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Abstract

A method is described for fitting the outline of hand-sketched pressure brushstrokes with
Bézier curves. It combines the brush-trajectory model, in which a stroke is generated by
dragging a brush along a given trajectory, with a fast curve fitting algorithm.

The method has been implemented for a vector-based drawing program in which the user
draws with a cordless pressure-sensitive stylus on a digitizing tablet. From the trajectory
followed by the stylus, its associated pressure data, and a specified brush, a stroke of variable
width is computed and displayed in real time.

First, the digitized trajectory is fitted, thus removing noise. Then, from polygonal approxi-
mations of the fitted trajectory and the brush outline, a polygonal approximation of the stroke
outline is computed. Working with polygonal approximations reduces computations to simple
geometric operations and greatly simplifies the treatment of dynamic, pressure-controlled
brushes. Last, the polygonal approximation of the stroke outline is fitted. The result is a
closed piecewise &ier curve approximating the brushstroke outline to within an arbitrary
error tolerance.

Several examples of hand-sketched drawings realized with this method are presented.

Résumé

Nous dcrivons une rathode permettant d’obtenir le contour d'un traieplisseur variable
sous la forme d’une suite de courbes dezigf. Cette rathode combine le made brosse-
trajectoire, dans lequel un trait estrgé en balayant une brosse le long d’une trajectoire, avec
un algorithme de lissage rapide.

Nous avons implaetcette nethode dans un programme de dessin vectoriel. Dans ce pro-
gramme, l'utilisateur dessirg main lewe sur une tabletta digitaliser au moyen d’un stylo
sensiblea’la pressionA partir de la trajectoire du stylo, des pressions qui lui sont asssci”

et d'une brosse de forme domm’ le programme calcule et affiche en temgal tin trait
d’epaisseur variable.

Tout d’abord, la trajectoire nuenisge est liseé, Eduisant ainsi son bruit dthantillonnage.

Dans une secondetdpe, une approximation polygonale du contour du trait est esleul”
partir des approximations polygonales respectives de la trajectoiee kitsiu contour de la
brosse. Le fait de travailler partir des approximations polygonaleduit le calcul’une suite
d’opérations gongtriques simples, et facilite grandement le traitement des brosses dynaniques
dont la taille &pend de la pression. Enfin, I'approximation polygonale du contour du trait est
lisséead son tour. LeaSultat final est une suite de courbes @ziBf, arbitrairement proche du
contour du traiepais.

Plusieurs dessingali€s suivant cette athode sont @sengs en exemple.
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Real Time Fitting of Pressure Brushstrokes 1

1 Introduction

Digitizing tablets with cordless pressure-sensitive styluses are attractive devices for programs
that require hand-sketched input, such as paint systems and illustrators. As the user draws on
the tablet, the pressure data associated with the trajectory followed by the stylus is used to
modify the width of the stroke, therefore simulating a brushstroke.

Existing methods for modeling brushstrokes fall into two classes: those which model some
brushstroke attributes at the pixel level and paint the result into a bitmap, and those which
model brushstroke outline and rely on scan-conversion for rendering. We refer to these classes
as “raster brushstroke” and “vector brushstroke” respectively.

The goal of our method is to achieve, in software, both real time performance and quality
graphics results for vector brushstrokes.

1.1 Raster brushstroke

The raster brushstroke approach is based on a digitization process called “brush extrusion”,
used mostly in paint programs, where a bitmaped brush is dragged along a trajectory, leaving
the image of the brushstroke. Hobl#} [shows how to compensate for the lack of uniform
width that happens with straightforward digitization. Whitt@}l [describes a technique for
anti-aliased strokes using an unchanging textured brush. Paint systems using a pressure-
sensitive stylus use the pressure information to dynamically modify some parameters of a
circular brush such as its radius or color. Strassmahreffines the abstraction of a brushstroke

into components whose behavior interact to create the image. Zbumfl Small ] model

the physical process of ink diffusing into paper fibers in order to achieve realistic rendering
effects such as diffuse painting or watercolor.

