. .901181-385

*SPSB0.CONPUTER ASSEMBLY LANGUAGE
* PROGRAUMERS REFERENCE MANUAL

EVANS & SUTHERLAND COMPUTER CORPCRATION

“WARCH 1985

o aThEany
LIST OF EFFECTIVE PAGES

- [,v i <

On a changed text page, the portion affected by the latest change is
indicated by a vertical.line in the outer marg1n of the page Change number
0 1ndicates an or1g1na] page.

EﬂQE_H!MEEB © CHANGE NUMBER SR I

]

B

1

3

OCP}?(.;).N-Q-deg
!
OO OCOCOO0O

SN e

Port1ons of th?s manuai i i ex'racted“From "Moﬂel 980 Computer
Basic System Use and. Operation™ T.I.:Com tey Assembly ‘Language, and DX980
General Purpose Operating System with, perm1ssion of the publrsher Copyright
@] August 1978, Texas Instruments Inﬁorporated -

i -
pane es»&’w/i Lo D0
ot o Tl Xk W

Copyright © 1985

to “Evans~ & Sutherland, and

“"ncepts in this documenti ‘
nd’ - ?@te1gn patents or

x%ﬂptected as - trade secrets'on coveYedﬁ“
S - e

(roan
(TG { o L SRETAT Segh

Evan fSuther]and Computer Corper&f N mes
of . accurac1es in this. dotument’.)’ Itcdc ”;" ’ he,4most complete and
accuratéinformation available at; ﬂhextlmefof“pub11cat1“ 2 and is subject to
change wnthout notice.) woet

ii

9Q1181 38?

List of Effective Pages S P -
ITlustrations e LTI
Tableso e e e e e e e
SECTION 1 GENERAL INFORMATION Voot
1.1 Scope of Manual e L
1.2 References T L
SECTION 2 HARDWARE FEATURES ;.‘:, .
2.1 General e e e e e e e C2-1
2.2 Computer Organ1zat1on 2-1
2.3 Data and Instruction Formats 2-4
2.4 Register Organization 2-4
2.5 eMemory Protect/Pr1v11edge Instruct1on Feature 2-6
2.6,' : e ,, ST i e i e L 2=T
2. . f 2-7 .
SECTION 3 MACHWEINSTRUCHONSANDCODHHBCONVENHONS
3.1 General o .o . .. 3-
3.1.1 Instructlon Descriptions 3-
3.1.2 Addressing Modes 3-
+3.1.3:, Extended Format\Addre351ng 3-
3.2 Load Instruct1@ns iy SN RN - PRTE 3-
3.2.1 Double Ldad Regdsters A'dnd E (DLD) . .. 3-
3:2.2., Load Register A (LDA) S R
3.28 ﬁzLoad Registey” DE amnar i . e
3.2.4 Load Register W (LM 3=
t¢ 1 7.3.2.5, Load Register XofdDX) . wo o . ..o oo C 3
v 0131246 Load Régxs%ér e i'.‘("LR : _ L3
3.3 Store Instructions® i * IR ek 3=
3.3.1 Double Store Reg1sters A and E (DS L3
©.3:3.2 .Store Register File (SRF). "3
03.3.3 iStore. Reg1stér‘ﬁ (STAY, fﬁ b 3=
¢4,3.3.4Store RegisterE. (STE FRNEIR TS i
3.3.5 Store RegisThriXHCSTX): =« ok w ., 3-

901181 -385
ERONT MATTER

Page
.. 3.4 Branch Instructions . . 3-19
3.4.1 Branch on Incréme 3-20
S 3.4.2 Branch and Llnk‘(BRL) 3-21
N 3.4.3 Branch Uncond1tiona1 3-22
- 3.4.4 Idle (IDL) 3-23
o 3.4.5 Load Status B?Ock an A b . 3-24
i - 3.4.6 Load Status Block, jReset Enferﬁupt ‘& Branch . 3-25
mi 3.4.7 Store Status Black ranch” (SSB) aoaze oo . 326
‘v 73.5 "Arithmetic Instructi ' I
Tl 3.5.1 FOATCAGA) LUl s T 3-28
¢ 3.5.2 A A P 3-29
* 3.5.3 Divide (DIV 2 Pt 3-30
- 3.5.4 Double Length trdact <DSB), R 1
3.5.5 Increment “Mémory y e CIMOY L L v Tl L. 3-32
3.5.6 Multiply ' S L s WLt L 3232
3.5.7 Register- 3-33
3.5.8 Reg1ster 3-34
3.5.9 Register [3-35
3.5.10 Register) § : 3-36
3.5.17 Register Invert (RIV)~~ eldEy oo 3-38
3.5.12 Register Subtract (RSUY 3-39
3.5.13 Subtract From” Reg1§ter A (SUB) e 340
3.6 Compare Instructions . L B
3.6.1 Compare Logical. @haracter Stv1ng (CLC) ‘; .. 341
3.6.2 Compare Algebraﬁc (CPR) S E L e e e e e e e e 3-43
3.6.3 Compare Logical® (CPL) . e e 3-44
3.6.4 Register Compare. Alqebra1u (RCA) 3-45
' 3.6.5 Register Compare Logical (RCLY 3-46
3.7 Skip Instructions e e e v .. 3=47
.1 Decrement Memory and';esi <DMT) ; Lo 3-47
2 Skip on;Equ TESED) LR e Ty .. . 3-48
.3° Skip on'E EYS -
.4° Skip on Gré
.5 Skip.on.Gre
6° Skip on Les
7 Skip on Les§:Tha
8 Skip on Minus |

.9 Skip on No Cafry’ (SNC) SR
.10 Skip on Not.Equal, (SNE) . s
.11 Skip oh Not A1l _Ones- {SND) "
.12 Skip on No Overfiow, CSNY) -
.13 Skip on Not A1l ZeiOS (SNZ)
.14 Skip - on Carry (SOC)
.15 Skip on 0dd (S0D). SN
.16 Skip on A1l Ones. (SOO)~?; DS

.17 Skip on Overflow (SQV3 i‘ ‘ ‘

.18 Skip on Plus (SPL)’ SR
.19 Skip on Sense Switch Equal (SSE)

\s-w\a-q\ix\z\q\zxnxn\nquw\i\n\i\!\s\i\s—ammcnmcn

.20 Skip on Sense Switch Not Equal (SSNYy 3-63
.21 Skip on Zero (SZE) e v e .. . 3-63

v

-901181-385
FRONTMATTER

3.8 Shift Instructions
.8.1 Arithmetic Left Shift. Reg1ster A (ALA)

.2 Arithmetic Left Shift Double (ALD)
3 Arithmetic R1ght Shift . ,Register A (ARA) . .
.4 Ar1thmet1c Right Shift Doubie (ARD) .
.5 C1rcu1ar ‘Left Shift Double (CLD) . .
.6: Circular, Rrght§§prt_Reg1ster A (CRA) .
.7 Circular-Right Shift.Register B (CRB)
.8 C1rcular,R1ghtMShift?Doub1e (CRDY
.9 Circular Right Shif ‘Register E (CRE) . . .
.10 Circular Right.Sh
.11 Circular Right Shi
.12 Circular Right Shift
.13 Circular Right Shift Régister X (CRX) .
.14 Logical Left Shift" Reglstér A (LLA) . .

8

8

8

8

8

8

8

8

8 Register L (CRL) .
8
8
8
8
.8.15 Logical Left Shift Double.(LLD) .
8
8
8
8
8
8
8
g
.9.
.9
.9
.9
.9
t

J ‘Register M (CRM)
Register S (CRS) . . .

.16 Logical Right Shift Regwster A C(LRAY
.17 Logical Right. Sh}ftéDouble CLRDYo
.18 Left Test For Qnes in, ,Register A (LTO) .

.19 Left Test for Zeros 1n Reg1ster A (LTZy . .

.20 Normalize (NRM) -=:.

.21 Right Test for Ones in- Reg1ster (RTO) e
.22 Right Test for Zeros in Reglster A (RT) .

3.9 Logical Instructions. .
1 Logical AND N1th Reg;ster A (AND) ..
2 Logical OR With Reg1ster A (IOR) . .
.3 Register AND (RANJ: Coe
.4 Register Exc]us1ve OR (REO) . ..
5 Register OR (ROR)
3.10 Bit Manipulation Instruct1ons .. e
.10.1 Set Register A Bit, te-ONE, (SABO) e .
.10.2 Set Register A Bit to Zero.(S P
.10.3 Set Memory,Bit. to,One {SMBO))
.10.4 Set Memory BJ .
.10.5 Test Registeyr -
.10.6 Test Reg1ster ‘ Zero (TABZ) .
7

33t f
.10.7 Test Memory Bit For.One (TMBO) .
: 13.10.8 Test Memory Bit for’ Zero (TMBZ)
"3.11 Move Instructions ié s

3.11.1 Move Charactér‘Str1ng e,

« e e e 8 e e - s e o & w« = s s o o o o o

'3.11.2 Register Exchange (REX). f?: ISR
: 13.11.3 Register Move:(RMO) : .. “<fg ,f.;;”i .
£ 3.12 Input/Output Instructions: .; « 4 e

3.12.1 Auxiliary Processor Initiate (API)
3.12.2 Automatic Transfer Instruction’ (ATI)
3.12.3 Read Direct Single (RDS):.. s

03.12.4 Write D1rect Slng1e (NDS) e

SECTION 4 ASSEMBLER CHARACTERISTICS AND DIRECTIVES

4.1
4.2

4.3

APPENDIX A INSTRUCTION EXECUTION TIMES (IN MICROSECONDS)

General . .
Symbolic Assembly Program :
Assembler Coding Line Format
.2.2 Segmented Source Programs .

S

4
4
4.
4.
A
4
4
4
4
4
4
4.
4,
4
4
4
4
4
4
4
4
4
4
4
4
4

2.

1

. 901181-385
FRONT MATTER

...................

2.3 Assembler Object Format . . .

2.
se
3
3
3
3
3
3
3
3
.3
.3,
.3
3
3
3
3
3
3
3
3
3
3

4

embler Directives

3.21

Assembler Error Messages

Block Ending Symbol (BES)
Base Register Reset (BRR)

Base Register Set (BRS) : :

Block Starting Symbol (BSS) .

Generate Byte Addgess (Byte) - : : - -

Referencing Common~Storage .
Generate Word Address or Data (Data)

Define Entry Point Symbol (DEF)
End of Source (END) f_m,a I

Equate (EQU

Flag Bit Address (FLAGY &

Format a New Instruct1on (FRM) .
Page Heading. (HED)
Object Identifier: (IDT) PR

Conditional Assembly (IF) e e : :
Start Listing (LIS) e e e e e

Operation Define (OPD) e
Origin (ORG)

Page Eject (PED) . v v v v

Referenced External Symbols (REF) .
Stop Listing (UNL)

APPENDIX B INSTRUCTION INDEX

APPENDIX C ILLEGAL INSTRUCTION OPERATION CODES

Vi

..........

...............

b 1t
YWY — —

: PP ETOEETT
RPN O RN NN — e 3 s s 2

e e s i
[114

O~ NOAUVIUTRWWNMN OO0 UIUlH_ WM

hhh?h-&hh

901181-385
FRONT MATTER

ILLUSTRATIONS

Figure

2-1 SPC9800 Computer Block Diagram . . .

3-1 Register-Memory Instruction Fields . .
4-1 Source Coded Main Program
4-2 Source Coded Subroutine Coe e
4-3 Assembled Main Program
4-4 Assembled Subroutine

4-5 '

Example of Byte and Data UségéiQ DR

'TABLES

2-1 SPC9800 Computer Characteristics .*.°. . .

2-2 SPC9800 Computer Addressable Registers .

2-3 Status Register Bit Functions 7.0. . .-

2-4 SPC9800 Computer Interrupts . . . 7. o . . .

3-1 SPC9800 Computer Machine Instructions by Functional Group - .

3-2 Assembly Language Coding Format & Instruction gExecution Symbols

3-3 Register-Memory Instruction Addressing Modes and Coding
Conventions o e e e e e e e e e

4-1 Assembler Error Messages .

4-2 Assembler Directives .

C-1 1I1legal Instruction Codes

. U e B
)i,;d Pl i

O-P-D(JJ

901181385
FRONT MATTER

HARDWARE MAINTENANCE

This manual concerns software procedures
only. Equipment maintenance must be referred
to qualified service personnel. There are
electrical hazzards inside this equipment
capable of causing DEATH if proper safeguards
are not observed.

viii

901181-385

SECTION 1

GENERAL INFORMATION

1.1 SCOPE OF MANUAL

This manual covers the SPC9800 computer assembly language. It describes all
of the computer machine instructions and the associated symbolic assembly
language coding conventions. Beginning with Section 2, an overview of the
SPC9800 computer is presented with specific information on the hardware
features that affect assembly language. Section 3 presents the machine
instructions and the symbolic coding conventions. Section 4 follows with a
general description of the assembler (SAPGFL) and a 1list of assembler
directives. Included in Section 4 are sample assembly listings produced by
SAPFL. The appendixes at the rear of the manual contain instruction
execution times, an alphabetical and numerical 1listing of instruction
operation codes, and a table of illegal operation codes.

1.2 REFERENCES

The SPC9800 Software Users Manual contains user descriptions and operating
instructions for the system software supplied with the computer. Among
other subjects, it gives information on how to assemble, load, and execute
an assembly language program.

1-1

901181-385
GENERAL INFORMATION

BLANK

1-2

901181-385

SECTION 2

HARDWARE FEATURES

2.1 GENERAL

This section contains a brief block diagram discussion of the computer, a
table of computer characteristics, and a list of programmable registers.
Included is a bit-by-bit breakdown of the status register.

2.2 COMPUTER ORGANIZATION

The computer is functionally organized into a central processing unit (CPU),
a memory, an input/output (I/0) unit, and a power supply. Figure 2-1 shows
a block diagram of the basic system. The Direct Memory Access Channel
(DMAC) is an I/0 channel used for peripheral devices having a relatively
fast rate of data transfer. The Data Bus is an I/O channel used for
peripheral devices having a relatively slow rate of data transfer. Table
2-1 lists some of the more important characteristics of the computer.

2-1

901181-385
HARDWARE FEATURES

DMA ADDRESS

ADDRESS/
DMA DATA DMA CHANNEL
CHANNEL INTERFACE DMA DATA
MEMORY ADDRESS

CONTROL

ADDRESS wemoRY DATA IN|

Jaooress/| prrTHETIC
10ATA I LoeIc NIT |

I/0 BUS

MEMORY

MEMORY
DATA ouT

SYSTEM AND CONTROL

(CPU)

CONTROL/DATA

FRONT PANEL
AND
CONTROL

FIGURE 2-1
SPC9800 COMPUTER BLOCK DIAGRAM

2-2

911560-0P0

901181-385
HARDWARE FEATURES

TABLE 2-1
SPC9800 COMPUTER CHARACTERISTICS

ORGANIZATION
Parallel operation
Single level indirect addressing
Two's complement arithmetic
Eight addressable registers, plus status register
Bipolar ROM control for CPU
MEMORY
Static Semiconductor memory
16-bit word Tength
Capacity of 262,144 words in 65,536 word increments

A1l of memory can be addressed using an 8-location page mapper.
65,536 words can be directly addressed at a given time.

750 or 333 nanosecond read or write cycle
INPUT/QUTPUT
One direct memory access channel (DMAC) port

Single word parallel transfer
Three million words per second burst rate maximum

A processor-controlled data bus with 4 ports

Bit serial transfer
16-bit parallel transfer

Three priority interrupts
Internal interrupts
DMAC interrupts
Data bus interrupts
INSTRUCTION SET
98 basic instructions (covered in Section 3)

OTHER FEATURES

Memory protect/privileged instruction feature
Hardware bootstrap 1oader

2-3

901181-385
HARDWARE FEATURES

2.3 DATA AND INSTRUCTION FORMATS

Both the data and instruction words are 16 bits long. The bit positions
within a word are numbered O (most significant bit) through 15 (least
significant bit). Data is represented in binary two's complement form with
bit O indicating the algebraic sign. A zero in the first bit indicates a
positive sign. The range of integers representable in one 16-bit word is
from -2'° to +2'% -1.)

Double length operands such as products from multiplication, dividends for
divides, and quantities for double-length arithmetic shifts have the
following format:)

0 1 15 16 17 31

S 15 MSB S 15 LSB

Input, output, and status register related instructions are 32 bits long and
occupy two consecutive 16-bit words. The register-to-memory instructions
may be 16 or 32 bits long.

2.4 REGISTER ORGANIZATION
Eight 16-bit registers are directly addressable via the instruction formats

involving registers. These registers with their respective address,
designation, and function are listed in Table 2-2.

TABLE 2-2
SPC9800 COMPUTER ADDRESSABLE REGISTERS
Register
Address Designation Function
0 A Primary arithmetic register.
1 E Secondary (extension) arithmetic register.
2 X Index register for operand address
modification.
3 M Maintenance register for temporary storage;
4 S Storage register for temporary storage.
5 L Link register to hold return address
for subroutine linkage.
6 B Base register to hold base address for
operands. ’
7 PC Program counter to hold the address of
the next instruction.

2-4

901181-385
HARDWARE FEATURES

In addition to these eight registers, the status register may be directly
affected by the instruction set. The status register is used to hold the
present condition of the computer and to enable or disable interrupts. The
status register together with the program counter constitutes the "status
block". The functions of the status register bits are listed in Table 2-3.

TABLE 2-3
STATUS REGISTER BIT FUNCTIONS

Bits Function
0,1 Compare Indicators - Indicate the result of the last compare
operation.
00 - less than
01 - equal to
10 - greater than

—
—_—
|

unused bit setting

2 Overflow Indicator - Turned on or off by those instructions
that may result in a number that is outside of the range
of the associated register(s).

3 Carry Indicator - Turned on or off by an add or -subtract
instruction that may result in a carry into the sign bit
of a register.

4 Privileged Instruction and Memory Protect Interrupt Control
0 - Disabled
1 - Enabled

5 Memory Protect Address Violation - May not be set under

program control.
0 - No Violation
1 - Violation

6 PIF Instruction Violation - May not be set under program
control.
7 Data Bus Interrupt Control
0 - Disabled
1 - Enabled
8 Not Used

PIF - Privileged Instruction Feature

2-5

901181-385
HARDWARE FEATURES

TABLE 2-3 (CONTINUED)
STATUS REGISTER BIT FUNCTIONS

Bits Function

9 PIF* Lower Limit Address Bias

0 - Disabled
1 - Enabled
10 Index Control
0 - Post Indexing

—_—
[

Pre-indexing
11 Not Used
12 DMAC Interrupt Control

0 - Disabled
1 - Enabled

13 Not Used
14 Not Used
15 Not Used

*PIF - Privileged Instruction Feature

2.5 MEMORY PROTECT/PRIVILEGED INSTRUCTION FEATURE

When enabled, the memory protect/privileged instruction feature (MP/PIF)
allows program execution to occur only within a specified area of memory.
It also causes certain instructions to be treated as illegal. This feature
may be used to protect the operating environment from destruction during
execution of an undebugged program. :

The system may use this feature to prevent a user program from inadvertently
storing data over a system program or another user program. The MP/PIF can
also prevent program execution from proceeding beyond the region that the
given program occupies in memory; thus, a program cannot inadvertently
branch into the middle of another program. Finally, when the MP/PIF is
enabled, a user can neither disrupt input/output activity that the system
has in progress nor bring the computer to an idle. ’

901181-385
HARDWARE FEATURES

Before enabling the MP/PIF feature, it is first necessary to load the MP/PIF
lower limit and upper limit registers that define the limits within which
execution will be constrained. Both registers are loaded using the WDS
instruction (refer to paragraph 3.12.4) just as if the MP/PIF registers were
external to the computer. Register address zero defines the lower limit,
and register address one defines the upper limit. These boundary locations
and all memory outside of the boundaries are protected by the MP/PIF
feature. The MP/PIF feature is then enabled by setting bit 4 of the status
register.

2.6 PROGRAM RELOCATION FEATURE

The program relocation feature (PRF) allows a program to be loaded anywhere
within the SPC9800 65K address space, but to execute as though it were
loaded starting at location zero. When used by a system program, this
allows programs to be moved from one point in address space to another with
no affect on the operation of the program. It also allows programs to be
stored in an absolute rather than relocatable form, thus requiring less
storage space.

The lower limit register used by the MP/PIF is also used by the PRF. If the
system sets bit 9 of the status register at the time control is transferred
to the user program, the contents of the lower limit register plus one is
added into the address calculations for each memory access. For example,
suppose a program is assembled as an absolute program with origin at
location 0000,s. Also, suppose that the entry point to the program is
location 0020,s, and that it is convenient for the system to load the
program at location 1000,¢. The system loads the program starting at
1000,s, places OFFF,s¢ in the lower Tlimit register, and performs an LSB
instruction (refer to paragraph 3.4.5) to transfer to the program. The LSB
must set bit 9 of the status register and load the program counter with
0020,s. Note, that although the instruction executed is at 1020,s, the
program counter contains -0020,s. If, for instance, a trap were to occur,
the value 0020,¢ in the program counter would be saved for the return.

2.7 PRIORITY INTERRUPT FEATURE

The SPC9800 Computer responds to three different types of interrupts. These
interrupts, in order of priority include: internal interrupt, DMAC
interrupt, and data bus interrupt. The two lower priority interrupts are
input/output interrupts, and their occurrence depends on the system hardware
configuration. The internal interrupts include the detection of an illegal
operation code, a memory protect violation, and a privileged instruction
violation. When any internal or input/output interrupt occurs, computer
control traps to low order memory as listed in Table 2-4, assuming the
proper status register bits are set to enable the interrupt. Note that the
illegal operation code interrupts cannot be masked by the status register.

2-7

901181-385
HARDWARE FEATURES

TABLE 2-4
SPC9800 COMPUTER INTERRUPTS
Trap
Interrupt Type Address Status Register Bits
(Hex) Mask Bit Interrupt Bit
Internal
I1legal op-code 0002 - _—
MP violation 0002 4 5
PIF violation 0002 4 6
DMAC 0004 12 -
Data Bus 0006 7 -
NOTE'

The illegal op-code intérrupt is detected when

none of the other

internal

the trap to 0002,s.

