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PREFACE 

The Fall 1968 DECUS Symposium broke all records with an attendance of 390. Extending the meeting to two-and-a-half days 
also was a deviation from the norm of two-day meetings. Sessions included presentations in Interactive Systems, Data Acquisition 
and Control, Education, Biomedicine, Hardware, FOCAL, and workshops in software systems for the PDP-8, PDP-9, PDP-6/10 
and LlNC-8. Avai lable during the meeting was a PDP-9 and a LlNC-8 for demonstration and use by the attendees. 

Papers published in this volume have been printed as received from authors with no editorial changes. In some cases, papers 
were not received in time for publ ication, these papers are I isted in the appendix. If the omitted papers are at some time 
submitted to the users group, they will be published in the newsletter, DECUSCOPE. Reprints of papers presented here are 
available from the DECUS Office, Maynard, Massachusetts 01754. 

This Proceedings also contains a list of meeting attendees and author index. 

Special thanks to Meetings Chairman, Professor Philip Bevington and to all Session Chairmen and speakers for their support 
and part i ci pat ion. 

vi 
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A PDP-B/ S AS A PROCESS CONTROLLER FOR MANUFACTURE 
OF TANTALUM THIN FILM T-PAD ATrENUATORS 

H. D. Marshall & R. L. Siegel 
Western Electric Company 
Allentown, Pennsylvania 

ABSTRACT 

A PDP-B/S forms the nucleus of a complex anodizer tester for 
·the msnufacture of T-pad attenuators. This paper describes the 
basic problems of anodizing and testing tantalum resistors and 
the design consideration of hardware and software to meet this 
task. The hardware coverage in this discussion is limited to 
basic descriptions of the peripheral equipment to allow a more 
thorough treatment of the software logic. 

The Electronic Industry continues to introduce 
more complex devices every year. The manufacture 
and testing of these devices have become more time 
consuming, complicated and expensive. 1l1e rela­
tively recent development of the IIsmall fl computer 
has facilitated the design of more sophisticated 
manufacturing and testing equipment, thus, reducing 
the device cost. The intent of this paper is to 
discuss a method of adjusting and testing tantalum 
thin film attenuators using a Digital Equipment 
Corp. PDPB/S as the process and test coordinator. 

The scope of the discussion is the familiarization 
of the reader to the problem of anodizing attenu­
ators, the necessary hardware development, and the 
marriage of the hardware to the software. 

DEFINING THE TASK 

It was desired to create a system to anodize and 
test tantalum thin film "T" attenuator pairs with 
values of 8.0, 4.0, 2.0 and 1.0 ± 0.01 db and 0.8, 
0.4, 0.2 and 0.1 ± 0.01 db with input and output 
impedances of 300 ± 2% ohms. 

The electro-chemical process of anodizing is beyond 
the scope of this paper, however, a few basic facts 
will be discussed to establish the tasks expected of 
the hardware. 

The resistive value of tantalum thin film can be 
increased by covering an area of tantalum with 
electrolyte (a mild acid solution) and passing 
current from the tantalum to a probe suspended in 
the electrolyte. Tantalum oxide, an insulator, 
forms on the tantalum film as the film reduces in 
thickness during anodizing. (See Figure 1) 
Resistors can be anodized to a predetermined value 
by alternating between measure and anodize circuitry 
increaSing the anodizing voltage slightly during 
each cycle. Thus, several important requirements 
for the hardware are defined, i.e., an adjustable 
anodizing voltage source, an alternating ~asure­
anodize system and fixturing* to mechanically 
attach the measuring and anodizing probes to the 
tantalum circuits. 

*Fixturing, although in this application is both 
complicated and important, is primarily a 
mechanical engineering problem and will not be 
discussed. 

The above method may be used to adjnst single or 
multiple sets of resistors and when many resistors 
or sets of resistors are to be adjusted simul­
taneously it becomes apparent that a flcontroller" 
and "memory" must be employed. 

A "T" attenuator (or pad) is simply three 
resistors connected in a liT" configuration and can 
be easily duplicated by a tantalum thin film 
configuration as seen in Figure 2. A "T" attenuator 
is a device used to reduce power or voltage to some 
desired level and is usually inserted in a line of a 
given impedance and does not alter the impedance of 
the line. In this case, the insertion impedance is 
300 ohms. Figure 3 shows an attenuator inserted in 
a 300 ohm line and cutting into the line at either 
dotted line 300 ohms would be measured in each 
direction. Therefore, a properly constructed 
attenuator inserted into a line will require the 
same amount of power from the source as that 
required before insertion. 

There are only three discrete resistor values to 
define a T-attenuator of a given input-output 
impedance and power or voltage 1055. If the input 
and output impedances are desired equal, Rl must 
equal R2 (Figure 2). Then Rl + R2 called R series 
and R3 called R shunt form a balanced attenuator. 
B,y assigning values to Rseries and R shunt a 
"T" attenuator is fabricated with a defiJled loss 
and its input and output impedance balanced. To 
calculate the necessary values of R series and R 
shunt to produce a given attenuation and impedance 
(or visa versa) see Appendix 1. 

Imagine R series and R shunt in Figure 3 are 
adjustable resistances. Increasing R series 
increases the loss ratio and increasing R shunt 
decreases the loss ratio. However, increasing 
either R series or R shunt increases the input 
impedance of the attenuator. These facts must be 
arranged into a workable anodizing plan to define 
hardware and software design parameters. Let us 
think through the necessary steps to adjust an 
attenuator, for example, to B.oo ± O.Oldb at 300.0 
ohms ±2!{0. 

The first step is to separately adjust R series to 
the calculated value needed for an B.OOdb attenuator 
at 300 ohms. During the adjustment of R series' 
control the balance of Rl and R2 of which R series 
is composed. Wi th R series adjusted to the calcu­
lated value and Rl equal to R 2 there is only one 



R shunt resistive value which will exactly define 
the attenuator as 8.00db at 300.0 obms. Therefore, 
R shunt must be separately adjusted to the proper 
value. 

The method for performing this R shunt adjustment 
is to insert theattenuator in a circuit as shown 
in Figure 3 for meaSuring loss ratiO, i.e., the 
ratio of one half of the power supply voltage* to 
the voltage across R load- Then, anodize R shunt 
up in value causing the insertion loss to lower to 
the specified limit as also shown in Figure 3. If, 
as previously proposed, R series was accurately 
adjusted and R shunt adjusted to the correct limit, 
the attenuator is now 8.00 db at 300.0 ohms. 
Notice, with this scheme it is not necessary to 
measure the input-output impedance during adjust­
ment. Precise selection of the 300 ohm R source 
and R load resistors (in the measuring circuit) and 
adjustment of R series and R shunt to the exact 
calculated values guarantees the correct input­
output impedance of the attenuators. 

HARDWARE CONSIDERATIONS 

The basic task has been defined and the actual 
attenuator circuits to be processed and tested are 
shown in Figures 4 and 5. Notice in Figure 4 the 
pairs marked 1, 2, 4 and 8 are the 1, 2, 4 and 8 db 
pads and in Figure 5 the pairs marked .1, .2, .4, 
and .8 are the 0.1, 0.2, 0.4 and 0.8 db pads. In 
later discussion, the top four pads in each circuit 
are referred to as "Topll or "Upperl! pads and the 
bottom four pads are referred to as "Bottom" or 
"Lower" pads. This describes their physical 
location on the circuit. Also, the attenuators in 
Figure 4 are referred to as "High" pads and in 
Figure 5 are referred to as "Low" pads which 
describes their electrical value. Therefore, the 
proposed equipment must be capable of processing 
and testing either High or Low pads of the values 
presented above (all with input and output imped­
ance of 300 ohms). To spice the requirements even 
more, there are nine identical circuits on each 
ceramic substrate, eight pads on each circuit and 
essentially two resistors (R series and R shunt) on 
each pad or 144 total anodizations per subs'Crat.e. 
A layout of the substrate can be seen at the bottom 
of Figure 6. The upper portion of Figure 6 is the 
block diagram of the hardware necessary to adjust 
and measure the substrate. Each pad must be 
serviced by 5 fixture contacts (three for meaSuring, 
one for R series anodize and one for R shunt 
anodize); and remembering there are 72 pads per 
substrate means 360 contacts must be made at the 
substrate surface. Also recall that no anodizing 
contact may touch any part of the tantalum circuit. 
The contacts are brought down in open ceramic areas 
near the resistors to be anodized and are immersed 
in the electrolyte paste which has been carefully 
screened on each associated resistor** and includes 
the open area. Wi th reference to Figure 6, the 
fixturing pins contact each pad of either the High 

*1oss Ratio (db) = 20 log V, Load 
1 2 (V Supply) 

Samples in Appendix 1 

**Isolation dams of asphalt are temporarily 
screened on the substrate to restrict the electro­
lyte from touching the gold contact areas and to 
separate the R series and R shunt portions of the 
tantalum. 
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or Low value substrate and the Matrix connects only 
the 18 identical pads to the Pad Selector at a given 
time (i.e., with regard to Figure 4 first connecting 
18 - 1 db pads until adjusted then 18 - 2 db pads, 
followed by 4 db and 8 db pads in order determined 
by the controller). The Pad Selectors normally 
connect the appropriate 5 leads from each pad to its 
associated anodizer; however, by controller 
selection any 2 pads may be connected to 
configuration selectors for Ratio measurement. 
Notice, the hardware is divided essentially into 
two identical branches. The reason for the hard­
ware division is simply the fact that the Ratio­
meter operates slowly compared to the controller. 
The controller is essentially servicing two separate 
hardware facilities; i.e. the left side (Figure 6) 
adjusts IITopl1 pads, the right side adjusts "Bottoml1 
pads and the controller alternates between them. 

To s1lIllln3rize the hardware: The pins contact the 
attenuator Circuits, the Matrix selects a column 
of similar pad values to be operated on, the Pad 
Selector connects all pads to its associated 
Anodizer or selects a pair of pads and connects 
them to the Configuration Selectors, the Config­
uration selectors connect the pads to be tested in 
a Zin, Zout, or insertion loss circuit config­
urations, the Ratio meter reads analog ratios and 
converts them to binary coded decimal for control­
ler comparison to stored values. 

THE OPERATION 

A block diagram of the actual equipment is seen in 
Figure 7 and the following discussion describes the 
tasks done by the hardware when accessed by the 
controller (or computer). Each of the 18 anodizers 
has its own device number and device selector. The 
anodizers are controlled by placing a word in the 
accumulator and sending this word through an 
associated device selector, flip-flops, and relay 
drivers to cause the anodizer to do any of the 
following operations: 

1. Generate a voltage step increase on the output 
of the anodizer and anodize the associated 
resistor to this new voltage level (the 
duration of anodizing times are preset by 
interface hardware). 

2. Operate on "Series" or "Shunt ll resistors as 
determined by the software program. 

3. Set any Anodizer to "slowll or "fast" anodize 
as determined by the proximity of the pre­
selected desired value. 

4. Discharge any anodizer when the desired value 
is attained. 

5. Change from anodize to measure mode for series 
or shunt (this transfer is executed by the Pad 
Selector under the control of the anodizing­
board device Selector). 

The equipment Start and stop buttons (not the 
start and stop buttons on the computer) are used to 
start and stop the processing of the T-pads _ Both 
of these buttons are under control of the same 
device selector and allow the computer to determine 
if either of the buttons has been depressed. The 
start button is enabled only when the fixture is in 
the raised position and the stop button which is 
always enabled is also connected to the computer 
interrupt buss. 



The Matrix allows the system to process anyone of 
four columns of T-pads from the fixture. Each 
column consists of 18 pads with 5 leads per pad. 
The three measuring leads of each pad are connected 
to the Pad Selectors and the two anodizing leads are 
connected to each of the 18 anodizers. The computer 
controls the column to be selected or reset by 
placing a word in the Accumulator and sending the 
word through the Matrix device selector and 10 amp 
drivers to operate the matrix. 

There are two fixtures associated with this equip­
ment. One fixture is used for high value pads and 
the other fixture for low value pads -:---[The High 
and Low substrates differ geometrically, consequent­
ly, need separate pin configurations) Both of the 
fixtures are parallel wired to the l~trix and the 
program allows only one fixture to be used at a 
time. The computer takes an im tial predetermined 
resistance reading to identify whether a high or 
low substrate has been contacted by the raised 
fixture then, utilizes this informtion to 
initialize the proper limits for processing. lJlle 
computer also controls the lowering of the fixture 
by using an extra pulse from one of the anodizer 
device selector boards. 

The pad Selectors normally connect each T-pad to 
its associated anodizer, however, the computer may 
select a pair of T-pads in a given column and 
connect them to the Configuration Selector for 
measurement during programmed control. 

The computer controls the Configuration Selectors 
by placing a word in the accumulator and sending 
this word through a device selector, flip-flops, 
and relay drivers to each Configuration Selector. 
The Configuration Selectors are operated in 
parallel to setup the following ratio measurement 
circuits: 

1. Series Resistance and Series Verify (Series 
Verify determines if the series measuring 
pins are contacting the substrate) 

2. Insertion loss 

3. Input impedance 

4. Output impedance 

5. Shunt Verify (determines if the shunt pin is 
contacting the substrate. 

There is a series resistor balance circuit 
associated with each configuration selector. Each 
balance circuit is al~ays energized but is only 
used when the configuration selector is measuring 
the series resistance of a T-pad. The balance 
circuit sets a latching relay on each associated 
anodizer board to produce nonlinear anodizing of 
the series resistor with respect to the shunt 
resistor. This is accomplished by forcing a 
voltage gradient across the series resistor of a 
pad during anodizing and causes the lower resis­
tance half of the series resistor to anodize 
faster. This process tends to equalize the 
attenuators input and output impedances. The out­
put signal from each balance circuit is fed through 
the pad selectors to the associated anodizer board. 
The timing for this balance routine will be covered 
in the later discussion of the Digital Ratiometers. 
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There are two Digital Rati 0 Voltmeters (DVM's) used 
in conjunction with the configuration selectors to 
make the actual ratio measurements. The upper DVM 
is used with the upper configuration selector and 
the lower DVM with the lower configuration selector. 

Each DVM is controlled by the computer through its 
two device selectors. The BCD output from the DVM's 
are handled as "double precision lT numbers, each 
half with a separate device selector. The computer 
can also sense when either DVM has completed a 
reading. This sensing is done through the device 
selector that transmits the least significant 
portion of the BCD output. The other device 
selector which transmits the most significant 
portion of the BCD output is also used to cause the 
DVM to start a reading. When a DVM reading is 
required, the first step that occurs is an 8 IDS. 

delay for the system to settle down and then a 15 ms. 
read command to the Dif.r.1. It is during this 15 IDS. 

read command that the balance circuit associated 
with that DVM is also commanded to make a balance 
measurement. Both the 8 ms. and 15 IDS. delay and 
read durations for each DVM are Under hardware 
control. 

Nine inker solenoids are located under each fixture 
and operate if any of the 8 T-Pads on a circuit have 
failed final measurements by placing an ink mark on 
the underside of the faulty circuit on the substrate. 
Both sets of inkers are operated in parallel from 
the computer but either set of inkers is disabled 
by raising the opposite fixture. The computer 
controls each inker by placing a word in the 
accumulator corresponding to the inker to be 
activated. This word is sent through the inkers 
device selector, flip-flops, and solenoid drivers 
to energize the proper inkers. 

The software program was written to combine the 
previously described peripheral devices into a 
attenuator processing and testing system. 

ALL PADS ANODIZE LOOIC FLOW (FIGURE 8) 

The main anodizing program is stored from location 
200 to location 3377 and on part of the zero page. 
The program is started at location 0200 and a 
command to drop the fixture is issued. The sections 
of the program for "Verify" and "Measure" are then 
initialized. The Verify portion will check each of 
the 72 T-Pads to determine if each of the 3 measur­
ing pins per T-Pad are making connection. The 
measuring portion "'ill measure each T-Pad for input 
impedance, output impedance, and insertion loss. 
The computer will wait for a prepared substrate to 
be raised in the fixture and the program to be 
started. When the program is started, the computer 
takes an initial reading to determine whether the 
substrate is a "high" or "low" value and stores this 
information. The switch register setting will 
direct the program to either measure the pads or 
verify, anodize, then measure the pads. Assume for 
this example the latter is desired. The verify 
limits are set up and the first pad is tested for 
"verify series" and "verify shunt." The computer 
makes a comparison between the DVM readings and 
stored limits to verifY low series or shunt pin 
contact resistance. If verification is negative, 
flashing lamps afford a choice to "override" or 
"drop the fixture" and restart. When verify is 
satisfied, a set of limits are selected based on 
the initial high - low readings previously stored. 



An appropriate Matrix column counting location is 
set to ell. The configuration selectors are set 
for series measurements and the anodizers are set 
up for series anodize. The computer tests to find 
if the last matrix column has been finished. Since 
it has not, the matrix is set to column one, and 
both DVM's are commanded to read. The interrupt is 
then turned on and if no devices are asking for 
service, a delay bit is rotated in the accumulator. 
The interrupt subroutine will service only one DVM 
a t a tilIE. When one DVM ha s been servi ced, the 
subroutine alternates to service the other DVM and 
stores a count until 18 measurements have been 
taken (which constitutes one pass on all the 
anodizers.) 

The devices that rrray call the interrupt are the 
Upper and Lower DVM, parity error, equipment stop 
button, or the teletype. If a parity error occurs, 
the computer is automatically shut down. The 
equipment stop button causes all processing to stop 
and the fixture to drop. If the teletype reader or 
punch calls, it is completely ignored sending a 
"clear" pulse through its device selector. There 
will be approximtely 30 DIS. from the time a 
command is issued for the DVM's to read until a 
DVM calls the interrupt. Since this is the first 
reading, only the upper DVM will be servi ced. If 
the lower DVM calls the interrupt first, the 
interrupt subroutine will ignore it and wait for 
the upper DVM. When the upper DVM finally asks 
for service, it s reading will be gated into the 
computer and a double precision comparison will 
be rrrade against a stored fast-anodize limit. If 
the reading is less than the fast limit, that 
anodizer will be set to fast-series-anodize and 
charge. (A 100 ms. anodize pulse will occur) If 
the reading is greater than the fast limit, it will 
then be compared against a finished value limit. 
If the reading is less than the finished value, 
that anodizer will be set for slml-anodize and 
charge (a 100 DIS anodize pulse will occur). If the 
reading is greater than or equal to the finished 
value, a "finished" register will be incremented 
and the anodizer discharged. In any case, the next 
circuit will be set to measure and the Upper DVM 
commanded to read. Control is then given to the 
interrupt subroutine whiQh will now accept only the 
Lotler DVM. When the Lower DVM asks for service, 
the salIE type of processing occurs and the reading 
is compared against the proper limits to check for 
fast-anodize, slow-anodize or discharge. The pro­
gram now checks to see if 18 pads have been measuxed. 
The program investigates whether 18 pads have 
completed series anodize, or a specified time limit 
has been exceeded. If all 18 pads are finished (or 
the allotted time exceeded) the process is then set 
up for shunt-anodize, insertion loss measurements, 
and a new set of limits are used. If all 18 pads 
have not been anodized, the next Lower pad is set 
to measure and control is again given to the 
interrupt subroutine. This process is continued 
until all 18 pads are finished (or timed out). The 
shunts of the T-Pads are anodized following the same 
process as described fo~ the series anodize except 
different limits are used. When all of the shunts 
have been adjusted to a specified insertion loss 
ratio, the Matrix Column Register is incremented. 
The program again sets up for series-anodize. If 
the l~trix Column Register is not (4), the process 
of anodizing series and then anodizing the shunts 
is continued until all four columns have been 
completed. At this time, the interrupt is turned 
"off" and the measuring subroutine is given contrdL. 
The measuring routine has the capabili~y of 
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rejecting circuits for insertion loss to tolerances 
of ± .Oldb, .03db, .05db, or .01db (determined by 
previous setting of the switch register) and output 
impedance of 300 ohms ±2%. 
A circuit (8 pads) is to be rejected if any pad 
fails any test limits. Therefore, any time a pad 
is out of limits, one of the nine associated circuit 
registers are incremented. This i~ormation is 
used later to operate inkers in the fixture to mark 
circuit failures. However, the proper setting on 
the svlitch register will prevent inking of rejects 
and command teletype print out of insertion loss, 
input and output ratios. At this point, the fix­
ture will release and is ready for the next substrate. 

Included in the computer program are 16 routines 
which aid in the general maintenance of the equip­
ment. These additional programs allow an operator 
a fast examination of approximately 90% of the 
machine hardware and in rrrany cases describe on the 
teletype the location of an existing problem. 

This equipment cost approximately $18,000 including 
engineering and design and will process and test a 
complete substrate in approximately one minute. 

APPENDIX 1 

DETERMINATION OF RESISTANCE VALUES FOR A BALANCED 
T-ATTENUATOR NETWORK 

K = Ein/Eout, this ratio is the desired voltage 
ratio corresponding to the desired attenuation 
in db. (K> 1) 

LOSS (db) 20 10glO Ein/Eout 

Rl = R2 = Z (K - 1) and R3 = 2ZK 
K + 1 ~- 1 

Example: calculate 8.00db, 300 ohm Zin, Zout Pad. 

8.00 db = 20 log Ein/Eout 

Ein/Eout antilog (8.00db) 
~ 

Ein/ Eout antilog (.400) 

Ein/Eout 2.5119 = K 

Rl = ~ = 300.0 (2.5119-1), R3 
2.5119+1 
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THE GASCHROM~S SYSTEM 

By: Bradley Dewey III and Gary Cole 
Digital Equipment Corporation 

Maynard, Massachusetts 

In many research and quality control 
laboratories in the chemical process in­
dustries, multiple gas chromatographs are 
relied upon to supply chromatograms which 
are analyzed and used for quantitative 
analysis. 

These instruments are often running simul­
taneously and on multiple shift bases. 
Characteristic problems involved in this 
sort of wholesale chromatography are many. 
Often there are many peaks of interest, 
wh07.e size varies over many orders of mag­
nitude; these must be integrated and 
mormalized or compared to some standard. 

Noise is an ever present and varying 
quantity. Baselines drift and confuse the 
area determination process and apparent 
sensitivities. Fused peaks create the 
need for judgement of area allocation be­
tween two or more peaks. Column aging and 
other variables cause calibrations to 
change which requires a determination of 
up-to-date component response factors. 

All these difficulties are costly. They 
lead to wasted time, money, and personnel. 
A large number of people is required to 
analyze and quantitate the chromatograms. 
A long time interval is present between 
sampling and reporting. Accuracy is 
limited. Integration and area allocation 
are seldom as accurate as the chromato­
graphic instrument. Finally, manual data 
analysis, with its associated lead times 
causes a low utilization of the expensive 
chromatographs. The GasChrom-S system has 
been designed to solve many of these 
problems. It is a dedicated, computer 
based system for acquisition and analysis 
of up to 22 chromatographs, simultaneously. 
The system automatically accomplishes the 
following: 

1. It collects all input signals 
from up to 22 instruments. 

2. It allows parallel operation of a 
strip chart recorder and its 
associated attenuation switching. 

3. It calculates peak areas and peak 
retention times. 

4. It allocates area of overlapping 
peaks. 

5. It corrects for baseline shifts. 
6. It calculates component concentra­

tions. 
7. It identifies peaks by name and 

elution time. 
S. It applies appropriate response 

factors. 
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9. It types a complete analysis re­
port. 

This system is completely automatic except 
for sample injection. 

The program is divided into four discrete 
sections. FIRST, the monitor. This op­
erates the ADC, multiplexer, chooses gain 
ranges for the amplifier, operates the 
local operator's console and the teletypes. 
SECOND, the foreground program. This pro­
cesses the chromatograph data; forming and 
integrating peaks and storing peak data on 
the disk in a chained array. It incorpor­
ates: 

1. 
2. 
3. 
4. 

digital signal filtering 
threshold logic peak detection 
automatic baseline dete~~ination 
shoulder detection. 

THIRD is the report generator. This pro­
cesses stored peaks and produces analysis 
reports ready for typeout at the end of 
a chromatogram. It incorporates the 
following: 

1. baseline correction 
2. overlapped peak resolution 
3. relative retention time calcul-

ation 
4. peak identification 
5. raw area reporting 
6. area normalization 
7. adjustment by response factors 
S. internal standard computation. 

FOURTH is the conversation mode. This 
allows entry, deletion, modification, and 
reporting of methods for analysis. Opera­
tor prompting and validity checks are in­
corporated. In includes: 

1. a library facility for maintaining 
up to 100 user developed analysis 
methods 

2. automatic calibration of analysis 
methods 

This software package therefore affords 
dynamic interpretation of gas chromatography 
data. It's variable sampling rates from 3 
points per second to 60 points per second 
enables capillary columns to be run with 
ease. Its variable sensitivity to peaks 
may be set vastly different at differing 
points in the chromatogram through four 
separate sensitive software controls over 
amplitude threshold, minimum peak ara~, 
minimum peak time, and sensitivity to 
shoulders. 

Identification of peaks is very flexible 
due to the user creation of the compound 
table portion of the analysis method. The 
expected elution time and compound name are 



entered first. A tolerance is then 
specified. This is a figure in seconds 
which provides a time window around the 
expected elution time. The largest peak 
in this window is given the compound name. 
Windows may be overlapped for closely 
neighboring peaks. The response factor 
(which may be updated at any time by cal­
ibrating the method) and calibration weight 
of the component in the standard are then 
entered. 

The complete computation may be of four 
types. Area normalization, internal 
standard, external standard, or calibration 
Each report format includes a printout of 
tolerance in ± %. This number reflects 
where, in the expected time window, the 
peak actually appeared. When examined 
frequently, this is an excellent index of 
column aging and general repeatability of 
the chromatograph system. 

The calibration is used to calculate, or 
update response factors on a ssandard 
sample on demand. Once determined and 
made a part of the analysis method auto­
matically, it will not again be changed 
until such time as another calibration is 
requested. Therefore, a bum sample will 
not ruin a carefully created method. 

GasChrom-8 makes chromatography date more 
meaningful and sees features which the 
human analyist cannot. Both accuracy and 
repeatability become instrument limited, 
not analysis limited. Shoulders not even 
visible on the strip chart recording will 
have their accurate component percentages 
reported. Overlapping peaks will be re­
peatedly reported with the proper area 
allocation and correct baseline will always 
be accurately computed. 

The GasChrom-8 is a very powerful system. 
The basic hardware includes an 8K, PDP-8/I, 
extended arithmetic element, a 32,000 word 
disk, 12 bit ADC, a 9 gain range program­
mable amplifier and individual isolation 
amplifiers. 

Up to 5 teletypes may be operated, inde­
pendently and remotely from the basic 
system. Teletypes and the individual 
chromatographs may be run remotely as far 
as 1500 feet from the main system without 
modification. 

These characteristics are due to the 
specifications of the analog circuitry. 
Depending on whether a Xl or X10 isolation 
amplifier is selected, the full scale range 
of the system is one microvolt to one volt 
or ten microvolts to 10 volts. 
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The imput amplifier is differential and has 
a one megohm 60 db at D.C. Common mode volt­
age is 300 volts. 

The most useful part of the entire system 
is the user created method of analysis of 
which 100 may be stored on the system's 
disk. This includes the compound table 
described previously. There are only two 
parameters which must be set and held 
constant for the entire chromatogram; they 
are report type and sampling rate. All 
other functions, or software controls, and 
there are eleven, may b~ different at any 
point in the run. In the enter method 
(conversational mode) these function codes 
are all placed at a selected time, in 
seconds, from the beginning of the run and 
are weighted to provide the desired sens­
itivites -

Code 0 terminates the run and generates 
the report. 

Codes 1 and 2 are used to start and 
stop data acquisition providing 
"no interest" windows 

Code 3 starts the automatic baseline 
determination 

Code 4 is the amplitude threshold level 
for peak detection. 

Code 5 sets sensitivity to shoulders. 
Code 6 sets the peak detection exam­

ination time. 
Code 7 sets a time, after peak crest 

at which a peak tailing peak is 
'b.:...!rminated. 

Code 8 allows unique points in time to 
be chosen as baseline points. 

Code 9 determines the area threshold 
for peak detection. 

Code 10 allows the status of three op­
tional relays to be changed for 
control of the chromatograph. 
These may be used for such 
things as flushing the column. 

Handling of unknowns may be handled in 
three ways. An unknown, in the GasChrom-8 
system, is a component which is not listed 
in the compound table. They may be ignored 
or an arbitrary response factor of one may 
be assigned or the response factor of the 
most recent named component may be applied. 

The reference peak to be used to ~ale the 
time frame of the run is also user selected. 
Its search zone may be made as wide as 
neighboring peaks allow. Each peak elution 
time is scaled by this reference peak before 
it is identified by the compound table. 
This is another control over the effect of 
column aging. 

The GasChrom-8 analysis report may be used 
very nicely with the strip chart recording 
when one is de .. sired. Aside from cross re­
ferencing thru elution times, each 



component in the report is coded with two 
of three letters •••.• B V S denoting the 
type of peak where B represents baseline, 
V - valley, and S - shoulder. So, a peak 
labeled SV begins at a shoulder and ends 
in a valley. 

Report formats have also been modified for 
user convenience such as one case where a 
quality control lab wanted to supply the 
process operator with only name and weight 
percentage. These are relatively easily 
accomplished. Also, the system is expand­
able with extra core for up to 64 chromato­
graphs running. 

Therefore, the requirements of even the 
largest laboratory may be met. 
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COMPUTERS AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 

By: Charles P. Spector and Bradley Dewey III 
Digital Equipment Corporation 

Maynard, Massachusetts 

Since the mid 1950's utilization of NMR has 
been growing at a high rate in the field of 
Analytical Chemistry as it has been recog­
nized as a very powerful tool in qualita­
tive analysis. Fortuitously, among the 
nucleii which exhibit the phenomenon are 
the most critical in organic chemistry, 
are isotopes of hydrogen, carbon, fluorine, 
and phosphorus. NMR now is a routine ana­
lytical procedure used by organic chemists 
in analysis, and confirmation of structure. 

The NMR spectrometer applies a large mag­
ne~ic field normal to another alternating 
magnetic field. This produces a macrosco­
pic magnetic moment, in the sample, which 
will induce a voltage in a coil. The ef­
fect of the precessing nuclear magnetic 
moments, in resonance, may be measured as 
a change in impedance of the coil. Al­
though the nuclear magnetic moment of a 
given nucleus is primarily determined by 
the external field, small differences, 
caused by interactions of shielding elec­
trons and nucleii, cause slight shifting, 
called chemical shifts and spin-spin coup­
ling. This spectoral information is what 
the investigator must acquire and analyze. 

However, there are significant problems 
both in acquisition and analysis. In many 
cases, one is faced with a very low signal 
to noise ratio which can be so bad as to 
preclude spectrum recognition. This clear­
ly calls for signal averaging on repetitive 
scans. Historically, hard wired signal 
averagers have been used. However, general 
purpose computers, and dedicated computer 
systems have been applied to the problem 
very profitably. 

The Lab-8 system is such a dedicated sys­
tem which may also be used as a general 
purpose computer. 

The basic Lab-8 system is a powerful sig­
nal averager which incorporates a full 
scale general purpose digital computer to 
provide desired flexibility and versatility. 
The standard package includes a 4K PDP-8/I 
computer and an AX-08 laboratory peripher­
al. 

The AX-08 consists of a 9 bit analog-to­
digital converter, sample and hold, analog 
multiplexer, oscilliscope interface, ampli­
tude discriminators, clocks and a power 
supply. An AAOIA digital-to-analog con­
verter is added to the basic system for 
controlling the sweep of the spectrometer. 

In both the AX-08 and the AAOlA, by elimi­
nating the duplication of modules required, 
cost was decreased substantially without 
loss of capability. 

The AX-08 will accept the signal from the 
NMR spectrometer both as signal informa­
tion and through the synchronization input 
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so as to trigger the sweep. This will usu­
ally be set up with the discriminators so 
that the TMS peak will trigger the scan. 
Since the Lab-8 system works on a rotating 
buffer concept, no information will be lost. 
The AX-08 will also control an oscilliscope 
and the recorder through a three part rou­
tine of the spectrometer for analog output 
of the averaged spectrum. 

The software for the Lab-8 system will 
allow signal averaging, using the conversa­
tional mode for setting up parameters. The 
conversational mode in this case is used in 
conjunction with the oscilliscope. Ques­
tions and answers are displayed on the face 
of the scope. The scope asks the question 
then displays the answer that the experi­
menter feeds in on the teletype on the face 
of the scope. 

There are two basic signal epics which are 
inherent in the software of the Lab-8 system. 
The total number of data points in the sys­
tem is 1024. These may be used for one 
average or two averages, where the second 
average would be a higher resolution region 
of interest sweep. These are accomplished 
simultaneously. User sets parameters of 
these:epics by choosing the number of data 
points, the sweep speed, and the dealy from 
the synchronization pulse. After the para­
meters are set up a summary appears on the 
oscilliscope displaying the beginning of 
the sweep, the sweep rate, and the end time 
of the sweep in microseconds, milliseconds, 
or seconds. 

Another advantage inherent in the use of a 
general purpose computer for signal aver­
aging is the fact that by adding more core 
memory, the number of data points may be 
increased for yet higher resolution. With 
the option XR, which is recommended for the 
AX-08 used for NMR, the region of interest 
is displayed as a brightened part of the 
spectrum on the scope. At any point during 
the averaging process, by using one key on 
the teletype either the raw signal or the 
accumulated average may be viewed on the 
scope. Averaged spectra are available for 
output in three ,,,,rays: 

1. The first is the already mentioned 
display on the oscilliscope. 

2. The second is a readout on the re­
corder of the spectrometer. 

3. The third is a digital output on 
the teletype of any or all places 
in the spectrum, chosen by the us­
er, anq marked by him by two avail­
able calibration cursers adjusted 
on the face of the scope. He may 
get information from each data 
point between the cursers or he 
may choose to find the integral 
of the portion of the wave form 
between the two cursers and, of 
course, he can get punched paper 
tape output of the data at the 



same time. This feature of in­
tegration is extremely valuable 
so far as final reporting on the 
NMR experiment is concerned. 

There are two other aspects which recommend 
the Lab-8 as a signal averager for NMR· A­
long with the averaging capability of the 
general purpose computer capability, there 
is the ability to create user program to 
enhance the operation of the spectrometer 
itself. Also, pulsed or trangent NMR can 
be done with this basic system with some 
hardware addition. The first of these two 
uses could encompass instrument alignment, 
at present a somewhat tedious operation. 
Three other areas which could be aided sig­
nificantly by using the computer are data 
collection, data enhancement, and spectrum 
sYilthesis. 

Instrument alignment includes, for purposes 
of this discussion, calibration about the 
TMS peak and field homogeneity control. The 
computer could be used for calibrating a­
bout the TMS peak by scanning repetitively 
and recommending to the chemist which' con­
trols should be adjusted and in what di­
rection. Homogeneity control can become 
extremely important in running a sample 
with a very low signal noise ratio such as 
might be found in work with carbon 13 or 
with phosphorus where literally thousands 
of cans may be required. In these cases 
all resolution can be lost if homogeneity 
is not held. Here the computer could be 
used to touch up the homogeneity controls 
so as to maximize the resolution obtained 
from the averaged spectra. The second major 
catagory of data collection could be eased 
by eliminating frequent changing of paper 
while making exploratory scans. It should 
be possible with the computer to simplify 
this process considerably with a CRT dis­
play. This implies using the computer to 
examine single scans as well as to the av­
eraging. Even in doing a single scan 
therefore use of the spectrometer is very 
much simplified. 

