically mapping part of its own address space into the Q-bus memory
address space, and executing a block transfer instruction. Note that the
EXOS 203's on-board memory cannot be shared; it is not directly accessible by
the host processor.

The EXOS 203 can interrupt the host either through I/O addresses, memory
addresses, or the Q-bus interrupt lines. The type which will be used is selected
at initialization time. Memory and I/O-mapped interrupt addresses are
configured by software; the interrupt line is selectable by means of a jumper
option, described in the EXOS 203 Intelligent Ethernet Controiler Reference
Manual. Unless I/O-mapped interrupts are selected, the NX 200 firmware will
not normally generate /O operations on the Q-bus. User software on the
EXOS 203 can use I/O instructions to control other peripheral cards.

4.3. HOST DATA ORDER CONVERSION OPTION

The host data order conversion option determines whether NX 200 will interpret
data read from host memory according to its own native ordering, or according
to the host CPU's native ordering. This option is selected by a field in the
configuration message (refer to Section 4.5.5). If enabled, then the NX 200
inspects a known data pattern in the configuration message, written in the host
CPU’s native order. It determines what conversions are necessary to make this
pattern appear in the order it expects, for several different data types: byte
array, word array, and longword. NX 200 will then apply the appropriate
conversion to all data objects subsequently read from host memory.

For the byte array data type, NX 200 knows how to convert data stored
according to the SUN design’'s byte addressing idiosyncrasies. This means that
it will invert the least significant address bit when addressing host system
memory, to reverse the effects of common 68000 CPU board designs. For the
word data type, NX 200 can swap bytes if necessary. For the longword data
type, NX 200 can swap words, swap bytes, or both. Therefore /O driver
software for any reasonably normal host CPU can store data objects in its native
order, and leave conversion up to NX 200.

4-3

NX 200: Initialization and Host Interface for Q-bus Systems

Naturally, NX 200 must know the type of a data object to apply the appropriate
conversion. All data objects described in this section are known to NX 200,
except for the actual contents of messages between the host and the
EXOS 203. NX 200 does apply the byte array conversion (if necessary) to
message contents, and to all data transferred. How the contents of messages
should be further interpreted is the function of user-level software running on the
EXOS 203. For instance, the firmware which drives the Link Level Controlier
Mode (refer to Section 6) runs at user level under NX 200, and converts word
and longword data objects which are known to itself, but not to NX 200. NX 200
assists this process by providing kernel calls (refer to Section 9.5) which convert
word and longword data types as required by the host data order conversion
option.

Whether or not the host data order conversion option is enabled, the host
system must still write the required data pattern in the configuration message.
This pattern occupies 12 bytes of the 32-byte test pattern/memory map field
(refer to Section 4.5.10). It should be initialized as shown in Figure 4-1. Note
that while the relative position of subfields in the test pattern is specified, the
order of bytes within those subfields is dependent on the host CPU architecture.
Figure 4-2 shows how this pattern might be initialized in the C language, both
statically and dynamically.

#

1)
2)
3)
4)

5)

6)

7)

8)

Length Oftset Sub-Field Name " Value

1 0 | Byte 0 | O01H
I I

1 1 | Byte 1 | O03H
R I I I

1 2 | Byte 2 [o7H
I |

1 3 | Byte 3 | OFH
e R l

2 4 | Word © | 0103H
| |
I R R |

2 6 | Word 1 | O070FH
| |
R l

4 8 | Longword | 0103070FH
l I
i |
| [
I |

20 12 : Reserved : zero

R 1 byte------------

Figure 4-1: Host Data Order Conversion Option Test Pattern

14

NX 200: Initialization and Host Interface for Q-bus Systems

Note that memory addresses, regardless of the host address mode, are stored
and interpreted as the longword data type. For instance, the longword test
pattern can also be regarded as a memory address in the host’s native format
for the absolute address 0103070FH (if absolute address mode is selected) or
for segment 070FH, offset 0103H (if segmented mode is selected).

/* constants for test pattern */
#define BYTEO 0x01

#define BYTE1 0x03

#define BYTE2 O0x07

#define BYTES OxOF

#define WORDO 0x0103
#define WORD1 Ox070F
#define DWORD 0x0103070F

/* static initialization of test pattern */
struct tstptrn {

char byteptrn[4];

short wordptrn[2];

long Iwordptrn;

char rsrvd{20];

struct tstptrn tp = {
BYTEO, BYTE1, BYTE2, BYTES,
WORDO, WORD1,
DWORD.
0.0.0,0,0,0.0.0,0,0,0,0,0,0,0,0,0,0,0,0

/* dynamic initialization of test pattern */

initptrn ()

{ .
register int i;
tp.byteptrn[0] = BYTEQ;
tp.byteptrn[1] = BYTEA1;
tp.byteptrn{2] = BYTE2;
tp.byteptrn[3] = BYTES;:
tp.wordptrn{0] = WORDO;
tp.wordptrnf1] = WORD1;
tp.lwordptrn = DWORD;
for (i=0; i<.20; i+ +) tp.rsrvd[i] = 0;

}

Figure 4-2: Host Data Format Test Pattern Initialization

If NX 200 cannot make any sense of the test pattern presented by the host,
then initialization is aborted, and the appropriate error code displayed on the
status LED. For error code value assignments, see Appendix A; Self-Diagnostic
and Configuration Errors.

4-5

NX 200: Initialization and Host Interface for Q-bus Systems

4.4. RESET AND CONFIGURATION PROCEDURE

This section describes initialization by a host system up to the completion of
configuration. Figure 4-3 shows a typical procedure which implements as much.

The EXOS 203 is reset by the Q-bus BINIT signal, or whenever port A is written
from the Q-bus. Host software should use the latter method to be sure. On
reset of the EXOS 203, NX 200 performs a Series of self tests to confirm
hardware integrity. While these tests run, the NX 200 status LED (see Appendix
A; Self-Diagnostics and Configuration) will remain lit constantly.

When self-diagnostics complete successfully, NX 200 sets the error bit in /O
port B and flashes the status LED at regular intervals.

If the error bit is not set within 3 seconds of reset, the host may assume that
self-diagnostics turned up a problem. In this case, the EXOS 203 repeatedly
reports an error code through the NX 200 status LED (for error code values, see
Appendix A; Self-Diagnostic and Configuration Errors). The EXOS 203 will
remain in this state until reset again.

A jumper option, described in the EXOS 203 Intelligent Ethernet Controller
Reference Manual, determines how initialization will proceed after reset and
self-diagnostics. If the jumper selects network bootstrap, then the EXOS 203
will attempt to download software over the Ethernet (refer to Section 11).
Otherwise the EXQS 203 awaits configuration by the host processor.

The host configures the EXOS 203 by passing it the address of a configuration
message, located in shared memory. This message establishes various NX 200
parameters and selects among several modes of operation. Parameters include
memory allocation for NX 200 objects, the address of NX 200's movable data
area in EXOS 203 memory, and the location of message queues in shared
memory.

Among the optional operation modes, the host can select network bootstrap.
This will proceed as though the net boot jumper option had been installed,
except that NX 200 will first note the contents of the host configuration
message. Other configuration options include host data order conversion and
the host address mode.

The host processor communicates the address of the configuration message to
NX 200 by writing a sequence of 8 bytes into port B. Each byte should be
written after checking that the ready bit of the EXOS 203’s port B is clear. This
ensures that the EXOS Q-bus board is ready to accept the next address byte.
The first four bytes of the sequence must be FF-FF-00-00 (sent from left to
right). The next four bytes are the configuration message's absolute Q-bus
memory address (least significant byte first). The configuration message must
be aligned on a even address boundary. When the last byte is written, NX 200
reads and interprets the configuration message. |If the address for the
initialization message is not valid, then NX 200 will display an error code on the
status LED (see Appendix A; Self-Diagnostic and Configuration Errors).

When NX 200 has finished processing the configuration message, it writes a
completion code into the appropriate field of the message. Any value other than
OFFH indicates completion; the value 0 indicates successful configuration.
Other values denote specific errors in configuration (refer to Section 4.5.3).
Normally, configuration should complete within 3 seconds, but network bootstrap
might take longer, depending on circumstance. NX 200 also returns a few

4-6

NX 200: I[nitialization and Host Interface for Q-bus Systems

extern read_port(Port_Num) ;* returns value read from port Port_Num */
extern write_port(Port_Num, Val) ;* writes Val to port Port_Num °/
extern start_clock() /* starts an interval timer */

extern ctock() /* returns the current value of the mterval timer */

/* bit value definitions for status byte read from port B */
#define ERROR_BIT 1

#define READY_BIT 8

#define ERRNON 0

struct { /* configuration message */
short reserved;
char version[4];
char comp_code:
<etc...>
} init_msg;

char init_addrs[8] = {OxFF, OxFF, 0, 0, <absolute address of init msg> };
/* refer to Section 1 for absolute address format */

initialize () {
< set up init_msg and the message queues (refer to Section 4.6) >;
write-port(A); /* reset the EXOS 203 */
start_clock(); /* start timer, clock counts real time */

/* wait until self test completes */
while ((read_port(B) & ERROR_BIT) == 0) {
if (clock() > 2_SECONDS) {
return (malfunctioning_board);
}
H

/* write the configuration message address */
for (i=0; i<8; i+ +) {
while (read_port(B) & READY. BIT)
write_port(B.init_addrsi]):
}

/" wait for the reply message */
while (init_msg.comp_code == 0xFF);

/* ensure no errors */
if (init_msg.comp_code != ERRNON)
return (error);
else
return (success);
}

Figure 4-3: Typical Reset and Configuration Procedure

parameters to the host in the configuration message, notably its version number
and a map of available memory.

Once configuration is complete, the memory space occupied by the
configuration message can be used for any other purpose. After configuration,
communication between the host and NX 200 is carried out solely by means of
message queues, described in Section 4.5.

4-7

NX 200: Initialization and Host Interface for Q-bus Systems

4.5, CONFIGURATION MESSAGE FORMAT

Figure 4-4 shows the format of the configuration request/reply message. This is
used identically by either a host system or a network bootstrap server. The
following paragraphs explain the individual fields in detail. Note that reply values
other than the completion code field itself are defined only if configuration is

successful.

4.5.1. Reserved Field

The first field is reserved for use by NX 200. Its value in the request message
must be 1, and its return value is undefined.

4.5.2. EXOS Version Code Field

The EXOS version code field is undefined in the request message. In the reply
message, it returns version codes for NX 200 and the EXOS 203 in the form
X.Y and A.B, respectively. These are expressed as ASCII digits, one per byte
in the order X-Y-A-B, starting from the lower address.

4,5.3. Configuration Completion Code Field

The completion code field must be OFFH in the request message. The
EXOS 203 signals that configuration is complete, and returns the completion
code, by writing one of the following codes into this field:

O0H
A4H
A5H

A7H

A8H
ASH
AAH
ABH
ACH
ADH

Successful completion.
Invalid operation mode.

Invalid host data format test pattern. This occurs when NX 200
cannot find any reasonable conversion to derive the expected
data pattern from that supplied in the test pattern. In practice,
this might imply that the host has given NX 200 the wrong
address for the configuration message.

Invalid configuration message format. This may occur if
reserved fields contain an improper value. In practice, this error
message may indicate that the host has given NX 200 the
wrong address for the configuration message.

Invalid movable block address.
Invalid number of processes.
invalid number of mailboxes.
Invalid number of address slots.
invalid number of hosts.

Invalid host message queue parameter. NX 200 returns this
error if it detects any inconsistency in the message queue
specifications. This might include a bad interrupt type, invalid
segment address, bad linking of the message queue
buffers, etc.

4-8

NX 200: Initialization and Host Interface for Q-bus Systems

Length Offset Field Name Request Reply

1) 2 0 | Reserved ‘ [1 undefined
| !
| e e e [

2) 4 2 EXOS Version Code undefined see text

3) 1 6 | Configuration Completion Code | OFFH see text
| e e |
4) 1 7 | EXOS Operation Mode | see text preserved
| e e |
5) 2 8 | Host Data Format Option | see text see text
| |
e |
6) 3 10 | EXOS Context | zero see text
[|
| |
| e e |
7) 1 13 | Host Address Mode | see text see text
e |
8) 1 14 | Reserved | zero undefined
| e |
9) 1 15 | Memory Map Size [zero see text
| e e |
10) 32 16 . Test Pattern/Memory Map . see text see text
| o e |
11) 4 48 | NX Movable Block Address | see text see text
I I
| |
[|
| o e e |
12) 1 52 | Number of Processes | see text see text
| o e |
13) 1 53 | Number of Mailboxes | see text see text
| e e |
14) 1 54 | Number of Multicast Slots | see text see text
| o |
15) 1 55 | Number of Hosts | see text preserved

continued on next page....

Figure 4-4: Configuration Request/Reply Message

4.9

NX 200: Initialization and Host Interface for Q-bus Systems

#

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

Length Offset

..continued

4 56 | Host-to-EXOS Message Queue

| Base Address

l

|

[oeme o ieemmma e
2 60 | Host-to-EXOS Message Queue

| Header Address

[oo e e et e
1 62 | Host-to-EXOS MQ Interrupt Type

[o et e e
1 63 | Host-to-EXOS MQ Int. Value

P
4 64 | Host-to-EXOS Message Queue

| Interrupt Address

|

|

R
4 68 | EXOS-to-Host Message Queue

| Base Address

|

|

[e e e e e
2 72 | EXOS-to-Host Message Queue

| Header Address

| e e e e e
1 74 | EXOS-to-Host MQ Interrupt Type

| e e e e e e
1 75 | EXOS-to-Host MQ Int. Value

| e e e e e
4 76 EXOS-to-Host Message Queue

I
| Interrupt
l
|

Field Mame

from previous page

Address

-

byte----~-------- :

Figure 4-4a: Configuration Request/Reply Message (continued)

Request

see

see

see

see

see

see

see

see

sce

see

text

text

text

text

text

text

text

text

text

text

Reply

preserved

preserved

preserved

preserved

preserved

preserved

preserved

preserved

preserved

preserved

AEH Insufficient memory for movable data block.

AFH Net boot failed.

The codes defined above will also be displayed on the status LED if

configuration is not successful.

NX 200: Initialization and Host Interface for Q-bus Systems

4.5.4. NX 200 Operation Mode Field

The NX 200 operation mode field determines the mode in which the EXOS 203
is to be used. Three different modes are supported:

0 Link Level Controller Mode. This mode brings the Ethernet Data
Link interface out to the host interface. No software is
downloaded. It would typically be used when the EXOS 203 is
substituted for the traditional non-programmable Ethernet
controller board. For details, refer to Section 6.

1 Front-End Mode, download from the host. In this mode NX 200
is used as a front-end processor. Higher level software is
downloaded by the host.

2 Front-End Mode, download from the net. In this mode NX 200
is used as a front-end processor and higher level software is
downloaded from the network. For details, refer to Section 11.