Raster brushstroke methods are well adapted to real time sketching. This is not surprising
as brush extrusion is realized with the help of fast hardwired “bit-blit” operators. Paint
systems have taken advantage of this efficiency by incorporating pressure brushstrokes as
soon as reliable pressure-sensitive stylusssaine available. Furthermore, realistic models

of paintings have been developed which make brushstrokes more expressive and simulate real
paintings. However, raster brushstrokes present two major drawbacks: they are resolution-
dependent, and they cannot be edited. Resolution-dependence can be overcome by working at
the maximum resolution of all possible output images. In any case, individual strokes cannot
be easily, if at all, retouched nor edited.

1.2 Vector brushstroke

In the vector brushstroke approach, the stroke outline is computed from the brush outline and
the trajectory. For an elliptical brush and a cubic trajectory, Ghosh and M@Huddrive

an exact algebraic solution. When the brush is dynamic, no closed form can be obtained. In
order to solve the equations analytically for an approximation of the outline, the additional
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2 Thierry Pudet

hypothesis that brush pressure varies slowly compared to trajectory movements must be made.
Chua [?] uses cubic Bzier curves to define calligraphic brushstrokes. The control points of
each curve of the dline are entered manually. Phaff] [computes the outline as a variable
offset approximation of a uniform cubic B-spline trajectory. Each offset knot of the outline
must be specified by the user of the system.

Existing vector brushstroke methods present opposite characteristics when compared to raster
brushstroke ones. They need heavier computations, which take place in software, and none of
them seem well adapted to real time sketching. Solving the equations of the outline analytically
is too slow and limited in the range of accessible shapes. Other methods require that the user
explicitly enters some mathematical parameters and are thus not suitable for sketching.

On the other hand, all these methods share two significant advantages of vector graphics:
resolution-independence and editing capabilities. Strokes can be created, scaled, rotated or
flipped very easily. Interactive retouching operations such as recomputing the stroke from
the same trajectory using a different brush or different pressure data are straightforward.
Moreover, the outline of the stroke &cessible to the user and can be edited like any other
shape outline.

1.3 Real time vector brushstrokes

In the context of hand-sketched stroke input for which our method has been designed, real
time has the following meaning.

¢ While dragging the stylus on the tablet, the user sees on the screen a faithful real time
echo of the brushstroke, including the variations of width due to the pressure. This can
happen at any zoom factor.

¢ After the stylusisreleased, the echois erased, then the brushstroke is fitted and displayed.
There must not be noticeable latency due to this computation.

The strategy is to keep the constructive brush-trajectory model but, ufllikeojmpute only
an approximate analytical representation of the brushstroke outline through least squares curve
fitting.

In the next section the bottlenecks of existing least squares curve fitting techniques are
identified, and a fast algorithm that uses quinte&zT curves is proposed. Section 3 describes

the application of this algorithm to the construction of brushstrokes obtained with the brush-
trajectory model, and also shows how dynamic, pressure-controlled brushes are handled in this
context. Finally, Section 4 presents several hand-sketched drawings realized directly on the
tablet using our method, and discusses the results.
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Real Time Fitting of Pressure Brushstrokes 3

2 Least squares curve fitting

Least squares curve fitting is a method used for finding an approximate analytical representation
of a zero-width digitized trajectory in terms of piecewise parametric polynomials. There are
many published method8,[?, ?, ?, ?]. Specialized techniques have been employed in design
systems for making digital typeface [?] and illustrationsp, ?].

These methods all have in common the use of cubic polynomials stitched together with some
kind of continuity constraints. Except for Plass and Stdfewho try to produce a nearly
minimal number of segments and use a dynamic programming approach not designed for
interactive systems, all methods work by trying to fit a single cubic segment to the entire
trajectory. After evaluating the error distance, which is the maximum distance between the
fitted curve and the digitized trajectory, they stop if this error is less than some specified
tolerance, otherwise they divide the trajectory in two at the point of greatest error, and repeat
the procedure recursively on both parts until the entire trajectory has been fitted.