There is yet another potential method of 
signal averaging using the computer. The 
computer could operate the scan on a step 
basis. This would consist of setting the 
instrument to a fixed field value (assuming 
field frequency is held constant) taking an 
arbitrary number of samples at that point 
and averaging them, and then stepping to the 
next point. At the end of one scan each 
point would represent an averaged result 
which would be displayed as generated on 
the oscilliscope. There are many advan­
tages to this approach and no additional 
hardware is required to synchronize the 
scans with each other. A spectra with a 
low signal to noise ratio, a single scan 
would permit the determination of whether 
data, was in fact, present in the spectrum. 
This point is particularly critical with 
nucleii other than hydrogen or fluorine. 
The primary disadvantage of the stepping 
approach to signal averaging is the un­
avoidable presence of low frequency noise 
oomponents in the output of the spectrum. 
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We haven't been able to find out very much 
about the characteristics of these low fre­
quency components, whether they do exist to 
a serious extent therefore whether they can 
cause severe distortions in the spectrum. 
This will be investigated. If they are pre­
dictable however they could be removed by 
computer analysis. 

Another significant aid in using a computer 
for NMR could be storage of spectrum on pa­
per tape or a disk while an attempt is made 
to improve the resolution of the instrument 
and thereby improve the spectrum. If such 
improvement proves unsuccessful further 
analysis could be done with the digitized 
spectrum which was previously stored. 

In most applications of NMR spectroscopy 
the chemist has a pretty good idea of the 
spectrum he ought to obtain from the sample 
he put in. He can run into two factors 
which make this identification difficult 
however in the area of data enhancement. 
First of these is the resolution of the in­
strument. It is affected both by the fre­
quency of the instrument and the strength 
of the field and also by the homogeneties 
mentioned previously. As a result of low 
resolution two peaks may be combined into 
one widened peak or more likely into a 
broadened peak with a shoulder. 

Sensitivity both relative to the noise 
level and relative to each point is used 
as the measure of the heighth of the peaks. 
In a spectrum of low sensitivity it may be 
difficult to distinguish peaks from the 
noise or it may be difficult to differen­
tiate the heights of peaks from each other. 

Sensitivity and resolution are in a sense 
mutually exclusive variables. The primary 
purpose of time averaging is to increase 
sensitivity by using multiple scans to aver­
age out random of noise and thereby removing 
it. On the other hand, the averaging pro­
cedure reduces resolution by arbitrarily 
dividing a spectrum into one thousand chan­
nels (or more as chosen) thereby limiting 
the resolution to one part in a thousand. 
Worse yet, successive scans cause a certain 
small amount of smearing of the spectrum be­
cause of nonhomogeneities. There are dif­
ferent ways of enhancing resolution sensi­
tivity in a spectrum resulting either from 
a single scan or from average mUltiple scans. 
One technique involves the application of 
point by point weighting functions to the 
spectrum in order to enhance distinctions 
between peaks. Another technique is the 
application of the second derivative weight­
ing. This may also be used to enhance the 
differences between peaks or to bring out 
separate peaks where only a small shoulder 
may exist. Both of these techniques en­
hance resolution at the expense of sensi­
tivity~ that is, the height differences 
between the peaks become less meaningful. 
Another potential technique for computer 
application is the removal of fast passage 
ringing, an effect observed when spectrum 
is scanned too fast and trangents occur at 
the end of the peaks. It should be possible 



to subtract a function from the spectrum to 
eliminate this ringing which would have the 
effect of increasing resolution. It is one 
method of improving resolution which is not 
necessarily of the expense of sensitivity. 
Precise NMR work requires the accurate de­
termination of chemical shifts anq coupling 
constants. Programs have been written for 
larger computers which take the chemical 
shifts and coupling constants for the posi­
tions of the peaks and spectrum in search 
libraries of NMR spectra stored on bulk 
storage and match the sample spectrum a­
gainst the library spectrum. 

However, it is often very difficult or im­
possible to determine the chemical shifts 
and coupling constants by looking at the 
spectrum. For second order spectra, a 
spectrum synthesis is commonly run. Given 
a set of chemical shifts and coupling con­
stants one can compute a theoretical spec­
trum. One approach to the calculation of 
coupling constants and chemical shifts for 
a second order spectrum would be to assume 
a set of shifts and coupling constant val­
ues and compute a theoretical spectrum to 
be compared with an experimental one. On 
a second pass the chemical shifts and 
coupling constants would be adjusted until 
the theoretical spectrum. matches the ex­
perimental one. At this point one has de­
termined the proper chemical shifts and 
coupling constants. This could be most 
helpful. A totally different area for 
computer applications to NMR would be the 
pulsed NMR applications. Pulsed NMR can 
shorten the time required for acquiring 
information to orders of magnitude in some 
cases. Also signal to noise enhancement 
can be improved by factor 10. However, the 
data from the pulsed NMR experiment must 
undergo a fourier transformation to look 
like the conventional spectrum obtained by 
high resolution NMR. with a dedicated com­
puter system, pulsed NMR could become more 
valuable than the scanning type where the 
computer would be involved in doing a trans­
formation, storing the resulting spectrum, 
and repeating this at short time intervals 
adding each transformed spectrum to those 
totalled before. 

In this case, again the computer is making 
the instrument a more valuable piece of 
equipment. 
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REAL TIME ACQUISITION AND DISPLA Y OF MASS SPECTRA~!': 

P. D. Siemens 
Lawrence Radiation Laboratory, University of California 

Livermore, California 94550 

ABSTRACT 

A program package has been developed to perform real time 
data acquisition and display from a mass spectrometer. In 
this particular case the data acquisition routine performs 
multisumming-scaling, but with minor changes the package 
could do signal averaging or pulse height analysis. 

Through a keyboard monitor, the operator has complete 
control of the experiment with a variety of commands avail­
able to him. Among these are commands which provide for: 
control of the data acquisition, real time log or linear displays, 
data output on paper tape, teletype, DEC tape or Calcomp, 
and data reduction (peak stripping and the calculation of 
isotope ratios). 

In our Laboratory, we are just completing the 
tune-up procedure on a new mass spectrometer. 
This spectrometer will be used to determine iso­
topic ratios of trace amounts of heavy elements. A 
small computer was chosen to be the data acquisi­
tion device for several reasons, some of which will 
be explained in this paper. 

By way of introduction, this spectrometer is 
a three-stage instrument with two magnetic sections 
and one electrostatic section. Ions, produced by a 
hot filament, are sorted by their mass/charge ratio 
in the magnetic sections, while the electrostatic 
section functions as an energy selector. The mag­
netic field is swept with a triangular wave over a 
range of a few hundred gauss, with the center field 
ranging from essentially zero to 12 kilogauss. 

Each half of the sweep is divided into 128 
time slots or channels (each time slot is generally 
about 2 msec long, corresponding to a sweep rate 
of approximately two sweeps per sec). During each 
channel time, the number of ions striking the de­
tector are counted. If, during one sweep, the 
number of ions counted for each channel time are 
stored in sequential core locations, the resulting 
array is a spectrum whose peaks represent the 
abundances of the various isotopes present in the 
sample. The signal-to-noise ratio of this spectrum 
is poor, however, so a signal enhancement tech­
nique is used in which repetitive sweeps of the 
spectrum are summed together (commonly called 
multi -summing- sc aling). 

A block diagram of the computer system and 
spectrometer interface is shown in Figure 1. The 
triangular reference sweep for the magnet sweep 
control is generated by a 12-bit up-down counter 
and digital-to-analog converter. The counter is 
driven from a free running clock that is not under 
computer control, but the possibility does exist, 
and is practical. to give the computer control of 
the sweep generation. A strobe pulse generated 
every 32 clock pulses is used to load the contents 

". 
"'Work performed under the auspices of the U. S. 

Atomic Energy Commission. 
19 

of the scaler register into the buffer register and to 
cause a program interrupt notifying the processor 
that data are available. The scaler register is con­
structed from 100-MHz emitter coupled integrated 
circuits, but at the present time, the double pulse 
resolution of the system is limited by the pulse 
width from the electron multiplier. In addition to 
these functions, a sync interrupt is generated once 
per sweep to insure that the spectrometer and the 
data acquisition program never get out of sync. 

As the software for this mass spectrometer 
system was formulated, several requirements be­
came clear. First was the need for a good, effi­
cient data acquisition routine. Secondly, the 
operators of the machine required a very good real­
time display capability in order that they might be 
continually aware of how well the spectrometer was 
functioning. Finally, it became apparent that all 
control should be exercised through a keyboard 
monitor. Experience has shown that there are fewer 
problems if the operator of a laboratory computer 
system never touches the front panel switches of 
the computer. 

Since the users of this system range in com­
puter experience from fairly complete knowledge to 
none at all, a simple method of operation is man­
datory. Conflicting with simplicity is the require­
ment for a very flexible software system. This 
flexibility was gained by giving the user control of 
as many functions as possible. For instance, 99 
times out of 100, a spectrum is allowed to accumu­
late until a channel reaches 100,000 counts, at which 
time the accumulation is automatically halted. How­
ever, to prevent operator frustration in that 1 case 
out of 100, this maximum count limit can be easily 
changed by operator command. 

Once the program has been loaded and started, 
no direct interaction with the computer front panel 
is called for. All functions of the program are con­
trolled through a keyboard monitor. However, 
channeling all control information through the tele­
type imposes a few problems in programming. 
First of all, even the best typists make mistakes, 
so the code must have the capability of allowing 



error correcting from the keyboard. Perhaps more 
important than this is that the code have error 
checking capability, and gracefully reject commands 
that are in error. Secondly, the code should allow 
the user to change his mind. Any operation, once 
started, should be capable of being stopped when the 
user desires. For instance, if the user started a 
type out of the accumulated data (a process that 
takes approximately five minutes) and on the basis 
of the first few channels concludes that the spectrum 
is not good, there is no reason why the program 
should force him to wait while the rest of a useless 
spectrum is typed. In short, one of the important 
aspects in writing a program that the user will 
gladly use is to provide him with complete control 
over every feature of the experiment. The highly 
touted flexibility of a digital computer is lost unless 
the software also supplies this flexibility. 

The primary task of the software, of course, 
was the acquisition of the mass spectra data from 
the spectrometer. A flow chart of the acquisition 
routine is shown in Figure 2. As can be seen from 
the flow chart, there are two entry points to the 
acquisition routine; the sync pulse entry is used 
once per sweep to synchronize the beginning or 
ending of the accumulated data mode, and the data 
flag entry point is used 255 times per sweep. The 
data are stored in two arrays, the real time data in 
RT (single precision) and the accumulated data in 
CHAN (double precision). The data are continuously 
deposited in the real time array, which stores the 
current data from the spectrometer. Only one half 
sweep of data is stored (128 data points) and this is 
being continuously overwritten by incoming data. A 
display of this array allows the operator to contin­
uously monitor the performance of the spectrometer, 
and is the primary display used during a tune-up 
procedure. 

When the STATE flag is in the ACCUMULATE 
DATA mode, the data are added to the CHAN array, 
building the desired mass spectrum. Note that when 
the user commands a start or stop in the data taking, 
STATE is set to a 1 or 2 respectively. The acquisi­
tion routine then synchronizes the start or stop of 
data acquisition with the beginning or ending of the 
sweep. 

For reasons which are unimportant for the 
purposes of this paper, the data acquired during the 
up and down half-sweeps are treated as two separate 
spectra. If the data are stored sequentially in-core 
as they come from the spectrometer, the display of 
the data would show the down-sweep spectrum as 
the mirror image of the up-sweep spectrum. Nor­
mally, however, one would desire to see the low 
mass data on the left of the display. This was 
accomplished by having the acquisition routine store 
the data from the beginning of the data array up for 
the up-sweep and from the end of the data array 
down for the down-sweep. 

One final problem with the acquisition process 
should be mentioned. The data from the spectrom­
eter appear at an absolute synchronous rate, plac­
ing quite a restriction on the length of time spent in 
any interrupt service routine. 

The display, of course, is one of the major 
reasons for using a computer in this application. 
What makes the computer-driven display better 
than the previous display used? First of all, the 
computer display is entirely flicker-free, while the 
previous analog displays were driven at the same 
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rate as the magnetic sweep-1 to 2 sweeps per sec­
ond. Secondly, scaling of the linear display is 
under keyboard control. The full scale value of the 
l~ear display can be varied from a value of 222 to 
2 in powers of two. Third, a flicker-free loga­
rithmic display with or without decade lines is 
available. The data compression afforded by this 
type of display has proved to be invaluable, but the 
price paid for the logarithmic display is very min­
imal, as the routine occupies less than 20

1 
locations 

and approximates a logarithm in 35 Msec. Finally, 
the computer-driven display is capable of expanding 
a selected number of channels so the user can exam­
ine them in more detail. With this expand mode, the 
user can set a rnarker at any desired channel, and 
then expand plus or minus N channels on either side 
of the marker. In addition, there are two commands 
to move the marker at approximately one channel 
per second to either the right or the left and stop 
when desired. 

The display routine, diagrammed in Figure 3, 
is essentially the main program, as other routines 
are entered only to service interrupts. The display 
loop is coded for maximum speed, because in striving 
for a flicker-free refresh rate of 256 channels every 
30 msec, one must remember that every cycle in the 
loop accounts for more than 1 % of the refresh time. 
For a flicker-free display of 256 channels, then, the 
loop to display one data point must consist of less 
than 100 machine cycles. One of the techniques used 
to achieve this speed is in the area of decision branches. 
As can be seen from Figure 3, there are three deci­
sions to be made within the main display loop. These 
decisions could be made by putting the appropriate 
flag in the accumulator and then executing a skip in­
struction, but this procedure requires a minimum of 
three machine cycles. However, the decision can be 
done in single cycle by depositing the appropriate JMP 
instruction (this is essentially address modification) 
in the decision location. This technique alone saves 
more than 2 msec in the display of 256 channels of data. 

Basically, this program is input-output ori­
ented. It can be viewed as a collection of asynchro­
nous program segments that can make conflicting 
input-output service requests. To resolve these 
conflicts, a basic input-output processor was written 
to schedule the response of the requests in an 
orderly manner. 

A request for I/O service is made by trans­
mitting to the Service Request Routine a Service 
Request Block (see Figures 4 and 5). The Service 
Request Block consists of three words: a data word 
to convey needed information to the requested rou­
tine, a device number specifying the I/O device. and 
the starting address of the desired service routine. 
The Service Request Routine stores this block of 
data in the Service Request Storage Queue. and then 
transfers control to the Service Start Routine. This 
routine sequentially examines Request Blocks in the 
Storage Queue. and by checking the appropriate De­
vice Busy Flag (a software flag) determines if the 
requested device is already engaged. If it is busy, 
the service start routine examines the next entry in 
the queue. If it is not busy, the appropriate Device 
Busy Flag is set, and the data word is transmitted 
to an I/O service initialization subroutine designated 
by the starting address in the request block. When 
this requested service has been completed, the End 

1p. D. Siemens, "A Fast Approximation Method 
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Service Routine is entered, which clears the Device 
Busy Flag and then transfers control to the Service 
Start Routine. In this way, maximum throughput 
to the I/O devices is achieved. 

There are several other I/O operations that 
have not been mentioned yet. For instance, a spec­
trum can be punched or read from paper tape, and 
written or read from DECtape. Also, a spectrum 
can be printed on a printer (now an ASR 33 teletype, 
but soon a 100 character/sec printer). Here again, 
an effort was made to present the data in a very 
understandable format. To achieve this, the data 
and channel number were listed in a four-column 
format with leading zeroes suppressed. 

It should be noted that the display and I/O rou­
tines are fairly general, and whether the function 
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that is performed is multi-summing scaling, signal 
averaging, or pulse height analysis depends on the 
data acquisition routine. 

While much useful data can be obtained with 
these routines, the software development is not yet 
complete. Yet to be integrated into this package are 
the on-line calculational routines to furnish the user 
with the isotopic ratios immediately after a spec­
trum has been accumulated. 
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ABSTRACT 

A 4K PDP 8/S computer with ASR-33 teletype has been in­
stalled in this laboratory as the heart of an on-line data­
reduction system for the Cary 14, 15, and 60 spect"l"ometers. 
Data flow is from the spectrometer through a set of Datex 
mechanical encoders, through an interface designed to our 
specifications by Berkeley Scientific Laboratories, through 
the computer, and onto the teletype both as printout and 
binary punchout. The software system includes a rapid 
averaging algorithm to eliminate high-frequency noise, a 
sliding thirteen point least-squares curve fitting, a fully 
buffered I/O system, and a versatile monitor which virtually 
eliminates the pos sibility of unrecoverable operator error. 

HARDWARE 

A 4K PDP 8/S computer with an ASR-33 tele­
type has been installed in this laboratory as the 
heart of an on-line data reduction system for Cary 
14, 15, and 60 spectrometers. An interface, de­
signed and built by Berkeley Scientific Laboratories, 
has been connected to the computer I/O bus so that 
the computer can sense the status of six input de­
vices. Each of the six devices is assumed to be a 
set of twelve binary switches. A special set of two 
switches is connected to device 1 of the interface 
such that a change in status of either of these 
switches causes the interface to set the program 
interrllpt flag for the PDP 8/S. Currently a Datex 
20-bit shaft encoder, type 22-300-14, which is 
mechanically linked to the wavelength counter of 
the spectrometer is connected as devices 1 and 2. 
The two-switch Gray code of device 1 is connected 
to a two-bit encoder in the Datex shaft encoder, so 
that any change in the wavelength encoder status 
causes the program interrupt flag to be set. A 
Datex single-turn, 12-bit encoder, type 03-005-1, 
which is mechanically linked to the pen of the spec­
trometer' is connected as device 3. The pen and 
wavelength encoders are part of the standard Cary 
Digital System, and may be connected interchange­
ably with that system. Device 4 of the interface is 
connected to a panel of 12 switches. 

SOFTWARE 

A library of programs has been written to ac­
quire and process data from Cary spectrometers 
using the above system. Called "SUPER SPEC­
TR UM, " the operating system features fully buf­
fered teletype input/output1 and a monitor program 
which permits control to be transferred at will be­
tween the various subprograms. Program control 
is by means of one -letter commands given from 
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the teletype keyboard, and by settings of the com­
puter-console switch register. Provision has been 
made for future expansion of this operating system. 
Routines may be added or deleted from the monitor 
calling program by means of one-word patches. 
Compatibility with the current program requires 
that future additions to the system use program in­
terrupt and use "JMP JI rather than "HLT" instruc­
tions for delays. Teletype input is achieved by 
calling the subroutine IN, which returns with the 
next character in the teletype input buffer in the 
accumulator. Teletype output is done by calling 
the OUT subroutine with the character to be 
printed in the accumulator. The output buffer is 
emptied and the input buffer is cleared upon entry 
to the monitor. 

Upon entry, the program first calls for the 
starting and ending wavelengths, the wavelength in­
crement between data points, and the interval over 
which averaging is to be performed. These and 
various scaling and identification parameters are 
entered via the keyboard. Additional control in­
formation is entered in the switch regi_ster. The 
keyboard is continually examined, and control is 
transferred to the monitor whenever the character 
"_" is typed. From the monitor any of the follow­
ing routines may be called: 

1. Baseline start 
2. Spectrum start 
3. Data read (from paper tape) 
4. Data punch (to paper tape) 
5. Backup and retake part of spectrum 
6. Clear baseline is zero 
7. Echo keyboard 
8. Print pen encoder 
9. Print wavelength encoder. 

The existing program is designed to average 
the spectrometer pen reading 4096 times or for a 
specifiable wavelength interval, whichever is less, 
and store the result internally as a 12-bit integer. 
The averaging interval is centered about the wave­
length to which the averaged value nominally cor­
responds. The averaging procedure is repeated at 
specified wavelength intervals within a specified 
wavelength range. The averaging algorithm used 



is a modified "stable averaging, ,,2 where the aver­
age M after taking m readings is 

M 
m 

where 

and where f(m) is the value of the mth reading of 
the signal. Stable averaging is used rather than 
simple arithmetic averaging, because it can be 
programmed to execute more rapidly and because 
it attenuate s noise almost as efficiently. The aver­
age is computed in double precision using integer 
arithmetic (24 bits); however, only the most signif­
icant 12 bits are kept for later use. Data may be 
stored as either a spectrum or a baseline, and 
baselines and spectra may be taken in any order. 

Using the output buffering programming, data 
may be printed on the teletype concurrently with 
data acquisition, at the experimenter's option. 
Several output OptiollS are available. In addition 
to printing the wavelength and raw data, a sliding 
13 -point least-squares average may be applied to 
the difference of the spectrum and baseline raw 
data. The resulting smoothed data may be multi­
plied by a specifiable constant and printed. The 
difference between the smoothed value and the 
scaled difference of spectrum and base line raw 
data may be computed and printed. 

The algorithm used in the sliding 13 -point 
least-sguares averaging is due to Savitzky and 
Golay.3 It is of the form 

1 -[a, (0 ,±p,) + a_ (0 -±05)'" a
7 

b ~ -b b ~. -~ ~ 

where a
O 

to a
7 

are constants, qo is the smoothed 
value, p. the raw value, and the signs used in all 
the innef parentheses are the same. The con­
stants used in the program perform a least-squares 
fit of 13 points to a third-degree polynomial. By 
simply changing the constants by means of a patch, 
the program may be used to calculate the nth de­
rivative using any odd number of points less than 
or equal to 13, or any odd number of points less 
than or equal to 13 may be used to fit an nth-order 
polynomial, where n is an odd integer less than or 
equal to the number-of points used in the fit. 

Data may be preserved for later processing 
by having a paper tape punched containing the con­
trol information and the data. If the last data 
taken before punching is a baseline, the data tape 
contains the raw baseline data values. If the last 
data taken is a spectrum, the data tape contains 
values of (spectrum - baseline) E/OD, where E 
and OD are constants specified by the operator at 
the start of each baseline or spectrum. 

A routine exists to read the data tapes back 
into the spectrum baseline data arrays, and another 
routine permits processing and printing of the data 
arrays at any time. Programs to print the wave­
length and pen position for calibration and test pur­
po se s may be called. 
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Mistakes while acquiring data can be corrected 
by calling an error-recovery program which enables 
the operator to retake a portion of the data under 
carefully defined circumstances. 

The program is loaded into the computer mem­
ory from a single paper tape punched in Digital 
Equipment Corporation binary loade r format (Digi­
tal 8 -Z -U). It consists of four blocks of code sepa­
rated by short sections of leader (ZOO code punches). 
The first block of code modifies the binary loader 
to read tape continuously, unless a checksum error 
is detected. The second block is a copy of Floating­
Point Package II (as released by DEC). The third 
block is the Super Spectrum system, including 
patche s to the Floating -Point package. The final 
code block restores the binary loader program to 
its original form, so that the loader halts after 
reading the final checksum. This means that to 
the user the tape acts as if it were a single binary 
tape, and is loaded by following the instructions for 
the binary loader (Digital 8-2-U). 

Great care has been taken to ensure the integ­
rity of the program during execution. To our 
knowledge once the program is loaded and running, 
and the console panel is locked, the program can 
not be destroyed by any operator action except 
turning the power off while the computer is running. 
The program has been used for several months 
without incident by about five operators, most of 
whom regard the programmed computer as a 
"black box." The program and data storage occupy 
all of memory. 
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ABSTRACT 

An interface between a spectrophotofluorimeter built in this 
laboratory and a standard PDP-8/s computer is described. The 
interface utilizes DEC modules, stepper motors for wavelength 
and polarizer positioning, and a Hewlett-Packard #2401-C 
integrating digital voltmeter for data acquisition. Light 
source fluctuations are controlled using a monitor on the 
incident light, a v-f converter, and feeding this in as an 
external time base for the DVM. 

The instrument is capable of obtaining either corrected 
fluorescence excitation spectra or polarization spectra, with 
a data collection interval as low as 0.5 nm. 

Software developed for this application is described briefly. 

INTRODUCTION 

Fluorescence, the immediate (within In-sec) 
emission of radiation from a molecule or atom 
following absorption of electromagnetic radiation 
is of increasing importance in biochemistry and 
medicine. To be really useful, these measurements 
must be accurate and reproducible to 1% or better. 
This is more difficult to achieve in fluorometry 
than in spectrophotometry for a number of reasons, 
such as: 

(1) The fluorescence is proportional to the 
intensity of the exciting light. 

(2) The fluorescence is proportional to the 
fractional absorbance of the emitting species. 

(3) The fluorescence is dependent on the quantum 
yield of the compound. 

(4) The fluorescence is strong~ temperature 
dependent. 

Since both the intensity of the exciting 
light and the absorption spectrum of the fluores­
cent emitter are strong~ wavelength dependent, 
and the quantum yield of fluorescence varies from 
a small fraction to near~ 1, we see the need also 
for a wide dynamic range in the instrument. 
Special demands are placed on the instrument in 
the 200-350 nm region, since here both the light 
source intensity and the phototube-re8ponse are 
falling drastically, however, it is precise~ in 
this region that many biological compounds absorb 
and fluoresce. 

Of the many types of fluorescence measure­
ments, only two will be discussed here, these 
are: (1) The fluorescence excitation spectrum 
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(defined as the variation in the fluorescence 
intensity as a function of the exciting wavelength, 
and (2) the fluorescence polarization spectrum, 
defined as the variation in the polarizability (p) 
of the fluorescence as a function of the exciting 
wavelength. P is defined as IV-IH/Iv + IH where 
IV and IH are the vertical and horizontal compo­
nents of the emission, viewed at 900 to the 
exciting light. 

The relatively low values of P usually 
obtained (0.5 to -0.33) means that you are 
essential~ taking the difference over the sum of 
2 large numbers, and this tends to magnify the 
effects of noise and other errors, especially as 
P approaches zero. Thus we need a very stable 
instrument. It is especially important that the 
lamp energy be constant during IV and IH 
measurements at each wavelength. 

Because of the extreme demands for preclslon, 
accuracy and stability and the tedium of doing 
these measurements manually, we have turned to 
computer control of the instrument. 

DESCRIPTION OF THE INSTRUMENT 

Figure 1 shows the overall optical configu­
ration. Light from the 900 W Xenon Arc is 
rendered monochromatic, a fraction of this 
excitation beam is passed to a monitor photo­
multiplier through a fluorescent screen. The 
purpose of the screen is to eliminate the wave­
length dependence of the photomultiplier 
sensitivity. The beam then passes through an 
optional polarizer and then to the sample cell, 
which is temperature controlled. The fluorescence, 
emitted in all directions is sampled at 900 to the 



direction of excitation to minimize stray 
exciting light. The fluorescence beam passes 
through a rotatable polarizer, a filter to exclude 
exciting light and finally to a photomultiplier. 

Figure 2 shows the general electronics 
configuration. Special circuits were designed 
to level shift the digital voltmeter (DVM) logic 
signals to DEC logic levels. All other circuits 
and boards are standard DEC modules. Three sets 
of 12 bit word gates are provided for the computer 
to control in reading the DVM output data. 
Several exter~al interrupts are available to 
signal the computer for DVM "ready", wavelength 
limit switches, etc. Two logic bins, self­
powered and capable of holding 96 flip-chip 
modules were required fer the interface. 

In order to achieve corrected excitation 
spectra, the monitor photomultiplier signal is 
converted to a frequency and used as an external 
time base to the DVM. This results in a constant 
energy monochromator at all exciting wavelengths, 
and, in addition, cancels out lamp energy fluctua­
tions occurring at constant wavelength. 
Alternatively, the monitor signal can be integrated 
at the same time as the fluorescence Signal, and 
the ratioing done in the computer. 

Figure 3 shows our primary reduction program 
for obtaining a polarization spectrum. The final 
computed data will be typed and punched out or 
put on magnetic tape. The tape to be used 
ultimately to supply data to a digital plotter, 
or be used in other data reduction programs. 

The software is organized as a set of modular 
subroutines linked together by se'Teral small main 
programs, all residing in memory Simultaneously. 
This was done to facilitate easy program restruct­
uring by the experimenter. Most of the main 
programs are diagnostics, exercising the hardware 
to varying degrees of complexity. These diagnos­
tics use the relevant production subroutines to 
drive the external hardware. Since neither l-nemory 
space nor timing are problems in this application, 
all programs reside in memory together, and the 
interrupt facility is not used. The input data 
from the digital voltmeter is converted to double 
precision for storage and computational reasons. 

"Limit switch conditions" and the "DVM 
integration complete" status are tied to device 
flags. All other "timeout" conditions are timed 
out in the software. These include reed relay 
settling times on the DVM and stepping motor 
moving times. 

other data reduction requirements, e.g. 
correcting the sample spectrum for the solvent 
contribution, correcting the fluorescence 
emission spectra for the wavelength dependence 
of the photomultiplier tube, determining the areas 
of overlap of absorption and emission spectra, 
etc. are all much eaSier, faster and more 
accurately done with the digital system. 
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WEATHER AND A PDP-8/S 

T. McGovern and R.E. Archinuk 
Whiteshell Nuclear Research Establishment 

Pinawa, Manitoba 

ABSTRACT 

The existing meteorological system at Whiteshell Nuclear Re­
search Establishment included several instruments for measuring 
wind speed, wind direction, temperature and radiation. The 
data were recorded on continuous and multipoint strip chart re­
corders. The computer system was designed to digitise and re­
duce the recorded data to enable a more efficient and accurate 
analysis of the data to be made. This would ultimately provide 
the meteorologist with the facility and the time for a more in­
depth study, of diffusion climatology in the Whiteshell area. 
The approach is applicable to other meteorological systems. 

INTRODUCTION 

The use of weather information and meteorolog­
ical advice by industry for construction, transport­
ation, marketing and a host of other purposes is 
well established and constantly increasing. Al­
though from this standpoint meteorology is very use­
ful to the atomic energy industry, it is the poten­
tial hazard from airborne radioactive materials and 
the use of meteorology to help minimise this hazard 
that has assumed the most importance. The dilution 
efficiency of the atmosphere on various gases, 
aerosols and particles depends essentially on wind 
and temperature gradients. Meteorological tech­
niqu~s for the evaluation and prediction of atmos­
pheric diffusion exist and these have been applied 
with considerable success. 

This paper offers a method of collection and 
analysis of meteorological data to assist in the 
definition of a diffusion climatology at Whiteshell 
Nuclear Research Establishment (WNRE), and describes 
some of the problems encountered when a small com­
puter is interfaced to an already existing system1 

of instruments and recorders. 

Diffusion climatology data at WNRE are obtained 
from meteorological instruments mounted on a 200 ft 
triangular steel tower (Fig. 1) and from a climatol­
~gy station adjacent to the tower. Aerovane trans­
mitters are mounted at 20 ft, 83 ft, and 200 ft 
levels on the tower. These are connected to three 
recorders in the Health and Safety Building about 
700 ft from the tower. Each recorder is a dual 
trace recorder which records wind speed and azimuth 
wind direction at the three levels. Temperature is 
also measured at the same levels on the tower and 
at various heights above and below the ground. The 
signals are taken to the same room and recorded on 
multipoint recorders. 

In addition to these instruments which are in­
stalled and operating, the system will be expanded 
in the near future to include an Anemometer Bivane 
and a Net Radiometer. The bivane measures wind 
speed and wind direction, in both the azimuth and 
elevation planes. The response of this instrument 
will allow a more detailed study of rapidly chang­
ing wind conditions to be made. The instrument will 
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be used in several locations for unspecified periods 
of time and is connected to two recorders. 

The Radiometer will be situated near the tower 
and used for solar and ground radiation measurements. 

With the old system all the information was 
recorded graphically on strip charts. To perform 
statistical analysis it was necessary to digitise 
the charts. This was done manually by an operator, 
who visually estimated the mean value over a 10 
minute interval once every hour, for each variable. 
Scaling of charts is a tedious and time consuming 
operation, and it was decided to install a data 
acquisition system which would automatically digit­
ise the values, calculate the means, and produce 
output for direct input to a large computer for 
statistical analysis. 

To provide automatic data logging and reduc­
tion a Digital Equipment Corporation PDP-8/S 
Computer was installed. The PDP-8/S is a single 
address, fixed word length, serial arithmetic com­
puter using a word length of 12 bits and two's 
complement arithmetic. Cycle time of the 4096 word 
magnetic core memory is 8 ~s. Standard features of 
the system include indirect addressing and f~cility 
for instruction skipping and program interruption 
as functions of input/output devices. 

In addition to the central processor the 
following peripherals were installed: 

(1) A standard teletypewriter for use in a con­
versational mode to initialize the system and 
to print out results. 

(2) A high speed paper tape reader for use in 
editing, assembly and debugging programs as 
well as an efficient means of inputting the 
final program. 

(3) A high speed paper tape punch for use in 
assembly and debugging of programs and in 
outputting results in a form suitable for 
direct input and analysis on the computer 
centre's Honeywell H620 Computer. 

(4) A multiplexer assembled from DEC A Series 



modules. Forty channels were installed or1g1n­
ally with provision for a further twenty-four. 

(5) A Preston Differential Amplifier used to give 
high ~ccuracy, low noise, good common mode 
rejection and high input impedance necessary 
in conditioning the signals. 

(6) An analog to digital converter (A/D) assembled 
from a DEC C002 Panelaid Kit. The converter 
accepts any analog value from a to -10.23V 
and converts it to a 10 bit digital value. 

Figure 2 shows a block diagram of the computer 
system and Figure 3 is a photograph of the complete 
installation. 

SIGNAL CONDITIONING 

The signals available are shown in Table 1. 
These signals had to be conditioned to coincide with 
the specification of the AID converter. It was de­
cided to standardize on the basis of 100 mV full 
scale input to the amplifier. The gain setting on 
the amplifier must then be about 100. 

The tower wind speed signals were attenuated 
by a potential divider. The tower wind direction 
signals were obtained from transmitting synchros in 
the aerovanes. Receiving synchros were connected 
in parallel with the recorder receiving synchros and 
a continuous rotation potentiometer was mounted on 
the shaft of each synchro to convert the shaft 
position to a 0-100 mV dc signal. 

The range of the soil temperature signals was 
-50 mV to +50 mV. To allow this signal to be inter­
faced with the computer, it was necessary to connect 
a 50 mV dc power supply in series with the signal to 
convert the range to 0 mV to 100 mV. 

All three bivane signals required only a simple 
potential divider for conditioning. 

The radiometer signal required a 10 mV dc power 
supply in series with the signal for the same reason 
as the soil temperature signals. 

All signals required longtime constant filter­
ing to remove 60 Hz noise due to cable pick-up and 
recorder effects. 

The three tower temperature signals from 200 ft, 
83 ft, and 20 ft positions on the tower were taken 
to a Honeywell recorder. The recorder contained 
additional circuitry to provide the three tempera­
ture differences associated with the three tempera­
tures. The available signals were: 

74.2 mV 

equivalent to: -45°F 

105.93 mV 

105°F 

It was required that w5 measure the absolute 
value at 20 ft level to 0.5 F accuracy, and theo 
differences (T200 - T20) and (T83 - T20) to 0.1 F 
accuracy. 

Experiments were carried out on the signals 
supplied to the recorder to examine the possibility 
of interaction between the recorder and the computer 
system. The recorder plotted one point every 15 
seconds, i.e: one cycle of three absolute values 
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and three differences took l~ minutes. 

