
Concurrent CP /M-86™
Operating System '

Programmer's Utilities Guide

[!ill
DIGITAL

RESfARCHTM

Concurrent CP /M-86 ™
Operating System

Programmer's Utilities Guide

COPYRIGHT

Copyright © 1983 by Digital Research. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579, Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Further, Digital Research reserves the right to revise this publi­
cation and to make changes from time to time in the content hereof without obligation
of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. ASM-86, Concurrent CP/M-86,
DDT-86, and MAC are trademarks of Digital Research. Intel is a registered trademark
of Intel Corporation. MCS-86 is a trademark of Intel Corporation. Z80 is a registered
trademark of Zilog, Inc. IBM Personal Computer is a tradename of International
Business Machines.

The Concurrent CP/M-86 Programmer's Utilities Guide was prepared using the
Digital Research TEX Text Formatter and printed in the United States of America.

First Edition: March 1983

Foreword

The Concurrent CPIM-86™ Programmer's Utilities Guide documents the 8088 and
8086 assembly language instruction set, rules for use of the Digital Research ASM-86™
assembler, and rules for use of the Digital Research dynamic debugging tool, DDT -86 ™ .

Section 1 contains an introduction to the Digital Research assembler, ASM-86, and
the various options that can be used with it. Through one of these options, ASM-86 can
generate 8086 machine code in either Intel ® or Digital Research format. Appendix A
describes these formats.

Section 2 discusses the elements of ASM-86 assembly language. It defines the ASM-86
character set, constants, variables, identifiers, operators, expressions, and statements.

Section 3 describes the ASM-86 housekeeping functions, such as conditional assem­
bly, multiple source file inclusion, and control of the listing printout format.

Section 4 summarizes the 8086 instruction mnemonics accepted by ASM-86. These
mnemonics are the same as those used by the Intel assembler, except for four instructions:
the intrasegment short jump, intersegment jump, return, and call instructions. Appendix B
summarizes these differences.

Section 5 discusses the Code-macro facilities of ASM-86, including Code-macro
definition, specifiers, and modifiers, and nine special Code-macro directives. This infor­
mation is also summarized in Appendix G.

Section 6 discusses DDT-86, the Dynamic Debugging Tool that allows the user to
test- and debug programs in the 8086 environment. The section includes a sample
debugging section.

iii

Concurrent CP/M-86 is supported and documented through four manuals:

• The Concurrent CPIM-86 User's Guide documents the user's interface to Con­
current CP/M-86, explaining the various features used to execute applications
programs and Digital Research utility programs.

• The Concurrent CPIM-86 Programmer's Reference Guide documents the appli­
cations programmer's interface to Concurrent CP/M-86, explaining the internal
file structure and system entry points, information essential to create applications
programs that run in the Concurrent CP/M-86 environment.

• The Concurrent CPIM-86 Programmer's Utilities Guide documents the Digital
Research utility programs programmers use to write, debug, and verify applica­
tions programs written for the Concurrent CP/M-86 environment.

• The Concurrent CPIM-86 System Guide documents the internal, hardware­
dependent structures of Concurrent CP/M-86.

iv

T able of Contents

1 Introduction to ASM-S6

2

3

1.1 Assembler Operation
1.2 Optional Run-time Parameters
1.3 Ending ASM -86

Elements of ASM-S6 Assembly Language

2.1 ASM-S6 Character Set
2.2 Tokens and Separators
2.3 Delimiters · · .
2.4 Constants ·

2.4.1 Numeric Constants
2.4.2 Character Strings

2.5 Identifiers ·
2.5.1 Keywords .. · ..
2.5.2 Symbols and Their Attributes

2.6 Operators · · .
2.6.1 Operator Examples
2.6.2 Operator Precedence

2.7 Expressions
2.S Statements . ·

Assembler Directives

3.1 Introduction
3.2 Segment Start Directives .. .

3.2.1 The CSEG Directive
3.2.2 The DSEG Directive
3.2.3 The SSEG Directive
3.2.4 The ESEG Directive

3.3 The ORG Directive
3.4 The IF and END IF Directives
3.5 The INCLUDE Directive
3.6 The END Directive
3.7 The EQU Directive
3.S The DB Directive
3.9 The DW Directive
3.10 The DD Directive

v

.

.....
......

1-1
1-4
1-5

2-1
· . 2-1
· . 2-1

· 2-3
· . 2-3
· . 2-4

· 2-4
· . 2-5
· . 2-6
· . 2-8

2-12
2-14
2-16
2-16

· . 3-1
· 3-1
· 3-2

· . 3-2
· . 3-3

· 3-3
3-4

· . 3-4
.... 3-5

· 3-5
....... 3-5

3-6
· . 3-7

....... 3-S

Table of Contents (continued)

3.11 The RS Directive
3.12 The RB Directive
3.13 The RW Directive
3.14 The TITLE Directive
3.15 The PAGESIZE Directive
3.16 The PAGEWIDTH Directive
3.17 The EJECT Directive
3.18 The SIMFORM Directive .. .
3.19 The NO LIST and LIST Directives
3.20 The IFLIST and NOIFLIST Directives

4 The ASM-86 Instruction Set

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Introduction
Data Transfer Instructions
Arithmetic, Logical, and Shift Instructions
String Instructions
Control Transfer Instructions . . .
Processor Control Instructions
Mnemonic Differences

5 Code-macro Facilities

5.1 Introduction to Code-macros
5.2 Specifiers
5.3 Modifiers
5.4 Range Specifiers
5.5 Code-macro Directives

5.5.1 SEGFIX ..
5.5.2 NOSEGFIX . . .
5.5.3 MODRM
5.5.4 RELB and REL W
5.5.5 DB, DWand DD
5.5.6 DBIT

vi

· 3-8
... 3-9

.... 3-9
· 3-9
3-10

...... 3-10
. 3-10

3-10
3-11
3-11

.... 4-1
... 4-3

· . 4-5
4-10
4-12

..... 4-16
4-18

· 5-1
· . 5-2
· . 5-4
· . 5-4

5-5
· 5-5
· 5-5

· . 5-6
· 5-7
· 5-8

· . 5-8

Table of Contents (continued)

6 DDT-86

6.1 DDT-86 Operation 6-1

6.2

6.3
6.4
6.5

6.1.1 Starting DDT-86 · 6-1
6.1.2 DDT-86 Command Conventions · . 6-1
6.1.3 Specifying a 20-Bit Address .. . · . 6-3
6.1.4 Terminating DDT-86 6-3
6.1.5 DDT-86 Operation with Interrupts · 6-3
DDT-86 Commands
6.2.1 The A (Assemble) Command
6.2.2 The B (Block Compare) Command
6.2.3 The D (Display) Command
6.2.4 The E (Load for Execution) Command
6.2.5 The F (Fill) Command
6.2.6 The G (Go) Command
6.2.7 The H (Hexadecimal Math) Command
6.2.8 The I (Input Command Tail) Command
6.2.9 The L (List) Command
6.2.10 The M (Move) Command

· . 6-4
· . 6-4

... 6-4
· . 6-5

. 6-6

. 6-6
. 6-7

... 6-8
..... 6-8

. ... 6-8
· . 6-9

6.2.11 The QI, QO (Query 110) Commands · 6-9
6.2.12 The R (Read) Command 6-10
6.2.13 The S (Set) Command
6.2.14 The SR (Search) Command
6.2.15 The T (Trace) Command ..

. 6-11

6.2.16 The U (Untrace) Command
6.2.17 The V (Value) Command ..
6.2.18 The W (Write) Command ..
6.2.19 The X (Examine CPU State) Command
Default Segment Values
Assembly Language Syntax for A and L Commands
DDT-86 Sample Session

vii

6-12
6-12
6-13
6-13
6-14

..... 6-14
6-16
6-18
6-19

Table of Contents (continued)

Appendixes

A Starting ASM-86 .•...

B Mnemonic Differences from the Intel Assembler • • .

C ASM-86 Hexadecimal Output Format • . . •

. .•.•. A-1

. .•.•• B-1

.•.•• C-1

D Reserved Words. • . . . • . . • • . . • • • D-1

E ASM-86 Instruction Summary •. . • • . • • . . • • . . . • • E-1

F Sample Program APPF.A86 • • . . • • . . • F-1

G Code-macro Definition Syntax • . • • • • • . • • • . • G-1

H ASM-86 Error Messages ..•........•..•.....•..•.•. H-1

I DDT-86 Error Messages • . . . • . • . . • • . . • . 1-1

viii

Table of Contents (continued)

Tables
1-1.
1-2.

Run-time Parameter Summary
Run-time Parameter Examples

Separators and Delimiters
Radix Indicators for Constants
String' Constant Examples
Register Keywords

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.

ASM-86 Operators
Precedence of Operations in ASM-86

4-1. Operand Type Symbols ..
4-2. Flag Register Symbols
4-3. Data Transfer Instructions
4-4. Effects of Arithmetic Instructions on Flags
4-5. Arithmetic Instructions
4-6. Logical and Spift Instruct{ons
4-7. String Instructions
4-8. Prefix Instructions
4-9. Control Transfer Instructions
4-10. Processor Control Instructions
4-11. Mnemonic Differences

5-1. Code-macro Operand Specifiers
5-2. Code-macro Operand Modifiers

6-1. DDT-86 Command Summary
6-2. Flag Name Abbreviations
6-3. DDT-86 Default Segment Values

ix

1-4
1-5

· 2-2
· 2-3

· . 2-4
· . 2-6

· 2-9
2-15

· 4-1
· 4-3

· 4-3
· 4-5

· . 4-6
· . 4-8

4-10
4-12
4-13
4-16
4-18

· . 5-3
· 5-2

· . 6-2
6-15
6-17

Table of Contents (continued)

Tables

A-1. Parameter Types and Devices
A-2. Parameter Types ..
A-3. Device Types
A-4. Invocation Examples

B-1. Mnemonic Differences

. C-1. Hexadecimal Record Contents
C-2. Hexadecimal Record Formats
C-3. Segment Record Types

D-1. Keywords or Reserved Words

E-1. ASM-86 Instruction Summary

H-1. ASM-86 Diagnostic Error Messages

1-1. DDT-86 Error Messages .

Figure

· A-1
... A-2

· A-2
· A-3

· ... B-1

.. C-1
· C-2

· ... C-3

.. D-1

· ... E-1

H-1

· 1-1

1-1. ASM-86 Source and Object Files 1-1

Listing

F-1. Sample Program APPF.A86 F-1

x

Section 1
Introduction to ASM-86

1.1 Assembler Operation

ASM-86 processes an 8086 assembly language source file in three passes and produces
three output files, including an 8086 machine language file in hexadecimal format. This
object file can be in either Intel or Digital Research hex formats, which are described in
Appendix C. ASM-86 is shipped in two forms: an 8086 cross-assembler designed to run
under CP/M® on the Intel 8080 or the Zilog Z80® based system, and an 8086 assembler
designed to run under Concurrent CP/M-86 on an Intel 8086 or 8088 based system.
ASM-86 typically produces three output files from one input file as shown in Figure 1-1:

I SOURCE I • ASM-86

filename.A86 - contains source
filename.LST - contains listing

... 1 LIST FILE
- 1

: I HEX FILE

'" 1 SYMBOL FILE - 1

filename.H86 - contains assembled program in
hexadecimal format

filename.sYM - contains all user-defined symbols

Figure 1-1. ASM-86 Source and Object Files

I

I

I

[QJ DIGITAL RESEARCH'" ------------------------

1-1

1.1 Assember Operation Concurrent CP/M-86 Utilities Guide

Figure 1-1 also lists ASM-S6 filetypes. ASM-S6 accepts a source file with any three­
letter extension, but if the filetype is omitted from the starting command, ASM-86 looks
for the specified filename with the filetype .AS6 in the directory. If the file has a filetype
other than .AS6 or has no filetype at all, ASM-S6 returns an error message.

The other filetypes listed in Figure 1-1 identify ASM-S6 output files. The .LST file
contains the assembly language listing with any error messages. The .HS6 file contains
the machine language program in either Digital Research or Intel hexadecimal format.
The .SYM file lists any user-defined symbols.

Start ASM-S6 by entering a command of the following form:

ASMS 6 source filespec [$ parameters]

Section 1.2 explains the optional parameters. Specify the source file using the follow­
ing form:

[d:] filename [.type]

where

[d:]

filename

[.type]

is an optional valid drive letter specifying the source file's location.
Not needed if source is on current drive.

is a valid CP/M filename of 1 to S characters.

is an optional valid filetype of 1 to 3 characters (usually .AS6).

Some examples of valid ASM-S6 commands are

A)ASHBS 6:610588
A)ASH8S 6 I OS88 f A8S $F I AA H6 P6 S6
A)ASH8S D:TE5T

Note that if you try to assemble an empty source file, ASM-S6 generates empty list, hex,
and symbol files.

-------------------------I!QJ DIGITAL RESEARCH TIl

1-2

Concurrent CP/M-86 Utilities Guide 1.1 Assember Operation

Once invoked, ASM-86 responds with the message:

CP/M 8086 ASSEMBLER VER X.x

where x.x is the ASM-86 version number. ASM-86 then attempts to open the source
file. If the file does not exist on the designated drive or does not have the correct filetype
as described above, the assembler displays the message:

NO FILE

If an invalid parameter is given in the optional parameter list, ASM-86 displays the
message:

PARAMETER ERROR

After opening the source, the assembler creates the output files. Usually these are
placed on the current disk drive, but they can be redirected by optional parameters or
by a drive specification in the source filename. In the latter case, ASM-86 directs the
output files to the drive specified in the source filename.

During assembly, ASM-86 halts if an error condition, such as disk full or symbol table
overflow, is detected. When ASM-86 detects an error in the source file, it places an
error-message line in the listing file in front of the line containing the error. Each error
message has a number and gives a brief explanation of the error. Appendix H lists
ASM-86 error messages. When the assembly is complete, ASM-86 displays the message:

END OF ASSEMBLY. NUMBER OF ERRORS: n

Ii]] DIGITAL RESEARCH'" -------------------------
1-3

1.2 Optional Run-time Parameters Concurrent CP/M-86 Utilities Guide

1.2 Optional Run-time Parameters

The dollar-sign character, $, flags an optional string of run-time parameters. A param­
eter is a single letter followed by a single-letter device name specification. Table 1-1 lists
the parameters.

Table 1-1. Run-time Parameter Summary

Parameter I
A
H
P
S
F

To Specify

source file device
hex output file device
list file device
symbol file device
format of hex output file

I Valid Arguments

A,B,C, ... P
A ... P,X, Y,Z
A ... P,X, Y,Z
A ... P,X, Y,Z
I,D

All parameters are optional and can be entered in the command line in any order.
Enter the dollar sign only once at the beginning of the parameter string. Spaces can
separate parameters but are not required. No space is permitted, however, between a
parameter and its device name.

A device name must follow parameters A, H, P, and S. The devices are labeled

A, B, C, ... P or X, Y, Z

Device names A through P, respectively, specify disk drives A through P. X specifies
the user console (CON:), Y specifies the line printer (LST:), and Z suppresses output
(NUL:).

If output is directed to the console, it can be temporarily stopped at any time by
entering a CTRL-S. Restart the output by entering a second CTRL-S or any other
character.

------------------------- I!ID DIGITALRESEARCHnI

1-4

Concurrent CP/M-86 Utilities Guide 1.2 Optional Run-time Parameters

The F parameter requires either an I or a D argument. When I is specified, ASM-86
produces an object file in Intel hex format. A D argument requests Digital Research hex
format. Appendix C details these formats. If the F parameter is not entered in the
command line, ASM-86 produces Digital Research hex format.

Table 1-2. Run-time Parameter Examples

Command Line

ASM88 IO

ASM88 IO. ASM $ AD SZ

ASM88 IO $ PY S}-{

ASM88 IO $ FD

ASM88 IO $ F I

1.3 Ending ASM-86

I Result

Assemble file IO.A86, and produce IO.H86,
IO.LST, and IO.SYM, all on the default drive.

Assemble file IO.ASM on device D, and produce
IO.LST and IO.H86. No symbol file.

Assemble file IO.A86, produce IO.H86, route
listing directly to printer, and output symbols on
console.

Produce Digital Research hex format.

Produce Intel hex format.

You can halt ASM-86 execution at any time by pressing any key on the console
keyboard. When a key is pressed, ASM-86 responds with the question:

USER BREAK. OK(Y/N)?

A Y response stops the assembly and returns to the operating system. An N response
continues the assembly.

End of Section 1

i!IDDIGITAL RESEARCH'" -------------------------
1-5

Section 2
Elements of ASM-86 Assembly Language

2.1 ASM-86 Character Set

ASM-86 recognizes a subset of the ASCII character set. The valid characters are the
alphanumerics, special characters, and nonprinting characters shown below:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abc d e f g h j kim n 0 p q r stu v w x y z
o 1 2 3 4 5 678 9

+-*/= ()[];'.!,_:@$

space, tab, carriage return, and line-feed

Lower-case letters are treated as upper-case, except within strings. Only
alphanumerics, special characters, and spaces can appear in a string.

2.2 Tokens and Separators

A token is the smallest meaningful unit of an ASM-86 source program, much as a
word is the smallest meaningful unit of an English composition. Adjacent tokens are
commonly separated by a blank character or space. Any sequence of spaces can appear
wherever a single space is allowed. ASM-86 recognizes horizontal tabs as separators and
interprets them as spaces. Tabs are expanded to spaces in the list file. The tab stops are
at each eighth column.

2.3 Delimiters

Delimiters mark the end of a token and add special meaning to the instruction, as
opposed to separators, which merely mark the end of a token. When a delimiter is
present, separators need not be used. However, using separators after delimiters makes
your program easier to read.

The following table, Table 2-1, describes ASM-86 separators and delimiters. Some
delimiters are also operators and are explained in greater detail in Section 2.6.

!!ill DIGITAL RESEARCH TW

2-1

2.3 Delimiters

Character

20H

09H

CR

LF

$

+

*

/

@

Concurrent CP/M-86 Utilities Guide

Table 2-1. Separators and Delimiters

I Name

space

tab

carriage return

line-feed

semicolon

colon

period

dollar sign

plus

minus

asterisk

slash

"at" sign

underscore

exclamation
point

apostrophe

I Use

separator

legal in source files,
expanded in list files

terminate source lines

legal after CR if within
source lines, interpreted
as a space

starts comment field

identifies a label,
used in segment override
specification

forms variables from
numbers ..

notation for present value
oflocation pointer

arithmetic operator for
addition

arithmetic operator for
subtraction

arithmetic operator for
multiplication

arithmetic operator for
division

legal in identifiers

legal in identifiers

logically terminates a
statement, allowing
multiple statements on a
single source line

delimits string constants

---------------------------!lID DIGITAL RESEARCH'"
2-2

Concurrent CP/M-86 Utilities Guide 2.4 Constants

2.4 Constants

A constant is a value known at assembly time that does not change while the assembled
program is executed. A constant can be either' an integer or a character string.

2.4.1 Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called the radix
of the constant, is denoted by a trailing radix indicator. The radix indicators are shown
in Table 2-2:

Table 2-2. Radix Indicators for Constants

Indicator I Constant Type I Base

B binary 2
0 octal 8
Q octal 8
D decimal 10
H hexadecimal 16

ASM-86 assumes that any numeric constant not terminated with a radix indicator is
a decimal constant. Radix indicators can be upper- or lower-case.

A constant is thus a sequence of digits followed by an optional radix indicator, where
the digits are in the range for the radix. Binary constants must be composed of Os and
ls. Octal digits range from 0 to 7; decimal digits range from 0 to 9. Hexadecimal
constants contain decimal digits and the hexadecimal digits A (10D), B (llD), C (12D),
D (13D), E (14D), and F (15D). Notethatthe leadingcharacterofa hexadecimal constant
must be a decimal digit, so that ASM-86 cannot confuse a hex constant with an identifier.
The following are valid numeric constants:

1234
1234H
33770

12340
OFFEH
OFE3H

1100B
33770
1234d

1111000011110000B
13772Q
Offffh

[!ID DIGITAL RESEARCH'" --------------------------
2-3

2.4 Constants Concurrent CP/M-86 Utilities Guide

2.4.2 Character Strings

ASM-86 treats an ASCII character string delimited by apostrophes as a string constant.
All instructions accept only one- or two-character constants as valid arguments. Instruc­
tions treat a one-character string as a 8-bit number. A two-character string is treated as
a 16-bit number with the value of the second character in the low-order byte, and the
value of the first character in the high-order byte.

