
LANGUAGE MANUAL

[j]] DIGITAL RESEARCHTM

PL/I-80 LANGUAGE MANUAL

Copyright (c) 1980

Digital Research
P.O. Box 579

801 Lighthouse Avenue
Pacific Grove, CA 93950

(408) 649-3896
~wx 910 360 5001

All Rights Reserved

COPYRIGH"r

Copyright (c) 1980 by Digital Research. All rights
reserved. No part of this o~blication may be
reproduced, transmitted, transcribed, stored 1n a
retrieval system, or translated into any lanquaqe or
computer lanquaqe, in any form or bv any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

~his manual is, however, tutorial in nature. ~hus,
permission is granted to reproduce or abstract the
example programs shown in the enclosed figures for
the ourposes of inclusion within the reader~s
programs.

Digital Research makes no representations or
warranties with respect to the contents hereof and
soecifically disclaims any implied warranties of
merchantability or fitness for any particular
putpose. Further, Digital Resea~ch reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

Ff1RADF.MARKS

CP/M is a registered trademark of Digital
PL/I-80, ~P/M-80, RM.Ar., ~In, ZSID and
trademarks of Diqital Research.

Research.
"rEX are

The "PL!I-80 Languaqe Manual" was prepared using the
Digital Research "rEX ~ext formatter.

* Second Printing: December 1980 *

1.

2.

3.

4.

5.

6.

BASIC
1.1.
1.2.
1 .3.
1.4.

TABLE OF CONTENTS

STRUCTURE
The character set •
Identifiers.
Constants •
Delimiters and Separators.

PROGRAM STRUCTURE
2.1.
2.2.
2.3.
2 .4 •
2.5.
2.6.
2.7.

DATA
3.1.

3.2.

3.3.

3.4.
3.5.

PL/I-80 Statements
Groups
Blocks
Scope of Names
Block Activation
preprocessor Statements •
The Prog ram

ITEMS •
Arithmetic Data
3.1.1. Fixed Binary
3.1.2. Fixed Decimal
3.1.3. Float Binary
3.1.4. Arithmetic Built-in Functions
S t ring Da t a •
3.2.1. Character String Data
3.2.2. Bit String Data
3.2.3. Concatenation
3.2.4. Strinq Built-in Functlons
Control Data Items
3.3.1. Label Data.
3.3.2. Entry Data.
Pointer Data
Fi 1 e Da ta •

DATA AGGREGATES
4.1. Arrays
4.2. Structures
4.3. Arrays of Struc tures

DATA ATTRIBUTES AND THE DECLARE STATEMENT
5.1.
5.2.

The Declare Statement •
List of Data Attributes

STORAGE MANAGEMENT •
6.1. The STATIC Attribute
6.2. The INITIAL Attribute
6.3. The AUTOMATIC Attribute
6.4. The BASED Attribute.
6.5. The ALLOCATE Statement
6.6. The NULL Built-In Function
6.7. The ADDR Built-In Function
6.8. The FREE Statement

3
3
3
4
4

7
7
7
8
9

11
12
13

14
14
14
15
15
16
16
17
17
18
18
19
19
19
20
21

22
22
23
24

26
26
28

31
31
31
32
32
33
34
34
35

7. ASSIGNMENTS AND EXPRESSIONS · · · · · · · · · · · · · 36
7.1. Expressions . . · · · · · · · · · · · · · · · · · · 36

7.1.2. Prefix Expressions · · · · 36
7.1.2. Infix Expressions · · · · · · · · · 36
7.1.3. Precedence of Operators · · · · · · · 37
7.1.4. Relational Operators · · · · · · · · · · · 37
7.1.5. Bit String Operators · · · · · · · · · 38
7.1.6. Exponentiation · · · · · · · · · 38

7.2. Arithmetic Conversions · · · · · · · 38
7.2.1. Ar i thmeti c to Arithmetic Conversions · 39
7.2.2. The FIXED Built-in Function · · · 40
7.2.3. The FLOAT Buil t- in Function · · · · · 40
7.2.4. The BINARY Built-in Function · · · · · · · 40
7.2.5. The DECIMAL Built-in Function · · · · · · 40
7.2.6. The DIVIDE Built-in Function ~ · · 41

7.3. Str ing Conversions · · · · · · · · · · · · · · · · 41
7.3.1. Arithmetic to Bit String Conversion 41
7.3.2. Arithmetic to Character Conversion · · · · 41
7.3.3. Bit Str ing to Arithmetic Conversion 42
7.3.4. Bit to Character String Conversion · · · · 42
7.3.5. Character to Ar i thmeti c Conversion · 43
7.3.6. Character to Bit Str ing Conversion · · · · 43

7 • 4 • Pseudo-Var iables · · · · · · · · · · · · 43
7.4.1. Character SUBSTR · · · · · · · · · · · 44
7.4.2. Bit SUBSTR · · · · · · · · · · · · 45
7.4.3. UNSPEC · · · · · · · 45

8. SEQUENCE CONTROL STATEMENTS · · · · · · · · · 47
8.1. The GO TO Statement · · · · · · · · · 47
8.2. The IF Statement · · · · · · · · 47
8.3. The Iterative DO Statement · · · · · · · 48
8.4. Condition processing · · · 51
8 .5. 'rhe ON statement · · · · · · · · 51
8.6. The SIGNAL Statement · · · · · · 52
8.7. The REVERT Statement · · · · · · 52
8.8. Defaul t ON-Units · · · · 53
8.9. Built-In fo'unctions for Condition Processing · 53
8.10. Procedure Block s · · · · · · · · · · · · · · · · · 53
8.11. Invoking a Procedure · · · · · · · · · · · · · · · 54
8.12. rfhe Struct ure of a Procedure Definition · · · · 54
8.13. The RETURN Statement · · · · · · · · · · · · · 55
8 .14 • The Non-Local GO TO S tat em en t · · · · 56
8. 15. rrhe STOP S ta temen t · · · · 56
8.16. Arguments and Parameters · · · 57
8 .17. The ENTRY Attribute 58

9. INPUT/OUTPUT PROCESSING · · · · · · · 59
9.1. FILE Data Items . · · · · · 59
9.2. File Types . . · · · · · · · · · · 59
9.3. Opening a Fil e · · · · 60
9.4. The File Parameter Block · · · · 61
9 .5. Input/Out put ON Conditions · · · · · 61
9.6. The CLOSE statement · · · · · · 62
9.7. Predefined Files · · · · · · · · · · · · · 62

10.

11.

12.

STREAM ORIENTED INPUT/OUTPUT
10.1. LIST-Directed I/O
10.2. The GET LIST Statement
10.3. The PUT LIST Statement
10.4. EDIT-Directed I/O
10.5. The FORMAT-List
10.6. Data Format Items
10.7. Control Format Items
10.8. Remote Format Items
10.9. The FORMAT Statement
1 0 • 10. 'r h e GE TED ITS ta t em en t
10.11. The Purr EDIT Statement
10.12. Line-Directed I/O
10.13. The READ Varying Statement
10.14. The WR I'rE Va ryi ng Statement

RECORD
11.1.
11.2.
11.3.
11.4.
11.5.

ORIENTED INPUT/OUTPUT
The READ Statement
The WRITE Statement
The READ with KEY Statement
'r heR E AD wit h KE Y11 0 S ta t em en t
The WRITE with KEYFROM Statement

BUILT-IN FUNCTIONS.
12.1.

12.2.

12.3.

Arithmetic Functions
12.1.1. ASS
12.1.2. CEIL
12.1.3. DIVIDE
12.1.4. FLOOR
12.1.5. MAX
12.1.6. MIN
12.1.7. MOD
12.1.8. ROUND
12.1.9. SIGN
12.1.10. TRUNC
i~athematica1 Func tions
12.2.1. AC OS
12.2.2. ASIN
12.2.3. ATAN
12.2.4. ATAND
12.2.5. COS
12.2.6. COSO
12.2.7. COSH
12.2.8. EX P
12.2.9. LOG
12.2.10. LOG2
12.2.11. LOG10
12.2.12. SIN
12.2.13. SIND
1 2 • 2 • 14. S IN H
12.2.15. SQRrr
12 .2. 16. TAN
12.2.17. TAND
12.2.18. TANH
Str ing Functions

63
64
64
65
65
65
66
67
69
69
69
70
70
70
71

73
73
73
74
74
74

75
75
75
75
76
76
76
76
76
77
77
77
77
78
78
78
78
79
79
79

.. 79
79
79
80
80
80
80
80
80
81
81
81

12.3.1. ROOT.I 82
12.3.2. COLLA'rE 82
12.3.3. INDEX 83
12.3.4. LF.l\1G'rH 83
12.3.5. STTBS'rR 83
12.3.6. TRANSTJATE 83
12.3.7. VERIFY 84

12.4. Conversion Functi.ons 84
12.4.1. ASCII 84
12.4.2. BIl\1A.RY 84
12.4.3. 'BIT 85
12.4.4. CHARAC""ER 85
12.4.5. DRCIMAL 85
12.4.6. nIVIDE 85
12.4.7. 'PIXED 86
12.4.8. FLOAT 86
12.4.9. RANT<' 86
12.4.10. Ul\1SPF.C 86

12.5. Condi t i,on l4'unctions 87
12.5.1. ONCODE 87
12.5.2. Ol\TFILE 87
12.5.3. Ol\TKF.Y 87

12.6. Miscellaneous Functions 87
12.6.1. ADn:R 87
12.6.2. DIMF.:NSION 88
12.6.3. HBOTJNJ) 88
12.6.4. LBOUND 88
12.6.5. LINENO 88
12.6.6. NTTLL 88
12.6.7. PAGENO 88

APPENDIXES

A. rrable of ASrII Codes and Escape Characters 89

B. PL/I-80 Statement~ 90

c. Data Attribu·tes 96

D. Picture Format Item 99

E. External Procedures 106

INTRODUCTION

The purpose of the PL/I-SO ~anguage Manual is to provide a
relatively detailed but concise description of the PL/I-SO language
for use by experienced PL/I proqrammers, and to act as a supplement to
the accompanying Digital Research manual entitled "PL/I-SO
Applications Guide." prJ/I-BO is formally based upon the AN~I General
Purpose Subset (Subset G) of PL/I as specified bv the ANS PL/I
Standardization Committee X3Jl. The djfferences between PL/I-BO and
the Subset G specification are as follows:

~he following attributes are not included in PL/I-SO:

DEFINED
FLOAT DF.~IMAL (FIXED DECIMAL is retained)
LIKE
PIC"'URE
FILR (allowed onlv in an OPEN statement in PL/I-SO)
Asterisk Extents and nynamic Arrays

rrhe following builtin functions are not included in PL/I-SO:

ATANH
DA"''E
STRING
TIME
VALID

The %REPLACE statement has been added to PL/I-SO.

I/O facilities for ASCII fi.le processing have been added:

READ and WRITE forms for variable length ASCII records
GErr EDIT extended to full record i.nput in A format
Control characters are allowed in string constants

The following builtin functions have been added:

ASCII
RANK

Throughout this document FL/I-SO statement formats will be
described in their most general forms using the following notational
conventions:

Words in capital letters represent PL/I-SO keywords.

Words in lower-case letters or in a combi.nation of lower-case
letters and digits separated by a hyphen will be described or
defined more explicitly. These words represent variable
information to be selected by the user.

(All Information Contained Herein is Proprietary to Digital Research.)

1

Square brackets ([]) enclose options.

Ellipses (•••) indicate that the immediately preceding item may
occur once, or any number of times in succession.

Except for the above special characters, all other punctuation and
special characters represent the actual occurrrence of those
characters.

(All Information Contained Herein is Proprietary to Digital Research.)

2

1. BASIC STRUCTURE

Basic structure consists of the low level organization of the
source text of a PL/I-80 proqram. It includes, in addition to a
specification of the character set of the language, a specification of
the rules governing the structure of identifiers (both keywords and
declared names), constants, delimiters, comments, and operators.

1.1. The character set.

The PL/I-80 character set consists of both upper and lower case
letters, digits, and special symbols. The special symbols and a brief
des: rip t ion 0 f the i r use i s q i ve n below:

=
+

equal or assiqnment
pI us sign
minus sign

*
/
(

asterisk or multiply symbol
slash or divide symbol

)
left parenthesis
right parenthesis
comma
period
single quote or prime

% percent symbol
semicolon
::olon
logi cal .. not" symbol
alternative tlnotl' symbol

& ampersand or loqical "and" symbol
logical "or" symbol

\ a 1 t ern a t i v e .. 0 r" s ym bo 1
I alternative "or" symbol
> greater than
< less than

break or underscore
$' dollar sign
? question mark

1.2. Identifiers.

An identifier is a string of from 1 to 31 characters which are
either letters, digits, or the underscore, such that the first
character is a letter. In PL/I-80 letters are always represented
internally in upper case, therefore two identifiers which differ only
in this respect determine the same identifier. PL/I-80 also allows

(All Information Contained Herein is Proprietary to Diqital Research.)

3

the question mark charac ter to be embedded wi thi n id en ti fie rs to allow
access to external system entry points which often use this character.
In general, embedded question marks should be avoided, however, to
maintain upward compatibility with the full language.

Every identifier in the source text of a PL/I-80 program must be
either a keyword or a declared name. Keywords are identifiers which
have a special meaning in the PL/I-80 language, such as the names of
built-in functions, statements, and data attributes (for a complete
1 ist of keywords, see the Appendixes and the .1 PL/I-80 Command
Summary"). Declared names are identifiers whose use or meaning is
defined by the programmer in a DECLARE statement (see Chapter 3). A
keyword may also occur as a declared name, that is, appear in a
declaration as a user defined identifier. In such a case the meaning
of such an identi fier in a 'PL/I-80 program will depend on how and
where it appears. That is, the meaning is determined contextually.

1.3. Constants.

Constants are text items which, unlike some identifiers, have a
fixed literal meaning which cannot change durinq the execution of a
PL/I-80 program. The basic PL/I-80 constants are arithmetic
constants, character string constants, and bit string constants.
Arithmetic constants may be either FIXED BINARY, FLOAT BINARY, or
FIXED DECIMAL. For a detailed description of the formats of each type
of constant refer to the appropriate section of Chapter 3.

1.4. Delimiters and Separators.

In the source text of a PL/I-80 program it is essential that
separate textual items, such as identifiers, be distinguishable. The
t~xtual items which can perform this role are called either delimiters
or separators. Generally, delimiters enclose a textual item while
separators separate textual items. In PL/I-80 each identifier and
arithmetic constant must be preceded and followed by one or more
delimiters or separators. Delimiters may be either spaces, operators,
comments, or certain graphics delimiters.

Spaces: A space may be either a blank, a tab, or end of
1 ine cha rac ter.

Operators: The four types of operators in PL/I-80 are:

Arithmetic operators:

(All Information Contained Herein is Proprietary to Diqital Research.)

4

+ addition or prefix plus
subtraction or prefix minus

* multiplication
/ division
** exponentiation

Comparison operators:

> greater than
-> not greater than
>= greater than or equal to
= equal to

= not equal to
<= I ess than or equal to
< less than
-< not less than

8i t str ing opera tor s:

not
& and

! or I or

The string operator:

! ! or II concatenate

The above operators include so-called composite operators such as >=.
These composite operators may not be separated by blanks.

Comments:

Comments are used to provide documentary statements in a program
and have no effect on the execution of the program. A comment may
be inserted wherever a delimiter is appropriate. The comment is
initiated by the composite pair /* and is terminated by the
reverse composite pair */.

Graphics delimiters and separators:

The following special characters may, also function as delimiters
or separators. Detailed descriptions of their use is given in an
a ppr 0 pr i ate I ate r se c t ion 0 f t his man ua I •

a colon is used as a separator for entry and
I abel con stants.

; a semicolon is used to terminate statements.

a comma is used to separate elements of a list.

a period is used to separate items in a qualified name.

a quote is used as a delimiter for the specification
of character and bit string constants.

(All Information Contained Herein is Proprietary to Digital Research.)

5

-> the arrow is used as a separator in a pointer qualified
reference.

= an equal is used as a separator in an assignment statement.

left parenthesis

a right parenthesis together with a left parenthesis is
used as a delimiter pair.

(All Information Contained Herein is proprietary to Digital Research.)

6

2. PROGRAM STRUC'rURE

PL/I-80 is a free format block structured language. The basic
program elements are statements which may be collected together into
larger program elements called groups and blocks. In the following
sections the rules governing the structure of these program elements
are described.

2.1. PL/I-80 Statements.

With the exception of the assignment
statements consist of an optional label, followed
statement body, and terminated by a semicolon.
the fo 11 owi ng ca tego r ies:

Str uc t ur al statement s which d efi ne blocks.

Declarative sta temen ts whi ch descr ibe data.

Executable statements which define action.

Null statements which indicate no operation.

statement PL/I-80
by a keyword and

Statements fall into

Compound statements \>lhich are a collection of statements used to
form a sinqle statement (such as an IF statement).

Assig nrnent statements.

Preprocessor statements which are compile-time instructions.

The specific structure of each type of statement is discussed in an
appropriate section of this manual. A complete list of PL/I-80
statement formats and a brief description of their use is given in
Appendix B.

2.2. Groups.

A group is a sequence of PL/I-80 statements that begins with a
DO-statement and ends with an END statement, and may occur in one of
two forms: the iterative DO and the non-iterative DO.

The non-iterative DO has the form:

(All Information Contained Herein is Proprietary to Digital Research.)

7

[label:] DO;
Statement-l

Statement-n
END [label];

The iterative DO has the form:

[I abel:] DO-statement
Sta temen t-l

Statement-n
END [label];

The following illustrates the use of groups:

first:
do; 1* non-iterative do */
j = Xi
if X > 0 then

do; 1* non-iterative do */

else

x = z;
z = j * y;
end;

x = y;
end;
do i = I to 10; 1* iterative do *1
a(i) = i*j;
end;

A -further discussion of the DO-statement occurs in Chapter 8.

2 • 3 • B lock s •

A block is a sequence of statements delimited by either BEGIN
and END statements (a BEGIN block) , or by PROCEDURE and END statements
(a PROCEDURE block). Blocks may be nested within one another, but are
not allowed to overlap. Blocks are used to delimit the scope of
declared names in a program. A BEGIN block has the following format:

(All Information Contained Herein is Proprietary to Digital Research.)

8

[label:] BEGIN;
Statement-l . . .
Statement-n
END [label];

where Statement-l through Statement-n are any PL/I-80 statements
constituting the block body. Note that the occurrence of the label
option does not automatically add sufficient END statements to cause
the block to balance, as found in some full-language implementations.

A PROCEDURE block has the following format:

label: PROCEDURE-statement
Sta tement-l

Statement-n
END [I ab e I] ;

where the label identifies the procedure, and Statement-l through
Statement-n are any PL/I-80 statements. Note that the label is
optional for the END statement, but if included must match the label
which names the procedure.

2.4. Scope of Names.

The scope of a variable refers in general to the extent of its
definition in th e program. Variables may be either local, global, or
EXTERNAL relative to a block in which they appear. There are two
rules concerning the scope of data variables:

The scope of a variable includes the block in which it is
declared but not any block outside it. Anytime a variable is
declared in a block, it becomes a local variable for that
block.

A variable is recognized in any block nested within the block
in which it is declared. The variable is global to these nested
block s. However, if the same name is declared in a subblock, a
new variable is introduced in the subblock and becomes a local
variable.

If neither of the above rules is satisfied, the variable is undefined.
The program below illustrates the above rules:

(All In fo rmat ion Con ta ined He re in is Propr ie tary to Dig ita I Res ea rch.)

9

pI:
procedure;
declare

(a,b) fixed bin(7) ;
a = 2; 1* a is local to pI */
b = 3; /* b is local to pI */
p2:

procedure;
declare

(c ,b) fixed bin(7) ;
b = 2; 1* b is local to p2 */
c = a*b; 1* c is local to p2 */
a = a*b; 1* a = 4 */
end p2;

put list (a ,b) ;
end pI;

This program produces the values 4 and 3. A new variable b is created
in block P2 since it is a declared variable in that block. The PUT
LIST statement is outside P2, therefore the value of the variable b of
PI is 3. Since there is no declaration for the identifier a in P2,
the variable a referenced in P2 is the global variable a declared in
PI, and its value is changed by the assignment statement in P2. Note
that the variable c declared in block P2 is unknown outside the
procedure P 2.

Any variable declared as EXTERNAL is known to all blocks in
which it is declared as EXTERNAL and in all contained blocks except
where it is redeclared without the EXTERNAL attribute. For example,

(All Information Contained Herein is proprietary to Digital Research.)

10

pI:
procedure;
declare

p2:

z fixed binary external;

procedure;
declare

p3:

z fixed binary external;

beg in;
declare

z fixed binary;

end;
end p2;

end pI;

The variable z in PI and P2 refer to the same external variable, but
variable z in P3 is a local variable and is distinct from the external
variable z. Note that due to the linkage editor format, all external
names are truncated to the leftmost six characters and therefore long
external names should be avoided to prevent conflicts.

2.5. Block Activation.

The essential di fference between a BEGIN block and a PROCEDURE
block is the manner in which they are activated and terminated. A
B EXiIN block is activated in the no nna I flow 0 f sta temen ts in a prog ram
and is tenninated when its corresIX>nding END statement is encountered
or when program control transfers outside the block.

A PROCEDURE
or, if it is
expression.
back to the
encountered

block is activated only whe.n invoked by a CALL statement
a function procedure, by a function reference in an

A procedure block is terminated when control is passed
point of call or reference. If a PROCEDURE block is

during the normal flow of execution, it is skipped.

(All Information Contained Herein is Proprietary to Digital Research.)

