March 1979

This manual describes the concepts, structure, and usage of Record Manage-
ment Services (RMS) software for the PDP-11. Though it describes syntax for
all programming languages supported by RMS-11, this Guide is not a definitive
source for that information.

RMS-11 User’s Guide
Order No. AA-D538A-TC

SOFTWARE: RMS-11 V1.8

To order additionatl copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital ecquipment corporation - maynard, massachusetts

The information in this document is subject to change without notice and y__\
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that

may appear in this document.

The software described in this document is furnished under a license, and
may only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1979 Digital Equipment Corporation

The postage-paid READER’S COMMENTS form on the last page of this AA‘
document requests your critical evaluation to assist us in preparing future
documentation.
The following are trademarks of Digital Equipment Corporation:
DEC IAS -_,
DECnet MASSBUS -
DECsystem-10 PDP
DECSYSTEM-20 RSTS
DECtape . RSX
DECUS UNIBUS
DIBOL VAX
DIGITAL VMS
FOCAL -
A

3/80~14

mm

Contents
Page
Preface XU
Documentation Conventions XUl
Chapter 1 Introduction to RMS-11
1.1 Concepts of Data Organization 1-1
1.2 RMS-11 Implementation of Data Organization 1-10
1.2.1 Hardware Data Structure. 1-11
1.2.2 Software Data Structure 1-12
1.2.3 The RMS-11 Interface 1-16
1.2.3.1 Record Formats. 1-16
1.2.3.2 File Organizations. 1-17
1.2.3.3 Record Access Modes " 1-19
1.2.3.3.1 Sequential Access Mode 1-19
1.2.3.3.2 Random Access Mode 1-21
1.2.3.3.3 Access by Record’s File Address 1-23
1.2.3.3.4 Changing Record Access Modes. 1-23
1.2.3.4 Record Operations 1-25
1.2.3.5 RMS-11 Utilities 1-26
1.2.4 Record Processing Environment. 1-27
1241 Using RMS-11 e e e e e e e e 1-28
1.2.4.2 1/0O Buffers in Record Operations. 1-30
1.2.4.3 Record Access Streams 1-31
1.2.4.4 JAS/RSX-11M Asynchronous Record Operations 1-33
1.2.45 Record Transfer Modes 1-33
1.2.5 File Processing Environment 1-33
12.5.1 File Processor. 1-33
1.2.6.2 File Sharing 1-36
1253 File Operations 1-36
1254 File Attributes e e e e e 1-37
1.2.6 Bypassing Record Processing 1-40

i

Chapter 2 Application Design

Chapter 3

v

21 WhentoDesign 0 e e e e e e
2.2 Design Considerations oo
2.2.1 Maximize Speed First00

2.2.2 Reducing Space Requirements

2.2.3 Provide Shared Access
2.2.3.1 System Protection Codes

2.2.3.2 Sharing among Programs

2.2.3.3 Sharing among Record Access Streams.

2.2.3.4 Programming Considerations.

2.24 Remember Ease of Design

2.3 Design Process
2.4 Selecting a File Organization.

............................

Sequential File Applications

3.1 Record Definition e e e e e e
3.2 FileDesign e e e e e e e
3.2.1 Initial Allocation.00
3.2.2 Default Extension Quantity
3.2.3 Contiguity.o e
33 TaskDesign. e e e e e e
3.3.1 Record Operations
33.1.1 Connect e e

3.3.1.2 Disconnect

3313 Find o e

3314 Flush. oo

3315 Get. e e e e

3316 Put. e

33.17 Rewind.

33.1.8 Truncate e

33.1.9 Update. e

3.3.2 Record Transfer Modes.
3.3.21 MoveMode.o

3.3.22 LocateModeo

3.3.3 I/O Techniques v v v v v
3.3.3.1 IAS/RSX-11M Asynchronous Record Operations

3.3.3.2 Deferred Write

3.3.3.3 Multiple Buffers

3.3.3.4 Multiple Record Access Streams

3.3.3.5 Multi-Block Count MBC).

3.34 File Operations
3341 Close. e e e e e e

3.3.42 Create e e e e e

3343 Open. o e e

33.4.4 FErase. e

3345 Extend. oo

Chapter 4 Relative File Applications

4.1 Record Definition 4-2
4.2 File Design e 4-2
4.2.1 Bucket Size 4-2
42.2 Allocation s 4-3
4.2.2.1 Initial Allocation 4-4
4.2.22 Default Extension Quantity 4-5
4223 Contiguity 4-5
4.2.3 Maximum Record Number 4-6
43 Task Design.o 4-7
4.3.1 Record Operations v ... 4-7
4311 Comnnect 4-8
4312 Delete L 4-8
43.1.3 Disconnect00 4-8
4314 Findo 4-8
4315 Flush. o . 4-10
4316 Get. e 4-10
4317 Put. . ..o 4-12
4318 Rewind. 4-13
43.1.9 Update. e 4-13
43.2 Record Transfer Modes. 4-14
4321 MoveMode. 4-14
4322 LocateMode 4-14
433 I/OTechniques v v i v i 4-15
4.3.3.1 IAS/RSX-11M Asynchronous Record Operations 4-15
4.33.2 Deferred Write 4-15
4.3.3.3 Multiple Buffers 4-16
4.3.3.4 Multiple Record Access Streams 4-17
43.4 FileOperationso 4-17
4341 Close. v e e e e e 4-17
4342 Create 4-17
4343 Open. o 4-17
43.44 Erase.o e e 4-18
4345 Extend. 0o 4-18
Chapter 5 Indexed File Organization
5.1 Physical Structure oL oL 5-2
52 Conceptual Structure 5-4
521 Data e e e 5-5
5.2.1.1 Level O of the Primary Index. 5-5
5.2.1.2 Level 0 of the Alternate Indexes 5-6
522 Indexes e e e e e e e e e e 5-6
5.2,3 Random Access Using the RMS-11 Indexed File Structure . 5-8
524 Why this Structure? 5-8

Chapter 6

Chapter 7

vi

5.3

5.4
5.5

Procedures for Performing Random Record Operations. 5-10

531 PuttingaRecord. oo 5-10
53.1.1 SimplestCase.o 5-10
53.1.2 Bucket Splitting00 5-12
5.3.1.3 Incremental Reorganization 5-13
5.3.2 Getting and/or Finding a Record 5-13
5.3.3 Updatinga Record. 5-14
534 DeletingaRecord oo 5-16
Procedures for Performing Sequential Record Operations. 5-17
I/O Cost of Performing Record Operations. 5-17

Indexed File Design

6.1
6.2

6.3
6.4
6.5

6.6

6.7

Record Definition o o o e e e e e e e e e e 6-1
Key Selectiono 6-2
6.2.1 NumberofKeys. 0o 6-2
622 KeySize e e e e e e e 6-3
6.2.3 KeyDataType o v v v oo 6-4
6.2.4 Position of Keyin Record 6-6
6.2.5 Key Characteristicso 6-7
ATEAS . . v v e 6-10
Placement Control e e e e e e e e 6-14
Bucket Size e e e e e e e e e e e e e e 6-16
6.5.1 Bucket Size for PrimaryIndex6-17
6.5.2 Bucket Sizes for Alternate Indexes 6-21
6.5.3 Program Syntaxo 6-22
Allocation e e e e e e e e e e e e e e e 6-24
6.6.1 Initial Allocation. oo 6-24
6.6.2 Default Extension Quantity 6-29
Population Techniques oo 6-29
6.7.1 Ascending Order by Primary Key. 6-30
6.7.2 Random Insertions after File Population. 6-31
6.7.2.1 Fill Numbero 6-31
6.7.22 MassInsert. oo e 6-33

Indexed Task Design

7.1

Record Operations« . o oo 7-1
7.1.1 Connect. . . v v v e e e e e e e e e e e e e e e e e e 7-1
712 Delete. e e e e e e e e e e 7-2
7.1.3 Disconnect. v v o e e e e e e e e e e e e e 7-2
714 Find e e e e e e e 7-2
715 Flush e e e e e e e e 7-4
716 Get. e e e e e e e e e e e e e 7-4
TL17 Put o e e e e e e e e e e e e e e e 7-5
71.8 Rewind e e e e e e 7-6
719 Update e 7-6

Chapter 8

7.2

7.3

7.4

Record Transfer Modes. 7-6

721 MoveMode 7-7
722 Locate Mode 7-7
I/O Techniques 7-8
7.3.1 IAS/RSX-11M Asynchronous Record Operations. 7-8
732 Deferred Write. 7-8
7.3.3 Multiple Buffers. 7-8
7.3.4 Multiple Record Access Streams 7-8
7.3.5 Sequentially Reading Write-Shared Files 7-8
File Operations 7-10
741 Close 7-10
7.4.2 Create. 7-11
743 Open e e 7-11
744 Erase 7-11
7.4.5 Extend 7-11

Common Optimization Techniques

8.1

8.2

8.3

8.4

Task Building with RMS-11 Routines. 8-1
8.1.1 Disk-Resident Overlays. 8-4
8.1.1.1 Standard ODL Files. 8-7
8.1.1.2 Prototype ODL Optimization 8-8
8.1.12.1 Techniques 8-9
8.1.1.2.2 Possible Task Builder Errors 8-14
8.1.1.2.3 Calculating Changes in Task Size 8-14
8.1.1.2.4 Examples of ODL Optimization 8-14
8.1.2 Memory-Resident Overlays. 8-20
8.1.2.1 Building the RMS-11 Resident Libraries 8-21
8.1.2.2 Task Building against an RMS-11 Resident Library. . . 8-22
8.1.2.3 Installing an RMS-11 Resident Library. 8-23
8.1.3 Deciding between Types of Overlays 8-23
Program Development 8-24
8.2.1 Flow of Operations Should Reflect Overlay Structure 8-24
8.2.2 Task Builder Considerations 8-25
Virtual-to-Logical Block Mapping. 8-26
8.3.1 Retrieval Pointers on Disk e e e e e e e 8-26
83.1.1 IAS/RSX-1IM 8-26
83.1.2 RSTS/E 8-26
8.3.2 Retrieval Pointers in Memory. 8-27
8.3.3 Optimizing Window Turning 8-27
8.3.3.1 IAS/RSX-11M 8-27
8332 RSTS/E 8-28
Other Optimizations 8-29
84.1 DataCaching, 8-30
8.4.2 Allocating More Resources to the Task 8-30
84.3 DiskUsage 8-30

vit

Chapter 9 RMS-11 Utilities

viit

9.1

9.2

9.3

9.0.1 Using the RMS-11 Utilities. 9-2
9.0.2 Utility Conventions« . . o 0. 9-4
9.0.2.1 Command vs. Interactive 9-5
9.0.2.2 Installed vs. Uninstalled. 9-6
90253 IndirectFiles« . o . . oo 9-6
9.02.4 Command String Continuation. 9-7
9.025 PatchLevel. o 9-7
9.0.2.6 Command Utility Error Messages 9-17
9.0.3 Documentation Conventions« . o . 9-9
RMSBCK Command Utility 9-10
9.1.1 Purpose o o e e e e e 9-10
9.1.2 Effect. o e e e e e e e e e e e e 9-10
9.1.3 Call and Termination 9-12
9.1.3.1 Permanently Installed Utility 9-12
9.1.3.2 Uninstalled Utility 9-12
9.1.4 Command String.o oo 9-12
9.1.4.1 General Form. 9-12
9.1.4.2 Global Switches. e e e e 9-14
9.1.4.3 OQutfile Switches 9-15
9.1.4.4 Infile Switches 9-17
9.1.4.5 Command String Examples 9-17
9.1.5 Cautions v v e e e e e e e e e e e e e e e 9-18
RMSCNV Command Utility« oo 9-19
9.2.1 Purpose o o i i e e e e e e e 9-19
922 Effect. . . v o v e e e e e e e e e e e e e e e e e e 9-19
92.3 Call and Termination o o o 0. 9-21
9.2.3.1 Permanently Installed Utility- 921
9.2.3.2 Uninstalled Utility 9-21
924 Command String. e e e 9-21
92.4.1 General Form. oo 9-21
9.2.4.2 Global Switches.« . oo 9-22
9.2.4.3 Outfile Switches o 9-23
92.4.4 Infile Switcheso 9-26
9.9.4.5 Command String Examples 9-26
9925 Cautions v v e e e e e e e e e e e e e e e e e 9-27
9.2.6 I/O Techniques « .« v v o vt 9-28
RMSDEF Interactive Utility« o v o v v v 9-29
9.3.1 PUIPOSE . . .« . . e e e e e e e e e e e e 9-29
9.32 Effect. 0 o e e e e e e e e e e e e 9-29
93.3 Call and Termination « . « .« « o e e 9-32
9.3.3.1 Permanently Installed Utility 9-32
9.3.3.2 Uninstalled Utility e e 9-33

9.3.3.3 Terminating The Utility.933

9.34 Processt e e e e e e e e e e e e e e e e 9-33
93.4.1 CommandPFile 9-33

9.34.2 File Specification0 9-34

9.3.4.3 Data Structureo 9-35

9.34.4 Key Definition L 9-38

9.3.4.5 File Structure.o 9-41

9.3.46 DataAllocation. oo 9-45

9.3.4.7 Protection00 e e e e e 9-47

9348 File Creation v o o v e e 9-48

9.4 RMSDSP Command Utility 9-49
9.4.1 Purpose e e e e e e e e 9-49
942 Effect. e 9-50
9.4.2.1 For Disk Sequential Files 9-50

9.4.2.2 For Magnetic Tape Files. 9-51

9.4.2.3 TForRelative Files. 9-51

9424 ForIndexedFiles. 9-51

9425 TFor Indexed Files With FU Switch Specified 9-51

9.4.3 Call and Termination « « v v v v« 0 v 9-52
9.4.3.1 Permanently Installed Utility 9-52

9.4.3.2 Uninstalled Utility 9-52

944 Command String. e e 9-53
9.4.4.1 General Form. e e e e e e e 9-53

94.4,2 Switches e e 9-54

9.44.3 Command String Examples 9-54

945 Cautions . . . - .« v e e e e e e e e e e e e e e 9-57
9.5 RMSIFL Command Utility.« o .. 9-57
9.5.1 Purposet e e e e e e e e e e e e 9-57
9592 Effect o o e e e e e e e e e e e e 9-57
9.5.3 Call and Termination« « .« o oo 9-61
9.5.3.1 Permanently Installed Utility 9-61

9.5.3.2 Uninstalled Utility 9-61

95.4 Command String. e 9-61
954.1 General Form.00 9-61

9.5.4.2 Global Switches.o 9-62

9.5.4.3 Outfile Switches 9-63

95.44 Infile Switcheso 9-66

95.5 Cautions v v e e e e e e e e e e e e e e e e e 9-66
9.6 RMSRST Command Utility 9-67
9.6.1 Purpose oo e e e 9-67
96.2 Effect. e e 9-68
9.6.3 Call and Termination 9-69
9.6.3.1 Permanently Installed Utility 9-69

9.6.3.2 Uninstalled Utility 9-69

ix

9.64 Command String. oo 9-69

9641 GeneralForm. 9-69
9.6.4.2 Global Switches. 9-71
9.6.4.3 Outfile Switches 9-72
9.6.4.4 Infile Switcheso 9-73
9.6.4.5 Command String Examples 9-74
9.6.5 Cautions e e e e e e e e e 9-75

Appendix A RMS-11 and the Operating Systems

A1 TAS . . . o e e A-1
A1.1 RMS-11 Restrictionson IAS A-1

A.1.2 IAS Restrictionson RMS-11 . .". A-1

A.1.3 Compatibility with Other File Managers A-1
A.l1.4 Asynchronous Operations. A-2
A.1.4.1 RMS-11 Synchronous Environment A-2

A.1.4.2 RMS-11 Asynchronous Environment. A-2

A2 RSTS/E. e e e e e e e e e A-3
A2.1 RMS-11 Restrictionson RSTS/E. A-3
A.2.2 RSTS/E Restrictions on RMS-11. A-3
A.2.3 Compatibility with Other File Managers A4

A3 RSX-1IM. e e e e A-4
A3.1 RMS-11 Restrictionson RSX-11M A-4
A32 RSX-11M Restrictionson RMS-11 A-4

A.3.3 Compatibility with Other File Managers A-4

A3.4 Asynchronous Operations. A-4
A.3.4.1 RMS-11 Synchronous Environment A4

A.3.4.2 RMS-11 Asynchronous Environment. A-5

A4 VAX/AME e e e e e A-6
A.4.1 RMS-11 Restrictions on VAX/AME. A-6
A.42 VAX/AME Restrictions on RMS-11. A-6
A4.3 Asynchronous Operations. A-6
A.4.3.1 RMS-11 Synchronous Environment A-6

A.4.32 RMS-11 Asynchronous Environment. A-7

Appendix B RMS-11 and the Programming Languages

B.1 Implementation in Languages T e e e e e e e e B-1
B.2 FunctionChart B-1
B.3 Error Code Mapping. oo B-4

Appendix C RMS-11 Disk-Resident Overlays

C.1 Overlay Structures. oo C-1
C2 RMS-110DLFiles o . v v v v i i i e C-6
C2.1 RMSI6X.ODL. e e e e C-6
C.2.2 RMS20X.0ODL. e e e Cc-7

Appendix D RMSDFN Command Utility

D1 Purpose. v o v e e e e e e e e e e e e D-1
D.2 Effect. o e e e e e e e e e D-1
D.3 Call and Termination e e D-2
D.3.1 Permanently Installed Utility. D-2
D.3.2 Uninstalled Utility. D-2
D4 Command String e e D-2
D41 General Form D-2
D.4.2 Switches. e e e e e D-3
D43 Exampleso e e e D-6
D5 Cautions v v v e e e e e e e e e e e e e e e e D-7

Appendix E Utility Error Messages

E.l RMSDEF Interactive Utility E-1
E.2 Command Utilities., E-9

Appendix F Magnetic Tape Handling

F.1 General Magnetic Tape File Processing F-1
F.2 RMS-11 Magnetic Tape File Processing. F-3
F.2.1 Rewinding Tape Volumes. F-3
F.2.2 Positioning for the Next File F-4

Glossary X

Index

Figures
PRE-1 Map for the RMS-11 User’s Guide « v v v v v v .. XUl
1-1 Files e e e e e e e e e 1-2
1-2 Files with Attributes. 1-2
1-3 Recordsina File. e 1-3
1-4 Record Formats e 1-4
1-5 Record Access Modeso 1-6
1-6 Sequential File Organization 1-7
1-7 Relative File Organization 1-8
1-8 Indexed File Organization I 1-8
1-9 Random Access Example. 1-9
1-10 RMS-11 in Its Environment 1-11
1-11 Physical Storage Structure 1-13
1-12 Logical Data Structure.o 1-14
1-13 Virtual-to-Logical-Block Mapping. 1-15
1-14 Sequential File Organization 1-17
1-15 Relative File Organization 1-18

xi

1-16 Primary Index in RMS-11 Indexed File 1-19
1-17 Program Sequentially Reading a Sequential File. 1-20
1-18 Program Sequentially Reading a Relative File. 1-20
1-19 Program Sequentially Writing to a Relative File. 1-20
1-20 Program Sequentially Reading an Indexed File 1-21
1-21 Program Randomly Reading a Relative File 1-22
1-22 Program Randomly Reading an Indexed File 1-24
1-23 Sequential Account File 1-25
1-24 System Memory Layout 1-27
1-25 RMS-11 Task Structure v v v v e e 1-29
1-26 Record Operations and Stream Context 1-32
1-27 RMS-11’s Environment e 1-34
1-28 Records Spanning Blocks. 1-35
2-1 Time Factors in an I/O Operation 2-4
2-2 System Protection Concepts 2-6
2-3 Bucket Locking Example., 2-10
2-4 Record-Length Field on Disk and Tape 2-15
3-1 RMS-11 Task Structure 3-13
4-1 RMS-11 Task Structureo 4-14
5-1 Indexed File with and without Areas 5-3
5-2 Formatted Bucket 5-4
5-3 IndexasaPyramid 5-5
5-4 Format for Secondary Index Data Record 5-6
5-5 Example of a PrimaryIndex 5-7
5-6 Search Time Curves 5-9
6-1 Single-AreaIndexed File 6-11
6-2 Example of Single-Area Indexed File 6-12
6-3 Two-Area Indexed File. e e e e e e e e e 6-12
6-4 Example of Multi-Area Indexed File 6-13
7-1 RMS-11 Task Structure 7-7
8-1 Source-to-Task Sequence. 8-2
82 RMS-11inTasks e e e e e e e e e e e e 8-3
8-3 Sample Overlay Structure and ODL File 8-5
8-4 Incremental Optimization Example. 8-9
8-5 Concatenation around Overlays Example 8-10
8-6 Duplicate Module Example No. 1. e e e 8-11
8-7 Duplicate Modulee Example No. 2 8-12
8-8 Overlay Structure Diagram. © . . 8-13
9-1 RMSDEF Processing Flowchart. 9-31
C-1 RMS11S.0DL and RMS11X.0DL Overlay Structures C-3

xil

Tables

—
|

Records Formats and File Organizations
Shared Access Criteria« oo
File Organization Characteristics and Capabilities.
File Organization Advantages and Disadvantages
End-of-File Indicators
Sequential File Data Sizes (in bytes)
Relative File Data Sizes (in bytes)
1/0 Cost of Performing Record Operations
Key Data Types e
RMSBCK Utility Switches
RMSCNYV Utility Switches
RMSDSP Utility Switches
RMSIFL Utility Switches

RMSRST Utility Switches
RMS-11 Features Supported by Programming Languages
Language Error Code Mapping
RMSDFN Utility Switches.
Key Characteristic Combinations

DO DO DN
| [T

|

i
QU WO HH DN WM+

.......................

QOQOQO?DOT;PQDOJ

.......................

ﬁo

Nel
1

i

el wiieches
T

....................

Commercial Engineering Publications Typeset this manual using DIGITAL’s
TMS-11 Text Management System.