The numeric value of a character is its ASCII code. ASM-86 does not translate case
in character strings, so it accepts both upper- and lower-case letters. Note that only
alphanumerics, special characters, and spaces are allowed in strings.

A DB assembler directive is the only ASM-86 statement that can contain strings longer
than two characters. The string cannot exceed 255 bytes. Include any apostrophe you
want printed in the string by entering it twice. ASM-86 interprets the two keystrokes" as
a single apostrophe. Table 2-3 shows valid strings and how they appear after processing:

Table 2-3. String Constant Examples

String in Source Text I AfterProcessingbyASM-86

, a '
'Ab"Cd' , , , ,

'ONLYUPPERCASE'
'onlYJowercase'

a
Ab'Cd

ONLY UPPERCASE
only lower case

2.5 Identifiers

Identifiers are character sequences that have special symbolic meaning to the assem­
bler. All identifiers in ASM-86 must obey the following rules:

1. The first character must be alphabetic (A, ... Z, a, ... z).
2. Any subsequent characters can be either alphabetic or a numeral (0,1, 9).

ASM-86 ignores the special characters @ and _ but they are still legal. For
example, <L.b becomes abo

3. Identifiers can be of any length up to the limit of the physical line.

--------------------------IIID DIGITAL RESEARCH
2-4

Concurrent CP/M-86 Utilities Guide 2.5 Identifiers

Identifiers are of two types. The first type are keywords that the assembler recognizes
as having predefined meanings. The second type are symbols defined by the user. The
following are all valid identifiers:

NOLIST
WORD
AH
Th i rd_st reet
How_a re_y 0 u_t 0 day
variable@nuMber@1234S87880

2.5.1 Keywords

A keyword is an identifier that has a predefined meaning to the assembler. Keywords
are reserved; the user cannot define an identifier identical to a keyword. For a complete
list of keywords, see Appendix D.

ASM-86 recognizes five types of keywords: instructions, directives, operators, regis­
ters, and predefined numbers. 8086 instruction mnemonic keywords and the actions
they initiate are defined in Section 4. Directives are discussed in Section 3. Section 2.6
defines operators. Table 2-4 lists the ASM-86 keywords that identify 8086 registers.

Three keywords are predefined numbers: BYTE, WORD, and DWORD. The values
of these numbers are 1, 2, and 4, respectively. In addition, a type attribute is associated
with each of these numbers. The keyword's type attribute is equal to the keyword's
numeric value.

~DIGITAL~EARCH~--

2-5

2.5 Identifiers Concurrent CP/M-86 Utilities Guide

Table 2-4. Register Keywords

Register Numeric
Symbol Size Value Meaning

AH 1 byte lOOB Accumulator-High-Byte
BH 1 byte lllB Base-Register-High-Byte
CH 1 byte lOlB Count-Register-High-Byte
DH 1 byte llOB Data-Register-High-Byte

AL 1 byte OOOB Accumulator-Low-Byte
BL 1 byte OllB Base-Register-Low-Byte
CL 1 byte OOlB Count-Register-Low-Byte
DL 1 byte OlOB Data-Register-Low-Byte

AX 2 bytes OOOB Accumulator (full word)
BX 2 bytes OllB Base-Register (full word)
CX 2 bytes OOlB Count-Register (full word)
DX 2 bytes OlOB Data-Register (full word)

BP 2 bytes lOlB Base Pointer
SP 2 bytes lOOB Stack Pointer

SI 2 bytes llOB Source Index
DI 2 bytes lllB Destination Index

CS 2 bytes OlB Code-Segment-Register
DS 2 bytes llB Data-Segment-Register
SS 2 bytes lOB Stack-Segment-Register
ES 2 bytes OOB Extra-Segment-Register

2.5.2 Symbols and Their Attributes

A symbol is a user-defined identifier that has attributes specifying the kind of informa­
tion the symbol represents. Symbols fall into three categories:

• variables
• labels
• numbers

------------------------I!ru DIGITAL RESEARCH'"

2-6

Concurrent CP/M-86 Utilities Guide 2.S Identifiers

Variables

Variables identify data stored at a particular location in memory. All variables have
the following three attributes:

• Segment tells which segment was being assembled when the variable was defined.
• Offset tells how many bytes there are between the beginning of the segment and

the location of this variable.
• Type tells how many bytes of data are manipulated when this variable is referenced.

A segment can be a Code Segment, a Data Segment, a Stack Segment, or an Extra
Segment, depending on its contents and the register that contains its starting address.
See Section 3.2. A segment can start at any address divisible by 16. ASM-86 uses this
boundary value as the segment portion of the variable's definition.

The offset of a variable can be any number between DOH and OFFFFH
(65535 decimal). A variable must have one of the following type attributes:

• BYTE
• WORD
• DWORD

BYTE specifies a one-byte variable; WORD, a two-byte variable, and DWORD, a
four-byte variable. The DB, DW, and DD directives, respectively, define variables as
these three types. See Section 3.2.2. For example, a variable is defined when it appears
as the name for a storage directive:

VAR I ABLE DB 0

A variable can also be defined as the name for an EQU directive referencing another
label, as shown below:

VARIABLE EQU ANOTHER VARIABLE

Labels

Labels identify locations in memory that contain instruction statements. They are
referenced with jumps or calls. All labels have two attributes: segment and offset.

~DIGITAL~EARCHN--

2-7

2.5 Identifiers Concurrent CP/M-86 Utilities Guide

Label segment and offset attributes ;;lre essentially the same as variable segment and
offset attributes. In general, a label is defined when it precedes an instruction. A colon,
:, separates the label from the instruction. For example,

LABEL: ADD AX, BX

A label can also appear as the name for an EQU directive referencing another label.
For example,

LABEL EQU ANOTHER_LABEL

Numbers

Numbers can also be defined as symbols. A number symbol is treated as though you
had explicitly coded the number it represents. For example,

NUMber_five EQU 5
MOV AL,NuMber __ five

equals

MOV AL,S

Section 2.6 describes operators and their effects on numbers and number symbols.

2.6 Operators

ASM-86 operators fall into the following categories: arithmetic, logical, and relational
operators, segment override, variable manipulators, and creators. The following table
defines ASM-86 operators. In this table, a and b represent two elements of the expression.
The validity column defines the type of operands the operator can manipulate, using the
OR bar character I to separate alternatives.

--.~DIGITAL~EARCH~

2-8

Concurrent CP/M-86 Utilities Guide 2.6 Operators

Table 2-5. ASM-86 Operators

Syntax I Result I Validity

Logical Operators

a XOR b bit-by-bit logical EXCLUSIVE a,b = number
ORofaandb

OR b bit-by-bit logical OR of a a,b = number
andb

a AND b bit-by-bit logical AND of a a,b = number
andb

NOT a logical inverse of a: all Os a = 16-bitnumber
become 1s, 1s become Os

Relational Operators

a EQ b returns OFFFFH if a = b, a, b = unsigned
otherwise 0 number

a LT b returns OFFFFH if a < b, a, b = unsigned
otherwise 0 number

a LE b returns OFFFFHifa < = b, a, b = unsigned
otherwise 0 number

a GT b returns OFFFFH if a > b, a, b = unsigned
otherwise 0 number

a GE b returns 0 FFFFH if a > = b a, b = unsigned
otherwise 0 number

a NE b returns OFFFFH if a < > b, a, b = unsigned
otherwise 0 number

~DIGITAL~EARCH~---

2-9

2.6 Operators Concurrent CP/M-86 Utilities Guide

Table 2-5. (continued)

Syntax
1

Result I Validity

Arithmetic Operators

a+b arithmetic sum of a and b a = variable,
label or number
b = number

a-b arithmetic difference of a = variable,
aandb label or number

b = number

a"'b does unsigned multiplication a,b = number
ofaandb

alb does unsigned division of a a,b = number
andb

a MOD b returns remainder of a I b a, b = number

a SHL b returns the value which a,b = number
results from shifting a to
left by an amount b

a SHR b returns the value which a,b = number
results from shifting a to
the right by an amount b

+a gives a a = number

-a givesO-a a = number

Segment Override

<segreg>: overrides assembler's choice <segreg> =
<addrexp> of segment register. CS,DS,SS

orES

-------------------------- [lID DIGITAL RESEARCH'"
2-10

Concurrent CP/M-86 Utilities Guide 2.6 Operators

Table 2-5. (continued)

Syntax I Result I Validity

Variable Manipulators, Creators

SEG a creates a number whose value is the a = label I variable
segment value of the variable or
label a. The variable or label
must be declared in an absolute
segment (i.e. CSEG 1234H);
otherwise the SEG operator is
undefined.

OFFSET a creates a number whose value . a = label I variable
is the offset value of the
variable or label a.

TYPE a creates a number. Ifthevari- a = label I variable
ableais of type BYTE, WORD
or DWORD, the value of the num-
beris 1,2, or4, respectively.

LENGTH a creates a number whose value a = label I variable
is the length attribute of the
variable a. The length attribute
is the number of bytes associated
with the variable.

LAST a if LENGTH a > 0, then LAST a = label I variable
a = LENGTH a-1;ifLENGTH
a = 0, then LAST a = 0.

a PTR b creates virtual variable or label with a = BYTE I
type of a and attributes of b. WORD, I DWORD

b = <addrexp>

.a creates variable with an offset attri- a = number
bute of a; segment attribute is
current segment.

$ creates label with offset no argument
equal to current value of
location counter; segment
attribute is current segment.

~DIGITAL~EARCH~--
2-11

2.6 Operators Concurrent CP/M-86 Utilities Guide

2.6.1 Operator Examples

Logical operators accept only numbers as operands. They perform the Boolean logic
operations AND, OR, XOR, and NOT. For example,

OOFC
0080

0000 B180
0002 B003

MASK EQU
SIGNBIT EQU

MOV
MOl.'

OFCH
80H
CL ,MASK AND SIGNBIT
AL , NOT MASK

Relational operators treat all operands as unsigned numbers. The relational operators
are EQ (equal), LT (less than), LE (less than or equal), GT (greater than), GE (greater
than or equal), and NE (not equal). Each operator compares two operands and returns
all ones (OFFFFH) if the specified relation is true, and all zeros if it is not. For example,

000 A
0018

0004 B8FFFF
0007 B80000

LIMIT1
LIMIT2

EQU
EQU

MOV
MOl.'

10
25

A>{ ,LIMIT1 L T LIMIT2
A>{ ,LIMIT1 GT LIMIT2

Addition and subtraction operators compute the arithmetic sum and difference of two
operands. The first operand can be a variable, label, or number, but the second operand
must be a number. When a number is added to a variable or label, the result is a variable
or label, the offset of which is the numeric value of the second operand plus the offset
of the first operand. Subtraction from a variable or label returns a variable or label, the
offset of which is that of first operand decremented by the number specified in the second
operand. For example,

0002
0005

OOOA FF

0006 2EAOOBOO
OOOF 2E8AOEOFOO
0014 B303

COUNT
DISP1
FLAG

EQU
EQU
DB

MOV
MOV
MOV

2
5
OFFH

AL,FLAG+1
CL,FLAG+DISPl
BL,DISP1-COUNT

------------------------ [j]] DIGITAL RESEARCH'"
2-12

Concurrent CP/M-86 Utilities Guide 2.6 Operators

The multiplication and division operators *, /, MOD, SHL, and SHR accept only
numbers as operands. ,~ and / treat all operands as unsigned numbers. For example,

0018 6E5500
0019 6310

0050

81 t2S8/3
BLt8Ll/4
EQU 80

016 68AOOO

MOI.1
MOI.1

6UFFER81ZE
MOI.1 AXtBUFFER81ZE * 2

Unary operators accept both signed and unsigned operators, as shown in the following
example: .

001E 6123
0020 6007
0022 62F4

CLt+35
ALt2--S
DLt-12

When manipulating variables, the assembler decides which segment register to use.
You can override the assembler's choice by specifying a different register with the
segment override operator. The syntax for the override operator is

<segment register> : <address expression>

where the <segment register> is CS, DS, SS, or ES. For example,

0024 3886472D
0028 28860E5600

AXt88:WORD6UFFER[BXJ
C)-{ tE8: ARRAY

A variable manipulator creates a number equal to one attribute of its variable operand.
SEG extracts the variable's segment value; OFFSET, its offset value; TYPE, its type value
(1, 2, or 4); and LENGTH, the number of bytes associated with the variable. LAST
compares the variable's LENGTH with 0 and, if greater, then decrements LENGTH by
one. If LENGTH equals 0, LAST leaves it unchanged. Variable manipulators accept
only variables as operators. For example,

I!ID DIGITAL RESEARCH TN -------------------------

2-13

2.6 Operators

1234
002D 000000000000
0033 0102030405

0038 B80500
003B B80400
003E B80100
0041 B80200
0044 B83412

WORDBUFFER
BUFFER

Mol,1

MOl)

Mol,1

Mol,1

Mol,1

Concurrent CP/M-86 Utilities Guide

DSEG
DW
DB

1234H
OtOtO
lt2t3t4t5

A}-{ t LENGTH BUFFER
A}-{ t LAST BUFFER
A}-{ t TYPE BUFFER
A}-{ t TYPE WORDBUFFER
A}-{ t SEG BUFFER

The PTR operator creates a virtual variable or label that is valid only during the
execution of the instruction. It makes no changes to either of its operands. The temporary
symbol has the same Type attribute as the left operator and all other attributes of the
right operator as shown in the following example:

0044 C80705
0047 8A07
0048 FF04

BYTE PTR [BX] t 5
AL tBYTE PTR [B}-{]
WORD PTR [SI]

The period operator creates a variable in the current data segment. The new variable
has a segment attribute equal to the current data segment and an offset attribute equal
to its operand. The operand of the new variable must be a number. For example,

004B A10000
004E 288B1E0040

A}-{ t .0
B}-{ t ES: .4000H

The dollar-sign operator, $, creates a label with an offset attribute equal to the current
value of the location counter. The label's segment value is the same as the current
segment. This operator takes no operand. For example,

0053 E8FDFF JMP $
0058 EBFE JMPS $
0058 E8FD2F JMP $+3000H

2.6.2 Operator Precedence

Expressions combine variables, labels, or numbers with operators. ASM-86 allows
several kinds of expressions. See Section 2.7. This section defines the order in which
operations are executed if more than one operator appears in an expression.

------------------------- i!IDDIGITAL RESEARCH™
2-14

Concurrent CP/M-86 Utilities Guide 2.6 Operators

ASM-86 evaluates expressions left to right, but operators with higher precedence are
evaluated before operators with lower precedence. When two operators have equal
precedence, the leftmost is evaluated first. Table 2-6 presents ASM-86 operators in order
of increasing precedence.

Parentheses can override rules of precedence. The part of an expression enclosed in
parentheses is evaluated first. If parentheses are nested, the innermost expressions are
evaluated first. Only five levels of nested parentheses are legal. For example,

15/3 + 18/8 = 5 + 2 = 7
15/ (3 + 18/8) = 15/ (3 + 2) = 15/5 = 3

Table 2-6. Precedence of Operations in ASM-86

Order I Operator Type I Operators

1 Logical XOR,OR

2 Logical AND

3 Logical NOT

4 Relational EQ,LT,LE,GT,
GE,NE

5 Addition/subtraction +,-

6 Multiplication/division * , /, MOD, SHL,
SHR

7 Unary +,-

8 Segment override < segment override>:

9 Variable manipulators, SEG, OFFSET, PTR,

creators TYPE, LENGTH, LAST

10 Parentheses/brackets (), []

11 Period and Dollar .,$

[!Q) DIGITAL RESEARCH'" --------------------------
2-15

2.7 Expressions Concurrent CP/M-86 Utilities Guide

2.7 Expressions

ASM-86 allows address, numeric, and bracketed expressions. An address expression
evaluates to a memory address and has three components:

• segment value
• offset value

• type

Both variables and labels are address expressions. An address expression is not a
number, hut its components are numbers. Numbers can be combined with operators
such as PTR to make an address expression.

A numeric expression evaluates to a number. It does not contain any variables or
labels, only numbers and operands.

Bracketed expressions specify base- and index-addressing modes. The base registers
are BX and BP, and the index registers are DI and SI. A bracketed expression can consist
of a base register, an index register, or both a base register and an index register. Use
the + operator between a base register and an index register to specify both base- and
index-register addressing. For example,

MOV A}-{ , [B}-{+D I J
MOl.! A}-{,[SIJ

2.8 Statements

Just as tokens in this assembly language correspond to words in English, statements
are analogous to sentences. A statement tells ASM-86 what action to perform. Statements
can be instructions or directives. Instructions are translated by the assembler into 8086
machine language instructions. Directives are not translated into machine code, but
instead direct the assembler to perform certain clerical functions.

Terminate each assembly language statement with a carriage return, CR, and line-feed,
LF, or with an exclamation point, !. ASM-86 treats these as an end-of-line. Multiple
assembly language statements can be written on the same physical line if separated by
exclamation points.

---------------------------I!ID DIGITAL RESEARCH'"
2-16

I ..

Concurrent CP/M-86 Utilities Guide 2.8 Statements

The ASM-86 instruction set is defined in Section 4. The syntax for an instruction
statement is

[label:] [prefix] mnemonic [operand(s)] [;comment]

where the fields are defined as

• label

• prefix

• mnemonic

• operands

• comment

A symbol followed by : defines a label at the current value of the
location counter in the current segment. This field is optional.

Certain machine instructions such as LOCK and REP can prefix
other instructions. This field is optional.

A symbol defined as a machine instruction, either by the assembler
or by an EQU directive. This field is optional unless preceded by
a prefix instruction. If it is omitted, no operands can be present,
although the other fields can appear. ASM-86 mnemonics are
defined in Section 4.

An instruction mnemonic can require other symbols to represent
operands to the instruction. Instructions can have zero, one, or
two operands.

Any semicolon appearing outside a character string begins a
comment. A comment ends with a carriage return. Comments
improve the readability of programs. This field is optional.

[j] DIGITAL RESEARCH ---------------------------
2-17

2.8 Statements Concurrent CP/M-86 Utilities Guide

ASM-86 directives are described in Section 3. The syntax for a directive statement is

[name] directive operand(s) [;comment]

where the fields are defined as

• name

• directive
• operands

• comment

Unlike the label field of an instruction, the name field of a directive
is never terminated with a colon. Directive names are legal only
for DB, DW, DD, RB, RS, RW, and EQU. For DB, DW, DD, and
RS, the name is optional; for EQU, it is required.
One of the directive keywords defined in Section 3.
Analogous to the operands for instruction mnemonics. Some
directives, such as DB, DW, and DD, allow any operand; others
have special requirements.
Exactly as defined for instruction statements.

End of Section 2

--------------------------I!IDDIGITALRESEARCHTII

2-18

3.1 Introduction

Section 3
Assembler Directives

Directive statements cause ASM-S6 to perform housekeeping functions, such as
assigning portions of code to logical segments, requesting conditional assembly, defining
data items, and specifying listing file format. General syntax for directive statements
appears in Section 2.S.

In the sections that follow, the specific syntax for each directive statement is given
under the heading and before the explanation. These syntax lines use special symbols
to represent possible arguments and other alternatives. Square brackets, [], enclose
optional arguments.

3.2 Segment Start Directives

At run-time, every SOS6 memory reference must have a 16-bit segment base value and
a 16-bit offset value. These are combined to produce the 20-bit effective address needed
by the CPU to physically address the location. The 16-bit segment base value or boundary
is contained in one of the segment registers CS, DS, SS, or ES. The offset value gives the
offset of the memory reference from the segment boundary. A 16-byte physical segment
is the smallest relocatable unit of memory.

ASM-S6 predefines four logical segments: the Code Segment, Data Segment, Stack
Segment, and Extra Segments, which are addressed respectively by the CS, DS, SS, and
ES registers. Future versions of ASM-S6 will support additional segments, such as
multiple data or code segments. All ASM-S6 statements must be assigned to one of the
four currently supported segments so that they can be referenced by the CPU. A segment
directive statement, CSEG, DSEG, SSEG, or ESEG, specifies that the statements following
it belong to a specific segment. The statements are then addressed by the corresponding
segment register. ASM-S6 assigns statements to the specified segment until it encounters
another segment directive.

I!ID DIGITAL RESEARCH™ --------------------------
3-1

3.2 Segment Start Directives Concurrent CP/M-86 Utilities Guide

Instruction statements must be assigned to the Code Segment. Directive statements
can be assigned to any segment. ASM-86 uses these assignments to change from one
segment register to another. For example, when an instruction accesses a memory
variable, ASM-86 must know which segment contains the variable so it can generate a
segment-override prefix byte if necessary.

