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Abstract

During the last decade the field of speech recognition has used the theory of hidden
Markov models (HMMs) with great success. At the same time there is now a wide
perception in the speech research community that new ideas are needed to continue
improvements in performance. This report represents a small contribution in this ef-
fort. We explore an alternative acoustic modeling approach based on Factorial Hidden
Markov Models (FHMMs). These are presented as possible extensions to HMMs. We
show results for phonetic classification experiments using the phonetically balanced
TIMIT database which compare the performance of FHMMs with HMMs and parallel
HMMs.

1Beth Logan is a PhD student at the University of Cambridge, United Kingdom. This work was done
during a summer internship.
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1 Introduction

In recent years hidden Markov models have become the dominant technology in speech
recognition. HMMs provide a very useful paradigm to model the dynamics of speech
signals. They provide a solid mathematical formulation for the problem of learning
HMM parameters from speech observations. Furthermore, efficient and fast algorithms
exist for the problem of computing the most likely model given a sequence of observa-
tions.

Due to this success, there has recently been some interest in exploring possible
extensions to HMMs. These include factorial HMMs [Ghahramani and Jordan, 1996]
and coupled HMMs [Brand, 1997] among others. In this report we explore factorial
HMMs. These were first introduced by Ghahramani [Ghahramani and Jordan, 1996]
and attempt to extend HMMs by allowing the modeling of several stochastic random
processes loosely coupled. Factorial HMMs can be seen as both an extension to HMMs
or as a modeling technique in the Bayesian Belief Networks [Russell and Norvig, 1995]
domain. In this report we choose to approach them as extensions to HMMs.

The report is organized as follows. We start by describing the basic theory of
HMMs and then follow by presenting FHMMs as extensions of these. We continue
by presenting an extension to the traditional HMM Baum-Welch learning algorithm
applied to FHMMs. We describe then several experiments designed to compare their
performance with traditional HMMs. We end this report with our conclusions and
suggestions for future work.

2 Factorial Hidden Markov Models

Factorial HMMs were first described in [Ghahramani and Jordan, 1996]. In his original
work Ghahramani presents FHMMs and introduces several methods to efficiently learn
their parameters. Our focus, however, is on studying the applicability of FHMMs to
speech modeling. Our goal is to study FHMMs as a viable replacement for HMMs.

To this end, we have made an effort to explain FHMMs as extensions of HMMs,
making connections between these two techniques when possible. We assume the
reader is somewhat familiar with HMM theory.

2.1 Model Description

The description requires us to first briefly introduce hidden Markov models. These
models are the dominant technology used for speech recognition. Tractable, well un-
derstood training and testing algorithms exist to estimate the model parameters and
evaluate the likelihood of alternative speech utterances. Their main strength lies in
their ability to capture the dynamic information in the speech signal. They are able to
model dynamic patterns,i.e., patterns of variable length. This is important because for
example the same phoneme when uttered by the same speaker can vary in length.

Hidden Markov models are probabilistic models which describe a sequence of
acoustic observation vectorsY � fYt � t � �� � � � � Tg. The random process gen-
erating the observation is modeled as being in one ofK states. The states are not
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observable hence the “hidden” nature of the model. Each state can be thought of as
representing particular speech patterns or regions.

The parameters of the HMM are the probability density functions (pdf) describing
the statistics of the acoustic vectors being produced or generated by each of the states,
and the transition probabilities modeling the likelihoods of evolving from one state to
another. For a first order HMM, this transition probability depends only on the current
state.

The probability that an observationY is generated given the model is expressed as
follows

p�Y j�� �
X
S

��S��p�Y�jS��

TY
t��

P �StjSt���p�YtjSt� (1)

Here:

Y � a sequence ofN dimensional vector observationsfY t� t � �� � � � � Tg

S � a sequence of statesfSt� t � �� � � � � Tg

P �StjSt��� � transition probability from stateSt�� to stateSt
��S�� � the probability of being in stateS� at timet � �

p�YtjSt� � pdf of the observation vectorYt given the stateSt
typically modeled as a mixture of Gaussians

K � the number of states in the model

� � the model parameters =fK� fP �StjSt���g� fp�YtjSt�gg

In the speech community a HMM is typically represented as shown in Figure 1.
Here each state is shown explicitly and the arrows show allowable transitions be-
tween states. However a HMM can also be represented as a dynamic belief network
[Russell and Norvig, 1995] as shown in Figure 2. This alternative representation shows
the evolution of the state sequence with time since each node represents the state at each
time slice. This context switch to dynamic belief networks shows the manner in which
HMMs can be generalized to FHMMs.

