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DESIGN OF AN AUTOMOBILE SUSPENSION SYSTEM

Problem Description:

To investigate the response of an automobile suspension system for selected disturbances. The
system response to these disturbances for various values of the system design parameters are obtained.
The most suitable values of the system parameters are determined by selecting the desirable response
from the computer solution.

Where :

Mi = One quarter of mass of automobile
M2 - Mass of the wheel and axle
K! = Spring constant of main auto spring
K2 = Spring constant of tire (assumed linear)
D! = Shock absorber damping constant
xj. = Displacement of auto body
x 2 = Displacement of wheel
x 3 = Roadway profile displacement

Physical Constants :
Mi = 25 slugs
M2 = 2 slugs
Ki = 1000 Ibs/ft.
K2 = 4500 Ibs/ft.
Di = Variable

Initial conditions and forcing functions:
dXi dXj

X 3 = X ( t )

Figure 1 : Simplified representation of
a single wheel of an automobile sus-
pension system.

System Equations:

The differential equations of motion of the system are derived by equating the forces acting upon
the mass involved in the system.
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dt*
—— — —— ) — — (x2 — X i ) — — (*2 — x,
at dt I m, TO,

Scaled Equations •

Assume the following maximum values of the scaled variables to assure that the computer problem
voltages are as high as possible but less than ± 10 volts.

/7*/y" /"I 2,y

[5^] [0.8^]

Computer Diagram :

Each input to every integrator is mul t ip l ied by a factor — to change the speed with which the
svstem behavior is obtained on the computer. In this example (3 = 10 appears appropriate and the com-
puter c i rcui t behavior wi l l be ten t imes slower than that of the suspension system.
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CALCULATION OF HEAT TRANSFER BY NATURAL CONVECTION1

Problem Description:
To solve a natural convection heat transfer problem, the solution will consist of the temperature and

velocity distribution for various Prandtl numbers. The quantity of heat which is transferred will also be cal-
culated.

Equations:
The Navier-Stokes equation and the Fourier equation can be written for natural convection heat

transfer from a vertical flat plate in the following manner2.

with boundary conditions

dy dx

Using substitutions suggested by Pohlhausen i of :

The original equations reduce to the following system of ordinary differential equations
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With boundary conditions

£ = 0 4 = 0 r/ = l At e = 0

4 = 0 £ = 0 77 = 0 At <r = ~

where the dots denote differentiation with respect to e.

In order to solve these equations a substitution is made for the independent variable.

€ = t/a a = 10

Computer Diagram:

Results of Analog Computer Solution:
The solution of the problem is one of trial and error in that all the initial conditions (the values of

the functions at € = 0) must be known. Values for Z- and 77 at e — 0 are assumed and if the boundary con-
ditions are satisfied, the assumed values are correct.

Figures 1 and 2 show the temperature and velocity distributions for various values of the Prandtl
number as computed.uct aa isumpuLcu.

To calculate the quantity of heat which is transferred from the plate only the value of rj at e = 0 is
:quired. The desired values of the design parameters of interest can then be calculated using well known
;eady state heat transfer relationships !

requi
st

Figure 1: Heat transfer temperature profile.



Figure 2: Heat transfer velocity profile.

Nomenclature:

- (TT)\ 4 v '
= Heat capacity of fluid

GR = ———-—— (Grassoff number)

g = Acceleration due to gravity
h = Over-all heat transfer coefficient,
k = Thermal conductivity of fluid
L = Height of plate

Nu = — (Nusselt number)

P =

T —

(Prandtl number)

Temperature of fluid at point
Temperature of bulk fluid
Temperature of plate

T =xa

u =
v =

x,y =

Velocity in vertical direction
Velocity in horizontal direction
Vertical and horizontal coordinates of a
point in fluid

k
Pp

13 =
- P

Pa(Ta ~ T~)
Dynamic viscosity
Kinematic viscosity
Density of fluid
T - T

REFERENCES

1. This application is based upon an article by R.S.Schechter ("Analog Computer Calculates Heat Transfer), Petroleum
Refiner, Vol. 36, No. 2 pp. 112 - 114, Feb. 1957.

2. Jakob, M.; "Heat Transfer", Vol.1, Wiley and Sons, New York, 1950.

Application Note No. 2
(continued)

(Grassoff number)
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CALCULATION OF RADIAL VELOCITY OF ROTARY SPRAY DRIER

Problem Description:

To compute a curve of radial velocity of a particle vs radial distance from the center of a disc used
in a spray drier. The results of the computation are then used to select the design parameters of a drier for
a particular duty.

