SRC Technical Note
1999-003

November 1999

Selected 1999 SRC Summer Intern Reports

Compiled by James Mason

COMPAQL

Systems Resear ch Center
130 Lytton Avenue
Palo Alto, CA 94301
http://Amww.research.digital.com/SRC/

Copyright 1999 Compag Computer Corporation. All rights reserved

This document features informa reports by interns who spent the summer of 1999 working with researchers a
Compag Systems Research Center (SRC). The interns were graduate students in computer science or eectrid
engineering Ph.D. programs. Each worked for about three months at SRC, collaborating on a project with the
research staff. The primary god of thistechnica note isto describe the summer research projects. However, the
interns were encouraged to write their reports in whatever format or style they preferred, so that non-technical
observations (such as background and impressions arigng from their stay) could aso be included.

1. Type-based Race Detection for Java
Stephen Freund

2. Hilltop: Experiences Building a Web Search Engine
George Mihaila, University of Toronto

3. Toward More Informative ESC/Java Warning M essages
Todd Millstein

4. Chasinq Races
Silvija Seres

lof2

5. Directiona Array Microphone
Richard Turner

6. Early Analysis Techniques for ProfileMe
Kevin Walker

7. Verifying Temporal Formulas in the Tempora Logic of Actions
Lucian Wischik

20f2

Type-based Race Detection for Java

Stephen Freund, Stanford University

The summer project described here consisted of joint work with Cormac Flanagan, my host at SRC.

| ntroduction

A race may occur in aconcurrent program when two threads access a shared memory location at the sametime.
This Stuation often causes unintended behavior ranging from memory corruption to execution failure. Since the
effect of arace depends upon the interleaving of program execution, races may be difficult to locate and fix, even
after their effects have been observed.

To avoid race conditions, programmers often adopt a programming discipline in which shared resources are
guarded by locks. Before accessing any shared structure, the necessary lock must be acquired. This discipline
ensures that no two threads ever access the same resource at the same time. Using locks in this fashion shifts the
problem of preventing racesto one of enforcing the locking discipline.

This project summary describes a gatic analys's technique that supports this locking discipline in concurrent Java
programs. The andysis technique, which is presented in the form of the Setic type system, was designed so that it
has the following desirable festures:

1. asound formd foundetion
2. low programmer overhead
3. the ability to check areasonable set of programming idioms

The following section describes an extension to the Java type system that captures locking information; the third
section describes a prototype implementation, and the fourth section summarizes our experiences with it.

Type System and Annotation L anguage

The project's starting point was to work from arace-free type system for a concurrent object caculus [Flanagan
and Abadi 1999 [2]. The most important features associated with the adaptation of this type sysem to Javaare
presented in the following examples. To preserve compatibility with the standard Java compilers, the additiona
type information used in our analyssiswritten in specid commentsin the code, Smilar to those of escjava[Leno
et al. 1999] [4]. These annotations are comments that begin with the character '#. The following classisa
monitored counter:

class Counter {
private int ¢ = 0 /*# guarded_by this */;
private void set(int x) /*# requires this */ {
c = X;
}
public void increment() {
synchroni zed(this) {

lof4

set (c+1);

The guarded by annotation on the field ¢ indicates which lock must be held to access thet field, and the requires
clause on the set method indicates which lock (or locks) must be held prior to invoking that method. To
typecheck a program, a conservative gpproximation of the set of locks held at each program point is determined,
and the checker then verifies whether the condtraints expressed in the annotations are satisfied on each field
access and method invocation.

As part of this verification process, the analys's needs to determine whether a specific lock isin thelock set. The
set membership test requires some notion of equdity between lock names, but Since our analysis cannot rely on
run-time values, we gpproximete run-time val ue equivalence with syntactic equdity.

