
EAI :LECTRONIC ASSOCIATES. INC.IF •• , LO"1 B,GllcA. New J",aey

EAI 8400

SCIENTIFIC COMPUTING SYSTEM

PRELIMINARY INFORMATION MANUAL

~ EL.ECTRONIC ••• OCI.TE •• INC. tees
.L.L. RIGHT. RE.ERVED

,.RINTEO IN U •••••

March 1965

EAI 8400 SCIENTIFIC COMPUTING SYSTEM

SECTION

I

TABLE OF CONTENTS

PAGE -
EAI 8400 SYSTEM DESCRIPTION

1.0 BASIC SYSTEM DESCRIPTION 1-1

1.1 Summary of 8400 Characteristics 1-1
1.2 Basic System Organization 1-4

1.2.1 The Memory 1-"4
1.2.2 The Floating-Point Processor 1-4
1.2.3 The Exchange MOdule 1-4
1.2.4 The Automatic Data ChannelProcessor 1-5
1.2.5 Expansibility 1-5

2.0 STORAGE

2.1 Storage Characteristics
2.1.1 Storage Word
2.1.2 Storage Addressing
2.1.3 Storage Access
2.1.4 Storage Parity

2.2 Efficient Capacity Utilization
2.3 Efficient Cycle Time Utilization

2.3.1 Concurrent Memory Operation
2.3.2 Overlapped Memory Operation
2.3.3 Combined Concurrent - Overlap

3.0 FLOATING-POINT PROCESSOR

3.1 Control Functions
3.1.1 Instruction Characteristics
3.1.2 The Flag Register
3.1.3 Interrupt System
3.1.4 Status and Function Line Control
3.1.5 EXEC Bit Control System
3.1.6 Interval Timer Register
.3.1.7 Rapid Access File

3.2 Arithmetic
3.2.1 Arithmetic Characteristics
3.2.2 Arithmetic Operations
3.2.3 Logical Operations

4.0 INSTRUCTION REPERTOIRE

4.1 Programming Ease and Power
4.1.1 Arithmetic Instructions
4.1.2 Logical Instructions
4.1.3 Flag Transfer Instructions
4.1.4 Index Jump Transfers
4.1.5 Assembly and Machine -Language

Programming

2-1

2-1
2-1
2-1
'2-1

2-'
2-2
2-4
2-4
2-4
2-4

3-1

3-3
3-3
3-5
3-6
3-9
3-10
3-12
3-12
3-13
3-14
3-19
3-23

4-1

4-1
4-1
4-2
4-3
4-4

4-4

SECTION

I (cont.)

5.0 EXCHANGE MODULE

5.1 Exchange Characteristics
5.1.1 Data Channel System
5.1.2 Automatic Data Channel Processor
5.1.3 External Systems Interface

6.0 SYSTEM ACCESS DEVICES

6.1 Control Desk
6.2 Peripheral Equipment
6.3 Teletype Model 35 ASR I/O Desk

II EAI 8400 PROGRAMMING SYSTEMS

1.0 STANDARD PROGRAMS AND PROGRAMMING SYSTEMS, .

2.0 8400 MONITOR SYSTEMS
2.1 Standard Monitor System 84
2.2 Simulation Monitor System 84
2.3 HYTRAN Monitor System

3.0 8400 PROGRAM PREPARATION SOFTWARE

3.1 Macro Assembler 84
3.1.1 Introduction
3.1.2 Characteristics
3.1.3 Coding Procedures

3.2 FORTRAN IV Compiler 84 System
3.2.1 Introduction
3.2.2 Characteristics
3.2.3 FORTRAN System Organization
3.2.4 System Design

4.0 8400 PROGRAM LOADING & RELOCATION SOFTWARE

4.1 Auto Load/Dump System
4.2 Linking Re1ocatab1e Loader 84

5.0 PROGRAM CHECKOUT SOFTWARE - DEBUG SYSTEM 84

5.1 General
5.2 System Operation
5.3 Organization
5.4 Symbolic Debugging
5.5 Debugging Functions

6.0 RELOCATABLE SUB-ROUTINE LIBRARY 84

5-1

5-1
5-1
5-7
5-10

6-1

6-1
6-1
6-2 .

1-1

2-1

2-2
2-3
2-4

3-1

3-1
3-1
3-1
3-7
3-12
3-12
3-12
3-16
3-17

4-1

4-1
4-1

5-1

5-1
5-1
5-2
5-3
5-3

6-1

6.1 General 6-1
6.2 Arithmetic Subroutines - Single and Double

. Precision Fixed and Floating-Point 6-1
6.3 Mathematical Subroutines 6-2
6.4 Conversion Subroutines 6-3
6.5 Input/Output and Data Display Subroutines 6-3
6.6 Compat Mode Subroutines 6-3

SECTION l6il

II (cont.)

7.0 SIMULATION PROGRAMS GROUP 7-1

7.1 Hybrid Mode Control 7-1
7.2 Integration Control 7-1
7.3 Function Generator Loader 7-1
7.4 Hybrid Computer Set-Up 7-1
7.5 Hybrid Debug 7-2

8.0 HYTRAN PROGRAMS GROUP 8-1

8.1 Static Check 8-1
8.2 Report Generator 8-2
8.3 Equipment Check-Out 8-2

9.0 DIAGNOSTIC SYSTEM 9-1

1-1

1,0 BASIC SYSTEM DESCRIPTION

The EAI 8400 is a new, exceptionally fast, scientific computing system.
that features a unique combination of capabilities for Real-Time Compu­
tation --

HIGH SPEED PROCESSING
FLOATING POINT OPERATION, and
FORTRAN LANGUAGE PROGRAMMING.

With these capabilities, the 8400 is uniquely suited for real-time
aoplications i:n -- scientL:ic simulation, hybrid computation, laboratory
or industrial on-line monitoring and control, and batch scientific ~ro­
cessin~ as .we 11.

1.1 SUMMARY OF 8400 CHARACTERISTICS

GENERAL

Stored-program, scientific computer

Autonomous organization 5ee p. \ - 4-

Parallel mode

Silicon and microlo~ic circuitry

16 word fast memory, 250 nanoseconds C-vtc\e. +~V'r\e 01 oc.U"..d-Jl -\-;V'f'i'f.' 7

Priority interrupt system with mask registers

Power fail safe

Save register

Rf'al-time clock

PROCESSOR

Powerful instruction list - overG,;~1 commands

Floating-point arithmetic, 32 and 56 - bit

24-bit mantissa, 8-bit exponent
4b-hit mantissa, 8-bit exoonent

Fixed-point arithmetic, 16 and 32-bit

I ffoeJ(vfy
tl~ei~~.r Cl

Integer, or mixed-mode arithmetic with. J --
16-bit fixed-point integers and
32-bit floating-D~ onerands

Index arithmetic, l6-bit

Typical instruction execution

I{.,
2 ::

times·

1-2

"7

32-bit FLOATING ADD 3.50 usec
(c·if

NcrY<

32-bit FLOATING MPY 6.25 usec
32-1~it FLOATING nIV ~;. 50 usec I(Itt Is
56-bit FLOATING ADD 6.00 usec ,j

16-bit FIXED ADD 3.25 usec
16-bit FIXED MPY 5.25 usec
16-bit FIXED DIV 7.50 usec
32-bit FIXED ADD 4.00 usec

Byte manipulations ~ith 1, 2, 4, 8, or 16 bits

Seven index re~isters

Indirect addressing

STORAGE

Magnetic core memory

Can a cit Y to 6:5, 536 1;.10 r d s) d ire e t 1 y add res sa Q 1 e

Word size and utilization

32 data hits, 2 EXEC bits, and 2 parity bits;
half-word or full-word, and tyte addressing

Exoansion with 4k, b~, and 16k ban~s

;

'2 usee comnlete cvcle time \: . -
750 nanosecond access time)

... --.~

Independent bank read write control

Storage access hy u~ to four processors

INPUT,OUTPUT

-f.i '(l.- c l.(1 (P'

Bi-directi.onal ~£1.~ data channels
each

A
hand 1 ing up to f~K~een c:cS;:_s

-- up to eight available
devices -

0c~,\()
\\

A <0 tA\Oj
4:,e --\"j

1-3

Automatic Data Channel Processor available, providing simultaneous
~_ ~ and compu~~ capabi_~_!.!l dJ\~(-\- N'nt)I'~\;'Y'J (AI'. ~,r:,A<;1 -

Flexible systems interface for real-time, device-systems integration

Perioherals

magnetic tape systems, card readers and punches, line printers,
paper tape reader and punch.

CONSOLE

The EAI 8400 System includes an operator's console with complete
register display and on-line typewriter.

SOFTWARE

. - 8400 Standard Monitor System

MACRO Assembler, FORTRAN IV, subroutine library, and programs
for problem preparation, de-bugging, un-dating and modification

8400 Simulation Monitor System

Hybrid mode control, integration control, function generation, and
other programming aids--for digital and hybrid scientific simulation

B400 HYTRANs Nonitor System

Designed primarily for processing programs used for preparation
and check-out of analog and hybrid com~uter programs

v.(\)\.,\~~ -i

(\),~ ~ \" ~ ~ ii, -,

~ t\ !\'~

SF' C\KA-..,
C ~":;) ~ e~, K ~

s a service mark of Electronic Associates, Inc.

1-4

1.2 BASIC SYSTEM ORGANIZATION

The basic system organization of the EAI 8400 integrates the operation
of three autonomou~ subsystems; Memory, Floating-Point P~oc~ and
E~h~Modul~. A fourth subsystem, the ~~tic Data Ch~_~!!.el Pro­
cessor, is an optional exoansion for the system. Each of these sub­
systems has independent timing and control facilities. System inter­
relationships are on a request/resnonse basis. The control autonomy
feature provides an unusual expansion flexibility for increasing machine
through?ut, as well as capacity. Figure 1-1 illustrates the internal

, system organization and various means of interfacing with external de­
vices and systems.

1 . 2 . 1 The Memory
i __ _

The Memory is structured with one, two, three, or (fou!,) independent Memory
1\\ Banks, ~ havin~~~omou..!~o~~~~~E~!._~~~~~!.t~,~,~h!E.m."!ljLJ!'s1!.!~!" fo!

1 pro c e ~~~ ~g-~v.~!~~.!,~It!:" .. ,!,..~.?_~_ .. a n~ ~r ~ ;~_~!~gy"e«>~;'~." .. t!:£~~>,~E~,,,,,.,~~,,~.~~~.J.?!~~.~!~,,~.£!'Jt.
BcnKs of 8192 and 16,384 word capacities are available, and may be used
in any combination. Each Memory Bank has four storage access channels.
In a typical multi-bank system, the first access channel of each bank is
connected to a bus from the Floating-Point Processor and the second
channel is c;:onnected to a separate bus from the Automatic Data Channel
Processor. This configuration orovides overlanped memory access by the
Floating-Point Processor, as well as simultaneous Input/Output and Com­
putation. 'The third and fourth access channels may be used for multi-
processor exnansion and/or interfacing with external mass memory devices .••

The Floating-Point Processor

The Floating-Point Processor employs a 32-bit.wordlength which provides
for a powerful instruction repertoire (over 750 commands) and direct
addressing of up to 65,536 words of memory. It has unusually extensive
c'apabilities for both arithmetic and logical operations. The Processor
is designed with tl2..at!,n&.:..2~iEt as a basis:, rather than expansion,
canability. This concept is fundamental to the 8400's exce~tional float'
ing-point speed and storage efficiency characteristics.

1.2.3 The Exchange Module tii .. ViIiItJ}

The Exchange Module contains a Data Channe 1 System for interfacing Iwith
--- standard external devices and a System Interface for snecial devi~e' and

~STntegra'tion. The Data Channel System orovides~ comm-unica~
paths and control for up to eight bi-directional Data Channels, each
capable of handling fifteen device controllers (includin~~
conversion ~Jn~ent). The channels are designed for the new 8-bit
"'_' _>'=M~~ . -. -

ASCII and EBCDIC peripheral codes arid have internal logic for byte
assembly and disassembly, parity generation and checking, and collating

1.2.4

1.2.5

1-5

code conversion. Independent channel operation may be under program
control, or under control of the Automatic Data Channel Processor. The
Systems Interface includes a directly addressable input/output bus
system and provision for control lines and external interrupt lines as
required for hybrid or other system integration.

The Automatic D?~~~hannel Processor

The Automatic Data Channel Processor provides a means of control for the
Data Channels that permits block data transfers independent of the Float­
ing-Point Processor. Once initiaITZed it executes a complete'block --cIa'ta'
transfer between-rne selected peripheral devices and memory, with data
transmission occurring over a separate ,m.e~; o..c...u",a...";) c.J...,.\C;\ V\.~\ t,..t{

._- ('-"-f.
_- (.I.lr.v'.,(of,Q. i'(()\M JAC p'\Dc..v::uJ...o;f"'~>"'r<Ie.\'Y\t)(\r
~ I

Ctc,c.tr.""" ~{\'\I'\f? l Expansibility

Modular expansibility in both capacity and speed are fundamental to the
8400's basic design.

Throughput of the Floating-Point Processor can be increased by increasing
index register speed with optional conversion paks, or by the addition
of an optional 16 word fast memory (Rapid Access File) for scratch-pad
and high-s?eed looping techniques. Faster storage ~rocessing is 'obtained
by over-lapping when the initial Memory is expanded with additional banks
and Exchange Module throughput is increased by simultaneous channel
operation when new Data Channels are added. Further increases in speed
can be realized by expansion to a multi-processor system in which several
F'oating-Point Processors operate in parallel.

The control autonomy feature of the 8400 provides an unusual expansion
flexibility permitting the up-dating of individual subsystems with new
technological advances, without obsoleting the existing initial system
hardware.

+ \ (P L,L) 0 (~ . . ~
Ho tJlcZ
Ac.r.J..J-A
T':~.l .. t " \

: 1:", h ~

*2
MEMORY

BANK

CARD
READER

CARD
PUNCH

LINE
PRINTER

#3
MEMORY

BANK

#4
MEMORY

BANK

AUTOMATIC
DATA CHANNEL

CONTROLLER

MAGNETIC:
TAPE

CONTROLLER

, "'"
I~HER PRO'CESSORS \:
MEMORY INTERFACE .

FUNCTION
LINES

STATUS
LINES

',NTERRUPT
LINES

, '-""""~''''-.... ~,-

"ADDRESSABLE
\1/0 BUS'

TRANSPORTS

OTHER
DEVICES

~ INDICATES STANDARD
MINIMUM SYSTEM

EAI 8400 SCIENTIFIC COMPUTING SYSTEM

FIGURE I-I

\\

2-1

2.0 STORAGE

The Memory provides high-speed, random Bccess storage of instructions and
data used by the Floating-Point Processor and Exchange Module. It has a
maximum directly addressable storage capacity of 65,536 words, 131,072
half-words, or 262,144 8-bit bytes. The capacity is provided by independ­
ent banks each having control and data handling facilities for processing
storage requests from four system processors. The banks are of a non­
volatile ferrite core construction and are characterized by a 2 microse­
cond complete cycle time and a storage access time that is 750 nanoseconds.

2.1 STORAGE CHARACTERISTICS

2.1.1 Storage Word

TIle memory word of the 8400 is comprised of 32 bits for information
storage, 2 EXEC bits for special control functions and 2 parity bits;
thus a memory word is 36 bits in length. The information portion may
be used alternatively as one full-word location, for the storage of a
32-bit operand or instruction, or as two half-word locations for the
storage of 16-bit operands or address fields. A parity bit and an EXEC
bit are assigned to ~~h_~~~. The EXEC bits, an exclusive feature
of the 8400, are used as markers for such purposes as dynamic re-location, v

-, ~..Jll."_ocessing and table manipulation. Figure 2-lashows---t'fi"e--iiiemory-·'-""---'
data wora-rormat.

2.1.2 Storage Addressing

2.1.3

The,-,.1ocatj . .onof data in storage is identified bya 16-bit memory address
Cw-rd_.)----'The bit designations of the address word are interpreted differ­

elrtiy by memory banks of different storage capacities. Figure 2-lb shows
word format and its interpretations by an 8192 word bank and 16,'384 word
bank.

Storage Access J " ')
. r t I j-

The Memory Banks in an 8400 Memory may be accessed by un to fOUI\ processors ~
These may be Floating-Point Processors, Automatic Data Channel'Processors
or external mass memory devices. The processor requesting access to storage
transmits a request signal and a 16-bit address field to storage. The
request signal specifies the read or ~ite operation to be performed and
whether full-word, hal.f~,:,word and/or EXEC---bits are to be transfered. If

- the same bank-is ac~;"ssed'-'«';'imul taneousiy"'-l)y--'two request sources, the bank .
control unit services the requests sequentially.. 'I

c.;:.C c cn.-c.l'\'\/Vj -to (...,~) L'-El. t (,yd.C\ ..

f. 0

FULLWORD~

15 16

EXEC BIT ------.

PAR'TYB'T h
31 OlD 0(0('"'ll..iI!I 0(1Ii.

LH RH

LEFT HALF WORD

,
RIGHT HALF WORD

EXEC BIT LEFT HALF
EXEC BIT RIGHT HALF

PARITY BIT LEFT 'HALF
PARITY BIT RIGHT HALF

MEMORY DATA WORD FORMAT
FIGURE 2-1 A

t

8t< MEMORY BANK
.~~-: , ...

~------~y~---------)
BANk WORD

ADDRESS ADDRESS

16K MEMORY BANK

y ______,.y,..... ___",J

BANK WORD
ADD~E~S ADDRESS

ADDRESS WOR 0 FORMATS
FIGURE 2-18

E E P P
L R L R

•• • ~ . • ••

" \

2-2

2.1.4 Storage Parity

One parity bit accompanies each half-word transfer in the 8400 and two
parity bits accompany full-word transfers. Odd parity is employed; that
is, the parity bit is set such that the number of "l's" in a half-word,
plus the parity bit, is always an ~~Jl.~~~er. During a write cycle, the
correct parity bit is generated and stored automatically. During a read
cycle, the detection of a parity error causes the Memory Parity Indicator
to flash at the console and initiates an internal Parity Failure interrupt.
The memory bank causing the error may be located by the interrupt sub­
routine or, alternatively, by the operator using the Bank Select Switch on
the console maintenance panel.

2.2 EFFICIENT CAPACITY UTILIZATION

- t

Directly addressable data units which can be stored in one 8400 memory
location include 32-bit full-words and 16-bit half-words, as previously
noted. In addition, the Processor provides Double Precision Floating-
Point Instructions which permit the direct sequential addressing of a
contiguous word-pair and a set of Logical Connective Instructions which
enable the direct addressing of 16, 8, 4, 2, and I-bit bytes. Thus, the
effective addressable storage capacity of the memory depends not only
on the number of memory locations; but also on the sizes and mix of the
data units to be stored. For example, a 64k memory has storage capacity
for 64k floating-point or fixed point operands of 32-bit word length, l28k
fixed-point operands of l6-bit word length or 256k ASCII or EBCDIC peripheral
code characters. Figure 2-2 summarizes the effective storage capacities for
all of the 8400 storage unit sizes and indicates the types of program infor­
mation that utilize each of the sizes. The variety of useful types of
'information which can be stored in storage units of an exactly matching
size results in highly efficient utilization of the available storage, by
permitting dense packing of information with almost no waste capacity.

All memory addresses are available for general program use with the exception
of a few addresses reserved for special purposes. The reserved addresses
are listed below (in octal notation):

,;:' \(/'2,

V ~:j ("j(:u&"'~ Addresses 0,QOOO.-00007:
00 C) Dc),

Reserved for the Accumulator, Save
Register and (6-'\) Index Registers

\,-/

Addresses 00010-00027: Reserved for the Rapid Access File
'1 ," ,:,---'--~,,~"'-'- W '" a,{ ~ '~·~IA,.l" '3 (l,,,P f'~" "'I,

',,-~ 't-<)I:) (c, '< Addresses P~00060:) Reserved for 16 Internal Interrupt
sho

lt
'\¢ I --,,,,,,,-"--;,r;-'---"-"-'~'-"-""" line locations

'W-t 4\ ',(_ .,.' ..'---'---?_'~
Addresses 'Q006l-00460,,1

.~!. '------,--,----,:, "",, ... '"

Reserved for 256: External Interrupt
line locations

The Accumulator arid Save Register are standard arithmetic hardware registers

2-3

EFFECTIVE ADDRESSABLE STORAGE CAPACITY

ADDRESSABLE DATA UNITS/ STORAGE CAPACITY TYPE OF INFORMATION
DATA UNIT MEMORY t«>RD -WITH 64K MEMORY

64-BIT DOUBLE PRECISION FLOATING
WORD PAIRS % 32K POINT OPERANDS

•..

32-BIT FLOATING POINT AND EXTEND-
FULL WORDS 1 64K ED FIXED POINT OPERANDS;

or INSTRUCTIONS

16-BIT FIXED POINT, INDEX AND
\\ORO 2 128K INTEGER OPERANDS; or

ADDRESS FIELDS

16-BIT 4 HEXADECIMAL CHARACTERS,
BYTES 2 128K 4-DIGIT BCD CODES; or

OTHER 16-BIT FIELDS

8-BIT ASCII AND EBCDIC 8-BIT
BYTES 4 256K CHARACTER CODES; or 6-BIT

ALPHANUMERIC CODES

4-BIT BCD NUMERIC CHARACTER
BYTES 8 S12K CODES; or OTHER 4-BIT

FIELDS

2-BIT 2-BIT TEST OR DECISION
BYTES 16 1024K MAKING STATUS CONDITJIONS

I-BIT I-BIT TEST OR DECISION
BYTES 32 2048K MAKING STATUS CONDITIONS

FIGURE 2-2

2-4

addressable as locations 00000 and 00001. The index re~isters and Raryid
Access File are o~tional hardware registers whose functions are fulfilled
with core memory locations 1n systems in which these options have not
been elected. Any of the locations reserved for external interrupts may
be used for other purposes in systems not requiring the full external
interrupt line capacity of the 8400.

2.3 IEElCIENT CYCLE TIME UTILIZATION

Each of the independent banks of which the Memory is comprised is an
autonomous storage module capable of responding to read and' write re­
quests from up to four storage request sources. The control autonomy
provided for the banks makes possible the use of several operational
techniques that effectively increase the ?rocessing s~eed of the system.
The techniques are as follows~

2.3.1 Concurrent Memory Operation

In this mode of operatio~words in different memory banks are accessed
simultaneously by different subsystems; for example a Floating-Point
Processor and an Automatic Data Channel Processor.

2.3.2 Overlapped Memory Operation

tyv'\'e ,",'" \,~

I
(,.,~ I :, :

In this mode of operation words in different memory banks are accessed
in "overlap" fashion by one subsystem; as in the case where a Floating­
Point Processor while storing data in one bank begins fetching the
next instruction from a different bank.

2.3.3 Combined Concurrent-Overlap

In 'this mode of operation the requesting subsystems operate concurrently
and overlap their individual memory accesses by addressing the same
banks alternatively; and different banks simultaneously.

The use of these three modes of operation can significantly reduce operat­
ing time in multi-processor, multi-user and single user systemS.

3-1

3.0 FLOATING-POINT PROCESSOR

The Floating-Point Processor employs a 32-bit word length Which provides
for a powerful instl~uction repertoire (over 750 commands) and direct
addressing of up to 65,536 words of memo1~y. It has unusually extensive
capabilities for both arithmetic and logical operations, as well as extensive
control capabilities. The Processor is designed with Fl~ating-Point as a
basic, rather than expansion capability --- a concept fundamental to the
8400's exceptional floating-point speed and storage efficiency characteristics.

The processor provides system control for the 8400 system of autonomous
functional modules, integrating its own operation with the operation of the
Memory and Exchange Module. This role of systems control is illustrated
by the diagram, of Figure 3-1. '

As the centj:-al processing unit of the 8400 Computing System, the Floating­
Point Processor provides all of the capabilities for control and execution
of the stored program. An indication of its power.s and capability in this
role is given by the following descriptions of the pri.ncip" registers
affecting operation: a.l

1,

1.

2 •

Processor Registers

Instruction Register (I) contains the {,'n~~truct~'o,'~~ currently \. /. .. "'_
being executed. I "-, __ .----~
--~.. --..'"' ''''' ... -'''''~

Location Counter (L) con:.:ains the address of the next instruction
to be exe~uted. The register is addressable under program control.

.3. Accumulator is designed to be "universal"; i.e. every variety of
arithmetic and data manipulation is pe~formed with the one
register, making programming simpler. It consists of four
sections: a l6-bit accumulato~, a l6-bit extension for 32-bit
flxed-point, a 16-bit eX'~ensi.on for. 32-bit floating-point, and

4.

a 24-bit second ex:ension for 56-bit flOAting-point. All manipu­
lations between the accumulator sections are handled automatically.
The accumulator is addressable as m~mory location 2ero.

~""--""""'---""""'--~'''''»'~'''''''-----''''''''''''-''''''-''-'-'''''~'''''''-'--'''''----''''''''''"''''--

Save Register ($) saves the current contents of the Acc!!!!!.ulator
concurrently ~\lith e~~~-~~:ing an arill~1..t:rc instr;;'CtIo;:'"""" I~
addressable as memory location one.

__ --., ",...,u--.. ... " , ... , .•. -·,..-..·w"'"''''..,. -".--.-.,-.,,...,,.., , .J,.." "' •. ~, "" "'_.,.. ,...,' ,.~' "r-M_"".,. ".

5. Index Registe~s (X) provide automatic address modification. Six
core index registers and accumulator index capapility ar.e basic
to the computer. The acc~mulator is-incfexregister I; ih'(r~:,3'(.4;"R-

X?- ',PViI'M ~7.

6. Flag Regi.ster (F) cont ains indica tor bi ts, set as the result of
arithmeti.c operations, exchange and interrupt status signals. The

Flag Register is addre~sab~_ O./j (f-") ~,.0~~b .i-;u It-~

7. Internal Mask Register (1M) contains a l6-bit priority pattern
specifying which interrupt conditions should be acknowledged.

8. External Mask Register (EM) contains a l6-bit pattern as described
above but for external interrupt conditions ••.•

'-;

9. Interval Timer Register (T)._ provides an oPti;.~i' re~i~t~me clock
whose contents are decremented by one, eve~y (~!._ll iseco~--~en'-"'­
contents are reduced to zero, an interrupt s ignaT-'-rs-'-g-enerated,

10.

, the initial value is reset, and the clock continues. The Timer
register is addressable. --.... -----------

Rapid Access File provides 16 hardware registers of ~ bits and
2 EXEC bits. These registers have a 250 nanosecond access time
for high speed data storage or instru'Ction eXe'cufion-:--wn"en-'this
option is not present in the system, 16 memory locations respond
to Rapid Access File instructions.

11. Console Register (C) is accessible by the program and by the
operator. It allows monitoring, data display, and ~~_~.!..,inp~~!,l,:.
the program is running. h ?

,.. ___ ~ __ ... ~~ ~ ~~" .. _ •. , ..•• ," •. ".ff r"

The control and arithmetic-logical capabilities of the Floating-Point Processor
are described separately, in the immediately succeeding sections; 3.1 and
3.2, respectively.

EAI 8400 SYSTEM BLOCK DIAGRAM

ACCESS DEVI CES

MAG TAPE
~

SYSTEM

CARD READ PAPER ~

AND PUNCH TAPE READ
a PUNCH

COMPUTER LINE
~

PRINTER CONSOLE

TYPE-

CRT WRITER
DISPLAY

~

OTHER
~UP TO 15-

t-- DEVICES PER
DEVICES

DATA CHANNEL

STATUS _'
LINES - EXTERNAL

FUNCTION SYSTEM
12345678

---LINES INTER-
INTERRUP_T ,FACE

DATA CHANNELS

AUTOMATIC

~

LINES - CHANNEL ~

~15~EssABCE
BUSS LINES

CONTROLLER

EXCHANGE MODULE

PROCESSOR

/
/'

- "

\

LOGIC r' SPECIAL \ RAPID \;0 '
SIGNAL \ CONTROL \ ACCESS ': J. V
CONTROL 'BEG1S_t.£RS FILE .",
STATUS IL- LOC COUNTER V ('\
LINES rr R-T CLOCK v INDEX C I
FUNCTION ~~ INT. INTERR.' 1, ~~~l~_1.:!ERS Ii/'

LINES ~fI" EXT. 1NTERR. ~~ •
JNT:ERRUPT C CONSOLE v_--ItL-__
LINES r INSTR. REG. l: UNIVERSAL

F FLAG REGIST Iv A~Cl{~cU.lbTOR

4 ACCESS
LINES PER
~)

lv"
........... ---'--

C
o
N

BANK ~
I 0

L

C
o
N

BANK ~
2 0

L

II I jJ

___ -----..I , ~

C
o
N

BANK ~
3 0

L

{.cc. I $
(SAVE REG.)

