
Concurrent
CP/M-86™

Operating System

Concurrent CP/M-86™
Operating System

Programmer's Guide

Copyright © 1982

Digital Research
P.O. Box 579

160 Central
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright © 1982 by Digital Research. All rights
reserved. No part of th is publ ica tion may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantabili ty or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
f rom time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
ASM-86, Concurrent CP/M-86, CP/M-86, CP/M-80, DDT-
86, MAC, MP/M, MP/M II, MP/M-86, and MP/M-80 are
trademarks of Digital Research. Intel is a
registered trademark of Intel Corporation. Z80 is a
registered trademark of Zilog, Inc. IBM Personal
Computer is a tradename of International Business
Machines.

The Concurrent CP/M-86 Operating System Programmer's
Gu ide was prepared using the Digital Research TEX T .M.

Text Formatter and printed in the United States of
America by Commercial Press/Monterey.

* First Edition: September 1982 *

Foreword

Concurrent CP/M-86 T.M. is an operating system for the IBM
Personal Computer. It supports four CP/M® programming environments
called virtual consoles. A different task runs concurrently on each
virtual console. The minimum hardware environment for Concurrent
CP/M-86 includes an IBM Personal Computer with two disk drives and
256K bytes of Random Access Memory (RAM).

This manual describes the programming interface to Concurrent
CP/M-86. Sections 1 through 4 describe the elements of the
operating system, how Concurrent CP/M-86 monitors running processes,
and all the system entry points.

Section 5 describes all the Concurrent CP/M-86 system function
calls.

Section 6 contains an introduction to the Digital Research
assembler ASM-86T

.
M

. and the various options that can be used with it ..
Through one of these options, ASM-86 can generate 8086 machine code
in either Intel® or Digital Research format. Appendi~.A deScribes
these formats.

Section 7 discusses the elements of ASM-86 assembly language.
It defines the ASM-86 character set, constants, variables,
identifiers, operators, expressions, and statements.

Section 8 describes the ASM-86 housekeeping functions, such as
conditional assembly, multiple source files inclusion, and control
of the listing printout format.

Section 9 summarizes the 8086 instruction mnemonics accepted by
ASM-86. These mnemonics are the same as those used by the Intel
assembler except for four instructions: the intrasegment short
jump, intersegment jump, return, and call instructions. Appendix B
summarizes these differences.

Section 10 discusses the Code-Macro facili ties of ASM-86,
including Code-Macro defini tion, specifiers, and modifiers, and nine
special Code-Macro directives. This information is also summar ized
in Appendix G.

Section 11 discusses DDT-86T
.
M

., the Dynamic Debugging Tool that
allows the user to test and debug programs in the 8086 environment.
The section includes a sample debugging session.

This manual is not a tutor ial. Therefore, you should be
familiar with the material covered in the IBM Personal Computer
Guide To Operations and in the Concurre~t CP/M-86 Operating System
User's Guide.

iii

Table of Contents

1 Concurrent CP/M-86 System Overview

2

1.1 Introduction

1.2 Supervisor (SUP).

1.3 Real-Time Monitor (RTM)

1. 3.1
1. 3.2
1.3.3

Process Dispatching • • • •
Queue Management • • • • • . • •
System Timing Functions

1.4 Memory Module (MEM) ••••

1.5 Basic Disk Operating System (BDOS).

1.6 Character I/O Module (CIO).

1.7 Virtual Console Screen Manager ••

1.8 Extended I/O System (XIOS) ••.

1.9 Terminal Message Processor.

1.10 Transient Programs •.•

1.11 System Function Calling Conventions •

1.12 Error Handling.

The

2.1

2.2

2.3

2.4

Concurrent CP/M-86 File System

File

2.1.1
2.1.2
2.1.3
2.1.4

File

Disk

File

System Overview . . ·
File Access Functions.
Directory Functions. · Drive-Related Functions.
Miscellaneous Functions.

Naming Conventions . . ·
Drive and File Organization

Control Block Definition .
File Attributes •••••
Compatibility Attributes •

. .

2.4.1
2.4.2
2.4.3 Interface Attributes FS' through F8'

2.5 User Number Conventions • • • •

v

. .

1

3

3

3
5
6

7

7

7

8

8

8

8

9

9

11

11
12
12
12

13

15

17

20
21
24

24

Table of Contents
(continued)

2.6 Directory Labels and XFCBs

2.7 File Passwords

2.8 File Date and Time Stamps •

2.9 File Open Modes •

2.10 File Security.

2.11 Concurrent File Access

2.12 Multi-Sector I/O

2.13 Buffer Flushing ••.

2.14 Reset, Access and Free Drive

2.15 BDOS Error Handling ..•

2.16 Programming Guidelines

3 Transient Commands

3.1 Transient Process Load and Exit •

3.2 Command File Format •.••

3.3 Base Page Initialization

3.4 Parent/Child Relationships

4 Command File Generation

4.1 Transient Execution Models

4.1.1
4.1. 2
4.1.3

4.2 GENCMD

The 8080 Memory Model
The Small Memory Model • • . • .
The Compact Memory Model •

4.3 Intel HEX File Format

5 System Function Calls

vi

25

27

28

29

30

34

35

36

36

39

46

51

51

53

56

57

58
59
60

61

64

67

Table of Contents
(continued)

6 Introduction to ASM-86

6.1

6.2

6.3

Assembler Operation

Optional Run-time Parameters

Aborting ASM-86 •

7 Elements of ASM-86 Assembly Language

7.1 ASM-86 Character Set

7.2 Tokens and Separators.

7.3 Delimiters

7.4 Constants ••

7.4.1 Numeric Constants
7.4.2 Character Strings

7.5 Identifiers •••••••••

• 217

• • 219

• • 220

• • 221

· • 221

· • 221

· 223

• 223
· • 223

• 224

7.5.1 Keywords. • • • • • • • • • •• 225
7.5.2 Symbols and Their Attributes. • • • • • • 226

7.6 Operators • • •

7.6.1 Operator Examples
7.6.2 Operator Precedence

7.7 Expressions.

7.8 Statements

8 Assembler Directives

8.1

8.2

Introduction

Segment Start Directives

8.2.1
8.2.2
8.2.3
8.2.4

The CSEG Directive •
The DSEG Directive •
The SSEG Directive •
The ESEG Directive •

8.3 The ORG Directive.

vii

• 227

• 230
• 232

• 233

• 233

• • 237

• • 237

• 238
• • • 238

• 238
• •• 238

• 239

9

8.4 The

8.5 The

8.6 The

8.7 The

8.8 The

8.9 The

8.10 The

8.11 The

8.12 The

8.13 The

8.14 The

8.15 The

8.16 The

8.17 The

8.18 The

8.19 The

8.20 The

Table of Contents
(continued)

IF and ENDIF Directives .
INCLUDE Directive ·
END Directive . · · · ·
EQU Directive .
DB Directive

OW Directive · · · · .
DO Directive

RS Directive

RB Directive

RW Directive

TITLE Directive

PAGESIZE Directive .
PAGEWIDTH Directive

EJECT Directive

NOLIST and LIST Directives

SIMFORM Directive · · .
IFLIST and NOIFLIST Directives.

The ASM-86 Instruction Set

9.1 Introduction. . .
9.2 Data Transfer Instructions.

· ·

· ·

· · ·

· ·

· ·

· ·
9.3 Arithmetic, Logical, and Shift Instructions

9.4 String Instructions · · · · . ·
9.5 Control Transfer Instructions · ·
9.6 Processor Control Instructions. · ·

viii

· 239

· · 240

· 240

· 240

241

· · 242

· 242

· 242

· 243

· 243

243

· · 243

· 243

· · 244

· 244

· 244

· 244

. · · 245

· · 247

· 249

. · · · 254

256

· · · 259

Table of Contents
(continued)

10 Code-Macro Facilities

11

10.1 Introduction to Code-Macros

10.2 Specifiers •

10.3

10.4

Modifiers

Range Specifiers

10.5 Code-Macro Directives

10.5.1 SEGFIX · · 10.5.2 NOSEGFIX · · 10.5.3 MODRM · · 10.5.4 RELB and RELW
10.5.5 DB, DW and DD
10.5.6 OBIT . . · ·

DD'l'-86

11.1 DDT-86 Operation · ·

·
·

·

11.1.1 Starting DDT-86

. .
· · · · · · · · · · ·

· ·
· · · · 11.1. 2 DDT-86 Command Conventions

11.1. 3 Specifying a 20-Bi t Address
11.1.4 Terminating DDT-86 · · ·

.

· · 11.1. 5 DDT-86 Operation with Interrupts

11. 2 DDT-86 Commands · · · · · · ·
11. 2.1 The A (Assemble) Command
11. 2.2 The B (Block Compare) Command.
11. 2.3 The D (Display) Command. · ·

·

11. 2.4 The E (Load for Execution) Command
11. 2.5 The F (Fill) Command · · 11. 2.6 The G (Go) Command · · · · 11. 2.7 The H (Hexadecimal Math) Command
11. 2.8 The I (Input Command Tail) Command
11. 2.9 The L (List) Command · · · · 11. 2.10 The M (Move) Command
11.1.11 The QI, QO (Query I/O) Commands
11.2.12 The R (Read) Command · · · 11. 2 .13 The S (Set) Command · · 11. 2.14 The SR (Search) Command
11. 2.15 The T (Trace) Command
11. 2.16 The U (Untrace) Command
11.2.17 The V (Value) Command ·

ix

·
· · ·

·

·

·
· · ·

· .

·
· · · ·

·
·

·

· · ·

• 261

• • 262

• 263

• • 264

• • 264

· · 264

· 265

· · 265

· 266

· · 266
267

· · 269

· · 269

· 269

· 270

· 271

· 271

· · 271

271

· 271

· 272

· · 273

· 273

· · 274
274

· 274

· 275

· 276

· 276

· · 276

· · 277

· · 278
278

· · 279 · ,.. --. 279

Table of Contents
(continued)

11.2.18 The W (Write) Command •••••••
11.2.19 The X (Examine CPU State) Command

11.3 Default Segment Values

• 279
• • 280

• • 281

11.4 Assembly Language Syntax for A and L Commands •••• 283

11.5 DDT-86 Sample Session •••••••••••• • • 285

x

Appendixes

A ASM-86 Invocation • • . •

B

C

D

Mnemonic Differences from the Intel Assembler •

ASM-86 Hexadecimal Output Format ••

Reserved Words••

E ASM-86 Instruction Summary . ·
F Sample Program APPF.A86. . ·
G Code-Macro Definition Syntax

H ASM-86 Error Messages · ·
I DDT-86 Error Messages .
J System Function Summary

K Glossary · ·
L ASCII and Hexadecimal Conversions

M Error Codes. ·

xi

• • • 293

• 295

• 297

• • • 301

· 303

· · . . 307

313

· 315

317

· · 319

323

329

· · . 333

Section 1
Concurrent CP/M-86 System Overview

1.1 Introduction

Concurrent CP/M-86 is a single-user, multitasking operating
system that lets you run multiple programs simultaneously by
dividing tasks between virtual consoles. Concurrent CP/M-86 is
compatible with the CP/M-86 operating system. Applications programs
have access to system functions used by Concurrent CP/M-86 to
control the multiprogramming environment. As a result, Concurrent
CP/M-86 supports extended features such as communication between and
synchronization of independently running processes.

In the Concurrent CP/M-86 environment there is an important
distinction between a program and a process. A program is simply a
block of code residing somewhere in memory or on disk; it is
essentially static. A process, on the other hand, is dynamic. It
can be thought of as a logical machine that not only executes the
program code but also executes code in the operating system.

When Concurrent CP/M-86 loads a program, it creates a process
associated with the loaded program. Subsequently, it is the process
rather than the program that controls all access to the system's
resources. Concurrent CP/M-86 monitors the process, not the
program. This distinction is a subtle one, but it is vital to your
understanding of system operation.

Processes running under Concurrent CP/M-86 fall into two
categories: transient processes and resident system processes.
Transient processes run programs loaded into memory from disk.
Resident System Processes run programs that are a part of the
operating system itself. These programs are loaded during system
initialization and usually perform operating system tasks.

For example, the Clock process is a predefined process that
maintains the time of day within the operating system.

The following list summarizes the capabilities of Concurrent
CP/M-86.

• Shared file system. This allows multiple programs access to
common data files while maintaining data integrity.

• Virtual console handling. This lets a single user run mul tiple
programs, each in its own console environment.

• Real-time process control. This allows communications and data
acquisition without loss of information.

All Information Presented Here is Proprietary to Digital Research

1

Concurrent CP/M-86 Programmer's Guide 1.1 Introduction

• Interprocess communication, synchroni za tion, and mutual
exclusion. These functions are provided by system queues.

• Logical interrupt mechanism using flags. This allows
Concurrent CP/M-86 to interface with any physical interrupt
structure.

• System timing functions. These functions enable processes
running under Concurrent CP/M-86 to compute elapsed times, to
delay execution for specified intervals, and to access and set
the current date and time.

Functionally, Concurrent CP/M-86 is composed of several
distinct modules:

• The Supervisor (SUP)
• The Real-Time Monitor (RTM)
• The Memory Management Module (MEM)
• The Character I/O Module (CIO)
• The Virtual Console Screen Manager
• The Basic Disk Operating System (BOOS)
• The Extended I/O System (XIOS)
• The Terminal Message Processor (TMP)

The SUP module handles miscellaneous system functions such as
returning the version number or the address of the System Data Area.
The SUP module also calls other system functions when necessary.

The RTM module monitors the execution of running processes and
arbitrates conflicts for the system's resources.

The MEM module allocates and frees memory on demand from
executing processes.

The CIO module handles all character I/O for console and list
devices in the system.

The Virtual Console Screen Manager extends the CIO to support
virtual console environments.

The BOOS is the hardware-independent module that contains the
logically invariant portion of the file system for Concurrent CP/M-
86. The BOOS file system is detailed in Section 2.

The XIOS is the hardware-dependent module that defines the
Concurrent CP/M-86 interface to the IBM Personal Computer.

When Concurrent CP/M-86 is configured for a single virtual
console and is executing a single program, its speed approximates
that of CP/M-86. Where mUltiple processes are running on different
virtual consoles, each individual process slows in proportion to the
amount of I/O and compute resources it requires. A process that

All Information Presented Here is Proprietary to Digital Research

.2

Concurrent CP/M-86 Programmer's Guide 1.1 Introduction

performs a large amount of I/O in proportion to computing exhibits
only minor speed degradation. This also applies to a process that
performs a large amount of computing but runs concurrently with
other processes that are largely I/O bound. On the other hand,
significant speed degradation occurs where more than one compute­
bound process is running.

1.2 Supervisor (SUP)

The Supervisor module (SUP) manages the interaction between
transient processes and the other system modules, including future
networking interfaces. All system function calls, whether they
originate from a transient process or internally from another system
module, go through a common table-driven function interface. The
SUP module handles all system functions that call other system
functions, such as the Program Load and CLI (Command Line
Interpreter) functions.

1.3 Real-Time Monitor (RTM)

Concurrent CP/M-86 is controlled by a real-time multitasking
nucleus, the Real-Time Monitor (RTM). The RTM performs process
dispatching, queue management, flag management, device polling, and
system timing tasks. Many of the system functions performing these
tasks can also be called by user programs.

1.3.1 Process Dispatching

Although Concurrent CP/M-86 is a multiprocessing operating
system, at any given time only one process has access to the CPU
resource. Unless it is specifically written to communicate or
synchroni ze execu tion wi th other processes, the process runs unaware
that other processes might be competing for the system's resources.
Even tually, the system suspends the process from execution and
allows another process to run.

The primary task of the RTM is transferring the CPU resource
from one process to another. This task is called dispatching and is
performed by a part of the RTM called the Dispatcher. Each process
running under Concur rent CP/M-86 is associated with two data
structures called the Process Descriptor (PD) and the User Data Area
(UDA) • The Dispatcher uses these data structures to save and
restore the current state of a running process. Each process in the
system resides in one of three states: ready, running, or
suspended. A ready process is waiting for the CPU resource only. A
running process is one that the CPU is currently executing. A
suspended process is waiting for some other system resource or for a
defined event.

A dispatch operation can be summarized as follows:

All Information Presented Here is Proprietary to Digital Research

3

Concurrent CP/M-86 Programmer's Guide 1.3 Real-Time Monitor

1) The Dispatcher suspends the process from execution and
stores the current state in the Process Descriptor and UDA.

2) The Dispatcher scans all of the suspended processes on the
Ready list and selects the one with the highest priority.

3) The Dispatcher restores the state of the selected process
from its Process Descriptor, and UDA and gives it the CPU
resource.

4) The process executes until a resource is needed, a resource
is freed, or an interrupt occurs. At this point, a
dispatch occurs, allowing another process to run. The
system clock generates interrupts once every clock tick,
milliseconds, generating time slices for CPU-bound
processes.

Only processes that are placed on the Ready list are eligible
for selection during dispatch. By definition, a process is on the
Ready list if it is waiting for the CPU resource only. Processes
waiting for other system resources cannot execute until their
resource requirements are satisfied. Under Concurrent CP/M-86, a
process is blocked from execution if it is waiting for:

• a queue message so it can complete a read queue operation

• space to become available in a queue so that it can complete a
queue write operation

• a system flag to be set

• a console or list device to become available

• a specified number of system clock ticks before it can be
removed from the system Delay list

• an I/O event to complete

These situations are detailed in the following sections~

Concurrent CP/M-86 is a priority system. This means that the
Dispatcher selects the process with the best priority· and gives it
the CPU resource. Processes with the same priority are round-robin
scheduled; they are given equal shares of the system's resources.
with priority dispatching, control is never passed to a worse­
priority process if there is a better-priority process dn the Ready
list. Because best priority, compute-bound processes tend to
monopol i ze the CPU resource, it is advisable to reduce their
priority to avoid degrading overall system performance.

All Information Presented Here is Proprietary to Digital Research

4

Concurrent CP/M-86 Programmer's Guide 1.3 Real-Time Monitor

Concurrent CP/M-86 requires at least one process run at all
times. To ensure this, the system maintains the Idle process on the
Ready list so it can be dispatched if there are no other processes
available. The Idle process runs at a very low priority and is
never blocked from execution. It does not perform any useful task
but simply gives the system a process to run when no other ready
processes exist.

1.3.2 Queue Management

Queues per form several cr i tical functions for processes running
under Concurrent CP/M-86. They are used for communicating messages
between processes, for synchronizing process execution, and for
mutual exclusion. Like files, queues are made, opened, deleted,
read from, and written to with appropriate system function calls.

Each system queue is composed of two parts: the queue
descriptor, and the queue buffer. These are special data structures
implemented in Concurrent CP/M-86 as memory files containing room
for a specified number of fixed-length messages.

When a queue is created by the Make Queue function call, it is
assigned an eight-character name that identifies the queue in all
the other function calls. As the name implies, messages are read
from a queue on a first-in, first-out basis.

A process can read messages from a queue or write messages to a
queue conditionally or unconditionally. If no messages exist in the
queue when a conditional read is performed, or if the queue is full
when a conditional write is performed, the system returns an error
code to the calling process. On the other hand, if a process
performs an unconditional read operation from an empty queue, the
system suspends the process from execution until another process
writes a message to the queue.

When more than one process is waiting for a message, preference
is given to the higher priority process. Conflicts involving
processes with the same pr ior i ty are resolved on a first-come,
first-served basis.

Mutual exclusion queues are a special type of queue under
Concurrent CP/M-86. They contain one message of zero length and are
typically assigned a name beginning with the upper-case letters MX.
A mutual exclusion queue is a binary semaphore. Mutual exclusion
queues ensure that only one process has access to a resource at a
time.

Access to a process protected by a mutual exclusion queue takes
place as follows:

All Information Presented Here is Proprietary to Digital Research

5

Concurrent CP/M-86 Programmer's Guide 1.3 Real-Time Monitor

1) The process issues an unconditional Read Queue call from the
queue protecting the resource, suspending itself until the
message is available.

2) The process accesses the protected resource.

3) The process writes the message back to the queue when it has
finished using the protected resource, freeing the resource
for other processes.

For an example, the system mutual exclusion queue, MXdisk, ensures
that processes serially access the file system.

Mutual exclusion queues have one other feature different from
other queues. When a process reads a message from a mutual
exclusion queue,. the Process Descriptor Address is noted within the
queue descr iption. This establishes the owner of the queue message.
I f the process is aborted while it owns the mutual exclusion
message, the RTM automatically writes the message back to all mutual
exclusion queues whose messages are owned by the aborted process.
This grants other processes access to the protected resource.

1.3.3 System Timing Functions

Concurrent CP/M-86 system timing functions include keeping the
time of day and delaying the execution of a process for a specified
period of time. An internal process called Clock, provides the time
of day for the system. This process issues Flag Wait calls on the
system's one-second flag, Flag 2. When the XIOS Interrupt Handler
sets this flag, it initiates the Clock process to set the internal
time and date. Subsequently, the Clock process makes another Flag
Wai t call and suspends itself until the flag is set again.
Concurrent CP/M-86 provides functions for setting and accessing the
internal date and time. The file system also uses the internal time
and date to record when a file is updated, created, or last
accessed.

The Delay function replaces the typical programmed delay loop
for delaying process execution. The Delay function requires that
Flag 1, the system tick flag, be set approximately every 16
milliseconds, usually 60 times a second. When a process makes a
Delay call, it specifies the number of ticks it is to be suspended
from execution. The system maintains the address of the Process
Descriptor for the process on an internal Delay list along with its
current delay tick count. Another system process, Tick, waits on
the tick flag and decrements this delay count on each system tick.
When the delay count goes to zero, the system removes the process
from the Delay list and places it on the Ready list.

All Information Presented Here is Proprietary to Digital Research

6

Concurrent CP/M-86 Programmer's Guide 1.4 Memory Module

1.4 Memory Management Module (MEM)

The Memory Management Module handles all memory management
functions. Concurrent CP/M-86 supports an extended, fixed parti tion
mode 1 of memor y management. In practice, the exact method the
operating system uses to allocate and free memory is transparent to
the programmer. In fact, the programmer should write code that is
independent of the Memory Management' Module by using only the
Concurrent CP/M-86 system functions as described in Section 5. If
the system functions are not used, incompatibili ty can resul t.
Future versions of Concurrent CP/M-86 might support different
versions of the Memory Management Module, depending on the classes
of memory management hardware available.

1.5 Basic Oisk Operating System (BOOS)

The Concurrent CP/M-86 BOOS is an upward-compatible version of
the single-tasking CP/M-86 BOOS. It handles file creation and
deletion, and sequential or random file access and allocates and
frees disk space. In most cases, CP/M-86 programs that make BOOS
calls for I/O can run under Concurrent CP/M-86 without modification.
The Concurrent CP/M-86 BOOS is extended to provide support for
multiple console and list devices. In addition, the file system is
extended to provide services required in multitasking environments.
Major extensions include:

• File locking. Files opened under Concurrent CP/M-86 cannot be
opened or deleted by other tasks. This feature prevents
accidental conflicts with other tasks.

• Shared access to files. As a special option, independent users
can open the same file in shared·or Unlocked mode. Concurrent
CP/M-86 supports record locking and unlocking commands for
files opened in this mode and protects files opened in shared
mode from deletion by other tasks.

• Oate Stamps

• Password Protection

• Extended Error Modes

1.6 Character I/O Module (CIO)

The Character I/O module handles all console and list I/O.
Under Concurrent CP/M-86, every character I/O device is associated
wi th a data structure called a Console Control Block (CCB) or a List
Control Block (LCB). The CCB contains the current owner, a linked
list of Process Descriptors (POs) waiting for access, line editing
variables, and status information. CCBs and LCBs reside in the
XIOS.

All Information Presented Here is Proprietary to Digital Research

7

Concurrent CP/M-86 Programmer's Guide 1.7 Screen Manager

1.7 Virtual Console Screen Manager

The Virtual Console Screen Manager interfaces the Character I/O
module to the Extended I/O module. This module accepts I/O requests
from applications programs, handling the request internally wi th the
PIN process or passing the request on to the XIOS. This scheme maps
many virtual consoles onto one physical console.

The Screen Manager contains a single physical input process
(PIN) and a virtual output process, VOUTxx. xx indicates the
virtual console number for each virtual console. PIN accepts and
interprets input from the physical console, handling Switch Console,
CTRL-C, CTRL-S, and CTRL-Q functions itself. PIN also passes
remaining characters on to the queue associated with the currently
selected console, VINQxx. During output, the Character I/O module
writes each character to the XIOS if in Dynamic mode or to the
appropriate VOUTQxx if in the Buffered mode.

1.8 Extended Input/Output System (XIOS)

The XIOS module is similar to the CP/M-86 Basic Input/Output
System (BIOS) module, but it is extended in several ways. Primitive
functions such as console I/O are modified to support multiple
vir tual consoles. Sever al new pr imi ti ve functions support
Concurrent CP/M-86's additional features, including elimination of
wait loops for real-time activities.

1.9 Terminal Message Processor (TMP)

The Concurrent CP/M-86 TMPs are resident system processes that
accept command lines from the virtual consoles and call the Command
Line Interpreter to execute them. The TMP prints the prompt on the
virtual consoles.

Each virtual console has an independent TMP defining that
console's environment, including default disk, user number, printer,
and console.

1.10 Transient Programs

Under Concurrent CP/M-86, a transient program is not system
resident. The system must load a transient program from disk into
available memory every time it executes. The command file of a
transient program is identified by the filetype CMD. When you enter
a command at the console, the operating system searches on disk for
the appropriate CMD file, then loads and initiates that file.
Concurrent CP/M-86 supports three different execution models for
transient programs. These models are explained in detail in Section
3.

All Information Presented Here is Proprietary to Digital Research

8

Concurrent CP/M-86 Programmer's Guide 1.11 Calling Conventions

1.11 System Function Calling Conventions

When a Concurrent CP/M-86 process makes a system function call,
it follows the protocol shown in Table 1-1.

Table 1-1. Registers for System Function Calls

Entry Parameters

Register CL: Function Number
OL: Byte Parameter

or
OX: Word Parameter

or
OX: Address - Offset
os: Address - Segment

Return Values

Register AL: Byte Return
or

AX: Word Return
or

AX: Address - Offset
ES: Address - Segment

BX: Same as AX
CX: Error Code

The contents of registers SI, OI, and BP are preserved through the
operating system calls.

1.12 Error Handling

Most system functions return an error code to the calling
process. In Concurrent CP/M-86, the CX register is reserved as the
error code return register.

There is one set of error codes common to all functions except
those in the BOOS module. BOOS functions have their own error
codes, explained in Section 2.15. The error codes for the non-BOOS
Concurrent CP/M-86 system functions are shown in Table 1-2.

All Information Presented Here is Proprietary to Digital Research

9

Concurrent CP/M-86 Programmer's Guide 1.12 Error Handling

Table 1-2. Concurrent CP/M-86 Error Codes

Code#

OOH
OlH
02H
03H
04H
OSH
06H
07H

08H
09H
OAH
OBH
OCH

ODH
OEH
OFH
10H
llH
l2H

l3H
l4H
ISH
l6H
l7H
l8H
19H
lAH
lBH
lCH
lDH
lEH
lFH
20H
2lH
22H
23H
24H
2SH
26H

I Definition

NO ERROR
FUNCTION NOT IMPLEMENTED
ILLEGAL FUNCTION NUMBER
CANNOT FIND MEMORY
ILLEGAL SYSTEM FLAG NUMBER
FLAG OVERRUN
FLAG UNDERRUN
NO UNUSED QUEUE DESCRIPTORS
LEFT IN QD TABLE
NO UNUSED QUEUE BUFFER AREA LEFT
CANNOT FIND QUEUE
QUEUE IN USE
QUEUE NOT ACTIVE
NO UNUSED PROCESS DESCRIPTORS
LEFT IN PD TABLE
QUEUE ACCESS DENIED
EMPTY QUEUE
FULL QUEUE
CLI QUEUE MISSING
NO QUEUE BUFFER SPACE
NO UNUSED MEMORY DESCRIPTORS
LEFT IN MD TABLE
ILLEGAL CONSOLE NUMBER
CANNOT FIND PD BY NAME
CONSOLE DOES NOT MATCH
NO CLI PROCESS
ILLEGAL DISK NUMBER
ILLEGAL FILE NAME
ILLEGAL FILE TYPE
CHARACTER NOT READY
ILLEGAL MEMORY DESCRIPTOR
BAD LOAD
BAD READ
BAD OPEN
NULL COMMAND
NOT OWNER
NO CODE SEGMENT IN LOAD FILE
ACTIVE PD
CANNOT TERMINATE
CANNOT ATTACH
ILLEGAL LIST DEVICE NUMBER
ILLEGAL PASSWORD

End of Section 1

All Information Presented Here is Proprietary to Digital Research

10

Section 2
The Concurrent CP /M-86 File System

2.1 File System Overview

The Basic Disk Operating System (BOOS) supports a named file
system on one to sixteen logical drives. Each logical drive is
divided into a directory area and a data area. The directory area
defines the files that exist on the drive and identifies the data
area space that belongs to each file. The data area contains the
file data defined by the directory. The directory area is
subdivided into sixteen logically independent directories,
identified by user numbers 0 through 15. Only files belonging to
the current user number are visible in the directory. For example,
the Concurrent CP/M-86 DIR utility displays only files belonging to
the current user number.

The BOOS file system automatically allocates directory and data
area space when a file is created or extended and returns previously
allocated space to free space when a file is deleted. If no
directory or data space is available for a requested operation, the
BOOS returns an error code to the calling process. The allocation
and retrieval of directory and data space is transparent to the
calling process. As a result, the user need not be concerned with
directory and drive organization when using the file system
functions.

An eight-character filename and a three-character filetype
identify each file in a directory. An eight-character password can
also be assigned to a file to protect it from unauthorized access.
All system functions that involve file operations specify the
requested file by filename and filetype. Multiple files can be
specified by a wildcard specification. A wildcard specification
uses one or more? marks in the filename or filetype, indicating
that any character can match that position. Thus, a filename and
filetype consisting of all ?s, equivalent to a command line file
specification of *.*, matches all files in the directory that belong
to the current user number.

The BOOS file system supports four categories of functions:
file access functions, directory functions, dr i ve-related functions,
and miscellaneous functions.

2.1.1 File Access Functions

The file access category includes functions to create a new
file, open an existing file, and close an existing file.

Both the Make File and Open File functions activate the file
for subsequent access by read and wr i te functions. After a file has
been opened, subsequent BOOS functions can read or write to the

All Information Presented Here is Proprietary to Digital Research

11

Concurrent CP/M-86 Programmer's Guide 2.1 File System Overview

file, ei ther sequentially or randomly by record posi tion. BOOS read
and write commands transfer data in 128-byte logical units, the
basic record size of the file system.

The Close File function performs two steps to terminate access
to a file. First, it indicates to the file system that the calling
process has finished accessing the file. The file then becomes
ava ilable to other processes. The function also updates the
directory to permanently record the current status of the file.

2.1.2 Directory Functions

BOOS directory functions operate on existing file entries in a
drive directory. This category includes functions to search for orie
or more files, delete one or more files, rename a file, set file
attributes, assign a password to a file, and compute the size of a
file.

Search and Delete are the only BOOS functions that allow
wildcard file specifications. All other directory and file-related
functions require a specific file specification. The BOOS file
sys tern does not allow a process to delete, rename, or set the
attributes of a fil~ that is currently opened by another process.

2.1.3 Drive-Related Functions

BOOS drive-related functions select a drive as the default
drive, compute a drive's free space, interrogate drive status, and
assign a directory label to a drive. The directory label for a
drive controls whether file passwords are to be used, and the type
of date and time stamping to be performed for files on the drive.

This category also includes functions to reset specified drives
and to control whether other processes can reset particular drives.
When a drive is reset, the next operation on the drive reactivates
it by logging it in. The function of the log-in operation is to
initialize the drive for file and directory operations. Under
Concurrent CP/M-86, a successful drive reset operation must be
performed on drives that support removable media before changing
disks.

2.1.4 Miscellaneous Functions

Miscellaneous functions set the current OMA address, access and
update the current user number, chain to a new program, and flush
the internal blocking/deblocking buffer.

Also included are functions to set the BOOS Multi-Sector Count
and the BOOS Error mode. The BOOS Multi-Sector Count determines the
number of 128-byte records to be processed by BOOS Read, Write,
Record Lock, and Record Unlock functions. It can range from one to
sixteen 128-byte records; the default value is one. The BOOS Error

All Information Presented Here is Proprietary to Digital Research

12

Concurrent CP/M-86 Programmer's Guide 2.1 File System Overview

mode determines whether the BDOS file system intercepts errors or
returns all errors to the calling process.

The following list summarizes BDOS file system operations:

• Disk System Reset
• Drive Selection
• File Creation
• File Open
• File Close
• Directory Search
• File Delete
• File Rename
• Random or Sequential Read
• Random or Sequential Write
• Interrogate Selected Disks
• Set DMA Address
• Set/Reset File Indicators
• Reset Drive
• Access/Free Drive
• Random Write With Zero Fill
• Lock and Unlock Record
• Set Multi-Sector Count
• Set BDOS Error Mode
• Get Disk Free Space
• Chain To Program
• Flush Buffers
• Set Directory Label
• Return Directory Label
• Read and Write File XFCB
• Set/Get Date and Time
• Set Default Password
• Return BDOS Serial Number

The following sections contain information on important topics
related to the BDOS file system. Read these sections before
attempting to use the system functions described individually in
Section 5.

2.2 File Naming Conventions

Under Concurrent CP/M-86, file specifications consist of four
parts: the drive specification (d), the filename, the filetype, and
the file password. The general format for a command line file
specification is shown below:

{d:}filename{.tYP}{ipassword}

The dr i ve specification shows the dr ive in which the file is
located. The filename and filetype identify the file. The password
is necessary only if password protection is enabled.

All Information Presented Here is Proprietary to Digital Research

13

Concurrent CP/M-86 Programmer's Guide 2.2 File Naming

The drive specification, filetype, and password are optional.
Delimi ters are required only when specifying their associated field.
The drive select code can be assigned a value from A to P where the
actual drive codes supported on a given system are determined by the
XI as implementation. When you do not specify the drive, the current
default drive is indicated. The filename contains one to eight
nondelimiter characters; the filetype, one to three nondelimiter
characters; and the password field, one to eight nondelimiter
characters. All alphabetic characters ~ust be in upper-case. The
Parse Filename function pads all three parts of the filespec with
blanks, if necessary. Omitting the optional filetype or password
implies a file specification of all blanks.

The Parse Filename function recognizes certain ASCI I
characters as valid delimiters when it parses a file from a command
line. The valid characters are shown in Table 2-1.

Table 2-1. Valid Filename Delimiters

ASCII

,
/
[
]
<
>

I HEX EQUIVALENT

03AH
02EH
03BH
03DH
02CH
02FH
OSBH
OSDH
03CH
03EH

The Parse Filename function also excludes all control characters
from the file specification and translates all lower-case letters to
upper-case.

Avoid the characters "(" and ")" in the filename and filetype
because they are~commonly used delimiters. The characters * and?
must not be used in the filename and filetype except as wildcard
specifications. If the Parse Filename function encounters a * in a
filename or filetype, it pads the remainder of the field with ?
marks. For example, a filename of X*.* is parsed to X??????????
The BDOS search and delete functions match a ? in the filename or
filetype to the corresponding position of any directory entry in the
current user number. A search operation for X?????????? finds all
the current user files on the directory beginning in X. Most other
file-related BDOS functions treat the presence of a ? in the
filename or filetype as an error.

All Information Presented Here is Proprietary to Digital Research

14

Concurrent CP/M-86 Programmer's Guide 2.2 File Naming

It is not mandatory to follow the file naming conventions of
Concurrent CP/M-86 when creating or renaming a file wi th BOOS
functions. However, the conventions must be used if the file is to
be accessed from a command line. For example, the CLI function
cannot locate a command file in the directory if its filename or
filetype contains a lower-case letter.

As a general rule, the filetype names the generic category of a
particular file. The filename distinguishes individual files wi thin
each ca tegor y. The f i letypes 1 isted below name some of the
established generic categories.

• A86
• ASM

BAK
BAS
BRS
CMD
COM
CON
OAT
HEX
H86
INT
LIB
LST
PLI
PRL
REL
RSP
SPR
SUB
SUP
SYM
SYS
$$$

8086 Assembler Source
Assembler Source
ED Source Backup
Basic Source File
8080 Banked RSP File
8086 Command File
8080 Command File
CCP/M-86 Modules
Data File
HEX Machine Code
ASM-86 HEX File
Intermediate File
Library File
List File
PL/I Source File
Page Relocatable
Relocatable Module
Resident System Process
System Page Relocatable
SUBMIT File
Startup File
SYM Symbol File
System File
Temporary File

2.3 Disk Drive and File Organization

The BOOS file system can support from one to sixteen logical
drives. The maximum file size supported on a drive is 32 megabytes.
The maximum capacity of a drive is determined by the data block size
specified for the drive in the XIOS. The data block size is the
basic unit in which the BOOS allocates disk space to files. Table
2-2 shows the relationship between data block size and drive
capacity.

All Information Presented Here is Proprietary to Digital Research

15

Concurrent CP/M-86 Programmer's Guide 2.3 File Organization

Table 2-2. Logical Drive Capacity

Data Block Size I Maximum Drive Capacity

lK
2K
4K
8K

16K

256 Kilobytes
64 Megabytes

128 Megabytes
256 Megabytes
512 Megabytes

Logical drives are divided into a directory area and a data
area. The directory area contains from one to sixteen blocks
located at the beginning of the drive. The actual number is set in
the XIOS. This area contains entr ies that define the files existing
on the drive. The directory entries corresponding to a particular
file define which data blocks in the drive's data area belong to the
file. These data blocks contain the file's records. The directory
area is logically subdivided into sixteen independent directories
identified as user 0 through 15. Each independent directory shares
the actual directory area on the dr i ve. However, a file's directory
entries cannot exist under more than. one user number. Only files
belonging to the current user number are visible in the directory.

Each disk file consists of a set of up to 262,144 128-byte
records. Each record in a file is identified by its position in the
file. This position is called the Random Record Number. If a file
is created sequentially, the first record has a position of zero;
the last record has a position one less than the number of records
in the file. Such a file can be read sequentially in record
pos i tion order beg inning at record zero or randomly by record
position. Conversely, if a file is created randomly, records are
added to the file by specified position. A file created in this way
is called sparse if positions exist in the file where a record has
not been written.

The BDOS automatically allocates data blocks to a file to
contain its records on the basis of the record positions consumed.
A sparse file containing two records, one at position zero, the
other at position 262,143, would consume only two data blocks in the
data area. Sparse files can only be created and accessed randomly,
not sequentially.

Note: any data block allocated to a file is permanently allocated
to the file until the file is deleted. The BDOS supports no other
mechanism for releasing data blocks belonging to a file.

Source files under Concurrent CP/M-86 are treated as a sequence
of ASCII characters, where each line of the source file is followed
by a carriage return line-feed sequence, ODH followed by OAH. Thus
a single 128-byte record could contain several lines of source text.
The end of an ASCII file is denoted by a CTRL-Z (IAH) or a real end­
of-file, returned by the BDOS read operation. CTRL-Z characters
embedded in machine code CMD files are ignored. The end-of-file
condition returned by BOOS is used to terminate read operations.

All Information Presented Here is Proprietary to Digital Research

16

Concurrent CP/M-86 Programmer's Guide 2.4 File Control Blocks

2.4 File Control Block Definition

The File Control Block (FCB) is a data structure used with the
BOOS file access and directory functions. These functions reference
an FCB to determine the files to be operated on. Certain fields in
the FCB also start special options associated with some functions.
Other functions use the FCB to return data to the calling process.
Most importantly, when a process opens a file and subsequently
accesses it wi th Read and Wr i te File XFB, and Lock and Unlock Record
functions, the BOOS file system maintains the current file state and
pos i tion wi thin the user's FCB. All BOOS random I/O functions
specify the- Random Record Number with a 3-byte field at the end of
the FCB.

When making a file access or directory BOOS function call, a
process passes an FCB address. The address is composed of register
OX containing the offset, and OS containing the segment. The length
of the FCB data area depends on the BOOS function. For most
func t ions, the requ ired length is 33 bytes. For random I/O
functions and the Compute File Size function, the FCB length must be
36 bytes. When either the BOOS Open or Make File functions specify
a file is to be opened in Unlocked mode, the FCB must be 35 bytes
long. The FCB format is shown below.

00 01 02 08 09 10 11 12 13 14 15 16 31 32 33 34 35

Figure 2-1. File Control Block Format

The fields in the FCB are defined as fol~ows:

dr

flo •. f8

drive code (0 - 16).

o => use default drive for file
1 => auto disk select drive A
2 => auto disk select drive B

16=> auto disk select drive P

contain the filename in ASCII upper-case, with high bi t
= O. fl', ••• , f8' denote the high-order bit of these
position~ and are file attribute bits.

All Information Presented Here is Proprietary to Digital Research

17

Concurrent CP/M-S6 Programmer's Guide 2.4 File Control Blocks

tl, t2, t3 contain the filetype in ASCII upper-case, with high bi t
= o. tl', t2', and t3' denote the high bit of these
positions and are file attribute bits.

ex

cs

rs

rc

dO ••• dn

tl' 1 => Read-Only file,
t2' 1 => System file,
t3' 1 => File has been archived.

contains the current extent number. This is usually
set to 0 by the calling process, but it can range from
o to 31 during file I/O.

contains the FCB checksum value for open FCBs.

reserved for internal system use, set to zero on call
to Open, Make, Search.

record count for extent ex takes on values from 0 to
128.

filled in by Concurrent CP/M-S6, reserved for system
use.

cr current record to read or write in a sequential file
operation, set to zero by the calling process when a
file is opened or created.

rO,rl,r2 optional Random Record Number in the range 0-262,143 (0
- 3FFFFH). ro~rl,r2 constitute an IS-bit value with
low byte rO, middle byte rl, and high byte r2.

Rote: the 2-byte File 10 is returned in bytes rO and rl when a file
is successfully opened in Unlocked mode. (See Section 2.9.)

For BOOS directory functions, the calling process must
initialize bytes 0 through 11 of the FCB before issuing the function
call. The Set Directory Label and Write File XFCB functions also
require the calling process to initialize byte 12. The BOOS Rename
File function requires the calling process to place the new filename
and filetype in bytes 17 through 27.

BOOS Open or Make File function calls require the calling
process to initialize bytes 0 through 12 of the FCB before issuing
an Open File or Make File function call. Byte 12 is set to zero.
In addition, if the file is to be processed from the beginning using
sequential read or write functions, byte 32 (cr) must be zeroed.
After an FCB is activated by an open or make operation, the user
should not modify the FCB. Open FCBs are checksum verified to
protect the integrity of the file system. If a process modifies an
open FCB, the next read, write, or close function call will return
with a checksum er ror. (See Section 2.10.) Sequential read or wr i te
functions do not require initialization of an open FCB. However,
random I/O functions require that a process set bytes 33 through 35
to the requested Random Record Number before making the function
call.

All Information Presented Here is Proprietary to Digital Research

IS

Concurrent CP/M-86 Programmer's Guide 2.4 File Control Blocks

File directory elements maintained in the directory area of
each disk drive have the same format as FCBs (excluding bytes 32
through 35), except for byte 0 which contains the file's user
number. Both the Open File and Make File functions bring these
elements, excluding byte 0, into memory in the FCB specified by the
calling process. All read and write operations on a file must
specify an FCB activated in this manner. Otherwise, BOOS returns a
checksum error. The BOOS updates the memory copy of the FCB during
file processing to maintain the current position within the file.
During file write operations, the BOOS updates the memory copy of
the FCB to record the allocation of data to the file. At the
termination of file processing, the Close File function permanently
records this information on disk. Note that data allocated to a
file during file write operations is not completely recorded in the
directory until the the calling process issues a Close File call.
Therefore, a process which creates or modifies files must close the
files at the termination of any write processing. Otherwise, data
might be lost.

As a general rule, a process should close files as soon as they
are no longer needed, even if they have not been modified. The BDOS
file system maintains an entry in the system Lock list for each file
opened by each process on the system. This entry is not removed
from the system Lock list until the file is closed or the process
owning the entry terminates. The BOOS file system uses this entry
to prevent other processes from accessing the file unless the file
was opened in a mode that supports shared access. A process must
close a file before other processes on the system can access the
file.

The space in the system Lock list is limited. If a process
attempts to open a file and no space exists in the system Lock list,
or if the process exceeds the process open file limit, the BOOS
denies the open operation and usually aborts the calling process.

The high-order bits of the FCB filename (fl', •.. ,f8') and
filetype (tl' ,t2' ,t3') are called attribute bits. Attributes bits
ar e l-bi t boolean fields where 1 indicates on or true, and 0
indicates off or false. Attribute bits function within the file
system as file attributes and interface attributes.

2.4.1 File Attributes

The file attributes fl', ••. ,f4' and tl' ,t2' ,t3' indicate that a
file has a defined attribute. These bits are recorded in a file's
directory FCBs. File attributes can be set or reset only by the
BOOS Set File Attributes function. When the BOOS Make File function
creates a file, it initializes all file attributes to zero. A
process can interrogate file attributes in an FCB activated by the
BOOS Open File function or in directory FCBs returned by the BOOS
Search For First and Search For Next functions.

All Information Presented Here is Proprietary to Digital Research

19

Concurrent CP/M-86 programmer's Guide 2.4 File Control Blocks

Note: the BDOS file system ignores the file attribute bits when it
attempts to locate a file in the directory.

The file attributes tl ' ,t2 1,and t31 are defined by the file
system as follows:

tIl: Read-Only attribute

This attribute, if set, prevents write operations to a file.

t21: System Attribute

This attribute, if set, identifies the file as a Concurrent
CP/M-86 system file. System files are not usually displayed by
Concurrent CP/M-86 DIR utility. User-zero system files can also be
accessed on a Read-Only basis from other user numbers (see Section
2.5) •

t31: Archive Attribute

This attribute is designed for user-written archive programs.
When an archive program copies a file to backup storage, it sets the
archive attribute of the copied files. The file system
automatically resets the archive attribute of a directory FCB that
has peen issued a write command. An archive program can test this
attribute in each of the file ' s directory FCBs using the BDOS Search
For First and Search For Next functions. If all directory FCBs have
the archive attribute set, the file has not been modified since the
previous archive. Note that the Concurrent CP/M-86 PIP utility
supports file archival.

2.4.2 Compatibility Attributes

Compatibility attributes allow certain programs developed under
earlier Digital Research operating systems to run under the
Concurrent CP/M-86, MP/M I~·M., or MP/M-86~Moperating systems.

Concurrent CP/M-86, MP/M II, and MP/M-86 all share a similar
file system enhanced to support a mul ti tasking environment. Some of
these enhancements are restrictions not present in the earlier CP/M
type file systems found in CP/M-80T

.
M., CP/M-86T

.
M., or MP/M-80T

.
M.. The

compatibility attributes ease some of these restrictions for
software developed under earlier file systems, allowing CP/M type
software to run under operating systems implementing the enhanced
file system. MP/M II was the first operating system in this family
to incorporate the enhanced file system.

The compatibility attributes are not usually needed to run
CP/M-86 software under Concurrent CP/M-86.

For example, one of these restr ictions operates when a process
opens a file in the Default (Locked) mode. Concurrent CP/M-86 does
not allow other processes on the system to open, delete, or rename
the file until the process opening the file either closes the file

All Information Presented Here is Proprietary to Digital Research

20

Concurrent CP/M-86 Programmer's Guide 2.4 File Control Block

or terminates. Concurrent CP/M-86 does not allow a process to
perform file operations with an FCB that has not been activated by a
successful open or make operation or with an FCB that has been
deactivated by a close operation.

The preced i ng example descr ibes restr ictions required to
prevent collisions between independent processes dur ing file access.
Another new Concurrent CP/M-86 restriction sets limits on how a
process can modify open FCBs. These limi ts are enforced by checksum
verification of open FCBs. They protect the integrity of the
Concurrent CP/M-86 file system from corrupted FCBs.

Software developed under the CP/M type file systems opens files
in the Default (Locked) mode. Under Concurrent CP/M-86 these files
are protected in case several programs try to wri te to them
simultaneously. Concurrent CP/M-86 allows simultaneous file
modification in an orderly way. (See Section 2.11.)

Note that the new Concurrent CP/M-86 restrictions do not
protect one process or task from its own actions; rather, they
ensure that one task cannot adversely affect other tasks on the
system.

The new Concurrent CP/M-86 file system restrictions create
little difficulty for new application development. In fact, they
enforce good programming practice. However, because of these new
restrictions, some CP/M and MP/MT.M·software written before MP/M Ills
release does not run on Concur rent CP /M-86. Multiple copies of some
CP/M-86 programs do not run because the default open mode for
Concurrent CP/M-86 is a locked mode in which only one process can
open a file.

Compatibility Attributes Fl' Through F41

To address these problems, Dig i tal Research has added
compatibility attributes to MP/M II, MP/M-86, and Concurrent CP/M-
86. These compatibility attributes are defined as attributes Fl'
through F41 of program files. The Command Line Interpreter (CLI)
interrogates these attributes during program loading and modifies
the Concurrent CP/M-86 ground rules for the loaded program as
descr ibed below. Concurrent CP/M-86, as supplied by Dig i tal
Research for the IBM Personal Computer, always sets the I F3 1
compatiblity attribute.

Note: do not use these compatibility attributes with new software.
Use these compatibility attributes with working software developed
for CP/M-SO, CP/M-86, and MP/M-80. Compatibility attribute F41
disables FCB checksum verification on read and write operations.
Use this attribute sparingly and only with programs known to work.

All Information Presented Here is Proprietary to Digital Research

21

Concurrent CP/M-86 Programmer's Guide 2.4 File Control Block

Table 2-3. Compatibility Attribute Definitions

Attribute Definition

FI' MP/M 1.1 Default Open. Processes running with
this attribute have all files opened in locked
mode marked as Read-Only in the System Lock
List. All processes with this attribute set
can read and write to. common files with no
restr ictions. However, .no record locking is
provided. This attr ibute also allows a process
to write to a file opened by another process in
Read-Only mode. To be safe, make all static
files such as program and help files Read-Only
when this compatibility attribute is used.

P2' Partial Close default. Processes running with
this attribute have their default close mode
changed from permanent close to partial close.
This attribute is for programs that close a
file to update the directory but continue to
use the file. Note that Concurrent CP/M-86
assumes a process has finished with a file when
the number of closes issued to the file equals
the number of opens. A side effect of this
attribute is that files opened by a process are
not released until the process terminates. It
might be necessary to set the System Lock List
par amete r s to high values when using this
attribute.

P3' Ignore Close Checksum Errors. This attribute
changes the way Close Checksum errors are
handled for a process. Usually, a message is
pr i nted on the console and the process
terminates. When this attribute is set and a
checksum error is detected during a close
operation, the file is closed if a Lock list
item exists for the file. Otherwise, an
unsuccessful close error code is returned to
the calling process. Under Concurrent CP/M-86,
the CLI function always sets this attribute
when loading programs from disk to accommodate
applications programs that require them.

P4' Disable FCB Checksum verification for read and
write operations. Setting this attribute also
sets attributes F2' and F3'. This attribute
should be used carefully because it effectively
disables Concurrent CP/M-86's file security.
Use this attribute only with software with
which it is known to work.

All Information Presented Here is Proprietary to Digital Research

22

Concurrent CP/M-S6 Programmer's Guide 2.4 File Control Block

Procedure For Using The Compatibility Attributes

Use the Concurrent CP/M-S6 utility SET to set the combination
of compatibility attributes you want in the program name.

Examples:

OA>SET filc~pec [Fl=on]
OA>SET filcspec [Fl=on,F3=on]
OA>SET filcspec [F~=on]

If you have a program that runs under CP/M-SO, CP/M-S6, or
MP/M-SO 1.1 but does not run properly under Concurrent CP/M-S6, use
the following guidelines to select the compatibility attributes to
set for the program.

• If the program ends with, the message, File Currently Opened,
when multiple copies of the program are run, set compatibility
attribute Fl!, or place all common static files under User 0
with the SYS and R/O attributes set.

• If the program terminates with the message, Close Checksum
Error, set compatibility attribute F3'.

• If the program terminates with an I/O error, try running the
program with attribute'F2' set. If the problem persists, then
try attribute F4'. Use attribute F4' only as a last resort.

2.4.3 Interface Attributes FS I Through FO I

The interface attributes are f5' through fS'. These attributes
cannot be used as file attributes. Interface attributes f5' and f6'
request options for BOOS calls requiring an FCB address in register
ox. They are used by the BOOS Open, Make, Close, and Delete File
functions. Table 2-4 shows the fS' and f6' interface attribute
definitions for these functions.

Table 2-4. BOOS Interface Attributes

Function I Attribute

Open File f5' 1 Open in Unlocked Mode
f6' 1 Open in Read-Only Mode

Make File f5' 1 Open in Unlocked Mode
f6' 1 Assign password to file

Close File f5' 1 Partial Close

Delete File f5' 1 Delete file XFCBs only

All Information Presented Here is Proprietary to Digital Research

23

Concurrent CP/M-86 Programmer's Guide 2.4 File Control Block

Section 5 details the interface attributes for each of the preceding
functions. Attributes f5' and f6' are always reset when control is
returned to the calling process. Interface attributes f7' and f8'
are reserved for internal use by the BDOS file system.

The BDOS Search and Delete functions allow multiple file
reference (wildcard specifications). In general, a ? mark in the
filename, filetype, or extent field matches any value in the
corresponding positions of directory FCBs during a directory search
operation. The BDOS search functions also recognize a ? mark in the
drive code field. If specified, these functions return all
directory entries on the disk regardless of user number and
including empty entries. A directory FCB the first byte of which
contains the value E5H is an empty directory entry.

2.5 User Number Conventions

The Concurrent CP/M-86 user facility divides each drive
directory into sixteen logically independent director ies, designated
as user a through user 15. Physically, all user directories share
the directory area of a drive. In most other aspects, however, they
are independent. For example, files with the same name can exist on
different user numbers of the same dr i ve wi th no conflict. However,
a single file cannot reside under more than one user number.

Only one user number is active for a process at one time. The
current user number applies to all drives on the system.
Furthermore, the FCB format does not contain any field that can
override the current user number. As a result, all file and
directory operations reference directories associated with the
current user number. However, it is possible for a process to access
files on different user numbers by setting the user number to the
file's user number with the Set/Get User function before issuing the
BOOS function call for the file. Note that if a process attempts to
read or write to a file under a user number different from the user
number that was active when the file was opened, the BDOS file
system returns a FeB checksum error.

When the CLI function initiates a transient process or RSP, its
user number is set to the default value established by the process
issuing the CLI function call. The sending process is usually the
TMP. However, the sending process can be another process such as a
transient program that makes a BDOS Chain To Program call. A
transient program can change its user number by making a Set/Get
User function call. Changing the user number in this way does not
affect the command line user number displayed by the TMP. Thus,
when a transient process that has changed its user number terminates
and the TMP regains control, the or iginal user number for the
console is restored.

