
O C T O B E R 1 9 9 5

WRL
Research Report 95/5

Network Behavior
of a Busy Web Server
and its Clients

Jeffrey C. Mogul

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There are two other research laboratories located in Palo Alto, the Network Systems
Lab (NSL) and the Systems Research Center (SRC). Another Digital research group is
located in Cambridge, Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and technical notes may also be ordered by electronic mail. Use one of the fol-
lowing addresses:

Digital E-net: JOVE::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.pa.dec.com

UUCP: decpa!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Reports and technical notes may also be accessed via the World Wide Web:
http://www.research.digital.com/wrl/home.html.

Network Behavior of
a Busy Web Server and its Clients

Jeffrey C. Mogul

October, 1995

Abstract

The 1994 California Election server, which provided ‘‘live’’ election
returns, handled over 1.5 million individual requests, including almost 1 mil-
lion in a single 24-hour period. This may have been the most intensive single
event on the Internet, to date, and so represented a novel experiment in how
the network responds to heavy loads. We collected comprehensive traces
and logs of server and network operation, allowing offline analysis of
numerous statistics. This paper reports the results.

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

ii

Table of Contents
1. Introduction 1
2. Overview of the Election Server 1

2.1. Content 2
2.2. Privacy 3

3. Hardware and software configuration 3
3.1. Network configuration 3
3.2. Server hardware 4
3.3. Server software 4
3.4. Log and trace collection 5

4. Overall server statistics 7
4.1. Server resource usage 9
4.2. Relative popularity of content files 12
4.3. DNS-based load balancing effectiveness 14

5. Per-client statistics 17
6. Network path statistics 22

6.1. Post-election path measurements 22
6.2. Periodic probes during the election 25

7. Interarrival patterns 26
7.1. Packet arrivals 26
7.2. Request arrivals 30
7.3. Per-client request arrivals 31
7.4. Summary of arrival data 32

8. TCP behavior patterns 32
8.1. Packets per connection 33
8.2. PCB table search costs 34
8.3. TCP retransmissions 35

9. Summary and conclusions 39
Acknowledgements 40
References 40

iii

iv

List of Figures
Figure 3-1: tcpdump discard rate vs. time 6
Figure 3-2: tcpdump capture rate vs. time 6
Figure 3-3: Lower bounds on Ethernet load average 6
Figure 4-1: Request rates for all servers, average over 1-hour intervals 7
Figure 4-2: Peak one-minute request rate for all servers, reported hourly 7
Figure 4-3: Peak one-second request rate for all servers, reported hourly 8
Figure 4-4: Distribution of connection durations 8
Figure 4-5: Distribution of retrieved file sizes 9
Figure 4-6: Correlation of connection duration with retrieved file size 9
Figure 4-7: PCB Table statistics by TCP state 10
Figure 4-8: Memory used for network data structures and buffers 12
Figure 4-9: Simulated hit rates for small PCB lookup caches 13
Figure 4-10: Relative popularity of static and dynamic pages 13
Figure 4-11: Relative popularity of different file formats 14
Figure 4-12: Mean request rates for each server, showing load balance 16
Figure 4-13: Instantaneous request rates for each server 16
Figure 4-14: Cumulative distribution of load imbalances 16
Figure 4-15: Cumulative distribution of longer-term load imbalances 17
Figure 5-1: Cumulative distribution of client retrieval count 18
Figure 5-2: Short-term peak request rates for most active hosts 18
Figure 5-3: Long-term peak request rates for most active hosts 19
Figure 5-4: Timeline for peak-rate burst from a single client 19
Figure 5-5: Timeline showing lack of effective image caching 20
Figure 5-6: Timeline showing short-term redundant requests 20
Figure 5-7: Timeline showing lack of any client caching 21
Figure 5-8: Potential effects of perfect caching 21
Figure 6-1: Distribution of path lengths to clients 23
Figure 6-2: Weighted distribution of path lengths to clients 23
Figure 6-3: Distribution of round-trip times 24
Figure 6-4: Distribution of inferred bandwidths 24
Figure 6-5: Correlation between hop count and estimated bandwidth 25
Figure 6-6: Sampled round-trip times from periodic probes 26
Figure 6-7: Sampled HTML retrieval times from periodic probes 27
Figure 6-8: Network bandwidths inferred from periodic probes 28
Figure 7-1: Cumulative distributions of interarrival times, Nov. 9 28
Figure 7-2: Cumulative distributions of interarrival times, Nov. 9 09:48 29
Figure 7-3: Distributions of packet interarrival times, Nov. 9 (same data as 29

figure 7-1)
Figure 7-4: Distributions of packet interarrival times, Nov. 9 09:48 29
Figure 7-5: Cumulative distributions of packet sizes, Nov. 9 30
Figure 7-6: Distributions of packet sizes, Nov. 9 30
Figure 7-7: Distributions of request interarrival times, Nov. 9 31
Figure 7-8: Distributions of request interarrival times, selected clients 31
Figure 7-9: Cumulative distributions of request interarrivals, selected clients 32
Figure 8-1: Distribution of packets per HTTP connection, Nov. 9 33
Figure 8-2: Distribution of servers’ response times to SYNs, Nov. 9 34
Figure 8-3: Correlation between request rate, PCB table size, and response time 35
Figure 8-4: Distributions of SYN and SYN|ACK retransmission counts, Nov. 9 36
Figure 8-5: Distributions of SYN retransmit interarrival times, Nov. 9 37

v

Figure 8-6: Distributions of data retransmission times, Nov. 9 38

vi

List of Tables
Table 4-1: Peak counts of PCB table entries by TCP state 11
Table 4-2: Distribution of requests by file type 15

vii

viii

1. Introduction

On November 9, 1994, the United States held mid-term congressional elections. The results
of these elections were of acute interest to many voters, since they led to turnover in the majority
party of both houses of Congress. 1994 was also the first year in which many non-technical
citizens had access to the Internet, and several organizations set up Internet servers to communi-
cate campaign and election information to voters.

The most populous state, California, in conjunction with researchers from Digital Equipment
Corporation, set up a server to provide voters and other interested users extensive pre-election
information, and ‘‘live’’ election returns as they became available. This server attracted im-
mense interest, handling over 1.5 million requests from over 20,000 hosts (and at least that many
individual users).

This may have been the single most intensive event on the Internet, to date, so it represented a
novel experiment in the behavior of the Internet and its users. While few current Internet servers
continually experience this kind of load, we expect such bursty events to recur. We also expect
the typical load on more quotidian servers to increase dramatically, as the user population ex-
plodes.

We took advantage of this opportunity by collecting comprehensive packet traces and server
logs during the period of peak access rates. Using these traces and logs, we can do a broad
variety of off-line analyses to obtain statistical information about the clients, servers, and net-
work. We can also reconstruct the dynamics of individual connections or sets of connections.

This paper reports on the results of some of these analyses. We looked at server behavior,
server access patterns, client behavior, network packet arrival patterns, and aspects of the paths
that packets took through the Internet.

2. Overview of the Election Server

Approximately six weeks before the 1994 general election, a group of researchers from
several of Digital’s research labs arranged with the California Secretary of State’s office to
provide online election returns and pre-election voter information. The state would provide raw
materials for the voter information, and a direct feed of returns once the polls had closed. Digital
would operate both a World-Wide Web (WWW) server using the Hypertext Transfer Protocol
(HTTP [2]), and a Gopher [1] server. Although the state officials seemed more interested in the
Gopher server, we expected that the WWW server would prove far more popular, and con-
centrated our efforts there.

Because it took over a month for the final returns to be certified, and because much of the
voter and return information may be of continued use, the server will continue to operate in-
definitely. The WWW server may be reached as either of

http://www.election.ca.gov/
http://www.election.digital.com/

The Gopher server may be reached as either of

1

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

gopher://gopher.election.ca.gov/
gopher://gopher.election.digital.com/

You may find it easier to understand the content descriptions below if you first browse through
the server.

2.1. Content

The content on the server is divided into static and dynamic pages. Static pages are those
whose content does not vary with time, and include descriptions of ballot propositions and con-
tested public offices, and statements provided by candidates for office and their political parties.
Candidates are now allowed to provide photographs for the printed ballot pamphlet, and we
made these available as well. We also obtained the official campaign finance statements, and
somewhat laboriously transcribed them into an online form (this information was not otherwise
easily available to voters). We also had almost all of this material translated into passable
Spanish; we were unable to do translations into the other official languages (Chinese, Japanese,
Tagalog, and Vietnamese). We of course provided elaborate hyperlinks between the various
static pages.

Dynamic pages were generated at five-minute intervals from raw election return data provided
by computers at the state’s Teale Data Center. (After the first few days, updates came less fre-
quently.) We generated several different kinds of Web pages from this data:

• Bar graphs (by race or by county): For each race, a bar graph showed one line for
each candidate, including the candidate’s name, current vote percentage, and a
horizontal bar proportional to the percentage. (For ballot propositions, we did not

1display bars.) Each bar was an ‘‘inlined image,’’ and so had to be retrieved
separately from the server. We only generated bars for integral percentages, and we
expected that client browsers would quickly build up a cache containing most of the
necessary bar images. (See section 5 for a discussion of how well this worked.)

• County maps: For each race, a map showed how each of the 59 counties was voting
(color-coded to show which candidate was leading in each county). We also
generated per-county bar graphs, identical in format to the race-by-race bar graphs.

• Television format: six pages showing results for the major statewide races and
propositions, formatted for display on an NTSC television screen. These were used
by several cable television channels in lieu of generating their own graphics. Each
page contained one dynamic and two static inlined images.

Since the images used in the bar-graph pages were themselves static, client caching of these
caused no trouble. However, client caching of the county-map and TV-format images could
have been a problem, since these images changed from time to time. We solved this by includ-
ing a version number in the image file name, and changed the URLs in the enclosing HTML files
whenever a new image was generated. We also created version-numbered instances of many of
the dynamic HTML files, although not for those reached via county maps.

1Inlined images are files containing graphical elements, for insertion between or near textual elements.

2

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

We expected users to periodically re-request the HTML files for the dynamic pages, thus caus-
ing them to receive the most recent images as well. Many clients reach Web servers via caching
relays or proxy servers [6]; these caching relays intercept the requests for HTML files and so can
hide updates of the dynamic pages from clients. In most cases, properly informed users could
work around this problem (for example, by hitting a ‘‘Reload’’ button). We discovered,
however, that at least one major Internet service provider was caching accesses to our Gopher
service, and was never updating its cache (so its users saw only the earliest returns). We suggest
that implementors keep in mind that Web and Gopher content may not be static, and that desig-
ners of dynamic content provide ‘‘footnotes’’ instructing users how to work around caching
relays.

The total content (including all versions of the dynamic pages) amounted to just 6981 Kbytes.
This was less than 3% of the RAM on our server systems (see section 3.2), so we believe that
almost all file reads were satisfied from the buffer cache. That is, almost no disk I/O had to be
done to retrieve the content files.

2.2. Privacy

Although we kept extensive logs and traces of server and network activity, we recognized the
need to protect the privacy of our users. We kept no logging information that directly identified
individuals, and we will not reveal the names or addresses of client hosts, nor use them except to
gather statistical information. We also have not released any statistics about the relative
popularity of individual candidate, party, or result pages, since this could be used to gauge voter
interest and perhaps could be used to design campaign strategies.

3. Hardware and software configuration

Prior to the election, we had no idea how many requests we would be receiving, but we made
a wild guess that we might see a million requests (which turned out not to be far from the actual
count). We realized that such a request rate could run up against several bottlenecks: Internet
capacity, router throughput, LAN capacity, and server throughput. We also realized that if any
part of the system failed, we would not have a second chance, so we wanted a highly redundant
system.

3.1. Network configuration

Since we had 10 Mbit/sec (or faster) connections to the Internet via both AlterNet and BAR-
RNet, a 10 Mbit/sec Ethernet LAN, and a router rated to run at full Ethernet rates, we did a crude
calculation that convinced us that our local network infrastructure could handle the load. (Al-
though we had a ‘‘Sniffer’’ monitoring the LAN, we neglected to log network utilization rates at
regular intervals; spot checks showed one-second load averages peaking at about 70%, and long-
term averages around 30%. See figure 3-3 for an approximation of the load averages.)

Our paired connections to the Internet came in handy, since during the day after the election
(November 9th), which proved to be the day of heaviest load, it rained heavily and occasionally
caused heavy packet losses on our microwave link to BARRNet. Once we detected the problem

3

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

(it happened during lunch), we switched to a T3 wired connection, which eliminated the packet
losses. We also constructed, but did not have to employ, a low-speed serial line connection to
the Teale Data Center, for use in retrieving updated returns if the normal Internet path from
Teale became congested by client traffic.

