CP/M-86°

Operating System

System Guide

CP/M-86™
Operating System
System Guide

Copyright © 1981

Digital Research
P.O. Box 579
801 Lighthouse Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright © 1981 by Digital Research. All rights
reserved, No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

cp/M, CP/M-86, and CP/NET are registered trademarks
of Digital Research. ASM-86, CP/M-80, DDT-86, LINK-
80, MP/M, MP/M-86, and TEX are trademarks of Digital
Research., 1Intel is a registered trademark of Intel
Corporation.

The CP/M-86 Operating System System Guide was
prepared using the Digital Research TEX Text
Formatter and printed in the United States of
America.

khkhkkkkhkkhkhhkhkkkhkhkhkhhkhkhkkkkkkkkk

* First Edition: June 1981 *

* Second Edition: June 1983 *
khkhkkkkkhkhkhkhkhkkkhhkkkhhhkkkkkhkhkkkkk

Foreword

The CP/M-86 Operating System System Guide presents the system
programming aspects of CP/M-86® , a single-user operating system for
the Intel 8086 and 8088 l6-bit microprocessors. The discussion
assumes that you are familiar with CP/M®, the Digital Research 8-
.bit operating system. To clarify specific differences with CP/M-86,
this document refers to the 8-bit version of CP/M as CP/M-80TM,
Elements common to both systems are simply called CP/M features.

The CP/M-86 package also includes the CP/M-86 Operating System
User's Guide and the CP/M-86 Operating System Programmer's
Guide, which describes ASM-86'™ and DDT-86'™., Digital Research's
8086 assembler and interactive debugger.

This System Guide presents an overview of the CP/M-86
programming interface conventions. It also describes procedures for
adapting CP/M-86 to a custom hardware environment.

Section 1 gives an overview of CP/M-86 and summarizes its
differences with CP/M-80. Section 2 describes the general execution
environment while Section 3 tells how to generate command files.
Sections 4 and 5 respectively define the programming interfaces to
the Basic Disk Operating System and the Basic Input/Output System.
Section 6 discusses alteration of the BIOS to support custom disk
configurations, and Section 7 describes the loading operation and
the organization of the CP/M-86 system file.

iii

Table of Contents

CP/M-86 System Overview

1.1 CP/M-86 General Characteristics
1.2 cp/M-80 and CP/M-86 Differences

Command Setup and Ekecution Under CP/M-86

.

The 8080 Memory Model
The Small Memory Model
The Compact Memory Model . . .
Base Page Initialization . . .
Transient Program Load and Exit

DNNNDNONDN

~NSoutd W -

Command (CMD) File Generation

3.1 Intel Hex File Format . . .
3.2 Operation of GENCMD
3.3 Operation of LMCMD . . .
3.4 Command (CMD) File Format .

.

.

CCP Built-in and Transient Commands
Transient Program Execution Models

* o s o

Basic Disk Operating System (BDOS) Functions

4.1 BDOS Parameters and Function Codes

4.2 Simple BDOS Calls « e e e e e
4.3 BDOS File Operations . .
4.4 BDOS Memory Management and Load

Basic I/O System (BIOS) Organization

1 Organization of the BIOS . . .
2 The BIOS Jump Vector
3 Simple Peripheral Devices .- .
4 BIOS Subroutine Entry Points .

BIOS Disk Definition Tables

6.1 Disk Parameter Table Format . .
6.2 Table Generation Using GENDEF .
6.3 GENDEF Output . . « « o & « + &

CP/M-86 Bootstrap and Adaptation Procedures

7.1 The Cold Start Load Operation
7.2 Organization of CPM.SYS . e .

.

-

o o 2 .

« v e e

« o o

e o o o s

10
11
13
14

15
16
19
20

23
25
30
48

55
56
57
60

67
72
77

81
84

L TR - I - R T - -]

Appendixes

Blocking and Deblocking Algorithms
Random Access Sample Program . . .
Listing of the Boot Rom
LDBIOS Listing .« « o & o o o o o &«
BIOS Listing .« « « ¢ v & ¢ ¢ o .+ .

CBIOS Listing . « « « & o o o« « » &

vi

87
95
103
113
121
137

Section 1
CP/M-86 System Overview

1.1 cCP/M-86 General Characteristics

CP/M-86 contains all facilities of CP/M-80 with additional
features to account for increased processor address space of up to a
megabyte (1,048,576) of main memory. Further, CP/M-86 maintains
file compatibility with all previous versions of CP/M. The file
structure of version 2 of CP/M is used, allowing as many as sixteen
drives with up to eight megabytes on each drive. Thus, CP/M-80 and
%P/M—BG systems may exchange files without modifying the file

ormat.

CP/M-86 resides in the file CPM.SYS, which is loaded into
memory by a cold start loader during system initialization. The
cold start loader resides on the first two tracks of the system
disk. CPM.SYS contains three program modules: the Console Command
Processor (CCP), the Basic Disk Operating System (BDOS), and the
user-configurable Basic I/0 System (BIOS). The CCP and BDOS
portions occupy approximately 10K bytes, while the size of the BIOS
varies with the implementation. The operating system executes in
any portion of memory above the reserved interrupt locations, while
the remainder of the address space is partitioned into as many as
eight non-contiguous regions, as defined in a BIOS table. Unlike
CP/M-80, the CCP area cannot be used as a data area subsequent to
transient program load; all CP/M-86 modules remain in memory at all
times, and are not reloaded at a warm start.

Similar to CP/M-80, CP/M-86 loads and executes memory image
files from disk. Memory image files are preceded by a "header
record," defined in this document, which provides information
required for proper program loading and execution. Memory image
files under CP/M-86 are identified by a "CMD" file type.