All other values for the mode are reserved and their effects are not defined. If
NX 200 is already in the process of network bootstrap (meaning that the
configuration message has been received from a bootstrap server) then only
mode 2 is permitted.

4.5.5. Host Data Order Option Field

The host data order option field enables the host data order conversion option
(refer to Section 4.3). Because the byte order of the host CPU will not be
known before initialization, this field is actually treated as two one-byte fields.
The host should load the same value into each sub-field in the request
message. This value is defined bitwise:

Bit 0: Deduce Format Bit. If 0, NX 200 will apply the conversions
currently in force. If the board has not been previously
configured, then the default conversion will be in force,
meaning that no format conversions are applied to data read
from the host. If this bit is 1, then NX 200 examines a
constant data pattern written by the host in the configuration
message'’s test pattern/memory map field, and deduces what
format conversion are necessary to interpret various data
types stored in the host CPU's native format.

Bits 1-7: Reserved. These bits must be 0 in the request message.

When initialized, NX 200 examines this field first, and interprets all other fields in
the configuration message accordingly. This field is undefined in the reply
message.

4.5.6. EXOS Context

This 3-byte field returns the EXOS context information. In the request message
the value of this field must be zero. In the reply message, the middle byte
(offset 11) returns the context value; the other two bytes are undefined. For the
EXOS 203 the context value must be 03.

NX 200: Initialization and Host [nterface for Q-bus Systems

4.5.7. Host Address Mocle Field

The host address mode field determines how NX 200 will interpret addresses
which refer to objects in host memory. It is defined bitwise:

Bit O: Set Mode Bit. If 0, NX 200 will use the address mode
currently in force. If the board has not been previously
configured, then the default mode will be in force, meaning
that NX 200 will interpret all addresses as -style segmented
addresses. |If this bit is 1, then the next bit determines the
new address mode.

Bit 1: Address Mode Bit. The value 0 selects segmented address
mode. The value 1 selects absolute address mode.

Bits 2-7: Reserved. These bits must be zero in the request message.

This field is undefined in the reply message.

4.5.8. Reserved Field

This field is reserved for future use. Its value in the request message must be
0. lts value in the reply message is undefined.

4.5.9. Memory Map Size Field

4.5.10.

The memory map size field must be 0 in the request message. In the reply
message, it returns the number of segments available in EXOS 203 memory for
user software. This field contains a valid value only if the EXOS 203 is
configured in mode 1 or mode 2.

Test Pattern/Memory Map Field and Maximum Packet Size

The test pattern/memory map field serves different purposes in the request and
reply messages. In the request message, it must contain the test pattern
described in Section 4.3, stored in the host CPU's native format.

In the reply message, the test pattern/memory map field contains a map of
memory available for user software on NX 200. This map consists of up to 4
segment descriptors, where the actual number is indicated by the last field.
Each segment descriptor specifies a memory segment in terms of the lowest
address and the highest address included within the segment. Each address is
four bytes long. in the segmented format. The lower bound is given first, then
the upper bound.

This field contains a valid value only if the EXOS 203 is configured in mode 1 or
mode 2. If the optional 128K of RAM between 20000H and 3FFFFH is either
absent or is malfunctioning, then the map will not contain this segment.

The above feature is also available to customers using the NX 200, Versions 5.3
or later, in link-level controller and download modes. The host software may load
the word at offset 34 from the beginning of the configuration message with a
maximum packet size, excluding the CRC field. If the specified size is greater
than 1514 bytes, NX 200 allows larger packets to be transmitted and received
over Ethernet. The maximum packet size for non-buffer-chaining is 3FFFH. This
mode, however, should be used with caution, since it allows for violating
Ethernet specifications.

4.5.11.

4.5.12.

4.5.13.

4.5.14.

4.5.15.

NX 200: Initialization and Host Interface for Q-bus Systems

NX 200 Movable Block Address Field

The NX 200 movable block address field can be used to redefine the location of
NX 200’'s movable data area, described in Section 7.3. If the EXOS 203 is
configured in mode 0, this field must be OFFFFH, OFFFFH. In modes 1 or 2, the
value OFFFFH, OFFFFH specifies that the defauit location be used. If a non-
default address is specified, the segment base must be 0. The offset must
place the entire block either between 200H and 3FFH, or between 1000H and
OFFFFH.

In the reply message, this field returns the actual address of the NX 200
movable data area. The reply value is not defined in mode 0.

Number of Processes Field

The number of processes field configures the maximum number of processes
which NX 200 will support. If the EXOS 203 is configured in mode 0, this field
must be OFFH. In modes 1 or 2, the value OFFH specifies that the current value
be used. The default value, after reset, is 12. Optionally, a value between 1
and 128 can be specified. In the reply message, this field returns the actual
number of processes which NX 200 will support. The reply value is not defined
in mode 0.

Number of Mailboxes Field

The number of mailboxes field configures the maximum number of mailboxes
which NX 200 will support. Note that this number does not include system
mailboxes. If the EXOS 203 is configured in mode 0, this field must be OFFH.
In modes 1 or 2, the value OFFH specifies that the current value be used. The
default value, after reset, is 16. Optionally, a value between 1 and 128 can be
specified. In the reply message, this field returns the actual number of
mailboxes which NX 200 will support. The reply value is not defined in mode 0.

Number of Multicast Slots Field

The number of multicast slots field configures the maximum number of multicast
address slots which NX 200 will support. Note that this number does not include
the physical, broadcast, universal, or null slots, which are permanently allocated.
The value OFFH specifies that the current value be used. The default value,
after reset, is 8. Optionally, a vaiue between 0 and 252 can be specified. In the
reply message, this field returns the actual number of address slots which
NX 200 will support.

Number of Hosts Field

The number of hosts field specifies the number of host CPUs on the Q-bus
interface. Permissible values depend on the mode of operation. In all modes,
the value OFFH will retain the value currently in-force. Upon first configuration,
the default value is 0. In operation modes 0 and 1, only the value 1 may be
specified. However in mode 2 (network bootstrap), this field can be either O or
1. If 0, then the host message queues are undefined and the configuration
message fields pertaining to them will not be examined. Its value is preserved
in the reply message.

NX 200: I[nitialization and Host Interface for Q-bus Systems

4.5.16. Host-to-EXOS Message Queue Base Address Field

The host-to-EXOS message queue base address field specifies the base
address of the shared memory which contains the queue data structures for
transferring messages from the host to the EXOS 203 (refer to Section 4.6).
Addresses for all message queue data structures are 16-bit offsets, calculated
relative to this base. NX 200’s interpretation of this base address depends on
the host address mode selected (see the EXQS 203 Intelligent Ethernet
Controller Reference Manual).

In segmented mode, this field must contain an -style segmented address, stored
according to the convention described for the longword data type (lower-order
16 bits contain the offset, higher-order 16 bits contain the segment). The offset
value of this address must be 0; therefore the segment begins on some even
16-byte address boundary. Note that this format is sufficient only to describe a
20-bit address, or 1 Mbyte of host memory.

In absolute mode this field contains a 22-bit absolute memory address, also
stored as a longword. The lower-order 22 bits contain the address; the
remaining high-order 10 bits are reserved and must be 0. Furthermore, the
lower-order 4 bits of the address must also be 0, so that the segment begins on
some even 16-byte address boundary. This format can describe 4 Mbytes of
host memory.

This field’s value is preserved in the reply message.

4.5.17. Host-to-EXQS Message Queue Header Address Field

The host-to-EXOS message queue header address field specifies the offset of
the queue header. This offset must be calculated relative to the base address
specified for the host-to-EXOS message queue. Its value in the reply message
is preserved.

4.5.18. Host-to-EXOS Message Queue Interrupt Type Field

The host-to-EXOS message queue interrupt type field specifies the type of
interrupt which NX 200 will use to alert the host of a change in the status of the
Host-to-EXOS 203 message queue. Options are:

0 No interrupt. The host polls the message queues.

1 1’0 mapped. NX 200 writes a specified value at the specified
1/0O port address.

2 Memory mapped. NX 200 writes a specified value at the
specified memory address.

3 Undefined.

4 Bus-vectored interrupt.

The value of this field is preserved in the reply message.

4.5.19.

4.5.20.

4.5.21,

4.5.22.

4.5.23.

4.5.24.

NX 200: Initialization and Host Interface for Q-bus Systems

Host-to-EXOS Message Queue Interrupt Value Field

The host-to-EXOS message queue interrupt value field is defined only for I/O
mapped or memory mapped interrupt types. If these interrupt types are
selected, then this value will be written to the specified I/0O port or memory
address when an interrupt is asserted. The value of this field is preserved in the
reply message. '

Host-to-EXOS Message Queue interrupt Address Field

The host-to-EXOS message queue interrupt address field is defined only for /0
mapped, memory mapped, and bus-vectored interrupt types. If interrupt type 1
is selected, then it contains an 8-bit or 16-bit Q-bus I/O port address in the first
word, and the remaining word is undefined. If interrupt type 2 is selected, then it
contains a Q-bus memory address, which NX 200 will interpret according to the
host address mode. If interrupt type 4 is selected, then the first word contains an
interrupt vector; contents of the second word are undefined. The value of this
field is preserved in the reply message.

EXOS-to-Host Message Queue Base Address Field

- The EXOS-to-host message queue base address field specifies the base

address of the shared memory which contains the queue data structures for
transferring messages from NX 200 to the host (refer to Section 4.6). This is
exactly equivalent to the host-to-EXOS message queue base address field (refer
to Section 4.5.16). lIts value in the reply message is preserved.

EXOS-to-Host Message Queue Header Address Field

The EXOS-to-host message queue header address field specifies the offset of
the queue header. This offset must be calculated relative to the base address
specified for the EXOS-to-host message queue. Its value in the reply message
is preserved.

EXOS-to-Host Message Queue Interrupt Type Field

The EXOS-to-host message queue interrupt type field specifies the type of
interrupt which NX 200 will use to alert the host of a change in the status of the
EXOS 203-to-host message queue. Options are:

0 No interrupt. The host polls the message queues.

1 I/O mapped. NX 200 writes a specified value at the specified
I/0O port address.

2 Memory mapped. NX 200 writes a specified value at the
specified memory address.

3 Undefined.

4 Bus-vectored interrupts.

The value of this field is preserved in the reply message.

EXOS-to-Host Message Queue Interrupt Value Field

The EXOS-to-host message queue interrupt value field is defined only for 1/0
mapped or memory mapped interrupt types. |If these interrupt types are

415

NX 200: Initialization and Host Interface for Q-bus Systems

selected, then this value will be written to the specified /O port or memory
address when an interrupt is asserted. The value of this field is preserved in the
reply message.

4.5.25. EXOS-to-Host Message Queue Interrupt Address Field

The EXOS-to-host message queue interrupt address field is defined only for I/O
mapped, memory mapped, and bus-vectored interrupt types. |f interrupt type 1
is selected, then it contains an 8-bit or 16-bit Q-bus 1/O port address in the first
word, and the remaining word is undefined. If interrupt type 2 is selected, then it
contains a Q-bus memory address, which NX 200 will interpret according to the
host address mode. If interrupt type 4 is selected, then the first word contains
an interrupt vector; contents of the second word are undefined. The value of
this field is preserved in the reply message.

4.6. MESSAGE QUEUE FORMAT

Once the EXOS 203 is configured, message queues in shared memory serve all
further communications with the host. This includes software download, link
level controller mode service requests, and communication with downloaded
protocol code. Two message queues are maintained by the NX 200 firmware,
one for each direction of transfer. This section describes the format of the data
structures which compose a message queue. Following sections describe how
these must be initialized, and then the protocol which ensues after configuration.

Each message queue necessarily includes one queue header and a singly-
linked, circular list of message buffers. The required queue header belongs to
the EXOS 203; it reads and modifies its value during message exchange. The
host may read it, but must not modify it. The EXOS 203 queue header and all
message buffers must lie within a single 64K area of memory, called the queue
segment.

Message queue data structures are described here as viewed by NX 200. The
configuration message provides NX 200 with the queue segment base and the
offset address of the queue header, for each queue. NX 200 regards the queue
header value and link field values as 16-bit offsets calculated relative to the
queue segment base. As long as this view is preserved for NX 200, users are
perfectly free to augment these data structures in any manner necessary to
implement the desired mechanisms for the host message handling software.

Figure 4-5 shows the format of a message buffer, and the following paragraphs
describe the individual fields in detail.
4.6.1. Link Field

The link field is the address of the next buffer in the circular queue. This
address must be an offset calculated relative to the queue segment base
specified in the configuration message. This field is static and should not be
changed after configuration.

4.6.2. Reserved Field

This field is reserved. It must be initialized with the value 0, and set to O in
Host-to-EXOS messages. lIts value in reply message is undefined.

4-16

NX 200: Initialization and Host Interface for Q-bus Systems

Length Offset

1) 2 0
2) 1 2
3) 1 3
4) 2 4
5) n 6

Field Name

Figure 4-5: Message Buffer Format

4.6.3. Status Field

The status field is used to implement the message protocol, and is defined bit by

bit:
Bit O:

Bit 1:

Bit 2:

Bits 3-7:

4.6.4. Length Field

Owner bit. If 0 then the buffer is owned by the host; if 1 then
the buffer is owned by NX 200. The host may alter a
message buffer only while it has ownership.

Done bit. NX 200 sets this to 0 along with the owner bit
every time it passes a buffer to the host. Host software can
use the done bit to distinguish between buffers newly
received from and buffers it has already processed.

Overflow Bit. NX 200 sets this bit to 1 if an EXOS-to-Host
message had to be truncated because the host buffer's Data
Field was shorter than the message sent.

undefined. These bits are reserved for NX 200, and should
not be used for any purpose by the host.

The length field specifies the number of bytes in the data field. The maximum
length of the data field is a matter of agreement between the host and the user
software on the EXOS 203. There is no restriction on the size of the data field
as long as the buffers satisfy the queue segment constraints. Most applications
will transfer small amounts of control information via messages, and use direct
memory access to move larger data buffers.

NX 200: Initialization and Host Interface for Q-bus Systems

In Host-to-EXOS messages, set this field's value before passing the message to
NX 200. In EXOS-to-Host messages, this field tells the host how many bytes
were written after a message is transferred. The host must reset its value to the
data field’s size before returning a buffer to NX 200.

4.6.5. Data Field

The data field contains the actual message data passed between the host and
NX 200. NX 200 does not interpret its contents in any way - it is exactly
equivalent to the data field in messages as seen by processes on the EXOS 203
(refer to Section 7). However, if the host data order conversion option is
enabled, and SUN-style address bit inversion is required, this conversion will be
appl@ed to the contents of the data field.

4.7. MESSAGE QUEUE INITIALIZATION

The host must initialize the message queues and the queue headers prior to
configuring the EXOS 203. Figure 4-6 shows the relation between queue
headers and message queue buffers at initialization time for a typical
implementation. In each queue, the host and EXOS 203 queue headers should
point to the same buffer.