3.2. Server hardware

With sufficiently high-performance and redundant network connections in place, we turned
our attention to the server systems. We used one three-processor and two dual-processor Digital
2100 model A500MP server machines; each processor was a Digital Alpha CPU rated at 110
SPECint92. Each dual-processor system was rated at 6,178 SPECrate_int92. The three-
processor system had 512 MB of RAM; the dual-processor systems each had 256 MB. We
maintained an identical copy of the server contents on the disks of each of the three server
machines.

Since we wanted to expose only a single top-level URL, and hence a single host name, to
clients, we used the Domain Name System (DNS) [13] CNAME mechanism to create a three-
valued binding from www.election.ca.gov to the actual names of the three server hosts.
We hoped that since modern DNS servers randomize the order in which they return the three
bindings, clients would end up evenly balanced among the servers. Our experiences partially
bore out this expectation; see section 4.3.

The use of several systems, instead of one large one, not only provided cost-effective perfor-
mance scaling, it also provided a natural ‘‘warm spare’’ redundancy mechanism. We kept a
fourth, somewhat slower, system running at all times, with its own copy of the database. If one
of the main servers had failed, we would have rebooted the backup system after changing its IP
address to match that of the failed system. We chose not to try to rebind the CNAME to the
normal name (and address) of the backup system, since we had no idea how long it would take to
propagate this change through the caches in the DNS.

3.3. Server software

The server machines ran DEC OSF/1 V3.0, which supports symmetric multiprocessing and
thus made effective use of the dual processors. We used the NCSA httpd version 1.3 HTTP
server, mostly because we had had extensive experience with this code and believed it could be
trusted. However, we soon realized that this software might not support our estimated perfor-
mance target, so I modified it slightly to avoid some inefficiencies.

Of course, modification introduced the possibility of new bugs, so we tested the new server
both under a heavy artificial load, and on various production machines prior to election day,
without finding any problems. Yet there was a bug, which only became visible shortly after the
polls closed, as the request rate climbed dramatically. It turned out to be triggered when a client
prematurely closed its end of an HTTP connection; the bug put the server process into a tight
loop for several minutes (the NCSA server forks a new process for each connection). With in-
creasing load, more users terminated their requests, causing more looping processes and even-
tually reducing the sustained request rate to a crawl.

4

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

It took me a while to locate the bug and prepare a fix, and anecdotal reports suggest that many
potential users who tried the service during this period became frustrated and never came back.
We suspect that we would have seen a much higher peak rate in the hours after the polls closed,
had this bug not been present.

3.4. Log and trace collection

HTTP servers typically log some information about each request, but the original NCSA serv-
er does not log quite enough information to fully investigate the performance issues. In par-
ticular, it does not log connection duration, and it uses timestamps with 1-second resolution. I
modified the server to record more extensive log information about each request, including con-
nection duration, CPU time usage, and the number of actual disk reads done for each request.
All timing information was done with approximately 1 msec resolution.

At fifteen minute intervals, we collected system-wide statistics on each server machine. These
include system load averages, network interface statistics, a snapshot of the protocol control
block (PCB) table, network buffer statistics, virtual memory statistics, and disk I/O statistics.
(The disk I/O statistics, alas, proved useless because of a minor bug in the particular operating
system release running on the servers, but we believe the file system cache was large enough to
avoid almost all disk I/O.) We had intended to collect network and transport level statistics
(using netstat -s), but neglected to do until approximately noon on the day after the elec-
tion.

We also set up a workstation running the tcpdump program, to capture all of the traffic on the
Ethernet. These traces covered all of November 8 (election day) and November 9, and most of
the morning of November 10. We used tcpdump to capture the first 68 bytes of every packet, as
well as the total packet length and a timestamp with microsecond resolution. Each set of one
million packets was saved, without analysis, to a disk file and then compressed, yielding in-
dividual trace files of about 44 Mbytes. We ultimately traced about 209 million packet headers,
requiring about 9 Gbytes of storage after compression; some of this data had to be stored off-
line, since we only had 6 Gb of spare disk space.

Promiscuous-mode passive monitoring, as done by tcpdump, has the advantage that it does not
perturb the network being monitored, but one risks losing some packets because the monitor is
overloaded. Fortunately, our monitor system (a DECstation 3000/400) was usually able to keep
up. The software gave us an exact count of the number of dropped packets, which revealed a
mean lost-packet rate of 0.011%. The peak lost-packet rate was 2012 per million packets, or 2%.
(Figure 3-1 shows the actual discard rates, per million-packet set.) We may also have lost a few
packets each time a new instance of tcpdump was started.

Figure 3-2 shows the packet capture rates over time; each sample is averaged over one million
packets, so the peak rates were much higher. The peak capture rate reached one million packets
in 545 seconds, a mean rate of about 1830 packets per second.

We can compute a lower bound on the Ethernet load average using the packet size and time-
stamp information in these traces; see figure 3-3. Each point represents the peak 1-sec load
average seen during a 1-minute interval. Since tcpdump does not record Ethernet collisions, at
higher rates this computation somewhat underestimates the actual load.

5

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

0 606 12 18 24 30 36 42 48 54
Hours since 00:00 November 8

0

0.0025

0.0005

0.001

0.0015

0.002

D
is

ca
rd

 r
at

e
pe

r
ca

pt
ur

ed
 p

ac
ke

t

[data currently offline]

Nov. 8 Nov. 9 Nov. 10

Figure 3-1: tcpdump discard rate vs. time

0 606 12 18 24 30 36 42 48 54
Hours since 00:00 November 8

0

2000

500

1000

1500

Pa
ck

et
 c

ap
tu

re
 r

at
e

pe
r

se
co

nd

Nov. 8 Nov. 9 Nov. 10

Figure 3-2: tcpdump capture rate vs. time

0 606 12 18 24 30 36 42 48 54
Hours since 00:00 November 8

0

0.8

0.2

0.4

0.6

E
th

er
ne

t l
oa

d

Nov. 8 Nov. 9 Nov. 10

Figure 3-3: Lower bounds on Ethernet load average

Note that, because of the routing topology used for these servers, all packets sent by the ser-
vers appeared twice on the Ethernet (packets received by the servers appeared only once). This
caused a somewhat higher Ethernet load than we would have seen with a more straightforward
routing topology.

6

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

4. Overall server statistics

The most basic measure of server load is the rate at which clients issue requests. Figure 4-1
shows the hourly mean request rate (in requests per second) for about nine days around the time
of the election. The dip at about noon on November 9 (hour 84) reflects the rain-induced net-
work failure. Other dips reflect the wee hours of the morning, suggesting that most of our users
were in or near our time zone.

0 22812 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216
Time (hours since 00:00 November 6)

0

25

5

10

15

20

R
eq

ue
st

s
pe

r
se

co
nd

11/6 11/7 11/8 11/9 11/10 11/11 11/12 11/13 11/14 11/15

Figure 4-1: Request rates for all servers, average over 1-hour intervals

Peak request rates, over short time scales, far exceeded the hourly means. Figures 4-2 and 4-3
respectively show the peak 1-second and 1-minute rates for each hour. (Note that these rates
reflect the times at which connections completed, not at which they were initiated.)

0 22812 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216
For hour ending (hours since 00:00 Nov. 6)

0

2000

500

1000

1500

Pe
ak

 r
eq

ue
st

s
pe

r
m

in
ut

e

11/6 11/7 11/8 11/9 11/10 11/11 11/12 11/13 11/14 11/15

Figure 4-2: Peak one-minute request rate for all servers, reported hourly

Our logs contained accurate indications of connection duration, measured from the time that
the httpd server process forked (this happens just after the TCP connection has been fully es-
tablished, and so omits one round-trip time through the network) to the time that the connection
has been successfully closed. Figure 4-4 shows the distribution of connection durations. Note
that a significant number of connections lasted for many seconds, even though very few of the
files transferred exceeded 10K bytes. This may either indicate lossy network connections, or
attempts to retrieve large images over low-speed links.

7

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

0 22812 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216
For hour ending (hours since 00:00 Nov. 6)

0

60

10

20

30

40

50
Pe

ak
 r

eq
ue

st
s

pe
r

se
co

nd
11/6 11/7 11/8 11/10 11/11 11/12 11/13 11/14 11/15

Figure 4-3: Peak one-second request rate for all servers, reported hourly

0.001 10000
Elapsed time (sec)

0.01 0.1 1 10 100 1000 10000
0

140000

20000

40000

60000

80000

100000

120000

N
um

be
r

of
 r

et
ri

ev
al

s

Figure 4-4: Distribution of connection durations

Figure 4-5 shows the distribution of the sizes, in bytes, of the files retrieved from the servers.
(This does not include the considerable overhead data returned in an HTTP response.) Many
retrievals fell into a narrow range of sizes under 100 bytes; these were all GIF-format images
representing bars in the bar-graph pages. The mean retrieval size was 2394 bytes; the median
was 958 bytes. (Ignoring 83406 zero-length retrievals, which are basically client cache valida-
tions, the mean was 2535 bytes and the median was 1025 bytes.)

Figure 4-6 shows how retrieval time (connection duration) correlates with the retrieved file
size. The area of each dot on the graph is roughly proportional to the number of retrievals with a
given size and duration, except that the lower limit on dot size is one pixel. This graph suggests
that there is essentially no correlation between retrieval size and elapsed time for sizes below
about 30K bytes. The overhead costs of creating TCP connections, creating server processes,
exchanging and parsing request headers, and sending response headers overwhelm any per-byte
costs for smaller files.

8

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

10 1e+06100 1000 10000 100000
0

400000

100000

200000

300000
C

ou
nt

 o
f

re
tr

ie
va

ls

+85253 zero-length retrievals

Figure 4-5: Distribution of retrieved file sizes

10 1e+06100 1000 10000 100000
0.001

10000

E
la

ps
ed

 ti
m

e
(s

ec
)

0.01

0.1

1

10

100

1000

10000

Figure 4-6: Correlation of connection duration with retrieved file size

4.1. Server resource usage

In addition to CPU time, an HTTP server uses several different kinds of system resources,
including processes, TCP connections, TCP buffers, and file system buffers. These are all al-
located from main memory. Although our server systems had more than enough RAM, we won-
dered just how much was necessary. That is, how did the servers make use of their memory
resources?

We first looked at the number of entries in the protocol control block (PCB) table. Each TCP
connection takes up an entry in this table. One would think that the table size should be ap-
proximately the number of active connections, but this is not so.

The TCP protocol specification [15] requires the host that closes a connection to remain in the
TIME_WAIT state for a period of twice the maximum segment lifetime (2*MSL). This prevents
a subsequent connection from accepting delayed duplicate packets from the closed connection.
Since MSL should be two minutes, 2*MSL should be four minutes; however, DEC OSF/1 fol-
lows 4.3BSD practice and uses a one-minute timeout here.

The HTTP specification [2] requires that the server, not the client, close the TCP connection.
This means that the average HTTP connection takes up a PCB table entry in the ESTABLISHED

9

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

state for a few seconds, and then persists in the table in the TIME_WAIT state for quite a while
longer. Hence, the number of TIME_WAIT entries can be far greater than the number of ES-
TABLISHED connections.

We recorded the contents of the PCB table every 15 minutes. Figure 4-7 shows how the
breakdown by state varied over time, for all three servers taken together. (‘‘Opening’’ includes
LISTEN, SYN_RCVD, and SYN_SENT; ‘‘Closing’’ includes CLOSE_WAIT, CLOSING,
FIN_WAIT_1, FIN_WAIT_2, and LAST_ACK.) Note that nearly all of the table entries are for
TIME_WAIT, and most of the rest are ‘‘Closing’’ states. Relatively few of the PCB table
entries are used for actual live connections.

0 4812 24 36
Time (hours since 00:00 Nov. 8)

1

10000

N
um

be
r

of
 P

C
B

 ta
bl

e
en

tr
ie

s

10

100

1000

Total
TIME_WAIT

ESTABLISHED

Opening
Closing

Figure 4-7: PCB Table statistics by TCP state

For all servers together, we recorded a peak PCB table size of 1297 entries. The peak number
of TIME_WAIT entries was 1049, while the peak number of ESTABLISHED entries was 100.
(The actual peaks might have been higher, since we sampled rather infrequently.) Note that if
the operating system had used a four-minute timeout for the TIME_WAIT entries, this would
have approximately quadrupled the number of these entries.

