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CONTINUOUS DATA ANALYSIS WITH ANALOG COMPUTERS USING 

ST ATISTICAL AND REGRESSION TECHNIQUES 

GENERAL 

The need for statistical data analysis in theprocess 
industries is well known. Measurements of process 
variables or parameters are subject to random dis­
turbances such as the presence of impurities in 
varying amounts, environmental changes, weather, 
etc. Very often it becomes necessary to obtain the 
"best estimate" of a variable over some prior time 
interval for purposes of control. It is this concept of 
"estimate" that introduces statistics. 

With the availability of small, rugged and reliable 
analog computing components especially designed 
for plant environments, it becomes feasible both 
economically and technically to apply statistical 
techniques to the analysis of continuous data for 
either measurement or control. Of special impor­
tance is the fact that an analog device can do a 
simple or complex calculation task while remaining 
a small package in terms of physical dimensions and 
cost. Other computational approaches almost al­
ways imply the purchase of a relatively large' 'min­
imum" amount of hardware. Thus, one is encour­
aged to explore the "simple" applications-- situa­
tions which pay their own way while providing ex­
perience in the use and testing of the analog ap­
proach. 

Such computations can be performed Off-Line, On­
Line Open Loop, or On-Line Closed Loop on con­
tinuous-signal inputs; digitizing of the analog signal 
is unnecessary. Noisy signals, unavoidable in many 
pilot or plant operations, whose deviation traces 
serve as the basis for subsequent calculations can 
be "reduced" to more meaningful form by relative-

ly simple and economical computer circuits. The 
mean and standard deviation of a noisy signal can 
be recorded continuously and on-line, so that all 
subsequent problems in interpreting the data can be 
reduced markedly. More complex but still relatively 
inexpensive circuits can be used to record con­
tinuously, either on-line or off-line, the Fourier 
Series Coefficients of a Signal. Or, in the dynamic 
testing of systems, the transformation from im­
pulse response to frequency response can be ac­
complished, thus permitting determination of the 
best combination of simple input and easily-inter­
preted output. 

THE MEAN 

One of the fundamental statistical estimates is that 
of the "mean" or the "arithmetic average" of a 
variable or a parameter. When dealing with dis­
crete information, the mean is defined by the sum­
mation 

N 

L f. 
1 

f = i=l (1) 
N 

which is recognized easily as the familiar arith­
metic average. For data analysis, this statistical 
property is important for two reasons: 1) it is fun­
damental to the definition of other statistical param­
eters' and 2) it applies equaUywell to normal popu­
lation distributions and to those that are not dis­
tributed normally. 



It would appear desirable to utilize this statistical 
property in the analysis of continuous data or for 
the measurement of continuous process variables 
for purposes of control. In order to do so, it be­
comes necessary to obtain the "estimate" of the 
mean as a continuous and changing function of 
time. Specifically, one must be ableJo define and 
compute the average or mean value, f, of a signal, 
f(t) , varying with time over the interval T 1~ t.$T 2' 

As an example, assume that a steel mill is pro­
ducing a continuous metal strip which, ideally, 
should be uniform but actually is fluctuating in 
thickness (as shown in Figure 1) because of in­
evitable random disturbances in the process. Over 
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Figure 1. Thickness of Steel Plate from a Rolling Mill as a 
Function of Time 

any time interval of reasonable length, the mean 
thickness should be equal to the nominal value al­
though small deviations are allowable. A senSing 
device is monitoring the thickness as the strip 
emerges from the mill, and a transducer is gen­
erating a signal, f(t) , which is proportional to the 
instantaneous thickness. We would like to compute 
the average value of this signal so that it can be 
compared with the desired or nominal value in 
order to see if the process is under control. 

The most obvious definition of the mean or aver­
age value for f(t) over the interval T 1.$ t~T 2 is 

f (t) 
1 

f(t) dt (2) 

This value can be computed with the simple circuit 
of Figure 2. At time Tl the integrator is placed 
in the COMPUTE mode, and at time T2 its output is 
observed. The integrator then can be reset and 
another average taken. 
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Figure 2. Analog Circuit for Calculation of Estimate of the 
Mean for a Fixed Time Interval 