HOST-TO-EXOS MESSAGE QUEUE EXOS-TO-HOST MESSAGE QUEUE

[] [

HOST —»[|t | EXOS EXOS —Dl I4—— HOST

Q HEADER

IMESSAGE
BUFFER

Q HEADER

Q HEADER

IMESSAGE
BUFFER I

L]

Q HEADER

\

] 1

IMESSAGE lMESSAGE I
BUFFER BUFFER

r—
1

MESSAGE MESSAGE

BUFFER I IBUFFEH I

_5___1 _JI___J

-

Figure 4-6: Message Queue Data Structures at Initialization Time

4-18

NX 200: Initialization and Host Interface for Q-bus Systems

For each queue, the link fields should be initialized to form a circular, singly-
linked list. This ring structure should not be modified after configuration. Each
queue may contain an arbitrary number of buffers, so long as at least one is
supplied. The reserved field of all message buffers in both queues should be
set to 0.

In the host-to-EXOS queue the status field of all buffers should contain the value
02H, which indicates that they are owned by the host. The length and data
fields are not defined at initialization.

In the EXOS-to-host queue the status field of all buffers should contain the value
03H, which indicates that they are owned by NX 200. The length field of each
buffer should not exceed the size of the data buffer. Note that the length field
must be initialized to accommodate the length of the largest message expected
from NX 200, or the message will be truncated upon reception. The data field is
not defined at initialization.

Figure 4-7 is a snapshot of an example EXOS-to-host message buffer queue at
the time of initialization. This example assumes a PDP-11 host system, where
the EXOS 203 is configured in the segmented host address mode. The
configuration message describing the queue is also shown in part. Data
structures are shown as vectors containing hexadecimal byte values. The Q-
bus physical address of each data structure is shown to the left (slightly above
the location), and its name to the right. According to the configuration message
in this example, writing the value 40H at memory location 0E2044H will interrupt
the host. NX 200 will assert this interrupt when the status of the EXOS-to-host
message queue changes, as described in the following section. The circular
message queue shown here contains three buffers of equal length, each
providing a 32-byte data field. The queue header points to one of the buffers,
arbitrarily chosen, at its link field address.

4.8. MESSAGE QUEUE PROTOCOL

This section describes the protocol which NX 200 follows in sending messages
to, and receiving messages from, the host processor. As it happens, host
software can follow the same procedure, so that the exchange is symmetrically
defined. The description below assumes such an implementation, but certainly
other methods are possible, within the constraints of NX 200's behavior.

In a typical implementation, the host system and NX 200 each maintain private
queue headers for both queues (see Figure 4-6). NX 200's host-to-EXOS
message queue's header points to the message buffer which NX 200 will
receive next. NX 200's EXOS-to-host message queue's header points to the
message buffer which NX 200 will send to next. NX 200 maintains these queue
headers after configuration. Although NX 200 queue headers are kept in host
memory, after initialization the host should not refer to these. Similarly, NX 200
will not refer to the host's own queue headers. Host queue headers may be of
any format (16-bit offset, 32-bit virtual address, array index,etc.) which is most
convenient to the host software.

NX 200 queue, the host's queue header should always point to the next buffer in
which the host will send a message. NX 200's queue header will always point to
the next buffer in which NX 200 will look for a message. Both pointers will
always move sequentially through the message queue. Note that unless a
message arrives on the next buffer, NX 200 will not scan any further in the
queue. This means that the host should always write the message in the next

NX 200: Initialization and Host Interface for Q-bus Systems

EOOOOH l—-—-—-g
|

E0044H
OOH
0OH
OFH
3DH

E0048H
D2H
14H
E004AH
02H
E004BH
40H
E004CH
44H
20H
OEH
—w—| 3DH
E2044H

Contiguration

Message
Queue Base Address FOOOOH Queue Segment
> Base
Queue Header Address F14D2H Queue Header
D2H
15H
interrupt Type
Interrupt Value F15D02H Link Field
D2H :
Interrupt Address 16H gt
F15D4H Reserved Field
OOH
F15D5H Status Field
03H
F15D6H Length Field
20H
00H
F15D8H Data Field
F15FBH i
Memory-mapped
Interrupt F16D2H Link Field
Location ——pe{ D2H
i 17H
F16D4H Reserved Field
00H
F1605H Status Field
03H
F16D6H Length Fietld
20H
00H
F16D8H Data Field
F16F8H I l
F17D2H Link Field
2 o D2H
15H
F17D4H Reserved Field
00H
F17D5H Status Field
03H
F17D6H Length Field
20H
O0H
F17D8H Data Field
F17F8H : i

Figure 4-7: Example EXOS-to-Host Message Queue, at Initialization

4-20

NX 200: Initialization and Host Interface for Q-bus Systems

buffer where NX 200 expects it to be rather than in any arbitrary position in the
queue. During the course of message processing, the host's queue header may
end up several buffers ahead of NX 200’'s queue header, but should never "lap”
it from behind. Any difference between the headers represents buffers which
NX 200 has not yet consumed.

For the EXOS-to-host queue, the host's queue header should always point to
the next buffer in which the host will look for a message. The EXOS 203's
queue header will always point to the next buffer in which NX 200 will send a
message. As above, both pointers will always move sequentially through the
message queue. Note that unless the next buffer is available to NX 200 , it will
not scan any further to find a free buffer to write the message. This means that
NX 200 will always write the message in the next buffer where the host expects
it to be rather than in any arbitrary position in the queue. During the course of
message processing, NX 200’s queue header may end up several buffers ahead
of the host's queue header, but again, should never “lap" it from behind. Any
difference between the headers represents buffers which the host has not yet
consumed.

4.8.1. Host-to-EXOS Message Transfer

Host software can use the following sequence of steps to transfer messages to
NX 200: '

1. Test the owner bit of the buffer to which the host queue header
points. If NX 200 still owns this buffer, then wait until it is returned
(either poll the owner bit, or wait for the interrupt which
accompanies each buffer turnover event).

2. Advance the host queue header, so that it now points to the next
buffer in the queue.

3. Load the message into the data field of the current buffer, and set
the length field appropriately.

4. Set the current buffer's owner bit, so that the buffer now belongs to
NX 200.

5. Interrupt NX 200 by writing to port B, to notify it that a new
message is available.

NX 200 can process more than one message from the host upon receiving a
single interrupt. Therefore it is important that the host change the buffer's owner
bit only after preparing the other fields. Otherwise, if NX 200 is still processing a
previous interrupt from the host, it may consume a half-baked message. Note
that the host may prepare more than one message buffer at a time, and send a
single interrupt, if sufficient buffers are available.

When NX 200 receives an interrupt from the host, it will:

1. Examine the owner bit of the buffer to which its own queue header
points. [f the buffer belongs to NX 200, then it will process it, as
described in the following steps. (Otherwise, the interrupt could
mean that the host is returning an EXOS-to-host message buffer, or
could be spurious.)

2. Load the link field of the current buffer into its queue header, so that
it now points to the next buffer in the queue.

4-21

NX 200: Initialization and Host Interface for Q-bus Systems

Extract the message from the current buffer. If there is no
consumer for this data (no receive request on the NX 200's host
interface mailbox), then wait.

Reset the current buffer's owner bit, so that the buffer is returned to
the host. Set the buffer's done bit tq 0.

interrupt the host to notify it that a buffer has been returned. The
type of interrupt is specified by the configuration message. Repeat
from step 1, until the owner bit shows that no new messages are
pending.

Note that the interrupt described in step 5 is the same interrupt which the host
waits upon when no message buffers are available.

4.8.2. EXOS-to-Host Message Transfer

When the EXOS 203 has a message to transfer to the host, NX 200 will:

1.

Test the owner bit of the buffer to which its queue header points. If
the buffer belongs to NX 200, then process-it, as described in the
following steps. Otherwise, wait for an interrupt from the host which
indicates that a buffer has been returned (NX 200 can process
other jobs in the mean time).

Load the link field of the current buffer into its queue header, so that
it now points to the next buffer in the queue.

Load the message into the data field of the current buffer, and set
the length field to the length actually transferred (it will not exceed
data field length). If the data field was too short for the message,
then it sets the overflow bit.

Change the current buffer's owner bit, so that the buffer now
belongs to the host. Set the buffer's done bit to 0.

Interrupt the host to notify it that a new message is available. The
type of interrupt is specified by the configuration message.

When the host receives an interrupt from NX 200, it can:

1.

Examine the owner bit of the buffer to which the host queue header
points. If the buffer belongs to the host, then it should process it,
as described in the following steps. (Otherwise, the interrupt could
mean that NX 200 is returning a host-to-EXOS message buffer, or
could be spurious.)

Advance the host's own queue header, so that it now points to the
next buffer in the queue.

Extract the message from the current buffer. It may check the
overflow bit to be certain that the entire message was sent. If there
is no consumer for this data, then wait.

Set the length field to the size of the data field.

Set the current buffer's owner bit, so that the buffer is returned to
NX 200.

4-22

NX 200: Initialization and Host Interface for Q-bus Systems

6. Interrupt NX 200 by writing to port B, to notify it that a message
buffer has been returned. Repeat from step 1, until the owner bit
shows that no new messages are pending.

While the host is processing an interrupt, NX 200 may in the meantime write
more messages into the queue. The host may elect to process these messages
in addition to the message associated with the interrupt being serviced. Note,
however, that at least one interrupt will remain pending, so that when interrupts
are re-enabled, the host will be again interrupted by NX 200, although the
corresponding message would have aiready been processed.

Although the above description assumes that the EXOS 203 is programmed to
interrupt the host to signal message queue events, the host also has the option
of simply polling the message queue.

4.9. DOWNLOADING SOFTWARE FROM THE HOST

Normally, if the EXOS 203 is configured in mode 1, host software would then
download and run higher level protocol software. Two message formats are
provided for this purpose, one to copy user code and data to the EXOS 203,
and another to start code execution. For each message NX 200 sends a
corresponding reply message which confirms the completion of the request.

4.9.1. Host Download Request

4.9.1.1.

4.9.1.2.

4.9.1.3.

The host can copy code to any location in EXOS 203 memory which is normally
available to the user. The download request copies buffers up to 64K-1 each in
size, in any order, without modification. NX 200 does not protect the user area
against un-intentional overlays.

Figure 4-8 shows the format of the download request/reply message, and the
following paragraphs describe the individual fields in detail.

Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. lIts value in
the reply message is undefined.

User Id Code Field

The user id code field is not interpreted by NX 200, and is returned unmodified
in the reply message. It can be used to establish a correspondence between
request and reply messages.

Request Code Field

The request code field defines the request. Its value in the request message
must be 0. This value is preserved in the reply message.

4-23

NX 200: Initialization and Host Interface for Q-bus Systems

Length Offset Field Name Request Reply

1) 2 0 | Reserved for NX Usage | zero undefined
| l
[EEEETEEET T |

2) 4 2 User |d Code undefined preserved

3) 1 6 | Request Code | OOH preserved
[I |

4) 1 7 | Return Code | undefined see text
[R LRI |

5) 2 8 | Data Length | see text see text
I l
R |

6) 4 10 | Source Address | see text undefined
o |
| |
| l
I I

7) 4 14 Destination Address see text undefined

FFigure 4-8: EXOS 203 Down-l.oad Request/Reply Message

4.9.1.4. Return Code Field

The reply code field is undefined in the request message. In the reply message,
it reports the status of the download request:

0 successful completion.

A3H destination memory block overlaps the memory reserved for
NX 200, no copy done.

A1H invalid request, the EXOS 203 is not in front end mode.

4.9.1.5. Data Length Field

The data length field specifies the number of bytes to be copied into EXOS 203
memory. This may be any value between 0 and 64K-1. In the reply message,
this field returns the number of bytes actually copied.

4.9.1.6.

4.9.1.7.

NX 200: Initialization and Host Interface for Q-bus Systems

Source Address Field

The source address field specifies the starting address in shared memory from
which to copy the user code image. This may be either a segmented or an
absolute address, depending on the host address mode option. Its value in the
reply message is undefined.

Destination Address Field

The destination address field specifies the starting address in EXOS 203
memory to which the user code image will be copied. This must be a
segmented address. Its value in the reply message is undefined.

4.9.2. Start Execution Request

4.9.2.1.

4.9.2.2.

4.9.23.

After downloading protocol software, the host processor starts it executing with
a single start execution request message. Once this command has been issued
and the reply received, NX 200 does not itself process any more messages.
Instead, all messages sent to the EXOS 203 will be queued up for user
processes running under the NX 200 kernel.

The start execution request specifies the location at which execution of user
code begins. User code is entered as a single process with priority 255 and
infinite time slice. All registers except for the PC and stack pointer are
undefined. The initial process stack is provided from the NX 200 data area and
is guaranteed to be at least 100H bytes deep. The process is free to switch to a
bigger stack if desired. In all other respects, it is a normal process, as defined

in Section 7.5. .
Figure 4-9 shows the format of the start execution request/reply message, and

the following paragraphs describe the individual fields in detail.

Reserved Field

The first field is reserved for use by NX 200, and must be initialized as 0. Its
value in the reply message is undefined.

User Id Code Field

The user id code field is not interpreted by the EXOS 203, and is returned
unmodified in the reply message. It can be used to establish a correspondence
between request and reply messages.

Request Code Field

The request code field defines the request. Its value in the request message
must be 2. This value is preserved in the reply message.

4-25

NX 200: Initialization and Host Interface for Q-bus Systems

#

1)

2)

3)

4)

5)

Length Offset

2 0
4 2
1 6
1 7
4 8

Field Mame

Reserved for NX Usage

User {d Code

Figure 4-9: EXOS 203 Start-Execution Request/Reply Message

Request

zero

undefined

02H

undefined

see

text

Reply

undefined

preserved

preserved

see text

preserved

4.9.2.4. Return Code Field

The reply code field is undefined in the request message. In the reply message,
it reports the status of the start execution request.

0 Successful completion.

A2H Invalid starting address, execution not started.

AtH Invalid request, the EXOS 203 is not in front end mode.

4.9.2.5. Starting Address Field

The starting address field specifies the initial value of the initial process'’s
program counter. This must be a segmented address. Its value is preserved in

the reply message.

4-26

Chapter 5
INITIALIZATION AND HOST INTERFACE
FOR UNIBUS SYSTEMS

5.1. INTRODUCTION

The EXOS 204 Intelligent Ethernet Controller is specifically designed for use in a
UNIBUS system. This section contains information pertinent to the design of
host-resident software, such as an |/O driver, which communicates with the
EXOS 204 intelligent Ethernet controller installed in a UNIBUS-based system.