User a has special properties under Concurrent CP/M-86. With
some restrictions, the file system automatically opens a file under
user zero, if the file is not present under the current user number.
This action is only performed when the current user number is not

All Information Presented Here is Proprietary to Digital Research

24

Concurrent CP/M-86 Programmer's Guide 2.5 User Numbers

zero. In addi tion, a file on user zero must have the system
at tr i bu te (t2') set to be eligible for this operation. This
convention allows utilities that can include overlays and any other
commonly accessed files to be placed on user zero, but remain
available for access by other user numbers. As a result, it
eliminates the need for copying commonly needed utilities to all
user numbers on a directory, and gives the Concurrent CP/M-86
manager control over user-zero files directly accessible from other
user numbers.

2.6 Directory Labels and XFCBs

The BOOS file system includes two special types of FCBs, the
XFCB and the directory label. The XFCB is an extended FCB that can
be associated optionally with a file in the directory. If present,
it contains the file's password field and date and time stamp
information. The format of the XFCB is shown below:

dr password

00 01 ••• 09 .• 12 13 14 15 16 •..••.

Figure. 2-2. XFCB Format

The fields in the XFCB are defined as follows:

dr
file
type
pm

- drive code (0 - 16)
- filename
- filetype
- password mode

bit 7 - Read Mode
bit 6 - Write Mode
bit 5 - Delete Mode

ts2

25. 29.

(bit references are right to left, relative to 0)
sl,s2,rc - reserved for system use
password - 8-byte password field (encrypted)
tsl - 4-byte creation or access time stamp field
ts2 - 4-byte update time stamp field

An XFCB can be created for a file in two ways: automatically,
as part of the BOOS Make File function or explicitly, by the BOOS
function, Write File XFCB. The BOOS file system does not
automatically create an XFCB for a file unless a directory label is
present on the file's drive. The BOOS Read File XFCB function
returns a file's XFCB if it exists in the directory. Note that in
the directory an XFCB is identified by a drive byte value (byte a in
the FCB) equal to 16 + N, where N equals the user number.

All Information Presented Here is Proprietary to Digital Research

25

Concurrent CP/M-86 Programmer's Guide 2.6 Labels and XFCBs

The directory label specifies for a drive whether passwords for
password protected files are to be required, whether date and time
stamping for files is to be performed, and whether XFCBs are to be
created automatically for files by the Make File function. The
format of the directory label is similar to that of the XFCB.
Directory label format is shown below:

dr

00 01. •

dr
name
type
dl

password

09 •• 12 13 14 15 16 •••••• 25.

Figure 2-3. Directory Label Format

- drive code (0 - 16)
- directory label name
- directory label type
- directory label data byte

bit 7 - require passwords for files
bit 6 - perform access time stamping
bit 5 - perform update time stamping
bit 4 - Make creates XFCBs
bit 0 - directory label exists

ts2

29.

(bit references are right to left, relative to 0)
sl,s2,rc - n/a
password - 8-byte password field (encrypted)
tsl - 4-byte creation time stamp field
ts2 - 4-byte update time stamp field

Only one directory label can exist in a dr i ve' s directory. The
directory label name and .type fields are not used to search for a
directory label in the directory: they can be used to identify a
disk or a drive. A directory label can be created or its fields can
be updated by the BOOS function, Set Directory Label. This function
can also assign a directory label a password. The directory label
password, if assigned, cannot be circumvented, because file password
protection is an option controlled by the directory label. Thus,
access to the directory label password provides super-user status
for that drive.

Note: The BOOS file system provides no function to read the
directory label FCB directly. However, the directory label data
byte can be read directly with the BDOS function, Return Directory
Label. In addition, the BDOS search functions ('?' in FCB drive
byte) can be used to find the directory label on the default drive.
In the directory, the directory label is identified by a drive byte
value (byte 0 in the FCB) equal to 32 (20H).

All Information Presented Here is proprietary to Digital Research

26

Concurrent CP/M-86 Programmer's Guide 2.7 File Passwords

2.7 File Passwords

Files can be assigned passwords in two ways: by the Make File
function if the directory label specifies automatic creation of
XFCBs or by the Write File XFCB function. A file's password can
also be changed by the Write File XFCB function if the original
password is supplied. However, a file's password cannot be changed
without the original password even when password protection for the
drive is disabled by the directory label.

Password protection is provided in one of three modes. Table
2-5 shows the difference in access level allowed to BDOS functions
when the password is not supplied.

Password
Mode

1. Read

2. Write

3. Delete

Table 2-5. Password Protection Modes

I
Access level allowed when the password
is not supplied.

The file cannot be read" modified, or deleted.

The file can be read but not modified, or
deleted.

The file can be read and modified, but not
deleted.

If a file is password protected in Read mode, the password must be
supplied to open the file. A file protected in Write mode cannot be
written to without the password. A file protected in Delete mode
allows read and write access, but the user must specify the password
to delete the file, rename the file, or to modify the file's
attributes. Thus, password protection in mode 1 implies mode 2 and
3 protection, and mode 2 protection implies mode 3 protection. All
three modes require the user to specify the password to delete the
file, rename the file, or to modify the file's attributes.

If the correct password is supplied, or if password protection
is disabled by the directory label, then access to the BDOS
functions is the same as for a file that is not password protected.
In addition, the Search For First and Search For Next functions are
not affected by file passwords. Table 2-6 lists the BDOS functions
that test for password.

Table 2-6. BDOS Functions That Test For Password

15. Open File
19. Delete File
23. Rename File
30. Set File Attributes

100. Set Directory Label
103. Write File XFCB

All Information Presented Here is Proprietary to Digital Research

27

Concurrent CP/M-86 Programmer's Guide 2.7 File Passwords

File passwords are eight bytes in length. They are maintained
in the XFCB and directory label in encrypted form. To make a BDOS
function call for a file that requires a password, a process must
place the password in the first eight bytes of the current DMA or
specify it with the BDOS function, Set Default Password, before
making the function call.

Note: the BDOS maintains the assigned default password on a per
process basis. Processes inherit their parent process's default
password. You can set a given TMP~s default password using Set.
Programs loaded by this TMP inherit the same default password.

2.8 File Date and Time Stamps

The BDOS file system can record when a file was created, last
accessed, and last updated. It records the creation stamp only when
an XFCB is automatically created by the Make File function. If an
XFCB is created by the Make File XFCB function, the creation stamp
is set to zero. The Close File function makes the update stamp if a
write operation is made to the file while the file is open. The
Open File function makes the access stamp if the file is
successfully opened. The creation date stamp is overwritten when
access stamping is performed because only two date and time fields
reside in the XFCB. The access and creation time stamps share the
same field.

The drive's directory label determines the type of date and
time stamping supported for files on a drive. If a drive does not
have a directory label, or if it is Read-Only, or if the drive's
directory label does not specify date and time stamping, then no
date and time stamping for files is performed. In addition, a file
must have an XFCB to be eligible for date and time stamping. For
the directory label itself, time stamps record when it was created
and last updated. No access stamping for directory labels is
supported.

A process can directly access the date and time stamps for a
file by using the Read File XFCB function. No mechanism is provided
to directly update XFCB date and time fields.

The BDOS file system uses the Concurrent CP/M-86 internal date
and time when it records a date and time stamp. The Concurrent
CP/M-86 TOD utility can be used to set the system date and time.

All Information Presented Here is Proprietary to Digital Research

28

Concurrent CP/M-86 Programmer's Guide 2.9 File Open Modes

2.9 File Open Modes

The BOOS file system provides three different modes for opening
files. They are defined below.

Locked Mode

A process can open a file in Locked mode only if the file is
not currently opened by another process. Once open in Locked mode,
no other process can open the file until it is closed. Thus, if a
process successfully opens a file in Locked mode, that process owns
the file until the file is closed or the process terminates. Files
opened in Locked mode support read and write operations unless the
file is a Read-Only file (attribute tl' set) or the file is password
protected in Write mode and the password is not supplied with the
BOOS Open File call.~ In both of these cases, only read operations
to the file are allowed.

Note: Locked mode is the Oefault mode for opening files under
Concurrent CP/M-86.

Unlocked Mode

A process can open a file in Unlocked mode if the file is not
currently open, or if the file has been opened by another process in
Unlocked mode. This mode allows more than one process to open the
same file. Files opened in Unlocked mode support read and write
operations unless the file is a Read-Only file (attribute tl' set)
or the file is password protected in Write mode and the password is
not supplied with the BOOS Open File call. However, when a file
opened in Unlocked mode is extended by a write operation, the BOOS
allocates space to the file in data block units, not in 128-byte
record units as is usually the case. The BOOS record locking and
unlocking functions are supported only for files opened in Unlocked
mode.

When opening a file in Unlocked mode, a process must reserve 36
bytes in the FCB because the Open File function returns a 2-byte
value called the File 10 in the rO and rl bytes of the FCB. The
File 10 is a required parameter for the BOOS record lock and record
unlock commands.

Read-Only Mode

A process can open a file in Read-Only mode if the file is not
currently opened by another process or if the file has been opened
by another process in Read-Only mode. This mode allows more than
one process to open the same file for Read-Only access.

The Open File function performs the following steps for files
opened in Locked or Read-Only mode. If the current user is nonzero,
and the file to be opened does not exist under the current user

All Information Presented Here is Proprietary to Oigital Research

29

Concurrent CP/M-86 Programmer's Guide 2.9 File Open Modes

number, the Open File function searches user zero for the file. If
the file exists under user zero and the file has the system
attribute (t2') set, the file is opened under user zero. The open
mode' is automatically forced to Read Only when this is done. For
more information, see Section 2.5.

The Open File function also performs the following action for
files opened in Locked mode when the current user number is zero.
If the file exists under user zero and has the system (t2') and
Read-Only (tl') attributes set, the open mode is automatically set
to Read Only. Thus, the Read-Only attribute controls whether a
user-zero system file can be concurrently opened by a user-zero
process and processes on other user numbers when each process opens
the file in the default Locked mode. If .the Read-Only attribute is
set, all processes open the file in Read-Only mode and concurrent
access of the file is allowed. However, if the Read-Only attribute
is reset, the user-zero process opens the file in Locked mode. If
it successfully opens the file, no other process can open it. If
another process has the file open, its open operation is denied.

Table 2-7 shows the definition of the FCB interface attributes
fs' and f6' for the BOOS Open File function.

fS'
fS'
fS'

Table 2-7. FCB Interface Attributes FS I F6'
Open File Function

0, f6'
1, f6'
o or 1, f6'

o - open in Locked mode (Default mode)
o - open in Unlocked mode
1 - open in Read-Only mode

Interface attribute fS' designates the open mode for the BOOS Make
File function. Table 2-8 shows the definition of the FeB interface
attribute fS' for the Make File function.

Table 2-8. FCB Interface Attribute F6'
Make File Function

fS' 0 - open in Locked mode (Default mode)
fS' 1 - open in Unlocked mode

Note: the Make File function does not allow opening the file in
Read-Only mode.

2.10 File Security

In general, the security measures implemented in the BOOS file
system are intended to prevent accidental collisions between running
processes. It is not possible to provide total secur i ty under

All Information Presented Here is Proprietary to Digital Research

30

Concurrent CP/M-86 Programmer's Guide 2.10 File Security

Concurrent CP/M-86 because the BOOS file system maintains file
allocation information in open FCBs in the user's memory region, and
Concurrent CP/M-86 does not support memory protection. In the worst
case, a program that crashes on Concurrent CP/M-86 can take down the
entire system. Therefore, Concurrent CP/M-86 requires that all
processes running on the system be friendly. However, the BOOS file
system is designed to ensure that multiple processes can share the
same file system without interfering with each other by

• performing checksum verification of open FCBs.

• monitoring all open files and locked records via the system
Lock list.

User FCBs are checksum validated before I/O operations to
protect the integrity of the file system from corrupted FCBs. The
Open File and Make File functions compute and assign checksums to
FCBs. The Read, Write, Lock Record, Unlock Record, and Close File
functions subsequently verify and recompute the checksums when the
FCB changes. If the BOOS detects an FCB checksum error, it does not
perform the requested command. Instead, it either terminates the
calling process with an error or, if the process is in BOOS Return
Error mode (see Section 2.15), it returns to the process with an
error code.

The system Lock list defines limits for the number of files a
single process can open and the number of records a single process
can lock. Each time a process opens a file or locks a record
successfully, the BOOS file system allocates an entry in the system
Lock list to record the fact. The file system uses this information
to:

• prevent a process from deleting, renaming, or updating the
attributes of another process's open file

• prevent a process from opening a file currently opened by
another process unless both processes open the file in Locked
or Read-Only mode

• prevent a process from resetting a drive on which another
process has an open file

• prevent a process from locking or updating a record currently
locked by another process. See Section 2.11 for more
information on record locking and unlocking.

For reasons of efficiency, the file system verifies only for certain
functions whether another process has the FCB specified file open.
These functions are: Open File, Make File, Delete File, Rename
File, and Set File Attributes. For open FCBs, the FCB checksum
controls whether the process can use the FCB. By definition, a
valid FCB checksum implies that the file has been successfully
opened and an entry for the file resides in the system Lock list.

All Information Presented Here is Proprietary to Digital Research

31

Concurrent CP/M-86 Programmer's Guide 2.10 File Security

When a process closes a file permanently, the file system removes
the file from the system Lock list and invalidates its FCB checksum
field.

There are several other si tuations where the file system
removes open file entries from the system Lock list for a process.
For example, if a process makes a delete call for a file that it has
open in Locked mode, the file system deletes the file and also
removes the file's entry from the system Lock list. Deleting an
open file is not recommended practice under Concurrent CP/M-86 but
is supported for files opened in Locked mode (the default open mode)
to provide compatibility with software written under earlier
releases of MP/M and CP/M. Note that the file system does not
delete a file opened in Unlocked or Read-Only Mode.

To ensure that the process does not use the FCB corresponding
to the deleted file, the file system subsequently checks all open
FCBs for the process to ensure that a Lock list item exists for the
FCB. Each open FCB is checked the next time it is used. If a Lock
list entry exists for the file, the operation is allowed to proceed.
Otherwise, a FCB checksum error is returned.

The file system performs this verification of open ~'CBs for all
situations where it purges an open file entry from the system Lock
list. The following list describes these situations:

• A process deletes a file it has open in Locked mode.

• A process renames a file it has open in Locked mode.

• A process updates the attributes via the BDOS Set File
Attributes command of a file it has open in Locked Mode.

• A process issues a Free Drive call for a drive on which it has
an open file.

• A change in media is detected on a drive that has open files.
This is a special case because a process cannot control whether
this situation occurs and it can impact more than one process.
(See Section 2.13.)

The automatic verification of open FCBs by the file system
after it purges a file entry from the system Lock list can affect
performance. Each verification requires a directory search
operation. Therefore, it is strongly recommended that these
si tuations be avoided in new programs developed for Concurrent CP/M-
86.

All Information Presented Here is Proprietary to Digital Research

32

Concurrent CP/M-86 Programmer's Guide 2.10 File Security

Extended File Locking

Extended file locking enables a Concurrent CP/M-86 process to
maintain a lock on a file even after the file is closed. This
facility allows a process to rename, set the attributes, or delete a
file without having to contend with interference from other
processes after the file is closed.

A process can also reopen a file with an extended lock and
continue regular file processing. For example, a process can open a
file, perform file operations on the file, close the file, rename
the file, reopen the file under its new name, and proceed with file
operations, wi thout ever losing the file's Lock list i tern and
control over the file.

Extended file locking is available only to files that are
opened in the default open mode (Locked mode). To extend a file's
lock, set interface attribute F6' when closing the file. This
attribute is interrogated by the Close function only when it is
closing a file permanently. Thus, interface attribute FS' must be
reset when the Close call is made. If a file has been opened N
times (more than once), this attribute is interrogated only when the
file is closed for the Nth time.

To maintain an extended file lock through a Rename File call or
a Set File Attributes call, set interface attribute FS' of the
referenced FCB when making the call. This attribute is honored only
for extended file locks, not normal locks. Setting attribute FS'
also maintains an extended file lock for the Delete File function,
but setting this attribute also changes the nature of the Delete
function to an XFCB-Only delete. If successful, all three of these
functions delete a file's extended lock item with attribute FS'
reset. If they return with an error code, the extended lock item is
not deleted.

A standard open call can be made to resume file operations on a
file with an extended lock. The Open mode, however, is restricted
to the default Locked mode. You can use extended locks to

o open file EXLOCK.TST in Locked mode

• perform file operations on the file EXLOCK.TST using the open
FCB

• close file EXLOCK.TST with interface attribute F6' set to
retain the file's lock item

• use the Rename File function to change the name of the file to
EXLOCK.NEW with interface attribute FS' set to retain the
file's extended lock item

• open the file EXLOCK.NEW in Locked mode

• perform operations on the file EXLOCK.NEW using the opened FCB

All Information Presented Here is Proprietary to Digital Research

33

Concurrent CP/M-86 Programmer's Guide 2.10 File Security

• close file EXLOCK.NEW with interface attribute F6' set to
retain the file's lock item

• set the Read-Only attribute and release the file's lock item by
using the Set File Attributes function with interface attribute
FS' reset. At this point, the file EXLOCK.NEW becomes
available for access by another process.

2.11 Concurrent File Access

More than one process can access the same file if each process
opens the file in the same shared access mode. The BDOS supports
two shared access modes, Unlocked and Read-Only. Read-Only mode is
functionally identical to the default Locked mode except that more
than one process can access the file and no process can change it.
Files opened in Unlocked mode present a more complex si tuation
because a file opened in this mode can be modified by multiple
processes concurrently. As a result, Unlocked mode differs in some
important ways from the other open modes.

When a process opens a file in Unlocked mode, the file system
returns a 2-byte field called the File ID in the rO and rl bytes of
the FCB. The File ID is a required parameter of the BDOS Lock
Record and Unlock Record functions.

The file system supports two mechanisms that allow processes to
coordinate update operations on files open in Unlocked mode. The
record locking and unlocking functions allow a process to establish
and relinquish temporary ownership of particular records. A Record
lock does not prevent another process from reading the locked
record. Only write and' lock operations for other processes are
intercepted. As an alternative, the Test And write Record function
verifies the current contents of a record before allowing the write
operation to proceed.

The record locking and unlocking functions and the Test And
Write Record function provide two fundamentally different approaches
to record update coordination. When a record is locked, the file
system allocates an entry in the system Lock list, identifying the
locked record and associating it with the calling process. The
Unlock Record function removes the locked entry from the list.
While the locked record's entry exists in the system Lock list, no
other process can lock or write to that record. Because the system
Lock list is a limited resource under Concurrent CP/M-86, the number
of records a process can lock is restricted.

The Test And Write Record function, on the other hand, performs
its ver ification at the I/O level. In a single operation, it
verifies that the user's current version of the record matches the
version on disk before allowing the write operation to proceed. As
a result, it is not restricted like the Lock Record function.
However, record update coordination can usually be performed more
efficiently with the lock functions.

All Information Presented Here is Proprietary to Digital Research

34

Concurrent CP/M-86 Programmer's Guide 2.11 File Access

The BDOS file system performs additional steps for read and
wr i te operations to a file open in Unlocked mode. These added steps
are required because the BDOS file system maintains the current
state of an open file in the user's FCB. When multiple processes
have the same file open, FCBs for the same file exist in each
process's memory. To ensure that all processes have current
information, the file system updates the directory immediately when
an FCB for an unlocked file is changed. In addition, the file
system verifies error situations such as end-of-file or reading
unwritten data with the directory before returning an error. As a
result, read and write operations are less efficient for files open
in Unlocked mode when compared to equivalent operations for files
opened in the default Locked mode.

Extending a file is also a special situation for files opened
in Unlocked mode. When a file is extended, the size of the file is
set to the Random Record Number of the last record + 1. However,
when a file opened in Unlocked mode is extended, the size of the
file is set to the Random Record Number + 1 of the last l28-byte
record in the file's last data block. A process must keep track of
the last record of a file extended while open in Unlocked mode, if
that is required.

2.12 Multi-Sector I/O

The BDOS file system provides the capability to read or write
multiple l28-byte records in a single BDOS function call. This
multisector facility can be visualized as a BDOS burst mode,
enabling a process to complete mul tiple I/O operations wi thout
interference from other running processes. The use of this facility
in an application program can improve its performance and also
enhance overall system throughput. For example, the PIP utility
performs its sequential I/O with a Multi-Sector Count of 8.

The number of records that can be supported with multi-sector
I/O ranges from one to sixteen. For transient programs, the def aul t
value is one because the CLI function initializes· the Multi-Sector
Count of a transient program to one when it initiates the program.
The BDOS SET Multi-Sector Count function can be used to set the
count to another value.

The Multi-Sector Count determines the number of operations to
be performed by the following BDOS functions:

• Sequential Read and Write functions

• Random Read and Write functions including Write With Zero Fill
and Test And Write Record

• Lock Record and Unlock Record

If the Multi-Sector Count is N, calling one of the above functions
is equivalent to making N function calls. If a multi-sector I/O

All Information Presented Here is Proprietary to Digital Research

35

Concurrent CP/M-86 Programmer's Guide 2.12 Multi-Sector I/O

operation is interrupted with an error, the file system returns the
number of 128-byte records successfully processed in the high-order
nibble of register AH.

2.13 Flushing Buffers in the XI OS

An optional physical record blocking and deblocking facility
can be implemented as par t of the XIOS when it is necessary to
maintain physical records on disk in units greater than 128-bytes.
In general, record blocking and deblocking in the XIOS is
transparent to the BDOS file system as well as to programs that make
BDOS file system calls.

If this facility is implemented, then the XIOS sends data to or
receives data from the BDOS file system in logical 128-byte records
but accesses the disk with a larger physical record size. The XI OS
uses an internal physical record buffer equal in size to the
physical record size to buffer logical records. The process of
building up physical records from 128-byte logical records is called
blocking; it is required for BDOS write operations. The reverse
process is called deblocking; it is required for BDOS read
operations. For BDOS write operations, the XIOS postpones the
physical write operation for permanent drives (see Section 2.14) if
the write operation is not to the directory. For BDOS read
operations, the XIOS performs a physical read only if the current
physical record buffer does not contain the requested logical
record. In addition, if the physical record is pending as the
result of a previous write operation, the XI OS performs a physical
write operation prior to the read operation.

Postponing physical record write operations has implications
for some application programs. For programs that involve file
updating, it is often critical to guarantee that the state of a file
on disk parallels the state of the file in memory after updating the
file. This is an issue only for systems that implement blocking and
deblocking because of the postponement of physical wr i te operations.
If the system crashes while the physical buffer is pending, data is
lost. To prevent this, the BDOS Flush Buffers function can be
invoked to force the write of any pending physical buffers in the
XIOS.

Note: the system automatically calls this function when a process
terminates. In addition, the BDOS file system automatically makes a
Flush Buffers call in the Close File function.

2.14 Reset, Access, and Free Drive

The BDOS functions Disk System Reset, Reset Drive, Access
Drive, and Free Drive allow a process to control when to
reinitialize a drive directory for file operations.

All Information Presented Here is Proprietary to Digital Research

36

Concurrent CP/M-86 Programmer's Guide 2.14 Resetting the Drive

When Concurrent CP/M-86 is initiated, all drives are
initialized to the reset state. Subsequently, as drives are
referenced, they are automatically logged in by the file system.
The log-in operation initializes the drive for BOOS file operations.

In general, once a drive is logged in, it is not necessary to
relog the drive unless a disk media change is to be made. However,
Concur r en t CP /M-86 requires that a successful dr ive reset be
performed for a drive before a media change. If a drive is in the
reset state when the media is changed, the next access to the drive
logs in the drive. Note that the Disk System Reset and Reset Drive
functions have similar effects except that the Disk System Reset
function is directed to all drives on the system. The user can
specify any combination of drives to be reset with the Reset Drive
function.

Under Concurrent CP/M-86, the dr ive reset operation is
conditional. The file system cannot reset a drive for a process if
another process has an open file on the drive. However, the exact
action taken by a drive reset operation depends on whether the drive
to be reset is permanent or removable. Concurrent CP/M-86
determines whether a drive is permanent or removable by
interrogating a bit in the drive's Disk Parameter Block (DPB) in the
XIOS. A high-order bit of 1 in the DPB checksum vector size field
designates the drive as permanent. Under Concurrent CP/M-86, a
drive's designation is critical to the reset operation described
below.

The BOOS first determines whether there are any files currently
open on the drive to be reset. If there are none, the reset takes
place. Otherwise, if the drive is a permanent drive and if the
drive is not Read-Only, the reset operation is not performed, but a
successful result is returned to the calling process. However, if
the drive is removable or Read-Only, the file system determines
whether other processes have open files on the drive. If they do,
the drive reset operation is denied, and an error code is returned
to the calling process. If all the files open on the drive belong
to the calling process, the file system performs a qualified reset
operation for the drive and returns a successful result to the
calling process. This means that the next time the drive is
accessed, the log-in operation is performed only if a media change
is detected on the drive. The logic flow of the drive reset
operation is shown in Figure 2-4.

All Information Presented Here is Proprietary to Digital Research

37

Concurrent CP/M-86 Programmer's Guide 2.14 Resetting the Drive

yes
Open files
on drive? ~
~I

Reset
drive

Disk
Reset
Success

no
Drive
removable ?

I no

Drive R/O ?

no

Do not reset
drive

yes

yes

Open files
belong to
another
proce ss ?

I no

Quali fied
reset
perfo rmed

Figure 2-4. Disk System Reset

yes

Disk
Reset
Denied

If the file system detects a media change on a drive after a
qualified reset, it purges all open files on the drive from the
system Lock list and subsequently verifies all open FCBs in file
operations for the owning process. (See Section 2.9.) The drive is
also relogged in. In all other cases where a media change is
detected on a drive, the file system performs the following steps:
All open files on the drive are purged from the system Lock list,
and all process owning a purged file are flagged for automatic open
FCB verification. The drive is then placed in Read-Only status. It
is not relogged-in until a drive reset is issued for the drive.

Note: If a process references a file purged from the system Lock
list in a BDOS command that requires an open FCB, it is returned as
FCB checksum error by the BDOS file system.

All Information Presented Here is Proprietary to Digital Research

38

Concu~rent CP/M-86 Programmer's Guide 2.14 Resetting the Drive

The Access Drive and Free Drive functions perform special
actions under Concurrent CP/M-86. The Access Drive function inserts
a dummy open file item into the system Lock list for each specified
drive. While that item exists in the system Lock list, the drive
cannot be reset by another process. The Free Drive function purges
the Lock list of all items including open file items belonging to
the calling process on the specified drives. Any subsequent
reference to those files by a BDOS function call requiring an open
FCB results in a FCB checksum error return.

The Write Protect Disk function has special properties under
Concurrent CP/M-86. This function can be used to set the specified
drive to Read-Only. However, Concurrent CP/M-86 does not allow a
process to set a drive Read-Only if another process has an open file
on the drive. This applies to both removable and permanent drives.
If a process has successfully set a drive Read-Only, it can prevent
other processes from resetting the drive by either opening a file on
the drive or issuing an Access Drive call for the drive. While the
open file or dummy item belonging to the process resides in the
system Lock list, no other process can reset the drive to take it
out of Read-Only status.

2.15 BOOS Error Handling

The BDOS file system has an extensive error handling
capability. When it detects an error, it can respond in one of
three ways:

• It can return to the calling process with return codes in AX
register identifying the error.

• It can display an error message on the console and abort the
process.

• It can display an error message on the console and return to
the calling process as in method 1.

The file system handles the majority of errors it detects via method
1. The kinds of errors the file system handles via methods 2 and 3
are called physical and extended errors. The BDOS Set Error Mode
function determines how the file system handles physical and
extended errors.

The BDOS Error mode can exist in three states. In the Default
Error mode, the BDOS displays the error message and terminates the
calling process (method 2). In Return Error mode, the BDOS returns
control to the calling process with the error identified in the AX
register (method 1). In Return and Display mode, the BDOS returns
control to the calling process with the error identified in the AX
register and also displays the error message at the console (method
3). The latter two return modes ensure that Concurrent CP/M-86 does

All Information Presented Here is Proprietary to Digital Research

39

Concurrent CP/M-86 Programmer's Guide 2.15 BOOS Error Handling

not terminate the process because of a physical or extended error.
The Return and Oisplay mode also allows the calling process to take
advantage of the built-in error reporting of the BOOS file system.
Physical and extended errors are displayed on the console in the
following format:

BOOS Err on d: error message
BOOS function: nn File: filename. type

where d is the name of the drive selected when the error condition
is detected; error message identifies the error; nn is the BOOS
function number, and filename.type identifies the file specified by
the BOOS function. If the BOOS function did not involve a FCB, the
file information is omitted.

The following tables detail BOOS physical and extended error
messages.

Table 2-9. BOOS Physical Errors

Error I Explanation

Bad Sector

Select

File RIO

The Bad Sector error results from an error
condi tion returned to the BOOS from the XIOS
module. The file system makes XIOS read and
write calls to execute file-related BOOS calls.
I f the XIOS read or wr i te routine detects an
er ror, it returns an er ror code to the BOOS,
causing this error message.

The Select error also results from an error
condition returned to the BOOS from the XIOS
module. The BOOS makes an XIOS Select Oisk call
before accessing a drive to perform a requested
BOOS function. If the XIOS does not support the
selected disk, it returns an error code resulting
in this error.

The BOOS returns the File RIO error whenever a
process makes a write operation to a file with
the RIO attribute set.

All Information Presented Here is Proprietary to Oigital Research

40

Concurrent CP/M-86 Programmer's Guide 2.15 BDOS Error Handling

Table 2-9. (continued)

Error I Explanation

RIO

The BDOS returns the RIO error whenever a process
makes a write operation to a disk that is in
Read-Only status. A drive can be placed in Read­
Only status explicitly with the BDOS write
Protect Disk function or implicitly if the file
system detects a change in media on the drive.

Table 2-10. BOOS Extended Errors

Error I Explanation

File Opened in Read-Only Mode

The BDOS returns the File Opened in Read-Only
mode error when a process attempts to write to a
file opened in Read-Only mode. A file can be
opened in Read-Only mode explicitly or opened in
Read-Only mode implicitly in two ways. If a file
is opened from user zero when the current user
number is nonzero, the file is opened in Read­
Only mode. In addition, if a file is password
protected in Write mode and the password is not
supplied wi th the open call, the BDOS returns
this error if an attempt is made to write to the
file.

File Currently Opened

The BDOS returns the File Currently Open error
when a process attempts to delete, rename, or
modify the attributes of a file opened by another
process. The BDOS also returns this error when a
process attempts to open a file in a mode
incompatible with the mode in which the file was
opened by another process.

Close Checksum Error

The BDOS returns the Close Checksum Error message
when the BDOS detects a checksum error in the FCB
passed to the file system with a BDOS Close File
call.

All Information Presented Here is Proprietary to Digital Research

41

Concurrent CP/M-86 Programmer's Guide 2.15 BDOS Error Handling

Table 2-10. (continued)

Error I Explanation

Password Error

The BDOS returns the File Password error when the
file password is not supplied or when it is
incorrect.

File Already Exists

The BDOS returns the File Already Exists error
for the BDOS Make File and Rename File functions
when the BDOS detects a conflict on filename and
filetype.

Illegal ? in FCB

The BDOS returns the Illegal ? in FCB error
whenever the BDOS detects a ? in the filename or
filetype of the passed FCB for the BDOS Rename
File, Set File Attributes, Open File, and Make
File functions.

Open File Limit Exceeded

The BDOS returns the Open File Limit Exceeded
error when a process exceeds the file lock limit
spec ified in the system Lock list. The Open
File, Make File, and Access Drive functions can
return this error.

No Room in System Lock List

The BDOS returns the No Room in System Lock list
error when no room for new entries exists within
the system Lock list. The Open File, Make File,
and Access Drive functions can return this error.

The following paragraphs describe the error return code
conventions of the BDOS file system functions. Most BDOS file
system functions fall into three categories in regard to return
codes; they return an error code, a directory code, or an error
flag. The error conventions let programs written for CP/M-86 run
without modification.

All Information Presented Here is Proprietary to Digital Research

42

Concurrent CP/M-86 Programmer's Guide 2.1S BDOS Error Handling

The following BDOS functions return an error code in register
AL:

20. Read Sequential
21. Write Sequential
33. Read Random
34. Write Random
40. Write Random With Zero Fill
41. Test And Write Record
42. Lock Record
43. Unlock Record

Table 2-11 lists error code definitions for register AL.

Table 2-11. BOOS Error Codes

Code I Definition

OOH
OlH

02H
03H
04H
OSH
06H
07H

* 08H

09H

OAH
* OBH

** OCH
** ODH
** OEH

OFFH

Function successful
Reading unwritten data
No available directory space (Write Sequential)
No available data block
Cannot close current extent
Seek to unwritten extent
No available directory space
Random record number out of range
Record match error (Test and Write)
Record locked by another process
(restricted to files opened in unlocked mode)
Invalid FCB (previous BDOS read or write call
returned an error code and invalidated the FCB)
FCB checksum error
Unlocked file unallocated block verify error
Process record lock limit exceeded
Invalid File ID
No room in System Lock List
Physical error : refer to register AH

* - returned only for files opened in Unlocked Mode
** - returned only by the Lock Record function

for files opened in Unlocked mode

All Information Presented Here is Proprietary to Digital Research

43

Concurrent CP/M-86 Programmer's Guide 2.15 BDOS Error Handling

The following BDOS functions return a directory code in
register AL:

15. Open File
16. Close File
17. Search For First
18. Search For Next
19. Delete File
22. Make File
23. Rename File
30. Set File Attributes
100. Set Directory Label
101. Read File XFCB
102. Write File XFCB

The Directory Code definitions for register AL are shown in Table 2-
12.

Table 2-12. BDOS Directory Codes

Code 1 Meaning

OOH - 03H
OFFH

successful function
unsuccessful function

With the exception of the BDOS search functions, directory code
values (0-3) have no significance other than to indicate a
successful result. However, for the search functions, a successful
directory code identifies the relative starting position of the
directory element in the calling process's current DMA buffer.

If the Set BDOS Error mode function is used to place the BDOS
in Return Error mode, the following functions return an error flag
in register AL on physical errors:

14. Select Disk
35. Compute File Size
38. Access Drive
46. Get Disk Free Space
48. Flush Buffers
101. Return Directory Label Data

The error flag definition for register AL is shown in Table 2-13.

Table 2-13. BDOS Error Flags

Code \ Meaning

OOH successful function
OFFH : physical error : refer to register AH

All Information Presented Here is Proprietary to Digital Research

44

Concurrent CP/M-86 Programmer's Guide 2.15 BOOS Error Handling

The BOOS returns register AH values for all three of the above
categories in the following format:

Nl N2

Figure 2-5. Return Values - Register AD

where Nl denotes the high-order nibble and N2 denotes the low-order
nibble. The following rules govern the assignment of values to Nl
and N2.

Nl For functions that return error codes, the BOOS sets Nl to the
number of sectors successfully read or written before the error
is encountered. This information is returned only when a
process uses the Set Multi-Sector Count function to set the
BOOS Multi-Sector Count to a value other than one; otherwise
the BOOS sets Nl to zero. Successful read and write functions
also set Nl to zero.

Nl Functions that return a directory code or an error flag set Nl
to zero.

N2 The values contained in N2 identify BOOS physical and extended
errors. The BOOS returns values in N2 only if it is in one of
the Return Error modes; otherwise, it sets N2 to zero. Table
2-14 lists the physical and extended error codes returned in
N2.

Table 2-14. BOOS Physical and Extended Errors

Code I Meaning

OOH - No error or not a register AH error
OlH - Bad Sector : permanent error
02H - RIO : Read-Only Diskette
03H - RIO File : Read-Only file

- File Opened in Read-Only Mode
04H - Select : drive select error
05H - File Currently Open
06H - Close Checksum Error
07H - Password Error
08H - File Already Exists
09H - Illegal ? in FCB
OAH - Open File Limit Exceeded
OBH - No Room in System Lock list

All Information Presented Here is Proprietary to Digital Research

45

Concurrent CP/M-86 Programmer's Guide 2.15 BOOS Error Handling

Note: Register AH is equal to zero if the called function is
successful. In addition, the BDOS sets N2 to zero when register AL
returns a value other than 255. Except for functions that return
directory codes, if register AL contains a value o·f 255 upon return,
N2 identifies the error when the BDOS is in Return Error mode.

The following two functions represent a special case because
they return an address in register AX.

27. Get Addr (Alloc)
31. Get Addr (Disk Parms)

When the BDOS is in Return Error mode and it detects a physical
error for these functions, it returns to the calling process with
registers AX, and BX set to OFFFFH. Otherwise, they return no error
code.

Under Concurrent CP/M-86, the following functions also
represent a special case.

13. Reset Disk System
28. Write Protect Disk
37. Reset Drive

These functions return to the calling process with registers AL, and
BL set to 255 if another process has an open file or has made a BDOS
Access Drive call that prevents the reset or write protect
operation. If the BDOS is not in Return Error mode, these functions
also display an error message identifying the process that prevented
the requested operation.

2.16 Programming Guidelines

This discussion emphasizes those areas of Concurrent CP/M-86
where restrictions exist that did not exist in MP/M-80 or do not
exist in CP/M-80 or CP/M-86.

Always follow this sequence when performing file operations
requiring an open file. Under Concurrent CP/M-86, these operations
are the BDOS read, write, lock, and unlock record commands •

• Activate a file's FCB with a BDOS Open or Make function call
before using the FCB in a file operation. Verify that the Open
or Make operation was successful. Concurrent CP/M-86 only
accepts FCBs activated by a successful Open or Make call for
open file operations. If an FCB that has not been activated is
used, Concurrent CP/M-86 returns a checksum error •

• Perform all file operations using activated FCBs. Note that
Concurrent CP /M-86 does not deactivate an acti vated FCB when it
returns error codes for file operations. Generally, only the
current record and random record fields of an activated FCB
should be modified. In addition, all file operations with an

All Information Presented Here is Proprietary to Digital Research

46

Concurrent CP/M-86 Programmer's Guide 2.16 Guidelines

activated FCB must be made under the user number that was in
effect when the FCB was activated. A similar restr iction
applies to activated FCBs that specify the default drive. All
file operations specifying such an FCB must be made under the
current drive that was in effect when the FCB was activated.
Item 3 in this list covers the complete rules regarding
activated FCB modification •

• If a process has completed file operations on a file but still
has a significant amount of processing left to do, the file
should be closed. This applies even if the file was not
modified. With some exceptions, the Lock list entry associated
with a file in the system Lock list is not released until a
file is permanently closed.

Concurrent CP/M-86 restricts access to a file by other
processes while a Lock list item for the file resides in the system
Lock list. It is not necessary to close input files if a process is
about to end. At termination, all lock items belonging to a process
are released. Output files, however, must always be closed or data
might be lost.

Note that a successful permanent close operation deactivates
the FCB and removes the file's item from the system Lock list. If
the deactivated FCB is used in a subsequent open file operation,
Concurrent CP/M-86 returns a checksum error.

If a process opens the same file more than once, a matching
number of close commands must be issued to the file to remove the
file's Lock list item from the system Lock list. Thus, if a file
has been opened N times, the first N-l close operations issued to
the file default to partial close operations. Only the last close,
close operation N, is interpreted as a permanent close. By
definition, a permanent close is a close operation that removes the
referenced file's item from the system Lock list. Note that only
one Lock list item is allocated in the system Lock list for a file
regardless of the number of FCBs a process has opened for the file.

The following list specifies how an activated FCB can be
changed without affecting the FCB checksum. Concurrent CP/M-86
returns a checksum error code and does not perform the requested
operation if an FCB with an invalid checksum is used in an open file
operation •

• FCB(O) cannot specify a new drive •

• with the exception of interface attributes FS' and F6' for the
BOOS Close function, FCB(l) through FCB(ll) cannot be changed.

All Information Presented Here is Proprietary to Digital Research

47

Concurrent CP/M-86 Programmer's Guide 2.16 Guidelines

• The high-order 3 bits of FCB(12) cannot be changed. The low­
order 5 bits can be changed. Note that when a file is opened
in the default open mode (Locked mode), the high-order 3 bits
of this FCB field are set to zeros.

• FCB(l3) cannot be changed.
• FCB(14) and FCB(lS) can be changed.
• FCB(l6) through FCB(31) cannot be changed.
• FCB(32) through FCB(3S) can be changed.

If compatibility with future releases of MP/M and CP/M is a
requirement, programs should restrict open FCB modification to the
FCB fields 32 through 35. In particular, Digital Research does not
support techniques that involve modifying fields 12, 14, and 15 of
open FCBs.

Processes that access a printer must issue a Detach List device
to free the printer before another process can use the printer. If
the Detach List call is not made, a process that accesses a printer
continues to own the printer until it ends.

CP/M programs that make direct BIOS calls for disk I/O do not
work under Concurrent CP/M-86. Concurrent CP/M-86 does support
direct BIOS calls for the console and printer but not to the disk.

The following procedure is a protocol that multiple processes
can use to coordinate record update and addition operations to a
shared file. Each process must open the shared file in unlocked
mode. This procedure also assumes that records containing binary
zeros are null records.

All Information Presented Here is Proprietary to Digital Research

48

Concurrent CP/M-S6 Programmer's Guide 2.16 Guidelines

• Attempt to lock the record.

• If the lock attempt fails because another process has locked
the record, delay and repeat the procedure.

• If the lock attempt fails because the record does not exist in
the file, add a record initialized to binary zeros to the file
with the BOOS Write Random with Zero Fill command and repeat
the procedure. Note that files opened in Unlocked mode are
extended in block units and not in record units as is the case
for files opened in the default Locked mode.

• If the lock attempt succeeds, read the record, update it, and
then unlock it.

Multiple FCB I/O is a technique that involves opening each
extent for a file independently and maintaining it in a table in
memory. Then random I/O is handled by selecting the proper FCB from
the table, setting the current record field to the proper record
number within the extent, and making a sequential Read or Write
command. When processing is completed, each FCB is closed. The
maximum file size that can be accessed with this technique is 512K
bytes. This limits the maximum table size to 32 FCBs. Note that
this technique provides a method of performing random I/O that is
compatible with CP/M 1.4.

Multiple FCB I/O must be performed carefully under Concurrent
CP/M-S6 because of the restrictions Concurrent CP/M-S6 places on
file operations to provide file security. Generally, an FCB should
not be used in file I/O unless it has been activated and it should
not be modified while it is activated. In addition, the number of
opens and closes issued to a file is important. Note that all 32
bytes of each extent's FCB should be maintained in the open FCB
table. Also, verify that interface attribute FS' is set to 1 in all
FCBs if the first FCB has FS' set to 1. FS' set to 1 indicates the
file was opened under user 0 although the current user number is
nonzero. (See Function 15.)

End of Section 2

All Information Presented Here is Proprietary to Digital Research

49

Concurrent CP/M-a6 Programmer's Guide End of Section 2

All Information Presented Here is Proprietary to Digital Research

50

Section 3
Transient Commands

3.1 Transient Process Load and Exit

You can initiate a transient process by entering a command at a
system console. The console's TMP (Terminal Message Processor) then
calls the Command Line Interpreter function (See Function 150), and
passes to it the command line entered by the user. If the command
is not resident, then the CLI function locates and then loads the
proper CMD file. The CLI function calls the Parse Filename function
that parses up to two filenames following the command and places the
properly formatted FCBs at locations 005CH and 006CH in the Base
Page of the initial Data Segment. .

The CLI function initializes memory, the Process Descriptor,
and the User Data Area (UDA) , and allocates a 96-byte stack area
independent of the program, to contain the process's initial stack.
Concurrent CP/M-86 divides the DMA address into the DMA segment
addr ess and the DMA offset. The CLI function ini tiali zes the
default DMA base to the value of the initial data segment, and the
default DMA offset to 0080H.

The CLI function creates the new process with a Create Process
call (Function 144) and sets the initiai stack so that the process
can execute a Far Return call to terminate. A process can also
terminate by calling System Reset (Function 0) or by calling
Terminate (Function 143). A user terminates a process by typing a
single CTRL-C during line edited input. This has the same effect as
the process calling Function O.

3.2 Command File Format

A CMD file consists of a l28-byte header record followed
immediately by the memory image. The command file header record is
composed of 8 group descriptors (GDs) , each 9 bytes long. Each
group descriptor describes a portion of the program to be loaded.
The format of the header record is shown in Fig~re 3-1.

GD 1 GD 2 GD 3 GD 4 GD 5 GD 6 GD 7 GD 8

<-------------------------- 128 Bytes ------------------------------>

Figure 3-1. CMD File Header Format

All Information Presented Here is Proprietary to Digital Research

51

Concurrent CP/M-86 Programmer's Guide 3.2 Command File Format

In Figure 3-1, GD 1 through GD 8 represent group descriptors.
Currently only the first 72 bytes of the header record are used.
The remaining bytes are reserved for future facilities.

In Figure 3-1, each group descr iptor cor responds to an
independently loaded program unit and has the format shown in Figure
3-2.

8-bit 16-bit 16-bit 16-bi t 16-bit

G-Form G-Length A-Base G-Min G-Max

Figure 3-2. Group Descriptor Format

where G-Form describes the group format, or has the value zero if no
more descriptors follow. If G-Form is non-zero, then the 8-bit
value is parsed as two fields as shown in Figure 3-3.

G-Form:

4-bit 4-bit

x x x x G-Type

Figure 3-3. G-Form Format

The G-Type field determines the group descriptor type. The valid
group descriptors have a G-Type in the range 1 through 9, as shown
in Table 3-1.

All Information Presented Here is Proprietary to Digital Research

52

Concurrent CP/M-86 Programmer's Guide 3.2 Command File Format

Table 3-1. Group Descriptors

G-Type I
OlH
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH
ODH
OEH
OFH

Group Type

Code Group
Data Group
Extra Group
Stack Group
Auxiliary Group #1
Auxiliary Group #2
Auxiliary Group #3
Auxiliary Group #4
Shared Code Group
Unused, but Reserved

"
"

"
Escape Code for Additional
Types

All remaInIng values in the group descriptor are given in
increments of 16-byte paragraph units with an assumed low-order 0
nibble to complete the 20-bit address.

G-Length

A-Base

G-Min/G-Max

gives the number of paragraphs in the group.
Given a G-length of 080H, for example, the size
of the group is 0800H (2048 decimal) bytes.

defines the base paragraph address for a
nonrelocatable group.

define the minimum and maximum size of the memory
area to allocate to the group.

The memory model described by a header record is implicitly
determined by the group descriptors. (See Section 4.1.) The 8080
Model is assumed when only a code group is present, because no
independent data group is named. The Small Model is assumed when
both a code and data group are present but no additional group
descriptors occur. Otherwise, the Compact Model is assumed when the
CMD file is loaded.

3.3 Base Page Initialization

The Concurrent CP/M-86 Base Page contains default values and
locations initialized by the CLI and Program Load functions and used
by the transient process.

All Information Presented Here is Proprietary to Digital Research

53

Concurrent CP/M-86 Programmer's Guide 3.3 Base Page

The Base Page occupies the regions from offset OOOOH through OOFFH
relative to the initial data segment, and contains the values shown
in Figure 3-4.

o

6

C

12

18

IE

24

2A

30

50

56

5C

6C

7C

80

o
L M H L H

1 2 3 4 5 6

Code Length Code Base M80
1

Data Length Data Base Reserved

Extra Length Extra Base Reserved

Stack Length Stack Base Reserved

Aux 1 Aux 1 Reserved

Aux 2 Aux 2 Reserved

Aux 3 Aux 3 Reserved .
Aux 4 Aux 4 Reserved

Bytes 30 through 4F are currently not used but are
reserved for use by Concurrent CP/M-86. .

.

Drive Password 1 Addr PI Len I Password 2 Addr

P2 Len Currently not used but reserved

Default FCB Area 1

· · ,

Default FCB Area 2

· · ,

CR Random Record Number (opt) I , L

Default l28-byte DMA Buffer

Figure 3-4. Concurrent CP/M-86 Base Page Values

All Information Presented Here is Proprietary to Digital Research

54

Concurrent CP/M-86 Programmer's Guide 3.3 Base Page

The various fields in the Base Page are defined as follows:

• The M80 byte is a flag indicating whether the 8080 Memory
Model was used during load. The values of the flag are
defined as:

1 8080 Model
a = not 8080 Model

If the 8080 Model is used, the code length never exceeds
OFFFFH.

• The bytes marked Aux 1 through Aux 4 correspond to a set of
four optional independent groups that might be required for
programs which execute using the Compact Memory Model. The
initial values for these descriptors are derived from the
header record in the memory image file.

• Length is stored using the Intel convention, for example,
low, middle, and high bytes.

• Base refers to the address of the beginning of the segment.

• The drive byte identifies the drive from which the
transient program was read. a designates the default
drive, while a value of 1 through 16 identifies drives A
through P.

• Password 1 Addr (bytes 005lH-0052H) contains the address of
the password field of the first command tail operand in the
default DMA buffer at 0080H. The CLI function sets this
field to a if no password is specified.

• PI Len (byte 0053H) contains the length of the password
field for the first command tail oper·and. The CLI function
sets this to a if no password is specified.

• Password 2 Addr (bytes 0054H-0055H) contains the address
of the password field of the second command tail operand in
the default DMA buffer at 0080H. The CLI function sets
this field to 0 if no password is specified.

• P2 Len (byte 0056H) contains the length of the password
field for the second command tail operand. The CLI
function sets this field to 0 if no password is specified.

• FCB Area 1 (bytes 005CH-007CH) is initialized by the CLI
function for a transient program from the first command
tail operand of the command line.

• FCB Area 2 (bytes 006CH-007CH) is initialized by the CLI
function for a transient program from the second command
tail operand of the command line.

All Information Presented Here is Proprietary to Digital Research

55

Concurrent CP/M-86 Programmer's Guide 3.3 Base Page

Note: this area overlays the last 16 bytes of FCB Area 1.
To use information in this area, the transient process must
copy it to another location before using Area 1.

• The CR field (byte 007CH) contains the current record
position used in sequential file operations with FCB area
1.

• The optional Random Record Number (bytes 007DH-007FH) is an
extension of FCB Area 1 used in random record processing.

• The Defaul t DMA buffer (bytes 0080H-OOFFH) contains the
command ta il when the CLI function loads a transient
program.

3.4 Parent/Child Relationships

Under Concurrent CP/M-86, when one process creates another
process, there is a parent/child relationship between them. The
child process inherits all the default values of the parent process.
This includes the default disk, user number, console, list device,
and password. The child process also inherits interrupt vectors (O-
4 inclusive, 224 and 225) that the parent process initialized.

End of Section 3

All Information Presented Here is Proprietary to Digital Research

56

Section 4
Command File Generation

4.1 Transient Execution Models

The initial values of the segment registers are determined by
which one of the three memory models is used by the transient
process. The specific memory model is indicated in the CMD file
header record. The three memory models are summarized in Table 4-1.

Table 4-1. Concurrent CP/M-86 Memory Models

Model I Group Relationships

8080 Model Code and Data Groups Overlap

Small Model Independent Code and Data Groups

Compact Model Three or More Independent Groups

The 8080 Model supports programs that are directly translated
from an 8080 environment where code and data are intermixed. The
8080 Model consists of one group which contains all the code, data,
and stack areas. Segment registers are initialized to the starting
address of the region containing this group. The segment registers
can, however, be managed by the application program dur ing execution
so that multiple segments in the code group can be addressed.

The Small Model is similar to that defined by Intel, where the
program consists of an independent code group and a data group. The
code and data groups often consist of, but are not restricted to,
single 64K byte segments.

The Compact Model occurs when any of the extra, stack, or
auxiliary groups are present in program. Each group may consist of
one or more segments, but if any group exceeds one segment in size,
or if auxiliary groups are present, then the application program
must manage its own segment registers during execution in order to
address all code and data areas.

All Information Presented Here is Proprietary to Digital Research

57

Concurrent CP/M-86 Programmer's Guide 4.1 Models

These three models differ primarily in how the operating system
initializes the segment registers when it loads a transient process.
The Program Load function determines the memory model used by a
transient program by examining the program group usage, as described
in the following sections.

4.1.1 The 8080 Memory Model

The 8080 Model is assumed when the transient program contains
only a code group. In this case, the Command Line Interpreter (CLI)
Function 150 initializes the CS, DS, and ES registers to the
beginning of the code group and sets the SS and SP registers to a
96-byte initial stack area that it allocates.

Note: the CLI function initializes the stack so that if the
process executes a Far Return instruction, it will terminate. The
CLI function sets the Instruction Pointer (IP) Register to 100H,
thus allowing Base Page values at the beginning of the code group.
Following program load, the 8080 Model appears as shown in Figure 4-
1.

SS:SP --> 96-BYTE STACK AREA

CODE/DATA

CODE/DATA

OIOOH
(IP = OIOOH)

BASE PAGE

CS:O,DS:O,ES:O --->

Figure 4-1. Concurrent CP/M-86 8080 Memory Model

The intermixed code and data areas are indistinguishable. The Base
Page values are described in Section 3.3. The following ASM-86
example shows how to code an 8080 Model transient assembly language
program.

All Information Presented Here is Proprietary to Digital Research

58

Concurrent CP/M-86 Programmer's Guide 4.1 Models

cseg
org lOOh

(code)
endcs equ $

dseg
org offset endcs

(data)
end

4.1.2 The Small Memory Model

The Small Model is assumed when the transient program contains
both a code and data group. (In ASM-86, all code is generated
following a CSEG directive. Data is defined following a DSEG
directive, with the origin of the Data Segment independent of the
Code Segment.) In this model, the CLI function sets the CS register
to the beginning of the code group, the DS and ES registers to the
beginning of the data group, and the SS and SP registers to a 96-
byte initial stack area that it initializes. Following program
load, the Small Model appears as shown in Figure 4-2.

SS:SP --> 96-BYTE STACK ~REA

DATA

lOOH~-------~
CODE

BASE PAGE

(IP OOOOH)
CS:O --> <-DS:O,ES:O

Figure 4-2. Concurrent CP/M-86 Small Memory Model

All Information Presented Here is Proprietary to Digital Research

59

Concurrent CP/M-86 Programmer's Guide 4.1 Models

The machine code begins at CS+OOOOH, the Base Page values begin at
DS+OOOOH, and the data area starts at DS+OIOOH. The following ASM-
86 example shows how to code a Small Model transient assembly
language program.

cseg

(code)
dseg
org 100h

(data)
end

4.1.3 The Compact Memory Model

The Compact Model is assumed when code and data groups are
present, along with one or more of the remaining stack, extra, or
auxiliary groups. In this case, the CLI function sets the CS, DS,
and ES registers to the base addresses of their respective areas,
and the SS and SP registers to a 96-byte stack area it allocates.
Figure 4-3 shows the initial configuration of the segments in the
Compact Model. The values of the various segment registers can be
programmatically changed during execution by loading from the
initial values placed in Base Page, allowing access to the ~ntire
memory space.

