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Abstract

While text indexing on the Web and corporate intranets has received considerable
attention, indexing of multimedia documents in the same environments is still in its
nascent stages. We have developed a system that allows us to index and serve multi-
media documents over the Internet. The system has been in continuous operation since
March 1998 within the company and has been tested extensively under heavy load con-
ditions. In this paper we describe the design and implementation of the system and we
present a user-model study indicating the usage patterns that we encountered during the
system deployment. The main part of the paper presents the results of a detailed study
that sheds light into the performance characteristics of the system components, identi-
fies bottlenecks, and provides information to systems designers interested in delivering
systems with good performance for this important class of applications.

We find that the limiting factor for the three major subcomponents that comprise the
indexing service is the memory system performance, while the component responsible
for delivering the video/audio bits to the users is only limited by the bandwidth of our
Internet connection. Surprisingly, I/O is not a bottleneck on our system despite the
large amount of disk space consumed by the multimedia data.
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1 Introduction

Digital multimedia content has increased dramatically over the last few years with
the advent of cheap storage and networking technologies. Inexpensive storage makes
it possible to store and back-up multimedia documents in digital formats with costs
comparable to that of analog formats; and inexpensive networks allow the transmission
of multimedia documents to clients in corporate intranets and through the Web.

While it is possible that a user may want to view or work with an entire document,
it is more likely that only a snippet out of a long document is needed. The capability
to index multimedia and service only the pieces of a multimedia document that a user
needs, can significantly enhance the usability of a multimedia content server.

We have built a system called CRL Media Search [5] (termed Media Search from
now on) that indexes both video and audio documents and allows for delivery of only
the relevant segments in response to a user query. Our work is based on earlier design
concepts by De Vrieset al [14] but we have significantly modified our design goals
to address the World Wide Web and the extremely large amounts of content and large
numbers of users associated with it. The service we have implemented bears signifi-
cant resemblance to the service provided by search engines on the World Wide Web.
Like search engines we allow the user to perform a text search against a database of
multimedia documents and receive a response containing a list of relevant documents.

However, there are two important components that differentiate our work with that
performed by search engines:

� Unlike traditional search engines, Media Search returns multiple hits within a
document. The main reason for returning multiple internal hits is that unlike text
documents, multimedia documents do not provide the user with an easy way to
search inside a document. Therefore we provide the service of identifying and
summarizing all the relevant locations within a document.

� In addition to providing indexing services, Media Search also delivers the rele-
vant content to the user. Content delivery is largely orthogonal to indexing but
we believe it is likely, especially in the case of intranets, that the two services
will be combined.

We completed an initial implementation of the system in 1998 and have been run-
ning it nearly continuously over Compaq’s corporate intranet, with modifications since
then. We have added a significant amount of content, including broadcast material from
the Web, technical talks, and captured video content. The extended use of the system
has allowed us to derive a usage model and to implement artificial clients that mimic
the behavior of our human clients. In this way we were able to study the performance
of the system under controlled load conditions.

In our study we have tried to understand what parts of the hardware used to run our
system are most responsible for any performance bottlenecks. Our system is composed
of a relational database (Oracle), an external text index based on theAltaVista

TM

index, and a collection of Perl scripts that manage the presentation of the results to
the user. Even though previous performance studies of these applications are already
available in the literature [3, 10], our workload differs significantly from the workloads
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Figure 1: CRL Media Search Architecture

used in existing studies. It differs from transaction processing in that there are no
updates to the data, and from decision support in that we present a very large number
of small simple queries to the system rather than a small number of large complex ones.

The remainder of this paper is organized as follows. Section 2 describes the im-
plementation of the system and the functionality it present to the user. We present our
experimental environment and describe the usage model we have derived based on the
internal release on section 3. Our experimental results and the performance character-
ization of the system are presented in section 4. In section 5 we present related work.
Finally, we summarize and present directions for future work in section 6.

2 System Description

In this section we present a detailed description of the CRL MediaSearch system.
The system (Figure 1) is broken into three major sections: 1) one or more Content

Servers, 2) a collection of autonomous periodic processing engines or daemons, and 3)
the indexing and query response services. This paper focuses on the performance study
of the indexing and query response services but we discuss the remaining two pieces
for the sake of completeness.

