Impossibility Results for Asynchronous PRAM

(extended abstract)

Maurice Herlihy
Digital Equipment Corporation
Cambridge Research Laboratory
One Kendall Square

Cambridge MA, 02139

herlihy@crl.dec.com
Digital Equipment Corporation
Cambridge Research Lab

CRL 91/6 June 3, 1991

Abstract

In the asynchronous PRAM model, processes communicate by atomically read-
ing and writing shared memory locations. This paper investigates the extent
to which asynchronous PRAM permits long-lived, highly concurrent data struc-
tures. An implementation of a concurrent object is non-blocking if some op-
eration will always complete in a finite number of steps, it is wait-free if every
operation will complete in a finite number of steps, and it is k-bounded wait-free,
for some k > 0, if every operation will complete within k steps. It is known that
asynchronous PRAM cannot be used to construct a non-blocking implemen-
tation of any object that solves two-process consensus, a class of objects that
includes many common data types. It is natural to ask whether the converse
holds: does asynchronous PRAM permit non-blocking implementations of any
object that does not solve consensus? This papers shows that the answer is no.
There is a strict infinite hierarchy among objects that do not solve consensus:
there exist objects (1) without non-blocking implementations, (2) with imple-
mentations that are non-blocking but not wait-free, (3) with implementations
that are wait-free but not bounded wait-free, and (4) with implementations that
are K-bounded wait-free but not k-bounded wait-free for all & > 0 and some
K>k

This paper will appear in the Third Annual ACM Symposium on Parallel Algo-
rithms and Architectures, July 21-24, 1991, Hilton Head, South Carolina.

©Digital Equipment Corporation 1991. All rights reserved.

1 INTRODUCTION 1

1 Introduction

In the “classical” parallel random access machine (PRAM) model, a set of pro-
cesses executing in lock-step communicate by applying read and write operations
to a shared memory. Existing shared memory architectures, however, are in-
herently asynchronous: processors’ relative speeds are unpredictable, at least
in the short term, because of timing uncertainties introduced by variations in
instruction complexity, page faults, cache misses, and operating system activi-
ties such as preemption or swapping. A number of researchers have noted this
mismatch, and have proposed the esynchronous PRAM model as an alternative
[8, 9, 14, 25]. In this model, asynchronous processes communicate by apply-
ing atomic read and write operations to the shared memory !. Techniques for
implementing these memory locations, often called atomic registers, have also
received considerable attention [4, 5, 20, 21, 24, 26, 27].

Much of the work on asynchronous PRAM models addresses the problem
of computing functions, such as parallel summation, whose inputs reside in
the shared memory. Many practical applications, however, such as operating
systems and data bases, are not organized around functional computation. In-
stead, they are organized around long-lived data objects such as sets, queues,
directories, and so on. In this paper, we investigate the extent to which the
asynchronous PRAM model supports long-lived, highly-concurrent data objects.
There are several reasons why long-lived objects are inherently more difficult
than functional computation. A data object has an unbounded lifetime during
which each process can execute an arbitrary sequence of operations, requiring
that data structures be reused. It must retain enough information to ensure
that “sleepy” processes that arbitrarily suspend and resume execution can con-
tinue to progress, while discarding enough information to keep the object size
bounded. Care must be taken to guard against starvation, since one operation
can be “overtaken” by an arbitrary sequence of other operations.

An implementation of a concurrent object is non-blocking if some non-faulty
process always completes an operation in a finite number of steps, despite fail-
ures of other processes. It is wait-free if every non-faulty process has this prop-
erty, and it is k-bounded wait-free, for some fixed & > 0, if every non-faulty
process always completes an operation within k steps. These properties form
a hierarchy: bounded wait-free implies wait-free, and wait-free implies non-
blocking. The non-blocking property permits individual processes to starve,
but it guarantees that the system as a whole will make progress. The wait-free
property excludes starvation; any process that continues to take steps will finish
its operation, and the bounded wait-free property bounds how long it will take.
Each of these properties rules out conventional synchronization techniques such
as barrier synchronization, busy-waiting, conditional waiting, or critical sec-
tions, since the failure or delay of a single process within a critical section or

1Some of these models also include primitives for barrier synchronization.