SS SP --> 96-BYTE STACK AREA

DATA

CODE 10 Oh 1-------1

data
(ip=OOOOh) base page

CS:OOOO-->~----------~ DS:OOOO-->~--------~ ES:OOOO-->~----~

Figure 4-3. Concurrent CP/M-86 Compact Memory Model

All Information Presented Here is Proprietary to Digital Research

60

Concurrent CP/M-86 Programmer's Guide 4.1 Models

If the assembly language transient program intends to use the
stack group as a stack area, the SS and SP registers must be set
upon entry. The SS and SP registers remain in the initial stack
area, even if a stack group is defined.

Although it appears that the SS and SP registers should be set
to address the stack group, there are two contradictions. First,
the assembly language transient program might be using.the stack
group as a data area. In that case, the Far Call instruction used
by the CLI function to transfer control to the assembly language
transient program could overwrite data in the stack area. Second,
the SS register would logically be set to the base of the group,
while the SP would be set to the offset of the end of the group.
However, if the stack group exceeds 64K, the address range from the
base to the end of the group exceeds a l6-bit offset value.

The following ASM-86 example shows how to code a Compact Model
assembly language transient program.

cseg

(code)
dseg
org 100h

(data)
eseg

(more data)
sseg

(stack area)
end

4.2 GENCMD

The GENCMD utility creates a CMD file from an input HEX file.
GENCMD is nondestructive. It does not alter the original HEX file.
GENCMD has the following form

GENCMD filename {parameter-list}

where the filename corresponds to the HEX input file with an assumed
and unspecified filetype of H86. GENCMD accepts optional parameters
to spec if ically identify the 8080 Model and to descr ibe memory
requirements of each segment group. The GENCMD parameters are
listed following the filename, as shown in the command line above
where the parameter list consists of a sequence of keywords and
values separated by commas or blanks. The keywords are:

8080 CODE DATA EXTRA STACK Xl X2 X3 X4

All Information Presented Here is Proprietary to Digital Research

61

Concurrent CP/M-86 Programmer's Guide 4.2 GENCMD

The 8080 keyword forces a single code group so that the Program Load
function sets up the 8080 Model for execution, allowing intermixed
code and data in a single segment. The form of this command is:

GENCMD filename 8080

The remaining keywords follow the filename or the 8080 option and
define specific memory requirements for each segment group,
corresponding one-to-one with the segment groups defined in the
previous section. In each case, the values corresponding to each
group are enclosed in square brackets and separated by commas. Each
value is a hexadecimal number representing a paragraph address or
segment length in paragraph units denoted by hhhh, prefixed by a
single letter that defines each value:

Ahhhh
Bhhhh
Mhhhh
Xhhhh

~oad the group at absolute location hhhh
The group starts at hhhh in the hex file
The group requires a minimum of hhhh * 16 bytes
The group can address a maximum of hhhh * 16 bytes

Generally, the CMD file header record values are derived directly
from the HEX file and the parameters shown above need not be
included. The following situations, however, require the use of
GENCMD parameters.

• The 8080 keyword is included whenever ASM-86 is used in the
conversion of 8080 programs to the 8086/8088 environment when
code and data are intermixed wi thin a single 64K segment,
regardless of the use of CSEG and DSEG directives in the source
program.

• An absolute address (A value) must be given for any group that
must be located at an absolute location. This value is not
usually specified, as Concurrent CP/M-86 cannot ensure that the
required memory region is available. In that case the CMD file
cannot be loaded.

• The B value is used when GENCMD processes a HEX file produced
by Intel's OH86 or a similar utility program that contains more
than one group. The output from OH86 consists of a sequence of
data records with no information to identify code, data, extra,
stack, or auxiliary groups. In this case, the B value marks
the beginning address of the group named by the keyword,
causing GENCMD to load data following this address to the named
group (see the examples below). Thus, the B value is usually
used to mark the boundary between Code and Data Segments when
no segment information is included in the HEX file. Files
produced by ASM-86 do not require the use of the B value
because segment information is included in the HEX file.

All Information Presented Here is Proprietary to Digital Research

62

Concurrent CP/M-86 Programmer's Guide 4.2 GENCMD

• The minimum memory value (M value) is included only when the
HEX records do not define the minimum memory requirements for
the named group. Generally, the code group size is determined
precisely by the data records loaded into the area. The total
space required for the group is defined by the range between
the lowest and highest data byte addresses. The data group,
however, might contain uninitial'ized storage at the end of the
group. Thus no data records are present in the HEX file which
define the highest referenced data item. The highest address
in the data group can be defined within the source program by
including a DB 0 as the last data item. Alternatively, the M
value can be included to allocate the additional space at the
end of the group. Similarly, the stack, extra, and auxiliary
group sizes. must be defined using the M value unless the
highest addresses within the groups are implicitly defined by
data records in the HEX file •

• The maximum memory size, given by the X value, is generally
used when additional free memory might be needed for such
purposes as I/O buffers or symbol tables. If the data area
size is fixed, then the X parameter need not be included. In
this case, the X value is assumed to be the same as the M
value. The value XFFFF allocates the largest memory region
available but, if used, the assembly language transient program
must be aware that a three-byte length field is produced in the
Base Page for this group where the high-order byte might be
nonzero. Programs converted directly from an 8080 environment
or programs that use a 2-byte pointer to address buffers should
res tr ict this value to XFFF or less, producing a maximum
allocation length of OFFFOH bytes.

The following GENCMD command line transforms the file X.H86
into the file X.CMD with the proper header record:

OA>GENCr.ID x code[a40] data [m30,ltfff]

In this case, the code group is forced to paragraph address 40H or
its equivalent, byte address 400H. The data group requires a
minimum of 300H bytes~ but can use up to OFFFOH bytes, if available.

Assuming a file Y.H86 exists on drive B containing Intel HEX
records with no interspersed segment information. The command,

OA>GENCHD b:y data [b30 ,m20] elctra [b50] staclt [m40] xl [m40]

produces the file Y.CMD on drive B by selecting records beginning at
address OOOOH for the Code Segment, with records starting at 300H
allocated to the Data Segment. The Extra Segment is filled from
records beginning at SOOH, while the Stack and Auxiliary Segment #1
are uninitialized areas requiring a minimum of 400H bytes each. In
this example, the data area requires a minimum of 200H bytes. Note
again that the B value need not be included if the Digital Research
ASM-86 assembler is used.

All Information Presented Here is Proprietary to Digital Research

63

Concurrent CP/M-86 Programmer's Guide 4.3 Intel HEX Format

4.3 Intel HEX File Format

GENCMD input is in Intel HEX format produced by both the
Digi tal Research ASM-86 assembler and the standard Intel OH86
utility program. (See Intel MCS-86 Software Development Utitities
Operating Instructions for ISIS-II Users, published by Intel.) The
CMD file produced by GENCMD contains a header record defining the
memory model and memory size requirements for loading and executing
the CMD file.

An Intel HEX file consists of the traditional sequence of ASCII
records in the following format:

1 1 a a a a t t d d d d c c

Figure 4-4. Intel HEX File Format

where the beginning of the record is marked by an ASCII colon and
each subsequent digit position contains an ASCII hexadecimal digit
in the range 0-9 or A-F. The fields are defined in Table 4-1.

Table 4-1. Intel Hex Field Definitions

Field I Contents

11

aaaa

tt

Record Length OO-FF (0-255 in decimal)

Load Address

Record Type:
00 data record, loaded starting at offset

aaaa from current base paragraph
01 end of file, cc always = OFFH
02 extended address, aaaa is paragraph

base for subsequent data records
03 starting code address is aaaa (ignored

by GENCMD and Concurrent CP/M-86, IP set
according to memory model in use)

The following are output from ASM-86 only:

81 same as 00, data belongs to Code Segment
82 same as 00, data belongs to Data Segment
83 same as 00, data belongs to Stack Segment
84 same as 00, data belongs to Extra Segment
85 paragraph address for absolute Code Segment
86 paragraph address for absolute Data Segment
87 paragraph address for absolute Stack Segment
88 paragraph address for absolute Extra Segment

All Information Presented Here is Proprietary to Digital Research

64

Concurrent CP/M-86 Programmer's Guide 4.3 Intel HEX Format

Table 4-1. (continued)

Field I Contents

d

cc

Data Byte

Check Sum (such that check sum and sum of
previous digits (not ASCII codes)

All characters preceding the colon for each record are ignored.
(For additional HEX file format information see MCS-86 Absolute
Object File Formats, published by Intel.)

End of Section 4

All Information Presented Here is Proprietary to Digital Research

65

Concurrent CP/M-86 Programmer's Guide End of Section 4

/

/. All Information preSetted Here is Proprietary to Digital Research

~'--) 66

Section 5
System Function Calls

This section describes each Concurrent CP/M-86 system function,
including the parameters a process must pass when calling the
function, and the values the function returns to the process. You
should be familiar with the material in Sections 1 through 4 before
proceeding.

FUNCTION 0: SYSTEM RESET

System Reset

Entry Parameters:
Register CL: OOH

Return Values:
Register CX: Error Code

The System Reset function terminates the calling process,
releasing all system resources owned by the process. A process can
own one or more of the following resources: memory segments,
consoles, printers, mutual exclusion messages, and system Lock list
entries that record open files and locked records. When a process
terminates and releases its resources, these resources become
available to other processes on the system. For example, if a
terminating process releases a system console, the console is
usually given back to the console's TMP. This occurs when the TMP
is the highest priority process waiting for the console.

The System Reset function is implemented internally by calling
the Terminate function (Function 143) with the termination code set
to OOH.

Under CP/M-86, the System Reset function has a further argument
that allows a process not to release its memory. This argument
places a piece of code into memory that becomes an interface for
later programs. Concurrent CP/M-86 does not include this option.
Memory segments are not recovered by the system until all processes
that own the memory segment have released it.

See Appendix M for a list of returned error codes.

All Information Presented Here is Proprietary to Digital Research

67

Concurrent CP/M-86 Programmer's Guide 5 Function 1

FUNCTION 1: VIRTUAL CONSOLE INPUT

Read a character from the default
virtual console

Entry Parameters:
Register CL: OlH

Return Values:
Register AL: Character

BL: Same as AL

The Console Input function reads a character from the default
virtual console of the calling process. Before attempting the read,
Concurrent CP/M-86 internally calls the Attach console function
(Function 146) to verify ownership of the virtual console. If the
calling process does not own the virtual console, it relinquishes
the CPU resource until the attach operation is successful.
Typically, a process that is created through the CLI function
(Function 150) owns its default virtual console when it begins
execution.

Function 1 echoes graphic characters read from the virtual
console. Th is includes the car r iage return, line-feed, and
backspace characters. It expands tab characters (CTRL-I) .in columns
of eight characters.

Concurrent CP/M-86 checks for special characters typed on the
keyboard. These characters are intercepted in real time by the
operating system and perform the following special operations:

• CTRL-S
• CRTL-Q
• CTRL-C

Suspend Console Output
Activate Console Output
Terminate Current Process

These characters are not returned to a program unless the console is
in Raw mode.

Function 1 ignores the terminate character (CTRL-C) if the
calling process cannot terminate. (See Function 143.) Function 1
does not return until a character is typed on the virtual console.
The system suspends the calling process until a character is ready.

All Information Presented Here is Proprietary to Digital Research

68

Concurrent CP/M-86 Programmer's Guide 5 Function 2

FUNCTION 2: VIRTUAL CONSOLE OUTPUT

Write a character to the
default virtual console

Entry Parameters:
Register CL: 02H

DL: ASCII character

The Console Output function writes the specified character to
the calling process's default virtual console. As in the Virtual
Console Input function (Function 1), Concurrent CP/M-86 verifies
that the calling process owns its default console before performing
the operation. On output, Function 2 expands tabs in columns of
eight characters.

All Information Presented Here is Proprietary to Digital Research

69

Concurrent CP/M-86 Programmer's Guide 5 Function 3

FUNCTION 3: RAW CONSOLE INPUT

Read a character from the default
virtual console in Raw Mode

Entry Parameters:
Register CL: 03H

Return Values:
Register AL: Character

BL: Same as AL

The Raw Console Input function reads a character from the
default virtual console of the calling process. As in the Virtual
Console Input function (Function 1), Concurrent CP/M-86 verifies
ownership of the virtual console before performing the operation.
Calling Function 3 places the process in Raw mode. No checking is
done for special characters such as the terminate character.
Characters are not echoed when typed.

Bote: The process is taken out of Raw mode as soon as a it calls a
nonraw virtual console function. Calling Raw Virtual Console Input
forces the process to relinquish the CPU resource until a character
is typed at the virtual console.

All Information Presented Here is Proprietary to Digital Research

70

Concurrent CP/M-86 Programmer's Guide 5 Function 4

FUNCTION 4: RAW CONSOLE OUTPUT

Write a character to the default
virtual console in Raw Mode

Entry Parameters:
Register CL: 04H

DL: Character

The Raw Console Output function wr i tes a character to the
default virtual console of the calling process. Concurrent CP/M-86
verifies ownership of the virtual console before permitting the
operation. Calling Function 4 places the process in Raw mode. No
checking is done for special characters such as the terminate
character (CTRL-C).

All Information Presented Here is Proprietary to Digital Research

71

Concurrent CP/M-86 Programmer's Guide 5 Function 5

FUNCTION 5: LIST OUTPUT

Write a character to the default List device

Entry Parameter~:
Register CL: 05H

DL: Character

The List Output function writes the specified character to the
default List device of the calling process. Before writing the
character, the system internally calls Attach List (Function 158) to
verify that the calling process owns its default List device.

All Information Presented Here is Proprietary to Digital Research

72

Concurrent CP/M-86 Programmer's Guide 5 Function 6

FUNCTION 6: DIRECT CONSOLE I/O

Perform Direct console I/O
with default virtual console

Entry Parameters:
Register CL: U6H

DL: OFFH

Return Values:

OFEH
OFDH
Character

(Input/
Status)

(Status)
(Input)
(Output)

Register AL: (Input/Status:)

or
or
or

= OH --No Character
= Character

(Status:)
-> OH - No Character
= OFFH - Ready

(Input:)
= Character

(Output:)
No return value

BL: Same as AL

The Direct console I/O function allows the calling process to
do Raw console I/O to its default virtual console. Concurrent CP/M-
86 verifies that the calling process owns its default virtual
console before allowing any I/O.

A process calls the Direct console I/O function by passing one
of three different values shown below.

OFFH

OFEH

OFDH

virtual console input status command (If no
character' if ready, a OOH is returned.)

virtual console status command (On return,
register AL contains OOH if no character is
ready; otherwise it contains OFFH.)

virtual console input command (If no character
is ready, the calling process waits until one

All Information Presented Here is Proprietary to Digital Re5~arch

73

Concurrent CP/M-86 Programmer's Guide 5 Function 6

ASCII
character

is typed.) Input characters are not echoed to
the screen.

If the parameter is less than OFDH, then
Function 6 assumes register DL contains a valid
ASCII character and sends it to the virtual
console.

There are two main differences between the Direct Console I/O
function and the Raw Console functions (Function 3 and Function 4) •
First, CP/M-86 does not support the Raw Console functions but does
support the Direct Console I/O function. Secondly, the Direct
Console I/O does not allow totally transparent I/O because the
calling process cannot output characters OFFH, OFEH, or OFDH. The
Raw Console functions allow totally transparent I/O when used in
conjunction with the virtual console status option in the Direct
Console I/O function.

As with the Raw Console functions, the Direct Console I/O
function places the calling process in Raw mode. Special
characters, such as the terminate character, are not intercepted.

All Information Presented Here is Proprietary to Digital Research

74

Concurrent CP/M-86 Programmer's Guide

FUNCTION 7: GET I/O BYTE
FUNCTION 8: SET I/O BYTE

5 Function 7

Concurrent CP/M-86 does not support the Get I/O Byte and Set
I/O Byte functions.

FUNCTION 9: PRINT STRING

Print an ASCII String to the default console

Entry Parameters:
Register CL: 09H

DX: STRING Address - Offset
DS: STRING Address - Segment

The Print String function prints an ASCII string starting at
the indicated String address and continuing until it reaches a
dollar ($) character (024H). Function 9 writes the string to the
calling process's default virtual console. Concurrent CP /M-86
verifies that the calling process owns the virtual console before
writing the string. Function 9 expands tabs in columns of eight
characters as in the Console Output function (Function 2). The
Print String function sets the virtual console to a nonraw state.

Use the Print String function, rather than the single-character
functions, whenever possible. The CPU overhead involved in handling
the first character is the same as that for a single-character
function, but subsequent characters require as little as one-fifth
the CPU overhead.

All Information Presented Here is Proprietary to Digital Research

75

Concurrent CP/M-86 Programmer's Guide 5 Function 10

FUNCTION 10: READ CONSOLE BUFFER

Read an edited line from the
default virtual console

Entry Parameters:
Register CL: OAH

ox: BUFFER Address - Offset
OS: BUFFER Address - Segment

The Read Console Buffer function reads characters from the
calling process's default virtual console and places them into the
specified buffer. The format of the buffer is shown in Figure 5-1.
Function 10 performs line-editing functions on the line as it is
read from the virtual console. The Read Console Buffer function
completes a line and returns upon receiving a terminator character
from the virtual console or when the maximum number of characters is
reached. As in Function I, the Read Console Buffer function echoes
all graphic characters read from the virtual console. Concurrent
CP/M-86 verifies that the calling process owns its default virtual
console before allowing I/O to begin.

o 1 MAX + 2

==MA==x==I=N=C=H=AR==I===C=H=~=RA==C=T=E=~===.=.=.=:======> >D
MAX

NCHAR

CHARACTERS

Figure 5-1. Console Buffer Format

Maximum number of characters that can be
read into the buffer. This value must be
initialized before calling the Read
Console Buffer function.

Actual number of characters read into the
buffer as filled in by the Read Console
Buffer function.

Actual characters read from the virtual
console as filled in by the Read Console
Buffer function.

All Information Presented Here is Proprietary to Digital Research

76

Concurrent CP/M-86 Programmer's Guide 5 Function 10

The Read Console Buffer recognizes a number of special
characters used in editing the input line as well as a set of
special characters that actually control the calling process.

Table 5-1. Read Console Buffer Line-editing Characters

Character I Function

RUB/DEL

Removes the last character from the line
and echoes it.

(CTRL-E)

Echoes new line, a carriage return (CTRL-
M) and a 1inefeed (CTRL-J) , to the screen
but does not affect the line buffer.

BACKSPACE (CTRL-H)

Removes the last character from the line
and backspaces over that character.

TAB (CTRL-I)

Echoes enough spaces to place the next
character position at a tab stop. Tab
stops are fixed at every eighth character
of the physical line.

LINE FEED (CTRL-J)

Terminates the input line. The Read
Console Buffer function does not echo a
terminating character nor does it place
the character in the line buffer.

RETURN (CTRL-M)

Terminates the input line.

REDRAW (CTRL-R)

Retypes the current line after echoing a
new line.

(CTRL-U)

Removes all of the current line from the
line buffer, echoes a new line, and starts
allover again.

All Information Presented Here is proprietary to Digital Research

77

Concurrent CP/M-86 Programmer's Guide 5 Function 10

(CTRL-X)

Table 5-1. (continued)

Removes all of the current line from the
line buffer and echoes enough backspaces
to return to the beginning of the line.

TERMINATE (CTRL-C)

Asks you if you want to end the running
process, if the process can be terminated.
Otherwise CTRL-C's are ignored. Function
10 recognizes the terminate character only
if it is the first character in the line.

All Information Presented Here is Proprietary to Digital Research

78

Concurrent CP/M-a6 Programmer's Guide 5 Function 11

FUNCTION 11: CONSOLE STATUS

Obtain the status of the
default virtual console

Entry Parameters:
Register CL: OBH

Return Values:
Register AL: OlH character ready

OOH not ready
BL: Same as A~

The Console Status function checks to see if a character
has been typed at the default virtual console of the calling
process. If the calling process is not attached to its default
virtual console, the Console Status function will cause a
dispatch to occur and 'return OOH (the Not Ready condition).

This function sets the console to the Nonr aw mode,
allowing recognition of special control characters such as the
terminate character, CTRL-C. Use Function 6, Direct Console
I/O, to obtain console status in Raw mode.

All Information Presented Here is Proprietary to Digital Research

79

Concurrent CP/M-86 Programmer's Guide 5 Function 12

FUNCTION 12: RETURN BOOS VERSION NUMBER

Return BOOS Version Number

Entry Parameters:
Register CL: OCH

Return Values:
Register AL: 30 (BOOS Version 3.0)

AH: 14 (Concurrent CP/M-86)
BX: Same as AX

The Return Version Number function returns the BOOS file
system version number, allowing version independent
programming.

The Return CCPM Version function (Function 163) can be
called to obtain the Concurrent CP/M-86 version or reV1S1on
number. Function 12 indicates the type of operating system but
not the revision level.

AL BOOS Version

AH CPU Type (High Nibble)

o 8080
1 8086

as Type (Low Nibble)

o
1
4

5,7 to E

CP/M 2
MP/M 3
Concurrent CP/M 6
Reserved

CP/M w/networking
MP/M w/networking
Concurrent CP/M

w/networking

Figure 5-2. Version Number Format

All Information Presented Here is Proprietary to Digital Research

80

Concurrent CP/M-86 Programmer's Guide 5 Function 13

FUNCTION 13: RESET DISK SYSTEM

Restore All File Systems to Reset State

Entry Parameters:
Register CL: ODH

Return Values:
Register AL: 0 if successful

OFFH on error·
BX: Same as AX

The Reset Disk System function restores the file system to a
reset state where all the disk drives are set to Read-Write (see
Functions 28 and 29), the default disk is set to drive A, and the
default DMA address ~s reset to offset 080H relative to the current
DMA segment address. This function can be used, for example, by an
application program that requires disk changes during operation.
Reset Drive (Function 37) can also be used for this purpose.

This function is conditional under Concurrent CP/M-86. If
another process has an open file on a removable or Read-Only drive,
the disk reset is denied and no drives are reset.

Upon return, if the reset operation is successful, the function
returns a OOH. Otherwise, it returns OFFH. If the BDOS is not in
the Return Error mode when an error occurs (see Function 45), the
system displays an error message at the console, identifying the
process owning an open file.

All Information Presented Here is Proprietary to Digital Research

81

Concurrent CP/M-86 Programmer's Guide 5 Function 14

FUNCTION 14: SELECT DISK

Set calling process' default disk

Entry Parameters:
Register CL: OEH

DL: Selected disk

Return Values:
Register AL: Error Flag

AH: Physical Error
BX: Same as AX

The Select Disk function designates the specified disk drive as
the defaul t disk for subsequent BOOS file operations. The specified
drive is set to a for drive A, 1 for drive B, continuing through 15
for drive P in a full l6-drive system. Function 14 also logs in the
designated drive if it is currently in the reset state. Logging in
a drive activates the drive's directory until the next Reset Disk
System or Reset Drive function call.

FCBs that specify drive code zero (dr = OOH) automatically
reference the currently selected default drive. FCBs with drive
code values between I and 16, however, ignore the selected default
drive and directly reference drives A through P.

Upon return, register AL equal to OOH indicates the select
operation was successful. If a physical error was encountered, the
Select Disk function performs different actions depending on the
BOOS Error mode (see Function 45). If the BOOS Error mode is in the
Defaul t mode, the system displays a message at the console
identifying the error and terminates the calling process.
Otherwise, the Select Disk function returns to the calling process
with register AL set to OFFH and register AH set to one of the
following physical error codes:

OlH Permanent Error
04H : Select error

All Information Presented Here is Proprietary to Digital Research

82

Concurrent CP/M-86 Programmer's Guide 5 Function 15

FUNCTION 15: OPEN FILE

Open a disk file

Entry Parameters:
Register CL: OFH

DX: FCB Address - Offset
DS: FCB Address - Segment

Return Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

Note: See Section 2.4, "File Control Block Definition", for a
descr iption of the FCB (in Figure 2-1) arid further information
concerning it.

The Open File function activates the indicated FCB for a file
that exists in the disk directory under the currently active user
number or user OOH. The calling process passes the address of the
FCB, with byte 0 of the FCB specifying the drive, bytes 1 through 11
specifying the filename and filetype, and byte 12 specifying the
extent. The process usually initializes byte 12 to OOH. Interface
attributes f5' and f6' of the FCB specify the mode in which the file
is to be opened, as shown below:

f5'
f5'
f5'

0, f6'
1, f6'
o or 1, f6'

o - Open in Locked mode (Default mode)
o - Open in Unlocked mode
1 Open in Read-Only mode

If the file is password protected in Read-Only mode, the correct
password must be placed in the first eight bytes of the current DMA
or have been previously established as the default password. (See
Function 106.)

Note: the calling process must set the current record field of the
FCB (cr) to OOH if the file is to be accessed sequentially from the
first record.

See "Compatibility Attributes", Section 2.4.

The Open File function performs the following steps for files
opened in Locked or Read-Only mode. If the current user is nonzero
and the file to be opened does not exist under the current user

All Information Presented Here is Proprietary to Digital Research

83

Concurrent CP/M-86 Programmer's Guide 5 Function 15

number, the Open File function searches user zero for the file. If
the file exists under user zero and has the system attribute (t2')
set, the file is opened under user DOH. The Open- mode is
automatically set to Read-Only when this is done.

The Open File function also performs the following action for
files opened in Locked mode when the current user number is OOH. If
the file exists in the directory under user zero, and has both the
system attribute (t2') set and the Read-Only attribute (tl') set,
the Open mode is automatically set to Read-Only. Note that Read­
Only mode implies the file can be concurrently accessed by other
processes if they open the file in Read-Only mode.

If the open operation is successful, Function 15 activates the
user's FCB for read and write operations as follows: Function 15
copies the relevan t directory information from the matching
directory FCB into bytes dO through dn of the FCB. It also computes
a checksum and assigns it to the FCB. All BOOS functions that
require an open FCB (e.g., Read Sequential) verify that the FCB
checksum is valid before performing their operation.

If the file is opened in Unlocked mode, Function 15 sets bytes
rO and rl of the FCB to a two-byte value called the File IO. The
File IO is a required parameter for the BOOS Lock Record and Unlock
Record functions. If the Open mode is forced to Read-Only, Function
15 sets interface attribute f8' to 1 in the user's FCB. In
addition, the function sets attribute f7' to 1 if the referenced
file is password protected in Write mode and the correct password
was not passed in the OMA or did not match the default password.
The BOOS does not support write operations for an activated FCB if
interface attribute f7' or f8' is set to 1.

The BOOS file system also creates an open file item in the
system Lock list to record a successful open file operation. While
this item exists, no other process can delete, rename, or modify the
file's attributes. In addition, this item prevents other processes
from opening the file if the file was opened in Locked mode. It
also requires that other processes match the file's Open mode if the
file was opened in Unlocked or Read-Only mode. This item remains in
the system Lock list until the file is permanently closed or until
the process that opened the file terminates.

When the open operation is successful, the Open File function
also makes an access date and time stamp for the opened file under
the following conditions: the referenced drive has a directory
label that requests access date and time stamping, the opened file
has an XFCB, and the referenced drive is Read-Write.

Upon return, the Open File function returns a directory code in
register AL with the value 0 through 3 if the open was successful,
or OFFH if the file was not found. Register AH is set to 0 in both
of these cases. If a physical or extended error was encountered,
the Open File function performs different actions depending on the
BOOS Error mode. (See Function 45.) If the BOOS Error mode is in
the Default mode, the system displays a message identifying the

All Information Presented Here is Proprietary to Digital Research

84

Concurrent CP/M-86 Programmer's Guide 5 Function 15

error at the console and terminates the process. Otherwise, the
Open File function returns to the calling process with register AL
set to OFFH and register AH set to one of the following physical or
extended error codes:

OlH Permanent error
04HSelect error
05H File is open by another process or by the

current process in an incompatible mode
07H File password error
09H ? in the FCB filename or filetype
OAH Process open file limit exceeded
OBH No room in the system Lock list

All Information Presented Here is Proprietary to Digital Research

85

Concurrent CP/M-86 Programmer's Guide 5 Function 16

FUNCTION 16: CLOSE FILE

Close a disk file

Entry Parameters:
Register CL: 10H

ox: FCB Address - Offset
os: FCB Address - Segment

Return Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The Close File function performs the inverse of the Open File
function. The calling process passes the address of an FCB. The
referenced FCB must have been previously activated by a successful
Open or Make File function call. (See Functions 15 and 22.)
Interface attr ibutes f5' and f6' specify how the file is to be
closed, as shown below:

f6'
f6'
f5'

0, f5'
0, f5'
0, f6'

o - Permanent Close (Default mode)
1 - Partial Close
1 - Extended Lock

The Close File function first verifies that the referenced FCB
has a valid checksum. If the checksum is valid and the referenced
FCB contains new information because of write operations to the FCB,
the Close File function permanently records the new information in
the referenced disk directory. Note that if the FeB does not
contain new information, the directory update step is bypassed. In
this latter case, only read or update operations have been made to
the referenced FeB. However, the Close File function always
attempts to locate the FCB's corresponding entry in the directory
and returns an error code if the directory entry is not found.

If the Close File function successfully performs the above
steps, and if interface attribute f5'=0 indicates that the close is
permanent, it removes the file's item from the system Lock list. If
the FCB was opened in Unlocked mode, it also purges all record lock
items belonging to the file from the system Lock list. By removing
the file's Lock list item, the Close File function invalidates the
FCB's checksum to ensure the referenced FCB is not subsequently used
with BOOS functions that require an open FCB (e.g., Write

All Information Presented Here is Proprietary to Digital Research

86

Concurrent CP/M-86 Programmer's Guide 5 Function 16

Sequential) •

The Close File function lets a process maintain a lock on a
file even after the file is closed. The process then can rename,
set attributes, or delete a file after the file is closed, without
interference from other processes. Setting f6'= 1 before the close
operation implements the extended file lock. Resetting f6'= 0 (the
default action} clears the file from the lock list unless fS'=l.
See Section 2.10.

The Close File function makes an update date and time stamp for
the closed file under the following conditions: the referenced
dr i ve has a directory label that requests update date and time
stamping, the referenced file has an XFCa, the referenced drive is
Read-Write, and a write operation to the file was made since the Fca
was opened. None of these steps are performed for partial close
operations (fS' = 1).

Upon return, the Close File function returns a directory code
in register AL with the value OOH to 03H if the close was
successful, or OFFH if the file was not found. Register AH is set
to 0 in both of these cases. If a physical or extended error was
encountered, the Close File function performs different actions
depending on the aDOS Error mode (see Function 45). If the aDOS
Error mode is in the Default mode, the system displays a message
identifying the error at the console and terminates the calling
process. Otherwise the Close File function returns to the calling
process with register AL set to OF~H and register AH set to one of
the following physical or extended error codes:

OlH Permanent Error
02H Read-Only Disk
04H Select Error
06H Fca Checksum Error

All Information Presented Here is Proprietary to Digital Research

87

Concurrent CP/M-86 Programmer's Guide

FUNCTION 17: SEARCH FOR FIRST

Find the first file that matches
the specified FCB

Entry Parameters:
Register CL: llH

Return Values:

DX: FCB Address - Offset
DS: FCB Address - Segment

Register AL: Directory Code

5 Function 17

AH: Physical or Extended Error
BX: Same as AX

The Search For First function scans the directory for a match
with the specified FCB. Two types of searches can be performed.
For standard searches, the calling process initializes bytes 0
through 12 of the referenced FCB, with byte 0 specifying the drive
directory to be searched, bytes 1 through 11 specifying the file or
files to be searched for, and byte 12 specifying the extent. Byte
12 is usually set to OOH. An ASCII question mark (63, or 03FH
hexadecimal) in any of the bytes 1 through 12 matches all entries on
the directory in the corresponding position. This facility, called
ambiguous reference, can be used to search for multiple files on the
directory. When called in the standard mode, the search function
scans for the first file entry in the specified directory that
matches the FCB and belongs to the current user number.

The Search For First function also initializes the Search For
Next function. After the search function has located the first
directory entry matching the referenced FCB, the Search For Next
function can be called repeatedly to locate all remaining matching
entries. In terms of execution sequence, however, the Search For
Next call must follow either a Search For First or Search For Next
call with no other intervening BDOS disk-related function calls.

If byte 0 of the referenced FCB is set to a question mark,
Function 17 ignores the remainder of the referenced FCB and locates
the first directory entry residing on the current default drive.
All remaining directory entries can be located by making multiple
Search For Next calls. This type of search operation is not usually
made by application programs, but it does provide complete
flexibility to scan all current directory values. Note that this

All Information Presented Here is Proprietary to Digital Research

88

Concurrent CP/M-86 Programmer's Guide 5 Function 17

type of search operation must be performed to access a drive's
directory label.

Upon return, the Search For First function returns a directory
code in register AL wi th the value 0 to 3 if the search was
successful or OFFH if a matching directory entry was not found.
Register AH is set to zero in both of these cases. For successful
searches, the current DMA is also filled with the directory record
containing the matching entry, and the relative starting posi tion is
AL * 32 (i.e., Read Only at the AL register left 5 bits). Although
not required for application programs, the directory information can
be extracted from the buffer at this position.

If a physical error was encountered, the Search For First
function performs different actions depending on the BOOS error
mode. (See Function 45.) If the BDOS Error mode is in the Default
mode, the system displays a message identifying the error at the
console and terminates the calling process. Otherwise, it returns
to the calling process with register AL set to OFFH and register AH
set to one of the following physical error codes:

OlH Permanent Error
04H Select Error

All Information Presented Here is proprietary to Digital Research

89

Concurrent CP/M-86 Programmer's Guide 5 Function 18

FUNCTION 18: SEARCH FOR NEXT

Find a subsequent file that matches the
specified FCB of a previous Search for First

Entry Parameters:
Register CL: 12H

Return Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The Search For Next function is identical to the Search For
First function, except that the directory scan continues from the
last entry that was matched. Function 18 returns a directory code
in register AL, analogous to Function 17.

Note: in execution sequence, a Function 18 call must follow
ei ther a Function 17 or another Function 18 call with no other
intervening BOOS disk-related function calls.

All Information Presented Here is Proprietary to Digital Research

90

Concurrent CP/M-86 Programmer's Guide S Function 19

FUNCTION 19: DELETE FILE

Delete a disk File

Entry Parameters:
Register CL: 13H

DX: FCB Address - Offset
DS: FCB Address - Segment

Return Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The Delete File function removes files and/or XFCBs that match
the FCB addressed in register DX. The filename and filetype can
contain wildcard file specifications (i.e., question marks in bytes
fl through t3), but the dr byte cannot be a wildcard as it can be in
the Search For First and Search For Next functions. Interface
attribute fS' specifies the type of delete operation to be
performed, as shown below:

fS' 0 - Standard Delete (Default mode)
fS' 1 - Delete only XFCB's

If any of the files specified by the referenced FCB are password
protected, the correct password must be placed in the first eight
bytes of the current DMA buffer or it must have been previously
established as the default password. (See Function 106.)

For standard delete operations, the Delete File function
removes all directory entries belonging to files that match the
referenced FCB. All disk directory and data space owned by the
deleted files is returned to free space and becomes available for
allocation to other files. Directory XFCBs that were owned by the
deleted files are also removed from the directory. If interface
attribute fS' of the FCB is set to 1, Function 19 deletes only the
directory XFCBs matching the referenced FCB.

Note: If any of the files matching the input FCB specification
fail the password check, are Read-Only, or are currently open by
another process, then the Delete File function deletes no files or
XFCBs. This applies to both types of delete operations.

All Information Presented Here is Proprietary to Digital Research

91

Concurrent CP/M-86 Programmer's Guide 5 Function 19

A process can delete a file that it currently has open if the
file was opened in Locked mode. However, the BOOS returns a
checksum error if the process makes a subsequent reference to the
file with a BOOS function requiring an open FCB. No process can
delete files open in RIO or Unlocked mode.

Upon return, the Delete File function ret~rns a directory code
in reg is ter AL wi th the value OOH to 03H if the delete was
successful or OFFH if no file matching the referenced FCB was found.
Register AH is set to 0 in both of these cases. If a physical or
extended error was encountered, Function 19 performs different
actions depending on the BOOS Error mode (see Function 45). If the
BOOS Error mode is the Default mode, the system displays a message
identifying the error at the console and terminates the calling
process. Otherwise, it returns to the calling process with register
AL set to OFFH and register AH set toone of the following physical
or extended error codes:

OlH Permanent Error
02H Read-Only disk
03H Read-Only file
04H Select Error
05H File open by another process or open

in Read-Only or Unlocked mode
07H File Password Error

All Information Presented Here is Proprietary to Digital Research

92

Concurrent CP/M-86 Programmer's Guide 5 Function 20

FUNCTION 20: READ SEQUENTIAL

Sequentially Read Records From a disk File

Entry Parameters:
Register CL: l4H

OX: FCB Address - Offset
os: FCB Address - Segment

Return Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The Read Sequential function reads the next one to sixteen 128-
byte records from a file into memory beginning at the current DMA
address. The BOOS Multi-Sector Count (see Function 44) determines
the number of records to be read. The default is one record. The
addressed FCB must have been previously activated by an Open or Make
File function call.

Function 20 reads each record from the current record field in
byte cr of the FCB, relative to the current extent, then
automatically increments the cr field to the n.ext record position.
If the cr field overflows, then the function automatically opens the
next logical extent and resets the cr field to OOH for the next read
operation. The calling process must set the cr field to OOH
following the open call if the intent is to read sequentially from
the beginning of the file.

Upon return, the Read Sequential function sets register AL to
zero if the read operation was successful. Otherwise, register AL
contains an error code identifying the error as shown below:

OlH
09H
OAH
OBH
OFFH

Reading unwritten data (end-of-file)
Invalid FCB
FCB checksum error
Unlocked file verification error
Physical error; refer to register AH

All Information Presented Here is Proprietary to Digital Research

93

Concurrent CP/M-86 Programmer's Guide 5 Function 20

The function returns Error Code OlH if no data exists at the
next record position of the file. The no data situation is usually
encountered at the end of a file. However, it can also occur if you
try to read a data block that has not been previously written or an
extent that has not been created. These situations are usually
restricted to files created or appended with the BOOS random write
functions (Functions 34 and 40).

The function returns Error Code 09H if the FCB was invalidated
by a previous BOOS random read or write call that returned an error.
A Read Random call (Function 33) for an existing record in the file
can be made to revalidate the FCB.

The function returns Error Code OAH if the referenced FCB
failed the FCB checksum test.

The function returns Error Code OBH if the BOOS cannot locate
the FCB' s directory entry when attempting to verify that the
referenced FCB contains current information. The function only
returns this error for files opened in Unlocked mode.

The function returns Error Code OFFH if a physical error was
encountered and the BOOS is in Return Error mode or Return and
Oisplay Error mode (See Function 45). If the Error mode is the
Oef aul t mode, the system displays a message at the console
.identifying the physical error and terminates the calling process.
When the function returns a physical error to the calling process,
it is identified by the four low-order bits of register AH as shown
below:

OlH : Permanent Error
04H : Select error

The Read Sequential function also sets the four high-order bits
of register AH on all error returns when the BOOS Multi-sector" Count
is greater than one. In this case, the four bits contain an integer
set to the number of records successfully read before the error was
encountered. This value can range from 0 to 15. The four high­
order bits of register AH are always set to 0 when the Multi-Sector
Count is equal to one.

All Information Presented Here is Proprietary to Oigital Research

94

Concurrent CP/M-86 Programmer's Guide 5 Function 21

FUNCTION 21: WRITE SEQUENTIAL

Sequentially Write Records to a disk File

Entry Parameters:
Register CL: l5H

ox: FCB Address - Offset
OS: FCB Address - Segment

Return Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The Write Sequential function writes one to sixteen l28-byte
data records beginning at the current OMA address into the file
named by the specified FCB. The BOOS Multi-Sector Count (see
Function 44) determines the number of l28-byte records that are
written. The default is one record. A BOOS Open or Make File
function call must have previously activated the referenced FCB.

Function 21 places the record into the file at the position
indicated by the cr byte of the FCB, and then automatically
increments the cr byte to the next record position. If the cr field
overflows, the function automatically opens or creates the next
logical extent and resets the cr field to OOH in preparation for the
next write operation. If Function 21 is used to write to an
existing file, then the newly written records overlay those already
existing in the file. The calling process must set the cr field to
OOH following an Open or Make File function call if the intent is to
write sequentially from the beginning of the file.

Upon return, the Write Sequential function sets register AL to
OOH if the write operation was successful. Otherwise, register AL
contains an error code identifying the error as shown below:

OlH
02H
08H
09H
OAH
OBH

OFFH

No available directory space
No available data block
Record locked by another process
Invalid FCB
FCB checksum error
Unlocked file verification error
Physical error; refer to register AH

All Information Presented Here is Proprietary to Digital Research

95

Concurrent CP/M-86 Programmer's Guide 5 Function 21

The function returns Error Code OlH when it attempts to create
a new extent that requires a new directory entry and no available
directory entries exist on the selected disk drive.

The function returns Error Code 02H when it attempts to
allocate a new data block to the file and no unallocated data blocks
exist on the selected disk drive.

The function returns Error Code 08H if it attempts to write to
a record locked by another process. The function returns this error
only for files open in Unlocked mode.

The function returns Error Code 09H if the FCB was invalidated
by a previous BDOS random read or write call that returned an error.
A Read Random call (Function 33) for an existing record in the file
can be made to revalidate the FCB.

The function returns Error Code OAH if the referenced FCB
failed the FCB checksum test.

The function returns Error Code OBH if the BDOS cannot locate
the FCB' s directory entry when attempting to verify that the
referenced FCB contains current information. The function returns
this error only for files open in Unlocked mode.

The function returns Error Code OFFH if a physical error was
encountered and the BDOS is in Return Error mode or Return and
Display Error mode (See Function 45). If the Error mode is the
Defaul t mode, the system displays a message at the console
identifying the physical error and terminates the calling process.
When the function returns a physical error to the calling process,
it is identified by the four low-order bits of register AH as shown
below:

OlH Permanent Error
02H Read-Only disk
03H Read-Only file or

File open in Read-Only mode or
File password protected in Write mode

04H Select Error

The Write Sequential function also sets the four high-order bits of
register AH on all error returns when the BDOS Multi-Sector Count is
greater than one. In this case, the four bits contain an integer
set to the number of records successfully written before the error
was encountered. This value can range from zero to 15. The four
high-order bits of register AH are always set to 0 when the Multi­
Sector Count is equal to one.

All Information Presented Here is Proprietary to Digital Research

96

Concurrent CP/M-86 Programmer's Guide 5 Function 22

FUNCTION 22: MAKE FILE

Create a disk File

Entry Parameters:
Register CL: 16H

DX: FCB Address - Offset
DS: FCB Address - Segment

Return Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The Make File function creates a new directory entry for a file
under the current user number. It also creates an XFCB for the file
if the referenced drive has a directory label that starts automatic
creation of XFCBs. The calling process passes the address of the
FCB with byte 0 of the FCB specifying the drive, bytes 1 through 11
specfying the filename and filetype, and byte 12 set to the extent
number. Byte 12 is usually set to OOH. Byte 32 of the FCB (the cr
field) must be initialized to OOH (before or after the Make File
call) if the intent is to write sequentially from the beginning of
the file.

Interface attribute f5' specifies the mode in which the file is
to be opened. Interface attribute f6' specifies whether a password
is to be assigned to the created file. The interface attributes are
summarized below:

f5' 0 - Open in Locked mode (Default mode)
f5' 1 - Open in Unlocked mode
f6' 0 - Do not assign password (default)
f6' 1 - Assign password to created file

When attribute f6' is set to 1, the calling process must place the
password in the first 8 bytes of the current DMA buffer and set byte
9 of the DMA buffer to the password mode. (See the list below, from
Function 102).

All Information Presented Here is Proprietary to Digital Research

97

Concurrent CP/M-86 Programmer's Guide

byte 12 : XFCB password mode field

bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode

5 Function 22

Byte 12 equal to 0 indicates the file has not
been assigned a password.

byte 13 - 23
byte 24 - 27
byte 28 - 31

XFCB password field (encrypted)
XFCB Create or Access time stamp field
XFCB Update time stamp field

The Make File function returns wi th an error code if the
referenced FCB names a file that currently exists in the directory
under the current user number. If there is any possibility of
duplication, a Delete File call should precede the Make File call.

If the make file operation is successful, it activates the
referenced FCB for file operations (opens the FCB) and initializes
both the directory entry and the referenced FeB to an empty file.
It also computes a checksum and assigns it to the FCB. BOOS
functions that require an open FCB (e.g., Write Random) verify that
the FCB checksum is valid before performing their operation. If the
file is opened in Unlocked mode, the function sets bytes rO and rl
in the FCB to a two-byte value called the File 10. The File 10 is a
required parameter for the BOOS Lock Record and Unlock Record
functions. Note that the Make File function initializes all file
attributes to O.

The BOOS file system also creates an open file item in the
system Lock list to record a successful make file operation. While
this item exists, no other process can delete, rename, or modify the
file's attributes.

If the referenced drive contains a directory label that
automatically creates XFCBs, the Make File function creates an XFCB
and makes a creation date and time stamp for the created file.

Note: the creation time stamp is not made (the XFCB creation time
stamp field is set to zeros) if an XFCB is assigned to a file by the
Write File XFCB function. If interface attribute f6' of the FCB is
1, the Make File function also assigns the password passed in the
DMA to the file.

Upon return, the Make File function returns a directory code in
register AL with the value OOH through 03H if the make operation was
successful, or OFFH if no directory space was available. Register
AH is set to OOH in both cases.

If a physical or extended error was encountered, the Make File
function performs different actions depending on the BOOS Error
mode. (See Function 45.) If the BOOS Error mode is the Default
mode, the system displays a message at the console identifying the

All Information Presented Here is Proprietary to Digital Research

98

Concurrent CP/M-86 Programmer's Guide 5 Function 22

error and terminates the calling process. Otherwise, it returns to
the calling process with register AL set to OFFH and register AH set
to one of the following physical or extended error codes:

OlH Permanent Error
02H Read-Only disk
04H Select Error
08H File already exists
09H ? in file name or type field
OAH Process open file limit exceeded
OBH No room in the system Lock list

All Information Presented Here is proprietary to Digital Research

99

Concurrent CP/M-86 Programmer's Guide 5 Function 23

FUNCTION 23: RENAME FILE

Rename a disk File

Entry Parameters:
Register CL: 17H

DX: FCB Address - Offset
DS: FCB Address - Segment

Return Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The Rename File function uses the indicated FCB to change all
directory entries of the file specified by the filename in the first
16 bytes of the FCB to the filename in the second 16 bytes.

If the file specified by the first filename is password
protected, the correct password must be placed in the first eight
bytes of the current DMA buffer, or it must have been previously
established as the default password (see Function 106).

The calling process must also ensur e that the filenames
spec if ied in the FCB are valid and specif ic, and that the new
filename does not already exist on the drive. Function 23 uses the
dr code at byte 0 of the FCB to select the drive. The drive code at
byte 16 of the FCB is ignored.

A process can rename a file that it has open if the file was
opened in Locked mode. However, the BDOS will return a checksum
error if the process subsequently references the file with a
function requir ing an open FCB. A file open in Read-Only or
Unlocked mode cannot be renamed by any process.

Upon return, the Rename File function returns a directory code
in reg ister AL wi th the value OOH to 03H if the rename was
successful, or OFFH if the file named by the first filename in the
FCB was not found. Register AH is set to OOH in both of these
cases. If a physical or extended error was encountered, the Rename
File function performs different actions depending on the BDOS Error
mode. (See Function 45.) If the BDOS Error mode is the Default
mode, the system displays a message at the console identifying the
error, and terminates the process. Otherwise, it returns to the

All Information Presented Here is Proprietary to Digital Research

100

Concurrent CP/M-86 Programmer's Guide S Function 23

calling process with register AL set to OFFH and with register AH
set to one of the following physical or extended error codes:

OlH Permanent Error
02H Read-Only disk
03H Read-Only file
04H Select Error
OSH File open by another process
07H File password error
08H File already exists
09H ? in filename or filetype

All Information Presented Here is Proprietary to Digital Research

101

Concurrent CP/M-S6 Programmer's Guide 5 Function 24

FUNCTION 24: RETURN LOGIN VECTOR

Return Bit Map of Logged-in disk Drives

Entry Parameters:
Register CL: ISH

Return Values:
Register AX: Login Vector

BX: Same as AX

The Return Login Vector function returns a bit map of currently
logged in disk drives. The login vector is a l6-bit value with the
least significant bit corresponding to drive A, and the high-order
bit corresponding to the 16th drive, drive P. A 0 bit indicates
that the drive is not on-line, while a 1 bit indicates the drive is
active. A drive is made active either by an explicit BDOS Select
Disk call (Function 14), or by an implicit selection when a BDOS
file operation specifies a non-OOH dr byte in the FCB.

All Information Presented Here is Proprietary to Digital Research

102

Concurrent CP/M-86 Programmer's Guide 5 Function 25

FUNCTION 25: RETURN CURRENT DISK

Return the Calling Process's Default disk

Entry Parameters:
Register CL: 19H

Return Values:
Register AL: Disk Number

BL: Same as AL

The Return Current Disk function returns the calling process's
currently selected default disk. The disk numbers range from 0
through 15 corresponding to drives A through P.

All Information Presented Here is Proprietary to Digital Research

103

Concurrent CP/M-86 Programmer's Guide 5 Function 26

FUNCTION 26: SET DMA OFFSET

Set the Direct Memory Address Offset

Entry Parameters:
Register CL: lAH

DX: DMA Address - Offset

Direct Memory Address (DMA) often refers to disk controllers
that directly access the memory of the computer to transfer data to
and from the disk subsystem. Under Concurrent CP/M-86, the current
DMA is usually defined as the buffer in memory where a record
resides before a disk write and after a disk read operation. If the
BOOS Multi-Sector Count is equal to one (see Function 44), the size
of the buffer is 128 bytes. However, if the BDOS Multi-Sector Count
is greater than one, the size of the buffer must equal N * 128,
where N equals the Multi-Sector Count.

Some BDOS functions also use the current DMA to pass parameters
and to return values. For example, BDOS functions that check and
assign file passwords require that the password be placed in the
current DMA. As another example, Get Disk Free Space (Function 46)
returns its results in the first 3 bytes of the current DMA. When
the current DMA is used in this context, the size of the buffer in
memory is determined by the specific requirements of the called
function.

When the CLI function initiates a transient program, it sets
the DMA offset to 080H and the DMA Segment or Base to its initial
Data Segment. Reset Disk System (Function 13) also sets the DMA
offset to 080H. The Set DMA Offset function can change this default
value to another memory address. The DMA address remains at its
current value until it is changed by a Set DMA Offset, Set DMA Base,
or Reset Disk System call.

All Information Presented Here is Proprietary to Digital Research

104

Concurrent CP/M-86 Programmer's Guide 5 Function 27

FUNCTION 27: GET ADDR (ALLOC)

Get Allocation Vector Address

Entry Parameters:
Register CL: lBH

Return Values:
Register AX: ALLOC Address - Offset

BX: Same as AX
ES: ALLOC Address - Segment

Concurrent CP/M-86 maintains an allocation vector in main
memory for each active disk drive. Many programs commonly use the
information provided by the allocation vector to determine the
amount of free data space on a drive. Note, however, that the
allocation information can be inaccurate if the drive has been
marked Read-Only.

Function 27 returns the base address of the allocation vector
for the currently selected drive. If a physical error is
encountered when the BDOS Error mode is one of the return modes (see
Function 45), Function 27 returns the value OFFFFH in AX.

You can use Get Disk Free Space (Function 46) to directly
return the number of free l28-byte records on a drive. In fact, the
Concurrent CP/M-86 utilities that display a drive's free space
(STAT, SDIR, and SHOW) use Function 46 for that purpose.

All Information Presented Here is Proprietary to Digital Research

105

Concurrent CP/M-86 Programmer's Guide 5 Function 28

FUNCTION 28: WRITE PROTECT DISK

Set Default disk to Read-Only

Entry Parameters:
Register CL: lCH

Return Values:
Register AL: Return Code

BL: Same as AL

The Wr i te Protect Disk function provides temporary wr i te
protection for the currently selected disk by marking the drive as
Read-Only. No process can write to a disk that is in the Read-Only
sta te. You must perform a successful drive reset operation to
restore a Read-Only drive to the Read-Write state. (See Functions
13 and 37.)

The Wri te Protect Disk function is condi tional under Concurrent
CP/M-86. If another process has an open file on the drive, the
operation is denied, and the function returns the value OFFH to the
calling process. Otherwise, it returns a OOH. Note that a drive in
the Read-Only state cannot be reset by a process if another process
has an open file on the drive.

All Information Presented Here is Proprietary to Digital Research

106

Concurrent CP/M-86 Programmer's Guide 5 Function 29

FUNCTION 29: GET READ ONLY VECTOR

Return Bit Map of Read-Only disks

Entry Parameters:
Register CL: lDH

Return Values:
Register AX: R/O Vector

BX: Same as AX

Function 29 returns a bit vector indicating which drives have
the temporary Read-Only bit set. The Read-Only bit is set either by
a BDOS Wr i te Protect Disk call or by the automatic software
mechanisms within Concurrent CP/M-86 that detect changed disk media.

The format of the bit vector is analogous to that of the log-in
vector returned by Function 24. The least significant bit
corresponds to drive A; the most significant bit corresponds to
drive P.

All Information Presented Here is Proprietary to Digital Research

107

Concurrent CP/M-86 Programmer's Guide 5 Function 30

FUNCTION 30: SET FILE ATTRIBUTES

Set the Attributes of a disk File

Entry Parameters:
Register CL: lEH

DX: FCB Address - Offset
DS: FCB Address - Segment

Return Values:
Register AL: Directory Code

BL: Same as AL

The Set File Attributes function is the only BDOS function that
allows a program to manipulate file attributes. Other BDOS
functions can interrogate these file attributes but cannot change
them. The file attributes that can be set or reset by Function 30
are: fl' through f4', the compatibility attributes, RIO (tl'),
system (t2'), and archive (t3'). The specified FCB contains a
filename with the appropriate attributes set or reset. The calling
process must not use a wildcard file specification. Also, if the
specified file is password protected, the correct password must be
placed in the first eight bytes of the current DMA buffer or it must
have been previously established as the default password. (See
Function 106.)

Function 30 searches the FCB specified directory for an entry
belonging to the current user number that matches the FCB specified
filename and filetype. The function then updates the directory to
contain the selected indicators. File attributes tl', t2', and t3'
are reserved as compatibility attributes. Attributes f1' through
f4' are described in Section 2.4.1. Indicators f5' through f8' are
reserved for use as interface attributes.

