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DESIGN OF AN AUTOMOBILE SUSPENSION SYSTEM

l“
Problem Description :
To investigate the response of an automobile suspension system for selected disturbances. The
system response to these disturbances for various values of the system design parameters are obtained.
The most suitable values of the system parameters are determined by selecting the desirable response
from the computer solution.
e Where :
M, = One quarter of mass of automobile
M, M, = Mass of the wheel and axle
T Xj K, = Spring constant of main auto spring
K, = Spring constant of tire (assumed linear)
D, = Shock absorber damping constant
B I;:| %K x, = Displacement of auto body
1 ! x, = Displacement of wheel
%, = Roadway profile displacement
Mo T X7 Physical Constants :
M, = 25 slugs
M, = 2 slugs
%Kz K, = 1000 lbs/ft.
. K, = 4500 lbs/ft.
T Xz =X(1) D, = Variable
Mt Initial conditions and forcing functions:
dx, dx,
Figure 1: Simplified representation of Xy =% = = =0att =20
a single wheel of an automobile sus- dt dt
pension system.
x5 = x ()
¥ 7
System Equations :
The differential equations of motion of the system are derived by equating the forces acting upon
the mass involved in the system.
They are : d*%, _ D, ( ﬁ B dx, ) _ K, b S 3
dt? m, dt dt m,
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d*x, D, ( dx, ¢_1_x_, ) B Ky
dt? m, dt dt

Scaled Equations :

Assume the following maximum values of the scaled variables to assure that the computer problem
voltages are as high as possible but less than + 10 volts.

d?x d*x
5 -1 go gl
[ dﬁ] [0.8 dt’]
[5 %1 l0.8 %2

dt dt

The scaled equations then become:

N

i) == (29 5al+ (2) (082 - (10 [50m] + (4.0 [50,]
N 25 S

+ D 3
[0.85,] = = =L} [084] + 0.08D) [54] — (49) [50%] + ®) [50%,]1 + (1800) [x,]
Where . d?x ) dx
X = —_— x = NP
de? dt
() = Combination potentiometer settings and amplifier gains.

—
f—
I

Voltage outputs from computing components.

Computer Diagram :

‘—(:) >_[5i] (") | +[5 “J

o

O

Dy
+ T[:3] 208

, ; o 1 , ;
Fach input to every integrator is multiplied by a factor—to change the speed with which the

svstem behavior is obtained on the computer. In this example 8 = 10 appears appropriate and the com-
puter circuit behavior will be ten times slower than that of the suspension system.
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Displacement of auto body (Y_l) and wheel (X—z) for a deflection in road profile (X, is a square pulse of 35
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milliseconds duration. )
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CALCULATION OF HEAT TRANSFER BY NATURAL CONVECTION:

Problem Description :

To solve a natural convection heat transferproblem, the solution will consist of the temperature and
velocity distribution for various Prandtl numbers. The quantity of heat which is transferred will also be cal-
culated.

Equations :

The Navier- Stokes equation and the Fourier equation can be written for natural convection heat
— transfer from a vertical flat plate in the following manner?.

dy 92 dy % ERN
i B e o e 8 e = + gBOs¢
dy dxdy dx dy?2 dy3

9y d¢ _ 9y 9¢ 9%

=== - — — = a

dy dx dx dy dy?

with boundary conditions

J
9% o L p g =1 My =0

It

dy dx
il‘b—=0£)—"é’—=0<75=0Atyzm
dy dx

Using substitutions suggested by Pohlhausen ! of :

e = G -
x%
where "
- ()
4v2
and 7 (e) = ¢ (x,y)
Y (x,y)
Z(e) = ——
6. 4vexh

The original equations reduce to the following system of ordinary differential equations:

-Z.+3Z§E',—2Z2+17=0

n+ 3P, Z5=0
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With boundary conditions

=0 #%£=0 1q

%

I
[

At ¢ = 0

At € =

I
(=]
N

Il
(=)

=

]
(=]

where the dots denote differentiation with respect to ¢.
In order to solve these equations a substitution is made for the independent variable.

e = t/a a = 10

44 L
de =8 &t ™ deZ2 ™ 12

Computer Diagram :

Results of Analog Computer Solution :

The ‘solution of the problem is one of trial and error in that all the initial conditions (the values of
the functions at ¢ = 0) must be known. Values for Z and n at ¢ = 0 are assumed and if the boundary con-
ditions are satisfied, the assumed values are correct.