Another common programming idiom isto create unsynchronized classes and require the client to provide the
necessary synchronization. Thistype of class may be expressed in our type system using classes parameterized
by lock names. The following code example shows how to write a counter monitored by alock in the client code:

class Counter/*# {ghost Object o} */ {
private int value = 0 /*# guarded_by o */;
private void set(int x) /*# requires o */ {
val ue = x;

}
public void increnent() /*# requires o */ {
set (val ue+l);

}
}

Obj ect nmutex = new Obj ect ();
Counter/*#{mutex}*/ ¢ = new Counter/*#{nutex}*/ ()

It is often the case that a Significant fraction of a concurrent program does not use synchronization a dl. To avoid
the need to require locks on objects that are not shared between threads, we introduce the notion of a

thread local classinto the type system. A thread_local classis a class whose instances are never shared
between threads, indicated with the annotation thread local on the class declaration. This type of class requires
no synchronization on field accesses, and a class may be thread local only if:

1. noingances of the class are stored in fidds of a shared class
2. thedassisnot asubclass of java.lang. Thread

The firg requirement is checked with a smple escgpe andysis. For technica reasons, programs using
thread local classes are assumed to have additiona run-time checks on down cagts. Onefina feature added to

the type system is an escape mechaniam to circumvent the andyss when it istoo redtrictive. Asusud, it isthe
programmer’s respons bility to ensure the validity of each use of these escapes.

| mplementation

20f4

Rccjava, a prototype type checker, was implemented as an extenson to an existing Java front-end. The main
additions to the standard Java type checker were the dgorithm to compute lock sets, the notion of syntactic
equality, and classes parameterized by lock names. Severd annotation inference techniques were dso
incorporated into the implementation in order to reduce the number of annotations required for large programs.
These inference techniques include andysis to determine whether an unannotated classisthread local or
thread shared, and aso include the assumption that unannotated fields of shared classes are guarded by the
lock of the self object.

Experimental Results

The prototype implementation was used to check race conditions in a number of programs. Four representetive
examples are:

thejava.util.Hashtable class

the java.util.Vector class

Ambit, an implementation of mobile agents[1]
WebL, an interpreter for WebL programs[3]

El oA

Thefallowing chart summarizes the number of annotations required by rccjava

Program Size (lines) Nunber of annotati ons User time (hours)
Hasht abl e 434 46 1
Vect or 440 15 0.5
Anbi t 4,500 37 3
WebL 20, 000 421 16

The large number of annotationsin Hashtable may be attributed to the use of type parameters which require an
annotation on each reference to a parameterized type name. The two larger examples required approximately 20
annotations per thousand lines of code. One race was found in the Vector class, and severd races were found in
the WebL code.

Conclusions and Further Work

Theinitia experimentswith rccjavaindicate thet it isa useful tool for detecting races. While more difficult to use
than dynamic tools like Eraser [Savage et d. 1997] [5], it is not subject to the same coverage problems as those
toals. In addition, the annotation overhead is lower than some other static andlys's techniques, such asusing
escjava. However, that tool captures amuch broader range of program properties and has not been tuned
specifically to race detection.

The most important direction for future work is to reduce the annotation requirements. We are currently exploring
better annotation inference agorithms and the possibility of usng feedback from dynamic toolsto help infer

annotations. There are dso additiond features to implement, such as reader-writer locks and parameterized
methods.

References

30f4

[1] Luca Carddli, Maobile ambient synchronization. Technica Note 1997-013, Digitd Systems Research Center,
Pao Alto, CA, July 1997.

[2] Cormac Flanagan and Martin Abadi. Object Types against Races. Proceedings of CONCUR 99, August,
1999.

[3] Thomas Kistler and Johannes Marais. WebL - a programming language for the Web. In Computer Networks
and ISDN Systems, Volume 30, pages 259-270. Elsevier, April 1998. Also appeared as SRC Technical Note
1997-029.

[4] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java programs via guarded commands.
Technical Note 1999-002, Compag Systems Research Center, Palo Alto, CA, May 1999. Also appeared in
Forma Techniques for Java Programs, workshop proceedings. Bart Jacobs, Gary T. Leavens, Peter Muller, and
Arnd Poetzsch-Heffter, editors. Technica Report 251, Fernuniversitat Hagen, 1999.

[5] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas E. Anderson. Eraser: A
dynamic data race detector for multi-threaded programs. ACM Transactions on Computer Systems (TOCS),
15(4):391-411, November 1997. Also gppeared in Proceedings of the Sixteenth ACM Symposium on
Operating System Principles, October 5-8, 1997, St. Mao, France, Operating System Review 31(5), ACM
Press, 1997, ISBN 0-89791-916-5, pp 27-37.