2-8

interrupts

cause

901181-385

SECTION 3

MACHINE INSTRUCTIONS AND CODING CONVENTIONS

3.1 GENERAL

This section describes the machine instructions and the related assembly
language coding conventions for the SPC3800 Computer. Table 3-1 groups the
98 instructions by function, and references a separate paragraph on each
instruction for more detailed information. -Appendix B- contains an
alphabetical and hexadecimal index to theSe same paragraph numbers. General
coding conventions applicable to the label, operation, operand, and comment
fields of the symbolic assembly language are covered in Section IV of this
manual. ‘

3.1.1 INSTRUCTION DESCRIPTIONS

Each instruction description referenced in Table 3-1 contains the following
information about the instruction:

Instruction word field breakdown

Description of instruction execution

Status register bits affected by instruction execution
Execution time

Assembly language coding conventions

Instruction example

901181-385

MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

SPC9800 COMPUTER MACHINE INSTRUCTIONS

TABLE 3-1
BY FUNCTIONAL GROUP

MNEMONIC DESCRIPTION PARAGRAPH NO.
- Load Instructions 3.2
DLD Double Load Registers A and E 3.2.1
LDA Load Register A 3.2.2
LDE Load Register E 3.2.3
LDM Load Register M 3.2.4
LDX Load Register X 3.2.5
LRF Load Register File 3.2.6
Store Instructions 3.3
DST Double Store Registers A and E 3.3.1
SRF Store Register File 3.3.2
STA Store Register A 3.3.3
STE Store Register E 3.3.4
STX Store Register X 3.3.5
Branch Instructions 3.4
BIX Branch on incremented Index 3.4.1
BRL Branch and Link - 3-4.2
BRU Branch Unconditional 3.4.3
IDL Idle 3.4.4
LSB Load Status Block and Branch 3.4.5
LSR Load Status Block, Reset In-
Interrupt, and Branch 3.4.6
SSB Store Status Block andBranch 3.4.7
Arithmetic Instructions 3.5
ADD Add to Register A 3.5.1
DAD Double Length Add 3.5.2
DIV Divide . 3.5.3
DSB Double Length Subtract 3.5.4
IMO Increment Memory by One 3.5.5
MPY Multiply 3.5.6
RAD - Register Add 3.5.7
RCO Register Complement 3.5.8
RDE Register Decrement 3.5.9
RIN Register Increment 3.5.10
RIV Register Invert 3.5.11
RSU Register Subtract 3.5.12
SUB Subtract from Register A 3.5.13

3-2

901181-385

MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

TABLE 3-1 (CONTINUED)

SPC9800 COMPUTER MACHINE INSTRUCTIONS

BY FUNCTIONAL GROUP

MNEMONIC DESCRIPTION PARAGRAPH NO.
Compare Instructions 3.6
CLC Compare Logical Character String 3.6.1
CPA Compare Algebraic 3.6.2
CPL Compare Logical 3.6.3
RCA Register Compare Algebraic 3.6.4
RCL Register Compare Logical 3.6.5
Skip Instructions 3.7
DOMT Decrement Memory and Test 3.7.1
SEQ Skip on Equal 3.7.2
SEV Skip on Even 3.7.3
SGE Skip on Greater Than or Equal 3.7.4
SGT Skip on Greater Than 3.7.5
SLE Skip on Less Than or Equal 3.7.6
SLT Skip on Less Than 3.7.7
SMI Skip on Minus 3.7.8
SNC Skip on No Carry 3.7.9
SNE Skip on Not Equal - 3:7.10
SNO Skip on Not All Zeros 3.7.1
SNV Skip on No Overflow 3.7.12
SNZ Skip on Not All Zeros 3.7.13
SoC Skip on Carry 3.7.14
SOD Skip on 0Odd 3.7.15
S00 Skip on All Ones 3.7.16
Sov Skip on Overflow 3.7.17
SPL Skip on Plus 3.7.18
SSE Skip on Sense Switch Equal 3.4.19
SSN Skip on Sense Switch Not Equal 3.4.20
SZE Skip on Zero 3.4.21

3-3

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

TABLE 3-1 (CONTINUED)
SPC9800 COMPUTER MACHINE INSTRUCTIONS
BY FUNCTIONAL GROUP

MNEMONIC DESCRIPTION PARAGRAPH NO.
Shift Instructions 3.8
© ALA Arithmetic Left Shift Register 3.8.1
ALD Arithmetic Left Shift Double 3.8.2
ARA Arithmetic Right Shift Register A 3.8.3
ARD Arithmetic Right Shift Double 3.8.4
CLD Circular Left Shift Double 3.8.5
CRA Circular Right Shift Register A 3.8.6
CRB Circular Right Shift Register B 3.8.7
CRD Circular Right Shift Double 3.8.8
CRE Circular Right Shift Register E 3.8.9
CRL Circular Right Shift Register L 3.8.10
CRM Circular Right Shift Register M 3.8.11
CRS Circular Right Shift Register S 3.8.12
CRX Circular Right Shift Register X 3.8.13
LLA Logical Left Shift Register A 3.8.14
LLD Logical Left Shift Double 3.8.15
LRA Logical Right Shift Register A 3.8.16
LRD Logical Right Shift Double - 3.8-17
LTO Left Test for Ones in Register A 3.8.18
LTZ Left Test for Zeros in Register A 3.8.19
NRM Normalize 3.8.20
RTO Right Test for Ones in Register A 3.8.21
RTZ Right Test for Zeros in Register A 3.8.22
Logical Instructions 3.9
AND Logical AND with Register A 3.9.1
IOR Logical OR with Register A 3.9.2
RAN Register AND 3.9.3
REO Register Exclusive OR 3.9.4
ROR Register OR 3.9.5
Bit Manipulation Instructions 3.10
SABO Set Register A Bit to Cne 3.10.1
SABZ Set Register A Bit to Zero 3.10.2
SMBO Set Memory Bit to One 3.10.3
SMBZ Set Memory Bit to Zero 3.10.4
TABO Test Register A Bit for One 3.10.5
TABZ Test Register A Bit for Zero 3.10.6
TMBO Test Memory Bit for One 3.10.7
TMBZ Test Memory Bit for Zero 3.10.8

3-4

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

TABLE 3-1 (CONTINUED)
SPC9800 COMPUTER MACHINE INSTRUCTIONS
BY FUNCTIONAL GROUP

MNEMONIC DESCRIPTION PARAGRAPH NO.
Move Instructions 3.11
MVC Move Character String 3.11.1
REX Register Exchange 3.11.2
RMO Register Move 3.11.3
Input/OQutput Instructions 3.12
API (Not Supported) 3.12.1
ATI Automatic Transfer Instruction 3.12.2
RDS Read Direct Single 3.12.3
WDS Write Direct Single 3.12.4

The status register bits are defined in Table 2-3. The symbols used in
presenting the instruction assembly language coding formats and the symbols
used in presenting an abbreviated form of instruction execution are 'listed
in Table 3-2. The symbols and directives used in the.instruction examples
are explained in Section IV.

TABLE 3-2
ASSEMBLY LANGUAGE CODING FORMAT
AND INSTRUCTION EXECUTION SYMBOLS

Symbol Definition
) Contents of enclosed register or
address
Instruction
Execution Replaces
* Indirect addressing
e Extended format
Assembly
Language = Immediate operand
Coding
Format (1] Optional item
Lower case User supplied item
alphabetic
characters
B Required blank space (one or more)

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.1.2 ADDRESSING MODES

The computer instruction set can be broken down into a number of different
format types. The addressing modes associated with all but one of the
format types are straightforward, and are included in the individual
instruction descriptions. The remaining instruction format type,
register-memory instructions, is more involved and is described in this
paragraph and referenced by the instruction descriptions when applicable.

The format of register-memory instructions is shown in Figure 3-1. The

addressing mode is determined by the I, X, and B fields as shown in Table
3-3.

BITS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

- NN 1T T 17T I 1T |
DEPENDING | OP = OPERATION I | X | B |D=DISPLACEMENT OR*

ON I, X, CODE SD = SIGNED DISPLACEMENT

B FIELDS 0 < D < 255 T = INDIRECT ADDRESS

INDEXING

-128 ¢ SD ¢ 127 X
BASE RELATIVE ADDRESS

0 oun

FIGURE 3-1
REGISTER-MEMORY INSTRUCTION FIELDS

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

TABLE 3-3
REGISTER-MEMORY INSTRUCTION ADDRESSING
MODES AND CODING CONVENTIONS

NOTES:

Symbolic Coding
IXB Effective Operand Convention Addressing
BITS Address, EOA Operation | Operand Mode
000 (PC)' + SD MNU' ADRS? PC relative
@MNU =NUM? - 3
@MNU NUM, 7%
001 (B)' + D MNU ADRS, 1 Base register
MNU ADRS*? relative
010 (PC) + (X)' + SD MNU ADRS, 2 Indexed PC
relative
011 (B) + (X + D MNU ADRS, 3 Indexed base
MNU ADRS,2° register
relative
100 ((PC) + SD) MNU *ADRS Indirect PC
MNU *ADRS, 4 relative
MNU ADRS, 4 -
@MNU ADRS®
101 ((B) + D) MNU *ADRS, 1 Indirect base
MNU *ADRS, 5 register
MNU ADRS,5 relative
MNU *ADRS*
110 [((PCY+ SD) + (X7 MNU *ADRS, 6 Indirect,
((PCY+ (X) + SD)? MNU *ADRS, 2 Indexed,
MNU ADRS, 6 PC relative
@MNU ADRS,2%-°®
111 Immediate value MNU =NUM Immediate
is the SD MNU NUM,7

1. PC - Program Counter (points to next instruction); B - Base
Register; X - Index Register; MNU - Instruction Mnemonic.

2. Symbolic name of address.

3. Number, literal, or address.

4. Under BRS directive.

5. All extended format instructions are regarded as PC relative
because the assembler zeros the SD field. This means the
computer must add the PC to the zeroed SD to locate the
extended data/address. Note that the computer increments the
PC to the next location before the instruction is executed.

6. Post-indexing, regardless of status register bit 10.

7. Post-indexing if status register bit 10 = O.

8. Pre-indexing if status register bit 10 = 1.

3-7

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

NOTE

To fully understand Table 3-3, all of
Paragraph 3.1.2 and 3.1.3 must be read.

In general, calculation of the Effective Operand Address (EOA) of the memory
data involved in the instruction includes indirect addressing if bit I is
set, indexing if bit X is set, and base relative addressing if bit B is
set. If all three of these bits are set, an immediate operand is assumed by
the computer. If immediate addressing is specified for a load, add,
subtract, or algebraic compare instruction, the displacement field (D) is
treated as an 8-bit signed quantity and bit eight is extended through bits O
to 7 to provide a 16-bit operand. If immediate addressing is specified for
a store instruction, D is treated as the EOA.

The index control bit in the status register permits optional pre-indexing
or post-indexing. This controls the relation of indexing to indirect
addressing. If the index control bit is one, indexing precedes indirect
addressing. If the index control bit is zero, indexing follows indirect
addressing. If indirect addressing is not involved, the two modes are
equivalent. Additional addressing capability is available with the optional
memory protect/privileged instruction feature. If status register bit 9 is
set, the lower limit address is added to the computer calculated address for
every memory access.

Table 3-3 also 1lists the symbolic coding conventions available with
register-memory instructions, and hence shows the transliteration process
performed by the assembler in developing the I, X, and B fields. In order
to translate the operand address expression of a register-memory
instruction, the assembler first evaluates the expression as a 16-bit number
and then modifies the expression.in one of the following ways:

For program counter relative instructions, a number one greater than the
assembler location counter is subtracted.

For base register relative instructions, the base register value or the
number associated with a BRS directive (refer to Section 4 of this
manual) is suPtracted.

For extended format instructions <(described in next paragraph), the
expression remains unmodified.

For single length immediate instructions, or base register relative
instructions under the BRR directive (refer to Section 7 of this
manual), the expression is truncated to an eight-bit value.

If the resulting address is unattainable under the defined conditions, a
field size error is indicated by the assembler.

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.1.3 EXTENDED FORMAT ADDRESSING

It is possible to extend the format of certain register-memory instructions
and to include data or indirect addresses within these instructions. When
this feature is used, the instruction is referred to as an extended format
instruction. The extended format instruction coding forms are flagged by
note 5 in Table 3-3. The assembler interprets the coded instruction and
fills the I, X, B and SD fields as follows:

If the I, X, B, and SD fields are 0, 0, 0, 0, respectively, the next
sequential location in memory is used for the operand, and the program
counter is incremented a second time. (The first increment is normal to
locate the next word in memory.) If the instruction is of the double
precision type, such as DLD, DST, DAD, or DSB, the next two sequential
memory locations are used for the operand, and the program counter is
incremented a third time. The assembler, in this case, generates only
one word of data for these double-length instructions. The programmer
must supply the second word, typically with a DATA directive.

If the I, X, B, and SD fields are 1, 0, 0, O, respectively, the
effective address is obtained from the next sequential location in
memory, and the program counter is incremented a second time.

If the I, X, B and SD fields are 1, 1, 0, 0, respectively, the content
of the next sequential memory location is added to the content of the
index register to form the effective address, and the program counter is
incremented a second time.
NOTE
The indexing is unconditionally performed as

post-indexing for double-word instructions; bit
10 of the status word is ignored in this case.

3.2 LOAD INSTRUCTIONS

The load instructions listed in Table 3-1 are described in the following
paragraphs.

3.2.1 DOUBLE LOAD REGISTERS A AND E (DLD)

Machine Format:

Instruction Execution: (EOA, EOA+1) =2 (A,E) where EOA is developed in
accordance with Table 3-3.

3-9

' 901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Description: Register A 1is loaded with the contents of the effective
operand address, EOA, and register E is loaded with the contents of the EOA
plus one. If the IXB fields are 7,¢ (immediate addressing), load E with
the sign extended displacement field, D, and load A with the extended sign
(all zeros or all ones).

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats availabie with the DLD instruction. The DLD mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Examples:
' Before After
DLD $+1 (A) = 005415 AE3015
DATA >AE30,>3239 > (E) = 16BC:¢ 3239,
| (EOA) = AE30:¢ No Change
(EQA+1) = 32396 No change
@DLD BASE - -
: : > (A) = CC45,6 1064, ¢
BASE DATA >1064,>7558 (E) = AQAO;s 75586
(EQA) = 1064, No change
(EQA+1) = 7558, No change

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.2.2 LOAD REGISTER A (LDA)

Machine Format:

Instruction Execution: (EOQA) = (A) where EOA is developed in accordance
with Table 3-3.

Description: Register A is loaded with the contents of the effective
operand address, EOA. If the IXB fields are 7, (immediate addressing),
load A with the sign extended displacement field, D.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats available with the LDA instruction. The LDA mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used. - -

Examples: Before After
LDA =-1 > (A) = O05A3; FFFF.
(EQA) = O7FF,s No change
HERE LDA % > (A) = F6EF,s Q0FF, ¢
(HERE) = OOFF,¢ No change

3.2.3 LOAD REGISTER E (LDE)

Machine Format:

3-11

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Instruction Execution: (EQA) > (E) where EOA is developed in accordance
with Table 3-3.

Description: Register E is Tloaded with the contents of the effective’
operand address, EOA. If the IXB fields are 7,¢ (immediate addressing),
load E with the sign extended displacement field, D.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats available with the LDE instruction. The LDE mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Examples: Before After
LDE BOT,2 (E) = A6B7,¢ 03336

: > (X) = 000716 No change

BOT DATA >F,>0333 (EOA) = 0333, No change

3.2.4 LOAD REGISTER M (LDM)

Machine Format:

R 17 17 17 1T T |
o 0 o0 1 1 I | X | B D
\=——- Op-code ==—=== /
Instruction Execution: (EQCA) > (M) where EOA is developed in accordance

with Table 3-3.
Description: Register M is loaded with the contents of the effective
operand address, EOA. If the IXB fields are 7, (immediate addressing),
load M with the sign extended displacement field, D.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats available with the LDM instruction. The LDM mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

3-12

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Examples:
Before After
EXEC @LDM =PRB (M) = 1124, Address of PRB
: ->
PRB DATA »>0006 (EXEC+1) = Address No change
DATA »0000 of PRB

DATA >0050, BUFFER

3.2.5 LOAD REGISTER X (LDX)

Machine Format:

T 1 b | | |
O 0 0 1 o|]I|X]|B D
\ e op-code ----- /
Instruction Execution: (EQA) » (XD where EOA is developed in

accordance with Table 3-3.
Description: Register X is loaded with the contents of the effective
operand address, EOA. If the IXB fields are 77 (immediate addressing),
load X with the sign extended displacement field, D.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats available with the LDX instruction. The LDX mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Examples: Before After
CHCT DX = =32 =~ (X 0000, ¢ FFEOQ, ¢

(CHCT) 170, No change

3.2.6 LOAD REGISTER FILE (LRF)

Machine Format:

0o 1 2 I 3 4 5 6 7 8 9 10 11 | 12 | 13 l 14 { 15
[BN I
WRD [1 1 0 1{1 0 0 0|1 0 1 ARBITRARY
1 BIT SETTINGS

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

I T T 1 [|
WORD Y=MEMORY ADDRESS

Instruction Execution: (Y,Y+1,Y+2,Y+3,Y+4,Y+5,Y+6) 2> (A,E,X,M,S,L,B)

Description: Registers A, E, X, M, S, L, and B (the register file) are
Toaded from sequential memory locations starting at the address specified by
Y (second word of the instruction).

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding formats for the LRF
instructions are as follows:

Label Operation Operand Comment
[label]l B @LRF)] adrs B [comment] where "address"
is the symbolic
or name of a 16-bit
[lTabell B LRF) [comment] memory address.
[labell B DATA B adrs B [eomment] -
Example:
LRF GMEMA
MEMA bATA >300, >06AA, >FFEO, >1A61,>0000,>1121,>8A04
Before (Hex) After (Hex)
(A) = 0000 0300
(E) = 0002 06AA
(X) = FFFF FFEO
Register file (M) = 200D 1A61
(S) = 0C00 0000
(L) = FAQO 1121
(B) = 0601 8A04

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.3 STORE INSTRUCTIONS

The store instructions listed in Table 3-1 are described in the following
paragraphs.

3.3.1 DOUBLE STORE REGISTERS A AND E (DST)

Machine Format:

Instruction Execution: (A,E) > (EOA,EQA+1) where EOA js developed in
accordance with Table 3-3.

Description: Store the contents of register A into the contents of the
effective operand address, EOA, and store the contents of register E into
the contents of EOA plus one. If the IXB fields are 7, (immediate
addressing), the displacement field, D, is the EOA.

Status Affected: None - _ -

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
Formats available with the DST instruction. The DST mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Example:
DST TOP Before After
. (A,E) = 44471,4,4D4E,, No change
. b d
TOP BSS 2 (TOP,TOP+1) = 4C55,6,434B,6 4441, ,4D4E, ¢

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.3.2 STORE REGISTER FILE (SRF)

Machine Format:

0O 1 2 3 45 6 7 8 9 10 11 12 13 14 15

1T 1 1 T 1 1T 17 ° 17T 7 T T T |

WORD | 1 1 0 1 1 0O 0 o0 1 1 1 ARBITRARY

] BIT SETTINGS

\ - op-code --- /
0 1 | 2 [3 4 5 6 I 7 8 9 10 | 11 12 | 13 14 I 15
I

WORD Y=MEMORY ADDRESS

2

Instruction Execution: (A,E,X,M,S,L,B) > (Y, Y+1,Y+2,Y+3,Y+4,Y+5,Y+6)

Description: Store the contents of registers A, E, X, M, S, L, and B
(register file) into sequential memory locations starting at the address
specified by Y (second word of the instruction).

Status Affected: None.

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding formats for the SRF
instruction are as follows:

Label Operation Operand Comment
{(label]l ¥ @SRF B adrs P [comment] where "adrs"
is the symbolic
or name of a 16-bit
[labell B SRF b [comment] memory address.
[Tabell B DATA) adrs [comment]

3-16

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example:
SRF Before (Hex) After (Hex)
DATA SAVE (A) = 0001
. (E) = DEO3
. (X) = 0004
SAVE BSS 7 Register (M) = 0101 No change
file (S) = FFFF
(L) = 23A3
(B) = 0800
(SAVE) = FA03 0001
(SAVE+1) = 0004 DEO3
(SAVE+2) = FFDE 0004
Memory (SAVE+3) = DEB80O 0101
locations (SAVE+4) = 3A40 FFFF
(SAVE+5) = 11AB 23A3
(SAVE+6) = CEOQO 0800

3.3.3 STORE REGISTER A (STA)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 -1t 12 13 14 15

N 17 17 17 1T [|
1 0 0 0 Oo|I|{X]|B D
\ - op-code ----/
Instruction Execution: (A) > (EQA) where EOA is developed in

accordance with Table 3-3.
Description: Store the contents of register A into the contents of the
effective operand address, EOA. If the IXB fields are 7, (immediate
addressing), the displacement field, D, is the EQA.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats available with the STA instruction. The STA mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Example:
Before After
STA DEST,! > (A) = D8CO,s No change
(DEST) = 0642, D8CO, ¢

3-17

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.3.4 STORE REGISTER E (STE)

Machine Format:

T 17 T 17 1T [|
1 0 0 O 1{I|X]|8B D
\ e op-code ----- /
Instruction Execution: (E) > (EOQA) where EOA is developed in

accordance with Table 3-3.
Description: Store the contents of register E into the contents of the
effective operand address, EOA. If the IXB fields are 7is (immediate
addressing), the displacement field, D, is the EOA.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding
formats available with the STE instruction. The STE mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used. ‘

Example:
STE =6 > Before After
(E) = 1AE9:s No change
(Memory location 6) = 788Bis T1AE9, 6

3.3.5 STORE REGISTER X (S§TX)

Machine Format:

T b 17 1T 17 1T T |
1 0o 0 1 oI} X]|B D
\ommm op-code -—--- /
Instruction Execution: (X) = (EQA) where EOA is developed in

accordance with Table 3-3.

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Description: Store the contents of register X into the contents of the
effective operand address, EOA. If the IXB fields are 7,¢ (immediate
addressing), the displacement field, D, is the EOA.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language cbding
formats available with the STX instruction. The STX mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used. .

Example:
@STX FARAMWY,2 > Before After
(X) = 00026 No change
(FARAWY+2) = 1007, 0002,
NOTE

The content of register X is both stored and
used as the index.

3.4 BRANCH INSTRUCTIONS

The branch instructions listed in Table 3-1 are described in the following
paragraphs.

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.4.1 BRANCH ON INCREMENTED INDEX (BIX)

Machine Format:

Instruction Execution: (X)+1 = (X); if (X) # 0, EOA » PC
if (X) = 0, PC is not affected
where EOA is developed in accordance with Table 3-3.

Description: Increment the contents of register X by one: if the resulting
X register value is non-zero, place the effective operand address, EOA, in
the program counter and continue execution from that point; if the resulting
X register value is zero, continue execution with the next sequential
instruction. If the IXB fields are 7, (immediate addressing), the
displacement field, D, is the EOA. The BIX instruction is commonly used in
loop control where register X contains a negative lToop count.

NOTE

The extended format BIX instruction-is allowed -
since an extra program counter increment occurs
on the fall through condition. If the . BIX
instruction is single length, the IXB bits are
zero, and the displacement field is zero, the
next word is skipped when the X register is
incremented to zero. MWhen the X register is
incremented to a non-zero quantity, the next
word is executed.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly Tanguage coding
formats available with the BIX instruction. The BIX mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Example:
Before After
BIX DOG > 0.9) FFAG, 6 FFA7 .6 where the BIX

(PC) 1B64, ¢ 1B20, ¢ instruction is
at 1B64,s and

DOG is at 1B20,s.

3-20

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

The following instruction application example illustrates use of the BIX
instruction to sum a buffer's contents.

LDX =-32
LDA =0

LOOP ADD BUFFER+32,2
BIX LOOP

BUFFER BSS 32

3.4.2 BRANCH AND LINK (BRL)

Machine Format:

17 T 1 1 17 17 1T 1 |
0 1 1 1 O I | X |{8B D
\ o op-code ----—- /
Instruction Execution: (PC) »(L); EOA » (PC) -where EQOA is developed in

accordance with Table 3-3.

Description: Load the contents of the program counter into the Tlink
register, L, place the effective operand address, EOA, in the program
counter, and continue execution from that point. If the IXB fields are
7,6 (immediate addressing), the displacement field, D, is the EOA. The
BRL instruction is commonly used for subroutine linkage. To return, the
subroutine typically uses either an RMO L,P or REX L,P instruction. The
return may also be accomplished by storing the contents of the link register
in memory and branching indirectly through that memory location with a BRU
instruction.

NOTE
The extended format BRL instruction places the
address of the first word beyond the double-
Tength BRL instruction in the link register.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly Tlanguage coding
formats available with the BRL instruction. The BRL mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

3-21

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example:
Before After
BRL CAREA > (L 032A,¢ 055E 6 where CAREA is at

OSSD] 6 05801 6 05801 § and in
the range -128<
PC ¢ 127.

non

(PO)

The following instruction application example illustrates use of the BRL
instruction to execute a subroutine.
(Main program)
BRL WRITE
WRITE EQU § (Write subroutine)

ﬁMO 5,7 (Return to instruction following BRL WRITE)

3.4.3 BRANCH UNCONDITIONAL (BRU)

Machine Format: -

T T] 17 17 T 1°T [| l
o 1 1 1 1] I|X]|8B D |
\-==- Op-code -=w==== /
Instruction Execution: EOA = (PC) where EOA is developed in

accordance with Table 3-3.
Description: Place the effective operand address, EOA, in the program
counter and continue execution from that point. If the IXB fields are 7:s
(immediate addressing), the displacement field, D, is the EQA.
NOTE

The extended format BRU instruction alters the

program counter in the same manner as single-

length BRU instructions.

Status Affected: None

Execution Time: (refer to Appendix A)

3-22

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Symbolic Coding: Refer to Table 3-3 for the assembly Tlanguage coding
formats available with the BRU instruction. The BRU mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Example:
Before After
@BRU TAB;2 a4 (PC) 1B13:5 08506 where TAB is at

9.0) 0050, ¢ No change 0800,s.

3.4.4 IDLE (IDL)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o o o [T

1 1 0 01 1 1 0|0 0 0 0] OPTIONAL n

FIELD

Instruction Execution: HALT

Description: The idle instruction causes the computer to pause. If the
idle instruction is encountered in the RUN mode, the RUN indicator and RUN
switch are turned off, and the IDLE indicator is turned on. The computer
re—enters the RUN mode if an interrupt occurs or if the RUN switch 1is
activated. If an idle instruction is encountered during single instruction
execution, the IDLE indicator is turned on. The 1idle instruction is
restricted, meaning it is considered illegal if the memory
protect/privileged instruction feature is enabled.

Status Affected: None

Execution Time: (refer to Appendix A)

3-23

1901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Symbolic Coding: The assembly Tlanguage coding format for the ILD
instruction is as follows:

Label Operation Operand Comment
[Tabell B IDL) n b [comment]

where "n" can be used to flag the reason for the idle when the instruction

register is displayed on the computer front panel. If no flag is desired,
"n" may be coded as a zero. (0<n ¢ 15).

Example: IDL 1

3.4.5 LOAD STATUS BLOCK AND BRANCH (LSB)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1] T 1 T 1 TTITTTTITITTTTT77
11 0 1|1 o o of|1 0 O O|/////INOT USED///II
J101111110111111111

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1T 7 1 |
Y=MEMORY ADDRESS

Instruction Execution: (Y,Y+1) = (PC,ST)

Description: The program counter fis loaded with the contents of memory
Tocation Y and the status register is loaded with the contents of memory
location Y+1. Program execution continues at the location specified by the
new contents -of the program counter. Status register bits 5 (memory protect
violation), and 6 (PIF violation), are unconditionally cleared to zero by
the LSB instruction. The instruction is also restricted, meaning it is
considered illegal if the memory protect/privileged feature fis enabled.
Interrupts, other than internal, are inhibited for one instruction following

an LSB.
' NOTE

This LSB instruction is commonly used for an
exit from interrupt processing or for a return
from a subroutine. The address Y points to
the program counter and status register
preserved by an SSB instruction upon entrance
to an interrupt processing or subroutine
program.

3-24

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Status Affected: All status register bits are affected as indicated by
memory location Y+1, with the following exceptions: bits 5, and 6, are
unconditionally cleared to zero.