11

2.6. Preprocessor Statements.

PL/I-80 allows source inclusion or modification at compile time
through the use of preprocessor statements. Preprocessor statements
are identified by a leading % s~bol before the keyword

INCLUDE or REPLACE

The %INCLUDE statement copies PL/I-80 source text from an
external CP/M file at compile time. The form of the statement is

%INCLUDE 'fname';

where fname is the name of a CP/M file to copy into the source
program. If no drive name is given, the drive containing the source
program is assumed. The copied text exactly replaces the % INCLUDE
statement, and need not, itself, be a complete statement. Thus, for
example, the %INCLUDE statement can be used to fill-out part of a
structure declaration or format list. The program segment shown below
provides an example:

F:
PROC;
DCL A FIXED;
%INCLUDE 'STRUC.LIS';
DCL C FLOAT;

END F;

directs the PL/I-8~ compiler to include the source text from the file
STRUC .LIB at the point of the %INCLUDE statement.

The %REPLACE statement allows textual replacement of constants
for defined identifiers throughout the program. The form of the
definition is:

%REPLACE rep-name BY constant-exp;

where rep-name is an identifier which, when subsequently encountered
by the compiler, is replaced by the constant given by constant-exp.
The constant-exp may be any string or arithmetic constant expression.
Mul tiple%REPLACE statements can be written as a single %REPLACE
statement, where the elements are separated by commas.

Note that the defined names in a %REPLACE statement do not obey
the normal scoping rules. Hence, PL/I-80 requires that all %REPLACE
statements occur at the outer block level, before any nested inner
blocks. Generally, all %REPLACE statements are written directly
following the procedure heading in order that they can be easily
located. For example,

%REPLACE TRUE BY 'liB;

replaces all occurrences of the rep-name TRUE by the constant bit
string 'l'b, so that the statement

(All Information Contained Herein is Proprietary to Digital Research.)

12

DO WH ILE (TRUE);

is interpreted by the compiler as

DO WHILE ('l'B);

2.7. The Program.

As stated above, a procedure is a set of statements delimited by
the PROCEDURE and END statements. A procedure not nested within
another block is called an external procedure. A procedure contained
entirely within an encompassing block is called an internal procedure.
The source text of a PL/I-80 program may consist of one external
procedure which may contain nested internal procedures or blocks.
Each external procedure may be separately compiled and linked together
to form a PL/I-80 object program. One of the external procedures
forming the program must be the main procedure while the remaining
procedures may be sub routi ne s 0 r func tion procedure s. The forma t of a
main procedure is:

1 abe 1:
PROCEDURE OPTIONS (MAIN);

Statements or Blocks

END [label];

For further details and examples of program structure and how they may
be separately compiled, linked, and loaded, refer to the "PL/I-80
Applications Guide" and the "Link-80 Users Guide."

(All Information Contained Herein is proprietary to Digital Research.)

13

3. DATA ITEMS

The data items in a PL/I-80 program can be either constants or
variables. A constant is a data item whose value cannot change during
the execution of a program, while the value of a variable may change
during execution. The data items in a program have certain additional
properties, such as a range of subscript values, the operations which
may be applied, or the amount of storage required. These properties,
called attributes, are assigned to data variables in a DECLARE
statemen t, or in some case s, such a s constants, by system de fa ul ts.
Data variables may represent single data items, or structures or
arrays, referred to as data aggregates. A single data item, either a
variable or constant, is called a scalar. In PL/I-80 there are
essentially six forms of data: arithmetic, string, pointer, label,
entry, and file data. In the following sections each of these data
types are described in detail.

3.1. Arithmetic Data.

PL/I-80 supports three types of numeric data: FIXED BINARY,
FLOAT BINARY, and FIXED DECIMAL. Each numeric data item has an
associated precision and scale value, expressed as integer constants p
and q enclosed in parentheses. The precision p specifies the number
of decimal or binary digits the data item may contain and the scale q
specifies the number of digits to the right of the decimal or binary
point. The preclslon and scale of a variable can be explicitly
specified when the variable is declared or implicitly given by default
rul es.

3.1.1. Fixed Binary. A variable declared as FIXED BINARY [(p)]
is an integer that has p binary digits. The range of pis:

1 <= P <= 15

Since this data type is internally represented in two's complement
form, the range of a FIXED BINARY number is from -32768 to 32767.
Storage allocated to a FIXED BINARY number depends on p. If P <= 7,
then only one byte is allocated to the item. Otherwise two bytes are
a 110 cat ed • De fa ul t pre cis ion i s (1 5). As s i g n i ng val u est 0 FIXE D
BINARY variabl es outside the legal range will produce undefined
r esul ts.

A FIXED BINARY constant is written as a decimal integer. Such
constants are considered FIXED BINARY data only if they appear in
contexts which require fixed binary values, such as subscripts or
arithmetic operations involving other FIXED BINARY data. Otherwise

(All Information Contained Herein is Proprietary to Digital Research.)

14

they default to FIXED DECIMAL. Conversion from other types of data
normally occurs with truncation (See Chapter 7 for conversion rules).
The value 1 is assigned to the variable I, for example, in the
following program segment.

DECLARE I FIXED BINARY;
1=1.99;

Declaring a variable as FIXED, BINARY, or FIXED BINARY is equivalent
to declaring it as FIXED BINARY (15) •

3.1.2. Fixed Decimal. Except for those numbers used in a FIXED
BINARY context, all decimal constants with or without a decimal point
default to FIXED DECIMAL. A variable declared as FIXED DECIMAL [(p
[,q])] is a decimal number with a sign, a total of p decimal digits,
with q digits to the right of the deGimal point. T he range r of a
FIXED DECIMAL number is:

-10** (p-q) < r < 10**(p-q)

where:

1 <= P <= 15 and

o <= q <= P

The default precision and scale is (7,0). Default precision and scale
of decimal constants are determined by the the form of the constants
themselves. For example:

3.25 defaults to (3,2)
302 defaults to (3,0)

The internal representation of a decimal number is packed BCD format.
A value which has a scale greater than a FIXED DECIMAL variable will
be truncated if assigned to the variable. Also if a value which has
more significant digits to the left of the decimal point than are
specified for the variable is assigned to the variable, then a FIXED
OVERFLOW error occurs.

3.1.3. Float Binary. A FLOAT BINARY number has two parts, the
fractional part (or mantissa) representing the significant digits of
the number, and the exponential part indicating the scale factor. A
variable declared as FLOAT BINARY (p) has a sign s, an integer
exponent e, and p binary digits representing the fractional part of
the number. The range of the magnitude of a FLOAT BINARY number r is
approximately

(All Information Contained Herein is Proprietary to Digital Research.)

15

5.88*10**-39 <= r <= 3.40*10**38

Th era ng e 0 f pis:

1 <= P <= 24

The default precision of p is 24.

A FLOAT BINARY constant is written in scientific notation with a
sequence of decimal digits with an optional decimal point followed by
the upper or lower case letter E, followed by an optionally signed
decimal integer exponent. For example:

A = 2. 3E2;
assigns the value 230 to A. Declaring a variable FLOAT is equivalent
to declaring it FLOAT BINARY.

3.1.4. Arithmetic Built-in Functions.
arithmetic operators, PL/I-80 provides the
built-in functions as part of the language:

ABS ACOS ASIN ATAN BINARY
COSD COSH DECIMAL DIVIDE EXP
FLOOR LOG LOG10 LOG2 MAX
ROUND SIGN SIN SIND SINH
TAND TANH TRUNC

In addition to the
following arithmetic

CEIL COS
FIXED FLOAT
MIN MOD
SQRT TAN

Detailed descriptions of the above buil t- in functions are given in
Chapter 12.

3 • 2 • S t ring Data.

There are two types of string data in PL/I-80: character string
data and bit string data. The value of a character string is a
sequence of ASCII characters, including the empty or null sequence,
and the value of a bit st~ing is a non-empty sequence of bits. The
length of a string is the number of characters or bits in the string.
The rules governing the use of str ing "data are descr ibed below.

(All Information Contained Herein is Proprietary to Digital Research.)

16

3.2.1. Character String Data.
CHARACTER(n) is a character string of length
between 1 and 254. For example,

A variable
n, where n

DECLARE A CHARACTER(10):

declared as
is a value

defines the variable A as a character string 10 characters long. If a
character string assigned to A is shorter than A, blanks will be used
to pad on the right up to the 1 ength 0 f A. If a longer string is
assigned to A, it will be truncated on the right.

Character string constants are written as a sequence of
characters enclosed in quotes. If a quote mark is to be included in
the string, it is represented as two consecutive quote marks. Thus
the string constant whose value is What's Happening? is represented:.

• Wh a t I 's Ha ppe n i ng? I

A null or empty character string is defined by using two consecutive
quote marks. The null string has a length of zero.

Character string variables may also have the VARYING attribute
which indicates that the variable may represent varying length strings
up to a maximum length of n. To illusttate:

DECLARE A CHARACTER(10) VARYING:

defines A to represent any character string value whose length is not
greater than 10.

PL/I-80 allows control characters to be included in string
constants. In general, the up-arrow character nAn within a string
constant indicates that a control character follows. The high order
three bits of the character are masked to zero. Thus, the string 'AM'
or ' ... m' is converted to a carriage-return character. Similarly ''''1'
translates to the horizontal tab character. The occurrence of a
double n"'" within the string translates to a single character.
Note that this use of the up-arrow character is not generally
available in the full language, and must be avoided if compatibility
is required.

3.2.2. Bit String Data.
string data item containing n
between 1 and 16.

DECLARE A BIT(3):

A variable ~eclared as BIT(n) is a bit
binary digits, where n is a value

defines a~bit string of length 3. Assignments follow the same rules
as for character strings, exc~pt that padding takes place with zeroes
instead of blanks. Bit string variables may not be given the VARYING

(All Information Contained Herein is proprietary to Digital Research.)

17

attribute.

8it string constants are written as a sequence of digits 0-9,
and letters A-F enclosed in quote marks followed by the letter 8 and
optionally followed by a digit in the range from 1 to 4 indicating the
number of bits to be used to represent each digit in the sequence.
That is, bit string constants may be written in base 2 (8 or 81
format) , base 4 (82 format) , - base 8 (83 format), or base 16 (84
format). The characters or digits occurring in the sequence must be
valid digits for the base specified by the format. The following
examples illustrate the equivalence of the optional formats to the
base 2 format:

'101'81 is equivalent to '101'8
'101'82 is equivalent to '010001'8
'101'83 is equivalent to '001000001'8
'101'84 is equivalent to '000100000001'8
, 9A'B4 is equivalent to '10011010 18
'77'83 is equivalent to 1111111'8

3.2.3. Concatenation. The infix operator I I or !! can be used
to concatenate either bit strings or character strings. 80th operands
must be of the same type, which is then the type of the result. The
length of the resulting string is always the sum of the lengths of the
operands. For character string concatenation, if either operand has
the VARYING attribute, then the result will have the VARYING
attribute. In the following example

DECLARE
A CHARACTER-(3) ,.
8 CHARACTER(6) ,
C CHARACTER(20) VARYING;

A = 'ABC';
8 = 'ABCDEF';
C = A I I B;

the character string 'A8CA8CDEF' of length 9 is assigned to the
variable C.

3.2.4. String 8uilt-in Functions. The following string builtin
functions are included in PL/I-80 and are described in detail in
Chapter 12.

ASCII
INDEX
UNSPEC

8ITS
LENGTH
VERIFY

800L
RANK

CHARACTER COLLATE
SUBSTR TRANSLATE

(All Information Contained Herein is Proprietary to Digital Research.)

18

3.3. Control Data Items.

Control data items, as opposed to problem data items, are used
to control progr am flow. Identifiers used to label PL/I-80
statements and procedures are examples of control data items.

3.3.1. Label Data. Label data consists of label constants and
label variables. A label constant is a label identifier which
prefixes an executable statement. A label variable is a variable
defined in a DECLARE statement with the LABEL attribute. Assignments
of label constants or other label variables may be made to a label
variable and follow the same rules as assignments for other types of
va r iables.

Both label constants and label variables are subject to the same
scope rules as declared names. A label data item is known only within
the block in which it is declared explicitly in a DECLARE statement or
implicitly by its use as a label constant. In particular, a transfer
of control by the use of a GOTO statement is valid only when the
target label is known in the block in which the GOTO statenent occurs.
Thus transfers of control using GOTO statements and labels are limited
to the currently active block or a containing block.

Label constants may be subscripted by a single (optionally
signed) integer constant. All occurrences of subscripted labels with
the same identifier in a single block constitute an implicit
declaration of a constant label array for that block. The occurrence
of the same label name within any other block, including a contained
block, defines a new declaration local to that block. Any such
implicitly defined constant label array is defined only for those
subscripts which occur in its corresponding block. Label variables
may be explicitly defined to be singly subscripted arrays in a DECLARE
statemen t.

The only operators which may be used with label data are the
equal and not equal comparison operators.

3.3.2. Entry Data. Entry data items may be either entry
constants or variables. The label of a PROCEDURE statement is called
an entry constant. Entry constants may be external (identifying an
entry point to an external procedure) or internal (identifying an
entry point to a nested procedure) • A variable declared as ENTRY
VARIABLE is an entry variable which may be assigned entry constants or
other entry variable values. As with label data, the only operators
used wlth entry data are the equal and not equal comparison operators.
Entry variables may also be subscripted. The. followin~ exam·ple shows
how en try data i terns are used:

(All Information Contained Herein is proprietary to Digital Research.)

19

DECLARE
A ENTRY VARIABLE,
(X,Y) FLOAT BINARY,
F(3) ENTRY (FLOAT) RETURNS (FLOAT) VARIABLE,
ZZ ENTRY(FLOAT) RETURNS(FLOAT);

PI:

P2:

Y=9;

PROC;
X=5;
END;

PROC;
X=25;
END;

IF Y = 5 THEN
A = PI;

ELSE
A = P2;

CALL A;
F(2) = ZZ;
Y = F(2)(X);
PUT LIST(Y);

ENTRY data items are discussed further in Chapter 8.

3.4. Pointer Data.

Pointer data is used to address a location in memory. Its value
is the address of a variable in the program. A pointer variable is
declared in the following manner:

DECLARE X POINTER;

Pointer variables may be assigned other pointer variables, but
as with label and entry data the only operators defined for pointer
data are = and -=. Certain types of variables must be qualified by
pointer data when referencing them. The format of a pointer-qualified
reference is:

pointer-variable -) based-variable

where pointer-variable points to the address of the based-variable.
For example,

• (All Information Contained Herein is Proprietary to Digital Research.)

DECLARE P POINTER;
DECLARE X CHARACTER(2) BASED;

P -) X = • AA' ;

Pointer data items are also discussed in Chapter n.

3.5. File Data.

File data items are used to represent informatfon associated
with an external device. PL/I-80 uses file constants and variables to
access external data sets. A file constant is declared as follows:

DECLARE fname FILE;

where fname is a PL/I identifier assigned to represent the file name.
In the case tha t fname is not a parameter, -the file name is
automatically taken as EXTERNAL so that it will access the same data
set in all modules in which it is declared. Further, note that if no
OPEN statement is executed with the TITLE option, the CP/M disk file
name d II f n am e • DAT" i sac c esse don the de fa ul t d r i v e •

A file variable is declared as follows:

DECLARE fname FILE VARIABLE;

FILE data is presented in more detail in Chapter 9, and in the manual
entitled "PL/I-80 Applications Guide."

(All Information Contained Herein is proprietary to Digital Research.)

21

4. DATA AGGREGATES

In PL/I-80 data items may be grouped together to form arrays or
structures. A variable that represents a group of data elements is
either an array or a structure variable; and is referred to as a data
agg rega tee

4.1. Arrays.

An array is an ordered collection of data items whose elements
have the same attributes. An entire array may be referenced by name,
or an element of an array may be referenced through the use of integer
subscripts. Subscripts denote the relative position of an element in
an array. When an array is defined the following properties must be
given: the data type of the elements, the dimension of the array, and
the extent, or number of elements, in each dimension. The sum of the
extents of each dimension of the array determines the total number of
elements in the array. The dimension of an array is defined by the
use of a d imens ion attr ibute list following the vari able name ina
DECLARE statement. A simple dimension attribute list consists of a
list of positive integer constants, one for each dimension, specifying
the extent of the subscript for that dimension. Each is separated by
a comma, with the entire list enclosed in parentheses. For example,

DECLARE A(3,4) CHARACTER (2);

defines an array whose elements are character strings of length 2,
whose dimension is two, such that the extent of the first dimension is
3, and the extent of the second dimension is 4. Thus A is an array
with 3 rows and 4 columns whose entries are character strings of
length two.

The range of values which the subscript corresponding to a
particular dimension may assume is normally implied by the extent
number for that dimension. In the array A, the row subscripts may
range from 1 to 3, while the column subscripts may range from 1 to 4.
The range of values may be explicitly defined for the subscripts of a
particular dimension by replacing the extent value by a pair of
integers in the form m:n, where m represents the lower bound, and n
the upper bound for the subscripts for that dimension. The values m
and n may be any integer values such that m is not greater than n.
For example,

DECLARE B(-2:5,-5:5,5:l0) FIXED BINARY;

defines the array B to be a three dimensional array whose subscripts
range from -2 to 5, -5 to 5, and 5 to 10, respectively. The
corresponding extents are 8, 11, and 6 respectively. Thus B contains
25 data items of fixed binary type.

The elements of arrays are stored internally in row major order.

(All Information Contained Herein is Proprietary to Digital Research.)

22

An element of an array is referenced by the name of the array followed
by a list of subscript expressions separated by commas and enclosed in
parentheses whose values specify the position of the element in the
array. The subscript expressions must be of FIXED BINARY type and
there must be one expression for each dimension of the array. The
value of each subscript expression must be in the range defined for
the subscript of that dimension.

An array variable may be assigned to another array variable
directly, without the use of subscripts, if both array variables are
defined with the same data type, dimension, and subscript ranges.

The DIMENSION, HBOUND, and LBOUND built-in functions are
provided to access the extent, the upper bound, and the lower bound,
respectively, of each dimension of an array. For detailed
descriptions of these functions refer to Chapter 12.

4 • 2 • S t r u c t ur e s.

A structure is a hierarchically ordered set of data items. The
data items contained in the structure are called its members and are
not required to be the same type and may even be arrays or other
structures (substructures). The main structure is called the major
structure and any substruc ture is called a minor structure.

A structure is defined by specifying a name for the major
structure, names and data attributes for its members, together with a
level number for each name to define its level in the hierarchical
order. Level numbers precede the names and must be separated from
them by one or more spaces. The level number of a major structure is
always 1. The definitions of each member (including its level number,
name, and attributes) must be separated by commas. The level numbers
of the members of a minor structure must be greater than the level
number of the minor structure. Stucture names may not be given data
type attributes, but may be given a dimension attribute (see below) ,
and EXTERNAL, STATIC, or INITIAL attributes. For example, the
definition of a structure for a billing account may appear as follows:

declare 1 bill,
2 name,

3 last nm
3 first nm
3 mid init

2 address,
3 street
3 city
3 state
3 zip

character (20),
character (20),
character (1),

character (20),
character (10),
character (3),
character (5).

2 charge s,
3 shop fix ed dec im a 1 (1 0 • 2) ,

(All Information Contained Herein is Proprietary to Digital Research.)

23

3 snkbar fixed decimal (Ira, 2) ,
3 m 1. sc fix ed d ec im a I (Ira, 2) ,
3 due s fix ed dec im a I (1 ra, 2) ;

Since the name of a member of a structure may occur as the name
of the member of another structure or as the name of a data item in a
substructure of the same structure, ambiguities can arise in
referencing the members of structures. These ambiguities arise only
in the case that the member names are within a common scope of
definition. To resolve such ambiguities, qualified names are used to
reference members of structures. In a qualified name the member name
is preceded by a list of structure names in ascending order of level
number, each followed by a period and zero or more blanks. The only
structure names required are those which determine a unique reference
to the member name. For example, consider the following structure:

DECLARE 1 A,
2 B,

3 C FIXED,
3 D FIXED,

2 BB,
3 C FIXED,
3 D FIXED;

A reference to item C or D is ambiguous. The qualified names
B.C or B.D or BB.C or BB.D uniquely identify the structure elements.
Note that the fully qualified names would be:

A.B.C
A.B.D
A.BB.C
A. BB.D

4.3. Arrays of Structures.

Just as structures may have arrays for its members, arrays of
structures may also be defined. An array whose elements are a single
type of structure is defined by giving the structure name a dimension
attribute when the structure is defined. Similarly, minor structures
may be given a dimension attribute. For example,

(All Information Contained Herein is Proprietary to Digital Research.)

24

DECLARE 1 STULIST (10"'),
2 STUNAME.,

3 LASTNM CHARACTER (10) ,
3 FIRSTNM CHARACTER (10) ,
3 MID IN CHARACTER (1) ,

2 SSN CHARACTER (9) ,
2 COUNTRY CHARACTER (10) ,
2 GRADES (5) CHARACTER (2) 1

defines an array of structures whose major structure name is STULIST.
Each structure element of the array has the array GRADES as a member.
To reference an entry in the array, a qualified name is used together
with subscripts for the structure names which have a dimension
attribute and the member name if it has a dimension attribute. The
subscr i pts do not have to appear wi th thei r cor responding name but
must occur in parentheses separated by commas and must appear in
correct order.

For example, a reference to the 3rd GRADE entry for the 61st entry of
the array STULIST may occur in any of the following forms:

STULIST(6l).GRADE(3)
STULIST.GRADE(6l,3)
STULIST(6l,3) .GRADE

(All Information Contained Herein is Proprietary to Digital Research.)

25

5. DATA ATTRIBUTES AND THE DECLARE STATEMENT

Except for constant data and built-in names, every program data
item must be explicitly defined through the use of the DECLARE
statement and data attributes. '

5.1. The Declare Sta temen t.

All variable names in a program which are not the names of
builtin functions or pseudo varaibles must be defined in a DECLARE
statement. File constants and variables must also be defined in a
DECLARE statement. Control constants, such as statement labels and
procedure names are declared implicitly by their use in a program.

