
Impossibility Results for Asynchronous PRAM
�extended abstract�

Maurice Herlihy

Digital Equipment Corporation

Cambridge Research Laboratory

One Kendall Square

Cambridge MA� �����

herlihy�crl�dec�com
Digital Equipment Corporation

Cambridge Research Lab

CRL ���� June �� ����

Abstract

In the asynchronous PRAM model� processes communicate by atomically read�
ing and writing shared memory locations� This paper investigates the extent
to which asynchronous PRAM permits long�lived� highly concurrent data struc�
tures� An implementation of a concurrent object is non�blocking if some op�
eration will always complete in a �nite number of steps� it is wait�free if every
operation will complete in a �nite number of steps� and it is k�bounded wait�free�
for some k � 	� if every operation will complete within k steps� It is known that
asynchronous PRAM cannot be used to construct a non�blocking implemen�
tation of any object that solves two�process consensus� a class of objects that
includes many common data types� It is natural to ask whether the converse
holds
 does asynchronous PRAM permit non�blocking implementations of any
object that does not solve consensus� This papers shows that the answer is no�
There is a strict in�nite hierarchy among objects that do not solve consensus

there exist objects ��
 without non�blocking implementations� ��
 with imple�
mentations that are non�blocking but not wait�free� ��
 with implementations
that are wait�free but not bounded wait�free� and ��
 with implementations that
are K�bounded wait�free but not k�bounded wait�free for all k � 	 and some
K � k�

This paper will appear in the Third Annual ACM Symposium on Parallel Algo�

rithms and Architectures� July ������ ����� Hilton Head� South Carolina�

c�Digital Equipment Corporation ����� All rights reserved�



� INTRODUCTION �

� Introduction

In the �classical� parallel random access machine �PRAM
 model� a set of pro�
cesses executing in lock�step communicate by applying read and write operations
to a shared memory� Existing shared memory architectures� however� are in�
herently asynchronous� processors� relative speeds are unpredictable� at least
in the short term� because of timing uncertainties introduced by variations in
instruction complexity� page faults� cache misses� and operating system activi�
ties such as preemption or swapping� A number of researchers have noted this
mismatch� and have proposed the asynchronous PRAM model as an alternative
��� �� ��� ���� In this model� asynchronous processes communicate by apply�
ing atomic read and write operations to the shared memory �� Techniques for
implementing these memory locations� often called atomic registers� have also
received considerable attention ��� �� �	� ��� ��� ��� ����

Much of the work on asynchronous PRAM models addresses the problem
of computing functions� such as parallel summation� whose inputs reside in
the shared memory� Many practical applications� however� such as operating
systems and data bases� are not organized around functional computation� In�
stead� they are organized around long�lived data objects such as sets� queues�
directories� and so on� In this paper� we investigate the extent to which the
asynchronous PRAMmodel supports long�lived� highly�concurrent data objects�
There are several reasons why long�lived objects are inherently more di�cult
than functional computation� A data object has an unbounded lifetime during
which each process can execute an arbitrary sequence of operations� requiring
that data structures be reused� It must retain enough information to ensure
that �sleepy� processes that arbitrarily suspend and resume execution can con�
tinue to progress� while discarding enough information to keep the object size
bounded� Care must be taken to guard against starvation� since one operation
can be �overtaken� by an arbitrary sequence of other operations�

An implementation of a concurrent object is non�blocking if some non�faulty
process always completes an operation in a �nite number of steps� despite fail�
ures of other processes� It is wait�free if every non�faulty process has this prop�
erty� and it is k�bounded wait�free� for some �xed k � 	� if every non�faulty
process always completes an operation within k steps� These properties form
a hierarchy
 bounded wait�free implies wait�free� and wait�free implies non�
blocking� The non�blocking property permits individual processes to starve�
but it guarantees that the system as a whole will make progress� The wait�free
property excludes starvation� any process that continues to take steps will �nish
its operation� and the bounded wait�free property bounds how long it will take�
Each of these properties rules out conventional synchronization techniques such
as barrier synchronization� busy�waiting� conditional waiting� or critical sec�
tions� since the failure or delay of a single process within a critical section or

�Some of these models also include primitives for barrier synchronization�



� INTRODUCTION �

before a barrier will prevent the non�faulty processes from making progress�
Which objects have non�blocking implementations in asynchronous PRAM�

Elsewhere ���� ���� we have shown that any object X can be assigned a consen�

sus number� which is the largest number of processes �possibly in�nite
 that can
achieve consensus asynchronously ���� by applying operations to a shared X�
It is impossible to construct a non�blocking implementation of any object with
consensus number n from objects with lower consensus numbers in a system of
n or more processes� although any object with consensus number n is universal
�it supports a wait�free implementation of any other object
 in a system of n or
fewer processes� A memory with atomic read and write operations has consen�
sus number � �it cannot solve consensus between two processes
� and therefore
the asynchronous PRAM model is too weak to support non�blocking imple�
mentations of any object with a higher consensus number� including common
data types such as sets� queues� stacks� priority queues� or lists� most if not all
the classical synchronization primitives� such as test�set� compare�swap� and
fetch�add� and simple memory�to�memory operations such as move or swap�

It is natural to ask whether the converse holds
 does asynchronous PRAM
permit non�blocking implementations of the remaining objects� objects that do
not solve two�process consensus� In this paper� we show that the answer is
no� In a system of two processes� we demonstrate the existence of the following
strict in�nite hierarchy among objects with consensus number ��

� Objects without non�blocking implementations� These objects are too
weak to solve two�process consensus� yet they cannot be implemented �in
asynchronous PRAM
 without critical sections�

� Objects with implementations that are non�blocking� but not wait�free�
These objects can be implemented without critical sections� but it is im�
possible to guarantee fairness�

� Objects with implementations that are wait�free� but not bounded wait�
free� Each operation requires a �nite number of steps� but there is no
bound common to all operations�

� For all k � 	� objects with implementations that are K�bounded wait�free
for some K � k� but not k�bounded wait�free�

This hieararchy is shown schematically in Figure �� Our impossibility results
�e�g�� this object has no wait�free implementation
 apply to systems with arbi�
trary numbers of processes� but some of our constructions �e�g�� this object does
have a non�blocking implementation
 apply only to systems of two processes�

A speci�c contribution of this paper is the hierarchy itself� which shows that
even relatively �weak� concurrent objects have a rich mathematical structure�
Moreover� each level of the hierarchy requires a di�erent kind of proof tech�
nique� Another� more general� contribution is to raise basic questions about the
value of the asynchronous PRAM model� Although some synchronous PRAM



� THE MODEL �

�

�

�

�

Consensus Number ��

�

�

�

Non�Blocking�

�

�

�

Unbounded Wait�Free
����

�

�

�

k�bounded Wait�Free�

�

�

�

�k��
�bounded
Wait�Free

���

Figure �
 Hierarchy of Objects with Consensus Number �

algorithms can be adapted to asynchronous PRAM ��� �� ��� ���� our results
show that there is little hope of constructing useful highly�concurrent long�lived
data structures in this model� Fortunately� however� one can argue that asyn�
chronous PRAM is an incomplete re�ection of current practice� Starting with
the IBM System���	 architecture ���� in the early ���	�s� nearly every major
architecture has provided some kind of atomic read�modify�write primitive� We
have shown elsewhere that one can construct a bounded wait�free implementa�
tion of any object by augmenting the read and write operations with su�ciently
powerful read�modify�write primitives� such as compare�swap ����� It is not our
intent here to suggest a speci�c alternative model� but we do believe that the
research community would bene�t from a more realistic and powerful model of
concurrent shared�memory computation�

� The Model

A concurrent system consists of a collection of n processes that communicate
through shared typed objects� Processes are sequential � each process applies



� THE WAIT�FREE HIERARCHY �

a sequence of operations to objects� alternately issuing an invocation and then
receiving the associated response� We make no fairness assumptions about pro�
cesses� A process can halt� or display arbitrary variations in speed� In particular�
one process cannot tell whether another has halted or is just running very slowly�

Objects are data structures in memory� Each object has a type� which de�nes
a set of possible values and a set of primitive operations that provide the only
means to manipulate that object� Each object has a sequential speci�cation

that de�nes how the object behaves when its operations are invoked one at a
time by a single process� For example� the behavior of a queue object can be
speci�ed by requiring that enq insert an item in the queue� and that deq remove
the oldest item in the queue� In a concurrent system� however� an object�s
operations can be invoked by concurrent processes� and it is necessary to give
a meaning to interleaved operation executions� An object is linearizable ����
if each operation appears to take e�ect instantaneously at some point between
the operation�s invocation and response� Linearizability implies that processes
appear to be interleaved at the granularity of complete operations� and that the
order of non�overlapping operations is preserved�

A consensus protocol is a system of n processes that communicate through
a set of shared objects� The processes each start with an input value� either
	 or �� Each process communicates with the others by applying operations to
shared objects� and each process eventually chooses an output value and halts�
A consensus protocol is required to be


� Consistent
 distinct processes never decide on distinct values�

� Wait�free
 each process decides after a �nite number of steps�

� Valid
 the common decision value is the input to some process�

It is impossible to solve consensus for two or more processes in the asynchronous
PRAM model ��� �� �� �	� ��� ����

� The Wait�Free Hierarchy

In this section� we construct a family of objects with the property that� for
all k� there exists an object whose implementations are K�bounded wait�free
but not k�bounded wait�free� for some K � k� There also exists an object
whose implementations are wait�free but not k�bounded wait�free for any k�
We prove the lower bounds by reducing the �di�cult
 problem of analyzing all
possible implementations of a particular object to the �more tractable
 problem
of analyzing solutions to a related decision problem�

If S is a set of real numbers� let range�S
 � �min�S
�max�S
�� midpoint�S
 �
�min�S
 �max�S

��� and jSj � max�S
 �min�S
� An approximate agreement

object provides two operations




� THE WAIT�FREE HIERARCHY �

Object State

X is a set of reals� initally ��
Y is a set of reals� initally ��

input�P� x

pre� true

post� X� � X � fxg

y 
� output�P

pre� X �� �
post� Y � � Y � fyg �

range�Y 
 � range�X
 �
jY j � ��

Figure �
 Sequential Speci�cation for Approximate Agreement

input�P
 process� x
 real

output�P
 process
 returns �real


A sequential speci�cation for these operations� expressed in terms of pre� and
post�conditions� appears in Figure �� The object�s abstract state has two com�
ponents
 a set of real input values X and a set of real output values Y � initially
both empty� In postconditions� X� and Y � denote the components� new states�
The input operation inserts its argument value in X� The output operation is
de�ned only when X is non�empty� It inserts its result in Y � ensuring that
range�Y 
 � range�X
 and jY j � � for some �xed � � 	� For brevity� we leave
unspeci�ed how output behaves when X is empty� As a decision problem� ap�
proximate agreement has been studied in a variety of message�passing models
��� ��� ��� ���� and Attiya� Lynch� and Shavit ��� independently derive upper and
lower bounds for approximate agreement in shared memory that imply those
given here�

A wait�free implementation of an approximate agreement object appears in
Figure �� The object is represented by an n�element array r of entries� where
each entry has two �elds
 an integer round initially zero� and a real prefer�
initially �� A process is a leader if its round �eld is greater than or equal to
any other process�s round �eld� P advances its entry by setting its preference
to the midpoint of the leaders� preferences and by incrementing its round �eld
by one� P scans the entries by reading them in an arbitrary order�

The �rst time P calls input� it sets prefer to its input value� Subsequent
calls have no e�ect� When P calls output� it returns the results of executing a
wait�free approximate agreement protocol� This protocol consists of a loop in
which P scans the entries� and discards those whose round �elds trail its own
by two or more� If the diameter of the remaining preferences is less than ����



� THE WAIT�FREE HIERARCHY �

input�P
 process� x
 real

if r�P��prefer � �
then r�P� 
� �prefer
 x� round
 ��

end if

end input

output�P
 process

advance 
� false

loop

E 
� entries that trail mine by � or less
L 
� leading entries
if jEj � ���
then return r�P��prefer
elseif jLj � ��� or advance

then r 
� �prefer
 midpoint�L
�
round
 r�round � ��

advance 
� false

else advance 
� � advance
end if

end loop

end output

Figure �
 Wait�Free Implementation of Approximate Agreement Object

P returns its own preference� If the diameter of the leaders� preferences is less
than ���� then P advances its entry and resumes the loop� If the diameter of the
leaders� preferences exceeds ���� then P rescans the entries once more before
advancing its entry� For brevity� �P �s r�entry� �or r�preference
 refers to P �s
entry �or preference
 with round number r�

First� we show that this implementation is correct� Let Xr denote the set
of entries having round number r� �We sometimes abuse notation and use Xr

to stand for the set of r�preferences� the exact meaning should be clear from
context�


Lemma � Xr � Xr���

Proof� By induction on round numbers� P �s initial preference is trivially in
range�X�
� Assume the result for rounds less than r� and suppose P creates an
r�preference xp� If LP is the set of leaders P observes� then LP � range�Xr��


by the induction hypothesis� hence xp � midpoint�LP 
 	 range�Xr��
�

P expands Xr if it writes a preference that increases jXr j�

Lemma � If P expands Xr after observing the set of leaders LP � then the

entries in LP have round number r � ��



� THE WAIT�FREE HIERARCHY �

Proof� They cannot have a lower round number� since P observes its own
entry� and they cannot have a higher round number� since then midpoint�LP 
 	

range�Xr
�

Lemma � jXr j 
 jXr��j���

Proof� Let P be the �rst process to write xp � min�Xr
� Q be the �rst process
to write xq � max�Xr
� and let LP and LQ their respective sets of leaders�
Since both writes expand Xr � Lemma � implies that all entries in LP and LQ

have round number r��� One of P or Q must have observed the other�s �r��
�
preference� so LP �LQ �� �� Therefore� jxp�xqj 
 jLP j��� jLQj�� 
 jXr��j���

Lemma � If P returns xp at round r� and Q writes xq at round r� then jxp �
xqj � ��

Proof� By contradiction� Let Q be the �rst process to write xq such that
jxp � xqj � �� let LP be the set of leaders observed by P after writing xp�
and let LQ be the set of leaders observed by Q before writing xq� Note that
xp 	 range�LP 
 and xq 	 range�LQ
� Moreover� xq �	 LP because jLP j � ����
and xp �	 LQ� by Lemma ��

Suppose jLQj � ���� Because each process wrote its �r � �
�entry before
reading the other�s entry� and because neither process read the other�s r�entry�
one of the two processes must have read the other�s �r� �
�entry� and therefore
LP � LQ �� �� It follows that jLP � LQj 
 jLP j� jLQj � �� Because xp and xq
lie within range�LP � LQ
� jxp � xqj � ��

Otherwise� if jLQj � ���� then Q reads twice before writing xq� Let L�Q be the
set of leaders it saw during the �rst read� Since Q reads twice� jL�Qj � ���� If Q
�nished reading L�Q before Q wrote xp� then L�Q � LP � and jL�Qj 
 jLP j � ����
a contradiction� If Q �nished reading L�Q after Q wrote xp� then it started

reading LQ afterwards� and xp 	 LQ� a contradiction�

Theorem � There exists a wait�free implementation of the approximate agree�

ment object in asynchronous PRAM�

Proof� We show that the protocol in Figure � is correct� There are three points
to check
 ��
 that every output value lies within the original input range� ��

that the diameter of the output set is less than �� and ��
 that the algorithm is
wait�free�

The �rst point is an immediate consequence of Lemma �� For the second
point� suppose P returns xp after round r and Q returns xq after round s� where
r 
 s� Lemma � states that every element of Xr lies within � of xp� and Lemma
� that Xs � Xr � hence jxp � xqj � �� Finally� Lemma � states that jXrj � ���

for some r� implying that every process will return on or before round r � ��



� NON�BLOCKING �

Lemma � An adversary scheduler can force some process executing an output

to execute blog�����
c steps before �nishing�

Proof� It is enough to prove the result for two processes� Consider an execution
in which P and Q have distinct input values� and each executes an output�
De�ne a process�s preference at any point to be the value it returns if it runs
uninterruptedly to conclusion� The output operations cannot both terminate
while their preferences di�er by more than �� Initially� each process�s preference
is its input�

Consider the following scenario� Run P until it is about to change Q�s
preference� then do the same for Q� Alternate P and Q in this way as long as
neither process changes preference� Eventually� since the operations cannot run
forever� the object reaches a state where each process is about to change the
other�s preference� The adversary now has a choice of running P � Q� or both�
Let p� be P �s current preference� p� its preference if Q takes the next step� and
let q� and q� be de�ned similarly� Depending on whom the adversary schedules
next� the new preferences will di�er by either jp��q�j� jp��q�j� or jp��q�j� The
sum of these quantities is at least jp��q�j� thus the adversary can always choose
one that is greater than or equal to jp�� q�j��� preventing the gap between the
preferences from shrinking by more than one third� Repeating this strategy for
k rounds� an adversary scheduler can ensure that the range of the preferences
is at least ����k
� yielding the desired lower bound�

Theorem � For all k � 	� there exists an object with a K�bounded wait�free

implementation� for K � k� that is not k�bounded wait�free�

Proof� Consider an approximate agreement object with the unit interval as
potential input range� and � � ���k�

Theorem � There exists an object with a wait�free implementation but no

bounded wait�free implementation�

Proof� Consider an approximate agreement object with the rational numbers
as potential input range�

� Non�Blocking

In this section� we construct an object having consensus number �� a non�
blocking implementation� but no wait�free implementation� This section illus�
trates an important di�erence between long�lived objects and short�lived deci�
sion problems
 a decision problem� but de�nition� is executed once� and hence
cannot distinguish between the non�blocking and wait�free properties�

We consider a system of two processes� P and Q� An iterated approximate

agreement object has two operations




� NON�BLOCKING �

Object State

xp and xq are reals� initially ��
yp and yq are reals� initially ��
rp and rq are integers� initially 	�

input�P� x

pre� xp � �
post� x�p � x

y 
� output�P

pre� xp �� �� xq � �
post� y�p � x � r�p � rp � �

y 
� output�P

pre� xp �� �� xq �� �
post� y�p � y �

jy�p � yq j � ���rp �
y�p 	 range�xp� xq
 �
r�p � rp � �

Figure �
 Sequential Speci�cation for Iterated Approximate Agreement

input�P
 process� x
 real

output�P
 process
 returns �real
�

Each process P has a starting estimate xp� and a current estimate yp� As shown
in Figure �� P �s starting estimate is initialized by input� Its current estimate
is updated by output so that following P �s ith output� the range of the two
processes� current estimates is less than ���i for some �xed � � 	� and lies
within the range of their original estimates� �The sequence of current estimates
forms a Cauchy sequence that converges on a point in the range of the original
estimates�
 For simplicity� our speci�cations focus on executions in which any
process that executes any operations executes an input followed by a sequence
of outputs�

A non�blocking implementation of the iterated approximate agreement ob�
ject is shown in Figure �� The object is represented by a two�element array r

of entries� where each entry has two �elds
 an integer round� initially 	� and
a real prefer� initally �� Each process also has a persistent local variable
previous� which holds a real interval� and survives from one invocation to the
next� When P calls input� it initializes round to zero� prefer to the input
value� and previous to the real line� When P calls output� it reads its entry�
increments round� and enters the loop� Each time through the loop� it updates



� NON�BLOCKING �	

input�P
 process� x
 real

r�P� 
� �prefer
 x� round
 	�
previous 
� ��
��
�

end input

output�P
 process
 returns�real

p 
� r�P�
p�round 
� p�round � �
loop

r�P� 
� p
q 
� r�Q�
i 
� p�round � q�round
range 
� �p�prefer � ����i
�
if q�prefer 	 range or q�prefer �	 previous
then previous 
� range

return p�prefer
elseif p�prefer � q�prefer

then p�prefer 
� p�prefer � ����i

else p�prefer 
� p�prefer � ����i


end if

end loop

end output

Figure �
 Non�Blocking Iterated Approximate Agreement Implementation

its own entry and reads Q�s� It sums the two entries� round �elds in variable i�
and constructs a desired interval of radius ����i
� If Q�s preference lies outside
P �s previous interval� then it returns immediately� If Q�s preference lies within
the desired interval� then it returns� otherwise it chooses a new preference closer
to the other�s�

Lemma 	 Every current estimate lies within the range of the original esti�

mates�

Proof� Initially� every preference lies within the original range� and each new
preference lies between two earlier preferences�

Lemma �
 The operations in Figure � are non�blocking�

Proof� It su�ces to check that two concurrent output operations cannot both
take an in�nite number of steps without returning� If P takes only a �nite
number of steps� then Q�s preference will converge to P �s� and Q will return�



� NON�BLOCKING ��

If P and Q both take an in�nite number of steps� then once P and Q have
each written a preference and read the other�s� then each time through the loop
reduces the distance between their preferences by a �xed amount� and eventually
one will return�

We use the following notation
 p and q are output operations of P and Q�
��p
 is p�s current preference �if active
 or �nal return value �if completed
� ��p

is the �rst value p assigns to variable i� and ��p
 is the current value of i �if
active
 or last value �if completed
�

We construct an explicit linearization order as follows
 if ��p
 � ��q
 then
p is ordered before q� and if ��p
 � ��q
 then p and q are ordered arbitrarily�

Lemma �� The � function de�nes a valid linearization order�

Proof� If p �nishes before q begins� then ��p
 � ��q
�

De�ne B�p
 to be the open ball of radius ������p�
 around ��p
� If pi is
P �s ith output� then i 
 ��pi
 
 ��pi
� In particular� if y 	 B�pi
� then
jy � ��pi
j � ����i
�

Lemma �� If p is a completed output of P � and p� a later output� either

completed or active� then B�p�
 � B�p
�

Proof� The distances from ��p�
 to the endpoints of B�p
 are always integral

multiples of ��p�
�

Theorem �� The algorithm in Figure � is a non�blocking implementation of

an iterated approxmiate agreement object�

Proof� Lemma � states that all estimates lie within the range of the current
estimates� and Lemma �	 states that one operation will always complete in a
�nite number of steps� It remains to check that each process�s ith estimate lies
within ����i
 of the other�s current estimate� Suppose pi is linearized between
qj and qj��� and that pi is the �rst to violate correctness�

Suppose pi returns after observing that Q�s preference lies outside P �s pre�
vously committed range� That preference must have been written by qj� and qj
must still be active� thus pi cannot be the �rst to violate correctness�

Suppose pi returns after observing that ��pi
 lies within ������p�
 of ��qk
�
Since ��qk
 
 ��pi
� ��pi
 	 B�qk
� If k � j� then we are done� since qj�� has
no return value yet� If k � j� Lemma �� implies that B�qj
 � B�qj��
 � B�qk
�

hence correctness is not violated�

Although the algorithm in Figure � is non�blocking� one can easily check
that it is not wait�free
 an output operation can be forced to run forever if it is
overtaken su�ciently often by other outputs� We now show that this property
is inherent in any solution of iterated approximate agreement�



� NON�BLOCKING ��

Consider an execution in which P and Q each performs an input followed by
an output� Following the terminology of Fisher� Lynch� and Paterson ����� P is
bivalent in any state where its output value is not yet determined� otherwise it
is univalent� P �s state is x�valent if it is univalent with eventual output value
x� A decision step for P is an operation that carries P from a bivalent to a
univalent state� P is ambivalent in a state s if there exists a state s� such that
P is x�valent in s� y�valent in s�� but s and s� are indistinguishable to Q�

Lemma �� From an initial state in which P and Q have di�erent input values�

it is possible to reach a state in which P is ambivalent�

Proof� Assume without loss of generality that P has input 	� Q input �� and
� � �� P is bivalent in this initial state
 if P is run to completion before Q
starts� its output returns 	� and if Q is run to completion before P starts� then
P returns a value in �� � �� ���

Consider the following execution� which leaves P bivalent� In the �rst stage�
run P until it reaches a state where it cannot continue without becoming uni�
valent� P must eventually reach such a state� since it cannot run forever� In
the second stage� run Q until it cannot continue without making P univalent�
and in successive stages� alternate running P and Q until each is about to make
P univalent� Because the processes cannot run forever leaving P bivalent� it
must eventually reach a state s in which any subsequent step of either process
forces P to be univalent� Since P is still bivalent� however� some enabled step
of P carries P to an x�valent state� and some enabled step of Q carries P to a
y�valent state� where x and y are distinct�

We now do a case analysis of the operations executed by P and Q� In each
case� we show that certain combinations are impossible by constructing two
executions starting in s� one in which P returns x� and one in which P returns
y� but where the protocol states appear identical to P �

� Suppose Q is about to read a shared register� ��
 P runs to completion�
returning x� and ��
 Q reads� and P executes to completion� returning y�

� Suppose the processes are about to write to di�erent registers� ��
 P
writes� Q writes� and P executes to completion� returning x� and ��
 Q
writes� P writes� and P executes to completion� returning y�

� Suppose the processes are about to write to the same register� ��
 P writes
and P executes to completion� returning x� and ��
 Q writes� P writes�
and P executes to completion� returning y�

The only remaining combination is that P is about to read a register which Q
is about to write� As soon as Q writes� P �s state becomes ambivalent� since P
must be univalent� but Q has no way to predict P �s output�



� FINAL IMPOSSIBILITY RESULTS ��

Bivalence arguments have been used to show the impossibility of shared�
memory consensus ��� �� �	� ��� ���� and the ambiguous choice lemma of Burns
and Peterson ����

Theorem �� The iterated approximate agreement object has no wait�free im�

plementation�

Proof� Consider an execution in which P and Q respectively input 	 and �
and execute a single output� By Lemma ��� it is possible to reach a state where
P �s output has returned� Q�s has not� and Q is ambivalent� Let y and z be two
possible values Q could return in this state� Pick a k such that ����k
 � jy� zj�
If P executes k more outputs in isolation� then it will be unable to return a value
consistent with both y and z�

� Final Impossibility Results

In this section� we construct an object having consensus number � but no non�
blocking implementation� To prove this result� we exhibit an object with the
curious property that although it itself is too weak to solve two�process consen�
sus� it can only be implemented by �stronger� objects that do solve consensus�

A blind consensus object�s state consists of two boolean variables� called red

and blue� initially both false� It provides two operations


�x�c
 color
 returns �boolean

blind�
 returns �color�boolean


The �rst time �x is called� it sets the argument variable to true and returns its
previous value� Subsequent calls with the same argument leave the variables
una�ected� and non�deterministically return either true or false� The blind op�
eration non�deterministically chooses a variable� sets it to true� and returns the
chosen variable�s name and previous value�

Lemma �� The blind consensus object cannot solve two�process consensus�

Proof� Suppose otherwise� By an argument similar to the one given above in
the proof of Theorem ��� any two�process consensus protocol can be maneuvered
into a state where the decision value is 	 if P takes the next step� and � if Q
takes the next step� The rest is a case analysis�

Suppose P and Q both call �x� If the invocations have distinct arguments�
then they commute� so assume the invocations both apply to red� One possible
execution is
 P �s call to �x returns some value v� any subsequent calls to �x also
return v� any subsequent calls to blind apply to blue� and P eventually decides
	� Another possible execution is
 Q�s call to �x returns v� P �s subsequent
calls to �x also return v� its subsequent calls to blind apply to blue� and P



REFERENCES ��

eventually decides �� Since the two executions appear equivalent to P � we have
a contradiction�

If P applies �x to red and Q calls blind� then blind can always choose blue�
forcing the operations to commute� Similarly� if both processes call blind� the
operations can always choose distinct variables�

Theorem �� It is impossible to construct a non�blocking implementation of a

blind consensus object in asynchronous PRAM�

Proof� We show that any implementation of a blind consensus object can be
transformed into a two�process consensus protocol�

An operation implementation is deterministic if it always returns the same
response when run in the absence of concurrency� We may restrict our atten�
tion to deterministic implementations� since any non�determinstic implementa�
tion can always be rendered deterministic by �xing the outcome of any non�
deterministic choices� Suppose the blind operation returns red when executed
in isolation by P starting in the initial state �the case where it returns blue is
symmetric
� Now� we construct a consensus protocol as follows� P executes
the implementation of blind� and Q executes the implementation of red� They
decide 	 if P �s result is �red� false
 and Q�s is true� and otherwise they decide

�� It is easily checked that this protocol is consistent� wait�free� and valid�

We leave as an interesting open question whether every object whose se�
quential speci�cation is deterministic has a non�blocking implementation in
asynchronous PRAM�

Acknowledgments

Hagit Attiya�s remarks helped improve this paper�

References

��� J�H� Anderson and M�G� Gouda� The virtue of patience
 Concurrent pro�
gramming with and without waiting� University of Texas at Austin Tech�
nical Report�

��� H� Attiya� N� Lynch� and N� Shavit� Are wait�free algorithms fast� In
�	st Annual Symposium on the Foundations of Computer Science� October
���	�

��� O� Biran� S� Moran� and S� Zaks� A combinatorial characterization of
the distributed tasks which are solvable in the presence of one faulty pro�
cessor� In Seventh ACM SIGACT�SIGOPS Symposium on Principles of