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding formats for the LSB
instruction are as follows:

Label Operation Operand Comment

[Tabell ¥ @LSB) adrs B (comment] where "adrs"
is the symbolic

or name of a 16-bit

memory address.

[label]l B eLss B [comment]

[labell B DATA) adrs B [comment]

Example:
@LSB PROGS > Before (Hex) After (Hex)
(PC, ST 0400,0850 1A69,0010

(PROGS,PROG5+1) 1A69,0010 No change
3.4.6 LOAD STATUSBLOCK, RESET INTERRUPT, AND BRANCH (LSR)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| | | | | | | l | JTTTTITITVIVI1]]
WORD | 1 T 0 1 1 0 0 o1 O 0 1 |/////NOT USED///111
] [1111111110171171111
\ e op-code ---- - /
0O 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
T 1 T 11 11117 17" 17711/
WORD Y=MEMORY ADDRESS
2
Instruction Execution: (Y,Y+1) =»(PC,ST): reset highest priority vectored

interrupt if applicable.

Description: Execution of the LSR instruction 1is identical to LSB
(paragraph 3.4.5). _

3-25

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Status Affected: A1l status register bits are affected as indicated by
memory location Y+1, with the following exceptions: bits 5 (memory protect
violation), and 6 (PIF violation) are unconditionally cleared to zero.

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding formats for the LSR
instruction are as follows:

Label Operation Operand Comment
[Tabel]l B @LSB B adrs [(comment] where "adrs"
is the symbolic
or name of a 16-bit
[labell B @LSB B ‘[comment] memory address.
[Tabell B DATA b adrs [comment]
Example:

LSR > Before (Hex) After (Hex)
DATA CATA (PC, ST) = 13A5,0110 075D,0010

(CATA,CATA+1) = 075D,0010 No change

3.4.7 STORE STATUS BLOCK AND BRANCH (§SB) .

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I | | [| | | [TTTTITTITITTIVELL I 11T
WORD | 1 T 0 1 1 0 0 o1 1 0 |///1/11INOT USED///11711
1 R
N\ e 0p-C0de =—=—m——mmem———— /
0O 1 2 3 4 5 6 7 8 9 10 1 12 | 13 | 14 | 15
1 I I
WORD Y=MEMORY ADDRESS
2 !

3-26

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Instruction Execution: (PC,ST) =>(Y,Y+1); Y+2 >(PC)

Description: The program counter is stored in memory location Y and the
status register is stored in memory location Y+1. Program execution
continues at memory location Y+2. Interrupts, other than finternal, are
inhibited for one instruction following an SSB.

NOTE

The SSB instruction is commonly used for
entrance to interrupt processing and subroutine
programs. Return from these type of programs
is accomplished by an LSB instruction.

Status Affected: Bits 7 (data bus interrupt), and 12 (DMAC interrupt) of
the status register are cleared to zero according to the computer interrupt
priority scheme. These bits are cleared so that when an interrupt occurs,
all interrupts of lower or equal priority are disabled. The three types of
interrupts in order of priority are as follows: internal interrupt, DMAC
interrupt, and data bus interrupt.

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding formats -for the SSB
instruction are as follows:

Label Operation Operand Comment
[labell ® @sSSB) adrs B [comment] where "adrs"
is the symbolic
or name of a 16-bit
[Tabell ¥ SSB B [comment] memory address.
[labell DATA)] adrs B [comment]
Example:
SSB > Before (Hex) After (Hex)
DATA >0A23 (PC, ST)= 07A2,0110 0A25,0110

(0A23,6,0A24,6)= 08B6,0010 07A2,0110

3-27

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.5 ARITHMETIC INSTRUCTIONS

The arithmetic instructions 1listed in Table 3-1 are described in the
following paragraphs. : .

3.5.1 ADD TO REGISTER A (ADD)

Machine Format:

Instruction Execution: (EOA) + (A) = (A) where EOA is developed in
accordance with Table 3-3.

Description: Add the contents of the effective operand address, EOA, to the
contents of register A and place the sum in register A. If the IXB fields
are 7, (immediate addressing), the sign extended displacement field, D,
is added to register A.

Status Affected: If the sum from the ADD instruction is outside the range
of -2-'° to 2 '5-1, the overflow indicator <(bit 2 of the status
register) is turned on. If the sum is within the same range, the overflow
indicator is turned off. If the add operation results in a carry into the
sign position (bit 0), the carry indicator (bit 3 of the status register) is
turned on; otherwise, it is turned off.

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats available with the ADD instruction. The ADD mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Example:
ADD *gsC > Before After
ADD BSC > (A) = 4Bl10,s 5F0C: 6
(BSC) = 003A:6 No change
(003A,6) = 13FCi 6 No change

3-28

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.5.2 DOUBLE LENGTH ADD (DAD)

Machine Format:

Instruction Execution: (EOA,EOA+1) + (A,E) > (A,E) where ECA is developed
in accordance with Table 3-3.

Description: Add the concatenation of the contents of the effective operand
address, EOA, and EOA+1 to the concatenation of registers A and E (register
A is the most significant half of the second concatenation). At completion
of the add operation, bit 0 of register E is forced to agree with bit O of
register A. If the IXB fields are 7,s (immediate addressing), the
displacement field, D, with its sign extended 24 bits becomes the
double-Tength operand.

NOTE
Prior to the addition, ensure that the two
sign bits associated with each double-length
word are identical. If the two sign bits in
the same double-length word are different, the
result of the add may not be valid.

Status Affected: If the sum from the DAD instruction is outside the range
of -2°9 to 2°°-1, the overflow indicator (bit 2 of the status register)
is turned on; otherwise, the overflow indicator is turned off. If the add
operation results in a carry into the sign position (bit 0 of register A),
the carry indicator (bit 3 of the status register) is turned on; otherwise,
the carry indicator is turned off.

Execution Time: (refer to Appendix A).

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats available with the DAD instruction. The DAD mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Example:
Before (Hex) After (Hex)
DAD PRICE > (A, E) = 0069,73B4 016A,5034
(PRICE, PRICE+1) = 0100,5C80 No change

3-29

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.5.3 DIVIDE (DIV)

Machine Format:

\mmmm op-code ----/

Instruction Execution: (A,E)/(EOA)>(Aquo,Erem) where EOA is developed
in accordance with Table 3-3.

Description: Divide the concatenation of registers A and E (with the most
significant half in register A) by the contents of the effective operand
address, EOA. Place the quotient in register A and the remainder in
register E. The sign of the remainder will be the same as the sign of the
original dividend, except when the sign is set positive in the case of a
sero remainder. If the IXB fields are 7,¢ (immediate addressing), the
displacement field, D, with its sign extended eight bits is used as the
divisor.

Status Affected: If the magnitude of most significant half of the dividend
(register A) is greater than or equal to the magnitude of the divisor, the
overflow indicator (bit 2 of the status register) is turned on and the
contents of registers A and E remain unchanged. Otherwise, the overflow
indicator is turned off.

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
Formats available with the DIV instruction. The DIV mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Example:
Before (Hex) After (Hex)
@DIV =600 > (A,E) 0019,78A0 0588,01E0

]

(EQA) 0258 No change

3-30

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.5.4 DOUBLE LENGTH SUBTRACT (DSB)

Machine Format:

Instruction Execution: (A,E) - (EOA,EOA+1)>(A,E) where EOA is developed in
accordance with Table 3-3.

Description: Add the two's complement of the concatenation of the contents
of the effective operand address, EOA, and EQA+1 to the concatenation of
registers A and E (register A is the most significant half of the second
concatenation). Place the result in registers A and E. At the completion
of the two's complement addition, bit 0 of register E is forced to agree
with bit 0 of register A. If the IXB fields are 7, (immediate
addressing), the displacement field, D, with its sign extended 24 bits
becomes the subtrahend.

NOTE
Prior to the subtraction, ensure that the two -
sign bits associated with each double-length
word are identical. If the two sign bits in
the same double-length word are different, the
result of the add may not be valid.

Status Affected: If the result of the DSB instruction is outside the range
of -2°% to 2°9-1, the overflow indicator (bit 2 of the status register)
is turned on: otherwise, the overflow indicator is turned off. If there is
a carry into the sign position (bit O of register A), the carry indicator
(bit 3 of the status register) is turned on; otherwise, the carry indicator
is turned off.

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats available with the DSB instruction. The DSB mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Example:
: Before (Hex) After (Hex)
DSB DECIMAL,S > (A,E) = 6D11,6F51 5268 ,5ACB
(DECMAL) = 0396 No change

(0396,6,0397,6) 1AA9,1486 No change

3-31

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.5.5 INCREMENT MEMORY BY ONE (IMQ)

Machine Format:

T 1T T 1T 17 T 1T |
O 1 0 1 Oof1]|X|8B D
\—-—- op-code -=———- /

Instruction Execution: (EQA) +1>(EQA) where EOA is developed in
: accordance with Table 3-3.

Description: = Increment the contents of the effective operand address, EOA,
by one, and replace the contents of the EOA with the result. If the IXB
fields are 7, (immediate addressing), the displacement .field, D, becomes
the EOA. ‘

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
Formats available with the IMO instruction. The IMO mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used. : '

Example:
Before After
@IMO BOX, 2 > (X) = 0008, No Change
(BOX+8) = 634A 6348, ¢

3.5.6 MULTIPLY (MPY)

Machine Format

1T 1 17 17 17 1T [|
1 0o 0 1 1|(I]|X]|8B D
\ e op-code ----- /
Instruction Execution: (A)x(EQA)=>(A,E) where EOA is developed in

accordance with Table 3-3.

3-32

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Description: Multiply register A by the contents of the effective operand
address, EOA. Place the double-length result in registers A and E, the most
significant part being in register A. At completion of the multiplication,
bit 0 of register E is forced to agree with bit 0 of register A. If the IXB
fields are 7, (immediate addressing), the displacement field, D, with its
sign extended eight bits becomes the operand.

Status Affected: If both operands are equal to the maximum negative number
(=27%), the overflow indicator (bit 2 of the status register) is turned on
and the result in registers A and E will be indeterminate. Otherwise, the
overflow indicator is turned off.

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats available with the MPY instruction. The MPY mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Example:
MPY ARG,1 Before (Hex) After (Hex)
> (A,E) = 0003,1020 FFFF,FFFD
(ARG) = FFFF Mo change
3.5.7 REGISTER ADD (RAD)
Machine Format:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[T 1 [/11

| I
1 1 O ofo o0 o 0 1 SR=Source ///| DR=Destination
Register ///] Register

L op-code - -_— /

Instruction Execution: (SR) + (DR) » (DR)

Description: Add the contents of the registers specified by the SR and DR
fields. Place the result in the register specified by the DR field. If bit
12 of the machine format is set to one and bits 13 to 15 are zeroed, the
status register is specified as the destination register. In this case the
instruction is restricted, meaning it is considered illegal if the memory
protect/privileged instruction feature is enabled. Interrupts, other than
internal, are inhibited for one instruction following this special case of
the RAD instruction.

3-33

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Status Affected: If the result of the RAD instruction is outside the range
of -2'° to 2'°-1, the overflow indicator (bit 2 of the status register)
is turned on: otherwise, the overflow indicator is turned off. If there is
a carry into the sign position (bit Q), the carry indicator (bit 3 of the
status register) is turned on; otherwise, the carry indicator is turned off.

Execution Time: <(refer to Appendix A)

Symbolic Coding: The assembly language coding format for the RAD
instruction is as follows:

Label Operation Operand Comment
[labell B RAD)] sreg,dreg ¥ [comment]

where "sreg" and ‘"dreg" are expressions that address the source and
destination registers, respectively, in accordance with Table 2-2. The
special case when "dreg" equals eight is covered in the "Description"
paragraph.

Example:
A EQU O Before After
X EQU 2 > (X) = 4456, , 6622 ¢
RAD A,X (A) = 21CCie - No change-

3.5.8 REGISTER COMPLEMENT (RCO)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 T 1 | I | 111 N
1 1 O 0|0 0 O 1 0 | SR=Source ///| DR=Destination

Register 11/ Register

p— ~~ op-code /

Instruction Execution: -(SR) = (DR)

Description: Replace the contents of the register specified by the DR field
with the two's complement of the contents of the register specified by the
SR field. If bit 12 of the machine format is set to one and bits 13 to 15
are zeroed, the status register is specified as the destination register.
In this case the instruction is restricted, meaning it is considered illegal
if the memory protect/privileged instruction feature is enabled.
Interrupts, other than internal, are inhibited for one instruction following
this special case of the RCO instruction.

3-34

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Status Affected: If the SR register contains -2'°, the overflow indicator
(bit 2 of the status register) is turned on and the DR register is set to
-2'%: otherwise, the overflow indicator is turned off.

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly Tlanguage coding format for the RCO
instruction is as follows:

Label Operation Operand Comment
[label]l B RCO) sreg,dreg B [comment]

where "sreg" and ‘“"dreg" are expressions that address the source and
destination registers, respectively, in accordance with Table 2-2. The
special case when "dreg" equals eight is covered in the "Description”
paragraph.

Example:
Before After
RCO 2,2 > (X) = O000F,¢ FFF1,

3.5.9 REGISTER DECREMENT (RDE)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 17 1 1 1 1 1T 717 1 1T {piogp b 1.
] 1 0O o0} O 1 1 1 0 | SR=Source ///| DR=Destination

Register /1] Register

Instruction Execution: (SR)-1 = (DR)

Description: Subtract one from the contents of the register specified by
the SR field and place the result in the register specified by the DR field.

NOTE
If the maximum negative number (-32768) is

decremented, the maximum positive number
(+32767) is placed in the DR register.

3-35

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

If bit 12 of the machine format is set to one and bits 13 to 15 are zeroed,
the status register is specified as the destination register. In this case
the instruction is restricted, meaning it is considered illegal if the
memory protect/privileged instruction feature is enable. Interrupts, other
than internal, are inhibited for one instruction following this special case
of the RDE instruction.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the RDE
instruction is as follows:

Label Operation Operand Comment
[Tabel]l RDE b sreg,dreg B [comment]

where "sreg" and ‘“dreg" are expressions that address the source and
destination registers, respectively, in accordance with Table 2-2. The
special case when "dreg" equals eight is covered in the "Description”
paragraph.

Example:

S EQU 4 > Before -After -
(S) = 0044, 0043,

RDE S.S

3.5.10 REGISTER INCREMENT (RIN)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
T] T T 1 T . T T
1 1 0O 0|0 0 -1 1 0 | SR=Source ///| DR=Destination

Register /11 Register

Instruction Execution: (SR)+1 = (DR)

3-36

: 901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Description: Add one to the contents of the register specified by the SR
field and place the result in the register specified by the DR field.

NOTE

If the result of the RIN is considered to be a
15-bit signed number, incrementing the maximum
positive number (+32767) results in the maximum
negative number (-32768). If the result of the
RIN is considered to be a 16-bit positive
number (as in address calculation), incrementing
the maximum positive number (65535) results in
Zero.

If bit 12 of the machine format is set to one and bits 13 to 15 are zeroed,
the status register is specified as the destination register. In this case
the instruction is restricted, meaning it is considered illegal if the
memory protect/privileged instruction feature is enable. Interrupts, other
than internal, are inhibited for one instruction following this special case
of the RIN instruction.

Status Affected: None

Execution Time: (refer to Appendix A) -

Symbolic Coding: The assembly language coding format for the RIN
instruction is as follows:

Label Operation Operand Comment
[Tabell B RIN B sreqg,dreg § [comment]

where "sreg" and "dreg" are expressions that address the source and
destination registers, respectively, in accordance with Table 2-2. The
special case when "dreg" equals eight is covered in the "Description”
paragraph.

Example:
RIN 7,5 Before After
2> (L) = 622B,¢ 022646
(PC) = 0225, No change

3-37

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.5.11 REGISTER INVERT (RIV)
Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 T 1 T 1 1 1 17 1T 17 {1 1 |
1 1 0 0|0 O 1 0 O | SR=Source ///1 DR=Destination

Register . [///| Register

| P op-code -- /

Instruction Execution: -(SR)-1 = (DR)

Description: Replace the contents of the register specified by the DR field
with the one's complement of the contents of the register specified by the
SR field. This means each bit of the SR register is complemented
individually. If bit 12 of the machine format is set to one and bits 13 to
15 are zeroed, the status register is specified as the destination
register. In this case the instruction is restricted, meaning it Iis
considered illegal if the memory protect/privileged instruction feature is
enabled. Interrupts, other than internal, are inhibited for one instruction
following this special case of the RIV instruction.

Status Affected: None

Execution Time: (refer to Appendix A) -

Symbolic Coding: The assembly language coding format for the ‘RIV
instruction is as follows:

Label Operation Operand Comment
[labell § RIV) sreg,dreg § [comment]

where ‘"sreg" and "dreg" are expressions that address the source and
destination registers, respectively, in accordance with Table 2-2. The
special case when "dreg" equals eight is covered in the "Description"
paragraph.

Example:
E EQU 1 Before After
X EQU 2 (X)= 121C¢ FCFA,6
. >
. (E)= 03056 ~ No change
RIV E,X

3-38

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.5.12 REGISTER SUBTRACT (RSU)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1 1 1 11 17 1 1T {1 1.
1 1 0 0j0 O O O O/ SR=Source ///] DR=Destination

Register ///| Register

Instruction Execution: (DR) - (SR) = (DR)

Description: Subtract the contents of the register specified by the SR
field from the contents of the register specified by the DR field. Place
the result in the register specified by the DR field. If bit 12 of the
machine format is set to one and bits 13 to 15 are zeroed, the status
register is specified as the destination register. In this case the
instruction is restricted, meaning it is considered illegal if the memory
protect/privileged instruction feature is enabled. Interrupts, other than
internal, are inhibited for one instruction following this special case of
the RSU instruction.

Status Affected: If the result of the RSU instruction is outside the range
of -2'° to 2'°-1, the overflow indicator (bit 2 of the status register)
is turned on; otherwise, the overflow indicator is turned off: If there is
a carry into the sign position (bit 0), the carry indicator (bit 3 of the
status register) is turned on; otherwise, the carry indicator is turned off.

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the RSU
instruction is as follows:

Label Operation Operand . Comment
[labell B RSU B sreg,dreg § [comment]

where "sreg" and "dreg" are expressions that address the source and
destination registers, respectively, in accordance with Table 2-2. The
special case when "Dreg" equals eight is covered in the "Description”
paragraph.

Example:
RSU 6,5 Before After
> (L) = 56A2:6 55676
(B) = 013B:s No change

3-39

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.5.13 SUBTRACT FROM REGISTER A (SUB)

Machine Format:

Instruction Execution: (A) - (EOA) » (A) where EOA is developed in
: accordance with Table 3-3.

Description: Add the two's complement of the contents of the effective
operand address, EQA, to the contents of register A. Place the result in
register A. If the IXB fields are 7,¢ (immediate addressing), the sign
extended displacement field, D, is subtracted from register A.

Status Affected: If the result of the SUB instruction is outside the range
of -27° to 2'°-1, the overflow indicator (bit 2 of the status register)
is turned on; otherwise, the overflow indicator is turned off. If there is
a carry into the sign position (bit 0), the carry indicator (bit 3 of the
status register) is turned on; otherwise, the carry indicator is turned of f.

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats availabie with the SUB instruction. The SUB mnuemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Example:
THIS SUB =28 Before After
> (A) = 00056 FFE9: s
(THIS)= 2F1Cie No change

3-40

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.6 COMPARE INSTRUCTIONS

The compare instructions listed in Table 3-1 are described in he following
paragraphs.

3.6.1 COMPARE LOGICAL CHARACTER STRING (CLC)

Machine Format:

0O 1-2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1 T 1 [T T T T
11 0 v |1 v v N |//111111INOT USED/ /1111111111111
JILTITII10T11100000104000111111011

| op-code /

Instruction Execution: (My):(Y), (Mp):(Yy),...(My):(Y,)
where M, M.,...M, and Y, Y,,...Y. are byte strings in
memory.

Description: Perform a consecutive byte-by-byte logical comparison of two
byte strings in memory defined in general registers as follows:

REGISTER
0 1 2 3 4 5 6 7 8 9 10 -11 12 13 14 15
TITTT I AT T T T T T AT T AT T T T T T T T 7T TTTT7 I
A 77710700 0001111000000110017177110711012110071117111111171111] S
J11770700001 1111100000000 0111111001000010000000001111111111

0] 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T T T T T T T T T]
B |//] S1 B1
/11

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TITTT AT T T T T T T T T T T T TITTT777 I
M Z/701111107077770001711000000171171100101171771101111111111111(S2
J1710001171170017110010010040001071110110017111011111111111

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o111 1T [T 1T 1T 1 1 I
S |/11 S2 B2
/11

3-41

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

where, S1 and S2 are the starting word addresses of the two byte strings.
The most significant bits of the S1 and S2 addresses are in the A
and M registers, respectively.

Bl and B2 indicate the position of the first byte in the words
addressed by S1 and S2, respectively. A logic zero indicates the
first byte is in the most significant half (left half) of the first
word; a logic one indicates the first byte is in the Tleast -
significant half (right half) of the first word.

BC indicates the number of bytes to be compared (up to 65,535).

The first non-equal comparison encountered terminates the CLC instruction
with the number of bytes left to be compared loaded in register X. In
addition, registers A and E will contain the byte address of the next byte
that would have been processed in string 1 and registers M and S will
contain the byte address of the next byte that would have been processed in
string 2. If the CLC instruction is interrupted, the general registers
contain the same information as that described for a non-equal comparison
when the interrupt is taken. Note that register X will contain_ all zeros
only when all byte comparisons, or all but the last byte comparison, are
found to be equal.

Status Affected: Bits O and 1 of the status register are modified as
follows by the CLC instruction. - - ,

Bit O Bit 1
Each Compare Equal 0 1
Byte, > Byte. 1 0
Byte, < Byte. 0 0
Unused Bit Setting 1]

If the byte count (BC) in register X is specified as zero, no comparison is
performed and status register bits O and 1 are set to 01 unconditionally.

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the CLC
instruction is as follows:

Label Operation Operand Comment
[labell B CLC ¥ sreg,dreg B [comment]

3-42

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example:
CLC Before (Hex) After (Hex)

> (A) = 0000 0000

(E) = 0574 0578

M) = 0000 0000

(S) = 06A6 06AA

(X) = 0008 0007
(02BA,028B8B, ...) = 5123,64AC,... No change
(0353,0354,...) = 5123,64AD,... No change

3.6.2 COMPARE ALGEBRAIC (CPA)

Machine Format:

\---—- oOp-code ------ /

Instruction Execution: (A):(EOA), algebraically where EOA is developed in
accordance with Table 3-3.

Description: Perform an algebraic compare (bit O reflects sign) between the
contents of register A and the contents of the effective operand address,
EOA. The contents of register A and the contents of EOA are not affected by
the compare. Set status register bits to indicate the result of the compare
(refer to the next paragraph). If the IXB fields are 7, (immediate
addressing), the displacement field, D, sign extended to 16 bits is compared
with register A.

Status Affected: Bits O and 1 of the status register are modified as
follows by the CPA instruction.

Bit 0 Bit 1

(A) > (EQOAD 0 0
(A) = (EQAD 0 1
(A) < (EOA) 1 0
Unused Bit Setting 1 1

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats available with the CPA instruction. The CPA mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

3-43

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example:
CPA H4000,1 > (A) = TFFFis
Status register bits O
(H4000) = 4000, and 1 equal 00

3.6.3 COMPARE LOGICAL (CPL)

Machine Format:

\-—-- Op-code -====- /

Instruction Execution: (A):(EOA), logically where EOA is developed in
accordance with Table 3-3.

Description: Perform a Jlogical compare (unsigned numbers) between the
contents of register A and the contents of the effective operand address,
EOA. The contents of register A and the contents of EOA are not affected by
the compare. Set the status register bits as described for the CPA
instruction in Paragraph 3.6.2. If the IXB fields are T7is (immediate
addressing), the eight bits of the displacement field, D, are compared with
the low order eight bits of register A.

Status Affected: Refer to paragraph 3.6.2.

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats available with the CPL instruction. The CPL mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used. :

Example:
@CPL =DOZEN > (A) = A6BB:s
Status register bits O
(DOZEN) = 18F4,¢ and 1 set to 00

3-44

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.6.4 REGISTER COMPARE ALGEBRAIC (RCA)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1 1 1 1 17 117 1T 17T 7tj/5 1 |
] 1 0O 01O 1 0O O 0 | SR=Source ///]| DR=Destination

Register /11 Register

Instruction Execution: (SR) : (SR), algebraically

Description: Perform an algebraic compare (bit 0 reflects sign) between the
contents of the register specified by the SR field and the contents of the
register specified by the DR field. The status register bits are set to
indicate the result of the compare (refer to the next paragraph). If bit 12
of the machine format is set to one and bits 13 to 15 are zeroed, the status
register is specified as the destination register. In this case the
instruction is restricted, meaning it is considered illegal if .the memory
protect/privileged instruction feature is enabled. Interrupts, other than
internal, are inhibited for one instruction following this special case of
the RCA instruction.

