PDP-11/40 Technic
Authors:

Date:

Revision: Neo. 2 e Obsolete: 23 and 23;“3\/

Index Key: Floating Peint Instructions

Virtuai Address Space
Physical Address Space
Bus Option

Internal Gprion

Distribution: PDP-11/40 Working List
g

1.0

¢ Unit “EPUN. The FPU is

[
3 I H 4 o P 5 - e ~ PR3 g . ot o H ©
gned o be @ Unibus option for the 11/05 and the 11/20. For the 11/40, the FPU is ,;fanned

jiing single aund double precision {i.e. 32 and 64~bif) floating point

! T Ui
crions and is capabie of reading and writing its own operands from and into memory. QOnce

3

an FPU ingtruction has b&fn% starved “;‘E‘ can continve without CPU infervention ieO\(l the CFU
7
[i

nstructions.

T
bilities are very desirabie, if nof necessar Conssaerm the com iex:f and fherefore
! Y '’ Y- 7

the price of a floating point unit "FPU", it should be availabie as an opiion only.

Some qwf:i’zuna o be arswered concerning the FPU opi'sun are iisted below and elaborated
on in the foliowing seciions.

1) Internal versus Bus Opfion

2) FPU = CPU interaction

3) The FPU's Instruction and Data Formats
4) The FPU's Insi'ruchon Set

INTERNAL VERSUS BUS OPTION

The FPU is thought of as a fairly independent processor, i.e. when started it is supposed fo
finish the instruction independent of the CPU. This inciudes reading and writing dafa from
and into memory. Therefore, the FPU has fo be connected to the bus.

in vm“uus space.

rory buses (1.e. o fost synchronous one and the
i be connsciobie O #ho Unfbus in order 1o make if

sion is whether the FPU shouid cperave in virfuel
C shows the configuration wia vhe FrU operating in,
suercies in physical adaress space.

<
C

(a

< virrual cddress space is defined as fhe cadress space the user runs in; the physical

jocations acruciiy addressed. Fora machine
ocate protect) the virtual address space

°

cddress space is defined as jhe sev of cor

&
which does not heve address mapping (e.g

is identical fo the physical address space.

==
£
5

Locking cf the solution of Figure 1-2, the foliowing comments can be made:

1) The addresses of the operands have o be passed o e | #U os physical aadresses.
Locking ot the Relocats Provect option, this meens that irs i’h)da& reconmze certain
FPU c:dd‘ws- &3 and no‘i‘ rélocaie them. Insvead, it should fake the d s {on the data
i1res) which contain the virfual cddress and relocate it as If it were an address. This

< ¥
requires special controls and data saths in the relocare profect ogtion

§ i~y ;‘ & & - N N . - '.
2} The !\uascc:m/‘“ozec. option might have Read/Write protect bifs which might have to
be du:mCu ted in r"u, or'the Relocate/Protect ogiion has fo have knowiedge rele=
vant fo the oE the virtuel oddresses it refocates.

In cese of the modes (R)+ or =(R) address violations can sccur which can be detected
i)

with difficulty by the Relocate/Protect option.
i.e. 5‘&: the FPU operate in virtuai m

ory, hes nene of the above
-7 1% iz freated in fhe same way s ne

C 'J for which fhe Qeiocc?e/
C%'&‘.‘Cﬁ'%‘ from the cbove It can be stafed that the FPU shouid operate
Y

Because of mechanical [imitations and resiriciions on the fast bus, iF is most desirable that the
FPU take up no more than one sysiem unit if the solution of Figure 1-1 is implemented.

- 2

. .
& 4
% g
4 i
§ vy
i

* ¢ oo™ 1T T

! PPYU !
;
:
| .
i §

Relocate

Protect T

._hfu
|
JI

!

tij
vl

Fast Bus

[{
t —— -
| Relocate
: , o
i CPU ; R
! ¢ Protect

s

S.

Figure -2 Configuration with FPU Operatin
) PHYSICAL Address Space
NOTE: =F—= = Virtual Address Lines
—P— = Physical Address Lines

N

F?U‘“ PU N l 3 1»1;‘@\...(;&)3\:

[P]

o g

quse Tae FPU
OGS scel l‘J

@

fartes insiiuc
of two ways.

s
N~

executing oiher, i.e. non-ﬂc:v ting, instructions.
2) Allow ﬂ'\e CE’U to conﬁnu«*— executing “\an-‘%wﬁng instructions once the FPU is set up
e the CPb to carry out subscript compufatuon,

S5 0 B
Wil oo N

tion indapendant of |

baed in Tec

Py

s FPU is o bus option o
lr@3s have 7o be fra S:ereé fo i

i

et

bQ-a las

e out its opemr.s... This has the advani=-
Ut respons e time (bocouse ficating point opera-
It aiso prohibits the CPU from

ring point amiruw!o ?!r'u; improving the
i

FGOUULE of {ts deserioed GGVOI"‘&GQGS

& 11/2C, the FPU OP code and the

on tokes

C
“é
[«]
O
[Z 3

smos the i'é‘U was oo stiveted by the 11/20 thiough @ sequence of MOV instruc=
chnicai Nw 0525 and 23-A. A fypical seguence iooked like the

cne given below for the case oi" the instruction MULF A{Rx), ACI
ADD TA, Rx ; compute addrass .
o3 s ey e N - g g ,_‘ -y 3 - 2 ’
Sus FBR, PC ; test for FPU busy (FBR)=4 when FPU busy else §

MOV Rx, FIRHOLHAC ; move oper

The new ache me

by o JSR.

]
o

.)

preter. The JSK
in the 1/O area.

PC ; save PC

recuires that every &1

¥

& has T

and address and stort FPU

aied for every T

el oS B

FPU in rruchon of the

PU instruction (NK{;‘ MULF A{RZ), ACY) is preceded

SR aliows the FPU fo take controi over the CPU.
for address cor :pum..on, stack pointer adjustments, efc., and acts iike a hardwired inter=

instruction has fo be the following, "JSR R7, FPU" where FPU is an address

The FPU uses the CPU

An example of this is given below. (next pagej

!

JSR R7, FPU
MULF AR2), ACI

- ; fypical call seguence in

'3 user's program

—— - el v T S e G50 e SN W e A L S G Sl SRy S G A AT AU S o G S Y o

BR.
FPU—"
TSMOV (R6) + , FRA*

; the I/O address FPU contains

. "BRe when the FPU is busy

’- ; otherwise it contains "MOV (R4) + ,FRA"

@(FRA)—3 FIR*

(FRA) +2— FRA
MOV R2, FDA
(FRA) + (FRA)=s3FDA*

(FRA) + 2—FRA

2 or 4 data fetches

MOV FRA, PC

* FRA means Floating Return Address

; When the lafter instruction is executed
; the return cddress is popped off
; the stack into the FPU's FRA register
; The instruction is fetched, under |
; hardware controf, and loaded in the
; FIR register and FRA is incremented
; The CPU's register R2 is read
; The index computaiion "A+HR2)"

; is done under hardware conirol

; and FRA is incremented

; Depends on the mode of the FPU
; Control is transferred back to the
; CPU while the FPU does the

; required operation

R

* FIR means Floating Instruction Regi§fer'

* FDA means Fioating Data Address

>

jone under conirol

This sequence of CPU instructions &
fon execution cycle can be

of the FPU hardware for 3(\2&’)"\35 eificion -y
i

divided info & sub~cycies as shown in Fig
L RART

o

i
. R=R7
—
A B ; C D E

SEQUENCE FOR MOST INSTRUCTIONS

2.
-w, P \Q "7 \

A B C D
SEQUENCE FOR CERTAIN O\VLKT INSTRU TIONS

b

A = instruciion Fetch
B = Operand Address Computation, iwo paths depending on R= i\7/27/?7

= Daia Ferches/Stores

(@]
|

D = Transfer Control from FPU oc.c.< o CPU
E = Execution

FEGURE 2—'2', FPU instrucrion Subsecuences

0314

selow is ihe sequence of FPU issued instruct ions and EPU actions which cre required for the address
compurm ion am finel execution of most F'U instruciions. The capifal ietrers precedmg the sections

correspond o the subsequences of Fag 2 1.

A: FPU:—BR o -

~e

FPU busy locp

MOV (k&) +,FRA G et return address

~s

(FRAY—FIR Gert instruction, both paris

~e

(FRA) +2,FRA done by FPU hardware

e

A
SR

Cr

O -

\d ;
® (i L\l‘"s) ‘i‘lF :}A)

0315

‘: A
7 @ AR) *(@/’(FRA)w;;- FDA -
F(FRA) 2~ FRA
*(FRA) + (FDA)—3 FDA
*@(FDA)—> FDA
) T AL S N SRR S
C. Poussisle data feichosy/siores
These happen of priority level 7
D. MOV RRa, BC ; transfer confrol back to CPU
7) 14
; To execute non FPU initiared
; instructions
£. Executs the FPU instruction, i.¢. perform the aciual muitipiication, ete.
2.7.1 CPU CONDITION CODES .
ihe CPU conaltion code bits C,IN,Z, and V which exisred just prior to the FPU instruction,
are destroyed. This is caused by § “hc insiructions ine FPU issues to the CPU.
The FPU has Hw own ser of condition code bits, "FC, FN, FZ, and FV". These can be frans=
ferred o the CPU's condition code bits under coniroi of a special insiruction Copy Fioating
Cornairion "CFCC". :
2.0.2 PRIORITY LEVEL OF THE Fey

On the 11/05 and
wiii be 7.

the 11/20 the FPU will be a Unibus cation. The srioris

y level of the FPU

In order not to increase NPR latency, the FPU wiii monitor the NPR fine and give up the bus

between memory cycles.

The 11/20 bu
periph@a’m §

rity crbs?mror requires a MSYN signal o transfer Bus Mastership between
m certain wecm cases this could lead fo the execution of an instruction be=
fore the bus would be rearbiirated to another reques?mc device (e.g. the FPU).

The execu=-

tion of an out of sequence Instruction would be in confiict with the correct cperation of the
This is prevented oy "feeding" the CPU a “BR "
instruction when the above condition occurs and the FPU is in conirof.

FPU, as wili be ciear from Section 3.0.

-8~

e

S

‘When the CPU wanis 1o s prioeity level shouid be fess 0316
than 7 (¢, PR, W e io become Sus roster, oe=
ha CPU's PR=7 i cause ne CPUtobe inan

cause the
.« mo w . e et
infinite ioop execuving ¢

execute an PU instructio

& above, once it rries to

TIVE FPU~11/20 INTERACTION

The method of Section 2.1 requires every FFPU insiruction fo e preceded by a JSR. An
alternciive method is to issue the FPU instruction “as is" and have a trap service routine
to transfer control fo the FPU. An examsie of such a routine is given below. (It should
be nofed ihct all FPU OP codes start with a “17.)

. PN AP O | PO I I SV GOSN L S
; é’(ﬁ‘& service routing o nundgie “PU instrociions

SUB #2, @Rrs ; decrement saved PC
CiviP h’i7®0600 &@C (R&) ; test for FPU OP code
2.0 NOTFPU

MOV @R6, =(R6) ; make 3§ rop words of stack
MOV 4{R8), 2(Ré) ; FPU, FS and PC -

MOV Ré 4(R6)

MOV FFPU, @RS

RT1 ; end of FPU rap handier

NOT FPU: ADD #2, @Ré

2.1.4 INTERRUPTABILITY

A pcc ai deadiock condition can arise when the CPU is executing FPU sugpiied instructions
and an m%‘errupw occurs by @ device which aiso wants fto make use of the FPU, At the time
the CPU was exec ‘hg FPU suppiied insiructions, it was comauemd "bu..y“ The CPU is .
interrupfeble o that point because it is running at & pricrity level lower than 7. If the
interrupting a@vice wouid go off and use the FPU without tesiing, the CPU would start an
infinite foop of "BR .* instructions because the FPU was busy.

This loop is executed at the priority level of the inferrupting device. In opder for the FPU
to beceme free, it has to confinue supplying CPU instructions until subsecuence D of Figure
2-1 has been completed, i.e. when the FPU dismisces the CPU.

A special hardware aid is built into the FPU to discover this sicte. The FPU has a register
called the Fioating Interrupt Vector "FINTV" and a bit called the Fioating Interrupt CPU
Dismissed "FICD" in the Floating Program Stetus "FPS" word. The FICD bit is set when
ever ¢ non-zero vaiue is ioaded info FINTV. The operation is as foliows: Whenever the
subsequence D of Figure 2-1 is execuied, and the FICD bit of the FPS is set, the FPU will
cause an inferrupt using as interrupt vecior (FINTV).,

A possible routine preventing the deadlock making use of the above hardwere, is shown
on the next page. This code is part of the interrupt service routine of the inrerrupting
device which wants fo use the FFPU.

I PO . .. -
ChP RS, #172 ; did BC point 1o FPU

MOV FINTV, TEMP 5 save old FINTV
MOV NEW.INTV, FINTV ; set up new inverrupt vecior

(53}

RG), TEMPI

2{ ave oid P
*MOV NEW.PS,2(R6) '

nstali nev

~e o
- 03

PS

<

dismiss current interrupt
and start FPU

Za
1
ot

~e “we

T
U
1l
-1
(#1]
m
W
1\
t’
~
C

E FPU STATUS
R

- =y

¥ [

13

-
(€2 300 S
T

MOVE TEMP, FINTV ; restore oid FINTV
* MOVE TEMPT, 2(R6) ; restore oid PS
RTI ; dismiss inferrupt

It should be nored that any inferrupt vector can be loaded inio FINTV. I, for example,

the interrupt vecior of the interrupting device is loaded info FINTV, then upon the first .
RT1 in the above sode, the interrupt will be dismissed uniil the FPU has dismissed the

CPU. At thet point, the FPU will request an inferrupt with the interrupt vector of the

original interrupting device,»thus simulating the oid interrupt.

2.2 FPU~-11/05 INTERACTION

The use of the FPU with the 11/05 is essentiaily the same as with the 11/20 except for
the JSR preceding an FPU insiruction, which is not réquired with the 11/05. The 11/05

will execute code making use of the JSR, however, for compatibility reasons.

When the 17/05 fetches on insiruction which sterts with a ni7% (i.e. an FPU OP code) it
will not trap, bui execute the following sequence.

rest is FPU is busy
iocp is busy

TST FPUOS
BEQ .-4

s s

MOV PC, FPUO5+2
MOV IR, FPUO5+ ,
MOV FPUO5+6, PC ;

tart fetching instructions from the FPU

(5]

The dbove sequence is not executed with PDP-11 instructions as shown above, but in
11/05 micro code which is done &t @ much greater speed. This aliows the FPU instructions
to be given without a JSR, thus eiiminating the space and fime consuming JSR and the
Instruction Fetch subseguence "A" of Figure 2-1. '

#These instructions are only necessary when the FPU has to proceed with the interrupted

instruction af o different priority ievel.

-1~

Umouﬁ.
Section 1.0.

The required ad siton wiil be done by the 11/40 hardware. The resd fo have .
the rPU supply ine u/—/su wnh ihe instructions is thereby eliminated. The il 40 condition
codes will not be affacted by the FPU unless the insiruci jon is « CFCC.

When the ';‘2/4@ ferches an FPU instruction, i tests if the FPU is busy while it aliows for
higher priority bus requests. Onece the FPU is free, the 11/40 wiii do the required

oddress Cumpmci ion and notify the FPU The FPU wnH then si‘robe in the requured data
From the 11/40's internal reglerers (1K ¢ aﬁ'c.). do the reauired data fetches
(stores from) into memory Gnd allews the 11/40 CPU to srocced whlle it execuies the FPU
insfruction. ‘

THE FPU's INSTRUCTION & DATA FORMATS

The FPU has, except for its scraich, addies

~ o H

s and status registers, & dc..srai purpose data
registers calied Accumulators "AC's", They are .omed ACH through ACS and are inter=
prefed to be 32 © r bh=bis ’rmg dg gf“wc:'h . on the insiruciion. In case of o 32-bit instruc=
¢. ieft most) SZ-nits are uuu, wh e the remaining (i.e. raghi' 32-

n undffected. See Figure 3=1.

32-bit AC N
/___M
v P F]
ACY : '
ACL
ACZ
AC3
< |
AC5 :
&
* ACS scratch. area
|
* ACT7{ FBRC i PRA § FINT FDA
i

3%

(O8]
'

for internal use.

used to contain the following status registers:

FPC “Floating PC" = point to the word following the
first word of the instruction.

FRA “Ploating Return Address" - points to the

next instruction to be executed.

tor® - a 16 bit interrupt
completion of the address
wotion when (FINTV)#0.

Interrupt Ve
the PU ubo

FEC “Floating Exception Code"
the cause of the interrupt.

FIGURE 3-1 Accunulator Layout

-12=

0319

- A number which identifies

0320

The FPU instructicn s Laed in five formats as snown 1n FLgur
3-2. Format Fl is used bimary fioating Instiuctions. rormat
F2 is used by the w ing instructions. FPormat F3 is used
by the load and score o znd from Integer instructions. TFor-

mat F5 is used by some special instructions like Copy Ficating Condition
Code. ’

The fields of the formats of Figure 3-2 are interpreted in the follow-
ing way.

oC "Operation Code™
The OC field of all FEU instructions is 4 kits long
and contains a "17°".

roc "Floating Operation Code"

This field of the format specl ifies the specific
floating pcint operation.

FSRC "ploating Source"
The floating source specifie
the instruction. The interpre
modes is as shown below:

s tne source operand of
etation of the addressing

MODE INTERPRETATION
0 AC#~AC5 contain the data. The "data" is considered 32
or 64 bits depending on the mode of the FPU (i.e. Float-
ing or Extended). :

When AC6 or AC7 are specified, an OP code error will
be given unless the instruction is a STX instruction.

1 RF-R7 contain the address of the Gata. When R=R7 the
da““ is considered to be only 1 word long (i.e. 16 bits).
2 RE-R7 contain the address of the data. After the
ad with 4 or

data has been fetched RP-R6 are increment
8 depending on the mode of the FPU. When R=R
data is considered to be 1 word long and there
R7 will be incremented with 2.

t—h‘

ore,

3 RF-R7 contains the address of the address of the data.
RF-R7 are incremented by 2.

4 RF-R6 are decremented by 4 or 8, depending on the FPU
mode. After that they contain the address of the data.
When R=R7, R7 is decremented by 2 and contains the
address of a 1 word data item. :

~-13-

&)
}....\

F2

F3

FIGURE 3-2. FPU INSTRUCTION FORMATS

15 12 13 87 6 5 0
, 17 : P i
ocC FOC AC FSRC o
FDST
i5 12 11 6 5 0
, 17 | |
oc FOC FDST
L5 12 11 87 &5 o
5 17 | i :
oc ~ FOC AC SRC
DST
15 12 11 6 5 0
, 17 i 5 :
ocC FOC SRC
DST
i5 12 11 0
: 17 i 5
ele FOC

-14-

MCDE
5 &
addres
6 The addéress of the data is determined by the regular
index compucatcion.
7 The address of the data is determined by the regular
deferred index computation.
FDST "Floating Destination” . ‘
The interpretation of this field is identical to that
of thergource., '
AC "Accumuiatozr”
This is a 2 bit field specifying ACF-AC3.
SRC Source" ,
Regular PDP-1ll source field
DST "Destination”
Regular PDP-11 destination field.
3.1 TEE FRPU'S DATA FORMATS
The FPU handles two types of floating point data: Floating “F"
which i1s 32 bits long, and Extceandgd "E" which is 64 bits long.
Both formats assume normalized aumbers oniy. The fraction is
represented in sign-magnitude notation with the binary radix
point to the left. The most significant bit of the fraction
ig rnot stored because it is redundant. This bit is always a
1 except when the exponent is 0, then the number is declared
=0 be zero. The F and E format are shown in Figure 3-3 below.
WORD N WORD N+2
F Format 31 30 23 22 16 i3 0
f ! ‘ v - g : I — i
Ls| Bxp | FRA | | CTION |
— ——
1 8 23
E Format WORD N WORD N+2. WORD N+4 WORD N+6
63 62 55 54 , 48 47 32 31 16 15 . 0
. N - nE - " H - I e ¥
| S| EXP i FR | L AC T [ON |
1 8

S=Sign of fraction

EXP=8 bit exponent, in excess 200, notation, radix =2
FRACTION=23 or 55 bit fraction in~sign-magnitude notation, radix point

to the left
FIGURE 3-3 Flog&%gg Point Data Format

0323

b
(_L_‘
]
ci
mn
-
i
U
=
gl
C
(@]
£3
FA |
9]
i
1)

.

G
L)

TH

s ey 2, [S U) = o o X e s
LECE PRPU O LASTrLCCion 88T, & aescriplilon

i
of wnich is given below.Appendix B Lists some maximum and Linimum
execution times,

THE FPU PRCGRAM STATUS REGISTER

The FPU's program status register in shown in Figure 4-1. It
has four mode bits: :
1) F?, the FPU's Truncate Mode Bit. This bit, when
set, causes the resuit of any floating point operatlon
to be truncated rather than roundad.

) FD, the 7PU's Double Precision Integer Mode Bit.
This bit is active in conversion betwsen integer and
loating point format. When on,the integer format
assumed is double precision 2's complilement (i.e. 32
it o] the integer format that is assumed
is ngle pru“ ision 2' complement (i.e. 16 bits).
3} PE, the FPU s Extaended Precision Mode Bit. This
bit determines the thC"“lon that is used for floating
point calculations. When set, extended precision is
assumed - when reset, normal precision is used.