A refinement to this circuit would be to generate 
f(t) as a continuously varying function of time as 
shown in Figure 3. The time interval then must be 
considered as a variable so that the average is 
computed continuously from time T l' In Figure 3, 
T 1 is considered to be zero computer time and T 2 

has been replaced by t since the upper limit of the 
integral is a variable. 
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Figure 3. Analog Circuit for Calculation of a Continuous 
Estimate of the Mean far a Fixed Time Interval 

The circuit of Figure 3, although theoretically an 
improvement over that of Figure 2, has two rather 
obvious limitations: 1) the uncertainty of the divi­
sion when t = 0, and 2) the need to select maximum 
running time in advance, since the integrator will 
eventually overload. This latter difficulty also oc­
curs with the circuit of Figure 2. In each circuit, 
the integration can continue only over a certain 
range of time, and the circuit then must be reset. 
However, the past values of f(t) are lost in the re­
setting; the average computed during the second 
"run" are independent of the values off(t) obtained 
during the first run. If a succession of runs of 
length T are made and the circuits are reset each 
time, it is clear that the last computed average 
depends only on the behavior of f(t) in the last T 
units of time. In other words, from the point of 
view of the most recent average, information older 
than T units of time is obsolete. 

The resetting necessary with the previous two cir­
cuits can be aVOided, and a much simpler circuit 
obtained without worry about overloads and divi­
sion circuits. The clue to the method is the fact 
that past values of f(t) become obsolete. Since the 



basic signal, f(t) , is continuous, it seems advan­
tageous to let past inform.ation become obsolete 
!fradually rather than abruptly. This means that 
f(t) has to be defined in such a way that recent 
values count much more heavily than earlier values 
and the behavior of f(t) in the remote past has very 
little effect. This suggests that a weighted average 
be used. 

The weighted-average-f(t) of a function, f(t), over 
T 1 ~ t ~ T 2 with weight function <f> (t) is defined by 
(1)* where <f> (t)~O in the interval Tl~t.:5T2' Thus 

T2 

1; f(t) <f> (t) dt 

f (t) 
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T2 
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f <f> (t) dt 

Tl 

The integral in the denominator serves to "nor­
malize" the expression. The function <f> (t) can be 
chosen arbitrarily to emphasize or de-emphasize 
various parts of the interval from T 1 to T 2' 

Remembering the requirement that the recent past 
must be emphasized and the remote past de-em­
phasized, it follows that we should choose a weight­
ing function, <f> (t), which is increasing and such that 

lim t~t~:O. Many functions have this property but 

the exponential function is a natural one and leads 
to a simple computer circuit. Picking an exponential 
weighting function, eat (a>O) , Equation 3 becomes 

lT2 
eat f(t) dt 
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*Numbers in parentheses in the body of the text refer to references 
listed in APPENDIX 1. 

This can be simplified by letting T 1- -00, or 

-aT 
f (T) = a e 2 

at 
e f(t) dt (6) 

The minus infinity in the lower limit serves to in­
dicate that the average has been generated for such 
a long time that the effect of what happened before 
T 1 is negligible. In other words, since the exponen­
tial weighting function, eat, approaches zero as 
t--oo, the importance of events prior to T1 is negli­
gible if Tl is suitably chosen. 

Dropping the subscripts, Equation 6 can be written 
as 

f (T) 
-aT 

=ae 

Re-arranging 

T 

T 

L at 
f(t) e dt 

f(T) = a f f(t) e -a(T - t) dt 

-00 

(7) 

(8) 

Otterman (2) defines this to be the "Exponentially 
Mapped Past" or EMP of f(t) over a time interval 
defined by a ~ 

Implementation of the analog circuit for solving this 
equation is reasonably straightforward. Differen­
tiating Equation 7 with respect to machine time, 
T, (t is a dummy variable) gives 

d f(T) 
dT 

T 

= al(~e-aT) feat f(t) dt 

+e -aT [eaT f(T)]} 
-00 

(9) 

d f (T) = a[- f (T) + f(T)] = af(T) - af (T) (10) 
dT 

tThose familiar with linear analysis and, in particular, convolution 
integrals, will recognize Equation 8 as the output of a filter whose 
impulse response ;s ae -at; that is, a first·order filter with time 
constant lla. 



Equation 10 is implemented by the simple circuit 
of Figure 4, which is recognized easily as the cir­
cuit for a simple filter or first order lag. Note that 

-f (t) 

ex 

Figure 4. Analog Circuit for Obtaining the EMP Estimate of 
the Mean 

the input and output signals have been written in 
terms of the more familiar notation for time, t, 
which is not to be confused with the dummy variable 
of Equation 7. 