404

Hilltop: Experiences Building a Web Search
Engine

George Andrei Mihaila, University of Toronto

I'm currently in the last year of my Ph.D. program at the University of Toronto, working with Alberto Mende zon,
my advisor. My research isin the area of Web querying and database integration. During my summer internship
at SRC | worked with my hogt, Krishna Bharat, on improving the qudity of Web search results.

More specificaly, | worked on designing and implementing a connectivity-based search engine. We gtarted from
Topic Didtillation dgorithms. Topic Didillation agorithms assign authority scores for pages by computing the
principd eigenvector of the adjacency matrix of a subgraph of relevant pages. According to this scheme, highly
connected pages receive a high score which roughly corresponds to the subjective notion of agood qudity page.
The intuitive reason for thisisthat if a pageisreferred from many different places, it is probably agood page. The
key factor influencing the quality of the resultsis how the subgraph is selected. Typicaly, this subgraph is
congructed by taking the back and forward links from a small set of pages on the query topic. This method has
the potentid of including pages which are not germane to the topic--which in turn affects the find ranking.

Our objective was to design a conservative verson of Topic Didtillation in which we consder only asmadl fraction
of the Web, carefully sdected based on connectivity properties.

The firg step in implementing this idea conasted in pre-computing the set of pages we needed to work with. For
this, | used SRC's connectivity server which maintains connectivity information about a large fraction of the Web
(about 150M pages). For me, this was agreat opportunity, as| was able to easily test severa hypotheses using
red data, without the need to access the Web (which would have been much too dow). By applying severd
connectivity-based filters on this data, a set of about 2.5M URL s was selected. We then used the SRC's
Mercator Web crawler to download all these pages. Once we had this data, | wrote a program using the NI2
indexer library to build an index of the relevant text and links from these pages. Thistoo was avery interesting
experience for me, asit provided the opportunity to learn about the data structures and operation of the inverted
index system in NI2

Findly, my host and | discussed severd ranking agorithms. After experimenting with a number of different
ranking functions, we decided on afind agorithm and | implemented it on top of the NI2 query library. Asalast
sep, | wrote alimited HTTP server program that provides Web access to the query interface.

After everything was up and running, we needed to test it with red usersin order to compare it with other
popular search engines. My co-summer interns were very helpful in this phase, asthey volunteered to participate
in our user sudy. At this stage of the project, | learned alot about conducting objective tests with information
retrieva systems. It was a0 satisfying to see people finding what they were looking for among the highest ranked
results.

In concluson, my summer internship a SRC provided an excedllent learning environment. Having the opportunity
to work with such knowledgeable and enthusiastic people was truly ingpirationd.

lofl

Toward More Informative ESC/Java Warning
M essages

Todd Millstein, University of Washington

| ntroduction

This year will be my fourth asa PhD student in computer science at the University of Washington. My advisor is
Craig Chambers, and my research involves the study of object-oriented programming languages that support
multimethods. In particular, | have desgned modular atic typechecking agorithms for such languages.

| choseto do aninternship at SRC for severd reasons. | have been interested in forma methods for many years,
50 | was happy for the opportunity to learn about the chalenges and tradeoffs involved in creating a practica
program verification tool. | aso knew ahbit about SRC and thought thet it would be afun and exciting work
environment. Findly, | was interested in taking a bresk from my PhD research and getting a glimpse of life outsde
academia.

Extended Static Checking

The Extended Static Checker for Java (ESC/Java) is atool designed to catch common programming errors at
compile-time. A programmer writes an ordinary Java program but adds annotations, such as pre- and
postconditions on methods. Each annotated method is trandated into alogica formulawhichisvdid if and only if
the method meets its specification. A theorem prover searches for counter-examplesto the logica formula, which
correpond to possible errorsin the original Java method. A key design principle of ESC/Javais modular
checking, which means that each method is checked in isolation, given only the specifications, and not the
implementations, of other methods in the program.

More Informative Warning M essages

Reducing program checking to theorem proving alows ESC/Java to check awide variety of program properties
and to leverage exigting theorem proving technology. However, this architecture makes error reporting
chdlenging. In particular, it is difficult to turn counter-examples from the theorem prover into useful user-level
messages about the origina Java method.

Previoudy, ESC/Java was able to deduce from a counter-example which ESC/Java annotation had failed to
verify. For example, if amethod's postcondition is potentidly violated, ESC/Java reports this information to the
programmer. My summer project congsted in extending this "report warning” in away that would generate more
specific (and useful) information. We were most successful in targeting specific programming Situations that
ESC/Java users have found hard to understand.