C
o
N

BANK ~
4 0

L

AUTONOMOUS MEMORY BANKS

FIGURE 3-1

3-3

3.1 CONTROL FUNCTIONS

3.1.1

The control functions perfonned by the Processor include the
sequencing of the computer through its program, the interpretation
of instructions, the t~ing and gating of data flow, and the
establishing of control relationships and priorities for the 8400.
System. These functions are carried out through the use of the
following control techniques:

Ii

a) Logic t~ing and gating of the various system data busses,
enabling the unique data paths required for the execution
of each instruction; hardware control of other system
elements as required by the operation being performed using
the decoded ins~ruction as its guide.

b) Automatic Internal Interrupt System which provides the
facility for continuously monitoring various conditions
of the computer or its environment, and notifying the main
program when certain conditions occur. If an interrupt
signal is acknowledged, the main program will stop and
transfer control to a subroutine, which services the condition.
Use of the interrupt system permits ~ediate detection of
system faults and facilitates the operation and coordination
of asynchronous external devices.

/I c)
:!

Program-controlled Internal Status and Function Lines ,which
allow the programmer to monltor'""and set cotitroI'-ITne's­
throughout the system.

Several special registers are employed in some of the control functions.
These include the Flag Register which provides on-line monitoring of
the status of si~Fe.,p machine conditions during the course of a
program and optional Interval Timer Register and Rapid Access File.
An exclusive feature of the 8400 is its unique EXEC BIT Control
System which enables the use of the EXEC bits marking each half
word storage location in memory for special control functions.
such as dynamic relocation of subroutines and codi~sequences from
one IOcll.t.i.an... in memory to another .~,~~-----.. 1_ jP'/--', -·--.,-' .. · .. ·-:--;--*'" .. :~)·,.L >

---'-- "'-._-- -"' --.--.-" ~ __ ... " .. _ .. " .. _ " ••. '. I? ~'iJ" s\-(:..A... i eqc" \ (eo /)..... f"eC't-tj St.1 p "\ \ 0 \ I(

-e/'l:~.C ... '{ol,A··L! '/\ It., h "tcjr..{ f(C ~\I~

Instruction Characteristics ~()."cJJA(}(~. ctAP'lCtVl';(({e L,t·ol''. It\.

U \1'\ t of V1 t _ .. (J..tA.(;lizl'...4/i~((l /10'1 If' VIi

The 8400 is a single address computer employing a 32-bit instruction
word. Under the normal mode of control the stored program is executed
sequentially. The current instruction is contained in the Instruction
Register (I) and the address of the next instruction is contained in
the Location Counter (L). The execution of an individual program·
step is determined by the current instruction which is interpreted
by logic and t~ing circuitry that implements the various functions

to be performed. The normal program control capabilities therefore
are indicated by the 8400 instruction word format which is shown
below. These capabilities include addressing, address modification,
and instruction interpretation and control.

84001 INS~C;;~~\ WORD FORMAT
" . " ... -00.--... --.. ---------..1

o 15 16 17 20 31
-Cye ('

3-4

I~ --M-.F-m-L-D----~I-*~I-x--~I---o-p-F-m-L-D--~I
~ 1)')'" "1

'YId_ll"-,rcJ

M is a l6-bit address field. * is an indirect address bit.
X is a 3-bit index register field. OP is a l2-bit command.

Addressing

In arithmetic and logical instructions the l6-bit M Field may contain
the address of a direct or an indirect operand, an~~ate 0P!I!~dJ
or a,,:,.fJ,b.tft ~ount. In immediate add~~s'ina.-.~he~-a.d_~~ess field itself is
~i!!i.d:'""-oth immediate operands and shift countsllre-sIgnea----------, . ~

numbers in two s __ ~omplemen.t notation! 'o-,t C = 5\ql~ b ~t· ~
~ --_ •.• -... '..J

The addressable locations in which data may be found include any of the
32-bit memory locations, the Accumulator and the Save Register.
Immediate addressiES- and half-:-w.qrJL"Q1;' bIte positions .. in an addressable
loca t ion are'-specl f ied-"by'-"bIt~s' in th;- -~p'eratlon~~freT(f;~"--~'"AA<'"''''''~'-~~'''--'-'--~--'''
...... '--~_ , __ .-.., •• ~~----- •• ~-.--.~~-..... ~.~~ •• - .. - .. --..... ---,-----...... ~_ ---..-.... ...ot«I.~ __ .. _, "'.-._--.--~~

In control instructions the M Field may contain the address of an~
internal or 'ex~ernal sense or function line and registers of external
devices that are interfaced to the Addressable Input/Output Bus of the
Exchange Module.

Address Modification

The * Bit in the instruction word determines whether or not indirect
addressing is to be perfonned before an operand fetch. Multi-level
indirect addreSSing is permissable, with optional address modification
at every level.

The X Field specifies the index register to be used for address modi­
fication. This 3-bit field can address seven index registers. When
indexed address modification is specified, the effective address is
fo~ed by tiding (in two's complement notation) the contents of ,the
selected index register to the base address contained in the M Field.
A zero code in the X Pield indicates that no modification is to be
per formed. ;'"\?O,\\,t,,~ 1 \V\c\c./'>t. '":"

(.0'

,.
I

FLOW CHART ROR ADDRESS MODIFICATION

WHER EINDEXING,. JNDIRECiT ADDRESSING AND
IMMEDIATE ADDRESS IS PERMISSABlE.

FETCH NEW
ADDRESS AND

ADDRESS MODIFIERS

FROM m

FETCH

INSTRUCTION

NO

FETCH

OPERAND

EXECUTE

INST RUCTION

Vvl !~
I

3-40

'.~

\ '
\/

\

.~~ t,r~-(J.J~ .\>v-:e\C~
o~ ,t;' ~,'. 'C \
..J(~ ... / r.j;: .~) ~ 't., ,,7 ~

Instruction Interpretation and Control

The l2-bit OP Field contains the operation code for the instruction
to be perfo~ed. Instruction decoding logic interprets the OP code
.• nd sets the appropriate data paths and control circuitry required
to execute the instruction.

'7- :
The length of,the OP Field in the 8400 providesa9'/unusually exten ..
sive instruction repertoire of over 750 commands~" The ~ code
employed utilizes certain bits to designate ~ Operations (B) and
other bits to designate Operation Modifiers eM). With this bit or­
ganization t~eprogrammer neet=remember only B + M codes to specify
B x M instructions. Two special modifiers specify unno~alized float­
!:n8-po~~2eration and the sav~ng_ of~_~~! ~'?nte,~~,!,~.~E_.,:th!..,",~ccuiU18tOr
in the Save Register prior to instruction execution.

In data addressing, bits in the OP Field augment the address field,
spe~ifyingJ!unediate addressins; or, in the case of operations with
half-word data or smaller bytes, SP~~!~J~~ng_,.~.P~" .R~,~t!.,~,t.~O-';L.2,f_.1i.h! __ .~!.ta_
at the addressed location.
I'~ ... ~ ... """---.....-,>-" .. "., .. .-~ .. ,,," ... , ... ,,,,,,, ... ~.,, ,,.,,,,,,,;,,,,:-"-1·" .. "·."r ~ .. ' " .. "l<Ij..,\ ••• ~ .. ;>,,~~""

3.1.2 Th~ Flag Register

The 8400 controi system contains a l6-bit Flag Register and associated
circuitry that provide ~ittBjii2H!:~€inrto~riiil of sixteen machine condi­
tions during the course of a program. The individual bits of the Flag
Register indicate the status of these conditions at the end of each
instruction. Logic circuitry controlled by the current instructLOn en-

-Bb-:fis festIng. setting and resetting of the Flag Bits and provides a
capability for conditional modification of the no~al sequential control
of the program in progress on the basis of a program condition monitored
by one of the Flag Bits.

;:L~~ I\!)- ~ \U
<;);~~~ ~~ ! o >0 i<O <:J \) '.Il:;:JIS ~

'11 Z G L V c:! B I E I 2 3 4 I 5 I 6 I 7 8
/
'--- -...,..~~- ~ l "'l!'1

~/'»I<~.""~' ~ -~W"",,,.,,.,t,, .. "" j
\ -Arithme~c Status Programm~r Flags 1 8

"~"",""~ __ ----""",, () ~ Uncondi\tional (:S~V!~t.. ,~.~\jLL ... p J
Z - Accumulator Zero (or equality in cOmparisons)
G - Accumulator Greater than Zero (or Greater in comparisons)
L - Accumulator Less than Zero (or Less in comparisons)

3-5

v - Overflow of Accumulator (Cumulative)
C - Carry-out (Most Significant Bit)
B - Function Line or Data Channel Busy (not available)
E - Internal and External Interrupt System Enabled
1-8 - Console Programmer Flag 1-8 set

Note: complement testing of flag bits is also provided;
Z bit can alternatively indicate a high (one) re­
sult for a Test Sense Line or Test EXEC Bit in­
struction

The Flag Register can be stored by the program, thereby enabling the
internal status of the machine to be retained and later retrieved after
program interruptions are completed.

3.1.3 Interrupt System

3-6

The fast and extensive interrupt system of the EAI 8400 provides the J(p. mffrt1,f
capability for altering the normal flow of sequential program control A
in response to the occurrence of anyone of sixt!.!:n computer internal tn> t/Xff(Vlff

conditions and operating modes monitored by sixteen internal interrupt
lines; and, up to 256 external conditions monitored by the addition
of external interrupt lines to the Exchange Module. When an interrupt
condition occurs, the interrupt system automatically notifies the main
program and, if acknowledged, stops the program and transfers control
to an interrupt subroutine. The subroutine services the interrupt and
returns control to the main program.

Conditions Monitored

External interrupt conditions are assigned at the users option when
external interrupt lines are installed. The internal interrupt
conditions are fixed by the design of the machine. These internal
conditions are listed below in order of assigned priority (from highest
to lowest).

INTERNAL CONDITIONS

o. Power Failure - Detection of a drop in AC line voltage below
operating level

1. Parity Failure- Parity check error in a memory bank or data
channel

2. Reserved

3. EXEC Mode - Presence of set EXEC bit8 in a word read
from memory

4. Exponent Fault- Presence of an exponent overflow or under­
flow in floating-point operations

5. Memory Protect- Attempt to write in a protected location
Mode in memory

6. Interval Ttmer- Down counting of Interval T~er register
to zero

7. Conso1e- Operator depressing one of four console
interrupt control buttons ~

3-7

8~15. Exchange Mod- Data Channel 1-8 interrUpt control lines
ule Data (last four may be used as external lines

+'Jpt'lO (,~. (1.",

h~<r~

Channels at users option if data channels not
installed)

System Structure and Priorities

.~:.A c.. 4

The System interrupts are arranged in Groups of 16, each group having
16 individual interrupt levels, as follows:

Group 0
Group 1
Group 2

Group 16

Internal interrupts 0-15
External interrupts 0-15
External interrupts 16-31

•

External Interrupts 240-255

Each group of interrupts has priority over each succeeding group,
and each level in a particular group has priority over lower levels.
At the beginning of every instruction execution cycle, an interrupt
scanning system sweeps through each group of interrupts, starting
with Group O.

Because of the scanning action of the interrupt system, interrupts of
higher priority are always detected before interrupts of lower priority.
Once an interrupt routine is given control, only interrupts of higher
priority may interrupt the interrupt subroutine although this arrange­
ment may be masked if desired. Detection of an active interrupt line
takes pl?ce during the scan sweep, but the interruption of the normal
.program cycle by recognized interrupts takes place only after an .
ins~:r~ction has been executed and before the next instruction is fetched.
Exceptions are the EXEC and parity internal interrupts occurring on an
instruction fetch which will interrupt before the instruction is executed.

3-8

System Enable-Disable

The entire interrupt system, both external and internal levels, may be
enabled or disabled by setting or resetting the E-bit of the Flag Register.
This bit may be appropriately set by the following instructions.

(1)

(2)

LDF - load flag register

JSE, JRE, JTE, LRE and 7heir . complements JSNE, JRNE, etc.,l ~.,
(See Flag Test Instruct10ns 1n Instruction Repertoire •
Section). ~

#' An exception is the Power Failure interrupt which can never be disabled.

Dynamic Priority Allocation

A very powerful feature of the 8400 interrupt system is the capability
provided for Dynamic Priority Allocation of both external and internal
interrupt lines, under program control. This is accomplished by means of
Internal and External Mask Registers which provide masking control of the
basic interrupt registers that continuously monitor the interrupt condi­
tions assigned for detection.

The Internal Mask Register contains 16 masking bits corresponding to
Interrupt Group 0 (internal conditions 0-15) and the External Mask Register
contains 16 masking bits corresponding to Interrupt Group 1 (external condi­
tions 0-15). The priority sequence of the interrupt lines in these two
groups may be altered by resetting (to zero) the masking bits of lines to be
inhibited; and setting (high) the bits of the lines to be recognized. This
is accomplished by LDM.and LDE instructions used to load the internal and
external mask registers with the appropriate bit patterns. Additional
groups of external interrupt can be inhibited under program control by
means of the STATUS/FUNCTION LINE INSTRUCTION (SFL).

Through the use of mask control it is possible for the programmer to
achieve the following results:

(1) Ensure an interrupt subroutine is not interrupted by one or
more higher priority interrupts by resetting the corresponding
mask bits for those higher order interrupts to be prevented.

(2) Restructure the normal priority sequence by loading and "safe­
storing" mask configurations conforming to the order of priority
desired.

(3) Establish a dynamic "priority" level for the main program whereby
only selected priority interrupts will be able to interfere.
This is accomplished by altering the masking bits with instructions
in the main program sequence and can be changed as the program
progresses.

Interrupt Memory Locations

A unique memory location is assigned for each of the internal and
possible external interrupt lines. Upon detection of an interrupt
condition the normal program cycle is broken and an unconditional
jump is effected to the memory location assigned to the particular
interrupt line that is signalling, for the program's interruption.
The instruction which the programmer has stored in the interrupt" s
assigned memory location now determines the computers response.
This instruction, which cannot be interrupted, controls the action
taken by the interrupt logic in executing the interrupt subroutine.
Three choices of instructions which may be used for this purpose are:

(1) a "Link" Instruction: This is the normal interrupt subroutine
linkage. The addres the next unexecuted instruction of

3-9

the interrupted ,program (location cou~ter contents ..!!:! ._-....
stored in the memor address s ecified b the link instruction
and the subrou ne s~s 1n the next mem;ry· c~ll. Tiirs-'-"
avoids'p;oblemsenCoonte~dincompiiters ''''permittIng only
one such preassigned cell in handling interrupts of other
interrupt routines.

(2) an "Execute" Instruction: The instruction contained in the
address specified by the Execute command will be singly
executed without affecting the Location Counter (unless
that instruction is a Jump or Link). This choice is used
for single or chained "Execute" interrupt subroutines.

(3) any Other Instruction: The instruction contained in the
interrupt memory location is executed and control returns
to the next instruction using the address in the Location
Counter.

The variety of actions available through the choice of instructions
that can be stored in an interrupt memory location adds another
d~ension of flexibility to that provided by the masking systems.

3.1.4 Status and Function Line Control

The capabilities provided by the Flag Register and Interrupt Systems,
for modifying program control on the basis of internal and external
conditions, are augmented in the 8400 by Status and Function lines
which can be tested) set and reset under program control., Four banks
of status and function lines are available; the first two of which are
reserved for internal control purposes,and the remainder for external - ~ ~-.,~

systems control.

By using a set of Status and Function line commands (see Instruction
repertoire section), internal conditions can be tested, and logic and
data flow circuitry can be manipulated under program control. Control
commands includes the selection of the appropriate bank and specific
line or lines to be employed, using ~ediate addressing. When testing
Status Lines, the Z bit of the Flag Register is made to correspond to
the state of the line (s). The Busy Bit (B) of the Flag Register is
set if a function line cannot be set t as a result of conflicting
requirements.

The Status and Function Line Instructions for Bank 0 pertain to the
Processor and Memory, while the instructions for Bank 1 pertain to
the Exchange Module. The functions perfo~ed are listed below:

BANK 0

1. Testing parity error flip-flops in the various memory banks.

2. Tvsting Console interrupt flip-flops.

3. Turning on/off the Real-Time Clock.

4. Establishing EXEC interrupt conditions.

BANK 1

1. Clearing a data channel.

2. Initializing a data channel.

3. Testing parity error flip-flops in the various data channels.

4 •. Enabling/disabling interrupt signal gates.

5. Device function control.

3.1.5 EXEC Bit Control System

The EXEC bit Control System is an exclusive feature of the EAI 8400,
which provides the programmer with many powerful programming techniques.
The system operates in conjunction with the EXEC bits associated with
each halfword in the 8400 memory. These word marking bits may be set,
reset or tested by a group of EXEC bit control instructions. The
result of a test of any half-word will set the Z bit in the Flag

3-10

Register if the EXEC bit is high. Programmed decisions using
the Flag Test Instruction Set can therefore be made, based on the
state of any word's EXEC bit.

EXEC Mode Interrupt

The EXEC Bit Instructions enable the use of the EXEC bits under the
direction of the stored program. In addition, the EXEC bits are
monitored by the 8400's Internal Interrupt System. This allows
automatic recognition of the EXEC bits for a variety of purposes.

The EXEC Mode Interrupt occurs whenever a word is read fram memory and
the EXEC bits for the word are set. The EXEC Mode Interrupt can be
recognized at three points during the instruction cycle as follows:

1. After instruction fetch and before address modification; this
wou,ld result from reading an instruction with one or both of
its EXEC bits set.

2. After address modification and before operand fetch; this
would result from indirect addressing.

3. After execution and before the next instruction fetch; this
would result from reading an operand with the EXEC bits set.

The interrupt subroutine determines which case occurred, and acts
accordingly.

Applications

3-11

The 8400 Programming Systems use the EXEC Bit Control System for a
variety of purposes, the most significant of which is dynamic relocation
of programs stored in memory. Both the Assembler and FORTRAN IV Compiler
provide convenient means for setting the EXEC bits in individual half­
words and word blocks, as appropriate. Thus other uses for the EXEC
System are limited only by the programmer's imagination. Suggested
possibilities are:

1. Special simulations of other computers by trapping instructions
marked with EXEC bits and executing them by interrupt software
subroutines.

2. Lmplementation of special programming languages, such as list
processors, compilers, interpreters, and generalized translators.

3. On-line breakpoint debugging for monitoring the progress of
programs during execution.

4. Data Tagging for a special processing during input-output
operations or table updating.

5. Lmplementation of push-down stack techniques using EXEC
control.

3.1.6 Interval T~er Register

As an optional control feature, the 8400 has available a 16-bit
interval t~er register which decrements the register once every milli­
second .. When the contents of the timer register, T~ becomes zero, a
R(~al-Time Clock Interrupt is generated. The clock does not stop count'­
ing when it reaches zero, but "returns" to its ma¢imum value, and
continues to decrement. : &'7' S :,S s£ C.,oCr ,,\;:"

The Interval TUner has a maximum range of 65,535 milliseconds per count
down and can be used for calculating elapsed time for periodic program
in terrup t ion. Interrup t i:.on_.~_~-2~~r~e._ ~~"s!L..@.y.en,JL,!,!£9.1!~'
by load ins !.~~~"!..~.E!!,~iLIt.,,~b..e,, .. :e.rJ!:~rX_!9..~~!!~-9.f~...x.~~ .. ~.!lli­
~~ The timer counts down until it reaches zero and then generates
an interrupt signal, which will initiate a subroutine to perfo~ the
desired services, and resets the timer for another X seconds. This
feature permits flexible system integration, such as:

1. Synchronizing a program with a real-tUne device.

2. Outputting data periodically to certain peripheral devices.

3. Time-sharing mUltiple programs, or mUltiple consoles.

4. Periodically testing Sense Lines as an alternate to
automatic interrupts.

3.1.7 Rapid Access File

3-1l

Another optional feature of the 8400 is the Rapid Access File, containing
16 high-speed registers. The individual locations in this file are
specified in the same fashion as memory locations and can be used for
the storage of instructions and operands. In the case of instruction
storage, short high speed loops can be preloaded into the file and then
operated upon from these high speed storage locations. This provides
an increase in throughput for such functions as table searching with a
wide variety of test criteria. Scratch pad memory programming techniques
are another application of the Rapid Access File.

3-13

3.2 ARITHMETIC

The Floating-Point Processor contains the logic and circuitry for
performing the arithmetic and logical operations necessary for executing
the stored program instructions. Some of the processots important capa­
bilities are:

1. High-speed processing - obtained by augmenting fast arithmetic circuitry
with logic capabilities for powerful single instructions that enable a
reduction in ,the total number of instructions necessary to perform a given
function.

2. Floating-point operations - designed to be the normal arithmetic mode
of operation for high speed, real time applications.

3. A complete set.of logical operations - for fast and efficient programming
language translation, input-output data handling and non-arithmetic problem
requirements.

4. Programming language features - that provide ease of programming and
reduce processing time as well as off-line preparation time.

5. A."Universal Accumulator" - that eliminates progratmner concern with inter­
register transfer hardware considerations.

6. High speed temporary storage - that provides a simple effective means of
holding intermediate computational results for subsequent reuse without
additional memory referencing.

The Universal Accumulator and Save Register are particularly illustrative
of the special programming features provided in the EAI 8400. The Accumulator
is universal and directly addressable. It provides very high speed; process­
ing of both floating and fixed-point data in a variety of word formats. The
Universal Accumulator concept saves the programmer the burden of transferring
the result of a previous operation to the proper arithmetic register, of
ensuring that the correct register is loaded or unloaded in transferring data
to and from storage. All these functions are performed automatically by high­
speed parallel logic. Not only are programmed instructions to accomplish these
transfers unnecessary, but also one of the most frequent sources of programming

'\\ errors is eliminated. The addressable nature of the Accumulator enables very
\ I high speed squaring and doubling. In addition, operations on data in the

Accumulator can use the general set of instructions relating to memory. For

3-14

II example, the "Store after Rounding" instruction can be used to round
quantities in the Accumulator by addressing location zero (the Accumu·

I' lator's assigned address). .
/""~

: The SAVE Register provided in the Floating-Point Processor is a flexible
/. high-speed storage register with configuration identical to that of the

Universal Accumulator. It is addressable as location one. The SAVE
Register allows the programmer to save the contents of the Accumulat~~
prior. to tQ.! execution of an arithmetic .. instruction. ' "'Wh;;;t'i~i';ffli~f'~~­
mation is ag'8Iil'requ*irea:·-rt"Ca·~-be"res·t~i7~·d'·"'to-the Accumulator by
directly addressing the SAVE Register, an operation which requires 250
nanoseconds, considerably less than core memory access. The data is
returned to the Accumulator automatically in the proper format for
the arithmetic operation to be performed; all standard 8400 data formats
may be accommodated.

3.2 .• 1 Arithmetic Characteristics

Operating modes and data formats

The Floating-Point Processor can operate in a variety of modes including
the following:

Floating-point, 32 and 56-bit
Fixed-point, 16 and 32-bit
Integer, 16-bit
Index, l6-bit
Boolean, 16, 8, 4, 2 or I-bit

The data formats for these operating modes are diagrammed in figure
3.2-1, shown relative to the memory data word format. Supplemental

\ j;:*S~~.~:;i.:;;~;:~~;.;;~::~~~;h~!~;a~~~sb:~;. (o!!~ ~~J-i~'s
$'I"\j \-c 1+1;(.· Floating-Point :?:2 6l·"+.S

Binary format: [23 bit + sign~Mantissa
(z bit + sign]Exponent

•. :l.~
~.()",\,." \ k:Q 2. +

Memory Storage: qne 32-bit location
q

~< i"t, 6.~U)"l·m.~
h 0 { \ill Ct.! I ~£J suJ)p'9

'* .
DecUnal Capacity: 8.3Sg x 106 max. Mantissa

1.280 x 102 max. Exponent

f' ()

-So
\D

:7'1 .,il

FLOATING POINT, 151 23 \51 7 -I
I

DOUBLE PRECISION
FLOATING POINT

151
I

23 7 I r 151

L ~S=I==========2=3====--=:J~==~~=j
INTEGER

r"'"'Sr-1 ---15----·1 - ---l T---~
r--w---

I

,-" ____ -..;1- - - - - -. ~---- _..J

Sl 15 I FIXED POINT
I

EXTENDED FIXED POINT lsi 15 lSi 15

I I
INDEX lsi 15 I

1 1

LOGICAL: I -16 BIT BYTE I -=]
I I

2 - 8 BIT BYTES I ____ -'- ___,,1

4 - 4 BIT BYTES

a "- 2 BIT BYTES

!6··· I BIT BYTES

INSTRUCTION

MEMORY ADDRESS

MEMORY DATA

BIT SCALE

I

I I [I I ! I]
I

III1IIIIIIIIIII1

_____ A_D_fJ R_ESS -----J*T~IT-' 'OPERATION , ---',
~_____________J

10 ,dill ____ '31 " 3./

I LEFT HALF I RIGHT .HALF Itln
J I

L I I I I I '71., I I I I 1 IlL I UJ...L.klI •• , I I I I I IJ3~
EAI 8400 WORD FORMATS

FIGURE 3.2.-1

Double Precision Floating Point

Binary Format: 46 bit + 2 sign Mantissa
7 bit + sign Exponent

Memory Storage: two 32-bit locations

Decimal Capacity: 7.056 x 1013 max Mantissa
1.280 x 102 max Exponent

Fixed Point

Binary Format: is-bit + sign

Memory Storage: one half-word location

Decimal Capacity: 3.277 x 104 max. magnitude

Extended Precision Fixed Point

Binary Format: 30-bit + 2 signs

Memory Storage: one 32-bit location

Decimal Capacity: 1.073 x 109 max. magnitude

Byte Modes

Binary Formats: 16, 8, 4, 2, 1 bits

3-15

Memory Storage: 1, 1/2, 1/4, 1/8, 1/16 of one half-word location

As can be seen, all data words are based on the 16/32 bit balanced-word
framework. This structure allows optimal hardware organization for rapid
execution of arithmetic-logical operations in the various word sizes and
conversions from one format to another.

Accumulator Configuration

As in all single address machines, arithmetic-logical operations are per­
formed on information in the Accumulator and operands from storage (core
memory, Rapid Access File, SAVE Register, the Accumulator itself).

The 8400 Universal Accumulator automatically forms the proper configuration
of its internal registers, to handle the four arithmetic data formats
involved in the operations to be performed, as follows:

16 B~ t Fixed-Point, Integer, Index, Logical C~nnectives and Shifts: A R~~?.\.-·.v::
~~ 32 Bit Extended Precision Fixed P01nt, Extended Shifts: .

A + AE Register

3-16

i<E-----A----~ 14---AE ---:>1

o 1 15 16 17 31

The AE Register is also used to hold 32 bit double length products
and dividends of 16 bit Fixed-Point multiply/divide computation.

32 Bit Floating-Point A + AF Regis ter

I~ A ~I(: AF ~,

S I <-MANTISSA I ~ I EXPONENT l
0 1 15,16 23,24 3

56 Bit Double Precision Floating-Point: A + AF + AD Register

I~------A------>I~(-----AF-----~~'
t

S MANTISSA (Most Significant Half) I E y Po t.\ iSl',,) "T'"
~ 1 151 16 23 24

I

S MANTISSA (Least Significant HalfY
I
I

I~~---------------AD-----------------~I

The AD Register is used to hold double precision products and dividends
of single precision floating-point multiply/divide computations.

'TIle SAVE Register has a matching arrangement which is similarly adaptable.
Other arithmetic registers are used to hold the operand and intermediate
results.

31

3-17

Arithmetic Execution Speed

Figure 3.2-2 summarizes execution times for selected operation under
several conditions. The significant feature is that Floating-Point
execution times are equivalent to the times for comparative Fixed-Point
operations. If the necessary scaling shifts are added to a typical
fixed-point instruction mix, the 8400's floating-point solution will be
faster. The differences in problem analysis and coding are, of course,
appreciable.

Arithmetic Status Flags

In the course of running typical programs, a number of comparison operations
and control steps are required. These include the ability to algebraically
compare operands with respect to other operands, or with respect to zero.
For example, the IF statement in algebraic compilers asks if an operand
is "equal to", "greater than", or "less than" zero. Coupled with comparison
operations are the actions desired as a function of the result. In the
8400 the Flag Register and its related Flag Test Transfer Instructions
provide these capabilities.