3.2.1 The CSEG Directive

Syntax:

CSEG
CSEG
CSEG

numeric expression

$

This directive tells the assembler that the following statements belong in the Code
Segment. All instruction statements must be assigned to the Code Segment. All directive
statements are legal in the Code Segment.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is not
known at assembly time; the code generated is relocatable. Use the third form to continue
the Code Segment after it has been interrupted by a DSEG, SSEG, or ESEG directive.
The continuing Code Segment starts with the same attributes, such as location and
instruction pointer, as the previous Code Segment.

3.2.2 The DSEG Directive

Syntax:

DSEG
DSEG
DSEG

numeric expression

$

This directive specifies that the following statements belong to the Data Segment. The
Data Segment contains the data allocation directives DB, DW, DD, and RS, but all other
directive statements are also legal. Instruction statements are illegal in the Data Segment.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is not
known at assembly time; the code generated is relocatable. Use the third form to continue
the Data Segment after it has been interrupted by a CSEG, SSEG, or ESEG directive.
The continuing Data Segment starts with the same attributes as the previous Data
Segment.

---~DIGITALRESEARCH~
3-2

Concurrent CP/M-86 Utilities Guide

3.2.3 The SSEG Directive

Syntax:

SSEG
SSEG
SSEG

numeric expression

$

3.2 Segment Start Directives

The SSEG directive indicates the beginning of source lines for the Stack Segment. Use
the Stack Segment for all stack operations. All directive statements are legal in the Stack
Segment, but instruction statements are illegal.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is not
known at assembly time; the code generated is relocatable. Use the third form to continue
the Stack Segment after it has been interrupted by a CSEG, DSEG, or ESEG directive.
The continuing Stack Segment starts with the same attributes as the previous Stack
Segment.

3.2.4 The ESEG Directive

Syntax:

ESEG
ESEG
ESEG

numeric expression

$

This directive initiates the Extra Segment. Instruction statements are not legal in this
segment, but all directive statements are legal.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is not
known at assembly time; the code generated is relocatable. Use the third form to continue
the Extra Segment after it has been interrupted by a DSEG, SSEG, or CSEG directive.
The continuing Extra Segment starts with the same attributes as the previous Extra
Segment.

I!ID DIGITAL RESEARCH'" --------------------------
3-3

3.3 The ORG Directive Concurrent CP/M-86 Utilities Guide

3.3 The ORG Directive

Syntax:

ORG numeric expression

The ORG directive sets the offset of the location counter in the current segment to
the value specified in the numeric expression. Define all elements of the expression before
the ORG directive because forward references can be ambiguous.

In most segments, an ORG directive is unnecessary. If no ORG is included before the
first instruction or data byte in a segment, assembly begins at location zero relative to
the beginning of the segment. A segment can have any number of ORG directives.

3.4 The IF and END IF Directives

Syntax:

IF numeric expression
source line 1
source line 2

source line n
END IF

The IF and ENDIF directives allow a group of source lines to be included or excluded
from the assembly. Use conditional directives to assemble several different versions of
a single source program.

When the assembler finds an IF directive, it evaluates the numeric expression following
the IF keyword. If the expression evaluates to a nonzero value, then source line 1 through
source line n are assembled. If the expression evaluates to zero, the lines are not
assembled, but are listed unless a NOIFLIST directive is active. All elements in the
numeric expression must be defined before they appear in the IF directive. IF directives
can be nested to a maximum depth of five levels.

--------------------------I!ID DIGITAL RESEARCH'"
3-4

Concurrent CP/M-86 Utilities Guide 3.5 The INCLUDE Directive

3.5 The INCLUDE Directive

Syntax:

INCLUDE filespec

This directive includes another ASM-86 file in the source text. For example,

INCLUDE EQUALS.A86

Use INCLUDE when the source program resides in several different files. INCLUDE
directives cannot be nested; a source file called by an INCLUDE directive cannot contain
another INCLUDE statement. If filespec does not contain a filetype, the filetype is
assumed to be .A86. If the file specification does not include a drive specification, ASM-86
assumes that the file resides on the drive containing the source file.

3.6 The END Directive

Syntax:

END

An END directive marks the end of a source file. Any subsequent lines are ignored by
the assembler. END is optional. If not present, ASM-86 processes the source until it
finds an end-of-file character (lAH).

3.7 The EQU Directive

Syntax:

symbol EQU numeric expression
symbol EQU address expression
symbol EQU register
symbol EQU instruction mnemonic

The EQU, equate, directive assigns values and attributes to user-defined symbols. The
required symbol name cannot terminate with a colon. The symbol cannot be redefined
by a subsequent EQU or another directive. Any elements used in numeric or address
expressions must be defined before the EQU directive appears.

I!IDDIGITAL RESEARCHTN

3-5

3.7 The EQU Directive Concurrent CP/M-86 Utilities Guide

The first form assigns a numeric value to the symbol. The second assigns a memory
address. The third form assigns a new name to an 8086 register. The fourth form defines
a new instruction (sub)set. The following are examples of these four forms:

0005
0033
0001

005D 8BC3

3.8 The DB Directive

Syntax:

FIt.JE
NEXT
COUNTER
MOI)I)I)

EQU
EQU
EQU
EQU

MOt.JI.Jt.J

BUFFER

MOt.J

[symbol] DB numeric expression[,numeric expression ...]
[symbol] DB string constant[,string constant ...]

The DB directive defines initialized storage areas in byte format. Numeric expressions
are evaluated to 8-bit values and sequentially placed in the hex output file. String
constants are placed in the output file according to the rules defined in Section 2.4.2.
A DB directive is the only ASM-86 statement that accepts a string constant longer than
two bytes. There is no translation from lower- to upper-case within strings. Multiple
expressions or constants, separated by commas, can be added to the definition, but
cannot exceed the physical line length.

Use an optional symbol to reference the defined data area throughout the program.
The symbol has four attributes: the segment and offset attributes determine the symbol's
memory reference, the type attribute specifies single bytes, and the length attribute tells
the number of bytes (allocation units) reserved.

--------------------------I!IDDIGITAL RESEARCH'"
3-6

Concurrent CP/M-86 Utilities Guide 3.8 The DB Directive

The following statements show DB directives with symbols:

005F 43502F4D2073
79737485DOO

008B El
008C 0102030405

0071 B90COO

3.9 The DW Directive

Syntax:

TE}{T

AA

DB

DB
DB

MOI,I

'CP/M SystefTl' to

'a' + SOH
lt2t3tllt5

C}·{ tLENGTH TE}<T

[symbol] DW numeric expression[,numeric expression ...]
[symbol] DW string constant[,string constant ...]

The DW directive initializes two-byte words of storage. String constants longer than
two characters are illegal. Otherwise, DW uses the same procedure as DB to initialize
storage. The following are examples of DW statements:

0074 0000 CNTR DW
0078 83C188C189Cl JMPTAB DW
007C 010002000300 DW

040005000800

o
SUBRI tSUBR2tSUBR3
1 t2 t3 t4 t5 t8

Ii]] DIGITAL RESEARCHTlI
----------.--------------

3-7

3.10 The DD Directive Concurrent CP/M-86 Utilities Guide

3.10 The DD Directive

Syntax:

[symbol] DD numeric expression[,address expression ...]

The DD directive initializes four bytes of storage. The offset attribute of the address
expression is stored in the two lower bytes; the segment attribute is stored in the two
upper bytes. Otherwise, DD follows the same procedure as DB. For example,

1234 CSEG 1234H

0000 6CC134126FC1 LONG_JMPTAB DO
3412

0008 72C1341275Cl DO
3412

3.11 The RS Directive

Syntax:

[symbol] RS numeric expression

ROUT1 ,ROUT2

ROUT3,ROUT4

The RS directive allocates storage in memory but does not initialize it. The numeric
expression gives the number of bytes to be reserved. An RS statement does not give a
byte attribute to the optional symbol. For example,

0010
0060
4060

BUF RS
RS
RS

80
4000H
1

If an RS statement is the last statement in a segment, you must follow it with a DB
statement in order for GENCMD to allocate the memory space.

-------------------------I!ID DIGITAL RESEARCH""
3-8

Concurrent CP/M-86 Utilities Guide 3.12 The RB Directive

3.12 The RB Directive

Syntax:

[symbol] RB numeric expression

The RB directive allocates byte storage in memory without any initialization. This
directive is identical to the RS directive except that it gives the byte attribute.

3.13 The RW Directive

Syntax:

[symbol] RW numeric expression

The RW directive allocates two-byte word storage in memory but does not initialize
it. The numeric expression gives the number of words to be reserved. For example,

aOGl
alGl
C1Gl

BUFF

3.14 The TITLE Directive

Syntax:

TITLE string constant

RW
RW
RW

128
aOOOH
1

ASM-86 prints the string constant defined by a TITLE directive statement at the top
of each printout page in the listing file. The title character string should not exceed 30
characters. For example,

TITLE I C P / M ITl 0 nit 0 r I

If the title is too long, the ASM-86 page number overwrites the title.

!lID DIGITAL RESEARCH™ -------------------------
3-9

3.15 The PAGESIZE Directive Concurrent CP/M-86 Utilities Guide

3.15 The PAGESIZE Directive

Syntax:

PAGESIZE numeric expression

The PAGESIZE directive defines the number of lines to be included on each printout
page. The default page size is 66.

3.16 The PAGEWIDTH Directive

Syntax:

P AGEWIDTH numeric expression

The PAGEWIDTH directive defines the number of columns printed across the page
when the listing file is output. The default page width is 120, unless the listing is routed
directly to the terminal, when the default page width is 78.

3.17 The EJECT Directive

Syntax:

EJECT

The EJECT directive performs a page eject during printout. The EJECT directive itself
is printed on the first line of the next page.

3.18 The SIMFORM Directive

Syntax:

SIMFORM

The SIMFORM directive replaces a form-feed (FF) character in the print file with the
correct number of line-feeds (LF). Use this directive when printing out on a printer unable
to interpret the form-feed character.

------------------------IIQI DIGITAL RESEARCH
3-10

Concurrent CP/M-86 Utilities Guide 3.19 The NOLIST and LIST Directives

3.19 The NOLIST and LIST Directives

Syntax:

NOLIST
LIST

The NOLIST directive blocks the printout of the following lines. Restart the listing
with a LIST directive.

3.20 The IFLIST and NOIFLIST Directives

Syntax:

IFLIST
NOIFLIST

The NOIFLIST directive suppresses the printout of the contents of IF-END IF blocks
that are not assembled. The IFLIST directive resumes printout of IF-END IF blocks.

End of Section 3

I!IDDIGITAL RESEARCH'" -----------------------
3-11

Section 4
The ASM-86 Instruction Set

4.1 Introduction

The ASM-S6 instruction set includes all SOS6 machine instructions. This section
briefly describes ASM-S6 instructions; these descriptions are organized into functional
groups. The general syntax for instruction statements is given in Section 2.S.

The following sections define the specific syntax and required operand types for each
instruction, without reference to labels or comments. The instruction definitions are
presented in tables for easy reference. For a more detailed description of each instruction,
see Intel's MCS-86 TN Assembly Language Reference Manual. For descriptions of the
instruction bit patterns and operations, see Intel's MCS-86 User's Manual.

The instruction-definition tables present ASM-S6 instruction statements as combina­
tions of mnemonics and operands. A mnemonic is a symbolic representation for an
instruction; its operands are its required parameters. Instructions can take zero, one, or
two operands. When two operands are specified, the left operand is the instruction's
destination operand, and the two operands are separated by a comma.

The instruction-definition tables organize ASM-S6 instructions into functional groups.
In each table, the instructions are listed alphabetically. Table 4-1 shows the symbols
used in the instruction-definition tables to define operand types.

Symbol

numb

numbS

acc

reg

reg16

segreg

I

Table 4-1. Operand Type Symbols

Operand Type

any numeric expression

any numeric expression which evaluates to an S-bit number

accumulator register, AX or AL

any general purpose register, not segment register

a 16-bit general purpose register, not segment register

any segment register: CS, DS, SS, or ES

~DIGITAL~EARCH~--

4-1

4.1 Introduction

Symbol

mem

simpmem

memlreg

memlreg16

label

lab8

I

Concurrent CP/M-86 Utilities Guide

Table 4-1. (continued)

Operand Type

any ADDRESS expression, with or without base- and/or index­
addressing modes, such as

variable
variable +3
variable [bx]
variable[SI]
variable[BX + SI]
[BX]
[BP+DI]

any ADDRESS expression WITHOUT base- and index-addressing
modes, such as

variable
variable +4

any expression symbolized by reg or mem

any expression symbolized by memlreg, but must be 16 bits

any ADDRESS expression that evaluates to a label

any label that is within ± 128 bytes distance from the instruction

The 8086 CPU has nine single-bit Flag registers that reflect the state of the CPU. The
user cannot access these registers directly, but the user can test them to determine the
effects of an executed instruction upon an operand or register. The effects of instructions
on Flag registers are also described in the instruction-definition tables, using the symbols
shown in Table 4-2 to represent the nine Flag registers.

------------------------- [j]] DIGITAL RESEARCH'"
4-2

Concurrent CP/M-86 Utilities Guide 4.1 Introduction

Table 4-2. Flag Register Symbols

Symbol I
AF
CF
DF
IF
OF
PF
SF
TF
ZF

4.2 Data Transfer Instructions

Meaning

Auxiliary-Carry-Flag
Carry-Flag
Direction-Flag
Interrupt-Enable-Flag
Overflow-Flag
Parity-Flag
Sign-Flag
Trap-Flag
Zero-Flag

There are four classes of data transfer operations: general purpose, accumulator
specific, address-object, and flag. Only SAHF and POPF affect flag settings. Note in
Table 4-3 that if acc = AL, a byte is transferred, but if acc = AX, 'a word is transferred.

IN

IN

LAHF

LDS

LEA

LES

Table 4-3. Data Transfer Instructions

Syntax

acc,numb8lnumb 16

acc,DX

reg16,mem

reg16,mem

reg16,mem

I Result

Transfer data from input port by numb8 or
numb16 (0-255) to accumulator.

Transfer data from input port given by DX
register (O-OFFFFH) to accumulator.

Transfer flags to the AH register.

Transfer the segment part of the memory
address (DWORD variable) to the DS segment
register; transfer the offset part to a general
purpose 16-bit register.

Transfer the offset of the memory address to a
(16-bit) register.

Transfer the segment part of the memory
address to the ES segment register; transfer the
offset part to a 16-bit general purpose register.

[!ill DIGITAL RESEARCH TW

4-3

4.2 Data Transfer Instructions Concurrent CP/M-86 Utilities Guide

Table 4-3. (continued)

MOV

MOV

MOV

MOV

MOV

OUT

OUT

POP

POP

POPF

PUSH

PUSH

PUSHF

SAHF

XCHG

XCHG

XLAT

Syntax

reg,mem/reg

mem/reg,reg

mem/reg,numb

segreg,mem/reg16

mem/reg16,segreg

numb8/numb 16,acc

DX,acc

mem/reg16

segreg

mem/reg16

segreg

reg,mem/reg

mem/reg,reg

mem/reg

I Result

Move memory or register to register.

Move register to memory or register.

Move immediate data to memory or register.

Move memory or register to segment register.

Move segment register to memory or register.

Transfer data from accumulator to output port
(0-255) given by numb8 or numb16.

Transfer data from accumulator to output port
(O-OFFFFH) given by DX register.

Move top stack element to memory or register.

Move top stack element to segment register.
Note that CS segment register is not allowed.

Transfer top stack element to flags.

Move memory or register to top stack element.

Move segment register to top stack element.

Transfer flags to top stack element.

Transfer the AH register to flags.

Exchange register and memory or register.

Exchange memory or register and register.

Perform table lookup translation, table given
by mem/reg, which is always BX. Replaces
AL with AL offset from BX.

-------------------------- [l]]DIGITAL RESEARCHTli

4-4

Concurrent CP/M-86 Utilities Guide 4.3 Arithmetic, Logical, and Shift Instructions

4.3 Arithmetic, Logical, and Shift Instructions

The 8086 CPU performs the four basic mathematical operations in several different
ways. It supports both 8- and 16-bit operations and also signed and unsigned arithmetic.

Six of the nine flag bits are set or cleared by most arithmetic operations to reflect the
result of the operation. Table 4-4 summarizes the effects of arithmetic instructions on
flag bits. Table 4-5 defines arithmetic instructions. Table 4-6 defines logical and shift
instructions.

Flag Bit

CF

AF

ZF

SF

PF

OF

Table 4-4. Effects of Arithmetic Instructions on Flags

I Result

set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the high-order bit of the result.
Otherwise, CF is cleared.

set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the low-order four bits of the result.
Otherwise, AF is cleared.

set if the result of the operation is zero. Otherwise, ZF is cleared.

set if the result is negative.

set if the modulo 2 sum of the low-order eight bits of the result of
the operation is 0 (even parity). Otherwise, PF is cleared (odd
parity).

set if the operation resulted in an overflow; the size of the result
exceeded the capacity of its destination.

I!ID DIGITAL RESEARCHTN

4-5

4.3 Arithmetic, Logical, and Shift Instructions Concurrent CP/M-86 Utilities Guide

AAA

AAD

AAM

AAS

ADC

ADC

ADC

ADD

ADD

ADD

CBW

CWD

CMP

CMP

CMP

DAA

DAS

Table 4-5. Arithmetic Instructions

Syntax

reg,memlreg

memlreg,reg

memlreg,numb

reg,memlreg

memlreg,reg

memlreg,numb

reg,memlreg

memlreg,reg

memlreg,numb

Result

Adjust unpacked BCD (ASCII) for addition;
adjusts AL.

Adjust unpacked BCD (ASCII) for division;
adjusts AL.

Adjust unpacked BCD (ASCII) for multiplica­
tion; adjusts AX.

Adjust unpacked BCD (ASCII) subtraction;
adjusts AL.

Add (with carry) memory or register to register.

Add (with carry) register to memory or register.

Add (with carry) immediate data to memory or
register.

Add memory or register to register.

Add register to memory or register.

Add immediate data to memory or register.

Convert byte in AL to word in AH by sign
extension.

Convert word in AX to double word in D XI AX
by sign extension.

Compare register with memory or register.

Compare memory or register with register.

Compare data constant with memory or
register.

Decimal adjust for addition; adjusts AL.

Decimal adjust for subtraction; adjusts AL.

------------------------- r!IDDiGITAL RESEARCH'"
4-6

Concurrent CP/M-86 Utilities Guide 4.3 Arithmetic, Logical, and Shift Instructions

DEC

INC

DIV

IDIV

IMUL

MUL

NEG

SBB

SBB

SBB

SUB

SUB

SUB

Syntax

memlreg

memlreg

memlreg

memlreg

memlreg

memlreg

memlreg

reg,memlreg

memlreg,reg

memlreg,numb

reg,memlreg

memlreg,reg

memlreg,numb

Table 4-5. (continued)

I Result

Subtract 1 from memory or register.

Add 1 to memory or register.

Divide (unsigned) accumulator (AX or AL) by
memory or register. If byte results, AL = quo­
tient, AH = remainder. If word results,
AX = quotient, DX = remainder.

Divide (signed) accumulator (AX or AL) by
memory or register. Quotient and remainder
stored as in DIV.

Multiply (signed) memory or register by
accumulator (AX or AL). If byte, results in AH,
AL. If word, results in DX, AX.

Multiply (unsigned) memory or register by
accumulator (AX or AL). Results stored as
in IMUL.

Two's complement memory or register.

Subtract (with borrow) memory or register
from register.

Subtract (with borrow) register from memory
or register.

Subtract (with borrow) immediate data from
memory or register.

Subtract memory or register from register.

Subtract register from memory or register.

Subtract data constant from memory or
register.

[!Q] DIGITAL RESEARCH'" --------------------------

4-7

4.3 Arithmetic, Logical, and Shift Instructions Concurrent CP/M-86 Utilities Guide

AND

AND

AND

NOT

OR

OR

OR

RCL

RCL

RCR

RCR

ROL

ROL

ROR

ROR

SAL

Table 4-6. Logical and Shift Instructions

Syntax

reg,mem/reg

mem/reg,reg

mem/reg,numb

mem/reg

reg,mem/reg

mem/reg,reg

mem/reg,numb

mem/reg,1

mem/reg,CL

mem/reg,1

mem/reg,CL

mem/reg,1

mem/reg,CL

mem/reg,1

mem/reg,CL

mem/reg,1

I Result

Perform bitwise logical AND of a register and
memory or register.

Perform bitwise logical AND of memory or
register and register.

