
! j",....,
\ -:.~

! / ->

A Transactional Model for
Long-Running Activities

Umeshwar Dayal, Meichun Hsu,
Rivka Ladin

Digital Equipment Corpora.tion

Cambridge Research Lab

CRL 91/3 March 1, 1991

HPL/RESEARCH LIBRARY
BUILDING #2L
p (I I:;OX I (M90

P"It.V i-lu'O, CA 94303-0911

CAMBRIDGE RESEARCH LABORATORY
Technical Report Series

Digital Equipment Corporation has four research facilities: the Systems Research Center and the
Western Research Laboratory, both in Palo Alto, California; the Paris Research Laboratory, in
Paris; and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,
near MIT. CRL engages in computing research to extend the state of the computing art in areas
likely to be important to Digital and its customers in future years. CRL's main focus is applica­
tions technology; that is, the creation of knowledge and tools useful for the preparation of impor­
tant classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes­
sage to one of the following addresses, with the word help in the Subject line:

On Digital's EASYnet:
On the Internet:

CRL::TECHREPORTS
techreportS@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is
granted for non-profit educational and research purposes provided all such copies include a notice that such copy­
ing is by permission of the Cambridge Research Lab ofDigital Equipment Corporation, an acknowledgment of the
authors to the work. and all applicable portions ofthe copyright notice.

The Digital logo is a trademark of Digital Equipmeot Corporation,

Cambridge Research Laboratory
One Kendall Square
Cambridge, Massachusetts 02139

A Transactional Model for
Long-Running Activities

Umeshwar Dayal, Meichun Hsu, l

Rivka Ladin
Digital Equipment Corporation

Cambridge Research Lab

CRL 91/3

Abstract

March 1, 1991

Many computer-supported applications are of long duration and consist

of multiple steps that are executed over possibly heterogeneous servers. Such

activities have weaker atomicity requirements than transactions. Previously,

we illustrated how to organize the execution of such activities using trig­

gers and transactions. In this paper, we describe an execution model in

which activities may consist recursively of steps that may be subactivities or

transactions. The model defines precisely the semantics of activities: com­

munication between steps and the failure semantics of activities including

compensation and exception handling. The model also supports querying

the status of activities. We also propose an implementation of the model

using recoverable queues for reliably chaining the steps according to the se­

mantics of the model.

Keywords: long-running activites, transactions, triggeres, compensation, ex­

ception handling

@Digital Equipment Corporation 1991. All rights reserved.

1Address: Digital Equipment Corporation, Mountain View, CA 94040;
hsu@ocean.enet.dec.com

CONTENTS 1

Contents

1 Introduction 3

2 Related Work 6

3 The Model 9

3.1 Transactions . 10

3.2 Activities 14

3.3 Exceptions . 16

3.4 Summary 17

4 An Example Application 18

5 A Proposed Implementation Architecture 20

5.1 Overview 22

5.2 The Reliable Queuing Services . 23

5.3 Transaction Service Program . 24

6 Conclusion 27

2 CONTENTS

3

1 Introduction

Many computer-supported applications are of long duration, and involve mul­

tiple steps of processing. The steps may be executed by different servers, per­

haps on different nodes of a heterogeneous service network. For example, a

purchase order may be issued from an inventory clerk, then passed to a man­

ager who approves it, and then passed to an accountant who makes proper

accounting entries. Because the steps of such an activity access shared, per­

sistent data, they need to be synchronized among themselves and with the

steps of other activities. Also, since the applications or the servers may fail,

the failure semantics of activities need to be defined.

In conventional database management systems, the only unit of work sup­

ported is the transaction. However, activities have weaker concurrency and

failure atomicity requirements than transactions. Executing a long-running

activity as a single transaction is not strictly necessary in most cases, and

can significantly delay the execution of short transactions. For example, if

purchase order processing is run as a single transaction, locks on the inven­

tory records and the budget records may be held for a long time, severely

limiting database concurrency. When these steps involve several distributed

servers, commit processing is also expensive, and the transaction can run

only when all servers are available simultaneously. Moreover, in a heteroge­

neous system, some of the servers might not even be capable of participating

in distributed commit processing.

One approach to handling long-running activities, therefore, is to have

each step run as a transaction; thus, an activity consists of multiple transac­

tions. In conventional transaction processing systems, the control flow among

the steps is embedded in application programs (e.g. [McGe78]). There is no

system support for handling failures or exceptions across the steps of an ac-

4 1 INTRODUCTION

tivity. Several extended transaction models to support activities have been

proposed [GS87, KR88, Reut89, Garc90]. These models support declarative

specification of control flow, and an automatic compensation capability that

offers some level of failure atomicity for the activity. These models are all

based on the conventional "flat" transaction model in which transactions are

strictly sequential.

In this paper we describe ATM, a transactional model of activities that

IS based on an extended nested transaction model that we introduced in

[HLM88, Chak89]. Like the original nested transaction model of [Lisk85,

Moss81], our extended model is especially suitable for distributed systems

because it supports intra-transaction parallelism by allowing a transaction

to spawn nested transactions that execute concurrently. However, in the

original nested transaction model, all the nested transactions are immediate

in that they can be scheduled for execution as soon as they are spawned.

Our extended model provides greater flexibility in specifying the scope of

execution of a nested transaction: deferred nested transactions are executed

at the end of a transaction; and decoupled nested transactions are executed

concurrently with the spawning transaction.

