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Abstract

The existence of large image datasets such as the set of photos on the world wide
web make it possible to build powerful generic models for low-level image attributes
like color using simple histogram learning techniques. We describe the construction of
color models for skin and non-skin classes from a dataset of nearly 1 billion labelled
pixels. These classes exhibit a surprising degree of separability which we exploit by
building a skin pixel detector achieving a detection rate of 80% with 8.5% false posi-
tives. We compare the performance of histogram and mixture models in skin detection
and find histogram models to be superior in accuracy and computational cost. Using
aggregate features computed from the skin detector we build a surprisingly effective
detector for naked people. Our results suggest that color can be a powerful cue for
detecting people in unconstrained imagery. We believe this work is the most compre-
hensive and detailed exploration of skin color models to date.
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1 Introduction

A central task in visual learning is the construction of statistical models of image ap-
pearance from pixel data. A solution consists of a representation of image appearance,
a learning algorithm, and a source of training images. When the amount of available
training data is small, sophisticated learning algorithms may be required to interpolate
between samples. However, as a result of the world wide web and the proliferation of
on-line image collections such as Corbis [2], the vision community today has access
to image libraries of unprecendented size and richness.1 These large data sets can sup-
port simple, computationally efficient learning algorithms. However, a data set such as
web images constitutes a biased sample from the space of possible imagery. Thus, the
process of building image models from web data must be accompanied by a process
of visualizing these models and investigating the statistical characteristics of on-line
image data sets.

Color is the simplest attribute of the set of pixels that make up an image. Recently
a number of authors have addressed the problem of constructing “generic prior mod-
els” [26] of images using multi-scale statistical modeling techniques [8, 27, 18, 19, 3,
4]. In these approaches, texture models are constructed from the outputs of multi-scale
spatial filters, such as wavelets or steerable pyramids. In most of this work, image
models are built from a single example image, or a few examples in the case of [4].
Applications include texture synthesis and classification, as well as noise removal and
image coding. A statistical color model can be viewed as the0th order version of these
spatial models in which the neighborhood structure is limited to a single pixel. Color
is the logical starting point for constructing generic models from large data sets, as
it is computationally inexpensive and easy to visualize since the state space is three
dimensional.

This report describes the construction of statistical color models from a data set
of unprecedented size: Our model includes nearly 1 billion labeled training pixels ob-
tained from random crawls of the world wide web. From this data we construct a
generic color model as well as separate skin and non-skin models. We use visual-
ization techniques to examine the shape of these distributions. We show empirically
that the preponderance of skin pixels in web images introduces a systematic bias in
the generic distribution of color. We learn both histogram and mixture densities from
this data, and show that histogram models slightly outperform mixture models in this
domain.

We use skin and non-skin color models to design a skin pixel classifier with an
equal error rate of 88%. This is surprisingly good performance given the unconstrained
nature of web images. Our visualization studies demonstrate the separation between
skin and non-skin color distributions that make this performance possible. Using our
skin classifier, we construct a system for detecting images containing naked people,
based on simple aggregate properties of the classifier output. This system compares
favorably to recent systems by Forsythet al.[6] and Wanget al.[24]. This suggests that
skin color can be a more powerful cue for detecting people in unconstrained imagery

1Informal estimates put the number of color photos currently available on the world wide web at 40
million [20].
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than was previously suspected.

We believe this work is the most comprehensive and detailed exploration of skin
color models to date. We plan to make available to the academic community the labeled
dataset of 13,640 photos on which this report is based. See Appendix A for details.

Section 2 describes the construction and visualization of histogram color models.
These models are applied to skin classification in Section 3, where they are also con-
trasted to mixture densities. Section 4 explores the application of the skin detector to
image classification. We review previous work in Section 5 and discuss our conclu-
sions and future plans in Section 6. The Appendix contains a number of facts about
our dataset and classifier.

2 Histogram Color Models

There are two issues that must be addressed in building a color histogram model: the
choice of color space and the size of the histogram, which is measured by the number
of bins per color channel. The RGB color space is a natural representation for color
images found on the web. While alternative color spaces such as YUV or HSV are
available, RGB is thede factostandard for image representations such as JPEG.2

Web images fit naturally into a 24 bit color representation, since high quality color
images require 24 bits and images with coarser color resolutions can be mapped into
it. In contrast, the size of the histogram depends upon the task. Our starting point for
color analysis is the direct construction of a histogram color model in 24 bit RGB color
space. Such a model has a size of 256 bins per color channel, which corresponds to
more than 16.7 million (2563) bins, each mapped to a specific R,G,B color triple. In
Section 3 we will show that skin classification requires a smaller histogram size for
good generalization.

The dataset for the experiments described in this report were obtained by a large
crawl of the web which produced about 3 million images (including icons and graph-
ics). A smaller set of images was randomly sampled from this large set and cleared
of all icons and graphics by hand. This produced a set of 18,696 photographs. This
set was then manually separated into a set of 9731 images containing skin and 8965
images not containing any skin. This is a dataset of nearly 2 billion pixels, which is two
orders of magnitude more data than the number of degrees of freedom in a histogram
model of size 256. In Section 2.1 this dataset is used to build a general color model.

In Section 2.2 we used a subset of 13,640 photos to build specialized skin and non-
skin color models. The regions of skin in 4675 skin images were segmented by hand
as described in Appendix A. This set in conjunction with the 8965 non-skin images
gives a total of nearly 1 billion labelled pixels. Details on how to obtain this dataset for
academic research purposes can be found in Appendix A.