Status Affected: Bits 0 and 1 of the status register are modified as
follows by the RCA instruction. - -

Bit O Bit 1

(SR) < (DR) 0 0
(SR) = (DR) 0 1
(SR) > (DR) 1 0
Unused Bit Setting 1 1

Execution Time: (refer to Appendix A)

Symbolic - Coding: The assembly language coding format for the RCA
instruction is as follows:

Label Operation Operand Comment
[Tabell P RCA B sreg,dreg B [comment]

where ‘"sreg" and ‘“dreg" are expressions that address the source and
destination registers, respectively, in accordance with Table 2-2. The
special case when "dreg" equals eight is covered in the "Description"
paragraph.

3-45

901181-385

MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example:
S EQU 4 (S) = 1054,
X EQU 2 >
. (X) = B666:¢
RCA X,S

3.6.5 REGISTER COMPARE LOGICAL (RCL)

Machine Format:

Status register bits O
and 1 set to 00

0O 1 2 3 4 5 6 7 8 9 10 N 12 13 14 15
T 1 T T 1 77T ,
1 1 0 00 1 1 0 0 | SR=Source ///| DR=Destination
Register ///] Register
Ve op-code ————-mmmmemem /
Instruction Execution: (SR) : (DR), logically
Description: Perform a logical compare (unsigned numbers) between the

contents of the register specified by the SR field and the contents of the
register specified by the DR field. The status register bits are set to
indicate the result of the compare as detailed im paragraph 3.6.4. If bit
12 of the machine format is set to one and bits 13 to 15 are zeroed, the
status register is specified as the destination register. In this case the
instruction is restricted, meaning it is considered illegal if the memory
protect/privileged instruction feature is enabled. Interrupts, other than
internal, are inhibited for one instruction following this special case of
the RCL instruction.

Status Affected: Refer to paragraph 3.6.4.

" Execution Time: (refer to Appendix A)

Symbolic Coding:. The assembly Tlanguage coding format for the RCL
instruction is as follows:

Label Operation Operand Comment

[Tabell p RCL b sreg,dreg B [comment]
where "sreg" and "dreg" are expressions that address the source and
destination registers, respectively, in accordance with Table 2-2. The
special case when "dreg" equals eight is covered in the "Description®
paragraph.

3-46

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example:
RCL 2,4 > (S) = 1054,
Status register bits O
(X) = B666;s and 1 set to 10

3.7 SKIP INSTRUCTIONS
The skip instructions listed in Table 2-1 are described in the following
paragraphs.
CAUTION

When a skip is taken, only one word is skipped.

For this reason, a double or triple Tlength

instruction should not immediately follow a

skip instruction.

3.7.1 DECREMENT MEMOQORY AND TEST (DMT)

Machine Format:

\---- op-code ----—- /

Instruction Execution: (EOA)-12(EOA); skip next word if (EOA) = O

where EOA is developed in accordance with Table 3-3.

Description: Decrement the contents of the effective operand address, EOA,
by one and replace the contents of the EOA with the result. If the result
is zero, skip the next sequential word. If the IXB fields are 7:s
(immediately addressing), the displacement field, D, is the EOA.

NOTE
The DMT instruction is typically used for loop
control where the contents of some memory

location is used as a counter.

Status Affected: None

3-47

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly Tlanguage coding
Formats available with the DMT instruction. The DMT mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used. ’ ‘

Example:
DM% BASE,?2 Before After
BRU $-10 > (X) = 0009:¢ No change Control will
BRU RESET now branch
. (BASE+9) = 00016 0000, ¢ to RESET

3.7.2 SKIP ON EQUAL (SEQ)

Machine Format:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| | | | | | | | | [TTTTITTIVITIT 11T
] 1 0 0|1 1 0] 0 O 1 0 |////NOT USED///1111
1111111101101001111

\ -— - 0p-C0de —mm—mm——mm e /

Instruction Execution: (ST, , = 01, skip next word

(ST 1 # 01, execute next word
Description: Skip the next sequential word if the result of the last
compare operation was equal (status register bits 0 and 1 set to 01). If
the result was something other than equal, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SEQ
instruction is as follows:

Label Operation Operand Comment .
[labell B SEQ) [/ [comment]

3-48

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example: The SEQ instruction in the following example will skip a word only
if the contents of registers S and X are equal.

RCL 2.4
SEQ

3.7.3 SKIP ON EVEN (SEV)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o T N 1171 [
1 1 0 0f1 1 0 0|1 1 0 O|////R=
////] REGISTER

Instruction Execution: (R),s = 0, skip next word
(R);s = 1, execute next word

Description: If bit position 15 of the register specified by the R field is
zero, skip the next sequential word; otherwise, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SEV
instruction is as follows:

Label Operation Operand Comment
[label]l B SEV b reg) [comment]
Example:
A EQU © Before After
. > (A) = A620:6 No change
SEV A (PC) = 01325 013816 csxip>

3-49

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.7.4 SKIP ON GREATER THAN OR EQUAL (SGE)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T] T 1 1 1 TTTTTTTTTTTTTT 777
11 0 Oo]1 1 0o 1|1 0 0 0|////]NOTUSED ////
JI1III111111011111

00, skip next word
00, execute next word

Instruction Execution: (ST,
(STo .1

Description: If the result of the last compare operation was greater than
or equal (status register bits O and 1 other than 00), skip the next
sequential word; otherwise, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SGE
instruction is as follows:

Label Operation Operand -Comment -
[labell B SGE b b [comment]

Example: The SGE instruction in the following example will skip a word only

if the content of register X is logically greater than or equal to the
content of register S.

RCL 2.4
SGE

3.7.5 SKIP ON GREATER THAN (S§GT)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1 T 1 T 1 TTITTTTITTTITTT 777
11 0 0|1 1 o 1|0 1 0 0O |////] NOT USED ///]
1111111111111111111

L op-code -/

Instruction Execution: (ST)o,; = 10, skip next word
(ST)o,1 # 10, execute next word

3-50

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Description: If the result of the last compare operation was greater than
(status register bits O and 1 set to 10), skip the next word; otherwise,
execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SGT
instruction is as follows:

Label Operatibn Operand Commeht
[Tabell B SGT)) [comment]

Example: The SGT instruction in the following example will skip a word only

if the content of register X is logically greater than the content of
register S. '

RCL 2.4
SGT

3.7.6 SKIP ON LESS THAN OR EQUAL (SLE)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 T 1 1] TTTTTTTITTTTTTT77
1 1 0o ofl1 1 o 1|1 1 0 O |[////] NOT USED ////

(1111111110010
\ e op-code ———-==—-- -/
Instruction Execution: (ST)o,, # 10, skip next word
(ST)o,1 = 10, execute next word

Descrigtfon: If the result of the last compare operation was less than or
equal (status register bits O and 1 other than 10), skip the next sequential
word; otherwise, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

3-51

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Symbolic Coding: The assembly language coding format for the SLE
instruction is as follows:

Label Operation Operand Comment
[Tabell B SLE) b [comment]

Example: The SLE instruction in the following example will skip a word only

if the content of register X is logically less than or equal to the content
of register S.

RCL 2.4
SLE

3.7.7 SKIP ON LESS THAN (SLT)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[| R I] TTTTVITII I 11T
i 1.0 oOof1Y 1 o0 1|0 O O -0 [///]] NOT USED ////
: LI
\emme - op-code -- -/
Instruction Execution: (ST)o,, = 00, skip next word

(ST)o 1 # 00, execute word
Description: If the result of the Tlast compare operation was less than
(status register bits O and 1 both set to zero), skip the next word;
otherwise, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SLT
instruction is as follows:

Label Operation Operand Comment
[labell B SLT B ‘] [comment]

3-52

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example: The SLT instruction in the following example will skip a word only
if the content of register X is logically less than the content of register

S.

RCL
SLT

2,4

3.7.8 SKIP ON MINUS (SMI)

Machine Format:

0 1 2 3 4 5§ 7 8 9 10 11 12 13 14 15
[I I [I 11117 I I
1 1 0 01 1 0|0 1 1 0 |///]] R=
////] REGISTER
\ e op-code ——————-—mmmmmmm /
Instruction Execution: (R)o = 1, skip next word
(R)g = 0, execute next word

Description:

one, skip the next word; otherwise, execute the next word.

If bit position 0 of the register specified by -the R field is

Status Affected: None
Execution Time: (refer to Appendix A)
Symbolic Coding: The assembly Tlanguage coding format for the SMI
instruction is as follows:

Label Operation Operand Comment

[label]l B SMI) reg b [comment]
Example:

SMI 3 Before After

> (M) = 62AE,; No change
(PC) = 23FE;s 23FF:¢ (no skip)

- 3-53

901181-385
. MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.7.9 SKIP ON NO CARRY (SNC)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[1 [| [| TTTTTTETI 1T
1 1T 0 0 {1 1 1 1 1 1 1 0 |////NOT USED//1/1111
[1111117111171111171

\ e 0p-C0de =m—mmmmm——mm e /

0, skip next word
1, execute next word

~

w
—
~

w
o

Description: If the last instruction affecting the carry indicator (bit 3
of the status register) did not turn it on, the next word is skipped;
otherwise, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SNC
instruction is as follows:

Label Operation Operand Comment
[labell ¥ SNC # b [comment]

Example: The SNC instruction in the following example will skip a word if

the sum of register A and the contents of location TABLE did not produce a
carry into bit O.

ADD TABLE
SNC

3.7.10 SKIP ON NOT EQUAL (SNE)
Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| [| [l [‘ [| | TTTTVITI nr
1 1 0o o1 1 o0 1|1 O 1 0 |/// NOT USED /71111
xR

\—-- op-code --- - /

3-54

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Instruction Execution: (ST)o,: # 01, skip next word
(ST)o,: = 01, execute next word

Description: If the reéu]t of the last compare operation was less than or
greater than (status register bits O and 1 other than 01), skip the next
word; otherwise, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language .coding format for the SNE
instruction is as follows:

Label Operation Operand Comment
(labell B SNE)) [comment]

Example: The SNE instruction in the following example will skip a word if

the content of register X is logically less than or greater than the content
of register S.

RCL 2.4
SNE

3.7.11 SKIP ON NOT ALL ONES (SNO)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o o T /111 [
1 1 0 Oof1 1 0 o011 0 1 0|/ R=
: //1/| REGISTER

\ e op-code --- - /

Instruction Execution: (R) # FFFF,s, skip next word
(R) = FFFF,s, execute next word

Description: If at least one bit position of the register specified by the
R field is zero, skip the next word; if all bit positions are ones, execute
the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

3-55

901181-385 ‘
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Symbolic Coding: The assembly language coding format for the SNO
instruction is as follows

Label Operation Operand Comment
(labell SNO b reg ¥ [comment] where "reg"
’ is an expression
that addresses a
register in
~accordance with
Table 2-2.
Example:
X EQU 2 Before After
. > (X) = FFEF:s No change
SNO X (PC) = 2111, 2113, (skip)

3.7.12 SKIP ON NO OVERFLOW (SNV)

Machine Format:

0O 1 2 3 4 5 6 71 8 9 10 11 12 13 14 15

T 1 ™ 1 1 1T] TTTTTTTITVTTTTITT]
11 0 o1 1 o 1|1 1 v 0 |////NOT USED ////]
R

0, skip next word
1, execute next word

Instruction Execution: (ST):
(ST,

Description: If the last instruction affecting the overflow indicator (bit
2 of the status register) did not turn it on, the next word is skipped;
otherwise, execute the next word.

Status Affected: None

‘Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SNV
instruction is as follows:

Label Operation Operand Comment
(labell B SNV)]) [comment]

3-56

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example:

The SNV instruction in the following example will skip a word if

the sum of register A and the contents of location TABLE did not cause an

overflow.

ADD TABLE

SNV

3.7.13 SKIP ON NOT ALL ZERQS (SNZ)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T o T 1177 |
1 1.0 o1 1 0 oO0}1 O 0 0 |////] R= USED
////] REGISTER
\ e - op-code - /

Instruction Execution:

(R) # 0, skip next word

(R) = 0, execute next word

Description:
field is one,

the next word.

skip the next word;

Status Affected: None

Execution Time: (refer to Appendix
Symbolic Coding: The assembly
instruction is as follows:

Label Operation
[labell B SNZ)
where "reg" is an expression that

Table 2-2.
Example:
SNZ 1
> (E)
(PC)

If at least one bit position of register specified by the R

if all bit positions are zeros, execute

A)

language coding format for the SNZ

Operand Comment
reg) [comment]

addresses a register in accordance with
Before After

= 2100, No change

= 110315 110515 (Skip)

3-57

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.7.14 SKIP ON CARRY (SOC)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| | | | | | | | | JTTTTITTTV I T
1 1T 0 0|1 1 1 1 0 1 1 0 |//// NOT USED ////1
RN
L ettt op-code —mmm———m—m—mme e /
Instruction Execution: (ST); = 1, skip next word
(ST); = 0, execute next word

Description: If the last instruction affecting the carry indicator (bit 3
of the status register) turned it on, the next word is skipped; otherwise,
execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SOC
instruction is as follows:

Label Operation Operand -Comment -
[labell B soc)) [comment]

Example: The SOC instruction in the following example will skip an

instruction if the sum of register A and the contents of Tlocation TABLE
results in a carry into bit O.

ADD TABLE
S0C

3.7.15 SKIP ON ODD (S0D)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
lllIIIIII////Ill

1T 1 o0 o1 1 0 O0}]0 1 0 0 (///]] R=
////| REGISTER

3-58

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

1, skip next word
0, execute next word

Instruction Execution: (R):s
(R)s

Description: If bit position 15 of the register specified by the R field is
one, skip the next word; otherwise, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SOD
instruction is as follows:

Label Operation Operand Comment
[labell B SOD) reg) [comment]

where "reg" is an expression that addresses a register in accordance with
Table 2-2.

Example:
Before After
X EQU 2 > (X) = 0004, No change
: (PC) = 0010,¢ -0011,¢ (no skip)
SOD X

3.7.16 SKIP ON ALL ONES(S00)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o N o 1171 I

1 1 0 oOo|1 1 0 o0fl0 0 1 0|/ R=

////] REGISTER

\ e - -- op-code —— /

Instruction Execution: (R) = FFFF,s, skip next word
(R) # FFFF,s, execute next word

Description: If all bit positions of the register specified by the R field
are one, skip the next word; otherwise, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

3-59

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Symbolic Coding: The assembly Tlanguage coding format for the SO0
instruction is as follows:

Label Operation Operand Comment
[Tabell B SO0 t reg) [comment]

where "reg" is an expression that addresses a register in accordance with
Table 2-2.

Example:
Before After
SO0 0 > (A) = FFFF.s No change
(PC) = 01016 0103, (skip)

3.7.17 SKIP ON OVERFLOW (SQV)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T] 1 1 T] TITTTTTITTTTTTT 777
11 0 o1 1 o 1|0 1 1 -0/|///] NOF USED /////
nnnnnnnnm,

\-- -— - - 0p-Code ————mmmmmmmmm e /

1, skip next word
0, execute next word

Instruction Execution: (ST),
(ST,

u o

Description: If the last instruction affecting the overflow indicator (bit
2 of the status register) turned the indicator on, the next word is skipped;
otherwise, the next word is executed.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SOV
instruction is as follows:

Label Operation Operand Comment
[Tabell § Sov)) [comment]

3-60

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example: The SOV instruction in the following example will skip a word if
the sum of register A and the contents of location TABLE causes an overflow.

ADD TABLE
SOV

3.7.18 SKIP ON PLUS (SPL)

Machine Format:

0O 1 2 3 4 5 6 71 8 9 10 11 12 13 14 15
T Lo T 1171 I
1 1 0 01 1 0 0|1 1 1 0|/ Rs

////] REGISTER

\—- op-code ————-——mmmmmmm e /

0, skip next word
1, execute next word

Instruction Execution: (R),
(R) ¢

Description: If bit position zero of the register specified by the R field
is zero, skip the next word; otherwise, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SPL
instruction is as follows:

Label Operation Operand Comment
[label]l B SPL) reg] [comment]

where "reg" is an expression that addresses a register fin accordance with
Table 2-2.

Example:
L EQU 5 Before After
. > (L) = F32B,s No change
SPL L (PC) = 0908, 0909, (no skip)

3-61

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.7.19 SKIP ON SENSE SWITCH EQUAL (SSE)

Machine Format:

0 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
N Lo b Illl

1 1 0 o011 1T 0 0|0 O 0 1 S= SENSE
SWITCH

Instruction Execution: Refer to "description" paragraph.

Description: The S field bits of the machine format correspond to the
computer front panel sense switches as follows:

Sense Switch S Field Bit
12
13
14
15

S —

Test only the sense switches whose corresponding S field bits are one. If
the tested switches are on, skip the next word; otherwise, execute the next
word. If all S field bits are zero, SSE will always skip and SSN will never
skip. - .

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SSE
instruction is as follows:

Label Operation Operand Comment
[labell B SSE B S) [comment]

where "ss" is an expression that specifies the sense switches to be tested.

Example: The following SSE instruction will skip a word if sense switches 2
and 3 are on (switches 1 and 4 are not tested).

SSE 6

3-62

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.7.20 SKIP ON SENSE SWITCH NOT EQUAL (SSN)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I
1 10 0|1 1 O Of1 O 0 1 S= SENSE
SWITCH

\ - - op-code ——mmmmmmmmm———me -/

Instruction Execution: Refer to "description" paragraph.

Description: Refer to paragraph 3.7.19 for the relationship between the
machine format S field bits and the computer front panel sense switches.
Test only the sense switches whose corresponding S field bits are one. If
any of the test switches are off, skip the next word; otherwise, execute the
next word.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SSN
instruction is as follows:

Label Operation Operand Comment
[(labell B SSN) ss ¥ [comment]

where "ss" is an expression that specifies the sense switches to be tested.

Example: The following SSN instruction will skip a word if sense switch 1
is off (switches 2, 3, and 4 are not tested).

SSN 8

3.7.21 SKIP ON ZERO (SZE)
Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N T r T 111 |

1 1 0 Oof1 1 0 0|0 0 0 0|/ R=

////] REGISTER

3-63

901181-385
MACHWEINSTRUCﬂONSANDDECODMHECONVENﬂONS

Instruction Execution:

Description:

zero, skip the next word; otherwise,

Status Affected: None

Execution Time: (refer to Appendix
Symbolic Coding: The assembly
instruction is as follows:

Label Operation
[label]l @ SZE)
where "reg" is an expression that

Table 2-2.
Example:
B EQU 6
. > (B
SZE B (PC)

3.8 SHIFT INSTRUCTIONS

(R) = 0, skip next word
(R) # 0, execute next word

If the content of the register specified by the R field fis

execute the next word.

A)

language coding format for the SZE
Operand Comment

reg) [comment]

addresses a register in accordance with

Before After
= 0010, No change
= 11886 11896 -

The shift instructions listed in Table 3-1 are described in the following

paragraphs.

3.8.1 ARITHMETIC LEFT SHIFT REGISTER A (ALA)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 T [I I I I
1 1 0 0 1 0O 0 O 1 0 0| C=
SHIFT COUNT
\ ~——-- Op-code -- / 0<Cg 3l

Instruction Execution:

Description:

of bit positions specified by the C field.
Bit positions vacated are filled with zeros

A is not affected by the shift.

and bits shifted off the left end (from bit 1) are lost.

zero, no shift takes place.

Shift (A) left C places; zero fill vacated bits
Shift bits 1 through 15 of register A to the left the number

The sign bit (bit 0) of register
If the C field is

3-64

901181-385 :
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Status Affected: If the sign bit and bit 1 of register A differ at any time
during the shift operation, the overflow indicator (bit 2 of the status
register) is turned on; otherwise, it is turned off. In either case, the
sign bit is not affected.

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the ALA
instruction is as follows:

Label Operation Operand Comment
[labell B ALA % count b [comment]

where "count" is an expression that specifies the shift count.

Example:
ALA 5 Before After
> (A) = 537B;s 6F60:6 (the overflow
indicator is
turned on)

3.8.2 ARITHMETIC LEFT SHIFT DOUBLE (ALD)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N BN I T T |
1 1 0 01 0 0 Of1 0 1]C=

SHIFT COUNT

Instruction Execution: Shift (A,E) left C places; zero fill vacated bits

Description: Shift the double-length word formed by bits 1 through 15 of
both registers A and E to the left the number of bit positions specified by
the C field. The sign bits (bit 0) of registers A and E are not involved in
the shift. Bit O of register E are shifted into bit 15 of register A. Bit
positions vacated by the shift are filled with zeros and bits shifted off
the left end (bit 1 of register A) are lost. If the C field is zero, no
shift takes place but the sign of register E is forced to agree with the
sign of register A.

Status Affected: If the sign bit and bit 1 of register A differ at any time
during the shift operation, the overflow indicator (bit 2 of the status
register) is turned on; otherwise, it is turned off. In either case, the
sign bit is not affected.

Execution Time: (refer to Appendix A)

3-65

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Symbolic Coding: The assembly language coding format for the ALD
instructions is as follows:

Label Operation Operand Comment
[labell B ALD)] count)] [comment]

where "count" is an expression that specifies the shift count.

Example:
ALD 10 Before (Hex) After (Hex)
< (A,E) = C3C1,86Al 8435,8400 (the overflow
indicator is
turned on)

3.8.3 ARITHMETIC RIGHT SHIFT REGISTER A (ARA)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N BN I |III‘

1 10 0|1 0 O OO0 O 0| C=
SHIFT COUNT
\ - op-code ———————mm—mememm /- 0 < C«¢ 3l

Instruction Execution: Shift (A) right C places; sign fill vacated bits

Description: Shift the contents of register A to the right the number of
bit positions specified by the C field. Bit positions vacated are filled
with the original sign bit (bit 0) and bits shifted off the right end are
lost. If the C field is zero, no shift takes place.

Status Affected: Nong

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly Tlanguage coding format for the ARA
instruction is as follows:

Label © Operation Operand Comment
[labell ¥ ARA) count) [comment]

where "count" is an expression that specifies the shift count.

Example:

ARA 3 Before After
> (A) = 83216 FO64, ¢

3-66

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.8.4 ARITHMETIC RIGHT SHIFT DOUBLE (ARD)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N T | I
11 0 01 0 0 00 0 1]C=
SHIFT COUNT

\ e op-code -—————-m=—=mm- / 0 ¢ C ¢ 3l

Instruction Execution: Shift (A,E) right C places; sign fill vacated bits

Description: Shift the double-length word formed by registers A and E to
the right the number of bit positions specified by the C field. Bit 0 of
register E is forced to agree with bit 0 of register A and bits shifted out
of bit 15 of register A are shifted into bit 1 of register E. Bit positions
vacated by the shift are filled with the original sign bit (bit 0 of
register A) and bits shifted off the right end are lost. If the field is
zero, no shift takes place but the sign of register E is forced to agree
with the sign of register A.

Status Affected. None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the ARD
instruction is as follows:

Label Operation Operand Comment
[label]l B ARD b count) [comment]

where "count" is an expression that specifies the shift count.

Example:
FIVE EQU 5 Before (Hex) After (Hex)
. > (A,E) = 2F03,1100 0178,0C88
ARD FIVE

3.8.5 CIRCULAR LEFT SHIFT DOUBLE (CLD)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 I 1T 1 1
11 0 0f1 0o 1 1|1 0 0fCcs
SHIFT COUNT

\ o op-code -——————mmmmmm—mmm / 0<C<3

3-67

901181-388
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Instruction Execution: Shift (A,E) left C places, circularly

Description: Shift the double-length word formed by registers A and E to
the left the number of bit positions specified by the C field. Bits shifted
out of bit 0 of register A are shifted into bit 15 of register E. Bits
shifted out of bit 0 of register E are shifted into bit 15 of register A.
If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the CLD
instruction is as follows:

Label Operation Operand ' Comment
[labell B CLD b count b [comment]

where "count" is an expression that specifies the shift count.

Example:

CLD 8 Before (Hex) After (Hex)
> (A,E) = 5350,4F54 504F, 5453

3.8.6 CIRCULAR RIGHT SHIFT REGISTER A (CRA)

Machine Format:

1 '1 0 o1 0 1 oflo o ofc=
SHIFT COUNT
\ -——— Op-COde ——--memmm————— / 0 ¢<C¢ 3l

Instruction Execution: Shift (A) right C places, circularly

Description: Shift the contents of register A to the right the number of
bit positions specified by the C field. Bits shifted out of position 15 are
shifted into position 0. If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: (refer to Appendix A)

3-68

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Symbolic Coding: The assembly Tlanguage coding format for the CRA
instruction is as follows:

Label Operation Operand Comment
[labell B CRA [} count) [comment]

where "count" is an expression that specifies the shift count.

Example:
FOUR EQU 4 = Before After
. d (A) = FADgls 9FAD15
CRA FOUR

3.8.7 CIRCULAR RIGHT SHIFT REGISTER B (CRB)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Lol b | 0
1 1 0 01 0 1 1|0 1 1/|Cs
| SHIFT COUNT

Instruction Execution: Shift (B) rﬁght C places, circularly

Description: Shift the contents of register B to the right the number of
bit positions specified by the C field. Bits shifted out of position 15 are
shifted into position 0. If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly Tlanguage coding format for the CRB
instruction is as follows:

Label Operation Operand . Comment
[label]l B CRB p - count b [comment]

where "count" is an expression that specifies the shift count.
Example:

CRB 15 Before After

> (B) = 01056 020A, ¢

3-69

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.8.8 CIRCULAR RIGHT SHIFT DOUBLE (CRD)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 13

1 1 0 0 1 0 1 1 1 1 0| C=
SHIFT COUNT
QR op-code --- -— / 0¢C¢<3l

Instruction Execution: Shift (A,E) right C places, circularly

Description: Shift the double-length word formed by registers A and E to
the right the number of bit positions specified by the C field. Bits
shifted out of position 15 of register E are shifted into position 0 of
register A. Bits shifted out of position 15 of register A are shifted into
position 0 of register E. If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the CRD
instruction is as follows:

- ©

Label Operation Operand Comment
[label]l B CRD b count b [comment]

where "count" is an expression that specifies the shift count.