Equations:
The differential equation which describes the velocity of the particle is :

v £! + Av3

dr
Br = 0

where
V = Radial Velocity
r = Radial distance from center of disc
A, B - Constants which in the case of laminar flow depend upon the angular velocity of disc, volu-

metric feed rate, vane height, and the density and viscosity of the liquid. For turbulent flow
the same equation hold, with different value for constant A.

Physical Constants:
Mean values of

A = 1.66 x 10'4

B = 3.6 x 107

r = 0 to 5 inches
V = 0 to 6000 ft/min

Computer Equations:
In order to solve this equation a substitution must be made for the independent variable r:

» let r = t/a
then d

dT '-
The equation becomes with physical constants:

dV 3.6 x 107 „

dt

where
a = 5

1
See Perry "Chemical Engineers Handbook", McGraw -Hill Book Co.
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The computer will compute 10 ~3V, thus the equation becomes

10~3 d V _ l(T3Br 10"3AV2

dt 5 V

Calculation of radius :

t = r a

dt = a d r

dr = - dt
a

r = - / d t
a

COMPUTER DIAGRAM

2r = - / d t
a

RADIUS IN INCHES RADIUS .

Figure 1: Plot of Radial Velocity as a Function of Drier Radius.
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ANALYSIS OF THE FLOW PATH OF AN OIL GLOBULE

Problem Description:

It is required to separate an oil-water mixture by using a standard oil separator. The over-flowing
level of oil is 5 feet above the lower end of the oil retention wall. Calculate the minimum length of separa-
tion section of the separator.

Equations :

OIL-WATER
MIXTURE IN

C .OIL RENTENTION SECTION

*=* +

\h'OIL GLOBULE
^ ̂ %gg%%%?£?%^̂

SCHEMATIC OF STANDARD
OIL-WATER SEPARATOR

Buoyancy of the globule

F, tfO3 ,

To analyze the flow path of an oil globule,
its velocity is resolved into vertical compo-
nent v and horizontal component h. The hori-

OVERFLOWING OIL zontal velocity of an oil globule is assumed
constant (throughout the separation section)
and equal to the total volume flow rate divided
by the cross-sectional area of the separator.
The vertical velocity is variable and depen-

Z3—*WATER OUT dent upon a force balance which is derived as
follows :

Inertial force of the oil globule

rrD3 dv
po -7-dt

Drag force against the upflowing globule

Where
D
v

po

Pw

Average diameter of oil globule

Vertical velocity of oil globule

Density of oil

Density of water

Acceleration due to gravity

Coefficient of viscous friction
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The force balance becomes:

The vertical velocity v may by integrated with respect to time to give the vertical traverse distance
of an oil globule within a given time.

t
s = f v dt

J 0

The computer diagram is mechanized to solve for v and s. Since the total vertical traverse distance
is known and the function of vertical velocity will be obtained from the computer, the above equation is
employed to determine the time required for an oil globule to rise to the over-flowing surface. The mini-
mum longitudinal length of the separation section equals the horizontal velocity h times the minimum re-
tention time.

The variables are scaled as indicated below so that the computer problem voltages are as high as
possible but less than ± 10 volts.

[100^]
dt

[50^]
dt

[ lOOv ] [ 10<s]

Scaled Equations:

[lOOv] = 102 g Pw ~ PO [100V

po 40Dp0 [10]

Computer Diagram:

+ 10

200

Each input to every integrator is multiplied by a time scale factor~. In this example (3 - 100 and

the computer solution will be 100 times slower than the behavior of the physical system.



Computer Results :

Plot of vertical velocity of oil globule with tir,

Application Notes No. 4
(Continued)
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INVESTIGATION OF A SIMPLE CHEMICAL REACTION

Problem Description:

The reaction of chemical component A to form component B, which in turn reacts to form component
C, can be represented as follows :

A B -> C

where ^ and r2 are specific reaction rates. The reaction is assumed to take place at a constant tempera-
ture. Find the changes in concentration of A, B and C as a reaction t ime, (for the case of rl equal to
unity and r2/r1 less than 1.0.)

Equations :

The reaction rate for such reactions may be expressed by the following d i f fe ren t ia l equations,
assuming no reverse reactions:

dn^

dt

dni

dt

dn

dt

nA

nB

rate of disappearance of A

net rate of appearance of B

rate of formation of C

$ h e r e n A, ng and n^ are mole fractions. The mole fraction of a component is defined as the number of
moles of that component divided*by the sum of the number of moles of all components.