2The JPEG standard [22] does not specify a color space, but RGB is the most common representation for
JPEG-encoded web images.
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2.1 General Color Model

We first learn a general color model using a histogram of size 256 in RGB space. Each
of the three histogram dimensions is divided into 256 bins, and each bin stores an
integer counting the number of times that color value occurred in the entire database
of images. The pixels in the 18,696 photograph dataset were used to populate the
histogram. The histogram counts are converted into a discrete probability distribution
P (�) in the usual manner:

P (rgb) =
c[rgb]

Tc
; (1)

wherec[rgb] gives the count in the histogram bin associated with the RGB color triple
rgb andTc is the total count obtained by summing the counts in all of the bins.

To visualize the probability distribution, we developed a software tool for viewing
the histogram as a 3-D model in which each bin is rendered as a cube whose size is
proportional to the number of counts it contains. The color of each cube corresponds
to the smallest RGB triple which is mapped to that bin in the histogram. Figure 1 (a)
shows a sample view of the histogram, produced by our tool. This rendering uses a
perspective projection model with a viewing direction along the green-magenta axis
which joins corners(0; 255; 0) and(255; 0; 255) in color space. The viewpoint was
chosen to orient the gray line horizontally. The gray line is the projection of the gray
axis which connects the black(0; 0; 0) and white(255; 255; 255) corners of the cube.
The histogram in Figure 1 (a) is of size 8 and only shows bins with counts greater
than336; 818. Down-sampling and thresholding the full size model makes the global
structure of the distribution more visible.

By examining the 3-D histogram from several angles its overall shape can be in-
ferred. Another visualization of the model can be obtained by computing its marginal
distribution along a viewing direction and plotting the resulting 2-D density function as
a surface. Figure 1 (b) shows the marginal distribution that results from integrating the
3-D histogram along the same green-magenta axis used in Figure 1 (a). The positions
of the black-red and black-green axes under projection are also shown. The density is
concentrated along a ridge which follows the gray line from black to white. White has
the highest likelihood, followed closely by black.

Additional information about the shape of the surface in Figure 1 (b) can obtained
by plotting its equiprobability contours. These are shown in Figure 1 (c). They were
obtained with thecontour function in Matlab 5.0. It is useful to compare Figure 1 (c)
with Figure 1 (a) as they are drawn from the same viewpoint. This plot reinforces the
conclusion that the density is concentrated around the gray line and is more sharply
peaked at white than black. An intriguing feature of this plot is the bias in the distribu-
tion towards red.

This bias is clearly visible in Figure 1 (d), which shows the contours produced by a
different marginal density, obtained by integrating along the gray axis. The distribution
shows a marked asymmetry with respect to the axis of projection that is oriented at
approxmiately30 degrees to the red line in the figure. In the next section, we will
demonstrate empirically that this bias is due largely to the presence of skin in web
images.

In summary, the generic color model built from web images has three properties:
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(a) 2-D rendering of 3-D his-
togram model viewed along the
green-magenta axis.

(b) Surface plot of the marginal density formed by
integrating along the viewing direction in (a).

  Red

  Blue

Full Color Model, Green−Magenta Axis Marginal

Black White

(c) Equiprobability contours from the sur-
face plot in (b).

Red 

Blue 

Green 

Full Color Model, Gray Axis Marginal

(d) Contour plot for an integration of (a)
along the gray axis.

Figure 1: Four visualizations of a full color RGB histogram model constructed from
nearly 2 billion web image pixels.
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1. Most colors fall on or near the gray line.

2. Black and white are by far the most frequent colors, with white occuring slightly
more frequently.

3. There is a marked skew in the distribution toward the red corner of the color
cube.

In gathering our dataset we made two additional interesting observations about im-
ages on the web. First, 77% of the possible 24 bit RGB colors are never encountered
(i.e. the histogram is mostly empty). Second, about 52% of our web images have peo-
ple in them. Table 1 contains a summary of facts about our dataset and color models.

2.2 Skin and Non-skin Color Models

A generic color model can be specialized to describe particular classes of objects if la-
bels are available for the training pixels. We now address the construction of histogram
color models for skin and non-skin pixel classes.

The color of skin in images depends primarily on the concentration of hemoglobin
and melanin and on the conditions of illumination. It is well-known that the hue of
skin is roughly invariant across different ethnic groups after the illuminant has been
discounted. This is because differences in the concentration of pigments primarily
affect the saturation of skin color, not the hue.

Unfortunately we do not know the illumination conditions in an arbitrary image3

and so the variation in skin colors is much less constrained in practice. This is particu-
larly true for web images captured under a wide variety of conditions. However, given
a large collection of labeled training pixels we can still model the distribution of skin
and non-skin colors in un-normalized color space.

We constructed skin and non-skin histogram models using our 13,640 photo dataset.
The skin pixels in the 4675 images containing skin were labelled manually and placed
into the skin histogram. The 8965 images that did not contain skin were placed into the
non-skin histogram. Appendix A describes the labelling process in detail.

Given skin and non-skin histograms we can compute the probability that a given
color value belongs to the skin and non-skin classes:

P (rgbjskin) =
s[rgb]

Ts
; P (rgbj:skin) =

n[rgb]

Tn
(2)

wheres[rgb] is the pixel count contained in binrgb of the skin histogram,n[rgb] is
the equivalent count from the non-skin histogram, andTs andTn are the total counts
contained in the skin and non-skin histograms, respectively.

The skin and non-skin color models can be examined using the same techniques we
employed with the full color model. Contour plots for marginalizations of the skin and
non-skin models are shown in Figure 2. The marginalizations are formed by integrating
the distribution along two orthogonal viewing axes. These plots show that a significant

3The illuminant could be discounted, however, if a solution to the color constancy problem [23] were
available.
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  Red

  Blue

Skin Color Model, Green−Magenta Axis Marginal

Black White

(a) Contour plot for skin model, marginalized
along the green-magenta axis.

Red 

Blue 

Green 

Skin Color Model, Gray Axis Marginal

(b) Contour plot for skin model, marginalized
along the gray axis.

  Red

  Blue

Non−skin Color Model, Green−Magenta Marginal

Black White

(c) Contour plot for non-skin model,
marginalized along the green-magenta axis.