The Flag Register's Zero (Z), greater than (G) and less then (L) bits con­
tinuously reflect the result fil the-Accumulator at the end of each in­
struction execution. In the COMPARE instructions included in the 8406
Arithmetic repertoire, their flag bits indicate that the data word in the
Accumulator is equal to, greater than, or less than the referenced data
word in memory. Flag settings are the only result of COMPARE operations;
the ,Accumulator and Memory are unchanged. The Flag Test Transfer Instruc­
tions enable control transfer conditional upon arithmetic status through
Jump, Link, Halt, and Execute operations.

Arithmetic Fault Detection

Three arithmetic fau~t indicators are provided in the 8400.

1. Exponent Fault Interrupt· occurs whenever the exponent of a f1oating­
point number has become so large (positively or negatively) that the capacity
of the exponent (Bits 24-31 of A + AF) is exceeded and Exponent Overflow
or Underflow takes place. Because of the large range of exponents allowed
in floating-point, this type of fault is relatively rare.

2. Carry-Out Flag (C Bit) In Flag Register· indicates that a carry of
the most significant "magnitude" bit has occurred. Not truly a fault,
carry-out is useful for initiating multiple step precisions in fixed­
point operations.

3. Overflow Flag (V Bit) In Flag Regist~ "·'signals that the result of an
operation exceeded the capacity of the Accumulator in a positive or negative
sense. Illegal multiplication, division, and "integerization" also set the
V flag, which is cumulative and can be reset only by programmed Flag Test
instructions. Due to the nature of two's complement notation, such a
fault is sensed by the overflow logic whenever a carry of the most signifi­
cant "magnitude" bit occurs with NO carry-out of the sign bit .2!. a carry­
out of the sign bit with liQ carry from the first "magnitude" bit.

Type of
°2eration

Load/Store
Floating Add
FloatingCompare
Floating Mult.
Floating Div.
Double Float Add
Integer Add
Fixed Add
Fixed Multiply
Fixed Divide
Extended Fix Add
Test/Branch
Logical
Shift
No Ref --f:

ARITHMETIC SPEED CHART
(times in microseconds)

Memory Overlapped No Memory Overlap
Minimum Maximum Minimum Maximum

2.25 2.75 4.00 4,. OO-··~
3.50 4.00 4".00 4.00
4.00 4.50 4.50 4.50
6.25 7.50 6.75 QJ])
9.50 10.00 10.00 10.00
6.00 6.50 6.00 6.50
3.50 4.00 4.00 4.00
3.25 3.75 4.00 4.00
5.25 6.25 5.75 6.25
7.50 8.00 8.qO 8.00
4.00 4.50 4.50 4.50
1.75 2.25 2.00 2.25
3.25 3.75 4.00 4.00
2.00 2.50 2.00 2.50
na. na na na

COllIIlent
Notes

32 bit
32 bit
32 bit
32 bit
32 bit
56 bit
16 bit
16 bit
16 bit
16 bit
32 bit

Note 5
Note 6

(1) Use of Save Register or addressable accumulator will decrease times shown
for which all operand fetches are from core memory.

(2) Minimum times assume no address modification and minimum operation execution
time where applicable.

(3) Maximum times assume indexing and maximum operation times where applicable.

(4) For floating point operations add .25 u-sec for each pre-shift and normalize
post shift.

(5) For shifts add .25 u-sec for each place; however, with 8400 fast floating point
fixed point scaling is nearly eliminated.

(6) Inter-register transfers for arithmetic operations are not required with 8400
Universal Accumulator.

Figure 3.2.2

3-18

All arithmetic operations must produce a
1) R ~ -1 range or a fault is produced.
faul~s as Shown" in the following table,.

result which lies in the
The 8400 handles arithmetic

~ I) 0 I \
\...-1\. ~:"'... 1. ' . ," "1,, '., :~" \ (" "?{ ,

Machine Operation(s) Final State of
Causing Fault Action Taken Overflow Flag

All Fixed 'Point, Index Operation Completed SET
Arithmetic Instructions

Floating Point and Integer Operation is Completed; RESET
Clear & Subtract Result is corrected.
Add
Subtract
Multiply

Floating Point and Integer Operation is Completed;
Clear & Divide 1. Answer meaningless if SET
Divide Divisor (l... Dividend,

yielding R~2.
2. Result is corrected if RESET

2)R.? +1.

Floating Point Store Rounded Operation is completed; RESET
Result is corrected.

Integer Store and Store Operation is completed. SET
Rounded

3-19

3.2.2 Arithmetic Operations

\
\~ If

I

Processing speed in the 8400 is achieved by augmenting fast arithmetic
execution times with an extensive instruction repertoire, containing
singly powerful instructions that result in shorter programs. Over 80
arithmetic instructions are provided.

The a3ithmetic-!~~~ are readily learned and easily remembered
through the use of a coding scheme which employs lO_._~!I_sic operations and
6 class modifiers so that only 10 + 6 = 16 mnemonic symbols arerequ1red
for lO:Klr~60 instruction mnemonics. The coding scheme is indicated by
the table on the following page which shows all of the 8400 arithmetic
operations. Operations suffixed with a "U" indicate unnormalized
floating-point. There are 24 of these operations. Characteristics and
utilization of the six classes of operations are discussed below.

Floating Point

'j- Standard precision floating-point computations are the workhorse of the
1 8400. The word length and accumulator configuration are fundamentally
l designed to allow single memory access parallel floating-point capability.
LThe precision and range provided by the standard floating-point class

of operations is adequate for most problem variables.

In standard precision Floating-Point operations, a full 32-bit memory
word is transferred in parallel to the Accumulator where the computations
are performed by the A + AF circuitry. For loading double length dividends
and storing double precision products, the DCA or DeS and DST commands
may be used in conjunction with two full-word contiguous memory cells.
The AD register is also used in these operations.

Both normalized and unnormalized floating-point operations are provided
for all instructions except Store and Compare~

Aut~}!Ytt.!£~. scaling, implemented in floating-point operations by exponent
arrthmetic-·· .. an(r'~itormalization, is the prime advantage of normalized floating-
po in t. op er a tions • It. __ +e tt~.Ye~~_,*~~:~_.e!Q.&r.l!.~..:: _~~~~_~!,h~," ... ~,!~ .. :.~Q~.~':l~i n.? !-n~~
often com2licated task of scaling his problem to the limit~d range:"of a
COriijfUEer." ·--~floa-t~trrt·'·<'±n·stTt1c.t.iDn.,~-s'eil·e·f'~iT-operaUtrons~·'are"~'"
combined -- exponent equalization, the desired arithmetic operation,
corrective measures for overflow, and post normalization. This results
in the saving of processing time and storage.

While the majority of scientific applications use Normalized Floating-Point,
the unnormalized capability has important applications as well. For example,
this mode is used in the programming of multiple precision arithmetic opera­
tions. In such cases, the partial results are left unnormalized, and summarized
to produce the multiple precision results. These final results may be nor­
malized or still kept without normalization as the problem demands.

\' ,)

!
.~ t

Function

32 Bit Floating Point:
Subtract
Clear Subtract
Clear Add
Add
Compare

\/ MUltiply
Store

i Store Rounded
i \ Divide

Clear Divide

?) E
'))'7) -
~- I')

""i "

."',

J l- h;-i
Ie ,{:(

!' ;. "
(

',',',1) , j i ,1,/
'{t t ""'v

(.
1/-' j'l

EAI 8400 INSTRUCTION LIST

ARITHMETIC OPERATIONS

Mnemonic

FSB
FCS
FCA
FAD
FCP
FMP
FST
FSR
FDV
FCD

Function

16 Bit Fixed Point:
Subtract
Clear Subtract
Clear Add
Add
Compare
MUltiply
Store
Store Rounded
Divide
Clear Divide

3-20

56 Bit Double Floating Point: 32 Bit Extended Fixed Point:
Subtract
Clear Subtract
Clear Add
Add
Compare 1ft
Multiply f.~
Store
Store Rounded If
Divide If
Clear DividE: tF

16 Bit Integer:
Subtract
Clear Subtract
Clear Add
Add
Compare
MUltiply
Store
Store Rounded
Divide
Clear Divide

If Subroutine

DSB
DCS
DCA
DAD
DCP
DMP
DST
DSR
DDV
DCD

ISB
ICS
ICA
IAD
ICP
IMP
1ST
ISR
IDV
ICD

Subtract
Clear Subtract
Clear Add
Add
Compare If
MUltiply I}
Store
Store Rounded IF
Divide /,
Clear Divide If

16 Bit Index:
Subtract
Clear Subtract
Clear Add
Add
Compare
Multiply IF
Store
Store Rounded #
Divide 11
Clear Divide ii

SHIFTING, ROTATION AND NORMALIZATION OPERATIONS
Pl1bl-)"((...-f-;:--r?

Accumulator~

Arithmetic Shift
Logical Rotate
Normalize

ASH
ROT
NRM

J Extended Accumulator:
Arithmetic Shift
Logical Rotate
Normalize

Mnemonic

SB
CS
CA
AD
CP
MP
ST
SR
DV
CD

ESB
ECS
ECA
EAD
ECP
EMP
EST
ESR
EDV
ECD

XSB
XCS
XCA
XAD
XCP
XMP
XST
XSR
XDV
XCD

EASH
EROT
ENRM

3-21

Double Precision Floating Point

The double precision floating-paint instructions operate on operands
occupying two memory words, i.e., 64 bits. The word of lower address
contains the most significant 23 bits of the fraction with its sign and
the 7 bit exponent with its sign bit. The next higher memory address
stores the least significant 23 bits of the fraction plus sign, and a
7-bit plus sign exponent differing from the exponent of the most significant
half by 23. This two-word operand, when transferred into the Accumulator
by a double precision floating-point instruction, will have a 46 bit frac­
tion with duplicate signs and one exponent. The data word from the first
memory word is loaded in the A + AF portion of the Accumulator, and the
signed fraction from the higher memory location is transferred into AD.
The exponent of the least significant part of the operand is ignored.

~
During memory storage (DST) operations, the second exponent is generated

~
automatically and inserted into the low end of the second memory cell,

'

enabling the programmer to perform standard or double precision floating­
point operations on the same operand word with no extra formatting necessary.
It is also useful when mUltiple precision processing is required.

With the exception of word length and word format, these instructions are
defined identically with their equivalent in the standard precision floating­
point class, including the choice of normalized and unnormalized results.

Fixed Point

The 8400 standard precision fixed-point class of computations employ a l6-bit
half-word which is transferred in parallel from the Right or Left Half of
a memory cell to the A register in the Accumulator. For loading double
length (Extended Precision) dividends and storing Extended Precision products,
the EGA and EST commands may be used, addressing a full-word memory location.
The AE circuitry holds the least significant half of these numbers.

Because of the speed and efficiency of the~8400's floating-point circuitry,
fixed-point operations take on a relatively mihor significance. Standard
pre cis ion fixe d - poi n tis use d I!~~!.!!.!y.. __ t~,!: ... ,,~~.s!!~~~.2~",~.~,I.:t~h,~~..E.!.:'~,,"~~ .. ,,~,C:l1)~"~:,~~ ~~
wi th th:, __ ~~~ ... E1.~~L~P~!,tionS..L"f,Q.:r_,Eug~ ti£~.:.set}~!_~~. and for I!!n~~
p'.y.l a_~.!Qll, ... o.f .. £().1:l.~ t.an.ts .". ag~ (~,~,~~!~~.!!:~7-:~,".,~E-{l"lf>"'t;g:: .. ~~~~~~:=~:~~_:::.:~~~'"?~_~~ .. ~~~~".~.~~~""
before and after convers~on·,'",to·"'f·loat~ng-po~nt''e'·., -r

The storage efficiency of the 8400 for these l6-bit data has been described
in the Memory Section. The i11lIlle~i,~te oeer~n~, . .C?ptio? is especially suitable
for l6-bit fixed-point data since it miii'Clies 'exacFfy' the standard address
field format.

Extended Precision Fixed-Point

Full 32-bit memory words are transferred to the Arithmetic Section where
the computations are performed by the A + AF circuitry. This class of
operations serves the primary purpose of allowing computations of double
length operands generated by standard precision fixed-point multiply
computations.

3-22

Five of the ten Extended Precision instructions are performed by software
subroutines.

Integer Arithmetic

As part of the 8400's floating-point capability, a class of Integer (mixed­
mode) Arithmetic operations is provided. This unique set of commands
bridges the gap between the floating and fixed domains.

Integer operations involve two data types:

(a) 16 Bit Fixed-point notations carrying an implied binary
exponent of 15.

(b) Standard Precision Floating-Point notation with a 23 bit
+ sign fraction and 7 bit + sign exponent.

The integer set of arithmetic operations permits arithmetic operations on
operands in these two notations and facilitates converSion from one notation
to the other. When stored in memory, the Integer is a 16 bit half-word
number. vfuen operated on in the Accumulator, the Integer is in standard
precision Floating-Point format, and is handled by the A + AF register.
Conversion between these two notations is accomplished by high speed logic,
in combination with other arithmetic computations, aqd at no increase in
execution times.

Memory to Accumulator transfers of operands include automatic floating
conversion by appending O's in the eight least significant places of the
mantissa and setting the exponent to +1510 (+ 0178). This is followed
by performance of the indicated arithmetic computation in floating-point.

Store operations (1ST) start with an automatic "integerization" operation.
The floating-point contents of the A + AF portion of the Accumulator are
shifted until the exponent becomes +15 10 (+0178); then the most significant
16 bits of the mantissa are transferrea to the designated memory half-word
location. The contents of the Accumulator (A +AF) are returned to their
floating-point format prior to "integerization", and remain unchanged.

The floating-point computations performed in the Integer Class are identical
to those of the standard precision floating-point group. As in the latter
class, the option of normalized or unnormalized results can be selected
except for store (1ST or ISR) operations.

Integer operations may be used by the programmer for:

(a) Integer Arithmetic computations which may be done in
floating-point and converted back to integers upon completion.
The advantages of this technique are the vast gain in allowable
range of variables and the automatic scaling which normalized

3-23

floating-point embodies plus the double efficiency storage
characteristics of the 16-bit integers.

(b) Mixed-Mode arithmetic for solving scientific problems
having intermingled variables (in floating-point) and integer
constants. One particular advantage is the hardware manipulation
of FORTRAN Mixed-Mode statements with its attendant speed ad­
vantages.

Index Arithmetic

The Index class of arithmetic makes use of the 8400's seven index registers.
Index operations start with an automatic parallel transfer to the accumula­
tor of the 16-bit contents of the index register addressed by the X field
in the instruction. This number is then combined with the contents of
the addressed memory location (immediate operands may be used effectively
here to reduce execution time and memory usage). Any of the basic
arithmetic operations are performed in accordance with the specific
instruction executed. The result is then automatically transferred back
to the index register. These three steps are performed by the hardware
in response to a single Index Arithmetic instruction. The only exceptions
are the XCA and XCS operations which load index registers from memory, and
the XST and XSR which store the con'tents of index registers.

3.2.3 Logical Operations

As a companion to the 8400's comprehensive arithmetic operations, a com­
plete set of Boolean Connectives is provided. All sixteen boolean
connectives are provided. The Shift-Rotate -Normalize set of shift
operations are provided for maninulation of fixed point arithmetic or
IOflical data.

Boolean Connective

Logical operations may be performed on 16, 8, 4, 2 and 1 bit bytes be­
tween half-word memory locations and the Accumulator (A Register). The
operations provided are summarized on the table on the following page.

The result of a logical operation may be placed back in the memory byte
location, leaving the Accumulator unchanged, or may be put in the Accumu­
lator, leaving memory unchanged. In any case, only the specific byte
selected for the logical operation is altered.

The choices of connective, byte size and position, and memory or Accumulator
result, are made by one instruction. Immediate operands may be used with
the l6-bit byte size. All Boolean operations except "Byte Equality Test",
defined below, se~ the Z bit of the Flag Register if the result is all zeros.

3-24

EAI 8400 INSTRUCTION LIST

LOGICAL BYTE OPERATIONS 1,2

Function Mnemonic

Boolean Connectives - Results
Set (all ones in A)

to Accumulator:

Reset. (all zeros in A)
Memory High (load M)
Accumulator Low (complement A)
Memory Low (complement M)

Both High (AND)
Either High ,(OR)
Either Low (NAND)
Both Low (NOR)
Both Different (EXCL OR)
Both Same (EQUIV)

Complement Both High (AND a)
Complement Either High (OR a)
Complement Either Low (NAND A)
Complement Both Low (NOR a)

Byte Equality Test (setZ
flag if bytes identical

SAn
RAn

MHAn
ALAn
MLAn

BHAn
EHAn
ELAn
BLAn
BDAn
BSAn

CBHAn
CEHAn
CELAn
CBLAn

BEQTn

Note 1. n= 16,8,4,2, 1 bit byte size

Function

Boolean Connectives - Results
Set (all ones in M)
Reset (all zeros in M)
Accumulator High (store A)
Accumulator Low (complement
Memory Low (complement M)

Both High (AND)
Either High (OR)
Either Low (NAND)
Both Low (NOR)
Both Different (EXCL OR)
Both Same (EQUIV)

Mnemonic

to Memory:
SMn
RMn

AHMn
A)ALMn

MLMn

BHMn
EHMn
ELMn
BLMn
BDMn
BSMn

Complement Both High (AND a) CBHMn
Complement Either High (OR a) CEHMn
Complement Either Low (NAND a)CELMn
Complement Both Low (NOR a) CBLMn

Memory High (set Z flag if
byte in M is zero) MHMn

Note 2. ELAn for example requires that if either the A bits or M bits are low,
the result is put in the accumulator (the A bits are set) and the byte
in memory is left unchanged.

3-25

Among the logical operations provided are the following (See Instruction
List for complete set):

1. Set Memory or Accumulator bits (all one's in result)
Any l6-bit location or portion thereof can be set.

2. Reset Memory or Accumulator (all zero's in result)
Any l6-bit location or portion thereof can be zeroed.

3. Complement memory or Accumulator bits.
Any memory location may be complemented without affecting the Accumulator.

4. Byte Equality Test - Compare Memory and Accumulator and set Z-bit
in Flag Register if Equal. Memory and Accumulator unchanged.

5. Byte Zero Test - Test memory location of portion thereof for state
of bits and set Z bit in Flag Register if memory is zero. Accumulator
and memory unchanged.

Shift-Rotate-Normalize

Arithmetic Shifts (Bits 1-15 of A Register) and Extended Arithmetic Shifts
(Bits 1-15 and 17-31 of A + AE Register) are used in the Standard and Ex­
tended Precision Fixed-Point modes respectively to shift data bits without
affecting the sign bit(s). The 2's complement address field (M Field)
as modified by the contents of a specified index register (X), if any,
determines the number of shift places. This quantity can be + for shifts
to right or - for shifts to lefto· If a left shift causes OVerflow, the
V bit of the Flag Register will be set. When shifting left, O's are entered
to the right of the word.

Logical Rotate and Extended Logical Rotate (A + AE) Register) shift the
entire word, rotating about on itself. The sign bites) are acted on as
information bits. Bits shifted out of either end are brought around and
entered in the just vacated places on the other end. Because no information
can be lost, the OVerflow Flag (V) is not involved in the process. The
number of places rotated is determined exactly like the Arithmetic Shift
operations.

Normalize and Extended Normalize are always left arithmetic shifts until
Bit I of A differs from Bit O. These instructions are used in arithmetic
scaling operations to remove all leading zeros. The specified index register
(X) tabulates the shift count required and may be saved as a scale factor.

4-1

4.0 INSTRUCTION REPERTOIRE

Fundamental to the speed and flexibility of the EAI 8400 is its powerful
instruction repertoire •. The repertoire has over 750 commands - in contrast
with the 100+ commands of most machines in the same price range. The
basic instructions provided may be classified as follows:

A. Arithmetic Instructions
1. Floating Point
2. Double Floating Point
3. Fixed Point
4. Extended Fixed Point
5. Integer Arithmetic
6. Index Arithmetic

B. Logical Instructions
1. Rotate - Shift - Normalize
2. Boolean Connectives

C. Transfer and Control Instructions
1. Index Jump Transfers
2. Flag Test Transfers
3. EXEC Bit Control
4. Special Register Transfers
5. Status/Function Line Control

D. Exchange Instructions
1. I/O Register Transfers
2. Automatic Channel Control

Table 4-1, at the end of this section, is a guide to the programming of
the 8400 and includes the full instruction list with mnemonic and binary
coding, and equation descriptions for each of the operations that can be
performed.

4.1 PROGRAMMING EASE AND POWER

& J: The repertoire is unusually comprehensive yet readily understood and re-
\ ~l ,~membered. Instruction codes are classified into basic mnemonic group codes,
V\: ,I.T ·, with prefixes and suffixes to pinpoint the specific operation desired. The

'~' programmer need remember only a fraction of the mnemonic codes usually
associated with a machine of this instruction power.

4.1.1 Arithmetic Instructions

Using the Arithmetic Class as an example, by remembering the basic add
operation mnemonic, "AD", the programmer can describe all the add operations
by prefixing:

FAD Single-Precision Floating-Point Add

~ Double-Precision Floating-Point Add

4-2

LAD Mixed Mode and Integer Add

AD Fixed-Point Add

EAD Extended Fixed-Point Add

XAD Index Register Add

Then special modifiers are used to indicate indirect (*) and "immediate lt

(=) addressing, and saving of accumulator contents ($). For example,
$FAD* specifies, "save accumulator contents, then perform a floating-point
add using an indirect address". The modifiers ap?licable to Arithmetic
Instructions are summarized below:

ADDRESS MODIFIERS

OPN* M Indirect Address

OPN M,X Index with Register X

OPN Mt 16 bit left half address

OPN 1M 16 bit right half address

OPN =M Immediate address

OPERATION MODIFIERS

$OPN M Save A prior to execution

OPNU M Unnormalized Floating Point

4.1.2 Logical Instructions

The Logical connective mnemonic codes are descriptive of the logical
manipulation performed. The mnemonic code describes, for a given bit
position in both operands, the condition that causes a I bit to be
placed in the result. For example, BRA is interpreted as follows:
"For a given bit position, if the bits in memory and the Accumulator
are ~oth lligh, put a 1 bit in the corresponding position in the Accumulator."
This is the logical AND operation. The size of byte in a logical operation
is appended to the mnemonic and the position of the byte is shown in the
variable field. For example, BHA8 M,3,1 means "perform a logical AND
between the 8-bit byte position I of the Accumulator and the corresponding
bits in memory location determined by 'M', modified by the contents of
index register 3." The results of the AND will appear in the accumulator.
The instruction BHM8 M,3,l designates the same AND operation, but causes
the results to appear in the memory location. All of the Boolean Connec­
tive operations are included in the repertoire.

4-3

4.1.3 Flag Transfer Instructions

Test-conditional operations are based on the status of bits in a l6-bit
flag register. The flag bits are set by the programmer or automatically
as a result of internal conditions. For instance. the Zero, Greater than
zero, and Less than zero flags are set or reset automatically after the
execution of arithmetic instructions.*

" J~ " / "- 'If
,(

I
"

Z G L V C' B E 1 2 3 4 5 6 7 8
'.

! 1 ~ ~

t .
() Unconditional C - Arithmetic Carry

Z Accumulator zero B - Data Channel Busy

G Greater than zero E - Interrupt Mode Enabled

L Less than zero 1-8 - Programmer flags

V Arithmetic Overflow

Nine basic instructions are provided:

HJf Halt, then Jump if flag f set

EXf Execute instruction at specified location if flag f set

Lf Link to subroutine if flag f set

LRf Link to subroutine, Reset flag

Jf Jump if flag f set

JRf Jump, reset flag

JSf Jump, set flag

JTf Jump, trigger flag

The "fn following the basic mnemonic codes indicates anyone of the sixteen
flag conditions. For example, HJZ designates a Ralt ~ump if Zero operation.
By prefixing the flag condition mnemonic with the letter N the complement
state of the flag can be used. Thus, HJNZ designates a Halt Jump if ~ot
Zero.

In the Link and Jump instructions the link and jump operations are conditional
on the status of the flag tested; but the setting, resetting or triggering
(complementing) of the flag is unconditional.

* for details see Table 4-1.

4-4

4.1.4 Index Jump Transfers

~he Index Jump Test instructions increments or decrements a specified
Index Register then performs a conditional jump depending on the sign
of the count modifier and the sign of the resultant in the Index
Register.

This capability allows fast list processing. table searching, and Function
Generation by allowing manipulation in both directions - up and down a
table.

4.1.5 A~2~mbly and Machine Lang~age Programming

Table 4-1 is a twenty page guide to assembly or machine language programming
with the 8400 repertoire. The Instruction format, addressing modes, opera­
tion modifiers and notation conventions are sununarized pri-or to a listing
of all of the 6400 instructions with their respective binary and mnemonic
codes and operational descriptions.

TIle Exchange instructions included in the table are discussed in more
detail in Section S, which describes the Exchange Module and its operation.

TABLE 4-1

SUMMARY OF INSTRUCTIONS WITH MNEMONIC
AND BINARY CODING

This summary is intended for use as a programmer reference to the
8400 Instruction repertoire.

TABLE INDEX

A. Instruction Format & Notation

B. Arithmetic Instructions
1. Floating point
2. Double floating point
3. Extended fixed point
4. Fixed point
5. Integer arithmetic
6. Index arithmetic

c. Logical Instructions
1. Boolean connectives
2. Rotate-shift-normalize

D. Transfer and Control Instructions
1. Index jump transfers
2. Rapid access file control
3. Flag Test transfers
4. Exec bit control
5. Load/store processor registers

E. Exc~ange Instruction~

1. Status/function line controls
2. Load/store addressable I/O buss
3. Load/store data channel
4. Automatic channel control

Instruction Format

I-IV

V
VI
VII
VIII
IX
X

XI
XIII

XIV
XIV
XV
XVI
XVII

XVIII
XIX
XIX
XX

The 32-bit instructions [or the 8400 are defined by an OPERATION and an
ADDRESS. Using a mnemonic for the OPt':RATION, instructions are expressed
symbolically as follows:

OPN M

where H speci fied an addressab le loca t ion 'vi thin the computer, such as a
word in core memory, rapid access file, accumulator, or the save register.

The 3400 employs a basic set of operations, plus a set of modifiers that
can alter the operations in various ways. Similarly, the address portion
of an instruction can be modified in several ways, at the option of the
programmer.

ADDRESS MODIFIERS

I Modifle-;'-r' -·'----N;~e .- --.. "-'" -. i-'-'F;;~at ··- .. · .. ····-r--··--_· .. · -...... Re~~~k;-···-·-···-··-·-· .. ··
i -~-t-:---- .. -.-.-.-.-.--.J-----.. --.---.~--.--.- .. -.... -----... -.---.. -.. -.--.-- -..'

I
i * Indirect Address I OPN* M I The address for the given instruction
. . is taken from the address portion of

----,
J

I I the 32-bit word at location M. Multi-
, 1 pIe indirect addressing is possible. All
I i instructions may use an indirect ad-

r-----·-l··-··---··---····· .. ----.. ··· ·-·--·-·-··--- ·····i-··_····--· -.. -.-.' ,·w__ dr.~ss.~. "- ... -.. -'" ... _-._-.
X Address Modification i OPN M, X The effective address is obtained by

adding the contents of the specified

I

=

I
I index register, X, to the address, M.

That is, M + C(X)--.. M. All instruc-
! i tions except the Index Register Class I ! can have address modification. Index-
I I ing precedes indirect addressing at
i -. . .. --.--.-..... ----.--..... ~ .. -.---.. -.-. ... every}e~el.i! .. ?0tJ:l.~.~~pe~if~~d~.

Halfword Address ! OPN MI The operand for 16-bit operations
i OPN 1M comes from the left half of M by using

M/ and the right half of M by using /M.
The slash (/) has no effect on indexing
or indirect addressing. A 16-bit oper- '
ation written OPN M is interpreted by

I .' i the assembler as OPN M/. \----_. __ _-_ ... _ _ ... --..----------+--_ ... _ _. ---.-...... _.----_ ---_ __ .. _.... -.. -'-...... --.--
; Immediate Address ' OPN =M ! The operand for this instruction is
I taken=frOiiithe add~~ss,f~eld. of the in-
: struction itself. The immediate ad­

dress may nof'be used with /. The
immediate address is applicable to all
16-bit operations except Store and Store
After Rounding .

. J ___ .

RE~KS: The various legal combinations of the address modifiers are illustrated below:

OPNM/
OPN/M
OPN M/,X
OPN /M,X

f.Y'\.