Unlike CP/M-80, CP/M-86 does not use absolute locations for
system entry or default variables. The BDOS entry takes place
through a reserved software interrupt, while entry to the BIOS is
provided by a new BDOS call. Two variables maintained in low memory
under CP/M-80, the default disk number and I/0 Byte, are placed in
the CCP and BIOS, respectively. Dependence upon absolute addresses
is minimized in CP/M-86 by maintaining initial "base page" values,
such as the default FCB and default command buffer, in the transient
program data area.

Utility programs such as ED, PIP, STAT and SUBMIT operate in
the same manner under CP/M-86 and CP/M-80, In its operation, DDT-86
resembles DDT supplied with CP/M-80. It allows interactive
debugging of 8086 and 8088 machine code. Similarly, ASM-86 allows
assembly language programming and development for the 8086 and 8088
using Intel-like mnemonics.

CP/M-86 System Guide 1.1 CP/M~-86 General Characteristics

The GENCMD (Generate CMD) utility replaces the LOAD program of
CP/M-80, and converts the hex files produced by ASM-86 or Intel
utilities into memory image format suitable for execution under
CP/M-86. Further, the LDCOPY (Loader Copy) program replaces SYSGEN,
and is used to copy the cold start loader from a system disk for
replication. In addition, a variation of GENCMD, called LMCMD,
converts output from the Intel LOC86 utility into CMD format.
Finally, GENDEF (Generate DISKDEF) is provided as an aid in
producing custom disk parameter tables. ASM-86, GENCMD, LMCMD, and
GENDEF are also supplied in "COM" file format for cross-development
under CP/M-80.

Several terms used throughout this manual are defined in Table
1-1 below:

Table 1-1. CP/M-86 Terms
Term Meaning
Wibble 4-bit half-byte
Byte 8-bit wvalue
Word 16-bit value

Double word
Paragraph

Paragraph Boundary

Segment
Segment Register

Offset

Group

Address

32-bit value
16 contiguous bytes

An address divisible evenly
by 16 (low order nibble 0)

Up to 64K contiguous bytes

One of CS, DS, ES, or SS
1l6-bit displacement from a

segment register

A segment-register-relative
relocatable program unit

The effective memory address
derived from the composition
of a segment register value
with an offset value

A group consists of segments that are loaded into memory as a single
unit. Since a group may consist of more than 64K bytes, it is the
responsibility of the application program to manage segment
registers when code or data beyond the first 64K segment is
accessed.

CP/M-86 System Guide 1.1 CP/M-86 General Characteristics

CP/M-86 supports eight program groups: the code, data, stack
and extra groups as well as four auxiliary groups. When a code,
data, stack or extra group is loaded, CP/M-86 sets the respective
segment register (CS, DS, SS or ES) to the base of the group. CP/M-
86 can also load four auxiliary groups. A transient program manages
the location of the auxiliary groups using values stored by CP/M-86
in the user”s base page.

1.2 cpP/M-80 and CP/M-86 Differences

The structure of CP/M-86 is as close to CP/M-80 as possible in
order to provide a familiar programming environment which allows
application programs to be transported to the 8086 and 8088
processors with minimum effort. This section points out the
specific differences between CP/M-80 and CP/M-86 in order to reduce
your time in scanning this manual if you are already familiar with
CP/M-80. The terms and concepts presented in this section are
explained in detail throughout this manual, so you will need to
refer to the Table of Contents to find relevant sections which
provide specific definitions and information.

Due to the nature of the 8086 processor, the fundamental
difference between CP/M-80 and CP/M-86 is found in the management of
the various relocatable groups. Although CP/M-80 references
absolute memory locations by necessity, CP/M-86 takes advantage of
the static relocation inherent in the 8086 processor. The operating
system itself is usually loaded directly above the interrupt
locations, at location 0400H, and relocatable transient programs
load in the best fit memory region. However, you can load CP/M-86
into any portion of memory without changing the operating system
(thus, there is no MOVCPM utility with CP/M-86), and transient
programs will load and run in any non-reserved region.

Three general memory models are presented below, but if you are
converting 8080 programs to CP/M-86, you can use either the 8080
Model or Small Model and leave the Compact Model for later when your
addressing needs increase. You”ll use GENCMD, described in Section
3.2, to produce an executable program file from a hex file. GENCMD
parameters allow you to specify which memory model your program
requires.

CP/M-86 itself is constructed as an 8080 Model. This means
that all the segment registers are placed at the base of CP/M-86,
and your customized BIOS is identical, in most respects, to that of
CP/M-80 (with changes in instruction mnemonics, of course). 1In
fact, the only additions are found in the SETDMAB, GETSEGB, SETIOB,
and GETIOB entry points in the BIOS. Your warm start subroutine is
simpler since you are not required to reload the CCP and BDOS under
CP/M-86. One other point: if you implement the IOBYTE facility,
you”ll have to define the variable in your BIOS. Taking these
changes into account, you need only perform a simple translation of
your CP/M-80 BIOS into 8086 code in order to implement your 8086
BIOS.

CP/M-86 System Guide 1.2 CP/M-80 and CP/M-86 Differences

If you"ve implemented CP/M-80 Version 2, you already have disk
definition tables which will operate properly with CP/M-86. You may
wish to attach different disk drives, or experiment with sector skew
factors to increase performance. If so, you can use the new GENDEF
utility which performs the same function as the DISKDEF macro used
by MAC under CP/M-80. You“ll find, however, that GENDEF provides
you with more information and checks error conditions better than
the DISKDEF macro.