827ALL

XL

Preface

Record Management Services for the PDP-11 (RMS-11) provides powerful
data management capabilities. The RMS-11 User’s Guide tells you about
those capabilities and how to use them. This manual is designed for instruc-
tion and for reference:

e If you read the manual according to the map in PRE-1 (see “Structure of
the Manual’), you can learn practically everything you need to know about
RMS-11, except its language implementation.

e If you use the manual as a reference, its structure and extensive index make
it easy to consult.

RMS-11 is a set of software routines that transfers data between a running
program, which uses data in a logical form called records, and the file proces-
sor portion of an operating system, which maintains the physical structure of
the data on a storage device.

NOTE

You can use RMS-11 Indexed files only if you have purchased
the RMS-11K software product. Your system manager can tell
you if your system includes this capability.

Prerequisites

To read this manual, you should be either a MACRO-11 or higher level
language programmer who wants to improve the performance of an applica-
tion you have written or are planning to write. In other words, you should have
a working knowledge of a DIGITAL programming language that supports
RMS-11 and some motivation to inquire into the workings of RMS-11.

NOTE

This manual describes the functions of RMS-11. Only
MACRO-11 programs can use the full set of capabilities. The
higher level languages support a subset of those capabilities.
You must use your language documentation to determine:

e what RMS-11 facilities you can actually use in your higher
level language

¢ the syntax to use them

XU

Figure PRE-1: Map for the RMS-11 User’s Guide

PREFACE

Y

INTRODUCTION
TO
RMS-11

CH.1

Y

APPLICATION
DESIGN

CH.2

\

SEQUENTIAL

RELATIVE
APPLICATIONS APPLICATIONS
CH.3 CH.4

COMMON
OPTIMIZATION
TECHNIQUES
CH.8

DESIGN
APPLICATION

XUl

INDEXED
FILE
ORGANIZATION

CH.5

INDEXED
FILE
DESIGN
CH.6

INDEXED
TASK
DESIGN
CH.7

NEED
MORE
INFO

LANGUAGE
MANUALS

ENOUGH
NEED INFO
MORE
INFO)
WRITE
_ APPLICATION
ENOUGH
INFO
RUN
APPLICATION
UNSATISFIED
Y
EVALUATE
APPLICATION
SATISFIED

OPERATIONAL

F-MK-00098-00

Structure of the Manual

Figure PRE-1 shows the paths through this Guide you should follow in the
process of writing your applications. The following paragraphs describe the
parts of the manual shown in that map:

Chapter 1 addresses the RMS-11 beginner: it discusses basic RMS-11
concepts that are common to all programming languages in which RMS-11
applications can be written.

Chapter 2 introduces RMS-11 design, why it is necessary, and its general
premises.

Chapters 3-7 describe the file organizations, their structures, and file and task
design considerations.

Chapter 8 covers common techniques that can be used to optimize RMS-11
applications, regardless of the file organization selected.

Chapter 9 describes the RMS-11 utilities. These tasks provide RMS-11
facilities to all users, programmer or operator, higher level language or
MACRO-11.

Appendixes provide supplementary information, such as:

Implementation-of RMS-11 on the various operating systems
RMS-11 features supported by DIGITAL programming languages
How the higher level languages map RMS-11 error codes
Documentation of the RMSDFN utility

Utility error messages

The Glossary reprises all terms defined in this manual.

Associated Documents

The RMS-11 documentation set contains the following manuals:

RMS-11 User’s Guide
RMS-11 MACRO-11 Reference Manual
RMS-11 Installation Guide

You must also use operating system and language documentation. See the
Documentation Directory for your operating system.

Implementation in Languages

RMS-11 is the record management software for the following PDP-11 pro-
gramming languages. See Appendix B for more information.

BASIC-PLUS-2
DIBOL
MACRO-11
PDP-11 COBOL
RPG II

XUIL

Implementation in Operating Systems

RMS-11 is available as an interface between user application programs and
data storage devices on the following DIGITAL operating systems. See
Appendix A for more information.

IAS
RSTS/E
RSX-11M
VAX/AME

NOTE

The TRAX system uses RMS-11 as part of its central data
manager. See TRAX documentation for a discussion of the
RMS-11 interface on that operating system.

Documentation Conventions

RMS-11 operates similarly on the supporting operating systems (see Appen-
dix A); RMS-11 is the common record access software for most higher level
languages. Therefore, it should be possible to produce a single manual de-
scribing that operation. However, the differences among operating systems
and languages present a barrier to that unification. The following conventions
are designed to enable you to hurdle that fence.

Differences in Operating System Functions

Details that are common to the operating systems are printed in black, and
the details that are specific to one operating system or another are printed in
color as follows:

e RSTS/E-specific information is printed in red.

e JAS-, RSX-11M-, and VAX-specific information is printed in blue.

Differences in Language Support for RMS-11

xvill

Differences in language functionality are noted only in Appendix B. You
should also consult the language documentation. However, note that
MACRO-11 programs can use all facilities described. Therefore, MACRO-11
error codes are used in the discussions. Appendix B contains a chart showing
how the higher level languages map these codes.

Terminology

The operating systems may have different terms for the same process.

Example ‘“Installed” to an RSX-11M user means essentially the same as “CCL” to
a RSTS/E user in that the user just has to enter a short command to

activate the task.

In this manual, these terms are reconciled under a cover term with a specific
definition of what that term means to the different operating systems. The
most pervasive cover terms are defined here. Other terms are defined in
CONVENTION notes as they are needed.

Cover Term
filespec
account

lact nbr]
file-name
extension

protection code

wild card

User Interface

Definition

file specification; see your operating system documentation for syntax and
Appendix A for RMS-11 restrictions on that syntax

the User File Directory (UFD) or its number; also known as User Identifica-
tion Code (UIC) or the Project, Programmer Number (PPN)

account number; used in filespecs
the name of the file
the file-name extension to the right of the dot also called file-type

the letter codes R, W, E, and/or D and the number codes 0 through 255 that
represent the level of protection for a file by the operating system

the presence of an asterisk (*) in a field of the filespec indicates that any
value is acceptable for that field

¢ Even though the IAS/RSX-11M monitor prompt is not shown, it is assumed
before any utility or other system task is called.

¢ Even though the RSTS/E system response is not shown, it is assumed after
any utility or other system task is terminated.

Terminal Displays

Any examples of terminal displays show the software messages with under-
lines; your inputs are not underlined.

Example From “Task Building Against the RMS-11 Resident Library,” Section
8.1.2.3:

TKB>USER.TSK,USER.MAP=USERA,USERB,USERC
TKB>/

ENTER OPTIONS:

TKB>LIBR=RMSRES:RO

TKB>//

xix

Chapter 1
Introduction to RMS-11

Your business, whether commercial, scientific, governmental, or educational,
relies on data. That data indicates the state of your business; that data helps
you control the future of the business. Therefore, you want fast, effective
access to it.

Computer hardware, with its speed (times in nanoseconds) and its mass data
storage (millions of characters), provides the means for that kind of access.
The problem is converting the data from the way you talk about it to the way
the computer system can handle it—and back again.

RMS-11 is the translator between you and your system. A set of software
routines used by your programs, RMS-11 processes data for you in units
called records. This introduction takes you slowly into RMS-11, beginning
with common concepts of data organization. Then the discussion turns to how
RMS-11 implements those concepts and fits into its environment, that is,
your programs, language, and operating system.

1.1 Concepts of Data Organization

File

First, let’s examine the concepts involved in organizing data, using images
from a noncomputer environment you’re familiar with.

When data is stored on paper, people gather it in containers called files (see
Figure 1-1). A file not only keeps related data in one place, but it also segre-
gates that data from other information. The term file applies to the data as
well.

Example Personnel information, including names, address, job titles, pay rates, and so on.

Example Product information, including part numbers, prices, specifications, discount rates,
and more.

Figure 1-1: Files Figure 1-2: Files with Attributes

e

H-MK-00091-00 N H-MK-00090-00

Access An advantage of the segregation provided by files is controlled access. Some
files, like payroll and budget files, are available only to a restricted group of
people. Other files, like transaction or inventory files, are used by a larger

group of different people. And there are some files that everyone uses, such as
a telephone book.

You can extend the access concept further and say that within the group of
people who can use a file, only certain ones are allowed to put data into it or
change the data already in it; others can only read what’s in the file.

Example Telephone numbers, especially those of customers, should be changed only by
authorized people so that the numbers remain current and accurate.

1-2 Introduction to RMS-11

File
Attributes
Record
s

A file cabinet has features that identify it, that tell what’s in it, even how the
data is organized. These features, or attributes, can be as a simple as “the
gray three-drawer” or “the one by the window.”

As file requirements become complicated and cabinets multiply, more com-
plete and precise identification is necessary. Then, the files acquire names or
numbers, signs announcing who can use the file, cards cross-referencing the
data in the drawers, and so on (see Figure 1-2).

Each file contains discrete groups of items whose form is repeated throughout
the data. Each group, or record, represents an entity, and a file consists of a
series of such entities.

Example In a personnel file, all the information on an employee constitutes a record; there-
fore, the number of records in the file equals the number of employees.

Example In an inventory file, all the information on a stock item comprises a record.

Within each record are the specific items of data with which you are
concerned.

Figure 1-3: Records in a File

H-MK-00086-00

Introduction to RMS-11 1-3

Record On paper, a record can be a form (see Figures 1-3 and 1-4), and different
Format records require different forms.

Some forms are always the same length. Their information does not expand
with time or use.

Example A product information form: if the facts about a product change, you fill out a new
form; if you add products to the file, you fill out a new form.

Other forms vary over time and use. They have continuation sheets or some
other extension.

Example An employee payroll record: an employee with the company ten years has more data
on file than a new employee.

Other records use a combination of these two formats.

Figure 1-4: Record Formats

PRODUCT RECORD SALARY HISTORY [7] E.C.O. HISTORY |

MM\:-VM Aot s /@_ ::!-9»60, .
L0 ~ Se=g” s :;—-?‘\P‘ Q\alslia
—— *& ——— _ﬁ’\}, p ? \, —1HH
v \ AN —~ v , «“ “0_ - 1L ;
X M e — v ~ 1 «\ " -1 1 HE
—— A ———— [V o o - J—— =11, d

o] P — — | = =

—— iy St S —— o Wil § — = :
END {MAY CONT.) See Next Page H |
(MAY CONT.) I (MAY CONT.)]

I (MAY CONT.) | (MAY CONT.)

l (MAY CONT.) [(MAY CONT.

l
|

Q-MK-00073-00

Access Once you have records in a file, you get, or access, them in two ways (see
Modes Figure 1-5):

NOTE

Record access not only means retrieving a record from a file; it
also includes putting the record into the file.

Sequentially
You pick a point in the file and then access records one at a time. Often
you start at the beginning of the file because you want to look at each
record in the file—probably for a report you are compiling. At other times,
you start partway through the file.

Context To read each record, you take it out of the file. You mark the position each
time with a card or upside-down folder so that you know:

¢ where to put the record back into the file

¢ where the next record is

1-4 Introduction to RMS-11

Record
Operations

Flle Organi-
zations

To insert records sequentially, you reach into the drawer to the place
where you want the records to go and use two fingers to hold open a space.
Then you take a sheet from the stack of records and slip it into position
between your fingers. You move your finger behind the record you added,
holding open a space for another form. Repeating these steps, you insert
the entire stack into the file in the sequence they are available to you.

In either type of access, you move through the records consecutively. Each
record inserted or retrieved relates to the record accessed right before it.

Randomly
You determine the record you want on some basis other than its order
of occurrence in the file. Perhaps you have a list of locations. Then you reach
into the file at the exact record’s lacation. Each record selection is
independent of the previously accessed record and of the next record
processed.

To randomly access records in a file, you use an identifier. You can assign
a number to each record and use that to put the record into the file and get
it out again. But it is simpler when the identifier is part of the record
itself. In fact, it helps if you can locate a record via more than one identifier,
or key, within the data.

Or you can use the physical location of the record. For example, you have
a file stored in a three-drawer cabinet. Inside each drawer you make tiny
slots, each capable of holding one record form. Each slot has a number.
You can, therefore, identify a record’s location, or address, within the file,
using a drawer number and a slot number within that drawer.

There are times, of course, when you access records in a file sequentially and
randomly. Usually, you randomly access the first record in a series and then
sequentially access the records in that series.

Example The records in a personnel file contain departmental codes. If the records of all
personnel in a department are grouped together, you can produce a report on one
department by randomly accessing the first record in the file with the department’s
code and then reading the consecutive records with that code.

What will you do with a record when you come to its place in the file?

¢ Verify that the record exists in the place it should.

* Read the record, that is, examine its contents.

¢ Insert a record in the position you’ve located.

¢ Revise the contents of the record, that is, change some data in it.

e Remove the record from the file.

Generally, the person who uses a file establishes a method of organizing the
records within it. This method reflects the file’s use and dictates the informa-
tion and time needed to locate a record.

Introduction to RMS-11 1-5

Figure 1-5: Record Access Modes

-
H-MK-00093-00 &
Sequential For instance, you want to file a series of records:
* You have little or no need to access the records randomly.
* You generally use all the records in the file in an unvarying order when you
open it.
With these requirements, you can organize the records by stacking them in a
file:
e The records assume the physical sequence in which they are put into the
file.
e There are no spaces, where records could be inserted later, left in the series.
Each record, except the first, has a record before it; each record, except the
last, has a record following it. -,

1-6 Introduction to RMS-11

Relative

Indexed

This is a sequentially organized file (see Figure 1-6). Its overhead and upkeep

are minimal. To put a record into the file, you just put it after the last record
already there..

Figure 1-6: Sequential File Organization

H-MK-00087-00

However, if you want more access flexibility, you can change the organization.
This time, set up a series of file folders, numbered in sequence from “1”’ to the

last folder in the file. Each folder is the same size; it holds only one record, but
it can be empty.

This Relative organization (see Figure 1-7) enables you to access specific
records more easily. You do not have to look sequentially through the records
before the one you want (though you can). You use the numbers on the folders
to locate or insert records. You can even code the forms to make use of some
internal data items as the basis of these relative record numbers.

You have a large file and most of the time, you randomly access its records.
The list of relative record numbers is taking more time than it’s worth, be-
cause you use several kinds of information to look for records. You are ready

for an Indexed file, though you may still want to sequentially access the whole
file to compile reports.

Introduction to RMS-11 1-7

Figure 1-7: Relative File Organization

H-MK-00089-00

When you open the file drawer, you see papers neatly stacked, with numbered -
tabs sticking up (see Figure 1-8). At the front of the drawer there is a set of o
small card files; inside them are groups of cards separated by dividers. The
cards in each file are an index to the records in the back of the drawer. You
look at the record you have to insert and find the data item marked “KEY.”
Using the information there, you consult an index to determine where you
should insert the record.
Figure 1-8: Indexed File Organization

Q-MK-00078-00

1-8 Introduction to RMS-11

Or you can find a record by looking for a specific value in one of the key files.

Example

You want the record of a transaction with Q,R,&S, so you open the Transaction File
drawer. Inside, the records are filed at the back and there are five indexes at the
front (see Figure 1-9). You know that “Q,R,&S” is the Primary Key of the record
you want and you open the index labeled “0”.

The first record in the index is the Root. It has a list of Primary Key values on it;
each value is paired with a number. You look down the alphabetical list until you
find a value equal to or greater than “Q,R,&S”. You find “Rhesus INC” and the
number next to it is “3”.

You put the Root back in the index and go to the first divider and the third record
behind it. You see that “Rhesus INC” is the last entry on this card, but you scan up
the list to find a value closer to the one you’re looking for. You find “Queeg Compa-
ny” and the number “7”,

So you reach into the back of the drawer, trailing down the tdbs to the seventh one.
Behind its divider there is a stack of records. You search sequentially through them
until you find the Q,R,&S transaction.

Figure 1-9: Random Access Example

Example

L~

QUEEG CO

RHESUS INC

ROOT

RHESUS INC

Hillelil

H-MK-00088-00

Using the Transaction File described in the last example, you want to find a record,
but all you know is its transaction number. Fortunately, the Third Alternate Key for
the file is transaction number. You open the index labeled “2” and look at its Root
card. Employing the technique illustrated in the previous example, you move from
the Root through the rest of the index. Behind the last divider, you find a record on
which the transaction number you are looking for is listed. Next to the number is the
code ““7/5”,

You reach into the back of the drawer, pulling the seventh tab forward. Then you

count the records behind it. The fifth one has the right transaction number on it.
You notice that the transaction was made with the firm of Q,R,&S.

Introduction to RMS-11 1-9

1.2

1-10

Utilitles Once you establish files and their records, you’d like to do some things with
each file as a whole:

Back up
The data in a file is valuable, or you would not keep it. You should have a
duplicate of your records in some other place in case something happens to
the original. Therefore you need the ability to back up a file quickly and
efficiently.

Restore
If something does happen to the original records, you must replace them
with the back ups quickly and smoothly.

Display
You need the ability to produce a list of your files, with their names and
other attributes.

Convert

Files do grow beyond your estimate, and to increase their usefulness, you
should change their organization, say, from a sequentially organized files
to ones with indexes. Or the opposite could happen to a file and you need
to make it simpler. Then, there are times when a file set up for one
purpose could be used for another application. In that case, you need to
copy the organization and contents of the original file into the new one,
changing some attributes.

Define
Then, when you’ve designed the file, you should also have a procedure for
creating the file.

Indexed File Load
Creating Indexed files can be complicated and time-consuming. You could
use a procedure that takes a file of any organization and produces an
optimal Indexed file quickly and efficiently.

That’s a synopsis of data organization concepts. You should recognize them
from your experiences with paper. But now you’re using a computer to organ-
ize your data: anything you can do at your desk, you ought to be able to do
with your computer.

RMS-11 Implementation of Data Organization

The software routines called RMS-11 organize data on your DIGITAL com-
puter, implementing the concepts we have just discussed. RMS-11 interfaces
your data processing programs with the rest of the computer system.

Your computer system consists essentially of layers of software and hardware
(see Figure 1-10), each of which has a responsibility in the data management
process regulated by RMS-11:

e The hardware devices store the data.

Introduction to RMS-11

¢ The operating system controls the hardware to provide the record containers
called files.

¢ RMS-11 controls the internal structure of the computerized files, providing
file organizations and record formats, access modes, and operations.

® Your application program drives the process by initiating data processing
operations.

Figure 1-10: RMS-11 in Its Environment

FILES ON DISKS

Ly yskgh

KEY"

<@={> DATA FLOW
PROGRAM RMS-11 <@=f>~ CONTROL FLOW

x> TASK SEGMENT FLOW

H-MK-00085-00
The rest of this introduction discusses these system layers.

1.2.1 Hardware Data Structure

The prime storage device on today’s computer systems is the disk drive!. The
disk itself consists of one or more circular pieces of metal (called platters) and
the drive is the mechanical and electronic equipment to read and write infor-
mation on the platters.

1 Although magnetic tapes also provide significant data storage capability, they require se-
quential access. Therefore, in modern business environments, where fast random access is
important, disk drives are used for on-line storage. Magnetic tape, however, does have its
uses; details of magtape handling via RMS-11 are covered in Appendix F.

Introduction to RMS-11 1-11

Data is stored on disk platters magnetically, much the same as sound is
recorded on tape. The structure of that data is modular, expressed in hierar- -
chical units (see Figure 1-11): :
Bit

A bit is the smallest storage location recognized by the hardware. A bit is

an area of the disk surface where magnetic orientation can be changed to
one of two recognized values, conventionally designated ‘“0” and “1”.

Byte
A byte contains eight bits and is frequently used to represent an alphanu-
meric character with the American Standard Code for Information Inter-
change (ASCII) codes. Other methods of representing data, particularly
numeric data, require two or more bytes at a time.

Sector
A sector consists of 512 bytes on most disks supplied by DIGITAL.

Track -

A track consists of the sectors at a single radius on one disk platter. One
read/write head of the disk drive can access a track without changing
position.

Cylinder
A cylinder consists of the tracks at the same radius on all disk platters.
The disk drive’s head structure can access a cylinder without changing

position.
1.2.2 Software Data Structure
The operating system software makes the computer’s hardware available to
the user. As it turns out, this user is RMS-11, but it is RMS-11’s purpose to
complete the logical chain, that is, to make the capabilities of the computer
system available to you.
The following operating system components are involved in the data manage- '
ment process:
Device Drivers
Each device driver is software written for a specific type of hardware unit.
Drivers instruct their devices during data access operations.
File Processor
The file processor maintains the structure and integrity of data stored on
file-structured devices. It provides volume directory and space manage-
ment functions, as well as translating RMS-11 data requests for the device
drivers.
Monitor
The monitor coordinates the other components of the operating system,
including the device drivers and the file processor.

1-12 Introduction to RMS-11

Figure 1-11: Physical Storage Structure

BYTE= |\
8 BITS E

~ \

<N ({
SECTOR::51ZBYTES] I\IIIIIIIIIIIIIIIIIIIIIYI/B ATTTITTTITITITTITITITITIILIITIT]

/

N -

A TRACK IS COMPRISED OF
THE AREA AT A SINGLE RADIUS
ON ONE RECORDING SURFACE.

A CYLINDER CONSISTS OF
THESE TRACKS IN THE SAME
 RADIUS ON ALL THE RECORDING
SURFACES.

NOTE

RECORDING OCCURS ON BOTH
SURFACES OF EACH PLATTER.

THE EXTREME TOP AND BOTTOM
SURFACES OF SOME DISK MODELS
ARE NOT USED FOR RECORDING.

REMAINDER OF VOLUME
CONTAINING OTHER CYLINDERS.

H-MK-00096-00

Introduction to RMS-11 1-13

1-14

CONVENTION

The cover term monitor in this manual has the
same meaning as the following system-specific
terms:

System Term

IAS executive

RSTS/E monitor

RSX-11M executive

Disks As Logical Devices — To be independent of the disk drivers, the file
processor places a logical structure over the data on each disk (see Figure
1-12). In essence, the processor treats a disk as a logically contiguous series of
data units called blocks. A block contains 512 eight-bit bytes. Logical blocks
are numbered from O to n-I, where n is the number of blocks on the disk.

