
R E L O C A T I N G M A C R O A S S E M B L E R

A N D L I N K E R

for

Z 8 O A N D H D 6 4 1 8 O

by

Patrick O'Connell

Zas, Zlink, Z1ib, Zcon, Zref are Copyright 1984/85 by Mitek. No

part of this document may be reproduced in any way or by any
means without prior written permission of the publisher. Mdress
requests to Echelon, Inc., 101 First Street, Los Altos, CA

94022. Rev. 6/25/85

Copyright 1984/85 Mitek
All Rights Reserved

WARNING

THIS SOFTWARE AND MANUAL ARE BOTH PROTECTED BY U.S. COPYRIGHT LAW

(TITLE 17 UNITED STATES CODE). UNAUTHORIZED REPRODUCTION AND/OR

SALES MAY RESULT IN IMPRISONMENTOF UPTOONEYEARAND FINES OF

UP TO $10,000 (17 USC 506). COPYRIGHT INFRINGERS MAY ALSO BE

SUBJECT TO CIVIL LIABILITY.

LIMITED WARRANTY

THIS PROGRAM AND INSTRUCTION MANUAL ARE SOLD "AS IS," WITHOUT

WARRANTY AS TO THEIR PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR

ANY PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE RESULTS AND

PERFORMANCE OF THIS PROGRAM IS ASSUMED BY YOU.

HOWEVER, TO THE ORIGINAL PURCHASER ONLY, ECHELON WARRANTS THE
MAGNETC DISKETTE ON WHICH THE PROGRAM IS RECORDED TO BE FREE FROM
DEFECTS IN MATERIALS AND FAULTY WORKMANSHIP UNDER NORMAL USE FOR

A PERIOD OF THIRTY DAYS FROM THE DATE OF SHIPMENT. IF DURING

THIS THIRTY-DAY PERIOD THE DISKETTE SHOULD BECOME DEFECTIVE, IT
MAY BE RETURNED TO ECHELON FOR A REPLACEMENT WITHOUT CHARGE.

YOUR SOLE AND EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS
EXPRESSLY LIMITED TO REPLACEMENT OF THE DISKETTE AS PROVIDED
ABOVE. IF FAILURE OF A DISKETTE HAS RESULTED FROM ACCIDENT OR
ABUSE ECHELON SHALL HAVE NO RESPONSIBILITY TO REPLACE THE
DISKETTE U7'DER THE TERMS OF THIS LIMITED WARRANTY.

ANY IMPLIED WARRANTIES RELATING TO THE DISKETTE, INCLUDINGANY
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE, ARE LIMITED TO A PERIOD OF THIRTY DAYS FROM DATE OF
SHIPMENT. ECHELOP' SHALL NOT BE LIABLE FOR INDIRECT, SPECIAL, OR

CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OF THIS PRODUCT.
SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDEN-
TIAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATIONS MIGHT NOT
APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND
YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

Trademarks: Zas, Zlink, Zlib, Zcon, Zref, Mitek; ZDM, RD

Software; DSD, soft Solutions; Z-System, Echelon, Inc.; Z80,
Zilog, Inc.; HD64180, Hitachi; CP/M, DDT, SID, ZSID, Digital
Research, Inc.

TABLE OF CONTENTS

Chapter 1 INTRODUCFION...................... I
1.1 Overview 1

1.2 Distribution Files 1

1.3 Installation 1

1.4 Software Updates 2

Chapter 2 ZAS INVCCATION................... 3

2.1 ZAS Operation 3

2.2 ZAS Options 3

2.3 Assembly Statistics 4

Chapter 3 PROGRAM FORMAT................... 5

3.1 Label Field 5

3.2 Operation Field 5

3.3 Operand Field 5

3.4 Comment Field 6

Chapter 4 EXPRESSIONS...................... 7

4.1 Numeric Constants 7

4.2 String Constants 7

4.3 Character Constants 7

4.4 Labels 8

4.4.1 Label Characteristics 8

4.4.2 Relocation Bases 8

4.5 Relocation Counter Reference 9

4.6 Registers 9

4.7 Operators 10

4.8 Precedence of Operators 11

4.9 Parentheses Versus Brackets 12

4.10 Expression Restrictions 12

Chapter 5 PSEUIX)-OPS....................... 13

5.1 General Pseudo-ops 13

5.2 Listing Control Pseudo-ops 16

5.3 Conditional Assembly Pseudo-ops 16

5.3.1 IF Pseudo-ops Evaluatiorí 16

5.3.2 Conditional Assembly Forms 17

5.4 Linkage Pseudo-ops 19

5.5 Relocation Base Pseudo-ops 20

5.6 Macro Pseudo-ops d?
~4

5.7 Special Function Pseudo-ops 22

Chapter 6 MACRO FACILITY................... 23

6.1 Repeat Macros 23

6.2 Stored Macros 25

6.3 Exiting Macros 25

6.4 Local Symbols 25

6.5 Macro Invocation 26

6.6 Parameter Evaluation 26

TABLE OF CONTENTS (continued)

Chapter 7 ZAS ERROR MESSAGES............... 29

7.1 Non-Fatal Errors 29

7.2 Fatal Errors 30

7.2.1 General Fatal Error Messages 30

7.2.2 Macro Fata! Error Messages 30

CHAPTER 8 CROSS-REFERENCE GENERATION....... 31

8.1 Overview 31

8.2 ZREF Operation 3i
8.3 Reserved Symbols 31

CHAPTER 9 CODE CONVERTER................... 33

9.1 Code Converter Operation 33

9.2 Convertible TDL Pseudo-ops 33

9.3 Error Messages 34

CHAPTER 10 LINKER........................... 35

10.1 Overview 35

10.2 ZLINK Operation 35

10.3 ZLINK Options 35

10.4 Define Next Free Memory Location 36

10.5 ZLINK Error Messages 37

CHAPTER 11 LIBRARY MANAGER.................. 39

11.1 Overview 39

11.2 ZLIB Operation 39

11.3 ZLIB Options 39

11.4 ZLIB Messages 39

11.5 ZLIB Error Messages 40

Appendix A: Z80 Mnemonic Machine Instruction Codes

Appendix B: Software Update Form

Appendix C: Pseudo-op Summary

Appendix D: Hitachi HD64180 Mode

CHAPTER 1

INTRODUCTION

1—I OVERVIEW

ZAS (Z80 and HD64180 Relocating Macro Assembler) reads assembly
language statements from a disk file and produces either an Intel
compatible HEX file or a Microsoft compatible REL file. These
files can then be loaded using Echelon supplied MLOAD, or CP/f'1

LOAD, command or any Microsoft object compatible linker. A

symbol table file (SYM) is optionally produced that can be used
with Echelon DSD or Digital Research SID and ZSID debuggers.

The minimum Z or CP/M system configuration in which to use zas is
48k-bytes of RAM with one disk drive.

As soon as you receive ZAS, make backup copies! Then go through
the installation process using a copy.

1.2 DISTRIBUTION FILES

You will find the following files on your distribution disk:

File Function

ZAS.COM Assembler

ZLINK.COM Linker
ZLIB.COM Library Manager

ZCON.COf1 8080 to Z80 Code Converter

ZREF.COM Cross-reference Generator

TEST.Z80 Test Assembly File
INSTZAS.COM Installation Program

1.3 INSTALLATION

The installation program was designed to set assembler output op-
tions. Type in INSTZAS to invoke the installation program. The

options described on the next page will appear on the screen.

Page 1

CHAPTER I: INTRODUCTION

INSTMS<cr>

ZAS installation options:

l. Listing to terminal - off
2. Listing to disk file - off

3. Listing to printer - off
4. Generate object file - on

5. Generate symbol file - off
6. object file type - rel
7. IF trueness based on - least significant bit
99. Changes complete

Enter option number to change:

The preset values for different options is indicated to right of
option. To change (toggle) an option value (i.e., onto off, rel
to hex, or least significant bit to all sixteen bits), simply
enter option number (l to 7) followed by carriage return <CR>.
When desired option changes have been made, type in 99 to end
installation program and have ZAS.COM automatically updated.

1.4 UPDATES

You can assist in refining ZAS by recommending enhancements and
reporting any software problems on a copy of the Software Update
Form, a sample of which is in Appendix B. Software updates will
be provided at regular intervals for a nominal fee. You will be

notified by Echelon when software updates are available.

Page 2

cmvrm 2

ZAS INVOCATION

2.1 ZAS OPERATION

ZAS is invoked by typing:

ZAS filename.filetype

where filename is the name of the source fije to be assembled.

If no filetype is specified, then Z80 is assumed. Typing ^C will
cancel ZAS operation.

2.2 ZAS OFTIONS

A variety of options are available to provide control over the
execution pararneters of ZAS. They are used once at the end of a
command line and spaces are not allowed between options:

ZAS filename {$}options

There are two types of options: non-disk reference options arid

disk reference options. Using the non-disk reference options
reverses the settings supplied by the Install Program and in-
cludes the C, H, and L options.

C: CRT Option. Setting the C option will page the output of
ZAS, at 23 lines per page. Pressing any key allows you to
continue to scroll through the output page by page. However, itshould be noted that a ^C will abort the assembly.

H: Hex Option. When this option is set it will generate Intel
compatible hex files instead of Microsoft compatible REL files.
Note: When using HEX files, you must have an ORG statement of
1OOH or higher to prevent an inverted address error from MLOAD or
LOAD.COM.

L: Listing tcj Printer Option. Setting the L option sends a

formatted assembly listing to Z or CP,"61 LST: device.

The disk reference options require two characters. The firstcharacter is the P, O, or S option characters. The second charac-
ter indicates the output disk drive for the specified option.
The second character must be A-P or Z, where Z (for zero or null)
suppresses the output altogether.

o: object File Generation (filename.REL or filename.HEX). The O

option specifies the disk for object file output. Depending on
the H option, the object file will be a Microsoft compatible REL

file or an Intel compatible HEX file.
P: Listing to a PRN File (filenarne.PRN). The P option will send
a formatted assembly listing to the specified disk.

S: Symbol File Generation (filename.SYMÁ The S option speci-
fies output disk for Echelon or DRI compatible SYM file.

Page 3

CHAPTER 2: ZAS INVOCATION

2.3 ASSEMBLY STATISTICS

At the completion of an assembly, ZAS provides several statistics
on the program assembled. The output is as follows:

Assembly statistics:

nnnn lines
nnnn labels
nnnn macros read
nnnn macro expansions
nnnn errors
nnnn free bytes

where nnnn is a decimal number.

Page 4

cFlAprER 3

PRCX;RAMFORMAT

Acceptable program input consists of a sequence of statements in
the form:

label operation operand comment

where each field is separated by one or more spaces and/or tabs.

All fields are optional and may begin in any column except for
the label field which must begin in column one. The statement is
terminated by a carriage return and a line feed is allowed but
not necessary. You rnay also insert blank lines into the program.

The statement may be either upper or lower-case except for macro
parameters. For macro parameters, the actual and formal parameters
must be in the saíne case for substitution to take place.