1 INTRODUCTION 2

before a barrier will prevent the non-faulty processes from making progress.

Which objects have non-blocking implementations in asynchronous PRAM?
Elsewhere [17, 15], we have shown that any object X can be assigned a consen-
sus number, which is the largest number of processes (possibly infinite) that can
achieve consensus asynchronously [13] by applying operations to a shared X.
It is impossible to construct a non-blocking implementation of any object with
consensus number n from objects with lower consensus numbers in a system of
n or more processes, although any object with consensus number 7 is universal
(it supports a wait-free implementation of any other object) in a system of n or
fewer processes. A memory with atomic read and write operations has consen-
sus number 1 (it cannot solve consensus between two processes), and therefore
the asynchronous PRAM model is too weak to support non-blocking imple-
mentations of any object with a higher consensus number, including common
data types such as sets, queues, stacks, priority queues, or lists, most if not all
the classical synchronization primitives, such as testédset, compareéswap, and
fetch&add, and simple memory-to-memory operations such as move or swap.

It is natural to ask whether the converse holds: does asynchronous PRAM
permit non-blocking implementations of the remaining objects, objects that do
not solve two-process consensus? In this paper, we show that the answer is
no. In a system of two processes, we demonstrate the existence of the following
strict infinite hierarchy among objects with consensus number 1.

e Objects without non-blocking implementations. These objects are too
weak to solve two-process consensus, yet they cannot be implemented (in
asynchronous PRAM) without critical sections.

e Objects with implementations that are non-blocking, but not wait-free.
These objects can be implemented without critical sections, but it is im-
possible to guarantee fairness.

e Objects with implementations that are wait-free, but not bounded wait-
free. Each operation requires a finite number of steps, but there is no
bound common to all operations.

e For all & > 0, objects with implementations that are K-bounded wait-free
for some K > k, but not k-bounded wait-free.

This hieararchy is shown schematically in Figure 1. Our impossibility results
(e.g., this object has no wait-free implementation) apply to systems with arbi-
trary numbers of processes, but some of our constructions (e.g., this object does
have a non-blocking implementation) apply only to systems of two processes.
A specific contribution of this paper is the hierarchy itself, which shows that
even relatively “weak” concurrent objects have a rich mathematical structure.
Moreover, each level of the hierarchy requires a different kind of proof tech-
nique. Another, more general, contribution is to raise basic questions about the
value of the asynchronous PRAM model. Although some synchronous PRAM

2 THE MODEL 3

ﬂ]onsensus Number 1 \
K Non-Blocking \
K Unbounded Wait-Free \

Kk—bounded: Wait—Free\

(k-1)-bounded
Wait-Free

N j
N j
N j

Figure 1: Hierarchy of Objects with Consensus Number 1

algorithms can be adapted to asynchronous PRAM ([8, 9, 14, 25], our results
show that there is little hope of constructing useful highly-concurrent long-lived
data structures in this model. Fortunately, however, one can argue that asyn-
chronous PRAM is an incomplete reflection of current practice. Starting with
the IBM System/370 architecture [19] in the early 1970’s, nearly every major
architecture has provided some kind of atomic read-modify-write primitive. We
have shown elsewhere that one can construct a bounded wait-free implementa-
tion of any object by augmenting the read and write operations with sufficiently
powerful read-modify-write primitives, such as compare&swap [16]. It is not our
intent here to suggest a specific alternative model, but we do believe that the
research community would benefit from a more realistic and powerful model of
concurrent shared-memory computation.

2 The Model

A concurrent system consists of a collection of n processes that communicate
through shared typed objects. Processes are sequential — each process applies

3 THE WAIT-FREE HIERARCHY 4

a sequence of operations to objects, alternately issuing an invocation and then
receiving the associated response. We make no fairness assumptions about pro-
cesses. A process can halt, or display arbitrary variations in speed. In particular,
one process cannot tell whether another has halted or is just running very slowly.

Objects are data structures in memory. Each object has a type, which defines
a set of possible values and a set of primitive operations that provide the only
means to manipulate that object. Each object has a sequential specification
that defines how the object behaves when its operations are invoked one at a
time by a single process. For example, the behavior of a queue object can be
specified by requiring that eng insert an item in the queue, and that deq remove
the oldest item in the queue. In a concurrent system, however, an object’s
operations can be invoked by concurrent processes, and it is necessary to give
a meaning to interleaved operation executions. An object is linearizable [18]
if each operation appears to take effect instantaneously at some point between
the operation’s invocation and response. Linearizability implies that processes
appear to be interleaved at the granularity of complete operations, and that the
order of non-overlapping operations is preserved.