The computer samples each of three channels 
associated with tower temperatures once per second. 
Three problems were encountered: 

1) The recorder input impedance in the out-of­
balance position was low enough to affect the 
signal from the tower. The millivolt signal 
fell by 5% each time the recorder moved to a 
new point. 

2) The recorder multiplexer used mercury-wetted 
relays which have a make-before-break action 
during switching. This results in two ad­
jacent multiplexer channels being shorted to­
gether or shorted to ground for a period of 
20 ms. A spike which appeared on each signal 
for this period was attributed to the effect 
of multiplexer switching. 

3) The cable transferring the signal from the 
tower to the computer room was 700 ft long. 
Noise measurements were made on the signals 
and it was found that 60 Hz noise exceeded our 
accuracy specifications. This noise could be 
attributed to cable pick-up and effects of 
recorder servo system. 

Various solutions to these problems were con­
sidered: 

a) Filters to remove the noise would have to be 
designed as 'notch' filters to keep the effects 
of recorder multiplexer switching to a minimum. 
Otherwise, the time constant of the filter 
would extend the period of the spike. The 
filters would not overcome the effect of the 
low impedance of the recorder. 

b) Disconnecting all three signal lines to the 
recorder during the computer sampling period 
was not feasible because of the long time 
constant of the filters required to remove 
60 Hz noise. With a long time constant filter 
the recorder must be disconnected well in 
advance of sampling to permit the filter output 
to reach equilibrium. This results in large 
errors in the recorder traces. 

c) An amplifier on each of the signal lines to the 
recorder, with a gain of unity~ would allow the 
computer signals to be taken from the input of 
each amplifier. The amplifier would be used as 
a buffer to prevent recorder effects from inter­
acting with the computer signals. 

An additional problem was that the AID conver­
ter used in the system has a resolution of approxi­
mately 1 in 1000. The range of the temperature 
signals is ISOoF, giving a resolution of 0.15 0 F. 
This is inadequate to provide difference values to 
O.loF accuracy by subtraction of the absolute values. 

To overcome both the effects of the recorder 
and the resolution limitations of the AID converter 
the method shown in Figure 4 was adopted. The three 
temperature signals are first amplified by approxi­
mately a factor of 50 to bring them to the five volt 
level. Attenua.tors at the amplifier outputs reduce 
the signals to their original levels to drive the 
recorder. The isolation provided by the attenuators 
and the low output impedance of the amplifiers re­
duces the effects of low input impedance or short 



circuiting of signals by the recorder to negligible 
levels. 

To improve the resolution, the temperature at 
the 20 ft level. the difference between 20 ft and 
83 ft, and the difference between 20 ft and 2uO ft 
are measured directly. ~ince the range of tempera­
ture difference expected is onl" 50°F, a resolution 
of 1 in 1000 corresponds to O.OsoF. The Preston 
amolifier following the multiplexer accepts floating, 
differential inputs so that the differences can be 
measured sin~lv by taking a si~nal from each of the 
desired temperature signals. Proper cho{C5 of 
attenuation factors prov~des a range of 50 F for the 
differences apd 150°F for the absolute temperature 
at the 20 ft level. Three dc po",er supplies orovide 
zero suppression p:iving a final range of: 

a) -4SoF + +lOsoF corresponding to 0 mV + 100 mV 
for the temperature at 20 ft, and 

b) -lSoF + +3s
o

F corresponding to 0 mV + 100 mV 
for the temperature differences. 

SAl1PLING 

For the wind speed and direction, tower 
temperatures and soil temperatures it was required 
to record a mean value over a 10 minute period, 
lasting from five minutes before the hour to five 
minutes after the hour. This is a standard meteor­
ological method. The bivane measurements would be 
taken for short periods at irregular intervals 
throughout the year. 

It was decided to arbitrarily assign them to 
the period 25 minutes after the hour until 35 
minutes after the hour. These readings could be 
ignored, or the program changed to vary sample 
speed and/or period. The radiometer output was 
required as a mean value over the hour every hour. 

To simplify programming one minute of every 
hour was reserved solely for data reduction and 
output and during this time the radiometer was not 
sampled. The loss in accuracy was considered 
negligible. Figure 5 shows a timing diagram. 

A hardware clock was used for control and 
timing purposes. The clock was run from the 
60 Hz main supply to achieve long term accuracy. 

An analog mean ~as considered and rejected on 
the basis of the long time constant (10 minutes) 
required and the complexity of an automatic sample­
hold-reset switching operation. It is much simpler 
to sum N samples and divide by N. 

It was decided to sample each variable once 
per second over the defined period. This means 
taking 600 samples in a 10 minute interval. 
Obviously, in the case of temperature, 600 samples 
would not be necessary - especially below the soil. 
By taking all sensors at the same rate the program 
is very much simplified. 

SOFTWARE 

It was originally hoped that we could use 
DATAK (for data acquisition) to mlnlmlze programming 
effort. DATAK is a DEC program \olhich "permi ts a 
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complex program-controlled data acquisition syst~m 
to be adapted to a particular experimental environ­
ment through the use of a highly sophisticated and 
precise pseudo code. The necessity of extensive 
machine language programming to meet a particular 
data acquisition requirement is thereby eliminated" 

Unfortunately, DATAK has never been completed 
and it was necessary to use machine language for 
the program. Two thousand five hundred instructions 
of machine language have been written. 

The system operated in real time, using the 
program interrupt facility to allow external con­
ditions to interrupt the computer program. The 
interrupt could be caused by the clock, the tele­
type - writer, or the fast punch. When a program 
interrupt request is made the computer completes 
execution of the instruction in progress before 
acknowledging the request and initiating another 
routine. The interrupt program is responsible for 
identifying the signal causing the interruption, 
for removing the interrupt condition and for re­
turning to the original program. 

The hardware clock supplied a train of pulses 
at the rate of 10 Hz. A program was written which 
included counters to keep count of seconds, minutes, 
hours and days. The program also contained a sub­
routine to convert days to months and days; and to 
keep track of the year, taking into account leap 
years. The clock interrupted the computer program 
every 100 ms to test which subroutine the program 
should be in and whether a change was necessary. 
Figure 5 shows the manner in which the program was 
subdivided. At five minutes past each hour, the 
results were processed and a table (including the 
time and date) was printed on the teletypewriter. 
A digital record was output from the fast punch at 
the same time. 

Since each individual sample could not be 
retained in store until the end of the sample 
period because of the limited size of the memory, 
the mean value had to be computed during sampling. 
Considering the simple case of taking all channels 
between clock pulses; ·i. e. in 100 ms, then during 
period A (Figure 5), it is necessary to sample 18 
channels in 100 ms or sample and compute a mean 
value every 5 ms. A program was written based on a 
paper in DECUSCOPE2 , to find the running mean using 
the formula: 

Where: Mean of N samples 
Sample Number 
Nth Sample 

This program took 30 ms to run on the PDP-8/s 
and would obviously not fit the requirement. 

A much faster method of obtaining the same 
result was found by storing a running sum instead 
of a running mean. Since 600 x 210 is less than 
224 the sum of six hundred samples can be held in 
two 12 bit computer words. The division by 600 to 
obtain the mean can be carried out just prior to 
outputting ~he data. 



The program to obtain the running sum is as follows: 

STORE; 0 
CLL 
TAD I DTLO Add C(A) to low word 
DCA I DTLO Store in low word 
SZL Test for overflow 
ISZ I DTHI Yes, iner. high word 
ISZ DTLO No, carryon 
ISZ DTLO 
ISZ DTHI Update pointers 
ISZ DTHI 
J~ I STORE 

This took less than 0.5 ms to execute on the 
PDP-8/S. 

The arithmetic consisted of dividing by the 
number of samples taken and converting the result 
to engineering units (mph, of, etc.). This in­
volved multiplication factors and scale shifting. 

An interesting program was developed to ob­
tain the mean value of wind direction. This read­
ing can only be interpreted for small changes in 
the direction of wind. Wind direction measurements 
are ~de on an an§ular scale, nOEth being definedo as 0 , east as 90 , south as 180 and west as 270 • 
If the wind direction is fluctuating about a mean 
value of north, individual readings will be either 
near zero or near 360°, and a simple summation will 
not give a correct sum or mean. For example, if 
one measurement is 10° and a second is 350° the 
mean is 180°, an obviously incorrect result. Vector 
addition could be used to produce the correct value 
but a simpler method was developed. The real differ­
ence in direction between successive readings is al­
ways less than 180°. If the measured difference in 
direction is greater than 180° we assume the direc­
tion has shifted through north. The following tech­
nique is used to obtain a correct sum. 

The first measurement of the set is used direc­
tly as the first term of the sum, and is also saved 
in a separate memory location (A) for later use. 
For each subsequent reading in the set, the new 
reading is compared with the first reading and if 
the absolute value of the difference is less than 
180° it indicates that the direction has not shift­
ed through north. In this case, the new reading 
is simply added to the sum. If the absolute value 
of the difference between the first reading and the 
new reading is more than 180° we assume a shift 
through north has occurred. If the new readin§ is 
larger than the first reading, we subtract 360 
from the new reading and add the result to the sum. 
If the new reading is smaller than the first reading 
we add 360° to the new reading and add the result 
to the sum. These calculations are carried out on 
each reading in the set. 

Because of the possible addition or subtraction 
of 360° from each reading the final sum may be one 
of the following: 

a) negative: in this case the program adds 
360 x 600 to the sum, producing a positive 
value and a positive mean. 

b) positive and less than or egual to 380 x 600: 
this gives a mean between 0 and 360 and no 
further action is required. 
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c) positive and greater than 360 x 600: this 
results in a mean of more than 360 0 so the 
program subtracts 360 3 600, again giving a 
mean between 0 and 360 

Figure 6 is a flow chart of the program. 

CONCLUSIONS 

The digital output eliminates the time con­
suming labour of chart scaling and the delay be­
tween information being obtained and analysed. 
The computer system replaces the eight recorders 
producing 25 traces continuously. 

The paper tape can be directly input to the 
Honeywell H620 Computer in the computer centre and 
used for statistical studies over long periods of 
time. These studies are necessary to assist in 
the definition of a diffusion climatology for WNRE. 
For example, graphs of mean hourly vertical tempera­
ture difference, annual and temporal wind roses 
(polar co-ordinate frequency distribution diagrams) 
and monthly cumulative frequency distribution of 
inversion days can be plotted automatically. 

The system was programmed entirely in machine 
language since no other alternative was available. 
While machine language programming results in effi­
cient use of memory storage, it is difficult and 
time-consuming to implement. There is a need for 
higher level languages to reduce the effort in 
developing on-line, real time systems. DATAK 
appeared to be a step in this direction and it is 
unfortunate that it was never fully developed. 

Costs of computer hardware and particularly 
memory storage are dropping rapidly and it is 
becoming more attractive to install additional 
hardware to reduce the programming effort. Higher 
level languages that provide both mathematical 
facilities as well as the ability to handle data 
acquisition functions in real time are urgently 
needed. 

One function of the Assessment, Computing and 
Instrumentation Branch of WNRE is to design and 
develop special small computer systems for other 
branches where these are not available on the 
market. It is often found that once a user becomes 
familiar with a system, he becomes aware of the 
possibilities of developing the system further. To 
allow the Instrumentation group to concentrate on 
the development of new systems, we decided to have 
a member of the Meteorology Section trained in 
machine language programming. 

Already modifications are being considered to 
increase the usefulness of the computer and the 
efficiency of meteorology data analysis. A 'spot 
check' feature is being planned to allow the 
meteorologist to read any sensor or any instrument 
attached to the computer immediately. This 
partially eliminates the need for recorders. On 
the wind direction measurements, it would be use­
ful to have the facility for examing the variations 
in direction over a few minutes to provide informa­
tion on gusting. This would be possible with a 
short program. 

Ambient radiation is at present monitored at 
five stations, all situated at a two mile radius 



from the plant. By the use of telemetry this infor­
mation could be transmitted to the meteorology 
laboratory and input directly to the computer. 1. 
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SIGNAL CONDITIONING 

SOURCE SIGNAL INTERPRETATION 

I 

Tower Wind Speed o - 10.56 V o - 100 mph 

Tower Wind Direction Synchro o - 360° 

Tower Temperatures 74.2 mV - 105.93 mV -45°F - 105°F 

Soil Temperatures -50 mV - +50 mV -50°C - +50 0 C 

Bivane Speed o - 0.21 V 0 - 50 mph 

Bivane Azimuth Direction 0 - 5.4 V 0 - 360° 

Bivane Elevation Direction o - 1.0 V _50° - + 50° 

Radiometer -10 mV - 40 mV Not Available 

TABLE 1 Signal Conditioning 
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A FLEXIBLE DATA ACQUISITION AND CONTROL SYSTEM 
UTILIZING A PDP-8/s 

G. E. Stokes and D. R. Staples 
Idaho Nuclear Corporation 

Idaho Falls, Idaho 

ABSTRACT 

A multi-scaler data acquisition system with sensing devices 
and feedback control to the experiment has been designed 
around a PDP-8/S computer. This system has been used on a 
number of experiments with a variety of control requirements. 
In each case the configuration was integrated into the ex­
perimental setup with a minimum of hardward changes. The 
computer interface includes four 12-bit scalers, a real time 
clock, a 10-bit ADC, a 6-bit relay divider, pulse generators 
for driving pulsed motors, and a 10-bit digital-to-analog 
converter. 

INTRODUCTION 

Recent work at the Materials Testing Reactor (MTR) 
created a demand for data collection systems and 
control functions on several experimental facil­
ities. The nature of the experiments required the 
use of the data acquisition and control functions 
on a periodic basis. The availability of limited 
funding dictated the use of an inexpensive system 
to s.atisfy the needs of the various applications. 
A system has been designed around a PDP-8/S 
general purpose computer that satisfies the above 
requirements and it was constructed for less than 
$15,000. A block diagram of the system is shawn 
in Figure 1. 

The system consists of four major functional 
areas, the PDP-8/s computer and a real time clock, 
a data input section, an output section, and a 
man-machine communication section. The computer 
with the interface installed is shown in Figure 2. 
The logic functions used in the interface con­
sisted of M series logic from Digital Equipment 
Corporation, and a number of functional modules 
that were built here at MTR (level oonverters, 
device selectors, indicator drivers). M series 
logic proved the most inexpensive even with the 
extra cost of the additional modules. The system 
is in use at the MTR and has been very satisfac­
tory in a number of applications. It has been 
used to acquire data and control the sequencing 
and positioning of samples on a scandium filtered 
beam. During data acquisition, corrections for 
detector efficiency and unwanted background 
signals were made. The system was used on a 
crystal spectrometer to drive a scanning device 
and acquire the data associated with this device. 
It has also been programmed to control the speed 
of the fast chopper rotor. It has been used in 
feasibility studies on other experiments to 
assist in designing instrumentation for those 
experiments. In each case the system has proven 
to be flexible and is easily programmed for a 
specific application. A description of the system 
follows. 

COMPUTER AND CLOCK 

TRe computer has 4096 12-bit words of core storage 
and an 8 microsecond memory cycle time. The inter-
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face is connected to the computer through the same 
input bus as the teletype. The clock (Figure 3) 
consists of an 8-bit binary scaler fed by an RC 
type variable oscillator. The oscillator is tuned 
to 1 KHZ for the majority of our applications. 
When the clock overflow flag is set the scaler is 
read into the computer accumulator by an lOT and 
the accumulated time is stored in the computer 
memory. The scaler overflow flag can be set by 
the overflow of one of the four high order bits 
of the clock scaler. This bit is switch selec­
table from the front panel. The clock is used 
to keep track of elapsed time and to control the 
gating of the data scalers. 

DATA INPUT SECTION 

The data input section is made up of the data 
scalers and an analog to digital converter 
(Figure 4). The data scalers are four 12-bit 6 

MHZ binary scalers. The scaler inputs will accept 
pulses from -3 to -30 volts in amplitude. One of 
the scalers is wired to the overflow flag so that 
the overflow of one of the four high order bits of 
the scaler sets a flag. When this flag is set the 
input to the scalers is gated off while the scalers 
are read serially into the accumulator and the con­
tents stored in the computer core. The overflow 
flag can be set by the clock scaler or scaler 0 of 
the data scalers. These functions are switch selec­
table from the front panel. When the clock is used 
to gate the scalers the system will accept counting 
rates to 140 KHZ without overflow of the 12-bit data 
scalers. This counting limitation could be raised 
by increasing the frequency of the oscillator 
driving the clock. A clear lOT clears all the 
scalers and the clock. Another clear lOT to the 
overflow flag gates on the clock and scalers. The 
ADC is a 10-bit, 100 KHZ successive approximation 
device. It is used to handle signals from ther­
misters and thermocouples. The ADC is controlled 
and read by computer lOT's. 

OUTPUT SECTION 

The output section is shown in block diagram in 
Figure 5. There are facilities for driving two 
pulsed stepping motors, for selecting one of six 
relays and for pulsing three pulsed relays. The 
stepping motors are pulsed by an lOT from the 



computer, one pulse for each lOT issued. The 
relay register is loaded from the accumulator by 
art lOT and the appropriate relays are opened or 
closed according to the state of the register bit 
they are connected to. The three pulsed relays 
are used to drive devices that require a latch­
ing and then a release. The relays that are 
presently used have holding times up to one 
second. The output section is used for control 
functions that are needed at the experiment. 

MAN MACHINE COMMUNICATION SECTION 

The last section to be described and perhaps the 
most useful one for the experimenter is the 
section that allows communication with the 
machine (Figure 6). This section has a digital 
to analog converter for driving analog devices 
and a group of function switches for operator 
convenience in communicating with the machine. 
The DAC was designed for use with a storage scope 
but has successfully been used to drive an RM-503 
and a tektronix 335 oscilloscope. The display 
was good on the non-storage scopes when less than 
256 points were displayed. The display worked 
well with the focal package for the PDP-B/s. The 
function switches have proven very useful for 
people that are not familiar with the computer. 
The state of the switches are read into the 
accumulator by an lOT. The program can then 
check the switches and branch to the appropri­
ate function. There is a flag that can be set 
by a push button on the front panel. This flag 
interrupts the machine so that the function 
switches can be checked at the operators command. 
The computer and control panel are shown in 
Figure 7. The switches can be labeled for 
various functions depending upon the program in 
the machine. 

CONCLUSION 

The system just described has proven of great 
worth in the experimental group at the MTR. The 
use of the function switches have enhanced the 
usage of the system by non-computer oriented 
people. The system was inexpensive to build but 
has demonstrated a high degree of flexibility. 
The programming is done by many of the experi­
menters themselves. The data are stored in a two 
word format. The data count is stopped every 16 
milliseconds in a high counting rate experiment 
and the data stored in the scalers are transferred 
to computer storage 0.3 milliseconds. The count 
is then automatically resumed. The storage in the 
machin~ in two word format takes 5 milliseconds 
and then the machine is through until the next 
16 millisecond interval has elapsed. The system 
has been very reliable. 
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ABSTRACT 

A system is described which is designed to permit the user of 
an on-line computer to achieve a desired ha~L'dware configura­
tion with a high degree of flexibility. The system uses' modu­
lar plug-in units inserted in bins which are interconnected by 
a common two-way analog and digital data bus. The system is 
designed for a PDP-8 computer and can be expanded, as needed, 
to handle up to 60 modules. 

The modules, which were designed to provide a simple, low cost 
means of analog and digital measurement and control, are of four 
types. These are a digital input-output register, a scaler, a 
relay bank, and a power supply. The design of the modules takes 
advantage of the versatility of the computer in a number of ways, 
including provisions to allow the computer to check each module 
for proper operation. 

Several system configurations are described. Included are ex­
amples of the use of the system to automate such things as the 
testing of spacecraft experimental hardware, and the measure­
ment of Hall effect coefficients over an extended temperature 
range. 

1. UJTRODUCTION 

The l"1ost i,mportant single feature that allows a 
cOl"1puter to be employed in a broad range of calcu-
1ations is the fact that one can, by programming, 
in effect restructure the machine to perform the 
desired computational task. 

It is not possible to retain the same degree of 
flexibility in on-line systems because of their 
need to be connected to specialized external hard­
ware. Primarily for this reason the majority of 
on-line computer systems that have been constructed 
in the past have been designed to perform a pre­
defined class of specialized operations. This sit­
uation is analogous to that which existed before 
the invention of the stored program machine when a 
computing device would be constructed to perform 
each new special task. 

The system described here is the result of an 
effort to obtain a reasonable degree of flexibility 
in on-line computer controlled environments and is 
based on careful considerations of the factors that 
tend to limit such flexibility. The consequences 
of such problems in previous systems has been 
evidenced by difficulties of adding Dr reconfiguring 
hardware and interface equipment. Such difficulties 
have reduced the potential versatility of many ex­
isting systems in which the effort required to im­
plement useful changes is uneconomic and such 
changes are therefore only rarely made. 

It is possible, however, by the use of appropri­
ately designed modular units interconnected by a 
(~OnlmOn two-way analog and digital data-bus to ob­
tain the desired degree of flexibility and power. 
Section 2 of this paper outlines the general 
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consideration involved in the design of such databus 
systems, while the remainder of the paper describes 
the implementation of these ideas for a specific 
small computer, namely a Digital Equipment Corpora­
tion PDP-8. 

2. DESIGN CONSIDERATIONS 

Of the many schemes whereby equipment may be con­
nected to a computer perhaps the simplest division 
is between "radial" and "bus" systems. In the 
former, the interconnecting cables can be thought of 
as radiating like the spokes of a wheel to connect 
the computer to each external unit, while in the 
latter each external unit is connected to a common 
"highway," "party line," or "bus" cable system. In 
a certain sense this distinction is artificial since 
in the last resort even a radial connection is 
handled on a bus basis once the signals enter the 
computer hardware proper. However, the distinction 
is a valid one for the domain of equipment external 
to the computer itself and can serve as a starting 
point for comparing different systems. 

The greatest single advantage in a radial system, 
from the user's point of view, is the fact that ex­
ternal equipment need only be plugged into a suitable 
connector to be on-line with the computer. The out­
standing disadvantage, however, is that such systems 
are relatively inflexible and can become expensive 
if large numbers of external units are required. 
Furthermore, the user may become overly dependent 
on the computer vendor and his instrument division 
since only their equipment is automatically inter­
faced with the machine. In bus systems, on the 
other hand, the organization is different in that 



each external unit is connected to a common set of 
cables which carry address, data, and status infor­
mation to and from the computer. 

A feature of such bus systems that is worth noting 
is that the interfacing operation between the com­
puter and the external world occurs only once, 
namely between the computer and the data bus. It is 
therefore possible to design such systems so that 
the same, or different collections of on-line equip­
ment can be connected to many different computers by 
changing only the bus-to-computer interface. 

The differentiation into radial and bus systems is 
indicated by the node labeled 1 in Fig. 1. Other 
important decisions follow at other nodes in this 
diagram and it is the purpose of this section of 
the paper briefly to indicate the major considera­
tions involved at each branch. In order to forstall 
any misunderstanding it may be well to point out 
that though a particular design path was followed 
in the PDP-8 system described in the remainder of 
this paper, it is by no means claimed that the 
resulting system is ideal for every applications. 
As will become clear the design of any system 
is dependent on numbers of factors, major ones being, 
for example, the total size of the system envisaged 
(i.e., number of input and output units together 
with information on their spatial separation), and 
whether the system is to be employed by a single 
user or time shared by several noninteracting users 
simultaneously. Another important consideration is 
of course input/output speed and data-rate. In­
terestingly enough, however, in a number of actual 
on-line experimental environments that we have con­
sidered, it turns out that the bus approach imposes 
only a small time burden on the system. In the last 
resort this arises from two causes, first because 
operations proceed sequentially inside the computer, 
requiring a certain time to service each external 
unit, and second because external units are them­
selves often quite slow (e.g., "-'50 I-LS <..:onversion 
time for a typical 12 bit nuclear physics ADC). 
The result of this is that if reasonable care is 
excercised in the design of the bus system the ac­
cess and I/O time for external units can become 
quite small compared with the sum of the device 
operation and computer servicing time. Obviously 
it is always possible to envisage situations where 
this is not the case, but we believe them to be 
only a small subset of most on-line situations. In 
those cases where I/O speed becomes an unavoidable 
limitation, e.g., CRT displays, it is usually worth­
while to consider the use of a separate dedicated 
piece of equipment (such as a disc with suitable 
DAC's, etc. for display) to perform the critical 
function at all times. 

Returning to the general considerations indicated 
in Fig. 1, the next question is one of system size. 
It is taken for granted that the user's hardware 
will consist of some form of modules which plug into 
bins (see for insbmr.ethe European standard IANUS 
system or the ADIOS system described here), and the 
question is whether there will be one bin or several. 
This decision involves questions of how multiple 
bins are to be addressed, and what will be their 
physical separation and distance from the computer. 
This latter point is highly important though easily 
overlooked. Its importance can be seen in the 
following way. If the cable length is long then 
the cables must be terminated to avoid reflection. 
The logic levels employed for modern microcircuits 
are typically 0 and +4 volts. For 50 ohm terminated 
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cable this means 80 ma/bit. Since on-line systems 
usually employ common grounds between analog and 
digital hardware it follows that the transfer of a 
16 bit word can involve a current pulse at over 
1.2 amperes in the ground return. The noise and 
crosstalk implications of this are obvious. (A new 
data bus system presently being designed at Bell 
Telephone Laboratories for a multi-user environment 
using SDS Sigma computers circumvents this problem 
by using balanced current-driven twisted pair. No 
such extreme steps were necessary for the relatively 
small PDP-~ system described in this paper.) 

If multiple simultaneous users are envisaged it is 
advantageous to employ a buffer unit between each 
bin and the data bus. This has a number of advan­
tages for large systems, not least being the ability 
to provide logical buffering between bins to prevent 
one user from wiping out another by, for instance, 
unplugging a module. This decision is shown at 
node 3 in Fig. 1. 

Again in large multi-bin environments it can be 
advantageous to provide a bin address with unit 
sub-addresses within each bin, (this is the route 
followed in both the European lANUS and BTL Sigma 
system designs). 

At node 5 a difficult choice must be made regarding 
the extent to which the bus cables are shared by 
tim~ or other, multiplexing arrangements. The ad­
vantage of multiplexing lies in its ability to 
reduce the number of cables in the system. The 
disadvantages are reduced I/O speed and added com­
plications to unit hardware and system programming. 

The way in which external units signal the computer 
via the interrupt system is also one of central 
importance. In this connection the major choices 
lie, as indicated at node 6, between using a single 
common interrupt line, or of employing a hierarch­
ical or priority system. The latter can be organ­
ized two ways, either by using a separate physical 
interrupt wire from each external unit to the com­
puter, or by connecting the external unit interrupts 
in head-to-tail fashion whereby priority is defined 
by position in the chain. Neither of the latter 
systems is well suited to a flexible data bus system 
designed to accommodate a wide variety and number of 
external units since each time a change is made in 
the configuration of modules, numbers of separate 
physical wires must also be re-routed. 

It will be appreciated that the foregoing discussion 
of general questions is of necessity superficial, 
though we believe it to indicate most of the major 
hardware considerations involved. Without going 
too deeply into details of software and logical 
design one other question regarding module addres­
sing must be raised. This is the issue of what we 
term" generic" addressing and its importa.nce can be 
seen with a simple example. Suppose the on-line 
system involves a number of external devices which 
must be turned on and off in exact time synchronism. 
Since any bus system is by definition sequential, 
in that only one set of address lines is used, it 
is not at first clear how this can be achieved. A 
solution to the problem can be provided by allowing 
units to recognize more than one address. Each 
unit or module recognizes its own unique address 
and having been so addressed one of the commands to 
which it can then respond is to enable recognition 
of another address. Such other addresses are termed 
generic addresses and they can be common to many 



different units. In this way the computer can issue 
generic commands which apply simultaneously to any 
subset of external modules, allowing them to operate 
in exact time synchronism. 

By way of concluding this section on general design 
considerations it may be illuminating to consider a 
number of questions that can be asked regarding 
the logical organization of anyon-line computer 
system. Does it, for example, require special 
timing, logic and drive circuits to be added to an 
external unit before it can talk to the computer? 
If the answer is yes then the chances are that 
considerably less experimental innovation will be 
carried out with the on-line hardware than would 
otherwise be the case. 

Another important point to bear in mind is the 
ability of the system to check itself. Can the 
computer tell what units are connected and whether 
they are operating? This feature can be very im­
portant in systems employing many modules. 

An area that is outside the scope of this account 
is that of programming, but it is obvious that the 
hardware and software of anyon-line systems must be 
harmoniously designed. Less frequently considered 
from the outset, however, is the question of the 
ease of debugging the operation of the entire on­
line system. Our experience with the present system 
has shown the extreme desirability of being able to 
"force" external equipment to well defined condi­
tions, by hand, as a check in debugging programs and 
hardware. This also is therefore a point to consid­
er in comparing system configurations, how difficult 
is it to debug the hardware-software interaction in 
preparing programs for the on-line system? 

A corollary to this point is the related one of 
investigating the degree to which the computer is 
able to exercise external equipment. In this con­
nection it has been found extremely useful to pre­
pare programs which operate all the computer­
accessible features of a module sequentially. This 
approach allows convenient debugging of modules as 
they are produced since an operator can examine 
repetitive waveforms at his leisure, proceeding 
sequentially through a series of test conditions 
under programmatic control. 

A final point involves the provision of an analog 
measurement capability within the data bus system. 
This has been found to be most useful in the PDP-8 
system described here, and comprises a shielded 
twisted pair in the data bus cable connected to a 
central 12 bit ADC at the computer. In conjunction 
with suitable external modules this furnishes the 
ability to both measure and provide analog levels. 
Together with the digital capabilities of the system 
this provides a combined digital and analog capa­
bility which encompasses a broad range of applica­
tions. 

3 • THE DATA BUS 

A diagram of the data bus system chosen for a PDP-8 
and a single-user environment is shown in Fig. 2. 
The logic of the operation of the data bus closely 
parallels that of the PDP-8 computer. Commands are 
sent to a particular module by placing the module 
address on the address lines and activating the 
instruction lines. The three instruction pluses in 
this system occur at 1 ~ intervals and are .4 ~ 
in width. Because one of the system rules is that 
the modules operate with instruction pluses of any 
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length greater than ~.2 ~, there is no restriction 
on the maximum length of the cycle. (Thus the sys­
tem may also be used with other computers of lower 
speed than the PDP-8 provided a suitable computer to 
data-bus interface is constructed.) 

The type of operation performed with each instruc­
tion pulse has been standardized as follows. 

Instruction pUlse 

IOPl 

IOP2 

Iop4 

Operation 

Augmented Instructions & 
I/O Skip 

Input to computer 

Output to modules 

Since it was useful to have many more than three 
instructions, a system for deriving a set of aug­
mented instructions during IOPl is used wherein the 
six low order bits of the computer output lines are 
each interpreted as a separate instruction. The 
six high order bits have been reserved to be used in 
coincidence to obtain 64 additional augmented in­
structions, should such a need arise in the future. 
IOP2 is used to generate all inputs so as to relax 
the requirement on the fall time of the input pulses 
which must be clear before the next instruction is 
executed. 

A module requests attention from the computer by 
energizing a common interrupt line until it is 
serviced by the computer. The computer then inter­
rogates the modules to determine which one is re­
questing service. (Since a priority interrupt 
system might be desirable when the system is inter­
faced to a different oomputer, four additional lines 
in the data bus have been provided, which may be 
used in this manner.) 

The I/O skip line provides a means for a module to 
respond to interrogation by the computer. An affir­
mative response is signalled by energizing this line, 
which causes the PDP-8 to skip an instruction. If 
the system were connected to a different computer, 
the I/O skip line could set a status bit in the 
machine. 

The distribution of the analog input lines to the 
module bins is performed with shielded twisted pair. 
The interface contains a parametric amplifier in a 
configuration which converts the single ended 0 to 
-lOV range of the analog to digital converter in the 
PDP-8 to a +lOV to -lOV differential system with 
good dynamic common mode rejection. 

Since the logic of the bus system is compatible with 
the PDP-8, the interface is used simply to provide 
the level shifting and buffering that is necessary 
to communicate directly with the integrated circuits 
in the modules. 

The interface unit converts the negative logic levels 
of the PDP-8 to standard microcircuit levels as used 
in the data bus system. In addition the interface 
input buffers provide noise filtering and an input 
threshold which can be varied in order to investi­
gate noise margins. Tests have shown the data bus 
system capable of operating with cable lengths of 
more than 100 feet. 

The data bus consists physically of 48 miniature 
coaxial cables, together with one shielded twisted 
pair, which interconnect the required number of 
module bins. Within the bins, the data bus loops 



through twelve 50 pin connectors into which the 
modules connect upon insertion into the bins. 

4. THE PLUG-IN MODULES 

Four general purpose modules were designed to oper­
ate in conjunction with the computer to assist in 
the operation and control of experiments and in the 
acquisition of the resulting data. Figure 3 shows 
one of each type of module installed in a module 
bin. A modified NIM power supply located at the 
rear of the bin provides local power for the modules. 

The construction of all the modules is similar to 
that of the scaler, which is shown in Fig. 4. The 
use of integrated circuits on a single special pur­
pose board results in considerable reduction of 
eost and size over the more usual technique of 
using general purpose logic boards. The cost of 
the more complex modules is approximately $300 each. 

In order to simplify programing and debugging, the 
module addresses are defined by small plug-in cards, 
visible in Fig. 4, which may be changed at will. 
Removal of a unit for repair may thus be performed 
by switching its address card to a new module. A 
brief discussion of the structure and operation of 
each of the modules is given in the following four 
sections. 

4.1 Register 

The register provides a general purpose interface 
for digital devices. It is capable of accepting a 
12 bit word from an external device and inputting 
the word to the computer. It can also accept a 
word from the computer and present it, with buf­
fering, to the outside world. The block diagram of 
this unit is shown in Fig. 5. Table I lists the 
commands for the unit, most of which require no 
explanation. 

The voltage levels for input and output are standard 
NIM and integrated circuit levels. The use of jam 
transfer makes resetting unnecessary, and allows 
alteration of selected bits of the register without 
even a momentary change in the other bits. 

The use of master-slave flip flops as buffers per­
mits the register to be used as a hardware bit­
reformatting device by connecting the outputs of 
the register to the inputs in the desired sequence. 
The word to be reformatted is sent out to the regis­
ter and then read in as external data. This feature 
also permits use of some bits of the register as 
input and some as output, since by connecting a bit 
output line to the corresponding bit input line one 
makes the value of the bit independent of the Load 
Register from External Unit command. 

The most serious stumbling block in interfacing an 
external device to a computer is not the compati­
bility of the input/output levels, but the necessity 
of establishing logical communication between the 
devices and the computer in a simple way. In the 
register the "freeze" circuitry allows the computer 
to command a device to remain stable while being 
read. The interrupt circuitry allows the device to 
request service from the computer. A busy line 
informs the unit of the status of its request. 
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4.2 Relay Module 

The logic of this module is shown in block diagram 
in Fig. 6. It contains twelve single pole double 
throw high speed reed relays each capable of swit­
ching 3 amps. It is used in conjunction with a 
register module to handle signal and power levels 
which are inconvenient to handle electronically. 

The relay driver commands are shown in Table II. 
The Test Unit Ready command allows the computer to 
test for the presence of the module. 