Table 4-1 shows the peak number of entries in each TCP state, as sampled at 15 minute inter-
vals. The actual peaks may have occurred between samples. The table shows the peaks for each
of the three servers, and for all three servers taken together (within the synchronization error of
the sampling process). The latter may be smaller than the sum for all three servers, since the
per-server peaks do not always coincide. The states, except for ESTABLISHED and
TIME_WAIT, are categorized as ‘‘opening’’ or ‘‘closing’’ transient states, corresponding to the
curves in figure 4-7.

The count of LISTEN states includes four other servers besides the HTTP server; the total
number of HTTP listeners was always one per machine.

The number of SYN_RCVD states was limited to five by the listen() system used by the
HTTP server. We now believe that this limit should be set much higher (perhaps in the hundreds
or thousands), since connections can get stuck in this state if packets are being dropped in the
network. With a limit of only five SYN_RCVD connections, the server can easily become
‘‘hung’’ for lengthy periods, during which it cannot accept any new connections. The rain-
induced packet loss we experienced around noon on Nov. 9 did cause such a problem, which is

10

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

TCP State Server A Server B Server C All Servers

1LISTEN 5 5 5 15

1SYN_RCVD 5 5 5 15

1SYN_SENT 1 1 1 3

ESTABLISHED 40 35 26 100

2CLOSE_WAIT 46 113 48 163

2CLOSING 11 12 7 27

2FIN_WAIT_1 32 32 21 77

2FIN_WAIT_2 79 72 62 162

2LAST_ACK 5 7 14 22

TIME_WAIT 413 460 392 1049

All states 512 579 470 1297

Note 1: Connection is ‘‘opening’’
Note 2: Connection is ‘‘closing’’

Table 4-1: Peak counts of PCB table entries by TCP state

reflected as sharp dip in many of the graphs in this paper (for example, see figure 4-7, near hour
36).

Other sites have reported numerous connections stuck in the LAST_ACK state, probably be-
cause dialup clients became disconnected from the Internet before the server finished transmit-
ting all of its buffered data. We found a few such connections, but never had a significant num-
ber at any one time. We also had a small number of connections stuck, some for periods of
many hours, in FIN_WAIT_1, or less often in FIN_WAIT_2 (these were never more than a
small fraction of the total).

The primary significance of these stuck connections (LAST_ACK and FIN_WAIT_*) is not
that they take up PCB table space, but rather that they tie up buffer space for data that has been
transmitted but not acknowledged. Over time, an HTTP server could lose significant amounts of
kernel memory. This may require using a ‘‘keep alive’’ timer to garbage-collect such connec-
tions. How much memory did this table space require? Our logs also recorded memory-usage
profiles every 15 minutes; figure 4-8 shows the results for three categories: ‘‘mbufs’’, used
mostly to buffer packet headers and data; PCB table entries; and ‘‘sockets’’, used by the kernel
to describe active connections. About half of the total use comes from mbufs; PCB table entries
and sockets split the rest. In no case (that we sampled) did the total exceed 2 Mbytes, nor did the
PCB table size ever exceed about 700 Kbytes. Therefore, we do not believe that even a very
busy HTTP server requires much main memory.

However, large PCB tables not only consume memory; they also consume CPU cycles, be-
cause they must be searched on each packet arrival to find the corresponding TCP state record.

11

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

0 7212 24 36 48 60
Time (hours since 00:00 Nov. 8)

0

2000

500

1000

1500

M
em

or
y

us
e

(K
by

te
s) mbufsmbufs

sockets

PCB table

Total

Nov. 8 Nov. 9 Nov. 10

Figure 4-8: Memory used for network data structures and buffers

McKenney and Dove [11] have pointed out that the use of a linear list for this table can lead to
poor performance, and suggest using a hash table for systems with large numbers of active con-
nections. They point out that the use of small caches in front of a linear list do not work well in
such applications.

In the case of an HTTP server, however, the number of active connections is small. Naive use
of McKenney and Dove’s hash-table structure would fill up with useless TIME_WAIT entries
(these will almost never be the target of a lookup), slowing lookups and increasing the cost of
table insertion and deletion.

A better solution might be to keep the TIME_WAIT entries in a separate structure, such as a
queue (since entries will be removed in FIFO order). ‘‘Useful’’ PCB table entries could be kept
in a hash-table structure. However, this may not be necessary for an HTTP server. I used the
tcpdump traces to simulate N-entry LRU caches, and found reasonably good hit rates for small
caches. These simulations were done using a tcpdump trace containing 127,367 packets arriving
for the servers. This represents approximately 11 minutes starting at 9:40 AM on November 9,
one of the peak load periods. Approximately 19198 connections were active during this interval,
so these simulated caches warmed up rapidly.

Figure 4-9 shows the simulated hit rates for each individual server (dotted lines) and for all
three servers taken as a single entity (solid line). For any individual server, a 16-entry cache
would hit almost 80% of the time. If one server was handling the entire load, it would need a
64-entry cache to get an 80% hit rate. One could also look at these results as confirming that a
moderately-sized hash table (containing entries only for active connections) would satisfy
lookups in one or two comparisons.

4.2. Relative popularity of content files

Our logs contain the name of each file (or map hit) requested, which provides a breakdown of
retrievals by file format. It also allows a division into static and dynamic content pages.

Figure 4-10 shows the mean retrieval rate (measured over two-hour periods, and plotted on a
log scale) versus time, for both static and dynamic pages. Before the polls closed, most

12

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

0 7010 20 30 40 50 60
Number of cache entries

0

1

0.2

0.4

0.6

0.8
C

ac
he

 h
it

ra
tio

Individual servers

All servers

Figure 4-9: Simulated hit rates for small PCB lookup caches

retrievals (by an order of magnitude) were for static pages. After the polls closed (hour 60),
dynamic pages led by a large margin, although not a factor of ten.

24 12036 48 60 72 84 96 108
Two-hour period ending (hours since 00:00 Nov. 6)

0.001

100

M
ea

n
re

qu
es

ts
 p

er
 s

ec
on

d

0.01

0.1

1

10

100

Dyamic pages

Static pages

Nov. 7 Nov. 8 Nov. 9 Nov. 10

Figure 4-10: Relative popularity of static and dynamic pages

Figure 4-11 breaks down the mean retrieval rate (again, measured over two-hour periods) by
file format. GIF and HTML files dominated all others by several orders of magnitude, with GIF
files taking the lead after the polls closed (most of these were bar-graph elements).

Table 4-2 breaks down the retrievals by various different file name patterns. About 70% of
the retrievals were GIF files. 62% of these were bar-graph elements; 11% were candidate
photos; 6% were dynamically-constructed images such as maps of voting by counting; the
remaining 21% were various static images such as banners, logos, and maps.

About 30% of the retrievals were HTML pages. 26% of these were for the three home pages
(the multi-lingual master home page, and the English and Spanish home pages). Many users
looked at the static HTML pages, such as candidate statements and descriptions of ballot
propositions; these accounted for 18% of the HTML retrievals. 53% were for HTML pages
containing election returns. The remaining HTML retrievals were for informational pages, such
as a page with pointers to other election-related servers.

13

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

24 12036 48 60 72 84 96 108
Two-hour period ending (hours since 00:00 Nov. 6)

1e-05

100
M

ea
n

re
qu

es
ts

 p
er

 s
ec

on
d

0.0001

0.001

0.01

0.1

1

10

100
HTML TVMAPMAPJPEGGIF

Nov. 7 Nov. 8 Nov. 9 Nov. 10

Figure 4-11: Relative popularity of different file formats

Only 1.3% of the HTML retrievals were for Spanish-language pages, although this may still
represent several hundred users. We also had relatively few users of the pages formatted for
television broadcast, although we do know that several cable channels used these extensively.
Many users retrieved dynamically-constructed maps showing the breakdown of voting by
county. Somewhat less often, a user clicked on one of these maps to see additional detail for a
given county.

4.3. DNS-based load balancing effectiveness

In section 3.2 I described how we tried to use the Domain Name System (DNS) to spread out
the request load among the three server machines. We knew that this would not work perfectly,
since there are many caches in the DNS and these tend to reduce short-term randomness.

Over very long periods, the loads did nearly balance. Over the course of an entire day, the
total number of requests handled varied among the servers by less than 10%. Figure 4-12 shows
the mean hourly loads for each of the three servers, for election day and the day after; at this time
scale, the loads are not entirely balanced, but generally are not far off.

At shorter time scales, however, the DNS-based load balancing clearly does not spread re-
quests evenly. For example, figure 4-13 shows the per-second request rates for each of the three
servers (denoted by different symbols) for one of the busiest minutes. The mean rate, over all
three servers, is shown with a solid line. One can see that quite often, one of the servers carries
far more than 1/3 of the total request rate. The total load varies enough from second to second to
explain most of the inter-server variation; over the course of this minute, no server is obviously
favored.

Figure 4-14 shows the cumulative distribution of load imbalance. This figure represents the
busiest 10,000 one-second intervals (by total request rate), and it shows what fraction of the load
was carried by the busiest server. (The curve looks essentially the same if one samples the 1000
or 100 busiest intervals.) For example, 25% of the time, the busiest server carried more than
54% of the total request rate. 5% of the time, the busiest server carried at least 2/3 of the request
rate.

14

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

Pattern Description Count

/ Static Master home page 48984

/e/home.html Static English home page 59546

/e/cand/.*.html Static candidate statements 38083

/e/misc/.*.html Static other stuff 47162

/e/other/.*.html Static other stuff 512

/e/party/.*.html Static party statements 5852

/e/prop/.*.html Static proposition stuff 31152

/e/returns/.*.html Dynamic returns html 219347

/e/returns/.*/page-tv..*.gif Dynamic TV map pages 2521

/e/returns/.*/page..*.gif Dynamic pages 59963

/e/returns/tv..*/page..*.gif Dynamic TV non-map pages 4520

/s/home.html Static Spanish home page 1487

/s/cand/.*.html Static candidate statements/Spanish 805

/s/misc/.*.html Static other stuff/Spanish 567

/s/other/.*.html Static other stuff/Spanish 16

/s/party/.*.html Static party statements/Spanish 119

/s/prop/.*.html Static proposition stuff/Spanish 700

/s/returns/.*.html Dynamic returns html/Spanish 1773

/s/returns/.*/page-tv..*.gif Dynamic TV map pages/Spanish 25

/s/returns/.*/page..*.gif Dynamic pages/Spanish 384

/s/returns/tv..*/page..*.gif Dynamic TV non-map pages/Spanish 70

/s/.* All Spanish pages 5961

/e/.* All English pages 473071

/pics/bar/.*.gif Dynamic bar graphs 615587

/pics/cand/.*.jpg Static candidate JPEGS 1885

/pics/cand/.*.gif Static candidate GIFs 114660

/pics/[^/]*.gif Static misc pictures 207956

/.*ismap.* Dynamic interactive map uses 8025

/.*tv-map.* Dynamic TV interactive map 2760

/.*.html.* All HTML 416113

/.*.gif.* All GIF 998714

/.*.jpg.* All JPEG 1885

Table 4-2: Distribution of requests by file type

15

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

48 9654 60 66 72 78 84 90
Time (hours since 00:00 November 6)

0

10

2

4

6

8

M
ea

n
re

qu
es

ts
 p

er
 s

ec
on

d
pe

r
se

rv
er Nov. 8 Nov. 9

Figure 4-12: Mean request rates for each server, showing load balance

0 6010 20 30 40 50
Seconds

0

30

5

10

15

20

25

R
eq

ue
st

s
pe

r
se

co
nd

For the minute of 09:48, November 9

Figure 4-13: Instantaneous request rates for each server

0.3 10.4 0.5 0.6 0.7 0.8 0.9
Busiest server’s fraction of total load

0

100

20

40

60

80

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f
sa

m
pl

es

85% worse than 0.39

50% worse than 0.47

25% worse than 0.54
15% worse than 0.58

5% worse than 0.67

Figure 4-14: Cumulative distribution of load imbalances

Figure 4-15 shows load imbalances over longer measurement intervals.As the measurement
interval increases, the likelihood of serious load imbalance decreases. For example, one server
took more than half of the total load in 40% of the busiest 1-second intervals, but this happened
in only 12% of the busiest 10-second intervals.