Figures 1 and 2 show the temperature and velocity distributions for various values of the Prandtl
number as computed.

To calculate the quantity of heat which is transferred from the plate only the value of y at ¢ = 0 is

required. The desired values of the design parameters of interest can then be calculated using well known
steady state heat transfer relationships
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Figure 2: Heat transfer velocity profile.
Nomenclature :
A
4
g B 0 Tp + Te
4v2 2
Cp = Heat capacity of fluid u = Velocity in vertical direction
g B 98L3 v = Velocity in horizontal direction
Gg = ) (Grassoff number) x,y = Vertical and horizontal coordinates of a
. ) point in fluid
g = Acceleration due to gravity K
h = Over-all heat transfer coefficient. @ * 5 "p
. : P
k = Thermal conductivity of fluid
L = Height of plate 8 Poo = Pa
hL N
Nu = m (Nusselt number) Pa (Tg ~Ty)
g = Dynamic viscosity
Cpu . . . .
Py, = —— (Prandtl number) v = Kinematic viscesity
k ’ = Density of fluid
T = Temperature of fluid at point T T,
Teo = Temperature of bulk fluid ¢ =
T, -~ T,
Tp = Temperature of plate

REFERENCES

1. This application is based upon an article by R.S.Schechter (Analog Computer Calculates Heat Transfer), Petroleum
Refiner, Vol. 36, No. 2 pp. 112 — 114, Feb. 1957.

2. Jakob, M.; ““Heat Transfer”’, Vol.1, Wiley and Sons, New York, 1950.

Application Note No. 2
(continued)
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CALCULATION OF RADIAL VELOCITY OF ROTARY SPRAY DRIER

Problem Description:

To compute a curve of radial velocity of a particle vs radial distance from the center of a disc used
in a spray drier. The results of the computation are then used to select the design parameters of a drier for
a particular duty.

Equations:
The differential equation which describes the velocity of the particle is 1,

v &V L Av3 _ B - 0

dr
where
V = Radial Velocity
r = Radial distance from center of disc
A, B = Constants which in the case of laminar flow depend upon the angular velocity of disc, volu-

metric feed rate, vane height, and the density and viscosity of the liquid. For turbulent flow
the same equation hold, with different value for constant A.

Physical Constants:
Mean values of
A = 166 x 107
B = 3.6 x 107
r = O0to5inches

0 to 6000 ft/min

<
1}

Computer Equations:
In order to solve this equation a substitution must be made for the independent variable r:

let r = t/a
then d o d
dr T T dt

The equation becomes with physical constants:

dv _ 3.6 x 107 | _ 1.66 x 1074V?
dt 5V 5

where

1
See Perry “‘Chemical Engineers Handbook®”, McGraw -Hill Book Co.

ELECTRONIC ASSOCIATES INC. Long Branch, New Jersey
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The computer will compute 1073V, thus the equation becomes

1073 dv _ 1073Br 103 AV 2
dt 5V 5
Calculation of radius:
1
dr = = dt
t = ra 2
a 2r = — [dt
dt = adr a
Ik
r = — [dt
a
COMPUTER DIAGRAM 4
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Figure 1: Plot of Radial Velocity as a Function of Drier Radius.
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ANALOG CONMPUTER

ANALYSIS OF THE FLOW PATH OF AN OIL GLOBULE

Problem Description :

It is required to separate an oil -water mixture by using a standard oil separator. The over-flowing
level of oil is 5 feet above the lower end of the oil retention wall. Calculate the minimum length of separa-
tion section of the separator.

Equations :
OIL-WATER To analyze the flow path of an oil globule,
MIXTURE IN its velocity is resolved into vertical compo-

nent v and horizontal component i. The hori-

OIL RENTENTION SECTION
_ —» OVERFLOWING OIL zontal velocity of an oil globule is assumed
constant (throughout the separation section)

DN

(

and equal to the total volume flow rate divided

by the cross-sectional area of the separator.

/'
5ft. | v _,OIL PATH
h

OIL GLOBULE

ANMNRNRRRRNNY

The vertical velocity is variable and depen-

MR

NS

3—»WATER OUT dent upon a force balance which is derived as

follows :
SCHEMATIC OF STANDARD
OIL —WATER SEPARATOR Inertial force of the oil globule
D3 dv
F, =7 Ll
@ 6 & dt

Buoyancy of the globule

Fi = "GD (pyy — po) &

Drag force against the upflowing globule

Fq = &
2
Where

D = Average diameter of oil globule
v = Vertical velocity of oil globule
po = Density of oil
pw = Density of water
g = Acceleration due to gravity
f = Coefficient of viscous friction

ELECTRONIC ASSOCIATES INC. Long Branch, New Jersey
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The force balance becomes:

Fo = Fp - Fyg
nD? dv nD? faD?py v2
Po — = lp ~ polg — ——————
dt 6
dv Pw — Peo 3fpw 3
e — g o, v
dt Po 4D p,

The vertical velocity v may by integrated with respect to time to give the vertical traverse distance

of an oil globule within a given time.