The factorial HMM arises by forming a dynamic belief network composed of sev-
eral “layers”. This is shown in Figure 3. We see here that each layer has independent
dynamics but that the observation vector depends upon the current state in each of the
layers. This is achieved by allowing the state variable in Equation 1 to be composed
of a collection of states. That is, we now have a “meta-state” variableS t which is
composed ofM states as follows

St � S
���
t � � � � � S

�M�
t (2)

Here the superscript is the layer index withM being the number of layers. The layer
nature of the model arises by restricting transitions between the states in different lay-
ers. Were we to allow unrestricted transitions between states in different layers we
would simply have a regular HMM with aKMxKM transition matrix. Intermediate
architectures in which some limited transitions between states in different layers are
allowed have also been presented in [Brand, 1997].
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State 0 State 1 State 2

Figure 1: Topological representation of a Hidden Markov Model

t-1 t t+1

State(t-1) State(t) State(t+1)

Figure 2: Dynamic Belief Network representation of a Hidden Markov Model
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t-1 t t+1

State(t-1) State(t) State(t+1)

State(t-1) State(t) State(t+1)

State(t-1) State(t) State(t+1)

Layer 0

Layer 1

Layer 2

Figure 3: Factorial Hidden Markov Model

By dividing the states into layers we form a system that can model several processes
with independent dynamics which are loosely coupled. Each layer has similar dynam-
ics to a basic hidden Markov model but the probability of an observation at each time
depends upon the current state in all of the layers. In our formulation it is assumed for
simplicity that in each layer, the state variable can take on one ofK distinct values at
each time (rather than assuming that the number of possible states within each layers is
different). Thus we have a system that requiresM KxK transition matrices. It should
be noted that this system could still be represented as a regular HMM with aKMxKM

transition matrix with zeros representing illegal transitions.

For example, consider a 2-layer system with 3 states per layer. Let the transition
matrices for layer 0 and layer 1 beA� andA� respectively.

A� �

�
� a� b� c�

� d� e�
� � �

�
A A� �

�
� a� b� c�

� d� e�
� � �

�
A

The transition matrix for the equivalent basic HMM system is built by creating a Carte-
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sian product of the two original matricesA� andA��
BBBBBBBBBBBB�

a� a� a� b� a� c� b� a� b� b� b� c� c� a� c� b� c� c�
� a� d� a� e� � b� d� b� e� � c� d� c� e�
� � a� � � b� � � c�
� � � d� a� d� b� d� c� e� a� e� b� e� c�
� � � � d� d� d� e� � e� d� e� e�
� � � � � d� � � e�
� � � � � � a� b� c�
� � � � � � � d� e�
� � � � � � � � �

�
CCCCCCCCCCCCA

resulting in a transition matrix withKM � � states. As we can see an explosion in the
number of states occurs. For this reason, as we note in section 2.3 it is preferable to use
theM KxK transition matrices over the equivalentKMxKM representation simply
on computational grounds.

We now consider the probability of the observation given the meta-state. As men-
tioned, this probability depends on the current state in all the layers. In our work, we
have used two different ways of combining the information from the layers. The first
method assumes that the observation is distributed according to a Gaussian pdf with a
common covariance and the mean being a linear combination of the state means. This
formulation was originally proposed by Ghahramani [Ghahramani and Jordan, 1996]
and is shown in Equation 3. We refer to this model as a “linear” factorial HMM.

p�YtjSt� � exp

��
���

�

�
Yt �

MX
m��

��mjSt�

�t

C��

�
Yt �

MX
m��

��mjSt�

��	

 (3)

Here��mjSt� is the mean of layerm given the meta-stateSt andC is the covariance.
Other symbols are as previously defined.

