
Table of Contents

Getting Started . lFeatures of EcO-C .
2

Facts, Suggestions and Programming Hints.
3

Using the ECO-C C Compiler.
5

Compiling the Program.
5

Compiler Switches.
5

Assembling the Program
7

Linking the Program.
7

Linking Your Own Functions.
8

Reading and Writing Data Files.
9

Writing an ASCII Text File
9

Reading an ASCII Text File
10

what to Do if You Run Out of Memory
12

Standard Library of C Functions
13

Assembly Language Functions
24

Assembler Language Function Interface
25

Invoking a Function in Assembler Language.
26

Using INIT.ASM
27

Naming Conventions
28

Creating Libraries.
29

CP/M I/O Interface.
31

Error Messages. .
33

Quick Function Reference.
39

Operator Precedence.
40

Microsoft's MACRO 80 manual
41

Getting Started

M&kinq ,a workinq Cqry

The first thing you should do is make a working copy of the
ECo-C C Compiler disk. If you use the CP/M PIP utility, the
sequence is to place your CP/M disk with PIP on it in drive A and
a blank, formatted disk in b. (We have used <CR> to signify
pressing the RETURN key.)

A>PIP <CR>

* (now place the ECO-C disk in A)

B:=A:*.* <CR> (<---- and enter this line)
(Use DV option for copyinh

After the copy is completed, place the original disk in a safe
place and use the copy from now on. You will need the following
files when compiling a program:

CP. COM Macro Pre-processor
XC. COM C Compiler
XM. COM Code Generator
CE. COM Error Reports
CODE. PS Overhead Files
CODE. PA " "
ERR. PA " "

STDIO. h Standard Definitions
* .REL Library Routines (All of them)
M80 .COM Microsoft's Macro Assembler
L80 .COM " Linker

In addition, each compiled program will generate (on its own)
TOKEN.CWK and PCODE.CWK as intermediate files during compilation.
These intermediate files will be erased automatically as the
compilation progresses. You probably will want to place your
editor on the disk, too (e.g., the editor on your CP/M disk is
named ED.COM). If you use a screen editor like Micropro's
Wordstar, be sure you write your programs in the "non-document"
mode. Finally, do not write programs using the file names above.

l

If disk space is a problem, the files may have a maximum
split as follows:

DISKI - CP.COM, XC.COM, XM.COM, CE.COM, CODE.PS, CODE.PA,
ERR. PA

DISK2 - M80.COM

DISK3 - L80.COM, CFF.REL, CIF.REL, CFC.REL, CIC.REL, ECC.REL,
EC2. REL

Using the above distribution of files, DISK2 may be used for
the source file, compiler output and assembler output. DISKI is
used for the compiler and the compiler working files; while DISK3
is used for linking the output of the assembler and the compiler
libraries. Depending on disk size, groupings of the above disks
may be done. For example, on a North Star system DISK2 and DISK3

typically would be combined into one disk (e.g., a DISK2) .

Having made a working copy of the Eco-C compiler, you are
ready to write and compile a C program.

Features of Eco—C

Before you start using the compiler, you should know what is
and is not supported in this release.

The full C syntax is supported except;

a. bitfields
b.initializers(lnitializers should be available in

April, 1983. Aggregate Initializers are supported.)
c. parametized macros
d. #line macro preprocessor directive
e. in compound expression following a #if , macro ex-

pansion is not done

Most of the above will be available in subsequent releases of the
compiler. We also expect additional optimization (we've concen-
trated on longs and floats so far) to substantially shrink code
size and increase speed. You must have a signed license agreement
on file to be eligible for these updates.

2

Facts, Suggestions and programming Hints

The following is a list of specifications and suggestions
that may prove useful. Some represent "C spec" rules that are jÁQt

obeyed by existing compilers and might cause an error message
that would not be generated by other compilers. Others are limi-
tations that will disappear shortly.

l. unsigned long, unsigned char and unsigned short data
types will generate an error message.

2. stdin, stdout, stderr and stdlst equate to fdO, fdl, fd2,
and fd3 respectively. (A file named INIT.ASM controls the number
of fcb's and lob's that are generated plus setting the stack.)

3. On function calls:
a. A function parameter of float is automatically pro-

moted to double and short or char goes to an int.
b. A function cannot return a char; only an int, -

-'

unsigned, long, double, or pointer no matter how declareá.
'

'

c. Given the choice of char or int, make it an int. Itavoids internal conversions, thus improving speed.

4
. To initialize a pointer (e. g. , x_ pt r) to a function

(e.g., funcl()) , the syntax must be:

x _ptr = &funcl;

5. A structure or union name can only have two things done
with it: l) take its address with the address operator in front
of it, or 2) have a period and a member name following its name.

6. Binding of structure members to a structure is absolute.
If a pointer is to a structure sI and now you want to use it with
S2, you must cast the pointer to S2 or we will generate an error
message.

7. If a function is not recursive, you are usually better
off to declare variables as static rather than auto or register.
If generates more efficient code.

8. When using a large "switch" statement, place the most
likely case Last and the least likely first.

9. Currently we do support nested comments.

3

10. #include's may be nested only two deep.

II. Floating point numbers can have up to 17 significant
digits. The range for the exponent is -38 to +38. At the present
time, only binary arithmetic is supported (BCD is forthcoming).

12. Floating point and long constants are combined at run
time rather than compile time. This, too, will be fixed.

13. All program source f lies must terminate with a carriage-
return, linefeed pair (CR-LF). Failure to observe this will cause
the error handler to produce odd results.

:,
,

."? a.

t " "

14. We do not yet have: lseek() ·QL-.c.un.link(> functions, and
appending to a f lle. This will disappear when random files are
finished.

The majority of the limitations mentioned above will dis-
appear very soon. The error handler treats all errors as fatal;
there is no "cascading" of false error messages. When you do get
an error, you will find that it does diagnose the error correct-
ly. Finally, the library is a bit meager at present, but will
grow shortly.

we think you will find the Eco-C compiler more "UNIX-like"
than most on the market. Further, it perf orms its error checking
in strict compliance with the syntax defined by K&R. Finally, we

have adhered to the function definitions presented in K&R as much
as possible in a CP/M environment.

.

4

Using the ECO-C C Compiler

writinq ^ Sollrce proqram

The first step is to write the C program using a text edi-
tor. (CP/M provides an editor stored on disk as ED.COM.) Be sure
that you do not use the document mode on some editors (e.g.,
Wordstar). The document mode can turn the high bit ON and produce
mysterious results on occasion.

Typically, the file extention given to a CP/M C source
program is ".C" (e.g., TEST.C). This is ñQt a requirement, how-
ever. You may use any file extention you wish.

cxmpÍl in.q j= proqram

Assuming the compiler and the source pr"gram (e.g., TEST.C)

is on drive A, the compiler is envoked by:

A>CP TEST <CR> /* Assumes a ".C" extention */

The program will supply the extention of ".C" if one is not
supplied when the preprocessor is envoked. If you supply a file
extention (e.g., ".XXX") , it overrides the default (".C"). A

different souce disk may be specified. For example,

A>CP B:TEST <CR>

The program will automatically load and run the next two
passes of the compiler (XC and XM) if no errors are detected. The
output of the final pass (i.e., XM) is an assembly language
source file (e.g., TEST.MAC). This can be examined and modified
if you wish.

Compiler Switches

- i This switch tells the compiler to use the integer
version of the printf () function. It avoids pulling in the float-
ing point library whenever printf () is used. If your program does
not use floating point numbers, this option will produce smaller
code size.

5

As an example, suppose a source program is named TEST.C. To
use it with this option, the compiler would be invoked with the
following command line arguments:

A>cp test -i

causing the TEST program to use the integer version of printf ().
Note that lower case letters may be used if you wish.