16

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

0.3 10.4 0.5 0.6 0.7 0.8 0.9
Busiest server’s fraction of total load

0

100

20

40

60

80
C

um
ul

at
iv

e
pe

rc
en

ta
ge

 o
f

sa
m

pl
es

Busiest 1000 1-second periods

Busiest 1000 10-second periods

Busiest 1000 1-minute periods

Busiest 100 5-minute periods

Busiest 100 5-minute periods

Figure 4-15: Cumulative distribution of longer-term load imbalances

Our goal in using multiple servers was both to provide redundancy and to improve perfor-
mance. Our failure to balance the loads at the shortest time scale suggests that the DNS-based
technique cannot provide linear scaling for server performance at peak request rates. Three ser-
vers may do better than one server, but probably not three times as well. The clients will most
likely see slightly increased response times, not connection failures, since the second-by-second
variation in request rate gives a temporarily overloaded server time to catch up.

5. Per-client statistics

How did a typical client use the Election Server? Is there, in fact, a ‘‘typical’’ client? Our
logs included client host addresses, so we can analyze the per-client usage patterns. We looked
at 1,494,003 retrievals starting on November 6.

Figure 5-1 shows the cumulative distribution of the number of requests per client host. The
horizontal axis shows the number of retrievals per client; the vertical axis shows the cumulative
number of retrievals. For a given x value, the corresponding y value shows the total number of
retrievals done by client hosts that each did x retrievals or fewer.

An especially large number (1083) of hosts made exactly six requests. Analysis of the re-
quested file names reveals why: the top-level URL (the only one widely publicized) contains five
inlined images. Almost 900 of these six-retrieval hosts fetched all five of these images. 1070 of
these hosts (98%) fetched the top-level home page. The remaining hosts were probably running
browsers that do not use images (such as Lynx) or with image-retrieval disabled; these clients
looked a little deeper into the server.

50% of the requests were done by client hosts that did 155 requests or fewer; 75% were done
by clients that did 477 requests or fewer. This suggests that most client hosts were single-user
machines (workstations or PCs).

However, a small set of hosts did many more retrievals than the ‘‘typical’’ host. While only
90 hosts (out of 21417) each did more than 1000 retrievals, these hosts accounted for almost
18% of the retrievals. 15 hosts each did more than 3000 retrievals, but accounted for 10% of the
total. And 4 hosts did more than 10,000 retrievals (one did 33667), accounting for 6% of the

17

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

1 100000
Number of retrievals per client

10 100 1000 10000
100

1e+07
C

um
ul

at
iv

e
nu

m
be

r
of

 r
et

ri
ev

al
s

1000

10000

100000

1e+06

Figure 5-1: Cumulative distribution of client retrieval count

total. Many of these highly active hosts were actually acting as relays, concentrating requests
from many different users. For example, the most-active host is a relay for a California-based
company.

Others were time-shared machines. Seventeen individual hosts in this category shared one IP
subnet, together accounting for 25982 requests, and should probably be treated as a single large
timesharing system.

The scatter plots in figures 5-2 and 5-3 show the peak request rates for each of these 90 most-
active hosts. The horizontal position of each mark shows the total number of requests made by
the host; the vertical position shows the peak request rate. Figure 5-2 shows the 1-second peak
rates; figure 5-3 shows the 1-minute and 1-hour peak. The marks enclosed by a diamond reflect
the aggregate behavior of the 17-host cluster.

1000 100000
Number of requests per client host address

10000
1

100

Pe
ak

 r
eq

ue
st

 r
at

e
pe

r
se

co
nd

10

Figure 5-2: Short-term peak request rates for most active hosts

Can we tell if these hosts are single-user systems, timesharing systems, or relays? The
similarity in peak request rate between the 17-host timesharing cluster and the most-active host,
which is a relay, suggests that this may be difficult. (However, see section 7.3.)

The peak 1-second request rate among these 90 hosts was 24 requests per second. This may
seem like a lot of requests for a single user to make, but closer analysis suggests that this was

18

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

1000 100000
Number of requests per client host address

10000
10

10000

Pe
ak

 r
eq

ue
st

 r
at

e
pe

r
in

te
rv

al

100

1000

1-min intervals

1-hr intervals

Figure 5-3: Long-term peak request rates for most active hosts

indeed a single-user host. Figure 5-4 shows what happened during this burst. In this figure, the
horizontal axis shows time passing; each integral position on the vertical axis corresponds to a
unique URL. The lines plotted show the starting and ending times for retrieving a giving URL;
fat lines correspond to HTML files.

The first URL retrieved in this timeline shows up as a long thin line; this is a moderately large
GIF image showing a map of California. The user evidentally clicked on a county, because the
next URL is an HTML file giving the returns for a county. The rest of the URLs, all small GIF
files, are the bar-graph images for these returns. (The graphing program assigns URL identifiers
in order of request completion, not request starting time, and so the left-hand edge of the result-
ing curve is ragged.)

4 126 8 10
Relative time (seconds)

0

70

10

20

30

40

50

60

U
R

L
 id

en
tif

ie
r

Figure 5-4: Timeline for peak-rate burst from a single client

In the period shown in figure 5-4, the client retrieved each URL exactly once. This client
apparently did not often cache inlined images, confounding our efforts to avoid redundant
retrievals. Figure 5-5 shows this behavior in more detail. For example, at T = 164 seconds, the
user retrieves an HTML file and then a huge number of inlined images, including quite a few
that have been retrieved during the previous three minutes. All of these are tiny files, and
presumably would have fit in the browser’s cache.

19

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

We believe that this client was running the Netscape browser, since careful examination of
figure 5-4 shows that GIF retrievals occurred in bursts of about four simultaneous requests; this
is precisely the distinctive scheme that Netscape uses to improve perceived latency. The user,
who has apparently reached the HTML pages by clicking on county maps, has had to hit the
browser’s ‘‘Reload’’ button to get fresh copies of these pages. In Netscape, ‘‘Reload’’ causes
retrieval of all inlined images in addition to the HTML file. (Mosaic, on the other hand, only
reloads the HTML file.)

0 30050 100 150 200 250
Reload time (seconds)

0

80

20

40

60

U
R

L
 id

en
tif

ie
r

Figure 5-5: Timeline showing lack of effective image caching

This particular client occasionally retrieved the same GIF file several times within the space of
a few seconds. Figure 5-6 shows five retrievals of one GIF file, all within less than three
seconds. This may be a shortcoming of Netscape’s simultaneous-connection implementation.

0 61 2 3 4 5
Relative time (seconds)

0

8

1

2

3

4

5

6

7

U
R

L
 id

en
tif

ie
r

Figure 5-6: Timeline showing short-term redundant requests

Another client displayed even less efficient behavior. Figure 5-7 shows this client doing a
short series of retrievals of the page summarizing all statewide races. This page has 45 GIF
references, mostly to bar-graph images. There are only 17 unique bar-graph GIF images
referenced, however (for example, one party consistently drew about 2% of the voters, and so the
2% bar appears many times). This client blindly issues a request for every GIF reference in the
HTML file, without caching the results even for this brief period, and so makes about twice as
many retrievals as necessary.

20

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

0 335 10 15 20 25 30
Relative time (minutes)

0

30

5

10

15

20

25

U
R

L
 id

en
tif

ie
r

Figure 5-7: Timeline showing lack of any client caching

Suppose the busy clients had perfect caches for the GIF files, static HTML files, and version-
numbered dynamic HTML files; how much would this have reduced the server load? (This is
not completely infeasible; uncachable files could be marked by the server with a time-to-live of
zero.) Figure 5-8 shows, for the 90 most active hosts, how many retrievals would they have been
made had they been using a perfect cache. Apparently, they would have made almost an order of
magnitude fewer requests. Of the 266176 requests made by these hosts, only 62159 (23%) were
strictly necessary.

1000 100000
Actual number of requests by host

10000
100

10000

R
eq

ue
st

s
if

 p
er

fe
ct

 c
ac

he

1000

Figure 5-8: Potential effects of perfect caching

Clients that made fewer requests would not have benefited as much from perfect caching, be-
cause they did not do as many redundant retrievals. For example, eleven hosts made 155 re-
quests each (the middle of the cumulative distribution in figure 5-1). With perfect caching, they
would have made between 56 and 133 requests, with a mean of 103 (66% of the actual number).

Even with perfect caching, busy hosts (both relay and timesharing hosts) make a large number
of unique requests. The busiest client host would still have made 4452 requests (instead of
33665). It turns out that many of these requests are for map-based retrievals. Out of the 5944
unique URLs requested by these 90 hosts, 1620 (27%) were via coordinates in county and TV
maps. (For figure 5-8, I assumed that these retrievals were not cachable.)

21

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

6. Network path statistics

We were interested in the nature and behavior of the paths taken through the Internet between
our clients and our servers. We did two kinds of path measurements: post-election measure-
ments of paths to a large subset of the actual clients, and periodic probes during the election to
our servers from a few selected sites.

6.1. Post-election path measurements

In an attempt to characterize the actual paths between our servers and their actual clients, I
started by extracting 19,070 host addresses from the server logs. This covers the 1,328,862 re-
quests made between 00:00 November 6 and 14:00 November 10.

I then generated scripts that probed the path to each of these hosts. For each host, I ran
traceroute and two sets of of ping trials. Traceroute attempts to discover the sequence of routers
taken to reach a destination, and also measures the delay to each router and the final destination.
However, traceroute uses an indirect mechanism and does not always yield a full path; it can
also be confused by shifting paths. Ping simply sends a series of ICMP Echo [16] packets to the
destination, and measures the time until the corresponding ICMP Echo Reply packets come
back. I used ping to make ten measurements to each destination with each of two packet sizes,
56 bytes and 536 bytes.

Network round-trip time and timeouts (for non-responsive hosts) limit the speed at which
these probes can be done. Even though I ran 26 probes in parallel, it took from 18:21 on Novem-
ber 10 to 13:43 on November 16 to collect the results. Clearly, over this period the path charac-
teristics could have changed quite significantly, especially on paths subject to occasional over-
load. And since these probes were made after the load on the election servers had declined
significantly from its peak, the network state during the probing could have been quite different
from its state during the peak election load. However, we did not want to complicate things by
doing the path-probing during the period of peak load.

Another consequence of doing the probes several days after the peak load is that many of the
IP addresses failed to respond to any probes. I only received ping responses from 52% of the
hosts, and complete traceroute paths from 44%. (43% gave us both kinds of information). Non-
responsive host addresses might be behind firewalls, or might have been connected by dialups,
or might have been dynamically assigned for brief durations.

6.1.1. Traceroute results

I obtained full traceroute paths from 8329 hosts, representing 709,132 retrievals (53% of the
total). Figure 6-1 shows the distribution of path lengths. (The horizontal axis terminates at 30
hops, because I limited traceroute’s probes to that depth to avoid lengthy delays.) Figure 6-2
shows the same distribution, weighted by the number of retrievals. The mean path length,
averaged over the 8329 hosts, was 12.85 hops. The mean path length weighted by the number of
retrievals done by the responding host was 10.76 hops. In other words, clients that were further
away tended to make fewer requests.

22

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

0 305 10 15 20 25
Path length in hops

0

1000

200

400

600

800
N

um
be

r
of

 h
os

ts

Figure 6-1: Distribution of path lengths to clients

0 305 10 15 20 25
Path length in hops

0

100000

20000

40000

60000

80000

N
um

be
r

of
 r

et
ri

ev
al

s

Figure 6-2: Weighted distribution of path lengths to clients

6.1.2. Ping results

Of the hosts that responded at least once to an ICMP Echo packet, the average host replied to
about 9.5 of the 10 Echos sent in each trial. For the 9840 hosts responding to 56-byte pings, the
mean round-trip time was 207 msec; weighted by the number of retrievals the mean was 146
msec. That is, clients with lower delays tended to make more requests. For the 9755 hosts
responding to 536-byte pings, the mean delay was 322 msec, and the weighted mean delay was
229 msec.

Figure 6-3 shows the distribution of round-trip times for both packet sizes. 56-byte data are
marked with filled circles; 536-byte data are marked with open squares. Note that the distribu-
tions are trimodal; the 56-byte values peak near 10 msec, 80 msec, and 600 msec. The 536-byte
values peak near 25 msec, 100 msec, and 600 msec.

9726 hosts responded to both sizes of ping packet. With delay measurements made using two
different packet sizes, we can compute the apparent bandwidth of the path taken by the probes.
The bandwidth estimate is simply the difference in the packet sizes divided by the difference in
minimum delays, then doubled (because the data takes a round trip; this assumes a symmetrical
path). Figure 6-4 shows the distribution. I tried using mean delays instead of minima, and got a
similar curve.