Although generating a CP/M-86 system is generally easier than
generating a CP/M-80 system, complications arise if you are using
single-density floppy disks. CP/M-86 is too large to fit in the
two-track system area of a single-density disk, so the bootstrap
operation must perform two steps to load CP/M-86: first the
bootstrap must load the cold start loader, then the cold start
loader loads CP/M~86 from a system file. The cold start loader
includes a LDBIOS which is identical to your CP/M-86 BIOS with the
exception of the INIT entry point. You can simplify the LDBIOS if
you wish because the loader need not write to the disk. If you have
a double-density disk or reserve enough tracks on a single-density
disk, you can load CP/M-86 without a two-step boot.

To make a BDOS system call, use the reserved software interrupt
#244, The jump to the BDOS at location 0005 found in CP/M-80 is not
present in CP/M-86. However, the address field at offset 0006 is
present so that programs which "size" available memory using this
word value will operate without change. CP/M-80 BDOS functions use
certain 8080 registers for entry parameters and returned values.
CP/M-86 BDOS functions use a table of corresponding 8086 registers.
For example, the 8086 registers CH and CL correspond to the 8080
registers B and C. Look through the list of BDOS function numbers
in Table 4-2. and you”ll find that functions 0, 27, and 31 have
changed slightly. Several new functions have been added, but they
do not affect existing programs.

One major philosophical difference is that in CP/M-80, all
addresses sent to the BDOS are simply 16-bit values in the range
0000H to OFFFFH. In CP/M-86, however, the addresses are really just
16-bit offsets from the DS (Data Segment) register which is set to
the base of your data area. If you translate an existing CP/M-80
program to the CP/M-86 environment, your data segment will be less
than 64K bytes. 1In this case, the DS register need not be changed
following initial load, and thus all CP/M-80 addresses become simple
DS-relative offsets in CP/M-86.

Under CP/M-80, programs terminate in one of three ways: by
returning directly to the CCP, by calling BDOS function 0, or by
transferring control to absolute location 0000H. CP/M-86, however,
supports only the first two methods of program termination. This
has the side effect of not providing the automatic disk system reset
following the jump to 0000H which, instead, is accomplished by
entering a CONTROL-C at the CCP level.

CP/M-86 System Guide 1.2 CP/M-80 and CP/M-86 Differences

You'll f£ind many new facilities in CP/M-86 that will simplify
your programming and expand your application programming capability.
But, we've designed CP/M-86 to make it easy to get started: in
short, if you are converting from CP/M-80 to CP/M-86, there will be
no major changes beyond the translation to 8086 machine code.
Further, programs you design for CP/M-86 are upward compatible with
MP/M-86™ , our multitasking operating system, as well as CP/NET-86
which provides a distributed operating system in a network
environment.

Section 2
Command Setup and Execution Under CP/M-86

This section discusses the operation of the Console Command
Processor (CCP), the format of transient programs, CP/M-86 memory
models, and memory image formats.

2.1 CCP Built-in and Transient Commands

The operation of the CP/M-86 CCP is similar to that of CP/M-80.
Upon initial cold start, the CP/M sign-on message is printed, drive
A is automatically logged in, and the standard prompt is issued at
the console. CP/M-86 then waits for input command lines from the
console, which may include one of the built-in commands

DIR ERA REN TYPE USER

(note that SAVE is not supported under CP/M-86 since the equivalent
function is performed by DDT-86).

Alternatively, the command line may begin with the name of a
transient program with the assumed file type "CMD" denoting a
"command file." The CMD file type differentiates transient command
files used under CP/M-86 from COM files which operate under CP/M-80.

The CCP allows multiple programs to reside in memory, providing
facilities for background tasks. A transient program such as a
debugger may load additional programs for execution under its own
control. Thus, for example, a background printer spooler could
first be loaded, followed by an execution of DDT-86. DDT-86 may, in
turn, load a test program for a debugging session and transfer
control to the test program between breakpoints. CP/M-86 keeps
account of the order in which programs are loaded and, upon
encountering a CONTROL-C, discontinues execution of the most recent
program activated at the CCP level. A CONTROL-C at the DDT-86
command level aborts DDT-86 and its test program. A second CONTROL-
C at the CCP level aborts the background printer spooler. A third
CONTROL-C resets the disk system. Note that program abort due to
CONTROL-C does not reset the disk system, as is the case in CP/M-80.
A disk reset does not occur unless the CONTROL-C occurs at the CCP
command input level with no programs residing in memory.

When CP/M-86 receives a request to load a transient program
from the CCP or another transient program, it checks the program”s
memory requirements. If sufficient memory is available, CP/M-86
assigns the required amount of memory to the program and loads the
program. Once loaded, the program can request additional memory
from the BDOS for buffer space. When the program is terminated,
CP/M-86 frees both the program memory area and any additional buffer
space.

CP/M-86 System Guide 2.2 Transient Program Execution Models

2.2 Transient Program Execution Models

The initial values of the segment registers are determined by
one of three "memory models"” used by the transient program, and
described in the CMD file header. The three memory models are
summarized in Table 2-1 below.

Table 2-1. CP/M-86 Memory Models

Model Group Relationships
8080 Model Code and Data Groups Overlap
Small Model Independent Code and Data Groups

Compact Model Three or More Independent Groups

The 8080 Model supports programs which are directly translated
from CP/M-80 when code and data areas are intermixed. The 8080
model consists of one group which contains all the code, data, and
stack areas. Segment registers are initialized to the starting
address of the region containing this group. The segment registers
can, however, be managed by the application program during execution
so that multiple segments within the code group can be addressed.