Note that EXOS Intelligent Ethernet Controllers are available for use in different
computer buses, such as, Multibus, Q-bus, UNIBUS, VMEbus, and PC bus.
While logically the NX 200 operating system functions remain the same, the
specific procedures for initialization vary for different EXOS-to-host
combinations.

The host interface can be broken down into two aspects, the initialization
procedure, and the communication method subsequently used. Initialization
refers to the process which begins upon resetting the EXOS 204, and concludes
either with entering the Link Level Controller mode, or with the execution of
downloaded software. During the process of initialization, the host system sets
up the host message queue data structures. The host message queue protocol,
defined by NX 200 firmware, uses these queues for all further communications
between the host processor and NX 200.

The following paragraphs give an overview of the initialization process:

1. The host system resets the EXOS 204, then NX 200 executes self-
diagnostics which exercise various board components and
functions. If the diagnostics fail, then the EXOS 204 displays an
error code on the NX 200 status LED (see Appendix A; Self-
Diagnostic and Configuration Errors) until the board is reset again.
If the diagnostics pass, then the EXOS 204 awaits configuration by
the host.

2. The host system passes NX 200 the address of a configuration
message in host memory. The EXOS 204 examines this message,
and modifies some fields according to the resuits of configuration.
If configuration is unsuccessful, the EXOS 204 again displays an
error code on the NX 200 status LED until reset. If the
configuration message is valid, the EXOS 204 enters one of three
modes, as specified by the message’s operation mode field.

3. Initialization for each of the three different modes proceeds as
follows:

a. InLink Level Controller Mode, the EXOS 204 begins to execute
firmware which brings NX 200's Ethernet Data Link driver
interface out to the host system interface. No software is
downloaded; instead the host system passes Data Link
commands to the board, and receives replies, through the
standard host message queue protocol. This mode is
described fully in Section 6.

5-1

NX 200: Initialization and Host Interface for UNIBUS Systems

b. In Front-End Mode 1, the host system proceeds to download
software to the EXOS 204, by passing download request
messages through the standard host message queue protocol.
When the software has been downloaded, it passes an execute
request to the board, which then begins to execute the
downloaded software. Subsequent actions depend entirely on
the software which has been installed, although the host
message queue protocol remains in place.

c. In Front-End Mode 2, the EXOS 204 proceeds to bootstrap
itself from the bootstrap server configures NX 200, it may still
communicate with the host system through the standard host
message queue protocol. Network bootstrap is quite similar in
many ways to initialization by a host processor; the
configuration message described in this section is exactly
identical.

5.2. HARDWARE COMMUNICATIONS CHANNELS

Communication between the host processor and the EXOS 204 is conducted via
a coordinated exchange of interrupts, I/O instructions, and data transfers
through shared memory on the UNIBUS. The following sections define these
primitive channels of communication which are used during the process of
initialization and, subsequently, to implement the message queue protocol.

5.2.1. Host Access to the EXOS 204 UNIBUS Board

The host’'s means of active access to the EXOS 204 are solely through two 1/0
ports, named port A and port B here for the sake of reference. These ports are
accessed over the UNIBUS, and can be both read and written. Their addresses
are selected by jumpers on the EXOS 204, described in the EXOS Intelligent
Ethernet Controller Reference Manual.

The effects of reading and writing ports A and B are summarized below:
Read A: No Operation.
Write A: Resets the EXOS 204 (refer to Section 5.4).
Read B: Returns the EXOS 204 status byte:

Bit O: (Error Bit) when 0, indicates a fatal error in
EXOS 204. When the EXOS 204 is reset, this
bit is 0, but will be set to 1 if the self test
completes successfully. [f this bit is not set
within 3 seconds, then the EXOS 204 has
failed the self-diagnostics.

Bits 1-2: Undefined.

Bit 3: (Ready Bit) when 0, indicates that NX 200 is
ready to accept a byte written into port B.
When 1, NX 200 has not yet read the byte last
written into port B. :

Bits 4-5: Undefined.

5-2

NX 200: Initialization and Host Interface for UNIBUS Systems

Bit 6: (Loopback Test Bit) when 0, indicates loopback
test passed. When 1, indicates loopback test
failed, possibly due to faulty transceiver or
faulty transceiver cable.

Bit 7: Undefined.

Write B: Interrupts the EXOS 204 CPU, and communicates a 1-byte
value. This is the only way to communicate a value to the
EXQOS 204 other than through shared memory.

5.2.2. EXOS 204 UNIBUS Board Access to the Host

The EXOS 204 functions as a master on a UNIBUS system. It can access the
full 256-Kbyte memory address space which includes the 8K I/O address
space, and interrupt the host processor. User software on the EXOS 204 does
not directly control these resources. Instead, it calls NX 200's host interface
driver, described in Section 9

In general, data is transferred between the host and the EXOS 204 via shared
memory, which may be any portion of system memory accessible to both
processors on the UNIBUS. The EXOS 204's CPU performs the transfer by
dynamically mapping part of its own address space into the UNIBUS memory
address space, and executing a block transfer instruction. Note that the EXOS
204’s on-board memory cannot be shared; it is not directly accessible by the
host processor.

The EXOS 204 can interrupt the host either through memory addresses or the
UNIBUS interrupt lines. The type which will be used is selected at
initialization time. Memory interrupt addresses are configured by software; the
interrupt line is selectable by means of a jumper option, described in the EXOS
Intelligent Ethernet Controller Reference Manual.

5.3. HOST DATA ORDER CONVERSION OPTION

The host data order conversion option determines whether NX 200 will interpret
data read from host memory according to its own native ordering, or according
to the host CPU’s native ordering. This option is selected by a field in the
configuration message (refer to Section 5.5.5). If enabled, then the NX 200
inspects a known data pattern in the configuration message, written in the host
CPU’s native order. It determines what conversions are necessary to make this
pattern appear in the order it expects, for several different data types: byte
array, word array, and longword. NX 200 will then apply the appropriate
conversion to all data objects subsequently read from host memory.

For the word data type, NX 200 can swap bytes if necessary. For the longword
data type, NX 200 can swap words, swap bytes, or both. Therefore 1/0O driver
software for any reasonably normal host CPU can store data objects in its native
order, and leave conversion up to NX 200.

Naturally, NX 200 must know the type of a data object to apply the appropriate
conversion. All data objects described in this section are known to NX 200,
except for the actual contents of messages between the host and the EXOS
204. NX 200 does apply the byte array conversion (if necessary) to message
contents, and to all data transferred. How the contents of messages should be
further interpreted is the function of user-level software running on the EXOS
204. For instance, the firmware which drives the Link Level Controller Mode

5-3

NX 200: Initialization and Host Interface for UNIBUS Systems

#

1)
2)
3)
4)

5)

6)

7)

8)

Length Offset Sub-Field Name Value
1 0 | Byte O [01H
e |
1 1 | Byte 1 | O03H
I e |
1 2 | Byte 2 | o7H
T e |
1 3 | Byte 3 | OFH
T |
2 4 | Word 0 | 0103H
| |
e |
2 6 | Word 1 | 070FH
! |
I R |
4 8 | Longword | 0103070FH
I |
I |
l l
| e e I
20 12 : Reserved : zero
R 1 byte------------ >

Figure 5-1: Host Data Order Conversion Option Test Pattern

(refer to Section 6) runs at user level under NX 200, and converts word and
longword data objects which are known to itself, but not to NX 200. NX 200
assists this process by providing kernel calls (refer to Section 9.5) which convert
word and longword data types as required by the host data order conversion
option.

Whether or not the host data order conversion option is enabled, the host
system must still write the required data pattern in the configuration message.
This pattern occupies 12 bytes of the 32-byte test pattern/memory map field
(refer to Section 5.5.10). It should be initialized as shown in Figure 5-1. Note
that while the relative position of subfields in the test pattern is specified, the
order of bytes within those subfields is dependent on the host CPU architecture.
Figure 5-2 shows how this pattern might be initialized in the C language, both
statically and dynamically.

Note that memory addresses, regardless of the host address mode, are stored
and interpreted as the longword data type. For instance, the longword test
pattern can also be regarded as a memory address in the host's native format
for the absolute address 0103070FH (if absolute address mode is selected) or
for segment 070FH, offset 0103H (if segmented mode is selected).

If NX 200 cannot make any sense of the test pattern presented by the host,
then initialization is aborted, and the appropriate error code displayed on the
status LED. For error code value assignments, see Appendix A; Self-
Diagnostics and Configuration Errors.

5-4

NX 200: Initialization and Host Interface for UNIBUS Systems

/* constants for test pattern */
#define BYTEQ 0x01

#define BYTE1 0x03

#define BYTE2 Ox07

#define BYTE3 OxOF

#define WORDO 0x0103
#define WORD1 0x070F
#define DWORD 0x0103070F

/* static initialization of test pattern */
struct tstptrn {

char byteptrn{4];

short wordptrmn|[2];

long lwordptrn;

char rsrvd[20];

struct tstptrn tp = {
BYTEO, BYTE1, BYTE2, BYTE3,
WORDO, WORD1,
DWORD,
0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

/* dynamic initialization of test pattern */
initptrn ()
{
register int i;
tp.byteptrn[0} = BYTEOQ;
tp.byteptrn[1] = BYTE1;
tp.byteptrn{2] = BYTEZ2;
tp.byteptrn{3} = BYTES;
tp.wordptrn{0] = WORDO;
tp.wordptrn{1] = WORD1;
tp.lwordptrn = DWORD;
for (i=0; i<20; i+ +) tp.rsrvdli] = 0;
}

Figure 5-2: Host Data Format Test Pattern Initialization

5.4. RESET AND CONFIGURATION PROCEDURE

This section describes initialization by a host system up to the completion of
configuration. Figure 5-3 shows a typical procedure which implements as much.

The EXOS 204 is reset by the UNIBUS INIT signal, or whenever port A is
written from the UNIBUS. Host software should use the latter method to be
sure. On reset NX 200 performs a Series of self tests to confirm hardware
integrity. While these tests run, the NX 200 status LED (see the EXOS
Intelligent Ethernet Controller Reference Manual) will remain lit constantly.
When self-diagnostics complete successfully, NX 200 sets the error bit in I/O
port B and flashes the status LED at regular intervals.

5-5

NX 200: Initialization and Host Interface for UNIBUS Systems

extern read_port(Port_Num) /* returns value read from port Port_Num */
extern write_port(Port_Num, Val) .* writes Val to port Port_Num */
extern start_clock() /* starts an interval timer */

extern clock() /* returns the current value of the interval timer */

/* bit value definitions for status byte read from port B */
#define ERROR BIT 1

#define READY_BIT 8

#define ERRNON 0

struct { ;* configuration message */
short reserved;
char version[4];
char comp_code;
<efc...>
1 init_msg;

char init_addrs{8] = {0xFF, OxFF, 0, 0, < absolute address of init msg> |;
/* refer to Section 1 for absoiute address format */

initialize () |
< set up init_msg and the message queues (refer to Section 5.6) >,
write-port(A); /* reset the EXOS 204 */
start_clock(); /* start timer, clock counts real time */

/* wait until self test completes */
while ((read_port(B) & ERROR_BIT) == 0) {
if (clock() > 2_SECONDS) {
return (malfunctioning_board);

1
)

}

/* write the configuration message address */
for (i=0;i<8; i+ +) {
while (read _port(B) & READY _BIiT),
write_port(B.init_addrsli);
}

/* wait for the reply message */
while (init_msg.comp_code == O0xFF),

/* ensure no errors */

if (init_msg.comp_code != ERRNON)
return (error);

else
return (success).

'

Figure 5-3: Typical Reset and Configuration Procedure

If the error bit is not set within 3 seconds of reset, the host may assume that
self-diagnostics turned up a problem. In this case, the EXOS 204 repeatedly
reports an error code through the NX 200 status LED (for error code values, see
Appendix A; of this manual or the EXOS Intelligent Ethernet Controller
Reference Manual). The EXOS 204 will remain in this state until reset again.

A jumper option, described in the EXOS Intelligent Ethernet Controller
Reference Manual, determines how initialization will proceed after reset and
self-diagnostics. If the jumper selects network bootstrap, then the EXOS 204
will attempt to download software over the Ethernet (refer to Section 11.7).
Otherwise the EXOS 204 awaits configuration by the host processor.

5-6

NX 200: Initialization and Host Interface for UNIBUS Systems

The host configures the EXOS 204 by passing it the address of a configuration
message, located in shared memory. This message establishes various NX 200
parameters and selects among several modes of operation. Parameters include
memory allocation for NX 200 objects, the address of NX 200's movable data
area in EXOS 204 memory, and the location of message queues in shared
memory. Among the optional operation modes, the host can select network
bootstrap. This will proceed as though the net boot jumper option had been
installed, except that NX 200 will first note the contents of the host configuration
message. Other configuration options include host data order conversion and
the host address mode.

The host processor communicates the address of the configuration message to
NX 200 by writing a sequence of 8 bytes into port B. Each byte should be
written after checking that the ready bit of the EXOS 204’s port B is clear. This
ensures that NX 200 is ready to accept the next address byte. The first four
bytes of the sequence must be FF-FF-00-00 (sent from left to right). The next
four bytes are the configuration message’s absolute UNIBUS memory address
(least significant byte first). The configuration message must be aligned on a
even address boundary. When the last byte is written, NX 200 reads and
interprets the configuration message. |If the address for the initialization
message is not valid, then the EXOS 204 will display an error code on the status
LED (see the EXOS Intelligent Ethernet Controller Reference Manual).

When NX 200 has finished processing the configuration message, it writes a
completion code into the appropriate field of the message. Any value other than
OFFH indicates completion; the value 0 indicates successful configuration.
Other values denote specific errors in configuration (refer to Section 5.5.3).
Normally, configuration should complete within 3 seconds, but network bootstrap
might take longer, depending on circumstance. NX 200 also returns a few
parameters to the host in the configuration message, notably its version number
and a map of available memory.

Once configuration is complete, the memory space occupied by the
configuration message can be used for any other purpose. After configuration,
communication between the host and NX 200 is carried out solely by means of
message queues, described in Section 5.5.

5.5. CONFIGURATION MESSAGE FORMAT

Figure 5-4 shows the format of the configuration request/reply message. This is
used ‘identically by either a host system or a network bootstrap server. The
following paragraphs explain the individual fields in detail. Note that reply values
other than the completion code field itself are defined only if configuration is
successful.

5.5.1. Reserved Field

The first field is reserved for use by NX 200. its value in the request message
must be 1, and its return value is undefined.

5.5.2. EXOS Version Code Fieid

The EXOS version code field is undefined in the request message. In the reply
message, it returns version codes for NX 200 and the EXOS 204 in the form
X.Y and A.B, respectively. These are expressed as ASCII digits, one per byte
in the order X-Y-A-B, starting from the lower address.