Our work took the following direction: Since methods often have numerous possible execution paths, depending

on the choice made at each branching point, we implemented away to extract--from the counter-example--a
complete trace of the particular execution path through the method that caused the warning to occur.

lof2

We then targeted two specific kinds of ESC/Java warnings that can be hard to understand:

The firg--a common warning--occurs when a class has a particular kind of sharing congtraint on one of its fields,
where the sharing condraint isinsufficiently annotated. For this we devised ESC/Java support for specifying this
congraint and for understanding when an implicit congraint of thiskind is potentialy violated.

The second involved providing support for suggesting annotations to remove spurious warnings related to Javas
covariant subtype rule for arrays. In particular, §] istrested in Javaas asubtype of T[] when Sis asubtype of
T. The use of thisrule is not dways provably safe at compile-time. Therefore, Java enforces a run-time safety
check on arrays. Because of this potentid lack of compile-time safety, ESC/Java issues warnings unless there are
aufficient annotations to dlow arraysto be verified daticaly.

Reducing the ESC/Java Annotation Burden

For the last few weeks of my internship, | worked on a completely different problem--trying to reduce the
annotation burden on programmers. If ESC/Javaiis run on an unannotated program, many spurious warnings will
result (for example, apointer dereference will cause anull dereference warning to be issued). Our observation is
that spurious warnings can be reduced by checking amethod using some context from its calers and calees,
rather than performing completely modular checking. To this end, we implemented an infrastructure in ESC/Java
to dlow method calsto be inlined and checked by ESC/Javain saverd different ways. We have just begun
designing experiments that make use of this new infrastructure.

202

Chasing Races

Silvija Seres, Oxford University

Thisisabrief report on the work performed by Silvija Seres during her summer research internship at SRC in
1999, together with her host, Greg Nelson. The main theme of the work was evauating two tools developed at
SRC for checking the correctness of multi-threaded Java programs. Eraser, a dynamic race detector, first
described at SOSP in 1997 [1], and ESC/Java[2], a verification-based static program checker. There are two
main research results: porting Eraser to work on Java programs, and applying ESC/Java (for the first time) to a
sizable multi-threaded program. As a source of test cases we used the Mercator [3] Web crawler by Allan
Heydon and Marc Ngjork.

Our goa was not to build tools but to evaluate them. Nevertheless, some tool-building was inevitable. To achieve
the necessary expressibility with ESC/Java, we needed to add one new pragma and some flexibility for the use of
so-cdled ghost variables. With the help of Sanjay Ghemawat, we implemented Eraser for Java. The Eraser
agorithm finds races by checking dl loads and stores to detect shared variables that are accessed by different
threads without using alock to ensure mutual exclusion.

While checking Mercator, we identified Sx basic concurrency control techniques:

1. Inthe"monitored object” technique, the methods of a class provide interna synchronization before
accessing shared variables.

2. Inthe"dient locking" technique, this synchronization is the responsihility of the client of the shared class.

3. Inthe"per-thread object” technique, no particular instance of the shared classis accessed by more than
one thread.

4. Inthe"read-only datd' technique, thread-safety is achieved by making the dataimmutable after
initidization.

5. Inthe"exclusve/shared" technique, the program uses exclusive/shared locks, also called reader/writer
locks, which are awdl-known kind of lock that can be held by athread ether in exclusve mode or in
shared mode.

6. Inthe"tempora separation” technique, conflicting accesses are guaranteed to be non-concurrent because
the computation imposes an order on them. There are many examples, of which the most typicd isa
pipeline in which the shared datais accessible to one thread per stage.

We have aso found places in Mercator where these techniques are used in combination.

ESC Javas annotation language was designed to specify the monitored object technique, but al the others
represent specification chalenges. Eraser deds with the first four techniques automaticaly, and the rest require
minima annotations. We have designed annotation strategies to dlow ESC/Java checking of dl the techniques.
Our drategies make heavy use of ghogt variables and of the ESC/Java annotations "defined _if" and "writable if"
(the latter of which we had to add in the course of our research).

lof2

We haven't annotated al of Mercator for ESC/Java, so al of the races that we found were found with Eraser.
Mercator consists of gpproximately 25,000 lines of code, and Eraser produced fifteen warnings on the first run.
Of these warnings, two were real races and the rest were false darms. The two races were fixed, and sixteen
lines of Eraser annotations were added to supressthe fse darms.