2.1 Bottleneck

As shown by Schneider in the cubic ca$g the constrained least squares machinery boils
down to solving & x 2 linear system. However, the bottleneck of the algorithm is more in the
repeated evaluation of the error distance needed to decide when to stop the fit.

Given the digitized trajectorg, i = 0, ..., 1, and its fitted curves(t), 0 < t < 1, Plass and
Stone compute the error distarg by first, finding the poin8(f;) of S(t) that lies closest to

samples;, then computing the euclidean distalﬂse— S(fi) , and finally taking the maximum

over| of those distances.,e. Dy = maXj<| Hs — S(fi)H. For a cubic curve, finding(t)
requires that a fifth degree polynomial equation re solved, usingg.g, Newton-Raphson
iteration ?].

If Do exceeds the specified error tolerance, an iterative technique proposed by Plass and
Stone consists in computing a re-parametrization of the samples that will make a single cubic
segment fit a greater portion of the trajectory and therefore minimize the overall number
of curve segments of the piecewise approximation. To solve the corresponding equations,
Newton-Raphson iterations are again needed. The re-parametrization is performed iteratively
until no further improvement is detected. A serious drawback of this technique is the need to
evaluate the error distance at each step.

The experience of the author is that this algorithm performs well in minimizing the number
of curve segments and gives good interactive response time for fitting zero-width curves to
hand-sketched trajectories. However, in the context of brushstroke fitting, where not only the
digitized trajectory but also the outline is to be fitted, the re-parametrization cycle adds too
much of a burden.
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4 Thierry Pudet

2.2 Using higher order Bézier curves

Figure 1: Higher curve degrees provide a comparatively more faithful least squares fit.

The obvious solution that suppresses the re-parametrization has the annoying consequence of
producing a piecewise approximation with too many small cubic segntgntBlis somehow

defeats the purpose of curve fitting regarding data compaction. To circumvent this problem,
our method raises the degree of the fitted curves. Using delgre& present the following

two characteristics with respect to least squares curve fittjg [

When the curves are to be fitted with G1 continuity constraints, that is, continuity of the unit
tangent vector at each joirf][ the constrained least squares system(igca— 4) x (2d — 4)

linear system which can be written in closed form. Solving such a system |®(eﬁ§
operations. Although in this case the ratio between the cubic dase3) and the quintic case

(d = 5) is 2.7 in favor of the former, it is not a limitative factor compared to the error distance
computation.

The re-parametrization cycle is not needed. This is illustrated in Fig. 1 where a single curve
was successively fitted without re-parametrization to the same trajectory, keeping the error
tolerance constant, and raising the degree from 3 to 7. Only the dase8, d = 5 and

d = 7 are shown but the effect is uniform: the higher the degree, the closer the curve to the
trajectory. Raising the degree has therefore the same effect as using the re-parametrization
cycle [?]. This experimental evidence can be explained by the fact that a quietieBEurve
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Real Time Fitting of Pressure Brushstrokes 5

has 2 more control points than a cubic curve, and therefore more freedom to satisfy the same
constrained least squares equations. A direct consequence is that although it could still be
used to improve the fit as it does for cubics, the re-parametrization cycle can be eliminated
when using higher order curves. In practice, there is a balance to be found between raising the
degree of curves, the comparatively higher cost of solving the least squares system, and data
compaction. Experiments have shown that for doing brushstrokes, quintic curves represent a
good tradeoff.

2.3 Evaluating the error distance

Another characteristic of our algorithm is that it uses a different method to evaluate the error
distance. The computation is performed incrementally between a polygonal approximation of
the curve and the digitized trajectory, and a new termination test is employed.

Let 5 be the error tolerance of the fit. The termination testfi Dg < e;. We replace it
with the testD; < e5t/2 as follows.

e The error distanc®y = max«i«| Hs — S(fi)H is replaced with the maximum distance
D; between samplg of normalized chord-length;, and pointS(fi) having the same
arc-lengtho (%), D1 = maxo<i«i Hs — S(%) |, wheref; is the parameter value such that
(%) = oi. By definition ofDg, Do < D;.