23

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

1 100000
Round-trip time in msec

10 100 1000 10000
0

1200

200

400

600

800

1000

N
um

be
r

of
 h

os
ts

56 bytes

536 bytes

Figure 6-3: Distribution of round-trip times

1000 1e+08
Inferred bandwidth (bits/sec)

10000 100000 1e+06 1e+07
1

10000

N
um

be
r

of
 h

os
ts

10

100

1000

EthernetT156 K14.4 K

Figure 6-4: Distribution of inferred bandwidths

Figure 6-4 shows several distinct features. The bandwidth estimates above 10 Mbit/sec are
clearly bogus, since they are certainly the result of noise in the measurements; all paths included
at least one hop on a 10 Mbit/sec Ethernet. None of the delays were below 6 Kbit/sec, suggest-
ing that relatively few of the hosts that responded to probes were on low-speed dialups. The
distribution shows several peaks, one at approximately 15 Kbit/sec, a broad peak around 200
Kbit/sec, a sharp peak at 400 Kbit/sec, and a broad one between 3 Mbit/sec and 5 Mbit/sec. This
distribution suggests that a large portion of the client hosts are well-connected to the Internet, via
fractional T1, full-speed T1, or faster links. However, since only about half of the clients
responded to post-election pings, low-speed (dialup) hosts probably represent a much larger frac-
tion than this distribution indicates.

Finally, I looked at the correlation between path length and estimated bandwidth. Figure 6-5
shows the distribution of results; the area of each circle is roughly proportional to the number of
hosts with a given hop count and delay. There seems to be a slight negative correlation for high
bandwidths (hundreds of Kbits/sec) and path lengths between 6 and 9 hops. Otherwise,
bandwidth seems to be independent of path length. This is probably many ‘‘long’’ paths spend
most of their hops in well-connected regional trunk networks.

24

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

0 305 10 15 20 25
Hop count

100

1e+07

In
fe

rr
ed

 b
an

dw
id

th
 (

bi
ts

/s
ec

)

1000

10000

100000

1e+06

Figure 6-5: Correlation between hop count and estimated bandwidth

6.2. Periodic probes during the election

For a period of about two days (November 8 and 9), we ran periodic probes to our servers
from three sites on the Internet: Software Tool & Die in Massachusetts (world.std.com),
Marquette University in Wisconsin (marque.mscs.mu.edu), and the University of Pennsyl-
vania (upenn.edu). Every 15 minutes, the probe scripts ran ping to our server to measure the
round-trip time for ICMP Echos of several different sizes, and ran a simple test program to
measure the retrieval time for several pages from the server. One page was a 3KB HTML file;
the other was a 7KB GIF file.

The probe scripts also used traceroute to discover the path taken between the probe sites and
our server. The path from upenn.edu consistently took 15 hops. The path from
marque.mscs.mu.edu varied continually, between 16 and 18 hops. The path from
world.std.com started at 6 hops, but shifted to a 9-hop path late on the evening of November
9.

The top graph in figure 6-6 shows how the sampled round-trip time values varied over time
(these measurements are for minimal-sized ICMP Echos). Note that the horizontal axis shows
Eastern Standard Time, not Pacific Time. Filled circles show data from
marque.mscs.mu.edu; plusses show data from upenn.edu; open squares show data from
world.std.com. The RTTs increase slightly during the periods of heavy load on our server.
The bottom graph in figure 6-6 shows the cumulative distribution of round-trip time samples.

The top graph in figure 6-7 shows how retrieval times for the HTML file varied over time.
The bottom graph shows the cumulative distribution. The time axis in each of these graphs is on
a log scale, because in a few cases, retrievals took many minutes. This probably reflects
episodes of heavy packet loss somewhere in the network, or perhaps a temporary loss of network
connectivity. Retrieval times in the range of one to ten seconds were distressingly common,
suggesting that users might not have always been pleased with response time. However, most of
the retrievals did take less than one second.

Because we had ping measurements for several different packet sizes, I was able to infer the
network bandwidth between these client hosts and our servers. Figure 6-8 shows the results.

25

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

0 4812 24 36
Time (hours since 00:00 Nov 8) EST

50

250

100

150

200

R
ou

nd
-t

ri
p

tim
e

(m
se

c)
Nov. 8 Nov. 9

50 250100 150 200
Round-trip time (msec)

0

1

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e

fr
ac

tio
n

of
 p

ro
be

s

marque.mscs.edu

upenn.edu

world.std.com

Figure 6-6: Sampled round-trip times from periodic probes

Note that this method may not adequately reflect network congestion, since it measured RTTs
for single packets. A packet-pair approach [3] would have been more appropriate.

7. Interarrival patterns

Several recent studies [8, 10, 14] have suggested that packet interarrival times tend to fit dis-
tributions other than Poisson. Does the data from our traces confirm this?

Using the server logs (with 1-msec timestamp resolution) and the tcpdump traces (with 1-usec
resolution), I was able to obtain interarrival distributions for several categories of events. These
distributions support the observations by others that real networks with real users cannot be
modelled by a Poisson process.

7.1. Packet arrivals

Because of the immense volume of the tcpdump traces, I concentrated on the data for just the
2busiest date, November 9 . I looked at the arrivals of several different classes of packets, for the

2A sequence representing 3.5% of the traced packets was left out, due to disk space limits on the analysis system.

26

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

0 4812 24 36
Time (hours since 00:00 Nov 8 EST)

100

1e+06

R
ou

nd
-t

ri
p

tim
e

(m
se

c)
 f

or
 h

om
e.

ht
m

l

1000

10000

100000

Nov. 8 Nov. 9

100 1e+06
Round-trip time (msec) for home.html

1000 10000 100000
0

1

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e

fr
ac

tio
n

of
 p

ro
be

s

marque.mscs.edu

upenn.edu

world.std.com

Figure 6-7: Sampled HTML retrieval times from periodic probes

three server hosts. These classes include: all incoming HTTP packets, all outgoing HTTP pack-
ets, all incoming HTTP packets with the TCP SYN bit set (representing a connection request),
and all outgoing HTTP packets with the SYN bit set (representing acceptance of a connection
request). (Although the traces only show that the incoming packets appeared on the LAN, prior
experience suggests that nearly all of these packets were in fact received by the server kernels,
although they may have then been discarded due to resource limits.)

Figure 7-1 shows the cumulative distributions of interarrival times for these four classes. The
median of each distribution is marked on the curve; the mean interarrival time is shown in the
key. The thick gray line shows a Poisson distribution with the same mean interarrival time as the
‘‘all incoming HTTP packets’’ curve (13 msec); it has a much different shape than the actual
data.

Figure 7-2 shows the same distributions, but for a particularly busy 1-minute period. Again,
the Poisson distribution with the same mean rate as the ‘‘all arriving HTTP packets’’ curve is
shown by a thick gray line. Observe that these curves generally have the same shape as those for
the full 24-hour period, even though the mean rates are higher.

Figure 7-3 shows the same distributions as in figure 7-1, but as a histogram. The solid line on
this figure shows the Poisson distribution with the same mean arrival rate as the ‘‘all arriving
HTTP packets’’ curve. Again, note that the actual data does not correspond to the Poisson dis-
tribution: it has a much broader tail, and shows several sharp peaks for small arrival rates.

27

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

0 4812 24 36
Time (hours since 00:00 Nov 8 EST)

100000

800000

200000

300000

400000

500000

600000

700000

In
fe

rr
ed

 b
an

dw
id

th
 (

bi
ts

/s
ec

)
Nov. 8 Nov. 9

0 1e+06200000 400000 600000 800000
Inferred bandwidth (bits/sec)

0

1

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e

fr
ac

tio
n

of
 p

ro
be

s

marque.mscs.edu

upenn.edu

world.std.com

Figure 6-8: Network bandwidths inferred from periodic probes

0.01 100000
Interarrival time in msec

0.1 1 10 100 1000 10000 100000
1000

1e+07

C
um

ul
at

iv
e

nu
m

be
r

of
 e

ve
nt

s

10000

100000

1e+06

All incoming, mean 13 ms

4.9 msec

Outgoing SYNs, mean 113 ms

44 msec

Incoming SYNs, mean 100 ms

40 msec
All outgoing, mean 14 ms

2.7 msec

Poisson for ’All incoming’

Figure 7-1: Cumulative distributions of interarrival times, Nov. 9

Figure 7-4 shows the same distributions, but for the busy 1-minute period. In this graph, we
can see that the Poisson curve is a fairly good fit for the incoming packet arrivals, although it
tends to underpredict the number of very short and very long interarrival times.

The real arrival rates for incoming packets differ obviously from the Poisson curve with
several sharp peaks for small interarrival times. These peaks may correspond to the peaks in the

28

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

0.01 1000
Interarrival time in msec

0.1 1 10 100 1000
10

100000

C
um

ul
at

iv
e

nu
m

be
r

of
 e

ve
nt

s

100

1000

10000

All incoming

2.4 msec

Outgoing SYNs

22 msec

Incoming SYNs

17 msec

All outgoing

1.8 msec

Figure 7-2: Cumulative distributions of interarrival times, Nov. 9 09:48

0.01 10000
Interarrival time in msec

0.1 1 10 100 1000 10000
100

1e+06

N
um

be
r

of
 e

ve
nt

s

1000

10000

100000 All incoming
Outgoing SYNs
Incoming SYNs

All outgoing

Figure 7-3: Distributions of packet interarrival times, Nov. 9 (same data as figure 7-1)

0.01 1000
Interarrival time in msec

0.1 1 10 100 1000
1

10000

N
um

be
r

of
 e

ve
nt

s

10

100

1000

All incoming, mean 4.5 ms

Outgoing SYNs, mean 35 ms
Incoming SYNs, mean 29 ms

All outgoing, mean 4.9 ms

Figure 7-4: Distributions of packet interarrival times, Nov. 9 09:48

packet-size distributions, shown in figures 7-5 and 7-6. The distribution of transmitted packet
sizes shows sharp peaks at 60, 300, and 588 bytes, corresponding to packet durations of about
70, 260, and 490 usec. The ‘‘all outgoing’’ distribution in figures 7-3 and 7-4 show peaks at
these interarrival times.

29

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

The ‘‘all incoming’’ and ‘‘all outgoing’’ distributions also sharply peak at about 120 usec.
This may be a reflection of our routing topology: since we had two different routes to the Inter-
net, the servers often chose the wrong outbound router. This router would issue an ICMP
Redirect to the server, and also retransmit the packet across the Ethernet to the correct router.
Thus, numerous outgoing packets appeared twice, but these were mostly short (60-byte) packets
since the subsequent longer packets followed the Redirected route.

0 700100 200 300 400 500 600
Bytes per packet

2e+06

1.4e+07

4e+06

6e+06

8e+06

1e+07

1.2e+07

C
um

ul
at

iv
e

nu
m

be
r

of
 p

ac
ke

ts

Outgoing packets

Incoming packets

All packets

Figure 7-5: Cumulative distributions of packet sizes, Nov. 9

0 600100 200 300 400 500
Bytes per packet

10

1e+07

N
um

be
r

of
 p

ac
ke

ts

100

1000

10000

100000

1e+06

Circles: outgoing packets; Triangles: incoming packets;
Squares: all Election-server packets

Figure 7-6: Distributions of packet sizes, Nov. 9

7.2. Request arrivals

Figure 7-7 shows the interarrival times for new HTTP requests, as seen by the HTTP server
daemons themselves. The open circles show the arrivals seen by all server hosts taken together
(the host clocks were synchronized using NTP, probably to better than 1 msec [12]). The dotted
line shows the Poisson distribution with the same mean arrival rate. The solid triangles show the
arrivals seen by just one of the servers; the solid line shows the corresponding Poisson distribu-
tion.

30

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

The real distributions tend to follow the Poisson curves for interarrival times below the mean,
but have much larger tails. The real data also shows two large peaks, at 1 msec and at about 7
msec. The 1-msec peak is a measurement artifact of the 1-msec timestamp resolution, and cor-
responds to the number of events with all interarrival times <= 1 msec. The 7-msec peak prob-
ably reflects the CPU-time cost to dispatch a new process for each request; note that the single-
server distribution shows almost no interarrival times below about 6 msec. These two distribu-
tions imply that at short time-scales, requests arriving at the server hosts do follow a Poisson
distribution, but queueing delays in the servers cause the server processes to see a non-Poisson
distribution.

0.1 10000
Request interarrival time in msec

1 10 100 1000
1

100000

N
um

be
r

of
 e

ve
nt

s

10

100

1000

10000

Actual, all servers
Poisson, mean 117 msec

Actual, 1 server
Poisson, mean 355 msec

Figure 7-7: Distributions of request interarrival times, Nov. 9

7.3. Per-client request arrivals

In addition to the overall arrival pattern, I looked at the interarrival time distribution for re-
quests from several individual sources mentioned in section 5: the busiest proxy, the 17-host
timesharing cluster, and the single-user host with the highest peak request rate. These distribu-
tions are shown in figure 7-8, along with Poisson distributions with similar mean interarrival
times.