Red 

Blue 

Green 

Non−Skin Color Model, Gray Axis Marginal

(d) Contour plot for non-skin model,
marginalized along the gray axis.

Figure 2: Contour plots for marginalizations of the skin and non-skin color models.
The top row shows the skin model, the bottom row shows the non-skin model. The left
column uses the viewing direction from Figure 1 (c) while the right column uses the
view from Figure 1 (d).
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Total Counts Total Occupied Bins Percent Unoccupied
General Model 1,949,659,888 3,925,498 76.6

Skin Model 80,377,671 959,955 94.3
Non-skin Model 854,744,181 3,273,160 80.5

Overlapping skin/non-skin bins: 933,275
Skin pixels as a percentage of total pixels: 10 %
Total photos in labeled dataset: 13,640
Percentage of photos containing skin: 52 %

Table 1: Facts about photo image data set and the general, skin, and non-skin color
models that were constructed from it.

degree of separation exists between the skin and non-skin models. The non-skin model,
is concentrated along the gray axis, while the majority of the probability mass in the
skin model lies off this axis. This separation between the two classes is the basis for
the good performance of our skin classifier, which will be described in Section 3.

It is interesting to compare the non-skin color model illustrated in Figure 2 (c) and
(d) with the full color model shown in Figure 1 (c) and (d). The only difference in
the construction of these two models is the absence of skin pixels in the non-skin case.
Note that the result of omitting skin pixels is a remarkable increase in the symmetry
of the distribution around the gray axis. This observation suggests that although skin
pixels constitute only about 10% of the total pixels in the dataset, they exhert a dispro-
portionately large effect on the shape of the generic color distribution for web images,
biasing it strongly in the red direction. We suspect that this effect results from the fact
that the skin class occurs more frequently than other classes of object colors (52 % of
our images contained skin).

2.3 Discussion

A number of statistics about the general, skin, and non-skin histogram color models
are summarized in Table 1. Total counts gives the total number of pixels used to form
each of the three models.4 Note that the skin model was formed from more than 80.3
million hand labelled skin pixels! Total occupied bins refers to the number of bins in
each model with nonzero counts. This is also expressed as the percentage of the bins
in each model that were unoccupied. Overlapping bins gives the number of bins which
are non-empty in both skin and non-skin histogram models.

We can make a few interesting observations about these statistics. First, 76.6%
of the 16.7 million possible RGB values were not encountered in any of the training
images. Second, of the 959,955 colors that occurred as skin, 933,275 (97.2%) also
occurred as non-skin. This suggests that the skin detection problem could be difficult
since there is significant overlap between the skin and non-skin models. However,
overlap is only a significant problem if the counts in the shared bins are comparable

4The general model was constructed from 18,696 photos, while the skin and non-skin models were con-
structed from 13,640 photos. See Appendix A for details.
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in the skin and non-skin cases. The plots in Figure 2 demonstrate that there is in fact
reasonable separation between the skin and non-skin classes.

3 Skin Detection Using Color Models

Given skin and non-skin histogram models we can construct a skin pixel classifier.
Such a classifier could be extremely useful in two contexts. First, for applications such
as the detection and recognition of faces and figures, skin is a useful low-level cue that
can be used to focus attention on the most relevant portions of an image. This approach
is used in many systems, see [16, 6] for two examples. A second role for skin pixel
detection is in image indexing and retrieval, where the presence of skin pixels in a photo
is an attribute that could support queries or categorization. We give two examples of
this application in Section 4.

The key step in skin pixel classification is the computation ofP (skinjrgb), which
is given by Bayes rule:

P (skinjrgb) =
P (rgbjskin)P (skin)

P (rgbjskin)P (skin) + P (rgbj:skin)P (:skin)
: (3)

A particular RGB value is labelled skin if

P (skinjrgb) � � (4)

where0 � � � 1 is a threshold.
In equation 3,P (skin) andP (:skin) are the prior probabilities for any color value

being skin or non-skin, respectively. SinceP (skin) + P (:skin) = 1, we only need
to specify one of these priors. One reasonable choice for the prior probability of skin
is the ratio of the total skin pixels in the histogram to the total of all the pixels, i.e.

P (skin) =
Ts

Ts + Tn
:

For skin detection, the most important property of equation 4 is the receiver oper-
ating characteristic (ROC) curve [21], which shows the relationship between correct
detections and false detections as a function of the detection threshold�. It turns out
that the ROC curve is invariant to the choice of priorP (skin) in the Bayesian model.
See the Appendix B for details.

Note that the use of color spaces other than RGB (such as YUV or HSV) will not
improve the performance of the skin detector. Detector performance depends entirely
on the amount of overlap between the skin and non-skin samples. Colors which occur
in both classes with comparable frequencies cannot be classified reliably. No fixed
global transformation between color spaces can affect this overlap. On the other hand,
color normalization which adjusts the colors in an image based on its global properties
could be beneficial in separating skin colors from non-skin colors. We do not employ
any form of color normalization because current algorithms do not work well enough
over a wide range of images [7].
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3.1 Histogram-based Skin Classifier

We conducted a series of experiments with histogram color models using the skin clas-
sifier defined by equation 4. For these experiments, we divided our collection of photos
into separate training and testing sets. Skin and non-skin color models were constructed
from a 6822 photo training set using the procedure described in Section 2.2. In this
case there were 4483 training photos which formed the non-skin color model and 2339
training photos which formed the skin color model. From our 6818 photo testing set
(4482 non-skin and 2336 skin photos) we obtained two populations of labelled skin
and non-skin pixels which were used to test the classifier performance.

Figure 3 shows some examples of skin detection in test images for� = 0:4. The
classifier does a good job of detecting skin in most of these examples. In particular, the
skin labels form dense sets whose shape often resembles that of the true skin pixels.
The detector tends to fail on highly saturated or shadowed skin. An example of the
former type of failure can be seen on the forehead of the woman in the middle of the
top row. An example of the latter failure is visible in the neck of the athlete in the
middle of the bottom row.