The problem is now to finfl. Formally,t; = O'_l(ai). Instead of solving this equation
with numerical methods, we take advantage of teei8 representation. We compute a
polygonal approximation of cur\@(t) to within a certain flatnessgt, using de Casteljau
midpoint subdivision®, ?]. For efficiency, precomputed midpoint subdivisiéh ]
and forward differencing?, ?] can be used. The subdivision transforms the c8{it¢
into a polygonal approximatio8, k = 0,...,K. We also compute the normalized
chord-lengthry of each poin&.

Let S be the point having the same chord-lengthas samples. Since there are
only 2 consecutive pointS,_; and S such thatox_1 < i < ok, S can be linearly
interpolated between those 2 poirggy. S, = (1 — u)Sc_1 +Uu S, whereu = par—

e LetDy = max«i« ||S — S|, and imposesqar = €fit/2. The termination teddg < et
is replaced witlD, < /2.

By the triangular inequalityD; < Maxci« ||S — Sk|| + Ma%«cic) HS& - S(fi)H <
Dy + €fia.  Thus, imposinggar = €it/2, and Dy < €5t/2 ensuresD; < e, hence
Do < €t

This method is not limited to quintic curves and can be applied to any parametric polynomial.
Its main thrust lies in the evaluation of the new termination BesK e5t/2. It can be done
incrementally in a very efficient way, by traversing the polygonal approximation and the
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6 Thierry Pudet

digitized trajectory in parallel, evaluating the intermediate distafises S || and stopping
as soon as the error tolerance is exceeded.

2.4 Curve fitting algorithm

1. Compute the chord-length parametrization for the samples of the digitized trajectory.

2. Estimate the direction of the tangent vectors at endpoints, using a local quadratic
interpolant P].

3. Fit a quintic Bszier curve to the digitized trajectory.

4. Evaluate the goodness of the fit using the incremental technique explained in Section
2.3. If the fit is not faithful enough, divide the digitized trajectory in tweqss and
recurse from step 1.

The control flow of the recursive quintic curve fitting algorithm is similar to the one of
[?]. Since the tablet provides spatial filtering of the samples, this pre-processing step is not
mentioned here Quintic curve segments are then recursively fitted with no re-parametrization,
and stitched together wit@; continuity. Note that since the error distance is evaluated in a
lazy way, the digitized trajectory cannot be divided at the point of greatest error. Instead, it is
divided at midpoint.

Figure 2: Donald, after Walt Disney: 117 digitized trajectories, 224 quintic curves. Black
squares show curve endpoints.

1other methods to remove noise such as Gaussian filte?nggre tried but eventually not used. They modify
the initial samples, and even with no further fit, artists using our progoammd the filtered trajectories not faithful
enough.
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Real Time Fitting of Pressure Brushstrokes 7

This algorithm was programmed in C and its performance measured on a DECstation 5000/200
over a data base of cartoon characters drawn by professional artists. The tolerance was set to a
constant value 08.5 mm. Given the high bandwidth of the tablet 00 pts/sec), depending

on the length of the trajectory, and also how rapidly the artist draws, a trajectory can be
composed of 20 to 200 samples. For Fig. 2, the mean number of samples per trajectory was
110 and the measured fitting tinZ ms on the average, allowing for real time sketching with
zero-width fitted strokes.

3 Brushstroke fitting

(@) (b)

Figure 3: The brush-trajectory model.

In the brush-trajectory modeP| ?], both brush angle and pressure can change dynamically
along the trajectory. Dynamic angles reflect more closely the behavior of real brushes used by
artists, but is somewhat more difficult to deal with. In this paper, only dynamic pressures are
considered.

We distinguish between rigid and dynamic brushes. Rigid brushes ignore pressure and keep a
constant size. Dynamic brushes respond to the pressure applied at their tip by changing their
size according to some elasticity factor. Rigid brushes are treated first, then dynamic ones. In
either case, the brush is assumed to have a convex shape. Non convex brushes are explored in
[?], but are computationally too expensive for real time sketching.