3.1 IABEL FIELD

Labels take the form:

label or label:

and are optional except for the SET, EQU, and MACRO assembler
directives. The label consist-s of alphanumeric characters, a ?,

an @,

or a $ and the first character must not be numeric. If the
label exceeds 15 characters then the label is truncated to the
right. Labels can be either upper-case or lower-case. The ":"following a label is optional. Examples of labels include the
following:

a123 ?a123 @a123

aLL: ?ALL: update_file
Áll? INDEX UPDATE$EILE

3.2 OPERATION FIELD

The operation field contains one of the following three: a mne-
monic machine instruction code, a pseudo operation code which
directs the assembly process, or a macro. The Z80 mnemonic
machine instruction codes are listed in Appendix A and Hitachi
HD64180 instruction codes are listed in Appendix D. The
assembler pseudo-op codes are discussed in Chapter 5, with a

summary of the pseudo-ops listed Appendix C. And the macro
instructions are discussed in Chapter 6.

3.3 OPERAND FIELD

The operand field may contain numeric constants, character con-
stants, ASCII strings, relocation counter references, labels,
register references, operators, or expressions containing any
combination of the previously mentioned items. Expresstons are
further described in Chapter 4.

Page 5 '

CHAPTER 3: PR(JGRPM FORMAT

3.4 COFHENT FIEID

A comment field is always preceded by a semicolon (;). Comments
are ignored by the assembler but are useful for programmer docu-
mentation, and later, debugging.

Page 6

CHAETER 4

EXPRESSIONS

Before the pseudo operations and macros can be described, it is
necessary to discuss expressions because of their complexity.
Expressions consist of simple operands combined into properly
formed sub-expressions by operators. Blanks and tabs are ignored
between operators and operands of the expression. Each expres-
sion produces a 16-bit value during the assembly. If only 8 bits
are needed, the least significant half of the 16-bit value is
used.

4.1 NUMERIC CONSTANTS

A numeric constant is a 16-bit value in one of several number
bases. The base, called the radix of the constant, is denoted by
a trailing radix indicator. Any numeric constant which does not
terminate with a radix indicator uses the default radix which has
been initially set to decimal. The radix indicators are:

B binary constant base 2

O octal constant base 8
Q octal constant base 8
D decimal constant base 10
H hexadecimal constant base 16

A constant is a sequence of digits, followed by an optional radix
indicator, where the digits are appropriate for the radix, i.e.,
binary constants must be composed of O and I digits etc. For
hexadecimal constants, the leading digit must be a decimal digit
in order to avoid confusing the hexadecimal constant with an
identifier (a leading O will work). A numeric constant must
produce a binary number which can be contained within a 16-bit
value.

4.2 ASCII STRINGS

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters within apostrophe symbols
('). All strings must be fully contained within the current
physical line. The apostrophe character itself can be included
within a string by representing it as a double apostrophe ("),
which becomes a single apostrophe when read by the assembler.

4.3 CHARACTER CONSTANTS

Like strings, character constants are composed of O, 1, or 2

ASCII characters, delimited by an apostrophe (') or quotation (")
symbol. One difference between strings and character constants
is strings are used only with db, dc, DEFB, and all macro pseudo-

Page 7

CHAPTER 4: EXPRESSIONS

ops. In all other cases, a character constant is assumed.
Another difference is that the value of a character constant is
calculated and the result is stored with the low byte in the
first address and the high byte in the second address. For
example, in the character constant:

DW 'AB'

the value of A is stored in the second memory location and B is
stored in the first memory location. In the string:

DB 'AB'

the value of A is stored in the first memory location and B is
stored in the second memory location.

4.4 T?F'[FT"é

A label is given a valuedeterminedby the type of statement itprecedes. If the label precedes a macro definition, the label is
given a text value, which is the body of the macro definition.
If the label precedes an EQU or SET pseudo operation, then the
label is given the value of the operand field. If a label
precedes any other type of statement, it is given the value of
the current relocation counter.

The value of a label is not allowed to change unless the label
precedes a SET pseudo-op. In which case, there is no limit to
the number of times the label's value may change.

4.4.1 LABEL CHARACTERISTICS

Labels fall into one of three categories: public, external, or
local. Public labels are labels defined in the current program
module and can be referenced in other program modules External
labels are labels which have been defined as public in some other
program module and are being referenced in the module declaring
them external. If a label has not been declared external or
public then it is local and cannot be referenced by any other
program module.

4.4.2 REUJCATION BASES

The symbolic names for independently located memory areas are
called relocationbases. These relocationbases may represent
ROM, shared COMMON areas, special memory areas such as video
refresh, memory mapped I/O, etc. Within each sub-program, each of
these memory areas is referenced by a unique name. The actual
allocation and mapping of the name to physical addresses is
deferred to the link edit and load process. All label references
within the assembled program are relative to one of these reloca-
tion bases. The four relocation bases and their typical uses are
summarized as follows:

Page 8

CHAPTER 4: EXPRESSIONS

Absolute: Absolute assembles non-relocatable code. A programmer
selects Absolute mode when a block of program code is to be
loaded each time into specific addresses, regardless of what else
is located at the same time.

Data Relative: Data Relative assembles code for a section of a

program that may change and therefore must be loaded into RAM.

This applies especially to program data areas. Symbols in Data
Relative are relocatable.

Code Relative: Code (program) Relative assembles code for
sections of programs that will not be changed and therefore can
be loaded into ROM/PROM. Symbols in Code Relative are
relocatable.

COMMON: COMMON assembles code that is loaded into a defined
common data area. This allows program modules to share a block
of memory and common values.

To change the relocation base, use one of the following pseudo-
ops in a statement line:

ASEG Absolute
DSEG Data Relative
CSEG Code Relative--default
CO.YLYON CO!)MON

4.5 RELOCATION COUNTER REFERENCE

The current relocation counter may be referenced as a 16-bit
value by use of the symbol $. The value represented by $ is
always the relocation counter value at the start of the current
statement. For example,

JP $

will endlessly junp to itself.

4.6 RE)GISTERS

When ZAS encounters a one or two character symbol, it will look
up the symbol in the corresponding 8 or 16-bit register table
(see the next page). If the symbol is found, then the operand is
assumed to be a register reference. Because these single and
double character symbols are reserved words, do not use them as
labels.

Page 9

CHAPTER 4: EXPRESSIONS

8-Bit Registers 16-Bit Registers
(Reserved Words) (Reserved Words)

A BC
B DE
C HL
D IX
E IY
H SP
L AF
M

I
R

4.7 OPERAIKJRS

The operands previously described can be combined in normal
algebraic expression using any combination of properly formed
operands, operators, and parenthesized expressions. All arithme-
tic operators (",-,*,/,MOD,SHL, and SHR) produce a 16-bit un-
signed arithmetic result. The relational operators (EQ, LT, LE,
GT, GE, and NE) produce a true (OFFFFH) or false (OOOOH) 16-bit
result. And the logical operators (NOT, AND, OR, and XOR) operate
bit-by-bit on their operand(s) producing a 16-bit result of 16

individual bit operations. The HIGH and LOW operators always
produce a 16-bit result with a high order byte which is zero.
The NUL operator produces a true or false result.

The operators for the operand field are given below. In general,
the letters x andy represent operands which are treated as 16-
bit unsigned quantities in the range 0-65535.

Arithmetic
Operators Result

x"y arithmetic sum of x and y
x-y arithmetic difference between x and y

x * y unsigned multiplication of x by y
x / y unsigned division of x by y
x MOD y remainder after division of x by y
x SHL y shift left by y, with zero right fillx SHR y shift right by y, with zero left fill
Relational
Operators Result

x EQ y, x=y true if x equals y, false otherwise
x LT y, x<y true if x is less than y, false otherwise
x LE y, x<=y true if x is less or equal to y, else false
x GT y, x>y true if x is greater than y, false otherwise
x GE y, x)=y true if x is greater or equal to y, else false
x NE y, x<>y true if x is not equal to y, false otherwise

Page 10

CHAPTER 4: EXPRESSIONS

Logical
Operators Result

NOT y bit-by-bit logical inverse of y

x AND y bitwise logical AND of x and y
x OR y, x!y bitwise logical OR of x and y
x XOR y logical exclusive OR of x and y

Special
Operators Result

HIGH y identical to y SHR 8 (high order byte of y)
LOW y identical to y AND OFFH (low order byte of y)
NUL line true if the remainder of the current line is null

or contains only space and/or tab characters. Be-
cause the NUL operator uses the rest of the
current source line as an operand, it must be the
last operator on a line.

4.8 PRECEDENCE OF OPERATORS

Without parentheses or brackets operators have an order of appli-
cation as if they were parenthesized or bracketed. As described
below, the operators listed first have highest precedence, and
the operators listed last have lowest precedence. Operators
listed on the same line have equal priority and are applied from
left to right in the expression

highest precedence * / MOD SHL SHR
+ —

EQ LT LE GT GE NE
NOT
AND

OR XOR
HIGH LOW

lowest precedence NUL

The expressions shown below are equivalent:
X " y * Z = X " [y * Z]

x OR y * a SHR b = x OR {y * la SHR bll
Balanced parenthesized or bracketed sub-expressions can always be

used to override the order of precedence described above. The
last expression could be rewritten to force application of opera-
tors in a different order:

lx or y] * [a shr bl

Page 11

CHAPTER 4: EXPRESSIONS

4.9 parentheses xmtsus brackets

Parentheses and brackets are not interchangeable. They serve
different purposes. Parentheses are used in expressions that
have indirect addressing modes. For example,

LD HL, (5+1)

will load the register pair HL from the contents of memory
location six (5"1) and seven.

Brackets are used for all other expressions where the addressing
mode is not indirect. Using the above example with brackets,

LD HL, 15+1)

will load the register pair HL with the immediate value six.

4.10 EXPRESSION RESTRICTIONS

The operand field of a statement may consist of a ccmplex arith-
metic expression with the following restrictions:

(I) An external may only have an absolute quantity added or
subtracted from it. The result will be external.

(2) A relocatable value may have an absolute or another relocat-
able value (in the same relocation base) added to or sub-
tracted from it. The result will relocatable.

(3) If two relocatable values are subtracted then the result will
be absolute.

(4) In all other arithmetic and logical operations, both operands
must be absolute. The result will be absolute.

An expression error will be generated if an expression does not
follow the above restrictions.

Page 12

CHAPTER 5

PSEUDO-OPS

5.1 GENERAL PSEUDO-OPS

DB: The D.efine Byte pseudo-op is used to enter one or more one-
byte data values into the program. The statement form is:

DB n {,n...}
where n is any expression with a valid B-bit value. More than one
byte can be defined at a time by separating it from the preceding
value with a comma. All of the bytes defined in a single DB

statement are assigned consecutive memory locations. The Zilog
mnemonic DEFB can be used instead of DB.

DC: The D.efine C.haracter pseudo-op stores the characters in a

string in successive memory locations beginning with the current
relocation counter. The most significant bit of the last charac-
ter will be set to one. The form for the DC pseudo-op is:

DC 'string'
DS: The D.efine Space pseudo-op reserves an area of memory. The
form is:

DS expression {,expression}

where the value of the first expression gives the number of bytes
to be reserved. The Zilog mnemonic DEFS can be used instead of
DS.

To initialize the reserved space, set the optional second expres-
sion to the value desired. If the second expression is omitted,
the reserved space is left as is (uninitialized). The reserved
block of memory is not automatically initialized to zeros. To

initialize to zeros give the second expression the value O.

All names used in the first expression must be previously defined
on pass 1. Otherwise, a U error (undefined symbol) is generated
during pass 1, and a P error (phase error) will probably be
generated during pass 2 because the DS pseudo-op generated no
code on pass 1.