Previously, we showed how to use this generalized transaction model and

rules to organize and control long-running activities [DHL90]. Each step of

an activity was modelled by a transaction. The control flow among the steps

was expressed implicitly by rules. Thus, to start a step S2 after another step

Sl , we would write a rule that spawned a decoupled nested transaction to

execute 82. The rule would be triggered either by 81 signalling an event

or by the rule system detecting that some specified event had occurred in

the database. Thus, in that model, an activity tacitly consisted of a sin­

gle top transaction and all of the nested transactions (including decoupled

transactions) spawned from it. We argued that the use of rules allowed the

5

control flow to be dynamically modified based on the database state or the

history of events that had occurred. Activities, thus, were not a first class

concept in the model. For instance, activities could not be nested within

other activities. The model did not include mechanisms for compensation or

exception handling. Instead, rules were written to invoke alternate actions

when exceptional conditions were detected.

In this paper, we develop ATM, a transactional activity model in which

activities are treated explicitly as execution units in their own right. An ac­

tivity specifies a computation structure that may consist recursively of other

(sub)activities or of (top) transactions. (These transactions may contain

immediate, deferred, and decoupled nested transactions.)

Control flow and data flow between the steps of an activity may be speci­

fied statically in the activity's script, or may be dynamically modified through

the execution of rules triggered by events that occur as the activity progresses.

While rules are not strictly necessary, they are still useful for checking con­

straints, triggering additional tasks, or modifying the flow in response to

unanticipated conditions. We believe that scripts and rules provide a pow­

erful combination of mechanisms for building activities, whose semantics are

described by ATM.

The model defines precisely the semantics of activities, including com­

pensation and exception handling. Upon failure, we allow activities to be

aborted (committed steps are compensated; e.g., if the purchase order pro­

cessing activity fails after the accounting step has already debited the ac­

count, a compensating step is to credit the account) or to handle the failure

exception by executing an alternative step. Our model allows an activity

to include steps that cannot be undone or compensated; we call these crit­

ical steps. Typically, these are steps that have external effects on the real

world (e.g., mailing a cheque, firing a missile) and it is not desirable to allow

6 2 RELATED WORK

their effects to become visible before the activity commits. An activity which

includes critical steps is different from a transaction because some of this ac­

tivity's steps may be non-critical, while all subtransactions of a transaction

must be critical.

Additional features supported by the activity model are communication

via parameter passing among the steps of an activity; and querying the status

of an activity (i.e., whether its subactivities and transaction steps are active,

committed, aborted, or compensated).

Our activity model can be layered on any model that supports atomic

transactions, or even concurrently on more than one transaction model (e.g.,

in a heterogeneous system, different servers may support different transac­

tion models). However, layering activities on top of our extended nested

transaction model allows the use of the various types of nesting.

Section 2 provides a brief comparison with related work. Section 3 de­

scribes ATM. Section 4 proposes an implementation in terms of recoverable

queues [BHM90).

2 Related Work

We classify related work into four categories. The first category includes

early workflow models for office or business procedures (e.g. [Zism78), [DZ81],

[Barr82), [CC82], [LR83], [BP83], [WL86]). All these models included some

notion of a task (sometimes called a procedure, action, or step). The flow of

control between tasks was specified typically by augmented Petri nets or trig­

gers. However, these early workflow models generally were non-transactional,

and did not address the problems of data sharing, persistence, and failure

recovery.

The category that is closest to our work includes various extended trans­

action models for long-running activities [GS87, KR88, Reut89, Garc90,

7

ELLR90]. In the saga model of [GS87], an activity is a sequence of trans­

actions Tl, T2 , •. , Tn. After Ti is committed, Ti+l is invoked. If some Tk

fails, then Tk is aborted and the system automatically invokes compensating

transactions Gk - l , ... , Gl , in that order. The stictly sequential saga model is

generalized in the migrating transaction model to allow concurrent execution

of component transactions [KR88]. In addition, invariants on the database

state that must be maintained to ensure the feasibility of running compen­

sating transactions, can also be specified. In [Reut89], contracts are proposed

as an extension to migrating transactions. The steps of a contract may be

arbitrary sequential programs, not necessarily transactions. The control flow

among the steps is specified as part of the contract definition. Context is

maintained across the contract through the use of global variables. The

multi-transaction activity model of [Garc90] uses mailboxes (persistent mes­

sage queues) for control flow and data flow between steps of an activity. As

in our earlier model [DHL90], an activity is initiated by a single step (trans­

action). Activities can be nested, and compensation can be provided for

nested subactivites as well as for individual steps. The InterBase model of

[ELLR90] was developed for heterogeneus database systems. A global trans­

action in their model, which corresponds to an activity in our model, consists

of one or more steps (called subtransactions), each of which executes at a

single database server. Their model allows the specification of alternative

steps, of compensation steps, of non-compensatable (i.e., critical) steps, and

of temporal constraints (which specify when steps are to be executed).

All of these models are based on conventional flat transactions; hence,

they neither support nesting nor concurrency within a step. Our model,

on the other hand, is based on the extended nested transaction model, and

gives the activity designer a lot of flexibility to specify intra- and inter-step

parallelism. Sagas, migrating transactions, and InterBase's global transac-

8 2 RELATED WORK

tions are two-level structures (activities and transactions), whereas our model

supports arbitrarily nested subactivities. Also, our model has richer failure

semantics, supporting rollback (with compensation), roll forward, and al­

ternative execution paths. Finally, the other models provide fixed control

flow and a rigid compensation policy. In contrast, our model allows both

the static specification of control flow (embedded in the activity's script)

and its dynamic modification through rules (as we illustrated in [DHL90]).

The execution semantics of rules are also described by the extended nested

transaction model; hence, no extensions are necessary to incorporate rule

execution into the activity model.