This function is not performed if the referenced FCB specifies
a f il e cur rently open for another process. It is performed,
however, if the referenced file is open for the calling process in
Locked mode. After successfully setting the attributes of a file
opened by the calling process, the BDOS will return a checksum error
on any subsequent file reference requiring an open FCB. Function 30
does not set the attributes of a file currently open in Read-Only or
Unlocked mode for any process.

All Information Presented Here is Proprietary to Digital Research

108

Concurrent CP/M-86 Programmer's Guide 5 Function 30

Upon return, Function 30 returns a directory code in register
AL with the values OOH to 03H if the function was successful, or
OFFH if the file specified by the referenced FCB was not found.
Register AH is set to OOH in both cases. If a physical or extended
error was encountered, the Set File Attributes function performs
different actions depending on the BOOS Error mode (see Function
45). If the BOOS Error mode is the Default mode, the system
displays a message at the console identifying the error and
terminates the process. Otherwise, it returns to the calling
process with register AL set to OFFH and register AH set to one of
the following physical or extended error codes:

OlH Permanent Error
02H Read-Only disk
04H Select error
05H File open by another process
07H File password error
09H ? in filename or filetype

All Information Presented Here is Proprietary to Digital Research

109

Concurrent CP/M-86 Programmer's Guide 5 Function 31

FUNCTION 31: GET ADDR (DISK PARMS)

Return Address of disk Parameter Block
for Calling Process's Default disk

Entry Parameters:
'Register CL: IFH

Return Values:
Register AX: DPB Address - Offset

OFFFFH - on Physical Error
BX: Same as AX
ES: DPB Address - Segment

Function 31 returns the address of the XIOS-resident disk
Parameter Block (DPB) for the currently selected drive. The calling
process can use this address to extract the disk parameter values
for display or to compute the space on a drive.

If a physical error is encountered when the BDOS Error mode is
one of the Return Error modes (See Function 45), Function 31 returns
the value OFFFFH.

All Information Presented Here is Proprietary to Digital Research

110

Concurrent CP/M-86 Programmer's Guide 5 Function 32

FUNCTION 32: SET/GET USER CODE

Set or Return the Calling Process's
Default User Code

Entry Parameters:
Register CL: 20H

DL: OFFH to GET USER CODE
User Code to SET

Return Values:
Register AL: Current User Code if GET

BL: Same as AL

A process can change or interrogate its current default user
number by calling Function 32. If register DL = OFFH, then the
function returns the value of this user number in register AL. The
value can range from 0 to OFH. If register DL is not OFFH, then the
function changes the default user number to the value of DL (modulo
lOH).

Under Concurrent CP/M-86, a new process inherits its initial
default user code from its parent, the process creating the new
process. Changing the default user code does not change the user
code of the parent. On the other hand, all child processes of the
calling process inherit the new user code.

This convention is demonstrated by the operation of the TMP.
When a command is typed, a new process is created with the same user
code as that of the TMP. If this new process changes its user code,
the TMP is unaffected. Once the new process terminates, the TMP
exhibits the same user code in its prompt as before the command was
entered and the child process created.

All Information Presented Here is Proprietary to Digital Research

111

Concurrent CP/M-86 Programmer's Guide 5 Function 33

FUNCTION 33: READ RANDOM

Read Random Records From a Disk File

Entry Parameters:
Register CL: 2lH

DX: FeB Address - Offset
DS: FeB Address - Segment

Return Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The Read Random function is similar to the Read Sequential
function except that the read operation takes place at a particular
Random Record Number, selected by the 24-bit value constructed from
the three-byte (rO, rl, r2) field beginning at position 33 of the
FeB. Note that the sequence of 24 bits is stored with the least
significant byte first (rO), the middle byte next (rl), and the high
byte last (r2). The Random Record Number can range from 0 to
262,143. This corresponds to a maximum value of 3 in byte r2.

In order to read a file with Function 33, the calling process
must first open the base extent (extent 0). This ensures that the
FCB is properly initialized for subsequent random access operations.
(The base extent mighty or might not contain data). Function 33
places the specified record number in the random record field. Then
BDOS reads the record into the current DMA address. The function
automatically sets the logical extent and current record values, but
unlike the Read Sequential function, it does not advance the record
number. Thus a subsequent Read Random call rereads the same record.
After a random read operation, a file can be accessed sequentially,
starting from the current randomly accessed position. However, the
last randomly accessed record is reread or rewritten when switching
from random to sequential mode.

I f the BDOS Mul ti-Sector count is greater than one (See
Function 44), the Read Random function reads multiple consecutive
records into memory beginning at the current DMA. Function 33
automatically increments the rO, rl, and r2 field of the FeB to read
each record. However, it restores the FeB's Random Record Number to
the first record's value upon return to the calling process. Upon
return, the Read Random function sets register AL to OOH if the read

All Information Presented Here is Proprietary to Digital Research

112

Concurrent CP/M-86 Programmer's Guide 5 Function 33

operation was successful. Otherwise, register AL contains one of
the following error codes:

OlH
03H
04H
06H
OAH
OBH

OFFH

Reading unwritten data
Cannot close current extent
Seek to unwritten extent
Random record number out of range
FCB checksum error
Unlocked file verification error
Physical error: refer to register AH

The function returns Error Code OlH when it accesses a data
block not previously written. This may indicate an end-of-file
(EOF) condition.

The function returns Error Code 03H when it cannot close the
current extent prior to moving to a new extent.

The function returns Error Code 04H when a read random
operation accesses an extent .not previously created.

The function returns Error Code 06H when byte 35 (r2) of the
referenced FCB is greater than 3.

The function returns Error Code OAH if the referenced FCB
failed the FCB checksum test.

The function returns Error Code OBH if the BOOS cannot locate
the FCB' s directory entry when attempting to verify that the
referenced FCB contains current information. The function only
returns this error for files open in Unlocked mode.

The function returns Error Code OFFA if a physical error was
encountered and the BOOS Error mode is one of the return modes (see
Function 45). If the error mode is the Default mode, the system
displays a message at the console identifying the physical error and
terminates the calling process. When a physical error is returned
to the calling process, it is identified by the four low-order bits
of register AH as shown below:

OlH Permanent Error
04H Select Error

The Read Random function also sets the four high-order bits of
register AH on all error returns when the BOOS Multi-Sector Count is
greater than one. In this case, the four bits contain an integer
set to the number of records successfully read before the error was
encountered. This value can range from 0 to 15. The four high­
order bits of register AH are always set to 0 when the Multi-Sector
Count is equal to one.

All Information Presented Here is Proprietary to Digital Research

113

Concurrent CP/M-86 Programmer's Guide 5 Function 34

FUNCTION 34: WRITE RANDOM

Write Random Records from a disk File

Entry Parameters:
Register CL: 22H

DX: FCB Address - Offset
DS: FCB Address - Segment

Return Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The write Random function is analogous to the Read Random
Function, except that data is written to the disk from the current
DMA address. If the disk extent and/or data block where the data is
to be wr i tten is not already allocated, the BDOS automatically
performs the allocation before the write operation continues.

In order to write to a file using the Write Random function,
the calling process must first open the base extent (extent 0).
This ensures that the FCB is properly initialized for subsequent
random access operations. The base extent might or might not
contain data, but opening extent 0 records the file in the directory
so that it is can be displayed by the DIR utility. If a process
does not open extent 0 and allocates data to some other extent, the
file will be invisible to the DIR utility.

The Write Random function sets the logical extent and current
record positions to correspond with the random record being written,
but does not change the Random Record Number. Thus' sequential read
or write operations can follow a random write, with the current
record being reread or rewritten as the calling process switches
from random to sequential mode.

If the BDOS Mul ti-Sector Count is greater than one (see
Function 44), the Write Random function reads multiple consecutive
records into memory beginning at the current DMA. The function
automatically increments the rO, rl, and r2 field of the FCB to
write each record. However, it restores the FCB's Random Record
Number to the first record's value upon return to the calling
process. Upon return, the Write Random function sets register AL to
OOH if the write operation was successful.

All Information Presented Here is Proprietary to Digital Research

114

Concurrent CP/M-86 Programmer's Guide 5 Function 34

Otherwise, register AL contains one of the following Error Codes:

02H
03H
05H
06H
08H
OAH
OBH

OFFH

No available data block
Cannot close current extent
No available directory space
Random record number out of range
Record locked by another process
FCB checksum error
Unlocked file verification error
Physical error: refer to register AH

The function returns Error Code 02H when it attempts to
allocate a new data block to the file. No unallocated data blocks
exist on the selected disk drive.

The function returns Error Code 03H when it cannot close the
current extent before moving to a new extent.

The function returns Error Code 05H when it attempts to create
a new extent that requires a new directory entry and no available
directory entries exist on the selected disk drive.

The function returns Error Code 06H when byte 35 (r2) of the
referenced FCB is greater than 3.

The function returns Error Code 08H when it attempts to write
to a record locked by another process. The function returns this
error only for files open in Unlocked mode.

The function returns Error Code OAH if the referenced FCB
failed the FCB checksum test.

The function returns Error Code OBH if the BOOS cannot locate
the FCB' s directory entry when attempting to verify that the
referenced FCB contains current information. The function returns
this error only for files open in Unlocked mode.

The function returns Error Code OFFH if a physical error was
encountered and the BOOS Error mode is one of the return modes (see
Function 45). If the error mode is the Default mode, the system
displays a message at the console identifying the physical error and
terminates the calling process. When a physical error is returned
to the calling process, it is identified by the four low-order bits
of register AH as shown below:

All Information Presented Here is Proprietary to Digital Research

115

Concurrent CP/M-86 Programmer's Guide 5 Function 34

OlH Permanent Error
02H Read-Only disk
03H Read-Only file

File open in Read-Only mode
File password protected in Write mode

04H Select Error

The Write Random function also sets the four high-order bits of
register AH on all error returns when the BOOS Multi-Sector Count is
greater than one. In this case, the four bits contain an integer
set to the number of records successfully read before the error was
encountered. This value can range from 0 to 15. The four high­
order bits of register AH are always set to 0 when the Multi-Sector
Count is equal to one.

All Information Presented Here is Proprietary to Digital Research

116

Concurrent CP/M-86 Programmer's Guide 5 Function 35

FUNCTION 35: COMPUTE FILE SIZE

Compute the size of a disk File

Entry Parameters:
Register CL: 23H

DX: FCB Address - Offset
DS: FCB Address - Segment

Return Values:
Register AL: Error Flag

AH: Physical or Extended Error
BX: Same as AX
Random Record Field of FCB Set

The Compute File Size function determines the virtual file
size. This is the address of the record immediately following the
end of the file. The virtual size of a file corresponds to the
physical size if the file is written sequentially. If the file is
written in random mode, gaps might exist in the allocation, and the
file might contain fewer records than the indicated size. For
example, if a single record with record number 262,143 (the
Concurrent CP/M-86 maximum) is written to a file using the Write
Random function, then the virtual size of the file is 262,144
records even though only one data block is actually allocated.

To compute file size, the calling process passes the address of
an FCB in random mode format (bytes rO, rl, and r2 present). Note
that the FCB must contain a specific filename and filetype.
Function 35 sets the random record field of the FCB to the Random
Record Number + 1 of the last record in the file. If the r2 byte is
set to 04H, then the file contains the maximum record count 262,144.

A process can append data to the end ·of an existing file by
calling Function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

Note: the file need not be open in order to use Function 35.

Upon return, Function 35 returns a OOH in register AL if the
file specified by the referenced FCB was found, or a OFFH in
register AL if the file was not found. Register AH is set to OOH in
both cases. If a physical or extended error was encountered,

All Information Presented Here is Proprietary to Digital Research

117

Concurrent CP/M-86 Programmer's Guide 5 Function 35

Function 35 performs different actions depending on the BOOS Error
mode (see Function 45). If the BOOS Error mode is the Default mode,
the system displays a message at the console identifying the error
and terminates the process. Otherwise, Function 35 returns to the
calling process with register AL set to OFFH and register AH set to
one of the following physical or extended errors codes:

OlH Permanent Error
04H Select Error
09H ? in filename or filetype

All Information Presented Here is Proprietary to Digital Research

118

Concurrent CP/M-86 Programmer's Guide 5 Function 36

FUNCTION 36: SET RANDOM RECORD

Return the Random Record Number of the
Next Record to Access in a disk File

Entry Parameters:
Register CL: 24H

DX: FCB Address - Offset
DS: FCB Address - Segment

Return Values:
Random Record Field of FCB Set

The Set Random Record function returns the Random Record Number
of the next record to be accessed.from a file that has been read or
written sequentially to a particular point. The function returns
this value in the random record field (bytes rO, rl, and r2) of the
addressed FCB. Function 36 can be useful in two ways.

First, it is often necessary initially to read and scan a
sequential file to extract the positions of various key fields. As
each key is encountered, Function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record number minus one is
placed into a table with the key for later retrieval. After
scanning the entire file and tabularizing the keys and their record
numbers, you can move directly to a particular record by performing
a random read using the corresponding Random Record Number that was
saved earlier. The scheme is easily generalized when variable
record lengths are involved, because the program need only store the
buffer-relative byte position along with the key and record number
in order to find the exact starting position of the keyed data at a
later time.

Function 36 can also be used when switching from a sequential
read or write over to random read or write. A file is sequentially
accessed to a particular point in the file, Function 36 is called to
set the record number, and subsequent random read and write
operations continue from the next record in the file.

All Information Presented Here is Proprietary to Digital Research

119

Concurrent CP/M-86 Programmer's Guide 5 Function 37

FUNCTION 37: RESET DRIVE

Reset Specified disk Drives

Entry Parameters:
Register CL: 25H

DX: Drive Vector

Return Values:
AL: Return Code
BL: Same as AL

The Reset Drive function is used to programmatically restore
specified drives to the reset state (a reset drive is not logged in
and is in Read-Write status). The passed parameter in register DX
is a 16-bi t vector of dr i ves to be reset, where the least
significant bit corresponds to the first drive A, and the high-order
bit corresponds to the sixteenth drive, labelled P. Bit values of 1
indicate that the specified drive is to be reset.

This function is conditional under Concurrent CP/M-86. If
another process has a file open on a drive to be reset, and if the
drive is removable or Read-Only, the Drive Reset function is denied,
and no drives are reset.

Upon return, if the reset operation is successful, Function 37
sets register AL to OOH. Otherwise, it sets register AL to OFFH.
If the BDOS is not in Return Error mode (see Function 45), the
system displays an error message at the console identifying the
process owning an open file.

All Information Presented Here is Proprietary to Digital Research

120

Concurrent CP/M-86 Programmer's Guide 5 Function 38

FUNCTION 38: ACCESS DRIVE

Access Specified disk Drives

Entry Parameters:
Register CL: 26H

DX: Drive Vector

Return Values:
AL: Return Code
AH: Extended Error
BL: Same as AL

The Access Dr i ve function inser ts a special open file i tern into
the system Lock list for each specif ied dr i ve. While the item
exists in the Lock list, the drive cannot be reset by another
process. As in Function 37, the calling process passes the drive
vector in register DX. The format of the drive vector is the same
as that used in Function 37.

The Access Drive function inserts no items if insufficient free
space exists in the Lock list to support all the new items or if the
number of items to be inserted puts the calling process over the
Lock list open file maximum. If the BDOS Error mode 'is the Default
mode (see Function 45), the system displays a message at the console
identifying the error and terminates the calling process.
Otherwise, the Access Drive function returns to the calling process
with register AL set to OFFH and register AH set to one of the
following decimal values.

OAH Process Open File limit exceeded
OBH No room in the system Lock list

If the Access Dr i ve function is successful, it sets reg ister AL
to OOH.

All Information Presented Here is Proprietary to Digital Research

121

Concurrent CP/M-86 Programmer's Guide 5 Function 39

FUNCTION 39: FREE DRIVE

Free Specified disk Drives

Entry Parameters:
Register CL: 27H

OX: Drive Vector

The Free Dr i ve function purges the system Lock list of all file
and locked record items that belong to the calling process on the
specified dr i ves. As in Function 38, the calling process passes the
drive vector in register ox.

Function 39 does not close files associated with purged open
file Lock list items. In addition, if a process references a purged
file wi th a BOOS function requiring an open FCB, the function
returns a checksum error. A file that has been written to should be
closed before making a Free Drive call to the file's drive.
Otherwise data can be lost.

All Information Presented Here is Proprietary to Digital Research

122

Concurrent CP/M-86 Programmer's Guide 5 Function 40

FUNCTION 40: WRITE RANDOM WITH ZERO FILL

Write a Random Record to a disk File
and Prefill New Data Blocks With Zeros

Entry Parameters:
Register CL: 28H

Return Values:

DX: FCB Address - Offset
os: FCB Address - Segment

Register AL: Error Code
AH: Physical Error
BX: Same as AX

The Wr i te Random Wi th OOH Fill function is similar to the Wri te
Random function (Function 34) with the exception that it fills a
previously unallocated data block with nulls before writing the
record. If this function has been used to create a file, records
accessed by a Read Random function that contain all zeros identify
unwritten Random Record Numbers. Unwritten random records in
allocated data blocks of files created using the Write Random
function contain uninitialized data.

All Information Presented Here is proprietary to Digital Research

123

Concurrent CP/M-86 Programmer's Guide 5 Function 41

FUNCTION 41: TEST AND WRITE RECORD

Verify Contents of Current Record Before Write

Entry Parameters:
Register CL: 29H

OX: FCB Address - Offset
DS: FCB Address - Segment

Return Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The Test And Wr i te Record function provides a means of
verifying the current contents of a record on disk before updating
it. The calling process must set bytes rO, rl, and r2 of the FCB
addressed by register OX to the Random Record Number of the record
to be tested. The original version of the record (i.e., the record
to be tested) must reside at the current DMA address, followed
immediately by the new version of the record. The record size can
range from 128 bytes to sixteen times that value depending on the
BOOS Multi-Sector Count (see Function 44).

Function 41 verifies that the first record is identical to the
record on disk before replacing it with the new version of the
record. If the record on disk does not match, the record on disk is
not changed, and the function returns an error code to the calling
process.

The Test And Write Record function is useful when more than one
process has Read-Write access to a common file. This situation is
supported under Concurrent CP/M-86 when more than one process opens
the same file in Unlocked mode. Function 41 is a logical
replacement for the record lock/unlock sequence of operations
because it prevents two processes from simultaneously updating the
same record. Note that this function is also supported for files
open in Locked mode to provide compatibility between Concurrent
CP/M-86 and CP/M-86.

Upon return, the Test And Write Record function sets register
AL to OOH if the function was successful.

All Information Presented Here is Proprietary To Digital Research

124

Concurrent CP/M-86 Programmer's Guide 5 Function 41

Otherwise, register AL contains one of the following error codes:

OlH Reading unwritten data
03H Cannot close current extent
04H Seek to unwritten extent
06H Random record number out of range
07H Records did not match
08H Record locked by another process
OAH FCB checksum error
OBH Unlocked file verification error
OFFH : Physical error : refer to register Ali

The function returns Error Code OlH when it accesses a data
block which has not been previously written.

The function returns Error Code 03H when it cannot close the
current extent prior to moving to a new extent.

The function returns Error Code 04H when a read operation
accesses an extent that has not been created.

The function returns Error Code 06H when byte 35 (r2) of the
referenced FCB is greater than 3.

The function returns Error Code 07H when the record to be
updated does not match the record on disk.

The function returns Error Code 08H if the specified record is
locked by another process. The function returns this error only for
files opened in Unlocked mode.

The function returns Error Code OAH if the referenced FCB
failed the FCB checksum test.

The function returns Error Code OBH if the BOOS cannot locate
the FCB' s directory entry when attempting to verify that the
referenced FCB contains current information. The function returns
this error only for files opened in Unlocked mode.

The function returns Error Code OFFH if a physical error was
encountered and the BOOS Error mode is one of the return modes (see
Function 45). If the error mode is the Default mode, the system
displays a message at the console identifying the physical error and
terminates the calling process. When the function returns a
physical error to the calling process, it is identified by the four
low-order bits of register AH as shown below:

All Information Presented Here is Proprietary To Digital Research

125

Concurrent CP/M-86 Programmer's Guide

OlH Permanent Error
02H Read-Only disk
03H Read-Only file or

File open in Read-Only mode
File password protected in Write mode

04H Select Error

5 Function 41

The Test And Write Record function also sets the four high­
order bits of register AH on all error -returns when the BDOS Multi­
Sector Count is greater than one. In this case, the four bits
contain an integer set to the number of records successfully tested
or written before the error was encountered. This value can range
from 0 to 15. .The four high-order bits of register AH are always
set to 0 when the Multi-Sector Count is equal to one.

All Information Presented Here is Proprietary To Digital Research

126

Concurrent CP/M-86 Programmer's Guide 5 Function 42

FUNCTION 42: LOCK RECORD

Lock Records in a Disk File

Entry Parameters:
Register CL: 2AH

DX: FCB Address - Offset
DS: FCB Address - Segment

Return Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The Lock Record function locks one or more consecutive records
so that no other program with access to the records can
simultaneously lock or update them. This function is only supported
for files open in Unlocked mode. If it is called for a file open in

. Locked or Read-Only mode, no locking action is performed and a
successful result is returned. This provides compatibility between
Concurrent CP/M-86 and CP/M-86.

The calling process passes the address of an FCB in which the
Random Record Field is filled with the Random Record Number of the
first record to be locked. The number of records to be locked is
determined by the BDOS Multi-Sector Count (see Function 44). The
current DMA must contain the 2-byte File ID returned by the Open
File function when the referenced FCB was opened. Note that the
File ID is only returned by the Open File function when the Open
mode is Unlocked.

The Lock Record function requires that each record number to be
locked reside in an allocated block for the file. In addition,
Function 42 verifies that none of the records to be locked are
currently locked by another process. Both of these tests are made
before any records are locked.

Each locked record consumes an entry in the BDOS system Lock
list that is shared by locked record and open file entries. If
there is not sufficient space in the system Lock list to lock all
the specified records, or if the process record lock limit is
exceeded, then the Lock Record function locks no records and returns
an error code to the calling process.

All Information Presented Here is Proprietary To Digital Research

127

Concurrent CP/M-86 Programmer's Guide 5 Function 42

Upon return, the Lock Record function sets register AL to OOH
if the lock operation was successful. Otherwise, register AL
contains one of the following error codes:

OlH
03H
04H
06H
08H
OAH
OBH
OCH
ODH
OEH
OFFH:

Reading unwritten data
Cannot close current extent
Seek to unwritten extent
Random Record Number out of range
Record locked by another process
FCB checksum error
Unlocked file verification error
Process record lock limit exceeded
Invalid File ID
No room in the system Lock List
Physical error: refer to register AH

The function returns Error Code OlH when it accesses a data
block that has not been previously written.

The function returns Error Code 03H when it cannot close the
current extent prior to moving to a new extent.

The function returns Error Code 04H when it accesses an extent
that has not been created.

The function returns Error Code 06H when byte 35 (r2) of the
referenced FCB is greater than 3.

The function returns Error Code 08H if the specified record is
locked by another process.

The function returns Error Code OAH if the referenced FCB
failed the FCB checksum test.

The function returns Error Code OBHif the .BDOS cannot locate
the referenced FCB's directory entry when attempting to verify that
the FCB contains current information.

The function returns Error Code OCH when the sum of the number
of records currently locked by the calling process and the number of
records to be locked by the Lock Record call exceeds the maximum
allowed value.

The function returns Error Code ODH when an invalid File ID is
placed in the current DMA.

The function returns Error Code OEH wh~n the system Lock list
is full or when the calling process has exceeded the maximum lock
records per process implimented in this installation.

The function returns Error Code OFFH if a physical error was
encountered and the BDOS Error mode is either Return Error mode or
Return and Display Error mode (see Function 45). If the Error mode

All Information Presented Here is Proprietary To Digital Research

128

Concurrent CP/M-86 Programmer's Guide 5 Function 42

is the Default mode, the system displays a message at the console
identifying the physical error and terminates the calling process.
When the function returns a physical error to the calling process,
it is identified by the four low-order bits of register AH as shown
below:

alH Permanent Error
a4H Select Error

The Lock Record function also sets the four high-order bits of
register AH on all error returns when the BDOS Multi-Sector Count is
greater than one. In this case, the four bits contain an integer
set to the number of records successfully locked before the error
was encountered. This value can range from a to 15. The four high­
order bits of register AH are always set to a when the Multi-Sector
Count is equal to one.

All Information Presented Here is Proprietary To Digital Research

129

Concurrent CP/M-86 Programmer's Guide 5 Function 43

FUNCTION 43: UNLOCK RECORD

Unlock Records in a disk File

Entry Parameters:
Register CL: 2BH

DX: FCB Address - Offset
DS: FCB Address - Segment

Return Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The Unlock Record function unlocks one or more consecutive
records previously locked by the Lock Record function. This
function is only supported for files open in Unlocked mode. If it
is called for a file open in Locked or Read-Only mode, no locking
action is performed, and a successful result is returned.

The calling process passes the address of anFCB in which the
Random Record Field is filled with the Random Record Number of the
first record to be unlocked. The number of records to be unlocked
is determined by the BDOS Mul ti-Sector Count (see Function 44). The
current DMA must contain the 2-byte File ID returned by the Open
File function when the referenced FCB was opened. Note that the
File ID is only returned by the Open File function when the Open
mode is unlocked.

The Unlock Record function will not unlock a record that is
currently locked by another process. However, the function does not
return an error if a process attempts to do that. Thus, if the
Multi-Sector Count is greater than one, the Unlock Record function
will unlock all records locked by the calling process, skipping
those records locked by other processes.

Upon return, the Unlock Record function sets register AL to OOH
if the unlock operation was successful.

All Information Presented Here is Proprietary To Digital Research

130

Concurrent CP/M-86 Programmer's Guide 5 Function 43

Otherwise, register AL contains one of the following error codes:

OlH
03H
04H
06H
OAH
OBH
OCH

OFFH

Reading unwritten data
Cannot close current extent
Seek to unwritten extent
Random Record Number out of range
FCB checksum error
Unlocked file verification error
Invalid File 10
Physical error: refer to register AH

The function returns Error Code OlH when it accesses a data
block which has not been previously written.

The function returns Error Code 03H when it cannot close the
current extent prior to moving to a new extent.

The function returns Error Code 04H when it accesses an extent
that has not been created.

The function returns Error Code 06H when byte 35 (r2) of the
referenced FCB is greater than 3.

The function returns Error Code OAH if the referenced FCB
failed the FCB checksum test.

The function returns Error Code OBH if the BOOS cannot locate
the referenced FCB's directory entry when attempting to verify that
the FCB contains current information.

The functions return Error Code OCH when an invalid File 10 is
placed in the current DMA.

The function returns Error Code OFFH if a physical error was
encountered and the BOOS Error mode is one of the return modes (see
Function 45). If the error mode is the Default mode, the system
displays a message at the console identifying the physical error and
terminates the calling process. When the function returns a
physical error to the calling process, it is identified by the four
low-order bits of register AH as shown below:

OlH Permanent Error
04H : Select Error

The Unlock Record function also sets the four high-order bits
of register AH on all error returns when the BOOS Multi-Sector Count
is greater than one. In this case, the four bits contain an integer
set to the number of records successfully unlocked before the error
was encountered. This value can range from 0 to 15. The four high­
order bits of register AH are always set to 0 when the Multi-Sector
Count is equal to one.

All Information Presented Here is Proprietary To Digital Research

131

Concurrent CP/M-86 Programmer's Guide 5 Function 44

FUNCTION 44: SET MULTI-SECTOR COUNT

Set Number of Records for Subsequent
disk Reads and Writes

Entry Parameters:
Register CL: 2CH

OL: Number of Sectors

Return Values:
Register AL: Return Code

BL: Same as AL

The Set Multi-Sector Count function provides logical record
blocking under Concurrent CP/M-86. It enables a process to read and
write from 1 to 16 physical records of 128 bytes at a time during
subsequent BOOS read and write functions. It also specifies the
number of l28-byte records to be locked or unlocked by the BOOS Lock
Record and Unlock Record functions.

Function 44 sets the Multi-Sector Count value for the calling
process to the value passed in register OL. Once set, the specified
Mul ti-Sector Count remains in effect until the calling process makes
another Set Multi-Sector Count function call and changes the value.
Note that the CLI function sets the Multi-Sector Count to one when
it initiates a transient program.

The Multi-Sector Count affects BOOS error reporting for the
BOOS read, wr i te, lock I and unlock functions. If an error
interrupts these functions when the Multi-Sector is greater than
one, they return the number of records successfully processed in the
four high-order bits of register AH.

Upon return, the function sets register AL to OOH if the
specified value is in the range of 1 to 16. Otherwise, it sets
register AL to OFFH.

All Information Presented Here is Proprietary To Digital Research

132

Concurrent CP/M-86 Programmer's Guide 5 Function 45

FUNCTION 45: SET BOOS ERROR MODE

Set BOOS Error Mode for types of Error Returns

Entry Parameters:
Register CL: 2DH

DL: BOOS Error Mode

The BOOS Error mode determines how physical and extended errors
(Section 2.15) are handled for a process. The Error mode can exist
in three modes: the Default mode, Return Error mode and Return and
Display Error mode.

In the Default mode, BOOS displays a system message at the
console identifying the error and terminates the calling process.

In the Return Error modes, BOOS sets register AL to OFFH,
places an error code identifying the physical or extended error in
the four low-order bits of register AH, and returns to the calling
process.

I n Return and Display mode, the BOOS displays the system
message before returning to the calling process. However,when the
BOOS is in Return Error mode, it does not display any system
messages.

Function 45 sets the BOOS Error mode for the calling process to
the mode specified in register DL. If register DL is set to OFFH,
the Error mode is set to Return Error mode. If register DL is set
to OFEH, the Error mode is set to Return and Display mode. If
register DL is set to any other value, the Error mode is set to the
Default mode.

All Information Presented Here is proprietary To Digital Research

133

Concurrent CP/M-86 Programmer's Guide 5 Function 46

FUNCTION 46: GET FREE DISK SPACE

Return Free Disk Space on Specified Drive

Entry Parameters:
Register CL: 2EH

DL: Drive

Return Values:
Register AL: Error Flag

AH: Physical Error
BX: Same as AX
First 3 bytes of DMA buffer

The Get Disk Free Space function determines the number of free
sectors (128-byte records) on the specified drive. The calling
process passes the drive number in register DL, with 0 for drive A,
1 for B, continuing through 15 for dr i ve P in a full l6-dr i ve
system. Function 46 returns a binary number in the first 3 bytes of
the current DMA buffer. This number is returned in the format shown
in Figure 5-3.

fsO fsl fs2

Figure 5-3. Disk Free Space Field Format

fsO low byte
fsl middle byte
fs2 high byte

Upon return, the function sets register AL to OOH if the BDOS Error
mode is the Default mode. However, if the BDOS Error mode is one of
the return modes (see Function 45) and a physical error was
encountered, it sets register AL to OFFH, and register AH to one of
the following values:

OlH - Permanent Error
04H - Select Error

All Information Presented Here is Proprietary to Digital Research

134

Concurrent CP/M-86 Programmer's Guide 5 Function 47

FUNCTION 47: CHAIN TO PROGRAM

Load, Initialize and Jump to specified Program

Entry Parameters:
Register CL: 2FH

DMA buffer: Command Line

Return Values:
Register AX: OFFFFH - Could not find

Command

The Chain To Program function provides a means of chaining from
one program to the next without operator intervention. Although
there is no passed parameter for this call, the calling process must
place a command line terminated by a null byte in the default DMA
buff er.

Under Concurrent CP/M-86, the Chain To Program function
releases the memory of the calling process before executing the
command. The command is processed in the same manner as the CLI
function (Function 150). If the command warrants the loading of a
CMD file and thE memory released is large enough for the new
program, Concurrent CP/M-86 loads the new program into the same
memory area as the old program. The new program is run by the same
process that ran the old program. The name of the process is
changed to reflect the new program being run.

Parameter passing between the old and new programs is
accomplished through the use of disk files, queues, or the command
line. The command line is parsed and placed in the Base Page of the
new program in the manner documented in Function 150.

The Chain To Program function returns an error if no CMD file
is found. If a CMD file is found and an error occurs after it is
successfully opened, the calling process terminates, as its memory
has been released.

All Information Presented Here is Proprietary to Digital Research

135

Concurrent CP/M-86 Programmer's Guide 5 Function 48

FUNCTION 48: FLUSH BUFFERS

Flush Write-Deferred Buffers

Entry Parameters:
Register CL: 30H

Return Values:
Register AL: Error Flag

AH: Permanent Error
BX: Same as AX

The Flush Buffers function forces the write of any write­
pending records contained in internal blocking/deblocking buffers.
This function only affects those systems that have implemented a
write-deferring blocking/deblocking algorithm in their XIOS.

Upon return, the function sets register AL to OOH if the flush
operation was successful. If a physical error was encountered, the
Flush Buffers function performs different actions depending on the
BDOS Error mode (see Function 45). If the BDOS Error mode is in the
Def aul t mode, the system displays a message at the console
i den t i fying the er ror and terminates the call ing process.
Otherwise, it returns to the calling process with register AL set to
OFFH and register AH set to the following physical error code OlH :
Permanent Error.

All Information Presented Here is Proprietary to Digital Research

136

Concurrent CP/M-86 Programmer's Guide 5 Function 50

FUNCTION 50: DIRECT BIOS CALL

Call BIOS character routine

Entry Parameters:
Register CL: 32H

DX: BIOS Desc. Addr. - Offset
DS: BIOS Desc. Addr. - Segment

Return Values:
Register AX: BIOS Return

BX: Same as AX

BIOS Descriptor:

I FUNC C~ D~
Figure 5-4. BIOS Descriptor Format

The Direct BIOS Call function is provided under Concurrent
CP/M-86 for compatibili ty wi th programs generated under CP/M-86 that
use this function. Under Concurrent CP/M-86, only routines that
interface with character devices are supported. The arguments to
character routines such as CONIN and LIST are converted to those
appropriate for the Concurrent CP/M-86 XIOS.

Note: Calls to the XIOS Console Status, Input, and Output functions
do not go to the XIOS if the referenced device is a virtual console.

All Information Presented Here is proprietary to Digital Research

137

Concurrent CP/M-86 Programmer's Guide 5 Function 51

FUNCTION 51: SET DMA BASE

Set Direct Memory Access Segment Address

Entry Parameters:
Register CL: 33H

DX: DMA Segment Address

Function 51 sets the base register for subsequent DMA
transfers. The word parameter in DX is a paragraph address and is
used with the DMA offset to specify the address of a 128-byte buffer
area to be used in the disk read and write functions. Note that
upon initial program loading, the default DMA base is set to the
address of the user's data segment (the initial value of DS) and the
DMA offset is set to 0080H, which provides access to the default
buffer in the Base Page.

All Information Presented Here is Proprietary to Digital Research

138

Concurrent CP/M-86 Programmer's Guide 5 Function 52

FUNCTION 52: GET DMA ADDRESS

Return Address of Direct Memory Access Buffer

Entry Parameters:
Register CL: 34H

Return Values:
Register AX: DMA Offset

BX: Same as AX
ES: DMA Segment

Function 52 returns the current DMA Base Segment address in ES,
with the current DMA Offset in OX.

All Information Presented Here is Proprietary to Digital Research

139

Concurrent CP/M-86 Programmer's Guide 5 Function 53

·BASE

LENGTH

EXT

FUNCTION 53: GET MAX MEM

Allocate Maximum Memory Available

Entry Parameters:
Register CL: 35H

Return Values:

ox: MCB Address - Offset
os: MCB Address - Segment

Register AL: 0 if successful
OFFH on failure

BL: Same as AL
CX: Error Code
MCB filled in

Memory Control Block (MCB):

LE~GTH I EXT

Figure 5-5. Memory Control Block Format

The Segment Address of the beginning of the allocated
memory. The function fills in this field on a
successful allocation.

Length of the Memory Segment in paragraphs. The
LENGTH field is set to the maximum number of
paragraphs wanted. The function sets this field to
the actual number of paragraphs obtained on a
successful allocation.

The function fills in the EXT byte on a successful
allocation and always sets it to one.

All Information Presented Here is Proprietary to Digital Research

140

Concurrent CP/M-86 Programmer's Guide 5 Function 53

In CP/M-86, Functions 53 and 54 do not allocate memory. Under
Concurrent CP/M-86, these functions allocate memory when called
because other processes are competing for common memory. For
compatibility with CP/M-86, the ALLOC ABS MEM function (Function 56)
does not return an error if there is a memory segment allocated at
the absolute address.

Function 53 allocates the largest available memory region that
is less than or equal to the LENGTH field of the MCB in paragraphs.
If the allocation is successful, the function sets the BASE to the
base paragraph address of the available area and LENGTH to the
paragraph length. Upon return, register AL has the value OFFH if no
memory is available, and OOH if the request was successful. The
function sets the EXT to 1 if there is additional memory for
allocation, and 0 if no additional memory is available.

See Appendix M for a list of error codes returned in cx.

Note: functions 53, 54, 55, 56, 57, and 58 are included for
compatibili ty wi th CP/M-86. If you're developing software for
Concurrent CP/M-86, use Functions 128 and 129.

All Information Presented Here is Proprietary to Digital Research

141

Concurrent CP/M-S6 Programmer's Guide 5 Function 54

BASE

LENGTH

EXT

FUNCTION 54: GET ABS MAX

Allocate Maximum Memory Available
at a Specified Address

Entry Parameters:
Register CL: 36H

Return Values:

DX: MCB Address - Offset
DS: MCB Address - Segment

Register AL: 0 if successful
OFFH on failure

BL: Same"as AL
CX: Error Code
MCB filled in

Memory Control Block (MCB):

Figure 5-6. Memory Control Block Format

The Segment Address of the beginning of the memory
segment wanted. This field is maintained on a
successful allocation.

Length of the Memory Segment in paragraphs. The
LENGTH field is set to the maximum number of
paragraphs wanted. On a successful allocation, the
function sets this field to the actual number of
paragraphs obtained.

The EXT field is unused but must be available.

In CP/M-S6, Functions 53 and 54 do not allocate memory. Under
Concurrent CP/M-S6, these functions allocate memory when called,
because other processes are competing for common memory. For
compatibility with CP/M-S6, the ALLOC ABS MEM function (Function 56)

All Information Presented Here is Proprietary to Digital Research

142

Concurrent CP/M-86 Programmer's Guide 5 Function 54

does not return an error if there is a memory segment allocated at
the absolute address.

Function 54 is used to allocate the largest possible region at
the absolute paragraph boundary giVen by the BASE field of the MCB,
for a maximum of LENGTH paragraphs. If the allocation is
successful, the function sets the LENGTH to the actual length. Upon
return, register AL has the value OFFH if no memory is available at
the absolute address, and OOH if the request was successful.

See Appendix M for a list of error codes returned in CX.

Note: functions 53, 54, 55, 56, 57, and 58 are included for
compatibili ty wi th CP/M-86. If you're developing software for
Concurrent CP/M-86, use Functions 128 and 129.

All Information Presented Here is Proprietary to Digital Research

143

Concurrent CP/M-86 Programmer's Guide 5 Function 55

BASE

LENGTH

EXT

FUNCTION 55: ALLOC MEM

Allocate a Memory Segment

Entry Parameters:
Register CL: 37H

Return Values:

DX: MCB Address - Offset
DS: MCB Address - Segment

Register AL: 0 if successful
OFFH on failure

BL: Same as AL
CX: Error Code
MCB filled in

Memory Control Block (MCB):

LE~GTH I EXT

Figure 5-7. Memory Control Block Format

The Segment Address of the beginning of the memory
segment allocated. The function fills in this field
on a successful allocation.

Length of the Memory Segment in paragraphs. The
LENGTH field is set to the number of paragraphs
wanted. On a successful allocation, this field is
maintained.

The EXT field is unused but must be available.

The Allocate Memory function allocates a memory area whose size
is the LENGTH field of the MCB. Function 55 returns the base
paragraph address of the allocated region in the user's.MCB. Upon
return, register AL contains a OOH if the request was successful and
a OFFH if the memory could not be allocated.

All Information Presented Here is Proprietary to Digital Research

144

Concurrent CP/M-86 Programmer's Guide 5 Function 55

See Appendix M for a list of error codes returned in CX.

Note: functions 53, 54, 55, 56, 57, and 58 are included for
compatibility with CP/M-86. If you are developing software for
Concurrent CP/M-86, use Functions 128 and 129.

All Information Presented Here is Proprietary to Digital Research

145

Concurrent CP/M-86 Programmer's Guide 5 Function 56

BASE

LENGTH

EXT

FUNCTION 56: ALLOC ABS MEM

Allocate a Memory Segment
at a Specified Address

Entry Parameters:
Register CL: 38H

Return Values:

OX: MCB Address - Offset
OS: MCB Address - Segment

Register AL: 0 if successful
OFFH on failure

BL: Same as AL
CX: Error Code
MCB filled in

Memory Control Block (MCB):

LE~GTH I EXT

Figure 5-8. Memory Control Block Format

The Segment Address of the beginning of the memory
segment wanted. This field is maintained on a
successful allocation.

Length of the Memory Segment in paragraphs. The
LENGTH field is set to the number of paragraphs
wanted. This field is maintained on a successful
allocation.

The EXT field is unused but must be available.

The Allocate Absolute Memory function allocates a memory area
that starts at the address specified by the BASE field. The memory
area's length is specified by the LENGTH field of the MCB. Upon
return, register AL contains a OOH if the request was successful and
a OFFH if the memory could not be allocated. If the calling process

All Information Presented Here is Proprietary to Digital Research

146

Concurrent CP/M-86 Programmer's Guide 5 Function 56

already owns the requested memory, no error is returned.
assures compatibility with CP/M-86.

See Appendix M for a list of error codes returned in cx.

This

Note: functions 53, 54, 55, 56, 57, and 58 are included for
compatibility with CP/M-86. If you are developing software for
Concurrent CP/M-86, use Functions 128 and 129.

All Information Presented Here is Proprietary to Digital Research

147

Concurrent CP/M-86 Programmer's Guide 5 Function 57

BASE

LENGTH

EXT

FUNCTION 57: FREE MEM

Free a specified Memory Segment

Entry Parameters:
Register CL: 39H

Return Values:

OX: MCB Address - Offset
OS: MCB Address - Segment

Register AL: 0 if successful
OFFH on failure

BL: Same as AL
CX: Error Code
MCB filled in

Memory Control Block (MCB):

+-----+-----+-----+-----+-----+
I BASE I LENGTH I EXT I
+-----+-----+-----+-----+-----+

Figure 5-9. Memory Control Block Format

A Segment Address in the memory segment which begins
the area to be freed.

Length of the Memory Segment in paragraphs. This
field is not used. The memory area freed always
goes to the end of the previously allocated memory
segment.

If the EXT field is OOH, the memory segment specified
by the BASE field is freed. If the value is OFFH,
all memory except memory allocated at load time is
freed.

The Free Memory function is used to release memory areas
allocated to the program. The value of the EXT field of the MCB
controls the operation of this function. If EXT = OFFH, then the
function releases all memory areas allocated by the calling program.

All Information Presented Here is Proprietary to Digital Research

148

Concurrent CP/M-86 Programmer's Guide 5 Function 57

If the EXT field is OOH, the function releases the memory area
beginning at the specified BASE and ending at the end of the
previously allocated memory segment.

See Appendix M for a list of error codes returned in CX.

Note: functions 53, 54, 55, 56, 57, and 58 are included for
compatibility with CP/M-86. If you are developing software for
Concurrent CP/M-86, use Functions 128 and 129.

All Information Presented Here is Proprietary to Digital Research

149

Concurrent CP/M-86 Programmer's Guide 5 Function 58

FUNCTION 58: FREE ALL MEM

Free All Memory Owned By the Calling Process

Entry Parameters:
Register CL: 3AH

In the Concurrent CP/M-86 environment, the Free All Memory
function releases all of the calling process' memory except the User
Data Area (UDA). This function is useful for system processes and
for subprocesses that share the memory of another process.

This function should NOT be used by processes running programs
loaded into the Transient Program Areas.

Note: functions 53, 54, 55, 56, 57, and 58 are included for
compatibility with CP/M-86. If you are developing software for
Concurrent CP/M-86, use Functions 128 and 129.

All Information Presented Here is Proprietary to Digital Research

150

Concurrent CP/M-S6 Programmer's Guide

FUNCTION 59: PROGRAM LOAD

Load a Progam into Memory
From a CMD type file

Entry Parameters:
Register CL: 3BH

5 Function 59

DX: FCB Address - Offset
DS: FCB Address - Segment

Return Values:
Register AX: Base Page Segment

OFFFFH on error
BX: Same as AX
CX: Error Code

The Program Load function loads disk file of type CMD into
memory. Upon entry, register DX contains the DS-relative offset of
a successfully opened FCB that specifies the input CMD file. Upon
return, register AX has the value OFFFFH if the program load was
unsuccessful. Otherwise, AX contains the paragraph address of the
Base Page belonging to the loaded program. The base address and
segment length of each segment is stored in the Base Page. Upon
program load, the CLI function initializes the DMA base address to
the Base Page of the loaded program, and the DMA offset address to
OOSOH. Note that the CLI function performs this initialization.
The Program Load function does not establish a default DMA address.
A program must execute Function 51 (Set DMA Base) and Function 26
(Set DMA Offset) before executing the PROGRAM LOAD function. If a
new process is to run the loaded program, it must initialize a User
Data Area (UDA) and a Process Descriptor (PD), and then call the
Create Process function. It is recommended that the Send CLI
Command function be used in the case of creating a new process.

Note: open the .CMD file in Read-Only mode and close it once the
load is completed.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

151

Concurrent CP/M-86 Programmer's Guide 5 Function 100

FUNCTION 100: SET DIRECTORY LABEL

Create or Update a Directory Label

Entry Parameters:
Register CL: 64H

DX: FCB Address - Offset
DS: FCB Address - Segment

Return Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The Set Directory Label function creates a directory label or
updates the existing directory label for the specified drive. The
calling process passes the address of an FCB containing the name,
type, and extent fields to be assigned to the directory label. The
name and type fields of the referenced FCB are not used to locate
the directory label in the directory; they are simply copied into
the updated or created directory label. The extent field of the FCB
(byte 12) contains the user's specification of the directory label
data byte. The definition of the directory label data byte is:

bit 7 - Require passwords for password protected files
6 - Perform access date and time stamping
5 - Perform update date and time stamping
4 - Make function creates XFCBs
a - Assign a new password to the Directory Label

(Bit a is the least significant bit)

If the current directory label is password protected, the correct
password must be placed in the first 8 bytes of the current DMA or
have been previously established as the default password (see
Function 106). If bit a of byte 12 of the FCB is set to 1, it
indicates that a password for the directory label has been placed in
the second eight bytes of the current DMA.

All Information Presented Here is Proprietary to Digital Research

152

Concurrent CP/M-86 Programmer's Guide 5 Function 100

Upon return, Function 100 returns a directory code in register
AL with the value a to 3 if the directory label create or update was
successful, or OFFH if no space existed in the referenced directory
to create a directory label. Register AH is set to OOH in both of
these cases. If a physical or extended error was encountered,
Function 100 performs different actions depending on the BOOS Error
Mode (see Function 45). If the BOOS Error mode is the Default mode,
the system displays a message at the console identifying the error
and terminates the calling process. Otherwise, Function 100
returns to the calling process with register AL set to OFFH and
register AH set to one of the following physical or extended error
codes:

OlH Permanent Error
02H Read-Only disk
04H Select Error
07H File password error

All Information Presented Here is Proprietary to Digital Research

153

Concurrent CP/M-86 Programmer's Guide 5 Function 101

FUNCTION 101: RETURN DIRECTORY LABEL

Return Data Byte of Directory Label
for the specified Drive

Entry Parameters:
Register CL: 65H

DL: Drive

Return Values:
Register AL: Directory Label Data Byte

AH: Physical Error
BX: Same as AX

The Return Directory Label function returns the data byte of
the directory label for the specified drive. The calling process
passes the drive number in register DL with 0 for drive A, 1 for
dr i ve B, continuing through 15 for dr ive P in a full l6-dr ive
system. The format of the directory label data byte is shown below:

bit 7 - Require passwords for password protected files
6 - Perform access date and time stamping
5 - Perform update data and time stamping
4 - Make function creates XFCBs
o - Directory label exists on drive

(Bit 0 is the least significant bit)

Function 101 returns the directory label data byte to the calling
process in register AL. Register AL equal OOH indicates that no
directory label exists on the specified drive. If the function
encounters a physical error when the BDOS Error mode is in one of
the Return Error modes (see Function 45), it returns with register
AL set to OFFH and register AH set to one of the following:

OlH Permanent Error
04H Select Error

All Information Presented Here is Proprietary to Digital Research

154

Concurrent CP/M-86 Programmer's Guide 5 Function 102

FUNCTION 102: READ FILE XFCB

Return Extended File Control Block
of a disk File

Entry Parameters:
Register CL: 66H

ox: FCB Address - Offset
os: FCB Address - Segment

Return Values:
Register AL: Directory Code

AH: Physical Error
BX: Same as AX

The Read File XFCB function reads the directory XFCB
information for the specified file into bytes 20 through 32 of the
specified FCB. The calling process passes the address of an FCB in
which the drive, filename, and type fields have been defined.

If Function 102 is successful, it sets the following fields in
the referenced FCB:

byte 12 XFCB password mode field

bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode

Byte 12 equal to 0 indicates the file has not
been assigned a password.

byte 13 - 23
byte 24 - 27
byte 28 - 31

XFCB password field (encrypted)
XFCB Create or Access time stamp field
XFCB Update time stamp field

Upon return, Function 102 returns a directory code in register
AL wi th the value OOH to 03H if the XFCB read operation was
successful, or OFFH if the XFCB was not found. Register AH is set
to OOH in both of these cases. If a physical or extended error was
encountered, Function 102 performs different actions depending on
the BOOS Error Mode (see Function 45). If the BOOS Error mode is in
the Default mode, the system displays a message at the console
identifying the error and terminates the calling process.

All Information Presented Here is Proprietary t~,Digital Research

155

Concurrent CP/M-86 Programmer's Guide 5 Function 102

Otherwise, Function 102 returns to the calling process with register
AL set to OFFH and register AH set to one of the following physical
error codes:

OlH Permanent Error
04H Select Error

All Information Presented Here is Proprietary to Digital Research

156

Concurrent CP/M-86 Programmer's Guide 5 Function 103

FUNCTION 103: WRITE FILE XFCB

Write Extended File Control Block
of a Disk File

Entry Parameters:
Register CL: 67H

Return Values:

DX: FCB Address - Offset
DS: FCB Address - Segment

Register AL: Directory Code
AH: Physical or Extended Error
BX: Same as AX

The Write File XFCB function creates a new XFCB or updates the
existing XFCB for the specified file. The calling process passes
the address of an FCB in which the drive, name, type, and extent
fields have been defined. The ex field, if set, specifies the
password mode and whether a new password is to be assigned to the
file. The format of the extent byte is shown below:

FCB byte 12 (ex) : XFCB password mode

bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode
bit 0 - assign new password to the file

If bit 0 is set to 1, the new password must reside in the second 8
bytes of the current DMA. If the FCB ·is currently password
protected, the correct password must reside in the first 8 bytes of
the current DMA or have been previously established as the default
password (see Function 106).

Upon return, Function 100 returns a directory code in register
AL wi th the value OOH to 03H if the XFCB create or update was
successful, or OFFH if no directory label existed on the specified
drive, or the file specified in the FCB was not found, or no space
existed in the directory to create an XFCB. Register AH is set to
OOH in all of these cases.

All Information Presented Here is Proprietary to Digital Research

157

Concurrent CP/M-86 Programmer's Guide 5 Function 103

If a physical or extended error was encountered, Function 103
performs different actions depending on the BDOS Error mode (see
Function 45). If the BDOS Error mode is the Defaul t mode, the system
displays a message at the console identifying the error and
terminates the calling process. Otherwise, Function 103 returns to
the calling process with register AL set to OFFH and register AH set
to one of the following physical or extended error codes:

OlH Permanent Error
02H Read-Only disk
04H Select Error
07H File Password Error

All Information Presented Here is Proprietary to Digital Research

158

Concurrent CP/M-86 Programmer's Guide 5 Function 104

FUNCTION 104: SET DATE AND TIME

Set System Date and Time

Entry Parameters:
Register CL: 68H

OX: TOO Address - Offset
OS: TOO Address - Segment

The Set Date and Time function sets the system internal date
and time. The calling process passes the address of a 4-byte
structure containing the date and time specification. The format of
the date and time data structure is:

byte 0 - 1
byte 2
byte 3

Date field
Hour field
Minute field

The date is represented as a l6-bit integer with day 1 corresponding
to January 1, 1978. The time is represented as two bytes: hours and
minutes stored as two BCD digits.

Under Concurrent CP/M-86, this function also sets the second
field of the system date and time to OOH.

All Information Presented Here is Proprietary to Digital Research

159

Concurrent CP/M-86 Programmer's Guide 5 Function 105

FUNCTION 105: GET DATE AND TIME

Get System Date and Time

Entry Parameters:
Register CL: 69H

DX: TOD Address - Offset
DS: TOD Address - Segment

Return Values:
TOD filled in

The Get Date and Time function obtains the system internal date
and time. The calling process passes the address of a four-byte data
structure that receives the date and time values. The format of the
data structure is the same as the format described in Function 104.
This function is equivalent to Concurrent CP/M-86 Function 155
except that it does not return the seconds field of the internal
time.

All Information Presented Here is Proprietary to Digital Research

160

Concurrent CP/M-86 Programmer's Guide 5 Function 106

FUNCTION 106: SET DEFAULT PASSWORD

Establish a Default Password for file access

Entry Parameters:
Register CL: 6AH

DX: Password Address - Offset
DS: Password Address - Segment

The Set Default Password function allows a process to specify a
password value before a process accesses a file protected by the
password. When the file system accesses a password protected file,
it checks the current DMA and the default password for the correct
value. The function does not return a password error if either
password is correct. Concurrent CP/M-86 maintains a default
password for each process currently running on the system. When a
process (parent) creates a subprocess (child), the child process
inherits its default console from its parent.

Note: changing the default password does not affect other processes
currently running on the system.

To make a Function 106 call, the calling process passes the
address of an ,eight-byte field containing the password.

All Information Presented Here is proprietary to Digital Research

161

Concurrent CP/M-86 Programmer's Guide 5 Function 107

FUNCTION 107: RETURN SERIAL NUMBER

Return the Current System's Serial Number

Entry Parameters:
Register CL: 6BH

DX: SERIAL Address - Offset
DS: SERIAL Address - Segment

Return Values:
SERIAL filled in

Function 107 returns the Concurrent CP/M-86 serial number to
the addressed, six-byte SERIAL field as a six-byte ASCII numeral.