Therefore 0 < nA, ng, n^ < 1.0

nA = 1.0 at t = 0

Scaled Equations :

The variables are scaled as shown below to assure that the voltages representing the i r maximum
values are as large as possible within the limits of ± 10 volts.

,771. - //7I „

[10
dt dt dt

U0ncl

The scaled equations then become

dn A
-T--1 = r, [10*4]
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Computer Diagram:

Plot of Results Obtained:

y^gf 4m^mt SjjtFtf:

Plot of concentrations as a function of reaction time for different specific reaction rates.
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DYNAMIC RESPONSE OF A SEPARATELY EXCITED GENERATOR

Problem Description:

To investigate the time response of a particular design of a separately excited generator for various
changes in the exciter voltage with a constant resistive load.

Schematic Diagram of Separately Excited Generator

From the schematic the following equations can be written :

p. _ 7 /? , T^ ~ ' x ^ ^ dt

dif

= /„ (Ra + RL)

E = E,

The armature voltage of the exciter Ee is proportional to the field current Ie, so that

^e ~ ^e 'e

Similarly the emf of the generator Eg is proportional to the field current If.
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The equations to be programmed on the computer will then be :

dE.
Tt

dE

Kp R.
= Ei. — - E0 -

dt
a Kg Rf

—— LJ O T ~~* " ILf Lf

E0 =

Maximum values: Ei = 200 volts

Ee = 200 volts

Eg = 500 volts
£„ = 500 volts

Scaled Equations :
The variables are scaled as shown below to assure that the voltages representing their maximum

values do not exceed ± 10 volts :

j_ cf#e 1 dEg

20 dt 50 dt

e
[ —1

20

20

and the scaled equations are of the form :

1 dE0

20 dt

1 dEn

50

50

E0
[—1

50

= [ 1 - [-1
Le 20 Le 20

9 K F Rr FL L\. „ dp 1\. f '-'a

= (- ——— ) [ — — — ] - (———) [ ——— ]
5 Lf 20 Lf 50

— •so R RL so
Computer Diagram

-10

200

-10



Results of Computer Solution:

The response of the generator for changes in the exciter voltage is shown in Figure 1 and Figure 2.
Note that the computer diagram is arranged such that the generator time response to changes in design
parameters can be quickly determined.

Figure 1 : Response of Separately Excited Generator to Application of Exciter Voltage.

Figure 2: Response of Separately Excited Generator to Changes in Exciter Voltage.

Application Notes No. 6
(Continued)
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TIME RESPONSE OF A TWO-WINDING TRANSFORMER

Problem Description:
To determine the time response of a particular design of a two-winding transformer for changes in

the resistive load and input voltage.

Equations :

RI

SCHEMATIC
OF TWO-WINDING

TRANSFORMER

IDEAL
TRANSFORMER

SIMPLIFIED EQUIVALENT CIRCUIT OF TWO-WINDING
TRANSFORMER

From the equivalent circuit the following primary and secondary voltage - equilibrium equations can
be written :

Ei - (R! + a 2 R 2 ) I 1 + (L! + a 2 L 2 ) —- + E X
d t

= I 2 R L

E J _ _ N!
E N 9

where
N 2 I 2 =

= Resistance of primary winding
= Resistance of secondary winding
= Inductance of primary winding

L2 = Inductance of secondary winding

a = Transformer turns ratio
E i ,Eo ,E1= RMS voltages
II, I2 = RMS currents

R2
LI

E L E C T R O N I C A S S O C I A T E S I N C . Long Branch, New Jersey
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Computer Diagram:

E j

Results of Computer Solution :

Figure 1 : Response of Output Voltage of Two-winding Transformer for Changes in Input Voltage.
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INVESTIGATION OF UNSTEADY-STATE HEAT CONDUCTION

Discussion :

Many engineering problems involve the sudden heating or quenching of large slabs of material. In
the annealing or heat treating of metals, plastics, glass, and rubber, for example, an accurate knowledge
of the temperature vs. time and thickness relationships is required. Consider the fol lowing representative
problem.

Problem Description:

FACE

FACE

Determine the temperature distribution along the K
direction of a long wide slab. The slab is initially at a
high temperature (Tl) and is suddenly quenched in a
large ice-water bath at 0°C. Assume that the temperature
in the slab varies in the X direction only.