The general flow of a user query through the system is as follows: Initially the
query is presented to the Presentation subsystem which contacts the index server for all
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locations of all documents that match the query. Based on the index server’s answer,
the presentation will then ask for metadata information (i.e. title, author, etc.) for each
returned document from the meta database. In addition to the general metadata, con-
text information for each location will also be retrieved from the metadatabase. Such
information includes the text contained in the portion of the document that matches the
query, an image that is representative of that portion of the multimedia document, and
a link to the document itself so that the user can start playing it from that point onward.
The flow of a query is presented in more detail at the end of this section where we also
discuss the different types of queries supported by the system.

The functionality of the system component is as follows. The content server stores
and serves up the actual content and provides a uniform interface to all forms of the
media. In addition, it handles storage and access control. We use it to store MPEG files,
RealVideo files, and our own internal low bit rate video format. The Content Server
provides a simple URL based protocol for accessing these different forms of the same
content.

The collection of daemons performs a multitude of services. They convert me-
dia from one format to another (e.g. there exists a daemon that converts mpeg repre-
sentations to RealVideo), and they provide automated annotations to the multimedia
document. Such automatic annotations include but are not limited to the segmenta-
tion of the document into interesting and logically cohesive subcomponents, and the
time-alignment of a textual transcript to the video. These annotations are in fact the
searchable component of our media. When an annotation matches a user query we can
retrieve the time field of the annotation and present to the user the part of the multi-
media file that corresponds to this time. Execution of the daemons is coordinated by
a workflow system implemented on top of a relational database. The workflow sys-
tem requires daemons to specify the types of inputs that they can handle and the types
of outputs they produce. Based on this information the workflow system guarantees
that daemons working on a particular media object will execute in the correct order by
providing them with work only when all the required inputs are available.

By far the most demanding component of our system is the indexing and query
response service and that component is the one to which we have devoted most of
our effort. It can be broken down into three major sub-components: 1) a librarian
server, which is built on top of a standard relational database and maintains metadata
information for the documents, 2) an index server, which is a text indexing system
based on a modified version of the AltaVista engine, and 3) a presentation server, which
communicates with the other subsystems to construct an HTML response to a user
query.

The main purpose of the librarian, excluding the workflow management mentioned
above, is to store meta information and annotations about multimedia documents. Such
meta information includes the title, author, and source of a particular media document.
Annotations form the searchable part of our system and can have multiple forms. Cur-
rently there exist two common forms of annotations: a) segmentation information about
a multimedia document and b) alignment information about the text that is spoken
within a multimedia document.

The segmentation annotations consist of a start and end time for each segment,
the text that is present in that segment, and a relevant picture—often referred to as a
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keyframe—associated with the segment. Document segments (also known as frames)
are the parts of documents that the system returns in response to user queries. This is
based on the assumptions that users are interested only in a portion of the document
rather than the whole thing. Our system makes it possible to navigate through neigh-
boring segments to accommodate users who may wish to view a larger portion of the
document.

The alignment annotations consist of the start and end time of each word in the
transcript of a document, the word itself, and the segment to which the word belongs1.
A confidence estimate on the correctness of the annotation is also included. It is pos-
sible for the time intervals of annotations to overlap either because the annotations are
of different types (e.g. segmentation and alignment annotations), or because multiple
versions of a single annotation, possibly with different confidence estimates, have been
inserted into the database.

The second major sub-component of the indexing and query response service is the
indexing server. The AltaVista index provides an extremely efficient mechanism for
searching text and serves as an external index to our meta database. The indexer accepts
a query containing a set of words connected by a boolean expression and returns the
document ID and an offset within the document that satisfies the query. We had to
modify the index to return all the offsets within a document rather than just one. This
a departure from the standard AltaVista model but is necessary due to the nature of the
documents. The standard AltaVista engine simply returns the ID of the document that
matches a query and leaves the task of locating the position that matches the query to
the user. This is possible since it only handles text files that can be further searched
using any editing tool. Returning an entire multimedia document that matches a query
provides significantly reduced functionality as there are no tools for searching within
a multimedia document. We have therefore extended our system to provide users with
all relevant locations within a document.

The librarian and external index provide overlapping functionalities and one could
envision a system design that included only one of the two components. For example,
metadata information can be stored in the AltaVista index as well as the database while
indexing of text can be accomplished inside of the relational database as well as in
the external index we have used. We have decided to use both components since they
each have decided advantages in how well they can handle certain tasks. The librarian
provides a very easy interface to modify and update metadata and to add non-text based
annotations. Furthermore it makes it easy to extract context information for document
locations by indexing on the location ID. On the other hand, the AltaVista index is
optimized for text indexing and is much more efficient in searching large amounts
of text than a text index inside the relational database. In addition to the fast search
capabilities, the external index allows for more complex searches (e.g.phrases, words
near one another, etc.), and provides a simple, concise query language that is easier to
use than SQL.

The last major sub-component of the indexing and query response service is the
presentation server. This component is an HTTP server containing a collection of CGI

1The segment value for an alignment annotation can be computed, based on the start and end time infor-
mation of the annotation. We store it explicitly only for efficiency reasons.
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Figure 2: A sample response page by the Media Search System to anall-documents
request.

scripts, written in Perl5, which get invoked to allow the user to navigate the information
space we have indexed. In order to avoid the high cost associated with Perl startup,
we have used Open Market’sFastCGITM product which allows for a CGI script to
become a server process. Requests to a script are then relayed to the corresponding
process through a TCP socket. The scripts communicate with the various services of-
fered by the librarian, index, and content servers to allow the user to perform searches,
see responses, and view parts of the multimedia stream.

There are four main scripts in the presentation component:all-documents query,
single-document query, browse, andview. Users begin by entering one or more words
that they want to search for. This invokes theall-documents queryscript which returns
a response page containing a collection of documents (typically the first 10) that match
the query. In order to create this response page theall-documents queryscript first
queries the index server with the user’s words and gets back a list of documents and
locations within documents that match the query. Using this information it can then
query the librarian about the objects and the first location within each object in order
to get back the relevant metadata (title, author, etc.) and context (surrounding text and
image) information. It can then format the results and present them to the user. For
each document we return the number of locations within the document that match the
query, and we return context information about the first of these locations. We display



6 2 SYSTEM DESCRIPTION

Figure 3: A sample response page by the Media Search System to abrowserequest.

the text that was spoken during the frame associated with the first location and, in the
case of video, a representative picture from that portion of the video. Links to the
single-document query, browseandviewscripts are also embedded in the response for
each hit.

Clicking on thesingle-document querylink associated with a document runs the
single-document queryscript which returns a page displaying the matches within that
document. Again, for each match, we display the text and image associated with that
match. Thebrowsescript allows the user to retrieve more context for a particular match.
Browsedisplays the text and images associated with the frames that surround a frame
selected by the user. Finally theviewscript instantiates the multimedia player and starts
playing the multimedia document at the location that matches the user’s query. It also
provides some control over the player and in some cases choice over the format of
multimedia that the system will deliver should more than one format exist. Examples
of response pages to anall-documentsandbrowsequeries are shown in figures 2 and 3.
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3 Methodology

For a system like CRL MediaSearch performance measurements only make sense in
relation to their usage patterns. For example, the demands on our system are different
depending on whether a user executes a general query, executes a more specific query
within a document, or views a multimedia document. We released the system internally
within the company and collected logs over a period of one week on how people used
our system. Our system at the time contained approximately 200 hours of audio and
video from a number of different sources including internal company videos, NPR
shows, the state of the union address, and others.

After several tens of thousands of requests we were able to derive usage patterns
and then create artificial clients that mimicked the behavior of the real users. This
allowed us to examine the performance behavior of the system in a controlled environ-
ment under arbitrary amounts of load.

What we have found is that users follow a very standard usage pattern for our
system:

� First the user performs a query specifying one or more words to search for. By
far the most common case is single word queries but two or three word queries
are also found. Then the the user spends an average of 25.1 seconds perusing the
results.

� With probability 90% the user selects thesingle-document querypage for a par-
ticular document and spends and average of 24.8 seconds perusing the search
results within a document.

� Independent of thesingle-document querydecision the user will select abrowse
page with probability 84% and will spend an average of 24.1 seconds on these
results.

� Finally, independent of the earlier decisions the user will select aviewpage with
probability 70% and will spend an average of 25.4 seconds playing the audio or
video file.

We have created script clients that mimic the behavior described above. Running
these script clients on workstations and PCs allows us to induce load on our servers and
measure the performance and limitations of our system. One pass through the above 4
steps is called auser session. In our experiments each client script repeatedly performs
user sessions as defined by the usage pattern shown above.

Our experimental setting consists of the server machines, which are two Digital
AlphaServers 4100 each with four processors and 2Gbytes of local memory, and a
large number of client machines. The server machines have Alpha 21164 processors
with 8Kbyte Instruction and 8Kbyte Data on-chip first-level cache, a 96Kbyte 3-way
set associative on-chip second-level cache, and a 4Mbyte board-level cache. We have
divided the components of Media Search on the two servers by placing the presentation
server on one of the machines and the librarian, indexing server, and content server on
the other. The machine with the presentation server had 400MHz processors, while the
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machine with the librarian, indexer, and content server had 466MHz processors. Both
machines have a system bus capable of delivering 1.2 Gbytes/sec.

The clients run on a collection of Unix and NT workstations. All machines are
connected by a 100Mbit/sec FDDI network. We have focused our study on the CPU
and memory system performance of the application. We also provide an estimate on
the bandwidth requirements for serving query responses and content to a large number
of clients.

While our study is by necessity tied to the particular hardware configuration we
have used, we believe that our server configuration is representative of the state of the
art and our results are applicable on a variety of other architectures with similar mem-
ory system characteristics. It is also possible that different types of content would result
in different usage patterns. However we should be able to extrapolate the performance
of a system under any usage model given our current results.

4 Performance Characterization

As we saw in section 2, CRL Media Search is a collection of components that cooperate
to provide answers to users. In this section we analyze the performance of Media
Search by providing details on the performance of each individual component. We
start by looking at the contribution of each component on the total CPU budget of
the system and we proceed to explain where the CPU cycles are spent within each
component. In addition to CPU requirements we also look at the network bandwidth
requirements of the system.

We applied simulated loads to our system in order to determine how many simulta-
neous users it could support while maintaining a reasonable response time. The Media
Search system was able to serve 1250 concurrent users doing queries based on the us-
age model of section 3 with an average query response time of 0.44 seconds. Further
increases in user load resulted in rapid degradation of response time and indicate that
our AlphaServers were reaching saturation. To provide a more concrete number of the
system capabilities the page view rate was 75 pages per second or 2.7 million pages
viewed per working day2.

While Media Search supports both query and multimedia delivery functionality, we
have focused this performance study on the query side alone. We did study multime-
dia delivery as a standalone application and we discovered that its CPU and memory
requirements are smaller than those of the query subsystem by an order of magni-
tude. For example, servicing queries for 1250 concurrent users keeps almost all of
the eight processors on our two AlphaServers busy. These users will require just over
300 concurrent video feeds. Our tests have shown that we can service 500 concurrent
RealVideo

TM feeds while keeping a single CPU only half busy3 and therefore con-
tent delivery is only a small fraction of the CPU requirements for a system like Media
Search.

Figure 4 shows the percentage of CPU time spent in each one of the system com-
ponents in an experiment with 1250 clients each executing 14 users sessions. As can

2A working day on the World Wide Web is considered to last approximately 10 hours
3This was the largest test that our server license allowed us to run.
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Figure 4: CPU time consumed by different system components.

be seen, the presentation layer is the largest consumer of CPU cycles contributing a
little over 50% of the total CPU budget for all of Media Search. The second largest
consumer of cycles is the librarian with the Oracle database and the libriarian front end
combining for 40% of the CPU cycle while the indexer uses the remaining 10% of the
total CPU budget.

We also profiled the execution of each of the components using Compaq’sCon-
tinuous Profiling Infrastructure(CPI) tool [2] in order to determine how each of the
components was spending its time. We will discuss those findings in the remainder of
this section.

4.1 The presentation subsystem

The presentation layer is by far the largest consumer of CPU cycles. It is responsible for
querying the other servers and formatting the results. Since it is the layer that needs to
change most frequently in our system in response to user feedback, it has been written
in an interpreted language (Perl). This allows for easy modification and customization
but results in significantly higher overhead. As we mentioned in section 2 we have
already avoided the most significant cost of using CGI scripts and Perl by moving to
FastCGI. By far the highest cost of a CGI script is the startup of the Perl interpreter.
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Figure 5: Breakdown of cycles in Perl.