NOTE

Three On-Disk Structures (ODS) are currently supported by
the DIGITAL operating systems on which RMS-11 operates:

o RSTS/E has its own disk structure.

e JAS and RSX-11M use a standard named Files-11 ODS-1.

e VAX/VMS supports both Files-11 ODS-1 and Files-11
ODS-2.

Figure 1-12: Logical Data Structure

LOGICAL
BLOCK
NUMBER

0

SECTOR 1,
TRACK 1

LOGICAL
BLOCK
NUMBER
n-1

H-MK-00095-00

PHYSICAL
STORAGE

Introduction to RMS-11

Files As Virtual Devices — The file processor supplies containers for blocks of
data. Because these logical structures serve the same purpose as paper files,
they are also called files.

The processor treats each file as a device containing virtually contiguous
blocks: it can ignore all blocks on the disk except those in the file being
processed. The processor assigns Virtual Block Numbers (VBNs) from 1 to n,
where n is the last block in the file.

NOTE

Logical block and virtual block describe the same physical unit
of storage; only the numbering scheme is different. Virtual
blocks have Logical Block Numbers (LBNs), but logical blocks
do not have Virtual Block Numbers unless they are allocated to
a file.

Virtually contiguous does not necessarily mean logically contiguous. There is
more than one file on a disk. As these files take room on the disk, there are
fewer contiguous logical blocks. Eventually the file processor creates or ex-
tends a file so that portions of it reside in different parts of the disk (see Figure
1-13). The blocks retain their serial Virtual Block Numbers, but they are no
longer logically contiguous.

Figure 1-13: Virtual-to-Logical-Block Mapping

LOGICAL

DEVICE AAAAAAABBBCCCCCCAA??AACCBBB
| o L ol el <
V4 o Py e Lo "
< s - s e -
l / [y // . //./ . "
VIRTUAL | VAR Wi o
DEVICES / wZ el T T
A M
P 1"«' V. . . < L
/ VAS Ll K -
. /-_- /_/ _ - .
/ RAPL _

FILE B Q
KEY
—— — MAPPING FOR FILE A

s - MAPPING FOR FILE B
FLE G 8 --------- MAPPING FOR FILE C

H-MK-00068-00

Introduction to RMS-11 1-15

Virtual to Logical to Physical Blocks — The device-independent file proces-

sor controls the virtual and logical structures applied to data and translates -~
from one to the other. For instance, if a system user requests access to a block o
within a file, the file processor calculates the logical block on the disk that

equates to that Virtual Block Number. In doing so, the file processor takes

into account the fact that the virtual hlocks may not be logically contiguous.

After calculating the Logical Block Number, the file processor requests that
block from the disk driver for the device containing the file. The driver then
translates that request into the cylinder/track/sector, or physical block, loca-
tion that the device hardware must read or write.

1.2.3 The RMS-11 Interface

The file handling components of the operating system do not handle records
as such. Your business is structured around the use of records within files.
- RMS-11 manages records, translating your requirements for the operating

system and vice versa. -,
RMS-11 does this by controlling the internal structure of the files supported
by the operating system with:
® Record formats
¢ File organizations
® Record access modes
* Record operations |
NOTE
The following discussion is just an introduction. Details on
most topics are provided in the file organization-specific chap-
ters later in this manual. -
1.2.3.1 Record Formats — To meet the requirements for record formatting
discussed previously in this chapter, RMS-11 provides the following record
formats:
Fixed
Every record must have the same length.
Variable
Each record can have a different length, but it may not exceed a maxi-
mum record size you set for the file.
Variable-with-Fixed-Control (VFC)
Each record has a section that is always the same length and a section
that can vary in length. However, no record may exceed the maximum size
you set for the file. -

1-16 Introduction to RMS-11

RMS-11 also supports the following record formats to be compatible with
other PDP-11 file systems (see also Appendix A):

Stream
Each record is a contiguous series of characters, with no maximum length

set.

Undefined
Essentially no records are defined in the file. Each access operation reads

or writes a block.

You control the amount, content, and arrangement of data within records and
its entry and interpretation.

1.2.3.2 File Organizations — RMS-11 provides three methods of organizing
records within a file:

¢ Sequential
¢ Relative

¢ Indexed

Sequential File Organization — Figure 1-14 shows how RMS-11 implements
the sequentially organized file described in Section 1.1. The organization is
defined as follows:

An RMS-11 Sequential file is a series of virtually contiguous records stored in
the order they were written.,

Therefore, Sequential files can be used on any medium recognized by
RMS-11 (tape, disk, or unit record devices).

Figure 1-14: Sequential File Organization

FOURTH RECORD WRITTEN IS
LOCATED BETWEEN
THIRD AND FIFTH RECORDS WRITTEN

END OF FILE
\ \
FIRST |SECOND | THIRD | FOURTH | FIFTH SIXTH
RECORD | RECORD | RECORD | RECORD | RECORD | RECORD e o o |RECORD | RECORD
WRITTEN |WRITTEN | WRITTEN | WRITTEN |WRITTEN |WRITTEN

Q-MK-00067-00

Relative File Organization — Figure 1-15 illustrates how RMS-11 imple-
ments the Relative file concepts discussed in Section 1.1. The organization is
defined as follows:

An RMS-11 Relative file is a series of record storage cells with a fixed size.

¢ The cell size is based on the length you specify as the maximum for any
record in the file.

Introduction to RMS-11 1-17

1-18

¢ RMS-11 numbers the cells consecutively from 1 to n, where n indicates the

last cell in the file. A cell number relates its location to the beginning of the
file.

o RMS-11storesrecordsinthe cells and associates them with their cellnumbers.

Example Record number 1 is in the first cell.

Example Record number 17 is in the seventeenth cell.

Only one record can be put into a cell, but all cells do not have to contain
records.

You can use cell numbers to identify and access the records in the cells. The
cell numbers are then known as relative record numbers.

Relative files have two capabilities not available with Sequential files:
e Random access by record number

¢ Record deletion

With Relative files, you still have fast sequential access.

NOTE

You can store Relative files only on disks.

Figure 1-15: Relative File Organization

CELL

NUMBERS 1 2 3 4 5 n-1 n
/ V/ | 7
RECORD| RECORD 1 necono v . |RECORD //
1 2 / 4 999
% /] /]

FIRST SECOND THIRD 0-MK-00066-00
RECORD RECORD RECORD

WRITTEN WRITTEN WRITTEN

Indexed File Organization — Figure 1-16 shows how RMS-11 implements
the Indexed file described in Section 1.1. The organization is defined as
follows:

An RMS-11 Indexed file contains data records sorted in ascending order by
Primary Key value and one or more indexes that point into the data records.

RMS-11 stores each record in an Indexed file according to the value of the
data in a part of the record itself. Specifically, when you create an Indexed
file, you must identify a section of each record as a Primary Key. Thereafter,
when you store a record in the file, RMS-11 puts it between a record with a
lower or equal Primary Key value and a record with a higher key value (see
Figure 1-16). You can also identify sections of the records as Alternate Keys,
but their values do not affect the placement of the records in the file.

Introduction to RMS-11

Figure 1-16: Primary Index in RMS-11 Indexed File

o PRIMARY INDEX (EMPLOYEE NAME) ™

ABLE JONES SMITH
T T I I | I
ABLE ELM AV 24379 | JONES MAIN ST 19724 | SMITH HOLTRD 35888
i | | | i |
NN £ oata RECORDS e J

PRIMARY KEYS H-MK-00072-00

Each key provides a logical access path to locate a record within a file. You
can specify up to 255 keys for an Indexed file. For each one, RMS-11 con-
structs an index in the file. This structure embodies an exact and economical
search pattern for RMS-11, enabling it to locate any record rapidly.

Because RMS-11 stores records in ascending order, you have fast sequential
access to them.

NOTE

You can store Indexed files only on disks.

1.2.3.3 Record Access Modes — RMS-11 provides three Record Access
Modes:

¢ Sequential Access Mode
¢ Random Access Mode
e Access by Record’s File Address (RFA)

RMS-11 guarantees that every unit of data it retrieves is a record you (or
others with access to the file) put into it.

1.2.3.3.1 Sequential Access Mode — Record access starts at some point in the
file and continues with consecutive records. The location of the next sequen-
tial record is determined by the file organization.

Sequential Access to Sequential Files — Records in a Sequential file are
virtually adjacent. To retrieve a specific record using sequential access, you
must open the file and look through the records before the one you want (see
Figure 1-17). From that point, you can still get any record after the one you
just looked at, but if you want to retrieve a record before it, you must go back
to the beginning of the file.

Introduction to RMS-11 1-19

Figure 1-17: Program Sequentially Reading a Sequential File

PROGRAM AMS-11

NEXT RECORD
.
| NEX:i:gOH L:*
D
H
NEXT RECORD

Q-MK-00081-00

To insert records, you must go to the end of the file and add them one at a
time.

Sequential Access to Relative Files — Records in a Relative file are not nec-
essarily adjacent. Their sequence is established by the relative record number
of the cells where they are stored. To retrieve a specific record using sequential
access (see Figure 1-18), you must scan the records until you get to the one
you want; note that the bypassed records have smaller relative record num-
bers. RMS-11 skips any cells that are logically empty, returning only valid
records.

Figure 1-18: Program Sequentially Reading a Relative File

PROGRAM RMS-11
READ L] ‘
NEXT RECORD : ————— A ,.:,A'Tw”TMtW‘T&».“‘AM\)N
: -) e
READ }——— e] g R
B {.,, , £

NEXT RECORD p——————ri =~ — — =
.

READ I I C
[
NEXT RECORD \

EMPTY

Q-MK-00079-00

When you sequentially insert a record into a Relative file (see Figure 1-19),
RMS-11 puts the record in the next cell (relative number one higher than the
current cell accessed)—as long as it’s empty. If the next cell contains a record,
RMS-11 returns an error.

Figure 1-19: Program Sequentially Writing to a Relative File

CELL 1

PROGRAM START OF

OPEN WRITE)

FILE RECORD F AMS-11

7/
/ .
, FILE AFTER //
7 WRITE OPERATION y
v/
/
/
/
/
CELL 2 /
NOW CONTAINS
RECORD F

EMPTY
Q-MK-00077-00

Introduction to RMS-11

Sequential Access to Indexed Files — Records in an Indexed file are logically
adjacent, but the sequence depends on the key used for access. To retrieve a
specific record using sequential access (see Figure 1-20), you must indicate a
key to establish the access sequence and bypass the records with lesser key
values. RMS-11 uses the specified index to locate the records.

Figure 1-20: Program Sequentially Reading an Indexed File

READ NEXT READ se s READ cne READ
OPEN FILE RECORD NEXT NEXT NEXT
PRIMARY RECORD RECORD RECORD
KEY
PROGRAM // //(
PRIMARY
INDEX
ALTERNATE
INDEX
.
—
READ
OPEN FILE ON PR NEXT
ALTERNATE KEY RECORD RECORD RECORD
PROGRAM

H-MK-00094-00

When you sequentially insert records into an Indexed file, they must be
ordered in nondescending sequence by Primary Key. RMS-11 inserts the
records into the file based on those values, using the same procedure it uses
for random insertion (see Random Access to Indexed Files, Section 1.2.3.3.2).

1.2.3.3.2 Random Access Mode — You, rather than the organization of the
file, establish the order in which records are processed. You must specify a
record identifier with each random access. Each record access is independent
of the previous record used. Successive operations in the random mode can
identify and access records anywhere in the file.

You cannot use Random Access Mode with Sequential files. Both the Relative
and Indexed file organizations permit random access to records.

Random Access to Relative Files — You can access a record in a Relative file
by specifying (see Figure 1-21):

o g relative record number (RRN)

¢ whether you want:

- only the record with the specified RRN: equal match on the RRN

Introduction to RMS-11 1-21

- the first record after the specified RRN: greater than match on the RRN

- the record with the specified RRN or if that cell is empty, the first record
- after the specified RRN: greater than or equal match on RRN

RMS-11 locates a file cell according to this criteria and checks for a valid
record:

¢ Read a record

If there is a valid record in the cell, RMS-11 returns it to you; otherwise,
RMS-11 gives you an error code.

e Writing a record

If there is a valid record in the cell, RMS-11 writes over it only in special
circumstances; otherwise, RMS-11 gives you an error code.

If there is no valid record in the cell, RMS-11 writes the record into the
cell; from then on, you randomly read that record with the relative record
number.

Figure 1-21: Program Randomly Reading a Relative File

START OF
FILE

PROGRAM

1. READ RECORD 6 ®_’
@

2. READ RECORD 2

RMS-11

iy

EMPTY
Q-MK-00080-00

The circled numbers indicate the order of the access operations; in this case,
record number 2 is “F”,

Random Access to Indexed Files — You can read a record in an Indexed file
by identifying it as follows:

® a key number (Primary, First Alternate, and so on)
* a value
e value match (equal to, greater than, or either)

e number of characters for value match

The key number determines the index RMS-11 follows. The number also
indicates the section, or key field, of the records RMS-11 must compare to the
specified value for the length indicated by the match criteria. -

1-22 Introduction to RMS-11

Example You have an Indexed personnel file; the Second Alternate Key is the social security
number. You can read the first record that contains a social security number start-
ing with “560” by identifying it as follows:

¢ key number 2
¢ value in key field must be equal to “560” for first three characters

Figure 1-22 shows the search RMS-11 makes during this read operation.

However, to insert a record randomly, you do not have to indicate a key.
RMS-11 uses the Primary Key value in the record to place the record in the
file. Then, RMS-11 revises the index(es) if necessary. The example for In-
dexed File Organization in Section 1.1, shows how RMS-11 determines record
location for all types of record access.

1.2.3.3.3 Access by Record’s File Address — RMS-11 establishes a unique
identifier within a disk file for every record it writes. This Record’s File Ad-
dress (RFA) remains valid for that record alone for the life of the file. If the
record is deleted, its RFA is not reused; an attempt to read that record returns
the information that the record was deleted.

RFA access is the fastest way to find or read a record randomly:

e For Sequential files, it is the only way to access records randomly.

e For Relative files, it bypasses relative record number processing.

e For Indexed files, it eliminates reading the index.

To read a record by RFA, specify the address for that record (see Figure 1-23).
You cannot use RFA access to write a record.

1.2.3.3.4 Changing Record Access Modes — You can change Record Access
Mode at any time while you are accessing a file. The file organization and
storage medium must support the access mode selected. Generally, you use
Random Access Mode or Access by RFA to access the first record of a series
and then use Sequential Access Mode to access the records in that series.

Example A personnel file has department code as one of its Alternate Keys. You can produce
a report on a department by randomly accessing the first record in the file with a
specific departmental code and then using Sequential Access Mode to read consecu-
tive records.

Example The Sequential file in Figure 1-23 is written in account-number order, one record per
transaction; each account has more than one record. To list the transactions for
account C, open the file and sequentially read each record until you find the first one
for account C. Then you start the report.

However, if you had saved the RFA for account C’s first record when you wrote it,
you could access that record with its RFA and then switch to Sequential Access
Mode to produce the list.

Introduction to RMS-11 1-23

Figure 1-22: Program Randomly Reading an Indexed File

PRIMARY INDEX —»
FIRST ALTERNATE
INDEX ——> |
SECOND ALTERNATE
INDEX ——»
PROGRAM
L
READ RECORD WITH| T~ |
560 IN SECOND RMS-11
ALTERNATE KEY
- —
DATA
RECORDS
NOTE
THE FILE IS STORED
ON A CYLINDER. ' -_—

Q-MK-00100-00

1-24 Introduction to RMS-11

Figure 1-23: Sequential Account File

A. DATA ENTRY
PROGRAM

WRITE
_RECORD |
4 RFA |
| No AccounT
CHANGE
2
YES
STORE RFA

START OF FILE

B. REPORT GENERATION
PROGRAM

RETRIEVE RFA
FIRST RECORD

IN ACCOUNT
C.

RETRIEVE RECORDS
FOR ACCOUNT C [
SEQUENTIALLY.

4—//

RFA = RECORD'S FILE ADDRESS H-MK-00092-00

1.2.3.4 Record Operations — You write programs to process the data units
you designate as records. Processing involves record operations that your
program initiates and RMS-11 performs. Through RMS-11, your programs
can:

¢ read a record, retrieving data from disk. These operations include:

Find
RMS-11 locates and retrieves the specified record according to the re-
quirements of the Record Access Mode. However, RMS-11 does not
make the record available to your program.

Get
RMS-11 locates and retrieves the specified record according to the re-
quirements of the Record Access Mode. Then RMS-11 makes the record
available to your program.

* write a record, storing data on disk. These operations include:

- Delete
You mark a record in a file, indicating that the record no longer exists.
The space used by the record can be reclaimed by future operations
according to the requirements of the file organization and the record
format.

Introduction to RMS-11 1-25

NOTE

You can delete records at the end of a Sequential file
only, by truncating the file (described in ‘“Truncate,”
Section 3.3.1.8).

Update
You replace a record in a file with a revised version.

Put
You store a new record in a file, according to the Record Access Mode.

NOTE

RMS-11 requires that a successful find or get operation
precede a delete or update operation. However, some
higher level languages hide this prerequisite.

Example Using PDP-11 COBOL, you can use a REWRITE state-
ment without establishing the record being updated with a f 'I_—'é
READ or START statement.

¢ perform other operations, including:

Connect
You make the records of the file available to your program in prepara-

tion for a stream of operations. This operation is hidden in most higher
level languages. -~

Disconnect
You terminate a stream of operations, making the buffers assigned to
the stream available for other operations.

Flush
You ensure that all records you have written, updated, or deleted are
written to disk before you terminate or change processing.

Rewind
You return to the beginning of the file for sequential access.

“Buffers in Record Operations,” Section 1.2.4.2, contains details of the pro-
cesses RMS-11 uses during these operations.

1.2.3.5 RMS-11 Utilities — DIGITAL provides you with programs, called utili-
ties, that use RMS-11 to accomplish standard file-related jobs. Aligned with
the requirements discussed in Section 1.1, these utilities are:

RMSBCK
Used to back up your data, the RMSBCK utility copies files in a special

format that cannot be mistaken for the original data and therefore cannot
be altered during normal operations.

1-26 Introduction to RMS-11

s e

RMSRST
Used to read RMSBCK’s special format, the RMSRST utility replaces
your data files with back-up versions whenever you want.

RMSDSP
The RMSDSP utility lists files and their attributes at your request.

RMSCNV
Used for any combination of RMS-11 file organizations and record for-
mats, the RMSCNYV utility copies one file into another, while preserving
the source file.

RMSDEF
During an interactive process, the RMSDEF utility helps you define at-
tributes for a file and then creates it.

RMSIFL
Bypassing normal RMS-11 methods, the RMSIFL utility quickly loads an
RMS-11 Indexed file with records from a file you designate, optimizing
the structure of all indexes.

1.2.4 Record Processing Environment

RMS-11 processes records at the command of your program, operating in
virtual conjunction with its executable form. In fact, to the operating system,
RMS-11 is part of your program (see Figure 1-24).

Figure 1-24: System Memory Layout

DISK
DRIVERS
| FILE PROCESSOR
“

B

st

HE

ol 110

[N T

:::Ql ASK PAGE

o

!

- /

OPERATING SYSTEM| |
| |
| !
| | FILE PROCESSING ENVIRONMENT
" | RECORD PROCESSING ENVIRONMENT
] |
| |
PROGRAM L Rms-1

1/0 BUFFERS—}
INTERNAL TABLES

A. UNSHARED RMS-11
(PART 1 of 2)

H-MK-00070-00

(continued on next page)

Introduction to RMS-11 1-27

1-28

Figure 1-24: System Memory Layout (Cont.)

DISK
DRIVERS
_FILE PROCESSOR
‘1ﬂ vy
ety
Tt
|
|1 AMS-11
(T
. LIBRARY PAGE
I Ty
[NE]
i

|

| 110
i RESIDENT TASK

I

I

]

- . N
OPERATING SYSTEM "~ N |
. N
\‘\ N /
! N |
. N
\\\L N | FILE PROCESSING ENVIRONMENT
R N | RECORD PROCESSING ENVIRONMENT
‘o N
\ N N
| ~. AN
N
PROGRAM
B. SHARED RMS-11
(PART 2 of 2) L SHARED RMS-11
L 1/0 BUFFERS AND

INTERNAL TABLES

H-MK-00070-00

1.2.4.1 Using RMS-11 — RMS-11 is a set of file access routines. These
routines implement a standard file structure and interface across DIGITAL
operating systems and programming languages.

You use these routines by combining them with a program you have written in
a language that implements RMS-11 (see Appendix B). You must write this
program so that it uses the appropriate RMS-11 functions, obeying the lan-
guage syntax. Then you convert your program to object code, through either a
compiler or an assembler.

Once your program is in object form, combine, it with the RMS-11 routines via
a utility called the Task Builder. This software converts object modules to an
executable form called a task. In the process, the Task Builder not only
combines different object modules, but can also arrange the task so that some
executable modules overlay each other when the task is run.

You can combine RMS-11 routines with your object code in either of the
following ways:

o in the task itself—with nonoverlaid routines or a disk-resident overlay
structure J

® in memory-resident overlays—a form apart from your task

The primary difference between the techniques is that memory-resident over-
lays can be shared among programs; the other forms cannot, that is, each
program has its own copy of the routines. In addition, memory-resident over-

Introduction to RMS-11 -

lays eliminate the I/O operations needed to bring disk-resident overlays from
disk; therefore, your tasks run significantly faster.

Either way, your task takes the logical form shown in Figure 1-25. Your
program code exists in one part of the task. The RMS-11 routines run in
another part. When your program performs an RMS-11 operation, it sets up
the parameters and data and then calls the RMS-11 routine. Control jumps to
that part of the task, the routine runs to completion, and control returns to
your program.