The multi-level transaction model also extends nested transactions [Weik86]

by allowing a child action to commit independently of its parent. This as­

pect of the parent-child relationship is very similar to that between a parent

activity and a child in our model. However, in the multi-level transaction

model, the parent transaction is still serializable with its siblings at some

level of data abstraction (i.e., the "commit" of the child action is in fact only

a commit at a lower-level of abstraction). In our activity model, the parent

activity is simply not required to preserve such atomicity.

The third category of related work includes several extended transaction

models for long-running cooperative activities such as engineering design

[KLMP84, KSUW85, PKH88, FZ89,Kais90, NZ90, KS90, RRD90] and text

editing [EG89]. These models also support weaker notions of atomicity than

the traditional transaction model. Their goal is to provide more sharing

so that members of a design group can see one another's work in progress,

while isolating one group from another. Our goal is somewhat orthogonal:

to improve throughput by breaking up a long-running activity into short

transactions.

Finally, there is work on generalized transaction frameworks, such as

9

ACTA [CR90, Klei91]. This work is aimed at describing and cornparmg

existing transaction models in terms of a small number of constraints. These

frameworks as yet do not deal with the semantics of activities.

3 The Model

Our model consists of activities and transactions. An activity consists of

multiple application steps each of which is either an activity or a transac­

tion. Activities can be further nested. Thus, children of an activity may be

activities or transactions or a combination of these.

Activities and transactions can be nested to arbitrary levels with the

exception that activities cannot be created from within transactions. When

our discussion is applicable to both transactions and activities, we refer to

activities and transactions as actions.

Nested actions form a tree. An action may contain any number of nested

actions or subactions, some of which may be performed sequentially, some

concurrently. For convenience, we assume that there exists a distinguished

system root, Sys, for activities and transactions. A top transaction is a

transaction that is at the root of a transaction tree, i.e., a maximal tree

that consists only of transactions. A top activity is an activity that is at the

root of an activity tree, i.e., a maximal tree that consists of transactions and

activities. An activity node is a super-root linking a. forest of transaction

trees into a single tree. Thus, below the activity node, subactivities and top

transactions may exist.

We use standard tree terminology in referring to the relationship between

actions, for example, parent, child, ancestor and descendant.

In order to define the relationship between a child action and its parent

action, let S be an action with P as its pa.rent action. Then we can specify

a child-parent relation between Sand P based on whether or not Sand P

10

satisfy the following properties:

TERM P commits only after S terminates.

CD S is commit dependent on the commit of P.

SR S is serializable with respect to P's other children.

3 THE MODEL

VIS : S has access to all the objects that P has, e.g., it can read objects P

has modified.

We assume that each activity class has a predefined activity description,

which describes the sequence of actions contained in the activities in this

class. Each action item is described as either the name of an activity class,

or the name of a top transaction class. The activity description also includes

a specification of the data flow involved in the activity execution.

For the purpose of this discussion, we assume that a program which cre­

ates an activity is given a handle for the activity. After an activity is created,

the program may query the status of the activity by presenting the activity

handle to the system. The program may also ask the system to cancel the

activity.

In the rest of this section we describe precisely the semantics of our Ac­

tivities/Transactions Model, or ATM for short. Our presentation consists of

three parts: transactions, activities and failure handling. We start by de­

scribing the transaction part of the ATM. Then we present activities, and

finally, we describe how we handle failures.

3.1 Transactions

Suppose that P and S are two transactions such that S is created by P. Then

we say that P is the creator and S is the creaiee.

3.1 Transactions 11

To give the programmer fine control over the scope in which a child trans­

action is executed, we allow the createe to be performed not as a child of

its creator, but as a child of another parent which we denote as the child's

proper-parent.

Let S be a nested transaction with P as its proper-parent. Then the

child-parent relation between P and S satisfies the TERM, CD, SR and the

VIS properites.

The CD condition indicates that if a subtransaction commits and its

proper-parent aborts, the effects of the subtransaction will be undone. When

a subtransaction S and all its ancestors up to, but not including, the top

transaction commit, we say that S has committed to the top. When S's top

transaction then commits we say that S has committed through the top. The

top transaction commits only after all of its subtransactions have terminated

A subtransaction may be aborted without causing its proper-parent trans­

action to abort. Thus, upon the failure of its subtransaction, the proper­

parent can either go on with other computation or create another subtrans­

action to retry the computation that was aborted.

Concurrency within a transaction is obtained by allowing the proper­

parent to start concurrent subtransactions. While a child is running, its

proper-parent is suspended. However, sibling subtransactions may execute

concurrently. Siblings are serializable at each level of the transaction tree.

Thus, there is no problem with concurrent siblings interfering with one an­

other. Sequential siblings are ordered according to when they run. This

structure can't be observed from the outside; i.e., the overall transaction still

satisfies the atomicity properties.

In our model, the child-parent relation is always held with respect to

the proper-parent. Between the createe and the creator, however, only a

commit dependency specification is allowed. If such a commit dependency is

12 3 THE MODEL

specified, then the abort of a creator will cause the child created by it to be

aborted.

Our model distinguishes three execution scopes: immediate, deferred and

decoupled. If S's scope is immediate, then S is executed within P immediately

upon its invocation, thus, its creator is also its proper-parent. (Note, that if

all subtransactions execute in the immediate mode then our model is identical

to the traditional nested transaction model.) If the mode is deferred or

decoupled, then the creator is different from the proper-parent.

The execution of deferred subtransactions is explicitly delayed until the

end of the user's top transaction T and before any deferred subtransaction is

executed, a point we shall refer to as the cycle-O end. Let P be the creator of

S. Then, instead of executing S as a child of P, T is made S's proper-parent.

The execution of S is explicitly delayed until T reaches cycle-O end.