DW: The Define Word directive is used to enter a 16-bit value
into the program. This directive takes the form:

DW nn {,nn...}

Where nn is any expression with a valid 16-bit value. Multiple
16-bit values may be defined with one DW statement by separating
the values with a comma. All 16-bit values defined by the DW

pseudo-op are stored in standard Z80 word format with the least
significant byte first. The Zilog mnemonic DEFW can be used
instead of DW.

Page 13

CHAPTER 5: PSETJ1X)-OPS

END: The END statement is optional. All statements following the
END are ignored. The form is:

END lexpressiorú

The optional expression is the program starting address. If an
Intel compatible hex file is being generated, then this starting
address will be included in the last record of the hex file. If
a REL file is being generated, then ZLINK will place a JUMP

instruction at 1OOH to the specified starting address.

EQU: The EQUate statement is used to name synonyms for particu-
lar numeric values. The form is:

label EQU expression

The label mustbe present andcannot label any other statement.
The assembler evaluates the expression and assigns this value to
the label. The label is usually a name which describes the value
of the expression. Also, this name can be used throughout the
program as a parameter or operand.

.IN: The.l.N.sert (or MACLIB) pseudo-op allows the programmer to
use the same section of assembler source code in a number of
different assemblies. The format is:

.IN {d: }filenaIne or MACLIB K: lfilename

where d is the optional Z or CP/M disk specifier (defaulting to
the logged disk) and filename is the file on disk with the
assumed filetype LIB.

This directive causes the specified file to be copied into the
assembly in its entirety, and to be treated exactly as if it were
part of the original source file. All inserted source lines are
flagged with a "+" on the listing. Only one level of insert is
allowed, they cannot be nested.

.LIST: This pseudo-op resumes a listing which has been suppressed
by the .XLIST directive. See the next page.

PAGE: The page pseudo-op gives control over the output formatting
which is sent to the PRN file and/or directly to Z or CP/M LST:
device. The form for the PAGE statement is:

PAGE {expression}

If the PAGE statement is used without the optional expression
then a form feed is sent to the output file and/or Z or CP/M LST:

device. The form feed is sent before the statement with PAGE has
been printed. Consequently, the PAGE command is often issued
directly ahead of major sections of an assembly language program,
such as a group of subroutines, to cause the next statement to
appear at the top of the following printer page.

The second form of the PAGE command is used to specify the output

Page 14

CHAPTER 5: PSEUIXJ-OPS

page size. In this case, the expression which follows the PAGE

pseudo-op determines the number of output lines to be printed on

each page. If the expression equates to a value between 40 and
90, then the page size is set to the value of the expression.
When this value is reached for each page, a form feed is issued

to cause a page eject. The assembler initially assumes a 56 line
page size and produces a page eject at the beginning of the

listing. Usually, no more than one PAGE statement with the
expression option is included in a particular program.

.RADIX: The statement form is:
.RADIX n

where n is 2, 8, 10, or 16. This pseudo-op set-s the radix to n

for all numbers which follow, unless another .RADIX statement is
encountered, or the radix is overridden by a suffix radix modi-
fier. Initially, the default radix is set to 10 (decima]).

SET: The SET statement is used to name synonyms for particular
numeric values. The form is:

label SET expression

The label must be present and cannot label any other statement,
except for another SET. The assembler evaluates the expression
and assigns this value to the label. The label is usually a name
which describes the value of the expression. Also, this name can
be used throughout the program as a parameter or operand. The
Zilog mnemonic DEFL can be used instead of SET.

.TITLE and .SBTTL: The title and subtitle pseudo-ops take the
form:

.TITLE 'string-constant I'.SBTTL 'string-constant 2'

where the string-constants are an ASCII string, enclosed in
apostrophes, which do not exceed 64 characters. If a .TITLE
and/or .SBTTL is encountered during the assembly, then each page
of the listing is prefixed with the title and,'or subtitle string-
constant. The title line will be preceded by a standard ZAS

header as follows:

MITEK Relocating Macro Assembler vers n.n page nnn

string-constant lstring-constant 2

where n.n is the ZAS version number, nnn is the current page
number and string-constant 1 and/or 2 is the string given in the
corresponding pseudo-op. ZAS initially assumes that these
pseudo-ops are not in effect. When specified, the title line,along with the subtitle line are not included in the line count
for the page. Usually, no more than one .TITLE statement is
included in a particular program.

Page 15

CHAPTER 5: PSEUDO-OPS

5.2 LISTING CONTROL PSEUDO-OPS

.LALL: ,L,ist ALL macro lines, including lines that do not
generate code.

.LIST: This pseudo-op resumes a listing which has been
suppressed by the .XLIST directive.
.LFCOND: The L,ist .F,alse CONDitionals pseudo-op assures the list-ing of conditional expressions that evaluate false.

.PRINT: The print on console pseudo-op takes the form:

.PRINT pass,text

This pseudo-op will output text to the console during the
specified pass. The pass can be one of three values:

O

- print text during both passes

1 - print text during pass one

2 - print text during pass two

.SALÍ): ,S.uppress ALL of the macro listing, including all text and
object code produced by macros.

.SFCOND: The,S.uppress.F.alse CONDitionals pseudo-op suppresses
the portion of the listing that contains conditional expressions
that evaluate false.

.XALL: The EXclude ALL non-code macro lines pseudo-op will list
source and object code produced by a macro, but source lines
which do not generate code are not listed.

.XLIST: This pseudo-op suppresses all list output until a .LIST
pseudo-op is encountered.

5.3 CONDITIONAL ASSEMBLY PSEUDO-OPS

The next two sections describe the ZAS conditional assembly
facility.
5.3.1 IF PSEUDO-OP EVALUATION

ZAS has two different methods for evaluating the trueness of an
IF expression. One method bases the trueness on the least signi-
ficant bit of the IF expression, which is compatible with Digital
Research's ASM, MAC, and RMAC assemblers. The second method
bases the trueness of the expression on the full 16-bit expres-
sion value. This method is compatible with the Microsoft M80

assembler.

Page 16

CHAPTER 5: PSEUIXJ-OPS

The default evaluation is set by the installation program
(section 1.3). The evaluation method may also be explicitly set
by the following two pseudo-ops:

.IF1 - will cause IF expressions to evaluate to true ifthe least significant bit of the IF expression
evaluates to 1.

OR

.IF16 - will cause IF expressions to evaluate to true when

the IF expression evaluates to non-zero.

5.3.2 CONDITIONAL ASSEMBLY FYJRMS

The IF, ELSE, and ENDIF pseudo-ops define a range of assembly
language statements which are to be included or excluded during
the assembly process. The IF and ENDIF statements alone can be
used to bound a group of statements to be conditionally
assembled thus:

IF expression
statement #1

stat.ernent- #2

e

0

statement #n

ENDIF

Upon encountering the IF statement, the assembler evaluates the
expression following the IF (all operands in the expression must
be defiríed ahead of the IF statement). Depending on the condi-
tional assembly option in effect, if the expression evaluates to
a non-zero value or the least significant bit evaluates to a 1,
then statement #1 through statement #n are assembled. If the
expression evaluates to a zero, then the statements are listed
but not assembled.

The ELSE statement can be used as an alternative to an IF
statement, and must occur between the IF and ENDIF statements.
The form is:

IF expression
statement #1

statement #2

0

0

0

statement #n
ELSE

statement #n"l
statement #n"2

0

9

0

statement #m
ENDIF

Page 17

CHAPTER 5: PSEUIX)-OPS

If the expression produces a non-zero (true) value, then
statements I through nareassembled. However, statements rj+j
through m are skipped in the assembly process. When the expres-
sion prcxiuces a zero value (false), statements 1 through n are
skipped, while statements n"l through m are assembled. As an
example, the conditional assembly shown in Listing A could be
rewritten as shown in Listing B.

Listing A

TTY EQU 1

CRT EQU 2

DEVICE EQU TTY
TTYOUT EQU OFO03H

CRTOUT EQU OF1OOH

IF DEVICE EQ TTY
CALL TTYOUT
ENDIF

IF DEVICE EQ CRT
CALL CRTOUT

ENDIF

Listinq B

TTY EQU lCRT EQU 2

DEVICE EQU TTY

TTYOUT EQU OFO03H

CRTOUT EQU OF1OOH

IF DEVICE EQ TTY

CALL TTYOUT

ELSE
CALL CRTOUT
ENDIF

Properly balanced IF'S, ELSE'S, and ENDIF's can be completely
contained within the boundaries of outer encQmpassing conditional
assembly groups. The structure outlined below shows properly
nested IF, ELSE, and ENDIF statements:

IF exp#1
group #1

IF exp#2
group#2
ELSE

group#3
ENDIF

group#4
ELSE

group#5
IF exp#3
group#6
ENDIF

group#7
ENDIF

Page 18

CHAPTER 5: PSEUIXJ-OPS

where group 1 through 7 are sequences of statements to be
conditionally assembled, and exp#1 through exp#3 are expressions
which control the conditional assembly. If exp#1 is true, then
group#1 and group#4 are always assembled, and group 5,6, and 7

will be skipped. Further, if exp#l and exp#2 are both true, then
group#2 will also be included in the assembly, otherwise group#3

will be included. If exp#1 produced a false value, groups 1, 2,
3, and 4 will be skipped, and group 5 and 7 will always be
assembled. If under these circumstances, exp#3 is true then
group#6 will also be included with 5 and 7, otherwise it will be

skipped in the assembly.

Conditional assembly of this sort can be nested up to eight
levels (i.e., there can be up to eight pending IFS or ELSEs with
unresolved ENDIFS at any point in the assembly), but usually
becomes unreadable after two or three levels of nesting. The
nesting level restriction also holds for pending IFS and ELSEs

during macro evaluation. Nesting level overflow will produce an

error during assembly.

5.4 LINKAGE PSEUDO-OPS

EXTRN: The EXTeR.N.al pseudo-op identifies symbols whichare de-
fined in some other program but are used in the current- program.
The form is:

EXTRN symbol {,syñbol...}

where symbol is the symbol being declared as external. Multiple
symbols may be declared in the same statement by separating them
with commas. Also, if a symbol in an expression is suffixed with
one or two # signs, then the symbol is treated as an external.
EXT is a synonym for EXTRN.

NAME: The NAME pseudo-op takes the form:

NAME symbol

where symbol is the relocatable module name. This name is used
by the linking loader and library manager to identify the module
for selective loading or manipulation. Only the first six
characters are significant in the module name. In the absence of
the NAME pseudo-op, up to the first six characters of the program
name are used.

PUBLIC: The PUBLIC pseudo-op identifies those symbols within the
current program which are to be made accessible to other programs
as external symbols. This directive has no effect on the
assembly process for the current program, but merely records the
name and value of the identified symbols on the object file for
later use by the linking loader. A public symbol must be defined
within the current program as a label.

Page 19

CHAPTER 5: PSEUDO-OPS

.REQUEST: Request a library search. The form is:
.REQUEST filename {,fi1ename...}

This pseudo-op sends a request to ZLINK or any Microsoft
compatible loader to search the filenames in the list forundefined external symbols. The filename in the list should not
include filetypes or device designation. ZLINK assumes the
default extension .REL and the currently logged disk drive.

5.5 REIÁJCATICN BASE PSEUDO-OPS

ASEG: The Absolute SEGment pseudo-op never has operands. ASEG

generates non-relocatable code.