A consensus protocol is a system of n processes that communicate through
a set of shared objects. The processes each start with an input value, either
0 or 1. Each process communicates with the others by applying operations to
shared objects, and each process eventually chooses an output value and halts.
A consensus protocol is required to be:

e Consistent: distinct processes never decide on distinct values.
e Wait-free: each process decides after a finite number of steps.
e Valid: the common decision value is the input to some process.

It is impossible to solve consensus for two or more processes in the asynchronous
PRAM model [1, 6, 7, 10, 17, 22].

3 The Wait-Free Hierarchy

In this section, we construct a family of objects with the property that, for
all k, there exists an object whose implementations are K-bounded wait-free
but not k-bounded wait-free, for some K > k. There also exists an object
whose implementations are wait-free but not k-bounded wait-free for any k.
We prove the lower bounds by reducing the (difficult) problem of analyzing all
possible implementations of a particular object to the (more tractable) problem
of analyzing solutions to a related decision problem.

If S is a set of real numbers, let range(S) = [min(S), max(S)], midpoint(S) =
(min(S) + max(S5))/2, and |S| = max(S) — min(S). An approzimate agreement
object provides two operations:

3 THE WAIT-FREE HIERARCHY 5

Object State:
X is a set of reals, initally 0.
Y is a set of reals, initally 0.

input(P, x)
pre: true
post: X' = X U {z}

y := output(P)
pre: X £ 0
post: Y =Y U {y} A
range(Y) C range(X) A
Y] <e.

Figure 2: Sequential Specification for Approximate Agreement

input(P: process, x: real)
output(P: process) returns (real)

A sequential specification for these operations, expressed in terms of pre- and
post-conditions, appears in Figure 2. The object’s abstract state has two com-
ponents: a set of real input values X and a set of real output velues Y, initially
both empty. In postconditions, X’ and Y’ denote the components’ new states.
The input operation inserts its argument value in X. The output operation is
defined only when X is non-empty. It inserts its result in Y, ensuring that
range(Y) C renge(X) and |Y| < € for some fixed € > 0. For brevity, we leave
unspecified how output behaves when X is empty. As a decision problem, ap-
proximate agreement has been studied in a variety of message-passing models
[3, 11, 12, 23], and Attiya, Lynch, and Shavit [2] independently derive upper and
lower bounds for approximate agreement in shared memory that imply those
given here.

A wait-free implementation of an approximate agreement object appears in
Figure 3. The object is represented by an n-element array r of entries, where
each entry has two fields: an integer round initially zero, and a real prefer,
initially L. A process is a leader if its round field is greater than or equal to
any other process’s round field. P advances its entry by setting its preference
to the midpoint of the leaders’ preferences and by incrementing its round field
by one. P scans the entries by reading them in an arbitrary order.

The first time P calls input, it sets prefer to its input value. Subsequent
calls have no effect. When P calls output, it returns the results of executing a
wait-free approximate agreement protocol. This protocol consists of a loop in
which P scans the entries, and discards those whose round fields trail its own
by two or more. If the diameter of the remaining preferences is less than €/2,

3 THE WAIT-FREE HIERARCHY 6

input(P: process, x: real)
if r[P].prefer = L
then r[P] := [prefer: x, round: 1]
end if

end input

output(P: process)
advance := false
loop
£ := entries that trail mine by 1 or less
L := leading entries
if |€] < €/2
then return r[P].prefer
elseif |£| < €/2 or advance
then r := [prefer: midpoint(L),
round: r.round + 1]
advance := false
else advance := — advance
end if
end loop
end output

Figure 3: Wait-Free Implementation of Approximate Agreement Object

P returns its own preference. If the diameter of the leaders’ preferences is less
than €/2, then P advances its entry and resumes the loop. If the diameter of the
leaders’ preferences exceeds €/2, then P rescans the entries once more before
advancing its entry. For brevity, “P’s r-entry” (or r-preference) refers to P’s
entry (or preference) with round number .