The Small Model is similar to that defined by Intel, where the
program consists of an independent code group and a data group. The
Small Model is suitable for use by programs taken from CP/M-80 where
code and data is easily separated. Note again that the code and
data groups often consist of, but are not restricted to, single 64K
byte segments.

The Compact Model occurs when any of the extra, stack, or
auxiliary groups are present in program. Each group may consist of
one or more segments, but if any group exceeds one segment in size,
or if auxiliary groups are present, then the application program
must manage its own segment registers during execution in order to
address all code and data areas.

The three models differ primarily in the manner in which
segment registers are initialized upon transient program loading.
The operating system program load function determines the memory
model used by a transient program by examining the program group
usage, as described in the following sections.

CP/M-86 System Guide 2.3 The 8080 Memory Model

2.3 The 8080 Memory Model

The 8080 Model is assumed when the transient program contains
only a code group. In this case, the CS, DS, and ES registers are
initialized to the beginning of the code group, while the SS and SP
registers remain set to a 96-byte stack area in the CCP. The
Instruction Pointer Register (IP) is set to 100H, similar to CP/M-
80, thus allowing base-page values at the beginning of the code
group. Following program load, the 8080 Model appears as shown in
Figure 2-1, where low addresses are shown at the top of the diagram:

SS:
cce

SS + SP: CCP Stack

CS DS ES:
DS+0000H: base
page

CS+0100H: IP = 0100H
code

data

code

data

Figure 2-1. CP/M-86 8080 Memory Model

The intermixed code and data regions are indistinguishable. The
"base page" values, described below, are identical to CP/M-80,
allowing simple translation from 8080, 8085, or Z80 code into the
8086 and 8088 environment. The following ASM-86 example shows how
to code an 8080 model transient program.

eseg
org 100h
. (code)
endcs equ $
dseg
org offset endcs
. (data)
end

CP/M-86 System Guide 2.4 The Small Memory Model

2.4 The Small Memory Model

The Small Model is assumed when the transient program contains
both a code and data group. (In ASM-86, all code is generated
following a CSEG directive, while data is defined following a DSEG
directive with the origin of the data segment independent of the
code segment.) In this model, CS is set to the beginning of the
code group, the DS and ES are set to the start of the data group,
and the S5 and SP registers remain in the CCP”s stack area as shown
in Figure 2-2,

SS:
CCp

SS + SPp: CCP Stack

Cs: IP = 0000H

code
DS ES: base
page

NS+0100H:
data

¥Figure 2-2. CP/M-86 Small Memory Model

The machine code begins at CS+0000H, the "base page" values begin at
DS+0000H, and the data area starts at DS+0100H. The following ASM-
86 example shows how to code a small model transient program.

cseqg
. (code)
dseg
org 100h
. (data)
end

10

CP/M-86 System Guide 2.5 The Compact Memory Model

2.5 The Compact Memory Model

The Compact Model is assumed when code and data groups are
present, along with one or more of the remaining stack, extra, or
auxiliary groups. In this case, the CS, DS, and ES registers are
set to the base addresses of their respective areas. Figure 2-3
shows the initial configuration of segment registers in the Compact
Model. The values of the various segment registers can be
programmatically changed during execution by loading from the
initial values placed in base page by the CCP, thus allowing access
to the entire memory space.

If the transient program intends to use the stack group as a
stack area, the SS and SP registers must be set upon entry. The SS
and SP registers remain in the CCP area, even if a stack group is
defined. Although it may appear that the SS and SP registers should
be set to address the stack group, there are two contradictions.
First, the transient program may be using the stack group as a data
area. In that case, the Far Call instruction used by the CCP to
transfer control to the transient program could overwrite data in
the stack area. Second, the SS register would logically be set to
the base of the group, while the SP would be set to the offset of
the end of the group. However, if the stack group exceeds 64K the
address range from the base to the end of the group exceeds a 16-bit
offset value.

The following ASM-86 example shows how to code a compact model
transient program.

cseg

. (code)

dseg

org 100h

. (data)

eseg

. (more data)
sseg

. (stack area)
end

11

CP/M-86 System Guide

SS:

SS + SP:

DS:

DS+0100H:

ES:

cCp

CCP Stack

1P

= 0000H

code

base
page

data

data

The Compact Memory Model

Figure 2-3. CP/M-86 Compact Memory Model

12

CP/M-86 System Guide 2.6 Base Page Initialization

2.6 Base Page Initialization

Similar to CP/M-80, the CP/M-86 base page contains default
values and locations initialized by the CCP and used by the
transient program. The base page occupies the regions from offset
0000H through 00FFH relative to the DS register. The values in the
base page for CP/M-86 include those of CP/M-80, and appear in the
same relative vositions, as shown in Figure 2-4.

pS + 0000: |rco | Lcl | rc2

pS + 0003: |Bco | Bc1 | M80

DS + 0006: LDO LDl LD2

DS + 0009: BDO BDl XXX

DS + 000C: LEO LEl LE2

DS + 000F: BEO BE1l XXX

DS + 0012: LSO LSl LS2

DS + 0015: BSO BS1 XXX

DS + 0018: LX0 LX1 LX2

DS + 001B: BXO BX1 XXX

DS + 001E: LX0 LX1 LX2

DS + 0021: BX0 BX1 XXX

DS + 0024: LX0 LX1 LX2

DS + 0027: BXO0 BX1 XXX

'pS 4+ 002A: |rx0 | nxi | nx2

DS + 002D: BX0 BX1 XXX

DS + 0030: Not

e o Currently
DS + 005B: Used
DS + 005C: Default FCB

DS + 0080: Default Buffer

DS + 0100: Begin User Data

Figure 2-4. CP/M-86 Base Page Values

13

CP/M-86 System Guide 2.6 Base Page Initialization

Each byte is indexed by 0, 1, and 2, corresponding to the standard
Intel storage convention of low, middle, and high-order (most
significant) byte. "xxx" in Figure 2-4 marks unused bytes. LC is
the last code group location (24-bits, where the 4 high-order bits
equal zero).