3.1 Rigid brushes

A stroke is built by sweeping a convex brush along a central trajectory. The shape of such a
stroke is mathematically defined as the envelope of the brush with respect to the trajgctory [
Formally, if b is the closed outline of the brush aSdhe central trajectory, both continuous

and smooth, the envelope is defined as the sub-s&tdif such that the tangents to the brush

b and the trajector at those points are parallel, Fig. 3(a).

When the brush and the trajectory are given in parametric fon) andS(t), 0 < 7 < 1,
0 < t < 1, this definition translates into a more analytical form. The paramedescribes the
outline ofeach brush instance whilelistinguishes among those instances along the trajectory.
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8 Thierry Pudet

The points of the envelope are solutions of the equation
S()ab(r)=0 (1)

where the operatot denotes the cross product of two vectors, atie first derivative of a
vectorial function with respect to its variable.

For a convex brush translated at positi8(t), there can be only two points(n(t)) and
b(7(t)), whose tangents are parallel ®{t) and furthermore, those points must be located
on each side of the trajectory, Fig. 3(b). By conventiafx(t)) is the point to the left of the
trajectory and(r(t)) the point to its right. The set of poinfd(n(t)),0 < t < 1) defines
the left border of the envelope, and symmetric§tyr (1 - t)),0 < t < 1) its right border.
Note that the right border is traversed with decreasing parameter

Equation (1) is not solved globally. Itis used instead for building the discrete envelope by only
solving it locally for 7, i.e. at each pasion of the brush along the trajectory. Furthermore,
although Equation (1) could be solved locally fousing numerical methods, it is easier to
work directly with the discrete brush.

Given a digitized trajectory and a brush outline, brushstroke fitting works in 3 steps. First, the
digitized trajectory is fitted. Then, from polygonal approximations of the fitted trajectory and
the brush outline, both obtained through de Casteljau subdivision, a polygonal approximation
of the left and right borders of the envelope are computed. Last, those borders are fitted in turn
and put together with the starting and ending borders to obtain the brushstroke outline.

3.2 Getting discrete borders

- bk
(a): single g‘j@s
St
bjk+2 S(
(b): follow-brush ~ Bj«1 "
blk S<-1
S
bjk
(c): shortcut %
S<-l bjk+1

Figure 4: Computing the left discrete border of the envelope. Black squares materialize the
discrete envelope.

In what follows, we call
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Real Time Fitting of Pressure Brushstrokes 9

¢ discrete trajectorythe polygonal approximation of the fitted trajectory, obtained through
de Casteljau subdivision.

¢ discrete brush the polygonal approximation of the brush outline, obtained through de
Casteljau subdivision.

¢ left (resp. right) discrete borderthe polygonal approximation of the left (resp. right)
border of the envelope, computed from the discrete trajectory and the discrete brush.

Once the brush and the trajectory are transformed into polygonal approximations, the notion
of tangent used in Equation (1) is no longer valid, and must be replaced with the discrete
equivalent ofurthest point with respect to a directioBy an elementary theorem of differential
calculus, point((t)) (resp.b(7(t))) is also the point of the brush outline lying furthest

to the left (resp. right) of the straight line passing through, and tangential to the trajectory at,
pointS(t).

The left discrete border is computed from discrete trajec(cﬁiytk), k=0,...,K, and
discrete brusiib;, tj),j = 0,...,J as follows.

For each discrete piton S, k=0, .. ., K,

¢ The center of the discrete brush is translated at pos&jon

o Letbyj, be the point lying furthest to the left of lingS_1, S), andbj,.+n the point lying
furthest to the left of lind S, Sc+1), Fig. 4.

1. If n =0, bj, = bj+n (case (a) of Fig. 4), then poitK, is added to the discrete
border. In this case, there is only one discrete counterpart to pifty) ).