ASEG sets the location counter to an absolute segment (actual
address) of memory. The ASEG will default to O, which could
cause the module to write over part of the oFerating system. Itis recommended that each ASEG be followed with an ORG statement
set at 1OOH or higher.

COMMON: COMMON statements are non-executable, storage allocating
statements. COMMON assigns variables, arrays, and data to a

storage area called COMMON storage. This allows various program
modules to share the same storagearea. The lengthof aCOMMON

area is the number of bytes required to contain the variables,
arrays, anddata declared in the COMMON block, which ends when
another relocation base pseudo-op is encountered.

CSEG: The C.ode SEGment directive never has an operand. Code
assembled in Code Relative mode can be loaded into ROM/PROM.

CSEG resets the location counter to the code relative segment of
memory. The location will be that of the last CSEG(defaultto
O), unless an ORG is done after the CSEG to change the location.

However the ORG statement does not set a hardabsoluteaddress
under CSEG mode. An ORG statement under CSEG causes the assem-
bler to add the number of bytes specified by the expression
argument in the ORG statement to the last CSEG address loaded.
For example, if ORG 25 is given, 25 bytes will be added to the
current CSEG location. Then csEgwill be loaded. The clearing
effect of the ORG statement following CSEG (and DSEG) can be used
to give the module an offset. Rationale for not allowing ORG to
set an absolute address for CSEG is to keep the CSEG relocatable.

CSEG is the default mode of the assembler. ZWsembly begins with
a CSEG automatically executed, and the location counter in the
Code Relative mode, pointing to location O inthe CodeRelative
segment of memory. All subsequent instructions will be assembled
into the Code Relative segment of memory until ASEG, DSEG, or
COMMON is executed. CSEG is then entered to return the assembler
to Code Relative mode, at which point the location counter
returns to the next free location in the Code Relative segment.

Page 20

CHAPTER 5: PSEUDO-OPS

DSEG: The D.ata SEGment pseudo-op never has operands. DSEG

specifies segments of assembled relocatable code that will later
be loaded into RAM only.

DSEG sets the location counter to the Data Relative segment of
memory. The location of the data relative counter will be that
of the last DSEG (default is O), unless an ORG is done after the
DSEG to change the location. However, the ORG statement does not
set a hard absolute address under DSEG mode. An ORG statement
under DSEG causes the assembler to add the number of bytes
specified by the expression in the ORG statement to the last DSEG

address loaded. For example, if ORG 25 is given, 25 bytes will
be added to the last DSEG address loaded. Then the DSEG will be
loaded. The clearing effect of the ORG statement following DSEG

(and CSEG) can be used to give the module an offset. Rational
for not allowing ORG to set an absolute address for DSEG is to
keep the DSEG relocatable.
ORG: The Set ORGin pseudo-op allows the value of a location
counter to be changed at any time. The form is:

ORG expression

Under the ASEG program counter mode, the relocation counter is
set to the value of the expression, and the assembler assigns
generated code starting with that value. Under CSEG, DSEG, and
COP1PÍON relocation bases, the location counter for that base is
incremented by the value of the expression. All names used in
the expression must be known on pass 1, and the value must either
be absolute or in the same relocation base as the current
location counter.

.PHASE/.DPHASE: The form is:

.PHASE expression
e

0

0

.DPHASE

where expression is an absolute value. .PHASE allows code to be

located in one area, but executed at a different area with a

start address specified by expression. .DPHASE is used to
indicate the end of the relocated block of code.

The relocation base withina .PHASE block is absolute, the same
as the mode of the expression in the .PHASE statement. The code,
however, is loaded in the area in effect when the .PHASE state-
ment is encountered. The ccMe within the block is later moved to
the address specified by expression for execution.

l

Page 21

CHAPTER 5: PSEUIXJ-OPS

This example,
.PHASE 30OH

CALL DUNQY
JP ENTRY

DUMMY: RET
.DPHASE

ENTRY: JP O

assembles to:
0300 .PHASE 30OH
0300 CD0630 CALL DUMMY
0303 C30700 JP ENTRY
0306 C9 DUMMY: RET
0007 .DPHASE
0007 C30000 ENTRY: JP O

5.6 MACRO PSEUDO-OPS

Provided here is only a brief description of the macro pseudo-
ops. For a more complete description, see the next chapter.

Pseudo-op Description

ENDM End Macro
EXITM Exit Macro
IRP Indefinite Repeat
IRPC Indefinite Repeat Character
LOCAL Local Symbol Generation
REPT Repeat
MACRO Macro Definition

5.7 SPECIAL FUNCTION PSEUDO-OPS

.HD64: This pseudo-openables ZAS toassemble the ten extended
instructions of the Hitachi HD64180 microprocessor, upward Z80

compatible. The ten instructions and their forms are listed in
Appendix D.

t

Page 22

CHAPTER 6

MACRO FACILITY

A common characteristic of assembly language programs is that
many coding sequences are repeated over and over with only one or
two of the operands changing. Macros provide a mechanism for
generating the repeated sequences with a single statement. The

repeated sequences are written with dummy values for the changing
operands. A single statement, referring to the macro by name and
providing values for the dummy operands, can then generate the
repeated sequence.

The coding sequence begins with either the macro definition
pseudo-op or one of the repeat pseudo-ops and ends with the ENDM

pseudo-op. All of the macro pseudo-ops may be used inside a

macro sequence. The one exception is a stored macro which,
cannot be defined inside a repeat type macro. Macro nesting is
allowed up to 15 levels deep.

The macro facility includes pseudo-ops for:

macro definition:
MACRO (macro definition)

repetitions
REPT (repeat)
IRE' (indefinite repeat)
IRPC (indefinite repeat charac: ter)

terminations:
ENDM (end macro)
EXITM (exit macro)

unique symbols within macro sequences:
LOCAL

operators:
&

P PI V

^
9¿;

':>

6.1 REPEAT (OR INLINE) MACROS

The simplest macro facilities involve the REPT, IRPC, and IRP
macro groups. All these forms cause the assembler to repetitive-
ly re-read portions of the source program under control of a
counter or list of textual substitutions. These groups are
listed in increasing order of complexity.

Page 23

rept-endm group: The REPT-ENDM group is written as a sequence of
assembly language statements starting with the REPT pseudo-op and
terminated by an ENDM pseudo-op. The form is:

label: REPT expression
0

0

0

label: ENDM

where the labels are optional, and the expression indicates the
number of times the sequence of statements between REPT and ENDM

will be repeated. The expression is evaluated as a 16-bit
unsigned number. If the expression contains an external symbol
or undefined operands, an error is generated.

Ingeneral, if a label appears onthe REPT statement, its value
is the first machine code address which follows. This REPT label
is not re-read on each repetition of the loop. The optional
label on the ENDM is re-read on each iteration and thus constant
labels (not generated through concatenation or with LOCAL pseudo-
ops) will generate phase errors if the repetition count is
greater than l.
IRPC-ENDM GROUP: Similar to the REPT group, the IRPC-ENDM group
causes the assembler to re-read a bounded set of statements. The

form is:
label: IRPC identifier,string

0

0

0

label: ENDM

where the optional labels follow the same conventions as in the
REPT-ENDM group. The identifier is any valid symbol and string
denotes a string of characters, terminated by a delimiter (space,
tab, end-of-line, or comment).

The sequence of statements between IRPC and ENDM are repeated
once for each character in the string. Each repetition
substitutes the next character in the string for every occurrence
of identifier in the sequence.

IRP-ENDM GROUP: The IRP is similar in function to the IRPC,
except that the controlling identifier can take on a multiple
string value. The form is:

label: IRP identifier, string {,string...}
0

0

0

label: ENIM

where the optional labels follow the conventions of the REPT and
IRPC groups. The sequence of statements between IRP and ENDM is
repeated for each string. On the first iteration, the string is

Page 24

CHAPTER 6: MACRO FACILITY

substituted for the identifier wherever the identifier occurs in
the sequence of statements. On the second iteration, the second
string becomes the value of the controlling identifier and so on

until the last string is encountered and processed.

6.2 S1DRED MACROS

MACRO DEFINITION: The florin for the macrodefinition is:

inacname MACRO dummyl,dummy...}
6

e

*

ENDM
P

The sequence of statements from the MACRO statement line to the
ENDM statement line comprises the body of the macro, or the
macro's definition. The macname is any non-conflicting assembly
language label. Dummy parameter is a place holder that is re-
placed by an actual parameter in a one for one text substitution
when the MACRO sequence is used.

The prototype statements are read and stored in the assembler's
internal tables under the name given by "macname", but are not-
processed until the macro is expanded.

A comment preceded by two semicolons is not saved as part of the
macro definition. But a comment preceded by only one semicolon
is preserved and will appear in the expansion.

6.3 EXITING MACROS

The EXITM pseudo-op is used inside a MACRO or Repeat block to
terminate an expansion when some condition makes the remaining
expansion unnecessary or undesirable. Usually, EXITM is used in
conjunction with a conditional pseudo-op.

The expansion is exited immediately when an EXITM is assembled.
Any remaining expansion or repetition is not generated. If the
block containing the EXITM is nested within another block, the
outer level continues to be expanded.

6.4 LOCAL SYMBOLS

The LOCAL pseudo-op is allowed only inside a MACROdefinition.
The form for the LOCAL directive is:

LOCAL identifier l,identifier...í
When LOCAL is executed, ZAS creates a unique symbol for each
identifier and substitutes that symbol for each occurrence of the
identifier in the expansion. These unique symbols are usually
used to define a label within a macro. This eliminates multiple-

Page 25

CHAPTER 6: MACRO FACILITY

defined labels on successive expansions of the macro. The
symbols created by ZAS range from ??0001 to ??9999. Users should
avoid the form ??nnnn for their own symbols. A LOCAL statement
must precede all other types of statements in the macro
definition.

6.5 MACRO INVOCATION

The form for the macro invocation is:

macname parameteH,parameter...}

Upon recognition of the macname, ZAS "pairs-off" each dummy
parameter in the MACRO definition with the actual parameter text,
i.e., the first dummy parameter is associated with the firstactual parameter, the second dummy is associated with the second
actual, and so on until the list is completed. If more actuals
are provided than dummy parameters then the extras are ignored.

If fewer actuals are provided, then the extra dummy parameter are
associated with the empty string, i.e., a text string of zero
length. It is imWrtant to realize at this EK)int that the value
of dummy parameter is not a numeric value, but is instead a

textual value consisting of a sequence of zero or more ASCII
characters.

6.6 PARAMETER EVALUATION

There are several options available in the construction of actual
parameters, as well as in the specification of character lists
for the IRP group. Although an actual parameter is simply a

sequence of characters placed between parameter delimiters, these
options allow overrides where delimiter characters themselves
become a part of the text. In general, a parameter x occurs in
the context:

label: macname ...,x,...
where the label is optional and the macname is the name of a

previously defined macro. The ellipses (...) represent optional
surrounding actual parameters in the invocation of macname. In
the ease of an IRP group, the occurrence Qf a character list x
would be:

label: IRP id, ...,x,...
where the label is optional, and the ellipses represent optional
surrounding character lists for substitution within the IRP group
where the controlling identifier "id" is found. In either case,
the statements could be contained within the scope of a sur-
rounding macro expansion. Therefore, dummy parameter substitu-
tion could take place for the encompassing macro while the actual
parameter is being scanned.

zas follows these steps in forming an actual parameter or
character list:

Page 26

CHAPTER 6: MACRO FACILITY

(I) Leading blanks and tabs are removed when they occur in front
of X.