Perform bitwise logical AND of memory or
register and data constant.

Form one's complement of memory or register.

Perform bitwise logical OR of a register and
memory or register.

Perform bitwise logical OR of memory or regis­
ter and register.

Perform bitwise logical OR of memory register
and data constant.

Rotate memory or register 1 bit left through
carry flag.

Rotate memory or register left through carry
flag; number of bits given by CL register.

Rotate memory or register 1 bit right through
carry flag.

Rotate memory or register right through carry
flag; number of bits given by CL register.

Rotate memory or register 1 bit left.

Rotate memory or register left; number of bits
given by CL register.

Rotate memory or register 1 bit right.

Rotate memory or register right; number of
bits given by CL register.

Shift memory or register 1 bit left; shift in
low-order zero bits.

--------------------------'-- [lID DIGITAL RESEARCH'"

4-8

Concurrent CP/M-86 Utilities Guide 4.3 Arithmetic, Logical, and Shift Instructions

Table 4-6. (continued)

Syntax I Result

SAL memlreg,CL Shift memory or register left; number of bits
given by CL register; shift in low-order zero
bits.

SAR memlreg,l Shift memory or register 1 bit right; shift
in high-order bits equal to the original high-
order bit.

SAR memlreg,CL Shift memory or register right; number of bits
given by CL register; shift in high-order bits
equal to the original high-order bit.

SHL memlreg,l Shift memory or register 1 bit left; shift in
low-order zero bits. Note that SHL is a different
mnemonic for SAL.

SHL memlreg,CL Shift memory or register left; number of bits
given by CL register; shift in low-order zero
bits. Note that SHL is a different mnemonic
for SAL.

SHR memlreg,l Shift memory or register 1 bit right; shift in
high-order zero bits.

SHR memlreg,CL Shift memory or register right; number of bits
given by CL register; shift in high-order zero
bits.

TEST reg,memlreg Perform bitwise logical AND of a register and
memory or register; set condition flags, but do
not change destination.

TEST memlreg,reg Perform bitwise logical AND of memory regis-
ter and register; set condition flags, but do not
change destination.

TEST memlreg,numb Perform bitwise logical AND of memory regis-
ter and data constant; set condition flags, but
do not change destination.

XOR reg,memlreg Perform bitwise logical exclusive OR of a regis-
ter and memory or register.

[lID DIGITAL RESEARCH'" --------------------------
4-9

4.3 Arithmetic, Logical, and Shift Instructions Concurrent CP/M-86 Utilities Guide

Syntax

XOR memlreg,reg

XOR memlreg,numb

Table 4-6. (continued)

I Result

Perform bitwise logical exclusive OR of mem­
ory register and register.

Perform bitwise logical exclusive OR of mem­
ory register and data constant.

4.4 String Instructions

String instructions take zero, one, or two operands. The operands specify only the
operand type, determining whether the operation is on bytes or words. If there are two
operands, the source operand is addressed by the SI register and the destination operand
is addressed by the DI register. The Di and SI registers are always used for addressing.
Note that for string operations, destination operands addressed by DI must always reside
in the Extra Segment (ES).

CMPS

CMPSB

CMPSW

LODS

LODSB

LODSW

Table 4-7. String Instructions

Syntax I
memlreg,memlreg

memlreg

Result

Subtract source from destination; affect flags,
but do not return result.

An alternate mnemonic for CMPS, which
assumes a byte operand.

An alternate mnemonic for CMPS, which
assumes a word operand.

Transfer a byte or word from the source
operand to the accumulator.

An alternate mnemonic for LODS, which
assumes a byte operand.

An alternate mnemonic for LODS, which
assumes a word operand.

-------------------------- [i]] DIGITAL RESEARCH'"

4-10

Concurrent CP/M-86 Utilities Guide 4.4 String Instructions

MOVS

MOVSB

MOVSW

SCAS

SCASB

SCASW

STOS

STOSB

STOSW

Table 4-7. (continued)

Syntax I
mem\reg,mem\reg

mem\reg

mem\reg

Result

Move 1 byte (or word) from source to destina­
tion.

An alternate mnemonic for MOVS, which
assumes a byte operand.

An alternate mnemonic for MOVS, which
assumes a word operand.

Subtract destination operand from accumu­
lator (AX or AL); affect flags, but do not return
result.

An alternate mnemOnIC for SCAS, which
assumes a byte operand.

An alternate mnemOnIC for SCAS, which
assumes a word operand.

Transfer a byte or word from accumulator to
the destination operand.

An alternate mnemonic for STOS which
assumes a byte operand.

An alternate mnemonic for STOS which
assumes a word operand.

I!ID DIGITAL RESEARCH™ --------------------------

4-11

4.4 String Instructions Concurrent CP/M-86 Utilities Guide

Table 4-8 defines prefixes for string insrructions. A prefix repeats its string instruction
the number of times contained in the ex register, which is decremented by 1 for each
iteration. Prefix mnemonics precede the string instruction mnemonic in the statement line.

Syntax

REP

REPE

REPNE

REPNZ

REPZ

I

Table 4-8. Prefix Instructions

Result

Repeat until ex register is zero.

Equal to REPZ.

Equal to REPNZ.

Repeat until ex register is zero and zero flag (ZF) is zero.

Repeat until ex register is zero and zero flag (ZF) is not zero.

4.5 Control Transfer Instructions

There are four classes of control transfer instructions:

• calls, jumps, and returns
• conditional jumps
• iterational control
• interrupts

All control transfer instructions cause program execution to continue at some new
location in memory, possibly in a new code segment. The transfer can be absolute or it
can depend upon a certain condition. Table 4-9 defines control transfer instructions. In
the definitions of conditional jumps, above and below refer to the relationship between
unsigned values. Greater than and less than refer to the relationship between signed
values.

-------------------------- IiIDDIGITAL RESEARCH'"
4-12

Concurrent CP/M-86 Utilities Guide 4.5 Control Transfer Instructions

Table 4-9. Control Transfer Instructions

CALL

CALL

CALLF

CALLF

INT

INTO

I RET

JA

JAE

JB

JBE

Syntax

label

memlreg16

label

mem

numb8

lab8

lab8

lab8

lab8

I Result

Push the offset address of the next instruction
on the stack; jump to the target label.

Push the offset address of the next instruction
on the stack; jump to location indicated by
contents of specified memory or register.

Push CS segment register on the stack, push the
offset address of the next instruction on the
stack (after CS), and jump to the target label.

Push CS register on the stack, push the offset
address of the next instruction on the stack,
and jump to location indicated by contents of
specified double word in memory.

Push the flag registers (as in PUSHF), clear TF
and IF flags, and transfer control with an in­
direct call through anyone of the 256 interrupt­
vector elements. Uses three levels of stack.

If OF (the overflow flag) is set, push the flag
registers (as in PUSHF), clear TF and IF flags,
and transfer control with an indirect call
through interrupt-vector element 4 (location
10H). If the OF flag is cleared, no operation
takes place.

Transfer control to the return address saved by
a previous interrupt operation and restore
saved flag registers, as well as CS and IP. Pops
three levels of stack.

Jump if not below or equal or above ((CF or
ZF) =0).

Jump if not below or above or equal (CF = 0).

Jump if below or not above or equal (CF = 1).

Jump if below or equal or not above ((CF or
ZF) = 1).

I!IDDIGITAL RESEARCH'" -------------------------
4-13

4.5 Control Transfer Instructions

Syntax

JC lab8

JCXZ lab8

JE lab8

JG lab8

JGE lab8

JL lab8

JLE lab8

JMP label

JMP memlreg16

JMPF label

JMPS lab8

JNA lab8

JNAE lab8

JNB lab8

JNBE lab8

JNC lab8

JNE lab8

JNG lab8

Concurrent CP/M-86 Utilities Guide

Table 4-9. (continued)

I Result

Same as JB.

Jump to target label if CX register is zero.

Jump if equal or zero (ZF= 1).

Jump if not less or equal or greater (((SF xor
OF) or ZF) =0).

Jump if not less or greater or equal ((SF xor
OF) =0).

Jump if less or not greater or equal ((SF xor
OF) = 1).

Jump if less or equal or not greater (((SF xor
OF) or ZF) = 1).

Jump to the target label.

Jump to location indicated by contents of
specified memory or register.

Jump to the target label, possibly in another
code segment.

Jump to the target label within ± 128 bytes
from instruction.

Same asJBE.

Same asJB.

Same asJAE.

Same asJA.

Same asJNB.

Jump if not equal or not zero (ZF = 0).

Same asJLE.

-----------------------[!ID DIGITAL RESEARCH
4-14

Concurrent CP/M-86 Utilities Guide 4.5 Control Transfer Instructions

Syntax

JNGE lab8

JNL lab8

JNLE lab8

JNO lab8

JNP lab8

JNS lab8

JNZ lab8

JO lab8

JP lab8

JPE lab8

JPO lab8

JS lab8

JZ lab8

LOOP lab8

LOOPE lab8

LOOPNE lab8

LOOPNZ lab8

LOOPZ

RET

lab8

I

Table 4-9. (continued)

Same as JL.

Same asJGE.

Same asJG.

Result

Jump if not overflow (OF=O).

Jump if not parity or parity odd.

Jump if not sign.

Same asJNE.

Jump if overflow (OF= 1).

Jump if parity or parity even (PF = 1).

Same as JP.

Same asJNP.

Jump if sign (SF = 1).

Same as JE.

Decrement ex register by one; jump to target
label if ex is not zero.

Decrement ex register by one, jump to target
label if ex is not zero and the ZF flag is set.
Loop while zero or loop while equal.

Decrement ex register by one; jump to target
label if ex is not zero and ZF flag is cleared.
Loop while not zero or loop while not equal.

Same as LOOPNE.

Same as LOOPE.

Return to the return address pushed by a pre­
vious eALL instruction; increment stack
pointer by 2.

!!ill DIGITAL RESEARCH'" ------------------------
4-15

4.5 Control Transfer Instructions Concurrent CP/M-86 Utilities Guide

Syntax

RET numb

RETF

RETF numb

I

Table 4-9. (continued)

Result

Return to the address pushed by a previous
CALL; increment stack pointer by 2+numb.

Return to the address pushed by a previous
CALLF instruction; increment stack pointer
by 4.

Return to the address pushed by a previous
CALLF instruction; increment stack pointer by
4 + numb.

4.6 Processor Control Instructions

Processor control instructions manipulate the flag registers. Moreover, some of these
instructions synchronize the 8086 CPU with external hardware.

CLC

CLD

CLI

CMC

ESC

HLT

Table 4-10. Processor Control Instructions

Syntax I

numb8,memlreg

Result

Clear CF flag.

Clear DF flag, causing string instructions to
auto-increment the operand pointers.

Clear IF flag, disabling maskable external
interrupts.

Complement CF flag.

Do no operation other than compute the effec­
tive address and place it on the address bus
(ESC is used by the 8087 numeric coprocessor).
numb8 must be in the range 0, 63.

8086 processor enters halt state until an inter­
rupt is recognized.

--------------------------I!ID DIGITAL RESEARCH™
4-16

Concurrent CP/M-86 Utilities Guide 4.6 Processor Control Instructions

Syntax

LOCK

Nap

STC

STD

STI

WAIT

I

Table 4-10. (continued)

Result

PREFIX instruction; cause the 8086 processor
to assert the buslock signal for the duration of
the operation caused by the following instruc­
tion. The LOCK prefix instruction can precede
any other instruction. Buslock prevents co­
processors from gaining the bus; this is useful
for shared-resource semaphores.

No operation is performed.

Set CF flag.

Set DF flag, causing string instructions to auto­
decrement the operand pointers.

Set IF flag, enabling maskable external
interrupts.

Cause the 8086 processor to enter a wait state
if the signal on its TEST pin is not asserted.

[!ID DIGITAL RESEARCH"" --------------------------
4-17

4.7 Mnemonic Differences Concurrent CP/M-86 Utilities Guide

4.7 Mnemonic Differences

The CP/M 8086 assembler uses the same instruction mnemonics as the Intel 8086
assembler except for explicitly specifying far and short jumps, calls, and returns. The
following table shows the four differences:

Table 4-11. Mnemonic Differences

Mnemonic Function I CP/M I Intel

Intrasegment short jump: jMPS jMP

Intersegmentjump: jMPF jMP

Intersegmentreturn: RETF RET

Intersegment call: CALLF CALL

End of Section 4

------------------------- I!ID DIGITAL RESEARCH'"
4-18

Section 5
Code-macro Facilities

5.1 Introduction to Code-macros

A macro simplifies using the same block of instructions over and over again throughout
a program. ASM-86 does not support traditional assembly-language macros, but it does
allow you to define your own instructions by using the Code-macro directive. An ASM-86
Code-macro sends a bit stream to the output file, adding a new instruction to the
assembler.

Like traditional macros, Code-macros are assembled wherever they appear in assembly
language code, but there the similarity ends. Traditional macros contain assembly
language instructions, but a Code-macro contains only Code-macro directives. Macros
are usually defined in the user's symbol table; ASM-86 Code-macros are defined in the
assembler's symbol table.

Because ASM-86 treats a Code-macro as an instruction, you can start Code-macros
by using them as instructions in your program. The example below shows how to start
MAC™, an instruction defined by a Code-macro.

}-{CHG
MAC
MUL

BH,WORD3
PARi ,PAR2
AH,WORD4

Note that MAC accepts two operands. When MAC was defined, these two operands
were also classified by type, size, and so on by defining MAC's formal parameters. The
names of formal parameters are not fixed. They are stand-ins that are replaced by the
names or values supplied as operands when the Code-macro starts. Thus, formal
parameters hold the place and indicate where and how to use the operands.

lIID DIGITAL RESEARCHTN --------------------------
5-1

5.1 Introduction to Code-macros Concurrent CP/M-86 Utilities Guide

The definition of a Code-macro starts with a line specifying its name and any formal
parameters:

CODEMACRO name [formal parameter list]

where the optional formal parameter list is defined:

formal name: specifier letter [modifier letter] [range]

The formal name is not fixed, but represent a place holder. If formal parameter list is
present, the specifier letter is required and the modifier letter is optional. Possible
specifiers are A, C, D, E, M, R, S, and X. Possible modifier letters are b, d, w, and sb.
The assembler ignores case except within strings, but this section shows specifiers in
upper-case and modifiers in lower-case. Following sections describe specifiers, modifiers,
and the optional range in detail.

The body of the Code-macro describes the bit pattern and formal parameters. Only
the following directives are legal within Code-macros:

SEGFIX
NOSEGFIX
MODRM
RELB
RELW
DB
DW
DD
DBIT

These directives are unique to Code-macros. Those that appear to duplicate ASM-86
directives (DB, DW, and DD) have different meanings in Code-macro context. These
directives are detailed in later sections. The definition of a Code-macro ends with a line:

EndM

CodeMacro, EndM, and the Code-macro directives are all reserved words. Code­
macro definition syntax is defined in Backus-Naur-like form in Appendix G. The
following examples are typical Code-macro definitions.

-------------------------- [!QJ DIGITAL RESEARCH™
5-2

Concurrent CP/M-86 Utilities Guide 5.1 Introduction to Code-macros

CodeMacro AAA
DB 37H

EndM

CodeMacro DIV divisor:Eb
SEGFI}< divisor
DB GFH
MODRM di\)isor

EndM

CodeMacro ESC opcode: Db(OtG3)tsrc:Eb
SEGFI}'{ 5 rc
OBIT 5 (lBH)t3 (opcode(3»
MODRM opcodetsrc

EndM

5.2 Specifiers

Every formal parameter must have a specifier letter that indicates the type of operand
needed to match the formal parameter. Table 5-1 defines the eight possible specifier
letters.

Table 5-1. Code-macro Operand Specifiers

Letter I Operand Type

A Accumulator register, AX or AL.

C Code, a label expression only.

D Data, a number to be used as an immediate value.

E Effective address, either an M (memory address) or an R (register).

M Memory address. This can be either a variable or a bracketed register
expression.

R

S

X

A general register only.

Segment register only.

A direct memory reference.

[!QJ DIGITAL RESEARCH'" -------------------------
5-3

5.3 Modifiers Concurrent CP/M-86 Utilities Guide

5.3 Modifiers

The optional modifier letter is a further requirement on the operand. The meaning of
the modifier letter depends on the type of the operand. For variables, the modifier requires
the operand to be of type b for byte, w for word, d for double-word, and sb for signed
byte. For numbers, the modifiers require the number to be of a certain size: b for -256
to 255 and w for other numbers. Table 5-2 summarizes Code-macro modifiers.

Table 5-2. Code-macro Operand Modifiers

Variables Numbers

Modifier I Type Modifier I Size

b byte b -256 to 255

w word w anything else

d dword

sb signed
byte

5.4 Range Specifiers

The optional range is specified in parentheses by one expression, or by two expressions
separated by a comma. The following are valid formats:

(numberb)
(register)
(numberb,numberb)
(n umberb ,register)
(register ,numberb)
(register ,register)

Numberb is 8-bit number, not an address. The following example specifies that the
input port must be identified by the DX register:

CodeMacro IN dst:AI"lfPort:RI"dO}-{)

-------------------------- [!IDDIGITAL RESEARCH""
5-4

Concurrent CP/M-86 Utilities Guide 5.4 Range Specifiers

The next example specifies that the CL register is to contain the count of rotation:

Cod eM a c r 0 ROR d 5 t : EIAI f C 0 U 1"1 t : R b (CL)

The last example specifies that the opcode is to be immediate data and ranges from 0 to
63, inclusive:

CodeMacro ESC opcode:Dt'(OG3) tadds:Eb

5.5 Code-macro Directives

Code-macro directives define the bit pattern and make further requirements on how
the operand is to be treated. Directives are reserved words. Those that appear to duplicate
assembly language instructions have different meanings in a Code-macro definition.
Only the nine directives defined here are legal in Code-macro definitions.

5.5.1 SEGFIX

If SEGFIX is present, it instructs the assembler to determine whether a segment-over­
ride prefix byte is needed to access a given memory location. If so, it is output as the
first byte of the instruction. If not, no action is taken. SEGFIX takes the form:

SEGFIX formal name

where formal name is the name of a formal parameter that represents the memory
address. Because it represents a memory address, the formal parameter must have one
of the specifiers E, M, or X.

5.5.2 NOSEGFIX

Use NOSEGFIX for operands in instructions that must use the ES register for that
operand. This applies only to the destination operand of these instructions: CMPS,
MOVS, SCAS, and STOS. The form of NOSEGFIX is

NOSEGFIX segreg,formal name

Il]] DIGITAL RESEARCHTN

5-5

5.5 Code-macro Directives Concurrent CP/M-86 Utilities Guide

where segreg is one of the segment registers ES, CS, SS, or DS and formal name is the
name of the memory-address formal parameter, which must have a specifier E, M, or
X. No code is generated from this directive, but an error check is performed. The
following is an example of NOSEGFIX use:

Co d eMac ro MOVS 5 i_pt r: E ' t d i_pt r: E '
NOSEGFIX EStdi ptr
SEGF I }.{
DB

EndM

5.5.3 MODRM

This directive instructs the assembler to generate the MODRM byte that follows the
opcode byte in many 8086 instructions. The MODRM byte contains either the indexing
type or the register number to be used in the instruction. It also specifies the register to
be used or gives more information to specify an instruction.

The MODRM byte carries the information in three fields. The mod field occupies the
two most significant bits of the byte and combines with the register memory field to
form 32 possible values: 8 registers and 24 indexing modes.

The reg field occupies the three next bits following the mod field. It specifies either a
register number or three more bits of opcode information. The meaning of the reg field
is determined by the opcode byte.

The register memory field occupies the last three bits of the byte. It specifies a register
as the location of an operand or forms a part of the address-mode in combination with
the mod field described above.

For further information on 8086 instructions and their bit patterns, see the Intel 8086
Assembly Language Programming Manual and the Intel 8086 Family User's Manual.