In addition to satisfying the child-parent relation with T, S is commit

dependent on its creator, P. If more than one deferred subtransactions are

created before T reaches its cycle-O end, then all these subtransactions are

started as concurrent subtransactions in cycle 1 at cycle-D end. If the pro­

cessing of subtransactions in cycle 1 causes more deferred transactions to

be created, the latter are started when all subtransactions in cycle 1 have

finished, and are started as concurrent subtransactions of T in Cycle 2. The

cycles of execution of T continue until the last cycle finishes in which no

more deferred subtransactions are created. For example, in Figure 1, TJ is a

deferred subtransaction created by T1 •

A separate top transaction S can be created from inside another trans­

action. Such a "nested" top transaction is called a decoupled transaction. A

decoupled top transaction will be represented by its own tree. In this case,

S's proper-parent is T's proper-parent, which might be an activity or Sys.

When S is decoupled, S can execute concurrently with T, and therefore, S

3.1 Transactions 13

might be serialized before T. This, however, may violate causality: T may see

the results of S. Also, T may abort after S committed. Therefore, we allow

the database programmer to specify whether the decoupled transaction is

causally dependent. Let T be the top transaction and let S be the causally­

dependent transaction, CDtop for short, created either by T or by one of its

descendents. Then S is causally dependent on T iff S is serialized after T and

S is commit dependent on its creator to commit through the top.

The execution of a causally independent decoupled transaction S has no

special privileges relative to its creator T.

It is important to note that CDtop transactions whose commited cre­

ators have committed must be scheduled for execution. Therefore, CDtop

transactions that are interrupted by a system failure should be automatically

restarted as part of system recovery.

In Figure 1, a commit dependency is specified between T4 and T2 , rep­

resented by the dotted arc between them. Therefore if T2 aborts, then T4

will be aborted. In Figure 1, the commit and serializability semantics of

transactions in the solid tree (i.e., the proper-parent tree) is identical to that

in a conventional nested transaction tree. In essence, the extension allows

a nested transaction to be created from one spot in the tree and "grafted"

somewhere else in the tree, and it specifies the semantics of such "grafting".

So far, we have not restricted the serialization order among concurrent sib­

lings. Sometimes, however, a particular serialization order might be desired.

For this purpose, priorities can be assigned to transactions. The system guar­

antees that the serialization order of concurrent siblings of a proper-parent

is consistent with their priority order.

The cycling mechanism interacts with the priority mechanism: within

each cycle, the subtransactions are executed in priority order.

To constrain possible execution orders of concurrent CDtop transactions,

14 3 THE MODEL

Sys

/

Figure 1: The Activity/Transactions Execution Tree

we support a p~ipelining mechanism. We say that a decoupled transaction

T' created by transaction T satisfies the pipelining property if for all trans­

actions P that are serialized before (after) T, any decoupled transaction P'

created by P is serialized before (respectively, after) T'.

3.2 Activities

Like a transaction, an activity can also be active, committed or aborted. The

relationship between an activity and its children satisfies only the TERM

and the VIS properties. Thus a a parent activity is committed only after

all its children have terminated, and a child has access to all the objects

that its parent has. However, the other two properties, CD and SR, are

not satisfied. The commit of the children is independent of the commit of

the parent activity. Therefore, if a parent activity is aborted, then all its

active children are aborted; committed children, however, are compensated

for. Sibling activities are not serializable; their effects on the database may

be interleaved.

Aborting an activity IS defined as follows. All children activities are

3.2 Activities 15

aborted; all active top transactions are aborted. Committed top transactions

cannot be aborted, their effects persist. Therefore, to support cancellation

after an activity or a top transaction has committed, we provide an addi­

tional system facility which invokes compensation activities or transactions.

When the abort of all the active parts of the activity has been completed,

the compensation for committed transactions or activites is performed by

executing the corresponding compensations in a an order that is the reverse

of the orginal execution order.

The status of an activity can be derived from the action tree spawned

by the activity. By preserving the action tree information in some form, the

system can allow the users to query and display the status of the the different

steps of the activity.

Assuming that some top transactions might be impossible to compensate

for and hence should commit only if the parent activity commits, we allow

the programmer to define whether a top transaction is critical or not. The

commit of a critical transaction is only tentative and therefore its effects can­

not be visible to its parent activity. To bound the duration in which critical

transactions are tentatively committed we can specify whether activities are

critical or not. All critical children of a critical activity stay tentatively com­

mitted; noncritical children commit independently of the fate of the parent

activity. All critical children of a noncritical activity commit if the parent

commits. This assumes that the parent can compensate at that level for their

effects. For example, suppose that in Figure 1 the only critical actions are

transaction Ts and activity A l . And suppose also that A. aborts after A l has

committed to it. Then in aborting All Al's compensation action needs to

consider only the effects of T6 and T7 since Ts is simply aborted. In summary,

the actual commit of a critical action takes place when its parent commits

through its closest noncritical ancestor (eNA).

16

3.3 Exceptions

3 THE MODEL

Requiring that every failure of a step cause an activity to be aborted is ex­

pensive, because rolling back an activity to its beginning could potentially

undo a lot of work. As an alternative to aborting, our model supports ex­

ception handling. The goal is to allow non-fatal failed steps to be replaced

by alternative steps, so that a transaction or activity can continue to make

forward progress. One or more exception handlers can be associated with

every (top) transaction, subtransaction, or subactivity, i.e., with every node

in an activity tree.

When a child node, C, returns to its parent, P, with an exception condition

(and aborts), the appropriate exception handler, E, (if one has been defined)

is invoked. The exception handler is executed as a sibling of the failed node

C. Note that E executes concurrently with any concurrent siblings of C that

are still executing. However, sequential steps that are supposed to follow

C are not initiated until exception handling terminates. E, in fact, can be

thought of as performing an alternative task to that performed by C.