We have aso checked Pachyderm [4], the Javamail and news system built by Andrew Birrdl| €. d. There were
alarge number of warnings, primarily because Pachyderm uses the Javawindowing classes, which ssemto be a
fulsome source of races. Andrew claimed that three of the warnings were worth acting on in his code.

Our firgt concluson isthat Mercator uses more synchronization techniques than were envisioned by the designers
of ESC/Java.

Our second conclusion isthat Eraser is more effective than ESC at finding race conditions, especidly given a
large, unannotated program.

Third, ESC/Java requires far more annotation work. A result of this, however, isthat it alowsfor the
documentation of the synchronization design of the program.

We have not experienced coverage to be a problem with ether tool, but it ssems il to be an open issue for
each tool, for different reasons. In Eraser we don't have a clear coverage measure, because in addition to passing
through each branch of the program at least once, one needs to check that each shared variable has been
accessed by at least two threads.

References

[1] Stefan Savage, Michadl Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas E. Anderson. Eraser: A
dynamic data race detector for multi-threaded programs. ACM Transactions on Computer Systems (TOCS),
15(4):391-411, November 1997. Also appeared in Proceedings of the Sixteenth ACM Symposium on
Operating System Principles, October 5-8, 1997, St. Mao, France, Operating System Review 31(5), ACM
Press, 1997, ISBN 0-89791-916-5, pp 27-37.

[2] David Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static checking. Research
Report 159, Compaq Systems Research Center, Pao Alto, CA, December 1998. Also seel Extended Static
Checking Web page.

[3] Allan Heydon and Marc Ngjork. Mercator: A Scalable, Extensible Web Crawler. To appear in World Wide
Web, December 1999. See dso: The Home page of the Mercator Web Crawler.

[4] The Pachyderm Email System

20f2

Directional Array Microphone

Richard Turner, University of Belfast

| am working towards a PhD at The Queen's University of Belfast and collaborated with Stefan Ludwig and Bob
McNamara on aboard called the Directiona Array Microphone (DAM).

Bob McNamarawas looking into microphone arrays and thought they were interesting things to investigate. So a
piece of general-purpose data capture and ddlivery hardware was designed and built. This summer | wrote the
firmware of the FPGA, implemented some toolsto interact with the DAM board, and did some fun DSP stuff
with the microphone array.

The DAM board is made up of eight Anaog to Digita Converters and a connector for daughter boards. There
can be a maximum combination of 40 inputs and/or outputs per DAM board (where the daughter boards supply
the extrainputs and outputs). If 40 microphones are not sufficient for the task, multiple boards can be
synchronized to build larger systems and two Ethernet physica layer chips are supplied to do this. The board has
an EPROM for configuration data for the FPGA (firmware). The firmware is used to combine the different parts
of the board and daughter boards together.

| spent most of the summer working on the firmware. It generates the control sgnds for the ADswhile the data
returned from the ADs is assembled together into packets. Asthere is no Ethernet controller on the board, the
firmware has to place the protocol information at either end of the packet and send it to the Ethernet link. It dso
receives packets which can be used for the reprogramming of the EPROM. The DAM uses one of the 100
Mbps Ethernet links to transport data to and from a PC while the software on the PC is used for digitd sgna
processing.

What interesting things, then, can be accomplished using an array of microphones? Two aress, in particular,
gppeared worthy of research: high-qudity speech acquisition and the location of sound sources.

Speech recognition software requires high-quality speech with low background noise and little change in the
qudity of thesgnd. A graighforward solution would be to use a head microphone. As the microphoneis closeto
the source of sound, the signd from the microphone will mostly contain the required speech with little background
noise. However, if we place the microphone a more convenient location further away, more background noise
will beintroduced into the signa. Now, if we use more than one microphone, "beamforming” can be performed.
What this means is that we adjust the gain of sound depending on the direction of arrival. So in the direction of
the sound we want to capture, we can have alarge gain, while we opt for alow gain from the rest of the arriva
directions. Asaresult, we implemented asmple dday & sum beamformer.