All Information Presented Here is Proprietary to Digital Research

162

Concurrent CP/M-86 Programmer's Guide 5 Functions 128-129

START

MIN

FUNCTION 128: MEMORY ALLOCATION
FUNCTION 129:

Allocate a Memory Segment

Entry Parameters:
Register CL: 080H or 081H

Return Values:

DX: MPB Address-Offset
DS: MPB Address-Segment

Register AX: 0 (success)
OffffH (fail)

BX: Same as AX
CX: Error Code

~X

Figure 5-10. Memory Parameter Block (MPB)

if non-OOH, ·an absolute request at this paragraph

minimum memory needed (paragraphs)

MAX maximum memory wanted (paragraphs)

* OOOOH these fields must be OOH; they are used internally.

The Memory Allocation function allows a program to allocate
extra memory. A successful allocation allocates a contiguous memory
segment whose length is at least the MIN and no more than the MAX
number of paragraphs specified in the MPB. The START field of the
MPB is modified to be the starting paragraph of the memory segment.
The MIN and MAX fields are modified to be the length of the memory
segment in paragraphs. Memory Segments can be explicitly released
through the Memory Free function; Concurrent CP/M-86 also releases
all memory owned by a process at termination.

All Information Presented Here is Proprietary to Digital Research

163

Concurrent CP/M-86 Programmer's Guide 5 Functions 128-129

Note: MIN and MAX fields must be explicitly filled in. The MAX
value must be greater than or equal to the MIN value.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

164

Concurrent CP/M-86 Programmer's Guide 5 Function 130

FUNCTION 130: MEMORY FREE

Free a Memory Segment

Entry Parameters:
Register CL: 082H

DX: MFPB Address - Offset
DS: MFPB Address - Segment

Return Values:
Register AX: o on success

OffffH on failure
BX: Same as AX
CX: Error Code

Figure 5-11. Memory Free Parameter Block (MFPB)

The Memory Free function releases memory starting at the START
paragraph to the end of a single previously allocated segment that
contains the START paragraph. If the START paragraph is the same as
that returned in the MPB of a memory allocation call, then Function
130 releases the whole memory segment.

The * OOOOH field must be initialized to zero.

Under certain circumstances, Concurrent CP/M-86 allows memory
segments to be shared among different processes. In this case, the
system recovers a released memory segment only when no other
processes own the memory segment.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

165

Concurrent CP/M-86 Programmer's Guide 5 Function 131

FUNCTION 131: POLL DEVICE

Poll a Device

Entry Parameters:
Register CL: 083H

DL: Device Number

Return Values:
Register AX: 0 on success

OffffH on failure
BX: Same as AX
CX: Error Code

The Poll Device funct ion is used by the XIOS to poll
noninterrupt driven devices. It should be used whenever the XIOS is
waiting for a noninterrupt event. The calling process relinquishes
the CPU and allows Concurrent CP/M-86 to poll the device at every
dispatch. The XIOS contains routines for each device number. These
routines are called through the XIOS Poll Device function, and they
return whether the device is ready or not. When the device is
ready, Concurrent CP/M-86 restores the calling process to the RUN
state and returns. Upon return, the calling process knows the
device is ready.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

166

Concurrent CP/M-B6 Programmer's Guide 5 Function 132

FUNCTION 132: FLAG WAIT

Wait for a System Flag

Entry Parameters:
Register CL: OB4H

DL: Flag Number

Return Values:
Register AX: o on success

OffffH on failure
BX: Same as AX
CX: Error Code

The Flag Wait function is used by a process to wait for an
interrupt. The process relinquishes the CPU until an interrupt
rou tine calls the Flag Set function, which places the waiting
process in the RUN state. When Function 132 returns to the calling
process, the interrupt has either occurred, or an error has
occurred. An error occurs when a process is already waiting for the
flag. I f the Flag was set before Function 132 was called, the
routine returns successfully without relinquishing the CPU. This
routine is meant to be used by the XIOS. The mapping between types
of interrupts and flag numbers is maintained in the XIOS, although
Concurrent CP/M-B6 reserves flags 0, 1, 2, and 3 for system use.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

167

Concurrent CP/M-86 Programmer's Guide S Function 133

FUNCTION 133: FLAG SET

Set a System Flag

Entry Parameters:
Register CL: 08SH

DL: Flag Number

Return Values:
Register AX: 0 on success

OffffH on failure
BX: Same as AX
CX: Error Code

The Flag Set function is used by interrupt routines to notify
the system that a logical interrupt has occurred. A process waiting
for this flag is placed back into the RUN state. If there are no
processes waiting, then the next process to wai t for this flag
returns successfully without relinquishing the CPU. The function
detects an error if the flag has already been set, and no process
has done a Flag Wait call to reset it.

See Appendix M for a list of error codes returned in ex.

All Information Presented Here is Proprietary to Digital Research

168

Concurrent CP/M-86 Programmer's Guide 5 Function 134

FLAGS

NAME

FUNCTION 134: MAKE QUEUE

Make a System Queue

Entry Parameters:
Register CL: 086H

ox: QO Address - Offset
OS: QO Address - Segment

Return Values:
Register AX: 0 on success

OffffH on failure
BX: Same as AX
CX: Error Code

* OOOOH * OOOOH FLAGS NAME ...
... NAME MSGLEN

NMSGS * OOOOH * OOOOH * OOOOH

* OOOOH BUFFER

Figure 5-12. Queue Descriptor (QD) Format

Queue Flags. The bits are defined as follows:

OOOlH - Mutual exclusion queue
0002H - CANNOT be deleted
0004H - restricted to SYSTEM processes
0008H - RSP message queue
OOlOH - Used internally
0020H - RPL address queue
0040H - Used internally
0080H - Used internally

Remaining flags reserved for future use

8-byte queue name. All 8 bits of each character are
matched on an Open Queue call.

All Information Presented Here is Proprietary to Digital Research

169

Concurrent CP/M-86 Programmer's Guide 5 Function 134

MSGLEN

NMSGS

BUFFER

* OOOOH

Number of bytes in each logical message

Maximum number of log ical messages to be suppor ted. If
the number of messages wr i tten to the queue equals
this maximum, no more messages are allowed until a
message is read.

address of the queue buffer. This buffer must be
(NMSGS * MSGLEN) bytes long. The address is an offset
relative to the DS register. This field is unused if
the QD resides outside of the System Data Area.
Typically this field is 0 if the queue is being
created by a transient· program. RSPs that create
queues must initialize this field to point to a
buffer. ~e Data Segment of an RSP I S queue is
considered part of the System Data Area unless it is
beyond 64k of the beginning of the System Data Area.

for internal use. Must be initialized to zero.

Every system queue under Concur rent CP /M-86 is associated wi th
a Queue Descriptor that resides within the Concurrent CP/M-86 System
Data Area. In the Make Queue function, the calling process passes
the address of a Queue Descr iptor. I f this Queue Descr iptor is
within the Concurrent CP/M-86 System Data Area, the system uses it
directly for the System Queue. If the Queue Descriptor is outside
of the System Data Area, the system obtains a Queue Descriptor from
an internal Queue Descriptor table. If there are no unused Queue
Descriptors in the internal table, the function returns an error
code.

See Appendix M for a list of error codes returned in CX.

The buffer for a system queue must also reside with in the
System Data area. For non-OOH length buffers, resident buffers are
used directly. The system obtains a buffer from the Queue Buffer
Area if the buffer does not reside within the System Data Area. The
size of the buffer is calculated from the NMSGS and MSGLEN fields.
The function returns an error code if there is not enough unused
buffer area left to accommodate this new buffer.

All system queues must have unique names. The function returns
an error code if a system queue already exists by the given name.

Under Concurrent CP/M-86, all system queues must be explici tly
opened (see Function 135) before being used to read or wr i te
messages or to delete the queue.

All Information Presented Here is Proprietary to Digital Research

170

Concurrent CP/M-86 Programmer's Guide 5 Function 135

QUEUEID

* OOOOH

BUFFER

NAME

FUNCTION 135: OPEN QUEUE

Open a System Queue

Entry Parameters:
Register CL: 087H

DX: QPB Address - Offset
DS: QPB Address - Segment

Return Values:
Register AX: a on success

OffffH on failure
BX: Same as AX
CX: Error Code

* OOOOH I QUEUEID 1 * OOOOH 1 BUFFER

NAME

Figure 5-13. Queue Parameter Block (QPB)

modified by Open Queue

Reserved for internal use; must be initialized to zero

not used for Open Queue

8-byte system queue name.

All system queues under Concurrent CP/M-86 must be explicitly
opened before a read, write, or delete operation can be done. The
Open Queue function examines each existing system queue and attempts
to match the name in the QPB with the name of a system queue. All
eight bytes of the name must match for a successful open. All bits
of each byte are examined. If the open operation is successful, the
Open Queue function modifies the Queue ID Field of the QPB. Once
the the Queue is opened, subsequent reads, writes, or a delete are
allowed. See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

171

Concurrent CP/M-86 Programmer's Guide 5 Function 136

FUNCTION 136: DELETE QUEUE

Delete a System Queue

Entry Parameters:
Register CL: 088H

DX: QPB Address - Offset
DS: QPB Address - Segment

Return Values:
Register AX: 0 on success

OffffH on failure
BX: Same as AX
CX: Error Code

* OOOOH I QUEUEID 1 * OOOOH I BUFFER

NAME
I

Figure 5-14. Queue Parameter Block (QPB)

QUEUEID filled in by a previous Open Queue

* OOOOH Reserved for internal use; must be initialized to zero

BUFFER not used for Delete Queue

NAME not used for Delete Queue

The Delete Queue function removes a system queue from the
system. The system returns error codes if the queue cannot be
deleted or if the queue has not been previously opened.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

172

Concurrent CP/M-86 Programmer's Guide 5 Function 137

QUEUEID

* OOOOH

BUFFER

NAME

FUNCTION 137: READ QUEUE

Read a Message from a System Queue

Entry Parameters:
Register CL: 089H

DX: QPB Address - Offset
DS: QPB Address - Segment

Return Values:
Register AX: a on success

OffffH on failure
BX: Same as AX
CX: Error Code

* OOOOH I QUEUEID I * OOOOH I BUFFER

NAME

Figure 5-15. Queue Parameter Block (QPB)

filled in by previous Open Queue

reserved for internal use; must be initialized to
zero

offset
Segment.

of buffer relative to the current Data
Message is placed in buffer indicated.

not used by Read Queue

The Read Queue function reads a message from a system queue
that was previously opened by the calling process. The function
returns an error code if the queue was not previously opened or if
the system queue has been deleted since the Open Queue call. If
there are not enough messages to read from the queue, the calling
process waits until another process writes into the queue before
returning. See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

173

Concurrent CP/M-86 Programmer's Guide 5 Function 138

QUEUEID

* OOOOH

BUFFER

NAME

FUNCTION 138: CONDITIONAL READ QUEUE

Conditionally Read a Message
from a System Queue

Entry Parameters:
Register CL: 08AH

Return Values:

DX: QPB Address - Offset
DS: QPB Address - Segment

Register AX: 0 on success
OffffH on failure

BX: Same as AX
CX: Error Code

* OOOOH I QUEUEID I * OOOOH I BUFFER

NAME

Figure 5-16. Queue Parameter Block (QPB)

filled in by previous Open Queue

Reserved for internal use; must be initialized to
zero

offset of buffer relative to the current Data
Segment. Message is placed in buffer indicated.

not used by Read Queue

The Conditional Read Queue function is analagous to the Read
Queue function, but it returns an error code if there are not enough
messages to read instead of waiting for another process to write to
the queue.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

174

Concurrent CP/M-86 Programmer's Guide 5 Function 139

QUEUEID

* OOOOH

BUFFER

NAME

FUNCTION 139: WRITE QUEUE

Write a Message to a System Queue

Entry Parameters:
Register CL: 08BH

Return Values:

DX: QPB Address - Offset
DS: QPB Address - Segment

Register AX: 0 on success
OffffH on failure

BX: Same as AX
CX: Error Code

Figure 5-17. Queue Parameter Block (QPB)

filled in by previous Open Queue

reserved for internal use; must be initialized to
zero

offset of buffer relative to the current Data
Segment. Message is read from buffer indicated.

not used by Write Queue

The Write Queue function writes a message to a system queue
that was previously opened by the calling process. The function
returns an error code if the queue was not previously opene~ or if
the system queue has been deleted since the Open Queue ca~l. If
there is not enough buffer space in the queue, the calling process
waits until another process reads from the queue before writing to
the queue and returning. See Appendix M for a list of error codes
returned in CX.

All Information Presented Here is Proprietary to Digital Research

175

Concurrent CP/M-86 programmer's Guide 5 Function 140

QUEUEID

* OOOOH

BUFFER

NAME

FUNCTION 140: CONDITIONAL WRITE QUEUE

Conditionally Write a Message
to a System Queue

Entry Parameters:
Register CL: 08CH

DX: QPB Address - Offset
os: QPB Address - Segment

Return Values:
Register AX: 0 on success

OffffH on failure
BX: Same as AX
CX: Error Code

* OOOOH I QUEUE!D I * OOOOH I
NAME I

BUFFER

Figure 5-18. Queue Parameter Block (QPB)

filled in by previous Open Queue

reserved for internal use~ must be initialized to
zero

offset of buffer relative to the current Data
Segment. Message is read from buffer indicated.

not used by Write Queue

The Conditional Write Queue function is analagous to the Write
Queue function, but it returns an error code if there is not enough
System Queue Buffer for the message to be written instead of waiting
for another process to read from the queue.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

176

Concurrent CP/M-86 Programmer's Guide 5 Function 141

FUNCTION 141: DELAY

Delay for specified number of System Ticks

Entry Parameters:
Register CL: 08DH

OX: Number of System Ticks

The Delay function causes the calling process to wait a until
the specified number of system ticks has occurred. The Delay
function avoids the necessity of programmed delay loops. It allows
other processes to use the CPU resource while the calling process
waits.

The length of the system tick varies among installations. A
typical system tick is 60Hz (16.67 milliseconds). In Europe, it is
likely to be 50Hz (20 milliseconds). The exact length of the system
tick can be obtained by reading the TICKSPERSEC value from the
System Data Area (see Function 154).

There is up to one tick of uncertainty in the exact amount of
time delayed. This is due to the Delay function being called
asynchronously from the actual time base. The Delay function is
quaranteed to delay the calling process at least the number of ticks
specified. However, when the calling process is rescheduled to run,
it might wai t quite a bi t longer if there are higher pr ior i ty
processes waiting to run. The Delay function is used primarily by
programs that need to wait specific amounts of time for I/O events
to occur. Under these condi tions, the call ing process usually has a
very high priority level. If a process with a high priority calls
the Delay function, the actual delay is typically within a system
tick of the amount of time wanted.

All Information Presented Here is proprietary to Digital Research

177

Concurrent CP/M-86 Programmer's Guide 5 Function 142

FUNCTION 142: DISPATCH

Call System Dispatcher

Entry Parameters:
Register CL: 08EH

The Dispatch function forces a reschedule of processes that are
waiting to run. Normally, dispatches occur at every interrupt, and
whenever a process releases a system resource. Dispatching also
occur s whenever a process needs a system resource that is not
currently available. For a CPU-bound process, dispatch occurs at
the next system tick.

The Concurrent CP/M-86 Dispatcher is priority driven, with
round-robin scheduling of equivalent-priority processes. When a
process calls the Dispatch function, it is rescheduled, so that
processes with higher or equivalent priorities are given the CPU
before the calling process obtains it again.

All Information Presented Here is Proprietary to Digital Research

178

Concurrent CP/M-86 Programmer's Guide 5 Function 143

FUNCTION 143: TERMINATE

Terminate Calling Process

Entry Parameters:
Register CL: 08FH

DL: Terminate Code

The Terminate function terminates the calling process. If the
terminate code is not OFFH, the function can only terminate a USER
process. If the terminate code is OFFH, the function can terminate
the calling process even though the process's SYSTEM flag is on.
Function 143 cannot terminate a process with the KEEP flag on. If
the termination is successful, the function releases the mutual
exclusion queues owned by the process. It also releases all memory
segments owned by the process, and returns the Process Descriptor to
the PD table. Because memory can be owned by more than one process,
the system does not recover memory segments system until every
process owning the memory segment has ei ther terminated or
explicitly releases the memory segment with the Memory Free call.

Function 143 does not return any results to the calling
process. If the function returns to the calling process then the
Terminate call failed for one of two reasons. Either the process
has the KEEP flag on, or it has the SYSTEM flag on, and the
terminate code is not OFFH.

All Information Presented Here is Proprietary to Digital Research

179

Concurrent CP/M-86 Programmer's Guide 5 Function 144

FUNCTION 144: CREATE PROCESS

Create a Process

Entry Parameters:
Register CL: 090H

ox: PD Address - Offset
OS: PO Address - Segment

Return Values:
Register AX: 0 on success

OffffH on failure
BX: Same as AX
CX: Error Code

The Create Process function allows a process to create a
subprocess wi thin its own memory area. The child process shares all
memory owned by the calling process at the time of the Create
prpcess call. If the Process Descriptor (PD) is outside of the
operating system area, the system copies it into a PO from the
internal PD Table. The function returns an error code if there are
no more unused PDs in the table.

The User Data Area (UDA) can be anywhere in memory but is
required to bi on a paragraph boundary. The only time the system
copies the PD is if it is not within 64k of the System Data Area.

Process Descr iptors as well as Queue Descr iptors and Queue
Buffers are required to be within the System Data Area because they
are linked together on various system lists or are used by more than
one process. Because of this, they cannot be in the Transient
Process Area (TPA) where they cannot be protected.

More than one process can be created by a single Create Process
call if the LINK field of the PD is non-zero. In this case, it is
assumed to point to another PD wi thin the same Data Segment. After
it creates the first process, the function checks the Process
Descriptors LINK field. Using this linked list of PDs, a single
Create Process call can create multiple processes.

Note: The function does not check the validity of the PO addresses
passed by the calling process. An invalid PO address can cause
Concurrent CP/M-86 to crash if no hardware memory protection is
available on the system.

All Information Presented Here is Proprietary to Digital Research

180

Concurrent CP/M-86 Programmer's Guide 5 Function 144

LINK

00

08

10

18

20

28

THREAD

STAT

LINK
f

THREAD /STAT /PRIOR FLAG

NAME

UDA IDISK / USERI RESERVED MEM

RESERVED PARENT

CNS I RESERVED I LISTI RESERVED

RESERVED

Figure 5-19. Process Descriptor (PD) Format

link field for insertion on current system list. If this
field's initial value is nonzero, it is assumed to point
to another PD. This field is used to create more than
one process with a single Create Process call.

link field for insertion on Thread List. Initialized to
be zero (0).
Current Process activity. Initialized to be zero (0).

00 RUN The process is ready to run. The STAT
field is always in this state when a
process is examining its own Process
Descriptor. The PD is on the Ready List.
The currently running process is always at
the head of Ready List.

01 POLL The process is polling a device. The PD
is on the Poll List.

02 DELAY The process is delaying for a specified
number of system ticks. The PD is on the
Delay List.

06 DQ The process is waiting to read a message
from a system queue that is empty. The PD
is on the DQ List whose root is in the
Queue Descr iptor of the system queue
involved.

07 NQ The process is waiting to write a message
to a system queue whose buffer is full.
The PD is on the NQ List whose root is in
the Queue Descriptor of the system queue
involved.

08 FLAGWAIT The process is waiting for a system
flag to be set. The PD is in the flag
table entry of the flag it is waiting for.

09 CIOWAIT The process is waiting to attach to a
character I/O device (console or list)

All Information Presented Here is Proprietary to Digital Research

181

Concurrent CP/M-86 Programmer's Guide 5 Function 144

PRIOR

FLAG

while another process owns it. The PD is
on CQUEUE list whose root is in the
Character Control Block of the device in
question.

current priority. Process scheduling is done based on
this field. Typical user programs run at a priority of
200. 0 is the best priority, and 255 is the worst
prio'rity. The following is a list of priority
assignments used by most Concurrent CP/M-86 systems.
User processes priorities should be from 200-254.

2 -
32 -
64 -

191 -

201 -

1 Initialization Process
31 Interrupt Handlers
63 System Processes

189 Undefined
197 Undefined
198 Terminal Message Process
199 Undefined
200 Default Priority For Transients
254 User Processes
255 Idle Process

Bit field of flags determining run-time characteristics of
a process. Initialize as needed. All undocumented flags
are used internally or are reserved for future use.

OOlH
SYS System Process. Has pr iviledged access to

various features of Concurrent CP/M-86.
This process can only be terminated if the
termination code is OFFH. This process
can access restr icted system queues. This
flag is turned off if the calling process
is not a system process.

002H
KEEP This process cannot be terminated. This

flag is turned off if the calling process
is not a system process.

004H
KERNEL This process resides within the operating

system. This flag is turned off if the PD
is not within the operating system.

OlOH
TABLE This PD is copied into the PD from the PD

table. When this process terminates, the
PD is recycled into the PD table.

020H
RESOURCE This process is currently waiting for a

resource. Set to zero at initialization.
040H
RAW This process is doing RAW Character I/O

through its default console. Reset
depending on console calls.

080H

All Information Presented Here is Proprietary to Digital Research

182

Concurrent CP/M-86 Programmer's Guide 5 Function 144

NAME

UDA

DISK

USER

MEM

PARENT

CNS

LIST

CTRL-C An attempt was made to terminate this
process through some external event but
could not be terminated because of the
TEMPKEEP flag. Initialized to zero. Used
internally.

Process Name. Eight bytes, all eight bits of each byte is
used for matching process names.

Segment address of this processes User Data Area.
Initialized to be the number of paragraphs from the
beginning of the calling processes' Data Segment. The
User Data Area contains process information that is not
needed between processes. It also contains the System
Stack of each process. See UDA description below.

Current default disk

Current default user number

Root of linked list of Memory Segment Descr iptors that are
owned by this process. Initialized to zero.

Process that created this process. The Create Process
function sets this value at process creation. The parent
field is set to zero if the parent terminates before the
child.

Current default console's Character Control Block.
Initialized to be the default console number.

Current default list device's Character Control Block.
Initialized to be the default list device number.

RESERVED Reserved for inter nal use.
initialized to zero (0).

These fields must be

All Information Presented Here is Proprietary to Digital Research

183

Concurrent CP/M-86 Programmer's Guide 5 Function 144

OOh

08h

lOh

l8h

20h

28h

30h

38h

40h

48h

50h

58h

60h

RESERVED DMA

AX

D1

RESERVED

1NT 0

1NT 2

1NT 4

CS

1NT 224 .

OFFSET RESERVED

RESERVED

RESERVED

RESERVED

BX CX DX

S1 BP RESERVED

SP RESERVED

INT 1

1NT 3

RESERVED

DS ES SS

INT 225

RESERVED

68h 6Fh

USE R S Y S T E M S T A C K

F8h FFh

Figure 5-20. User Data Area (UDA)

The length of the UDA is 256 bytes, and it must begin on
a paragraph boundary.

DMA OFFS The initial DMA offset for the new process. The segment
address of the DMA is assumed to be the same as the
initial Data Segment (see DS below).

AX,BX,CX,DX,
D1,SI,BP The initial register values for the new process. These

are typically set to zero.

SP The initial stack pointer for the new process. The stack
pointer is relative to the initial Stack Segment (see SS
Below). The initial stack of the new process must be
initialized with the offset of the first instruction to
be executed by the new process. The word that the stack

All Information Presented Here is Proprietary to Digital Research

184

Concurrent CP/M-86 Programmer's Guide 5 Function 144

INT 0,
INT 2,
INT 4

CS,DS,
ES,SS

pointer points to is the initial instruction pointer.
Two words must follow the initial IP, which is filled in
wi th the ini tial Code Segment (see CS Below) and the
initial flags. The initial flags are set to 0200H, which
means that interrupts are on, and all other flags are
off. Concurrent CP/M-86 starts a new process by
executing an Interrupt Return instruction with the
initial stack.

Note: this stack area is distinct from the User System
Stack at the end of the UDA.

Low Memory

stack area

SS SP-> IP

0 (CS)

0 (Flags)

Figure 5-21. Stack Initialization Area

INT 1,
INT 3,

The initial interrupt vectors for the first five interrupt
types can be set by filling in these fields. The first
word of each field is the Instruction Pointer (IP), and
the second word is the Code Segment (CS) of the interrupt
rou tine that services these inter rupts. Those fields
tha t ar e zero are initial i zed to be the same as the
calling processes interrupt vectors. These fields are
typically initialized to be O.

The initial segment addresses for the new process are taken
from these fields. Those fields that are zero are
initialized to be the same as the calling process' Data
Segment.

INT 224,
INT 225 Interrupts 224 and 225 are used to communicate with

Concurrent CP/M-86 by typical programs. These interrupt
vectors are initialized to be the same as the calling
process if these values are zero. The ability to change
these values allows a run-time system to intercept
Concur rent CP /M-86 calls that its children make. The
suggested protocol is to keep INT 225 pointing to the

All Information Presented Here is Proprietary to Digital Research

185

Concurrent CP/M-86 Programmer's Guide 5 Function 144

Concurrent CP/M-86 entry point and changing INT 224 to
point to an internal routine. When a child process does
an INT 224, the internal routine can fil ter calls to
Concurrent CP/M-86 using INT 225 for the actual
Concurrent CP/M-86 call.

RESERVED These fields are used internally and must be intialized to
zero.

USER SYSTEM This is the stack area used by the process when it
STACK is in the operating system. The SP variable in the UDA

should not point to this area.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

186

Concurrent CP/M-86 Programmer's Guide 5 Function 145

FUNCTION 145: SET PRIORITY

Set the Priority of the Calling Process

Entry Parameters:
Register CL: 09lH

DL: Priority

Return Values:
CX: Error Code

The Set Priority function sets the priority of the calling
process to the specified value. This function is useful in
situations where a process needs to have·a high priority during an
initialization phase, but afterwards can run at a lower priority.

The best or highest priority is OOH while the worst or lowest
priority is OFFH. Transient processes are initialized to run at C8H
(200 decimal) by the Send CLI function.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

187

Concurrent CP/M-86 Programmer's Guide 5 Function 146

FUNCTION 146: ATTACH CONSOLE

Attach default virtual console
to calling process

Entry Parameters:
Register CL: 092H

Return Values:
CX: Error Code

The Attach Console function attaches the default virtual
console to the calling process. If the virtual console is already
owned by the calling process or if it is not owned by another
process, the Attach Console function immediately returns with
ownership established and verified. If another process owns the
virtual console, the calling process waits until the virtual console
becomes available.

When the virtual console becomes free through a Detach Console
call, the process that is waiting for the virtual console with the
highest priority obtains it. The Attach Console function is called
internally by all console I/O functions except the Raw Console
functions.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

188

Concurrent CP/M-86 Programmer's Guide 5 Function 147

FUNCTION 147: DETACH CONSOLE

Detach default virtual console
from calling process

Entry Parameters:
Register CL: 093H

Return Values:
CX: Error Code

The Detach Console function detaches the default virtual
console from the calling process. If the default virtual console is
not attached to the calling process, no action is taken. If other
processes are waiting to attach to the virtual console, the process
with the highest priority attaches the virtual console. If there is
more than one process with the same priority waiting for the virtual
console, it is given on a first-come first-serve basis.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

189

Concurrent CP/M-86 Programmer's Guide

FUNCTION 148: SET CONSOLE

Set the calling process's
default virtual console

Entry Parameters:
Register CL: 094H

Return Values:

DL: Console Number

AX: 0 if successful
OffffH on failure

BX: Same as AX
CX: Error Code

5 Function 148

The Set Console function changes the calling process' default
virtual console to the value specified. If the virtual console
number specified is not one supported by this particular
implementation of Concurrent CP/M-86, the function returns an error
code, and does not change the default vir tual console. I f the
virtual console number is valid, the function detaches the previous
default virtual console from the calling process. The Set Console
function then attaches the new virtual console to the calling
process through the Attach Console function. If another process
already owns the new virtual console, the calling process waits
until the virtual console becomes available.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

190

Concurrent CP/M-86 Programmer's Guide 5 Function 149

CNS

MATCH

PD

NAME

FUNCTION 149: ASSIGN CONSOLE

Assign default virtual console
to another process

Entry Parameters:
Register CL: 095H

DX: ACB Address - Offset
DS: ACB Address - Segment

Return Values:
CX: Error Code

Figure 5-22. Assign Control Block (ACB)

virtual console to assign

Boolean; if OFFH, the process being assigned the virtual
console must have the CNS as its default console for a
successful Assign. IF OH, no check is made.

Process ID of the process being assigned the virtual
console. If this field is zero, a search is made of the
Thread list for a process whose name is NAME. This field
must be either zero or a valid Process ID. If this value
is not a valid PD, an error occurs.

8-byte process name to search for. An error occurs if a
process by this name does not exist.

The Assign Console function directly assigns the specified
virtual console to a specified process. This function overrides the
normal mechanism of the Attach and Detach functions. The function
returns an error code if a process besides the calling process owns
the virtual console. The function ignores other processes waiting

All Information Presented Here is Proprietary to Digital Research

191

Concurrent CP/M-86 Programmer's Guide 5 Function 149

to attach to the specified virtual console, and they continue to
wait until the current owner either calls the Detach function or
terminates.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

192

Concurrent CP/M-86 Programmer's Guide 5 Function 150

FUNCTION 150: COMMAND LINE INTERPRETER

Interpret and Execute Command Line

Entry Parameters:
Register CL: 096H

DX: CLBUF Address - Offset
DS: CLBUF Address - Segment

Return Values:
AX: 0 if successful

OffffH on error
CX: Error Code

° 1 2 3 128 129

° I*OOH :)) ~: _ , *_O_OH.--J

Figure 5-23. CLI Command Line Buffer

*OOH Must be set to zero for internal use.

COMMAND 1-128 ASCII characters terminated with a null character.

The Command Line Interpreter function obtains an ASCII command
from the Command Line Buffer (CLBUF) and then executes it. If the
calling process is attached to its default virtual console, the CLI
function assigns the virtual console to either the newly created
process, or to the Resident System Process (RSP) that acts on the
command. The calling process must reattach to its default virtual
console before accessing it.

The CLI function calls the Parse Filename function to parse the
command line. If an error occurs in the Parse Filename function,
the CLI function returns to the calling process with the error code
set to the same code that the Parse Filename function returned.

If there is no disk specification for the command, the CLI
function tries to open a system queue with the same name as the
command. If the open operation is successful, and the queue is an
RSP-type queue, the CLI function looks for a process with the same

All Information Presented Here is Proprietary to Digital Research

193

Concurrent CP/M-86 Programmer's Guide 5 Function 150

name and assigns the calling process' defaul t virtual console to the
RSP. The CLI function then wr i tes the command tail to the RSP
queue. If the queue is full, the function returns an error code to
the calling process. If for any reason the RSP cannot be found, the
CLI assumes the command is on disk and continues.

The CLI function opens a file with the filename being the
command and the filetype being CMD. If the command has an explicit
disk specification, and the Open File function fails, the CLI
function returns an error code to the calling process. If there is
no disk specification wi th the command, the CLI function at tempts to
open the command file on the default system disk. If the Open File
function succeeds, the CLI function checks the file to verify the
SYSTEM attribute is on. This search order is discussed in section
2.4 of the Concurrent CP/M-86 Operating System User's Guide. If
this second Open File function fails or if the DIR attribute is on,
the CLI function returns an error code to the calling process.

Once the CLI function succeeds in opening the command file, it
calls the Program Load function. The Program Load function finds,
and then loads the file into an appropriate memory space. If the
Program Load function encounters any errors, the CLI function
returns to the calling process with the error code set by the Load
function.

A successful load operation establishes the command file in
memory with its Base Page partially initialized. The CLI function
then continues parsing the command tail to set up the Base Page
values from 050h to OFFH.

The CLI function initializes an unused Process Descriptor from
the internal PD table, a UDA, and a 96-byte stack area. The UDA and
stack are dynamically allocated from memory. The CLI function then
calls the Create Process function. If the CLI function encounters
an error in any of these steps, it releases all memory segments
allocated for the new command, as well as the Process Descriptor,
and then returns with the appropriate error code set.

Once the Create Process function returns successfully, the CLI
function assigns the calling process' default virtual console to the
new process and then returns.

The calling process should set its priority to less than the
TMP (198) if it wants to attach to the virtual console after the
crea ted process releases it. Once the calling process has
successfully reattached, it should set its priority back to 200.

See Appendix M for a list of error codes returned in cx.

All Information Presented Here is Proprietary to Digital Research

194

Concurrent CP/M-86 Programmer's Guide 6 Function 151

FUNCTION 151: CALL RPL

Call a function in a
Resident Procedure Library

Entry Parameters:
Register CL: 097H

OX: CPB Address - Offset
OS: CPB Address - Segment

Return Values:
AX: OlH if RPL not found

RPL return parameter
BX: same as AX
ES: RPL return segment if addr
CX: Error Code

NAME

PA~
Figure 5-24. Call Parameter Block (CPB)

NAME Name of Resident Procedure, eight ASCII characters

PARAM Parameter to send to the Resident Procedure

The Call RPL function permits a process to call a function in
an optional Resident Procedure Library (RPL).

The Call RPL function opens a system queue by the name
specified. I f the Open Queue function succeeds, Function 151 checks
the queue to verify it is an RPL-type queue. If either the Open
Queue call fails or if it is not an RPL-type queue, Function 151
returns to the calling process wi~h an error code. The Call RPL
function reads a message from the queue that contains the address of
the specified function. It then places the PARAM field of the CPB
in register OX, and the calling processes Data Segment address in
register OS. The Call RPL function does a Far Call to the address
it obtains from the queue message. Upon return from the RPL, the

All Information Presented Here is Proprietary to Digital Research

195

Concurrent CP/M-86 Programmer's Guide 6 Function 151

function copies the BX register to the AX register and then returns
to the calling process.

Note: The Call RPL function does not wr i te the address of the
Resident Procedure back to the queue. The Resident Procedure itself
must do this. If the Resident Procedure is to be reentrant, it must
wr i te the message into the queue upon entry. If it is to be
serially reusable, the procedure must write the message just before
returning.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

196

Concurrent CP/M-86 Programmer's Guide 5 Function 152

FILENAME

FCBADR

FUNCTION 152: PARSE FILENAME

Parse an ASCII string and initialize a FCB

Entry Parameters:
Register CL: 098H

Return Values:

DX: PFCB Address - Offset
DS: PFCB Address - Segment

AX: OFFFFH if error
o if next item to parse is

end of line
address of next item to

parse
BX: Same as AX
CX: Error Code

Figure 5-25. Parse Filename Control Block (PFCB)

Offset of an ASCII file specification to parse. The
offset is relative to the same Data Segment as the
PFCB.

Offset of a File Control Block to initialize. The
offset is relative to the same Data Segment as the
PFCB.

The Parse Filename function parses an ASCII file specification
(FILENAME) and prepares a File Control Block (FCB). The calling
process passes the address of a data structure called the Parse
Filename Control Block, (PFCB) in register DX. The PFCB contains
the address of the ASCII filename string followed by the address of
the target FCB.

All Information Presented Here is Proprietary to Digital Research

197

Concurrent CP/M-86 Programmer-s Guide 5 Function 152

Function 152 assumes the file specification to be in the
following form:

{D:}{FILENAME}{ .TYP}{;PASSWORD}

where those items enclosed in curly brackets are optional.

The Parse Filename function parses the first file specification
it finds in the input string. The function first eliminates leading
blanks and tabs. The function then assumes the file specification
ends on the first delimiter it hits that is out of context with the
specific field it is parsing. For instance, if it finds a colon (:)
and it is not the second character of the file specification, the
colon del imi ts the whole file spec if ica tion. The function
recognizes the following characters as delimiters:

space
tab
return
null

(semicolon) - except before password field
(equal)

((less than)
) (greater than)

(dot) - except after filename and before type
(colon) - except before filename and after drive

, (comma)
[(left square bracket)
] (right square bracket)
/ (slant)
$ (dollar)

If the function reaches a non-graphic character (in the range 1
through 31), not listed above, it treats it as an error.

The Parse Filename function initializes the ,specified FCB as
follows:

byte 0

byte 1-8

byte 9-11

The drive field is set to the specified drive. If
the drive is not specified, the default value is
used. O=default, l=A, 2=B, etc.

The name is set to the specif ied filename. All
letters are converted to upper-case. If the name is
not eight characters long, the remaining bytes in
the filename field are padded with blanks. If the
filename has an asterick (*), all remaining bytes in
the filename field are filled in with question marks
(?). The function returns an error if the filename
is more than eight bytes long.

The type is set to the specified filetype. If no

All Information Presented Here is Proprietary to Digital Research

198

Concurrent CP/M-86 Programmer's Guide 5 Function 152

byte 12-15

byte 16-23

byte 24-25

byte 26

type is specified, the type field is initialized to
blanks. All letters are converted to upper-case.
I f the type is not three characters long, the
remaining bytes in the filetype field are padded
with blanks. If an asterick occurs, all remaining
bytes are filled in with question marks. The
function returns an error if the type field is more
than 3 bytes long.

Filled in with zeros.

The password field is set to the specif ied password.
If no password is specified, it is initialized to
blanks. If the password is not eight characters
long, remaining bytes are padded with blanks. All
letters are converted to upper-case. The function
returns an error if the password field is more than
eight bytes long.

The offset of the beginning of the password in the
FILENAME string is placed here. If no password is
specified, this field is set to zero. Note that the
password indicated by this field is in the FILENAME
string, which is not modified by the Parse Filename
function. If there are any lower-case characters in
the password, they must be converted to upper-case
to ensure the password matches the password field of
the FCB.

The number of characters in the specified password is
pl aced here. I f no password is specif ied, this
field is set to zero.

If the function encounters an error, it sets all fields that
have not been parsed to their defaul t values, and then returns
OFFFFh in register AX indicating the error.

On a successful parse, the Parse Filename function checks the
next item in the FILENAME string. It skips over trailing blanks and
tabs and looks at the next character. If the character is a null
(OAH) or carriage return (ODH) , it returns a 0 indicating the end of
the FILENAME string. If the next character is a delimiter, it
returns the address of the delimiter. If the next character is not
a delimiter, it returns the address of the delimiting blank or tab.

If the first nonblank or nontab character in the FILENAME
string is a null or carriage return, the Parse Filename function
returns a 0 indicating the end of string, and initializes the FCB to
its default values.

I f the Parse Filename function is to be used to par se a
subsequent filename in the FILENAME string, the returned address
should be advanced over the delimiter before placing it in the PFCB.
See Appendix M for a list of error codes returned in ex.

All Information Presented Here is Proprietary to Digital Research

199

Concurrent CP/M-86 Programmer's Guide 5 Function 153

FUNCTION 153: GET CONSOLE

Return the Calling Process'
Default Virtual Console

Entry Parameters:
Register CL: 099H

Return Values:
AL: Console number
BL: Same as AL

The Get Console function returns the calling process' default
virtual console number.

All Information Presented Here is Proprietary to Digital Research

200

Concurrent CP/M-86 Programmer's Guide 5 Function 154

FUNCTION 154: GET SYSDAT ADDRESS

Return the address of the System Data Area

Entry Parameters:
Register CL: 09AH

Return Values:
AX: SYSDAT Address - Offset
BX: Same as AX
ES: SYSDAT Address - Segment

The Get SYSDAT function returns the address of the System Data
Area. The System Data Area contains all Process Descriptors, Queue
Descriptors, the roots of system lists, and other internal data that
Concurrent CP/M-86 uses. See Figure 5-26, System Data Area, below.

All Information Presented Here is Proprietary to Digital Research

201

Concurrent CP/M-86 Programmer's Guide 5 Function 154

OOH

08H

10H

18H

20H

28H

30H

38H

40H

48H

SOH

S8H

60H

68H

70H

78H

SOH

XIOS ENTRY

XIOS INIT

DISPATCHER

RESERVED

RESERVED
_1

RESERVED
1

RESERVED

RESERVED

XIOS ENTRY I XIOS INIT
-'-

RESERVED

DISPATCHER PDISP

MPMSEG RESERVED ENDSEG RESER NCNS
VED

--'-

NLST RESER N SYS MMP RESER DAY
VED FLAGS DISK VED FILE

TEMP TICKS
DISK /SEC ESERVED

RESERVED MFL PUL QUL

RESERVED

RLR DLR DRL PLR

RESERVED THRDRT QLR MAL

VERSION VERNUM MPMVERNUM TaD DAY

TaD
HR -

TaD TaD INCON NLST IRESER RESERVED
MIN SEC DEV DEV VED -

Figure 5-26. System Data Area

Double-word address of the Extended I/O System entry
point for intermodule communication. All XIOS
function calls go through this entry point.

Double-word address of the Extended I/O System
Initialization entry point. System hardware
initialization takes place as calls go through this
entry point.

Double-word address of the Dispatcher entry point that
handles interrupt returns. Executing a Far Jump to

All Information Presented Here is Proprietary to Digital Research

202

Concurrent CP/M-86 Programmer's Guide 5 Function 154

PDISP

MPMSEG

ENDSEG

NCNS

NLST

NFLAGS

SYSDISK

MMP

DAY FILE

TEMP DISK

TICKS/SEC

MFL

PUL

QUL

RLR

DLR

this address is equivalent to executing an Interrupt
Return instruction. The Dispatcher routine causes a
dispatch to occur and then executes an Interrupt
Return. All registers are preserved and one level of
stack is used. This function should be used as a
exit point by all interrupt routines that use the
Flag Set function.

Double-word address of the Dispatcher entry point that
causes a dispatch to occur with all registers
preserved. Once the dispatch is done, a RETF
instruction is executed. Executing a JMPF PDISP is
equivalent to executing a RETF instruction. This
function should be executed whenever a resource is
released that might be wanted by a waiting process.

Starting paragraph of the operating system area. This
is also the Code Segment of the Supervisor Module.

First paragraph beyond the end of the operating system
area.

Number of system consoles.

Number of list devices.

Number of system flags.

Default system diskette. The CLI looks on this
diskette if it cannot open the command file on the
user's current default diskette.

Maximum memory allowed per process.

Day F i 1 e 0 p t ion. I f t his val u e i s 0 F F H, log
information is displayed on system consoles at each
command.

Defaul t temporary diskette. Programs that create
temporary files should use this diskette.

The number of system ticks per second.

Link list root of free memory partitions.

Link list root of unused Process Descriptors.

Link list root of unused Queue Descriptors.

Ready List Root. Linked list of PDs that are ready to
run.

Delay List Root. Link list of PDs that are delaying
for a specified number of system ticks.

All Information Presented Here is Proprietary to Digital Research

203

Concurrent CP/M-86 Programmer's Guide 5 Function 154

DRL

PLR

THRDRT

QLR

MAL

VERSION

VERNUM

MPMVERNUM

TOD DAY

TOD HR

TOD MIN

TOD SEC

NCONDEV

NLSTDEV

ReSERVED

Dispatcher Ready List. Temporary holding place for
PDs that have just been made ready to run.

Poll List Root. Linked list of PDs that are polling
on devices.

Thread List Root. Linked list of all current PDs on
the system. The list is threaded though the THREAD
field of the PD instead of the LINK field.

Queue List Root. Linked list of all System QDs.

Link list of active memory allocation units. A MAU
is created from one or more memory partitions.

Address relative to MPMSEG of version string.

MP/M-86 version number (Function 12).

MP/M-86 version number (Function 163).

Time of Day. Number of days since 1 Jan, 1978.

Time of Day. Hour of the day.

Time of Day. Minute of the hour.

Time of Day. Second of the minute.

Number of XIOS consoles.

Number of XIOS list devices.

Reserved for internal use.

All Information Presented Here is Proprietary to Digital Research

204

Concurrent CP/M-86 Programmer's Guide 5 Function 155

DAY

HOUR

FUNCTION 155: GET DATE AND TIME

Get Current System Time and Day

Entry Parameters:
Register CL: 09BH

DX: TOD Address - Offset
DS: TOD Address - Segment

Return Values:
TOD filled in

I HOUR MIN SEC

Figure 5-27. Time Of Day Structure (TOO)

The number of days since 1 January 1978.
stored as a 16-bit integer.

The day is

The current hour of the current day. The hour is
represented as a 24 hour clock in 2 binary coded decimal
(BCD) digits.

MIN The current minute of the current hour. The minute is
stored as 2 BCD digits.

SEC The current second of the current minute. The second is
stored as 2 BCD digits.

The Get Date And Time function returns the current encoded date
and time in the TOD structure passed by the calling process.

All Information Presented Here is Proprietary to Digital Research

205

Concurrent CP/M-86 programmer's Guide 5 Function 156

FUNCTION 156: Return PD Address

Return the Address of the calling process'
Process Descriptor

Entry Parameters:
Register CL: 09CH

Return Values:
AX: PD Address - Offset
BX: Same as AX
ES: PD Address - Segment

The Return Process Descriptor Address function obtains the
address of the calling process' Process Descriptor. The format of
the Process Descriptor is described in the Create Process function
description.

All Information Presented Here is Proprietary to Digital Research

206

Concurrent CP/M-86 Programmer's Guide 5 Function 157

PD

TERM

*OOH

FUNCTION 157: ABORT SPECIFIED PROCESS

Terminate a Process by Name or PD Address

Entry Parameters:
Register CL: 09DH

Return Values:

DX: APB Address - Offset
DS: APB Address - Segment

AL: 0 if successful
OFFH on failure

BL: Same as AL
CX: Error Code

Figure 5-28. Abort Parameter Block (APB)

Process Descr iptor offset of the process to be terminated.
If this field is zero, a match is attempted with the NAME
and CNS fields to find the process. I f this field is
non-zero, the NAME and CNS fields are ignored.

Termination Code. This field corresponds to the
termination code of Function 143. If the low-order byte
is OFFH, Function 143 can abort a specified system
process; otherwise a system process is not affected. A
system process is identified by the SYS flag in the
Process Descriptor's FLAG field.

This field is reserved for future use and must be set to
zero.

CNS Default console of process to be aborted. If the PD field
is 0, the Abort Specified Process function scans the
Thread List for a PD with the same NAME and CNS fields as
specified in the APB. Function 157 only aborts the first

All Information Presented Here is Proprietary to Digital Research

207

Concurrent CP/M-86 Programmer's Guide 5 Function 157

NAME

process that it finds. Subsequent calls must be made to
abort all processes with the same NAME and eNS.

Name of the process to be aborted. As in the eNS field,
the NAME field is used to find the process to be aborted.
This is only used if the PO field is D.

The Abort Specified Process function permi ts a process to
terminate another specified process. The calling process passes the
address of a data structure called an Abort Parameter Block,
initialized as described above.

If the Process Descriptor address is known, it can be filled in
and the process name and console can be omitted. Otherwise, the
Process Descriptor address field should be a DOH and the process
name and console must be specified. In either case, the calling
process must supply the termination code, which is the same
parameter passed to the Terminate Process function.

See Appendix M for a list of error codes returned in ex.

All Information Presented Here is Proprietary to Digital Research

208

Concurrent CP/M-86 Programmer's Guide 5 Function 158

FUNCTION 158: ATTACH LIST

Attach to the Calling Process'
Default List Device

Entry Parameters:
Register CL: 09EH

Return Values:
CX: Error Code

The Attach List function attaches the default list device of
the calling process. If the list device is already attached to some
other process, the calling process relinquishes the CPU until the
other process detaches from the list device. When the list device
becomes free and the calling process is the highest priority process
waiting for the list device, the attach operation takes place.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

209

Concurrent CP/M-86 Programmer's Guide 5 Function 159

FUNCTION 159: DETACH LIST

Detach the Calling Process'
Default List Device

Entry Parameters:
Register CL: 09FH

Return Values:
CX: Error Code

The Detach List function detaches the default list device of
the calling process. If the list device is not currently attached,
no action takes place.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

210

Concurrent CP/M-86 Programmer·s Guide 5 Function 160

FUNCTION 160: SET LIST

Set the Calling Process· Default List Device

Entry Parameters:
Register CL: OAOH

DL: List Device

Return Values:
CX: Error Code

The Set List function detaches the 1 ist device cu r r e ntly
attached to the calling process and then attaches the specified list
device. If the list device to be attached is already attached to
another process, the calling process relinquishes the CPU until the
other process detaches from the list device. When the list device
becomes free and the calling process is the highest priority process
waiting for the device, the attach operation takes place.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

211

Concurrent CP/M-86 Programmer's Guide 5 Function 161

FUNCTION 161: CONDITIONAL ATTACH LIST

Conditionally Attach to the
Default List Device

Entry Parameters:
Register CL: OAIH

Return Values:
AX: 0 if attach 'OK'

OFFFFH on failure
BX: Same as AX
CX: Error Code

The Condi tional Attach List function attaches the defaul t list
device of the calling process only if the list device is currently
available.

If the list device is currently attached to another process,
the function returns a value of OFFH indicating that the list device
could not be attached. The function returns a value of OOH to
indicate that either the list device is already attached to the
process, or that it was unattached and a successful attach operation
was made.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

212

Concurrent CP/M-86 Programmer's Guide 5 Function 162

FUNCTION 162: CONDITIONAL ATTACH CONSOLE

Conditionally Attach to the
Default Virtual Console

Entry Parameters:
Register CL: OA2H

Return Values:
AX: 0 if attach 'OK'

OFFFFH on failure
BX: Same as AX
CX: Error Code

The Conditional Attach Console function attaches the default
virtual console of the calling process only if the virtual console
is currently unattached.

If the virtual console is currently attached to another
process, the function returns a value of OFFH indicating that the
virtual console could not be attached. The function returns a value
of 0 to indicate that either the virtual console is already attached
to the process or that it was unattached and a successful attach
operation was made.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

213

Concurrent CP/M-86 Programmer's Guide 5 Function 163

FUNCTION 163: RETURN CCP/M VERSION NUMBER

Return the version of current
Concurrent CP/M-86 system

Entry Parameters:
Register CL: OA3H

Return Values:
AX: Version Number (01410H)
BX: Same as AX
CX: Error Code

The Return CCP/M Version Number function provides information
that allows version independent programming. The function returns a
two-byte value, with AH set to 014H for Concurrent CP/M-86, and AL
set to the Concurrent CP/M-86 version level. A value of 01410H
indicates Concurrent CP/M-86 1.0.

See Appendix M for a list of error codes returned in CX.

All Information Presented Here is Proprietary to Digital Research

214

Concurrent CP/M-86 Programmer's Guide 5 Function 164

FUNCTION 164: GET LIST NUMBER

Return the Calling Process'
Default List Device

Entry Parameters:
Register CL: OA4H

Return Values:
AL: List Device Number
BL: Same as AL

The Get List Number functiQn returns the default list device
number of the calling process.

All Information Presented Here is Proprietary to Digital Research

215

Concurrent CP/M-86 Programmer's Guide End of Section 5

All Information Presented Here is Proprietary to Digital Research

216

Section 6
Introduction to ASM-86

6.1 Assembler Operation

ASM-86 processes an 8086 assembly language source file in three
passes and produces three output files, including an 8086 machine
language file in hexadecimal format. This object file can be in
either Intel or Digital Research hex format, which are described in
Appendix C. ASM-86 is shipped in two forms: an 8086 cross­
assembler designed to run under CP/M on the Intel 8080 or the Zilog
Z80® based system, and a 8086 assembler designed to run under
Concurrent CP/M-86 on an Intel 8086 or 8088 based system. ASM-86
typically produces three output files from one input file as shown
in Figure 6-1, below.

> I LIST FILE

SOURCE >8 > HEX FILE

<filename>.A86
<filename>.LST
<filename>.H86

<filename>.SYM

Figure 6-1.

contains source
contains listing

> I SYMBOL FILE

contains assembled program in
hexadecimal format
contains all user-defined symbols

ASM-86 Source and Object Files

Figure 6-1 also 1 ists ASM-86 f iletypes. ASM-86 accepts a
source file with any three-letter extension, but if the filetype is
omitted from the starting command, ASM-86 looks for the specified
filename with the filetype .A86 in the directory. If the file has a
filetype other than .A86 or has no filetype at all, ASM-86 returns
an error message.

The other .filetypes listed in Figure 6-1 identify ASM-86 output
files. The .LST file contains the assembly language listing with
any error messages. The .H86 file contains the machine language

All Information Presented Here is Proprietary to Digital Research

217

Concurrent CP/M-S6 Programmer's Guide 6.1 Assembler Operation

program in either Digital Research or Intel hexadecimal format. The
.SYM file lists any user-defined symbols.

Start ASM-S6 by entering a command of the following form:

. ASMS6 <source filename> [$ <optional parameters>

Section 6.2 explains the optional parameters. Specify the source
file in the following form:

where

[<optional drive>:] <filename> [.<optional filetype>]

<optional drive>

<filename>

<optional filetype>

is a valid drive letter specifying
the source file's location. Not
needed if source is on current
drive.

is a valid CP/M filename of 7 to S
characters.

is a valid filetype of 1 to 3
characters, usually .AS6.

Some examples of valid ASM-S6 commands are:

OA>ASIl06 B:BIOSOO

OA>ASIl06 BIOS08.1\.06 $FI M HB PB SB

OA>n.sn06 D:TEST

Once started, ASM-S6 responds with the message:

CP/M 8086 ASSEMBLER VER x.x

where x.x is the ASM-S6 version number. ASM-S6 then attempts to
open the source file. If the file does not exist on the designated
drive or does not have the correct filetype as described above, the
assembler displays the message:

NO FILE

If an invalid parameter is given in the optional parameter list,
ASM-S6 displays the message:

PARAMETER ERROR

After opening the source, the assembler creates the output
files. Usually these are placed on the current disk drive, but they
can be redirected by optional parameters or by a drive specification
in the the source filename. In the latter case, ASM-S6 directs the
output files to the drive specified in the source filename.

All Information Presented Here is Proprietary to Digital Research

21S

Concurrent CP/M-86 Programmer's Guide 6.1 Assembler Operation

During assembly, ASM-86 aborts if an error condition, such as
disk full or symbol table overflow, is detected. When ASM-86
detects an error in the source file, it places an error message line
in the listing file in front of the line containing the error. Each
error message has a number and gives a brief explanation of the
error. Appendix H lists ASM-86 error messages. When the assembly
is complete, ASM-86 displays the message:

END OF ASSEMBLY. NUMBER OF ERRORS: n

6.2 Optional Run-time Parameters

The dollar-sign character, $, flags an optional string of run­
time parameters. A parameter is a single letter followed by a
single letter device name specification. The parameters are shown
in Table 6-1, below.

Table 6-1. Run-time Parameter Summary

Parameter I To Specify I Valid Arguments

A
H
P
S
F

source file device
hex output file device
list file device
symbol file device
format of hex output file

A, B, C, ... P
A P, X, Y, Z
A ... P, X, Y, Z
A ... P, X, Y, Z
I, D

All parameters are optional and can be entered in the command
line in any order. Enter the dollar sign only once at the beginning
of the parameter string. Spaces can separate parameters but are not
required. No space is permitted, however, between a parameter and
its device name.

A device name must follow parameters A, H, P, and S. The
devices are labeled:

A, B, C, ••• P or X, Y, Z

Device names A through P respectively specify disk drives A
through P. X specifies the user console (CON:), Y specifies the
line printer (LST:), and Z suppresses output (NUL:).