-c This switch uses the library where getchar() and
putchar() do direct BDOS calls to CP/M for input/output (I/O)
rather than through getc() and putc(). This avoids console I/O
from going through the f lle handlers thus generating smaller code
size. It is envoked with the following command line arguments:

A>cp test -c

-o This switch is used to change the name of the output
file and the drive on which it is written. For example:

A>cp test -o b: test
A>cp test -ob:test

Both of the above examples are allowed. If a file type is added
to the f lle name the default type of '.MAC' will not be used.

-b This switch is used to turn off most of the messages
and statistics the compiler generates.

NOTE: All or part of the switches may be used when compiling
a program. Each switch option in the command line must be sepa-
rated one from the other by a blank space; the order is unimpor-
tant. Example:

A>cp test -i -c
or

A>cp test -c -i

both produce the same results.

6

A,qsemb1 inq Hie proqram

The assembler output file from the compiler (e.g., TEST.MAC)

becomes the input file to the assembler. Your package includes
Microsoft's Macro 80 assembler. It is envoked with the following
command :

A>M80 =TEST /* Note blank space */

Since M80 has a default f lle extention of .MAC, the assembler may
be used with or without the .MAC extention.

The output f lle from the assembler will be named TEST.REL.
Further details about using M80 are in the Microsoft manual.
NOTE: there must be a blank space between M80 and the equal sign
(=) when the assembler is envoked for CP/M.

.Idlin.kinq :

= Proqram

·
": [" {', U" "

,

The .REL file from the assembler is then linked to the
standard library routines (e.g., -CF.RELb EC2.REL, etc.) by using
the Microsoft linker (L80). A typical link would be:

A>L80 TEST,TEST/N/E

which causes TEST.REL to be the input file and produces an output
f lle named TEST.COM. TEST.COM becomes the executable C program.The standard library routines are automatically searched.

If you wanted the input file TEST.REL to have a command f lle
name of PRICE.COM, the syntax would be:

A>L80 TEST,PRICE/N/E

7

Linking in Your Own Functions

Suppose that you have compiled and assembled a function you
wrote with the name DATE.C. The assembler would have generated a
REL f lle named DATE.REL. Now you want to link the function into a

program named TEST.C. The command arguments would be:

A>L80 TEST,DATE,TEST/n/e
^ ^ ^
l l I

input .REL file---- I

--------- output .COM fileI

.REL function(s) to be linked with program

The first file name following 180 on the command line is the
input f lle (.REL). The last f lle name (before the "/n/e") is the
output (.COM) program file. In between these two file names are
the (.REL) function(s) you want to link in with the program. Each
must be separated from the other by a comma.

Again, additional details on L80 are found in the Microsoft
manual.

"" ' ' ' ""' ' ' ' · · ' '.-' .
'i : t3 fí,' ;' r i

': ':" '·-' t.! '.,1 l, Iii' t':' !.
t ': :··: -"' I:: "! ' l. ¿i:: :z·: .!. t'f .:::' 'l :i. !" jj·':, t::" ':::'i'míi ii:' j"':'.'.'i]- :i !"'tt':·:' !' I::' i;;t '..! !"lltj!,i I;.

t: ú.·::.-..- : .!. í'-: i '.- l. !,,' ... --t? .:. ·!" },,! Iii ft? j¿: gt;;.· ;'",i.i.:tiii. -í'"í:í U ·1;MÍ.! E í;;····i? !. j.|;i í'· !,i· í·: i. t.-:'iZ jj,: i. iii t;;;t ,
l"|f'-!t.: .h {t i'

i;. : j!....,T ! t.-'
:i. :i. ';;'j '.-' :i. !'1 ::'.'1 '!. :i. ; " í" iii" U .i. e 'ii y .!. '..l'iii E i;;; i;"; ¿¿jt't': .i iii: "jj; ;.::' t'l'l '..! iii 'i,, i': ' s;·;j .::::::::l'"s::'",'.:"..'..:

""' l"""r'" i'"" "i i'í " 'l" '! l"" ": :' "" i i'"! 'i" '" $' '; l"'l 'l "i'"' é" j "-·E", 'i'"" i 'l i", "i" " ¡'"j '"É1""1 "{ "" 'l" f" ;"j '"" 'l' "' "' """

i':.. t Z f '"' ' 'U Lb I' 'i
,.' ' ' t : ':: i . -

!.. ,1 j:' -·· '!:!:l'..t'.·}:.·.{!:·.'!' :··' !" 'l. ! $!. 'l' ' .' ::-. ! l'j '!'"' .i. :í ':·:·:' ;jj ..·""'ijjl '.,;'j"; ¿.-.{t-i:"l,'.í..'!"!:ii"'!"'": "' -""$"-'."..l';..t.'i';: ;i":'"": ."' :

i.. ,-. !.,. ·--· F"' i't-;.· " j.;,¿,, 9>tj.' It'.'. }'-.·'f·ii'ít. i' '"' ;'t t.-.! i. U") !-:·:'::i{:!íii' é::-iii· :í jj.f,, í'"[: :! f'· g.'.íí.'.::".:-!::·!';iii' 1· ". ;;z..·"

y.'f.j l'.' 'i' i :::: ':'" '. .'

i' "i' i;;" "" ! !"'1 l', i.; ..,':.:: '.' i·'·' "' ! !"'1 i. 'i" ' " t...!:i '!'..í"' !":':!:li:l!:i: t::' ·jj: l. i. ':1 'i'" é;.;ti"' f.'.·i":·ñ t:.'i'Í iii' 't" " " :"'"?··"L.!'Ú ';""j :13'i'" " ' :-

:'2 '·:: :ii' i i "" ' ' "l" ""·' i, í·.·.':' .!. !' I":' t..;it,: 'l'"'
..

.i. i..' t' '·· l' !::f f.·l f:.',' 'l"' I':' l'":íii'l'f!t':':'".'! !.|'·.'?"k': :l::"
:. g,,..,,,.. ..' , f .., .,. ,. .,-, ...

' E
:..':.::l:}"·"·'.!..í.[·.':!" t:: '..'..t.l, i;. '.;'i"i': .·.' "" ':::' 'i.,.1"'!í·.;' '!. .l. t'": ;·". t-'..':::!l..::i.".'.'i -!. !' it: '" .!. '. : '.'.'it·:-,' 'i.'.i"'":t'.': !"' t2) .l. :i. i:í í.·..l,!. l"i i:.', .!. :i. i:.' "' '"' " ' '

' . . - . . I. ,.. '·j:: k'.l;¿' "" '! ' i
.

' ! " ""

r "'Z' ' .t : ' ' ' ' ."':- , :.·' " ':: " ' ' t I .' i
.

:' :;.;'t,: .' · ' . SÍ '.J!T ' .-' :;, j!

8

Reading and Writing Data f lies

We have attempted to make file input and output (i.e., I/O)
as consistent with the UNIX operating system as possible given
the differences between it and CP/!¢l. Below is an example of writ-
ing to and then reading from a file using the ECO-C compiler.
Both programs in source are included on your distribution disk.

/* Writing an ASCII Data File */

#include "stdio.h" /* Include file overhead info */
#define CLEARS 12 /* Clear screen for ADDS Viewpoint */
#define MAX 1000 /* Maximum number of characters */
main()
{

int i;char c;
FILE *fp;

putchar (CLEARS) ; /* Clear the screen */

if ((fp = fopen("TEXT.TXT", "W")) == NULL) {

puts("Can't open TEXT.TXT") ;

exit(-l); l* Signals an Error */
}

puts("Enter line of text and press RETURN: \n") ;

for (i = O; (c = getchar()) != '\n' && i < MAX; ++i)
putc(c, fp);

putc (CPMEOF, fp) ; l* Must write end-of-file */
fclose(fp);

}

The program begins with the #include preprocessor directive
to include the file I/O information needed to work with disk
files. The #defines are used to def ine the clear screen code for
an ADDS Viewpoint and set the maximum number of characters that
can be entered.