Figure 1-25: RMS-11 Task Structure

;_SIZE DEPENDS ON: |
|« NUMBER OF FILES OPENED SIMULTANEOUSLY |
e BUCKET SIZES

USER BUFFERS —\' i_

170
BUFFERS

VIRTUAL
MEMORY PROGRAM RMS-11

INTERNAL
CONTROL
STRUCTURES

L J

H-MK-00069-00
Also part of the task are storage buffers that usually come in three forms:

User Buffers
Your program usually has room to store one record for each open file. This
buffer is available to your program and the data in it can be manipulated,
read, changed, used for calculations, and so on. RMS-11 can also access
this buffer.

I/0 Buffers
For each file your program has open, RMS-11 requires at least one I/O
buffer. All data meant for or arriving from disk is stored here:

e RMS-11 requests the file processor to move block(s) from disk into this
buffer to satisfy its or your program’s requirements. Each request from a
file always specifies the same number of blocks, termed collectively an
I/0 unit. The size of the I/O unit depends on the file organization and
your file design.

¢ RMS-11 moves records between the I/O buffer and the user buffer. Your
program can also access this buffer in restricted circumstances.

Introduction to RMS-11 1-29

1-30

Control Structures
RMS-11 control structures communicate with your program and with
each other.

1.2.4.2 1/O Buffers In Record Operations — These buffers are used in record
operations in the following ways:

Delete
Your program indicates the record to be deleted. RMS-11 has the record’s
I/O unit in memory because a delete operation must be preceded by a
successful get or find operation. RMS-11 then changes the record in the
I/O buffer to indicate that the record is deleted and requests the file
processor to rewrite the I/O unit on disk. Finally, signalling success,
RMS-11 returns control to the program.

NOTE

The space in the deleted record is re-used according to the
requirements of the file organization and the record format.

Find
RMS-11 follows the process used for a get operation, except it does not
move the record from the I/O buffer to the user buffer.

Flush
Your program tells RMS-11 to write an I/O buffer to disk if the buffer has
not already been written.

Get

Your program specifies the record to be read from disk and the user buffer
in memory where RMS-11 should put it. RMS-11 attempts to locate the
record in the file, using techniques required by the file organization, record
access mode, and the program’s request. Each technique involves the
movement of one or more I/O units of the file into the I/O buffer, where
RMS-11 looks for the record. If RMS-11 does not find the record specified,
it returns the appropriate error code.

If RMS-11 finds the record, it normally moves the record from the I/O
buffer to the user buffer and signalling success, returns control to the
program.

Put

Your program specifies the user buffer containing the record. RMS-11
locates the point in the file where the record belongs and has the file
processor bring that I/0 unit from disk into the I/O buffer. Then RMS-11
moves the record from the user buffer to its place in the I/O buffer.
RMS-11 requests the file processor to rewrite the I/O unit (including the
new record) to the disk and signalling success, returns control to the pro-
gram.

Update
Your program specifies the user buffer containing the revised record.
RMS-11 has the record’s I/O unit in memory because an update operation

Introduction to RMS-11

must be preceded by a successful get or find operation. RMS-11 then
moves the data from the user buffer to the I/O buffer, writing over the old
record. Finally, RMS-11 has the file processor write the I/O unit to disk
and signalling success, returns control to the program.

1.2.4.3 Record Access Streams — Before your program can access records in a
file, it must open that file and connect a Record Access Stream to it. This
stream is a channel between your program and the file. You use the stream for
each record operation.

NOTE

Most higher level languages do not provide Record Access
Streams and the connect operation at the user level. They use
these facilities to implement their own file access techniques.

Context of a Record Access Stream — Each stream processes record opera-
tions for one record at a time. RMS-11 keeps track of the stream’s position in
a file. This position is called a context and consists of the following entities
(see Figure 1-26):

Current Record
The Current Record is:

¢ established by a successful find or get operation.

¢ the target of the following operations:
Delete
RMS-11 marks the Current Record as deleted.

Get Immdediately Preceded by a Find
Normally, RMS-11 moves the Current Record into the user buffer.
Current Record does not change.

Truncate (Sequential files only)
RMS-11 logically deletes the Current Record and all records follow-
ing it in the file by establishing a new end-of-file position at the first
byte of the Current Record.

Update
RMS-11 replaces the Current Record with the one in the user buffer.

Since only get or find operations set the Current Record, one of these opera-
tions must precede an update or delete operation. Other operations leave
the stream without a Current Record. RMS-11 rejects any update or delete
operation attempted without a Current Record.

Next Record
The Next Record is the target of a sequential get, find, or put operation
(put operations on Sequential and Relative files only).
¢ If you specify a get operation, RMS-11 locates the Next Record and puts it
in the user buffer.

Introduction to RMS-11 1-31

e If you specify a find operation, RMS-11 locates the Next Record.

e If you specify a put, RMS-11 moves the record in the user buffer into the
file at the position of the Next Record.

Next Record is affected by record operations in specific ways explained
later in this manual.

Comparable to the marker you leave in a paper file, stream context is import-
ant to sequential access only. Record operations affect context in ways de-
signed to facilitate normal processing.

Example When you update records in a paper file, you must locate the record first. You either:

e take the form out of the file so that you can look at it (a get operation)

o verify that the form you've located is the proper one by checking the relative
record number or key value (a find operation)

In this process, you are establishing the Current Record. -~

Then, when you update the record, you either change the one you’ve gotten or
replace the one you’ve found. And you insert the new version where the context
(Current Record) indicates.

In addition to setting Current Record with your get or find operation, you establish
the position of the Next Record. Then, after you complete the update operation, the
context indicates which record you locate next.

NOTE -

The specific effects of each record operation on the stream
context depend on file organization. Each of the organization-
specific chapters describes these effects.

Figure 1-26: Record Operations and Stream Context

OPERATIONS -
UPDATE -
DELETE -
GET :
FIND
WRITE o

Q-MK-00082-00

Multiple Record Access Streams — A stream can handle only one record at a
time, but you can connect more than one Record Access Stream to a Relative
or Indexed file if you want to:

e process more than one record in a file at a time with asynchronous record
operations (see Section 1.2.4.4)

e maintain more than one context during the processing of a file -,

1-32 Introduction to RMS-11

Each stream represents an independent, concurrently active sequence of rec-
ord operations. Again, most higher level languages hide this capability.

Example A program opens an Indexed file and connects two Record Access Streams. In one
stream, the program uses the Primary index to access records in random mode. In
the other stream, it sequentially gets records in the order specified by an Alternate
index.

1.2.4.4 1AS/RSX-11M Asynchronous Record Operations — Within each Record
Access Stream, your program can perform any record operation either syn-
chronously or asynchronously. In synchronous operations, RMS-11 returns
control to your program after the operation ends, either successfully or with an
error.

When you execute an asynchronous operation, RMS-11 may return control to
your program before the operation is finished. The program continues process-
ing while the physical transfer of data between disk and memory is carried
out. However, you must not initiate another record operation on that stream
until the first operation ends. See your language documentation for asynchro-
nous techniques.

NOTE

If you intend to use asynchronous RMS-11 record operations
and/or Asynchronous System Traps (ASTs) in other parts of
your program, see the section on your operating system in
Appendix A.

1.2.4.5 Record Transfer Modes — Your program can manipulate the data in a
record while it resides in the user buffer or while it is still in the I/O buffer.
These choices are called Record Transfer Modes. The organization-specific
chapters discuss these modes more thoroughly.

1.2.5 File Processing Environment

Now that we have discussed the data management process, layer by layer,
from hardware to your program, let’s examine more details of RMS-11’s
relationship with the operating system.

RMS-11 manipulates files so that it can process records. The file processing
environment involves RMS-11 with complex flows of data, control, and over-
lay segments (see Figure 1-27). Although its requests initiate activity in the
operating system and its devices, RMS-11 is not aware of the file manage-
ment process.

1.2.5.1 File Processor — Each operating system has a file processor:
* Files-11 Ancillary Control Processor (F11ACP) on IAS/RSX-11M
¢ File Processor (FIP) on RSTS/E

The file processor performs I/O and other operations on files. RMS-11 must
make requests in a certain format so that the file processor changes the files
properly. Thus, the file processor’s operations, while logically invisible to
RMS-11, can affect the performance of your program.

However, the file processor is not concerned with the data contents of a file. It
only knows Virtual and Logical Block Numbers, directories and other support

Introduction to RMS-11 1-33

information, and the disk drivers involved. Therefore, RMS-11 can manipu-

late the contents of a file as long as it makes proper requests to the file -,
processor. In this manner, RMS-11 maintains the following file formatting or
structures:

Block Spanning — Basically, RMS-11 lays out the records in a Sequential
file one right after the other, in the order they are written. However, you must
decide whether those records can cross block boundaries. When records span
blocks, RMS-11 can pack them with optimal density into the file because a
record can be stored in one or more blocks (see Figure 1-28). When block
boundaries restrict records, each one must be less than 512 bytes long, and
RMS-11 might leave unused bytes at the end of each block.

Figure 1-27: RMS-11’s Environment

FILES ON DISKS

DISK DRIVER

FILE PROCESSOR

MONITOR/EXECUTIVE %

KEY A,
RMS-11 RMS-11 =t DATA FLOW -3
BUFFERS OVERLAYS «gmt>> CONTROL FLOW

g TASK SEGMENT FLOW

PROGRAM

:5;:33?3 _! X_RESIDENT AMS-11
H-MK-00085-00

Buckets — The 1/0 unit for Relative and Indexed files is called a bucket. A
bucket consists of one or more blocks that RMS-11 treats as a unit. Indexed
files, in fact, consist of buckets formatted with control information. Records
can cross block boundaries, but they cannot cross bucket boundaries.

When RMS-11 initiates an I/O operation for a file of one of these organiza-
tions, it requests the file processor to move a bucket. Since buckets are an
RMS-11 concept, the request specifies the Virtual Block Number for the first
block in the bucket and the size of the bucket in bytes. Note that buckets are
fixed within a file; once created, a bucket contains the same virtual blocks at

all times. @\

1-34 Introduction to RMS-11

Figure 1-28: Records Spanning Blocks

[1— BLOCK—>|<— BLOCK—»t=— BLOCK—DI‘— BLOCK—»

e BLOCK—T—— BLOCK—»
]

|

|

|

|

|

]
A. RECORDS LESS
THAN 512
BYTES

)
RECORDS

SN ——

B. RECORDS GREATER \ A
RECORDS/

THAN 512
BYTES

R —

e o ———

N

I
|
|
|
|
|
C. VARIABLE-LENGTH + /
RECORDS RECORDS

The operating systems limit bucket sizes:

Operating Maximum
System Bucket Size

IAS 32 blocks

RSTS/E 15 blocks

RSX-11M 32 blocks

NOTE

H-MK-00071-00

The I/O unit for Sequential files is not the bucket, but the
block. You can adjust the block count for each Record Access
Stream, so that more than one block can be moved during each

1/0 operation.

Areas — Maintained and used by RMS-11, areas are portions of an Indexed
file that are treated independently for initial allocation, extensions, place-
ment, and bucket sizes. Like subfiles, but invisible to the operating system,
areas allow you to divide Indexed files logically into separate units for each
index and for the data records. You do this to improve performance.

Placement Control — Through the file processor, RMS-11 allows you to
place a file, as a whole or by areas, on a disk at specific location(s). You do
this to improve performance, taking advantage, for example, of tracks and

cylinders.

Introduction to RMS-11

1-35

1.2.5.2 File Sharing — Timely access to critical files often requires more than
one program to use those files at the same time. With the help of the file -~
processor, RMS-11 enables programs to share files. '

The way programs can share a file depends on the file organization:

e With the exception of magnetic tape files, every RMS-11 file can be shared
by any number of programs for read-type operations.

e Only one program at a time can access a Sequential file for write-type
operations, while multiple writing programs can share Relative and Indexed
files.

File sharing is controlled by the programs and by the order that the programs
open a file. Basically, the first program to open a file sets the sharing type;
programs attempting to open the file after that generally must specify the
same type of sharing. More details on file sharing are provided in Chapter 2.

1.2.5.3 File Operations — Although the file processor does most of the work, i
RMS-11 provides the following file-level functions:

Creating a File
In addition to the file specification, RMS~11 passes the following informa-
tion to the file processor when it creates a file:

e An initial allocation of blocks for each area in the file. You specify both
the areas and their allocations in your instructions to RMS-11.

e The specific locations on a device where the processor should allocate
those blocks. You also supply this information.

¢ The following file attributes:

File organization

Record format

Forms control

Record size

Number of virtual blocks in the file ‘g‘*
End-of-file (Sequential files only)

Bucket size (Relative and Indexed files only)

Default extension quantity

RMS-11 stores the other file attributes, such as key and area descrip-
tions for Indexed files, in the file (see “File Attributes,” Section 1.2.5.4).

Opening a File
RMS-11 initiates access to the specified file, reading its attributes.

Extending a File
RMS-11 requests the file processor to add blocks to a file’s allocation, in
two circumstances:

e A program explicitly directs the extension. RMS-11 passes the request
almost directly to the file processor, using the extension quantity sup-
plied by the program. T

1-36 Introduction to RMS-11

¢ A put or update operation cannot be completed because there is not
enough room in the file. RMS-11 requests that blocks be added to the
file, using either the default extension quantity or if that is zero, a
minimum number of blocks depending on the file organization.

Closing a File
RMS-11 writes all I/O buffers to the file, if they haven’t already been
transferred, and terminates access to the file.

Erasing a File
RMS-11 requests the file processor to delete the file from the device direc-
tory and release its blocks for re-use. You can erase a file you or other
programs are accessing. However, the file processor does not actually erase
the file until all accessing programs close it.

1.2.5.4 File Attributes — When you create an RMS-11 file, either through a
program or an RMS-11 utility, you must specify the following information:

Medium
Your selection depends on the file’s organization. You can create perma-
nent Sequential files on disk devices or magnetic tape volumes. You can
also write transient files on devices such as line printers and terminals.

However, RMS-11 restricts Relative and Indexed files to disk devices.

File Specification
The name you assign to a new file enables RMS-11 to find the file later.
You follow the file specification conventions for your operating system; see
also Appendix A.

Protection
RMS-11 also allows you to assign a protection code to a file when you
create it; again, the format of this specification depends on the operating
system. _

File organization
You have a choice of three organizations described in ‘“File Organiza-
tions,” Section 1.2.3.2: Sequential, Relative, and Indexed.

Record format
Your choice of the record formats described in “Record Formats,” Section
1.2.3.1, is restricted by the file organization (see Table 1-1):

Table 1-1: Record Formats and File Organizations

Record Format
File
Organization Fixed Variable VFC* Stream Undefined
Sequential Yes Yes Yes disk only Yes
Relative Yes Yes Yes No No
Indexed Yes Yes No No No

* Variable-with-Fixed-Control

Introduction to RMS-11 1-37

Record size
The meaning of the record size information depends on the record format: -~

For fixed-length records, record size is the same length for every record in
the file. RMS-11 rejects any write-type record operation that specifies a
record of the wrong size.

For variable-length and stream records, record size is a maximum length.
RMS-11 rejects any write-type record operation using a record size greater
than the maximum—unless the maximum is zero; then RMS-11 does not
check the length of records added to the file. RMS-11 also keeps the
length of the longest record actually stored in the file.

For variable-with-fixed-control records, there are two size specifications:

e length of the fixed control area

¢ maximum length of the variable area

RMS-11 treats these specifications the way it treats the sizes for fixed-
length records and variable-length records, respectively. RMS-11 also
keeps the length of the longest record actually stored in the file.

Block spanning (for Sequential files)
You decide whether or not records can cross block boundaries.

Bucket size (for Relative and Indexed files)
You establish the number of blocks in each bucket. Bucket size impacts -
performance. "

Maximum record number (for Relative files)
If you set a nonzero Maximum Record Number (MRN), RMS-11 rejects
any record operation using a higher relative record number. If you estab-
lish an MRN of zero, RMS-11 does not check relative record numbers.

Keys (for Indexed files)
You must decide the following:

e number of keys
¢ position and size of each key

e data type for each key (including string, two- and four-byte integer and
binary, and packed decimal)

* whether records can duplicate key values
¢ whether Alternate Key values can change during update operations

¢ null key value for Alternate Keys

Areas (for Indexed files)
You must decide the following:

¢ the number of areas in the file

1-38 Introduction to RMS-11

sam

e what logical portions of the file go in which areas

e the fill number for each area (space and performance optimization)

Forms control
You can specify two types of forms control for records of any format in a

file of any organization:

Carriage Control
When records from the file are written directly to a unit record device,
the device driver puts a line feed character in front of the record and a
carriage return character after the record before passing it to the

device.
Example You use RMSCNYV to write the records of an Indexed file t¢ a line printer. If
you have specified carriage control for that file, the records are printed on

separate lines. If you have not, the records are printed ¢ontinuously, the
only breaks coming at the physical ends of lines.

FORTRAN
When records from the file are written directly to a unit record device,

the device driver interprets the first byte of each!record as a
FORTRAN forms control character.

You are not required to specify either type of forms control|

Default extension quantity
You specify how many blocks you want RMS-11 to add to|the file when

each allocation has been completely used for data storage. RMS-11 ex-
tends the file automatically when it needs space to complete an operation.

CONVENTION

The cover term file directory in this manual
has the same meaning as the following system-
specific terms:

System Term

IAS directory entry and file header(s)

RSTS/E file directory
RSX-11M directory entry and file header(s)

During the creation process, RMS-11 stores this information, called the file
attributes, in the file directory and for Relative and Indexed files, in the first
blocks of the file (called the Prologue).

NOTE

Attributes also include the file’s current size, in blocks. You
may specify an initial allocation quantity when you create the
file, but this initial size probably changes as you use the file.

Introduction to RMS-11 1-39

After creation, for the life of the file, RMS-11 gets information about a file
from the file itself. This ability gives you several advantages: L i)

e The file will not change its characteristics.

¢ You can design your RMS-11 files off-line. No program accessing the files
need specify attributes (except those required by the higher level
languages), because RMS-11 uses only a file specification from a program
when it opens a file. The files act as virtual devices for the programs.

¢ You can open an RMS-11 file with only its file specification. After that,
RMS-11 enables you to read the file attributes. You can write your own
program or use the RMSDSP utility to display those attributes.

1.2.6 Bypassing Record Processing

Finally, your program can bypass RMS-11 record processing and process any

RMS-11 file block-by-block in a mode called Block I/O. However, RMS-11 ~~,
requires files that will be written using Block I/O to be created with the -
following attributes:

¢ disk or magnetic tape medium
e sequential organization

e undefined record format

However, you can read an RMS-11 file with Block I/O regardless of the organ- &
ization or record format.

Using Block I/0, your program reads or writes multiple blocks of the file by
identifying a starting Virtual Block Number and the number of blocks affect-
ed. Your program, of course, must interpret the contents of the blocks once
RMS-11 retrieves them.

1-40 Introduction to RMS-11

Chapter 2
Application Design

You’re writing an application. You want a program or a set of programs to
take in data, process it, store it, update it if necessary, and at intervals output
it in the proper formats.

You want all this to happen simply, quickly, and accurately. You must there-
fore take the time to design your application with RMS-11 considerations in
mind. These considerations include initial allocation, record format, overlays,
key selection, disk usage, and others.

If you don’t consider RMS-11, you won’t get the best performance possible
from your application, and you’ll probably get less performance than Luck
would allow because of the defaults you’re accepting without knowing it (see
“When To Design” in this chapter).

Example 1If you do not design your file, you could end up with a file like one user did:

The first time he created the file, he used a higher level language program and took
all defaults. Then he loaded records into the file: the process was quite lengthy.

However, he re-examined the file and recreated it, applying a couple of design
considerations. With the new file, the record insertion process went ten times faster.

Example If you do not understand the implications of RMS-11 file structure, you could end
up like some users accustomed to programming with BASIC-PLUS Record I/O:

They picked up the facts that RMS-11 uses 15 bytes of control data in each bucket
and seven bytes of control data for each fixed-length record (more in Chapter 6).
Then, because they were used to working with whole blocks, they set up single-block
buckets (512 bytes) and subtracted RMS-11 overhead (22 bytes) to come up with a
record size of 490 bytes.

But when they used those files, the users were alarmed to see them grow at high
rates. They had not read that RMS-11 preserves its fast sequential and Alternate
Key access during random insertions by moving records and leaving behind seven-
byte pointers (more in Chapter 5). Therefore, when one of those 490-byte records
was moved, it left behind seven bytes, which meant that no other record fit into that
bucket. Soon the file was filled with practically empty buckets that could not
be used because the designers did not allow for the full implications of RMS-11
structure.

Example If you slap together an application with a higher level language, you probably don’t
worry about RMS-11. In this process, you accept the language’s concept of design, if -,
any. The chances are good that the defaults the language uses in its interface with ‘

RMS-11 are not suited for your application.

2.1 When To Design

There are two times to design an application:
e Before you write the application, especially if you have:

- large file(s)
- many users simultaneously accessing the file(s)

- a high level of activity (many records read, written, updated, or deleted
in a given time period)

e After you write the application, if you're not happy with its performance.
Often, poor performance results from default values. You can often find A
improvements by studying the nature and source of the defaults and how
they affect the structure of your application and your file.

Basically, defaults have three sources:

Source Language Compilers
In many instances, source language compilers such as PDP-11 COBOL
or BASIC-PLUS-2 supply default values for RMS-11 file attributes
and/or facilities. ~—~—~

Example RMS-11 does not calculate an optimal bucket size for Indexed files. Rather,
the program creating the file must specify a bucket size. When that program
is the product of a compiler, the bucket size can be explicitly specified in the
source code or it can be implicitly set by the compiler, using a default value.

Specifically, PDP-11 COBOL provides the BLOCK CONTAINS clause in
the file-description-entry. You can use this clause to set the number of bytes
or the number of records in a bucket. However, if you do not include this
clause, the PDP-11 COBOL compiler sets the bucket size to the minimum -
disk blocks required to contain one record. oo

RMS-11

The intratask interface between the RMS-11 routines and your program
has the same structure in all tasks, regardless of their source, PDP-11
COBOL, RPG, MACRO-11, and so on. This interface consists of control
blocks (see the RMS-11 MACRO-11 Reference Manual for details). The
information provided by your program in these blocks effectively
controls RMS-11, causing it to create, open, access, and close files.
However, when explicit information is not provided, RMS-11 uses its
default values.