Example:

CRD 6 Before (Hex) After (Hex)
4 (A,E) = F6A9,24B] C7DA,A492

3.8.9 CIRCULAR RIGHT SHIFT REGISTER E (CRE)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T [lllll

1 1 0 Ol1 O 1 0]0 O 1] C=
SHIFT COUNT
\-m - op-code -— / 0 ¢ C ¢ 3l

Instruction Execution: Shift (E) right C places, circularly

Description: Shift the contents of register E to the right the number of
bit positions specified by the C field. Bits shifted out of position 15 are
shifted into position 0. If the C field is zero, no shift takes place.

3-70

(.

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the CRE
instruction is as follows:

Label Operation Operand Comment
(labell B CRE B count b [comment]

where "count" is an expression that specifies the shift count.

Example:

ONE EQU 1 Before After
. > (E) = 28ACis 1256,

CRE ONE

3.8.10 CIRCULAR RIGHT SHIFT REGISTER L (CRL)

Machine Format:

o 1 2 3 4 5 6 7- 8 9 10 -11 12 13 14 15

T 17 17 17 T 17 [| 1T 1
1 1 0 o1 o0 1 1|0 1 0| C=
SHIFT COUNT
\-——- - op-code -- -/ 0 ¢C¢ 3

Instruction Execution: Shift (L) right C places, circularly

Description: Shift the contents of register L to the right the number of
bit positions specified by the C field. Bits shifted out of position 15 are
shifted into position 0. If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the CRL
instruction is as follows:

Label Operation Operand Comment
(labell ¥ CRL) count) [comment]

where "count" is an expression that specifies the shift count.

3-71

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example:

CRL 5 Before After
> (L)Y = b62FF,6 FB17:6

3.8.11 CIRCULAR RIGHT SHIFT REGISTER M (CRM)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T B | b

1 1 0 01 0 1 of0o 1 1]¢Cs

SHIFT COUNT

Instruction Execution: Shift (M) right C places, circularly

Description: Shift the contents of register M to the right the number of
bit positions specified by the C field. Bits shifted out of position 15 are
shifted into position 0. If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: (refer tb Appendix A)

Symbolic Coding: The assembly language coding format for the CRM
instruction is as follows:

Label Operation Operand Comment
[Tabel]l # CRM) count b [comment]

where "count" is an expression that specifies the shift count.

Example:

CRM 8 Before After
> (M) = 26306 3026, ¢

3.8.12 CIRCULAR RIGHT SHIFT REGISTER S (CRS)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o0 T [T ‘

1 1 0 Of1 O 1 110 O 11 C=
SHIFT COUNT

3-72

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Instruction Execution: Shift (S) right C places, circularly

Description: Shift the contents of register S to the right the number of
bit positions specified by the C field. Bits shifted out of position 15 are
shifted into position 0. . If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the CRS
instruction is as follows:

Label Operation Operand Comment
[Tabel]l B CRS) count) [comment]

where "count" is an expression that specifies the shift count.

Example:

CRS 2 ' Before After
d (S) = (D94, 33656

3.8.13 CIRCULAR RIGHT SHIFT REGISTER X (CRX) -

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T 1 I 7 T
1 1 0 o1 0 1 0|0 1 0]C=
| SHIFT COUNT

N o0p-€0de ———m—mmmmmmm e / 0 ¢<C¢3l

Instruction Execution: Shift (X) right C places, circularly

Description: Shift the contents of register X to the right the number of
bit positions specified by the C field. Bits shifted out of position 15 are
shifted into position 0. If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the CRX
instruction is as follows:

Label Operation Operand Comment
[Tabell ¥ - CRX) count B [comment]

where "count" is an expression that specifies the shift count.

3-73

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example:
F15 EQU 15 Before After
. > (X) = 00B2,s 0164, ¢
CRX F15

3.8.14 LOGICAL LEFT SHIFT REGISTER A (LLA)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o B IIII‘

1 1 0 o011 O O Of 1 1 0| C=
SHIFT COUNT
\ e e 0p-C0de —m=m——mmmm e !/ 0 < C ¢ 3l

Instruction Execution: Shift (AS left C places; zero fill vacated bits

Description: Shift the contents of register A to the left the number of bit
positions specified by the C field. Bit positions vacated are filled with
zeros and bits shifted off the left end are lost. If the C field is zero,
no shift takes place.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the LLA
instruction is as follows:

Label Operation Operand Comment
[Tabell B LLA ¥ count b [comment]

where "count" is an expression that specifies the shift count.

Example:

LLA 4 Before After
> (A) = CD94,, 33656

3.8.15 LOGICAL LEFT SHIFT DOUBLE (LLD)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o Fr | II|||

1 1 0 o1 0O O O} 1 1 1| C=
SHIFT COUNT

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Instruction Execution: Shift (A,E) left C places; zero fill vacated bits

Description: Shift the double-length word formed by registers A and E to
the left the number of bit positions specified by the C field. Bit
positions vacated are filled with zeros, bits shifted out of position 0 of
register A are lost, and bits shifted out of position 0 of register E are
shifted into position 15 of register A. If the C field is zero, no shift
takes place. .

Status Affected: None

Execution Time: <(refer to Appendix A)

Symbolic Coding: The assembly language coding format for the LLD
instruction is as follows:

Label Operation Operand Comment
[labell B LLD b count) [comment]

where "count" is an expression that specifies the shift count.

Example:

LLD 3 Before (Hex) After (Hex)
> (A,E) = F2F0,1108 - 9780,8840°

3.8.16 LOGICAL RIGHT SHIFT REGISTER A (LRA)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 b | R
11 0 o1 0 0 0|0 1 0]Cs
SHIFT COUNT

\ e op-code ——=————=——m—mmm / 0 ¢<C<3l

Instruction Execution: Shift (A) right C places; zero fill vacated bits

Description: Shift the contents of register A to the right the number of
bit positions specified by the C field. Bit positions vacated are filled
with zeros and bits shifted off the right end are lost. If the C field is
zero, no shift takes place.

Status Affected: None

Execution Time: (refer to Appendix A)

3-75

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Symbolic Coding: The assembly Tlanguage coding format for the LRA
instruction is as follows:

Label | Operation Operand Comment
[labell B LRA B count b [comment]

where "count" is an expression that specifies the shift count.

Example:
SEVN EQU 7 Before After
. > (A) = 3CFl,¢ 00796
LRA SEVN |

3.8.17 LOGICAL RIGHT SHIFT DOUBLE (LRD)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11_12 13 14 15
rrr 1.t 1 | [| lllll

1 1 0 o1 O O 0|0 1 11| C=
SHIFT COUNT

Instruction Execution: Shift (A,E) right C places; zero f111 vacated bits

Description: Shift the double-length word formed by registers A and E to
the right the number of bit positions specified by the C field. Bit
positions vacated are filled with zeros, bits shifted out of position 15 of
register A are shifted into position 0 of register E, and bits shifted out
of position 15 of register E are lost. If the C field is zero, no shift
takes place.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the LRD
instruction is as follows: -

Label Operation Operand Comment
[labell B LRD B count)] [comment]

where "count" is an expression that specifies the shift count.

3-76

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example:

LRD 12 : Before (Hex) After (Hex)
> (A,E) = 0214,5F67 0000,2145

3.8.18 LEFT TEST FOR ONES IN REGISTER A (LTO)

Machine Format:

0 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T | T
1 1 0 0|1 0 0 1|1 0 o0fCs

SHIFT COUNT

Instruction Execution: Shift (A) left C places or until a one is found in
bit 0; leading zeros count = (X); zero fill vacated bits.

Description: Logically shift the contents of register A to the left the
number of bit positions specified by the C field or until a one appears in
bit 0 of register A. Bit positions vacated by the shift are filled with
zeros. If a one is shifted into bit 0, it is set to zero and register X is
loaded with a count of the number of zeros shifted out of bit 0. If a one
is not found after shifting the number of bits specified by the C field,
register X is loaded with the value of the C field. If the C field is zero,
bit 0 of register A is complemented and register X remains unchanged.

NOTE
The LTO instruction is commonly used to determine
which bits of a status word returned from a

peripheral device are set.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the LTO
instruction is as follows:

Label Operation Operand Comment
[labell B LTO B count ¥ [comment]

where "count" is an expression that specifies the shift count.

3-77

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example:
SIX EQU 6 Before After
. > (A) = 3C2B;s TOAC 6
LTé SIX (X) = FFO3,6 0002, ¢ ("one" found after
two shifts)
3.8.19 LEFT TEST FOR ZEROQOS IN REGISTER A (LT2Z)
Machine Format: ’
0 1 2 3 4 5 6 8 9 10 11 12 13 14 15
T 1 | 1 17 17 7 11T 7 1T 1T 11
1 1 O of1 0O 0 1 1 1 0| C=
SHIFT COUNT
\ e op-code ==m—mmmmmmmm / 0 ¢<C< 3l

Instruction Execution:

Shift (A) left C places or until a zero is found in

bit 0; leading ones count >(X); zero fill vacated bits

Description: Logically shift the

contents of register A to the left the

number of bit positions specified by the C field or until a zero appears in

bit 0 of register A.
zeros.

loaded with a count of the number of ones shifted out of bit O.

Bit positions vacated by the shift are filled with
If a zero is shifted into bit 0, it is set to one and register X is

If a zero

is not found after shifting the number of bits specified by the C field,

register X is loaded with the value of the C field.

bit 0 of register A is complemented

Status Affected: None
Execution Time: (refer to Appendix
Symbolic Coding: The assembly
instruction is as follows:
Label Operation
[label]l B LTz B

where "count" is an expression that

Example:
LTZ 3
> (A)
X)

If the C field is zero,
and register X remains unchanged.

A)

language coding format for the LTZ
Operand Comment

count b [comment]

specifies the shift count.

Before After
= FCO2:¢ EQ10,¢
= 00806 0003, (no "zeros" found

in three shifts)

3-78

: 901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.8.20 NORMALIZE (NRM)

Machine Format:

L e op-code —————m——mmmmm e m—————— e /

Instruction Execution: Shift (A,E) left until (Ao # (A)y; shift
count @ (X); zero fill vacated bits

Description: Shift the double-Tength word formed by registers A and E to
the left until bit O of register A is different from bit 1 of register A.
Bit positions vacated by the shift are filled with zeros and bit 0 of
register E is forced to agree with bit 0 of register A. Bits shifted out of
bit 1 of register E are shifted into bit 15 of register A. The total number
of bits shifted to perform the normalization is loaded in register X. If
the contents of registers A and E are both zero and the NRM instruction is
executed, a count of 31 is stored in register X and registers A and E remain
at zero. if registers A and E are all ones and the NRM instruction is
executed, a count of 30 is stored in register X and registers A and E both
contain 8000,6.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the NRM
instruction is as follows: '

Label Operation Operand Comment
[label]l B NRM b) [comment]
Example:
NRM Before (Hex) After (Hex)
4 (A,E) = 0062,B87A 6270,7A00
(X) = 0AB2 0008

3-79

: 901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.8.21 RIGHT TEST FOR ONES IN REGISTER (RTQ)

Machine Format:

1 1 0 0|1 0O 0 1 0 0 0| C=
SHIFT COUNT
\ - e L — / 0¢<C¢ 3l

Instruction Execution: Shift (A) right C places or until a one appears in
bit 15; trailing zeros count » (X); zero fill vacated bits

Description: Logically shift the contents of register A to the right the
number of bit positions specified by the C field or until a one appears in
bit 15. Bit positions vacated by the shift are filled with zeros. If a one
is shifted into bit 15, it is set to zero and register X is loaded with a
count of the number of zeros shifted out of bit 15. If a one is not found
after shifting the number of bits specified by the C field, register X is
loaded with the value of the C field. If the C field is zero, bit 15 of
register A is complemented and register X remains unchanged.

Status Affected: None

Execution Time: (refer to Appendix A) -

Symbolic Coding: The assembly language coding format for the RTO
instruction is as follows:

Label Operation Operand Comment
[label]l B RTO B count) [comment]

where "count" is an expression that specifies the shift count.

Example:
EGHT EQU 8 Before After
. > (A) = G6BAG, ., TAEB, s
RTO EGHT (X) = 0905, ¢ 0002, s

3-80

901181-385 :
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.8.22 RIGHT TEST FOR ZEROS IN REGISTER A (RTZ)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N N | T T |

1 1 0 01 0 0 1]0 1 0]Cs

| SHIFT COUNT

Instruction Execution: Shift (A) right C places or until a zero appears in
bit 15; trailing ones count > (X

Description: Logically shift the contents of register A to the right the
number of bit positions specified by the C field or until a zero appears in
bit 15. Bit positions vacated by the shift are filled with zeros. If a
zero is shifted into bit 15, it is set to one and register X is loaded with
a count of the number of ones shifted out of bit 15. If a zero is not found
after shifting the number of bits specified by the C field, register X is
loaded with the value of the C field. If the C field is zero, bit 15 of
register A is complemented and register X remains unchanged.

Status Affected: None

Execution Time: (refer to Appendix A)

LSymbo]ic Coding: The assembly language coding format for the RTZ
instruction is as follows:

Label Operation Cperand Comment
[labell B RTZ) count B [comment]

where "count" is an expression that specifies the shift count.

Example:
RTZ 5 Before After
- (A) = FGO]]G 780]15
(X) = FFFF]s 000115

3-81

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.9 LOGICAL INSTRUCTIONS

The logical instructions listed in Table 3-1 are described in the following
paragraphs.

3.9.1 LOGICAL AND WITH REGISTER A (AND)

Machine Format:

Instruction Execution: (A) AND (EOA)>(A) where EOA is developed in
accordance with Table 3-3.

Description: Perform a bit-by-bit Togical AND between the contents of
register A and the contents of the effective operand address, EQA. Place
the result in register A. If the IXB fields are 7,s (immediate
addressing), the operand to be AND'ed with register A consists of zeros in
bits O to 7 and the displacement field, D, in bits-8 to 15. The Logical AND
operation is defined as follows:

(A) (EOA)

Bit Bit Result
0 0 0

o 1 0
10 0
11 1

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
Formats available with the AND instruction. The AND mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Example:
MASK AND =>B6 Before After
> (A = F637:6 0036,
(MASK) = 3FB6:s No change

3-82

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.9.2 LOGICAL OR WITH REGISTER A (I0R)

Machine Format:

Instruction Execution: (A) OR (EQA) - (A)

Description: Perform a bit-by-bit logical OR between the contents of
register A and the contents of the effective operand address, EOA. Place
the result in register A. If the IXB fields are 7, (immediate
addressing), the operand to be OR'ed with register A consists of zeros in
bits O to 7 and the displacement field, D, in bits 8 to 15. The logical OR
operation is defined as follows:

(A) (EOA)
Bit Bit Result
0 0 0
0] 1
1 0 1
1 1 1 - -

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: Refer to Table 3-3 for the assembly language coding
formats available with the IOR instruction. The IOR mnemonic replaces the
MNU operation field (in Table 3-3) and optional label and comment fields may
be used.

Example:
JOR HEX,2 Before After
> (A) = 0]0815 3138!5 Where, ()=
00186
(HEX +]8;5) = 303015 No Change

3-83

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.9.3 REGISTER AND (RAN)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1 [17 11T 17 1T 1 Vi |
1 1 0 00 1 1 0 1 SR=Source ///| DR=Destination

Register 11/ Register

Instruction Execution: (SR) AND (DR) - (DR)

Description: Perform a bit-by-bit logical AND between the contents of the
registers specified by the SR and DR fields. Place the result in the
register specified by the DR field. The logical AND operation fis defined in
paragraph 3.9.1. If bit 12 of the machine format is set to one and bits 13
to 15 are =zeroed, the status register is specified as the destination
register. In this case the instruction 1is restricted, meaning it is
considered illegal if the memory protect/privileged instruction feature is
enabled. Interrupts, other than internal, are inhibited for one instruction
following this special case of the RAN instruction. '

Status Affected: None

Execution Time: (refer to Appendix A) - -

Symbolic Coding: The assembly language coding format for the RAN
instruction is as follows:

Label Operation Operand Comment
[label]l @ RAN)} sreg,dreg § [comment]

where "sreg" and "dreg" are expressions that address the source and
destination registers, respectively, in accordance with Table 2-2. The
special case when "dreg" equals eight is covered in the "Description"
paragraph.

Example:
RAN 0,3 Before After
> (M) = BB8AS¢ 08206
(A) = OF70,6 No change

3-84

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.9.4 REGISTER EXCLUSIVE OR (REQ)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1 1 1 1 1 1 1 1 1 {poa > 1.
1 1 0O o0 O 1 0 1 SR=Source ///| DR=Destination

Register ///] Register

Instruction Execution: (SR) exclusive OR (DR) = (DR)

Description: Perform a bit-by-bit logical exclusive OR between the contents
of the registers specified by the SR and DR fields. Place the result in the
register specified by the DR field. The exclusive OR operation is defined
as follows:

(SR> (DR)
Bit Bit Result

— 0O — O
Qo — = 0O

If bit 12 of the machine format is set to one and-bits 13 to -5 are zeroed,
the status register is specified as the destination register. In this case
the instruction is restricted, meaning it is considered illegal if the
memory protect/privileged instruction feature is enabled. Interrupts, other
than internal, are inhibited for one instruction following this special case
of the REO instruction.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the REO
instruction is as follows:

Label Operation Operand Comment
[labell ¥ REO b sreg,dreg B [comment]

where "sreg" and "dreg" are expressions that address the source and
destination registers, respectively, in accordance with Table 2-2. The
special case when 'dreg" equals eight fis covered in the "Description"
paragraph.

3-85

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example:
A EQU O Before After
S EQU ¢4 > (S) = 3862, 63C3:6
REO A,S (A) = 5BAls No change

3.9.5 REGISTER OR (ROR)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 T 1T 1 17 1T 17 [1
1T 1 0 01O 1 0o 0 1 SR=Source ///| DR=Destination

Register ///| Register

Instruction Execution: (SR) OR (DR) = (DR)

Description: Perform a bit-by-bit Togical OR between the contents of the
registers specified by the SR and DR fields. Place the result in the
register specified by the DR field. The logical OR operation is defined in
paragraph 3.9.2. If bit 12 of the machine format is set to dne and bits 13
to 15 are zeroed, the status register is specified as the destination
register. In this case the instruction is restricted, meaning it is
considered illegal if the memory protect/privileged instruction feature is
enabled. Interrupts, other than internal, are inhibited for one instruction
following this special case of the ROR instruction.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Ceding: The assembly language coding format for the ROR
instruction is as follows:

Label Operation Operand Comment
[label]l B ROR) sreg,dreg # [comment]

where "“sreg" and "dreg" are expressions that address the source and
destination registers, respectively, in accordance with Table 2-2. The
special case when "dreg" equals eight is covered in the "Description"
paragraph.

Example:
ROR 4,3 Before After
> (M) = 00056 0035,
(S) = 003046 No change

3-86

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.10 BIT MANIPULATION INSTRUCTIONS

The bit manipulation instructions listed in Table 3-1 are described in the
following paragraphs.

3.10.1 SET REGISTER A BIT TO ONE (SABQ)

Machine Format:

I |
11 0 1|1 o0 1 1f(0 1 0 1 B=BIT

Instruction Execution: 12(A)ui: s

_ Description: Set the bit in register A specified by the B field to one.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the SABO
instruction is as follows:

Label Operation Operand Comment
[labell B SABO) bit b [comment]

where "bit" is an expression that specifies the bit in register A to be set
to one.

Example:

SABO 4 ’ Before After
> (A) = 2200,s 2A00, &

3.10.2 SET REGISTER A BIT TO ZERO (SABZ)

Machine Format:

l |
11 0 1|1 0o 1 1]0 1 0 O B=BIT

3-87

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Instruction Execution: O02(A)pi:. s

Description: Set the bit in register A specified by the B field to zero.
Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly Tlanguage coding format for the SABZ
instruction is as follows:

Label Operation Operand Comment
[lahell B SABZ b bit b [comment]

where "bit" is an expression that specifies the bit in register A to be set
to zero.

Example:
FIFTN EQU 15 Before After
. > (A) = FFFF,s FFFE, ¢
SABZ FIFTN

3.10.3 SET MEMORY BIT TO ONE (SMBO)

Machine Format:

WORD | 1 l 1 | 0 | 1 1 | 0 |] I 1 0 | 1 l 1 | 1 | B=BI# l
! \ e op-code - ——— - /
O 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
NO;D I | [| Y=MEMORY ADDRESS | ! | | | l

Instruction Execution: 12(Y)ui. s

Description: Set the bit, in memory location Y, specified by the B field to
one.

Status Affected: None

Execution Time: (refer to Appendix A)

3-88

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Symbolic Coding: The assembly 1language coding formats for the SMBO
instruction are as follows:

NOTE

The FLAG directive in the second coding format
is described in Section 4.

Label Operation Operand Comment

[labell ® SMBO i bit,adrs P [comment]
or

[Tabell B FLAG b adrs b {comment]

[Tabell B SMBO) bit) [comment]

where "bit" and "adrs" are expressions that must be evaluated to specify a
bit in memory to be set to one. First, the "bit" expression is divided by
16. The resulting quotient is added to the value of the "adrs" expression
to form the memory word address, Y. The remainder becomes the B field and
specifies the bit in word Y to be set to one.

Example:

SMBO 17,STATUS Before After
> (STATUS+1) = 0013, 40136

3.10.4 SET MEMORY BIT TO ZERO (SMB2)

Machine Format:

WORD | 1 1 | 0 | 1] | 0 l 1 | 110 | 1 J 1 | 0 B=BI# | .
! \ e op-code ———-m——mmmmmm—me /
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
NO§D | | Y=MEMORY ADDRESS | | | | | l

Instruction Execution: 0 2 (Y)uie s

Description: Set the bit, in memory location Y, specified by the B field to
zero.

Status Affected: None

3-89

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding formats for the SMBZ
instruction are as follows: -

NOTE

The FLAG directive in the second coding format
is described in Section 4.

Label Operation Operand Comment

[Tabell B SMBZ] bit,adrs B [comment]
or

[Tabel]l B FLAG o} adrs) [comment]

(Tabel]) SMBZ b bit) [comment]

where "bit" and "adrs" are expressions that must be evaluated to specify a
bit in memory to be set to zero. First, the value of the "bit" expression
is divided by 16. The resulting quotient is added to the value of the
"adrs" expression to form the memory word address, Y. The remainder becomes
the B field and specifies the bit in word Y to be set to zero.~

Example:

SMBZ 15,MEM Before After
> (MEM) = 2A231 6 2A221 6

3.10.5 TEST REGISTER A BIT FOR ONE (TABO)

Machine Format:

! I
11 0 1{1 0 1 1|l0o 0o 0 1 B=BIT

\Z - op-code ——- ——— /

1; skip next word
0; execute next word

Instruction Execution: (A)yi: @
(Mpir 8

ou

Description: If the bit in register A specified by the B field is a one,
skip the next word. If the bit is a zero, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

3-90

: 901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Symbolic Coding: The assembly language coding format for the TABO
instruction is as follows:

Label Operation Operand Comment
[labell B TABO) bit) [comment]

where "bit" is an expression that specifies the bit in register A to be
tested.

Example:
TABO 6 Before ' After
= (A) = O02A3,6 no change
(PC) =]]79]5]]78]5

3.10.6 TEST REGISTER A BIT FOR ZEROQ (TABZ)

Machine Format:

l
1 1 0 1|1 0o 1 1]0 0 O O B=BIT

\ - ——== op-code — ——

0; skip next word
1; execute next word

Instruction Execution: (Adyi: &
AMpiv 8

Description: If the bit in register A specified by the B field is zero,
skip the next word. If the bit is one, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the TABZ
instruction is as follows:

Label Operation Operand Comment
[Tabell) TABZ] bit i [comment]

where "bit" is an expression that specifies the bit in register A to be
tested.

3-91

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example:
SEVN EQU 7 Before After
. (A) = F5Ch:6 No change
. <>
TABZ SEVN (PC) = 1311,¢ 13126

3.10.7 TEST MEMORY BIT FOR ONE (TMBO)

Machine Format:

1 1 T I

WORD| 1T 1 0O 11 0o 1 1{0 O 1] B=BIT

]

\ oo e 0p-COde —mm—mmmmmm e /
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 17 1 | R | |

WORD Y=MEMORY ADDRESS

2

1; skip next word
0:; execute next-word

Instruction Execution: (Y)ui: &
Moeic 8

[]

Description: If the bit, in memory location Y, specified by the B field is
one, skip the next word. If the bit is zero, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding formats for the TMBO
instruction are as follows: :

NOTE

The FLAG directive in the second coding format
is described in Section 4.