The main() function marks the beginning of the program and
several variables are declared. The FILE typedef refers to the
structure that is defined in stdio.h and is used to establish
pointers to fp and fopen(). Generally, high-level file I/O willrequire the file declarations to be present in every program that
works with disk files. The call to putchar(CLEARS) simply clears
the screen in preparation for entering the text.

9

If your terminal requires two or more characters to clear
the screen, change the #define to be a string and change the
putchar(CLEARS) statement to a puts(). For example, if you are
using a SOROC terminal which uses an escape (033 octal) followed
by an asterisk (*), the #define would be: #define CLEARS "\033*".
You would then use puts(CLEARS) instead of putchar(CLEARS) since
we are now treating CLEARS as a string.

The if statement attempts to open a text f lle using the name
TEXT.TXT in the ASCII "write" mode. If the file cannot be opened
(i.e., fp returns a NULL), a message is displayed that the filecannot be opened and the program is aborted by the call to
exit(). The -l argument in the exit() function call is used to
signal that some error occurred.

If all went well, fp serves as our link with the file that
was just opened (e.g., TEXT.TXT). A prompt asks the user to enter
a line of text, pressing RETURN when they have finished. Calls to
getchar () take the characters f rom the keyboard and assign them
to c. A check is made to see if the character was a newline
(i. e. , a '\n' which corresponds to pressing RETURN) or i f iexceeds the maximum number of characters allowed (MAX).

If the tests are passed, a call to putc() places character c

into the buffer associated with fp. The for loop continues until
MAX - l characters or RETURN is entered. When that happens, a

final call is made to putc() using the CP/M end-of-file (OxIA) as
the character. This is necessary when using the ASCII mode for
disk files.

A call to fclose() writes the buffer to the disk and closes
the f lle and the program ends.

Readjnq Añ ASCII. Texk Fj1e

The program to read the text file just created closely
follows the program used to write the f lle. Notice that main() is
called with two arguments: argc and argv. The argc variable is
used to count the number of command line arguments (argument
counter) used when the program was envoked. The argvll variable
is an array of pointers that points to what command line argu-
ments were entered.

For example, to read the TEXT.TXT file, this program is
envoked with:

A>READFILE TEXT. TXT<CR>

where the <CR> represents pressing RETURN.

10

/* Reading an ASCII data f lle */
#include "stdio.h" /* Pull in the overhead info again */
#define CLEARS 12 l* Clear screen for ADDS viewpoint */

main(argc, argv)

int argc;
char *argv1l;
{

char c;
FILE *fp;

putchar (CLEARS) ;

if (argc != 2) {

printf ("I need to know the file name.\n\n") ;

printf ("Use: \n\nA>READFILE FILENAME.XXX") ;

exit (-l) ;
}

if ((fp = fopen(argv1ll, "r")) == NULL) {

printf ("Can't open file: %s", argvlll);
exit(-l);}

while((c = getc (fp)) != EOF)

putchar(c);
fclose(fp);

}

There are two arguments (argc = 2) and two pointers in
argvlj (argvlOl pointing to READFILE and argvlll pointing to
TEXT.TXT). In the program, the argc is checked to make sure that
two arguments were supplied when the program was envoked. If argc
is not equal to 2, an error message is given and the program
aborts.

If the argument count is correct, we try to open the file in
the ASCII "read" mode. If the f lle pointer (fp) returned from the
call to fopen() is a NULL, an error message is given and the
program aborts.

If a valid file pointer is returned, while while loop does
repeated calls to getc() and assigns the character in the buffer
to c. The call to putchar() displays the characters on the CRT.

This continues until the end-of-f lle (EOF) is sensed, whereupon
the file is closed and the program ends.

It may be a worthwhile excercise to list stdio.h to see how

the various symbolic constants are def ined (e.g., FILE, NULL,
EOF, etc.), although you probably will not need to know the
details contained therein.

li

what to Do if You Run Out of M=ory

Unlike many other C compilers that are available, the ECO-C

compiler does not require that the entire source code of the
program to reside in memory. Even so, it is possible to "run out
of memory". Usually, this is caused by overflowing the symbol
table space.

Space for the symbol table is allocated dynamically. As auto
variables are compiled, they are treated as temporaries and
"discarded" af ter the function has been compiled. Very long
programs with a large number of global variables (i.e., extern
storage class) or a very large function with many auto-type
variables are the most likely to cause the symbol table to over-
flow.

If this happens, all is not lost. Simply break the source
program into two separate source programs and then compile and

link them together.

For example, suppose your source program TEST.C runs out of
memory during a compile. Further assume that you inspect TEST.C

and find that the program can be split in half after a function
definition named root().

Using your editor, create a new file called TESTI.C; this
will be a new file. Now read in TEST.C and delete all of the
lines from the beginning of the program to the start of the
definition of root(). TESTI.C should now contain the "second
half" of TEST.C. Save TESTI.C on disk. Now load TEST.C and delete
everything from the definition of the root() f unction to the end
of the program and save it on disk.

Having done the above, TEST.C contains the "first half" of
the original program and TESTI.C contains the "second half ". Now

compile and assemble the two separately and then link them to-
gether to form one program. The sequence might look like:

A>cp TEST

A>cp TESTI
A>m80 =TEST
A>m80 =TEST1

A>l80 TEST,TEST1,TEST/n/e

which creates an executable program named TEST.COM with both
"halves" linked together.

12

Standard Library of C Functions

Listed below are the functions that comprise the Eco-C
Standard Function Library. Each function is described by name
with any argument list that might be necessary for the f unction
call. If the function returns a data type other than integer
(i.e., int), the data type returned preceeds the function name.
The functions are arranged in alphabetical order for easier
reference.

alloc ()

char *alloc(u) l* Request for storage */
unsigned u;

Returns a pointer to u bytes of storage, where each byte is able
to store one char. If the request for u bytes of storage cannot
be satisfied, the pointer returned equals NULL (i.e., zero).
Therefore, a non-zero pointer value returned from the call to
alloc() means that u bytes of consecutive storage are available.

atol ()

atol (S) l* Return integer of string */
char *s;

Returns the integer value of the string pointed to by "*s". This
f unction permits the input string to be in decimal, hex or octal
using the standard C syntax for such values (e.g., "Oxff").

atol()
long atol(s) l* Return long of string */
char *s;

Functions in the same manner as atoi() , except the returned value
is a long rather than an int.

13

ca1loc()

cha r *calloc(count, size) /* Request storage * /
unsigned count, size;

Returns a pointer to sufficient storage to for "count" items,
each of which requires "size" bytes of storage. If the request is
successful, each byte is initialized to NULL. If the request for
storage cannot be satisfied, the pointer returned equals NULL

(i.e., zero). The pointer returned, therefore, can be tested to
see if the request was satisf led.

dec imaí ()

long decimal(s) l* Return long of decimal */
char *s;

Returns the long value of a decimal string pointed to by "*s".

exit ()

int exit(i) l* terminate a program */
int i;

Used to terminate a program. A non-zero value for "i" is normally
used to indicate that some error occurred when this f unction was
called.

free ()

int free(c) l* Release storage area */
char *c;

The function call frees (i.e., tie-allocates) the region of stor-
age pointed to by "c", thus making that area of storage available
for re-use. The function assumes that the pointer "c" was first
obtained by a call to al1oc().