The value of the constant, ex , determines how fast 
past information becomes obsolete. It is chosen 
arbitrarily to be large enough to filter out non­
essential random fluctuations and small enough 
not to obscure long term trends. A useful rule of 
thumb can be developed by examining the response 
of the circuit of Figure 4. If f(t) changes abruptly 
(step input), f(t) will follow gradually, making 95% 
of the change in 3 time constants or a time interval 
of 3/ex. In other words, as shown in Figure 5, after 
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Figure 5. The EMP Mean of a Continuous Variable Provides 
a Measure of the Averoge of the Variable for a Continuously 
Updated Fixed Time Interval. Note the 95% decrease in the 
value of the weighting function over a period of length 3/a. 
This means that the weighted average at time, t, is virtually 
independent of values that occurred prior to time t - 3/a. 

three time constants, the integrator has forgotten 
95% of the information it had before the step change. 
Consequemly, the EMP average defined by Equation 
8 is an estimate* of the mean over a time interval 
approximately equal to 3/ex. 

*/1 a 99% criterion were used, the time interval would be approxi­
mately 51a. 

In the circuit of Figure 4 it is obvious that an initial 
condition applied to the integrator will improve the 
computed average at the beginning. This value should 
represent a good guess as to the nominal or expected 
mean value of f(t). One normally would have such an 
estimate available. If itis a good estimate, the com­
puted average will be reasonable from the start; if it 
is a bad one, it will not make any difference after 
about three to five time constants. 

THE VARIANCE 

A second important statistical parameter is the 
variance which is used to give a basic measure of 
the distribution of a population. It is defined as the 
square of the standard deviation and is equal to the 
mean- squared deviation of the variable from its 
mean. For discrete data, an estimate of the variance 
is obtained with the summation 

(11) 

The term N - 1 corresponds to the number of 
degrees of freedom involved in the calculation of 
the estimates of the variance (3); practical con­
siderations dictate that the number of samples, 
N, will be larger than one. 

In a manner similiar to the definition of the mean, 
Otterman (2) defines the EMP variance as 

.2(T) ~ { [f(t) _ I(t)]" e - (T - t) dt (12) 

-00 

which, based on the preceding development of the 
EMP mean, will be recognized as the weighted 
average of the square of the deviation of the 
variable from its mean. 

The computer circuit for calculating an estimate of 
the EMP variance is developed easily without re­
course to mathematical manipulations. From the 
definition, and remembering that averaging is ac­
complished by the first-order filter circuit, the 
following operations are required: 

1) form the mean with the first-order filter 
circuit. 



2) subtract the mean from the current value 
of f(t). 

3) square the difference of the mean from the 
current value of f(t). 

4) average the square with a second filter 
circuit. 

From these requirements the circuit of Figure 6 
is derived easily. 

Figure 6. Analog Circuit for Calculatior of the EMP Estimate 
of the Variance 

Example: The LD Steel Process can be used as an 
example of the use of the EMP mean and variance 
for the control of a process. This is the oxygen 
steel making process wherein it is possible to con­
trol bath temperatures without an external fuel 
supply by charging the vessel with materials that 
are thermally balanced. The charge materials con­
sist of hot metal (iron), scrap, and lime. 

The hot metal temperature can range from 2200°F 
to 2600°F, and, hence, it is necessary to measure 
the temperature of the iron to obtain a correct 
thermal balance. 

A two-color radiation pyrometer method is used to 
measure the iron temperature while it is being 
poured into the vessel. A typical trace is shown in 
Figure 7. (For further details of the process the 
reader is referred to reference 4.) 
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Figure 7. Plot of Hot Metal Temperature vs Time for the LD 
Steel Process 

The initial variations in temperature, to<t<tl, 
are due to the presence of smoke and the forma­
tion of voids in the pour. The operator disregards 

these readings until the smoke has been blown 
away (by a fan) and smooth pouring is established. 
Note that even after these conditions have been 
attained, the temperature measurement, t 1<t<t2, 
is subject to fluctuations. 