FastCGI allows us to start a number of Perl processes upfront and converts calls to CGI
programs that would normally start a new process into messages to one of the already
existing processes.

However using an interpreted language still results in substantial overhead. Fig-
ure 5 shows how the Perl cycles are distributed between user and kernel mode. Fur-
thermore both the kernel and user bars are divided, from top to bottom, into: a) cycles
spent waiting for some internal processor resource (e.g. waiting for a value produced
by a previous instruction or waiting for an execution unit to become available) (Static),
b) cycles spent recovering from mispredicted branches (Branch), c) cycles spent wait-
ing for memory (Cache/TLB), and d) useful or busy cycles (Busy). As can be seen from
the figure very little time is spent in the kernel. Most of the kernel time is related to
lock acquisitions, memory copying, and thread scheduling.

The user-level portion of the application spends most of its time waiting for the
memory subsystem. We believe that our heavy usage of associative arrays is partially
responsible for this behavior. Associative arrays are hash-table data structures that
present to Perl coders the illusion of arrays where indices can be arbitrary strings. Our
Perl scripts need to allocate and de-allocate a large number of associative arrays to hold
the responses provided by the indexer and the librarian. Previous work [12] has shown
that associative arrays are the most inefficient type of data structure in Perl and benefit
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Figure 6: Breakdown of cycles in Oracle.

very little from the existence of the Perl precompilation phase.
While it can be argued that a real production system would not have used Perl as

the scripting language for its presentation layer we still believe the Perl results are in-
teresting. First they are independent of the behavior exhibited by the remaining compo-
nents since the presentation layer was running on a separate machine, and second they
showcase the performance costs associated with the flexibility that is often desired by
experimental systems like ours that need to change frequently.

4.2 The librarian subsystem

The second major consumer of resources in our system is the librarian which consists
of a front-end interface application and the Oracle back-end. The librarian is a critical
part of the system because it is the hardest one to scale. The remaining components can
be scaled simply by replication and distribution of queries to one of the replicas. The
librarian can not be easily replicated due to consistency issues that arise when adding
content to the system. For example, adding a document to multiple librarian instances
would require that the addition succeed or fail atomically across all of the replicas.
This problem does not arise with any of the other subsystems. The presentation layer
does not maintain any state and thus failure of a presentation server would only reduce
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Figure 7: Breakdown of cycles in librarian front-end.

performance. The index server does maintain state but it builds this state based on the
contents of the librarian. Should an index server fail it can be taken offline, rebuilt and
then brought back online. Content integrity is never compromised because of an index
failure.

We have used CPI to analyze the performance of the librarian. As can be seen
in figure 6 the Oracle back-end spends 22% of the time in kernel-level code. Most
of the kernel time is spent acquiring and releasing locks, copying data, and schedul-
ing the Oracle processes on available processors. The kernel component of Oracle is
quite inefficient as only 15% of the kernel cycles are actually spent executing useful in-
structions. The user-level component of the Oracle back-end exhibits somewhat better
behavior with 23% of its cycles spent executing useful instructions. Still waiting for
the memory system accounts for 61% of the user-level cycles, while a non negligible
component (10%) is spent waiting for internal processor resources.

The librarian front-end provides connectivity to Oracle and packages Oracle re-
sponses into a format understood by the presentation layer. Our performance analysis
tools indicate that it spends almost half of its time in kernel mode. Careful examination
of the profile data reveals that almost all of the kernel time is due to scheduling events,
lock acquisition and releases, and network accesses. This profile is consistent with our
expectations from the application. The librarian front-end uses a large number of long-
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lived threads and distributes queries between them in a round-robin fashion. Thread
scheduling is handled by the kernel, with each thread receiving a request and eventu-
ally sending an answer back to the presentation layer using TCP/IP sockets. The kernel
component of the application is very inefficient with only 11% of the kernel cycles
spent executing useful instructions.