14

ftoa()

int ftoa(s, d, prec, type) /* Float to ASCII */
char *s ;
double d;
int prec, type;

Converts a floating point number "d" into an ASCII string and
stores the result in "s". Up to 18 significant digits of preci-
sion may be requested (i.e., prec = 18). The "type" variable may
be 'g', 'e' or 'f' Isee discussion of the printf () function];
otherwise the floating point number is free-form. Since the
string is null terminated (i.e., '\0'), "s" must be large enough
to hold "prec" bytes + l characters.

fclo8e()

int fclose (fp) l* close a file */
FILE *f p;

Function first calls Eflush() to flush the contents of the
buffer and then closes the file associated with the "fp" filepointer. This frees "fp" for use with another file if desired.

fflush()
int fflush(fp) /* write buffer to disk */
FILE *fp;

Writes the current contents of the buffer associate with "fp" to
the disk (including the EOF indicator) .

15

fgets()

cha r *fgets (s, i, lop) /* get string from file */char *s ;

i nt i ;
FILE *iop;

Reads "i" characters from lop and places them into the character
array "s". The f unction terminates upon reading: (l) a nullcharacter ('\0'), (2) and end-of-file indicator, or (3) i-lcharacters. The character string at "s" is null terminated ('\0')
upon return. The function returns a pointer to the string, or
zero if end-of-f lle or an error occurred.

_fi1lbuff ()

int _ fillbuff (fp) /* read buffer of data */
FILE *fp;

Used to replentish the buffer associated with fp and returns the
next character or EOF.

fopen()

FILE *f open (name, mode) l* open file */
cha r *name, *mode;

Open the file "name" for use in the "mode" file operation. There
are two possible modes of operation:

"r " Open for reading. The file must already exist to use
this mode. ASCII text files have thecarriage-return,
line-f eed (i. e. ,

<CR><LF>) adjustment.

"rb" Open for binary reading. No <cr><lf> adjustments.

"w" Open for writing. Any existing file with the same
"name" is destroyed and a new file is created. The
contents of the old file are lost. Does <CR><LF>

adjustment.

"wb" Open for binary writing. No <cr><lf> adjustments.

Upon a successful open, the f unction returns a pointer (e.g., fp)
to the opened file. If an error occurred, NULL is returned. (The
"a", or append, option for random f lies is forthcoming) .

16

fputs C)

int fputs(s, lop) l* Put a character out */
char *s;
FILE *iop;

Takes the character pointed to by "s" and puts it to the output
designated by "lop".

getc()

int getc (p) l* Read character from file */
FILE *p;

Reads a character from the input stream associated with "p". The
character is normally returned as a positive integer although itmay return EOF upon reading end-of-file or TERR if an error
occurred during the read. Rml. L.

·r

getchar ()

int getchar() l* Get character from stdin */

Reads a single character from stdin. stdin defaults to the
tetmi nal.

gets ()

char *gets(buff) /* Get a string from sdtin */
char *buff ;

Get a string from stdin and place it in the buffer pointed to by
"*buff". If input is from the console, '\r' is used to sense the
ená of the input string; otherwise a newline '\n' is used.

17

getw()

int getw(fp) /* Get next word from file */
FILE *fp;

Reads the next word, or integer, from the file associated with
fp. The word is returned if a successful read is done, but may
also return EOE' upon reading end-of-file or "ER·Rv,if an error
occurred during the read. PJL'LG

hex ()

long hex(s) l* Return long from hexs */
char *s;

Convert the hex string pointed to by "*s" into a long data type.

isalpha ()

int isalpha(c) /* Is c alphabeticcharacter */
char c;

If the character "c" is an alphabetic character, TRUE (i.e., l)
is returned; otherwise FALSE (i.e., O) is returned.

isdigit()

int isdigit(i) /* Is i a digit */
int i ;

If the character "i" is a digit, TRUE (I) is returned; otherwise
FALSE (O) is returned.

18

islower()

int islower(c) l* Is c lower case letter */
char c;

If the character "c" is a lower-case alphabetic character, TRUE

(l) is returned; otherwise FALSE (O) is returned.

isspace ()

int isspace(c) l* Is c white space */
char c;

If the character "c" is a tab ('\t'), a space (' '), a newline
('\n') or a carriage return ('\r'), TRUE (l) i s returned;
otherwise FALSE (O) is returned.

isupper ()

int isupper (C) /* Is c in upper case */
char c;

If the charactez "c" is an upper-case letter, TRUE (l) i s

returned: otherwise FALSE (O) is returned.

octa1()

long octal(s) /* Return long of octal str */
char *s;

Returns long of the octal string pointed to by "*s",

19

printf ()
;"',

i::" ;'; iii i" '!".?:'í.:fl'!i. t'": t!. ;?

Tj'j É'"q |'"ll": ;""r'-:'t'f"" t"' i'"' " """"Éf'l'!"·'·"l'"f'l"'"" ' :'" "' i" /"i i " i";j] " "! 'i ií'l 'i 'i' U t"'; j"í ' ' "' 'i' " t" l-

,, , t ' ,!, S . . i , ,.. 't t ::::1' :::.:: ·:.
1" l'": '.:.' l5'..!!s,i'.".,'! i é l"' ,::.i'?.·.í'..l!?l'..'!f!...

.$. ,.. ... , .,. t.; :i. !"' .f. '.-.·.''..: 'i. !' : '.. i ! '.-..' ',.."'..! l ! ".'.. l ' {..f .:, t..; $?... . ,., ,,.
t. t..' !

·- A minas ii:ign bel ore the conversion control character
j.r!dicaceb t:hat the output is to be left-justifieCL

print£("%--d", x) ;

'Ñiii j-et"t-j: mLit'y the ccmtents of variable "x".

nn A digit :"íU"it'.g consisting of "nn" diqíts following the
ccmverz' Ñu) cxaractez' and preceeding the control
ch: 'i '" a "' k ' ¿f't i ifií"s the minimum field width to be used
For E'j iiu:i [!{: íg if padding is required (i.e. ,

numt: -er is
i:maUeu: t-§";{3.ütrle width) blanks areusedunlessthe
"it '_i: f'íÑ-'it iS a zero which causes paddina with zeros..y J

printf("%i2d", x);

p:" .Z ."! t: ' úf; c..n-,zábie "x" in a f ield of 12 positions. Ití'7.3 y z j :-,> lu-± úsí'id with a decimal point:

printf ("%6.2f", x);
whiic.i': '.u'iítt"s .in a field width of 6 places and reservesL-
2"¡//g :-;,,g.;;j$ after the decin'.al point.t

';jjg; :-jt-- ':i ',-üdth spL"cifi€r may also be used with s-:tring
·: i U?t .-' -.

printf('k25,'"", str);
wf.ic:t' rg i::ts the f ix-st 25 characters of the strinq
\T?1F.iaLjZt: "si"r" (right.-jus'tified).

i ¿jt:at.t,,3 :,n:.-tí íúi. daía ít: em is a long rather than an int.
(Thini l -' Ue letter 'i!", not a oneÁ

tjíii,'""t f"jj.'j", X);
-

The ':(jR'lgrLí"i c"i". zractet'z" ava"'i able are:

d í'i- ctr a i't"t.: í,- is ¢jri!';te'd in decimal notati-on.

21)

o The data item is printed in octal notation (unsigned) .

x The data item is printed in hexadecimal notation (un-
signed) ·" q¿ L t"l'£: !' '"

u The data item is printed in unsigned decimal notation.

c The data item is printed as a single character.

s Thedata item is a string. The itemmustbenull term-
inated or have a width specification equal to or less
than the length of the string.

e The data item is a float or double and is printed in
scientific notation. Default precision is 6 digits,
but may be modified with an "nn" specifier.

f The áata item is a float or double and is printed in
decimal notation with a default precision of 6 digits.
The precision may be changed with an "nn" specifier*

g Select the shorter of options e or f (i.eg, use the
one with the shortest width) .

