
Denelcor

D
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

(303) 340-3444
TWX 910-931-2201

TABLE OF CONTENTS

RESEARCH PAPERS

1. The Evolution of a Super-Computer
2. A Pipe1ined, Shared Resource MIMD Computer
3. A Parallel Operating System For An MIMD

Computer
4. A Comparison of HEP and Vector Machines

by Application Area
5. Standard Synchronizations in HEP FORTRAN
6. Solving Linear Algebraic Equations For An

MIMD Computer
7. Scheduling Recurrence Equations For

Parallel Computation
8. Two Parallel Algorithms For Shortest Path

Problems
9. Parallel Solution of Flight Simulation

Equations
10. Computer Image Generation Using MIMD Computers

Tomorrow's Computers ... Today

Denelcor

D
Oenelcor, Inc (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

THE EVOLUTION OF A SUPER-COMPUTER

BY DR. E. J. SMITH

Tomorrow's Computers ... Today

THE EVOLUTION OF A SUPERCOMPUTER

Burton J. Smith

Denelcor, Inc.

Denver, Colorado 80205

Abstract -- The HEP computer system, originally a digital
replacement for analog computers, has gradually evolved into a
high-performance scientific machine in the supercomputer class.
The problems encountered during this metamorphosis are pointed
out together with the solutions that were adopted, and conclusions
are made based upon this experience.

Initial Designs

In 1973, several of us at Denelcor, Incorporated decided
that a digital computer could be designed and built to replace
the analog machines that had been our traditional products.
Our intent was to retain the speed and parallelism of the analog
computer while improving on its programmability, flexibility,
and reliability. Our approach was straightforward: the functional
units of the analog computer would be implemented in digital form
and the patch panel would be replaced by a high-speed bus controlled
by a scheduler processor which would transfer data among the
functional units. Since some of the functions would have data
dependent execution times, it was decided that the synchronization
of the data flow in the computer would not depend on the timing of
scheduler programs; instead, every function unit would have input
and output locations accessible from the high-speed bus which
could be either full or empty. The function would be performed
when all input locations were full and all output locations were
empty, and would empty the inputs, compute the function, and
then fill the outputs with the answers. The scheduler processor
would be able to perform the opposite operations on the input
and output locations to move output values of one function unit
to the input locations of other function units. The machine w~s
to have 32 bit arithmetic and be capable of about ten million
floating point instructions per second.

-1-

\Ve wrote a few programs for some typical analog computer
problems and discovered that the traffic on the high-speed
bus was limiting the performance of the system. At this point,
we decided to replace the add and multiply function units by an
algebraic module - really a simple shared resource MIMD computer[l]
to reduce the bus load. The algebraic module was pipelined to
improve the utilization of the addition and multiplication logic,
and had several program counters so that several expressions could
be evaluated simultaneously. The registers of the algebraic module
could be filled or emptied by the scheduler via the high-speed bus
as well as by instructions within the algebraic module. We called
this system HEP, standing for Heterogeneous Element Processor.

We built a prototype HEP based on these concepts and were
happy with the effectiveness of the architecture. The prototype
was built under contract to the u.s. Army Ballistic Research
Laboratory (BRL) in Aberdeen, Maryland, and executed their
benchmark at a quite respectable speed, expecially considering
that the implementation suffered from noise problems and did
not run at design clock rate. BRL was impressed enough with the
concept to award Denelcor a contract in 1976 to design and build
a HEP system incorporating four algebraic modules and 64 bit
arithmetic. In order to guarantee that the noise problems of
the prototype would be solved, the contract stipulated that
initially a single algebraic mod~le was to be built and demon
strated to BRL running benchmarks at des~gn speed; only then
would we be allowed to complete the design and construction of
the full system. The contract also specified that a high-level
language be furnished.

Enhancements

The high-level language problem had us concerned for a
while because we could see no good way to decompose a program
into a scheduler part and several algebraic module parts, even
if the decomposition was specified by the programmer, because
of the very special nature of the scheduler instruction set.
We decided with BRL's concurrence to eliminate the scheduler
and the high-speed bus, and to provide the communication functions
of these components with a data memory which would be accessible
by all algebraic modules via a switch. The full-empty property
would be available at every location in the shared memory to
facilitate synchronization of processes running in parallel in
different algebraic modules. This idea allowed us to implement
an extended version of FORTRAN in which a programmer can write
explicit parallel code. In particular, a subroutine in HEP
FORTRAN may be invoked by a CREATE statement rather than by a
CALL statement. This causes a process to execute the subroutine

-2-

in parallel with the creating process. In addition, variables
having the full-empty property (called asynchronous variables
in HEP FORTRAN) are identified by a "$" as the first letter of
the variable name and are used to synchronize parallel processes
in a producer-consumer fashion.

We realized that explicit parallel programming was not the
only way in which HEP could be used effectively, and that multiple
independent jobs could be run concurrently if protection were
provided by the hardware. The cost of including the necessary
protection mechanisms turned out to be just as expensive in
terms of hardware complexity, system cost, and schedule as 'we
all had predicted; we implemented the protection hardware
primarily because a "single,' highly opinionated, forceful
individual" [2J, Max Gilliland, insisted on it. The ability
of HEP to use the parallelism provided by multiple jobs executing
simultaneously is certainly an important feature, and has greatly
simplified the design of the operating system. It was at about
this time that we started calling the algebraic modules "processors"
and realized that HEP might be usable as a general-purpose computer
system.

While the processor required by our contract with BRL was
being built, our attention turned to the switch that was to
connect the four processors of the BRL system to data memory.
Our original intent was to implement a crossbar switch, but
two properties of HEP made a crossbar undesirable. First the
interconnection of large numbers of processors

2
and memories is

very expensive if a crossbar (or any other O(n) switch) is
used, and second, HEP is a physically large system and the
wire lengths needed to interconnect widely separated units to
a centrally controlled switch would result in very wide data
paths to maintain the necessary throughput rates. The switch
network that we eventually carne up with uses packet-switching
techniques to allow the control of the switch to be distributed
among its nodes. The HEP switch also has advantages in config
uration flexibility, versatility, and fault tolerance over our
original scheme. The major problem in designing it was making
it fast enough; how well we succeeded can perhaps be inferred
from the fact that the switch propagates messages at one-fifth
the speed of light with a bandwidth approaching 80 megabytes
per second for each processor or memory connected to it. A
succinct description of the HEP switch and HEP as a whole may
be found in [3J.

- 3-

Experiences

The HEP processor that we had been building for demonstration
to BRL executed its first HEP FORTRAN program successfully in June
of 1979, and we have since demonstrated that processor to BRL and
others. Most of the programs that have been written for HEP are
benchmarks that were obtained from interested parties and rewritten
in HEP FORTRAN by Robert Lord of Washington State University.
Some of this benchmarking work has led to more generally applicable
MIMD algorithm development [4,5].

In sharp contrast to our experience with the prototype, the
first HEP processor was extremely easy to get running. We made a
conscious decision not to use unproven technologies, and this
undoubtedly explains part of our success. The key ingredient,
however, was that we were extremely conservative in our approach
to the packaging, maintenance, and electromagnetic field theoretic
aspects of the implementation. The HEP computer system is speed
independent in design, and will run at any clock rate less than
or equal to its maximum rate of 40 MHz. This feature allows us
to test and debug any part of the system (including the system
itself) using IML, our interactive maintenance language. Our
experience with the multiplier function unit is instructive.
HEP printed circuit boards are about 45 cm wide and 35 cm long
and are populated with an averag~ of 208 SSI and MSI circuits
apiece. After the nine boards of the multiplier had been debugged
individually and at low speed using IML, we plugged them all into
the processor and had the multiply instructions working at full
speed about ten days later, this in spite of the fact that the

,multiplier was designed by five people.

Conclusions

Several conclusions can be drawn from this history in addition
to the obvious ones about knowing when to stop designing and start
manufacturing and the like. First, it is probably better to design
a computer for a single application that you know very well than to
design a computer for a number of them hoping for a bigger market.
At least you will please a few customers in the first case, and the
compromises you make in designing a more general purpose comptiter
may wind up pleasing no one. In addition, you may be surprised
to find that your single-application machine can do other things
too; I think the experience of Floating Point Systems in this
regard is especially interesting.

-4-

Second, it is not enough to merely use the best attainable
technology when a large and innovative digital system is to be
built. It is equally as important to make the system easy to
maintain in a general sense: easy to manufacture, easy to test,
easy to repair, and perhaps even easy to understand. Innovation
in architecture can overcome problems stemming from slow parts,
insufficient connector pins, or inadequate component densities,
but cannot overcome deficiencies in implementation of that arch
itecture.

Finally, it is not really necessary to know the exact arch
itecture of the computer one is building before one starts working
on it. Far more important is the maintenance of an open-minded
approach to the problems one is trying to solve with the computer
and a willingness to change the whole design if it seems approp
riate. Most of the time that passes between the point of inception
and the point of obsolescence of a computer system passes after the
first prototype is running, and good architectures are surprisingly
long-lived and fruitful assets in the marketplace. This is espec
ially significant when compared to the rate at which advances in
electronic technology change our implementations of those architec
tures.

Refer~nces

[lJ Flynn, M.J., "Some Computer Organizations and Their
Effectiveness", IEEE-C2l, (September, 1972).

[2J Lincoln, N. R., "It's Really Not As Much Fun Building
a Supercomputer As It Is Simply Inventing One",
Symposium on High Speed Computer and Algorithm
Organization, (April, 1977).

[3J Smith, B.J., "A Pipelined, Shared Resource MIMD
Computer", International Conference on Parallel
Processing, (1978).

[4J Lord, R.E., Kowalik, J.S., and Kumar, S.P.,
"Solving Linear Algebraic Equations on a
MIMD Computer", submitted to International
Conference on Parallel Processing, (1980).

[5J Deo, N., Pang, C. Y., and Lord, R.E., "Two
Parallel Algorithms For Shortest Path Problems",
submitted to International Conference on
Parallel Processing, (1980).

- 5-

Denelcor

D
Denelcor, Inc. (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

A PIPELINED} SHARED RESOURCE MIMD COMPUTER

BY DR. B.J. SMITH

Tomorrow's Computers ... Today

A PIPELlNED, SHARED RESOUCE MIMD COMPUTER

Burton J. Smith
Denelcor, Inc.

Denver, Colorado 80205

Abstract -- The HEP computer system currently
being implemented by Denelcor, Inc., under con
tract to the U.S. Army Ballistics Research Lab
oratory is an HIMD machine of the shared resource
type as defined by Flynn. In this type of or
ganization, skeleton processors compete for
execution resources in either space or time.

FROM DATA HEMORY
VIA S~VITCH

In the HEP processor, spatial switching occurs
between two queues of processes; one of these
controls program memory, register memory, 'and
the functional units while the other controls
data memory. Hultiple processors and data
memories may be interconnected' via a pipelined
switch, and any register memory or data memory
location may be used to synchronize two pro
cesses on a producer-consumer basis.

Overview

MEMORY

QUEUE

PERFORM
FUNCTION

PERFORM
FUNCTION

REGISTER
l-iEMORY

TO DATA MEHORY
VIA SWITCH

QUEUE

The HEP computer system currently being im
plemented by Denelcor, Inc., under contract to
the u.S. Army Ballistics Research Laboratory is
an MIMD machine of the shared resource type as
defined by Flynn [1]. In this type of organiza
tion, skeleton processors compete for execution
resources in either space or time. For example,
the set of peripheral processors of the CDC 6600
[5] may be viewed as an MIHD machine implemented
via the time-multipl~xing of ten process states
to one functional unit.

Figure 1. Processor Organization

In a HEP processor, two queues are used to
time-multiplex the process states. One of these
provides input to a pipeline which fetches a three
address instruction, decodes it, obtains the two
operands, and sends the information to one of
several pipelined function units where the opera
tion is completed. In case the operation is a
data memory access, the process state enters a
second queue. This queue provides input to a
pipe lined switch which interconnects several data
memory modules with several processors. When the
memory access is complete, the process state is
returned to the first queue. The processor organ
ization is shown in Figure I, and the over-all
system layout appears in Figure 2.

Each processor of ,HEP can support up to 128
processes, and nominally begins execution of a
new instruction (on behalf of some process) every
100 nanoseconds. The time required to completely
execute an instruction is 800 ns, so that if at
least eight totally independent processes, i.e.
processes that do not share data, are executing
in one processor the instruction execution rate
is 10 7 instructions per second per processor. The
first HEP system will have four processors and
l28K words of data memory.

1

PIPELlNED
SWITCH

Figure 2. "Overall System Layout

HEP instructions and data words are 64 bits
wide. The floating point format is sign magni
tude with a hexadecimal, seven-bit, excess-64
e~~onent. All functional units can support one
instruction execution every 100 nanoseconds except
the divider, which can support this rate momen
tarily but is slower on the average.

Tasks

Since HEP attains maximwn speed when all of
its processes are independent,· a simple set of
protection mechanisms is incorporated to allow
potentially hostile users to execute simultane
ously. A domain of protection in HEP is called
a task, and consists·of a set of processes. with
the same task identifier (TID) in their process
state. The TID specifies a task status word which
contains base and limit addresses defining the
regions within the various memories accessible
by the processes in that task. In this way, pro
cesses within a task may cooperate but are pre
vented from communicating ~ith those in other
tasks. Processes in different tasks or proces
sors may communicate via data memory if they have
an overlapping allocation there.

Processes are a scarce resource in HEP; in
addition, the synchronization primitives used in
HEP make processes difficult to virtualize. As
a result, the maximum number of processes a task
will use must be specified to the system when the
task is loaded. It is the job of the operating
system to insure that its total allocation of
processes to tasks does not exceed the number
available, so that a create fault (too many pro
cesses) can only occur when one or more tasks have
created more processes than they were allocated.
In this event, the offending task or tasks (not
necessarily the task that actually caused the
create fault) are removed from the processor.

Protection violations, create faults, and
other error conditions arising within a process
cause traps. A trap is the creation of a process
executing in a supervisor task. There are a total
of sixteen tasks available in each processor;
eight of these are user tasks and the other eight
are corresponding supervisor tasks. When any
process in it, and a process is created in the
corresponding supervisor task to handle the con
dition. This scheme is not used for create fault,
however; a create fault suspends execution of all
processes (regardless of task) except those
actually handling the fault.

Create·fault occurs before all processes have
been used to allow any create instructions in
progress within the pipeline to complete normally
and to allow for the creation of the create fault
handler process. All other traps in HEP are pre
cise in the sense that no subsequent instructions
will be executed from the offending task, a use
ful feature when one is trying to debug a con
current algorithm.

2

Synchronization

The synchronization of processes in HEP is
made simple by virtue of the fact that any regis
ter or data memory location can be used to
synchronize two processes in a producer-consumer
fashion. This requires three states in general:
a reserved state to provide for mutual exclusion,·
a full state, and an empty state. The execution
of an instruction tests the states of locations
and modifies them in an indivisible manner;
typically, an instruction tests its sources full
and its destination empty. If any of these tests
fails, the instruction is reattempted. by the
process on its next turn for servicing. If all
tests succeed, the instruction is executed; the
process sets both sources empty and the destina
tion reserved. The operands from the sources are
sent to the function unit, and the program coun
ter in the process state is incremented. When
the function unit eventually writes a result in
the destination location that was specified in
the instruction it sets the destination full.
Provisions are made to test a destination full
rather than empty, to preserve the state of a
source, or to totally override the state of a
source or destination with the proviso that a
reserved state may not be overridden except by
certain privileged instructions. Input-output
synchronization is handled naturally by mapping
I/O device registers into the data memory address
space; an interrupt handler is just a process
that is attempting to read an input location or
write an output location. I/O device addresses
are not relocated by the data memory base address
and all I/O-addressed operations are privileged.

Switch

The switch that interconnects processors and
data memories to allow m~mory sharing consists of
a number of nodes connected via ports. Each node
has three ports, and can simultaneously send and
receive a message on each port. The messages
contain the address of the recipient, the address
of the originator, the operation to be performed
by the recipient, ,and a priority. Each switch
node receives a message on each of its three
ports every 100 nanoseconds and attempts to re
transmit each message on a port that will reduce
the distance of that message from its recipient;
a table mapping the recipient address into the
number of a port that reduces distance is stored
in each node for this purpose. If conflict for
a port occurs, the node routes one of the con
tending messages correctly and the rest incor
rectly. To help insure fairness, an incorrectly
routed message has its priority incremented as it
passes through the node, and preference is given
in conflict situations to the message(s) with the
highest priority.

The time required to complete a memory oper
ation via the switch includes two message trans
mission times, one in each direction, since the

success or failure of the operation (based on the
state of the memory location, i.e. full or empty)
must be reported back to the processor so that it
can decide whether to reattempt the operation or
not. The propagation delay through'a node and its
associated wiring is 50 nanoseconds. Since a mes
sage is distributed among two (or three) nodes at
any instant, the switch must be two-colorable to
avoid conflicts between the beginning of some mes
sage and the middle part of another. When the
switch fills up due to a high conflict rate, mis
routed massages begin to "leak" from the switch.
Every originator is obliged to reinsert a leaking
message into the switch in preference to inserting
a new message. Special measures are taken when
the priority value reaches its maximum in any mes
sage to avoid indefinite delays for such messages;
a preferable scheme would have been to let priori
ty be established by time of message creation ex
cept for the large number of bits required to
specify it •.

FORTRAN Extensions

Two extensions have been made to FORTRAN to
allow the programmer to incorporate parallelism
into his programs. First, subroutines whose names
begin with "$" may execute in parallel with their
callers, either by being CREATEd instead of CALLed
or by executing a RESUME prior to a RETURN. Se
cond, variables and arrays whose names begin with
"$" may be used to transmit data between two pro
cesses via the full-~ discipline. A simple
program to add the elements of an array $A is
shown in Figure 3. The subroutines $INPUT and
$OUTPUT perform obvious functions, and the sub
routine $ADD does the work of adding up the
elements. There are a total of 14 processes
executing as a result of running the program.

C . ADD UP THE ELEMENTS OF
C THE ARRAY $A

C

C

REAL $A(lOOO),$S(lO),$SUM
INTEGER I
CREATE $INPUT($A,lOOO)
DO 10 1=1,10
CREATE $ADD($A{100*I~99),$S(I) ,100)

10 CONTINUE
CREATE $ADD{$S,$SUM,lO)
CREATE $OUTPUT($SUM,l)
END

NOELTS ELEMENTS OF $V
ARE ADDED AND PLACED IN $ANS
SUBROUTINE $ADD($V,$ANS,NOELTS)
REAL $V (1) , $ANS ,TEMP
INTEGER J, NOELTS
TEMP=O.O
DO 20 J=l,NOELTS
TEMP=TEMP+$V(J)

20 CONTINUE
$ANS=TEMP
RETURN
END

Figure 3. HEP FORTRAN Example

3

Applications

As a parallel computer, HEP has an advantage
over SIMD machines and more loosely coupled MIMD
machines in two application areas. The first of
these involves the solution of large systems of
ordinary differential equations in simulating con
tinuous systems. In this application, vector op~
erations are difficult to apply because of the
precedence constraints in the. equations, and
loosely coupled MIMD organizations are hard to use
because a good partition of the problem to share

. workload and minimize corr~unication is hard to
find. Scheduling becomes relatively easier as the
number of processes increases [3], and is quite
simple when one has one process per instruction
as in a data flow architecture [4].

A second type of application. for which HEP
seems to be well suited is the solution of partial
differential equations for which the adjacencies
of the discrete objects in the model change rapid
ly. Free surface and particle electrodynamics
problems have this characteristic. The difficulty
here is one of constantly having to rearrange the
model within the computer to suit the connectivity
implied by the architecture. Tightly coupled NIMD
architectures have little implied connectivity.
Associative SIMD architectures of the right kind
may perform well on these problems, however.

Conclusion

The REP system described above represents a
compromise between the very tightly coupled data
flow architectures and more loosely coupled multi
computer systems [2]. As a resuL~, it has some of
the advantages of each approach t It is relatively
easy to implement parallel algorithms because any
memory location can be used to synchronize two
processes, and yet it is relatively inexpensive
to impl~ment large quantities of memory. In addi
tion, the protection facilities make it possible
to utilize the machine either as a multiprogrammed
computer or as an Mum computer.

References

[1] Flynn,M.J. "Some Computer Organizations and
.Their Effectiveness", IEEE-C2l (Sept. 1972).

[2] Jordan,H.F. "A Special Purpose Architecture
for Finite Element Analysis", International
Conference on Parallel Processing (1978).

[3] Lord ,R.E. "Scheduling Recurrence Equations for
Parallel Computation", Ph.D. Thesis, Dept. of
Computer Science, Wash. State Univ. (1976).

[4J Rumbaugh,J. "A Data Flow Hultiprocessor",
IEEE-C26, p. 138 (Feb. 1977).

[5J Thornton,J.E. "Parallel Operation in the Con
trol Data 6600", Proc.FJCC vol 26, part 2,
p. 33 (1964).

Denelcor

D
Denelcor, Inc. (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

A PARALLEL OPERATING SYSTEM FOR AN

MIMD COMPUTER

BY DR. R. A. SCHMIDT

Tomorrow's Computers ... Today

A PARALLEL OPERATING SYSTEM FOR AN MIMD COMPUTER

Rodney A. -Schmidt

Denelcor, Inc.

Denver, Colorado 80205

Abstract -- The HEP computer system developed by Denelcor, Inc.
under contract to the U.S. Army Ballistics Research Laboratory
is an MIMD machine of the shared resouce type as defined by Flynn.
In this type of organization, it is of paramount importance that
the parallelism inherent in a user program not be compromised by
serialization or deadlock in the operating system. The HEP oper
ating system solves this problem by limiting its resource manage
ment activities through resource preallocation and subdivision of
resources into separately managed pools.

Overview

The HEP computer system developed by Denelcor, Inc. under
contract to the U.S. Army Ballistics Research Laboratory is an
MIMD machine of the shared resource type as defined by Flynn [1].
The architecture of this machine has been covered earlier in a
paper by ~mith T2].Briefly, processes in HEP reside within
tasks, WhlCh define both a protection domain and an activitation
state (dormant/active). Tasks reside within processors, all of
which access a shared data memory. Multiple tasks may cooperate
by sharing a common region in data memory. Cells in data memory
have the property of being "full" or "empty" and the execution of
instructions in processes may be synchronized by busy waiting (in
hardware) on the full/empty state of data memory cells. Other
than the state of data memory, processes and tasks in different
processors have no means of synchronization or communication.

High-level language (e.g. FORTRAN) programs in this machine
are explicitly parallel. Subprograms are made to run in parallel
with the main program by an explicit CREATE statement analogous
to CALL in ordinary FORTRAN. Code within a subprogram is SISD.
The objective of the HEP operating system is to preserve the
parallelism of the user program by executing in parallel during
the performance of I/O and related supervisory functions. The
operating system must:

-1-

1.) Allow all user processes to execute during I/O
related supervisory computation;

2.) Allow mUltiple concurrent supervisory I/O compu
tations;

3.) Allow reentrant use of code in the supervisor and
the user program;

4.) Provide maximum user performance by consuming minimum
resource in both time and space.

In SISD computers, reentrancy is usually obtained with some form
of dynamic memory allocation. Concurrency of the operating system
and the user is not possible due to the SISD nature of the machine.

In HEP, most dynamic memory allocation would generate consider
able serialization of code around the resource lock required to
safeguard the memory allocation data structure. In addition, HEP
cannot allow any memory used by the system to be writeable by the
user since the user is running truly in parallel with the system
and could destroy any location at any time.

User Memory Management

In the HEP operating system, the available general purpose
registers (about 2,000 of them) are divided a priori into groups
of uniform length. When a process is created, the creating process
must obtain a register environment from a table of available groups.
This operation is relatively infrequent and inexpensive. All
register environments are identical, and no state is retained in
them.

Main memory (data memory) environments are obtained at the
subprogram level by each subprogram as it is invoked. Space is
obtained from a pool of data memory environments peculiar to
that subprogram. The user must specify at link time how many
such environments should be allocated for each subprogram. Control
of an environment is obtained via a table of free environment~., but
the table is local to the subprogram. Thus, serialization for
access to an environment is only between multiple, nearly simultan
eous, invocations of the same subprogram, and is much less damaging
to performance.

-2-

Data memory environments are a resource not visible to the
user, and as such can contribute to deadlock problems. Given
the user's ability to increase the amount of data memory resource
allocated to a subprogram, the deadlock problem can be circumvented
without much difficulty.

Concurrent I/O presents its own set of problems. In FORTRAN,
a single I/O is implemented with multiple calls to I/O formatting
services. State must be retained by the formatter during this
process. This state is bound to the I/O unit, not the subprogram.
Further, the amount of space required is not known until run time.
Thus, some type of run time memory management is required, and
the resource thus allocated is invisibl~ to the user. The space
must be allocated in an area accessible to all processors in a
multi-processor job, so that all tasks may share the same I/O
units.