5-7

NX 200: Initialization and Host Interface for UNIBUS Systems

#

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

Length

32

Otffset

[3V]

10

13

14

15

16

48

52

53

54

55

Field Name

continued on next

Host Data Format Option

Host Address Mode

Test Pattern/Memory Map

NX Movable Block Address

Muiticast Slots

page. . ..

Figure 5-4: Configuration Request/Reply Message

Request

undefined

OFFH
see text

see text

zZero

text

see

zero

zero

see text

see text

see text

see text
see text

see text

Reply

undefined

see text

text

see

preserved

see text

see text

text

see

undefined

see text

see text

see text

see text

see text
see text

preserved

5-8

NX 200: Initialization and Host Interface for UNIBUS Systems

#

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

Length Offset

4 56
2 60
1 62
1 63
4 64
4 68
2 72
1 74
1 75
4 76

Field Name

..continued from previous page

Host-to-EXOS Message Queue
Base Address

Host-to-EXOS Message Queue
Header Address

Host-to-EXOS MQ Interrupt

Host-to-EXOS MQ int. Value

Host-to-EXOS Message Queue
Interrupt Address

EXOS-to-Host Message Queue
Base Address

EXOS-to-Host Message Queue
Header Address

EXOS-to-Host MQ Interrupt

EXQOS-to-Host MQ Int. Value

EXOS-to-Host Message Queue
Interrupt Address

Figure 5-4a: Configuration Request/Reply Message (continued)

Request

see

see

see

see

see

see

see

see

see

see

text

text

text

text

text

text

text

text

text

text

Reply

preserved

preserved

preserved

preserved

preserved

preserved

preserved

preserved

preserved

preserved

5.5.3. Configuration Completion Code Field

The completion code field must be OFFH in the request message. The EXOS
204 signals that configuration is complete, and returns the completion code, by
writing one of the following codes into this field:

5-9

NX 200:

00H
A4H
A5H

A7H

A8H
A9H
AAH
ABH
ACH
ADH

AEH
AFH

Initialization and Host Interface for UNIBUS Systems

Successful completion.
Invalid operation mode.

Invalid host data format test pattern. This occurs when NX 200
cannot find any reasonable conversion to derive the expected
data pattern from that supplied in the test pattern. In practice,
this might imply that the host has given NX 200 the wrong
address for the configuration message.

Invalid configuration message format. This may occur if
reserved fields contain an improper value. In practice, this error
message may indicate that the host has given NX 200 the
wrong address for the configuration message.

Invalid movable block address.
Invalid number of processes.
Invalid number of mailboxes.
Invalid number of address slots.
Invalid number of hosts.

Invalid host message queue parameter. NX 200 returns this
error if it detects any inconsistency in the message queue
specifications. This might include a bad interrupt type, invalid
segment address, bad linking of the message queue buffers,
etc.

Insufficient memory for movable data block.

Net boot failed.

The codes defined above will also be displayed on the status LED if
configuration is not successful.

5.5.4. NX 200 Operation Mode Field

NX 200 operation mode field determines the mode in which the EXOS 204 is to
be used. Three different modes are supported:

0

Link Level Controlier Mode. This mode brings the Ethernet Data
Link interface out to the host interface. No software is
downloaded. It would typically be used when the EXOS 204 is
substituted for the traditional non-programmable Ethernet
controller board. For details, refer to Section 6.

Front-End Mode, download from the host. In this mode the
EXOS 204 is used as a front-end processor. Higher level
software is downloaded by the host.

Front-End Mode, download from the net. In this mode the
EXOS 204 is used as a front-end processor and higher level
software is downloaded from the network. For details, refer to
Section 11.

All other values for the mode are reserved and their effects are not defined. If
NX 200 is already in the process of network bootstrap (meaning that the

5-10

NX 200: Initialization and Host Interface for UNIBUS Systems

configuration message has been received from a bootstrap server) then only
mode 2 is permitted.

5.5.5. Host Data Order Option Field

The host data order option field enables the host data order conversion option
(refer to Section 5.3). Because the byte order of the host CPU will not be
known before initialization, this field is actually treated as two one-byte fields.
The host should ioad the same value into each sub-field in the request
message. This value is defined bitwise:

Bit O: Deduce Format Bit. If 0, NX 200 will apply the conversions
currently in force. If the board has not been previously
configured, then the default conversion will be in force,
meaning that no format conversions are applied to data read
from the host. If this bit is 1, then NX 200 examines a
constant data pattern written by the host in the configuration
message'’s test pattern/memory map field, and deduces what
format conversion are necessary to interpret various data
types stored in the host CPU’s native format.

Bits 1-7: Reserved. These bits must be 0 in the request message.

When initialized, NX 200 examines this field first, and interprets all other fields in
the configuration message accordingly. This field is undefined in the
reply message.

5.5.6. EXOS Context

This 3-byte field returns the EXOS context information. In the request message
the value of this field must be zero. In the reply message, the middie byte
(offset 11) returns the context value; the other two bytes are undefined. For the
EXOS 204 the context value must be 04.

5.5.7. Host Address Mode Field

The host address mode field determines how NX 200 will interpret addresses
. which refer to objects in host memory. It is defined bitwise:

Bit 0: Set Mode Bit. If 0, NX 200 will use the address mode
currently in force. If the board has not been previously
configured, then the default mode will be in force, meaning
that NX 200 will interpret all addresses as 80186-style
segmented addresses. |f this bit is 1, then the next bit
determines the new address mode.

Bit 1: Address Mode Bit. The value 0 selects segmented address
mode. The value 1 selects absolute address mode.

Bits 2-7: Reserved. These bits must be zero in the request message.
This field is undefined in the reply message.
5.5.8. Reserved Field

This field is reserved for future use. lts value in the request message must be
0. Its value in the reply message is undefined.

NX 200: Initialization and Host Interface for UNIBUS Systems

5.5.9. Memory Map Size Field

5.5.10.

5.5.11.

5.5.12.

5.5.13.

The memory map size field must be 0 in the request message. In the reply
message, it returns the number of segments available in EXOS 204 memory for
user software. This field contains a valid value only if the EXOS 204 is
configured in mode 1 or mode 2.

Test Pattern/Memory Map Field and Maximum Packet Size

The test pattern/memory map field serves different purposes in the request and
reply messages. In the request message, it must contain the test pattern
described in Section 5.3, stored in the host CPU’s native format.

In the reply message, the test pattern/memory map field contains a map of
memory available for user software on the EXOS 204. This map consists of up
to 4 segment descriptors, where the actual number is indicated by the last field.
Each segment descriptor specifies a memory segment in terms of the lowest
address and the highest address included within the segment. Each address is
four bytes long, in the segmented format. The lower bound is given first, then
the upper bound. This field contains a valid value only if NX 200 is configured in
mode 1 or mode 2. If the optional 128K of RAM between 20000H and 3FFFFH
is either absent or is malfunctioning, then the map will not contain this segment.

NX 200 Movable Block Address Field

The NX 200 movable block address field can be used to redefine the location of
NX 200's movable data area, described in Section 7.3. If the EXOS 204 is
configured in mode 0, this field must be OFFFFH, OFFFFH. In modes 1 or 2, the
value OFFFFH, OFFFFH specifies that the default location be used. If a non-
default address is specified, the segment base must be 0. The offset must
place the entire block either between 200H and 3FFH, or between 1000H
and OFFFFH.

In the reply message, this field returns the actual address of the NX 200
movable data area. The reply value is not defined in mode 0.

Number of Processes Field

The number of processes field configures the maximum number of processes
which NX 200 will support. If the EXOS 204 is configured in mode 0, this field
must be OFFH. In modes 1 or 2, the value OFFH specifies that the current value
be used. The default value, after reset, is 12. Optionally, a value between 1
and 128 can be specified. In the reply message, this field returns the actual
number of processes which NX 200 will support. The reply value is not defined
in mode 0.

Number of Mailboxes Field

The number of mailboxes field configures the maximum number of mailboxes
which NX 200 will support. Note that this number does not include system
mailboxes. If the EXOS 204 is configured in mode 0, this field must be OFFH.
In modes 1 or 2, the value OFFH specifies that the current value be used. The
default value, after reset, is 16. Optionally, a value between 1 and 128 can be
specified. In the reply message, this field returns the actual number of
mailboxes which NX 200 will support. The reply value is not defined in mode O.

5.5.14.

5.5.15.

5.5.16.

5.5.17.

NX 200: Initialization and Host Interface for UNIBUS Systems

Number of Multicast Slots Field

The number of multicast slots field configures the maximum number of multicast
address slots which NX 200 will support. Note that this number does not include
the physical, broadcast, universal, or null slots, which are permanently allocated.
The value OFFH specifies that the current value be used. The default value,
after reset, is 8. Optionally, a value between 0 and 252 can be specified. In the
reply message, this field returns the actual number of address slots which NX
200 will support.

Number of Hosts Field

The number of hosts field specifies the number of host CPUs on the UNIBUS
interface. Permissible values depend on the mode of operation. In all modes,
the value OFFH will retain the value currently in force. Upon first configuration,
the default value is 0. In operation modes 0 and 1, only the value 1 may be
specified. However in mode 2 (network bootstrap), this field can be either O or
1. If 0, then the host message queues are undefined and the configuration
message fields pertaining to them will not be examined. Its value is preserved
in the reply message.

Host-to-EXOS Message Queue Base Address Field

The host-to-EXOS message queue base address field specifies the base
address of the shared memory which contains the queue data structures for
transferring messages from the host to the EXOS 204 (refer to Section 5.6).
Addresses for all message queue data structures are 16-bit offsets, calculated
relative to this base. NX 200's interpretation of this base address depends on
the host address mode selected (refer to Sections 1 and 5.5.7).

In segmented mode, this field must contain an 8086-style segmented address,
stored according to the convention described for the longword data type (lower-
order 16 bits contain the offset, higher-order 16 bits contain the segment). The
offset value of this address must be 0; therefore the segment begins on some
even 16-byte address boundary.

In absolute mode this field contains a 18-bit absolute memory address, also
stored as a longword. The lower-order 18 bits contain the address; the
remaining high-order 14 bits are reserved and must be 0. Furthermore, the
lower-order 4 bits of the address must also be 0, so that the segment begins on
some even 16-byte address boundary.

This field's value is preserved in the reply message.

Host-to-EXOS Message Queue Header Address Field

The host-to-EXOS message queue header address field specifies the offset of
the queue header. This offset must be calculated relative to the base address
specified for the host-to-EXOS message queue. Its value in the reply message
is preserved.

5-13

5.5.18.

5.5.19.

5.5.20.

5.5.21.

5.5.22.

5.5.23.

NX 200: Initialization and Host Interface for UNIBUS Systems

Host-to-EXOS Message Queue Interrupt Type Field

The host-to-EXOS message queue interrupt type field specifies the type of
interrupt which NX 200 will use to alert the host of a change in the status of the
Host-to-EXOS 204 message queue. Options are:

0 No interrupt. The host polls the message queues.

1 Undefined.

2 Memory mapped. The EXOS 204 writes a specified value at the
specified memory address.

3 Undefined.

4 Bus-vectored interrupt.

The value of this field is preserved in the reply message.

Host-to-EXOS Message Queue Interrupt Value Field

The host-to-EXOS message queue interrupt value field is defined only for
memory mapped interrupt type. If interrupt type 2 is selected, then this value
will be written to the specified memory address when an interrupt is asserted.
The value of this field is preserved in the reply message.

Host-to-EXOS Message Queue Interrupt Address Field

The host-to-EXOS message queue interrupt address field is defined only
memory mapped and bus-vectored interrupt type. If interrupt type 2 is selected,
then it contains a UNIBUS memory address, which NX 200 will interpret
according to the host address mode. If interrupt type 4 is selected, then the first
word contains an interrupt vector; contents of the second word are undefined.
The value of this field is preserved in the reply message.

EXOS-to-Host Message Queue Base Address Field

The EXOS-to-host message queue base address field specifies the base
address of the shared memory which contains the queue data structures for
transferring messages from NX 200 to the host (refer to Section 5.6). This is
exactly equivalent to the host-to-EXOS message queue base address field (refer
to Section 5.5.16). Its value in the reply message is preserved.

EXOS-to-Host Message Queue Header Address Field

The EXOS-to-host message queue header address field specifies the offset of
the queue header. This offset must be calculated relative to the base address
specified for the EXOS-to-host message queue. Its value in the reply message
is preserved.

EXOS-to-Host Message Queue Interrupt Type Field

The EXOS-to-host message queue interrupt type field specifies the type of
interrupt which NX 200 will use to alert the host of a change in the status of the
EXOS 204-to-host message queue. Options are:

0 No interrupt. The host polls the message queues.

5-14

5.5.24.

5.5.25.

NX 200: Initialization and Host Interface for UNIBUS Systems

1 Undefined.

2 Memory mapped. The EXOS 204 writes a specified value at the
specified memory address.

3 Undefined.

4 Bus-vectored interrupts.

The value of this field is preserved in the reply message.

EXOS-to-Host Message Queue Interrupt Value Field

The EXOS-to-host message queue interrupt value field is defined only for
memory mapped interrupt type. If interrupt type 2 is selected, then this value
will be written to the specified memory address when an interrupt is asserted.
The value of this field is preserved in the reply message.

EXOS-to-Host Message Queue interrupt Address Field

The EXOS-to-host message queue interrupt address field is defined only for
memory mapped and bus-vectored interrupt types. If interrupt type 2 is
selected, then it contains a UNIBUS memory address, which NX 200 will
interpret according to the host address mode. If interrupt type 4 is selected,
then the first word contains an interrupt vector; contents of the second word
are undefined. The value of this field is preserved in the reply message.

5.6. MESSAGE QUEUE FORMAT

Once the EXOS 204 is configured, message queues in shared memory serve all
further communications with the host. This includes software download, link
level controller mode service requests, and communication with downloaded
protocol code. Two message queues are maintained by the NX 200 firmware,
one for each direction of transfer. This section describes the format of the data
structures which compose a message queue. Following sections describe how
these must be initialized, and then the protocol which ensues after configuration.

Each message queue necessarily includes one queue header and a singly-
linked, circular list of message buffers. The required queue header belongs to
NX 200; it reads and modifies its value during message exchange. The host
may read it, but must not modify it. The EXOS 204 queue header and all
message buffers must lie within a single 64K area of memory, called the queue
segment.

Message queue data structures are described here as viewed by NX 200. The
configuration message provides NX 200 with the queue segment base and the
offset address of the queue header, for each queue. NX 200 regards the queue
header value and link field values as 16-bit offsets calculated relative to the
queue segment base. As long as this view is preserved for NX 200, users are
perfectly free to augment these data structures in any manner necessary to
implement the desired mechanisms for the host message handling software.

Figure 5-5 shows the format of a message buffer, and the following paragraphs
describe the individual fields in detail.

5-15

NX 200: Initialization and Host Interface for UNIBUS Systems

5.6.1. Link Field

The link field is the address of the next buffer in the circular queue. This
address must be an offset calculated relative to the queue segment base
specified in the configuration message. This field is static and should not be
changed after configuration.