If output is directed to the console, it can be temporarily
stopped at any time by typing a CTRL-S. Restart the output by
typing a second CTRL-S or any other character.

The F parameter requires either an I or a D argument. When I
is specified, ASM-86 produces an object file in Intel hex format. A
D argument requests Digi tal Research hex format. Appendix C details
these formats. If the F parameter is not entered in the command
line, ASM-86 produces Digital Research hex format.

All Information Presented Here is Proprietary to Digital Research

219

Concurrent CP/M-86 Programmer's Guide 6.2 Run-time Parameters

Table 6-2. Run-time Parameter Examples

Command Line

ASH86 10

ASM86 IO.ASM $ AD SZ

ASM86 IO $ PY SX

ASH86 10 $ FD

ASM86 10 $ FI

6.3 Aborting ASM-86

I Result

Assemble file IO.A86, produce IO.H86,
IO.LST and IO.SYM, all on the default
drive.

Assemble file IO.ASM on device D,
produce IO.LST and IO.H86, no symbol
file.

Assemble file IO.A86, produce IO.H86,
route listing directly to printer,
output symbols on console.

Produce Digital Research hex format.

Produce Intel hex format.

You can abort ASM-86 execution at any time by pressing any key
on the console keyboard. When a key is pressed, ASM-86 responds
with the question:

USER BREAK. OK(Y/N)?

A Y response aborts the assembly and returns to the operating
system. An N response continues the assembly.

End of Section 6

All Information Presented Here is Proprietary to Digital Research

220

Section 7
Elements of ASM-86 Assembly Language

7.1 ASM-86 Character Set

ASM-86 recognizes a subset of the ASCII character set. The
valid characters are the alphanumerics, special characters, and
nonprinting characters shown below:

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z
a b c d e f g h i j k 1 m n 0 p q r s t u v w x y z
a 1 2 3 4 5 6 7 8 9

+ - * / = ! , : @ $

space, tab, carriage return, and line-feed

Lower-case letters are treated as upper-case except within
strings. Only alphanumerics, special characters, and spaces can
appear in a string.

7.2 Tokens and Separators

A token is the smallest meaningful unit of an ASM-86 source
program, much as a word is the smallest meaningful unit of an
English composition. Adjacent tokens are commonly separated by a
blank char acter or space. Any sequence of spaces can appear
wherever a single space is allowed. ASM-86 recognizes horizontal
tabs as separators and interprets them as spaces. Tabs are expanded
to spaces in the list file. The tab stops are at each eighth
column.

7.3 Delimiters

Delimiters mark the end of a token and add special meaning to
the instruction; separators merely mark the end of a token. When a
delimiter is present, separators need not be used. However, using
separators after delimiters can make your program easier to read.

Table 7-1 describes ASM-86 separators and delimiters. Some
delimiters are also operators and are explained in greater detail in
Section 7.6.

All Information Presented Here is Proprietary to Digital Research

221

Concurrent CP/M-86 Programmer's Guide 7.3 Delimiters

Character

20H

09H

CR

LF

$

+

*

/

@

Table 7-1. Separators and Delimiters

I Name

space

tab

carriage return

line-feed

semicolon

colon

period

dollar sign

plus

minus

asterisk

slash

at sign

underscore

exclamation
point

apostrophe

I Use

separator

legal in source files,
expanded in list files

terminate source lines

legal after CR; if in
source lines, it is inter­
preted as a space

start comment field

identifies a label,
used in segment override
specification

forms variables from
numbers

notation for present value
of location pointer

arithmetic operator for
addition

arithmetic operator for
subtraction

arithmetic operator for
multiplication

arithmetic operator for
division

legal in identifiers

legal in identifiers

logically terminates a
statement, allowing
multiple statements on a
single source line

delimits string constants

All Information Presented Here is Proprietary to Digital Research

222

Concurrent CP/M-86 Programmer's Guide 7.4 Constants

7.4 Constants

A constant is a value known at assembly time that does not
change while the assembled program is executed. A constant can be
either an integer or a character string.

7.4.1 Numeric Constants

A numeric constant is a 16-bit value in one of several bases.
The base, called the radix of the constant, is denoted by a trailing
radix indicator. The radix indicators are shown in Table 7-2,
below.

Table 7-2. Radix Indicators for Constants

Indicator I Constant Type I Base

B binary 2
a octal 8
0 octal 8
D decimal 10
H hexadecimal 16

ASM-86 assumes that any numeric constant not terminated with a
radix indicator is a decimal constant. Radix indicators can be
upper- or lower-case.

A constant is thus a sequence of digits followed by an optional
radix indicator, where the digits are in the range for the radix.
Binary constants must be composed of Os and ls. Octal digits range
from 0 to 7; decimal digits range from 0 to 9. Hexadecimal
constants contain decimal digits and the hexadecimal digits A (100),
B (110), C (12D), D (13D), E (14D), and F (15D). Note that the
leading character of a hexadecimal constant must be either a decimal
digit, so that ASM-86 cannot confuse a hex constant with an
identifier, or a leading 0, to prevent this problem. The following
are valid numeric constants:

1234
1234H
33770

1234D
OFFEH
OFE3H

7.4.2 Character Strings

1100B
33770
l234d

1111000011110000B
137720
Offffh

ASM-86 treats an ASCII character string delimited by
apostrophes as a str ing constant. All instructions accept only one­
or two-character constants as valid arguments. Instructions treat a
one-character string as a 8-bit number. A two-character string is
treated as a l6-bit number with the value of the second character in
the low-order byte, and the value of the first character in the
high-order byte.

All Information Presented Here is Proprietary to Digital Research

223

Concurrent CP/M-86 Programmer's Guide 7.4 Constants

The numeric value of a character is its ASCII code. ASM-86
does not translate case in character strings, so both upper- and
lower-case letters can be used. Note that only alphanumer ics,
special characters, and spaces are allowed in strings.

A DB assembler directive is the only ASM-86 statement that can
contain str ings longer than two characters. The str ing cannot
exceed 255 bytes. Include any apostrophe you want printed in the
string by entering it twice. ASM-86 interprets the two keystrokes
" as a single apostrophe. Table 7-3 shows valid strings and how
they appear after processing:

Table 7-3. String Constant Examples

, a' -> a
'Ab' 'Cd' -> Ab'Cd

, I like CP/M' -> I like CP/M
'" , ->

'ONLY UPPER CASE' -> ONLY UPPER CASE
'only lower case' -> only lower case

7.5 Identifiers

Identifiers are character sequences that have symbolic meaning
to the assembler. All identifiers in ASM-86 must obey the following
rules:

• The first character must be alphabetic (A, ... Z, a, ... z).

• Any subsequent characters can be ei ther alphabetical or a
numeral (0,1, •••.• 9). ASM-86 ignores the special characters @
and _, but they are still legal. For example, a_b becomes abo

• Identifiers can be of any length up to the limi t of the
physical line.

There are two types of identifiers. The first are keywords
that have predefined meanings to the assembler. The second are
symbols that are defined by the user. The following are all valid
identifiers:

NOLIST
WORD
AH
Third street
How are you today
varTable@nurnber@1234567890

All Information Presented Here is Proprietary to Digital Research

224

Concurrent CP/M-86 Programmer's Guide 7.5 Identifiers

7.5.1 Keywords

A keyword is an identifier that has a predefined meaning to the
assembler. Keywords are reserved; the user cannot define an
identifier identical to a keyword. For a complete list of keywords,
see Appendix D.

ASM- 8 6 r ecog n i zes five types of keywords: instructions,
directives, operators, registers, and predefined numbers. 8086
instruction mnemonic keywords and the actions they ini tiate are
de fined in Section 10. Directives are discussed in Section 8.
Section 7.6 defines operators. Table 7-4 lists the ASM-86 keywords
that identify 8086 registers.

Three keywords, BYTE, WORD, and DWORD, are predefined numbers.
The values of these numbers are 1, 2, and 4 , respectively. In
addition, a type attribute is associated with each of these numbers.
The keyword's type at tr ibu te is equal to the keyword's numer ic
value.

Table 7-4. Register Keywords

Register I I Numer ic I Symbol Size Value Meaning

AH 1 byte 100 B Accumulator-High-Byte
BH 1 byte 111 B Base-Register-High-Byte
CH 1 byte 101 B Count-Register-High-Byte
DH 1 byte 110 B Data-Register-High-Byte

AL 1 byte 000 B Accumulator-Low-Byte
BL 1 byte 011 B Base-Register-Low-Byte
CL 1 byte 001 B Count-Register-Low-Byte
DL 1 byte 010 B Data-Register-Low-Byte

AX 2 bytes 000 B Accumulator (full word)
BX 2 bytes 011 B Base-Register ..
CX 2 bytes 001 B Count-Register ..
DX 2 bytes 010 B Data-Register ..

BP 2 bytes 101 B Base Pointer
SP 2 bytes 100 B Stack Pointer

SI 2 bytes 110 B Source Index
DI 2 bytes 111 B Destination Index

CS 2 bytes 01 B Code-Segment-Register
DS 2 bytes 11 B Data-Segment-Register
SS 2 bytes 10 B Stack-Segment-Register
ES 2 bytes 00 B Extra-Segment-Register

All Information Presented Here is Proprietary to Digital Research

225

Concurrent CP/M-86 Programmer's Guide 7.5 Identifiers

7.5.2 Symbols and Their Attributes

A symbol is a user-defined identifier that has attr ibutes
specifying the kind of information the symbol represents. Symbols
fall into three categories:

• variables
• labels
• numbers

Variables identify data stored at a particular location in
memory. All variables have the following three attributes:

• Segment - tells which segment was being assembled when the
variable was defined.

• Offset - tells how many bytes there are between the beginning
of the segment and the location of this variable.

• Type - tells how many bytes of data are manipulated when this
variable is referenced.

A segment can be a Code Segment, a Data Segment, a Stack
Segment, or an Extra Segment, depending on its contents and the
register that contains its starting address. (See Section 8.2.) A
segment can start at any address divisible by 16. ASM-86 uses this
boundary value as the segment portion of the variable's definition.

The offset of a variable can be any number between 0 and OFFFFH
or 65535D. A variable must have one of the following Type
attributes:

• BYTE
• WORD
• DWORD

BYTE specifies a one-byte variable; WORD, a two-byte variable,
and DWORD, a four-byte variable. The DB, DW, and DD directives
def i ne var iables as these three types. (See Section 8.) For
example, a variable is defined when it appears as the name for a
storage directive:

VARIABLE DB 0

A variable can also be defined as the name for an EQU directive
referencing another label, as shown below:

VARIABLE EQU ANOTHER VARIABLE

Labels identify locations in memory that contain instruction
statements. They are referenced with jumps or calls. All labels
have two attributes, segment and offset.

All Information Presented Here is Proprietary to Digital Research

226

Concurrent CP/M-86 Programmer's Guide 7.S Identifiers

Label segment and offset attributes are essentially the same as
variable segment and offset attributes. A label is defined when it
precedes an instruction. A colon : separates the label from
instruction; for example:

LABEL: ADD AX,BX

A label can also appear as the name for an EQU directive
referencing another label. For example:

LABEL EQU ANOTHER LABEL

Numbers can also be defined as symbols. A number symbol is
treated as though you had explicitly coded the number it represents.
For example,

Number five EQU 5
MOV AL,Number_five

is equivalent to:

MOV AL,5

Section 7.6 describes operators and their effects on numbers
and number symbols.

7.6 Operators

ASM-86 operators fall into the following categories:
arithmetic, logical, and relational operators, segment override,
var i able manipulators, and creators. Table 7-5 defines ASM-86
operators. In this table, a and b represent two elements of the
expression. The validity column defines the type of operands the
operator can manipulate, using the or bar character I to separate
alternatives.

Table 7-5. ASM-86 Operators

Syntax I Result I Validity

Logical Operators

a XOR b bi t-by-bi t logical EXCLUSIVE a, b = number
OR of a and b.

a OR b bit-by-bit logical OR of a a, b = number
and b.

a AND b bit-by-bit logical AND of a a, b = number
and b.

NOT a logical inverse of a: all Os a = l6-bit
become Is, Is become Os. number

All Information Presented Here is Proprietary to Digital Research

227

Concurrent CP/M-86 Programmer's Guide 7.6 Operators

Table 7-5. (continued)

Syntax I Result J Validity

Relational Operators

a EQ b returns OFFFFH if a = b, a, b =
otherwise o. unsigned number

a LT b returns OFFFFH if a < b, a, b =
otherwise o. unsigned number

a LE b returns OFFFFH if a <= b, a, b =
otherwise o. unsigned number

a GT b returns OFFFFH if a > b, a, b =
otherwise o. unsigned number

a GE b returns OFFFFH if a >= b a, b =
otherwise o. unsigned number

a NE b returns OFFFFH if a <> b, a, b =
otherwise o. unsigned number

Arithmetic Operators

a + b arithmetic sum of a and b. a = variable,
label or number
b = number

a - b arithmetic difference of a = variable,
a and b. label or number

b = number

a * b does unsigned multiplication a, b = number
ofa and b.

a / b does unsigned division of a a, b = number
and b.

a MOD b returns remainder of a / b. a, b = number

a SHL b returns the value that a, b = number
results from shifting a to
left by an amount b.

a SHR b returns the value that a, b = number
results from shifting a to
the right by an amount b.

+ a gives a. a = number

- a gives 0 - a. a = number

All Information Presented Here is Proprietary to Digital Research

228

Concurrent CP/M-86 Programmer's Guide

Syntax

<seg reg>:
<addr exp>

I
Table 7-5. (continued)

Result

Segment Override

overrides assembler's choice
of segment register.

I

7.6 Operators

validity

<seg reg> =
CS, OS, SS
or ES

Variable Manipulators, Creators

SEG a

OFFSET a

TYPE a

LENGTH a

LAST a

a PTR b

.a

$

creates a number the value
of which is the segment value
of the variable or label a.

creates a number the value
of which is the offset value
of the variable or label a.

creates a number. If the
variable a is of type BYTE,
WORD or DWORD, the value of
the number is 1, 2, or 4,
respectively.

creates a number the value
of which is the length
attribute of the variable a.
The length attribute is the
number of bytes associated
with the variable.

if LENGTH a > 0, then LAST a
= LENGTH a - 1; if LENGTH a =
0, then LAST a = O.

creates virtual variable or
label with type of a and
attributes of b

creates variable with an
offset attribute of a.
Segment attribute is current
segment.

creates label with offset
equal to current value of
location counter; segment
attribute is current
segment.

a = label I
variable

a = label I
variable

a = label I
variable

a = label I
variable

a = label I
variable

a = BYTE I
WORD, I DWORD
b = <addr exp>

a = number

no argument

All Information Presented Here is Proprietary to Digital Research

229

Concurrent CP/M-86 Programmer's Guide 7.6 Operators

7.6.1 Operator Examples

Log ical operators accept only numbers as operands.
perform the boolean logic operations AND, OR, XOR, and NOT.
example:

They
For

OOFC
0080

0000 B180
0002 B003

MASK EQU
SIGNBIT EQU

HOV
MOV

OFCH
80H
CL,r.1ASK AND SIGNBIT
AL,NOT MASK

Relational operators treat all operands as unsigned numbers.
The relational operators are EQ (equal), LT (less than), LE (less
than or equal), GT (greater than), GE (greater than or equal), and
NE (not equal). Each operator compares two operands and returns all
ones (OFFFFH) if the specified relation is true and all zeros if it
is not. For example:

OOOA
0019

0004 B8FFFF
0007 B80000

LIMITI
LIMIT2

EQU
EQU

MOV
MOV

10
25

AX,LIMITI LT LIMIT2
AX,LIMITI GT LIMIT2

Addition and subtraction operators compute the arithmetic sum
and difference of two operands. The first operand can be a
variable, label, or number, but the second operand must be a number.
When a number is added to a variable or label, the result is a
variable or label the offset of which is the numeric value of the
second operand plus the offset of the first operand. Subtraction
from a variable or label returns a variable or label the offset of
which is that of first operand decremented by the number specified
in the second operand. For example:

0002 COUNT EQU 2
0005 DISPI EQU 5

OOOA FF FLAG DB OFFH

OOOB 2EAOOBOO MOV AL,FLAG+l
OOOF 2E8AOEOFOO MOV CL,FLAG+DISPI
0014 B303 MOV BL,DISPI-COUNT

The multiplication and division operators *, I, MOD, SHL, and
SHR accept only numbers as operands. * and / treat all operators as
unsigned numbers. For example:

0016 BE5500
0019 B310

0050
OOIB B8AOOO

MOV
MOV

BUFFERSIZE
MOV

SI,256/3
BL,64/4
EQU 80
AX,BUFFERSIZE * 2

All Information Presented Here is Proprietary to Digital Research

230

Concurrent CP/M-86 Programmer's Guide 7.6 Operators

Unary operators accept both signed and unsigned operators, as
shown below:

OOlE B123
0020 B007
0022 B2F4

MOV
MOV
MOV

CL,+35
AL,2--5
DL,-12

When manipulating var iables, the assembler dec ides wh ich
segment register to use. You can override the assembler's choice by
specifying a different register with the segment override operator.
The syntax for the override operator is:

<segment register> : <address expression>

where the <segment register> is CS, OS, SS, or ES. For example:

0024 368B472D
0028 268BOE5BOO

MOV
MOV

AX,SS:WORDBUFFER[BX]
CX,ES:ARRAY

A variable manipulator creates a number equal to one attribute
of its variable operand. SEG extracts the variable's segment value;
OFFSET, its offset value; TYPE, its type value (1, 2, or 4); and
LENGTH, the number of bytes associated with the variable. LAST
compares the variable's LENGTH with 0 and, if greater, then
dec r ements LENGTH by one. I f LENGTH equals 0, LAST leaves it
unchanged. Var iable manipula tor s accept only var iables as
operators. For example:

0020 000000000000 WORDBUFFER
0033 0102030405 BUFFER

0038 B80500
003B B80400
003E B80100
0041 B80200

MOV
MOV
MOV
HOV

OW
DB

0,0,0
1,2,3,4,5

AX,LENGTH BUFFER
AX,LAST BUFFER
AX,TYPE BUFFER
AX,TYPE WORDBUFFER

The PTR operator creates a virtual variable or label valid only
during the execution of the instruction. It makes no changes to
either of its operands. The temporary symbol has the same Type
attribute as the left operator, and all other attributes of the
right operator as shown below.

0044 C60705
0047 8A07
0049 FF04

MOV
MOV
INC

BYTE PTR [BX], 5
AL ,BYTE PTR [BX]
WORD PTR [S I 1

The period operator • creates a variable in the current data
segment. The new variable has a segment attribute equal to the
current data segment and an offset attribute equal to its operand.
Its operand must be a number. For example:

004B AIOOOO
004E 268BIE0040

MOV
MOV

AX, .0
BX, ES: .4000H

All Information Presented Here is Proprietary to Digital Research

231

Concurrent CP/M-86 Programmer's Guide 7.6 Operators

The dollar-sign operator $ creates a label wi th an offset
attribute equal to the current value of the location counter. The
label segment value is the same as the current Code Segment. This
operator takes no operand. For example:

7.6.2

0053 E9FDFF
0056 EBFE
0058 E9FD2F

Operator Precedence

JMP
JMPS
Jr-1p

$
$
$+3000H

Expressions combine variables, labels, or numbers with
operators. ASM-86 allows several kinds of expressions. (See
Section 7.7.) This section defines the order in which operations
are executed should more than one operator appear in an expression.

ASM-86 evaluates expressions left to right, but operators with
higher precedence are evaluated before operators with lower
precedence. When two operators have equal precedence, the leftmost
is evaluated first. Table 7-6 presents ASM-86 operators in order of
increasing precedence.

Parentheses can override rules of precedence. The part of an
expression enclosed in parentheses is evaluated first. If
parentheses are nested, the innermost expressions are evaluated
fir st. Only five levels of nested parentheses are legal. For
example:

15/3 + 18/9 = 5 + 2 = 7
15/ (3 + 18/9) 15/ (3 + 2) 15/5 3

Table 7-6. Precedence of Operations in ASM-86

Order I Operator Type I Operators

1 Logical XOR, OR

2 Logical AND

3 Logical NOT

4 Relational EQ, LT, LE, GT,
GE, NE

5 Addition/subtraction +, -

6 Multiplication/division * /, MOD, SHL,
SHR

7 Unary +, -

All Information Presented Here is Proprietary to Digital Research

232

Concurrent CP/M-86 Programmer's Guide 7.6 Operators

F
r:

g

er -

I 10

11

Table 7-6.

Operator Type

Segment override

Variable manipulators,
creators

Parentheses/brackets

Period and Dollar

7.7 Expressions

(continued)

Operators

<segment override>:

SEG, OFFSET, PTR,
TYPE, LENGTH, LAST

) ,

., $

ASM-86 allows address, numeric, and bracketed expressions. An
address expression evaluates to a memory address and has three
components:

o a segment value
• an offset value
o a type

Both variables and labels are address expressions. An address
expression is not a number, but its components are numbers. Numbers
can be combined with operators such as PTR to make an address
expression.

A numer ic expression evaluates to a number. I t does not
contain any variables or labels, only numbers and operands.

Bracketed expressions specify base- and index-addressing modes.
The base registers are BX and BP, and the index registers are 01 and
SI. A bracketed expression can consist of a base register, an index
register, or both a base register and an index register. Use the +
operator between a base register and an index register to specify
both base- and index-register addressing. For example:

MOV variable[bx] ,0
HOV AX, [BX+DI]
MOV AX, [SI]

7.8 Statements

Just as tokens in this assembly language correspond to words in
English, statements are analogous to sentences. A statement tells
ASM-86 what action to perform. Statements can be instructions or
directives. Instructions are translated by the assembler into 8086
machine language instructions. Directives are not translated into
machine code but instead direct the assembler to perform certain
clerical functions.

All Information Presented Here is Proprietary to Digital Research

233

Concurrent CP/M-86 Programmer's Guide 7.8 Statements

Terminate each assembly language statement wi th a carriage
return (CR) and line-feed (LF), or with an exclamation point !.
ASM-86 treats these as an end-of-line. Multiple assembly language
statements can be written on the same physical line if separated by
exclamation points.

The ASM-86 instruction set is defined in Section 9. The syntax
for an instruction statement is

[label:] [prefix] mnemonic [operand(s)] [icomment]

where the fields are defined as:

label

prefix

mnemonic

operand(s)

comment

A symbol followed by : defines a label at the current
value of the location counter in the current segment.
This field is optional.

Certain machine instructions such as LOCK and REP can
prefix other instructions. This field is optional.

A symbol defined as a machine instruction, either by the
assembler or by an EQU directive. This field is optional
unless preceded by a prefix instruction. If it is
omitted, no operands can be present, although the other
fields can appear. ASM-86 mnemonics are defined in
Section 10.

An instruction mnemonic can require
represent operands to the instruction.
have zero, one, or two operands.

other symbols to
Instructions can

Any semicolon i appearing outside a character str ing
begins a comment. A comment ends with a carriage return.
Comments improve the readability of programs. This field
is optional.

ASM-86 directives are descr ibed in Section 8. The syntax for a
directive statement is

[name] directive operand (s) [i comment]

where the fields are defined as:

name
Unlike the label field of an instruction, the name field
of a directive is never terminated with a colon.
Directive names are legal only for DB, DW, DD, RS, and
EQU. For DB, DW, DD, and RS, the name is optional; for
EQU, it is required.

All Information Presented Here is Proprietary to Digital Research

234

Concurrent CP/M-86 Programmer's Guide 7.8 Statements

directive

operand(s)

comment

One of the directive keywords defined in Section 8.

Analogous to the operands for instruction mnemonics.
Some directives, such as DB, DW, and DD, allow any
operand; others have special requirements.

Exactly as defined for instruction statements.

End of Section 7

All Information Presented Here is proprietary to Digital Research

235

Concurrent CP/M-86 Programmer's Guide End of Section 7

All Information Presented Here is Proprietary to Digital Research

236

8.1 Introduction

Section 8
Assembler Directives

Directive statements cause ASM-S6 to perform housekeeping
functions such as assigning portions of code to logical segments,
requesting conditional assembly, defining data items, and specifying
listing file format. Gener alsyntax for directive statements
appears in Section 7.S.

I n the sections that follow, the spec if ic syntax for each
directive statement is given under the heading and before the
explanation. These syntax lines use special symbols to represent
poss i ble ar guments and other al terna ti ves. Square brackets []
enclose optional arguments. Angle brackets <> enclose descriptions
of user-supplied arguments. Do not include these symbols when
coding a directive.

8.2 Segment Start Directives

At run-time, every SOS6 memory reference must have a l6-bit
segment base value and a l6-bit offset value. These are combined to
produce the 20-bit effective address needed by the CPU to physically
address the location. The l6-bit segment base value or boundary is
contained in one of the segment registers CS, OS, SS, or ES. The
offset value gives the offset of the memory reference from the
segment boundary. A l6-byte physical segment is the smallest
relocatable unit of memory.

ASM-86 predefines four logical segments--the Code Segment, Data
Segment, Stack Segment, and Extra Segment. These are addressed by
the CS, OS, SS, and ES registers, respectively. Future versions of
ASM-86 will support additional segments such as multiple data or
code segments. All ASM-86 statements must be assigned to one of the
four currently supported segments so that they can be referenced by
the CPU. A segment directive statement, CSEG, DSEG, SSEG, or ESEG,
specifies that the statements following it belong to a specific
segment. The statements are then addressed by the corresponding
segment register. ASM-86 assigns statements to the specified segment
until it encounters another segment directive.

Instruction statements must be assigned to the Code Segment.
Directive statements can be assigned to any segment. ASM-S6 uses
these assignments to change from one segment register to another.
For example, when an instruction accesses a memory variable, ASM-86
must know which segment contains the variable so it can generate a
segment override prefix byte if necessary.

All Information Presented Here is Proprietary to Digital Research

237

Concurrent CP/M-86 programmer's Guide

8.2.1 The CSEG Directive

CSEG
CSEG
CSEG

<numeric expression>

$

8.2 Directives

This directive tells the assembler that the following
statements belong in the Code Segment. All instruction statements
must be assigned to the Code Segment. All directive statements are
legal in the Code Segment.

Use the first form when the location of the segment is known at
assembly time; the code generated is not relocatable. Use the
second form when the segment location is not known at assembly time;
the code generated is relocatable. Use the third form to continue
the Code Segment after it has been interrupted by a DSEG, SSEG, or
ESEG directive. The continuing 'Code Segment sta~ts with the same
at tr ibu tes, such as location and instruction pointer, as the
previous Code Segment.

8.2.2 The DSEG Directive

DSEG
DSEG
DSEG

<numeric expression>

$

This directive specifies that the following statements belong
to the Data Segment. The Data Segment contains the data allocation
directives DB, DW, DO, and RS, but all other directive statements
are also legal. Instruction statements are illegal in the Data
Segment.

Use the first form when the location of the segment is known at
assembly time; the code generated is not relocatable. Use the
second form when the segment location is not known at assembly time;
the code generated is relocatable. Use the third form to continue
the Data Segment after it has been interrupted by a CSEG, SSEG, or
ESEG directive. The continuing Data Segment starts with the same
attributes as the previous Data Segment.

8.2.3 The SSEG Directive

SSEG
SSEG
SSEG

<numeric expression>

$

The SSEG directive indicates the beginning of source lines for
the Stack Segment. Use the Stack Segment for all stack operations.
All directive statements are legal in the Stack Segment, but
instruction statements are illegal.

All Information Presented Here is Proprietary to Digital Research

238

Concurrent CP/M-86 Programmer's Guide 8.2 Directives

Use the first form when the location of the segment is known at
assembly time; the code generated is not relocatable. Use the
second form when the segment location is not known at assembly time;
the code generated is relocatable. Use the third form to continue
the Stack Segment after it has been interrupted by a CSEG, DSEG, or
ESEG directive. The continuing Stack Segment starts with the same
attributes as the previous Stack Segment.

8.2.4 The ESEG Directive

ESEG
ESEG
ESEG

<numeric expression>

$

This directive initiates the Extra Segment. Instruction
s ta temen ts ar e not leg al in this segment, but all directive
statements are legal.

Use the first form when the location of the segment is known at
assembly time; the code generated is not relocatable. Use the
second form when the segment location is not known at assembly time;
the code generated is relocatable. Use the third form to continue
the Extra Segment after it has been interrupted by a DSEG, SSEG, or
CSEG directive. The continuing Extra Segment starts with the same
attributes as the previous Extra Segment.

8.3 The ORG Directive

ORG <numeric expression>

The ORG directive sets the offset of the location counter in
the cur rent segment to the value spec if ied in the numer ic
expression. Define all elements of the expression before the ORG
directive because forward references can be ambiguous.

In most segments, an ORG directive is unnecessary. If no ORG
is included before the first instruction or data byte in a segment,
assembly begins at location zero relative to the beginning of the
segment. A segment can have any number of ORG directives.

8.4 The IF and ENDIF Directives

IF <numeric expression>
< source line 1 >
< source line 2 >

< source line n >
ENDIF

All Information Presented Here is Proprietary to Digital Research

239

Concurrent CP/M-86 Programmer's Guide 8.4 IF and ENDIF

The IF and ENDIF directives allow a group of source lines to be
included or excluded from the assembly. Use conditional directives
to assemble several different versions of a single source program.

When the assembler finds an IF directive, it evaluates the
numer ic expression following the IF keyword. If the expression
evaluates to a nonzero value, then <source line 1> through <source
line n> are assembled. If the expression evaluates to zero, then
all lines are listed but not assembled. All elements in the numeric
expression must be defined before they appear in the IF directive.
IF directives can be nested to five Ivels.

8.5 The INCLUDE Directive

INCLUDE <filename>

This directive includes another ASM-86 file in the source text.
For example:

INCLUDE EQUALS.A86

Use INCLUDE when the source program resides in several
different files. INCLUDE directives can not be nested; a source
file called by an INCLUDE directive can not contain another INCLUDE
statement. If <filename> does not contain a file type, the filetype
is assumed to be .A86. If no drive name is specified with
<filename>, ASM-86 assumes the drive containing the source file.

8.6 The END Directive

END

An END directive marks the end of a source file. Any
subsequent lines are ignored by the assembler. END is optional. If
not present, ASM-86 processes the source until it finds an End-Of­
File character (lAH).

8.7 The EQU Directive

symbol
symbol
symbol
symbol

EQU
EQU
EQU
EQU

<numeric expression>
<address expression>
<register>
<instruction mnemonic>

The EQU (equate) directive assigns values and attributes to
user-defined symbols. The required symbol name can not terminate
with a colon. The symbol cannot be redefined by a subsequent EQU or
another directive. Any elements used in numeric or address
expressions must be defined before the EQU directive appears.

All Information Presented Here is Proprietary to Digital Research

240

Concurrent CP/M-B6 Programmer's Guide B.7 The EQU Directive

The first form assigns a numeric value to the symbol. The
second assigns a memory address. The third form assigns a new name
to an BOB6 register. The fourth form defines a new instruction
(sub)set. The following are examples of these four forms:

0005
0033
0001

0050 BBC3

FIVE
NEXT
COUNTER
MOVW

EQU
EQU
EQU
EQU

MOWV

2*2+1
BUFFER
CX
MOV

AX,BX

8.8 The DB Directive

[symbol] DB <numeric expression> [,<numeric expression> .•]
[symbol] DB <string constant> [,<string constant> •••]

The DB directive defines initialized storage areas in byte
format. Numeric expressions are evaluated to B-bit values and
sequentially placed in the hex output file. String constants are
placed in the output file according to the rules defined in Section
7.4.2. A DB directive is the only ASM-B6 statement that accepts a
string constant longer than two bytes. There is no translation from
lower - to upper-case wi thin str i ngs. Mul tiple expressions or
constants, separated by commas, can be added to the definition, but
cannot exceed the physical line length.

Use an optional symbol to reference the defined data area
throughout the program. The symbol has four attributes: the
segment and offset attributes determine the symbol's memory
reference, the type attribute specifies single bytes, and length
tells the number of bytes (allocation units) reserved.

The following statements show DB directives with symbols:

005F 43502F4D2073 TEXT DB 'CP/M system' ,0
797374656000

006B El AA DB ' a' + BOH
006C 0102030405 X DB 1,2,3,4,5

0071 B90COO MOV CX,LENGTH TEXT

All Information Presented Here is Proprietary to Digital Research

241

Concurrent CP/M-86 Programmer's Guide 8.9 The DW Directive

8.9 The DW Directive

[symbol] DW <numeric expression> [,<numeric expression> •.]
[symbol] DW <string constant> [,<string constant> ...]

The DW directive ini tializes two-byte words of storage. Str ing
constants longer than two characters are illegal. Otherwise, DW
uses the same procedure to initialize storage as DB. The following
are examples of DW statements:

0074 0000 CNTR DW
0076 63C166C169Cl JMPTAB DW
007C 010002000300 DW

040005000600

8.10 The DD Directive

o
SUBR1,SUBR2,SUBR3
1,2,3,4,5,6

[symbol] DD <address expression> [,<address expression> ••]

The DD directive initializes four bytes of storage. The offset
attribute of the address expression is stored in the two lower
bytes; the segment attribute is stored in the two upper bytes.
Otherwise, DD follows the same procedure as DB. For example:

1234 CSEG

0000 6CC134126FCl LONG JMPTAB
3412

0008 72C1341275Cl
3412

8.11 The RS Directive

[symbol] RS <numeric expression>

1234H

DO ROUTl,ROUT2

DO ROUT3,ROUT4

The RS directive allocates storage in memory but does not
initialize it. The numeric expression gives the number of bytes to
be reserved. An RS statement does not give a byte attribute to the
optional symbol. For example:

0010
0060
4060

BUF RS
RS
RS

80
4000H
1

All Information Presented Here is Proprietary to Digital Research

242

Concurrent CP/M-86 Programmer's Guide 8.12 The RB Directive

8.12 The RB Directive

[symbol] RB <numeric expression>

The RB directive allocates byte storage in memory without any
initialization. This directive is identical to the RS directive
except that it gives the byte attribute.

8.13 The RW Directive

[symbol] RW <numeric expression>

The RW directive allocates two-byte word storage in memory but
does not initialize it. The numeric expression gives the number of
words to be reserved. For example:

4061
4161
C16l

BUFF

8.14 The TITLE Directive

TITLE <string constant>

RW
RW
RW

128
4000H
1

ASM-86 prints the string constant defined by a TITLE directive
statement at the top of each printout page in the listing file. The
title character string should not exceed 30 characters. For
example:

TITLE 'CP/M monitor'

8.15 The PAGESIZE Directive

PAGESIZE <numeric expression>

The PAGESIZE directive defines the number of lines to be
included on each printout page. The default page size is 66.

8.16 The PAGEWIDTH Directive

PAGEWIDTH <numeric expression>

The PAGEWIDTH directive defines the number of columns printed
across the page when the listing file is output. The default page
width is 120 unless the listing is routed directly to the terminal;
then the default page width is 78.

All Information Presented Here is Proprietary to Digital Research

243

Concurrent CP/M-86 Programmer's Guide 8.17 The EJECT Directive

8.17 The EJECT Directive

EJECT

The EJECT directive performs a page eject during printout. The
EJECT directive itself is printed on the first line of the next
page.

8.18 The SIMFORM Directive

SIMFORM

The SIMFORM directive replaces a form-feed (FF) character in
the print file with the correct number of line-feeds (LF). Use this
directive when printing out on a printer unable to interpret the
form-feed character.

8.19 The NOLIST and LIST Directives

NOLIST
LIST

The NOLIST directive blocks the printout of the following
lines. Restart the listing with a LIST directive.

B.20 The IFLIST and NOIFLIST Directives

IFLIST
NOIFLIST

The NOIFLIST directive suppresses the printout of the contents
of IF-ENDIF blocks that are not assembled. The IFLIST directive
resumes printout of IF-ENDIF blocks.

End of Section 8

All Information Presented Here is Proprietary to Digital Research

244

Section 9
The ASM-86 Instruction Set

9.1 Introduction

The ASM-86 instruction set includes all 8086 machine
instructions. The general syntax for instruction statements is
given in Section 7.7. The following sections define the specific
syntax and required operand types for each instruction, without
reference to labels or comments. The instruction definitions are
presented in tables for easy reference. For a more detailed
descr iption of each instruction, see Intel's MeS-86 Assembly
Language Reference Manual. For descriptions of the instruction bit
patterns and operations, see Intel's MeS-86 User's Manual.

The instruction-definition tables present ASM-86 instruction
statements as combinations of mnemonics and operands. A mnemonic is
a symbolic representation for an instruction; its operands are its
required parameters. Instructions can take zero, one, or two
operands. When two operands are specified, the left operand is the
instruction's destination operand, and the two operands are
separated by a comma.

The instruction-definition tables organize ASM-86
instructions into functional groups. In each table, the
instructions are listed alphabetically. Table 9-1 shows the symbols
used in the instruction-definition tables to define operand types.

Symbol I
numb

numbS

acc

reg

reg16

segreg

Table 9-1. Operand Type Symbols

Operand Type

any ADDRESS expression

any ADDRESS expression which evaluates to
an 8-bit number

accumulator register, AX or AL

any general purpose register, not segment
register

a 16-bi t general purpose register, not
segment register

any segment register: es, DS, SS, or ES

All Information Presented Here is Proprietary to Digital Research

245

Concurrent CP/M-86 Programmer's Guide 9.1 Introduction

Symbol

mem

simpmem

meml reg

meml reg16

label

lab8

I
Table 9-1. (continued)

Operand Type

any ADDRESS expression, with or without
base- and/or index-addressing modes, such
as:

variable
variable+3
variable[bx]
variable[SI]
variable [BX+SI]
[BX]
[BP+DI]

any ADDRESS 'expression WITHOUT base- and
index-addressing modes, such as:

variable
variable+4

any expression symbolized by reg or mem

any expression symbolized by memlreg, but
must be 16 bits

any ADDRESS expression that evaluates to a
label

any label that is wi thin +/- 128 bytes
distance from the instruction

The 8086 CPU has nine single-bit Flag registers that reflect
the state of the CPU. The user cannot access these registers
directly, but the user can test them to determine the effects of an
executed instruction upon an operand or register. The effects of
instructions on Flag registers are also described in the
instruction-defi'ni tion tables, using the symbols shown in Table 9-2
to represent the nine Flag registers.

All Information Presented Here is Proprietary to Digital Research

246

Concurrent CP/M-S6 Programmer's Guide 9.1 Introduction

Table 9-2. Flag Register Symbols

Symbol

AF
CF
DF
IF
OF
PF
SF
TF
ZF

I Meaning

Auxiliary-Carry-Flag
Carry-Flag
Direction-Flag
Interrupt-Enable-Flag
Overflow-Flag
Parity-Flag
Sign-Flag
Trap-Flag
Zero-Flag

9.2 Data Transfer Instructions

There are four classes of data transfer operations: general
purpose, accumulator specific, address-object, and flag. Only SAHF
and POPF affect flag settings. Note in Table 9-3 that if acc = AL,
a byte is transferred, but if acc = AX, a word is transferred.

IN

IN

LAH

LDS

LEA

LES

MOV

MOV

Table 9-3.

Syntax

acc,numbSlnumb16

acc,DX

reg16,mem

reg16,mem

reg16,mem

reg ,mem I reg

memlreg,reg

Data Transfer Instructions

I Result

transfer data from input port given
by numbS or numb16 (0-255) to
accumulator

transfer data from input port given
by DX register (O-OFFFFH) to
accumulator

transfer flags to the AH register

transfer the segment part of the
memory address (DWORD variable) to
the DS segment register, transfer
the offset part to·a general
purpose l6-bit register

transfer the offset of the memory
address to a (l6-bit) register

transfer the segment part of the
memory address to the ES segment
register, transfer the offset part
to a l6-bit general purpose register

move memory or register to register

move register to memory or register

All Information Presented Here is Proprietary to Digital Research

247

Concurrent CP/M-86 Programmer's Guide 9.2 ASM-86 Data Transfer

MOV

MOV

MOV

OUT

OUT

POP

POP

POPF

PUSH

PUSH

PUSHF

SAHF

XCHG

XCHG

XLAT

Table 9-3. (continued)

Syntax I
mem I reg, numb

segreg,memlregl6

memlregl6,segreg

numbS I numbl6,acc

DX,acc

meml regl6

segreg

memlregl6

segreg

reg,memlreg

memlreg,reg

mem I reg

Result

move immediate data to memory or
register

move memory or register to segment
register

move segment register to memory or
register

transfer data from accumulator
to output port (0-255) given by
numbS or numbl6

transfer data from accumulator to
output port (O-OFFFFH) given by DX
register

move top stack element to memory or
register

move top stack element to segment
register;'note that CS segment
register is not allowed

transfer top stack element to flags

move memory or register to top
stack element

move segment register to top stack
element

transfer flags to top stack element

transfer the AH register to flags

exchange register and memory or
register

exchange memory or register and
register

perform table lookup translation,
table given by memlreg, which is
always BX. Replaces AL with AL
offset from BX.

All Information Presented Here is Proprietary to Digital Research

248

Concurrent CP/M-86 Programmer's Guide 9.3 ASM-86 Instructions

9.3 Arithmetic, Logical, and Shift Instructions

The 8086 CPU performs the four basic mathematical operations
in several different ways. It supports both 8- and l6-bit
operations and also signed and unsigned arithmetic.

Six of the nine flag bi ts are set or cleared by most
arithmetic operations to reflect the resul t of the operation. Table
9-4 summarizes the effects of arithmetic instructions on flag bits.
Table 9-5 defines arithmetic instructions. Table 9-6 defines
logical and shift instructions.

Table 9-4. Effects of Arithmetic Instructions on Flags

Flag Bit I
CF

AF

ZF

SF

PF

OF

Result

is set if the operation resulted in a carry
out of (from addition) or a borrow into
(from subtraction) the high-order bit of the
result; otherwise CF is cleared.

is set if the operation resulted in a carry
out of (from addition) or a borrow into
(from subtraction) the low-order four bits
of the result; otherwise AF is cleared.

is set if the result of the operation is
zero; otherwise ZF is cleared.

is set if the result is negative.

is set if the modulo 2 sum of the low-order
eight bits of the result of the operation is
o (even par i ty); otherwise PF is cleared
(odd parity).

is set if the operation resulted in an
overflow; the size of the result exceeded
the capacity of its destination.

All Information Presented Here is Proprietary to Digital Research

249

Concurrent CP/M-86 Programmer's Guide 9.3 ASM-86 Instructions

AAA

AAD

AAM

AAS

ADC

ADC

ADC

ADD

ADD

ADD

CBW

CWO

CMP

CMP

CMP

DAA

DAS

Table 9-5. Arithmetic Instructions

Syntax I

reg,memlreg

memlreg,reg

memlreg,numb

reg,memlreg

memlreg,reg

memlreg,numb

reg,memlreg

memlreg,reg

memlreg,numb

Result

adjust unpacked BCD (ASCII) for
addition - adjusts AL

adjust unpacked BCD (ASCII) for
division - adjusts AL

adjust unpacked BCD (ASCII) for
multiplication - adjusts AX

adjust unpacked BCD (ASCII) for
subtraction - adjusts AL

add (with carry) memory or
register to register

add (with carry) register to
memory or register

add (with carry) immediate data
to memory or register

add memory or register to
register

add register to memory or
register

add immediate data to memory
or register

convert byte in AL to word in
AH by sign extension

convert word in AX to double
word in DX/AX by sign extension

compare register with memory
or register

compare memory or register with
register

compare data constant with
memory or register

decimal adjust for addition,
adjusts AL

decimal adjust for subtraction,
adjusts AL

All Information Presented Here is Proprietary to Digital Research

250

Concurrent CP/M-86 Programmer's Guide 9.3 ASM-86 Instructions

DEC

INC

DIV

IDIV

IMUL

MUL

NEG

SBB

SBB

SBB

SUB

SUB

SUB

Table 9-5. (continued)

Syntax

mem I reg

memlreg

mem I reg

meml reg

meml reg

meml reg

meml reg

reg,memlreg

memlreg,reg

memlreg,numb

reg,memlreg

memlreg,reg

memlreg,numb

I Result

subtract I from memory or
register

add I to memory or register

divide (unsigned) accumulator
(AX or AL) by memory or
register. If byte results,
AL = quotient, AH = remainder.
If word results, AX =
quotient, DX = remainder

divide (signed) accumulator
(AX or AL) by memory or
register - quotient and
remainder stored as in DIV

multiply (signed) memory or
register by accumulator (AX or
AL). If byte, results in AH,
AL. If word, results in DX, AX.

multiply (unsigned) memory or
register by accumulator (AX or
AL). Results stored as in IMUL.

two's complement memory or
register

subtract (with borrow) memory or
register from register

subtract (with borrow) register
from memory or register

subtract (with borrow) immediate
data from memory or register

subtract memory or register
from register

subtract register from memory
or register

subtract data constant from
memory or register

All Information Presented Here is Proprietary to Digital Research

251

Concurrent CP/M-86 Programmer's Guide 9.3 ASM-86 Instructions

AND

AND

AND

NOT

OR

OR

OR

RCL

RCL

RCR

RCR

ROL

ROL

ROR

ROR

SAL

Table 9-6. Logic and Shift Instructions

Syntax I
reg ,mem \ reg

mem\reg,reg

memlreg,numb

mem\reg

reg,mem\reg

mem\reg,reg

mem\reg,numb

mem\reg,l

mem\reg,CL

memlreg,l

mem\reg,CL

mem\reg,l

mem\reg,CL

mem\reg,l

mem\reg,CL

mem\reg,l

Result

perform bitwise logical and of
a register and memory register

perform bitwise logical and of
memory register and register

perform bitwise logical and of
memory register and data constant

form ones complement of memory
or register

perform bitwise logical or of
a register and memory register

perform bitwise logical or of
memory register and register

perform bitwise logical or of
memory register and data constant

rotate memory or register 1 bit
left through carry flag

rotate memory or register left
through carry flag, number of
bits given by CL register

rotate memory or register 1 bit
right through carry flag

rotate memory or register right
through carry flag, number of
bits given by CL register

rotate memory or register 1 bit
left

rotate memory or register left,
number of bits given by CL register

rotate memory or register 1 bit
right

rotate memory or register right,
number of bits given by CL register

shift memory or register 1 bit
left, shift in low-order zero bits

All Information Presented Here is Proprietary to Digital Research

252

Concurrent CP/M-86 Programmer's Guide 9.3 ASM-86 Instructions

SAL

SAR

SAR

SHL

SHL

SHR

SHR

TEST

TEST

TEST

Table 9-6. (continued)

Syntax I
memlreg,CL

meml reg ,1

memlreg,CL

memlreg,l

meml reg ,CL

memlreg,l

meml reg ,CL

reg,meml reg

memlreg,reg

mem I reg, numb

Result

shift memory or register left,
number of bits given by CL
register, shift in low-order
zero bits

shift memory or register 1 bit
right, shift in high-order bits
equal to the original high-order
bit

shift memory or register right,
number of bits given by CL
register, shift in high-order
bits equal to the original
high-order bit

shift memory or register 1 bit
left, shift in low-order zero
bits. Note that SHL is a
different mnemonic for SAL.

shift memory or register left,
number of bits given by CL
register, shift in low-order
zero bits. Note that SHL is
a different mnemonic for SAL.

shift memory or register 1 bit
right, shift in high-order zero
bits

shift memory or register right,
number of bits given by CL
register, shift in high-order
zero bits

perform bitwise logical and of
a register and memory or
register - set condition flags,
but do not change destination.

perform bitwise logical and
of memory register and
register - set condition
flags, but do not change
destination.

perform bitwise logical and -
test of memory register and data
constant. Set condition flags,
but do not change destination.

All Information Presented Here is proprietary to Digital Research

253

Concurrent CP/M-a6 Programmer's Guide 9.3 ASM-a6 Instructions

Table 9-6. (continued)

Syntax

XOR reg,memlreg

XOR memlreg,reg

XOR memlreg,numb

9.4 String Instructions

I Result

perform bitwise logical
exclusive OR of a register and
memory or register

perform bitwise logical exclusive
OR of memory register and register

perform bitwise logical exclusive
OR of memory register and data
constant

String instructions take one or two operands. The operands
specify only the operand type, determining whether the operation is
on bytes or words. If there are two operands, the source operand is
addressed by the SI register and the destination operand is
addressed by the DI register. The DI and SI registers are always
used for addressing. Note that for string operations, destination
operands addressed by DI must always reside in the Extra Segment
(ES) •

Table 9-7.

Syntax I
CMPS mem I reg, mem I reg

CMPSB

CMPSW

LODS meml reg

LODSB

LODSW

MOVS mem I reg ,mem I reg

String Instructions

Result

subtract source from destination,
affect flags, but do not return
result.

an alternate mnemonic for CMPS
which assumes a byte operand.

an alternate mnemonic for CMPS
which assumes a word operand.

transfer a byte or word from the
source operand to the accumulator.

an alternate mnemonic for LODS
which assumes a byte operand.

an alternate mnemonic for LODS
which assumes a word operand.

move 1 byte (or word) from source
to destination.

All Information Presented Here is Proprietary to Digital Research

254

Concurrent CP/M-86 Programmer's Guide 9.4 String Instructions

Table 9-7.

Syntax I
MOVSB

MOVSW

SCAS meml reg

SCASB

SCASW

STOS meml reg

STOSB

STOSW

(continued)

Result

an alternate mnemonic for MOVS
which assumes a byte operand~

an alternate mnemonic for MOVS
which assumes a word operand.

subtract destination operand from
accumulator (AX or AL), affect
flags, but do not return result.

an alternate mnemonic for SCAS
which assumes a byte operand.

an alternate mnemonic for SCAS
which assumes a word operand.

transfer a byte or word from
accumulator to the destination
operand.

an alternate mnemonic for STOS
which assumes a byte operand.

an alternate mnemonic for STOS
which assumes a word operand.

Table 9-8 defines prefixes for string instructions. A prefix
repeats its string instruction the number of times contained in the
CX register, which is decremented by 1 for each iteration. Prefix
mnemonics precede the string instruction mnemonic in the statement
line.

Syntax

REP

REPZ

REPE

REPNZ

REPNE

Table 9-8. Prefix Instructions

I Result

repeat until CX register is zero

repeat until CX register is zero
and zero flag (ZF) is not zero

equal to REPZ

repeat until CX register is zero
and zero flag (ZF) is zero

equal to REPNZ

All Information Presented Here is Proprietary to Digital Research

255

Concurrent CP/M-86 Programmer's Guide 9.5 Instructions

9.5 Control Transfer Instructions

There are four classes of control transfer instructions:

• calls, jumps, and returns
• conditional jumps
• iterational control
• interrupts

All control transfer instructions cause program execution to
continue at some new location in memory, possibly in a new code
segment. The transfer can be absolute or it can depend upon a
certain condition. Table 9-9 defines control transfer instructions.
In the definitions of conditional jumps, above and below refer to
the relationship between unsigned values. Greater than and lesq
than refer to the relationship between signed values.

CALL

CALL

CALLF

CALLF

INT

Table 9-9. Control Transfer Instructions

Syntax I
label

memlreg16

label

mem

numb8

Result

push the offset address of the
next instruction on the stack,
jump to the target label

push the offset address of the
next instruction on the stack,
jump to location indicated by
contents of specified memory
or register

push CS segment register on the
stack, push the offset address
of the next instruction on the
stack (after CS), jump to the
target label

push CS register on the stack,
push the offset address of the
next instruction on the stack,
jump to location indicated by
contents of specified double
word in memory

push the flag registers (as
in PUSHF), clear TF and IF
flags, transfer control with
an indirect call through any
one of the 256 interrupt-vector
elements - uses three levels
of stack

All Information Presented Here is Proprietary to Digital Research

256

Concurrent CP/M-S6 Programmer's Guide 9.S Instructions

Syntax

INTO

IRET

JA labS

JAE labS

JB labS

JBE labS

JC labS

JCXZ labS

JE labS

JG labS

JGE labS

JL labS

JLE lab8

JMP label

Table 9-9. (continued)

I Result

if OF (the overflow flag) is
set, push the flag registers
(as in PUSHF), clear TF and IF
flags, transfer control with
an indirect call through
interrupt-vector element 4
(location lOH). If the OF flag
is cleared, no operation takes
place.

transfer control to the return
address saved by a previous
interrupt operation, restore
saved flag registers, as well
as CS and IP. Pops three
levels of stack.

jump if not below or equal
above ((CF or ZF)=O)

jump if not below or above
equal (CF=O)

jump if below or not above
equal (CF=l)

jump if below or equal or
above (CF or ZF)=l)

same as JB

jump to target label if CX
register is zero

or

or

or

not

jump if equal or zero (ZF=l)

jump if not less or equal or
greater (((SF xor OF) or ZF)=O

jump if not less or greater or
equal ((SF xor OF)=O)

jump if less or not greater or
equal «(SF xor OF)=l)

jump if less or equal or not
greater (((SF xor OF) or ZF)=l

jump to the target label

All Information Presented Here is Proprietary to Digital Research.

257

Concurrent CP/M-S6 Programmer's Guide 9.5 Instructions

Table 9-9. (continued)

Syntax I Result

JMP meml reg16 jump to location indicated by
contents of specified memory or
register

JMPF label jump to the target label possibly
in another code segment

JMPS labS jump to the target label within
+/- 128 bytes from instruction

JNA labS same as JBE

JNAE . labS same as JB

JNB labS same as JAE

JNBE 1ab8 same as JA

JNC labS same as JNB

JNE 1ab8 jump if not equal or not
zero (ZF=O)

JNG labS same as JLE

JNGE 1ab8 same as JL

JNL labS same as JGE

JNLE 1ab8 same as JG

JNO labS jump if not overflow (OF=O)

JNP labS jump if not parity or parity
odd

JNS labS jump if not sign

JNZ lab8 same as JNE

JO 1ab8 jump if overflow (OF=l)

JP 1ab8 jump if parity or parity even
(PF=l)

JPE labS same as JP

JPO 1ab8 same as JNP

JS labS jump if sign (SF=l)

All Information Presented Here is Proprietary to Digital. Research

258

Concurrent CP/M-86 Programmer's Guide 9.5 Instructions

Table

Syntax I
JZ lab8

LOOP lab8

LOOPE lab8

LOOPNE lab8

LOOPNZ lab8

LOOPZ lab8

RET

RET numb

RETF

RETF numb

9-9. (continued)

Result

same as JE

decrement CX register by one, jump
to target label if CX is not zero

decrement CX register by one, jump
to target label if CX 1S not zero
and the ZF flag is set - loop
while zero or loop while equal

decrement CX register by one,
jump to target label if CX is
not zero and ZF flag is
cleared - loop while not zero
or loop while not equal

same as LOOPNE

same as LOOPE

return to tne return address
pushed by a previous CALL
instruction, increment stack
pointer by 2

return to the address pushed
by a previous CALL, increment
stack pointer by 2+numb

return to the address pushed
by a previous CALLF instruction,
increment stack pointer by 4

return to the address pushed
by a previous CALLF instruction,
increment stack pointer by 4+numb

9.6 Processor Control Instructions

Processor control instructions manipulate the flag registers.
Moreover, some of these instructions synchronize the 8086 CPU with
external hardware.