2. Elsen > 0.

(&) The discrete brush being oriented either clockwise or counterclockwise, if
the triangleS,_1, S, Sc+1 turns the same way (case (b) of Fig. 4), then the
sequence of + 1 pointsbj,, bj+1, . . ., bj,+n is added to the discrete border.

(b) Else, the brush and the trajectory locally have opposite orientations, (case (c)
of Fig. 4). Only the 2 point®;, andb;., are added to the discrete border.
This means that instead of following the brush, a shortcut is taken between
those 2 points. The convexity of the brush guarantees that the shortcut will
not cross the brush boundary.

In addition, both points are marked as breakpoints. These marks will be
interpreted when the discrete border is fitted.

The right discrete border is obtained in a similar way, but traversing the discrete trajectory
downward fromSk to S,.

Thanks to brush convexity, the previous algorithm can be implemented in a very efficient way.
For any point on a convex outline, the furthest distance with respect to a given direction is

Research Report No. 29 March 1993



10 Thierry Pudet

a function that increases frothto a maximum value, then decreases again towards 0. The
implementation takes advantage of this property by starting the search for the next point of the
discrete border with the point of the discrete brush that was found at the previous step, going
next to its neighbor, and evaluating the distance until a local maximum is reached. Instead
of being proportional t& x J, as the above description would suggest, it makes the overall
process almost linear in the numbenf points in the discrete trajectory.

3.3 Fitting discrete borders

Applying the curve fitting algorithm of Section 2.4 to the left and right discrete borders in
sequence is straightforward. The only difference is that now, the breakpoints set at sampling
time to mark shortcuts are interpreted as discontinuities. Such points prevent the entire border
from being fitted at once. Instead, intermediate portions between two breakpoints are fitted
independently, with only positional continuitg{) at the joints.

The situation at trajectory endpoints is somewhat different. The starting and ending borders of
the envelope need not be fitted since they are just portions of the brush outline. The starting
border is the portion of the brush outline going from the first pb{a$(0)) of the left border

to the first pointb(7(0)) of the right border, Fig. 3(b). Similarly, the ending border is the
portion of brush outline going fromb(n(1)) to b(r(1)). If the brush outline is given in
Bézier form, starting and ending borders are easily obtained through de Casteljau subdivision.

By definition, the fitted left border goes frob{n(0)) to b(n(1)) and the fitted right border
fromb(r(1)) tob((0)). Connecting starting border to left border to ending border to right
border in this order defines an approximate analytical representation of the brushstroke outline
to within a specified error tolerance.

The need to go from digitized trajectory to fitted trajectory then immediately back to discrete
trajectory, and to compute the discrete borders thereof, may seem unclear. A more direct
solution would be to get the discrete borders from the digitized trajectory. This was tried, but
because of the noise associated with the raw data, it did not give good results, especially when
small brushes were used. The digitized trajectory had therefore to be fitted first. If more than
spatial filtering is done at pre-processing time, this step may be omitted.

Fig. 5 shows the result of the algorithm for a rigid circular brush. Of course, the error tolerance
can always be set manually, but in most cases, a default value equal to some fraction of the
brush diameter (say 1/30) gives visually good results. In part (a) of Fig. 5, both the central
trajectory and the outline are stroked. In part (b), the outline is stroked and the curve endpoints
are shown. There are two breakpoints located on the right border of the envelope where the
central trajectory bends sharply. In part (c), the outline is filled, using the non-zero winding
rule. Note that the non-zero winding rule is mandatory for filling brushstrokes. The even-odd
rule would not do for strokes with self intersections. The reason is that, by construction, all
the points covered by the brush during the sweep, and defining the interior of the envelope,
have a non zero winding number.

Other examples presented in Fig. 6 are brushstrokes built with an elliptical brush held at
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Real Time Fitting of Pressure Brushstrokes 11

(@) (b) (c)

Figure 5: Brushstroke from a rigid circular brush.

00
0O

O degree. 30degrees.