First, we show that this implementation is correct. Let X, denote the set
of entries having round number r. (We sometimes abuse notation and use X,
to stand for the set of r-preferences; the exact meaning should be clear from
context.)

Lemmal X, C X,_1.

Proof: By induction on round numbers. P’s initial preference is trivially in
range(X1). Assume the result for rounds less than r, and suppose P creates an
r-preference z,. If Lp is the set of leaders P observes, then Lp C range(X,_1)

by the induction hypothesis, hence z, = midpoint(Lp) € range(X,_1). |

P ezpands X, if it writes a preference that increases | X, |.

Lemma 2 If P ezpands X, after observing the set of leaders Lp, then the
entries in Lp have round number r — 1.

3 THE WAIT-FREE HIERARCHY 7

Proof: They cannot have a lower round number, since P observes its own
entry, and they cannot have a higher round number, since then midpoint(Lp) €

range(X,).

Lemma 3 |X,| < |X,_1]/2.

Proof: Let P be the first process to write #, = min(X,), @ be the first process
to write z, = max(X,), and let Lp and Lq their respective sets of leaders.
Since both writes expand X,, Lemma 2 implies that all entries in £Lp and Lg
have round number r — 1. One of P or @ must have observed the other’s (r — 1)-
preference, so LpNLg # 0. Therefore, |z, —z,| < [Lp]/2+ [Lo|/2 < | Xr1]/2.

Lemma 4 If P returns z, at round r, and Q writes z, at round r, then |z, —
zg <e.

Proof: By contradiction. Let @ be the first process to write =, such that
|z, — 24| > €, let Lp be the set of leaders observed by P after writing z,,
and let Lo be the set of leaders observed by @ before writing z,. Note that
z, € range(Lp) and z, € range(Ly). Moreover, z, ¢ Lp because |Lp| < €/2,
and z, ¢ Lg, by Lemma 2.

Suppose |Lg| < €/2. Because each process wrote its (r — 1)-entry before
reading the other’s entry, and because neither process read the other’s r-entry,
one of the two processes must have read the other’s (r — 1)-entry, and therefore
LpNLg #0. It follows that |[Lp N Lg| < [Lp|+ |Lg| < €. Because z, and z,
lie within range(Lp U Lg), |2y, — 4] < €.

Otherwise, if |Lg| > €/2, then Q reads twice before writing z,. Let [,’Q be the
set of leaders it saw during the first read. Since Q reads twice, |[,'Q| >e/2. 1 Q
finished reading L, before Q wrote z,, then £ C Lp, and |L5| < [Lp| < €/2,
a contradiction. If @ finished reading [,’Q after @ wrote z,, then it started

reading Lo afterwards, and =z, € Lg, a contradiction. |

Theorem 5 There exists a wait-free implementation of the approzimate agree-
ment object in asynchronous PRAM.

Proof: We show that the protocol in Figure 3 is correct. There are three points
to check: (1) that every output value lies within the original input range, (2)
that the diameter of the output set is less than €, and (3) that the algorithm is
wait-free.

The first point is an immediate consequence of Lemma 1. For the second
point, suppose P returns z, after round r and @ returns z, after round s, where
r < s. Lemma 4 states that every element of X, lies within € of z,, and Lemma
1 that X, C X,, hence |z, — 2,] < e. Finally, Lemma 3 states that |X,| < ¢/2

for some r, implying that every process will return on or before round r + 1.

4 NON-BLOCKING 8

Lemma 6 An adversary scheduler can force some process ezecuting an output
to ezecute |logs(A/€)| steps before finishing.

Proof: It is enough to prove the result for two processes. Consider an execution
in which P and @ have distinct input values, and each executes an output.
Define a process’s preference at any point to be the value it returns if it runs
uninterruptedly to conclusion. The ouiput operations cannot both terminate
while their preferences differ by more than €. Initially, each process’s preference
is its input.