The other task we accomplished with the microphone array was to track the sound source. Once we caculate
the time difference of the sound arriva's between two microphones, we can work out the direction of the sound
through triangulation measurements. This information is then fed back into the beamformer. To demongdrate this,
we wired up the microphonesin SRC's forum and showed how the system figured out the position of the
Speaker.

lofl

Early Anaylsis Techniquesfor ProfileMe

Kip Walker, Carnegie Mellon University

My summer internship at SRC coincides with the end of my third year in the Computer Science PhD program at
Carnegie Mdlon. My work there is focused on adaptive mobile information access in the Odyssey project, with
Professor Satyanarayanan, known more widely as Satya, as my advisor.

The god of my summer work wasto initiate analys's techniques for the ProfileMe data generated by Alpha
21264A processors. The Continuous Profiling Infrastructure was able to display raw events and aggregate event
samplesin smple ways, but no code existed for explaining satic and dynamic sdls, cdculating the cost of traps,
and other important analyses.

The early part of the summer was consumed by becoming aguainted both with the large existing code-base, and
the architecture of the 21264A.. Technica documentation was certainly useful, but the best learning tool turned
out to be the register-transfer-level amulator GUI. Simple code sequences could be smulated, with some of the
interna processor state displayed in graphica form. Since CPI analysis techniques are based on a solid
understanding of the inner dynamics of the chip being profiled, this background work was necessary for my
project.

Thefirg problem | tackled was one of software engineering. Adding specidized analyss routines for ProfileMe
data illustrated the need to creete an interface for determining what analyses could be performed given particular
samples. For example, neither of the primary data andysis methods (execution count estimation and blame
assgnment) were initidly supported for ProfileMe samples.

The obvious follow-on to this project was supporting execution count estimation using ProfileMe samples. This
was eadly accomplished, since the number of ProfileMe samplesfor agiven ingruction is directly proportiond to
the number of timesit executed! Event-based sampling necessitated tricky heurigtics for deriving the execution
count from the number of samples.

The second phase of the project involved trying to "recover” cycles which were impossible to measure using the
ProfileMe hardware as implemented. Severa conditions cause the "retire delay” number reported to be shorter
than it actudly was. By conaulting the RTL smulator and hardware specification, we were gble to determine
where a portion of the missing cycles were being spent.

The bulk of the summer ended up being focused on the andysis of ProfileMe dataabout " _trgpping " and

" aborted " ingructions. In an out-of-order processor, Sgnificant amounts of time may be spent on ingructions
that are ultimately discarded. Raw data from ProfileMe can identify instructions that frequently trap, but cannot
convey the cogt of the trgps, and may not even clearly indicate the cause of the trap!

One technique we devel oped was on off-line dgorithm for processing trap and abort samples to estimate how
many aborts were due to each trapping ingtruction; thisisagood first step at determining the cost of each trap.
The success of this method needs to be andlyzed better. Because of the Satisticad nature of the data we gather,
and the complexity of run-time behavior, it is very difficult to correlate aborts with the traps that caused them.
With more time and clever heurigtics, I'm sure thistool will prove to be useful.

lof2

A second technique focused on replay trgps, where two memory operations interact dynamicaly in such away
that bad data may be seen by future ingructions. To fix such trgps, one must know the identity of both
ingructions involved; only one of the indructionsis directly identified by the ProfileMe hardware. We came up
with anove solution for this problem.

| found SRC to be awonderful environment, full of very friendly and brilliant people, focused on avariety of
important problems, and possessing a spirit of collaboration that was refreshing. Much credit goes to Sharon
Perl, for making things run so smoothly. In addition, many thanksto my hogts, Bill Weihl and Mark
Vandevoorde, and the other great people with whom | got to work closdly.

The MS Powerpoint presentation entitled Using Interpretation for Profiling the Alpha 21264a provides additional
details on the above work.

20f2

Verifying Temporal Formulasin the Tempor al
L ogic of Actions

L ucian Wischik, University of Cambridge

This report describes a summer project undertaken by Lucian Wischik of the University of Cambridge, at
Compag Systems Research Center. He was supervised by Ledie Lamport and Y uan Yu.

The Temporal Logic of Actions

"Engineers should be able to specify and verify their sysems directly and conveniently inlogic." This comment
offers a pragmatic motivation for usng Lamport's Tempora Logic of Actions (TLA), and its associated
model-checker (TLC). The comment aso implies a distinction between TLC and other comparable
model-checkers, where specifications must be trandated into a specid-purpose language. (A modd of a
specified system, in this context, is a sample execution trace. To ‘check’ amodd isto ensure that it satisfiesthe
given verification conditions).