Figure 6: Brushstrokes from the same elliptical rigid brush held at different angles.
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12 Thierry Pudet

different angles. Even with no pressure, a non circular brush always produces a stroke of
varying width. Here, the strokes were computed from the same trajectory.

3.4 Handling dynamic brushes

(@)

(b)

Figure 7: Brushstroke from a dynamic elliptical brush (a), and, for comparison, the stroke
obtained with the same but rigid brush (b).

A dynamic brush has an associated elastieitylf no pressure is applied, the brush keeps

its natural size. For simplicity, pressure values are normalized between 0 (no pressure) and
1 (highest pressure). Given some presguréhe brush dilates according soandp. The
elasticity gives the maximum allowed dilatation with respect to the natural size. For instance,
a dynamic circular brush of initial diametgrcan dilate to a circle of diametelp.

The brush always starts and finishes its travel along the trajectory with pressure 0 since at those
positions, the pressure-sensitive stylus has to be released. The corresponding brushstroke
therefore begins at positi@{t = 0) and finishes aB(t = 1) of the trajectory with the natural

size of the brush.

At intermediate position§(t), pressure valueg(t) are converted into scaling factost).
Each scaling transformation is centered at the center of the brush, and applies to the brush
outline. It is required thas(0) = s(1) = 1 (no scaling) and also that when the highest
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Real Time Fitting of Pressure Brushstrokes 13

pressure is applieds = e. The simplest model is to interpolate linearly betW@é) and
p(1),i.e. t) = 1— (1 - e) p(t), but non linear variations are also possible. This definition
implies that a dynamic brush with elastic#gy= 1 is, in fact, a rigid one.

However, the pressure valygt) at positionS(t) of the fitted trajectory is not knowa
priori. It is true that the stylus associates with each sargpié the digitized trajectorya
pressure valug;, but since the discrete borders are computed fronfitteal trajectory this
correspondence cannot be used directly.

The problem is then to map pressumgdo the fitted trajectory in a coherent way. To do
this, we associate to pressyiehe normalized chord-lengi of samples. This gives us a
discrete pressure profilgy;, oi) that we map to the fitted trajecto§(t) through arc-length.

In fact, we have already solved the problem in Section 2.3 when computing the error distance.
The only difference is that here, pressure valyese substituted for samplgs

Given a digitized trajectorg, i = O, ..., |, associated pressure
valuep;, and corresponding fitted trajectoft), 0 < t < 1.

1. Compute normalize chord-lengtlas of sampless, i =
o,...,l

2. Compute the discrete trajectof$, tx), k = 0,...,K of
S(t) through de Casteljau subdivision, and compute also
the normalized chord-lengtlg of pointsS, k=0, .. ., K.

3. For each pointS,, compute valuep, having the same
normalized chord-lengthy asS;:

P = (1-up-1+up,
y = JiTok ’

oi — 0i-1

wherep; is the unique value of the pressure profile syich

thatej_; < o < 0.

Figure 8: Mapping pressure profile to fitted trajectory.

This method still works even if the pressure data do not come from the stylus. In fact, any
polynomial functionf(t) can be mapped to the trajectod(t). All that is needed in this

case is an additional step of de Casteljau subdivision to get the corresponding polygonal
approximation.

An example of a pressure-controlled brushstroke is shown in Fig. 7. A dynamic elliptical
brush of elasticitye = 4 was used.

Research Report No. 29 March 1993
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4 Results

We have implemented the method in a prototype vector-based drawing program in which
the user draws with a cordless pressure-sensitive stylus on the tablet. The following brush
parameters can be set: width, height, angle, and elasticity. Brush sizes vary béfi8éen

mm and10 mm. There are two separate controls for setting tolerances: one is for the error
tolerancetol; for fitting the digitized trajectory, the other error tolerance (flatnésk) for
approximating the brushstroke outline. The latter is typically smaller.

While drawing, the user gets a real time echo of the stroke displayed on the screen. For each
new samples, a polygonal approximation of the envelope of the brush with respect to the
straight line segmer(is, s_l) is computed, using the technique described in Section 3. The
echo is displayed by painting the resulting overlapping polygons in sequence. This gives a
result equivalent to brush extrusion. No fitting is done at this stage. After the stylusis released,
the previous echo is erased, then the brushstroke is fitted and displayed.