The conversion characters way be in upper or lower case letters
(they are converted to lower case during the parse of the control
string) .

putc()

int putc(c, p) /* Output a character */
cha r c ;

struct iobbuf *p;

Outputs the character "c" to the stream pointed to by "p" and
returns the character "C"b

putchar ()

int putchar(c) /* Send character to stdout */
cliar c;

Outputs the character "c" to stdout which is normally the con-
sole. (Thia function calls putc() with "c" and stdout as itsarguments.)

21

putw ()

int putw(u, fp) /* Output a word */
unsigned u;
FILE *f p;

Outputs the unsigned integer word "u" to the stream pointed to by
"fp". This function is accomplished by calls to putc() with the
lower byte sent first followed by the high byte. "Word" is taken
to be two bytes in length.

strcat ()

int strcat(s, t) l* Concatenate strings */
char *s, *t;

The string pointed to by "t" is concatenated (i.e., added) onto
the end of the string pointed to by "s". It is the programmer's
responsibility to ensure that the character array pointed to by
"s" is large enough to hold both "s" and the appended string at
"t" (including the NULL terminator '\0').

strcmp()

int strcnip(s, t) /* Compare strings */
char *s, *t;

Compares the two sttings "s" and "t" character-by-character. If
the two strings match, a value of zero is returned. Otherwise,
the function returns the result of the subtraction of the charac-
ter in "t" from the character in "s". For example, if the match

fails on the fifth character and SI41 = 'A' and t14j = 'B', -l is
returned (i.e., 'A' in ASCII = 65, 'B' in ASCII = 66; therefore,
-I = 65 - 66). If follows that a negative value is returneá ifthe liSCII value in "t" is greater than the ASCII value in "s".
Positive values are returned when the ASCII value in "t" is less
than the ASCII value in 'c'"*

22

y::+rn""q '"%"2·{ "P
%!..S:6,t..*m€ñd-b " ':;.,3

i nt sttcµy {:¿ies"í:F t? .i:' c)) ,/"' "k" i": á°:"}i;:"::,"' a st. .i::' j. ng
*'1'

.'r¿ °c ria r *cÍes2".
s

'á :·", '{' (.: ;

' ' \L:c}µiE:s U: í2 i? :' 7" } i? '.Z :"";:'i..í")l:':z:"[! ¿' 't"; ;"; j? YCiÍ c " i.' i .,
c':

,, g
t: b e ZÜüt cu i;: "i' e .E ng }

i nto t. :.Z ei: j;:, t',í;: :·:,, ';j j u 'L!. "i:-' c) i n te c.í t. C) .'"y '"d::st"' t: i ,..
'C?

,» .,.·
t':, '}.'?.é d e S t i rí a t. ;í (;:¡"j

my ·' C 3 4 <st r i. ñ".j: j)
E.

'i. t "":. s.. i;. !', e l? ::. '".:' '? i':' ¿';.'f"{';iMít t
$ s r t?: !3 y::' i). s i t: ' E))iwi.. t y t'. c) 1'::'·;:';. s ',} r e' 'ii. ti · i. ::. 't:. !"1·i¿1!.

..^ . · ·r ^b :C CC:S t i na 'i:: i. t;;: .i,': :i ..':. :..j' :.'. E j". .j.. i: : i ti': I:"i t. ,.; '".; i. ¿jj i.: '":i g';' t u tí ¿;;.j.1.Cf ¿': ':-,.:C" j;: y C;:i.: i: i " e ii.:. i"jj u ,::' í.j e
0'Y.'" .W ,, m-,» A :" · ·· % . ' ·> Er S b' · t 4 ··n '. "·string {. .2.ñc .i. u í"! .:. ;""·'':; li:, ;., ¡-'};'· ";'"2¿.!j.. .:'.. 'i; e t' in. 3. .na. t:.':o :i:.' ' '"i tj " i

.,

·' *E ;¿rI".s t. .g"."jL f: .' :"¿ S ,é

i riG st: f':i€:rí {'j.': :)' .:' 'i' 'i--'..,!.'. :'C! s t;. :' :!. n -:i:z .?.-t:?jí'"I.tí} t- h '·"' .s"'

char '"p ;

'" ' " 6 e ·, · ,%V, p ir , ,
"' ' ' " '

L
" ' qC "" >..) ">'§"p "y' t"·" 'Z 'rm' .'"" '" ··"'··"' " ' '" · ·'"" '"' " " ' " '"" "" "'· """ '·" S' y" i n " "' ","'"· ': '·' ":"" :'""-·"'7 :" d'":. }""':"":g" ' T'"?'" t Y"" ."' '";.í7" '. (P"'í\ :":

" " ' ¶P ,' ' f : S : ":ue. ' ' . -4.. qu · d ,0, J,I'.: %b ".r . ¶ r . .%p 4 j . . ' " ' ' mC? · ' ^¢ <. ..d cu..,.al i +,. .,.,, ,̂. ti,., ". 5·a. .. · ,. . , . , . 'M.jn, .. .,' 5Ag l 4DL.,$0" · \..<m ~. " ·-v': ' " >. .. .^P ny4p "0 t e^ ·A"· e .r" a' " ' t . ' - ' ¿ "" ' '. j4 '4P e··a rí 1 :a "t';.€' u ':'jj';;j; ii. Ia ;';j;
. ..' "' ". '."'." i! ',.,

:í: .:: J'.;.C' ':;. .I.'"}E' á'u,::. ¿'j"j;..'."'¿"j :j i): ::'. :.:.' "","i: "¿i:I':.? i: :¿¿;a ':;.í" ;.'"""'Ei :!'. C:"'?.'g.:' ,'. :t".ii!.t...:'""
.m" 0 yifS ,/, j "' ' ""' . : ó s " "'1 y:l ";"'·0} ··µ ·q: "' 0 "'% T * 'u"'' "b""' ' b .' *.r·.."S ' "°4T"" i'" 41. '"· Y",. ·· "J"'· . " -. : . · .'. ·W·" ' ' : I {' , , ·%.·, ·2 " ..- -M T.-· . .d-r:·Y.· · ·. A.K U—J' . " ' '··' , ·:' : ' ; . r { ; ; · · K, ' Z J" ¿'"p.' , ^ C y . . . · 4 } - · · q ? '·'"' t"? .'"· ? ,i .

q : """"·.k.Ág"-! ,L,! 1~ E,1,C.' : , ,: : .;.: !.,, .,
""^ :, ? +,.? ,C'% .i.. ;,.! t;';, ! E.":C?:.,. -'. '....":::: i-..¿' ' -L Ná':.7. 2,,t,,,J;L+ -..ú;¿ '. ":a5·'L... . d.-. · ·7'.WP.\. ·. ·· · .b,. . + · ·".."r

"nq 0 "",' : " ' , ' '"· 'r 4 ·r" " »»"'U7 S,
"¿

. t7 "7''<"""' " " "". " ' " " ' " ' " '" 0" · · ."" ""· "· ·"' " t ··""'."¿' ""· i ·' y' . ··" .· \" 4·"·.·""' ' t 0: ' ' . · ' ÓWe.,. ' % 0 . · s " e.C .zLaÁir .i ,.- ·.,.q. ,S,,-:" .. ' .. : :. ,"..! i . .: · . i. .'.. ,V i.,. .. sc+· ,....,¿4t. '...·..". ,. ,'..4{.. ',.' ":" ·- .-'.'·-'.u C7·' 0G