Operating System
RMS-11 acts as a middle man between your task and the operating
system. As such, RMS-11 can supply control information for system
functions such as protection codes. However, if RMS-11 supplies no
control data, the system uses its defaults. o

2-2 Application Design

O S S o e U wmmoS

2.2 Design Considerations

When you design your application, you are primarily concerned with four
things:

Speed
You want to maximize the speed with which the programs process data.

Space
You want to minimize the room for the data and the task on disk and the
memory the task takes to run.

Shared Access
You want your data to be exactly as accessible to the people using the
computer system as necessary, no more, no less.

Ease of Design
You do not want to spend more time than necessary writing the application.

Remember, the importance of design is proportional to the complexity of the
file organization. That is, design is least important for applications using
Sequential files and most important for applications using Indexed files.

2.2.1 Maximize Speed First

You can make many performance (speed) decisions before you have to con-
sider anything else. Therefore, the first criterion to apply throughout the
design process is:

MINIMIZE I/0 TIME

The mechanics of the mass storage devices on your system consume most of
the time for any RMS-11 operation. The memory-resident routines that pre-
pare the data for I/O or process it afterwards are very much faster (one to
three orders of magnitude).

An application’s entire environment (see Figure 2-1) affects I/O time:

File structure
A variety of file attributes impact I/O time, including:

bucket size

number of keys

number of duplicate key values
initial file allocation

default extension quantity

File size
The number of records in the file affects the I/O operations required to
scan a file sequentially or follow an index.

Program
Your program impacts I/O time by requiring I/O operations for file opera-
tions (open, close, and so on), record operations (get, put, and so on), and
overlays.

Application Design 2-3

RMS-11
The RMS-11 routines can be overlaid. _—,

File processor
Besides requiring overlay segments from disk, the file processor can also
request I/Os to map virtual blocks of the file to logical blocks on the
storage device.

Device hardware
The storage device is the primary contributor to the length of an I/O
operation. The type of device chosen (moving-head, fixed-head, and so on)
to contain the task and the data files is crucial to I/O performance.

Figure 2-1: Time Factors in an 1’2 Operation

L
FILE Oaicy, 8
PROCESSOR ‘°o,r
4’04'
&
2

G,

o
STARTC> 5

-

> .
GET OVERLAYS:! \
Q \
P ROgG, 0oy,
A, &
AM Al q Y
X
&
<

DEVICE
DRIVER

8yy ’
ES
NO Size
HEAD MOVEMENT. - l% \
DATA LATENCY, AND OTHER

DEVICE
H-MK-00084-00

2.2.2 Reduce Space Requirements
RMS-11 requires space for three reasons:
® to store data in a file
¢ to store the RMS-11 routines
- on disk when they’re not in use
- in memory when they’;e being executed

e to buffer data in memory while the task runs -

2-4 Application Design

Data Storage Space — The space RMS-11 requires to store data is propor-
tional to the organization of the file—and the processing capabilities of that
organization:
Sequential File Organization
RMS-11 adds to the size of your data an empty byte, if necessary, to align
each record with a word! boundary. Also, when the file contains variable-
length records, RMS-11 adds a record-length field to each record.

Relative File Organization
RMS-11 constructs a series of record storage cells based on the length of
the records. The cells are one byte longer than the fixed size of fixed-
length records or three bytes longer than the maximum size specified for
variable-length records.

Indexed File Organization
RMS-11 adds to your data:

¢ an index for each defined key

fifteen bytes of formatting information for each bucket

a seven-byte header for each record

a record-length field for each variable-length record

other overhead of varying lengths for records RMS-11 moves during file
activity and for deleted records

You should keep the size of records to the minimum required for your applica-
tion.

Task Size — The space RMS-11 routines occupy in a task depends on the
method you use to link the routines with your program. See ‘“Task Building
with RMS-11 Routines,” Section 8.1, for more details.

Buffer Sizes — You can vary the size of the I/O buffers RMS-11 uses to store
data in memory (see ‘“Using RMS-11,” Section 1.2.4.1). Generally, the larger
the buffers, the faster the task processes data. See ‘‘I/O Techniques,” Section
3.3.1.3, 4.3.1.3, or 7.1.3, for the file organization(s) you are interested in.

2.2.3 Provide Shared Access

Shared access revolves around the question: who is allowed to read or write to
a file? The answer involves two levels of permission to access the file:

¢ system protection codes
¢ sharing specifications in accessing programs

2.2.3.1 System Protection Codes — Operating systems allow you to assign a
protection code to each file when it is created. This code describes concentric
circles of users who are allowed different levels of access to that file (see
Figure 2-2). See your operating system documentation for specific protection
conventions.

1 A word equals two bytes.

Application Design 2-5

Figure 2-2: System Protection Concepts

READ ACCESS | WRITE ACCESS |
RSTS/E
READ ACCESS WRITE ACCESS -,
GROUP
TEM
EXTEND ACCESS DELETE ACCESS
WORLD
IAS/RSX-11M F-MK-00065-00 -

2-6 Application Design

Before you can share an RMS-11 file, or for that matter, run the task that
accesses the file, you must log into your computer system under an account
number compatible with the protection code(s) assigned to the file and task.

2.2.3.2 Sharing among Programs — Once the operating system allows a pro-
gram access to a file, the program’s own specifications take effect. Whenever a
program opens a file, it must declare:

e the record operations it intends to perform on the file (find, get, put,
update, delete, and/or truncate)

¢ the operations it will allow other programs to perform on the file. These
operations are categorized as either®

Read-type
Other programs may access the file for get and find operations only.

Write-type
Other programs may access the file for put, update, delete, and truncate
operations, as well as get and find operations.

Shared Access Criteria — The first program to open a file determines how
other (not-first) programs can access that file (see also Table 2-1):

e The access declaration of the not-first programs must agree with the first
program’s allow declaration.

Example The first program allows read access. Any program declaring update intentions is
denied access to the file.

Example The first program allows write access. Any other program, regardless of access
declaration, is allowed to open the file—if it meets the other requirements.

e The allow declaration of the not-first programs must agree with the first
program’s access declaration.

Example The first program has accessed the file for write operations. All not-first programs
must allow write access.

CAUTION

On RSTS/E, if the first program has specified access write
and allow no-write, other programs with access read, allow
no-write declarations can still open the file. However, the
reading programs are not protected against the file changes
being made by the writing program; the following subsection,
“Bucket Locking,” discusses this topic.

e The allow declaration in the not-first programs must be the same as the
allow declaration in the first program.

2 Some higher level languages have a broader range of access options; they break down to
language-specific checks, then either read-type or write-type sharing when RMS-11 opens the

file.

Application Design 2-7

Example If the first program allows write operations, all not-first programs must allow
write operations. A_~,
NOTE ST

On IAS/RSX-11M, there is one exception to this criterion: if
the first program declares read access, but allows writers, a not-
first program with any access declaration and allowing no
write access can open the file. However, from that point,
programs attempting to open the file must have a no-write allow
declaration.

The operating system only allows not-first programs that meet all these
criteria to open the file.

CAUTION

The first program opens a file with access read, allow no-write
declarations. According to the assigned system protection code:

e If the program has write-access privileges to that file,
RSTS/E grants write access to the program. No other pro-
gram can open the file with write access.

Other access read, allow no-write programs open the file.
Then, the first program closes the file. Write access to the file
is then available to other programs.

o If the program has only read-access privileges to-that file,
RSTS/E does not grant write access to the program; instead, ﬂ
the program opens the file for read access only. Write access
to the file is still available.

When the write access is available, a program declaring access
write, allow no-write can open the file. Any reading programs
also accessing the file are not protected against the changes
caused by the writing program.

Table 2-1: Shared Access Criteria T
First Program Declarations
Not-first
Program Access Write Access Write Access Read Access Read
Declarations Allow Write Allow No Write Allow Write Allow No Write

Access Write
Allow Write

Access Write
Allow No Write

Access Read
Allow Write

Access Read
Allow No Write

Opens file

Access denied

Opens file

Access denied

Access denied

Access denied
opens file

Access denied

Access denied
opens file

Opens file

Access denied

Opens file

Access denied

Access denied

Access denied
opens file

Access denied

Opens file

Application Design

NOTE
You cannot ensure that a program has exclusive access to a file.

Bucket Locking — The concern here is data integrity. Anyone who updates a
record should be assured that the data written back to the file is good until
that record is accessed again.

Conflict occurs when more than one program tries to update a file at the same
time. If no control is placed on access, two or more programs could read the
same record, one after the other, then update it, one after the other. Only the
last update remains in the file.

Therefore, RMS-11 activates bucket locking for a Relative or Indexed file
when the first program to open it allows write sharing. From that point,
RMS-11 requests the operating system to lock each bucket read from disk
until RMS-11 explicitly releases the bucket. Typically, after a get, find, or
mass insert put® operation, only the bucket containing the data record re-
mains locked. While that bucket is locked, no other program can access it.

RMS-11 requests the operating system to unlock such a bucket when one of
the following occurs:

e The get, find, or put operation fails.

e The get or find operation ends successfully—if the program has declared
read only access to the file.

e The program initiates another record operation that accesses a different
data record bucket.

After the bucket is unlocked, other programs may access it.

Example Programs A and B are write-sharing a file named RMSREL.DAT (see Figure 2-3).
Both try to update relative record number 12. However, program B initiates the
prerequisite get operation first, locking the bucket containing the record. The opera-
ting system keeps program A from accessing that bucket while program B uses it.
After program B updates record 12, RMS-11 unlocks the bucket and the operating

system allows program A to get record 12 (including program B’s updated data).

3 A performance-oriented I/O technique used with Indexed files. See Chapter 7.

Application Design 2-9

Figure 2-3: Bucket Locking Example

FILE RMSREL.DAT

el
&
-
L]
RELATIVE -4
RECORD A
#12 *
¥
¥
'
4
.
A
&
Sy
PROGRAM
B
PROGRAM READ RELATIVE |
A

RECORD #12

A. PROGRAM B GETS RECORD 12

PROGRAM
A
READ RELATIVE
RECORD #12
PROGRAM B
PROCESS
RECORD
B. PROGRAM A IS DENIED RECORD 12 @
(continued on next page) i
2-10

Application Design

Figure 2-3: Bucket Locking Example (Cont.)

PROGRAM A
TRY AGAIN

PROGRAM B

UPDATE
RECORD

C. PROGRAM B UPDATES RECORD 12, UNLOCKING BUCKET

PROGRAM A

READ RELATIVE
RECORD #12

D. PROGRAM A GETS RECORD 12

PROGRAM B

DO NEXT
RECORD

F-MK-00097-00

Application Design 2-11

Cost The operating system administers the bucket-locking process. It estab-
lishes, for each file, a list of virtual blocks that are locked. The system -
must scan this list every time RMS-11 performs a read-type operation)
and then either permit the read or return an error.

In addition to this lock-list overhead, extra instructions are executed to
lock and unlock the buckets. The unlock sequence is particularly costly
because RMS-11 makes a special monitor call.

File Organization Restrictions — The file organizations restrict file sharing
and bucket locking.

Sequential Files
Programs can share Sequential files for read access only. If a program
accesses such a file to perform write-type operations, no other programs
can open that file. Conversely, if a reading program opens a Sequential
file, the operating system prevents writing programs from accessing it.
Therefore, programs attempting to open Sequential files must allow no -
write access.)

The primary reason for this restricted access is that Sequential files are
not sufficiently formatted to permit simple and economical control of
sharing.

Relative and Indexed Files
Sharing of Relative and Indexed files works as described in this section.

2.2.3.3 Sharing among Record Access Streams — In addition to the bucket
locking used when programs allow sharing, RMS-11 activates its own version
of bucket locking when a program accesses a file for write-type operations.
This locking allows multiple Record Access Streams to share the file.

RMS-11 bucket locking works in the same manner as the locking adminis-
tered by the operating system, except that the locks can be encountered only
by different Record Access Streams within the same program. -~

Cost The overhead for RMS-11 bucket locking is small.

2.2.3.4 Programming Considerations — For the greatest flexibility at run
time, you should always assume that any record your program attempts to
access can be denied because the bucket containing the record is locked.
RMS-11 returns the error code ERSRLK when the bucket is locked by another
Record Access Stream in the same or in another program.

Therefore, you should use the following techniques when you write RMS-11
programs that involve shared access:

* Never keep a bucket locked longer than necessary. You should follow any
successful get or find operation with another record operation of any type as

soon as possible. The second operation unlocks the bucket locked by the
read-type operation. ' ~ !":

2-12 Application Design

Alternatively, you can release the bucket explicitly with a free operation. A
free operation releases only the bucket locked by the Record Access Stream
associated with the operation.

MACRO-11
Issue a $SFREE macro.

BASIC-PLUS-2
Use an UNLOCK or FREE statement.

PDP-11 COBOL
PDP-11 COBOL does not support the free operation.

RPG II
RPG II does not support the free operation.

DIBOL
DIBOL does not support the free operation.

¢ If your program detects an ERSRLK error (or its higher level language
equivalent described in Appendix B), its error processing depends on the
number of Record Access Streams active on the file:

Single Stream
Set up a loop that waits, then re-initiates the record operation until
RMS-11 indicates a successful completion.

Multiple Streams
Do not set up a loop that continuously re-initiates the record operation.
You should either:

e continue processing on the other streams, attempting the record
operation on the locked-out stream periodically

o release the buckets locked by all the other streams, then re-initiate
the record operation that failed. Any get-update or find-update
sequences interrupted on the other streams must be restarted, since
the release of a bucket destroys context (see “Record Access
Streams,” Section 1.2.4.3).

2.2.4 Remember Ease of Design

When you design and write your application, you should consider yourself and
the person who will maintain the application. Keep in mind the following:

¢ Keep things simple. You can apply this criterion to the whole development
process: from program flowcharts to the record layouts to the file organiza-
tions and design.

Example From Sequential through Indexed, the RMS-11 file organizations offer more capa-
bility, but they are also more complex. Choose the organization that supplies
enough capabilities, but no more. For instance, if you want to random access a file
by a single key only, you might use a Relative file and some hashing instead of an

Indexed file.

Application Design 2-13

¢ Apply optimizations one by one until you reach a satisfactory level of per-
formance. Generally, further improvements are not necessary. A,

Example The optimization of Indexed performance can be involved, but you do not have to
use every technique discussed in this manual. You should only satisfy current
performance requirements. For instance, recently a PDP-11 COBOL program
needed optimization. The Indexed file being read was made contiguous (discussed
in Chapter 6) and the RMS-11 overlay structure was changed (discussed in
Chapter 8): execution time dropped from 16 minutes to 8.5. Since this perform-
ance was adequate, no more optimizations were considered.

Example Some optimizations apply to one type of record operation, but not to others.
Determine if an optimization will benefit your processing before you implement

it.

2.3 Design Process

The first step in the design process is the selection of the file organization.
Table 2-2 shows the capabilities of the RMS-11 file organizations. Table 2-3 -~
describes their advantages and disadvantages. -

Once you’ve selected, go to the appropriate chapter(s):

Sequential Chapter 3
Relative Chapter 4
Indexed Chapter 5

Each chapter discusses file structure (physical and conceptual) as well as

design considerations. Indexed files are the most complex to design because of -~
their power and flexibility. You must consider bucket sizes, areas, placement

control, index levels, and so on.

After you read the file organization chapter(s), go to Chapter 8, “Common
Optimization Techniques”.

Finally, you employ the design considerations described in this manual. Write

the application programs. Create and populate the files, using the RMS-11

utilities when they are useful. Use the programs and files in a simulated -~
environment while you evaluate performance. You may have to return to this -
manual, changing your design and/or combining attributes and RMS-11

facilities in different ways, until the application runs to your satisfaction.

Design is important to the success of your RMS-11 application.

2.4 Selecting a File Organization

Table 2-2 lists important features of each file organization to help you decide
which one(s) you need. Table 2-3 points out advantages and disadvantages.

But first some information about certain of those features to help you decide:

Record Formats — RMS-11 supports all of the following record formats for
Sequential files, but restricts Relative and Indexed file organizations (see
Table 2-2):

2-14 Application Design

Fixed
Records in the file are the same size, which is a file attribute. The fixed
record format requires no RMS-11 overhead.

RMS-11 limits fixed block-spanning records to 32,765 bytes, while the
minimum valid record is one byte of data on disk, 18 bytes on magnetic
tape.

Variable
Records in the file can be any length, up to a maximum stored as a file
attribute. For each record, RMS-11 maintains a record-length field speci-
fying the number of data bytes in the record. The size of this field depends
on the storage medium for the file (see also Figure 2-4):

e On disk, the field is a two-byte binary count that does not include the
two bytes for the field.

e On ANSI magnetic tape, the field is a four-character decimal count that
does include the four characters for the field.

Figure 2-4: Record-Length Field on Disk and Tape

LENGTH
AN DATA RECORD ON DISK
/1\1‘}
\ ~ g
\:\\ ______.-—\} —_————— T
\\\\~_____—/ //
—
\h—.____——-/
LENGTH
R DATA RECORD ON MAGTAPE
| £y |
\ N S /
s - -
~— N ——— \\\\‘_____-,_-//
Q-MK-00084-00

The variable record format:

¢ should be used when the data truly varies in length, because the format
adds the record-length field to each record’s size

¢ can be used in a new application when future uses may require records
to change length

NOTE

Changing a record’s length during an update operation is
restricted by file organization. See the ‘“‘Record Operations”
sections of the organization-specific chapters.

RMS-11 limits variable-length block-spanning records on disk to 32,763
bytes because of the record-length field. RMS-11 allows records to reach
this maximum only in Sequential files; other file organizations place
further restrictions on record size. The minimum valid record is a two
bytes of zeroes representing a null record.

Application Design 2-15

Variable-With-Fixed-Control (VFC)
A VFC record consists of two areas: A

® a fixed control area from one to 255 bytes in length; the length is main-
tained as a file attribute.

® a variable area that can vary in length from zero bytes to the maximum
record size stored as a file attribute.

For each record, RMS-11 maintains a record-length field specifying the
number of data bytes in the record including fixed and variable areas.
The size of this field depends on the storage medium for the file (see
Figure 2-4):

® On disk, the field is a two-byte binary count that does not include the
length of the field.

* On ANSI magnetic tape, the field is a four-character decimal count that <~
does include the length of the field.

RMS-11 limits VFC block-spanning records to 32,763 bytes because of the
record-length field. The minimum valid record is three bytes: the record-
length field plus the minimum fixed area of one byte. The maximum
variable area is the difference between 32,763 and the length of the fixed
area.

Stream
A stream record consists of a series of contiguous ASCII characters.
RMS-11 detects the end of a stream record only by the presence of one of
the following terminators:

Carriage Return-Line Feed(0155/012;)

CTRL/Z (0324)

Escape (033g)

Form Feed (0144) @\
Line Feed (0124)

Vertical Tab (013;)

RMS-11 limits stream format to Sequential disk files. Additionally, the
format causes the most CPU overhead because RMS-11 must examine
each record character-by-character for the terminator.

During record operations, RMS-11 processes stream records as follows:

Find and Get Operations
RMS-11 scans the stream of ASCII characters, removing leading NUL
(0004) characters and searching for the first occurrence of one of the
terminators:

e If it finds a Form Feed, Vertical Tab, Line Feed, or Escape, RMS-11
includes the terminator character with the record. é%z

2-16 Application Design

o If it finds a CTRL/Z:

- and it has encountered only NUL characters, RMS-11 returns
ER$EOF error code.

- and it has encountered non-NUL characters, RMS-11 includes
the terminator character with the record. RMS-11 also notes end-
of-file has occurred; ER$EOF will be returned on the next find or
get operation.

¢ If it finds a Carriage Return, RMS-11 checks the character following
the Carriage Return:

- If the next character is a Line Feed, RMS-11 discards both termi-
nator characters (Carriage Return and Line Feed) and considers
the record complete.

- If the next character is not a Line Feed, RMS-11 includes the
characters in the record and resumes its search for a terminator.

During a get operation, RMS-11 moves each character included in the
record into the user buffer as it scans the stream of ASCII characters.
RMS-11 does not move any data into the user buffer during a find
operation.

Put and Update Operations
RMS-11 checks the last character of the record in the user buffer:

o If it finds a Line Feed, Vertical Tab, Form Feed, or Escape, RMS-11
moves the record as it is to the I/O buffer.

o If it does not find one of these terminators, RMS-11 moves the
record to the I/O buffer and adds a Carriage Return-Line Feed
character sequence to the end of the record.

Undefined
The undefined format means that RMS-11 reads only blocks, not records.
Your program must interpret the contents of each block.

I/O Technigques — RMS-11 supports the following techniques so you can
adjust the performance of record operations:

Deferred Write
Normally, every write-type record operation to a Relative or Indexed file
results in a physical I/O operation. However, you can have RMS-11 defer
this write function until the I/O buffer is full or must be used for another
bucket. Deferred write is the normal mode of I/O for Sequential files.

Application Design 2-17

Table 2-2: File Organization Characteristics and Capabilities

File Sharing*

Other Features

Multiple readers only

Block-spanning records

Multiple readers
and writers

Maximum Record
Number

Characteristics
and
Capabilities Sequential Relative Indexed

Medium

Disk Yes Yes Yes

Magnetic Tape Yes No No

Unit record Yes No No
Record Formats

Fixed-length Yes Yes Yes

Variable-length Yes Yes Yes

VFC Yes Yes No

Stream Yes No No

Undefined Yes No No
Record Overhead None One byte per record Seven bytes per record
Access Modes

Sequential Yes Yes Yes

Random No Yes Yes

Access by RFA Yes Yes Yes
Record Operations

Connect Yes Yes Yes

Delete No Yes Yes

Disconnect Yes Yes Yes

Find Yes Yes Yes

Flush Yes Yes Yes

Free No Yes Yes

Get Yes Yes Yes

Rewind Yes Yes Yes

Truncate Yes (disk only) No No

Update Yes Yes Yes

Put Yes Yes Yes
I/0 Unit One or more blocks Bucket Bucket
I/0 Techniques

Deferred Write Normal mode of operation Selectable Selectable

Multi-Block Count Yes Use bucket size Use bucket size

Multiple Record No Yes Yes

Access Streams
Multiple Buffers No Yes Yes
Mass Insert No No Yes

Multiple readers
and writers

* Important: see system-specific exceptions in “Provide Shared Access,” Section 2.2.3.

