’ .
EAI ELECTRONIC ASSOCIATES, INC. West Long Branch, New Jersey

EAI 8400
SCIENTIFIC COMPUTING SYSTEM

PRELIMINARY INFORMATION MANUAL

(© ELECTRONIC ASSOCIATES, INC. 1965
ALL RIGHTS RESERVED

PRINTED IN U.S.A.

March 1965

™)

[

EnEswEne § *

-]

EAl 8400 SCIENTIFIC COMPUTING SYSTEM

SECTION

I

1.0

2,0

3.0

4.0

TABLE OF CONTENTS

EAL 8400 SYSTEM DESCRIPTION

BASIC SYSTEM DESCRIPTION

1,1 Summary of 8400 Characteristics
1.2 Basic System Organization

1.2.1

STORAGE

The Memory :

The Floating-Point Processor

The Exchange Module

The Automatic Data Channel Processor
Expansibility

2.1 Storage Characteristics

2,1,1
2,1.2
2.1.3
2,1.4

2.3.1
2.3.2
2.3.3

Storage Word
Storage Addressing
Storage Access
Storage Parity

2,2 Efficient Capacity Utilization
2,3 Efficient Cycle Time Utilization

Concurrent Memory Operation
Overlapped Memory Operaticn
Combined Concurrent - Overlap

FLOATING-POINT PROCESSOR

3.1 Control Functions

3.1.1

3.2 Ar

e ¢t e o
LRI NOTULDWLWN

:.n&»:»:»‘uwwuwu
NN N M et o ot s
. o

Instruction Characteristics

The Flag Register

Interrupt System

Status and Function Line Control
EXEC Bit Control System

Interval Timer Register

Rapid Access File

metic

Arithmetic Characteristics
Arithmetic Operations
Leogical Operations

INSTRUCTION REPERTOIRE

4,1 Programming Ease and Power

4,1,1

Arithmetic Instructions

Logical Instructions

Flag Transfer Instructions

Index Jump Transfers

Assembly and Machine Language
Programming

PAGE

1-4

'
N Pt et it et e 4D OV N WD W

WOPWNNO

[]
=

S a~a~f~a~e- » u:%:uau:uauau:u»uauauau:
PN

[]
»H

SECTION

1

11

(cont,)
5.0 EXCHANGE MODULE

5.1 Exchange Characteristics
5.1.1 Data Channel System
5.1.2 Automatic Data Channel Processor
5.1.3 External Systems Interface

6.0 SYSTEM ACCESS DEVICES

6.1 Control Desk
6.2 Peripheral Equipment
6.3 Teletype Model 35 ASR 1/0 Desk

EAI 8400 PROGRAMMING SYSTEMS
1.0 STANDARD PROGRAMS AND PROGRAMMING SYSTEMS.

2,0 8400 MONITOR SYSTEMS

2.1 Standard Monitor System 84
2,2 Simulation Monitor System 84
2,3 HYTRAN Monitor System

3.0 8400 PROGRAM PREPARATION SOFTWARE

3.1 Macro Assembler 84
3.1,1 1Introduction
3.1.2 Characteristics
.1.,3 Coding Procedures
ORTRAN IV Compiler 84 System
1 1Introduction
2 Characteristics
3 FORTRAN System Organization
4 System Design

3.2
2,
2.
2.
2,

4.0 8400 PROGRAM LOADING & RELOCATION SOFTWARE

4,1 Auto Load/Dump System
4,2 Linking Relocatable Loader 84

5.0 PROGRAM CHECKOUT SOFTWARE - DEBUG SYSTEM 84

5.1 General

5.2 System Operation
5.3 Organization

5.4 Symbolic Debugging
5.5 Debugging Functions

6.0 RELOCATABLE SUB-ROUTINE LIBRARY 84

1 General

2 Arithmetic Subroutines - Single and Double
. Precision Fixed and Floating-Point

3 Mathematical Subroutines

.4 Conversion Subroutines

5 1Input/Output and Data Display Subroutines

6 Compat Mode Subroutines

PAGE

3-12
3-12
3-12
3-16
3-17

SECTION

II (cont.)

7.0

8.0

9.0

SIMULATION PROGRAMS GROUP

NN~
NP WN =

Hybrid Mode Control
Integration Control
Function Generator Loader
Hybrid Computer Set-Up
Hybrid Debug

HYTRAN PROGRAMS GROUP

8.1
8.2

8.3

Static Check
Report Generator

Equipment Check-Out

DIAGNOSTIC SYSTEM

PAGE

1.

1

1-1

1.0 BASIC SYSTEM DESCRIPTION

The EAI 8400 is a new, exceptionally fast, scientific computing system
that features a unique combination of capabilities for Real-Time Compu-
tation --

HIGH SPEED PROCESSING

FLOATING POINT OPERATION, and

FORTRAN LANGUAGE PROGRAMMING.

With these capabilities, the 8400 is uniquely suited for real-time
applications in -- scientific simulation, hytrid computation, laboratory
or industrial on-line monitoring and control, and batch scientific oro-
cessing as well. ’

SUMMARY OF 8400 CHARACTERISTICS

GENERAL
. Stored-program, scientific computer
Autonomous organization See P..5“4‘
Parallel mode
Silicon and micrologic circuitry.
16 word fast memory, 250 nanoseconds <ycle fme or access Fee
Priority interrupt system with mask registers
Power fail safe
Save register Exe o, EQM\) 3»\4/

Real-time clock

PROCESSOR
. , N
Powerful instruction list - over[;SQ;commands
Floating-point arithmetic, 32 and 56 - bit

24-tit mantissa, 8-bit exponent
45-hit mantissa, 8-bit exnonent

Fixed-point arithmetic, 16 and 32-bit

. 1'2
e
}) s ece{kffer[},» (

Integer, or mixed-mode arithmetic with.

16-bit fixed-point integers and
32-bit floating-point onerands

————

o gt g [l capneily)

Index arithmetic, 16-bit 2

Typical instruction execution times:

7
32-bit FLOATING ADD 3.50 usec [oK
32-bit FLOATING MPY 6.25 usec PRI
32-tit FLOATING DIV ~ ¢.50 usec o Adts T
56-bit FLOATING ADD 6.00 usec '
16-bit FIXED ADD 3.25 usec '
16-bit FIXED MPY 5.25 usec
l6-bit FIXED DIV 7.5Q0 usec
32-bit FIXED ADD 4.00 usec

. Byte manipulations with 1, 2, 4, 8, or 16 bits
Seven index rezisters

Indirect addressing

STORAGE

Magnetic core memory

\6

Canacity to 63,536 words, directly addressable < word ®

Word size and utilization

32 data bits, 2 EXEC bits, and 2 parity bits;
half-word or full-word, and tyte addressing

Exnansion with 4k, sk, and 16k banks

| 2 usec comnlete cycle time
| 750 nanosecond access time
Ao o

Indenendent bank read write control

, . : ;D
el DS evativg vl I6{0E Nf .
- . Storage access by un to four processors fﬂ“ (PrecikeDIS Spef AT Sl IEIE IS Y

g

<
s

/ ¥ et
INPUT. OUTPUT

qﬂéﬁa . Bi-directional buffered data channels -- up to eight available

wﬁmaﬁ -- eaciNhandling up to fifteen access devices

e

s

hﬂv{%§j@f

1-3

Automatic Data Channel Processor available, providing simultaneous
data exchange and compute capabilit Aiect amewory Ocwag

hslos _
ﬁrifg =¥ , Flexible systems interface for real-time, device-systems integration
. Peripherals
magnetic tape systems, card readers and punches, line orinters,
paper tape reader and punch.
CONSOLE
The EAI 8400 System includes an operator's console with complete
register»display and on-line typewriter.
SOFTWARE

. ~ 8400 Standard Monitor System

MACRO Assembler, FORTRAN 1V, subroutine library, and programs
for problem preparation, de-bugging, un-dating and modification

. 8400 Simulation Monitor System

Hybrid mode control, integration control, function generation, and
other programming aids--for digital and hybrid scientific simulation

. 8400 HYTRAN® Monitor System

Designed primarily for processing programs used for preparation
and check-out of analog and hybrid computer programs

e

Asceelder — YTHAP
@Q\Q A %{3 Y - ape uy 2 A
Valovgy T - CARPER

8 a service mark of Electronic Associates, Inc.

{

M Binr PR s

1.2

1.2.1

!é——’—a

W

A.D, cuy

1.2.3

BASIC SYSTEM ORGANIZATION

The basic system organization of the EAI 8400 integrates the operation
of three autonomous subsystems; Memory, Floating-Point Processor, and
Exchange Module. A fourth subsystem, the Automatic Data Channel Pro-
cessor, is an optional exnansion for the system. Each of these sub-
systems has independent timing and control facilities. System inter-
relationships are on a request/response basis. The control autonomy
feature provides an unusual expansion flexitility for increasing machine
throughput, as well as capacity. Figure 1-1 illustrates the internal

. system organization and various means of interfacing with external de-

vices and systems.

The Memory ;QQMD:'@i'K,;

1

The Memory is structured with one, two, three, or fodf)independent Memory
Banks, each having autonomous control and data ha;ETIﬁg facilities for
processing storage read and write requests from the system processors.
Penks of 8192 and 16,384 word capacities are available, and may be used
in any combination. Each Memory Rank has four storage access channels.
In a typical multi-bank system, the first access channel of each bank is
connected to a bus from the Floating-Point Processor and the second
channel is connected to a separate bus from the Automatic Data Channel
Processor. This configuration nrovides overlapnped memory access by the
Floating-Point Processor, as well as simultaneous Input/Output and Com-
putation. - The third and fourth access channels may be used for multi-

_processor exnansion and/or interfacing with external mass memory devices.

The Floating-Point Processor

The Floating-Point Processor employs a 32-bit .wordlength which provides
for a powerful instruction repertoire (over 750 commands) and direct
addressing of up to 65,536 words of memory. It has unusually extensive
capabilities for both arithmetic and logical operations. The Processor
is designed with floating-point as a basic, rather than expansion,
capability. This concept is fundamental to the 8400's exceotional float-
ing-point speed and storage efficiency characteristics.

The Exchange Module ﬁ14ﬂ46?
The Exchange Module contains a Data Channel System for interfacini/;ith
standard external devices and a System Interface for special devide and
Systems integration. The Data Channel System provides communication
paths and control for up to eight bi-directional Data Channels, each
capable of handling fifteen device controllers (including A-D and D-A

- conversion equipment). The channels are designed for the new 8-bit

ASCII and EBCDIC peripheral codes and have internal logic for byte
assembly and disassembly, parity generation and checking, and collating

1.

2.4

.2.5

1-5

code conversion. Independent channel operation may be under program
control, or under control of the Automatic Data Channel Processor. The
Systems Interface includes a directly addressable input/output bus
system and provision for control lines and external interrupt lines as
required for hybrid or other system integration.

The Automatic Data Channel Processor

The Automatic Data Channel Processor provides a means of control for the
Data Channels that permits block data transfers independent of the Float-
ing-Point Processor. Once initialized it executes a complete re block data
transfer betweeén the selected peripheral devices and memory, with data
transmission occurring over a separate memsry~bus. Occed— clia ww el
\wwgé@ora e &(mn fbﬁ pﬁxz&&nfE»Vﬂﬁmb“[

f
Oiecess Chgnne

Expansibility

Modular expansibility in both capacity and speed are fundamental to the
8400's basic design.

Throughput of the Floating-Point Processor can be increased by increasing
index register speed with optional conversion paks, or by the addition

of an optional 16 word fast memory (Rapid Access File) for scratch-pad
and high-speed looping techniques. Faster storage processing is obtained
by over-lapping when the initial Memory is expanded with additional banks
and Exchange Module throughput is increased by simultaneous channel
operation when new Data Channels are added. Further increases in speed
can te realized by expansion to a multi-processor system in which several
Fioating-Point Processors operate in parallel,

The control autonomy feature of the 8400 provides an unusual expansion
flexibility permitting the uo-dating of individual subsystems with new
technological advances, without obsoleting the existing initial system
hardware.

+1fp (oo ro&

R '(Gg&cﬁ
Aewgsd

e

[T
BT
(Jﬂ.l\

.. \\\
AN

A

> * o 'OTHER PROCESSORS

F'LOATI NG POINT
> PROCESSOR

\\\\M\\\\\:\\\

4‘
: T T ' T e~ MEMORY INTERFACE -
JINBEEE # 3 # 4
ygyp\av\\ MEMORY | | MEMORY | | MEMORY
BANK N\ BANK BANK ~ BANK
" U
| — — 't
Y
| AUTOMATIC
~.--—---— . DATA CHANNEL
| CONTROLLER -

G} FUNCTION
\ 5] LINES
\ \\\\\\ Z | LINES
DATA CHANNELS |
\\\\\\\ NN N Z J@— INTERRUPT
\PAPER\ WN = IN
ONSOLE ‘N 2|3]4|5]6|7|8 7 LINES .
TAPE] |
\\\\\\\ k\\\ 5 Jw® ADDRESSABLE -
TR NN ‘ I/0 BUS
NI YPE - D
RN REE3 3
CARD d
READER
Py, 'MAGNETIC |
TAPE
PUNCH 4 ?"'iCONTROLLER
LINE ! 2| |3 4
~[PRINTER TRANSPORTS
OTHER N INDICATES STANDARD
DEVICES ' MINIMUM SYSTEM
EAl 8400 SCIENTIFIC COMPUTING SYSTEM

- FIGURE I-1

2.1

2.1.1

2.1.2

2.1.3

llggNR;ocess1ng and table manipulation. Figure 2-la shows the memory

2-1

2.0 STORAGE

- The Memory provides high-speed, random access storage of instructions and

data used by the Floating-Point Processor and Exchange Module. It has a
maximum directly addressable storage capacity of 65,536 words, 131,072
half-words, or 262,144 8-bit bytes. The capacity is provided by independ-
ent banks each having control and data handling facilities for processing
storage requests from four system processors. The banks are of a non-
volatile ferrite core construction and are characterized by a 2 microse-
cond complete cycle time and a storage access time that is 750 nanoseconds.

. STORAGE CHARACTERISTICS

Storage Word

The memory word of the 8400 is comprised of 32 bits for information

storage, 2 EXEC bits for special control functions and 2 parity bits;

thus a memory word is 36 bits in length. The information portion may

be used alternatively as one full-word location, for the storage of a

32-bit operand or instruction, or as two half-word locations for the

storage of 16-bit operands or address fields. A parity bit and an EXEC

bit are assigned to each half-word. The EXEC bits, an exclusive feature ,
of the 8400, are used as markers for such purposes as dynamic re-location, ¥

:
el
L

Storage Addressing

The.location of data in storage is identified by a 16-bit memory address

<gword~ The bit designations of the address word are interpreted differ-

e

ently by memory banks of different storage capacities. Figure 2-1b shows
word format and its interpretations by an 8192 word bank and 16,384 word
bank.

Storage Access T R

The Memory Banks in an 8400 Memory may be accessed by up to fouﬁ‘processors,
These may be Floating-Point Processors, Automatic Data Channel Processors

or external mass memory devices. The processor requesting access to storage
transmits a request signal and a 16-bit address field to storage. The
request signal specifies the read or write operation to be performed and

_whether full-word, half-word and/or EXEC&Bits are to be transfered. If

the same bank is accessed simultaneously by two request sources, the bank

control unit services the requests sequentially. 3
RO Cov aﬂtmj +o wlea b vl

EXEC BIT

FULL WORD"—l | PARITY BIT

|

LH RH

rm
L m

r v

LEFT HALF WORD—J ~ RIGHT HALF WORD ——j

e

EXEC BIT LEFT HALF EXEC BIT RIGHT HALF

PARITY BIT LEFT HALF PARITY BIT RIGHT HALF

—l T U

MEMORY DATA WORD FORMAT

FIGURE 2-I1A
0 1213 15
8K MEMORY BANK
; J
g -
BANK WORD ' N) th . | LA l\[\{!. g
ADDRESS ADDRESS S nU
/K\ AXL %(Vil \OC)‘/*’:# =
0]2 IS
: I6K MEMORY BANK
r" a3 —J
Y Y
BANK WORD

ADDRESS ADDRESS

ADDRESS WORD FORMATS
FIGURE 2-I8B

2-2

2.1.4 Storage Parity

One parity bit accompanies each half-word transfer in the 8400 and two
parity bits accompany full-word transfers. Odd parity is employed; that
is, the parity bit is set such that the number of "1's" in a half-word,
plus the parity bit, is always an gﬂgmnumber. During a write cycle, the
correct parity bit is generated and stored automatically. During a read
cycle, the detection of a parity error causes the Memory Parity Indicator
to flash at the console and initiates an internal Parity Failure interrupt.
The memory bank causing the error may be located by the interrupt sub-
routine or, alternatively, by the operator using the Bank Select Switch on
the console maintenance panel.

2.2 EFFICIENT CAPACITY UTILIZATION

Directly addressable data units which can be stored in one 8400 memory
location include 32-bit full-words and 16-bit half-words, as previously
noted. In addition, the Processor provides Double Precision Floating-

Point Instructions which permit the direct sequential addressing of a
contiguous word-pair and a set of Logical Connective Instructions which
enable the direct addressing of 16, 8, 4, 2, and 1l-bit bytes. Thus, the
effective addressable storage capacity of the memory depends not only

on the number of memory locations; but also on the sizes and mix of the

data units to be stored. For example, a 64k memory has storage capacity

for 64k floating-point or fixed point operands of 32-bit word length, 128k
fixed-point operands of 16~bit word length or 256k ASCII or EBCDIC peripheral
code characters. Figure 2-2 summarizes the effective storage capacities for
all of the 8400 storage unit sizes and indicates the types of program infor-
mation that utilize each of the sizes. The variety of useful types of
‘information which can be stored in storage units of an exactly matching

size results in highly efficient utilization of the available storage, by
permitting dense packing of information with almost no waste capacity.

All memory addresses are available for general program use with the exception
of a few addresses reserved for special purposes. The reserved addresses
are listed below (1n octal notation)

7)
\"'Mir ‘»

oo
VS conibly Addresses 00000 00007: Reserved for the Accumulator, Save
5 Register and(G‘Index Registers

V/‘%,;;~éw« Addresses'OOOlO 00027: Reserved for the Rapid Access File
9 : 7 e Wkad s Mae ;&p~@<;
i Ve eds o, Addresses 6 04 OOOGOx\ Reserved for 16 Internal Interrupt
- f s s «,‘MMM_M e 1i 1 ti
shoyld i e 4§,/“M,Mw_ﬁ N ne locations

,///;251, Addresses Q0061 00460: Reserved for 256 External Interrupt

T line locations

The Accumulator sﬁét§éve Register are standard arithmetic hardware registers

2-3

EFFECTIVE ADDRESSABLE STORAGE CAPACITY

ADDRESSABLE DATA UNITS/ STORAGE CAPACITY TYPE OF INFORMATION

_ DATA UNIT MEMORY WORD -WITH 64K MEMORY

64-BIT DOUBLE PRECISION FLOATING

WORD PAIRS 1 32K POINT OPERANDS

32-BIT FLOATING POINT AND EXTEND-

FULL WORDS 1 64K ED FIXED POINT OPERANDS;
or INSTRUCTIONS

16-BIT FIXED POINT, INDEX AND

WORD 2 128K INTEGER OPERANDS; or
ADDRESS FIELDS

16-BIT 4 HEXADECIMAL CHARACTERS,

BYTES 2 128K 4-DIGIT BCD CODES; or
OTHER 16-BIT FIELDS

8-BIT ASCII AND EBCDIC 8-BIT

BYTES 4 256K CHARACTER CODES; or 6-BIT
ALPHANUMERIC CODES

4-BIT BCD NUMERIC CHARACTER

BYTES 8 512K CODES; or OTHER 4-BIT
FIELDS

2-BIT 2-BIT TEST OR DECISION

BYTES 16 1024K MAKING STATUS CONDITIONS

1-BIT 1-BIT TEST OR DECISION

BYTES 32 2048K MAKING STATUS CONDITIONS

FIGURE 2-2

2.3

Ny

3.1

2.3.2

2.3.3

2-4

addressable as locations 00000 and 00001. The index rezisters and Ranid
Access File are ontional hardware registers whose functions are fulfilled
with core memory locations in systems in which these options have not
been elected. Any of the locations reserved for external interrupts may
be used tor other purposes in systems not requiring the full external
interrupt line capacity of the 8400.

EFFICIENT CYCLE TIME UTILIZATION

Each of the independent banks of which the Memory is comprised is an
autonomous storage module capable of responding to read and write re-
quests from up to four storage request sources. The control autonomy
provided for the banks makes possible the use of several operational
techniques that effectively increase the processing sneed of the system.
The techniques are as follows:

Concurrent Memory Operation

In this mode of operation, words in different memory banks are accessed
simultaneously by different subsystems; for example a Floating-Point
Processor and an Automatic Data Channel Processor. o ok

B v \3 [O RN
10, . AP e :
gpe Do
S

Overlapped Memory Operation

In this mode of operation words in different memory banks are accessed
in "overlap'" fashion by one subsystem; as in the case where a Floating-
Point Processor while storing data in one bank begins fetching the
next instruction from a different bank.

Combined Concurrent-QOverlap

In this mode of operation the requesting subsystems operate concurrently
and overlap their individual memory accesses by addressing the same
banks alternatively; and different banks simultaneously.

The use of these three modes of operation can significantly reduce operat-
ing time in multi-processor, multi-user and single user systems.

Vo
b
oK e s

3-1

3.0 FLOATING-POINT PROCESSOR

The Floating=-Point Processor employs a 32-bit word length which provides

for a powerful instruction repertoire (over 750 cormands) and direct

addressing of up to 65,536 words of memovy. It has unusually extensive
capabilities for both arithmetic and logical operations, as well as extensive
control capabilities. The Processor is designed with Floating-Point as a
basic, rather than expansion capability --- a concept fundamental to the
8400's exceptional floating-point speed and storage efficiency characteristics.

The processor provides system control for the 8400 system of autonomous
functional modules, integrating its own operation with the operation of the
Memory and Exchange Module. This role of systems control is illustrated

by the diagram of Figure 3-1. '

As the cential processing unit of the 8400 Computing System, the Floating-
Point Processor provides all of the capabilities for control and execution
of the stored program. An indication of its powers and capability in this
role is given by the following descriptions of the princip¥ registers
affecting operation: Gk&~

Processor Registers

1. Instruction Register (I) contains the (3structioz§currently
§
being executed. | -

®

FOSETa 2., Location Counter (L) con:iains the address of the next instruction

to be executed. The register is addressable under program control.

.3, Accumulator is designed to be "universal'; i.e. every variety of
arithmetic and data manipulation is pe~formed with the one
register, making programming simpler. It consists of four
sections: a 16-bit accumulator, a 16-bit extemsion for 32-bit
fixed-point, a 16-bit ex'ension for 32-bit floating-point, and
a 24-bit second extension for 56-bit floating-~point. All manipu~
lations between the accumulator sections are handled automatically.

e A s

4. Save Register ($) saves the current contents of the Accumulator
concurrently with execu'ting an arithmetic instiyuction. It is
. et Ry,
addressable as memory location one.

5. Index Registers (X) provide automatic address modification. Six
core index registers and accumulator index capability are basic
to the computer. The accumulator is index register 1, iz rest Aare

P CARN AT X7.

6. Flag Register (F) contains indicator bits, set as the result of
arithmetic operations, exchange and interrupt status signals. The

Flag Register is addressable. , , rohat iz@féL§QMh’?

e e .

3-2

Internal Mask Register (IM) contains a 16-bit priority pattern
specifying which interrupt conditions should be acknowledged.

External Mask Register (EM) contains a 16-bit pattern as described
above but for external interrupt conditioms. ... 5
A =,4 Z
Interval Timer Register (T), provides an Opthé;l real-time clock
whose contents are decremented by one, every\millisecona) When
contents are reduced to zero, an interrupt signal is generated,

the initial value is reset, and the clock continues. The Timer

\ register is addressable.

Rapid Access File provides 16 hardware registers of 32 bits and |

2 EXEC bits. These registers have a 250 nanosecond access time ; /75
for high speed data storage or instruction execution. When this
option is not present in the system, 16 memory locations respond

to Rapid Access File instructions.

Console Register (C) is accessible by the program and by the
operator, It allows monitoring, data display, and data input while
the program is running. Pftlfy

The control and arithmetic-logical capabilities of the Floating-Point Processor
are described separately, in the immediately succeeding sections; 3.1 and
3.2, respectively.

EAl 8400 SYSTEM BLOCK DIAGRAM

EXCHANGE MODULE

AUTONOMOUS MEMORY BANKS

FIGURE 3-I

ACCESS DEVICES PROCESSOR /{
MAG TAPE | _ e L
SYSTEM LOGIC |SPECIAL | IRAPID 1. .|
SIGNAL JCONTROL /| | access b v
CONTROL | IREGISTERS | feig
CARD READ| | PAPER STATUS [{LOC COUNTER}/ 0
AND PUNCH| ¢ | TAPE READ LINES [T[R-T cLock _|v{'/NDEX 1C) |
8 PUNCH FUNCTION [+ INT. INTERR. |/{REGISTERS}/
UINE COMPUTER LINES EMEXT. INTERR. | 3
fonemarand
PRINTER CONSOLE 'NL-ERRUPT C[consoLE v
—— LINES T[INSTR. REG. |*|UNIVERSAL
CRT B WRITER FLELAC REGIST JV|ACCUMUL ATOR
DISPLAY t I
<uP TO I5
%::Cfgss — DEVICES PER wee !
| DATA CHANNEL 1 , | (savE REG.)
’,_. *T
4 ACCESS
LINES PER
BANKD
AT T
STATUS |
LINES |EXTERNAL 3|4|s|6]7|s < < g S
FUNCTION | SYSTEM - N N N N
LINES INTER- |{DATA CHANNELSH BAINK x BA;K ; 8A3NK ; BA:K ;Ta
LINES CHANNEL
CONTROLLER
“*AbDRESSABLE
BUSS LINES

3-3

3.1 CONTROL FUNCTIONS

The control functions performed by the Processor include the
sequencing of the computer through its program, the interpretation
of instructions, the timing and gating of data flow, and the
establishing of control relationships and priorities for the 8400 .
System. These functions are carried out through the use of the
following control techniquesi

a) Logic timing and gating of the various system data busses,
enabling the unique data paths required for the execution
of each instruction; hardware control of other system
elements as required by the operation being performed using
the decoded instruction as its guide.

b) Automatic Internal Interrupt System which provides the
facility for continuously monitoring various conditions
of the computer or its environment, and notifying the main
program when certain conditions occur. If an interrupt
signal is acknowledged, the main program will stop and
transfer control to a subroutine, which services the condition.
Use of the interrupt system permits immediate detection of
system faults and facilitates the operation and coordination
of asynchronous external devices. '

=

Program-controlled Internal Status and Fuanction Lines which
allow the programmer to monitor and set control lines
throughout the system,

0
~

Several special registers are employed in some of the control functions.
~ These include the Flag Register which provides on-line monitoring of

program and optional Interval Timer Register and Rapid Access File.