The second combination method assumes thatp�Y tjSt� is the product of the (Gaus-
sian) distributions of each layer. We refer to this technique as the “streamed” method.
Each layer of the FHMM models a stream of the observation vector. The idea of
streams has already been proposed in the speech research community. Recognition en-
gines like SPHINX [Lee et al., 1990] and HTK [Young et al., 1993] allow similar for-
mulations in their HMM systems. The difference between our formulation and their’s
is that a “streamed” FHMM allows more decoupling in the streams’ dynamics.

The equation for the observation probabilities in our streamed case is

p�YtjSt� � �
�

�

MY
m��

exp

��
Mm Yt � ��mjSt�


t
C��

�
Mm Yt � ��mjSt�


�
(4)

Here the matrixMm partitions the observation vector into streams. For example in a
two-layer system we have

M� �
�
ID �D

�
M� �

�
�D ID

�
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HereID is theDxD identity matrix andD is the dimensionality of each of the streams.
We will discuss later in more detail the motivation for this alternative formulation.

Notice that here we use a single covariance although extending this formulation
to use a different covariance for each stream or for each state within the stream is
straightforward.

2.2 Estimation of Parameters

The model parameters are the means of the states in each layer, the transition probabili-
ties between states in each layer, the prior probabilities of each state and the covariance.
All these parameters can be estimated using the Expectation Maximization (EM) algo-
rithm [Dempster et al., 1977]. Due to our slightly different formulation of the acoustic
probability, the algorithm we present here is different but equivalent to that presented
in [Ghahramani and Jordan, 1996].

The basic workings of the algorithm are well known. Model parameters are initial-
ized and then reestimated to maximize a so-called auxiliary function. The algorithm
guarantees to increase the likelihood of the observations given the model on each iter-
ation. Only convergence to a local maximum is guaranteed.

We first discuss reestimation of the model parameters by maximization of the aux-
iliary function.

The auxiliary function to be maximized is

���� ��� �
X
S

p��SjY � ln p���S� Y � (5)

In this and subsequent equations the prime denotes the reestimated or new model pa-
rameters.

Substituting Equations 1 and 2 into 5 we have

���� ��� �

X
S

p��SjY �

�
ln��S��

� 	

TX
t��

MX
m��

lnP �S
�m�
t jS

�m�
t�� �

�
	

TX
t��

ln p�YtjSt�
�

�

HereP �S�m�
t jS

�m�
t�� � is the transition probability between stateS �m�

t�� andS�m�
t . This

equation can be separated into components which depend only on each set of parame-
ters to be reestimated.

���� ��� � �a��� �
�� 	 �b��� �

�� 	 �c��� �
��

Here�a��� ��� is the part of���� ���which depends on the prior probabilities,�b��� �
��

is the part which depends only on the transition probabilities and� c��� �
�� is the part

which depends only on the means and covariance.
We present here formulas for the single observation case. Extension to multiple

observations is straightforward.
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2.2.1 Reestimation of the Means

The means are reestimated by maximizing�c��� �
��. For linear FHMMs (means com-

bined using Equation 3) the auxiliary function becomes (ignoring the term in� c��� �
��

containing only the covariance)

�c��� �
�� �

X
S

p��SjY �

TX
t��

�
���

�

�
Yt �

MX
m��

��mjSt�
�

�t

C��

�
Yt �

MX
m��

��mjSt�
�

��
� (6)

To reestimate theith mean of thenth layer we take the derivative of Equation 6 with
respect to��n�i and set it equal to zero. This leads to the following equation

� �

TX
t��

X
St�S

�n�
t �i

P �StjY� ��

�
Yt �

MX
m��

��mjSt�
�

�

whereP �StjY� �� is the posterior probability of meta-stateSt given the observations
and the model.

This equation is clearly not solvable for��n�i

�
. However, if the process is repeated

for all the means of all the layers,KxM equations will be generated for theKxM
means. These can be solved using matrix algebra, although in practice efficient matrix
inversion techniques capable of handling ill-conditioned matrices are needed.