3-92

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Label Operation Operand Comment
[labell B TMBO) bit,adrs § [comment]
or
[labell B FLAG) adrs) [comment]
[labell B TMBO b} bit) [comment]

where "bit" and "adrs" are expressions that must be evaluated to specify a
bit in memory to be tested. First, the value of the "bit" expression is
divided by 16. The resulting quotient is added to the value of the "adrs"
expression to form the memory word address, Y. The remainder becomes the B
field and specifies the bit in word Y to be tested.

Example:
TMBO 4,TEST Before After
> (TEST) = 0800, No change
(PC) = 2AEF, s 2AF1 6

3.10.8 TEST MEMOQRY BIT FOR ZERO (TMBZ)

Machine Format: A -

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

WORD | 1 |] | 0 | T | 0 ! 1 | 110 | 0 | 1 | 0 B=BI# | ‘
! \ e op-code ——————mmmmmmm——m e /
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
NOED B Y=MEMORY ADDRESS | | | | | \

0; skip next word
1; execute next word

Instruction Execution: (Y)uie s
(Y)bit B

Description: If the bit, in memory location Y, specified by the B field is
Zero, skip the next word. If the bit is one, execute the next word.

Status Affected: None

Execution Time: (refer to Appendix A)

3-93

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Symbolic Coding: The assembly language coding formats for the TMBZ
instruction are as follows:

NOTE

The FLAG directive in the second coding format
is described in Section 4. '

Label Operation Operand Comment
[labell B TMBZ) bit adrs B [comment]
or
[Tabell B FLAG) adrs) [comment]
[Tabel]l B TMBZ b . bit) [comment]

where "bit" and "adrs" are expressions that must be evaluated to specify a
bit in memory to be tested. First, the value of the "bit" expression is
divided by 16. The resulting quotient is added to the value of the "adrs"
expression to form the memory word address, Y. The remainder becomes the B
field and specifies the bit in word Y to be tested.

Example:
TMBZ 0,LOC v Before After
> (LOC) = 808A,s No change
(PC) = 077D, 077E .6

3.11 MOVE INSTRUCTIONS

The move instructions listed in Table 3-1 are described in the following
paragraphs.

3.11.1 MOVE CHARACTER STRING (MVC)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 1 [T 1T 1 77777 T T T T T 777
110 1|1 v v 1 0 |/717110111 NOT USED /111111111111
J11700010100011011111111011111111

3-94

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Instruction Execution: (M, ,Mz,...M))=>(Y,,Y.,...YD)
where M, ,Mz,...M, and Y,,Y,,... Y, are byte strings in memory

Description: Move a string of consecutive bytes from one location in memory
to a second location in memory. The starting addresses of the two memory
locations (S1, Bl moved to S2, B2) and the number of bytes to be moved (BC)
are established in general registers as described in paragraph 3.6.1. The
content of byte address S1, Bl is moved to S2, B2, and then the two byte
addresses are incremented. The byte move and address increment process is
repeated until BC bytes have been moved in this manner.

CAUTION

If the displacement between S1, Bl and S2, B2
is less than the 1length of the byte string
(BC) to be moved, and S1, Bl is less than S2,
B2, the bytes. from the source string (S1, BI)
in the overlap addresses will .be replaced
before they are to be moved. In particular,
if the move displacement is one byte, the
first byte of the source string will be placed
in all of the destination addresses.

Status Affected: None -

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the MVC
instruction is as follows:

Label Operation Operand Comment
[labell B MVC b ¥ [comment]
Example:
MvC Before (Hex) After (Hex)
> (A) = 0000 0000
(E) = 0574 0577
M = 0000 0000
(S) = 06A6 06A9
(X) = 0003 0000
(02BA,02BB) = 5123,64AC No change

(0353,0354) F125,0398 5123,6498

3-95

901181-385

MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.11.2 REGISTER EXCHANGE (REX)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 17 12 13 14 15
T T T T] 777 ,
1 1 0 010 1 1 1 1 SR=Source ///] DR=Destination

Register /1] Register

Instruction Execution: (SR)=>(DR); (DR)->(SR)

Description: Exchange the contents of the registers specified by the SR and
DR fields. If bit 12 of the machine format is set to one and bits 13 to 15
are zeroed, the status register is specified as the destination register.
In this case the instruction is restricted, meaning it is considered illegal
if the memory protect/privileged instruction feature is enabled. Interrupts
other than internal, are inhibited for one instruction following this
special case of the REX instruction.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format -for the REX
instruction is as follows:

Label Operation Operand Comment

[labell ¥ REX b sreg,dreg B [comment]
Where "sreg" and "dreg" are expressions that address the source and
destination registers, respectively, in accordance with Table 2-2. The
special case when "dreg" equals eight is covered in the "Description®
paragraph.
Example:

B EQU 6 Before After

M EQU 3 S M) = 00326 1FAO, s

REX B,M (B) = 1FAOs 0032, 6

3-96

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

3.11.3 REGISTER MOVE (RMQ)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

T 1 1 T © 1 T 1 1T 1T 7T 1 1
1 1 0 o0 1 0 1 0 | SR=Source ///| DR=Destination

Register /// Register

Instruction Execution: (SR)=>(DR)

Description: Move the contents of the register specified by the SR field to
the register specified by the DR field. The contents of the register
specified by the SR field remain unchanged. If bit 12 of the machine format
is set to one and bits 13 to 15 are zeroed, the status register is specified
as the destination register. In this case the instruction fis restricted,
meaning it is considered illegal if the memory protect/privileged
instruction feature is enabled.. Interrupts other than internal, are
inhibited for one instruction following this special case of the RMO
instruction.

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: the assembly language coding format for the RMO
instruction is as follows:

Label Operation Operand Comment
[labell § RMO b} sreg,dreg § [comment]

where "sreg" and '"dreg" are expressions that address the source and
destination registers, respectively, in accordance with Table 2-2. The
special case when "dreg" equals eight is covered in the "Description "
paragraph

Example:
RMO 5,0 Before After
> (A) = 00036 1C25,6
(L) = 1C25,6 No change

3-97

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS
3.12 INPUT/QUTPUT INSTRUCTIONS
The input/output instructions listed in Table 3-1 are described in the
following paragraphs.

3.12.1 AUXILIARY PROCESSOR INITIATE (APD)

NOTE

This instruction is not supported by the SPC9800
and will result in a no operation if execution
is attempted. (The PC will be incremented a
second time as though the instruction were a
double word instruction.)

3.12.2 AUTOMATIC TRANSFER INSTRUCTION (ATI)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

]
1 T . rrrr1r 7 "1 1 ‘|]
WORD | 1 1 0 1 1 0 0 1 DEVICE- DEVICE/CHAN-

1 DEPENDENT NEL ADDRESS

\ - op-code -———————=-—= /
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T 1 1 1 1 1 17 1T 1T71T "1 /1

WORD CONTROL WORD OR MEMORY ADDRESS

2
Instruction Execution: External device data “Memory, or

Memory data External device

Description: The ATI instruction is used to control the Direct Memory
Access Channel (DMAC). The first word of the ATI instruction addresses one
of eight possible device controllers (bits 13 to 15) and supplies any
necessary device dependent data (bits 8 to 12). The second word of the ATI
instruction is interpreted by the addressed device controller as a single
word functional command or as an address pointing to a 1list in memory
containing command related data. After the second word has Dbeen
interpreted, the specified DMAC data transfer takes place. The ATI
instruction is restricted, meaning it is considered illegal if the memory
protect/privileged instruction feature is enabled.

3-98

901181-385

MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language
instruction is as follows:

Label Operation Operand
[Tabell B ATI)] dev
[Tabell]) DATA] adrs

where "dev" 1is the symbolic name

word one of the ATI instruction and

16-bit address comprising word two.

The following example reads sector
memory location >200.

"adrs'’

ATI

DATA
DCBK DATA
DATA
DATA

0
DCBK

>800
>20
»200

3.12.3 READ DIRECT SINGLE (RDS)

Machine Format:

coding format for the ATI

Comment

] [comment]
B [comment]

for the least significant eight bits of
' js the symbolic name of the

zero, track zero from the floppy disk to

o 1 2 3 4 5 6 7 8 9 10 11 12 13 l 14 15
[l | I |
WORD | 1 1 0 1 1| GROUP | O O |ER 0 | ER = EXTERNAL
] REGISTER
| RER— op-code ----- /
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[TTTTTITTTITITIVITINI LI I T 11 11/ /111 | |
WORD |///171711INOT USED////111711171) B |1/ 1 |//11] A | R= INTERNAL
2 11111101000 /1] /111 REGISTER

B=BUSY BIT

I=INCREMENT ADDRESS

3-99

A=ADDRESS MODE

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Instruction Execution: External device data =(R) or ((R))

Description: The RDS instruction uses the input/output data bus to read one
word of data from an external device to a register or memory location. The
external device is specified by the GROUP and ER fields of word one of the
RDS instruction. The GROUP field selects 1 of 4 groups and the ER field
picks 1 of 64 external devices in the chosen group. This allows for a
maximum of 256 data bus ports, however, in most cases GROUP zero is
specified. The destination register or memory location fis specified by the
A and R fields of word two of the RDS instruction. The R field selects 1 of
8 registers in accordance with Table 2-2 and the A field is the associated
indirect bit. If the A field is zero, the destination of the read is a
register; if the A field is one, the destination of the read is the memory
address contained in the selected register. If the A field is one, the I
field bit in word two is set to a one or zero to increment or decrement,
respectively, the memory address in the selected register each time the RDS
instruction is executed. The B field is set to a one when the device
addressed by the GROUP and ER fields may not be ready to transfer data when
queried by the RDS instruction. If the B field bit is one and no data
transfer takes place, the instruction following the RDS instruction is
executed. If the B field bit is one and a successful data transfer takes
place, the instruction following the RDS instruction is skipped. If the B
field bit is zero, the ‘instruction following the RDS instruction is
unconditionally executed. The RDS instruction is considered illegal if the
memory protect/privileged instruction feature is emabled. -

Status Affected: None

Execution Time: (refer to Appendix A)

Symbolic Coding: The assembly language coding format for the RDS
instruction is as follows:

Label Operation Operand Comment
[Tabel]l B RDS)] dev b [comment]
[Tabell ¥ DATA)] biar B [comment]

where "dev" is the symbolic name of a 16-bit number that is OR'ed with the
RDS op-code to develop word one of the instruction. "biar" is the symbolic
name of a 16-bit number that represents the B, I, A, and R fields of word
two.

3-100

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Example: The following example reads a word from the device connected to
external register 18, into register A. The busy bit option is also used.

RDS >18
DATA >80

3.12.4 WRITE DIRECT SINGLE (WDS)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T | | l N I
WORD | 1 1 0 1 1 GROUP | O 0O |ER 1 ER = EXTERNAL
1 REGISTER
\ oo op-code ----- /
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
///[///I///|///[///|///|///]/// /11 1111 | l
WORD |///1/1711INOT USED/////11/17771771) B {///| I |////] A | R= INTERNAL
2 /100NN /1] 11111 REGISTER
B=BUSY BIT I=INCREMENT ADDRESS A=ADDRESS MODE

Instruction Execution: (R) or ((R)) 2External device

Description: The WDS instruction uses the input/output data bus to write
one word of data from a register or memory location to an external device.
The source register or memory location is specified by the A and R fields of
WDS word two and the destination device is specified by the GROUP and ER
fields of WDS word one. These fields along with the B and I fields of WDS
word two perform the same function as those described in paragraph 2.12.3
for the RDS instruction. The WDS instruction is restricted, meaning it is
considered illegal if the memory protect/privileged instruction feature is
enabled.

Status Affected: None

Execution Time: (refer to Appendix A)

3-101

901181-385
MACHINE INSTRUCTIONS AND DECODING CONVENTIONS

Symbolic Coding: The assembly language coding format for the WDS
instruction is as follows:

Label Operation Operand Comment
[(label]l B WDS ¥ dev b [comment]
[labell B DATA) biar b [comment]

where "dev" is the symbolic name of a 16-bit number that is OR'ed with the
WDS op-code to develop word one of the instruction. "biar" is the symbolic
name of a 16-bit number that represents the B, I, A, and R fields of word
two.

Example: The following example writes a word in register A to the external
device connected to external register 10,¢. The busy bit option is not
used.

WDS 510
DATA >0

3-102

901181-385

SECTION 4

ASSEMBLER CHARACTERISTICS AND DIRECTIVES

4.1 GENERAL

This section describes the Symbolic Assembly Program (SAPGFL) from the user
point of view and the 22 assembler directives available to the assembly
language programmer. The SAPGFL description covers source program coding
fields, object program output, error messages that may accompany the
assembly listing, and sample source programs and associated assembly
listings. Operation of SAPGFL is covered in the SPC9800 System Users manual.

4.2 SYMBOLIC ASSEMBLY PROGRAM

SAPGFL is a general assembler that handles paper tape, card, floppy disk or
cassette media. Figure 4-1 is a sample source main program, written in
symbolic assembly language and ready to be prepared for input. Figure 4-2
is a source subroutine. Source programs input to SAPGFL generate two
outputs. The first output is an object program that can be loaded into the
computer and executed or linked with other object programs.

: 901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

SYMBOLIC CODING FORM

5 10 15 20 25 30 35 40 45

I I I I l ! I ! |

HED SPC9800 MAIN PROGRAM

IDT ILLUS 6 CHARS. FOR OBJECT

ORG 1000 TELL SAP RUN-TIME

BRS 1000 ORIGIN
BASE DATA 1000

REF SuB EXT. REF. FOR LINKING
START LDA BASE ACTUALLY SET BASE

RMO 0,6 FOR EXECUTION

@BRL SUB ADD 2 NOS. TOGETHER

DATA ADDRI ADDR. OF FIRST NO.

DATA ADDR2 ADDR. OF SECOND NO.

STA ANSKER ANSWER IN REG.A
. MORE EXECUTABLE
INSTRUCTIONS AND

ASSEMBLER
. . DIRECTIVES.
ADDR1 DATA 7 FIRST NO.
ADDR2 DATA 8 SECOND NO.
ANSWER BSS 1
END START
FIGURE 4-1

SOURCE CODED MAIN PROGRAM

The object program can be output on cassette, floppy disk, or other media.
The second output is an assembly listing as depicted in Figure 4-3 for the
main program and Figure 4-4 for the subroutine. Note the following about
the assembly listings:

The items listed under A are an exact reproduction of the handwritten
entries on the coding sheet.

The items under B are a hexadecimal representation of the corresponding
instructions and constants as assembled by the assembler.

The items under C show the hexadecimal addresses of the instructions,
constants, and areas of storage specified by the programmer.

The items under D show the decimal line or sequence number of the source
statements to be used in case the program is changed.

SAPGFL is a two-pass assembler, meaning it scans the source program twice.
During the first pass, the source program is read and a symbol table is
generated. This is accomplished with the use of a location counter in the
assembler. The location counter keeps track of the storage locations that
will be

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

required by the object program. MWhen a source statement contains a name,
the current setting of the location counter is assigned to the name. Each
name and the address assigned to it is placed in the assembler's symbol
table. During the second pass, the symbol table is used to complete the
assembly, and to produce the object with its assembly listing. If bulk
storage is available, the assembler will copy the source to bulk storage
during pass one. Since the output from the first pass is used as input data
for the second pass, this eliminates the requirement to manually enter the
source data twice. The assembler automatically repositions the cassette or
diskette source file before entering pass 2 to eliminate any manual
repositioning.

SYMBOLIC CODING FORM
5 10 15 20 25 30 35 40 45

[! l l I | I I
IDT SuB 6 CHARS. FOR OBJECT
DEF SuB DEFINE ENTRY POINT FOR
A EQU 0 LINKING
L EQU 5 GIVE REGISTERS SYMBOLIC
P EQU 7 NAMES.
POINT BSS 2 RESERVE LOCATIONS
HERE BSS 2
SuB RMC L,A L POINTS TO-FIRST DATA ~
STA POINT WORD AFTER @BRL
RIN AA POINTER TO SECOND DATA
STA POINT+1 WORD AFTER @BRL
LDA *POINT GET ADDR1
STA HERE STORE ADDRESS IN THIS
LDA *POINT+1 SUBROUTINE
STA HERE+1 GET AND SAVE ADDR2
LDA *HERE PICK UP FIRST NO.
ADD *HERE+1 ADD SECOND NO.
RIN L,L MOVE POINTER PAST DATA
RIN L,P WORDS AND RETURN
END SuB

FIGURE 4-2
SOURCE CODED SUBROUTINE

4-3

901181-385

ASSEMBLER CHARACTERISTICS AND DIRECTIVES

2 C | B | D | A
SPC9800 MAIN PROGRAM
0001 HED SPC9800 MAIN PROGRAM
0002 10T ILLUS 6 CHARS. FOR OBJECT
03E8 0003 ORG 1000 TELL SAP RUN-TIME
03E8 0004 BRS 1000 ORIGIN AND BASE
03E8 03E8 0005 BASE DATA 1000
: 0006 REF SuB EXT.REF.FOR LINKING
03E9 QOFE 0007 START LDA BASE ACTUALLY SET BASE
03EA C506 0008 RMO 0,6 FOR EXECUTION
03EB 7400 0009 @BRL SUB ADD 2 NOS. TOGETHER
0000
X 03EC 0000
03ED 03F0 0010 DATA ADDRI1 ADDR.OF FIRST NO.
03EE O3F1 0011 DATA ADDR2 ADDR.OF SECOND NO.
03EF 8002 0012 STA ANSWER ANSWER IN REG.A
0013 . MORE EXECUTABLE
0014 INSTRUCTIONS AND
0015 ASSEMBLER
0016 . . DIRECTIVES.
03F0 0007 0017 ADDR1 DATA 7 FIRST NO.
03F1 0008 0018 ADDR2 DATA 8 SECOND NO.
03F2 0019 ANSMWER BSS 1 -)
0020 REF SUB1
0001 0021 SUB2 DATA SUBI
X 03F3 0000
0000 0022 WORD COMM 6
0000 0023 DATA WORD+2
C 03F4 0002
039 0024 END START
COMMON 0006

SPC9800 MAIN PROGRAM

Symbol ADDR1 03FO ADDR2
Table START 03E9 SuB
WORD 0000

0000 ERRORS
1. In the 1eft'column,

2. In the symbol table,

SHEET 0001

03F1 ANSWER 03F2 BASE 03E8
0000 SUB1 0001 R SUB2 03F3
NOTES

P=Program counter relocatable
X=External reference

C=Common (to programs)
R=Unreferenced symbol
U=Undefined (error)
M=Multidefined

Q=Multidefined unreferenced

SHEET 0002

3. A,B,C, and D references at top of page are explained in Paragraph 4.2

FIGURE 4-3

ASSEMBLED MAIN PROGRAM

4-4

0000
0002
0004
0005
0006

O O

0007
0008
0009
000A
0008
000C
000D
000E
000F

Symbol

901181-385 ‘
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

B D A
[[R e |
SHEET 1
0001 IDT SUB 6 CHARS.FOR OBJECT
0002 DEF SUB DEFINE ENTRY POINT FOR
0000 0003 A EQU 0 LINKING
0005 0004 L EQU 5 GIVE REGISTERS SYMBOLIC
0007 0005 P EQU 7 NAMES
0006 POINT BSS 2 RESERVE LOCATIONS.
0007 HERE BSS 2
C550 0008 SuB RMO L,A L POINTS TO FIRST DATA
80FA 0009 STA POINT WORD AFTER @BRL
C300 0010 RIN ALA POINTER TO SECOND DATA
80F9 0011 STA POINT+1 WORD AFTER @BRL
04F7 0012 LDA *POINT GET ADDRI
80F8 0013 STA HERE STORE ADDRESS IN THIS
Q4F6 0014 LDA *POINT+1 SUBROUTINE
80F7 0015 STA HERE+1 GET AND SAVE ADDR2
04F5 0016 LDA *HERE PICK UP FIRST NO.
24F5 0017 ADD *HERE+1 ADD SECOND NO.
C355 0018 RIN L,L MOVE POINTER PAST DATA
C357 0019 RIN L,P WORDS AND RETURN.
0020 END SUB
SHEET 0002
A 0000 HERE 0002 L 0005 P 0007
POINT 0000 SuB 0004

Table

0000 ERRORS
NOTE
Refer to NOTES in Figure 4-3.

FIGURE 4-4
ASSEMBLED SUBROUTINE

4-5

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

4.2.1 ASSEMBLER CODING LINE FORMAT

The symbolic input line accepted by the assembler may contain a label field,
operation field, operand field, and a comment field; or the entire line may
be a comment. An input line is the first 64 characters read from a card or
a floppy disk file, or in the case of cassette or paper tape, an input line
is a string of characters terminated with a special end-of-line sequence.
The end-of-line sequence for cassette consists of a carriage return (CR),
line feed (LF), X-OFF (press the CTRL and S keys at the same time), and rub
out. The input line may exceed 64 characters, not including the end-of-1ine
characters in the cassette and paper tape case, but only 64 characters are
processed and only 59 are printed on the listing to the right of the line
number. The input Tline 1is free form within the Timits listed in the
following paragraphs.

4.2.1.1 COMMENT LINES

Comment lines provide the user with the ability to annotate program
listings. They are indicated by an initial character which is either a
period (.) or an asterisk (*). The remaining characters are arbitrary. The
comment line in no way affects the assembly process. The line is merely
reproduced in the printed output.

4.2.1.2 LABEL FIELD

Labels (also called symbols or names) are provided for symbolic references
to instructions, values, and data. A label is composed of from one to six
characters. The first character of a label must be a letter. The remaining
may be any characters EXCEPT the following:

+Plus *Asterisk (Left Paren. >Greater Than
-Minus /Slash JRight Paren. ,Comma

If a label is used, the first character must begin the input line. The
label is terminated by the first space.

At assembly time, the labels are stored as variable length data. One or two
character labels require one word of memory, three or four character Tabels
take two words, an five or six characters require three words. Therefore,
if the symbol overflow error occurs during assembly, labels should be
shortened or omitted.

4.2.1.3 OPERATION FIELD
The operation field describes the required action. It may be an instruction
mnemonic or an assembler directive. The field consists of from one to four

characters followed by a space or the end-of-line characters. The first
character of the operation field must be preceded by at least one space.

4-6

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

4.2.1.4 OPERAND FIELD

The operand field consists of a sequence of expressions separated by commas,
and is terminated by a space or the end-of-line characters.

exp:, expz, exps

If two commas appear successively, the value of the missing expression is
understood to be zero. If the currency symbol ($) appears as an element in
an expression, the current value of the assembler's location counter is used
as its numeric equivalent.

Expressions may be strings of items separated by arithmetic operators and
terminated by a space, comma, or end-of-line characters. The arithmetic
operators are:

Addition +
Subtraction -
Multiplication *
Division /

If two operators appear in succession, a zero item is assumed.

An item consists of a symbolic address, dollar sign ($), or a numeric
value. If the first character of an item is not numeric, §, or >, it is
assumed to be symbolic. Numeric items may be octal, decimal, or
hexadecimal. An octal item is a string of octal characters (0 to 7), the
first of which is zero. A decimal item is a string of numeric characters (O
to 9), the first of which is non-zero. Hexadecimal item is a greater than
symbol (>) followed by a string of hexadecimal digits (0 to 9 and A to F).
When using paper tape input, the back stash (\) may be used in place of > to
indicate hexadecimal.

Expressions are evaluated left to right using normal arithmetic precedence;
i.e., all multiplications and divisions are performed first in order of
occurrence followed by additions and subtractions performed in order of
occurrence. All gquantities are treated as integers. In division only the
quotient is retained and any remainder fis discarded. Division by zero is
performed as division by one and is not considered as an error. Sample
expressions are:

JOE+TOM*3/B0OB
$+5

LEA-6

5034

XYZ+>F4

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

NOTE

A1l expressions are acceptable in absolute
assemblies, but multiplication and division
involving labels is not allowed in relocatable
assemblies. Hence, the first sample would
cause a relocation error in a relocatable
program.

4.2.1.5 COMMENT FIELD

Comments may optionally be written on any line. Any characters that appear
between the space that terminates the operand field and the end-of-1ine
characters or card column 64 are treated as commentary. The comment field
has no effect on the assembly process.

4.2.2 SEGMENTED SOURCE PROGRAMS
The assembler provides the capability of storing a single source program on
more than one physical section of the storage medium, enabling long programs
to be conveniently stored on cassette or paper tape. (Segmenting cannot be
done to disc files.) To segment a source program, divide it and add the
flag record (=) as follows: - -

* first line of program

first segment

* last liﬁe of first segment

* first line of next segment
= immediately follows last line
* of preceding segment

. intermediate segment

4-8

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

additional intermediate
segments as needed

last segment

END
/*

4.2.3 ASSEMBLER OBJECT FORMAT

The object program output by the assembler is in the form of standard object
records used by all system programs in the Basic System. Information from
the IDT and ORG assembler directives is used to generate the header data.
Entry point records, external reference is used to generate the header
data. Entry point records, external reference records, and common symbols
records are constructed as specified in the DEF, REF, and COML assembler
directives, respectively. The required text reécords are Created by the
assembler, and the end record is generated from the END directive. No block
data records are output by the assembler.

4.2.4 ASSEMBLER ERROR MESSAGES

The assembler may detect certain syntax errors in the source program. When
an error occurs, a diagnostic message or the message number is printed in
the assembly listing adjacent to the line in question. See Table 4-1 for
possible error messages. Error messages are printed anyway if the UNL
directive is in effect.

