114

Automated Proofs of Object
Code For

a Widely Used Microprocessor

Yuan Yu

October 5, 1993

alifoli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state
of the art in computer systems. From our establishment in 1984, we have
performed basic and applied research to support Digital’s business objec-
tives. Our current work includes exploring distributed personal computing
on multiple platforms, networking, programming technology, system mod-
elling and management techniques, and selected applications.

Our strategy is to test the technical and practical value of our ideas by
building hardware and software prototypes and using them as daily tools.
Interesting systems are too complex to be evaluated solely in the abstract;
extended use allows us to investigate their properties in depth. This ex-
perience is useful in the short term in refining our designs, and invaluable
in the long term in advancing our knowledge. Most of the major advances
in information systems have come through this strategy, including personal
computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some
of it is in established fields of theoretical computer science, such as the
analysis of algorithms, computational geometry, and logics of programming.
Other work explores new ground motivated by problems that arise in our
systems research.

We have a strong commitment to communicating our results; exposing and
testing our ideas in the research and development communities leads to im-
proved understanding. Our research report series supplements publication
in professional journals and conferences. We seek users for our prototype
systems among those with whom we have common interests, and we encour-
age collaboration with university researchers.

Robert W. Taylor, Director

Automated Proofs of Object Code For
a Widely Used Microprocessor

Yuan Yu
October 5, 1993

v

Publication History
An earlier version appeared as technical report TR-93-09 from the Depart-
ment of Computer Sciences of the University of Texas at Austin.

All the C code, taken from the Berkeley C String library, presented in chap-
ter 7 is subject to the following copyright terms.

©The Regents of the University of California 1990

Redistribution and use in source and binary forms are permitted
provided that: (1) source distributions retain this entire copy-
right notice and comment, and (2) distributions including bina-
ries display the following acknowledgement: “This product in-
cludes software developed by the University of California, Berke-
ley and its contributors” in the documentation or other materials
provided with the distribution and in all advertising materials
mentioning features or use of this software. Neither the name of
the University nor the names of its contributors may be used to
endorse or promote products derived from this software without
specific prior written permission.

(©Digital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any com-
mercial purpose. Permission to copy in whole or in part without payment
of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that
such copying is by permission of the Systems Research Center of Digital
Equipment Corporation in Palo Alto, California; an acknowledgment of the
authors and individual contributors to the work; and all applicable portions
of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Systems Research
Center. All rights reserved.

vi

Author’s Abstract

Computing devices can be specified and studied mathematically. Formal
specification of computing devices has many advantages; it provides a pre-
cise characterization of the computational model, and allows for mathemati-
cal reasoning about models of the computing devices and programs executed
on them. While there has been a large body of research on program prov-
ing, work has almost exclusively focused on programs written in high-level
programming languages. Here we address the important but largely ignored
problem of machine-code program proving. This work formally describes a
substantial subset of the MC68020, a widely used microprocessor built by
Motorola, within the mathematical logic of the automated reasoning system
Nqthm, a.k.a. the Boyer-Moore Theorem Proving System. Based on this
formal model, we mechanized a mathematical theory to automate reasoning
about object code programs. We then mechanically checked the correctness
of MC68020 object code programs for binary search, Hoare’s Quick Sort,
the Berkeley Unix C string library, and other well-known algorithms. The
object code for these examples was generated using the Gnu C, the Verdix
Ada, and the AKCL Common Lisp compilers.

viii

Contents

Introduction

1.1 The Work o
1.2 Related Work o
1.3 Outline of the Report

Formal Specification and Machine-Code Verification

2.1 An Instruction-Set Specification of the MC68020

2.1.1
2.1.2

The Interpreter Semantics
The Specification

2.2 Machine-Code Verification

2.2.1
2.2.2

Machine-Code Programs
The Statement of Correctness

2.3 The Automated Reasoning System Nqthm

2.3.1
2.3.2
2.3.3

The Logic
The Theorem Prover
An Interactive Enhancement to Nqthm

3 The MC68020 Instruction Set Specification
3.1 Basic Concepts i

3.1.1
3.1.2
3.1.3

Natural Numbers
Integer Arithmetic
Bit Vector Arithmetic

3.2 The User-Visible State

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

The Processor Status Word
The Register File
The Program Counter
The Condition Code Register
The Memory

X

10
10
11
12
14
14
16
19
19
21
22

3.3 Internal States and Effective Address Calculation 31

3.4 The Specification of the SUB Instruction. 31
3.5 Discussion Lo 34
The Mechanization of Machine-Code Reasoning 37
4.1 Integer Arithmetic 38
4.2 Bit Vector Arithmetic L. 39
4.3 Interpretations of Bit Vector Operations 39
4.4 Machine-State Management 41
4.4.1 The Register File 42
4.42 The Memory 42
4.5 Interpretations of Condition Codes 43
4.6 The Interpreter Lemmas 45
Machine-Code Program Proving 47
5.1 The Approach o 48
5.1.1 The Formulation 48
5.1.2 TheProof 50
5.2 Greatest Common Divisor 51
5.2.1 The Formalization 51
52.2 TheProof, 53
5.2.3 A Simple Timing Analysis 54
5.3 Integer Square Root 54
5.3.1 The Formalization 55
532 TheProofo 57
5.3.3 A Simple Timing Analysis 57
54 Binary Search 57
5.4.1 The Formalization 59
54.2 TheProof, 60
5.4.3 A Simple Timing Analysis 61
55 Quicksort 62
5.5.1 The Formalization 63
5,52 TheProof oL 66
5.5.3 A Simple Stack Space Analysis 67
5.6 The Boyer-Moore Majority Voting Algorithm 68
5.6.1 The Formalization 71
5.6.2 TheProof e
5.6.3 A Simple Timing Analysis 75

6 Issues in Machine-Code Program Proving 76

6.1 Subroutine Calling 7
6.2 Functional Parameters 81
6.3 Switch Statement L L oo oo 88
6.4 Embedded Assembly Code 90
7 Proving Theorems about the Berkeley Unix C String Li-
brary 93
7.1 The Berkeley Unix C String Library 94
7.1.1 The memcpy Function 94
7.1.2 The memmove Function 95
7.1.3 The strcpy Function 95
7.1.4 The strncpy Function 95
7.1.5 The strcat Function 95
7.1.6 The strncat Function 96
7.1.7 The memcmp Function 96
7.1.8 The strcmp Function 96
7.1.9 The strcoll Function 97
7.1.10 The strncmp Function 97
7.1.11 The strxfrm Function 97
7.1.12 The memchr Function 97
7.1.13 The strchr Function 98
7.1.14 The strcspn Function 98
7.1.15 The strpbrk Function. 98
7.1.16 The strrchr Function 98
7.1.17 The strspn Function 99
7.1.18 The strstr Function 99
7.1.19 The strtok Function 99
7.1.20 The memset Function 100
7.1.21 The strlen Function 100
7.2 Proving the String Functions Correct 100
7.2.1 Proving the memmove Function Correct 100
7.2.2 Proving the strstr Function Correct 106
7.3 Programming Errors 109
7.3.1 The Bug in the Berkeley strxfrm Function 110
7.3.2 The Bug in the Berkeley memmove Function 110
7.3.3 The Bug in Plauger’s strtok Function 111

X1

8 Conclusions

81 The State of the Work

8.2 Future Work
A Syntax Summary
Acknowledgements

References

112
112
113

115

116

117

Chapter 1

Introduction

Computing has not yet made its full potential contribution to provide control
mechanisms for machinery because computing systems are not completely
reliable. One of the main reasons for our lack of confidence in such systems
is the lack of mathematical theories to forecast their behaviors accurately.
Simulation and testing can be a never-ending proposition. Only the most
trivial systems can be tested exhaustively. However, if computing systems
are modeled in some mathematical theory, they can be studied as mathemat-
ical objects, and therefore program proving becomes possible. By program
proving, we mean a mathematical proof that a program executed according
to a certain mathematical model of computation meets some specification.

Correctness proofs can be extremely large and tedious, and it is there-
fore difficult for humans to check all the proof details, and ensure that they
are correct. To reduce the chance of mistakes in such proofs, the idea of
mechanically proving the correctness of computer programs has been exten-
sively studied (See the survey in [8]). It seems possible that the use of formal,
mathematical, mechanical methods for ensuring the reliability of comput-
ing systems will eventually be required in safety critical applications [41].
While there has been a large body of research on program proving, work has
almost exclusively focused on programs written in high-level programming
languages. The problem investigated here is the feasibility of mechanically
verifying machine-code programs executed upon existing and widely used
hardware.

Machine-Code Programs

Theory Library

MC68020 Formal Model

Nqthm

Figure 1.1: The Components of the Project

1.1 The Work

This report is about formally specifying and mechanically proving the cor-
rectness of machine-code programs using the automated reasoning system
Ngthm, also known as the Boyer-Moore Theorem Proving System. On top of
Nqthm, we formally defined a mathematical model of the MC68020, a widely
used microprocessor built by Motorola, at the instruction-set level. We then
proceeded to mechanize a mathematical theory tailored to machine-code
reasoning. Finally, we studied the idea of mechanically verifying MC68020
object code produced by industrial strength optimizing high-level language
compilers, such as the Gnu C or Verdix Ada compilers. We have successfully
verified many such machine-code programs using Nqthm. An overall view
of this work is shown in Figure 1.1.

Most previous work on program verification has focused on proving the
correctness of programs written in high-level programming languages. Why
study program proving at the machine-code level? We believe there are
many good reasons for doing so.

e Work at the processor level, for example, for a compiler correctness
proof, is ultimately a necessary ingredient in program proving, if we
take as our goal ensuring that programs are executed correctly on a
particular processor.!

Tt is relevant to review Knuth's defense, in the Preface to The Art of Computer
Programming [33], of his decision to present algorithms in assembler rather than in a
higher-level language.

e Some of the most sensitive programs in the world are currently stud-
ied at the object-code level. For example, at several US Government
agencies, including the DoD and the FAA, examiners look with great
care at the machine code of critical systems, even though the systems
were originally written in high-level programming languages. There
are several good reasons for this.

— Many high-level programming languages, especially those typi-
cally used in industrial practice, are not precisely specified. It
is not easy, or even possible, to give the semantics of some pro-
gramming language features, for example, the volatile type in
C.

— Some industrial strength compilers produce erroneous code. Until
production compilers can be proved correct, we cannot rely on the
code they produce. Validation at the machine-code level is the
only alternative.

e Programs written in high-level languages may have assembly code em-
bedded in them, in order to communicate with external devices. But
no high-level formal language semantics we have seen has made clear
the semantics of the embedding of assembler instructions.

e Real-time analysis is typically done at the machine-instruction level,
because manufacturers often state how long an instruction takes to
execute, but the definers of higher-level languages do not.

Our approach to proving theorems about object code rather than about
higher-level programs addresses all these problems. When we are proving
theorems about object code, we have no need for a formal semantics of the
higher-level language in which the program may have originally been written.
Any mistakes in the object code introduced by the compiler can be revealed
by proving the object code correct. The semantics of embedded assembly
code in programs written in high-level languages is made clear in the object
code. This work also provides a formal basis for studying the correctness
proof of a high-level programming language compiler. Of course, we do need
a formal semantics for machine-code programs. But in contrast to high-level
programming language semantics, the formal semantics at the instruction-
set level, according to our experience, can be clearly and rigorously defined.

It has been argued that formal verification for sequential programs has
been thoroughly studied and is well understood. But from an engineering

point of view, we are still very far from what we expect from formal verifica-
tion. So far, we have failed to deliver any practical verification system that
can be used to verify moderately sized programs that are in real use, and
this, in our opinion, is where we need to invest our research efforts. This
work represents one modest step in this direction.

It is worth emphasizing that we are not advocating a return to program-
ming in assembly or binary. Instead, our approach of studying the object
code produced by high-level programming language compilers permits a pro-
grammer to continue to program in any high-level programming language
while the correctness of the program is investigated at the machine-code
level.

1.2 Related Work

There is a large body of literature on the topic of program proving. This
section is by no means an exhaustive survey of the whole scientific field.
Rather, we provide a brief account of related work, with an emphasis on
mechanical program proving.

Our work has built on the work of many others. Of historic interest is
the early work of Turing [50] and Goldstine and von Neumann [19]. The
latter paper discusses the specification and correctness proofs for fifteen
programs at the machine-code level. Perhaps these were the earliest writings
on program proving.

Methods for program proving have been advanced most notably by Mc-
Carthy [38], Floyd [18], and Hoare [22]. In the last twenty years, many
research projects have focused on investigating the formal, mechanical veri-
fication of programs written in higher-level programming languages such as
Pascal [24], Lisp [6], Fortran [5], and Gypsy [15]. Most of these projects are
based on Floyd’s inductive assertion method, and are therefore in the same
spirit as the early mechanical verification work of King [32]. Our work dif-
fers from the previous work in that we address the correctness of programs
at the machine-code level executed on a widely used processor.

In only a very few cases does research on formal, mechanical software
verification address the correctness of programs at the machine-code level.
To the best of our knowledge, Maurer [36] was the first person to address
one of the major problems with machine-code verification — a machine-code
program may modify itself. His solution was based on Floyd’s inductive as-
sertion method. The idea in Maurer’s paper was to extend each verification

condition with one additional assertion asserting the contents of the program
segment. Hand proofs of a few very simple machine-code programs executed
on toy hardware were given there. Maurer [35] later developed an IBM 370
assembly language verifier, and used it to verify some simple programs such
as GCD.

Clutterbuck and Carré in [12] argued for the importance of the verifi-
cation of low-level code, and, in a separate paper [25], reported their effort
to analyze and verify the LUCOL assembly code modules used in the fuel
control unit of the Rolls-Royce RB211-524G jet engine designed for Boeing
747-400. Like most work on software verification, their work is also based
upon the use of a Floyd-style verification condition generator. The problem
of assembler correctness was not addressed in their work. Since the seman-
tics of assembly language is normally rather complicated,? many restrictions
had to be imposed on the assembly language, and complex annotations had
to be inserted into the programs being verified.

In contrast to their work, our MC68020 instruction-set model is defined
in an extremely simple setting — a definition in the formal logic of the au-
tomated reasoning system being used. Our approach can be used to address
the correctness of any machine-code program that uses only instructions in
the subset described by our formal model. Our proofs are completely based
on this formal model. Simplicity greatly increases our confidence in our
formal models and formal proofs.

Scientifically and methodologically, we have been most influenced by
Bevier’s Kit [2] and the CLI short stack [3]. The general style of Nqthm
formalization used in their work, which is also adopted here, is the product
of over a decade of study by Boyer, Moore, and many of their students.

The work of Bevier [2, 3] is the first example we know of formal, me-
chanical verification of binary programs based on an operational semantics
for a realistic von Neumann machine. In proving the correctness of a small
operating system kernel, Bevier proved the correctness of several hundred
lines of machine code produced by his own assembler for a rather realistic
von Neumann machine of his own design.

The CLI short stack [3] is a small computing system consisting of a
compiler, an assembler, a linker, and a gate-level design for a microprocessor
that has been formally verified. In that work, Hunt proved the correctness

2Tt is no simpler than high-level programming language semantics.

of a gate-level design for the FM8502 microprocessor;> Moore proved the
correctness of a compiler for the assembly-level programming language Piton
targeted to the verified FM8502; and Young proved the correctness of a code
generator for the high-level programming language Micro-Gypsy targeted
on the verified Piton. Their success inspired us to study the problem of
specifying and verifying real programs executed on widely used hardware.

In contrast to our approach to machine-code proof, compiler verification
attempts to establish the correctness of the compiler, so that we are ensured
that the compiler always generates correct binary code. The first example
of compiler proving seems to be the McCarthy and Painter [39] proof of a
compiler for expression evaluation. They prove, by hand, the correctness
of an expression compiler for an idealized machine using recursion induc-
tion. Mechanical proofs of slightly varied versions of the McCarthy-Painter
expression compiler were later obtained by many researchers [7].

Polak’s seems the most ambitious compiler verification effort [44]. Polak
mechanically verified a compiler for a fairly substantial subset of Pascal.
But his target machine was rather high-level and therefore unrealistic. In
addition, it seemed he assumed a large collection of unproven lemmas which,
in our opinion, should not be taken for granted.

Moore’s Piton and Young’s Micro-Gypsy, two components of the CLI
short stack, are major compiler verification efforts targeted on a more real-
istic von Neumann architecture—the verified and fabricated FM9001. But
the architecture, the programming languages, and the efficiency of compila-
tion are still far from real-world programming.

Even with such fairly encouraging results, it seems that compiler verifi-
cation will have little practical impact in the near future because of the sheer
complexity of industrial strength compilers. We believe our work may even-
tually contribute to compiler verification—a formal semantics for the target
machine and formal reasoning at the machine-code level is a prerequisite for
compiler verification.

Microcode verification is closely related to our work. Among the most
significant reported work is the C/30 microcode verification using the State
Delta Verification System(SDVS) [14]. A large majority of the C/30’s in-
structions were proven to be correctly implemented by approximately 1000
MBB microinstructions. Hunt [51] and Cohn [13] are two major hardware
design verification works involving microcode verification. Hunt reported

3FMS8502 is a von Neumann machine designed by Warren Hunt. Tts successor FM9001
[23] has been successfully fabricated.

some difficulties in microcode verification. We believe our techniques devel-
oped for machine-code verification would certainly contribute to microcode
verification.

From a semantic point of view, our work is closely related to work on
formal processor specification. A processor specification is a description of
a computer architecture intended to provide a complete interface between
processor and program. Intuitively, our formal MC68020 model is a proces-
sor specification that characterizes the behavior of MC68020 machine-code
programs. Leonard [34] provides a comprehensive survey of work on archi-
tecture specification.

Most of the work on formal processor specification has adopted the op-
erational approach; that is, the semantics of the machine is given by an
abstract interpreter that describes how the state vector changes as the com-
putation progresses [38]. Iverson proposed to use APL as an architecture
specification language [26]. APL was later used to provide a complete for-
mal description of the IBM system /360 architecture [16]. In the early 1970’s,
Bell and Newell introduced the specification language ISP [1]. ISP has been
widely used to specify various computer architectures [46], most recently the
SPARC [48]. ISP is one of the very few architecture specification languages
that has achieved widespread use.

While the APL and ISP work was primarily motivated by providing a
better notation for computer architecture description, McCarthy was per-
haps the first person to connect the interpreter semantics with mathematical
reasoning about programs. Our work is along the same lines as that of Mc-
Carthy [38, 37].

Processor specification has been intensively studied in the hardware ver-
ification communities where the main goal is the formal verification that
a hardware design meets its architectural specification. Gordon [21] in-
troduced LCF-LSM, and demonstrated its use in specifying and verifying
Gordon’s machine. Hunt used the Boyer-Moore logic to specify and verify
the FM8502 microprocessor. Cohn [13] used the HOL system to specify and
verify the Viper microprocessor. Most of the architectures studied in their
work are either “on paper” or novel.

A group of researchers at Oxford have been working on formal processor
specification using the formal specification language Z. They have specified
the Motorola M6800 architecture [4], parts of the Motorola M68000 archi-
tecture [45], and the Inmos transputer architecture [17]. It seems that they
have primarily focused on issues in formal specification. Little has been
reported on any formal verification effort in their work.

1.3 Outline of the Report

The main product of this work is a powerful proof system built on top
of Ngthm that allows us to reason about machine-code programs for the
Motorola MC68020 microprocessor. To give the reader a clear picture of
this project, we provide, in their verbatim form, our formal specification
for the MC68020 microprocessor and our lemma library for machine-code
reasoning in Appendix B. The complete script of all the program proofs
presented here is given in [53]. The following is an outline of this report.

Chapter 2 outlines our general approach to formal specification and ver-
ification, and gives a nontechnical account of this project. For uninitiated
readers, we also provide a very brief introduction to the Boyer-Moore auto-
mated reasoning system.

Chapter 3 presents our formal specification of MC68020. The main con-
tribution here is a user’s behavioral-level model for a substantial subset of
the MC68020 that is amenable to mathematical reasoning in a computa-
tional logic. In this chapter, we illustrate our MC68020 formal model by
taking a tour through the formalization of one particular instruction.

Based on the formal model defined in Chapter 3, we have developed
a mathematical theory tailored to mechanically proving the correctness of
machine-code programs. The theory is mechanized in the Boyer-Moore theo-
rem proving system as a library of derived lemmas. In Chapter 4, we discuss
our experience in developing this lemma library.

With the MC68020 formal model and the mathematics so developed,
we investigate formal reasoning about machine-code programs. Chapter 5
consists of five specific examples that have helped us to sharpen our un-
derstanding of reasoning about machine code. We describe in this chapter
the specification and verification of a few programs we have mechanically
verified.

The semantics of some high-level programming language features have
long posed great challenges to program verification. It is interesting to see
how their semantics are recast into a different, but clearly understood world
of a single addressing space. In Chapter 6, we use a few simple program
examples to illustrate how we deal with those programming features at the
machine-code level.

To demonstrate the usefulness of our system, we describe in Chapter 7
the formal verification of the Berkeley implementation of the ANSI/ISO C

String Library [52, 27].* Three programming errors were revealed in the
process of our verification. Two were in the Berkeley Unix C string library.’
The third was in Plauger’s book The Standard C Library [43].5

The final chapter summarizes our main results, and considers the pos-
sible applications to our methodology. Tt also speculates on future research
directions.

“The ANSI and ISO C Standards are essentially identical.

One error was undetected when we reported it to the author Chris Torek [49]. Tt will
be corrected for the release of BSD4.4. The other one was fixed about one year ago.

P.J. Plauger had detected this error by the time we reported it to him [42].

Chapter 2

Formal Specification and
Machine-Code Verification

This chapter gives a general characterization of our work before we dive
into the technical details of the MC68020 formal model and machine-code
program proving.

Here we discuss two of the fundamental issues in this work—our MC68020
formal model and our correctness criteria for machine-code programs. This
chapter is divided into three sections. First, we discuss how we have for-
malized the MC68020 instruction set in the Nqthm logic. We give an exact
account of the subset of the MC68020 instructions formalized in our model;
this subset represents the class of machine-code programs we are able to deal
with in program proving. In the second section, we first give an example
of the form of machine-code programs (a list of natural numbers) we have
studied. We then define the meaning of a correct machine-code program
in our formalism. We also discuss in this section the assumptions we must
make to connect our proofs with the real world. Finally, we include a section
to introduce the automated reasoning tool Nqthm.

2.1 An Instruction-Set Specification of
the MC68020

We modelled the MC68020 microprocessor as an abstract finite state ma-
chine with an interpreter semantics. This section introduces our modeling
approach, and provides an overview of our MC68020 model.

10

2.1.1 The Interpreter Semantics

An abstract finite state machine is defined by a specification of the machine
state and a specification of a state transition relation on machine states.
The machine state is specified as a vector of state components. The state
transition relation is defined by an interpreter function acting on machine
states.

In the Ngthm logic, the machine state is represented by a finite list with
the state components as its elements. The MC68020 machine state in our
formalization, for example, is simply defined to be a list of five components.

DEFINITION:
me-state (status, regs, pc, ccr, mem) = list (status, regs, pe, ccr, mem)

Intuitively, mc-state (status, regs, pc, ccr, mem) represents a machine
state with processor status word status, register file regs, program counter
pe, condition code register ccr, and memory mem.

The interpreter function is then defined as a recursive function of the
form stepn: S x O — S, where S is a set of machine states and O a set of
oracles for a machine. The function stepn models the behavior of a machine
over a finite but arbitrary time span. The two roles of an oracle are to
determine the finite time span of the operation of a machine invocation, and
to introduce non-deterministic state changes into a machine that includes
communication with other machines.'

In the simple case that the set of natural numbers N is used as the
oracle set, the interpreter models a machine whose behavior is determined
completely by its states. Our MC68020 interpreter is defined in this simple
setting.

DEFINITION:

stepn (s, n)

= if mc-haltp (s) V (n ~0) then s
else stepn (stepi(s), n — 1) endif

Intuitively, stepn (s, n) returns the machine state produced by running
the machine n instructions with the initial state s. stepi(s) in the definition
above is the single-stepper that advances the machine by one instruction
according to the current state s.

!This paragraph was taken from a paragraph of [3] by permission, and modified in the
context of this report.

11

This interpreter semantics describes the meaning of abstract machines
in an intuitive and natural way. It can be easily understood by a wide range
of computer professionals. For example, our MC68020 interpreter may be
simply viewed as an architectural simulator for an MC68020 microprocessor
defined in a formal logic.

We will leave all the further formal details of our MC68020 formalization
to Chapter 3.

2.1.2 The Specification

There are two main goals of our MC68020 formal specification. First, we
provide a formal model to reflect as closely as possible the view of the
MC68020 in the user’s manual [40]. Second, this formal model should be
amenable to automated reasoning. We wrote the specification with these
two main goals in mind.

We have formalized most of the user programming model of the MC68020
microprocessor. However, we have not yet specified the supervisor level
of the MC68020. Any exception caused by a user program simply halts
our formalized machine. Figure 2.1 provides an informal, two dimensional
picture of the user programming model for the MC68020, as described in
[40]. This model has 16 32-bit general-purpose registers (8 data registers,
DO0-D7, and 8 address registers, A0-AT), a 32-bit program counter PC, and
an 8-bit condition code register, CCR. The address register A7 is also used
as the user stack pointer (USP). The 5 least significant bits in CCR are
condition codes for carry, overflow, zero, negative, and extend. Our model
is the only part of the state of an MC68020 that a user program can read
or write under our formal semantics. Not present in our model are such
arcane actualities as the instruction cache, memory management, and the
supervisor stack.

Our specification consists of about 80% of all the user-available instruc-
tions and all eighteen MC68020 addressing modes. Most of the instructions
we have left unspecified have some undefined effects on the machine state.
For example, some of the condition codes of the instruction CMP2 are de-
scribed as “undefined” [40]. We have deliberately excluded such instruc-
tions from our specification. Fortunately, these instructions constitute only
a small portion of the instruction set, and most of them are rarely used.’?
We summarize below the instructions we have formalized.

2We have not yet encountered such instructions in the machine-code programs we have
studied.

12

MC68020 User Programming Model

Memory

31 1615 87 0 00000000

Do 00000004

D1 00000008

AT7(USP)

| | PC FFFFFFF4

FFFFFFF8
[]CCR FFFFFFFC

Figure 2.1: The User-Visible Machine State

The instructions of the MC68020 instruction set are classified into ten
categories according to their functions [40].

1.

Data Movement. We have included all the data movement instruc-
tions: EXG, LEA, LINK, MOVE, MOVEA, MOVEM, MOVEP, MOVEQ, PEA.