An exclusive feature of the 8400 is its unique EXEC BIT Coantrol

System which enables the use of the EXEC bits marking each half

word storage location in memory for special control functions,

such as dynamic relocation of subroutines and coding sequences from

g&iflﬁg‘agiminmemgr_?gqmgnmoche F' bt \St(jl {eCia V."f*ﬁ’,{) o PW?C’ LIRS Pﬁh‘\a%‘c "rl“é»@ﬁ”g
PR "o

enec. vouttae ot Ll EeoA's

) ; ' v e b . cry
3.1.1 Instruction Characteristics hovdwoie dynamie (elocaton o
Content —odelitated ooy 5 !

The 8400 is a single address computer employing a 32-bit instruction
word. Under the normal mode of control the stored program is executed
sequentially. The current instruction is contained in the Instruction
Register (I) and the address of the next instruction is contained in
the Location Counter (L). The execution of an individual program -
step is determined by the current instruction which is interpreted

by logic and timing circuitry that implements the various functions

3-4

to be performed. The normal program control capabilities therefore
are indicated by the 8400 instruction word format which is shown
below. These capabilities include addressing, address modification,
and instruction interpretation and control.

8400 INSTRUCTION WORD FORMAT

i —w-~ﬂ-'“\l
0 5 16 17 20 31 ‘MMWMWQ;{, |
M FIELD *| x | OP FIELD :g‘“{f’j; Che
T mel tesed

1

R R I/ R R
,h o iR 1

M is a 16-bit address field. * is an indirect address bit.
X is a 3-bit index register field. OP is a 12-bit command.

Addressing
In arithmetic and logical instructions the 16-bit M Field may contain

the address of a direct or an indirect operand, an immediate operand,
or a_shift count. In immediate addressing the address field itself is

numbers in two s complement notation. -+ o = BIgn ik ¢

T

The addressable locations in which data may be found include any of the
32-bit memory locations, the Accumulator and the Save Register.

e

In control instructions the M Field may contain the address of an ar
internal or external sense or function line and registers of external
devices that are interfaced to the Addressable Input/Qutput Bus of the
Exchange Module,

Address Modification

The * Bit in the instruction word determines whether or not indirect
addressing is to be performed before an operand fetch. Multi-level
indirect addressing is permissable, with optional address modification
at every level.

The X Field specifies the index register to be used for address modi-
fication., This 3-bit field can address seven index registers. When
indexed address modification is specified, the effective address is
formed by gdding (in two's complement notation) the contents of the
selected index register to the base address contained in the M Field.
A zero code in the X Field indicates that no modification is to be
performed. -\ .t ot Tl wades feg;e¥€f%

3-4a

FLOW CHART ROR ADDRESS MODIFICATION

WHERE INDEXING, INDIRECT ADDRESSING AND
IMMEDIATE ADDRESS IS PERMISSABLE.

FETCH
INSTRUCTION

i {ff /&’,: /
FETCH NEW M +¢(x)->m
ADDRESS AND
ADDRESS MODIFIERS
FROM m "
S
[YES INDIRECT e
ADDRESS mc\ﬁ"?({ Joo v
\'»"‘”'\ v T
gt ("
IMMEDIATE
-~ ADDRESS YES
(N I-REQ)

A N

Apeue ! plie

r“,j’h @ui;l; 2

et FETCH
OPERAND

—

EXECUTE

INSTRUCTION

R 4 TR AN

AT Y

the modified effective address is uaed for indirect addressing at

| it

\ “\ If both indirect addressing and éddréss médificétiou are specified,
\

‘each Tevel.

“Instruction Interpretation and Control

The 12-bit OP Field contains the operation code for the instruction
to bé‘ﬁi?fﬁrmed. Ingtruction decoding logic interprets the OP code
dnd sets the appropriate data paths and control circuitry required
to execute the imstructionm. Tl

The length of the OP Field in the 8400 provides an- unusually exten-
sive instruction repertoire of over 750 commands. The sider code
employed utilizes certain bits to designate Basic Operations (B) and
other bits to designate Operation Modifiers (M). With this bit or-
ganization the programmer need remember only B + M codes to specify

(L
?*f%&%x%e“ B x M instructions. Two special modifiers specify unnormalized float-
2;*Mlﬁ svad ing-point operation and the saving of the contents of the accumulator

in the Save Register prior to instruction execution.

In data addressing, bits in the OP Field augment the address field,
specifying immediate addressing; or, in the case of operations with
half-word data or smaller bytes, specifying. the position of the data
at the addressed location.

3.1,2 The Flag Register

The 8400 control system contains a 16-bit Flag Register and associated

1 circuitry that provide {continuous 1 onitoring| of sixteen machine condi-

’ ~ tions during the course of a program. The individual bits of the Flag
Register indicate the status of these conditions at the end of each
instruction. Logic circuitry controlled by the current instruction en-

“ables testing, setting and resetting of the Flag Bits and provides a
capability for conditional modification of the normal sequential control
of the program in progress on the basis of a program condition monitored
by one of the Flag Bits.

| FLAC RECISTER
Acc § %@Lgﬁ ! . |
0 5o ebd Qe '
lelzlelr]vlclslel1]2]3ls]s]e]7]8
e - .] —
"/ Arithmefic Status Programmer Flags 1:8
\m - mwﬂggﬁi‘&() -~ Unconditional (senme >M}h%‘g}»h(w 3

- Accumulator Zero (or equality in comparisons)
- Accumulator Greater than Zero (or Greater in comparisons)
- Accumulator Less than Zero (or Less in comparisons)

N

3-6

V - Overflow of Accumulator (Cumulative)

C - Carry-out (Most Significant Bit)

B - Function Line or Data Channel Busy (not available)

E - Internal and External Interrupt System Enabled

1-8 - Console Programmer Flag 1-8 set

Note: complement testing of flag bits is also provided; /7 L7
Z bit can alternatively indicate a high (one) re- e
sult for a Test Sense Line or Test EXEC Bit in- v
struction

The Flag Register can be stored by the program, thereby enabling the
{ internal status of the machine to be retained and later retrieved after
+ program interruptions are completed.

3.1.3 Interxupt System

The fast and extensive interrupt system of the EAI 8400 provides the /&;nQML/
capability for altering the normal flow of sequential program control

in response to the occurrence of any one of sixteen computer internal 'l &th”4¢
conditions and operating modes monitored by sixteen internal interrupt

lines; and, up to 256 external conditions monitored by the addition

of external interrupt lines to the Exchange Module. When an interrupt
condition occurs, the interrupt system automatically notifies the main

program and, if acknowledged, stops the program and transfers control

to an interrupt subroutine. The subroutine services the interrupt and

returns control to the main program.

Conditions Monitored

External interrupt conditions are assigned at the users option when
external interrupt lines are installed. The internal interrupt
conditions are fixed by the design of the machine. These internal

conditions are listed below in order of assigned priority (from highest
to lowest).

INTERNAL CONDITIONS

0. Power Failure - Detection of a drop in AC line voltage below
operating level -

1, Parity Failure- Parity check error in a memory bank or data
' channel

2., Reserved

3.

4.

S.

6.

7.

EXEC Mode -~
Exponent Fault-
Memory Protect-
Mode

Interval Timer-

Console -

8-15., Exchange Mod-

ule Data
Channels

3-7

Presence of set EXEC bits in a word read
from memory

Presence of an exponent overflow or under-
flow in floating-point operations

Attempt to write in a protected location
in memory

Down counting of Interval Timer register
to zero

Operator depressing one of four console
interrupt control buttons

Data Channel 1-8 interrupt control lines ‘Jupewor“es
(last four may be used as external lines ‘¢¢f*

at users option if data channels not The.
installed)

System Structure and Priorities

The System interrupts are arranged in Groups of 16, each group having
16 individual interrupt levels, as follows:

Group 0
Group 1
Group 2

Group 16

Internal interrupts 0-15
External interrupts 0-15
External interrupts 16-31

External Interrupts 240-255

Each group of interrupts has priority over each succeeding group,
and each level in a particular group has priority over lower levels.
At the beginning of every instruction execution cycle, an interrupt
scanning system sweeps through each group of interrupts, starting
with Group O,

Because of the scanning action of the interrupt system, interrupts of
higher priority are always detected before interrupts of lower priority.
Once an interrupt routine is given control, only interrupts of higher
priority may interrupt the interrupt subroutine although this arrange-
meat may be masked if desired. Detection of an active interrupt line
takes place during the scan sweep, but the interruption of the normal
program cycle by recognized interrupts takes place only after an
instruction has been executed and before the next instruction is fetched.
Exceptions are the EXEC and parity internal interrupts occurring on an
instruction fetch which will interrupt before the instruction is executed.

System Enable-Disable

The entire interrupt system, both external and internal levels, may be
enabled or disabled by setting or resetting the E-bit of the Flag Register.
This bit may be appropriately set by the following instructions.

(1) LDF - load flag register
(2) JSE, JRE, JTE, LRE and their complements JSNE, JRNE, etc.

(See Flag Test Instructions in Instruction Repertoire
Section).

<1
i

~d

An exception is the Power Failure interrupt which can never be disabled.

Dynamic Priority Allocation

A very powerful feature of the 8400 interrupt system is the capability
provided for Dynamic Priority Allocation of both external and internal
interrupt lines, under program control. This is accomplished by means of
Internal and External Mask Registers which provide masking control of the
basic interrupt registers that continuously monitor the interrupt condi-
tions assigned for detection.

The Internal Mask Register contains 16 masking bits corresponding to
Interrupt Group O (internal conditions 0-15) and the External Mask Register
contains 16 masking bits corresponding to Interrupt Group 1 (external condi-
tions 0-15). The priority sequence of the interrupt lines in these two
groups may be altered by resetting (to zero) the masking bits of lines to be
inhibited; and setting (high) the bits of the lines to be recognized. This
is accomplished by LDM.and LDE instructions used to load the internal and
external mask registers with the appropriate bit patterns. Additional
groups of external interrupt can be inhibited under program control by
means of the STATUS/FUNCTION LINE INSTRUCTION (SFL).

Through the use of mask control it is possible for the programmer to
achieve the following results:

(1) Ensure an interrupt subroutine is not interrupted by one or
more higher priority interrupts by resetting the corresponding
mask bits for those higher order interrupts to be prevented.

(2) Restructure the normal priority sequence bty loading and 'safe-
storing' mask configurations conforming to the order of priority
desired.

(3) Establish a dynamic "priority" level for the main program whereby
only selected priority interrupts will be able to interfere.
This is accomplished by altering the masking bits with instructions
in the main program sequence and can be changed as the program
progresses.

3.1.4

3-9

Interrupt Memory Locations

A unique memory location is assigned for each of the internal and
possible external interrupt lines. Upon detection of an interrupt
condition the normal program cycle is broken and an unconditional
Jump is effected to the memory location assigned to the particular
interrupt line that is signalling for the program's interruption.
The instruction which the programmer has stored in the interrupt's
assigned memory location now determines the computers response.

This instruction, which cannot be interrupted, controls the action
taken by the interrupt logic in executing the interrupt subroutine.
Three choices of instructions which may be used for this purpose are:

(1) a "Link" Instruction: This is the normal interrupt subroutine
1 linkage. The address of the next unexecuted instruction of
.~ the interrupted program (location counter contents)_ggg

stored in the memory address specified by the link instruction

and the subroutine starts in the next memory cell. This

avoids problems encountered in computers permitting only

one such preassigned cell in handling interrupts of other

interrupt routines.

N —

(2) an_"Execute' Instruction: The instruction contained in the
address specified by the Execute command will be singly
executed without affecting the Location Counter (unless
that instruction is a Jump or Link). This choice is used -
for single or chained "Execute' interrupt subroutines.

(3) any Other Instruction: The instruction contained in the
interrupt memory location is executed and control returns
to the next imstruction using the address in the Location
Counter. :

The variety of actions available through the choice of instructions
that can be stored in an interrupt memory location adds another
dimension of flexibility to that provided by the masking systems.

’ o N Ny e i
Status and Function Line Control gensi Vhedn & ol

The capabilities provided by the Flag Register and Interrupt Systems,
for modifying program control on the basis of internal and external
conditions, are augmented in the 8400 by Status and Function lines
which can be tested, set and reset under program control. Four banks
of status and function lines are available; the first two of which are
reserved for internal control purposes.and the remainder for external
systems control. T

By using a set of Status and Function line commands (see Instruction
repertoire section), internal conditions can be tested, and logic and
data flow circuitry can be manipulated under program control. Control
commands includes the selection of the appropriate bank and specific

line or lines to be employed, using immediate addressing., When testing
Status Lines, the Z bit of the Flag Register is made to correspond to
the state of the line (s). The Busy Bit (B) of the Flag Register is
get if a function line cannot be set, as a result of conflicting
requirements.
The Status and Function Line Ianstructions for Bank O pertain to the
Processor and Memory, while the instructions for Bank 1 pertain to
the Exchange Module, The functions performed are listed below:
BANK O

1. Testing parity error flip-flops in the various memory banks.,

2. Testing Console interrupt flip-flops.

3. Turning on/off the Real-Time Clock.

4, Establishing EXEC interrupt conditions.

BANK 1
1. Clearing a data channel.
2, Initiaiizing a data channel.
3. Testing parity error flip-flops in the various data channels.
4, Enabling/disabling interrupt signal gates.

5. Device function control.

3.1.,5 EXEC Bit Control System

The EXEC bit Control System is an exclusive feature of the EAIL 8400,
which provides the programmer with many powerful programming techniques.
The system operates in conjunction with the EXEC bits associated with
each halfword in the 8400 memory. These word marking bits may be set,
reset or tested by a group of EXEC bit control instructions. The
result of a test of any half-word will set the Z bit in the Flag

3-11

Register if the EXEC bit is high. Programmed decisions using
the Flag Test Instruction Set can therefore be made, based on the
state of any word's EXEC bit.

EXEC Mode Interrupt

The EXEC Bit Instructions enable the use of the EXEC bits under the
direction of the stored program. In addition, the EXEC bits are
monitored by the 8400's Internal Interrupt System. This allows
automatic recognition of the EXEC bits for a variety of purposes.

The EXEC Mode Interrupt occurs whenever a word is read from memory and
the EXEC bits for the word are set. The EXEC Mode Interrupt can be
recognized at three points during the instruction cycle as follows:

1. After instruction fetch and before address modification; this
would result from reading an instruction with one or both of
its EXEC bits set.

2, After address modification and before operand fetch; this
would result from indirect addressing.

3. After execution and before the next instruction fetch; this
would result from reading an operand with the EXEC bits set.

The interrupt subroutine determines which case occurred, and acts
accordingly.

Applications

The 8400 Programming Systems use the EXEC Bit Control System for a
variety of purposes, the most significant of which is dynamic relocation
of programs stored in memcry. Both the Assembler and FORTRAN IV Compiler
provide convenient means for setting the EXEC bits in individual half-
words and word blocks, as appropriate. Thus other uses for the EXEC
System are limited only by the programmer's imagination., Suggested
possibilities are:

1. Special simulations of other computers by trapping instructions
marked with EXEC bits and executing them by interrupt software
subroutines.

2, Implementation of special programming languages, such as list
processors, compilers, interpreters, and generalized translators.

3. On-line breakpoint debugging for monitoring the progress of
programs during execution.

3-12

4, Data Tagging for a special processing during input-output
operations or table updating.

5. Implementation of push-down stack techniques using EXEC
control.

3.1,6 Interval Timer Register (dvicin counter uw*k»ﬁ‘Faff&‘”iy«\

3.1.7

As an optional control feature, the 8400 has available a 16-bit
interval timer register which decrements the register once every milli-
second.. When the contents of the timer register, T. becomes zero, a
Rcal-Time Clock Interrupt is generated. The clock does not stop count-
ing when it reaches zero, but '"returns' to its ma¢imum value, and
continues to decrement.

. - 06,5

The Interval Timer has a maximum range of 65,535 milliseconds per count
down and can be used for calculating elapsed time for periodic program
interruption. Interruption can be programmed to occur every X seconds
by loading the timer register with tns,binarxmeggivalentmggm§~in miL;;-
seconds, The timer counts down until it reaches zero and then generates
an interrupt signal, which will initiate a subroutine to perform the
desired services, and resets the timer for another X seconds. This
feature permits flexible system integration, such as:

2€ s _,gc/cw‘»’("’

1. Synchronizing a program with a real-time device.
2, Outputting data periodically to certain peripheral devices.
3. Time-sharing multiple programs, or multiple consoles.

4. Periodically testing Sense Lines as an alternate to
automatic interrupts.

Rapid Access File

Another optional feature of the 8400 is the Rapid Access File, containing
16 high-speed registers., The individual locations in this file are
specified in the same fashion as memory locations and can be used for

the storage of instructions and operands. In the case of instruction
storage, short high speed loops can be preloaded into the file and then
operated upon from these high speed storage locations. This provides

an increase in throughput for such functions as table searching with a
wide variety of test criteria. Scratch pad memory programming techniques
are another application of the Rapid Access File.

3.2

\

3-13

ARITHMETIC

The Floating-Point Processor contains the logic and circuitry for
performing the arithmetic and logical operations necessary for executing
the stored program instructions. Some of the processors important capa-
bilities are:

1. High-speed processing - obtained by augmenting fast arithmetic circuitry
with logic capabilities for powerful single instructions that enable a
reduction in the total number of instructions necessary to perform a given
function. '

2. Floating-point operations - designed to be the normal arithmetic mode
of operation for high speed, real time applications.

3. A complete set of logical operations - for fast and efficient programming
language translation, input-output data handling and non-arithmetic problem
requirements. '

4. Programming language features -~ that provide ease of programming and
reduce processing time as well as off-line preparation time.

5. A "Universal Accumulator' - that eliminates programmer concern with inter-
register transfer hardware considerationms.

6. High speed temporary storage - that provides a simple effective means of
holding intermediate computational results for subsequent reuse without
additional memory referencing.

The Universal Accumulator and Save Register are particularly illustrative

of the special programming features provided in the EAI 8400. The Accumulator
is universal and directly addressable. It provides very high speedg process-
ing of both floating and fixed-point data in a variety of word formats. The
Universal Accumulator concept saves the programmer the burden of transferring
the result of a previous operation to the proper arithmetic register, of
ensuring that the correct register is loaded or unloaded in transferring data
to and from storage. All these functions are performed automatically by high-
speed parallel logic. Not only are programmed instructions to accomplish these
transfers unnecessary, but also one of the most frequent sources of programming
errors is eliminated. The addressable nature of the Accumulator enables very
high speed squaring and doubling. In addition, operations on data in the
Accumulator can use the general set of instructions relating to memory. For

3-14

{example, the "Store after Rounding' instruction can be used to round

| quantities in the Accumulator by addressing location zero (the Accumu-

lator's assigned address).

/ The SAVE Register provided in the Floating-Point Processor is a flexible
high-speed storage register with configuration identical to that of the
Universal Accumulator. It is addressable as location one. The SAVE
Register allows the programmer to save the contents of the Accumulator
prior to the execution of an arithmetic instruction. When this infor-
‘mation is again required, it can be restored to the Accumulator by
directly addressing the SAVE Register, an operation which requires 250
nanoseconds, considerably less than core memory access. The data is

f returned to the Accumulator automatically in the proper format for

the arithmetic operation to be performed; all standard 8400 data formats
may be accommodated.

. -

3.2.1 Arithmetic Characteristics

Ope:ating modes and data formats

. The Floating-Point Processor can operate in a varieéy of modes including
the following:

Floating-point, 32 and 56-bit
Fixed-point, 16 and 32-bit
Integer, 16-bit

Index, 16-bit

Boolean, 16, 8, 4, 2 or 1-bit

The data formats for these operating modes are diagrammed in figure
3.2-1, shown relative to the memory data word format., Supplemental
numerical information is provided in the table below. All binary formats
(A are .in.two's.complement notation with sign bits high (one) for negative

quantities.

P,

§w@i¢ Pree . Floating-Point $2 bt

W

- %

Binary format: [23 bit + sigéSMantissa Grove %; Z T
) n . g
L’] bit + sign}Exponent Ganre 9 TJW (Z,,-i.; g) _f:;ﬁ%%
Memory Storage: one 32-bit location 'hQanaﬁégﬁf ggféasq
q >~

Decimal Capacity: 8.32# x 106 max. Mantissa

1.280 x 102 max. Exponent
(e

ot s

@@ﬁ&@@i Y@k%éw \O to |

FLOATING POINT . ,s 23 s 7 |
DOUBLE PRECISION s 23 s 7
FLOATING POINT |
s 23 s 7 _
''''''' T
INTEGER S I R e
FIXED POINT S 15 B)
| N
EXTENDED FIXED POINT Is 15 IS 15
INDEX s 15
LOGICAL : | -16 BIT BYTE
l
2-8 BIT BYTES
| I
4-4 BIT BYTES |
a-2 BIT BYTES
| |
16~ | BIT BYTES
INSTRUCTION ADDRESS bki X OPERATION
| | |
MEMORY ADDRESS
lo :flw 31’ 3
MEMORY DATA LEFT HALF RIGHT HALF = EIPLE
| ' i
BIT SCALE ol 11111 l7lg| Pt ln_shsl il Lj_a_J_zd Pt lmgl,}_;!sjsJ

EAl 8400 WORD FORMATS
FIGURE 3.2 -

3-15

Double Precision Floating Point fﬂ@ (&é{f;

Binary Format: 46 bit + 2 sign Mantissa
7 bit + sign Exponent

Memory Storage: two 32-bit locations

Decimal Capacity: 7.056 x 1013 max Mantissa
1.280 x 102 max Exponent
Fixed Point

Binary Format: 15-bit + sign

Memory Storage; one half-word location

Decimal Capacity: 3.277 x 10* max. magnitude

Extended Precision Fixed Point

Binary Format: 30~bit + 2 signs
Memory Storage: one 32-bit location

Decimal Capacity: 1.073 x 109 max. magnitude

Byte Modes
Binary Formats: 16, 8, 4, 2, 1 bits

Memory Storage: 1, 1/2, 1/4, 1/8, 1/16 of one half-word location

As can be seen, all data words are based on the 16/32 bit balanced-word
framework. This structure allows optimal hardware organization for rapid
execution of arithmetic-logical operations in the various word sizes and
conversions from one format to another,

Accumulator Configuration

As in all single address machines, arithmetic~logical operations are per-
formed on information in the Accumulator and operands from storage (core
memory, Rapid Access File, SAVE Register, the Accumulator itself),

The 8400 Universal Accumulator automatically forms the proper configuration
of its internal registers, to handle the four arithmetic data formats
involved in the operations to be performed, as follows: '

16 Bit Fixed-Point, Integer, Index, Logical Connectives and Shifts:ﬁ(F@%ﬁ}@f:
APRELSckp 32 Bit Extended Precision Fixed Point, Extended Shifts:
A + AE Register

3-16

< A > |4 AE >)
s S
o 1 15 16 17 31

The AE Register is slso used to hold 32 bit double length products
and dividends of 16 bit Fixed-Point multiply/divide computation,

32 Bit Floating-Point A + AF Register

| &e— A > & AF >|
S | <—MANTISSA —p | EXPONENT
0 1 15,16 23,24 31

56 Bit Double Precision Floating-Point: A + AF + AD Register

¢ A , > ¢ AF >
. ' .
S MANTISSA (Most Significant Half) EY P aAEAT
D 15/ 16 2324 31
. v 1
S MANTISSA (Least Significant Halfx
) |
Ry AD ’d

The AD Register is used to hold double precision products and dividends
of single precision floating-point multiply/divide computations.

The SAVE Register has a matching arrangement which is similarly adaptable.
Other arithmetic registers are used to hold the operand and intermediate
results,

3-17

Arithmetic Execution Speed

Figure 3.2-2 summarizes execution times for selected operation under
several conditions. The significant feature is that Floating-Point
execution times are equivalent to the times for comparative Fixed-Point
operations. If the necessary scaling shifts are added to a typical
fixed-point instruction mix, the 8400's floating-point solution will be
faster., The differences in problem analysis and coding are, of course,
appreciable.

Arithmetic Status Flags

In the course of running typical programs, a number of comparison operations
and control steps are required. These include the ability to algebraically
compare operands with respect to other operands, or with respect to zero.
For example, the IF statement in algebraic compilers asks if an operand

is "equal to", 'greater than', or "less than" zero. Coupled with comparison
operations are the actions desired as a function of the result. In the

8400 the Flag Register and its related Flag Test Transfer Instructions
provide these capabilities.

The Flag Register's Zero (Z), greater than (G) and less then (L) bits con-
tinuously reflect the result in the_Accumulator at the end of each in-
struction execution. In the COMPARE instructions included in the 8400
Arithmetic repertoire, their flag bits indicate that the data word in the
Accumulator is equal to, greater than, or less than the referenced data
word in memory. Flag settings are the only result of COMPARE operations;
the Accumulator and Memory are unchanged. The Flag Test Transfer Instruc-
tions enable control transfer conditional upon arithmetic status through
Jump, Link, Halt, and Execute operations.

Arithmetic Fault Detection
Three arithmetic fault indicators are provided in the 8400.

1. Exponent Fault Interrupt - occurs whenever the exponent of a floating-
point number has become so large (positively or negatively) that the capacity
of the exponent (Bits 24-31 of A + AF) is exceeded and Exponent Overflow

or Underflow takes place. Because of the large range of exponents allowed

in floating-point, this type of fault is relatively rare.

2, Carry-Out Flag (C Bit) In Flag Register - indicates that a carry of
the most significant "magnitude' bit has occurred. Not truly a fault,
carry-out is useful for initiating multiple step precisions in fixed-
point operations.

3. QOverflow Flag (V Bit) In Flag Register - signals that the result of an
operation exceeded the capacity of the Accumulator in a positive or negative
sense, Illegal multiplication, division, and "integerization' also set the
V flag, which is cumulative and can be reset only by programmed Flag Test
instructions. Due to the nature of two's complement notation, such a

fault is sensed by the overflow logic whenever a carry of the most signifi-
cant ''magnitude" bit occurs with NO carry-out of the sign bit or a carry-
out of the sign bit with NO carry from the first 'magnitude"” bit.