0.1 1e+08
Interarrival time in msec

1 10 100 1000 10000 100000 1e+06 1e+07
1

10000

N
um

be
r

of
 e

ve
nt

s

10

100

1000

Bursty client17-host clusterBusiest proxy
Poisson, 84 msPoisson, 1468 msPoisson, 1623 ms

Figure 7-8: Distributions of request interarrival times, selected clients

31

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

Figure 7-9 shows the same data as in figure 7-8, as cumulative distributions.

0.1 10000
Interarrival time in msec

1 10 100 1000
10

100000

C
um

ul
at

iv
e

nu
m

be
r

of
 e

ve
nt

s

100

1000

10000

Bursty client

17-host cluster

Busiest proxy

Poisson, mean 84 ms

Poisson, mean 1468 ms

Poisson, mean 1623 ms

Figure 7-9: Cumulative distributions of request interarrivals, selected clients

Once again, the actual distributions deviate significantly from the Poisson distributions for
interarrival times much above the mean, but match fairly closely for smaller values. Also note
that the single-user system has a much lower mean than either of the multi-user distributions, and
the busy proxy has a much sharper peak than the timesharing cluster. A straightforward proxy
server must funnel all requests through a single synchronization bottleneck, causing queueing
delays not seen in a timesharing system. This ‘‘signature’’ in the interarrival time distribution
may allow one to distinguish proxies from other kinds of clients.

7.4. Summary of arrival data

While we have not yet done extensive analysis at numerous time scales, it does appear that the
packet interarrival times we measured do diverge from a pure Poisson process, especially for
longer measurement periods, and they show an excess of very short and very long interarrival
times. Likewise, HTTP request interarrival rates deviate from Poisson, especially when viewed
by the server process itself.

Recent work by others has suggested that network arrival patterns are self-similar rather than
Poisson [10], and that the self-similarity arises from the behavior of ‘‘on/off’’ sources [17].
Crovella and Bestavros have shown this specifically for other HTTP traces [5]. One charac-
teristic of such sources is a long tail in the interarrival time distribution, such as is seen in figures
7-7 through 7-9.

8. TCP behavior patterns

Because we had extensive tcpdump traces, this provides an opportunity to look at the details of
client and server TCP behavior under conditions of heavy server load.

This section includes statistical information about the number of packets per connection, in-
ferences about the cost of searches in the servers’ PCB tables, and the frequency and arrival
times of TCP retransmissions.

32

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

8.1. Packets per connection

I started by counting the number of packets per connection, both received and transmitted
(from the point of view of the server). The distribution and cumulative distribution are shown in
figure 8-1. The mean number of packets per connection was 17; 8.75 from the client to the
server, and 8.26 from the server to the client. For the median connection, the client sent between
6 and 7 packets and the server sent between 5 and 6 packets, with a total of between 12 and 13
packets exchanged. The means are larger than the medians because a few connections trans-
ferred hundreds or thousands of packets.

These counts include retransmissions; this increases the number of packets per connection (see
section 8.3). The counts also include ‘‘connections’’ that failed to complete; these connections
often (but not always) involve just a few packets, which could tend to push the medians down.
A successful HTTP transaction seems to involve 9 or 10 TCP packets (although fewer would be
possible with more effective piggy-backing of ACKs).

About 6% of the ‘‘connections’’ traced seem to have exchanged too few packets to have been
successful. Some or most of these apparently too-short connections might be artifacts of the
trace-analysis process, which analyzes each sequence of 1 million packets independently and so
may truncate connections that take place near one end of such a sequence. A few others may be
artifacts of the trace-collection process, which did occasionally lose packets (see figure 3-1).

1 1000
Packet count per connection

10 100
1

1e+06

N
um

be
r

of
 c

on
ne

ct
io

ns

10

100

1000

10000

100000 Total packets
Input packets
Output packets

1 100000
Packet count per connection

10 100 1000 10000
0

110

20

40

60

80

100

C
um

ul
at

iv
e

pe
r

ce
nt

 o
f

co
nn

ec
tio

ns

Total packets
Input packets
Output packets

Figure 8-1: Distribution of packets per HTTP connection, Nov. 9

33

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

The relatively small number of packets per connection has several implications:

• Any kernel modifications that speed up the handling of packets for an existing con-
nection ought not to significantly increase the cost of creating and deleting connec-
tions.

• Most of these TCP connections will be operating in the ‘‘slow-start’’ regime [7], in
which the sender uses an artificially small window, and so will not be able to obtain
full network bandwidth, especially over high-delay paths.

8.2. PCB table search costs

The kernels running on the servers used a linear search of the PCB table, which is known to
impose high CPU costs when the table is large (see 4.1); how large is this cost?

Each received TCP packet causes a search for a PCB table entry, and so this search cost is on
the critical path for replies to incoming packets. In particular, the speed with which a server
responds to a client’s SYN packet depends only on the cost of handling packet headers and doing
PCB table operations, not on the costs of handling packet data or synchronizing with application
processes. Therefore, I analyzed the tcpdump traces to measure, for each arriving SYN, the time
it took one of the server systems to respond. The distribution is shown in figure 8-2.

0.01 100000
Response time in msec

0.1 1 10 100 1000 10000 100000
1

100000

N
um

be
r

of
 e

ve
nt

s

10

100

1000

10000

Figure 8-2: Distribution of servers’ response times to SYNs, Nov. 9

The distribution has a sharp peak, at about 800 microseconds. There does not appear to have
been many responses that could have been delayed by lengthy table searches; 72% of the
responses took under 1 msec, and 97% took under 2 msec; less than 1% took longer than 5 msec.
This puts an upper bound of 28% on the number of searches delayed more than 1 msec; since
much of the delay could be cause by queueing in the network or in the server, the actual fraction
could be much smaller.

But consider the implications if the linear-list PCB lookup mechanism actually did impose an
extra 1 msec of CPU time per arriving TCP packet. Since our server received about 7 packets
for a median connection (see figure 8-1), this would imply 7 msec of ‘‘wasted’’ CPU time per
connection. Because the baseline per-packet processing cost seems to be about 800 usec, this
means that the CPU could handle at most (1000/(7 * (1 + 0.8))) or about 79 connections per
second. Without the excess PCB lookup costs, the limit would be (1000/(7 * 0.8)), or about 179

34

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

connections/second. Experiments with simple test programs suggest that a single-CPU system
does indeed bottleneck at about 80 TCP connections per second, even without doing any HTTP
processing.

The distribution in figure 8-2 shows that for most of the connections in the trace, the response
time was actually quite good. However, the connections that did suffer from poor per-packet
response time were probably those in progress during periods of heavy load, when the PCB table
size, and thus the excess PCB lookup cost, is greatest. This is precisely the wrong time to im-
pose extra costs on connections, since the system’s resources are already stretched. Figure 8-3
shows this correlation between load, PCB table size, and response time.

0 243 6 9 12 15 18 21
Time (hours since 00:00 Nov. 9)

0

1800

300

600

900

1200

1500

Total PCB table entries

Median SYN response time (usec)

Peak requests per minute

Request rate: peak 1-minute rate over 10-minute intervals
PCB table size: sampled at 15-minute intervals
Response time: median response time over 10-minute intervals

Figure 8-3: Correlation between request rate, PCB table size, and response time

8.3. TCP retransmissions

TCP senders retransmit packets when they do not receive an acknowledgement within a
timeout interval. The timeout value is a function of the sender’s estimated round-trip time
(RTT), following algorithms that have been developed over years of experience and
analysis [7, 9].

One can learn several things about the network and its packet sources by observing TCP
packet retransmissions in tcpdump traces, and analyzing the retransmission counts and inter-
arrival times.

8.3.1. SYN retransmissions

It is fairly easy to look for retransmissions of TCP SYN packets from clients, and of the ser-
vers’ SYN|ACK responses. Figure 8-4 shows the distribution of the number of SYNs and
SYN|ACKs per connection, including ‘‘connections’’ that were never successfully established.
The filled circles plot the number of SYNs seen before the first SYN|ACK response; the open
diamonds plot the number of SYN|ACK responses seen.

35

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

The y-axis is a log scale; note that less than 7% of the connections involved a retransmitted
SYN, and less than 4% involved a retransmitted SYN|ACK. Almost none of the connections
required more than five retransmissions.

Figure 8-5 shows the distribution of SYN interarrival times (including the cumulative distribu-
tion), for those connections where at least two SYNs were seen. (By ‘‘interarrival time’’ here I
mean the interval between the original transmission, and the first retransmission.) The distribu-
tion peaks at about 3 seconds, which is consistent with the recommended initial estimate [4].
Since the SYN is the first packet of the connection, the sender should use a conservative initial
estimate, to avoid retransmitting too soon.

About 4% of the clients’ retransmitted SYNs, however, arrived within 1 second of the pre-
vious SYN. In particular, the distribution shows a moderate peak at about 150 msec. Additional
log analysis showed that almost all of these retransmissions came from clients on a single net-
work. These clients appeared to be using an excessively small value for the initial retransmis-
sion timeout. They were, in fact, receiving the server’s first SYN|ACK, but not before
retransmitting their SYNs.

These clients have other idiosyncrasies; they set the TCP ‘‘Push’’ flag on every packet (in-
cluding SYN, FIN, and Reset packets), and they respond to the server’s FIN with Reset if they
have already initiated a subsequent connection. In short, this appears to be a small and immature
TCP implementation, perhaps on a personal computer, and should not be taken as typical.

The few retransmission events with very short interarrival times might be caused by these
excessively short timeouts, coupled with the usual variation in delays through the Internet (which
often exceeds 150 msec).

0 355 10 15 20 25 30
Number of events per connection

1

1e+06

N
um

be
r

of
 c

on
ne

ct
io

ns

10

100

1000

10000

100000
Number of SYNs before first SYN|ACK

Number of transmissions of SYN|ACK

Figure 8-4: Distributions of SYN and SYN|ACK retransmission counts, Nov. 9

8.3.2. Data retransmissions

Examining retransmissions of TCP data packets (non-SYN packets, since in most cases SYNs
do not carry data) takes more effort. One has to look for overlaps in the sequence number ranges
of various packets, rather than simply looking for multiple occurrences of a particular SYN.
Also, while SYN retransmissions normally appear in sequence, TCP data retransmissions may
appear out of sequence.

36

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

0.01 1e+07
Interarrival time in msec

0.1 1 10 100 1000 10000 100000 1e+06 1e+07
1

100000

N
um

be
r

of
 e

ve
nt

s

10

100

1000

10000

3 seconds

0.01 1e+07
Interarrival time in msec

0.1 1 10 100 1000 10000 100000 1e+06 1e+07
1

1e+06

C
um

ul
at

iv
e

nu
m

be
r

of
 e

ve
nt

s

10

100

1000

10000

100000

3 seconds

Figure 8-5: Distributions of SYN retransmit interarrival times, Nov. 9

My procedure for analyzing traces for data retransmissions involved these steps:
1. Generate a formatted trace, without SYN or RST packets. (I included FINs be-

cause they are retransmitted similarly to data packets.)

2. Extract for each packet a connection ID, consisting of source and destination host
and port numbers, a timestamp, the starting sequence number, and the ending se-
quence number.

3. Sort the result using the connection ID as the major sort key, and the starting se-
quence number as the minor sort key.

4. Sequentially read through the sorted sequence, looking for adjacent records with
identical IDs and overlapping sequence ranges. When such adjacencies are found,
generate a record including the difference between the timestamps.

The records generated in the last step can be further analyzed to remove multiple retransmissions
of the same sequence number range, although the algorithm used for this is not perfect. Many of
the duplicate ‘‘retransmissions’’ by the server were actually ‘‘persist timer’’ transmissions, used
when probing a receiver’s zero window. A missing timeout in the BSD code can cause this
activity to last forever, if the client disappears from the Internet.

Figure 8-6 shows the distribution of retransmission times (times between the first and second
transmission of a sequence range). The upper graph shows results for retransmissions by client

37

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

1 1e+06
Retransmission time in msec

10 100 1000 10000 100000
1

100000
N

um
be

r
of

 e
ve

nt
s

10

100

1000

10000
200 msec 3 sec

Client-generated retransmissions

1 1e+06
Retransmission time in msec

10 100 1000 10000 100000
1

100000

N
um

be
r

of
 e

ve
nt

s

10

100

1000

10000
200 msec 3 sec

Server-generated retransmissions

Figure 8-6: Distributions of data retransmission times, Nov. 9

hosts; the lower graph shows retransmissions by the HTTP server hosts. Altogether, the client
distribution shows 31934 unique retransmissions events (36179, including duplicates); the server
distribution shows 120423 unique retransmissions (155682, including duplicates). Retransmitted
data packets represent just 0.6% of the total client transmissions, and 2.4% of the total server
transmissions.