Distributed Computing� pages ��� ���� August �����



REFERENCES ��

��� B� Bloom� Constructing two�writer atomic registers� In Proceedings of

the Sixth ACM Symposium on Principles of Distributed Computing� pages
��� ���� �����

��� J�E� Burns and G�L� Peterson� Constructing multi�reader atomic values
from non�atomic values� In Proceedings of the Sixth ACM Symposium on

Principles of Distributed Computing� pages ��� ���� �����

��� J�E� Burns and G�L� Peterson� The ambiguity of choosing� In Eighth

ACM SIGACT�SIGOPS Symposium on Principles of Distributed Comput�

ing� pages ��� ���� August �����

��� B� Chor� A� Israeli� and M� Li� On processor coordination using asyn�
chronous hardware� In Proceedings of the Sixth ACM Symposium on Prin�

ciples of Distributed Computing� pages �� ��� �����

��� R� Cole and O� Zajicek� The apram
 incorporating asynchrony into the
pram model� In Proceedings of the 	
�
 Symposium on Parallel Algorithms

and Architectures� pages ��� ���� Santa Fe� NM� June �����

��� R� Cole and O� Zajicek� The expected advantage of asynchrony� In �nd

ACM Symposium on Parallel Algorithms and Architectures� pages �� ���
July ���	�

��	� D� Dolev� C� Dwork� and L Stockmeyer� On the minimal synchronism
needed for distributed consensus� Journal of the ACM� ����

�� ��� Jan�
uary �����

���� D� Dolev� N�A� Lynch� S�S� Pinter� E�W� Stark� and William E� Weihl�
Reaching approximate agreement in the presence of faults� Journal of the
ACM� ����

��� ���� July �����

���� A� Fekete� Asymptotically optimal algorithms for approximate agreement�
In Fifth ACM SIGACT�SIGOPS Symposium on Principles of Distributed

Computing� pages �� ��� August �����

���� M� Fischer� N�A� Lynch� and M�S� Paterson� Impossibility of distributed
commit with one faulty process� Journal of the ACM� ����
� April �����

���� P�B� Gibbons� A more practical pram model� In ACM Symposium on

Parallel Algorithms and Architectures� pages ��� ���� ACM� July �����

���� M�P� Herlihy� Impossibility and universality results for wait�free synchro�
nization� In Seventh ACM SIGACT�SIGOPS Symposium on Principles of

Distributed Computing� pages ��� ��	� August �����



REFERENCES ��

���� M�P� Herlihy� A methodology for implementing highly concurrent data
structures� In Proceedings of the Second ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming� pages ��� �	�� March
���	�

���� M�P� Herlihy� Wait�free synchronization� ACM Transactions on Program�

ming Languages and Systems� ����

��� ���� January �����

���� M�P� Herlihy and J�M� Wing� Linearizability
 A correctness condition for
concurrent objects� ACM Transactions on Programming Languages and

Systems� ����

��� ���� July ���	�

���� IBM� System���	 principles of operation� Order Number GA����			�

��	� L� Lamport� Concurrent reading and writing� Communications of the ACM�
�	���

�	� ���� November �����

���� L� Lamport� On interprocess communication� parts i and ii� Distributed

Computing� �
�� �	�� �����

���� M�C� Loui and H�H� Abu�Amara� Memory Requirements for Agreement

Among Unreliable Asynchronous Processes� volume �� pages ��� ���� JAI
Press� �����

���� S� Mahaney and F�B� Schneider� Inexact agreement
 Accuracy� precision�
and graceful degredation� In Fourth ACM SIGACT�SIGOPS Symposium

on Principles of Distributed Computing� pages ��� ���� August �����

���� R� Newman�Wolfe� A protocol for wait�free� atomic� multi�reader shared
variables� In Proceedings of the Sixth ACM Symposium on Principles of

Distributed Computing� pages ��� ���� �����

���� N� Nishimura� Asynchronous shared memory parallel computation� In �nd

ACM Symposium on Parallel Algorithms and Architectures� pages �� ���
July ���	�

���� G�L� Peterson� Concurrent reading while writing� ACM Transactions on

Programming Languages and Systems� ���

�� ��� January �����

���� G�L� Peterson and J�E� Burns� Concurrent reading while writing ii
 the
multi�writer case� Technical Report GIT�ICS������� Georgia Institute of
Technology� December �����


