1.

To: Kon Gruner
From: 3teve Aallach
Topics FHP Assessment

1 Introduction

This memo presents the conclusions and recommendations based
on two trips to the T? facility, Certain assumptions are made
about the near and long term goals of FHP, Where appropriate these
assumptions will be stated, For purooses >f rationally presenting
my thoughts, the following sections are developed: Name_Space,
JID/A0ON, re=microoragranming, <£0S (JS <ern2l), micrafdP, ana
conclusion, " -

2 Name_Soace

There are two primary forces driving the redesign of
Name Space!: “erformance of SPL orograms and code density. [he
latter with respect to VAX comparisons.

Taking the latter first, Rather than attempting to exolain
why VAX has better code density, or the validity of the small
samples it is w~orthwhile noting that with the oresent definition of
Name _Space some very interesting side etfects results., First of
3lly names must: 2e 16 bits in leagth, wWAy? ' ’

1) A Name in Name_Space is not really a user defined name or
variable. Consider the existance of the array variable A
and the integer scalars I and J. References to A, [, J,
AlLl, and ALJI requires the compiler use 5 names and not 3.
Thus there 1is a multiplicative effect that generally
results when array references occur. 0f course, array
references use the longest NIE (128 ©pits). The present
effort toj oroduce new 32 and 64 bit NTE’s willi solve a
major part of this problem.

2) All the names in ingependently conpiled subroutines when
bound into a procedure object, must be wunique in that
object. That is there can not be nultiple uses >f the same
name., In reality, this is somewhat of a lie, This bind

17312333
8/Sep/ 50
Data General Corooration
Company Confidential

n

vame_Space

strategy must be adopted due to the extensive overhead of
entering subroutine using the proceddre object enviroament
data in the object’s root, 1If this strategy were adopted,
an 8 pit name Would suffic2 for nely suoroutines, out: of
course subroutine call overhead becomes excessive and there
goes performance,

Conclusion, proceed with the following redefinition, cbtain
settar code dJdeasity than VAX (for whatever that’s wortn),

Ihese issues |l consider more academic in nature, when compared
to some other issues that either result in more substantive metrics
and perceived marketing advantages. Let’s enumerate some of these

points,

1)

2)

Some of the SPL benchmarks run indicate a severe perfor-
mance 2denalty as contrasted to the vW/8000. Since in a
"TYPICAL" system it is not unusual to spend 50% or more in
the system, this must be correczted, J[fne correction »Deing
identification of the common addressing modes used in NIE®s
and accelerating them, +Hosever wshat thought has been giveq
to NTE reference patterns for languages other that SPL and
Fortran. 2resumably COBJIL performance will pecomne an issue
some day. Does COBOL have a sufficiently similar or
different address mnode pattern than SP.i and Fortr?n? It so
the present effort also accelerates (UBUL. If it does not,
this should pe considereds I do not know the answer to
this question, but someone should provide one, Pascal
should be considered as o2art of this effort.

An opinion already publically discussed is the extent that
yoJdr architecture is superior to a comoetitor is a functio~n
of the user perceived benefits. The notion of dial a
osecision intergers and float in Fortran was previously
noted, While not as obvious, but mentioned by some scien=
tific and technology bigots is tne notion of nixed moge
arithmetic. This was discussed briefly with some people.
From a3 performance and cogde den2rator viewdoint, any
advantages are minimal, However, 1in the never ending
search for all the hype and imoact, direct support of mixed
mode can be a product differentiator, The basic Name_Space
structJire effectively minics a data tagjged architecturz. By
directly supporting data types in a NTE and thus having a
generic ADD and not Add Integer and ADD Float, some product
differentiation can be obtained (the System/38 supports
this tyose of "GENERIC" instruction structure), This
feature will turn on certain customers. The most frequen=

17:12:35
&/S5ep/80
Data General Corooration
Lompany Confidential

n

3)

Vame _Space 3

tiy mentioned drawbacks to this feature are the cost of
imd>]ementation and what does it buy since mixed mage
arithmetics do not occur frequently.

I celnave that the latter dpjection nas peen answ~ered, The
first objection is simply a8 reaction to @ change, From
tirst mand experience on the Burroughs 6700 class of
machines and the Kaytheon Data Taggeo AADC (1 mentioned
this only to prove the point), gata tagzging and nixed mode
can be supported with NU Jloss of performance for the
general case of constant arithmnetics.