OPN* M/
OPN*/M
OPN* M/,X
OPN* /M,X
OPN=M
OPN =M,X
OPN* =M,X

cpf'*'~ M

II

OPERATION MODIFIERS

r---.--r------------------,----.------
Modifier Name Format

$OPNM

Remarks

The contents of the Accumulator are
saved prior to the execution of the in­
struction. The Save modifier may be ;
used with arithmetic and shift instruc- I
&u. :

t------1----------t------~I--------- ----------t
U Unnormalized OPNUM Floating point operations are usually I

normalized automatically at the com- :
pletion of the operation. The U modi- I'

fier inhibits the automatic normaliza- .
tion. This modifier may be used with I
all floating point operations (but has no I

~----1-___ ----~------~~-~~~:~.~~e,~~:rei'
N Operate When --- The N Modifier inserted into flag in-

Not Set structions causes the operation to oc-
_____ ~'__ _______ ~ ______ _'__ __ cu_r _!hen the specif~~~~ag is not~~~ 1

FLAG

The Processor contains a 16-bit flag register (F).Eight bits (flags) of this register are activated
by the internal status of the computer, and the remaining flags can be controlled by the pro­
grammer. The 16 flags are the following:

FLAG

()
Z
G
L
-e-~
...:Ji'(J
B~

E
1 - 8

DEFINITION

Unconditional (Always High)
Accumulator Equal to Zero
Accumulator Greater than Zero
Accumulator Less than Zero
Carry-out is Generated
Overflow Occurred (Cumulative)
Busy Signal
Interrupt Enable
Program Flags 1 - 8

The arithmetic flags except V are reset and updated following the execution of every instruction,
or may be set by the programmer. The Test-Conditional operations are based on the status of
the Flag Register bits. The V bit is cumulative and must be reset by programmed testing.

m

R(i:j)

m

A

A, AE,AF,AD

$

RF

F

L

T

M

E

C

M

I

K

B

n

NOTATION

bits i through j of register R. (Register referenced is clear from the con­
text of its use or is explicitly stated.)

effective memory address ~." : '

replaces

the Universal Accumulator r ..
(\, : (

the registers that make up the Accumulator

Save register (which saves Accumulator registers A, AE, AF, AD)

Rapid Access File memory cells

Flag register

Location counter

Real-Time clock register

Internal Interrupt .Mask

External Interrupt Mask register

Console register, or count field used with index-jump instructions

a symbol used to indicate the numerical address of a memory word

Instruction Register

a symbol used to indicate a data channel number

a symbol used to indicate Bank number, Bus number, or Byte position

a symbol used to indicate byte size

IV

v
//

/.../'

f/
,,/

/.. •• >

l/'

v

/./

v

v- I-'

V V
,>

(j

FLOATING·POINT INSTRUCTIONS

Format: OPN M, X

Mnemonic
OPN Code

16 17
I * I X

Binary I
OP Code Title I Options

19 20 23 24 25 26 27 28 31
101110101ulolol$1 OP I

Flags Operation
!

I __ :_:_:_'~~<::' "~~~ ~~~ I:: ::-:--+-_.;.-~:_-:_-:~:~:_:--++-;-:-._:~:_A_:_-"F~~:_-:_-_::_:_-_~-_--~
Subtract

FCS 0001 Floating Clear *, $, U Z,G,L -m----- A:AF
and Subtract

I-------+--------!~-----_+__.--.--.--. ~---.---. -,---------------1
FMP 0101 *, $, U Z, G, L A:AF x m ---..A:AF:AD Floating

Multiply
I---~,--................ ----...--.-~~---+-----+-----+---------~

Floating
Divide I

', Z,G,L, V A:AF:AD +m
Quotient ... A:AF
Remainder --- AD

FDV 1000 *, $, U

~-------4-------~~----------+-------~------_+--.-I *, $, U ! z, G, L, V FCD 1001

FCP 0100

Floating Clear
and Divide

Floating
Compare

i

*, $, ·'Tz, G, L
. I

First clear --+ AD
then Perform FDV

G set for A:AF > m
Z set for A:AF = m
L set for A:AF <m

I A:AF unchanged t-------+-----t----,,-......--....,..,.----+-----;.-----...;;..-------!
FST 0110

I ..
FSR 0111

I
I ,

Floating
Store

*, $

V

A:AF-"m

A:AF (rounded)~ m
A:AF unchanged

~
,~,

'" ~~¥
">"1

:\ C~~

DOUBLE PRECISION FLOATING-POINT INSTRUCTIONS

\
-.",\
\\

~,,,<,:' Format: OPN M,X
-.,)

't~''''

~) ,.;
~C4
"

"-
Mnemonic Binary
OPNCode OP Code

V DAD 0011

t,- DCA 0010

[,,,- DSB 0000

L/ DCS 0001

'1 DMP 0101

v/ DDV 1000

t,/
DCD 1001

"'- DCP 0100

v"'- DST 0110

IV'
DSR 0111

I
I
I

VI

16 17
1* I X

Title Options

Double Float- *, $, U
ing Add

Double Floating *, $, U
Clear and Add

Double Float- *,$, U
ing Subtract

Double Float.:. *,$, U
ing Clear and
Subtract

Double Float- *, $, U
ing Multiply

Double Float- *, $, U
ing Divide

Double Float- *,$, U
ing C lear and
Divide

Double Float- *, $
ing Compare

Double Float- *, $
ing Store

Double Float- *,$, U
ing Stor e and
Rounding

VI

19 20 23 24 25 26 27 28 31
I 0 11 10 1 0 lull 10 I $1 OP I

Flags

Z,G,L,C

Z,G,L

Z,G,L,C

Z,G,L

Operation

A:AF:AD + m:m+1
~A:AF:AD

m:m+1--+A:AF:AD

A:AF:AD - m:m+1
~A:AF:AD

-m:m+1--+A:AF:AD

Compat Subroutine Oper - ~~
ation

Compat Subroutine Oper - -~::,~

ation

Compat Subroutine Oper - .-'" ~
ation

Compat Subroutine Oper- ... "
ation

-A:AF:AD-+m:m+1

Compat Subroutine Oper- 1 ... ,,_''''

ation ..-'

v

V

"'" \/

V

~~
\{;::. _ .. (:},

v

1//

v"

L/

v

v
.,'

/

32 BIT EXTENDED FIXED POINT ARITHEMTIC

Format: OPN M, X

16 17 19 20 23 24 26 27 28 31
I * I X I 0 I 1 I 1 I 1 I 0 1111 I $1 OP

Mnemonic Binary
OPN Code OP Code Title Options Flags Operation

EAD 0011 Extended Add *, $ Z,G,L,V, A:AE + m---...A:AE
C

ECA 0010 Extended Clear *,$ Z,G,L m---...A:AE
and Add

ESB 0000 Extended Sub- *,$ Z,G,L,V, A:AE-m--.A:AE
tract C

ECS 0001 Extended C lear I *, $ Z,G,L,V -m---"'A:AE
and Subtract

EMP 0101 Extended Mul- *, $. Compat Subroutine
,~,~~ tiply Execution

EDV 1000 Extended Di- *, $ Compat Subroutine .",,~,

vide Execution
~.

ECD 1001 Extended Clear *, $ Compat Subroutine ." :.
and Divide Execution

ECP 0100 Extended Com- *, $ Compat Subroutine ' ".'.

pare Execution

EST 0110 Extended Store *, $ A:AE---+m

ESR 0111 Extended Store *, $ Compat Subroutine
and Rounding Execution "'~:,.,,'

VII

v

v

FIXED POINT ARITHMETIC

"'",J ,-.y
/ ,~

~ Format: OPN M/,X
I

~
'Y;;;

~

V

1/

f,'"

l ..

v

v

V

V

Mnemonic Binary
OPN Code OP Code Title

AD 0011 Add

CA I, 1- 0010 Clear and Add

SB I 0000 Subtract

CS 0001 Clear and Sub-
tract

MP"" 0101 Multiply

DV 1000 Divide

CD 1001 Clear and Di-
vide

CP~ 0100 Compare

ST ,-' 0110 Store

SR 0111 Store After
Rounding

W = 00 is immediate operand
01 is left-half memory word
lOis right-half memory word
11 is illegal

r i
19 120 123 24 25126: 27 28 (2'1 30 31 16 17

10 11 11 t 1 11 I . f I~ $ I" ,i?P,\ \ I I *1 X

Options Flags Operation

*,/,=,$ Z,G,L,V, A+m--+A
C

*, I, =, $ Z,G,L m--..A

*, I, =, $ Z,G,L,V, A - m--+A
C

*,1,=,$ Z,G,L,V, - m--"A
C

*, I, =, $ Z,G,L,V Ax m--+A:AE

. *, I, =, $ Z,G,L,V A:AE-:-m
Quotient --+ A
Remainder --+AE

*, I, =, $ Z,G,L,V Clear AE Then Perform
DV

*, I, =, $ Z,G,L G set for A >m
Z set for A = m
L set for A <m
A unchanged

*, /, $ A---+m

*, /, $ V,C A (rounded) --+ m A
A Unchanged

NOTE: 16 hit operations assume a left-half memory word unless modified by I.

vm

v

v

v

" --~

INTEGER ARITHMETIC INSTRUCTIONS

~ Format: OPN M ,X

~
~ "' ...

\or

vi
y'"

:--\

y

V

V

V

11'/

Mnemonic
OPN Code

lAD --
ICA

ISB

ICS

IMP

mv

ICD

ICP

1ST

') n
-'-, c t, ' 0 u ,,' .

Binary
OP Code Title

0011 Integer Add

0010 Integer Clear
and Add

0000 Integer Sub-
tract

0001 Integer Clear
and Subtract

0101 Integer Mul-
tiply

1000 Integer Di-
vide

1001 Integer Clear
and Divide

0100 Integer Com-
pare

0110 Integer Store

16 17 19 20 23 24 25 26 27 28 31
1* I I X I 0 11 I 0 I 1 I U I w 1$ I OP

Options Flags Operation

*,/,U,=,$ Z,G,L,C A:AF + mf -+A:AF

*, /, u, =, $ Z,G,L mf---A:AF

.*,/, U, =, $ Z,G,L,C A:AF - mf-+A:AF

*,/,U,=,$ Z,G,L ' -mf --+A:AF
;

*, /, u, =, $ Z,G,L A:AF x mf-+A:AF:AD

*, /, u, =, $ Z,G,L,V I A:AF:AD+mf
I Quotient --+A:AF
I

Remainder---" AD

*, /, =, $ Z,G,L,V Clear AD
then Perform IDV

*,/, =, $ Z,G,L G ,set for A:AF > mf
Z set for A:AF = mf
L set for A:AF <mf
c(AAF) Unchanged

*, /, $ V A:AF--+mi
A:AF Unchanged

~'\ .. W = 00 is immediate operand 1 01 is left-half memory word
~~\ 10 is right-half memory word
\J 11 is illegal

~.
mf =16-bit memory operand "floated" as it enters the arithmetic section. It is converted to a

floating-point format by attaching an exponent of +15.

mi =16-bit memory operand "integerized" as it leaves the arithmetic section on the way to
memory. It is converted from a floating-point format to integer by shifting A:AF until the
exponent is +15.

IX

'- \.
~ q,

',~, ~ ..

-~ ,...

~
c--' ~ s::;

~ .,."-~

• /"0

v r/'

v' 1/'

v' tf"

l//

L/
/

t,/

i,"

V 1./

V ,",'

Il'

INDEX REGISTER INSTRUCTIONS

Format: OPN M ,X

16 17 1(9) 19 20 , 23 24 25 '26. 2'1""28 1.1{ '\LJ 31
I *1 xl 011.11 1'1 10 I w 1$1, OP

X = 1,2, .•• 7
Remarks: X specifies wbich index register is modified. Instruction is non-indexable.

Mnemonic
I Binary

OPN Code OP Code Title

XAD 0011 Index Add

XCA- 0010 Index Clear
(

I" "-
and Add . -'

I

XSB 0000 Index Sub-
tract

XCS 0001 Index Clear
and Subtract

XMP 0101 Index Multi-
ply

XDV 1000 Index Divide

XeD 1001 Index Clear
and Divide

XCP 0100 Index Com-
pare

XST 0110 Index Store

XSR .0111 Index Store
After Round-
ing

W = 00 is immediate operand
01 is left half memory word
10 is right half memory word
11 is illegal

Options Flags Operation

*,/, =, $ Z,G,L~V, X+m'-'X
C

*,/,= $ Z,G,L m.-.X

*,/, =, $ Z,G,L,V, X-m~X
C

*,/, =, $ Z,G,L,V -m-"X

I *,/,=,$ Compat Subroutine
Execution

*, /, =, $ Compat Subroutine
Execution

*, /, =, $ Compat Subroutine
. Execution

*,/,=,$ Gset for X >m
I Z set for X =. m I

L set for X <m
X Unchanged

*, /, $ X-+m

*, /, $ Compat Subroutine
Execution

X

"-

~:,d'
" .. ,.".

/1
-~"_J

.A
" .. I

.,.. .. -r: --, ..

BOOLEAN CONNECTIVE INSTRUCTIONS

I Format: OPNn, ,X, B Options: *, I, =, n, B

Mnemonic Code: If mnemonic ends in "A", the result is put in the Accumulator.
the unselected bits of the Accumulator are unchanged.

Memory and

If mnemonic ends in "M", the result is put in Memory. The Accumulator
and the unselected bits of the Memory are unchanged.

Remarks: n = 1, 2, 4, 8, or (blank) to specify byte size.

Flags: Z

A Register

MI Bits

B = 0, 1, ••• , 15 to specify byte position (See Table).
"=" = an immediate address; this option applicable only when instruction does not

end in M, and a 16 bit byte is speCified.

The mnemonic code describes, for each bit position of the operands, the con­
dition under which bits will be set in the result. If the condition is not met, the
bits are reset. For example, BHA is interpreted as follows: For a given bit
position, if the corresponding bits in Memory and the Accumulator are Both
High, set the corresponding bit in the Accumulator. If the condition is not met,
reset the corresponding bit in the Accumulator.

All Boolean operations, except BEQT, set the Z flag when the result of the opera­
tion produces all zeros. BEQT operation sets the Z flag when accumulator and
memory bytes are identical.

n-B Mapping for Byte Size and Byte Position

1M Bits

n-Byte Size

10 11 12 13 14 15 16 17 18 19 110111112113114115 I
10 11 12 13 14 15 i 6 \7 \8 19 i 10111112113114115 I
11611711811912012112212312412512-6127128129/30131 I

- i
1 ' t I . " I ' I

n=1

n=2

n=4

n=8

n = 16

10 112131415167 18-19110\11112113114115 I
1 0 1 1 121314 '15 i 6 17 1

1 0 f 1 1 2 I 3 I
I 0 I 1 \

I 0 1

B-Byte Position

XI

v
v

v
v

V
v~

v
v
v
V'

v"

1,.--.

v
V

V-

v
v
V"

V
v

v
V

v
v
V'
V

1/ ., v
v
V

v
~

BOOLEAN CONNECTIVE INSTRUCTIONS

19 20 21 22 25 2627 31
x 111 MI OP CODE ILIBI BYTE

Mnemonic Binary I
OPNCode OP Code <"'''l,l Operation

C·
RA 0000 Reset '~)'bitS
RM bits

BLA {A bits
BLM 0001 Where both low J set M bits

CBHA 0010 Complement A bits, then if both high, set {~~;~~ CBHM

ALA 0011 W!tecre A bits 10:", set {~~~~'(COmplement Accumulator)
ALM

CBLA 0100 Complement A bits, then if both low, set ~ ~i~~ CBLM

MLA 0101 ' {A bits
MLM Where M bIts low, set M bits (Complement Memory)

BDA 0110 ' {A bits
BDM Where both different, set M bits

ELA , {A bits
ELM 0111 Where eIther low, set M bits

BHA 1000 ' ~ bits
BHM Where both hIgh set M bits

BSA {A bits
BSM 1001 Where both same, set M bits

f--.. _ .. _._-

MHA
MHM 1010 Wh M b't h' h t {t bits (Load,Memory bits into Accumulator) . ere I s Ig se . '. ,M bIts (Zero Memory Test)

CEHA
Complement A bits, then if either high, set {t ~i~~ CEHM 1011

BEQT Byte equality test @bit in Flag Register s.et if equal)
AHM 1100 Where A. bits high, set M bits (Store Accumulator bits in Memory)

CELA 1101 Complement A bits, then if either low, set {~ ~;~~ CELM

EHA 1110 Wh 'th h' h t {A bits
EHM ~re el er Ig, se M bits

SA
SM 1111 St{Abits

e M bits

M (1(21)) = 1 = Result to Memo~y B L equivalent to NOR
EH equivalent to OR M (1(21») = 0 = Result to Accumulator

L = 1(26) = 1 = Left Half .
R = 1(26) = 0 = Right Half .
B = 1(27 -31) = 0 = Immediate operand in "M" Field
BH equivalent to AND

E L equivalent to NAND
BS equivalent to EQUIVALENCE :::: Y~rJ ~
BD equivalent to EXCLUSIVE OR
C equivalent to COMPLEMENT

For A bits 1100 and M bits 1010, Binary Op Code shows resultant bit pattern.

xn

v

~l
yt
~

~

V \ .. /

I' v

ROTATE SHIFT NORMALIZE INSTRUCTIONS

1920 23 24 25 26 27 31
I * I X IOI11110INIEllIA~

Mnemonic
OPN Code Title Options

ROT±M,X Logical Rotate

ASH±M,X Arithmetic Shift

NRM,X Normalize

EROT±M,X Extended Logical
Rotate

EASH±M,X Extended Arithmetic
Shift

ENRM,X Extended Normalize

* = Indirect Address
X = Index Register
E = Shift Double Operand 1(25) = 1
L = Perform Logical Shift 1(26) = 1
A = Perform Arithmetic Shift 1(26) = 0
N = Shift until normalized
,I (~) = 1 = >Shift left
1 (0) = 0 = >Shift right

*

*

*

*

*

*

Flags Operation

Rotate A by m (modulo 32)·· /., I
places + rotates to right

- rotates to left

Z,G,L,V Shift A (1 :15) by t.n (modulo 32)
Left Only places + shifts to right

- shifts to left
A (0) Unchanged

Z,G,L Normalize A by left shifting un-
til A (0) 1= A(1)
The number of shifts X
A(O) Unchanged

Rotate A:AE by m (modulo 32)
places + rotates to right

- rotates to left

Z,G,L,V Shift A(1:15):AE(l:15)
Left Only m (modulo 32) places

+ shifts to right
- shifts to left

Normalize A: AE by left shifting
until A(O) 1= A(1) \.
Number of shifts . X

xm

I.
I [~'It ("T'

v v

INDEX JUMP INSTRUCTIONS

l'
~ I ,

16 17 19 20 21 31

I * I x 10 .. (MIT I ±I
----" -... ~ ~" .. ~

Mnemonic Binary
OPNCode OP Code Title Options Flags Operation

XJ M,X,±C 010 Index Jump * Z,G,L First X ± C --+ X then Jump to m

XJT M,X,±C 011 Indexed. Jump * Z,G,L First X ± C --+ X then Jump to m if:
Test +C specified and X < 0

,:"C specified and X > 0

NOTE: C is in 2's complement if negative.

-----------------.----------------------------~---

RAPID ACCESS FILE INSTRUCTIONS

Format: OPN M, X, N
1617
r*T X

LIs
Mnemonic Field
OPN Code Code Title Options

LDRF 1 Load Rapid Access File *,N
STRF 0 ·Store Rapid Access File *, N

N = Location in Rapid Access File = 0, 1, 2, ••• , 15
34 bit word transfer
32 data bits plus 2 exec bits
1(27) = 1 = Load
1(27) = 0 = Store

XIV

1920 23 24 25 27 28
I 0 I 0 I 0 I 1 I 1 11 I 0 IL/sl

Flags Operation

m"-'n

n--+m

31
LS

V

vi

\j

If
V

1I
'.!

vi
" "\

TEST-CONDITIONAL INSTRUCTIONS

Format: OPNf, M, X

Options: *, N, f

Example: HJZ M,X
HJNZ M,X

Mnemonic Binary
OPN Code OP Code

HJ(N)f 000-

EX (N)f 001

L(N)f 010

LR(N)f 011

JT(N)f 100

JS(N)f 101

JR(N)f 110

J(N)f 111

* = Indirect Address

16 17 19 20 23 24 >\ t{, 27 28 29 31
1 *1 X I 0 I 0 I 0 I 0 I FL I N I OP

Title Operation

Halt Halt if flag f is (not) set, then jump to M on
external signal or interrupt.

Execute Execute instruction at M if flag f is (not) set.
Location counter unchanged.

Link If flag f is (not) set, then store location
counter at m/ and take next instruction from
m+1.

Link and Reset Same as L(N)f, but flag f is unconditionally·
reset.

Jump and Trigger Jump to M if flag f is (not) set and uncondi-
tionally trigger flag.

Jump and Set Jump to M if flag f is (not) set and uncondi-
tionally set flag.

Jump and Reset Jump to M if flag f is (not) set and uncondi-
tionally reset flag.

Jump Jump to M if flag f is \no.~) set.

N = (1(28» = 1 = Operation to occur when selected flag (f) is not set.
N = (1(28» = 0 = Operation to occur when selected flag (f) is set.
f = FLAG =(), Z, G, L, V, C, B, ~, 1 - 8.

XV

r~
.~ '~"~

"li..J
:'""
~
~

~ . ~
1/'

''\."
V\!'

':':'~~l

J

Format: OPN M ',X

Options: *, I, M

Mnemonic Binary
OPN Code OP Code

SEX SiR = 1

REX SiR = 0

TEX T = 1

* = Indirect Address
X = Index Register
W = 00 - Illegal

01 = Left half word
10 = Right half word
11 = Illegal

EXEC BIT CONTROL INSTRUCTIONS

16 17 19 20 23 24 25 26 27 28 29 31
j *1 X I 0 i 0 I 0 j 1 I 1 I W ISiBI T I 1 I 1 I 1

Title Flags Operation

Set EXEC EXEC bit at location m(MI or 1M) is set.

Reset EXEC EXEC bit at location m(MI or 1M) is reset

Test EXEC Z EXEC bit at location m(MI or 1M) is tested.
Z flag set (=1) when EXEC bit is high (=1).
Z flag reset (=0) when EXEC bit is low (=0).

XVI

~:~21
..j

'~\".l

~\
~

\ \:,
"/\ ..

v

..... Q

(/

V

V

V

V

I
V
v
v

v

'v

V

J

LOAD/STORE PROCESSOR REGISTER INSTRUCTIONS

Format: OPN M ,X

AC
Mnemonic Field
OPN Code Code

LDAE 000
1---

STAE

LDF 001

STF

LDL 010

STL

LDT 011

STT

LDM 100

: STM

LDE 101

STE

LDC 110

STC

W = 00 = Immediate (=)
01 = Left Half (M/)
10 = Right Half (1M)
11 = Illegal

L/S = 1 = Load
o = Store

16 17 19 20 23 24 25 26 27 28 29 31
I *1 X I 0 I 0 I 0 I 1 I 1 I w IGsl 0 I AC I

"-

Title Options Flags Operation

Load AE *,/, = m ---- AE

Store AE *, / AE ---.m

Load Flag *, /, = m ---- F
Register

Store Flag *,/ F ----m
Register

Load Loca- *, /, = m --.L
tion Counter

Store Loca- *,/ L~m

tion Counter

Load Timer *, /, = m ----T

Store Timer *, / T ----m

Load Inter- *, /, = m ___.M
rupt Mask

Store Inter- * I ,!
m _____ m

rupt Mask

Load Exter- *, /, = m --.- E
nal Mask

Store Exter- *, / E --.m
nal Mask

Load Con- *,/,= m ---C
sole Regis-
ter

Store Con- *,/ C ___ m

sole Regis-
ter - -.--- .+- -- .. ---.. ---.. . --: .'-'-"- ._---

1/'(/0 r/ ... i

xvn

v

STATUS/FUNCTION LINE INSTRUCTIONS

Format: OPN M/, X, B

Options: *, /, B, = 1617 19 20 23 24 25 26 27 28 29 30 31
* I X 10 101011111 w 1111fSiri B ,

Remarks:

MnemoniC

B = bank = 0, 1, 2, 3
B = 0 relates to Floating-Point Processor
B = 1 relates to Exchange
B = 2, 3 relates to External devices

S/F :

Field
OPN Code Code Title Flag

TSL 0

SFL 1

W = 00 = Immediate (=)
01 = Left Half
10 = Right Half
11 = Illegal

. Test Status Line Z

Set Function Line Z

xvnI

Operation

Test status line, in bank B,
specified by m. Z flag is
set/reset if status line is
set/reset.

Set function line, in bank
B, speCified by c(m}. B
flag is set if function line
already set, or cannot be
set because of conflict.

LOAD/STORE ADDRESSABLE I/O BUS INSTRUCTIONS

,
i

Format: OPN M/,X,R

Options: *, /, =

Remarks: R = bus = 0, 1, 2, .•• , 15
17 bit transfers, 16 bit
plus EXEC bit

L/S
Mnemonic Field

OPN Code Code

1617
I * I

Title J,I~
Jb LDOB 1 Load Output Bus

STIB 0

W = 00 = Immediate
01 = Left Half
10 = Right Half
11 = Illegal

Store Input Bus
.-

1920 23 24 25 26 ~ 28 31

1

Flags Operation

None m ----Bus R

None Bus R ____ m

DATA CHANNEL INSTRUCTIONS

/

1/

I'

Format: OPN M, X, K

Options: * 16 17
X

Remarks: R = data channel = 0, 1, 2, ..• , 7

/ L S DIC
Mnemonic Field
OPN Code Codes

I LDCD 11

STCD 01

LDCC 10

STCC 00

* = Indirect Address
X == Index Register

Title

Load Channel Data Register I

--.

Store Channel Data Re-
gister

Load Channel Control
Register

Store Channel Control
Register

L Load = I (27) = 1
S Store = I (27) ::: 0

XIX

19 20 23 24 25 27 28 29 31
j 0 10 10 IIi 0 I 11 1 IL/SIDel K

Flags Operation

None m ____ data register K
format specified by SFL.

None I Data register K ---- m for-I

mat specified b'y_ SFL.

None m --...control register K 32
bit transfer.

None Control register K --...m 32
bit transfer.

D Data Register = I (28) = 1
C Control Register == I (28) = 0 !'

I
:
i

i

I

AUTOMATIC CHANNEL CONTROL

Format: OPN M, C
16 20 27 28 29 30 31

Options: None OP I
Remarks: C = count C < C " .4096

,
~

No flags affected.

These instructions control word transfers to or from contiguous memory locations
starting at M.

Record length is controlled by count C which is decremented after each word trans­
fer until C ~ 0, or by a signal included in the data.

Mnemonic Binary
OPN Code OP Code Title and Operations

TCD 0100 Transmit until Count then Disconnect

SCD 1100 Skip until Count then Disconnect

Tel 0101 Transmit until Count then Interrupt

SCI 1101 Skip until Count then Interrupt

TSD 0010 Transmit until Signal then Disconnect

SSD 1010 Skip until Signal then Disconnect

TSI 0011 Transmit until Signal then Interrupt

SSI 1011 Skip until Signal then Interrupt

TED 0110 Transmit until Either then Disconnect

SED 1110 Skip until Either then Disconnect

TEl 0111 Transmit until Either then Interrupt

SEI 1111 Skip until Either, then Interrupt

Either:::; Either Count or Signal
LIS = 1 = Load

o :::; Store

xx

6-1

6.0 SYSTEM ACCESS DEVICES

Access Devices for the EAI 8400 Computing System include the 8400 Co~sole
Desk and a complete complement of peripheral equipments.

6. 1 CONSOLE DESK

The operation of the 8400 Computing System is consolidated at the operator
console (see Figure 6.1-1). The elements of the Console Desk are:

1. Display Panel - Provides a display of the system operating
registers.

2. Operator's Panel - Contains those pushbuttons and indicators
necessary to monitor and de-bug a program.

3. Maintenance Panel - Contains those controls and status indicators,
needed for checkout and maintenance.

4. Typewriter - Used as a peripheral input/output device for
communication between the computer and the operato~.

Provision is included, also, for mounting an optional Paper Tape Station
with 500 characters per second read and 110 characters per second punch.

The display panel and operator's panel are shown in Figures 6.1-2 and 6.1-3
respectively. Ali operating controls are pushbuttons within easy reach of
the operator when seated at the console. The controls also function as
indicators.

6.2 PERIPHERAL EQUIPMENT

Peripheral devices for the EAI 8400 may be selected in accordance with
user needs. High and low speed magnetic tape systems, card readers.and
punches, line printers and a CRT display monitor are available. Illustrations
of some of these devices are included on the pages following the console
illustrations.