Consider the following scenario. Run P until it is about to change @’s
preference, then do the same for Q. Alternate P and @ in this way as long as
neither process changes preference. Eventually, since the operations cannot run
forever, the object reaches a state where each process is about to change the
other’s preference. The adversary now has a choice of running P, @, or both.
Let po be P’s current preference, p; its preference if Q) takes the next step, and
let go and ¢; be defined similarly. Depending on whom the adversary schedules
next, the new preferences will differ by either |po—gq1|, |p1 —4g0l, or |p1 —q1]|. The
sum of these quantities is at least |pg — gol, thus the adversary can always choose
one that is greater than or equal to |pg — go|/3, preventing the gap between the
preferences from shrinking by more than one third. Repeating this strategy for
k rounds, an adversary scheduler can ensure that the range of the preferences
is at least A/(3%), yielding the desired lower bound.

Theorem 7 For all k > 0, there ezists an object with a K-bounded wait-free
implementation, for K > k, that is not k-bounded wait-free.

Proof: Consider an approximate agreement object with the unit interval as
potential input range, and € = 1/3*.

Theorem 8 There ezists an object with ¢ wait-free implementation but no
bounded wait-free implementation.

Proof: Consider an approximate agreement object with the rational numbers
as potential input range.

4 Non-Blocking

In this section, we construct an object having consensus number 1, a non-
blocking implementation, but no wait-free implementation. This section illus-
trates an important difference between long-lived objects and short-lived deci-
sion problems: a decision problem, but definition, is executed once, and hence
cannot distinguish between the non-blocking and wait-free properties.

We consider a system of two processes, P and Q. An iterated approzimate
agreement object has two operations:

4 NON-BLOCKING 9

Object State:
z, and z, are reals, initially 1.
yp and y, are reals, initially L.
rp and r, are integers, initially 0.

input(P, x)
pre: z, = L
post: z, =z

y := output(P)
pre: z, # L Az, =1
post:y, =z A7, =71, +1

y := output(P)
pre: z, # L Az, £ L
post: y, =y A
% — 4] < ¢/2 A
Yp € range(zp, z4) A

r;,:rp—l—l

Figure 4: Sequential Specification for Iterated Approximate Agreement

input(P: process, x: real)
output(P: process) returns (real).

Each process P has a starting estimate ,, and a current estimate y,. As shown
in Figure 4, P’s starting estimate is initialized by input. Its current estimate
is updated by output so that following P’s i*" output, the range of the two
processes’ current estimates is less than ¢/2¢ for some fixed ¢ > 0, and lies
within the range of their original estimates. (The sequence of current estimates
forms a Cauchy sequence that converges on a point in the range of the original
estimates.) For simplicity, our specifications focus on executions in which any
process that executes any operations executes an input followed by a sequence
of outputs.

A non-blocking implementation of the iterated approximate agreement ob-
ject is shown in Figure 5. The object is represented by a two-element array r
of entries, where each entry has two fields: an integer round, initially 0, and
a real prefer, initally L. Each process also has a persistent local variable
previous, which holds a real interval, and survives from one invocation to the
next. When P calls nput, it initializes round to zero, prefer to the input
value, and previous to the real line. When P calls output, it reads its entry,
increments round, and enters the loop. Each time through the loop, it updates

4 NON-BLOCKING 10

input(P: process, x: real)
r[P] := [prefer: x, round: 0]
previous := [—o00, +00]
end input

output(P: process) returns(real)

p := r[P]
p.round := p.round + 1
loop

rf[P]:=p

q:= r[Q]

i:= p.round + g.round
range := [p.prefer & ¢/(2¢)]
if q.prefer € range or qg.prefer ¢ previous
then previous := range
return p.prefer
elseif p.prefer < q.prefer
then p.prefer := p.prefer + €/(2%)
else p.prefer := p.prefer — €/(2%)
end if
end loop
end output

Figure 5: Non-Blocking Iterated Approximate Agreement Implementation

its own entry and reads @’s. It sums the two entries’ round fields in variable 1,
and constructs a desired interval of radius e/(2i). If Q’s preference lies outside
P’s previous interval, then it returns immediately. If @’s preference lies within
the desired interval, then it returns, otherwise it chooses a new preference closer
to the other’s.

Lemma 9 Every current estimate lies within the range of the original esti-
mates.

Proof: Initially, every preference lies within the original range, and each new
preference lies between two earlier preferences.

Lemma 10 The operations in Figure 5 are non-blocking.