. Integer Arithmetic. We have included all the integer arithmetic in-

structions except CMP2: ADD, ADDA, ADDI, ADDQ, ADDX, CLR, CMP,
CMPA, CMPI, CMPM, DIVS, DIVSL, DIVU, DIVUL, EXT, EXTB, MULS,
MULSL, MULU, MULUL, NEG, NEGX, SUB, SUBA, SUBI, SUBQ, SUBX.

. Logical Operations. We have included all the logical instructions: AND,

ANDI, EOR, EORI, NOT, OR, ORI, TAS, TST

. Shift and Rotate. We have included all the shift and rotate instruc-

tions: ASL, ASR, LSL, LSR, ROL, ROR, ROXL, ROXR, SWAP.

. Bit Manipulation. We have included all the bit manipulation instruc-

tions: BCHG, BCLR, BSET, BTST.

13

6. Bit Field. We have included all the bit field instructions: BFCHG,
BFCLR, BFEXTS, BFEXTU, BFFF0O, BFINS, BFSET, BFTST.

7. Binary coded decimal. None of the binary coded decimal instructions
has been considered.

8. Program Control. We have included all the program control instruc-
tions except the pair of instructions CALLM and RTM: Bcc, DBcc, Scc,
BRA, BSR, JMP, JSR, NOP, RTD, RTR, RTS.

9. System Control. Only 5 of the 21 system control instructions are for-
malized: ANDI to CCR, EORI to CCR, MOVE from CCR, MOVE to CCR,
ORI to CCR.

10. Multiprocessor. None of the multiprocessor instructions have been
considered.

Our formal specification is about 128,000 bytes long, which takes up
approximately 80 pages of text when printed. It consists of 569 function
definitions in the Nqthm logic. The full text of this formal specification is
given in [53]. The semantics of any machine-code program written in this
subset of MC68020 instructions is given formally by our MC68020 model.

The complexity of this model is not particularly surprising to us. Rather,
we believe the complexity is intrinsic for a CISC architecture like the MC68020.

2.2 Machine-Code Verification

The approach we have taken to verification in this work is simple and
straightforward — we reason about MC68020 machine-code programs based
solely on the MC68020 formal model described above. The correctness of
any machine-code program written in our formalized subset of MC68020
instructions can be addressed, at least theoretically, by our verification sys-
tem. In this section, we investigate what we mean by correctness in our
formalism. In particular, we present the exact form of objects (machine-
code programs) subject to verification, and discuss in general our correctness
statement about machine-code programs.

2.2.1 Machine-Code Programs

Our main focus is on proving the correctness of object code generated by
industrial strength high-level language compilers. Our method of verifying

14

optimized compiled code is very simple. For example, we compile C pro-
grams using the Gnu C compiler, extract the machine-code program using
the Gnu debugger, and finally prove the machine code correct using our
proof system developed in Nqthm.

To be more concrete, we illustrate the idea with the following simple C
program that computes the greatest common divisor (GCD) of two nonneg-
ative integers by Euclid’s algorithm. This algorithm has been well studied
in the program verification literature.

/* computes the greatest common divisor by Euclid’s algorithm */
gcd(int a, int b)
{
while (a != 0){
if (b == 0) return (a);
if (a > b)
a=al%b;
else b =b % a;
I
return (b);

}

We start with a file, say ged.c, consisting of the C function gecd shown
above. We compile gcd.c using the Gnu C compiler gcc, and then obtain
the assembly code (for human consumption) and the binary (for Nqthm’s
consumption) using the Gnu debugger GDB. The following session was from
a Sun3-280.

rascal), gcc -g -0 ged.c

rascal), gdb -q a.out

Reading symbol data from /xyOe/u/all/yu/a.out...done.
(gdb) x/22i ged

Reading in symbols for gcd.c...done.

0x22a0 <gcd>: linkw fp,#0

0x22a4 <gcd+4>: moveml d2-d3,sp@-
0x22a8 <gcd+8>: movel fp@(8),d2
0x22ac <gcd+12>: movel fp@(12),d3
0x22b0 <gcd+16>: tstl d2

0x22b2 <gcd+18>: beq 0x22d0 <gcd+48>
0x22b4 <gcd+20>: tstl d3

0x22b6 <gcd+22>: bne 0x22bc <gcd+28>
0x22b8 <gcd+24>: movel d2,d0

0x22ba <gcd+26>: bra 0x22d2 <gcd+50>
0x22bc <gcd+28>: cmpl d2,d3

0x22be <gcd+30>: bge 0x22c8 <gcd+40>
0x22c0 <gcd+32>: divsll d3,d0,d2

15

0x22c4 <gcd+36>: movel d0,d2

0x22c6 <gcd+38>: bra 0x22b0 <gcd+16>

0x22c8 <gcd+40>: divsll d2,d0,d3

0x22cc <gcd+44>: movel d0,d3

0x22ce <gcd+46>: bra 0x22b0 <gcd+16>

0x22d0 <gcd+48>: movel d3,d0

0x22d2 <gcd+50>: moveml fp@(-8),d2-d3

0x22d8 <gcd+56>: unlk fp

0x22da <gcd+58>: rts

(gdb) x/60ub gcd

<ged>: 78 86 0 0 72 231 48 0
<gcd+8>: 36 46 0 8 38 46 0 12
<gcd+16>: T4 130 103 28 74 131 102 4
<gcd+24>: 32 2 96 22 182 130 108 8
<gcd+32>: 76 67 40 0 36 0 96 232
<gcd+40>: 76 66 56 0 38 0 96 224
<gcd+48>: 32 3 76 238 0 12 255 248
<gcd+56>: 78 94 78 117

(gdb) quit

rascall,

The 60 unsigned integers above (78, 86, ..., 117) are the bytes in
the memory for the relocatable machine-code program of the C function ged.
These numbers are the objects subject to verification, and therefore are the
inputs to our verification system. A proof that these numbers do compute
the greatest common divisor of two nonnegative integers will be presented
in full detail in Chapter 5.

2.2.2 The Statement of Correctness

Before explaining our correctness criteria for machine-code programs, we
first examine the assumptions made when we attempt to connect our cor-
rectness theorems to the real world.

The Assumptions

Under what assumptions does our program proving correspond to the real
behavior of the program executed on a real MC68020 microprocessor? We
believe this question should be addressed at a very early stage of any ver-
ification work, especially if we attempt to use our theory to predict the
behavior of programs rather than merely to manipulate symbols in some
formal mathematical logic.

The first assumption is the soundness of the underlying automated rea-
soning system being used. In our case, we assume that the Nqthm system

16

does not prove false “theorems”. To our knowledge, Nqthm has been by far
the most reliable automated reasoning tool available.? Mathematical mod-
els are approximations to the real physical worlds. So is our model for the
MC68020.

The second assumption is that our MC68020 model accurately reflects
the behavior of a real MC68020 microprocessor. While we cannot prove the
validity of our MC68020 specification, we have invested a great deal of ef-
fort to increase our confidence in this model. We defined the model in such
a way that it is consistent relative to the consistency of the Nqgthm logic.
Our MC68020 model is executable, which allowed us to use the conventional
simulation and testing methods for studying the model. Ken Albin at Com-
putational Logic, Inc. has been working on a testing suite for both Hunt’s
FM9001 and our MC68020 models. In addition, Boyer and Goytowski have
read the specification very carefully.

Under these two assumptions, the program, when executed in an ideal
environment, should behave the same as whatever the proved correctness
theorem asserts. By “ideal execution environment”, we mean absence of
power outages, hardware failures, and interference from the operating sys-
tem, etc.

The Statement of the Correctness Theorem

The statement of the correctness theorem for a machine-code program should
fully characterize the effects of the program’s execution on the machine state.
The most important requirement of the correctness statement is that it be
“context-free” and “universally” applicable, so that we can reuse theorems
about a program in other proofs. Our correctness theorem at the object-
code level is more elaborate than one for a program written in a higher-level
language. This is not particularly surprising. Our theorems assert more
properties about a program than would higher-level program proving, be-
cause we have a more complicated model of the machine state.

In general, the theorem we prove for every machine-code program has
the following form.

p-statep (s) = p-req (s, stepn (s, p-t(s)))

Informally, the theorem says that, if the precondition p-statep (s) is satis-
fied, the properties specified by the relation p-req about the initial state s

3In its almost twenty years’ existence and intensive uses, only one soundness error was
found in the released versions of Nqthm.

17

and the resulting state stepn (s, p-t(s)), obtained by running the machine
p-t(s) instructions from the initial state s, hold. Note that this theorem is
completely based on the semantics given by stepn.

The precondition p-statep and the requirement p-req in the formula
above both deserve further explanation.

The precondition p-statep (s) imposes certain conditions on the initial
machine state to ensure the correct execution of the program. The conditions
imposed in our formalism are given as follows, informally.

The machine state s is in the user mode.

The program counter of s is even.*

The program is stored in the memory of s, starting from the address
pointed to by the program counter of s.

There is “enough” memory space available, for example, the stack has
“enough” space available for the execution of the program.

The program arguments satisfy certain program-specific properties,
for example, they are placed in the right places on the stack.

The requirement p-req asserts some important properties of the program.
In our formalism, we prove the following properties of programs.

1.

The resulting machine state is “normal”, for example, no read or write
to unavailable memory occurred, no illegal instruction was executed.

. The program counter in the resulting state is set to the “right” loca-

tion.

. The correct results are stored in the “right” place.

. The register file is properly managed, for example, A7, the User Stack

Pointer, is set to the “right” location, and some registers used as tem-
porary storage are restored to their original values.

. The program accesses and changes only the intended portion of mem-

ory.

*The MC68020 microprocessor requires the program counter be aligned to a word
boundary.

18

For readers who are familiar with program verification, requirements 1
and 2 state the program’s termination property, and requirement 3 states
the program’s partial correctness.

All the machine-code programs presented in this report have been me-
chanically proved correct according to the standards above. Such a cor-
rectness theorem for a program can be used as a blackbox for larger proofs
where the program is a subprogram.

2.3 The Automated Reasoning System Nqthm

We briefly review the automated reasoning system Nqthm, also known as
the Boyer-Moore Theorem Prover. Detailed knowledge of Nqthm is unnec-
essary for those who are happy enough with the informal paraphrases of the
formulas in the remainder of this report. For a thorough and precise de-
scription of the Ngthm logic, we refer the reader to the rigorous treatment
by Boyer and Moore [9], especially their Chapter 4, in which the logic is
precisely defined.

Ngthm is a Common Lisp program for proving mathematical theorems.
Since A Computational Logic [7] was published in 1979, Nqthm has been
widely used to check proofs of over 16,000 theorems from many areas of
number theory, proof theory, and computer science. An extensive partial
listing may be found in [9, pages 5-9]. In the body of this report, we use a
conventional syntax rather than the official Lisp-like syntax of Nqthm. The
translation between the conventional syntax and the official Lisp-like syntax
is discussed in [11], and given in Appendix A.

2.3.1 The Logic

The logic of Nqthm is a quantifier-free first order logic with equality. The
basic theory includes axioms defining the following:

e the Boolean constants t and f, corresponding to the true and false
truth values.

e equality. x = y is t or f according to whether z is equal to y.

e an if-then-else function. if z then y else z endif is z if z is f, and y
otherwise.

e the Boolean arithmetic operations z A y, z V y, = 2, x = ¥y, and =
& .

19

The logic of Nqthm contains three extension principles under which the
user can introduce new concepts into the logic with the guarantee of consis-
tency.

e The Shell Principle allows the user to add axioms introducing new
inductively defined abstract data types. Natural numbers, symbols,
and ordered pairs are axiomatized in the logic by adding shells:

— Natural Numbers. The nonnegative integers are built from the
constant 0 by successive applications of the constructor function
add?. The function numberp recognizes natural numbers. The
function sub! returns the predecessor of a non-0 natural number.
r € N abbreviates numberp(x).

— Symbols. The data type of symbols, for example, ’running, is
built using the primitive constructor pack and O-terminated lists
of ASCIT codes. The symbol ’nil, also abbreviated nil, is used
to represent the empty list.

— Ordered Pairs. Given two arbitrary objects, the function cons
builds an ordered pair of these two objects. The function listp rec-
ognizes ordered pairs. The functions car and cdr return the first
and second component of such an ordered pair. Lists of arbitrary
length are constructed with nested pairs. Thus list(argy,...,arg,)
is an abbreviation for cons(argi, ..., cons(arg,,nil)).

e The Definitional Principle allows the user to define new functions in
the logic. For recursive functions, there must be an ordinal measure
of the arguments that can be proved to decrease in each recursion,
which, intuitively, guarantees that one and only one function satisfies
the definition. Many functions are added as part of the basic theory
by this definitional principle. For example, we define for the natural
numbers these familiar operations: ¢ + 7, ¢ — 7, ¢ < j, & * 7, © =+ 7,
i mod j, and exp (7, j). i ~ 0 returns f if and only if i is a positive
integer.

e The Constraint Principle allows the user to introduce and constrain
new function symbols in the logic, rather than completely define them.
To avoid introducing any new inconsistency into the logic, the user is
required to prove that the proposed constraints are satisfiable by pro-
viding some already defined “witness” functions for the new function
symbols.

20

The rules of inference of the logic consist of:

1. Propositional Calculus with Equality: All tautologies and equality ax-
ioms are theorems.

2. Induction Principle: Each instance of an axiom schema for well-founded
induction up to e¢ is a theorem.

3. Imstantiation: Any instance of a theorem is a theorem.

2.3.2 The Theorem Prover

The Ngthm theorem prover is a mechanization of the preceding logic. Tt
takes as input a term in the logic, and repeatedly transforms it in an effort to
reduce it to non-f. Many heuristics and decision procedures are implemented
as part of the transformation mechanism.

The theorem prover is fully automatic in the sense that once a proof
attempt has started, the system accepts no advice or directives from the user.
The only way the user can interfere with the system is to abort the proof
attempt. However, on the other hand, the theorem prover is interactive; the
system may gain more proving power through its data base of lemmas, which
have already been formulated by the user and proved by the system. Each
conjecture, once proved, may be converted into some rules which influence
the prover’s action in subsequent proof attempts.

The commands to the theorem prover include those for defining new
functions, proving lemmas, and adding shells, etc. In this report, we use
only the following four commands. The first two are the ones used most
often.

e To admit a new function under the definitional principle, we invoke

DEFINITION: fn-name (args) = body

e To initiate a proof attempt for the conjecture statement, naming it
lemma-name, we invoke

THEOREM: lemma-name
statement

e To introduce an incomplete definition term under the constraint prin-
ciple, we invoke

21

CONSERVATIVE AXIOM: name
axiom

e To initiate a proof attempt for the conjecture statement, using func-
tional instantiation, we invoke

THEOREM: lemma-name
statement

e To introduce a quantified first-order formula form,> we invoke
DEFINITION: fn-name (args) < form

Typically, the checking of difficult theorems by Nqthm requires extensive
user interaction. The behavior of the prover is influenced profoundly by the
user’s actions. The user first formalizes the problem to be solved in the logic.
The formalization may involve many concepts and so the specification may
be very complicated. The user then leads the theorem prover to a proof of
the goal theorem by proving lemmas that, once proved, control the search for
additional proofs. Typically, the user first discovers a hand proof, identifies
the key steps in the proof, formulates them as a sequence of lemmas, and
gets each checked by the prover. Successful users of the system must know
how to prove theorems in the logic and must understand how the system
interprets them as rules.

2.3.3 An Interactive Enhancement to Nqthm

While our work is completely built on top of Ngqthm, we have found Kauf-
mann’s PC-Nqthm system [28] a valuable tool for debugging Nqthm proofs.
This system is fully integrated with Nqthm. Thus, the user can give com-
mands at a low level (such as deleting a hypothesis) or at a high level (such
as calling Nqthm).

As with a variety of proof-checking systems, PC-Nqthm is goal-directed;
a proof is completed when the main goal and all subgoals have been proved.
A notion of macro commands lets the user create compound commands, in
the same spirit of the tactics and tacticals of LCF [20]. An interactive proof
is complete when all goals have been proved. It is PC-Nqthm’s low-level
features that help us understand when and why a goal fails.

This is an extension to Nqthm by Matt Kaufmann, which is not documented in [9].
See [29] for details.

22

Chapter 3

The MC68020 Instruction
Set Specification

We have formally specified a substantial subset of the instruction set of
the MC68020 microprocessor. This formal specification can be viewed as
a behavioral-level simulator in a formal logic, one intended to reflect the
MC68020 microprocessor correctly and, in the meantime, to be amenable to
mathematical reasoning. The main objective of this chapter is to describe
precisely this formal, mathematical formalization. By doing this, we hope
to convince the reader that our formal specification appropriately models
the behavior of the real MC68020 chip at a certain abstract level.

The organization of this chapter requires some explanation. After for-
malizing in the Nqthm logic the basic concepts—the natural numbers, the
integers, and the bit vectors—we describe our formalization of the machine
states and the state components. We then discuss the specification of the
MC68020 addressing modes. With all the necessary pieces in place, we then
investigate the formalization of one specific instruction. We start from the
very top level of the specification, and descend to the smallest details, de-
scribed in the few preceding sections. We have chosen to study one of the
most familiar instructions: the SUB instruction, which reflects our general
modeling approach to all instructions in our MC68020 model. Finally, we
conclude with remarks about some of the interesting issues that have come
up in the specification.

The entire MC68020 formal specification is given in [53].

23

3.1 Basic Concepts

This section describes how we formalize basic natural number, integer, and
bit vector arithmetic in the Nqthm logic. Bit vector is the only type of
object manipulated at the instruction-set level. Integer arithmetic, which
has its use in program proving, is not used in this chapter.

3.1.1 Natural Numbers

Natural numbers are axiomatized in the Nqthm logic with Peano’s axioms.
Many common functions on natural numbers such as z + y, z — y, = * vy,
z mod y, r + y, and < y have been built into the “Ground-Zero” logic
of the Nqthm system by its implementors. The only two other functions
we need in our specification are the exponential function exp (z, y) and the
logarithmic function log (b, x), which are defined as follows:

DEFINITION:

exp (z, y)
= ify ~0 then 1
else z * erp(z, y — 1) endif

DEFINITION:

log (b,)

= if (b~0)V (b=1) then o
elseif z < b then 0
else 1 + log(b, z + b) endif

The reader may find the definitions of the built-in functions in [9].

3.1.2 Integer Arithmetic

The Nqthm logic adds the integers almost as an afterthought—all the in-
teger operations have to be defined by the user. The integer functions we
have defined in the Nqthm logic are integerp, iplus, idifference, itimes, ire-
mainder, iquotient, and ilessp, which are simply the integer counterparts of
those natural number functions in the preceding subsection.

Since the meanings of these functions are quite intuitive, we will not give
their definitions here. The reader may find their definitions in [53].

3.1.3 Bit Vector Arithmetic

Bit vectors are represented as natural numbers in our formalism. For ex-
ample, the content of the program counter is represented as a nonnegative

24

integer with range between 0 and 232 — 1, inclusive. Each of the operations
on bit vectors is therefore formalized as some sort of operation on nonneg-
ative integers. The decision to use natural number representation was not
easy to make. Finite lists, for example, seemed an equally good represen-
tation for bit vectors, and have been used successfully in hardware design
verification [51]. In fact, we tried to use the finite list representation in our
early version of the MC68020 specification. But we soon found it awkward
for machine-code program proving. The choice of representation should take
into account the often much more difficult task of automated reasoning.

Next, let us see how we define the basic bit vector arithmetic. We present
the definitions of all the operations because they are used in the subsequent
exposition.

The following are the definitions of the basic bit field manipulation op-
erations.

DEFINITION: becar(z) = (z mod 2)
DEFINITION: bedr(z) = (z + 2)
DEFINITION: head(z, n) = (z mod exp (2, n))
DEFINITION: tail(z, n) = (z + exp (2, n))
DEFINITION: bitn (2, n) = bear (tail(z, n))
DEFINITION: mbit(z, n) = bitn(z, n — 1)
DEFINITION: bits (z, 1, 7) = head (tail(z, i), 1 + (j — 7))
DEFINITION:
setn (z, n, c)
= if n ~ 0 then fiz-bit(c) + (2 * bedr(z))

else bear(z) + (2 * setn (bedr (z), n — 1, ¢)) endif

DEFINITION: app (n, z, y) = (head (z, n) + (y * exp(2, n)))

Intuitively, head returns the bit vector of the first n bits of z; tail returns
the bit vector obtained by discarding the first n bits of z; bcar and bedr are
simply the special cases of head and tail with n = 1; bitn returns the nth bit
of the bit vector z; mbit is simply a special case of bitn, returning the most
significant bit of z; bits returns the bit vector consisting of bits ¢ through j
of x; setn sets the nth bit of the bit vector z to ¢; and app returns the bit
vector obtained by concatenating z and y.

The following definitions formalize the logical functions that are used to
specify the corresponding MC68020 logical instructions.

25

DEFINITION: lognot(n, z) = ((ezp (2, n) — head(z, n)) — 1)

DEFINITION:
logand (z, y)
= if (z ~0) V (y ~0) then 0
else b-and (bcar (z), bear (y))
+ (2 * logand (bedr (z), bedr(y))) endif

DEFINITION:
logor (z, y)
= if z ~ 0 then fiz(y)
elseif y ~ 0 then fir(z)
else b-or(bcar(z), bear(y))
+ (2 x logor (bedr (z), bedr(y))) endif

DEFINITION:

logeor (z, y)
= if (z ~0) A (y =~ 0) then 0
else b-eor (bear (z), bear(y))
+ (2 x logeor (bedr (z), bedr(y))) endif

The functions lognot, logand, logor, and logeor model the logical func-
tions not, and, or, and eor, respectively.

The following definitions formalize bit-vector addition, subtraction, and
sign-extension, which have their use in specifying the corresponding MC68020
instructions and effective address calculation.

DEFINITION: adder(n, ¢, ¢, y) = head (¢ + = + y, n)
DEFINITION: add(n, z, y) = head(z + y, n)

DEFINITION:
subtractor (n, ¢, z, y) = adder (n, b-not(c), y, lognot(n, x))

DEFINITION:
sub(n, z, y) = head (y + (exp (2, n) — head(z, n)), n)

DEFINITION:
ext(n, T, size)
= if n < size
then if b0p (bitn (z, n — 1)) then head (z, n)
else app (n, =, exp (2, size — n) — 1) endif
else head(z, size) endif

The function ext sign-extends the bit vector z, with length n, into a bit
vector with length size.

Finally, we formalize those bit-vector shift and rotate operations that
are mainly used in specifying the MC68020 shift and rotate instructions.

26

DEFINITION: Isl(len, z, ecnt) = head (z * exp (2, cnt), len)
DEFINITION: asl(len, z, cnt) = head (z * exp (2, cnt), len)
DEFINITION: Isr(z, ent) = tail(z, cnt)

DEFINITION:
asr(n, z, cnt)
= if ¢ < ezp(2, n — 1) then tail(z, cnt)
elseif n < c¢nt then exp(2, n) — 1
else app (n — cnt, tail(z, cnt), exp (2, cnt) — 1) endif

DEFINITION:
rol(len, z, cnt)
= let n be cnt mod len
in
app (n, tail (z, len — n), head (z, len — n)) endlet
DEFINITION:
ror (len, =, cnt)
= let n be cnt mod len
in
app (len — n, tail(z, n), head (z, n)) endlet

As suggested by their names, the functions Isl and Ilsr formalize logical
shift; the functions asl and asr formalize arithmetic shift; the functions rol
and ror formalize logical rotate.

3.2 The User-Visible State

As briefly mentioned in Chapter 2, we formalize a user-visible machine state
as a list of five components that have their intuitive meanings as the proces-
sor status word, the register file, the program counter, the condition code
register, and the memory, respectively.

DEFINITION:
me-state (status, regs, pc, ccr, mem) = list (status, regs, pe, ccr, mem)

DEFINITION: me-status (s) = car(s)
DEFINITION: mec-rfile (s) = cadr (s)
DEFINITION: mec-pc (s) = head (caddr(s), L)

DEFINITION: mec-cer(s) = head (cadddr(s), B)

27

DEFINITION: mc-mem (s) = caddddr(s)

The function mc-state constructs a machine state using its five argu-
ments; the other functions me-status, me-rfile, me-pc, me-cer, and me-mem
are accessors to the five different components of a given machine state. There
are four constants B, W, L, and Q in the logic to define the sizes of byte,
word, longword, and quadword of the MC68020, respectively.

In the next five subsections, we describe the formalization of each of the
five state components.

3.2.1 The Processor Status Word

The processor status word is either the symbol ’running or one of the
following symbols indicating some error message if an exception occurs. This
status field is not actually present in any MC68020 chip. Rather, it is the
artifice of our state formalization by which we indicate that an actual error
has arisen, or that an aspect of the MC68020 not defined in our formalization
has been encountered during execution.

DEFINITION: READ-SIGNAL = ’read_unavailable_memory
DEFINITION:

WRITE-SIGNAL = ’write_rom_or_unavailable_memory
DEFINITION:

RESERVED-SIGNAL
= ’motorola_reserved_for_future_development

DEFINITION: PC-SIGNAL = ’pc_outside_rom
DEFINITION: PC-ODD-SIGNAL = ’pc_at_odd_address
DEFINITION:

MODE-SIGNAL
= ’illegal_addressing mode_in_current_instruction

We say the machine state is normal if its status is >running.

3.2.2 The Register File

The register file is represented as a list of nonnegative integers, where the
first eight represent the data registers D0 - D7 and the second eight represent
the address registers A0 - AT.

28

DEFINITION:
read-rn (oplen, rn, regs) = head (get-nth (rn, regs), oplen)

DEFINITION:
write-rn (oplen, value, rn, regs)
= put-nth (replace (oplen, value, get-nth (rn, regs)), rn, regs)

The functions read-rn and write-rn are the two basic operations used to
obtain and modify the register rn in the register file rfile. Operations on the
register file are formalized in terms of these two functions. The functions get-
nth and put-nth are the list operations to fetch and modify the nth element
of a list.

3.2.3 The Program Counter

The program counter PC is simply represented as a nonnegative integer.
As an invariant, the PC always points to the next memory location to be
considered throughout the specification. Consequently, the PC will point to
the next instruction after the execution of the current instruction.

3.2.4 The Condition Code Register

The condition code register CCR is also represented as a nonnegative integer.
The first five bits of CCR designate the carry, the overflow, the zero, the
negative, and the extend condition codes, respectively.

DEFINITION:
cvznz (e, v, z, n, T)
= (fiz-bit(c)
+ (2 * fiz-bit (v))
+ (& * fiz-bit(z))
+ ((8 * fiz-bit(n)) + (16 * fiz-bit(z))))))

DEFINITION: set-cvznz (cvznz, ccr) = replace (5, cvznz, ccr)

The function cvznz “collects” the five condition codes, and the function
set-cvznz updates the five condition codes in the condition code register.
These two functions are used to update the condition codes in CCR.