The forms of MODRM are:

MODRM formal name, formal name
MODRM NUMBER?, formal name

------------------------- IIIDDIGITAL RESEARCH'"
5-6

Concurrent CP/M-86 Utilities Guide 5.5 Code-macro Directives

where NUMBER7 is a value 0 to 7 inclusive, and formal name is the name of a formal
parameter. The following examples show how to use MODRM:

CodeMacro RCR dst:Ewtcount:Rb(CL)
SEGFIH
DB
MODRM

EndM

dst
OD3H
3tdst

CodeMacro OR dst:Rwtsrc:Ew
SEGFI}-{
DB
MODRM

EndM

5 rc
OBH
dst tsrc

5.5.4 RELB and RELW

These directives, used in IP-relative branch instructions, instruct the assembler to
generate displacement between the end of the instruction and the label supplied as an
operand. RELB generates one byte and REL W two bytes of displacement. The directives
take the following forms:

RELB formal name
REL W formal name

where formal name is the name of a formal parameter with a C (code) specifier. For
example,

CodeMacro LOOP place:Cb
DB OE2H
RELB

EndM
place

I!ID DIGITAL RESEARCH'" -------------------------
5-7

5.5 Code-macro Directives Concurrent CP/M-86 Utilities Guide

5.5.5 DB, DW, and DD

These directives differ from those that occur outside of Code-macros. The forms of
the directives are

DB formal name I NUMBERB
DW formal name I NUMBERW
DD formal name

where NUMBERB is a single-byte number, NUMBERW is a two-byte number, and
formal name is a name of a formal parameter. For example,

CodeMacro XOR dst:Ewfsrc:Db
SEGFI}-{ dst
DB 81H
MODRM
OW

EndM

5.5.6 DBIT

6fdst
5 rc

This directive manipulates bits in combinations of a byte or less. The form is

DBIT field description[,field description]

where a field description has two forms:

number combination
number (formal name(rshift))

number ranges from 1 to 16 and specifies the number of bits to be set. Combination
specifies the desired bit combination. The total of all the numbers listed in the field
descriptions must not exceed 16. The second form shown above contains formal name,

--------------------------I!ID DIGITAL RESEARCHTN

5-8

Concurrent CP/M-86 Utilities Guide 5.5 Code-macro Directives

a formal parameter name instructing the assembler to put a certain number in the
specified position. This number usually refers to the register specified in the first line of
the Code-macro. The numbers used in this special case for each register are

AL: 0
CL: 1
DL: 2
BL: 3

AH: 4
CH: 5
DH: 6
BH: 7
AX: 0
CX: 1
DX: 2
BX: 3
SP: 4
BP: 5
SI: 6

DI: 7
ES: 0
CS: 1
SS: 2

DS: 3

A rshift, contained in the innermost parentheses specifies a number of right shifts.
For example, 0 specifies no shift, 1 shifts right one bit, 2 shifts right two bits, and so
on. The following definition uses this form:

CodeMacro DEC dst:Rw
OBIT 5(SH) t3(dst(O»

EndM

~DIGITAL~EARCH~--

5-9

5.5 Code-macro Directives Concurrent CP/M-86 Utilities Guide

The first five bits of the byte have the value 9H. If the remaining bits are zero, the hex
value of the byte will be 48H. If the instruction

DEC OX

is assembled and DX has a value of 2H, then 48H + 2H = 4AH, the final value of the
byte for execution. If this sequence had been present in the definition

DBIT 5 (SH) f3(dst(1)'

then the register number would have been shifted right once, and the result would had
been 48H + lH = 49H, which is erroneous.

End of Section 5

-------------------------[!ID DIGITAL RESEARCH'"
5-10

6.1 DDT-86 Operation

Section 6
DDT-86

The DDT-86 program allows you to test and debug programs interactively in a
Concurrent CP/M-86 environment. You should be familiar with the 8086 processor,
ASM-86, and the Concurrent CP/M-86 operating system before using DDT-86.

6.1.1 Starting DDT-86

Start DDT-86 by entering a command in one of the following forms:

DDT86
DDT86 filename

The first command simply loads and executes DDT-86. After displaying its sign-on
message and the prompt character (-), DDT-86 is ready to accept operator commands.
The second command is similar to the first, except that after DDT-86 is loaded it loads
the file specified by filename. If the filetype is omitted from the filename, . CMD is
assumed. Note that DDT-86 cannot load a file of type .H86. The second form of the
starting command is equivalent to the sequence:

A)DDT85
DOT8S x.x
-£ fi 1 enalTle

At this point, the program that was loaded is ready for execution.

6.1.2 DDT-86 Command Conventions

When DDT -86 is ready to accept a command, it prompts the operator with a hyphen (-).
In response, you can type a command line, or a CTRL-C to end the debugging session.
See Section 6.1.4. A command line can have up to 64 characters and must terminate with
a carriage return. While entering the command, use standard CP/M line-editing functions,
such as CTRL-X, CTRL-H, and CTRL-R, to correct typing errors. DDT -86 does not process
the command line until you enter a carriage return.

~DIGITAL~EARCH~--

6-1

6.1 DDT -86 Operation Concurrent CP/M-86 Utilities Guide

The first character of each command line determines the command action. Table 6-1
summarizes DDT-86 commands. DDT-86 commands are defined individually in
Section 6.2.

Table 6-1. DDT-86 Command Summary

Command I
A
B
D
E
F
G
H
I
L
M
QI
QO
R
S
SR
T
U
V
W
X

Action

Enter assembly language statements.
Compare blocks of memory.
Display memory in hexadecimal and ASCII.
Load program for execution.
Fill memory block with a constant.
Begin execution with optional breakpoints.
Hexadecimal arithmetic.
Set up File Control Block and command tail.
List memory using 8086 mnemonics.
Move memory block.
Read I/O port.
Write I/O port.
Read disk file into memory.
Set memory to new values.
Search for string.
Trace program execution.
Untraced program monitoring.
Show memory layout of disk file read.
Write contents of memory block to disk.
Examine and modify CPU state.

The command character can be followed by one or more arguments. These can be
hexadecimal values, filenames, or other information, depending on the command.
Arguments are separated from each other by commas or spaces. No spaces are allowed
between the command character and the first argument.

-------------------------- [ID DIGITAL RESEARCH'"

6-2

Concurrent CP/M-86 Utilities Guide 6.1 DDT-86 Operation

6.1.3 Specifying a 20-Bit Address

Most DDT-86 commands require one or more addresses as operands. B~cause the
8086 can address up to 1 megabyte of memory, addresses must be 20-bit values. Enter
a 20-bit address as follows:

ssss:oooo

where ssss represents an optional 16-bit segment number and 0000 is a 16-bit offset.
DDT-86 combines these values to produce a 20-bit effective address as follows:

ssssO
+0000

eeeee

The optional value ssss can be a 16-bit hexadecimal value or the name of a segment
register. If a segment register name is specified, the value of ssss is the contents of that
register in the user's CPU state, as indicated by the X command. If omitted, the value
of sss~ is a default value appropriate to the command being executed, as described in
Section 6.3.

6.1.4 Terminating DDT-86

Terminate DDT-86 by typing a CTRL-C in response to the hyphen prompt. This
returns control to the CCP. Note that Concurrent CP/M-86 does not have the SAVE
facility found in CP/M for 8-bit machines. Thus if DDT-86 is used to patch a file, write
the file to disk using the W command before exiting DDT-86.

6.1.5 DDT -86 Operation with Interrupts

DDT-86 operates with interrupts enabled or disabled and preserves the interrupt state
of the program being executed under DDT-86. When DDT-86 has control of the CPU,
either when it starts, or when it regains control from the program being tested, the
condition of the interrupt flag is the same as it was when DDT-86 started, except for a
few critical regions where interrupts are disabled. While the program being tested has
control of the CPU, the user's CPU state, which can be displayed with the X command,
determines the state of the interrupt flag.

@ DIGITAL RESEARCHTli

6-3

6.2 DDT-86 Commands Concurrent CP/M-86 Utilities Guide

6.2 DDT-86 Commands

This section defines DDT-86 commands and their arguments. DDT-86 commands
give you control of program execution and allow you to display and modify system
memory and the CPU state.

6.2.1 The A (Assemble) Command

The A command assembles 8086 mnemonics directly into memory. The form is

As

where s is the 20-bit address where assembly is to start. DDT-86 responds to the A
command by displaying the address of the memory location where assembly is to begin.
At this point the operator enters assembly language statements as described in Section
2.8. When a statement is entered, DDT-86 converts it to binary, places the values in
memory, and displays the address of the next available memory location. This process
continues until you enter a blank line or a line containing only a period.

DDT -86 responds to invalid statements by displaying a question mark? and redisplay­
ing the current assembly address.

6.2.2 The B (Block Compare) Command

The B command compares two blocks of memory and displays any differences on the
screen. The form is

Bsl,fl,s2

where '81 is the 20-bit address of the start of the first block; fl is the offset of the final
byte of the first block, and s2 is the 20-bit address of the start of the second block. If
the segment is not specified in s2, the same value is used that was used for s1.

Any differences in the two blocks are displayed at the screen in the following form:

sl:ol bl s2:02 b2

where sl:ol and s2:02 are the addresses in the blocks; bl and b2 are the values at the
indicated addresses. If no differences are displayed, the blocks are identical.

-------------------------lIID DIGITAL RESEARCH'"
6-4

Concurrent CP/M-86 Utilities Guide 6.2 DDT-86 Commands

6.2.3 The D (Display) Command

The D command displays the contents of memory as 8-bit or 16-bit values and in
ASCII. The forms are

D
Ds
Ds,f
DW
DWs
DWs,f

where s is the 20-bit address where the display is to start, and f is the 16-bit offset within
the segment specified in s where the display is to finish.

Memory is displayed on one or more display lines. Each display line shows the values
of up to 16 memory locations. For the first three forms, the display line appears as
follows: .

ssss:oooo bb bb ... bb cc ... c

where ssss is the segment being displayed and 0000 is the offset within segment ssss.
The bb's represent the contents of the memory locations in hexadecimal, and the c's
represent the contents of memory in ASCII. Any nongraphic ASCII characters are
represented by periods.

In response to the first form shown above, DDT-86 displays memory from the current
display address for 12 display lines. The response to the second form is similar to the
first, except that the display address is first set to the 20-bit address s. The third form
displays the memory block between locations sand f. The next three forms are analogous
to the first three, except that the contents of memory are displayed as 16-bit values,
rather than 8-bit values, as shown below:

ssss:oooo wwww WWWW ••• wwwwcccc ... cc

During a long display, you can abort the D command by typing any character at the
console.

~DIGITAL~EARCH~--
6-5

6.2 DDT-86 Commands Concurrent CP/M-86 Utilities Guide

6.2.4 The E (Load for Execution) Command

The E command loads a file into memory so that a subsequent G, T, or U command
can begin program execution. The E command takes the forms:

E filename
E

where filename is the name of the file to be loaded. If no filetype is specified, .CMD is
assumed. The contents of the user segment registers and IP register are altered according
to the information in the header of the file loaded.

An E command releases blocks of memory allocated by previous E or R commands
or by programs executed under DDT-86. Thus only one file at a time can be loaded for
execution.

When the load is complete, DDT-86 displays the start and end addresses of each
segment in the file loaded. Use the V command to redisplay this information at a later time.

If the file does not exist or cannot be successfully loaded in the available memory,
DDT-86 issues an error message. Files are closed after an E command.

E with no filename frees all memory allocations made by DDT -86, without loading a file.

6.2.5 The F (Fill) Command

The F command fills an area of memory with a byte or word constant. The forms are

Fs,f,b
FWs,f,w

where s is a 20-bit starting address of the block to be filled, and f is a 16-bit offset of
the final byte of the block in the segment specified in s.

In response to the first form, DDT-86 stores the 8-bit value b in locations s through f.
In the second form, the 16-bit value w is stored in locations s through f in standard form,
low 8 bits first, followed by high 8 bits.

If s is greater than f or the value b is greater than 255, DDT-86 responds with a
question mark. DDT-86 issues an error message if the value stored in memory cannot
be read back successfully, indicating faulty or nonexistent RAM at the location indicated.

-------------------------I!IDDIGITALRESEARCH™
6-6

Concurrent CP/M-86 Utilities Guide 6.2 DDT-86 Commands

6.2.6 The G (Go) Command

The G command transfers control to the program being tested and optionally sets one
or two breakpoints. The forms are

G
G,bl
G,bl,b2
Gs
Gs,bl
Gs,bl,b2

where s is a 20-bit address where program execution is to start, and bland b2 are 20-bit
addresses of breakpoints. If no segment value is supplied for any of these three addresses,
the segment value defaults to the contents of the CS register.

In the first three forms, no starting address is specified, so DDT-86 derives the 20-bit
address from the user's CS and IP registers. The first form transfers control to your
program without setting any breakpoints. The next two forms set one and two break­
points, respectively, before passing control to your program. The next three forms are
analogous to the first three, except that your CS and IP registers are first set to s.

Once control has been transferred to the program under test, it executes in real time
until a breakpoint is encountered. At this point, DDT-86 regains control, clears all
breakpoints, and indicates the address at which execution of the program under test was
interrupted as follows:

*ssss:oooo

where ssss corresponds to the CS, and 0000 corresponds to the IP where the break
occurred. When a breakpoint returns control to DDT-86, the instruction at the break­
point address has not yet been executed.

fi]] DIGITAL RESEARCH™ ---------------------------
6-7

6.2 DDT-86 Commands Concurrent CP/M-86 Utilities Guide

6.2.7 The H (Hexadecimal Math) Command

The H command computes the sum and difference of two 16-bit values. The form is
shown below:

Ha,b

where a and b are the values the sum and difference of which are being computed.
DDT-86 displays the sum (ssss) and the difference (dddd) truncated to 16 bits on the
next line, as shown below:

ssss dddd

6.2.8 The I (Input Command Tail) Command

The I command prepares a File Control Block and command tail buffer in DDT-86's
Base Page and copies this information into the Base Page of the last file loaded with the
E command. The I command takes the form:

I command tail

where command tail is a character string which usually contains one or more filenames.
The first filename is parsed into the default File Control Block at OOSCH. The optional
second filename, if specified, is parsed into the second part of the default File Control
Block beginning at 006CH. The characters in command tail are also copied into the
default command buffer at 0080H. The length of command tail is stored at 0080H,
followed by the character string ending with a binary zero.

If a file has been loaded with the E command, DDT-86 copies the File Control Block
and command buffer from the Base Page of DDT-86 to the Base Page of the program
loaded. The location of DDT-86's Base Page can be obtained from the 16-bit value at
absolute memory location 0:6. The location of the Base Page of a program loaded with
the E command is the value displayed for DS upon completion of the program load.

6.2.9 The L (List) Command

The L command lists the contents of memory in assembly language. The forms are

L
Ls
Ls,f

-------------------------!lID DIGITAL RESEARCH'"
6-8

Concurrent CP/M-86 Utilities Guide 6.2 DDT -86 Commands

where s is a 20-bit address where the list is to start, and f is a 16-bit offset within the
segment specified in s where the list is to finish.

The first form lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to s and then lists twelve lines of code.
The last form lists disassembled code from s through f. In all three cases, the list address
is set to the next unlisted location in preparation for a subsequent L command. When
DDT-86 regains control from a program being tested (see G, T, and U commands), the
list address is set to the current value of the CS and IP registers.

Long displays can be aborted by typing any key during the list process. Or, enter
CTRL-S to halt the display temporarily.

6.2.10 The M (Move) Command

The M command moves a block of data values from one area of memory to another.
The form is

Ms,f,d

where s is the 20-bit starting address of the block to be moved, f is the offset of the final
byte to be moved within the segment described by s, and d is the 20-bit address of the
first byte of the area to receive the data. If the segment is not specified in d, the same
value is used that was used for s. Note that if d is between sand f, part of the block
being moved will be overwritten before it is moved because data is transferred starting
from location s.

6.2.11 The QI, QO (Query I/O) Commands

The QI and QO commands allow access to any of the 65,536 input/output ports. The
QI command reads data from a port; the QO command writes data to a port. The forms
of the QI command are

QIn
QIWn

where n is the 16-bit port number. In the first case, DDT-86 displays the 8-bit value read
from port n. In the second case, DDT-86 displays a 16-bit value from port n.

[!]) DIGITAL RESEARCH -------------------------
6-9

6.2 DDT-86 Commands

The forms of the QO command are

QOn,v
QOWn,v

Concurrent CP/M-86 Utilities Guide

where n is the 16-bit port number, and v is the value to output. In the first case, the 8-bit
value v is written to port n. If v is greater than 255, DDT-86 responds with a question
mark. In the second case, the 16-bit value v is written to port n.

6.2.12 The R (Read) Command

The R command reads a file into a contiguous block of memory. The forms are

R filename
R filename,s

where filename is the name and type of the file to be read, and s is the location to which
the file is read. The first form lets DDT-86 determine the memory location into which
the file is read.

The second form tells DDT-86 to read the file into the memory segment beginning at
s. This address can have the standard form (ssss:oooo). The low-order four bits of s are
assumed to be zero, so DDT-86 reads files on a paragraph boundary. If the memory at
s is not available, DDT-86 issues the message:

MEMORY REQUEST DEN I ED

DDT-86 reads the file into memory and displays the start and end addresses of the
block of memory occupied by the file. A V command can redisplay this information at
a later time. The default display pointer (f or subsequent D commands) is set to the start
of the block occupied by the file.

The R command does not free any memory previously allocated by another R or E
command. Thus a number of files can be read into memory without overlapping.

If the file does not exist or there is not enough memory to load the file, DDT-86 issues
an error message. Files are closed after an R command, even if an error occurs.

-------------------------- I!ID DIGITAL RESEARCH™
6-10

Concurrent CP/M-86 Utilities Guide 6.2 DDT-86 Commands

The following are examples of the R command, followed by a brief explanation.

rddt8G. CITld

rtest

rtesttlOOO:O

Read file DDT86.CMD into memory.

Read file TEST into memory.

Read file TEST into memory, starting
atlocation 1000:0.

6.2~13 The S (Set) Command

The S command can change the contents of bytes or words of memory. The forms are

Ss
SWs

where s is the 20-bit address where the change is to occur.

DDT-86 displays the memory address and its current contents on the following line.
In response to the first form, the display is

ssss:oooo bb

In response to the second form, the display is

ssss:oooo wwww

where bb and wwwwarethecontents of memory in byte and word formats, respectively.

In response to one of the above displays, the operator can choose to alter the memory
location or to leave it unchanged. If a valid hexadecimal value is entered, the contents
of the byte or word in memory is replaced with the value. If no value is entered, the
contents of memory are unaffected, and the contents of the next address are displayed.
In either case, DDT-86 continues to display successive memory addresses and values
until either a period or an invalid value is entered.

DDT-86 issues an error message if the value stored in memory cannot be read back
successfully, indicating faulty or nonexistent RAM at the location indicated.

I!ID DIGITAL RESEARCHni

6-11

6.2 DDT-86 Commands Concurrent CP/M-86 Utilities Guide

6.2.14 The SR (Search) Command

The SR (Search) command searches a block of memory for a given pattern of numeric
or ASCII values and lists the addresses where the pattern occurs. The form is

SRs,f,pattern

where s is the 20-bit starting address of the block to be searched, f is the offset of the
final address of the block, and pattern is a list of one or more hexadecimal values and/or
ASCII strings. ASCII strings are enclosed in double quotes and can be any length.
For example,

SR200 t300 t"The fa rM" tOd tOa

For each occurrence of pattern, DDT-86 displays the 20-bit address of the first byte
of the pattern, in the form:

ssss:oooo

If no addresses are listed, pattern was not found.

6.2.15 The T (Trace) Command

The T command traces program execution for 1 to OFFFFH program steps. The
forms are

T
Tn
TS
TSn

where n is the number of instructions to execute before returning control to the console.

Before an instruction is executed, DDT-86 displays the current CPU state and the
disassembled instruction. In the first two forms, the segment registers are not displayed,
allowing the entire CPU state to be displayed on one line. The next two forms are
analogous to the first two, except that all the registers are displayed, forcing the disassem­
bled instruction to be displayed on the next line, as in the X command.

-------------------------i!ID DIGITAL RESEARCH
TII

6-12

Concurrent CP/M-86 Utilities Guide 6.2 DDT-86 Commands

In all of the forms, control transfers to the program under test at the address indicated
by the CS and IP registers. If n is not specified, one instruction is executed. Otherwise,
DDT-86 executes n instructions, displaying the CPU state before each step. A long trace
can be aborted before n steps have been executed by pressing any character at the console.

After a T command, the list address used in the L command is set to the address of
the next instruction to be executed.

Note that DDT-86 does not trace through a BDOS interrupt instruction because
DDT-86 itself makes BDOS calls, and the BDOS is not reentrant. Instead, the entire
sequence of instructions from the BDOS interrupt through the return from BDOS is
treated as one traced instruction.

6.2.16 The U (Untrace) Command

The U command is identical to the T command except that the CPU state is displayed
only before the first instruction is executed, rather than before every step. The forms are

U
Un
US
USn

where n is the number of instructions to execute before returning control to the console.
The U command can be aborted before n steps have been executed by pressing any key
at the console.

6.2.17 The V (Value) Command

The V command displays information about the last file loaded with the E or R
commands. The form is

V

If the last file was loaded with the E command, the V command displays the start and
end addresses of each of the segments contained in the file. If the last file was read with
the R command, the V command displays the start and end addresses of the block of
memory where the file was read. If neither the R nor E commands have been used,
DDT-86 responds to the V command with a question mark.

~DIGITAL~EARCHn--

6-13

6.2 DDT-86 Commands Concurrent CP/M-86 Utilities Guide

6.2.18 The W (Write) Command

The W command writes the contents of a contiguous block of memory to disk. The
forms are

W filename
W filename,s,f

where filename is the filename and filetype of the disk file to receive the data, and sand
f are the 20-bit first and last addresses of the block to be written. If the segment is not
specified in f, DDT-86 uses the same value that was used for s.

If the first form is used, DDT-86 assumes the sand f values from the last file read with
an R command. If no file was read with an R command, DDT-86 responds with a
question mark. This form is useful for writing out files after patches have been installed,
assuming the overall length of the file is unchanged.

In the second form where sand f are specified as 20-bit addresses, the low four bits
of s are assumed to be o. Thus the block being written must always start on a paragraph
boundary.

If a file by the name specified in the W command already exists, DDT-86 deletes it
before writing a new file.

6.2.19 The X (Examine CPU State) Command

The X command allows the operator to examine and alter the CPU state of the
program under test. The forms are

X
Xr
Xf

where r is the name of one of the 8086 CPU registers, and f is the abbreviation of one
of the CPU flags. The first form displays the CPU state in the format:

AX BX CX . .. SS ES IP
------------xxxx xxxx xxxx ... xxxx xxxx xxxx
instruction

-------------------------I!ID DIGITAL RESEARCH™

6-14

Concurrent CP/M-86 Utilities Guide 6.2 DDT-86 Commands

The nine hyphens at the beginning of the line indicate the state of the nine CPU flags.
~ach position can be a hyphen, indicating that the corresponding flag is not set (0), or
a i-character abbreviation of the flag name, indicating that the flag is set (1). The
abbreviations of the flag names are shown in Table 6-2.

Instruction is the disassembled instruction at the next location to be executed, indicated
by the CS and IP registers.

Table 6-2. Flag Name Abbreviations

Character I
o
D
I
T
S
Z
A
P
C

Name

Overflow
Direction
Interrupt Enable
Trap
Sign
Zero
Auxiliary Carry
Parity
Carry

The second form allows the operator to alter the registers in the CPU state of the
program being tested. The r following the X is the name of one of the 16-bit CPU registers.
DDT-86 responds by displaying the name of the register, followed by its current value.
If a carriage return is typed, the value of the regi~ter is not changed. If a valid value is
typed, the contents of the register are changed to that value. In either case, the next
register is then displayed. This process continues until a period or an invalid value is
entered, or until the last register is displayed.

The third form allows the operator to alter one of the flags in the CPU state of the
program being tested. DDT-86 responds by displaying the name of the flag, followed
by its current state. If a carriage return is typed, the state of the flag is not changed. If a
valid value is typed, the state of the flag is changed to that value. Only one flag can be
examined or altered with each Xf command. Set or reset flags by entering a value of lor o.

After an X command, the typel and type2 segment values are set to the contents of
the CS and DS registers, respectively.

I!ID DIGITAL RESEARCHTW -------------------------

6-15

6.3 Default Segment Values Concurrent CP/M-86 Utilities Guide

6.3 Default Segment Values

DDT-86 has an internal mechanism that keeps track of the current segment value,
making segment specification an optional part of a DDT-86 command. DDT-86 divides
the command set into two types of commands, according to which segment a command
defaults if no segment value is specified in the command line.

The first type of command pertains to the Code Segment: A (Assemble), L (List
Mnemonics), and W (Write). These commands use the internal typel segment value if
no segment value is specified in the command.

When started, DDT-86 sets the typel segment value to 0 and changes it when one of
the following actions is taken:

• When a file is loaded by an E command, DDT-86 sets the typel segment value
to the value of the CS register.

• When a file is read by an R command, DDT-86 sets the typel segment value to
the base segment where the file was read.

• After an X command, the typel and type2 segment values are set to the contents
of the CS and DS registers, respectively.

• When DDT-86 regains control from a user program after a G, T or U command,
it sets the typel segment value to the value of the CS register.

• When a segment value is specified explicitly in an A or L command, DDT-86
sets the typel segment value to the segment value specified.

The second type of command pertains to the Data Segment: B (Block Compare),
D (Display), F (Fill), M (Move), S (Set), and SR (Search). These commands use the
internal type2 segment value if no segment value is specified in the command.

When started, DDT-86 sets the type2 segment value to 0 and changes it when one of
the following actions is taken:

.. When a file is loaded by an E command, DDT-86 sets the type2 segment value
to the value of the DS register.

iii When a file is read by an R command, DDT-86 sets the type2 segment value to
the base segment where the file was read.

• When an X command changes the value of the DS register, DDT-86 changes the
type2 segment value to the new value of the DS register.

-------------------------OCID DIGITAL RESEARCH'"
6-16

Concurrent CP/M-86 Utilities Guide 6.3 Default Segment Values

• When DDT-86 regains control from a user program after a G, T, or U command,
it sets the type2 segment value to the value of the DS register .

• When a segment value is specified explicitly in a B, D, F, M, S, or SR com­
mand, DDT-86 sets the type2 segment value to the segment value specified.

When evaluating programs that use identical values in the CS and DS registers, all
DDT-86 commands default to the same segment value unless explicitly overridden.

Note that the G (Go) command does not fall into either group because it defaults to
the CS register.

Table 6-3 summarizes DDT-86's default segment values.

Table 6-3. DDT-86 Default Segment Values

Command I type-l I type-2

A x
B x
D x
E c c
F x
G c c
H
I
L x
M x
R c c
S x

SR x
T c c
U c c
V
W x
X c c

x - Use this segment default if none specified; change default if
specified explicitly.

c - Change this segment default.

I!ID DIGITAL RESEARCHTII

6-17

6.4 Syntax Concurrent CP/M-86 Utilities Guide

6.4 Assembly Language Syntax for A and L Commands

The syntax of the assembly language statements used in the A and L commands is
standard 8086 assembly language. Several minor exceptions are listed below.

• DDT-86 assumes that all numeric values entered are hexadecimal.

• Up to three prefixes (LOCK, repeat, segment override) can appear in one state­
ment, but they all must precede the opcode of the statement. Alternately, a prefix
can be entered on a line by itself.

• The distinction between byte and word string instructions is made as follows:

byte word

LODSB LODSW
STOSB STOSW
SCASB SCASW
MOVSB MOVSW
CMPSB CMPSW

• The mnemonics for near and far control transfer instructions are as follows:

short

JMPS

normal

JMP
CALL
RET

far

JMPF
CALLF
RETF

• If the operand of a CALLF or JMPF instruction is a 20-bit absolute address, it
is entered in the form:

ssss:oooo

where ssss is the segment and 0000 is the offset of the address.

• Operands that could refer either to a byte or word are ambiguous and must be
preceded by either the prefix BYTE or WORD. These prefixes can be abbreviated
BY and WO. For example,

INC BYTE [BPJ
NOT WORD [1234 J

Failure to supply a prefix when needed results in an error message.

------------------------- [!ID DIGITAL RESEARCH'"

6-18

Concurrent CP/M-86 Utilities Guide 6.4 Syntax

• Operands that address memory directly are enclosed in square brackets to
distinguish them from immediate values. For example,

;add 5 to resister A}-{ ADD
ADD

A}-{ ,5
A}-{,[5J ;add the contents of location 5 to A}-{

• The forms of register indirect memory operands are

[pointer register]
[index register]
[pointer register + index register]

where the pointer registers are BX and BP, and the index registers are 51 and OI.
Any of these forms can be preceded by a numeric offset. For example,

ADD BX,[BP+SIJ
ADD BX,3[BP+SIJ
ADD BX,lD47[BP+SIJ

6.5 DDT -86 Sample Session

In the following sample session, you interactively debug a simple sort program.
Comments explain the steps involved.

[!j) DIGITAL RESEARCHTlI

6-19

6.5 DDT-86 Sample Session

Source file of program to test.
A>type sort.aBS

silTlPle sort pro!1ralTl

SO r t :
ITIO V

MOV
ITIOV

C OITlP:
ITIOV
CMP
Jna
xch!1
ITIOV
MOV

inci:
inc
CMP
Jnz
test
Jnz

done:
JMP

dseq

or!1

nlist db
count equ

sw db
end

s i ,0
bx ,offset nlist
sw,O

al,[bx+siJ
al,Hbx+siJ
inci
al,Hbx+siJ
[bx+siJ,al

sw t1

si
si ,count
COMP
Sr...I ,1
sort

done

100h

3,8,a,8 ,31,8,a t1
offset $ - offset
nlist
o

Assemble program.
A>asmBS sort

CP/M 8088 ASSEMBLER VER 1.1
END OF PASS 1
END OF PASS 2
END OF ASSEMBL Y. NUMBER OF ERRORS: 0

Concurrent CP/M-86 Utilities Guide

;initialize index
;bx = base of list
iclear switch fla!1

i!1et b}'te froM list
;COITIPare with next byte
idon't switch if in order
;do fi rst part of switch
;do second part
iset switch fla!1

iincrelTlent index
iend of list?
;no, .'eep !1oin!1
;done - an}' sr...dtches?
i }'es, so rt SOllIe MO re

;!1et here when list ordered

ileave space for base pa9'e

----------------------------- [!ill DIGITAL RESEARCHTli

6-20

Concurrent CP/M-86 Utilities Guide 6.5 DDT-86 Sample Session

Type listing file generated by ASM-86.
A)type sort.1st
CP/M ASM88 1.1 SOURCE: Sort.A88 PAGE 1

sitllPle sort pro!1ratrl

so r t :
0000 6EOOOO trIO v s i ,0 ;initialize index
0003 660001 ITlOV bx ,offsetibx = base of list

nlist
0008 C806080100 ITlOV sw,O iclear switch fla!1

COITlP:
0006 8AOO ITlOV al,[bx+siJ i!1et byte frotll list
0000 3A4001 CMP al li[bx+siJ icolTlPare with next byte
0010 760A jna inci idon 't switch if in orde r
0012 864001 xch!1 al ,1[bx+siJ ida fi rst part of switch
0015 8800 ITlOV [bx+siJ,al ida second part
0017 C606080101 til a v sw Ii iset switch fla!1

in c i :
001C 46 inc si iincretllent index
0010 83FE08 CtrlP si ,count iend of list?
0020 75E9 jnz c OtllP ina, .~eep !1oin!1
0022 F606080101 test sw Ii idone - any switches?
0027 7507 jnz 5 art iYes, sort Sotlle trlore

done:
0029 E9FOFF jlrlP done i!1et here when list ordered

dse!1
or!1 100h Heave space for base pa!1e

[iID DIGITAL RESEARCHTW

6-21

6.5 DDT-86 Sample Session

0100 030S040G1FOG
0401

OOOS
010S 00

nlist db

count

end
END OF ASSEMBL Y. NUMBER OF ERRORS: 0

Concurrent CP/M-86 Utilities Guide

offset $ - offset nlist
o

Type symbol table file generated by ASM-86.
A>t>'pe sort.SYfI1

0000 l..'AR I ABLES
0100 NLIST 010S SW

0000 NUMBERS
OOOS COUNT

0000 LABELS
OOOB COMP 0028 DONE 001C INCI

Type hex file generated by ASM-86.
A>type sort.hBB

0000 SORT

:0400000300000000F8
:lBOOOOS1BEOOOOBB0001CGOGOS0100SA003A40017GOASG4001SS0OCGOGOS01GC
:11001BS1014GS3FEOS75E8FGOGOS010175D7E8FDFFEE
:080100S2030S040G1FOG04010035
:OOOOOOOlFF

Generate CMD file from .H86 file;
A>dencfI1d sort

BYTES READ 0038
RECORDS WRITTEN 04

Invoke DDT-86 and load SORT.CMD.
A>ddtBB sort
DDTSS 1.0

START END
CS 047D:0000 047D:002F
DS 04S0:0000 04S0:010F

-------------------------- I!IDDIGITAL RESEARCkii

6-22

Concurrent CP/M-86 Utilities Guide 6.5 DDT -86 Sample Session

Display initial register values.
-x

A){ B)-(C){ D){ 8P BP 81 DI C8 D8 88 E8 IP
- - - - - - - - - 0000 0000 0000 0000 11SE 0000 0000 0000 OLl7D OLl80 OLiSl OLl80 0000
MDI,' 8 I ,0000

Disassemble the beginning of the code segment.
-J
OLl7D:0000 MDI,' 81 ,0000
OLl7D:0003 MDI) B)-(,0100
OLl7D:000G MDI) BYTE [0108] ,0(.
OLl7D:000B MOl,' AL,[B)-(+8I]
OLl7D:000D CMP AL,01[B)-(+8I]
OLl7D:0010 JBE 001C
OLl7D:0012)-(CHG AL ,01 [B)-(+8I]
OLl7D:0015 MOV [B){+8I] ,AL
OLl7D:0017 MOV BYTE [0108] ,01
OLl70:001C INC 81
OLl7D:001D CMP 81,0008
OLl7D:0020 JNZ OOOB

Display the start of the data segment.
-dJOO dOf

Oll80: 0100 03 08 OLi 08 IF 08 Oll 01 00 00 00 00 00 00 00 •••••••••••••••

I!ID DIGITAL RESEARCH'" ---------------------------
6-23

6.S DDT -86 Sample Session Concurrent CP/M-86 Utilities Guide

Disassemble the rest of the code.
-1
047D:0022 TEST BYTE [0108] ,01

047D:0027 JNZ 0000
047D:0028 JMP 0028
047D:002C ADD [B}'(+SI] ,AL

047D:002E ADD [B}(+SI],AL

047D:0030 DAS
047D:0031 ADD [B}{+SI] ,AL

047D:0033 ??= GC
047D:0034 POP ES
047D:0035 ADD [B}(],CL

047D:0037 AD [B}{+SI] ,M(

047D:0038 ??= GF

Execute program from IP (= 0) setting breakpoint at 29H
-!J,29
* 0 47 0 : 0028 Breakpoint encountered.

Display sorted list.
-d10Q,OOf
0480:0100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ••••••••••••

Doesn't look good; reload file
eso rt

START END
CS 047D: 0000 047D: 002F
DS 0480: 0000 0480: 0 1 OF

Trace 3 instructions.
- t3

AX BX C}(DX SP BP SI DI IP
- - - --Z - P- 0000 0100 0000 0000 118E 0000 0008 0000 0000 MoV S I ,0000
-----Z-P- 00000100 0000 0000 118E 0000 0000 00000003 MQl..J BX ,0100
-----Z-P- 0000 0100 0000 0000 118E 0000 0000 0000 OOOG MoV BYTE [0108J ,00
*0470:000B

--------------------------- [i]) DIGITAL RESEARCHTII

6-24

Concurrent CP/M-86 Utilities Guide 6.5 DDT -86 Sample Session

Trace some more.
-t3

AX BX CX OX SP BP SI 01 IP
-----Z-P- 0000 0100 0000 0000 118E 0000 0000 0000 OOOB MOV
-----Z-P- 0003 0100 0000 0000 118E 0000 0000 0000 0000 CMP
----S-A-C 0003 0100 0000 0000 118E 0000 0000 0000 0010 JBE
*0470:001C

Display unsorted list
-d100t10f

ALtCBX+SI]
ALt01CBX+SI]
001C

0480:0100 03 08 04 08 lF 08 04 01 00 00 00 00 00 00 00 00 ••••••••••••

Display next instructions to be executed.
-1
0470:001C INC SI
0470:0010 CMP SI tOO08
0470:0020 JNZ OOOB
0470:0022 TEST BYTE C0108] tOl
0470:0027 JNZ 0000
0470:0028 JMP 0028
0470:002C ADD CBX+SI] tAL
0470:002E ADD CBX+SI] tAL
0470:0030 OAS
0470:0031 ADD CBX+SI] tAL
0470:0033 ??= 8C
0470:0034 POP ES

Trace some more
-t3

AX BX CX OX SP BP SI 01 IP
----S-A-C 0003 0100 0000 0000 118E 0000 0000 0000 001C INC
--------C 0003 0100 0000 0000 118E 0000 0001 0000 0010 CMP
- - - -S-APC 0003 0100 0000 0000 118E 0000 0001 0000 0020 JNZ
*0470:000B

SI
SI t0008
OOOB

I!IDDIGITAL RESEARCH'" ---------------------------
6-25

6.5 DDT-86 Sample Session Concurrent CP/M-86 Utilities Guide

Display instructions from current IP.
-1
0470: OOOB MOV
0470: 0000 CMP
0470:0010 JBE
0470:0012 XCHG
0470:0015 MOV
0470:0017 MOV
0470:001C INC
0470:0010 CMP
0470: 0020 JNZ
0470: 0022 TEST
0470: 0027 JNZ
0470: 0028 JMP

-t3

AL.[BX+SI]
AL.Ol[BX+SI]
001C .­
AL.Ol[BX+SI]
[BX+SI] .AL
BYTE [0108] .01
SI

. SI .0003
OOOB
BYTE [0108] .01
0000
0028

AX BX CX OX SP BP SI 01 IP
----S-APC 0003 01000000 0000 118E 0000 0001 0000 OOOB MOV
----S-APC 0008 0100 0000 0000 118E 00000001 0000 0000 CMP
--------- 0008 0100 0000 0000 118E 00000001 00000010 JBE
*0470:0012

-1
0470:0012 XCHG AL .OlC6X+SIJ
0470:0015 MOV [BX+SI] .AL
0470:0017 MOV BYTE [0108] .01
0470:001C INC SI
0470:0010 CMP SI .0008
0470:0020 JNZ 0006
0470:0022 TEST BYTE [0108] .01
0470:0027 JNZ 0000
0470:0028 JMP 0028
0470:002C ADD [BX+SI] .AL
0470:002E ADO [BX+SI] .AL
0470:0030 OAS

Go until switch has been performed.
- !I,20
*0470:0020

Display list.
-d1 0011 Of

AL.[BX+SI]
AL.Ol[BX+SIJ
001C

0480: 0100 03 04 08 08 1 F 08 04 01 01 00 00 00 00 00 00 00 ••••••••••••••••

--------------------------- I!ID DIGITAL RESEARCH'"
6-26

Concurrent CP/M-86 Utilities Guide 6.5 DDT-86 Sample Session

Looks like 4 and 8 were switched okay. (And toggle is true.)
-to

AX 6X CX OX SP 6P SI 01 IP
- - - -S-APC 0004 0100 0000 0000 118E 0000 0002 0000 0020 JNZ 0006
*0470:0006

Display next instructions.
-1
OLl70: 0006 MOV AL,[6}{+SI]
OLl70: 0000 CMP AL,01[6X+Sl]
OLl70:0010 J6E 001C
OLl70:0012 XCHG AL ,01 [6){+SI]
OLl70:0015 MOV [6X+Sl] ,AL
OLl70:0017 MOV 6YTE [0108] ,01
OLl70:001C INC SI
OLl70:0010 CMP SI,0008
OLl70: 0020 JNZ 0006
OLl70: 0022 TEST 6YTE [0108] ,01
OLl70: 0027 JNZ 0000
OLl70: 0028 JMP 0028

Since switch worked, let's reload and check boundary conditions.
-esort

START END
CS OLl70: 0000 OLl70: 002F
OS 0480: 0000 0480: 01 OF

I!ID DIGITAL RESEARCH TIoI

6-27

6.5 DDT-86 Sample Session Concurrent CP/M-86 Utilities Guide

Make it quicker by setting list length to 3. (Could also have used s47d = Ie
to patch.)