4y FMM, the FPU's Maintenance Mode Bit. The FMM
enablies special maintenance logic. The exact nature
of this logic will be detailed in a later memo.

Along with the four mode bits, the status register contains
four condition codes, FC, FV, FZ and FN. These are lcaded

into the CPU's C, V, Z, and N condition codes by the Copy
Floating Condition Codes instruction.

The way in which cach instruction affects the floating condition
codes is detailed in the instructicn definitions. The FC condi-

tion code bit has two meanings:

1) For the STCXJ instruction, which converts a floating
point number to an integer, the FC bit is set if the
resultlng integer is too large to be stored in the
specified register.

2) In all other cases, the FC bit indicates that the
absolute value of the floating point result was larger
than the largest integer that can be represented in

M bits, where M is the width of the fraction. 1In the

-16-

l“"
~

4)

5)

0324

THE FPU PROGRAM STATUS. BEISTER . {continuad)
extended mode, M = 56 bits and in ficating mode M =
24, Thi ilows sign-magnltude integer arithmetic
i pre

its of precision, not inciuding the
& performed with the FPU.

The FPU's Program Status Regiétér also contains six interrupt
enable bits. The FPU interrupt vector is at core location 2408.

T R TR SRR ST T ey T R
FIC FPLOATING ZNTERRUDT ON ITHNTSGIR LOWNVE

When FIC is set, and the 5TCHJ ianstructiocn causes PC to be seat,
a trap will occur. If the ’ntec;ugL cccurs, the instruction
is aborted leaving the contents of all the registers untouchead.

FIV _FLOATING INTERRUPT ON OVERFLOW

H
’,.-.:

Waen this bit is set, floating overflows will cause an interrupt.
The result of the operation causing the interrupt will be correct
except for the exponent which will be off by 400 {octal). If

the bit is off, the result of the operation will be the same

as detailed above and no interrupt will occur.

FIU FLOATING INTERRUPT ON UNDERFLOW

When this bit is on, floating underflow will cause an interrupt.

The result of the operation, causing the interrupt, will be
correct except for the exponent which will be off by 400 (octal).
If the bit is off and underflow occurs, the result will be set
to zero.

FIOR FLOATING INTERRUPT ON OUT OF RANGE

h s

When this bit is on, and the FPC bit is set because the result
is out of integer range, an interrupt occurs. Out of integer
range means that the absolute valuge of the result is greater
than or equal to 2XL where XL=24 1f floating mode,or 56 if
extended mode. ‘

FIUV _FLOATING INTERRUPT ON UNDEFINED

When this bit is on and a -f is obtained from memory, an
interrupt will occur. When this bit is off -7 can be locaded
and used in any arithmetic operation. The result of such
operation is undefined.

-17~

6)

CVWVLOOULPA WNDHF O

H

0325

TV TN RN T I e R I At o o e g
FJ_C DAL ‘:.JNG LN NERRG DY [\.z.‘ v D i [e] '.’._;.\‘.') b.ﬁa,.)

The FICD bit, when on, will caus g an interrupt tc occur when
the address computation performed by the 11/20 and 11/05 is
done. On the 11/40 this bit will be ignored. For a complete
description of the use of thig enable, see Section 2.1.4.

O

FIE FLOATING INTERRUPT ENABLE

= P L L) : -

All interrupts by the FPU are disablad when this bit ig off.

re ;Floating Carxry

FV ;Floating Overfliow

rZ ;FPloating Zero

FN ;Floating Negative

MM ;Floating Maintenance Mode

PT ;Floating Truncate Mode

D ;Floating Double Pre cision Mode

FE ;Floating Extended Mode

rIic ;Floating Interrupt on Conversion nrror
FIV ;Floating Interrupt on Overflow Erz

FIU ;FPloating Ianterrupt on Underflow Error
FIOR ;Floating Interrupt on Out of Range Error
FIUV sFloating Interrupt on Undefined Variable
FICD ;Floating Interrupt on CPU Dismissed

FIE ;Floating Iaterrupt Enable

RUN ;FPU's Run Status

FIGURE 4-1. Layout of FPU Program Status Register

o

INSTRUCDICN:
MNEMONZIC:
OPERATION:
FORMAT?

INSTRUCTION:
MNEMONIC:
OPERATION:
FORMAT:

INSTRUCTION:
MNEMONIC:
OPERATION:

FORMAT :

~

< (FSRC) is the integer
fixed and then Ifloated.

Set Extended Mode
SETE
FE¢&—1

ince &I ize

INTX FSRC
AC4 h_uﬁ(FSRC}:

i

PC¢~—L 1if | FSRC

T4

FZ¢l if {FSRC)=f else

FN&1 if (FSRC)X # else
|7 1ol 3 [FSRC

part of (FSRC)

by tcruncation i.e.-5.9 becomes 5. If

INSTRUCTION: Clear Floating/Extended
MNEMONIC: CLR¥X FDST
OPERATION: FDST¢~ @
FC&0
VS0
FZé-1
FN¢—0
FORMAT:
17 101 4 |rFps7i
* XL, = 24 if FE mode = §
= 56 if FE mode =1
-20-

Floating/Extended

ACv w‘""(r SRC
Z 24D gise rcvaﬁ*

{FSRC) is

Note that the integer ;s ‘obtained

~, J (FSRC) =(FSRC) .
Note that the fractional part of (FSRC) is stored in ACS.