29

3.2.5 The Memory

The memory is represented as a pair of binary trees. A binary representation
for memory provides some efficiency for simulating MC68020 instructions.
One of the binary trees is a formalization of memory protection—we may
specify that any byte of memory is >ram, ’rom, or >unavailable; the other
binary tree holds the data, for example, the actual bytes stored. As dis-
cussed elsewhere in this chapter, we use the notion of read-only memory to
deal with the issue of cache consistency. We also believe that it is unreal-
istic to assert the correctness of machine-code programs without carefully
characterizing which parts of memory are read and written—few MC68020
chips are connected to a full 4 gigabytes of RAM. Memory protection issues
are not specified in the MC68020 user’s manual [40].

The following functions are the basic memory read/write functions. Op-
erations on memory are defined in terms of these three functions. The
functions pc-read-mem and read-mem return a bit vector formed by the k
bytes from the memory starting at address pc or z, respectively. The func-
tion write-mem stores the wvalue in the k bytes of the memory starting at
.

DEFINITION:
pc-read-mem (pc, mem, k)
= ifk ~0 then 0
else app (B,
pc-byte-read (add (32, pc, k — 1), mem),
pe-read-mem (pe, mem, k — 1)) endif

DEFINITION:
read-mem (z, mem, k)
= if £k ~0 then 0
else app (B,
byte-read (add (32, =, k — 1), mem),
read-mem (z, mem, k — 1)) endif

DEFINITION:
write-mem (value, , mem, k)
= if k ~0 then mem
else write-mem (tail (value, B),
z’
byte-write (value, add (32, z, k — 1), mem),
k — 1) endif

For memory protection, there are also three basic functions: pc-read-
memp specifies that a portion of the memory is read-only; read-memp spec-

30

ifies that a portion of the memory is readable; write-memp specifies that a
portion of the memory is writable. We omit their definitions here.

3.3 Internal States and Effective Address
Calculation

Many of the MC68020 instructions are too complicated to specify in a single
step, especially when there is more than one effective address calculation.
Therefore, we often use the following function to introduce internal states
in their specifications.

DEFINITION:
mec-instate (oplen, ins, s)
= let s&addr be effec-addr (oplen, s_mode (ins), s_rn (ins), s)
in
if cadr (s&addr) = ’m
then if read-memp (cddr (s€addr), mc-mem (s), op-sz (oplen))
then s&addr
else cons (halt (READ-SIGNAL, s), nil) endif
else sédaddr endif endlet

The function mc-instate takes the operation size, the operation word
of the current instruction, and the current machine state as arguments,
and returns a pair consisting of the internal state after the source effective
address calculation and the calculated effective address.

The function effec-addr formalizes the effective address calculation. All
the eighteen MC68020 addressing modes have been specified. An addressing
mode can specify a constant that is the operand, a register that contains
the operand, or a location in memory where the operand is stored. For the
informal description and the formal definition, please refer to [40] and [53].

3.4 The Specification of the SUB Instruction

Having addressed some important aspects of our MC68020 specification,
we discuss in this section the formalization of the individual instructions.
We use the SUB instruction as our example, which generally reflects our
modeling approach to the other instructions.

The top-level loop of our specification is defined by a pair of functions,
the single-stepper function stepi and the stepper function stepn.

31

DEFINITION:

stepn (s, n)

= if mc-haltp (s) V (n ~0) then s
else stepn (stepi(s), n — 1) endif

DEFINITION:
stepi(s)
= if evenp (mc-pc(s))
then if pc-word-readp (mc-pc(s), mc-mem(s))
then ezecute-ins (current-ins (mc-pc(s), s),
update-pc (add (L, me-pe(s), WSZ), s))
else halt (PC-SIGNAL, s) endif
else halt (PC-ODD-SIGNAL, s) endif

The stepper stepn executes n instructions by calling the single stepper
stepi. But stepn halts prematurely if the status field of s ceases to be
’running.

The function step: calls execute-ins to compute the new machine state
from the current state s by executing the current instruction under the fol-
lowing two conditions: if the program counter is aligned on a word bound-
ary, as required by the MC68020, and also points to read-only memory, as
is checked by the function pc-word-readp. Otherwise, the function step: re-
turns a machine state with the corresponding error message in the status
field.

Roughly speaking, ezecute-ins decodes the current instruction according
to the opcode and jumps to the specification of the instruction identified.
The first argument of execute-ins should be the first word (operation word)
of the current instruction, and the second argument should be an inter-
nal state with the program counter incremented by 2. The very top-level
operation decoding is given by Table 3-14 in [40].

If the current instruction is ‘subx <ea>,Dn’,' ezecute-ins will call the
following function sub-ins! that specifies the resulting state of the execution
of this SUB instruction.

DEFINITION:
sub-insl (oplen, ins, s)
= if sub-addr-modep1 (oplen, ins)
then let s&addr be mec-instate (oplen, ins, s)
in

if me-haltp (car (s&addr)) then car(s&addr)

!This is only one of the two cases in the SUB instruction; please refer to [40] and [11]
for more details.

32

else d-mapping (oplen,
sub-effect (oplen,
operand (oplen,
cdr (s€addr),
$)s

read-dn (oplen,
d_rn (ins),

s));
d_rn (ins),
car (s&addr)) endif endlet
else halt (MODE-SIGNAL, s) endif

The function sub-ins! first tests if the addressing mode of the current
instruction is allowed by the MC68020. The addressing modes available to
this instruction are specified by the following function.

DEFINITION:
sub-addr-modep1 (oplen, ins)
= (addr-modep (s-mode (ins), s_rn (ins))
A (— byte-an-direct-modep (oplen, s_mode (ins))))

which states that all the addressing modes are available to the SUB instruc-
tion, except that byte operation is not allowed in address register direct
mode.

Next, an internal state is created using mc-instate, and the function d-
mapping takes the effects of the SUB instruction and the internal state to
create the resulting state of the execution of this SUB instruction.

The effects of the SUB instruction are formalized by sub-effect that re-
turns a pair consisting of the result of the subtraction and the new condition
codes.

DEFINTTION:
sub-cvznz (oplen, sopd, dopd)
= cvznz (sub-c (oplen, sopd, dopd),
sub-v (oplen, sopd, dopd),
(oplen, sopd, dopd),
sub-n (oplen, sopd, dopd),
sub-c (oplen, sopd, dopd))

sub-z

DEFINITION:
sub-effect (oplen, sopd, dopd)
= cons (sub (oplen, sopd, dopd), sub-cvznz (oplen, sopd, dopd))

The function cvznz puts together the five new condition codes of the
SUB instruction, which are formalized by the following four functions, para-
phrasing the description given in Table 3-11 of the MC68020 manual [40].
The X flag is the same as the C flag.

33

DEFINITION:
sub-c (n, sopd, dopd)
= let result be sub(n, sopd, dopd)
in
b-or (b-or (b-and (mbit (sopd, n), b-not (mbit(dopd, n))),
b-and (mbit (result, n), b-not (mbit(dopd, n)))),
b-and (mbit (sopd, n), mbit(result, n))) endlet

DEFINITION:
sub-v(n, sopd, dopd)
= let result be sub(n, sopd, dopd)
in
b-or (b-and (b-and (b-not (mbit (sopd, n)), mbit (dopd, n)),
b-not (mbit(result, n))),
b-and (b-and (mbit (sopd, n), b-not (mbit(dopd, n))),
mbit (result, n))) endlet

DEFINITION:

sub-z (oplen, sopd, dopd)

= if sub(oplen, sopd, dopd) = 0 then B1
else B0 endif

DEFINITION:
sub-n (oplen, sopd, dopd) = mbit (sub (oplen, sopd, dopd), oplen)

To paraphrase the preceding definitions, the carry bit is set to (Sm A
Dm) V (Rm A Dm) V (Sm A Rm); the overflow bit is set to (Sm A Dm A
Rm) V (Sm A Dm A Rm); the zero bit is set iff the subtraction is equal to
0; the negative bit is set to Rm, where Sm, Dm, and Rm denote the most
significant bit of source, destination and result, respectively.

3.5 Discussion

Having described the MC68020 specification in the preceding sections, we
conclude this chapter with some of the interesting issues that have come up
in the specification.

The needs of mathematical reasoning were our main concern during the
development of the formal specification. Their impact on program proving
is nevertheless sometimes too subtle to realize at the stage of writing the
specification. The specification went through several major and many mi-
nor changes as we understood more about mathematics at the machine-code
level. For example, even though the functions pc-read-mem and read-mem

34

are mathematically equivalent, the use of two different functions was mo-
tivated by program proving considerations. Technically speaking, different
rewrite rules are set up for these two functions.

Natural number representation for bit vectors seems better for machine
code program proving, whereas finite list representation seems better suited
for hardware verification. In the context of system verification, this conflict
can be reconciled by an equivalence proof for these two representations. In
fact, we proved their equivalence in Nqthm when we switched to a natural
number representation.

The MC68020 has an on-chip instruction cache, but a write operation
does not invalidate or modify the corresponding entry in the instruction
cache. Rather than formalizing the details of the MC68020 cache (which has
changed from MC680x0 processor to processor), we have adopted, for the
time being, the strategy of requiring that instruction fetches be from read-
only parts of the memory, and therefore, if the instruction cache is entirely
valid at the beginning of the execution, it will remain valid throughout the
execution.

Some MC68020 instructions are sensitive to internal evaluation order.
For instance, the MOVE instruction has two effective address calculations.
Because of the side effect of effective address calculation, it is necessary to
know which address is calculated first. This information is not specified in
the Motorola literature, but by speaking with Motorola engineer Jim Eifert
in April 1990, we learned that it is an internal Motorola policy that the
source effective address is always calculated first.

Ideally, we would specify the condition codes in a way most natural to the
user. But in order to assure full compliance with the MC68020 specification,
we have followed the syntactical definition described in Table 3-11 of [40].
For instance, the definition of sub-c is perhaps not the way the programmer
views the carry bit of a SUB (subtraction) instruction. One of the problems
we have to deal with in the verification phase is to prove an abstraction
theorem that relates these different views. This problem has been addressed
in the lemma library.

The MC68020 provides a very rich set of addressing modes. The defini-
tion of effective address calculation is rather complicated and required great
care to formalize completely and in a form amenable to formal reasoning.

In addition to using the Nqthm prover to prove general theorems about
the correctness of MC68020 programs under the semantics provided by
stepn, it is noteworthy that it is actually possible for us, within Nqthm,
to run stepn on concrete data. That is, Nqthm together with stepn pro-

35

vides a simulator for the MC68020, albeit one that requires approximately
1,000,000 Sun-3 (MC68020) instructions to simulate a single MC68020 in-
struction. We mention this simulation possibility only to emphasize the
important point: our semantics for the MC68020 is an operational seman-
tics in the strictest sense of the word. There are several advantages to having
such an operational characterization of the semantics of our computational
model:

e It is possible to test the specification’s correctness by executing it on
specific data and comparing the result with the behavior of an actual
MC68020. By doing so, we acquired some degree of confidence in our
formal model. Ken Albin at Computational Logic has been working
on a testing suite for the MC68020 specification.

e By giving the MC68020 semantics entirely with definitions instead
of with an ad hoc collection of axioms, we are guaranteed that the
specification is consistent, relative to the consistency of elementary
number theory.

e The executability of the formal model provides in some cases a fast
means of symbolic manipulation during program proving.

36

Chapter 4

The Mechanization of
Machine-Code Reasoning

Specifying a computing device in a formal logic allows us to study its behav-
ior mathematically. This is our main motivation for specifying the MC68020
microprocessor in the Ngthm logic. We now investigate the problem of me-
chanically verifying, using Nqthm, MC68020 machine-code programs based
on our MC68020 formal model.

The development of lemmas is a key to success in any use of an interactive
theorem proving system, certainly of Nqthm. Lemmas are saved as derived
inference rules that affect the future behavior of the system. Therefore, the
quality of the lemmas often determines the success of the entire proof effort.
This chapter describes how we developed a lemma library that mechanizes
a basic mathematical theory of machine-code reasoning. Combining the
MC68020 formal model and this lemma library, we have built a powerful
proof system on top of Nqthm. We then used this proof system to verify
many MC68020 machine-code programs mechanically.

We have invested more time developing our lemma database than on
any other aspect of this project. First, mechanizing a theory is not a trivial
step, practically. The lemmas need to be formulated to integrate nicely into
the Ngthm proving engine so that the prover can find them at the “right
time” and apply them automatically. Many proofs require the application
of so many lemmas that a more manual proof-checking approach, in which
each application of each lemma is suggested by the user, seems practically
out of the question. Second, we insist that all the lemmas be mechanically
proved by Nqthm before being admitted into the system. Allowing the

37

users of theorem provers to assert without proof the lemmas they think
correct seems a pretty sure way to render their systems inconsistent. Finally,
the management of the lemma library becomes very complicated and time
consuming when the library gets rather large. Interference between lemmas
makes it extremely hard to predict the behavior of the system when any
changes are made to the lemma library.

Our approach to developing a lemma library can be roughly viewed as
“bottom-up”. We carefully study each of the concepts involved in the prob-
lem domain, in the hope of proving a set of lemmas that fully characterizes
those concepts. Our presentation of the library in this chapter also follows
this general approach. We will address some of the important issues we have
dealt with in developing the library. The Nqthm script of the entire lemma,
library is in [53].

4.1 Integer Arithmetic

Integer arithmetic is the basic theory of our program proving work. In our
work, we have at least one more reason to develop a powerful sublibrary for
integer arithmetic: all the bit vector operations are formalized with non-
negative integer arithmetic; hence theorems about bit vectors are merely
theorems about nonnegative integers. Most of the lemmas in this sublibrary
are concerned with these basic arithmetic functions: =z + y, z — vy, = * vy,
r mod y, x = y, exp(z, y), log(b, z), and z < y. During the develop-
ment, we have greatly benefited from an integer library [30] developed at
Computational Logic, Inc.

The lemmas in this sublibrary are simply a collection of basic facts in
elementary number theory, which are particularly useful in program proving
at the machine-code level. Most of the lemmas have quite intuitive meanings.
We will not elaborate on this sublibrary, but we will show below two simple
lemmas as examples.

THEOREM: quotient-times-cancel

((zxy) + (zx 2))
= if 2 ~0 then 0
else y + z endif

THEOREM: remainder-plus-remainder]

((zr + (y mod z)) mod z) = ((z + y) mod z)

We offer no explanation here as the lemmas speak for themselves. The
rest of the library relies heavily on this integer sublibrary.

38

4.2 Bit Vector Arithmetic

Since we model the MC68020 at the machine-code level, it is inevitable
that we must study the mathematical properties of bit vector operations.
The purpose here is to establish a set of proof rules to support bit vector
arithmetic reasoning at a relatively high level of abstraction. Reducing bit
vector reasoning to integer arithmetic reasoning all the time is practically
intractable.

All the bit vector operations described in the preceding chapter have
been addressed in our lemma library to some extent. We have no interest in
mechanizing the mathematical reasoning of modular arithmetic in general,
which seems quite challenging to us. The class of bit vector lemmas we have
proved is largely based on our needs. Furthermore, we did not expect much
bit vector reasoning in the program-proving phase, which turned out to be
the case in verifying machine-code programs.

Just to exhibit the lemmas of this class, we give the following two simple
lemmas taken from the library.

THEOREM: add-associativity
add(n, add(n, z, y), 2) = add(n, z, add(n, y, 2))

THEOREM: bitn-tail
bitn (tail(z, i), j) = bitn(z, 1 + 7)

Intuitively, add-associativity establishes the associativity of bit vector
addition, and bitn-tail proves that the jth bit of tail(z, i) is the (i + j)th
bit of z. Note that add-associativity is simply an immediate consequence of
the lemma remainder-plus-remainder! mentioned in the preceding section.

It is worth noting that we have proved in our lemma library a few useful
meta lemmas about bit vector arithmetic. For example, the following lemma,
cancels the like addends on two sides of an equality.

THEOREM: correctness-of-cancel-equal-add

eval$ (t, z, a) = eval$ (t, cancel-equal-add (z), a)

4.3 Interpretations of Bit Vector Operations

At the machine-code level, mathematical functions are modeled by bit vector
operations. It is therefore necessary to establish the correspondence between
the real mathematical functions and their bit vector “implementations”. We
addressed this issue by using interpretation lemmas in our lemma library.

39

Basically, there are two kinds of lemmas we have considered: unsigned and
signed integer interpretations. We have proved the interpretation lemmas for
the basic unsigned and signed integer operations supported by the MC68020
instruction set. In this section, we explain the basic ideas using the two
interpretation lemmas for addition.

First, let us introduce the basic conversion functions about the few basic
data types we are considering.

DEFINITION: nat-to-uint (z) = fiz(z)
DEFINITION: uint-to-nat (z) = fix(z)

DEFINITION:

nat-to-int (z, n)

= ifz < exp(2, n — 1) then fiz(z)
else — (exp (2, n) — z) endif

DEFINITION:

int-to-nat (z, size)

= if negativep (z) then ezp (2, size) — negative-guts (z)
else fiz(z) endif

The conversion between bit vectors and unsigned integers is given by the
functions nat-to-uint and uint-to-nat; the conversion between bit vectors and
signed integers is given by the functions nat-to-int and int-to-nat.

Now, let us consider the interpretations for the bit vector operation
add whose definition was given in section 3.1.3. As we know from two’s
complement addition, the function add can be viewed as either unsigned or
signed integer addition, depending on how we interpret the two bit vector
inputs. Intuitively speaking, the lemma add-uint establishes the relation
between add and plus, if the unsigned integer interpretation is taken; the
lemma add-int establishes the relation between add and #plus, if the signed
integer interpretation is taken.

THEOREM: add-uint
(nat-rangep (z, n) A nat-rangep (y, n))
= (nat-to-wint (add (n, z, y))
= if (nat-to-uint (z) + nat-to-uint (y)) < exp (2, n)
then nat-to-uint (z) + nat-to-uint (y)
else (nat-to-wint (z) + nat-to-uint (y))
— ezp(2, n) endif)

40

THEOREM: add-int
(nat-rangep (z, n) A nat-rangep (y, n))
= (nat-to-int (add (n, z, y), n)
= if int-rangep (iplus (nat-to-int (z, n), nat-to-int (y, n)), n)
then iplus (nat-to-int (z, n), nat-to-int (y, n))
elseif negativep (nat-to-int (z, n))
then iplus (nat-to-int (z, n),
1plus (nat-to-int (y, n), exp (2, n)))
else iplus (nat-to-int (z, n),
iplus (nat-to-int (y, n), — exp (2, n))) endif)

Roughly speaking, the lemma add-uint proves the equivalence of add (n,
z, y) and z + y, if there is no carry; the lemma add-uint proves the equiv-
alence of add (n, x, y) and iplus (z, y), if there is no overflow. The interpre-
tation lemmas of the other bit vector operations are formulated in the same
way.

The importance of these interpretation lemmas is two-fold. From the
point of view of semantics, these interpretation lemmas helped achieve a
higher level of abstraction. From the point of view of theorem proving, they
get us into the familiar mathematical domains for which theorem provers
are built.

4.4 Machine-State Management

Machine-state management is probably the most difficult part of the library
to construct. It mainly concerns proving general theorems about the ma-
chine state and its components. In proofs of programs, machine states are
the objects the theorem prover has to reason about and the user has to
inspect when the proof fails. The machine state is often very complex and
difficult to manage. By developing carefully a set of lemmas for each of the
components of the machine state, we are able to gain some level of abstrac-
tion that helps the theorem prover focus on the relevant part of the proof
and helps the user understand the proof script, in particular, when the proof
attempt fails.! In sum, we want to have both automation and user control
of the proofs. We think we have achieved this goal.

Intuitively, one might think of these lemmas as some kind of Hoare rules
[22] for machine-code program proving. But these lemmas are rather compli-
cated and delicate because of the complexity of the MC68020 architecture.

!Given such a large and complex model, we would regard it as a big win if the theorem
prover responded to the proofs and printed out readable proof scripts.

41

In this section, we briefly discuss the lemmas for the register file and the
memory. The lemmas for the other state components are quite straightfor-
ward.

4.4.1 The Register File

As described in Chapter 3, the functions read-rn and write-rn are the two
main operations used to read and modify some register in the register file.
We have proved a set of lemmas that captures the useful properties of these
two functions, whose definitions were subsequently disabled.? The following
theorem shows one of the key lemmas.

THEOREM: read-write-rn
read-rn (n2, rn, write-rn (n1, value, rm, rfile))
= if fir(rm) = fiz(rn)
then if n2 < n! then head (value, n2)
else replace (nl, value, read-rn(n2, rn, rfile)) endif
else read-rn(n2, rn, rfile) endif

Roughly, this lemma says that the result of reading the content of register
rn after writing value to register rm equals:

e the result of reading the previous content of register rn, if rn # rm.
e the first n2 bits of value, if (rn = rm) A (n2 < nl).

e the result of concatenating value and the nl to n2 bits of the previous
content of register rn, if (rn = rm) A (n2 > nl).

As shown in this lemma, the main difficulty here is to deal with the various
types of data in the registers.

4.4.2 The Memory

As described in Chapter 3, the functions read-mem and write-mem are the
two main operations used to read from the memory and write to it. A set of
lemmas was proved in the library to capture some useful properties of these
two functions, whose definitions were subsequently disabled. We present
here two key lemmas of this type whose functions are similar to the lemma,
read-write-rn above.

2By disabling an event, we prohibit the Nqthm prover from using the event in the
subsequent proofs. See [9].

42

DEFINITION:
read-write-mem-end (z, value, y, mem, m, n)
= read-mem (z, write-mem (value, y, mem, m), n)

THEOREM: read-write-mem1

read-mem (z, write-mem (value, y, mem, k), n)

= if disjoint(z, n, y, k) then read-mem (z, mem, n)
else read-write-mem-end (z, value, y, mem, k, n) endif

THEOREM: read-write-mem2
uint-rangep (n, 32)
= (read-mem (z, write-mem (value, T, mem, n), n) = head (value, 8 * n))

Very roughly, this says that the result of reading at location z after
writing value at location y is either value, by the lemma read-write-mem?2,
or the previous contents of x, by the lemma read-write-mem1, according to
whether z is equal to y or not. Mathematically, the function disjoint (z, m,
y, n)is true iff {x,z+1,....,2+(m-1)}Nn{y,y+1,....,y+(n—=1)} = ¢.
disjoint is used to specify that there is no overlap of two memory portions.
The function read-write-mem-end is used as a trick to truncate some portion
of the proof space that is believed to be useless. Functions of this type are
always disabled globally.

There are a large number of lemmas about disjoint in the library which
are primarily used to establish the disjointness of two memory segments
in proofs. This class of lemmas was extremely difficult to formulate and
manage efficiently in Nqthm. This perhaps is the price of our use of a single
memory addressing space for the MC68020 model. Up to now, we do not
think we have managed to produce a satisfactory proof automation of the
seemingly very simple mathematics about disjointness in Ngthm. It seems
to be a place in the lemma library that may need some more careful thought
and reimplementation if we have a chance to do it again.

4.5 Interpretations of Condition Codes

Another important class of lemmas that has its use in the branching in-
structions is the interpretation of the condition codes of various instructions.
Again, we use the SUB instruction in our discussion.

In the preceding chapter, we gave the definition of the condition codes
of the SUB instruction. But this definition is often not the most useful
mathematical characterization of the condition codes to use when it comes

43

CC | carry clear C LS | low or same |C+2Z

CS | carry set c LT | less than N+V+NxV
EQ | equal 7 MI | minus N

GE | greater or equal | NV + N xV NE | not equal Z

GT | greater than N+«V+«Z+Nx*VxZ | PL | plus N

HI | high CxZ VC | overflow clear | V

LE | less or equal Z+NxV+NxV VS | overflow set 1%

Table 4.1: The Bcee Condition Codes

to program proving. We therefore need to prove a set of lemmas that pro-
vides the mathematical meaning of condition codes used in program proving.
Table 4.1 shows all the condition codes that can be specified in the Bec in-
struction. The following lemmas characterize the most useful semantics of
these condition codes for program proving.

THEOREM: sub-bls

(nat-rangep (z, n) A nat-rangep (y, n) A (n % 0))
= (bls(sub-c(n, z, y), sub-z(n, =, y))

= if nat-to-uint (z) < nat-to-uint(y) then 0

else 1 endif)

THEOREM: sub-beq-uint
(nat-rangep (z, n) A nat-rangep (y, n))
= (beq(sub-z(n, z, y))

= if nat-to-uint (z) = nat-to-wint(y) then 1

else 0 endif)

THEOREM: sub-bcséicc
(nat-rangep (z, n) A nat-rangep (y, n) A (n #0))
= (bes(sub-c(n, z, y))

= if nat-to-uint (y) < nat-to-uint (z) then 1

else 0 endif)

THEOREM: sub-buvs&vc
(nat-rangep (z, n) A nat-rangep (y, n) A (n #0))
= (bus(sub-v(n, z, y))

= if int-rangep (idifference (nat-to-int (y, n), nat-to-int (z, n)),

n) then 0

else 1 endif)

THEOREM: sub-bmi

(nat-rangep (z, n) A nat-rangep (y, n) A (n #0))
= (bmi(sub-n(n, z, y))

44

= if int-rangep (idifference (nat-to-int (y, n), nat-to-int (z, n)),
n)
then if ilessp (nat-to-int (y, n), nat-to-int (z, n)) then 1
else 0 endif
elseif ilessp (nat-to-int (y, n), nat-to-int (z, n)) then 0
else 1 endif)

THEOREM: sub-bge
(nat-rangep (z, n) A nat-rangep (y, n) A (n #0))
= (bge(sub-v(n, z, y), sub-n(n, z, y))
= if ilessp (nat-to-int (y, n), nat-to-int (z, n)) then 0
else 1 endif)

THEOREM: sub-bgt
(nat-rangep (z, n) A nat-rangep (y, n) A (n % 0))
= (bgt(sub-v(n, z, y), sub-z(n, z, y), sub-n(n, z, y))
= if ilessp (nat-to-int (z, n), nat-to-int (y, n)) then 1
else 0 endif)

Roughly speaking, the lemma sub-bls states that the condition LS is
true iff x > y; the lemma sub-beq-uint states that the condition EQ is
true iff x = y; the lemma sub-beséce states that the condition CS is true
iff y < x; the lemma sub-bvsévc states that the condition VS is true iff
—20=1) < (y —z) < 21 the lemma sub-bmi states that the condition MI
is true iff x < y for no overflow case or y < x for overflow case; the lemma,
sub-bge states that the condition GE is true iff y > x; the lemma sub-bgt
states that the condition GT is true iff y < x.