¢
s = [ v dt

o

The computer diagram is mechanized to solve for v and s. Since the total vertical traverse distance
is known and the function of vertical velocity will be obtained from the computer, the above equation is
employed to determine the time required for an oil globule to rise to the over-flowing surface. The mini-
mum longitudinal length of the separation section equals the horizontal velocity 4 times the minimum re-
tention time.

The variables are scaled as indicated below so that the computer problem voltages are as high as
possible but less than + 10 volts.

[100 dv [50 ‘is]
dt dt
[ 100v ] [104s]

Scaled Equations :

Pw — Po 3fpw [100V]:

100v] = 102 -
Sead & T, 40D p, [10]

Computer Diagram:

50
10°g (py —p,) 10083
' [100v]2
10
Po B . +~[-—10]
+10 : —[roov] | _
i . 16.101| ¢

pdl '
S )

3fPw
4Dp Bx10

200

108
b O |ﬂ> +200t

Fach input to every integrator is multiplied by a time scale factor L In this example 8 = 100 and

the computer solution will be 100 times slower than the behavior of the physical system.
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Plot of vertical velocity of oil globule with time.

Application Notes No. 4
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INVESTIGATION OF A SIMPLE CHEMICAL REACTION

Problem Description :

The reaction of chemical component A to form component B, which in turn reacts to form component

C, can be represented as follows :

Al B s C

where r, and r, are specific reaction rates. The reaction is assumed to take place at a constant tempera-
o ture. Find the changes in concentration of A, B and C as a reaction time, (for the case of r, equal to

unity and r,/r, less than 1.0.)

Equations :

The reaction rate for such reactions may be expressed by the following differential equations,

assuming no reverse reactions:

dn
- thA =1, ny rate of disappearance of A
dn
d—tB = r,ny — r,np netrate of appearance of B
d
%g = r,ng rate of formation of C
L

Where n 4, ng and ne are mole fractions. The mole fraction of a component is defined as the number of

moles of that component divided'by the sum of the number of moles of all components.
Therefore 0 < ny, ng, ng < 1.0
ny = 1.0 at ¢t = 0

Scaled Equations :
The variables are scaled as shown below to assure that the voltages representing their maximum

values are as large as possible within the limits of + 10 volts.

dnA dnB, dnC

= 10 — 10 —
[10 A [ b7 l (10 = |
[10n 4] [10np ] [10ncl

The scaled equations then become

dTLA
- [107] = Iy [IOnA]

ELECTRONIC ASSOCIATES INC. Long Branch, New Jersey
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] =r [10ng] —r, [10ng]

t

dnB

(10

1 =r [1OnB]

dngc
dt

[10

—I10

Computer Diagram :

+(lomn,)

| [\ +( IONB)

~(10n,)

+(10n¢)

Plot of Results Obtained :
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DYNAMIC RESPONSE OF A SEPARATELY EXCITED GENERATOR

Problem Description :

To investigate the time response of a particulardesign of a separately excited generator for various

changes in the exciter voltage with a constant resistive load.

Re Rf Ra
s O NN ANN— "N
E, Leg Ee Lf é Eg § RL E,
Te If Ig
v O v

Schematic Diagram of Separately Excited Generator

From the schematic the following equations can be written :

dl
E; = I,R, + L, —=
dt

dlf
E, = IfRf + Lf 5

Eg = Ig (R, + Rp)

Ry
E = —E
©  Rg + R 8
The armature voltage of the exciter £, is proportional to the field current I, so that
E, = Kele

Similarly the emf of the generator £ is proportional to the field current /.