The strategy employed in HEP is to allocate I/O buffers for
a logical unit upon the first I/O to the unit. The space is then
consumed for the duration of the program, even if the I/O unit
is closed. If the I/O unit is re-opened for another file, the
record length of the new file must be less than or equal to that
of the old file. In this implementation, space can be allocated
from a top-of-memory pointer which moves in only one direction.
Serialization of processes occurs only on simultaneous first I/O
operations, and only for the few microseconds required to move
the pointer. This contrasts with the substantial serialization
introduced by the normal scheme of a linked list of available
space with garbage collection.

Consideration is being given to allowing a user to supply
his own logical record buffer, with only the fixed portion of
the I/O state held at the top of memory. This would allow the
user greater dynamism in the logical record size, at the expense
of managing his own resources.

Supervisor Memory Management

HEP supervisors require two types of dynamic memory: registers
to use while copying logical records to/from physical records, and
data memory to hold file parameters for open files. Of these, the
register allocation is the simplest. Since the users register
requirement can be determined from the number of processes requested
(a control card parameter), all remaining registers in the register
memory partition can be used for supervisor I/O operations. These
registers are allocated from a bit table to active I/O operations.

-3-

Data memory allocation is more difficult. It is not known
until run time how many files will be used, or how much logical
record buffer space will be required by the user. Fortunately,
the amount of supervisor space required per open file is constant.
The operating system merely allocates supervisor space for enough
files to accomodate the larger system programs (compiler, etc.)
and leaves the remaining space for the user. The default limit
on open files may be overridden with a control card for users
with special requirements.

Future Directions

The present HEP system provides a high-performance low over
head environment for parallel computational activities. Our next
activity will be to extend this capability with high-performance
parallel I/O operation with speed comparable to our processing
speeds. The parallel file system will include such features as
record interlock within files and concurrent read/write capability
from multiple jobs to the same file. '

[lJ

[2J

References

Flynn, M.J., "Some Computer Organizations and Their
Effectiveness", IEEE-C21, (September, 1972).

Smith, B.J., "A PipelineJi, Shared Resource MIMD
Computer", Proc. of the 1978 International Conference
tin Parallel Processing (1978), pp 6-8.

-4-

Denelcor

D
Denelcor, Inc. (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

A COMPARISON OF HEP AND VECTOR ~ACHINES

BY APPLICATION AREA

BY DR. B. J. SMITH

Tomorrow's Computers ... Today

A COMPARISON OF HEP AND VECTOR MACHINES

BY APPLICATION AREA

1. ORDINARY DIFFERENTIAL EQUATIONS

In this area of application, the utility of vector processing

depends primarily on the similarities among the expressions

that define the derivative vector. In the linear case, the

vector machine performs very well; in the nonlinear case,

each of the derivative expressions is typically unique. HEP

was originally designed to attack this problem, and solves

it easily assuming a reasonable scheduling algorithm to

assign operations to processors. Vector machines are rela
tively useless for this class of problem because of two

difficulties, namely a) scheduling the processor so that

vector operations (especially add and multiply) occur in

a suitable sequence, and b) addressing randomly located

vector operands.

2. LINEAR ALGEBRA

This application area is a traditional strong point for

vector architectures. If the matrices being manipulated

are dense, then a vector machine should perform well. HEP

also performs well in this case, since multiple processes

executing identical programs on different rows or columns

of an array can yield the maximum speed of which HEP is

capable, i.e. 10 7 operations/second per processor. In

the sparse matrix case, HEP has an advantage over vector

machines in that the search for an appropriate array

element can be done simultaneously and independently by
a set of HEP processes, irrespective of the lengths of

-1-

the searches, whereas a vector search of a number of rows

or columns of a sparse array may result in a decrease in

vector utilization due to masking while the last few

elements are being found. The analogous problem in HEP

is easily circumvented because processes that are through

searching can acquire and search a new row or column.

3. IMPLICIT TECHNIQUES

For relatively simple classes of problems, a vector

architecture can deal with relaxation effectively. Any

of the following attributes, however, make it much more

difficult to use a vector approach for the reasons in

dicated. First, arbitrary functions or any sort of

conditional expression evaluation at the grid points

will mask out vector elements and reduce efficiency.

Second, any variability of connectivity in the problem

such as might be caused by boundary motion will result

in an addressing problem for a vector machine. Third,

a complicated connectivity in general, irrespective of

variability, will also give rise to vector addressing

difficulties. HEP has no such problems, since each

process can independently branch to a different spot

in its program and can evaluate any address required

to deal with variable or complicated geometries.

4. HEURISTIC PROGRAMMING

Many important problems in computing have the property

that they require a prohibitively long time to solve

completely on any computer, but approximate solutions

2

can be discovered much more quickly using the techniques

of heuristic programming. The basic approach is to

devote the most computational effort to the most pro

mising potential solutions. The usual implementation

of this scheme on a single-process computer, vector or

otherwise, is to remember alternatives to guesses made

by the program and to explore those alternatives only

after the current guess has been exhausted or seems

"unpromising". HEP can be used to speed up this pro

cedure; one can create a process to explore each

possibility and let each process decide whether its
own alternative is indeed promising or not. This ap

proach may not be efficient on a single-process computer

because of the overhead associated with changing the

process that the processor is executing.

5. MULTIPASS ALGORITHMS

Many computations can be decomnosed into several different

passes or phases, each of which performs part of the work.

Compilation and assembly, image processing, and data re

duction are examples. Whereas vector machines are incapable

of exploiting this potential parallelism, HEP can be used

to execute all phases simultaneously by using a process to

implement each phase and transmitting data between the

phases. (This technique is sometimes called "macropipe

lining".) A compiler, for example, could be subdivided

into a lexical analysis process, a parsing process, a
semantics process, several optimization processes, and a

code generation process. Current compiler design methodology

often gives rise to this kind of a decomposition except that

the subroutines or coroutines used to implement the phases

do not in fact run in parallel.

3

6. EXISTING PROGRAMS

Much effort has been expended in attempting to detect and

exploit parallelism in existing programs. Vector processors

can be used to speed up loops of certain kinds by executing

vector instructions that have the same effect that multiple

executions of the loop would have. Unfortunately, much

of the code in existing software is not subject to this

kind of speedup, often because many kinds of loops are

not II vec torizable". HEP, on the other hand, can not only

exploit the vectorizable loops but can also execute a

sequence of statements in parallel even when those state

ments do not involve vectors at all, because the depen

dencies among statements are not really very numerous.

This technique is used to some extent in computers with

"instruction lookahead", but the potential inherent in

the HEP architecture is far greater because "lookahead"

is not limited by availability of functional units or

instruction stack size.

7. DATA BASE MANAGEMENT

Most of the operations of data base management exhibit a

high degree of potential parallelism. Sorting, searching,

and set-theoretic operations all can be sped up, but

multiple I/O streams are required since only a small

part of a data base will fit in primary memory. More

over, vector operations are inappropriate since the data

are variable length character strings. A number of HEP
processes can perform I/O concurrently and search or sort

in parallel using any number of published algorithms known

to be suitable for MIMD machines such as HEP. Unlike most

4

vector machines, HEP can address its memory a character at

a time to facilitate string operations. The unmatched

speed of the HEP I/O system should make it exceptionally

attractive for data base applications, especially where

numeric computations are to be done on the retrieved data.

8. HULTIPROGRAMHING'

It is often useful to be able to execute many user jobs

simultaneously on a computer. Machines which execute

only one instruction at a time, vector machines included,

accomplish this by switching the processor between jobs

periodically. There is some overhead associated with

this switching operation, depending primarily on how

many registers of the processor must be saved and re

loaded. There is no overhead whatsoever incurred by

this activity on HEP. In fact, a good way to achieve

speed via parallelism is merely to run multiple jobs.

HEP provides protection hardware to prevent interference

among the jobs, and at the same time offers all of the

flexibility and resources associated with a parallel

processor to each executing program.

9 . l'-'10DULARITY

A HEP computer contains from one to fourteen processors,

each of which executes 10 7 instructions per second, and

has a data memory size ranging from 256K bytes up to

two billion bytes. Expansion in the field is readily

accomplished; moreover, failure of a single processor

or memory merely results in decreased capacity of the

5

system until repair is accomplished. This kind of

modularity is not within the capabilities of vector

machines; it is not possible to buy 1/2 of a vector

processor nor is it possible to interconnect several

such processors to obtain longer vectors. If a vector

processor fails, the entire system is out of commission

until the repair is accomplished. While error correction

in the memory postpones the necessity for repair in both

HEP and in vector machines, the requirement to repair a

failing memory module brings the vector machine down but

only reduces the performance of HEP temporarily.

6

Denelcor Denelcor, Inc. (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

STANDARD SYNCHRONIZATIONS IN HEP FORTRAN

BY DR. H. F. ,JORDAN

Tomorrow's Computers ... Today

Standard Synchronizations in

HEP Fortran

Harry F. Jordan

The basic synchronization mechanism supplied by HEP Fortran

is that of elementary producer-consumer synchronization using

busy waiting. This mechanism is accessed via the so-called asynchronous

variables, the names of which begin with the $ symbol. With each such

variable a state of FULL or EMPTY is associated so that reading

(use in a right hand side expression or as a subscript) may only take

place when the state is EMPTY and writing (assignment) may only take

place when the state is FULL. Writing an asynchronous variable always

sets the state to FULL and reading sets it to EMPTY with only a few

exceptions. The PURGE statement may be used to set the state of one

or more asynchronous variables to EMPTY regardless of previous state.

The elementary producer-consumer synchronization consisting of

"wai t until empty and then wri te" and "wai t until full and then read"

can be augmented by the passive logical functions FULL(a) and

EMPTY(a) which test, but do not alter, the state of an asynchronous

variable a. Furthermore, when an asynchronous variable appears inside

the logical expression controlling an IF statement a wait until the

state is FULL occurs but the state is not set to EMPTY when the

expression is evaluated. The latter behavior can also be obtained

within a right hand side expression or an index expression by use of

the built in function SAVE(a) which delivers the value of an

asynchronous variable a when it becomes full but does not set it empty.

-1-

Several types of synchronization other than single value produce

and consume are useful in programming a multiple process machine such

as HEP. Below we will treat several of the more important ones and

exhibit their implementation using HEP Fortran. In the code given,

a quoted string represents a manifest constant, usually an array

dimension, which is to be replaced by a constant in any specific

application of the code.

It is often necessary to apply producer-consumer synchroniation

to a block of information so that no part of it is used until all of it

has been written and no part of it can be written until all of it has

been read. For the simple case of one producer and one consumer a

straightforward implementation requires logical variables $EMPTY ,E,

$FULL and F and appears as follows:

Producer
E = $EMPTY
Write block
$FULL = .TRUE.

Initialization

PURGE $EMPTY, $FULL
$EMPTY = .TRUE.

Consumer
F = $FULL
Read block
$EMPTY = .TRUE.

Note that the values of the synchronizing variables $FULL and $EMPTY

are unimportant. Only the state of the variable plays a role in

the synchronization.

By using more code it is possible to do the above synchronization

with only one asynchronous variable both the state and value of which

are used in the synchronization.

- 2 -

Initialization

PURGE $FULL
$FULL = .FALSE.

Producer

10 FP = $FULL
IF (.NOT. FP) GO TO 20
$FULL = FP
GO TO 10

20 CONTINUE

Write block

$FULL = .TRUE.

Consumer

10 FC = $FULL
IF (FC) GO TO 20
$FULL = FC
GO TO 10

20 CONTINUE

Read block

$FULL = .FALSE.

The first solution is not only more straightforward but also

easily expandable to the case of several producers and several

consumers acting on a buffer with space for N blocks of data. In

this case the synchroninzing variables become integers the values

of which give the numbers of full and empty blocks in the buffer.

Initialization

PURGE $IFULL, $IEMPTY

$IEMPTY = "N"

Each Producer

IE = $IEMPTY-l
IF (IE .NE. 0) $IEMPTY = IE

Write block N-IE

IF = $IFULL
$FULL = IF+l

Each Consumer

IF = $IFULL-l
IF (IF .NE. 0) $IFULL = IF

Read block IF+l

IE = $IEMPTY

$IEMPTY = IE+-l

In this code a producer fills the first empty buffer block and a

consumer empties the last full block. We will consider the imple-

mentation of a first-in first-out strategy after treating the simpler

concept of a critical section.

- 3 -

Critical sections of code executed by two or more parallel

processes exclude each other in time. Processes may execute critical

sections in any order but only one process at a time may be within a

critical section. Either a single critical section of program may be

shared by several processes or processes may execute distinct code

sections. In HEP a section of code which begins by reading a giv~n

asynchronous variable and ends by writing it "is a critical section

with respect to any other code segment beginning with a read and

ending with a write of the same asynchronous variable. Care should

be taken in coding parallel processes for HEP that no more statements

than necessary be placed between the read and subsequent write of an

asynchronous variable since all processes sharing this code will

run one at a time through this critical section whether or not that

is the intent.

The producer-consumer synchronization on a multiple element buffer

usually involves First In-First Out access to the individual items.

A FIFO structure is usually implemented in software as a circuLar

buffer. The simplest implementation uses critical sections to make

the operation of inserting a new element into the FIFO (PUT) atomic

with respect to the operation which extracts an element (GET).

The critical section may be made a side effect of access to a

variable needed to manipulate the FIFO in any case. This is the

technique used below where the only asynchronous variable is $IN.

- 4 -

BLOCK DATA

C THE INITIAL STATE AND SIZE CONSTANTS FOR THE FIFO.
INTEGER $IN ,OUT, LIM
COM1v10N /FIFO/ $IN ,OUT, LIM, A("SIZE")
DATA $IN , OUT, LIM /1,1, "SIZE"/
END

SUBROUTINE PUT(V, FULL)

C PUT THE VALUE V INTO THE FIRST FREE SPACE IN THE FIFO
C RETURNING FULL AS .FALSE. IF THE FIFO IS FULL PERFORM
C NO OPERATION AND RETURN FULL AS .TRUE.

LOGICAL FULL
INTEGER $IN ,OUT, LIM
COMMON /FIFO/ $IN ,OUT,LIM, A("SIZE")
I = $IN
IDIF = I-OUT
IF (IDIF . LT. O} IDIF = IDIF+LIM
IF (IDIF .EQ. LIM-I) GO TO 10
A(I) = V
$IN = MOD(I, LIM)+1
FULL = .FALSE.
RETURN

10 $IN = I
FULL = .TRUE.
RETURN
END

FUNCTION GET (EMPTY)

C THE FUNCTION RETURNS THE VALUE OF THE NEXT AVAILABLE FIFO
C ELEMENT AND SETS EMPTY TO .FALSE. UNLESS THE FIFO IS EMPTY
C IN WHICH CASE THE ONLY ACTION IS TO SET EMPTY TO .TRUE.

LOGICAL EMPTY
INTEGER $IN ,OUT, LIM
COMMON /FIFO/ $IN ,OUT,LIM, A("SIZE")
I = $IN
IF (I .EQ. OUT) GO TO 10
GET = A(OUT)
OUT = MOD(OUT, LIM)+1
$IN = I
EMPTY = .FALSE.
RETURN

10 $IN = I
EMPTY = .TRUE.
RETURN
END

- 5 -

In the FIFO implementation above only one asynchronous variable

is necessary to bound the critical sections. If it is desired to

implement a FIFO the elements of which are larger than single values

then a different approach can be used to increase the potential

parallelism. In this case define integer valued functions IPUT(FULL)

and IGET(EMPTY) which return an index to the next free FIFO space

or the next available FIFO element, respectively. These indices can

be used by the calling program to read or write elements of the FIFO

outside of the critical sections associated with testing and up

dating the pointers. In this case, however, it is possible that

parallel use of the FIFO by other processes may cause the value of

$IN (OUT) to catch up to some previous value of OUT ($IN) which has

not yet been used to access the FIFO element completely. Synchronization

can be maintained in this case by making all variables of a FIFO

element asynchronous. The time involved in acces~ing a FIFO element

is thus removed from the critical section, which blocks all parallel

access to the FIFO, and conflict is limited to the one other process

which actually requires the same memory cells.

Another important synchronization is that of FORK and JOIN,in

which a single instruction stream initiates the execution of

("forks into'~) several parallel instruction streams. After all of the

parallel streams have reached a prescribed point at which parallel

execution is to end, all but one stream are terminated and this single

"joined" instruction stream is free to proceed. In HEP Fortran a

CREATE operation is used to initiate a parallel instruction stream

which will terminate when a RETURN statement is encountered. A CALL

statement does a normal transfer of control to a code segment which will

- 6 -

return control to the calling point when a RETURN statement is en

countered. Thus several parallel instruction streams, all but one of

which will eventually terminate (assuming no infinite loops), can

be produced by a series of CREATE operations followed by a single

CALL. The only difficulty is that the "live" code segment (the

one invoked by a CALL) may finish before all the other instruction

streams have terminated. A counter and reporting variable are used

to determine that all parallel streams have reached the JOIN point

in the code below which forks a single stream into N parallel

executions of the subroutine PROC.

Single Stream

PURGE $IC, $FINISH

$IC = 1

DO 10 I = 1, N-l

CREATE PROC(···)

10 $IC = $IC +1
CALL PROC (...)

F = $FINISH

Multiply Executed
Process

SUBROUTINE PROC(...)

.
I = $IC-l
IF (I .EQ. 0) GO TO 20

$IC = I

RETURN

20 $FINISH

RETURN

END

.TRUE.

- 7 -

FORK operation

JOIN operation

JOIN operation

Another well known synchronization is that of readers and writers

Ion a shared data structure. Readers are defined to be processes

which do not alter the overall structure of the data during their

access to it. They may perform atomic write operations which do not

alter the structure, and in HEP they may even perform read-modify-

write operations on asynchronous variables provided the structure

remains consistent. A writer alters the data structure during its

access so that the structure can only be assumed consistent at the

end of the writer access. A well known example is that of garbage

collection or compaction of a dynamic data structure. An arbitrary

number of processes may use the data structure at a time as readers,

but the compaction process must have exclusive access.

In the first version of the synchronization the first reader

locks the structure against access by the writer and the last reader

unlocks it. The writer may have to wait indefinitely for a sequence

of readers.

Reader

IR = $NREAD

Initialization

PURGE $ACCESS, $NREAD

$ACCESS = .TRUE.

$NREAD = 0

Writer

IF eIR .EQ. 0) A = $ACCESS
$NREAD = IR+1

A = $ACCESS
C DO THE WRITE ACCESS HERE.

C DO THE READ ACCESS HERE.
IR = $NREAD
IF eIR .EQ. 1) $ACCESS = A
$NREAD = IR-1

$ACCESS = A

- 8 -

The second version of this synchronization ensures that no new

~eaders may gain access to the buffer once a writer has requested

lccess. The extra condition is handled by keeping a count of the

lumber of writers which have requested use of the data structure.

Initialization

PURGE $ACCESS ,$NREAD, $NWRITE

$ACCESS = .TRUE.

$NREAD = 0

$NWRITE = 0

Reader

10 IF ($NWRITE .GT. 0) GO TO 10
IR = $NREAD
IF (IR .EQ. 0) A $ACCESS
$NREAD = IR+1

C DO READ ACCESS HERE
IR = $NREAD
IF (IR .EQ. 1) $ACCESS = A
$NREAD = IR-1

Writer

$NWRITE = $NWRITE+1
A = $ACCESS

C DO WRITE ACCESS HERE.
$ACCESS = A
$NWRITE = $NWRITE-1

This solution uses the passive (wait for full but do not set empty)

access mechanism of the IF statement so that the testing of $NWRITE

by a reader cannot lock the variable against access by a writer.

A disadvantage of this solution is that if several readers are

executing statement 10 they make no progress but occupy time slots

in the process queue thus possibly reducing the overall machine

throughput. This disadvantage can be reduced by preventing more than one

reader from executing statement 10 at a time by placing it within

a critical section. If $RMECH is initially full, then the statements

R = $RMECH before line 10 and $RMECH = R after it will do the job.

- 9 -

Denelcor

D
Denelcor, Inc. (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

SOLVING LINEAR ALGEBRAIC EQUATIONS

ON AN MIMD COMPUTER

By DR. R. E. LORD

DR. J. S. KOWALIK AND DR. S. P. Kur"AR

Tomorrow's Computers ... Today

SOLVING ~INEAR ALGEBRAIC EQUATIONS

ON A MIMD COMPUTER

R. E. Lord
J. S. Kowalik
S. P. Kumar

CS-80-058

ABSTRACT: Two practical parallel algorithms for solving systems

of dense linear equations are'presented. They are based on

Gaussian elimination and Givens transformations. The algorithms

are numerically stable and have been tested on a MIHD computer.

KEY WORDS AND PHRASES: parallel ,algori thms, HIMD computer, linear

equations, Gaussian elimination, Givens transformation.

CR CATEGORIES: 5.14, 5.25

1. Introduction

The problem of solving a set of linear algebraic equations

is one of the central problems in computational mathematics

and computer science. Excellent numerical methods solving

this problem on uniprocessor systems have been developed, and

many reliable and high quality codes are available for different

cases of linear systems. On the other hand, the methods for

solving linear equations on parallel computers are still in

the conceptual stage, although some basic ideas have already

emerged. The current state of the art in parallel numerical

linear algebra is well described by Heller [3] and Sameh and

Kuck [5].

Our investigation of methods for solving systems of dense

linear equations on a MIl·ill computer includes Gaussian elimina-

tion with partial pivoting and Givens transformations. The

first algorithm is con~only used to solve square systems of

equations, the second produces orthogonal decomposition used

in several problems of numerical analysis including linear

least squares problems. We focus our attention on the cases

where the number of available processors is between 2 and O(n) ,

n being the number of linear equations. We take the view that

is not presently realistic to assume that-O(n2) processors

will be soon available to solve sizable sets of equations. To

verLfy our analytic results we have used a parallel computer

manufactured by Denelcor Co. This computer, called HEP (lIetero

geneous Element Processor), is a MI!1D machine of the shared

resource type as defined by Flynn.

-3-

2. Gaussian Elimination

If we consider a step to be either a multiplication and a

subtraction, or a. compare and multiplication then sequential

programs for producing the LU decomposition of an n x n non-

n 3 2 singular matrix requires Tl = ~ + O(n) steps. The parallel

method using p ~ (n-l)2 processors and partial pivoting requires

T = O(n log n) steps. Thus the efficiency of ~uch ~etllod
p

for large n will be

E = P T • P P

1
= O(log n) •

Even if the cost of each processor in a parallel system is

substantially less than curren~ processor costs, this method

will be economically unfeasible for n sufficiently large. We

further observe that parallel computers which are or soon will

2 be available will not provide n processors for reasonable

values of n. Thus, we restrict our attention to the case

where the number of processors is in the range from 2 to O(n).

The algorithm which we present provides the LU decomposition

of an n x n nonsingul~r matrix A using from 1 to f~l processors

and has an efficiency of 2/3 when P = r~l.

Consider the sequential program for ~U decomposition with

partial pivoting given in Fig. 1. In this program we shall

consider a task to be that code segment which works on a par-

ticular column J for a particular value of k~ We will denote

these tasks by J = {T~ I l~k~j~n~ k~n-l}.

-4-

Program LUDECOMP (A{n,n».

For k -+- 1 to n-l do

Find j such that

IA(j,k) I = max (I A (k , k) I , ... , I A (n , k) I)
PIV(k) -+- j {pivot row}

A(PIV(k) ,k) ~ A(k,k)

For i -+- k+l to n do

1\(i,k) -+- A(i,k)/A(k,k) {elemen:ts of L}

For j -+- k+l to n do

A (P I V (k) , j) ~~ A (k , j)

For i = k+l ton do

A(i,j) -+- A(i,j) - A(i,k)*A{k,j)

Figure 1. Program for LU decomposition with

illustration of tasks.

~

~

J

"

>

J

The precedence constraints imposed by the sequential program

are

j<l or k<m}.

Thus, C = (J, "<.) is the task system which represents the

sequential pr~gram- (Coffmani Denning [1])." The range and domain

of these tasks are:

D(T~) = {A(i,j) I k~i~n} U {A(i,k)

and from this we can observe that, for example

. . . . ,

are all mutually noninterfering tasks and could be executed

in parallel. M~re specifically we observe that C' = 0, ~')

where ~, is the transitive closure on the relation

is a maximally parallel system equivalent to C. This system

is illustrated in Fig. 2.