CHAPTER 7

CONTROL DESK

7.1 INTRODUCTION

Operation of the 8400 Computer is consolidated at the system Desk Console (Figure

7-1). The Console provides complete display and control of all elements in the

system. Console operating controls are indicator/pushbuttons, all within arms

reach of the operator when seated at the Console .•

The Desk Console includes an "on line" typewtiter with an operating speed of 15

characters per second. The 8441 Paper Tape Station - reading 500 characters per

second and punching 110 characters per secortd .. is also housed in the Console.

Figure 7-2- shows the Control Panel used for complete system control including

a special set of register controls to facilitate direct man-to-rnachine communi­

cation. Figure 7-3 shows the typewriter and the display panel for 9 different

registers and 1 counter. Figure 7-4 shows the maintenance panel used for

monitoring and manual control of system elements.

A thorough understanding of the controls, indicators and operating procedures

for the Desk Console is a prerequisite for complete maintenance of the 8400

Computer. This chapter discusses the function of each control and indicator,

necessary operating procedures, and presents a brief description of internal

component layout.

702 SYSTEM CONTROLS AND INDICATORS

This section lists and briefly defines all pushbutton controls and indicators

located on the System Control Panel. Circled numbers are location keys for

Figure 7-5.

701

I . CONTROL PANEL
2. INDICATOR PANEL
3 . MAINTENANCE PANEL (BEHIND COVER)

4. TYPEWRITER (IBM 735)

5. PAPER TAPE READER

FIGURE 7-1. CONTROL CONSOLE

" G)
C
::0
rTJ

--J
I

N

::0
rTJ
G)

(f)
-i
rTJ
::0

o
(f)
"t:I
r
~
" Z
"t:I
C
-;
I
o
C
-;
"t:I
C
-;

-;
-<
"t:I
rTJ
:E
::0
-;
rTJ
::0

~,~ ; ,-q .\;'," ,'. . ~~
~ ~-~ --.. ~~--~--- ---...:..-~- - ~---- - - -- - - - - ----. -'

•• ~""'. ~""'1""I"'"';---,...,-.-'ltt!;:~~ ... ~~. ~ •

t
LL

()

o
2
-i
::0
o
r

)g
2
fT1
r

AF AE
~EM ORY EXPONENT INTERNAL EXTER NAL

'E MP FAUL T INTERRUPT INTERRUPT

,

CI CI CI CI SO SC ! sc i SC
I 2 3 4 1 1 2 3 4

, ' .

"L T I HPR POWER
I

c c c c c c c c C C C C C C C C
o I 2 3 4 5 6 7 a 9 10 II 12 13 14 15

" G)
C
::0
fT1

~
I
~

"1)
l>
"1)
fT1
::0

~
"1)
fT1

::0
fT1
l> o
fT1
::0

l>
Z
o
~
l>
Z .,
fT1
Z
l>
Z
()
fT1

}g
Z
fT1
r

AF AE
CHANNEL

INTERRUPT

AI) CHANNn.
RI!IIDY

DE
C;HANNEL

BUSY

EC
CHANNEL

SIGNAL

SA
CHANNEL

19 J------t------------'

FIGURE 7.5 SYSTEM CONTROL PANEL

Register Controls.

AF, AE (!) These two pushbuttons determine which data is displayed on the

ACCUMULATOR portion of the system display panelo Depressing the AF push­

button causes bits 0 through 31 of the A register to be displayed. In this

mode the A register contains one of the operands of an arithmetic operation.

Depressing the AE pushbutton causes bits 0 through 15 of the A register and

bits 0 and 9 through 23 of the Q register to be displayedo This con figur'"

ation is used in extended arithmetic operationso

AD, D, E, DE, EC ~ These five interlocking pushbutton indicators determine

which data is displayed in the DISPLAY REGISTER portion of the system display

panel.

~ displays bits 0 through 2'3 o[the Q register •

.Q. displays bits 0 through '31 of the D register which accepts incoming data

from memory and acts as an operand rpgistcr for all arithmetic operationso

& displays bits 0 through 31 of the E regi~ter, which is used.to store the

contents of the A register during some arithmeti.c operations, and as an

extension to the D register during doubl~ precision operationso

DE displays bits 0 through 15 of the D register in the first half of the.

display register and bits 0 through 15 o[the E register in the second halfo

g£ displays bits 0 through 31 of the Exchange Control register. This push­

button is functional only with the Automatic Data Ohannel Processor. The

Exchange Control register controls the sequence of operations within the

Exchange Module without writing each instruction through the Control Module.

7.7

Typewriter. Input Controls.

I, SA, MA, MD, RD, WR CD These six pushbutton indicators determine where

typewritten instructions are routed within the computer. They are e1ec-

trica11y interlocked so only one may be operational at a time.

I (Instruction) Typewritten information is transferred from the '~" register

(0:31) to the Instruction Register.

SA (Starting Address) Typewritten information is transferred from the W

register (0:15) to the Location Counter and the M field of the Instruction

register when the CR key is depressed.

MA (Memory Address) Typewritten information is transferred from the W
\

register (0:15) to the M field of the Instruction register when the CR

key is depressed.

RD (Read From Memory) Information read from addressed memory location is

displayed on the Memory Data register (0:35).

MD (Memory Data) Typewritten information is transferred from the W register

(0:33),to the Memory Data Bus when the CR key is depressed.

WR (Write Into Memory) Contents of the Memory Data Bus (0:35) are trans-

ferred to the Memory Data Register and then written into the addressed

memory location.

TYpewriter 'Ready.

TYP RDY (TYPEWRITER READY) ~ This indicator when illuminated indicates the

typewriter has been selected as an 1/0 device.

Exponent Fault ~

This indicator when illuminated indicates an exponent overflow or underflow

wLthin the Arithmetic Module.

Internal Interrupt ~

This indicator when illuminated indicates an unserviced internal interrupt.

External Interrupt (2)

This indicator when illuminated indicates an unserviced external interrupt.

Channel Interrupt ~

This indicator when illuminated indicates an unserviced exchange channel inter­

rupt. The affected channel is determined by the setting· of the CHANNEL

SELECT switch on the Maintenance Panel. When the CHANNEL SELECT switch is

in the OFF position an interrupt on any exchange channel will illuminate

this indicatoro

Channel Condition Indicators.

These three indicators when illuminated indicate various conditions as listed

in the following paragraphso In the AUL (Auto Load) or AUD (Auto Dump) mode

the condition indicated applies to the channel selected by the CHANNEL SELECT

switch. In the program control mode the condition indicated is on any

addressed channel. The particular channel may be determined by the CHANNEL

SELECT switch.

Channel Ready (2) This indicator when illuminated indicates that the Exchange

channel selected is ready to accept information from or load information into

M~o~.

Channel Bus ~ This indicator when illuminated indicates that an exchange

channel has been addressed and is accepting information from or loading in­

formation into Memory.

7.9

Channel Signal @ This indicator when illuminated indicates that a

peripheral device has sent a fault signal. (A gap on magnetic tape;

STOP code on paper tape reader, low paper on paper tape punch, etc.)

Parity Indicators

Channel Parity ~ This indicator when illuminated indicates that a

Parity error has occurred in the selected deviceo

Exchange Parity ~ This indicator when illuminated indicates that a parity

error has occurred within the exchange module.

Memory Parity ~ This indicator when illuminated indicates a memory

parity error has occurred o In the AUL or AUD mode the error occurred in

the p~rticular channel selected by the CHANNEL SELECT switch. In the pro­

gram control mode the parity error has occurred in any addressed bank, the

particular bank may be detennined by the CHANNEL SELECT switch.

liQl].

The system will not halt when a

parity error occurs unless pro­

grammed to do so.

Sys tem---Flag IIlLdicators @

These eight indicators display machine conditions that occur during the course

of a program.

TINC (Unconditional) Illuminated when the rounding flip-flop of the

ACCUMULATOR is in the 1 state. This flag may be used to generate an un­

conditional jump instruction.

7.W

ZERO (Zero) Illuminated when the contents of the ACCUMULATOR are zero,

or as a true result of TSL'S and Boolean Connect Instruction (BEQT).

GTS (Greater)· Illuminated when the contents of the ACCUMULATOR are greater

than zero.

LSS (Less) Illuminated when the contents of the ACCUMULATOR are less than

zero.

OFW (Overflow) Illuminated when there is an overflow condition in the

accumulator.

CRY (Carry Out) Illuminated when there has been a carry out of the most

significant bit of the accumulator (Al, not AO).

BSY (Busy) Illuminated when an addressed function line or data channel is

busy.

ENB (Enable) Illuminated when the system· interrupt lines are enabled.

Programmer Flag Controls and Indicators

Fl Through F8 ~ These eight indicator pushbuttons are the programmer flags.

Depressing the pushbutton complements the flag. The indicator is illuminated

when the flag bi:t is a "1".

Console Interrupt Controls and Indicators

Cl Through c4 @ These four indicator pushbuttons are manual console­

interrupts. When illuminated they indicate an unserviced console interrupt.

The indicator is extinguished when the interrupt is serviced or the push­

button is depressed a second time.

7.11

Configuration Switches

SCI Through SC4 ~ These four pushbutton indicators are control switches

for special 8400 configurationso

Auto Load and Auto Dump

Auto Load @

This indicator pushbutton is used to load information from a single peripheral

device into memory during manual operationo It is illuminated during the

Auto Load operation. (See Operating Procedures o)

Auto Dump ~ This indicator pushbutton is used to transfer information

from Memory onto a single peripheral device during manual operationo It

is illuminated during the Auto Dump operation. (See Operating Procedures.)

Clock Controls

RUN/SGL/HAF/FUL/ ~ These four indicator pushbuttons establish the mode of

operation of the 8400. The RUN, HAF, FUL pushbuttons are electrically inter­

locked so only one is functional at a time. The SGL pushbutton mechanically

locks when depressed.

BQli When depressed sets the system in normal sequential control cycle •

.§21. When depressed sets the system to operate clock pulse by clock pulse.

Each time the Execute pushbutton is depressed one clock pulse is generated 0

HAF When depressed the system ~i1l perform half the instruction control

sequence. Tile first time the Execute pushbutton is depressed the instruction

word will be transferred to the I register and any address modification

7.12

called for will be performed. Depressing Execute a second time allows

the system to finish the instruction cycle and halt.

~ When depressed sets the system to perform the complete instruction

and halt, each time the Execute pushbutton is depressed.

Initialize @

This indicator pushbutton is used to clear the system. The CC and CIC

counter are cleared and the PC counter is set to PC12. Memory is not

cleared by this control.

Halt and Halt/Proceed (HLT/HPR) ~

B1! This indicator pushbutton is used to manually halt the system. It is

illuminated when the system is in the halt conditiono

~ When illuminated indicates the system has been halted by a Halt/Proceed

instruction. Depressing the Execute pushbutton restarts the system o

Power ~

Depressing this pushbutton energizes the system. The indicator is illumin­

ated when system power is on. Depressing the pushbutton again, dc-energizes

the system o

Memory Clear@

Depressing this pushbutton clears all non-protected Memory locations.

Console Register

CO Through C15 ~ These pushbutton indicators represent bits 0 through 15

7.13

of the console register; when illuminated they indicate that the particular

bit is in the 1 state. Depressing a pushbutton complements the particular

bit.

EXECUTE @

This pushbutton indicator is used to start operational sequences after all

other controls have been preseto It starts thesystern in any mode.

7.3 SYSTEM DISPlAY PANEL

Circled numbers are keyed to Figure 7-6 •

. ACCUMUlATOR <D

This area displays bits a through 31 of the ACCUMUlATOR when pushbutton

AF on the SYSTEM CONTROL PANEL is depressed. When pushbutton AE on the

SYSTEM CONTROL PANEL is depressed bits a through 15 of the ACCUMUlATOR

and bits a and 9 through 23 of the Q register are disp1ayed e

DISPLAY REGISTER ~

This area is a general purpose display. The data display is determined by five

pushbuttons as indicated below~

Pushbutton

AD

D

Data Display

Bits a through 23 of the Q register

in the ARITHMETIC· MODULE.

Bits a through 31 of the D register in

the ARITHMETIC MODULE~

7.14

FIGURE 7.6 SYSTEM DISPLAY PANEL

Pushbutton (Cont)

E

Data Display

Bits a through 31 of the E register

in the ARITHMETIC MODULE.

Bits a through 15 of the D register

and bits a through 15 of the E register.

The D register is displayed in the left

half of this area.

Bits a through 31 of the Exchange Control

Register in the EXCHANGE MODULE. Used only

if system has ADCP (Automatic Data Channel

Processor) option.

:MEMORY DATA CD
This area display:-; the contents of the memory location that is addressed

in either manual or program controlled operation. However, it will not

display if BANK SELECT switch is in AUTO position unless memory is being

requested by control.

:MEMORY ADDRESS c;)
This area displays the addres:; n [the'. memory location being accessed by

the CONTROL MODULE~

EXCHANGE ASSEMBLY ~

This area displays the contents of the Exchange Assembly Register in the

EXCHANGE MODULE.

7.16

LOCATION COUNTER 0
This area displays the address of the next instruction to be executed o

CHANNEL FUNCTION CD
This area displays the condition of Flip-Flops within the C.hannel Function

Register when data is being transferred to or from a peripheral device by

the EXCHANGE MODULE as follows:

Indicator

Bit 0

Bit 1

Bit 2

Bit 3

Function

_ This indicator when illuminated specifies

that an EXEC bit accompanies each data

word to or from memory. When extinguished

an EXEC does not accompany data.

This indicator when illuminated_ specifies

that data is being transferred in Binary

code. When extinguished data is in BCD

form.

The indicator specifies which half of the

memory word is being addressed. When

illuminated it specifies that the left

half of the memory word is being addressed.

When illuminated this indicator specifies

that alternate left and right half words

are_being transferred to memory or to a

peripheral device by the Exchange Module~

7.17

Indicator .(Cont) Function

Bit 4 This indicator specifies the direction of

data transmission. When illuminated it

indicates transmission to the EXCHANGE

MODULE from the memory.

Bits 5,6,7 These indicators display the Byte size

and number of bytes per half word of data

being transmitted as follows:

5 6 7 r Bits/Byte Bytes/Half Word
I

0 0 0 8 0

0 0 1 8 1

0 1 1 16 1

0 1 0 8 2

1 0 0 4 4

1 0 1 4 1

1 1 0
,

2 4-

1 1 1 I, . 3 -t'

CHANNEL BUFFER ~

This area displays the condition of the Channel Buffer register which is

located in the Exchange Module. Data enters the register during program

control operation.

7.18

INSTRUCTION 0
This area displays the contents of the Instruction register located in the

O:>ntrol M>dule.

TYPEWRITER INPUT @
This area displays the contents of the"W" register located in the Console

Desk. Data enters the register during manual input operation of the type-

writer.

7.4 MAINTENANCE PANEL

The maintenance panel contains controls and indicators which may be used for

both test and normal operating purposes. The circled numbers in the following

descriptions are keyed to Figure 7-7.

LAMP TEST, C!) ON/OFF

In the ON position, this two position toggle switch enables all light

drivers in the console, providing a quick check of all lights and light

drivers.

KEYBOARD, (] UNLCK/LCK

This two position toggle switch controls the entry of data from the typewriter.

In the "UNLCK" position the typewr"iter keyboard is unconditionally unlocked

and may be used at any time to enter data. In the "LCK" position the key­

board is under program control and cannot be used unless so designated by

the program.

CLOCK CONTROL (1) NOR/MAR/MED/LOW/EXT

This 5 position rotary switch determines the clock frequency of the system.

0
p~.., CotJrEOL

0 0 0

0
(9

M C. ~ R
~ \.. Cia
\A 0 ~ ~

~ C ,.
"" y ~ ~ A-

'- E
F c:

tltJLD srep ow O'-l

MORM MO\<M Fl= OF'F

LP rlJlU

0

x

\... K
A e.
~

,.
e

T 0
li A-

~ tt..
0

0'-" U~\.C'.

OFF \..CG

I 2.

0 0

I
®

M
0
0 e:

RP'"
SE.Q. .,

0

0
1

0

FIGURE 7.7

MAINTENANCE
CONTROL PANEL

@

\

\
\
\

NOR
Normal clock frequency of 4.0 megacycles

MAR
Marginal clock frequency of 404 megacycles used for system testing

and maintenance

MED
Medium clock frequency of approximately 1.2 kilocycles

LOW
Low clock frequency approximately 1.5 cycles per second

EXT
System clock supplied by an external device

~ ~ SEQ/RPT

This two position toggle switch determines the operational mode of the

CONTROL MODULE. In the sequential (SEQ) position, upon completio~ of ah

instruction the locati.on counter in the CONTROL MODULE suppl Le:; the next

instruction. In the repetitive (REP) position the instruction fetch portion

of the program is omitted and the LOCATION COUN1~R is not incremented; the

present instruction is repeated.

LH (Left Half), RH (Right Half») LE (Left EXE), RE (Right EXC) ON/OFF CD
These [our, two position toggle switches determine the memory word format

during manual data entry., When in. the OFF position, information in memory

is protected; no manual entries or modifications can take. place. In the ON

position, manual entry of data is permitted according to the format deter-

mined by the switches in the ON position.

7.21

PCO, PCl,' PC2, PC3 PC SET ®
These five locking indicator pushbuttons cont~6l the manual presetting of

the phase counter in the CONTROL MODULE. The first four (PCO through PC3)

operate in a BCD fashion, as follows:

Switch

BCD Value

PCO - PCl - PC2 - PC3

8 - 4 - 2 - 1

Proper manipulation of these switches allows .the operator to peeset the

phase counter to any value from PCl to PCl4. The PC-SET pus1;lbutton must

be depressed to preset the phase counter after the .proper count has been

selected on PCO through PC3. To manually set the counters the MODE SWITCH

on the CONTROL PANEL must be on SGL.

MTA TlST CD
This indicator operates in conjunction with the MEMORY PATTERN GlllBATOR

and the MEMORY PATTERN CONTROL SWITCH. The indicator is illmninated when

testing with a lis pattern and· extinguished when testing with a OIS pattern.

This indicator is illuminated when. a memory error is detected during a

memory test pattern.

BANK SELECT AUT 1 2 3 4 <V
This five position rotary switch selects one of the memory banks when

running a memory pattern test. It performs three functions: l~ .elects

the memory bank. 2) ltisplays the contents of the bank on the Y DA.TA

7.22

display area during UNLD,,3) displays the address of the memory location on

the MEMORY ADDRESS display area during UNLD. In the AUT position memory

data and address' are under program control.

PATTERN CONTROL @

This five position rotary switch is used to generate a memory self test

pattern into the memory bank selected by the BANK SELECT switch. The

patterns are as follows:

l's: AlII's are written into each location of the memory bank

selected.

a's: All zeros are written into the memory bank selected.

OFF: The memory self test function is disabled.

WP: Worse case pattern is written into the memory bank selected

as follows:

l's into memory location 00001

l's into memory location 00002

a's into memory location 00003

O's into memory location 00004

l's into memory location 00005

l's into memory location 00006

a's into memory location 00007

O's into memory location 00008

etc., until all memory locations are full.

WPC: Worse ou. pattern complement is written into the memory banlo

CAUTION

The test patterns destroy the contents of all

memory locations in the selected memory bank,

including protected locations. The PATTERN

CONTROL must therefore be in the OFF position

during normal computer operation.

MEMOIg (LD/NORM/UNLD) 11

This three position toggle switch is used in conjunction with the PATTERN

CONTROL switch to test the bank selected by the BANK SELECT switch Q

CLOCK (START/NORM/STEP) 12

This three position momentary switch controls' the memory clock during memory

test. Depressing the switch momentarily to the START position stops the

clock. Depressing the switch again to the STEP position generates one clock

pulse, permitting clock pulse by clock pulse testing of the memory.

CHANNEL SELECT 13

This nine position rotary switch is used to select the Exchange Module Data

channel to be used during an AUL (Auto Load) or AUD (Auto Dump) operation.

The Channel Function register displays the conditions of transfer, and the

CHANNEL BUFFER register displays the information being transferred. In the

OFF position, channel selection is under program control.

7.24

DEVICE SELECT, 14

This eleven position rotary switch selects the device (on the channel de­

signated by the CHANNEL SELECT switch) to be accessed during manual operation.

BYTE 4/8 15

This two position toggle switch selects the byte size between memory and the

selected device during AUL (Auto Load) and AUD (Auto Dump) operation.

E Bit EIE 16

This two position toggle switch determines whether or not an EXEC bit accom­

panies data during an AUL (Auto Load) or an AUD (Auto Dump) operation.

CODE. BIN BCD 17

This two position toggle switch controls code conversion during manual opera­

tions. When in the BIN position, data is transferred without code conversion

during an AUL or AUD OPERATION. In the BCD position, code conversion takes

place during an AUL or AUD operation o

DBC, DBCO. DBC1, DBC2, DBC CLR 18

These four momentary pushbutton indicator switches are used to preset the

Exchange Module Device Buffer Counter which controls the transfer of data

from device to memory or from memory to device. Depressing a pushbutton

sets the corresponding counter stage. Depressing DBC CLR clears the counter.

Each indicator is illuminated when the corresponding bit is in the 1 state o

7.25

DSC, DSCQ.· DSC1, PSC2, PSC CLR 19

These three momentary pushbutton indicator switches are used to preset the

Exchange Module Data Stack Counter. This counter is used in controlling

information flow from the Exchange Assembly Register (EAR) to the Channel

Buffer Register (CBR) and from EAR to the data stack. Depressing a push­

button sets the corresponding stage. Depressing DSC CLR clears the counter.

The indicator is illuminated when the corresponding stage is in the 1 state.

esc, CSCO, CSCl. eSC2, esc eLR (Operation with ADCP Option only) 20

These four momentary indicator pushbutton switches are used to preset or

clear the Exchange Module Control Stack Counter. The counter is used to

control the operational sequence and information flow within the A~to Data

Channel Processor. Depressing a pushbutton sets the corresponding stage in

the counter. Depressing CSC CLR clears the counter. The indicator is

illuminated when the corresponding stage is in the 1 state.

CIC, CICO. CIC1, CIC CLR 21

These three pushbutton indicator switches are used to preset or clear the

Exchange'Module Control Interface Counter. The counter is used to control

the instruction Sequence between the Exchange Module and the Control Module o

Depressing a pushbutton sets the corresponding counter stage. Depressing

CIC CLR clears the counter. The indicator is illuminated when the corres­

ponding stage is in the 1 state.

The following Exchange Counter pushbutton switches are coded as indicated.

DBCO DBCl DBC2
EXCHANGE DSCO DSCl DSC2
COUNTER CSCO CSCl CSC2

COUNTS CICO CICl

0 0 0 0

1 0 0 1

2 0 1 1

3 0 1 0

4 1 I 0

eco, CCI, CC2, CC3, CC4. CC SET 22

These five locking indicators display the state of the Arithmetic Module

Cycle Counter. The counter is used to control the sequence of arithmetic

operations within the Arithmetic Module. The indicators are illuminated

when the corresponding counter stage is in the 1 state. The pushbuttons

are coded in extended BCD as follows:

ceo eel ee2 eel ceo ee CLR

16 8 4 2 I CLEAR

7.27

7.5 OPERATING PROCEDURES

7.5.1 Pre-Operational Control Setting

The MAINTENANCE PANEL controls listed in Table 7.1 should be set to the indicated

position prior to system operation. These control settings insure that system

operation is not impaired and that all facilities are functioning. The remaining

controls on the MAINTENANCE PANEL may be left in any position since these switches

will be set prior to·· a defiai·te· opetation o

TABLE 7.1 PRE-OPERATIONAL CONTROL SETTINGS

Control Setting

LAMP TEST OFF

KEYBOARD UNLK

MODE SEQ

CLOCK CONTROL NOR

BANK SELECT AUT

PATTERN CONTROL OFF

CHANNEL SELECT OFF

7.5.2 Manual Operating Sequences

7.5 u 2.1 Machine Power. Depress the POWER switch on the system

control panel. All control sequences are internally generated. The system is

in halt status and is. initialized.

7.5.2.2 Typewriter. When the 8400 is in the halt status, only

12 typewriter keys are legal, they are +, - 0 through 7, CR and TAB. Only

7.28

these keys- may be used to manually input data or instructions. Other keys may

be used for operator notations but they will not be recognized by the 8400.

Under program control all typewriter keys are legal.

The + and - keys are used to set the sign of the input information and to set

the EXEC bit in an instruction or a memory data word. When entering an EXEC

bit the + key is used to generate a binary 0 and the - key to generate a binary 1.

The 0 through 7 keys input data in Octal code.

Depressing the TAB key sets the 8400 to the right half of a data word.

Depressing the CR key transfers information from the TYPEWRITER REGISTER to the

desired location.

When inputting data, the following word format is used.

SA (Starting Address)

± NI , N2, N3, N4, NS CR

I (Instruction Word)

±, NIL' N2L , N3L , N4L , NSL ' ±NIR, N2R, N3R, N4R, NSR' ±, ±, CR

MA (Memory Address)

±, NI , N2, N3, N4 , NS' CR

MD (Memory Data)

±NIL' N2L , N3L , N4L , NSL ' CR j ±N1R, N2R, N3R, N4R, NSR' ±, ±, CR

7.29

Nl in each case represents a legal number represented in Octal code 0-7.

Nl would be the first octal character, N2 the second, etc.

NIL represents first octal character in the left half of the word. NIR

the second octal character in the right half of the word.

The ± at the end of the instruction and Memory Data words represent the

EXEC bits.

7.5.2.3 Auto Load (AUL)

1. Depress HLT

2. At the MAINTENANCE PANEL

a. Select Channel

b. Select Device

c. Select Byte size

d. Select (E or E)

e. Select Code (BIN/BCD)

3. Depress SA

a. Type SA

Machine Functions

HLT light, PC-12,

HFF Sets

± Nl, N2, N3, N4, N5, CR W(0:15) I(0:15) LC(O:15)

4. Depress AUL

Auto load operation will

start and run to completion.

The Location Counter will

7.30

automatically be incremented

from the starting address.

The system will halt if any

one of the following events occur:

a. All information from the

selected device has been

exhausted.

b. Stop code is detected o

c. HLT switch is depressed.

d. All Memory locations are full.

7.5.204 AUD (Auto Dump)

The Auto Dump procedure is

identical to Auto Load except in

Step 3 above, depress the AUTO

DUMP switch.

7.5.2.5 Manual Instruction Insertion

1. Depress HALT switch

20 Depress SA switch o

HLT light, PC-12,

HFF Set

PC-IO, DSC ()c

I(29 : 31), LDCD I

HLT light, PC-12,

HFF Sets

7 .. 31

3. Enter SA (use procedure

outlined in 3.2.2)

±, Nl, N2, N3, N4, NS, CR

4. Depress I switch

5. Enter I (use procedure

outlined in 3 0 2.2)

±N1L, N2L , N3L , N4L' N5L

±N1R, N2R' N3R, N4R' N5R

±, ±, CR

a. Set RPT

6. Select Mode

(RUN, SGL, HAF, FUL)

7. Depress EXECUTE

7.5 g 2.6 Memory Clear

10 Depress HALT

20 Depress SA

3. Type SA

±N , N , N , N , N , CR

4. Depres s MEMORY CLEAR

W(0:31)c I(0:31)

HLT light, PC-12,

HFF Sets

W (0:31) c I,(0:31)

7.32

Memory clear operation will

take place from SA to zero o (The

Location Counter Increments).

MEMORY CLEAR pushbutton will re­

main illuminated until operation

is complete.

7.5.2.7 Memory Write

1. Depress HLT

2. Select format LH/RH/LE/RE

3. Select bank

4. Depress MA

5. Type address

±Nl, N2, N3, N4, NS, CR

6. Depress MD

7. Type data as selected by

format in step 2, i.e.,

±N1L' N2L' N3L , N4L' NSL

±N1R, N2R, N3RJ N4R' NSR

±, ±, CR

HLT light, PC-12,

HFF Sets

W (0:31) c I (0:31)

W (0:31) c I (0:31)

8. Depress WR

7.5.2 0 8 Memory Read

10 Depress HLT

2. Select bank

3. Depress MA

4. Type address

±N1, N2, N3, N4, N5, CR

5. Depress RD

CAUTION

If the system is initialized, all Memory

locations can be cleared. To set the

memory protect flip-flops, an SFL in­

struction is used g

I (0:15) CAR (0:15)

M, CWRM, CRQM, chosen

format appear in M,

OW CDB (0:33) M

HLT light, PC-12,

HFF Sets

I (0:15) CAB (0:15) M,

CWRM, CRQM, chosen word

appears in MDR

7.34

7.5.2.9 MOde Change

1. Depress HLT

2. Select Mode

(RUN, SGL, HAF, FUL)

3. Depress EXECUTE

7.5.2.10 Initialize Machine

1. Depress HLT

2. Depress INITIALIZE

Machine is now in HALT

status and INITIALIZED.