If the streamed method is used to combine the means then the equations become
somewhat more decoupled. The auxiliary function is now

�c��� �
�� �

X
S

p��SjY �

TX
t��

�
�
�

�

MX
m��

�
Mm Yt � ��mjSt�

�

t
C��

�
Mm Yt � ��mjSt�

�

�

(7)

Solving for��n�i

�
we have

�
�n�
i

�
�

PT

t��

P
St�S

�n�
t �i

P �StjY� ��Mm YtPT

t��

P
St�S

�n�
t �i

P �StjY� ��

2.2.2 Reestimating the Covariance

The covariance is reestimated by maximizing�c��� �
�� with respect toC. In the linear

case, the reestimation formula is

C �
�

T

TX
t��

X
St

P �StjY� ��

�
Yt �

MX
m��

��m�

��
Yt �

MX
m��

��m�

�t
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For the streamed case, notice that the reestimation formula is very similar to the
usual covariance reestimation formula for HMMs.

C �
�

T �M

TX
t��

X
St

MX
m��

P �StjY� ���Mm Yt � ��m���Mm Yt � ��m��t

If it is desired that each stream has a separate covariance, then the reestimation formula
reduces to the usual HMM covariance reestimation formula with the observation being
the part of the feature vector for that stream.

2.2.3 Reestimating the Transition Probabilities

The transition probabilities are reestimated by maximizing� b��� �
��. We have

�b��� �
�� �

X
S

p��SjY �

TX
t��

MX
m��

ln p�S
�m�
t jS

�m�
t��

�
� (8)

Now leta�n�ij be the transition probability from statei to statej in layern. Maximizing

Equation 8 with respect toa�n�ij gives the following reestimation formula

anxy
� �

PT
t��

P
St��St�S

�m�
t���x�S

�m�
t �y

P �StjSt��� Y �PT

t��

P
St��St�S

�m�
t���x

P �StjSt��� Y �

2.3 Calculation of the Posterior Probabilities

The reestimation formulas require the calculation ofP �S tjY� �� andP �StjSt��� ��,
which we will refer for notational simplicity asP �StjY � andP �StjSt��� respectively.

Direct computation of these using Equations 1 and 2 would requireO��T �K M �T �
calculations which is intractable. This can be reduced toO�TK �M � by use of the
so-called Forward-Backward or Baum-Welsh algorithm [Rabiner, 1989].

In HMMs the usual method to calculateP �StjY � andP �StjSt��� Y � is to define
so-called Forward and Backward probabilities. The Forward Probability� t�j� is de-
fined as

�t�j� � P �Y�� � � � � Yt� St � jj��

That is the probability of observing the firstt speech vectors and being injth state at
time t. Similarly the Backward Probability�t�j� is defined as

�t�j� � P �Yt��� � � � � YT jSt � j� ��

These probabilities can be calculated using simple recursion and they can be combined
to giveP �StjY � andP �StjSt��� Y �.

P �St � jjY � � �t�j� �t�j�P
St

�t�j��t�j�

P �St � jjSt�� � i� Y � �
�t���i� aij P �YtjSt�j� �t�j�P

St
�t�j��t�j�
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Unfortunately, in the factorial HMM case, the stateSt is actually a meta-state.
Therefore, to calculate the�t and�t terms we would have to perform recursion over all
the layers as well as all time. Ghahramani [Ghahramani and Jordan, 1996] presents a
modified version of the Baum-Welch algorithm which does not depend on aK MxKM

transition matrix. Making use of the fact that each layer has independent dynamics, the
calculations can be reduced toO�TMKM���. This is tractable for smallK andM .
We present here Ghahramani’s method with the equations to calculate� t in slightly
more detail. The equations for�t follow a similar pattern and are not presented here.

To calculate�t we use the following recursion in space,i.e. for every time instant
we perform a recursion across the layers

�t�i� j� � � � � z� � p��YtjSt��
���
t (9)

�
�m���
t �i� j� � � � � z� �

X
S
�m�
t��

P �S
�m�
t jS

�m�
t�� � ���

�m�
t (10)

�
�n�
t �i� j� � � � � z� � P �S

�i�
t��� S

�j�
t��� � � � � S

�n���
t � � � � � S

�z�
t � Y�� � � � � Yt��j�� (11)

�
�M�
t � �t���i� j� � � � � z� (12)

Here the indices of�t�i� j� � � � � z� refer to the states in each layer. That is, the state at
time t in layer 0 takes valuei, the state in layer 1 valuej and so on. To clarify these
formulas, we briefly study the two-layer three-state case.