The example photos also show the performance of the detector on non-skin pixels.
In photos such as the house (lower right) or flowers (upper right) the false detections are
sparse and scattered. More problematic are images with wood or copper-colored metal
such as the kitchen scene (upper left) or railroad tracks (lower left). These photos
contain colors which often occur in the skin model and are difficult to discriminate
reliably. This results in fairly dense sets of false postives.

Classifier performance can be quantified by computing the ROC curve [21] which
measures the threshold-dependent trade-off between misses and false detections. In
addition to the threshold setting, classifier performance is also a function of the size
of the histogram (number of bins) in the color models. Too few bins results in poor
accuracy while too many bins lead to over-fitting.

Figure 4 shows the family of ROC curves produced as the size of the histogram
varies from 256 bins/channel to 16. The axis labelled “Probability of correct detec-
tion” gives the fraction of pixels labelled as skin that were classified correctly, while
“Probability of false detection” gives the fraction of non-skin pixels which are mistak-
enly classified as skin. These curves were computed from the test data. Histogram
size 32 gave the best performance, superior to the size 256 model at the larger false
detection rates and slightly better than the size 16 model in two places.

The performance of the skin classifier is surprisingly good considering the uncon-
strained nature of web images. The best classifier (size 32) can detect roughly 80%
of skin pixels with a false positive rate of 8.5%, or 90% correct detections with 14.2%
false positives. Its equal error rate is 88%. This corresponds to the point on the ROC
curve where the probability of false rejection (which is one minus the probability of
correct detection) equals the probability of false detection.

In addition to histogram size, classifier performance is also affected by the amount
of training data. This effect is illustrated in Figure 5 (a). We tested the performance of
the skin classifier as the amount of training data was increased. We used a2563 his-
togram model for these tests. To do this we took the list of skin and non-skin images in
the training set and divided then into chunks containing approximately 2.5 million skin
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Figure 3:Examples of skin detections. For each pair, the original image is shown
above and the detected skin pixels are shown below.

pixels and 28 million non-skin pixels. On each iteration we added one such chunk of
new skin and non-skin pixels to the evolving training set. A ROC curve was computed
at each iteration showing the classifier performance on the partial training set as well
as on the full test set.

Figure 5 (a) shows that as more data is added, performance on the training set
decreases because the overlap between skin and non-skin data increases. Performance
on the test set improves because the test and training distributions become more similar
as the amount of training data increases. Performance on both training and test sets
converges relatively quickly. There is little change in either after about 8 iterations.

This ROC curve convergence guided our data collection process. During this re-
search, we added photos selected at random from a larger set to our model until we
judged that the ROC curves had converged. Our final total of 13,640 photos corre-
sponds to this stopping point. Figure 5 suggests that adding additional photos to our
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Figure 4:ROC curves for the skin detector as a function of histogram size.

model is unlikely to improve the classifier performance.
In our final histogram experiment, we tested the performance of the models trained

on a small set of data sampled according to the distribution of skin and non-skin colors
in the full training set. We sampled 387,172 skin pixels and 4,261,703 non-skin pix-
els (1% of the training data) and built histogram models from these samples. In this
case we tried histograms with different numbers of bins in order to find the optimal
histogram size. The performance is shown in Figure 5 (b). It is almost as good as the
histogram model using the full training set. This demonstrates that while a large data
set is necessary to capture the underlying distribution of skin and non-skin colors, it is
sufficient to train models on a smaller set of samples.

3.2 Comparison to Mixture of Gaussian Classifier

Much of the previous work on skin classification has used a mixture of gaussian model
of skin color (some representative examples are [9, 17]). One attraction of mixture
models is that they can be made to generalize well on small amounts of training data.
We trained mixture models for our dataset and compared their classification perfor-
mance to the histogram models of Section 3.1.

A mixture density function is expressed as the sum of gaussian kernels as follows:

P (x) =

NX

i=1

wi

1

(2�)
3

2 j�ij
1

2

e�
1

2
(x��i)

T
�
�1

i
(x��i); (5)

wherex is a three dimensional RGB color vector and the contribution of theith gaus-
sian is determined by a scalar weightwi, mean vector�i, and diagonal covariance
matrix�i.
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Figure 5: ROC curves for the skin classifier based on histogram color models. The
histogram size is 256 in (a) and varies in (b).

We trained two separate mixture models for the skin and non-skin classes. We used
16 gaussians in each model. The models were trained using a parallel implementation
of the standard EM algorithm [15]. The non-skin model was trained using the same
data as the histogram model in Section 3.1. The skin model was trained using a subset
of approximately74% of the histogram training data. This was simply because that was
all the skin training data we had at the time that we performed the mixture experiments.

Contour plots for the mixture of gaussian skin and non-skin models are shown in
Figure 6. In both plots the 3-D density is integrated along the green-magenta axis.
These plots correspond to the marginalizations of the related histogram models shown
in Figures 2(a) and (c). The positions of individual Gaussian kernels can be observed
in the level sets.

Figure 7 (a) shows the ROC curve for the skin pixel classifier based on the mixture
of gaussian color models. It is shown in comparison to thebesthistogram model ROC
curve, which uses a histogram of size 32. We can see that the histogram model gives
slightly better performance in this case. This may be somewhat surprising, since skin
colors might be expected to form a compact distribution in color space which would
presumably be well-suited to mixture density modeling. We can think of two explana-
tions: First, illumination and color quantization effects may perturb the compactness
of a “normalized” skin color model. Second, the non-skin model is much less likely to
be compact and will have a significant impact on classifier performance.