Proof: It suffices to check that two concurrent output operations cannot both
take an infinite number of steps without returning. If P takes only a finite
number of steps, then Q’s preference will converge to P’s, and @ will return.

4 NON-BLOCKING 11

If P and @ both take an infinite number of steps, then once P and @ have
each written a preference and read the other’s, then each time through the loop
reduces the distance between their preferences by a fixed amount, and eventuall

one will return. i

We use the following notation: p and ¢ are output operations of P and @,
7(p) is p’s current preference (if active) or final return value (if completed), a(p)
is the first value p assigns to variable i, and w(p) is the current value of i (if
active) or last value (if completed).

We construct an explicit linearization order as follows: if a(p) < a(q) then
p is ordered before ¢, and if a(p) = a(q) then p and ¢ are ordered arbitrarily.

Lemma 11 The o function defines a valid linearization order.

Proof: If p finishes before ¢ begins, then a(p) < a(g). |

Define B(p) to be the open ball of radius €/(2¢(P)) around =(p). If p; is
Ps % output, then ¢ < a(p;)) < w(p;). In particular, if y € B(p;), then
ly — m(pi)| < €/(2%).

Lemma 12 If p is a completed output of P, and p’ o later output, either
completed or active, then B(p') C B(p).

Proof: The distances from 7(p’) to the endpoints of B(p) are always integral
multiples of w(p').

Theorem 13 The algorithm in Figure 5 is a non-blocking implementation of
an iterated approzmiate agreement object.

Proof: Lemma 9 states that all estimates lie within the range of the current
estimates, and Lemma 10 states that one operation will always complete in a
finite number of steps. It remains to check that each process’s i* estimate lies
within €/(2%) of the other’s current estimate. Suppose p; is linearized between
g; and g;41, and that p; is the first to violate correctness.

Suppose p; returns after observing that @’s preference lies outside P’s pre-
vously committed range. That preference must have been written by ¢;, and g¢;
must still be active, thus p; cannot be the first to violate correctness.

Suppose p; returns after observing that n(p;) lies within e/(2“’(p)) of 7(qg).
Since w(gr) < w(ps), 7(ps) € B(gr). If k = j, then we are done, since ¢;j 11 has
no return value yet. If & > j, Lemma 12 implies that B(g;) C B(g;+1) € B(gx),

hence correctness is not violated.

Although the algorithm in Figure 5 is non-blocking, one can easily check
that it is not wait-free: an output operation can be forced to run forever if it is
overtaken sufficiently often by other outputs. We now show that this property
is inherent in any solution of iterated approximate agreement.

4 NON-BLOCKING 12

Consider an execution in which P and @ each performs an input followed by
an output. Following the terminology of Fisher, Lynch, and Paterson [13], P is
bivalent in any state where its output value is not yet determined, otherwise it
is univalent. P’s state is z-valent if it is univalent with eventual output value
z. A decision step for P is an operation that carries P from a bivalent to a
univalent state. P is ambivalent in a state s if there exists a state s’ such that
P is z-valent in s, y-valent in §’, but s and s’ are indistinguishable to Q.

Lemma 14 From an initial state in which P and Q have different input values,
it is possible to reach a state in which P is ambivalent.

Proof: Assume without loss of generality that P has input 0, @ input 1, and
€ < 1. P is bivalent in this initial state: if P is run to completion before @
starts, its output returns 0, and if @ is run to completion before P starts, then
P returns a value in (1 —¢, 1].

Consider the following execution, which leaves P bivalent. In the first stage,
run P until it reaches a state where it cannot continue without becoming uni-
valent. P must eventually reach such a state, since it cannot run forever. In
the second stage, run @ until it cannot continue without making P univalent,
and in successive stages, alternate running P and @ until each is about to make
P univalent. Because the processes cannot run forever leaving P bivalent, it
must eventually reach a state s in which any subsequent step of either process
forces P to be univalent. Since P is still bivalent, however, some enabled step
of P carries P to an z-valent state, and some enabled step of @ carries P to a
y-valent state, where z and y are distinct.