-ald
0470:0010 CITIP si,3
0470:0020

Display unsorted list.
-dl00
0480: 0100 03 08 04 08 1 F 06 04 01 00 00 00 00 00 00 00 00 ••••••••••••••••
0480: 0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ••••••••••••••••
0480: 0 120 00 00 00 00 00 00 00 00 00 00 00 ')0 00 20 20 20 •••••••••••••

Set breakpoint when first 3 elements of list should be sorted.
-~/29

*0470:0029

See if list is sorted.
-dl00 d Of
0480: 0100 03 04 08 08 1 F 06 04 01 00 00 00 00 00 00 00 00 ••••••••••••••••

Interesting, the fourth element seems to have been sorted in.
-esort

START END
CS 01l70: 0000 01l70: 002F
OS 0480: 0000 0480: 01 OF

Let's try again with some tracing.
-ald
0470:001D CITIP si,3
0470:0020

--------------------------I!ID DIGITAL RESEARCH'"

6-28

Concurrent CP/M-86 Utilities Guide 6.5 DDT-86 Sample Session

-t9
AX BX C}{ OX 8P BP 81 01 IP

- - - - - Z- P - 0008 0100 0000 0000 118E 0000 0003 0000 0000 MOV
- - - - -Z- P - 0008 0100 0000 0000 118E 0000 0000 0000 0003 MOV
- - - - -Z- P - 0008 0100 0000 0000 118E 0000 0000 0000 0008 MOV
- - - - -Z- P - 0008 0100 0000 0000 118E 0000 0000 0000 OOOB MOV
-----Z-P- 00030100 0000 0000 118E 0000 0000 0000 0000 CMP
----8-A-C 0003 0100 0000 0000 118E 0000 0000 0000 0010 JBE
----8-A-C 00030100 0000 0000 118E 0000 0000 0000 001C INC
--------C 0003 0100 0000 0000 118E 0000 0001 0000 0010 CMP
- - - -8-A-C 0003 0100 0000 0000 118E 0000 0001 0000 0020 JNZ
*O£l70:000B

-1
O£l70: OOOB MOV
O£l70: 0000 CMP
O£l70:0010 JBE
O£l70: 00 12 XCHG
O£l70:0015 MOV
O£l70: 0017 MOV
O£l70:001C INC
O£l70:0010 CMP
O£l70: 0020 JNZ
O£l70: 0022 TE8T
O£l70: 0027 JNZ
O£l70: 0028 JMP

-t3

AL ,[B}{+8 I]
AL,01[BX+8I]
001C
AL ,01 [B}{+8I]
[B}(+8I] ,AL
BYTE [0108] ,01
81
81 ,0003
OOOB
BYTE [0108] ,01
0000
0028

AX BX CX OX 8P BP 81 01 IP
-.- - -8-A- C 0003 0100 0000 0000 118E 0000 0001 0000 OOOB MOV
----8-A-C 00080100 0000 0000 118E 0000 0001 00000000 CMP
--------- 00080100 0000 0000 118E 0000 0001 0000 0010 JBE
*0£170:0012

-1
O£l70: 0012 XCHG
O£l70:0015 MOV
O£l70: 0017 MOV
O£l70:001C INC
O£l70:0010 CMP
O£l70: 0020 JNZ
O£l70: 0022 TE8T

AL ,01 [B}-(+8I]
[B}(+8I] ,AL
BYTE [0108] ,01
81
81 ,0003
OOOB
BYTE [0108] ,01

8 I ,0000
B}{,0100
BYTE [0108] ,00
AL,[BX+8I]
AL,01[BX+8I]
001C
81
81 ,0003
OOOB

AL,[BX+8I]
AL ,01 [B}(+8I]
001C

I!ID DIGITAL RESEARCHTW ---------------------------

6-29

6.5 DDT-86 Sample Session Concurrent CP/M-86 Utilities Guide

-t3
AX BX CX OX 8P BP 81 01 IP

--------- 0008010000000000 119E 0000 0001 00000012 XCHG AL ,01 [BX+8I]
--------- 0004 0100 0000 0000 119E 0000 0001 0000 0015 MoV [BX+8I] ,AL
--------- 0004 010000000000 l19E 0000 0001 00000017 MoV BYTE [0108] ,01
*0470:001C

-dl00tlOf
0480: 0100 03 04 08 06 1 F 06 04 01 01 00 00 00 00 00 00 00 t t t t t t t t t t t t t t t t

So far, so good.
-t3

AX BH C}(OX 8P BP 81 01 IP
--------- 0004 0100 0000 0000 119E 0000 0001 0000 001C INC
--------- 0004 0100 0000 0000 119E 0000 0002 0000 0010 CMP
- - - - - - - - - 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ
*0470:000B

-1
0470: OOOB MoV AL, [B}(+8 I]
0470 :0000 CMP AL ,01 [B}(+8I]
0470:0010 JBE 001C
0470:0012 }(CHG AL ,01 [B}(+8I]
0470:0015 MOl,! [B'-(+8IJ ,AL
0470:0017 MOl,! BYTE [0108] ,01
0470:001C INC 81
0470:0010 CMP 81,0003
0470: 0020 JNZ OOOB
0470:0022 TE8T BYTE [0108] ,01
0470: 0027 JNZ 0000
0470: 0029 JMP 0029

-t3
AH B}(CH O}(8P BP 81 01 IP

----8-APC 0004 0100 0000 0000 119E 0000 00020000 OOOB MoV
----8-APC 0008 0100 0000 0000 119E 0000 00020000 0000 CMP
--------- 00080100 0000 0000 119E 0000 000200000010 JBE
*0470:0012

81
81 ,0003
OOOB

AL , [B}(+8 IJ
AL,Ol[BH+8I]
001C

--------------------------- [(IDDIGITAL RESEARCH"'
6-30

Concurrent CP/M-86 Utilities Guide 6.5 DDT -86 Sample Session

Sure enough, it's comparing the third and fourth elements of the list.
Reload program.

-esort
START END

CS 0470: 0000 0470: 002F
OS 0480: 0000 0480: 01 OF

-1
0470: 0000 MDV
0470: 0003 MDV
0470: 0006 MDV
0470: OOOB MDV
0470: 0000 CMP
0470:0010 JBE
0470: 0012 HCHG
0470:0015 MDV
0470: 00 17 MDV
0470:001C INC
0470:0010 CMP
0470: 0020 JNZ

Patch length.
-ald

SI,OOOO
Bl<,0100
BYTE [0108J ,00
AL , [Bl<+S I J
AL,Ol[Bl<+SIJ
001C
AL,Ol[B}(+SIJ
[B}{+SIJ,AL
BYTE [0108J ,01
SI
SI,0008
OOOB

0470:0010 ChiP si,7
0470:0020

Try it out.
-!l,28
*0470:0028

[ij] DIGITAL RESEARCH'" ---------------------------

6-31

6.5 DDT-86 Sample Session

See if list is sorted.
-dl 00 t1 Of

Concurrent CP/M-86 Utilities Guide

0480:010001 030404060608 1F 00 00 00 00 00 00 00 00 ••••••••••••••••

Looks better; let's install patch in disk file. To do this, we
must read CMD file including header, so we use R command.

-rsort.CIIICI

START
2000:0000

END
2000:01FF

First BOh bytes contain header, so code starts at BOh.
-180

2000:0080 MOV 5I,OOOO

2000:0083 MOV BX,0100

2000:0086 MOV BYTE [0108J ,00

2000:008B MOV AL,[BX+SIJ

2000:0080 CMP AL,Ol[BX+5IJ

2000:0080 JBE 008C

2000:0082 XCHG AL,Ol[BX+5IJ

2000:0085 MOV [BX+5IJ ,AL

2000:0087 MOV BYTE [0108J ,01

2000:008C INC 5I
2000:0080 CMP 5I,0008

2000:00AO JNZ 008B

Install patch.
-a8d

2000:0080 CMP si,7

Write file back to disk. (Length of file assumed to be unchanged
since no length specified.)

-IJsort.cllld

--------------------------!IID DIGITALRESEARCH™
6-32

Concurrent CP/M-86 Utilities Guide

Reload file.
-esort

START
CS Oll7D:0000
DS Oll80:0000

END
Oll7D:002F
Oll80:010F

Verify that patch was installed.

Oll7D:0000 MOV SI,OOOO
Oll7D:0003 MOV BX,0100
Oll70:0006 MOV BYTE [0108J ,00
Oll7D:000B MOV AL,[BX=SIJ
Oll70:000D CMP AL,Ol(BX=SIJ
Oll7D:00I0 JBE 001C
Oll70:0012 XCHG AL,Ol[BX=SIJ
Oll7D:0015 MOV [BX=SIJ ,AL
Oll7D:0017 MOV BYTE [0108J ,01
Oll7D:00IC (NC 51
Oll7D:00ID CMP SI,0007
Oll7D:0020 JNZ OOOB

Run it.
-!l,28

Still looks good. Ship it!
-d100 dOr

6.5 DDT-86 Sample Session

0480:0100 0103 04 04 08 08 08 IF 00 00 00 00 00 00 00 00 ••••• •••••••••••

-!l,28

*Oll7D:0028

-d100 dOF
Oll80:0100 03 08 Oll 06 IF 06 Oll 01 00 00 00 00 00 00 00 00 ••••••••••••
_hC

A>

End of Section 6

[QJ DIGITAL RESEARCHTl. ---------------------------
6-33

Command: A >A5MBB

Syntax:

Appendix A
Starting ASM-86

ASM86 filespec [$ parameters]

where

filespec is the 8086 assembly source file (drive and filetype are optional).

parameters is a one-letter type followed by a one-letter device from the table below.

Default filetype:

.A86

Parameters:

$Td where T = type and d = device

Table A-1. Parameter Types and Devices

TYPES: A H P S F

DEV/CES:

A-P x x x x

X x x x

y x x x

Z x x x

x

D d

x = valid, d = default

[!ill DIGITAL RESEARCHT
• ----------~-------------

A-I

A Starting ASM-86 Concurrent CP/M-86 Utilities Guide

Valid Parameters

Except for the F type, the default device is the current default drive.

Table A-2. Parameter Types

Type I Function

A controls location of ASSEMBLER source file.
H controls location of HEX file.
P controls location of PRINT file.
S controls location of SYMBOL file.
F controls type of hex output FORMAT.

Table A-3. Device Types

Name I
A-P

X
Y
Z
I
D

Meaning

DrivesA-P
console device
printer device
byte bucket
Intel hex format
Digital Research hex format

------------------------- [l]] DIGITAL RESEARCH'"
A-2

)

)

Concurrent CP/M-86 Utilities Guide A Starting ASM-86

Table A-4. Invocation Examples

Example I
ASMBG IO

ASMBG IO. ASM $ AD SZ

ASMBG IO $ PY S}-(

ASMBG IO $ FD

ASMBG IO $FI

Result

Assembles' file IO.A86 and produces IO.H86
IO.LST and IO.SYM.

Assembles file IO.ASM on device D and produces
IO.LST and IO.H86. No symbol file.

Assembles file IO.A86, produces IO.H86, routes
listing directly to printer, and outputs symbols on
console.

Produces Digital Research hex format.

Produces Intel hex format.

End of Appendix A

i!IDDIGITAL RESEARCHTlI

A-3

)

)

Appendix B
Mnemonic Differences from the

Intel Assembler

The CP/M 8086 assembler uses the same instruction mnemonics as the Intel 8086
assembler except for explicitly specifying far and short jumps, calls, and returns. The
following table shows the four differences.

Table B-l. Mnemonic Differences

Mnemonic Function J CP/M I Intel

Intrasegment short jump: JMPS JMP

Intersegment jump: JMPF JMP

Intersegmentreturn: RETF RET

Intersegment call: CALLF CALL

End of Appendix B

I!IDDIGITAL RESEARCHTII ------------------------
B-1

Appendix C
ASM-86 Hexadecimal Output Format

ASM-86 produces machine code in either Intel or Digital Research hexadecimal
format. The Intel format is identical to the format defined by Intel for the 8086. The
Digital Research format is nearly identical to the Intel format, but Digital adds segment
information to hexadecimal records. Output of either format can be input to the
GENCMD, but the Digital Research format automatically provides segment identifica­
tion. A segment is the smallest unit of a program that can be relocated.

Table C-1 defines the sequence and contents of bytes in a hexadecimal record. Each
hexadecimal record has one of the four formats shown in Table C-2. An example of a
hexadecimal record is shown below:

Byte number = > 0 1 2 3 4 5 6 7 8 9 n
Contents = > : 11 a a a a t t d d d c c CR LF

Table C-1. Hexadecimal Record Contents

Byte I Contents I Symbol

0 record mark
1-2 record length 11
3-6 load address aaaa
7-8 record type tt

9-(n-1) data bytes dd d
n-(n + 1) checksum cc
n+2 carriage return CR
n+3 line-feed LF

~DIGITAL~EARCH~--~--

C-l

C ASM-86 Output Format Concurrent CP/M-86 Utilities Guide

Table C-2. Hexadecimal Record Formats

Type I Content I Format

00 Data record : 11 aaaa DT <data ... > cc

01 End-of-file : 00000001 FF

Extended address
02 mark : 020000 ST ssss cc

03 Start address : 040000 03 ssss iiii cc

11 => record length - number of data bytes
cc => checksum - sum of all record bytes
aaaa => 16-bit address
ssss => 16-bit segment value
iiii => offset value of start address
DT => data record type
ST => segment address record type

It is in the definition of record type (DT and ST) that Digital Research hexadecimal
format differs from Intel. Intel defines one value each for the data record type and the
segment address type. Digital Research identifies each record with the segment that
contains it, as shown in Table C-3.

------------------------- l!]JDlGITAL RESEARCH'"
C-2

Concurrent CP/M-86 Utilities Guide C ASM-86 Output Format

Table C-3. Segment Record Types

Intel Digital
Symbol Value Value Meaning

DT 00 for data belonging to a1l8086 segments

81H for data belonging to the CODE segment

82H for data belonging to the D AT A segment

83H for data belonging to the ST A CK segment

84H for data belonging to the EXTRA segment

ST 02 for all segment address records

85H for a CODE absolute segment address

86H for a DATA segment address

87H for a STACK segment address

88H for a EXTRA segment address

End of Appendix C

i!ruDIGITAL RESEARCHTW

C-3

BYTE

AND
EQ
GE
GT

CODEMACRO
CSEG
DB
DD
DSEG
DW

DB
DBIT

AH
AL
AX
BH

Appendix D
Reserved Words

Table D-l. Keywords or Reserved Words

Predefined Numbers

WORD DWORD

Operators

LAST MOD OFFSET
LE NE OR
LENGTH NOT SEG
LT PTR SHL

Assembler Directives

EJECT IF NO LIST
END IFLIST ORG
ENDIF INCLUDE PAGESIZE
ENDM LIST PAGEWIDTH
ESEG NOIFLIST RB
EQ

Code-macro Directives

DD MODRM SEGFIX
DW NOSEGFIX RELB

8086 Registers

BL CL DI
BP CS DL
BX CX DS
CH DH DX

Instruction Mnemonics - See Appendix E.

End of Appendix D

SHR
TYPE
XOR

RS
RW
SIMFORM
SSEG
TITLE

RELW

ES
SI
SP
SS

!lID DIGITAL RESEARCH'" ---------------------
D-l

Appendix E
ASM-86 Instruction Summary

Table E-1. ASM-86 Instruction Summary

Mnemonic I Description I Section

AAA ASCII adjust for Addition 4.3
AAD ASCII adjust for Division 4.3
AAM ASCII adjust for Multiplication 4.3
AAS ASCII adjust for Subtraction 4.3
ADC Add with Carry 4.3
ADD Add 4.3
AND And 4.3
CALL Call (intrasegment) 4.5
CALLF Call (intersegment) 4.5
CBW Convert Byte to Word 4.3
CLC Clear Carry 4.6
CLD Clear Direction 4.6
CLI Clear Interrupt 4.6
CMC Complement Carry 4.6
CMP Compare 4.3
CMPS Compare Byte or Word (of string) 4.4
CMPSB Compare Byte of string 4.4
CMPSW Compare Word of string 4.4
CWD Convert Word to Double Word 4.3
DAA Decimal Adjust for Addition 4.3
DAS Decimal Adjust for Subtraction 4.3
DEC Decrement 4.3
DIV Divide 4.3
ESC Escape 4.6
HLT Halt 4.6
IDIV Integer Divide 4.3
IMUL Integer Multiply 4.3
IN Input Byte or Word 4.2
INC Increment 4.3
INT Interrupt 4.5
INTO Interrupt on Overflow 4.5
IRET Interrupt Return 4.5

!!ill DIGITAL RESEARCHTli

E-1

E Instruction Summary

Mnemonic

JA
JAE
JB
JBE
JC
JCXZ
JE
JG
JGE
JL
JLE
JMP
JMPF
JMPS
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO
JNP
JNS
JNZ
JO
JP
JPE
JPO
JS
JZ
LAHF
LDS
LEA
LES

I

Concurrent CP/M-86 Utilities Guide

Table E-1. (continued)

Description

Jump on Above
Jump on Above or Equal
Jump on Below
Jump on Below or Equal
Jump on Carry
Jump on CX Zero
Jump on Equal
Jump on Greater
Jump on Greater or Equal
Jump on Less
Jump on Less or Equal
Jump (intrasegment)
Jump (intersegment)
Jump (8-bit displacement)
Jump on Not Above
Jump on Not Above or Equal
Jump on Not Below
Jump on Not Below or Equal
Jump on Not Carry
Jump on Not Equal
Jump on Not Greater
Jump on Not Greater or Equal
Jump on Not Less
Jump on Not Less or Equal
Jump on Not Overflow
Jump on Not Parity
Jump on Not Sign
Jump on Not Zero
Jump on Overflow
Jump on Parity
Jump on Parity Even
Jump on Parity Odd
Jump on Sign
Jump on Zero
Load AH with Flags
Load Pointer into DS
Load Effective Address
Load Pointer into ES

I Section

4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.2
4.2
4.2
4.2

----------------------- t!ID DIGITAL RESEARCH™
E-2

Concurrent CP/M-86 Utilities Guide E Instruction Summary

Table E-l. (continued)

Mnemonic I Description I Section

LOCK Lock Bus 4.6
LODS Load Byte or Word (of string) 4.4
LODSB Load Byte of string 4.4
LODSW Load Word of string 4.4
LOOP Loop 4.5
LOOPE Loop While Equal 4.5
LOOPNE Loop While Not Equal 4.5
LOOPNZ Loop While Not Zero 4.5
LOOPZ Loop While Zero 4.5
MOV Move 4.2
MOVS Move Byte or Word (of string) 4.4
MOVSB Move Byte of string 4.4
MOVSW Move Word of string 4.4
MUL Multiply 4.3
NEG Negate 4.3
NOT Not 4.3
OR Or 4.3
OUT Output Byte or Word 4.2
POP Pop 4.2
POPF Pop Flags 4.2
PUSH Push 4.2
PUSHF Push Flags 4.2
RCL Rotate through Carry Left 4.3
RCR Rotate through Carry Right 4.3
REP Repeat 4.4
RET Return (intrasegment) 4.5
RETF Return (intersegment) 4.5
ROL Rotate Left 4.3
ROR Rotate Right 4.3
SAHF Store AH into Flags 4.2
SAL Shift Arithmetic Left 4.3
SAR Shift Arithmetic Right 4.3
SBB Subtract with Borrow 4.3
SCAS Scan Byte or Word (of string) 4.4
SCASB Scan Byte of string 4.4
SCASW Scan Word of string 4.4
SHL Shift Left 4.3
SHR Shift Right 4.3

[lID DIGITAL RESEARCH'"
E-3

E Instruction Summary Concurrent CP/M-86.Utilities Guide

Table E-1. (continued)

Mnemonic I Description I Section

STC Set Carry 4.6
STD Set Direction 4.6
STI Set Interrupt 4.6
STOS Store Byte or Word (of string) 4.4
STOSB Store Byte of string 4.4
STOSW Store Word of string 4.4
SUB Subtract 4.3
TEST Test 4.3
WAIT Wait 4.6
XCHG Exchange 4.2
XLAT Translate 4.2
XOR Exclusive Or 4.3

End of Appendix E

------------------------ i!IDDIGITAL RESEARCH""
E-4

Appendix F
Sample Program APPF.A86

CP/M ASM86 1.08 SOURCE: APPF.A86 TerMinal Input/Output

0000 E80600
0003 E81800
0006 E82BOO

title 'TerMinal Input/Output'
pa!l'esize 50
pa!l'ewidth 78
siMforM

'****** TerMinal I/O subroutines ********

SEG

The followins subroutines
are included:

CONSTAT
CoNIN
CON OUT

console status
console input
console output

Each routine requires CONSOLE NUMBER
in the BL reSister.