It is interesting to compare the mixture and histogram models from the standpoint
of computational and storage costs. The mixture of gaussian models took significantly
longer to train than the histogram models. It took about 24 hours to train both skin
and non-skin mixture models using 10 Alpha workstations in parallel. In contrast, the
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  Red

  Blue

Mixture of Gaussians Skin Color Model

Black White

(a) Contour plot for skin model.

  Red

  Blue

Mixture of Gaussians Non−skin Color Model

Black White

(b) Contour plot for non-skin model.

Figure 6: Contour plots for marginalizations of the mixture of Gaussian skin and non-
skin color models.

histogram models could be constructed in a matter of minutes. The mixture model is
also slower to use during classification since all of the gaussians must be evaluated
in computing the probablity of a single color value. In contrast, use of the histogram
model results in a fast classifier since only two table lookups are required to compute
the probability of skin.

From the standpoint of storage space, however, the mixture model is a much more
compact representation of the data. There are a total of 224 floating point parameters
(896 bytes assuming 4 byte floats) in the skin and non-skin mixture densities that we
used. In contrast, the size 32 histogram model requires 262 Kbytes of storage, assum-
ing one 4 byte integer per bin.

We conducted an additional experiment to verify the importance of having a large
data set in obtaining good classifier performance. Since the ROC curves in Figure 5 (a)
used a histogram of size 256, there remained the possibility that a model with better
generalization, such as a mixture density, might require far less data. To test this hy-
pothesis, we built histogram and mixture models from a much smaller set of images.
We picked 30 skin images and 58 non-skin images, which make up approximately 1%
of the training set. This sample yielded 406,135 skin pixels and 4,017,896 non-skin
pixels for training the models. The ROC curves for the best histogram and mixture
models are shown in Figure 7 (b). They both perform much worse than models using
the full training set.

3.3 Building Separate Models for Different Image Classes

The skin model described in Section 2.2 learns a single distribution for each of the skin
and non-skin color classes. Since the images we are using come from the web, they
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Figure 7: ROC curves comparing mixture model and histogram models under varying
training data.

were produced under a wide variety of imaging conditions. In light of this, it might be
possible to obtain greater accuracy by splitting the images into classes and learning a
separate skin and non-skin distribution for each class. The challenge is to decide what
the classes are and to determine which class a particular image belongs to.

We have explored an unsupervised learning approach to creating image classes.
We computed a number of measures for each image and then created classes through
clustering in this feature space. The hope is that if, for example, we could automatically
distinguish between bright, high-resolution images and dim, blurry images, then we
might get better results using separate color models for these two classes.

The five image measures we used are:

� Average image brightness, where brightness is measured as(r + g + b)=3

� Variance of the brightness

� Average distance to the gray axis

� Average gradient energy (average of
p
dx2 + dy2)

� Percentage of white and black pixels in the image.

These measures were computed for the same training images used in Section 2.2.
Seven clusters were found in the five dimensional space of measures by using the k-
means algorithm [5] (we followed the implementation described in [13]). Separate skin
and non-skin histograms were built for each cluster. Each image in the training set was
assigned to the closest cluster. We used a histogram size of 32 for all of the skin and
non-skin models.
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Figure 8: ROC curves on the test data for the multiple histogram model using 7
clusters and the standard histogram model from Figure 4. All histograms are size
32 (323 bins).

Figure 8 shows the ROC curve on the test data for this multiple histogram model
using 7 clusters. It is shown in comparison to the ROC curve for the standard (size
32) histogram model using a single distribution for all of the data. This figure shows
that the cluster model has slightly better accuracy than the standard model, but the
improvement is small. It might be possible to further improve these results by using
other feature or by finding better clusters. However, we suspect that we are near the
limit of accuracy in predicting skin based solely on a single pixel’s color.

3.4 Discussion

We have demonstrated that a surprisingly effective skin detector for web images can be
constructed from histogram color models. A surprisingly high equal error rate of 88%
was obtained from a histogram of size 32. As Figure 4 demonstrates, this histogram
size gave the best generalization. We compared this model to mixture models trained
on similar data and found that the histogram model gave superior performance (see
Figure 7(a)). This may be somewhat surprising since mixture models are currently a
popular choice for color modeling.

We also explored the sensitivity of our detector to the amount of training data. As
demonstrated in Figure 5(a), the size of our dataset was determined by monitoring the
apparent convergence of the skin detector ROC curve as data was added to the model.
This graph suggests that the use of additional training data beyond our current dataset
is unlikely to improve the skin detector’s performance. We demonstrated in Figure 7(b)
that using a smaller amount of photos leads to decreased performance even with color
models that peform significant generalization.

Finally, in Section 3.3 we explored the construction of separate color models for
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different image classes. The minor improvement that resulted (see Figure 8) suggests
that simple global image statistics are not particularly useful indicators of the illumi-
nation effects that compromise skin detection.

4 Image Classification by Skin Detection

One interesting application of skin detection is as part of a larger system for detecting
people in photos. A person detector that worked reliably on web images could be a
valuable tool for image search services such as the AltaVista Photo Finder5, as well
as for image categorization. Our goal in this section is to determine how effective
skin color alone can be in this task. We examine the problem of person detection in
Section 4.1 and the easier problem of naked person detection in Section 4.2. We find
that skin color in the absence of complex shape or texture cues is surprisingly effective
for the latter task.

4.1 Person Detection

If the skin detector had no false positives then we could detect people in an image by
simply determining if any of the pixels were skin colored. Since the skin detector is
not perfect, we have to examine the aggregate properties of the detector output. more
clever. We have computed a simple feature vector from the output of the skin detector
and then trained a classifier on these features to predict whether a person is present or
not. The features we used are:

� Percentage of pixels detected as skin

� Average probability of the skin pixels

� Size in pixels of the largest connected component of skin

� Number of connected components of skin

� Percent of colors with no entries in the skin and non-skin histograms

These features can all be computed in a single pass over the input image. No effort
was spent trying to find “optimal” features, so it is quite possible that other features
exist that might lead to better performance.