E; = Kgly

8

ELECTRONIC ASSOCIATES INC. | Long Branch, New Jersey

?“‘:‘NTED
Us.A AFSA] BULLETIN #AN 926-1



The equations to be programmed on the computer will then be :

dE K R
—°¢ -E . -E, =
di L, L
K K
dt — € Lf 8 Lf
R
By = —— — &
R, + R,
Maximum values : E; = 200 volts
E, = 200 volts
E, = 500 volts

E, = 500 volts
Scaled Equations:

The variables are scaled as shown below to assure that the voltages representing their maximum
values do not exceed + 10 volts :

1 dE 1 dE
{ o= et ] [— £
20 dt 50 dt
E E
[ [-8]
20 50

E; E
-y [=]
20 50

and the scaled equations are of the form:

1 dE,. K. E Ry, E.
G 3 - G o - @D 15
1 dE 2 K, E Ry E
g i { A - ., O 1
50 dt 5 Lf, 20 L 50
Eo. - Ry, Eg

Computer Diagram

[£oy

20 4{'\ s a)‘
\&)
2Kg

51y




Results of Computer Solution:

The response of the generator for changes in the exciter voltage is shown inFigure 1 and Figure 2.
Note that the computer diagram is arranged such that the generator time response to changes indesign
parameters can be quickly determined.

Se=ccnoc=
—

Figure 1: Response of Separately Excited Generator to Application of Exciter Voltage.

Figure 2: Response of Separately Excited Generator to Changes in Exciter Voltage.

Application Notes No. 6
(Continued)
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TIME RESPONSE OF A TWO-WINDING TRANSFORMER

Problem Description :

To determine the time response of a particular design of a two- winding transformer for changesin
the resistive load and input voltage.

Equations :

. —=0

T—I"
JJJ
_Z
=z
N
LL]
m
o
Pl
I
10
M
(777
05—~
I
s
L——
m
o
AN
P
5

IDEAL
TRANSFOR
SCHEMATIC NSFORMER
OF TWO-WINDING
TRANSFORMER SIMPLIFIED EQUIVALENT CIRCUIT OF TWO-WINDING

TRANSFORMER

From the equivalent circuit the following primary and secondary voltage - equilibrium equations can
be written :

1,
E; = (R} + a2Ry) Iy + (Ly + a2Ly) o E,
t

b E = TR,
By Ny
— = —— =g
o N2
Noly = N1
where
Ry = Resistance of primary winding
R, = Resistance of secondary winding
Ly = Inductance of primary winding
L, = Inductance of secondary winding
a = Transformer turns ratio
Ej,E ,E; = RMS voltages
I, 1 = RMS currents

ELECTRONIC ASSOCIATES INC. Long Branch, New Jersey
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INVESTIGATION OF UNSTEADY-STATE HEAT CONDUCTION

Discussion:

Many engineering problems involve the sudden heating or quenching of large slabs of material. In
the annealing or heat treating of metals, plastics, glass, and rubber, for example, an accurate knowledge
of the temperature vs. time and thickness relationships is required. Consider the following representative
problem.

Problem Description:

Determine the temperature distribution along the X
direction of a long wide slab. The slab is initially at a
high temperature (T1) and is suddenly quenched in a
large ice-water bath at 0°C. Assume that the temperature
in the slab varies in the X direction only.

<+—1— FACE FEquations :

FACE —+ With the assumption made above, the unsteady-state
heat transfer can be expressed by the following equation:

& ar  k 22T
A ' Jat Cpp 0x?
Ni . The boundary conditions are, for 7' =T (x, ¢)
x=0 T (x,0 = T~ 0 < x <R
. e T (0,t) =0 t >0
| Where T (B, ) =0 x - B
T = temperature in degrees C.
t = time
k= thermal conductivity of material
Cp = specific heat of material (ave)
p = density of material (ave)

Using a finite -difference approximation of the second derivative of temperature with respect to the

space dimension x, the second central difference becomes ........

GZT,] 1

(T

dx? Axr ntl =20y e T

n-1)

where the subscripts n + 1, n, n — 1 are referred to the number of cross section of the slab.

ELECTRONIC ASSOCIATES INC. Long Branch, New Jersey
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The use of the finite -difference approach is due to the fact that the Analog Computer can con-
tinuously integrate with respect to only a single independent variable at any one time. This approach is
equivalent to dividing the slab into sections as shown by the sketch and solving for the temperature at
each section.