* JUMP table: *

; start of code seSMent

constat
conin
con out

* I/O port nUMbers *

Listing F-1. Sample Program APPF.A86

PAGE

I!IDDIGITAL RESEARCH™ -----------------------------
F-l

F Sample Program Concurrent CP/M-86 Utilities Guide

CP/M ASM86 1.08 SOURCE: APPF.A86 Terminal Input/Output PAGE· 2

0010
0011
0011
0001
0002

0012
0013
0013
oooa
0008

0009 53E83FOO

0000 52
OOOE B600
0010 8A17
0012 EC
0013 22a706
0016 7a02
0018 BOFF

Terminal 1:

instatl equ
indatal equ
outdatal equ
readYinmaskl equ
readyoutmaskl equ

Te rminal 2:

instat2 equ
indata2 equ
outdata2 equ
readYinmask2 equ
readyoutmask2 equ

* CONSTAT *

10h
llh
llh
01h
02h

12h
13h
13h
oah
08h

input status port
input po rt
output port
input ready mask
output ready mask

input status po rt
input po rt
output po rt
input ready mask
output ready mask

EntrY: BL - relt = terminal no
Exit: AL - relt = 0 if not ready

Offh if ready

constat:
push bx ! call okterminal
constatl:
push dx
mov dh,O read status port
mov dl tinstatustab [BX]
in al,dx
and al,readyinmasktab [bx]
jz constatout
mov al,Offh

Listing F-l. (continued)

---------------------------- l!ID DIGITAL RESEARCHTII

F-2

Concurrent CP/M-86 Utilities Guide F Sample Program

CP/M ASM86 1.09 SOURCE: APPF.A86 TerMinal Input/Output PAGE

001A 5A5BOACOC3

001F 53E82900
0023 E8E7FF
0026 74FB
0028 52
0029 6600
002B BA5702
002E EC
002F Z47F
0031 5A5BC3

0034 53E81400
0038 52
0039 50
003A 6600
003C BAl7

003E EC

constatout:
pop dx POP bx or al,al ret

onin:
conin1:

onout:

conout1:

* CONIN *

EntrY: BL - re~ = terMinal no
Exit: AL - re~ = read character

push bx ! call oKterMinal
call constat1
jz conin1
push dx
MOV dh ,0
MOV dl tindatatab [BX]
in al ,dx
and al,7th
pOP dx ! pOP

* CONOUT *

bx ret

test status

read character

strip parity bit

EntrY: BL - re~ = terMinal no
AL - re~ = character to print

push bx ! call oKterMinal
push dx
push ax
MOV dh,O test status
MOV dl tinstatustab [BX]

in al ,d x

Listing F-l. (continued)

3

I!ID DIGITAL RESEARCH"" -----------------------------
F-3

F Sample Program Concurrent CP/M-86 Utilities Guide

CP/M ASM86 1.09 SOURCE: APPF.A86 TerMinal Input/Output PAGE 4

003F 224708
0042 74FA
0044 58
0045 8A5704
0048 EE
0049 5A5BC3

004C OADB
004E 740A
0050 80FB03
0053 7305
0055 FECB
0057 B700
0059 C3

005A 5B5BC3

and al,readYoutMasKtab
jz conoutl
pop ax
MOV dl,outdatatab
out dx ,al
pop dx ! pOP bx

++++++++++++++
+ OKTERMINAL +
++++++++++++++

!

CBX]

ret

CBX]

j w r it e

EntrY: BL - re~ = terMinal no

oKterMinal:
or bl,bl
jz error
CMP bl tlenHh instatustab + 1
jae error
dec bl
MOV bh,O
ret

byte

error: pop bx ! pOP bx ! ret do nothin~

j************** end of code se~Ment ***************

* Data se~Ment *

dse~

* Data for each terMinal *

Listing F-l. (continued)

----------------------------IIID DIGITAL RESEARCHTN

F-4

Concurrent CP/M-86 Utilities Guide F Sample Program

CP/M ASM88 1.09 SOURCE: APPF.A86 TerMinal Input/Output

0000 1012
0002 1113
oooa 1113
0008 010a
0008 0208

instatustab db instat1 tinstat2
indatatab db indata1 tindata2
outdatatab db outdata1,outdata2
readYinMasKtab db readyinMasK1,readyinMasK2
readyoutMasKtab db readYoutMasK1,readYQutMasK2

i*************** end of file **********************
end

END OF ASSEMBLY, NUMBER OF ERRORS: 0

Listing F-1. (continued)

End of Appendix F

PAGE 5

~DIGITAL~EARCH~---

F-S

Appendix G
Code-macro Definition Syntax

<codemacro> :: = CODEMACRO <name> [<formal$list>]
<listofmacro$directives>]
ENDM

<name> :: = IDENTIFIER

<formal$list> :: = <parameter$descr>[{,<parameter$descr>}]

<parameter$descr> :: = <form$name>: <specifier$letter>
<modifier$letter> [(<range»]

<specifier$letter> :: = A I C I DIE I M I R I S I X

<modifier$letter> :: = b I wid I sb

<range> :: = <single$range>l<double$range>

<single$range> :: = REGISTER I NUMBERB

<double$range> :: = NUMBERB,NUMBERB I NUMBERB,REGISTER I
REGISTER,NUMBERB I REGISTER, REGISTER

<listofmacro$directives> :: = <macro$directive>
{<macro$directive> }

<macro$directive> :: = <db> I <dw> I <dd> I < segfix > I
<nosegfix> I <modrm> I <relb>
I <relw> I <dbit>

f!ID DIGITAL RESEARCH'" -----------------------
G-l

G Code-macro Syntax

<db> :: = DB NUMBERB I DB <form$name>

<dw> :: = DW NUMBERW I DW <form$name>

<dd> :: = DD <form$name>

<segfix> :: = SEGFIX <form$name>

Concurrent CP/M-86 Utilities Guide

<nosegfix> :: = NOSEGFIX <form$name>

<modrm> :: = MODRM NUMBER7,<form$name> I
MODRM <form$name>,<form$name>

<relb> :: = RELB <form$name>

<relw> :: = REL W <form$name>

<dbit> :: = DBIT <field$descr>{,<field$descr>}

<field$descr> :: = NUMBER15 (NUMBERB) I
NUMBER15 (<form$name> (NUMBERB))

<form$name> :: = IDENTIFIER

NUMBERB is 8 bits
NUMBERW is 16 bits
NUMBER? are the values 0, 1, .. , ?
NUMBER15 are the values 0, 1, .. , 15

End of Appendix G

-----------------------i!ID DIGITAL RESEARCH'"
G-2

AppendixH
ASM-86 Error Messages

ASM-86 produces two types of error messages: fatal errors and diagnostics. Fatal
errors occur when ASM-86 is unable to continue assembling. Diagnostics messages
report problems with the syntax and semantics of the program being assembled. The
following messages indicate fatal errors ASM-86 encounters during assembly:

NO FILE
DISKETTE FULL
D I RECTORY FULL
DISKETTE READ ERROR
CANNOT CLOSE
SYMBOL TABLE Ot.'ERFLOW
PARAMETER ERROR

ASM-86 reports semantic and syntax errors by placing a numbered ASCII message in
front of the erroneous source line. If there is more than one error in the line, only the
first one is reported. Table H-l summarizes ASM-86 diagnostic error messages.

Number

o
1

2

3

4

5

6

7

8

Table H-1. ASM-86 Diagnostic Error Messages

I Meaning

ILLEGAL FIRST ITEM

MISSING PSEUDO INSTRUCTION

ILLEGAL PSEUDO INSTRUCTION

DOUBLE DEFINED VARIABLE

DOUBLE DEFINED LABEL

UNDEFINED INSTRUCTION

GARBAGEATENDOFLINE-IGNORED

OPERANDS MISMATCH INSTRUCTION

ILLEGAL INSTRUCTION OPERANDS

[!QJ DIGITAL RESEARCH TW

H-l

H ASM-86 Error Messages

Number I
9

10

11
12
13

14

15

16

17
18

19

20

21
22

23

24

Concurrent CP/M-86 Utilities Guide

Table H-1. (continued)

Meaning

MISSING INSTRUCTION

UNDEFINED ELEMENT OF EXPRESSION

ILLEGAL PSEUDO OPERAND

NESTED IF ILLEGAL - IF IGNORED

ILLEGAL IF OPERAND - IF IGNORED

NO MATCHING IF FOR ENDIF

SYMBOL ILLEGALLY FORWARD REFERENCED­
NEGLECTED

DOUBLE DEFINED SYMBOL - TREATED AS
UNDEFINED

INSTRUCTION NOT IN CODE SEGMENT

FILE NAME SYNTAX ERROR

NESTED INCLUDE NOT ALLOWED

ILLEGAL EXPRESSION ELEMENT

MISSING TYPE INFORMATION IN OPERAND(S)

LABEL OUT OF RANGE

MISSING SEGMENT INFORMATION IN
OPERAND

ERROR IN CODEMACRO BUILDING

End of Appendix H

--------------------OCID DIGITALRESEARCHTII

H-2

Appendix I
DDT -86 Error Messages

Table 1-1. DDT-86 Error Messages

Error Message

AMBIGUOUS OPERAND

CANNOT CLOSE

DISK READ ERROR

DISK WRITE ERROR

I NSUFF I C I ENT MEMORY

MEMORY REQUEST DEN I ED

J Meaning

An attempt was made to assemble a command
with an ambiguous operand. Precede the operand
with the prefix BYTE or WORD.

The disk file written by a W command cannot be
closed. This is a fatal error that terminates
DDT-86 execution. Take appropriate action after
checking to see if the correct disk is in the drive
and that the disk is not write-protected.

The disk file specified in an R command could not
be read properly. This is usually the result of an
unexpected end-of-file. Correct the problem by
regenerating the H86 file.

A disk write operation could not be successfully
performed during a W command, probably due
to a full disk. Erase files or obtain a disk with
greater capacity.

There is not enough memory to load the file
specified in an R or E command.

A request for memory during an R command
could not be fulfilled. Up to eight blocks of
memory can be allocated at a given time.

!!ill DIGITAL RESEARCH TW

1-1

I DDT -86 Error Messages

Error Message I
NO FILE

NO SPACE

VERIFY ERROR AT 5:0

Concurrent CP/M-86 Utilities Guide

Table 1-1. (continued)

Meaning

The file specified in an R or E command could not
be found on the disk.

There is no space in the directory for the file being
written by a W command.

The value placed in memory by a Fill, Set, Move,
or Assemble command could not be read back
correctly, indicating bad RAM or attempting to
write to ROM or nonexistent memory at the
indicated location.

End of Appendix I

------------------------- r!ID DIGITAL RESEARCHTII

1-2

Index

"at" sign, 2-2
20-Bit Address

specification of in DDT-86, 6-3
8086 Registers, D-1

A

A (Assemble) Command (DDT-86),
6-4, 6-16, 6-18

AAA,4-6
AAD,4-6
AAM, 4-6
AAS,4-6
ADC, 4-6
ADD, 4-6
address conventions in ASM-86, 3-1
address expression, 2-16
allocating storage, 3-8
alphanumerics, 2-1
AND, 4-8
apostrophe, 2-2
arithmetic instructions, 4-5
arithmetic operators, 2-8, 2-10
ASCII character set, 2-1
ASM-86 character set, 2-1
ASM-86 error messages, 1-3, H-1
ASM-86 filetypes, 1-2
ASM-86 instruction set, 4-1, E-1
ASM-86 operators, 2-8
ASM-86 output files, 1-1
assembler directives, D-1
assembler operation, 1-1
assembly language source file, 1-1
assembly language statements, 2-16
assembly language syntax, 6-18
asterisk, 2-2

B

B (Block Compare) Command
(DDT-86), 6-4

BDOS interrupt instruction, 6-13
binary constant, 2-3
bracketed expressions, 2-16
BYTE, 2-5, 2-7, 6-18

c
CALL, 4-13
carriage return, 2-2
CBW, 4-6
character string, 2-3
CLC, 4-16
CLD, 4-16
CLI, 4-16
CMC, 4-16
CMP, 4-6
CMPS, 4-10
Code Segment, 2-7, 3-2, 6-16
code-macro directives, 5-1, 5-2,

5-5, D-1
CodeMacro directive, 5-2
colon, 2-2
conditional assembly, 3-4
console output, 1-4
constants, 2-3
control transfer instructions, 4-13
creation of output files, 1-3
CSEG directive, 3-2
CWD,4-6

!lID DIGITAL RESEARCH™ -----------------------
Index-l

D

D (Display) Command (DDT-86),
6-5, 6-17

DAA,4-6
DAS, 4-6
data allocation directives

(ASM-86), 3-2
data segment, 2-7, 3-1, 3-2, 6-16
data transfer instructions, 4-3
DB directive (ASM-86), 2-7, 3-8
DB directive (code-macro), 5-8
DBIT directive, 5-8
DD directive (ASM-86), 2-7, 3-8
DD directive (code-macro), 5-8
DDT-86 command summary, 6-2
DDT-86 error messages, 1-1
DDT-86 operation, 6-1, 6-3
DDT-86

termination of, 6-3
DEC, 4-7
default segment values, 6-16, 6-17
delimiters, 2-1
device name, 1-4
device types (ASM-86), A-2
D I register, 4-10
diagnostic error messages, H-1
Digital Research hex format, 1-2, C-1
directive statement, 2-18, 3-1
directives (ASM-86), 2-16
DIV, 4-7
dollar-sign character $, 1-4, 2-2
dollar-sign operator, 2-14
DSEG Directive (ASM-86), 3-2
DW Directive (ASM-86), 2-7, 3-7
DW directive (Code-Macro), 5-8
DWORD, 2-5, 2-7

E

E (Load for Execution) Command
(DDT-86), 6-6, 6-16

effective address, 3-1
EJECT directive, 3-10
END directive, 3-5
end-of-line, 2-16
ENDIF directive, 3-4
Ending ASM-86, 1-5
EndM directive, 5-2
EQ,2-9
EQU directive (ASM-86), 2-7, 3-5
error condition, 1-3
ESC, 4-16
ESEG Directive (ASM-86), 3-3
exclamation point, 2-2
expressions, 2-16
extra segment (ES), 2-7, 3-1,

3-3, 4-10

F

F (Fill) Command (DDT-86),
6-6, 6-17

F parameter, 1-5
fatal error, H-1
file name extensions, 1-2
flag bits, 4-2, 4-5
Flag Name Abbreviations, 6-15
flag registers, 4-2
formal parameters, 5-1

G

G (Go) Command (DDT-86),
6-7, 6-17

GT,2-9

----------------------- I!IDDIGITAL RESEARCH™
Index-2

H

H (Hexadecimal Math) Command
(DDT-86), 6-8

hexadecimal format, 1-1
HLT, 4-16

I

I (Input Command Tail) Command
(DDT-86), 6-8

identifiers, 2-4
IDIV, 4-7
IF Directive, (ASM-86), 3-4
IFLIST, 3-11
IMUL, 4-7
IN, 4-3
INC, 4-7
INCLUDE Directive, (ASM-86), 3-5
initialized storage, 3-6
instruction statement, 2-16, 2-17, 3-2
INT,4-13
Intel hex format, 1-5
INTO, 4-13
invalid parameter, 1-3
invocation examples (ASM-86), A-3
invoking ASM-86, 1-2
lRET, 4-13

J

JA,4-13
JB,4-13
JCXZ, 4-14
JE,4-14
JG,4-14
JL,4-14
JLE, 4-14
JMP, 4-14

JNA, 4-14
JNB, 4-14
JNE, 4-15
JNG, 4-15
JNL, 4-15
JNO, 4-15
JNP, 4-15
JNS, 4-15
JNZ, 4-15
JO,4-15
JP,4-15
JS,4-15
JZ,4-15

K

keywords, 2-5, 2-6, D-1

L

L (List) Command (DDT-86), 6-8,
6-16, 6-18

labels, 2-7, 2-17
LAHF, 4-3
LDS, 4-3
LE,2-9
LEA, 4-3
LES, 4-3
line-feed, 2-2
LIST, 3-11 .
location counter, 3-4
LOCK, 4-17
LaDS, 4-10
logical instructions, 4-5
logical operators, 2-8, 2-9
logical segments, 3-1
LOOP, 4-15
LT,2-9

[!ill DIGITAL RESEARCH™ ----------------------
Index-3

M

M (Move) Command (DDT-86),
6-9,6-17

MAC, 5-1
macros, 5 -1 .
minus, 2-2
mnemonic, 2-17
mnemonic differences, 4-18
mnemonic differences from the Intel

assembler, B-1
mnemonics, 4-1
mod field, 5-6
modifiers, 5-4
MODRM directive (code-macro), 5-6
MOV, 4-4
MOVS, 4-11
MUL, 4-7

N

name field, 2-18
NEG, 4-7
NOIFLIST, 3-11
NOLIST, 3·11
nonprinting characters, 2-1
NOT, 4-8
number symbols, 2-8
numbers, 2-8
numeric constants, 2-3
numeric expressions, 2-16

o

offset, 2-7
offset value, 3-1
operands, 4-1

operator precedence, 2-14
operators, 2-8
optional run-time parameters,

1-3, 1-4
OR, 4-8
order of operations, 2-14
ORG Directive (ASM-86), 3-4
OUT, 4-4
output files, 1-1, 1-2

p

PAGESIZE directive (ASM-86), 3-10
PAGEWIDTH directive

(ASM-86), 3-10
parameter list, 1-3
parameter types (ASM-86), A-2
period, 2-2
period operator, 2-14
plus, 2-2
POP, 4-4
predefined numbers, 2-5
prefix, 2-17, 4-11
Prefix instructions, 2-17, 4-12
prefix mnemonics, 4-11
printer output, 1-5
PTR operator, 2-14
PUSH, 4-4

Q

QI and QO (Query 1/0) Commands
(DDT-86), 6-9

------------------------i!ID DIGITAL RESEARCHTM
Index-4

R

R (Read) Command (DDT-86),
6-10, 6-16

radix indicators, 2-3
range specifiers (code-macro), 5-4
RB directive (ASM-86), 3-9
RCL, 4-8
RCR, 4-8
register memory field, 5-6
registers, 2-5
relational operators, 2-8, 2-10
RELB directive (code-macro), 5-7
RELW directive (code-macro), 5-7
REP, 4-12
reserved words, D-1
ROL, 4-8
ROR, 4-8
RS directive (ASM-86), 3-8
run-time options, 1-4
run-time parameters, 1-4
RW directive (ASM-86), 3-9

s
S (Set) Command (DDT-86),

6-11, 6-17
SAHF, 4-4
SAL, 4-8, 4-9
SAR, 4-9
SBB, 4-7
SCAS, 4-11
SEGFIX directive (code-macro), 5-5
segment, 2-7
segment base values, 3-1
segment directive statement, 3-1
segment override, 2-8, 2-10, 2-13
segment record types, C-3
segment start directives 3-1

semicolon, 2-2
separators, 2-1
shift instructions, 4-5
SHL, 4-9
SHR, 4-9
SI register, 4-1 °
SIMFORM directive (ASM-86), 3-10
slash, 2-2
space, 2-2
special characters, 2-1
specifiers, 5-3
SR (Search) Command

(DDT-86), 6-12
SSEG Directive, 3-3
stack segment, 2-7, 3-1, 3-3
starting ASM-86, 1-2, A-I
starting DDT-86, 6-1
statements, 2-16
STC, 4-17
STD, 4-17
STI, 4-17
STOS, 4-11
string constant, 2-4
string operations, 4-10
SUB, 4-7
symbol table, 5-1
symbols, 2-4, 2-6, 3-5

T

T (Trace) Command (DDT-86),
6-12, 6-16

tabs, 2-1
TEST, 4-9
TITLE directive (ASM-86), 3-9
tokens, 2-1
type, 2-7
type2 segment value, 6-16

[!QJ DIGITAL RESEARCH™ -----------------------
Index-S

u

U (Untrace) Command (DDT-86),
6-13, 6-16

unary operators, 2-13
underscore, 2-2

v
V (Value) Command (DDT-86), 6-13
variable manipulators, 2-8, 2-10, 2-13
variables, 2-7

w
W (Write) Command (DDT-86),

6-14, 6-16
WAIT, 4-17
WORD, 2-5, 2-7, 6-18

x

X (Examine CPU State) Command
(DDT-86), 6-14, 6-16

XCHG, 4-4
XLAT, 4-4

---------------------- [lID DIGITAL RESEARCH™
Index-6

Reader Comment Card
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date _____ First Edition: March 1983

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

Concurrent CP / M-8(YM Operating System Programmer's Utilities Guide

COMMENTS AND SUGGESTIONS BECOME THE PROPERlY OF DIGITAL RESEARCH.

------ ---:-~--~--~-.:--------- ----- -~ -.~-- --- -~--:o-'--------- - ~-------

From:-----------------------

Attn: Publications Production

BUSINESS REPL V MAIL
FIRST CLASS / PERMIT NO. 182 / PACIFIC GROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

[!ill DIGITAL RESEARCHTW
P.o. Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