The god of the project wasto extend TLC to verify arbitrary tempora formulas. Hitherto, it could verify only
"dways' formulas about Sates:

"al ways, the state will be such with no dangling pointers"”
Now it can verify more generd formulas:

"if ever | put a datuminto nmy reliable-transport-protocol,
then it must eventually conme out the other end.”

The problem of verifying arbitrary tempora formulas about Satesis a sandard one, addressed by other
modd-checkers aswell. It is solved using the "tableau” technique of Clark and Emerson [1981]. We briefly
outline this technique below. (Tempora formulas are ones involving the predicates[] dways, or <> eventudly.
Forinstance, [] (a => <>b) meansthat every occurence of a must eventudly be followed by an occurence of

b).
However, the gpplication of this technique raises new problems for the Tempora Logic of Actions. In fact, they

arise as adirect consequence of the very actions that give the logic its name. (Actions rdate the next sate of the
system to the current state and describe the trangitions of the system. An example actionis: x' =x+1.)

Checking fairness. digunctive normal forms
Thefirg problem concernsfairness criteria. A fair trangtion is one that must eventualy be taken (assuming thet it

ispossible). In conventiona model-checkers, fairness is specified explicitly in the specid-purpose specification
language. For example, to say that the scheduler must eventudly alow the process to proceed, we might write:

fair; x := x+1;

lof4

InTLC, farnessis expressed asalogica predicate on actions, i.e, "Always, eventudly, x' =x+1"
[T <> (x'=x+1)

Note that thisis merely alogic formula, and can gppear anywhere in the specification or verification conditions
(whereasthe keyword f ai r can obvioudy appear only as part of the specification program).

The new technique we introduced to ded with such formulas, in specification or verification conditions, involves
converting the problem into digjunctive normal forms These forms dways have the same Structure:

(<>[]eal /\ []<>ael /\ mniscl)
\/ (<>[]ea2 /\ []<>ea2 /\ m sc2)
\/ oL

Obsarve that, within each digunct, the fairessformulas<>[] and [] <> are dl gathered together. This givestherr
agraghtforward decison procedure: an infinite cycle in the systlem's behaviour satisfies<>[] p if p istrue
everywherein the cyde and it stisfies[] <>q if q istrue somewhere in the cycle. We provided an dgorithm to
convert arbitrary expressonsinto norma form, proved that the conversion preserved meaning and that the
normal forms were unique, and implemented the decison procedure.

Checking arbitrary temporal formulas. the tableau

The fairness formulas above are a generdisation of the fairness specifications present in other mode -checkers.
But the Tempord Logic of Actions actudly adlows even greater generdity -- it dlows arbitrary tempord formulas
involving actions and gates. To handle such formulasin full generdity requires that the standard tableau technique
be modified to handle actions. Unfortunatedly, away to implement this modification was not discovered until late in
the summer, so there was insufficient time to fully develop the theory. (The digunctive normd forms, dthough just
agpecid case, are ill important: they are essentialy an optimisation that reduces the exponentia cost of the
fairness tableau).

The tableau technique is as follows: To check whether a sample execution trace stisfies a given tempora formula
on states -- for instance, Not ([] (a => <>b)) -- wecongruct aparticular (non-determinigtic) finite sate
meachine. This machine accepts only those traces which satisfy the formula. We run the sample execution-trace in
pardle with the machine. If the trace is accepted by the machine, then it satisfies the tempora formulal The
meachine and example formulaisillustrated below:

20f4

~Q
|

x=3 A [Jx#1

l

[x#1

»,

The suggested modification of the technique, so thet it can check arbitrary formulas on actions aswell ason
dates, isillusrated in the example machine below:

30f4

<>(act /\ [[state)

| mplementation

The techniques described above--for converting the problem of fairness criteriainto digunctive norma forms,
and for the tableau technique for checking arbitrary tempora formulas--were implemented within TLC. As
presented, the techniques may be prohibitively expensivein time and space. They have not yet been tested on
red-world examples. It remains an open question as to whether there is any practicd, engineering benefit to the
verification of tempord formulas. Hopefully, the two new techniques introduced in this summer project will

eventudly lead to an answer.

404