Giyen the task system C' we now determine the execution

time of the tasks and from that determine a sch~dule. We

assume that one multiply and one 'subtract, or one mUltiply and

one compare constitute a time step. Thus, neglecting any

-5-

Figure 2:

/

I

I

Maximally Parallel Task System
Equivalent to C

overhead for loop control, the execution time W(T~) for each

of the tasks is given by:

W(T~)
=)n+l-k

Ln-k
if.k=j

k< j ,

Treating the task system C· together with W{Tt) as a weighted

graph we observe that the longest path traverses the nodes:

1 2 2 r:1 3 T3 n-l n· 'II d h' h TI' TI , T2 , 1 2 , 3'--~' Tn _ l , Tn-I'· We W1 enote t 1S pat

as S1 and the length of ·the path by L(Sl).

n-l

= n+l + 2~ j = n 2_1
j=2

Since the problem cannot be solved in time shorter than this

path length we developed a schedule where the tasks consti-

tuting 81 are assigned to processor 1 and the remaining tasks

are assigned to r~l -1 aqditional processors. Processor 2

will execute the tasks

. . . ,

and, more generally, processor j will execute the tasks

T2j - 1 T2j T2j T2j +1
1 I l' 2' 2 '

n·
... , Tn - 2 (j-ll

and we will denote this as S .• Note that this is not a path
J

-6-

through the graph. For the case where n is even this schedule

is illustrated in Fig. 3. Since this schedule has length

2
n -1, the length of the longest path, then this schedule is

optimal for n/2 processors. Using this schedule we ~ote that:

lim S /p =
n~oo p

lim
n-+oo

n
3
/3 + 0{n

2
) = 2

(n 2-1) n/2 3

and this efficiency is achieved to within 2% for relatively

small n (n2! 50) •

We now examine the question as to whether a schedule of

length n
2
-1 is achievable with fewer, than n/2 processors. From

the task system C as illustrated in Fig. 2 we note that task

T~ is a predecessor to all tas~s and has an exe~ution time of

n steps. Consequently, any schedule for this system will have

only one processor doing work during the first n steps.

Similarly, Tn 1 is the successor of all tasks and thus during n-

the last time step only one processor can be doing work.

Task T~=~ has all tasks except {':r~=i} U {Tj I 1 So j ~ n-l} as

n":'1.
predecessorS I task Tn -

1
~s a successor task and for the tasks

{T~ I l~j~n-l} each is a successor or predecessor of all other
J

tasks in the set. Thus, for any schedule from the time that

n-l T 2 commences execution, no more than 2·processors can be n-
doing work. By similar argument, once Tn-~+1 conunences execu

n-]

tion no more than j processors can be doing work. From this,

we define the "computational area" of any schedule of C to be

the product of the number of processors' and the schedule length

less the area where not all the proce~sors can be doing work.

-7-

Tn
n-l
\,

I n- 2 1 n-11 n-1
..--

1 2 T2 T3 T3 T4 n-3
PI Tl Tl 2 2 3 3 Tn - 3 " Tn-2.Tn-2.T~-1,

P2 T3 4 T4 TS T5
I Tl' 2 2 3

P3
5

TI
T6

I
T6

2
7

T2 T7
3

Tn
n-4

::-1 wmJ n-3 n-2 n-2 n-l Tn Tl TI T2 T3 3

n-l Tn Tn TI 1 2
2

o n 2n-l 3n-2 4n-4 5n-8 n 2-9 n 2-4 , n 2.,

Figure 3. Schedule using ! processors (n even).

Specifically, for a schedule of length n 2-1 using p processors

we have

p-l

CA = (n
2

_1}p - (p-l) • n-2~ (p-j}j - (p-l)
j=2

2 ·3·
= (n -1)p - (p-l) (n-l) - (p -p)/3.

The total amount of work (sum of the task weights) for the task

system C is

2n
3 1 ..

Thus, a lower bound on the number of processors required to
. 2

achieve a schedule of length n -1 is the smallest p for which

CA~TW. For small even values of n the minimum P values are:

2:;;:n:;;: 8 p=n/2

lO~n~l4 p=n(2-1

l6~n~22 p=n/2-2

24.s:n~28 p=n/2-3

30.s:n.s:34 p=n/2-4

36<n p~n/2-5

For large values of n let P=an and determine a.such that

lim (CA/TW) = 1
n~oo

Thus, an a to satisfy the above limit is a solution to:

3
30 - a-I

and an approximate solution to this is a = .34729.

-~-

We note that this is only a lower bound and we do not know if

it is achievable in general, however for n=lO we have found a

schedule of length n 2_1 using n/2-1 processors and for n=l6 a

schedule using n/2-2 processors. The schedule for n=lO is

shown in Fig. 4.

Should this lower bound be achievable then the efficiency

for large n and using an 'processors would be

n
3/3 1_

2 = 3a -= • 9598.
(n -1) an

Achievable Schedules

We now consider schedules similar to the one shown in

Fig. 3 where the number of processors p is fewer than rn/21.

The method we use is to assign to processor j the tasks com-

prising Sj' Sj+pl ••• , S)+Zp. Where l is the largest integer

such that j+lP~ril. The sequence of task assignments is such

that the precedence constraints of the task system C' are

meet.

- Consider first the case when n/4~~n/2 so that processor

1 processes only the tasks of path S1 and the tasks of Sl+p.

This schedule will thus have length L e~ual to:

-9-

TI
I

7
TI

T
S
I

3
TI

T2
1

Figure 4.

TS
I

T6
I

4
TI

'r2
2

TS
2

T6
2

4
T2

T3
2 I

T9
I

T7
2

5
T2

3·
. T3

T7
3

T
5
3

T4
3

T9
2

T8
3

6
T3

T4
4

TID
I

T8
4

T6
4

T
S
4

TID
2

T9
3

7
T4

T
S
5

A schedule for n=lO using ~ - I processors.

TID
3

TID
4

TID
5

T9 I T9 I T9
456

T7 I T8 I T8
5 5 6

I T~ I ·6
T6

T7
6

T7
7

TIO

1
8

T8
7

T
S

8 I
(~. ilO

TS T9 T9

L = L(Sl} + L.: W(T~)
j

Tk £Sl+ .P

n-2p
2

- 1 + 22: (n-j) 2p = n -
j=l

2n 2 4p 2 + 0 (n) • = -

Thus, for large n, p = an and 1/4.:S.a~1/2

By similar analysis,

s·
'n
--E:.. =
P

~= p

s
-E.=
p

s
1=
p

1

. 3
3(2a-4a .)

1
1 < < 1

3' 6- Ct -4
3(3a-20a }

1
.!. < < 1

3 ' 8-ct-6"
3(4ct-56a)

1

3 3(5a-120a)

1 1
, 10 ~ a ~ "8

These efficiencies are plotted as a function of ct = pin in

Fig. 5.

Actual Performance

The ach ievable schedules previously discussed \Vere programmed

using HEP FORTRAN and \"ere executed on the HEP parallel com-

puter. Although the program provided solutions to a set of

linear equations, we present timi~g for only the LU decomposi-

tion part of the solution so that it may be compared with our

-10-

1.00

.90

.80

0.. .70 ""'-
0..

(J)

;-
/ ,

.60

:50

. 1 • 2 .3 .4 .5
a

Figure 5. Efficiency versus a = pin.

predicted results. Due to memory limitations of the machine

to which we had access, we could only run programs with n~35

and.l~p~8. Table 1 gives the achieved results together with

a comparison of the predicted' results.

Although the actual results are.limited by the restriction

on the maximum value for n, we feel that the agreement bet"taleen

actual and predicted performance is sufficiently good to give .

credibility to our model of the algorithms performance and that

the efficiencies are high enough to support the conclusion

that parallel methods· for solving linear equations are a viable

alternative to sequential methods.

Fast Givens Transformations

To Solve the square system of equations A~=e using the

fast Givens transformations, due to Gentleman [2], we proceed

as follows:

(i)' the matrix A is kept in the factored form

A = Dl/2B

where D is a diagonal matrix.

Initially D=I ,B=A where n is the number of nxn

equations.

(ii) Triangularize the matrix A by applying Givens rotations

to the augmented matrix [A, b] and obtain the factors
" ~

Q, D, Rand b such that

Q[A, ~] = Q[D l / 2B, b) = ol/2[RI b],
where R is upper triangular, Q is the product of the

orthogonal transformations used in the triangulariza-

tion and D is diagonal.

- 11 -

2 3

,n=10
.833 .719

.852 .739

n=15
.888 .794

.900 .815

n=2O
.921 .843

.931 .863

n=25 .934 .878

.944 .896

n=30
.942 .892

.949 .911

n=35 ' .948 .901

.956 .918

Table 1.

·number of processors p

4 5 6 7

.642 .633

.678 .685

.740 .651 .618 .625

.766 .679 .652 .681

.774 .758 .670 .623

.798 .789 .703 .656

.830 .763 .755 .692

.85.5 .739 .788 .726

.844 .818 .757 .744

.863 .843 .783 .777

.862 .819 .790 .747

.880 .843 .827 .779

Actual and predicted efficiency.

8

.581

.633

,.605

.640

.642

.675

.710

.745

.741

.769

A

P

A

P

A

P

A

P

A

p

A

P

The algorithm proposed in Kowalik et ale [4] produces the

orthogonal matrix Q = Q2n-3 Q2n-4 ••.• Q2Q1 where

Q
k

= {P. . I i < j =, 1 ~ 2, ••• , n, i + = k+ 2 } ,
~,J 0

k = 1, 2, •• 0.' 2n- 3 and P. . are applied in parallel.
~,J

For the purpose of this analysis and implementation we

n-l assume that the number of available processors is p = --2-

. where n is odd. We also assume that every Givens rotation is

performed sequentially, however, more than one rotation could

be performed in parallel.

We derive now a parallel scheme to triangularize A from

the sequential method given in a1~orithm 1.

Let a task T~ in algorithm 1 be defined by
J

T~ = GIVENS(i,j}
J

where GIVENS(i,j) performs the following calculations:

1. a. = -B(j,i)/B(i,i)

2. S = - {D (j) /D (i) .> * a.

3. y = I-aS

4. D(i) = (l/Y)D~)

5. ~)= (l/y) DO)

6. n(i, i) = B(i,i) + S oB(j,£f -;
. \- i~£~n

7 • B(j,i) = (B(j,Q.) + Ci B(i,£)}

Periodic rescaling of D and B to prevent underflows and over-

flows, and row interchanges for numerical stability are

included in our implementation of the Givens routine.

-12-

I

I

I

I

I

'--....---~ ... -

The precedence constraints on ·the set of these tasks

:J = {T~ I l$.i~n-l, i< j~n }

imposed ·by algorithm 1 are· given by

where * represents the transitive closure of the set. Thus

the system C = (J,<.) is a task system with a graph shown in

Fig. 6. The Range and Domain of these tasks are:

R (T~) = (D (i), D (j), B (i , l), B (j , l)
J

i~l~n)

D (T ~) = (D (i), D (j), B (i , l), B (j , Z) ·1 i.s,.l.:s.n)
J

from this we can see that the tasks

{T~ I i<j~n, 1.s,.i<n-1, i+j = k+2, k = 1, 2, ••• , 2n-3}
J

are mutually noninterferring tasks and can be executed in

parallel. Hence we obtain a maximally para1lel task system

c· = <:l I <.') I where

equivalent to c.

This maximally parallel task system C· is shown in Fig. 70

We now assume that one arithmetic operation constitues a

time step_ Thus the length of T~ is L(T~) = 2(n-i+l) + 7
J J

steps _ The longest pa th in thi~; maximally parallel task system

is:

-13-

.~ -~

Figure 7: Maximally Parallel Task System C'

. . . , . . . , n-1} T ,
n

and the total length of 51 is

.
L(Sl) = (4n+7) (n-1) + (4 (n':'l) +7) + (4 (n-2)+7) + ••• (4·· 2+7)

· 2 = 6n + Bn - 25 opera~ions.

n-1 To execute·our task system with p = --2- processors we have

selected a scheduling scheme called ZIGZAG,

According to this scheme the pr<;:>cessors Pk ,

are assigned to the tasks as follows:

1 1 2 2 n-2
P1

executes: {T2 , T3 , T3 , T4 , . . . , T l' n-

1 1 '1,2 2 n-4
P2 executes: {T4 , T5 , 5' T6 , . . . , T l' n-

1 1 2 2 P. executes: {T
2j

, T2j+1 , T2j +1 , T2j +.2 ,
J

P 1executes: n-
{ 1 T1 T2}

T n- l , n' n·
-2-

shown in Fig •.

k = 1, 2, . . . ,

n-2
r.1

n- 1 }
Tn ' lon.

n-4
Tn '

n-3}
Tn

. .. , Tn- 2j +1 }
n

For this schedule the speedup and efficiency are:

E
P
=~=

p
2n
"9 =

4 3 _ '3. n

6n2

4 .n
9" n-l

and for sufficiently large values of n

E
P

4 = 9" = .444 ...

-14-

= 2n
9"

B.
n-l
-2-

Figure 8: Parallel Zigzag Scheme for n c 15 p = ~ = 7

Computational Results

The ZIGZAG scheme for orthogonal tringularization shown

in Fig. 8 was programmed and executed on the HEP parallel

computer. Due to the present memory limitations the program

was run fo~ the values of n not exceeding n=29. Since fOT

n-l this machine 1~~8, and we assumed that p = --2- , the obtained

numerical results up to n=17"are useful to compare. The

actual and predicted speedups and efficiencies of the algorithm

for different values of n are shown in Table 2. The differences

between the predicted and actual values of Sp and Ep are due

to several factors: machine overhead, approximate count of

arithmetic operations involved in Givens rotations and data

dependent number of scaling operations in the GIVENS routine

which are not included in the operations count.

-15-

n P

5 2

7 3

9 4

r--

10 5

11 5

13 6

15 7

17 8

Table 2.

Tl T S E
P P P

.
.0036 .0025

1.44 .72

1.40 .70

.0087 .0045
1.93 .64

1.83 .61
.. ----.--

2.33 .58
.0168 .0072

2.27 .57

.0222 .0087
2.55 .51

2.50 .50
--

" 2.72 .54
.0286 .0105

.. 2.72 .54

.0448 .0146
3.07 .51

3.16 .52

3.34 .47
.0660 .0194

3.61 .51

.0256
3.62 .45

.0927
4.01 .50

Actual and predicted speedup
and efficiency.

A

p

A

P

A

P

A

p

A

P

A

p

A

p

A

P

Refet"cnccs

1. Cof fman, Jr., E. G., and Denning, P. J .. , Opera t.inq Sl:';; t t.!!i!~-:
Theory, (Prentice H~ll, Englewood Cliffs, NJ, 1:;7j-).--

2. Gentleman, ~v. M., "Least Squares Computation by Givens
'l'ransforrnations without Square Roots," J. Inst. Mut.h.
Applic. 12, _329-336 (1973).

3. He ller, D., "l\. Survey of Parallel Algori thrns in Numer iCt:ll
Linear Algebra," SIAM Revi.ev-l, .?.9..., 740-777 (1978).

4. KO\'lalik, J. S., Kumar, S. P., Clnd Karngnia, E. R., "AT!
ImplcIllentc:ltion of the J?ast Givens 'l'ra.nsformations on
a Nlr-1D Comput.er," ~Jashington State Univ~rsity, Dc~r~:. cf
Computer Scicnce~ Pullman, WA 99164, unpublished
manuscript.

5. Samch, A. H., and 'Kuck, D. J., "On Stable Linear System
Solver:!:;," J. ACM 25, 31-91 (1978).

-16-

Denelcor

D
Denelcor, Inc. (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

SCHEDULING RECURRENCE EQUATIONS FOR

PARALLEL COMPUTATION

By DR. R. E. LORD

Tomorrow's Computers ... Today

AGSTRACT

The problem which is investigated is that of scheduling the cal

culation of recurrence equations as typified by the numerical solution

of differential equations. These calculations are represented by means

of a cyclic precedence graph and an algorithm is presented which deter

mines the minimum period during which these calculations can be per

formed. The a 1 gori thm then extracts an acyc 1 i c precedence graph \'Jhose

longest path has a length equal to this minimum period. We show, by

example, that this minimum period can·be considerably shorter than the

scheduling period determined by scheduling just the calculations of the

inner loop. Next, we provide an improvement to the known lower bound

on schedule length given a fixed number of processors. This improvement

is also shown to imptove the effectiVeness of the critical path sched

uling method which \'Ie employ. Finally, an algorithm for the actual

scheduling is described which uses limited backtracking. On the basis

of randomly generated test cases the schedule length produced can be

expected to be no more than .4% longer than an optimal schedule. All of

the algorithms used have a time complexity which is polynomial in the

number of tasks.

IN DE X TERtl1S

Scheduling~ recurrence equations, critic~l path list scheduling~

bounds on schedule length~ li~ited backtracking.

1. INTRODUCTION

The general problem we are interested in is the scheduling of

computation on a parallel computer) but more specifically, the sched

uling of repetitious calculations as is the case, for example, with

the numerical solutiori o~ differential equations. The parallel com-
. .

puter model we consider is MUltO [15J type where we are interested in

parallelism all the way dov-Jnto a per instruction basis.

Specifically, the problem which we investigate is that of repre-

senting the computations involved in the solution of a recurrence equa

tion by a cyclic precedence graph and of then determining the minimum

period during which all of the calculations could be performed once,

while still perserving the precedence constraints. We then extract

from the cyclic graph an .acyclic one \vhose longest path is equal to this

mimimum period and investigate methods of efficiently scheduling this

system. We consider both schedules whose length is equal to the mini-

mum period using as few identical processors as possible, as well as

schedules using a fixed number of processors and having as short a

length as possible.

Prior to any formal definitions, \ve present an example which mo

tivated our concern with the minimum solution period for recurrence equa-

tions. Consider the Vari der Pol equation written as two first order

equations:

• 2 x
2

= u(1 - xl) x2 - xl

8y using some suitable integration method, ego 4-th order Runge Kutta,

-1-

indicated by the function rk, the main part of a program for solving

these equations is given in Figure 1. The calculation interior to the

"for" loop can be represented by the acyclic precedence graph L6] shown

in Figure 2. If we assume that each of the binary operations can be ex-

ecuted in one time unit and that the function rk can be evaluated in four

units then the entire "for" loop can be represented by the cyclic prece

dence graph also shown in Figure 2, where, as is indicated, T3 represents
2

the calculation u*(l - xl)' ~4 represents *x2 - xl and, Tl and T2 repre-

sent the calculation of the function rk.

Given two parallel processors, then one way to schedule this solution·

is to assign the tasks interior to the "for-It·loop to processors in such a

way as to preserve the precedence relations and yet complete all tasks as

quickly as possible. The solution to the problem is then the repeated

execution of this .schedule. Such an assignment is shown by·means of a

Gantt chart in Figure 3. He note that this assignment .is as good as pos-

sible since the precedence graph has a maximum ·path length equal to the

assignment period.

The second Gantt chart of Figure 3 shows the assignments made if we

assume initial values for xl and x2 and then. assign the tasks from the

cyclic precedence graph while still maintaining all precedence constraints.

This assignment has a repetition period of 7 units as compared with the

9 units for assigning the acyclic precedence graph. This shorter sched-

ule is the motivation for examining recurrence equations to determine

their minimum solution period and then to find methods to schedule them

in that minimum period with as few processors as possible.

Recurrence equations were studied by Karp, Miller and Winograd [21J

in the form of uniform recurrence equations which modeled the numerical

-2-

while time ~ runtime do

for i-I u nt i I 4 do

der
l

- x
2

der2-·u*(l-xl*x,) *X2 - xI

xl-rk(der
l
,i, I)

x
2
-rk(der

2
, i,2)

time -time + h

P,

P2

P,

.P2

T3

T3

~ 9 ~I

T4 T, T3 T4 T, T3 T4 T,

T2 T2 T 2

Assignments for Acyclic Precedence Graph

~ 7 ~ I
T, T3 T, ·T

3 T, T3 T,

·T4 T2 T4 T2 T4 T2 T4

Assignments for Cyclic Precedence Graph

T3 T41 T, I T3

T2

·T
3 T, T3

T2 T4 T2

~-

x

----/

/
I-~ /

/
/

Q.)

o
c
Q)

"'0
Q)
()

Q)

"'-
.0..

o
-
()

~

u

/-.--,
I J-- I

x~).-x-

" / --

solution of partial differential equations. More recently) Kogge [22J

has studied them in a restricted fonn for solution on SIMD type computers.

Essentially following Kogge we define the solution of a j-ih order recur

ence problem of dimension m to be a sequence x(l), x(2), •.• x(t) of

vectors of dimension m where) we are given:

1. a set of initial values [x(D), ••• , x(-j+l) J, and

2. a recurrence function f such that) for 1 ~ i ~ t

x(i) = f(a., x(i-l), •.
1

. , x(i-j)) where a. is
1

a constant vector of any dimension.

Kogge studied solutions of this type problem on SIMD type computers

for the case of m = 1 and with restrictions on f. However, by allowing

arbitrary values f0r m, the definition covers a wide class of problems

including the numerical solution of differential ~quations and many op

timization problems. Our restriction on f is only that it be a computable

functi on. In general, we vii 11 represent thi s functi on by a di rected graph

where the nodes represent functions out of which f is composed and the

edges represent that composition. We will further restrict the graph to

be acyclic, so that if any part of the representation of f is iterative,

then we will represent the entire loop with a single node. With each

node of the graph we will associate a weight which represents the expected

computation time of the associated function. We can now represent the

recurrence equations by allowing terminal nodes in the representation of

f (called recurrence "nodes) to ha~~ outgoing edges, thereby creating a

cyclic graph. Throughout vie employ only standard graph terminology using

[llJ as a reference. The cyclic pre~edence graphs which are used as ex

amples are usually drawn with the width of each node proportional to its

ececution time. This convention vias used in drawing the cyclic prece-

dence graph in Figure 2.

-3-

2. CYCLIC PRECEDENCE GRAPHS

As we showed in the introduction, a simultaneous set of m recurrence

equations,can be represented by a cyclic precedence graph of n weighted

nodes. For cbnveniencethe first m nodes will be labeled with the recur-

rence variables and all of the nodes simply represent functions, the

number of whose parameters matches the number of incoming edges. The

outgoing edge represents the functional value which is an argument for

another function. The cyclic graph becomes acyclic if we remove all

edges going out of the recurrence nodes for, in our model, all computa-

tions which are interative are represented by a single node whose weight

is the expected execution time of the loop. For all nodes, the weight of

the node is assumed to be non-negative. Since there are no cycles except

those that pass through recurrence nodes, we may define the m x m path

matrix P where p" J" is the length of the longest path from recurrence
1 ,

node i to recurrence node j which does not pass through any recurrenc~ node.

For this case, we define the length of a path from i to j to be the sum

of the wei g hts of a 11 the i nterven i ng nodes inc 1 ud i ng no'de j but not

including the weight of node i. In the event that there is no path be

tween them, then define Pi,j to be zero. We may interpret P~,j as the

minimum execution time between completing the calculation of the t-th

value for xi and completing the calculation on the t+l-th value for xj .

Thus, if we let maxp denote the largest p" J" for all i and j, then ~e
1 ,

knoltl tha t if, a t some poi nt we had the t-th va 1 ues for a 11 x then by

maxp units later we could complete calculating the t+l-th values for all

x. This, of course, assumes a sufficient number of processing units.

-4-

However, from the example given in the introduction we have seen that in

some cases, the calculation can be performed with a period ~horter than

the 1 eng th 0 f the 1 onges t pa th . ~~e \IIi 11 nm·/ defi ne the p rocedu res fo r

determining this minimum period.

T\'>/o assumptions are made regarding the form of the minimum length

solution. First, we assume that no task is assigned to more than one

processor and secondly, that the time between calculating the t-th and

the t+l-th value is the same for all recurrence variables and no less

than the minimum solution period. If we denote the execution time for

the i-th task T. by tlen. and the minimum solution period by minsol, then
1 1

bn the basis of the first" assumption we have

(1) minsol ~ max {tlen i I i ~ n}

and on the basis of the second assumption

(2) mi nso 1 ~ max {Pi, iii ~ m }

As a further bound on the minimum solution period consider any pair of

recurrence nodes i and j wi th p .. t- 0 and p .. t- o. Now by our assumption
1 ,J J ,1

the calculation "of the t-th val~e of xi will preceed the calculation of the

t+l-th value by exactly minsol and similarly for xj . Thus, we have

(3) minsol

By similar reasoning, given k ordered recurrence nodes iI' ;2' . · . , i k

wi th

and this bound contains bounds (2) and (3). Thus, minsol is the maximum

of (1) and the maximum of (4) over all ordered sets of nodes that satisfy

-5-

the condition of non-zero 'path lengths between them.

If \'Ie view P as representing the weights of an edge we.ighted di

rected graph of m vertices and m2 edges, then the bound on"minsol given

by (4) ;s the per edge cost of a cycle having maximum per edge cost.

Since the number of cycles in a digraph of m vertices is exponential

in m, then any computational procedure based upon exhaustively examining

the per edge cost of all.cycles can be expected to have a very large

execution time as m increases.