4.3 ASSEMBLER DIRECTIVES

In addition to the instruction set presented in Section 3 of this manual,
SAPGFL will accept 22 different assembler directives. The assembler
directive formats (name, operand, operation, and comment fields) are similar
to the symbolic instructions, but the directives do not directly cause code
generation as do the instructions. Instead, the directives are commands to
the assembler used to provide for storage allocation, program
identification, format control, and other such functions. If labels are
used with directives, they are assigned the current location counter value
unless otherwise specified in the following paragraphs. The assembler
directives are covered in detail in alphabetical order under the paragraph
numbers listed 1in Table 4-2. The assembly Tlanguage coding format
accompanying each directive description uses symbols from Table 3-2.

4-9

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

TABLE 4-1
ASSEMBLER ERROR MESSAGES
MESSAGE
NUMBER MESSAGE MEANING (AND CORRECTIVE ACTION)

1 FIELD SZ Address beyond reach (use @ for extended format)

2 UNDF OP Undefined operation code (check 1ist of valid
of codes)

3 LONG SYM Symbol > 6 characters

4 MDF O/F OPD or FRM multiply defined (rename label)

5 FRM > 16 FRM fields contain more than 16 bits

-6 CAD > 10 Address expression has > 10 elements

7 UNDF SYM Symbol not defined (label probably omitted)

8 MDF SYM Symbol multiply defined (rename labels)

9 RELOC A relocation error (use only one relocatable
label in arithmetic expfession, or ORG state-
ment can use only one relocatable label)

10 SYM QVF Too many symbols have been defined
(cut out symbols or divide program)

11 BAD NUM Numeric element not valid (properly define
item in label or address field)

12 IMP R/D A REF or DEF symbol has been used improperly
(REF symbol defined inside and outside the
program, DEF symbol not defined in the program)

13 X RF USE A REF symbol has appeared invalidly in an

“ unrelocatable expression

14 IXB ERR Address mode error (improper use of IXB field)

15 OPD ERR No such format number (OPD format numbers O to 8)

16 ADR MODE I11egal addressing mode (improperly written
address)

4-10

901181-385

ASSEMBLER CHARACTERISTICS AND DIRECTIVES

TABLE 4-2
ASSEMBLER DIRECTIVES
DIRECTIVE PARAGRAPH
MNEMONIC DESCRIPTION NO.
BES Block Ending Symbol 4.3.1
BRR Base Register Reset 4.3.2
BRS Base Register Set 4.3.3
BSS Block Starting Symbol 4.3.4
BYTE Generate Byte Address 4.3.5
COMM Common Storage 4.3.6
COML Labeled Common Name 4.3.6
DATA Generate Word Address or Data 4.3.7
DEF Define Entry Point Symbol 4.3.8
END End of Source - 4.3.9
EQU Equate 4.3.10
FLAG Flag Bit Address 4.3.11
FRM Format a New Instruction 4.3.12
HED Page Heading 4.3.13
IDT Object Identifier 4.3.14
IF Conditional Assembly 4.3.15
LIS Start Listing 4.3.16
OPD Cperation Define | 4.3.17
ORG origin 4.3.18
PEJ Page Eject 4.3.19
REF Referenced External Symbols 4.3.20
UNL Stop Listing 4.3.21

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

4.3.1 BLOCK ENDING SYMBOL (BES)

The BES directive evaluates the operand field and advances the location
counter by that amount. If a label is present, it is assigned to the new
value of the location counter. BES is similar to BSS, except the Tlabel is
applied to the first location past the reserved area. The assembly language
coding format for the BES directive is as follows:

Label Operation Operand Comment
[labell B BES B exp b [comment]

where “exb" is typically a decimal number specifying the reserved area in
words. If "exp" involves a symbol, it must be previously defired as an
absolute quantity.

The following example reserves 50 words with TEN associated with the first
word following the reserved area.

Label Operation Operand
TEN BES 50

4.3.2 BASE REGISTER RESET (BRR) B

The BRR directive informs the assembler that the base register is not
available to the assembler for addressing purposes. The programmer can
still specify base register addressing with the mode field. The BRR
directive informs the assembler to use the base register for addressing
purposes only in the event the mode field specifies that type of
addressing. (This 1is the initial condition of assembly.) Under BRR
directive control, if D is the unsigned displacement in register-memory
instructions, then 0 < D < 255 when the mode field contains B=1, or else a
field size error occurs. The assembly language coding format for the BRR
directive is as follows:

Label Operation Operand Comment

[labell B BRR b [comment]

4-12

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

4.3.3 BASE REGISTER SET (BRS)

The BRS directive informs the assembler of the value the base register will
contain at run time. The operand field of the BRS directive defines a
16-bit value that will be placed in the B register by the programmer. When
the BRS is used and the assembler encounters subsequent register-memory
format instructions that would produce field size errors if program counter
relative, the assembler will attempt to generate these base register
relative. In this case, if D is an unsigned 16-bit evaluation of the
displacement expression and B is the value assembled in the base register,
then 0 < D-B ¢ 255 or else a field size error occurs. The assembly language
coding format for the BRS directive is as follows:

Label Operation Operand Comment
[Tabell B BRS b exp)} [comment]

where "exp" is the symbol for a 16-bit base value to be used. An example of
BRS usage follows:

Label Operation Operand Comment

BRS CAT DEFINE BASE VALUE TO
ASSEMBLER

éLDA =CAT PUT ADDRESS OF CAT IN BASE

RMO A,B REGISTER

CAT BES 350 CAT IS DEFINED OUT OF

BSS 10 PROGRAM COUNTER REL.

RANGE

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

4.3.4 BLOCK STARTING SYMBOL (BSS)

The BSS directive reserves an area of memory. The first location in the
reserved area is associated with the 1label in the name field of the BSS
directive. The location of the area reserved is that defined by the
location counter, which is then advanced past the reserved area. The no
object code is generated by the BSS directive. If the programmer desires
some value(s) to be assembled in the reserved area, he must do so by other
means. The assembly language coding format for the BSS directive is as
follows:

Label Operation Operand Comment
[labell BSS) exp - B [comment]
where "exp" is typically a decimal number specifying the reserved area in

words. If "exp" involves a symbol, it must be previously defined as an
absolute quantity. An example of the BSS directive follows:

Location Counter Label Operation Operand Comments
03AA BRU TOM BRANCH AROUND AREA
03AB AREA BSS 40 RESERVE AREA
0303 TOM LDA AREA REFERENCE AREA

A common usage of symbols in a BSS operand is an expression which defines
the length of a reserved area. In the following example, if the length of
TABA is likely to change, but TABB must always be the same length as TABA,
it may be symbolically stated as follows: ,

Label Operation Operand Comment
TABA BSS 50 MIGHT CHANGE

TABB BSS TABB-TABA ALWAYS SAME AS TABA

4-14

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

4.3.5 GENERATE BYTE ADDRESS (BYTE)

When using the byte string manipulation instructions, MVC and CLC, it is
necessary to address data using byte rather than word addresses. The BYTE
directive may be used to generate these byte addresses. Its usage fis
similar to that of the DATA directive when generating word addresses. The
assembly language coding format for the BYTE directive is as follows:

Label Operation Operand Comment
[labell B BYTE b exp',exp?,..exp” B (comment]
where "exp;, eXpz,...exp." are evaluated and assigned to successive
pairs of memory words. If a label is used, it is assigned to the first word
of the first byte address.
Each byte address requires two words in the following format:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
///|///|///]///|///|///|///[///[///[////I////[////I//// |

O \//71100117071007700100000000 0000000000 71000 10011771177 MS
s A - 1A

o

O 1 2 3 4 5 6 7 8 9 10 -11 12 13 [14 [15

N N N
0 LEAST SIGNIFICANT 15 BITS OF ADDRESS

An expression in a BYTE operand field is evaluated as a word address and
then multiplied by two to obtain the byte address. If the expression is
preceded by a colon(:), the byte address is also incremented by one. The
assembly listing in Figure 4-5 shows the BYTE evaluation process.

4.3.6 REFERENCING COMMON STORAGE

4.3.6.1 NAMED COMMON LABEL (COML)

The COML directive is used to start a new labeled common block. The Tlabel
field must be used and gives the name of the new block. Storage reservation
(given by the COMM directive) is started at zero for the new common block;
all COMM directives following any given COML directive, up to the next COML
directive, cause storage to be reserved in that common block. The assembler
generates no entry in the common table if no COMM directives appear for a
COML directive. Every assembly begins with an implicit COML directive in
effect giving the name of FORTRAN blank common, '"BBLANK', and the
occurrance of the END directive automatically terminates the immediately
preceding COML block. The length of a COML block is determined by the sum
of the sizes given or all COMM directives appearing under that COML

4-15

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

directive. See paragraph 4.3.7 for examples. The assembly language coding
format for the COML directive is as follows:

Tabel) COML)] comment
NOTE

COML is supported in revisions *E and later of
SAPG, part number 943253.

4.3.6.2 RESERVE COMMON STORAGE (COMM)

The COMM directive reserves the given number of words in the currently
active common block. If a label appears, it 1is assigned a value
corresponding to the first word of the block, relative to the beginning of
the currently active block. The assembly language coding format for the
COMM directive is as follows:

[labell B COMM) exp) [comment]

Several examples of the use of COML and COMM follow. In all cases, assume
that there are no COML and COMM directives in the program besides those
explicitly given.

Example 1: referencing FORTRAN blank common.

COM 30

X

Y CoM 10

3 COMM 1
END

Blank common is 41 words long, and it is the only common block present.
Example 2: referencing labeled common only.

COMT COML 30
X COMM 2
J COMM 1

END

4-16

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

Location Code Line Label Operation Operand
00FF C8C9 0013 DATA 'HI'
P 0100 0107 0014 THERE DATA HERE+2,THERE-6,>100,100,0100
P 0101 00FA
0102 0100
0103 0064
0104 0040
P 0105 0105 0015 HERE DATA HERE,THERE,>100+104,THERE-HERE
P 0106 0100 ’
0107 0168
0108 FFFB
P 0109 0000 0016 HERET BYTE HEREI
0T10A 0212
P 0108 0000 0017 BYTE :HERE]
010C 0213
P 010D 0000 0018 BYTE :HERE+6
010E 0217
P Q10F 00c0 0019 BYTE HERE1,:HERET,:HERE1+6,>100
0110 0212
P 0111 0000
0112 0213 - .
P 0113 0000
0114 021F
0115 0000
0116 0200
0117 0000 0020 BYTE >100+>104,THERE-HERE
0118 0408
0119 FFFF
011A FFF6
P 011B 0000 0021 BYTE HERE+2,THERE-6,:>100,100,:0100
011C 020E
P 011D 0000
O11E 01F4
O11F 0000
0120 0201
0121 0000
0122 00C8
0123 0000
0124 0081

FIGURE 4-5
EXAMPLE OF BYTE AND DATA USAGE

4-17

901181-385

ASSEMBLER CHARACTERISTICS AND DIRECTIVES

Common block COM1 is 32 words long, and the name 'COM1' is defined for the

Tinking loader.

Note that since no COMM entries occurred prior to the COMI

COML statement, blank common has length zero and hence is not entered.

Example 3: Referencing blank and labeled common.

A COMM .

B COMM
X COMM
C coMM
D COMM
Y COML
END

20
10

in blank common
in blank common

blank common is terminated at 30 words, and a new
common block started, named X.

in block X

in block X

block X is 12 words long, and a new block started,
named Y.

block Y has no COMM directives in it, so has length O.
This is most likely an inadvertent error, but must

be detected by noticing that Y fails to appear in the
common summary.

A common name may appear in an address field, and will address the first word

of the common block.

However, it may be used in this way only after at least

one COMM directive has appeared in it.

4-18

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

COMM is used in a manner similar to FORTRAN COMMON. If a FORTRAN program and
assembly language program are merged via link edit, any references- in the
FORTRAN program to labeled COMMON and references in the assembly language
program to COMM defined storage are references to the same area of memory.
In many applications this simplifies communications between the two
programs. The following COMM directive would be used by a program requiring
use of 12 words of common storage referenced as WORD.

Label Operation Operand

WORD COMM 12

4.3.7 GENERATE WORD ADDRESS OR DATA (DATA)

The DATA directive 1is used for data generation. The assembly language
coding format for the DATA directive is as follows:

Label Operation Operand Comment
(labell B DATA B exp',exp?,..exp” B [comment]
where "exp,,expz,..-exp," are expressions or strings that are

evaluated and assigned to successive memory locations. .

The DATA statement is used to define alphanumeric strings using the
following format:

Label Operation Operand
CAT DATA 'STRING'

STRING is a string of characters enclosed in single quotes. The string will
be produced in ASCII code, two characters per word, packed left to right.
If there is an odd number of characters in the string, the last word
contains a delete code in the last character position. If a label is used,
it is assigned to the first memory location involved. Figure 4-5 contains
examples of several types of operands that may be used in a DATA statement.

4.3.8 DEFINE ENTRY POINT SYMBOL (DEF)

The program-linking assembler directives DEF and REF allow the programmer to
symbolically link independently assembled programs that are to be loaded and
executed together. Symbolic linkages between programs are created by means
of symbols defined in one program and used as operands in another program.
Such symbols are termed linkage symbols. A linkage symbol is called a
defined entry point symbol in the program in which it is defined; it is a
referenced external symbol in the program in which it is used as an
operand. Every linkage symbol must be properly identified as such in the
source program. A linkage symbol used as an external symbol is identified
in each using program by the REF directive. A linkage symbol used as an

4-19

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

entry point must be identified in the defining program by the DEF directive.
The assembly language coding format for the DEF directive is-as follows:

Label Operation Operand Comment
[label]l B DEF B sym',sym?,..sym” [comment]
where "sym,, sym,, ...sym," are symbols defined elsewhere in the

program that may be used as entry points by other programs. A referenced
symbol that is not defined in the program is flagged in the 1listing as an
error.

In the following sequence, SQRT is identified as an entry-point symbol .

Label Operation Operand ‘ Comment
SUBRO BSS 10
DEF SQRT
SQRT STA SAVE

4.3.9 END OF SOURCE (END)

The END directive terminates the assembly of a program. It also supplies a
point in the program to which control is transferred after the program fis
loaded. The END directive must always be the last statement in the source
program. The assembly language coding format for the END directive is as
follows:

Label | Operation Operand Comment
[labell B END P (expl B [comment]

where "exp" specifies the point to which control is transferred when loading
is complete. If the operand field is invalid, the statement is flagged as a
possible error. If the operand field is blank, no program entry address is
defined.

\

4-20

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

The point to which control usually is transferred is the first instruction
in the program, as shown in the following sequence:

Location Counter Label Operation Operand
ORG »2000
2000 AREA BSS 50
2032 BEGIN LDA =3
END BEGIN

Here control will be transferred to BEGIN at location 2032,s. If the
operand field were blank, control would be transferred to location 000,
a point outside of this program. When several object programs are joined by
link editing, one is specified as the main program. Its transfer point is
taken as the transfer point for the Tink edited program.

4.3.10 EQUATE (EQU)

The EQU directive is used to define a symbol in the label field by assigning
to it the value of an expression in the operand field. The assembly
language coding format for the EQU directive is as follows:

Label Operation Operand Comment
sym b EQU) exp b [comment]

where "sym" in the label field is given the same value as “exp" in the
operand field. The expression in the operand field can be relocatable or
absolute, and the symbol is similarly defined. Any symbols in the
expression must be previously defined.

If the expression in the operand field or the symbol in the label field, or
both, are invalid, or are not present, the EQU statement is flagged as an
error in the listing and is not used. The EQU directive is the usual way of
equating symbols to register numbers, input/output unit numbers, immediate
data, actual addresses, and other arbitrary values. The examples below
illustrate how this might be done:

Label Operation Operand Comment

REGX EQU 2 REGISTER X

10125 EQU 125 INPUT/QUTPUT DATA
TEST EQU >3F IMMEDIATE DATA
TIMER EQU 80 ACTUAL ADDRESS

4-21

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

To reduce programming time, the programmer can equate symbols to frequently
used compound expressions and then use the symbols as operands in place of
the expressions. Thus in the statement:

Label Operation Operand
FIELD EQU ALPHA-BETA+GAMMA
FIELD is defined as ALPHA-BETA+GAMMA and may be used in place of it. Note,

however, that ALPHA, BETA, and GAMMA must all be previously defined and only
one may be a relocatable value. FIELD can be used anywhere in the program.

4.3.11 FLAG BIT ADDRESS (FLAG)
The FLAG directive is used by the assembler to specify a relative starting
address for memory bit-referencing instructions (SMBO, SMBZ, TMBO, and
TMBZ). The FLAG directive may be used at any time, but until it is used,
the starting memory address for the memory bit-referencing instructions is
0000,¢. The assembly language coding format for the FLAG directive is as
follows:

Label Operation Operand Comment

[labell 8 FLAG exp B [comment]

where "exp" is an expression that evaluates as the 16-bit memory word
address used in conjunction with memory bit-referencing instructions.

The following example zeros bit 5 of iocation ABC with the use of the FLAG
directive.

FLAG ABC
SMBZ 5

4.3.12 FORMAT A NEW INSTRUCTION (FRM)
The FRM directive is used to create an instruction. The label field of the
FRM directive is referenced as an op-code and the operand field of the FRM
directive breaks the created instruction down into fields. the assembly
language coding format for the FRM directive is as follows:

Label Operation Operand Comment

label) FRM B exp:,eXpz,..eXpn B [comment]
where "label" is the expression representing the op-code (must be one to

four characters) and "exp:, expz, ...exp," are expressions for
positive values whose sum is 16.

4-22

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

When the label is used as an op-code, n fields of the associated operand
field are evaluated, truncated to the length specified by the corresponding
exp in the FRM directive, and placed in the output word. The following
example illustrates use of the FRM directive.

Label Operation Operand
0010 ABC FRM 5,5,6

1000 F846 0020 ABC >1F,1.,6

In the first line of this example, ABC is defined to have three fields of 5,
5, and 6 bits, respectively. When ABC is subsequently used as an operation
code, the assembler puts 1F,¢ in the first 5 bits, 1 in the next 5 bits,
and 6 in the last 6 bits of the instruction. Thus, the second line in his
example shows the assembled instruction 1111 1000 0100 0110,, or F846:s.

4.3.13 PAGE HEADING (HED)

The remaining characters in the Tline containing the HED directive are
printed as page headings on he output listing. The first HED.is used as the
heading of all pages up to and including the page containing the second
HED. Subsequent HED directives appear as page headings on the first page
following the one on which the HED appears, and subsequent pages, until
another HED is encountered. The assembly language coding format for the HED
directive is as follows:

Label Operation Comment
[labell ¥ HED) comment

The program in Figure 4-3 makes use of the HED directive.

4.3.14 OBJECT IDENTIFIER (IDT)
The IDT directive reproduces the symbol appearing in the operand field as
the program name in the object program. Names less than six characters have
trailing blanks. If the name has more than six characters, the output will
be truncated, and the name will consist of the first six characters. If the
IDT directive is not present, the name will consist of six asterisks. The
assembly language coding format for the IDT directive is as follows:

Label Operation Operand Comment

[labell B IDT B sym b [comment]

where "sym" is the symbol for the program name.

4-23

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

4.3.15 CONDITIONAL ASSEMBLY (IF)

The IF directive alters the assembly process in accordance with the results
of a conditional test. The operand field of the IF directive consists of
two expressions and an optional symbol. The two expressions are evaluated
and compared. If they are not equal, the assembly process continues with
the next line. If the values are equal, the assembly process is suspended
under the influence of the optional symbol. If the symbol is not present,
assembly is suspended for one line. If the symbol is present, assembly is
suspended until the input line with the same symbol in its label field is
found.

A1l lines suspended from the assembly process are treated as comments; i.e.,
they are printed but no code is generated. Two or more IF statements may
have overlapping ranges. This directive allows assembly-time modification
of a program. :

NOTE

Mathematical expressions cannot be used in the
third (optional symbol) field of the operand.

The assembly language coding format for the IF directive is as follows:
Label Operation Operand)) Comment
[label]l § IF) exp;,expz,lsyml B [comment]

where "exp,, exp." are the two expressions to be evaluated and compared
and "sym" is the optional symbol.

The following example illustrates usage of the IF directive.

Label Operation ‘Operand Comment
TTYVAL EQU 2 TEST ASSUMES ONE DATA
. TERMINAL AT STANDARD
. ADDRESS
ASR EQU 2 TTY1-ASSUMED ASR AT
: STANDARD ADDRESS

TIP EQU 3 TTY2-ASSUMED TIP AT
. ' STANDARD ADDRESS

TYPET CRA 3 ' ROTATE 50 CHARS PRINT OK
IF TTYVAL,ASR IF TTYVAL=2, REF DATA TERM 2
WDS TIP
IF TTYVAL,TIP IF TTYVAL=1, REF DATA TERM 1
WDS ASR
DATA BIT8ON
BRU $-2

4-24

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

4.3.16 START LISTING (LIS)

The LIS directive initiates printing of the assembly listing. Printing
continues until the UNL directive is encountered. If a complete assembly
listing is desired, no LIS directive is required. The assembly language
coding format for the LIS directive is as follows:

Label Operation Comment

[Tabell B LIS) [comment]

4.3.17 OPERATION DEFINE (OPD)

The OPD directive is used to define an operation code. The label field of
the OPD directive is referenced as the defined op-code mnemonic and the
operand field of the OPD directive establishes the op-code bit settings and
format type of the defined op-code. The first item in the operand field is
evaluated as a 16-bit number and stored as the op-code. The second item in
the operand field indicates the format type for the defined instruction.
When the label in the name field of the OPD directive appears as an op-code
mnemonic, the accompanying operand field is OR'ed in with the defined
op-code bit settings in accordance with the defined format type to assemble
the instruction in the object program. Any op-code defined_with the OPD
directive takes precedence over the standard symbolic op-code. The assembly
language coding format for the OPD directive is as follows:

Label Operation Operand Comment
label) OPD) bits,n § (comment]

where "bits" is the hexadecimal representation of the defined op-code,
"label" is the expression for the defined op-code mnemonic (must be one to
four characters), and "n" defines the format type as follows:

SPACE - Register-Memory \

- Register-Memory »>Identical Formats

- Register-Memory /

- Register-Register

- Register Shift and IDLE

Register Skip

- Status Indicator Skip

- Data Bus Input/Output

- Sense Switch Skip and Register Bit

- Direct Memory Access Channel and Auxiliary Processor

co~NOTUMT P WM —O
|

4-25

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

The final merging of the operation code and the operand fields is performed
using a logical OR. Thus the operation code may be used to force setting of
any bit to one. For example:

Label Operation Operand Comments
10009 XYZ OPD >9800, 1 FORMAT TYPE 1
0AOC 9AFF 1010 JOE XYz JOE,2 COMMENT

In the first line, XYZ is defined to be the mnemonic of an operation code.
The first part of the opérand specifies the machine operation code (98006
or 1001 1000 0000 0000,) and the second part of the operand specifies
format type 1, or a register-memory format.

In this example, the 5-bit operation code (1001 1,) for a hardware
multiplication instruction (>9800=MPY) fis specified. Line two shows the
assembled result when the defined operation is subsequently used. Format
type 1 causes the assembler to look for an optional label, a required
operation code, a required first operand field, and an optional second
operand field. The operation code (9800) fis OR'ed with the IXB tag (2) to
produce 1001 1010, or 9A,s. The B bit is not set; therefore, the
operand is program counter relative. Since the program counter is pointing
to the instruction in location O0AOD,s, the program counter relative
address of JOE (0AOD,s - 0001, = OAOC,¢) 1is minus one, or FFis.
The OR'ed result produces the machine instruction 9AFF,s.

Similarly, a new multiply instruction may be defined that is always base
register relative by setting the B bit in the first field of the OPD operand
as follows:

Label Operation Operand

MPB OPD »9900,1

4.3.18 ORIGIN (ORG)

The ORG directive sets the value of the location counter to the value of the
expression in the operand field. Any symbol in the expression must be
previously defined. If the operand field fis invalid, the ORG directive is
not used. The ORG directive is commonly used to force loading of a program
in specified memory locations. The assembly language coding format for the
ORG directive is as follows:

Label Operation Operand Comment
[labell B ORG] exp b [comment]

where “"exp" is typically a decimal number specifying the location counter
setting. If "exp" involves a symbol, it must be previously defined.

4-26

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

The following example shows how the ORG directive can be used for other
purposes.