4.3 Scaler 

This module comprises a 12 bit binary ripple counter 
and the necessary logic to permit the module to 
function on the PDP-8 data bus system. In operation 
the module sends an interrupt to the computer for 
every 4096 input pulses. The system records the 
number of these interrupts and therefore functions 
as a scaler modulo 4096. At the end of the counting 
period the fractional count remaining in the scaler 
is added to the previously recorded total. Figure 7 
is a logical block diagram of this unit. A unique 
feature in this design is the use of a two address 
command structure. The first of these is the gen­
eric address and the second the unit address. By 
use of the generic address the computer can execute 
anyone of three commands and have all scalers 
sharing that address respond simultaneously. The 
command structure for the unit is shown in Table III. 
Most of the commands are self-explanatory. While 
Increment operates in front of the input gate, 
Preset, which also increments, operates at all 
times. Enable Generic and Disable Generic permit 
the generic commands to be obeyed or ignored. 

The overflow and saturate logic allow the computer 
to serve as the high order portion of the scaler in 
the following manner. When the high order bit of 
the scaler overflows, its overflow flip flop is set 
and a program interrupt is sent to computer. The 
computer then initiates a search using the Test 
Overflow instruction and thereby ascertains which 
module interrupted. Should a second overflow occur 
in a scaler before the previous one has been re­
corded by the computer then the saturate flip-flop 
is set. The computer can test this flip-flop, and 
thus either ascertain that the scaling has been per­
formed without error or take appropriate action to 
insure correct scaling. 

A rear panel switch connects the output of the most 
significant bit to either the overflow detecting 
circuitry or to a front panel connector, thus allow­
ing the use of a second scaler module to form a 24 
bit scaler if desired. 

A discriminator is located at the input to the mod­
ule and its level is adjustable from -5 volts to +5 
volts. A front panel lamp indicates the status of 
the input gate. 

A three position switch allows manual setting of the 
unit in either the start or stop condition, or 
returns this control to the computer. 

4.4 Programmable Power Supply 

The primary purpose of this module is to allow the 
computer to supply adjustable voltages to external 



devices. As shown in Fig. 8, the computer controls 
the power supply voltage by causing rotation of a 
motor driven ten turn potentiometer which serves as 
an inexpensive analog memory. The series regulators, 
which operate by re-regulating the bin power, are 
built either as positive or negative supplies, and 
furnish 0 to 10 volts with overcurrent protection 
from 10 to 250 mao 

The control commands for this unit are shown in 
Table rif. The computer controls the unit by oper­
ating the potentiometer while simultaneously moni­
toring its output voltage, thus becoming part of a 
servo loop. 

The front panel dial attached to the potentiometer 
indicates the supply voltage directly while also 
permitting manual setting of the voltage. In 
addition, the module may be used as an analog input 
from the operator, since the computer can, in effect, 
read the dial setting. Connection of the potentio­
meter shaft to other rotating equipment could also 
permit the computer to cause controlled motion in 
the external equipment should this be desired. 

5 • SAMPLE APPLICATIO~S 

The system has been used to control, and process 
data from space experiments; to run nuclear analysis 
displays using DAC's; and as the data acquisition 
and control center for an automatic Hall-effect 
measuring system. 

Figure 9 is a block diagram showing how experiments 
are connected into the system. Note that the com­
puter output can control the experiment via the 
data bus. Computer input can store digital outputs 
from the experiment via the data bus and make analog 
measurements via the analog bus and computer ADC. 

5.1 Testing of a Satellite Charged Particle 
Spectrometer 

A simplified block diagram of a satellite particle 
detector experiment is shown in Fig. 10. Particles 
incident on the semiconductor detector assembly 
deposite their charge in one or more detectors. 
Coincidence logic applied to detector outputs 
determines the particle type, while the linear 
system sorts the energy of each particle type into 
one of five consecutive energy ranges. 

Sixteen different particle identifying modes and 
the five channel energy ranges are controlled by 
the digital outputs from the spacecraft sequence 
clock, in such a way that each mode lasts for ap­
proximately 10 seconds. For in-flight calibration 
the experiment contains a test pulse generator and 
two internal sources, each activated by certain 
states of the sequence clock once every six hours. 

When tested in thermal vacuum in the laboratory by 
the computer system, outputs from a register unit 
simulated the sequence clock and thereby controlled 
the experiment modes. Calibration modes were ar­
ranged to alternate between the test pulser and 
internal source modes for every complete sequence 
of experiment modes, interspersed with complete 
sequences of no excitation. In this way a calibra­
tion cycle was repeated once every 25 minutes, so 
large amounts of calibration data were processed in 
a relatively short time. The sequences of no excita­
tion were useful for the observation of noise counts. 

49 

Scalers were used to accumulate the five channel 
outputs and to transfer the counts into the computer 
for printout. 

Temperatures were also recorded. The outputs of 
temperature sensors were switched onto the analog 
bus using a relay driver and register combination, 
and were measured by the computer ADC. 

Although not used in this particular test, it would 
be appropriate to use programmable power supply units 
in a test of this kind to investigate the effect of 
varying power supply voltages on circuit performance. 

5.2 Automated Hall-Effect Measurements 

An ion implantation laboratory is in operation and 
many implanted diode samples will require extensive 
electrical testing. Each sample is expected to go 
through several stages of annealing, and following 
each stage measurements will be made to evaluate 
Hall coefficients, specific conductivity, carrier 
concentration and carrier mobility, over the tem­
perature range 2°K to 300o K. Figure 11 shows a 
simplified block diagram of the electrical system. 

A large number of voltage measurements from contact 
to contact are required at each temperature of 
interest, and the temperature stability at each 
measurement point must be carefully controlled. 

Figure 12 is a flow chart showing the main steps in 
the computer controlled system. After the sample is 
mounted and ready to be lowered into the cryostat, 
the program starts with a comprehensive check of 
the hardware and a "FAULT" printout is generated 
indicating the nature of any malfunction. An "OK" 
printout indicates the satisfactory completion of 
each test. 

When the hardware test is completed the sample is 
manually lowered into the cryostat. The program 
continues by welding the sample contacts to ensure 
good connections and then checking that the voltage 
drop across each is within acceptable limits. The 
weld current and the contact test current paths 
are selected, by using relay units, so that they 
flow in the appropriate direction (depending on the 
diode junction type) and through any desired contact. 

The next step is the measurement of a complete set 
of diode characteristics. These are made at 
several values of current, taken from a table in 
memory. A first set of Hall measurements is then 
made, coefficients are processed and printed out. 
A manual deoision is then made whether the Hall 
properties exhibited by the sample make continua­
tion of the measurements worthwhile. 

In continuing the test, the operator types in the 
upper and lower limits of temperature range and the 
increments at which measurements are to be made, 
and opens the liquid helium valve on the cryostat. 
The computer selects the temperature values by 
interpolation from a table in memory, starting with 
the lowest specified temperature. The required 
temperature control is provided by the setting of 
a programmable power supply whose' output controls 
the power applied to the sample heaters. 

The computer proceeds in a similar way to control 
and check the remaining experimental conditions, as 
indicated in Fig. 12. 



The measurement of each of the many voltages is 
accomplished by using relay units as multiplexers 
at the input of a digital voltmeter. Two register 
modules are used to receive the DVM digital data 
and transfer it to the computer via the data bus. 
One of these registers is used to trigger, and also 
to recognize the end of each DVM measurement, sig­
naling to the computer that data is ready for input. 

5.3 Other Applications 

Many uses other than those already described have 
been considered. An example is that of automated 
sample liquid scintillation counting in which pro­
grammable power supplies can provide levels defining 
pulse-height windows. In conjunction with scalers 
this provides pulse height analysis, while relay/ 
register combinations can excise electromechanical 
control. 

The system may also serve as a versatile, economical 
alternative to large multiparameter pulse height 
analyzers when used in conjunction with pulse analog­
to-digital converters, anQ fast digital-to-analog 
converters for CRT displays. 

When connected to an engineering breadboard, the 
system has been used as a versatile programmed 
pulser and circuit tester. 

6. DISCUSSION 

The point can be made, and with justification, 
that computer manufacturers realized years ago that 
peripheral hardware was best handled on a bus basis, 
which is all that is being achieved with the system 
described here. This is quite true. The differ­
ences that arise with on-line systems are primarily 
those of degree (with the exception of analog bus 
facilities) rather than those of kind. One example 
will suffice to make the point. The present system 
might be required to handle 60 scalers all counting 
at ~l MHz (e.g., a data rate of 6XI07 bits/second) 
with the subsidiary requirement that various subsets 
of them be gated on and off in exact time synchron­
sim. Such requirements are not encountered with 
standard computer peripherals for which supervisory 
control and timing can always be exercised in a 
logical sequential manner. 

The major point being made here is really. a differ­
ent one, namely how to design a modulav system with 
a small number of different types of modules to 
encompass a large number of on-line tasks. While 
examples of such tasks are endless it is hoped the 
outline of the rationale of the design, together 
with the sample applications given, demonstrates 
the flexibility that such an on-line modular 
analog-digital system can provide. 
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TABLE I. REGISTER MODULE COMMANDS 

DATA 
BIT 

6 

7 

8 

9 
10 

11 

COMMAND 

Test Interrupt 

Generate Interrupt from Computer 

Disable Interrupt 

Enable Interrupt 

Set Freeze Output 

Load 

Load 

Load 

TABLE 

lOP 

1 

2 

4 

Register from Exte rnal Unit 

Computer from Register 

Register from Computer 

II. RELAY MODULE COMMANDS 

COMMAND 

Test Unit Ready 

Enable Relay Drivers 

Disable Relay Drivers 

TABLE III. SCALER MODULE COMMANDS 

A. UNIT ADDRESS COMMANDS 

DATA 
lOP BIT COMMAND 

1 6 Test Overflow 

1 7 Test Saturate 

1 8 Disable Generic 

1 9 Enable Generic 

1 10 Increment 

1 11 Clear 

2 Load Computer from 
Scaler 

4 Preset 

B. GENERIC ADDRESS COMMANDS 

lOP COMMAND 

1 Start Scaling 

2 Clear 

4 Stop Scaling 

TABLE IV. POWER SUPPLY MODULE COMMANDS 

DATA 
lOP BIT COMMAND 

1 11 Motor Off 

1 10 Measurement Off 

1 9 Measure Current 

1 8 Measure Voltage 

2 Motor Counterclockwise 
(Lower Voltage) 

4 Motor Clockwise (Raise 
Voltage) 
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Figure 1 Logic tree indicating the major decisions 
involved in the design of a data bus system. 
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Fig. 2 - Simplified block diagram showing the com­
puter interface and data bus cable. 
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Fig. 3 - Photograph of one modified NIM bin con­
taining one of each of the four modules. 

Fig. 4 - Photograph of a scaler module, showing 
the location of the plug-in address cards 
at the lower center of the printed circuit. 

DATA BuS 

--, 
I EX T ERNAL DEVICE i L ____________________ ~ 

Fig. 5 - Simplified block diagram of register 
module. 
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Fig. 6 - Simplified block diagram of relay driver 
module. 
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Fig. 7 - Simplified block diagram of scaler module. 
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Fig. 8 - Simplified block diagram of power supply 
mOdule. 
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Fig. 9 - Simplified block diagram showing three 
bins connected to the data bus. 
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Fig. 10 - Simplified block diagram of a satellite 
experiment. 
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Fig. 11 - Electrical block diagram of Hall effect 
measurement system. 



Fig. 12 - Simplified flow-graph of Ha~l effect 
measurement. 
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QUANTIFYING MUSCULAR ACTIVITY IN THE 
ANALYIDSOFHUMANSPEECH 

A method of processing electromyographic (EMG) data in 
the analysis of speech production 

Stan Hubler 
Phonetics Laboratory, UCLA* 

Los Angeles, California 

ABSTRACT 

An interface is described which improves the quality of data proces­
sing in a LINC-8 computer by preprocessing analog input data using 
an analog integrator. The interface can be used not only on the LINC-
8 but also on other digital computers equipped with multiplexed analog 
to digital converters. 

INTRODUCTION 

Human speech production is complex. It requit'es lots of 
brain power and muscular coordination. After years of 
study, relatively little is known about how the brain ini­
tiates speech commands to the muscles and little is known 
about the exact mechanism of muscle movement. Pho­
neticians hope that by understanding the activity of mus­
cles in speech they can make reasonable inferences as to 
how the brain is organized and how it stores and produces 
speech. The implications of this knowledge are far 
reaching. Short term benefits can be the correction of 
speech defects. Long term benefits can be the unravel­
ling of some of the brain'S mysteries. But a lot of 
groundwork remains to be laid. For example, how do 
you go about understanding the mechanism of speech pro­
duction? Phoneticians believe that the brain must store 
some speech data and then use a set of instructions or a 
program to put the data together into recognizable speech 
such as words, phrases, sentences, etc. This is as 
opposed to the brain'S having stored all possible data and 
merely playing it back. So one can immediately ask the 
question, "What size or sizes are the basic data units?". 
This question and others are being attacked in many ways. 
One method is to correlate the activities of the speech 
muscles with the speech gener~ted. We can't answer the 
data size question completely by this method but we can 
at least establish that the unit is either syllable sized or 
larger or, if they are smaller than the muscle patterns 
of speech are not the right place to look for them (From­
kin, 1966). 

METHODOLOGY AND PROBLEM 

A brief summary of the data collection/analysis meth­
odology used in this laboratory follows. More detailed 
descriptions are available in Hirano and Ohala (1967) and 
Hirano et al. (1967). The software has been described 
by Harshman and Ladefoged in the Fall 1967 DECUS 
PROC E EDINGS. 

Currently, we measure muscle activity by inserting a 
pair of wires into a muscle and the electrical signals 
which result from muscular action (electromyographic 
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signals or EMG). (See Figure 4) It turns out that these 
signals, which are voltage pulses or spikes, are individ­
ually about the same size. The number of these spikes 
per unit time is roughly proportional to muscular effort 
except for extreme muscular effort -- when the amplitude 
must be taken into account as well because the spikes be­
come superposed. In our system (Figures 1, 2, 3) we 
record these signals, then later play them back through 
the computer, for analysis. But there are some hurdles 
to overcome in order to get this data into the computer: 
Speech events of interest may last up to several seconds. 
If all the muscle spikes are stored (there may be thou­
sands), a great amount of memory will be used. For­
tunately, only the relatively slow changes in the muscle 
activity are of interest, so only the envelope of the activ­
ity is required. Previously, this was entered into the 
computer without preprocessing and, after averaging the 
envelope was enhanced by a software smoothing technique, 
was only partially successful. The difficulty was there 
was a computer generated artifact which appeared sim­
ilar to noise. It appeared that this artifact could be elim­
inated if a kind of temporary storage or smoothing device 
could be installed external to the computer circuitry. An 
added advantage of this device would be a relaxing of the 
software requirements and a resulting increase of avail­
able core. 

SOLUTION 

A computer synchronized, analog integrator was devel­
oped to accomplish the temporary storage/smoothingfunc­
tion. It turned out that the synchronization feature was 
easy to accomplish, since it required a simple modifi­
cation to the LINC-8 computer. This modification should 
be reasonably easy for other computers using multiplexed 
analog to digital converters. A true integrator was 
chosen over an RC type in order to avoid having optim­
izing the integrator for a particular sampling frequency. 

DESCRIPTION OF THE INTE­
GRATOR SYSTEM 

(See Figures 5, 6, 7) Raw EMG signals are rectified by 
a linear full wave rectifier. The output of the rectifier 



drives the true integrator, which sums the signals in such 
a way that both an increasing number of signals per unit 
time and increasing signal size (amplitude) cause the 
summed output to increase. This process continues for 
a time determined by the analog to digital converter 
sampling frequency, which in turn, is determined by the 
software. Almost immediately after the computer sam­
ples the output of the integrator it is disch,arged to zero 
(within 15 microseconds) and resumes summing. In this 
manner the rectifier-integrator combination act as an 
analog memory and provide a smooth transmission of the 
analog data to the analog to digital converter. 

HARDWARE REALIZATION 

(See Figure 8) As might be expected, certain embellish­
ments to the original idea are necessary so that the hard­
ware is compatible with the real world. An output amp­
lifier follows the integrator and acts as a buffer between 
the integrator and the normal computer input and, addi­
tionally, conditions the output to meet the normal input 
requirements of the computer. An input preamplifier 
increases the input impedance from 50 k ohms to about 1 
megohm, provides for an optional additional gain of 10 
and acts as a low impedance drivel' to the lineal' recti­
fiers. An overload detection circuit warns the user that 
the integrator has reached its upper limit. This detec­
tion circuit triggers a special lamp driving circuit which 
holds the lamp on long enough to be seen. The overload 
indicators are necessary since only one channel can be 
monitored by the computer's oscilloscope during a given 
averaging run. A input potentiometer has been added to 
permit timely adjustments in case of integrator overload 
and to provide an adjustment capability for unadjustable 
input devices. 

All the Circuitry has been built on DEC-compatible printed 
circuit cards which were installed in the spare recepta­
cles in the Data Terminal Panel. Switches, knobs, and 
lights were mounted on the front of the Data Terminal 
Panel. Extensive use of integrated circuit operational 
amplifiers keeps the overall cost of the interface low. 

Schematics of the circuitry are available on request from 
the Phonetics Lab., Linguistics Dept., UCLA, Los An­
geles, California 90024. 

COMPUTER MODIFICATIONS 

(See Figure 9) Foul' DEC flip-chip pulse-gate equipped 
monostable multivibrators (one pel' data channel) were in­
stalled in and connected to the computer. The outputs of 
these circuits provide triggers to the circuitry which re­
sets the respective integrator to zero. There are two 
inputs pel' gate: a voltage level which indicates that the 
computer is sampling that particular channel, and the 
1.9 microsecond pulse which enables the sampling of in­
puts to the analog to digital converter of the digital 
computer. 
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SUMMARY 

A hardware interface which enhances the processing of 
electromyographic speech data has been described. This 
interface simplifies programming by easing the software 
requirements both by eliminating the software rectifier 
and by presmoothing the data. In addition, the interface 
saves some core and eliminates a sampling artifact. 

The interlace provides an output proportional to both the 
amplitude and number of EMG signals during a given in­
tegration/ sampling interval. 
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LEXIGRAPB: AN INTERPRETIVE LANGUAGE 
FOR GRAPHICS 

Dr. Janiel M. Forsyth 
Psychology Department 
University of Vermont 
Burlington, Vermont 

Abstract 

LEXIGRAPH is an interpretive language which places a display system 
and various peripherals in the hands of researchers unfamiliar with 
low-level languages. The interpreter accepts as input a "script" 
from paper tape or DECtape. The user may specify the display of 
text or arbitrary figures defined in the script. A wide range of 
script commands have been implemented. Presentation and inter­
presentation times are controlled (with milli-second accuracy), 
and chains of displays may be g~nerated which run off without in­
tervening instructions. When display segments (texts or figures) 
are grouped in lists or strings, attributes of the individual seg­
ments (intensity, origin, etc.) may be varied selectively. Subject 
responses may be recorded via a response box tied to the information 
collector, from a Teletype, or by way of a light pen. Acceptable 
responses or response patterns are defined in the input script. 
Logical testing of responses is provided for, and full branching 
capabilities are included. Data (e.g., name of response key and 
reaction time) are recorded automatically and stored on DECtape 
and may be punched onto paper tape for off-line listing at the con­
clusion of an experiment. The script can also direct the opening 
and closing of selected bits in the relay buffer. This may be used, 
for example, to control a remotely located audio tape recorder, re­
cording subject responses at arbitrary intervals. 

LEXIGRAPH is a programming language de­
signed to ease the task of utilizing the com­
puter in certain classes of psychological ex­
periments. It was originally planned as a 
system which would facilitate the preparation of 
experiments utilizing a display to present 
textual material to subjects (hence the name)~ 
It has been modified to permit convenient re­
presentation of two-dimensional figures, and to 
provide for control of peripheral devices in ad­
dition to the display scope. 

The system provides, among other capabili­
ties: 

1. Simple specification of textual material 
and figures for display 

2. Flexible control of the material dis­
played (e.g. timing, location, intensity, 
etc.), and of other peripherals (e.g. 
relay buffer). 

3. Automatic recording of data collected 
during an experiment. 

4. Conditional statements and program 
branching. 

5. Program size limited only by DECtape 
capacity (i.e. automatic overlay). 

6. A reasonably natural programming lan­
guage. 

The program operates in an 8K PDP-4 with at 
least two DECtapes, 340 display with character 
generator and vector mode, and millisecond 
clock. It is implemented in the context of the 
Harvard Center for Cognitive Studies Operator 
System and Scope Editor (DECDS PDP-4-14 and 
PDP-4-15). The system permits programs to be 
entered directly from the teletype at a remote 
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location via the Scope Editor. The DECtape 
files produced by this operation are read by the 
LEXIGRAPH system. Thus experiments may be 
written and debugged (and subjects run) without 
leaving the scope room. 

As an interpreter, LEXIGRAPH scans the 
source program, i~ediately performing the op­
erations commanded there. Interpretation and ex­
ecution is performed on a statement by statement 
basis. Statements in LEXIGRAPH may establish the 
value of a variable, manipulate a stimulus para­
meter, define a figure, initiate an operation, 
etc. A program for LEXIGRAPH, consisting of a 
series of statements, is called a script. Scripts 
are maintained on DECtape. At any given time, 
only a portion of a script will be in core. 
Statements are processed serially, the script buf­
fer being refilled from DECtape, until a branching 
statement is encountered. Branching statements 
refer to line numbers which appear in the script 
(similar to FORTRAN lines). As LEXIGRAPH main­
tains a record of line numbers which have been 
encountered and their location on tape, branching 
can be either forward or backward. Thus looping 
is permitted under control of either internal or 
external parameters (e.g. the value of a program 
variable or the condition of a response device). 

No attempt will be made in this paper to 
fully specify the LEXIGRAPH language, but selected 
statement types will be examined to indicate the 
nature of the system. All material which might 
appear in a script 'as is' will be presented in 
full caps. Arguments will be presented as 'argl, 
arg2' etc. 



The basic manipulanda of the system are 
texts and figures. They are specified simply: 

TEXT argl (THIS IS A SAMPLE TEXT.) 

FIGURE argl (40,20/BO,-20/40/20) 

The arguments are used by statements specifying 
an operation, as in displaying a figure. Fig­
ures are compounded from a series of vectors 
specified by doublets, where the sign has the 
usual significance and a doublet preceded by a 
'B' indicates a blanked (invisible) line. The 
figure above, for example, would appear as a 
pair of parallel lines. Texts and figures have 
an origin whose value is established by the 
statement: 

ORIGIN LINE argl, TAB arg2 

The scope is treated in this sense as a type­
writer with tabs set 10 character spaces apart. 
Refinements of origin can be made, in text 
specifications, with spaces, and for figures, 
with blanked lines. Once an origin has been 
specified it remains as an internal parameter 
until changed by a new origin statement. Texts 
and figures are assigned the origin which is 
current· at the time they are scanned. The ori­
gin is an attribute of the figure or text (one 
of several) which can only be changed by the 
cormnand: 

SET TEXT argl ORIGIN LINE arg2 

This cormnand would have the effect of setting 
the origin of text 'argl' to line 'arg2', tab 0 
(the value of tab if not specified in the argu­
ment). 

When the interpreter encounters text and 
figure declarations, it assembles an internal 
representation (scope buffer) and stores it in 
the main buffer area. This is a dynamic storage 
area in which is stored all material that must be 
preserved across statements. Scope buffers, line 
number locations, variable names and values, and 
other material is. maintained in this area in a 
threaded list structure. If the interpreter, in 
looping, encounters a figure or text which has 
already been entered in storage, it will be ig­
nored by the scan. The prograrmner may optimize 
storage by selectively removing material which is 
no longer needed, by issuing the command: 

CLEAR TEXT argl, ..... argn 

Similar clear statements might be formed for 
other items in storage. Removal of items from 
the buffer is accompanied by automatic garbage 
collection so that there are never any holes in 
the storage area. This is accomplished by com­
paction and re-threading (scope buffers must be 
preserved as intact, although variable length, 

records) . 

Texts and figures which have been declared 
may be displayed by using the cormnand: 

DISPLAY TEXT argl, arg2, ..... argn 

DISPLAY FIGURE argl 

Any number of texts or figures may be displayed 
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simultaneously by providing a string of arguments 
as illustrated above. More complex forms of the 
display cormnand are available, e.g.: 

DISPLAY TEXT argl, arg2/FIGURE arg3, arg4 

Whenever a display command is encountered, the 
interpreter sets up a job list with pointers to 
all the scope buffers involved. This insures 
that in executing the display cormnand, the usual 
slow speed of interpretation is eliminated. 

Often, in preparing stimulus material for 
psychological experiments, it is advantageous to 
organize a small number of elements into a large 
number of lists. This can be done in LEXIGRAPH 
by defining a 

QUEUE argl = TEXT argl, arg2, ..... argn 

The queue may then be displayed: 

DISPLAY QUEUE argl 

As opposed to the simultaneous display of 
material by compounding arguments in a simple 
DISPLAY cormnand, a queue is displayed one mem­
ber at a time. 

It is necessary at this point to consider 
how a display may be terminated. The display 
statement itself merely sets a process into 
operation, but does not specify when it is to 
stop. For a number of reasons, in the LEXI­
GRAPH system the terminating condition is es­
tablished as a property of the individual text or 
figure. In the current version there are three 
types of conditions that can be used to signal 
the end of a display: 

1. The subject has pressed an acceptable 
response key (i.e. an acceptable code has 
been found in the information collector). 

2. The clock time alloted a display has ex­
pired. 

3. By indicating the appropriate text with a 
light pen, a correct terminating condition 
has been attained. 

These terminating conditions are specified in 
the script by a mode statement, e.g.: 

MODE TACHISTOSCOPE 

MODE KEYPRESS 

These, together with additional mode statements, 
are used to set an internal program parameter; a 
text or figure, when encountered, will be tagged 
according to the mode in effect at the time. 
Associated with the two examples given above are 
specific values, e.g.: 

KEY 1,2,3 

TIME argl, arg2 

The key statement establishes which of 14 keys 
on a response box must be pressed to terminate 
a display which is in key mode. The time state­
ment sets the values of two internal program 
parameters, an 'on' clock and an 'off' clock. 
As with origins and modes, these values become 
part of the internal representation of a text or 
figure. It is possible to modify these values 



(using a SET command) after a scope buffer has 
been created. 

Variables may be introduced: 

ABC 10 

ABC ABC + 10 

line numbering: 

LINE 100 

branching statements: 

GOTO LINE 200 

and conditionals: 

IF ABC = 50 GOTO LINE 75 

It is possible to substitute for a real 
number either the value of a variable, or a ran­
dom number: 

DISPLAY TEXT 15 

DISPLAY TEXT ABC 

DISPLAY TEXT RANMOD 20 

All the above are legitimate. In the second 
case, that text would get displayed whose label 
equalled the value of ABC. In the third case, a 
text would be displayed whose label would be some 
number between 1 and 20, selected randomly. 

While the instruction set is not exhausted 
by these examples, enough material has been pre­
sented to indicate the major capabilities of the 
LEXIGRAPH system. A very short example may serve 
to illustrate the wav a script might appear: 

BEGIN 

/COMMENTS FOLLOW INITIAL SLASHES 

MODE TACHISTOSCOPE 

TIMES 1000,1000 

/SETS CLOCKS TO ONE SECOND EACH 

ORIGIN LINE 10 

TEXT 100 ( 

THIS IS ONE TEXT) 

TEXT 200 ( 

THIS IS ANOTHER) 

DISPLAY TEXT 100,200 

END 

Data collection is automatic during the 
execution of the program. Key presses are re­
corded by key number and response latency (with 
millisecond accuracy), along with other relevant 
information. The value of a variable may be re­
corded on command, and information may be spec i-
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fied which will control the listing of the data 
after the experiment is completed, e.g. 

PRINT THIS IS PART II OF THE EXPERIMENT 

would cause all except the PRINT command to ap­
pear in the output. 

LEXIGRAPH in its current form (version II) 
has been operating in the Computer-Based Labora­
tory of the Harvard Psychology Department for 
approximately one year. It has proven valuable 
in experiments in psycho1inguistics, short-term 
memory, concept formation and in other areas, and 
has greatly facilitated use of the laboratory by 
individuals without experience in using a com­
puter. 
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A ~IDLTI-STATION DATA ACQUISITION 
AND CONTROL SYSTEM 

Thomas H. Rau and Howard W. Borer 
The Dikewood Corporation 

Albuquerque, New Mexico 87106 

ABSTRACT 

The system is designed to acquire and accumulate data from three 
sources and operate upon that data for purposes of product con­
trol and acceptance. The discussion includes system design and 
control, data acquisition, and data reduction. The "fresh-start!! 
system creation, optional interrupt processes, restart capabili­
ties, report generations, and system "shut-down ll procedures are 
also discussed. 

SYSTEM DESIGN AND CONTROL 

The Dikewood Corporation, operating within design 
specifications from Sandia Corporation of New 
Mexico, has designated the hardware and designed 
the software for this control system, and implemen­
tation of the system is presently progressing. The 
discussion of this system is logically divided into 
three sections: system design and control, system 
operation for data acquisition, and system opera­
.tion for data reduction. Only a generalized theory 
of operation for each section is treated here; de­
tailed questions should be addressed to the authors 
at The Dikewood Corporation. 

The hardware components of the system include a 
PDP-8/1 central processor with 4K memory, four DF32 
disks and controller, an incremental PEC magnetic 
tape unit, a Kleinschmidt printer, a eR8r card 
reader, and an ASR-35 teletype. The function of 
each of these units will be discussed when they are 
considered. The system interfaces three product 
testing units (hereafter referred to as PT's) which 
are used as test data transmission devices; however, 
each unit is capable of both sending and receiving 
information from the central processor. Each PT is 
programmed by paper tape to perform groups of tests 
on the product. The data accumulated by the three 
PT's is then eXar:G.ined and evaluated, rather simply 
in real time, but more extensively later during the 
data reduction phase of operation. The evaluation 
is accomplished through the use of reports ·which 
were desi.gned to point out problem areas and to 
control product acceptance. 

The software system design provides three types of 
initiation: a completely new start, a complete 
system load from a previously created magnetic tape, 
or a simple restart from a previously operating 
condition. In any case, the system will allow 
itself to be modified before entering the actual 
execution phase. This modification is made possi­
ble through the use of a resident system monitor 
which is either loaded from paper tape (as in case 
A above) or loaded from disk (as in cases B and C). 
The system monitor contains its directive coding, a 
single pass Phoenix assembler, a binary loader, ani 
disk read/write routines. Execution of ttis moni­
tor will allow immediate entry into the execution 
monitor, the assembly of routines and punching of 
tapes, and/or the loading of previo1lsly punched 
binary tapes. It should be noted that the sole 
purpose of this system monitor is to facilitate the 
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debugging and modification phases of system imple­
mentation; once satisfactory operation is achieved, 
it would be no longer required and could be removed 
from the system. 

Upon completion of all or any of the options made 
available by the system monitor, control passes to 
the execution monitor which controls the operation 
of the data acquisition, data reduction, and 
optional modes of the system. 

Each operational day is broken down into three dis­
tinct portions: the data acquisition section is 
concerned with data monitoring and accumUlation 
(approx. 16 hours), and the data reduction and 
optional sections are concerned with report genera­
tions which take place during the remaining portion 
of the day. Since each data reduction phase con­
cerns itself with only that data taken during ~he 
previous data ac~uisition phase, it would seem 
obvious to allow the execution monitor to pass con­
trol directly to the data acquisition mode; however, 
there are some optional functions within data reduc­
tion T..rhich could be of great use prior to data 
acquisition, and it is for this reason that the mon­
itor will query the operator at the beginning of 
the day as to which of the three modes he wishes to 
enter. 

DATA ACQUISITION 

There are four types of interrupt in the data acqui­
sition mode of system operation: PT, teletype, 
Kleinschmidt, and card reader. With the exception 
of servicing the keyboard interrupt which initiates 
a "shut-down"· of data acquisition, time of service 
is of paramount importance. The interrupt routine 
is entered immediately after each interrupt is 
received and saves the location and cell contents 
necessary to assure correct return after the inter­
rupt is satisfied. The routine also determines the 
source of the interrupt and directs control accord­
ingly. Priority is internally established to set 
all PT's at an equal level, the teletype second, and 
the card reader last. As soon as a Kleinschmidt 
interrupt is received, it ~s tTrned ()ff and exeC'l­
tion is resumed. Since a real-ti~e activity summary 
is the only item which is allowed to be printed dur­
ing data acquisition, and since that prin+,:ing in­
volves only a single character at a time, we can 
effectively "ignore" this interrupt. The card 



reader will process cards only when the system is 
free from any PT considerations. 

The bit configuration presented at the initiation 
of a PT interrupt is held only for one second and 
may degenerate after that time, therefore it is 
mandatory to complete all computations involving 
these bits within that time. However, a further 
restriction exists in the fact that interrupts may 
occur from each of the three PT's simultaneously. 
This requires that all computations be completed 
within 333 milliseconds. To allow for adequate 
safeguards, this time has been further reduced to 
300 milliseconds of processing; all other inter­
rupts are "closed out" and will not be recognized 
until the processing is completed. 

All data arrays and counters must be initialized 
prior to the start of data acquisition due to the 
fact that, for purposes of data reduction~ only 
daily data is retained. An in-core buffer is main­
tained for each of the PT's: each data buffer is 
composed of an ID block and results of all tests 
conducted in a group. Since data is presented 
from the PT in 48 bit patterns, the ID (consisting 
of sixteen words) must be collected by means of 
four samplings of the 48 bit register. The remain­
ing portion of the buffer is filled four words at 
a time as each test is completed and the entire 
buffer is copied onto the disk at the end of a test 
group. 

The processing of the PT data must necessarily ac­
complish three tasks; the first of these consists 
of properly identifying the source of the incoming 
data; that is, which of the three PT's is sending 
data. This is accomplished by testing each of the 
three PT flags in order. Since it has been estab­
lished that processing of an interrupt will be 
completed within 300 milliseconds, it is possible 
to test each flag every time an interrupt is 
received without establishing a bias for the first 
PT. The second task involves the generation and 
checking of all system flags and counters. One or 
many of these are updated or initialized each time 
an ID is received, each time a test measurement is 
received, each time a group is completed, each 
time some signal is to be returned to the PT, and 
each time a buffer is dumped onto disk. All flags 
are stored for each PT due to the fact that there 
is no relation between the activity of one PT and 
the processing occurring on either of the other 
two. The third task requires completion of an 
entry into the real-time activity buffer. This 
buffer is filled whenever appropriate information 
is received and is printed, one character at a 
time, whenever the system is not concerned with 
other interrupt conditions. 

Upon receipt of a keyboard interrupt, the data ac­
quisition phase must accomplish completion of all 
test groups currently/operating and then set up a 
restart capability for possible use when all 
options have been completed. Successful completion 
of the "shut-down" procedure must be verified by an 
operator-inserted code before data acquisition is 
abandoned. Once verification is received, control 
is returned to the execution monitor and the appro­
priate data reductior:. or ortional program is then 
loaded and executed. 
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DATA REDUCTION AND OPTIONS 

As previously mentioned, the operational day is 
broken down into three distinct parts: data moni­
toring and accumulation, report generation, and 
options. This section deals with the latter por­
tions of the day. The time allotted to these parts 
is approximately 8 hours, since another data acqui­
sition period will follow. 