The computational procedure that "'Ie employ is to first estimate

minsol by bounds (1) and (2) and then use this estimate as a parameter

to the procedure shown in figure 4. The computation is based upon the

following: if we were to subtract the minimum solution period from

each of the edge weights and then determine the maximum path length bet-

ween all vertex pairs, then the maximum length path from any vertex to

itself would be zero or negative. Thus, the algorithm is iterative in

that we call it with a~ estimate of minsol, subtract this estimate from

all the p .. entries and then apply the Floyd-Warshal longest path
1 ,J

a 1 go r i thm [1 4] . If, a f te r t his cal c u'l at ion, all the d i ago n ale 1 e me n t s

of the longest path matrix are zero or negative then the estimate sat

isfies (4) for all cycles, and since it was initially chosen to satisfy

(1), it 'is a correct bound. In the event that any diagonal element is

positive, there is some cycle in P \'Jhich has a per edge length greater

than our current estimate'of minsril, and hence, we must increase our

estimate. The ,longest path algorithm proceeds by determining for each

edge (i ,k) whether the path length from j to k would be increased by

substituting the path from j to i and thence to k. If so, the suosti-

tution is made, and the entry mp. k represents a path which consists of
J ,

-6-

ans -false

while ans = false do

for i-I unti_1 m do

for j-I until m do

~ ifPia·¥-.O .~
the n -~ J _______________ - e Is e

mp· . -po . - minsol
I, J I , j

c· ·-1 I , J .

for i-I until m do

for j -I unti I m do

if mp·. 'f:; -Cf) then
J , I

mp. ·--co
I , J

c· ·-0
I J J

for k-l until m do

ans-true

mi n old -minsol

if mpj)i + mPi,k > mpj,k then

mp· k-mp .. + mp· k . J , J ,I I ,

C· k -c. · + c· k J, J,I I,

for i-I untilm do

if mp·. > 0 then
I, I

minsol-max (minsol, minold + r;.p~lil)
. I) I

ans-false

the nUlnber of ed~es in the path from j. to i plus the number of edges in

the path from i to k. Since, at the start of the calculation, all paths

consist of a single edge, we can initialize an edge count matrix C to

ones and zeros, and then, as we substitute paths, we accumulate the

number of edges that make up those paths. At the completion of the

calculation, if any diagonal element is positive, we increase our estimate

of minsol by

max
mp ..

1 , 1

c· .
1 , 1

i ~ m

and then repeat the calculation. We note that this iterative precedure

finishes after a finite amount of time since, on each iteration, we have

either found a solution or we increase the estimate of minsol by an in-

tegral amount. Since minsol is bounded above by maxp, we are certain of

rea~hing a solution. That this resultant value is the least value that

satisfies the'conditions can be seen by the fact that if, after a longest

path calculation, there is a diagonal element mp .. which is positive then
1 , 1

we have discovered a cyclic path of length mp .. + minsol*c. '. This path
. 1,1 1,1

has a per edge length of (mp .. + minsol*c. ·)1 c. " and thus,
. 1,1 1,1 1,1

minsolnext = minsol + r mpi'il
c ..

1 , 1

is the least integral estimate which will cause that cycle to be non-

positive. As we pr~viously mentioned, the number of iterations is no more

than the length of the longest path, which, if we.assume a fixed upper

limit on task execution time, is of order n. Since m ~ n then the com

plexity of the longest path calculation is O(n3) and hence the complexity

4
Of the entire procedure is O(n).

Having determined the minimum solution period, it still remains to

-7-

determine the relative timing of the recurrence nodes. For exanlple, if

Pi,j > minsol and Pi,j + Pj,i = 2*minsol, then the calculation of the t-th

value for x; must preceed the t-th calculation of x· by p .. - minsol
J 1,J

units. On the other hand, if P;,j and Pj,i are both less than minso1,

then the t-th calculation of xi can preceed that of Xj by as much as minsol

- Pj,; or follow it by·as much as .minso1 - Pi,j. Hence, not all of the

relative timing is unique. The proc~dure which we use to determine this

relative location is shown in Figt.re 5 and is based upon the longest path

matrix mp which was produced as a result of determining the minimum sol-

ution period. Now is mp;,j > a for some i ~ j, then this means that the

t-th calculation of xi must preceed the t-.th ~alcu1ation of Xj by this

amount. The values that the procedure determines are named lmaxp and de-

note the amount of time the calculation represented by this node must be

started prior to the last recurrence variable being updated to its t-th

value. The procedure is based upon finding the vertex j for which, for

some i, mp. J' is maximum. We then determine the lmaxp values for all nodes
1 ,

that have a path to node j, but in no event do we set lmaxp to a value less

than the corresponding value of t1en. For those vertices having no path to

vertex jthen the·verte~ amongst them is chosen which has the longest path

into it and the above process for determining lmaxp is repeated for this

set of vertices. We note that this 1I"/hile'~ loop will be executed no more

than once for each strongly connected subgraph and hence is limited to m

executions. Further,· the complexity of the procedure interior to the "while ll

loop is O(m2), and hence, the complexity of the entire p;ocedure is O(m3).

Prior to actual scheduling, it is necessary to transform the cy~lic

precedence graph into an acyclic one to which we can apply standard nlethods

to determine either a schedule which solves the problem in the minimum

solution period with a minimum number of processors or a schedule which

-8-

used -0

get m ax (col)

whi I e col -:f:. 0 do

for i-I u'n til m· do

,i f used j = 0 a mpj ,col :f. -co then

~~ the n .1 , col - e I s e

'I max p. -tlen. I max Pj-mpj col + tlen i I· I ,

getmax (col)

for i-I until 'm do

if used· = 0
I

then

lmaxp·-tlen.
I I

procedure get m a x (co I) .

col-O· , maxv-O

for i-I unti I m do

for j-I U nt i I m do

if used· :: 0
I

5 mp· · >
I , J

. max v then

I maxv-mp .. 1
1 , J

col-j

solves the problem as quickly as possible with a fixed number of processors.

This transformation is accomplished by both deleting some edges and by split~

ting some of the tasks into two separate tasks with no edges between them.

This method is best explained with the aid of an exa~ple. Consider the

cyclic precedence graph shown in Figure 6 which consists of eight nodes~

the first ,four of which represent recurrence variables. The diagram rep

resenting,the graph is drawn relative to a time scale with the left part of

each node placed in proportion to its lmaxp value and with the width of each

node proportional to its tlen value. By examining the paths, we can see that

the minimum solution period of seven units is determined by both the path from

4 to 4 and by the two, paths P3,~ = 2 and P~,3 = 11. Now, the first order re

currence equations, the edges coming into a recurrence node represent infor

mation to be used in computing the t~th value for the node while ,the edges

going out of the recurrence node represents the t-th value which is to be

used in computing the t+l-th values. Thus, in the actual scheduling oper

ation, the edges out of the recurrence nodes are really directed to another

replica of the graph~ In the example,' the longest path is 18 units long and

the minimum solution period is 7 units. Thus, three copies of the graph

are required to il'lustrate the seven unit slice that is to be scheduled.

This is shown in Figure 7 with the edges out of the recurrence nodes dir

ected to the next copy of the precedence ~raph. We can now choose any time

slice that is seven units wide and that contains all of the tasks. In our

computational procedure, we choose that period which ends with the recurrence

nodes having lmaxp v~lues equal' t6 their tlen values. Now,~ we are inter

ested in scheduling the tasks within the scheduling boundaries so that re

peated execution of this schedule will result in solving the recurrence

-9-

) I I I I I I I I
16 14 12 10 8 6 4 2 . 0

Q)
-u
::l 0

U -
Q) ~

..c. (l)

On...
(f)

equations. Thus, the edges that cross the scheduling boundaries can be

deleted in producing the acyclic graph. In this example, the deleted

edges are (1,2),(2,3),(7,3) and (7,6). In the general case, given. an

edge ina cyc1 i c precedence graph \'Jhi ch goes from vertex i to vertex j

then that edge is to be deleted if

1. vertex i is not a recurrence node and

l
lmaxp~- tleniJ

mlnsol J
f llmaXPj - 1 j

'mi nso 1

2. or vertex i is a recurrence node and

llmaXPi - t~eni + minS01J f llma~Pi - IJ
' 'mlnsol 'mlnsol.

These relations simply formalize the conditions under \'Jhich an edge crosses

a schedul i ng bounda ry.·

In addition to deleting edges, one can see that, for the example, T8

must be split into ~wo tasks, TL8 which is t\'IO time units 1,ong and TR~ \'/hich

is three time units long. There is no edge between these two tasks and the

edges that previously went to T8 now go to TLS. In the general case, task

i must be split if

l lmaxPi - tleniJ t-llma~Pi - IJ
minsol mlnsol.

We also use this example to illustrate that splitting tasks may be ne

cessary for any choice of the scheduling period. Since T7.and T8 are part
, ,

of the path P4,3 which, ~ith P3,4' require the ~i~imum solution period,

then T7 must start immediately after TS completes, or at most one time unit

later. Thus, any seven unit scheduling period will split either T7 or TS.

The resultant acyclic graph· is shm'ln in Figure 8.

-10-

·T
.6

3. BOUNDS ON SCHEDULE LENGTH

The determination of a good lower bound on the number of processors

required to schedule an acyclic precedence graph .in a period equal to its

longest path or, alternately, a lower bound on the ~chedule length given

a fixed number of processors is valuable for two reasons. First, the

scheduling method employed is goal oriented, and hence, a good estimate

of the goal decreases the number of scheduling attempts with an unreal

izable goal. Secondly, it is desirable to have a measure of how well the

scheduling algorithm performs as compared \'lith the best possible sched

ules. In this regard, Kohler [23J reports one graph of only thirty nodes

that r~quired over three minutes of computation time to determine an opti

mum schedule using a good branch and bound algorithm. Since we are inter

ested in some graph~ of more than one hundred nodes, the computational

requirements of determining optimal schedules' for all 'test cases is pro-

hibitive, and thus,. the measures of performance of our algorithm will have

to be with comparison to good lower bounds.

The simplest bound on the number of processors required to schedule

a graph in a fixed amount of time t was first defined by McNaughton [24J

and is given by

f
L tlen·l

. kmi n = t 1_

1

Several refinements of this bound hav~ been ~ropos~d, the most com

plete being the one given by Fernandez and Bussel in [13J. Their bound is

determined by considering all sub-intervals (t l , t 2) --in the scheduling in

terval (O,t) and determining the minimum number of processors to complete

-11-

the amount of work required in that interval. To make this definition

more precise, given a schedule length t, then for each task define te to

be the earliest that the task could be started and define tl to be the

latest that the task could be started while still making a schedule of

1 ength t. We note that if i is an initial task, ·then teo = 0, and if i
1

is a final task, ~hantli = t - tlen i " Given an interval (t1,t2), where

o ~ tl < t2 ~ t, then for a task i, if it were started at its earliest

time,

wei = min(max(te i + tleni ,t1),t2)

- min(max(te i ,t1),t2)

is, for this task, the number of time units that lie within the interval

(t1,t2). Similarly, one may define wl i as the number of units that this

task would use in the interval if it were started as late as possible.

Then w
1
· = min(we.,wl.) is the minimum number of execution time units that

1 1

will lie in the interval,. and consequently, for this interval

is the minimum number of processors required. Hence for the entire interval

the minimum number of processors required is given by

kmin = maX\ktl,t21(tl,t2) £ (O,t)}.

The major dra\'Jback to the above bound is its complexity vlhich is O(n*t2) .

where n is the total number of tasks. Fernandez and Bussel recognized

this drawback and suggested as. at). alternate the bound given by

kmi n = max(max J kO t ,. (0, t 1) £. (0, t)},
. \' 1 .

maX{ktl't I (t1,t) £ (O,t)!l.

-12-

By use of two data structures of size n, these calculations have a com

plexity of O(max(t,n)). In [26J, Ramamoorthy et al defined essential

tasks for the interval (t1,t1+1) as those tasks that must be in process

during the interval. Since the essential tasks must be processed, then

the number of essential tasks is a bound on the number of processors re~

qui red, and

kess = max {k
t1

,t
1
+l I (t1,t1+1)£ (O,t>}

could be combined with kmin to produce a bound which, although not as sharp

as the Fernandez - Bussel bound, has a complexity of only O(max(n,t)).

An improvement in the bounds discussed above can be made by considering

what we define as essential task interference. As an example, consider the

graph of Figure 9 which consists of eight tasks. Application of any of th~

previously discussed bounds determi-r1E~s that, for a schedule length of

t"Jelve, the minimum number of processors is t"JO~ However, if 'lIe look at

the number of essential tasks at each interval, we see that at period five

and period six t\'JO processors are required for essential tasks and thus

none are available fo}' other tasks. As a result of thls, task eight cannot

start as late as ti~e six as we determin~d from the precedence relations

but must, instead, be started by time one so that it \'lOn't interfere with

the essential tasks. If we now apply either the Fernandez - Bussel bound

or the alternate, we find that three processors are required. We note that

if task eight were only three units long and task seven were also three

units, then althouQh the graph vlOuld schedule in t"Jelve units v/ith t\'/o

processors) the earliest that task eight could start would" be time seven,

and thus, rather than decreasing tl we would increa~e teo Now since

changing either te or tl could add to the essential tasks at some interval,

then whenever te or tl is changes, the essential tasks should be recomputed

-13-

TASK TLEN TE TL

I 3 0 0
2 2 3 3

·3 2 5 5
4 2 5 5
5 3 7 7
6 2 10 10
7 2 0 3
8 4 0 6

.......---..... /'" . ,

TS

r~- I· -.~nT- . I -~-I -- I . J

o 2 4 6 8 10 12

and any new interferences dealt with. A program for computing essential

tasks and removing task interferences is shown in Figure 10. The proce

dures changete and changetl are resursive routines that change the te

or tl value for that node and all of its sucesSors or predecessors. The

worst case complexity of the procedures for determining essential task

interferences is 9(n*t2).

-14-

procedure esstinf (k,t)

done-false

whll e done = false do

esswork -0

done -:--true

for i-I until n do

for j-tl j until tei + tlen j do

esswork j - esswork j + I

for i-t-l step - I until 0 do

If esswork i > k then

write "Essential tasks· exceed
" processors

else .if esswork j = k then

forj-I until n do

iftlj> i a tej~i a tej +tlenj >i

then
~--------------------------~

changete (j,i +1)

done -false

if tl. +tlen. > i a te· + tlen· < i J J J j -

a tl(~ i then

chang e t I (j) i)

done -false

4. SCHEDULING

In the previous sections, we have reduced the problem of solving

recurrence equations in a mi~imum amount of time with fixed resources

to the familiar schedu~ing problem. This problem of scheduling proc

essors so as to minimize the total execution time of a set of tasks has

received considerable attention and is the subject of at least three

recent books [3,4,9J. The most recent of these [4J provides a thorough

discussion of the problem together with notatioh and terminology for its

representation. We depart from this notation only in that we consider

the restriction to k identical processors amon~st which data transfer

imposes no penalty. Also, we do not consider deferral costs. Thus,

we define.a task system to be a three-tuple (S,(,w) where

1. S = { T1,T2, ... ,Tn} is a set of n tasks,

"2. { is an irreflexive partial order defined on S which

specifies the precedence constraints, and

3. w: S + N is a map which associates with "each task a

non-negative integer representing its execution time.

We note that as in previous sections we represent the tasks as nodes

ina di rected graph \,/here an edge goes from T. to T. i f{ T
1
· ~ T

J
. and \'Je

" 1 J

will write the value w (Ti) as t1en i .

Given k identical processors," a schedule of a task system has a

schedule length of t ii a total function f": S + { O,l~ ... ,t-l }

subject to the conditions:

1 . i fT. < T. th e n f (T 1·) + t 1 en 1. < f (T.),
1 "J J

2. for all i ~ n, f(Ti ') + tlen; :5 t, and

-15-

3. for each i) 0 ~ i < t, there are at most k elements

T. for whi ch f(T.) 5 i < f(T.) + tl en ..
J . J J J

Since the processors are identical, the definition of a schedule

does not distinquish to which processor a particular task is assigned.

In presenting schedules, we will often make this 'assignment explicit

by showing the schedule as a Gantt chart.

Since we desire efficient algorithms for scheduling, we turn to

methods which,.although not ·optimal, will produce Jlgood" schedules.

The most common method is termed list scheduling. In this type of

scheduling we assume an ordered list of all of the tasks which is called

the priority list. The sequence by which tasks are assigned to processors

is then determined by scanning thfs list each time a processor is available

and ~ssigning to that processor the first unexecuted task all of whose

predecessors have completed. This method of list scheduling forms the

basis of many approximate methods as well as the algorithms that effi-

ciently produce optimal schedules for some restricted cases. We use·a

special form of list scheduling termed c~itical path scheduling. In

critical path scheduling the order of a task in the list is based upon
. .

the length of the longest path from that task to any final task. The

further a task is from any final task, the earlier it appears in the list.

Since critical path scheduling produce? optimal sch.edules under suitable

restrictions, it has been an attractive candidate for m~ny scheduling

problems where efficient methods 'are desirable. In [lJ Adams et ale

compared the perfo~mance of several list scheduling methods including

critical path. and found that critical path scheduling was significantly

better than the. other methods tested. Kohler [23J has also examined

critical path scheduling and found that in randomly generated tests it

-16-

produces optimal" schedules in approximately 75% of the cases. In spite

of this good expected performance, Graham [4, p 190J has shown that crit

ical path scheduling can be as bad as the worst list. Thus, our choice

of critical path as the basic scheduling method is based solely on the

expectation that the schedules produced will be near optimal.

The scheduling method that we employ is a goal oriented critical

path method with two further refinements. By go~l oriented we "mean that

the scheduling algorithm, w~en presented with a task "system, is" also

given a goal of the number of processors and the schedule length. The

algorithm either produces a schedule with those constraints or it reports

that it is unable to do so, in which case another request can be made with

either a longer schedule" length or more procesiors.

The refinements to the basic scheduling method are in t\'10 forms.

First, the priority list may be modified as a result of essential task

interference and second, as the scheduling progresses, limited back

tracki ng may be employed vJhenever conti nuance of a gi ven ass i gnment coul d

not meet the scheduJing goal. We will discuss the modifications to the

priority list first. Recall that, in Section 3, tli \'Ias qefined for task

i as the latest time that task i could be started and still meet the sched-

uling goals. Nm'l if these values are not modified by the algorithm that

computes,essential task interference, then a list arranged in increasing

order of tl would be exactly a critical path list. Instead of using only

a cri ti ca 1 pa th 1 is t, w'e use a 1 is t ordered on the va 1 ue tl even if that

value was changed due to essential task in~erference. This is justified

in that the value tl can only be decreased if the original value was not

consistent with any possible schedule. Thus, the resultant values for tl

reflect the latest time the tasks can be started both because of prece-

-17-

dence constraints and because of later interference with essential tasks.

Also, the assignment of a task .to a processor is never made prior to its

te value. Initially, te represents the earliest that a task could be

available for ~cheduling simply because of the time required for its

predecessor tasks to finish. Follm·/ing the determinatfon of essential

task interference, the values te also reflect the additional time, if any,

that the task initiation must be delayed to avoid interference· with essential

tasks.

To illustrate the ben0fits of not scheduling a task prior to its te

value, consider the task system shown in Figure 11. This system was given

bi Koh 1 er [23J as an examp 1 e of a sys tem which no' 1 i s t schedul i ng method ,

could schedule optimally. The task system has a longest path of length

eight and the sum of the length of ~11 tasks is twelve, thus a scheduling

goal of eight time units and two processors appears reasonable. If we use

the critical path method then the priority list is T1,T2,T3,T4,T5,T6,T7 and

the partial Gantt chart shows the assignments ~ade until time three where

it is determined th~t T4 must.be scheduled,!if the goal is to be met, and

yet no processor is available. However, if we examine te6, we find that

it was initially·l but that, because·of two essential tasks at time three,

the original value would cause interference with these essential tasks, and

te6 was changed to 4. The second Gantt chart in Figure 11 shows the com

plete schedule generated by not scheduling T6 prior to it~ te value. This

example has shown how considerati6n of essential task interference amounts

to adding a nonproductive task to the list of tasks to be scheduled. The

next example shows how consideration of essential task interference can

generate a better scheduling list than the critical path list. Consider

the task system shown in Figure 12 where we depart from our normal method

-18-

PI T
I T2 T3

P2 T6

I I I I I I I I
0 2 4 6 t partial· Schedule

8

I I I . . I I
02468

.. Complete Schedule t

of showing the execution time of the tasks. Here the execution time of

the task is ihown interior to the node and its label is adjacent to it.

This task system is an instance of the system which Graham [4,p 193J

cites as an example of a system for which critical path produces a sched

uling list which is as bad ai any list can be. The critical path list is

T10,Tll-T15,Tl-T9 which will produce a schedule of length 43 using five

processors. However, if we apply essential task interference methods with

a goal of five processors and a schedule length of 25~ we find that tasks

T11-T15 are essential during time period one through five, and since there

are five of them, then te for tasks T2-T5 must be increased from a to 6 so

that they do not interfere~ Recomputing the essential tasks, we now find

that there are five essential tasks from time period 1 through 24, and

hence, tl for tasks T6-T9 must be decreased from 24 to O. The resultant

list, ordered on non-decreasing values t1, is T6-T10,T,1-T15,T}-T5 which

will produce an optimal schedule shown in Figure 13. As a final example,

we remark without showing the details that the task syitem attributed .to

G. S. Graham and given in [4,p 190J ca~ be scheduled optimally if we re

move essential task. interference prior to determining th~ scheduling list.

This system is given as an example to show that even if the partial order

is a tree, the ratio of critic~l path schedule length to an optimal sched

ule can still be very close to 2.

The removal of essential task interference, as we have used it here,

applies only to the case" where there are exactly k essential tasks during

some time period. If there are k~l essenti~l tasks, the~ one other task

can be processed concurrently but not two. Some instances of this case

can be handled by using a limited backtracki~g algorithm. Consider the

task system shown in Figure 14 which has 3 maximum path length of eight.

-l~-

·T
~
\

T,

TS

T9

T

o

~

~

~

~

r-....

.0

Til TI2 TI3 TI4 T I5 T)

T2

T3
T4

'T 5

Critical Path 43

Til T)

TI2 T2 I

TI3 T3

T)4 : T4 ..

T I5 T5
I

I

I

25
Critical Path With Essential -Task lnterference

. T
. .1

(T5)

(T6)

PI T4 T2
Critical

P
2

T Path
5

Schedule
p' T
3 6

I I I I
0 3 6 9

PI T T T
4 2 I An

P
2

T T Optima 1 .
5 ··6 Schedule

p T
3 3

I I I I . I
0 2 4 6 8

With a schedulin~ goal of three processors and length eight, it has only

two essential tasks at time three and four. The critical path schedule il

lustrates the problem with assigning all of the tasks that can be assigned.

At time zero we assign t~sks !4,TS and T6 put then at time three, when two

essential tasks should be assigned, only one processor is available. By

backtracking at this point we can rescind the assignment of T6 to processor

P3 since its start time can be delayed as late as time four. We can now

assign T3 and continue developing the schedule. In terms of list scheduling,

this example of limited backtracking is another case of creating a nonpro

ductive task Nl which consumes a part of the resources. In this case, the

original critical path list was T4,T2,T3,TS,T6,T" and N" which is of

length 3, inserted qetween TS and T6. ~ The part of the algorithm that

inserts· these extra tasks chooses the ·smallest one possible, in that, al

though the backtrack does not start until it is determined that a task

must be scheduled and"noprocessor is available, if a task can be rescinded

then the critical task is assigned as early as.possible. Further, in the

event that there .are·more than one task currently assigned whose assignment

could be rescinded, then we choose that one which results in the smallest

nonproductive task~ Additional refinement in the choice is made, ~hen ne

cessary, by rescinding the task which is rightmost in the list.

Another form of limited backtrackirig involves exchanging the position

of two tasks in the list. This is illustrated by the task system shown in

Figure 15. The task syste~ consists of eight tasks with the sum of the task

lengths equal to 42. A critical path schedule with three processors is

shown arid has a length of 1S. However, if W~ apply any of the bounds of

Section 3 we find that a schedule length of 14 is a reasonable goal. Using

the critical path list, we find ~t time ten that T4 must be.assigned but

. -20-

o

o

(T6 X TI)

I
12

"T
6

TS

T5

T6

TS

T5

(T2)

c· T5

I I
8 4

TI

T2

T7

t
~I

T7 "T

T2

)
I

0

v

T3 v
v
v
~ ~

Critical
Path

T4

T3

4

14

Schedule

15

An
Optimal
Schedule

that there is no. processor available. In this case we note that had we

interchanged the. position of T2 and T7 in the list then T7 \'lOuld be assigned

to P2 at time 7 and would have completed at time 10 so thatT4 could be

assigned. The search for tasks whose interchange would allow the scheduling

goals to be met is initiated only when a task must be assigned and no pro

cessor is available. At that time, a search is made of all currently as

signed tasks that have not completed to determine if interchanging any two

of them would allow scheduling to continue. The interchange of two tasks

may also be accompanied by the creation of another nonproductive task. -In

the event that there are more than one pair of tasks that could be inter-

changed, we choose that pair which results in the smallest nonproductive

task being created. If further refinement of the choice is- necessary, we

choose that pair with a task which is rightmost in the list.