In the 8080 Model, the low order bytes of LC (LCO and LCl)
never exceed OFFFFH and the high order byte (LC2) is always zero.
BC is base paragraph address of the code group (16-bits). LD and BD
provide the last position and paragraph base of the data group. The
last position is one byte less than the group length. It should be
noted that bytes LDO0 and LDl appear in the same relative positions
of the base page in both CP/M-80 and CP/M-86, thus easing the
program translation task. The M80 byte is equal to 1 when the 8080
Memory Model is in use. LE and BE provide the length and paragraph
base of the optional extra group, while LS and BS give the optional
stack group length and base. The bytes marked LX and BX correspond
to a set of four optional independent groups which may be required
for programs which execute using the Compact Memory Model. The
initial values for these descriptors are derived from the header
record in the memory image file, described in the following section.

2.7 Transient Program Load and Exit

Similar to CP/M-80, the CCP parses up to two filenames
following the command and places the properly formatted FCB”s at
locations 005CH and 006CH in the base page relative to the DS
register. Under CP/M-80, the default DMA address is initialized to
0080H in the base page. Due to the segmented memory of the 8086 and
8088 processors, the DMA address is divided into two parts: the DMA
segment address and the DMA offset. Therefore, under CP/M-86, the
default DMA base is initialized to the value of DS, and the default
DMA offset is initialized to O0080H. Thus, CP/M-80 and CP/M-86
operate in the same way: both assume the default DMA buffer
occupies the second half of the base page.

The CCP transfers control to the transient program through an
8086 "Far Call." The transient program may choose to use the 96-byte
CCP stack and optionally return directly to the CCP upon program
termination by executing a "Far Return." Program termination also
occurs when BDOS function zero is executed. Note that function zero
can terminate a program without removing the program from memory or
changing the memory allocation state (see Section 4.2). The
operator may terminate program execution by typing a single CONTROL-
C during line edited input which has the same effect as the program
executing BDOS function zero. Unlike the operation of CP/M-80, no
disk reset occurs and the CCP and BDOS modules are not reloaded from
disk upon program termination.

14

Section 3
Command (CMD) File Generation

As mentioned previously, two utility programs are provided with
CP/M-86, called GENCMD and LMCMD, which are used to produce CMD
memory image files suitable for execution under CP/M-86. GENCMD
accepts Intel 8086 "hex" format files as input, while LMCMD reads
Intel L-module files output from the standard Intel LOC86 Object
Code Locator utility. GENCMD is used to process output from the
Digital Research ASM-86 assembler and Intel”s OH86 utility, while
LMCMD is used when Intel compatible developmental software is
available for generation of programs targeted for CP/M-86 operation.

3.1 1Intel 8086 Hex File Format

GENCMD input is in Intel "hex" format produced by both the
Digital Research ASM-86 assembler and the standard Intel OH86
utility program (see Intel document #9800639-03 entitled "MCS-86
Software Development Utitities Operating Instructions for ISIS-II
Users"). The CMD file produced by GENCMD contains a header record
which defines the memory model and memory size requirements for
loading and executing the CMD file.

An Intel "hex" file consists of the traditional sequence of
ASCII records in the following format:

where the beginning of the record is marked by an ASCII colon, and
each subsequent digit position contains an ASCII hexadecimal digit
in the range 0-9 or A-F. The fields are defined in Table 3-1.

15

CP/M~86 System Guide 3.1 1Intel Hex File Format

Table 3-1. 1Intel Hex Field Definitions

Field Contenté

11 Record Length 00-FF (0-255 in decimal)
aaaa Load Address

tt Record Type:

00 data record, loaded starting at offset
aaaa from current base paragraph

01 end of file, cc = FF

02 extended address, aaaa is paragraph
base for subsequent data records

03 start address is aaaa (ignored, IP set
according to memory model in use)

The following are output from ASM-86 only:

81 same as 00, data belongs to code segment

82 same as 00, data belongs to data segment

83 same as 00, data belongs to stack segment

84 same as 00, data belongs to extra segment

85 paragraph address for absolute code segment
86 paragraph address for absolute data segment
87 paragraph address for absolute stack segment
88 paragraph address for absolute extra segment

4 Data Byte

cec Check Sum (00 -~ Sum of Previous Digits)

All characters preceding the colon for each record are ignored.
(Additional hex file format information is included in the ASM-86
User”s Guide, and in Intel”s document #9800821A entitled "MCS-86
Absolute Object File Formats.")