Operation Operand
ORG $+500
This ORG directive increases the location counter by 500. Therefore, in
this case the directive provides an alternate way to reserve storage areas.
NQOTE
If the operand field of any ORG contains an
absolute value instead of a relocatable
expression, an absolute object 1is output;
otherwise, a relocatable object is output.
4.3.19 PAGE EJECT (PEJ)
The PEJ directive ejects the remainder of the current assembly listing
page. The assembler begins a new page with the heading from the current HED
directive and the PEJ itself is printed as the first line on. the new page.
The assembly language coding format for the PEJ directive is as follows:

Label Operation Comment

[Tabel] b PEJ P [comment]

4.3.20 REFERENCED EXTERNAL SYMBOLS (REF)
The REF directive identifies a linkage symbol as an external symbol that is
referenced in the program using the REF directive. Each such external
symbol must be identified in a REF directive. The assembly language coding
format for the REF directive is as follows:
Label Operation Operand) Comment
[labell B REF) sym,,symz,;,symn) [comment]

where "sym,,sym,, ..sym," are symbols that must be defined in another
program and identified in that program as an entry-point symbol with the DEF
directive. '

4-27

901181-385
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

As an example, if MTPLY is an entry point symbol in another program, the
using program identifies it as an external symbol as follows:

Operation Operand
REF MTPLY
The only way an external symbol may be referenced is as a full 16-bit
address. The SAP assembler allows an external symbol to be used in an

arithmetic calculation. For example, use of MTPLY+2 is allowed. To link to
a program named SINE, the following coding might be used:

Label Operation Operand
PROGA ~ BSS 2

REF SINE
ADSIN @BRL SINE

4.3.21 STOP LISTING (UNL)
The UNL directive terminates the assembly listing process' until an LIS
directive is encountered. However, error messages are still printed. The
assembly language coding format for the UNL directive is as follows:

Label Operation Comment

[labell # UNL B [comment]

4-238

901181-385

APPENDIX A

INSTRUCTION EXECUTION TIMES
(IN MICROSECONDYS)

This appendix gqroups the instructions by format type to facilitate
presentation of the execution times.

A-1

901181-385
INSTRUCTION EXECUTION TIMES
(IN MICROSECONDS)
REGISTER-MEMORY INSTRUCTIONS

4 MHz OPERATION 6 MHz OPERATION

MEM IMMED MEM IMMED
MNEMONIC NAME REF* ADDR REF** ADDR
ADD Add to Register A 1.75 0.75 0.83 0.33
AND Logical AND with Register A 1.75 0.75 0.83 0.33
BIX Branch on Incremented Index 1.25 1.25 0.67 0.67
BRL Branch and Link 1.50 1.50 0.83 0.83
BRU Branch Unconditional 1.25 1.00 0.67 0.50
CPA Compare Algebraic 1.75 0.75 0.83 0.33
CPL Compare Logical 1.75 0.75 0.83 0.33
DAD Double Length Add 2.75 1.00 1.33 0.50
DIV Divide 7.75 6.75 4.67 4.17
OLD Double Load Registers A and E 2.75 1.00 1.33 0.50
DMT Decrement Memory and Test 2.75 2.75 1.33 1.33
DSB Double Length Subtract 2.75 1.00 1.33 0.50
DST Double Store Registers A and E 2.75 2.75 1.33 1.33
IMO Increment Memory by One 2.75 2.75 1.33 1.33
IOR Logical OR with Register A 1.75 0.75 0.83 0.33
LDA Load Register A 1.75 0.75 0.83 0.33
LDE Load Register E 1.75 Q.75 0.83 0.33
LDM Load Register M 1.75 0.75 0.83 0.33
LDX Load Register X 1.75 0.75 0.83 0.33
MPY Multiply 6.25 5.25 3.83 3.33
STA Store Register A 2.00 2.00 1.00 1.00
STE Store Register E 2.00 2.00 1.00 1.00
STX Store Register X 2.00 2.00 1.00 1.00
SuUB Subtract from Register A 1.75 0.75 0.83 0.33

*Add the following fd,é&ecution times, when applicable: 0.25 microseconds
for indexing, ~0.75 microseconds for indirect addressing, and 0.25
microseconds for DAD, DLD, DST, and DSB extended format.

**pdd the following to execution times, when applicable: 0.17 microseconds
for indexing, 0.33 microseconds for Indirect addressing, and 0.17
microseconds for DAD, DLD, DST and DSB extended format.

901181-385
INSTRUCTION EXECUTION TIMES
(IN MICROSECONDS)
REGISTER SHIFT INSTRUCTIONS

4 MHz OPERATION 6 MHz OPERATION

MNEMONIC NAME ' EXECUTION TIME EXECUTION TIME
ALA Arithmetic Left Shift A 0.75+SC*/4. 0.33+SC*/6
ALD Arithmetic Left Shift Double 1.00+SC/4 0.50+SC/6
ARA Arithmetic Right Shift A 0.75+SC/4 0.33+SC/6
ARD Arithmetic Right Shift Double 1.00+SC/4 0.50+SC/6
CLD Circular Left Shift Double 0.75+SC/4 0.33+SC/6
CRA Circular Right Shift A 0.75+SC/4 0.33+SC/6
CRB Circular Right Shift B 0.75+SC/4 0.33+SC/6
CRD Circular Right Shift Double 0.75+SC/4 0.33+SC/6
CRE Circular Right Shift E 0.75+SC/4 0.33+SC/6
CRL Circular Right Shift L 0.75+SC/4 0.33+SC/6
CRM Circular Right Shift M 0.75+SC/4 0.33+SC/6
CRS Circular Right Shift S 0.75+SC/4 0.33+SC/6
CRX Circular Right Shift X 0.75+SC/4 0.33+SC/6
LLA Logical Left Shift A 0.75+SC/4 0.33+SC/6
LLD Logical Left Shift Double 0.75+SC/4 0.33+SC/6
LRA Logical Right Shift A 0.75+SC/4 0.33+SC/6
LRD Logical Right Shift Double 0.75+SC/4 0.33+SC/6
LTO Left Test for Ones 1.00+SC/4 0.50+SC/6
LTZ Left Test for Zeros 1.00+SC/4 0.50+SC/6
RTO Right Test for Ones 1.00+SC/4 0.50+SC/6
RTZ Right Test for Zeros 1.00+SC/4 0.50+SC/6

*SC=Shift Count

REGISTER TO REGISTER INSTRUCTIONS
4 MHz OPERATION 6 MHz OPERATION

MNEMONIC NAME EXECUTION TIME. ~ EXECUTION TIME
RAD Register ADD 1.25 0.67
RAN Register AND 1.25 0.67
RCA Register Compare Algebraic 1.25 0.67
RCL Register Compare Logical 1.25 0.67
RCO Register Complement 1.25 0.67
RDE Register Decrement 1.00 0.50
REO Register Exclusive OR 1.25 0.67
REX Register Exchange 1.50 0.83
RIN Register Increment 1.00 0.50
RIV Register Invert 1.00 0.50
RMO Register Move 1.00 0.50
ROR Register OR 1.25 0.67
RSU Register Subtract 1.25 0.67

MNEMONIC

SEV
SMI
SNO
SNZ
SOD
SO0
SPL
SZE

MNEMONIC

SEQ
SGE
SGT
SLE
SLT
SNC
SNE
SNV
S0C
Sov

MNEMONIC

SSE -
SSN

Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip

Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip

Skip

Skip

901181-385
INSTRUCTION EXECUTION TIMES
(IN MICROSECONDS)

REGISTER SKIP INSTRUCTIONS

NAME

on Even

on Minus

on Not All Ones
on Not All Zeros
on Qdd

on All Ones

on Plus

on Zero

INDICATOR SKIP INSTRUCTIONS

NAME

on Equal

on Greater Than or Equal

on Greater Than

on Less Than or Equal
on Less Than

on No Carry

on Not Equal

on No Qverflow

on Carry

on Qverflow

SENSE SKIP INSTRUCTIONS

NAME

on Sense Switch Equal

on Sense Switch Not Equal

A-4

4 MHz OPERATION
EXECUTION TIME

6 MHz OPERATION
EXECUTION TIME

el e e b d ed med ot

4 MHz OPERATION
EXECUTION TIME

.00
.00
.00
.00
.00
.00
.00
.00

OO OO OO0OO
Ul
[e]

6 MHz OPERATION
EXECUTION TIME

— et ol e o d) md md el

4 MHz OPERATION
EXECUTION TIME

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

.50
.50
.20
.50

[o¥oloNoNoleoloNoRo e
Ul
o

6 MHz OPERATION
EXECUTION TIME

1.00
.00

1

0.50
0.50

MNEMONIC
LRF
LSB
LSR

SRF
SSB

MNEMONIC
CLC
MVC

MNEMONIC

SMBO
SMBZ
TMBO
TMBZ

MNEMONIC

SABO
SABZ
TABO
TABZ

901181-385
INSTRUCTION EXECUTION TIMES
(IN MICROSECONDS)

MULTI-REGISTER'INSTRUCTIONS

NAME

Load Register File

Load Status Block and Branch

Load Status Block, Reset
Interrupt, and Branch

Store Register File

Store Status Block and Branch

4 MHz OPERATION
EXECUTION TIME

6 MHz OPERATION

EXECUTION TIME

7.00
3.25
3.25

7.00
3.25

BYTE MANIPULATION INSTRUCTIONS

NAME

Compare Logical Character
String
Move Character String

4 MHz OPERATION
EXECUTION TIME

3.17
1.50
1.50

3.17
1.50

6 MHz OPERATION
EXECUTION TIME

5.50+2.50/Byte
5.25+2.50/Byte

3.50+1.33/Byte
3.33+1.33/Byte

MEMORY BIT MANIPULATION INSTRUCTIONS

NAME

Set Memory Bit to One
Set Memory Bit to Zero
Test Memory Bit for One
Test Memory Bit for Zero

REGISTER BIT MANIPULATION INSTRUCTIONS

NAME

Set Register A Bit to One
Set Register A Bit to Zero
Test Register A Bit for One
Test Register A Bit for Zero

A-5

4 MHz OPERATION
EXECUTION TIME

6 MHz OPERATION
EXECUTION TIME

3.25
3.25
2.75
2.75

4 MHz OPERATION

EXECUTION: TIME

1.50
1.50°
1.33
1.33

6 MHz OPERATION

 EXECUTION TIME

1.00
1.00
1.25
1.25

0.50
0.50
0.67
0.67

MNEMONIC

ATI
I0L
NRM
RDS
WDS

'901181-385
INSTRUCTION EXECUTION TIMES
(IN MICROSECONDS)

_ MISCELLANEOUS

NAME

Automatic Transfer Initiate
Idle

Normalize

Read Direct Single

Write Direct Single

* 4 MHz OPERATION

EXECUTION TIME

6 MHz OPERATION
EXECUTION TIME

2.50
1.00
1.25 > 8.75
3.75 » 5.25
3.50 » 5.00

1.17
0.50
0.67 > 5.67
1.83 » 2.83
1.67 = 2.67

901181-335

APPENDIX B

INSTRUCTION INDEX

ALPHABETICAL INSTRUCTION INDEX

HEXADECIMAL
MNEMONIC CODE NAME PARAGRAPH
ADD 2000 Add to Register A 3.5.1
ALA €880 Arithmetic Left Shift A 3.8.1
ALD C8A0 Arithmetic Left Shift Double 3.8.2
AND 3800 Logical AND with Register A 3.9.1
API DDOO (Not Supported) 3.12.1
ARA €800 Arithmetic Right Shift A 3.8.3
ARD €820 Arithmetic Right Shift Double 3.8.4
*ATI D900 Automatic Transfer Initiate 3.12.2
BIX 4000 Branch on Increment Index 3.4.1
BRL 7000 Branch and Link 3.4.2
BRU 7800 Branch Unconditional 3.4.3
CLC DF80 Compare Logical Character String 3.6.1
CLD CB80 Circular Left Shift Double 3.8.5
CPA 6800 Compare Algebraic 3.6.2
CPL 6000 Compare Logical 3.6.3
CRA CAQ0 Circular Right Shift A 3.8.6
CRB CB60 Circular Right Shift B 3.8.7
CRD CBCO Circular Right Shift Double 3.8.8
CRE CA20 Circular Right Shift E 3.8.9
CRL CB40 Circular Right Shift L 3.8.10
CRM CA60 Circular Right Shift M 3.8.11

*Privileged instructions

B-1

901181 -385
INSTRU CTION INDEX

ALPHABETICAL INSTRUCTION INDEX (CONTINUED)

.. . HEXADECIMAL
MNEMONIC ~ - - CODE NAME PARAGRAPH
CRS = - - CB20 ... Circular Right Shift S 3.8.12
CRX - - - CA40 " Circular Right Shift X 3.8.13
DAD . - ~B800 Double Length Add 3.5.2
DIV . - 5800 .. Divide 3.5.3
LD - BOOO " Double Load Registers A and E 3.2.1
DMT 4800 ~ Decrement Memory and Test 3.7.1
DSB - . - A800 ~ Double Length Subtract 3.5.4
DST .. AO0O Double Store Registers A and E 3.3.1
*IDL . - CEQO Idle 3.4.4
IMO . - 5000 Increment Memory by One 3.5.5
IOR : - 3000 Logical OR with Register A 3.9.2
LDA - 0000 Load Register A 3.2.2
LDE - 0800 Load Register E 3.2.3
LDM - - 1800 Load Register M 3.2.4
LDX . 1000 Load Register X 3.2.5
LLA - (C8CO Logical Left Shift A 3.8.14
LLD- C8EQ Logical Left Shift Double 3.8.15
LRA C840 Logical Right Shift A 3.8.16
LRD C860 Logical Right Shift Double .3.8.17
LRF D8AO Load Register File 3.2.6
*LSB D880 Load Status Block and Branch 3.4.5
*LSR D890 Load Status Block, Reset 3.4.6
Interrupt, and Branch
LTO €980 Left Test for Ones 3.8.18
LTz CSCO Left Test for Zeros 3.8.19
MPY - 9800 Multiply 3.5.6
MVC - - . DFOO Move Character String 3.11.1
NRM - = - CA9F - Normalize . 3.8.20
**RAD .- = + CO80 Register Add 3.5.7 =
*IRAN= - = CB8O ..~ Register, AND 3.9.3 -
**RCA: .. : C400 gwgg'.R&glster Compare Algebraic 3.6.4
##RCL: -+ C600 Register Compare Logical 3.6.5
**RCO: . - C100 ..Register Complement 3.5.8
**RDE.. - - C700 " Register Decrement 3.5.9 -7
*RDS D800 Read Direct Single 3.12.3
**REQ €280 Register Exclusive OR 3.9.4
**REX €780 Register Exchange 3.11.2
**RIN €300 Register Increment- 3.5.10
**RIV €200 Register Invert 3.5.11
*#*RMO €500 Register Move 3.11.3
**ROR €480 Register OR 3.9.5
**RSU Co00 Register Subtract 3.5.12
RTO €900 Right Test for Ones 3.8.21
RTZ €940 Right Test for Zeros 3.8.22

*Privileged instructions
**prijyileged instructions when status register is the destination reg1ster

“"B-2

901181-385
!NSTRUC“ONINDEX

3ALPHABEUCALINSTRUCUON]NDE}(CQNUNUED)

HEXADECIMAL L
MNEMONIC CODE NAME e PARAGRAPH

SABO DBS50 _Set Register A Bit to One - 3.10.1
SABZ DB40 Set Register A Bit for Zeros - 3.10.2
SEQ CDh20 Skip on Equal ~3.7.2
SEV ccco Skip on Even 3.7.3
SGE (D80 Skip on Greater Than or Equal - 3.7.4
SGT CD40 Skip on Register Than - 3.7.5
SLE CDCO Skip on Less Than or Equal - 3.7.6
SLT CD00 Skip on Less Than U377
SMBO DB70 Set Memory Bit to One ..3.10.3 -
SMBZ DB60O Set Memory Bit to Zero ~-3.10.4 -
SMI CC60 Skip on Minus 3.7, /
SNC CFEO Skip on No Carry - 3.7.

SNE CDAO Skip on Not Equal ~3.7.

SNO CCAQ Skip on Not A1l Ones “3.7.

SNV CDEOQ Skip on No Overflow 3.7.

SNZ CCa0 Skip on Not All Zeros 3.7.

SoC CF60 SKip on Carry 3.7,

SOD cc4o Skip on Odd . - 3.7.

SO0 Cca0 Skip on All Ones 3.7,

Sov CD60 Skip on Overflow 3.7.

SPL CCEO Skip on Plus 3.7.

SRF D8EQ Store Register File ' 3.3.

SSB D8CO Store Status Block and Branch 3.4.

SSE cc10 Skip on Sense Switch Equal 3.7.

SSN CCY0 Skip on Sense Switch Not Equal 3.7.

STA 8000 Store Register A - 3.3.

STE 8800 Store Register E . - 3.3,

STX 9000 Store Register X' =3.3.

SuB .2800 Subtract from Regi s ~3.5.

SZE CCcoo Skip on Zero sl ‘ 5 3.7.
TABO DB10 Test Register A B1t}for One < 3.10.
TABZ DBOO Test Register A Bit "for Zero 3.1

TMBO DB30 Test Memory Bit for One 3.1

TMBZ DB20 Test Memory Bit for‘Zero 3.1
*WDS . D820 Write Direct Single *". 3.1

*Privileged instructions

QQ1M81 385 ‘
INSTRUCHONINDEX

Wb e
: :

HEXADECIMAL INSTRUCTION INDEX

HEXADECIMAL ", ' .
CODE MNEMONIC NAME PARAGRAPH
0000 : E,;LDA »n. ~Load Register A 3.2.2
0800 . . & ¢ LDE Load Register E 3.2.3
10007 &, LDX s -Load Register X 3.2.5
1800 & " LDM Load Register M 3.2.4
2000 * © "ADD .. Add to Register A . 3.5.1
2800: - - SUB Subtract from Register A 3.5.13
3000: .&.:IOR . Logical OR with Register A 3.9.2
3800 - [AND Logical AND with Register A 3.9.1
40007 .. ¢ ?BIX Branch on Incremented Index 3.4.1
4800 : 7 [DMT Decrement Memory and Test 3.7.1
5000 ¢ 1 IMO Increment Memory by One 3.5.5
5800 ‘,;viDIV Divide 3.5.3 .
6000 = + :CPL Compare Logical 3.6.3
6800, - .~ 7 CPA Compare Algebraic 3.6.2
7000 ¢ .. BRL Branch and Link 3.4.2
7800.:.: .7 BRU Branch Unconditional 3.4.3
8000 : “STA Store Register A 3.3.3 ..
8800 - STE Store Register E 3.3.4
9000 = . - STX Store Register X _ 3.3.5
9800 ° MPY Multiply 3.5.6
A0Q0 DST Double Store Registers A and E 3.3.1
A800 DSB Double Length Subtract 3.5.4
BOOO OLD Double lLoad Registers A and E 3.2.1
B80O DAD Double Length Add 3.5.2
**C000 . RSU Register Subtract 3.5.12
**C080 = ~ : RAD Register Add 3.5.7
**C10Q. 1.7, £ RCO Register Complement 3.5.8 ..
®¥XC2000°. 7 LRIV :3U;31@Reg1stqr‘lnvert 3.5.11°
**C280 ' .7 f REO Register Exclusive OR -3.9.4
S **C300¢ T . RIN Register Increment - 3.5.1¢.
*%C400 '." [RCA Register Compare Algebraic 3.6.4
**C480 . " © ROR Register-OR ‘ 3.9.5
**C500 5. . RMO Register Move 3.11.3:
#*C600 2.7 & RCL Register Compare Logical - 3.6.5:,
**C680G .7 - RAN Register AND - 3.9.3 °
**C700% v .. RDE 1502 -Register Decrement 3.5.9
**C78Q" 7.1 REX Reglster Exchange 3.11.

901181-385
INSTRUCﬁONWNDEX

HEXADECIMALINSTRUCHONINDEX(CONUNUED)

R o, - el

HEXADECIMAL ‘
CODE . MNEMONIC NAME .. PARAGRAPH'/
€800 ARA Arithmetic Right Shift A 3.8.
€820 ARD Arithmetic Right Shift Double +i3.8.
C840 ~ LRA Logical Right Shift'A - 3.8,
C860 = LRD Logical Right Shift Double ' l: 3.8.
C880 . [ALA Arithmetic Left Shift A ".'3.8.
‘C8AQ . "ALD Arithmetic Left Shift Double 3.8,
C8CO - LLA Logical Left Shift A -3.8.
C8EO . = LLD Logical Left Shift Double -3.8.
€900 RTO Right Test for Ones - - “3.8.
€940 - RTZ Right Test for Zeros *~ £3.8.
C980 - LTO Left Test for Ones ML3.8.
Cc9co .~ LTZ Left Test for Zeros {+73.8.
CAQO . CRA : Circular Right Shift A ¥ 3.8.
CA20 CRE Circular Right Shift E A 3.8.
CA40 CRX Circular Right Shift X %?3.8.
CA60 CRM Circular Right Shift M = 3.8.
CA9F NRM Normalize "2 3.8.
CB20 CRS Circular Right Shift § 3.8,
CB40 CRL Circular Right Shift L- 393.8.
CB60 CRB Circular Right Shift B - 73.8.
CB80 CLD Circular Left Shift Double ~3.8.
CBCO CRD Circular Right Shift Double 3.8.
CCoo SZE Skip to Zero 3.7.
ccio SSE Skip on Sense Switch Equal - 3.7.
Cc20 S00 Skip on A1l Ones 3.7.
CC40 SOD Skip on Odd 3.7,
CC60 . SMI Skip on Minus, LN w307
CC80 SNZ Skip on Not Al1* Zeros~ €0 3.7.
CC90 , SSN Skip on Sense Switch’ Not Equal V.7 3.7.
CCAQ = . SNO Skip on A & U3F 3.7.
CCCO™. = SEV . Skip on "8 3.7,
CCEO; " SPL Skip on P L% 3.7,
CDOO. " ., SLT Skip on Less Tham 't ” AOK 3.7.
CD20 - "' SEQ Skip on Equal ‘& 7:no™ LM% 3.7,
CD40 " DGT Skip on Greater Thar L= 3.7.
CD60 sov Skip on Overflow™ ' k& A% 3.7.
CD80. SGE Skip on Greater' Tharior Equal 3.7,
CDA0" ~ SNE Skip on Not Equal: &~ % 3.7,
CDCO SLE Skip on Less Than or Equal 3.7.
CDEO SNV Skip on No Overflow 3.7.
*CE0O IDL Idle 3.4.
CF60 SoC Skip on Carry 3.7.
CFEO SNC Skip on No Carry 3.7.

..-“Privileged instructions
p Plrwet DT

901181-385
INSTRUCTION INDEX

HEXADECIMAL INSTRUCTION INDEX (CONTINUED)

HEXADECIMAL
CODE MNEMONIC NAME PARAGRAPH
*D800 RDS Read Direct Single 3.12.3
*D820 WDS Write Direct Single 3.12.4
*D880 LSB Load Status Block and Branch 3.4.5
*D890 LSR ~ Load Status Block, Reset 3.4.6
' <3.%20 ¥ Interrupt, and Branch -
D8AO LRF Load Register File 3.2.6
08CO SSB Store Status Block and Branch . 3.4.7
D8ED SRF Store Register File 3.3.2
*D900 ATI Automatic Transfer Initiate 3.12.2
~DBOO TABZ Test Register A Bit for Zero 3.10.6
TEDpEI0 F BfABOC #nt ~Test Register A Bit for One 3.10.5 -
v LDBZOTT = TMBZEY2l < Test Memory Bit for Zero . 3.10.8 .
0B30 TMBO Test Memory Bit for One oo 34047
DB40 SABZ Set Register A Bit to Zero 3.10.2
DB50 SABO Set Register A Bit to One 3.10.1
DB6O SMBZ ___Set Memory Bit to Zero 3.10.4
DB70 SMBO oz Set'Memory Bit to One 3.10.3
0DOO0 .. API.. .. . (Not Supported) 3.12.1
DFOO . MVC - Move Character String 3.11.0
DF80 . CLC . E' . Compare Logical Character String 3.6.1

: i e !
.‘ s b i . t -
o G i N H 4 -
A A T S ;
% B B i i H
S O S X ,
i i i g F . o i
b X X% Ao b« i L "
o Y . 3 '
L S S A ‘
bowe Y ¢ v ”) ‘ ,
P X X Yy : .
b i W ooy v .
R ¥ A A :
E L% oo ; ~)
PY Y X % 8
SR N SR A S
S A ¥ % ¥
i 4 he 4)
: S A 2N & A !
. ¥ L A ¥
Pt

*Privileged instructions

B-6

901181 -385
25L-18rroe

‘f’w'vf"‘
WAl E ?’ F“

TE

When the op- code of an instruction 'zs mher t'ﬁan one o‘}'
op-codes, it is considered illegal. " Table L—l Tists:s
bit- patterns that are detected as Hlega] C

vl TABLE C- 1

' : ILLEGAL |NSTRUCTION C@DES
INSTRUCTION BITS . - T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14' 15
1 100/l0 X X X|Xx Xx x x|1 X X X
110000 X 1|1 X X X|X X X X
1100f(0 10 11 X X X|Xx X X X
11700/ 1 00 1T |XxX X 1 X|X X X X
1100/l1 01010 1 X|X X X X
1100101 0}1 1 X XX X X X
1 1T00(1 01 1]00 0 XX X X X
1100101 1|1 x 1 XX X X X
11001 110100 0 1T X X X X
1100f(1 1T 10]0O0 1 X|X X X X
11001 1 10}0 1 X X|X X X X
11001 1 101 X X X|X X X X
11001 11 1|x 0 X X|X X X X
110011 1 10 1 0 X | X X X X
1 170 110 X X XX X X X|Xx X X X
11011101 X1 X X X|x X X X
110 1|1 1 XO0|Xx X X XX X X X
1T 1 1 XX X X X|x x X xXf{x X X X

X = DON'T CARE (0 or 1)

T oLYEet hene) byl oo”

C-1
L ‘)

 901181-385
ILLEGAL INSTRUCTION OPERATION CODES

BLANK

G2