The inclusion of the limited backtracking which we describe makes the

\'/orst case complexity of the scheduling procedure 0(n 3), however, in

actual test cases run, the expected complexity was less than 0(n2).

-21-

5. PERFORMANCE

In order to determine the effectiveness of the algorithms previously

described, they were program~ed using PLjI Level F, and test cases were

run using an IBM System 360 Model 67.

Generation of Test Cases

The majori ty of the tes ts were made us i ng randomly genera ted eye 1 i c

precedence graphs. Input to the program was the number of recurrence nodes

and the total number of nodes. Based upon these numbers, the program then

generated the cycl i c precedence graphs \A/here the nodes predomi nantly repre-

sented binary functions although unary functions \'Iere present. Since these

nodes may represent a sequence of calculations with the edges representing

only precedence constraint and not data flow, the task execution times were

chosen from a uniform distribution over a fixed interval. The algorithms

described in Section 2 were then applied, and an acyclic,precedence graph

having a maximum path length equal to the minimum solution' period was

extracted. Next, the scheduling goal for the number of processors is de-

termined based upon

This choice represents the best bound available on the number of processors

requi red for any acycl i c precedence graph extracted from the cycle one. Re

ca 11 tha t the' acyc 1 i c graph \,/hi ch, vie extrac't from the cyc'l' i cone is not the

only one possible. It is easy to generate examples ,,/here the graph which

we extract will not schedule with the goal of k processors, and length minsol

and yet, another acyclic graph can be extracted which will schedule with

these goals. We next apply the algorithm for determining essential task

-22-

interference and the alternate Fernandez - Bussel bound to determine the

shortest scheduling period possible given k processors. The scheduling

is then perfonned using the methods described in Section 4.

Test Results

Two series of 50 cases each were run with m, the number of recurrence

nodes, in the range from 4 to 12 and n, the number of tasks, in the range'

from 16 to 144 .. The results of these two test series are shown in Table· 1

and Table 2. The entry P-time is the 10\'Jer bound on schedule length and

S-time is the actual scheduling time. No entry is made in either of these

columns if these numbers are the same as minsol. The column labeled ratio

is the ratio of minsol to the length of th~ longest pqth from any recurrence

node to any other. Density represen~s the utilization of the processors

for this schedule. Finally, whenever the schedule produced was not possible

\'Iith critical path scheduling alone, a IIno" is placed in the column headed

CPo

To sunmarize the test results with regard .to scheduling, 24 cases out

of 100 would not.schedule optimally using only critical path .scheduling

\'/hich is consistent with the figures reported by Kohler [23J \'/here he

found 9 cases out of 40. We note how~ver, that of these 24 cases, 17

(71%) of them were optimally scheduled using the one level of backtracking

provided in our algorithm. By examining the ratio of the schedule length

produced'to the shortest bound we find that we can expect to schedule a'

task syst~m with a schedule length ~hich is no more than .158% longer

than an optimil length. This figure is comparable to the' .22% reported

by Adams et al., [lJ for similar size graphs. Certain differences however,

make a close comparison difficult in that a) we have the additional sched

uling problem of split tasks where the task must be scheduled both at the

-23-

TAnLE 1.--Performance Figures for Test A

m n k minsol P-time S-time Ratio Density CP

4 16 _ 3 30 ' .968 .922
3 30 1.000 .867
3 43 1.000 .767
3 37 .925 .685
3 42 .955 .683
3 29 .569 .920
3 34 .829 .912
3 39 41 _ 41 .765 .951 no
2 53 1.000 .925
3 33 33 34 .750 .951

6 36 5 39 .750 .872 no
5 42 .778 .933
5 56 .651 .832
4 59 1.000 .784
4 50 52 52 1.000 .851
4 68 1.000 .754
4 58 .935 .961 no
6 41 .683 .850
4 54 .818 .917 no
4 56 .903 .875

8 64 6 56 57 57 1.000 .980 no
4 94 1.000 .886
5 78 78 79 .929 .-965
7 59 .9,08 .869
6 66 .943 .894
6 62 64 64 .849 .951
6 62 e705 .944 no
6' 63 ' .875 .934 no
7. 50 .714 .874
5 66 .-930 .945

TABLE l.--Continued

m n k minsol P-time S-time Ratio Density CP

10 100 7 93 1.000 .929
6 108 . 1.000 .855
9 59 .797 .962
9 58 .906 .987 no
7 85 .977 .909
7 81 .976 .975 no
7 77 77 79 .928 .• 97.5
8 76 1 .000 .896
9 69 .945 .992 no
8 70 .933 .984

12 144 10 82 1.000 .946
12 . 64 65 66 .842 .944

7 128 ~985 .917
9 90 .938 .917
9 99 1.000 .919
9 101 .990 .922 no

10 84 1 .000 .904
7 119 1.000 .. 959

13 -72 .911 .931 no
7 119 -'.960 .962 no

Average .904 .904

TABLE 2.--Performance Figures for Test B

m n k minsol P-time S-time Ratio Densi'ty CP

4 16 3 30 1 .000 .767
3 34 . .971 .853
3 35 .795 .914
3 33 34 34 .708 .951
2 60 . 1.000 .842
4 27 .900 .907 no
3 41 1.000 .740
4 25 .806 .880
3 30 1.000 .867
3 29 .935 .816

6 36 6 37 .881 .869
5 53 .803 '.830
4 68 1. 000 .816
5 50 .893 .832

I '

5 49 .961 .894
5 49 .907 .802
5 41 .953 .863
3 89 1. 000 .. 831
4 70 1 . 000 .843
4 53 .828 .892

8 64 5 82 .932 .910 no
5 85 .810 .915 no
9 48 .814 .896
6 79 1 . 000 .844
5 70 .921 .891
6 72 1 . 000 .847
6 63 .926 .865
5 87 1.000 0860
6 53 53 55 .902 .912 no
4 90 1 . 000 .950

TABLE 2.--Continued

m n k minsol P-time S-time Ratio Density CP

10 100 8
I,'

73 .912 .957
7 84 .966 .952
7 87 .897 .869

10 53 55 56 .812 .927
7 83 .883 .935
8 76 1 .000 .885
8 76 .884 .380
9 64 .928 .950 no
8 83 .912 .973
8 72 .960 .976

12 144 9 95 .969 .904
9 85 .944 .950 no
8 103 .981 .984
9 92 .911 .940
9 89 .864 .961
8 112 .836 .926
9 85 .876 ·.946
9 104 ,.912 .909 no

10 82 .901 .916
11 80 "'7 1 .000 .914

Average .920 .891

beginning and at the end of the same processor, and b) we choose the

number of processors such that no fewer number could still produce a

schedule of the same length. This later condition may not have been

met by all the schedules reported in [lJ.

With regard to the ratio of the schedule length to minsol, which

is the best ratio we can claim for recurrence equations, we note that

89 out of 100 tes t cases .were s chedul ed opt; ma lly and the expected'

schedule length is no more than .366% longer than an optimal schedule.

-24-

w
~

l-

z
o

300

200

r- 100
:J
o
W
x
w

LOOP LI MIT

MINSOL LIMIT

03 6 9 12 15 18 21
NUMBER OF PROCESSORS

6. CONCLUSIONS

From a practical standpoint, one of the more important areas of

future research is to examine various changes to our assumption that data

transfer between proc~ssors is without penalty. One such change could

be that at each iriterval of time only some fixed number of data transfers

could occur corresponding to some fixed number of data channels. Another

change to this assumption would be to define a distance between processors,

and to impose a time penalty on data transfers as a function of the dis

tance beb·/een the two processors.

Another area foi·future research would be to examine various heuris

tics for extracting the acyclic precedence graph from the. cyclic one. This·

extraction is not unique and we can show examples where one method of ex

traction will result in a task system that can be scheduled with a fewer

number of processors .than one extracted by some other method. One reason

for this is that one method of extraction may result in more split tasks

than some other method and by examining some of the test cases ·we have

found that the split tasks can cause scheduling problems which will result

in a longer schedule.

In terms of the benefits of using the algorithms pr~sented, further

study would be required to determine the exact characteristics of repre- .

sentative recurrence equations.

As compared vd th simp ly s chedul i ng the acycl i c i nnerl oop, the random

test cases of Section 5 shows that our method .can be ex~ected to produce

schedules nearly 10% shorter. In many instances the·savings can be con

siderably more. In one such case, 'de examined the scheduling of the solu-

-25-

tion to a set of eleven first order differential equations which repre

sent the equations of motion of a ground launched missile. By consid

ering just the inner loop, we found a minimum schedule period of 80

units and this was realized with 8 processors. However, by using the

methods presented, a minimum solution period of 44 units was found and

this was schedulable using 16 processors. The execution time verses the

nu~ber of protessors is shown in Figure 16.

-26-

7. ACKNOWLEDGEMENT

This work was performed while the author·wa~ at Washington State

University. The support provided by the Computer"Science Department

is gratefully acknowledged. The author would also like to thank

Professor Ottis Rechard and Professor Janusz Kowalik for their many

helpful suggestions.

-27-

REFERENCES

[1J Adams, Thomas L~, Chandy, K. M., and Dickson, J. R. A comparison of
list schedules for parallel processing systems~ Comm. ACM 17, 12
(Dec. 1974), 685-690.

[2J

[3J

[4J

[5J

[6J

[7J

(8J

Aho, A. V., H6pcroft, J. E;, and Ullman, J. D. The Design and Anal
ysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

Baker, K. Introduction to Sequencing and Schedulinq, John Wiley &
Sons, New York, 1974.

Coffman, E. G., Jr. Computer and Job Shop Schedu1inq Theory, John
Wiley & Sons, New York, 1976.

Coffman, E. G., Jr. A survey of mathematical results in flow-time
schedul i ng for computer systems, Proce'edi nqs, GI 73, Hamburg, Spri nger
Verlag, 1973.

Coffman, E. G., Jr., and Denning, P. J. QEeratinq Systems'Theory,
Prentice-Hall, Englewood Cliff~~ N. J., 1973.

Coffman, E. G., Jr., and Graham, R. L. Optimal scheduling for two
processor systems, Acta Informatica 1, 3(1972), 200-213.

Cohen, Ellias.
Comput. Decis.

Symmetric multi-mini-processors:
5, l(Jan. 1973), 16-20.

a better \'Jay?,

1,9J Conway, R. W.', Maxwell, W. L., and r~i1ler, L. H. Theory of Scheduling,
Addison-Hesley, -Reading, Mass., 1967.

[lOJ Cook, S. A. The complexity of theorem proving procedures, Proceedings
3rd ACM Symposium on Theory of Computing, 1971, 151-158.

[11J Deo, Narsingh. Graph Theory v/ith Application to Engineering and Com
puter Science, Prentice-Hall, Engle~ood Cliffs, N. J., 1974.

I12J Enslow, P. H., Jr. Multiprocessors and Parallel Proc~ssing, John Wiley
& Sons, New York, 1974.

[13J Fernandez, Edu~rdo B., and Bussell, Bertram. Bounds on the number 6f
processors'and time for multiprocessor optimal schedules, IEEE Trans.
Compo C-22, 8(Aug. 1973), 745-751.

[14J Floyd, R. W. Algorithm 97: shortest path, Camm. ACM 5, 6(June 1~62),
345.

[15J Flynn, M. J. Some computer organizations and their effectiveness,
IEEE Trans. Compo C-21, 9(Sept. 1972), 948-960.

-28-

[16J Kujii, M., Kasami, T., and Ninomiya, K. Optimal sequencing of two
equivalent processors, SIAM Journal on Applied Mathematics 17, 3(1969),
784-789.

[17J Gilliland, M. C. The hetrogeneous element pr9cessor, Proc~edings,
Special Symposium on Advanced Hybrid Computing, San Francisco, CA, 1975.

[18J Graham, R. L. Bounds on multi-processing anomalies and related packing
algorithms, Proceedinqs, AFIPS Conference 40, (1972), 205-217.

[19J Hu, T. C~ Parallel sequencing and assembly line problems, Operatl0ns
Research 9, 6(1961), ·841-848. .

[20J Karp, R. M. Reducibility amoung combinatorial problems, Complexity of
Computer Computation, Miller, R. E., and Thatcher, J. H. (Eds.), Plenum
Press, New York, 1972, 85-104.

[21J Karp, R. M., Miller, R. E., and Winograd, S. The organization of compu~
tation for uniform recurrence equations, JACM 14, 3(July 1967), 563-590.

[22J Kogge, P. The Parallel Solution of Recurrence Problems, Ph. D. Thesis,
Stanford University, 1972.

[23J Kohler, Walter H. Preliminary evaluation of the critical path method
for scheduling tasks on a multi processor system. IEEE Trans. Compo
C-24, 12(Dec. 1975)., 1235-1238.

[24J Krone, M. ·Heuristic Programming Applied to Schedulinq Problems, Ph. D.
Thes is, Pri nceton. Uni vers i ty, 1970 .

. [25J McNaughton, R. Scheduling with deadlines and loss functions, Management
Sci. 6, 1 (0 ct.. 1 959), 1 -1 2. .

[26J Muntz, R. R. Scheduling of Computations on Multiprocessor Systems; The
Preemptive Discipline, Ph. D. Thesis, Princeton University, 1969.

[27J Ramamoorthy, C. V., Chandy, K. M., and Gonzalez, Mario j., Jr. Optimal
scheduling strategies in a multiprocessor system, IEEE Trans. Camp. C-21,
2(Feb. 1972), 137-146.

[28J Rumbaugh, J. E. A Parallel Asynchronous Computer Architecture for Data
Flow Programs, TR-15~, Project ~AC, M. I. T., Cambridge, Mass., 1975.

. .
[29J Schindler, Sigram, and Ludtke, Harald. An approach to restricted sched-

uling problem for multiprocessor systems. Proceedings; Sagamore Computer
Conference, 1973, 121..;129.

[30J Ullman, J. D. Polynomial complete scheduling problems, Operating Systems
Review 7, 4(1973), 96-101.

-29-

Footnotes

lr~ontana State University) Bozeman, t~ontana

Captions

Fig. 1 Program for solution of Van der Pol equations

Fig. 2 Acyclic and cyclic precedence graphs for Van der Pol equations

Fig. 3 Schedules for Van der Pol equations

Fig. 4 Program to determine minimum solution period

Fig. 5 Determining relative times for recurrence nodes

Fig. 6 Cyclic precedence graph

Fig. 7 Interconnected precedence graph

Fig. 8 Resultant acyclic graph

Fig. 9 Essential task int~rference example
.

Fig. 10 Determining essential task interference

Fig. 11 Example of not scheduling early

Fig. 12 System which is worst case for critical path

Fig. 13 Critical path and optimal schedules

Fig. 14 Example for rescinding assignments

Fig. 15 Example for interchanging assignments

Fig. 16 Execution time for missile problem

Denelcor

D
Denelcor, Inc. (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

TWO PARALLEL ALGORITHMS FOR SHORTEST

PATH PROBLEMS .

By DR. N. DEO
DR. C. Y. PANG

DR. R. E. LORD

Tomorrow's Computers ... Today

TWO PARALLEL ALGORITHMS FOR SHORTEST PATH PROBLEMS*

Narsingh Deo
C. Y. Pang, and

R. E. Lord

Computer Science Department
Washington State University

Pullman, WA 99164

March 1980

for

1980 International Conference on

Parallel Processing

*This work was supported by U.S. Department of Transportation contract
no. DOT-RC-92042 and by NSF grant no. MCS78-25851.

ABSTRACT

After examining several dozen serial algorithms and their variations

for various shortest-path problems, two algorithms were selected as good

candidates for parallelizat;on on an MIMD-type processor. These are:

(1) Pape-D'Esopo version of the Moore's algorithm for finding shortest paths

from one node to all other~, and (2) Warshall-Floyd algorithm for finding

shortest paths between all pairs of nodes. The techniques used in designing

the two parallel algorithms are fundamentally different--one involves parallel

processing with a queue and is suited for sparse networks while the other

employs matrix methods and is suited for dense networks. The correctness of

these algorithms is proved. Execution times are analyzed and compared with

actual execution times on the HEP computer (an MIMD machine).

-2-

1. INTRODUCTION

Shortest-path problems are by far the most fundamental and also the most

commonly encountered problems in the study of transportation and communication

networks. Often the repeated determination of shortest paths and distances

form the core (inner loop) in many transportation planning and utilization

packages. Therefore, the search for faster and faster shortest-path procedures

continues. After reviewing over 200 papers on shortest-path algorithms and

after classifying and analyzing several dozen existing algorithms [5], two

points became evident to us (among other things}: (1) the shortest-path

problems have almost reached their theoretical bounds of speed if conventional

serial computers are to be used; and (2) certain algorithms (which may be

most suited for serial mode) cannot be IIpara1lelized" as readily as others.

For example, Dijkstra's algorithm [4, 7, 18] for finding a shortest path

between two nodes is not as well suited for parallelization as the Be11man

Moore [5, 14, 21] algorithm is.

We have selected two algorithms (for solving two different shortest-path

problems), which appear to us as the best candidates for para11e1ization,

for a detailed presentation in this paper. These are: (1) Pape-D'Esopo

version of the Moore's algorithm for finding shortest paths from one node

to all others [14, 15] and (2) Warsha1l-Floyd [4,10, 18] algorithm for

finding shortest paths between all pairs of nodes. The techniques used in

designing the two parallel algorithms are fundamentally different--one

involves parallel processing with a queue and is suited fqr sparse networks

while the other employs matrix methods and is suited for dense networks.

-3-

We designed parallel versions of these two algorithms, suited for an

MIMD (multiple instruction multiple data stream) [11] machine--keeping an

eye, in fact, on the characteristics of the specific MIMD machine on which

the designed parallel programs were actually to be executed. For example, on

this machine the time required in creating a process is greater than the time

needed to lock or unlock a resource.

In recent years, MIMD machines are not only being built experimentally

in university laboratories, but they are being built in private industries.

The Heterogeneous El ement Processor (HEP) of DENELCOR Inc. [20], and the

SMS 201 of Siemens AG [12] are two examples of commercial MIMD machines.

Since the HEP was available to us, we coded and executed our programs on the

HEP and performed the timing study on it.

Although a number of theoretical studies have been reported on parallel

processing of graphs [1,8,9, 13,17,19], very few of them have considered

the specific problems of shortest path problems and none have actually designed,
It

coded and executed a parallel shortest-path algorithm on a real parallel com

puter (particularly on an MIMD computer) to the best of our knowledge. This

study considers many of the real nuts-and-bolts issues of parallelization of

existing algorithms, data structures, efficiencies and speed-gains over the

serial implementations.

In Section 2, we will give definitions relevant to shortest paths on a

network. In Section 3, we design a parallel algorithm for finding shortest

paths from one specified node to all other nodes in a given network. The proof

of correctness of the algorithm and the details of our model of computation

are also given in Section 3. In Section 4, we present the second algorithm-

for finding shortest paths between all pairs of nodes in a-given network.

The proof of its correctness and some empirical results on execution time are

also presented in Section 4.
-4-

2. SOME DEFINITIONS

The following are the definitions of some of the important graph-theoretic

terms used in this paper. Definitions for the rest of the terms can be found

in any textbook on graph algorithms or networks [4, 18]. A directed graph

G = (V, E) is an ordered pair of finite sets: V of nodes, and E of arcs. We

will use NODES to denote the number of nodes in V. We will also use

{l, 2, ... , NODES} to denote the ele~ents of V. An arc a in E is an ordered

pair, (u, v), of nodes. An arc a = (u, v) is said to start at u and end at

v. A network is a directed graph, G, together with a real valued function,

£, on the set of arcs. For any arc a, £(a) is the arc length of a. An arc

length matrix has its (u, v)th entry as £(u, v) if the arc (u, v) exists. The

entry is 00 if (u, v) does not exist. A path P is a finite sequence of arcs

P = (a l , a2, ... , ak), such that ai starts where ai - l ends, for i = 2, ... , k.

The length,d(P) of a path P is defined to be d(P) = t(a l) + + £(a k). If

ai = (u i - l , ui), we will, in addition, use (uO' ul ' ... , uk) to denote P,

and P is called a path from Uo to uk. A path that starts and ends at the same

node is called a cycle. A cycle with negative path length is called a

negative cycle. P is a shortest path from u to v if d(P) is minimum over the

length of all paths from u to v; the shortest distance from u to v is then

d(P). The one-to-all shortest path problem is the problem of finding the

shortest paths from a given node, called the source, to all the other nodes,

the destinations. The all-to-all shortest path problem is the problem of

finding a shortest path for every pair of nodes in the network.

-5-

3. A PARALLEL ALGORITHM FOR THE ONE-TO-ALL
SHORTEST-PATH PROBLEM

A modification of Moore's algorithm [14] by D'Esopo as reported in [16]

was further developed by Pape [15] into two very efficient codes for finding

shortest paths from a specified source node to all other nodes in the given

network. This Pape-O'Esopo-Moore algorithm, which we will refer to as POM

algorithm, may be described in an Algol-like language as follows:

Algorithm POM

1 for all u 1 SOURCE do
2 -0 [u] := 00;
3 D[SOURCE] := 0;
4 initialize Q to contain SOURCE only;
5 while Q is not empty do
6 begin --
7 delete Q's head node u;
8 for each arc (u, v) that starts at u do
9 -if D[v] > D[u] + R-{u, v) then

10 begin
11 P[v] := u;
12 D[v] := D[u] + R-(u, v);
13 if v was never in Q then
14 --insert v at the ta~f Q;
15 if v was in Q, but is not currently in Q then
16 --insert v at the head of Q
17 end
18 end

During the execution of Algorithm PDM, the label D[u] is always updated

to be the currently known shortest distance from SOURCE to u, and P[u] is

always updated to be the predecessor node of u on the currently known shortest

path from SOURCE to u. Since each insertion of a node u into Q is preceded

by a decrement of D[u], this algorithm is guaranteed to terminate provided

the input network has no negative cycles.

To see that the D[u] 's do indeed converge to the shortest distances,

we first note that at termination D[v] $ D[u] + ~(u, v) hoJds for every arc

(u, v). Suppose the node sequence (SOURCE = uo' Ul ' ... , uk = u) is a path

from SOURCE to u, then its path length is given by

-6-

£(uo-' u1) + ... + £(u k- 1, uk)

~ (-D[uO] + D[u1]) + ... + (-D[U k_1] + D[U k])

= -D[SQURCE] + D[u] = D[u].

Thus, D[u] is the shortest distance from SOURCE to u, and the node

sequence,

(SOURCE == P[... P[u] ...], ... , P[P[u]], P[u], u),

is the s hortes t pa th from SOURCE to use as obta i ned by A 1 gori thm PDM.

The experiments of Denardo and Fox [2], Dial, Glover, Karney and

Klingman [3], Pape [8], and Vliet [11] show that on the average Algorithm PDM

is faster than almost every other shortest-path algorithm, if the input network

has a low arcs to nodes ratio. We will, therefore, base our parallel algorithm

on Algorithm PDM.

Let us fix our model of parallel computation before developing parallel

algorithms. We will assume that our computer ~an simultaneously execute

up to K processes. The communication between the processes is done via a

common memory. The computer supports the operations: create, lock, and

unlock [pp. 77-78 of Ref. 2]. When a process Pl executes the statement

"create process P2,1I P2 will start execution and P1 will continue. For a

memory X, after process P, executes "lock X," any other process that attempts

to read, write, or lock X will have to wait until P1 executes an "unlock X."

Our model of computation is a realistic one; for the HEP computer can simul

taneously execute processes, it has a common memory for all the processes, and

it supports the operations create, lock, and unlock efficiently.

For practical reasons, we will assume that create, lock, and unlock take

non-zero units of time to execute. In designing our algorithm, we also assume

that create requires a longer execution time than lock and- unlock. This

assumption is also realistic, because create in the HEP machine using the

-7-

FORTRAN language is implemented with four instructions, whereas only one

machine instruction is required for implementing lock or unlock.

An obvious way to utilize the concurrent processing in Algorithm PDM

would be to execute the inner for loop (statements 8 toll) simultaneously.

But this approach is unprofitable because the overhead for a create is high

compared to the execution of one pass of the loop. Moreover, in this

approach the maximum number of concurrent processes utilized would be about

four, if the input is a typical road network (with outdegree* =4). Therefore,

we will avoid breaking the inner for loop into different processes; instead

we will distribute the passes of the while loop (statements 5 to 18) to different

processes. This will avoid excessive use of create's.

We will use only K-l create's to obtain a total of K concurrent processes

at the beginning of the algorithm, and use lock's and unlock's to take care of

the rest of the synchronization. During the execution of the algorithm, the

K processes--one called MASTER and the others called WORKERs--share the computa-

t i on load, as long as there are known tasks to be performed. Each process takes

approximately 1 of the work load in the initialization step. In the path-K
finding step, each process repeatedly deletes a node, u, from Q, and updates

P [v] 's and o [v] , s for the successors, v's, of u. In addition to a WORKER's

tasks, the MASTER is responsible for finishing the initialization step, and

for synchronizing the initiation and termination of the path-finding step. Our

parallel algorithm, which we will refer to as PPOM, is as follows:

* The outdegree of a node is the number of arcs coming out from that node.