All Information Presented Here is Proprietary to Digital Research

259

Concurrent CP/M-86 Programmer's Guide 9.6 Instructions

Table 9-10.

Syntax

CLC

CLD

CLI

CMC

ESC numb8,memlreg

LOCK

Nap

HLT

STC

STD

STI

WAIT

Processor Control Instructions

Results

clear CF flag

clear OF flag, causing string
instructions to auto-increment
the operand pointers

clear IF flag, disabling maskable
external interrupts

complement CF flag

do no operation other than compute
the effective address and place it
on the address bus (ESC is used
by the 8087 numeric coprocessor).
numb8 must be in the range 0, 63

PREFIX instruction, cause the
8086 processor to assert the
bus-lock signal for the
duration of the operation
caused by the following
instruction. The LOCK prefix
instruction can precede any
other instruction. Buslock
prevents coprocessors from
gaining the bus; this is
useful for shared-resource
semaphores.

no operation is performed

cause 8086 processor to enter
halt state until an interrupt
is recognized

set CF flag

set OF flag, causing string
instructions to auto-decrement
the operand pointers

set IF flag, enabling maskable
external interrupts

cause the 8086 processor to
enter a wait state if the
signal on its TEST pin is
not asserted

All Information. Presented Here is proprietary to Digital Research

260

Section 10
Code-Macro Facilities

10.1 Introduction to Code-Macros

ASM-86 does not support traditional assembly-language macros,
but it does allow the user to define his own instructions by using
the Code-Macro directive. Like traditional macros, Code-Macros are
assembled wherever they appear in assembly language code, but there
the similarity ends. Traditional macros contain assembly language
instructions, but a Code-Macro contains only Code-Macro directives.
Macros are usually defined in the user's symbol table; ASM-86 Code­
Macros are defined in the assembler's symbol table. A macro
simplifies using the same block of instructions over and over again
throughout a program. A Code-Macro sends a bi t stream to the output
file, adding a new instruction to the assembler.

Because ASM-86 treats a Code-Macro as an instruction, you can
start Code-Macros by using them as instructions in your program.
The example below shows how to start MAC, an instruction defined by
a Code-Macro.

XCHG BX,WORD3
MAC PARl,PAR2
MUL AX,WORD4

Note that MAC accepts two operands. When MAC was defined,
these two operands were also classified as to type, size, and so on
by defining MAC's formal parameters. The names of formal parameters
are not fixed. They are stand-ins that are replaced by the names or
values supplied as operands when the Code-Macro starts. Thus formal
parameters hold the place and indicate where and how the operands
are to be used.

The definition of a Code-Macro starts with a line specifying
its name and its formal parameters, if any:

CodeMacro <name> [<formal parameter list>]

where the optional <formal parameter list> is defined:

<formal name>:<specifier letter>[<modifier letter>] [<range>]

As stated above, the formal name is not fixed, but a place
holder. If formal parameter list is present, the specifier letter
is required and the modifier letter is optional. Possible

All Information Presented Here is Proprietary to Digital Research

261

Concurrent CP/M-86 Programmer's Guide 10.1 Code-Macros

specifiers are A, C, D, E, M, R, S, and X. possible modifier
letters are b, d, w, and sb. The assembler ignores case except
within strings, but this section shows specifiers in upper-case and
modifiers in lower-case. Following sections describe specifiers,
modifiers, and the optional range in detail.

The body of the Code-Macro describes the bit pattern and formal
parameters. Only the following directives are legal within Code­
Macros:

SEGFIX
NOSEGFIX
MODRM
RELB
RELW
DB
DW
DD
DBIT

These directives are unique to Code-Macros. Those that appear
to duplicate ASM-86 directives (DB, DW, and DD) have different
meanings in Code-Macro context. These directives are detailed in
later sections. The definition of a Code-Macro ends with a line:

EndM

CodeMacro, EndM, and the Code-Macro directives are all reserved
words. Code-Macro definition syntax is defined in Backus-Naur-like
form in Appendix G. The following examples are typical Code-Macro
definitions.

CodeMacro AAA
DB 37H

EndM

CodeMacro DIV divisor:Eb
SEGFIX divisor
DB 6FH
MODRM divisor

EndM

CodeMacro ESC opcode:Db(0,63) ,src:Eb
SEGFIX src
DBIT 5(lBH) ,3(opcode(3»
MODRM opcode,src

EndM

10.2 Specifiers

Every formal parameter must have a specifier letter that
indicates the type of operand needed to match the formal parameter.
Table 10-1 defines the eight possible specifier letters.

All Information Presented Here is Proprietary to Digital Research

262

Concurrent CP/M-86 Programmer's Guide 10.2 Specifiers

Table 10-1. Code-Macro Operand Specifiers

Letter r

A

C

D

E

M

R

S

X

10.3 Modifiers

Operand Type

Accumulator regIster, AX or AL.

Code, a label expression only.

Data, a number to be used as an
immediate value.

Effective address, either an M
(memory address) or an R (register).

Memory address. This can be either
a variable or a bracketed register
expression.

A general register only.

Segment register only.

A direct memory reference.

The optional modifier letter is a further requirement on the
operand. The meaning of the modifier letter depends on the type of
the operand. For variables, the modifier requires the operand to be
of type: b for byte, w for word, d for double-word, and sb for
signed byte. For numbers, the modifiers require the number to be of
a certain size: b for -256 to 255 and w for other numbers. Table
10-2 summarizes Code-Macro modifiers.

Table 10-2. Code-Macro Operand Modifiers

Variables I Numbers

Modifier I Type Modifier I Size

b byte b -256 to 255

w word w anything else

d dword

sb signed
byte

All Information Presented Here is Proprietary to Digital Research

263

Concurrent CP/M-86 Programmer's Guide 10.4 Range Specifiers

10.4 Range Specifiers

The optional range is specified in parentheses by one
expression or by two expressions separated by a comma. The
following are valid formats:

(numberb)
(register)
(numberb,numberb)
(numberb,register)
(register,numberb)
(register,register)

Numberb is 8-bit number, not an address. The following example
specifies that the input port must be identified by the DX register:

CodeMacro IN dst:Aw,port:Rw(DX)

The next example specifies that the CL register is to contain the
count of rotation:

CodeMacro ROR dst:Ew,count:Rb(CL)

The last example specifies that the opcode is to be immediate data
and ranges from 0 to 63, inclusive:

CodeMacro ESC opcode:Db(0,63) ,adds:Eb

10.5 Code-Macro Directives

Code-Macro directives define the bit pattern and make further
requirements on how the operand is to be treated. Directives are
reserved words. Those that appear to duplicate assembly language
instructions have different meanings in a Code-Macro definition.
Only the nine directives defined here are legal in Code-Macro
definitions.

10.5.1 SEGFIX

If SEGFIX is present, it instructs the assembler to determine
whether a segment-override prefix byte is needed to access a given
memory location. If so, it is output as the first byte of the
instruction. If not, no action is taken. SEGFIX takes the form

SEGFIX <formal name>

where <formal name> is the name of a formal parameter that rep­
resents the memory address. Because it represents a memory address,
the formal parameter must have one of the specifiers E, M, or X.

All Information Presented Here is Proprietary to Digital Research

264

Concurrent CP/M-86 Programmer's Guide 10.5 Directives

10.5.2 NOSEGFIX

Use NOSEGFIX for operands in instructions that must use the ES
register for that operand. This applies only to the destination
operand of these instructions: CMPS, MOVS, SCAS, and STOS. The form
of NOSEGFIX is:

NOSEGFIX segreg,<formname>

where segreg is one of the segment registers ES, CS, SS, or DS and
<formname> is the name of the memory-address formal parameter, which
must have a specifier E, M, or X. No code is generated from this
directive, but an error check is performed. The following is an
example of NOSEGFIX use:

CodeMacro [ll0VS si ptr:EH,di ptr:EH
NOSEGFIX ES,di ptr -
SEGFIX si ptr
DB OA5H

Endf.l

10.5.3 MODRM

This directive instructs the assembler to generate the ModRM
byte that follows the opcode byte in many 8086 instructions. The
ModRM byte contains either the indexing type or the register number
to be used in the instruction. It also specifies the register to be
used or gives more information to specify an instruction.

The ModRM byte carries the information in three fields. The
mod field occupies the two most significant bits of the byte and
combines with the register memory field to form 32 possible values:
8 registers and 24 indexing modes.

The reg field occupies the three next bits following the mod
field. It specifies either a register number or three more bits of
opcode information. The meaning of the reg field is determined by
the opcode byte.

The register memory field occupies the last three bits of the
byte. It specifies a register as the location of an operand or forms
a par t of the address-mode in combination wi th the mod field
described above.

For further information on 8086 instructions and their bit
patterns, see Intel's 8086 Assembly Language Programming Manual and
the Intel 8086 Family User's Manual. The forms of MODRM are:

MODRM <form name>,<form name>
MODRM NUMBER7,<form name>

where NUMBER7 is a value 0 to 7 inclusive, and <form name> is the
name of a formal parameter. The following examples show MODRM use:

All Information Presented Here is Proprietary to Digital Research

265

Concurrent CP/M-86 Programmer's Guide

CodeMacro
SEGFIX
DB
MODRH

EndH

CodeMacro
SEGFIX
DB
HODRH

EndH

RCR dst:Ew,count:Rb(CL)
dst
OD3H
3,dst

OR dst:Rw,src:Ew
src
OBH
dst,src

10.5.4 RELB and RELW

10.5 Directives

These directives, used in IP-relative branch instructions,
instruct the assembler to generate displacement between the end of
the instruction and the label supplied as an operand. RELB
generates one byte and RELW two bytes of displacement. The
directives take the following forms:

RELB <form name>
RELW <form name>

where <form name> is the name of a formal parameter with a C (code)
specifier. For example:

CodeMacro LOOP place:Cb
DB OE2H
RELB place

Endl·l

10.5.5 DBr DW r and DD

These directives differ from those that occur outside of Code­
Macros. The forms of the directives are:

DB <form name> I NUMBERB
DW <form name> NUMBERW
DD <form name>

where NUMBERB is a single-byte number, NUMBERW is a two-byte number,
and <form name> is a name of a formal parameter. For example:

CodeMacro
SEGFIX
DB
HODRH
DW

EndH

XOR dst:Ew,src:Db
dst
81H
6,dst
src

All Information Presented Here is Proprietary to Digital Research

266

Concurrent CP/M-86 Programmer's Guide 10.5 Directives

10.5.6 DBIT

This directive manipulates bits in combinations of a byte or
less. The form is

OBIT <field description> [,<field description>]

where a <field description> has two forms:

<number><combination>
<number> «form name> «rshift>})

<number> ranges from 1 to 16 and specifies the number of bits to be
set. <combination> specifies the desired bit combination. The
total of all the <number>s listed in the field descriptions must not
exceed 16. The second form shown above contains <form name>, a
formal parameter name instructing the assembler to put a certain
number in the specified position. This number usually refers to the
register specified in the first line of the Code-Macro. The numbers
used in this special case for each register are

AL: 0
CL: 1
DL: 2
BL: 3
AH: 4
CH: 5
DH: 6
BH: 7
AX: 0
CX: 1
OX: 2
BX: 3
SP: 4
BP: 5
SI: 6
DI: 7
ES: a
CS: 1
SS: 2
os: 3

A <rshift>, contained in the innermost parentheses specifies a
number of right shifts. For example, a specifies no shift, 1 shifts
right one bit, 2 shifts right two bits, and so on. The definition
below uses this form.

CodeMacro DEC dst:Rw
OBIT 5(9H),3(dst(0»

EndH

The first five bits of the byte have the value 9H. If the
remaining bits are zero, the hex value of the byte will be 48H. If
the instruction

All Information Presented Here is Proprietary to Digital Research

267

Concurrent CP/M-86 Programmer's Guide 10.5 Directives

DEC OX

is assembled and DX has a value of 2H, then 48H + 2H = 4AH, the
final value of the byte for execution. If this sequence had been
present in the definition

DBIT 5(9H),3(dst(1»

then the register number would have been shifted right once, and the
result would had been 48H + lH = 49H, which is erroneous.

End of Section 10

All Information Presented Here is Proprietary to Digital Research

268

11.1 DDT-86 Operation

Section 11
DDT-86

The DDT-86 program allows the user to test and debug programs
interactively in a Concurrent CP/M-86 environment. You should be
familiar wi th the SOS6 processor, ASM-S6, and the Concurrent CP/M-S6
operating system.

11.1.1 Starting DDT-86

Start DDT-86 by entering one of the following commands:

DDTS6
DDTS6 filename

The first command simply loads and executes DDT-86. After
displaying its sign-on message and the prompt character - , DDT-S6
is ready to accept operator commands. The second command is similar
to the first, except that after DDT-S6 is loaded it loads the file
specified by filename. If the filetype is omitted from the
filename, .CMD is assumed. Note that DDT-S6 cannot load a file of
type .HS6. The second form of the starting command is equivalent to
the sequence

OA>DDTOG
DDTS6 }c.x
-Efi1enar..1e

At this point, the 'program that was loaded is ready for execution.

11.1.2 DDT-86 Command Conventions

When DDT-S6 is ready to accept a command, it prompts the
operator with a hyphen, -. In response, the operator can type a
command line or a CTRL-C to end the debugging session. (See Section
11.1.4.) A command line can have up to 64 characters and must
terminate with a carriage return. While entering the command, use
standard CP/M line-editing functions (such as CTRL-X, CTRL-H, and
CTRL-R) to correct typing errors. DDT-S6 does not process the
command line until a carriage return is entered.

The first character of each command line determines the command
action. Table 11-1 summar izes DDT-86 commands. DDT-86 commands are
defined individually in Section 11.2.

All Information Presented Here is Proprietary to Digital Research

269

Concurrent CP/M-86 Programmer's Guide 11.1 DDT-86 Operation

Table 11-1. DDT-86 Command Summary

Command I Action

A
B
D
E
F
G
H
I
L
M
QI
QO
R
S
SR
T
U
V
W
X

enter assembly language statements
compare blocks of memory
display memory in hexadecimal and ASCII
load program for execution
fill memory block with a constant
begin execution with optional breakpoints
hexadecimal arithmetic
set up File Control Block and command tail
list memory using 8086 mnemonics
move memory block
read I/O port
write I/O port
read disk file into memory
set memory to new values
search for string
trace program execution
untraced program monitoring
show memory layout of disk file read
write contents of memory block to disk
examine and modify CPU state

The command character can be followed by one or more arguments.
These can be hexadecimal values, filenames, or other information,
depending on the command. Arguments are separated from each other
by commas or spaces. No spaces are allowed between the command
character and the first argument.

11.1.3 Specifying a 20-Bit Address

Most DDT-86 commands require one or more addresses as operands.
Because the 8086 can address up to 1 megabyte of memory, addresses
must be 20-bit values. Enter a 20-bit address as follows:

ssss:oooo

where ssss represents an optional l6-bit segment number and 0000 is
a l6-bit offset. DDT-86 combines these values to produce a 20-bit
effective address as follows:

ssssO
+ 0000

eeeee

The optional value ssss can be a l6-bit hexadecimal value or
the name of a segment register. If a segment register name is
specified, the value of ssss is the contents of that register in the
user's CPU state, as indicated by the X command. If omitted, a
defaul t value appropr iate to the command being executed, as
described in Section 11.3.

All Information Presented Here is Proprietary to Digital Research

270

Concurrent CP/M-86 Programmer's Guide 11.1 DDT-86 Operation

11.1.4 Terminating DDT-86

Terminate DDT-86 by typing a CTRL-C in response to the hyphen
prompt. This returns control to the CCP. Note that Concurrent
CP/M-86 does not have the SAVE facility found in CP/M for 8-bit
machines. Thus if DDT-86 is used to patch a file, write the file to
disk using the W command before exiting DDT-86.

11.1.5 DDT-86 Operation with Interrupts

DDT-86 operates with interrupts enabled or disabled and
preserves the interrupt state of the program being executed under
DDT-86. When DDT-86 has control of the CPU, either when it
initially starts, or when it regains control from the program being
tested, the condition of the interrupt flag is the same as it was
when DDT-86 started, except for a few critical regions where
interrupts are disabled. While the program being tested has control
of the CPU, the user's CPU state, which can be displayed with the X
command, determines the state of the interrupt flag.

11.2 DDT-86 Commands

This section defines DDT-86 commands and their arguments. DDT-
86 commands give the user control- of program execution and allow the
user to display and modify system memory and the CPU state.

11.2.1 The A (Assemble) Command

The A command assembles 8086 mnemonics directly into memory.
The form is:

As

where s is the 20-bit address where assembly is to start. DDT-86
responds to the A command by displaying the address of the memory
location where assembly is to begin. At this point the operator
enters assembly language statements as described in Section 7.8.
When a statement is entered, DDT-86 converts it to binary, places
the value (s) in memory, and displays the address of the next
available memory location. This process continues until the user
enters a blank line or a line containing only a period.

DDT-86 responds to invalid statements by displaying a question
mark? and redisplaying the current assembly address.

11.2.2 The B (Block Compare) Command

The B command compares two blocks of memory and displays any
differences on the screen. The form is:

Bsl,fl,s2

All Information Presented Here is proprietary to Digital Research

271

Concurrent CP/M-86 Programmer's Guide 11.2 DDT-86 Commands

where sl is the 20-bit address of the start of the first block; fl
is the offset of the final byte of the first block, and s2 is the
20-bit address of the start of the second block. If the segment is
not specified in s2, the same value is used that was used for sl.

Any differences in the two blocks are displayed at the screen
in the following form:

sl:ol bl s2:02 b2

where sl:ol and s2:02 are the addresses in the blocks; bl and b2 are
the values at the indicated addresses. If no differences are
displayed, the blocks are identical.

11.2.3 The D (Display) Command

The D command displays the contents of memory as 8-bit or 16-
bit hexadecimal values and in ASCII. The forms are:

D
Ds
Ds,f
DW
DWs
DWs,f

where s is the 20-bit address where the display is to start, and f
is the l6-bit offset within the segment specified in s where the
display is to finish.

Memory is displayed on one or more display lines. Each display
line shows the values of up to 16 memory locations. For the first
three forms, the display line appears as follows:

ssss:oooo bb bb . bb cc • . • c

where ssss is the segment being displayed and 0000 is the offset
within segment ssss. The bb's represent the contents of the memory
locations in hexadecimal, and the CIS represent the contents of
memory in ASCII. Any nongraphic ASCII characters are represented by
periods.

In response to the first form shown above, DDT-86 displays
memory from the current display address for 12 display lines. The
response to the second form is similar to the first, except that the
display address is first set to the 20-bit address s. The third
form displays the memory block between locations sand f. The next
three forms are analogous to the first three, except that the
contents of memory are displayed as l6-bit values, rather than 8-bit
values, as shown below:

ssss:oooo wwww wwww ••• wwwwcccc ..• cc

All Information Presented Here is Proprietary to Digital Research

272

Concurrent CP/M-86 Programmer's Guide 11.2 DDT-86 Commands

During a long display, you can abort the D command by typing
any character at the console.

11.2.4 The E (Load for Execution) Command

The E command loads a file into memory so that a subsequent G,
T, or U command can begin program execution. The E command takes
the forms:

E<filename>
E

where <filename> is the name of the file to be loaded. If no
filetype is specified, .CMD is assumed. The contents of the user
segment registers and IP register are altered according to the
information in the header of the file loaded.

An E command releases any blocks of memory allocated by any
previous E or R commands or by programs executed under DDT-86. Thus
only one file at a time can be loaded for execution.

When the load is complete, DDT-86 displays the start and end
addresses of each segment in the file loaded. Use the V command to
redisplay this information at a later time.

If the file does not exist or cannot be successfully loaded in
the available memory, DDT-86 issues an error message. Files are
closed after an E command.

E with no <filename> frees all memory allocations made by DDT-
86, without loading a file.

11.2.5 The F (Fill) Command

The F command fills an area of memory with a byte or word
constant. The forms are:

Fs,f,b
FWs,f,w

where s is a 20-bit starting address of the block to be filled, and
f is a 16-bit offset of the final byte of the block in the segment
specified in s.

In response to the first form, DDT-86 stores the 8-bit value b
in locations s through f. In the second form, the 16-bit value w is
stored in locations s through f in standard form, low 8 bits first,
followed by high 8 bits.

If s is greater than f or the value b is greater than 255, DDT-
86 responds with a question mark. DDT-86 issues an error message if
the value stored in memory cannot be read back successfully,
indicating faulty or nonexistent RAM at the location indicated.

All Information Presented Here is Proprietary to Digital Research

273

Concurrent CP/M-86 Programmer's Guide 11.2 DDT-86 Commands

11.2.6 The G (Go) Command

The G command transfers control to the program being tested and
optionally sets one or two breakpoints. The forms are:

G
G,bl
G,bl,b2
Gs
Gs,bl
Gs,bl,b2

where s is a 20-bit address where program execution is to start, and
bl and b2 are 20-bit addresses of breakpoints. If no segment value
is supplied for any of these three addresses, the segment value
defaults to the contents of the CS register.

In the first three forms, no starting address is specified, so
DDT-86 der i ves the 20-bi t address from the user's CS and IP
registers. The first form transfers control to the user's program
without setting any breakpoints. The next two forms, respectively,
set one and two breakpoints before passing control to the user's
program. The next three forms are analogous to the first three,
except that the user's CS and IP registers are first set to s.

Once control has been transferred to the program under test, it
executes in real time until a breakpoint is encountered. At this
point, DDT-86 regains control, clears all breakpoints, and indicates
the address at which execution of the program under test was
interrupted as follows:

*ssss:oooo

where ssss corresponds to the CS, and 0000 corresponds to the IP
where the break occurred. When a breakpoint returns control to DDT-
86, the instruction at the breakpoint address has not yet been
executed.

11.2.7 The H (Hexadecimal Math) Command

The H command computes the sum and difference of two 16-bit
values. The form is shown below:

Ha,b

where a and b are the values the sum and difference of which are
being computed. DDT-86 displays the sum (ssss) and the difference
(dddd) truncated to 16 bits on the next line, as shown below:

ssss dddd

All Information Presented Here is Proprietary to Digital Research

274

Concurrent CP/M-86 Programmer's Guide 11.2 DDT-86 Commands

11.2.8 The I (Input Command Tail) Command

The I command prepares a File Control Block and command tail
buffer in DDT-86's Base Page and copies this information into the
Base Page of the last file loaded with the E command. The form is:

I<command tail>

where <command tail> is a character string which usually contains
one or more filenames. The first filename is parsed into the
default File Control Block at 005CH. The optional second filename
(if specified) is parsed into the second part of the default File
Control Block beginning at 006CH. The characters in <command tail>
are also copied into the default command buffer at 0080H. The
length of <command tail> is stored at 0080H, followed by the
character string terminated with a binary zero.

If a file has been loaded with the E command, DDT-86 copies the
File Control Block and command buffer from the Base Page of DDT-86
to the Base Page of the program loaded. The location of DDT-86's
Base Page can be obtained from the l6-bit value at absolute memory
location 0:6. The location of the Base Page of a program loaded
with the E command is the value displayed for DS upon completion of
the program load.

11.2.9 The L (List) Command

The L
language.

L

command lists
The forms are:

Ls
Ls,f

the contents of memory in assembly

where s is a 20-bit address where the list is to start, and f is a
l6-bit offset within the segment specified in s where the list is to
finish.

The first form lists twelve lines of disassembled machine code
from the current list address. The second form sets the list
address to s and then lists twelve lines of code. The last form
lists disassembled code from s through f. In all three cases, the
list address is set to the next unlisted location in preparation for
a subsequent L command. When DDT-86 regains control from a program
being tested (see G, T, and U commands), the list address is set to
the current value of the CS and IP registers.

Long displays can be aborted by typing any key during the list
process. Or enter CTRL-S to halt the display temporarily.

All Information Presented Here is Proprietary to Digital Research

275

Concurrent CP/M-86 Programmer's Guide 11.2 DDT-86 Commands

11.2.10 The M (Move) Command

The M command moves a block of data values from one area of
memory to another. The form is:

Ms,f,d

where s is the 20-bit starting address of the block to be moved, f
is the offset of the final byte to be moved wi thin the segment
described by s, and d is the 20-bit address of the first byte of the
area to receive the data. If the segment is not specified in d, the
same value is used that was used for s. Note that if d is between s
and f, part of the block being moved will be overwritten before it
is moved, because data is transferred starting from location s.

11.2.11 The 01, QO (Ouery I/O) Commands

The QI and QO commands allow access to any of the 65,536
input/output ports. The QI command reads data from a port; the QO
command writes data to a port. The forms of the QI command are:

QIn
QIWn

where n is the l6-bi t port number. In the first case, DDT-86
displays the 8-bit value read from port n. In the second case, DDT-
86 displays a l6-bit value from port n.

The forms of the QO command are:

QOn,v
QOWn,v

where n is the l6-bit port number, and v is the value to output. In
the first case, the 8-bit value v is written to port n. If v is
greater than 255, DDT-86 responds with a question mark. In the
second case, the l6-bit value v is written to port n.

11.2.12 The R (Read) Command

The R command reads a file into a contiguous block of memory.
The forms are:

R<filename>
R<filename>,s

where <filename> is the name and type of the file to be read, and s
is the location to which the file is read. The first form lets DDT-
86 determine the memory location into which the file is read. The
second form tells DDT-86 to read the file into the memory segment
beginning at s. This address can have the standard form
(ssss:oooo). The low-order four bits of s are assumed to be zero,
so DDT-86 reads files on a paragraph boundary. If the memory at s
is not available, DDT-86 issues the message:

All Information Presented Here is Proprietary to Digital Research

276

Concurrent CP/M-86 Programmer's Guide 11.2 DDT-86 Commands

MEMORY REQUEST DENIED

DDT-86 reads the file into memory and displays the start and
end addresses of the block of memory occupied by the file. A V
command can redisplay this information at a later time. The default
display pointer (f or subsequent D commands) is set to the start of
the block occupied by the file.

The R command does not free any memory previously allocated by
another R or E command. Thus a number of files can be read into
memory without overlapping.

If the file does not exist or there is not enough memory to
load the file, DDT-86 issues an error message. Files are closed
after an R command, even if an error occurs.

Examples:

rddt86.cmd

rtest

rtest,lOOO:O

Read file DDT86.CMD into memory.

Read file TEST into memory.

Read file TEST into memory, starting
at location 1000:0.

11.2.13 The S (Set) Command

The S command can change the contents of bytes or words of
memory. The forms are:

Ss
SWs

where s is the 20-bit address where the change is to occur.

DDT-86 displays the memory address and its current contents on
the following line. In response to the first form, the display is

ssss:oooo bb

In response to the second form, the display is

ssss:oooo wwww

where bb and wwww are the contents of memory in byte and word
formats, respectively.

In response to one of the above displays, the operator can
choose to alter the memory location or to leave it unchanged. If a
valid hexadecimal value is entered, the contents of the byte or word
in memory is replaced with the value. If no value is entered, the
contents of memory are unaffected, and the contents of the next
address are displayed. In either case, DDT-86 continues to display

All Information Presented Here is Proprietary to Digital Research

277

Concurrent CP/M-86 Programmer's Guide 11.2 DDT-86 Commands

successive memory addresses and values until either a period or an
invalid value is entered.

DDT-86 issues an error message if the value stored in memory
cannot be read back successfully, indicating faulty or nonexistent
RAM at the location indicated.

11.2.14 The SR (Search) Command

The SR (Search) command searches a block of memory for a given
pattern of numeric or ASCII values and lists the addresses where the
pattern occurs. The form is:

SRs,f,<pattern>

where s is the 20-bit starting address of the block to be searched,
f is the offset of the final address of the block, and <pattern> is
a list of one Or more hexadecimal values and/or ASCII strings.
ASCII strings are enclosed in double quotes and can be of any
length.

Example:

SR200,IOOO,"The form",Od,Oa

For each occurrence of <pattern>, DDT-86 displays the 20-bit
address of the first byte of the pattern, in the form

ssss:oooo

If no addresses are listed, <pattern> was not found.

11.2.15 The T (Trace) Command

The T command traces program execution for 1 to OFFFFH program
steps. The forms are:

T
Tn
TS
TSn

where n is the number of instructions to execute before returning
control to the console.

Before an instruction is executed, DDT-86 displays the current
CPU state and the disassembled instruction. In the first two forms,
the segment registers are not displayed, allowing the entire CPU
state to be displayed on one line. The next two forms are analogous
to the first two, except that all the registers are displayed,
forcing the disassembled instruction to be displayed on the next
line as in the X command.

All Information Presented Here is Proprietary to Digital Research

278

Concurrent CP/M-86 Programmer's Guide 11.2 DDT-86 Commands

In all of the forms, control transfers to the program under
test at the address indicated by the CS and IP registers. If n is
not specified, one instruction is executed. Otherwise, DOT-86
executes n instructions, displaying the CPU state before each step.
A long trace can be aborted before n steps have been executed by
typing any character at the console.

After a T command, the list address used in the L command is
set to the address of the next instruction to be executed.

Note that OOT-86 does not trace through a BOOS interrupt
instruction because DDT-86 itself makes BDOS calls, and the BDOS is
not reentrant. Instead, the entire sequence of instructions from
the BDOS interrupt through the return from BDOS is treated as one
traced instruction.

11.2.16 The U (Untrace) Command

The U command is identical to the T command except that the CPU
state is displayed only before the first instruction is executed,
rather than before every step. The forms are

U
Un
US
USn

where n is the number of instructions to execute before returning
control to the console. The U command can be aborted before n steps
have been executed by striking any key at the console.

11.2.17 The V (Value) Command

The V command displays information about the last file loaded
with the E or R commands. The form is

V

If the last file was loaded with the E command, the V command
displays the start and end addresses of each of the segments
contained in the file. If the last file was read with the R
command, the V command displays the start and end addresses of the
block of memory where the file was read. If neither the R nor E
commands have been used, DDT-86 responds to the V command with a
question mark.

11.2.18 The W (Write) Command

The W command writes the contents of a contiguous block of
memory to disk. The forms are:

W<filename>

All Information Presented Here is Proprietary to Digital Research

279

Concurrent CP/M-86 Programmer's Guide 11.2 DDT-86 Commands

W<filename>,s,f

where <filename> is the filename and filetype of the disk file to
rece i ve the data, and sand f are the 20-bi t first and last
addresses of the block to be written. If the segment is not
specified in f, DDT-86 uses the same value that was used for s.

If the first form is used, DDT-86 assumes the sand f values
from the last file read with an R command. If no file was read with
an R command, DDT-86 responds with a question mark. This form is
useful for writing out files after patches have been installed,
assuming the overall length of the file is unchanged.

In the second form where sand f are specified as 20-bi t
addresses, the low four bits of s are assumed to be O. Thus the
block being written must always start on a paragraph boundary.

If a file by the name specified in the W command already
exists, DDT-86 deletes it before writing a new file.

11.2.19 The X (Examine CPU State) Command

The X command allows the operator to examine and alter the CPU
state of the program under test. The forms are:

X
Xr
xf

where r is the name of one of the 8086 CPU registers, and f is the
abbreviation of one of the CPU flags. The first form displays the
CPU state in the format:

AX BX CX
--------- xxxx xxxx xxxx
<instruction>

SS ES IP
xxxx xxxx xxxx

The nine hyphens at the beginning of the line indicate the state of
the nine CPU flags. Each position can be a hyphen, indicating that
the corresponding flag is not set (0), or a I-character abbreviation
of the flag name, indicating that the flag is set (1). The
abb r ev i a tions of the flag names are shown in Table 11-2.
<instruction> is the disassembled instruction at the next location
to be executed, indicated by the CS and IP registers.

All Information Presented Here is Proprietary to Digital Research

280

Concurrent CP/M-86 Programmer's Guide 11.2 DDT-86 Commands

Table 11-2. Flag Name Abbreviations

Character I Name

0 Overflow
D Direction
I Interrupt Enable
T Trap
S Sign
Z Zero
A Auxiliary Carry
P Parity
C Carry

The second form allows the operator to alter the registers in
the CPU state of the program being tested. The r following the X is
the name of one of the l6-bit CPU registers. DDT-86 responds by
displaying the name of the register followed by its current value.
If a carriage return is typed, the value of the register is not
changed. If a valid value is typed, the contents of the register
are changed to that value. In either case, the next register is
then displayed. This process continues until a period or an invalid
value is entered, or until the last register is displayed.

The third form allows the operator to alter one of the flags in
the CPU state of the program being tested. DDT-86 responds by
displaying the name of the flag followed by its current state. If a
carriage return is typed, the state of the flag is not changed. If
a valid value is typed, the state of the flag is changed to that
value. Only one flag can be examined or altered wi th each Xf
command. Set or reset flags by entering a value of 1 or O.

After an X command, the typel and type2 segment values are set
to the contents of the CS and DS registers, respectively.

11.3 Default Segment Values

DDT-86 has an internal mechanism that keeps track of the
current segment value, making segment specification an optional part
of a DDT-86 command. DDT-86 divides the command set into two types
of commands, according to which segment a command defaults if no
segment value is specified in the command line.

The first type of command pertains to the Code Segment: A
(Assemble), L (List Mnemonics), and W (Write). These commands use
the internal type-l segment value if no segment value is specified
in the command.

When started, DDT-86 sets the type-l segment value to 0 and
changes it when one of the following actions is taken:

All Information Presented Here is Proprietary to Digital Research

281

Concurrent CP/M-86 Programmer's Guide 11.3 Default Segment Values

• When a file is loaded by an E command, DDT-86 sets the type-l
segment value to the value of the CS register.

• When a file is read by an R command, DDT-86 sets the type-l
segment value to the base segment where the file was read.

• After an X command, the typel and type2 segment values are set
to the contents of the CS and DS registers, respectively.

• When DDT-86 regains control from a user program after a G, T or
U command, it sets the type-l segment value to the value of the
CS register.

• When a segment value is specified explicitly in an A or L
command, DDT-86 sets the type-l segment value to the segment
value specified.

The second type of command pertains to the Data Segment: D
(Display), F (Fill), M (Move), and S (Set). These commands use the
internal type-2 segment value if no segment value is specified in
the command.

When started, DDT-86 sets the type-2 segment value to a and
changes it when one of the following actions is taken:

• When a file is loaded by an E command, DDT-86 sets the type-2
segment value to the value of the DS register.

• When a file is read by an R command, DDT-86 sets the type-2
segment value to the base segment where the file was read.

• When an X command changes the value of the DS register, DDT-86
changes the type-2 segment value to the new value of the DS
register.

• When DDT-86 regains control from a user program after a G, T,
or U command, it sets the type-2 segment value to the value
of the DS register.

• When a segment value is specified explicitly in an D, F, M, or
S command, DDT-86 sets the type-2 segment value to the segment
value specified.

When evaluating programs that use identical values in the CS
and DS registers, all DDT-86 commands default to the same segment
value unless explicitly overridden.

Note that the G (Go) command does not fall into either group
because it defaults to the CS register.

Table 11-3 summarizes DDT-86's default segment values.

All Information Presented Here is Proprietary to Digital Research

282

Concurrent CP/M-86 Programmer's Guide 11.3 Default Segment Values

Table 11-3. DDT-86 Default Segment Values

Command I type-l I type-2

A x
B x
D x
E c c
F x
G c c
H
I
L x
M x
R c c
S x
T c c
U c c
V
W x
X c c

x - use this segment default if none specified;
change default if specified explicitly

c - change this segment default

11.4 Assembly Language Syntax for A and L Commands

The syntax of the assembly language statements used in the A
and L commands is standard 8086 assembly language. Several minor
exceptions are listed below.

• DDT-86 assumes that all numeric values entered are hexadecimal.

• Up to three prefixes (LOCK, repeat, segment override) can
appear in one statement, but they all must precede the opcode
of the statement. Alternately, a prefix can be entered on a
line by itself.

• The distinction between byte and word string instructions is
made as follows:

byte word

LODSB LODSW
STOSB STOSW
SCASB SCASW
MOVSB MOVSW
CMPSB CMPSW

All Information Presented Here is Proprietary to Digital Research

283

Concurrent CP/M-86 Programmer's Guide 11.4 Syntax

• The mnemonics for near and far control transfer instructions
are as follows:

short

JMPS

normal

JMP
CALL
RET

far

JMPF
CALLF
RETF

• I f the operand of a CALLF or JMPF instruction is a 20-bi t
absolute address, it is entered in the form

ssss:oooo

where ssss is the segment and 0000 is the offset of the
address.

• Operands that could refer either to a byte or word are
ambiguous and must be preceded by either the prefix BYTE or
WORD. These prefixes can be abbreviated BY and WO. For
example:

INC BYTE [BP]
NOT WORD [1234]

Failure to supply a prefix when needed results in an error
message.

• Operands that address memory directly are enclosed in square
brackets to distinguish them from immediate values. For
example:

ADD
ADD

AX,5
AX, [5]

;add 5 to register AX
;add the contents of location 5 to AX

• The forms of register indirect memory operands are:

[pointer register]
[index reg ister]
[pointer register + index register]

where the pointer registers are BX and BP, and the index
registers are SI and 01. Any of these forms can be preceded by
a numeric offset. For example:

ADD BX,[BP+SI]
ADD BX,3[BP+S1]
ADD BX,lD47 [BP+SI]

11.5 DDT-86 Sample Session

In the following sample session, the user interactively debugs
a simple sort program. Comments in italic type explain the steps
involved.

All Information Presented Here is Proprietary to Digital Research

284

Concurrent CP/M-86 Programmer's Guide 11.5 Sample Session

S<Jl,(,~c.c. 'lUi? a ~ ,)JlOgW.m to t",,~.t .
. ;>typ~ sort.a86

sort:

camp:

ioci:

done:

nlist
count
sw

si~ole sort croqram

~ov si,O ;initialize index
mov bx,offset nlist ;bx = base of list
~ov sw,O ;clear switch flag

mov
cmp
j na
xcha
mov
mov

inc
cmp
l nz
test
inz

imp

dseq
ora

db
eau
db
end

al, [bx+si 1
a.1.,l[bx+sil
inci
al.,l[bx+sil
rbx+si 1 ,al
sw,l

si.
si,count
como
sw,l
sort

done

100h

3,3,4,6,31,6,4,1

;qet byte from list
;comoare with next byte
;don't switch if in orner
;no first cart of switch
;do second cart
;s~t switch F1.ag

;increment index
;~nd of list?
;no, keep qoinq
;done - anv switches?
;ves, sort some ~ore

;get here when list ornered

;leave soace for base oage

offset S - offset nlist
a

A<I.~e.mble pltoglta.m .
. !\.>asm86 sort

CP/'1 8086 ASSEMBLER VE~ 1.1
8NO OF PASS l
SNO OF PASS 2
SNO OF ASSEMBLY. ~lUMBER 0F ERRORS:

Type W-f..<.rtg oue geYlelta..ted by ASM-s6 .
. !\.>tyoe sort.lst
CP/~ ASM86 1.1 SOURCE: SORT.A86

simole sort 9rogram

sort:
0000 BEOOOO mov si,O initialize index
0003 BBOOOl mov bx,offset nlist bx = base of list
0006 r.606080100 mov sw,O clear switch flag

como:

PAGE

OOOB
0000
0010
0012
0015

8MO
3A400 1
760A
864001
8800

~ov

cmp
ina
xchq
mov
mov

al,[bx+sil
al, 1 [bx+si 1
inci
al,l[bx+si.l
[bx+sil,al
sw,l

;get bvte from list
;compare wit~ next bvte
;don't switch i.f in order
;~o first cart of switch
;do second part

0017 C606080101
inci:

OOle 46
0010 83FE08
0020 75E9
0022 F606080101
0027 75D7

done:
0029 E9FOFF

inc
cmo
jnz
test
inz

'imp

rlseg
org

si
si,count
camp
sw,l
sort

done

100h

; set swi tch fl.ag

;increment inrlex
;end of list?
;no, ~eep qoina
;done - any switches?
;ves, sort some more

;aet ~ere when list orrlere~

;leave soace for base oaqe

All Information Presented Here is Proprietary to Digital Research

285

Concurrent CP/M-86 Programmer's Guide

0100 030804061F06 n1ist
0401

db 3,8,4,6,31,6,4,1

0008 count
0108 00 sw

equ
db
end

offset S - offset nlist
a

SND OF ASSEMBLY. NUMBER OF ERRORS:

A>type soI~.es~#;mbol table 6.u.e geneJta.ted by ASM- 86.

0000 VARIABLES
0100 ~LIST 010B sw

0000 NUMBERS
0008 COUNT

0000 LABELS
OOOB COMP 0029 DONE 001C INCI

Tlfpe hex 6.u.e geneJta.ted by ASM-86.
A>type sorc.h86

0000 SORT

11.5 Sample Session

:0400000300000000F9
:lBOOOOB1BEOOOOBB0001C6060801008A003A4001760AB64001B800r.60608016r.
:11001B81014683FE0875E9F60608010175D7E9FDFFEE
:09010082030804061F0604010035
:OOOOOOOlFF

GeneJta.te CMV 6.u.e nllom . H86 ,1.u.e.
A>gencmd sort

BYTES READ 0039
RECORDS r"RITTEN 04

Invok.e VVT-86 and load SORT. CAW.
A>ddtB6 sort
DDTB6 1. a

START END
CS 047D:0000 047D:002F
DS 0480:0000 0480:010F

-x
AX ex cx DX SP BP SI DI CS DS SS SS IP

--------- 0000 0000 0000 0000 119E 0000 0000 0000 0470 0480 0491 0480 0000
MOV SI,OOOO

V.u.cu,.6emble the beg-<-rtlung 06 the c.ode 6egmen.t.
-1
0470:0000 MOV
047D:0003 MOV
0470: 0006 MOV
0470:000E MOV
0470:0000 eMP
0470:0010 JBE
0470:0012 XCHG
0470: 0015 MOV
0470:0017 MOV
0470: 001C INC
0470:0010 CMP
0470:0020 JNZ

SI,OOOO
BX,0100
BYTE [01081,00
.~L, [BX+SIl
AL,01[BX+SI1
001C
AL, 01 [BX+SI1
[BX+SI1 ,AL
BYTE [01081,01
SI
SI,0008
OOOB

V.u.play the .6.taJt.t 06 the da.ta6egmen.t.
-d100,10f
0480:0100 03 08 04 06 IF 06 04 01 00 00 00 00 00 00 00 00

All Information Presented Here is Proprietary to Digital Research

286

Concurrent CP/M-86 Programmer's Guide

D-<"~~,~embte the ,teH on the code.
-1
047D:0022 "'EST BYTE [01081,01
047D:0027 JNZ 0000
047T):0029 ,JMP 0029
0470:002C ADD [BX+SI] ,AL
0470:002E ADO (8X+SI] ,AL
047D:0030 DAS
047D:0031 ADD [BX+SI] ,AL
0470:0033 ??= 6C
047D:0034 POP ES
0470:0035 ADD [BX] ,CL
0470:0037 ADD [BX+SI] ,AX
0470:0039 ??= 6F

Execu.te rJltogJulm nltom IP 1=0) ~et.U.ng bltea.kpo,{,rr.t a..t Z9H.
-g,29
*047D:0029 CYtea.kpo,{,rr.t enc.oulUeJr.ed.

D-<"~pmtj ~oJtted w~.
-dlOO,10f

11.5 Sample Session

0480 :0100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .••...•••......•

Doe~n' t took good; Ituoa.d nde.
-esort

START ENO
CS 0470:0000 047D:002F
DS 0480:0000 0480:010F

T,'tac.e 3 ~1t6,t!tUC..ti.oM.
-t3

AX 8X CX DX
-----Z-P- 0000 0100 0000 0000
-----2-P- 0000 0100 0000 0000
-----Z-P- 0000 0100 0000 0000
*0470:000B

T,'!.a.c.e ~ome mOlLe.
-t3

AX BX CX OX
-----Z-p- 0000 0100 0000 0000
-----Z-P- 0003 0100 0000 0000
----S-A-C 0003 0100 0000 0000
*047D:001C

D~p.eatj lLMoJtted w~.
-dl00,10f

5P
119£
119E
119£

5P
119E
119E
119£

SP SI 1)I
0000 000,8 0000
0000 0000 0000
0000 0000 0000

SP SI DI
0000 0000 0000
0000 0000 0000
0000 0000 0000

IP
0000
0003
0006

IP
ODOR
0000
0010

/..10V
MOV
'1()V

MOV
CMP
JBB

SI,OOOO
BX,OlOO
8YTE [01081,00

AL, [W<+SIl
AL,Ol[BX+SIl
DOli'":

0480:0100 03 08 04 06 IF 06 04 01 00 00 00 00 00 00 00 00 .••..•••.••..•••

D~p.eatj neu ~rt6~uc..ti.on.~ to be execu.ted.
-1
0470:001C INC 5I
047D:001D C11P SI,0008
047D:0020 JNZ OOOB
0470:0022 'rEST BYTE [0108] ,01
0470:0027 JNZ 0000
047D:0029 JMP 0029
047T):002C ADD [BX+SI] ,AL
0470:002E ADD [BX+SI1,AL
0471):0030 DAS
0470:0031 ADD [BX+SI1,AL
0470:0033 ??= 6r.
0471):0034 POP ES

-t3
Tlta.c.e ,~ome molte.

AX BX CX OX 5P BP 51 DI IP
----S-A-C 0003 0100 0000 0000 119E 0000 0000 0000 001c: UTC SI
--------c 0003 0100 0000 0000 119E 0000 0001 0000 OOlD C:MP 5I,0008
----5-APC 0003 0100 0000 0000 119E 0000 0001 0000 0020 JNZ 0008
*0471):000B

All Information Presented Here is Proprietary to Digital Research

287

Concurrent CP/M-86 Programmer's Guide

-1
04711:000B MOV AL, [BX+SI1
047D:000O eMP AL,01['3X+SI1
0471):0010 JBE 001C
047D:0012 XC::!G AL, 01 [BX+SI1
0470:0015 \lOV [BX+SI1,AL
0470:0017 '10V BYTE r01081,01
047D:001C INC SI
0470:0010 C'1P SI,0008
047D:0020 JNZ 00013
0470:0022 TEST SYTB [01081,01
0470:0027 JNZ 0000
0470:0029 JMP 0029

-t3
AX BX CX DX SP BP 5I DI IP

----S-APC 0003 0100 0000 0000 119E 0000 0001 0000 OOOR MOV
----S-APC 0008 0100 0000 0000 119E 0000 0001 0000 OOOD C~P
--------- 0008 0100 0000 0000 119E 0000 0001 0000 0010 JBE
*0470:0012

-1
0470:0012 XCHG
047D:0015 YlOV
0471):0017 ~\OV

0470:001e INC
0470:0010 CMP
0470:0020 Jl\lZ
0470:0022 TEST
047D:0027 JNZ
0470:0029 JMP
0470:002e AOO
0470:002E AOO
0470:0030 OAS

-q,20
*0470:0020

AL,01[BX+SI1
[BX+SI1,AL
BYTE [0108] ,01
SI
5I,0008
OOOB
BYTE [0108] ,01
0000
0029
[BX+SI1,AL
[BX+SI1,AL

_d100,10l.u pLay wt.

11.5 Sample Session

AL, [I'\X+SIl
.'\L,Ol(BX+SIl
001C

0480:0100 03 04 08 06 1F 06 04 01 01 00 00 00 00 00 00 00

-t
Loo/v., .u.k.e ~ and 8 welte ~wU;c.lted ok.ay. lAnd toggle ~~ tltue.)

AX BX ex ox 5P BP SI oI IP
----S-APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ 0008
*0471):000B

-1
0470:000B
0470:0000
047D:0010
0470:0012
047D:0015
0470: 0017
0470:001e
0470:0010
0470:0020
0470:0022
047D:0027
047D:0029

MOV
CMP
JBE
XCHG
MOV
MOV
INC
CMP
JNZ
~EST

JNZ
JMP

AL, [BX+SIl
AL,01[BX+5I1
001C
AL,01[BX+5I1
['3X+SI1,AL
BYTE [01081,01
5I
SI,0008
OOOB
BY~E [01081,01
0000
0029

-esor t S~nc.e~w.i....tc.h wOltk.ed, let',~ Ituoad and c.hec.k. boundMtf c.on~t{.oYL6.

START END
CS 0470:0000 047D:002F
D5 0480:0000 0480:010F

All Information Presented Here is Proprietary to Digital Research

288

Concurrent CP/M-86 Programmer's Guide 11.5 Sample Session

.'.!ake. U otUc.ke.tt ou ;u.:U.ng Gw-t le.ng.t.h to 3. ICou..ld .Lt.;O ;ta.ve. u,;e.d ;47d= Ie.
-aId to pa.t:c.h:) .
0470:0010 emo si,3
0470:0020

-dIDO
0480:0100 03 08 04 06 IF 06 04 01 00 00 00 00 00 00 00 00 ..••••.••.•....•
0480:0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .•••.•..•••.••.•
0480: 0120 00 00 00 00 00 00 00 00 00 00 00 00 00 20 20 20

-g,29
*0470:0029

-dIDO, 10;'e.e. .{.S u;-t w ;olt.te.d.

0480:0100 03 04 06 08 IF 06 04 01 00 00 00 00 00 00 00 00 •.•..•••.•.....•

-esort IIl.-te.·'le,;Ung, -the. 6ou..'l.t.h e.te.me.n.t ;e.e.JM to :tave. be.ell. ;ottte.d <->t.

START END
~S 0470:0000 0470:002F
DS 0480:0000 0480:010F

Le.t'; t,'llj aglU/t wA..-t1t ;ome. -t-'laung.
-aId
0470:001D e~o si,3
047D:0020

-t9
AX

-----Z-p- 0006
-----Z-p- 0006
-----z-P- 0006
-----z-p- 0006
-----z-P- 0003
----5-11.-<: 0003
----S-.A-C 0003
--------c 0003
----5-I\-C 0003
*0470:000B

-1
0470:000B :-lOV
0470:0000 CMP
0470:0010 JBE
0470:0012 X~F!G

0470:0015 MOV
0470:0017 MOV
0470:001C p~c

0470:0010 eMP
0470:0020 ,JI'lZ
0470:0022 TEST
0470:0027 JNZ
047D:0029 J'1P

-t3
AX

----S-A-<: 0003
----S-A-C 0008
--------- 0008
*0470:0012

-1
0470:0012 XCHG
0471):0015 MOV
0470:0017 MOV
0470:001<: INC
0470:001D eMP
0470:0020 JNZ
0470:0022 TEST

SX CX OX SP
0100 0000 0000 119E
0100 0000 0000 119>';
0100 0000 0000 119E
0100 0000 0000 119E
0100 0000 0000 119E
0100 0000 0000 119E
0100 0000 0000 119E
0100 0000 0000 119E
0100 0000 0000 119E

AL, [BX+SI]
AL,01[BX+51]
ODIC
AL,Ol[BX+SI]
[BX+S1] ,AL
BY'1'E [0108] ,01
SI
51,0003
OOOB
BYTE [0108] ,01
0000
0029

BX CX DX SP
0100 0000 0000 119E
0100 0000 0000 119E
0100 0000 0000 119E

.AL, 01 [BX+S11
[BX+S11,AL
BYTE [0108] ,01
SI
SI,0003 .
00 DB
BYTE [01 ~ 81 , 01

SP
0000
0000
0000
0000
0000
0000
0000
0000
0000

SP
0000
0000
0000

51 D1 IP
0003 0000 0000 'IOV

0000 0000 0003 '~OV
0000 0000 0006 -"ov
0000 0000 OOOB '-lOll
0000 0000 OOOn rMP
0000 0000 0010 JBE
0000 0000 OOIC INC
0001 0000 0010 C:-.1P
0001 0000 r)020 JNZ

51 01 IP
0001 0000 0008 MOV

0001 0000 00 On CMP
0001 0000 0010 TEE

51,0000
8X,0100
BY'!'E [01081,00
AL, [BX+SIl
AL,Ol[SX+S1]
OOlC
51
51,0003
DOOR

AL, [BX+SIl
AL, 01 rBX+S1]
DOle

All Information Presented Here is Proprietary to Digital Research

289

Concurrent CP/M-a6 Programmer's Guide 11. 5 Sample

-t3
AX BX CX 1)X SP BP SI DI IP

--------- 0008 0100 0000 0000 119'8 0000 0001 0000 0012 XCHG AL, 01 [BX+SI1
--------- 0004 0100 0000 0000 119E 0000 0001 0000 0015 I1QV [BX+SI] ,AL
--------- 0004 0100 0000 0000 119E 0000 0001 0000 0017 '10V BY'1'E rOl081,01
*0470:00lC

-dIDO, 10 f
0480:0100 03 04 08 06 IF 06 04 01 01 00 00 00 00 00 00 00

-t3
50 6aJt, ~o good.

AX SX CX OX SP 8P SI fH IP
--------- 0004 0100 0000 0000 119E 0000 0001 0000 ODIC INC SI
--------- 0004 0100 0000 0000 119l'; 0000 0002 0000 0010 C'1P SI,0003
----S-APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ OOOB
*0470:0008

-1
047D:000B !10V AL, [BX+SI]
0470:0000 CMP AL, 01 (BX+SI]
0470:0010 JBE 001C
0470:0012 XCHG AL, 01 [BX+SI]
0470:0015 MOV [BX+SI] ,AL
0470:0017 MOV BYTE [0108] ,01
0470:001C INC SI
0470:001D CMP SI,0003
0470:0020 JNZ 00 DB
0470:0022 '1'EST BY"?E [0108] ,01
0470:0027 JNZ 0000
0471):0029 J~P 0029

-t3
AX '3X ex OX SP SP SI DI IP

----S-APC 0004 0100 0000 0000 119E 0000 0002 0000 0008 /.IOV AL, [BX+SI1
----S-APC 0008 0100 0000 0000 1191': 0000 0002 0000 0000 r:MP AL, 0'. [SX+SI 1
--------- 0008 0100 0000 0000 119E 0000 0002 0000 0010 JRE 001f:
*0470:0012

5Wte enou.gh, J..:t' 6 compcvUng tJle tlUAd and 60UJt..th ee.emeltU un the U~t.
-esor t Reload plWgJUlJll.

START END
CS 047D:0000 0470:002F
OS 0480:0000 0480:010F

-1
0470:0000 MOV
0470:0003 MOV
0470:0006 MOV
0470:000B '10V
0470:0000 CMP
0470:0010 JBE
0470:0012 XCHG
0470:0015 MOV
0470:0017 MOV
0470:001C INC
0470:0010 eMP
0470:0020 JNZ

SI,OOOO
ax,0100
BY'!'E [0108] ,00
AL, [BX+SI]
AL, 01 [BX+SI]
OOIC
AL,Ol[BX+SI]
[BX+SI] ,AL
BYTE [0108] ,01
SI
SI,0008
OOOB

Patch length.
-aId
0470:0010 cmp si,7
0471):0020 .

hy -<.t ou.t.
-g ,29
*047D:0029

Session

All Information Presented Here is Proprietary to Digital Research

290

Concurrent CP/M-86 Programmer's Guide

See i& li~t i~ ~o~ted.
-dl00,10:

11.5 Sample Session

0480:0100 01 03 04 04 06 06 08 lF 00 00 00 00 00 00 00 00

Laolu bettet;
-rsort.cmd

li!.t'~ <-Mtall pa.tch <-n di.~k 6ile. Tu d.o titi~, we

STAR'C' SNO
mu,~t ,'lea.d CMV ~i.le including iu!.adc't, ~a .<Je U"H R
comma.nd.