At present, the "temperature" reading is inserted 
manually into the charge balance computer (the 
mean value of temperature is "guesstimated" by 
the operator). This could be automated easily with 
an EMP mean value circuit since the transducer 
signal is a continuous electrical signal. The condi­
tion that the reading of the mean value circuit 
should not be used at the beginning of the time 
history, t<tl, for reasons mentioned previously, 
can be automated by using the standard deviation 
(variance) as a control criterion, i.e., when 0'2(T) 
is greater than a reference value, do not use 
f(T) , when 0' 2(T) is less than a reference value, 
use f(T). The reference value chosen will depend 
on the maximum variance expected during smooth 
pour conditions. This can be mechanized readily 
on the analog computer by means of a comparator. 

With this simple technique a better estimate of the 
mean temperature could be inserted into the charge 
computer automatically and economically. 

A UTOCORRE LA TION 

The autocorrelation function, defined as an integral 
between fixed limits, is converted easily to a con­
tinuous EMP autocorrelation function, ¢ (T), by the 
definition 

T 

• (T) ~ 1 fIt) fIt -;) e -a (T - t) dt 

-00 

(13) 

Cross correlation also could be accomplished by 
the substitution of a second function, g(t), into the 
time delay box, r, shown in Figure 8, so that the 
output of the delay box is g(t - r) and the output of 
the multiplier becomes - [f(t)] [g(t - T)] • 

Figure 8. Circuit for Obtaining the Continuous EMP 
Autocorrelation Function for Time Delay r 



Reasonable time delays are obtained easily by as­
sembling linear analog computing components. Fig­
ure 9 shows a fourth-order Pade circuit for genera-

NOTE: 7/15. = O.4667( 1/.) 

1/. 

Figure 9. Circuit for Fourth-Order Pade Approximation for 
Ideal Time Delay of Magnitude r (5) 

ting a time delay, T. This circuit is accurate to with­
in 1 degree of phase shift for input frequencies in 
f(t) such that the product of the maximum useful 
signal frequency, wm , with the time delay, T, shall 
not exceed 6.5 radians, i.e., 

TW < 6. 5 radians m- (14) 

FOURIER AND POWER SPECTRUM ANALYSIS 

The EMP Fourier transform of f(t) is defined as 

T 

F(w) = 1 f(t) -aCT - t) -jwt 
e e dt (15) 

-00 
or 

-j wT 
F(w) = a e 

(16) 

f(t) e -aCT - t) ejw(T - t) dt 

The EMP power spectrum is defined as 

(17) 

pew) = \F(w) \ 2 

= .2 [100 f(t) e-·(T - t) Cos w (T _ t) dt] 2 

+ .2 [l f(t) e -.(T - t) Sinw(T - t) dt r 
Figure 10 shows the analog circuit for obtaining the 
power spectrum, pew), of the Fourier transform, 

F(w). The real component, E 1, is formed from the 
transfer function 

E 1 · (P + a)a 
f(t) - - 2 2 

(P +a) + w 
(18) 

and the imaginary component, E2, from 

aw 
2 2 

(P +a) + w 
(19) 

Note that this circuit gives pew) at one value of w. 
The parameter, w, can be changed merely by 
changing the two potentiometers labelled "w" 

pew) 

Figure 10. Circuit for Calculation of EMP Fourier Transform 
and Power Spectrum 

An alternative is to build similar circuits in 
parallel, all having the same input, f(t) , and dif­
fering only in the setting of w. This will allow 
many points of the power spectrum to be obtained 
simultaneously. 

REGRESSION ANALYSIS 

Until now, only those statistical parameters that 
describe a single population--mean, variance, 
power spectrum, etc.--have been discussed. Of 
interest, also, is the method of statistics whereby 
relationships between two or more populations, 
representing different variables, are found. This 
method is called' 'regression analysis". 

There are many types of regression---linear, 
quadratic, high order, multivariate, etc. These 
terms refer to the type of expression used to re­
late the variables. For example, 

y=mx+b (linear regression) 

2 
Y = ax + bx + c (quadratic regression) 

(20) 

(21) 



Regression consists, essentially, of finding the 
best "fit" to a set of data using a least-squares 
criterion. While several authors have hinted at 
obtaining a "least squares" fit by analog techniques 
for special cases, none have shown a straight­
forward solution to the regression problem as de­
fined above for continuous variables. 