(2) The leading character of x is examined to determine the type
of scan operation which is to take place.

(3) If the leading character is a string quote, then x becomes
the text up through and including the balancing string quote,
using the normal string scanning rules: double apostrophes
within the string are reduced to a single apostrophe, and
upper case dummy parameters adjacent to the ampersand symbol
are substituted by their actual parameter values. Note that.
the string quotes on either end of the string are included in
the actual parameter text.

(4) If instead the first character is the left caret (<) then the
bracket is removed, and the value of x becomes the sequence
of characters up to , but not including, the balancing right
caret (>) which does not become part of x. In this case, left
and right carets may be nested to any level within x, and
only the outer carets are removed in the evaluation. Quoted
strings within the carets are allowed, and substitution
within these strings follows the rules stated in (3) above.
Note that left and right carets within quoted strings become

a part of the string, and are not counted in the caret:
nesting within x. Further, the delimiter characters comma,
blank, semicolon, and tab, become a part of x when they occur
within the caret nesting.

(5) If the leading character is a %, then the sequence of
characters which follows is taken as an expression which is
evaluated immediately as a 16-bit value. The resulting value
is converted to a decimal number and treated as an ASCII
sequence of digits, with left zero suppression (0-65535).

(6) If the leading character is none of the above (quote, left
bracket, or percent), the sequence of characters which
follow, up to the next comma, blank, tab, or semicolon,
becomes the value of x.

There is one important exception to the above rule: the single
character escape, denoted by an up-arrow, causes ZAS to read the
character immediately following as a part of x without treating
the character as significant. However, the character which fol-lows the up-arrow, must be a blank, tab, or visible ASCII charac-
ter. The up-arrow itself can be represented by two up-arrows iri
succession. If the up-arrow directly precedes a dummy parameter,
then the up-arrow is removed and the dummy parameter is not
replaced by its actual parameter value. Thus, the up-arrow can
be used to prevent evaluation of dummy parameters within the
macro body. Note that the up-arrow has no special significance
within string quotes, and is simply included as a part of the

i string.

Evaluation of dummy parameters in macro expansions must also be
considered, although this topic has been presented throughout the

Page 27

CHAPTER 6: MACRO FACILITY

previous sections. Generally the macro assembler evaluated dummy

parameters as follows:

(I) If a dummy parameter is either preceded or followed by the
concatenation operator (&), then the preceding and/or
following "&" operator is removed, the actual parameter is
substituted for the dummy parameter, and the implied
delimiter is removed at the p©sition(s) the ampersand occurs.

(2) Dummy parameters are replaced only once at each occurrence as
the encompassing macro expands. This prevents the "infinite
substitution" which wouldoccur if adummy parameter eval-
uated itself.

In sumnary. parameter evaluation follows these rules:

- leading and trailing tabs and blanks are rerooved

- quoted strings are passed with their string quotes intact
- nested carets enclose arbitrary characters with delimiters
- a leading °0 causes immediate numeric evaluation
- an up-arrow passes a special character as a literal value

- an up-arrow prevents evaluation of a dummy parameter

- the "&" operator is removed next to a dummy parameter

- durnmy parameters are replaced only once at each occurrence

Page 28

CHAFTER 7

ZAS ERROR MESSAGES

There are two types of error messages: Non-fatal errors and fatal
errors. Non-fatal errors are indicated by a single letter code
to the left of the statement line with the error. Fatal errors
kill the assembly and give messages as to why the error may have
occurred. Statement lines with errors will not generate object-
code.

7.1 NON-FATAL ERRORS

Error Code Explanation

A Argument error. One of the arguments for the op-
code is invalid.

B Balance error. An ELSE or an ENDIF pseudo-op
does not have a preceding IF statement. Or an
END macro statement has no preceding macro call
and/or macro definition.

C Character is invalid. ZAS has found an invalid
character and it is probably a control character.
The invalid character will be replaced by a "^" 0

D Duplicate error. A label has been defined more
than once.

E Expression error. The expression is ill-formed
and cannot be computed.

I Insert error. The specified insert file cannot
be found or an insert is already in progress.

M Mode error. The statement contains an addressing
mode error.

O Opcode error. The statement contains an illegal
opcode.

P Phase error. A label has a different value on
Pass 2 than it did on Pass 1.

S Syntax error. The assembly statement is in-formed and cannot be processed. This error may
be due to invalid characters or delimiters which
are out of place.

U Undefined symbol. A label argument has not been
defined in the program.

V Value error. The operand (argument) is out of
its allowable range.

Page 29

CHAPTER 7: ZAS ERROR MESSAGES

7.2 FATAL ERRORS

Fatal error messages have been classified into two categories:
errors caused by macros and general errors (or errors not caused
by macros).

7.2.1 Gw.ñmN-iL FATAL ERROR MESSAGES

(I) "Eilename.filetr not found."
The specified source file cannot be found on the disk.

(2) "Invalid option specification."
One or more of the assembler options specified in the command

line is invalid.

(3) "More than eight IF levels are pending at line nnnn"
Where line nnnn is the line with the ninth IF. A maximum of
eight IF levels can be nested.

(4) "Unterminated IF!"
The end of file has been reached with no terminating ENDIF.

(5) "FSemory full at line nnnn"
The assembler's internal tables have run out of memory.

7.2.2 MACRO FATAL ERROR MESSAGES

(I) "Unterminated macro starting at line nnnn"
Where line nnnn is the line with the error. This error is
caused by a macro definition that has no terminating END

macro statement.

(2) "1Áx: al l~l limit exceeded!"
The rnaximum of 9,999 local symbols has been exceeded.

(3) "Macro nested past 16 levels at line nnnn"
A maximum of 16 levels of nested macros are allowed.

(4) "Ux: al table exceeds 127 bytes at line nnnn"
The total length of all local symbols cannot exceed 127 bytes
for a particular macro definition.

(5) "Macro definition inside an ínline macro at line nnnn"
This message indicates that a macro definition has been
placed inside a repeat type macro and that is not allowed.

Page 30

cElAprER 8

CROSS-REFERENCE GENERATION

8.1 OVERVIEW

The cross-reference generator (ZREF) is used to provide a summary
of symbol usage throughout a program. ZREF reads the file speci-
fied line by line, attaches a line number prefix to each line,
and writes each prefixed line to the file filename.XRF. After
completing this operation, ZREF appends to the file filename.XRF,
a cross-reference report that lists all the line numbers where
each symbol in the file appears. It also flags with an 'u each
line number where the referenced symbol is defined.

8.2 ZREF OPERATION

ZREF is invoked by typing

ZREF filename.filetype {$}option

where filename.filetype is the name of the fije to be cross-
referenced with the assumed filetype .Z80, and option is the
letter L, if the output is to the list device instead of a file.

8.3 RESERVED SYMBOLS

The following symbols will not be part of the cross reference:

A HI NUL
AF FIL NOT
AND I NZ
B IX OR

BC IY P
C L PE
D LE PO
DE IÁ)W R

E LT SHL
EQ M SHR
GE MOD SP
GT NC XOR
H NE Z

Page 31

CHAPIER 9

CODE CONVERTER

9.1 CODE CONVERTER OPERATION

The code converter (ZCON) converts 8080 source statements, all of
the TDL machine instruction statements, and most of the common
TDL pseudo-ops to Z80 source statements (see the next section for
a listing of the convertible TDL pseudo-ops). In addition,
except for character-constants, ASCII strings, and comments,
parentheses are converted to brackets. Also, parity bit (bit 7)

is zeroed.

To invoke the code converter, type:

ZCQN filenarne.filetype k$ju

where filename is the name of the source file to be converted.
If no filetype is specified, then ASP1 is assumed. When the"u"
option is specified, only upper-case conversion is done. This is
useful if you already have a Z80 source fije in lower case. When

the conversion is completed, the output will be in a file called
filename.Z80 and one of two messages will be displayed.

Message I:
"nnnn lines converted, with no errors detected."

Where nnnn is the number of lines converted.

OR

Message2:
"nrmn lines converted, with eee errors logged in filenatne.ERR"

Where nnnn is the number of lines converted and eee is the
number of errors detected.

9.2 CONVERTIBLE TDL PSEUDO-OPS

The code converter will convert the most common TDL pseudo-ops.
They include the following:

.ASCII .IDENT

.BLKB .INTERN

.BLKW .LIST

.BYTE .WORD

.EXTERN - .XLIST

Page 33

CHAPTER 9: CODE CONVERTER

9.3 MESSAGES

If the code converter detects an error in a statement line, itleaves the line unchanged. There are two types of error messages.

(I) ":'** Syntax error at line nnn, line follcMs ***w

error line

Where nnn is the statement line number, and error line is the
statement line with the syntax error. Normally, this error
should not occur because it indicates that the operand for
this particular op-code is syntactically incorrect.

(2) "**" IF/ENDIF unbalanced ***"

This error message appears if the IFS and ENDIFs are not
paired. For every IF, there should be an ENDIF, and vice
versa.

Page 34

CHAPTER 10

LINKER

10.1 OVERVIEW

The Z80 Linker (ZLINK) is used to combine Microsoft relocatable
object modules into an absolute file ready for execution under Z

or CP/M. When completed, ZLINK lists the sorted symbol table,
any unresolved or duplicate symbols, and a load map which shows
the number of free bytes left and the size and locations of the
different segments:

LOAD MAP FOR FILENAME.COM

SEGMENT SIZE START STOP

ABSOLUTE
CODE
DATA
COMMON

FREE

ZLINK writes the sorted symbol table to a .SYM file suitable for
use with Echelon Dynamic Screen Debugger (DSD) and Digital
Research Symbolic Instruction Debuggers (SID and ZSID) as
described in the S option (see next page). ZLINK also creates a
COM file for direct execution under Z or CP/M. If errors are
detected, the P option (see next page) will be set automatically.

10.2 ZLINK OPERATION

ZLINK is invoked by typing
ZLINK filename1{,fi]ename2,...,filer]ameN}

where filename is the name of the object rnodu!e(s) to be linked.
If no filetype is specified, then REL is assumed. If some other
filename is desired for the cori and SYM files, it may be

specified as follows:
ZLINK newfilename=filename1 {,filename2,...filenameNl

If ZLINK encounters a starting address which is caused by sup-
plying an optional program starting address to the assembler END

pseudo-op then ZLINK will place a JUMP instruction at 1OOH to the
program starting address.

10.3 ZLINK OPTIONS

A variety of options are available to provi.de control over the
execution parameters Qf ZLINK. Except for the / option (library

Page 35

search option) all of the options are link control options. They
are used once at the end of a command line:

filename1l,filename2,...filenarneN} $Cnnnn,Dnnnn,P,Rnnnn

Where nnnn is a hexadecimal number.

ZLINK options include:

C: Code Segment Origin Option. The C option is used to specify
the load address of the code segment. If it is not used, then
ZLINK will put the code segment at the address (IOOHÁ Unless
the R option indicates otherwise, the relocation value of the
code segment will be set to its load address. The syntax for the
C option is Cnnnn, where nnnn if the desired code origin in hex.

D: Data Origin Option. The D option indicates the load address
of the data and common segments. If the D option is used, the
address specified must be higher than the load address for the
code segment. If it is not used, ZLINK will put the data and
common segments immediately after the program segment. The syn-
tax for the D option is Dnnnn, where nnnn is the desired data
origin in hex.