If E terminates successfully, then P can continue with its forward execu­

tion.

If E aborts or fails to perform the alternative task (in which case, too, it

is aborted), or if no exception handler had been defined for C, then P has

two ,options. The first option is that P itself aborts, possibly returning an

exception condition up to its parent (thus, failure handling moves recursively

up the activity tree). The second option is that P branches to an alternative

computation path. Note that this requires no additional mechanisms. The

conditional branches can be coded into P's logic, or implicitly invoked via

rules.

The exception handling semantics described above are almost identical

for activities and for transactions. The only difference is that if an activity

3.4 Summary 17

node is to be aborted, then its already committed subactivities and top

transactions must first be compensated for.

3.4 Summary

To summarize, we present in Figure 2, a state machine diagram that captures

the behavior of our model. The multiple paths correspond to the executions

of different types of actions. The diagram consists of nodes, arrows and

labels: The nodes describe the different states in which an action might be,

the arrows describe the legal transitions between states, and the labels on the

arrows correspond to the conditions required by the respective transitions.

The initial state is the active state and the final states are done, aborted and

compensated.

We start by describing a failure-free execution. An action starts in the

active state from which it exits by either reaching the end of its computation

or a failure. Upon normal termination, the action enters the finish state.

Note that an action stays in the active state until all its children terminate.

Noncritical actions that commit move into the committed state; all critical

actions move upon commit to the self-commit state. The self-commit state

represents the state in which an action is only tentatively committed and can

be simply aborted if its parent aborts. The committed state, on the other

hand, corresponds to the state in which the effects of the action have already

been committed to the "outside world", and therefore, the action can only

be compensated for should its parent abort. When the effects of an action

cannot be revoked by simply aborting it or compensating for it, the action

moves into the done state. Noncritical actions move into the done state when

their parent commits; critical actions move into this state when they commit

through their CNA.

Next we consider non-failure-free executions. An abort of an uncom-

18 4 AN EXAMPLE APPLICATION

-,abort

Figure 2: Action State Diagram

mitted action (an action in the following states active, finish, or exception­

handling state) moves it into the aborted state. The abort of the parent of

an uncommitted or tentatively commited action will also cause the abort of

the action and thus move it into the aborted state. As a result of an abort of

the parent of a noncritical action that in is the committed state, the action

moves into the compensated state.

Upon the failure of a child, the active action moves into an exception­

handling state, in which it makes an attempt to accomplish the tasks of the

failed child. It creates a child to perform the exception handling, and if the

child terminates normally, it (the parent) moves back to the active state;

otherwise, it aborts and therefore ends up in the aborted state.

4 An Example Application

This section outlines a patient information system for a hospital. This ex­

ample is an adaptation of an example offered in [DHL90]. The example

19

III [DHL90] focused on deferred and decoupled transactions spawned from

database rules. In this section, we show how a mixture of the activity con­

structs and the database rules can be used to model the application. The

database rules are expressed using the same syntax as that used in [DHL90].

The syntax used here for describing activities is self-explanatory.

The example models a long running activity that starts when a patient

arrives at the hospital, continues through stages of examination and tests,

until the patient is discharged from the hospital. For brevity we omit many

details. However, through the simple example, we illustrate sequential and

parallel control flow of activities and transactions, nested subactivities and

subtransactions, simple data flow, critical actions, exception handling, and

deferred and decoupled CD_top subtransactions spawned by database rules.

As in [DHL90], we assume that all pertinent information about the patient

is recorded in a database that is shared by all the organizations involved.

When a patient arrives, an event containing the patient's social security

number is signaled which causes the Treat.Patient activity to be invoked.

Treat.Patient in turn invokes subactions Admit, Notify.Doctor, Examine,

Test and Discharge. The relevant activity descriptions are shown in figure 3.

Admit itself is an activity and consists of two subactions, Create.Adrn.Record

and Assign.Doctor. Create.Adm.Record returns an admission number AdNo.

AdNo is sufficient to locate the patient's folder in the database. Assign.Doctor

is itself an activity, consisting of a critical subaction, Schedule-Doctor, and

another subaction Confirm. Confirm consults the patient to confirm the

doctor assignment. If Confirm fails, the activity Assign-Doctor is aborted.

Since Schedule-Doctor is a critical subaction, abort of Assign.Doctor will

automatically cause it to be aborted. Abort of Assign.Doctor is reported as

a failure signal to its parent Admit which in turn "aborts" itself by applying

a compensation subaction Cancel.Adm.Record. Abort of Admit is reported

20 5 A PROPOSED IMPLEMENTATION ARCHITECTURE

to its parent Treat.Patient which simply terminates.

If the patient is admitted successfully, s/he goes through an examination­

test loop. For examination, the doctor is notified, and when the doctor

acknowledges (by signaling Doctor.Ack), the Examine action takes place. If

tests are prescribed as a result of Examine, then the Test activity is invoked,

and when Test is done, the doctor is notified again as part of the examine­

test loop. Otherwise, the patient exits the examination-test loop and is

discharged.

The Examine action is executed as an (interactive) transaction. The

doctor prescribes medications and tests during this transaction. A database

rule, Check.Conflicts, is triggered whenever prescriptions are inserted into a

patient's folder to check for conflicts of medications and tests. It is spawned

as a deferred subtransaction within the Examine transaction. The rule is

shown in figure 3.