2" (j} 2 ¿'"¿7¿"t" " ij; }
J P

% 1 C , , 0."¿ fq ";" '!" O
,

("Ra ·="r ? "": :. ,,"* í"'fcu'"" '.:' A..\p" j;""' ·':" i ", i ¿'"","e,q."'"L3 T' á"' ::G'":: i::. 'it' ,,/S
Akb¿i'...> L. o,¥te '\...Ah i í.,· , ·.. , q , , ·' ::.. .,,, ".0. L- ·.,:' ..:. '4,"i :' "~^.4 'Hq'4.l ¿~.¢4,j ,'
C ! íá r C: ;

I) €3 'i"" U I'. Y" "'"j :· ' F" ' ' '" " '< ' · ' J· " 0 ·, .:, - .·-u"': .^ t y "» .-·, .t:: 4¿.., #? ; í. :'" ...3?'Z ,. : "bY~ ' gT"·'" '' "", , ..? :. ' .' ""' ' , . '-. -'·' z"·ájs; t Y':-q : s-'"t. :" ,; .L '.. i.. i !,...2' E"' ,""' -'-6 "] t'"!. ' t ' ;' !.) f.;í U'
~.a,"t L, ~ di ."E: mo' " b. · . . T, ~r "b. "·.··..n.. ,-¢1,.m.pj a.d. U w. e_ .. -0"..16K .».. ' 4.-.:f·:

,..+5 I"q" t'
' ' · ·- · L ,., a, . . ,., . . ' 0·$0." %̂' ¶I ' "3

^ ? ,· " ' ' "'' ' "' "" · ·- · - . 4" .,,·,,?S . "' ""("i .u·· Y · X ·dl ·W<·, . .,. . . , .0^^'+. 0·"̂a r1 ^' " .r·~d"·%,Cg g- 0-·+ . 2' a l '. ' ' ' · ·. ;, ·. .: " ; Cl- : I ; :, ,) .: ': 3t t µ-s." ·r , ,·7%"'4lám.gw:j~ % %:.." 'L-~Je.:'%G. V+.<'· .' ·.· ..·. "... . ©· ·'Q,.. .>.. . :c, m' Iu,1¢:. ^. i "...".QXe'¢Y±,g7¿¿c.:É
%.yg

't:.-(j:?':.z'..E}:;::AÉi!Z: '())

i nt t :;;' u 'j: 'r:- if;.'2'. '). ':;:. ;' ,..'""g' i';; ¿"':,'"!"m."''2 "i::' "i:.'. i:.:.C:g u. ;u "f.":"éí'.'r C a S E:! "'"",."'

T-k » ~» ··"
c ': ía. r c:: :C'

°" i · ¿. . ' "g s" tOt' "v '" "" :'G . 'i.'· " "t"" 'b %b* a<G-% 'J N 'r e" %Kj ,g"'t~"' t · r' 'Y" C""; ' · " " - ".' "' " ·¢ · · " .j-- , _. '·· ;"'. a ·' p' " , , ·'""r"' l· ·' "-"'" " f ' · C.· . · "' ·%I" ' · 'q w." ' · e : C·< :'' ea . P O':C'' , ' ' 0.· ó p L · " ' ? .40 " . .'K , . " r T:t a""" :.. ..· t . ·· r \ b ' ·,¿L'" ::°" S t i · ' " ' ' ' ' · ' . . ' ' " · "' " " , , · : G"'eii :, V" :' ' U-: iuy: ;%4.¶" " · ·0 C ? ' . . , . 4. .. 4Id, ·% ¶U. 0..C .r" ··,.r'·Jyq·",·~. .:,. ·1Silk,} ": t ",. ', ·-, . . .wd·.,.., : .-.%j·: ...Kg.4j.."m..r ,^. ..m.. . ¥,} «.. "·q·" . " · .\.-C.'eD ' 0·· · W"· · c¶r'"' .» ':'; f::t F'":r : ·0." .·""-·,· ':. 0' . · ·e."· " · · · . '".0 "", "' : ': Y"p'""' " " "" :"1 .d" :", . "p' %· m 0" ' T"' ' c'%d"~L 17.4r' · ..34 ii.,eS'L,.3 " · ':·;,' . m . hb - . . ,. , . r l ' ; ";1: , b..3)" · -W V · - ·"'' 0·: ' ·'' b.-· " " ·· W"w %:,. .d ·, ·,%-4t: ·' S: ·,·1 h 3 "CdLZ,.4:G

'?3

Assembly Language Functions

The following is a list of assembly language functions that
may be used. The are part of the EC2.REL disk file. They should
be self-explanatory.

double atof(s) /* Convert ASCII to float */
char *s;

i nt bdos(val,call) /* CPM BDOS call */
int val,call;

int ,_ftoa(s,db) /* Convert double to ASCII */
char *s;
double db;

_exit () /* Close files and end program */

int open(s) /* Open f lle named str */
char *s;

int creat(s) l* Create a file namt"d str "/
char *s;

int c:lose(fd) /* Cícwe tile associated with Ed */'

int write(fd,buf,n) /* Write tc device */'
char *buf;

/* if file i/o then n must be mult: iple of 128 */

' r /* Read device */ítít read(fd,buf, .) '

char *buf;

I* same note as write */

chain(s) l* Load and ruri a program chain("fileaame") *1
ci"iar *s;

char *sbrk(u) /* Return u- bytes of storage */
unsigned u;

!': !l)j';l-' '" '. 'i" }'·"'f

t ?.· ; .%: t I ·.' t ' .,".L. t g- t

" . i. , .; r

Assembler Language Function Interface

Assembly language routines ínay be written and called by the
"C" program or other assEInbler language functions. There exist
several support routines that may be used to simplify assembler
language interface.

$RTN - will return the value pointed to by the HL

register pair to the calling f unction.
$RETVAL - will return the value contained iri the DE

register pair to the calling function. If
a long was requested then the value will
be padded.

$RETM1 - will return a -1 to the calling program.

$FE ·- calK: the function pointed to by the HL

register pair using parameters following
the call and information contained in the
called function.

$PPAR!Q - pushes the parameter addressed in DE

for the length in BC.

when a function is defined, the fiu't word in the function
following the function name is the amount of stack space required
far 'working storage Ly the function. This is expres3ed as a

^

negative value. This stack space is the equivalent to auto
variables. The code for the function immediately follows this
word. For example:

FAKE: : DEFY -8
LD IX ,

O

et c ©

LD HI, ,ANSWER

JP $RTN##

states that 8 bytes OZ working stack storage are required by the
function FAKE. The stack will always contain 8 bytes of
administrative data prior to the requested storage.

25

The stack looks like this:
+ + CLO STACK
l parameter n t

+ +
I parameter n-l i

+ +

0

0

+ +
I parameter l I

+ +
l requested working storage !

+ +
l 8 bytes of administration l

+ + CURRENT STACK

The adminstrative data on the stack consists of the
following:

STACK - Address of where to return value.
STACK+2 - Length to return.
STACK+4 - Address of calling program.
STACK+6 - Address of old stack.

' Invoking a function in Assembler Language

To invoke a function in assembler language the following
convention is used.

LD HL ,FUNCNAME
CALL $FE##

DEFW old stack offset
DEFW return value address offset
DEFB return value length

All off sets are positive. All return values must first be stored
on the stack. For example, to do an assembler language call
equivalent to the following "C" call

double atof () ;

/ * code of some kind... */
a=atof (b) ;

the equivalent assembler code is:

26

LD DE, @B ;address of B
LD BC, 8 ;length of B
CALL $PPARM## ;push itLD HL ,ATOF## ;address of ATOF
CALL $FE## ;call itDEFW 8 ;offset for return value<
DEFW 8 ;old stack offset~:.