The entire issue of §S_languages, binding subroutines of
differant language togetner, &1d the davelopment of susport
for newer high level languages as they come along.

Examinpipg the latter two points and reaching conclusions
based on the presented facts reveals as follows, Though
not 3Juite clear from the dogcumentation (if it is not true ,
it could be made to work), multiple Procedure Environment
Descriotor’s can be supported in the Ssame proceddre object,
Assume the following simplitications can be made: 1he
static data pointer remains unchangad, the ~name tapdle
pointer remains unchanged (there is no reason that names
across Seinterpreter can not be sypoorted), a comnon
subroutine call and return mechanism across all S-languages
exists (1 velieve this is the case), and the S=ianguage
identity can be incorporated in the NTE used to name the
called sJoroutine., One obviows 3uasstiop, is the nech§nisn
used to invoke the original JS=language of the <caller.
Agains, the arch. document is unclear about the macrostate
stored in the frame pushed on the current stack. 1 anm
assuniag that al reasonably sized bit field (4~8) can be
placed on the stack and used to identify the S~language of
the caller, In effect what has oeen described 11n a flat
inter=language call.

1f this is done and the S=lengJage intaroreter s present:
(which it is on sprint), the overhead of S.language switch
is minimal (1 oelieve 1 or 2 microcycles as worst), More
will be said about speed versus architecure after the next
DOint'a

Are multiple S_languages a boom or bane I Borrowing from a

173123253
8/5ep/80
dats General Corooration
Lompanv Confidential

Neme _Space 4

past leader, it is neither, they are a canard, I believe
the following is true adout S_ lawqua;es especially witn
respect to FHF. The intersection of the Fortran, SPL, and
Cobol 3_languages, the instructions in common (forgetting
opcode aSS1gnment), and the disjoint set correlates with
the Ecliose M/600 or the WV/8000, The word addressed
tloating point is certainly the Eclipse Fortran S_languages
the oyte granular Commercial set i3 tne Cobol S_language
set, and the character instruction ana the various privi=
leged ipstructions are the SPL set. In realdty alli §=
language design has accomplished is permitted a degree of
freedon to the compiler designers in deternining the
desired object code to generated. Unlike the B=1700 where
the conpiler writer in addition to instruction semantics
could choose descriptor format (read NTE format), 1in FHP
only instruction Semantics are pernitted, Aiready existing
in the structure of the NTE is the superset notion of all
the addressing and namning conventions required for the
anticipated high level languages (and not augmentable by @
S-language). ' - ’ '

Ahat does this mean? Other than eliminating multiple
opcode decoders i1n the I2 (so [“m told), very little else
would be gained in the some total of all microccode develo~
oed for Sprint and [suspect future FHP’s, The same
functionality will always exist. Of course the real
dosnside (as you correctly perceived), is that: software
agevelopment may want an S_language for each adoitional
conmpiler supoorted, This could than potentially translate
into the massive mijcroprogramming effort so feared.
Classically additional languages required add1twpnah
run~=time support. And the run=time Support was transporta-
ple from one machine to another. I taink this issue s
more a question of management control., By S1mply dictating
that uitil further notice, no additiopal S=langJages, and
that all future compilers must choose one of the available
lawqua;eaf you stil] maiatain tne usa2r oerception of al
benefit of the architecture and you leave open the oppore-
tunity for augmnentation of the architecture in an orderly
way in the future. This approach only makes sense if one of
the avaslaole S_languages can oe used for the more imnedi-
ate compiler (i.e, Pascal, PL/1, C, KPG, 7¥Basic , 2APL)
develooment efforts ‘

What this means is that all the technical anc performance
objectipons to: S_ \anguages can pe sdolved With the same leveli

172123235
8/3ep/80
Data General Corporation
company lbnfidential

Name,Spgce 5

of thought as now going in to Nane _Space or rezoding the
Kernel microcode. All other objections can be handleo with
a firm management committment,