The properties associated to a name which characterize it as a
da ta i tern are call ed the at tr ibutes of the name. At tr i butes can be
defined implicitly by defaults or explicitly by their specification in
a DECLARE statement. The general format of a DECLARE statement is:

DECLAREIDCL [level] name [attribute-list] •••
[, [level] name [attribute-list]];

where: name is the variable identifier, level is a positive integer
used in a structure declaration as explained in the previous chapter,
and the attribute-list describes the characteristics of the name. If
the at t r ibute-1 i st is omi t ted, the at tr ibutes defaul t to FIXED
BINARY(15). Examples of DECLARE statements are:

DECLARE A CHARACTER (2) BASED,

DCL

B FIXED BINARY INITIAL (0),
C (100) FIXED DECIMAL (5,2);

1 BOOK,
2 TITLE
2 AUTHOR,

3 LASTNM
3 FIRSTNM

2 PUBLISHER

CHAR(20) ,

CHAR(10) ,
CHAR (10) ,
CHAR (20) ;

Examples of simple declarations for each data type and data aggregate
are given in Chapter 3 and Chapter 4.

The scope of a declared name is the region of the program in
which the name with its associated attributes is known. In general,
the occurrence of a name in a DECLARE statement implicitly defines the
scope of the declared name to be internal, that is, the block in which
the declaration occurs. If a name has the EXTERNAL attribute then its
scope includes every block in which it is declared with the EXTERNAL
attribute. If a variable is declared with the EXTERNAL attribute, it

(All Informa'tionContained Herein is Proprietary to Digital Research.)

26

must also have the STATIC attribute since the name is associated with
a single generation of storage. A name cannot be declared more than
once in the same block except as the name of a member of a structure
in such a way that unambiguous references may be made for each
occurrence of the name. A name may not be declared with conflicting
attributes in any two blocks in which it has the EXTERNAL attribute.

In PL/I, for convenience and simplicity, alternate forms of the
DECLARE statement are allowed. First, in general, any sequence of
DECLARE statements of the form:

DECLARE definition-I;
DECLARE definition-2;

DECLARE definition-n;

can be written in the equivalent form:

DECLARE definition-I, definition-2, ••• definition-n ;

where each definition item is separated by commas and zero or more
spaces, and the DECLARE statement is terminated by a semicolon.
Moreover, attributes shared by several item definitions can be
factored to the right. That is, a sequence of definitions of the
form:

item-l attr-A, item-2 attr-A, ••• item-n attr-A

can be written in an equivalent factored form:

(item -1, item - 2, ••• item - n) a t t r - A

Repeated applications of this rule are also allowed. For example,

DECLARE ((A,B) FIXED BINARY, C FLOAT BINARY) STATIC EXTERNAL;

is equivalent to

DECLARE A FIXED BINARY STATIC EXTERNAL,
B FIXED BINARY STA'rIC EXTERNAL,
C FLOAT BINARY STA'rIC EXTERNAL;

In general, the ordering of attributes is unimportant with the
exception that the dimension list attribute for an array must follow
the array name and precede other attributes, and the level numbers for
members of structures must precede the member name. Both attributes
may be factored. Since a dimension list is on the right of the name
to which it applies, it is factored to the right as above. Since
level numbers precede their member names, they are factored to the
left. A sequence of the form:

level-k item-I, level-k item-2, ••• level-k item-n

is equivalent to the sequence:

(All Information Contained Herein is Proprietary to Digital Research.)

27

I eve l-k (i tern-I, i tem-2, ••• i tem-n)

For example,

DECLARE I A BASED, 2 (B FIXED BINARY,C CHARACTER(2»;

is equivalent to

DECLARE I A BASED,
2 B FIXED BINARY,
2 C CHARACTER(2);

An
as two
complete
the data
compiler

attribute list may not contain conflicting attributes, such
data types, or two storage class attributes, but may omit a
set of attributes, that is, enough attributes to characterize
item. I nth i s cas e , a t t r i bu t e s are sup pI i e d by the P L / I -8 0
according to default rules:

If no attribute is specified FIXED BINARY(15) is assumed.

If DECIMAL or BINARY is specified without FIXED or FLOAT
FIXED is ass lined.

then

If FIXED or FLOAT is specified without BINARY or DECIMAL then
BINARY is assumed.

If no precision is specified for FIXED BINARY, FIXED BINARY(15)
is assumed.

If no preC1Slon is specified for FIXED DECIMAL, FIXED
DECIMAL(7,0) is assumed.

If no preclslon for FLOAT BINARY is specfied then FLOAT
BIN ARY (24) i s ass urn ed •

5.2. List of Data Attributes.

The following paragraphs give the possible attributes with which
program data may be associated. Abbreviations of attributes are
included. Full details of the attributes are discussed in their
relevant sections.

ALIGNED is a data attribute which normally forces storage
boundary alignment of a variable. It has no effect in PL/I-80.

AUTOMATIC is a storage class attribute which specifies that
storage is allocated to the variable upon activation of the
block containing the declaration. In PL/I-80, automatic storage
is statically allocated, except for recursion.

BASED or BASED(p) or BASED(q(» is a storage class attribute

(All Information Contained Herein 1s Proprietary to Digital Research.)

28

which specifies that allocation for a variable is
user-controlled. In this case, p is a pointer variable, and q
is a pointer valued function.

BINARY or BINARY (p) and BIN or BIN (p) define a BINARY variable
with precision p.

BIT (n) defines a bit string of length n.

BUILTIN specifies that the name being declared is one of the
built-in functions of the language. If a builtin function name
is redefined in any block, then in order to reference the
builtin function in a contained block, the builtin function name
must be redeclared with the above attribute in the contained
block.

CHARACTER (n) and CHAR (n) define a character string of length
n.

DECIMAL [(p [,q])] and DEC [(p [,q])] define a DECIMAL number
with precision (p,q). If q is not specified it is assumed to be
zero. The default precision is (7,0).

ENTRY [(att-l,att-2, ••• ,att-n)] defines ENTRY values. In the
above , at t -1 to at t - n i s the at t r ib ute 1 is t 0 f the pa ram e t e r s
as given in the PROCEDURE definitions of the entry values.

ENVIRONMENT (options) or ENV (options) define fixed and variable
length RECORD files where options may be one of the following:

F{lrecl)
B(lbuff)

F(lrecl) ,B{lbuff)

The expression lrecl is the record length of a fixed length
record file, and lbuff is the system buffer size.

EXTERNAL or EXT define the scope of the declared item to be
EXTERNAL. That is the item is known in all blocks which
declared it as EXTERNAL.

FILE defines file data.
Chapter 10.

File attributes are discussed in

FIXE 0 [(p [, q])] de fin e s fix e d - po i n tar it hm e tic d a tao f
precision (p,q).

FLOAT [(p)] defines floating point arithmetic data of precision
p.

INITIAL (value-list) and INIT (value-list) causes initial values
to be assigned to a STATIC variable prior to program execution.
The value-list is a list of constants, separated by commas,
which can be converted to the variable type being initialized.
Any constant in the list may be preceded by a repetition factor

(All Information Contained Herein is Proprietary to Digital Research.)

29

in parentheses.

LABEL defines a LABEL variable, and POINTER defines a POINTER
variable.

RETURNS (attribute-list» is given with the ENTRY attribute to
describe the attribute-list of the value returned by a function.

STATIC is a storage class attribute that causes storage to be
allocated prior to program execution.

VARIABLE is used with the FILE or ENTRY attributes to define the
item as a variable and not a FILE or ENTRY constant.

VARYING and VAR define varying length character strings.

(All Information Contained Herein is proprietary to Digital Resea~ch.)

30

6. STORAGE MANAGEMENT

PL/I allows control over the allocation of storage for data
are as. S to r ag e may be s tat i call y all 0 cat ed at c omp i 1 e- tim e, 0 r
dynamically during program execution. Dynamically allocated storage
may be subsequently released for re-use. Every variable in a program
has a storage class attrib.lte. The storage class determines how and
when storage is allocated for a variable. PL/I-80 includes three
different storage classes:

STATIC
AUTOMATIC

BASED

In order to improve internal addressing mechanisms, AUTOMATIC storage
is treated in the same way as STATIC storage, except in procedures
which are marked as RECURSIVE. Storage class attributes are
properties of elements, arrays, and major structure variables. These
attributes cannot be given to entry names, file names, or members of
da ta agg rega te s.

6.1. The STATIC Attribute.

A variable declared with the STATIC attribute is allocated prior
to execution of the main procedure. The variables belonging to this
storage class may have their data values initialized. The STATIC
attribute is illustrated in the following declarations:

DECLARE A FIXED STATIC;
DECLARE B(100) CHAR(2) STATIC;
DECLARE 1 C STATIC,

2 D CHAR(10) ,
2 E FIXED;

6.2. The INITIAL Attribute.

The INITIAL attribute is used to give initial constant values to
data items upon storage allocation. This initialized data becomes a
part of the program module which is loaded when the program begins
execution. The form of the INITIAL attribute is:

INITIAL I INIT (value [,value1 •••)

where the initializing value is of the form:

(iteration-factor)] constant-exp

(All Information Contained Herein is proprietary to Digital Research.)

31

The iteration-factor is a literal constant repeat count, which
duplicates the constant-exp value an integral number of times. The
constant-exp must be a literal constant value which is compatible with
the data type being initialized, consisting of an optionally signed
arithmetic constant, string constant, or NULL pointer value. Array
data items can be initialized with a single statement which, in this
case, begins with the first element of the array, and continues in row
major order until the end of the set of initialized constants, which
must not exceed the size of the initialized array. structure members
must be individually initialized. Assignments of constants to
variables follow the rules for assignment statements. Thus, blank
padding occurs on the right when a shorter string is assigned to a
longer string variable, for example. Finally, only STATIC variables
can have the INITIAL attribute in order to be compatible with the full
language. Examples of the INITIAL attribute are shown below.

DECLARE A FIXED BINARY STATIC INITIAL (0);
DECLARE B(8) CHARACTER (2) INITIAL «8) 'AB') STATIC;
DECLARE

1 FCB STATIC,
2 FCBDRIVE FIXED(7) INITIAL (0) ,
2 FCBNAME CHAR (8) INITIAL (, EMP') ,
2 FCBTYPE CHAR (3) INITIAL('DAT'),
2 FCBEXT BIT(8) INITIAL('00'B4),
2 F C B FI L L (I 9) BIT (8) ;

6.3. The AUTOMATIC Attribute.

Normally, the AUTOMATIC attribute forces data storage allocation
upon entry to the PROCEDURE or BEGIN block in which the variable
appears. In PL/I-80, AUTOMATIC storage is statically allocated to
improve variable addressing and execution speed. One exception is in
the presence of recursion, where the AUTOMATIC variables must use the
dynamic storage mechanism to prevent data overwrite on recursive
calls. Note that the default storage class attribute for a variable
not declared STATIC or BASED is AUTOMATIC, unless otherwise stated.

6.4. The BASED Attribute.

A variable declared with the BASED attribute is given storage
explicitly through the ALLOCATE statement. Whenever a BASED variable
is allocated, a corresponding PO INTER va r iable is set to the add ress
of the allocated BASED variable. The format for the BASED attribute
is:

BASED [(pointer-ref)]

(All Information Contained Herein is Proprietary to Di~ital Research.)

32

where the pointer-ref is an unsubscripted POINTER variable, or a
function call, with zero arguments, which returns a POINTER value.

If a variable is declared with the BASED
pointer-ref is omitted, then each reference
include a pointer-qualifier as shown below:

pointer-exp -) variable

attribute, but the
to the variable must

where pointer-exp is a pointer-valued expression, in order to locate
the storage for the variable reference. If the pointer-ref option is
included, then it is implicitly used as the base whenever the variable
is refe·rence without a pointer-qualifier. In this case, the
pointer-ref is re-evaluated at each occurrence of the unqualified
variable. The pointer variable or pointer-valued function name given
in the pointer-ref is taken from the scope of the BASED declaration,
even if a more local declaration exists with the same pointer-ref
name. pointer-qualified reference has the format: Examples of BASED
variable declarations are given below.

DECLARE A CHAR (8) BASED;
DECLARE B POINTER BASED{Q);
DECLARE C FIXED BASED{P);
DECLARE D BIT(8) BASED{F{»;

6.5. The ALLOCATE Statement.

The ALLOCATE statement is used to allocate storaqe for BASED
variables, and takes the form:

ALLOCATE based-variable SET (pointer-variable);

A segment of storage is obtained from the dynamic storage area,
sufficiently large to hold the value ~f the based-variable. The ERROR
condition is raised if a segment of the requested size is not
available. The based-variable must be an unsubscripted variable
reference, where the variable is declared in the scope of the ALLOCATE
statement with the BASED attribute. The allocation address is stored
into the pointer-variable named in the SET clause. It is important to
note that storage alLocated in this manner remains allocated until a
corresponding FREE operation takes place, using the allocation address
held by the pointer-variable as an operand. The following program
segment illustrates the use of the BASED attribute with the ALLOCATE
statement:

(All Information Contained Herein is Proprietary to Digital Research.)

33

DECLARE
(P, Q) POINTER,
X CHARACTER(2) BASED,
Y FIXED BINARY BASED(P);

ALLOCATE X SET (Q);
ALLOCATE Y SET (P);

Q -) X = • AB' ;
Y = Y + 1;

6.6. The NULL Built-In Function.

The NULL Built-in function returns a pointer value which is a
unique non-valid storage address. This unique address is useful in
marking various pointer values as empty, and is especially used in the
construction of linked lists to mark the end-of-list element. The two
forms of the NULL function call are:

NULL and NULL ()

Note that pointer values do not necessarily begin with a NULL value
upon program start-up, unless the NULL value is used in an INITIAL
option in the declaration for the variable. Use of BASED variables
and the NULL function is described extensively in the "PL/I
Applications Guide."

6.7. The ADDR Built-In Function.

The ADDR built-in function returns a pointer value which
addresses the segment of memory occupied by the variable-name given as
the argument, and takes the form:

ADDR(variable-name)

Note that the variable-name must have an assigned memory address, and
cannot be a temporary result created through the application of
functions and operators.

Use of BASED variables in conjunction with the ADDR built-in
function allows storage sharing in PL/I-80. In this case, the based
variable is not explicitly given storage using the ALLOCATE statement,
but instead acts as a template which overlays an existing variable.
the pointer base for the based variable is set to the address of the
existing variable usinq the ADDR function. Subsequent access to the
based variable thus accesses the overlayed variable. The program
segment which follows illustrates storage sharing. In this case, the

(All Information Contained Herein is Proprietary to Digital Research.)

34

value of a character string is overlayed by a bit string vector. The
output from the program is the character string value, written in
hexadecimal bi t str ing form.

DeL
I FIXED,
P POINTER,
A CHAR (8) ,
B(8) BIT(8) BASED (P);
P = ADDR (A) ;
GET LIST (A) ;
PUT EDIT ((B(I) DO I = 1 TO 8»

(B4(2»;

6.8. The FREE Statement.

A BASED variable remains allocated until released with the FREE
statement. The format of the FREE statement is:

FREE [pointer-variable ->] based-variable;

where the pointer-variable addresses an allocation of storage which
must have been previously obtained from the dynamic storage area using
the ALLOCATE statement. If the pointer-variable is not given in the
FREE statement, then the based-variable must be declared with the
pointer-ref option. In this case, the storage addressed by the
pointer-ref is given back to the dynamic storage area. The runtime
subroutines which maintain the dynamic storage area automatically
coalesce contiguous storage segments as they are released through the
FREE statement. An example of the FREE statement in a non-functional
prog ram segment fo llows.

DECLARE
(P, Q, R) POINTER,
A CHARACTER (10) BASED,
B FIXED BASED (R);

ALLOCATE A SET(P);
ALLOCATE B SET(R);
ALLOCATE A SET(Q);

FREE P -> A;
FREE Q -> A;
FREE B;

(All Information Contained Herein is proprietary to Digital Research.)

35

7. ASSIGNMENTS AND EXPRESSIONS

Assignment statements are used to set variables to the values of
expressions or constants. The assignment statement contains no
distinctive keyword, and takes the general form:

variable = expression;

where variable is a scalar element, an array, a structure name, or a
pseudo-variable. The composition of expressions is given in the
sections which follow.

7.1. Expressions.

An expression is a combination of operands and operators which,
when computed at run-time, produce a single value. Syntactic rules
govern the arrangement of references, operators, and parentheses used
in an expression. A reference may be a constant, a variable, or a
function. An operator defines the computation to perform using the
operands to which it is applied. Parentheses may be used to enclose
various portions of the expression. The proper formulation of
operands, operators, and parentheses is presented in the following
sections.

7.1.2. Prefix Expressions. A prefix expression consists of a
unary operator followed by an operand. The operand is evaluated
first, and th~ operator is applied to the result. Two examples of
prefix expressions are shown below.

-A, and -SQRT(B) •

7.1.2. Infix Expressions. An infix expression consists of two
operands separated by an operator. The operands, which themselves may
be expressions, are evaluated first, then the operator is applied to
the result. Note that the order of evaluation is not specified in
PL/I, so that the compiler can choose the most effective evaluation
sequence. Two examples of infix expressions are shown below.

A+B C**2

(All Information Contained Herein is proprietary to Digital Research.)

36

7.1.3. Precedence of Operators. The order in which operators
are applied in an unparenthesized expression or subexpression is
governed by a set precedence of operators. The fixed order of
precedence in PL/I is listed below, from highest to lowest precedence.
Operators with equal precedence are listed on the same line.

Exponentiation
NOT
prefix Operators
Multiplication, Division
Addition, Subtraction
Concatenation
Relational Operators =,
AND
OR

** - or
+, -
*, /
+, -
11,11, or \\

=, <, -<, >, ->, <=, >=
&
I, !, or \

The precedence of operators effectively inserts balanced parenthesis
pair around the highest precedence operators first, descending to
lower precedence operators until the entire expression is properly
parenthesized. When equal precedenc~ operators occur at the same
level, prefix operators and exponentiation are evaluated from right to
left, with the remaining operators evaluated from left to right. For
example, the unparenthesized expression

2 + Z * X ** Y ** 2 / 5 - Q

is treated by the compiler as

(2 + «Z * (X ** (Y ** 2») / 5») - Q

7.1.4. Relational Operators. Relational operators are used to
compare non-computational values for equality and inequality.
Computational values can also be compared according to the normal
algebraic rules. If the operands differ in form, they will first be
converted to a common type, as described in the following section,
before the comparison is made. A bit string of length one with value
'l'B is produced if the comparison result is true, while '0'B results
if the relation is false. Character strings are compared by extending
the shorter operand on the right with blanks until it is the length of
the longer operand. The comparison is made character by character
from left to right using the ASCII collating sequence as defined in
Appendix A. Bit strings are compared by extending the shorter string
on the right with zero bits. Comparison is then made bit by bit from
left to right with o considered less than 1 ••

(All Information Contained Herein is proprietary to Digital Research.)

37

7.1.5. Bit String Operators. The bit string operators include:

\ &

where the first two symbols denote the logical negate (NOT) operator,
the next three denote logical OR, and the last symbol represents
logical AND.

Bit string operations are performed on a bit by bit basis. The
unary NOT operator reverses each bit value in ,the bit-string operand:
each 0 bit is changed to a 1, and each 1 bit is changed to a 0 bit.
The OR and AND operators require two bit string operands. If the
operands are of unequal length, the shorter one is extended on the
right with zero bits until it is equal in length to the other operand.
The resulting string length is equal to the longer of the two
operands. The OR and AND operators follow the usual rules of Boolean
Algebra:

x y xly x y X&y
------------------ -----------------

" 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 1

(additional boolean functions are easily constructed using the BOOL
built-in function).

7.1.6. Exponentiation. Exponentiation is computed as a series
of multiplications if the exponent is a non-negative literal constant.
Otherwise, the operation is evaluated using the LOG and EXP
transcendental functions. A number of special cases for
exponentiation are considered:

If X=0 and Y>0 then X •• Y = 0
If X=0 and Y<0 the ERROR condition is raised.

If X-=0 and Y=0 then X··Y = 1.
If X<0 and Y is not an integer, the ERROR condition is raised.

7.2. Arithmetic Conversions.

Conversion betw~en variouS data types may be required during the
evaluation of an expression. All conversions involve the source data,
an intermediate resul t, and the target data. The intermed iate resul t
is computed from the source da.ta according to rul es descr ibed below.
The target data format is then derived from the intermediate result.

(All Information Contained Herein is proprietary to Digital Research.)

38

7.2.1. Arithmetic to Arithmetic Conversions. The general rules
for arithmetic operand conversions are:

If one operand is FIXED and the other is FLOAT,
the common type is FLOAT. A FIXED BINARY(p) is
converted to FLOAT BINARY(p), while a FIXED
DECIMAL (p,q) is truncated and converted to
FLOAT BINARY(p'), p' = min(ceil(p*3.32),24).

If one operand is FIXED BINARY and the other type
is FIXED DECIMAL, the common type is FIXED BINARY.
A FIXED DECIMAL (p,q) becomes FIXED BINARY(p).

After the conversions to the common type have been made:

If the operands are FLOAT BINARY, then the result
is FLOAT BINARY, and the precision of the result
becomes the greater precision of the two operands.

If the operands are FIXED DECIMAL, let(p,q) be
the precision of the first operand and (r,s) be
the precision of the second operand. Then for
addition or subtraction the precision of the
re suI t is:

(MIN (15 , MAX (p-q, r- s) +MAX (q, s) + 1) ,MAX (q ,s))
For multiplication the precision of the result is:

(MI N (1 5 , p+ r+ 1) , q+ s)
For division, the precision of the result is:

(15, l5-p+q-s)
Care should be taken when dividing FIXED DECIMAL
values. The DIVIDE function may be used to
control the precision of the quotient.