-8-

Algorithm PPDM (Parallel Pape-D'Esopo-Moore)

Process MASTER

1 MSYN := "yes"; WAIT := 0; DONE := 0;
2 for i := 2 step 1 until K do
3 create process WORKER(i);
4 for u := 1 step K until NODES do
5 D[u] := 00;
6 Ll: if WAIT < K - 1 then goto Ll;
7 DTSOURCE]:= 0;
8 initialize Q to contain SOURCE only;
9 L2: lock Q;

10 if Q is empty then goto L3;
11 delete Q1s head node u;
12 unlock Q;
1 3 MS Y N : = II noll ;
14 reach successor nodes of u (Block B);
15 MSYN := lIyes ll ;
16 ~oto L2;
17 L3: lf WAIT = K - 1 then goto L4;
18 unlock Q;
19 goto L2;
20 L4: DONE := 1;
21 unlock Q;
22 L5: if DONE < K then goto L5

Process WORKER(i)

1
2
3 Ll:
4
5
6
7
8
9

10 L2:
11
12 L3:
13 L4:
14
15
16
17 L5:

for u := i step K until NODES do
O[U] := 00;

if MSYN := lIyes" then goto L3;
lock Q;
if Q is empty then goto L2;
delete Q1s head node u;
unlock Q;
reach successor nodes of u (Block B);
goto Ll;
unlock Q;
goto Ll;
lock WAIT; WAIT := WAIT + 1; unlock WAIT;
if DONE> 0 then goto L5;
Jl. MSYN = "yes II then goto L4:
lock WAIT; WAIT := WAIT - 1; unlock WAIT;
goto Ll;
lock DONE; DONE := DONE + 1; unlock DONE

-9-

Block B

1 for each arc (u, v) that starts at u do
2 begin
3 newdv := D[u] +~(u, v);
4 lock D[v];
5 TfiD[v] ~ newdv then
6 -unlock D[v] --
7 else begin
8 ~v] :- u;
9 D [v] : = newdv;

10 unlock D[v];
11 lock Q;
12 if v was never in Q then
13 ---insert v at the talTlDf Q;
14 if v was in Q, but is. not currently in Q then
15 ---insert v at the head of Q;
16 unlock Q
17 end
18 en-d-

Note: For Block B of the MASTER process,' 'Statement 11 shoul d be changed to:

11 MSYN := "yes"; lock Q; MSYN := "no";

In Algorithm PPDM, the local variables are written in lower case letters,

they are i, u, v, and newdv. The variables MSYN, WAIT, and DONE are the communi-

cation links between the MASTER and the WORKERs. MSYN = "yes" signals the

WORKERs to let the MASTER check the Q first. WAIT is the number of WORKERs

waiting for further command from the MASTER (i.e. WAIT is the number of WORKER

processes which are executing statements 13 and 14). DONE is used by the

MASTER to broadcase the termination signal. This algorithm requires the

processes to keep on processing Block B until Q is empty. Block B is equivalent

to statements 8 to 17 of Algorithm PDM. The locking and unlocking of D[v]

and Q are added in Block B to ensure that Algorithm PPDM computes correctly.

Proof of correctness

We will now informally prove the correctness of this algorithm. It is

easy to see that the initialization step is correct. For the path-finding step,

-10-

we will first state and prove six remarks to show that the algorithm terminates

for all networks which have no negative cycles.

Remark 1: For any node v, D[v] is nondecreasing with time.

Remark 2: Each finite D[v] represents the length of a path from SOURCE to v.

Remark 3: Only a finite number of insertions are made into Q.

Remark 4: Every execution of Block B always terminates.

Remark 5: There exists a time, t 1, such that the MASTER process will not

execute Block Band MSYN = "yes" for all time after t l .

Remark 6: Algorithm PPDM terminates.

To see that D[v] is nondecreasing, one simply observes that D[v] only

changes when it is locked, and the changes are always decrements. To see that

each finite entry D[v] represents a path length, we use induction on the time

sequence of the change on the array D[e]. Let t, be the time immediately

after D[SOURCE] is initialized to zero, and let ti+l be the time immediately

after the first change (or changes) in D[e] after ti' for i = 1, 2, At

time t l , D[SOURCE] = 0 is the only entry of D[e] with a finite value, and 0 is

the path length of the null path from SOURCE to SOURCE. Suppose for all time

t ~ ti' each finite D[v] represents a path length from source to v, and suppose

D[v] is changed immediately before t i+l . Assume that the change in D[v] is

caused as we fan out from u, and that the value of D[u], at the time of its

reading statement 3 in Block B, is the path length of (SOURCE ~ uo' U1 ' ... ,

uj ~ u). At time t i+l , 0 [v] is the path length of (uo' ul ' ... , uj ' v).

Thus, Remark 2 follows by induction.

To see that Remark 3 holds, we first notice that each D[v] is bounded

from below, because the D[v] 's represent path lengths and the input network

has no negative cycles. Secondly, we notice that there ar'e only finitely many

decrements to the D[v]'s, because each decrement decreases a D[v] by at least

-11-

the minimum length difference between two 100p1ess paths. Thus Remark 3

follows, since each insertion into Q implies a previous decrement of a D[v].

We will prove Remarks 4 and 5 together. To prove Remark 4, it suffices to

show that no indefinite waits occur at Block B's statements 3, 4, and 11.

By Remark 3, we see that Block B can be executed for only finitely many times.

Thus every waiting,at statements 3 and 4 takes a finite time. Because Q

can be locked outside Block B, more arguments are needed to show that no

indefinite wait occurs at Block B's "10ck Q" statement (statement 11). We

will prove a stronger result that no indefinite wait can occur at any "lock Q"

statement in Algorithm PPOM. The MASTER always sets MSYN to "yes" before it

executes "10ck Q", and when MSYN is "yes" all WORKERs will be blocked from

entering statements 4 to 11 and Block B. Thus the MASTER has no indefinite

wait at "1ock Q", and that its executions of Block B take finite time. Before

we prove similar results for the WORKERs, we first prove Remark 5. It is easy

to see that the loop of the MASTER's statements 9 to 16 has no indefinite wait.

We claim that the loop of statements 9, 10, 17, 18, and 19 has no indefinite

wait also, for if the MASTER is waiting at statement 17, then MSYN would have

the value "yes ", and consequently, only finitely many short lockings of WAIT

can occur at the WORKERs' statement 12. Since indefinite wait does not occur

at the MASTER process, and there are only finitely many insertions into Q,

we conclude that eventually the MASTER will never enter Block B. We have just

proved Remark 5. To finish the proof of Remark 4, we assert that the WORKERs

have finite waiting time for executing the "lock Q" statements. Suppose the

converse is true, and j WORKERs are waiting indefinitely at the "lock Q"

statements (i.e. WORKER's statement 4 or Block B's statement 11). By Remark 5,

the MASTER will eventually be looping at statements 9, 10,'17, 18, and 19.

Each time the MASTER executes "unlock Q", statement 18, one of the j waiting

WORKERs is allowed to finish executing "lock Q", which is a contradiction.

-12-

To prove Remark 6, we first recall that every execution of "10ck Q" takes

a finite waiting time. From Remark 3, we see that Q will eventually be empty

and WORKER will not execute statements 6 to 9. By Remark 5, MSYN eventually

has the value "yes ", therefore all WORKERs are directed to the loop of state-

ments 14 and 15. Consequently, Algorithm PPDM terminates.

Now we prove the correctness of the outputs, D [.], and P [.] . We u-se

Dt[u] and Pt[U] to denote the values'Qf D[u] and P[u] at time t, and use z to

denote the termination time. We first claim that Dz[V] ~ Dz[u] + t(u, v),

for each arc (u, v). Suppose (u1' v1) is an arc of the input network. Let

a be the time of the last deletion df u1 fro~ Q. Consequently, Block B is

executed for ul after time a. The processing of the arc (u" v1) includes

the execution of either statements 5 and 6, or statements 5, 8, 9, and '0.

Let b be the time of the execution of "un l oc k Drv1]", at statement 60r 10.

Since the last deletion of u, occurs ,at a, it is easy to see that D[u,] stays

constant after time a. Consequently, Dz[vl] ~ Db[V1] ~ Dz[u l] + t(ul , v1).

Having proved D[v] ~ D[u] + t(u, v) for all arcs (u, v), we conclude that

the D[u]'s are the shortest distances by the same argument that was used for

the proof of correctness of Algorithm PDM.

To prove that for each u,

(SOURCE == P [... P [u] ...], ... , P [u], u) z z z

is a shortest path, it suffices to show that for each v" if u1 = Pz [V1] then

Dz[V1] = Dz[U1] + £(u" v1), for it says that a shortest path from SOURCE to

u, concatenated with (u" vl) forms a shortest path from SOURCE to v,. Let

time a and time b be defined as before. It is easy to see that D[v] is

decreased in that execution of Block B, and so Db[V,] = Dz[u,] + t(u" v,).

Finally, we see that Dz[Vll = Db[Vll, because any 'change of D[v,l after time

b implies a change in Pb[V,] =ul . This completes the proof of correctness of

Algorithm PPDM.

-13-

Algorithm PDM and Algorithm PPDM were coded to run on the HEP computer.

The programs use linked qu~ue, which is used in Pape [15], and Dial, Glover,

Karner, and Klingman [6]. The input network is stored in a linked list

structure called the forward star form, used also in [6]. Timing experiments

were performed with randomly generated connected networks. Following the

characteristics of the Eastern Washington Highway Network, the generated net

works were assigned exponentially distributed arc lengt~s and have approxi

mately 35% of nodes outdegree of one, 9% of nodes outdegree of two, 40% of

nodes outdegree of three, and 16% of nodes an outdegree of four. Highway

networks usually have all two-way roads, and so do generated networks.* For

each NODES = 10, 25, 50, 75, 100, we generated two netwo·rks. For each network,

we picked five source nodes. Each of these 100 problems' are solved with the

sequential Algorithm PDM, and the parallel version, Algorithm PPDM, with the

number of processors K = 1 to 8. Let TS denote the solution time for the

sequential algorithm, and TK denote the solution time with the K-processor,

T
parallel algorithm .. For each problem, the speed-up, SK = TS , and the

K
SK

efficiencies, EK = If ' are computed. For fixed NODES and K, the averages

of SKiS and EKls are plotted in Figure.1 and Figure 2, respectively. For

NODES = 75 and 100, we see that a speed-up of approximately three is achieved

with five processors, and thus an approximate efficiency of 60%. However,

regardless of the number of processors used, we expect that Algorithm PPDM

has a constant upper bound on its speed-up, because every process demands

private use of the Q.

* A two-way road is represented by a pair of arcs, (u, v) and (v, u),
such that l(u, v) = l(v, u).

-14-

-15-

4. A PARALLEL ALGORITHM FOR THE ALL-TO-ALL
SHORTEST PATH PROBLEM

The best known algorithm for determining shortest paths between all pairs

of nodes is due to Floyd [10], which in turn is based on an earlier algorithm

for transitive closure proposed by Warshall [4].

The basic idea of the algorithm may be expressed as follows*:

Algorithm F

1 for k := 1 step 1 until NODES do
2 for i := 1 step 1 until NDOES do
3 for j := 1 step 1 until NODES do
4 if D[i, j] > D[i, k] + D[k, j] then

*5 -O[i, jl := D[i, k] + D[k, j]--

The matrix, 0[-], is initialized to be the arc length matrix. If the input

network contains no negative cycle element D[i, j] at the termination is the

shortest distance from u to v; because at the end of the kth iteration, O[i, j]

is updated to be the shortest distance from i to j via paths that have inter

mediate nodes which are contained in {l, 2, ... , k}. We will show that the

inner loops of Floyd's algorithm may be computed in parallel as follows:

Algorithm PF (Parallel Floyd)

1 for k := 1 step 1 until NODES do
2 for 1 ~ i, j ~ NODES do simultaneously
3 if D[i, j] > O[i, k] + O[k, j] then
4 -O[i, j] := O[i, k] + D[k, j]--

To prove that Algorithm PF is correct, we use the theory developed for

controlling concurrent processes in operating systems. In particular, we

use the definition and results in Chapter 2 of [2].

* If the actual shortest paths are desired (in addition to the shortest
distances), then statement 5 should be replaced by "begin P[i, j] := P[k, j];
D[i, j] D[i, k] + D[k, j] end. II P [i, j] should be initialized to i if the
arc (k, j) exists, and P[i, j]r1eed not be initialized if-arc (i, j) does not
exist.

-16-

We first informally review some definitions. A task system C = (T, Q)

is a set of tasks, T = {Tl , T2, ... , Tn}' together with a precedence relation,

~, where T ~ TI means that T must be completed before TI begins. Any execution

sequence of C must obey the precedence relation. Each task T is associated

with two subsets, the domain DT and the range RT, of the memory cells. When

T starts it reads values from its domain, and when T terminates it writes

values into its range. T and TI are noninterfering if either T Q TI, or

TI ~ T, or RT n RTI = RT n DTI = DT n RTI =~. Tasks {Tl , ... , Tn} are

mutually noninterfering if every pair of tasks T. and T. (i r j) are non-
1 J

interfering. We will use the following theorem which is stated and proved in

[2], pp. 39-40.

Theorem: Task systems consisting of mutually noninterfering tasks are determinate.

The definition of determinacy of task systems requires a long development,

[2], pp. 35-38, which we will not review here. For the purpose of proving the

correctness of the Algorithm PF, it suffices to note that determinacy of a

task system implies that for the same initial memory state, any execution

sequence of the task system will end up with the same final memory state. We

will define a set of task systems, and prove that each of them contains mutually

noninterfering tasks. Then, we will use the above theorem to conclude that

Algorithm F and Algorithm PF cqrnpute identical results.

For each 1 ~ i, j, k ~ NODES, let Tkij denote the task

"for D[i, j] > D[i, k] + D[k, j] then D[i, j] := D[i, k] + D[k, j]".

For each k = 1, ... , NODES, define task system Ck = (Lk' 0), where task set

Lk = {Tkij 1 ~ i, j ~ NODES} and 0 is the null precedence relation, i.e. no

task needs to precede any other task. We will now show that each Ck contains

mutually noninterfering tasks, and thus conclude that every execution sequence

-17-

of Ck produces the same result as Algorithm F's execution sequence does. We

will use Mij to denote the memory cell for the variable D[i, j]. Mij = Mab

if and only if i = a and j = b. We will use Dkij and Rkij to denote the

domain and range of task Tkij .

Remark 7: (a) Dk· . = {M .. , Mik' Mkj }
lJ lJ

(b) Rk· . lJ
c {M .. }

lJ

(c) If the input network has no negative cycle, then Rkkj = Rkik =.

Parts (a) and (b) follow immediately from the definitions of domain and

range of a task. For part (c), Tkkj contains the test "D[k, j] > D[k, k] +

D[k, j]". Since the network has no negative cycle, D[k, k] is nonnegative.*

Thus the test result is always false, and the content of Mk. will not be
. J

changed. Rkkj = 0 follows. Similarly, Rkik = 0 also follows.

0.

Remark 8: If the input network has no negative cycle, then Lk contains mutually

noninterfering tasks.

Because there are no precedence constraints between tasks in Lk' we

need to prove that Rkij n Rkab = Rkij n Dkab = Dkij n Rkab = 0, for all

(i, j) t- (a, b). Rkij n-R kab c lMij } n {Mab } = 0, because (i, j) t- (a, b).

Rkij n Dkab C {Mij } n {Mab , Mak , Mkb } = 0, for (i, j) t- (a, b), j t- k, and

i t- k. Similarly Dkij n Rka.b = 0. It follows that Lk contains mutually

noninterfering tasks, for k = 1, ... , NODES. As noted before, this implies

that Algorithm PF is correct.

Algorithm PF is programmed to run on the HEP computer. The number of

processes created is minimized in order to reduce the overhead (of the

create operation). The logic of our program referred to as Algorithm HEPPF

(HEP parallel Floyd) is as follows:

* This fact can be proved by an induction argument on k.

-18-

Algorithm HEPPF

Process MASTER

1 SYN : = 0;
2 for Q; := 1 step 1 until K-l do
3 --Create WORKER(t);
4 execute WORKER(K)

Process WORKER(t)

1 for k := 1 step 1 until NODES do
2 begin
3 for i:= step K until NODES do
4 if D[i, k] < 00 then
5 -for j := 1 step 1 until NODES do
6 execute Tkij ;

7 lock SYN; SYN := SYN + 1; unlock SYN;
8 L 1 : . if SYN < K * k then goto L 1
9 end

Algorithm HEPPF was coded and run for the experimental timing study.

Experiments used randomly generated 20-, 30-, and 40-node networks. NODES x NODES

arc length matrices with different densities of non-infinity entries distributed

uniformly from 0 to 99 were generated. The results of our timing study are

shown in Table 1. Let TK denote the experimental running time of the algorithm

with K processors. Let SK and EK denote the speed-up, Tl/TK, and efficiency,

SK/K, respectively. The efficiency of this algorithm for networks with 40,

30 and 20 nodes is plotted in Figures 3, 4 and 5, It is evident that the

efficiency tends to be high when the number of nodes in the network is a

multiple of K, the number of processors. For in such a case, each WORKER

process does exactly the same amount of work,* but in the case where K does

not divide NODES exactly, all WORKERs do not do the same amount of processing.

For example. for each K. WORKER(l) performs r-NO~ESl executions of statements

* We assume that the infinity entries are uniformly distributed in the
arc length matrix.

-19-

Table 1. Running time of Algoritnm HEPPF (in sees).

Density

NODES = 40 100% 50% 25% 12.5%

til
s- 1 1.30478 1.24866 1.13903 0.88217 0
til 2 0.6552-2 0.63133 0.58283 0.46305 til
Q) 3 0.45726 0.44399 0.40812 0.32185 u
0 4 0.32989 0.32097 0.29727 0.25366 s-

o... 5 0.26484 0.25992 0.24512 0.21071
4- 6 0.23169 0.22906 0.21123 0.17719 0

· 7 0.19889 ·0.19627 0.18433 o. 15915
0 8 0.16693 0.16594 O. 15423 O. 13571 z

NODES = 30 100% 75% 50% 25%

til
s- 1 0.55024 0.53037 0.49828 0.45644 0
til 2 0.27684 0.27116 0.25537 0.23737 til
Q) 3 0.18544 0.18088 0.17221 0.15966 u
0 4 0.14774 0.14519 0.13785 0.12816 s-

o... 5 0.11213 0.11039 0.10760 0.09756
4- 6 0.09417 0.09429 0.08958 0.08582 0

· 7 0.09294 0.08973 0.08699 0.08280
0 8 0.07550 0.07559 0.07361 0.06762 z

NODES = 20 100% 75% 50% 25%

til
s- 1 0.16299 0.15615 0.14249 0.11844 0
til 2 0.08213 0.08028 0.07291 0.06457 til
Q) 3 0.05753 0.05683 0.05195 0.04626 u
0 4 0.04165 0.04086 0.03888 0.03528 s-

o... 5 0.03348 0.03304 0.03118 0.02770
4- 6 0.03317 0.03287 0.03016 0.02767 0

· 7 0.02533 0.02541 0.02503 0.02292
0 8 0.02513 0.02479 0.02401 0.02166 z

-20-

~
u
c
OJ

'r-
U

1
~
u
c
ClJ

'r-
u
'r-
4-
4-
LJ..J

1.0,~~:--_

2

1 .0

0.9

0.8

2

3 4 5 6 7
Number of processors

Fig. 3. Efficiency for 40-Node Networks

3

Fi g. 4.

4 5 6 7
Number of processors

Efficiency for 30-Node Networks

-21-

100% density

8
)

50%
25%

12.5%

100% density

8

>

75%

50%
25%

>,
u
c:
Q)
.~

u
.~

4-
4-
LJ.J

2 3 4 5 6 7

Number of processors

Fig. 5. Efficiency for 20-Node Networks

-22-

100% dens i ty

8

>

75%

50%

25%

4 to 6, but WORKER(K) performs lNO~ESJ executions of statements 4 to 6. The

WORKERs which finish their work earlier must wait for all others, before

starting on the next iteration. Thus the theoretical speed-up should be

approximately NODES/ rNODES/Kl. More precisely, if we let tl denote the time

for executing one iteration of the for loop in statement 3 of procedure of

WORKER, and t2 denote the time for executing statements 1, 8, 9, and 10 once,

then the theoretical speed-up is

For our compiled code of Algorithm HEPPF, t 2/tl is estimated to be approximately

1/(2NODES+l). Using this estimate, the ratio

observed efficiency
theoretical efficiency

is calculated and plotted in Figure 6. From this plot we observe that the

overhead for the create and the synchronization is relatively small when the

input network is dense.

5. CONCLUSION

Two parallel shortest-path algorithms are designed and proved correct in

this paper. They were both programmed to run on the HEP computer. For the

first algorithm, i.e. Algorithm PPDM, random highway-like sparse networks were

generated and used as inputs. We observed empirically a speed-up of three

when five processors were employed, for networks with 75 or more nodes. For

the second algorithm, i.e. Algorithm HEPPF, random arc-length matrices of

order up to 40 were generated and used as inputs. We found that the efficiency

is higher for larger and denser networks. Thus we have clearly demonstrated

theoretically as well as empirically that parallel processing techniques can

-23-

be used profitably to speed up determination of shortest paths in large net

works. We have also shown how this can be accomplished.

-24-

1 .0

I 0.95

>,
u

u c
C 0)
0).,....

.,... u
u·,...

.,.... 4-

4- 4-
4-0)
0)

,......
-oro
0) u
>.,....
s...+J
0) 0)
tI) So.
..00
00)

..c

~40 nodes, 100% density

30 nodes, 100% density

nodes, 100% density

40 nodes, 50% density

30 nodes, 50% density

0.86~ ____ ~ ______ ~ ____ ~ ______ ~ ____ ~ ____________ __

1 2 3 4 5 6 7

Number of processors

Fig. 6. Observed/Theoretical Efficiency

-25-

8

)

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

E. Arjomandi, A Stud of Parallelism in Gra h Theor , Doctoral thesis,
Dept. of Computer Science, Univ. of Toronto, 1975 availa~le as Technical
Report No. 86).

E. G. Coffman, Jr. and P. J. Denning, Operating Systems Theory, Prentice
Hall, Englewood Cliffs, New Jersey, 1973.

E. V. Denardo and B. L. Fox, "Shortest-route methods: 1. reaching,
pruning, and buckets," Opere Res., 27 (1979), pp. 161-186.

N. Deo, Graph Theory with Applications to Engineering and Computer
Science, Prentice-Hall, Englewood Cliffs, New Jersey, 1974.

N. Deo and C. Y. Pang, Shortest Path Algorithms: Taxonomy and Annotation,
Tech. Report No. CS-80-057, Computer Science Dept., Washington State
Univ., Pullman, WA (March 1980).

R. B. Dial, F. Glover, D. Karney and D. Klingman, "A computational
analysis of alternative algorithms and labeling techniques for finding
shortest path trees," Networks, 9 (1979), pp. 215-248.

E. Dijkstra, "A note on two problems in connexion with graphs,"
Numerische Mathematik, 1, (1959),'pp. 269-271.

D. M. Eckstein, Parallel Processing Using Depth-First and Breadth-First
Search, Doctoral thesis, Dept. of Computer Science, Univ. of Iowa, Iowa
Ci ty, Iowa, July 1977.

D. M. Eckstein and D. A. Alton, "Parallel searching of non-sparse
graphs,1I to appear in SIAM J. Comput.

[10] R. W. Floyd, "Algorithm 97: shortest path,1I Comm. ACM, 5 (1962), p. 345.

[11] M. J. Flynn, liVery high-speed computing systems," Proc. IEEE, 54 (1966),
pp'. 1901-1909.

[12] J. Gosch, IIComputer processes multiple instruction sets, multiple data
streams,1I Electronics, (Oct. 1979), pp. 77-78 ..

[13] D. S. Hirschberg, A. K. Chandra and D. V. Sarwate, IIComputing connected
components on parallel computers," Comm. ACM, 22 (1979), pp. 461-464.

[14] E. F. Moore, liThe shortest paths through a maze," Proc. Internat. Symp.
on Theory of Switching, 1957, pp. 285-292.

[15] U. Pape, II Imp 1 ementat i on and effi ci ency of Moore-a 1 gori thms for the
shortest route problems," Math. Programming, 7 (1974), pp. 212-222.

-26-

[16] M. Pollack and Wiebenson, "Solutions of the shortest-route problem-
a review," Opere Res., 8 (1960), pp. 224-230.

[17] E. Reghbati (Arjomandi) and D. G. Cornei 1, "Parallel computations in
graph theory," SIAM J. Comput., 7 (May 1978), pp~ 230-237.