Une last observation. Based on the S_ops listed in the FHP
arch, document dated \Nov/3/79, tne intersection of the
S-languages supports my previous analogy with the MV/8000,
fhere are aporoximately 73 SPL S=o2s, The intersection of:
SPL and Fortran results in just 30 addition?l S=ops Deing
defined. As you can imagined, these 30 deal with the
floating point and character string data types of Fortran.
Again intersecting this set «w4ith Cbool, results i 48
agditional S=ops. You guessed 1it, the additional S=ops
deal with gecimal data types and the editing and searching
semantics of Cobol, In total 141 unique $_oPs exists.
Ahat does this analysis mnean, Une oovipus conclusion, 1is
to combine all OS~ops 1into one instruction set, This
eliminates all context switches and arogram bind proolems
among different S-ops modules, What we see, is & scienti~
fic and commercial instruction s2t built on a pase (or SPL)
instruction set, Given the 8 bit S=op encocing, sufficient
space is left for expansione Also all three base langJéges
have the complete instruction set available. 1Thus, Fortran
COULD nave some of the commerciali cadedilities of Coboli (I
am not advocating this, but only what can be done, of
course P.V1 DOE> have both comnercial, character, and
scientific data types). lhis. sho4ld. be. g;xgn_ sgaagus
sgasidaratiea.

The next step 1s to then realize that most of the instruc=
tion set has the same semnantics apdlied to different data
types. This naturally leads to binding the adata type in
the VIZ. Uther than the reasons oreviously given for thais
abstraction, some secondary benefits are: for Janguages
with run-time coercion of data types (like APL), & natural
way exists to support such an interpreters and lastly a
coavenient way is now defined to MAJCH the data types of
input actual argument against the data type expectec. The
Fortraw standard says passing the Arong argument type is an
error, Undefined results occur. There has been many 2
oaper that mentions this error as an area that should be
given aid by the compiler, Software reliapility is a big
sellipy feature., In this case, th2 data types (optionaily)
of the passed arguments are matched against a template at
the caiﬂee ss site,

17312:3%
8/Sep/80
Data General Corporation
Company lobnfiaential

P Name_SPQCe 6

4) Presently intra=~object calls that stay within the current
domain are expensive, Ihis expense results in multiple
cooies of the run=time eavironpmnent existing in ‘nenory. A
copy is bound to every procedure object and not shared.
Though the architecture su>ports shared »rocedure obJects:
the call time and name cache fill/flush situation reduces
cserfornance. It seens iaconceivable that: in an
architecture, with its object addressing, that the run-
timer are not shared as a matter of oolicy.

There are two suggestions in this area, Provide a FLAT
intra=object procedure call and return, or sufficiently
expediate architecturally CALL for this case, and secondly
redisgn the nane cache such that its asociation 1is on
AON!iName not just Name, This eliminates the neea for name
cache flush/fill on a return,

3 ULD/AUN and machine state jissues

Many of tne performance issues, espacially during cross domain
call and fault processing is the conversions Dvpetween AUN/UID and
J1D/AUN, ana the potential for an exce2ssive amount >f macthine
saving and restoring. |

The AON/ULD issue is the more peculiari of the two, Pronoted
as the vechicle to avoid ambiquous names, make software development
2asilier and mope reliable (the ability to enzeosulate, at Wilil,
data or other things in name objects) will probably ach1eve many of
these objectives. However, since that cost of hardware is not yet
tree, the exact construct that software wants to eliminate has
oecome a burden on the hardware. AJiN"s sere created so tnat
software could easily index into sparse (relative to the length of
a UlJ)) tables., Also to eliminate the ourden >p the hardware to
maintain 80 bits of object 1D. The goal is noble, but the cure may
oe worse that the cause. Extensive time is: spent converting AON to
persistant UID auring a context swap. This is due to the AON not
oe persistant. The ATJ must be purged uoon context swap, since it
associates on AUN and not UID,

There are proposals to fix this proolems. AJll of which involve
additional hardware accelerators for UID/AON conversions. Before
any consideration oe given to aoplying hardware solutions, an
analysis must be made of the design of the AON/ULD abstraction,
Afterall, this 1s the root of the oroblens Ahile I am not as vyet:
finished with my analysis (in reality in cooperation with Steve

17312335
8/Sep/BU
Jata General Corooration
Company Confidential

3 J1J/A0N and maching state issues /

Schleimer and Doug Wells), some simplitications are worth noting.
Among them are:

1) Contracting the UlU from 80 bits to 64 bits,.

2) 1f AJN“s remain, allocate the loser: half (the first & <) to
system maintained. Thus this AUN need never be converted
to UlJ) ana the construction of a split AJU beconmes
feasible. (he system ATU need not be flushed on context
switches, since its AJDN associatipn are system=+1de,
(Already implemented, conceptually or in reality on the
Prime 750, VAX, and the W /8000.)