2-18 Application Design

)

Multi-Block Count (MBC)

You can open a Sequential file so that RMS-11 reads or writes more than
one block of the file into the I/O buffer at a time. This capability speeds
file processing, though the buffer gets bigger. For Relative and Indexed
files, you achieve a similar effect by increasing bucket sizes.

Multiple Buffers (MBF)

You can allocate I/O buffers for a Relative or Indexed file beyond
RMS-11’s minimum requirements: one for Relative; two for Indexed. If
only one task is accessing the file, RMS-11 uses the buffers to save in
memory, or cache, buckets from the file, so that they do not have to be
read from disk again if needed.

For Indexed files, RMS-11 caches the Root buckets from indexes that
are used, saving one I/O operation on every random record operation.
However, for Relative files, RMS-11 makes no distinction between buck-
ets, saving them until it has to use the buffer.

Mass Insert

Turned on before the insertion of a series of records already sorted in
ascending order by Primary Key, this mode enables RMS-11 to store the
records tightly and quickly in the file. Records can be mass inserted only
at the logical end of an Indexed file. Mass Insert significantly improves
performance for single-key Indexed files. However, with each additional
key defined for the file, the improvement is smaller.

Table 2-3: File Organization Advantages and Disadvantages

Sequential Relative Indexed
Advantages Simplest organization Random access in all | Most flexible random
) . languages access:
Optimal use of disk and e by any one of multi-
memory: Allows deletions ple keys or RFA
* minimum overhead on ® key access by generic
disk Allows random get and or approximate value

put operations

¢ block spanning ¢ you accéss records by

Optimal if application record contents
accesses all records on
each run and file must be
write-shared

Optimal if application
accesses all records on
each run, except if file
must be write-shared

Duplicate key values
possible
Random and sequential Fast sequential access

Most versatile in record .
access with low overhead | Automatic sort of re-

formats:
® exchange data with cords by Primary and
nonRMS-11 systems | Alternate keys; avail-
® compatible with IAS able during sequential
and RSX-11M FCS access
files* . .
e compatible with ANSI Record location is

magnetic tape format transparent to user.

(Continued on next page.)

Application Design 2-19

Table 2-3: File Organization Advantages and Disadvantages (Cont.)

Sequential

Relative

Indexed

Disadvantages

e compatible with
RSTS/E stream files*

Most versatile in storage
media; file is portable

To get a record, most
higher level languages
must access all records be-
fore it (no access by RFA).

PDP-11 COBOL program
cannot access a record al-
ready passed without clos-
ing and re-opening file
(rewind is not available).

You can add records only
at end of file.

You can delete records
only at end of file; use
truncate record operation.

Interactive process is awk-
ward: operator must wait
as a program searches for a
record.

Sharing restricted to mul-
tiple readers

Can be write-shared

Restricted to disk

File contains a cell for
each cell number be-
tween 1 and last record
in file; data may not be
stored densely.

Program must know rela-
tive record number or
RFA of record before it
can randomly access the
data; no generic access
as in Indexed file organi-
zation.

Interactive access can be
awkward if you do not
access records by relative
number.

You can insert records
only into unused record
cells, but you can update
existing records.

RMS-11 does not allow
duplicate relative record
numbers.

Can be write-shared

Potential range of key
values not physically

present as in Relative

file organization

Highest overhead on
disk and in memory

Restricted to disk

Least simple program-
ming

* RMS-11 can read these file structures and return a record to your l‘Progriﬂm. However, differences in data
storage techniques among programming languages can keep the p:

contents of that record. See also Appendix A.

2-20 Application Design

ogram from properly interpreting the

Chapter 3
Sequential File Applications

CONVENTION

The cover term file directory in this manual
has the same meaning as the following system-
specific terms:

System Term

IAS directory entry and file header(s)
RSTS/E User File Directory entries
RSX-11M directory entry and file header(s)

Physical Structure — Sequential files carry almost no RMS-11 overhead.
The operating system’s file management software stores attributes in the file
directory. RMS-11 stores data records beginning with Virtual Block 1:

o If records cross block boundaries, RMS-11 packs records into the file end-
to-end, allowing for control information and padding.

o If you do not allow records to span blocks, RMS-11 packs records into each
block, allowing for control information and padding.

NOTE

You will waste space in your file if both of the following are
true:

¢ You do not allow records to span blocks.

® Your records do not exactly fit into a block.

3-1

To be compatible with other file management systems (see Appendix A),

RMS-11 flags space not used at the end of each block as shown in Table 3-1. -~
When you allow records to span blocks, the only unused space starts after the .
last record in the file.

Table 3-1: End-of-File Indicators

Medium Record Format EOF Indicator
Disk All but Stream -1 in word following last valid byte
Disk Stream ASCII nulls (000g) to end of block
Magnetic tape All circumflex (*) to end of block
Unit record All CTRL/Z (032g)

However, for disk Sequential files, RMS-11 uses the end-of-file attribute,

stored in the file directory, to tell where the valid data in a file ends. It does -
not rely on the indicators shown in Table 3-1. This attribute includes a -
Virtual Block Number and a byte offset within this block. The virtual block

containing the logical end-of-file may not be the last block allocated to the

file.

Example The end-of-file indicators shown in Table 3-1 are like the words “THE END”
printed on the last page of a book. On the other hand, the end-of-file attribute that

RMS-11 uses is like listing the last page or “THE END” in the table of contents.

RMS-11 reads the end-of-file with the other file attributes when it opens a -~
file. RMS-11 also updates the end-of-file in the file directory when it closes
the file if the end-of-file changed while the file was open. The end-of-file
changes if records were added to the end of the file or if the file was truncated.

Conceptual Structure — RMS-11 stores records in the sequence that pro-
grams write them, one after the other from the first record in the file to the
last. RMS-11 can access the records in the same order or randomly via
Record’s File Address (disk files only).

3.1 Record Definition

Records in disk Sequential files are word aligned, which means that RMS-11
adds a pad byte to the end of any record with an odd number of bytes.
RMS-11 uses this convention to maintain structural compatibility with
FCS-11 sequential files.

You can define a Sequential file so that RMS-11 writes records across the
boundaries between blocks. ‘Such a Sequential file is optimally dense; all
bytes within its allocated space are used, except at the end of the file where no
data has been written.

Table 3-2 shows the maximum data sizes for records in a Sequential file.
These are the sizes of your data; they are adjusted for RMS-11 restrictions
and overhead. -,

3-2 Sequential File Applications

umm

Table 3-2: Sequential File Data Sizes (in bytes)

Maximum Data Size
Format | With Block-Spanning | Without Block-Spanning Data Size Calculation
Fixed 32766 512 Your data + MOD(yd/2)"
Variable 32765 510 Your data + 2 + MOD(yd/Z)1
VFC 32765° 509 Fixed + variable + 2 + MOD(yd/2)"!
Stream None 5112 Data + terminator(s)

! MOD(yd/2) is the remainder after the length of your data (yd} is divided by 2:

¢ MOD(yd/2) = 0 if the data size is an even number of bytes.
¢ MOD(yd/2) = 1 if the data size is an odd number of bytes.

For VFC, yd = fixed + variable.

2 Assuming one-byte terminator character; however, if terminator is CR-LF, then maximum length without
block-spanning records is 510 bytes. Note that these figures do not include the terminator characters.

3.2 File Design

With Sequential files, design includes:

Record format selection
Record Formats in Section 2.4 completely discusses your choices of record
formats.

Medium selection
Sequential files can be accessed on disk and magnetic tape. When you
select the medium for your file, consider the following:

Speed of access

How long can each record operation take? Tape is significantly slower
than disk.

Frequency of use
How often do you use the file? If you use it once a month, a quarter, and
so on, you could store the file on tape and save your disk for more
immediate purposes.

Transportability
RSTS/E disk structure is not compatible with IAS, RSX-11M, or VAX,
and vice-versa. If you need to use the file across these systems, you
should consider using a magtape file.

Allocation
Allocation involves two different quantities:

Initial Allocation Quantity
The number of blocks assigned to a file when you create it

Default Extension Quantity
The number of blocks added to a file when RMS-11 extends it
automatically

Sequential File Applications 3-3

The concept of contiguity involves both these quantities. Contiguity sig-
nificantly impacts performance, but its use differs by operating system -~
(discussion in Chapter 8). '

3.2.1 Initial Allocation

Even with Sequential files, where a file extension requires only an allocation
of blocks by the operating system, total allocation of the file when you create
it is much more efficient.

You calculate the allocation amount for block-spanning records as follows:

ALQ = (NRF*RSZ)/512

where:

ALQ s the allocation quantity in blocks

NRF s the largest number of records that will reside in the file at one time -~
RSZ is the size of the record in bytes:. |

¢ For a variable record format (VAR or VFC), use the average record
size, including two bytes for the record-length field.

¢ For fixed-length records, use the actual record size.

Be sure to round RSZ up to a multiple of two to account for word alignment. -
This allocation can be done by the RMSDEF utility or by your application
program as follows:
MACRO-11
Use the initialization macro or $STORE to set the ALQ field in the FAB
(or XAB if you are using placement control) of the file to the calculated
number of blocks before issuing SCREATE. ,
BASIC-PLUS-2
Use the FILESIZE clause in the OPEN statement that creates the file.
PDP-11 COBOL
Use the /AL:n switch on the file specification in the ASSIGN clause or the
VALUE OF ID.
RPG II
Use the RPGASN utility to override the default value set by the compiler
with a switch.
DIBOL
Use RMSDEF; DIBOL does not support allocation quantities during the
creation of Sequential files. &

3-4 Sequential File Applications

3.2.2 Default Extension Quantity

You should establish a reasonable Default Extension Quantity (DEQ)
whether the file is totally allocated at creation time or not. A reasonable
DEQ minimizes the number of file extensions. The time required for each file
extension is significant; involved are:

e A call to the system file processor
¢ Possible I/O operations to bring file processor routines into memory
e I/O operations to read and change file directory information

¢ I/O operations to read and change the disk free-block bit map

A good basis for calculation is the number of records added to the file in a
given period of time, such as a day; use the formula for allocation quantity to
determine the number of blocks.

If you do not specify a DEQ, it defaults to zero whether you create the file
with RMSDETF or a higher level language. RMS-11 responds to a DEQ of zero
by requesting five blocks from the file processor each time it automatically
extends the file.

Example You are inserting 1000 fifty-byte fixed-length records into a Sequential file. Records
' do not span blocks; therefore, each block contains ten records. The file is currently
full, that is, no more records may be added without an extension.

¢ If DEQ is zero, RMS-11 extends the file by five blocks each time it runs out of
space. Therefore, in this example, RMS-11 extends the file twenty times.

¢ If DEQ is 1, RMS-11 extends the file for every tenth put operation after the first,
for a total of 100 extensions.

o If DEQ is 25, RMS-11 extends the file four times.
e If DEQ is 100, RMS-11 extends the file only once.

The DEQ for the file can be set by the RMSDEF utility or by your application
program as follows:

MACRO-11
Use the initialization macro or $STORE to set the DEQ field in the FAB
(or XAB if you are using placement control) of the file to the calculated
number of blocks before issuing $CREATE. You can also set a run-time

DEQ.

BASIC-PLUS-2
Use RMSDEF; BASIC-PLUS-2 does not support DEQ specifications.

PDP-11 COBOL
Use the /EX:n switch on the file specification in the ASSIGN clause or the
VALUE OF ID.

RPG II
Use the RPGASN utility to override the default value set by the compiler
with a switch.

Sequential File Applications 3-5

DIBOL
Use RMSDEF; DIBOL does not support DEQ specifications during the
creation of Sequential files.

3.2.3 Contiguity

Finally, you should consider contiguity for a Sequential file to minimize the
time spent in each I/O operation. If the blocks in a file are not contiguous,
they can be on different parts of the disk. The device must therefore move its
heads to access the file contents. However, physical contiguity ensures that
the file is stored on one track, or at worst, adjacent tracks. Since the disk can
read a track without moving the heads, file contiguity reduces head move-
ment. This statement assumes that no other software is accessing the disk at
the same time.

Contiguity also enhances virtual-to-logical-block mapping (discussed in Sec-
tion 8.3).

To ensure that the blocks in the file are physically contiguous, allocate the
whole file when you create it (see ‘‘Initial Allocation,” Section 3.2.1).

MACRO-11
Use the initialization macro or $SET to set the FOP field in the FAB (or
XAB if you are using placement control) of the file to include FB$CTG
before issuing $CREATE.

BASIC-PLUS-2
Use the CONTIGUOQUS clause in the OPEN statement that creates the
file.

PDP-11 COBOL
Use the /CO switch on the file specification in the ASSIGN clause or the
VALUE OF ID.

RPGII
Use RMSDEF; RPG II does not create contiguous files.

DIBOL
Use RMSDEF; DIBOL does not create contiguous files.

3.3 Task Design

3-6

The record and file processing capabilities described in Chapter 1 are avail-
able for Sequential files. This section discusses the operations and their im-
plementation and restrictions with Sequential files.

Sequential File Applications

3.3.1 Record Operations

RMS-11 performs a record operation at the request of a program. The avail-
able operations include:

Connect
Disconnect
Find

Flush

Get

Put
Rewind
Truncate
Update

In all record operations, except truncate, RMS-11 establishes Current Record
(if any) and Next Record (if applicable). If any record operation fails,
RMS-11 normally sets Current Record to NONE and does not change Next
Record. “Record Access Stream,” Section 1.2.4.3, introduces the concepts of
Current Record and Next Record.

3.3.1.1 Connect — A connect operation affects the Current Context for the
Record Access Stream as follows:

Current Record
There is no Current Record. Any operation requiring Current Record fails
at this point.

Next Record

e If you did not specify that you were going to append records to the file,
the Next Record is the first record in the file.

o If you did specify that you were going to append records to the file, the
Next Record is the end-of-file.

Your program specifies that it will append records to the file as follows:

MACRO-11
Use the initialization macro or $SET to set the value RB$EOF in the
ROP field of the RAB before issuing SCONNECT.

BASIC-PLUS-2
Use ACCESS APPEND in the OPEN statement that creates the file.

PDP-11 COBOL
Use the keyword EXTEND in the OPEN statement.

RPG II
RPG 1I does not support this feature.

DIBOL
DIBOL does not support this feature.

Sequential File Applications 3-7

3.3.1.2 Disconnect — A disconnect operation destroys the Current Context for
the Record Access Stream. You cannot resume this context by reconnecting N
the stream.

3.3.1.3 Find — To perform a find operation on a Sequential file, RMS-11:

1. determines the location of the record in the file according to the specified
access mode:

* Location is indicated by Next Record pointer in Sequential Access
Mode.

® Location is determined by specified RFA in Access by RFA.

2. reads the block containing the record, or the first part if it spans blocks,
from disk into the task’s I/O buffer, if it is not already in memory. The -
block may be in memory if it was required by a previous operation.

3. returns the RFA to the program, but does not transfer the record to the
program’s user buffer

If no valid record exists in the location specified, the response depends on the
access mode:

¢ In Sequential Access Mode, the error code is ER§EOF, meaning that no -
record was located because there are no more records ih the file. B

¢ In Access by RFA, the error code is ER$RFA, meaning that no record was
located at the RFA specified.

A find operation affects the Current Context for the Record Access Stream as
follows:

¢ find in Sequential Access Mode:

Current Record
Set to value of the record found, that is, the Next Record before opera-
tion started.

Example You've connected a stream to a Sequential file without specifying append.
There is no Current Record, but the Next Record is the first record in the file.
If you execute a sequential find operation, the Current Record is set to the

first record in the file.

Next Record
Set to the record virtually following the Current Record.

Example From the previous example, Next Record is the second record in the file.

¢ find in Access by RFA:

Current Record
Set to the record found, that is, the reocrd identified by the RFA. A~

3-8 Sequential File Applications

Next Record
Unchanged.

Example In the preceding examples, you've done a sequential find after connecting the
stream to the file. You now execute a find by RFA. The Current Record is set
to the record specified, but the Next Record is not changed. Therefore, when
you do another sequential find, Current Record is set to the second record in

the file, not the record following the one found by RFA.
You use find instead of a get operation because:

e it is quicker because the record is not moved to the user buffer. Although the
time required to move a record from one part of memory to another is very
short, do not expend it unnecessarily.

¢ it does not change Next Record in access by RFA. This convention allows
you to branch off sequential processing for updating, deleting, or truncating,
and yet keep your place.

You can use a find operation in the following ways:

e To skip records in Sequential Access Mode by initiating successive find
operations.

¢ To establish a random starting point for sequential processing with RFA.
You could then initiate successive get operations, where the first one gets
the record found by RFA.

e To establish a Current Record for an update or truncate operation.

3.3.1.4 Flush — See “Records Operations,” Section 1.2.4, for a summary of
the flush operation.

A flush operation does not affect the Current Context for the Record Access
Stream.

3.3.1.5 Get — To perform a get operation on a Sequential file, RMS-11:

1. determines the location of the record in the file according to the specified
access mode:

* In Sequential Access Mode, location is indicated by:

¢ Next Record pointer, if the get operation was not immediately pre-
ceded by a successful find operation.

e Current Record pointer set by an immediately preceding successful
find operation.

¢ Location is determined by specified RFA in Access by RFA.

2. reads the block containing the record, or the first part if it spans blocks,
from disk into the task’s I/O buffer, if it is not already in memory.

Example Your records are 50 bytes long. When you read sequentially through the file,
RMS-11 must request a disk I/O operation for every tenth get record operation

your program executes.

Sequential File Applications 3-9

3. returns the RFA to the program and moves the record from the I/O buffer
to the specified user buffer in the program unless the program is operating P
in Locate Record Transfer Mode. If the buffer does not contain the entire o
record, RMS-11 reads more blocks into the I/O buffer and assembles the
record in the program’s user buffer regardless of record transfer mode.

If no valid record exists in the location specified, the response depends on the
access mode:

¢ In Sequential Access Mode, the error code is ER$EOF, meaning no record
was located because there are no more records in the file.

® In Access by RFA, the error code is ERBRFA, meaning no record was located
at the RFA specified.

A get operation affects the Current Context for the Record Access Stream as
follows:

¢ get in Sequential Access Mode not immediately preceded by a successful
find operation:

Current Record
Set to value of the record read, that is, the Next Record before operation
started.

Example You've connected a stream to a Sequential file without specifying append.
There is no Current Record, but the Next Record is the first record in the file.
If you execute a sequential get operation, the Current Record is set to the first -,

record in the file.

Next Record
Set to record virtually following Current Record.

Example You’ve connected a stream to a Sequential file without specifying append.
There is no Current Record, but the Next Record is the first record in the file.
If you execute a sequential get operation, the Next Record is set to the second

record in the file.

¢ get in Sequential Access Mode immediately preceded by a successful find '
operation:
Current Record
Unchanged (from Current Record set by find operation).
Next Record
Set to record virtually following Current Record (possibly changing Next
Record set by find operation).
e get in Access by RFA:
Current Record
Set to record specified by RFA, that is, the record read.
Next Record
Set to record virtually following Current Record. This convention differs
from find by RFA which does not change Next Record. -~

3-10 Sequential File Applications

3.3.1.6 Put — To perform a put operation on a Sequential file, RMS-11:

1. determines if Sequential Access Mode is specified; if it is not, RMS-11
returns the error code ERSIOP.

2. determines if Next Record is end-of-file; if it is not, RMS-11 returns the
error code ERSNEF.

Your program gets to the end of a Sequential file by:

¢ specifying append when the program connects the Record Access
Stream to the file (see “Connect,” Section 3.3.1.1).

e initiating sequential find and/or get operations until RMS-11 returns an
ERSEOF error code.

3. reads the last block in the file into the I/O buffer, if it is not already in
memory

4. moves the record from the user buffer in the program to the task’s I/0
buffer

5. writes the I/O buffer to disk only if the buffer is full. If there is not room
for the block(s) in the file, RMS-11 extends the file (see “Default Exten-
sion Quantity,” Section 3.2.2) and then writes the buffer.

A put operation affects the Current Context for the Record Access Stream as
follows:

Current Record
None. Any operation requiring a Current Record fails at this point.

Next Record
End-of-file. A sequential find or get operation fails with error code
ER$EOF.

3.3.1.7 Rewind — A Rewind operation sets the context of the Record Access
Stream to the beginning of the Sequential file. In doing so, it affects the
Current Context for the stream as follows:

Current Record
None. Any operation requiring a Current Record fails at this point.

Next Record
Set to first record in file.

3.3.1.8 Truncate — A truncate operation declares an end-of-file at the posi-
tion of the Current Record. In doing so, the operation deletes the Current
Record and all records in the Sequential file following that record.

Truncate requires a valid Current Record. It therefore should follow a success-
ful get or find operation; otherwise, RMS-11 returns the error code ER$CUR.

Sequential File Applications 3-11

A truncate operation affects the Current Context for the Record Access
Stream as follows: -,

Current Record
None. Any operation requiring a Current Record fails at this point.

Next Record
End-of-file.

After a truncate operation, you can immediately add to the file using put
operations.

NOTE

The truncate operation does not reduce the size of a Sequential
file.

3.3.1.9 Update — In an update operation, RMS-11 moves the specified record

from the task’s user buffer to the I/O buffer, replacing the Current Record set -~
by the prerequisite get or find operation. However, RMS-11 does not immedi- :
ately write the buffer to the file. RMS-11 requests the file processor to write

the changed buffer over its original location on the disk only when the buffer

must be replaced in memory by another operation.

Example You get a record by RFA and then update it. Then, you get another record by RFA.
RMS-11 writes the buffer containing the first record you updated only when it must

replace the data in the buffer to satisfy the second get operation.