The Test action is an activity that consists of Schedule.Test followed by

parallel performance of Schedule-Lab, Notify.Lab, and Execute.Test subac­

tions for each test subscribed. When all tests are done, the Test activity

terminates, and the doctor is notified. However, if any test reveals life­

threatening condition, a database rule High.Priority_Notification is triggered

which immediately notifies the doctor without waiting for other tests to fin­

ish. This rule is triggered as a causally dependent decoupled top transaction

(Cfr.top] spawned from the Execute.Test transaction. This rule is shown in

figure 3.

5 A Proposed Implementation Architecture

In this section we propose a simple implementation of the ATM model. The

implementation described in this section is to illustrate one particular way of

materializing the model. It is not intended to address efficiency or optimality

Activity Treat_Patient (SSlo)
Admit (SSlo,Adlo,leed_test)
repeat until not leed_test

10tify_Doctor (Adlo)
01 Doctor_Ack(Adlo)
DO

Examine (Adlo, leed_test)
if leed_test

Test (Adlo,Test_list)
endrepeat

Discharge (Adlo)
On Failure(Admit) /. exception ./

Terminate(Signal Failure)
End Activity

Activity Admit (SSlo,Adlo,leed_test)
Create_Adm_Record (SSlo,Adlo)
Assign_Doctor (Adlo,Active)
01 Failure(Assign_Doctor) /. exception ./

DO
Cancel_Adm-Record (Adlo)
Terminate(Signal Failure)

End ActiYity

Activity Assign_Doctor(Adlo,Active)
critical Schedule_Ooctor(Adlo)
Confirm(Adlo,Active)
01 Failure(Confirm)

Abort(Signal Failure)
End Activity

Activity Test (Adlo)
Schedule_Test (Adlo,Test_list)
parfor T in Test_list

Schedule_Lab(Adlo,T)
lotify_Lab(Adlo,T)
01 Lab_Ack(Adlo,T)

Execute_Test (Adlo ,T)
endparfor

End Activity

Rule Check_Con£licts
01 {insert Prescriptions (Adlo)}. EDT
DO

begin_transaction
presc_check (Adlo);

end_transaction
begin_transaction

notify_doctor(Adlo,D);
get_input (D, op);
if op = "Abort" then abort_top;

else: execute op;
end_transaction

Rule High_Priority_lotification
01 insert Procedure_Result (Adlo)
DO

begin_CDtop
if Dangerous(AdRo)
then

begin_subtransaction (priority high)
notify_doctor(Adlo)j

end_subtransaction
end_CDtop

Figure 3: Activity and Rule Descriptions

21

22 5 A PROPOSED IMPLEMENTATION ARCHITECTURE

tradeoffs among several possible implementations. In particular, we have

opted for a design which builds on top of two other service abstractions

which are either already available or well understood.

The proposed implementation assumes that a simple nested transaction

service [Lisk85, Moss81] is available. Additionally, it uses services of a reliable

queueing facility. The queueing facility is based on the queue abstraction

as described in [BHM90], with additional primitives to allow for dynamic

creation of queues. In essence, the nested transaction implementation con­

stitutes the backbone of the system that offers atomic and persistent compu­

tations. The reliable queueing facility, which itself relies on the availability

of an underlying transaction system, offers the ability for the system to con­

nect the atomic computations together in a reliable and persistent manner.

Together, they enable us to devise a simple implementation for our activ­

ity/transaction model. For brevity, we do not consider critical actions in this

proposed implementation.

5.1 Overview

Activities execute as a sequence of top transactions or a sequence of con­

current blocks of top transactions. Every top transaction creates an input

queue and is given a handle to an output queue. The input queue is used to

capture the original top transaction request as well as deferred subactions

requested during execution of the transaction. The output queue is used to

synchronize with, or communicate the result to, subsequent top transactions

in an activity.

A top transaction executes a sequence of subtransactions. Each sub­

transaction removes an element from the input queue and performs the work

described by the element. A subtransaction may request deferred actions by

inserting the request into the input queue of the top transaction. A subtrans-

5.2 The Reliable Queuing Services 23

action may also request a decoupled action by inserting the request into a

system queue SYSQ. Every element in SYSQ will cause a top transaction to

be spawned by the system. A top transaction finishes when its input queue

is empty (i.e., when all deferred subtransactions are executed). Upon fin­

ishing, based on its "activity context" (to be explained later) it may create

and insert additional queue elements into SYSQ to generate subsequent top

transactions that belong in the activity that it is embedded in.

All operations on queues participate in nested transaction semantics. By

the use of transactional queues, subactivities and decoupled transactions are

reliably chained together to ensure persistent progress. Upon system re­

covery, the queue elements in SYSQ are automatically recovered, and the

processing continues. The status of a running activity can be determined by

, recursively tracing through the input and output queues of the top transac­

tions involved in the activity.

5.2 The Reliable Queuing Services

A reliable queue is an abstract data type that stores queue elements. The

component of the system which manages queues and execute operations on

queues is called a queue manager. Operations on queues are in general issued

from within transactions. Queue managers therefore participate in transac­

tion execution as conventional database managers.

Reliable queues have been described in [BHM90] as a vehicle for imple­

menting reliable request processing in a transaction processing system where

the client may use the queue operations to reliably capture its (simple) state

and to recover properly from failures. We briefly summarize the queue oper­

ations below.

Unless otherwise specified, every queue operation is transactional: its

effect persists if and only if the invoking transaction commits. We first define

24 5 A PROPOSED IMPLEMENTATION ARCHITECTURE

the following operations for creating and destroying queues:

• q = create.queuei}: creates a queue and returns a queue handle q for the
queue.

• destroy_queue(q): destroys the queue designated by the queue handle q.

Queues are accessed using the following data manipulation operations."

• enq(q,qe): creates an element qe and stores it in a queue q.

• enq.immediateiq.qe]: creates an element qe and stores it in a queue q. Its
effect is visible immediately, regardless of whether the invoking transaction
commits.