ARITHMETIC SPEED CHART
(times in microseconds)

Type of Memory Overlapped No Memory Overlap Comment
Operation Minimum Maximum Minimum Maximum Notes
Load/Store 2.25 2.75 4,00 4,00 32 bit
Floating Add 3.50 4,00 4,00 4,00 32 bit
FloatingCompare 4,00 4.50 4.50 32 bit
Floating Mult. 6.25 7.50 6.75 32 bit
Floating Div, 9.50 10.00 10,00 32 bit
Double Float Add 6.00 6.50 6.00 56 bit
Integer Add 3.50 4,00 4,00 16 bit -
Fixed Add 3.25 3.75 4.00 16 bit
Fixed Multiply 5.25 6.25 5.75 16 bit
Fixed Divide 7.50 8.00 8.00 8.00 16 bit
Extended Fix Add 4,00 4,50 4,50 4,50 32 bit
Test/Branch 1.75 2,25 2.00 2.25 -
Logical 3.25 3.75 4.00 4,00 : -
Shift 2.00 2,50 2.00 2,50 Note 5
No Ref - in i s na. na na na Note 6

(1) Use of Save Register or addressable accumulator will decrease times shown
for which all operand fetches are from core memory.

(2) Minimum times assume no address modification and minimum operation execution
time where applicable.

(3) Maximum times assume indexing and maximum operation times where applicable.

(4) For floating point operations add .25 u-sec for each pre-shift and normalize
post shift.

(5) For shifts add .25 u-sec for each place; however, with 8400 fast floating point
fixed point scaling is nearly eliminated. ‘

(6) Inter-register transfers for arithmetic operations are not required with 8400
Universal Accumulator.

Figure.3.2.2

3-18

All arithmetic operations must produce a result which lies in the

1> R 2> -1 range or a fault is produced.
faulﬁs as shown in the following table.

whwe @ o R

' \ 7
acde ol o

;"Q

GO 4

The 8400 handles arithmetic

f

‘

Machine Operation(s)
Causing Fault

Action Taken

Final State of
Overflow Flag

All Fixed Point, Index _ Operation Completed SET
Arithmetic Instructions
Floating Point and Integer Operation is Completed; RESET
Clear & Subtract . Result is corrected.
Add
Subtract
Multiply
Floating Point and Integer Operation is Completed;
Clear & Divide 1. Answer meaningless if SET
Divide Divisor € { Dividend,
yielding R>2.
2. Result is corrected if RESET
2>R> +1.
Floating Point Store Rounded Operation is completed; RESET
Result is corrected,
Integer Store and Store Operation is completed. SET

Rounded

3-19

3.2.2 Arithmetic Operations

Processing speed in the 8400 is achieved by augmenting fast arithmetic
execution times with an extensive instruction repertoire, contailning
singly powerful instructions that result in shorter programs. Over 80
arithmetic instructions are provided.

The arithmetic 1nstructions are readily learned and easily remembered

6 class modifiers so that only 10 + 6 = 16 mnemonic symbols are required
for 10 x 6 = 60 instruction mnemonics, The coding scheme is indicated by
the table on the following page which shows all of the 8400 arithmetic
operations. Operations suffixed with a '"U" indicate unnormalized
floating-point. There are 24 of these operations. Characteristics and
utilization of the six classes of operations are discussed below.

Floating Point

| Standard precision floating-point computations are the workhorse of the

! 8400. The word length and accumulator configuration are fundamentally

§ designed to allow single memory access parallel floating-point capability.
‘“The precision and range provided by the standard floating-point class

of operations is adequate for most problem variables,

In standard precision Floating-Point operations, a full 32-bit memory

word is transferred in parallel to the Accumulator where the computations
are performed by the A + AF circuitry. For loading double length dividends
and storing double precision products, the DCA or DCS and DST commands

may be used in conjunction with two full-word contiguous memory cells.

The AD register is also used in these operations,

Both normalized and unnormalized floating-point operations are provided
for all instructions except Store and Compare. \

Automatlc scallng, 1mp1emented in floatlng point operations by exponent
point operations., It relieves the programmer from the tlme-consuming, and
\ } oftquggmpllcated task of scaling his probl&i to o the limited range of f
| computer. In each floating-point-imstructiony-several “operations are
. combined ~-- exponent equalization, the desired arithmetic operation,
corrective measures for overflow, and post normalization. This results
in the saving of processing time and storage.

While the majority of scientific applications use Normalized Floating-Point,
(7 the unnormalized capability has important applications as well, For example,
¢ this mode is used in the programming of multiple precision arithmetic opera-
i tions. In such cases, the partial results are left unnormalized, and summarized
to produce the multiple precision results, These final results may be nor-
malized or still kept without normalization as the problem demands.,

Ve FAREE RE N : N A S
o \ixwwwww“ﬁ" UYL SR A AR (1%%/(&4&&1} 3-20
I I i f;,‘ iy
5) D= &l it Dmvaz‘ zil "
=) 1 m ?;7 J;;*ﬁi;/
E » . [y
AT L0 Idr K

EAT 8400 INSTRUCTION LIST

ARITHMETIC OPERATIONS

Function Mnemonic Function Mnemonic
32 Bit Floating Point: 16 Bit Fixed Point:
Subtract FSB Subtract SB
Clear Subtract FCS Clear Subtract Cs
;‘K Clear Add FCA Clear Add CA
20T Add FAD Add AD
' Compare FCP Compare cp
{ Multiply FMP Multiply MP
. Store FST Store ST
| Store Rounded FSR Store Rounded SR
i Divide FDV Divide DV
Clear Divide FCD Clear Divide CD
56 Bit Double Floating Point: 32 Bit Extended Fixed Point:
Subtract DSB Subtract ESB
Clear Subtract DCS Clear Subtract ECS
Clear Add DCA Clear Add ECA
Add DAD Add ‘ EAD
Compare # DCP Compare # ECP
Multiply # DMP Multiply # EMP
Store DST Store EST
Store Rounded # DSR Store Rounded # ESR
Divide # ' DDV Divide # EDV
Clear Divide # DCD Clear Divide # ECD
16 Bit Integer: 16 Bit Index:
Subtract ISB Subtract XSB
Clear Subtract ICS Clear Subtract XCS
Clear Add ICA Clear Add XCA
Add IAD Add XAD
Compare ICP Compare XCp
Multiply IMP Multiply # XMP
Store IST Store XST
Store Rounded ISR Store Rounded # ~ XSR
Divide IDV Divide # XDV
Clear Divide ICD Clear Divide # XCD

Subroutine

SHIFTING, ROTATION AND NORMALIZATION OPERATIONS

P"“’H CETT?

Accumulator: é Extended Accumulator:
Arithmetic Shift ASH Arithmetic Shift EASH
Logical Rotate ROT Logical Rotate EROT

Normalize NRM Normalize ENRM

3-21

Double Precision Floating Point

The double precision floating-point instructions operate on operands
occupying two memory words, i.e., 64 bits, The word of lower address
contains the most significant 23 bits of the fraction with its sign and

the 7 bit exponent with its sign bit., The next higher memory address

stores the least significant 23 bits of the fraction plus sign, and a

7-bit plus sign exponent differing from the exponent of the most significant
half by 23, This two-word operand, when transferred into the Accumulator

by a double precision floating-point instruction, will have a 46 bit frac-
tion with duplicate signs and one exponent. The data word from the first
memory word 1s loaded in the A + AF portion of the Accumulator, and the
signed fraction from the higher memory location is transferred into AD.

The exponent of the least significant part of the operand is ignored,

During memory storage (DST) operations, the second exponent is generated
automatically and inserted into the low end of the second memory cell, ,
enabling the programmer to perform standard or double precision floating-
point operations on the same operand word with no extra formatting necessary.
It is also useful when multiple precision processing is required.

With the exception of word length and word format, these instructions are
defined identically with their equivalent in the standard precision floating-
point class, including the choice of normalized and unnormalized results,

Fixed Point

The 8400 standard precision fixed-point class of computations employ a 16-bit

half-word which is transferred in parallel from the Right or Left Half of

a memory cell to the A register in the Accumulator. For loading double

length (Extended Precision) dividends and storing Extended Precision products,
the ECA and EST commands may be used, addressing a full-word memory location.

The AE circuitry holds the least significant half of these numbers.

Because of the speed and efficiency of the-8400's floating-point circuitry,
fixed-point operations take on a relatively minhor significance. Standard

precision fixed-point is used mainly for address arithmetic in conjunction
with the Index class of operatlonﬁi‘for function generation, and for mani-

o ——————

before and ‘after conversion to- floatlng p01nt. -

The storage efficiency of the 8400 for these 16-bit data has been described
in the Memory Section, The immediate operand Optlon is especially suitable
for 16-bit fixed-point data since it matches exactly the standard address
field format.

Extended Precision Fixed-Point

Full 32-bit memory words are transferred to the Arithmetic Section where
the computations are performed by the A + AF circuitry., This class of
operations serves the primary purpose of allowing computations of double
length operands generated by standard precision fixed-point multiply
computations.

3-22

Five of the ten Extended Precision instructions are performed by software
subroutines.

Integer Arithmetic

As part of the 8400's floating-point capability, a class of Integer (mixed-
mode) Arithmetic operations is provided. This unique set of commands
bridges the gap between the floating and fixed domains.

Integer operations involve two data types:

(a) 16 Bit Fixed-point notations carrying an implied binary
exponent of 15.

(b) Standard Precision Floating-Point notation with a 23 bit
+ sign fraction and 7 bit + sign exponent,

The integer set of arithmetic operations permits arithmetic operations on
operands in these two notations and facilitates conversion from one notation
to the other, When stored in memory, the Integer is a 16 bit half-word
number. When operated on in the Accumulator, the Integer is in standard
precision Floating-Point format, and is handled by the A + AF register,
Conversion between these two notations is accomplished by high speed logic,
in combination with other arithmetic computations, and at no_ increase in
execution times.

Memory to Accumulator transfers of operands include automatic floating
conversion by appending O's in the eight least significant places of the
mantissa and setting the exponent to +15;5 (+ 0l17g). This is followed
by performance of the indicated arithmetic computation in floating-point.

Store operations (IST) start with an automatic "integerization'' operation.,
The floating-point contents of the A + AF portion of the Accumulator are
shifted until the exponent becomes +15 (+017 g)s then the most significant
16 bits of the mantissa are cransferreé to the designated memory half-word
location. The contents of the Accumulator (A +AF) are returned to their
floating-point format prior to '"integerization', and remain unchanged.

The floating-point computations performed in the Integer Class are identical
to those of the standard precision floating-point group. As in the latter
class, the option of normalized or unnormalized results can be selected
except for store (IST or ISR) operations.

Integer operations may be used by the programmer for:

(a) Integer Arithmetic computations which may be done in
floating-point and converted back to integers upon completion.
The advantages of this technique are the vast gain in allowable
range of variables and the automatic scaling which normalized

3.2.3

3-23

floating-point embodies plus the double efficiency storage
characteristics of the 1l6=bit integers,

(b) Mixed-Mode arithmetic for solving scientific problems

having intermingled variables (in floating-point) and integer
constants, One particular advantage is the hardware manipulation
of FORTRAN Mixed-Mode statements with its attendant speed ad-
vantages,

Index Arithmetic

The Index class of arithmetic makes use of the 8400's seven index registers.
Index operations start with an automatic parallel transfer to the accumula-
tor of the 16-bit contents of the index register addressed by the X field
in the instruction. This number is then combined with the contents of

the addressed memory location (immediate operands may be used effectively
here to reduce execution time and memory usage). Any of the basic
arithmetic operations are performed in accordance with the specific
instruction executed, The result is then automatically transferred back

to the index register. These three steps are performed by the hardware

in response to a single Index Arithmetic instruction. The only exceptions
are the XCA gnd XCS operations which load index registers from memory, and
the XST and XSR which store the contents of index registers.

Logical Operations

As a companion to the 8400's comprehensive arithmetic operations, a com-
plete set of Boolean Connectives is provided. Ail sixteen boolean
connectives are provided. The Shift-Rotate Normalize set of shift
operations are provided for manipulation of fixed point arithmetic or
logical data.

Boolean Connective

Logical operations may be performed on 16, 8, 4, 2 and 1 bit bytes be-
tween half-word memory locations and the Accumulator (A Register). The
operations provided are summarized on the table on the following page.

The result of a logical operation may be placed back in the memory byte
location, leaving the Accumulator unchanged, or may be put in the Accumu-
lator, leaving memory unchanged., In any case, only the specific byte
selected for the logical operation is sltered.

The choices of connective, byte size and position, and memory or Accumulator
result, are made by one instruction., Immediate operands may be used with
the 16-bit byte size. All Boolean operations except 'Byte Equality Test'',
defined below, set the Z bit of the Flag Register if the result is all zeros.

3-24

EAT 8400 INSTRUCTION LIST

LOGICAL BYTE OPERATIONS 1,2
Function Mnemonic Function Mnemonic
Boolean Connectives - Results to Accumulator: Boolean Connectives = Results to Memory:

Set (all ones in A) SAn Set (all ones in M) SMn
Reset (all zeros in A) RAn Reset (all zeros in M) RMn
Memory High (load M) MHAn Accumulator High (store A) AMMn
Accumulator Low (complement A) ALAn Accumulator Low (complement A)ALMn
Memory Low (complement M) MLAn Memory Low (complement M) MLMn
Both High (AND) BHARN Both High (AND) BHMn
Either High (OR) EHAn Either High (OR) EHMn
Either Low (NAND) ELAn Either Low (NAND) ELMn
Both Low (NOR) BLAn Both Low (NOR) BLMn
Both Different (EXCL OR) BDAn Both Different (EXCL OR) BDMn
Both Same (EQUIV) BSAn Both Same (EQUIV) BSMn
Complement Both High (AND X) CBHAn Complement Both High (AND &) CBHMn
Complement Either High (OR &) CEHAn Complement Either High (OR ZX) CEHMn
Complement Either Low (NAND &) CELAn Complement Either Low (NAND A)CELMn
Complement Both Low (NOR X&) CBLAn Complement Both Low (NOR X) CBLMn
Byte Equality Test (set Z Memory High (set Z flag if

flag if bytes identical BEQTn byte in M is zero) MHMn

Note 1. n= 16,8,4,2, 1 bit byte size

Note 2. ELAn for example requires that if either the A bits or M bits are low,
the result is put in the accumulator (the A bits are set) and the byte
in memory is left unchanged.

3-25

Among the logical operations provided are the following (See Instruction
List for complete set):

1. Set Memory or Accumulator bits (all one's in result)
Any 16-bit location or portion thereof can be set,

2, Reset Memory or Accumulator (all zero's in result)
Any 16-bit location or portion thereof can be zeroed,

3. Complement memory or Accumulator bits.,
Any memory location may be complemented without affecting the Accumulator.

4, Byte Equality Test - Compare Memory and Accumulator and set Z-bit
in Flag Register if Equal. Memory and Accumulator unchanged,

5., Byte Zero Test - Test memory location of portion thereof for state
of bits and set Z bit in Flag Register if memory is zero. Accumulator
and memory unchanged.

Shift-Rotate-Normalize

Arithmetic Shifts (Bits 1-15 of A Register) and Extended Arithmetic Shifts
(Bits 1-15 and 17-31 of A + AE Register) are used in the Standard and Ex-
tended Precision Fixed-Point modes respectively to shift data bits without
affecting the sign bit(s). The 2's complement address field (M Field)

as modified by the contents of a specified index register (X), if any,
determines the number of shift places. This quantity can be + for shifts

to right or - for shifts to left,” If a left shift causes Overflow, the

V bit of the Flag Register will be set, When shifting left, O's are entered
to the right of the word.,

Logical Rotate and Extended Logical Rotate (A + AE) Register) shift the
entire word, rotating about on itself, The sign bit(s) are acted on as
information bits., Bits shifted out of either end are brought around and
entered in the just vacated places on the other end. Because no information
can be lost, the Overflow Flag (V) is not involved in the process. The
number of places rotated is determined exactly like the Arithmetic Shift
operations.,

Normalize and Extended Normalize are always left arithmetic shifts until

Bit 1 of A differs from Bit 0., These instructions are used in arithmetic
scaling operations to remove all leading zeros. The specified index register
(X) tabulates the shift count required and may be saved as a scale factor.

45{
\ﬁ‘“

A
Ly 4
N

4.1.1

4,0 INSTRUCTION REPERTOIRE

Fundamental to the speed and flexibility of the EAI 8400 is its powerful
instruction repertoire. The repertoire has over 750 commands - in contrast
with the 100% commands of most machines in the same price range., The

basic instructions provided may be classified as follows:

A. Arithmetic Instructions
1, Floating Point
2, Double Floating Point
3. Fixed Point
4, Extended Fixed Point
5. Integer Arithmetic
6. Index Arithmetic

B, Logical Instructions
1, Rotate - Shift - Normalize
2, Boolean Connectives

C. Transfer and Control Instructions
1., Index Jump Transfers
2. Flag Test Transfers
3. EXEC Bit Control
4, Special Register Transfers
5. Status/Function Line Control

D. Exchange Instructions
1. I1/0 Register Transfers
2, Automatic Channel Control

Table 4-~1, at the end of this section, is a guide to the programming of
the 8400 and includes the full instruction list with mnemonic and binary
coding, and equation descriptions for each of the operations that can be
performed.

PROGRAMMING EASE AND POWER

The repertoire is unusually co&prehensive yet readily understood and re-

with prefixes and suffixes to pinpoint the specific operation desired. The
programmer need remember only a fraction of the mnemonic codes usually
associated with a machine of this instruction power.

\‘1 ~—membered. Instruction codes are classified into basic mnemonic group codes,
\M
.*\):\

Arithmetic Instructions

Using the Arithmetic Class as an example, by remembering the basic add
operation mnemonic, "AD", the programmer can describe all the add operations
by prefixing:

FAD Single-Precision Floating-Point Add

DAD Double-Precision Floating-Point Add

4-2

IAD Mixed Mode and Integer Add
AD Fixed-Point Aud

EAD Extended Fixed-Point Add
XAD Index Register Add

Then special modifiers are used to indicate indirect (*) and "immediate"
(=) addressing, and saving of accumulator contents ($). For example,
$FAD* specifies, ''save accumulator contents, then perform a floating-point
add using an indirect address'", The modifiers applicable to Arithmetic
Instructions are summarized below:

ADDRESS MODIFIERS

OPN* M Indirect Address

OPN M,X Index with Register X
OPN M/ 16 bit left half address
OPN /M 16 bit right half address
OPN =M Immediate address

OPERATION MODIFIERS

$OPN M Save A prior to execution

OPNU M Unnormalized Floating Point

4.,1.2 Logical Instructions

The Logical connective mnemonic codes are descriptive of the logical
manipulation performed., The mnemonic code describes, for a given bit
position in both operands, the condition that causes a 1 bit to be

placed in the result, For example, BHA is interpreted as follows:

"For a given bit position, if the bits in memory and the Accumulator

are Both High, put a 1 bit in the corresponding position in the Accumulator."
This is the logical AND operation. The size of byte in a logical operation
is appended to the mnemonic and the position of the byte is shown in the
variable field., For example, BHA8 M,3,1 means 'perform a logical AND
between the 8-bit byte position 1 of the Accumulator and the corresponding
bits in memory location determined by 'M', modified by the contents of
index register 3." The results of the AND will appear in the accumulator.
The instruction BHM8 M,3,1 designates the same AND operation, but causes
the results to appear in the memory location, All of the Boolean Connec-
tive operations are included in the repertoire.

4-3

4,1.3 Flag Transfer Instructions

Test-conditional operations are based on the status of bits in a 16-bit
flag register. The flag bits are set by the programmer or automatically
as a result of internal conditions. For instance, the Zero, Greater than
zero, and Less than zero flags are set or reset automatically after the
execution of arithmetic instructions.*

1 ‘ !

b ?
Arithmetic Carry

() - Unconditional c -

Z - Accumulator zero B - Data Channel Busy

G - Greater than zero E - Interrupt Mode Enabled
L - Less than zero. 1-8 - Programmer flags

V - Arithmetic Overflow

Nine basic instructions are provided:

HIE Halt, then Jump if flag f set

EXf Execute instruction at specified location if flag f set
Lf Link to subroutine if flag f set

LRE Link to subroutine, Reset flag

Jf Jump if flag f set

JRE Jump, reset flag

JSf Junp, set flag

JTE Jump, trigger flag

The "f" following the basic mnemonic codes indicates any one of the sixteen
flag conditions. For example, HJZ designates a Halt Jump if Zero operation.
By prefixing the flag condition mnemonic with the letter N. the complement
state of the flag can be used. Thus, HINZ designates a Halt Jump if Not
Zero,

In the Link and Jump instructions the link and jump operations are conditional
on the status of the flag tested; but the setting, resetting or triggering
(complementing) of the flag is uncondicional.

* for details see Table 4-1.

4.1.4 Index Jump Transfers

4.1.5

‘The Index Jump Test instructions increments or decrements a specitied
Index Register then performs a conditional jump depending on the sign
of the count modifier and the sign of the resultant in the Index
Register.

This capability allows fast list processing, table searching, and Function

Generation by allowing manipulation in both directions - up and down a
table.

Assembly and Machine Language Programming

Table 4-1 is a twenty page guide to assembly or machine language programming
with the 8400 repertoire. The Instruction format, addressing modes, opera-
tion modifiers and notation conventions are summarized prior to a listing

of all of the 5400 instructions with their respective binary and mnemonic
codes and operational descriptions.

The Exchange instructions included in the table are discussed in more
detail in Section 5, which describtes the Exchange Module and its operation.

TABLE 4-1

SUMMARY OF INSTRUCTIONS WITH MNEMONIC
AND BINARY CODING

This summary is intended for use as a programmer reference to the
8400 Instruction repertoire.

TABLE INDEX

A. Instruction Format & Notation I-1V

B., Arithmetic Instructions

1. Floating point \

2. Double floating point VI
3. Extended fixed point VII
4, Fixed point VIII
5. Integer arithmetic IX
6. Index arithmetic X

C. Logical Instructions
1, Boolean connectives X1
2. Rotate-shift-normalize XIII

D, Transfer and Control Instructions

1. 1Index jump transfers X1v
2. Rapid access file control XIv
3. Flag Test transfers XV

4, Exec bit control Xv1
5. Load/store processor registers XVII

E. Exchange Instructions

1. Status/function line controls XVIII
2., Load/store addressable I/0 buss XIX
3, Load/store data channel XIX
4, Automatic channel control XX

Instruction Format

The 32-bit instructions for the 8400 are defined by an OPERATION and an
ADDRESS. Using a mnemonic for the OPERATION, instructions are expressed
symbolically as follows:

OPN M

where M specified an addressable location within the computer, such as a
word in core memory, rapid access file, accumulator, or the save register.

The 8400 employs a basic set of operations, plus a set of modifiers that
can alter the operations in various ways. Similarly, the address portion
of an instruction can be modified in several ways, at the option of the
programmer,

ADDRESS MODIFIERS

v es vamamirre s at— g+ e 1 v s oo POC—— it e iy it e o i b e [

Modifier Name Format T Remarks

* Indirect Address OPN* M ! The address for the glven mstruct1on i
. { = is taken from the address portion of
i the 32-bit word at location M. Multi-
' ple indirect addressing is possible, All !
i instructions may use an indirect ad- '
| dress,

X Address Modification OPN M, X . The effective address is obtamed by
adding the contents of the specified
index register, X, to the address, M.
. Thatis, M+ C(X)—> M. All instruc-
i tions except the Index Register Class
can have address modification. Index-
ing precedes indirect addressing at

' every level if both are specified.

é / Halfword Address OPN M/ . The operand for 16-bit operations

i OPN /M ! comes from the left half of M by using
M/ and the right half of M by using /M.
The slash (/) has no effect on indexing
or indirect addressing. A 16-bit oper-
ation written OPN M is interpreted by
the assembler as OPN M/.

= Immediate Address : OPN =M + The operand for this mstructmn is

taken from the address field of the in-
struction itself. The immediate ad-

; dress may nof be used with /. The ,
i immediate address is applicable to all |
16-bit operations except Store and Store !

. . ! After Rounding.

REMARKS: The various legal combinations of the address modifiers are illustrated below:

OPN M/ OPN* M/
OPN /M OPN* /M
OPN M/,X OPN* M/,X
OPN /M,X OPN* /M,X
' OPN=M,X
OPN* =M, X
opNdk =M

II

OPERATION MODIFIERS

Modifier Name Format Remarks

$ Save $OPN M The contents of the Accumulator are

saved prior to the execution of the in-
struction. The Save modifier may be
used with arithmetic and shift instruc- |
tions. .

U Unnormalized OPNU M Floating point operations are usually
normalized automatically at the com-
pletion of the operation. The U modi-
fier inhibits the automatic normaliza-
tion. This modifier may be used with
all floating point operations (but has no
meaning in Compare, Store, and Store
After Rounding).

N Operate When --~ The N Modifier inserted into flag in-
Not Set structions causes the operation to oc-
cur when the specified flag is nof set.

FLAG

The Processor contains a 16-bit flag register (F),Eight bits (flags) ‘of' this register are activated
by the internal status of the computer, and the remaining flags can be controlled by the pro-
grammer. The 16 flags are the following:

FLAG DEFINITION

Unconditional (Always High)
Accumulator Equal to Zero
Accumulator Greater than Zero
Accumulator Less than Zero

v Carry-out is Generated

V] Overflow Occurred (Cumulative)
Busy Signal
Interrupt Enable

8 Program Flags 1 - 8

fqronT

B

1

The arithmetic flags except V are reset and updated following the execution of every instruction,
or may be set by the programmer. The Test-Conditional operations are based on the status of
the Flag Register bits. The V bit is cumulative and must be reset by programmed testing.