We now do a case analysis of the operations executed by P and @. In each
case, we show that certain combinations are impossible by constructing two
executions starting in s, one in which P returns z, and one in which P returns
y, but where the protocol states appear identical to P.

e Suppose Q is about to read a shared register. (1) P runs to completion,
returning #, and (2) Q reads, and P executes to completion, returning y.

e Suppose the processes are about to write to different registers. (1) P
writes, @ writes, and P executes to completion, returning z, and (2) @
writes, P writes, and P executes to completion, returning y.

e Suppose the processes are about to write to the same register. (1) P writes
and P executes to completion, returning z, and (2) Q writes, P writes,
and P executes to completion, returning y.

The only remaining combination is that P is about to read a register which @
is about to write. As soon as @ writes, P’s state becomes ambivalent, since P
must be univalent, but ¢ has no way to predict P’s output.

5 FINAL IMPOSSIBILITY RESULTS 13

Bivalence arguments have been used to show the impossibility of shared-
memory consensus [1, 7, 10, 17, 22], and the ambiguous choice lemma of Burns
and Peterson [6].

Theorem 15 The iterated approzimate agreement object has no wait-free im-
plementation.

Proof: Consider an execution in which P and @ respectively input 0 and 1
and execute a single output. By Lemma 14, it is possible to reach a state where
P’s output has returned, @’s has not, and @Q is ambivalent. Let y and z be two
possible values @ could return in this state. Pick a k such that €/(2*) < |y — z|.
If P executes k more outputs in isolation, then it will be unable to return a value
consistent with both y and z.

5 Final Impossibility Results

In this section, we construct an object having consensus number 1 but no non-
blocking implementation. To prove this result, we exhibit an object with the
curious property that although it itself is too weak to solve two-process consen-
sus, it can only be implemented by “stronger” objects that do solve consensus.

A blind consensus object’s state consists of two boolean variables, called red
and blue, initially both false. It provides two operations:

fix(c: color) returns (boolean)
blind() returns (color,boolean)

The first time fiz is called, it sets the argument variable to ¢rue and returns its
previous value. Subsequent calls with the same argument leave the variables
unaffected, and non-deterministically return either ¢rue or false. The blind op-
eration non-deterministically chooses a variable, sets it to true, and returns the
chosen variable’s name and previous value.

Lemma 16 The blind consensus object cannot solve two-process consensus.

Proof: Suppose otherwise. By an argument similar to the one given above in
the proof of Theorem 15, any two-process consensus protocol can be maneuvered
into a state where the decision value is 0 if P takes the next step, and 1 if @
takes the next step. The rest is a case analysis.

Suppose P and @ both call fiz. If the invocations have distinct arguments,
then they commute, so assume the invocations both apply to red. One possible
execution is: P’s call to fiz returns some value v, any subsequent calls to fiz also
return v, any subsequent calls to bdlind apply to blue, and P eventually decides
0. Another possible execution is: @’s call to fiz returns v, P’s subsequent
calls to fiz also return v, its subsequent calls to blind apply to blue, and P

REFERENCES 14

eventually decides 1. Since the two executions appear equivalent to P, we have
a contradiction.

If P applies fiz to red and @ calls blind, then blind can always choose blue,
forcing the operations to commute. Similarly, if both processes call blind, the
operations can always choose distinct variables.

Theorem 17 It is impossible to construct a non-blocking implementation of a
blind consensus object in asynchronous PRAM.

Proof: We show that any implementation of a blind consensus object can be
transformed into a two-process consensus protocol.

An operation implementation is deterministic if it always returns the same
response when run in the absence of concurrency. We may restrict our atten-
tion to deterministic implementations, since any non-determinstic implementa-
tion can always be rendered deterministic by fixing the outcome of any non-
deterministic choices. Suppose the blind operation returns red when executed
in isolation by P starting in the initial state (the case where it returns blue is
symmetric). Now, we construct a consensus protocol as follows. P executes
the implementation of blind, and Q) executes the implementation of red. They
decide 0 if P’s result is (red, false) and @’s is true, and otherwise they decide

1. It is easily checked that this protocol is consistent, wait-free, and valid. |

We leave as an interesting open question whether every object whose se-
quential specification is deterministic has a non-blocking implementation in
asynchronous PRAM.

Acknowledgments

Hagit Attiya’s remarks helped improve this paper.

References

[1] J.H. Anderson and M.G. Gouda. The virtue of patience: Concurrent pro-
gramming with and without waiting. University of Texas at Austin Tech-
nical Report.