- ----
DEFB 8 ;length to return '

Using INIT.ASM

The file INIT.ASM is used to change the number of lob's and
fcb's and to set the stack pointer. To change the number of lob's
and fcb's, change the number in the EQU statement to the desired
number. To change the stack pointer, change the code that ini-tializes the stack. After INIT.ASM has been assembled, it must be
linked in explicitly. For example:

A>l80 test, init,test/n/e<CR>

Below is a copy of INIT.ASM modified for 10 files in
addition to stdin, stdout, stderr, and stdlst. The stack has also
been altered to reside at high memory.

.
Z80

INCLUDE FCB.MAP
NFCB EQU 10 ;SET FILES TO 10

INCLUDE FCB.ASM
INCLUDE IOB.ASM
CSEG

$INIT: : POP BC
LD HL ,0 ;SET STACK TO TOP OF MEMORY

LI) SP, HL
PUSH BC
LO HL, $FCB

LD E, L
LD D, H

INC DE
LD BC, NFCB*FCBL
LD A,B
OR C

RET Z

DEC BC
LD (HL) ,0
LDIR
RET
END

27

Remember that, when INIT.ASM is assembled, the following
files must be available on the disk:

FCB. MAP
FCB.ASM

IOB.ASM

Naming Conventions

In order to prevent conflicts with the assembler registers
all variables of two characters or less have a prefix character
of @. For example:

A -> @A

BC -> @BC

Al -> @Al

In addition to the above convention, all underscores are
translated to question marks. For example:

AB -> ?AB
A B -> A?B

28

Creating Libraries

Custom libraries may be generated for use with the ECO-C

Compiler. What is presented here is an outline of the procedure
necessary to establish your own library of C functions. Complete
information is contained in your MACRO 80 documentation.

First, each function to be included in the library should be
compiled and assembled individually just as you would with any C

program. The output from the assembler (M80) will be a series of

At this point LIB80 is used to consolidate these f lies into
a library. The following sequence of commands illustrates the
creation of a library called OWN, containing two modules (.REL

files) called ONE.REL and TWO.REL respectively.

A>LIB80 <CR>

*OWN=ONE,TWO <CR>

*\E <CR>

A> l* <--- Control returned to CP/M */

Note: in creating a library, the order of the modules is
important due to a linker restriction. Any module which referen-
ces an external label in another module must be included before
the module containing the reference. F or example, if fileONE.REL references a label in file TWO.REL, the above library
generation is correct.

On the other hand, if TWO.REL contained a reference to a

label contained in f lle ONE.REL, the above library construction
would cause an error message to be generated by the linker (L80).
The linker makes only one pass through the libraries and there-
fore will cannnot find any external label referenced in a file"in front of it" in the link sequence.

When creating a library, you can request LIB80 to inform you
of any unresolved errors the linker might encounter in searching
the library. If you wish to check OWN for possible unresolved
references, the sequence is:

A>LIB80 <CR>

*OWN/U <CR>

29

LIB80 will then list all unresolved references (i.e., globals).

If you want a listing of the modules in a library with
inf ormation concerning entry points and external references, the
following command will cause that listing to be generated on the
screen.

A>LIB80 <CR>

*OWN/L <CR>

The LIB80 manual contains further information on how to use
other commands to alter or create libraries.

30

CP/El I/O Interface

Since the standard C library was written to exist in the
UNIX environment, implementing the same library in a CP/M envir-
onment presents several problems. In implementing the library
for the ECO-C Compiler the following approach was used.

To implement the file I/O as it exists in UNIX would require
double buffering of all file I/O. This approach was considered
too costly given the memory space available. Only single buffer-
ing in the user's program is used. This buffer is the one created
by fopen() and pointed to by the associated _ lob.

The system routines, such as read(), write(), open(), and
create() are contained in the user program but should be viewed
as part of the operating system. In the UNIX environment, read()
and write() may have a count specification of any size when
dealing with files. In the CP/M environment the count must be a

multiple of a CP/M sector size (i.e. 128). The fcb's are main-
tained by these "system" routines and contain information in
addition to the fcb proper. It is intended that the fcb's be
transparent to the user and theref ore cannot be referenced by the
user .

The
_ lob's maintain a UNIX format and are defined in

"stdio.h". An additional flag (BFLAG) is used to determine ifI/O is to do conversions on carriage-return, line-feed (CR LE).

If the _BFLAG is set, no translation takes place. If the "_BFLAG"
is cleared, the following translations take place.

l. All input with the exception of _fd==0 will strip all<CR>'S from the input stream; it does not matter if a <LF> fol-lows. The other choice was to look for a <LF> and then do an
ungetc() if it is not an <lf>. This would make ungetc() unreli-
able for use by the program. The ungetc() function is only in-
sured to work once, and this once was used by getc(), not the
user.

It was decided to make ungetc() available for the user
program at the expense of an extra <CR> being stripped. In a filewhere this is critical, the program may be opened in binary mode

(e.g., "rb" and "wb") which causes all <CR>'S processed by the
user's program.

2. When input is from _fd==0, a <CR> is taken as the end of
input. At this point a <LF> is echoed to the screen and '\n'
returned to the user program.

3
.

On all output, '\n' translates to <CR> <LF> and '\r'
31

remains as <CR>.

t.,, i ' ·· , ' :'? 'i-" '"'j i '; {'. '."' . T t ,: I'' t;;' ,,, t, it '

.l- t"'t l:.-i'"i ':':í' !'1 ';;;it"'l "" j.'.'!:t !""1:!:: i"' '··2 !'!IÍ 'É'.'."if3,:F '.T "i' ;"j u i;; j-:'.·" i"i ti: [I j::" i !"1d :i. t::" ii:' "l;, t:í i"" ': '::' '<; :i. iii" :' :t. iii

'l, ,·. ,,,.,-·,,,,. l. iii. l, t.? i !:ü,í tií!i.,-' é:· fj 'L t. t:ú EE!!" iiúu'.! ,1? !. :t í::·hiii· u iii·t: :· '.'.E? í'Éil :ií 'j'·i¿-;t i,í-': í·.!. }'-'s!-kí-:iTt'í ".'. í:i :"
i.ú: z'Uií.

,
T"l',t: .:.:F '.::'!'".-· i'·l í':.üi·'" :t !'l{: i.:.¶:::ii!· j.!..f ','· !Y,t.!!ii I:. 1.·y?? tj-,-·.i '.-' tii4-1 ec.¿;: ->j|. i. í-;·;j. !'. i!, ;,.: !.:'FEit !'-'[::? j·-·f¿,:

t."' ;;. i 'i: : 'i. l'i: i'.? ¿jj: I'"! í:í l"':""']' "' 'i. !"1 ::3 'l"t: i li': s;;ja 'i:·:' I'"":1. i!. 'i-2 :

32

a.

Error Messages

Any error in the source program is detected by the Syntactic
Parser pass. To illustrate how this works, suppose you tried to
compile the following "do-nothing" program:

main()
{

char wrong l* need semicolon at end of line */
}

Assume further that we have named this program ERROR.C. The error
message generated will look like:

Error in File: ERROR.C Line: 4 Char: l Error: 1002 Token: }

Expected type specif ier, typedef name, [(; v
) = or : instead of }.

If you look at the program, we forgot to add the semicolon after
the character variable named "wrong". The compiler f ound the
character "}" when it expected to find something else. (A list of
possibilities is given as part of the error message.)

Since predictive parsing is used, we must look "backwards"
from the point where the error was detected to find the error.
Since the error was the first character in line 4, the error must
have been caused by something near the end of line 3. Inspection
of line 3 shows that we forgot the semicolon in the declaration
of "wrong".