R(i:j)

m

—_—

A

A, AE, AF, AD
$

RF

W R ™M 2 O M o2 4O t m

=

NOTATION

bits i through j of register R. (Register referenced is clear from the con-
text of its use or is explicitly stated.)

effective memory address - -

replaces

the Universal Accumulator = by g
the registers that make up the Accumulator
Save register (which saves Accumulator registers A, AE, AF, AD)
Rapid Access File memory cells

Flag register

Location counter

Real-Time clock register

Internal Interrupt Mask

External Interrupt Mask register

Console register, or count field used with index-jump instructions

a symbol used to indicate the numerical address of a memory word
Instruction Register

a symbol used to indicate a data channel number

a symbol used to indicate Bank number, Bus number, or Byte position

a symbol used to indicate byte size

v

e

]

Format: OPN M, X

FLOATING-POINT INSTRUCTIONS

16 17 19 20 23 24 25 26 27 28
t* X [ol1Toloful o[o]]
Mnemonic Binary
OPN Code OP Code Title Options Flags Operation
FAD 0011 | Floating Add *$,U |2,G,L,C| A:AF + m—» A:AF
FCA 0010 Floating Clear | * $,U Z,G,L m—»A:AF
and Add
FSB 0000 Floating *$,U Z,G,L,C| A:AF - m—» A:AF
Subtract
FCS 0001 Floating Clear | *,$,U | Z,G,L -m— A:AF
- and Subtract
FMP 0101 Floating *$U |2,G,L A:AF x m —eA:AF:AD
Multiply
FDV 1000 Floating *$U |{2,GL,V| A/AF:AD +—m
Divide Quotient — A:AF
Remainder —» AD
FCD 1001 Floating Clear | *,$,U Z,G,L,V | First clear —AD
and Divide then Perform FDV
FCP 0100 Floating * $, Z,G,L G set for A:AF >m
Compare Z set for A:AF =m
L set for A:AF <m
A:AF unchanged
FST 0110 Floating *$ A:AF —»m
Store
FSR 0111 Floating *$ C A:AF (rounded)—» m
Store After A:AF unchanged
Rounding

DOUBLE PRECISION FLOATING-POINT INSTRUCTIONS

Lr \
; Nt
2 ¥ Format: OPN M,X
RN
DN 16 17 19 20 23 24 25 26 27 28 3
\ o | *] X loj1fo]of[uUul1]ols oP
Mnemonic Binary
OPN Code OP Code Title Options Flags Operation
P DAD 0011 Double Float- * $,U Z,G,L,C| A:AF:AD + m:m+1
ing Add —+A:AF:AD
4 v DCA 0010 Double Floating | *,$,U Z,G,L m:m+]l— A:AF:AD
Clear and Add v
| DSB 0000 Double Float- *$,U Z2,G,L,C| A:AF:AD - m:m+1
ing Subtract — A:AF:AD
| DCS 0001 Double Float- *$,U Z,G,L -m:m+1 —»A:AF:AD
ing Clear and
Subtract
q, DMP 0101 Double Float~ *$,U Compat Subroutine Oper- i=
ing Multiply | ation
DDV 1000 Double Float- *8$,U Compat Subroutine Oper- j-
v ing Divide ation
G DCD 1001 Double Float- *$,U Compat Subroutine Oper- ~
b ing Clear and ation
Divide
v DCP 0100 Double Float- *§ Compat Subroutine Oper- |..-
ing Compare ation
v W DST 0110 Double Float- * 8 - A:AF:AD-+»m:m+1
ing Store
v DSR 0111 Double Float- *$,U Compat Subroutine Oper- |
ing Store and ation -
Rounding
|
.\f/
e
N

VI

o "j’, .

32 BIT EXTENDED FIXED POINT ARITHEMTIC

Yoa
% N‘;U
N -z Format: OPN M,X
gy T
TN 16 17 19 20 2324 262728 31
h = [*] X jojij1}f1joj1j1]$] oOP |
8 o
Mnemonic Binary
OPN Code OP Code Title Options Flags Operation
Vi EAD 0011 Extended Add | *,$ Z,G,L,V,| A:AE + m —+A:AE
: C
v v ECA 0010 Extended Clear| *,$ Z,G,L m—sA:AE
and Add
Ve v ESB 0000 Extended Sub- | *§ Z,G,L,V,| A:AE-m—» A:AE
tract Cc
L) ECS 0001 Extended Clear| *$ Z,G,L,V | ~m—*A:AE
and Subtract
Vv EMP 0101 Extended Mul- | * § .Compat Subroutine
tiply Execution S
EDV 1000 Extended Di- *$ Compat Subroutine 4
vide Execution ‘
v ECD 1001 Extended Clear| *,$ Compat Subroutine
and Divide Execution
ECP 0100 Extended Com-| *,§ Compat Subroutine
pare . Execution
v v| EsT 0110 | Extended Store| *, AAE —»m
»/"’ ESR 0111 Extended Store | *,$ Compat Subroutine y»
and Rounding Execution TP
TN
;/iﬂ /*«-« f{
/ I {

vil

FIXED POINT ARITHMETIC

¢y
2 N , /
o, S Nl / J .
N S Format: OPN M/,X {. AT
3 - 16 17 19.20 123 24 252627 28 29 30 31
"2 I L X~ [ONETINTWI[ST op]
i 1 I R
Mnemonic Binary
OPN Code OP Code Title Options Flags Operation
v
e AD 0011 Add * /=% | 2,G,L,V,| A+m—»A
C
v CA'_| o010 Clear and Add |*,/,=,$ | Z,G,L m—eA
v s SB 0000 Subtract */,5% | 2,G,L,V,| A-m—=A
C
v v Ccs . 0001 Clear and Sub- [*,/,=,$ | Z,G,L,V,| - m—>A
' tract C
v MP. 0101 Multiply */,=% | 2,G,L,V | Ax m—A:AE
v’ I DV 1000 Divide i*/,=% | 2,G,L,V | A:tAE<~m
Quotient —» A
) Remainder —»AE
vV CD 1001 Clear and Di- |*,/,=,$ | Z,G,L,V | Clear AE Then Perform
vide DV
v CP- 0100 Compare */,=% | 2,G,L G set for A >m
v Zsetfor A=m
L set for A<m
A unchanged
v st 0110 Store */y$ A—»m
‘ - SR 0111 Store After */,$ v,C A (rounded) —em A
G Rounding A Unchanged
O
W = 00 is immediate operand
01 is left-half memory word —

10 is right-half memory word

11 is illegal

NOTE: 16 bit operations assume a left-half memory word unless modified by /.

vl

I

i

<

INTEGER ARITHMETIC INSTRUCTIONS

x
-
~3 Format: OPN M X
3
Y 16 17 19 20 23 24 25 26 27 28 31
<~)}i’ (*l 1 X [oj1jojiju|w [$] op |
\\&
Mnemonic Binary :
OPN Code OP Code Title Options Flags Operation
>
IAD 0011 Integer Add */,U,=,$|Z,G,L,C | A:AF + mf —®A:AF
v ICA 0010 Integer Clear |*,/,U,=$|2,G,L mf —»A:AF
and Add
v ISB 0000 Integer Sub- | *,/,U,=,${Z,G,L,C | A:AF - mf —»A:AF
‘tract
v ICS 0001 Integer Clear |*,/,U,=$|2Z,G,L -mf —»A:AF
I and Subtract
(f‘?)/ IMP 0101 Integer Mul- | *,/,U,=,$|%Z,G,L A:AF x mf —=A:AF:AD
S tiply
Y DV 1000 Integer Di- */,U,=,$({2,G,L,V | A:AF:AD +-mf
vide Quotient —» A:AF
Remainder —»AD
V ICD 1001 Integer Clear |*,/, =,$|2,G,L,V | Clear AD
and Divide ‘ then Perform IDV
L ICP 0100 Integer Com- |*,/, =${Z,G,L G set for A:AF > mf
pare Z set for A:AF = mf
L set for A:AF <mf
¢(AAF) Unchanged
v IST 0110 Integer Store |*,/, $ |V A:AF —» mi
A:AF Unchanged

Rl !
L,

N

g‘*\W: 00 is immediate operand

N3 01 is left-half memory word

3 10 is right-half memory word
E}A 11 is illegal
™

mf =16-bit memory operand "floated'" as it enters the arithmetic section. It is converted to a
floating-point format by attaching an exponent of +15,

mi =16-bit memory operand "integerized” as it leaves the arithmetic section on the way to
memory. It is converted from a floating-point format to integer by shifting A:AF until the
exponent is +15,

INDEX REGISTER INSTRUCTIONS

N
3 &
o ¥ =% Format: OPN M ,X
\;‘V Q’ . ‘ . .
=) o - 4") ‘ 16 17 15 19 20 .23 24 25 26 2728 24 %o 31
= Q% X=1,2,...7 Awects 37X To[1JiJt (ol w [$] op]
‘««.x’/ ; T lyglyees -
J Remarks: X specifies which index register is modified. Instruction is non-indexable.
Mnemonic Binary
OPN Code OP Code Title Options Flags Operation
v /
v’ | xAD 0011 Index Add */,=8% | 2,G,L,V,| X +m—=X
C
Vo XCA 0010 Index Clear */,=$% | Z,G,L m —»X
! (" '< '\‘ e a.nd Add .
Y XSB 0000 Index Sub- /=% | 2,G,L,V,| X-m—eX
tract C
v XCS 0001 Index Clear */,=% | 2,G,L,V | -m—eX N
and Subtract
| xmP 0101 Index Multi- | *,/,=,$ Compat Subroutine |
ply Execution
U, XDV 1000 Index Divide */v=$ Compat Subroutine | =g
Execution
b XCD 1001 Index Clear * /=% Compat Subroutine s
and Divide . Execution
v XCP 0100 Index Com- * /=9 Gset for X >m
pare : Z set for X =m
L set for X <m
X Unchanged
v XST 0110 Index Store * /8 X—=m
XSR 0111 Index Store * /% Compat Subroutine | .o
b After Round- Execution
ing
O <

W = 00 is immediate operand
01 is left half memory word
10 is right half memory word

11 is illegal

v,

! BOOLEAN CONNECTIVE INSTRUCTIONS

Format: OPNn ,X,B Options: *,/,=,n,B
Mnemonic Code: If mnemonic ends in ""A", the result is put in the Accumulator., Memory and
the unselected bits of the Accumulator are unchanged.

If mnemonic ends in "M", the result is put in Memory. The Accumulator
and the unselected bits of the Memory are unchanged.,

Remarks: n=1, 2, 4, 8, or (blank) to specify byte size,
B=0, 1, ..., 15 to specify byte position (See Table).
"=" = an immediate address; this option applicable only when instruction does not
end in M, and a 16 bit byte is specified.

The mnemonic code describes, for each bit position of the operands, the con-
dition under which bits will be set in the result. If the condition is not met, the
bits are reset. For example, BHA is interpreted as follows: For a given bit
position, if the corresponding bits in Memory and the Accumulator are Both
High, set the corresponding bit in the Accumulator. If the condition is not met,
reset the corresponding bit in the Accumulator.

Flags: Z All Boolean operations, except BEQT, set the Z flag when the result of the opera-
tion produces all zeros. BEQT operation sets the Z flag when accumulator and
memory bytes are identical.

n-B Mapping for Byte Size and Byte Position

ARegister [0]1]2]3]4]5]6]7]8]9]l10]1[12[13]14]15 |
M/ Bits [of1]2[3]4]5]6[7[8]9]10[11]12]13]14[15 |
/M Bits |16]17/18]19] 20| 21|22]23] 24| 25| 26]27] 28]29]30]31 |
n-Byte Size q . L {/ S R L
n=1 lolal2[3]4[5[6[7(8[9(10{11]12]13[14115]
n=2 o |1]2 |3 |4 |56]
n=4 0 t 1 | 2 N |
n=8 0 [1 l
n=16 ione I 0]

B-Byte Position

4 A
Al

.

N BOOLEAN CONNECTIVE INSTRUCTIONS
~3
™
eﬁ 16 17 19 20 21 22 25 26 27 31
i\%‘ *| [1[M[OP CODE o] BYTE |
o B
Mnemonic Binary) A) ‘
OPN Code OP Code 1, Operation
v
RA ‘jb1ts
v | RM 0000 Reset \71 bits
v BLA A bits
o BLM 0001 Where both low, set M bits
| CBHA : . . - { A bits
v/| CBHM 0010 Complement A bits, then if both high, set M bits
v| ALA . A bits (Complement Accumulator)
A ALM 0011 ng_xjve”A bits, vllow, set M bits
| CBLA . - A bits
v| CBLM 0100 Complgment A bits, then if both low, set M bits
»1 MLA : A bits
| MLM 0101 Where M bits low, set M bits (Complement Memory)
v BDA . A bits
v\ BDM 0110 Where both different, set M bits
v'| ELA . A bits
v ELM 0111 Where either low, set M bits
+’| BHA . A bits
v| BHM 1000 Where both high set M bits
v BSA A bits
v BSM 1001 Where both same, set <\, bits
Lo MHA . . A bits (Load.Memory bits into Accumulator)
v MHM 1010 Where M bits high, set M bits (Zero Memory Test)
¥ CEHA . e : A bits
v | CEHM 1011 Complement A bits, then if either high, set M bits
v' BEQT 1100 Byte equality test @bit in Flag Register set if equal)
v AHM Where A bits high, set M bits (Store Accumulator bits in Memory)
v CELA . e s A bits
v CELM 1101 Complement A bits, then if either low, set M bits
v | EHA ‘ . . A bits
v EHM 1110 Where either high, set M bits
v| SA . A bits
v] sm A1) Set 4y pits
M (I(21)) = 1 = Result to Memory BL equivalent to NOR
M (I(21)) = 0 = Result to Accumulator EH equivalent to OR

=1(26) = 1 = Left Half
=1(26) =0 = nght Half

=1(27-31) =

BH equivalent to AND

EL equivalent to NAND = -7
BS equivalent to EQUIVALENCE = V\U‘

= Immediate operand m "M'" Field BD equivalent to EXCLUSIVE OR

C equivalent to COMPLEMENT

For A bits 1100 and M bits 1010, Binary Op Code shows resultant bit pattern,

XII

ROTATE SHIFT NORMALIZE INSTRUCTIONS

) . r16r|17 X

1920 23 24 25 26 27

|°!1l1[°|NIEIVm

Mnemonic

OPN Code | Title Options Flags

Operation

ROT+M, X Logical Rotate *

Rotate A by m (modulo 32) Y
places + rotates to right
- rotates to left

ASH:M, X Arithmetic Shift *

Z,G,L,V
Left Only

Shift A (1:15) by m (modulo 32)
places + shifts to right

- shifts to left

A(0) Unchanged

NRM, X Normalize *

Z,G,L

Normalize A by left shifting un-
til A(0) # A(1)

The number of shifts —X

A(0) Unchanged

EROT:+M, X | Extended Logical *
Rotate :

Rotate A:AE by m (modulo 32)
places + rotates to right
- rotates to left

EASH+M, X | Extended Arithmetic *
Shift

Shift A(1:15):AE(1:15)
m (modulo 32) places
+ shifts to right

- shifts to left

ENRM, X Extended Normalize *

Normalize A:AE by left shifting
until A(0) # A(1)
Number of shifts X

g g b #

—_—

Indirect Address
Index Register
Shift Double Operand I(25) =1
Perform Logical Shift 1(26) =1
Perform Arithmetic Shift 1(26) = 0
Shift until normalized

=1 = >Shift left

0 = >Shift right

oS nunuh
N
i

Xm

Tl

yi

P

/
'

\quﬂ

sy o

.

o

\p
\
\ INDEX JUMP INSTRUCTIONS .
& j.!gf;v
&, S 1617 192021 23 24 25 31 :
N [*] X Joj MT J«] —ca2v]
Mnemonic Binary »
OPN Code OP Code Title Options | Flags Operation
Vi XJ M, X, +C 010 Index Jump * Z,G,L | First X+ C —»X then Jump to m
v | XITMX,:C | o011 Indexed Jump| * Z,G,L | First X £ C— X then Jump to m if:
Test +C specified and X <0
-C specified and X > 0

NOTE: C is in 2's complement if negative.

--- L L L T Y P P P PR P L L L Y L Y T Y oY)

RAPID ACCESS FILE INSTRUCTIONS

Format: OPN M, X, N
1617 19 20 23 24 25 27 28 31
[*] X [0j0jO0j1f1]1 O] LS
L/sS
Mnemonic | Field
OPN Code Code Title Options Flags Operation
LDRF 1 Load Rapid Access File| *,N m —»n
STRF 0 ‘Store Rapid Access File| * N n-~~»m

N =Location in Rapid Access File=0, 1, 2, ..., 15
34 bit word transfer

32 data bits plus 2 exec bits

I(27) =1 = Load

1(27) = 0 = Store

X1v

e

TEST-CONDITIONAL INSTRUCTIONS

\ Format: OPNf, M, X
\\'r: w»\:,‘*
o .f} - 16 17 19 20 2324 Y, 2712829 31
N - Options: *,N,{ [*] X [ojo0J0J O] FL IN] OP |
% fff Example: HJZ M, X
"y HJINZ M, X
Mnemonic Binary
OPN Code OP Code Title Operation
| | HIN)E 000 Halt Halt if flag f is (not) set, then jump to M on
| external signal or interrupt.
‘ Y4 EX(N)f 001 Execute Execute instruction at M if flag f is (not) set.
; Location counter unchanged.
i
: L(N)f 010 Link If flag f is (not) set, then store location
¥ counter at m/ and take next instruction from
. m + 1.
\ LR(N)f 011 Link and Reset Same as L(N){, but flag f is unconditionally-
b reset.
JT(N)f 100 Jump and Trigger Jump to M if flag f is (not) set and uncondi-
\ tionally trigger flag.
1 JS(N)E 101 Jump and Set Jump to M if flag f is (not) set and uncondi-
N Vv tionally set flag. .
o JR(N)E 110 Jump and Reset Jump to M if flag f is (not) set and uncondi-
: 1; tionally reset flag,
L I(N)E 111 Jump Jump to M if flag f is {not) set.
V] a

* = Indirect Address

N = (I(28)) = 1 = Operation to occur when selected flag (f) is not set.
N = (I(28)) = 0 = Operation to occur when selected flag (f) is set.
f=FLAG=(), 2,G, L, V, C, B, E, 1 - 8,

4

XV

<

Format: OPN M ,X

Options: *,/,M

EXEC BIT CONTROL INSTRUCTIONS

16 17 19 20 23 24 25 26 27 28 29 31

X

X [O7O0[O0{T[1] W SpiTIT[i[1]

Mnemonic Binary
OPN Code OP Code Title Flags Operation
SEX S/R =1 Set EXEC EXEC bit at location m(M/ or /M) is set.
REX S/R=0 Reset EXEC EXEC bit at location m(M/ or /M) is reset.
TEX T=1 Test EXEC Z EXEC bit at location m(M/ or /M) is tested.
Z flag set (=1) when EXEC bit is high (=1).
Z flag reset (=0) when EXEC bit is low (=0).

* = Indirect Address

X = Index Register

W = 00 - Illegal
01 = Left half word
10 = Right half word
11 = Illegal

XVl

5,

A
5 [F¥ ULy Eg g/& c

-
“ 7

< O Y ¥ NS

e
A

t
te1d) 6

LOAD/STORE PROCESSOR REGISTER INSTRUCTIONS

Format: OPN M ,X
AN
16 17 19 20 23 24 25 26 27 2829 31
Ny X [0J0J0[i[i] W [y 0] AC |
g
AC “«
Mnemonic Field)
OPN Code Code Title Options Flags Operation
L/ LDAE 000 Load AE * /= m —» AE
e STAE Store AE * / AE —»m
A LDF 001 Load Flag * /= m—>F
Register
v STF Store Flag * / F —m
Register
V] LDL 010 Load Loca- * /y= m—»1L
tion Counter ’
\/ STL Store Loca- * / L —»m
tion Counter)
4 LDT 011 Load Timer * /[y = m —eT
v© STT Store Timer * / T —=m
Sl LDM 100 Load Inter- * /y= m —s M
rupt Mask
STM Store Inter- * / m —sm
rupt Mask
i LDE 101 Load Exter- * /= m —»E
nal Mask
A STE Store Exter-} *, E —»m
nal Mask
V] LDC 110 Load Con- , /= m —»C
sole Regis-
ter
STC Store Con- * / C —»m
sole Regis-
ter
o e s s e 2t
¢ /U £ Ad 7"(1{7”* £ ("'/ /A T

W = 00 = Immediate (=)
01 = Left Half (M/)
10 = Right Half (/M)
11 = Illegal
L/S =1 = Load
0 = Store

XVII

s g g

STATUS/FUNCTION LINE INSTRUCTIONS

Format: OPN M/,X,B

~ Options: *, /,B,= 1617 19 20 23 24 25 26 27 28 29 30 31
N x] X Tojojolifil w [1]i%%[B }
% Remarks: B=bank=0, 1, 2, 3
B = 0 relates to Floating-Point Processor
R B =1 relates to Exchange
B = 2, 3 relates to External devices
S/F
Mnemonic Field
OPN Code Code Title Flag Operation
V/ TSL 0 . Test Status Line z Test status line, in bank B,
specified by m. Z flag is
set/reset if status line is
set/reset,
SFL 1 Set Function Line Z Set function line, in bank
14 B, specified by c(m). B
flag is set if function line
already set, or cannot be
set because of conflict.

W = 00 = Immediate (=)
01 = Left Half
10 = Right Half

11 =Illegal

XVl

LOAD/STORE ADDRESSABLE 1/0 BUS INSTRUCTIONS

Format: OPN M/,X,R

Options: *,/, =

1617

1920

23 24 25 26 27 28 31,

L * X

[ofoJofJilo] W [R i

Remarks: R=bus=0,1, 2, ,,,, 15
17 bit transfers, 16 bit

plus EXEC bit

L/S

| Mnemonic Field
\/ OPN Code Code Title Flags Operation
A

I.DOB 1 Load Output Bus None m — Bus R
c/ I STIB 0 Store Input Bus None Bus R —»m

W = 00 = Immediate

01 = Left Half
10 = Right Half
11 = Illegal
. r;s,\i DATA CHANNEL INSTRUCTIONS
w
._\:‘5
& Format: OPN M, X, K
oS Options: * 16 17 19 20 232425 2728 29 31
% I * X 10/0,0i1i0y1:1[~siD¢| K |
L~ Remarks: R =datachannel=0,1, 2, ..., 7
L/S D/C
Mnemonic Field
. OPN Code Codes Title Flags Operation
}}-/ LDCD 11 Load Channel Data Register | None m — data register K
v format specified by SFL.,
STCD 01 Store Channel Data Re- None Data register K —» m for-
gister mat specified by SFL.
v LDCC 10 Load Channel Control None m~control register K 32
Register bit transfer.
STCC 00 Store Channel Control None Control register K—sm 32
L Register bit transfer,

* = Indirect Address
X = Index Register

1. Load =1 (27)
S Store =1 (27)

1
0

XIX

D Data Register =1(28) =1
C Control Register =1(28) =0

AUTOMATIC CHANNEL CONTROL

Format: OPN M, C
16 20 27 28 29 30 31

Options: None I OP | 1]

Remarks: C =count C -IC ~ 4096
No flags affected.
These instructions control word transfers to or from contiguous memory locations
starting at M.,

Record length is controlled by count C which is decremented after each word trans-
fer until C = 0, or by a signal included in the data.

[Mnemonic Binary

! OPN Code OP Code Title and Operations
TCD 0100 Transmit until Count then Disconnect
SCD 1100 Skip until Count then Disconnect
TCI 0101 Transmit until Count then Interrupt
SCI 1101 Skip until Count then Interrupt
TSD 0010 Transmit until Signal then Disconnect
SSD 1010 Skip until Signal then Disconnect
TSI 0011 Transmit until Signal then Interrupt
SSI 1011 Skip until Signal then Interrupt
'TED 0110 Transmit until Either then Disconnect
SED 1110 Skip until Either then Disconnect
TEI 0111 Transmit until Either then Interrupt
SEI 1111 Skip until Either, then Interrupt

Either = Either Count or Signal
L/S =1 = Load
0 = Store

6.2

6.0 SYSTEM ACCESS DEVICES

Access Devices for the EAI 8400 Computing System include the 8400 Console
Desk and a complete complement of peripheral equipments.

CONSOLE DESK

The operation of the 8400 Computing System is consolidated at the operator
console (see Figure 6.1-1). The elements of the Console Desk are:

1. Display Panel - Provides a display of the system operating
registers.

2. Operator's Panel - Contains those pushbuttons and indicators
necessary to monitor and de-bug a program.

3. Maintenance Panel - Contains those controls and status indicators,
needed for checkout and maintenance.

4. Typewriter - Used as a peripheral input/output device for
communication between the computer and the operator.

Provision is included, also, for mounting an optional Paper Tape Station
with 500 characters per second read and 110 characters per second punch.

The display panel and operator's panel are shown in Figures 6.1-2 and 6.1-3
respectively. All operating controls are pushbuttons within easy reach of
the operator when seated at the console. The controls also function as
indicators.

PERIPHERAL EQUIPMENT

Peripheral devices for the EAI 8400 may be selected in accordance with

user needs. High and low speed magnetic tape systems, card readers and
punches, line printers and a CRT display monitor are available. Illustrations
of some of these devices are included on the pages following the console
illustrations.

CHAPTER 7

CONTROL DESK

7.1 INTRODUCTION

Operation of the 8400 Computer is consolidated at the system Desk Console (Figure
7-1). The Console provides complete display and control of all elements in the
system. Console operating controls are indicator/pushbuttons,all within arms

reach of the operator when seated at the Console.

The Desk Console includes an '"on line'" typewriter with an operating speed of 15
characters per second. The 8441 Paper Tape Station - reading 500 characters per
second and punching 110 characters per sécondbis also housed in the Console.
Figure 7-2 shows the Control Panel used for complete system control inéluding
a special set of register controls to facilitate direct man-to-machine communi=-
cation., Figure 7-3 shows the typewriter and the display panel for 9 different
registers and 1 counter., Figure 7=4 shows the maintenance.panel used for
monitoring and manual control of sfstem elements.,

A thorough understanding of the controls, indicators and operating,pfocedures
for the Desk Console is a prerequisite for complete maintenance of the 8400
Computer. This chapter discusses the function of each control and indicator,

necessary operating procedures, and presents a brief description of internal

component layout.
7.2 SYSTEM CONTROLS AND INDICATORS

This section lists and briefly defines all pushbuttom controls and indicators

located on the System Control Panel. Circled numbers are location keys for

Figure 7=5.

~d
9
[

|. CONTROL PANEL

2. INDICATOR PANEL

3. MAINTENANCE PANEL (BEHIND COVER)
4. TYPEWRITER (1BM 735)

5. PAPER TAPE READER

FIGURE 7-1 CONTROL CONSOLE

Y3LIYM3IdAL 1NdLNO—-LNdNIZAVIdSIO ¥31S1934 22—, 34dn9ld

..
\

f = \l \i \ £/ \/ \ i \/'\/

‘€—/, 34Nn9l4

13NVd T04LNOD

MEMORY
TEMP

EXPONENT

FAULT

INTERNAL
INTERRUPT

EXTERNAL
INTERRUPT

CHANNEL
INTERRUPT

CHANNEL
PARITY

EXCHANGE
PARITY

MEMORY
PARITY

-4 34N9Id

T3INVd 3ONVNILNIVW ANV H30V3Y 3dVL ¥3dVd

a— e
X o <
o ¢ E %
0*
% - Mag
GREENT OHAION oo ’
. - o

READER
POWER

Y, 2

CLOCK CONTROL BANK SELECT PATTERN CONTROL CHANNEL SELECT

DEVICE SELECT

TYP E XPONENT INTERNAL EXTERNAL CHANNEL
! READY FAULT INTERRUPT [l INTERRUPT INTERRUPT
CHA
. ' ‘ READY
UNC ‘ | cTr R Lss M crv |l sy
2 ! | ! B CHANNEL
- BUSY

[]) . CHANNEL
F : F
F i SIGNAL
! 3 - B

CHANNEL

o

»H

N
O

PARITY
ci l o o sc { sc

[‘ EXCHANGE
| B ! f 4 PARITY

I\ 7/
MEMORY
auTo AUTO PARITY

LOAD oumP

- | T
’ ‘ MEMORY
22 INITHALIZE HLT | HPR EXECUTE POWER CLEAR

N
)

7 ©

c W ¢ c c c | < ¢ c Il ¢ c
= 3 4 s o 10 T 12 13

cﬁoGééé@@@

N
H

FIGURE 7.5 SYSTEM CONTROL PANEL

Register Controls.