Equations :

With the assumption made above, the unsteady-state
heat transfer can be expressed by the fol lowing equation:

dT h d2T

dt CpP dx2

The boundary conditions are, for T = T (x, t)

T (x, 0) = 7

T (0, t) = 0
r ( / ? , « ) = o

0 < x <
t > 0
% = B

temperature in degrees C.
time
thermal conduct ivi ty of material
specific heat of material (ave)
density of material (ave)

Using a f in i te-d i f ference approximation of the second derivative of temperature with respect to the
space dimension x, the second central difference becomes ........

'/ J- / m —. rn rrf \

where the subscripts 77 + 1 , r\, TJ — 1 are referred to the number of cross section of the slab.
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25
DIMENSION X

.75 I.O
X=B

The use of the f in i t e -d i f f e rence approach is due to the fact that the Analog Computer can con-
tinuously integrate with respect to only a single independent variable at any one time. This approach is
equivalent to dividing the slab into sections as shown by the sketch and solving for the temperature at
each section.

Using the f in i t e -d i f f e rence approach the Analog Computer must simultaneously solve the following
ordinary differential equations

[-1
10 dt ,pp ?) 10 10

= 0

10 pp. 10 10 10

r i
x*J l L T o J " o

r I dT3-,
10 dt

\
2/ 10 10 10

10
_ (2) [I*.] + [liAW i 10 10

Ts (0 = 0



Computer Diagram:

Results of Computer Solution:

Figure 1 : Temperature Change vs. Time At Several Points Along X Direction.

Application Note #8 (continued)
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INVESTIGATION OF THE PROCESS PARAMETERS AFFECTING THE CONTROL
OF A STIRRED TANK REACTOR

Discussion :

The continuous stirred tank reactor is an essential part of many chemical processes. The problem
below shows, in simplified form, how a model of a CSTR may be set up and studied.

Problem Description:

To investigate the effect of parameter changes on the time
response of the output concentration of a Stirred Tank Reactor.

Equations :

The reaction taking place is

A i B

When the specific reaction rate is defined as

T _ j A T *
K — K crm ~r O 1 n

Material Balance:
Material in v Ci
Material out v C0

Material reacted k FyCc
1 r>

Material accumulated
dt

Summing :
dC0 _ v
~jT ~ V>

- k Cc

Heat Balance:
Heat in v p Cp TI

Heat out vpCp T0

Heat transferred h A*(T0 — T*)
Heat due to reaction — Q V T k C0

Heat accumulated Q y,T °P dt

E L E C T R O N I C A S S O C I A T E S I N C . Long Branch, New Jersey
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Summing:

Ui 1 Q "V rrt
————— =: ——— I •

dt v -
h A /rrt

\ ^ 0
T^Sfc N
•* / —

where
T0, TI, T* = temperature
v = flow rate of material
V ' f = reactor volume
t — time
h — heat transfer coefficient
A* - effective area of heat transfer
p = average density of material
Q - heat due to reaction
Cp ~ average specific heat
Cj = input concentration
C0 = output concentration

Scaled Equations :
The variables are scaled as shown below so that the computer problem voltages are as high as

possible but do not exceed ± 10 volts.

[10CJ

[ lOCol

[— 110

[WK]

10

[10 K] = lOKgm + (1006)
10

[10C 0 ]
[10]

10 dt 10 pVTcP 10 10
Q

ioopC [10]
To,

10



Computer Diagram : -10

+ 10

pVTCP(3

Note that the inputs to the integrators have been multiplied by a time scale factor -TT For /3 < 1
the computer solution will be /S times faster than the response of the real physical system.

Results of Computer Solution :

Figure la: Response of Output Concentration for
Disturbance to Input Concentration. (v/Vf =0.5)

Figure lb : Response of Output Concentration for
Disturbance to Input Concentration (v/Vr =0.167)

3E

^

^
^

^ ^

f^

p
M=

U——O S HR »j

= 0.5
T0 (0) = 65.0
Q = 0.45
TI = 50
r* - o
C0(0) = 0.4

Figure lc : Response of Output Temperature of Reactor for Disturbance to Temperature of Material
Entering Reactor. (v/Vf = 0.167)

Application Note #10 (continued)
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Problem Description:

To determine the output response of a positional Servo System to input disturbances for changes in
the system parameters.