3.2 Operation of GENCMD
The GENCMD utility is invoked at the CCP level by typing
GENCMD filename parameter-list

where the filename corresponds to the hex input file with am assumed
(and unspecified) file type of H86. GENCMD accepts optional
parameters to specifically identify the 8080 Memory Model and tc
describe memory requirements of each segment group. The GENCMD
parameters are listed following the filename, as shown in the
command line above where the parameter-list consists of a sequence
of keywords and values separated by commas or blanks. The keywords
are:

8080 CODE DATA EXTRA STACK X1 X2 X3 X4

16

CP/M-86 System Guide 3.2 Operation of GENCMD

The 8080 keyword forces a single code group so that the BDOS load
function sets up the 8080 Memory Model for execution, thus allowing
intermixed code and data within a single segment. The form of this
command is

GENCMD filename 8080

The remaining keywords follow the filename or the 8080 option and
define specific memory requirements for each segment group,
corresponding one-~to-one with the segment groups defined in the
previous section. 1In each case, the values corresponding to each
group are enclosed in square brackets and separated by commas. Each
value is a hexadecimal number representing a paragraph address or
segment length in paragraph units denoted by hhhh, prefixed by a
single letter which defines the meaning of each value:

Ahhhh Load the group at absolute location hhhh

Bhhhh The group starts at hhhh in the hex file

Mhhhh The group requires a minimum of hhhh * 16 bytes
Xhhhh The group can address a maximum of hhhh * 16 bytes

Generally, the CMD file header values are derived directly from the
hex file and the parameters shown above need not be included. The
following situations, however, require the use of GENCMD parameters.

® The 8080 keyword is included whenever ASM-86 is used in
the conversion of 8080 programs to the 8086/8088
environment when code and data are intermixed within a
single 64K segment, regardless of the use of CSEG and
DSEG directives in the source program.

® An absolute address (A value) must be given for any group
which must be located at an absolute location. Normally,
this wvalue is not specified since CP/M-86 cannot
generally ensure that the required memory region is
available, in which case the CMD file cannot be loaded.

® The B value is used when GENCMD processes a hex file
produced by Intel”s OH86, or similar utility program that
contains more than one group. The output from OH86
consists of a sequence of data records with no
information to identify code, data, extra, stack, or
auxiliary groups. 1In this case, the B value marks the
beginning address of the group named by the keyword,
causing GENCMD to load data following this address to the
named group (see the examples below). Thus, the B value
is normally used to mark the boundary between code and
data segments when no segment information is included in
the hex file. Files produced by ASM-86 do not require
the use of the B value since segment information is
included in the hex file.

17

CP/M~-86 System Guide 3.2 Operation of GENCMD

® The minimum memory value (M value) is included only when
the hex records do not define the minimum memory
requirements for the named group. Generally, the code
group size is determined precisely by the data records
loaded into the area. That is, the total space required
for the group is defined by the range between the lowest
and highest data byte addresses. The data group,
however, may contain uninitialized storage at the end of
the group and thus no data records are present in the hex
file which define the highest referenced data item. The
highest address in the data group can be defined within
the source program by including a "DB 0" as the last data
item. Alternatively, the M value can be included' to
allocate the additional space at the end of the group.
Similarly, the stack, extra, and auxiliary group sizes
must be defined using the M value unless the highest
addresses within the groups are implicitly defined by
data records in the hex file.

® The maximum memory size, given by the X value, is
generally used when additional free memory may be needed
for such purposes as I/O buffers or symbol tables. If
the data area size is fixed, then the X parameter need
not be included. 1In this case, the X value is assumed to
be the same as the M value. The value XFFFF allocates
the largest memory region available but, if used, the
transient program must be aware that a three-byte length
field is produced in the base page for this group where
the high order byte may be non-zero. Programs converted
directly from CP/M-80 or programs that use a 2-byte
pointer to address buffers should restrict this value to
XFFF or less, producing a maximum allocation length of
OFFFOH bytes.

The following GENCMD command line transforms the file X.H86
into the file X.CMD with the proper header record:

gencmd x code[a40] datalm30,x£ff]
In this case, the code group is forced to paragraph address 40H, or

equivalently, byte address 400H. The data group requires a minimum
of 300H bytes, but can use up to OFFFOH bytes, if available.

18

CP/M-86 System Guide 3.2 Operation of GENCMD

Assuming a file Y.H86 exists on drive B containing Intel hex
records with no interspersed segment information, the command

gencmd b:y data[b30,m20] extra(b50] stack[m40] x1[m40]

produces the file Y.CMD on drive B by selecting records beginning
at address 0000H for the code segment, with records starting at
300H allocated to the data segment. The extra segment is filled
from records beginning at 500H, while the stack and auxiliary
segment #1 are uninitialized areas requiring a minimum of 400H
bytes each. 1In this example, the data area requires a minimum of
200H bytes. Note again, that the B value need not be included if
the Digital Research ASM-86 assembler is used.

3.3 oOperation of LMCMD

The LMCMD utility operates in exactly the same manner as
GENCMD, with the exception that LMCMD accepts an Intel L-module
file as input. The primary advantage of the L-module format is
that the file contains internally coded information which defines
values which would otherwise be required as parameters to GENCMD,
such the beginning address of the group”s data segment. Currently,
however, the only language processors which use this format are the
standard Intel development packages, although various independent
vendors will, most likely, take advantage of this format in the
future.

19

CP/M-86 System Guide 3.4 Command (CMD) File Format

3.4 Command (CMD) File Format

The CMD file produced by GENCMD and LMCMD consists of the
128-byte header record followed immediately by the memory image.
Under normal circumstances, the format of the header record is of
no consequence to a programmer. For completeness, however, the
various fields of this record are shown in Figure 3-1.

-+] 28 Byteg =i

GD#1|GD#2 |GD#3 |GD#4 |GD#5-GD#8. . .

Code,
Data,
Extra,
Stack,
Auxiliary

Figure 3-1. CMD File Header Format

In Figure 3-1, GD#2 through GD#8 represent "Group Descriptors."
Each Group Descriptor corresponds to an independently loaded
program unit and has the following fields:

8-bit 16-bit 16-bit 16-bit 16-bit

G-Form | G-Length A-Base G-Min G-Max

where G-Form describes the group format, or has the value zero if
no more descriptors follow. If G-Form is non-zero, then the 8-bit
value is parsed as two fields:

G-Form:
4-bit 4-bit

rx X X xg] G—Typé]

The G-Type field determines the Group Descriptor type. The valid

Group Descriptors have a G-Type in the range 1 through 9, as shown
in Table 3-2 below.