There are two kinds of reports to be printed during 
this time: mandatory and optional. Mandatory 
reports consist of a daily failure list, a statisti­
cal summary of the data, a product summary, and tape 
copy functions. Each of the reports is generated 
automatically by a separate program which resides 
on disk. The loading and execution of each program 
is handled by the data reduction monitor. When a 
particular report is desired, its respective pro­
gram will be loaded from the disk and executed, 
with control returning to the monitor program in 
order to process the next necessary program in the 
same manner. 

The first operational step is to request that the 
operator mount a magnetic tape on the transport. 
Following a message to that effect, the four manda­
tory report programs are loaded and executed in 
order by the monitor program. After these functions 
are complete, a check is made to insure that the 
tape is ready. The monitor then controls the cre­
ation of the three tapes: an IBM 360 compatible 
tape containing the data taken during the last data 
acquisition phase, a complete data history tape, 
and a system tape to be used in the event the sys­
tem and its associated data are destroyed. 

Upon completion of this tape generation, all of the 
mandatory tasks have been accomplished and the next 
step is to satisfy any optional requests which the 
operator may make. A list of possible reports and 
their respective code numbers will be available to 
the operator. He will enter the code number of the 
program to be executed and the system will then 
load the program from disk, execute it, and return 
to accept additional request~. Some of the option­
al programs are: an individual test summary, an 
individual group summary, an individual unit sum­
mary, various test analyses, changing and printing 
of test limits, and a software/hardware program 
check. When the operator indicates that he has no 
further requests, he has three options at his dis­
posal. He may request that the system be turned 
off to enable hardware diagnostics or other problem 
programs to be run; he may set the system in a 
"wait" state in preparation for the next data acqui­
sition period which is probably only a few minutes 
away; or he may choose to continue data acquisition 
in which case initialization is skipped and data 
acquisition would proceed as before. This latter 
fact will probably occur only when the data acqui­
sition process was interrupted to perform some 
optional tasks. 

To summarize then, the execution monitor exercises 
complete control over each of the three subsystems 
(data acquisition, data reduction, and optional 
programs), allowing each to terminate under program 
control or at the discretion of the operator. Up­
on termination of any subsystem, it is possible to 
enter any of the other two, thereby affording com­
plete flexibility to the system. 



VIDAC 
A DATA ACQUISITION SYSTEM 

Noel P. Lyons, Robert W. Skyles 
VIDAR Corporation 

Mountain View, California 

ABSTRACT 

VIDAC is a data acquisition system program for the non­
sophisticated computer user. Its features include flexibility 
of sub-routine usage, a linking loader, and an easily modi­
fied executive routine. 

VIDAC 

VIDAC is a real-time programming system devel­
oped for operating a processor -controlled data ac­
quisition system manufactured by VIDAR Corpora­
tion. VlDAR is a manufacturer of a broad range of 
test instrumentation and data handling equipment. 
One of VIDAR' s major lines is a group of digital data 
acquisition systems or data loggers. 

In surveying the uses of our data logging products, 
it became obvious that the majority of the data being 
recorded was subsequently analyzed on a central 
computer. In 1967 VlDAR first combined a data log­
ger with a small computer in one integrated system. 

At that time, a survey of available equipment indi­
cated that while many computer manufacturers of­
fered A-D converter front-ends, none of these pro­
vided the sensitivity and noise immunity required for 
direct measurements of typical industrial/scientific 
transducers such as thermocouples, strain gages, 
load cells, etc. Subsequent discussions with DEC 
led to the development of the DEC AF04 Scanning 
Digital Voltmeter for the PDP-8 and PDP-9 families 
of computers. As far as we know, this was the first. 
commercial A-D front-end for a computer developed 
by an instrumentation manufacturer. 

Concurrent with this effort, VlDAR embarked upon 
development of the VIDAR 5206 - a proprietary data­
acquisition system using a PDP-8/S to bring the pow­
er of a small computer to the data acquisition cus­
tomer. Our product planning indicated that the soft­
ware system would be as critical as the hardware 
system. The total system would be used by cus­
tomers skilled in their field of instrumentation, but 
having little or no knowledge of computer program­
ming. Typical applications for this class of equip­
ment included: 

Test monitoring (by a jet turbine manu­
facturer) 

Product Test (by a consumer electronics 
manufacturer) 
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Fuel Cell Research (by NASA) 

Geological Research (at a mid­
western university) 

Process Supervision (in a glass 
manufacturing plant) 

Thus, it became obvious that a "total system" ap­
proach to hardware and software would be required. 
Using such an approach, we can examine the hard­
ware and software parameters which such a total 
system should have: 

Hardware Parameters: 

1. Sub-microvolt sensitivity for direct measure­
ment of T/C's, strain gages, etc. 

2. High noise immunity (true integrating measure­
ments) to withstand noisy industrial environ­
ments. 

3. High common-mode voltage rejection, to allow 
for long leads to transducers. 

4. Fast and accurate, to match modern computer 
speeds. 

5. Modular, to allow each user to configure his 
system to meet his exact requirements with a 
minimum of special equipment. 

6. Reliable. Neither the customer nor the vendor 
ever profits from a service call., 

Hardware Results 

The Resulting System Shown in Figure 1 can: 

1. Measure down to O. 1 uv . 

2. Offer true integrated measurements, period 
selectable, from 1-2/3ms to 166 -2/3ms. 

3. Furnish up to 160db of common-mode rejection 
at common -mode voltages up to 500v. 



4. Random Access, from 10 to 1000 channels at 
speeds of 50 channe Is/second. 

5. Figure 2 shows the various optional equipment 
that can be added to configure systems of 10 to 
1000 input channels, optional measurements of 
DC and AC voltages, frequencies, time inter­
vals, and resistance. The PDP-8 family of 
processors offers complete control of random 
channel-by-channel measurement selection, 
function and speed. 

Software Parameters 

1. Control experiment or test in process ..... 

2. Acquire the data, - both controlling the mea­
surement system and bringing the data into the 
processor ..... 

3. Manipulate the data, with full arithmetic and 
logical capability ..... 

4. Output results to recording peripherals, dis­
play panels and control outputs. 

5. The software system must be so structured that 
users who know their data acquisition task, but 
not computer programming, can readily com­
bine the hardware and software to apply the full 
power of the "total system" to their instrumen­
tation problems. Thus, software should be 
written in a data acquisition oriented language 
with the most common tasks pre -programmed 
by subroutines. 

6. Typical applications to be easily programmed 
on a 4K PDP-8 family computer. 

Software Results 

The result has been the development of VIDAC --a 
real-time assembly-language programming system 
for the VIDAR 5206. The system is built around a 
relocatable assembler, a linking loader, and adata­
acquisition oriented subroutine library. 

Mter much study, an assembly level language was 
chosen instead of a compiler level language. Real­
time data acquisition and manipulation problems are 
intimately associated with what is happening in the 
computer. Compiler level languages were all 
found to be too far removed from the real-time 
world to be easily adapted or extended to real time 
processing. 

A second factor was the ease in which logical func­
tions and manipulations can be handled by an assem­
bly language. VIDAC concentrates on the logical not 
the mathematical manipulation of data. In addition, 
the efficiencies of speed and space available to the 
non-expert user with assembly language were an 
added bonus. 

VIDAC is not an assembler in the strictest sense in 
that each mnemonic instruction generates only one 
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machine instruction. VIDAC uses a fleshed -out ver­
sion of PAL III with the addition of 19 convenient 
pseudo operations. An automatic paging feature 
eliminates the novice programmer's problems with 
only 256 directly addressable locations. VIDAC pro­
grams are written as if 4096 locations were directly 
addressable. 

The output of the VIDAC Assembler is a relocatable 
binary tape. The VIDAC Linking Loader automati­
cally links together the user's program and the 
VIDAC system subroutines. This allows the pro­
grammer to use any VIDAC system subroutine or 
any subroutine he has created without the usualprob­
lems of off page references and subroutine locations. 

The VIDAC software package contains over 50 pre­
written subroutines to handle the.control, acquisition, 
manipulation and recording of data on a real-time 
basis. A typical data acquisition system will use 
about 30 of these routines. 

The main subroutine in the VIDAC library, referred 
to as the VIDAC System Module, is capable of per­
forming all the tasks common to the majority of 
data acquisition and control applications. The 
VIDAC System Module is a real-time monitor pro­
gram capable of handling three distinct types of 
program interrupts associated with real-time pro­
cessing and control. These interrupts represent 
the most demanding aspect of the tasks which the 
System Module must perform. At the first level, 
there are a large number of program interrupts 
which go back and forth between the selection and 
measurement front-end, the Teletype, a software 
clock, and the various I/O peripherals. Next, the 
System Module itself generates program -independent 
time interrupts that allow unconditional jumps to 
pre -selected program segments at preset time in­
tervals. Naturally, this type of interrupt requires 
saving the state of processor, including the contents 
of the Floating Point Accumulator, to allow restora­
tion at a later time. Finally, the System Module 
must service Priority Process Interrupts in which 
the user may, on a priority basis, interrupt the pro­
gram and request a reading of individual input chan­
nels from the Teletype keyboard. 

The system module contains all the subroutines 
necessary to randomly select and measure any se­
quence of input points. These subroutines fully con­
trol the data acquisition hardware, including the 
many optional hardware modules. 

Additional subroutines allow the user to easily es­
tablish a multilevel real-time interrupt sequence to 
easily handle the variety of timing requirements of 
various data acquisition routines. 

In addition to handling all I/O and program inter­
rupts, the VIDAC System Module also contains a 
functionally complete set of Floating Point Arithme­
tic Subroutines which handle 8 decimal-digit numbers 

-38 +38 
over the range of 10 to 10 . The speeds of the 
Floating Point operations vary between 8 and 15ms. 



Experience has shown that these times are quite com­
patible with real-time data acquisition and manipula­
tion requirements. Floating Point subroutines elim­
inate number system scaling problems that would 
otherwise plague a novice programmer. 

The balance of the VIDAC Subroutine Library con­
tains additional routines for integer arithmetic, data 
conversion for non-linear functions, utility routines 
for optional peripherals such as the DEC DF32 disc 
memory, field conversion routines with FORTRAN­
like format specifications, and other miscellaneous 
logic routine s . 

Another important aspect of the VIDAC system is that 
the large library of relocatable subroutines allows a 
simple logical programming framework to be fol­
lowed for each data acquisition problem. This frame­
work is directly related to the real-time problem, 
with minimum consideration of the computer. Fig­
ure 3 is a listing of a complete user program to mea-

Figure 1 
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sure and type out 200 channels of data. This exam­
ple demonstrates the basic programming framework 
that can be used with VIDAC to set up much mCHe 
complicated data acquisition and manipulatio~ tasks 
Figure 4 contains segments of various user's pro­
grams showing the ease of accomplishing various 
other real-time functions and adding them to the 
basic programming framework. 

Thus, the task of programming a highly complex and 
sophisticated real-time hardware system has been 
reduced to a straightforward sequence of writing an 
assembly-language program using the problem­
oriented VIDAC language (over half of a typical such 
program consists of "calls" to library subroutines), 
assembling the program via the one -pass VIDAC 
Assembler to a relocatable binary tape, loading this 
program together with the VIDAC System Module and 
any other library or user subroutines required, and 
pressing START. 

VIDAR 5206 



DC VOLTAGES OR 
FREQUENCIES, RESISTANCES 

r-- --, 
I VIOAR 661 I 
I DIGITAL I 

PRINTER 
I I L ____ ...J 

PRINTED 
PAPER TAPE 

r-----
I VIDAR 624 
I DIGITAL 
I CLOCK 

L __ 

r-----' 
II DEC DF32 

DISC 

I L _____ J 

r-V;AR ;;-, 

I TAPE PUNCH I 
I WITH VIDAR 1102 I 
I DRIVER AND 

POWER SUPPLY I L _____ J 

PUNCHED 
TAPE 

Figure 2 

VIDAR 610 
LOW-LEVEL 
SCANNER 

r-- --, 
I VIDAR 531 I 
I OHMS-TO-DC I 
I CONVERTER I 
L ____ J 

VIDAR 520 
OR 521 

INTEGRATING 
DIGITAL 

VOLTMETER 

VIDAR 653-06 
SYSTEM 
COUPLER 

VIOAR 667 
PROGRAMMED 

DATA 
PROCESSOR 

TELETYPE 
MODEL 33 

TELETYPE-
WRITER 

PRINTED PAGE 
AND PUNCHED 

TAPE 

VI DAR 5206 Block 
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r-----' 
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AC SIGNAL c== 
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L _____ J 

VIOAR 556 
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TAPE READER 

r-----' 
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L-____ J 
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I INCREMENTAL I 
I MAGNETIC I 

TAPE I RECORDER I L _____ J 
MAGNETIC 

TAPE 

Diagram 

AC 
VOLTAGES 



* * VI DAC SAt1PLE USER PROGRAM 2 
* 
* PROGRAM SCANS AND TYPES OUT CHANNELS 0-199 

* 
SAMPL2: 

* 

ENTRY 
CALL 
TAD 
DCA 
DCA 
CALL 
PAR 

SAMPL2 
O,\OP 
=-D200 
DCTR 
CHAN 
1,VIDAR 
CHAN 

INITIALIZE THE SYSTEM MODULE 
MINUS NUMBER OF CHANNELS 
TO A DOt·iN COUNTER LOCATION 
SET FIRST CHANNEL TO ZERO 
START INTEGRATION OF CHANNEL ZERO 
CHAN IS THE BASE OF THE PARAMETER VECTOR 

* THE FOLLOi·7I NG I S A LOOP EXECUTED FOR EVERY CHANNEL 

* LOOP: 

* 

I SZ 
CALL 
PAR 
CALL 
DCA 
CALL 
PAR 
CALL 
CALL 
PAR 
PAR 
CALL 
PAR 
PAR 
ISZ 
JMP 

CHAN 
1,VIDAR 
CHAN 
O,VRSLT 
CH 
1,\STO 
RSLT 
O,\TTO 
2,IOUT 
CH 
IFMT 
2,FOUT 
RSLT 
FFMT 
DCTR 
LOOP 

ADD ONE TO CHANNEL NUMBER 
ST.ART INTEGRATION OF NTH CHANNEL 

GET THE RESULT FROM THE N-l TH CHA~~EL 
N-l IS IN THE ACCUMULATOR SO SAVE IT 
THE RESULT IS IN THE FLOATING AC SO SAVE IT 

AC IS CLEAR SO TYPE A RETURN"-LI NE FEED (CODE 00) 
PRINT THE CHANNEL NUMBER 
FI RST ARGUMENT I S ADDRESS OF NUNBEn TO PR! NT 
SECOND IS ADDRESS OF FOF~AT WORD 
NOt., TYPE THE RESULT 
FIRST ARGUMENT IS THE ADDRESS OF NUMBER TO P2INT 
SECOND IS ADDRESS OF FOP~AT WORD 
CHECK THE DOvm COUNTER TO SEE IF MORE CHANNELS 
THERE ARE MORE CHANNELS LOOP AGAIN 

* ALL THE CHANNELS HAVE NO~ BEEN PRINrED 

* CALL O,\CK WAIT FOR ALL PRINTING TO CEASE 
HLT THEN STOP THE COMPUTER 
JMP SAMPL2 RESTART PROGRAM IF OPERATOR HITS CONTINUE 

* * THE FOLLO\tl! NG I S ALL THE VARIAELE STORAGE 

* DCTR: 

CHAN: 

CH: 
RSLT: 
IFMT: 
FFMT: 
* 

BSS 
IFF 
BSS 
PAR 
PAR 
PAR 
BSS 
BSS 
PAR 
PAR 

END 

1 
4 
1 
1 
7 
2 
1 
3 
0400 
1206 

DOvm COuNTER FOR COUNTING CHANNELS 
PA~~ETER VECTOR 
CHANNEL NUMBER 
FUNCTION 1 - DC 
RANGE 7 - AUTOP~NGING 

RESOLUTION 2 - 16.6 MS 
CHANNEL RETURNED FOR PRINTOUT 
FLOATING POINT RESULT 
INTEGER FORMAT HORD FOR AN 14 FORMAT 
FLOATING POINT FOFl1AT FOR AN FIO.6 
NOTE THAT 12 OCTAL IS 10 DECIMAL 

Figure 3 Typical Program 
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* * SELECTED AUTOMATICALLY EVERY 5 MINUTES 

* ENTRY SAr';jPL5 
SAMPL5: CALL 0,\OP INITIALIZE I/O 

CALL 2,SETIi"l SET THE THiE ROUTINES TO GO TO LOCATION 
PAR =060 LA9~LED WORK I~ 60 SECONDS 
PAr; l'lORK 

* * FOLLOWING IS CALLED AUTOMATICALLY EVERY 300 SECONDS (5 MINUTES) 

* WORK: 

* 

CALL 
PAR 

2,SETIM SET UP SO WE WILL RETUqN HERE IN 5 MINUTES 
=D300 

PAR '.'lORK 
CLA FIRST CHANNEL 
DCA CHAN 
TAD =-DI00~ NUMBER OF CHANNELS TO AVERAGE 
DC.l\ I NCX 
CALL 0,\CL CLEAR FLOATING POINT ACCUMULATO~ 
CALL 1,\STO SAVE IT IN THE SUM 
PAR SUM 

* NOW CO~?UTS THE AVERAGE 

* CALL 1,\FAD PLACE THE SUM IN THE F"PAC 
PAR SU;'1 
CALL 1,\F"DV DIVIDE BY THE NUMBER OF" CHANNEL S 
PA~ TEN 
CALL 1, \ STO AND STORE THE RESULT 
PAR AVG 

* NO~<J PRINT OUT THE RESULTS 

* CALL 1, TYPE PRINT "HIGH" 
PAR" TXTt 
CALL 2,FOUT PRINT OUT THE HIGH RESULT 
PAR HIGH 
PAR F"MTl 
CALL I, TYPE PRINT "L 0 !J.! " 

PAR TXT2 
CALL 2,F"OUT Pf1INT OUT T:!E LOt>! RESUL T 
PAR LO~'J 

PAR F"t1T! 
CALL 1, TYPE PRINT "AVERtI.GS" 
PAR TXT3 
CALL 2,F"OUT PRINT OUT THE AVERAGE 
PA,R AIJG 
PAR F"MT) 
CALL 0,\CK \tJAI T FOR ALL I/O TO COMPLETE 
HLT AND H~L T 
.,.lMP SAi'1PL3 EXSCUTE P~OG~AM AGAIN IF" OPER'\TOR HITS CONTINU~ 

Figure 4 Typical System Timing and Data Manipulation Routines 
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ABSTRACT 

EXPO is a PDP-S program which reads various kinds of data from 
experimental apparatus, optionally logs data on magnetic tape, 
and accumulates one - or two - dimensional histograms of select­
ed variables; these histograms may be displayed on the teletype 
or scope, simultaneous with data acquisition. From the keyboard 
the user defines what variables are to be histogrammed, and 
under what conditions; variable names are symbolic and numerical 
parameters are decimal. Also from the keyboard the user may call 
for teletype or scope output with some control of format. Because 
of its flexible user-oriented input-output, EXPO has proven to be 
very useful in debugging and utilizing complex apparatus in a 
high-energy physics experiment; it is likely to be useful in 
similar experimental situations in science or engineering. The 
paper includes a useful general discussion of interrupt handling 
on the PDP-So 

INTRODUCTION 

How to Read This Paper 

The section on "Basic Structure" gives an overview 
of the progr"'m EXPO. "Input-Output Interrupt Hand­
lingl1 should be of general interest to the serious 
reader, whereas "On-line Analysis" is perhaps of 
more special interest to experimenters as a sug­
gestion of useful on-line compilation-like tech­
niques and as a guide to the actual use of EXPO, 
which will be available from the DECUS program 
library. An appendix on operating instructions 
details the use of the various keyboard control 
options. 

Required Hardware 

EXPO requires a PDP-S with 4K of core, hardware 
multiply/diVide, and a teletype; also needed is 
an interface to read experimental data. A mag­
netic tape unit for data-logging is optional. A 
standard scope, while optional, is extremely use­
ful. EXPO will also handle as an optional device 
a point-plotter which shares the scope's x - and 
y - buffers. (The plotter should interrupt when 
ready, but the scope shouldn't.) 

Program Size 

EXPO occupies cells 0-7177S (with a few holes), and 
the rest of core is used for magtape buffers and 
histogram storage. In many applications it will 
be possible to have a considerably larger histogram 
area; this will be discussed later. 

BASIC STRUCTURE 

For those familiar with the terms, the basic strue­
ture of EXPO may be described as a multiprogram­
ming scheme with different tasks connected to the 
various interrupts; the foregra~nd consists of 
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tasks which read data, log data on magtape, 
and handle other external devices, while the back­
ground consists of a routine which samples the in­
coming data and constructs histograms from this 
data. This succinct description is offered as 
orientation to some readers; the technical jargon 
of multiprogramming will not be used in what 
follows. 

EXPO handles a situation common in many experi­
mental arrangements: Data from some apparatus 
arrive at a high rate, either continuously or in 
bursts, and must be logged on magtape (for later 
analysis) as efficiently as possible to avoid 
excessive "dead-time" (time when no data can be 
acquired because the computer is busy logging 
previous data). At the same time, rather extensive 
on-line analysis of this data is desired in order 
to monitor the quality of the acquired data and to 
suggest possible changes in data-taking strategy. 
This on-line analysis should not itself create 
large dead-time; first priority must be given to 
acquiring and logging data for off-line analysis. 
This implies that the on-line analysis be performed 
on only a fraction of the data when data rates are 
high; this should of course be an unbiased sample. 

Efficient data-logging is achieved by EXPO through 
double-buffering: The data-reading routine stores 
directly into one of two magtape buffers. As soon 
as one buffer is full its transfer onto magtape 
(through data-break in our case) is triggered; 
while this record is being written, the data-read­
ing routine stores into the other buffer. In this 
way there will be significant dead-time only if 
data rates exceed tape-writing speeds. 

For the on-line analysis of sample data the analysis 
routine must have access to two parameters in the 
data-reading routine: the pointer which shows where 
data was most recently stored in the tape buffers, 
and a flag (i.e., a cell whose contents are 1 for 
"set" or 0 for "resetfl) which indicates that some 



data have been read and are available for sampling. 
When the analysis routine is idle with no data 
available to work on (for example, before the first 
data arrive), the routine simply waits in an in­
finite loop asking vainly whether the flag is set. 
(See Fig. 1.) When a data interrupt occurs this 
loop is interrupted while the data reading routine 
stores new data into the tape buffer, advances the 
pointer to be ready for the next data interrupt, 
sets the flag, and exits from the interrupt. This 
brings us back to the loop, where it is now found 
that the flag is set, whereupon the flag is reset 
and data located by the pointer are moved (copied) 
from the tape buffer to a "sample buffer". (After 
moving, the flag is checked. If set, the flag is 
again reset and the data moved using the new pointer 
value. This is repeated until the flag stays reset 
during the move, insuring that the data in the tape 
buffer weren't changed during the move.) Once the 
data are in the sample buffer the analysis routine 
may spend a long time digesting the data, including 
making histograms, during which time many more data 
interrupts may occur with attendant data-logging; 
these data are lost to the one-line analysis but 
saved for off-line analysis. When the sampled data 
have been fully analyzed, the analysis routine 
returns to the loop, asking whether the flag is 
set for more data. 

The important thing to notice is tpat, with the 
exception of one instruction to set the flag, the 
data-reading routine carries none of the burden of 
the sampling procedure; hence it is freed to per­
form the vital data-logging function as efficiently 
as possible. 

It may be useful to point out that just as the data­
reading routine is initiated by a data interrupt, 
so the on-line analysis is initiated by a software 
pseudo-interrupt, the condition of the flag being 
set. This pseudo-interrupt is triggered by the 
data-reading routine (by setting the flag). If it 
should be desirable not to waste time idling in the 
flag-test loop, it would be easy to connect the 
analysis routine to an actual hardware interrupt. 
All that is needed is an external flip-flop, con­
nected to the interrupt bus, which could be set by 
a command from the data-reading routine. (The 
connection to the interrupt bus should be gated to 
permit the analysis routine to disable this inter­
rupt once acknowledged.) 

In addition to the tasks performed by the data-read­
ing, data-logging, and on-line analysis routines, 
there are other tasks initiated by interrupts from 
the teletype (keyboard and typer) and from the 
plotter. The keyboard interrupt actually may be 
thought of as many different interrupts, since de­
pressing different control characters initiates 
different tasks. 

In the next sections sufficient details of this 
overall scheme are given, with reference to the \ 
program listing, to permit the reader to use and 
modify the program. The program listing will be 
available through the DECUS library. EXPO is 
written in the language of the Lawrence Radiation 
Laboratory assembler, DECUS 5-13. This is similar 
to but less flexible than PAL; however, because 
assembly is performed on a large computer, a large 
symbol table is permitted and a very useful cross­
reference listing is provided. In addition to the 
listing there will also be available a BIN "98"ger 
tape and the source card deck. 
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INPUT! OUTPUT INTERRUPT HANDLING 

Fig. 2 shows a more detailed flow diagram of the way 
EXPO handles input/output through interrupts from 
the various external devices. Initially the pro­
gram is started at DRONE, address 1200. DRONE en­
ables the interrupt and goes into an infinite loop 
waiting for data to histogram. When an interrupt 
occurs, a search is initiated to determine which 
external device was responsible; this is done in 
INTSCH on p. 200 (page 200 is the page whose initial 
address is 2008) without disturbing the AC (accumu­
lator) or L (link). Once the device has been iden­
tified, the AC, L, and return address (contained in 
cellO) are saved in cells unique to the device. 
Each device saves the registers in its own stack, 
which permits another device to interrupt before 
the first device-handling routine is finished, 
without losing the original return address to DRONE. 
The only other necessary precaution is to prevent 
the same device from interrupting lLs own interrupt­
handling routine and thus overwriting the saved 
register stack, which would induce an infinite loop. 
In the case of the teletype (both keyboard and type~ 
and the plotter,. the interrupt device flag is clear­
ed before the ION is given, thus preventing a second 
interrupt from the device. In the case of the mag­
tape and data, the ION isn't given until servicing 
is complete, since these devices must be handled 
quickly without interruption. In Fig. 1 the nota­
tion "return" includes restoring the saved regis­
ters. (If no device is identified, INTSCH goes to 
NOINT at 4760, which rings the teletype bell in 
warning.) 

Data 

If a data interrupt occurs, a check of a "tape" bit 
in the data is first made to see whether to log 
this event on magtape (Fig. 2). If so, DATA (p.3600) 
reads from the data interface into the tape buffer 
(and triggers tape output if the buffer is now ful11 
then sets the "move" flag. The "move" flag (MOVEFL) 
tells DRONE to move newly acquired data from the 
tape buffer to the sample buffer for histogramming. 
If the new event is not to be logged on tape and 
the sample buffer is empty, DATA reads directly into 
the sample buffer and sets the "sample" flag 
(SMPFLG), which tells DRONE that the sample buffer 
contains data to histogram. This is slightly more 
general than the simplified scheme discussed above 
and shown in Fig. 1, where for clarity it was 
assumed that all events would be logged. Note that 
a full tape buffer may hold many events, while the 
sample buffer holds only one. 

If DRONE during its infinite loop finds the "sample" 
flag set, UNPAK (p. 5000) unpacks the compact sample 
buffer data into as many separate variables as are 
contained in the data. For example, one 12-bit 
work might unpack into two six-bit pulse heights; 
another word might unpack into twelve separate log­
ical variables, each with value 0 (false) or (true). 
After unpacking, the sample buffer is no longer 
needed, so the "sample" flag is reset, enabling DAT;, 
to reload the sample buffer. Then IF (p. 5200) 
checks whether selected variables fall into the 
ranges previously defined as permissible by the 
user; if so, HIST (p. 3200) histograms this event 
in those correlations previously defined by the 
user and then returns to DRONE. 

If DRONE encounters the "move" flag set, it sets 
the "sample~! flag to prevent W\T/l frorr~ reading into 



the sample buffer. Next it resets the "move" flag 
and moves data from the tape buffer to the sample 
buffer. After moving the data DRONE asks whether 
the "move" flag has been set by DATA during the 
transfer. If so, a new attempt is made to transfer 
the data, since the tape buffer may have changed 
part way through the transfer. When the "move" 
flag is found still reset after the moving, the 
transfer is successful and unpacking of the sample 
buffer begins. 

Typer output is performed from buffers containing 
character strings. Histogram output requires con­
siderable computation to set up each line of type, 
and this is done one line at a time so that the 
buffer may be small. DRONE in its cycle checks 
Whether histograms are being typed out and, if so, 
whether the present line has been fully typed. If 
needed, DRONE call TMXOUT (p. 5600) to set up the 
next line and initiate output. The actual charac­
ter-by-character typing under interrupt control 
from the buffer is handled not by DRONE, but by 
TRIGR (p. 600) and by TYFT (p. 1000); these routines 
will be described in detail later. During typing 
the interrupt is off for only 40 microseconds per 
character. 

Scope and Plotter 

Suppose for the moment that the system includes a 
scope but no point plotter. If DRONE in its cycle 
sees that the scope is being used, it calls a 
scope-handling routine to set the scope's x - and 
y - buffers and intensify to display the next 
point; then EXPO goes back to DRONE. Hence while 
the scope is in use a new point is plotted each 
time DRONE completes a cycle; the entire scope 
display with all its points is repeated continuously 
to provide a steady picture. One of the scope-hand­
ling routines is TITLEI on p. 3000 which writes 
character-string titles. (These strings have the 
same format as those used for typing out; see 
description below.) TITLEI furnishes successive 
characters to OSCHAR (p. 1400) which plots the~ as 
a 3 x 5 matrix of points. (OSCHAR is a Lawrence 
Radiation Lab subroutine.) The character patterns 
are stored on p. 2400, one character to two words; 
only 15 of the 24 bits are meaningful. The other 
main scope routine is POINTS (2300) which plots a 
column or row of histogr~m data as a graph, la­
beled by TITLEI. The vertical scale of the graph 
is determined by the switch register setting, Whose 
decimal equivalent appea~s as part of the labelling; 
this scaling feature is very useful. (The rather 
time-consuming DIVIDE routine (cell 6543) Which 
sets up the scaling factor is entered only if, 
after plotting the last of the pOints, the switch 
register is found to have changed from its previous 
value. In that case the next entire display cycle 
will use the new scale factor.) 

The point plotter must be handled somewhat dif­
ferently. It uses the same x - and y - buffers 
as the scope but differs vastly in its response 
time: the scope can plot 105 pOints/sec, whereas 
the plotter can complete 5 pOints/sec. Hence the 
scope is ready every time DR01B comes aro~nd and 
should not be tied to the interrupt bus, but the 
plotter must interrupt when ready. If the plotter 
is used, DRONE does not enter the scope routines; 
these are entered instead from a plotter interrupt 
as shown in Fig. 2. A plot command issued after 
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x and yare set causes the plotter to move the pen 
to the new location, plot, and eause an interrupt 
upon completion. In order to make a plot there 
must first be a scope display running; then a 
keyboard command sets the necessary flags (PLTFLG, 
PLFLGI) so that the next complete series of scope 
points goes onto the plotter. After one pass 
through all the points the plotter is disengaged 
and EXPO reverts to the fast scope display. 

Keyboard 

Initially EXPO waits in DRONE for instructions from 
the keyboard. Depressing a key causes an interrupt 
which is handled by KEYBD (p. 400); see Fig. 3. 
If the CTRL key is depressed together with a letter 
from A - Z (but not M; CTRL-M = 215 = carriage 
return), KEYBD types out the letter preceded ·by an 
asterisk and computes a jump to one of the control 
routines; otherwise KEYBD merely echos back the 
character to permit writing comments. The control 
routine addresses are listed starting at 444; 
unused letters correspond to KBDRET ( at 552) which 
is the return from the keyboard ~nterrupt. 

Some control routines, such as CLEAR (clear histo­
grams and event counters), do not require further 
information from the user to perform their tasks. 
In that case, upon completion of the task the 
routine simply jumps to KBDRET to exit. Other 
control routines, such as HALT (halt after N eventsh 
require additional input: in this case, a four­
digit decimal number N specifying the number of 
events to be histogrammed before halting. To 
acquire this needed data, HALT (cell 4734) calls 
GETNAM (p. 4400); see Fig. 3. GETNAM modifies 
KEYINT so that future keyboard interrupts will 
take an ~bnormal JMP* KEYINT (at cell 407) into 
the GETNAM routine at GTNM (cell 4412), where the 
new character is read and added to the input string; 
then exit to KBDRET is taken to await the next 
character. A space or CR (carriage return) signals 
GETNAM that the input character string is complete, 
in which case instead of exiting through KBDRET 
the GETNAM subroutine restores KEYINT to its normal 
value and finally returns to the HALT routine. 
There the input data is used to complete the task 
of the HALT control routine; the decimal input 
string is converted to octal, made negative, and 
used to initialize an event counter. Then return 
is made through KBDRET. The next keyboard inter­
rupt will take the normal path through CNTRL (cell 
410 ). 

Magnetic Tape 

TRGTAP ( p. 6600) sets up the calling sequence to 
the tape handler RECORD (p. 7000). The non-stan­
dard magtype interface was designed and built at 
CalTech; transfers occur through 3-cycle data 
break, and the word count and address registers 
are at 7776 and 7777. Tape commands are given 
by issuing a 6734 instruction for unit 2 (or 6714 
for unit 1) together with appropriate bits in the 
accumulator to specify write or read, rewind, set 
ready, etc. Completion of transfer on read or 
write generates an interrupt which is identified 
in INTSCH by a 6721 instruction (6701 for unit 1). 
A fe~ other lOT's are used to check parity, etc. 
RECORD is entered with AC bits to specify read or 
~Tite, unit 1 or 2, interrupt on or interrupt off 
operation. TAPE, the main subroutine within 
RECORD, is also occasionally called directly by 
EXPO for unusual operations such as backing up over 



a record. The subroutine RECORD is included in the 
listing as an aid to determining What kind of tape -
handling routine other PDP installations will need; 
some of the programming techniques used in RECORD 
may also be of general interest. 

It should be pOinted out that DATA (p. 3600) calls 
TRGTAP in such a way that tape output is double­
buffered with consequently very little dead-time 
due to logging the data on magtape. 

Before calling TRGTAP, DATA call TWALT (at 1144) 
to check Whether the previous tape operation has 
been completed. If so, TWAIT returns immediately. 
If the operation has not been completed, TWAIT 
waits for completion with the interrupt off, then 
simulates a magtape interrupt to service~e tape, 
after which return is made to DATA. 

More On Typing Out 

There is a special problem associated with the 
typer Which must be explained in order for the 
solution to seem relevant. Suppose EXPO is typing 
out a histogram, one line at a time as described 
above, When EXPO discovers upon reading a new 
event that it must type out an error message. 
Moreover, suppose the error is such that EXPO 
should continue acquiring data rather than waiting 
for completion of the histogram output line. In 
order not to lose the error message it is necessary 
to link the new character string (the error message) 
to the old string (the histogram line) in such a 
way that the error message will be typed automati­
cally When the old line is finished. Note that in 
general these two strings are not stored contigu­
ously in core. 