AF, AE (:) These two pushbuttons determine which data is displayed on the
ACCUMULIATOR portion of the system display panel. Depressing the AF pushe
button causes bits 0 through 31 of the A register to be displayed. 1In this
mode the A register contains one of the operands of an arithmetic operation.
Depressing the AE pushbutton causes bits 0 through 15 of the A register and
bits 0 and 9 through 23 of the Q register to be displayed. This configur-

ation is used in extended arithmetic operations,

AD, D, E, DE, EC (:) These five interlocking pushbutton indicators determine
which data is displayed in the DISPLAY REGISTER portion of the system display

pane]. .
AD displays bits 0 through 23 of the Q register.

D displays bits O through 31 of the D register which accepts incoming data

from memory and acts as an operand register for all arithmetic operations.

E displays bits O through 31 of the E register, which is used .to store the
contents of the A register during some arithmetic operations, and as an

extension to the D register during double precision operations.

DE displays bits O through 15 of the D register in the first half of the

display register and bits O through 15 of the E register in the second half,

EC displays bits O through 31 of the Exchange Control register. This push-
button is functional only with the Automatic Data Ghannel Processor. The
Exchange Control register controls the sequence of operations within the

Exchange Module without writing cach instruction through the Control Module.

7.7

Typewriter Input Controls.

I, SA, MA, MD, RD, WR (:) These six pushbutton indicators determine where

typewritten instructions are routed within the computer. They are elec=

trically interlocked so only one may be operational at a time,

I (Instruction) Typewritten information is transferred from the "W'" register

(0:31) to the Instruction Register.
SA (Starting Address) Typewritten information is tramsferred from the W

register (0:15) to the Location Counter and the M field of the Imstruction

register when the CR key is depressed.

MA (Memory Address) Typewritten information is transferred from the W
register (0:15) to the M field of the Instruction register when the CR

key is depressed.

RD_(Read From Memory) Information read from addressed memory locatiom is

displayed on the Memory Data register (0:35).

MD_(Memory Data) Typewritten information is transferred from the W régister

(0:33).to the Memory Data Bus when the CR key is depressed.

WR_(Write Into Memory) Contents of the Memory Data Bus (0:35) are trans=-

ferred to the Memory Data Register and then written into the addressed

memory location.

Typewriter Ready.

TYP RDY (TYPEWRITER READY) (:) This indicator when illuminated indicates the

 typewriter has been selected as an I/0 device.

Exponent Fault (:)

This indicator when illuminated indicates an exponent overflow or underflow

within the Arithmetic Module,

Internal Interrupt (:)

This indicator when illuminated indicates an unserviced internal interrupt.

External Interrupt @

This indicator when illuminated indicates an unserviced external interrupt.

Channel Interrupt

This indicator when illuminated indicates an unserviced exchange channel inter=
rupt. The affected channel is determined by the setting of the CHANNEi

SELECT switch on the Maintenance Panel. When the CHANNEL SELECT switch is

in the OFF position an interrupt on any exchange channel will illuminate

this indicator.

Channel Condition Indicators.

These three indicators when illuminated indicate various conditions as listed
in the following péragraphsc In the AUL (Auto Load) or AUD (Auto Dump) mode
the condition indicated applies to the channel selected by the CHANNEL SELECT
switch. 1In the program control mode the condition indicated is on any
addressed channel. The partiﬁular channel may be determined by the CHANNEL

SELECT switch.

Channel Ready (:) This indicator when illuminated indicates that the Exchange
channel selected is ready to accept information from or load information into

Memory.

Channel Bus 6:) This indicator when illuminated indicates that an exchange
channel has been addressed and is accepting information from or loading in-

formation into Memory.

7.9

Channel Signal q:) This indicator when illuminated indicates that a

peripheral device has sent a fault signal. (A gap on magnetic tape;

STOP code on paper tape reader, low paper on paper tape punch, etc.)

Parity Indicators

Channel Parity @ This indicator when illuminated indicates that a

Parity error has occurred in the selected device,

Exchange Parity @ This indicator when illuminated indicates that a parity

error has occurred within the exchange module,

Memory Parity @ This indicator when illuminated indicates a memory

parity error has occurred. 1In the AUL or AUD mode the error occurred in
the particular channel selected by the CHANNEL SELECT switch. In the pro-
gram control mode the parity error has occurred in any addressed bank, the

particular bank may be determined by the CHANNEL SELECT switch.

NOTE
The system will not halt when a
parity error occurs unless pro-

grammed to do so.

Systen Flag Indicators @

These eight indicators display machine conditions that occur during the course

of a program.

UNC (Unconditional) TIlluminated when the rounding flip~flop of the

ACCUMUIATOR is in the 1 state. This flag may be used to generate an un-

conditional jump instruction,

7.10

ZERO (Zero) Illuminated when the contents of the ACCUMULATOR are zero,

or as a true result of TSL'S‘and Boolean Connect Instruction (BEQT).

GIS gGreaterQ"Iliuminatéd when the contents of the ACCUMULATOR are greéter

than zero.

LSS (Less) Illuminated when the contents of the ACCUMULATOR are less than

Zero .

OFW_(Overflow) Illuminated when there is an overflow condition in the

accumulator.

CRY (Carry Out) Illuminated when there has been a carry out of the most

significant bit of the accumulator (Al, not AO).

BSY (Busy) Illuminated when an addressed function line or data channel is

busy.

ENB (Enable) Illuminated when the system interrupt lines are enabled.

Programmer Flag Controls and Indicators

Fl Through F8 6:) These eight indicator pushbuttons are the programmer flags.
Depressing the pushbutton complements the flag., The indicator is illuminated

when the flag bit is a '"1".

Console Interrupt Controls and Indicators

Cl Through C& (:D These four indicator pushbuttons are manual console -
interrupts. When illuminated they indicate an unserviced console interrupt.
The indicator is extinguished when the interrupt is servicéd or the push-

button is depressed a second time.

7.11

Configuration Switches

SC1 Through SC4 These four pushbutton indicators are control switches

for special 8400 configurations,

Auto Load and Auto Dump

Auto Load @
This indicator pushbutton is used to load information from a single peripheral
device into memory during manual operation. It is illuminated during the

Auto Load operation. (See Operating Procedures.)

Auto Dump This indicator pushbutton is used to transfer information
from Memory onto a single peripheral device during manual operation. It

is illuminated during the Auto Dump operation. (See Operating Procedures.)

Clock Controls

RUN/SGL/HAF/FUL/ @ These four indicator pushbuttons establish the mode of
operation of the 8400. The RUN, HAF, FUL pushbuttons are electrically inter=
locked so only one is functional at a time. The SGL pushbutton mechanically

locks when depressed.
RUN When depressed sets the system in normal sequential control cycle.

SGL When depressed sets the system to operate clock pulse by clock pulse.

Each time the Execute pushbutton is depressed one clock pulse is generated,

BAF When depressed the system will perform half the instruction control
sequence. The first time the Execute pushbutton is depressed the instruction

word will be transferred to the I register and any address modification

7.12

called for will be performed. Depressing Execute a second time allows

the system to finish the instruction cycle and halt.

FUL When depressed sets the system to perform the complete instruction

and halt, each time the Execute pushbutton is depressed.

Initialize @

This indicator pushbutton is used to clear the system. The CC and CIC
counter are cleared and the PC counter is set to PCl2, Memory is not

cleared by this control.

Halt and Halt/Proceed (HLT/HPR) ()

HLT This indicator pushbutton is used to manually halt the system. It is

illuminated when the system is in the halt condition.

HPR When illuminated indicates the system has been halted by a Halt/Proceed

instruction. Depressing the Execute pushbutton restarts the system.

Power {:9

Depressing this pushbutton energizes the system, The indicator is illumin=-
ated when system power is on. Depressing the pushbutton again, dc=-energizes

the system.

Mémo_ry Clear @

Depressing this pushbutton clears all non=-protected Memory locations,.

Console Register

CO Through C15 (39 These pushbutton indicators represent bits O through 15

7.13

of the console register; when illuminated they indicate that the particular

bit is in the 1 state. Depressing a pushbutton complements the particular
bit.

EXECUTE ()

This pushbutton indicator is used to start operational sequences after all

other controls have been preset. It starts the system in any mode.

7.3 SYSTEM DISPLAY PANEL

Circled numbers are keyed to Figure 7=6.

- AccumutATorR (D)

This area displays bits O through 31 of the ACCUMUIATOR when pushbutton
AF on the SYSTEM CONTROL PANEL is depressed. When pushbutton AE on the
SYSTEM CONTROL PANEL is depressed bits O through 15 of the ACCUMULATOR

and bits 0 and 9 through 23 of the Q register are displayed.

DISPLAY REGISTER (2)

This area is a general purpose display. The data display is determined by five

pushbuttons as indicated below:

Pushbutton Data Display

AD Bits O through 23 of the Q register

in the ARITHMETIC MODULE,

o

Bits O through 31 of the D register in

the ARITHMETIC MODULE.

7'14

@ C?Q@

(4]

ACCUMULATOR

I[o[n [elsfels el ToTs [w]n Inlu:Jlo]\]n]w[uVuo]to[zl Je2]aa]

fosJasJor Jas oo Too]m [e |

1

iotnja{s'a'a[c[r o [sTwluTw2]wo]wulns

mn’:":m:'l wJao[v J2zJas [eq[as JaeJer a0 Too [iEE

'MENOAY DATA

[F’T'[’I‘I‘I‘l‘l' o [o] [s [l [w]er ToaT e Joo[ar T2z Jas o[2s Jas [2r [28 [2o [oo [arJeeJen
C

MEMORY ADDRESS

EXCHANGE ASSEMELY

1 z |3 a |5 te]7 e |sfwlu]afje

8

o] 2 (3 feajs . L K o Jwolu 2] s el]e

LOCATION COUNTER

CHANNEL FUNCTION CHANNEL BUFF

[ol-l«I=l-IsI-l!l-l-]-ol"I'tl“l'-l'ﬂllol = Jsl\dshlvi'ulqelsh

lfc]rlv[l

el Tz]sT<T>s |cy1]t]ano|u||z||s]u||ﬂto||v[nl]u|[o]znilz[nlz-]i[ac]zr]en

s [0 o [e [en

INPUT

29 Jso s JeJen

A
o [+ T2 s« r7[7 [s TeTw]n ||:||s|u[|s]|c| [-a].o]z\]zu Jee Jesae [2s [26 J2r | 20
/ /

/ /

FIGURE 7.6 SYSTEM DISPLAY PANEL

55§

Pushbutton (Cont) Data Display

E ‘ Bits O through 31 of the E register

in the ARITHMETIC MODULE,

DE Bits O through 15 of the D register
and bits 0 through 15 of the E register.
The D register is displayed in the left

half of this area.

EC Bits O through 31 of the Exchange Control
Register in the EXCHANGE MODULE., Used only
if system has ADCP (Automatic Data Channel

Processor) option.

MEMORY DATA (:)

This area displays the contents of the memory location that is addressed
in either manual or program controlled operation. However, it will not
display if BANK SELECT switch is in AUTO position unless memory is being

requested by control.

MEMORY ADDRESS (%)

This area displays the address of the memory location being accessed by

the CONTROL MODULE.

EXCHANGE_ASSEMBLY (5)

This area displays the contents of the Exchange Assembly Register in the

EXCHANGE MODULE.

7.16

LOCATION COUNTER (:)

This area displays the address of the next instruction to be executed,
cmaneer Funcrion ()

Thié area displays the condition of Flip=Flops within the Channel Function
Register when data is being transferred to or from a peripheral device by

‘the EXCHANGE MODULE as follows:

Indicator Function
Bit O . This indicator when illuminated specifies

that an EXEC bit accompanies each data
word to or from memory. When extinguished

an EXEC does not accompany data,

Bit 1 This indicator when illuminated specifies
that data is being transferred in Binary
code., When extinguished data is in BCD

form.

Bit 2 The indicator specifies which half of the
memory word is being addressed. When
“illuminated it specifies that the left

half of the memory word is being addressed.

Bit 3 When illuminated this indicator specifies
that alternate left and right half words
are being transferred to memory or to a

peripheral device by the Exchange Module.

7.17

Indicator (Cont)

Function

Bit &4 This indicator specifies the direction of
data transmission. When illuminated it
indicates transmission to the EXCHANGE
MODULE from the memory.

Bits 5,6,7 These indicators display the Byte size
and number of bytes per half word of data
being transmitted as follows:

5 6 7 || Bits/Byte Bytes/Half Word

|

0 0 1 8 1

0 1 1 16 1

0 1 0 8 2

1 0 0 4 4

1 0 1 4 1

1 1 0 4 2

1 1 1 4 ﬂv 3

CHANNEL BUFFER ‘

This area displays the condition

located in the Exchange Module.

control operation.

/

of the Channel Buffer register which is

Data enters the register during program

7.18

- msTrucrIoN ()
This area displays the contents of the Instruction register located in the

Cntrol Mdule.

TYPEWRITER INPUT (10)

This area displays the contents of the "W" register located in the Comsole
Desk. Data enters the‘register during manual input operation of the type=

writer.

7.4 MAINTENANCE PANEL

. The maintenance panel contains controls and indicators which may be used for
both test and normal operating purposes. The circled numbers in the following

descriptions are keyed to Figure 7-7.

LAMP TEST, (:) ON/OFF

In the ON position, this two position toggle switch enables all light
drivers in the console, providing a quick check of all lights and light

drivers.

KEYBOARD, (:) UNLCK/LCK

This two position toggle switch céntrols thé.en;ry of data from the typewriter.
In the "UNLCK" position the typewriter keyboard is unconditiomally unlocked
and may be used at any time to enter data. 1In the "LCK" position fhe key?
board is under program control and cannot be used unless so designated by

the program,

CcLOCK CONTROL (3) NOR/MAR/MED/LOW/EXT

This 5 position rotary switch determines the clock frequency of the system.

7,19

®

©

csc
CLR

LY

2

LR
R

¥C

l

Cse || €Sce | esc
1

®)

cic CIC cic

N

©

s

®

X

PATTERN CONTROL.

BANK SELECT

l\\l\\l\ll\\.\l\\lﬁl\ﬂ.\\
,)

Jqse ru- 2 &

o]

® ® [vuir wwy w.n

f o
%ﬁ/

eE[B@ |wur w4

v
o FT o m
1
3l =
3\,,r\ g M

YU T 2

FIGURE 7.7

MAINTENANCE

CONTROL PANEL

NOR
Normal clock frequency of 4.0 megacycles

MAR ‘ :
Marginal clock frequency of 4.4 megacycles used for system testing

and maintenance

MED
Medium clock frequency of approximately 1.2 kilocycles

LOW
Low clock frequency approximately 1.5 cycles per second

EXT
System clock supplied by an external device

mooe (&) sEQ/ReT

This two position toggle switch determines the operational mode of the
CONTROL MODULE. 1In the sequential (SEQ) position, upon completion of ah
instruction the iocation counter in the CONTROL MODULE supplics the next
instruction. 1In the repetitive (REP) poéition the instruction fetch portion
of the program is omitted and the LOCATION COUNTER is not incremented; the

present instruction is repeated.

LH (Left Half), RH_(Right Half), LE (Left EXE), RE_(Right EXC) ON/OFE (5)

These four, two position toggle switches determine the memory word format
during manual data entry. When in.thc’OFF positiony, information in memory
is brotected; no manual entries or modifications can take place. In the ON
position, manual entry of data is permitted according to the format deter=

mined by the switches in the ON position.

7.21

PCO, PC1, Pc2, PC3 PC SET (6)

These five locking indicator pushbuttons contrédl the manual presetting of -
the phase counter in the CONTROL MODULE. The first four (PCO through PC3)

6perate in a BCD fashion, as follows:

Switch PCO - PC1 = PC2 =~ PC3

BCD Value 8 = 4 - 2 = 1

Proper manipulation of these switches allows the operator to preset the
phase counter to any value from PCl to PCl4. The PC-SET pushbutton ﬁuat
be depressed to preset the phase counter after the proper count has been
selected on PCO through PC3. To manually set the counters the MODE SWITCH

on the CONTROL PANEL must be on SGL.

pata TEST (7)

This indicator operates in conjunction with the MEMORY PATTERN GENERATOR
and the MEMORY PATTERN CONTROL SWITCH. The indicator is illuminated when

testing with a 1's pattern and extinguished when testing with a 0's paﬁtern.
m (®
This indicator is illuminated when a memory error is detected duriﬁg a
memory test pattern.
BANK SELECT AUT 1 2 3 4 (9)

This five position rotary switch selects one of the memory banks when
running a memory pattern test. It performs three functions: 1) delects

the memory bank. 2) Hisplays the contents of the bank on the MEMORY DATA

7.22

display area during UNLD,,3) displays the address of the memory location on
the MEMORY ADDRESS display area during UNLD.

data and address are under program control.

PATTERN CONTROL

In the AUT position memory

This five position rotary switch is used to generate a memory self test

pattern into the memory bank selected by the BANK SELECT switch, The

patterns are as follows:

1's: All 1's are written into each location of the memory bank

selected.

0's: All zeros are written into the memory bank selected.

OFF: The memory self test function is disabled.

WP: Worse case patternis written into the memory bank selected

as follows:

1's into
1's into
0's. into
0's into
1's into
1's into
0's into

0's into

memory

memory

memory

memory

memory

memory

memory

memory

location

location

location

location

location

location

location

location

00001
00002
00003
00004
00005
00006
00007

00008

etc., until all memory locations are full.

WPC: Worse gase pattern complement is written into the memory bank.

7.23

CAUTION

The test patterns destroy the contents of all
memory locations in the selected memory bank,
including protected locations. The PATTERN

CONTROL must therefore be in the OFF position

during normal computer operation.

MEMO LD/NORM/UNLD 11

This three position toggle switch is used in conjunction with the PATTERN

CONTROL switch to test the bank selected by the BANK SELECT switch.,
CLOCK_(START/NORM/STEP) 12

This three position momentary switch controls the memory clock during memory
test, Depressing the switch momentarily to the START position stops the
clock, Depressing the switch again to the STEP position generates one clock

pulse, permitting clock pulse by clock pulse testing of the memory,

CHANNFL SELECT 13

This nine position rotary switch is used to select the Exchange Module Data
channel to be used during an AUL (Auto Load) or AUD (Auto Dump) operation,
The Channel Function register displays the conditions of transfer, and the
CHANNEL BUFFER register displays the information being transferred. In the

‘OFF position, channel selection is under program control.

7.24

DEVICE SELECT 14

This eleven position rotary switch selects the device (on the channel de-

signated by the CHANNEL SELECT switch) to be accessed during manual operation,

BYTE 4/8 15

This two position toggle switch selects the byte size between mémory and the

selected device during AUL (Auto Load) and AUD (Auto Dump) operation.

E Bit E/E 16

This two position toggle switch determines whether or not an EXEC bit accom~

panies data during an AUL (Auto Load) or an AUD (Auto Dump) operation.

(0} BCD 17

This two position toggle switch controls code conversion during manual opera-
tions, When in the BIN position, data is transferred without code conversion
during an AUL or AUD OPERATION. 1In the BCD position, code conversion takes

place during an AUL or AUD operation,

DBC, DBCO, DBCl, DBC2, DBC CLR 18

These four momentary pushbutton indicator switches are used to preset the
Exchange Module Device Buffer Counter which controls the transfer of data
from device to memory or from memory to device, Depressing a pusﬁbutton
sets the corresﬁonding counter stage. Depressing DBC CLR clears the counterf

Each indicator is illuminated when the corresponding bit is in the 1 state,

7.25

DSC, DSCO, DSCl, DSG2, DSC GLR 19

These three momentary pushbutton indicator switches are used to preset the
Exchange Module Data Stack Counter, This counter is used in controlling
information flow from the Exchange Assembly Register (EAR) to the Channel
Buffer Register (CBR) and from EAR to the data stack, Depressing a push-
button sets the corresponding stage. Depressing DSC CLR clears the counter.

The indicator is illuminated when the corresponding stage is in the 1 state.

CSC, CSCO, CSCl, ¢SC2, CSC CLR (Operation with ADCP Option only) 20

These four momentary indicator pushbutton switches are used to preset or
clear the Exchange Module Control Stack Counter. The counter is used to
control the operational sequence and information flow within the Auto Data
Channel Processor. Depressing a pushbutton sets the corresponding stage in
the counter. Depressing CSC CLR clears tﬁe counter, The indicator is

illuminated when the corresponding stage is in the 1 state,

CcIC, CICO, CICl, CIC CLR 21

These three pushbutton indicator switches are used to preset or clear the
Exchange ‘Module Control Interface Counter. The counter is used to control
the instruction Sequence between the Exchange Module and the Control Module,
Depressing a pushbutton sets the corresponding counter stage. Depressing
CIC CLR clears the counter, The indicator is illuminated when the corres-

ponding stage is in the 1 state.

7.26

The following Exchange Counter pushbutton switches are coded as indicated.

“ DBCO DBC1 DBC2
EXCHANGE DSCO Dscl DSC2
COUNTER CSCo cscl csc2
COUNTS CICO cICl

0 0 0 0

1 0 0 1

2 0 1 1

3 0 1 0

4 1 1 0

CCOo, CcCl, Cc2, CC3, CC4, CC SET 22

These five locking indicators display the state of the Arithmetic Module
Cycle Counter, The counter is used to control the sequence of arithmetic
operations within the Arithmetic Module., The indicators are illuminated
when the corresponding counter stage is in the 1 state. The pushbuttons

are coded in extended BCD as follows:

cco

16

CCl

CcC2

ccCl

cco

CC CLR

CLEAR

.27

7.5 OPERATING PROCEDURES
7.5.1 Pre-Operational Control Setting

The MAINTENANCE PANEL controls listed in Table 7.1 should be set to the indicated
position prior‘to systém operation, These control settings insure that system

operation is not impaired and that all facilities are functioning.: The remaining.
controls on the MAINTENANCE PANEL may be left in any position since these switches

will be set prior to a defimite operation.

TABLE 7,1 PRE~OPERATIONAL CONTROL SETTLEQS

Control Setting
LAMP TEST OFF
KEYBOARD UMLK
MODE : SEQ
CLOCK CONTROL‘ 'NOR
BANK SELECT ~ AUT
PATTERN CONTROL OFF
CHANNEL SELECT ' OFF

7.5.2 Manual Operating Sequences

7.5.2.1 Machine Power. Depress the POWER switch on the system
control panel, All control sequences are internally generated. The system is

in halt status and is.initialized.

7.5.2.2 Typewriter. When the 8400 is in the halt status, only

12 typewriter keys are legal, they are +, -, O through 7, CR and TAB, Only

7.28

these keys may be used to manually input data or instructions. Other keys may
be used for operator notations but they will not be recognized by the 8400,

Under program control all typewriter keys are legal.

The + and - keys are used to set the sign of the input information and to set
the EXEC bit in an instruction or a memory data word. When entering an EXEC

bit the + key is used to generate a binary O and the =~ key to generate a binéry 1.
The 0 through 7 keys input data in Octal code.
Depressing the TAB key sets the 8400 to the right half of a data word.

Depressing the CR key transfers information from the TYPEWRITER REGISTER to the

desired location.

When inputting data, the following word format is used.

SA (Starting Address)

+ N, Ny, N3, Nj, Ne CR
I (Instruction Woxd)
%, M Nor» N3p, Ngps Nsp, #Npjp, Npp, Nagp, Nip, Nsg, *, 3, CR

MA (Memory Address)

+, Nj, Ny, N3, N,, N5, CR

—2

MD (Memory Data)

My, Nops N3p, Nup, Ngp, CR, 2Npgp, Nop, N3g, Ngips Nsp, +, &, CR

7.29

Nj in each case represents a legal number represented in Octal code 0-7,

N1 would be the first octal character, N2 the second, etc.

N;j, represents first octal character in the left half of the word, Nir

the second octal character in the right half of the word,

The + at the end of the instruction and Memory Data words represent the

EXEC bits,

7.5.2.3

Auto Load (AUL)

lo

Depress HLT

At the MAINTENANCE PANEL

a. Select Channel
b. Select Device

c. Select Byte size
d. Select (E or E)

e. Select Code (BIN/BCD)
Depress SA

a. Type SA

+ Nj, Ny, N3, Ny, N5, CR
Depress AUL

Auto load operation will
start and run to completion,

The Location Counter will

Machine Functions

HLT light, PC-12,

HFF Sets

W(0:15) I(0:15) LC(0:15)

7.30

automatically be incremented

from the starting address.

The system will halt if any

one of the following events occur:

d,

All information from the
selected device has been

exhausted,

Stop code is detected,

HLT switch is depressed.

All Memory locations are full,

7.5.2.4 AUD (Auto Dump)

7.5.2.5

The Auto Dump procedure is

identical to Auto Load except in

Step 3 above, depress the AUTO

DUMP switch.

1.

20

Manual Instruction Insertion

Depress HALT switch

Depress SA switch.

HLT light, PC-12,

HFF Set

PC-10, DSC ()c

1(29:31), LDCD I

HLT light, PC-12,

HFF Sets

7.31

3. Enter SA (use procedure
outlined in 3,2,2)

+, Ny, Np, N3, N4, N5, CR W(0:31)c 1I(0:31)
4, Depress I switch

5. Enter I (use procedure

outlined in 3.2.2)

INyg, Noyr, N3p, Nap, Ngp,

IN1R, Nor, N3p, Nyp, Nsg

+, *, CR
a, Set RPT

6. Select Mode

(RUN, SGL, HAF, FUL)
7. Depress EXECUTE

7.5.2.6 Memory Clear

1. Depress HALT HLT light, PC-12,

HFF Sets
2, Depress SA

3. Type SA

, N, N, CR W (0:31) ¢ I (0:31)

4, Depress MEMORY CLEAR

7.32

7.5.2.7

Memory clear operation will

take place from SA to zero.,

Location Counter Increments).

MEMORY CLEAR pushbutton will re-

main illuminated until operation

is complete.