We initialize���i� j� using the prior probabilities of statesi andj.

���i� j� � �
���
i �

���
j �i� j�f�� �� �g

Using Equation 12 we have

���i� j�
��� � ���i� j�

We now calculate����� �i� j� and����� �i� j� for all i andj using Equations 10 and 11.

�
���
� �i� j� �

X
S
���
t��

P �S
���
t � jjS

���
t��� ���

���
t �i� S

���
t���

�
���
� �i� j� �

X
S
���
t��

P �S
���
t � ijS

���
t��� ���

���
t �S

���
t��� j�

Having calculated����� �i� j� we use Equation 9 to calculate���i� j�, completing the
recursion.

3 Experimental results

Our experiments tested a factorial HMM system on a phoneme classification task. We
used the phonetically balanced TIMIT database [Fisher et al., 1986]. Training was per-
formed on the “sx” and “si” training sentences. These create a training set with 3696
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Model % Error
Baseline HMM 42.9
Linear FHMM 71.3

Table 1: Classification Results - Linear FHMMvs HMM

utterances from 168 different speakers. 250 sentences from the test set were used for
testing. The factorial HMM had 2 layers and 3 states in each layer. The standard Lee
phonetic clustering [Lee and Hon, 1989] was used resulting in 48 phoneme models
with these being further clustered during scoring to 39 models.

A baseline system was also implemented. This was a 3-state left-to-right HMM
system. Mixtures of Gaussians were used to model the posterior probabilities of the
observation given the state. 8 mixture components were used per state.

We used cepstral and delta-cepstral features derived from 25.6ms long window
frames. The dimension of the feature vector was 24 (12 cepstral and 12 delta cepstral
features).

3.1 Linear Factorial HMMs

The first experiment investigated the performance of the linear factorial HMM. The
results are shown in Table 1. For this experiment, the means and covariance were
initialized using the mean and covariance of the pooled training data.

These results demonstrate that the linear factorial HMM models speech poorly.
A major problem here is that there are not enough system parameters to form a good
model. The only way to introduce more system parameters would be to add more layers
and/or states because there is no obvious way to incorporate mixtures of Gaussians into
the linear FHMM framework.

We therefore turn our attention to the streamed FHMM.

3.2 Streamed Factorial HMMs

The reestimation formulas for streamed FHMMs can be easily extended to the multiple
Gaussian mixture case. It also seems a more natural fit to speech feature vectors nor-
mally composed of several streams of sub-vectors. For example a typical feature vector
may consist of the cepstrum, delta cepstrum, second delta cepstrum, and sometimes
even energy and its derivatives. If these different “streams” have somewhat decoupled
dynamics, we hypothesize a factorial HMM could be a logical alternative to HMMs.
Each distinct sub-vector stream could be modeled by each of the layers in the FHMM.

In our experiments the parameters for each stream were initialized using regular
HMMs trained on the features of the corresponding stream. Table 2 shows the results
when one layer models the cepstrum and the other models the delta cepstrum. For
completeness, the error rates of the HMMs trained on the cepstrum and delta cepstrum
only are also shown. 8 mixture components per state were used in both HMMs and
FHMMs.
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Model Feature Vector % Error
Baseline HMM Cepstrum + Delta Cepstrum 42.9
Baseline HMM Cepstrum 51.6
Baseline HMM Delta Cepstrum 62.3
Streamed FHMM Cepstrum + Delta Cepstrum 46.3

Table 2: Classification Results - Streamed FHMMvs HMM
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Figure 4: Sub-band Model

We can see that while the streamed FHMM produces reasonable results it is not
able to improve upon the basic HMM model.

A reason for this may be that there is only an advantage in using the FHMM if the
layers model processes with different dynamics. The cepstrum and delta cepstrum are
highly correlated hence it is to be expected that they would have similar dynamics.