The user-level component of the application spends time communicating (through
shared memory) with the Oracle database, formatting results, and managing memory
buffers4. Even though it has been optimized heavily for better cache performance the
nature of its task is to copy data from one buffer to another and thus it still spends a
significant number of its cycles (42%) waiting on the memory hierarchy.

Oracle is known to be a rather heavy weight component, perhaps too heavy weight
for an application like ours. However most of Oracle’s complexity stems from trans-
action semantics when data is updated in the database. For a query-only workload like
ours Oracle actually offers excellent scalability as evidenced by our experiments.

4.3 The indexing subsystem

The indexer is the most efficient of our system components. It is based on the Al-
taVista index which has been written with the Alpha processor architecture in mind
and some of the inner loops of the application are hand-tuned to exhibit good perfor-
mance. However even this highly efficient component spends a significant amount of
time in the memory hierarchy. A combined 57.1% of the time is spent waiting for
memory while only 25.9% of the time is spent executing useful instructions. Careful
examination however reveals that most of the waiting time is not part of the applica-
tion itself but stems from thepthreadsandC libraries with which it is linked. The
application also exhibits a substantial amount of kernel time. While some of this is
justified due to thread scheduling issues, a significant portion can be attributed to the
application building a cache of the indices in memory. Our profiles indicate that ap-
proximately one third of the kernel time involves data copying and file management.
Our monitored experiments run for approximately 20 minutes and always start with a
clean index cache. For longer-running experiment the cost of building the cache will
be amortized over many queries and will be much less of a contributing factor to the
indexer’s performance.

4.4 Network Bandwidth Requirements

Internet bandwidth can be the most expensive resource consumed by an application
like Media Search. Our systems consumes network bandwidth both when delivering
response pages to user queries and when delivering the multimedia documents them-
selves. However it is possible to envision an indexing system where responses to user
queries are handled by our server while the requests for the multimedia documents are
redirected to a separate server on the Internet where the multimedia document orig-
inated. We have therefore tried to characterize the network bandwidth requirements

4For performance reasons the front-end performs its own memory management rather than relying on the
system malloc routines.
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Figure 8: Breakdown of cycles in indexer.

of these two disparate services: responses to user queries and delivery of multimedia
streams.

We have measured the capacity of our system to be 1250 simultaneous users, each
following the usage model we described in section 3. This works out to 75 page views
per second where a page view is in reponse to either anall-documents query, single-
document query, or browserequest. Another way of looking at this is that our system
can service approximately 27 new user sessions per second which in turn will result in
19 multimedia document deliveries. Using the same usage model, we know that users
will play approximately 25 seconds out of each delivered document. The bit rate for
low-bit video delivery currently is 56Kbits/sec, and a quick calculation shows that the
bandwidth requirement for media document delivery is therefore 26.8Mbits/sec.

Bandwidth is also consumed when delivering responses to user queries. Response
pages must send a certain amount of HTML and a number of pictures that are repre-
sentative of the document locations returned by the search. We have instrumented our
Web server to measure the number of bytes delivered by each response. The HTML
and associated JavaScript of each page we deliver measures anywhere between 9Kbytes
and 33Kbytes with an average of 15Kbytes per page. Furthermore, keyframe images
are anywhere between 1Kbytes and 4Kbytes with an average of a little over 3Kbytes.
Eachall-documents queryand single-document querypage have a maximum of 10
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images and each browse page has a maximum of 5 images. Given their relative fre-
quencies and a maximum response rate of 75 pages per second, we can estimate that
our system delivers a maximum of 635 images per second. Thus we can compute the
bandwidth requirement for response pages as15Kbytes=sec� 75+635images=sec�
3Kbytes=image = 24:6Mbits=sec. The most significant component of this cost is
picture delivery. One could choose to omit images from a response page thus cutting
the bandwidth requirements for the query server by more than 60%.

5 Related Work

Indexing of Web data has been an important topic for the past few years. A large
number of search engines index text on the World Wide Web with varying amounts of
success on how much of the Web they can cover, how fast they can provide answers,
and how relevant those answers are to the users’ queries. Multimedia indexing is a
relative newcomer in the field of indexing.