After we proved these seven lemmas, the definitions of sub-c¢, sub-v, sub-
z, and sub-n are no longer useful, and are therefore disabled.

4.6 The Interpreter Lemmas

The last class of lemmas we want to explain in this chapter concerns the
general (program independent) properties of the interpreter. The lemmas
of this type basically take the form: p(s) = p(stepn(s,n)). This class of
lemmas is not only useful in program proving, but also useful in sharpening
our understanding about the MC68020 model.

Most of the lemmas in this class are quite intuitive. Again, we give a
couple of simple examples to make our discussion concrete.

THEOREM: stepn-rom-addrp
rom-addrp (z, mc-mem (stepn (s, n)), k) = rom-addrp (z, mc-mem(s), k)

45

THEOREM: stepn-read-mem
rom-addrp (z, mc-mem (s), k)
= (read-mem (z, mc-mem (stepn (s, n)), k) = read-mem (z, mc-mem (s), k))

The lemma stepn-rom-addrp proves that the readability of any portion of
the memory is not changed after the execution of any number of any instruc-
tions; the lemma stepn-read-mem proves that the content of the read-only
memory is not changed after the execution of any number of any instruc-
tions.

Typically, the proof of the lemmas of this class is very shallow mathe-
matically, but tedious and painful practically. Because of the complexity of
the MC68020 model, this kind of proof often ends up splitting into a huge
number of cases, and some lemmas have to be provided to control the case
analysis. We believe this problem is intrinsic: any theorem prover has to
visit every corner of the interpreter in order to prove a single fact about the
interpreter.

46

Chapter 5

Machine-Code Program
Proving

Among the possible applications of our MC68020 formal specification, we
are at this time primarily concerned with studying the verification of specific
object code programs. This chapter, together with the next two chapters,
addresses the problem of program proving at the machine-code level, which
is the central theme of this work. We illustrate our verification approach
with some examples which provide evidence that this work can be applied
to some moderately sized real applications. By presenting these examples,
we provide the reader with a fair account of the difficulty of formalizing and
proving machine-code programs.

In this chapter, we investigate the formal correctness proofs of the object
code of five small programs written in high-level programming languages.
The first one is the C function ged already given in Chapter 2. The second
is an ADA program isqrt that computes the integer square root using
Newton’s method. The third and the fourth are slightly modified versions
of binary search and quick sort taken from The C Programming Language
[31]. The last one is a C program that implements the Boyer-Moore Majority
Voting algorithm. The object code of these programs is generated by Gnu
C or Verdix Ada compilers, as explained in Chapter 2.

Proving programs has sharpened our understanding of the MC68020
model and the mathematics for machine-code reasoning. These five exam-
ples have been particularly beneficial to us. We feel that a detailed discussion
of them would be equally beneficial to those verificationists who happen to
attempt these examples on their own verification system.

47

This chapter contains six sections. The first describes our approach to
machine-code program proving. The remaining five sections are devoted to
the five examples. For each example, we discuss the formalization, the proof,
and some other important issues such as the time analysis and memory space
bounds of the program. We advise the reader to go through the section 5.2
first since many concepts are introduced there and not repeated in the other
sections. The complete proof script for the five examples described in this
chapter is given in [53].

5.1 The Approach

In Chapter 2, we briefly described our approach to machine-code program
proving. This section provides a more rigorous mathematical treatment of
our program-proving methodology.

5.1.1 The Formulation

Given a machine-code program p, we need to formalize the following func-
tions in the Nqthm logic.

e a predicate p-statep(s) that characterizes the preconditions on the
initial state s where the program starts.

e a time function p-t(s) that defines the number of instructions needed
to complete the computation.

e aset of mathematical functions p-f1 (s), p-f2(s), ..., p-fn(s) that spec-
ifies the intended functional behavior of the program.

The correctness of the given program is then formalized with the follow-
ing eight theorems to be proved.

P-1. The resulting machine state is “normal”; for example, the processor
status word is equal to ’running.

p-statep (s) = (me-status (stepn (s, p-t(s))) = ’running)

P-2. The new program counter is set to the right location specified by rts-
addr(s).

48

p-statep (s) = (me-pe (stepn (s, p-t(s))) = rts-addr(s))

P-3. The value of the address register A6 in the resulting state is equal to
the value of A6 in the initial state s.

p-statep (s) = (read-an (32, 6, stepn (s, p-t(s))) = read-an (32, 6, s))

The register A6 is conventionally used as the frame pointer by many
compilers.

P-4. The value of the stack pointer A7 in the resulting state is incremented
by 4. The return address is popped off the stack when control returns
from a subprogram to the caller.

p-statep (s) = (read-an (32, 7, stepn (s, p-t(s))) = add (32, read-an (32, 7, s), 4))

P-5. The values of the data registers D2 - D7 and the address registers A2
- A5 are equal to their value in the initial state s.

(p-statep (s) A d2-7a2-5p (rn) A (oplen < 32))
=
(read-rn (oplen, rn, mc-rfile (stepn (s, p-t(s)))) = read-rn (oplen, rn, mc-rfile(s)))

Most of the compilers allow subprograms to use registers D0, D1,
A0, and Al without any conditions. Therefore, we do not have any
obligations to assert anything about these registers.

P-6. The program changes only the intended portions of memory. For any
z and k, if the memory segment [z,x + 1,...,2 + (k — 1)] is disjoint
from the portions of the memory the program intends to change, then
its content is not modified by the program.

(p-statep (s) A p-disjointness (z, k, s))
=
(read-mem (z, mc-mem (stepn (s, p-t(s))), k) = read-mem (z, mc-mem (s), k))

The disjoint predicate p-disjointness normally takes the form of a dis-
junction of disjoints.

P-7. The functional behavior of the given program p is equivalent to the
mathematical functions p-f1(s), p-f2(s), ..., p-fn(s).

49

p-statep (s) = p-sem-eq (stepn (s, p-t(s)), f1(s), f2(s), ... fn(s))

The equivalence relation p-sem-eq normally takes the form of a con-
junct of equalities.

P-8. The functions p-f1(s), p-f2(s), ..., p-fn(s) meet their requirement
specifications, which varies from program to program.

All the machine-code programs presented in this paper are mechanically
verified using the formulation above.

5.1.2 The Proof

Our formulation of the correctness theorem divides the proof logically into
two independent steps; the theorem P-8 deals with the correctness of the
underlying algorithm, and the others deal with the correctness of its im-
plementation. Separating the two correctness issues in the formulation suc-
cessfully and tackling each of them in isolation make the whole proof effort
easier. To be more concrete, the correctness proof for a given machine-code
program is divided into the following two steps.

1. We attempt to prove the theorems P-1 through P-7. In particular,
P-T7 establishes the equivalence of the algorithm, formalized in the
Nqgthm logic as those machine-independent functions p-f1, p-f2, ..., p-
fn, with the result of running the MC68020 specification on the given
machine code program. What we prove in this step is that the given
machine-code program does implement the algorithm, which, however,
says nothing about the correctness of the algorithm.

2. We attempt to prove the theorem P-8, which establishes the correct-
ness of the algorithm according to some specification. Note here we
do not need to deal with any specifics related to MC68020 in this step.
We can therefore focus completely on the mathematics of the algo-
rithm, and fully enjoy many of the mathematical laws that are not
available at the processor level.

To separate the two steps successfully, the formalization of the algorithm
— the functions p-f1, p-f2, ..., p-fn — has to be machine independent. This
can be done in a quite natural way, a straightforward paraphrase in the
Nqthm logic of the given C/Ada/LISP program. We believe this poses no
problem to us at all.

50

Step 2 is completely unrelated to MC68020 machine-code programs, and
is the kind of proof Ngthm users often do. Our main focus has been on step
1 in this work. The lemma library described in Chapter 4 is just a set of
derived inference rules devoted to the proofs in step 1.

5.2 Greatest Common Divisor

The first example continues the discussion started in Section 2.2.1. There
we explained how we generated the machine code to be verified. Here, we
will show the correctness proof of that machine code.

5.2.1 The Formalization

According to our approach, we need to formalize in the Nqthm logic the
preconditions, the time function, and the functional behavior of the GCD
machine-code program.

The function GCD-CODE formalizes the machine code of the C function
gcd as a list of 60 unsigned integers which have been obtained through GDB
as described in Chapter 2. The function ged-statep (s, a, b) characterizes
the preconditions on the initial state s.

DEFINITION:

GCD-CODE

= (78 86 0 0 72 231 48 0 36 46 0 8 38 46 0 12 74 130
103 28 74 131 102 4 32 2 96 22 182 130 108 8 76
67 40 0 36 0 96 232 76 66 56 0 38 0 96 224 32 3
76 238 0 12 255 248 78 94 78 117)

DEFINITION:
gcd-statep (s, a, b)
= ((mc-status (s) = *running)
A evenp (me-pe(s))
A rom-addrp (mc-pc(s), mc-mem (s), 60)
A mcode-addrp (me-pe (s), me-mem (s), GCD-CODE)
A ram-addrp (sub (32, 12, read-sp (s)), me-mem (s), 24)
A (a = iread-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
A (b = iread-mem (add (32, read-sp (s), 8), me-mem (s), 4))
A (a € N)
A (b eN))

The function gcd-statep (s, a, b) imposes the following conditions on the
intitial state s.

o1

s is in the user mode, for example, the processor status word is equal
to ’running.

e The program counter of s is even. The function evenp (z) asserts that
x is even.

e The program GCD-CODE is stored in the 60 consecutive bytes in the
memory, starting from the address pointed to by the program counter.
The function mcode-addrp (z, mem, code) asserts that code is stored
in the memory mem starting from the address x. The function rom-
addrp (z, mem, n) asserts that the memory segment [z,z+1,...,(x+
(n—1))] is ROM.

e The 24 bytes from sp — 12 to sp + 12 are RAM. The function ram-
addrp (z, mem, n) asserts that the memory segment [z, x+1,..., (z+
(n — 1))] is RAM.

e The integers a and b are on the user stack, and both are nonnegative.
The function iread-mem (z, mem, n) returns the integer formed by the
n bytes in the memory mem at location x.

The function gcd-t(a, b) defines the number of instructions needed to
complete the GCD program. Note that ged-t(a, b) can be viewed as just
counting instructions needed in the execution of GCD.

DEFINITION:

gcd-t1 (a, b)

= if a ~0 then 6
elseif b ~ 0 then 9
elseif b < a then splus(9, ged-t1 (a mod b, b))
else splus (9, gcd-t1 (a, b mod a)) endif

DEFINITION: gcd-t (a, b) = splus (4, ged-t1 (a, b))

The functional behavior of the program is specified by the following
function ged (a, b), which is just a formalization in the Nqthm logic of the
algorithm employed.

DEFINITION:

ged(a, b)

= if a ~ 0 then fiz(b)
elseif b ~ 0 then a
elseif b < a then ged(a mod b, b)
else gcd(a, b mod a) endif

52

5.2.2 The Proof

We follow strictly the two-step proof outlined in Section 5.1.2.
In the first step, we prove the following theorem that is a conjunct of
seven formulas corresponding exactly to the theorems P-1 to P-7.

THEOREM: gcd-correctness
let sn be stepn (s, gcd-t(a, b))
in
gcd-statep (s, a, b)
= ((me-status (sn) = ’running)

A (mc-pc(sn) = rts-addr(s))

A (read-rn (32, 14, mc-rfile(sn))

= read-rn (32, 14, mc-rfile(s)))

A (read-rn (32, 15, mc-rfile (sn))
= add(32, read-an (32, 7, s), 4))
((d2-7a2-5p (rn) A (oplen < 32))
= (read-rn (oplen, rn, mc-rfile (sn))

= read-rn (oplen, rn, mec-rfile (s))))
(disjoint (z, k, sub (32, 12, read-sp (s)), 24)
= (read-mem (z, mc-mem (sn), k)

= read-mem (z, mc-mem (s), k)))
(iread-dn (32, 0, sn) = gcd(a, b))) endlet

>

>

>

In particular, the last formula in this theorem establishes that the content of
data register DO is equal to gcd (a, b) after executing ged-t (a, b) instructions
from an initial state s that satisfies the precondition gcd-statep (s, a, b). This
equivalence allows us to study the Nqthm function ged (a, b) instead of the
machine-code program.

The second step is therefore to prove that ged(a, b) does compute the
greatest common divisor of the two nonnegative integers ¢ and b, which is
asserted by the following two theorems:

THEOREM: gcd-is-cd
((a mod ged(a, b)) =0) A ((b mod ged(a, b)) =0)

THEOREM: gcd-the-greatest
((a 20) A (b#£0)A ((ea mod z) =0) A ((b mod z) =0))
= (gcd(a, b) £)

The theorem gcd-is-cd proves that ged (a, b) is a common divisor of a and b,

and the theorem gcd-the-greatest proves that any common divisor of a and
b is not greater than ged (a, b).

53

5.2.3 A Simple Timing Analysis

The fact that the function ged-t (a, b) returns the exact number of MC68020
instructions executed by the GCD program allows us to obtain the timing
constraints of the GCD program by studying the mathematical properties of
this ged-t function. This approach is how we analyze the real-time bounds
of machine-code programs.

In this GCD example, we have mechanically proved that ged-t(a, b) is
no more than 580, provided both a and b are less than 23.

THEOREM: gcd-t-ubound
((a < ezp(2, 31)) A (b < ezp(2, 31))) = (gcd-t(a, b) < 580)

This theorem tells us that the GCD program terminates within 580 instruc-
tions. Thus we can easily obtain a crude upper bound on the real-time
execution of the GCD program, given a worst-case single instruction execu-
tion figure. For a less crude analysis of the real-time bounds, we would need
to incorporate time information for each individual instruction, something
that seems to us a quite natural and easy extension to our specification.
The theorem gcd-t-ubound is just an immediate consequence of ged-t-ub.

THEOREM: gcd-t-ub
ng't(a’v b) S (22 + (9 * (lOg(zv a’) + lOg(za b))))

5.3 Integer Square Root

In this section, we study the correctness of the object code of the following
Ada program isqrt that computes the integer square root of a given non-
negative integer using Newton’s method. The binary was provided by Dr.
Steve Zeigler of Verdix, and was generated by the Verdix Ada compiler.

function isqrt (i:integer) return integer is
j ¢ integer := (i / 2);
begin
while ((i / j) < j) loop
ji=G+ @/ 372
end loop;
return j;
end isqrt;

The MC68020 assembly code generated by Verdix Ada Compiler.

1 function isqrt (i:integer) return integer is

54

00000: link.w a6, #-04

2 j : integer := (i / 2);
00004: move.l d2, di
00006: bge.b 06 -> Oe
00008: addi.l #01, di
0000e: asr.l #01, di
3 Dbegin
4 while not ((i / j) >= j) loop
00010: move.l d2, do
00012: divsl.l di, d40:40
00016: trapv
00018: cmp.1l do, di
0001a: ble.b Olc -> 038
5 ji= G+ G/ 72
0001c: add.l di, do
0001e: trapv
00020: move.l do, di
00022: bge.b 06 -> 02a
00024: addi.l #01, di
0002a: asr.l #01, di
4 while not ((i / j) >= j) loop
0002c: move.l d2, do
0002e: divsl.l di, d0:do
00032: trapv
6 end loop;
00034: cmp.l do, di
00036: bgt.b -01c -> 01c
7 return j;
00038: move.l di, do
0003a: unlk a6
0003c: rts

8 end isqrt;

5.3.1 The Formalization

According to our approach, we need to formalize in the Nqthm logic the
preconditions, the time function, and the functional behavior of this ISQRT
machine-code program.

The function ISQRT-CODE defines the machine code of isqrt as a list of
unsigned integers. The function isqri-statep (s, i) characterizes the precon-
ditions of the initial state s.

DEFINITION:

ISQRT-CODE

= (78 86 255 252 34 2 108 6 6 129 0 0 0 1 226 129 32
2 76 656 8 0 78 118 178 128 111 28 208 129 78 118

95

34 0 108 6 6 129 0 0 0 1 226 129 32 2 76 65 8 0O
78 118 178 128 110 228 32 1 78 94 78 117)

DEFINITION:

1sqrt-statep (s, 7)

= ((mc-status (s) = *running)

evenp (mc-pc (s))

rom-addrp (mc-pc (s), me-mem (s), 70)
mcode-addrp (mc-pc(s), mc-mem (s), ISQRT-CODE)
ram-addrp (sub (32, 8, read-sp (s)), mec-mem (s), 12)
(4 = iread-dn (32, 2, s))

ilessp (1, 1))

>>>>> >

The function isqrt-t (i) specifies the number of instructions needed to
complete this ISQRT program.

DEFINITION:

wsqrtl-t (i, j)

= if j ~0 then 0
elseif (1 ~j) < j
then splus (10, isqrtl-t (i, (+ (1 + j)) +~ 2))
else 8 endif

DEFINITION:

1sqrt-t (z)

= let jI be ((i +2)+ (i +(z++2))) +2
in
if i < sq(i + 2) then splus (14, isqrtl-t(z, j1))
else 12 endif endlet

The functional behavior of the program is specified by the following
function isqrt (i), which is just a formalization in the Nqthm logic of the
algorithm employed.

DEFINITION:

wsqrtl (4, 7)

= if j ~ 0 then fiz(7)
elseif (1 + j) < j then isqrt! (i, (+ (1 + j)) + 2)
else firz(j) endif

DEFINITION:

1sqrt (i)

= let j1 be ((i +2)+ (i + (1 +2))) +2
in
if i < sq(i + 2) then isqrt! (¢, j1)
else i — 2 endif endlet

56

5.3.2 The Proof

We follow strictly the two-step proof outlined in Section 5.1.2.
In the first step, we prove the following theorem that corresponds to the
theorems P-1 to P-7.

THEOREM: isqrt-correctness
let sn be stepn (s, tsqri-t (7))

in
1sqrt-statep (s, 7)
= ((mec-status (sn) = ’running)

(me-pc(sn) = rts-addr(s))
(read-rn (32, 14, mc-rfile (sn)) = read-an (32, 6, s))
(read-rn (32, 15, mc-rfile (sn))
= add(32, read-an (32, 7, s), 4))
(d2-7a2-5p (rn)
= (read-rn (oplen, rn, mc-rfile (sn))

= read-rn (oplen, rn, mc-rfile (s))))
A (disjoint(z, k, sub (32, 12, read-sp (s)), 20)

= (read-mem (z, mc-mem (sn), k)
= read-mem (z, mc-mem(s), k)))

A (iread-dn (32, 0, sn) = isqrt(i))) endlet

> > >

>

In particular, the theorem above establishes that the content of data register
DO is equal to isqrt (i) after executing isqrt-t (i) instructions. In the second
step, we need to show only that the Nqthm function isqrt (i) does compute
the square root of an integer greater than 1, which is stated formally as
follows.

THEOREM: isgrt-logic-correctness
(1 <i)= ((z < sq(1 + isqrt(2))) A (¢ £ sq(isqri(i))))
5.3.3 A Simple Timing Analysis

In the same vein as the GCD example, we have proved that isqrt-t (i) is at
most 322, which tells us that this ISQRT program would terminate within
322 instructions. We here assume that i is less than 23!

THEOREM: isqri-t-ubound
((? < ezp(2, 31)) A (1 < i) = (isqrt-t (1) < 322)

5.4 Binary Search

In our third example, we study binary search. The following C function
bsearch taken from page 58 of Kernighan and Ritchie [31] with some minor

57

modification searches for the occurrence of a given integer in a sorted integer
array. In this section, we describe the correctness proof of the object code

of this C function.

/* bsearch:

find x in al[0] <= a[1] <= ...

int bsearch (int x, int a[], int n)

int low, high, mid;

{
low = 0;
high = n;

while (low < high) {
mid = (low + high) / 2;
if (x < almid])

high = mid;

else if (x > a[mid])
low = mid + 1;
else return mid;

}

return -1;

The MC68020 assembly code generated by the Gnu C compiler with optimization.

<bsearch>:
<bsearch+4>:
<bsearch+8>:

<bsearch+12>:
<bsearch+16>:
<bsearch+18>:
<bsearch+22>:
<bsearch+24>:
<bsearch+26>:
<bsearch+28>:
<bsearch+30>:
<bsearch+32>:
<bsearch+34>:
<bsearch+36>:
<bsearch+40>:
<bsearch+42>:
<bsearch+44>:
<bsearch+46>:
<bsearch+50>:
<bsearch+52>:
<bsearch+54>:
<bsearch+56>:
<bsearch+58>:

linkw a6,#0

moveml d2-d3,sp@-

movel a6@(8),d3

moveal a6@(12),a0

clrl di

movel a6@(16),d2

cmpl d1,d2

ble 0x232a <bsearch+58>
movel d1,d0

addl d42,d0

bpl 0x2312 <bsearch+34>
addql #1,d0

asrl #1,d0

cmpl 0(a0)[d0.1%4],d3
bge 0x231e <bsearch+46>
movel d0,d2

bra 0x2306 <bsearch+22>
cmpl 0(a0)[d0.1%4],d3
ble 0x232c <bsearch+60>
movel dO0,d1

addql #1,d1

bra 0x2306 <bsearch+22>
movel #-1,d0

o8

<= a[n-1] */

<bsearch+60>: moveml a6@(-8),d2-d3
<bsearch+66>: unlk a6
<bsearch+68>: rts

5.4.1 The Formalization

As desribed in Section 5.1.1, we need to formalize in the Nqthm logic the pre-
conditions, the time function, and the functional behavior of this BSEARCH
machine-code program.

The function BSEARCH-CODE defines the machine code of bsearch as
a list of unsigned integers. The function bsearch-statep (s, =, a, n, lst)
characterizes the preconditions on the initial state s.

DEFINITION:

BSEARCH-CODE

= (78 86 0 0 72 231 48 0 38 46 0 8 32 110 0 12 66
129 36 46 0 16 180 129 111 32 32 1 208 130 106 2
82 128 226 128 182 176 12 0 108 4 36 0 96 232 182
176 12 0 111 8 34 0 82 129 96 220 112 255 76 238
0 12 255 248 78 94 78 117)

DEFINITION:
bsearch-statep (s, =, a, n, lst)
= ((mec-status (s) = ’running)
A evenp (mc-pc(s))
A rom-addrp (mc-pc(s), me-mem (s), 70)
A mcode-addrp (mc-pe (s), me-mem (s), BSEARCH-CODE)
A ram-addrp (sub (32, 12, read-sp (s)), mc-mem(s), 28)
A ram-addrp (a, mc-mem (s), 4 * n)
A meme-ilst (4, a, mc-mem (s), n, lst)
A disjoint (sub (32, 12, read-sp (s)), 28, a, 4 * n)
A (a = read-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
A (n = iread-mem (add (32, read-sp (s), 12), mc-mem (s), 4))
A (z = iread-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
A int-rangep (2 x n, 32)
A (n eN))

The function bsearch-t(z, n, Ist) specifies the number of instructions
needed to complete the execution of this program.

DEFINITION:

bsearchl-t (z, lst, 1, 7)

= let k be (i +j) +2
in
if 1 <j

29

then if ilessp (z, get-nth (k, Ist))
then splus (10, bsearchi-t (z, Ist, 1, k))
elseif ilessp (get-nth (k, lst),)
then splus (13, bsearchi-t (z, Ist, 1 + k, 7))
else 13 endif

else 6 endif endlet

DEFINITION:
bsearch-t (z, n, lst) = splus (6, bsearchi-t(z, lst, 0, n))

The functional behavior of the program is specified by the following
function bsearch (z, n, Ist), which is just a formalization in Nqthm logic of
the algorithm employed.

DEFINITION:
bsearchl (z, Ist, 1, 7)
= let k be (1 +j)+2
in
ifi<y
then if ilessp (z, get-nth (k, Ist)) then bsearch! (z, Ist, 1, k)
elseif ilessp (get-nth (k, Ist),)
then bsearchl! (z, lst, 1 + k, 7)
else k endif
else -1 endif endlet

DEFINITION: bsearch (z, n, Ist) = bsearchl (z, Ist, 0, n)

5.4.2 The Proof

We strictly follow the two-step proof outlined in Section 5.1.2.
In the first step, we prove the following theorem that corresponds to the
theorems P-1 to P-7.

THEOREM: bsearch-correctness
let sn be stepn (s, bsearch-t(z, n, Ist))
in
bsearch-statep (s, =, a, n, lst)
= ((me-status (sn) = ’running)
A (me-pc(sn) = rits-addr(s))
A (read-rn (32, 14, mc-rfile (sn))
= read-rn (32, 14, mc-rfile (s)))
A (read-rn (32, 15, mc-rfile (sn))
= add (32, read-sp (s), 4))
A ((d2-7a2-5p (rn) A (oplen < 32))
= (read-rn (oplen, rn, mc-rfile (sn))
= read-rn (oplen, rn, mc-rfile (s))))

60

A (disjoint(z, k, sub (32, 12, read-sp (s)), 28)
= (read-mem (z, mc-mem (sn), k)
= read-mem (z, mc-mem(s), k)))
A (iread-dn (32, 0, sn) = bsearch(z, n, Ist))) endlet

In particular, the theorem above has established that the content of data
register DO is equal to bsearch (x, n, Ist) after executing bsearch-t (z, n, Ist)
instructions. In the second step, we need to show that the Nqthm function
bsearch (x, n, Ist) is correct with respect to the following specification:

1. If bsearch (z, n, lst) returns other than —1, then it returns an (non-
negative) integer k such that the kth element of Ist is equal to the
integer x.

2. If bsearch (z, n, lst) returns —1 and Ist is ordered, then the integer x
is not in Ist.

which is stated formally and proved mechanically as the following two the-
orems.

THEOREM: bsearch-found
((bsearch (z, n, lst) # =1) A lst-integerp (Ist) A integerp (z))
= (get-nth (bsearch (z, n, Ist), Ist) = z)

THEOREM: bsearch-not-found
((bsearch (z, len (lst), Ist) = -1)
A orderedp (lst)

A lst-integerp (Ist)
A integerp (z))
= (z & Ist)

5.4.3 A Simple Timing Analysis

In a way similar to the preceding two examples, we have proved that bsearch-
t(z, n, Ist) is at most 435, which gives us an upper bound of the number of
instructions executed by the machine-code program BSEARCH. We assume
that n is less than 231

THEOREM: bsearch-t-ubound
(n < exp(2, 31)) = (bsearch-t (z, n, Ist) < 435)

61

5.5 Quicksort

Quicksort was our first example dealing with recursion. The following C
program gsort taken from page 87 of Kernighan and Ritchie [31] with some
minor modification sorts an integer array into ascending order. The correct-
ness proof of the object code of this program was rather complicated. Tt
took us a couple of weeks to come up with a proof. It seemed that our life
would have been much easier had we first studied some simpler example,
something like Fibonacci numbers.