Update operations have the following restrictions:

¢ The operation is valid only on disk Sequential files. If you attempt it on
magnetic tape files or unit record devices, RMS-11 returns the error code
ERSIOP.

* The operation requires a valid Current Record. It therefore should follow a
successful get or find operation; otherwise, RMS-11 returns the error

ERSCUR. -

® The size of the record cannot change during an update operation. If it
changes, RMS-11 returns the error code ER$RSZ.

® You cannot update Stream format records. If you attempt it, RMS-11 re-
turns the error code ER$IOP.

None of these errors affects the original record in the file on disk.

An update operation affects the Current Context for the Record Access
Stream as follows:

Current Record
None. Any operation requiring a Current Record fails at this point.

Next Record
Unchanged.

3-12 Sequential File Applications

3.3.2 Record Transfer Modes
You can manipulate records either in the I/O buffer or in your program’s user
buffer (see Figure 3-1). Each of these options is called a Record Transfer

Mode. You can change Record Transfer Mode at run time, even between
record operations.

Figure 3-1: RMS-11 Task Structure

|« NUMBER OF FILES OPENED SIMULTANEOUSLY :
¢ BUCKET SIZES

USER BUFFERS
* (|

170
BUFFERS
VIRTUAL
MEMORY PROGRAM RMS-11
INTERNAL
CONTROL
STRUCTURES
1)
Maioe mEBEMAe . -

{ SIZE DEPENDS ON: 1

| « RMS-11 FUNGTIONS USED |
L= OVERLAY STRUCTURE USED
H-MK-00069-00

3.3.2.1 Move Mode — Move Mode requires that each record be copied be-
tween the user and I/O buffers:

® On get operations, RMS-11 moves the record from the I/O buffer to the user
buffer before returning control to your program.

* On put and update operations, your program assembles the record to be
written into the file in the user buffer. During the operation, RMS-11 moves
the data into the I/O buffer before updating the file.

Move Mode is the default Record Transfer Mode for all programming
languages on all file organizations.

Sequential File Applications 3-13

3.3.2.2 Locate Mode — Locate Mode enables your program to manipulate

records in the I/O buffer, eliminating the data transfers between it and the _—
user buffer. However, when you specify Locate Mode, RMS-11 uses the I/0 '
buffer only when such usage does not compromise data integrity. Otherwise,

RMS-11 uses Move Mode. Therefore, your program must still contain a user

buffer.

Example RMS-11 uses Move Mode instead of Locate Mode when records span buffers in a
Sequential file.

Example RMS-11 uses Move Mode instead of Locate Mode if you opened the file indicating
that you were going to perform update operations on it.

RMS-11’s use of Move Mode instead of Locate Mode is transparent to your
program as long as you use RMS-11 facilities to access the record data.

For Sequential files, your program can both get and put records in Locate
Mode. See your language documentation to determine if the language sup-
ports Locate Mode and if it does, what the programming techniques are.

3.3.3 1/0 Techniques

You can use the following techniques to improve the performance of record
operations.

3.3.3.1 IAS/RSX-11M Asynchronous Record Operations — Within each Record

Access Stream, your program can perform any record operation either syn-

chronously or asynchronously. In synchronous operations, RMS-11 returns ﬂ
control to your program after the operation ends, either successfully or with an

€error.

When you execute an asynchronous operation, RMS-11 may return control to
your program before the operation is complete. The program continues pro-
cessing while the physical transfer of data between disk and memory is carried
out. However, you must not initiate another record operation on that stream
until the first operation ends; otherwise, RMS-11 returns the error code
ERS$SACT. See your language documentation for asynchronous techniques.

NOTE

If you intend to use asynchronous RMS-11 record operations
and/or Asynchronous System Traps (ASTs) in other parts of
your program, see the section on your operating system in
Appendix A.

3.3.3.2 Deferred Write — The normal mode of operation for Sequential files is
similar to operations using Deferred Write with the other file organizations.
Using this technique does not change or improve performance.

3.3.3.3 Multiple Buffers — The multiple buffer capability is not available to
Sequential files. -

3-14 Sequential File Applications

3.3.3.4 Multiple Record Access Streams — RMS-11 allows each program to
use only one stream on a Sequential file because Sequential files are not
sufficiently formatted to permit simple and economical sharing.

3.3.3.5 Multi-Block Count (MBC) — Your task can be set up so that more than
one block from a disk Sequential file is read or written at one time. This
multiple-block I/O can improve processing as it tends to reduce the number of
physical I/O operations. However, it also increases the size of the task, on a
one-for-one basis; that is, for each increment of MBC, the I/O buffer in the
task grows by 512 bytes.

An MBC greater than one is therefore useful for sequential processing, includ-

ing file population.

Example You are using fifty-byte records. During sequential processing, if MBC is one,
RMS-11 requests a disk I/O operation for every tenth record operation your program

executes, whether the operations are gets or puts. If you set MBC to five, for
instance, RMS-11 causes a physical I/O operation for every fifty record operations.

Since MBC is a run-time parameter, the quantity is set by the application
program:

MACRO-11
Use the initialization macro or $STORE to set the MBC field in the RAB
of the Record Access Stream being used to the desired number of blocks
before the stream is set up ($CONNECT).

BASIC-PLUS-2
When you specify the organization as SEQUENTIAL in the OPEN state-
ment for the file, the compiler equates the BUCKETSIZE to the Multi-
Block Count for the Sequential file. If you try to allocate more buffer space
than is available to your task at runtime, the task terminates with an
error (?Maximum memory exceeded).

PDP-11 COBOL ;
When you specify the organization as SEQUENTIAL in the OPEN state-
ment for the file, the compiler equates n in the RESERVE n AREAS
clause to the Multi-Block Count for the Sequential file.

RPG II
RPG II does not support this feature.

DIBOL
When you specify a value after the PROC statement, the compiler uses
that value as the Multi-Block Count for all Sequential files opened by the
program.

3.3.4 File Operations

You can perform the following file operations on Sequential files. File opera-
tions do not involve records and can only perform synchronously.

Sequential File Applications 3-15

3.3.4.1 Close — A close operation disconnects the Record Access Stream
before RMS-11 releases access to the file. You can also specify magnetic tape -
volume operations during a close operation. See Appendix F.)

3.3.4.2 Create — In addition to the file specification, RMS-11 passes the
following information to the file processor when it creates a file:

¢ An initial allocation of blocks for the file.

¢ The location on a specific device where the processor should allocate those
blocks.

¢ The following file attributes:

File organization

Record format

Forms control

Record size -~
Number of virtual blocks in the file o
End-of-file

Default extension quantity

3.3.4.3 Open — You can specify the file you want to open in two different
ways:

By filespeé
The first time you open a file, you must use the file specification. -~

By File ID
When you create or open a file by filespec, RMS-11 returns an identifying
notation to your program. You can store this File ID, either in memory or
in a file, and use it to open the file from that point on.

On TAS/RSX-11M systems, open by File ID is significantly faster than open
by filespec, because the process bypasses directory reads and other overhead.
However, on RSTS/E, open by File ID is no faster than open by filespec. -

You can also specify magnetic tape volume operations during an open opera-
tion. See Appendix D. See also ‘File Operations,” Section 1.2.5.3, for an
introduction to the open file operation.

3.3.4.4 Erase — You cannot erase a magnetic tape or unit record file;
RMS-11 returns the error code ER$IOP. “File Operations,” Section 1.2.5.3,
introduces the concept of erasing files.

3.3.4.5 Extend — You cannot extend a magnetic tape file. “File Operations,”
Section 1.2.5.3, introduces the concept of extending files.

3-16 Sequential File Applications

] —

-’

Chapter 4
Relative File Applications

CONVENTION

The cover term file directory in this manual
has the same meaning as the following system-
specific terms:

System Term
IAS directory entry and file header(s)

RSTS/E file directory
RSX-11M directory entry and file header(s)

Physical Structure — Relative files contain at least one block of RMS-11
information known as the Prologue. The operating system’s file management
software stores attributes in the file directory. RMS-11 stores the Prologue in
Virtual Block 1 — unless bucket size is two, four, or eight blocks. In that case,
RMS-11 makes the Prologue equal to one bucket in size; this step can im-
prove performance by aligning buckets with file clusters. Data records begin
in the block following the Prologue.

RMS-11 allocates Relative files in bucket increments. The first bucket begins
with the first data block. To support deleted record control, RMS-11 initial-
izes each bucket (sets all bits to 0) when it allocates the blocks.

The fixed-length cells are set up in each bucket starting with byte 0 and
packed end-to-end, byte-aligned, until no more cells can fit in the bucket (no
padding necessary). Cells cannot span bucket boundaries, though they can
cross block boundaries in multi-block buckets. The first byte of each cell is
used by RMS-11 to provide deleted record control.

4-1

Conceptual Structure — RMS-11 stores records in a series of fixed-size cells.
Only one record can be put into a cell, but all cells do not have to contain
records. The cell size is based on the length you specify as the maximum for
any record in the file. RMS-11 numbers the cells consecutively from 1 to n,
where n indicates the last cell in the file. A cell number relates its location to
the beginning of the file and is associated with the record in the cell, if any, as
a relative record number.

RMS-11 can access records in a Relative file either sequentially or randomly,
via both relative record number and RFA.

4.1 Record Definition

RMS-11 calculates the size of a Relative record cell as follows:

1 byte for RMS-11 overhead
rfo bytes for record format overhead (0 for fixed; 2 for variable)
+ ds Dbytes in the data itself

CL bytes in each record cell in the file

The data size used for variable records is the Maximum Record Size set for
the file.

Table 4-1 shows the maximum data sizes for records in a Relative file. These
are the sizes of your data; they are already adjusted for RMS-11 restrictions
and overhead.

Table 4-1: Relative File Data Sizes (in bytes)

Format Maximum Record Cell Size Calculation
Fixed 16,383 or 7,679 Data size + 1

Variable 16,381 or 7,677 Maximum record size + 3
VFC 16,381 or 7,677 Fixed + variable + 3

4.2 File Design

Though not as critical as for Indexed files, design is still important for an
application using a Relative file. Design considerations include:

1. Bucket size
2. File allocation

3. Maximum Record Number

4.2.1 Bucket Size

Buckets are the I/0 units for Relative files. Their size is therefore critical to
the space required by a task and the speed with which it performs. Sequential

4-2 Relative File Applications

access, especially, benefits when there are multiple records per bucket. There
is, of course, a trade-off: the larger a bucket, the larger the task, but the faster
it reads data sequentially:

¢ Each block added to the bucket size increases the task size by 512 bytes.

¢ The speed of an RMS-11 operation is closely proportional to the number of
I/O operations involved. RMS-11 requests an I/O operation each time it
requires a new bucket to locate a record. Therefore, the more record cells in
a bucket, the fewer I/O operations RMS-11 needs to read a file sequentially.

However, write sharing a Relative file counteracts this optimization if your
program has read-only access to the file. RMS-11 reads a bucket from disk
during each get operation — even if the Next Record is in the bucket in
memory — because the bucket isn’t locked after each get operation and a
writing program may have changed the bucket since it was last read.

Bucket size can be set by RMSDEF or by your application program:

MACRO-11
Use the initialization macro or $STORE to set the BKS field in the FAB
(or XAB if you are using placement control) of the file to the chosen
number of blocks before issuing §CREATE. Note that the default value is
one block per bucket.

BASIC-PLUS-2
Use the BUCKETSIZE clause in the OPEN statement that creates the

file. See “Program Syntax,” section 6.5.3, for cautions in the use of the
BUCKETSIZE clause.

PDP-11 COBOL
In the file-description-entry (FD), use the BLOCK CONTAINS clause.

RPG II
Use the RPGASN utility to override the default value set by the compiler.

DIBOL
Use RMSDEF; DIBOL does not create Relative files.

4.2.2 Allocation

File allocation involves two different quantities:

Initial Allocation Quantity
The number of blocks assigned to a file when you create it

Default Extension Quantity
The number of blocks added to a file each time RMS-11 automatically
extends it

The concept of contiguity involves both these quantities. Contiguity has a
significant impact on performance, but its use differs by operating system.

Relative File Applications 4-3

4.2.2.1 Initial Allocation — Total allocation of a file when you create it is the

most efficient technique regardless of file organization, but with Relative files, -
pre-allocation becomes most critical. Each allocation, whether at creation or
during an extension, requires RMS-11 to initialize the new buckets by setting
all bits to zero. You can avoid time-consuming file extensions during normal
processing by totally allocating the file when you create it or by explicitly
extending the file when it is not being used for processing.

You calculate the allocation amount as follows:

ALQ = PLG + (NRF/NRBKT)*BKS

where:
PLG is equal to one block or to BKS if BKS is 2, 4, or 8.
NRF is equal to MRN or to the number of records that will be written
into the file.
BKS is the bucket size in blocks -~

NRBKT is the number of records in a bucket:
NRBKT = (512*BKS)/(RSZ + RFO)
where:

RSZ is the size of the record:

o data size for fixed-length records -
e maximum record length for variable-length records '
e size of fixed control area + maximum variable area size

for VFC
RFO is the record format overhead:

e RFO = 1 byte for fixed-length records
e RFO = 3 bytes for variable-length and VFC records

RMS-11 rounds ALQ up to the next bucket size if you don’t. <,

This allocation can be done by the RMSDEF utility or by your application
program as follows:

e during file creation

MACRO-11
Use the initialization macro or $STORE to set the ALQ field in the FAB
(or XAB if you are using placement control) of the file to the calculated
number of blocks before issuing $CREATE.

BASIC-PLUS-2
Use the FILESIZE clause in the OPEN statement that creates the file.

PDP-11 COBOL
Use the /AL:n switch on the file specification in the ASSIGN clause or
the VALUE OF ID. -

4-4 Relative File Applications

RPG II
Use the RPGASN utility to override the default value set by the com-
piler.

DIBOL
Use RMSDEF; DIBOL does not create Relative files.

¢ by putting a record with the Maximum Record Number (MRN) in the file
first. Before RMS-11 can write this record, it must allocate all record cells
from 1 to MRN and initialize the new blocks. When the put operation is
finished, the Relative file is completely allocated.

4.2.2.2 Default Extension Quantity — However, if the file cannot be totally
allocated at creation, then you should establish a reasonable Default Exten-
sion Quantity (DEQ) to minimize the number of (and the time spent on) file
extensions. Even if the file is totally allocated when you create it, you should
establish a reasonable DEQ in case the file gets bigger than planned.

A good basis for calculation is the number of records that are added to the end
of the file in a given time period, such as a day; use the formula for allocation
quantity in “Initial Allocation,” Section 4.2.2.1.

The default extension quantity should be equal to a multiple of the bucket
size.

If you do not specify a DEQ, it defaults to zero whether you create the file
with RMSDETF or a higher level language. RMS-11 responds to a DEQ of zero
by requesting four times bucket size in blocks from the file processor each
time it automatically extends the file.

The DEQ for the file can be set by the RMSDEF utility or by your application
program as follows:

MACRO-11
Use the initialization macro or $STORE to set the DEQ field in the FAB
(or XAB if you are using placement control) of the file to the calculated
number of blocks before issuing SCREATE. You can also set a run-time
DEQ.

BASIC-PLUS-2
Use RMSDEF; BASIC-PLUS-2 does not support DEQs.

PDP-11 COBOL
Use the /EX:n switch on the file specification in the ASSIGN clause or the
VALUE OF ID.

RPG II
Use the RPGASN utility to override the default value set by the compiler.

DIBOL
Use RMSDEF; DIBOL does not create Relative files.

4.2.2.3 Contiguity — Finally, you should consider contiguity for a Relative file
to minimize the time spent in each I/O operation. If the blocks in a file are not

Relative File Applications 4-5

contiguous, they are, by definition, in different parts of the disk. The device

must therefore move its heads to access the file contents. However, physical —~
contiguity ensures that the file is stored on a single track, or at most, adjacent

tracks. Since the disk can read an entire track without moving the heads, file

contiguity reduces head movement. This statement assumes that no other

software is accessing the disk at the same time.

Contiguity also enhances virtual-to-logical-block mapping (discussed in Sec-
tion 8.3).

Therefore, if possible, you should allocate a Relative file contiguously, and the
only way to ensure that all blocks in the file are physically contiguous is to
allocate the whole file when you create it.

MACRO-11
Use the initialization macro or $SET to set the FOP field in the FAB of
the file to include FB$CTG before issuing $CREATE.

BASIC-PLUS-2 =R
Specify CONTIGUOUS in the OPEN statement that creates the file.

PDP-11 COBOL
Use the /CO switch on the file specification in the ASSIGN clause or the

VALUE of ID.
RPG II

Use RMSDEF; RPG II does not create contiguous files.
DIBOL

Use RMSDEF; DIBOL does not create Relative files.
4.2.3 Maximum Record Number
The Maximum Record Number (MRN) associated with a Relative file limits
the size of the file. RMS-11 will not put a record into a file with a relative
record number greater than the assigned MRN. However, if an MRN is not
set, that is, MRN is zero, RMS-11 only checks if the record number is greater -
than zero before attempting to store a record in a Relative file. -
MRN determines the maximum useful size of a file because RMS-11 allocates
a record cell for each record between relative record number 1 and the highest
relative record number used. You can explicitly make the file larger than this
maximum, but RMS-11 will not use the space. The actual size can be smaller
than the size that would be set if a record with the Maximum Record Number
were written into the file.
You can calculate the file size (FSZ) in buckets from the largest relative
record number (LRN) in the file (greatest value equals MRN):

LRN
F =
SZ (BKS*512)/(RSZ+RFO)

where:

BKS is the bucket size in blocks

4-6 Relative File Applications

RSZ is the size of the record:

* size of your data for fixed-length records
® maximum record length for variable-length records

® size of fixed control area + maximum variable area length for VFC
RFO s the format overhead:
* RFO = 1 byte for fixed-length records

® RFO = 3 bytes for variable-length and VFC records

MRN can be set by RMSDEF or by your application program:

MACRO-11
Use the initialization macro or $STORE to set the MRN field in the FAB
of the file to the desired number of records before issuing $SCREATE.
Note: if you want no limit checks, do not include F$MRN in the FAB’s
initialization block or set the field to zero at run time prior to initiating
the $CREATE macro.

BASIC-PLUS-2
Use RMSDEF; BASIC-PLUS-2 does not support MRN specifications.

PDP-11 COBOL
Use RMSDEF; PDP-11 COBOL does not support MRN specifications.

RPG II
Use RMSDEF; RPG II does not support MRN specifications.

DIBOL
Use RMSDEF; DIBOL does not create Relative files.

4.3 Task Design

The record and file processing capabilities described in Chapter 1 are avail-
able for Relative files. This section discusses the operations and their imple-
mentation and restrictions with Relative files.

4.3.1 Record Operations

RMS-11 performs a record operation at the request of a program. The avail-
able operations include:

Connect
Delete
Disconnect
Find

Flush

Get

Put
Rewind
Update

Relative File Applications 4-7

In all record operations, RMS-11 establishes Current Record (if any) and
Next Record (if applicable). If any record operation fails, RMS-11 normally
sets Current Record to NONE and does not change Next Record. See ‘‘Record
Access Stream,” Section 1.3.1.5, for an introduction to the concepts of Cur-
rent Record and Next Record.

4.3.1.1 Connect — A connect operation affects the Current Context for the
Record Access Stream as follows:

Current Record
There is no Current Record. Any operation requiring Current Record fails
at this point.

Next Record
The Next Record is the first record cell in the file.

4.3.1.2 Delete — In a delete operation, RMS-11 flags the Current Record cell

to indicate that it contains a deleted record. RMS-11 does this by setting the A
RMS-11 control byte in the cell to a certain value. The prerequisite get or find

operation brought the cell’s bucket into the 1/0 buffer.

Then, RMS-11 writes the bucket over its original location on the disk, unless
you have specified Deferred Write (discussed in “I/O Techniques,” Section
4.3.3).

A delete operation requires a valid Current Record. Therefore, a delete should
follow a successful get or find operation; otherwise, RMS-11 returns the error A,
code ER$CUR. This error does not affect the original record in the file on disk.

A delete operation affects the Current Context for the Record Access Stream
as follows:

Current Record
None. Any operation requiring a Current Record fails at this point.

Next Record.

Unchanged. N
4.3.1.3 Disconnect — A disconnect operation destroys the Current Context for
the Record Access Stream. You cannot resume this context by reconnecting
the stream.
4.3.1.4 Find — To perform a find operation on a Relative file, RMS-11:

1. determines the location of the record in the file according to the specified
access mode:

e Location is indicated by the Next Record pointer in Sequential Access

Mode.

e Location is determined by the specified relative record number and

match criterion in Random Access Mode.

¢ Location is determined by the specified RFA in Access by RFA. -

4-8 Relative File Applications

2. reads the bucket containing the indicated cell from disk into the task’s I/0
buffer, if it is not already in memory. The bucket may be in memory if it
was required by a previous operation.

3. checks the contents of the cell:

e If the cell contains a valid record, RMS-11 returns the RFA to the
program, but does not transfer the record to the program’s user buffer.

e If the cell is empty or contains a deleted record, the response depends on
the access mode:

In Sequential Access Mode, RMS-11 repeats steps 1 through 3.

In Random Access Mode, RMS-11 reacts according to the specified
match criterion:

On equal match, RMS-11 returns the error code ERSRNF

On greater-than or greater-than-or-equal match, RMS-11 adds one
to the relative record number and repeats steps 1 through 3.

In Access by RFA, RMS-11 returns the appropriate error code:

ER$RFA
No valid record has ever existed at the specified location.

ER$DEL
The control byte in the cell indicates that the record in it was
deleted.

A find operation affects the Current Context for the Record Access Stream as

follows:

e find in Sequential Access Mode:

Current Record
Set to the relative record number of the record found, that is, the Next
Record before operation started.

Example You’ve connected a stream to a Relative file. There is no Current Record, but

the Next Record is the first record in the file. If you execute a sequential find
operation, the Current Record is set to the first record in the file.