SERVO MOTOR

GEARS,LOAD

TACHOMETER

FUNCTIONAL BLOCK DIAGRAM OF A SERVOMECHANISM

Equations :

Error Device 0[ — 00 — 6

Equalizing Network EI Tp + 1

(. aTp

Servo Amplifier £4 = K 2 E 3 =

Servo Motor, Gears, Load
^_ __
E 4 ( I L + N 2 I n

Tachometer £2

£2)

K o N

E L E C T R O N I C A S S O C I A T E S I N C Long Branch, New Jersey
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Computer Diagram:

Results of Computer Solution :

Figure la: Response of Servo for step input (kj = 0.47, T = 6.5 sec.)

Figure lb : Response of Servo for step input (k-^ = 0.87, T = 6.5 sec.)

CHART NO RA 2921 32 BRUSH INSTRUMENTS

Figure lc: Response of Servo for step input (k j = 0.87, T = 1.2 sec.)
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INVESTIGATION OF THE RESPONSE OF A NUCLEAR REACTOR

Problem Description:

To investigate the time response of a Design of a Nuclear Reactor for changes in the Reactor mul-
tiplication factor §k.

Equations :

The equations* representing the performance of a Nuclear Reactor are as follows :

i = 6dn 5k -

dtf 1*
n + 2 A: C:

dQ ft
—— = —— n — A.[ L»j

d6> 1*

To represent a Nuclear Reactor with five delay groups the following differential equations must be
solved simultaneously :

l£ dk~P n + V 5
A r—— _ ——————— n + x< A: vj

dC

1*

n — A£ C2
d<9 1*

dC

- ~ n - A3 C3
1*

d C .

1*

n - Ac C
dtf 1

5 ^ 5

1. M.A. Schultz, "Control of Nuclear Reactors and Power Plants", McGraw Hill Book Co., Inc., New York, 1955.
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Computer Diagram :

Results of Computer Solution:

Figure 1 ; Response of Nuclear Reactor for Changes in 8k.
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INVESTIGATION OF THE REACTION OF SODIUM VAPOR DIFFUSING INTO A HALIDE

Dis cussion:

Many chemical reactions are so rapid that diffusion of the reactants and products around the re-
acting zone will completely control the system behavior. Such is the case when sodium vapor reacts
with a halide. In the problem below, vaporized sodium was admitted through a nozzle into a large reactor
fi l led with a halide gas. The equations describing this process demand a trial and error type method of
solution.

Problem Description:

To investigate the effect of changes in design parameters on the reaction of Sodium Vapor
diffusing into a Halide.

Equations :

The following equation1 describes the reaction of Sodium Vapor diffusing into a Halide:

dx*

The boundary conditions are

V -> 0 as x ->

The parameters (l — xt] and K correspond to a measure of the nozzle opening used in a reactor
and chemical rate of reaction, respectively. The solution to the equation is obtained when dV/dx and V
become zero simultaneously.

Scaled Equation:

The independent variable x will be replaced by time so that x = t. The variables are scaled as
follows :

0 <C t < + 1010
dt*

lQaV 0 < xl < + 10
dt

[ 1 0 V ]

The scaled voltages do not exceed the maximum permissable computer voltages, ± 10 volts, and
permit the following scaled equation to be written: -

1. "Mathematic Tables and Other Aids to Computation", Physics Abstracts, Vol. IX. July, 1955, pp. 112-116
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Computer Diagram
410

•no

Note that the inputs to the integrators have been multiplied by a time scale factor "g". For
/3 > 1 the computer solution will be /3 times slower than the real reaction of the sodium vapor.

Results of Computer Solution:

The results of several trial runs are shown in Figure 1. From these trial solutions it can be
seen that if V0 is too large, V will change sign before V. If V0 is too small V changes sign before V .
The objective in choosing a V0 is to cause both V and V to go to zero simultaneously. The best tech-
nique to use is to find a "small" value of V0 and then a "large" value of V0, and approach the "small"
value by successively reducing V0 until the correct solution is obtained.

Typical final solutions for V as a function of the independent variable are shown in Figure 2.

CHART NO. RA 2921 32 BRUSH INSTRUMENTS DIVISION OF CLEVITE COifOHATION CLEVtLANO. OHIO PRINTED

Figure 1 : Typical run of trial solution for K = 0.1, 1 — xt — 0.20.



Figure 2: Typical Results of Calculations of the Reaction of Sodium Vapor diffusing into a Halide.

Application Note No. 9
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