The problem of linking successive strings together 
is handled by the subroutine TRIGR (p. 600). Single 
character typeout from a string under interrupt 
control is performed by TYPT (po 1000); when TYPT 
has typed the last chRracter of the string it 
checks the chain of links generated by TRIGR to 
see whether another string must be typed. 

LINK¢ 

The calling sequence for TRIGR is as 
follows: 

JMS TRIGR 
¢ 
ADRES¢ 

to link character strings. 
address of first character 
of string. 

The first call to TRIGR finds ACTFLG reset (equal 
to zero), indicating that the typer is unused. 
TRIGR sets ACTFLG (to 1), saves the address of 
LINK¢ in LO* (link zero address) and LL* (last 
link address), initializes the string pointer 
ADDR to ADRES¢, and transmits the first character 
of the string (Which must not be a special character 
such as carriage return). Then the last link, in 
this case LINK¢, is set to 1 and TRIGR is finished. 

After on,:?-tenth second the teletype has typed the 
first character, the one transmitted by TRIGR. 
This completion causes a typer interrupt to TYPT 
which turns the interrupt on after merely saving 
registers and clearing the typer flag. Using the 
pOinter ADDR, TYPT gets the next character in the 
string, transmits it, and returns. Each succeeding 
character is typed in this way by TYPT until $ is 
found, signalling the end of the string; this 
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causes a jump to DONE (cell 1044). Here the con­
tents of the original link LINK¢ are examined (in­
direct through LO*). If there has been only one 
call to TRIGR, LINK¢ still contains 1, which tells 
TYPT to reset ACTFLG and LINK¢ (to zero) to signal 
completion, and typing is finished. 

On the other hand, suppose during typing of the 
string stored at ADRES¢ there comes another call 
to TRIGR: 

JMS 
LINKL 

TRIGR 
o 
ADRESL 

In this case TRIGR finds ACTFLG set (typer active) 
and must therefore link this new string to the old 
one. Remember that LINK¢ contained 1 while the 
ADRES¢ string was being typed out, and LINK¢ was 
reset to ¢ on completion. TRIGR now changes LINK¢ 
to contain not 1 but the address of LINKL. The last 
Hnk address, LL*, is also set to the address of 
LINKL. Then When TYPT reaches DONE it finds in 
LINK¢ (indirect through LO*) not 1, but the ad­
dress of LINKL, the next link in the chain of 
calls to TRIGR. TYPT resets LINK¢ to show that 
the first string is finished, puts the LI1~L ad­
dress in LO*, and initializes the string pOinter 
ADDR by getting ADRESL from the cell LINKL + 1. 
Then the first character of the new string is 
transmitted. In this wayan arbitrary number of 
calls to TRIGR will be linked together, and the 
character strings will be typed out in order. 

If it is desired to type out a string completely 
before proceeding to other tasks, the following 
sequence should be used: 

LINK¢ 

IOF 
JMS TRIGR 

¢ 
ADRES¢ 

ION 
TAD LINK¢ 
SZA CLA 

JMP *-2 
NOP 

Turn off interrupt to prevent 
simultaneous entries into TRIGP. 

Interrupt on to await completior., 
Get link. 
Skip if link = ¢j string has 
been typed. 
Not done yet, go back and wait. 
All finished. 

The characters in the strings are packed two to a 
word; these are 6-bit characters formed by sub­
tracting octal 24¢ from ASCII codes. Octal 76 and 
77 are special 6-bit characters: 76 induces TYPT 
to issue a carriage return and line feed, while B 

word 77xx tells TYPT to type xx number of spaces. 
A dollar sign $ (244- 24¢ = ¢4 in 6-bi t form) ter-· 
minates a string. The first character of a string 
must not be a special character (76,77,¢4) since 
no checking of its nature is performed before 
transmission; hence to type only a carriage return 
the string must consist of ¢¢76 ¢4¢¢, which will 
type an extra space before giving the CR and LF. 

For typing single characters there is a special 
routine TYPE (cell 504 ).. TYPE takes the character 
and constructs an appropriate character string in 
TT (cell 543), then calls TRIGR. TYPE is used to 
echo text input from the keyboard. To avoid cer­
tain timing problems that can arise if keyboard 
text arrives too rapidly, TYPE does not echo if 
the previous character has not finished typing out: 
TYPE first checks whether its previous request to 
type string TT has been completed and, if not, 
simply throws away the character. Othen'ise the 



chain of TRIGR calls would contain an infinite 
loop, since the string TT would be linked to it­
self. (It might be better to have TRIGR do this 
checking.) 

ON-LINE ANALYSIS 

HRving described above the input/output handling, 
we now turn out attention to the details of the 
on-line analysis part of EXPO. As mentioned 
briefly above, UNPAK (p. 5000) unpacks the com­
pressed data for an event, IF (p. 5200) determines 
whether the data fit the criteria previously spec­
ified by the experimenter and, if the event is 
acceptable, HIST (p. 3200) increments the histo­
grams specified by the experimenter. These histo­
grams together ~~th a few overall event counters 
(number of data interrupts, number of events 
analyzed on-line, etc.) may be examined at any 
time by the experimenter in order to monitor the 
performance of the experimental apparatus and, in 
case of malfunction, to isolate the trouble. The 
great power of EXPO in monitoring and trouble­
shooting derives from the fact that the permissible 
IF criteria and HIST specifications are quite 
general, and may be created or changed rapidly and 
easily from the teletype keYboard. This is poss~ 
ible because the sample buffer is unpacked into 
separate variables whose locations are specified 
by a dictionary of four-character names contained 
in EXPO; keYboard reference to these mnemonics 
permits on-line compilation of the IF and HIST 
specifications. 

The compressed data contained in the sample buffer 
may be of several types, which are unpacked by 
UWfAK in different ways. One l2-bit word of com­
pressed data may represent twelve "logical" vari­
ables, each of which has the value 0 or 1. 
1-~nother word may consist of two 6-bi t "analog" 
variables resulting from analog-to-digi tal con­
version. Both logical and analog variables are 
single-valued variables; to each variable corre­
sponds one number specifying its value for the 
current event, 0 of 1 for the logicals and a range 
o to 63 for the analogs. 

In high-energy physics experimentation there is 
another useful kind of variable, the multiple­
valued variable; this too is handled by UNPAK. 
This kind of variable mayor may not be useful 
in other fields. These variables arise naturally 
when describing the passage of several particles 
through an array of particle detectors (called a 
"hodoscope") designed to determine the spatial 
location of the particles. If we number the 
hodoscope detectors (1,2,3, ••• N) we can specify 
a location by giving the number of the detector 
struck by a particle. If there can be more than 
one particle, we must give a list of detector 
numbers; that is, the variable representing the 
hodoscope is multiple-valued. In the compressed 
data an array of twelve detectors would be re­
presented by a l2-bit word whose individual bits 
specify whether the corresponding detector has 
been struck (1) or not (0). If this word were 
010001000001 ( = 2101 octal), then UNPAK would 
produce a list of detector numbers (2,6,12) and 
a count of 3 particles, and this information 
would be stored in an area referenced by the name 
of the hodoscope. UNPAK will handle longer hodo­
scopes by crossing word boundaries; in the dis­
tributed version of EXPO there are two hodoscopes 
names MHA and RHA of 15 and 32 detectors respec-
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tively. 

There are two dictionaries of variRble mnemonics, 
one for single-valued variables and one for multi­
ple-valued variables. The dictionary of single­
valued variables is found in SNAMES (p. 6000). 
Suppose for simplicity there were only three such 
variables, with mnemonics FRST, SCND, and THD. Then 
the structure of SNAMES would be 

6000 6000 SNAMES PZE * 
6001 4662 ALF rn} 6002 6343 ALF SC 

6003 0064 ALF T 

first half of name 

6004 6364 ALF :} 6005 5644 ALF 

6006 5044 ALF HD 

second half of name 

6007 0000 FRST PZE } 6010 0000 SCND PZE 

6011 0000 THD PZE 

UNPAK stores into 

these cells 

(The alphanumeric characters are 6-bit characters 
formed by subtracting 240 octal from the ASCII 
codes.) 'Nhen the user types SCND in defining the 
IF event criteria or the HIST histogram speci­
fications, the subroutine SEARCH (at 4461) looks 
for SC in the first part of SNAMES and when found 
checks that ND is in the corresponding second part 
of SNAMES~ EXPO then knows that UNPAK will place 
the value of SCND in cell 6010; that is, the add­
ress of the variable SeND is 6010, and this add­
ress is used in the compilation. 

If a mnemonic is not found in the SNAMES dictionary 
SEARCH looks in MNAMES, the dictionary of multiple­
valued variables starting at cell 636. 

The structure is similar to SNAMES: 

636 0636 MNAMES PZE * 
637 0055 ALF M} first half of 

name 
640 0062 ALF R 

641 5041 ALF HA} second half of 
name 

642 5041 ALF HA 

643 0000 MHA PZE } UNPAK places here 
the number of 

644 0000 RHA PZE particles which 
hit MHA and RHA 

645 0647 MHMUL~} addresses of 
lists 

646 0654 RHMULT 

647-653 MAMULT BSS 5 up to five parti-
cles allowed in 

654-660 RHMULT BSS 5 each hodoscope 

When SEARCH finds MHA (say) in MNAMES it acquires 
not only the address 643 but also the address 647 
where the list of traversed detectors will be built 
up by UNPAK. This supplementary address (the list 
location) is set to zero if the name is found in 
SNAMES; hence the histogramming routine may deter-



mine what kind of variable is in use by checking 
whether this supplementary address delivered by 
SEARCH is zero or non-zero. In EXPO this infor­
mation is in fact referred to as KIND-the kind of 
variable. 

The IF Function: Event Selection 

The occurrence of a data interrupt is usually dete~ 
mined by hard-wired circuitry outside the computer. 
It is often essential in trouble-shooting or moni­
toring to analyze on-line some special subset of 
the data (without of course disturbing the logging 
of all the data). This need is met by the IF 
routine (pa 5200), which checks each event against 
a compiled list of criteria in IFLIST (4102-4137). 
If all criteria are met, the event is analyzed; 
otherwise the event is ignored. Even if it were 
permissible to stop normal data-taking by modify­
ing the hard-wired circuitry, it would be difficult 
to set up with hardware the complex criteria which 
may be easily compiled into IFLIST .• 

The IFLIST compilation is performed by IFIN 
(p. 4000). IFIN reads specifications from the 
teletype keyboard of three types: coincidence, 
veto, and analog. The coincidence requirement 
is that a named variable be non-zero, veto require­
ment is that a named variable be zero, and the 
analog requirement is that a named variable have 
a value which lies within a given range. These 
various types may be combined, thus producing a 
very complex event specification. 

IFIN is entered by a keyboard interrupt generated 
by depressing the CTRL key and hitting the I (for 
IF). IFIN then responds by typing COIN (for coin­
cidence) and waiting for a list of names termin­
ated with a $. The addresses of these variables 
(i.e., the cells stored into by UNPAK which corre­
spond to the names) are stored in IFLIST, and the 
number of these is specified b~r the coincidence 
counter CCNT (cell 65). Next IFIN requests veto 
requirements by typing VETO; the corresponding 
addresses are added to IFLIST and VCNT (cell 66) 
keeps count of how many there are. Finally IFIN 
types ANAL to request analog specifications of 
the form SCND 5 29 FRST 0 3, etc.; that is, the 
variable SCND must have an unpacked value between 
5 and 29 inclusive, FRST must lie between 0 and 3 
inclusive, etc. The number of analog requirements 
is specified by ACNT (cell 67), and adresses and 
ranges are stored in IFLIST. A fairly elaborate 
IF assignment is given as an example in the 
appendix on operating instructions. 

Note that the IF specification consists of the 
logical AND of the various requirements: All 
of the coincidence variables must be non-zero 
and all of the veto variables must be zero and 
all ~the analog variables must fall within-the 
prescribed limits; otherwise the event will be 
ignored. Often it is useful to have an OR capabil­
ity; that is, be able to analyze two or more types 
of events in a single data-taking run. EXPO does 
provide a limited OR capability: HIST constructs 
two-dimensional histograms (arrays), and it is 
often possible to arrange that the various columns 
of an array correspond to physically distinct 
types of events. 

The HIST Function: Histogramming 

Once an event has passed the scrutiny of the IF 
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routine, it may be analyzed. The only type of 
analysis incorporated in EXPO is that of making 
two-dimensional histograms of any variable against 
any other variable (including itself); this is 
done by HIST (p. 3200). One-dimensional histo­
grams may be made by using a special dummy 
variable as one of the two variables in a two­
dimensional histogram. Which variables are histo­
grammed is controlled by information in the histo­
gram assignment list ALIST (261-376), which is 
compiled by the ASSIGN routine (p. 4200) in 
response to a CTRL - A keyboard interrupt (see 
appendix on operating instructions). The region 
of core above the resident program is a scratch 
area used for histogram storage; the size and 
number of histograms are limited by the size of the 
scratch area and by the length of ALIST, which 
can hold the defining information for six histo­
grams. 

The histogramming routine HIST uses ALIST to 
determine which variables are to be histogrammed, 
the array size, the relevant storage locations, 
and what kind of variables they are: the "KIND" 
entry in the list is zero for single-valued and 
non-zero for multiple-valued variables. To 
compile ALIST, ASSIGN initializes the BASE pointer 
to the beginning of the scratch area, then calls 
HSTINP twice to acquire from the keyboard row and 
column defining information for a two-dimensional 
histogram. For row and column, HSTINP reads a 
variable name, such as RHA, calls SEARCH to 
locate it in the dictionaries of single and mult­
iple variables, and when found saves in ALIST the 
address of the variable and the KIND. Then 
HSTINP reads the minimum, maXimum, and binning 
factor desired and adds these to ALIST. The 
binning factor is actually the number of AC right 
shifts made to the data when histogramming in 
order to lump 1, 2, 4, 8, or 16 adjacent bins 
together. Also added to ALIST is the row or 
colQ~n length, computed from 

length maximum-minimum 
(binning factor 

2 

+ 1 

After twice calling HSTINP, ASSIGN mu~tiples 
together the row and column lengths to determine 
the amount of scratch area required for this histo­
gram. If this extends beyond the end of the 
scratch area, an overflow message is typed and 
ASSIGN waits fOF the histogram to be redefined; 
otherwise the BASE pointer is advanced to the 
next available cell in the scratch area, and the 
next histogram may be defined. ASSIGN finally 
terminates upon receipt of a $ from the keyboard 
or after hav ing six histograms defined; the 

number of histograms « 6) is contained in NHST 
(cell 76). -

The sample assignment given in section 3) of the 
appendix on operating instructions is: 

MBA 1 15 0 NMH 1 5 0 

RHA 5 28 2 ZOO 0 $ 

(Additional description of this keyboard input is 
given in the appendix.) These definitions would 
generate in ALIST (cells 261 -) the entries shown 
below. 



261/ 

NMH 

z 

74271 
I 

643
1 

6471 

II 
17 I description 

o of 1st 

17 histogram 

6222 

o 
1 

5 

o 
5 

r 7:::1 

l' 65: i description 

34 I of 2nd 

~ histogram 

f22j 

base address; where 
H(MHA . ,NMH . ) will be mln mln 
stored. 
address of MHA value after 
unpacking an event. 
KIND; nonzero for multiple­
valued; address of ve·ctor 
list. 
minimum. 
maximum (15 decimal). 
binning; number of right 
shifts. 
row length. 
address of NMH value after 
unpacking an event. 
KIND; 0 for single-valued. 

minimum. 

maximum. 
binning. 
column length. 

base of second histogram; 
(7427 +17*5) octal. 

non-zero for multiple­
valued. 

(28 decimal.) 

(28 - 5)/2
2 

5 + 1 = 6. 

5 truncated; 

13 decimal cells required 
to define a histogram. 

Note that after unpacking an event, cell 643 (t!MHA t!) 
contains the number of entries in the list of 
struck detectors found in the list starting at cell 
647. For ease in referring to the t!struckll count 
as a single-valued variable, the contents of MBA 
(cell 643) are copied by UNPAK into NMH (cell 
6222), which is in the SNAMES dictionary. 

It should be mentioned that HIST doesn't store into 
a histogram if the minimum-maximum bounds are 
exceeded. 

Overflow Handling 

With the short PDP-8 word length it is important 
to be able to handle overflows encountered during 
histogramming; it is assumed that only a few cells 
will overflow. In order to save space there is an 
overflow "associative memory" in OLIST (2734 - 2777), 
created by OVFLOW (p. 2600) in response to a call 
from HIST. OVFLOW is entered with the AC contain­
ing the address of the cell that overflowed (i.e., 
reached a count of 4096 decimal). If this is the 
first time this cell has overflowed, this address 
is added to the first half of OLIST and the corre­
sponding location in the second half of OLIST is 
set to one (to count one overflow). Also, NFLOW 
(cell 2730), the number of overflowed cells con­
tained in OLIS~ is incremented. If in the future 
the same cell should overflow again, OVFLOW will 
find its address already entered in the first half 
of OLIST and will increment the corresponding over­
flow counter in the second half of OLIST. (Natu­
rally NFLOW is not incremented in this case). 
When typing out a histogram, for each element 
OLIST is scanned in order to type out the "double-
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precision" result. Since this is time-consuming, 
the overflow information is ignored in scope dis­
plays. 

From the above description one sees that a count 
of 4096 would result in 1 in the high-order 
associative memory and 0 in the original histogram 
cell in the scratch area. Actually, because it 
made the double-precision binary-to-decimal con­
version on output seem simpler, OVFLOW performs one 
further function. The histogram element which has 
just reached zero through overflow is set to 96 
deCimal; thus the full double-precision result is 
4000x (high-order count) + (low-order count), 
rather than 4096x (high) + (low). (Note that after 
the first overflow, a histogram element will over­
flow every 4000 more counts, since it has a "head 
start" of 96 each time.) 

If OLIST is full, overflow in a new cell cannot be 
treated normally. In this case the location of the 
overflowed cell is merely typed out. 

Histogram Output 

At any time, including during data-taking, the 
present contents of any histogram may be examined 
either by typing out on the teletype or by dis­
playing on the scope. Type-out is initiated by a 
CTRL-P (p for print) keyboard interrupt, followed 
by a histogram specification similar to the format 
used to assign the histogram originally. Print­
outs of selected regions are permitted, and row and 
column totals are given; details are given in the 
appendix on operating instructions. Scope display 
is initiated by a CTRL-S (S for scope) keyboard 
interrupt, followed by specifications similar to 
those for print-outs. The display is in the form 
of a labeled one-dimensional histogram with scale 
determined by the switch register setting; one 
may display any portion of one row or one column 
of the two-dimensional histogram in core. (Again, 
see details in the appendix on operating instruc­
tions, including use of a point plotter.) If 
data is coming in one sees the counts rise dynami­
caly on the scope, which is fun. 

Since the interrupt is always on during the scope 
display and is off for only 40 microseconds per 
typed character (or 400 microseconds per second at 
10 characters per second, which is 0.04% of the 
time), histogram output creates negligible dead 
time. There may be some small loss in the fraction 
of incoming data which is analyzed on-line, which 
usually is unimportant. 

The subroutine MXA (MX for matrix or histogram; 
p. 5400) is called following a request for either 
printing or scope display. MXA in turn twice calls 
HSTINP (the same routine is used by ASSIGN) to read, 
from the keyboard, information defining the desired 
histogram and region for output. Then ALIST is 
inspected to find out where this histogram lies in 
core. Once the histogram is located, TMXOUT (p. 
5600) controls printout or POINTS (at 2300) controls 
scope display of the histogram contents. Labels or 
titles are set up by MXTITL (p. 2000) for printing 
and SCTITL (at 6251) for scope display. 

When printing, overflows are taken into account by 
MXWORD (p. 3400): Before printing a histogram 
cell, the overflow list OLIST is scanned to see 
whether this cell overflowed. If so, the double 
precision result is used. In either case, leading 



zeroes are suppressed by LDZERO (at 1466). 

MISCELLANY 

There are two keyboard control functions related 
to magtape handling which are not discussed in 
the appendix on operating instructions: RUN 
(at 6706; initiated by CTRL-R) and ZEND (at 2157, 
initiated by CTRL-~). RUN begins a new data run: 

First it asks for a run number from the keyboard, 
then searches the present data tape for a double 
end-of-file (EOF) and backs over the second EOF, 
ready to write a title as the first record of this 
new file. Next the routine RTYSTR (p. 1600) reads 
a title of up to 70 characters (terminated by $) 
from the keyboard into the tape buffer, which is 
then written onto the magtape. The first three 
PDP words of this title record contain the run 
number, a 1 to indicate this is a title record 
(the data records to follow have a 0 here), and 
nonsense (data records have here 240x, meaning 
24 octal words per event and x events in this 
physical record, which may be 0, 1, 2, or 3); 
the physical record is 75 decimal words long. 
RUN also initializes pOinters and counters for 
storing data into the tape buffers and for con­
trolling switching between the two buffers. 

ZEND terminates a run: The incompletely filled 
tape buffer presently in use is written out, 
then two EOF's are written and the second is 
backed over. The tape is now in the proper 
position for RUN to find a double EOF for the 
next run, since RUN actually looks for an empty 
file to indicate a double EOF. 

CONVIO (4600) converts decimal keyboard input to 
octal. The sequence to read a four-digit number, 
convert, and store in A is: 

JMS GETNAM 
JMP DO~lE 

JMS CONVIO 
DCA A 

(abnormal; $ found) 
(normal return) 

If the four-digit input is greater than 4095 
decimal, A is set to 7777 octal. The four-digit 
input number is terminated by a space or CR; if 
more than four digits are typed before a termina­
tion the last four are taken, which provides a 
simple way of correcting typing errors. 

The subroutine BCD (4655) converts an octal numLer 
in the accumulator to four BCD characters packed 
two per word in BCHI and BCDLO (cells 147 and 
150). BCD is a DEC subroutine. 

COUNT (3750) and DCOUNT (1354) are identical sub­
routines used for making double-precision tallies 
of the number of data interrupts, the number of 
events which passed the If test, etc. COUNT is 
used by the analysis task. Since a data interrupt 
might catch DCOUNT in use, DCOUNT would have to 
be reentrant to be used by DATA; hence the two 
tasks have two identical (non-reentrant) subrou­
tines. 

READAT (661).reads ten 12-bit words from a pulse 
height analyzer (PHA), each of which consists of 
two 6-bit pulse heights, and an additional ten 
12-bi t words from an external buffer storage unit 
(referred to as BSl in the program). Obviously 
READAT must be tailored to specific needs and 
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hardware configurations, just as the dictionaries 
SNAMES and MNAMES must be. 

In some cases more and/or larger histograms would 
be useful. If magtape is not used (i.e., the 
printed histogram information is all that is 
needed), the magtape handling routines and buffers 
above 6600 are unnecessary and the scratch area 
may be extended down: change BEGSCR (cell 4274) 
from its present value of 7427 to 6600 and change 
cell 3607 from SNA CLA (7650) to CLA (7200) to 
prevent DATA from calling the tape routines. As 
long as the magtape isn't in use the routine 
RTYSTR (which needs a title from the keyboard to 
write on tape) isn't needed either. Hence ALIST 
can use the space from 1600 to 1754 (or 1777 if 
the characters strings used by IFIN are moved 
elsewhere, say to the old ALIST area), which will 
permit B rather than 6 histograms to be defined: 
change ALIST* (cell 71) from 261 to 1600 and change 
NHSMX (cell 4303) from 6 to B. 

If magtape is used it is much more difficult to 
get more room; reassembly will certainly be required. 
Some suggestions are probably in order. There are 
certainly routines which could be removed at a 
rather small sacrifice. In particular, the scope­
labeling routines (but not POINTS) including the 
character patterns while useful are perhaps the 
least essential pieces of EXPO. Next might come 
RTYSTR; the tape will lack titles but not data. 
ASSIGN and IFIN could reside in the scratch area 
to be overwritten once they have compiled ALIST ' 
and IFLIST; all that is lost is the ability to 
change these compilations without reloading the 
program. As described in the appendix on operating 
instructions, the routines which handle scope and 
printer histogram output permit the user to type 
the output specification in an order reversed from 
the original ASSIGN order (and hence reversed from 
the order in ALIST). This permissiveness leads to 
lengthy coding in several parts of EXPO: loss of 
this facility would only affect typer o~tput for­
mat, as described in the appendix. 

APPENDJX: OPERATING INSTRUCTIONS FOR THE PDP-B 

PROGRAM "EXPO" 

O. Turn off data-acquisition interface to prevent 
data interrupts. 

1. Load program and start at 1200. 
2. I for IF. Type CTRL-I (i.e., hold down the 

CTRL key and type I). 

Computer will respond with COIN for "coinci­
dence", inviting you to type the names of 
those variables you wish to be non-zero in the 
events to be histogrammed. You type for ex­
ample (_ means space, CR means carriage return) 

This means counters C
l 

and V
l 

must fire, there 

must be at least one particle in the multiples 
hodoscope, and shower counter 7 must have a 
non-zero pulse height. The dollar sign termi­
nates the string. Note that each variable 
name, including the last, must end with a 
space or CR. 

The computer will next type VETO. You type 
the names of those variables which you want 



3. 

4. 

to be zero in order for the.event to be 
histogrammed. 

For example, 

This means counter V2 didn't fire, the south 
gas Cerenkov counter discriminator didn't 
fire, and the RHG2 (RH > 2) discriminator 
didn't fire. 

Finally the computer types ANAL, asking for 
"analog" requirement. You define minimum 
and maximum values of variables; e.g., 

NRH _ 3_5_ BRA _17_29 ( CR ) 

SH6_13_19_$ 

For an event to be histogrammed, you have 
required that there be 3 to 5 particles in 
the rear hodoscope, all of these within the 
range of counters 17 through 29; in addition 
shower counter 6 should have a pulse he.ight 
between 13 and 19 inclusive. 

The computer now responds with ENUF to in­
dicate completion of the IF definition. If 
you want to change this definition, retype 
CTRL-I. 

A for ASSIGN. Now assign the histograms to 
be constructed. Type CTRL-A. Then type, 
for example, 

MHA _1_15 _0_ NMH _1_ 5_0 ( CR ) 

RHA_5_26_2_Z_0_0_0_$ 

For those events satisfying the criteria of 
the IF definition, two histograms will be 
made. The first is of the multiples hodo­
scope (lumped in bins of 20 = 1 counter from 
counter 1 to 15) versus the number of parti­
cles striking the multiples hodoscope. The 
second histogram plots the rear hodoscope 
from counter 5 to 26 lumped in bins of 22 = 4 
counters (i.e., 5-8, 9-12, 13-16, 17-20, 
21-24, 25-26), versus Z, a special variable 
which always has value zero to facilitate 
making histograms which are effectively one­
dimensional. Note that if any particles in 
the rear hodoscope lie outside the 5-26 
range, none of the counters will be plotted. 
This is just part of the multiple-particle 
problem. After you type the dollar sign, 
the computer types ENUF to show the assign­
ment is finished. It will also type ENUF 
after the definition of the sixth histogram; 
6 histograms is maximum. If you type a name 
wrong (i.e., RAH instead of RHA) the computer 
will respond with a ?; then you may retype 
RHA. If you define a histogram which would 
overflow the scratch area set aside for 
histograms, the computer types OVFL. You may 
then retype the last definition. If you want 
to change everything, just retype CTRL-A and 
start over. 

C for CLEAR. To clear all histograms and 
event counters, type CTRL-C. 

5. 

6. 

7. 

8. 

9. 
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Turn on the data-acquisition interface to 
permit data interrupts. Events will now be 
processed. 
H for HALT. If you wish to halt after N 
events have been histogrammed (passed the IF 
test), type CTRL-H followed by N, a decimal 
number less than 4096. This may be done at 
any time, even while running. If you do it 
after N events have already been histogrammed, 
the computer will halt after N + 4000 events. 
The teletype bell will ring to signal the 
halt. Stop the computer, turn off the data­
acquisition interface and restart in 1200. 
Output may be made even while collecting data, 
although on the teletype the last line will 
have events collected over a longer time than 
for those of the first line. This is due to 
the fact that only a one-line buffer is used 
for teletype output. 

P for PRINT. To print out a histogram, type 
CTRL-P, followed by MHA_3_12_X_~2_3_Y_, 
for example. Here X may be anything, and Y 
is zero if no titling is desired. If Y is 
non-zero you will get 

NMH MHA 3 4 5 6 7 8 9 10 

2 row sum (3-10) 

3 row sum - -
column sums (2-3) 

NMH MHA 11 12 
2 row sum (11-12) 

3 row sum 
column sums Grand total 

( 2-3) 

If Y is zero only the lines starting with NMH 
MHA are ami tted. If you type 

RHA_10_12_0_Z_0_0_1_ you get 

Z RHA 10 11 12 

° sum 

sums totals 

If you type in the other order 

Z_0_0_0_RHA_10_12_1_ you get 

RHA Z ° 
10 

11 sums 
12 

sum total 

If you make a mistake, type $ and then CTRL-P 
to start over. 

S for SCOPE. To display on the scope, type 
CTRL-S, followed by MH.A _3_12_0_NMH_5_5_1_ 
(same format as for CTRL-P). This will give 
a scope display like 

178 

NMH 5 

MIlA 3 178 
.. 
12 

Here the "178" is the deci­
mal conversion of the switch 
register setting, which con­
trols the vertical scale. 

You can in this way display any slice of a 
histogram. If no title is requested you get 
only the points. Once you have a display you 



like, you may turn on the plotter with the 
"STANDBY" switch in the middle position and 
type CTRL-G, whereupon whatever is on the 
scope will go on the graph plotter. 

10. E for EVENTS. Type CTRL-E to get event 
counts: 

TAPE 
MOVE ~Tape + nontape = number of interrupts 
NMov;l acknowledged. 
NTAP 
PRYN Sample + sam~le moved = number of 
NPYN4events tested by IF statement. 
SMPLII 
HST Histogram = number of events which 
SMMV passed the IF statement. 
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move data 
from tape 
buffer to 

sample buffer 

YES YES 

Si;rp~:'fied f~c"." diagra:.'"." cf the basic ir:terrupt hancEir:g 
and on-line analysis. 
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Detailed flow diagram of input/output interrupt handling. 
"RETURN

H 
includes restoring the saved accumulator and 

link, fOllowed by an indirect jump to the saved return 
address. 

84 



to KBDRET 

modify 
KEYINT 

for abnormal 
JMP 

to KBDRET 

F10vl diagram for keyboard cOYJ.~rc~ f:J.YJ.ct=-cr'_s. 
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NO add new 
character 
to string 

to KBDRET 



Figure 2. The completed interface and computer installed in an instrument rack. 
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Figure 7. A closeup of the front panel showing the function switches and the 

indicator light panel. 
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ABSTRACT 

SCHLEP is a program which was written to work in 
conjunction with magnetmstrictive read-out spark 
chambers. Its main purpose is to help maintain these 
spark chambers and other devices which are the appara­
tus used in this High Energy Physics experiment. The 
experiment that it will participate in, is the study 
KO long lived meson decay into 3n mesons. It also has 
the ability to do some on-line analysis of some of the 
data. 

As a start let me first describe the hardwareof 
which the program makes use. The basic machine is 
a PDP-9 with Extended Arithmetic Element, 2 Dec­
tapes units and a control and a 34-H Display. The 
rest of the non-standard I/O equipment has been 
built at the University of Pennsylvania. This in­
cludes an IBM compatible tape unit interface, and 
an interface that transfers the spark chamber co­
ordinates into the computer. Also, we have an 
alarm which can be turned on and off. I would 
like to describe the tape units that we have. One 
is a Kennedy Incremental that is "souped" up to 
run at lkc. We plan to use this in the back up 
mode. The tape unit that we plan to use as the 
main unit is manufactured by Peripherial Equipment 
Corp., Model No. 4820-7 and it reads or writes at 
a maximum of 20kc. I would, also, like to describe 
in brief some of the new instructions that were 
added to the interfaces. The first and probably 
most unique is a program interrupt at word count 
overflow from the tape units. This gives the 
program the opportunity to block the records on 
tape without the use of a large buffer. This is 
important when you only have 8192 words of memory 
This leaves room for more programs by keeping the 
output buffer small. Of course the efficient use 
of an instruction like this depends on a high and 
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constant input rate. Another instruction that was 
added is a "skip on program interrupt active" this 
allows the program to handle waiting interrupts 
without returning to the interrupted program first. 

The main purpose of "Schlep" is to help 
maintain approximately 20 spark chambers and 40 
scintillation counters that are the basic components 
of this experiment. One of the ways that it does 
this, for spark chambers, is to compute straight 
lines from the spark coordinates and from these 
points calculate histograms of the spark position 
in each chamber. These histograms will have a 
resolution of about 1 inch per bin. By looking at 
this set of histograms the physicist can see if the 
chamber or the read-out device, the wand, is work­
ing properly. The way this information is presented 
is by plots on the CRT The physicist can tell if 
these devices are working properly by looking for a 
loss of symmetry in the histogram, i.e., a hole in 
the middle of it. Another plot of the spark cham­
bers is a histogram o~ the residuals. A residual is 
the difference be~ween a computed spark position and 
a real spark position. This histogram would show if 
there is a translation of the spark coordinates in 
the spark chambers. It can also be used as a meas­
ure of the resolution of this wand or spark chamber. 



We also have a histogram of the number of times a 
particular scintillation counter fires. This would 
be a quick check of whether a counter is function­
ing properly. The program also will monitor volta­
ges from several power supplies used in the experi­
ment. The maintenance value here is obvious. It 
is, of course, when one of these voltages change 
beyond limits the physicist can be notified immedi­
ately. 

Besides its maintenance value the program 
could also be used as a filter of the data. There 
is a natural phobia involved here, that is, of 
course) the fear of throwing away data that may 
initially look bad, but may be useful in some sense. 
Excluding this) the program has the capability of 
making some simple cuts on the data. The first of 
these would be incorrect "Time of flight" for the 
k meson. Others make use of the line finding por­
tion of the program. These would be a restriction 
on the number of lines in the front chambers. In 
our case we would require at least two. We could 
also ask if these two lines have an intersection 
point within a given area. The aperture of the 
magnet can also be used as a cut by requiring that 
the lines go through, not hit the sides. There is 
probably some other requirements such as trigger 
which we could use, but since we have no plans at 
present to cut the data I will leave this up in the 
air. 

The initial objective of buying the PDP-9 
and then investing time in writing programs is to 
increase through-put of data.Our input record size 
is 172, 12 bit words. From this I expect to be 
able to "prune" about 30%) this 30% would be data 
which is outside the active region of the chamber. 
Using the above numbers, our spark chamber in­
terface time would be 1.72 milliseconds. This 
record is then to be written on IBM compatible tape. 
The time required for this would be 18 millisec­
onds. Somewhere in between the time the record 
comes into the computer and the time it goes out 
to the tape unit, we have the program. The pro­
gram as I pointed out before reduces the data and 
moves it into another buffer, this operation will 
take about 30 milliseconds. We are, therefore, 
through-put limited to about 30 events per second. 
It is most probable that this present experiment 
will run at 10 events a second or less. 