Next Record
Set to relative record number one higher than relative record number for
Current Record.

Example From the previous example, Next Record is the second record cell in the file.

¢ find in Random Access Mode or Access by RFA:

Current Record
Set to record found, that is, the record identified by the relative record
number or RFA.

Relative File Applications 4-9

Next Record
Unchanged.

Example In the previous examples, you've done a sequential find after connecting the
stream to the file. You now execute a find by RFA. The Current Record is set
to the record specified, but the Next Record is not changed. Therefore, if you
do another sequential find, Current Record will be set to the second record
cell in the file, not the cell following the one found by RFA.

You use find instead of a get operation because:

* it is quicker because the record is not moved to the user buffer. Although the
time required to move a record from one part of memory to another is very
short, there is no use expending it if you do not need to.

* it does not change Next Record in Random Access Mode or Access by RFA.
This allows you to branch off sequential processing for purpose of updating
or deleting and yet keep your place.

You can use a find operation in the following ways:

* To skip records in Sequential Access Mode by initiating successive find
operations.

* To establish a random starting point for sequential processing with RFA.
You could then initiate successive get operations, where the first one gets
the record found by RFA.

® To establish a Current Record for a delete or update operation.

® To determine the existence of a record in Random Access Mode.

4.3.1.5 Flush — See ‘“Records Operations,” Section 1.2.4, for a summary
description of the flush operation.

A flush operation does not affect the Current Context for the Record Access

Stream. -~

4.3.1.6 Get — To perform a get operation on a Relative file, RMS-11:

1. determines the location of the record in the file according to the specified
access mode:

® In Sequential Access Mode, location is indicated by:

- the Next Record pointer, if get was not immediately preceded by a
successful find operation

- the Current Record pointer set by an immediately preceding find
operation

® Location is determined by the specified relative record number in Ran-
dom Access Mode.

® Location is determined by specified RFA in Access by RFA. s

4-10 Relative File Applications

2. reads the bucket containing the indicated cell from disk into the task’s I/O
buffer, if it is not already in memory.

Example Your fixed-length records are 50 bytes long; bucket size is two blocks. When
you read sequentially through the file, RMS-11 must request a disk I/O

operation every twentieth get record operation your program executes.

NOTE

If you have opened a Relative file with read-only
access and allow write declarations, each get oper-
ation causes an I/O operation.

3. checks the contents of the cell:

o If the cell contains a valid record, RMS-11 returns the RFA to the
program and moves the record from the I/O buffer to the specified user

buffer in the program — unless the program is operating in Locate
Record Transfer Mode.

e If the cell is empty or contains a deleted record, the response depends on
the access mode:

- In Sequential Access Mode, RMS-11 repeats steps 1 through 3.

- In Random Access Mode, RMS-11 reacts according to the specified
match criterion:

On equal match, RMS-11 returns the error code ER$RNF.

On greater-than or greater-than-or-equal match, RMS-11 adds one to
the relative record number and repeats steps 1 through 3.

- In Access by RFA, RMS-11 returns the appropriate error:

ER$RFA
No valid record has ever existed at the specified location.

ER$DEL
The overhead byte in the cell indicates that the record in
it was deleted.

A get operation affects the Current Context for the Record Access Stream as
follows:

¢ get in Sequential Access Mode not immediately preceded by a find
operation:

Current Record
Set to the relative record number of the record read. See “Find in Se-
quential Access Mode” for example.

Relative File Applications 4-11

Next Record
Set to relative record number one higher than relative record number for A,
Current Record. See “Find in Sequential Access Mode” for example. "

e get in Sequential Access Mode immediately preceded by a successful find
operation:

Current Record
Unchanged (from Current Record set by find operation),

Next Record
Set to relative record number one higher than relative record number for
Current Record (possibly changing Next Record set by find operation),

e get in Random Access Mode or Access by RFA:

Current Record
Set to the relative record number of the record read.

-
Next Record
Set to relative record number one higher than relative record number for
Current Record. This differs from find by RFA which does not change
Next Record.
4.3.1.7 Put — To perform a put operation on a Relative file, RMS-11:

1. determines the destination of the record in the file according to the speci-
fied access mode:

¢ In Sequential Access Mode, the Next Record pointer indicates destina-
tion.

e In Random Access Mode, the specified relative record number indicates
destination.

9. determines if the bucket containing the indicated cell is in the file. If it is,
RMS-11 goes to the next step. If it is not, RMS-11 extends the file until it
has enough blocks for all buckets up to and including the required one.
Then, RMS-11 initializes all newly allocated buckets.

3. reads the bucket containing the indicated cell from disk into the task’s I/O
buffer, if it is not already in memory. The bucket may be in memory if it
was required by a previous operation.

4. checks the indicated cell: if it contains a valid record, returns error code
ER$REX; otherwise, goes to next step.

5. moves the record from the user buffer in the program to the task’s I/0

buffer.
6. writes the I/O buffer to disk, unless you have specified Deferred Write (see
“I/O Techniques,” Section 4.3.3). ﬂ

4-12 Relative File Applications

W

A put operation affects the Current Context for the Record Access Stream as
follows:

® put in Sequential Access Mode:

Current Record
None. Any operation requiring a Current Record fails at this point.

Next Record
Cell with relative record number one higher than relative record number
of former Next Record (the cell where this put operation inserted a
record).

¢ put in Random Access Mode:

Current Record
None. Any operation requiring a Current Record fails at this point.

Next Record
Unchanged.

4.3.1.8 Rewind — A Rewind operation sets the context of the Record Access
Stream to the beginning of the Relative file. In doing so, it affects the Current
Context for the stream as follows:

Current Record
None. Any operation requiring a Current Record fails at this point.

Next Record
Set to first record cell in file.

4.3.1.9 Update — In an update operation, RMS-11 moves the specified record
from the task’s user buffer to the I/O buffer, replacing the Current Record set
by the prerequisite get or find operation. Then, RMS-11 writes the bucket
over its original location on the disk, unless you have specified Deferred Write
(see “I/O Techniques,” Section 4.3.3).

An update operation requires a valid Current Record. Therefore an update
should follow a successful get or find operation; otherwise, RMS-11 returns
the error code ER$CUR. This error does not affect the original record in the
file on disk.

An update operation affects the Current Context for the Record Access
Stream as follows:

Current Record
None. Any operation requiring a Current Record will fail at this point.

Next Record
Unchanged.

Relative File Applications 4-13

4.3.2 Record Transfer Modes

You can manipulate records either in the I/O buffer or in your program’s user
buffer (see Figure 4-1). Each of these options is called a Record Transfer
Mode. You can change Record Transfer Mode at run time, even between
record operations.

Figure 4-1: RMS-11 Task Structure

|r§IZE DEPENDS ON: |

L NUMBER OF RECORD ACCESS STREAMS _:

| » NUMBER OF FILES OPENED SIMULTANEQOUSLY

USER BUFFERS —j - J— \

110
.BUFFERS

VIRTUAL

INTERNAL
CONTROL
STRUCTURES

|« RMS-11 FUNGTIONS USED |
|+ OVERLAY STRUCTURE USED,
H-MK-00069-00

4.3.2.1 Move Mode — Move Mode requires that each record be copied be-
tween the user and I/O buffers:

¢ On get operations, RMS-11 moves the record from the I/O buffer to the user
buffer before returning control to your program.

e On put and update operations, your program assembles the record to be
written into the file in the user buffer, and during the operation, RMS-11
moves the data into the I/O buffer before updating the file.

Move Mode is the default Record Transfer Mode for all programming lan-
guages on all file organizations.

4.3.2.2 Locate Mode — Locate Mode enables your program to manipulate
records in the I/O buffer, eliminating the data transfers between it and the
user buffer. However, when you specify Locate Mode, RMS-11 uses it only -

4-14 Relative File Applications

A e]

when such usage does not compromise data integrity. Otherwise, RMS-11
uses Move Mode. Therefore, your program must still contain a user buffer.

Example RMS-11 uses Move Mode instead of Locate Mode when a Relative file is shared.

Example RMS-11 uses Move Mode instead of Locate Mode if you opened a file indicating you
were going to perform update operations on it.

RMS-11’s use of Move Mode instead of Locate Mode is transparent to your
program as long as you use RMS-11 facilities to access the record data.

For Relative files, your program can only get records in Locate Mode. See your
language documentation to determine if the language supports Locate Mode
and if it does, what the exact programming techniques are.

4.3.3 1/0 Techniques

You can use the following techniques to improve the performance of record
operations.

4.3.3.1 IAS/RSX-11M Asynchronous Record Operations — Within each Record
Access Stream, your program can perform any record operation either syn-
chronously or asynchronously. In synchronous operations, RMS-11 returns
control to your program after the operation ends, either successfully or with an
error.

When you execute an asynchronous operation, RMS-11 may return control to
your program before the operation is complete. The program continues pro-
cessing while the physical transfer of data between disk and memory is carried
out. However, you must not initiate another record operation on that stream
until the first operation ends; otherwise, RMS-11 returns the error code
ER$ACT. See your language documentation for asynchronous techniques.

NOTE

If you intend to use asynchronous RMS-11 record operations
and/or Asynchronous System Traps (ASTs) in other parts of
your program, see the section on your operating system in
Appendix A.

4.3.3.2 Deferred Write — Normally, each write-type record operation (delete,
update, and put) results in a bucket being written to disk. This convention
emphasizes data integrity: you know that when a write-type operation has
ended successfully, the file reflects that operation.

However, you can improve the performance of sequential write-type opera-
tions by using Deferred Write. Basically, Deferred Write directs RMS-11 to
write a bucket to disk only when RMS-11 must use the I/O buffer for some
other purpose.

Relative File Applications 4-15

4-16

NOTE

Deferred Write, although not illegal, is essentially invalidated
while a Relative file is being shared by multiple tasks or
streams. In that environment, every write-type operation re-
sults in an I/O operation so that:

¢ The bucket locked by the prerequisite get or find (for update
and delete operations) or by the put operation can be
released.

e The new data is available to the other tasks or streams.

Therefore, if you perform sequential write-type operations on a nonshared
Relative file, Deferred Write improves performance. RMS-11 writes out the
buffer only when it must read another bucket to complete an operation.

Example Your records are 304 bytes long and the bucket size is three blocks. During sequen-
tial write-type operations, Deferred Write causes I/0 operations per bucket to drop
from five to one.

Deferred Write offers little or no benefit to random write-type operations or
read-type operations of any mode.

Only your application program can specify Deferred Write:

MACRO-11
Use the initialization macro or $SET to set the value FB§DFW in the FOP
field of the FAB of the Relative file.

BASIC-PLUS-2
BASIC-PLUS-2 does not support Deferred Write.

PDP-11 COBOL
PDP-11 COBOL does not support Deferred Write.

RPG II
RPG 1I does not support Deferred Write.

DIBOL
DIBOL does not support Deferred Write.

4.3.3.3 Multiple Buffers — When you open a Relative file, normally RMS-11
allocates one bucket-sized I/O buffer in your task’s address space. RMS-11
uses this buffer during record operations. However, you can direct RMS-11 to
allocate more than the one buffer.

RMS-11 uses any extra buffers to keep, or cache, buckets in memory. When a
record operation requires that a bucket be read from disk, RMS-11 checks its
cache first. RMS-11 does not perform an I/O operation if both the following
are true:

® The requested bucket is already in memory.

Relative File Applications

* That bucket is still valid, that is, the file is not shared and/or the bucket has
been kept locked.

You do not benefit from multiple buffers during sequential operations. You
can improve performance with multiple buffers during random operations
only if your program accesses the same buckets often.

4.3.3.4 Multiple Record Access Streams — RMS-11 allows each program to
use from one to 255 streams on a Relative file.

4.3.4 File Operations

You can perform the following file operations on Relative files. File operations
do not involve records and can only perform synchronously.

4.3.4.1 Close — A close operation disconnects all Record Access Streams
connected to a file before it releases access.

4.3.4.2 Create — In addition to the file specification, RMS-11 passes the
following information to the file processor when it creates a file:

e An initial allocation of blocks for the file.

¢ The locations on a specific device where the processor should allocate those
blocks.

¢ The following file attributes:

File organization

Record format

Forms control

Record size

Number of virtual blocks in the file
Bucket size

Default extension quantity

The other file attributes, such as the Virtual Block Number of the first
block in the first bucket and the last initialized block, RMS-11 stores in the
Prologue of the file.

4.3.4.3 Open — You can specify the file you want to open in two different
ways:

By filespec
The first time you open a file, you must use the file specification.

By File ID
When you create or open a file by filespec, RMS-11 returns an identifying
notation to your program. You can store this File ID, either in memory or
in a file, and use it to open the file from that point on,

Relative File Applications 4-17

4-18

On TIAS/RSX-11M systems, open by File ID is significantly faster than open
by filespec, because the process bypasses directory reads and other overhead.
However, on RSTS/E, open by File ID is no faster than open by filespec.

4.3.4.4 Erase — “File Operations,” section 1.2.5.3, introduces the concept of
erasing files.

4.3.4.5 Extend — “File Operations,” section 1.2.5.3, introduces the concept of
extending files.

" Relative File Applications

Chapter 5
Indexed File Organization

DIGITAL designed the RMS-11 Indexed file organization to achieve the
following goals:

Contents-addressable record access
Each record in the file can be located on the basis of the values in desig-
nated portions of the data, called key fields.

Uniform random access time
Each record in the file can be located with approximately the same num-
ber of I/O operations, regardless of when it was added to the file.

Alternate Key capabilities (comply with ANSI COBOL Level 2)
Each record in the file can be located via more than one key field.

Very good performance on sequential access by Primary Key
A program can sequentially read a reasonably designed Indexed file by
Primary Key almost as fast as it can sequentially read a Sequential file.

Good performance on sequential access by Alternate Keys
Each record in the series can be accessed with (typically) one to three I/O
operations.

Unique record address for the life of the file (data base key concept)
A record in a file can be located via a unique identifier (Record’s File
Address) established by the put operation. The record may be deleted, but
its unique identifier is never reused.

Preserve state of processing despite system failure
Normally, each logical write operation results in a physical transfer of
data from memory to disk. Therefore, the file reflects each record inserted.
However, you can override this mode with Deferred Write.

5-1

More importantly, RMS-11 performs record operations so that both of the
following are true: —_—

¢ File corruption is avoided or minimized even if the system failure occurs
during a write-type record operation.

e Even if some corruption exists, user data can still be accessed.

NOTE

You should still reorganize your file if the system fails during
write-type processing on an RMS-11 Indexed file.

5.1 Physical Structure

On disk, an Indexed file consists of three kinds of blocks:

Prologue
RMS-11 information about the file, including attributes and key and area
descriptions

Index
Index records for Primary and Alternate Keys pointing the way to a data
record

Data
Your data records and index data records ~

The Prologue contains information about the keys and areas of the file.
RMS-11 allocates at least one block for the Key Descriptors and at least one
block for the Area Descriptors. RMS-11 uses more blocks as needed. Size
calculations are discussed in “Initial Allocation,”” Section 6.6.1.

Also, if both of the following are true:

¢ you have defined the same bucket size for all areas of the indexed file -—

¢ that bucket size is two, four, or eight blocks

RMS-11 extends the Prologue to an integral multiple of bucket size. This step
can improve performance by aligning buckets with file clusters. If the bucket
size does not meet these criteria, RMS-11 does not make the Prologue larger
than necessary. “Bucket Size,” Section 6.5, contains more discussion.

The location of the index and data blocks is up to you (see Figure 5-1):

o If the file is a single area, RMS-11 allocates data and index blocks in
buckets as it needs them; they are therefore interspersed throughout the
file.

¢ If the index and data are set up in separate areas, RMS-11 allocates each
type of bucket from the appropriate area; the index is therefore set apart
physically from the data portion of the file. -

5-2 Indexed File Organization

Figure 5-1: Indexed File with and without Areas

START OF FILE

PROLOGUE

ALTERNATE
—_ INDEX

WITHOUT AREAS WITH AREAS

Pl = PRIMARY INDEX
DR = DATA RECORDS
Al = ALTERNATE INDEX

F-MK-00099-00

Indexed File Organization 5-3

RMS-11 formats buckets in an Indexed file as it requires them for record
storage. The RMS-11 control bytes are set to their initial values (see Figure

5-2):

e Fourteen bytes beginning with byte 0 of the bucket contain bucket control

information.

¢ The last byte of the last block duplicates the first byte of the bucket for

checking I/O completion.

RMS-11 packs index or data records, including record format overhead, into

each bucket, beginning with byte

Figure 5-2: Formatted Bucket

/,_.———BUCKET BOUNDARIES

14, end-to-end and byte-aligned.

RECORDS

éé\,

1111 LY

5.2 Conceptual Structure

CONTROL FLAGS

LEVEL IN INDEX

VBN OF NEXT BUCKET IN LEVEL
RECORD IDENTIFIER INFORMATION
POINTER TO FREE SPACE IN BUCKET
BUCKET ADDRESS SAMPLE

AREA CONTAINING THIS BUCKET

CHECK BYTE EQUALS LAST BYTE—————

H-MK-00063-00

No matter how it is laid out physically, the Indexed file is conceptually a
Prologue plus a group of indexes, one per key. Each index consists of horizon-
tal chains of buckets called levels and can be illustrated as a pyramid (see

Figure 5-3).

5-4 Indexed File Organization

Figure 5-3: Index as a Pyramid

LEVEL 2

LEVEL 1

Q-MK-00062-00
Q} BUCKET

The lowest level of an index is Level 0. The level number is incremented for
each successive (and smaller) level, that is, Level 1, Level 2, and so on. The
highest level in an index is a single bucket called the Root; this bucket is the
entry point to the index for random accesses using this key. Each index has at
least two levels (0 and 1).

The depth of an index is equal to the level number of the Root. An index
depth relates to the time needed to randomly access any record in the file via
that index.

5.2.1 Data

Level 0 of each index is called the data level; it consists of data buckets. In the
Primary index, Level 0 contains buckets of your data records. In the Alternate
indexes, Level 0 buckets contain pointers to your data records.

5.2.1.1 Level 0 of the Primary Index — RMS-11 physically orders data records
by increasing Primary Key value along the bucket chain. The records having
the lowest Primary Key value reside in the first bucket of the level and so
on until the records with the highest Primary Key values comprise the last
bucket. RMS-11 preserves this order regardless of the insertion sequence
of the records.

Each bucket in Level 0 shares the following properties:

» The last data record in a bucket has an equal or higher key value than any
other record in the bucket.

» The last data record in a bucket has a lower key value than the first record
in the next bucket in the chain.

With these properties, each bucket has a High-Key value, located in the last
record of the bucket. This concept is the core of RMS-11 Index file structure.

Indexed File Organization 5-5

NOTE

RMS-11 places records with duplicate key values next to each T
other on a first-in, first-out (FIFO) basis. If these duplicate
records cannot fit in the same bucket, RMS-11 stores the over-
flow in a Continuation Bucket. Continuation buckets are ex-
tensions of Level 0 buckets and as such, are not indexed. This
extension storage preserves the High-Key concept.
5.2.1.2 Level 0 of the Alternate Indexes — Levels 0, the data levels, of Alter-
nate indexes contain Secondary Index Data Records (SIDRs). A SIDR
consists of (see Figure 5-4):
e an Alternate Key value from a data record stored in the Primary data level.
The SIDRs in the data level of each Alternate index are stored in ascending
order by this key value.
* one or more pointers to data records in the Primary data level. Multiple A

pointers occur when you allow duplicates for the Alternate Key and records
with duplicate values for the key actually exist in the file.

Figure 5-4: Format for Secondary Index Data Record

A. DUPLICATES ALLOWED | POINTER ARRAY ——

s L 4 /-
SIZE
DUPLICATE
OF KEY VALUE VBN cee A
L 77 L 7/ 77/
SIDR IDENTIFIER l DATA RECORD ID
CONTROL FLAG BYTE

LPOINTER TO PRIMARY —/
B. NO DUPLICATES ALLOWED | LEVEL 0

/
SIZE
OF KEY VALUE VBN
SIDR
7 /

] \ /¢
Lst IDENTIFIER L DATA RECORD ID PN
CONTROL FLAG BYTE —
\— POINTER TO PRIMARY __/ 0-MK_00061-00
LEVEL 0

5.2.2 Indexes

Levels 1 and above in an index are called the index levels; they consist of
index buckets. Index buckets contain index records that guide RMS-11
through the levels to the data records in Primary Level 0. An index record
consists of:

¢ the High-Key value of a bucket in the next lower level in the index. Since
RMS-11 arranges these values in ascending sequence, there is a High-Key
value for index buckets also. However, the last High-Key value in the last
index bucket of a level is set to the highest possible key value, rather than
the highest key value in the file. The associated pointer references the last
bucket in the next lower level. -~

5-6 Indexed File Organization

LEVEL 3

(ROOT)

LEVEL 2

LEVEL 1

LEVEL 0
. .

¢ a pointer to the bucket associated with the High-Key value

Example The buckets in Level 1 of the Primary index contain the High-Key values of the data
buckets in Level 0. Then Level 2 contains the High-Key values from Level 1 and so

on. Figure 5-5 shows a sample Primary index.

Figure 5-5: Example of a Primary Index

. JONES | 67 [MAXiMum KeY vaLuE |
1
717
i / '1-
1] Jones | /|, MAXIMUM KEY VALUE |
! T I
i /L III II L /I/
é D(6%@7' st | O] | 9 T, i xev vavve]
/ A ————— I
ya /L /L
ABLE ELM AVE. 362 § [JONES MAIN ST. | [sMITH HOLT RD 589 INS | [voos FiRrsT sT. 9782]

4) 4 y r
7 77 L4
LA I NITINT H-MK-00060-00

In other words, each bucket on a given level is represented by an index record
in the next higher level. Thus the number of buckets required on each succes-
sive level decreases exponentially until the Root bucket is reached.

Example If an index bucket can hold ten index records, then:

o If Level 0 contains 2000 data buckets,

Level 1 contains 200 index buckets
Level 2 contains 20 index buckets
Level 3 conta<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>