• qe = deq(q): deletes an element qe from a given queue q, and returns it to
the caller. If the invoking transaction aborts, then the element is marked
with an abort code and returned either to the given queue or to a separate
error queue (which can be specified by a parameter in the call). If q is
empty, the invoking transaction is suspended until an element arrives. A
queueing discipline can be specified by associating a field of a queue element
as the priority. The Dequeue operation will dequeue the next item with the
smallest priority value.

5.3 Transaction Service Program

A top transaction is created when a thread is dispatched to service a queue el­

ement in SYSQ. The thread executes the transaction service program (TSP).

The pseudo-code for a simple TSP is shown in figure 4.

TSP removes a queue element qe from SYSQ and creates an input queue

inq for itself. The element qe contains information about the task the top

transaction is to perform, as well as other relevant information needed, in­

cluding its activity context, requirement to synchronize with other top trans­

actions, and an output queue handle. We omit the details of the structure

of these information. TSP extracts the task (qe. trx) to be performed from

qe and inserts it into its own input queue. It then starts a loop of subtrans­

actions to service its input queue.

lSemantics of these operations are adapted from [BHM90]

5.3 Transaction Service Program

TSP(inq,outq):
Begin Trx; 1* executes as a single top tr:x: *1
qe = deq(SYSQ); 1* qe contains sync & other info*1
inq = create_queue(); 1* need an inq *1
outq = qe.outq; 1* extracts outq handle from qe *1
for each sq in qe.sync 1* if sync needed *1

sqe = deq(sq); 1* sync with other top trx*1
endfor;

enq(inq, qe.trx); 1* qe.trx is first subtrx*1
current_cycle = 0;
Do while inq not empty;

Begin_Trx; 1* next subtrx *1
sub_qe = deq(inq);
if sub_qe.cycle > current_cycle then

current_cycle = sub_qe.cycle; l*inc*1
execute sub_qe.task;
End_Trx;

1* finishing *1
if qe.output_needed then

enq(outq, return_value);
if qe.has_context then I*if is in an activ.context*/

for each next_t in qe.context {
cq = find_appropriate_out_queue();
nextqe = package(); enq(SYSQ,nextqe);}

destroy_queue(inq); 1* suicide *1
End Trx; 1* end top transaction */

Figure 4: Pseudo-code for TSP

25

26 5 A PROPOSED IMPLEMENTATION ARCHITECTURE

To implement deferred actions of a transaction, the system translates

begin.deferred.action calls into enqueue operations on the input queue of the

top transaction. To implement the cycle discipline, TSP carries a variable

for "current cycle". When a deferred action is requested, the run-time checks

this number and encodes the next higher number as the priority of the queue

element representing this deferred action. This cycle number is incremented

when the top transaction server detects the next element dequeued to be of

a higher cycle number.

To implement decoupled actions of a top transaction, the system trans­

lates a begin.decoupled.top or begin.Cfr.TOf' call into an enqueue or en­

queueimmediate operation on SYSQ. If it is a CD top, then the enqueue

operation is used. If it is an independent top transaction, then the en­

queue.immediate operation is used.

It is assumed that the activity context is passed to a top transaction T

through the queue element qe that T obtained from SYSQ (qe.context). If

this context variable indicates that the top transaction is executed in the

context of an activity, then, upon finishing (i.e., upon exhausting its deferred

subtransactions), T packages and inserts a queue element in SYSQ in order

to cause a top transaction TI to be spawned for the activity. It also creates

an additional output queue for TI, or passes its own output queue handle

along to Tl. To ensure that the decoupled top transactions spawned by T

are executed before TI, the queue element communicated by T to TI option­

ally contains a list of the output queue handles (qe.sync) of the decoupled

transactions of T. TI waits for termination of these decoupled transactions

by dequeueing from these queues.

The parallel activity model can be implemented by creating multiple sub­

sequent top transactions upon finishing, and by creating an appropriate join

top transactions which waits for termination of the parallel ones.

27

6 Conclusion

This paper addresses the problems of reliable control flow management for

long-running activities. Such activities have weaker atomicity requirements

than transactions. The contributions of the paper are the definition of ATM,

a rich transactional activity model, and a proposed implementation of the

model.

In ATM, an activity consists of one or more steps, each of which is itself

an activity or a transaction. The model supports communication between

the steps of an activity; the failure semantics of activities, including compen­

sation and exception handling (execution of alternative steps); and querying

the status of an activity.

Control flow and data flow between the steps of an activity may be speci­

fied statically in the activity's script, or may be dynamically modified through

the execution of rules triggered by events that occur as the activity pro­

gresses. We believe that scripts and rules provide a powerful combination of

mechanisms for building activities, whose semantics are described by ATM.

In a previous paper [DHL90], we had illustrated the use of rules alone to

implicitly chain the steps of an activity. We had argued that rules provided

dynamic flow. However, the use of rules alone makes it more difficult to

comprehend the computations performed by an activity.

The ATM model introduced in this paper directly adds the concept of ac­

tivities and their semantics to the extended nested transaction model. This

has two benefits. First, it provides richer structure for activities, since they

can now consist recursively of subactivities in addition to transactions. Sec­

ond, it allows control and data flow in an activity to be explicitly defined

via a script, without requiring rules. Rules are still useful for checking con­

straints, triggering additional tasks, or modifying the flow in response to

28 REFERENCES

unanticipated conditions.

The proposed implementation of ATM is modular. It relies on the imple­

mentation of two abstractions: nested transactions and recoverable queues.

The complexity of the implementation depends on the expressiveness of the

language for describing workflow in an activity.