5) lnvestigate the possibility for defining for FHP_1 (using
the nomenclature in one of your memos) to a 128 o20inter for
which only 64 bits are "ACTIVELY" interpreted., Actively is
oresently undefined. Or simoly, for F4P_1 only supporting
a 64 bit pointer, but allocating 128 bits in main memory.
fhus, when it pecomes judicious, all 128 of the opoipter:
have meaning. It is my understanding that in the first
releases of the 35, UID"s (for the user) are not supoorted.
The System/38 employs a similar approach, JIheir architec=
ture provides for a 40 bit segnert nudmoer, only 24 of Wshighn
is supoorted in the first incarnation. Ihis-is_anly. uﬁﬁ&h

agdressa

4) Since only four domains are supported, incorporate the
protection access bits with physizal adaress gener@tion.
Thus the ATU serves two purposes (orotection validity and
physical address generation) and tne orotection cache s
eliminated. ' '

Machine state issues invoive the excessive machine state that
is either created across machine instructions or saved as a result
of page faults. The excessive machine state =:created comes about
due to the gefinition and implementation of the CALL instruction.
Veedless to say this is not a surprise and an extensive effort s
underway to correct this situation. -

The state save issue with resoect to] page faults may not oe s
easy to fix. Ekxperience with the MV/8000 indicates that in the
vast majority of time a short context blozk (only wuseable state
need be saved). In effect most instructions are restartable, This
is not due to the implementation nor the architecture but as a
result of the fact that most instructions perform very simple

172123835

8/5ep/80

Jata General Corooration '
Company Confidential

5 ULD/AON and machine state issues

=

operations (the same 1s true in Sprint = examine the s=op distribu~-
tion for SPL programs), Jlhe res>o0782 to wiy 3arint can 30t do tnis
(other than the present design) generally involves responses like:
For sorse case we have to be capable of saving all state, the page
fault handler in microcoge wusing additional frames on the
nicrostack, thareby creating state that nust bes saved, and the page
fault handler resides on 1ts own unique virtual processor thus a
srocess switch mJust be performed,. Again the problem manifests
itself due to the high level design and not the implementation.

This design must oe re-evaluated. There are two mnany cases
that the microcode is structured solely to mimic a high Jevel
software conpstruct without the asproosriate rediction to a hardware
control mechanism, 1lhe advantages of this high Jleve| abstraction
are clear (they hapden to be Huber®s :I.Z. thesis at M.le.l).
However the same result can be achieved by a redesign that puts
sone adoitionali burden o1 the kern2]l softwar2., This burden w~ou4lds
relieved of the microcode and make it feasible to simply restart
instruztions, Ultimately. states savipy and restoring 1is more
efticient due to the elimination of additional microstate.,

4 KU3 = Xernel

This aiscussion pertains to the certain capabilities KOS does
not suoport that it should, A0S and AJS/V3: permit three process
types to existiswappable, pre=emptible, and resident. As near as I
can teld, KOS oply pernits swaopable (op geheral ourpos2 interac=
tive user), If the first product offerring only contains Fortran
and/or Sprint 1s to sell 1into the real=time marketplace, some
adgditional capabilities over and above that which 1is presently
supported must be orovided, '

These capabilities must include: l)the notion of a resident
orocess. <05 already permits this by virtue of the page fault
handler virtual processor. It seems appropriate that a user
visiole virtuali aorocessor type of: resideat is appropriats, Uther=
wise there is no guaranteed interrupt response time ¢J)the ability
to wire and unsire pages of a resident’s processes working set.,

Effectively, the resident process of AUS/VS does not mean that
the entire process is resident, only that the 2WIRL ana FUNWIRZ
calls are supported, Pages that are not wired are faulted 1n and
out.