[2] H. Attiya, N. Lynch, and N. Shavit. Are wait-free algorithms fast? In
31st Annual Symposium on the Foundations of Computer Science, October
1990.

[3] O. Biran, S. Moran, and S. Zaks. A combinatorial characterization of
the distributed tasks which are solvable in the presence of one faulty pro-
cessor. In Seventh ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, pages 263-273, August 1988.

REFERENCES 15

[4]

[14]

[15]

B. Bloom. Constructing two-writer atomic registers. In Proceedings of
the Sizth ACM Symposium on Principles of Distributed Computing, pages
249-259, 1987.

J.E. Burns and G.L. Peterson. Constructing multi-reader atomic values
from non-atomic values. In Proceedings of the Sizth ACM Symposium on
Principles of Distributed Computing, pages 222-231, 1987.

J.E. Burns and G.L. Peterson. The ambiguity of choosing. In Eighth
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Comput-
ing, pages 145-157, August 1989.

B. Chor, A. Israeli, and M. Li. On processor coordination using asyn-
chronous hardware. In Proceedings of the Sizth ACM Symposium on Prin-
ciples of Distributed Computing, pages 86-97, 1987.

R. Cole and O. Zajicek. The apram: incorporating asynchrony into the
pram model. In Proceedings of the 1989 Symposium on Parallel Algorithms
and Architectures, pages 169-178, Santa Fe, NM, June 1989.

R. Cole and O. Zajicek. The expected advantage of asynchrony. In 2nd
ACM Symposium on Parallel Algorithms and Architectures, pages 85-94,
July 1990.

D. Dolev, C. Dwork, and L Stockmeyer. On the minimal synchronism
needed for distributed consensus. Journal of the ACM, 34(1):77-97, Jan-
uary 1987.

D. Dolev, N.A. Lynch, S.S. Pinter, E.W. Stark, and William E. Weihl.
Reaching approximate agreement in the presence of faults. Journal of the
ACM, 33(3):499-516, July 1986.

A. Fekete. Asymptotically optimal algorithms for approximate agreement.
In Fifth ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, pages 73-87, August 1986.

M. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed
commit with one faulty process. Journal of the ACM, 32(2), April 1985.

P.B. Gibbons. A more practical pram model. In ACM Symposium on
Parallel Algorithms and Architectures, pages 158-168. ACM, July 1989.

M.P. Herlihy. Impossibility and universality results for wait-free synchro-
nization. In Seventh ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, pages 276-290, August 1988.

REFERENCES 16

[16]

M.P. Herlihy. A methodology for implementing highly concurrent data
structures. In Proceedings of the Second ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 197-206, March
1990.

M.P. Herlihy. Wait-free synchronization. ACM Transactions on Program-
ming Languages and Systems, 13(1):124-149, January 1991.

M.P. Herlihy and J.M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and
Systems, 12(3):463-492, July 1990.

IBM. System/370 principles of operation. Order Number GA22-7000.

L. Lamport. Concurrent reading and writing. Communications of the ACM,
20(11):806-811, November 1977.

L. Lamport. On interprocess communication, parts i and ii. Distributed
Computing, 1:77-101, 1986.

M.C. Loui and H.H. Abu-Amara. Memory Requirements for Agreement
Among Unreliable Asynchronous Processes, volume 4, pages 163-183. JAI
Press, 1987.

S. Mahaney and F.B. Schneider. Inexact agreement: Accuracy, precision,
and graceful degredation. In Fourth ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, pages 237-249, August 1985.

R. Newman-Wolfe. A protocol for wait-free, atomic, multi-reader shared
variables. In Proceedings of the Sizth ACM Symposium on Principles of
Distributed Computing, pages 232-249, 1987.

N. Nishimura. Asynchronous shared memory parallel computation. In 2nd
ACM Symposium on Parallel Algorithms and Architectures, pages 76-84,
July 1990.

G.L. Peterson. Concurrent reading while writing. ACM Transactions on
Programming Languages and Systems, 5(1):46-55, January 1983.

G.L. Peterson and J.E. Burns. Concurrent reading while writing ii: the
multi-writer case. Technical Report GIT-ICS-86/26, Georgia Institute of
Technology, December 1986.