The program itself is divided into four 
distinct parts those being 1) Supervisor and I/O 
devise handlers 2) Display routines 3) Throughput 
4) Compute. The supervisor, and in my case I use 
the name loosely, is basically a revised DDT which 
makes use of Program Interrupt and the Extended 
Arithemetic Element. One of the things that were 
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changed in the basic DDT, is the output to the 
paper type punch. These were punched in a punched 
in "Funny Format." What is done now, is the oper­
ator has the choice of pune-hing in "RIM" mode or in 
''Hardware Read-in" mode. These I found to be much 
more useful. The reason being that one is able to 
write any type of program, which mayor may not per­
tain to Schlep, and get an easily useable paper 
tape. Another useful option in Schlep is the Dec~ 
tape. What I have done is divide each Dectape into 
10 files. The operator can use any of these files 
to write out core or just a portion of it. The 
routines are also available to Schlep itself. At 
present we have no plans for online storage of data, 
but the program is set up so that by setting a few 
locations and calling a subroutine .one can easily 
write data on different files or just successive 
blocks. Probably one of the most useful asper.ts of 
having a real time DDT is the ability to debug back­
ground programs while the experiment is running, 
that is, taking data. This would be useful when I 
or someone else would like the program to compute a 
new variable or even add a new display routine. This 
may sound like it could be very dangerous because of 
having an undebugged program in core with Schlep run­
ning. For thOde of you who think so, I agree. I 
have taken some precautions to help prevent anything 
too terrible from happening. The program can be 
set in a mode so that no data eatered from the tele­
type could be entered into the region of Schlep 
which is finished and debugged. In other words, one 
is not able to change core locations where the pro­
gram resides. But, one can only type information 
into a data section of core. One always has the 
ability to examine any location in memory via the 
teletype, but unless he knows a keyword, he would 
not be able to change any locations except those in 
a data region. For instance an example of the data 
that he would be able to change, is number of bins 
for a particular type of histogram, or even the 
range of this histogram, and other such parameters. 
Another useful feature of the supervisor is the 
ability to dump an event on the teletype in deci­
mal, at the same time plot this event on the CRT. 
This is very useful at the beginning of an experi­
ment for one would like to see What were the actual 
coordinates of the sparks in the chambers Any time 
during the running of the experiment one can shpt 
down the data taking by hitting a key on the key­
board. One can also terminate a run by use of a 
macro type instruction entered via the teletype. In 
summary the supervisor provides I/O device han­
dlers, a macro facility, a simple minded memory 
protection, and mnemonics for core locations and 
instructions. I will conclude the section on the 
supervisor with a short description of the macros 
available to the operator through the console 
teletype. 



1) PUNCH$'- punch a paper tape in RIM loadable 
format by first setting locations. 
PBGN$ - first location to be punched and 
PLST - last location to be punched. 

2) DKTAP$ - write or read from or into core 
locations from unit 1. One must first 
set DBGN$ - fi~st location DLST - last 
location RWBIT - 0 - read into core, 1 
write from core onto defined file. 
FILE - the file on which the data resides. 

3) RIM$ - read in a RIM 10adab1e tape. 

4) DUMP$ - dump on the teletype in decimal, 
core locations defined in TBGN$ - first 
location to be dumped TLST - last lo­
cation to be dumped. 

5) STOP$ - this is the instruction which 
causes Schlep to go to its end of fun 
routine. 

6) WORD $ , NOT $ , SYMBO$, ADDRE$ - these are 
the standard DDT macros which are explained 
in the DDT manual. 

7) SCON$ - this sets the program in a mode 
such that it types out the event on the 
teletype and displays it on the CRT bit· 16 
controls the acceptance of the next event. 

8) SCOF$ - turns off the last option 

9) D$ - get the directory from dectape and 
print it on the teletype. 

10) OPEN$ - this allows the operator to ex­
amine and change any location in memory. 

11) CLOSE$ - this macro prevents the operator 
from changing any of the "protected" region 
of core. 

The next section of the program is the display. 
This is the portion of the program which displays, 
histograms, pictures of the event, and counter 
voltages. The display section is divided into 
many subroutines which perform small functions. 
The reason that it was done this way, is because 
this modular approach helps make many subroutines 
available to other parts of the program. It also 
would make it easier to add new displays to the 
program. To choose the display that one wants to 
see is just a matter of "flicking" one of the AC­
switches. A macro which pertains to the display 
position of the program is called DMES$. This 

91 

allows the operator to enter a message into a buf­
fer which is displayed in the top portion of each 
display. This can be used to leave messages to 
other operators or can be used to label a certain 
display. The hardware that is used with the dis­
play programs is a 34-H display unit, the small 
Tektronix scope with attached camera, and a Hew1ett­
Packard l300A. Both scopes have the same display. 
The display programs are of the lowest priority. 
This means that we do not display anything until we 
have finished with the higher priority items, these 
being, throughput which is the highest priority, and 
the compute section, which is the next highest in 
priority. A great deal of effort was put into the 
display programs to make the display easy for the 
physicist to interpret. For example, in the histo­
gram displays a base line with half bin. This helps 
in the statistical analysis of the histogram. In 
the spark chamber display routines the chambers them­
selves are marked off, so if he wishes he could cal~ 
culate roughly the kinematics of the event. Also, 
in the display of the spark chambers each scintilla­
tion counter is defined by its edges, and when that 
particular counter fires it is filled in with dots. 
One would like to be able to hold a histogram or 
picture of event on the scope without having it 
change each time a new event comes. He has this 
ability by using another AC-switch. It is, also, 
conceivable that the physieist would like to look at 
one of the histograms on a log scale. He again has 
this ability through another AC-switch. Another 
thing that may be useful is the ability to see the 
histogram doubled in the x-scale or the y-scale, 
again by the use of the AC-switches he can do this. 
I might point out that the histograms of the spark 
position in each chamber are displayed with the bot­
tom half of the screen display, the x-~oordinate and 
the top half is committed to displaying y-coordinate. 
In concluding the description of the display section 
of the program I will list the assignment of the 
AC-switches. 

ACO 
ACl 

AC2 

AC3 
AC4 

AC5 

AC6 

AC7 
AC8 
AC9 
AC10 
ACll 
ACl6 

AC17 

display 2 histograms of the wands 
display time of flight of the 
k-meson and y ray 
display 2 histograms of chamber 

residuals 
display the x-view of the event 
display the y-view with the rear 

left chamber 
display.t~e histogram of counter 

I~n.ngs 
display th~rear right y chambers 

with switch AC4 
display the voltages 
freeze the buffer 
display the previous on log scale 
double the x-scale for histograms 
double the y-scale for histograms 
get next event, in association with 

SCONS 
turn off the audible alarm 



If any part of Schlep could be considered its 
heart, the throughput section would be it. The 
throughput section is naturally divided into two 
parts, those being input and output. The input 
section is called the scanner section after the 
device which transfers the data into the computer. 
Both the input and output section of the program 
makes use of a word in memory called FLGWRD. The 
bits in this word are used to indicate the condi­
tion of the I/O devices, buffers and the through­
put programs. These octal equivalents are as 
follows: 

1 

2 
4 
10 
20 
40 
100 
200 
400 
1000 
2000 
4000 
100000 
200000 
400000 

INITIAL INPUT BUFFER PULL 
SCANNER BUFFER (SB) 
STORED SCANNER BUFFER NOT EMPTY (SSB) 
WANT RAW DATA 
DATA WAIT IN SB 
HALT AFTER END OF RECORD 
P. T. READER BUSY 
COMPUTE BUSY 
PAST END OF TAPE 
P.T. PUNCH BUSY 
GET AN EVENT 
DECTAPE BUSY 
TELETYPEWRITER BUSY 
NOT ASSIGNED 
REGISTER 10-12 SAVED 
NOT ASSIGNED 

The throughput, is naturally broken into two parts. 
The first part is the SCANNER, and the next part 
is the MAG-TAPE. We will first describe the flow 
of the scanner or read in portion. The first sig­
nal that we get is an interrupt called ER (EVENT 
READY). This causes a program interrupt, and we 
are transferred to a routine called SCAN. In this 
routine we first find out if the SCANNER BUFFER 
(SB) is empty. If it is, we initiate the transfer 
of the data into the SB. If the buffers are all 
full we set a flag and return to try it again, at 
some later time. Assuming that we find an empty 
SB we then transfer the data into the SB via the 
data channel. At this time we get an interrupt 
when either a word count overflow or an EVENT 
COMPLETE (EC) occurs, which causes a transfer to 
a routine called SCANI. The first thing we do 
here is see if the SCANNERS have underflowed or 
not transferred as much information as we expected. 
If this does happen we type out a message on the 
teletype which reads "SCANNER UNDERFLOW". We 
then set a flag in FLGWRD which tells the rest of 
the program that the SB is full. After this we 
find out whether we are going to use raw data or 
condensed data. If we are going to condense the 
data we do this in the SB. The last thing that we 
do is move the SB if possible to the STORED 
SCANNER BUFFER (SSB). If it was impossible to 
move the data we set a flag so that we may try 
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again later. Once there is some data in the SSB we 
then try to write this data out on magnetic tape. 
The first thing we do is find out in which buffer 
this data exists, and then set up this address and 
word count in the appropriate registers. At this 
point we initiate a transfer to the tape unit. The 
decision of whether to end the record with an EOR 
or to continue is made at the time of a word count 
overflow. At the beginning of each record there is 
the internal event number, the word count and the 
starting address for this record. The records 
will be recorded on tape with unknown logical 
record size. The blocking factor is also unknown. 
this seems to be a ridiculous way to do things, 
but the experiment is going to be analyzed on a 
3rd generation computer and the facilities to han­
dle these type of records exist. The 2nd genera­
tion computers can also be made to do this, too, 
by use of tricky traps. 

The compute section of the program is divided 
into two parts. These being, compute all things 
that are unrelated to line finding, and compute all 
things that make use of line finding. In the order 
of time, the items unrelated to line find are com­
puted first. These would include .histograming of 
counter voltages, histograming of counters that 
fired, and histograming of the time of flight of 
the k meson and associated gamma-ray. The rest of 
the compute section is devoted to line finding 
and its brand of histograms. The line finding 
program is fairly simple minded in that it only 
tries to fit a straight line through several 
points. Since there is three groups of spark 
chambers and we have 2 views for each group, then 
we can break them up into six units. These units 
or views are worked on by the program one at a 
time. Schlep then analyzes each view one at a 
time and finds as many lines as it can. These 
lines are then used to compute the spark position 
in each chamber. If this spark position falls 
within a given range the coordinate is accepted. 
We then continue this process for all the views. 
As each line i~ found and accepted, the coordinates 
of these lines are then used to compute histograms 
of spark position. These histograms, would also 
give us the relative efficiency of each non-choice 
chamber. These relative efficiencies are as im­
portant as the histogram itself, for they will 
give us a feeling of how well the chamber is work­
ing. We also use the difference between the real 
spark position and the computed spark position to 
plot another histogram. This is, as I have men­
tioned before, called the residual. When the 
track finding is done for a certain event the pro­
gram transfers to the general dispatching routine. 
I will describe this in the next section, but be­
fore 19o on let me first show the method that is now 



used in track finding. I say "now used" because we 
are in the process of changing to a faster technique 

1) get the coordinates of the choice chambers 
2) with these calculate the slope and intercept 
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3) calculate the points in the other chambers 
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4) if there are enough points to make a line, 
then histogram the points and the residuals. 

In describing all of the previous sections of 
the program we talked about many conditions which 
were left hanging in the air. These conditions 
will be taken care of when the program transfers 
control to the dispatcher. The dispatcher is a 
small routine whose main p~rpose in life is to help 
keep all other programs happy. The way it does 
this for the scanner routine is to see if there is 
any data waiting to be condensed or to be moved. 
If there is it transfers to the appropriate routine 
It does the same type of thing for the magnetic 
tape. It asks if there is some data waiting to be 
written, and if there is it transfers control to 
the magnetic tape programs. The next thing on its 
list is the compute programs. It again sees if 
there is data waiting to be computed if there is 
then it calls the compute program. If there is. no 
data to be computed it then starts to display. So 
we can see that this program somewhat defines the 
priority of the system. 

In writing this program for the PDP-9 computer 
I have noticed a few things which I think we might 
h{l7e done a little differently. For example, I 
think that when you are running an online experi­
ment with many I/O devices that it would be very 
advantageous to have the Automatic Priority. 
Interrupt. This would help speed many of the pro­
grams up. It would also allow for a much neater 
and more powerful system. Another item that I 
think would be very useful is a drum. A drum that 
could be used for program storage, and more impor­
tant display storage. The program storage advan­
tage is obvious it would allow for a simp~e time 
sharing system on-lirLe to an experiment. The 
display ability of a drum would allow much more 
time and core to be committed to on-line analysis 
of data, and in many experiments this could be 
done in real time. 
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So, in conclusion I think that Schlep is a 
powerful program for doing a magneto-strictive 
spark chamber experiment but it is only a begin­
ning. There are many things that could be added in 
the hardware and the software to make the program 
even more powerful. 
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ABSTRACT 

A DEC PDP-7 has been interfaced with the instrumentation and control system 
for the High Temperature Lattice Test Reactor. The test reactor's electric 
heating system can heat it to 1000°C, so its graphite moderator is blanketed 
with pressurized nitrogen to inhibit oxidation. The digital computer directly 
controls the nitrogen and heating systems, and provides operational aids for 
the nuclear system. The central processor has 8K words of core storage and 
utilizes 3 DECtapes for bulk storage. In addition to the interface for over 
100 analog and 190 digital inputs, two unique features are a three color 
alpha-numeric display and two six decade analog-to:digital converters fo; 
measuring flux. The software system is composed of a highly integrated set 
of routines to monitor computer operation and provide operations assistance 
for the test facility. 

INTRODUCTION 

A small digital computer (DEC PDP-7) has been 
interfaced with the instrumentation and control 
system of the High Temperature Lattice Test 
Reactor (HTLTR)*. The computer, the interface 
and the instrumentation and control svstem make up 
the Programmed Measurement and Control System 
(PMACS), which controls the heating and cooling 
loops, aids nuclear reactor operations, and pro­
vides data acquisition and logging. 

The reactor facility is used to take nuclear 
data at temperatures to 1000°C, which will provide 
support for the design of high temperature power 
reactors. The reactor itself consists of a ten 
foot cube of graphite with a removeable central 
section--all enclosed within an insulated, gas­
tight container. It is electrically heated with 
graphite heater bars supplied with 384 Kw. Tem­
perature measurements are taken from thermocouples 
and moveable high precision resistance temperature 
devices (RTD's). The reactor blanket is a recir­
culating nitrogen atmosphere at low pressure. Con­
trolling and monitoring devices associated with the 
gas system are gas blowers, digital stepping valves, 
binary (open-closed) valves, flow transducer ele­
ments, gas chromatographs and moisture monitors, 
and low precision RTD's. The flux level is measur­
ed by digitized signals from enriched BF3 ion cham­
bers and is controlied with horizontal control 
rods. There are four vertical safety rods. 

The complete programmed system is composed of a 
highly integrated set of executive control and 
utility routines and system application programs, 
which are coded in machine language. Because of 
the close interdependency between the computer, 
the interface and the hardware of the reactor 
system itself, Fortran is not used for on-line 
programs. The programming and computer memory 
requirements sometimes were responsible for actual 
hardware and interface modifications, and the con-

*Operated for the United States Atomic Energy 
Commission by Battelle :lemorial Institute, Pacific 
l~orthwest Labol'i::>.LOry, Richland, ~..J"ashington. 
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verse was true. A general description of the 
system programs is almost a description of the 
instrumentation requirements for the HTLTR. 
Briefly, the requirements are: (1) monitoring 
nuclear flux and automatically calculating reactor 
period and power; (2) accurately measuring the 
pressure of the reactor atmosphere and the temper­
ature of the moderating graphite; (3) heating 
the reactor and maintaining a desired temperature; 
(4) cooling the reactor and operating vital 
equipment within safe limits; (5) detecting the 
off-on or closed-open status of mechanical devices 
such as valves and doors; (6) accurately measuring 
the position of all horizontal cohtrol rods and 
completing the operator-computer control with 
respect to operational safety requirements. (In 
addition, the capability must exist to monitor the 
vertical rod status at all times.); (7) logging, 
displaying, and storing all measured data and 
binary inputs in meaningful, easy-to-read form 
for reactor operators and the physics staff; (8) 
providing the capability to automatically shut 
down the reactor without operator intervention, 
and (9) allowing operation communication with the 
computer. For example, the operator must be able 
to ask for heat control, turn heat control off, 
demand various outputs (demand displays or logging 
on typewriters), and move the control rods. 

CONCLUSIONS 

The programmed control and instrumentation system 
is extremely flexible, because some members of the 
operating staff know how to program and can main­
tain the system programs without requiring outside 
help. When the original programs were being 
written, there was very close cooperation between 
the programmers and the operating staff--this is 
a necessity for a real-time system. Three members 
of the operating staff know how to program, while 
three others have lesser knowledge about programm­
ing, or computers. Their lack of knowledge about 
computers has in no way hindered the effectiveness 
of the latter group of operators. The fast res­
ponse of the computer has required the programmers 
to carefully consider such physical problems as 
contact bounce, and noise on power and signal lines. 
Although any kind of problem with the PMACS seldom 
occurs at present, noise is often the cause when a 



problem arises. The Programmed Measurement and 
Control System (PMACS) cost approximately the 
same as a comparable analog hardware system, so 
economy can not be claimed as a feature of the 
installation. However, the on-line basic data 
analysis with the results automatically logged 
and continuously displayed to the operator in 
engineering units makes a more efficient and 
safer operation. There is less chance for human 
error during the operations and data handling. 

MEASUREMENT AND CONTROL HARDWARE 

The basic computer is the PDP-7, manufactured 
by Digital Equipment Corporation. The central 
processing unit has the extended arithmetic op­
tion and is supplied with an SK word core. 
Computer peripherals consist of a high speed 
paper tape reader, a high speed paper tape punch, 
three DECtapes, two Teletype KSR 35's, and the 
necessary circuitry to read lS digital inputs 
(one watch channel) into the information collec­
tor and to decode computer words for generating 
control pulses. 

The system has two oscilloscope units which can 
be run in the normal mode or can be used as 
storage scopes. With the interface developed 
by Battelle-Northwest two different point plots 
can be presented under program control. One of 
the units is also used as a backup for the three­
color display. 

The PDP-7 was also supplied with a 16 channel 
automatic priority interrupt (API). There are two 
API modes: (1) A single instruction mode which, 
upon interrupt, increments a core counter and re­
turns control to the interrupted program. (2) 
The second mode is the regular multi-instruction 
mode which allows subroutines to be entered and 
executed. The interrupt service routines allow 
interrupts from lower channels only when they 
have completed their function and restored the 
proper registers. 

Two hardware modifications were made to the com­
puter: (1) Core space and programming capa­
bilities were increased by allowing the use of 
core locations 1 - 7, in addition to lOS - 17S ' 
as auto indexing registers. (2) Input type­
writer reliability could be checked by allowing 
an optional change over between duplex and simplex 
operations. When the programming system is in 
control, the keyboard program prints the actual 
character received. If the progra~ is not enter­
ed, depression of a key does not cause printing. 
This is called the duplex mode. Simplex mode is 
the normal typer mode with or without computer 
control. If the command typewriter should fail, 
the logging typer can replace it. 

The process-computer interface was fabricated by 
Astrodata and consists of the following: 

Analog calibration unit, multiplexer, analog­
to-digital converter (ADC) and two amplifiers. 
Either the low-or-high-gain amplifier can be 
selected by computer command. There are 128 
channels which are scanned approximately 
once every second. 

Two flux digitizer units with a current-to­
voltage amplifier and a voltage to frequency 
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converter in each. Each amplifier has 12 gain 
ra~~es providing a full scale range of 10-11 to 
10· amperes. The computer reads the digitizer 
outputs and controls the range settings and 
calibration inputs of zero and ten per cent of 
full scale. 

System clock which uses a two-megacycle crystal­
controlled oscillator. From this circuitry, 
there is derived the .1 second interrupt (wired 
into the API system) for the basic program 
timing loop, which results in periodic program 
execution and the pulsing of activity sensors, 
or deadmen, every .1 second. For example, the 
activity sensors must keep the safety circuit 
made up, if the facility is operating in a 
nuclear mode. 

Rod position counters which allow the program to 
keep track of the horizontal rod counters. 

Alpha-numeric display unit which accepts BCD 
data from fixed computer core locations by 
stealing computer cycles. The three color (blue­
green-red) unit allows character generation of 
26 alphabetic and 10 numeric characters, as 
well as, the minus sign and period. The unit 
will display 420 characters including spaces 
and color change indicators. The 420 characters, 
which are in a 20 x 21 matrix, require only 140 
core locations in the computer memory. 

Digital outputs providing 35 contact outputs used 
to open and-close relays for saturable reactors, 
gas system valves, warning horns, moisture mon­
itors, gas blowers and process water pumps. 

Stepping motor outputs which drive the 9 hori­
zontal rods at program changeable rates, and the 
7 valves and 4 vertical rods at fixed rates. 

Ten analog output channels with digital to ana­
log converters. These are used for controlling 
the heater power and for driving the oscillo­
scopes. 

Safety circuit which makes up flip-flops and 
deadmen. Functional commands are provided to 
turn on or set the logic level for both PMACS 
safety circuitry channels. 

These devices making up the process-computer inter­
face are under control of the computer program, or 
it reacts to them in response to their interrupts. 
To the computer, the many devices in the Astrodata 
hardware look like one peripheral. In this peri­
pheral there is a register whose contents are de­
coded to signal the device action. The program 
tests if this Computer Data Register (CDR) is busy 
or not. If not busy, the program executes a trans­
fer command which transfer a control word from the 
PDP-7 accumulator to the CDR. The control word in 
the CDR contains device identification and action. 

MEASUREMENT AND CONTROL SOFTWARE 

All the HTLTR operations staff became familiar with 
the original software in varying degrees, and a few 
of them also contributed to the design and coding 
of some of the applications and maintenance pro­
grams. After the completion of the original soft­
ware package, the operations staff took over the 
task of maintaining it. Examples of recent modifi-



cations to the programs wili be discussed after 
they are briefly described in their original form. 
A rather lengthy report,cited under "Acknow­
ledgements", gives complete details of the ori­
ginal programs. 

The programs were designed to satisfy basic 
operations needs, rigid safety requirements, the 
availability of computer core and magnetic tape 
storage, and the requirements imposed by hardware 
and electro-mechanical reactor equipment. 

To allow the operators to interrogate the PMACS 
system for reactor information at any time and 
initiate reactor control or actions leading to 
control, over 150 separate Teletype commands were 
made available. For those types of operator re­
quests (via the Teletype) which demanded SOme 
sort of action such as moving rods or opening gas 
system valves, the programs themselves permitted 
the action if certain necessary conditions were 
met. This involved the examination of many pro­
gram p~rameters. In the case of the 14 different 
logs (temperatures, pressures, raw flux, etc.) 
the logging programs had to reference many core 
locations. Other types of programs had to have 
access to other program inputs and outputs and 
parameters. To avoid duplication of program con­
stants and common reference parameters and tables, 
a large equivalence system and constant pool was 
devised--for use by all programs, whether per­
manent core residents or transient (scratch area) 
programs. 

The logic and flow of the functional programs re­
flected the many years of experience of the oper­
ating personnel. If a certain condition demanded 
a particular programmed action and even if this 
condition was almost sure ~ to rappen, the 
programmed instruction set still had to exist. If 
there were not safety requirements, a program to 
move the control rods would have been three in­
structions long. There were numerous examples of 
this sort. In addition, the programs were written 
to guard against operator errors--even if safety 
was not the main issue. 

When the reactor was in the nuclear mode at a set 
temperature, there were 20 major programs which 
completely used all 8K of core. In addition to 
the core residents, 26 additional programs were 
written--programs having a combined instruction 
set which was approximately 10,000 words long. 
Counting tables, constants and programs, there 
were about 18,000 programmed words. Only four of 
the above mentioned 26 additional programs were 
completely independent programs and operated 
mostly off-line. The rest of them formed an in­
tegral part of the programmed system. The core 
capacity was doubled by chain linking various 
operational programs and by the use of a core 
scratch or overlay area which was used by 17 
programs. By operator request or at fixed in­
tervals, these on-line programs were retreived 
one at a time from magnetic tape, stored in the 
scratch areas and executed. The scratch area was 
then free for another program. 

All programming was done in machine language and 
was very compact in order to conserve core. Also, 
all calculations were done using fixed point 
arithmetic. Machine language was most efficient 
for handling the complex interrupt system and the 
special machine instructions required for the 
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unique computer-process interface. The program 
package was a multi-programmed system to the extent 
that several programs could be at different levels 
of execution because of I/O or other delays. For 
example, a program could be waiting for a valve 
to re-position. 

Table I outlines the original HTLTR software. 

Table I. Software complement. 

Executive Control and Service 
Timing Control 
Input-Output 
Limit Check and Alarm 
System Application 
Maintenance 

The first three program groups could probably be 
considered the system Monitor. As will be seen, 
the Monitor performs the usual computer system con­
trol, with the details dependent on this particular 
installation. The "System Application Programs" 
handled problems unique to the operations in the 
HTLTR facility, while the "Maintenance Programs" 
were used for calibration and routine maintenance 
checks of hardware components. In addition to the 
on-line and real-time programs, there were pro­
grams for reading in and starting them, and for 
shutting down the PMACS so that the computer could 
be run off-line or shut off. 

Executive Control and Service Programs 

The "Executive Control and Service" programs are 
listed in Table II. Because they were either part 
of the Monitor or used by many other routines, 
these programs were all permanent core residents. 

Table II. Executive Control and Service Programs 

Executive Control 
Analog-Digital Service 
Microtape Service 
Binary-BCD Conversion 
Message Queuing and Buffering 
Units Conversion 
Temperature Averaging 

Executive Control Program-The functions of the 
Executive Control Program were to: (1) Listen 
for keyboard commands from the operator and call 
the Keyboard Executive Program when a command was 
detected. (2) Print out any error messages and 
control the message queue table. (3) Handle 
Microtape requests for program loading or data 
logging. (4) Interrogate the program on-off 
status table and allow execution of programs that 
were in core and ready for execution. (5) Start 
execution of the program which updated the CRT 
display. The program mentioned in (5) was ex­
ecuted after all programs in (4) had progressed as 
far as possible without entering a waiting loop. 

Analog-to-Digital Converter Service Program-The 
Analog-to-Digital Converter Service Program was an 
interrupt service routine which was entered each 
time a digital conversion was completed. A total 
of 128 input channels were converted once every 
1.28 seconds. The converted raw counts were 
stored in a current value table, where they were 
available for all function programs. The routine 
switched back and forth between the low gain and 
high gain amplifiers depending on the analog signal 
level in a particular channel. 



Microtape Service Program-This was an interrupt 
service routine, which was entered when a block 
number was encountered, a data word had been 
read or written, or when an error was detected. 
It was initialized by the "Executive Control Pro­
gram", which actually selected the proper tape 
unit and set the search forward mode. Three tape 
units were used: one for program storage, whiGh 
was only read in real-times and two others used 
for storing and retrieving data. 

Binary - BCD Conversion-Two routines were used for 
converting between teletype coded decimal num­
bers and their binary representations. The 
binary to decimal conversion program was called 
with the binary number and the binary point lo­
cation as arguments. The result was a 13 entry 
table with six integer numberals and six fraction 
numerals separated by a decimal point. The 
decimal to binary converter started with a table 
of coded integer and fraction numerals and gave 
the binary representation for the integer part 
in the AC register and the fraction in the MQ 
register. 

Message Queue and Buffer Programs-Programs could 
output messages of variable lengths to the commun­
ication typer using these routines which were in­
termediate to the final output routine. Messages 
longer than three characters, including spaces, 
were packed three characters to a word in tables 
at least two computer words long. The program for 
queuing messages was called with the length of the 
message and its location as arguments. As each 
message was taken from the queue it was unpacked 
and transferred to the output program. For 
messages of three or less characters, a program 
for queuing was called with the actual message 
as the argument. 

Units Conversion Program-The engineering units 
conversion routine could be called by all programs, 
except the interrupt service routines. The calling 
program supplied the conversion program with the 
core address of the conversion equation index. 
The conversion program used this information to 
find the correct raw number from the analog-to­
digital converter, which had been stored by the 
ADC routine into a current value table. This raw 
count was converted to the particular prescribed 
units by using the proper programmed equation, 
and the converted value was then returned to the 
calling program. All calculations were done using 
fixed point arithemetic. Conversion equations 
were written to supply engineering units from the 
ADC words obtained from the following transducer 
types: (1) low precision and high precision re­
sistance temperature devices; (2) two types of 
thermocouples; (3) Hall effect devices for meas­
uring heater power; (4) flow transducers for 
measuring nitrogen flow; (5) pressure trans­
ducers for measuring nitrogen pressure; (6) a 
current transducer for measuring current in the 
gas blower motor; (7) valve position transducers; 
and (8) rod position transducers. 

Temperature Averaging Program-Temperature averag­
ing was included as a service program because 
the results were used in the three-color display, 
in certain typewriter logs and in some system 
application programs. Averages were obtained for 
thermocouples grouped near the top and bottom, for 
thermocouples on each side of the reactor, and 
for thermocouples in the reactor core. 
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Timing Control Program 

The "Timing Control Program" was entered on a 0.1 
sec. interrupt, and performed the following 
functions: (1) Called the nuclear check programs 
whenever the reactor was being operated in the 
"nuclear mode". (2) Monitored the two analog 
channels which corresponded to the high precision 
RTD inputs. The monitoring was necessary because 
the two RTD's had 10 different ranges, which could 
be selected by the computer. (3) Every 10 seconds, 
turned on the Limit Check and Alarm Program. (4) 
Turned on the Gas Purity Check Program, one of the 
System Application Programs once every second. 
(5) When time, updated the time of the day 
(hours and minutes) and the day of the year. (6) 
Incremented, every 0.1 second, auxiliary time 
counters used by the ga~-heat programs. (7) Read 
and stored the horizontal rod position counters ten 
times a second. The digital feedback counts were 
stored in a table and thus were available for 
use by other programs. The digital counts were 
converted to readings in inches for all nine hori­
zontal control rods (HCR) and then stored in a 
table for use by the display program. (8) 
Checked to see if any HCRs or vertical safety rods 
(VSR) were selected and if so, entered the 
associated rod monitor routines, which were 
System Application Programs (9) Shut off any horn 
relays after a 4-5 second delay if they had been 
turned on. For example, when the nuclear program 
made up the safety circuit, the safety circuit 
horn had to be blow. (10) Called in the analog­
digital calibrate program at regular intervals. 

Input-Output Programs 

These programs, which are listed in Table III, 
provided the sequences of computer instructions 
necessary to drive the input and output peripherals 
used during on-line operation. The one input 
device used by the operator was the command typer. 
Limited output in the form of concise re$ponses to 
operator commands also occurred on this teletype. 
Hard Copy logs appeared on a second teletype unit 
with identical storage of the logs on a Microtape. 
The three-color display presented real-time 
operating information. 

Table III. Input-Output Programs. 

Keyboard Executive 
Display' 
Tape-Core Buffered Output 
Internal Data 
Logging 

Keyboard Executive Program-The Keyboard Executive 
Program was the essential link between the oper­
ator and the total programmed system. It allowed 
the observation of reactor measurements and the 
pre-operational checks on computer inputs and 
outputs and permitted the initiation of the Appli­
cation Programs for the heat, cool and nuclear 
systems. 

Display Programs-These programs controlled the pre­
sentation of permanent and transient information 
on the three-color display. Real-time logs dis­
played information about the constituents in the 
reactor atmosphere; valve positions and gas flow 
and pressures; heater power and thermocouple temp­
eratures; and readings of horizontal control rod 
position from the analog position transducers. 



The states of contacts could also be displayed 
in 18 bit groups. Anyone of the real-time logs 
could have been displayed and continuously updated. 

Tape-Core Buffered Output Programs-Using a tape­
core buffer allowed the teletype output buffer to 
accumulate data faster than the teletype could 
print. For example, if several logs were re­
quested, it could take several minutes for them 
to be typed and there would have been a consider­
able time lag between the first and last log if 
the log data were collected at the teletype speed. 
With the buffer, however, if a log was being typed 
and another one was requested, the logs were 
stored onto magnetic tape, and they were then read 
into the typing buffer from the tape. 

Internal Data Program-This program, which was 
entered from the Executive Control Program every 
time the Executive loop was executed, caused trans­
fer to tape of any data which may have been gener­
ated by the heat and nuclear system programs. This 
data was not normally available from an operating 
log. 

Logging Programs-Fourteen different logs were a 
available on the typewriters. The majority of 
these log programs printed analog process data 
on the logging teletype. 

One of the Logging Programs typed on the command 
teletype the identification, raw counts and en­
gineering units for a single analog channel re­
quested by the operator. He might request typing 
of any number of channels (one at a time) and 
could deactivate the log at any time. 

Another Logging Program allowed the operator to 
request the contents of any address in the core 
memory during the real time operation of the 
system. These numbers were also typed on the 
command teletype. 

Limit Check and Alarm Program 

This program was a permanent core resident and was 
routinely executed once every ten seconds. How­
ever, the program was also executed immediately 
after the reactor safety circuit was tripped by 
something external to PMACS in order to identify 
the source of the safety circuit trip to the 
operator. The primary function of this program 
was to examine PMACS inputs for off-normal con­
ditions and to indicate these conditions to the 
operator using the color display and the logging 
teletype. The inputs checked were binary values 
from switch contacts and analog values of reactor 
gas constituents. 

System Application Programs 

There are three major systems in the HTLTR 
facility: (1) Cooling, (2) Heating, and (3) 
Nuclear. In Table IV are listed the Application 
Programs related to these systems. The Gas-Heat 
Program handled the manual and automatic control 
of the cooling and heating systems; the Nuclear 
Program was concerned with flux measurement in 
the nuclear system; the Gas Purity Program deter­
mined the amounts of different types of gases in 
the gas (nitrogen) system; the Reactor Rods Pro­
gram aided in positioning the horizontal control 
rods and vertical safety rods in the nuclear 
system; and the Scram Program identified the 
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cause of an automatic shutdown of the nuclear 
system. 

Table IV. System Application Programs. 

Gas-Heat System 
Nuclear System 
Gas Purity 
Reactor Rods 
Scram 

Gas-Heat System Programs-These consisted of 11 
distinct segments on four magnetic tape links, 
becuase the coding was almost twice as long as 
the assigned core locations. Each of the 
different segments roughly corresponded to the 
state of the gas and heat systems during execution 
of the program segment. 

Valves could be moved on command, or could be set 
on automatic control to maintain operator requested 
conditions in the gas system. In the heat system 
the operator could set heater powers or could 
request automatic temperature regulation at any 
temperature to 1aaaoC. Checking was performed by 
the programs to only allow valve positions, heater 
powers, and automatic controller setpoints which 
were within the physical limits of the equipment. 
The basic automatic feedback control algorithm 
was a discrete version of a continuous two-mode 
controller (proportiona1-p1us-integra1). Many 
modifications were introduced to allow for the 
physical characteristics of the systems. For 
example, different error signs had to be allowed 
for control of water cooled heat exchangers, as 
well as, for control of the pressure in the reac­
tor containment vessel. Although there were many 
different types of measured variables and different 
ranges, automatic control was achieved with one 
time shared control program for the gas system 
and one for the heat system. 