NOTE; Machine is automatically

INITIALIZED when power

is applied by depressing

the POWER pushbutton.

7.5.2.11 Console Register SetUp

1.· Select any mode except SGL

2. Complement CONSOLE REGISTER bits

by depressing appropriate "c"

pushbutton.

HLT light, PC-12,

HFF Sets

HLT light, PC-12,

HFF Sets

7.35

7.5.2.12 Flag Register SetyP

1. Select a~y mode except SGL

2. Comp1 ement FLAG REGISTER by

depressing appropriate ''F'~

button.

7.5.2.13 Console Interrupt

1. Set the CONSOLE INTERRUPT by

depressing the appropriate C1

pushbutton.

7.5.2.14 ContrOl MQdule Coupter "eset

1. Depress lILT pushbutton

2 • Depress SGL

3 •. ' Check the condition of PC in­

dicators on the SYSTEM CONTROL

PANEL; if an indicator is illum­

inated, the corresponding counter

is in the 1 state. If a different

count is desired first depress "PC

CLR",then select the proper count

by depressing the proper pushbutton.

The pushbuttons operate 1e extended

BCD fashion.

7.36

J;'co PC1 ; PC2 PC3
,PC

CLR .. ;"~,\

8 4 2 1 0

4. Select desired mode of 'operation

8S indicated in 7.5.2.10.

5. Depress EXECUTE

7.5.2.15 ExshIlJlS' Module Counter PEeHt

1. Depress HLT

2. Depress SGL

3. Check the settings of DBCO

through 2, DSCO through 2,

CSCO through 2, ,and CleO

through 1. If 8 different

setting is desired, first

depress the app~opriate "CLR"

button and second depress the

'desired combinatlbns of push-

buttons. Coding on these

pushbuttons is as follows:

HLT light, pe~12,

HFF Sets

7.37

DBCO DBC1 DBC2 (PP)
Exchange

DaCO DSC1 DSC2 (CP)
Counter

DSCO CSC1 CSC2 (AP)
Counts

C1CO C1C1 (IP)

0 0 0 0

1 0 0 1

2 0 1 1

3 0 1 0

4 1 1 0

7 .6 PHYSI CAL LOCATION OF COMPONENTS

7.6.1 Introduction

This section relates to the physical location of the desk components and the

identity of the different modules as one would find by looking from the rear

panel covers.

7.6.2 Component layout

Figure 7-8 is the Desk's rear view illustrating the location and layout of the

control panel, the maintenance panel, and associated input-output equipment.

The two row panels listed are: DSA, DSB, DCL, and TTY.

]tow 1 refe,rs to the t'op row and row 2 the bottom row of each panel.

Distribution panels (DSA and DSB) primarily contain Combo Cards and Wetting

Cards at,location "A" through "T". These cards are used to distribute logic

signals from the Desk to the Floating Point Processor and vice-versa.

.. .
N

g

-...J

w
I,C)

11

G'\
C
;I()

tT'\
-.;J

I

OJ

o
-0
fl1
"JO
.::c

~
~
V'

o
m
V'l
X.

;10

'" :D-
;1j

<:
t'T\

~

C

-1 Itf~ 306 i ~ (J') IL! ,306
;;0 o 0

'1\~
'1'\ -c I'!-, 307 ~

rn
:z. /'1-,307 (J\

;'C

3 2.e..333 -I

r- e 2..,33 3'-J -(
-f

-0

ee.333-1
0

;X -< E - m '-\ 2e.. "$3.3-) ~

.:t: e2..3~o
(J)

CJ ." 22. g60 t::
-0 t...4

"' Z. 2. .. '3~ a-/ ;g 0

0 aa. 3"3 3' -<
('> 2Z .. 6""(!)e.

03 1J""2 F I
:tl I ~1F"1
LJ fl .. 238 .,5"/.. 238 JIC I
:r: S-/,~38 6"'1, Co 88
.." ,r/,zog ~e. ~~?-I

rn S-I, t! 3g 51. t?o8 0
U"I

.5"1, &?ol

0 5~ e.38 ~-/, ~O8 03 3"/,201

0 5"/' ~ 3'8 s/, c?3'8 ..s-~ 201

00 '-10 .. 093 S-/.2.;>8 .$""/; eo I
:D .yo, 5"93' 9'O,J93 ..,r/,2"1

C e2.,..3~o 2e.3..s-e .r/,. 238

-1 Z 2.. "3'79-/ 2 e. 3S-8 ~o .. ~9c.
y.. 2. e... 3'19-1 ~2. ~f"8 1.:1"'1 HI
~ 2Z, ~'f9-J 22..3.s-8 ~2... 331

-0 2. e.. 3 ')e Z2.~..f8 22.,360

z ~z., '8~3 c2. .. .s.:r8 aZ.s33

3 22 .. .31)6 Z2, 3~8 eZ-3~3-J

22.-3'51-1-1 Z2..3S"e a. 2., 3" ;'i -1 r- '=' -i
A " 2-.3.J~-~ ze . ..358 (' 'Zc.-,388 "<
<:;

r
f'\J 22,3')S- 22,36'9

:t: 2'2.. ~?I 22,.$st3
". 2Z,36 S Zz.. ~.!I-e
rn 2:z,36Z Z '2. .. 3.s-e
0 Z2,SP'f 27..,36"'8 2.z.3~3

(\ Z~20#31)? Z2. .. $Sa

0) Z 2., 360 22 .. '3S8
:l:J Z. 2., ~..:r8

I I I I
cRBLE Rf\(J(I ?RNet.. I PLUG- ~ACKI ~R~ELI FLUe,.

I I I J
mOl ffi\ - ff\Bc..L,-UI '01 - DS 6 - J"I

1YlO2 ml- macL..l-il DJ- DSB- HI
pel DI- f)Sa - 8Z ce-c fYI B-S2

Oc/-I c2-cm8-Se. CI-cmD-SIf
~.