Memory Write

lo

Depress HLT

Select format LH/RH/LE/RE
Select bank
Depress MA

Type address

N3, Ny, N3, N4, N5, CR
Depress MD

Type data as selected by
format in step 2, i.e.,
ML, Nors N3p, Ngp, Nsg

INir» Nor, N3p, Nygr, Nsp

+ 1, CR

HLT light, PC-12,

HFF Sets

W (0:31)

W (0:31)

Cc

c

I (0:31)

I (0:31)

7.33

8. Depress WR I (0:15) CAR (0:15)
M, CWRM, CRQM, chosen
format appear in M,

DW CDB (0:33) M

7.5.2.8 Memory Read

1. Depress HLT HLT light, PC-12,

HFF Sets
2., Select bank
3. Depress MA

4, Type address

iNi, N2, N3, N4, N5, CR

5. Depress RD I (0:15) CAB (0:15) M,
CWRM, CRQM, chosen word

appears in MDR
CAUTION

If the system is initialized, all Memory
locations can be cleared. To set the
memory protect flip-flops, an SFL in-

struction is used.

7.34

7.5.2.,9 Mode Change

1. Depress HLT HLT light, PC-12,

HFF Sets

2. Select Mode

(RUN, SGL, HAF, FUL)
3. Depress EXECUTE

7.5.2.10 Initialize Machine

1. Depress HLT HLT light, PC-12,

HFF Sets
2, Depress INITIALIZE

Machine is now in HALT

status and INITIALIZED,

NOTE; Machine is automatically
INITIALIZED when power
is applied by depressing

the POWER pushbutton,
7.5.2.11 Console Register SetUp
1. Select any mode except SGL

2, Complement CONSOLE REGISTER bits
by depressing appropriate 'C"

pushbutton,

7.35

7.5.2.12 Flag Register SetUp

1, Select any mode except SGL

2, Complement FLAG REGISTER by
depressing appropriate 'F"

button,

7.5.2.13 Console Interrupt

1, Set the CONSOLE INTERRUPT by
depressing the appropriate Cl

pushbutton.

7.5.2.14 coptrol Module Counter Preset
1. Depress HLT pushbutton
2. Depress SGL

3. Check the condition of PC in-
dicators on the SYSTEM CONTROL
PANEL; if an indicator is illum-
inated, the corresponding counter
is in the 1 state., If a different
count is desired first depress ''PC
CLR",then select the proper count
by depressing the.proper pushbuttoﬁ.
The pushbuttons operate in extended

'BCD fashion,

7.36

| PC
8 4 2 1 0

4. Select desired mode of operation

as indicated in 7.5.2.10,

5. Depress EXECUTE
7.5.2.15 WMW |

1. Depress HLT HLT light, PC-12,

HFF Sets
2, Depress SGL

3. Check the settings of DBCO
through 2, DSCO through 2,
CSCO‘through_Z,fand C1Co
through 1. If a different
setting is desife&,‘first ‘
depress the appropriate "CLR*
button and sechd depress the
‘desired combinatténs of push-~
buttons, Coding on these

pushbuttons is as follows:

7.37

DBCO DBCL DBC2 (PP)
Exchange ‘
DBCO DSClL DSC2 (CP)
Counter
DSCO CSCl CSC2 (AP)
Counts :
Cclco Cclcl (IP)
0 0 0 0
1 0 0 1
2 0 1 1
3 0 1 0
4 1 1 0

7.6 PHYSICAL LOCATION OF COMPONENTS
7.6,1 Introduction

This section relates to the physical location of the desk components and the
identity of the different modulesvas one would find by looking from the rear

panel covers,
7.6,2 Component layout

Figure 7-8 is the Desk's rear view illustrating the location and layout of the
control panel, the maintenance panel, and associated input-output equipment,

The two row panels listed are: DSA, DSB, DCL, and TTY.
Row 1 refers to the top row and row 2 the bottom row of each panel.

Distribution panels (DSA and DSB) primarily contain Combo Cards and Wetting
Cards at location "A" through "T", These cards are used to distribute logic

signals from the Desk to the Floating Point Processor and vice-versa.

7.38

o02ve

6e° L

MIIN - HHIY AS3A SUQLHYIO G-l 330914

Zvawa AHIdS\A W3ILsLs Bgol @?

<
|14 30¢ .
=
vl 1y,306 =] & 3
> 2 u
~[/4. 307 v A z g =
=z ’ (i W rv113 3 O
(7. 397 X 33 o i W 3"_,‘
2|pe333- 5 % 5 332
rleezss-1 |~ - [N Z o m
— O ® D m O
x[ep.333-1 |<| € ° 4
- m T q ™ x
H2e.3339) b - m
Xx|ge.z30 D Ry
' v = o
™22, 760 £ Lal pal =
miz>0 3837/ 2) A
©|{2e.33F =< ally gj
MY e
NEECE oflal 5
o 3
x| [TIF
Hlsrzzy |5%238 JIC
T| 5238 |$/.238 Sl ey
Nl {— o QA
Al $r.208 |2e2.3¥9~/ s ® =9
m , , _ D
$1.22¢ S/. 208 o | 7. eo/ 2 Sz
ols7238 |sreog |®| 57220/ = I !'r'_‘ ?30
o
Ol 5,238 |S7.238 I 20/ -‘2 a ~
x| 40,597 | 57.228 | 520/ Blln
| 40597 |v0.593 | .20/
Clege.feo | 22.358 | =s7.23¢8 S/.24e |<
| 22.3%9~/ |22. 358 | 90,5792 724 |4
wlza, 399~/ 22 758 g/ 242 |w
»| 22,549~ |22.358 |2z 33 O)24 |»
™| 22,372 | 22.358 }zea. 360 O . s/ 242 | O
|Zjee. 303 |ce.558 |z2.323 17' i s7.248 |Z
Rz2.3%6 |ez, 358 |22-333- e 2 R E:
rlze-33v-1 [22.358 | 223599 o o < 5292 |
X |p2-3842 |22.358 g 22-338 | < o 2 o S92 |x
S22,395 |z2. 358 S O o 7 242 |uy
x|22.37/ |22.358 a A g e9e |x
.39 .)
Tl 22,368 | 22.35& U“\O 57, 2¥e =
m|z2. 362 |22.358 7. 298
Ol 22,8204 |22.358 }22.333 O g7/ 292 |9
Clz22.327 |22.35% g7 242 |n
W22, 380 |22.258 57,292 |m
> 22,358 s/.242 =
l | 1 [
' r : —- CABLE |[RACK| PANEL PLUG | RACK, PANEY PLUE
cABLE [RAKI PRNEL | PLUG [RRCK] PANEL| PLVG | Il | |
| L | | AD | Al- RMc - c% | b/~ psB-ce
mp| M -mBcL\-VI | DI-DSB -J1| [AD2 | A/-A/we - BY p/-DSB-Da
mp2 | mi- mBecLI-T) | DI-DsB-Hl |AD3 |A/- imc- A4+ p)-DSB-E2
pcl | D/~ DSB-B2 |cea-cmB-52 |(EDi El- cHeBl- Ul pi= psp -El
pci-/ |ce-CmB-S& |Cl-CmD-B% |&p2 | &/ —_gmee -R) DI~ DSB -HZ
bce pl- DsSB -A¢2 ce-cmp -py EPX | ElI-CcHCEB-TI p)-DSB~J2
pce-l |c2-cme- Pl Cl=CmMD-S% | gpY | EI=CHCR/-T3 pI-TTYZ-UI
pc3 DI- DSB-R/ c2- eme~Ti EDS | E/-CHCAI-S53 pl- TTYE-TI
DC3-1| cg-cmc-T/ | ¢c)~cmD-FE |cPI c2-Cma-uz D)-psE~2|
pecy D)- pDs8-D/ c2-cmrR-u/ |cPe c2-cmp@- U\ p)-psB-¢i

The Control Logic panel (DCL) contains a variety of circuitry such as control
for the Typewriter and Paper Tape Station Device Controllers. For example,

the "W" register coﬁnter is located on row 2, cards F and E. These cards would
Be identified as DCL-F02 and DCL-E02, The TTY panels (one and two) also con~
tain a variety of circﬁit cards located in slots "A'" through '"U", The circuitry
is mainly for the Typewriter Device Controller, however, TTY-l panel contains
some circuitry for the Paper Tape Station Deviée Controiler. The System ﬁisplay
Panel contains 17 identical Light Driver cards located in positions "A" through

"UH.

The model number of each card is shown for each card location used, A table on
Figure 7-8 also provides a list of cables with the rack, panel, and plug desig-

nations forieach cablé.

7.40

CONTROL CONSOLE

: & s . . “5 B. 5 8 = L s

oW W W W W W W W W § W ¥
... W W ¥ ¥V ¥ ¥V w W V¥V ¥

Yy V. YL Y Y VYV Y. W ¥

REGISTER DISPLAY/ INPUT -OQUTPUT TYPEWRITER

-5

ConNSoLS
RECIST

MEMORY EXPONENT INTERNAL EXTERNAL
TEMP FAULT INTERRUPT INTERRUPT

OPERATOR'S PANEL

CHANNEL
INTERRUPT

CHANNEL
PARITY

EXCHANGE
PARITY

MEMORY
PARITY

1%

o
=

£-20

MAGNETIC TAPE TRANSPORT

af~

W
v

p-CARD READEF

PUNCHE

LINE PRINTER

FLOATING-POINT PROCESSOR

o 1-1

1.0 STANDARD PROGRAMS AND PROGRAMMING SYSTEMS

Software is the second dimension of a computing system, and is equally vital
to its effectiveness, EAL provides a comprehensive set of programming
systems, programs and routines tailored to the needs of hybrid simulation,
analog program setup and checkout, and general scientific computation. These
range from MACRO assembly and FORTRAN IV Compiler systems, a library of
relocatable subroutines that have been designed for maximum execution speed
and recursive entry, and monitor system featuring console control and debugging;
to a system of programs designed for increasing the efficiency of programming
and operating analog and hybrid computers,

A design criteria for EAI software is its overall effectiveness in the hands
of an individual user. That is to say, throughout the implementation and
description is the attempt to provide software uniquely applicable in a time-
shared environment or intimate man-machine relat1onsh1p. Facilities for
batch processing are also provided.

Efficient manpower utilization is as important as high problem throughput.
The EAI 8400 Programming Systems provide a balanced capability for the
scientific, research and simulation laboratory in meeting both criteria,
The significant characteristics of the 8400 Software system are:

1. Dynamic Relocation of user programs and 8400 software - the unique ability
of the 8400 to relocate programs once they are in core memory.

2. Highly Efficient Object Coding produced by programming systems, optimized
to achieve maximum execution rate of user programs.

3. Real-Time, interruptable programs designed for recursive programmlng in
a multi-user or hybrid environment.

4, Software design to take full advantage of the 8400's powerful instruction
repertoire and storage efficiency.

The 8400 Linking Relocatable Loader has the ability to map relocation information
generated by the MACRO Assembler/FORTRAN 1V Compiler into the memory EXEC bits.
Using this relocation information in memory, the Standard Monitor DISPLACER
provides the facility to move programs physically about without destroying

their ability to be executed. Some computers have hardware that '"relocates"

an instruction as it is being executed. The EAI 8400 moves segments of

programs about in memory, updating relative cross-referencing between segments
sweeping through memory and changing the links. Sections of program anddata
storage can be reclaimed during execution of a program, thus increasing available
memory space; new sections of coding, of variable or undetermined lengths, can

be brought in to replace the old.

Dynamic relocatability is the basis for Dynamic Storage Allocation, thé
analysis and optimization of storage requirements of programs, both before
and during execution.

2.0 8400 MONITOR SYSTEMS

Efficient utilization of a digital computing system is of prime interest

in the modern scientific computation laboratory. Experience has shown that
setup time' is drastically reduced Ly the incorporation of standard procedures
in the computer's own operation capabiltities.

The 8400 Scientific Computing System is equipped with three Monitor Systems
which relieve the programmer of the machine dependent aspects of digital
computation,

The 8400 Standard Monitor System handles the real-time aspects of the machine
such as 1/0, interrupt routing, program loading, debugging control and storage
allocation. An Operating System includes as well accounting routines and

sof tware facilities for scheduling and executing a series of unrelated computer
runs without human intervention.

The Simulation Monitor System is a complete entity within the EAI 8400 Monitor
System. It utilizes some of the routines described under the Standard Monitor
System and has control of a group of programs designed specifically to aid

in the operation of either all-digital or hybrid scientific simulation programs.

The HYTRADIGalqonitor System is another parallel system of programs designed to
provide digital computer assistance in the preparation and check-out of analog
and hybrid computer programs.

A unique feature of the EAI 8400 monitor systems is the modularity afforded by
the exclusive dynamic relocatability of programs. The Executive section of

the Standard Monitor is written to cccupy absolute locations in a contiguous
lower section of memory. The remainder of the Standard Monitor and the
Simulation and HYTRAN Monitors are composed of subroutines which are dynamically
relocatable and hence may be called in or removed by the Executive. This means
that sections are brought into core memory only as required and unneeded sections
may be removed. The Monitors can be reoiganized automatically to assume a
minimum configuration in all cases, thereby optimizing user storage. Even
though the Simulation and HYTRAN Monitors and Debug Executive System may be
called into play during execution, the limitation on memory size is a function
of only what is needed and how efficiently it was coded.

The 8400 Monitor Systems and the software they control are as follows:

EAT MONITOR SYSTEMS

STANDARD MONITOR SIMULATION MONITOR ‘ HYTRAN MONITOR
1. MACRO Assembler 84 1. Linking Loader 84 1. HYTRAN Programs Group
2. FORTRAN IV Compiler 84 2. Debug System 84 a. Analog static check
3. Linking Loader 84 3. Subroutine Library 84 b. Analog report Generator
4. Debug System 84 4., Simulation Programs Group c. Analog Equipment
5. Subroutine Library 84 Hybrid Mode Control Check-out

Integration Control
. Function Generator Loader
Hybrid Computer Set-up

Hybrid Debug
Hybrid Mnemonic Addressing

D .0 o' e

& EAI Service Mark

2-2

STANDARD MONITOR SYSTEM 84

The 8400 Standard Monitor consists of an Executive controller and a series of
functional packages which perform a variety of tasks as requested by the
Executive. The Executive is a non-relocatable (absolute) program which resides
in a lower section of memory; the remainder of the Monitor which is dynamically
relocatable is called into core when required and removed when no longer needed.

The resident Executive controller occupies a minimum of memory space. Users

of 8400 systems with critical memory restrictions may choose to operate without
the Standard Monitor. 1In these cases, the functions of memory and peripheral
device storage allocation are handled by the programmer with the aid of the
MACRO Assembler, FORTRAN Compiler, Relocatable Loader, and Subroutine Library.

The functions of the resident Executive controller are as follows:

1. Dynamic Storage Allocation at the request of the user or one of the
Monitor Systems.

This routine is fesponsible for loading programs via the Linking Relocatable
Loader, assigning memory locations for the program or segments thereof, and
designation of input-output devices. The generalized dynamic relocator known

as DISPLACER, handles the moving of program segments in memory. The programmer
guides the allocation of storage in accordance with thé requirements of the
problem, but is freed from the necessity of assigning the specific core and
peripheral storage layout. The coding of each problem is independent of the
particular storage capacity of the 8400 computer being employed and of any
other program which might share memory during execution.

The unique ability of the 8400, to displace programs in memory and have them
remain executable and to allow symbolic references to memory locations using
the symbol table, creates a system in which the programmer need have no
knowledge of the specific location of programs or data. The translation of
symbolic names into specific memory locations may be made either prior to or
during program execution without affecting the user.

2. System Loader

The Standard Monitor System Loader is loaded by the Console Auto Load bqﬁton;
the System Loader in turn loads the remainder of the Monitor and the Linking
Relocatable Loader and Debug System.

3. Interrupt Direction for Monitor interrupt routines or user.

4. Basic Housekeeping Routines unique to hardware oriented activities of
the 8400:

Save and Restore subprogram
Rapid Access File Control
Internal Interrupt Processing
External Interrupt Routing

2,

5. Console Typewriter Input-Output Executive communication package.

The Standard Monitor Modules perform the following additional functions,
as required:

1. Input-Output Routines and scheduling system for assignment, control, and
monitoring of peripheral device activity. -)

This 1/0 supervisor package calls from the subroutine library those 1/0
formatting and control routines it requires. Device and channel initialization
and control sequences are provided for. All peripheral devices are connected
to the 8400 through one of its data channels.

2. Push-Down Stack Control

As discussed in the Relocatable Subroutine Library section, a portion of
contiguous upper memory is set aside by the Standard Monitor for storage of
in-process data as required by recursive programming. This system routine
"STACK" insures that the stack does not interfere with other programs, and
handles corrective procedures in the case where the recursive stack becomes
temporarily overflowed or erroneously emptied. The stack itself is dynamically
relocatable and may be shifted about in core when other operating programs
compete for the space.

3. System Dump subprogram for producing relocatable outputs from memory to be
re-loaded by the System Loader.

4. COMPAT and EXEC protect interrupt routines.

5. A Control Statement Analyzer which accepts commands from any external
device (console typewriter, control card, paper tape, etc.) and performs
various functions such as:

a. Loading other programming systems (i.e. FORTRAN IV, MACRO Assembler,
Linking Relocatable Loader). A subroutine library search may be
performed at the request of the loader to bring in additional program
segments.

b. Loading other monitors (Simulation or HYTRAN monitors, Debug
Executive).

c. Deleting segments of program and/or data.

SIMULATION MONITOR SYSTEM 84

The Simulation Monitor is called into the system by the Standard Monitor
Executive System Loader and replaces or supplements the relocatable modules

of the Standard Monitor System. The Simulation Monitor relieves the programmer
of a series of generalized tasks associated with operation and control of

2.3

2-4

real-time digital or hybrid simulation problems. In so doing, the Simulation
Monitor controls the Simulation Programs Group, discussed separately., The
primary functions performed are:

Hybrid Mode Control
Integration Control

Function Generator Loader
Hybrid Computer Set-Up
Hybrid Debug

Hybrid Mnemonic Addressing
Dual Processor Control
Program Loading and Execution
Digital Computer Debug

- . .

Voo~V P~WN -~

The loading, debugging, and execution of programs is handled in the same way
as the Standard Monitor System, The Linking Relocatable Loader and
Debug System are called in as required.

The Dual Processing Executive routine of the Simulation Monitor permits the
time sharing of the 8400 by the hybrid system and other 8400 users. Between
"operate" periods of the hybrid computer, the 8400 may be used for assembly,
compile, checkout, or execution of other programs. These operations are
interrupted whenever the real-time problem resumes, b+ continue when the 8400
is again available,

Like the Standard Monitor, the Simulation Monitor is dynamically relocatable.

Only those portions of the monitor required for each phase of problem solution
are retained in core.

HYTRAN MONITOR SYSTEM

The HYTRAN Monitor System is called in by the Standard Monitor Executive
System Loader on an operator request. It controls the HYTRAN Programs Group,
a family of meta-programs to provide digital computer assistance in the
programming of an analog system. The scaling of the physical equations and
the preparation of the computer diagram are still performed by the programmer
who thereby maintains direct control over the analog implementation of the
problem. 1In order to permit calculation of theoretical static check values,
HYTRAN also must be given the original problem statement and a set of test
initial conditions. Additional data, including patching information, com-
ponent setting or modes, highest derivatives, and any other expressions
representing other appropriate component outputs must be provided as well.

In this way, the necessary rapport between the programmer and the machine is
kept. Figure 2.3-1 shows the steps required to program an analog program
with the HYTRAN System.

Program input is punched on paper tape in an analog-oriented language compatible
with the 8400 Digital Computing System. The HYTRAN System then computes

2-5

potentiometer settings, and both a physical and voltage static check which
are tested for consistency. Complete documentation of the analog program
is produced (including potentiometer, amplifier, and cross-reference sheets
as automatic pot-setting and static test tapes). An On-Line Diagnostic
Generator checks measured static check voltages against the analog circuit
di agram and the specifications of the analog components, providing a rapid
means of locating patching errors or component failures. HYTRAN Outputs
are shown in Figure 2.3-2.

The HYTRAN Monitor and HYTRAN Programs Group requires an 8400 System with 8K
of core memory. With an 8K core, each program can be contained in memory and
enough data storage is still available to process an analog computer program
requiring three one-hundred and twenty-amplifier systems. 1In general, there
are no special requirements on the analog computing system(s) since the
programs cover a wide range of component configurations.

SCALE

|
I
EQUATIONS | !
|
]
}
]
DRAW |- OFF -LINE | ~—| COMPUTE
DIAGRAM | CHECK PARAMETERS
| ,
|
|
|
| COMPUTE
| POT-
| SETTINGS
|
|
|
\} |
|
- ON-LINE SET
PATCHING T—_'>I CHECK IC POTS
MANUAL : HYTRAN
OPERATIONS OPERATIONS
PROGRAMMING AN ANALQG PROBLEM WITH HYTRAN
FIGURE 2.3-|
PROBLEM DIAGRAM '
STATEMENT CHECK POT -
SETTING
TAPE
FLOW o o|
‘ COMPUTED
DIAGRAM STATIC
CHECK
8400
HYTRAN
r
1
MEASURED - _ PROGRAM
STATIC DOCUMENTS
STATIC HARDWARE
VALUES DIAGNOSTICS

T

OUTPUTS OBTAINED FROM THE HYTRAN SYSTEM

FIGURE 23-2

3.1

3.1.1

3.1.2

3.0 8400 PROGRAM PREPARATION SOFTWARE

MACRO ASSEMBLER 84

Introduction

The EAI 8400 MACRO Assembler 84, running under the control of the Standard
Monitor provides the user with all 8400 machine operations as well as an
extensive set of pseudo-operations, The coding procedures are based upon
the IBM 7040/7044 MAP and 7090/7094 FAP assemblers to ensure programming
famjiliarity with the techniques involved and the conventions and symbolism
employed. Its specifications start with MAP and FAP but go well beyond

in taking advantage of the special hardware features of the 8400 and in
ensuring suitability for high efficiency and real-time programming.

The assembler is interruptable and can be used in a real-time environment,
Included in the assembly language asre special features for real-time and
hybrid computation such as: ability to call re-entrant subroutines,
special TIME and DELAY pseudo-operations for estimation of execution times
(which are printed on the output listing), and the generation of real-time
delay intervals,

The assembler is modularly designed to permit packaging for any customer's
specific configuration of memory size and access equipment. An assembler
package contains the basic assembler and has access to the special purpose
input, input formatting, output, and output formatting routines contained
in the Standard Mounitor to tailor the assembler to each system's hardware
environment, Any combination of the following peripherals is possible.

input Output

Paper Tape Paper Tape
Punched Cards Punched Cards
Magnetic Tape Magnetic Tape
Typzwriter Typewriter

Line Printer

Characteristics

The EAI MACRO Assembler 84 requires an 8400 System with 8192 words of
core memory, and assembles programs in two passes of the source program
at a rate of 300-500 statements per minute,

There are more than forty~five Pseudo-Operations available, which allow
the programmer to communicate with and control the assembly process. These
include: location-counter control, named relocatable common storage control,

data generation options, external and entry relocatable symbol definition,
literal pool positioning control, macro definition operations, conditional
assembly control, listing control, and binary output format control.
Figure 3,1,2-1 lists the Pseudo-Operations provided,

Macro-Operations allow the repetitive insertion in the source program by

the assembler of a sequence of instructions either written by the programmer
or defined by system conventions (system macros). The macro-definition
pseudo-instructions define the macro sequences and control their use,

The 8400 Macro Assembler is oriented toward macro-operations and includes
provision for iterative sequences with variable parameters.

LOCATION COUNTER
USE
ORG (with BEGIN and USE option)
RESUME

DATA GENERATION
DATA
BCI
ASC
VFD
DUP
BCD

STORAGE ALLOCATION
COMMON (named; relocatable)
BSS

SYMBOL DEFINITION
EQU
SYN
SET

LITERAL POOL POSITION
LITORG

CONDITIONAL ASSEMBLY
IFT
IFF

OPERATION DEFINITION
OPSYN

MACROC-RELATED
MACRO
ENDM
IRP

LINKED RELOCATION CONTROL
ENTRY
EXTERN
LINK
AUTO (i.e., ABS)
REL

LISTING CONTROL

SPACE
EJECT
TITLE
PMC

INDEX
UNLIST
LIST

ASSEMBLY CONTROL
REM
END

MORE
ARG (i.e., PZE, PSV, MZE, MSV, etc.)

REAL~TIME PROGRAM ASSISTANCE
SETIME
UPTIME
DELAY

BLOCK EXEC BIT SETTING
EXEC

MACRO ASSEMBLER 84 PSEUDO - OPERATION LISTING

Figure 3. 1-2"1

3-4

Many programming applications involve a repetition of a sequence of
instructions, generally with variations in parameters at each iteration.
Using the macro-definition pseudo-operations, a programmer can define
this sequence as a macro-operation, indicating in the definition which
arguments are variable, The variable arguments can appear in any field
of any of the instructions within the sequence. Up to 63 variable argu-
ments are permitted, and each parameter substituted for an argument can
be up to 56 characters long,

Macro-operation definitions can be nested., That is, a macro-operation
definition can be entirely included within the range of another higher-
level macro-operation definition, This is extremely useful for defining
new macros or redefining existing ones with a single instruction, There
is no significant limit to the depth of nesting allowed.

The MACRO Assembler 84 produces a relocatable binary output compatible
with the Standard Monitor, the linking Relocatable Loader, EAI 8400
FORTRAN IV programs, and the Subroutine Library. All provisions for
relocation and linking are included in the assembler output, The EXTERN
pseudo-operation allows the symbolic names of external subroutines and
memory locations to be declsred. The ENTRY pseudo-operation allows a
program to declare symbolic names within it that can be external names
to some other program. The COMMON pseudo-operation allows named blocks
of common storage to be set up, As an option, the assembler produces
an absolute binary output (AUTO pseudo-operation) in a format suitable
for loading under the control of the 8400 Console Auto-Load System,

During assembly, a location counter is used to determine the next location
to be assigned to an instruction. The Macro Assembler 84 provides 16
location counters which are controlled by the programmer by using various
location counter pseudo-operations, He can use as many of the 16 location
counters as desired and transfer control back and forth among them, This
allows instructions to be listed in a sequence useful for documentation
and loaded into memory in a different sequence for execution,

Symbolic language updating, usually a separate program, is combined into
the first pass of the assembler, eliminating a special pass of the program
for symbolic correction. The updater is engaged by a sense switch option,
Corrections can be given on a tape prepared off-line or by the operator
through the on-line typewriter, The number of corrections is limited

only by the available memory for the assembler's single process table.

Two basic updating operations are provided: omit and insert. Any
necessary duplication of correct records prior to the point of omission

or insertion is automatically provided.