We used 4999 images which were manually classified into person and non-person
sets to train a decision tree classifier using C4.5 [14]. The resulting classifier was then
tested on a set of 1909 test images. Table 2 summarizes the results.

The results show that simply analyzing color values allows reasonably good clas-
sification of images into those containing people and those not, but this cue alone is
not sufficient to fully solve the problem of person detection. One obvious problem is
that people will expose varying amounts of skin in a given image. Another problem
is that many non-skin surfaces exhibit the same color values as skin. Using other cues
such as texture and shape would probably lead to greater accuracy, see [12] for a recent
example.

5http://image.altavista.com
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% correctly % correctly Overall %
classified classified correctly
person images non-person images classified images

Training data 83.0% (2488/2999) 70.6% (1412/2000) 78.0% (3900/4999)
Test data 83.2% (835/1004) 71.3% (645/905) 77.5% (1480/1909)

Table 2:Performance of person detector on training and test data.

4.2 Adult Image Detection

By taking advantage of the fact that there is a strong correlation between images with
large patches of skin and adult or pornographic images, the skin detector can also be
used as the basis for an adult image detector. There is a growing industry aimed at fil-
tering and blocking adult content from web indexes and browsers. Some representative
companies areNetNannyandSurfWatch.6 All of these services currently operate by
maintaining lists of objectionable URL’s and newsgroups and require constant manual
updating. An image-based scheme has the potential advantage of applying equally to
all images without the need for updating (see [6] for additional discussion.)

To detect adult images, we followed the same approach as with person detection. A
feature vector based on the output of the skin detector was computed for each training
image. The feature vectors included the same 5 features used for person detection plus
two new components for the height and width of the image. These two were added
based on informal observations that adult images are often sized to frame a standing or
reclining figure.

We used 10679 images which were manually classified into adult and non-adult
sets to train a neural network classifier. There were 5453 adult images and 5226 non-
adult images. The neural network outputs a number between 0 and 1, with 1 indicating
an adult image. We can threshold this value to make a binary decision. By varying the
threshold, we get the ROC curve shown in Figure 9 for the training data.

To test the adult image detector, we gathered images from two new crawls of the
web. Crawl A used adult sites as starting points for the crawl and so gathered many
adult images. Crawl B used non-adult sites as starting points and gathered very few
adult images. Crawl A consisted of 2365 html pages containing 5241 adult images and
6082 non-adult images (including icons and other graphics). Crawl B consisted of 2692
html pages containing 3 adult images and 13970 non-adult images. We used the adult
images from Crawl A and the non-adult images from Crawl B to test the classifier.

The ROC curve for the adult image detector on the test set is shown in Figure 9.
The detector achieved, for example, 85.8% correct detections with 7.5% false positives.
This performance is suprisingly good considering the simple color-based features that
were used. In most previous systems for person or face detection, skin color is used as
kind of prefilter to guide a detection process which is based wholely on shape, texture,
etc. These results suggest that skin color may actually deserve a more prominent role in
deciding whether or not a person is present in an image. A direct comparison between
our adult detector and others can be found in Section 5.

6http://www.netnanny.comandhttp://www.surfwatch.com.
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Figure 9: ROC curves for the adult image detector on both training and testing
images

% correct detections % false alarms
Color-based Detector 85.8% 7.5%
Text-based Detector 84.9% 1.1%
Combined Detector 93.9% 8.0%

Table 3: Comparison of adult image detector using color-based, text-based and
combined classifiers on the test data

4.3 Incorporating Text Features in Adult Image Detection

We have also explored combining the adult image detector just described with a text-
based classifier which uses the text occurring on a web page with an image to determine
if an image is pornographic. The text-based detector classifies whole web pages as
adult or not. To apply the text classfier to each individual image occurring on a page,
we simply use the global label for the page with each image it contains. The text-based
classifier on its own achieves 84.9% correct detections with 1.1% false positives. There
is no threshold associated with the text-based classifier we tested, so only one point on
the ROC curve is realized.

We combined the color-based detector (using a threshold that yielded 85.8% correct
detections and 7.5% false positives) with the text-based detector by using an “OR” of
the two classifiers, i.e. an image is labelled adult if either classifier labels it adult.
The combined detector correctly labels 93.9% of the adult images from crawl A and
obtains 8% false positives on the non-adult images from crawl B. Table 3 summarizes
these results.

The results show that simply analyzing color values allows very good detection of
adult images. Not surprisingly, adding information from the surrounding text can boost
performance significantly.
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5 Previous work

While there has been much previous work on skin color modeling, we know of no pre-
vious effort based on such a large corpus of training and testing data and no comparably
detailed study of skin classification in web images.

Many systems for tracking or detecting people in user-interface or video-conferencing
applications have employed skin color models. Histogram models are employed by
Schiele and Waibel [17] and Kjeldsen and Kender [10]. Yanget al. [25] model skin
color as a single Gaussian, while Jebaraet al. [9] employ a mixture density. In all
of these systems, the color model is trained on a small number of example images
taken under a representative set of illumination conditions. Most, with the exception
of [10, 9], do not use non-skin models. These color models are effective in the context
of a larger system, but they do not address the question of building a global skin model
which can be applied to a large set of images.

The closest works to ours are two systems for detecting images containing naked
people developed by Forsythet al. [6] and Wanget al. [24]. Both of these systems use
a skin color model as a preprocessing step and have been tested on a corpus of web
images. The skin color model used by Forsythet al. consists of a manually specified
region in a log-opponent color space. Detected regions of skin pixels form the input
to a geometric filter based on body plans. The WIPE system developed by Wanget al.
uses a manually-specified color histogram model as a prefilter in an analysis pipeline.
Input images whose average probability of skin is low are rejected as non-offensive.
Images that contain skin pass on to a final stage of analysis where they are classified
using wavelet features. Since neither of these works report the performance of their
skin detector in isolation, a direct comparison with Figure 4 is not possible.