20

CpP/M-86 System Guide 3.4 Command (CMD) File Format

Table 3-2. Group Descriptors

G-Type Group Type

Code Group
Data Group
Extra Group
Stack Group
Auxiliary Group #1
Auxiliary Group #2
Auxiliary Group #3
Auxiliary Group #4
Shared Code Group

14 Unused, but Reserved
Escape Code for Additional Types

[
o
U] OO UT&WN

=

All remaining values in the group descriptor are given in
increments of 16-byte paragraph units with an assumed low-order 0
nibble to complete the 20-bit address. G-Length gives the number
of paragraphs in the group. Given a G-length of 0080H, for
example, the size of the group is 00800H = 2048D bytes. A-Base
defines the base paragraph address for a non-relocatable group
while G-Min and G-Max define the minimum and maximum size of the
memory area to allocate to the group. G-Type 9 marks a "pure" code
group for use under MP/M-86 and future versions of CP/M-86.
Presently a Shared Code Group is treated as a non-shared Program
Code Group under CP/M-86.

The memory model described by a header record is implicitly
determined by the Group Descriptors. The 8080 Memory Model is
assumed when only a code group is present, since no independent
data group is named. The Small Model is implied when both a code
and data group are present, but no additional group descriptors
occur. Otherwise, the Compact Model is assumed when the CMD file
is loaded.

21

Section 4
Basic Disk Operating System Functions

This section presents the interface conventions which allow
transient program access to CP/M-86 BDOS and BIOS functions. The
BDOS calls correspond closely to CP/M-80 Version 2 in order to
simplify translation of existing CP/M-80 programs for operation
under CP/M-86. BDOS entry and exit conditions are described first,
followed by a presentation of the individual BDOS function calls.

4.1 BDOS Parameters and Function Codes

Entry to the BDOS is accomplished through the 8086 software
interrupt #224, which is reserved by Intel Corporation for use by
CP/M-86 and MP/M-86. The function code is passed in register CL
with byte parameters in DL and word parameters in DX. Single byte
values are returned in AL, word values in both AX and BX, and double
word values in ES and BX. All segment registers, except ES, are
saved upon entry and restored upon exit from the BDOS (corresponding
to PL/M-86 conventions). Table 4-1 summarizes input and output
parameter passing:

Table 4-1. BDOS Parameter Summary

BDOS Entry Registers | BDOS Return Registers
CL Function Code Byte value returned in AL
DL Byte Parameter Word value returned in both AX and BX
DX Word Parameter Double-word value returned with
DS Data Segment offset in BX and
segment in ES

Note that the CP/M-80 BDOS requires an "information address" as
input to various functions. This address usually provides buffer or
File Control Block information used in the system call. In CP/M-86,
however, the information address is derived from the current DS
register combined with the offset given in the DX register. That
is, the DX register in CP/M-86 performs the same function as the DE
pair in CP/M-80, with the assumption that DS is properly set. This
poses no particular problem for programs which use only a single
data segment (as is the case for programs converted from CP/M-80),
but when the data group exceeds a single segment, you must ensure
that the DS register is set to the segment containing the data area
related to the call. It should also be noted that zero. values are
returned for function calls which are out-of-range.

23

CP/M-86 System Guide

4.1 BDOS Parameters and Function Codes

A list of CP/M-86 calls is given in Table 4-2 with an asterisk
following functions which differ from or are added to the set of

CP/M-80 Version 2 functions.

Table 4-2, CP/M-86 BDOS Functions
F# Result F# Result
0* System Reset 24 Return Login Vector
1 Console Input 25 Return Current Disk
2 Console Output 26 Set DMA Address
3 Reader Input 27* Get Addr(Alloc)
4 Punch Output 28 Write Protect Disk
5 List Output 29 Get Addr (R/0O Vector)
6* Direct Console I/0 30 Set File Attributes
7 Get I/0 Byte 31* Get Addr(Disk Parms)
8 Set I/O Byte 32 Set/Get User Code
9 Print String 33 Read Random
10 Read Console Buffer 34 Write Random
11 Get Console Status 35 Compute File Size
12 Return Version Number 36 Set Random Record
13 Reset Disk System 37* Reset drive
14 Select Disk 40 Write Random with Zero Fill
15 Open File 50* Direct BIOS Call
16 Close File 51* Set DMA Segment Base
17 Search for First 52* Get NMA Segment Base
18 Search for Next 53* Get Max Memory Available
19 Delete File 54* Get Max Mem at Abs Location
20 Read Sequential 55* Get Memory Region
21 Write Sequential 56* Get Absolute Memory Region
22 Make File 57* Free memorvy region
23 Rename File 58* Free all memory
59* Program load

The individual BDOS functions are -described below in three

sections which cover the simple functions,

file operations, and

extended operations for memory management and program loading.

24

CP/M-86 System Guide 4.2 Simple BDOS Calls

4.2 Simple BDOS Calls

The first set of BDOS functions cover the range 0 through 12,
and perform simple functions such as system reset and single
character I1/0.

Entry _ . Return _
CL: 00H FUNCTION O
DL: Abort SYSTEM RESET

Code

The system reset function returns control to the CP/M operating
system at the CCP command level. The .abort code in DL has two
possible values: if DL = 00H then the currently active program is
terminated and control is returned to the CCP. 1If DL is a 01lH, the
program remains in memory and the memory allocation state remains
unchanged.