Limited retrospective correction is possible, allowing the operator to
return to a point which has already been processed and start anew from
there, The update system provides clerical testing of all statements,

and offers the operator the opportunity of making corrections where errors
are not known to exist, The updating process provides a corrected symbolic
tape as output, and a journal of corrective action on the typewriter,

3-6

The assembler produces an assembly listing properly annotated with error
and warning indications., The set of error and warning messages is exten-
sive, and designed to give the programmer the maximum amount of information
concerning the nature of the irregularity discovered by the assembler,
Assembly always proceeds to the end of the program, resulting in complete
diagnostics on all source statements. An alphabetically arranged index

of symbolic names and corresponding memory locations is optionally printed,
Pseudo-operations allow controlling titles and spacing on the listing, or
the suppression of the listing process.

Included in the binary-program output is a table of all symbolic names

used in the program together with information about the nature of the program
word to which the symbol is assigned. This table is optionally loaded into
memory at execution time to allow symbolic debugging of the program or a
symbolic disassembly dump (discussed in Debug System 84 section).

Flexible means are provided to specify any of the following types of con-
stants: symbolic addresses; octal, hexadecimal, decimal integers; fixed-
point and floating point numbers; and BCD, BCI, and ASCII interchange codes,

In addition to the 16-bit half-word literals (immediate operands) permitted
by the 8400 hardware addressing system, the assembler allows 32-bit or
64-bit "multiple precision' literals., Such numeric constants, preceded by
the equal sign (=) in symbolic machine instructions, are agutomatically
pooled into a constant store with no duplication, and are referenced by
proper addresses automatically inserted in the machine instructions.

Any symbol which is undefined within the program is automatically assigned
a memory location within this literal pool. The programmer can often
correct the oversight by placing in the assigned location a constant or
transfer instruction that sends control to the proper point in the program.
Automatic assignment also means that programmers do not have to define
temporary storage for one word quantities, since the assembler will do this
- automatically,

The EQU pseudo-operation is designed so that qvmbols used in it do not

have to be previously defined in the program. This often is a common
restriction of other assembly programs giving rise to many errors.

System Organization

The modular construction of the assembler and its relationship to the
Standard Monitor 1/0 package provide wide flexibility in tailoring the
assembler to the 8400 main frame and available peripheral equipment. The
incorporation of input/output control and formatting routines in the
Standard Monitor simplifies the assembler and FORTRAN IV Compiler, and
standardizes I/0 transfer operations. The entire basic assembler is organized
into separable packages. L Any package can be replaced or modified to change
or improve its operation without affect on other packages. Each pseudo-
operation analyzer is independent, allowing new analyzers to be easily
incorporated as the need for them arises. System macro routines may be
added as the need for them arises.

3.1.3

3-7

To allow users flexibility in the use of the assembler, certain
"configuring' constants are held in known locations. These can be changed
by an assembler correciion process, or by the Standard Monitor, to handle
different memory sizes, data channel assignments, tape handler assignments,
and similar other parameters,

The assembler uses only one process table whose space is shared by program
symbols, operation codes, numeric literals, update information, macro
skeletons, and macro parameter lists, This allows memory to be fully
utilized according to the needs of the specific program with no arbitrarily
assigned space lying in disuse. The algorithms used to construct the
process table allow for maximum speed of insert and lookup operations, often
faster than would be a binary search.

The size of the assembly program is kept to a minimum by designing analyzer
and scan functions so that they are used in both assembly passes. Full use
is made of table-driven techniques which take full advantage of the powerful
8400 instruction repertoire, especially the logical operations. It is
estimated that about 30% space saving in the assembler results from these
techniques and the power of the instruction set.

Every major package in the assembler contains a data word specifying the
release date and revision number of the package which serves as a check
that the most up-to-date versions have been incorporated into the assembler.

The assembler is designed to be operated in a real-time environment and may
be interrupted at any time during the assembly process, All coding sequences
employed in the assembler itself are self-initializing to ensure correct
continuation when control is returned after interruption.

0ff-Line Symbolic Assembler and Updater

EAI has developed an 8400 Simulator and Assembler known as the Phantom
Assembly Program (PHAP). It is designed to run on the Pacific Data Systems
(EAI Subsidiary) PDS 1020 Digital Computer (4K version), which is an in-
expensive stored program machine, It operates in three passes, the first

of which is merged with an updating program., An error report is produced
during the first pass and the output assembly language listing and 8400

Auto Load object tape during the second pass. The normal limit to the number
of gymbols per assembly is 256, although this can be increased to 384 by

an assembler revision. Many assembly language programs can be corrected

and assembled off-line with this auxiliary computer.

Coding Procedures

Symbolic Instruction Format

The commonly accepted IBM 7040/7044 MAP and 7090/7094 FAP source language
format is used, consisting of three parts:

1. The Label Field (columns 1-6) contains the definition of a symbolic
address. Up to six alphanumeric characters are allowed. This field may

be left blank.,

3-8

2. The Operation Field (columns 8-14) contains the mnemonic machine
operation codes, control pseudo-operation codes, or programmer macro-
operation codes, For any machine instructions an asterisk (¥) can
appear in this field, indicating indirect addressing.

3. The Variable Field (columns 16-72) contains expressions for assigning
storage addresses, index registers, count fields (1f applicable), and EXEC
bit control settings for 8400 machine instructions, or suitable expressions
for pseudo-operations. Subfields are separated by commas. An equal sign
(=) before an address subfield indicates immediate (operand) addressing.

The termination of the variable field is signalled either by reaching

column 72, or by finding three consecutive blank characters. Any information
beyond the termination of the variable field is treated as a programmer
comment,

Up to two blank characters can be interspersed anywhere in the Variable
Field to improve readability. (Blank characters anywhere in the Label
Field and Operation Field are ignored.)

The variable field for any type of information (except a binary-coded
character constant) can be continued starting in column 16 of the next
card (i.e., record). This is signalled by the presence of a left paren-
thesis followed by three blank characters, or a combination of left
parenthesis followed by two, one, or no blanks ending in column 72.
There is no limit to the number of continuations thdt can be made.

Any statement with an asterisk (%) in column 1 is treated entirely as
a programmer comment and is included on the output listing.

Expressions

The programmer writes expressions to represent the subfields of the
variable field of a symbolic instruction. Expressions may be used in
the address, index register, and count portions of the variable field,
Expressions are also used in certain pseudo-instructions.

The smallest component of an expression is an element, which is a single
symbol or a single integer less than 216, The asterisk (*) is a special
element, defined to mean the address of the instruction in which the
asterisk appears ("here"),

A term consists of one or more single elements, connected by multiplication
and division operators:

* (multiplication)
// (division)

An expression consists of one or more single terms connected by addition
and subtraction operators, or logical operands (AND, OR, exclusive OR)

+ (addition)

- (subtraction)

3-9

** (logical AND)
++ (logical OR)
-- (logical EOR)

Expressions for addresses can contain a slash (/) to indicate which half
of the word is desired., SAM/ indicates left half whereas /SAM indicates
the right half of the word at symbolic location, SAM.

The expressions ** or .. are commonly used to designate a field whose value
will be computed and inserted by the program. The expression ** is relo-
catable and of zero value. The expression «. is absolute and of zero value.

Data Items

Data Items are defined using the DATA pseudo-operation, They may also
be used in literal form in a symbolic instruction if preceded by an equal

sign (=).

A data description containing a slash (/) defines the contents of each
half (16 bits) of a data word. The portion of the description to the
left of the slash defines the contents of the left half of the word. The
portion to the right of the slash defines the contents of the right half
of the data word. Thus, the description 2/7 results in a data word as
follows: +00002+00007. 1If no slash is used, a full word is defined. A
slash is not permitted if the literal is preceded by an equal sign.

‘Decimal Integer is a string of digits from O to 9 which may be preceded
by a plus or minus sign., The maximum value for a full word is 230 - 1,
Integer binary scaling is assumed in order to produce a number less than
unity,

Value vecimal Integer Internal Octal
-3x2715 / 27x2-15 -3/27 -77775+00033
271x2°30 271 +00000+00417

Decimal Fixed-Point Number is a string of digits from 0 to 9, which may be
preceded by a plus or minus sign, and may be written with or without a
decimal point, and is always followed by a scale indicator, B, followed by
a signed or unsigned integer. The maximum length for a full word is 10
digits. The scale factor, after B, specifies the location of the implicit
binary point within the data-word. The value of each number must be less
than unity.

Value Decimal Fixed Point Format Internal Octal
7.5x2°3 / 6x2"Y 7.5B3/6B9 +74000+00600

-7x2"10 -7B16 -77774-40000

Decimal Floating-Point Numbex is a string of digits from O to 9, which may
be preceded by a plus or minus sign, and may be written with or without a
decimal point, and is usually followed by an exponent indicator, E or EE,

followed by a signed or unsigned integer,
The resulting binary number is normalized (i.e.,

and EE double-precision,

The E indicates single-precision,

minimum binary scaling is assumed in order to produce a number less than

uni ty) .
during conversion.

The exponent is a power of ten by which the number is multiplied

The scale indicator, B, followed by a signed or unsigned integer can be
included to override the assumption of minimum binary scaling (i.e., to

give a scale for an unnormalized number).

1f no B appears in the number

and there is a decimal point, the E or EE can be omitted.

The maximum length for a double-precision number is 16 digits.,

Value

2.675x272%
2.675x22
2.675x272
2,675x277
2.675x272

Decimal Floating Point
2.675

«2675E1

2675E-3

26.75E-1B7
267.5EE-2

*The minimum (normalized) binary scale of 2.675 is 27 2.
Octal Integer is indicated by an apostrophe (') followed by a plus, minus

or no sign, then by a string of digits from 0 to 7.
The sign indicates the setting of the high-
order bit of the data-word or half-word and has no algebraic meaning.

characters including sign.

Maximum size is 12

How-

ever, if the apostrophe (') is preceded by a minus sign, the two's-complement

is formed.

Octal Integer
'17/'-776¢€
'.7766

/-'12

Internal Octal

+00017-07766
-00000+07766
+00000-77766

Hexadecimal Integer is indicated by a double apostrophe (") followed by a
string of digits from O to 9, or letters A to F (representing 10 to 15) or

a combination of these.

Maximum size is 8 characters.

If the double apos-

trophe (") is preceded by a minus sign, the two's complement is formed.

Hexadecimal Integer
”A7/"2.A

VYAT2A

/-'"2A7F

Internal Hexadecimal

00A7002A
0000A72A

'0000D581

Binarv-coded Character Constants of four or more 8-bit characters are formed

using the BCI and ASC pseudo-operations.

This kind of constant of one to

four characters can also be indicated by preceding the constant with an apos-

trophe (') and following the constant with an apostrophe (').
ters are added on the right to fill out a data-word or half-word.

if necessary,occurs on the right.

Blank charac-
Truncation,

Binary-coded Characters Internal (b=blank character)
'At/'0B' AbOB
'ABC' ABCb
/ YABCD' OOAB (with warning)
Symbolic Constants are names of memory locations in a program. The relo-

cation mode of a data-word or half-word is determined by the relocation
mode of the symbol. Right-half word relocation causes a warning flag.
Negative relocation is an error.

Certain reserved symbols (of the form .xxxxxx) represent system constants
for input, output, and executive communication. These are recognized by

the assembler,

Let SAM be relocatable octal 2776, and .LA82 be a system constant,

Symbolic Constant Internal Octal

SAM/ +02776+00000

SAM +00000+02776 (with warning)
-SAM/ +00000+00000 (with error flag)
.LA82/ appropriate system constant

is inserted,

Mixed Data Definitions
In definitions containing a slash (/) the definitioﬁ of the right-half
word is completely independent of the definition of the left-half, Some
examples are shown: ‘

SAM+2/'OK!

-1-2766/56B9

2/"A7C2
EXEC Bit Setting
- The assembler can cause EXEC bits to be set in the binary output.
To indicate an EXEC bit setting, the programmer writes one or the other of
the system symbols, .E or ,NE, followed by a slash (/), followed by one or
the other of the system symbols, .E or ,NE,.
.E means '"set the EXEC bit'", ,NE means '"do not set the EXEC bit"; the

slash (/) separates the spectification of left and right EXEC bits of the
word,

EXEC specification EXEC bit setting
LEFT RIGHT
.NE/.NE 0 0 (assumed if no EXEC
specification is given)
.NE/.E 0 1
.E/ .NE 1 0
.E/.E 1 1

EXEC bits can be set for an entire block using the EXEC pseudo-operation.

3.2

3.2.1

3.2.2

FORTRAN IV COMPILER 84 SYSTEM

The EAI 8400 FORTRAN IV System running under control of the Standard Monitor
will accept and interpret the IBM 7090/7094 FORTRAN IV Language (See IBM
Systems Reference Library) which is a compatible subset of EAI FORTRAN IV 84,
The proposed ASA Standard FORTRAN IV Language (Comm, ACM, Oct. 1964) is also
a subset of the 8400 FORTRAN IV.

Introduction
The 8400 FORTRAN 1V requires an 8400 System with 8192 words of core memory,
The minimal I/0 equipment configuration consists of paper tape reader, paper

tape punch, and an on-line typewriter. Additional access devices which may
be used are as follows:

Input OutEut
Card Reader Line Printer

Magnetic Tape Transport Card Punch
Magnetic Tape Transport

EAT FORTRAN IV 84 is designed to compile programs of up to 2000 source
statements in one pass at a rate of 300-500 statements per minute. Internal
Load-and-Go capability under control of the Standard Monitor will be avail-
able on machines having more than 8K of memory.

The compiler is interruptable and can be used in a real-time environment.
Included in the language are special features for real-time and hybrid com-
putation such as: recursive subroutine library, compilation of user-defined
recursive subroutines, complete mixed-mode capability in expressions and
assignment statements, extended logical operations implemented by means of
Boolean connectives, TIME and DELAY statements for estimation of execution
times and generation of real-time delay intervals, and in-line assembly
language type statements which make all special 8400 hardware instructions
available to the FORTRAN IV programmer,

Characteristics

The sizes of all constants allowed on the 8400 FORTRAN are identical to
those employed on 7090/7094 FORTRAN; truncation is performed by the compiler
as necessary. In accordance with standard 8400 word lengths, the following
constants are used:

Integer - 1 to 5 decimal digits

Extended (Double Precision) Integer - 1 to 10 decimal
digits (Not available on 7090/7094 FORTRAN IV)

Real (Standard precision Floating-Point) - 1 to 8
significant decimal digits

Double Precision (Floating-Point) - 1 to 16 significant
decimal digits

Complex (ordered pair of Real constants)

Logical - True or False

3-13

Source Statements permissible in 8400 FORTRAN IV include 7090/7094
compatible Input/Output control and Format statements (Figure 3.2.2-1).

The 8400 FORTRAN IV System has features that increase the suitability of
FORTRAN programming for Real-Time problem solving and take advantage of
the special hardware capabilities of the 8400.

1, Mixed Expressions Integers and logical variables will be automatically
floated when mixed with Real and Complex variables; Extended Integers will
be floated by open subroutine. Free intermixing of Extended, Integer, and
Loglical variables takes place without conversion because of the word formats
in the 8400. In the evaluation of relationships using the logical operators,
"Greater Than'", "Less Than', etc., full mixed mode capability is allowed
between the Integers, Extended Integers and Logicals with the Real forms.
In Arithmetic Statements a comprehensive mixed mode capability is allowed
in replacement since Logical values are easily converted to Real and Real
to Complex. In Figure 3,2,2-2 below, Y indicates a valid statement, N shows
an invalid statement,

(See page 3-15 for Figure)

3-14

ZAI FORTRAN IV SOURCE STATEMENTS
Fig.3.2.2-1

ARITHMETIC
Arithmetic Assignment Statement
Logical Assignment Statement

CONTROL
Unconditional GO TO
Computed GO TO
Assigned GO TO
ASSIGN
Arithmetic IF
Logical IF
DO
CONTINUE
CALL
RETURN
STOP
PAUSE
SET TIME
UPDATE TIME
DELAY
SAVE
RESTORE

INPUT-OUTPUT
FORMAT
READ

- PRINT
PUNCH
WRITE
ENDFILE
REWIND
BACKSPACE
ACCEPT
TYPE

DECLARATIONS
SUBROUTINE
FUNCTION
Arithmetic Function Definition Statement
BLOCK DATA

P DATA
INTEGER
REAL
COMPLEX
LOGICAL
DOUBLE PRECISION
DIMENSION
COMMON
NAMED COMMON
EQUIVALENCE
EXTERNAL

Left
Side
of
Equal
Sign

Right Side of Equal Sign

Expression

. Double
Variable Real Integer | Extended| Complex|Precision| Logical
Real Y Y Y N Y Y*
Integer Y Y Y N Y Y*
Extended Y Y Y N Y Y*
Conmplex Y*® Y* Y* Y Y* Y
Double-~
Precision Y Y Y N Y Y*
Logical Y* Y* Y* N Y* Y

%* - Compiler flags statement as ''mixed-mode"

Figo 302.2_2

2. Unlimited number of dimensions in arrays of subscripted variables:

3. Floating point incrementing in DO loops.

4, Improved input-output conversion capabilities
(1) A method for specifying Hollerith strings without
counting is included,
(2) On data input from paper tape, commas.may be used
for terminating the data field to eliminate unnecessary
punching of leading blanks.

5. Expressions for control values, I/O units and DO parameters.

6. Extended logical operations, implemented by means of Boolean arithmetic,
with provisions for octal constants. Definition of signed octal con-
stants is provided through a special formagt. Signed octal strings may
be used in integer definitions. Example:

I ="'7765 (integer) ,
E = '7723411177 (extended integer)

This facilitates the creation of masks for Boolean operations. Other
logical operators such as EOR (exclusive or), EQV (equivalence), IMP
(implication), NAND, NOR, are provided since these instructions are part
of the 8400 repertoire,

7. A symbol table can be output as part of the FORTRAN compilation.
This tabie is used in conjunction with disassembly and symbolic debugging
features being provided the user. A symbol table "edit and dump" post-
compilation program is used to produce the symbol table.

In addition to symbolic debugging (see Debug System 84 section), the 8400
FORTRAN IV provides a special optional in-line "TRACE" mode. Here the user

3.2.3

3-16

specifies that all computed variables (i.e.,, FORTRAN, any variable
found on the left hand side of an equation) be output at execution time
in a format equivalent to:

VARIABLE = (value in special format)

This option is chosen during compilation and extra instructions are generated
in the translation process to cause these printouts. At execution time the
output can be suppressed by sense switch control, but the instructions re-
main.

8. The 8400 allows arithmetic operations to take place on 30 bit signed
integers and they will be allowed to be declared. These are "double precision"
integers and are declared as, EXTENDED INTEGER.

9. The insertion of a full complement of valid mnemonic machine coded
sequences between FORTRAN statements is permitted. These in-line assembly
language instructions are flagged by the programmer by an "S" preceding
the statement and are translated by an assembler program in the compiler,

10. Each compiled statement or block of statements will output on the
listing, a calculated time estimate based on fixed rules of the execution
time for that statement or block., SET TIME, UPDATE TIME, and DELAY state-
ments are included for hybrid computational processes which require program
timing. A timing block is defined to be those statements bounded by SET
TIME and/or UPDATE TIME statements. The DELAY statement is used to synchro-
nize the program to real time. These statements are equivalent to those
provided in the Symbolic Macro Assembler for the same purpose.

Other features of the 8400 FORTRAN IV System are: FORTRAN generated
assembly language output listing. Dump, Partial Dump and Trace debugging
at execution time and Link capability for 'chain' processing.

FORTRAN System Organization

The EAI FORTRAN IV Compiler 84 System is a complete integrated programming
system consisting of:

Compiler

Relocatable Loader
Object Time Package
Subprogram Library

These systems completely equip the EAI 8400 to compile, load and execute
FORTRAN IV programs in real time.

The Compiler

The conversion from source program to relocatable binary object program

is accomplished in one pass by the compiler. A main program and any

number of subprograms may be compiled in sequence without compiler reloading.
The object programs are then processed by the loader. Required library
subprograms are loaded., The object time package is called into memory,

and execution is initiated.

3.2.4

3-17

During compilation, statements found to be in error are discarded. Both
syntax errors, such as missing parentheses and semantic errors, such as
misused identifiers, are noted, An error message consists of the state-
ment in its original form with the erroneous phrase or character under-
marked by a § sign. This is followed by a comment indicating the type of
error., Illegally nested DO loops, undefined or multiple-defined statement
numbers, and memory allocation conflicts are summarized at the end of the
program listing.

Compilation always proceeds to the end of the program, resulting in complete
diagnostics. In general, the diagnostics are superior to those of commonly
used compilers.

The Relocatable Loader

The loader places the compiler output into memory in a form suitable for
execution. The FORTRAN IV Relocatable Loader is identical to the Relocatable
Loader 84 (discussed separately), thus ensuring loading compatability of
compiler and assembler object codes.

Object Time Package

The object time package provides the computer with the capability to
execute object programs. It includes all routines of compiler origin
such as double precision arithmetic routines, and input-output conversion
and format scanning routines,

Subprogram Libréry

The standard Intrinsic and External Functions indicated in Fig., 3.2,2-3
and Fig. 3.2.2-4 are included in the subprogram library. The External
Functions are written in FORTRAN IV and will be compiled to produce a
library tape for subsequent object program executions. The Intrinsic
Functions are written in EAI 8400 Assembly Language and may be used in-
dependent of the FORTRAN IV,

Because a program may be used in a real-time environment where subprograms
may operate under interrupt control, the subroutines for the library allow
recursive entry if they can be loaded only once by the FORTRAN Loader.

The user has the option of loading recursive subroutines (once) and their
non-recursive written counterparts (more than once) by an appropriate
notation in the compiler statement which alerts the loader.

System Design

The 8400 FORTRAN IV compiler is designed to be operated in a true multi-
level priority interrupt processing environment. By utilizing a general
method for saving the registers, temps, and intermediate results of the
object time package, the compiler is able to have control taken from it
and correctly resume when control is returned, All subroutines used within

3-18

the translator itself are self-initializing - that is, the first time
they are entered any necessary presetting of switches, instructions,
temporaries, etc. is performed., No-time-dependent (non-interruptible)

sets of instructions are included,

Console switch settings may be changed at any time. All binary tapes
consist of check summed blocks. Reading routines check all tape dependent
stores to prevent destruction of good information and to allow full re-

covery from reader failures,

The entire system is designed to be tolerant of input-output and operator
errors,

All 1/0 will be taken care of in closed subroutines incorporated in the
Standard Monitor 84, thereby making FORTRAN programs independent of Access
Device configurations.

Intrinsic Function Symbolic Type of
Name
Agrument Function
Absolute Value ABS Real Real
IABS Integer Integer
DABS Double Real Double Real
CABS Complex Real
DCABS Double Complex Double Real
Truncation AINT Real Real
INT Real Integer
IDINT Double Real Integer
Remaindering AMOD Real Real
MOD Integer Integer
DMOD Double Real Double Real
Choosing Largest Value AMAXO Integer Real
AMAX1 Real Real
MAXO Integer Integer
MAX1 Real Integer
IMAX1 Double Real Double Real
Choosing Smallest Value AMINO Integer Real
' AMIN1 Real Real
MINO Integer Integer
MIN1 Real Integer
DMIN1 Double Real Double Real
Float FLdAT Integer Real
Fix IFIX Real Integer
Transfer of Sign SIGN Real Real
ISIGN Integer Integer
DSIGN Double Real Double Real
Positive Difference DIM Real Real
IDIM Integer Integer
Obtain Most Significant SNGL Double Real Real
Part of Double Precisio CSNOL Double Complex Complex

Argument

FORTRAN IV INTRINSIC FUNCTIONS

FIG.

Intrinsic Function Symbolic Type of
Name

Argument Function
Obtain Real Part of Com- REAL Complex Real
plex Argument DREAL Double Complex Double Real
Obtain Imaginary Part of AIMAG Comp lex Real
Complex Argument DIMAG Double Complex Double Real
Express Single Precision DBLE Real Double Real
Argument in Double CDBLE Complex Double Complex
Precision Form
Express Two Real Argu- CMPLX Real Complex
ments in Complex Form DCMPLX Double Real Double Complex
Obtain Conjugate of a CONJG Comp lex Complex
Complex Argument DCONJG Double Complex Double Complex

FIG. 3.2.2"3 (Cﬁntn)

3-20

3-21

. Type of
External Function Sy;bollc
ame Argument Function

Exponential EXP Real Real

DEXP Double Real Double Real

CEXP Comp lex Complex

DCEXP Double Complex Double Complex
Common Logarithm ALOG10 Real Real

DLOG10 Double Real Double Real
Natural Logarithm ALOG Real Real

DLOG Double Real Double Real

CLOG Complex Comp lex

DCLOG Double Complex Double Complex
Trigonometric Sine SIN Real Real

"DSIN Double Real Double Real

CSIN Complex Complex

DCSIN Double Complex Double Complex
Trigonometric Cosine Cos Real Real

DCOS Double Real Double Real

ccos Complex Complex

DCCOS Double Complex Double Complex
Hyperbolic Tangent TANH Real Real
Square Root SQRT Real Real

DSQRT Double Real Double Real

CSQRT Complex Complex

DCSQRT Double Complex Double Complex
Arctangent ATAN Real Real

DATAN Double Real Double Real

ATAN2 Real Real

DATAN2 Double Real Double Real

FORTRAN IV EXTERNAL FUNCTIONS

FIG. 302.2'4

4.2

4.0 8400 PROGRAM LOADING AND RELOCATION SOFTWARE

The normal program loading sequence for the 8400 is, as follows:

1. Standard Monitor Executive (including System Loader) is put into
core memory by the Console Auto Load system.

2. The System loader then loads the remainder of the Standard Monitor
(or other monitor system) and the Linking Relocatable Loader 84.

3. The Linking Relocatable Loader performs the basic operations of
loading relocatable MACRO Assember and/or FORTRAN IV object (binary out-
put) taped programs in memory, scanning the subroutine library tape auto-
matically for standard subroutines, and creating linkages between the
subroutines and the main program. The Relocatable Loader includes the
option of mapping the relocation bits into the EXEC bits to maintain
relocatability after the program has entered core memory.

AUTO LOAD/DUMP SYSTEM

The 8400 Console includes a hardware Auto Load/Dump system for loading
or dumping relocatable or non-relocatable binary object programs to or
from absolute memory positions.

The starting address for the operation is entered from the Console I/0
typewriter. The system then loads or unloads consecutive memory cells
until a stop code is detected in the data (Auto Load only), the Console
Halt switch is depressed, or all memory locations are filled or empty
(used in absolute reload operation and core dump).