We can compare the overall effectiveness of the Forsyth and WIPE systems in de-
tecting naked people to our detector, which is described in Section 4.2. In contrast to
this previous work, our detector uses very weak global attributes of the detected skin
pixels to classify the image. Both body plans and wavelet coefficients have more de-
scriptive power than our seven element feature vector. Perhaps surprisingly, we find
that our detection performance is comparable to theirs.

Forsyth reports two sets of experimental results: the skin filter alone, and used in
conjunction with the geometric filter. Their skin filter is not directly comparable to
ours, as it uses texture analysis and groups pixels into skin regions. However, they also
report surprisingly strong performance when images that contain one or more detected
skin regions are labelled as containing naked people. The detection rate is 79.3 % with
a false alarm rate of 11.3 %. When combined with the geometry filter the false positives
fall to 4.2 % while the detection rate falls to 42.7 % for the “primary” configuration of
the system.

Wang et al. report the overall the results of the WIPE system on objectionable
images: 96% detection rate with 9% false positives. Table 4 gives a summary of the
performance of the two systems in comparison to ours. The Forsyth test set contained
4854 images, the WIPE test set contained 11,885 images, and our test contained 19,211
images.

It is hard to draw strong conclusions from the comparison in Table 4, since the
testing sets for all three systems are completely different and they each exploit different
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System Detection Rate False Alarm Rate
Forsyth (Skin Only) 79.3 11.3

Jones-Rehg 88.0 11.3
Forsyth (Skin+Geom) 42.7 4.2

Jones-Rehg 75.0 4.2
WIPE 96 9.0

Jones-Rehg 86.7 9.0

Table 4: Performance comparison for three adult image detection systems.

image cues. Since our system is fairly weak in exploiting shape or geometry cues, we
feel it is a fairly representative test of the value of color information alone. These
results suggest that adult detection systems can get more mileage out of skin color than
might have been expected.

6 Conclusions

The existence of large image datasets such as the set of photos on the world wide web
make it possible to build powerful generic models for low-level image attributes like
color using simple histogram learning techniques. We have demonstrated this point
empirically by constructing color models for skin and non-skin classes from a dataset
of nearly 1 billion labelled pixels. Using visualization techniques we demonstrate a
surprising degree of separability between these two classes. A skin detector constructed
from these models achieved a detection rate of 80% with 8.5% false positives. We
compared histogram models to mixture of Gaussian models on the skin detection task.
We found that histogram models perform slightly better and are computationally much
faster. We have also constructed a surprisingly effective detector for naked people from
the output of our skin classifier. This suggests that skin color can be a more powerful
cue for detecting people in unconstrained imagery than was previously suspected.
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Appendix

A Dataset of Web Images

In this section we provide more details about our image dataset, the segmentation pro-
cess we used to obtain labeled training pixels, and instructions on how to obtain our
data for academic research use. The starting point for our dataset was a large collection
of image files we obtained from a parallel crawl of the world wide web from multiple
starting points. This image set was pruned by manually removing all files that were not
photos.7 We obtained our dataset of 13,640 photos by sampling randomly from this
larger set.

Each photo in our dataset was processed in the following manner: The photo was
examined to determine if it contained skin. If no skin was present, it was placed in
the non-skin group. If it contained skin, regions of skin pixels were manually labeled
using the software tool shown in Figure 10. This tool allows a user to interactively
segment regions of skin by controlling a connected-components algorithm. Clicking
on a pixel establishs it as a seed for region growing. The threshold slider controls
the Euclidean distance in RGB space around the seed that defines the skin region. By
clicking on different points in the photo and adjusting the slider, regions of skin with
fairly complex shapes can be segmented quickly. In labelling skin we were careful to
exclude the eyes, hair, and mouth opening. The result is a binary mask which is stored
along with each photo that identifies its skin pixels.

Non-skin pixels that appeared within a photo containing skin were not included in
either color model. This was necessary because of the difficulty in getting a perfect
segmentation of the skin in any given image. Some photos contained skin patches of
such a small size (e.g. crowd scenes) that segmentation was problematic. Even in
photos with large regions of skin it was often hard to precisely define their boundaries,
(e.g. on the forehead where skin is obscured by hair.) We chose the conservative
strategy of segmenting the easily identifiable skin pixels and discarding the remainder
to avoid contaminating the non-skin model.

One of the issues that arises in a dataset taken from the web is the question of color
quantization. Digital images obtained from different sources such as scanners, capture
cards, and digital cameras will have different color resolutions. Unfortunately, most of
the information about color resolution is lost once an image has been stored in one of
the file formats that are in wide-spread use on the web.

The two most common image encoding schemes used on the web are GIF and
JPEG. GIF images are represented by a palette of discrete colors (colormap) which can
vary in size. The JPEG File Image Format (JFIF) in which JPEG-encoded images are
stored specifies a 24 bit RGB color resolution (see [11] for more details.) In all except
the highest quality color images, however, the effective color resolution of the photo is
far less than 24 bits. Since it is generally impossible to deduce the true color resolution,
we have no choice but to work with the original 24-bit RGB color values.

7An automatic approach to distinguishing photos from graphics is described in [1].
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Figure 10:Snap shot of the tool for segmenting the skin region of an image. The left
image shows the completed manual segmentation with the skin pixels highlighted
in red. The right image shows the original image.

A.1 Obtaining Our Dataset

We are making our dataset of labelled skin and non-skin photos available to university
researchers. Contact Mike Jones atmjones@crl.dec.com for instructions.

B Invariance of ROC Curve to Choice of Prior

Equation 3 which gives the formula forP (skinjrgb) includes two prior probabilities:
P (skin) andP (:skin). The following proof shows that the choice of these priors
does not affect the ROC curves for skin detection.