Many of the messages will tell you what should have been
found in the program where the error occurred. You will also note
that some of the error messages have more than one number assoc-
iated with them. This is so we can tell exactly where the mes-
sages was generated within the error handler.

You might want to write a few programs with known errors in
them to "get a feel" as to how they are handled by the error
handler. All errors are treated as fatal so there will be no
cascading of false error messages. We think you will find that
the error handler pinpoints the source of the error.

33

Error code Meaning
Number (s)

l Internal Error - an attempt was made to create a temporary
variable of an illegal type. Check source code for legality
of statement.

2

A type specifier, storage class specifier or function declar-
ation was expected instead of .

3

A comma or semicolon was expected instead of .

4 1009 1015

An identifier, (or * was expected instead of .

5
A semicolon was expected instead of .

6
A closing parenthesis was expected insteaá of .

7
An opening parenthesis was expected instead of .

8

A closing brace was expected instead of .

9
A closing bracket was expected instead of .

10
A parameter list was expected instead of .

li lOll 1012

An opening brace was expected instead of .

12
A parameter declaration list or opening brace was

expected instead of .

34

13

The parameter declaration list is in error.

14

An array size was expected but found .

15

A structure or union tag or opening brace was

expected but found .

16

a type specifier was expected but found .

17
A statement or declaration was expected but f ound .

18
A type specifier or storage class specifier was expected

but f ound .

19

A storage class specifier was expected but found .

20
An attempt was made to "goto" an illegal label name.

21

An attempt was made to perf orm an illegal "break" or "continue"

22

The "while" is missing from a "cía While" statement .

23
A multiply defined "default" was found in the "switch".

24

Multiply defined label.

25

An identifier, opening parenthesis or constant was
expected in the expression instead of .

35

26

Variable is undefined.

27

Illegal indirection or array reference.

28

Expected a comma or closing parenthesis instead of .

29

Internal Error - illegal multiplier.

30

Illegal bitwise operand.

31

Illegal pointer arithmetic.

32

Illegal floating point operation.

33

Illegal negation.

34

Illegal logical not operation.

35

Internal Error - illegal constant.

36

Symbol multiply defined.

37

Pointer is not to a structure or union in p->x or type

initial f ield is not a structure or union in i.x.

38

A subfield of the name referenced does not exist in the
structure or union in i.s or p->s.

36

39

Input file not found.

40
A colon was expected in ternary "?_: " but was not found.

41

The results of the two expressions in ternary "?_ :" were
not of a legal combination.

42
A non-zero integer constant was mixed with a pointer in the

ternam,' "? :" expression.—

43

Out of memory.

44

Illegal address of (&id) .

45

WARNING - An extra opening brace was found and ignored.

46

Illegal use of struct or union as source operand.

47

Attempted assignment to a constant.

48

Illegal assignment to structure, union, function name or
array name.

49

Attempt to "type" a parameter which is undefined in the
f unction declaration.

51

A structure, union or function data type was specified
illegally.

52
A referenced structure or union tag has not been defined.

37

53

An external data def inition and the current data def inition
do not match.

:"'
-. ..,,,,. 'C::.' ['"i P.,., ,. ": ..;i i"";

.... ..m., '- : ,:,.J ,i-.,,

54

60

Initializt: 'rs nüt currently supported.

1000
Expected type specifier, [{ ;) = or : instead oí _,_ _.

l00l
A declarator ciel i.initer (e.g, = , or ;) , parameter declaration
for a functio3? or { was expected instead of _ .

1002
Expected ¿;j"pc :5¿5¿-":¿:if ier, typedef name, [(

; ,
)

= or : Ü':átÉ'ácl of _.--__j

1003
Expected tyµe specifier, typedef name, [{ ; t
)

= or : u': íAead of __ __.,^

.1Ú06

Expected icsent: iííiet , * (or : in structure or
union dectarati-cm instead of .

1007
Expected : ; o r , instead of .

l0l0
Expected = ; o l"

, instead of
_-. in declaration list.

1016
("onlpiler úüesn' : - handle function name as pointer yet.

F O! now :
!.'c,t" iriú z.'a: :,iz.blt: as pointer to function
tzen equate it to address of function name.
i * e * a=8metc;

-

38

Quick Function Reference

cha r *al1.oc(u) char *gets(buff)
unsigned l' : char *buff ;

double atcf (S) unsigned getw(fp)
char *s ; FILE *f p;

i nt atol :m long hex(s)
char "" s : char *s ;

! orig atollO) int isalpha(c)
char *s ; char c ;

i nt _bdos("d'aÉ,c: aji) int isdigit(c)
i nt val,cail; char c;

cha r *U:s,j }.C.'fí fcm.tnt ,size) int islower(c)
uns ignec3. CC2Li!.Lt,: 3'.i.Zm·: char c ;

.: !tT-¿j¿í(s.l int isspace(c)
chaL " ó ; char c;

i nt cl ose' (f"ji' int isupper(c)
i ni: . { cE; char c;

i.nt creat..ís. long octal(s)
chat 'k'- € char * s ;M.>s

'i or' "7 'Feci"l'a': :;':) int open (S)
-c '7á"í r * <7 · char * s ;m-' S

i nt. exit(íj int printf (control,arg,..
int l ; char *control,*arg;

_.exi.t (i int putc(c,fp)
char c ;

int free (s' FILE *f p;
cha z " s :

int putchar (c)
int- :Í':7a{E;t.-¿:·..,-I'L(Ac,.type) char c;
cha i.' * (Ft ;'

double at- 'j; int putw(u,fp)
int µzec, Fy;-"" :· unsigned u;

FILE *f p;
" ' 1

i u t"

l i- /"p¿ ' ." " ' : ' ' l
(-:!}a r * s ; int read(fd,buf,n)
í'7 'i!?-;i . íjµ"jj :' int fd,n;

cha r *buf ;
e pm+- t ' "

· i ':" ?· i
.L a t '.. ~ · ^ · \. c -

p) I
ii i.: ..ii", ' i" p: cha r *sbrk(u)

unsigned u ;
i I-ZL L"É "!.LG}}' t"f '

F ! jjj"; "' i: [)·; int sttcat(d,s)
char *d,*s;

39

char *fgets(s,i,fp)
cha r * s ; int strcmp(d,s)
int i ; char *d,*s;
file *£p;

int strcpy(d,s)
int _f illbuff (fp) char *d,*s;
FILE *f p;

int strlen(s)
FILE *f open (name ,mode) char *s ;
cha r *name, *mode;

int tolower(c)
int fputs(s,fp) char c;
char * s ;
FILE *f p; int toupper(c)

char c;
int getc(fp)
FILE *f p; int write(fd,buf,n)

int fd,n;
int getchar () char *buf ;

. L t
t

Operator Precedence
(Highest to lowest)

l -> . () []
2 ++ —- -

! " (cast) * & sizeof
3 * / %

4 + -5 << >>
6 < < > >

7 == ! =
8 &

9 ^

10 i

li &&
12 i I

13 ?:
14 = += -= *= / = % = < <= > >= & = "= ! =
15

,

40

Software Prob1eN Report

If you encounter any errors that you believe to be in the
ECO-C compiler, please report them as soon as possible.
ECO-C License Number:
Please describe your:

Operating System:

Computer (including amount of memory, disk drives, etc.) :

Please describe the problem as clearly as possible. If you
can supply us with a copy on disk (8" SD if possible) of the
program that produced the error, it will help us to correct it.Detailing the sequence of events leading up to the problem may
also prove useful. If you are using some method of "getting
around the problem", please describe it. We will try to correct
any problems as quickly as possible.

41