5.6.2. Reserved Field

This field is reserved. It must be initialized with the value 0, and set to 0 in
Host-to-EXOS messages. Its value in reply message is undefined.

#

1)

2)

3)

4)

5)

Length Offset Field Mame

2 0 | Link |
| |
I e I |

1 2 | Reserved |
e e I

1 3 | Status |
R e R |

2 4 | Length |
| |
R R R l

n 6 Data :
[<emmmme et 1 byte------------ >

Figure 5-5: Message Butfer Format

5.6.3. Status Field

The status field is used to implement the message protocol, and is defined bit by
bit:

Bit O: Owner bit. If O then the buffer is owned by the host; if 1 then
the buffer is owned by NX 200. The host may alter a
message buffer only while it has ownership.

Bit 1: Done bit. The EXOS 204 sets this to 0 along with the owner
bit every time it passes a buffer to the host. Host software
can use the done bit to distinguish between buffers newly
received from NX 200 and buffers it has already processed.

Bit 2: Overflow Bit. The EXOS 204 sets this bit to 1 if an EXOS-
to-Host message had to be truncated because the host
buffer's Data Field was shorter than the message sent.

Bits 3-7: Undefined. These bits are reserved for NX 200, and should
not be used for any purpose by the host.

5-16

NX 200: Initialization and Host Interface for UNIBUS Systems

5.6.4. Length Field

The length field specifies the number of bytes in the data field. The maximum
length of the data field is a matter of agreement between the host and the user
software on the EXQS 204. There is no restriction on the size of the data field
as long as the buffers satisfy the queue segment constraints. Most applications
will transfer small amounts of control information via messages, and use direct
memory access to move larger data buffers.

In Host-to-EXOS messages, set this field's value before passing the message to
NX 200. In EXOS-to-Host messages, this field tells the host how many valid
bytes were written into the data field. The host must reset its value to the data
field's size before returning a buffer to NX 200.

5.6.5. Data Field

The data field contains the actual message data passed between the host and
the EXOS 204. NX 200 does not interpret its contents in any way - it is exactly
equivalent to the data field in messages as seen by processes on the EXOS 204
(refer to Section 7).

5.7. MESSAGE QUEUE INITIALIZATION

The host must initialize the message queues and the queue headers prior to
configuring NX 200. Figure 5-6 shows the relation between queue headers and
message queue buffers at initialization time for a typical implementation. In
each queue, the host and EXOS 204 queue headers should point to the
same buffer.

For each queue, the link fields should be initialized to form a circular, singly-
linked list. This ring structure should not be modified after configuration. Each
queue may contain an arbitrary number of buffers, so long as at least one is
supplied. The reserved field of all message buffers in both queues should be
set to 0.

In the host-to-EXOS queue the status field of all buffers should contain the value
02H, which indicates that they are owned by the host. The length and data
fields are not defined at initialization.

In the EXOS-to-host queue the status field of all buffers should contain the value
03H, which indicates that they are owned by NX 200. The length field of each
buffer should not exceed the size of the data buffer. Note that the length field
must be initialized to accommodate the length of the largest message expected
from NX 200, or the message will be truncated upon reception. The data field is
not defined at initialization.

Figure 5-7 is a snapshot of an example EXOS-to-host message buffer queue at
the time of initialization. This example assumes a PDP-11 host system, where
the EXOS 204 is configured in the segmented host address mode. The
configuration message describing the queue is also shown in part. Data
structures are shown as vectors containing hexadecimal byte values. The
UNIBUS physical address of each data structure is shown to the left (slightly
above the location), and its name to the right. According to the configuration
message in this example, writing the value 40H at memory location 1board4H
will interrupt the host. NX 200 will assert this interrupt when the status of the
EXOS-to-host message queue changes, as described in the following section.
The circular message queue shown here contains three buffers of equal length,

5-17

NX 200: Initialization and Host Interface for UNIBUS Systems

HOST-TO- EXOS MESSAGE QUEUE EXOS- TO-HOST MESSAGE QUEUE
________ | e e S [eeeeeoa -
|HOST f--- | | ---1 EX0S | | EX0S [--- | | ---|HOST |
/Q HEADER| | MESSAGE [Q HEADER]| |Q HEADER| | MESSAGE |Q HEADER|
-------- | BUFFER ceeeee- cee e | BUFFER S

[| [] |
| e R

| l | |

[e - (I
[i [l
| MESSAGE | MESSAGE

| BUFFER | BUFFER
[I [I
[e
! | | I
R R
[I (I |
| MESSAGE | MESSAGE

| BUFFER ‘ | BUFFER

| |

Figure 5-6: Message Queue Data Structures at Initialization Time

each providing a 32-byte data field. The queue header points to one of the
buffers, arbitrarily chosen, at its link field address.

5.8. MESSAGE QUEUE PROTOCOL

This section describes the protocol which NX 200 follows in sending messages
to, and receiving messages from, the host processor. As it happens, host
software can follow the same procedure, so that the exchange is symmetrically
defined. The description below assumes such an implementation, but certainly
other methods are possible, within the constraints of NX 200's behavior.

In a typical implementation, the host system and NX 200 each maintain private
queue headers for both queues (see Figure 5-6). NX 200's host-to-EXOS
message queue’s header points to the message buffer which NX 200 will
receive next. NX 200's EXOS-to-host message queue’s header points to the
message buffer which NX 200 will send to next. NX 200 maintains these queue
headers after configuration. Although NX 200's queue headers are kept in host
memory, after initialization the host should not refer to these. Similarly, NX 200
will not refer to the host's own queue headers. Host queue headers may be of
any format (16-bit offset, 32-bit virtual address, array index,etc.) which is most
convenient to the host software.

For the host-t0-EXOS queue, the host's queue header should always point to
the next buffer in which the host will send a message. NX 200's queue header
will always point to the next buffer in which NX 200 will look for a message.
Both pointers will always move sequentially through the message queue. Note

5-18

NX 200: Initialization and Host Interface for UNIBUS Systems

Figure 5-7: Example EXOS-to-Host Message Queue, at Initialization

5-19

NX 200: Initialization and Host Interface for UNIBUS Systems

that unless a message arrives on the next buffer, NX 200 will not scan any
further in the queue. This means that the host should always write the message
in the next buffer where NX 200 expects it to be rather than in any arbitrary
position in the queue. During the course of message processing, the host's
queue header may end up several buffers ahead of NX 200's queue header, but
should never "lap” it from behind. Any difference between the headers
represents buffers which NX 200 has not yet consumed.

For the EXOS-to-host queue, the host's queue header should always point to
the next buffer in which the host will look for a message. NX 200's queue
header will always point to the next buffer in which NX 200 will send a message.
As above, both pointers will always move sequentially through the message
queue. Note that unless the next buffer is available to NX 200, it will not scan
any further to find a free buffer to write the message. This means that NX 200
will always write the message in the next buffer where the host expects it to be
rather than in any arbitrary position in the queue. During the course of message
processing, NX 200's queue header may end up several buffers ahead of the
host's queue header, but again, should never "lap” it from behind. Any
difference between the headers represents buffers which the host has not yet
consumed.

5.8.1. Host-to-EXOS Message Transfer
Host software can transfer messages to NX 200 using the following steps:

1. Test the owner bit of the buffer to which the host queue header
points. If NX 200 still owns this buffer, then wait until it is returned
(either poll the owner bit, or wait for the interrupt which
accompanies each buffer turnover event).

2. Advance the host queue header, so that it now points to the next
buffer in the queue.

3. Load the message into the data field of the current buffer, and set
the length field appropriately.

4. Set the current buffer's owner bit, so that the buffer now belongs to
NX 200.

5. Interrupt NX 200 by writing to port B, to notify it that a new
message is available.

The EXOS 204 can process more than one message from the host upon
receiving a single interrupt. Therefore it is important that the host change the
buffer's owner bit only after preparing the other fields. Otherwise, if NX 200 is
still processing a previous interrupt from the host, it may consume a half-baked
message. Note that the host may prepare more than one message buffer at a
time, and send a single interrupt, if sufficient buffers are available.

When NX 200 receives an interrupt from the host, it will:

1. Examine the owner bit of the buffer to which its own queue header
points. If the buffer belongs to NX 200, then it will process it, as
described in the following steps. (Otherwise, the interrupt could
mean that the host is returning an EXOS-to-host message buffer, or
could be spurious.)

5-20

NX 200: Initialization and Host Interface for UNIBUS Systems

Load the link field of the current buffer into its queue header, so that
it now points to the next buffer in the queue.

Extract the message from ihe current buffer. If there is no
consumer for this data (no receive request on the NX 200's host
interface mailbox), then wait.

Reset the current buffer's owner bit, so that the buffer is returned to
the host. Set the buffer's done bit to 0.

Interrupt the host to notify it that a buffer has been returned. The
type of interrupt is specified by the configuration message. Repeat
from step 1, until the owner bit shows that no new messages
are pending.

Note that the interrupt described in step 5 is the same interrupt which the host
waits upon when no message buffers are available.

5.8.2. EXOS-to-Host Message Transfer

When the EXOS 204 has a message to transfer to the host, NX 200 will:

1.

Test the owner bit of the buffer to which its queue header points. If
the buffer belongs to NX 200, then process it, as described in the
following steps. Otherwise, wait for an interrupt from the host which
indicates that a buffer has been returned (NX 200 can process
other jobs in the mean time).

Load the link field of the current buffer into its queue header, so that
it now points to the next buffer in the queue.

Load the message into the data field of the current buffer, and set
the length field to the length actually transferred (it will not exceed
data field length). If the data field was too short for the message,
then it sets the overflow bit.

Reset the current buffer's owner bit, so that the buffer now belongs
to the host. Set the buffer's done bit to 0.

Interrupt the host to notify it that a new message is available. The
type of interrupt is specified by the configuration message.

When the host receives an interrupt from NX 200, it can:

1.

Examine the owner bit of the buffer to which the host queue header
points. If the buffer belongs to the host, then it should process it,
as described in the following steps. (Otherwise, the interrupt could
mean that NX 200 is returning a host-to-EXOS message buffer, or
could be spurious.)

Advance the host's own queue header, so that it now points to the
next buffer in the queue.

Extract the message from the current buffer. It may check the
overflow bit to be certain that the entire message was sent. If there
is no consumer for this data, then wait.

Set the length field to the size of the data field.

5-21

NX 200: Initialization and Host Interface for UNIBUS Systems

5. Set the current buffer's owner bit, so that the buffer is returned to
NX 200.

6. Interrupt NX 200 by writing to port B, to notify it that a message
buffer has been returned. Repeat from step 1, until the owner bit
shows that no new messages are pending.

While the host is processing an interrupt, NX 200 may in the meantime write
more messages into the queue. The host may elect to process these messages
in addition to the message associated with the interrupt being serviced. Note,
however, that at least one interrupt will remain pending, so that when interrupts
are re-enabled, the host will be again interrupted by NX 200, although the
corresponding message would have already been processed.

Although the above description assumes that the EXOS 204 is programmed to
interrupt the host to signal message queue events, the host also has the option
of simply polling the message queue.

5.9. DOWNLOADING SOFTWARE FROM THE HOST

Normally, if the EXOS 204 is configured in mode 1, host software would then
download and run higher level protocol software. Two message formats are
provided for this purpose, one to copy user code and data to NX 200, and
another to start code execution. For each message NX 200 sends a
corresponding reply message which confirms the completion of the request.

5.9.1. Host Download Request

5.9.1.1.

5.9.1.2.

5.9.1.3.

5.9.1.4.

The host can copy code to any location in EXOS 204 memory which is normally
available to the user. The downioad request copies buffers up to 64K-1 each in
size, in any order, without maodification. NX 200 does not protect the user area
against un-intentional overlays. Figure 5-8 shows the format of the download
request/reply message, and the following paragraphs describe the individual
fields in detail.

Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in
the reply message is undefined.

User Id Code Field

The user id code field is not interpreted by the EXOS 204, and is returned
unmodified in the reply message. It can be used to establish a correspondence
between request and reply messages.

Request Code Field

The request code field defines the request. Its value in the request message
must be 0. This value is preserved in the reply message.

Return Code Field

The reply code field is undefined in the request message. In the reply message,
it reports the status of the download request:

0 Successful completion.

5-22

NX 200: Initialization and Host Interface for UNIBUS Systems

#

1)

2)

3)

4)

5)

6)

7)

Length Offset Field Name
2 0 | Reserved for NX Usage
| I
I R EEEEEEEE I
4 2 | User 1d Code I
I |
| |
| I
I R ECEEEEET T |
1 6 | Request Code I
T s |
1 7 | Return Code |
e e |
2 8 | Data Length |
I I
I EEEEETERLE I
4 10 Source Address

Figure 5-8: EXOS 204 Down-Load Request/Reply Message

Request

zero

undefined

00H

undefined

see text

see text

see text

Reply

undefined

preserved

preserved

see text

see text

undefined

"undefined

A3H Destination memory block overlaps the memory reserved for NX
200, no copy done.

A1H Invalid request, the EXOS 204 is not in front end mode.

5.9.1.5. Data Length Field

The data length field specifies the number of bytes to be copied into EXOS 204
memory. This may be any value between 0 and 64K-1. In the reply message,
this field returns the number of bytes actually copied.

5.9.1.6. Source Address Field

The source address field specifies the starting address in shared memory from
which to copy the user code image. This may be either a segmented or an
absolute address, depending on the host address mode option. Its value in the

reply message is undefined.

5-23

NX 200: Initialization and Host Interface for UNIBUS Systems

5.9.1.7. Destination Address Field

The destination address field specifies the starting address in EXOS 204
memory to which the user code image will be copied. This must be a
segmented address. Its value in the reply message is undefined.

#

1)

2)

3)

4)

5)

Length Offset Field Name Request Reply

2 0 | Reserved for NX Usage | zero undefined
l |
[R LTI |

4 2 User td Code undefined preserved

1 6 | Request Code [o2H preserved
R P |

1 7 [Return Code | undefined see text
e |

4 8 Starting Address see text preserved

Figure 5-9: EXOS 204 Start-Execution Request/Reply Message

5.9.2. Start Execution Request

After downloading protocol software, the host processor starts it executing with
a single start execution request message. Once this command has been issued
and the reply received, NX 200 does not itself process any more messages.
Instead, all messages sent to the EXOS 204 will be queued up for user
processes running under the NX 200 kernel.

The start execution request specifies the location at which execution of user
code begins. User code is entered as a single process with priority 255 and
infinite time slice. All registers except for the PC and stack pointer are
undefined. The initial process stack is provided from the NX 200 data area and
is guaranteed to be at least 100H bytes deep. The process is free to switch to a
bigger stack if desired. In all other respects, it is a normal process, as defined
in Section 7.5.