/* slightly modified from K&R. */

/* gsort: sort a[left]...a[right] into increasing order. We use the middle */
/* element of each subarray for partitioning. */

void gsort (int a[l, int left, int right)

{

int i, last, temp;

if (left >= right)
return;
last = (left + right) / 2;
temp = a[left];
a[left] = a[last];
a[last] = temp;
last = left;
for (i = left + 1; i<= right; i++)
if (ali] < alleft]){
temp = a[++last];
allast] = alil;
a[i] = temp;
};
temp = a[left];
al[left] = al[last];
a[last] = temp;
gsort(a, left, last-1);
gsort(a, last+l, right);

The MC68020 assembly code generated by the Gnu C compiler with optimization.

0x22b8 <gsort>: linkw fp,#0

0x22bc <qgsort+4>: moveml d2-d4/a2-a3,sp@-
0x22c0 <gsort+8>: moveal fp@(8),a3

0x22c4 <gsort+12>: movel fp@(12),d3

0x22c8 <gsort+16>: movel fp@(16),d4

0x22cc <gsort+20>: cmpl d3,d4

0x22ce <gsort+22>: ble 0x2338 <gsort+128>

62

0x22d0 <gsort+24>: movel d3,d2

0x22d2 <qgsort+26>: addl d4,d2

0x22d4 <qgsort+28>: bpl 0x22d8 <gsort+32>
0x22d6 <gsort+30>: addql #1,d2

0x22d8 <gsort+32>: asrl #1,d2

0x22da <gsort+34>: movel 0(a3)[d3.1%4],d1
0x22de <qgsort+38>: movel 0(a3)[d2.1%*4],0(a3)[d3.1x4]
0x22e4 <qgsort+44>: movel d1,0(a3)[d2.1%4]
0x22e8 <qgsort+48>: movel d3,d2

0x22ea <gsort+50>: movel d2,d0

0x22ec <gsort+52>: bra 0x2308 <gsort+80>
0x22ee <gsort+54>: moveal 0(a3)[d0.1%4],a0
0x22f2 <qgsort+58>: cmpal 0(a3)[d3.1%4],a0
0x22f6 <gsort+62>: bge 0x2308 <gsort+80>
0x22f8 <qgsort+64>: addql #1,d2

0x22fa <qgsort+66>: movel 0(a3)[d2.1%4],d1
0x22fe <qgsort+70>: movel 0(a3)[d0.1%x4],0(a3) [d2.1x4]
0x2304 <gsort+76>: movel d1,0(a3)[d0.1%4]
0x2308 <qgsort+80>: addql #1,d0

0x230a <gsort+82>: cmpl d0,d4

0x230c <gsort+84>: bge 0x22ee <gsort+54>
0x230e <gsort+86>: movel 0(a3)[d3.1%4],d1
0x2312 <gsort+90>: movel 0(a3)[d2.1%4],0(a3) [d3.1x4]
0x2318 <gsort+96>: movel d1,0(a3)[d2.1%4]
0x231c <gsort+100>: moveal d2,a0

0x231e <gsort+102>: pea a0@(-1)

0x2322 <qgsort+106>: movel d3,sp@-

0x2324 <qgsort+108>: movel a3,sp@-

0x2326 <qgsort+110>: lea 0x22b8 <gsort>,a2
0x232a <gsort+114>: jsr a2e@

0x232c <gsort+116>: movel d4,sp@-

0x232e <qgsort+118>: moveal d2,a0

0x2330 <gsort+120>: pea a0@(1)

0x2334 <qgsort+124>: movel a3,sp@-

0x2336 <gsort+126>: jsr a2e@

0x2338 <gsort+128>: moveml fp@(-20),d2-d4/a2-a3
0x233e <qgsort+134>: unlk fp

0x2340 <qgsort+136>: rts

5.5.1 The Formalization

According to our approach, we need to formalize in the Nqthm logic the
preconditions, the time function, and the functional behavior of this QSORT
machine-code program.

The function QSORT-CODE represents the machine code of gsort as a
list of unsigned integers. The function g¢stack (I, r, Ist) specifies the stack

63

space needed for the program. The function g¢sort-statep (s, a, I, v, n, Ist)
characterizes the preconditions of the initial state s.

DEFINITION:

QSORT-CODE

= (78 86 0 0 72 231 56 48 38 110 0 8 38 46 0 12 40
46 0 16 184 131 111 104 36 3 212 132 106 2 82 130
226 130 34 51 60 0 39 179 44 0 60 0 39 129 44 0
36 3 32 2 96 26 32 115 12 0 177 243 60 0 108 16
82 130 34 51 44 0 39 179 12 0 44 0 39 129 12 0 82
128 184 128 108 224 34 51 60 0 39 179 44 0 60 O
39 129 44 0 32 66 72 104 255 255 47 3 47 11 69
250 255 144 78 146 47 4 32 66 72 104 0 1 47 11 78
146 76 238 12 28 255 236 78 94 78 117)

DEFINITION:
gstack (1, r, Ist)
= let last be glast(l, r, lst),
Ist1 be qpart(l, r, lst)
in
ifl<r
then maz (40 + gstack(l, last — 1, Ist1),
52 + gstack (1 + last, r, gsort(l, last — 1, Ist1)))
else 68 endif endlet

DEFINITION:
gsort-statep (s, a, [, v, n, lst)
= let sp be sub(32, gstack(l, r, Ist) — 16, read-sp (s))
in
(mc-status (s) = *running)
evenp (mc-pc (s))
rom-addrp (mc-pc (s), me-mem (s), 138)
mcode-addrp (mc-pc(s), mc-mem (s), QSORT-CODE)
ram-addrp (a, mc-mem (s), 4 * n)
mem-ilst (4, a, mc-mem (s), n, Ist)
ram-addrp (sp, mc-mem (s), gstack (I, r, lst))
disjoint (a, 4 x n, sp, gstack(l, r, lst))
(a = read-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
(I = iread-mem (add (32, read-sp (s), 8), mc-mem(s), 4))
(r = iread-mem (add (32, read-sp (s), 12), mc-mem (s), 4))
(gstack (1, r, Ist) < exp (2, 32))
(l eN)
(r < mn)
wint-rangep (4 * n, 32) endlet

>>>>>>>>>>>>> >

The function gsort-t (I, r, Ist) specifies the number of instructions needed
to complete the execution of this program.

64

DEFINITION:
gpart-auz-t (a, I, v, n, Ist, last, 1)
= if r <4 then 11
elseif ilessp (get-nth (i, lst), get-nth (1, Ist))
then splus (10,
gpart-auz-t (a,
L
r’
n,
swap (1 + last, 1, Ist),
1+ last,
14 14))
else splus (6, gpart-auz-t (a, [, r, n, Ist, last, 1 + 1)) endif

DEFINITION:
gpart-t(a, I, v, n, lst)
= let ist] be swap(l, (I + r) + 2, lst)
in
splus (18, gpart-auz-t (a, I, r, n, Ist1, I, 1 + [)) endlet

DEFINITION: gsort-10(a, [, v, n, Ist) = 10
DEFINITION: gsort-5(a, I, 7, n, Ist) =5
DEFINITION: gsort-3(a, I, r, n, Ist) = 3

DEFINITION:
gsort-t(a, I, v, n, lst)
= let last be qlast(l, r, Ist),
qlst be gpart(l, r, Ist)
in
ifl<r
then splus (gpart-t (a, I, r, n, Ist),
splus (gsort-t (a, [, last — 1, n, qlst),
splus (gqsort-5(a, I, v, n, lst),
splus (gsort-t (a,
1 + last,
r’
n’
gsort (1, last — 1, qlst)),
gsort-3 (a, I, r, n, Ist)))))
else gsort-10(a, [, v, n, Ist) endif endlet

The functional behavior of this program is specified by the following
function gsort(a, I, r, n, Ist), which is just a formalization in Nqthm logic
of the algorithm employed.

65

DEFINITION:

gpart-auz (I, v, Ist, last, 1)

= if r < i then swap (I, last, lst)
elseif ilessp (get-nth (i, Ist), get-nth (1, Ist))
then gpart-auz (I, v, swap (1 + last, 1, Ist), 1 + last, 1 + 1)
else gpart-auz (I, r, lst, last, 1 + 1) endif

DEFINITION:
gpart (1, r, lst) = gqpart-auz (I, r, swap (I, (I + r) + 2, Ist), I, 1 + [)

DEFINITION:

qlast-auz (1, r, lst, last, 1)

= if r < i then fiz(last)
elseif ilessp (get-nth (i, lst), get-nth (1, lst))
then qlast-auz (1, r, swap (1 + last, 1, Ist), 1 + last, 1 + 1)
else qlast-auz (I, r, Ist, last, 1 + ¢) endif

DEFINITION:
qlast (1, r, lst) = qlast-auz (I, v, swap (I, (I + r) + 2, Ist), [, 1 + [)

DEFINITION:
gsort (1, r, Ist)
= ifl<r
then gsort (1 + qlast(l, r, Ist),
r7
gsort (1, qlast (1, r, Ist) — 1, gpart(l, r, Ist)))
else [st endif

5.5.2 The Proof

We follow strictly the two-step proof outlined in Section 5.1.2.
In the first step, we prove the following theorem that corresponds to the
theorems P-1 to P-7.

THEOREM: gsort-correctness
let sn be stepn (s, gsort-t(a, l, v, n, lst)),

sp be sub (32, gstack (I, r, Ist) — 16, read-sp (s))
in
gsort-statep (s, a, [, r, n, Ist)
= ((me-status (sn) = ’running)

A (mc-pc(sn) = rts-addr(s))

A (read-rn (32, 14, mc-rfile(sn))

= read-rn (32, 14, mc-rfile (s)))

A (read-rn (32, 15, mc-rfile (sn))
= add (32, read-rn (32, 15, me-rfile (s)), 4))
(((oplen < 32) A d2-7a2-5p (rn))
= (read-rn (oplen, rn, mc-rfile (sn))

>

66

= read-rn (oplen, rn, mec-rfile (s))))
A ((disjoint (sp, gstack(l, r, lst), =, k)
A disjoint(a, 4 * n, z, k))
= (read-mem (z, mc-mem (sn), k)
= read-mem (z, mc-mem (s), k)))
A mem-ilst (4, a, mc-mem (sn), n, gsort(l, r, lst))) endlet

In particular, the theorem above has established that the content of the
array a is equal to gsort(l, r, Ist) after executing g¢sort-t(a, I, r, n, Ist)
instructions. In the second step, we need to show that the Nqthm function
qsort (I, r, Ist) does sort the given integer list Ist, which is stated formally
as follows.

DEFINITION:
orderedp1 (I, r, lst)
= if r <[then t
else ileq(get-nth (1, Ist), get-nth (1 + 1, lst))
A orderedpl (1 + [, r, lst) endif

THEOREM: gsort-orderedp!
orderedp1 (left, right, gsort (left, right, lst))

DEFINITION:

count-lst (z, I, r, lst)

= if r <[then 0
elseif © = get-nth (I, Ist) then 1 + count-lst(z, 1 + [, r, lst)
else count-lst(z, 1 + [, r, Ist) endif

THEOREM: count-lst-qsort
count-lst(z, [, r, gsort (I, r, lst)) = count-lst (z, I, r, lst)

Roughly speaking, the theorem gsort-orderedp! asserts that the list
qsort (left, right, Ist) is in ascending order; the theorem count-lst-qsort as-
serts that gsort (I, r, Ist) is a permutation of Ist. The proof of these two
theorems required many supporting lemmas. We refer the interested readers
to [53].

5.5.3 A Simple Stack Space Analysis

We have seen in the preceding examples how to prove time bounds for
machine-code programs. Another very important issue addressed explic-
itly in machine-code program proving but not in high-level program proving
is the memory space requirement. While this has been quite simple in the
other examples in this chapter, the stack space required by gsort is given

67

as the recursive function gstack (I, r, Ist), and some sort of formal analysis
is desirable.

We have mechanically proved the following theorem, which asserts that
the size of the stack needed for any correct execution of gsort is at most
52(r —I) + 52 bytes, where [and r are the lower and upper bounds of the
array, respectively.

THEOREM: gstack-ubound
gstack (I, r, Ist) < (68 4+ (52 * (r — 1))

The proof of the theorem above is by induction, and Nqthm automati-
cally finds the right induction schema. We need to prove two key lemmas
for each of the two inductive cases in the proof.

THEOREM: g¢stack-ubound-la-1
(I<r)
= ((52* (r = 1))
£ (52 + (52 * ((qlast (I, r, Ist) — 1) = 1))))

THEOREM: ¢stack-ubound-la-2
(I<r)
= ((52* (r —1))
£ (52 4 (52 x (r — (1 + qlast (I, r, Ist))))))

5.6 The Boyer-Moore Majority Voting Algorithm

The last example in this chapter is the correctness proof of the object code
of the following C program mjrty. This program implements the majority
voting algorithm invented and mechanically proved correct by Boyer and
Moore [10]. This small program can be used to determine if there is a
candidate who has received a majority of votes cast in an election.

/* a majority voting algorithm by Boyer and Moore */
#define YES 1
#define NO O

struct winner {
int x;
int y;

};

struct winner mjrty (int a[], int n)

{

68

int cand, i, k;
struct winner temp;

k = 0;
for (i = 0; i < n; i++)
if (k == 0) {
cand = al[il;

else {
if (cand == a[il)
k++;
else
k==
};
temp.x = cand;
if (k == 0) {
temp.y = NO;
return temp;
};
if (k > n/2) {
temp.y = YES;
return temp;
};
k = 0;
for (i = 0; 1 < mn; i++)
if (a[i] == cand)
k++;
if (k > n/2)
temp.y = YES;
else temp.y = NO;
return temp;

The MC68020 assembly code generated by Gnu C compiler with optimization.

0x2310 <mjrty>: linkw a6,#0

0x2314 <mjrty+4>: moveml d2-d5,sp@-
0x2318 <mjrty+8>: moveal a6@(8),a0
0x231c <mjrty+12>: movel a6@(12),d2
0x2320 <mjrty+16>: clrl di

0x2322 <mjrty+18>: clrl dO

0x2324 <mjrty+20>: cmpl d0,d2

0x2326 <mjrty+22>: ble 0x2346 <mjrty+54>
0x2328 <mjrty+24>: tstl di

0x232a <mjrty+26>: bne 0x2334 <mjrty+36>
0x232¢c <mjrty+28>: movel 0(a0) [d0.1%4],d3

69

0x2330
0x2332
0x2334
0x2338
0x233a
0x233c
0x233e
0x2340
0x2342
0x2344
0x2346
0x2348
0x234a
0x234c
0x234e
0x2350
0x2352
0x2354
0x2356
0x2358
0x235a
0x235¢
0x235e
0x2360
0x2362
0x2364
0x2368
0x236a
0x236¢c
0x236e
0x2370
0x2372
0x2374
0x2376
0x2378
0x237a
0x237c¢c
0x237e
0x2380
0x2382
0x2384
0x2386
0x2388
0x238e
0x2390

<mjrty+32>:
<mjrty+34>:
<mjrty+36>:
<mjrty+40>:
<mjrty+42>:
<mjrty+44>:
<mjrty+46>:
<mjrty+48>:
<mjrty+50>:
<mjrty+52>:
<mjrty+54>:
<mjrty+56>:
<mjrty+58>:
<mjrty+60>:
<mjrty+62>:
<mjrty+64>:
<mjrty+66>:
<mjrty+68>:
<mjrty+70>:
<mjrty+72>:
<mjrty+74>:
<mjrty+76>:
<mjrty+78>:
<mjrty+80>:
<mjrty+82>:
<mjrty+84>:
<mjrty+88>:
<mjrty+90>:
<mjrty+92>:
<mjrty+94>:
<mjrty+96>:
<mjrty+98>:

<mjrty+100>:
<mjrty+102>:
<mjrty+104>:
<mjrty+106>:
<mjrty+108>:
<mjrty+110>:
<mjrty+112>:
<mjrty+114>:
<mjrty+116>:
<mjrty+118>:
<mjrty+120>:
<mjrty+126>:
<mjrty+128>:

movel #1,d1

bra 0x2340 <mjrty+48>
cmpl 0(a0)[d0.1%4],d3
bne 0x233e <mjrty+46>
addql #1,d1

bra 0x2340 <mjrty+48>
subl #1,d1

addql #1,d0

cmpl d0,d2

bgt 0x2328 <mjrty+24>
movel d3,d4

tstl di

beq 0x2382 <mjrty+114>
movel d2,d0

bge 0x2352 <mjrty+66>
addql #1,d0

asrl #1,d0

cmpl d1,d0

bge 0x235c <mjrty+76>
movel #1,d5

bra 0x2384 <mjrty+116>
clrl 41

clrl 40

cmpl d0,d2

ble 0x2372 <mjrty+98>
cmpl 0(a0)[d0.1%4],d3
bne 0x236c <mjrty+92>
addql #1,d1

addql #1,d0

cmpl d0,d2

bgt 0x2364 <mjrty+84>
movel d2,d0

bge 0x2378 <mjrty+104>
addql #1,d0

asrl #1,d0

cmpl d1,d0

bge 0x2382 <mjrty+114>
movel #1,d5

bra 0x2384 <mjrty+116>
clrl 45

movel d4,dO

movel d5,d1

moveml a6@(-16),d2-d5
unlk a6

rts

70

5.6.1 The Formalization

According to our approach, we need to formalize in the Nqthm logic the
preconditions, the time function, and the functional behavior of this MJRTY
machine-code program.

The function MJRTY-CODE defines the machine code of mjrty as a list of
unsigned integers. The function mjrty-statep (s, a, n, lst) characterizes the
preconditions of the initial state s.

DEFINITION:

MJRTY-CODE

= (78 86 0 0 72 231 60 0 32 110 0 8 36 46 0 12 66
129 66 128 180 128 111 30 74 129 102 8 38 48 12 0
114 1 96 12 182 176 12 0 102 4 82 129 96 2 83 129
82 128 180 128 110 226 40 3 74 129 103 54 32 2
108 2 82 128 226 128 176 129 108 4 122 1 96 40 66
129 66 128 180 128 111 14 182 176 12 0 102 2 82
129 82 128 180 128 110 242 32 2 108 2 82 128 226
128 176 129 108 4 122 1 96 2 66 133 32 4 34 5 76
238 0 60 255 240 78 94 78 117)

DEFINITION:
myrty-statep (s, a, n, lst)
= ((mc-status (s) = *running)

A evenp (me-pe(s))

A rom-addrp (mc-pc(s), mc-mem (s), 130)

A mecode-addrp (mc-pc (s), mc-mem (s), MJRTY-CODE)

A ram-addrp (sub (32, 20, read-sp (s)), me-mem (s), 32)

A ram-addrp (a, mc-mem (s), 4 * n)

A mem-ilst(4, a, mc-mem(s), n, lst)

A disjoint(a, 4 x n, sub(32, 20, read-sp (s)), 32)

A (a = read-mem (add (32, read-sp (s), 4), mc-mem(s), 4))
A (n = wread-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
A (n0))

The function mjrty-t(a, n, Ist) specifies the number of instructions
needed to complete the execution of this program.

DEFINITION:
mgjrty-cand-t (a, n, lst, cand, 1, k)
= ifi<n
then if £ ~0
then let cand! be get-nth (1, Ist)
in
splus (8, mjrty-cand-t (a, n, Ist, candl, 1 + i, 1)) endlet
elseif cand = get-nth (1, lst)

71

then splus (9, myrty-cand-t (a, n, Ist, cand, 1 + i, 1 + k))

else splus (8, myrty-cand-t (a, n, lst, cand, 1 + 4, k — 1)) endif
elseif cand = get-nth (0, Ist) then 18
else 17 endif

DEFINITION:
mgjrty-sn-t (a, n, Ist, cand, i, k)
= ifi<n
then if £ ~0
then let cand! be get-nth (i, Ist)
in
splus (8, mgjrty-sn-t (a, n, lst, candl, 1 + 7, 1)) endlet
elseif cand = get-nth (1, Ist)
then splus (9, myrty-sn-t (a, n, lst, cand, 1 + 1, 1 + k))
else splus (8, myrty-sn-t (a, n, Ist, cand, 1 + 1, k — 1)) endif
elseif £ ~ 0 then 11
else 17 endif

DEFINITION:
cand-cnt-t (a, n, Ist, cand, i, k)
= ifi<n
then if cand = get-nth (1, lst)
then splus (6, cand-cni-t (a, n, lst, cand, 1 + 4, 1 + k))
else splus (5, cand-cnt-t (a, n, Ist, cand, 1 + 1, k)) endif
elseif (n + 2) < k then 14
else 13 endif

DEFINITION:
myjrty-t (a, n, lst)
= let cand be get-nth (0, lst)
in
splus (14,
if (mgrty-k(n, lst, cand, 1, 1) ~ 0)
vV ((n +2) < myrty-k(n, Ist, cand, 1, 1))
then myrty-sn-t (a, n, lst, cand, 1, 1)
else splus (myjrty-cand-t (a, n, lst, cand, 1, 1),
if cand = myrty-cand (n,

lst,
cand,
1’
)
then cand-cni-t(a,
n’
lst,
mgrty-cand (n,
lst,
cand,
17

72

else cand-cnit-t (a,
n7
Ist,
mgjrty-cand (n,
lst,
cand,
1’
D),
1,
0) endif) endif) endlet

The functional behavior of the program is specified by the following
functions mjrty-cand (n, Ist, cand, i, k) and mgrty-p (n, Ist, cand, i, k),
which are just a formalization in the Nqthm logic of the algorithm employed.

DEFINITION:
mgjrty-cand (n, lst, cand, i, k)
= ifi<n
then if £ ~ 0 then myrty-cand (n, lst, get-nth (z, lst), 1 + 7, 1)
elseif cand = get-nth (1, Ist)
then myjrty-cand (n, Ist, cand, 1 + i, 1 + k)
else myrty-cand (n, lst, cand, 1 + i, k — 1) endif
else cand endif

DEFINITION:
mgjrty-k (n, lst, cand, 1, k)
= ifi<n
then if £ ~ 0 then myrty-k(n, Ist, get-nth (i, Ist), 1 + 7, 1)
elseif cand = get-nth (1, lst)
then myjrty-k (n, Ist, cand, 1 + 1, 1 + k)
else myrty-k(n, Ist, cand, 1 + i, k — 1) endif
else k endif

DEFINITION:
cand-cnt (n, lst, cand, 1, k)
= ifi<n
then if cand = get-nth (1, Ist)
then cand-cnt (n, Ist, cand, 1 + 4, 1 + k)
else cand-cnt(n, Ilst, cand, 1 + 1, k) endif
else k endif

DEFINITION:

mgjrty-p (n, Ist, cand, i, k)
= if myrty-k (n, lst, cand, i, k) ~ 0 then f

73

elseif (n + 2) < myrty-k(n, lst, cand, i, k) then t
else (n =+ 2)
< cand-cnt (n, lst, myrty-cand (n, lst, cand, 1, k), 1, k) endif

5.6.2 The Proof

We follow strictly the two-step proof outlined in Section 5.1.2.
In the first step, we prove the following theorem that corresponds to the
theorems P-1 to P-7.

THEOREM: myjrty-correctness
let sn be stepn (s, mjriy-t(a, n, lst))
in
mgjrty-statep (s, a, n, lst)
= ((me-status (sn) = ’running)
A (me-pe(sn) = ris-addr(s))
A (read-rn (32, 14, mc-rfile(sn))
= read-rn (32, 14, mc-rfile (s)))
A (read-rn (32, 15, mc-rfile(sn))
= add (32, read-sp (s), 4))
A ((d2-7a2-5p (rn) A (oplen < 32))
= (read-rn (oplen, rn, me-rfile (sn))
= read-rn (oplen, rn, mc-rfile (s))))
A (disjoint (sub (32, 20, read-sp (s)), 32, z, k)
= (read-mem (z, mc-mem (sn), k)
= read-mem (z, mc-mem(s), k)))
A (iread-dn (32, 0, sn) = myrty-cand (n, Ist, 0, 0, 0))
A (iread-dn (32, 1, sn)
= if myrty-p (n, lst, 0, 0, 0) then 1
else 0 endif)) endlet

In particular, the theorem above has established that the content of data
register DO is equal to myrty-cand (n, Ist, 0, 0, 0) and the content of data
register D1 is equivalent to mygrty-p (n, Ist, 0, 0, 0) after executing mjrty-t (a,
n, Ist) instructions from an initial state s satisfying myjrty-statep (s, a, n,
Ist).

In the second step, we need to prove the correctness of the Nqthm func-
tion myrty-cand and mjrty-p according to the following specification.

1. If the function mygrty-p (n, Ist, 0, 0, 0) is true, then the function mjrty-
cand (n, lst, 0, 0, 0) returns the candidate who wins the majority.

2. TIf the function mjrty-p (n, Ist, 0, 0, 0) is false, then no one wins the
majority.

74

which is given formally as the following two theorems.

THEOREM: myjrty-thm1
mgjrty-p (n, lst, 0, 0, 0)
= ((n + 2) < cand-cnt(n, lst, mjrty-cand (n, Ist, 0, 0, 0), 0, 0))

THEOREM: myjrty-thm2
(= mgrty-p (n, lst, 0, 0, 0)) = ((n + 2) £ cand-cnt (n, Ist, z, 0, 0))

5.6.3 A Simple Timing Analysis

We now return to the sort of timing analysis we have done in the previous few
examples. Intuitively, the following theorem says that the program mjrty
terminates within 46+ (15 (n—1)) instructions, where n is, say, the number
of votes cast in an election.

THEOREM: myjrty-t-ubound
myjrty-t (a, n, Ist) < (46 + (15 * (n — 1)))

The proof of the theorem mjrty-t-ubound above is quite simple. We
need to prove three lemmas that establish the upper bounds of the three time
functions cand-cnt-t(a, n, Ist, cand, i, k), mjrty-cand-t(a, n, Ist, cand, i,
k), mgrty-sn-t (a, n, Ist, cand, i, k) used in the definition of mjrty-t (a, n,
Ist).

THEOREM: cand-cnt-t-ubound
(14 + (6 * (n — 1))) £ cand-cni-t(a, n, lst, cand, i, k)

THEOREM: myjrty-cand-t-ubound
(18 + (9 * (n — 1))) £ myrty-cand-t (a, n, lst, cand, 7, k)

THEOREM: myjrty-sn-t-ubound
(17 + (9 * (n — 1)) £ myrty-sn-t (a, n, lst, cand, 1, k)

The proofs of the three lemmas above are straightforward. We do not
elaborate on their proofs.