P: Paging Option. The P option will page the output of ZLINK,
at 23 lines per page to the terminal. Pressing any key allows
you to continue to output one page at a time.

R: Relocate Orígin Option. The R option specifies the re-
location value for the code segment. If not used, then ZLINK

will set the relocation value of the code segment to its load
address.

S: .SYM File Option. If this option is set, ZLINK will write
the sorted symbol table to a .SYM file suitable for use with the
Echelon DSD or Digital Research SID and ZSID debuggers.

l: Search Option. This option is used to indicate that the pre-
ceding file should be treated as a library. ZLINK will search
the file and include only those modules containing symbols which
are referenced but not defined in the modules already linked.
Unlike the link control options which can be used once at the end
of a command line, the / option must be used after each filename
to be searched:

filenamel/,filename2/,...filenameN/

10.4 DEFINE NEXT FREE MEMORY IACATION

If the public symbol $MEMRY is encountered during the link pro-
cess, then the two bytes addressed by the value $MEMRY and $MEMRY
+ 1 are filled in with the address of the next free memory
location. The statement labeled $MEMRY must be a DS statement.

Page 36

CHAPTER 10: LINKER

For example:
PUBLIC FREBEG,$ME?'1RY

FREBEG: LD HLJ$MEMRY) ;This routine returns
RET ;the first free byte

$MEMRY: DS 2 ;of memory

10.5 ZLINK ERROR MESSAGES

(l) "Can't find filerLame.filetyµ2"

Specified file cannot be found on the disk.

(2) "FilenaIne.filetyE¥ is an invalid REL file!"
One of the files specified is not a Microsoft compatible REL

file.
(3) "Invalid option sFecification!"

One of the options specified is invalid.

(4) "MenKjry full!"
There is insufficient memory to complete the linking process.

(5) "Undefined symbols: "
The symbol name(s) following this heading are referenced but
not defined in any of the modules being linked.

(6) "Duplicate symbols: "
The symbol name(s) following this heading are defined as a
PUBLIC symbol in more than one of the modules being linked.

(7) "***OverlaWing segmmits**""

ZLINK attempted to write a segment into memory already used
by another segment. This error is probably caused by incor-
rect use of the C and/or D options.

(8) "Read error!"
A file cannot be read properly.

(9) "Syntax error in ccxmand line!"
The command line is ill formed.

r

(IQ) "Multiple main mAules!"
Two or more modules contain a program starting address.

(li) "Library search limit exceeded!"
A maximum of ten libraries can be specified from assembler
.REQUEST statements.

Page 37

CHAPTER IILIBRARY MANAGER

ll.l OVERVIEW

The Library Manager (ZLIB) is used to combine Microsoft relocat-
able object modules into a library. Libraries are files consis-
ting of any number of relocatable object modules. ZLIB can
delete modules from a library, concatenate REL files into a

library, re-place modules in a library, and print module names
and public symbols from a library.

11.2 ZLIB OPERATION

ZLIB is invoked by typing:

ZLIB libname=filenamM,filename,...l $option

where libname is the name of the library with filetype REL and
filename is the name of the object module(s). If no filetype is
specified, then REL is assumed.

An alternate form of invoking ZLIB when using the !4 or P option
(as described bdÍow) is:

ZLIB libname $listoption

where listoption is the M or P option.

11.3 ZLIB OPTIONS

If no option is specified, then the specified modules will be
appended to the library. The options include:

D: Delete the specified modules.

M: Print the module names in the library.
P: Print the module names and public symbols in the library.
R: Replace the specified modules.

11.4 ZLIB MESSAGES

Under the following circumstances ZLIB will produce messages.

(l) When a module is being appended to the library:
"AEEKmding fjnerLame.filetyFE!"

Page 39

CHAPTER 11: LIBRARY MANAGER

(2) If the specified library does not exist on disk and the spec-
ified option is append:

"Creating library"

(3) If a module is being deleted:

"Deleting KKjdulename"

(4) If a module is being replaced:

"Deleting nKjdulename
AEKX!nding filename.filetyFe"

11.5 ZLIB ERROR MESSAGES

(I) "Can't find filenarDe.filetyEe"
,

Specified file cannot be found on the disk.

(2) "Eilenarne.filetyFe is an invalid REL fíle!"
One of the files specified is not a Microsoft compatible REL

file.
(3) "Invalid option sÉjecifieation!"

The option specified is invalid.

(4) "Syntax error in ccxmand line!"
The command line is ill formed.

Page 40

APPENDIX A
Z80 ptNEMDNIc MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

BE ADC A,(HL) Add with Carry Oper- Leading A Oper-
DD8E05 ADC A,(lX"d) and to Acc. and is Optional
FD8E05 ADC A,(IY+d)
8F ADC A,A If d is Omitted
88 ADC A,B O is Assumed

89 ADC A,C
BA ADC A,D
8B ADC A,E
8C ADC A,H
BD ADC A,L
CE,20 ADC A,n
*************************************k************************X********
ED4A adc HL,BC Add with Carry Reg.
ED5A ADC HL,DE Pair to HL
ED6A ADC HL,HL
ED7A ADC HL,SP

k**********************
86 ADD A,(HL) Add Operand to Acc. Leading A Oper-
IJD8605 ADD A,(1x+d) and is Optional
FD8605 ADD A,(IY+CI)
87 ADD A,A If d is Omitted
80 ADD A,B O is Assumed
81 ADD A,C
82 ADD A,D
83 ADD A,E
84 ADD A,H
85 ADD A,L
C620 ADD A,n

09 add HL,BC Add Reg. Pair to HL
19 ADD HL,DE
29 ADD HL,HL
39 ADD HL,SP

DD09 ADD IX,BC Add Reg. Pair to IX
DD19 ADD IX,DE
DD29 ADD IX,IX
DD39 ADD IX,SP
h**
FD09 ADD IY,BC Add Reg. Pair to IV
FD19 ADD IY,DE
FD29 ADD IY,IY
FD39 ADD IY,SP

A6 AND A,(HL) Logical 'AND' of Leading A Oper-
DDA605 AND A,(1X+d) Operand and Acc. and is Optional
FDA605 AND A,(IY+d)

Al

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

A7 AND A,A Logial 'AND' of Leading A Oper-
AD AND A,B Operand and Acc. and is Optional
Al AND A,C
A2 AND A,D If d is Omitted
A3 AND A,E O is Assumed
A4 AND A,H
A5 AND A,L
E620 AND A,n

CB46 BIT 0,(HL) Test Bit of Location If d is Omitted
DDCB0546 BIT 0,(IX+d) or Reg. O is Assumed
FDCB0546 BIT 0,(IY+d)
CB47 BIT O,A
CB40 BIT O,B
CB41 BIT O,C
CB42 BIT O,D
CB43 BIT O,E

CB44 BIT O,H

CB45 BIT O,L
CB4E BIT 1,(HL)
DDCB054E BIT 1,(IX+d)
FDCB054E BIT 1,(IY+d)
CB4F BIT 1,A
CB48 BIT 1,B
CB49 BIT l,C
CB4A BIT 1,D
CB4B BIT 1,E
CB4C BIT 1,H
CB4D BIT 1,L
CB56 BIT 2,(HL)
DDCB0556 BIT 2,(IX+d)
FDCB0556 BIT 2,(Ix+d)
CB57 BIT 2,A
CB50 BIT 2,B
CB51 BIT 2,C
CB52 BIT 2,D
CB53 BIT 2,E
CB54 BIT 2,H
CB55 BIT 2,L
CB5E BIT 3,(HL)
DDCB055E BIT 3,(Ix+d)
DFCB055E BIT 3,(1Y+d)
CB5F BIT 3,A
CB58 BIT 3,B
CB59 BIT 3,C
CB5A BIT 3,D
CB5B BIT 3,E
CB5C BIT 3,El

CB5D BIT 3,L
CB66 BIT 4,(HL)
DDCB0566 BIT 4,(IX+d)
FDCBO566 BIT 4,(IY+d)

A2

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

CB67 BIT 4,A Test Bit of Location If d is Omitted
CB60 BIT 4,B or Reg. O is Assumed

CB6l BIT 4,C
CB62 BIT 4,D
CB63 BIT 4,E
CB64 BIT 4,H
CB65 BIT 4,L
CB6E BIT 5,(HL)
DDCB056E BIT 5,(IX+d)
FDCB056E BIT 5,(IY+d)
CB6F BIT 5,A
CB68 BIT 5,B
CB69 BIT 5,C
CB6A BIT 5,D
CB6B BIT 5,E
CB6C BIT 5,H
CB6D BIT 5,L
CB76 BIT 6,(HL)
DDCB0576 BIT 6,(IX+d)
FDCB0576 BIT 6,(IY+d)
CB77 BIT 6,A
CB70 BIT 6,B
CB71 BIT 6,C
CB72 BIT 6,D
CB73 BIT 6,E
CB74 BIT 6,H
CB75 BIT 6,L
CB7E BIT 7,(HL)
DDCB057E BIT 7,(Ix+d)
FDCBÚ57E BIT 7,(IY+d)
CB7F BIT 7,A
CB78 BIT 7,B
CB79 BIT 7,C
CB7A BIT 7,D
CB7B BIT 7,E
CB7C BIT 7,H
CB7D BIT 7,L

DC8405 CALL C,nn Call Subroutine at
FC8405 CALL M,nn Location nn if Condi-
D48405 CALL NC,nn tion True
C48405 CALL NZ,nn
F48405 CALL P,nn
EC8405 CALL PE,nn
E48405 CALL PO,nn
CC8405 CALL Z,nn

CD8405 CALL nn Unconditional Call to

Subroutine at nn

k
3F CCF Complement Carry Flag

A3

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

BE CP (HI,) Compar Operand Leading A Oper-
DDBE05 cp (Ix"d) with Acc. and is Optional
FDBE05 CP (1Y+d)
BF CP A If d is Omitted
B8 CP B O is Assumed
B9 CP C

BA CP D

BB CP E

BC CP H

BD CP L
FE20 CP n

EDA9 CPD Compare Location

(HL) and Acc.
Decrement HL and BC

EDB9 CPDR Compare Location

(HL) and Acc., Decre-
ment HL and BC,

Repeat until BC=O

***********************k***
EDAI CPI Compare Location

(HL) and Acc., Incre-
ment HL and Decrement
BC

EDBI CPIR Compare Location

(HL) and Acc., Incre-
ment HL, Decrement BC,

Repeat until BC=O

2F CPL Complement Ace. (l's

Complement)

27 DAA Decimal Adjust Acc.

35 DEC (HL) Decrement Operand If d is Omitted
DD3505 DEC (IX+d) O is Assumed
FD3505 DEC (1Y+d)
3D DEC A
05 DEC B
OB DEC BC
OD DEC C

15 DEC D

IB DEC DE

ID DEC E

25 DEC H

2B DEC HL
DD2B DEC IX
FD2B DEC IY
2D DEC L
3B DEC SP

A4

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

F3 DI Disable Interrupts

102E DJNZ e Decrement B and

Jump Relative if B=O

***k*
EB EI Enable Interrupts

E3 EX (SP),HL Exchange Location
DDE3 EX (SP),IX and (SE')
FDE3 EX (SP),IY
*******************k**k
08 EX AF,AF' Exchange the Con-

tents of AF and AF'
****- · -**
EB "' DE,HL Exchange the Con-

"ents of DE and HL

***Z+· *kE
D9 EXX Exchange the Con-

tent-s of BC,DE,HL

with Contents of
BC',DE',HL' Respec-
t1vely

**********************k*************k********" ·*7G -*******************
76 HALT HALT (wait for Inter-

rupt or Reset)