First, we must be precise about how a ROC curve is computed. We need a set
of test images which have been segmented into skin and non-skin regions. We can
store this test data in skin and non-skin histograms as before. Then the percentage of
correct detections and false positives for a given threshold� is calculated by summing
up separately the number of skin counts and non-skin counts in the test images for
each RGB value whereP (skinjrgb) � � and then dividing by the total skin count
and total non-skin count, respectively. To be precise, this is expressed in pseudo-code
below which plots the ROC curve given test data stored in skin (s0[rgb]) and non-skin
(n0[rgb]) histograms. These histograms are distinct from the histograms built from
training data and used to define the skin model.

TP = 0 (This stores the true positives)



B Invariance of ROC Curve 23

FP = 0 (This stores the false positives)
for 0 � � � 1 f

for all RGB values,
if P (skinjrgb) � � f

TP = TP + s0[rgb]
FP = FP + n0[rgb]

g
TP = TP=Ts (Ts is the total skin pixels in the test images)
FP = FP=Tn (Tn is the total non-skin pixels in the test images)
plot pointFP versusTP

g

Now we can state and prove the following theorem.

Theorem 1 The ROC curve is the same for any choice of priors (greater than 0 and
less than 1) in the Bayesian skin model.

Proof
We will use the notationPp1(x) to mean the probability ofx assuming prior p1.
The following three statements imply the theorem:

� if Pp1(skinjrgb1) = Pp1(skinjrgb2) thenPp2(skinjrgb1) = Pp2(skinjrgb2)

� if Pp1(skinjrgb1) > Pp1(skinjrgb2) thenPp2(skinjrgb1) > Pp2(skinjrgb2)

� if Pp1(skinjrgb1) < Pp1(skinjrgb2) thenPp2(skinjrgb1) < Pp2(skinjrgb2)

wherergb1 andrgb2 are different rgb color values.
If these three statements are true then the ROC curve is the same for any choice of

priors. One can see this by looking at figure 11 which shows a hypothetical histogram
of probabilities for a few RGB values. Every point on the ROC curve is computed by
drawing a line horizontally across the histogram which corresponds to a threshold. The
ROC curve only depends on which set of RGB values are labelled skin and which are
not. It does not matter if the heights of the lines in figure 11 change as long as the
relative heights are preserved. In other words, if the histogram were to change due to a
new prior being chosen, then if the relative probabilities do not change with respect to
each other the ROC curve will be the same. The three conditions above state that if two
RGB values have equal probability assuming priorp1 then they will also have equal
probability assuming priorp2. If one RGB value is greater than another assuming prior
p1 then that RGB value will also be greater than the other assuming priorp2. The “less
than” case is equivalent to the greater than case.

So, if we can prove these three statements then we have proven the theorem. First,
assume

Pp1(skinjrgb1) = Pp1(skinjrgb2)
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Figure 11:Graph of the probabilities of four hypothetical RGB values used to il-
lustrate the idea of the proof. The first two RGB values have the same probability,
the third has greater probability and the fourth has smaller probability.

)
P (rgb1jskin)p1

P (rgb1jskin)p1 + P (rgb1j:skin)(1� p1)

=
P (rgb2jskin)p1

P (rgb2jskin)p1 + P (rgb2j:skin)(1� p1)

)
1

1 + P (rgb1j:skin)(1�p1)
P (rgb1jskin)p1

=
1

1 + P (rgb2j:skin)(1�p1)
P (rgb2jskin)p1

)
P (rgb1j:skin)(1� p1)

P (rgb1jskin)p1
=

P (rgb2j:skin)(1� p1)

P (rgb2jskin)p1

)
P (rgb1j:skin)

P (rgb1jskin)
=

P (rgb2j:skin)

P (rgb2jskin)

Therefore, since1�p1
p1

factors out of both sides of the equation, we could replace

it with 1�p2
p2

and still have a true statement. Thus, the prior can be changed without
changing the veracity of the assumption.

This implies

Pp2(skinjrgb1) = Pp2(skinjrgb2)

assumingPp1(skinjrgb1) = Pp1(skinjrgb2). This proves the first statement.
The second and third statements can be proved in the same manner. Simply replace

= with > or< in the assumption and carry through the same analysis.
Since all three statements are true, we have proven that the ROC curve is the same

for any choice of priors in the Bayesian skin model.
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C Facts About the Bayesian Model

If we choose the prior

P (skin) =
Ts

Ts + Tn

and substitute this into Bayes rule (along withP (rgbjskin) = s[rgb]
Ts

then after some
algebraic simplifications, we end up with

P (skinjrgb) =
s[rgb]

s[rgb] + n[rgb]
:

This says that the probability of skin at a particular RGB value is the ratio of the skin
count at that RGB value over the total skin and non-skin counts at that value.

Another interesting point is that using the criterion

P (rgbjskin) � P (rgbjnon skin)

corresponds to using the Bayesian model with a particular threshold.
To see this we use the fact we just showed which is that

s[rgb]

s[rgb] + n[rgb]
� �

is a Bayes decision criteria. Consider the choice of threshold� = Ts
Ts+Tn

. This gives
us

s[rgb]

s[rgb] + n[rgb]
�

Ts
Ts + Tn

) s[rgb] �
Tss[rgb] + Tsn[rgb]

Ts + Tn

) (1�
Ts

Ts + Tn
)s[rgb] �

Ts
Ts + Tn

n[rgb]

)
Tn

Ts + Tn
s[rgb] �

Ts
Ts + Tn

n[rgb]

)
s[rgb]

Ts
�

n[rgb]

Tn

) P (rgbjskin) � P (rgbjnon skin)

Thus, using the criteriaP (rgbjskin) � P (rgbjnon skin) to classify pixels as skin
is equivalent to the Bayesian model with a particular threshold.
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