75

Chapter 6

Issues in Machine-Code
Program Proving

Verifying the object code produced by high-level programming language
compilers effectively eliminates the need to give useful mathematical seman-
tics for high-level programming languages; the behavior of a given program
is directly determined by the processor model on which the program exe-
cutes, and hence can be analyzed at the processor level. By recasting every
high-level language construct into the clearly understood world of machine
integers in a single addressing space, we simplify many subtle semantics is-
sues, such as evaluation orders, pointers and aliasing. These issues have
long perplexed the formal specification and verification community. But, on
the other hand, using a computing model at the machine-code level seems
to increase the complexity of program proving because of the loss of some
abstractions. The question is, therefore, what have we actually gained by
adopting this machine-code approach. In attempting to address this ques-
tion, we focus on some specific issues in program semantics and program
proving, and study them at the machine-code level using some simple ex-
amples.

There are four sections in this chapter, each of which addresses one
program-proving problem that we feel is important and interesting. In these
sections, we discuss the verification of some simple programs that illustrate
how we handle those program-proving problems at the machine-code level.
The examples used in this chapter are toy programs designed just for the
purpose of exposition. The full proof script of these examples is given in
[53].

76

6.1 Subroutine Calling

Composing proofs in program proving is as essential as composing pro-
grams in programming. Handling subroutine calling in machine-code pro-
gram proving has been one of the main considerations in our formulation of
correctness for machine-code programs. The correctness theorem of a sub-
routine should characterize the behavior of the subroutine well enough so
that the same theorem can be used repeatedly in the proof of a large class of
programs that call the subroutine, just as the same subroutine can be used
repeatedly in many programs. In this section, we use an extremely simple
example to illustrate how to handle subroutine calling in our formalization.
To some extent, we have encountered this problem in the gsort example of
Chapter 5. But we avoided discussing it there.

Let us consider the following program GCD3 that computes the greatest
common divisor of three nonnegative integers by calling the already proved
GCD twice. We here want to prove the correctness of GCD3 using the
correctness theorem of GCD, given in Chapter 5.

/* Compute the GCD of the three nonnegative integers. */
ged3(a, b, c)
long int a, b, c;
{
ged(ged(a, b), c);
}

The MC68020 assembly code generated by the Gnu C compiler with optimization.

0x2324 <gcd3>: linkw a6,#0

0x2328 <gcd3+4>: movel a2,sp@-
0x232a <gcd3+6>: movel a6Q(16),sp@-
0x232e <gcd3+10>: movel a6@(12),sp@-
0x2332 <gcd3+14>: movel a6@(8),sp@-
0x2336 <gcd3+18>: lea @#0x2350 <gcd>,a2
0x233c <gcd3+24>: jsr a2@

0x233e <gcd3+26>: addqw #8,sp

0x2340 <gcd3+28>: movel dO,sp@-
0x2342 <gcd3+30>: jsr a2@

0x2344 <gcd3+32>: moveal a6@(-4),a2
0x2348 <gcd3+36>: unlk a6

0x234a <gcd3+38>: rts

We follow the formulation discussed in Chapter 5. The constant gcdS3-
code shown below formalizes the machine code of GCD3, but with a “hole”
that is represented by the four —1’s. The “hole” is intended for the location

7

of the function GCD, and is specified elsewhere in the function gcd3-statep.
The functions ged3-load and ged3-statep together formalize the preconditions
on the initial state. In particular, we have specified that the longword at
location (GCD3-ADDR +20) be GCD-ADDR.

DEFINITION:

GCD3-CODE

= (78 86 0 0 47 10 47 46 0 16 47 46 0 12 47 46 0 8
69 249 -1 -1 -1 -1 78 146 80 79 47 0 78 146 36
110 2565 252 78 94 78 117)

CONSERVATIVE AXIOM: gcd3-load
ged3-loadp (s)
= (evenp (GCD3-ADDR)

A

>>>> >

(acD3-ADDR € N)

nat-rangep (GCD3-ADDR, 32)

rom-addrp (GCD3-ADDR, mc-mem (s), 40)

mcode-addrp (GCD3-ADDR, mc-mem (s), GCD3-CODE)
gcd-loadp (s)

(pc-read-mem (add (32, GCD3-ADDR, 20), mc-mem (s), 4)
= GCD-ADDR))

Simultaneously, we introduce the new function symbols ged3-loadp and ged3-addr.

DEFINITION:
gcdS-statep (s, a, b, c)
= ((mec-status (s) = *running)

>>>>>>>> >

gcd3-loadp (s)

(me-pe(s) = GCD3-ADDR)

ram-addrp (sub (32, 36, read-sp (s)), mc-mem (s), 52)

a = iread-mem (add (32, read-sp (s), 4), mc-mem (s), 4))

b = iread-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
iread-mem (add (32, read-sp (s), 12), mc-mem(s), 4))

S
S

C

o

ja)
< b)
<

c))

o O

(
(
(
(
(
(

The time function of GCD3 is defined as follows. The function gcdS3-
t(a, b, c¢) gives the total number of instructions executed by GCD3. The
functions ged3-t1 (a, b, ¢) and ged3-t3(a, b, c) reflect the two subroutine
calls to GCD in GCD3.

DEFINITION: ged3-t0(a, b, ¢) =7

DEFINITION: ged3-t1 (a, b, ¢) = gcd-t(a, b)

78

DEFINITION: ged3-t2(a, b, ¢) = 3
DEFINITION: ged3-t3 (a, b, ¢) = ged-t(ged(a, b), c)
DEFINITION: ged3-t4 (a, b, ¢) = 3

DEFINITION:
gcd3-t(a, b, c)
= splus(gcd3-t0(a, b, c),
splus (ged3-t1 (a, b, c),
splus (ged3-t2 (a, b, c),
splus (ged3-t3 (a, b, c), ged3-t4 (a, b, c)))))

The functional behavior of GCD3 is specified by the following function
geds.

DEFINITION: ged3 (a, b, ¢) = ged (ged(a, b), c)
The correctness of GCD3 is then given by the following three theorems.

THEOREM: gcd3-correctness
let sn be stepn (s, gcd3-t(a, b, c))
in
gcdS3-statep (s, a, b, c)
= ((me-status (sn) = ’running)

A (me-pe(sn) = rits-addr(s))

A (read-rn (32, 14, mc-rfile (sn))

= read-rn (32, 14, mc-rfile(s)))

A (read-rn (32, 15, mc-rfile(sn))
= add(32, read-rn (32, 15, mc-rfile (s)), 4))
(((oplen < 32) A d2-7a2-5p (rn))
= (read-rn (oplen, rn, me-rfile (sn))

= read-rn (oplen, rn, mc-rfile (s))))
(disjoint (z, k, sub (32, 36, read-sp (s)), 52)
= (read-mem (z, mc-mem (sn), k)

= read-mem (z, mc-mem(s), k)))
A (iread-dn (32, 0, sn) = ged(ged(a, b), c))) endlet

>

>

THEOREM: gcdS3-is-cd

((a mod ged3(a, b, ¢)) =0

A ((b mod ged3(a, b, c)) = 0)
A ((c mod gcd3(a, b, c)) =0)

THEOREM: gcd3-the-greatest

((a #0)

A (b #£0)

A (c#0)

A ((ea mod z) = 0)
A ((b mod z) = 0)
A ((¢ mod z) = 0))
= (gcd3(a, b, c) £ T)

79

0 S0

sl

Figure 6.1: How to Use the Correctness of GCD in GCD3

The theorem gcd3-correctness proved that the content of the data register
DO is equal to ged (ged(a, b), ¢). The theorems ged3-is-cd and gcd3-the-
greatest proved further that ged3 (a, b, ¢) does compute the greatest common
divisor of three nonnegative integers.

To explain the use of the theorem gcd-correctness in the proof of the
theorem gcd3-correctness, let us look at the first subroutine call to GCD in
GCD3. As shown in Figure 6.1, we introduce a pair of intermediate states
s0 and sl: sO denotes stepn (s, ged3-t0(a, b, ¢)), the machine state right
before the execution of the subprogram GCD; s1 denotes stepn (s0, gcd3-
t1(a, b, c)), the machine state right after the execution of the subprogram
GCD. The properties of these two intermediate states are characterized by
ged3-s0p (s, a, b, ¢) and ged3-s1p (s, a, b, c), respectively.

DEFINITION:
gcd3-s0p (s, a, b, c)
= ((mec-status (s) = ’running)

—~

A gcd3-loadp (s)
A (me-pc(s) = GCD-ADDR)
A (read-an (32, 2, s) = GCD-ADDR)
A (rts-addr(s) = add (32, GCD3-ADDR, 26))
A ram-addrp (sub (32, 12, read-sp (s)), me-mem (s), 52)
A equal*(read-an (32, 6, s), add (32, read-sp (s), 20))
A (a = iread-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
A (b = iread-mem (add (32, read-sp (s), 8), me-mem (s), 4))
A (¢ = iread-mem (add (32, read-sp (s), 12), me-mem (s), 4))
A (0< a)
A (0< b)
A (0< ¢))
DEFINITION:

80

gcd3-slp (s, a, b, c)
= ((mec-status (s) = ’running)

A gcd3-loadp (s)

A (read-an (32, 2, s) = GCD-ADDR)

A (me-pe(s) = add (32, GCD3-ADDR, 26))

A ram-addrp (sub (32, 16, read-sp (s)), mc-mem(s), 52)

A equal*(read-an (32, 6, s), add (32, read-sp (s), 16))

A (iread-dn (32, 0, s) = ged(a, b))

A (c = iread-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
A (0< a)

A (0< b)

A (0 < ¢))

Therefore, if we want to prove, for example, gcd3-statep (s, a, b, ¢) =
ged3-s1p (s1, a, b, ¢), we can first prove two lemmas ged3-statep (s, a, b,
¢) = ged3-s0p (s0, a, b, ¢) and ged3-s0p (s0, a, b, ¢) = ged3-sip(si, a,
b, ¢), and then the proof is completed by composing these two lemmas.
The second lemma is merely something about the subprogram GCD, and
therefore can be proved automatically by gcd-correctness.

6.2 Functional Parameters

Taking functions as arguments has long perplexed the programming lan-
guage community, and the current theoretical solutions to its semantics are
subtle. Many formal program verification systems have deliberately avoided
considering this issue by simply working on a language subset with this func-
tional parameter feature excluded [5, 15]. As far as we can tell, handling
functional parameters in machine-code program proving could be at least as
difficult as program proving at higher levels. In this section, we address this
important issue in the context of machine-code program proving.

Our solution is quite intuitive. At the machine-code level, functional
parameters can be simply viewed as pointers to programs in the memory.
To verify a program that takes functions as arguments, we first assert the
correctness of the functional parameters using constraint definitions. Under
the constraints introduced by those constraint definitions, the correctness of
the program can be proved. To verify the correctness of specific functional
instances of the program, we can repeatedly use the correctness theorem of
the program by substituting the functional parameters of that program with
specific functions as long as these functions meet the constraints imposed
by the constraint definitions of the functional parameters.

81

But the mechanization of the idea above is extremely difficult. To explain
it, let us look at a very simple example. The following C function max
compares two integers a and b using the functional parameter comp, and
returns the “larger” one accordingly. Our aim is to prove the correctness of
its binary.

max(int a, int b, int (*comp) (int, int))

{

if ((*comp)(a, b) < 0)

return b;

else return a;

}

The MC68020 assembly code of the C function max on SUN-3 is given as

follows.

0x2320
0x2324
0x2328
0x232c¢
0x2330
0x2332
0x2334
0x2338
0x233a
0x233c¢c
0x233e
0x2340
0x2342
0x2344
0x234a
0x234c

<max>:
<max+4>:
<max+8>:

<max+12>:
<max+16>:
<max+18>:
<max+20>:
<max+24>:
<max+26>:
<max+28>:
<max+30>:
<max+32>:
<max+34>:
<max+36>:
<max+42>:
<max+44>:

This binary is generated by '"gcc -0".

linkw fp,#0

moveml d2-d3,sp@-
movel fp@(8),d3
movel fp@(12),d2
movel d2,sp@-

movel d3,sp@-
moveal fp@(16),a0
jsr a0@

tstl dO

bge 0x2342 <max+34>
movel d2,d0

bra 0x2344 <max+36>
movel d3,d0

moveml fp@(-8),d2-d3
unlk fp

rts

First, the correctness of the functional parameter is formalized by the
following constraint definition comp-correctness. There are three new “un-
defined” functions comp-statep (s, a, b), comp-t(a, b), and comp (a, b) in-
troduced into the logic by comp-correctness, each of which has its intended
meaning as the precondition on the initial state, the time function, and the
behavior function, respectively. The correctness statement is the standard
one we have been using throughout this work.

CONSERVATIVE AXIOM: p-disjoininess
(p-disjoint (z, n, s) A ((j + indez-n(y, z)) < n))
= p-disjoint(y, J, s)

Simultaneously, we introduce the new function symbol p-disjoint.

82

CONSERVATIVE AXIOM: comp-correctness
comp-statep (s, a, b)
= let sn be stepn(s, comp-t(a, b))
in
(mc-status (sn) = ’running)
A (mc-pc(sn) = rts-addr(s))
A (read-rn (32, 14, mc-rfile (sn))
= read-rn (32, 14, mc-rfile(s)))
A (read-rn (32, 15, mc-rfile (sn))
= add (32, read-sp (s), 4))
A (((oplen < 32) A d2-7a2-5p (rn))
= (read-rn (oplen, rn, mc-rfile (sn))
= read-rn (oplen, rn, mec-rfile (s))))
(p-disjoint (z, k, s)
= (read-mem (z, mc-mem (sn), k)
= read-mem (z, mc-mem (s), k)))
A (iread-dn (32, 0, sn) = comp (a, b)) endlet

>

Simultaneously, we introduce the new function symbols comp-statep, comp-t, and comp.

Assuming the correctness of its functional parameter, we can prove the
correctness of the binary of max. As shown below, maz-comp (a, b) is the
behavior function; maz-t(a, b) is the time function, maz-statep (s, a, b)
is the precondition on the initial state; finally, maz-correctness gives the
correctness of this program.

DEFINITION:

maz-comp (a, b)

= if negativep (comp (a, b)) then b
else a endif

DEFINITION: maz-t0 (a, b) = 8

DEFINITION:
maz-t (a, b)
= splus(maz-t0(a, b),
splus (comp-t (a, b),
if negativep (comp (a, b)) then 7
else 6 endif))

DEFINITION:

MAX-CODE

= (78 86 0 0 72 231 48 0 38 46 0 8 36 46 0 12 47 2
47 3 32 110 0 16 78 144 74 128 108 4 32 2 96 2 32
3 76 238 0 12 255 248 78 94 78 117)

83

DEFINITION:

maz-sp (s, a, b)

= ((mc-status (s) = *running)

evenp (mc-pc (s))

rom-addrp (mc-pc (s), me-mem (s), 46)

mcode-addrp (mc-pc(s), mc-mem (s), MAX-CODE)

(a = iread-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
(b = iread-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
ram-addrp (sub (32, 24, read-sp (s)), mc-mem (s), 40))

>>>>> >

CONSERVATIVE AXIOM: maz-state
(maz-statep (s, a, b) = comp-statep (stepn (s, maz-t0(a, b)), a, b))
A (maz-statep (s, a, b)
= p-disjoint (add (32,
read-rn (32, 15, mc-rfile (s)),
4294967272),
40,
stepn (s, maz-t0(a, b))))
A (maz-statep (s, a, b) = (maz-sp (s, a, b) A comp-loadp (s, a, b)))

Simultaneously, we introduce the new function symbols maz-statep and comp-loadp.

THEOREM: maz-correciness
let sn be stepn (s, maz-t(a, b))
in
maz-statep (s, a, b)
= ((me-status (sn) = ’running)
A (mc-pc(sn) = rts-addr(s))
A (read-rn (32, 14, mc-rfile (sn))
= read-rn (32, 14, mc-rfile (s)))
A (read-rn (32, 15, mc-rfile (sn))
= add (32, read-sp (s), 4))
A (((oplen < 32) A d2-7a2-5p (rn))
= (read-rn (oplen, rn, mc-rfile (sn))
= read-rn (oplen, rn, mc-rfile (s))))
A ((disjoint(z, k, sub (32, 24, read-sp (s)), 40)
A maz-disjoint (z, k, s))
= (read-mem (z, mc-mem (sn), k)
= read-mem (z, mc-mem (s), k)))
A (iread-dn (32, 0, sn) = maz-comp (a, b))) endlet

The most interesting feature of the theorem max-correctness above is
that it can be used to prove the correctness of multiple functional instances
of MAX. To see how this works, let us try to prove the correctness of the
binary of max(a, b, gt) by an instantiation of the theorem above. The C

function gt is given below.

84

gt(int a, int b)
{
if (a == b)
return O;
else if (a > b)
return 1;
else return -1;

}

The MC68020 assembly code of the above GT program. The code is generated
by "gcc -0".

0x22de <gt>: linkw fp,#0

0x22e2 <gt+4>: movel fp@(8),d1
0x22e6 <gt+8>: movel fp@(12),d0
0x22ea <gt+12>: cmpl d1,d0

0x22ec <gt+14>: bne 0x22f2 <gt+20>
0x22ee <gt+16>: clrl dO

0x22f0 <gt+18>: bra 0x22fc <gt+30>
0x22f2 <gt+20>: cmpl d1,d0

0x22f4 <gt+22>: bge 0x22fa <gt+28>
0x22f6 <gt+24>: movel #1,d0

0x22f8 <gt+26>: bra 0x22fc <gt+30>
0x22fa <gt+28>: movel #-1,d0
0x22fc <gt+30>: unlk fp

0x22fe <gt+32>: rts

There are two steps in the proof. The first step is to establish the cor-
rectness of the machine code for gt, since we must discharge the constraints
introduced by comp-correctness when any instantiation of that theorem with
the substitution

{gt-statep/ comp-statep, gt-t/ comp-t, gt/ comp }
is performed. The formalization and correctness theorem of the binary of
gt is given as follows.

DEFINITION:

gt(a, b)

= ifa=05b then 0
elseif ilessp (b, a) then 1
else -1 endif

DEFINITION:

gt-t(a, b)

= ifa =105 then 9
elseif ilessp (b, a) then 11
else 10 endif

85

DEFINITION:

GT-CODE

= (78 86 0 0 34 46 0 8 32 46 0 12 176 129 102 4 66
128 96 10 176 129 108 4 112 1 96 2 112 255 78 94

78 117)
DEFINITION:
gt-statep (s, a, b)
= ((mec-status (s) = ’running)
A evenp (me-pe(s))
A rom-addrp (mc-pc(s), mc-mem (s), 34)
A mcode-addrp (mc-pe(s), me-mem (s), GT-CODE)
A ram-addrp (sub (32, 4, read-sp (s)), me-mem (s), 16)
A (a = iread-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
A (b = iread-mem (add (32, read-sp (s), 8), me-mem (s), 4)))

THEOREM: gt-correctness
let sn be stepn (s, gt-t(a, b))
in
gt-statep (s, a, b)
= ((me-status (sn) = ’running)
A (mc-pc(sn) = rts-addr(s))
A (read-rn (32, 14, mc-rfile(sn))
= read-rn (32, 14, mc-rfile (s)))
A (read-rn (32, 15, mc-rfile (sn))
= add (32, read-sp (s), 4))
A (d2-7a2-5p (rn)
= (read-rn (oplen, rn, mc-rfile (sn))
= read-rn (oplen, rn, mec-rfile (s))))
A (disjoint(z, k, sub (32, 4, read-sp (s)), 4)
= (read-mem (z, mc-mem (sn), k)
= read-mem (z, mc-mem (s), k)))
A (iread-dn (32, 0, sn) = gt(a, b))) endlet

We then, in the second step, prove the correctness of the binary of maz(a,
b, gt) by instantiating the theorem maz-correctness. The functions mazx-gt-
statep (s, a, b), maz-gt-t(a, b), maz-gt (a, b) formalize the precondition, the
time function, and the functional behavior of this program, respectively. Fi-
nally, the theorem maz-gt-correctness shows the correctness of the program.

DEFINITION:
maz-gt-statep (s, a, b)
= let comp be read-mem (add (32, read-sp (s), 12), mc-mem (s), 4)
in
(mc-status (s) = ’running)
A evenp (me-pe(s))
A rom-addrp (mc-pc(s), mc-mem (s), 46)

86

mcode-addrp (me-pc(s), me-mem (s), MAX-CODE)

(a = iread-mem (add (32, read-sp (s), 4), mc-mem (s), 4))

(b = twread-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
evenp (comp)

rom-addrp (comp, mec-mem (s), len (GT-CODE))

mcode-addrp (comp, mc-mem (s), GT-CODE)

ram-addrp (sub (32, 28, read-sp (s)), mc-mem (s), 44) endlet

>>>>>> >

DEFINITION:
maz-gt-t (a, b)
= splus(maz-t0(a, b),
splus (gt-t(a, b),
if negativep (gt (a, b)) then 7
else 6 endif))

DEFINITION:

maz-gt (a, b)

= if negativep (gt (a, b)) then b
else a endif

THEOREM: maz-gt-correctness
maz-gt-statep (s, a, b)
= let sn be stepn(s, maz-gi-t(a, b))

in

(mc-status (sn) = ’running)

A (me-pe(sn) = rts-addr(s))

A (read-rn (32, 14, mc-rfile (sn))

= read-rn (32, 14, mc-rfile(s)))

A (read-rn (32, 15, mc-rfile (sn))
= add (32, read-sp (s), 4))
(((oplen < 32) A d2-7a2-5p (rn))
= (read-rn (oplen, rn, me-rfile (sn))

= read-rn (oplen, rn, mc-rfile (s))))
((disjoint (z, k, sub (32, 24, read-sp (s)), 40)

A disjoint (z, k, sub (32, 28, read-sp (s)), 4))

= (read-mem (z, mc-mem (sn), k)

= read-mem (z, mc-mem (s), k)))
(iread-dn (32, 0, sn) = maz-gt (a, b)) endlet

>

>

>

The theorem mazx-gt-correctness above is simply an intantiation of the
theorem maz-correctness by substituting max-gt-statep for max-statep, maz-
gt-t for maz-t, maz-t for maz-comp, and etc. We recommend that the
interested reader study the complete proof script in [53].

87

6.3 Switch Statement

The switch statement has posed no problems in high-level language seman-
tics, as it can be simply treated as a bunch of nested if statements. But,
at the machine-code level, the matter gets a bit complicated since it may
involve a transfer of control to a computed location. We now examine how
to deal with the optimized binary of C’s switch statement, produced by the
Gnu C compiler. In this relatively simple setting, our limited experience
indicates that there are no major obstacles in dealing with computed jumps
in our approach to machine-code program proving. But we suspect this
would pose some very serious problems for any low-level code verification
work that abstracts away programs from the memory. At the present, we
have not considered some perhaps much more difficult transfer issues, such
as the set-jump/long-jump pair in the standard C library.

We have provided some program proving support for the computed trans-
fer construct in our lemma library. Since the Gnu C compiler utilizes a very
standard technique to handle the switch statement, we believe our treat-
ment is probably applicable to many other languages and compilers using
the same technique.

To make our discussion concrete, we present here a very simple example
to demonstrate the problem we have dealt with. Reading the assembly code
of the following C function foo, the instruction at line foo+14 computes
the address of an entry in a table embedded in the program that stores the
offset for jumping, and the instruction at line foo+18 jumps according to
the offset.

int foo(int n)

{
int i;
switch(n)
case 0: i = 0; break;
case 1: 1 = 1; break;
case 2: i = 4; break;
case 3: i = 9; break;
case 4: i = 16; break;
default: i = n; break;
};
return i;

}

The MC68020 assembly code generated by the Gnu C compiler with optimization.

88

0x23b2
0x23b6
0x23ba
0x23bc
0x23be
0x23c0
0x23c4
0x23c8
0x23cc
0x23d0
0x23d4
0x23d6
0x23d8
0x23da
0x23dc
0x23de
0x23e0
0x23e2
0x23e4
0x23e6

<foo>: linkw a6, #0
<foo+4>: movel a6@(8),d0
<foo+8>: movel #4,d1

<foo+10>: cmpl di,d0
<foo+12>: bhi 0x23e4 <foo+50>
<foo+14>: movew 0x23c8[d0.1%2],d1
<foo+18>: jmp 0x23c8[d1l.w]
<foo+22>: orb #14,a2
<foo+26>: orb #22,a20
<fo00+30>: orb #-128,a20+
<foo+34>: bra 0x23e4 <foo+50>
<foo+36>: movel #1,d0
<foo0+38>: bra 0x23e4 <foo+50>
<foo+40>: movel #4,d0
<foo+42>: bra 0x23e4 <foo+50>
<foo+44>: movel #9,d0
<foo+46>: bra 0x23e4 <foo+50>
<foo+48>: movel #16,d0
<foo+50>: unlk a6

<foo+52>: rts

The correctness proof of this toy program is trivial, and completely au-
tomatic with the help of the special-purpose lemmas we have added into the
lemma library. The formalization is no different from the other examples:
FOO-CODE is the machine code of the program foo; foo-statep (s, n) formal-
izes the preconditions on the initial state; foo-t(n) defines the exact number
of instructions to complete this program; and foo (n) characterizes the func-
tional behavior of this program. Finally, the theorem foo-correctness asserts
the correctness of this program.

DEFINITION:

FOO-CODE

= (78 86 0 0 32 46 0 8 114 4 176 129 98 36 50 59 10
6 78 2561 16 2 0 10 0 14 0 18 0 22 0 26 66 128 96
14 112 1 96 10 112 4 96 6 112 9 96 2 112 16 78 94

78 117)
DEFINITION:
foo-statep (s, n)
= ((mc-status (s) = *running)
A evenp (me-pe(s))
A rom-addrp (mc-pc(s), me-mem (s), 54)
A mecode-addrp (mc-pc (s), me-mem (s), FOO-CODE)
A ram-addrp (sub (32, 4, read-sp (s)), me-mem (s), 12)
A disjoint(me-pc(s), 54, sub (32, 4, read-sp (s)), 12)
A (n = wread-mem (add (32, read-sp (s), 4), mc-mem (s), 4)))

89

DEFINITION:

foo-t(n)

= if(n=0)V(n=1)V(n=2)V (n=23) then 11
elseif n = 4 then 10
else 7 endif

DEFINITION:

foo (n)

= if between-ileq (0, n, 4) then n x n
else n endif

THEOREM: foo-correctness
let sn be stepn (s, foo-t(n))
in
foo-statep (s, n)
= ((mec-status (sn) = ’running)

A (me-pc(sn) = rits-addr(s))

A (read-rn (32, 14, mc-rfile(sn))

= read-rn (32, 14, mc-rfile (s)))

A (read-rn (32, 15, mc-rfile(sn))
= add(32, read-an (32, 7, s), 4))
(d2-7a2-5p (rn)
= (read-rn (oplen, rn, me-rfile (sn))

= read-rn (oplen, rn, mec-rfile (s))))
(disjoint (z, k, sub (32, 4, read-sp (s)), 12)
= (read-mem (z, mec-mem (sn), k)

= read-mem (z, mc-mem (s), k)))
(iread-dn (32, 0, sn) = foo(n))) endlet

>

>

>

6.4 Embedded Assembly Code

The semantics of high-level programming languages cannot make clear the
meaning of embedded assembly code in programs, simply because assembly
code is intrinsically machine dependent. By considering directly the binary
code of high-level programs after compilation, we do not need to address this
semantics issue. Programs and embedded assembly codes are all translated
into the formalized world of machine instructions, and their correctness can
be studied on the basis of a formal processor semantics. To make our dis-
cussion concrete, let us study a very simple example in this section. Our
example also demonstrates how easily we can handle embedded assembly
code. All we need to know is what the programmer should know when he
writes the embedded assembly code.