If the operands are FIXED BINARY let (p) be the
precision of the first operand and (r) be the
precision of the second operand. Then for
addition or subtraction the precision of the
result is:

(MIN(15,MAX(p,r)+1»
For multiplication the precision of the result is:

(MIN (15 ,p+r+l)
The DIVIDE built-in function must be used to be compati
ble with the full language, and a scale factor of zero
must be given, producing an integral result.

Truncation occurs if the precision of the result is insufficient to
hold the number. Truncation occurs on the right for FLOAT BINARY
items, while fractional digits are lost in FIXED DECIMAL computations.
FIXED BINARY digits are lost in the most significant portions. A
number of ar i thmetic conver sion functions are ava il able to con trol the
conversions which take place during expression evaluation, as detailed
in the following sections.

(All Information Contained Herein is Proprietary to Digital Research.)

39

7.2.2. The FIXED Built-in Function. The FIXED Built-in
function is referenced as FIXED (X) or FIXED (X,p) or FIXED (X,p,q),
where X is the variable or expression to be converted to a FIXED
arithmetic data type, andp and q specify the target precision and
scale. If X is FIXED DECIMAL, the result is FIXED DECIMAL. Otherwise
the result is FIXED BINARY. If X is FLOAT BINARY, the result is FIXED
BINARY. If P or q is not specified, then the result is dependent on
the precision and scale of X as follows:

X FIXED BINARY(r) yields FIXED BINARY(r).
X FLOAT BINARY(r) yields FIXED BINARY(MIN(15,r)).

X FIXED DECIMAL(r,s) yields FIXED DECIMAL(r,s).

7.2.3. The FLOAT Built-in Function. The FLOAT Built-in function is
referenced as FLOAT (X) or FLOAT (X,p) where X is the variable or
expression to be converted to a FLOAT arithmetic data type, and p
gives the target precision. If p is not specified, then the result is
as follows:

X FIXED BINARY(r) yields FLOAT BINARY(r).
X FLOAT BINARY(r) yields FLOAT BINARY(r).

X FIXED DECIMAL(r,s) yields
FLOAT BINARY(MIN(CEIL«r-s)*3.32) ,24)).

7.2.4. The BINARY Built-in Function. The BINARY Built-in function is
referenced as BINARY (X) or BINARY (X,p) where X is the variable or
expression to be converted to a BINARY arithmetic data type, and p is
the target precision. If X is FIXED BINARY or FIXED DECIMAL, the
resul t is FIXED BINARY. If Xis FLOAT, then the resul tis FLOAT
BINARY. If P is not included then the result is as follows:

X FLOAT BINARY(r) yields FLOAT BINARY(r).
X FIXED BINARY(R) yields FIXED BINARY(r).

X FIXEDDECIMAL(r,s) yields
FIXED BINARY(MIN(CEIL«r-s)*3.32)+1,15)).

7.2.5. The DECIMAL Built-in Function. The DECIMAL Built-in
function is referenced as DECIMAL(X) or DECIMAL (X,p) or DECIMAL(X,p,q)
where X is the variable or expression to be converted to a FIXED
DECIMAL arithmetic data type, and p and q are the.precision and scale
or the target result. If p and q are not included, then the result is
as follows:

(All Information Contained Herein is proprietary to Digital Research.)

X FIXED BINARY(r) yields FIXED DECIMAL(CEIL(r/3.32)+1,0).
X FLOAT BINARY(r) yields FIXED DECIMAL(MIN(CEIL(r/3.32) ,15) ,0).

X FIXED DECIMAL(r,s) yields FIXED DECIMAL(r,s).

7.2.6.
function is
operations.

The DIVIDE Built-in Function.
used to control the precision

The form is:

DIVIDE(X,Y,P[,Q])

The DIVIDE built-in
of results for divide

where X and Yare any arithmetic expressions, and X is to be divided
by Y. P is a FIXED BINARY expression indicating the desired
precision, and Q is a FIXED BINARY expression indicating the desired
scale. If not included, Q is assumed to be zero. The DIVIDE function
is required for FIXED BINARY division since, in the full language, a
non-zero scale factor resul tsfrom such an operation.

7.3. String Conversions.

Conversions take place between arithmetic and bit string data
items when they are combined in expressions. The various conversion
rules for string operands are given in this section.

7.3.1. Arithmetic to Bit String Conversion. Conversion from an
arithmetic source data type X to a bit string target takes place
according to the following rules. The ABS(X) is converted to a FIXED
BINARY (p) according to the arithmetic conversion rules. The FIXED
BINARY intermediate value is converted to a bit string of length p.
If the target length is longer than p, the intermediate result is
padded on the right with zero bits. If the target length is less than
p, the rightmost excess bits of the intermediate result are truncated.

7.3.2. Arithmetic to Character Conversion. The various
arithmetic data types are converted to intermediate chararacter
strings in the following manner. FIXED DECIMAL (p,q), q = O: the
resulting character string is length p+3. The characters are composed
of the digits of the source, without leading zeroes, preceded by a
minus sign if the source value is negative, and padded on the left
with blanks to produce a character string of length p+3. For example,

(All Information Contained Herein is proprietary to Digital Research.)

41

conversion of a FIXED DECIMAL (3) with value 330 results in the
character string 'bbb330', where b denotes a blank position. The
value zero produces a single zero digit result.

FIXED DECIMAL (p,q), q > 0: the resul ting character str ing is
also of length p+3, is of the same string format stated above, except
that the decimal point and the fractional digits are i~cluded. For
example, conversion of a FIXED DECIMAL(5,2) data item with value
-13.25 results in the character string 'bb-13.2S'. L'eading zeroes are
omitted except for the one immediately preceding the decimal point.

c~nverteq to FIXED DECIMAL (p),
DECIMAL (p) result is then
length p+3 with the format

BINARY (15) with value -32

FIXED BINARY (b): the source is
~here p = CEIL(b/3.32)+1. The FIXED
converted tb a character string of
described above. Conversion of a FIXED
results in 'bbbbbb-32'.

FLOAT BINARY (b): the fractional part is converted to a FIXED
DECIMAL '(p) , where p=CEIL(b/3.32). The resulting character string is
of length p+6 with the following standard scientific notation format.
The first character is a minus sign if the source value is negative,
otherwise the position contains a space. The next position contains
the most significant digits of the value, followed by a decimal point,
and the remaining p-l fractional digits. The exponent indicator "E"
follows, with an exponent sign and two digit exponent value.
Conversion of a FLOAT BINARY (24) with value 250.1El results in the
character string 'bbbb2.501E+03'.

If the target length is greater than the length of the
intermediate result, the string is padded on the right with blanks.
Conversely, if the target length is shorter than the intermediate
result, the string is truncated on the right to produce the shorter
length.

7.3.3. Bit String to Arithmetic Conversion. A bit string of
length n, where 0 < n <= 15, when converted to an arithmetic data type
is first converted to its FIXED BINARY (15) equivalent, then converted
to the target value according to the rules discussed in the previous
sections. ' 1011' B conve r ted to FIXED BINARY (IS) yi elds the va lue 11.

7.3.4. Bit to Character String Conversion. A bit string of
length n is converted to a character string of length n, where a zero
bit is converted to a dharacter zero, and a 1 bit is converted to a
character one. If the target length is longer than the source, the
target is padded on the right with blanks. If the target length is
shorter than the source length, the excess rightmost characters are
truncated.

(All Informatio,n Contained Herein is proprietary to Digital Research.)

42

7.3.5. Character to Arithmetic Conversion. In the case of
character to arithmetic conversion, the character string source must
contain a valid arithmetic constant value. If X is a character
string, conversions applied to X are affected by the arithmetic
conversion built-in functions as follows.

FIXED (X) or DECIMAL (X) returns a FIXED DECIMAL value. If p is
not given, then 15 is assumed. BINARY (X) produces a FIXED BINARY
value. If p is not specified, it will be set to 15. Note that the
result is only the integer porion of X. FLOAT(X) produces a FLOAT
BINARY value. If p is not given, p = 24 is assumed. If X is null or
contains all blanks, the converted value is zero.

The ERROR condition is raised if the character string is not a
valid arithmetic representation, or if the target data field is
insufficient to represent the converted value. The following exampl~s
illustrate various conversions from character to arithmetic data
types:

Character
'00987'
'9.87'
'-9.87E2'
1-9.87E2'
'-9.87E2'
'-987.372'
'2I3'

Target
FIXED BINARY (15)
FIXED DECIMAL(6,2)
FLOAT BINARY (24)
FIXED DECIMAL(9,2)
FIXED DECIMAL(5,0)
FIXED DECIMAL (4,2)
FIXED BINARY (15)

Result
987
0009.87
-9.87E2
0000987.00
00987
ERROR
ERROR

7.3.6. Character to Bit String Conversion. In the case of
character to bit conversion, the source character strinq must contain
only the characters 0 and 1. Each 0 character is converted to a zero
bit, and each 1 character is converted to a I bit. If the target
length is greater than the source length, then padding occurs on the
right with zeroes. If the target length is shorter than the source
length, then truncation on the right occurs. If the source is the
null string, or contains all blanks, then the result is a bit string
of zeroes.

7.4. Pseudo-Variables.

Two built-in names, SUBSTR and UNSPEC, are predefined in all
PL/I-80 programs, and can be used as source operands in expressions,

(All Information Contained Herein is Proprietary to Digital Research.)

43

or target operands on the left of assignment statements. These names
are referred to as pseudo-variables since they appear to act like
simple program variables.

7.4.1. Character SUBSTR. The character substring operator allows
access to the individual characters within a string, and takes the two
forms shown below.

SUBSTR(char-variable,i) and SUBSTR(char-variable,i,j)

where char-variable is a CHAR or CHAR VARYING subscripted or
unsubscripted variable reference, and i and j are FIXED BINARY
expressions. When SUBSTR appears in an expression, the first form
extracts the substring starting at position i for the remainder of the
string, where the first character position is numbered as 1. The
second form shown above performs the same function as the first, but
the length of the extracted substring is j. Note that the result is
undefined if either i or i+j exceeds the string length, where the
length is the declared fixed size for CHAR variables, and the current
length for CHAR VARYING va'riables. -

When SUBSTR appears on the left of an assignment, it must appear
alone. That is, the SUBSTR operation cannot be embedded in a string
expression when it serves as the target of a string assignment. The
SUBSTR operation appears in this context as:

SUBSTR(char-variable,i) = char-exp;
SUBSTR(char-variable,i,j) = char-exp;

The, first form assigns the character expression given by char-exp to
the substring in the char-variable, starting at position i, and
extending through either the length of the char-exp, or the end of the
char-variable, whichever occurs first. The second form has the same
effect, except the field width which receives the characters is
restricted to length j. Note that the values of i and i+j must be
within the current or fixed string length, otherwise the operation
produces undefined results.

The same char-variable can appear on both the left and right
side of an assignment statement without partial substring overwrite
during the assignment, although this may occur in various other
implementations of PL/I. The following assignment shows the use of
SUBSTR.

SUBSTR(C(I) ,J,K+2) = SUBSTR(D,J) I I SUBSTR(E,J+5,3);

(All Information Contained Herein is Proprietary to Digital Research.)

44

7.4.2. Bit SUBSTR. Bit substring operations in PL/I-80 are similar
to the character SUBSTR shown above, with some restrictions. First,
PL/I-80 bit strings are limited to the precision range 1 through 16,
corresponding to single and double byte values. In order to account
for the intermediate precision values during compilation, the length
of a bit substring operation must be constant. Thus, the forms for
bit substring are:

SUBSTR(bit-variable,k) and SUBSTR(bit-variable,i,k)

where the bit-variable is a subscripted or unsubscripted BIT variable
reference, k is a literal constant in the range 1 to 16, and i is a
FIXED BINARY expression. The effect of the SUBSTR operation is
identical to the character operation described above, except a bit
string of length k is selected when SUBSTR appears in an expression,
and is assigned when SUBSTR appears on the left as a target of a bit
string store operation. An example of bit SUBSTR is given in the
follow i ng sec t ion.

7.4.3. UNSP_EC .. The UNSPEC pseudo-variable allows access to
single and double byte variables as if they are 8 and 16 bit bit
string data items. The form of an UNSPEC reference is:

UN SP E C (va ria b 1 e)

where the variable is a subscripted or unsubscripted variable
reference to a data item which occupies a single or double byte memory
location. Note that a temporary result is not allowed as an argument.
When UNSPEC is used in an expression, the result is the bit string
value of the argument. When UNSPEC appears on the left of an
assignment, the assigned value is converted to bit string and directly
stored into the single or double byte value.

The UNSPEC pseooo-variable is often used as an "escape"
mechanism when the usual features of the language do not appear to
allow access to the underlying facilities. Be aware, however, that
novic programmers often fall into the trap of using UNSPEC instead of
a more appropriate high level language facility. In fact, whenever it
seems necessary to use UNSPEC, one should examine the problem in a
more general way to see if its use could. be avoided. The following
example shows a case where two memory locations are being accessed.
The UNSPEC operation is used to load two absolute addresses into two
pointer variables. Two based variables, in turn, overlay these two
memory locations so they can be accessed as 16 and 8 bit quantities.
The bit SUBSTR pseudo-variable is then applied to move a substring
from one location to the other.

(All Information Contained Herein is Proprietary to Digital Research.)

45

DCL
(P, Q) POINTER,
A BIT(16) BASED (P),
B BIT(8) BASED (Q),
I FIXED;

UNSPEC(P) = 'FF80'b4i
UNSPEC(Q) = 'FFF0'b4i

SUBSTR(B,4,2) = SUBSTR(A,I,2)i . . .

(All Information Contained Herein is proprietary to Digital Research.)

46

8. S.EQUENCE CONTROL STA'rEMENTS

Sequence control refers to the order in which the statements of
a progran are executed. Program statements are normally executed
sequentially with interspersed sequence control statements which alter
this normal flow. Generally, sequence control statements allow
conditional and unconditional branching and controlled looping, as
discussed below. Procedure invocations, which also alter the normal
sequence execution, are covered later in this section.

B.l. The GO TO Statement.

The GO TO statement causes unconditional transfer to a specific
labelled statement, and takes one of the forms shown below:

GO TO label-constant;
GOTO label-constant;
GO TO label-variable;
GOTO label-variable;

where the l-abel-constant is a 1 iteral label which appears as' the
prefix of some labelled statement, and label-variable is a simple or
subscripted label variable which has been assigned the value of a
label-constant. The evaluated label-constant must label a statement
within the scope of the GO TO statement, and cannot be within an
embedded DO group of any sort. Three examples of GO TO statements are
given below.

B.2. The IF Statement.

GO TO LABl;
GOTO WHERE;
GO TO L(J);

The IF statement allows conditional execution of a statement or
statement group, based upon the true or false value of a boolean test.
The optional ELSE clause provides an alternative statement or
statement group to execute whe.n the boolean test produces a false
value. The general form of an IF statement is shown below.

IF condition THEN group-I; [ELSE group-2];

where the condition is a scalar expression yielding a bit string
value, while group-l and group-2 are either simple statements, or
compound statements contained within a DO or BEGIN group. If either
group-lor 9 roup-2 is a simple statement, it cannot be a DECLARE, END,

(All Information Contained Herein is proprietary to Digital Research.)

47

ENTRY, FORMAT, or PROCEDURE statement. If any bit of the resul t of
the condition is I the THEN group-l is executed, otherwise control
passes to group-2, if included, or to the next statement in sequence
following the IF statement.

IF statements may themselves be nested. In this case, each ELSE
is paired with the innermost unmatched IF-THEN pair. Empty statements
can be used to force the desi red IF-ELSE pair ing. Consider the
following nested IF statements

IF A = Y THEN
IF Z = X THEN

IF W > B THEN
C = 0;

ELSE C = 1;
ELSE;

ELSE A = Y2;

where the null statement following the third ELSE corresponds to the
second IF-THEN test.

8.3. The Iterative DO Statement.

In its simplest form, the DO group is just a collection of
statements executed once. This non- iterative form of the DO group was
presented in an earlier chapter. This section describes the iterative
DO group, which is headed by a DO statement of two general forms:

DO WHILE (condition);
DO control-variable = do-specification;

where the control-variable is an unsubscripted variable, the condition
is a boolean expression, and the do-specification is one of:

[start-exp [TO end-exp] [BY incr-exp]] [WHILE (condition)]
[start-exp [BY incr-exp]· [TO end-exp]] [WHILE (condi tion)]

[start-exp [REPEAT(repeat-exp)] [WHILE(condition)]

In these general forms, start-exp is an expression specifying the
initial value of the control variable, end-exp is an expression
representing the terminal value of the control variable, incr-exp is
an expression added to the control variable after each execution of
the loop, and the r~peat-exp is the expression which replaces the
control variable after each iteration, and condition is an expression
yielding. a bit string value which is considered true if any of the
bits in the string are 1. If the TO end-exp form is included, but the
BY incr-exp is omitted then the incr-exp is assumed to be one. The
two forms using TO and BY execute in exactly the same manner, and
differ only in the order of these two elements.

The WHILE expression is evaluated before execution of the

(All Information Contained Herein is proprietary to Digital Research.l

48

DO-group. The loop execution terminates, and control passes to the
statement following the balanced END if the condition is false.

With the exception of the REPEAT option, expressions in the DO
specification are evaluated before execution of the loop, so that
changes made to the start, end, or incremental values do not affect
the number of times a loop is executed. In the case of the REPEAT
option, however, the repeat-exp is recomputed after each iteration.
This recomputed expression is stored into the control-variable and the
WHILE test, if included, is evaluated.

In order to properly define the actions of iterative groups,
they are decomposed below into a sequence of equivalent IF and GO TO
stateme.nts. In the decomposi tion, expresslons el, e2, e3, and e4 are
appropriate start-exp, end-exp, incr-exp, repeat-exp, and condition
values, while i represents a valid control-variable. To begin with,
the DO-WHILE statement

DO WHILE (el);

END; ,

can be expressed as the equivalent sequence of statements:

LOOP:
IF "'el THEN

GO TO ENDLOOP;

GO TO LOOP;
ENDLOOP: ;

Similarly, the DO-REPEAT group

becomes

Note that
terminated
statement.

DO i = el REPEAT (e2);

END;

i = eli
LOOP:

i = e2;
GO TO LOOP;

in this case, the loop proceeds indefinitely, until
by an embedded statement, such as a' GO TO or STOP
The WHILE option can be added:

DO i = el REPEAT (e2) WHILE (e3);

END;

resulting in the equivalent statements

(All Information Contained Herein is Proprietary to Digital Research.)

49

i = eli
LOOP:

IF e3 THEN
GO TO ENDLOOP;

i = e2;
GO TO LOOP;

ENDLOOP: ;

The simple iterative DO-group

DO i = el TO e2;

END;

is treated as

DO i = el TO e2 BY e3;

END;

which can be expressed as the equivalent sequence:

LOOP:

i = eli
LAST = e2;
INCR = e3;

IF endtest THEN
GO TO ENDLOOP;

i = i + INCR;
GO TO LOOP;

ENDLOOP: ;

where the IF statement containing the
variable with the value of LAST.
sign of the incrementing value INCR.

endtest compares the control
The comparison is based upon the
If INCR is negative, the test is

IF i < LAST THEN
GO TO ENDLOOP;

Otherwise, the test becomes

IF i > LAST THEN
GO TO ENDLOOP;

Finally, the addition of the WHILE option in

J

DO i = el TO e2 BY e3 WHILE (e4);

END;

produces the equivalent sequence

(All Information Contained Herein is Proprietary to Digital Research~)

50

LOOP:

i
LAST
INCR

=
=
=

eli
e2i
e3i

IF ""e4 THEN
GO TO ENDLOOP;

IF endtest THEN
GO TO ENDLOOP;

i = i + INCR;
GO TO LOOP i

ENDLOOP: ;

Note that in these equivalent sequences, the value of LAST and INCR
take on the characteristics of the expressions e2 and e3. Further,
arithmetic conversions and comparisons take place at each step
according to the normal PL/I-S0 rules.

S.4. Condition processing.

The ON, REVERT and SIGNAL statements provide run-time facilities
for programmatic interception of error conditions which, in most
cases, would cause termination of the program. The following
conditions are recognized by PLiI-S0: a general arror condition
(ERROR), certain computational error conditions (FIXEDOVERFLOW,
OVERFLOW, UNDERFLOW, and ZERODIVIDE), and certain I/O condi tions
(ENDFILE, ENDPAGE, KEY, and UNDEFI~EDFILE). Additional details
concerning exception processing ar~ given below, and in the "PL/I-S0
Applications Guide."

S 5. The ON Statement.

The ON statement defines the condition to handle and the
to take when the condition is raised during program execution.
statement has the format:

ON condition ON-unit

where the condition may be anyone of the following:

ERROR FIXEDOVERFLOW OVERFLOW UNDERFLOW
ZERODIVIDE ENDFILE ENDPAGE UNDEFINEDFILE KEY

action
The ON

The ON-unit may be a PLiI-Sa statement, or several PL/I-S0 statements
contained wi thin a BEGIN-END block which are execut'ed when the
particular condition nam'ed in the ON statement is raised. Exit from
the BEGIN block may not be through a RETURN statement, although this

(All Information Contained Herein is proprietary to Digital Research.)

51

restriction does not preclude procedure definition within the
BEGIN-END block. Transfer out of the BEGIN block takes place through
a non-local GOTO statement. Control resumes at the point where the
condition was signalled if all the statements of the BEGIN-END group
are executed and no non-local transfer has occurred.