DeC! pi - .os B -11f. cz- c me -Ol

pca-I C2.-cmB- J'I CI-Crf)D-S'+

pc 3 DJ- DS&-F/I C2.- cmc- TI

OC3-J cZ ... cmc-TI cl-cmO- He.
'---'?C 41 0/- /)s8-D} cz ... crnFl- UI

I"""'

~~~ ""tJ 
D 
"'0 % 

<.N-01'11 ;l 
~c::;?O 
OZ :z. 

:u 
v,r-\ :z 
OO~.:o 0 en 

'"t> n-, 
-0 
.:D 
:z 
t1"'1 
r 

~~r; .t: ~ .. 
OIl 0\ '0 

~ 
-f:. 

~~ 
0 
~ 
:n 

~~ 

0 
7'0 ~ -I 

:0 -< 
n " fT1 

0 ~ 

§-rO 
A) 

.... 
Pl 

r ;U 
en 
~~O 

0 

.... 

CABLe ~FtC.K : PI1J1JEL ~ P l-VG-

I , 
API II / - FlIYlC - C '-f 
RDZ. fll- f/IYIC - B~ 

R03 HI ... Hmc- RJf 
E./)I EI .. c HcBJ- 01 

cp2 =/-Etncc -F<' 
fP~ EI- cHCB- il 

EPIf . £1- eH c.R /- T3 
E-DS' c/-CHC!1J- S3 
cPI ce-CMB-l,)Z 

CDZ cZ" em&-- Ul 

-0 ::a 

" ", 
::0 

0 
UJ~ 
="'-0 
OITl 

~ ~ :xl 
n-. 
:n 
~ 
ITI 
;0 

f\l (\ 
0\10 
.. .:0 Z 
Q z.-\ 
.J::rt1iO 
u.ar O 

r 

..1'"1, ze;.e 
$/' Z'fc.. 

..5'"/. z'IZ-
SI. Z'fe. 

SI. Z. 'fc.. 
.sl. Z"tc-

SI,l¥Z-

.fl. ~"Il. 

..,:r-/, c,9e.. 

,r/. 2. 4(>c 
J"~ z.o/~ 

~/, z'll.. 
,,/. Zye. 

...r/. Z'I,z 

..$"/. z~e 

-r/, z¥e 
~ZZ~Z 

RACK: PRaJU: PL.V~ 
J I 

DI- f)S8-c.a 

p/-J)S8 - D2-

PI - DS8 - £;,2 

Pl- lisa -EI 

PI- Dse - H2. I 

D ,- PS B- :r 2 

PI-TT ve-UI 
PI- ,-rYe- TI 

DJ- 1>58-11/ 
DI - psB-GI 

c 

-\ 
V'I 

;;0 

"'0 

C 

3 

r 

~ 

L..t 
.:t: 

." 

t"1 

0 

() 

tD 

4l 

1\> 
Q 

o 
~ 
co 

V\ 

~ 
-l 

~ 
o -(A 

\) ,... 
.::D 
~ 

"0 
~ 
::z. 
"l 
r-

~ 



The Control Logic panel (DCL) contains a variety of circuitry such as control 

for the Typewriter and Paper Tape Station Device Controllers. For example, 

the ''W'' register counter is located on row 2, cards F and E. These cards would 

be identified as DCL-F02 and DCL-E02. The TTY panels (one and two) also con­

tain a variety of circuit cards located in slots "A" through ''U''. The circuitry 

is mainly for the Typewriter Device Controller, however, TTY-1 panel contains 

some circuitry for the Paper Tape Station Device Controller. The System Display 

Panel contains 17 identical Light Driver cards located in positions "A" through 

''U'' • 

The model number of each card is shown for each card location used. A table on 

Figure 7-8 also provides a list of cables with the rack, panel, and plug desig­

nations for each cable. 

7.40 



CONTROL CONSOLE 



REGISTER DISPLAY / INPUT -OUTPUT TYPEWRITER 

D 
l -I 



AF AE MEMORY EXPONENT INTERNAL EXTERNAL 
TEMP FAULT INTERRUPT INTERRUPT , 

AO 0 

lIMC GTR lSS OFW 
E OE 

.......- ... 

f F F F f 
I 2 3 4 5 

CI I lim' 'II CI II CI II SC ) I sc II sc II sc I I ~ 2 ! 3 4 I 2 3 4 

-~----

HLT HPR EXECUTE 

,,~-""'---------- -~,. . , . , , 

POWER MEMORY 
CLEAR 

C C C C C C C C C C C C C C C C 
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 

OPERATOR'S PANEL 



MAGNETIC TAPE -TRANSPORT 



PUNCHED-CARD READER 



LINE PRINTER 



3-6 

FLOATING-POINT PROCESSOR 



1-1 

1.0 STANDARD PROORAMS AND PROGRAMMING SYSTEMS 

Software is the second dimension of a computing system, and is equally vital 
to its effectiveness. EAI provides a compreh~nsive set of programming 
systems, programs and routines tailored to the needs of hybrid simulation, 
analog program setup and checkout, and general scientific computation. These 
range from MACRO assembly and FORTRAN IV Compiler systems, a library of 
relocatable subroutines that have been designed for maximum execution speed 
and recursive entry, and monitor system featuring console control and debugging; 
to a system of programs designed for increasing the efficiency of programming 
and operating analog and hybrid computers. 

A design criteria for EAI software is its overall effpctiveness in the hands 
of an individual user. That is to say, throughout the implementation and 
description is the attempt to provide software uniquely applicable in a time­
shared environment or intimate man-machine relationship. Facilities for 
batch proceSsing are also provided. 

Ef1icient manpower utilization is as important as high problem throughput. 
The EAI 8400 Programming Systems provide a balanced capability for the 
scientific, research and simulation laboratory in meeting both criteria. 
The significant characteristics of the 8400 Software system are: 

1. Dynamic Relocation of user programs and 8400 software .. the unique ability 
of the 8400 to relocate programs once they are in core memory. 

2. Highly Efficient Object Coding produced by programming systems, optimized 
to achieve maximum execution rate of user programs. 

3. Real-Time, interruptable programs designed for recursive programming in 
a multi-user or hybrid environment. 

4. Software design to take full advantage of the 8400's powerful instruction 
repertoire and storage efficiency. 

The 8400 Linking Relocataple Loader has the ability to map relocation information 
generated by the MACRO Assembler/FORTRAN IV Compiler into the memory EXEC bits. 
Using this relocation information in memory, the Standard Monitor DIS,PLACER 
provides the facility to move programs physically about without destroying 
their ability to be executed. Some computers have hardware that "relocates" 
an instruction as it is being executed. The EAI 8400 moves segments of 
programs about in memory, updating relative cross-referencing between segments 
sweeping through memory and changing the links. Sections of program anddata 
storage can be reclaimed during execution of a .program, thus increaSing available' 
memory space; new sections of coding, of variable or undetermined lengths, can 
be brought in to replace the old. 

Dynamic relocatability is the basis for Dynamic Storage Allocation, the 
analysis and optimization of storage reqUirements of programs, both before 
and during execution. 



1 • 
2. 
3. 
4. 
5. 

2-1 

2.0 8400 MONITOR SYSTENS 

Efficient utilization of a digital computing system is of prime inter.est 
in the modern scientific computation labor.atory. Experience has shown that 
setup time" is drastically reduced by the :incoi..~po.t"ation of standard procedures 

1.0 the computer's own operation capA.bi.,!ities. 

The 8400 Scientific Computing System is equipped with three Monitor Systems 
which relieve the programmer of the machine dependent aspects of digital 
computation. 

The 8400 Standard Monitor System handles the real-time aspects of the machine 
such as 110, interrupt routing, program loading, debugging control and storage 
allocation. An Operating System includes as well accounting routines and 
software facilities for scheduling and executing a series of unrelated computer 
runs without human intervention. 

The Simulation Monitor Systaq is a complete entity within the EAI 8400 Monitor 
System. It utilizes some of the routines described under the Standard Monitor 
System and has control of a group of programs designed specifically to aid 
in the operation of either all-digital or hybrid scientific simulation programs. 

The HYTRAN e Monitor System is another parrtllel system of programs designed to 
provide digital computer assistance in the preparation and check-out of analog 
and hybrid computer programs. 

A unique feature of the EAI 8400 monitor systems is the modularity afforded by 
the exclusive dynamic relocatability of programs. The Executive section of 
the Standard Monitor is written to OCCIJpy absolute locations in a contiguous 
lower section of memory. The remainder of the St·andard Monitor and the 
Simulation and HYTRAN Monitors are composed of subroutines which are dynamically 
relocatable and hence may be called in or removed by the Executive. This means 
that sections are brought into core memory only as required and unneeded sections 
may be removed. The Monitors can be reor-ganized automatically to assume a 
minimum configuration in all cases, thereby optimizing user storage. Even 
though the Simulation and HYTRAN Nonitors and Debug Executive System may be 
called into play during executi.on, the 1. imi tat ion on memory size is a function 
of only what is needed and how efficiently it was coded. 

The 8400 Monitor Systems and the software they control are as follows: 

STANDARD MONITOR 

MACRO Assembler 84 1 • 
FORTRAN IV Compiler 84 2. 
Linking Loader 84 3. 
Debug System 84 4. 
Subroutine Library 84 

~ EAI Service Mark 

EAI NONITOR SYSTEMS 

SIMULATION MONITOR 

Linking Loader 84 
Debug System 84 
Subroutine Li brary 84 
Simulation Programs Group 
a. Hybrid Node Control 
b. Integration Control 
c. Function Generator Loader 
d. Hybrid Computer Set-up 
e. Hybrid Debug 
f. Hybrid Mnemonic Addressing 

HYTRAN MONITOR 

1. HYTRAN Programs Group 
a. Analog static check 
b. Analog report Generator 
c. Analog Equipment 

Check-out 



2-2 

2.1 STANDARD MONITOR SYSTEM 84 

The 8400 Standard Monitor consists of an Executive controller and ~ series of 
functional packages which perform a variety of tasks as requested by the 
Executive. The Executive is a non-relocatable (absolute) pro~ram which re5ides 
in a lower section of memory; the remainder of the Monitor which is dynamically 
relocatab1e is called into core when required and removed when no ·longer needed. 

The resident Executive controller occupies a minimum of memory space. Users 
of 8400 systems with critical memory restrictions may choose to ,operate without 
the Standard Monitor. In these cases, the functions of memory a:nd peripheral 
device storage allocation are handled by the programmer with the aid of the 
MACRO Assembler, FORTRAN Compiler, Relocatable Loader, and Subroutine Library. 

The functions of the resident Executive controller are as follows: 

1. Dynamic Storage Allocation at the request of the user or one of ,the 
Monitor Systems. 

This routine is responsible for loading programs via the Linking Relocatable 
Loader, assigning memory locations for the program or segments thereof, and 
designation of input-output devices. The generalized dynamic relocator known 
as DISPLACER, handles the moving of program segments in memory. The programmer 
guides the allocation of storage in accordance with the requirements of the 
p~oblem, but is freed from the necessity of assigning the specific core and 
peripheral storage layout. The coding of each problem is independent of the 
particular storage capacity of the 8400 computer ~eing employed and of any 
other program which might share memory during execution. 

The unique ability of the 8400, to displace programs in memory and have them 
remain executable and to allow symbolic references to memory locations using 
the symbol table, creates a system in which the programmer need have no 
knowledge of the specific location of programs or data. The translation~ of 
symbolic names into specific memory locations may be made either prior to or 
during program execution without affecting the user. 

2. System Loader 

The Standard Monitor System Loader is loaded by the Console Auto Load button; 
the System Loader in turn loads the remainder of the Monitor and the Linking 
Relocatable Loader and Debug System. 

3. Interrupt Direction for Monitor interrupt routines or user. 

4. Basic Housekeepi.ng Routines unique to hardware oriented activities of 
the 8400: 

Save and Restore subprogram 
Rapid Access File Control 
Internal Interrupt Processing 
External Interrupt Routing 



2-3 

5. Console Typewriter Input-Output Executive communication package. 

The Standard Monitor Modules perform the following additional functions, 
as required: 

1. Input-Output Routines and scheduling system for assignment, control, and 
monitoring of peripheral device activity. 

This 1/0 supervisor package calls from the subroutine library those 1/0 
formatting and control routines it requires. Device and channel initialization 
and control sequences are provided for. All peripheral devices are connected 
to the 8400 through one of its data channels. 

2. Push-Down Stack Control 

As discussed in the Relocatable Subroutine Library section, a portion of 
contiguous upper memory is set aside by the Standard Monitor for storage of 
in-process data as required by recursive programming. This system routine 
"STACK" insures that the stack does not interfere with other programs, and 
handles corrective procedures in the case where the recursive stack becomes 
temporarily overflowed or erroneously emptied. The stack itself is dynamically 
relocatable and may be shifted about in core when other operating programs 
compete for the space. 

3. System Dump subprogram for producing relocatable outputs from memory to be 
re-loaded by the System Loader. 

4. COMPAT and EXEC protect interrupt routines. 

5. A Control Statement Analyzer which accepts commands from any external 
device (console typewriter, control card, paper tape, etc.) and performs 
various functions such as: 

a. Loading other programming systems (i.e. FORTRAN IV, MACRO Assembler, 
Linking Relocatable Loader). A subroutine library search may be 
performed at the request of the loader to bring in additional progr~m 
segments. 

b. Loading other monitors (Simulation or HYTRAN monitors, Debug 
Executive) • 

c. Deleting segments of program andlor data. 

2.2 SIMULATION MONITOR SYSTEM 84 

The Simulation Monitor is called into the system by the Standard Monitor 
Executive System Loader and replaces or supplements the relocatable modules 
of the Standard Monitor System. The Simulation Monitor relieves the programmer 
of a series of generalized tasks associated with operation and control of 



2-4 

real-time digital or hybrid simulation problems. In so doing, the Simulation 
Monitor controls the Simulation Programs Group, discussed separately. The 
primary functions performed are: 

1. Hybrid lvIode Control 
2. Integration Control 
3. Function Generator LOpder 
4. Hybrid Computer Set-Up 
5. Hybrid Debug 
6. Hybrid Mnemonic Addressing 
7. Dual Processor Control 
8. Program Loading and Execution 
9. Digital Computer Debug 

The loading, debugging, and execution of programs is handled in the same way 
as the Standard Monitor System. The Linking Relocatable Loader and 
Debug System are called in as required. 

The Dual Processing Executive routine of the Simulation Monitor permits the 
time sharing of the 8400 by the hybrid system and other 8400 users. Between 
"operate" periods· of the hybrid computer, the 8400 may be used for assembly, 
compile, checkout, or execution of other programs. These operations are 
interrupted whenever the real-time problem resumes, bITt- continue when the 8400 
is again available. 

Like the Standard Monitor, the Simulation Monitor is dynamically relocatable. 
Only those portions of the monitor required for each phase of problem solution 
are retained in core. 

2.3 HYTRAN MONITOR SYSTEM 

The HYTRAN Monitor System is called in by the Standard Monitor Executive 
System Loader on an operator request. It controls the HYTRAN Programs Group, 
a family of meta-programs to provide digital computer assistance in the 
programming of an analog system. The scaling of the physical eq'.lations and 
the preparation of the computer diagram are still performed by the programmer 
who thereby maintains direct control over the analog implementation of the 
problem. In order to permit calculation of theoretical static check values, 
HYTRAN also must be given the original problem statement and a set of test 
initial conditions. Additional data, including patching information, com­
ponent setting or modes, highest derivatives, and any other expressions 
representing other appropriate component outputs must be provided as well. 
In this way, the necessary rapport between the programmer and the machine is 
kept. Figure 2.3-1 shows the steps required to program an analog program 
with the HYTRAN System. 

Program input is punched on paper tape in an analog-oriented language compatible 
with the 8400 Digital Computing System. The HYTRAN System then computes 



2-5 

potentiometer settings, and both a physical and voltage static check which 
are tested for consistency. Complete documentation of the analog program 
is produced (including potentiometer, amplifier, and cross-reference sheets 
as automatic pot--setting and static test tapes). An On-Line Diagnostic 
Generator checks measured static check voltages against the analog circuit 
diagram and the specifications of the analog -components, providing a rapid 
means of locating patching errors or component failures. HYTRAN Outputs 
are shown in Figure 2.3-2. 

The HYTRAN Monitor and HYTRAN Programs Group requires an 8400 System with 8K 
of core memory. With an 8K core, each program can be contained in memory and 
enough data storage is still available to process an analog computer program 
requiring three one-hundred and twenty-amplifier systems. In general, there 
are no special requirements on the analog computing system(s) since the 
programs cover a wide range of component configurations. 



SCALE I 

EQUATIONS I 

, I 

I 

V I 
I 

DRAW I 

DIAGRAM 

~ p 
V 

PATCHING 
I 

MANUAL I 
OPERATIONS: 

-:) -

. -
~ -

OFF-LINE COMPUTE 
CHECK V PARAMETERS 

ON-LINE r-
CHECK ~ 

HYTRAN 
OPERATIONS 

V 
COMPUTE 

POT-
SETTINGS 

, 
V 

SET 
POTS 

PROGRAMMING AN ANALOG PROBLEM WITH HYT RAN 
FIGURE 2.3-1 

PROBLEM 
STATEMENT 

DIAGRAM 
CHECK 

8400 
HYTRAN 

HARDWARE 

DIAGNOSTICS 

PROGRAM 
DOCUMENTS 

OUTPUTS OBTAINED FROM THE HYTRAN SYSTEM 
FIGURE 2.3-2 



3.0 8400 PROGRAM PREPARATION SOFTWARE 

3.1 MACRO ASSEMBLER 84 

3.1.1 Introduction 

The &AI 8400 MACRO Assembler 84, running under the control of the Standard 
Monitor provides the user with all 8400 machine operations as well as an 
extensive set of pseudo-operations. The coding procedures are based upon 
the IBM 7040/7044 MAP and 7090/7094 FAP assemblers to ensure programming 
familiarity with the techniques involved and the conventions and symbolism 
employed. Its specifications start with MAP and FAP but go well beyond 
in taking advantage of the special hardware features of the 8400 and in 
ensuring suitability for high efficiency and real-time progra~~ing. 

The assembler is interruptable and cnn be used in a real-time environment. 
Included in the assembly lRnguage 3~e special features for real-time and 
hybrid computation such as: ability to call re-entrant subroutines, 
special TIME and DELAY pseudo·operations for estimation of execution times 
(which are printed on the output listing), and the generation of real-time 
delay intervals. 

The assembler is modularly designed to permit packaging for any customer's 
specific configuration of memory size and access equipment. An assembler 
package contains the basic assembler and has access to the special purpose 
input, input formatting, output, and output formatting routines contained 
in the Standard Monitor to tailor the assemble~ to each system's hardware 
environment. Any combinati.on of the following peripherals is possible. 

Output 

Paper Tape Paper Tape 

Punched Cards Punched Cards 

Magnetic T8pe Maenetic Tape 

Typ;~wri ter Typewriter 

Line Printer 

3.1.2 Characteristics 

The EAI MACRO Assembler 84 requires an 8400 System with 8192 words of 
core memory, and assembles programs in two passes of the source program 
at a rate of 300-500 statements per minute. 

There are more than forty-five Pseudo-Operations available, which allow 

3-1 

the programmer to communicate with and control the assembly process. These 
include: location~counter control, named relocatable common storage control, 



data generation options, external and entry relocatable symbol definition, 
literal pool positioning control, macro definition operations, conditional 
assembly control, listing control, and binary output format control. 
Figure 3.1.2-1 lists the Pseudo-Operations provided. 

Macro-Operations allow the repetitive insertion in the source program by 

3-2 

the assembler of a sequence of instructions either written by the programmer 
or defined by system conventions (system macros). The macro-definition 
pseudo-instructions define the macro sequences and control their use. 
The 8400 Macro Assembler is oriented toward macro-operations and includes 
provision for iterative sequences with variable parameters. 



LOCATION COUNTER 
USE 
ORG (with BEGIN and USE option) 
RP.SUME 

DATA GENERATION 
DATA 
BCI 
ASC 
VFD 
DUP 
BCD 

STORAGE ALLOCATION 
COMMON (named; relocatable) 
BSS 

SYMBOL DEFINITION 
EQU 
SYN 
SET 

LITERAL POOL POSITION 
LITORG 

CONDITIONAL ASSEMBLY 
1FT 
IFF 

OPERATION DEFINITION 
OPSYN 

MACRO-RELATED 
MACRO 
ENrM 
IRP 

LINKED RELOCATION CONTROL 
ENTRY 
EXTERN 
LINK 
AUTO (i.e., ABS) 
REL 

LISTING CONTROL 
SPACE 
EJECT 
TITLE 
PMC 
INDEX 
UNLIST 
LIST 

3-3 



ASSEMBLY CONTROL 
REM 
END 
MORE 
ARG (i.e., PZE, PSV, MZE, MSV, etc.) 

REAL-TIME PROGRAM ASSISTANCE 
SETIME 
UPTIME 
DELAY 

BLOCK EXEC BIT SETTING 
EXEC 

MACRO ASSEMBLER 84 PSEUDO - OPERATION LISTING 

Figure 3.1.2-1 

3-4 



Many programming applications involve a repetition of a sequence of 
instructions, generally with variations in parameters at each iteration. 
Using the macro-definition pseudo-operations, a programmer can define 
this sequence as a macro-operation, indicating in the definition which 
arguments are variable. The variable arguments can appear in any field 
of any of the instructions within the sequence. Up to 63 variable argu­
ments are permitted, and each parameter substituted for an argument can 
be up to 56 characters long. 

Macro-operation definitions can be nested. That is, a macro-operation 
definition can be entirely included within the range of another higher­
level macro-operation definition. This is extremely useful for defining 
new macros or redefining existing ones with a single instruction. There 
is no significant limit to the depth of nesting allowed. 

The MACRO Assembler 84 produces a relocatable binary output compatible 
with the Standard Monitor, the linking Relocatable Loader, EAI 8400 
FORTRAN IV programs, and the Subroutine Library. All provisions for 
relocation and linking are included in the assembler output. The EXTERN 
pseudo-operation allows the symbolic names of external subroutines and 
memory locations to be declE-red. The ENTRY pseudo-operation allows a 
program to declare symbolic names within it that can be external names 
to some other program. The COMMON pseudo-operation allows named blocks 
of common storage to be set up. As an option, the assembler produces 
an absolute binary output (AUTO pseudo-operation) in a format suitable 
for loading under the control of the 8400 Console Auto-Load System. 

During assembly, a location counter is used to determine the next location 
to be assigned to an instruction. The Macro Assembler 84 provides 16 
location counters which are controlled by the programmer by using various 
location counter pseudo-operations. He can use as many of the 16 location 
counters as desired and transfer control back and forth among them. This 
allows instructions to be listed in a sequence useful for documentation 
and loaded into memory in a different sequence for execution. 

Symbolic language updating, usually a separate program, is combined into 
the first pass of the assembler, eliminating a special pass of the program 
for symbolic correction. The updater is engaged by a sense switch option. 
Corrections can be given on a tape preoared off-line or by the operator 
through the on-line typewriter. The number of corrections is limited 
only by the available memory for the assembler's single process table. 
~~o basic updating operations are provided: omit and insert. Any 
necessary duplication of correct records prior to the point of omission 
or insertion is automatically provided. 

Limited retrospective correction is possible, allowing the operator to 
return to a point which has already been processed and start anew from 
there. The update system provides clerical testing of all statements, 

3-5 

and offers the operator the opportunity of making corrections where errors 
are not known to exist. The updating process provides a corrected symbolic 
tape as output, and a journal of corrective action on the typewriter. 



3-6 

The assembler produces an assembly listing properly annotated with error 
and warning indications. The set of error and warning messages is exten­
sive, and designed to give the programmer the,maximum amount of information 
concerning the nature of the irregularity discovered by the assembler. 
Assembly always proceeds to the end of the program, resulting in complete 
diagnostics on all source statements. An alphabetically arranged inde~ 
of symbolic names and corresponding memory locations is optionally printed. 
Pseudo-operations allow controlling titles and spacing on the listing, or 
the suppression of the listing process. 

Included in the binary-program output is a table of all symbolic names 
used in the program together with information about the nature of the program 
word to which the symbol is assigned. This table is optionally loaded into 
memory at execution time to allow symbolic debugging of the program or a 
symbolic disassembly dump (discussed in Debug System 84 section). 

Flexible means are provided to specify any of the following types of con­
stants: symbolic addresses; octal, hexadecimal, decimal integers; fixed­
point and floating point numbers; and BCD, Bel, and ASCII interchange codes. 

In addition to the 16-bit half-word literals (immediate operands) permitted 
by the 8400 hardware addressing system, the assembler allows 32-bit or 
64-bit tlmultiple precision" literals. Such numeric constants, preceded by 
the equal sign (=) in symbolic machine instructions, are automatically 
pooled into a constant store with no duplication, and are referenced by 
proper addresses automatically inserted in the machine instructions. 

Any symbol which is undefined within the program is automatically assigned 
a memory location within this literal poo1,_ The programmer can often 
correct the oversight by placing in the assigned location a constant or 
transfer instru~tion that sends control to the proper point in the program. 
Automatic assignment also means that programmers do'not have to defi~e 
temporary storage for one word quantities, since the assembler will do this 
automatically. 

The EQU pseudo-operation is designed so that o;:;ymbols used in it do not 
have to be previously defined in the program,. This often is a common 
restriction of other assembly programs giving rise to many errors. 

System Organization 

The modular construction of the assembler and its relationship to the 
Standard Monitor I/O package provide wide flexibility in tailoring the 
assembler to the 8400 main frame and available peripheral equipment. The 
incorporation of input/output control and formatting routines in the 
Standard Monitor simplifies the assembler and FORTRAN IV Compiler, and 
standardizes I/O transfer operations. The entire basic assembler is organized 
into separable packages. ,Any package can be replaced or modified to change 
or improve its operation without affect on other packages. Each pseudo­
operation analyzer is independent, allowing new analyzers to be easily 
incorporated as the need for them arises. System macro routines may be 
added as the need for them arises. 



To allow users flexibility in the use of the assembler) certain 
"configuring" constants are held in knotro locations. These can be changed 
by an assembler correction process, or by the Standard Monitor, to handle 
different memory sizes, data channel assignments, tape handler assignments, 
and similar other parameters. 

3-7 

The assembler uses only one process table whose space is shared by program 
symbols, operation codes, numeric literals, update information, macro 
skeletons, and macro parameter lists. This allows memory to be fully 
utilized according to the needs of the specific program with no arbitrarily 
assigned space lying in disuse. The algorithms used to construct the 
process table allow for maximum speed of insert and lookup operations, often 
faster than would be a binary search. 

The size of the assembly program is kept to a minimum by designing analyzer 
and scan functions so that they are used in both assembly passes. Full use 
is made of table-driven techniques which take full advantage of the powerful 
8400 instruction repertoire) especially the logical operations. It is 
estimated that about 30% space saving in the assembler results from these 
techniques and the power of the instruction set. 

Every major package in the assembler contains a data tY'ord specifying the 
release date and revision number of the package which serves as a check 
that the most up-to-date versions have been incorporated into the assembler. 

The assembler is designed to be operated in a real-tIme environment and may 
be interrupted at any time during the assembly process. All coding sequences 
employed in the assembler itself are self-initializing to ensure correct 
continuation when control is returned after int.erruption. 

Off-Line Sym~~lic Assembler and Updater 

EAI has developed an 8400 Simulator and Assembler known as the Phantom 
Assembly Program (PHAP). It is designed to run on the Pacific Data Systems 
(EAI Subsidiary) PDS 1020 Digital Computer (4K version), which is an in­
expensive stored program machine. It operates in three passes, the first 
of which is merged with an updating program. An error report is produced 
during the first pass and the output assembly language listing and 8400 
Auto Load object tape during the second pass. The normal limit to the number 
of symbols per assembly is 256, although this can be increased to 384 by 
an assembler revision. Many assembly language programs can be corrected 
and assembled off-line with this auxiliary computer. 

3.1.3 Coding Procedures 

Symbolic Instruction Format 

The commonly accepted IBM 7040/7044 MAP and 7090/7094 FAP source language 
format is used, consisting of three parts: 

1. The Label Field (columns 1-6) contains the definition of a symbolic 
address. Up to six alphanumeric characters are allowed. This field may 
be left blank. 



2. The Operation Field (columns 8-14) contains the mnemonic machine 
operation codes, control pseudo-operation codes, or programmer macro­
operation codes. For any machine instructions an asterisk (*) can 
appear in this field, indicating indirect addressing. 

3-8 

3. The Variable Field (columns 16-72) contains expressions for assigning 
storage addresses, index registers, count fields (if applicable), and EXEC 
bit control settings for 8400 machine instructions, or suitable expressions 
for pseudo-operations. Subfields are separated by commas. An equal sign 
(-) before an address sub field indicates immediate (operand) addressing. 

The termination of the variable field is signalled either by reaching 
column 72, or by finding three consecutive blank characters. Any information 
beyond the te~ination of the variable field is treated as a programmer 
comment. 

Up to two blank characters can be in.terspersed anyWhere in the Variable 
Field to improve readability. (Blank characters anywhere in the Label 
Field and Operation Field are ignored.) 

The variable field for any type of information (except a binary-coded 
character constant) can be continued starting in column 16 of the next 
card (i.e., record). This is signalled by the presence of a left paren­
thesis followed by three blank characters, or a combination of left 
parenthesis followed by two, one, or no blanks ending in column 72. 
There is no limit to the number of continuations that can be made. 

Any statement with an asterisk (*) in column 1 is treated entirely as 
a programmer comment and is included on the output listing. 

Expressions 

The programmer writes expressions to represent the subfields of the 
variable field of a symbolic instruction. Expressions may be used in 
the address, index register, and count portions of the variable field. 
Expressions are also used in certain pseudo-instructions. 

The smallest component of an expression is an element, which is a single 
symbol or a single integer less than 216 The asterisk (*) is a special 
element, defined to mean the address of the instruction in which the 
asterisk appears ("here"). 

A ~ consists of one or more single elements, connected by multiplication 
and division operators: 

* (multiplication) 

II (division) 

An expression consists of one or more single terms connected by addition 
and subtraction operators, or logical operands (AND, OR, exclusive OR) 

+ (addition) 

(subtraction) 



** (logical AND) 

++ (logical OR) 

(logical EOR) 

Expressions for addresses can contain a slash (I) to indic,ate which half 
of the word is desired. SAM/ indicates left half whereas ISAM indicates 
the right half of the word at symbolic location, SAM. 

3-9 

The expressions ** or •• are commonly used to designate a field whose value 
will be computed and inserted by the program. The expression ** is relo­
eatable and of zero value. The expression •• is absolute and of zero value. 

Data Items 

Data Items are defined using the DATA pseudo-operation. They may also 
be used in literal form in a symbolic instruction if,preceded by an equal 
sign (=). 

A data description containing a slash (I) defines the contents of each 
half (16 bits) of a data word. The portion of the description to the 
left of the slash defines the contents of the left half of the word. The 
portion to the right of the slash defines the contents of the right half 
of the data wor,d. Thus, the description 2/7 results in a data word as 
follows: +00002+00007. If no slash is used, a full word is defined. A 
slash is not permitted if the literal is prece~ed by an equal sign. 

'Decimal Integer is a string of digits from 0 to 9 which may be preceded 
by a plus or minus sign. The maximum value for a full word is 230 - 1. 
Integer binary scaling is assumed in order to produce a number less than 
unity. 

-3x2- l5 1 27x2- l5 

27lx2- 30 

lJecimal Integer 

-3/27 

271 

Internal Octal 

-77775+00033 

+00000+00417 

Decimal Fixed-Point Number is a string of digits from 0 to 9, which may be 
preceded by a plus or minus sign, and may be written with or without a 
decimal point, and is always followed by a scale indicator, B, followed by 
a signed or unsigned integer. The maximum length for a full word is 10 
digits. The scale factor, after B, specifies the location of the implicit 
binary point within the data-word. The value of each number must be less 
than unity. 

Value 

7.5x2- 3 I 6x~-~ 

-7x2- l6 

Decimal Fixed Point Format 

7.5B3/6B9 

-7B16 

Internal Octal 

+74000+00600 

-77774-40000 



3-10 

~al Floating-Point Number is a string of digits from 0 to 9, which may 
be preceded by a plus or minus sign, and may be written with or without 8 

decimal point, and is usually followed by an exponent indicator, E or EE, 
followed by a signed or unsigned integer. The E indicates single-precision, 
and EE double-precision. The resulting binary number is normalized (i.e., 
minimum binary scaling is assumed in order to produce a number less than 
unity). The exponent is a power of ten by which the number is multiplied 
during conversion. 

The scale indicator, B, followed by a signed or unsigned integer can be 
included to override the assumption of minimum binary scaling (i.e., to 
give a scale for an unnormalized number). If no B appears in the number 
and there is a decimal point, the E or EE can be omitted. 

The maximum length for a double-precision number is 16 digits. 

Value 

2.67 5x2- 2 * 
2.675x2- 2 

2.675x2- 2 

2.675x2- 7 

2.675x2- 2 

Decimal Floating Point 

2.675 

.2675El 

2675E-3 

26.75E-1B7 

267.5EE-2 
*The minimum (normalized) binary scale of 2.675 is 2-2. 
Octal Integer is indicated by an apostrophe (') followed by a plus, minus 
or no sign, then by a string of digits from 0 to 7. Maximum size is 12 
characters including sign. The sign indicates the setting of the high- 1 
order bit of the data-word or half-word and has no algebraic meaning. How­
ever, if the apostrophe (') is preceded by a minus sign, the two's-complement 
is formed. 

Octal Integer 
'17/'-7766 
'-7766 
/-'12 

Internal Octal 
+00017-07766 
-00000+07766 
+00000-77766 

Hexadecimal Integer is indicated by a double apostrophe (ft) followed by a 
string of digits from 0 to 9, or letters A to F (representing 10 to 15) or 
a combination of these. Maximum size is 8 characters. If the double apos­
trophe (") is preceded by a minus sign, the two's complement is formed. 

Hexadecimal Integer 
"A7l"2A 
"A72A 
/-"2A7F 

Internal Hexadecimal 
OOA7002A 
OOOOA72A 
OOOOD581 

Binary-coded Character Constants of four or more 8-bit characters are formed 
using the BCI and ASC pseudo-operations. This kind of constant of one to 
four characters can also be indicated by preceding the constant with an apos­
trophe (') and following the constant with an apostrophe ('). Blank charac­
ters are added on the right to fill out a data-word or half-word. Truncation, 
if necessarY,occurs on the right. 



Binary-coded Characters 
'A' / 'OB' 
, ABC' 
/'ABen l 

Internal (b=blank character) 
AbOB 
ABCb 
OOAB (with warning) 

Symbolic Constants are names of memory locations in a program. The relo­
cation mode of a data-word or half-word is determined by the relocation 
mode of the symbol. Right-half word relocation causes a warning flag. 
Negative relocation is an error. 

Certain reserved symbols (of the form .xxxxxx) represent system constants 
for input, output, and executive communication. These are recognized by 
the assembler. 

Let SAM be relocatable octal 2776, and .LA82 be a system constant. 

Symbolic Constant 
SM1/ 
SAM 
-SAM/ 
.LA82/ 

Mixed Data Definitions 

Internal Octal 
+02776+00000 
+00000+02776 (with warning) 
+00000+00000 (with error flag) 
appropriate system constant 
is inserted. 

In definitions containing a slash (/) the definition of the right-half 
word is completely independent of the definition of the left-half. Some 
examples are shown: 

SA~1+2 / ' OK' 

-1-2766/56B9 

2/"A7C2 

EXEC Bit Setting 

The assembler can cause EXEC bits to be set in the binary output. 

To indicate an EXEC bit setting, the programmer writes one or the other of 
the system symbols, .E or .NE, followed by a slash (/), followed by one or 
the other of the system symbols, .E or .NE • 

• E means "set the EXEC bit", .NE meanS "do not set the EXEC bit"; the 
slash (/) separates the spectification of left and right EXEC bits of the 
word. 

EXEC specification EXEC bit setting 
LEFT RIGHT 

.NE/.NE 0 0 (assumed if no EXEC 

3-11 

specification is given) 

.NE/.E 0 I 

.E/.NE 1 0 

.E/.E I 1 

EXEC bits can be set for an entire block using the EXEC pseudo-operation. 



3-12 

3.2 FORTRAN IV COMPILER 84 SYSTEM 

The EAI 8400 FORTRAN IV System running under control of the Standard Monitor 
will accept and interpret the IBM 7090/7094 FORTRAN IV Language (See IBM 
Systems Reference Library) which is a compatible subset of EAI FORTRAN IV 84. 
The proposed ASA Standard FORTRAN IV Language (Comm. ACM, Oct. 1964) is also 
a subset of the 8400 FORTRAN IV. 

3.2.1 Introduction 

The 8400 FORTRAN IV requires an 8400 System with 8192 words of core memory. 

The minimal I/O equipment configuration consists of paper tape reader, paper 
tape punch, and an on-line typewriter. Additional access devices which may 
be used are as follows: 

Input 

Card Reader 
MBgnetic Tape Transport 

Output 

Line Printer 
Card Punch 
Magnetic Tape Transport 

EAI FORTRAN IV 84 is designed to compile programs of up to 2000 source 
statements in one pass at a rate of 300-500 statements per minute. Internal 
Load-and-Go capability under control of the Standard Monitor will be avail­
able on machines having more than 8K of memory. 

The compiler is interruptable and can be used in a real-time environment. 
Included in the language are special features for real-time and hybrid com­
putation such as: recursive subroutine library, compilation of user-defined 
recursive subroutines, complete mixed-mode capability in expressions and 
assignment statements, extended logical operations implemented by means of 
Boolean connectives, TIME and DELAY statements for estimation of execution 
times and generation of real-time delay intervals, and in-line assembly 
language type statem~nts which make all special 8400 hardware instructions 
available to the FORTRAN IV programmer. 

3.2.2 Characteristics 

The sizes of all constants allowed on the 8400 FORTRAN are identical to 
those employed on 7090/7094 FORTRAN; truncation is performed by the compiler 
as necessary_ In accordance with standard 8400 word lengths, the following 
constants are used: 

Integer - 1 to 5 decimal digits 
Extended (Double Precision) Integer - 1 to 10 decimal 

digits (Not available on 7090/7094 FORTRAN IV) 
Real (Standard precision Floating-Point) - 1 to 8 

significant decimal digits 
Double Precision (Floating-Point) - 1 to 16 significant 

decimal digits 
Complex (ordered pair of Real constants) 
Logical - True or False 



Source Statements permissible in 8400 FORTRAN IV include 7090/7094 
compatible Input/Output control and Format statements (Figure 3.2.2-1). 

The 8400 FORTRAN IV System has features that increase the suitability of 
FORTRAN programming for Real-Time problem solving and take advantage of 
the special hardware capabilities of the 8400. 

1. Mixed Expressions Integers and logical variables will be automatically 
floated when mixed with Real and Complex variables; Extended Integers will 

3-13 

be floated by open subroutine. Free intermixing of Extended, Integer, and 
Logical variables takes place without conversion because of the word formats 
in the 8400. In the evaluation of relationships using the logical operators, 
"Greater Than", "Less Than", etc., full mixed mode capability is allowed 
between the Integers, Extended Integers and Logicals with the Real forms. 
In Arithmetic Statements a comprehensive mixed mode capability is allowed 
in replacement since Logical values are easily converted to Real and Real 
to Complex. In Figure 3.2.2-2 below, Y indicates a valid statement, N shows 
an invalid statement. 

(See page 3-15 for Figure) 



EAI FORTRAN IV SOURCE STATEMENTS 
Fig.3.2.2-1 

ARITHMETIC 
Arithmetic Assignment Statement 
Logical Assignment Statement 

CONTROL 
Unconditional GO TO 
Computed GO TO 
Assigned GO To 
ASSIGN 
Arithmetic IF 
Logical IF 
DO 
CONTINUE 
CALL 
RETURN 
STOP 
PAUSE 
SET TIME 
UPDATE TIME 
DElAY 
SAVE 
RESTORE 

INPUT-OUTPUT 
FORMAT 
READ 
PRINT 
PUNCH 
WRITE 
ENDFILE 
REWIND 
BACKSPACE 
ACCEPT 
TYPE 

DECLARATIONS 
SUBROUTINE 
FUNCTION 
Arithmetic Function Definition Statement 
BLOCK DATA 
DATA 
INTEGER 
REAL 
COMPLEX 
LOGICAL 
DOUBLE PRECISION 
DIMENSION 
CO:t-lMON 
NAMED COMMON 

EQUIVALENCE 
EXTERNAL 

3-14 



Left 
Side 

of 
.Equa 1 
Sign 

Right Side of Equal Sign 

~xpreSSion 
Double 

VariAble '\ Real Integer Extended Complex Precision Logical 

Real y Y Y N Y y* 
Integer y Y Y N Y y* 
Extended Y Y y N Y y* 
Complex y* y* y* y y* y* 
Double-
Precision y Y Y N Y y* 
Logical y* y* y* N y* Y 

* - Compiler flags statement as "mixed-mode" 

Fig. 3.2.2-2 

2. Unlimited number of dimensions in arrays of subscripted variables: 

3. floating point incrementing in DO loops. 

4. Improved input-output conversion capabilities 
(1) A method for specifying Hollerith strings without 

counting is included. 
(2) On data input from paper tape, commas.may be used 

for terminating the data field to eli-minate unnecessary 
punching of leading blanks. 

5. Expressions for control values, I/O units and DO parameters. 

3-15 

6. Extended logical operations, implemented by means of Boolean arithmetic, 