Our example is the following trivial C function foo which returns a if
the longword at location 10000 is equal to 0, and returns b otherwise.

90

int foo (int a, int b)

{

asm("tstl 10000:w ");
asm("beq 11 ");

asm("movl a6@(12), dO ");
asm("jmp end ");

asm("11: movl a6@(8), 4O ");
asm("end: nop ");

The MC68020 assembly code generated by the Gnu C compiler with optimization.

0x243a
0x243e
0x2442
0x2446
0x244a
0x244e
0x2452
0x2454
0x2456

As

<foo>: linkw fp,#0
<foo+4>: tstl Q#0x2710
<foo+8>: beq 0x244e <foo+20>
<foo+12>: movel fp@(12),d0
<foo+16>: jmp 0x2452 <foo+24>
<fo0+20>: movel fp@(8),d0
<foo+24>: nop

<foo+26>: unlk fp

<foo+28>: rts

always, we formalize the preconditions of the initial state, the time

function, and the functional behavior of the program, which are given below
as the functions foo-statep, foo-t, and foo, respectively.

DEFINITION:

FOO-CODE

= (78 86 0 0 74 184 39 16 103 0 0 10 32 46 0 12 78
250 0 6 32 46 0 8 78 113 78 94 78 117)

DEFINITION:
foo-statep (s, a, b)
= ((mec-status (s) = *running)
A evenp (me-pec(s))
A rom-addrp (mc-pc(s), me-mem (s), 30)
A mecode-addrp (mc-pc (s), me-mem (s), FOO-CODE)
A ram-addrp (sub (32, 4, read-sp (s)), me-mem (s), 16)
A ram-addrp (10000, mc-mem (s), 4)
A disjoint (10000, 4, sub (32, 4, read-sp (s)), 16)
A (a = iread-mem (add (32, read-sp (s), 4), mec-mem(s), 4))
A (b = iread-mem (add (32, read-sp (s), 8), me-mem (s), 4)))
DEFINITION:
foo-t (z)

= ifz =0 then 7
else 8 endif

91

DEFINITION:

foo(a, b,)

= if z =0 then a
else b endif

Note that we need to specify in foo-statep that the memory locations
10000 to 10003 are readable and do not overlap with a certain part of the
stack that will be modified by the program.

The correctness theorem of this program, given below, strictly follows our
formulation in Chapter 5. The proof of this theorem is quite straightforward.

THEOREM: foo-correctness
let z be iread-mem (10000, mc-mem (s), 4)
in
foo-statep (s, a, b)
= ((mec-status (stepn (s, foo-t(z))) = ’running)
A (me-pe (stepn (s, foo-t(z))) = rts-addr(s))
A (read-rn (32, 14, mc-rfile (stepn (s, foo-t(z))))
= read-rn (32, 14, mc-rfile (s)))
A (read-rn (32, 15, mc-rfile (stepn (s, foo-t(z))))
= add(32, read-an (32, 7, s), 4))
(d2-7a2-5p (rn)
= (read-rn (oplen,
™,
me-rfile (stepn (s, foo-t(z))))
= read-rn (oplen, rn, mec-rfile (s))))
(disjoint (z, k, sub (32, 4, read-sp (s)), 16)
= (read-mem (z, mc-mem (stepn (s, foo-t(z))), k)
= read-mem (z, mc-mem (s), k)))
A (iread-dn (32, 0, stepn (s, foo-t(z))) = foo(a, b, z))) endlet

>

>

The last conjunct in the theorem above proves, that after executing foo-
t(z) instructions, the content of data register DO is equal to foo(a, b, 1),
where a and b are the two inputs, and x is the longword at location 10000
in the memory.

92

Chapter 7

Proving Theorems about
the Berkeley Unix C String
Library

One of our main goals in defining a formal model for a widely used processor
was to study the correctness of real programs executed on that particular
processor. The results reported in the preceding chapters have demonstrated
the potential to apply our verification methodology to some small programs
that are in real use. We now investigate applying our verification system to
some small, but real programs.

After studying carefully several possible candidate applications, we de-
cided to study the Berkeley Unix C String Library—an implementation of
the C string library of ANSI/ISO standard. The reasons for this choice were
very simple: the library has been widely used and publicly released as part
of the Berkeley Unix Operating System; and the string functions are quite
simple and self-contained, and hence a good target for experimentation. We
are quite pleased by the results of this small verification project; twenty one
out of twenty-two functions specified in the ISO standard have been me-
chanically verified. The function strerror, though mathematically trivial,
is the only one left out because of the need of formalizing IO, to which we
have not attended. There were three programming errors revealed in the
process of the verification. The machine code for these string functions was
generated by the Gnu C compiler.

This chapter reports our work on proving mathematical theorems about
the Berkeley Unix C String Library. We first give a very brief and informal

93

introduction to the functions in the Berkeley Unix C String Library that
we have considered and the mathematical theorems about these functions
that we have proved. This should give the reader an overview of this small
verification project. To formalize our discussion, we next look into the formal
verification of the Berkeley C String Library. We present only the mechanical
proofs of a couple of the most interesting and tricky functions in the library:
memmove and strstr. Finally, we discuss the two programming errors we
have discovered in studying this C string library. The complete proof script
of all the string functions is given in [53].

7.1 The Berkeley Unix C String Library

The Berkeley Unix C string library is intended to be an implementation of
the C string library of the ANSI/ISO standard, and is publicly released as
part of the Berkeley Unix Operating System.! There are twenty-two string
functions specified in the ANSI/ISO standard, and we have verified the
binary of the Berkeley implementation of twenty-one of them. The binary
was generated by the Gnu C Compiler for the MC68020. In this section, we
give an informal description of this small verification project. For each of
the string functions verified, we provide the formal syntax of the function, a
paraphrase of the informal English specification of the ISO standard [27, 43],
and an informal description of the theorems we proved about the function.

We adopt an informal, conventional notation to describe the theorems we
have proved about these C string functions. We use s, s1, and s2 to denote
strings, s[i] to denote the ith character in the string s, and 2’ to denote
the value of = in the post state. We also informally introduce an predicate
disjoint(sl, s2) to assert that the strings s1 and s2 do not overlap.

Our presentation below of the C string library is highly informal but
follows closely the ISO standard [27], where the reader may find a more ac-
curate and verbose English description of these functions. Still more formal
is the treatment in [53].

7.1.1 The memcpy Function

Synopsis. void *memcpy (void *sl, const void *s2, size_t n)

!The copy of the Berkeley C string library used in this work was obtained by anonymous
ftp from ftp.uu.net

94

Description. The memcpy function copies n characters from the object s2
into the object s1, and returns the value of s1. The behavior of the function
is undefined if s1 and s2 overlap.

Theorem. We have: i < n = s1'[i] = s2[i].2

7.1.2 The memmove Function

Synopsis. void *memmove (void *sl, const void *s2, size_t n)
Description. The memmove function copies n characters from the object s2
into the object s1, and returns the value of s1. The memmove function works
correctly on any two objects.

Theorem. We have: i < n = s1'[i] = s2[i].

7.1.3 The strcpy Function

Synopsis. char *strcpy (char *sl, const char *s2)
Description. The strcpy function copies the string s2 into the array si,
and returns the value of s1. The behavior of the function is undefined if the
strings s1 and s2 overlap.
Theorem. Assuming disjoint(sl, s2), we have:

J < 1s2| = s1'[j] = s2[j].

7.1.4 The strncpy Function

Synopsis. char *strncpy (char *sl, const char *s2, size_t n)
Description. The strncpy function copies at most n characters from the
array s2 to the array s1, and returns the value of s1. The behavior of the
function is undefined if the strings s1 and s2 overlap.
Theorem. Assuming disjoint(sl,s2), we have:

1. j < min(n,|s2|) = s1'[j] = s2[j].

2. 2] <j<n=sl[j]=0.

7.1.5 The strcat Function

Synopsis. char *strcat (char *sl, const char *s2)

Description. The strcat function appends a copy of the string s2 to
the end of the string s1, and returns the value of s1. The behavior of the
function is undefined if s1 and s2 overlap.

2The Berkeley implementation of memcpy works correctly on any two objects.

95

Theorem. Assume disjoint(sl, s2), we have:
1. j <|sl] = s1'[j] = s1[j].
2. |s1| < j < |s1] 4+ |s2] = (s1'[j] = s2[j — |s1]].

7.1.6 The strncat Function

Synopsis. char *strncat (char *sl, const char #*s2, size_t n)
Description. The strncat function appends at most n characters from
the array s2 to the end of the string s1, and returns the value of s1. The
behavior of the function is undefined if s1 and s2 overlap.
Theorem. Assuming disjoint(sl, s2), we have:

1. j < |s1| = sU'[] = s1[j].

2. |s1| < j < |s1] 4+ min(|s2],n) = s1'[j] = s2[j — |s1]].

7.1.7 The memcmp Function

Synopsis. int memcmp (const void *sl1, const void *s2, size_t n)
Description. The memcmp function compares the first n characters of the
objects s1 and s2, and returns an integer greater than, equal to, or less than
zero, according to the lexical order of the objects s1 and s2.
Theorem. We have:

1. mememp(sl, s2,n) =0 = Vj < n(slj] = s2[j]).

2. mememp(sl, s2,n) # 0= 3i < n(mememp(sl, s2,n) = sl[i] — s2[i] A
vj < i(s1]j] = s2[j]))

3. mememp(s2,sl,n) < 0 < mememp(sl,s2,n) >0

7.1.8 The strcmp Function

Synopsis. int strcmp (const char *s1, const char *s2)
Description. The strcmp function compares the string s1 to the string s2,
and returns an integer greater than, equal to, or less than zero, according
to the lexical order of the strings s1 and s2.
Theorem. We have:

L. stremp(sl, s2) = 0= Vj <|sl|(s1[j] = s2[j]).

2. stremp(sl, s2) # 0 = Ji < |sl|(stremp(sl, s2) = sl[i] — s2[i] AVj <
i(s1[j] = 32[]]())

3. stremp(s2,s1) < 0 « stremp(sl, s2) > 0

96

7.1.9 The strcoll Function

Synopsis. int strcoll (const char *sl, const char *s2)
Description. Since LC_COLLATE is not implemented, the function strcoll
is equivalent to strcmp.

Theorem. We have: strcoll(sl, s2) = stremp(sl, s2).

7.1.10 The strncmp Function

Synopsis. int strncmp (const char #*sl, const char *s2, size t n)
Description. The strncmp function compares at most n characters of the
arrays s1 and s2, and returns an integer greater than, equal to, or less than
zero, according to the lexical order of the arrays s1 and s2.
Theorem. We have:

L. strnemp(sl, s2,n) =0 = Vj < min(|sl]|,n)(s1[j] = s2[j]).

2. strnemp(sl,s2,n) # 0 = Ji < min(|sl|,n)(strnemp(sl, s2,n) =
s1[i] - s2[i] AV < i(s1]j] = s2[j]))

3. strnemp(s2,sl,n) < 0 < strnemp(sl, s2,n) >0

7.1.11 The strxfrm Function

Synopsis. size t strxfrm (char *sl1, const char *s2, size_t n)
Description. Since LC_COLLATE is not implemented, the strxfrm function
simply copies the string s2 to the array s1, and returns the length of the
string s2. At most n characters are copied to the array s1. If n is zero, s1
is permitted to be a null pointer.
Theorem. Assuming disjoint(sl,s2), we have:

1. j < min(n,|s2|) = s1'[j] = s2[j].

2. strozfrm(sl, s2,n) = [s2|. ?

7.1.12 The memchr Function

Synopsis. void *memchr (const void *s, int ¢, size_t n)
Description. The memchr function returns a pointer to the first occurrence
of ¢ in the initial n characters of the object s, or a null pointer if ¢ is not
found.
Theorem. We have:

1. memchr(s,c,n) # 0 = s[memchr(s,c,n) — s] = c.

3The Berkeley strxfrm function contains a bug that falsifies this theorem.

97

2. memchr(s,c,n) = 0= VYj < n(s[j] # c).
3. j < (memchr(s,c,n) —s) = s[j] # c.

7.1.13 The strchr Function

Synopsis. char *strchr (const char *s, int c)
Description. The strchr function returns a pointer to the first occurrence
of ¢ in the string s, or a null pointer if ¢ is not found.
Theorem. We have:
1. strchr(s,c) # 0 = s[strchr(s,c) —s] =c.
2. strchr(s,c) =0=Vj <|s|,s[j] # c.
3. j < (strchr(s,c) — s) = s[j] # c.

7.1.14 The strcspn Function

Synopsis. size t strcspn (const char *sl, const char *s2)
Description. The strcspn function returns the length of the maximum
initial segment of the string s1 which consists entirely of characters not
from the string s2.
Theorem. We have:

1. strchr(s2, s1strespn(sl, s2)]) # 0.

2. j < strespn(sl, s2) = strehr(s2, s1[j]) =0

7.1.15 The strpbrk Function

Synopsis. char *strpbrk (const char *sl, const char *s2)
Description. The strpbrk function returns a pointer to the first occurrence
in the string s1 of any character from the string s2, or a null pointer if no
character from s2 occurs in s1.
Theorem. We have:

1. strpbrk(sl, s2) # 0 = strchrl(s2, s1[strpbrk(sl,s2) — s1]) # 0.

2. j < (strpbrk(sl,s2) — s1) = strchrl(s2,sl[j]) = 0.

7.1.16 The strrchr Function

Synopsis. char *strrchr (const char *s, int c)
Description. The strrchr function returns a pointer to the last occurrence
of ¢ in the string s, or a null pointer if ¢ is not found.
Theorem. We have:
1. strrchr(s,c) # 0 = s[strrchr(s,c) — s] = c.

98

2. strrchr(s,c) = 0=Vj < |s|(s[j] # ¢).
3. (strrchr(s,c) —s) < j < |s| = s[j] #c.

7.1.17 The strspn Function

Synopsis. size t strspn (const char *sl, const char *s2)
Description. The strspn function returns the length of the maximum
initial segment of the string s1 which consists entirely of characters from
the string s2.
Theorem. We have:

1. strspn(sl, s2) < [sl]| = strchrl(s2, sl]strspn(sl, s2)]) = 0.

2. j < strspn(sl, s2) = strchrl(s2,sl[j]) # 0.

7.1.18 The strstr Function

Synopsis. char *strstr (const char *sl, const char *s2)
Description. The strstr function returns a pointer to the first occurrence
in the string s1 of the string s2, or a null pointer if the string s2 is not
found.
Theorem. We have:

1. strstr(sl, s2) # 0 = strnemp(strstr(sl, s2),s2,|s2|) = 0.

2. strstr(sl, s2) = 0= Vj < |sl|(strncmp(sl + j, s2,|s2|) # 0).

3. s1 < s < strstr(sl, s2) = strnemp(s, s2,|s2|) # 0.

7.1.19 The strtok Function

Synopsis. char *strtok (char *strl, const char *str2)
Description. A sequence of calls to the strtok function breaks the string
s1 into a sequence of tokens, each of which is delimited by a character from
the separator string s2. The strtok function returns a pointer to the first
character of the current token, or a null pointer if there is no token found
in the token string. Please see [52, 27] for more detailed descriptions.
Theorem. Let i(sl) be strspn(sl, s2), j(s1) be strespn(sl+i(sl),s2), and
last be the static variable, we have:

1. ((s1 #0) A (s1]i(s1)] = 0)) = (strtok(sl, s2) = 0) A (last’ = 0))

2. ((s1 # 0) A (s1]i(s1)] # 0) A (s1]j(s1)] = 0)) = ((strtok(sl,s2) =
sl +i(s1)) A (last’ = 0))

3. ((s1 # 0) A (s1i(s1)] # 0) A (s1[j(s1)] # 0))
s1+i(s1)) A (last’ = s1 4+ j(s1) + 1) A (s1'[j(s1)] = 0)

4. (last = 0) = ((strtok(0,s2) = 0) A (last’ = 0))

= ((strtok(sl,s2) =
)

99

5. ((last # 0)A(last[i(last)] # 0)A(last][j(last)] = 0)) = ((strtok(0, s2) =
last +i(last)) A (last’ = 0))

6. ((last # 0)A(last[i(last)] # 0)A(last][j(last)] # 0)) = ((strtok(0, s2) =
last +i(last)) A (last’ = last + j(last) + 1) A (last'[j(last)] = 0))

~ o~

~

7.1.20 The memset Function

Synopsis. void *memset (void *s, const int c, size_t n)
Description. The memset function copies the value of ¢ into each of the
first n characters of the object s.
Theorem. We have:

L.i<j<n=§[j]=ch

2. n<j<|s|= 5] =slj]

7.1.21 The strlen Function

Synopsis. size_t strlen (const char *s)
Description. The strlen function returns the length of the string s.
Theorem. We have:

1. j < strlen(s) = §'[j] # 0.

2. §'[strlen(s)] = 0.

7.2 Proving the String Functions Correct

The descriptions given in the preceding section are quite informative, but
rather informal. To remedy that, we describe in this section the formaliza-
tion and verification of two functions memmove and strstr of the Berkeley
C string library.

7.2.1 Proving the memmove Function Correct

The first example is the memmove function. As one of the copying functions,
the interesting feature of this function is that it works even when the copying
takes place between objects that overlap.

As always, we first give the C and the assembly code of this function to
be studied.

/%=
* Copyright (c) 1990 The Regents of the University of California.

100

* All rights reserved.

*/
typedef

#define
#tdefine

/*
* Copy
* This
* (the
*/

void *

int word; /* "word" used for optimal copy speed */

wsize sizeof (word)
wmask (wsize - 1)

a block of memory, handling overlap.
is the routine that actually implements
portable versions of) bcopy, memcpy, and memmove.

memmove (dstO, srcO, length)

#define
#tdefine

void *dstO;
const void *srcO;
register size_t length;

register char *dst = dstO;
register const char *src = srcO;
register size_t t;

if (length == 0 || dst == src) /* nothing to do */
goto done;

/*
* Macros: loop-t-times; and loop-t-times, t>0
*/

TLOOP(s) if (t) TLOOP1(s)

TLOOP1(s) do { s; } while (-—-t)

if ((unsigned long)dst < (unsigned long)src) {
/*
* Copy forward.
*/
t = (int)src; /* only need low bits */
if ((t | (int)dst) & wmask) {
/*
* Try to align operands. This cannot be done
* unless the low bits match.

*/
if ((t ~ (int)dst) & wmask || length < wsize)
t = length;
else
t = wsize - (t & wmask);
length -= t;

101

done:

}
/*

TLOOP1(*dst++ = *src++);

* Copy whole words, then mop up any trailing bytes.

*/

t = length / wsize;

TLOOP(*(word *)dst = *(word *)src; src += wsize; dst += wsize);
t = length & wmask;

TLOOP(kdst++ = *src++);

} else {
/*

* Copy backwards. Otherwise essentially the same.
* Alignment works as before, except that it takes

*

*/
src +=
dst +=

if ((¢

}

(t&wmask) bytes to align, not wsize-(t&wmask).

length;
length;
t = (int)src;

(int)dst) & wmask) {
if ((t ~ (int)dst) & wmask || length <= wsize)
t = length;
else
t &= wmask;
length —-= t;
TLOOP1(*--dst = *--src);

t = length / wsize;

TLOOP(src -= wsize; dst -= wsize; *(word *)dst = *(word *)src);
t = length & wmask;

TLOOP(*—-dst = *--src);

return (dstO);

The MC68020 assembly code generated by the Gnu C compiler with optimization.

0x2550
0x2554
0x2558
0x255¢
0x2560
0x2562
0x2566
0x256a
0x256¢
0x2570

<memmove>:
<memmove+4>:
<memmove+8>:
<memmove+12>:
<memmove+16>:
<memmove+18>:
<memmove+22>:
<memmove+26>:
<memmove+28>:
<memmove+32>:

linkw fp,#0

moveml d2-d4,sp@-

movel fp@(8),d3

movel fp@(16),d2

moveal d3,al

moveal fp@(12),a0

beq 0x2604 <memmove+180>
cmpal d3,a0

beq 0x2604 <memmove+180>
bls 0x25bc <memmove+108>

102

0x2572
0x2574
0x2576
0x2578
0x257a
0x257c¢
0x257e
0x2580
0x2582
0x2584
0x2586
0x2588
0x258a
0x258¢
0x258e
0x2590
0x2592
0x2594
0x2596
0x2598
0x259a
0x259c¢
0x259e
0x25a0
0x25a2
0x25a4
0x25a6
0x25a8
0x2baa
0x2bac
0x2bae
0x25b0
0x25b2
0x25b4
0x25b6
0x25b8
0x25ba
0x25bc
0x25be
0x25c0
0x25c2
0x25c4
0x25c6
0x25c8
0x25ca
0x25cc
0x25ce

<memmove+34>:
<memmove+36>:
<memmove+38>:
<memmove+40>:
<memmove+42>:
<memmove+44>:
<memmove+46>:
<memmove+48>:
<memmove+50>:
<memmove+52>:
<memmove+54>:
<memmove+56>:
<memmove+58>:
<memmove+60>:
<memmove+62>:
<memmove+64>:
<memmove+66>:
<memmove+68>:
<memmove+70>:
<memmove+72>:
<memmove+74>:
<memmove+76>:
<memmove+78>:
<memmove+80>:
<memmove+82>:
<memmove+84>:
<memmove+86>:
<memmove+88>:
<memmove+90>:
<memmove+92>:
<memmove+94>:
<memmove+96>:
<memmove+98>:

<memmove+100>:
<memmove+102>:
<memmove+104>:
<memmove+106>:
<memmove+108>:
<memmove+110>:
<memmove+112>:
<memmove+114>:
<memmove+116>:
<memmove+118>:
<memmove+120>:
<memmove+122>:
<memmove+124>:
<memmove+126>:

movel a0,d1l

movel d1,d0

orl d3,d0

movel #3,d4

andl d4,d0

beq 0x25a2 <memmove+82>
movel d1,d0

eorl d3,d0

movel #3,d4

andl d4,d0

bne 0x258e <memmove+62>
movel #3,d4

cmpl d2,d4

bcs 0x2592 <memmove+66>
movel d2,d1

bra 0x259a <memmove+74>
movel #3,d0

andl d1,d0

movel #4,d1

subl d0,d1

subl di1,d2

moveb a0@+,al@+

subl #1,d1

bne 0x259c <memmove+76>
movel d2,d1

1srl #2,d1

beq 0x2bae <memmove+94>
movel a0@+,al@+

subl #1,d1

bne 0x25a8 <memmove+388>
movel #3,d1

andl d2,d1

beq 0x2604 <memmove+180>
moveb a0@+,al@+

subl #1,d1

bne 0x25b4 <memmove+100>
bra 0x2604 <memmove+180>
addal d2,a0

addal d2,al

movel a0,d1l

movel al,dO

orl d1,d0

movel #3,d4

andl d4,d0

beq 0x2bec <memmove+156>
movel al,dO

eorl di1,d0

103

0x25d0 <memmove+128>: movel #3,d4

0x25d2 <memmove+130>: andl d4,d0

0x25d4 <memmove+132>: bne 0x25dc <memmove+140>
0x25d6 <memmove+134>: movel #4,d4

0x25d8 <memmove+136>: cmpl d2,d4

0x2bda <memmove+138>: bcs 0x25e0 <memmove+144>
0x25dc <memmove+140>: movel d2,d1

0x25de <memmove+142>: bra 0x25e4 <memmove+148>
0x25e0 <memmove+144>: movel #3,d4

0x25e2 <memmove+146>: andl d4,d1

0x25e4 <memmove+148>: subl di1,d2

0x25e6 <memmove+150>: moveb a0@-,al@-

0x25e8 <memmove+152>: subl #1,d1

0x25ea <memmove+154>: bne 0x25e6 <memmove+150>
0x25ec <memmove+156>: movel d2,d1

0x25ee <memmove+158>: 1srl #2,d1

0x25f0 <memmove+160>: beq 0x25f8 <memmove+168>
0x25f2 <memmove+162>: movel a0@-,al@-

0x25f4 <memmove+164>: subl #1,d1

0x25f6 <memmove+166>: bne 0x25f2 <memmove+162>
0x25f8 <memmove+168>: movel #3,d1

0x25fa <memmove+170>: andl d2,d1

0x25fc <memmove+172>: beq 0x2604 <memmove+180>
0x25fe <memmove+174>: moveb a0@-,al@-

0x2600 <memmove+176>: subl #1,d1

0x2602 <memmove+178>: bne 0x25fe <memmove+174>
0x2604 <memmove+180>: movel d3,d0

0x2606 <memmove+182>: moveml fp@(-12),d2-d4
0x260c <memmove+188>: unlk fp

0x260e <memmove+190>: rts

We follow our formulation described in Chapter 5. The first step is there-
fore to formalize the precondition on the initial state memmove-statep (s,
strl, n, Ist1, str2, Ist2), the time function memmouve-t(strl, str2, n, Ist1,
Ist2), and the behavior function memmove (str1, str2, n, Ist1, Ist2). Only
memmouve-statep is given here. The definition of the other two functions,
though quite lengthy, is straightforward.