Figure 5-9 shows the format of the start execution request/reply message, and
the following paragraphs describe the individual fields in detail.

5-24

5.9.2.1.

5.9.2.2.

5.9.2.3.

5.9.2.4.

5.9.2.5.

NX 200: Initialization and Host Interface for UNIBUS Systems

Reserved Field

The first field is reserved for use by NX 200, and must be initialized as 0. lts
value in the reply message is undefined.

User id Code Field

The user id code field is not interpreted by the EXOS 204, and is returned
unmodified in the reply message. It can be used to establish a correspondence
between request and reply messages.

Request Code Field

The request code field defines the request. Its value in the request message
must be 2. This value is preserved in the reply message.

Return Code Field

The reply code field is undefined in the request message. In the reply message,
it reports the status of the start execution request.

0 Successful completion.
A2H Invalid starting address, execution not started.

A1H Invalid request, the EXOS 204 is not in front end mode.

Starting Address Field

The starting address field specifies the initial value of the initial process’s
program counter. This must be a segmented address. |ts value is preserved in
the reply message.

5-25

Chapter 6
LINK LEVEL CONTROLLER MODE

6.1. INTRODUCTION

In the link level controller mode, NX 200 provides a standard Ethernet Data Link
interface to the host system. The host system selects link level controller mode
at initialization time, by specifying operation mode 0 in the configuration
message (see the Configuration Message Format section of the appropriate
INITIALIZATION and HOST INTERFACE chapter. At this time, instead of
the host downloading protocol software, as it would in front-end processor
mode, NX 200 runs firmware which brings NX 200's on-board Ethernet driver
out to the host interface. The host can then access all Ethernet functions by
exchanging request and reply messages with NX 200 via the message protocol
described in the Configuration Message Format section of the appropriate
INITIALIZATION and HOST INTERFACE chapter. In either case, NX 200 uses
the EXOS Intelligent Ethernet Controller's RAM primarily to buffer packets in
both directions between the network and the host.

Link level controller mode functionality is very similar to the NX 200 Ethernet
interface for EXOS 200 Series board-resident software, described in Section 8.
Because the underlying objects and capabilities of this mode are identical, they
will not be described here in the same detail. Instead, this section concentrates
on the format and usage of request messages.

6.2. THE CONTROLLER MODE INTERFACE

After NX 200 has been initialized in mode 0, the host sends commands as
request messages in the host-to-EXOS queue. When a request is completed,
NX 200 places a reply message in the EXOS-to-host queue. These queues
may be arbitrarily long, and can be used to pipeline Ethernet operations. Figure
6-1 shows how messages are encapsulated in the message queue buffers.

In link level controller mode, NX 200 honors six request messages:

TRANSMIT Send packet from host memory onto Ethernet
RECEIVE receive packet from Ethernet into host memory

NET_MODE Read/modify the net mode

NET_ADDRS Read/modify an address slot

NET_RECV Enable/disable receive on an address slot
NET_STSTCS Read/clear the network statistics

The first two requests above correspond to the transmit and receive messages
which on-board software would send to the Ethernet system process under
NX 200 (see Sections 8.1 and 8.2). The latter four requests correspond exactly
to the NX 200 calls by the same name which on-board software would use (see
Section 10).

Figure 6-2 conceptually shows how requests are processed by NX 200.
According to the message queue protocol, as soon as the host software has
placed a request message in a host-to-EXOS message queue buffer, it
interrupts NX 200. When interrupted, NX 200 reads the requests from the
queue and buffers them in its on-board memory.

NX 200: Link Level Controller Mode

REQUEST/REPLY MESSAGE BUFFER

| Length Field | REQUEST. REPLY MESSAGE

User ID Code Field

Figure 6-1: Encapsulation of Request/Reply Message in Message Buffer

A request is said to be outstanding once it has been read from the host request
queue, and until the corresponding reply message has been written to the host
reply queue. NX 200 can buffer up to 32 outstanding request messages.
Additional requests will remain in the host request queue until buffers are made
available by request completion in NX 200. This should be noted when
designing host software, since certain implementations could become
deadlocked by outstanding requests. In particular, receive requests remain
outstanding at least until a packet is received from the network. In general, no
more than 32 receive requests should be made at any time.

Note that in link level controller mode, NX 200 will buffer incoming packets (that
pass address filtering) even if no receive requests have been submitted.

As shown by Figure 6-2, NX 200 effectively places different request messages
in separate internal queues and processes them asynchronously, according to
their type. Network management requests are generally processed immediately,
and transmit requests are processed as fast as the Ethernet Data Link protocol
permits. Receive requests remain outstanding until packets arrive on the
Ethernet, unless received packets are already buffered up in NX 200.

62

NX 200: Link Level Controller Mode

RECEIVE
REQUEST

Y

HOST SYSTEM MEMORY

TRANSMIT
™ REQUEST

NET MGMT
% REQUEST

-

—{ PACKET (TO

BE SENT)

PACKET (HAS
BEEN SENT)

B

- RECEIVE BUF-

FER (EMPTY)

NET MGMT
REPLY

RECEIVE BUF-
FER (FILLED)

RECEIVE
| REPLY

TRANSMIT
REPLY

EXOS DMA READ

EXOS DMA WRITE

]

r

TRANSMIT

BUFFERS (4)

l
r

[

RECEIVE
BUFFERS (32)

EXOS BOARD ON-BOARD MEMORY

s

~~

=P

S
REPLY

NET MGMT TRANSMIT RECEIVE
REQUEST REQUEST REQUEST
NETWORK MGMT TRANSMIT RECEIVE

REQST HANODLER

REQST HANDLER

REQST HANDLER

)

Figure 6-2: Link Level Controlier Mode Request Processing Scheme

NX 200 sends reply messages back to the host immediately upon request
completion, not necessarily the order in which they are accepted. In order to
ensure a specific sequence of operations among requests of different types, a
request should be issued only after the reply message for the preceding
operation in the sequence has been received. - Each request message carries a

6-3

NX 200: Link Level Controller Mode

32-bit user id field, the firld is not interpreted by NX 200 and is returned
unmodified in the reply message. This field can be used for any purpose, for
example, to establish a correspondence between a request and its reply
message.

The remainder of this section specifies the format of the request/reply messages
for each request. Where these requests map directly into NX 200 calls (see
Section 10), the figures also mention the corresponding CPU registers, if any, in
parentheses (request, reply).

In addition to the error codes defined for NX 200 calls, any request may return
the general error code 0OA1H if (a) the request message is shorter than the
specified length, (b) an invalid request code is used, or (¢) NX 200 is not
initialized in link level controller mode.

6.3. TRANSMIT REQUEST/REPLY MESSAGE

To transmit a packet on the Ethernet, host software sends a transmit request
message to NX 200. This message contains pointers to an Ethernet packet in
host memory. Packets are prepared for transmission in standard Ethernet data
link layer frame format, as described in Section 8.1. Host software should
prepare the address and type fields. Packets should not include preamble or
CRC fields, which are prepared by EXOS Intelligent Ethernet Controller
hardware. If it serves the purposes of host software, the packet may be
composed of up to eight disjoint blocks in host memory.

NX 200 enqueues transmit requests, and completes packet transmission without
any intervention from the host. When NX 200 accepts a transmit request, it
gathers the packet (or packet fragments) from host memory, and assembles the
packet in an internal transmission buffer. Four such buffers are allocated in link
level controller mode, and transmission requests are pipelined — if more than
four transmit requests are pending, the packet is not necessarily read from host
memory immediately upon acceptance of a new request. This is unlikely, unless
the network is very heavily loaded.

If NX 200 is in off net mode (described in Section 8.4) then transmit requests
will be enqueued, but will remain outstanding until NX 200 is put back in an on
net mode. If NX 200 is taken off net during a transmission, then the current
transmission will first be completed. If the net disable option is selected (see
Section 8.4), then transmissicn will appear to complete normally, but nothing is
actually sent on the Ethernet.

An alternate forrn of the transmit request is provided in link level controlier mode
only. This is transmit with self-receive, and is selected by the request code OEH
(instead of OCH). When this form of the transmit request is used, transmission
occurs just as with a normal transmit request, but also generates a received
packet — if the destination address passes the established address filtering.
Address filtering is performed according to normal procedure for incoming
packets with one difference: in imperfect filtering mode, multicast packets are
always self-received.

Transmit requests are dispatched in the order they are received from the host
system. When the request is completed, NX 200 modifies the request message
according to the status of the transmission and returns it to the host as a reply
message. Until the reply message is received through the EXOS-to-host

NX 200: Link Level Controller Mode

#

1)

2)

3)

4)

5)

6)

7)

8)

n)

Length Offset

2 0
4 2
1 6
1 7
1 8
1 9
2 10
4 12

Field Name

| Reserved for NX Usage

User 1d Code

(The two fields above may
appear up to eight times, as
specified by the Number of

| Data Blocks parameter)

Figure 6-3: TRANSMIT Request/Reply Message

Request

zero

undefined

see text
undefined
undefined
text

see

see text

see text

Reply

undefined

preserved

preserved
see text
see text

preserved

preserved

preserved

6.3.1.

message queue, the indicated Ethernet packet belongs to NX 200 and should

not be modified.

Figure 6-3 shows the format of the Ethernet transmit request/reply message,
and the following paragraphs describe its individual fields in detail.

Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in
the reply message is undefined.

6-5

NX 200: Link Level Controller Mode

6.3.2. User Id Code Field

The user id code field is not interpreted by NX 200, and is returned unmodified
in the reply message. It can be used to establish a correspondence between
request and reply messages.

6.3.3. Request Code Field
The request code field defines the request:
OCH Transmit.
OEH Transmit with self-receive.

This field's value is preserved in the reply message.

6.3.4. Return Code Field

The return code field value in undefined in the request message. In the reply
message, it reports the status of the transmission request:

00H Successful transmission, no retry.
01H Successful transmission, 1 retry.
02H Successful transmission, more than 1 retry.

08H (Applicable for Version 2.0 transceivers only.) Indicates the
absence of SQE (heartbeat) TEST signal during the Innerframe
Spacing interval. This return code is OR-able with all other
message values except 40H and OA1h. A jumper option is
available to disable this check. (Refer to the appropriate EXOS
intelligent Controller Hardware Reference Manual)

10H Transmission failed, excessive collisions.
20H No Carrier Sense signal detected during transmission.
40H Transmission failed, transmit length not in range.

OA1H Failed, NX 200 is not in controller mode.

6.3.5. Address Slot Field

The address slot field is an index into the address slot array. Its value in the
request message is undefined. In the reply message, it contains the address
slot number by which this packet would be received by this station. For
instance, the value 255 indicates that the packet was broadcasted, and should
be auto-received. Or, if the packet was transmitted to this stations own address,
the value would be 253. A zero value means that no slot matched — this packet
would not be received by this station.

6.3.6. Number of Data Bilocks Field

The number of data blocks field specifies the number of data length/data
address field pairs that follow this field in the request message. Each pair
describes one block, where a packet may occupy up to eight disjoint blocks in
shared memory. This field's value is preserved in the reply message.

6-6

NX 200: Link Level Controller Mode

6.3.7. Data Block Length Field

The data block length field specifies the length in bytes of the data block whose
address follows. The sum of all data block length fields should be the total
packet length. This value does not include the preamble or CRC fields, which
are appended by EXOS Intelligent Ethernet Controller hardware. In the reply
message, this field’s value is preserved.

6.3.8. Data Block Address Field

The data address field specifies the address of a data block in shared memory,
where up to eight blocks compose a packet. Note that the packet, as handed
over to NX 200, does not include a preamble, so that the address of the first
block will point to the first byte of the packet's destination field. The data
address fieid is preserved in the reply message.

6.4. RECEIVE REQUEST/REPLY MESSAGE

Host software receives a packet on the Ethernet by sending an Ethernet receive
request message to NX 200. This message contains pointers to a packet buffer
in host memory. If NX 200 has already received a packet from the Ethernet,
then it will copy the packet into the host buffer. Otherwise the request will not
complete until a packet is received.

Received packets are returned to the host in standard Ethernet data link layer
frame format, as described in Section 8.1. Address, type, and CRC fields are
included, but not the preambile. NX 200 performs address and CRC checks in
hardware. |If it serves the purposes of host software, the packet buffer may
comprise up to eight disjoint blocks in host memory.

NX 200 will receive packets from the Ethernet according to several criteria. One
s the mode of operation, which determines whether to listen at all, and whicn
categories of address to accept. Another factor is the address filter. which
determines the physical address, and up to 252 active multicast addresses. The
last factor to consider is the options mask, which defines acceptable errors in
received packets. Subsequent sections describe these factors in more detal.

When a packet on the Ethernet satisfies the criteria for reception, NX 200
receives and buffers the packet in its own memory. In link level controller mode,
the EXOS 200 Series board provides 32 full-size on-board packet buffers which
are chained in controlier hardware. Therefore it can receive 32 Ethernet packets
back-to-back, with minimal interframe spacing, even when no receive requests
from the host are pending.

When reception is complete, NX 200 modifies the request message according to
the status of the reception and returns it as a reply message. Recewve requests
are queued up and dispatched in the order received. Until the reply message is
received through the EXOS-to-host message queue, the indicated buffer
belongs to NX 200 and should not be used.

Figure 6-4 shows the format of the Ethernet receive request/reply message. and
the following paragraphs describe its individual fields in detail.
6.4.1. Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its vaiue in
the reply message is undefined.

6-7

NX 200: Link Level Controller Mode

#

1)

2)

3)

4)

5)

6)

7)

8)

n)

Length Offset

2 0
4 2
1 6
1 7
1 8
1 9
2 10
4 12

Field Name

User 1d Code

Buffer Block Length |

Buffer Block Address

(The two fields above may

appear up to eight times, as
specified by the Number of
Buffer Blocks parameter) |

Figure 6-4: RECEIVE Request/Reply Message

Reques

zero

undefined

0ODH
undefined
undefined
text

see

see text

see text

Reply

undefined

preserved

preserved
see text
see text

preserved

see text

preserved

6.4.2. User id Code Field

The user id code field is not interpreted by NX 200, and is returned unmodified
in the reply message. It can be used to establish a correspondence between
request and reply messages.

6.4.3. Request Code Field

6.4.4. Return Code Field

The request code field defines the request.
request message must be ODH. This value is preserved in the reply message.

Its value in the Ethernet receive

The return code field value in undefined in the request message. In the reply
message, it reports the status of the receive request:

6-8

NX 200: Link Level Controller Mode

00H Packet received with no error.

04H Packet received longer than buffer supplied, truncated.

10H Packet received with alignment error.

20H Packet received with CRC error,

40H No packet received, buffer supplied was less than 64 bytes.
0A1H Failed, NX 200 is not in controller mode.

Note that packets with errors are actually received only if the network mode is
set appropriately.