Entry) Return

CL: OlH FUNCTION 1 AL: ASCII Character

CONSOLE INPUT

The console input function reads the next character from the
logical console device (CONSOLE) to register AL. Graphic
characters, along with carriagé return, line feed, and backspace
(CONTROL-H) are echoed to the console. Tab characters (CONTROL-I)
are expanded in columns of eight characters. The BDOS does not
return to the calling program until a character has been typed, thus
suspending execution if a character is not ready.

Entry Return
CL: 02H FUNCTION 2
DL: ASCII CONSOLE OUTPUT
Character

The ASCII character from DL is sent to the logical console.
Tab characters expand in columns of eight characters. 1In addition,
a check is made for start/stop scroll (CONTROL-S).

25

CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry

Return

CL: O03H FUNCTION 3 AL: ASCII Character

READER INPUT

The Reader Input function reads the next character from the
logical reader (READER) into register AL. Control does not return
until the character has been read.

Entry Return
CL: 04H FUNCTION 4
DL: ASCII PUNCH OUTPUT

Character

The Punch Output function sends the character from register DL
to the logical punch device (PUNCH).

Entry Return
CL: O5H FUNCTION 5
DL: ASCII LIST OUTPUT
Character

The List Output function sends the ASCII character in register
DL to the logical list device (LIST).

26

CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry . Return
CL: 06H - FUNCTION 6 AL: char or status
DL: OFFH (input) | [DIRECT CONSOLE I/0 (no value)

or
OFEH (status)
or

char (output)

Direct console I/0 is supported under CP/M-86 for those
specialized applications where unadorned console input and output is
required. Use of this function should, in general, be avoided since
it bypasses all of CP/M-86's normal control character functions
(e.g., CONTROL-S and CONTROL-P). Programs which perform direct I/0
through the BIOS under previous releases of CP/M-80, however, should
be changed to use direct I/0O under the BDOS so that they can be
fully supported under future releases of MP/M™ and CP/M.

Upon entry to function 6, register DL either contains (1) a
hexadecimal FF, denoting a CONSOLE input request, or (2) a
hexadecimal FE, denoting a CONSOLE status request, or (3) an ASCII
character to be output to CONSOLE where CONSOLE is the logical
console device. If the input value is FF, then function 6 directly
calls the BIOS console input primitive. The next console input
character is returned in AL. If the input value is FE, then function
6 returns AL = 00 if no character is ready and AL = FF otherwise.
If the input value in DL is not FE or FF, then function 6 assumes
that DL contains a valid ASCII character which is sent to the
console,

Entry Return
—————eee D E——
CL: 07H FUNCTION 7 AL: I/0 Byte Value

GET I/O BYTE

The Get I/0 Byte function returns the current value of IOBYTE
in register AL. The IOBYTE contains the current assignments for the
logical devices CONSOLE, READER, PUNCH, and LIST provided the IOBYTE
facility is implemented in the BIOS.

27

CP/M-86 System Guide

Entry
—————————————

CL: 08H

DL: I/O Byte
Value

FUNCTION 8
SET 1/0 BYTE

4.2 Simple BDOS Calls

Return

The Set I/0 Byte function changes the system IOBYTE value to

that given in register DL.

This function allows transient program

access to the IOBYTE in order to modify the current assignments for
the logical devices CONSOLE, READER, PUNCH, and LIST.

Entry

Return

CL: 09H

DX: String
Offset

FUNCTION 9

PRINT STRING

The Print String function sends the character string stored in
memory at the location given by DX to the logical console device

(CONSOLE), until a

"$n

is encountered in the string.

Tabs are

expanded as in function 2, and checks are made for start/stop scroll

and printer echo.

Entry Return
CL: OAH FUNCTION 10 Console Characters
DX: Buffer READ CONSOLE BUFFER in Buffer
Offset

28

CP/M-86 System Guide 4.2 Simple BDOS Calls

The Read Buffer function reads a line of edited console input into a
buffer addressed by register DX from the logical console device
(CONSOLE) . Console input is terminated when either the input buffer
is filled or when a return (CONTROL-M) or a line feed (CONTROL-J)
character is entered. The input buffer addressed by DX takes the
form:

DX: +0 +1 +2 +3 +4 +5 +6 +7 +8 « o . +n

mx| nc| el c2|c3 c4|c5 c6|c7 PP ?2?

where "mx" is the maximum number of characters which the buffer will
hold, and "nc" is the number of characters placed in the buffer.
The characters entered by the operator follow the "nc" value. The
value "mx" must be set prior to making a function 10 call and may
range in value from 1 to 255. Setting mx to zero is equivalent to
setting mx to one. The value "nc" is returned to the user and may
range from 0 to mx.- If nc < mx, then uninitialized positions follow
the last character, denoted by "??" in the above figure. Note that
a terminating return or line feed character is not placed in the
buffer and not included in the count "nc".

A number of editing control functions are supported during
console input under function 10. These are summarized in Table 4-3.

Table 4-3. Line Editing Controls

Keystroke Result

rub/del removes and echoes the last character
CONTROL-C reboots when at the beginning of line
CONTROL-E causes physical end of line

CONTROL~-H backspaces one character position
CONTROL-J (line feed) terminates input line
CONTROL-M (return) terminates input line
CONTROL-R retypes the current line after new line
CONTROL-U removes current line after new line
CONTROL-X backspaces to beginning of current line

Certain functions which return the carriage to the leftmost position
(e.g., CONTRO