DEFINITION:

memmove-statep (s, strl, n, lstl, str2, Ist2)

= ((mec-status (s) = ’running)

evenp (mc-pc (s))

rom-addrp (mc-pc (s), mc-mem (s), 192)

mcode-addrp (me-pc(s), me-mem (s), MEMMOVE-CODE)
ram-addrp (sub (32, 16, read-sp (s)), mc-mem (s), 32)
ram-addrp (strl, mc-mem (s), n)

>>>> >

104

>>>>>>>>> >

mem-lst (1, strl, mec-mem (s), n, lst1)

ram-addrp (str2, mc-mem (s), n)

mem-lst (1, str2, mc-mem (s), n, lst2)
(

disjoint (sub (32, 16, read-sp (s)), 32, strl, n)

disjoint (sub (32, 16, read-sp (s)), 32, str2, n)

(strl = read-mem (add (32, read-sp (s), 4), mc-mem (s), 4))
(str2 = read-mem (add (32, read-sp (s), 8), mc-mem (s), 4))
(n = uread-mem (add (32, read-sp (s), 12), mc-mem (s), 4))
uint-rangep (nat-to-uint (str1) + n, 32)

wint-rangep (nat-to-uint (str2) + n, 32))

In the definition of memmouve-statep, we have not asserted that the ob-
jects pointed to by strl and str2 do not overlap. But we do have to assert
that a certain portion of the stack must not overlap with the objects pointed

to by strl and str2.
The following theorem memmouve-correctness gives the correctness of this

function.

THEOREM: memmove-correctness

let sn
in

be stepn (s, memmove-t(sirl, str2, n, lstl, lst2))

memmove-statep (s, strl, n, lstl, str2, lst2)
= ((me-status (sn) = ’running)

A
A

A

(me-pc (sn) = rts-addr(s))
(read-rn (32, 14, mc-rfile (sn))
= read-rn (32, 14, mc-rfile(s)))
(read-rn (32, 15, mc-rfile (sn))
= add (32, read-sp (s), 4))
((d2-7a2-5p (rn) A (oplen < 32))
= (read-rn (oplen, rn, mc-rfile (sn))
= read-rn (oplen, rn, mc-rfile (s))))
((disjoint (z, k, sub (32, 16, read-sp (s)), 32)
A disjoint (z, k, strl, n)
A disjoint (z, k, str2, n))
= (read-mem (z, mc-mem (sn), k)
= read-mem (z, mc-mem (s), k)))
(read-dn (32, 0, sn) = strl)
mem-Ist (1,
strl,
mc-mem (sn),
n’
memmove (strl, str2, n, lst1, Ist2))) endlet

While the other conjuncts are standard, the last two conjuncts give us
the functional behavior of this function: after the execution of this program,
the content of data register DO is equal to strl, and the object pointed to by
strl is equal to memmouve (strl, str2, n, lst1, Ist2). The following theorem

105

further proves that the new object pointed to by strl is correct, according
to the standard.

THEOREM: memmove-thm1
(G <mn)
= (get-nth (j, memmove (strl, str2, n, lstl, Ist2)) = get-nth (4, Ist2))

7.2.2 Proving the strstr Function Correct

The second example is the strstr function, which is one of the most compli-
cated search functions in the library. The interesting feature of this function
is that it calls the string functions strlen and strncmp in the Berkeley im-
plementation, which provides us a rather realistic suite to test our ability to
handle subroutine calling.

/-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.

*/

/* find pointer to first occurrence of find[] in s[] */
char *
strstr(s, find)

register const char *s, *find;

{
register char c, sc;
register size_t len;
if ((c = *find++) '= 0) {
len = strlen(find);
do {
do {
if ((sc = *s++) == 0)
return (NULL);
} while (sc != ¢);
} while (strncmp(s, find, len) != 0);
5--3
}
return ((char *)s);
}

The MC68020 assembly code generated by the Gnu C compiler with optimization.

0x2718 <strstr>: linkw fp,#0
0x271c <strstr+4>: moveml d2-d3/a2-a3,sp@-
0x2720 <strstr+8>: moveal fp@(8),a2

106

0x2724 <strstr+12>: moveal fp@(12),a3
0x2728 <strstr+16>: moveb a30+,d2

0x272a <strstr+18>: beq 0x275a <strstr+66>
0x272c <strstr+20>: movel a3,sp@-

0x272e <strstr+22>: jsr Q@#0x25b0 <strlen>
0x2734 <strstr+28>: movel d0,d3

0x2736 <strstr+30>: addqw #4,sp

0x2738 <strstr+32>: moveb a20+,d0

0x273a <strstr+34>: bne 0x2740 <strstr+40>
0x273c <strstr+36>: clrl dO

0x273e <strstr+38>: bra 0x275c <strstr+68>
0x2740 <strstr+40>: cmpb d0,d2

0x2742 <strstr+42>: bne 0x2738 <strstr+32>
0x2744 <strstr+44>: movel d3,sp@-

0x2746 <strstr+46>: movel a3,sp@-

0x2748 <strstr+48>: movel a2,sp@-

0x274a <strstr+50>: jsr @#0x2608 <strncmp>
0x2750 <strstr+56>: addaw #12,sp

0x2754 <strstr+60>: tstl dO

0x2756 <strstr+62>: bne 0x2738 <strstr+32>
0x2758 <strstr+64>: subqw #1,a2

0x275a <strstr+66>: movel a2,d0

0x275¢c <strstr+68>: moveml fp@(-16),d2-d3/a2-a3
0x2762 <strstr+74>: unlk fp

0x2764 <strstr+76>: rts

First, the precondition strstr-statep (s, strl, nl, Istl1, str2, n2, Ist2),
the time function strstr-t(nl, Ist1, n2, Ist2), and the behavior function
strstr(nl, Ist1, n2, Ist2) are defined. Like the preceding example, only
strstr-statep is given as follows.

CONSERVATIVE AXIOM: strstr-load
strstr-loadp (s)
= (evenp (STRSTR-ADDR)

A (STRSTR-ADDR € N)

A nat-rangep (STRSTR-ADDR, 32)

A rom-addrp (STRSTR-ADDR, mc-mem (s), 78)

A mcode-addrp (STRSTR-ADDR, mc-mem (s), STRSTR-CODE)

A strlen-loadp (s)

A strncmp-loadp (s)

A (pe-read-mem (add (32, STRSTR-ADDR, 24), mc-mem(s), 4)
= STRLEN-ADDR)

A (pc-read-mem (add (32, STRSTR-ADDR, 52), mc-mem (s), 4)

= STRNCMP-ADDR))

Simultaneously, we introduce the new function symbols strstr-loadp and strstr-addr.

107

DEFINITION:
strstr-statep (s, strl, ni, Ist1, str2, n2, Ist2)
= ((mc-status (s) = ’running)

(n2 #0)
uint-rangep (n2, 32))

A strstr-loadp (s)

A (me-pc(s) = STRSTR-ADDR)

A ram-addrp (sub (32, 48, read-sp (s)), mc-mem(s), 60)

A ram-addrp (strl, mec-mem(s), nl)

A mem-lst(1, strl, mec-mem(s), n1, lstl)

A ram-addrp (str2, mc-mem(s), n2)

A mem-lst(1, str2, mc-mem (s), n2, lst2)

A disjoint(strl, ni, sub(32, 48, read-sp (s)), 60)

A disjoint(str2, n2, sub (32, 48, read-sp (s)), 60)

A (strl = read-mem (add (32, read-sp (s), 4), mec-mem(s), 4))
A (str2 = read-mem (add (32, read-sp (s), 8), mec-mem(s), 4))
A (slen(0, nl, Istl) < nl)

A (slen(0, n2, Ist2) < n2)

A (nl #0)

A wint-rangep (nl, 32)

A

A

There are a few interesting things in strstr-statep that deserve some
explanation. First, we have specified that the longword at (STRSTR-ADDR
+24) be STRLEN-ADDR, which is the address of the function strlen, and the
longword at (STRSTR-ADDR +52) be STRNCMP-ADDR, which is the address
of the function strncmp. Second, how to specify a null terminated string
has perplexed us for a while. Our current solution is to introduce an upper
bound on the number of characters in the string. In strstr-statep, we have
introduced two new variables n1 and n2, which are used as bounds for string
strl and str2, respectively.

The following theorem strstr-correctness gives the correctness of this
function.

THEOREM: strstr-correctness
let sn be stepn (s, strsir-t(nl, lst1, n2, Ist2))
in
strstr-statep (s, strl, nl, lstl, str2, n2, lst2)
= ((me-status (sn) = ’running)
A (me-pc(sn) = rits-addr(s))
A (read-rn (32, 14, mc-rfile (sn))
= read-rn (32, 14, mc-rfile (s)))
A (read-rn (32, 15, mc-rfile (sn))
= add (32, read-sp (s), 4))
A ((d2-7a2-5p (rn) A (oplen < 32))
= (read-rn (oplen, rn, me-rfile (sn))
= read-rn (oplen, rn, mc-rfile (s))))

108

A (disjoint(z, k, sub (32, 48, read-sp (s)), 60)
= (read-mem (z, mc-mem (sn), k)
= read-mem (z, mc-mem(s), k)))
A (read-dn (32, 0, sn)
= if strstr(nl, Ist1, n2, Ist2)
then add (32, strl, strstr*(nl, lstl, n2, lst2))
else 0 endif)) endlet

In particular, the last conjunct in the theorem above gives us the func-
tional behavior of this function: after the execution of this program, the
content of data register DO is equivalent to strstr(ni1, Istl, n2, Ist2). The
next three theorems further prove that this function is correct, according to
the standard.

THEOREM: strstri-thm1

let j be strstrl (i, nl, lstl, n2, lst2, len)

in

(G EN) A (n = (1 + Len))

= (strnemp2(j, n, Ist1, 0, Ist2) = 0) endlet

THEOREM: strstr-thm2
(Ist-of-chrp (Ist1)
A lst-of-chrp (1st2)
A (3 < strstr(nl, Ist1, n2, Ist2))

A (n2 #0))
= (strnemp (strlen (0, n2, lst2), medr(j, Istl), Ist2) # 0)

THEOREM: strstr-thm3
(Ist-of-chrp (Ist1)
A lst-of-chrp (1st2)
A (= strsir(nl, Ist1, n2, Ist2))
A (j < strlen(0, nl, Ist1))
A (n2 #0))
= (strnemp (strlen (0, n2, Ist2), medr(j, Ist1), Ist2) # 0)

7.3 Programming Errors

Generally, people believe that detecting errors in machine-code programs is
hopelessly hard. But our experience with machine-code program proving
indicates that finding bugs seems to be no harder than finding proofs in
our framework. Discovering programming errors comes naturally as a by-
product in the proof process. We add this short section to explain the three
programming errors we found in the process of verifying the Berkeley Unix
C string library, and to report our experience in finding them.

109

7.3.1 The Bug in the Berkeley strxfrm Function

The first programming error we found was in the Berkeley C string function
strxfrm, which went undetected in BSD4.3, and which will be corrected for
the release of BSD4.4.

According to its specification, the strxfrm(sl, s2, n) function returns
the length of the string s2. But when we attempted to prove that the data
register DO has the length of s2 after an execution of this function, we found
that this was not a true theorem for the Berkeley implementation. And then
the error was detected.

The bug can easily be seen in the corresponding Berkeley C code.

register size_t r = 0;
register int c;

/*
* Since locales are unimplemented, this is just a copy.
*/
if (n !'=0) {
while ((c = *src++) != 0) {

r++;
if (--n == 0) {
while (*src++ != 0)
r++;
break;
}
*dst++ = c;
}
*dst = 0;

}

return (r);
Evidently, in the case of n == 0, this function returns 0, rather than the
length of the string s2.

7.3.2 The Bug in the Berkeley memmove Function

The second programming error we found was in the Berkeley C string func-
tion memmove, which had been detected prior to our work. The error has
been corrected in the latest version of BSD4.3.

According to its specification, memmove (src, dst, length) returns the
value of src. But we failed to prove that the data register DO has the value
of src after an excution of this function.

The bug, shown in the following two lines from the Berkeley C code, is
extremely simple.

110

if (length == 0 || dst == src) /* nothing to do */
return;

As the code shows, in the cases of length == 0 or dst == src, this function
does not return the value of src. The second line has been corrected to “goto

” in the latest version of the library.

done;’

7.3.3 The Bug in Plauger’s strtok Function

The third programming error we found was not in the Berkeley C string
library, but in the strtok function of [43].* Plauger had detected this error
by the time we had reported it to him.

The bug was that the erroneous strtok function would dereference a
null pointer in some situation. In our proof attempts, the theorem prover
kept “complaining” that it could not prove that memory location 0 was
readable. Based on this information, we carefully studied the C code again,
and detected the error that occurred in the following three lines of code from
the strtok function.

send = strpbrk(sbegin, str2);
if (*send !'= ’\0’)
*send++ = ’\0’;

In the case that strpbrk(sbegin, str2) was NULL, the first line would
assign send to be NULL, and this would cause an error when send was deref-
erenced in the second line.

*After deciding to study the Standard C String Library, we looked into three imple-
mentations: the Berkeley, the Plauger, and the Gnu.

111

Chapter 8

Conclusions

The main goal of the work reported here was to build a powerful proof sys-
tem on top of Nqthm that could be used to mechanically verify MC68020
machine-code programs. Our experiments with realistic, though very small,
machine-code programs demonstrate that we have achieved this goal. Fur-
thermore, the methodologies used and developed in this work provide a
general framework for program proving. Our approach can be character-
ized simply as symbolic execution and theorem proving with an interpreter
semantics in a computational logic. We are optimistic that the verifica-
tion techniques developed in this work can be applied to programs on many
different microprocessors and for many different higher-level language com-
pilers.

8.1 The State of the Work

The work described here has three major components:

1. We have formally described a substantial subset of the user mode of
the MC68020 microprocessor at the instruction-set level. The formal
specification is given as an interpreter in the formal logic of Nqthm.

2. We have developed a mathematical theory for machine-code reason-
ing, which we have mechanized as a lemma library in the automated
reasoning system Nqthm. Each of the lemmas in the library is me-
chanically checked by Nqthm.

3. We have mechanically verified several dozen MC68020 machine-code
programs. Most of the machine-code programs are the object code

112

produced by the Gnu C compilers from their C counterparts. Pri-
marily to provide concrete evidence that this work is easily applicable
to many languages other than C, we have also mechanically verified
the object code produced by the Verdix Ada compiler for an integer
square root algorithm. Furthermore, we have mechanically verified
the object code produced by the AKCL Common Lisp compiler for a
fixnum GCD program. The programs verified include some of the C
functions in Kernighan and Ritchie’s book [31], in particular binary
search and Quick Sort, a majority voting program, and the Berkeley
implementation of the ANSI/ISO standard C string library.

8.2 Future Work

There are a number of potentially important areas for future research build-
ing upon this work.
First of all, the result of this work suggests that we investigate:

e The correctness of some moderate-sized piece of software that is in
critical use. One good example is the verification of microcontroller
programs, an important issue that has been largely ignored by the
formal verification community due to the lack of formal methods to
handle lower-level code.

e The analysis of real-time execution bounds of programs. By reasoning
at the object-code level, we are able to prove properties about real-
time behavior for some programs, which is an advantage over many
higher-level language approaches.

e The correctness of high-level programming language compilers. Even
though compiler verification may have little practical impact in the
near future, it is a research area with many interesting problems.

e The correctness of some lower-level software, such as software for cache
and memory management. This has been one of our main motivations.

We believe that success in any of these areas would be a major contri-
bution to formal methods.

As a next step, we plan to recast what we have learned and reapply it
to another computer architecture. Some issues will be challenging; for ex-
ample, dealing with the nondeterminism introduced via instructions such as

113

“delayed branch” which may leave the program counter in an indeterminate
state during some instructions. We have been investigating the idea of doing
similar work on the SPARC [48] and Alpha [47] architectures.

Currently, we have left out the supervisor mode of the MC68020 micro-
processor in our MC68020 formal model. Specifying supervisor mode is a
challenging, but important research topic. We would certainly consider this
supervisor mode issue in any future research in this area.

Some microprocessor architectures, such as Alpha, support on-chip floating-
point arithmetic. Specifying floating-point instructions and verifying floating-
point programs would be an adventure we have not attended to. We spec-
ulate that formal specification of floating-point arithmetic perhaps would
not pose too great a challenge, but the formal verification of floating-point
programs would be extremely difficult, if not impossible.

114

Appendix A

Syntax Summary

Here is a summary of the conventional syntax used in this paper in terms
of the official syntax of the Nqthm logic described in [9]. (cond and let are
recent extensions not described in [9].)

1.

2.

Variables. z, y, z, etc. are printed in italics.

Function application. For any function symbol for which special syntax
is not given below, an application of the symbol is printed with the
usual notation; for example, the term (fn x y z) is printed as fn (z, v,
z). Note that the function symbol is printed in Roman. In the special
case that ‘¢’ is a function symbol with no arguments (that is, it is a
constant) the term (c) is printed merely as ¢, in small caps, with no
trailing parentheses. Because variables are printed in italics, there is
no confusion between the printing of variables and constants.

. Other constants. t, f, and nil are printed in bold. Quoted constants

are printed in the ordinary fashion of the Nqthm logic, for example,
’(a b c) is still printed just that way. #b001 is printed as 0015, #0765
is printed as 765g, and #xA9 is printed as A94¢g .

. (if x y z) is printed as

if z then y else z endif.

(cond (testl valuel) (test2 value2) (t value3)) is printed as

if test! then valuel elseif test2 then wvalue2 else value3 endif.

(let ((varl vall) (var2 val2)) form) is printed as

115

let var! be vall, var2 be val2 in form endlet.

7. The remaining function symbols that are printed specially are de-
scribed in the following table.

| Nqthm Syntax | Conventional Syntax |

(or x y) TVy
(and x y) TNy
(times x y) T x Y
(plus x y) T+ vy

(remainder x y) r mod y
(quotient x y) T+
(difference x y) T -y
(implies x y) T =y
(member x y) T €Y
(geq x y) 2>y
(greaterp x y) z >y
(leq x y) r <y
(lessp x y) z <y
(equal x y) r=1y
(not (member x y)) x &y
(not (geq xy)) Tty
(not (greaterpx y)) TFY
(not (leq xy)) r Ly
(not (lesspxy)) T Ly
(not (equal x y)) T F# Yy

(minus x) -

(add1l x) 14z
(nlistp x) z ~ nil
(zerop x) x~0
(numberp x) z €N
(subl x) z —1

(not (nlistp x)) x % nil
(not (zerop x)) z 20
(not (numberp x)) x &N

116

Acknowledgements

The work reported here is a concise version of my PhD dissertation. Many
people contributed to making the work better than I could have done on my
own.

First, I want to thank my thesis advisor Bob Boyer. He was an immense
source of knowledge, ideas, and inspiration.

I would like to thank my committee members Woody Bledsoe, Don Good,
Warren Hunt, Matt Kaufmann, and Bill Schelter.

Bob Boyer, Don Good, Jim Horning, Warren Hunt, Matt Kaufmann, and
Tim Leonard have carefully read earlier drafts, and provided many valuable
comments and corrections.

Thanks are due to Bill Bevier, Art Flatau, J Moore, Sakthi Subramanian,
Matt Wilding, and Bill Young for many constructive discussions.

Fay Goytowski read our MC68020 formal specification meticulously, and
discovered a dozen or so errors.

The research described here was supported in part by NSF Grant MIP-
9017499.

The revision of my dissertation was supported by Digital Equipment
Corporation. Cynthia Hibbard edited this version, and made many good
suggestions.

117

Bibliography

[1]

Gordon Bell and Allen Newell. The PMS and ISP descriptive systems
for computer structures. In Proceedings of the Spring Joint Computer
Conference. AFIPS Press, 1970.

William Bevier. A Verified Operating System Kernel. PhD thesis, Uni-
versity of Texas at Austin, 1987.

William Bevier, Warren Hunt, J Strother Moore, and William Young.
Special issue on system verification. Journal of Automated Reasoning,
5(4), 1989.

Jonathan Bowen. The formal specification of a microprocessor instruc-
tion set, technical monograph PRG-60. Technical report, Oxford Uni-
versity, January 1986.

R. S. Boyer and J S. Moore. A verification condition generator for
FORTRAN. In R. S. Boyer and J S. Moore, editors, The Correctness
Problem in Computer Science. Academic Press, London, 1981.

Robert S. Boyer and J Strother Moore. Proving theorems about LISP
functions. Journal of the ACM, 22(1), 1975.

Robert S. Boyer and J Strother Moore. A Computational Logic. Aca-
demic Press, New York, 1979.

Robert S. Boyer and J Strother Moore. Program verification. Journal
of Automated Reasoning, 1(1):17-23, 1985.

Robert S. Boyer and J Strother Moore. A Computational Logic Hand-
book. Academic Press, 1988.

118

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

Robert S. Boyer and J Strother Moore. MJRTY - a fast majority vote
algorithm. In Robert S. Boyer, editor, Automated Reasoning: FEssays
in Honor of Woody Bledsoe, pages 105-117. Kluwer Academic, 1991.

Robert S. Boyer and Yuan Yu. A formal specification of some user
mode instructions for the Motorola 68020. Technical Report TR-92-04,
Computer Sciences Department, University of Texas at Austin, 1992.

D.L. Clutterbuck and B.A. Carré. The verification of low-level code.
IEE Software Engineering Journal, May 1988.

Avra Cohn. A proof of correctness of the Viper microprocessor: The
first level. Technical Report 104, University of Cambridge, January
1987.

J. V. Cook. Verification of the C/30 microcode using the State Delta
Verification System (SDVS). In 13th National Computer Security Con-
ference, volume 1, pages 20-31, 1990.

D. Good, et al. Report on the language GYPSY version 2.0. Technical
Report ICSCA-CMP-10, Institute for Computing Science and Com-
puter Applications, University of Texas at Austin, 1978.

A. Falkoff, K. Iverson, and E. Sussenguth. A formal description of
system/360. IBM Systems Journal, 3(3):198-262, 1964.

James R. Farr. A formal specification of the Transputer instruction set.
Master’s thesis, Oxford, September 1987.

Robert W. Floyd. Assigning meanings to programs. In Mathematical
Aspects of Computer Science, Proceedings of Symposia in Applied Math-
ematics, American Mathematical Society, pages 19-32, Providence,
Rhode Island, 1967.

Herman H. Goldstine and John von Neumann. Planning and coding
problems for an electronic computing instrument. In John von Neu-
mann, Collected Works, volume V, pages 34-235. Pergamon Press, Ox-
ford, 1961.

M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF. Springer-
Verlag, New York, 1979.

119

[21]

[22]

[25]

[26]

[27]

[28]

[29]

Mike Gordon. LCF-LSM, a system for specifying and verifying hard-
ware. Technical Report TR 41, Computer Laboratory, University of
Cambridge, September 1983.

C.A.R. Hoare. An axiomatic basis for computer programming. The
Communication of ACM, 12(10):576-583, 1969.

Warren A. Hunt and B. Brock. A formal HDL and its use in the FM9001
verification. In Proceedings of the Royal Society, 1992.

S. Igarashi, R.L. London, and D.C. Luckham. Automatic program
verification I: A logical basis and its implementation. Technical Report
ISI/RR-73-11, Information Science Institute, USC, 1973.

L.M. O’Neill, et al. The formal verification of safety-critical assembly
code. In Safety of Computer Control System 1988. Pergamon Press,
November 1988.

Kenneth E. Iverson. A Programming Language. John Wiley and Sons,
New York, 1962.

ISO Committee JTC1/SC22/WG14. ISO/IEC Standard 9899:1990.
International Standards Organization, Geneva, 1990.

Matt Kaufmann. A user’s manual for an interactive enhancement to the
Boyer-Moore theorem prover. Technical Report CLI-19, Computational
Logic, Inc., May 1988.

Matt Kaufmann. DEFN-SK: An extension of the Boyer-Moore theo-
rem prover to handle first-order quantifiers. Technical Report CLI-43,
Computational Logic, Inc., 1989.

Matt Kaufmann. An integer library for Nqthm. Technical Report CLI
Internal 182, Computational Logic, Inc., March 1990.

Brian W. Kernighan and Dennis M. Ritchie. The C' Programming Lan-
guage, Second Edition. Prentice Hall, Englewood Cliff, New Jersey,
1988.

J. C. King. A Program Verifier. PhD thesis, Carnegie-Mellon Univer-
sity, 1969.

Donald E. Knuth. The Art of Computer Programming, volume 1.
Addison-Wesley, Reading, Massachusetts, 1981.

120

[34]

[35]

[36]

[37]

[42]

[43]

[44]

Tim Leonard. Specification of computer architectures: A survey and an-
notated bibliography. Technical Report 188, University of Cambridge,
January 1990.

W. D. Maurer. An IBM 370 assembly language verifier. In Proceedings
of the 16th Annual Technical Symposium on Systems and Software:
Operational Reliability and Performance Assurance. ACM, June 1974.

W. D. Maurer. Some correctness principles for machine language pro-
gram and microprocessors. In Proceedings of the Seventh Annual Work-
shop on Microprogramming, Palo Alto, CA, 1974.

John McCarthy. Computer programs for checking mathematical proofs.
In Recursive Function Theory, Proceedings of a Symposium in Pure
Mathematics, volume V, pages 219-227, Providence, Rhode Island,
1962. American Mathematical Society.

John McCarthy. Towards a mathematical science of computation. In
Proceedings of IFIP Congress, pages 21-28, 1962.

John McCarthy and J. Painter. Correctness of a compiler for arithmetic
expressions. In Mathematical Aspects of Computer Science, Proc. Symp.
Appl. Math., American Mathematical Society, volume XIX, Providence,
Rhode Island, 1967.

Motorola, Inc. MC68020 32-bit Microprocessor User’s Manual. Prentice
Hall, New Jersey, 19809.

Ministry of Defence (Britain). Interim defence standard 00-55, require-
ments for the procurement of safety critical software in defence equip-
ment. Technical report, Directorate of Standardization, Ministry of
Defence, Kentigern House 65, Brown Street, Glasgow G2 8EX, Great
Britain, 1989.

P. J. Plauger. Private communication.

P. J. Plauger. The Standard C Library. Prentice Hall, New Jersey,
1992.

Wolfgang Polak. Compiler Specification and Verification. Springer-
Verlag, Berlin, 1981.

121

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Phillip Rose. A partial specification of the M68000 microprocessor.
Master’s thesis, Oxford, September 1987.

D.P. Siewiorek, Gordon Bell, and Allen Newell. Computer Structures:
Principles and examples. McGraw-Hill, 1982.

Richard L. Sites. Alpha Architecture Reference Manual. Digital Press,
Bedford, Mass., 1992.

SPARC International, Inc. The SPARC Architecture Manual, Version
8. SPARC International, Inc., Menlo Park, California, 1991.

Chris Torek. Private communication.

Alan M. Turing. On checking a large routine. In Report of a Conference
on High Speed Automatic Calculating Machines, pages 67-69. Univ.
Math. Laboratory, Cambridge, 1949.

Warren A. Hunt, Jr. FM8501: A Verified Microprocessor. PhD thesis,
University of Texas at Austin, 1985.

The ANSI Committee X3J11. ANSI Standard X3.159-1989. American
National Standards Institute, New York, 1989.

Yuan Yu. Automated Proofs of Object Code For a Widely Used Micro-
processor. PhD thesis, University of Texas at Austin, 1992.

122