One of the early systems that attempted to provide multimedia indexing is the
News-on-Demand project, part of the Informedia project at CMU [7]. In this project
CNN and other live feeds were digitized, then image analysis was performed to cut
the video into shots. Shots were then grouped into scenes using multiple cues. The
speech in text format for each scene was then indexed using a standard text indexing
system. Users could then send queries to retrieve scenes. More recent work has fo-
cused on video summarization [13] and indexing with speech recognition [6, 9, 1, 8].
A commercial product, the Virage Video Cataloguer, performs real-time digitization,
shot cut detection, speech recognition, and closed-caption extraction. Off-line, the sys-
tem provides a keyframe summary of the video over a Web browser; by selecting time
periods represented by pairs of keyframes, the user can add annotations to the index.
Finally, Maybury’s [11] system at MITRE focuses on adding advanced summarization
and browsing capabilities to a system that is very similar to Informedia.

The systems cited above, and others, employ theshot– an uninterrupted sequence
of video – as the basic atomic unit for all additional processing. While shots are clearly
important, this type of structuring of the information is not always appropriate. Daven-
portet al [4] introduced the idea of a stream-based representation of video from which
multiple segmentation can be generated. In a stream-based representation, the video is
left intact, and multi-layered annotations with precise beginning and ending times are
stored as associated metadata with the video. Annotations can be a textual represen-
tation of the speech, the name of a person, objects in the scene, statistical summaries
of a sequence of video, or any other type of data. A stream-based annotation system
provides a more flexible framework and can always be reduced to a shot/scene rep-
resentation by projecting the time intervals of the other annotations against the shot
annotations.

A significant advantage of the stream-based approach is that queries are matched
against the whole document rather than a subset of it. It is possible for complex queries
to not match any one sub-piece of a document, even though the document as a whole
may satisfy them. Using the stream-based approach we can find the appropriate docu-
ment for such complex cases and return a subset of the document that spans multiple
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document shots. We have used the stream-based approach in Media Search to better
capture these complex queries that would not be satisfied by a shot-based approach
to the problem. In addition to better service for complex queries, the stream-based
approach provides us with the flexibility to define shots differently for different uses
of the system even though the underlying mechanisms used to search the documents
remain the same. For example, if the system has primarily indexed conversations or
speech, as ours has, then what is of interest to the user is the structure of the textual
representation of the speech. In this case a single segment per paragraph could be more
appropriate than one determined from image analysis. Another example is content
reuse and repurposing. Content companies are very interested in reusing old content
for new productions. In this case, the semantic content of the story is not of interest.
Instead the basic objects, people, and settings are of value. Annotations should mark
their appearance and disappearance of these objects from the video. As a final example,
consider indexing a symphony video based on instruments and scores. In this case a
visually-based temporal segmentation is not appropriate, but one based on the musical
structure is. Our system, paired with a Web-based annotation tool we built, can support
all these differing styles of segmentation.

6 Conclusion and Future Work

In this paper we have presented our design of a system that can index multimedia doc-
uments and can provide access to the indexed documents to large number of clients
through a Web interface. Words spoken in the document themselves are used as anno-
tations. These words are extracted from the documents, their exact time is identified
and are inserted into a relational database which is then used to build an external text
index. Users search the annotations and get in return the document, the location of
the particular annotation within the document, and additional annotations that provide
context.

By deploying the system within the company we have also produced a usage model
based on the observed usage patterns by a large number of clients. We have then used
this usage model to conduct a detailed performance analysis of the different system
components and we identified memory system performance as the most important per-
formance bottleneck on the indexing side. Essentially we find that caching has only
limited success in bridging the gap between CPU speeds and memory speeds for this
class of applications and that CPUs spend most of their time waiting for data to ar-
rive from main memory. Surprisingly enough, even with a large amount of content
and users, I/O does not appear to be a bottleneck in our system and all disk latency is
completely hidden from the user.

We have also shown that the multimedia indexing problem can be relatively succes-
fully reduced to a text indexing problem with some provisions for searching and finding
multiple text matches within a document. Even though this approach can be successful
there is still need for more complex indexing support. For example it could be use-
ful to search for videos where certain images appear, or audios with certain sounds.
These search problems can not be reduced to text searching and the relevant data is
often represented as high-dimensional vectors. Efficient indexing technology for high
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dimensional data is still lacking and presents a formidable challenge for the continued
success of multimedia indexing.
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