Fb&C[;&

INSTRUCTION:
MNEMONIC:
OPERATION:

FORMAT':

INSTRUCTION:
MNEMONIC:
OPERATION:

FORMAT:

INSTRUCTION:
MNEMONIC:
OPERATION:

FORMAT:

INSTRUCTION:
MNEMONIC:
OPERATION:

FORMAT:

*X1,=24 if FE
56 if FE

mode =1
mode=1

0327

Negate Floating/Extended
NEGX FDST
FDST ¢~ (FDST) r

P I P, T i
Fliwwl 1T %(FDSi)iﬁd “ alse FC« 0%
FV¢&ig

FZe1 if (FDST)=f else Fze&-d
FNe-1 if (FDST) < ¥ else FNeJ

17 (0[5 [rpsm

n . 2\ o, e L O et IRCUOR L WS '.\'c-.'. 3 J
Make Absolute Floating/Extended

ABSX FDST

FDST = (FDST) ;2_;‘ (:XL‘Z\ 0 else FDST&-(FDST)
FC¢ 1 if [(FDST)|{Z2 " &ise FCeg*

FV¢-0

FZ¢-1 if (FDST) =0 else FZ& g

FN&9

1170 l6 [FDST

Test Floating/Extended
TSTX FDST

FDST¢— (FDST) B
Fee1 if | (FDST) |22XL else Fo¢- 0%
FV(:’-—--O '

FZé&1 if (FDST)=§ else FZ&UI
FNé 1 if (FDST)K0 else FN<«O

L17]0 (7 [FpsT

Load Floating/Extended
LDX FERC,AC

AC¢—(FSRC) |
FC&L if {(FSRc)gzzAL else FCO*®
FVe-O

FZ ¢l if (FSRC)=@ else FZ¢g
FNé—1 if (FSRC)KO0 else FN&§

L1711]ac] Fsrel

INSTRUCTZION:
MNEMONIC:
OPERATION:

FORMAT':

=
N

SR IO

G Uw
145
+
i

i
(@]
L
B
g
}..J

L7121 [4+ac [FpsT |

22

0325 4

0329,@

INSTRUCTION: Adéd Floating/Sxtended
MNEMONIC: ADDX ¥8RC, AC

‘ A A ST
OPERATION : ACE—(BAC) + (¥SRC) 1f | (AC) + (FSRC)|ZXLL OR FIU=1

else ACL.g¥*
FC&=1 if |

| (acy | Z 2" else FC¢— g%
FVé&-l 1f [(AC)| ¥ XUL else FV ¢— fi*
FZ¢1 if (AC) =0 else FZ &0

FN¢1 if (AC)L # else FN -1

FORMAT :

, 1 , 7 2 AC FSRE
INSTRUCTION: Subtract Floating/Extended
MNEMONIC : SUBX ®SRC, AC

OPERATION: ACL-(AC) = (FSBRC) if §(AC) - (FSRC)| Z XLL OR FIU=1
else AC<g** < :
FC¢-1 if {{AC) [z 2 Y else 7C
FU¢=1l if [(AC)| ¥ XUL else FV&—O¥**
FZé~1l if (AC)=fF else Fzé&f
FR&1 if (ACIKY else "Nl

FORMAT :

‘._J
~J
N
M;lg —
_*.‘
ws
0
i
wn
Y
Q

24 if FE=f

56 if FE=1
**YXLL = sm§%%est number that is not identically zero
=2 T : .

* XL

*%*XUL =_largest number that can be represented

-23-

INSTRUCTION:
MNEMONIC :

OPERATION:

PORMAT &

“MNEMONIC :

OPERATION:

FORMAT :

0330 #

iply: Floating/Extended

*
ci

Wil a

ke
Yy

MULX FSRC, AC

-

AC.{BC)*{FSRC) Lf | (AC)*(FSRC) L;XLL OR PIU=L
else AC—g** <1,

FC&1l if | (AC) | 3277 else Foe—g*

FVé—l 1f |(AC)| »XUL else FV-fre*

FZ{1 if (AC) =f else FZ¢—F

FN¢-1 if (AC) K @ else FN¢—#

- - i -, : - f o

L { / 3 2 : &C [A A
9 F ‘ i

Divide Floatiang/Excended

DIVX FSRC,AC

Case 1 (FSRC) £ ¥

AC¢~(aC)/(FSRC) if |(AC) /(¥SRC)| ZXLL OR FIU=1
cise ACE-g** o

Fee—l if [(ac)| Z 2®F else Fe @

FVe&L if [(AC)| 7 XUL else ¥V —-grwx

FZ¢l if (AC)=§ else Fzé&g

FNiL 1if (AC}K % else FN(-F

Case 2 (FSRC) = g

AC ¢—(AC)

FCé—(FC)

FV &(FV)

FZ <(FZ)
FN¢—(FN)

1 17 13 | 4+AC | FSRC

-24—

INSTRUCTION : Reverse Subtract Floating/Sxtended 0 3 31

MNEMONIC : RSUBX FERC,AC
OPERATION: AC e (FBRTY=(AC) 4¥ | {FIRC)=(ACT i WIL OR
FIU=1 else ACE-0"" ;

FCe—1 if [(AC)| z2®" else FC&-F*
FV&—1 if | (AC) | »XUL else FV&—g*¥%
FZ ¢—1 if (AC)=g else Fz¢-yJ '

FORMAT : .
1 7 4 AC FSRC |
i ; L !