The distributions generally have the same shape, with a few exceptions. Several features in
these distributions deserve explanation:

• The peak at around 3 msec (especially for the servers): This may be an artifact
of the routing topology, which caused transmissions from the servers to appear twice
on the local Ethernet. Most of these transmissions have been filtered out of the
traces, but apparently not all of them.

• The peak at 200 msec: The retransmission timers in BSD-based systems are ex-
amined every 200 msec, so this is the smallest value representable. The smaller
timeouts observed in these traces could be the result of the quantization in this timer,
or could be due to non-BSD systems.

38

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

• The peak at about 1.3 seconds (for the servers): This appears to be the normal
result of the BSD retransmission timeout calculation, which allows a minimum
timeout of 1 second. RFC1122 [4] recommends a smaller minimum, but the original
TCP specification [15] specified this 1-second value. The additional 0.3 seconds
probably represents an estimate of the variance in round-trip times. This steep peak
is not seen in the client distribution, perhaps because some clients are using smaller
minimum timeouts, or perhaps because the variance in packet delay through the In-
ternet smears out the interval between transmissions.

• The peak at 3 seconds: This is the recommended initial value of the retransmission
timer; this peak represents retransmissions that occur before the sender has been
able to measure the round-trip time, or after it has decided that its current estimate is
definitely wrong.

The shape of these distributions, especially for retransmissions from the clients, lends support
to the conclusion drawn from figure 6-3, that typical round-trip times were on the order of
80-100 msec. The retransmission timeout should be somewhat larger than the actual round-trip
time, and that is in fact what one sees in figure 8-6: peaks between 100 and 300 msec.

9. Summary and conclusions

By carefully collecting log and packet trace data during the operation of the 1994 California
Election server, we obtained an immensely valuable resource for analyzing the behavior of hosts
and the Internetwork. We strongly recommend that other people expecting heavy usage of Inter-
net services collect similar logs, since we expect that our results are somewhat specific to our
application.

My analysis of this data support several conclusions:

• The use of a new TCP connection for each HTTP request wastes server resources
(PCB table space, CPU time). The relatively short interarrival times for requests
from active clients suggests that enough locality of reference exists to justify a dif-
ferent HTTP design.

• Our expectation that browsers and proxies would cache inlined images proved to be
wishful thinking, in many cases. Perhaps browsers should have several ‘‘Reload’’
buttons, or perhaps the HTTP protocol or HTML format should provide a way to
specify cachability. ‘‘Perfect’’ caching would have eliminated a large fraction of
our load.

• Our use of the Domain Name Service for crude load balancing seems to have
worked, although not perfectly.

• Interarrival times for both packets and requests follow Poisson distributions at some
time scales, but generally not for interarrival times much above the mean. These
distributions also show interesting non-Poisson structure at very short time scales,
apparently due to queueing effects. For use in server capacity planning, however,
Poisson distributions may be sufficiently predictive.

In this paper I have only scratched the surface of the analyses that could be applied to this data,
and I hope other researchers will be inspired to find new ways of looking at similar experiments.

39

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

Acknowledgements
David Jefferson masterminded the 1994 California election service. Many other people con-

tributed to the success of the election service, and in particular helped me obtain logs and traces;
these include Paul Flaherty, Steve Glassman, Brad Horak, Richard Schedler, Stephen Stuart,
Glenn Trewitt, Annie Warren, and Jason Wold. Paul Flaherty and Kathy Richardson helped to
proofread various drafts of this report.

References
[1] F. Anklesaria, M. McCahill, P. Lindner, D. Johnson, D. Torrey, and B. Alberti. The In-
ternet Gopher Protocol (a distributed document search and retrieval protocol). RFC 1436, In-
ternet Engineering Task Force, March, 1993.

[2] T. Berners-Lee, R. T. Fielding, and H. Frystyk Nielsen. Hypertext Transfer Protocol --
HTTP/1.0. Internet Draft draft-ietf-http-v10-spec-00.txt, IETF, March, 1995. This is a work in
progress.

[3] Jean-Chrysostome Bolot. End-to-End Packet Delay and Loss Behavior in the Internet.
In Proc. SIGCOMM ’93 Symposium on Communications Architectures and Protocols, pages
289-298. San Francisco, CA, September, 1993.

[4] R. Braden. Requirements for Internet Hosts -- Communication Layers. RFC 1122, Inter-
net Engineering Task Force, October, 1989.

[5] Mark E. Crovella and Azer Bestavros. Explaining World Wide Web Traffic
Self-Similarity. Technical Report TR-95-015, Computer Science Department, Boston Univer-
sity, August, 1995.

[6] Steven Glassman. A Caching Relay for the World Wide Web. In Proceedings of the
First International World-Wide Web Conference, pages 69-76. Geneva, May, 1994.

[7] Van Jacobson. Congestion Avoidance and Control. In Proc. SIGCOMM ’88 Symposium
on Communications Architectures and Protocols, pages 314-329. Stanford, CA, August, 1988.

[8] Raj Jain and Shawn Routhier. Packet Trains: Measurements and a New Model for Com-
puter Network Traffic. IEEE Journal on Selected Areas in Communication SAC-4(6):986-995,
September, 1986.

[9] Phil Karn and Craig Partridge. Improving Round-Trip Time Estimates in Reliable Trans-
port Protocols. ACM Transactions on Computer Systems 6(4):364-373, November, 1991.

[10] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. On the Self-
Similar Nature of Ethernet Traffic. In Proc. SIGCOMM ’93 Symposium on Communications
Architectures and Protocols, pages 183-193. San Francisco, CA, September, 1993.

[11] Paul E. McKenney and Ken F. Dove. Efficient Demultiplexing of Incoming TCP Pack-
ets. In Proc. SIGCOMM ’92 Symposium on Communications Architectures and Protocols, pages
269-279. Baltimore, MD, August, 1992.

[12] David L. Mills. Improved Algorithms for Synchronizing Computer Network Clocks. In
Proc. SIGCOMM ’94 Symposium on Communications Architectures and Protocols, pages
317-327. London, UK, August, 1994.

40

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

[13] P. Mockapetris. Domain Names - Concepts and Facilities. RFC 1034, Network Infor-
mation Center, SRI International, November, 1987.

[14] Vern Paxson and Sally Floyd. Wide-Area Traffic: The Failure of Poisson Modeling. In
Proc. SIGCOMM ’94 Symposium on Communications Architectures and Protocols, pages
257-268. London, UK, August, 1994.

[15] Jon B. Postel. Transmission Control Protocol. RFC 793, Network Information Center,
SRI International, September, 1981.

[16] Jon Postel. Internet Control Message Protocol. RFC 792, Network Information Center,
SRI International, September, 1981.

[17] Walter Willinger, Murad S. Taqqu, Robert Sherman, and Daniel V. Wilson. Self-
Similarity Through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source
Level. In Proc. SIGCOMM ’95 Symposium on Communications Architectures and Protocols,
pages 100-113. Cambridge, MA, August, 1995.

41

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

42

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

WRL Research Reports

‘‘Titan System Manual.’’ Michael J. K. Nielsen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/1, September 1986. Roots.’’ Joel F. Bartlett. WRL Research Report

88/2, February 1988.
‘‘Global Register Allocation at Link Time.’’ David

W. Wall. WRL Research Report 86/3, October ‘‘The Experimental Literature of The Internet: An

1986. Annotated Bibliography.’’ Jeffrey C. Mogul.
WRL Research Report 88/3, August 1988.

‘‘Optimal Finned Heat Sinks.’’ William
R. Hamburgen. WRL Research Report 86/4, ‘‘Measured Capacity of an Ethernet: Myths and

October 1986. Reality.’’ David R. Boggs, Jeffrey C. Mogul,
Christopher A. Kent. WRL Research Report

‘‘The Mahler Experience: Using an Intermediate
88/4, September 1988.

Language as the Machine Description.’’ David
W. Wall and Michael L. Powell. WRL ‘‘Visa Protocols for Controlling Inter-Organizational

Research Report 87/1, August 1987. Datagram Flow: Extended Description.’’

Deborah Estrin, Jeffrey C. Mogul, Gene
‘‘The Packet Filter: An Efficient Mechanism for

Tsudik, Kamaljit Anand. WRL Research
User-level Network Code.’’ Jeffrey C. Mogul,

Report 88/5, December 1988.
Richard F. Rashid, Michael J. Accetta. WRL

Research Report 87/2, November 1987. ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’

Joel F. Bartlett. WRL Research Report 89/1,
‘‘Fragmentation Considered Harmful.’’ Christopher

January 1989.
A. Kent, Jeffrey C. Mogul. WRL Research

Report 87/3, December 1987. ‘‘Optimal Group Distribution in Carry-Skip Ad-

ders.’’ Silvio Turrini. WRL Research Report
‘‘Cache Coherence in Distributed Systems.’’

89/2, February 1989.
Christopher A. Kent. WRL Research Report

87/4, December 1987. ‘‘Precise Robotic Paste Dot Dispensing.’’ William
R. Hamburgen. WRL Research Report 89/3,

‘‘Register Windows vs. Register Allocation.’’ David
February 1989.

W. Wall. WRL Research Report 87/5, December

1987. ‘‘Simple and Flexible Datagram Access Controls for

Unix-based Gateways.’’ Jeffrey C. Mogul.
‘‘Editing Graphical Objects Using Procedural

WRL Research Report 89/4, March 1989.
Representations.’’ Paul J. Asente. WRL

Research Report 87/6, November 1987. ‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’ V. Srinivasan
‘‘The USENET Cookbook: an Experiment in

and Jeffrey C. Mogul. WRL Research Report
Electronic Publication.’’ Brian K. Reid. WRL

89/5, May 1989.
Research Report 87/7, December 1987.

‘‘Available Instruction-Level Parallelism for Super-
‘‘MultiTitan: Four Architecture Papers.’’ Norman

scalar and Superpipelined Machines.’’ Norman
P. Jouppi, Jeremy Dion, David Boggs, Michael

P. Jouppi and David W. Wall. WRL Research
J. K. Nielsen. WRL Research Report 87/8, April

Report 89/7, July 1989.
1988.

‘‘A Unified Vector/Scalar Floating-Point Architec-
‘‘Fast Printed Circuit Board Routing.’’ Jeremy

ture.’’ Norman P. Jouppi, Jonathan Bertoni,
Dion. WRL Research Report 88/1, March 1988.

and David W. Wall. WRL Research Report
89/8, July 1989.

43

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

‘‘Architectural and Organizational Tradeoffs in the ‘‘1990 DECWRL/Livermore Magic Release.’’

Design of the MultiTitan CPU.’’ Norman Robert N. Mayo, Michael H. Arnold, Walter
P. Jouppi. WRL Research Report 89/9, July S. Scott, Don Stark, Gordon T. Hamachi.
1989. WRL Research Report 90/7, September 1990.

‘‘Integration and Packaging Plateaus of Processor ‘‘Pool Boiling Enhancement Techniques for Water at

Performance.’’ Norman P. Jouppi. WRL Low Pressure.’’ Wade R. McGillis, John
Research Report 89/10, July 1989. S. Fitch, William R. Hamburgen, Van

P. Carey. WRL Research Report 90/9, December
‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-

1990.
sor with High Ratio of Sustained to Peak Perfor-

mance.’’ Norman P. Jouppi and Jeffrey ‘‘Writing Fast X Servers for Dumb Color Frame Buf-

Y. F. Tang. WRL Research Report 89/11, July fers.’’ Joel McCormack. WRL Research Report

1989. 91/1, February 1991.

‘‘The Distribution of Instruction-Level and Machine ‘‘A Simulation Based Study of TLB Performance.’’

Parallelism and Its Effect on Performance.’’ J. Bradley Chen, Anita Borg, Norman
Norman P. Jouppi. WRL Research Report P. Jouppi. WRL Research Report 91/2, Novem-

89/13, July 1989. ber 1991.

‘‘Long Address Traces from RISC Machines: ‘‘Analysis of Power Supply Networks in VLSI Cir-

Generation and Analysis.’’ Anita Borg, cuits.’’ Don Stark. WRL Research Report 91/3,

R.E.Kessler, Georgia Lazana, and David April 1991.