Additionally there appears to be no notion of multi=tasking
Nithin JPUOS. [he comment in reaction to this statement was tnat
multiple processes can be used. However, processes are expensive

17312855
8/Sep/80
Data General Corooration
Company Confidential

4 U35 = Kernel J

to create, manage, and provide communciations between as compared
to tasks., The qguestion of multi=taskiag on tie MV/8000 ana its
support under AUS/VS ana Fortran 77 was a3 very common gqueStion
during customer oresentations, ’

A question you can answer is to what extent goes Sprint have
to be oerceived as 8 high end offerring of the current product
line? LExpandaing one step further 1is Sprint’s relationship with
cLL1PS:Z nardware and software the2 sane as 383°s relationships¢

S5 Re=microprogramming

Clearly identified as one of the critical redesigns necesarry
for performance enchancement, The organization of the approach
taken oy L. Schiller should get acceotable results. If one were to
read his workplan, the interesting notion of microcode generation
from 13M s P./S3 is brought uo, Independent of b-langJages, the
amount of microcode needed to be developed for FHP w1th its exten=
sive supoort for US functions would dictate that the teasioility of
generating microcode in this fashjon at least be examwned.

5 nj:rof%P

Several suggestions were made relative to the block diagrams
oresented., Ihe major one pbeing incorporating a sma!ier name cache
within the ALU chip. This eliminates the need for onhe of the chips
and reduces the risk of the project. Uf course the oserformance
consequences of this are not quantified, Additional analysis could
not oe done without a wcgetailed determination of the <chip area
required for all the Jisted functions and blocks. Mitchell reaj~
izes that this is the text criticali stap iy th2 oroject.

7 Conclusion

The above sections have enumerated suggestions for some
changes to the architecture/implementation of Sprint. It has bDbeen
assuned that the goals and objectives of sarint (as you said at
your staff meeting that 1 was present at) was to make the computing
world and Data General say that this is worth waiting for and/or
this is the best thing since white bread.

The way the architecture contriputes to this is directly
proportional to the perceived user benefits, Clearly pgrformance
is one obvious user penefit, Whetstope at tne 2000 level is vary.
good, though higher would be better with no incremental product

173123383
8/Sep/80
Jata Leneral Corooration
Lompany Confidential

7 sbnclusion 10

cost. Wwill the vectorizer go this?Y 1t would be highly desirable
to have this realdy by announcement,

A stronger statement <concerning compatibility would bhelp.
Compatipility comes in many flavorse Ine MV/8Y0U chose binary,
Sprint has somewhat chosen high level language and AUS file level.
fhis should pe sufficient with the right anount of market1ng hype
and technical backup. Many present DG users though 1mpressed with
the oinary Camagtibity of the Mv/8000 would asave peen satistied
with a recompile. In fact Cobol users must recompiie, 1 don‘t
known what the situation 13, but the Sorint Fortran “77. or some
mechanical translator should be able to compile Eclipse Fortran 5
to Sorint. Another desiraple feature of Fortran should be the
capability to compile l8M"s Fortran. Prime®s Fortran does this,
and they get their fair share of business via this route,

In fact a generic approach of compiling 1B8M fortran and Lobol
should enhance Sorint.

A tact brought up by many DG customers is the lack of a 32=bit
ous for the vv/8000, DECI uses their LR730 attachment to the bju to
their 2dvantage in many market1ng situationse.

Since Sorint is inherently a tightly coupled multi=processory
provide the mechanisms that permit two JP"s controllied by one 1UP.
?erhaps this is the nia~like kicker so frejguently mnentioned.

Uf course the real win would be to announce any type of
tandem, non=stop, or other ARM features, These teatures always
help sell. It is not clear, within the time contraints of Sprint
announcenent goals what can be accomolisned., dJowever here are some
ideas that may help Sprint”s ARM story.

1) Permit the memory and I/Ji controllers ooards to 2e electri=
cally disconnectea trom the host processor w1thout powering
doan tre estire bay.

2) Permit a form of greceful degradation by microcoding the
E=30x functionality into tne fetch unites Thus 1t any ofy
the 3 E-BUX boards tail, processing can continue at slower
performance. ‘ |

5) Permit the processor to continue functioning with TBS8
replaced with a 6053 or -equivailent. Jne of the often
mentioned remarks concerning the MV/B000 is the sensitivity
of the machine to the flopay, M3C, and 6055, Customers
wanted to know if backup units could be made available.
Nhile customers mnay have sdare 6053°s, | doubt a soare 85

17312355

8/Sep/80

Data General Corporation ‘
Company Zbnfidentisal

7 Conclusion 11
#1111 be availaole.

Graceful odegragation as a form of high availacility 1is as
valid an aoproach as duplication (though not guaranteeing the same
level of availability). 1In an uni=processor that may be the best
one could hope for, o

17:12355
8/8ep/ B0
Late General Lorporation
Company Zbnfidential