As an illustration of how least squares fitting 
would be performed on the analog computer, con­
sider the linear case defined by Equation 20. For 
this general equation it can be shown (6) that the 
following two equations will define the unknown 
parameters m and b, the slope and intercept of 
the line, respectively. 
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(22) 

(23) 

Since X and Y will be continuous functions of 
time, the discrete summation from 1 to N can 
be replaced by a time integral where the total 
time, t, is proportional to N. Therefore, Equa­
tions 22 and 23 become 

f t XY dt 

o 

t 

mf. Xdt+bt 
o 

t 

dt+bi Xdt 

(24) 

(25) 

These two equations can be solved simultaneously 
to yield m and b as follows: 

t t 

b =!a Y dt - m fax dt 
(26) 

t 

(27) 

Figure 11 shows the analog computer circuit for 
calculating the "least squares" parameters m 
and b using the definite integral. One should note 

-V(t) 

, i XVdt 

Figure 11. Circuit for Obtaining the "Least Squares" 
Regression Parameters!!! and ~ 

that in calculating m and b from the definite in­
tegral we form an "algebraic" loop. This brings 
up the question of circuit stability. It can be shown" 
that once the computation is under way, (t>O), the 
loop will be stable unless X is constant. However, 
if X is constant it cannot be used as an independent 
variable in a correlation study. Overloads at the 
very beginning of the computation (a region of no 
interest) can be taken care of with feedback limiters 
on the division amplifiers, or by using a "steepest 
descent" division circuit (7). 

It should be observed that m and b are defined at 
every instant of time. For small values of t 
(corresponding to small sample size), the estimates 
of m and b will be relatively insignificant and, 
hence, will be changing rapidly. As the time in­
terval increases, however, the values of m and b 

become more significant and actually should reach 
"steady state" or non-changing values. 

The technique for linear regression can be extended 
to quadratic or higher order regressions, it then 
being necessary to define a new set of equations-­
such as Equations 22 and 23-- for determining the 
unknown parameters of the regression system. 
Once the equations are defined, they can be con­
verted to continuous integrals and instrumented by 
standard analog techniques. 

Again we are dealing with continuous signals, which 
means that there must be a limit of the integration 
interval if circuits such as that of Figure 11 are to 

* See Reference (8) 



be used. Just as before, the need for resetting of 
integrators can be eliminated by converting the 
equations for m and b to EMP equations and, there­
by, obtaining truly continuous estimates of the re­
gression parameters. 

Equations 22 and 23 are rewritten by dividing 
through N. This yields 

N N 

L Yi LXi 
i=l i=l 

+ b m 
N N 

(28) 

N N N 
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i=l i=l 
+ b 

i=l 
N 

m 
N N 

(29) 

Recalling the correspondence between EMP vari­
ables and discrete summations, one can transform 
Equations 28 and 29 immediately into continuous 
EMP notation which gives 

mX + b (30) 

(31) 

where m and b are now the EMP estimates of the 
regression parameters. The analog circuit required 
is shown in Figure 12. The statements made with 
regard to the stability of the circuit shown in Fig­
ure 11 apply also to the algebraic loop found in the 
Figure 12 circuit, 

It should be observed that time has, in effect, been 
taken out of the problem by the conversion to EMP 
variables. There is no longer any need to "reset" 
the integrators since they are now serving as con­
volution circuits rather than pure accumulators. It 
follows that circuits similiar to those shown can be 
instrumented for continuous higher order and con­
tinuous multi-variable regressions. All that is reo 
quired is more analog computing equipment. 

Figure 12. Unsealed Analog Circuit for Calculation of 
Continuous EMP Values of Regression 

Parameters I:!! and ~ 

CONCLUSIONS 

The conversion of statistical parameters to EMP 
variables enables data analysis to be performed 
continuously through the use of relatively simple 
analog circuits. Limits on the size of the integra­
tion interval normally encountered with continuous 
signals have been eliminated; the need to "reset" 
the integrators is no longer required since they are 
now serving as convolution circuits rather than pure 
accumulators. A continuous estimate of statistical 
parameters can be calculated readily. 

The concept of replacing discrete summations with 
the EMP mean can be a valuable one. In addition to 
obvious uses for instrumentation and control, for 
both on-line and off-line systems, this technique 
also can be used in analog simulation studies. For 
example, it is sometimes desirable to calculate 
the rms value of a computed variable. This is ac­
complished quite simply by 1) squaring the in­
stantaneous value of the variable, 2) taking the 
mean of the square of the variable with an EMP 
circuit, and 3) taking the square root of the mean. 
Other uses arise in simulation workwhere Gaussian 
noise is used to disturb a particular parameter. 
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