W. Wall. WRL Research Report 89/14, Septem-
‘‘TurboChannel T1 Adapter.’’ David Boggs. WRL

ber 1989.
Research Report 91/4, April 1991.

‘‘Link-Time Code Modification.’’ David W. Wall.
‘‘Procedure Merging with Instruction Caches.’’

WRL Research Report 89/17, September 1989.
Scott McFarling. WRL Research Report 91/5,

‘‘Noise Issues in the ECL Circuit Family.’’ Jeffrey March 1991.

Y.F. Tang and J. Leon Yang. WRL Research
‘‘Don’t Fidget with Widgets, Draw!.’’ Joel Bartlett.

Report 90/1, January 1990.
WRL Research Report 91/6, May 1991.

‘‘Efficient Generation of Test Patterns Using
‘‘Pool Boiling on Small Heat Dissipating Elements in

Boolean Satisfiablilty.’’ Tracy Larrabee. WRL
Water at Subatmospheric Pressure.’’ Wade

Research Report 90/2, February 1990.
R. McGillis, John S. Fitch, William

‘‘Two Papers on Test Pattern Generation.’’ Tracy R. Hamburgen, Van P. Carey. WRL Research

Larrabee. WRL Research Report 90/3, March Report 91/7, June 1991.
1990.

‘‘Incremental, Generational Mostly-Copying Gar-

‘‘Virtual Memory vs. The File System.’’ Michael bage Collection in Uncooperative Environ-

N. Nelson. WRL Research Report 90/4, March ments.’’ G. May Yip. WRL Research Report

1990. 91/8, June 1991.

‘‘Efficient Use of Workstations for Passive Monitor- ‘‘Interleaved Fin Thermal Connectors for Multichip
ing of Local Area Networks.’’ Jeffrey C. Mogul. Modules.’’ William R. Hamburgen. WRL

WRL Research Report 90/5, July 1990. Research Report 91/9, August 1991.

‘‘A One-Dimensional Thermal Model for the VAX ‘‘Experience with a Software-defined Machine Ar-
9000 Multi Chip Units.’’ John S. Fitch. WRL chitecture.’’ David W. Wall. WRL Research

Research Report 90/6, July 1990. Report 91/10, August 1991.

44

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

‘‘Network Locality at the Scale of Processes.’’ ‘‘Fluoroelastomer Pressure Pad Design for

Jeffrey C. Mogul. WRL Research Report 91/11, Microelectronic Applications.’’ Alberto
November 1991. Makino, William R. Hamburgen, John

S. Fitch. WRL Research Report 93/7, November
‘‘Cache Write Policies and Performance.’’ Norman

1993.
P. Jouppi. WRL Research Report 91/12, Decem-

ber 1991. ‘‘A 300MHz 115W 32b Bipolar ECL Microproces-

sor.’’ Norman P. Jouppi, Patrick Boyle,
‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’

Jeremy Dion, Mary Jo Doherty, Alan Eustace,
William R. Hamburgen, John S. Fitch. WRL

Ramsey Haddad, Robert Mayo, Suresh Menon,
Research Report 92/1, March 1992.

Louis Monier, Don Stark, Silvio Turrini, Leon
‘‘Observing TCP Dynamics in Real Networks.’’ Yang, John Fitch, William Hamburgen, Rus-

Jeffrey C. Mogul. WRL Research Report 92/2, sell Kao, and Richard Swan. WRL Research
April 1992. Report 93/8, December 1993.

‘‘Systems for Late Code Modification.’’ David ‘‘Link-Time Optimization of Address Calculation on
W. Wall. WRL Research Report 92/3, May a 64-bit Architecture.’’ Amitabh Srivastava,
1992. David W. Wall. WRL Research Report 94/1,

February 1994.‘‘Piecewise Linear Models for Switch-Level Simula-

tion.’’ Russell Kao. WRL Research Report 92/5, ‘‘ATOM: A System for Building Customized
September 1992. Program Analysis Tools.’’ Amitabh Srivastava,

Alan Eustace. WRL Research Report 94/2,‘‘A Practical System for Intermodule Code Optimiza-
March 1994.tion at Link-Time.’’ Amitabh Srivastava and

David W. Wall. WRL Research Report 92/6, ‘‘Complexity/Performance Tradeoffs with Non-
December 1992. Blocking Loads.’’ Keith I. Farkas, Norman

P. Jouppi. WRL Research Report 94/3, March‘‘A Smart Frame Buffer.’’ Joel McCormack & Bob
1994.McNamara. WRL Research Report 93/1,

January 1993. ‘‘A Better Update Policy.’’ Jeffrey C. Mogul.
WRL Research Report 94/4, April 1994.‘‘Recovery in Spritely NFS.’’ Jeffrey C. Mogul.

WRL Research Report 93/2, June 1993. ‘‘Boolean Matching for Full-Custom ECL Gates.’’

Robert N. Mayo, Herve Touati. WRL Research‘‘Tradeoffs in Two-Level On-Chip Caching.’’
Report 94/5, April 1994.Norman P. Jouppi & Steven J.E. Wilton. WRL

Research Report 93/3, October 1993. ‘‘Software Methods for System Address Tracing:

Implementation and Validation.’’ J. Bradley‘‘Unreachable Procedures in Object-oriented
Chen, David W. Wall, and Anita Borg. WRLPrograming.’’ Amitabh Srivastava. WRL
Research Report 94/6, September 1994.Research Report 93/4, August 1993.

‘‘Performance Implications of Multiple Pointer‘‘An Enhanced Access and Cycle Time Model for
Sizes.’’ Jeffrey C. Mogul, Joel F. Bartlett,On-Chip Caches.’’ Steven J.E. Wilton and Nor-
Robert N. Mayo, and Amitabh Srivastava.man P. Jouppi. WRL Research Report 93/5,
WRL Research Report 94/7, December 1994.July 1994.

‘‘How Useful Are Non-blocking Loads, Stream Buf-‘‘Limits of Instruction-Level Parallelism.’’ David
fers, and Speculative Execution in Multiple IssueW. Wall. WRL Research Report 93/6, November
Processors?.’’ Keith I. Farkas, Norman1993.
P. Jouppi, and Paul Chow. WRL Research
Report 94/8, December 1994.

45

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

‘‘Drip: A Schematic Drawing Interpreter.’’ Ramsey
W. Haddad. WRL Research Report 95/1, March

1995.

‘‘Recursive Layout Generation.’’ Louis M. Monier,
Jeremy Dion. WRL Research Report 95/2,

March 1995.

‘‘Contour: A Tile-based Gridless Router.’’ Jeremy
Dion, Louis M. Monier. WRL Research Report

95/3, March 1995.

‘‘The Case for Persistent-Connection HTTP.’’

Jeffrey C. Mogul. WRL Research Report 95/4,

May 1995.

‘‘Network Behavior of a Busy Web Server and its

Clients.’’ Jeffrey C. Mogul. WRL Research

Report 95/5, October 1995.

‘‘The Predictability of Branches in Libraries.’’ Brad
Calder, Dirk Grunwald, and Amitabh
Srivastava. WRL Research Report 95/6, October

1995.

‘‘Shared Memory Consistency Models: A Tutorial.’’

Sarita V. Adve, Kourosh Gharachorloo. WRL

Research Report 95/7, September 1995.

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ Brian ‘‘Characterization of Organic Illumination Systems.’’

K. Reid and Christopher A. Kent. WRL Tech- Bill Hamburgen, Jeff Mogul, Brian Reid, Alan
nical Note TN-4, September 1988. Eustace, Richard Swan, Mary Jo Doherty, and

Joel Bartlett. WRL Technical Note TN-13, April
‘‘TCP/IP PrintServer: Server Architecture and Im-

1989.
plementation.’’ Christopher A. Kent. WRL
Technical Note TN-7, November 1988. ‘‘Improving Direct-Mapped Cache Performance by

the Addition of a Small Fully-Associative Cache
‘‘Smart Code, Stupid Memory: A Fast X Server for a

and Prefetch Buffers.’’ Norman P. Jouppi.
Dumb Color Frame Buffer.’’ Joel McCormack.

WRL Technical Note TN-14, March 1990.
WRL Technical Note TN-9, September 1989.

‘‘Limits of Instruction-Level Parallelism.’’ David
‘‘Why Aren’t Operating Systems Getting Faster As

W. Wall. WRL Technical Note TN-15, Decem-
Fast As Hardware?.’’ John Ousterhout. WRL

ber 1990.
Technical Note TN-11, October 1989.

‘‘The Effect of Context Switches on Cache Perfor-
‘‘Mostly-Copying Garbage Collection Picks Up

mance.’’ Jeffrey C. Mogul and Anita Borg.
Generations and C++.’’ Joel F. Bartlett. WRL

WRL Technical Note TN-16, December 1990.
Technical Note TN-12, October 1989.

46

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

‘‘MTOOL: A Method For Detecting Memory Bot- ‘‘Piecewise Linear Models for Rsim.’’ Russell Kao,
tlenecks.’’ Aaron Goldberg and John Mark Horowitz. WRL Technical Note TN-40,

Hennessy. WRL Technical Note TN-17, Decem- December 1993.

ber 1990.
‘‘Speculative Execution and Instruction-Level Paral-

‘‘Predicting Program Behavior Using Real or Es- lelism.’’ David W. Wall. WRL Technical Note

timated Profiles.’’ David W. Wall. WRL Tech- TN-42, March 1994.

nical Note TN-18, December 1990.
‘‘Ramonamap - An Example of Graphical Group-

‘‘Cache Replacement with Dynamic Exclusion.’’ ware.’’ Joel F. Bartlett. WRL Technical Note

Scott McFarling. WRL Technical Note TN-22, TN-43, December 1994.

November 1991.
‘‘ATOM: A Flexible Interface for Building High Per-

‘‘Boiling Binary Mixtures at Subatmospheric Pres- formance Program Analysis Tools.’’ Alan Eus-
sures.’’ Wade R. McGillis, John S. Fitch, Wil- tace and Amitabh Srivastava. WRL Technical

liam R. Hamburgen, Van P. Carey. WRL Note TN-44, July 1994.

Technical Note TN-23, January 1992.
‘‘Circuit and Process Directions for Low-Voltage

‘‘A Comparison of Acoustic and Infrared Inspection Swing Submicron BiCMOS.’’ Norman
Techniques for Die Attach.’’ John S. Fitch. P. Jouppi, Suresh Menon, and Stefanos
WRL Technical Note TN-24, January 1992. Sidiropoulos. WRL Technical Note TN-45,

March 1994.
‘‘TurboChannel Versatec Adapter.’’ David Boggs.

WRL Technical Note TN-26, January 1992. ‘‘Experience with a Wireless World Wide Web

Client.’’ Joel F. Bartlett. WRL Technical Note
‘‘A Recovery Protocol For Spritely NFS.’’ Jeffrey

TN-46, March 1995.
C. Mogul. WRL Technical Note TN-27, April

1992. ‘‘I/O Component Characterization for I/O Cache

Designs.’’ Kathy J. Richardson. WRL Tech-
‘‘Electrical Evaluation Of The BIPS-0 Package.’’

nical Note TN-47, April 1995.
Patrick D. Boyle. WRL Technical Note TN-29,

July 1992. ‘‘Attribute caches.’’ Kathy J. Richardson, Michael
J. Flynn. WRL Technical Note TN-48, April

‘‘Transparent Controls for Interactive Graphics.’’
1995.

Joel F. Bartlett. WRL Technical Note TN-30,

July 1992. ‘‘Operating Systems Support for Busy Internet Ser-

vers.’’ Jeffrey C. Mogul. WRL Technical Note
‘‘Design Tools for BIPS-0.’’ Jeremy Dion & Louis

TN-49, May 1995.
Monier. WRL Technical Note TN-32, December

1992. ‘‘The Predictability of Libraries.’’ Brad Calder,
Dirk Grunwald, Amitabh Srivastava. WRL

‘‘Link-Time Optimization of Address Calculation on
Technical Note TN-50, July 1995.

a 64-Bit Architecture.’’ Amitabh Srivastava
and David W. Wall. WRL Technical Note

TN-35, June 1993.

‘‘Combining Branch Predictors.’’ Scott McFarling.
WRL Technical Note TN-36, June 1993.

‘‘Boolean Matching for Full-Custom ECL Gates.’’

Robert N. Mayo and Herve Touati. WRL
Technical Note TN-37, June 1993.

47

NETWORK BEHAVIOR OF A BUSY WEB SERVER AND ITS CLIENTS

WRL Research Reports and Technical Notes are available on the World Wide Web, from
http://www.research.digital.com/wrl/techreports/index.html.

48