An ON-unit may not free a variable that is being used when the
condition is raised, or close the file for which the I/O condition is
raised. The ON-unit remains active until its encompassing block is
terminated or until it is reverted by the REVERT statement or another
ON-unit is established later in the execution sequence. In this
latter case, the ON-unit is stacked until reactivated through a REVERT
statement which cancels the most recent ON-unit. Note that a maximum
of sixteen ON conditions may be active at any given point.

8.6. The SIGNAL Statement.

The SIGNAL statement causes a particular condition to be
programmatically raised, and invokes the corresponding ON-unit, if
active. If no ON-unit is active, the default system action takes
place. In most cases, the defaul taction pr ints a UbacktraceU and
terminates program execution. The form of the SIGNAL statement is:

SIGNAL condition;

where the condition is one of those listed above with the ON
statement. For example,

SIGNAL ZERODIVIDE;

invokes the current ZERODIVIDE ON-unit.

8.7. The REVERT Statement.

The REVERT statement is used to deactivate the current ON-unit
and re-establish the one which preceded it, if it exists. The format
of the REVERT statement is:

REVERT condition;

where the condition is one of the conditions listed above for the ON
statement. For example,

REVERT OVERFLOW;

deactivates the current ON-unit for th~ OVERFLOW conditon. Note that
upon exit of a PROCEDURE or BEGIN block, an automatic REVERT statement

(All Information Contained Herein is Proprietary to Digital Research.)

52

takes place for any ON-units enabled within the block.

8.8. Default ON-Units.

With the exception of FIXEDOVERFLOW and ENDPAGE, the default
ON-units normally print an appropriate error message followed by
program termination. The FIXEDOVERFLOW condition is not signalled for
FIXED BINARY overflow, although it will occur if FIXED DECIMAL
computations exceed their allocated field sizes. When the ENDPAGE
condition is raised, the default ON-unit inserts a form feed character
into the output file and sets the current line number to 1.

8.9. Built-In Functions for Condition processing.

PL/I-80 includes several built-in functions designed to aid in
exception handling, as listed below.

ONCODE ONFILE
ONKEY PAGENO LINENO

The ONCODE function returns a FIXED BINARY value representing
the type of error which raised the most recent ERROR condition. If no
condition was raised, then the returned value is zero. The error
codes vary from version to version, and may be found in the dPL/I-80
Command Summary.H

The ONFILE, ONKEY, PAGENO, and LINENO built-in functions are
presented in detail in a later chapter.

8 • 10 • Pro c edu reB lock s.

Procedure blocks, delimited by balanced PROCEDURE and END
statements, are invoked by subroutine CALL statements or by function
calls. Procedures are used to execute the same program segment one or
more times without duplicating the segment several times throughout
the program. Communication data transmitted to the procedure are
referred to as actual parameters, while the list of variable expected
by a procedure, and defined in the PROCEDURE statement, are referred
to as formal formal parameters.

(All Information Contained Herein is proprietary to Digital Research.)

53

8.11. Invoking a Procedure.

There are two types of procedures: subroutine procedures and
function procedures. The difference between a subroutine and a
function is that the subroutine is invoked through a CALL statement
while the function is invoked by simply using its function name
followed by a set of parentheses enclosing the actual parameters, if
any, where the context requires an expression. Further, a function
procedure -returns a scalar value to the calling program segment.

The CALL statement is used to transfer control to a subroutine
procedure and pass information (if necessary) to the procedure. The
format of the CALL statement is:

CALL procname [(subl, ••• ,sub-n)] [(argl, ••• ,arg-m)] ;

where the procname is the name of the procedure being invoked and subl
through sub-n represent a list of optional subscripts which are
required if procname is a subscripted entry variable. The elements
argl through arg~m represent the actual parameters passed to the
procedure. Actual parameters may be any of the following: an
arithmetic or string variable, an array or structure, a constant, an
expression, a label, a file name, or a pointer. Cross-sections of a
multi-dimensional array cannot be used as actual parameters. Note
that the number of actual parameters is defined by the corresponding
PROCEDURE heading and, if no parameters are required, an empty pair of
parentheses must be given. Examples of CALL statements are:

CALL P () ;
CALL Q (A, (B) ,B+C) ;

CAL L V (I , J) (A, (B) , (B +C)) ;

A function is invoked in the same manner, except that the CALL
keyword is not required, and the resulting value must be used as an
expression. Examples of function invocations are shown below:

I = F();
IF G (A, (B) ,B+C) = 5 THEN

I = H (I , J) (A, (B» + SQR T (X) ;

8.12. The Structure of a Procedure Definition.

The previous section described the method by which a proce~ure
is invoked. The purpose of this section is to describe the overall
structure of a subroutine or function definition. Procedures may be
defined at any point in a particular program, and are bypassed when
encountered in the sequential control flow. That is, procedures are
only activated through the invocation mechanisms described in the
previous section. Normally, all procedures are defined together in a
single section at the beginning or end of the main program, depending
upon programming style. The main program is, itself, a single

(All Information Contained Herein is proprietary to Digital Research.)

54

procedure definition. Further, separate procedures can be defined and
linked together to form a single module. The overall structure of any
procedure definition is

procname:
procedure-statement
procedure-body
END [procname];

where procname is an identifier which names the procedure. The
procedure name becomes an entry constant which is available for access
throughout the scope in which it appears. The entry point to a
procedure is identified by the procedure-statement. The
procedure-body may consist of a sequence of zero or more statements.
The procedure definition is terminated by a corresponding END
statement which may also be the exit point of the procedure, although
embedded RETURN statements may appear within the procedure-body.

The procedure-statement delimits the beginning of the procedure
block, defines the formal parameter list, and gives the attributes of
the returned value for functions. The g~neral format is

PROCEDURE [(pa rml, ••• , parm-n)]
[OPl'IONS(MAIN») [RETURNS attribute-list] [RECURSIVE];

where parmI through parm-n are the formal parameters for the
procedure. All formal parameters must be declared within the
procedure body at the principal block level. A formal parameter may
be one of the following: a non-subscripted variable an array, a major
structure, a label variable, a file name, a entry name, or a pointer
variable. A formal parameter may not have the following attributes:

STATIC AUTOMATIC BASED EXTERNAL

OPTIONS (MAIN) identifies this procedure as the first procedure to
receive control when the program starts. The RETURNS attribute-list
is required for a function procedure to give the characteristics of
the value returned by the function. The RECURSIVE attribute indicates
that this procedure may activate itself, either directly or
indirectly, while the procedure is being executed.

8.13. The RETURN Statement.

The RETURN statement returns control to the point in the calling
block right after the procedure invocation and returns a value as well
if the procedure is a function procedure. The format of a RETURN
statement is:

RETURN [(ret-exp)];

where ret-exp is the valu'e which is returned to the calling point. If

(All Information Contained Herein is proprietary to Digital Research.)

55

necessary~ the returned value is converted to conform to the
attributes specified in the RETURNS option of the procedure-statement.
Examples of RETURN statements fol~ow:

RETURN;
RETURN (X**2);

RETURN (F(A, (B)));

The RETURN statement terminates the procedure block which contains it.
If the RETURN ·statemen tis in the rna in procedure, control returns to
the operating system.

8.14. The Non-Local GO TO Statement.

A non-local GO TO statement occurs when the evaluated target
label constant occurs outside the innermost block containing the GO TO
statement. In general, the non-local GO TO should be avoided since
poorly-structured programs often result. There are occasions,
however, when the non-local GO TO is appropriate. In particular, in
the case of terminal error conditions, it is often useful to branch
directly to a global err.or recovery label where program execution
recommences. In this case, all embedded ON-units are automatically
reverted, and procedure return information is discarded. The
following skeletal program shows an instance of a non-local GO TO from
within a procedure definition:

P:
PROCEDURE;
GO TO L;
END P;

CALL P () ;
L: ;

8.15. The STOP Statement.

The STOP statement terminates execution of the program, closes
all open files, and returns control to the operating system.
Normally, the STOP statement occurs only at the main program level,
but may be executed within a nested procedure call to prematurely halt
execution •. The format is simply:

STOP;

(All Information Contained Herein is Proprietary to Digital Research.)

56

8.16. Arguments and Parameters.

As stated previously, data items passed by the invoking block
are referred to as actual parameters and data items expected by the
invoked procedure are referred to as formal parameters. Upon
invocation, each actual parameter is paired with its correspqnding
formal parameter. When the actual parameter and corresponding formal
parameter share storage, the actual parameter is said to be passed by
reference. In this case, any changes made to the formal parameter in
the invoked procedure changes the value of actual parameter of the
invoking block.

When the actual and formal parameters do not share storage, the
actual parameter is said to be passed by value. In this case, a copy
of the actual parameter is sent to the invoked procedure, so that any
changes to the formal parameter affect only the copy, not the actual
parameter value.

Arguments passed by reference are those variables whose
attributes conform to those of the formal parameters. Aggregate
expressions, consisting of arrays and structures, must always conform
in subsc r i pt range, type·, prec i sion, and scale, and thus a re always
passed by reference.

An actual parameter is passed by value when it is one of the
following: a constant, an entry name, an expression consisting of
variable references and operators, a variable reference enclosed in
parentheses, a function invocation, or an expression which does not
con fo rm tot h e forma 1 par am e te r s pe c i f i cat ion. In the 1 a t t e rca s e ,
the actual parameter is converted to the type, precision, and scale of
the formal· parameter. Given that the procedure P begins with the
s ta ternen ts

P:
PROCEDURE(A,B,C);
DCL

A CHAR (10),
B FIXED,
C FLOAT;

a CALL of the form shown below sends three actual parameters to the
procedure, corresponding to the three formal parameters A, B, and C.
In this example, assume X is CHAR(l0), and Y and Z are both FIXED:

CAL L P (X, (Y) , Z) ;

The first actual parameter X is passed by reference since it matches
the formal parameter A. The second parameter is passed by value since
it occurs as an expression. The third parameter is converted to FLOAT
type and passed by value.

(All Information Contained Herein is Proprietary to Digital Research.)

57

8.17. The ENTRY Attribute.

Entry data items are used to identify procedure names, and
consist of entry constants or entry variables. Entry constants
correspond to internal procedures, or separately compiled external
procedures. Entry variables are data items which may take on entry
constant values during program execution.

The characteristics of the formal parameters and returned values
for externally compiled procedures must be defined in the calling
program with an ENTRY declaration. It is essential that the
programmer ensure that the entry declaration properly matches the
externally defined procedure, so that the proper linkage takes place
when the program segments are combined with the link editor. Further,
variables which take on entry constant values are also defined with an
ENTRY declaration. Entry variables may be subscripted, if required by
the application. The ENTRY attribute is used to define an ide'ntifier
as an entry data item, and gives the attributes of the formal
parameters, as well as the optional returned value attributes if the
entry item is a function. The format for an ENTRY declaration is:

DECLAR.E procname [(subl, ••• ,sub-n)]
[VA R I A B L E] [EN T RY [(at t I , • • • , a t t - m)]]

[RETURNS (ret-att)];

where the attributes may be listed in any order, and at least one of
ENTRY or RETURNS must be listed. The identifier given by procname is
the entry data item name, subl, ••• ,sub-n is the optional subscr ipt
list, attl, ••• ,att-m is the list of formal parameter attributes, and
ret-att is the optional returned value attribute for a function entry
item. The VARIABLE qttribute indicates that the data item is an entry
var iable wh ich must be ass igned an entry constant value dur i ng prog ram
execution. Note that the subscript list is only valid if item, has the
VARIABLE attribute, and the list of formal parameter attributes is
omitted if no parameters are required by the procedure. In this case,
the ENTRY attribute can also be omitted if th~ RETURNS attribute is
present.

If the dimension attribute is specified for a particular
parameter, it must be the first attribute declared. If the formal
parameter is a structure, the structuring information is specified by
level numbers preceding the attribute definition. Attribute factoring
is not permitted within the list attl through att-m. Examples are
given below:

DECLARE X ENTRY;
DECLARE Y ENTRY VARIABLE;

DECLARE P (0:10) ENTRY (FIXED, FLOAT) VARIABLE;
DECLARE Q ENTRY (1, 2 FIXED, 2 FLOAT, (5: 10) DECIMAL);

DECLARE R RETURNS (CHAR(10));

(All Information Cpntained Herein is Proprietary to Digital Research.)

58

9. INPUT/OUTPUT PROCESSING

This chapter presents the input/output facilities of PL/I-80
which allow data transmission between memory and external devices. A
considerable portion of the overall power of PL/I is found in its I/O
processing facilities. Thus, a more complete treatment of the
application of I/O features is found in the accompanying document
"PL/I-80 Applications Guide." For this reason, the discussion below is
intended to be spartan and definitive, rather than explanatory.
Please reference the accompanying manuals for complete examples.

9.1. FILE Data Items.

An external device may be a console, a line printer, or a disk
file. The collection of data elements transmitted to or from an
external device is referred to as a data set, while a corresponding
internal file constant or variable is referred to as simply a file.
Except for the predefined standard input and output files, called
SYSI~ and SYSPRINT, all files accessed in a particular program must
appear in a file declaration of the form

DECLARE fname FILE [VARIABLE];

where fname is the file identifier. The declaration defines a file
constant if the VARIABLE option' is not included. If the VARIABLE
attribute is given, then the declaration defines a file variable which
can take on the value of a file constant through an assignment
statement.

A file constant declaration creates a file parameter block which
is a segment of memory containing information about the file, as
described in a following section. A file variable declaration does
not cause the creation of a parameter control block. Further, a file
variable is valid in input/output operations only after it has been
assigned a file constant. The equal and not equal comparison
operators may be used with file data, the items are equal if they
refer to the same file parameter block. Finally, note that a file
constant is given the EXTERNAL attribute, while a file variable is
local to the block in which it is declared unless it is declared
EXTERNAL.

9.2. File Types.

PL/I-80 recognizes three basic file types: stream-oriented,
record sequential, and record direct files. The file type determines
the how data is stored and how it is transmitted or accessed.

(All Information Contained Herein is proprietary to Digital Research.)

59

In stream I/O data is treated as a sequence of ASCII characters
organized into lines and pages. Lines are separated by a linemark and
pages are separated by a pagemark. A linemark is a carriage return,
line feed pair, or just a single line feed, while a pagemark is a form
feed character. A stream file is accessed only sequentially. That
is, data items are read or written in order until the end of the file
is reached or until the file is closed.

Both formatted I/O and free-format I/O are available for stream
files. When stream data is being transmitted to memory, the input
characters are converted to the data type of the recelvlng variable.
Conversely, data being transmitted to a stream file is converted to
its ASCII representation. Data type conversion rules apply to I/O
conversion, as described in an earlier section.

The size of the data item transmitted during record I/O varies
depending upon the item size and the file characteristics. No
conversion, however, occurs during record transmission resulting in a
transfer of the binary bit patterns which represent the data items in
the memory of the machine.

Record sequential files may be accessed only sequentially. That
is, records are read or written in linear order. Record direct files,
on the other hand, are accessed according to key values supplied in
the READ or WRITE statement, and need not be sequential. Each record
in a record direct file has an associated key value which provides a
unique identification of the record for subsequent access.

9.3. opening a File.

A file must be opened before any I/O transactions take place on
the data set. A file may be opened explicitly, through the use of
the OPEN statement, or implicitly when the file is accessed through a
GET, PUT, READ, or WRITE statement. When the file is opened the
following occurs. First, the file's attributes are consolidated.
Next, the file is associated with an external data set. If the file
is an input file and no external data set exists, the UNDEFINEDFILE
condition is raised. If the file is an output file, any existing data
set by the same name is erased, and a new data set is created.
Similarly, if the file is opened for update access, the data set is
created if it does not exist. No action takes place if the file is
already open.

The OPEN statement is used to explicitly open a file. The
format of the OPEN statement is:

OPEN FILE(fname) [file-attributes];

where fname is the file name which appears in a FILE declaration
statement, and file-attributes denotes any valid combination of the
following keywords:

(All Information Contained Herein is Proprietary to Digital Research.)

60

STREAM RECORD INPUT OUTPUT KEYED DIRECT
SEQUENTIAL UPDATE PRINT TITLE PAGESIZE LINESIZE

The interpretation of the OPEN statement and the use of the keywords
shown above are somewhat implementation dependent. Thus, the complete
details of each keyword format, along with associated parameter
values, is given in detail in the accompanying Digital Research manual
entitled "PL/I-80 Applications Guide."

9.4. The File Parameter Block.

Each file constant provides access to a collection of values
stored in a File Parameter Block (FPB). Each FPB contains the
information listed below. The file status indicates whether the file
is open or closed. The file title names the peripheral or data set
associated with the file constant. The column position is maintained,
in order to locate the next position to get or put data in a STREAM
file. The current line is counted in STREAM files, as well as the
current page for PRINT files. The current record position is also
maintained. Upon opening a file, the FPB additionally addresses the
CP/M File Control Block (FCB) , as well as the line size, page size,
fixed record size, internal buffer size, and file descriptor.
Additional implementation-dependent information is also accessible
from the FPB. Following a successful OPEN operation, the file
descriptor defines one of the following sets of attributes for the
file:

STREAM INPUT
STREAM OUTPUT

STREAM OUTPUT PRINT
RECORD INPUT SEQUENTIAL
RECORD OUTPUT SEQUENTIAL

RECORD INPUT SEQUENTIAL KEYED
RECORD OUTPUT SEQUENTIAL KEYED
RECORD INPUT DIRECT KEYED
RECORD OUTPUT DIRECT KEYED
RECORD UPDATE DIRECT KEYED

9.5. Input/Output ON Conditions.

A number of conditions may be raised during I/O processing. The
ENDFILE condition is raised whenever an input operation reads past the
end of file, which is a control-z for STREAM files and a physical end
of file for RECORD files. The ENDFILE condition is also raised for
OUTPUT files when all disk space is exhausted.

(All Information Contained Herein is proprietary to Digital Research.)

61

The ENDPAGE condition is raised for a STREAM output file
the PRINT attribute when the line number exceeds the page size.
default ON-unit sends a form feed to the output, and resets the
number to one.

with
The

line

The KEY condition is raised whenever an invalid KEY is detected.
This will occur in PL/I-80 if the FIXED BINARY key value, times the
fixed record size exceeds the capacity of the disk.

The UNDEFINEDFILE condition is raised whenever an input file
does not exist, or an output or update file cannot be created due to
insufficient directory space. This condition is also raised if the
file name provided in the TITLE option is improperly formulated.

A number of built-in functions are available which aid in I/O
exception processing, and are described in detail in a later section:

LINENO PAGENO ONFILE and ONKEY

Again, please refer to the "PL/I-80 Applications Guide" for additional
implementation-dependent information.

9.6. The CLOSE Statement.

The CLOSE statement disassociates the file from the external
data set. The format of the CLOSE statement is:

CLOSE FILE(fname)i

where the evaluation of fname produces a file constant. operation is
applied. If the file does not have an open status, the close
operation is ignored. Otherwise, the buffers are cleared and output
files are permanently recorded on the disk. The file may subsequently
be reopened using the OPEN statement described above.

9.7. ,predefined Files.

The file constants SYSIN and SYSPRINT are a part of all PL/I-80
programs, and need not be declared unless an explicit file reference
takes place in an OPEN, GET, PUT, READ, or WRITE statement. In the
case that the FILE option is not given in a GET, or READ statement,
the file SYSIN is automatically accessed. Similarly, the file
SYSPRINT is accessed in PUT or WRITE statements without the FILE
option. In these cases, the SYSIN file becomes the console keyboard,
with a linesize of 80 characters, while the SYSPRINT file becomes the
console output display with line size 80, and infinite page size.

(All Information Contained Herein is proprietary to Digital Research.)

62

10. STREAM ORIENTED INPUT/OUTPUT

STREAM files are made up of a sequence of ASCII characters
separated by linemarks and pagemarks. STREAM I/O statements provide
the facilities for accessing character data in a STREAM file. In
general, the following rules apply to stream I/O: The column position
for a file is initially 1. Each occurrence of a linemark or pagemark
resets the column position to 1, otherwise, if the input or output
character is graphic, the column position is advanced by 1. If, on
output, the column position exceeds the linesize, a linemark is
written, the line number is incremented by 1, and the column position
is reset to 1. When the line number exceeds the page size, a pagemark
is written, and the column position and line number are reset to 1.

Three forms of STREAM I/O are provided in PL/I-80, called
list-directed, edit-directed, and line-directed. List-directed I/O
transfers data items without format specifications. Edit-directed I/O
allows formatted access to character data, while line-directed I/O
allows access to variable length character data in an unedited form.
Note that line-directed I/O is provided in PL/I-80 to process variable
length ASCII records using READ and WRITE statements and may not be
available in other versions of PL/I.

The following naming conventions are used in the descriptions of
the various STREAM I/O statements:

fname

nl

input-list

output-list

is the file identifier.

is a FIXED BINARY expression which defines
the number of linemarks to skip on input, or
the number of linemarks to write preceding the
data item on output.

is a list of variables separated by commas, to
which the data items from the input stream are
transmitted. The input-list determines the
number and order of the variables assigned by
the input data in the stream. The variables
must be scalar values in PL/I-80.
iterative bo loops may be included in the input
list. The DO header format follows that of
of the DO statement described previously, with
the exception of the REPEAT clause which is not
included. The general format is

(item-l, ••• ,item-n DO iteration)
as in the statement

GET LIST «A(I) ,B(I) DO I = 1 TO 10»;

is a list of output items consisting of variables,
constants, or expressions, separated by commas.
The output-list may also include iterative DO
groupings, as shown above in the input-list.

(All Information Contained Herein is Proprietary to Digital Research.)

63

l~.l. LIST-Directed I/O.

The input stream for list-directed I/O must have the following
properties. Data items in the stream may be arithmetic constants,
character string constants, or bit string constants. Each data item
must be followed by a separator, consisting of a series of blanks, a
comma surrounded optionally by blanks, or an end of line. Embedded
tabs (ctl-I) are treated as blanks. Character string data which
actually contain blanks or commas must be enclosed in quotes.
Otherwise, the blanks or commas will be treated as separators.