We therefore tried feature vectors that we expected to be somewhat more decorre-
lated. It was hoped that perhaps the modeling assumptions of FHMMs might be more
adequate and provide an edge over traditional HMMs.

3.3 Sub-band-based Speech Classification

Recently, researchers such as [Bourlard and Dupont, 1996], [Hermansky et al., 1996]
and [Bourlard and Dupont, 1997], have considered modeling partial frequency bands
by separate HMMs and combining the probabilities from these at a suitable level (e.g.
the phoneme level). The idea has its roots in models of human auditory perception.
Figure 4 shows the sub-band model.

Examining this figure we can see there is clearly a great deal of scope for research
when chosing the number of feature sub-groups and the merging technique. We do not
consider these issues in our work. We have implemented a simple two-band version of
the sub-band model using addition of the acoustic log likelihood at the phoneme level
as the merging technique. We call this system a “parallel” HMM.
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Model Feature Vector % Error
Baseline HMM Upper + Lower band 46.9
Baseline HMM Upper band 66.7
Baseline HMM Lower band 59.5
Parallel HMM Upper + Lower band 45.6
Streamed FHMM Upper + Lower band 48.3

Table 3: Classification Results - Streamed FHMM

The feature vectors for this system were derived as follows. A traditional mel-based
log spectrum vector with 40 components was generated. The log spectrum was divided
in two streams, the first one containing the lower 20 components and the second one
containing the the upper 20 vector components. Each of the sub-vectors was rotated
by a DCT matrix of dimension��x�� generating 2 cepstral vectors each of dimension
12. Each of these streams of vectors was then mean normalized. Delta features for the
resulting two streams were produced and appended to them.

Table 3 shows the results for experiments using the banded feature vectors. We
present results for tests using the baseline HMMs, FHMMs, parallel HMMs and also
for HMMs trained on only the lower or upper band and their delta coefficients.

The factorial HMM was initialized as follows. Each of the layers was trained first
using traditional HMM techniques. These HMMs were the initial models used by the
FHMM training algorithm.

Again we can see that there is no advantage in using the FHMM model.

4 Discussion

Further work is needed to conclude if factorial HMMs are a good alternative to HMMs.
Since the major advantage offered by these models appears to be their ability to model
a process which is composed of independently evolving sub-processes, the choice of
features is critical. If the features are indeed highly correlated factorial HMMs do not
seem to offer compelling advantages. This fact is noted by Brand [Brand, 1997] who
states that “conventional HMMs excel for processes that evolve in lockstep; FHMMs
are meant for processes that evolve independently”.

We postulate however along similar lines as [Hermansky et al., 1996] that there
could be some advantage in using the FHMM framework to model speech and noise if
these were uncorrelated. Alternatively if sub-band features were used the FHMM could
provide more robust recognition in the case of corruption in one sub-band. Further
work is needed in this area.

The most interesting research direction however would be to investigate the combi-
nation of traditional speech features with other information such as articulator positions
or language models or lip tracking information. The FHMM framework provides an
interesting alternative to combining several features without the need to collapse them
into a single augmented feature vector.

It is important to notice that alternative formulations combining the information
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from each of the states in the meta-state are possible. In this report we have described
the linear FHMM and the streamed FHMM. Perhaps other alternatives can be explored.

We believe, therefore, that further research is needed to decide if algorithmic exten-
sions to HMMs such as factorial HMMs or coupled HMMs offer a good alternative to
traditional HMM techniques. The work in this report only represents a very first effort
in this direction.

5 Conclusions

We have presented factorial HMMs as possible extensions of hidden Markov models.
These models were investigated in the context of phoneme classification as a possible
replacement for traditional HMMs. We have also introduced and explored the concept
of streamed factorial HMMs. Our experimental results proved inconclusive. In the ex-
periments presented in this report, factorial HMMs did not appear to offer any advan-
tage over regular HMMs when traditional feature vectors were used. We postulate that
this is because any modeling advantage offered by factorial HMMs will only become
evident if less correlated features are used. We conclude the report with suggestions
for future work.
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