INSTRUCTION: Compare Floating/Extended

MNEMONIC : CMPX AC, FDST

OPERATION: AC ¢ (AC) <1
FC¢—1'4f | (AC)| 7Z 27" else FC¢— g%
FV &1 if K (AC} | -7 XUL alse FVe—fxix
FZ ¢—1 if (AC)=0 else T Z\——u
FN &1 if (AC)<¢ 7 else FN& P

FORMAT :

ORMA 1 [7 | & | 4+AC FpsT

* XL, = 24 if FE=J

= 56 if FE=1
*FXLL = smallgst number that is not identically zero
=2 -
**%XUL = largest anEer that can be represented
) :

~25-

INSTRUCTION: Reverse Divide ?lo&ting/ﬁxbyhaea
MNEMONIC: RDIVX FSRC,AC <
OPERATION: Case 1 (AC)=D

AC(._(PSRC)/(AC if f FSRC) / (Ac)§ = XLL OR
FIV=1 else ACQ—X

Fc<—-1 if [(ac) | =

FVé—1 if |(AC) |

FZzé—1 if (AC) =

FN¢—1 if (AC) <

t‘\”\f\

7 2 else FC&—Q*

7 XUL else Fvg_uw***
g else Fz &~

se FN&E—T

g el

Case 2 (aC)=0

FC «—(FC)
FV &—{FV)
FZ <—(FZ)
FN &—(FN)
FORMAT : — ‘ ‘
%l 7 i 5 AC | PSRC !
- : l
INSTRUCTION: Load & convert from Extended Floating to
Floating/Extended
MNEMONIC: LDCYX FSRC,&C
OPERATION: k AC¢— Cyx(FSRC) if [(FSRC) | Z XLL or FIU=l else AC« g¥**
FC ¢—1 if [(aC)| 7 2¥XL aige FC g%
FVé—-l if [(AC)| 7’XUL else FV— gh**
FZ ¢—1 if (AC)=@ else FZ &9
FN 1 if (AC) <& § else FN @
FORMAT :

(1 7 5 4+AC§FSRC‘
i z

* XI, = 24 if FE=@0
= 56 if FE€1

*AXLL = sma%lest number that is not identically zero
- o -128

***XUL = 1a%?$st number that can be represented

(1-2)

3

@

-26=

Cyx(FSRC) is Gefined as

0333

Y
the current mode, i.e. Floating or
sssumed to be opposite to the currenc £ the
current mode iz F and the FEOBIt LS £, are
loaded into AC <3130y . I the FY bit is 1t is rounded
using FSRC <31~7¢ Note that FERC (31:0) i if the current
mode is E, AC {63:32) are loaded from JSRC {31:0) and AC {31:8) are

i
cleared. Similarly, Cxy (FSRC) converts (FSRC) from X to -X mode by
truncating or rounding (FT=l or g when X=E or loading trailing zeros
if X=F. o

i
INSTRUCTION : Store & Convert from Floating/Extended to
Extended/Flcating ‘ -

MNEMONIC: STCXY AC, FDST
; . - A TR S | - rn
OPERATION: FDST4— Cxy (AC) if [Cxy(AC) | z XLL oz '‘IU=1
else FDST & 0** .
FC¢—1 (AC) 1 Z else FC&—O*

* XL = 24 if FE = @
= 56 if FE 1
*RXLL = sm?%%est nunber that is not identically zero
= 2 ’

*%xFXUL = 1?vgest nuxber that can be represented
5 2/(1_2—Xh—l)

-27-

334

INSTRUCTION: Load & Convert Integer/Doudble to Flcating/Extended o
MNEMOKIC : LDCOX SRCT,AC
OPERATION: ﬂbw—nc s (SRCH , XI,

FC &1 if | Cgyx (8RC) | 22 else FC¢—fg*+

FV @ _

FZ¢—1 if (AC)=0 else FZ(—¥

FN 1 if (AC){F else FN¢- @

FORMAT :

i

T 1 7 | 6 | 4+ac|SrCc |

n integer with precision specified
cision specified by X, i.e. if
e a 16-bit 2's complement integer

2

C 5x(SRC) specifies a conversicn from
by J to a L¢0“*+ng point number with
J=I and X=F the source 1g assumed to
which is converted tc a sign magnitude floating point number with a
24 bit Fraction. In the case of Cpr (SRC), the fraction is truncated,
i.e, only the highest 24 significant digits are used.

f
b”d o)
B
(1

INSTRUCTION: Store Converted from Floating/Extended to Integer/Double
MNEMONIC: STCXS AL, DST
OPERATION ¢ DSTQ_M%\N(AC&_‘f :”uzﬂquJJxAC)\ 2 L-l else DST¢-(DST)
rc__..L if =27 > Cy (AC) »27 -1 else FC&—Ff *
qu._.l if (DST) =@ else FZ2&LP
FN &1 if (DST) & ¥ else FN&F
FORMAT : — i
17 7 AC | DST |

*JL=15 if FD mode =
=31 if FD mode

|
[l

**%X1,=24 if FE=g
=56 if FE=

-28—~

INSTRUCTION:

MNEMONIC:

OPERATION:

FORMAT :

INSTRUCTION:

MNEMONZIC:

OPERATION:

FORMAT :

INSTRUCTION:

MNEMONIC:

OPERATION:

FORMAT :

Load FPU's Program Status
LDFPS SRC

FPS&—(SRC)

|1 7 07 4 | SRC

-

t
!
i
i

Store FPU's Program Status

[48]

RO T
TIFPS DET

DSTL(FPS)

17

Store FPU's Exception Code
STFEC DST

DST¢— (FEC) %2

i1 7 7 { 6 | DSt

-

-29~

0335

INSTRUCTION:
MNEMONIC:
OPERATION:

FORMAT :

The ROM cycle ccunter (RCC) decrements each ROM cycle.
mode the next ROM word will not be fetched if the RCC=/.