A null field in the input stream is indicated by a comma as the
first non-blank character in the input line, or by two consecutive
commas optionally separated by one or more blanks. The null field
indicates that no data is to be transmitted to the associated data
item in an input-list, and thus the value of the target data item
remains unchanged. Linemarks are counted when the SKIP option appears
in GET statement, but otherwise serve only as separators.

10.2. The GET LIST Statement.

The GET LIST statement is used to read data using list-directed
I/O. The fo rmat of the GET statement is:

GET [FILE(fname)] [SKIP[(nl)]] [LIST(input-list)];

At least one of the options must be given, and may appear in any
order, except for the LIST option which must appear last. If the FILE
option is omitted, FILE(SYSIN) is assumed. If nl is not listed with
the SKIP option, then one linemark is skipped.

After transmission of all data items to the variables named in
the input-list, the column position in the input stream is at the
character following the last data item read.

Character strings in the input stream mayor may not be enclosed
in quotes, but if included, the enclosing quotes are not transmitted
to the input variable. Likewise, for bit string constants, the
enclosing quotes and the trailing B are not transmitted to the input
variable.

Input strings are limited to one line. Thus only the leading
quote is necessary for string input from the console when terminated
by a car r i ag ere t ur n •

(All Information Contained Herein is Proprietary to Digital Research.)

64

10.3. The PUT LIST Statement.

The PUT LIST statement is used to write data using list-directed
I/O. The format of the PUT LIST statement is:

PUT [FILE(fname)] [SKIP[(nl)] [PAGE[(p)]] [LIST(output-list)];

As in GET LIST, at least one of the options must appear, and the LIST
option must appear last. If the FILE option is omitted,
FILE(SYSPRINT) is assumed. If the SKIP option is used and nl is not
specified, then nl defaults to 1. If nl = 0 no linemark is written
but the column position is reset to 1. In any event, any time the
SKIP option is used the column position is reset to 1. The PAGE
option is valid only for PRINT files. If p is not specified it
defaults to 1. Note that whenever a pagemark is written, both the
column position and line number are set to 1. The data items in the
output-list are converted to their character string representation and
written to the STREAM file. Blanks are used to separate the data on
the output file. If, however, the data item is longer than the number
of characters left on the output line, the item will be written at the
beginning of the next line. If the length of the character string
representation of the data item exceeds the line size, the data item
is written by itself on a single line which extends past the line
size. If the page size is exceeded during output transmision, the
ENDPAGE condition is raised.

Normally, character strings are written within enclosing quotes,
with each embedded quote symbol written as a pair of quotes. If the
file has the PRINT attribute, the additional quotes are omitted. Bit
string data is always written within enclosing string quotes, followed
by the letter B.

10.4. EDIT-Directed I/O.

The input-list and the output-list for edit-directed I/O are the
same as those for list-directed I/O. However, the manner in which the
data are read or written is determined by a list of format items in
the format-list of the GET EDIT and PUT EDIT statements.

10.5. The FORMAT-List. The format-list is a list of format
items, sepa.rated by commas, that describe the data items to be read
(data format items), specify the placement of the data items in the
stream (control format items), or reference another format-list
(remote format item). The general form of a format-list is:

[n] f - item ••• [, [n] f - item]

(All Information Contained Herein is proprietary to Digital Research.)

65

where n is an literal constant value in the range 1 to 254 which gives
the repeti tion factor of the followi ng £- item. A repeti tion factor of
one is assLlTled if n is omitted. The f-item is either a data format
item or a control format item. In order to allow repetition of a
number of format items, an f-item can also be a group:

(format-list)

An f-item can also be a remote format item. In PL/I-8~, however, a
remote format item must be the only format in the list, and cannot be
preceded by a repetition factor.

10.6. Data Format Items.

Data format items are used to read or write numeric or character
fields from or to an external STREAM data set. PL/I-8~ supports the
following data format items:

F(w,[d])

E(w[,d])

Used for fixed point arithmetic data, where w is
the width (the number of characters in the field)
and d is the number of characters to the right
of the decimal point.

On input, as many characters as specified by w is
read. If the character string contains a decimal
point that decimal point determines the scale.
Otherwise, d determines the scale. Leading
and trailing blanks are ignored. If the field
contains only blank characters, the value read is
zero.

On output, d specifies the scale of the output
value. If d is omitted, the scale is zero. The
output value is rounded unless the variable has
precision 15 (the maximum precision). Leading
zeroes are suppressed except for the one
immediately preceding the decimal point.

Used on output to represent arithmetic data in
scientific notation format. It is used on input
to convert decimal characters to float binary
values. w defines the field width, while d
gives the number of digits to the right of
the decimal point. On output, w must be at
7 more than d, since the output field will appear
as

+n.ddddE+ee

where + represents sign positions, n is the lead
ing digit, dddd represents the fractional part of

(All Information Contained Herein is Proprietary to Digital Research.)

66

length d, and E+ee represents the exponent field.

A[(w)] reads or writes w characters of character string
data. On input, w must be included to be compati
ble with full PL/I. PL/I-80, however, allows w to
be omitted on input, in which case the remainder
of the current line is read up to, but not includ
ing the carriage-return line-feed. On output, if
w is omitted, then w is assumed to be the length
of the output string. If w is greater than the
output string length, then blanks are added to the
right. If w is less than the output string length,
the ~tring is truncated in the rightmost positions.

B [b] [(w)] i n die ate s bit s t ring d a tar e pr e sen tat ion. 0 n
input w must be included, and only 0's and l's
must be in the input stream, otherwise the
ERROR condition is raised. The number of bits
to be used for each digit is given by b.
On output, the variable is converted to
a bit-string type then converted to its
character string representation. If w is
not included, the resulting character string
is output. If w is specified and is longer
than the character string, then padding with
blanks occurs on the right. If the resulting
character string is longer than w the ERROR
condition is raised.

10.7. Control Format Items.

Control format items are used for line, page, and space
placement. PL/I-80 supports the following control format items:

COLUMN (nc)
or

COL (nc)

moves the format pointer to column nc in the
input or output data stream.

On input, characters passed over by positioning to
column nc are_ignored. If the current column
position is less than nc the format pointer moves
column position nc. If the current column position
is greater than nc, the pointer moves to the next
line, then moves to the n~w column position nc.
If nc exceeds the rightmost position on the line,
the format pointer moves to the first column of
the new line. On input, movement of the format
pointer discards input characters. On output,
blanks are added to the stream as the pointer
is advanced.

On output, blanks are written in the process of

(All Information Contained Herein is Proprietary to Digital Research.)

67

x (sp)

SKIP[(nl)]

LINE (In)

PAGE

positioning to column hc. Also, if the current
position is greater than nc, the program outputs
a linemark, then outputs blanks until it reaches
column nc of the new line. If nc exceeds linesize,
a linemark is written and the column position is
set to 1.

Advances the format pointer sp positions in the
input or output data stream.

On input, sp is the number of characters to be
advanced. Linemarks are ignored when encoun
tered, with the operation continued on the next
1 ine.

On output sp is the number of blanks to be written.
If the end of the line is reached, a linemark is
and the blank fill operation is continued on the
next 1 i nee

Specifies the number of linemarks nl to be skipped
or written. If nl is omitted, 1 is assumed. The
column position is set to 1.

On input, nl is the number of linemarks to skip
before moving to the next format item. Note that
if SKIP(l) is executed as the first format item
immediately following an explicit or implicit
OPEN operation, the first line is discarded.
Further, SKIP(0) is undefined for input streams.

On output, nl is the number of linemarks to be
written. If, in the process of writing linemarks,
the pagesize is exceeded for a PRINT file, the
ENDPAGE condition is raised and, upon return from
the ON-unit, the SKIP operation is aborted.

Applies only to PRINT files and specifies
the line number of the next data item to be
written. The constant In must be greater
than zero.

If the current line number is equal to In,
LINE has no effect. If the current line
number is less than In, then linemarks are
output until the current line number equals
In. The ENDPAGE condition is raised if the
sufficient linemarks are issued to exceed
the current page size.

Used only with PRINT files, the PAGE option
causes a pagemark to be written, the page
number incremented by one, the line number
and the column position set to 1.

(All Information Contained Herein is proprietary to Digital Research.)

68

Note that control format items are executed as they are
encountered in the format-list. Any control format items occurring
afeer the input-list or output-list is exhausted have no effect.

10.8. Remote Format Items.

The remote format item uses the format-list of a FORMAT statment
in place of the remote format item. The form of a remote format item
is:

R (form a t-l abe 1)

where the format-label is the label constant preceding a FORMAT
statement, which is in the scope of the remote format item. As
mentioned above, PL/I-80 has the restriction that only the remote
format item can appear only by itself in the format-list, with no
preceding repetition factor, as shown below:

PUT SKIP EDIT(A,B,C) (R(ELSEWHERE»;

10.9. The FORMAT Statement.

The FORMAT statement defines a remote format item, and appears
as follows:

format-label: FORMAT(format-list);

where the format-label is the label constant corresponding to the
FORMAT, and the format-list is a list of format items as described in
the previous section. For example, the FORMAT statement

Ll: FORMAT(A(5), F(6,2) ,SKIP(3) ,A(2»;

i s ref ere n c ed a s a rem 0 t e form a t· i nth est a tem e n t

GET EDIT (A,B,C) (R(Ll»;

10.10. The GET EDIT Statement.

The GET EDIT statement reads data using a format-list. The
g en era 1 form is:

(All Information Contained Herein is Proprietary to Digital Research.)

69

GET [F I L E (f name)] SK I P [(n 1)] [ED IT (i n p u t-l i s t) (f 0 rm a t -1 i s t)] ;

Like the GET LIST, data items are read into the variables given in the
input-list until the input list is exhausted or the end of file is
reached. The GET EDIT statement, however, pairs each input-list item
with the next sequential format-list item, appying control-format
items as they are encountered in the process. If the input-list is
exhausted before the end of the format-list, remaining format items
are ignored. If the format-list is exhausted before the end of the
input-list, the format-list is reprocessed from the beginning.

10.11. The PUT EDIT Statement.

The PUT EDIT statement writes output data items according to a
format-list. The form of the PUT EDIT statement is:

PUT [F I L E (f name)] [SKI P [(n)]] [P AG E [(p)]]
[EDIT (output-l i st) (forma t-l i st)] ;

Similar to the GET EDIT statement, the PUT EDIT pairs output
expressions from the output-list with format items from the
format-list. Control format items encountered during this process are
applied. Unprocessed format items are ignored at the end of the PUT
statement. Further, the format-list is restarted from the beginning
if the end of the list is encountered during processing.

10.12. Line-Directed I/O.

Two forms of the READ and WRITE statement are available in
PL/I-80 for processing variable length ASCII records in a STREAM file.
These forms are not generally available in other implementations of
PL/I, and thus should be avoided if upward compatibility is important.
The two forms, called READ Varying and WRITE Varying, are described
below.

10.13. The READ Varying Statement.

The READ statement may be used to read variable length STREAM
INPUT files. The form of the READ Varying statement is

(All Information Contained Herein is proprietary to Digital Research.)

70

READ [FILE(fname)] INTO (v),

where v is a CHAR VARYING string variable. FILE(SYSIN) is assumed if
the FILE option is not present.

It is important to note that the READ statement, discussed in a
following section, is differentiated from the READ Varying form only
by the fact that the target variable has the VARYING attribute.

Data is read from the file until the maximum of the length of v
is reached, or a line-feed character is read. The length of v is set
to the number of characters read, including the line-feed character.
Note that when the READ Varying statement causes a default OPEN to
occur, the resulting file attributes include STREAM INPUT. attributes
STREAM INPUT. Given the declaration

1 BUFFER,
2 BUFFCH CHAR(254) VAR,

for example, the statement

READ FILE(F) INTO (BUFFER);

produces a RECORD oriented data transmission since the target is a
structure, not a CHAR VARYING variable. The statement

READ FILE(F) INTO (BUFFCR),

however, is interpreted as an ASCII STREAI~ INPUT data transmission
since the target is CHAR VARYING.

10.14. The WRITE Va"ryi ng Sta temen t.

The WRITE Varying statement is used to write variable-length
ASCII STREAM data. The form of the WRITE Varying statement is:

WRITE [FILE(fname)] FROM (v),

where v is a CHAR VARYING string variable. No additional control
characters are added to the output string. If control characters are
requrired in the application, they must be included as a part of the
string. Recall that PL/I-80 allows embedded control characters as a
part of string constants, denoted by a preceding "~" within the
string.

Again, WRITE Varying is not generally available in
implementations of PL/I, and must be avoided if upward compatibility
is a requirement. As in the READ Varying case, WRITE and WRITE
Varying are differentiated by the fact that the source variable has
the VARYING attribute. Further, note that the default OPEN produced
by this statement includes the STREAM OUTPUT attributes. Given the

(All Information Contained Herein is proprietary to Digital Research.)

71

declaration in the previous section, the statement

WRITE FILE(F) FROM(BUFFER)~

is taken as a RECORD oriented data transmission, while

WRITE FILE(F) FROM(BUFFCH)~

is processed as a WRITE Varying
STREAM OUTPUT file, since the
attribute.

statement, operating on an ASCII
source variable has the VARYING

(All Information Contained Herein is Proprietary to Digital Research.)

72

11. RECORD ORIENTED INPUT/OUTPUT

Record files contain binary data which is transmitted without
conversion to or from connected storage. Two forms of RECORD
processing are allowed: SEQUENTIAL, where records are accessed in the
order they appear, and DIRECT, where records are accessed through
keys. The various general forms are discussed in the sections which
follow. In each case, fname is a file variable or file constant, x is
a connected aggregate or scalar data type which is not CHAR VARYING,
and k is a FIXED BINARY key value o,r variable. Again, most of the
operations outlined in this chapter have implementation-dependent
interpretations. Thus, the reader is referred to the CP/M and MP/M
file system interface description given in the "PL/I-80 Applications
Guide" for specific details.

11.1. The READ Statement.

The READ statement is used to read fixed or variable length
RECORD SEQUENTIAL files. The form of the READ statement is:

READ FILE (fname) INTO (x);

If the file is not open, the READ statement provides an automatic OPEN
with the attributes RECORD SEQUENTIAL INPUT.

The number of bytes read is determined by the length of x unless
the file has been opened with the ENV option which defines the fixed
length record. In this latter case, the amount of data read is the
declared fixed length and, if the length of x does not match the
record size, x is either padded with zeroes or the record is truncated
on the right.

11.2. The WRITE Statement.

The WRITE statement transmits data from memory to the data set
without conversion. For RECORD SEQUENTIAL files, the format of the
WRITE statement is:

WRITE FILE (fname) FROM (x);

The default OPEN associated with this statement adds the SEQUENTIAL
OUTPUT RECORD attributes. Again, the output record size is exactly
the length of x, unless the file has been opened with the ENV option,
and a fixed length record size was given. In this case, the statement
writes the fixed record size, and either pads with zeroes or truncates
on the right if the length of x does not match the fixed record
length.

(All Information Contained Herein is proprietary to Digital Research.)

73

11.3. The READ with KEY Statement.

The READ statement with the KEY option is used to directly
access individual records within a file. The format of the READ with
KEY statement is:

READ FILE {fname) INTO (x) KEY (k);

where k is a FIXED BINARY expression which defines the relative
record to access. Key values start at zero, and continue until the
key value times the fixed record length reaches the capacity of the
disk. Variable length records cannot be accessed under PL/I-80 using
the READ with KEY statement.

11.4. The READ with KEYTO Statement.

The READ statement with the KEYTO option allows the key values
to be extracted from an input file as it is being sequentially
accessed. These key values are normally saved in memory, or in
another file, so that records of the input file can later be directly
accessed. The form of the READ with KEYTO statement is:

READ. FILE(fname) INTO(x) KEYTO(k);

where k is a FIXED BINARY variable. See the "PL/I Applications Guide"
for implementation details.

11.5. The WRITE with KEYFROM Statement.

The WRITE with KEYFROM statement is used to directly access a
file for output. The form is:

WRITE FILE (fname) FROM (x) KEYFROM (k);

where k denotes a FIXED BINARY expression yielding a key value which
is treated in the same manner as the READ with KEY option shown above.

(All Information Contained Herein is Proprietary to Digital Research.)

74

12. BUILT-IN FUNCTIONS

A built-in function is a computational subroutine provided as
part of the PL/I-80 library. A built-in function reference may be
used just as a user-defined function reference, except that built-in
function names do not have to be declared to be used. If the name of
a built-in function is redeclared in the program, the built-in
function cannot be called within the scope of that declaration. The
built-in function can be used in a contained block, however, by
redeclaring it with the attribute BUILTIN. Built-in functions are
divided into the following categories, according to their use in
PL/I-80.

Arithmetic
Mathemetica1

String-handling
Conversion

Condition-handling
Miscellaneous

In the following sections the specific format, parameter attributes,
purpose, and properties of each built-in function are described. For
a complete listing of all built-in functions see the dPL/I-80 Command
Summary.d

12.1. Arithmetic Functions.

12.1.1. ABS
Format: ABS(X)
Parameters: X may be any arithmetic expression.
Result: Returns the absolute value of X.
Algorithm: If X)= 0 then return X

otherwise return -X.
Result type: Same as X.

12.1.2. CEIL
Format: CEIL(X)
Parameter: X is any arithmetic expression.
Result: Returns the smallest integer greater than

or equal to x.
Algorithm: -FLOOR(-X)
Result type: An integer value of the same type as X.

(All Information Contained Herein is proprietary to Digital Research.)

75

12.1.3. DIVIDE
Format: DIVIDE(X,y,P) or DIVIDE(X,Y,P,Q)
Parameters: X and Yare arithmetic expressions.
Result: Returns the qudtient of X divided by Y

with result precision P and scale factor
Q, where P and Q are constants, Q assumed
to be zero if not included. Q must be
omitted or equal to zero if X and Yare
FIXED BINARY.

Result type: common arithmetic type of X and Y.

12.1.4. FLOOR
Format: FLOOR(X)
Parameter: X is any arithmetic expression.
Result: Computes the greatest integer less than

or equal to X.
Result type: An integer value of the same type as X.

12.1.5. MAX
Format: MAX(X,Y)
Parameters: X and Yare arithmetic expressions.
Result: Returns the larger value.
Algorithm: If X >= Y then return X

otherwise return Y.
Result type: The common arithmetic type of X and Y.

12.1.6. MIN
Format: MIN(X,y)
Parameters: X and Yare arithmetic expressions.
Result: Returns the smaller value.
Algorithm: If X<= Y then return X

otherwise return Y.
Result type: The common arithmetic type of X and Y.

12.1.7. MOD
Format: MOD(X,Y)
Parameters: X and Yare arithmetic expressions.
Result: Returns the value X mod Y.
Algorithm: If Y = 0 then return X

otherwise return X-ABS(Y)*FLOOR(X/ABS(Y»
Result type: The result is a value having the common

arithmetic type of X and Y.
Examples:

MOD (7 ,3) returns 1
MOD(-7,3) returns 2
MOD(7,-3) returns 1
MOD(-7,-3) returns 2

Remark: Note that unless Y = 0, MOD(X,Y) always
returns a non-negative value less than ABS(Y).

(All Information Contained Herein is Proprietary to Digital Research.)

76

12.1.8. ROUND
Format: ROUND(X,K)
Parameters: X is an arithmetic expression,

K is a signed integer constant.
Result: Returns X rounded to K digits to the right of

the decimal point if K)= 0 or -K to the left
of the decimal point if K < 0.

Algorithm: Return SIGN(X)*FLOOR(ABS(X)*B**N)+0.5)/B**N
where B=2 if X is BINARY

B=10 if X is DECIMAL
and N=K if X is FIXED
else N=K-E if X is FLOAT and E is

the exponent of X.
Result type: Same as X.
Examples:

ROUND(12345.24689,3) returns 12345.24700
ROUND(34567.12345,-3) returns 35000.00000

12.1.9. SIGN
Format: SIGN(X)
Parameter: X is any arithmetic expression.
Result: Returns -1, 0, or 1 to indicate the sign of X.
Algorithm: If X < 0 then return -1

If X = 0 then return 0
If X) 0 then return +1

Result type: FIXED BINARY

12.1.10. TRUNC

12.2.

Format: TRUNC(X)
Parameter: X is any arithmetic expression.
Result: Returns the integer portion of X.
Algorithm: If X < 0 then return (CEIL(X».

If X)= 0 then return (FLOOR(X».
Result type: A signed integer value of the same type

as X.
Examples:

TRUNC(52.146) returns 52
TRUNC(-52.146) returns -52

Mathematical Function~.

The mathematical functions which are provided in the PL/I-80
library consist of the most often used trigonometric functions and
their inverses, base e (or natural), base 2, and base 10 (or common)
logarithm functions, the natural exponent funGtion, hyperbolic sin and
cos functions, and finally the square root function. Each of these
functions is defined for a single FLOAT BINARY argument (other types
of arguments are accepted but are automatically converted to this
type) and returns a FLOAT BINARY result.

All of the function subroutines, with the exception of SQRT, are

(All Information Contained Herein is proprietary to Digital Research.)

77

based on algorithms which use Chebyshev polynomial approximations.
The SQRT function subroutine is based on Newton's method. Typically
these algorithms scale the given argument into a finite interval
(generally -1 <= X <= 1) and then evaluate the Chebyshev approximation
using an appropriate recurrence relation. The greatest source of
error which can occur using these routines results from the truncation
of significant figures during the scaling process. Except for this,
the subroutines have an average accuracy of 7.5 significant decimal
digits.

Note: For all mathematical functions, the parameter X is
assumed to be an arithmetic expression which is converted to FLOAT
BINARY and the type of the result is FLOAT BINARY.