[18] E. Reingold, J. Nieverge1t, and N. Deo, Combinatorial Algorithms:
Theory and Practice, Prentice~Hall, Englewood Cliffs, New Jersey, 1977.

[19] C. Savage, Parallel al orithms for ra h theoretic rob1ems, Ph.D.
theses, Math. Dept., Univ. of Illinois at UrQana-Champaign Aug. 1977),
Report ACT-4,Coordina'ted Science Lab., Univ. of Illinois.

[20] B. J. Smith, "A pipelined, share resource MIMD computer," Internat.
Conf. on Parallel Processing, 1978.

[21] D. Van Vliet, "Improved shortest path algorithm for transportation
networks," Transportation Res., 12 (1978), pp. 7-20.

-27-

Denelcor

D
Denelcor, Inc. (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

PARALLEL SOLUTION OF FLIGHT SIMULATION

EQUATIONS

By DR. R. Ea LORD

AND DR. S. P. KUt"AR

Tomorrow's Computers ... Today

PARALLEL SOLUTION OF FLIGHT
SIMULATION EQUATIONS

R. E. Lord and S. P. Kumar

CS-80-060

This work was partially supported by a grant from DENELCOR, Inc.

1. INTRODUCTION

In recent years, the increasing availability of multi-processor Computer
Systems has motivated many Computer Scientists to develop methods to
perform computations in parallel. The development of multi-processor
computer architecture has been led by the performance, reliability, and the
low cost of the digital devices such as microprocessors. One of the several
applications of parallel computing is the development of parallel algorithms
for continuous system simulation. Frequently a continuous system is described
by a set of ordin~ry differential equations (ODE'S) and simulation consists of
numerical integration of these equations. Enough concern has been shown for
parallel methods to solve an 00 E system by researchers in this field.
Nievergelt [1] proposed a method in which parallelism is introduced at the
expense of redundancy of computation. An introduction to parallel methods
for the numerical solut ion of 00 E systems is given by _ M i ranker and l iniger'
[2] and Worland [3]. A single bus multi-processor architecture as well as time
and speed up ratios between sequential and parallel algorithms, are given in
a pap e r by F ran k lin [4] •

I n this paper we present an actual implementation of some of the
parallel methods of integration, which individuaJly and in combination were
used to solve a set of ordinary differential equations describing the flight

,characteristics of a ground-Iaunched- n.issil e on an M 1M 0 Computer namely
H EP (Hetrogeneous Element Processor). The H EP Computer implemented by
DENElCOR, INC. is a MIMD machine of shared-resource type as described by
Flynn [5].

The rest of this presentation is divided into five sections. A model of an
M 1M D Computer, specifically the H EP architecture is shown in section 2. In
section 3 we discuss some of the integration techniques for which paraJlel
versions have been developed, and also the methods used in our
implementation. This presents the idea of algorithm decomposition in parallel
computing. The method of problem decomposition 'applied in our program by
equation segmentation is given in section 4. Section 5 contains the actual
performance achieved by these programs on HE P, and an analysis of efficiency
loss. Section 6 concludes this presentation by describing how the methods used
in our programs can be used to design an automatic language transl ator based
upon a continous system simulation language (CSSl [6]), which translates high
level language representation of the solution of sets of differential equations
into efficient parallel code.

2. MODEL Of MIMD COMPUTER

The HEP computer [7] manufactured by DENElCOR, Inc. was used to
verify our algorithms and methodology for solving flight simulation equations.
Although this MIMD computer has many interesting architectural features, it
is beyond the scope of this paper to present them and instead we present an
abstract model which contains the features which we used. A block diagram
6f how the computer may be viewed by a user is presented in figure 1. We
used the HEP fORTRAN language for programing. This FORTRAN is slightly
extended to allow the programmer access to some of the unique features of
an MIMD machine and we wjll describe the model of the computer in terms
of these language extensions. Upon commencing execution of a fO R T R AN

-1-

Abstract

This paper reports on solving a set of differential equations describing

the flight characteristics of a missile by use of an MIMD type computer. Two

techniques were used:. the firs4 equation segmentation and the second, a combina

tion of equation seg~~ntation and a parallel predictor corrector. Achieved

performance is presented and.as the result of the work, an outline of the

design of a translator for a CCSL type language which produces parallel code

is presented.

Keywords: MIMD, ODE's, parallel predictor corrector.

2048

Registers

Main

Memory

FIGURE 1. Logical representation of MIMD Computer.

program, our MIMD computer model behaves exactly like an· SISD computer.
That is, a single instruction stream is sequentially executed by one of the
processors (CPU) shown in the block diagram. The method of achieving
parallel execution is to write a subroutine which can be executed in parallel
with the calling program and to then CR EAT E .that subroutine ·rather than
calling it. At that point the instruction stream of the CR EAT Ed subroutine
is executing on another processor (CPU) in parallel with the program segment
which invoked it. TheHEP FORTRAN language has the extension CREATE
which may be used at any point where a call statement· could be used.

Another ext.ension of the' HE? FORTRAN language is in the area of
synchronization. Since subroutines may be executing in parallel, they may
produce or consume data elements in conjunction with one another. To
facilitate this, HE? FORTRAN allows an extension for what is termed
asynchronous variables. These variables are distinguished by a naming
convention in which the first character of the name is '$'. An integral part
of each asynchronous variable, in addition to its data value, is a full-empty
semaphore. The appea rance of an asynchronous variable on the left-hand side
of an assignment statement causes that assignment to be executed only when
the associated semaphore is in the empty 'state and when the assignment is
made, the semaphore is set full. Similarly, the appearance of an asynchronous
variable within an·~xpressjon on the right-hand side of ~n assignment
statement causes the expression evaluation to continue only if the associated
semaphore is full, and when the expression evaluation continues, the
semaphore is set empty. Since these s.emaphores are supported in hardware,
if the required conditions are met, no additional execution time penalties are
imposed.

3. INTEGRATION TECHNIQUES

In this section we will be concerned with the parallel methods for the
solution of a set of n ODE's denoted by

yl(t) = f(t, y(t» , vetO) = Yo (1)

where

to Itt R .. I yO ERn I y : R ~R n , f : R x R n ~ R n •

Most of the methods to solve (1) generate approximations Yn to yet)
. n

on a mesh a = to < t1 < t2 < < tN = b. These are called step-by-step

difference methods. An r-step difference method is one which computes y 1
n+

using r earlier values y ,y 1'··· I Y 1· n n- n-r+
This numerical integration of

(1) by finite differences is a sequential calculation. lately, the question of
using some of these formulas simultaneously on a set of arithmetic processors
to increase the integration speed has been addressed by many authors.

(i) Interpolation ~Jethod

Nievergelt (1] proposed a parallel form of a serial integration method

-2-

to solve a differential equation, in which the algorithm is divided into several
subtasks which can be computed independently. The idea is to divide the
integration interval [a,b] into N equal subintervals [t

i
-

1
, til , to = a, tN =

b, i = 1, 2, 3, ••• , N, to make a rough prediction y~ of the solution y(t.),
. I I

to select a certain number M. of values y .. , j = 1, ••• , M. in the vicinity
1 . IJ I

of y~ and then to integrate simultaneously with an accurate integration method
I

M all the systems

y' = f(t, y)."_,

y' = f(t, y) , y(t.) "-= y .. , t. ~ t ~ t
l
'+

l IIJ I

j = 1, •• , M. , i = 1, •• , N-1.
I

The integration interval [a,b] will be covered with lines of length
(b-a)/N, which are solutions of (1) but do not join at their ends. The
connection between these branches is brought by interpolating at t

1
, t

2
, •••

, tN -1' the previously.foun~ solution over the next interval to the right. The

time of this computation can be represented by

T PI = liN (time for serial integration)

+ time to predict y~
I

+ interpolation time + bookk"~eping tfme

I nterpolation can be done in parallel. If we assume that the time
consuming part is really the evaluation of f(t, y), the other contributions to
the total time of computation become negligible, so that the speed up is
roughly liN. But to compare this method with serial integration from a to
b using method M, the error introduced by interpolation is important. This
error depends on the problem, not on the method. For linear problems the
error is proved to be bounded but for nonlinear problems it may not be. Thus,
the usefulness of this method is restricted to a specific class of problems,

and depends on the choice of many parameters like y?, M., and the method M.
I I

(i i) Run g e - K u tt a (R K) Met ho d 5

The general form of an r-step RK method, the integration step leading

from Y n to Y n+l consists' of comput ing

i-1
K. = h f(t + a.h , Yn + lb .. K.

1 n n In. IJ J
J=1 r

Yn+1 = Yn +LR.K.
. 1 1 I
1=

with appropriate values of a's, b's, and R's. A classical 4-step serial R K

-3-

method is

(RK4)

Miranker and Liniger [2] considered Runge-Kutta formulas which can be
used in a parallel mode. They introduced the concept of computational front
for allowing parallelism. Their parallel second and third order R 1< formulas
are derived by a modification of Kopal's [8] results, and the parallel schemes
have the structure:

first order:
. 1

K1 =~ h f{t, Y) n n n
(RK1)

1 = y1 + K1 Yn+1 n

K2 = K1 = h f(t , y 1)
1 n n n

second order:

K2 = h f(t + ah y 1
+ bK~) n n n' n

(RK2)

2
yn+1 = R2 K2 +

1 1
"2
R2 K2

third order: 3
Kl = K,

K3 = h f(t + ah y2 + bK 3 + cK 3
n n n' n 1 2) (RK3)

The parallel character of the above formulas is based on the tact that
R Ki is independent of R Kj if and only if i < j , i ,j = 1, 2, 3. This implies
that if RK1 runs one step ahead of RK2 and RK2 runs one step ahead of RK3.
Then using Kopal's values of R's, the parallel third order RK formula is given
by:

= 1 + K
yn+2 1,n+2

-4-

1
K2,n+1 = hf(tn+1 + ah, yn+1 + aK 1,n+1) (PRK3)

2 2
Yn+2 = yn+1 + (1-1/2a)K 1,n+1 + (1/2a)K 2,n+1

K = hf(t + a
1

h, y2 + (a
1

--1/6a)K
1

+ (1/6a)K
2

)
3,n n n ,n ,n

where
a = 2(1-3a~)/(3(1":'2a1».

One value of a suggested by Kopal is a = 1. This gives a
1

= 1/2 + 1/2.[3. the

above 3rd order R K formula requires 3 processors to compute the three
function evaluations in parallel.

The main drawback of the (PR K3) scheme mentioned above is that it is
weakly stable. It is shown in [2] that the scheme leads to an error that grows
linearly with n as n -+00 and h ~ 0 for t = nh = constant. This problem is n -
due to the basic nature of the on~ ."step formulas with respect to their
y-entries which are the only ones that 'contribute to the discussion of stability
for h ~ o.

(iii) Predictor-Corrector (PC) methods

The serial one-step methods of Runge-Kutta type. are conceptually
simple, easy to code, self starting, and numerically stable for a large class of
problems. On the other hand, they are inefficient in that they do not make
full use of the available information due to their one-step nature, which, also
does not extend the numerical stability property to their parallel mode. It
seems plausible that more accuracy can be obtained if the value of y 1 is

n+
made to depend not only y but also, say, on y l' Y 2' ••• ' and f l' n n- n- n-

f 2' •.•• n- For this reason multi-step methods have become very popular. For

high accuracy they usually require less work than one-step methods. Thus, the
desire of obtaining parallel schemes for such methods is reasonable.

A standard fourth order serial predictor-corrector (SPC) given by Adams
- Moulton is:

p c c - c c c
y. 1 = y. + h/24 (5 5 f. - 59 f. 1 + 37 f. 2 - 9 f. 3)

1+ 1 1 1- 1- 1-
(SPC)

Y ~ = y ~ + h/24 (9 f P + 19 f ~ - 5 f ~ 1 + f C) ,+1, 1+1 1 ,- i-2

T he following computat ion scheme of one PC step to calcul ate Y. called
,+1

PEeE is:

1. Use the predictor equation to calculate an initial approximation to y. •
1+'

-5-

set i = 0 •.

2. Evaluate the derivative function fP 1.
1+

3. Use the corrector equation to calculate a better approximation to y" 1.
" 1+

4. Evaluate the derivative function f~ •
1+1

5. Check the termination rule. If it is not time to stop, increment i, s"et

Yi+1 =-yf+1 and return to 1.

let = total time taken by function evaluations done for one step of

pc.

T PC E = time taken to compute predictor (corrector) equation for a

single equation.

Then the time taken by one step of SPC is

T 1 = 2 (n T PC E + T f)·

Miranker and liniger developed"~formulas for pc method in which t~e
corrector does not depend serially upon the predictor, to that the predictor
and the corrector calculations can be performed simultaneously. The Parallel
Predictor-Correcto-r (PPC) operates also "in a PECE mode, and the calculation
advances s steps at a time. There are 2s processors and each processor
performs either a predictor or a corrector calculation. This scheme is shown
in Figure 2. A fourth order PPC is given by:

yPI"+1 = y~ 1 + h/3(8fP - 5f~ 1 + 4f~ - f~ ,)
1- I 1- 1-2 1-3

(PPC4)

y ~ = y c + h/24 (9 f P + 19 f ~ 1 - 5 f ~ + f ~ 3)
1 i-1 I 1- 1-2 1-

Thus the parallel time for a single" step of (PPC4) is given by

T P PC = n T PC E + T f + 3 n T DC + 2 T S

Where

T PC E = T f as defined before and

T DC = time taken for data communication

T 5 = time taken for synchronization.

Generally the high accuracy, less function evaluations of PC methods as
compared to R K methods is obtained at the cost of increase in complexity and
some times numerical instability. The Parallel R K methods given in [2] do
not inherit the stability of their serial counterparts. On the other hand ppe

-6-

i i+l

Compute Update
Predictor State

Derivatives Variables

1 i
Compute Update

Corrector State
Derivatives Variables

i-l i

Figure 2. Pa rallel PC Scheme

Processor '1 P
f1+l

c c
Yi+ Yi+ f i +l

t 1 1
Processor 2

p p c c
Yi+2 f i +2 Yi+2 f. 2 1+

Figure 3. Parallel Scheme for BPC

methods in [2] as described above are as stable as their serial formulas. This
is proved by Katz et al. [7]

(iv) Block-I mpl icit methods

Sequential block implicit methods as described by Andria et al. (8) and
Shampine and Watts [9] produce more than one approximation of y at each
step of integration. Shampine and Watts and Rosser [10] discuss block
implicit methods for RK type and PC type schemes. A 2 point fourth order
PC given in [9] is

P 1/3(y~ 2
c + y~ + h/6(3f f_2 - 4f~ 1 + 13f;' Yi+1 = + yL 1 I- I- I I- I

P c + yC y~ + h/12(29f f_2 - 72f~ 1 + 79ff1 Yj+2 = 1/3(Yi_2 + i-1 I I- I

C = y~ + h/12(5f~ + 8fr+1 - fP) (BPC) Yi+1 I . I 1+2

c = y!= + h/3(f~ + 4fP 1 fr+2) Yi+2 +
I I 1+

Worland in [3] describes the natural way to parallelize (BPC) using the
number of processors = number of block ·points by the schemes shown in Figure
3. The parallel time for one Block calcul ation given by Frankl in [4] is

..

T BPC = (2nT PCE + 2T f + 6nT DC .. + 4T 5)/2

a performance comparison of (PPC) and parallel (BPC) methods is given by
Franklin in [2] in case of two processors.

4 METHODOLOGY

The methodology· which we employed in programming the flight
simulation equations for solution on an MIMD computer can be divided into
several catagories. These include equation segmentation, scheduling and
synchronization. These categories will be discussed individually.

(i) Segmentation

Equation Segmentation is to take some representation of the problem, in
our case a sequential FORTRAN Program, and identify the tasks [13]. These
tasks are considered to be individual computational activities and could range
from individual machine instruction to individual FORTRAN statements. Our
choice was individual statements or small groups of statements where any
branching took place entirely within the group of statements that was
identified as a task. An example of this task selection is shown in Figure 4
where a portion of the sequential code is shown together with an indication
of some specific tasks. In this specific case a total of 40 tasks were
identified, 10 of them being the update of the state variables by means of the
chosen integration method, one being the update of the independent variable
time and the remaining 29 tasks associated with the evaluation of the

-7-

0117 C**.
011~

0119
0120
0121
0122 16,
0123
012~ 16~'
0125 163
0126
0127 C
0128 C**.
0129
0130
0131
0132
0133 171"
013~
0-135 C

ill III HH C**~
:::::::::,01 39 C**.
:::::::::: 01'+0
:=:=:::::: 0 1 '+ 1
:::::::::: 01~2
:::::::::' 0 14 .3
:;::::::: 01 L+ ~
::::::::: 0 1 L+ 5 35
::::::::: 0146
;:::;:::: 01~7
;::::::::, 0148 36
::::::::: 0149
::::::::: 0150

0151 C**.tc
~ 0152

0153
015'+

~ 0155
- 0156 201
r- 0157
r- 0158 202
... 0159 203

0160
_ 0161 C

TASK, 16 COMPUTE RtlO
IF(Z .IT. RHOALTCIRHO» GO TO 161
NDX=IRHO
IF (IRHO .LT. lRHO) IRHO=IRHO+1
GO TO 163
IF (Z .GE. RHOAlT(IRHO-l» GO TO 162
IF (IRHO .GT. 2)IRHO=IRHO-1
NnX=IRHO-l
RHO=RHOTA8CNOX)+(Z-RHOAlTCNOX»

*RHOSL(NDX)

TASK 17 COMPUTE ACOO
NOX=IACOO-l
IF(TIM~ .IT. ACOOTM(IACDO» GO TO 171
NDX=IACOQ

. .
IF(IACDO .IT. LACOO) IACDO=IACDO+1
ACDO=ACOOT8(NOX)+(TIME-ACDOTM(NDX»

*ACOOSl(NOX)

TASK 18 COMPUTE UDaT
UOOT=RS*VS-WS*GS-32.17*STHETA+MASS*

:(THRUST-RHO/2*(US+WX)*cUS+WX)*ACDO)
TASK 19 COMPUTE FTY FTZ

GAr-lTHE= (THETA-THETAZ) *COSPHI+ (PSI.PSIZ) *SINPHI
GAMPSI=CPSI-PSIZ)*COSPHI-(THETA-THETAZ'*SINPHI
F Y = 8lf 41 * G A r1 PSI
IF (ABS(FY).LE.380)~GO TO 35
FY=SIGNC380 •• FY)
FZ=8ttQl*GAr1THE
IF (ABS(FZ).LE.380) GO TO 36
FZ::SIGi\I(,380 •• FZ)
cor~'TINUE

FTY=FY*COSPHI+FZ*SINPHI
FTZ=FZ*COSPHI-FY*SINPHI

TASK 20 COMPUTE ACNAPH
IF (MACH .LT. ACNMH(IACN» GO TO 201
NUX=IACN
IF(IACN .LT. LACN) IACN=IACN+l
GO TO 203
IF (MACH .GE. ACNMH(IAcN-l» GO TO 202
IF (IACN .GT. 2) IACN=IACN-l
NDX=IACN-l
ACNAPH=ACNTA8CNDX)+(MACH-ACNMHCNDX»)

*ACNSL(NDX)

c*** TASK 21 COMPUTE VQOT
VOOT=MASS*(FTY-RHO/2*US*ACNAPH*(VS-WY»-RS*US

0162
0163
0164 C
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174

TASK 22 COMPUTE WDOT
WOOT=QS*US+32.17*CTHETA+MASS*(RHO/(-2>*US*ACNAPH*

:(WS+WZ)-FTZ)
TASK 23 COMPUTE IT

NOX=ILT-l
IF(TIME .LT. LTIME(ILT) GO TO 231
NOX=ILT
IF (ILT .LT. LLT) ILT=ILT~l
LT=LTAB(NOX)+(TIME-LTIME(NOX»*LTSL(NOX)

Figure 4. Example of Task Selection

III1

.

derivatives. The next step was to estimate the execution time of each of these
tasks. Since the HEP computer executes all instructions in the same amount
of time, this involved compiling the program and counting the number of
machine instructions generated by each of the tasks. For our task selection
the number of instructions per task ranged from 2 to 88 with an average of
34.6. We next determine a maximally parallel task system equivalent to the
set of tasks selected and the sequential program for those tasks. The details
of this construction are ~ontained in chapter 2 of [13] but the essential
features are presented here. Consider a numbering of the tasks in the
sequential program such that for T. and T. then the execution of T. occured

I, J . ' I

prior to the execution of T. only if i < j. We then ask for each pair of task
- J

T. and T. a) if the output, variables for each of the tasks (variable names on
I J

the left side of the assignment statement) are' distinct and b) if the variables
used as input to each of the tasks is distinct from the output variables of' the
other task. If the answer to both a and b are true, then T. and T. may be

. I: J
executed in parallel. The resultant task system may be represented by a
di rected graph where the nodes represent the tasks and the arcs the
precedence constraints where, if there is an arc from T. to T. then task T.

I J I

must complete execution prior to commencing execution of task T.. Figure
J

5 shows the resultant task system for the 40 tasks comprising the problem
,solution. Our convention is to show the task number and execution time in
machine instructions within the node and all arcs go from left to right. One
can observe that the three tasks (18, 19, 20) highl ighted in Figure 4 can all
be executed in parallel.

(ii) Scheduling

Prior to actually scheduling, we make a transformation on the maximally
parallel task system which may allow a shorter overall solution time. If one
examines the graph of Figure 5 we see that the maximum length path
traverses nodes 7, 39, 19, 31 and has a length of 212 units. However, there
is no path from node 31 to node 7 and consequently, this path of length 212
times the number of iterations (time steps) does not determine the maximum
execution time to solve the problem. This minimum execution time is instead
determined by the cycle traversing 7,39,19,32,6,3 length 252 which yields
a minimum execution time for n iterations of n • 126 + constant. The details
of the algorithims for determining the minimum execution time for n
interations of a task system such as is shown in Figure 5, together with
algorithims for transforming the task system are given in [14]

Scheduling the transformed task system for execution on p processors is
the next step in our methodology. Ullman [15] has shown that the
computation of an optimal schedule involving multiple processors and a task
system such as ours is an NP-complete problem. Hence, they can be regarded
as computationally intractable. However, polynomialy bound algorithms do
exist which produce good schedules. An example of one such algorithm is the
critical path list scheduling algorithm. Basically we define this algorithm by:

Def. 1 : Given a task system and a list which orders the tasks, then a
schedulin'g strategy which assigns to a free processor the first unassigned task

-8-

@18.21.32

W18•22.31.36

@ 26.31.32.33

8 18.22,31, \Ji/ 32.34

Figure 5. MaXimally Parallel Task System

UDOT (1)

VDOT (2)

WDOT (3)

POOT (4)

ODor (5)

APOT (6)

PHIDOT (7)

PS/DOT (9)

in the list whose precedence constraints have been met is called demand list
sc hedul i ng.

Def. 2: The critical time of a task is the execution time of that task plus
the maximum of the critical time of any of its successor tasks.

Def. 3: If the tasks are ordered in a list on non-increasing critical time, then
a resultant list schedule is called critical path list scheduling.

Kohler [16] reported a preliminary evaluation in which 20 task systems
were scheduled usJng critical path list scheduling which produced 17 optimal
schedul es. - The worst case schedul e was only 3.4 % longer than an opti mal
schedule. Using only limited back-tracking with a critical path list scheduler,
Lord [14] found in 100 random Iy generated cases 89 were schedul ed opti mally.
He further found that for all cases that schedules had an expected time of
only .36% longer than optimal. The worst case time was 5.6% longer than
optimal. Thus, we conclude that critical path list scheduling is an acceptable
technique for practical applications.

Applying a limited backtrack critical path list scheduling algorithm to
the task system representing the missile simulation resulted in a schedule for
8 processors as shown in Figure 6. An opti mal schedul e was not calculated,
but this schedule is known to be no more than 9.1 % longer.