6.4.5. Address Slot Field

The address slot field is an index into the address slot array. lts value in the
request message is undefined. In the reply message, it contains the address
slot number which matched the destination address of the packet received. If
the controller is in promiscuous mode, then this field will return the universal
address slot, whether or not any address matched. If the controller is not in
perfect filtering mode, then this field will return the universal address slot when
any multicast packet is received.

6.4.6. Number of Buffer Blocks Field

The number of buffer blocks field specifies the number of buffer length/buffer
address field pairs that follow this field in the request message. Each pair
describes one block, where a buffer may consist of up to eight disjoint blocks in
shared memory. This field’s value is preserved in the reply message.

6.4.7. Buffer Block Length Field

The buffer block length field specifies the length in bytes of the buffer block
whose address follows. The sum of all buffer block length fields should be the
total packet length. The length does not include the preamble but must include
4 bytes for the frame check sequence (CRC) field. In order to receive the
longest possible Ethernet packet, the buffer must be at least 1518 bytes long.
Minimum size is 64 bytes, which will fit the shortest possible Ethernet packet.

In the reply message, the buffer length field total returns the number of bytes
actually received, plus 4 bytes for the CRC field. Note that the CRC value is not
actually written back. Also, if the buffer supplied was smaller than the packet
received, then the excess bytes are truncated, and the buffer length will not give
the true length of the packet.

6.4.8. Data Address Field

The data address field specifies the address of a buffer block in shared memory,
where up to eight blocks compose a buffer. Note that the packet returned by
NX 200 does not include a preamble, so that the address of the first block will
point to the first byte of the packet's destination field. The data address field is
preserved in the reply message.

6-9

NX 200: Link Level Controller Mode

6.5. NET_MODE REQUEST/REPLY MESSAGE

The NET_MODE request is used to read/write the network controller mode and

options mask objects.

For details of these, refer to Sections 8.3 and 8.4.

Figure 6-5 shows the format of the NET_MODE request/reply message, and the
following paragraphs describe its individual fields in detail.

#

1)

2)

3)

4)

5)

6)

7)

Length Offset

2 0
4 2
1 6
1 7
1 8
1 9
1 10

Field Name

User 1d Code

Figure 6-5: NET_MODE Request/Reply Message

Request

zero

undefined

08H
undetined
see teft
see text

see text

Reply

undefined

preserved

preserved
see text
undefined
see text

see text

6.5.1. Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in
the reply message is undefined.

6.5.2. User Id Code Field

The user id code field is not interpreted by NX 200, and is returned unmodified
in the reply message. It can be used to establish a correspondence between
request and reply messages.

6.5.3. Request Code Field

The request code field defines the request. Its value in the NET_MODE request
message must be 08H. This value is preserved in the reply message.

6-10

NX 200: Link Level Controller Mode

6.5.4. Return Code Field

The return code field is undefined in the request message. In the reply
message, it reports the status of the NET_MODE request:

0 Successful completion.

0A1H Failed, NX 200 is not in controller mode.

6.5.5. Request Mask Field
The request mask field is defined as follows:
01 Write request bit.
02 Read request bit.

Read and write can be requested simultaneously (mask = 03). Other bits in the
mask must be 0, or effects are undefined.

The request mask’s value in the reply message is undefined.

6.5.6. Options Mask Field

The options mask field defines several available controller options. Available
options are defined by the following bit OR-able values:

10H Alignment error — enables reception of packets even if the
number of bits received is not a multiple of 8.

20H CRC error — enables reception of packets even if the CRC
check fails.

80H Net disable — disables the Ethernet controller so that packets
are not received or transmitted on the Ethernet. However,
transmit requests are still processed by NX 200, and to user
processes appear to complete successfully if an on net mode is
selected.

All other bits are undefined and must be 0. This parameter is required only if a
write is requested. If the read bit in the request mask of the request message
was set, then this field returns the options mask prior to the request. Otherwise
its value in the reply message is undefined.

6.5.7. Mode Field

The mode field specifies the new mode of the Ethernet controller. Possible
values are:

00H Disconnect from the net.

01H Connect to net, perfect filter for multicast addresses.

02H Connect to net, only hardware filter for multicast addresses.
03H Connect to net, receive all packets (promiscuous mode).

This parameter is required only if a write is requested. If the read bit in the
request mask of the request message was set, then this field returns the net
mode prior to the request. Otherwise its value in the reply message
is undefined.

6-11

NX 200: Link Level Controller Mode

6.6. NET_ADDRS REQUEST/REPLY MESSAGE

The NET_ADDRS request is used to read/write an address in a specified
address slot. For information about address slots, see Section 6.6.

If a network address to be written is invalid, the write does not occur, and the
address in the slot prior to the request is preserved. Writing an address into a
slot disables reception on that slot. The NET_RCV request must be explicitly

used to re-enable reception on the slot.

#

2)

3)

4)

5)

6)

7)

Length Offset Field Name

2 0 | Reserved for NX Usage |
i |
e e e |

4 2 User |d Code

1 6 | Request Code
I |
1 7 | Return Code (AL) |
R e I |
1 8 | Request Mask (bL.,DL) |
R R |
1 9 | Address Stot (DH, --) |
R R I |
6 10 | Net Address ("ES+DI, --) |
| |
| |
| |
| |
| |
[mmm s 1 byte------------

Figure 6-6: NET ADDRS Request/Reply Message

Request

zero

undefined

09H

undefined

see text

see text

see text

Reply

undefined

preserved

preserved
see text
see text
preserved

see text

Figure 6-6 shows the format of the NET_ADDRS request/reply message, and

the following paragraphs describe its individual fields in detail.

6.6.1. Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in

the reply message is undefined.

NX 200: Link Level Controller Mode

6.6.2. User Id Code Field

The user id code field is not interpreted by NX 200, and is returned unmodified
in the reply message. It can be used to establish a correspondence between
request and reply messages.

6.6.3. Request Code Field

The request code field defines the request. Its value in the NET_ADDRS
request message must be 09H. This value is preserved in the reply message.

6.6.4. Return Code Field

The return code field is undefined in the request message. In the reply
message, it reports the status of the NET_ADDRS request:

0 Successful completion.
0D1H The specified slot does not exist or access is not permitted. ‘

0D3H Improper address. Multicast slots can only take multicast
addresses and the physical slot can only take a physical
address. Attempting to write the broadcast slot (number 255)
results in this error.

CA1H Failed, NX 200 is not in controller mode.

6.6.5. Request Mask Field
The request mask field is defined in the request message as follows:
01 Write request bit.
02 Read request bit.

Read and write can be requested simultaneously (mask = 03). Other bits in the
mask must be 0, or effects are undefined.

In the reply message, if bit 3 (mask value 8) is set, then the address slot contained a
valid address prior to this request. Otherwise the slot was empty. All other bits are
undefined. This result is defined only if a read was requested.

6.6.6. Address Slot Field

The address slot field designates the address slot which is to be accessed. This
can be the physical address slot (253) or any multicast address slot (between 1
and the limit defined by configuration).

This field's value is preserved in the reply message.

6.6.7. Net Address Field

The net address field, if a write is requested, should contain a valid network
address to be written in the specified slot. In the reply message, if a read was
requested, and the slot was not empty, then this field returns the net address in
the specified slot prior to this request. Otherwise it is undefined.

6-13

NX 200: Link Level Controller Mode

6.7. NET_RECV REQUEST/REPLY MESSAGE

This request is used to read/alter the receive status of an address slot (see

Section 6.6).

Figure 6-7 shows the format of the NET_RECV request/reply message, and the

following paragraphs describe its individual fields in detail.

#

1)

2)

3)

4)

5)

6)

Length Offset Field Name

2 0 | Reserved for NX Usage |
| |
R R R l
a4 2 | User 1d Code
l f
| |
| |
I |
1 6 | Request Code |
R R |
1 7 | Return Code (--.AL) |
R e |
1 8 | Request Mask (DL,DL) |
e I T |
1 9 | Address Slot (DH, --) |
R 1 byte------------. >

Figure 6-7: NET_RECV Request/Reply Message

Request
zero

undefined

0AH
undefined
see text

see text

Reply

undefined

preserved

preserved
see text
see text

preserved

6.7.1.

6.7.2.

6.7.3.

6.7.4.

Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in

the reply message is undefined.

User Id Code Field

The user id code field is not interpreted by NX 200, and is returned unmodified
in the reply message. It can be used to estabiish a correspondence between

request and reply messages.

Request Code Field

The request code field defines the request. Its value in the NET_RECV request
message must be 0AH. This value is preserved in the reply message.

Return Code Field

The return code field is undefined in the request message.

message, it reports the status of the NET_RECV request:

In the reply

NX 200: Link Level Controller Mode

0 Successful completion.

0D1H The specified slot does not exist or access is not permitted.
0D2H The specified slot was empty.

0A1H Failed, NX 200 is not in controller mode.

6.7.5. Request Mask Field
The request mask field is defined in the request message as follows:
01 Write request bit.
02 Read request bit.
04 Enable receive bit.

Read and write can be requested simultaneously (mask = 03). Other
bits in the mask must be 0, or effects are undefined.

If the write bit in the request mask is set, then reception on the designated
address slot will be enabled or disabled, depending on the value of the enable
receive bit.

In the reply message, it bit 2 (mask value 4) is set, then receive was enabled for
this slot prior to this request. Otherwise it was disabled. All other bits are
undefined. This result is defined only if a read was requested.

6.7.6. Address Slot Field

The address slot field designates the address slot which this request will work
on. This can be the physical address slot (253), the broadcast slot (255), or any
multicast address slot (between 1 and the limit defined by configuration).

This field's value is preserved in the reply message.

6.8. NET_STSTCS REQUEST/REPLY MESSAGE

This request reads/resets the statistics objects (see Section 6.7). If the read bit
is set in the request mask, then a specified number of statistics objects, starting
at the objects index field, are copied into the array specified by the buffer
address field. Note that the statistics copied into host memory are defined only
after the reply message has been received.

If the write bit is set in the request mask, then the number of objects specified
by the number of objects field, starting with the object specified by the objects
index, are reset to zero. If the objects index field is out of range, then no
objects are read/reset.

Figure 6-8 shows the format of the NET_STSTCS request/reply message, and
the following paragraphs describe its individual fields in detail.

6.8.1. Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in
the reply message is undefined.

6-15

NX 200: Link Level Controller Mode

#

1)

2)

3)

4)

5)

6)

7)

8)

9)

Length

Offset

12

14

Field Name

User |d Code

| Return Code (--.AL) |
| e e |
| Request Mask (oL, --) |
e r et |
| Reserved |
T T |
| Number of Objects (Cx,cx) |
| I
| e e |
| Objects Index (St,--) |
| |
| e e |
Buffer Address (*ES+DI, - -)

Figure 6-8: NET_STSTCS Request/Reply Message

Request

zero

undefined

0BH
undefined
see text

zero

see text
text

see

see text

Reply

undefined

preserved

preserved
see text

undefined
undefined

see text

preserved

preserved

6.8.2. User Id Code Field

The user id code field is not interpreted by NX 200, and is returned unmodified
in the reply message. It can be used to establish a correspondence between
request and reply messages.

6.8.3. Request Code Field

6.8.4. Return Code Field

The request code field defines the request.
request message must be O0BH. This value is preserved in the reply message.

The return code field is undefined in the request message.

message, it reports the status of the NET_STSTCS request:

6-16

Its value in the NET_STSTCS

in the reply

NX 200: Link Level Controller Mode

0 Successful completion.

0A1H Failed, NX 200 is not in controller mode.

6.8.5. Request Mask Field

6.8.6.

6.8.7.

6.8.8.

6.8.9.

The request mask field is defined in the request message as follows:
01 Write request bit.
02 Read request bit.

Read and write can be requested simultaneously (mask = 03). Other
bits in the mask must be 0, or effects are undefined.

The read request copies the specified portion of the statistics array into the
specified buffer. The write request resets the specified portion of the statistics
array. If both read and write are requested, the read is done first. This field is
undefined in the reply message.

Reserved Field

This field must be zero in the requést message. Its value in the reply message
is undefined.

Number of Objects Field

The number of objects field specifies how many statistics objects are to be
read/reset. In the reply message, this field returns the number of objects that
were actually read/reset. If the number requested exceeds the bounds of the
statistics array, it will be truncated.

Objects Index Field

The objects index field specifies the starting place in the statistics array at which
objects will be read/reset. Its value is preserved in the reply message.

Buffer Address Field

The buffer address field specifies the address of the buffer in shared memory to
which the requested portion of the statistics object array will be copied, if a read
request was made. This field is defined only if a read is requested. Its value is
preserved in the reply message.

6-17

Chapter 7
PROGRAMMING ENVIRONMENT

7.1. INTRODUCTION

This section provides the information necessary. to write higher-level software to
execute under the NX 200 kernel on an EXOS Intelligent Ethernet Controller.
The first few sections describe environmental considerations, such as memory
allocation, which commonly affect software design. Subsequent sections
explain the abstract objects and operations implemented in NX 200.

All programs for the intelligent Ethernet controller execute under NX 200, an
EPROM-resident multitasking operating system kernel. Programs can be written
in any language for the CPU and can be located anywhere in the memory
available to the user. They can be downloaded either from the host or over the
network. Refer to the section " Downloading Software from the Host", in the
appropriate "Initialization and Host Interface” chapter, for details.

NX 200's multitasking environment facilitates the structured implementation of
high-level protocol software, as a set of cooperating processes. Facilities
include mechanisms for process synchronization, interprocess communication,
scheduling, and clock-based functions. None of the hardware devices on the
board, viz., the clock, the Host interface or the Ethernet controller, require direct
access by user processes. Instead, NX 200 has built-in drivers which provide
suitable abstractions of the devices, so that programs developed for the EXOS
Intelligent Ethernet Controlier are independent of actual hardware
implementation.

All functions of NX 200 are accessed by means of NX calls executed by an
INT "n" instruction, where n defines the desired function. Parameters to the
calls are generally passed in CPU registers. However, it is easy to write
interface libraries to permit NX calls to be made from programs written in high
level languages such as C, PASCAL, etc.

7.2. MEMORY ORGANIZATION

The board CPU provides an address space of 1 Mbyte, accessible in 64K
segments, on 16-byte bounds. Figure 7-1 shows how this address space is
allocated on the EXOS Intelligent Ethernet Controller, under the default
configuration of NX 200. The default configuration provides a given number of
objects, such as mailboxes and process table entries. This allocation, specified
in the Memory Map Size Field section in the appropriate chapter of Initialization
and Host Interface, should be sufficient for most applications. However, the
allocation of objects under NX 200 can be changed at initialization time, with a
corresponding effect on RAM allocation. The following paragraphs explain the
use of NX 200 memory in detail.

7.2.1. Interrupt Vector Table

In the default configuration, NX 200 allocates 512 bytes for the interrupt vector
table, providing 128 entries of 4 bytes each. Of thes