At the option of the programmer, EXEC bits may be loaded or unloaded
along with full data-word transfers. Relocation information previously
mapped into these bits will allow program dynamic relocation by the
Standard Monitor Displacer routine after initial reloading by the Auto
Load System.

Any peripheral device connected to the system may be selected for Auto
Load/Dump operations. No bootstrap loading sequence is required ahead
of the loaded program in this all-hardware system.

LINKING RELOCATABLE LOADER 84

The Linking Relocatable Loader is entered into memory by the System Loader
in response to an operator control directive. It relocates and integrates
programs, subroutines, and sub-programs, into one object program in memory.

It determines the sub-program required for object program execution,
searches the subroutine library for these sub-programs, and loads them
into memory together with the necessary linkages, and prints or types
out a memory map of core assignments. Provisions are made for multiple
naming of subroutines and library functions to allow multiple loading
of the same sub-program.

The binary machine language output produced by the MACRO Assembler or
FORTRAN IV Compiler may be loaded as several segmented programs. The
Relocatable Loader will allocate their respective storage automatically
filling in missing references between the segments. The Loader is aware
of the contents of memory at the time that a new program or subroutine
is to be loaded. The Loader determines the first memory location that
is unused and automatically relocates the new program to that position,
with proper adjustments to it so that it will operate properly there.
The Loader accepts a specially devised input format which determines
which addresses are relocatable, which symbols cross-reference, how the
EXEC bits are to be handled and verifies correct loading by recalculat-
ing logical check-sums stored on the external medium.

Approximately 1000 words of memory are used by the Relocatable Loader
itself; when loading is complete, control returns to the monitor which
dynamically relocates the object program to overlay the Loader, so
equivalent memory space is made available for buffer areas and temporary
storage.

The Loader handles a variety of object programs:

1. The object program is relocatable and is placed in memory, using
space assigned by the programmer or the Loader itself. A program's be-
ing '"relocatatle'" implies that upon loading, certain half words will be
algebraically adjusted upwards (or downwards) in memory by a fixed
amount determined by the Loader as part of its function. A ''relocation
bit" for each half word is included in the MACRO Assembler and FORTRAN
IV Compiler binary output for each instruction,indicating if the address
field should be modified during relocation. Relocatable object coding
produced by the assembler and compiler consists of an OP code followed
by a pointer to various produced tables (constants, etc.); once the
memory of an item in the tables is established by the loader, the pointer
is replaced by the address of that item.

The 8400 MACRO Assembly language and FORTRAN IV is written so that the
user follows simple rules to get such a formatted output. Relocatable
assemblies enable many programs which otherwise would interfere in
storage allocation to be stacked end-to-end in memory. Furthermore, the
programmer is allowed to symbolically 'link" together sub-programs by
cross-referencing the symbolic locations of one segment with those of
another. The actual lines of communication are set up by Linking Relo-
catable Loader which not only relocates but cements the program segments
as loading takes place.

4-2

4-3

2. The object program is non-relocatable and includes specific memory
assignments. Such "absolute" programs may be loaded using the Conscle
Auto Load hardware.

3. Relocation information bits recorded on the external medium may be
mapped into storage EXEC bits permitting dynamic relocatability - the
ability to move programs about in storage. EXEC bit assignments for
other than relocation information; i.e., memory protection or object
time breakpoint debugging, may also be set in the object code stream.
The mapping of relocation bits is exercised by the following codes:

00 no mapping

01 Map into right EXEC only
10 Map into left EXEC only
11 Map into both

The normal mode is left only. Here the right EXEC bit, assigned for some
control purpose, appears in storage together with a relocation bit mapped
into the left EXEC.

The symbol table which may be included in the object code is also relocat-
able. Symbol cross-references to memory addresses are updated by the
standard Monitor DISPLACER routine during dynamic relocation.

5.1

5

.2

5-1

5.0 PROGRAM CHECKOUT SOFTWARE - DEBUG SYSTEM 84

GENERAL

The Debug System 84 provides the 8400 user with a powerful and human-
engineered set of tools for bringing an untested computer program into
full operational capability. The package will enable him to examine,
modify, dump, and test instructions, program segments, and data in a
flexible and convenient way. Two notable features are the ability to

use symbols from the symbolic version of a program in stating debugging
commands, and the ability to insert instructions into a code sequence

by program displacement without an elaborate patching procedure. 1In
debugging language the most frequently-performed operations are expressed
simply and coneisely, yet the flexibility and power of each is extensive.

There are four classes of debugging aids: Examine/Modify, Load/Dump,
Breakpoint/Trace, and Monitor/Control.

The system consists of a Debug Executive Program and a collection of
independent closed debug subroutines performing specific debugging func-
tions. The Debug Executive enables the 8400 programmer to use the on-
line typewriter for such functions as creating a program, inserting and
deleting coding, adding to a symbol table, executing a program, inserting
breakpoints, opening a cell or special register, etc.

The Debug Executive is entered into memory by one of the control monitors
in response to an operator directive. The Debug Executive in turn loads

the subordinate routines requested.

SYSTEM OPERATION

In a typical operation, the debugging library would be stored on some
external medium (i.e., a magnetic or paper tape). The programmer, having
loaded his program and the Debug Executive program, would proceed to set-
up the run for debugging by entering a series of instructions through the
typewriter (or by pre-punched paper tape, control cards) which would in-
sert debug subroutine calling sequences using program displacement.

The control directives indicate the debug function, the address range over
which the function is to operate, and the point in the object program at
which the function is to be called into play (if not implied by the address
range). Generally for closed shop installations, all directives are pre-
punched and are stored in memory for execution when indicated. Otherwise,
directives are given via the console I/0 typewriter, and control returns

to the typewriter after a function is completed. The operator can inter-
vene at any time by depressing the Console interrupt buttonm, and can indi-
cate certain routine options using the Console Register sense switches.

5.3

S5=2

Calling sequences for Debug subroutine packages may be either:

1. Explicit Commands - On-line insertion and execution of the
debugging control directive during program run time directly
from one Input Device, or,

2. Implicit Commands ~ Debugging sequences are inserted directly
in the coding before execution. The Debut Executive will pre-
pare the debug calling routine and execute it at the appro-
priate time.

Exgmples of debugging functions using both types of commands are:

1. Implicit - Assembly coding entries, dumps, traces, register
status, return to console control, set debugging mode.

2. Explicit - Load/Unload (program), insert patch, erase, replace
(implicit coding), mark/unmark (Exec bits) search, start and
other control commands (implicit and explicit both) from type-
writer, card, paper tape or any other input medium as long as
the proper debug formats are used.

If the '"required'" debugging subroutines are unavailable when called, an

error complement results. Erroneously stated debugging requests are
spotted by diagnostic aids.

Automatic debugging is achieved by pre-setting debugging sequences with-
in a program just prior to execution time using the various functions
provided. During execution, modifications can be made by direct interrupt
or by having set a point to return control to the debugging system in the
main program. Certain alternate debugging modes are controllable
internally or overriden by console switch settings, - the trace, dump,

and breekpoint (Exec) functions particularly.

The debugging commands make use of indicators that state the format in
which output response is desired. Within an individual debugging com-
mand the output mode may be altered, and this alteration can be made to
apply either for all subsequent commands or for just the command being
processed. 1In symbolic format, the output is in the form of instructions,
provided that the instruction decoding subroutine is present in memory.
Symbolic addresses are used where appropriate if the program symbol table
is available in core.

ORGANIZATION

The Debug System 84 Executive program will be stored in memcry at the
high end; a set of interlinked user programs will be stored above it.

Each program will consist of a control segment, the body of the program
proper, and a symbol table, if desired. The control segment specifies

the name of the program, the starting location of the body of the program,
the starting location of the symbol table, and the starting location of
the next control segment. Each entry in the symbol table occupies two

5'4

5.5

words, and specifies the name of the symbol, its value, its type, and

certain information about how it is used in the program. The standard
monitor controls the location of each program and its relationships to
its neighbors.

A section of memory is reserved by the Standard Monitor for a programmed
push-down stack where the debug functions are executed.

The debug subroutines when in memory are organized in a parallel fashion
to the problem routines .described above.

SYMBOLIC DEBUGGING

Symbolic debugging implies that variables are referred to at execution
time by the names assigned to them during assembly or compilation. 1Imn
most computers all such information is lost when the object programs are
loaded. The loader provides a memory map showing the name and territorial
limits of each program loaded. Other symbolic information, however, is
contained only in the compiler/assembly listing and cross-reference sym-
bol table printout and is not loaded.

In the 8400, symbolic cross-reference information produced by the loader
assembler and compiler is optionally introduced into memory along with

the associated programs. The Debug Executive is capable of accessing
both data and data names, enabling the programmer to take advantage of

the mnemonic facilities provided in automatic programming systems during
execution of his program. He need not be aware of absolute addresses
during debugging just as he was not fully concerned with the exact assign-
ment of addresses during program preparation by the assembler or compiler.

The symbol table is continuously updated as symbols are modified and when
programs are dynamically relocated. .

DEBUGGING FUNCTIONS

1. Examine/Modify Class - are used to examine the contents of a single
cell or register, several consecutive cells, or segments of memory;
modify the contents of a cell or group of cells; gearch, or zero blocks
of memory; delete or introduce one or more data-words or instructions.
A single command in many cases performs several of these functions at
once.

There are two types of searchs, both of which use a mask register and a
criterion register. The "ones'" in the mask register specify the bits to
be compared; if all the masked bits of the cell being tested agree with
the corresponding bits of the criterion register, the cell meets the
criterion. On one search, all cells that meet the criterion are printed
out; on the other search, those that do not meet the criterion are printed
out.

5-3

The deletion or insertion of data-words, instruction, or debugging cell
sequences into a program has in the past called for leaving gaps in the
coding or patching in additional coding using jump instructioms. In

the 8400 this important function of instruction correction is accomplished
by direct insertion. Using direct insertion, one or several instructions
.are inserted into the program at the point indicated, after the original
program body has been dynamically relocated to provide the space. Like-
wise, removal of an instruction or section of coding is followed by a
dynamic relocation of the program to fill the gap. This capability is
exercised by a program which forms a part of the 8400 Standard Monitor,
called the "Displacer'" and uses the EXEC bit system. The dynamic relo-

5-4

catability feature - the ability to move programs around in memory at will -

is one of the most important software features of the 8400. ¥\~3 4 0,4\\NA

2. Load/Dump Class - provides three types of dump and a relocatable
load..

There are three types of dump within the Debug System 84: a symbolic
disassembly of a single program, a relocatable dump of a single pro-
gram, and a relocatable systems dump of all of memory.

If the symbol .table produced during the program assembly or compilation
has been loaded together with the object program, a symbolic disassembly
dump can be made. The symbolic disassembly provides printing of a stored
program in symbolic, or Assembler-84, language for analysis or record
keeping of the current symbolic listing of a modified program. Each cell
of the program is decoded into an instruction in Macro Asgembly language
format. All flag bits and modifiers appear in the same format as is used
for assembly input. The operation part is generated by the Debug System's
operation decoded. The address part is expressed in symbolic form, using
the symbol table for cross-referencing.

The relocatable dump normally outputs computer words to paper copy or to
magnetic tape; the format is the same as the output of the assembler;
thus the dumped program can be reloaded by the standard loader. The re-
locatable dump includes the symbol table, if it is present in memory.

The relocatable dump can reduce the number of program reassemblies that
‘may be required for a difficult program.

The system dump of all of memory provides a means of saving the state
of the machine as rapidly as possible, and relocading without requiring
the facilities of the relocatable loader. This dump contains a literal
copy of the contents of memory, including EXEC bits. symbol table, stack,
and other cross referencing information.

5-5

3. Breakpoint/Trace Class - provides the capability for inspecting the
status of a program during execution.

Breakpoints may be inserted in a program by one of two means: debugging
control commands may be included in-line on the original source program
listing, indicating those points where the program will halt and an out-
put of arithmetic and control registers is to be made. Alternatively,
the EXEC bit control system may be used. The breakpoint supervisor
routine receives control whenever a cell appropriately marked by a high
EXEC bit is about to be executed or a store is about to take place into
marked cell. Control commands are used to set or remove EXEC markings
and to establish breakpoint counts (program interrupt does not occur
until a break has occured the specified number of times). The break-
point supervisor can distinguish between breakpoint and other kinds of
interrupts.

Program Tracing causes a readout of pertinent registers after execution
of each instruction. Print-out may be suppressed by sense switch. Trac-
ing of selected segments of coding is permitted.

4. Monitor/Control - provides a comprehensive set of commands to inspect
a program and control the debugging process. The following are repre-
sentative debug commands for this purpose:

Execute any instruction

Print-out any data-word in one of many formats

Search memory for instructions with a specified effective address

Transfer control to a specified address and continue program
execution

Output symbolic name of octal address requested with the program
name

Delete named program

Remove symbol table of named program

Proceed following a breakpoint halt

Establish new program names (used to program subroutines on-line)

6.1

6.2

6.0 RELOCATABLE SUBROUTINE LIBRARY 84

GENERAL

The Relocatable Subroutine Library 84 is compatible with the MACRO Assembler,
FORTRAN IV Compiler, Linking Relocatable Loader, and Monitor Systems. The
routines of the library are called by pseudo-instructions in the assembler
and compiler and are linked to the main program during loading by the
Linking Loader 84. The input/output control and formatting subroutines

form a portion of the Standard Monitor System and are called in as appro-
priate when the storage allocation requirements of a program have been
established.

Two forms of subroutines are provided - one for re-entrant (recursive)
operations and a faster non-re-entrant version. Re-entrant subroutines
are the generalization of recursive ones. A single subprogram may be
entered by two or more calls at the ''same time'; that is, a program
using a re-entrant subroutine, is interrupted and the interrupt program
proceeds to use this very same subroutine.

When a re-entrant subroutine is interrupted, the working registers and
temporary core memory locations which are unique to the particular call
on the subroutine in progress (such as the return address) are safe-
stored in a section of core reserved by the Standard Monitor for this
purpose. This memory area is a software implementation of a push-down
stack - a portion of contiguous memory together with a pointer which
references the '"top most" cell in the stack. Index Register seven is
used exclusively for the pointer. This technique will allow the same
routine to be interrupted at many levels and used by higher levels and
yet allow each level to restore its temporary cells and complete the
routine at the completion of the higher interrupt. The re-entrant ver-
sions of the subroutine library include the save-restore routines re-
quired for ''recursive' programming in a real-time multi-programming
environment.

A program in the Standard Monitor is provided to update or edit the Sub-
routine Library. Sections or individual programs may be added, deleted,
modified or listed through typewriter input instructions from the operator.

The routines included in the library are:

ARITHMETIC SUBROUTINES - SINGLE AND DOUBLE PRECISION FIXED AND FLOATING-POINT

1. Sine)
2. Cosine) - radian input
3. Tangent)

.
w

~N N B

10

Arctangent - radian output
Logarithm - natural and common
Exponential

Square Root

MATHEMATICAL SUBROUTINES

Function Generation - One, two, or three variables.

Fixed and

Floating -Point, using linear interpolation between variable

breakpoints

8400 subroutines employ fixed spacing
maximum execution speed. Any desired
appropriate selection of '"breakpoint"
tions of the same variables are to be
of the second and subsequent function

by the time required to process the arguments.

of data values to provide
accuracy can be achieved by
spacing. When several func-
evaluated the execution time
is less than for the first,
The table size

limitations are appropriate for a large class of functions, and are
imposed in order to optimize the execution time.

The pseudo-op specifies the data tables location and one, two, or

three arguments.

The tables may be loaded with pre-formatted data

by the regular loading routine, or the Function Generator Loading
Program in the Simulation Monitor System may be used to calculate

the table from arbitrary input data.

The Fixed-Point Subroutine may be used in a hybrid computer pro-
gram where 12-14 bit arguments are derived from the analog computer

in fixed point formzt.

When a two variable function is called for,

the data table is given by a two dimensional array, up to 32 x 32

values. A three variagble function is
smaller) array.

given by a 32 x 16 x 8 (or

The Floating-Point subroutine is a general purpose routine for one,
two and three variable functions; data is stored as 32 bit floating

point numbers. Up to 256 breakpoints

may be selected for any variable.

The range and scaling of the independent variable is handled automati-
cally by the 8 bit exponent of the argument.

Digital Integration - Several numerical integration algorithms with
automatic time scaling (step size changing):

Euler, Henn, Runge-Kutta, Milne, Parabolic Predictor-Corrector, Adams

(four different types).

The Integrator Control Program of the

vides ready access to the several integration routines.

Simulation Monitor System pro-
Upon type-

written request for a different integration algorithm this program
will make the proper linkages and calculate any required starting

6.4

6.5

6.6

6-3

values for the new routine, permitting the programmer to choose
the method exhibiting the best speed and accuracy for his particular
problem.

CONVERSION SUBROUTINES

1. Data Conversion - Single and Double Precision: BCD to Binary, Binary
to BCD

2. Format Conversion - Single and Double Precision: Fixed-Point to
Floating-Point, Floating-Point to Fixed-Point

3. Character Converstion:

IBM BCI (6-bit Alphanumeric) to ASCII (7-bit alphanumeric), ASCII to
IBM BCI, ASCII to EBCDIC, EBCDIC to ASCII

INPUT/OUTPUT AND DATA DISPLAY SUBROUTINES

1. Interrupt System - Line. Sorting, Priority Masking

2, Status Line - Sorting

3. Peripheral Device Control and Data Formatting -
Typewriter I/0, punched paper tape I/0, punched
card I/0, Line printer output, magnetic tape 1/0.
labelled multi-file, multi-reel, with users own
coding options), Display Register Control (CRT
Display monitors, etc.).

COMPAT MODE SUBRQUTINES

Programmed operators for Double Precision Floating-Point, Extended
Precision Fixed-Point, Index Register classes of arithmetic. These
routines may be called by the MACRO Assembler, FORTRAN IV Compiler
or hardware COMPAT interrupt system.

7.1

7.2

7.3

7.4

7-1

7.0 SIMULATION PROGRAMS GROUP

In addition to the Linking Relocatable Loader 84, Debug System 84, and
Relocatable Subroutine Library 84, the Simulation Monitor controls a
group of simulation programs, as follows:

HYRRID MODE CONTROL

This is the program that gives the digital computer the structure of a
simulator in like manner to an analog console by exercising interface
capabilities (including interrupts, sense lines, delays, and mode control)
to achieve real-time synchronization between the stored and the parallel
computer programs, and between the various computing system elements
needed in the solution of most simulation problems. The program controls
a dual-processing mode by which it is possible to work on a second pro-
gram located in a protected portion of memory when the computing system
is not employed on the primary simulation program.

(The monitor permits dual processing when the simulation program is not
in the "Operate' mode.)

INTEGRATION CONTROL

The Digital Integration Control Program is one that is requested from the
monitor via the console I/0 Typewriter by the operator to change the
integration algorithm. Selection of Algorithms is made from the Sub-
routine library; initialization and time scale changes can be made also.

FUNCTION GENERATOR LOADER

The Digital Function Generator Loading Program permits the operator to
load new data or to make changes in data previously stored in tables
associated with the particular function generator subroutine.

HYBRID COMPUTER SET-UP

The Hybrid Computer Set-up and Check Out Program, selected by typewriter
through the monitor, provides the capability for control of analog com-
puter mode and time scale selection, component selection, read-out, pot
set and checkout. Sample commands to the Analog I/0 Computer are, as
follows:

7.5

7-2

Control

a. OP - Operate
IC - Initial Condition
HLD - Hold
ST - Static Test
PS - Pot Set

mode control
commands for the
analog computer

b. CS - Select Analog Console for Hybrid Operation.

c¢. LTAB - Load table of addresses to Analog I/0 Computer.

d. LTAD - Load table with data to Analog I/0 Computer.

e. SETT - Set table of potentiometers in table, output results;
if setting differs by more than the selected percentage,
print errors.

f. SET - Set individual potentiometer selected and output results;
indicate error if setting differs by more than selected
percentage.

Monitor

a. STCK - Check column of data vs. state of analog computer.

b. SCAN - Readout component values selected.

c. DTAB - Dump complete table selected, for set-up and
static check at a later time. '

d. CHK - Check selected amplifier output for specified
voltage to required accuracy.

e. RD - Read output of selected muftiplier.

HYBRID DEBUG

The Hybrid Debug program provides for typewriter control of the linkage
and interface system.

Diagnostic tests of the Analog and Interface subsystems are conducted
from the 8400 Console.

8.1

s

8.0 nyTRAN ® PROGRAMS GROUP

The HYTRAN Monitor controls the following group of programs:

STATIC CHECK

The practice of computing two independent sets of check values has been
used as the basis for the HYTRAN Off-Line Static Check. The theoretical
static-check values in volts are computed from expressions, provided as
part of the program input, which specify component outputs in terms of
the scale factors, parameters, and variables of the problem. Further
input defines the analog component interconnections of patching infor-
mation which is used to calculate the voltage check values. In this
computation, all input voltages to a component, the kind of input to
which the component is connected, and the transfer function of the com-
ponent are used to determine its voltage output.

When both voltage and theoretical values are available for a compomnent
output they are compared. If in agreement, they yield the off-line
static check value for that component. If the values are not in agree-
ment, the error is isolated by retaining the theoretical value as the
static check input for all subsequent calculations and an error message
is given. Values exceeding the voltage range of the computer also will
cause error messages but will be retained for further static check cal-
culations.

The On-Line Static Check

While in systems without digital access to the analog computer, the on-
line static check must be performed by manual comparison, the avail-
ability of a digital input-output system provides the HYTRAN user with

a choice of two automatic procedures for such on-line checking. One
method is to feed the HYTRAN-generated static-check tape into the Analog
I1/0 Computer to obtain an automatic comparison between calculated and
measured values. This method is used whenever the 8400 is not available
at the time of analog on-line check.

If the 8400 computer is available, the use of the second HYTRAN method
allows an improved consistency check of debugging complex problems as
well as for preventive-maintenance checks. This method is implemented
by feeding a paper tape (generated on the Analog 1/0 computer) contain-
ing the measured pot settings and/or outputs of all components into the
digital computers HYTRAN then checks the transfer value of each individ-
ual component and compares it with the measured voltage at the component

a service mark of Electronic Associates, Inc.

8.2

8.3

8-2

output. Thus,errors can not propagate but are pin-pointed at the compon-
ent level.

REPORT GENERATOR

This is a Documenting Program which sorts and converts the information
from the intermediate tape to component work sheets that contain a list
of the analog computing components in an orderly sequence, together with
their modes and their outputs or settings in terms of problem parameters,
variables, and scale factors. 1In addition, an alphabetic list of the
values of parameters and variables is typed out, and Analog I/0 Computer
tapes are generated,

One tape contains the potentiometer settings in a format which allows
automatic pot setting; the other tape contains the computer static-check
values for on-line check with the Analog I/0 Computer.

The Documenting Program also generates a cross-reference sheet containing
an alphabetic list of symbols for parameters and variables. Each of
these symbols is followed by a listing of the components whose output or
settings include that symbol. This feature provides assistance in chang-
ing parameters or scale factors manually.

EQUIPMENT CHECK-OUT

This is an On-Line Diagnostic Program utilizing basically the same pro-
cessing procedures as that of the Off-Line Static Check Generator,
described as in 8.1 above, in the HYTRAN Monitor System. The program
accepts an Analog I/0 Computer tape containing a complete read-out of
all static-check voltages and potentiometer settings and generate diag-
nostics which serve to locate analog components which are either im-
properly patched or do not perform satisfactorily. Thus, a permanently-
programmed analog computer pre-patch panel can be used with this program
for daily preventive maintenance checks.

9.0 DIAGNOSTIC SYSTEM

The 8400 Diagnostic System produces a go~no-go indication of the machine,
and attempts to analyze machine faults to assist in computer maintenance.
Thorough tests are performed on all instructions and program controlled
machine functions. The tests can be executed without operator interven-
tion or he can specify tests and their order of execution. For preven-
tative maintenance, tests can be run with the machine subjected to
variations in clock and voltage margins. The 8400 Diagnostic System
also tests all peripheral equipment.

Machine diagnostic routines include the following:

1. Memory Module

a. Addressing tests that test the integrity of each address.
b. Worst case pattern sensitivity tests on logic and driving circuits.

2. Floating-Point Processor, Control Section

a. All instructions are tested with fixed data in a logical sequence
that aids in localizing faults.

b. All instruction options are tested.

c. Pattern sensitivity tests are made on all internal control
registers and data transfer paths by generating all possible
bit patterns and register state transitions.

d. All internal interrupts are tested by gemerating the interrupt
conditions and checking for the correct hardware transfer.

3. Floating-Point Processor, Arithmetic Section

a. Complete control and data transfer path tests using fixed and
randomly generated data.

b. Noise and pattern sensitivity tests using fixed and random data.

c. Complete check on the integrity of results and arithmetic flags.

4. Exchangé Module

a. All modes of data assembly and transmission are checked.
b. Pattern sensitivity tests using random data.
c. Full load tests using varying combinations of available perlpheral

5. Peripheral Equipment

a. Check basic execution of instructions, i.e., Magnetic tape read,
write forward and reverse etc., with fixed data; typewriter, out-
put of all possible characters and manual input with visual veri-
fication of output, etc.

Ce

Stressing tests - i.e., high speed read/write or randomly
generated characters and block lengths.

Maximum load tests to check for no interaction between
peripherals.,

9-2

	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-01a
	2-02
	2-03
	2-04
	3-01
	3-02
	3-02a
	3-03
	3-04
	3-04a
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-14a
	3-15
	3-16
	3-17
	3-17a
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	4-01
	4-02
	4-03
	4-04
	4-05a
	4-05b
	4-05c
	4-05d
	4-05e
	4-05f
	4-05g
	4-05h
	4-05i
	4-05j
	4-05k
	4-05l
	4-05m
	4-05n
	4-05o
	4-05p
	4-05q
	4-05r
	4-05s
	4-05t
	6-01
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	A_01
	A_02
	A_03
	A_04
	A_05
	A_06
	A_07
	B_1-01
	B_2-01
	B_2-02
	B_2-03
	B_2-04
	B_2-05
	B_2-05a
	B_3-01
	B_3-02
	B_3-03
	B_3-04
	B_3-05
	B_3-06
	B_3-07
	B_3-08
	B_3-09
	B_3-10
	B_3-11
	B_3-12
	B_3-13
	B_3-14
	B_3-15
	B_3-16
	B_3-17
	B_3-18
	B_3-19
	B_3-20
	B_3-21
	B_4-01
	B_4-02
	B_4-03
	B_5-01
	B_5-02
	B_5-03
	B_5-04
	B_5-05
	B_6-01
	B_6-02
	B_6-03
	B_7-01
	B_7-02
	B_8-01
	B_8-02
	B_9-01
	B_9-02