MNEMONIC:

CPERATION:

MNEMONIC:

OPERATION:

FORMAT :

LY S I IR S 5 g 4 0, T i
Malntenance Counter

g

’

|/ R

.~ ,C?'
)

[, T S om E
register 1o &5

}_1

1
1
3
{
T

Lt

}..J

cer in ACH

~30=-

0336

in maintenance

0337

INSTRUCTION: Store Q register in ACE
MNEMONIC: S20d

OPERATION: BR<—{QR)
ACHé&—(BR)
FORMAT : L 7 0B

H [
i . i
3

Ry

S QUSRI

-31i-

20
™
M
=)

‘APPENDIX A

SUMMARY OF FPU INSTRUCTION SET

QP CODE DESCRIPTLON

Copy Floating
Coadition Cades CFCe . 170000 CC @ FCC

S5at Floating Mode SETE 170001 . FE¢-0

ol xztonded Mode SEIR 170002 , FE¢-1

W

road Maintenance

Countaer LDME 170010 MC (-(RO)

Stora AR Register
in acd stald 170011 ACH & (AR)

REITR T ', RPN
Store BR Register

in ACY sTed ' 170012 ACY ¢(-—(BR)

S5tora QR Register .
acy ' STOH 170013 ' BR =< (QR)

ACH ¢ (BR)

fniagerize Fleating/

Extended INTX FSKC) 170300+F8RC AC4 «-integer part
of (PFSRC); ACS4~Ffractional
part of (FSRC)

Clear Fleating/

Extonded CLRX FDST 170400 +FDST FDST ¢~ @

A (1)

0339

XNSTRUCTION

Nagate Floating/
Extended

Maka Absclute
CFloating/Axtended

Past Floatiag/
Exiandead

Load Floaiting/

Etandeaed

Stora Floating/

. . g .
b andad

Add -F
ERTEN

loating/
cledd

ot Floating/

Floating/

pivide Floating/
Bxtanded

navaersa Subitract
mloating/Extendad

compare Floating/
LExtended

NEGX FDST
ABSX FDST
T8¢ FDST

LD FSRC,AC
STX AC, FDST
ADDX FSRC,ACV
SUBX ﬁsac,AC‘
MUT.X FSRC,AC.
DIVK FSRC,AC
RSUBX FSRC, AC

CMPX AC, FST

APPENDIX A (continued)

OP_CODE

170500+FDST

170600 +FDST

170700+F¥DST

1710C0+AC*100+FERC

171400+AC*100+FDST

172000+AC*100+FSRC

172300+AC*100+FSRC

173000+AC*100+FSRC

173400 +AC*1L0O0+FSRC

174000-+AC*100+FSRC

174400-+AC*1LO0+FSRC

DESCRIPTION

FDST ¢ = (FDST)

FDST éw_(FDSTﬁ

FCCe¢-condition of (FDST)

AC ¢-(¥SRC)

FDST <-—-AC

AC 4— (AC) + (FSRC)
AC ¢—(AC) -~ (FSRC)
AC ¢—(AC) * (FSRC)
AC ¢-—(AC) / (FSRC)
AC ¢ (FSRC) - (AC)

FCC¢—condition of
(FDST)-(AC)

A (2)

[Rsitihvi

INSPRUCTION MNEMONIC

Raeverse Divide
Fleating/Extended RDIVX ¥FSRC,AC

Floating/ Sxlended IDOYX BSRC, AC
<, ’

2 & Convert from
Flonting/Extended o
mxikandad /Ploating SWIKY AC, FDST

roead & Conveant Inkeger/
pouble to Fioatiang/

Ertondad LDOJX 8RC,AC

AC,DST

Coda SyFEEC DST

APPENDIX A (continued)

QP _CODE

175000+AC*1L00+FSRC
175400+AC* 100 +FSRC
L76000+AC#*100+FDST
176400 +AC* LOO+SRC

177000+AC*1.00+SRC
17740045RC
177500+DST

177600+DST

DESCRIPTION

AC ¢—(FSRC)/(AC)

AC @_converFed (FSRC)
FDST ¢—convertad (AC)
AC ¢—.cconvertaed (SRC)
DST ¢.-converted (AC)

FPS¢—(SRC)

.

DST «--FPS

a(3)

An initial analvsis of our
in the executicn times of the

to AC to AC operations.

The following approximation can be used

floating

L
oo .LE

to find the execution

time for memory referencing operations: Take time of table
below and «ds to it (unZSww:cv + wemory accessz/ovele time) *
nuiber of memory referencaes This tume has to be corrected
further for possible memory cycits for the address computatlon
(e.g. add 1 memory access tilme Ffor mode & “a(R)").
PIOATING. POINT TARCUTION TIMES FGR AC~AC OPERATIONS
INSTRUCTION FXACUTION TIME INACEC
S T e TIPS Y - ANNT § i Fadhral
SINGLE PRECISION { SATENDER PRECISION
M MAX. i MIN. MAX.

SUBX 1.8 3.5
MULX

DIVX 3.0 6.0

B (1)

5.1