Ideally, scripts and rules should be equally expressive for defining the

conditions that control the invocation of steps. Our rule model, described in

[DBM88, DHL90], supports the specification of complex triggering conditions

for rules. These include temporal events (e.g., at 5 o'clock, compute account

balance) and composite events (e.g., if test results have not been received

in 3 days, notify attending physician). We can extend the model to include

conditions based on the status of other steps of an activity (e.g., the funds

transfer subactivity has been aborted). Defining an expressive language for

scripts and rules is the subject of future work.

Also, more work is needed to extend the activity model with support for

cooperative work.

Acknowledgments

We wish to thank Adel Ghomeny and Charly Kleissner at Digital TPwest

for inspiring discussions on the notion of an activity description, and Phil

Bernstein for the many valuabel suggestions.

References

[BHM90] Bernstein, P.A., M. Hsu, B. Mann, "Implementing Recoverable

Requests using Queues." Proc. ACM SIGMOD Conf., May 1990.

[Chak89] Chakravarthy, S., et al., "HiPAC: A Research Project in Active

Time-Constrained Database Management. Final Technical Report." Xerox

Advanced Information Technology, Cambridge, Mass., July 1989.

REFERENCES 29

[CR90] Chrysanthis, P.K., K. Ramamritham, "ACTA: A Framework for

Specifying and Reasoning about Transaction Structure and Behavior."

Proc. ACM SIGMOD ConJ., May 1990.

[Daya88] Dayal, U., "Active Database Systems." Proc. 3rd International

Conference on Data and Knowledge Bases, Jerusalem, Israel, June 1988.

[DBM88] Dayal, U., A. Buchmann, D. McCarthy, "Rules are Objects Too: A

Knowledge Model for an Active, Object-Oriented Database Management

System", Proc. 2nd International Workshop on Object-Oriented Database

Systems, West Germany, September 1988.

[DHL90] Dayal, U., M. Hsu, R. Ladin, "Organizing Long-Running Activities

with Triggers and Transactions." Proc. ACM SIG},;[OD ConJ., May 1990.

[EG89] Ellis, C.A., S.J. Gibbs. "Concurrency Control in groupware Sys­

tems." Proc. ACM SIGMOD Conf., June 1989.

[ELLR90] Elmagarmid, A.K., Y. Leu, W. Litwin, M. Rusinkiewicz, "A Mul­

tidatabase Transaction Model for InterBase." Proc. VLDB ConJ. , August

1990.

[Garc90] Garcia-Molina, H., et al., "Coordinating Multi-Transaction Activ­

ities." Report UMIACS- TR-90-24, CS-TR-2412, Computer Science Tech­

nical Report Series, University of Maryland, College Park, MD.

[GS87] Garcia-Molina, H. and K. Salem, "Sagas," Proc. ACM SIGMOD

Conf., May 1987.

[HC88] Hsu, M. and T.E. Cheatham, "Rule Execution in CPLEX", Proc.

2nd International Workshop on Object Oriented Database Systems, West

Germany, September 1988.

30 REFERENCES

[HLM88] Hsu, M., R. Ladin, and D. McCarthy, "An Execution Model for Ac­

tive Database Management System," Proc. 3rd International Conference

on Data and Knowledge Bases, Jerusalem, Israel, June 1988.

(Kais90] Kaiser, G.E., "A Flexible Transaction Model for Software Engineer­

ing." Proc. IEEE Conf. on Data Engineering, Feb. 1990.

[KLMP84] W. Kim, R. Lorie, D. McNabb, W. Plouffe, "A Transaction Mech­

anism for Engineering Design Databases." Proc. VLDB Conj., August

1984.

(KSUW85] "Klahold, P., G. Schlageter, R. Unland, W. Wilkes, "A Trans­

action Model Supporting Complex Applications in Integrated Information

Systems." Proc. ACM SIGMOD Conf., May 1985.

(Klei91] Klein, J. "Advanced Rule Driven Transaction Management." Proc.

IEEE COMPGON Spring 1991.

[KS90] Korth, H.F., G.D. Speegle, "Long Duration Transaction in Software

Design Projects." Proc. IEEE Conj. on Data Engineering, Feb. 1990.

[KR88] Klein, J. and A. Reuter, "Migrating Transactions," Future Trends in

Distributed Computer Systems in the '90s, Hong Kong, 1988.

(Lisk85] B. H. Liskov. "The Argus Language and System." Distributed Sys­

tems: Methods and Tools for Specification. pp. 343-430. Springer-Verlag,

Berlin 1985.

[McGe77] McGee, W.C., "The Information Management System IMS/VS

Part V: Transaction Processing Facilities," IBM Sys. Journal, Vol. 16, No

2., 1977, pp. 148-169.

REFERENCES 31

[Moss81] J. Moss. "Nested Transactions: An Approach To Reliable

Distributed Computing." MIT Laboratory for Computer Science,

MIT/LCS/TR-260 1981.

[NZ90] Nodine, M.H., S.B. Zdonik. "Cooperative Transaction Hierarchies: A

Transaction Modle to Support Design Applciations." Proc. VLDB Conf.,

Aug. 1990.

[RRD90] Rauft, M.A., S. Rehm, K.R. Dittrich. "How to Share Work on

Shared Objects in Design Databases." Proc. IEEE Conf. on Data Engi­

neering, Feb. 1990.

[Reut89] Reuter, A., "Contracts: A Means for Extending Control Beyond

Transaction Boundaries," Presentation at 3rd Workshop on High Perfor­

mance Transaction Systems, Pacific Grove, CA, September 1989

[Weik86] "A Theoretical Foundation of Multi-Level Concurrency Control",

PODS Proceedings, 1986.

32 REFERENCES