(iii) Synchronization

Having determined a schedule for computing the tasks, it now remains
to find means of "implementing it. Much of the work on scheduling assures,
at least implicitly, that some mechanism external to the processors assigns the
tasks to the procssors. But since our execution times are estimates' only, the
scheduling mechanism would have' to monitor the progress of all of the
processors. Instead, we use a mechanism whereby all of the tasks to be
executed by a single processor are presented as a sequential program. The
coordination of those tasks is accomplished by means of synchronization using
the full/empty semaphores associated with each data location in the HE P
computer. Specifically, we note from Figure 6 that task 35, the computation
of PSIDOT, is executed by processor 5, whereas task 9, the update of the state
variable PSI, is executed by processor 8. To insure that processor 8 does not
com mence executing the code of task 9 prior to task 35 having been
compl et ed by processor 5 we use an async hronous va riable com mon to bot h
processors which is initially set empty and is set full upon completion of task
35. Prior to starting execution of task 9, the value of PSI DOT is read from
this celf. Specifically, the code sequences would appear as:

Processor 5

code for task 35
ST = PSIOOT

Processor 8

PSICOT = ST
code for task 9

Had PSI DOT been required by another task executing is yet another processor
then a second asynchronous variable would have been required to synchronize

-9-

8 37

7 I 38

6 39

5 40

4

3

2

1

sin [fHETA)

cos (fHETA)

sin (PHI)

cos (PHI)

I"

PHIDOT
33

PHI
7 1\11!!11\1

PSI
9

ROOT r·.l 37
32 ~

12 WIND (z) POOT
26 4 P 111111!11::'1111!1::!1 1 38

il~ljlj·I:lljjl~~II~lj:l·jll!ll!lllllli;lil:;:I;:I;111Ililililiii.i!iili~iiliilil.
IpS,oof 11111 IIIImlII111

28 CMIA (t) 1 I: 18 UDOT
35_ 11111 1111111111111

OOOT
31

1 US

~iil 39

40

·~I THETA
4 8 17 ACOO (t) 27 IYS (t) ZOOT

36 . 10 Z I:IIIII;:IIIIIIII!I 6 RS I ~
~ I 16 RHO (Z) I 25 CLOT (MACH)

I I
MASS (t)
13

(MACH) CLPS (fv1ACH)
h41 24

30

THRUST (t)
15

23 LT. (t) CMOS (t)
29 .

LC (t)

TIME
11 .

WOOT
22

VDOT
21

3 WS I·)?!t·~:·

2 VS
I::·:;..:

:li(lii;;II!illll!:11111'!II:liiii~!lliil!llllil:I]· 5 as
o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 192

Figure 6. A Schedule Using 8 Processors

those calculations. For the 8 processor schedule, a total of 78 asynchronous
variables were required to synchronize the calculations.

5. ACHIEVED PERFORMANCE

The schedules for the flight simulation probl~m discussed in Section 4
were programmed using HEP FORTRAN and were executed on the HEP
parallel computer. The computational results are shown in Table 1. The
sequential times T 1 and the parallel times T p with p processors .are given in

terms of seconds.

The method of equation segmentation in conjunction with 4th order
Runge-Kutta formula given by (R K4) was used for the eight-processor
schedule shown in Figure 6. The computations of the integration formula were
also done as parallel tasks. This scheme was also programmed using six
processors and the speed up in this case was S6 = 3.98. The speed up and

efficiency of the 8 processors program is given by Table 1. Subsequent
analysis has shown that the speed up S8shown in Table 1 can be increased to

7.0.

The four-processor schedule was run in combination with the parallel
predictor-corrector formula given by (PPC). The program created eight
instruction streams in parallel, four for predictor and four for corrector
iteration. The achieved speed up and efficiency in this case, as compared to
the serial program is shown in Table 1. Since the Serial PC methods are
expected to be more efficient than the Serial R K methods, the difference in
speed up of their"parallel mode is also· to be expected. On the other hand,
the data communication and synchronization in parallel predictor-corrector is
more than the method using R K formula. These calculations are done in the
following analysis of the loss of the efficiencies in both the programs.

let

A = number of cycles required by actual computation,
8 = number of cycles required by the best schedule,
C = number of cycles required by synchronization.

For the eight-processor scheme with RK method the values of A, B, C are A
= 1384/8 = 173 cycles; 8 = 192 cycles = 10.9% of A; C = (-78 + 2)/8 = 19.5
average and C = 23 for worst case = 11.9% of B. The total number of cycles
is then given by

Cycles = A + (8 - A) + C
= 173 + 19 + 23 = 215,

and the predicted solut ion time is given by

PST = Cycles x ~8,OOO x .8 x 10-6 = 4.816 seconds

where the actual solution time given by Table 1 is 4.87 seconds.

For the four-processor PC method the values of A, B, C are A = 1384/4 = 346;

-10-

PROGRAM P Tl T S Ep . P P

RK 8 28.18 4.87 5.78 72.3%

PC 8 21.59 3.33 6.48 81 %

TABLE 1. Actual Speedup & Efficiency ·

B CI 363 CI 4.9% of A; C = (86 x 2)/4 + 50/8 = 55.5 average and C = 58 in worst
case = 15.9 % of B. This gives the total number of - cycles required by the
program

Cycles = A + (8 - A) + C
= 356 + 17 + 58 = 421 cycle~

which gives the predict~d efficiency for PC method

PE = 356/421 = 82%

where the ~ctual efficiency given by Table 1 is 81 %.

6. AUTOMATIC TRANSLATION

Based upon our experience with parallel solution of flight simulation
equations, we conclude that, given some suitable representation of the
problem, the entire procedure for generating the parallel program could be
automated. We feel that a suitable representation of the problem is a
CSSL -type language where our predominant focus is that the derivatives are
clearly defined and the integration technique is specified but not expl icitly
programmed by the user. The specific steps for producing a parallel program
are listed below and will be individually discussed from the standpoint of
automation of translation.

1. Select tasks.

2. Determine execution time of each task.

3. Determine precedence constraints amongst tasks.

4. Transform the task system into one with minimum path length.

5. Schedule the transformed task system for execution using p
processors.

6. Synchronize the resultant schedule by use of asynchronous variables.

To perform task selection we first require that the representation of the
problem provides names for each of stat.e variables and the" associated name
for the derivative. In our resultant translation, the specific code to update
each of the state variables, based upon the integration technique specified,
will each be a separate task. For the representation of the derivatives we
require that there be no conditional or unconditional branches. We envision
that this presents no problem to the user by postulating a library of functions
which might include arbitrary function generation, limit function, switces, etc.
Then in addition to the tasks for updating the state variables, we will define
further tasks by isolating all function evaluation (library and user defined) as
separate tasks and all assignment statements (less function evaluation) as
separate tasks. Although the mechanism of doing this is an implementation
detail, we will describe it as if it were performed by actual text substitution.
For example, if we were given:

-11- .

XOOT = x + ARBFUN (l)
X = INT (XOOT)

we would translate this as :

C TASK 1
TEMP = ARBFLN (Z)

C TASK 2 .
XOOT = X + TEMP

C TASK 3
X = INT (XOOT)

Given the selection of tasks we next need to determine the execution
time of each of the tasks". .~gain assuming we have text for the individual
tasks we could now compile this text using the H EP FORTRAN compiler. As
an output of the compil er, the number of instructions for each of the tasks
is available and this together with the known execution time of the library
functions together with the user supplied estimates for user functions would
determine the estimates of execution time for each of the tasks.

The precedence constraints for each of the tasks can be determined by
"computing for each task the variables which are in the tasks domain (input
variables) and the variables which are in the tasks range (output variables).
Based upon this and the . sequential ordering given by the derivative
statements, a maximally parallel system can be determined. This data
together with the execution time estimates should now be available in a data
structure representing a directed, weighted graph. Programs to determine the
ranges and domains and produce the precedence constraints have been
developed in PASCAL at Washington State University.

The next two steps, that of transforming the graph of the preceeding
paragraph and producing a schedule using p processors is described in [14].
Programs to accomplish this transformation and to produce a schedule were
developed at Washington State University using the PL/I language. Given this
schedule we next produce p subroutines where each subroutine consists of the
code for the tasks which were scheduled for that processor. Each subroutine
will also contain code to determine whether the end condition of the
simulation has been satisfied and if not to branch back and execute another
i terat ion.

The final step in the translation is to add the code for ~ynchronizing the
p subroutines. This is accomplished by, for each task in the system, asking
i f the va ria b I e s j nit s ran g ear e in the do m a i n 0 fan y t ask ass i g ned to a no th e r
processor. For each such variable an asynchronous variable (e.g. $T(1» is put
in COMMON aild assigned a value by the task which contains that v"ariable in
its domain. For the task which uses that variable, an assignment from the
asynchronous variable is made prior to the code for that task. Programs to
perform this synchronization do not presently exist but thier design does not
seem to present any difficulty.

CONCLUSIONS

We conclude from our experience in solving flight simulation equations

-12-

on the H EP parallel computer that these techniques offer a viable alternative
to normal sequential computing and that the H EP computer is sufficiently fast
to provide at least real time support for many cases. Further, should this type
of computer become generally accepted for solving differential equations, then
support In the form of high level programming languages is feasible.

-13-

REfERENCES

[1] J. Nievergelt, ·Parallel Methods for Integrating Ordinary
Differential Equations,· CACM, vol. 7, no. 12, pp. 731-733,
D ece m be r, 1964.

[21 N. L. Miranker and W. M. Liniger, • Parallel Methods for the
Numerical Integration of Ordinary Differential Equations,· Math.
Comput., vol. 21, pp. 303-320, 1967.

[31 P. B. Worland, • Parallel Methods for the Numerical Solution of
. 0 rdinary Differential Equations,· lEE E Trans. Comp., vol. C-25,

pp. 1045-1040~' October, 1976.

[4] M. A.
o

Franklin, ·Parallel Solution of Ordinary Differen~ial
Equations,· IEEE Trans. Comp., vol. C-27, no. 5, May, 1978.

[5] M. J. Flynn, • Some Computer Organizations and their
Effectiveness,· lEE E Trans. Comp., vol. C-21, September, 1972.

[6] J. C. Strauss et. al., ·Continuous System Simulation Language,·
SIMULATION, vol. 6, no. 12, December, 1967.

7] DENELCOR,lnc., ·HEP Principles of Operations,· June, 1979.

8] Z. Kopal, • Numerical AnOalysis with Emphasis on the Application
of Numerical Techniques to Problems of Infinitesimal Calculus in
Singl~ Variable,· Wiley, N.ew York; Chapman & Hall, London,
1955 MR 17,1007.

[9] N. Katz, M. A. franklin, and A. Sen, -Optimally Stable Parallel
Predictors for Adams - Moulton Correctors,· Comp. & Maths.
with Appls., vol. 3, PP. 217-233, 1977.

[10J f. D. Andria, C. D. Byrne, and D. R. Hill, -Natural Spline Block
Implicit Methods,· BIT, vol. 13, pp. 131-144,1973.

[11J L. F. Shampine and H. A. Watts, -Block Implicit One Step
Methods,· Math. Comput., vol. 23, pp. 731-740, 1964.

[12] J. Rosser, • A R unge- K utta for all Seasons, - S r AM Rev., vol. 9,
p p. 41 7 - 452, J u I y, 1 967.

[13J Coffman and Denning, -Operating Systems Theory,· Prentice
Hall, Englewood Cliffs, N.J., 1974.

[14J R. E. Lord, ·Scheduling Recurrence Equations for Solution on
M IMD Type Computers,· PhD Dissertation, Washington State
Un ivers ity, 1976.

[15} J. D. Ullman, -NP-Complete Scheduling Problems·, Journal of
Computer and System Sciences 10, PP 384-393, 1975

0- 14-

[16] Walter Kohler, ·Preliminary Evaluation of the Critical Path
Method for Scheduling Tasks on a Multiprocessor System·, IEEE
Trans. Comp. C24, pp 1235-1238, 1975.

-15-

Denelcor

D
Denelcor. Inc. (303) 340-3444
Clock Tower Square
14221 East Fourth Avenue
Aurora, Colorado 80011

COMPUTER IMAGE GENERATION USING MIMD

COMPUTERS

By DR, Rs A. SCHMIDT

Tomorrow's Computers ... Today

CCHPUTEH rr~J\GF. GENER1\TICN USIt!G r'1~r~D COr·1PlJTER:3

I. Bi\CY.GROUND

Computer image generation (Cre) is a technique used to
synthesize telcvision images of scenes. Its pri~?ry use is
in very rC21istic vehicle simulators. The viewabl~ region is
stored ~s a t~rce-dimcnsion~l model in a computer data b2se,
und 2 combination of computers and special-purpose hardware
is llsed to select the portion of the d~ta bc.~se to be
displ~ye~, convert it to a two-dimensional perspective view,
~nd build raster scan lines for-a TV monitor. In order to
provide sufficient realism in a flieht simulation, a
com 'p] c t e f r c: m e 0 f i rn 2 g E' r y m u s t bee 21 cuI ute din r 0 ugh 1 y 1 / 6 0
second. The d2ta base may contain several hundred objects,
o f \.J tl i c h s eve r a I d a zen rr. 2 y b e i n vie Hat ~ n y g i v €: n tim € •

Convcntion2l SrSD computers cannot process datn fast
enough to perform the CrG ·function. In present systenls,
several SISD computers are used in a distributed-computation
configuration to perform the acquisition of view angle data
8nd the selection of viewable objects. The tr~nsform2tion of
o b j (, C L::.; tot '.-JO cl ill: ens i c n 81 r' cpr t:!:i c: n L c:. t ion, the s i HI U 1 at i () n 0 f
};c.z~, 2nd the convtrsion to SC8n lines Drc handled by
hordl,.!2rc. In 2ddi tion, present systems 2ssume th8t the
v i (' \-! 2 b 1 (' b 2 C k g r 0 un dis s t <:~ t i (: , a n (] ~ 11 ~ <.! C tl t.' r:': 0 t ion i .::
p r (j Cue L (1 b y mot i c.: (J 0 f L h e tj .i III U 1 (1 t E; J \I L il i c 1. (•

i< u 1 t i i=: J (' - i L S L rue L 1. 0 li m u 1 tip} e - U L. t D S t t· t; t..: m (H I t< D)
computer~ <:xf.cutinr.. 10:':*7 to 101-*8 instructiens/second offer
thE' opportunity to perform complex scene generction using
general-purpose (e.g. FORTRAN) computer Janguages with 2

min i [:1 U m . 0 f s p e' cia I pur po s e h Ci r d ~I c: r e. 8 y p (' r for min g 2 g r e <:: t e r
r 0 r t ion 0 f t [If' C I G t c} ski n so f tv/;] r e, r'1 I r~ rim (1 r. E g (' n f' r n t ion
wouJd permit Brc2tcr flexibility ~nd ~rc2tcr complexity of
scenes. The 2bility to incorporate heuristic t.echniques deE'p
i nth c i IT! [' g (: t r 2 nsf 0 r m Ci t ion p r () c e s s c 0 u IcC!] 1 0 \-J the 0 p tim C' 1
use of computing resource ag2inst the most visiblE:' portions
of ~ scone, while ~inimizing co~put2tion on minor sc('ne
plOIT!Ents.

I I. TEe 11 tl I C JI L D J S C U :. SIC t! C F r·~ It·~ Dec H PUT E R S

t·· :t:1['
rr: tJ 1 ~. i r J c
cor"r- utcr

is ~! form of p;tr211cl romput;-:tion in ,.:hicr~
instrllcticns execute sirr~ult0r.0ous]y in Ci ~inr:]l'
~ y ~ t C [1: • I t d iff r- r ~ fro r.l d i ~j t rib ute cpr 0 C f' ~ s i. ~ r i r:

tt~2t tho. mul tiple instructior. strE:2rr.s m~y be tightly coup] C'd
2nd coorer~t0 on 2 word-by-word b~sis in thn solution of ~
sinelc problem with very low oV0~hcad. Where in 8

distributed processir.g system, interprocess communic2tion is
~' softw~re function of the opcrDting system, in MIMD such
c em rr. u 1: i C <.1 t ion i ,c.> imp 1 em en ted by h (J r d \.J are s y n c h ron i z () t ion
m (' c h ;1 n i ~ m 0 • r·~ If,! D p (1 r ell eli s m d iff c r s fro rn a r r C) y pro c E' ~ so r s
in thr.1t multiple instruction streams exist, 2nd may be CIS

tightly or loosely coupled 2S the 8pplication dem2nds.

At thp present time, the only commercic.Jlly 8v2ilCible
~IMD computer is ~anufactured by Denelcor, Inc. of Denver,
Colorado. The Denelcor processor, called HEP (for
Hp.t€rogcneous Elem€-nt· Processor) cont2ins four different
types of memory: progr~m, register, constant, and data.
Progr;:;ms executing or. the machine are allocated c "task" in
h' hie r: tor un. E (.' C h ft t Cl s k " d e fin e s 2 con t i guo u s reg ion 0 f
eQch type of memory. The h~rdwC:lre restricts e,lch user to his
O~Jn rE(3ion of memory, flnd restricts the type of access he
m2y m~ke to each memory type. Progr~m memory is
execute-cnly; constant memory is read-only; and register ~r.d

d~t2 rn~mory are re2d/write.

A t(1sk may contain one or several processes, which are
execut~ble code sequences. Scver~l processes may be
sirnuJt2nf:ously executinr.; in the HEP, unlike convcnttcr.c::l
co en put c r s . Pro c C sse s are imp 1 Err. e n ted by a set 0 f h (.! r d t·] c' r' e
reg i s t c r s ,of \-J hie h the rei S Gl fix cd n u me e r; t h US? n err 0 r
co~ditior. (crc2te fault) exists when too many processcs come
into rxistrnc0 in the processor. Since existing processes
c c.: ncr (' c: t c r. C vi pro c C sse sat VI ill , pro C C sse s m u s t. b c
allocated to t2sks and man2eed just as memory must be
allocated ?nd ~2nag€d.

/" 11 0 f the six tee n h Cl r d \v 8 rei m pIE' men t E'd t C) s k sin the
HEP Drc not equivalent. Tasks 0-7 8rc user t~sks. In th0s~
t;:;sks, privilcrred instructions 2rc forbidden. In tc1sks P-1S,
p r i v 1 1 (' e c din s t r u c t ion s [! r e c-d 1. 0 ~.J 0. (! • The s p t:. " s k s, c <.: J. 1 (: d
"supcrvisorf>", perform system scrvicp.s for th0 user t~sks.

User tasks rcque·st these servic0.s Hi th rtsupervisor c21J"
(SVC) instructions. Thpse instructions r,enf-r2tC' () "t r8p rt,
crC'()ti nc: c.~ pt~ocess in Cl supervisor T.(1sk cillO su~p(-'ndinr.

(- x (' cut ion 0 f ~ IIp roc E'S S e sin t h <:' us f' r. T h P. h C1 r d H C1 ref 0 r c 0 S

US0r tr2ps to a p~rticu12r supervisor task, for cX2mplc,
t?sk 2 traps to t~sk 10. In gener~l, t~sk k(k<8) tr2ps to
t;.:sk k+f'..

~ u per vis 0 r s m c. y 2 1 so g C' n e r ~ t c t r c: p s. 1\ 1 1 t r c.' p s fro f'1 ;-1

sup (' r Ij i ~:; 0 r c r c: (' t 0- 2 ,r r c (' (' S 3 tnt ;3 S k 2. f1. ~ u P (" r vis crt r c; p
~. us r (> n rl s t, h (' ~ u r p r vis 0 r in t 1; f' S ;:: rr~ (' tl2 Y 2 V S crt r ? r sus p (' n (~ ~
~, r ~ (' l ~ :, cr.

The HEP opcr2ting system 1.5 orr;2nizerl into t\% mr"'in
compon0nts:. the Kernel 2nd the Superv~sors. The usprs (in
t ,~ s k s 1 - 7) Tn a k e s e r vic e r' e qUE) S t S (v i 2 S V C) 0 f the i r
cor r E' s ron d j n G Sup c r vis 0 r s. I. r. t. h e f' v e n t 0 f use r err 0 r s, the
~up0rvisors contain error handling routines. The supervisors
run in tC1SV.S 9-15, and eXE'Clltc pri.viJ f:gcri instructions to
c~rry out user requests. When a user request requires I/O
\.Ji th the host comput~r, the ~llperVl.Sors communicate wi th the
Kernel (via SVC) and provide the Kernel with I/O wessages
for t.r2nsrnissien to the file system or 8n 8tt.2ched host
computer. The Kernel, ru~ning in task 8, controls the
communications path and routes messages to the correct
supervisors. The Kernel also handles error conditions
2rising in the supervisor code, and handJes the majority of
oper2tor interface functions. In addition, since the
h8rdw~rc traps all create fault conditions to task 8, the
Kernel hanrllcs these also. Since the task usir.p: the J.Zlst
procc~s (~nd g~tting cre8tc f(,-Jul t) may not be the one using
too Mar.y, the Kernel must find the offender with softw2re
and t2ke appropriate ?ction. This is the re2son the create
f8ults come to the Kernel rather th~n the supervisors.
Supe:rvisors have control ONLY over their 2ssocinted user.

In order to support high speed ~I~D computation,
DEnelcor is developing 8 high speed file storDge syst~m
using ~ cembinntion of I/O c~che memory Dnd commercially
2vailzblc dis~ drives to provide file I/O at sustained rates
approxirnzting one million bytes/second. The total functional
cap<Jbi 1 i t.y of this file systc·m is still undc·r defini.tion at
ttli~ time.

III. APPLICATION OF MIND COMPUTERS TO erG

In order to determine the optimum 2pplic~tion of MIMD
c 0 rr. p 11 t C r s toe I G , s e \I era] (-l r e (; s s h 0 u] d b c· i n v est i g C.) ted .
T h (;. sci n c 1 u d c the f 0 11 0 \01 i n r, :

n) File System Performance. Using a realistic
d em 0 n s t r (=J t ion s c en ,1 rio, its 11 0 U 1 d b (. V E' r i f i (' d
t h c:: t the e J G d 2 t cl b ~ sec (; n he ;:1 C C e s s ('. c1
o u f fie i C': r. t I y r ,) p i d 1 y tom (' c t. C I G r e qui r' C In (' n t s .
Jf this is 2 function of dc::to bCJsc cornp]cxity,
tIle complexity/speed/cost trr1dE'offs .c;hol.llrl be:
jdcntifi0d.

b) P~rDllelizing of Scene Elrrrent Tr~nsfcrm2tion.
Tr'chniqu(Js fer r(~,rc:llc] i7.in~ the
tr~nsformztion of sccno 01(~cnts from tbp rl~t~
t .:. s (' in tot. h p t \,10 - (; i r.! (- n ~ i 0 ri Cl 1 C I G s c (' Ii f' ~ h 0 U 1 (!

be f: v c~ J. u (J t € d • For s c en € s 0 f con sid c r c: b 1 (;
complexity, transforming each scene object
wi th c: single proceSf) tnuy yteld sufficic:nt
par~llclism, whereas for scenes with only a
few rel~tivcly comp].ex elements, par8l1clism
rn c:: y b ere qui red wit h i n f: 1 em c n t pro c C S sin g .

c) EV2luotion of H8rdware Facilities. The present
Denelcor MIND computer performs high speed
lligb precision (6 JI bit.) nrithmctic. erG
~pplications do not require such hi~h
precision, and often require other operations
(e.g. vector dot product) which are not in the
instruction set of the present machinE'. An
analysis should be performed to determine
hardware oper2tions which if implemented as
instructions on an MIND machine would
s 1 G n i. f i c 8 n t 1 y imp r 0 v (' cos t t.) n d per for rT! ("I n c e •

d) Software Facilities. In order to realize the
benefits of the MIMD machine ?s a
e;ener;:l1-purposc solution to the eIG probJ ern,
extensions to a g~ner2l purpose l8nguage such
2S FORTRAN should be investigated. These would
~llow convenient use of hardware operators
sue h 8 S dot pro d u c t fro m h i g hIe vel I ci n g u c:: 13 ~ s •

e) Demonstration. In order to g2in confidence in
the performance of ~iI~1D on the erG problem, 3

cl 0 m 0 n s t r ;'1 t ion s y s t t") m s h 0 tJ]. d b f' b u j. 1 t u sin g C:l n
r'~ I H D com put e r. The d € m 0 n s t rat ion s y s t em, '-'I hen
coupled '-'lith the an21ysis sUBgested c8rli~r,
\.; 0 U 1 d v e r i f y t h 2 t c· pro due t ion C I G s y s t err.
co U 1. d be b u i 1 t us i n g r·,1 I r~ D t e c h no] 0 g yon 2

cost-effective b2sis 8nd at low risk.

When 2pplying conventional computers to eIG,
limit(":tions of computjng speed 2nd IIO rates for'ce the usc
of distributed comput2t.ion c.!r.c speci21 purpose h2rdw2re to
me e t p <:: r f 0 l~ m 2 n c ere qui r f: m f" n t s . The use 0 f t,~ I r·~ D com put e r s
offers 2 si~nific8nt reduction in the 2mount of speci21
purpo~0 2nd intercon~ection hardw~re required. In order to
bet t c: r q Ll rJ n t i f y t h c- :; (> b c: n (' fit. ~, ~ c V f' r (\ 1 ,; r (' 2 S r c: 1 \"i t e cl tot. h (>

lJ S e 0 f ~.~ I t"l C inC I G s h 0 u 1 d b (" stu d if' c!. The Sf' (. r c C1 s j n c] u d (
softw8r~ cr~2niz2tion ~nd extf:~sions to h8rdw~re
c ,: p;: b iIi t i (' S to i r.1 pro v c p (' r f 0 rrr 2 n c ('. T t!C~ r (> suI tin g (" n c' 1. y~; i s
~ fl 0 U 1 (1 h (' v,: 1. i d ~ ted bye: ci r·rr: 0 n s t r (' t ion.