Ultimately, the performance of curve fitting methods is tied to the number of samples of
the digitized trajectory. Not surprisingly, our algorithm can show poor performance for
exceptionally large trajectories (say 800 samples). In practice, this is not often the case,
with the notable exception of the “roughs” drawn by cartoon cell animators before cleaning.
In such cases, the trick is to cut the digitized trajectory into several pieces and to fit them
successively. Because of the error distance computation, this is fasterttimgnttiie whole
trajectory at once. Furthermore, the brush-trajectory model ensures that the same outline is
obtained in both cases. Although this trick was not implemented, the artists who realized the
drawings presented here could work on the tablet at their paper speed, without having to wait
or loosing data.

We have tried to exercise the algorithm and measure its performance on different styles of
drawings, including comic strips and cartoon cell design as well as cursive calligraphy. All
timings refer to a DECstation 5000/200. Each drawing is also shown full page in Appendix 6.
Outputs are done on a black-and-white laser printer at 300 dots per inch.

Elliptical brushes are most often used for calligraphy. In Fig. 9, the author used an elliptical
rigid brush of size90/10 x 20/10 mm, settingtol; = 3/10 mm andtol, = 1/10 mm. The
character, whose real height is ab@&tcm, is built from a single digitized trajectory @81
samples, fitted witlé quintics in50 ms. The outline is composed 26 curves fitted ini300

ms. With true calligraphers at work, such input may be used in font design software as a first
sketch to be tuned later on.

Elliptical brushes can also provide pleasing results for drawings. Fig. 10 was realized with a
very flat elliptical brush of siz&2/10 x 1/10mm, oriented a60 degrees, and with tolerances

toly = 5/10 mm andtol, = 1/10 mm. There are38 digitized trajectories, an843 curves
accounting for the brushstrokes outlines. The total time for fitting all the strokies. i©n the
average, each brushstroke is fitted in less 8@ahs, allowing for real time hand-sketching.

Fig. 11 presents an example drawn with a dynamic circular brush. Unlike the previous
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elole

Figure 9: Hand-drawn calligraphic E.

Figure 10: Boxing lobster.
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Figure 11: Iznogoud from Tabary.

Figure 12: Sans titre.
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examples, the artist changed the size of the brush and its elasticity in the middle of the drawing.
This is visible for the fat strokes of the nose. The moustache and the beard were done by
scribbling with the stylus. There a@65digitized trajectories, and each brustroke is fitted in
about95ms on the average.

For Fig. 12, the artist used different circular brushes with different colors, which makes the
drawing look more like a (digital) painting rather than typical line dput serge.ps
back]

5 Conclusion

We have presented a method for fitting pressure brushstrokes. Our goal is to get real time
performance and quality visual results for graphics arts applications.

In order to define an approximate analytical representation of the brushstroke outline to within
an arbitrarily small error tolerance, we compute a polygonal approximation of the brushstroke
outline, to be fitted with quintic 8zier curves. Working with polygonal approximations
greatly simplifies the treatment of dynamic, pressure-controlled brushes. We have developed
an incremental technique for evaluating the error distance in the termination test of the curve
fitting algorithm. Quintic curves are chosen as a compromise between time acel, st

cubic curves can also be used. This gives us a uniform, resolution-independent model of a
brushstroke for building hand-sketched vector drawings.

The method has been implemented in a program which was used by professional artists.
Several drawings are presented.

So far, we have not investigated the rendering aspect of vector brushstrokes. It is conceivable
that the techniques developed for realistic rendering of raster strokes could be adapted and used
through procedural rendering to give vector brushstrokes a comparable artistic expressiveness.
We are also interested in taking advantage of the the vector-based representation of the stroke
in order to achieve other effects.

6 Appendix

This section presents the drawings of Section 4 as well as some others, in fullpage output.
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