with proviSions for octal constants. Definition of Signed octal con­
stants is provided through a special format. Signed octal strings may 
be used in integer definitions. Example: 

I = '7765 (integer) 
E = '7723411177 (extended integer) 

This facilitates the creation of masks for Boolean operations. Other 
logical operators such as EOR (exclusive or), EQV (equivalence), IMP 
(implication), NAND, NOR, are provided since these instructions are part 
of the 8400 repertoire. 

7. ~bo~ table can be output as part of the FORTRAN compilation. 
This tab~e is used in conjunction with disassembly and symbolic debugging 
features being provided the user. A symbol table "edit and dump" post­
compilation program is used to produce the symbol table. 

In addition to symbolic debugging (see Debug System 84 section), the 8400 
FORTRAN IV provides a special optional in-line "TRACE" mode. Here the user 



specifies that all computed variables (i.e., FORTRAN, any variable 
found on the left hand side of an equation) be output at execution time 
in a format equivalent to: 

VARIABLE = (value in spec.ial format) 

3-16 

This option is chosen during compilation and ~ instructions are generated 
in the translation process to cause these printouts. At execution time the 
output can be suppressed by sense switch control, but the instructions re- . 
main. 

8. The 8400 allows arithmetic operations to take place on 30 bit signed 
integers and they will be allowed to be declared. These are "double precision" 
integers and are declared as, EXTENDED INTEGER. 

9. The insertion of a full complement of valid mnemonic machine coded 
sequences between FORTRAN statements is permitted. These in-line assembly 
language instructions are flagged by the programmer by an .. s .. preceding 
the statement and are translated by an assembler program in the compiler. 

10. Each compiled statement or block of statements will output on the 
listing, a calculated ti~e estimate based on fixed rules of the execution 
time for that statement or block. SET TIME, UPDATE TIME, and DELAY state­
ments are included for hybrid computational processes which require program 
timing. A timing block is defined to be those statements bounded by SET 
TIME and/or UPDATE TIME statements. The DELAY stat~ment is used to synchro­
nize the program to real time. These statements are equivalent to those 
provided in the Symbolic Macro Assembler for the same purpose. 

Other features of the 8400 FORTRAN IV System are: FORTRAN generated 
assembly language output listing. Dump, Partial Dump and Trace debugging 
at execution time and Link capability for "chain" processing. 

3.2.3 FORTRAN System Organization 

The EAI FORTRAN IV Compiler 84 System is a complete integrated programming 
system consisting of: 

Compiler 
Relocatable Loader 
Object Time Package 
Subprogram Library 

These systems completely equip the EAI 8400 to compile t load and execute 
FORTRAN IV programs in real time. 

The Compiler 

The conversion from source program to relocatable binary object program 
is accomplished in one pass by the compiler. A main program and any 
number of subprograms may be compiled in sequence without compiler reloading. 
The object programs are then processed by the loader. Required library 
subprograms are loaded. The object time package is called into memory, 
and execution is initiated. 



3-17 

During compilation, statements found to be in error are discarded. Both 
syntax errors, such as missing parentheses and semantic errors, such as 
misused identifiers, are noted. An error message consists of the state­
ment in its original form with the erroneous phrase or character under­
marked by a $ sign. This is followed by a ,comment indicating the type of 
error. Illegally nested DO loops, undefined or multiple-defined statement 
numbers, and memory allocation conflicts are summarized at the end of the 
program listing. 

Compilation always proceeds to the end of the program, resulting in complete 
diagnostics. In general, the diagnostics are superior t.o those of commonly 
used compilers. 

The Relocatable Loader 

The loader places the compiler output into memory in a form suitable for 
execution. The FORTRAN IV Relocatable Loader is identical to the Relocatable 
Loader 84 (discussed separately), thus ensuring loading compatability of 
compiler and assembler object codes. 

Object Time Package 

The object time package provides the computer with the capability to 
execute object programs. It includes all routines of compiler origin 
such as double precision arithmetic routines, and input-output conversion 
and format scanning routines. 

Subprogram Library 

The standard Intrinsic and External Functions indicated in Fig. 3.2.2-3 
and Fig. 3.2.2-4 are included in the subprogram library. The External 
Functions are written in FORTRAN IV and will be compiled to produce a 
library tape for subsequent object program executions. The Intrinsic 
Functions are written in EAI 8400 Assembly Language and may be used in­
dependent of the FORTRAN IV. 

Because a program may be used in a real-time environment where subprograms 
may operate under interrupt control, the subroutines for the library allow 
recursive entry if they can be loaded only once by the FORTRAN Loader. 
The user has the option of loading recursive subroutines (once) and their 
non-recursive written counterparts (more than once) by an appropriate 
notation in the compiler statement which alerts the loader. 

3.2.4 System Design 

The 8400 FORTRAN IV compiler is designed to be operated in a true multi­
level priority interrupt processing environment. By utilizing a general 
method for saving the registers, temps, and intermediate results of the 
object time package, the compiler is able to have control taken from it 
and correctly resume when control is returned. All subroutines used within 



the translator itself are self-initializing - that is, the first time 
they are entered any necessary presetting of switches, instructions, 
temporaries, etc. is perfo~ed. No-time-dependent (non-interruptible) 
sets of instructions are included. 

Console switch settings may be changed at any time. All binary tapes 
consist of check summed blocks. Reading routines check all tape dependent 
stores to prevent destruction of good information and to allow full re­
covery from reader failures. 

The entire system is designed to be tolerant of input-output and operator 
errors. 

All I/O will be taken care of in closed subroutines incorporated in the 
Standard Monitor 84, thereby making FORTRAN programs independent of Access 
Device configurations. 

3-18 



3-19 

Intrinsic Function Symbolic 
Name 

Type of 

Agrument Function 

Absolute Value ABS Real Real 
!ABS Integer Integer 
DABS Double Real Double Real 
CABS Complex Real 
DCABS Double Complex Double Real 

Truncation AINT Real Real 
INT Real Integer 
I DINT Double Real Integer 

Remaindering AMOD Real Real 
MOD Integer Integer 
DMOD Double Real Double Real 

Choosing Largest Value AMAXO Integer Real 
AMAXl Real Real 
MAXO Integer Integer 
MAXI Real Integer 
II1AXl Double Real Double Real 

Choosing Smallest Value AMINO Integer Real 
AMINI Real Real 
MINO Integer Integer 
MINI Real Integer 
WINI Double Real Double Real 

Float FLOAT Integer Real 

Fix IFIX Real Integer 

Transfer of Sign SIGN Real Real 
ISIGN Integer Integer 
DSIGN Double Real Double Real 

Positive Difference DIM Real Real 
IDIM Integer Integer 

Obtain Most Significant SNGL Double Real Real 
Part of Double PrecisiOJ CSNOL Double Complex Complex 
Argument 

FORTRAN IV INTRINSIC FUNCTIONS 

FIG. 3.2.2-3 



3-20 

Intrinsic Function Symbolic Type of 
Name 

Argument Function 

Obtain Real Part of Com- REAL Complex Real 
plex Argument DREAL Double Complex Double Real 

Obtain Imaginary Part of AIMAG Complex Real 
Complex Argument DIMAG Double Complex Double Real 

Express Single Precision DBLE Real Double Real 
Argument in Double CDBLE Complex Double Complex 
Precision Form 

Express Two Real Argu" CMPLX Real Complex 
ments in Complex Form DCMPLX Double Real Double Complex 

Obtain Conjugate of a CONJG Complex Complex 
Complex Argument DCONJG Double Complex Double Complex 

FIG. 3.2.2-3 (cnot.) 



3-21 

Symbolic 
Type of 

External Function Name Argument Function 

Exponential EXP Real Real 
DEXP Double Real Double Real 
CEXP Complex Complex 
OCEXP Double Complex Double Complex 

Common Logarithm ALOGIO Real Real 
DLOGlO Double Real Double Real 

Natural Logarithm ALOG Real Real 
DLOG Double Real Double Real 
CLOG Complex Complex 
DC LOG Double Complex Double Complex 

Trigonometric Sine SIN Real Real 
'DSIN Double Real Double Real 
CSIN Complex Complex 
DCSIN Double Complex Double Complex 

Trigonometric Cosine COS Real Real 
DCOS Double Real Double Real 
CCOS Complex Complex 
DCCOS Double ,Complex Double Complex 

Hyperbolic Tangent TANH Real Real 

Square Root SQRT Real Real 
DSQRT Double Real Double Real 
CSQRT Complex Complex 
DCSQRT Double Complex Double Complex 

Arctangent ATAN Real Real 
DATAN Double Real Double Real 
ATAN2 Real Real 
DATAN2 Double Real Double Real 

FORTRAN IV EXTERNAL FUNCTIONS 

FIG. 3.2.2-4 



4.0 8400 PROGRAM LOADING AND RELOCATION SOFTWARE 

The normal program loading sequence for the 8400 is, as follows: 

1. Standard Monitor Executive (including System Loader) is put into 
core memory by the Console Auto Load system. 

2. The System Loader then loads the remainder of the Standard MOnitor 
(or other monitor system) and the Linking Relocatable Loader 84. 

3. The Linking Relocatable Loader performs the basic operations of 
loading relocatable MACRO Assember and/or FORTRAN IV object (binary out­
put) taped programs in memory, scanning the subroutine library tape auto­
matically for standard subroutines, and creating linkages between the 
subroutines and the main program. The Relocatable Loader includes the 
option of mapping the relocation bits into the EXEC bits to maintain 
relocatability after the program has entered core memory. 

4.1 AUTO LOAD/DUMP SYSTEM 

The 8400 Console includes a hardware Auto Load/Dump system for loading 
or dumping relocatable or non-relocatable binary object programs to or 
from absolute memory positions. 

The starting address for the operation is entered from the Console I/O 
typewriter. The system then loads or unloads consecutive memory cells 
until a stop code is detected in the data (Auto Load only), the Console 
Halt switch is depressed, or all memory locations are filled or empty 
(used in absolute reload operation and core du~p). 

At the option of the programmer, EXEC bits may be loaded or unloaded 
along with full data-word transfers. Relocation information previously 
mapped into these bits will allow program dynamic relocation by the 
Standard Monitor Displacer routine after initial reloading by the Auto 
Load System. 

Any peripheral device connected to the system may be selected for Auto 
Load/Dump operations. No bootstrap loading sequence is required ahead 
of the loaded program in this all-hardware system. 

4.2 LINKING RELOCATABLE LOADER 84 

The Linking Relocatable Loader is entered into memory by the System Loader 
in response to an operator control directive. It relocates and integrates 
programs, subroutines, and sub-programs, into one object program in memory. 

4-1 



It determines the sub-program required for object program execution, 
searches the subroutine library for these sub-programs, and loads them 
into memory together with the necessary linkages, and prints or types 
out a memory map of core assignments. Provisions are made for multiple 
naming of subroutines and library functions to allow multiple loading 
of the same sub-program. 

The binary machine language output produced by the MACRO Assembler or 
FORTRAN IV Compiler may be loaded as several segmented programs. The 
Relocatable Loader will allocate their respective storage aU,tomatically 
filling in missing references between the segments. The Loader is aware 
of the contents of memory at the time that a new program or subroutine 
is to be loaded. The Loader determines the first memory location that 
is unused and automatically relocates the new program to that position, 
with proper adjustments to it so that it will operate properly there. 
The Loader accepts ,a specially devised input format which deterDdnes 
which addresses are relocatable, which symbols cross-reference, how the 
EXEC bits are to be handled and verifies correct loading by recalculat­
ing logical check-sums stored on the external medium. 

Approximately 1000 words of memory are used by the Relocatable Loader 
itself; when loading is complete, control returns to the monitor which 
dynamically relocates the object program to overlay the Loader, so 
equivalent memory space is made available for buffer areas and temporary 
storage. 

The Loader handles a variety of object programs: 

1. The object program is relocatable and is pl~ced in memory, using 
space assigned by the programmer or the Loader itself. A program's be­
ing "relocatable" implies that upon loading, certain half words will be 
algebraically adjusted upwards (or downwards) in memory by a fixed 
amount determined by the Loader as part of its function. A "relocation 
bit" for each half word is included ·in the MACRO Assembler and FORTRAN 
IV Compiler binary output for each instruction,indicating if the address 
field should be modified during relocation. Relocatable object coding 
produced by the assembler and compiler consists of an OP code followed 
by a pointer to various produced tables (constants, etc.); once the 
memory of an item in the tables is established by the loader, the pointer 
is replaced by the address of that item. 

The 8400 MACRO Assembly language and FORTRAN IV is written so that the 
user follows simple rules to get such a formatted output. Relocatable 
assemblies enable many programs which otherwise would interfere in 
storage allocation to be stacked end-to-end in memory. Furthermore, the 
programmer is allowed to symbolically "link" together sub-programs by 
cross-referencing the symbolic locations of one segment with those of 
another. The actual lines of communication are set up by Linking Relo­
catable Loader which not only relocates but cements the program segments 
as loading takes place. 

4-2 



2. The object program is non-relocatable and includes specific memory 
assignments. Such "absolute" programs may be loaded using the Console 
Auto Load hardware. 

3. Relocation information bits recorded on the external medium may be 
mapped into storage EXEC bits permitting dynamic relocatability - the 
ability to move programs about in storage. 'EXEC bit assignments for 
other than relocation information; i.e •• memory protection or object 
time breakpoint debugging. may also be set in the object code stream. 
The mapping of relocation bits is exercised by the following codes: 

00 no mapping 
01 Map into right EXEC only 
10 Map into left EXEC only 
11 Map into both 

The normal mode is left only. Here the right EXEC bit, assigned for some 
control purpose. appears in storage together with a relocation bit mapped 
into the left EXEC. 

The symbol table which may be included in the object code is also relocat­
able. Symbol cross-references to memory addresses are updated by the 
standard Monitor DISPLACER routine during dynamic relocation. 

4-3 



5.0 PROGRAM CHECKOUT SOFTWARE - DEBUG SYSTEM 84 

5.1 GENERAL 

The Debug System 84 provides the 8400 user with a powerful and human­
engineered set of tools for bringing an untested computer program into 
full operational capability. The package will enable him to examine, 
modify, dump, and test instructions, program segments, and data in a 
flexible and convenient way. Two notable features are the ability to 
use symbols from the symbolic version of a program in stating debugging 
commands, and the ability to insert instructions into a code sequence 
by program displacement without an elaborate patching procedure. In 
debugging language the most frequently-performed operations are expressed 
simply and concisely, yet the flexibility and power of each is extensive. 

There are four classes of debugging aids: Examine/Modify, Load/Dump, 
Breakpoint/Trace, and Monitor/Control. 

The system consists of a Debug Executive Program and a collection of 
independent closed debug subroutines performing specific debugging func· 
tions. The Debug Executive enables the 8400 programmer to use the on­
line typewriter for such functions as creating a program, inserting and 
deleting coding, adding to a symbol table, executing .a program, inserting 
breakpoints, opening a cell or special register, etc. 

The Debug Executive is entered into memory by one of the control monitors 
in response to an operator directive. The Debug" Executive in turn loads 
the subordinate routines requested. 

5.2 SYSTEM OPERATION 

In a typical operation, the debugging library would be stored on some 
external medium (i.e., a magnetic or paper tape). The programmer, having 
loaded his program and the Debug Executive program, would proceed to set­
up the run for debugging by entering a series of instructions through the 
typewriter (or by pre-punched paper tape, control cards) which would in­
sert debug subroutine calling sequences using program displacement. 

The control directives indicate the debug function, the address range over 
which the function is to operate, and the point in the object program at 
which the function is to be called into play (if not implied by the address 
range). Generally for closed shop installations, all directives are pre­
punched and are stored in memory for execution when indicated. Otherwise, 
directives are given via the console I/O typewriter, and control returns 
to the typewriter after a function is completed. The operator can inter­
vene at any time by depressing the Console interrupt button, and can indi­
cate certain routine options using the Console Register sense switches. 

5-1 



Calling sequences for Debug subroutine packages may ue either: 

1. Explicit Commands - On-line insertion and execution of the 
debugging control directive during program run time directly 
from one Input Device, or, 

2. Implicit Commands - Debugging sequences are inserted directly 
in the coding before execution. The Debut Executive will pre­
pare the debug calling routine and execute it at the appro­
priate time. 

Examples of debugging functions using both types of commands are: 

1. Implicit - Assembly coding entries, dumps, traces, register 
status, return to console control, set debugging mode. 

2. Explicit - Load/Unload (program), insert patch, erase, replace 
(implicit coding), mark/unmark (Exec bits) search, start and 
other control commands (implicit and explicit both) from type­
writer, card, paper tape or any other input medium as long as 
the proper debug formats are used. 

If the "required" debugging subroutines are unavailable when called. an 
error complement results. Er:roneously stated debugging requests are 
spotted by diagnostic aids. 

Automatic debugging is achieved by pre-setting debugging sequences with­
in a program just prior to execution time using the various functions 
provided. During execution, modifications can be made by direct interrupt 
or by having set a point to return control to ths·debugging system in the 
main program. Certain alternate deb'ugging mOdes are controllable 
internally or overriden by console switch settings, - the trace, dump, 
and breakpoint (Exec) functions particularly. 

The debugging commands make use of indicators that state the format in 
which output response is desired. Within an individual debugging com­
mand the output mode may be altered, and this alteration can be made to 
apply either for all subsequent commands or for just the command being 
processed. In symbolic format, the output is in the form of instructions, 
provided that the instruction decoding subroutine is present in memory. 
Symbolic addresses are used where appropriate if the program symbol table· 
is available in core. 

5.3 ORGANIZATION 

The Debug System 84 Executive program will be stored in memory at the 
high end; a set of interlinked user programs will be stored above it. 
Each program will consist of a control segment, the body of the program 
proper, and a symbol table, 1f desired. The control segment specifies 
the name of the program, the starting location of the body of the program, 
the starting location of the symbol table, and the starting location of 
the next control segment. Each entry in the symbol table occupies two 



words, and specifies the name of the symbol, its value. its type, and 
certain infor~tion about how it is used in the program. The standard 
monitor controls the location of each program and its relationships to 
its neighbors. 

A section of memory is reserved by the Standard Monitor for a programmed 
push-down stack where the debug functions are executed. 

The debug subroutines when in memory are organized in a parallel fashion 
to the problem routines·described above. 

5.4 SYMBOLIC DEBUGGING 

Symbolic debugging implies that variables are referred to at execution 
time by the names assigned to them during assembly or compilation. In 
most computers all such information is lost when the object programs are 
loaded. The loader provides a memory map showing the name and territorial 
limits of each program loaded. Other symholic information, however, is 
contained only in the compiler/assembly listing and cross-reference sym­
bol table printout and is not loaded. 

In the 8400, symbolic cross-reference information produced by the loader 
assembler and compiler is optionally introduced into memory along with 
the associated programs. The Debug Executive is capable of accessing 
both data and data names, enabling the programmer to take advantage of 
the mnemonic facilities provided in automatic programming systems during 
execution of his program. He need not be aware of absolute addresses 
during debugging just as he was not fully concerned with the exact assign­
ment of addresses during program preparation by the assembler or compiler. 

The symbol table is continuously updated as symbols are modified and when 
programs are dynamically re loca ted. '. 

5.5 DEBUGGING FUNCTIONS 

1. Examine/Modify Class - are used to examine the contents of a single 
cell or register, several consecutive cells, or segments of memory; 
modify the contents of a cell or group of cells; search, or ~ blocks 
of memory; delete or introduce one or more data-words or instructions. 
A single command in many cases performs several of these functions at 
once. 

There are two types of searchs, both of which use a mask register and a 
criterion register. The "ones" in the mask register specify the bits to 
be compared; if all the masked bits of the cell being tested agree with 
the corresponding bits of the criterion register, the cell meets the 
criterion. On one search, all cells that meet the criterion are printed 
out; on the other search, those that do not meet the criterion" are printed 
out. 

5-3 



The deletion or insertion of data-words, instruction, or debugging cell 
sequences into a program has in the past called for leaving gaps in the 
coding or patching in additional coding using jump instructions. Ir~ 

5-4 

the 8400 this important function of instruction correction is accomplished 
by direct insertion. Using direct insertion, one or several instructions 
,~re inserted into the program at the point indicated~ after the original 
program body has been dynamically relocated to provide the space. Like­
wise, removal o~_~n instruction or ,section of coding is followed by a 
dynamic relocation of the program to fill the gap. This capability is 
exercised by a program which forms a part of the 8400 Standard Monitor, 
called the "Displacer" and uses the EXEC bit system. The dynamic relo­
catability feature - the ability to move pro;~;rams around in memory at will -
is one of the most important softtvare features of the 8400. ~,\- 0-.. (~v,<.\ 

2. Load/Dump Class - provides three types of dump and a relocatable 
load •. 

There are three types of dump within the Debug System 84: a symbolic 
disassembly of a single program, a relocatable dump of a single pro­
gram, and a relocatable systems dump of all of memory. 

~ .. ----.-......... ' 

If the symbol;table produced during the program assembly or compilation 
has been loaded together with the object program, a symbolic disassembly 
dump can be made. The symbolic disassembly provides printing of a stored 
program in symbolic, or Assembler-84, language for analysis or record 
keeping of the curr,ent symbolic list,ing of a modified program. Each cell 
of the program is decoded into an instruction in Macro Assembly language 
format. All flag bits and modifiers appear in the same format as is used 
for assembly input. The operation part is generated by the Debug System's 
operation decoded. TIle address part is expressed in symbolic form, using 
the symbol table for cross-referencing. 

The relocatable dump normally outputs computer words to paper copy or to 
magnetic tape; the format is the same as the output of the assembler; 
thus the dumped program can be reloaded by the standard loader. The re­
locatable dump includes the symbol table, if it is present in memory. 
The relocatable dump can reduce the number of program reassemblies that 

/may be required for a difficult program. 

The system dump of all of memory provides a means of saving the state 
of the machine as rapidly as possible, and reloading without requiring 
the facilities of the relocatable loader. This dump contains a literal 
copy of the contents of memory, including EXEC bits; symbol table, stack, 
and other cross referencing information. 



3. Breakpoint/Trace Class - provides the capability for inspecting the 
status of a program during execution. 

Breakpoints may be inserted in a program by one of two means: debugging 
control commands may be included in-line on the original source program 
listing, indicating those points where the program will halt and an out­
put of arithmetic and control registers is to be made. Alternatively, 
the EXEC bit control system may be used. The breakpoint supervisor 
routine receives control whenever a cell appropriately marked by a high 
EXEC bit is about to be executed or a store is about to take place into 
marked cell. Control commands are used to set or remove EXEC markings 
and to establish breakpoint counts (program interrupt does not occur 
until a break has occured the specified number of times). The break­
point supervisor can distinguish between breakpoint and other kinds of 
interrupts. 

Program Tracing causes a readout of pertinent registers after execution 
of each instruction. Print-out may be suppressed by sense switch. Trac­
ing of selected segments of coding is permitted. 

4. Monitor/Control - provides a comprehensive set of commands to inspect 
a program and control the debugging process. The following are repre­
sentative debug commands for this purpose: 

Execute any instruction 
Print-out any data-word in one of many formats 

5-5 

Search memory for instructions with a specified effective address 
Transfer control to a specified address and continue program 

execution 
Output symbolic name of octal address requested with the program 

name 
Delete named program 
Remove symbol table of n~med program 
Proceed following a breakpoint halt 
Establish new program names (used to program subroutines on-line) 



6-1 

6.0 RELOCATABLE SUBROUTINE LIBRARY ~4 

6.1 GENERAL 

The Relocatable Subroutine Library 84 is compatible with the MACRO Assembler, 
FORTRAN IV Compiler, Linking Relocatable Loader, and Monitor Systems. The 
routines of the library are called by pseudo-instructions in the assembler 
and compiler and are linked to the main program during loading by the 
Linking Loader 84. The input/output control and formatting subroutines 
form a portion of the Standard Monitor System and are called in as appro­
priate when the storage allocation requirements of a program have been 
established. 

Two forms of subroutines are provided - one for re-entrant (recursive) 
operations and a faster non-re-entrant version. Re-entrant subroutines 
are the generalization of recursive ones. A single subprogram may be 
entered by two or more calls at the "same time"; that is, a program 
using a re-entrant subroutine, is interrupted and the interrupt program 
proceeds to use this very same subroutine. 

~ben a re-entrant subroutine is interrupted, the working registers and 
temporary core memory locations which are unique to the particular call 
on the subroutine in progress (such as the return address) are safe­
stored in a section of core reserved by the Standard Monitor for this 
purpose. This memory area is a software implementation of a push-down 
stack - a portion of contiguous memory together with a pointer which 
references the "top most" cell in the stack. Index Register seven is 
used exclusively for the pointer. This technique will allow the same 
routine to be interrupted at many levels and used by higher levels and 
yet allow each level to restore its temporary cells and complete the 
routine at the completion of the higher interrupt. The re-entrant ver­
sions of the subroutine library include the save-restore routines re­
quired for "recursive" progranuning in a real-time multi-programming 
environment. 

A program in the Standard Monitor is provided to update or edit the Sub­
routine Library. Sections or individual programs may be added, deleted, 
modified or listed" through typewriter input instructions from the operator. 

The routines included in the library are: 

6.2 l\RITHMETIC SUBROUTINES - SINGLE AND DOUBLE PRECISION FIXED AND FLOATING-POINT 

1. Sine ) 
2. Cosine ) - radian input 
3. Tangent) 



6 'j 
• ..;J 

4. Arctangent - radian output 
5. Logarithm - natural and common 
6. Exponential 
7. Square Root 

~~THEMATICAL SUBROUTINES 

1. Function Generation - One, two, or three variables. Fixed and 
Floating -Point, using linear interpolation between variable 
breakpoints 

8400 subroutines employ fixed spacing of data values to provide 
maximum execution speed. Any desired accuracy can be achieved by 
appropriate selection of "breakpoint" spacing. When several func­
tions of the same variables are to be evaluated the execution time 
of the second and subsequent function is less than for the first, 
by the time required to process the arguments. The table size 
limitations are appropriate for a large class of functions, and are 
imposed in order to optimize the execution time. 

The pseudo-op specifies the data tables location and one, two, or 
three arguments. The tables may be loaded with pre-formatted data 
by the regular loading routine, or the Function Generator Loading 
Program in the Simulation Monitor System may be used to calculate 
the table from arbitrary input data. 

The Fixed-Point Subroutine may be used in a hybrid computer pro­
gram where 12-14 bit arguments are derived from the analog computer 
in fixed point form:~t. t<lhen a two variable function is called for, 
the data table is given t,y a two dimensional array, up to 32 x 32 
values. A three variable function is given by a 32 x 16 x 8 (or 
smaller) array. 

The Floc1ting-Point subroutine is a general purpose routine for one, 
two and three variAble functions; data is stored as 32 bit floating 
point numbers. Up to 256 breakpoints may be selected for any variable. 
The range and scaling of the independent variable is handled automati­
cally by the 8 bit exponent of the argument. 

2. Digital Integration - Several numerical integration algorithms with 
automatic time scaling (step size changing): 

Euler, Henn, Runge-Kutta, Milne, Parabolic Predictor-Corrector, Adams 
(four different types). 

The Integrator Control Program of the Simulation Monitor System pro­
vides ready access to the several integration routines. Upon type­
written request for a different integration algorithm this program 
will make the proper linkages and calculate any required starting 

6-2 



values for the new routine, permitting the programmer to choose 
the method exhibiting the best speed and accuracy for his particular 
problem. 

6.4 CONVERSION SUBROUTINES 

1. Data Conversion - Single and Double Precision: BCD to Binary, Binary 
to BCD 

2. Format Conversion - Single and Double Precision: Fixed-Point to 
Floating-Point, Floating-Point to Fixed-Point 

3. Character Converstion: 

IBM Bel (6-bit Alphanumeric) to ASCII (7-bit alphanumeric), ASCII to 
IBM BCl, ASCII to EBCDIC, EBCDIC to ASCII 

6.S INPUT/OUTPUT AND DATA DISPLAY SUBROUTINES 

1. Interrupt System - Line. Sorting, Priority Masking 
2. Status Line - Sorting 
3. Peripheral Device Control and Data Formatting -

Typewriter I/O, punched paper tape I/O, punched 
card I/O, Line printer output, magnetic tape I/O. 
labelled multi-file, multi-reel, with users own 
coding options), Display Register Control (CRT 
Display monitors, etc.). 

6.6 COMPAT MODE SUBROUTINES 

Programmed operators for Double Pre~ision Floating-Point, Extended 
Precision Fixed-Point, Index Register classes of arithmetic. These 
routines may be called by the MACRO Assembler, FORTRAN IV Compiler 
or hardware COMPAT interrupt system. 

6-3 



7.0 SIMULATION PROGRAMS GROUP 

In addition to the Linking Relocatable Loader 84, Debug System 84, and 
Relocatable Subroutine Library 84, the Simulation Monitor controls a 
group of simulation programs, as follows: 

7.1 HYBRID MODE CONTROL 

This is the program that gives the digital computer the structure of a 
simulator in like manner to an analog console by exercising interface 
capabilities (including interrupts, sense lines, delays, and mode control) 
to achieve real-time synchronization between the stored and the parallel 
computer programs, and between the various computing system elements 
needed in the solution of most simulation problems, The program controls 
a dual-processing mode by which it is possible to work on a second pro­
gram located in a protected portion of memory when the computing system 
is not employed on the pri~ry simulation program. 

(The monitor permits dual processing when the simulation program is not 
in the "Operate" mode.) 

7.2 INTEGRATION CONTROL 

The Digital Integration Control Program is one that is requested from the 
monitor via the console I/O Typewriter by the operator to change the 
integration algorithm. Selection of Algorithms is made from the Sub­
routine library; 'initialization and time scale changes can be made also. 

7.3 FUNCTION GENERATOR LOADER 

The Digital Function Generator Loading Program permits the operator to 
load new data or to make changes in data previously stored in tables 
associated with the particular function generator subroutine. 

7.4 HYBRID COMPUTER SET-UP 

The Hybrid Computer Set-up and Check Out Program, selected by typewriter 
through the monitor, provides the capability for cont~ol of analog com­
puter mode and time scale selection, component selection, read-out, pot 
set and checkout. Sample commands to the Analog I/O Computer are, as 
follows: 

7-1 



Control 

a. OP - Operate ) 
IC - Initial Condition ) mode control 
HLD - Hold ) commands for the 
ST - Static Test ) analog computer 
PS - Pot Set ) 

b. CS - Select Analog Console for Hybrid Operation. 

c. LTAB - Load table of addresses to Analog I/O Computer. 

d. LTAD - Load table with data to Analog I/O Computer. 

e. SETT - Set table of potentiometers in table, output results; 
if setting differs by more than the selected percentage, 
print errors. 

f. SE~ - Set individual potentiometer selected and output results; 
indicate error if setting differs by more than selected 
percentage. 

Monitor 

a. STCK - Check column of data vs. state of analog computer. 

b. SCAN - Readout component values selected. 

·c. DTAB - Dump complete table selected, for set-up and 
static check at a later time. 

d. CHK - Check selected amplifier output for specified 
voltage to required accuracy. 

e. RD - Read output of selected multiplier. 

7.5 HYBRID DEBUG 

The Hybrid Debug program provides for typewriter control of the linkage 
and interface system. 

Diagnostic tests of the Analog and Interface subsystems are conducted 
from the 8400 Console. 

7-2 



8.0 HYTRAN. PROGRAMS GROUP 

Ibe HYTRAN Monitor controls the following group of programs: 

8.1 STATIC CHECK 

The practice of computing two independent sets of check values has been 
used as the basis for the HYTRAN Off-Line Static Check. The theoretical 
static-check values in volts are computed from expressions, provided as 
part of the program input, which specify component outputs in terms of 
the scale factors, parameters, and variables of the problem. Further 
input defines the analog component interconnections of patching infor­
mation which is used to calculate the voltage check values. In this 
computation, all input voltages to a component, the kind of input to 
which the component is connected, and the transfer function of the com­
ponent are used to determine its voltage output. 

When both voltage and theoretical values are available for a component 
output they are compared. If in agreement, they yield the off-line 
static check value for that component. If the values are not in agree­
ment, the error is isolated by retaining the theoretical value as the 
static check input for all subsequent calculations and an error message 
is given. Values exceeding the voltage range of the computer also will 
cause error messages but will be retained for further static check cal­
culations. 

The On-Line Static Check 

While in systems without digital ac~ess to the analog computer, the on­
line static check must be performed by manual comparison, the avail­
ability of a digital input-output system provides the HYTRAN user with 
a choice of two automatic procedures for such on-line checking. One 
method is to feed the HYTRAN-generated static-check tape into the Analog 
I/O Computer to obtain an automatic comparison between calculated and 
measured values. This method is used whenever the 8400 is not available 
at the time of analog on-line check. 

If the 8400 computer is available, the use of the second HYTRAN method 
allows an improved consistency check of debugging complex problems as 
well as for preventive-maintenance checks. This method is implemented 
by feeding a paper tape (generated on the Analog I/O computer) contain­
ing the measured pot settings and/or outputs of all components into the 
digital computeu HYTRAN then checks the transfer value of each individ­
ual component and compares it with the measured voltage at the component 

s a service mark of Electronic Associates, Inc. 

8-1 



output. Thus,errors can not propagate but are pin-pointed at the compon­
ent level. 

8.2 REPORT GENERATOR 

This is a Documenting Program which sorts arid converts the information 
from the intermediate tape to component work sheets that contain a list 
of the analog computing components in an orderly sequence, together with 
their modes and their outputs or settings in terms of problem parameters, 
variables, and scale factors. In addition, an alphabetic list of the 
values of parameters and variables is typed out, and Analog I/O Computer 
tapes are generated. 

One tape contains the potentiometer settings in a format which allows 
automatic pot setting; the other tape contains the computer static-check 
values for on-line check with the Analog I/O Computer. 

The Documenting Program also generates a cross-reference sheet containing 
an alphabetic list of symbols for parameters and variables. Each of 
these symbols is followed by a listing of the components whose output or 
settings include that symbol. This feature provides assistance in chang­
ing parameters or scale factors manually. 

8.3 EQUIPMENT CHECK-OUT 

This is an On-Line Diagnostic Program utilizing basically the same pro­
cessing procedures as that of the Off-Line Static Check Generator, 
described as in 8.1 above, in the HYTRAN Monitor System. The program 
accepts an Analog I/O Computer tape containing a complete read-out of 
all static-check voltages and potentiometer settings and generate diag­
nostics which serve to locate analog components which are either im­
properly patched or do not perform satisfactorily. Thus, a permanently­
programmed analog computer pre-patch panel can be used with this program 
for daily preventive maintenance checks. 

8-2 



9.0 DIAGNOSTIC SYSTEM 

The 8400 Diagnostic System produces a go-no-go indication of the machine, 
and attempts to analyze machine faults to assist in computer maintenance. 
Thorough tests are performed on all instructions and program controlled 
machine functions. The tests can be executed without operator interven­
tion or he can specify tests and their order of execution. For preven­
tative maintenance, tests can be run with the machine subjected to 
variations in clock and voltage margins. The 8400 Diagnostic System 
also tests all peripheral equipment. 

Machine diagnostic routines include the following: 

1. Memory Module 

a. Addressing tests that test the integrity of each address. 
b. t.Jorst case pattern sensitivity tests on logic and driving circuits. 

2. Floating-Point Processor? Control Section 

a. All instructions are tested with fixed data in a logical sequence 
that aids in localizing faults. 

b. All instruction options are tested. 
c. Pattern sensitivity tests are made on all internal control 

registers and data transfer paths by generating all possible 
bit patterns and register state transitions. 

d. All internal interrupts are tested by generating the interrupt 
conditions and checking for the correct hardware transfer. 

3. Floating-Point Processor! Arithmetic Section 

a. Complete control and data transfer path tests using fixed and 
randomly generated data. 

b. Noise and pattern sensitivity tests using fixed and random data. 
c. Complete check on the integrity of results and arithmetic flags. 

4. Exchange Module 

a. All modes of data assembly and transmission are checked. 
b. Pattern sensitivity tests using random data. 
c. Full load tests using varying combinations of available peripheral. 

5. Peripheral Equipment 

a. Check basic execution of instructions, i.e., Magnetic tape read, 
write forward and reverse etc., with fixed data; typewriter, out­
put of all possible characters and manual input with visual veri­
fication of output, etc. 

9-1 



b. Stressing tests - i.e., high speed read/write or randomly 
generated characters and block lengths. 

c. Maximum load tests to check for no interaction between 
peripherals. 

9-2 


	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-01a
	2-02
	2-03
	2-04
	3-01
	3-02
	3-02a
	3-03
	3-04
	3-04a
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-14a
	3-15
	3-16
	3-17
	3-17a
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	4-01
	4-02
	4-03
	4-04
	4-05a
	4-05b
	4-05c
	4-05d
	4-05e
	4-05f
	4-05g
	4-05h
	4-05i
	4-05j
	4-05k
	4-05l
	4-05m
	4-05n
	4-05o
	4-05p
	4-05q
	4-05r
	4-05s
	4-05t
	6-01
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	A_01
	A_02
	A_03
	A_04
	A_05
	A_06
	A_07
	B_1-01
	B_2-01
	B_2-02
	B_2-03
	B_2-04
	B_2-05
	B_2-05a
	B_3-01
	B_3-02
	B_3-03
	B_3-04
	B_3-05
	B_3-06
	B_3-07
	B_3-08
	B_3-09
	B_3-10
	B_3-11
	B_3-12
	B_3-13
	B_3-14
	B_3-15
	B_3-16
	B_3-17
	B_3-18
	B_3-19
	B_3-20
	B_3-21
	B_4-01
	B_4-02
	B_4-03
	B_5-01
	B_5-02
	B_5-03
	B_5-04
	B_5-05
	B_6-01
	B_6-02
	B_6-03
	B_7-01
	B_7-02
	B_8-01
	B_8-02
	B_9-01
	B_9-02