Using the finite -difference approach the Analog Computer must simultaneously solve the following
ordinary differential equations

1 dTey _ [k [ (T _ Ty -
5 - (k) M-} o
1 dT,,  (  k T, T, To, |

o @) - cppw> {[lo] —@Ul Iy

1 dT, k [ T, T, T, ]
(L 2k - (——CPPMJ {21 ~@d . [EI}
1 dT,, k Ty o T 7,
o @) T <CPpr2> {.[10] B [10]}

(L dTay _ <_.k__> {_ @ (L 4 [ﬂl} T, (1) = 0
10 dt Cpp Ax? 10 10



Computer Diagram :

-10
k Ll
N Crphn Ry
‘ 2 l/ \ m i + [1—0]

-|0
Y .. e Qwm
I CppAx? Sl
N\ I 10
i / L
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Results of Computer Solution :
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Figure 1: Temperature Change vs. Time At Several Points Along X Direction.

Application Note #8 (continued)
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INVESTIGATION OF THE PROCESS PARAMETERS AFFECTING THE CONTROL
OF A STIRRED TANK REACTOR

Discussion :

The continuous stirred tank reactor is an essential part of many chemical processes. The problem
below shows, in simplified form, how a model of a CSTR may be set up and studied.

Problem Description :

To investigate the effect of parameter changes on the time
response of the output concentration of a Stirred Tank Reactor.

Equations :
The reaction taking place is
4 % B

When the specific reaction rate is defined as

k= kgm + bTo

Material Balance:

Material in v C;
Material out v C,
Material reacted kE VrC,
. Material accumulated V7 (2(;°
Summing :
5@_ o CL I Cs — & Gs
dt VT VT
Heat Balance:
Heat in vpCp T;
Heat out vpCp Ty
Heat transferred B AT, — T%)
Heat due to reaction — Q Vi k C,
Heat accumulated pVy Cp ddy;o
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Summing :

dly _ v Ti—h—A (T, ~ ¥ _QkC _ v T,
dt VT 4 VT CP p Cp VT
where

T, T;, T* = temperature

v = flow rate of material

Vr = reactor volume

t = time

h = heat transfer coefficient

A* = effective area of heat transfer

p = average density of material

0 = heat due to reaction

Cp = average specific heat

(8, = input concentration

Co = output concentration

Scaled Equations :

The variables are scaled as shown below so that the computer problem voltages are as high as
possible but do not exceed 10 volts.

[10C;] [10K]

[10K] = 10Ky + (100b)[T°]

dCo B Al B [10K] [10C,]
[10 _< )[100] < )[10(:0] ST

1 dTo h A T, [10K] [10C,] v T
10 dz V pVTCP 10 IOOpCP [10] Ve /10



Computer Diagram : -10

+ 3
: | 7045
VrB l—— T_LD_X Y

7™\ U
ERSP, B
B VB
[ N
N [10K] [10G,] i
(101 S
" i
100pCp B > -lo +10
7, (0) %
T 100 Kem
100 _[ﬁ’\ | 7o !
+io : = ; 0 (!
y | —4 3} L [10K]
VrB L i Togh
Vrp <
To
/. ~[42]
I
—O_QL_O‘ +10
k. s
pVrCppB T

Note that the inputs to the integrators have been multiplied by a time scale factor = For B <1
the computer solution will be 3 times faster than the response of the real physical system.

Results of Computer Solution :

Figure la: Response of Output Concentration for Figure 1b: Response of Output Concentration for
Disturbance to Input Concentration. (v/Vp =0.5) Disturbance to Input Concentration (v/Vp =0.167)

v/VT = 0.5
T, (0) = 65.0
05 R C; = 0.45
=== : 5 = = T; =50
. : = 1+ =0
: Sl Co(6) = 0.4

Figure Ic: Response of Output Temperature of Reactor for Disturbance to Temperature of Material
Entering Reactor. (v/Vp = 0.167)

Application Note #10 (continued)
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INVESTIGATION OF THE OUTPUT RESPONSE OF A POSITIONAL SERVO SYSTEM

Problem Description :

To determine the output response of a positional Servo System to input disturbances for changes in
the system parameters.

+8i  +<ng [EQUILIZING] AMSEET\I-{(I)ER E, SERVO MOTOR 8o
NETWORK MODULATOR GEARS, LOAD

RATE FEEDBACK

TACHOMETER

FUNCTIONAL BLOCK DIAGRAM OF A SERVOMECHANISM

Equations :
Error Device 6; — 6, = ¢
Equalizing Network E| - K, Tp+1
€ aTp+1

Servo Amplifier E4= KoE g3 = Ko(Ej-Ej9)

Servo Motor, Gears, Load
6 K3N

O =

E4 (Ip+N2[ )p2+N2R+K

Tachometer Eq
— = Nkjp

ELECTRONIC ASSOCIATES INC. Long Branch, New Jersey

RINTE,
uia AF941 BULLETIN # AN 931 -1



Computer Diagram :

KsN
Tu+N e

Results of Computer Solution :
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Figure lc: Response of Servo for step input (k; = 0.87, T = 1.2 sec.)
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INVESTIGATION OF THE RESPONSE OF A NUCLEAR REACTOR

Problem Description :

To investigate the time response of a Design of a Nuclear Reactor for changes in the Reactor mul-
tiplication factor dk.