2000:0000 2000:01FF

Fi!t.~t SOh byte~ conta.in Itea.det, ~a c.ode ~ta.!t.t·~ a.t SOh.
-180
2000:0080 "10V
2000:0083 MOV
2000:0086 MOV
2000:008B MOV
2000:0080 CMP
2000:0090 JBE
2000:0092 XCHG
2000:0095 "IOV
2000:0097 MOV
2000:009C INC
2000 : 00 g.o CMP
2000:00AO JNZ

SI,OOOO
BX,0100
BYTE (0108) ,00
AL, [BX+SI)
AL, 01 [BX+Sll
00ge
AL,Ol[BX+Sll
[BX+SIJ ,AL
BY1'E [0108J ,01
SI
SI,0008
008B

-a9d
IMta.,U. patc.h.

2000:0090 cmp si,7

W!t.ite riile ba.d to di,~ k. (Length iJ i ~ile a,~.~umed to oe unc.ha.nge.d
-wsoct.cmd ~~nce no le.ngth ~pec.i6ied.)

-esort

START END
CS 0470:0000 0470:002F
OS 0480:0000 0480:010F

-1
0470:0000 MOV
0470:0003 MOV
0470:0006 MOV
047!):000B MOV
0470:0000 CMP
0470:0010 JBE
0470:0012 XCHG
0470:0015 '10'1
0470:0017 '10V
0470:001C INC
0470:001D CMP
0470:0020 JNZ

Run it.
-g,29
*0470:0029

SI,OOOO
BX,0100
BYTE [0108J, 00
AL, [BX+SIl
AL,Ol[BX+SIJ
001C
AL,Ol[BX+SIJ
[BX+SIJ ,AL
BYTE [0108 J ,01
SI
SI,0007
OOOB

S.u.u loalw good. Ship it!
-d100,10f .
0480:0100 01 03 04 04 06 06 08 iF 00 00 00 00 00 00 00 00•......
-~C

A>

All Information Presented Here is Proprietary to Digital Research

291

Concurrent CP/M-86 Programmer's Guide End of Section 11

All Information Presented Here is Proprietary to Digital Research

292

Command: ASM86

Appendix A
ASM-86 Invocation

Syntax: ASM86 <filename> { $ <parameters> }

where

<filename> is the 8086 assembly source file
(drive and filetype are optional)

<parameters> are a one-letter type followed by
a one-letter device from the table
below.

Default filetype: .A86

Parameters:

form: $ Td where T = type and d = device

Table A-I. Parameter Types and Devices

TYPES: A H P S F

DEVICES:

A - P x x x x

X x x x

Y x x x

Z x x x

I x

D d

x = valid, d = default

Valid Parameters

Except for the F type, the default device is the the current default
drive.

All Information Presented Here is Proprietary to Digital Research

293

Concurrent CP/M-86 programmer's Guide A Starting ASM-86

Table A-2. Parameter Types

Type I
A
H
P
S
F

Name

A - P
X
Y
Z
I
D

Example

ASH86 10

Function

controls location of ASSEMBLER source
controls location of HEX file
controls location of PRINT file
controls location of SYMBOL file
controls type of hex output FORMAT

I

Table A-3. Device Types

I Meaning

Drives A - P
console device
printer device
byte bucket
Intel hex format
Digital Research hex format

Table A-4. Invocation Examples

Result

file

Assemble file IO.A86, produce IO.H86
IO.LST and IO.SYM.

ASM86 IO.ASM $ AD SZ Assemble file IO.ASM on device D,
produce IO.LST and IO.H86,

ASM86 10 $ PY SX

ASl-186 10 $ FD

ASH86 10 $ FI

no symbol file.

Assemble file IO.A86, produce IO.H86,
route listing directly to printer,
output symbols on console.

Produce Digital Research hex format.

Produce Intel hex format.

End of Appendix A

All Information Presented Here is Proprietary to Digital Research

294

Appendix B
Mnemonic Differences FrolTl the Intel Assembler

The CP/M 8086 assembler uses the same instruction mnemonics as
the Intel 8086 assembler except for explicitly specifying far and
short jumps, calls, and returns. The following table shows the four
differences.

Table B-1. Mnemonic Differences

Mnemonic Function I CP/M I Intel

Intrasegment short jump: JMPS JMP

Intersegment jump: JMPF JMP

Intersegment return: RETF RET

Intersegment call: CALLF CALL

End of Appendix B

All Information Presented Here is Proprietary to Digital Research

295

Concurrent CP/M-86 Programmer's Guide End of Appendix B

All Information Presented Here is Proprietary to Digital Research

296

Appendix C
ASM-86 Hexadecimal Output Format

At the user's option, ASM-86 produces machine code in either
Intel or Digital Research hexadecimal format. The Intel format is
identical to the format defined by Intel for the 8086. The Digital
Research format is nearly identical to the Intel format, but Digital
adds segment information to hexadecimal records. Output of either
format can be input to the GENCMD, but the Digital Research format
automatically provides segment identification. A segment is the
smallest unit of a program that can be relocated.

Table C-l defines the sequence and contents of bytes in a
hexadecimal record. Each hexadecimal record has one of the four
formats shown in Table C-2. An example of a hexadecimal record is
shown below.

Byte number=> 0 1 2 3 4 5 6 7 8 9 •..•••••.•.••• n

Contents=> 1 1 a a a a t t d d d c c CR LF

Table C-l. Hexadecimal Record Contents

Byte I Contents I Symbol

0 record mark
1-2 record length 1 1
3-6 load address a a a a
7-8 record type t t
9- (n-l) data bytes d d ..••• d
n- (n+l) check sum c c
n+2 carriage return CR
n+3 line-feed LF

All Information Presented Here is Proprietary to Digital Research

297

Concurrent CP/M-86 Programmer's Guide C ASM-86 Format

Table C-2. Hexadecimal Record Formats

Type I Content I Format

00 Data record 11 aaaa DT <data ••• > cc

01 End-of-file 00 0000 01 FF

Extended address
02 mark 02 0000 ST ssss cc

03 Start address 04 0000 03 ssss iiii cc

11 => record length - number of data bytes
cc => check sum - sum of all record bytes
aaaa => l6-bit address
ssss => l6-bit segment value
iiii => offset value of start address
DT => data record type
ST => segment address record type

It is in the definition of record type (DT and ST) that Digital
Research hexadecimal format differs from Intel. Intel defines one
value each for the data record type and the segment address type.
Digital Research identifies each record with the segment that
contains it, as shown in Table C-3.

All Information Presented Here is Proprietary to Digital Research

298

Concurrent CP/M-86 Programmer's Guide C ASM-86 Format

Table C-3. Segment Record Types

I Intel I Digitall
Symbol Value Value Meaning

DT 00 for data belonging to all
8086 segments

8lH for data belonging to the
CODE segmen t

82H for data belonging to the
DATA segment

83H for data belonging to the
STACK segment

84H for data belonging to the
EXTRA segment

ST 02 for all segment address
records

8SH for a CODE absolute segment
address

86H for a DATA segment address

87H for a STACK segment address

88H for a EXTRA segment address

End of Appendix C

All Information Presented Here is Proprietary to Digital Research

299

Concurrent CP/M-86 Programmer's Guide End of Appendix C

All Information Presented Here is Proprietary to Digital Research

300

BYTE I

EQ
NE
PTR
LAST

DB
RB
ORG
EJECT
INCLUDE
IFLIST

DB
RELW

AH
BP
CX
DX

Appendix D
Reserved Words

Table D-l. Reserved Words

Predefined Numbers

WORD I DWORD

Operators

GE GT LE
OR AND MOD
SEG SHL SHR
'l'YPE LENGTH OFFSET

Assembler Directives

DD DW IF
RW END ENDM
CSEG DSEG ESEG
ENDIF TITLE LIST
SIMFORM PAGESIZE CODEMACRO
NOIFLIST

Code-Macro directives

DD DW DBIT
MODRM SEGFIX NOSEGFIX

8086 Registers

AL AX BH
BX CH CL
DH DI DL
ES SI SP

Instruction Mnemonics - See Appendix

End of Appendix D

LT
NOT
XOR

RS
EQU
SSEG
NOLIST
PAGEWIDTH

RELB

BL
CS
DS
SS

E.

All Information Presented Here is proprietary to Digital Research

301

Concurrent CP/M-86 Programmer's Guide End of Appendix D

All Information Presented Here is Proprietary to Digital Research

302

Mnemonic I
AAA
AAD
AAM
AAS
ADC
ADD
AND
CALL
CALLF
CBW
CLC
CLD
CLI
CMC
CMP
CMPS
CMPSB
CMPSW
CWO
DAA
DAS
DEC
DIV
ESC
HLT
IDIV
IMUL
IN
INC
INT
INTO
IRET
JA
JAE
JB
JBE
JC
JCXZ
JE
JG
JGE
JL
JLE

Appendix E
ASM-86 Instruction Summary

Table E-1. ASM-86 Instruction Summary

Description I Section

ASCII adjust for Addition 9.3
ASCII adjust for Division 9.3
ASCII adjust for Multiplication 9.3
ASCII adjust for Subtraction 9.3
Add with Carry 9.3
Add 9.3
And 9.3
Call (intrasegment) 9.5
Call (intersegment) 9.5
Convert Byte to Word 9.3
Clear Carry 9.6
Clear Direction 9.6
Clear Interrupt 9.6
Complement Carry 9.6
Compare 9.3
Compare Byte or Word (of string) 9.4
Compare Byte of string 9.4
Compare Word of string 9.4
Convert Word to Double Word 9.3
Decimal Adjust for Addition 9.3
Decimal Adjust for Subtraction 9.3
Decrement 9.3
Divide 9.3
Escape 9.6
Halt 9.6
Integer Divide 9.3
Integer Multiply 9.3
Input Byte or Word 9.2
Increment 9.3
Interrupt 9.5
Interrupt on Overflow 9.S
Interrupt Return 9.S
Jump on Above 9.S
Jump on Above or Equal 9.S
Jump on Below 9.S
Jump on Below or Equal 9.S
Jump on Carry 9.5
Jump on CX Zero 9.S
Jump on Equal 9.S
Jump on Greater 9.S
Jump on Greater or Equal 9.5
Jump on Less 9.S
Jump on Less or Equal 9.S

All Information Presented Here is proprietary to Digital Research

303

Concurrent CP/M-86 Programmer's Guide E Instruction Summary

Table E-1. (continued)

Mnemonic I Description I Section

JMP Jump (intrasegment) 9.5
JMPF Jump (intersegment) 9.5
JMPS Jump (8-bit displacement) 9.5
JNA Jump on Not Above 9.5
JNAE Jump on Not Above or Equal 9.5
JNB Jump on Not Below 9.5
JNBE Jump on Not Below or Equal 9.5
JNC Jump on Not Carry 9.5
JNE Jump on Not Equal 9.5
JNG Jump on Not Greater 9.5
JNGE Jump on Not Greater or Equal 9.5
JNL Jump on Not Less 9.5
JNLE Jump on Not Less or Equal 9.5
JNO Jump on Not Overflow 9.5
JNP Jump on Not Parity 9.5
JNS Jump on Not Sign 9.5
JNZ Jump on Not Zero 9.5
JO Jump on Overflow 9.5
JP Jump on Parity 9.5
JPE Jump on Parity Even 9.5
JPO Jump on Parity Odd 9.5
JS Jump on Sign 9.5
JZ Jump on Zero 9.5
LAHF Load AH with Flags 9.2
LDS Load Pointer into os 9.2
LEA Load Effective Address 9.2
LES Load Pointer into ES 9.2
LOCK Lock Bus 9.6
LODS Load Byte or Word (of string) 9.4
LODSB Load Byte of string 9.4
LODSW Load Word of string 9.4
LOOP Loop 9.5
LOOPE Loop While Equal 9.5
LOOPNE Loop While Not Equal 9.5
LOOPNZ Loop While Not Zero 9.5
LOOPZ Loop While Zero 9.5
MOV Move 9.2
MOVS Move Byte or Word (of string) 9.4
MOVSB Move Byte of string 9.4
MOVSW Move Word of string 9.4
MUL Multiply 9.3
NEG Negate 9.3
NOT Not 9.3
OR Or 9.3
OUT Output Byte or Word 9.2

All Information Presented Here is Proprietary to Digital Research

304

Concurrent CP/M-86 Programmer's Guide E Instruction Summary

Mnemonic I
POP
POPF
PUSH
PUSHF
RCL
RCR
REP
RET
RETF
ROL
ROR
SAHF
SAL
SAR
SBB
SCAS
SCASB
SCASW
SHL
SHR
STC
STD
STI
STOS
STOSB
STOSW
SUB
TEST
WAIT
XCHG
XLAT
XOR

Table E-1. (continued)

Pop
Pop Flags
Push

Description

Push Flags
Rotate through Carry Left
Rotate through Carry Right
Repeat
Return (intrasegment)
Return (intersegment)
Rotate Left
Rotate Right
Store AH into Flags
Shift Arithmetic Left
Shift Arithmetic Right
Subtract with Borrow
Scan Byte or Word (of string)
Scan Byte of string
Scan Word of string
Shift Left
Shift Right
Set Carry
Set Direction
Set Interrupt
Store Byte or Word (of string)
Store Byte of string
Store Word of string
Subtract
Test
Wait
Exchange
Translate
Exclusive Or

End of Appendix E

t Section

9.2
9.2
9.2
9.2
9.3
9.3
9.4
9.S
9.S
9.3
9.3
9.2
9.3
9.3
9.3
9.4
9.4
9.4
9.3
9.3
9.6
9.6
9.6
9.4
9.4
9.4
9.3
9.3
9.6
9.2
9.2
9.3

All Information Presented Here is proprietary to Digital Research

305

Concurrent CP/M-86 Programmer's Guide End of Appendix E

All Information Presented Here is Proprietary to Digital Research

306

CP/M ASH86 1.09
PAGE 1

0000 E90600
0003 E9l900
0006 E92BOO

Appendix F
Sample Program

SOURCE: APPF . A8 6 Terminal Input/Output

title 'Terminal Input/Output'
pagesize 50
pagewidth 79
simform
,
i****** Terminal I/O subroutines ********

,
CSEG
,

The following subroutines
are included:

CONSTAT
CONIN
CON OUT

console status
console input
console output

Each routine requires CONSOLE NUMBER
in the BL - register

* Jump table: *

i start of code segment

jmp tab:
- jmp constat

conin
conout

jmp
jmp

* I/O port numbers *

All Information Presented Here is Proprietary to Digital Research

307

Concurrent CP/M-86 Programmer's Guide F Sample Program

CP /H ASM86 1.09
PAGE 2

0010
0011
0011
0001
0002

0012
0013
0013
0004
0008

0009 53E83FOO

0000 52
OOOE B600
0010 8A17
0012 EC
0013 224706
0016 7402
0018 BOFF

SOURCE: APPF.A86

Terminal
I

instatl equ
indatal equ
outdatal equ
readyinmaskl equ
readyoutmaskl equ

Terminal
I

instat2 equ
indata2 equ
outdata2 equ
readyinmask2 equ
readyoutmask2 equ

* CONSTAT *

1:

2:

Entry: BL - reg
E){i t: AL - reg

constat:

Terminal Input/Output

10h input status port
Ilh input port
Ilh output port
Olh input ready mask
02h output ready mask

l2h input status port
13h input port
13h output port
04h input ready mask
08h output ready mask

terminal no
o if not ready
Offh if ready

push bx call okterminal
constatl:

push dx
mov dh,O read status port
mov dl,instatustab [BX]
in al,dx
and al,readyinmasktab [bx]
jz constatout
mov al,Offh

All Information Presented Here is Proprietary to Digital Research

308

Concurrent CP/M-S6 Programmer's Guide F Sample Program

CP/H ASM86 1. 09
PAGE 3

OOlA 5A5BOACOC3

OOlF 53ES2900
0023 ESE7FF
0026 74FB
0028 52
0029 B600
002B BA5702
002E EC
002F 247F
0031 5A5BC3

0034 53E8l400
0038 52
0039 50
003A B600
003C SAl7

003E EC

SOURCE: APPF.A86 Terminal Input/Output

constatout:

conin:
coninl:

pop dx ! pop bi'

* CONIN *
**"* * * * * * *

or al,al ret

Entry: BL - reg = terminal no
Exit: AL - reg = read character

push bx ! call okterminal
call constatl test
jz coninl
push dx read
mov dh,O
mov dl,indatatab [BX]
in al,dx

status

character

and al,7fh strip parity bit
pop dx ! pop

,~ CON OUT *

bx ret

Entry: BL - reg = terminal no
AL - reg = character to print

,
conout: push bx ! call okterminal

push dx
push ax
mov dh,O
mov dl,instatustab [BX]

conoutl:
in al,dx

test status

All Information Presented Here is Proprietary to Digital Research

309

Concurrent CP/M-86 Programmer's Guide F Sample Program

CP/M ASM86 1.09
PAGE 4

003F 224708
0042 74FA
0044 58
0045 8A5704
0048 EE
0049 5A5BC3

004C OADB
004E 740A
0050 80FB03
0053 7305
0055 FECB
0057 B700
0059 C3

005A 5B5BC3

,

SOURCE: APPF .A86 Terminal Input/Output

and al,readyoutmasktab [BX]
jz conoutl
pop ax ; write byte
mov dl,outdatatab [BX]
out dx,al
pop dx ! pop bx ! ret

++++++++++++++
+ OI)TERMINAL +
++++++++++++++

Entry: BL - reg terminal no

okterminal:
or bl,bl
jz error
cmp bl,length instatustab + 1
jae error
dec bl
mov bh,O
ret

error: pop bx ! pop bx ! ret do nothing

;************** end of code segment ***************

* Data segment *

dseg

* Data for each terminal *

All Information Presented Here is Proprietary to Digital Research

310

Concurrent CP/M-86 Programmer's Guide

CP/H ASH86 1.09
PAGE 5

0000 1012
0002 1113
0004 1113
0006 0104
0008 0208

SOURCE: APPF . A8 6

instatustab db
indatatab db
outdatatab db
readyinmasktab db
readyoutmasktab db
,
;*************** end
end

END OF ASSEHBLY. NUMBER OF ERRORS: 0

F Sample Program

Terminal Input/Output

instat1,instat2
indata1,indata2
outdata1,outdata2
readyinmask1,readyinmask2
readyoutmaskl,readyoutmask2

of file **********************

End of Appendix F

All Information Presented Here is Proprietary to Digital Research

311

Concurrent CP/M-86 Programmer's Guide End of Appendix F

All Information Presented Here is Proprietary to Digital Research

312

Appendix G
Code-Macro Definition Syntax

<codemacro> .• - CODEMACRO <name> [<formal$list>]
[<listofmacro$directives>]

ENDM

<name> ::= IDENTIFIER

<formal$list> ::= <parameter$descr>[{,<parameter$descr>}]

<parameter$descr> ::= <form$name>:<specifier$letter>
<modifier$letter>[«range»]

<specifier$letter> ::= A I C I DIE I M I R I S I X

<modifier$letter> ::= b I wid I sb

<range> ::= <single$range>l<double$range>

<single$range> ::= REGISTER I NUMBERB

<double$range> ::= NUMBERB,NUMBERB I NUMBERB,REGISTER I
REGISTER,NUMBERB I REGISTER, REGISTER

<listofmacro$directives> ::= <macro$directive>
{<macro$directive>}

<macro$directive> ::= <db> I <dw> I <dd> I <segfix>
<nosegfix> I <modrm> I <relb>
<relw> I <dbit>

<db> ::= DB NUMBERB DB <form$name>

<dw> ::= DW NUMBERW DW <form$name>

<dd> ::= DD <form$name>

<segfix> ::= SEGFIX <form$name>

<nosegfix> ::= NOSEGFIX <form$name>

<modrm> ::= MODRM NUMBER7,<form$name> I
MODRM <form$name>,<form$name>

<relb> RELB <form$name>

<relw> ::= RELW <form$name>

<dbit> ::= DBIT <field$descr>{,<field$descr>}

All Information Presented Here is Proprietary to Digital Research

313

Concurrent CP/M-86 Programmer's Guide G Code-Macro Syntax

<field$descr> NUMBERB) I NUMBER15
NUMBER15 <form$name> (NUMBERB))

<form$name> ::= IDENTIFIER

NUMBERB is 8 bits
NUMBERW is 16 bits
NUMBER? are the values 0, 1, ••
NUMBER15 are the values 0, 1, ••

, ?
, 15

End of Appendix G

All Information Presented Here is Proprietary to Digital Research

314

Appendix H
ASM-86 Error Messages

ASM-86 produces two types of error messages: fatal errors and
diagnostics. Fatal errors occur when ASM-86 is unable to continue
assembling. Diagnostics messages report problems with the syntax
and semantics of the program being assembled. The following
messages indicate fatal errors ASM-86 encounters during assembly:

NO FILE
DISKETTE FULL
DIRECTORY FULL
DISKETTE READ ERROR
CANNOT CLOSE
SYMBOL TABLE OVERFLOW
PARAMETER ERROR

ASM-86 reports semantic and syntax errors by placing a
numbered ASCII message in front of the erroneous source line. If
there is more than one error in the liner only the first one is
reported. Table H-l summarizes ASM-86 diagnostic error messages.

All Information Presented Here is Proprietary to Digital Research

315

Concurrent CP/M-86 Programmer's Guide H ASM-86 Error Messages

Table B-1. ASM-86 Diagnostic Error Messages

Number I Meaning

o ILLEGAL FIRST ITEM
1 MISSING PSEUDO INSTRUCTION
2 ILLEGAL PSEUDO INSTRUCTION
3 DOUBLE DEFINED VARIABLE
4 DOUBLE DEFINED LABEL
5 UNDEFINED INSTRUCTION
6 GARBAGE AT END OF LINE - IGNORED
7 OPERAND(S) MISMATCH INSTRUCTION
8 ILLEGAL INSTRUCTION OPERANDS
9 MISSING INSTRUCTION

10 UNDEFINED ELEMENT OF EXPRESSION
11 ILLEGAL PSEUDO OPERAND
12 NESTED IF ILLEGAL - IF IGNORED
13 ILLEGAL IF OPERAND - IF IGNORED
14 NO MATCHING IF FOR ENDIF
15 SYMBOL ILLEGALLY FORWARD REFERENCED - NEGLECTED
16 DOUBLE DEFINED SYMBOL - TREATED AS UNDEFINED
17 INSTRUCTION NOT IN CODE SEGMENT
18 FILE NAME SYNTAX ERROR
19 NESTED INCLUDE NOT ALLOWED
20 ILLEGAL EXPRESSION ELEMENT
21 MISSING TYPE INFORMATION IN OPERAND(S)
22 LABEL OUT OF RANGE
23 MISSING SEGMENT INFORMATION IN OPERAND
24 ERROR IN CODEMACRO BUILDING

End of Appendix H

All Information Presented Here is Proprietary to Digital Research

316

Appendix I
DDT-86 Error Messages

Table I-I. DDT-86 Error Messages

Error Message

Af.'!.BIGUOUS OPERAND

CANNOT CLOSE

DISK READ ERROR

DISK WRITE ERROR

INSUFFICIENT ~lliMORY

MEMORY REQUEST DENIED

NO FILE

NO SPACE

VERIFY ERROR AT s:o

I Meaning

An attempt was made to assemble a command
with an ambiguous operand. Precede the
operand with the prefix BYTE or WORD.

The disk file wr it ten by a W command
cannot be closed.

The disk file specified in an R command
could not be read properly.

A disk write operation could not be
successfully performed during a W
command, probably due to a full disk.

There is not enough memory to load the
file specified in an R or E command.

A request for memory during an R command
could not be fulf illed. Up to eight
blocks of memory can be allocated at a
given time.

The file specified in an R or E command
could not be found on the disk.

There is no space in the directory for the
file being written by a W command.

The value placed in memory by a Fill, Set,
Move, or Assemble command could not be
read back correctly, indicating bad RAM
or attempting to write to ROM or
nonexistent memory at the indicated
location.

End of Appendix I

All Information Presented Here is Proprietary to Digital Research

317

Concurrent CP/M-86 Programmer's Guide End of Appendix I

All Information Presented Here is Proprietary to Digital Research

318

Appendix J
System Function Summary

Table J-l. System Function Summary

DeclHexlFunction Name I Input Parameters I Returned values

0 0 System Reset none none
1 1 Con Input none AL = char
2 2 Con Output DL = char none
3 3 Raw Con Input none AL = char
4 4 Raw Con Output DL = char none
5 5 List Output DL = char none
6 6 Direct Con I/O see def see def
7 7 Get I/O Byte ** Not supported in Concurrent

CP/M-86 **
8 8 Set I/O Byte ** Not supported in Concurrent

CP/M-86 **
9 9 Print String DX = .Buffer none
10 A Read Con Buffer DX = .Buffer see def
11 B Get Con Status none AL = 00/01
12 C Rtn Version # none AL= Version#
13 D Reset Disk Sys nbne see def
14 E Select Disk DL = Disk Number see def
15 F Open File DX = .FCB AL = Dir Code
16 10 Close File DX = .FCB AL = Dir Code
17 11 Search for First DX = .FCB AL = Dir Code
18 12 Search for Next none AL = Dir Code
19 13 Delete File DX = .FCB AL = Dir Code
20 14 Read Sequential DX = .FCB AL = Err Code
21 15 Write Sequential DX = .FCB AL = Err Code
22 16 Make File DX = .FCB AL = Dir Code
23 17 Rename File DX = .FCB AL = Dir Code
24 18 Rtn Login Vect none AX = Login Vect*
25 19 Rtn Current Disk none AX = Cur Disk#
26 lA Set DMA Address DX = .DMA none
27 IB Get Addr(Alloc) none AX = .Alloc
28 lC Write Prot Disk none see def
29 ID Get R/O Vect none AX = R/O Vect*
30 IE Set File Attrib DX = .FCB see def
31 IF Get Addr(Disk parms) none AX = .DPB
32 20 Set/Get User Code see def see def
33 21 Read Random DX = .FCB AL = Err Code
34 22 Write Random DX = .FCB AL'= Err Code
35 23 Compute File Size DX = .FCB rO, rl, r2
36 24 Set Random Rec DX = .FCB rO, rl, r2
37 25 Reset Drive DX = drive Vect AL = Err Code
38 26 Access Drive DS = drive Vect none
39 27 Free Drive DS = drive Vect none
40 28 Write Random O-fill DS = .FCB AL = Err Code
41 29 Test/Write Rec DS = .FCB AL = Err Code

All Information Presented Here is Proprietary to Digital Research

319

Concurrent CP/M-86 Programmer's Guide J Function Summary

Table J-l. (continued)

Dec!Hex!Function Name ! Input Parameters I Returned values

42 2A Lock Rec DS = .FCB AL = Err Code
(Current DMA Addr -> File ID)

43 2B Unlock Rec DX = .FCB AL = Err Code
(Current DMA Addr -> File ID)

44 2C Set Multi-Sector Ct DL= * of Sectors AL = Rtn Code
45 2D Set BDOS Err Mode see def none
46 2E Get Disk Free Sp DL = Disk # see def
47 2F Chain To Program see def none
48 30 Flush Buffers none see def
50 32 Direct BIOS Call DX = BD Addr. AX = BIOS rtn
51 33 Set DMA Base DX = DMA Seg.Addr none
52 34 Get DMA Base none AX = DMA Offset
53 35 Get Max Mem DX = MCB Addr see def
54 36 Get Abs Max DX = MCB Addr see def
55 37 Alloc Mem DX = MCB Addr see def
56 38 Alloc Abs Max DX = MCB Addr see def
57 39 Free Mem DX = MCB Addr see def
58 3A Free All Mem none none
59 3B Program Load DX = FCB Addr AX = B.P.Seg
100 64 Set Dir Label DX = .FCB AL = Dir Code
101 65 Rtn Dir Label DX = Disk * AL = Label Data
102 66 Read File XFCB OX = .XFCB AL = Dir Code
103 67 Write File XFCB OX = .XFCB AL = Dir Code
104 68 Set Date/Time OX = .TOD none
105 69 Get Date/Time DX = .TOD none
106 6A Set Default Pswd OX = .Password none
107 6B Rtn Serial # ox = .seria1nmb seria1nmb set
128 80 Abs Memory Rqst OX = .MD AX = Rtn Code
129 81 Reloc Mem Rqst OX = .MD AX = Rtn Code
130 82 Memory Free OX = .MD none
131 83 Poll DL = Device none
132 84 Flag Wait DL = Flag AX = Rtn Code
133 85 Flag Set DL = Flag AX = Rtn Code
134 86 Make Queue OX = QD addr none
135 87 Open Queue OX = QPB Addr AX = Rtn Code
136 88 Delete Queue OX = QPB Addr AX = Rtn Code
137 89 Read Queue OX = QPB Addr none
138 8A Condo Read Queue DX = QPB Addr AX = Rtn Code
139 8B Write Queue OX = QPB Addr none
140 8C Condo Write Queue OX = QPB Addr AX = Rtn Code
141 80 Delay OX = #ticks none
142 8E Dispatch none none
143 8F Term. Proc DL = Term. Code none
144 90 Create Proc DX = PD Addr none
145 91 Set Pr ior i ty DL = Priority none
146 92 Attach Con none none
147 93 Detach Con none none
148 94 Set Con DL = Console none
149 95 Assign Con OX = ACB Addr AX = Rtn Code
150 96 Send CLI Comm OX = CLBUF Addr none

All Information Presented Here is Proprietary to Digital Research

320

Concurrent CP/M-86 Programmer's Guide J Function Summary

Table J-l. (continued)

oeclHexlFunction Name I Input Parameters I Returned values

151 97 Call RPL OX = CPB Addr AX = result
152 98 Parse Filename DX = PFCB Addr see def
153 99 Get Con jj: none AL = con jj:
154 9A Sys Data Addr none AX = Sys Data
155 9B Get Date/Time DX = TOD Addr none
156 9C Rtn PD Addr none AX = PD Addr
157 9D Abort Spec. Proc DX = ABP Addr AL = Rtn Code
158 9E Attach List none none
159 9F Detach List none none
160 AO Set List DL = List jj: none
161 Al Condo Attach List none AX = Rtn Code
162 A2 Condo Attach Con none AX = Rtn Code
163 A3 MPM Version jj: none AX = Version
164 A4 Get List jj: none AL = list #

The following abbreviations are used in the table.

Abs
Addr
Char
Comm
Con
Condo
Ct
Dir
Err
Proc
Pswd
Reloc
Rec
Rqst
Rtn
Sp
Spec.
Sys
Term.
Vect
jj:

Absolute
Address
ASCII Character
Command
Console
Conditional
Count
Directory
Error
Process
Password
Relocatable
Record
Request
Return
Space
Specified
System
Terminate
Vector
Number

Addr

jj:

Note: DL is the low-order half of register DX, and AL is the low­
order half of register AX.

End of Appendix J

All Information Presented Here is Proprietary to Digital Research

321

Concurrent CP/M-86 Programmer's Guide End of Appendix J

All Information Presented Here is Proprietary to Digital Research

322

Appendix K
Glossary

Base Page: Memory region between OOOOH and OlOOH relative to the
beg inn i ng of the Data S egmen t used to hold cr i tical sys~em
parameters. Base Page functions primarily as an interface reglon
between user programs and BDOS module. Note that in the 8080 Model,
the code and data are intermixed in the code segment.

BCD: Acronym for Binary Coded Decimal.
numbers using binary digits. See
representations of ASCII codes.

Representation of decimal
Appendix L for binary

block: Basic unit of disk space allocation under Concurrent CP/M-
86. Each disk drive has a fixed block size (BLS) defined in its
disk Parameter Block in the XIOS. The block size can be lK, 2K, 4K,
8K, or 16K consecutive bytes. Blocks are numbered relative to zero.
Each block is unique and has a byte displacement in a file of the
block number times the block size.

boolean: Variable that can only have two values; usually
interpreted as true/false or on/off.

Checksum Vector (CSV): Contiguous data area in the XIOS with one
byte for each directory sector to be checked, i.e. CKS bytes. A
Checksum Vector is initialized and maintained for each logged-in
drive. Each directory access by the system results in a checksum
calculation which is compared with that in the Checksum Vector. If
there is a discrepancy, the drive is set to Read-Only status. This
prevents the user from inadvertently swi tching disks wi thout logging
in the new disk. If not logged in, the new disk is treated the same
as the old one, and data on it can be destroyed if writing is done.

CMD: Filetype for Concurrent CP/M-86 command files. These are
machine language object modules ready to be loaded and executed.
Any file wi th this type can be executed by simply typing the
filename after the drive prompt. For example, the program PIP.GMD
can be executed by simply typing PIP.

command: Set of instructions that are executed when the command
name is typed after the system prompt. These instructions can be
built in the Concurrent CP/M-86 system or can reside on disk as a
file of type CMD. Concurrent CP/M-86 commands consist of three
parts: the command name, the command tail, and a carriage return.

console: Primary I/O device used by Concurrent CP/M-86. The
console usually consists of a CRT screen for displaying output and a
keyboard for input.

All Information Presented Here is Proprietary to Digital Research

323

Concurrent CP/M-S6 Programmer's Guide K Glossary

control character: Nonprinting ASCII character produced on the
console by holding down the CTRL (CONTROL) key while striking the
character key. CTRL-H means hold down CTRL and hit H. Control
characters are sometimes indicated using the up-arrow symbol (A), so
CTRL-H can be represented as A H• Certain control characters are
treated as special commands by Concurrent CP/M-S6.

Default Buffer: 12S-byte buffer maintained at OOSOH in the Base
Page. When the CLI loads a CMD file, it initializes this buffer to
the command tail, i.e., any characters typed after the CMD file
name. The first byte at OOSOH contains the length of the command
tail while the command tail itself begins at OOSIH. A binary zero
terminates the command tail value. The I command under DDT
initializes this buffer in the same way as the CLI.

Default PCB: One of two FCBs maintained at 005CH and 006CH in the
Base Page. The CLI function initializes the first default FCB from
the first delimited field in the command tail and initializes the
second default FCB from the next field in the command tail.

delimiters: ASCII characters used to separate constituent parts of
a file specification. The CLI function recognizes certain delimiter
characters as : .=;<> " blank and carriage return. Several
Concurrent CP/M-S6 commands also treat , [] () $ as delimiter
characters. It is advisable to avoid the use of delimiter characters
and lower-case characters in filenames.

directory: Portion of a disk containing entries for each file on
the disk and locations of the blocks allocated to the files. Each
file directory element is in the form of a 32-byte FCB, although one
file can have several elements, depending on its size. The maximum
number of directory elements supported is specified in the drive's
Disk Parameter Block.

directory element: 32-byte element associated with each .disk file.
A file can have more-than one directory.eTementassociatedwith_it.
There are four directory elements per directory sector. Directory
elements can also be referred to as directory FCBs.

directory entry: File entry displayed when using the DIR command.
This term can also be used to refer to a physical directory element
(FCB) •

disk, diskette: Magnetic media used for mass storage of data in the
computer system. The term disk can refer to a diskette, a removable
cartridge disk, or a fixed hard disk.

All Information Presented Here is Proprietary to Digital Research

324

Concurrent CP/M-86 Programmer's Guide K Glossary

Disk Parameter Block (DPB): Table residing in the XI OS that defines
the character istics of a dr ive in the disk subsystem used wi th
Concurrent CP/M-86. The address of the DPB is in the Disk Parameter
Header at DPbase + OAH. Drives with the same characteristics can
use the same diskette Parameter Header, and thus the same DPB.
However, drives with different characteristics must each have their
own Disk Parameter Header and DPB. The address of the drive's Disk
Parameter Header must be returned in registers HL when the BDOS
calls the SELDSK entry point in the BIOS. BDOS Function 31 returns
the DPB address.

Disk Parameter Header (DPH): 16-byte area in the XIOS containing
information about the disk drive and a scratchpad area for certain
BDOS operations. Given n disk drives, the Disk Parameter Headers are
arranged in a table. The table's first row of 16 bytes corresponds
to drive 0; the last row corresponds to drive n-l.

extent (EX): 16K consecutive bytes in a file. Extents are numbered
from 0 to 31. One extent may contain 1, 2, 4, 8, or 16 blocks. EX
is the extent number field of a FCB and is a one-byte field at FCB +
12, where FCB labels the first byte in the FCB. Depending on the
Block Size (BLS) and the maximum data Block Number (DSM), a FCB can
contain 1, 2, 4, 8, or 16 extents. The EX field is usually set to 0
by the user but contains the current extent number during file I/O.
The term FCB Folding is used to describe FCBs containing more than
one extent. In CP/M version 1.4, each FCB contained only one
extent. Users attempting to perform Random Record I/O and maintain
CP/M 1.4 compatibility should be aware of the implications of this
difference.

file: Collection of data containing from zero to 242,144 records.
Each record contains 128 bytes and can contain either binary or
ASCII data. ASCII data files consist of lines of data delineated by
carr iage return line-feed sequences, meaning that one 128-byte
record might contain one or more lines of text. Files consist of
one or more extents, with 128 records per extent. Each file has one
or more directory elements yet shows as only one directory entry
when using the DIR command.

File Control Block (FCB): Thirty-six consecutive bytes designated
by the user for file I/O functions. The FCB fields are explained in
Section 2.4. The term FCB is also used to refer a directory element
in the directory portion of the allocated disk space. These contain
the same first 32 bytes of the FCB, lacking only the Current Record
and Random Record Number bytes.

hex file format: Absolute output of ASM and MAC for the Intel 8080.
A HEX file contains a sequence of absolute records which give a load
address and byte values to be stored starting at the load address.
(See Section 4.3).

I/O: Acronym for Input/Output operations or routines handling the
input and output of data in the computer system.

All Information Presented Here is Proprietary to Digital Research

325

Concurrent CP/M-86 Programmer's Guide K Glossary

logical drive: Logically distinct region of a physical drive. A
physical drive can be divided into one or more logical drives, and
designated with specific drive references (such as d:a or d:f).
Thus, at the user interface, it appears that there are several disks
in the system.

parse: Separate a command line into its constituent parts.

physical drive: Peripheral hardware device used for mass storage of
data within the computer system.

Read-Only: Condition in which a drive can be read but not written
to. A drive can be set to Read-Only status by using the SET or STAT
utilities. The only other way a drive can be set to Read-Only status
is if the checksum computed on a directory access does not match
that stored in CSV when the drive is logged in. This protects the
user from switching disks without executing a disk reset. Files can
also be set to Read-Only status with the Set or STAT utilities or
the Set File Attributes function (Function 30). Read-Only is often
abbreviated as RIO.

record: Smallest unit of data in a disk file that can be read or
written. A record consists of 128 consecutive bytes whose byte
displacement in a file is the product of the Record Number times
128. A 128-byte record in a file occupies one 128-byte sector on the
diskette. If the blocking and deblocking algorithm is used, several
records can occupy each disk sector.

reentrant code: Code that can be used by one process while another
is already executing it. Reentrant code must not be self-modifying;
it must be pure code that does not contain data. The data for
reentrant code can be kept in a separate data area or placed on the
stack.

sector: 128 consecutive bytes in a disk file. A sector is the
basic unit of data read and written on the disk by the XIOS. A
sector can be one 128-byte record in a file or a sector of the
directory. In some disk subsystems, the disk sector size is larger
than 128 bytes, usually a power of two such as 256, 512, 1024, or
2048 bytes. These disk sectors are referred to as Host Sectors.
When the Host Sector size is larger than 128 bytes, Host Sectors
must be buffered in memory, and the 128-byte sectors must be blocked
and deblocked from them.

source file: ASCII text file usually created with a text editor
that is an input file to a system program, such as a language
translator or a text formatter.

All Information Presented Here is Proprietary to Digital Research

326

Concurrent CP/M-86 Programmer's Guide K Glossary

spooling: Accumulating printer output in a file while the printer
is kept busy printing so that programs with LIST output are not
forced to wait until the printer is available.

stack: Reserved area of memory where the processor saves the return
address when it receives a Call instruction. When the processor
encounters a Return instruction, it restores the current address on
the stack to the Instruction Pointer. Data such as the contents of
the registers can also be saved on the stack. The Push instruction
places data on the stack and the Pop instruction removes it. 8086
stacks are 16 bits wide; instructions operating on the stack add and
remove stack items one word at a time. An item is pushed onto the
stack by decrementing the stack pointer (SP) by 2 and writing the
item at the SP address. In other words, the stack grows downward in
memory.

track: Concentr ic ring on the disk; the standard IBM single densi ty
disks have 77 tracks. Each track consists of a fixed number of
numbered sectors. Tracks are numbered from 0 to one less than the
number of tracks on the disk. Data on the disk media is accessed by
combinations of track and sector numbers.

user: Logically distinct subdivision of the directory.
directory can be divided into 16 user numbers.

Each

ve~or: Memory location used as an entry point into the operating
system, used for making system calls or interrupt handling.

wildcard: Filename containing ? or * characters. The BDOS
directory search functions will match? with any single character
and * with multiple characters.

End of Appendix K

All Information Presented Here is Proprietary to Digital Research

327

Concurrent CP/M-86 Programmer's Guide End of Appendix K

All Information Presented Here is Proprietary to Digital Research

328

Appendix L
ASCII and Hexadecimal Conversions

This appendix contains tables of the ASCII symbols, including
their binary, decimal, and hexadecimal conversions.

Symbol I
ACK
BEL
BS
CAN
CR
DC
DEL
DLE
Ef-1
ENQ
EOT
ESC
ETB
ETX
FF

Table L-l. ASCII Symbols

Meaning

acknowledge
bell
backspace
cancel
carriage return
device control
delete
data link escape
end of medium
enquiry
end of transmission
escape
end of transmission
end of text
form feed

I Symbol I
FS
GS
HT
LF
NAK
NUL
RS
SI
SO
SOH
SP
STX
SUB
SYN
US
VT

Meaning

file separator
group separator
horizontal tabulation
line feed
negative acknowledge
null
record separator
shift in
shift out
start of heading
space
start of text
substitute
synchronous idle
unit separator
vertical tabulation

All Information Presented Here is Proprietary to Digital Research

329

Concurrent CP/M-B6 Programmer's Guide L ASCII Conversions

Table L-2. ASCII Conversion Table

Binary I Decimal I Hexadecima11 ASCII

0000000 000 00 NUL
0000001 001 01 SOH (CTRL-A)
0000010 002 02 STX (CTRL-B)
0000011 003 03 ETX (CTRL-C)
0000100 004 04 EOT (CTRL-D)
0000101 005 05 ENQ (CTRL-E)
0000110 006 06 ACK (CTRL-F)
0000111 007 07 BEL (CTRL-G)
0001000 OOB 08 BS
0001001 009 09 HT
0001010 010 OA LF
0001011 011 OB VT
0001100 012 OC FF
0001101 013 OD CR
0001110 014 OE SO (CTRL-N)
0001111 015 OF SI (CTRL-O)
0010000 016 10 DLE (CTRL-P)
0010001 017 11 DCl (CTRL-Q)
0010010 018 12 DC2 (CTRL-R)
0010011 019 13 DC3 (CTRL-S)
0010100 020 14 DC4 (CTRL-T)
0010101 021 15 NAK (CTRL-U)
0010110 022 16 SYN (CTRL-V)
0010111 023 17 ETB (CTRL-W)
0011000 024 18 CAN (CTRL-X)
0011001 025 19 EM (CTRL-Y)
0011011 027 IB ESC (CTRL- [)
0011100 028 lC FS (CTRL-)
0011101 029 ID GS (CTRL-])
0011110 030 IE RS (CTRL-")
0011111 031 IF US (CTRL-) -
0100000 032 20 (SPACE)
0100001 033 21 !
0100010 034 22 "
0100011 035 23 #
0100100 036 24 $
0100101 037 25 %
0100110 038 26 &

0100111 039 27
,

0101000 040 28 (
0101001 041 29)
0101010 042 2A *
0101011 043 2B +
0101100 044 2C ,
0101101 045 2D -
0101110 046 2E .
0101111 047 2F /
0110000 048 30 0
0110001 049 31 1
0110010 050 32 2

All Information Presented Here is Proprietary to Digital Research

330

Concurrent CP/M-86 Programmer's Guide L ASCII Conversions

Table L-2. (continued)

Binary I Decimal I Hexadecimal I ASCII

0110011 051 33 3
0110100 052 34 4
0110101 053 35 5
0110110 054 36 6
0110111 055 37 7
0111000 056 38 8
0111001 057 39 9
0111010 058 3A :
0111011 059 3B ;
0111100 060 3C <
0111101 061 3D =
0111110 062 3E >
0111111 063 3F ?
1000000 064 40 @

1000001 065 41 A
1000010 066 42 B
1000011 067 43 C
1000100 068 44 D
1000101 069 45 E
1000110 070 46 F
1000111 071 47 G
1001000 072 48 H
1001001 073 49 I
1001010 074 4A J
1001011 075 4B K
1001100 076 4C L
1001101 077 4D M
1001110 078 4E N
1001111 079 4F 0
1010000 080 50 P
1010001 081 51 Q
1010010 082 52 R
1010011 083 53 S
1010100 084 54 T
1010101 085 55 U
1010110 086 56 V
1010111 087 57 W
1011000 088 58 X
1011001 089 59 y
1011010 090 5A Z
1011011 091 5B [
1011100 092 5C
1011101 093 5D 1 1011110 094 5E
1011111 095 5F <
1100000 096 60

,
1100001 097 61 a
1100010 098 62 b
1100011 099 63 c
1100100 100 64 d

All Information Presented Here is Proprietary to Digital Research

331

Concurrent CP/M-86 Programmer's Guide L ASCII Conversions

Table L-2.(continued)

Binary I Decimal I Hexadecimal I ASCII

1100101 101 65 e
1100110 102 66 f
1100111 103 67 g
1101000 104 68 h
1101001 105 69 i
1101010 106 6A j
1101011 107 6B k
1101100 108 6C 1
1101101 109 6D m
1101110 110 6E n
1101111 III 6F 0

1110000 112 70 P
1110001 113 71 q
1110010 114 72 r
1110011 115 73 s
1110100 116 74 t
1110101 117 75 u
1110110 118 76 v
1110111 119 77 w
1111000 120 78 x
1111001 121 79 Y
1111010 122 7A z
1111011 123 7B {
1111100 124 7C i 1111101 125 7D
1111110 126 7E
1111111 127 7F DEL

End of Appendix L

All Information Presented Here is Proprietary to Digital Research

332

Appendix M
Error Codes

Table M-l. Concurrent CP/M-86 Error Codes

Code# I Definition

0 NO ERROR
1 FUNCTION NOT IMPLEMENTED
2 ILLEGAL FUNCTION NUMBER
3 CAN'T FIND MEMORY
4 ILLEGAL SYSTEM FLAG NUMBER
5 FLAG OVERRUN
6 FLAG UNDERRUN
7 NO UNUSED QUEUE DESCRIPTORS

LEFT IN QD TABLE
8 NO UNUSED QUEUE BUFFER AREA LEFT
9 CAN'T FIND QUEUE
10 QUEUE IN USE
11 QUEUE NOT ACTIVE
12 NO UNUSED PROCESS DESCRIPTORS

LEFT IN PD TABLE
13 QUEUE ACCESS DENIED
14 EMPTY QUEUE
15 FULL QUEUE
16 CLI QUEUE MISSING
17 NO QUEUE BUFFER SPACE
18 NO UNUSED MEMORY DESCRIPTORS

LEFT IN MD TABLE
19 ILLEGAL CONSOLE NUMBER
20 CAN'T FIND PO BY NAME
21 CONSOLE DOES NOT MATCH
22 NO CLI PROCESS
23 ILLEGAL DISK NUMBER
24 ILLEGAL FILE NAME
25 ILLEGAL FILE TYPE
26 CHARACTER NOT READY
27 ILLEGAL MEMORY DESCRIPTOR
28 BAD LOAD
29 BAD READ
30 BAD OPEN
31 NULL COMMAND
32 NOT OWNER
33 NO CODE SEGMENT IN LOAD FILE
34 ACTIVE PD
35 CAN'T TERMINATE
36 CAN'T ATTACH
37 ILLEGAL LIST DEVICE NUMBER
38 ILLEGAL PASSWORD

End of Appendix M

All Information Presented Here is Proprietary to Digital Research

333

Concurrent CP/M-86 Programmer's GUide End of Appendix M

All Information Presented Here is Proprietary to Digital Research

334

Index

8080 keyword, 62
8080 Memory Model, 53, 56
8080 Model, 57, 58
96-byte initial stack, 51

A

A-Base, 53
aborting ASM-86, 220
absolute address, 62
Access Drive, 39
archive attribute, 20
arithmetic instructions, 250
attribute bits, 19

B

Bad Sector error, 40
Base Page

8080 Model, 58
Compact Model, 60
initial Data Segment, 51
initialization, 53
Small Model, 59

Basic Disk Operating System,
7, 11

BDOS, 7
BDOS file system, 13, 15
blocking, 36
blocking/deblocking, 36
burst mode, 35

C

CCB, 7
Character Control Block, 7
checksum verification, 31
checksums, 31
CIO, 7
CLI, 24
CLI function, 51
Clock 6
Clock process, 6
Close File, 28
closing files, 19
CMD, 8
CMD file, 51
command file, 8

335

Compact Memory Model, 53
Compact Model, 57, 60
conditional Read, 5
conditional Write, 5
control transfer instruc-

tions, 256
convertion 8080 programs to

Concurrent CP/M-86, 62
CPU resource, 3
Create Process function, 51
current record position, 56
current user number, 11

D

data area, 11
data block size, 15
date stamp, 28
deblocking, 36
default DMA buffer, 56
default drive, 55
Delay, 6
Delete Mode, 27
delimiters, 14
devices, 293-294
directory area, 11
directory codes, 42, 44, 45
directory functions, 12
directory label, 12, 25,

26, 28
disk directory area, 16
disk Parameter Block, 37
Disk System Reset, 37
Dispatcher, 3
DMA address, 51
DMA base, 51
DMA offset, 51
drive capacity, 15
drive reset operation, 37
drive select code, 13, 14
drive-related functions, 12

E

error codes, 9, 42, 44, 45
error flags, 43, 44, 45
Error Handling, 9
error mode, 13, 40

extended error codes, 45, 46
extended errors, 40, 41
extended file, 35

F

Far Call Instruction, 60
Far Return, 51, 58
fatal errors, 315
FCB checksum, 32
FCB format, 24
FCB length, 17
FCB

Area 1, 55
Area 2, 56

File Access, 34
file access functions, 12
file attributes, 20
File Control Block FCB, 17
File directory elements, 19
file format, 16
File ID, 18, 29, 34
File locking, 7
file naming conventions, 15
File R/O error, 40
file references, 11
file security, 31
file si ze, 15
file specification, 13
file system, 13, 31, 35
file type field, 11, 13
filetypes, 15
filename field, 11, 13
Flag 1

system tick flag, 6
Flag Wait, 6
Flush Buffers, 36
Free Drive, 32, 39

G

G-Form, 51
G-Length, 53
G-Max, 53
G-Min, 53
GENCMD, 61, 64
group descriptor, 51

336

H

header record, 51
CMD file, 57, 62

hexadecimal formats, 297

I

Idle, 1
Idle process, 5
independent group, 55
initial stack, 60

8080 model, 58
initializing an FCB, 18
Instruction Pointer, 58
Intel HEX File Format, 64
Intel utilities, 62
interface attributes, 23,

24, 30

L

labels, 226
Lock list, 19, 31, 34
Locked Mode, 29
log-in operation, 37
logic instructions, 252
logical drives, 11, 15, 16

M

M80 byte, 55
Make File function, 20,

27, 28, 30
maximum memory size, 63
MEM, 7
memory, 56
memory models, 57
Memory Module, 7
memory

initialization, 51
minimum memory value, 63
miscellaneous functions, 12, 13
mnemonics, 245, 295
MPMLDR, 37
multi-sector count, 13, 35
Multi-Sector I/O, 35

Mutual exclusion queues, 5, 6
MXdisk, 6

o

one second flag
Flag 2, 6

Open File function, 20, 30
Open mode, 30
operand type symbols, 245
operators

p

arithmetic, 228
logical, 227, 230
relational, 228
unary, 231

parameters, 219, 293-294
parent/child relationship, 56
Parse Filename, 14
Parse Filename function, 51
password address, 55
password field, 13
password length, 55
password protection, 27
passwords, 11, 27, 28
permanent drive, 37, 39
physical error codes, 46
physical errors, 40
prefix instructions, 255
process, 1, 31, 32, 34
Process Descriptor, 3, 6

initialization, 51
program, 1
Program Load function, 53, 58

Q

qualified reset, 38
queue buffer, 5
queue descriptor, 5

R

R/O error, 41
Random Record Number, 16
Random record Number, 56

337

Read File XFCB, 28
Read mode, 27
Read-Only attribute, 20
Read queue, 6
Read-Only mode, 29, 34
Ready List. 4
ready process, 3
Real-Time Monitor, 3
record, 16
record buffer, 36
record locking, 31, 34

register AL, 43
registers

system function calls, 9
removable drive, 37, 39
reset drive, 37
return codes, 43
round-robin scheduling, 4
RTM, 3
running process, 3

s

segment group memory
requirements, 62

segment register change, 60
segment register initializ-

ation, 58
select error, 40
semantic errors, 315-316
sequential I/O processing, 35
Set BDOS Error mode, 40
Set Directory Label, 26
Set File Attributes, 20
Set Multi-Sector Count, 35, 45
shared access mode, 34
shared access to files, 7
shift instructions, 252
Small Memory Model, 53, 59
Small Model, 57
source files, 16
sparse files, 16
string instructions, 254
SUP, 3

Supervisor, 3
suspended process, 3
syntax errors, 315-316
system attribute, 20
system function calling

conventions, 9
system process

tick, 6
system queue, 5
System Reset function, 51
system timing, 6

T

Terminate function, 51
Test and Write Record, 34
time of day, 6
time stamping, 12
time stamps, 28
TOD, 28
transient processes, 1, 3
transient programs, 8

u

UDA, 3
initialization, 51

unconditional Read, 5
unlock record, 34
Unlocked mode, 29, 34
user 0, 25
user directories, 24
user number, 24

v

variable creators, 229
variable manipulators, 229, 231
variables, 226

w

wildcard specifications, 24
Write file, 27
Write mode, 27
Write protect disk, 39

338

x

XFCB, 25
XIOS, 8, 36