ED46 IM O Set Interrupt Mode
ED56 Ib1 lED5E IPl 2

ED78 IK A,(C) Load Reg. with Input
ED40 IN E3,(C) from Device (C)
EDJ8 IN C,(C)
ED50 IN D,(C)
ED58 IN E,(C)
ED60 IN H,(C)
ED68 IN L,(C)

34 INC (HL) Increment Operand If d is Omitted
DD340% INC (Ix+d) O is Assumed
FD3405 INC (1Y"d)
3C INC A
04 IN"C B
03 INC BC
QC INC C

14 INC D

13 INC DE

lC INC E

24 INC H

23 INC HL
DD23 INC IX
FD23 INC IY

A5

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement operation Notes

2c INC L Increment Operand
33 INC SP

DB20 IN A,(n) Load Acc. with

Input from Device n

EDAA IND Load Location (HL)

with Input from Port
(C), Decrement HL

and B

*k***
EDBA INDR Load Location (HL)

with Input from Port
(C), Decrement HI,

and Decrement B,
Repeat until B=O

EDA2 INI Load Location (HL)

with Input from Port
(C); Increment HL

and Decrement B

k***k**
EDB2 INIR Load Location (HL)

with Input from Port
(C), Increment HL

and Decrement B,

Repeat until B=O

k************************
C38405 JP nn Unconditional jump
E9 JP (HL) to Location
DDE9 JP (IX)
FDE9 JP (IY)

DA8405 JP C,nn jump to Location ifFA8405 JP M,nn Condtion True
D28405 JP NC,nn
C28405 JP NZ,nn
F28405 JP P,nn
EA8405 JP PE,nn
E28405 JP PO,nn
CA8405 JP Z,nn
k******
382E JR C,e jump Relative to
302E JR NC,e PC+e if Condition
202E JR NZ,e True
282E JR Z,e

182E JR e Uncondtional jump

Relative to PC+e

02 LD (BC),A Load Source to
12 LD (DE),A Destination

A6

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

77 LD (HL),A Load Source to If d is Omitted
70 LD (HL),B Destination O is Assumed
71 LD (HL),C
72 LD (HL),D
73 LD (HL),E
74 LD (HL),H
75 LD (HL),L
3620 LD (HL),n
DD7705 LD (IX+d),A
DD7005 LD (IX+d),B
DD7105 LD (Ix+d),C
DD7205 LD (IX+d),D
DD7305 LD (Ix+d),E
DD7405 LD (Ix+d),H
DD7505 LD (Ix+d),L
DD360520 LD (IX"d),n
FD7705 LD (1Y+d),A
FD7005 LD lIY+d),B
FD7105 LD (1Y+d),C
FD7205 LD (1Y+d),D
FD7305 LD (1Y+d),E'
FD7405 LD (1Y+d),H
FD7505 LD (1Y"d),L
FD360520 LD (1Y+dLñ
328405 LD (nn),A
ED438405 LD (nn),BC
ED538405 LD (nn),DE
228405 LD (nn),HL
DD228405 LD (nn),1X
FD228405 LD (nn),IY
ED738405 LD (nn),SP
DA LD A,(BC)
IA LD A,1DE)
7E LI) A,(HL)
DD7E05 LD A,(1x+d)
FD7E05 LD A,(IY+d)
3A8405 LD A,(nn)
7f LD A,A
78 LD A,B
79 LD A,C
7A LD A,D
7B LD A,E
7C LD A,H
ED57 LD A,I
7D LD A,L
3E20 LD A,n
ED5F LD A,R
46 LD B,(HL)
DD4605 LD B,(1X+d)
FD4605 LD B,(IY+d)
47 LD B,A
40 LD B,B

A7

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

41 LD B,C Load Source to If d is Omitted
42 LD B,D Destination O is Assumed
43 LD ELE
44 LD B,H
45 LD B,L
0620 LD B,n
ED4B8405 LD BC,(nn)
018405 LD BC,nn
4E LD C,(HL)
DD4E05 LD C,(IX+d)
FD4E05 LD C,(1Y+d)
4F LD C,A ·

48 LD C,B
49 LD C,C
4A LD C,D
4B LD C,E
4C LD C,H
4D LD C,L
OE20 LD C,n
56 LD D,(HL)
DD5605 LD D,(lX+d)
FD5605 LD D,(IY+d)
57 LD D,A
50 LD D,B
51 LD D,C
52 LD D,D
53 LD D,E
54 LD D,H
55 LD D,L
1620 LD D,n
ED5B8405 LD DE,(nn)
118405 LD DE,nn
5E LD E,(HL)
DD5E05 LD E,(lX+d)
FD5E05 LD E,(IY+d)
5F LD E,A
58 LD E,B
59 LD E,C
5A LD E,D
5B LD E,E
5C LD E,H
5D LD E,L
1E20 LD E,n
66 LD H,(HL)
DD6605 LD H,(1X+d)
FD6605 LD H,(IY+d)
67 LD H,A
60 LD H,B
61 LD H,C
62 LD H,D
63 LD H,E
64 LD H,H

AB

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

65 LD H,L Load Source to If d is Omitted
2620 LD H,n Destination O is Assumed

2A8405 LD HL,(nn)
218405 LD HL,nn
ED47 LD I,A
DD2A8405 LD IX,(nn)
DD218405 LD IX,nn
FD2A8405 LD 1Y,(nn)
FD218405 LD 1Y,nn
6E LD L,(HL)
DD6E05 LD L,(lx+d)
FD6E05 LD L,(IY+d)
6F LD L,A
68 LD L,B
69 LD L,C
6A LD L,D
6B LD L,E
6C LD L,H
6D LD L,L
2E20 LD L,n
ED4F LD R,A
ED7B8405 LD SP,(nn)
F9 LD SP,HL
DDF9 LD SP,IX
FDF9 LD SP,IY
318405 LD SP,nn

EDA8 LDD Load Location(DE)

with Location(HL),
Decrement DE, FIL
and BC

*********k***
EDB8 LDDR Load Location (DE)

with Location (HI,).
Repeat until BC=O

EDAD LDI Load Location (DE)

with Location (HL),
Increment DE, HL,

Decrement BC

*k***
EDBO LDIR Load Location (DE)

with Location (HL),
Increment DE, HL,

Decrement BC and
Repeat until BC=O

ED44 NEG Negate Acc. (2's

Complement)

00 NOP No Operation

+

A9

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

B6 OR A,(HL) Logical "OR" of Leading A Oper-
DDB605 OR A,(lX"d) Operand and Acc. and is Optional
FDB605 OR A,(IY+d)
B7 OR A,A If d is Omitted
BO OR A,B O is Assumed

Bl OR A,C
B2 OR A,D
B3 OR A,E
B4 OR A,H
B5 OR A,L
F620 OR A,n
********************************k**************************************
ED8B OTDR Load Output Port (C)

with Location (HL),
Decrement HL and B,
Repeat until B=O

k
EDB3 OTIR Load Output Port (C)

with Location (HL),
Increment FIL, Decre-
ment B, Repeat until
B=O

E679 OUT (C),A Load Output Port (C)
ED41 OUT (C),B with Reg.
ED49 OUT (C),C
ED51 OUT (C),D
ED59 OUT (C),E
ED61 OUT (C),H
ED69 OUT (C),L
*x***
D320 OUT (n),A Load Output Port (n)

with Acc.

EDAB OUTD Load Output Port (C)

with Location (HL),
Decrement HL and B

k**********k*********
EDA3 OUTI Load Output Port (C)

with Location (HL),
Increment HL and
Decrement B

k****************************
FI POP AF Load Destination
Cl pop bc with Top of Stack
D5 POP DE

El POP HL
DDE1 POP IX
FDE1 POP IY

AID

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

F5 PUSH AF Load Source to Stack
C5 PUSH BC
D5 PUSH DE
E5 PUSH HL
DDE5 PUSH IX
FDE5 PUSH IY
****k******k**********************K************************************
CB86 RES 0,(HL) Reset Bit b of If d is Omitted
DDCB0586 RES 0,(IX+d) Operand C) is Assumed
FDCB0586 RES 0,(IY+d)
CB87 RES O,A
CB80 RES O,B
CB81 RES O,C
CB82 RES O,D
CB83 RES O,E
CB84 RES O,H
CB85 RES O,L
CB8E RES 1,(HL)
DDCB058E RES 1,(Ix+d)
FDCB058E RES 1,(IY+d)
CB8E RES 1,A
CB88 RES 1,B
CB89 RES 1,C
CB8A RES 1,D
CB8B RES 1,E
CB8C RES I,H
CB8D RES 1,L
CB96 RES 2,(HL)
DDCB0596 RES 2,(Ix+d)
FDCB0596 RES 2,(IY+d)
CB97 RES 2,A
CB90 RES 2,B
CB91 RES 2,C
CB92 RES 2,D
CB93 RES 2,E
CB94 RES 2,H
CB95 RES 2,L
CB9E RES 3,(HL)
DDCB059E RES 3,(Ix+d)
FDCB059E RES 3,(IY+d
CB9F RES 3,A
CB98 RES 3,B
CB9A RES 3,D
CB9B RES 3,E
CB9C RES 3,H
CB9D RES 3,L
CBA6 RES 4,(HL)
DDCB05A6 RES 4,(IX+d)
FDCB05A6 RES 4,lIY+d)
CBA7 RES 4,A
CBAO RES 4,B
CBA1 RES 4,C

All

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

CBA2 RES 4,D Reset Bit b of If d is Omitted
CBA3 RES 4,E Operation O is Assumed
CBA4 RES 4,H
CBA5 RES 4,L
CBAE RES 5,(HL)
DDCB05AE RES 5,(IX+d)
FDCB05AE RES 5,(IY+d)
CBAF RES 5,A
CBA8 RES 5,B
CBA9 RES 5,C
CBAA RES 5,D
CBAB RES 5,E
CBAC RES 5,L
CBB6 RES 6,(HL)
DDCB05B6 RES 6,(IX+d)
FDCB05B6 RES 6,(IY+d)
CBB7 RES 6,A
CBBO RES 6,B
CBB1 RES 6,C
CBB2 RES 6,D
CBB3 RES 6,E
CBB4 RES 6,H
CBB5 RES 6,L
CBBE RES 7,(HL)
DDCB05BE RES 7,(Ix+d)
FDCB05BE RES 7,(IY+d)
CBBF RES 7,A
CBB8 RES 7,B
CBB9 RES 7,C
CBBA RES 7,D
CBBB RES 7,E
CBBC RES 7,H
CBBD RES 7,L
****************k****************%*************************************
C9 RET Return from

Subroutine

DB RET C Return from
F8 RET M Subroutine if Condi-
DO RET NC tion True
CO RET NZ
FO RET P
EB RET PE
ED RET PO

CB RET Z

ED4D RETI Return from Interrupt

ED45 RETN Return from Non-

Maskable Interrupt
k****************************

Al2

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

CB16 RL (HL) Rotate Left Through If d is Omitted
DDCB0516 RL (IX"d) Carry O is Assumed

FDCB0516 RL (1Y+d)
CB17 RL A
CBlO RL B

CBll RL C

CB12 RL D

CBl3 RL E
CB14 RL H

CB15 RL L

17 RLA Rotate Left Acc.

Through Carry
************************************k**********************************
CB06 RLC (FIL) Rotate Left Circular If d is Omitted
DDCB0506 RLC (Ix+d) O i Assumed

FDCB0506 RLC (1Y+d)
CB07 RLC A
CBOO RLC B
CBOl RLC C

CB02 RLC D

CB03 RLC E

CB04 RLC H

CB05 RLC L

07 RLCA Rotate Left Circ. Acc.

ED6F RLD · Rotate Digit Left and

Right between Acc. and
Location (HI))

CBIE RR (FIL) Rotate Right Through If d is Omitted
DDCB0¶IE RR (Ix"d) Carry O is Assumed

FDCB0"JE RR (1Y+d)
CBI.F RR A
CB18 RR B

CBI9 RR C

CBIA RR D

CB1B RR E

CB1C RR H

CB1D RR L

IF RRA Rotate Right Acc.