Equations :

The equations! representing the performance of a Nuclear Reactor are as follows:

i=6

. LY n o+ 2 ;G
do ] * =]
dCs B;
e s B e A G
do i

To represent a Nuclear Reactor with five delay groups the following differential equations must be
solved simultaneously :

i=5
i& = *———Sk—ﬁ n + /\l Cl
do 1% i=1
ic, B
———1 == —1 n — )\ICI
do 1*
d.G
. 2 _ §2 n — A9 Cy
do |#
ic; B
1 _Bs e,
do I
ic, B
e I P
dé [ *
dCs  Bs
—— e Sl
dé 1%

1. M.A. Schultz, ““Control of Nuclear Reactors and Power Plants’’, McGraw Hill Book Co., Inc., New York, 1955.
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Computer Diagram :
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Results of Computer Solution:

'NUCLEAR REACTOR (NCRMALIZED) | .

1

NEUTRON “DENSITY: OF

Figure ] : Response of Nuclear Reactor for Changes in &k.
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INVESTIGATION OF THE REACTION OF SODIUM VAPOR DIFFUSING INTO A HALIDE

Discussion:

Many chemical reactions are so rapid that diffusion of the reactants and products around the re-
acting zone will completely control the system behavior. Such is the case when sodium vapor reacts
with a halide. In the problem below, vaporized sodium was admitted through a nozzle into a large reactor
filled with a halide gas. The equations describing this process demand a trial and error type method of

solution.
Problem Description:

To investigate the effect of changes in design parameters on the reaction of Sodium Vapor
diffusing into a Halide.

Equations :
The following equation! describes the reaction of Sodium Vapor diffusing into a Halide:

dxV B KV(V+x+x,—1)

d x? x + %,

The boundary conditions are
V=1 —-2x, at x =0

V -0 as x » oo

The parameters (1 — x,) and K correspond to a measure of the nozzle opening used in a reactor
and chemical rate of reaction, respectively. The solution to the equation is obtained when dV/dx and V

become zero simultaneously.

Scaled Equation:

The independent variable x will be replaced by time so that x = t. The variables are scaled as

follows :
Osz 0 £ t €+ 10
dt?
102 0 < % <+ 10
dt
[10V]

The scaled voltages do not exceed the maximum permissable computer voltages, + 10 volts, and
permit the following scaled equation to be written: -

1. ““Mathematic Tables and Other Aids to Computation®’, Physics Abstracts, Vol. IX. July, 1955, pp. 112-116
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[10V]
1101

1
[10 ] {G VI + 11 + Tw) — 1

e [10] (K)

[t1 + [=x]

Computer Diagram :

+i0 +10

1
. 10
Vo (1=x,) 1) 1 +x
10(1-x,)

. -+ ol
10 8 . 10 ] \uo(v+x,-n -
7\ 10 +i0V 1 -0V 1 O
O O e
- 1oV !
+lov
- +
ol TO%% | + +[vax+x,-1] /
+10v [vx+x;-1] 0 : \
+ /]
s
P——q——<>—— 7.045 | AN -(X+X|)/l

T N 0

. . e . 1
Note that the inputs to the integrators have been multiplied by a time scale factor 5. For
B > 1 the computer solution will be B times siower than the real reaction of the sodium vapor.

Results of Computer Solution :

The results of several trial runs are shown in Figure 1. From these trial solutions it can be
seen that if V, is too large, V will change sign before V. If V, is too small V changes sign before V.
The objective in choosing a Vo is to cause bothV and V to go to zero simultaneously. The best tech-
nique to use is to find a ““small’’ value of V, and then a *“large’’ value of Vs, and approach the ‘‘small”’
value by successively reducing V, until the correct solution is obtained.

Typical final solutions for V as a function of the independent variable are shown in Figure 2.

ﬁ%%ﬁ-ﬂ-ﬂ—*—kﬂ—‘—k%%j——l—\}%—%

: ;Lwaf}jﬂ

Figure 1: Typical run of trial solution for K=0.1, 1 — x, = 0.20.
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