12.2.1. ACOS
Format: ACOS(X)
Parameter: X is an arithmetic expression, -1 <= X <= 1.
Result: Returns the arc cosine of X; i.e., ACOS(X) is

the angle, in radians, whose cosine is X such
that 0 <= ACOS(X) <= PI.

Result type: FLOAT BINARY
Algorithm: ACOS(X) equals PI/2 - ASIN(X)
Error Condition: If X is not in the interval -1 <=X <= 1

the ERROR condition is signalled.

12.2.2. ASIN
Format: ASIN(X)
Parameter: X is an arithmetic expression, -1 <= X (= 1.
Result: Returns the arc sine of Xi i.e., ASIN(X) is the

angle in radians, whose sine is X, and such that
-PI/2 <= ASIN(X) <= PI/2

Result type: FLOAT BINARY
Algorithm: Chebyshev polynomial approximation.
Error Condition: If X is not in the interval

-1 <= X <= 1
the ERROR condition is raised.

12.2.3. ATAN
Format: ATAN(X)
Parameter: X is any arithmetic expression.
Result: Returns the arc tangent of X; i.e., ATAN(X) is

the angle in radians, whose tangent is X and
such that -PI/2 <= ATAN(X) <= PI/2.

Result type: FLOAT BINARY
Algorithm: Chebyshev polynomial approximation.

12.2.4. ATAND
Format: ATAND(X)
Parameter: X is any arithmetic expression
Result: Returns the arc tangent of X in degrees; i.e.,

the angle, in degrees, whose tangent is X,
and such that -90 <= ATAND(X) <= 90.

Result type: FLOAT BINARY
Algorithm: ATAND(X) equals 180/PI * ATAN(X).

(All Information Contained Herein is Proprietary to Digital Research.)

78

12.2.5. COS
Format: COS (X)
Parameter: X is an arithmetic expression.
Result: Returns the cosine of X, in radians.
Result type: FLOAT BINARY
Algorithm: Chebyshev polynomial approximation.

12.2.6. COSO
Format: COSD(X)
Parameter: X is an arithmetic expression.
Result: Returns the cosine of X, X in degrees.
Result type: FLOAT BINARY
Algorithm: COSD(X) equals COS(X * PI / 180).

12.2.7. COSH
Format: COSH(X)
Parameter: X is an arithmetic expression.
Result: Returns the hyperbolic cosine of X.
Result type: FLOAT BINARY
Algorithm: COSH(X) equals (EXP(X) + EXP(-X»/2.

12.2.8. EXP
Forma t: EXP (X)
Parameter: X is an arithmetic expression
Result: Returns the value of e to the power X, where

e is the base of the natural logarithm.
Result type: FLOAT BINARY
Algorithm: Chebyshev polynomial approximation.

12.2.9. LOG
Format: LOG (X)
Parameter: X is an ar~thmetic expression, X > 0.
Result: Returns the natural logarithm of X.
Result type: FLOAT BINARY
Algorithm: Chebyshev polynomial approximation.
Error Condition: If X <= 0 the ERROR

condition is raised.

12.2.10. LOG2
Format: LOG2(X)
Parameter: X is an arithmetic expression, X > 0.
Result: Returns the logarithm of X to the base 2.
Result type: FLOAT BINARY
Algorithm: LOG2(X) equals LOG(X)/LOG(2).
Error Condition: If X <= 0 the ERROR

condition is raised.

(All Information Contained Herein is proprietary to Digital Research.)

79

12.2.11. LOG10
Format: LOG10(X)
Parameter: X is an arithmetic expression, X > 0.
Result: Returns the logarithm of X to the base 10.
Result type: FLOAT BINARY
Algorithm: LOG10(X) equals LOG(X)/LOG(10).
Error Condition: If X < 0 then the ERROR

condition is raised.

12.2.12. SIN
Forma t: S IN (X)
Parameter: X is an arithmetic expression.
Result: Returns the sine of X, X in radians.
Result type: FLOAT BINARY
Algorithm: Chebyshev polynomial approximation.

12.2.13. SIND
Format: SIND(X)
Parameter: X is an arithmetic expression.
Result: Returns the sine of X in degrees.
Result type: FLOAT BINARY
Algorithm: SIND(X) equals SIN(X * PI / 180).

12.2.14. SINH
Format: SINH(X)
Parameter: X is an arithmetic expression.
Result: Returns the hyperbolic sine of X.
Result type: FLOAT BINARY
Algorithm: SINH(X) equals (EXP(X)-EXP(-X»/2

12.2.15. SQRT
Format: SQRT(X)
Parameter: X is an arithmetic expression, X >= 0.
Result: Returns the square root of X.
Result type: FLOAT BINARY
Algorithm: Newton's method.
Error Condition: If X < 0 then the ERROR

condition is raised.

12.2.16. TAN
Format: TAN (X)
Parameter: X is an arithmetic expression.
Result: Returns the tangent of X, X in radians.
Result type: FLOAT BINARY
Algorithm: If COS (X) = 0 then the ERROR condition

otherwise TAN (X) = SIN(X)/COS(X)
Error Condition: If COS (X) equals 0 then the

ERROR condition is raised.

(All Information Contained Herein is proprietary to Digital Research.)

80

12.2.17. TAND
Format: TAND(X)
Parameter: X is an arithmetic expression.
Result: Returns the tangent of X, X in degrees.
Result type: FLOAT BINAR,Y
Algorithm: TAND(X) equals TAN(X * PI / 180)
Error Condition: If COS(X * PI / 180) equals 0 then

the ERROR condition is raised.

12.2.18. TANH

l2.3~

Format: TANH(X)
Parameter: X is an arithmetic expression.
Result: Returns the hyperbolic tangent of X.
Result type: FLOAT BINARY
Algorithm: TANH(X) equals

(EXP(X)-EXP(-X»/(EXP(X)+EXP(-X»

String Functions.

(All Information Contained Herein is Proprietary to Digital Research.)

81

12.3.1. BOOL
Format: BOOL(X,Y,Z)
Parameters: X is a bit expression.

Y is a bit expression.
Z is a bit string constant,

4 bits long.
Result: Returns a boolean function on X and Y,

specified by the bit string constant Z as
follows: Let Zl,Z2,Z3,Z4 be the bit values
in Z reading left to right. Then bit
values A,B and the four-bit string Z
determine the boolean function
BOOL(A,B,Z) :

A B B00L (A, B, Z)

o 0 Zl I
I

o 1 Z2 I
I

1 0 Z3 I
I

I 1 1 Z4 I
1---------------------1

This then i~duces the function BOOL(X,Y)
on bit strings X,Y as follows: If X,Y do
not have the same length then the shorter
string is padded on the right with zeroes
until they have the same length. Then
B00L(X,Y,Z) is defined to be the bit string
whose Nth bit is obtained from the above
table by letting A be the Nth bit of X
and B the Nth bit of Y.

Result type: BIT(n) where n equals
MAX(LENGTH(X) ,LENGTH(Y»

Examples:
BOOL('0011'B,'010l'B,'100l'B) returns '1001'B
BOOL('0l0ll'B,'ll' ,'1001') returns '01100'

12.3.2. COLLATE
Format: COLLATE()
Parameters: None
Result: Returns a character string of length 128

that consists of the set of characters in
the ASCII character set in ascending order.
The ASCII character set is given in
Appendix A.

Result type: CHARACTER(128)

(All Information Contained Herein is proprietary to Digital Research.)

82

1 2 • 3 • 3 •. IN 0 EX
Format: INDEX(X,y)
Parameters: X and y'are string expressions of the

same type, either bit or character.
Result: Returns an integer value indicating the

position of the leftmost occurrence of the
string Y in the string X. If X or Y is
null or if Y does not occur in X, the
value returned is zero.

Result type: FIXED BINARY

12.3.4. LENGTH
Format: LENGTH(X)
Parameter: X is a string expression, either bit

or character.
Result: Returns the number of characters or bits

in the string X. If X has the attribute
VARYING, LENGTH(X) returns the current
1 ength of X.

Result type: FIXED BINARY

12.3.5. SUBSTR
Format: SUBSTR(X,I[,J])
Parameters: X is a string, either bit or

character.
I is a FIXED BINARY value.
J is a FIXED BINARY value.

Result: Returns a string which is a copy of
the string S beginning at the Ith
element and for a length J. If J
is not given it is assumed to be
equal to LENGTH(X)-I+l.

Result type: Same as X.
Error Condition: None. If the parameters

12.3.6. TRANSLATE

are out of range, unpredictable
results will be obtained.

Format: TRANSLATE(X,Y[,Z])
Parameters: X is a character expression.

y is a character expression.
Z is a character expression.

Re s ul t : I f Z doe s not 0 c cu r, i tis ass um e d
to be COLLATE(). If Y is shorter
than Z, it is padded to the right
with blanks until its length equals
the length of Z. Then, ~ny
occurrence of a character in Z in
the string X is replaced by the
character in Y corresponding to the
character in Z.

Result type: Same as X.
Examples:

TRANSLATE('BDA' ,'1234' ,'ABC') returns '201'

(All Information Contained Herein is Proprietary to Digital Research.)

83

12.3.7. VERIFY

12.4.

Format: VERIFY (X,Y)
Parameters: X is a character expression.

Y is a character expresslon.
Result: Returns integer value ~ if each of

the ch~racters in X occurs in Y.
Otherwise returns an integer which
indicates the leftmost character of
X which does not occur in Y.

Result type: FIXED BINARY
Examples:

VERIFY('ABCDE7,7ABDE7) returns 3
VERIFY(IABC123 1 ,llA2B3C4D ') returns ~.
VERIFY(",'A') returns ~.
VERIFY{'A',") returns 1.

Conversion Functions.

These functions allow the user to convert one type of data item
to another type and are used internally for automatic type
co nve r s ion s.

12.4.1. ASCII
Format: ASCII{X)
Parameter: X is a FIXED BINARY expression.
Result: Returns a single character whose position in

the ASCII collate sequence corresponds to X.
For ASCII codes, see Appendix A.

Result type: CHARACTER{l)
Algorithm: ASCII{X) equals

SUBSTR{COLLATE{) ,MOD{X,12.8)+1) ,1)
Remark: ASCII(X) is the inverse function to RANK (X) •

12.4.2. BINARY
Format: BINARY{X[,P])
Parameter: X is an arithmetic expression, or string

expression which can be converted to an
arithmetic value. If X is DECIMAL with a
non-zero scale factor, then P must be given,
where P is an integer constant which specifies
the precision of the result.

Result: Returns a BINARY arithmetic value
equivalent to X.

Result type: If X is FLOAT BINARY, the result is FLOAT
BINARY, otherwise it is FIXED BINARY.

(All Information Contained Herein is Proprietary to Digital Research.)

84

12.4.3. BIT
Format: BIT(S[,L])
Parameter: S is an arithmetic or string expression,

L is a positive FIXED BINARY expresslon.
Result: Converts S to a bit string of length L when

L is specifi~d; otherwise, converts S to a
bit string whose length is determined by the
conversion rules in Chapter 7.

Result type: BIT

12.4.4. CHARACTER
Format: CHARACTER(S[,L])
Parameter: S is an arithmetic or string expression,

L is a positive FIXED BINARY expresslon.
Result: S is converted to a character string of length

L when L is specified; otherwise S is converted
to a character string whose length is determined
by the conversion rules of Chapter 7.

Result type: CHARACTER

12.4.5. DECIMAL
Format: DECIMAL(X[,P[,K]])
Parameter: X is an arithmetic or string expression which

can be converted to an arithmetic value.
pis an integer constant, 1 (= P (= 15.
K is an integer constant, 0 (= K (= P.

Result: Converts X to a DECIMAL value. P and K are
optional but when specified represent the
precision and scale factor, respectively.
If only P is given, K is assum~d to be zero.
If neither P nor K is given, then the precision
and scale factor of the result are determined
by the rules for conversion given in Chapter 7.

Result type: FIXED DECIMAL

12.4.6. DIVIDE
Format: DIVIDE(X,Y,P[,Q])
Parameters: X and Yare arithmetic expressions.

P,Q are integer constants, 0 (= Q (= P.
Result: Returns X divided by Y with precision P

and scale Q. Q is optional but must not
be given if X and Yare both FIXED BINARY.

Result type: The common type of X and Y.

(All Information Contained Herein is proprietary to Digital Research.)

85

12.4.7. FIXED
Format: FIXED(X[P,[,K]])
Parameters: X is an arithmetic expression or string

expression which can be converted to an
arithmetic value.
P is an integer constant,
K is an integer constant.

Result: Converts X to a FIXED arithmetic value. P and K
are optional but when specified determine the
precision and scale factor, respectively, of the
result. If only P is given, then K is assumed
to be zero. If neither P nor K is given, then
the precision and scale factor are determined
by the conversion rules in Chapter 7.

Result type: If X is FIXED DECIMAL or CHARACTER, the
result is FIXED DECIMAL; otherwise, it
is FIXED BINARY.

12.4.8. FLOAT
Format: FLOAT(X[,P])
Parameter: X is an arithmetic or string expression

which can be converted to an arithmetic value.
P is an optional positive integer constant.

Result: Converts X to a FLOAT arithmetic value. P is
optional but when given determines the precision
of the result. If P is not given the precision
is determined by the conversion rules in
Chapter 7.

Result type: FLOAT BINARY

12.4.9. RANK
Format: RANK (X)
Parameter: X is a character value of length one.
Result: Returns the integer representation of the ASCII

character X. See Appendix A.
Result type: FIXED BINARY
Algorithm: RANK (X) equals INDEX (COLLATE() ,X) -1

1 2 • 4 • 1 0. UN SP E C
Format: UNSPEC(X)
Paarameter: X is a reference to a data item whose

internal representation in memory is
16 bi ts or less.

Result: Returns the contents of the address referenced
by X.

Result type: A bit string whose length equals the length
of the internal representation of the data
item associated to X.

(All Information Contained Herein is Proprietary to Digital Research.)

86

12.5. Condition Functions.

These functions allow the PL/I-80 user to investigate interrupts
caused by enabled conditions. None of these functions have
parameters, and they return a vlue only when executed in an ON-unit
that is entered as a result of an interrupt caused by one of the
conditions for which the function can be used, or when such a
condition is signalled.

12.5.1. ONCODE
Format: ONCODE()
Result: The vlue returned is the error number of

the most recent PL/I-80 runtime error which
signalled the ERROR condition. The error
messages and their corresponding error
numbers are listed in Appendix F.

Result type: FIXED BINARY

12.5.2. ONFILE
Format: ONFILE()
Result: The value returned is the file name for

which the most recent ENDFILE or ENDPAGE
condition was signalled.

Result type: CHARACTER

12.5.3. ONKEY

12.6.

Format: ONKEY()
Result: The value returned is a character string

giving the value of the key for the record
that caused an input/output or conversion
condition to be raised.

Miscellaneous Functions.

12.6.1. ADDR
Format: ADDR(X)
Parameter: X is a reference to a variable whose

storage is connected.
Result: Returns a pointer that identifies the

location to which the variable X has
been allocated.

Result type: POINTER

(All Information Contained Herein is Proprietary to Digital Research.)

87

12.6.2. DIMENSION
Format: DIMENSION(X,N)
Parameters: X is an array variable,

N is a positive integer expression.
Result: Returns a positive integer representing

the extent of the Nth dimension of the
array referenced by X.

Result type: FIXED BINARY

12.6.3. HBOUND
Format: HBOUND(X,N)
Parameters: X is an array variable,

N is a positive integer expression.
Result: Returns the upper bound of the Nth

dimension of the array variable X.
Resul t type: FIXED BINARY

12.6.4. LBOUND
Format: LBOUND(X,N)
Parameters: X is an array variable,

N is a positive integer expression.
Result: Returns the lower bound of the Nth

dimension of the array referenced by X.
Result type: FIXED BINARY

12.6.5. LINENO
Format: LINENO(X)
Parameter: X is a file value.
Result: Returns the linenumber of the file

control block referenced by X.
This file control block must have
the PRINT attribute.

Result type: FIXED BINARY

12.6.6. NULL
Format: NULL
Result: Returns a null pointer value; i.e.,

a pointer which points to no location.
Result type: POINTER

12.6.7. PAGENO
Format: PAGENO(X)
Parameter: X is a file value.
Result: Returns the pagenumber of the file

control block referenced by X.
The file control block must
have the PRINT attribute.

Result type: FIXED BINARY

(All Information Contained Herein is Proprietary to Digital Research.)

88

APPENDIX A

TABLE OF ASCII CODES AND ESCAPE CHARACTERS

N HEX ASCII N HEX ASCII N HEX ASCII

-@ 0 00 NUL 43 2B + 86 56 V
-A 1 01 SOH 44 2C 87 57 W
-B 2 02 STX 45 2D 88 58 X
-C 3 03 ETX 46 2E • 89 59 Y
-0 4 04 EOT 47 2F / 90 SA Z
.... E 5 05 ENQ 48 30 0 91 5B [
.... F 6 06 ACK 49 31 1 92 5C \
.... G 7 07 BEL 50 32 2 93 5D]
.... H 8 08 BS 51 33 3 94 5E -
""I 9 09 HT 52 34 4 95 SF
""J 10 0A LF 53 35 5 96 60 T

""K 11 0B VT 54 36 6 97 61 a
.... L 12 0C FF 55 37 7 98 62 b
""M 13 0D CR 56 38 8 99 63 c
"'N 14 0E SO 57 39 9 100 64 d
"'0 15 0F SI 58 3A 101 65 e
""p 16 10 DLE 59 3B ; 102 66 f
"'Q 17 11 DC1 60 3C < 103 67 9
"'R 18 12 DC2 61 3D = 104 68 h
... s 19 13 DC3 62 3E > 105 69 i
AT 20 14 OC4 63 3F ? 106 6A j ... u 21 15 NAK 64 40 @ 107 68 k
"'v 22 16 SYN 65 41 A 108 6C 1
"'w 23 17 ETB 66 42 B 109 6D m
-X 24 18 CAN 67 43 C 110 6E n
"'Y 25 19 EM 68 44 D 111 6F 0

-Z 26 1A SUB 69 45 E 112 70 P
-[27 1B ESC 70 46 F 113 71 q
-\ 28 IC FS 71 47 G 114 72 r
...] 29 10 GS 72 48 H 115 73 s
... - 30 IE RS 73 49 I 116 74 t

31 IF US 74 4A J 117 75 u
32 20 SP 75 4B K 118 76 v
33 21 ! 76 4C L 119 77 w
34 22 .. 77 40 M 120 78 x
35 23 # 78 4E N 121 79 Y
36 24 $ 79 4F 0 122 7A z
37 25 % 80 50 P 123 7B {
38 26 & 81 51 Q 124 7C I
39 27 I 82 52 R 125 7D }
40 28 (83 53 S 126 7E
41 29) 84 54 T 127 7F DEL

89

APPENDIX 8

PL/I-80 STATEMENTS

The PL/I-80 statement formats are listed below in alphabetical
order followed by their corresponding section numbers in parentheses.

All statements may have label prefixes. The label prefixes are
omitted in the formats except in the statements that require them.

B.l THE ALLOCATE STATEMENT (6.5)

ALLOCATE based-variable SET(pointer-variable)~

Example:
DCL A CHAR(16) 8ASED(P),

P POINTER~
ALLOCATE A SET(P)~

8.2. THE ASSIGNMENT S'rATEMENT (7)

variable = expression~

Exampl es:
8 = C*D~
UNSPEC(E) = F(I)~

B.3 THE BEGIN STATEMENT (2.3)

BEGIN,

B.4 THE CALL STATEMENT (8.11)

CALL procname [(argl, ••• ,argN)] ~

Examples:
CALL PI,
CALL P2 (A, B,C) ,

8.5 THE CLOSE STATEMENT (9.6)

CLOSE FILE(fname),

Examples:
CLOSE FILE(INP)~
CLOSE FILE(OUT)~

(All Informa,tion Contained Herein is Propr'ietary to Digital Research.)

B.6 THE DECLARE STATEMENT (5.1)

DECLAREIDCL [level] name [attribute-list]

[,[level] name [attribute-list]];

Examples:
DCL A FIXED;
OCL 1 B,

2 C NAME CHAR(20) ,
2 0 ADDRESS,

3 STREET CHAR(20) ,
3 CITYST CHAR(20) ,
3 ZIP CHAR(5);

PCL ZZ(10) FIXED;
DCL A FIXED EXTERNAL;

B.7 THE DO STATEMENT (2.2, 8.3)

DO [control-var1 spec;

where spec may be one of the following:

. . .

[start-exp [TO end-exp] [BY incr-exp]] [WHILE(cond)]

[start-exp [BY incr-exp] [TO end-exp1] [WHILE(cond)]

[start-exp [REPEAT(repeat-exp) 1] [WHILg(cond)]

Examples:
DO J=0;
DO WHILE(A<B) ;
DO J = 1 TO 10;
DO K = 10 TO 0 BY -2 WHILE(A<B);
DO P=START REPEAT P->NEXT WHILE(P-=NULL);

B.8 THE END STATEMENT (2.2, 2.3, 8.12)

END [label];

Examples:
END;
END Pl;

B.9 THE FORMAT STATEMENT (10.9)

label: FORMAT(format-1ist);

Examples:
Ll: FORMAT(A(5»;
L2: FORMAT(10B4(2»;

(All Information Contained Herein is Proprietary to Digital Research.)