Through Carry

CBOE RRC (HL) Rotate Right Circular
DDCB050E RRC (IX+d)
FDCB050E RRC (1Y+d)
CBOF RRC A
CB08 RRC B
CB09 RRC C

CBOA RRC D

A13

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

CBOB RRC E Rotate Right Circular
CBOC RRC H
CBOD RRC L

OF RRCA Rotate Right Circular

Acc.

ED67 RRD Rotate Digit Right and

Left Between Acc. arid
Location (HI))

********************k**
C7 RST OOH Restart to Location
CE RST 08H
D7 RST 1OH

DF RST 18H
E7 RST 20H

EF RST 28H
E7 RST 30H

FE RST 38H

DE20 SBC A,n Subtract Operand Leading A Oper-
9E SBC A,(HL) from Acc. with Carry and is Optional
DD9E05 SBC A,(lX+d)
FD9E05 SBC A,(IY+d) If d is Omitted
9E SBC A,A O is Assumed
98 SBC A,B
99 SBC A,C
9A SBC A,D
9B SBC A,E
9C SBC A,H
9D SBC A,L
ED42 SBC HL,BC
ED52 SBC HILDE
ED62 SBC HL,HL
ED72 SBC HL,SP

k**k*k*****
37 SCF Set Carry Flag (C=1)

CBC6 SET 0,(HL) Set Bit b of Location If d is Omitted
DDCB05C6 SET 0,(IX+d) O is Assumed

FDCB05C6 SET 0,(IY+d)
CBC7 SET O,A
CBCO SET O,B

CBCl SET O,C

CBC2 SET O,D

CBC3 SET O,E

CBC4 SET O,H

CBC5 SET O,L
CBCE SET 1,(HL)
DDCB05CE SET 1,(Ix+d)
FDCB05CE SET 1,(IY+d)
CBCF SET 1,A

A14

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

CBC8 SET 1,B Set Bit b of Location If d is Omitted
CBC9 SET l,C O is Assumed
CBCA SET 1,D
CBCB SET 1,E
CBCC SET 1,H
CBCD SET 1,L
CBD6 SET 2,(HL)
DDCB05D6 SET 2,(Ix+d)
FDCB05D6 SET 2,(IY+d)
CBD7 SET 2,A
CBDO SET 2,B
CBD1 SET 2,C
CBD2 SET 2,D
CBD3 SET 2,E
CBD4 SET 2,H
CBD5 SET 2,L
CBD8 SET 3,B
CBDE SET 3,(HL)
DDCB05DE SET 3,(IX+d)
FDCB05DE SET 3,(IY+d) '

CBDF SET 3,A
CBD8 SET 3,B
CBD9 SET 3,C
CBDA SET 3,D
CBDB SET 3,E
CBDC SET 3,H
CBDD SET 3,L
CBE6 SET 4,(HL)
DDCB05E6 SET 4,{Ix+d)
FDCB05E6 SET 4,(IY+d)
CBE7 SET 4,A
CBEO SET 4,B
CBEI SET 4,C
CBE2 SET 4,D
CBE3 SET 4,E
CBE'4 SET 4,H
CBE5 SET 4,L
CBEE SET 5,(HL)
DDCB05EE SET 5,(Ix+d)
FDCB05EE SET 5,(IY+d)
CBEF SET 5,A
CBE8 SET 5,B
CBE9 SET 5,C
CBEA SET 5,D
CBEB SET 5,E
CBEC SET 5,H
CBED SET 5,L
CBF6 SET 6,(HL)
DDCB05F6 SET 6,(IX+d)
FDCB05F6 SET 6,(IY+d)
CBF7 SET 6,A
CBFO SET 6,B

A15

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

CBFI SET 6,C Set Bit b of If d is Omitted
CBF2 SET 6,D Location O is Assumed
CBF3 SET 6,E
CBF4 SET 6,H
CBF5 SET 6,L
DBFE SET 7,(HL)
DDCB05FE SET 7,(IX+d)
FDCB05FE SET 7,(IV+d)
CBFF SET 7,A
CBF8 SET 7,B
CBE9 SET 7,C
CBFA SET 7,D
CBFB SET 7,E
CBFC SET 7,H
CBFD SET 7,L

CB26 SLA (FIL) shift Operand Left If d is Omitted
DDCB0526 SLA (IX+d) Arithmetic O is Assumed
FDCB0526 SLA (1Y+d)
CB27 SLA A
CB20 SLA B
CB21 SLA C

CB22 SLA D
CB23 SLA E
CB24 SLA H

CB25 SLA L

CB2E SIRA (FIL) shift Operand Right If d is Omitted
DDCB052E SRA (IX"d) Arithmetic O is Assumed
FDCB052E SRA (1Y+d)
CB2F SRA A
CB28 SRA B
CB29 SRA C

CB2A SRA D

CB2B SRA E
CB2C SRA H

CB2D SRA L

CB3E SRL (HL) Shift Operand Right If d is Omitted
DDCB053E SRL (IX+d) Logical O is Assumed

FDCB053E SRL (1Y+d)
DB3F SRL A
DB38 SRL B
CB39 SRI, C

CB3A SRL D

CB3B SRL E
CB3C SRL H

CB3D SRL L

96 SUB (HL) Subtract Operand Leading A Oper-
DD9605 SUB (IX"d) from Acc. and is Optional

A16

APPENDIX A: Z80 MNEMONIC MACHINE INSTRUCTION CODES

object Source
Code Statement Operation Notes

FD9605 SUB (1Y+d) Subtract Operand If d is Omitted
97 SUB A from Acc. O is Assumed
90 SUB B
91 SUB C

92 SUB D
93 SUB E
94 SUB H

95 SUB L
D620 SUB n

AE XOR A,(HL) Exclusive "OR" Leading A Oper-
DDAE05 XOR A,(lX+d) Operand and Acc. and is Optional
FDAE05 XOR A,(IY+d)
AF XOR A,A If d is Omitted
AB XOR A,B O is Assumed
A9 XOR A,C
AA XOR A,D
AB XOR A,E
AC XOR A,H
AD XOR A,L
EE20 XOR A,n

.

A17

APPENDIX B

ECHEIDN SOFTWARE UPDATE FORM

1. PRODUCT NAME & VERSION

2. USER NAME DATE

3. USER'S & soFnÜ¥RE SYSTEM:

4. REFORT TYPE: 5. PERKNMANCE IMPACT:

Problem/Possible Error Shuts Down System

Suggested Enhancement Impairs System Performance

Document Suggestion Causes Inconvenience

Other Needs Suggested Enhancement

Other

6. PROBLEM DESCRIPTION: Please describe the problem concisely and how it
can be reproduced. If possible, provide your diagnosis and your cure.
Attach a listing if available.

7. RETURN FORM TD: Echelon, Inc.
' 101 First Street

Los Altos, ca 94022

YOUR INTEREST IN Z-TUOLS IS APPRECIATED!

Bl

APPENDIX C

ZAS PSWDO4)P

Pseudo-op Form Definition
ASEG set absolute segment

C0MX)N set cormion segment

CSEG set code segment

DB(DEFB) n {,n...} define byte

EC 'string' define character
.DPHASE end .phase

DS(DEFS) expression {,expression} define space

DSEG set data segrííent

INIDEFW) nn {,nn...} define word

ELSE conditional asseI7íb1y

END {expression} specifies program starting address

ENDIF end conditional assembly

ENIM end macro

LABEL EQU expression equate label to a value

EXITM exit macro

EXTRN(EXT) symbol {,symbol...) define external symbols

.HD64 assemble HIY34180 instr1jctiorLq

IF expression conditional assembly

.IF1 conditional trueness based on lsb

.IF16 conditional trueness based on !6-bits

.INÍMACLIB" {d: }fi1enanie include file
IRE' identifier, string {,string...} indefinite repeat macro

IRPC identifier, string indefinite repeat character macro

.LALL list all macro lines

.LFCOND list all false conditionals

.LIST reswíe listirrng

LOCAL identifier {,identifier...} define local macro labels
LABEL MACRO dwmy {,dtmmíy...} stored macro definition

NAME modulenanie define module name

Cl

us PSWDOÁ)P (con't)

PseíÉb-op Form Definitimt
ORG expression change value of relocation counter
PAGE {expression} page definition or eject

e
.PHASE expression relocate block of code

.PRINT pass,text print text durintg assembly

PUBLIC symbol {,symbol...} define public symbols

.RADIX n set radix default
REPT expression repeat macro

.REQUEST filename {,filename...} request library search

.SALL suppress macro listing

.SBTTL 'string' define subtitle

LABEL SET(DEFL) expression set label to a value

.SFCOND suppress listing of false conditionals

.TITLE 'string' define title

.XALL exclude non-code macro lines

.XLIST suppress listings

KKgeiM: items in ()'s are aliases; in { }'s, optional.

C2

APPENDIX D

HITACHI HD64180 MODE

object Source
Code Statement Operation

ED3805 IND A,(nn) Load register with input from
EDO005 IND B,(nn) port (nn).
ED0805 IND C,(nn)
ED1005 IND D,(nn)
ED1805 IND E,(nn)
ED2005 IND H,(nn)
ED2805 IND L,(nn)
**
ED4C LILT BC Unsigned multiplication of
ED5C MLT DE each half of the specified
ED6C MILT HL register pair with the 16-bit
ED7C MLT SP result going to the specified

register pair.
**
ED8B OTDM Load output port (C) with

location (HI)), decrement HL,
B, and C.

**
ED9B OTDMR Load output port (C) with

location (FIL), decrement HL,

B, and C. Repeat until B=O.

**
ED83 OTIM Load output port (C) with'

location (HL), increment HL
and C. Decrement B.

**
ED93 OTIMR Load output port (C) with

location (FIL), increment HL
and C. Decrement B. Repeat
until B=O.

**
ED3905 OUTO (nn),A Load output port (nn) from
EDO105 OUTO (nn),B register.
ED0905 OUTO (nn),C
ED1I05 OUTO (nn),D
ED1905 OUTO (nn),E
ED2105 OUTO (nn),H
ED2905 OUTO (nn),L
**
ED76 SLP Enter sleep mode.

**
ED3C TST A Non-destructive AND with
ED04 TST B accumulator and specified
EDOC TST C operand.
ED14 TST D
ED1C TST E

ED24 TST H

ED2C TST L
ED6405 TST nn
ED34 TST (HL)

**
ED7405 TSTIO nn Non-destructive AND of nn and

the contents of port (C).

DI