91

B.10 THE FREE STATEMENT (6.3)

FREE [pointer-variable->] based-variable;

Examples:
FREE A;
FREE P->.A;

B.ll THE GET EDIT STATEMENT (10.10)

GET [FILE(fname)] [SKIP[(nl)]] [EDIT(input-list)
(format-list)] ;

Examples:
GET EDIT(A,B,C) (3F(S,2»;
GET FILE(INP) EDIT«Z(I) DO I = 1 TO 3»(A);

8.12 THE GET LIST STATEMENT (10.,2)

GET [FILE(fname)] [SKIP[(nl)]] {LIST(input-list)];

Example:
GET LIST(X,y,Z);

B.13 THE GOTO STATEMENT (B.l)

GOTolGO TO label-constantllabel-variable;

Examples:
GO TO THEEND;
GO TO LAB (K) ;

B.14 THE IF STATEMENT (8.2)

IF cond THEN action [ELSE [action2]];

Examples:
IF A=2 THEN B=A**2;
ELSE;

IF J>K THEN I = I+l;
ELSE I = I+3;

8.15 THE EMPTY STATEMENT (8.2)

Examples:
;
ELSE;

(All Information Contained Herein is proprietary to Digital Research.)

92

8.16 THE ON STATEMENT (8.5)

ON condition ON-unit

Examples:
ON ENDFILE(INP)

BEGIN;
PUT LIST('END OF INPUT');
STOP;
END;

ON ERROR PUT LIST(ONCODE(»;

B.17 THE OPEN STATEMENT (9.3)

OPEN FILE(fname) [file-attributes];

Examples:
OPEN FILE(INP) INPUT;
OPEN FILE(SYSPRINT) OUTPUT;

B.18 THE PROCEDURE STATEMENT (8.12)

procname: PROCEDURE\PROC [(parmI, ••• ,parmN)]
[OPTIONS(MAIN)] [RETURNS(attribute-list)] [RECURSIVE]

Examples:
PI: PROC(A,B,C);
P2: PROCEDURE (ZZ) RETURNS (FLOAT) ;
P3: PROC(N) RETURNS (FIXED BIN) RECURSIVE;
P4: PROCEDURE OPTIONS(MAIN);

B.19 THE PUT EDIT STATEMENT (10.11)

PUT [FILE(fname)] [SKIP[nl]] [PAGE[(p)]]
[EDIT (output-list) (format-l ist)] ;

Examples:
PUT EDIT(A,B,C) (F(5,2) ,X(3) ,2E(10,2»;
PUT EDIT«Z(I) DO 1= 1 TO 10» (A);

B.20 THE PUT LIST STATEMENT (10.3)

PUT [F I L E (f n am e,}] [SKI P [(n 1)]] [P AG E [(p)]]
[LIST (output-list)];

Examples:
PUT LIST(A,B,C);
PUT FILE(F) LIST((Z(I) DO I = 1 TO 10»;

(All Information Contained Herein is proprietary to DigIfal Research.)

93

B.2l THE READ STATEMENT (For STREAM files) (10.13)

READ [FILE(fname)] INTO(v);

Exampl es:
DCL (VV,S) CHAR (200) VAR;
READ INTO (VV) ;
READ FILE(INP) INTO(S);

B.22 THE READ STATEMENT (SEQUENTIAL RECORD) (11.1)

READ FILE(fname) INTO (x);

Exampl e:
READ FILE(INP) INTO (XX);

B.23 THE READ STATEMENT (with KEYTO) (11.4)

READ FI LE (fname) INTO (x) KEYTO (key to) ;

Example:
READ FILE(INP) INTO(Z) KEYTO(IKEY);

B.24 THE READ STATEMENT (with KEY) (11.3)

READ FILE(fname) INTO (x) KEY(ikey);

Example:
READ FILE(INP) INTO(STRUC) KEY(IKEY);

B.25 THE RETURN STATEMENT (8.13)

RETURN [(exp)];

Examples:
RETURN;
RETURN (X) ;
RETURN(A**2);

B.26 THE REVERT STATEMENT (8.7)

REVERT condition;

Exampl es:
REVERT ERROR;
REVERT ENDFILE;

(All Information Contained Herein is Proprietary to Digital Research.)

94

B. 2 7 THE SIGNAL STATEMENT (8.6)

SIGNAL condition;

Examples:
SIGNAL ERROR;
SIGNAL ENDFILE;

B.28 THE STOP STATEMENT (8.15)

STOP;

B.29 THE WRITE STATEMENT (with STREAM files) (10.14)

W R I T E [F I L E (f n am e)] FR OM (v) ;

Example:
DCL (XX,YY) CHAR(200) VAR;
WRITE FILE(OUTPUT) FROM(XX);
WRITE FROM (YY) ;

B.30 THE WRITE STATEMENT (SEQUENTIAL RECORD) (11.2)

WRITE FILE (fname) FROM (x) ;

Examples:
WRITE FI LE (OUTP) FROM (XX);
WRITE FILE(F) FROM(STRUC);

B.3l THE WRITE STATEMENT (with KEYFROM) (11.5)

WRITE FILE(fname) FROM (x) KEYFROM(ikey);

Example:
WRITE FILE(KP) FROM (REC) KEYFROM(IKEY);

(All Information Contained Herein is proprietary to Digital Research.)

95

APPENDIX C

DATA ATTRIBUTES

The PL/I-8~ data attributes are listed below in alphabetical
order followed by their corresponding section numbers in parentheses.

C.I ALIGNED (6.2)

Example:
DCL A(0:3) BIT (4) ALIGNED;

C.2 AUTOMATIC I AUTO (6.3)

Example:
DCL A FIXED BIN; is equivalent to
DCL A FIXED BIN AUTO;

C.3 BASED rep)] (6.4)

Example:
DCL A CHAR(10) BASED(P),

B(5) FIXED BIN BASED;

C.4 BINARY I BIN (3.1.1, 5.2)

Example:
DCL I FIXED BIN,

F FLOAT BIN;

C.5 BIT[(n)] (3.2.2)

Example:
DCL A BIT(3);

C.6 BUILTIN (5.2,12)

Example:
DCL SQRT BUILTIN;

C.7 CHARACTER I CHAR [en)] (3.2.1,5.2)

Example:
DCL A CHAR(leJ) ,

B (5) CHAR (4) ;

C.8 DECIMAL DEC (3.1.2,5.2)

Example:
DCL A FIXED DEC(6,2);

(All Information Contained Herein is Proprietary to Digital Research.)

96

C • 9 EN TRY [(a t tl, ..., a t t N)) (3 • 3 • 2, 9. 4 • 1, 5 • 2)

Example:
DCL H ENTRY,

Z ENTRY «10) FIXED),
Y ENTRY (FLOAT) RETURNS (FLOAT),
X ENTRY VARIABLE;

C.10 EXTERNAL I EXT (5.1, 5.2)

Example:
DCL A CHAR(8) EXTERNAL;

C.1l FILE (3.5, 5.2)

Example:
DCL F FI LE,

FV FILE VARIABLE;

C.12 FIXED (3.1.1, 3.1.2)

Example:
DCL A FIXED BIN,

B FIXED DECIMAL(5,2);

C.13 FLOAT (3.1.3)

Example:
DCL A FLOAT BIN;

C.l4 INITIAL I INIT (value [,value] •••) (6.2)

Example:
DCL A CHAR(3) STATIC INIT('ABC'),

B (2) FIXED BIN STATIC INIT (2 (5)) ;

C.15 LABEL (3.1.1)

Example:
DCL WHERE LABEL;

c.16 POINTER I PTR (3.4, 6.4)

Example:
DCL (P,Q) POINTER;

C.17 RETURNS (a t t r i bu t e-l is t) (8.1 7)

Example:
DCL A ENTRY(FLOAT) RETURNS(FIXED);

(All Information Contained Herein is proprietary to Digital Research.)

97

e.1S STATIC (6.1)

Exampl e:
DCL A CHAR(l~) STATIC,

B FIXED BIN STATIC INIT(0);

C.19 VARIABLE (3.3.2, 3.5, 9.1)

Example:
DCL F FILE VARIABLE,

p ENTRY VARIABLE;

C.2~ VARYI~G VAR (3.2.1)

Example:
DCL A CHAR(l~~) VAR;

(All Information Contained Herein is Proprietary to Digital Research.)

98

APPENDIX 0

'PIC'T.'tTRE FORMA." yrrEM.

This appendix describes an added feature, the PICTURE output
data format item, which is implemented in PL/I-80 beginning with
Version 1.3. This feature is implemented in conformity with the ANSI
Committee X3J PL/I Subset G Standard together with the full ANSI PL/I
Standard.

0.0 Picture Syntax

The PICTURE data format item is used on output to edit numeric
data in fixed point decimal form. The value resulting from such an
edit is a character string whose form is determined by the numeric
value and the picture specification occurring in the PICTURE forma't
item. The syntax of a PICTURE format item is:

P<picspec>

where <picspec> is a character string constant describing the picture
specification. Such a format item may be used in a PUT EDIT statement
in the same manner as any other data format item (see Section 10.6).
The character string constant used to describe the picture
specification must consist of one or more of the following characters:

$ + - S
* Z
9
V
/ ,. B
CR DB

static or drifting characters
conditional digit characters
digit character
decimal point position character
insertion characters
credit and debit characters

and must satisfy certain rules of syntax. First, insertion characters
may occur anywhere in a valid <picspec>, except they may not separate
the characters of either of the picture character pairs, CR and DB.
If all insertion characters of a picture specification are removed,
the resulting string must be acceptable to the (non-deterministic)
finite state machine recognizer which is illustrated in Figure 0.1.
It must be possible, beginning with the START node to trace through
this diagram to ACCEPT, where transitions across an edge are allowed
if the edge is unlabelled, or if the edge is labeled by the next
character(s) in the <picspec>.

For example, the following character string constants define
valid picture specifications:

(All Information Contained Herein I.s Propr ietary to Digi tal. Resea·rch)

99

~BB$***,***V.99BB~

~$----,999V.99BCR~

"'99:99:99'"

... **/**/**""

"':B88SSSSS,SSS.VSSBBB:'"

0.1 Picture Semantics

The man·ner in which a picture specification edits a numeric
value into a character string value is determined by the types of
picture characters appearing in the specification. The characters
~$"","'.+"', ~-"',and "'s'" occur as either "'static"" characters, or ""drifting
characters.... Such a character is static if it appears only once in
the picture specification; otherwise it is drifting. If it is
drifting, all its occurrences except for one corresoond to conditional
digit positions. In either case, these picture characters, together
with the sign of the numeric value, will determine an output
character, given by the following table, which will occupy one
position in the output.

STATIC/DRIFTING CHARACTERS I
-------------~--~------------------------I SIGN S + $ I

pes + I + $

----------------~------------------------neg , $

--------------------------~--------------

If the picture character is static, the output charactec will appear
in the corresponding position of the output. If the picture character
is drifting, then the output character will appear exactly one
position ahead of the first non-zero digit over which the picture
character drifts, or in the last oosition over which it drifts. All
other occurrences of the drifting- character will be replaced by
spaces, corresponding to the suppression of a zero digit in the
numeric value.

The characters "'*"" and ""z... are called "'conditional digit~
picture characters ot ""zero suppression'" characters. Each such
character in the picture specification is associated with a digit in
the numeric value. On output, if the corresponding digit is a zero,
the output character will be a "'*'" or "" ... , res~ectively. If the
corresponding digit is non-zero, the output will be the digit
character.

(All Information Contained Herein Is Proorietary to Digital Research)

100

The picture characters ~B~,~/~,~.~,~:~,and ~,~ are called
insertion characters~ (the character ~:~ is not an insertion

character defined in the ANSI Standard but has been added in PL/I-80
for the purpose of displaying numeric data which represents time).
Insertion characters result in that character occurring in the
corresponding out~ut position (B results in a space), unless the
insertion character occurs within the field of a drifting character,
or zero suppression character. If the insertion character occurs in
the field of a drifting or zero suppression character which is causing
the suppression of numeric digits, the insertion character will also
be suppressed following the rules above.

Note: In some implementations, the ~B~ is an unconditional insertion
character, i.e. it always causes a soace in the corresponding position
of the output. However, by the ANSI Standard, such a s~ace in the
output can be overwritten by a drifting character or the zero
suppression character ~*~.

The picture character ~9~ in a picture specification specifies
that the corresponding digit in the numeric value will occur in the
corresponding position of the output. Thus ~9~ is an unconditional
digit position.

The correspondence between digits in the numeric value and the
numeric digit positions in the picture specification is established by
the ~V~ picture character. This character serves only to specify the
position where integral digits end and fractional digits begin, and
thus specifies the alignment of the picture s~ecification to the
numeric value. If this character does not occur, it is assumed that
all the digit positions implied by the picture specification refer to'
integral digit positions (no fractional) and thus any fractional
digits in the numeric value will not appear in the result. Note that
the ~V~ picture character is the only character which does not
correspond to a character position in the result. Thus the length of
the result equals the length of the picture specification if ~V~ does
not appear, but is one character less if ~v~ appears. The ~V~
character also has an effect on suppression of characters. The
fractional digits, i.e. digits corres~onding to positions past the
~V~, are never suppressed unless all of them are suppressed (in which
case everything is suppressed). Generally, beyond the ~V~,
suppression is turned OFF if it is ON. As a result an insertion
character which occurs beyond the ~V~ picture character, for example a
decimal point, is not suppressed unless everything is suppressed.

The character pairs ~CR~ and 'DB', representing ~credit~ and
~debit~, are viewed as sign characters. If either of these appear in
the picture specification, and if the sign of the numeric value is
negative, then the specified pair will occur in the result. If the
numeric value is positive, then the 9Qsitions corresponding to these
character pairs will be replaced by two spaces.

In addition to the above rules, there are some general rules for
default cases. If the numeric value is zero, and if the picture

(All Information Contained Herein Is Proprietary to Digital Research)

101

sp"ecification does not contain a ~9~ picture character, then the
resulting output will be all *~s if the picture character ~*~ occurs
at all, and all spaces otherwise. This rule takes precedence over the
above rules. Also, if the sign of the numeric value is negative, and
if none of the sign picture oharacters S,+,-,CR, or DB occur in the
specificatiqn, then ERRORel), a conversion error, is signalled.

Each picture specification implies a precision and scale for the
numeric value in the result according to the following rules.
Insertion characters and the character pairs CR and DB have no effect
on precision and scale. Except for this, the precision of the result
wfll equal one less than the number of static/drifting characters, or
the number of zero suppression characters, plus the number of ~9~
characters. The scale of the result will be "zero if no ~V~ occurs.
If ~v~ occurs, the scale of the result equals the number of drifting
characters, or the number of zero suppression characters, or the
number of ~9~ characters occurring after the ~V~ character.

Figure 0.2 illustrates some of the rules involving the use of
PICTURE data format items.

(All Information Contained Herein Is Proprietary to Digital Research)

102

Q::
.~ ~
> N

Z c.,:,
0
C,)
~
Q::

Z
0
~ ..c
C,)
~
1-4
C,)
C:l
p.,
u:
r:J
~
~
E-t
U
1-4

0 jl.

,.... .
Q

til 'h • til 0 :zJ + c:::
0 c.,:,
~

(All Information Contained Herein Is Proprietary to Digital Research)

103

0.00 BB$***,***V.99BB $*******.00
0.01 BS.***,***V.99BB $*******.01
0.25 BS$***,***V.99BB $*******.25
1.50 BSS***,***V.99BB $******1.00

12.34 BS$***, ***V. 99BB $*****12.34
123.45 SS$***,***V.99BB $**** 12:3 • 45

1234.56 BB.***, ***V. 99BB $**1,234.56.
12343.67 BB.***, ***V • ·~9B·B $*12,345..67

123456.78 SS$***,***V.99BB $123,456.78

0.00 SSSSSBSSSV.SS
-0.01 $SSSSBSSSV.SS $. +.01
0.25 SSSSSBSSSV.SS $ + .-,e:::: . ~ ... '
1.50 SSSSSBSSSV.S::; $ +1.50

12.34 SSSSSBSSSV.SS $ +12.~4

123.45 $SSSSBSSSV. S;S $ +123.45
1234.56 SSSSSBSSSV.SS $ +1 234.56

12345.67 .SSSS~SSSV.SS $ +12 345.67
123436.78 SSSSSBSSSV.SS $+123 456. 7:3

0.00 99/99/99 00/00/00
0.01 99/?9/99 00/00/00
0.25 99/99/99 00/00/00
1.50 99/9'~/99 00/00/02

12.34 99/99/99 00/00/12
123.43 99/99/99 00/01/23

1234.56 99/99/99 00/12/:=::5
12343.67 99/99/99 01/23/46

1,23456.79 991'~9/99 12/34/57

0.00 **=**:** ********
0.01 **=**:** ********
0.23 **.**:** ********
1.50 **:**:** *******2

12.34 **:**'** ******12
123.45 **:**:** ****1: 2:;:

1234.56 **:**:** ***12:35
12345.67 **:**:** *1:23:46

123436.78 **:**:** 12::34:57

0.00 /++++,+++.V++/
O. ')1 /++++,+++.V++I I +01/
0.25 /++++,+++.V++/ 1 +251
1.50 /++++,+++.V++I I +1.50/

12.34 I++++,+++.V++I I +12. :341
123.45 1++++, +++. V++I I +123.45/

1234.56 /++++,+++.V++I I + 1,234. Sc,l
12345.67 /++++,+++.V++I / +12,345.671

123456.79 /++++,+++.V++/ /+123,456.781

FIGURE 0.2 EXAMPLES OF PICTURE EDITED NUMERIC DATA

(All Information Contained Herein Is Proorietary to Digital Research)

104

o. ()O s***b***.v** ***********
-0.01 s***b***.v** -********01
0.2~ s***b***.v** +********25

-1.50 s***b***.v** -******1.50
12.34 ,***b***.v** +*****12.:::4

-123.45 s***b***.v** -****123.45
1234.56 s***b***.v** +**1 234.56

-12345.67 s***b***.v** -*12 345.67
12~456.7S s***b***.v** +123 456.78

0.00 $SSSSBSSSV.SS
-0.01 SSSSSBSSSV.SS $ -.01
0.25 SSSSSSSSSV.SS $ +.25

-1.50 $SSSSBSSSV.SS .. -1.50
12.34 SSSSS8SSSV.SS $ +12. :34

-123.45 SSSSSBSSSV.SS $ -123'.45
1234.56 SSSSSBSSSV. 5::- .. +1 234.5(:.

-12345.67 SSSSSBSSSV.SS $ -12 345./:..7
123456.78 SSSSSBSSSV.SS $+123 456 .• 7:3

0.00 ***.***5 ********
-0.01 ***.***8 *******-
0.25 ***.***5 *******+

-1.50 ***.***5 ******2-
12.:34 ***.***8 *****12+

-123.45 ***.***8 ****123-
1234.56 ***.***8 **1.235+

-12345.67 ***.***8 *12.:346-
123456.78 ***.***8 123.457+

0.00 $***, ***v**.: r- ************
-0.01 $***,***v**cr- $*******OlCR
0.25 S***,***v**cr- $*******:25

-1.50 S***,***v**cr- $******150CR
12.34 $***,***v**cr- $*****1234

-123.45 $***,***v**cr- $****1:234SCR
1234.56 S***,***v**cr- $**1,23456

-12345.67 $***, ***v**c::r" $* 12, ~:45/:.. 7CR
123456.78 $***,***v**cr- $123,4567:3

0.00 I++++,+++.V++I
-0.01 I++++,+++.V++I I 011
0.25 I++++,+++.V++I I +251

-1. Sc) I++++,+++.V++I I 1. SOl
12. ~:4 I++++,+++.V++/ I +12.341

-1:2:3.45 /++++,+++.V++I I 123.451
1234.56 /++++,+++.V++/ / +1,;234.56/

-12345.67 /++++,+++.V++I I 12, ~:45. 67/
123456.78 I++++,+++.V++I 1+123,456.7:::/

(All Information Contained Herein Is Proprietary to Digital Research)

105

APPENDIX E

'F.X"'ERNAL PROCEnURF,S

This appendix describes the use of the EXTERNAL attribute as a~plied
to local procedure definitions, available in PL/I-80 version 1.3 or
later. This is a non-standard feature, and must be avoided if upward
compatibility with other Subset-G implementations is required.

It is often useful to group a set of separately compiled
procedures into a single compilation, where the procedures reference
the same global data. According to the Subset-G standard, each
subroutine must be separately compiled, and the global data must be
duplicated in each compilation. The individual modules are then
combined using the linkage editor to produce the final object module.
The 'EXTERNAL attribute can be applied to a procedure heading in PL/I-
80 in order to make the procedure accessible outside the module. In
order to be compatible with any future implementations of PL/I from
Digital Research, only top-level procedures should be marked with the
EXTERNAL attribute, and all globally-accessed data should be marked as
STATIC. A compilation containing a group of EXTERNAL subroutines
should consist only of subroutines, ,and no main program. The
following program segment shows the use of the EXTERNAL attribute:

module:
proc~

dcl
1 global data static,

2 a field char(20) var init("),
2 b-field fixed init(O),
2 c-field float init(O) ~

set a:
-proc (c) external~

dcl c char(20) var~
a field = c~

end set a~
set b: -

-proc (x) external~
dcl x fixed~
b field = x~
end set_b~

set c:
-proc (y) external~
dcl y float~
c field = y~
end set_c~

sum:
proc returns(float) external~
return (b field+c field)~
end sum1 - -

display:
proc ex,ternal ~
put skip list(a field,b field,c field);
end1 -

end module~

(All Information Contained Herein Is Proprietary to Digital Research)

106

The program shown above defines five external procedures: set a,
set b, set c, sum, and display. These four procedures are accessed-in
the-program shown below: -

call ext:
proc options (main) ;
dcl

set a entry (char(20) var),
set-b entry (fixed),
set-c entry (float),
sum-returns (float) ,
display entry;

call set a('Johnson, J');
call set-b(25);
call set-c(5.50);
put skip-1ist(sum(»;
call display();
end call_ext;

These two programs are separately compiled and linked together to form
a single module. Note that, due to linkage editor format
restrictions, long external names are truncated on the right and thus
must be unique in the first six characters.

(All Information ~ontained Herein Is Proprietary to Digital Research)

107