Nuclear System Program-The following program func­
tions were performed for both flux digitizer units 
in the PMACS: (1) Determined if operational 
safety requirements were satisfied before allowing 
the nuclear program initialization and the "making 
up" of the safety circuit for the nuclear mode of 
operation. (2) Found the proper digitizer range, 
or made sure the digitizer was "on scale", and 
kept the digitizer on scale whenever the reactor 
was in the nuclear or core load mode. (3) Cal­
culated a low accuracy period ten times each sec­
ond and compared it with the lower period limit 
set by the operator. An automatic shutdown would 
occur after a predetermined number of low periods 
appeared in succession. (4) Every second cal­
culated period and power values, and compared 
these against operator set limit values. If the 
period was too short or the power too high an 
automatic shutdown occured. (5) Every eight 
seconds performed a high accuracy period calcula­
tion, stored the result on magnetic tape, and dis­
played it on the CRT. 

Gas Purity Program-This permanent core resident was 
executed once every second. Its primary function 
was to read the signals from moisture monitors and 
gas chromatographs and then calculate the quan­
tities of gas contaminants in the nitrogen atmos­
phere. The peaks in the analog output from the 
chromatographs were found by the program, but the 
operator had to synchromize the chromatograph self 
timer and the program. The program monitored the 



accuracy of the synchronization by the location 
of the nitrogen peak. Moisture content was cal­
culated directly from the outputs of moisture 
monitors every four minutes. 

Reactor Rods Program-With this program the opera­
tor was able to manipulate the horizontal control 
rods and the vertical safety rods safely, because 
it allowed only predetermined sequences of op­
erations. The program did not initiate rod motion 
automatically, but merely related operator speci­
fied movements to predefined safety criteria and 
movement sequences. 

Scram Program-The Scram Program identified the 
cause of an automatic shutdown. Shutdowns 
caused by the programmed system could have been 
the result of the program bug of executing a zero 
operation code, or off-normal conditions as sig­
nalled by switch contacts and analog signals. An 
automatic shutdown resulting from conditions ex­
ternal to the programmed system was signalled by 
a hardware interrupt. For example, if the reac­
tor door, which makes contact with a limit switch, 
was opened, an au~omatic shutd"own would occur; a 
too short period could cause a shutdown; or the 
operator could push the "Shutdown" button, which 
triggered the hardware interrupt. 

Maintenance Programs 

These programs, which are listed in Table V, 
differed from a memory checkerobard test, for 
example, in that they were part of the on-line 
program system. 

Table V. Maintenance Programs. 

Valve Calibration 
Analog-Digital Calibration 
Rod Maintenance 
Digitizer Maintenance 

Valve Calibration Program-The operator requested 
this program to calibrate one valve in either the 
full open or closed positions using limit switches. 
Calibration of valves was necessary in order to 
determine the actual position of a valve stem or 
to maintain agreement between the digital drive 
motor pulse count and the analog position feed­
back signal. 

Analog-Digital Calibration Program-This program 
checked for proper operation of typical analog­
to-digital converter channels which contained a 
low level voltage, a high level voltage, a low 
precision RTD, and a high precision RTD. 

Rod Maintenance Program-This was used when the 
facility was in the non-nuclear mode for making 
up the safety circuit and then driving a control 
or safety rod for testing, calibrating or repair­
ing. Response times of the independent safety 
circuits could also be determined. 

Digitizer Maintenance Program-The program per­
mitted the operator to read the neutron flux with­
out making up the safety circuit, to check zero 
offsets, and to make adjustments to the digitizer 
units. 

Initialization and Shutdown Programs 

Before the real-time programs were loaded into core 
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and their execution started, the PMACS hardware 
was routinely tested to a limited extent for mal­
functions, and then it was initialized for the 
real-time programs. Initialization was performed 
by program, or a message was typed requesting 
the necessary operator actions. In addition to 
the hardware initialization, the queues, switches, 
data tables and flags for the resident programs 
were also initialized. 

A shutdown program provided messages and programmed 
actions to assure the operators that the PMACS was 
in a safe condition and could be left unattended. 

OPERATING EXPERIENCE 

The operator has a typewriter keyboard and a 
single spring loaded toggle switch to operate most 
of the equipment in the reactor systems. The 
list of over 150 acceptable commands, which he 
can type, is too large for an operator to easily 
memorize, but he can memorize the routinely used 
ones and refer to a convenient tabulation of the 
others. As an example, the operator moves con-
trol rods by enabling the rod drivers for specific 
control rods with typewriter commands and then 
moves the rod or rods by pressing the toggle switch. 
At any time a conventional push button switch, the 
reactor shutdown button, can be used to disable 
the rod hold power supply and shut down the reactor 
instantly. Using a teletype for controlling the 
reactor systems has not been too unwieldy. 

Training for the operating staff consisted of re­
viewing and actually writing programmed functions, 
and participating in the final debugging. The 
operators performed the design tests, which pro­
vided them with further experience. 

Failure in the computer mainframe has caused no 
unscheduled process shutdowns, however failures 
in the computer peripherals and in the computer­
process interface have occurred. 

HTLTR has been operating over a year as an ex­
perimental reactor. During this period both the 
PMACS hardware and software have been modified, 
with all programming being done by the HTLTR 
operations staff. All modifications are reviewed 
and approved prior to their final incorporation 
in the Programmed Measurement and Control System. 
Also there have been some additions to the process 
equipment external to PMACS which will not be 
considered here. The majority of changes in the 
PMACS software and hardware were made in three 
general areas: (1) Programs were added to make 
up for deficiencies in the original program pack­
age, or to add capabilities that had not been 
though of for the original system. (2) Programs 
were changed to remove bugs that showed up during 
routine operation. (3) Changes were made to im­
prove the operation of the reactor facility. 

In some cases the program deficiencies were 
recognized at the completion of the original 
system, but were not included because of time 
limitations. An example of this is a tape re­
trieval program for logging information from Micro­
tape. Another added program continually checks 
that the central processor is not locked in a loop 
which is smaller than the Executive Control Loop. 
This insures the operator that all programs, which 
have been requested and turned on, are being execu­
ted. As another example, in order to allow un-



attended operation of some parts of the HTLTR 
facility with the PMACS active, an annunciator 
and typewriter have been installed in an adjacent 
reactor facility. When a malfunction occurs, the 
computer sounds the alarm and types a description 
of the malfunction. 

Modifications in the system were made to simplify 
the operator's job of operating the facility for 
experimenting, as well as programming and main­
taining equipment. One change that was made 
was increasing the use of the three-color display 
for programming and for checking out the hardware. 
Several changes were made to make the keyboard a 
less cumbersome means for commanding the PMACS 
operation. For example, the Keyboard Executive 
Program was expanded to recognize more mnemonics, 
and some mnemonics were shortened. Accuracy of 
some calculations was improved. The gas chromo­
tograph was removed from the PMACS system, be­
cause of the difficulty of keeping track of the 
gas peaks as a function of time. Gas chroma­
tographs have been under computer control, and 
the one at HTLTR could probably be controlled 
also. However, the operations staff felt that 
proper control of the chromatograph would take 
too much core storage that would be more valuable 
for other programs. 

Modification of the software to continually im­
prove the operator's capability for controlling 
the process was one of the prime arguments for 
including a computer in HTLTR's instrumentation 
system. That this original argument was sound, 
has been proven already in the short operating 
life of the facility. 
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ABSTRACT 

The PDP8 series of computers is being used frequent~y in 
automated test systems at Sandia Laboratory. Several sys­
tem configurations are presented briefly. Emphasis is 
placed upon the solution of general problems arising from 
their use in a large organization of design engineers and 
in applications where delivery-schedule time scales are 
very short. General interfacing methods are discussed 
and a semimodular approach is shown. Sandia's method of 
obtaining programs from an engineering organization where 
no programming talent previously existed is presented. 

The author is a member of a group of about 50 
engineers and technicians at Sandia Laboratories 
responsible for the design of test systems. These 
test systems are used in development and accept­
ance testing and for quality verification of com­
ponents used in the AEC's weapons programs. 

Typically, a requirement for a system is not known 
until late in the tested item's development proc­
ess. This results in a very tight time scale 
being placed upon the test-system designer. The 
procurement of parts for the systems are routinely 
on a "crash" basis, with the frequent burning of 
large quantities of "midnight oil." 

One of the difficulties in such an operation is 
that the designers tend to fall into familiar 
ruts and change does not come easily. This could 
result in bypassing new and more effective ways of 
accomplishing the jobs at hand. With the advent 
of the small, inexpensive digital computer came 
the basic question: Could these new machines be 
used to an advantage in our test systems? Of 
course, the answer was definitely affirmative, 
but some problems were apparent which would need 
solutions within our framework of doing business. 

1. Could our design engineers be trained to 
understand and apply digital computers? 

2. Could we interface the computers with the 
proper transducers and control circuitry 
necessary to do the complete testing job? 

3. Could we find qualified programming help? 

We stepped gingerly forward, ordered our first 
PDP8, and started our first application. This 
was about 18 months ago. Today we have purchased 

103 

23 of the PDP8-series computers, and their use 
has become almost routine. 

Before we discuss the solution to the previously 
mentioned problems, let us look briefly at some 

of these applications. 

INERTIAL SWITCH TESTERS 

PDP8/S's have been used on three inertial-switch 
testing programs. Two of these programs involve 
testing of rather conventional slug mass devices, 
and the other a device based upon Sandia's new 
Rolamite principle. Typically, the computer con­
trols a centrifuge to follow some precise accelera­
tion versus time function by implementing a digital­
to-analog converter. Readings are taken of accel­
eration levels, contact resistance, high-voltage 
leakage currents, and several other variables. The 
test operation, data taking, and presentation are 
entirely under the control of the PDP8/S, and are 
completely automatic. 

TIMER TESTER 

A precise, multichannel electronic sequence timer 
is tested, using a test system based upon a PDP8/S. 
This project involved the interfacing of the com­
puter with a number of high-quality commercial 
electronic timers. 

JUNCTION BOX TESTER 

At first glance, the use of a digital computer 
for testing of a simple thing, such as a junction 
box, would appear to be an unlikely application. 
However, the inspectors and production engineers 
could easily be overwhelmed by the quantity of 
data from loop resistance tests and leakage-current 



tests on multipath junction boxes. The computer 
removes this problem by only presenting out-of­
limits readings, and then, on a lot basis, quality 
summary information such as X bar and sigma. 

THERMAL BATTERY TESTER 

A thermal battery is a one-shot device. Once the 
heat-producing chemical reaction is complete and 
the battery has produced its current and voltage, 
the device is discarded. This means that thermal­
battery test systems must be reliable. A produc­
tion engirieer tends to be rather unhappy if a 
thermal battery is fired without obtaining useful 
data. 

The PDP8/S computer controls a binary-coded-decimal 
resistor bank to produce a rapidly and precisely 
controlled varying load. Output voltages and 
currents are measured periodically. 

EXPLOSIVE POWDER DISPENSER 

A PDP8 is used as a process-control computer to 
control the dispensing of small quantities of 
explosive powder to a high degree of accuracy. 
Naturally, the system is completely automatic, 
being located in a remote concrete blockhouse. 

MASS PROPERTIES LABORATORY 

A PDP8 is used in a time-sharing mode to record 
data from two balancing machines and several 
moment-of-inertia devices. Three teletypes 
operate into an executive program to permit the 
operator to enter independent variables and 
receive output results. 

RADAR TESTER 

A PDP8/I with discs and IBM compatible magnetic 
tape is used to assemble data taken from four 
sophisticated radar testers. This is the subject 
of another paper presented at this meeting by 
Mr. Tom Rau. 

In reviewing these examples of application, one 
can see that the computers have been put to a 
wide variety of uses. A number of engineers have 
been involved in the design and checkout of these 
systems. It is interesting to note also that 
these engineers are a part of an organization 
where two years ago very little computer back­
ground existed. 

The first problem tackled was the training of 
personnel. A few individuals were sent to the 
DEC programming school in Maynard. But this 
proved to be somewhat ineffective, since the 
curriculum of the school assumes consQderable 
prior knowledge of computer technology and 
programming. Upon receipt of the first PDP8, 
one man was assigned to become familiar with the 
machine, with the intent that he conduct classes 
for others. This was done with 10 individuals in 
the first class. Two of these were subsequently 
sent to the Maynard course and reported it to be 
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of little value after taking our own in-house train­
ing. The next training sessions included members 
of the Sandia Educational Division, who are trained 
engineering instructors. More recent classes have 
in turn been taught by them. To date, over 200 
have taken our in-house computer course. Attendance 
by supervisory and managerial personnel at recent 
sessions has been heavy. 

The second big problem undertaken was the inter­
facing problem. This, in retrospect, proved to 
be less of a problem than originally thought. 
Fortunately, our engineers· talked to each other, 
and informal standards soon evolved. DEC logic 
boards (R and W series, primarily) are used, and 
have proved to be satisfactory. The digital engi­
neer certainly cannot be bothered by problems 
residing within the logical building blocks, and 
the DEC equipment fills the bill in that respect. 

In our applications, typically, a number of relays 
are operated by the computer under program control. 
A technique, using either the Wl03 interface board 
or a combination of Rl07's, Bl17's, R203's, and 
W06l's, was originated early and has not varied 
greatly. Typically, schematics of earlier jobs 
are red-marked for the current job and sent to 
drafting for rework and to the fabrication shops 
for wiring of the card racks. 

Obtaining effective programming aid proved to be 
a more difficult problem. We have determined that 
it is absolutely necessary for the design engineer 
to be a capable programmer. This is necessary for 
him to understand his system in all its aspects. 
But to prevent his being burdened by the intricate 
details of programming, it is desirable to have a 
professional programmer working with him. Origi­
nally, it was thought that any programmer qualified 
on any modern computer would suffice. This did 
not prove to be totally true. With some program­
mers, thoroughly experienced in using highly 
advanced software, the gap was just too great for 
them to communicate on a hardware-oriented level 
with our engineering staff. 

Recently, we have specified programmers with 
engineering background as those qualified for our 
jobs. This service has generally not been avail­
able within our own house, and we have gone to 
outside programming houses with good results. 

In conclusion, then, it would appear that we at 
Sandia Laboratories have just begun to scratch 
the surface in our application of small digital 
computers. We anticipate a rapid growth in the 
use of the computer in our business in the' 
immediate future. 
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ABSTRACT 

This paper describes the use of a FDP-8/S computer 
in obtaining the characteristics of hydraulic rotating 
machinery. The aim of this work is to provide a 
rapid and accurate method for carrying out such tests. 

Some of the interface problems, methods of handling 
the data and programming techniques which are 
peculiar to this type of system are discussed. 

A programming language, which makes use of macros 
and an operating system, has been written providing 
the user with a powerful test control and data 
acquisition system. 

Introduction 

The problem of obtaining the steady state 
operating characteristics of hydraulic pumps, 
motors and transmission systems can be con­
sidered at three basic levels: 

1. All the work, including processing test 
data and plotting graphs, to be done manually. 

2. Setting u6 the test conditions manually, but 
using a data logging system to collect the test 
data for further processing by computer. 

3. Using a computer to set up the test con­
ditions, to sUDervise the collection of test 
data, to process this information and to 
output it in the required form. 

If only a few results are required at fixed 
points on the characteristic curve of the 
device under test, then a manual system will 
normally suffice.. However, if a complete set 
of characteristics is required, then to perform 
the tests manually is a lengthy, error-prone 
process. 

The object of the test rig described here is to 
provide a system capable of determining and 
plotting the characteristics of a hydraulic trans­
mission system quickly and accurately. 

Figure 1 illustrates a typical set of graphs 
which may be required for a motor test. Not 
all of these may be needed for anyone test, 
and many other characteristics are also 
possible. 
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Design Criteria 

The following are some of the considerations 
which were taken into account during the 
design of the system: 

1. Flexibil ity 

Since many different kinds of test are 
carried out on one test bed, system 
flexibility is essential. 

2. Accuracy 

In the absence of an international testing 
procedure, tests are carried out according 
to principles laid down in a draft proposal 
being ~onsidered by the British Standards 
Institute. This proposal will probably be 
adopted in a modified form as an inter­
national standard, and is therefore used 
as the basis for this work. This proposal 
calls for accuracies of the order of .5% 
in all measurements and this figure is used 
as the maximum permissible error for 
this system. 

3. Simultaneous Readings 

The proposal mentioned above states that 
all readings should be taken simultaneously. 
This is not possible when testing manually, 
but can easily be achieved in a computer 
system. 

4. Manual Capability 

It is sometimes desirable to run tests manually, 
when no programme exists for the required 
test and only a few spot checks are required. 



S. Ease of Programming 

An easy method of programming tests had to 
be provided so that non-standard tests could 
be programmed easily and with a reduced 
risk of error. 

Description of System 

Figure 2 shows the system when set up to 
carry out tests on a variable stroke 
hydraulic motor. 

The three input voltages V l' V 2 and V 3 
can be derived from manually set potentio­
meters or from the computer through 
digital to analog converters. These voltages 
control the oump output flow, motor torque 
and motor stroke respectively. It can be 
seen that in all three cases the control loop 
is closed outside the computer. This is done 
to provide system stability when running under 
manual control. It can be shown that this 
does not limit the flexibility of the system 
when running under computer control. 

Consider the loop controlling the pist.on of 
the linear actuator which sets the pump 
stroke. The amplifier output current "i" is 
given by 

i = K ( V 1 - V FB) ................... ( 1 ) 

where V FB is the voltage fed back by the 
potentiometer and K is the amplifier gain. 

If the computer output voltage is V l' instead 
of V

1 
such that: . 

Then 

K ( K 1 V 1 - ( K 1 -1 ) V FB - V FB J . . . .. (3) 

K K 1 (V 1 - V FB ) . . . . . . . . . . . . . . . . .. (4) 

and the effective amplifier gain is now modified 
by the term K 1 and becomes K. K 1 . 

Similarly by setting 

(5 ) 

the amplifier output is given by 

(6 ) 

which means that the feedback loop has been 
effectively opened. 

Therefore, closing the loop physically does 
not impose any restriction on the system 
when running under computer control. 
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Measurement of Variables 

Signals to be monitored are converted into 
voltage levels or pulse trains. Voltage levels 
are multiplexed into an analog-digital converter. 
Pulse trains are monitored by using the 
pulses to gate a 10 Mc/s clock, and the 
clock pulses are counted on a 23 bit binary 
up counter with a final flip flop to detect 
overflow. Time interval measurement is 
used because the pulse trains have a low 
repetition rate and a long sampling time 
would be required if a fixed time interval 
pulse counting technique were used. 

Measurement of flow is carried out by means 
of a turbine flowmeter. This type of meter 
gives a number of pulses (N) for each 
revolution of the turbine. The number N is 
equal to the number of blades on the turbine. 
It is necessary to divide the output pulse 
train by the factor N before gating the clock, 
so that one complete revolution of the turbine 
is timed, and errors due to inaccuracies of 
the blade positions are therefore eliminated. 

Software 

Figure 3 illustrates the computer core map 
during normal operation of the computer. 

The binary loader has been modified so that 
in the event of a checksum error when a 
user's programme is being read in, the user 
area in core is cleared to "halt". This 
minimizes the possibility of a programme 
running wild, which could cause damage to 
the system. 

The operating system consists of a floating 
point package, I/O subroutines and all 
subroutines needed for test purposes. This 
includes routines to perform "do loops", 
conditional branching, control functions, 
XY plotter control and so on. In fact, the 
only instructions which the user is allowed 
to incorporate in a programme are macros 
and entries into the operating system sub­
routines. This further reduces the possi­
bility of damaging the hydraulic equipment 
when running a programme which has not 
been debugged. 

The supervisor is an independent programme 
which is entered at regular time intervals by 
pulsing the programme interrupt line with a 
clock pulse. When the supervisor is entered, 
the test is frozen for a short period and all 
of the system' variables are monitored to 
ensure that they fall within safe predetermined 
limits. The supervisor is able to initiate an 
alarm or a system shutdown if it detects an 
"out of limit" condition, but will allow the 
test to continue if all conditions are satis­
factory. 



Data Handling 

There are three sources of data to be con­
sidered: 

1. The keyboard 
2. AID converter 
3. Binary counter 

Instead of having three different input macros, 
a common II read II instruction is used as 
follows: 

Any user programme begins with a series 
of data definition statements such as: 

KBD 
BIN 
AD 

A (source - keyboard) 
B, 1, 230 (source-binary counter) 
PI, 1, 526 (source-AID converter) 

These macros will be expanded as: 

A, 0 
o 
o 

0000 (data source indicator -
keyboard entry) 

B, 0 
o 
o 
o 

4000 (data source indicator -
digital entry) 

1 (digital channel number) 
230 (transducer number, for use 

with calibration table) 

PI, 0 
o 
o 

3777 (data source indicator -
analog entry) 

1 (multiplexer channel number) 
526 (transducer number) 

The instruction "READ All is interpreted as 
a jump to the read subroutine with the address 
of the variable "A" following the subroutine 
jump instruction. The read subroutine will 
then check the data source indicator and enter 
one of three subroutines depending on the 
indicator value. If the data source indicator 
shows that the source is the AID converter, 
the following sequence is initiated: 

1. The multiplexer channel is examined and 
the correct channel is selected. 

2. The AID converter is sampled a pre­
determined number of times, and the 
arithmetic mean value calculated. 

3. PI stored table is consulted for the trans­
ducer numbers concerned. This table 
provides calibrated data corresponding to 
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the result obtained from the above averaging 
process. This calibrated data is given 
directly in engineering units. By using linear 
interpolation between the points in this table, 
it is therefore possible to correct for non­
linearity in the transducer and to convert the 
result into engineering units in one step. 

4. Finally, the result is stored in the 
allocated location. 

The averaging process mentioned above is, 
in fact, a simple numerical filter used to 
filter out unwanted ripple in the variable 
being measured. The characteristics of 
this filter are shown in Figure 4 for 
samples of 1, 3 and 10. 

The filter output h (ts t, f, n) is related to the 
sinusoidal input g (t) by the relationship 

h (L1t, f, n) =g (t1 + nZl . ts t) . A (n, x) 

where A(n,x)= sin .nTI x 
n Sln71' x 

and x = f.Ci:t 

f = frequency of g (t) 

M = sample interval 

n= number of samples taken 

The derivation of this relationship IS trivial. 

It can readily be seen that all frequencies 
between f=O and f=-L can be attenuated, and 
when the sample nJ:rhber becomes large, the 
filter becomes a narrow band comb filter. 
All frequencies above f=-tt.- can be attenuated 
by means of a suitable 10\,,5 pass electronic 
filter if necessary. U sing the graph shown 
in Figure 4, it is therefore possible to deter­
mine the sample number necessary to 
attenuate ripple if the ripple frequency is known. 

Conclusion 

U sing the system described here, it has been 
possible to reduce the total time required to 
carry out comprehensive tests on hydraulic 
rotating equipment, and to maintain a high 
degree of accuracy. At present, system 
variables are controlled by means of a simple 
finite difference equation, and the operator has 
to specify three constants which determine 
loop gain, error reset and damping. An 
alternative II adaptive" system is being planned 
to eliminate the need for this, so that the 
operator will not be concerned with changes 
in the system performance when the device 
under test is changed. 
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ABSTRACT 

The paper describes the methods of implementation of a data acquisition system 
in a manufacturing enviroment on an 8K PDP-9 with DEC tapes. The system main­
tains production unit counts and updates production schedules, logs processing 
unit state changes, reports exception conditions, and processes real time 
inqu1r1es. The system utilizes queue structures for in-process data in order 
to conserve and dynamically allocate core storage. 

INTRODUCTION 

The primary function of a data acquisition 
system in a manufacturing enviroment is mainten­
ance of production records. For the system being 
considered, this requires maintaining: 

1. counts of the number of production units pass­
ing by each of two counting points on each pro­
cessing unit; 

2. the identification and the schedule for each 
of four production assignments for each process­
ing unit; 

3. the identification of the three operators 
assigned to each processing unit; 

4. records of the durations of each of nine 
operational modes for each processing unit. 

The system is implemented on an 8K PDP-9 with 
power failure protection option, three DEC tapes 
a CROIE card reader, multiple teletypes, a DS02BA 
data scanning unit, and a DROIB light driver unit. 

Production unit counts are derived from the 
data scanning unit input. The passage of a pro­
duction unit through a counting point compleQents 
a flip-flop. Comparison of the flip-flop with its 
previous state indicates whether a production unit 
has been produced. Processing unit operational 
modes are input through the data scanning unit. 
Production assignments, schedules, and schedule 
changes may be input through the teletypes and 
the card reader. Operator assignments are input 
through the teletypes. Interrogatives and 
commands are input and replies are output through 
the teletypes. Exceptional operating conditions 
are reported on the teletypes and, by means of the 
light driver unit, are reported on a light at 
each processing unit. Data is logged on punched 
paper tape and backed-up on DEC tape. 

The system is core resident and occupies in 
excess of five thousand locations. In addition, 
production records for each processing unit 
require in excess of forty words, the bulk of 
which is DEC tape storage. The system is 
completely protected against power failure. All 
input and output is under interrupt control. 
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Processing unit scanning is initiated by fixed 
interval clock interrupts, but processing unit 
scanning is fully interruptable. The system 
maintains clock time. 

SYSTEM CAPABILITIES 

Each processing unit is a member of a class 
and a subclass. The number of processing units, 
subclasses, and classes is variable; the number 
of processing units in a subclass and subclasses 
in a class is variable. Four production assign­
ments are maintained for each processing unit. 
A processing unit has nine operational modes. 
One of these modes indicates the processing unit 
is inactive. If the processing unit is in any of 
the other eight operational modes, it is active; 
its mode indicates which of the four production 
assignments is active and whether production units 
are to be counted. 

The system recognizes and reports two kinds 
of assignment completion conditions. An over­
flow condition exists when a processing unit's 
production assignment has been fulfilled. Pro­
duction units with the same identifications may 
be assigned to multiple processing units. If 
this situation exists for processing units in 
different subclasses, it is assumed that the 
assignments represent different stages of comple­
tion of the production units; if this situation 
exists for processing units in the same subclass, 
it is assumed that the production units are 
functionally identical. A second kind of over­
flow can exist. When the sum of the assignments 
of functionally identical production units has 
been produced, overflow conditions exist for the 
functionally identical assignments. Either type 
of overflow may also occur as a result of schedule 
decreases. Each class of processing units is 
serviced by one teletype. When an overflow occurs 
the condition is reported on the teletype servic­
ing the class. When an overflowed assignment is 
active, a light on the processing unit is on. 
When schedule changes or schedule increases cause 
either type of overflow condition to terminate, 
the condition change is reported on the teletype 
and the overflow light is turned off. 

Teletype reports indicate the start of 
production of an assignment. When a processing 



unit enters counting mode and was last in count­
ing mode for a different assignment, a report of 
the entered mode is made on the class teletype. 

Data logging occurs for each mode change, 
production schedule change, production assign­
ment change, operator assignment, and for console 
teletype initiated changes to the system's real­
time clock. The system maintains an operator 
shift sc~edule for each class. When shifts 
change the class is logged. When a processing 
unit enters counting mode and has not been in 
counting mode since its shift change, a report 
of the entered mode is made on the teletype for 
the class. Each teletype may accept commands 
for shifting its class or any processing unit in 
its class. Data is logged on DEC tape. When the 
paper tape punch is available, the data is copied 
from DEC tape to paper tape. 

The system recognizes additional teletype 
commands to enable and disable selected overflow 
lights. The system also recognizes teletype 
interrogatives which cause typeouts of: 

1. the operators of a processing unit; 

2. the status of a processing unit; 

3. the status of specified modes of a processing 
unit; 

4. the status of every processing unit is a 
subclass; 

5. the status of every occurrence of a specified 
production assignment in a subclass. 

A teletype will only accept commands relevant to 
processing units in its class; however, the 
console teletype will accept commands for any 
processing unit. All interrogatives are accept­
able from any teletype. In order to suppress an 
item of teletype output, a one character command 
is entered from the keyboard while the output is 
occurring. When available core storage reaches 
critically low levels, further keyboard input is 
temporarily prohibited; the prohibition is 
indicated by failure to echo. If teletype out­
put is pending and user has taken more than two 
minutes to type a command or an interrogative, 
the system takes the teletype from the user. 

SYSTEM IMPLEMENTATION 

Faced with this hardware complement and 
system capability and the design objective of 
maximizing the potential for system expansion 
and processing unit additions, the decision was 
made that the system would be core resident and 
production records would be DEC tape resident. 
However, DEC tape access speed was judged 
insufficient for random access to production 
records. A scheme was devised for batching tasks 
requiring access to a production record. With 
this scheme production records are accessed 
sequentially and when a production record is 
available the batch of tasks requiring it is 
processed. 

One production record exists for each 
processing unit. For each production record, 

112 

four words are core resident and forty-five words 
are DEC tape resident. Which assignment's pro­
duction information is in core is a function of 
the mode of the processing unit. The objective 
is that information which must be accessed most 
frequently be in core. The information in core 
includes the status last reported by the data 
scanning unit, the status of the overflow light, 
the production unit counts for the active assign­
ment, and the production schedule for the active 
assignment. Two pointers are also part of the 
in-core production record. One of these is the 
queue-head for the batch of tasks requiring access 
to the DEC tape production record. The other 
points to a production record item which is 
shared by functionally identical production 
assignments. 

Core available for task queues is divided 
into fixed length blocks of consecutive words. 
These blocks are strung into a garbage queue. A 
garbage queue-head points to a block which in 
turn points to another block, and so on. When a 
task is recognized, the block which the garbage 
queue-head points to is removed from the garbage 
queue. This is done by replacing the pointer in 
garbage queue-head by the pointer contained in 
the removed block. The information which des­
cribes the task is then placed in the block. For 
some tasks mUltiple blocks are necessary, in 
which case mul"tiple blocks are removed from the 
garbage queue. The block describing the task is 
placed in the task queue of the appropriate 
processing unit. The pointer currently in the 
queue-head is placed in the block being inserted 
and a pointer to the block being inserted is 
placed in the queue-head. If multiple blocks 
are required, the first block is queued in the 
usual manner and a word in it is used as a queue­
head to point to a queue of additional blocks. 
When the task has been completed, the procedure 
is reversed: the block is removed from the task 
queue and restored to the garbage queue. If the 
task required multiple blocks, the queue of 
additional blocks must also be restored to the 
garbage queue. The process of removing the task 
is actually part of the task, that is, the task 
defines its disposition. 

The new end of the queue is the end which 
contains the most recent addition, that is, the 
end to which the queue-head points. It is 
generally desireable to process the queued tasks 
in the same order in which they were generated. 
To access the oldest block in a queue, it is 
necessary to step through the queue until the 
oldest block, designated by a special end-of­
queue code in its pointer, is found. The proce­
dure for insertion and removal of blocks from 
any part of a queue is simple but is fastest for 
the new end of the queue. This speed facilitates 
rapid queuing of tasks generated in real time. 
Tasks are subsequently executed at leisure. 

Tasks often arise which require access to 
many production records. In this situation, the 
task is self perpetuating which means that its 
execution causes it to be moved to the queue for 
the next production record. A task may also be 
capable of creating additional tasks during its 
execution. Before creating a task, the system 



checks a count of available garbage blocks. If 
the maximum of the number of blocks which may be 
required during the task's execution is not avail­
able, creation of the task is deferred until its 
requirement can be met. If the blocks are avail­
able, they are reserved by reducing the garbage 
block count. When the task is being executed 
and conditions do not require the creation of 
all of the additional tasks, the reservations 
are cancelled by incrementing the gar gage block 
count. 

Tasks often require access to tel types. If 
the teletype is not available, the task is left 
pending until the required teletype is available. 
In this manner the queues also stack teletype 
output. Each teletype has a single line buffer 
used for both input and output. Associated with 
a teletype buffer are several indicators. One 
of these indicates whether the buffer is current­
ly assigned to a task. Another indicates how 
many tasks have bids pending for the teletype. 
When a task which may generate teletype output 
is created, a bid is made for the teletype. 
Before the task is executed, the system deter­
mines if the teletype i& already assigned to a 
task. If it is assigned, any other task requir­
ing it is left pending. If it is not assigned, 
it is assigned to the task requesting it, and 
its bid count is decremented. When the task 
to which the teletype is assigned releases it, 
it becomes available for reassignment. A tele­
type is available for input only when it is 
unassigned and its bid count is zero. 

The core resident portion of the production 
record contains a pointer to production informa­
tion which is shared by functionally identical 
production assignments. Master schedules must 

Figure 1 Program Flow 
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be maintained to show the sums of the individual 
schedules of functionally identical production 
assignments. The master shcedules reside in core 
but exist only for assignments which are active. 
Many core production records may point to the 
same master schedule. When an assignment becomes 
active, the system determines whether its master 
schedule is in core. If it is not, a task is 
created to generate a master schedule. 

When a production schedule ceases to be 
active and is not functionally identical to any 
other active production assignment, the block of 
storage used for its master production schedule 
is released. Master production schedule core 
blocks which have been released are strung into a 
garbage queue. An active master production 
schedule contains a count of the number of active 
assignments pointing to it. When an assignment 
ceases to be active, the count in its master 
production schedule is decremented. If the count 
becomes zero a task is created to release the 
master production schedule block. 

CONCLUSION 

Batching tasks makes it possible to maintain 
production records in auxiliary storage. The 
number and size of production records can be 
expanded greatly without necessitating design 
changes to the system. With core free from large 
amounts of production information, it is available 
for the addition of system features. Queuing 
dynamically allocates available storage to the 
tasks and production records which require it. 
Because this is done, arbitrary limits are not 
imposed on the allocation of storage. 
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COMPUTER CONTROLLED TIRE FORCE ANALYSIS SYSTEI'II 

Richard A. Cabot 
S. Sterling Company 

Southfield, Michigan 

ABSTRACT 

A machine control system has been developed for a 4K PDP-8 
computer, model ASR-33 teletype, and DF32 disc file to 
control, analyze, and alter the force characteristics of 
passenger car tires. The system provides many of the 
characteristics of large scale time-sharing systems while 
avoiding much of the programming complexity required in 
such systems. The control features of the system include 
the ability to execute operator initiated "macro" commands 
in an online mode or in a batch mode. The analysis fea­
tures of the system range from storage of digitized data 
records on the DF32 disc file to the computation of Fourier 
coefficients using the recently developed Fast Fourier 
Transform techniques. 

INTRODUCTION 

When I first became involved with this 
system, I was overwhelmed with the fee­
ling that I was unknowingly taking part 
in a huge practical joke. The S. 
Sterling Company was seriously responding 
to a reqQest from the General Tire an~ 
Rubber Company for a system that would 
grind rubber from the edges of brand new 
passenger car tires! As a car owner this 
was exactly what I diligently tried to 
avoid (rotation, balancing, etc.) and yet 
General Tire was intending to grind 
rubber off tires before I even got a 
chance to buy them. 

It soon became clear, however, that the 
process of tire grinding, called tire cor­
rection by the industry, is an ingenious 
method developed over the past several 
years by test engineers at General Tire 
to alter the force characteristics 
exhibited by a tire when placed under a 
load equivalent to a passenger car. By 
removing a few thousandths of an inch of 
rubber from specific spots on the circum­
ference of the tire, its ride is signifi­
cantly improved. It is natural to wonder 
why these spots, or "force bumps," are 
not avoided dQring the production of the 
tire, thus eliminating the need to carry 
out post-production tire correction. The 
reason lies in the literally hundreds of 
variables involved in the tire molding 
process. Understanding the myriad of 
interrelationships between these vari­
ables, let alone controlling for their 
effects on the final force characteris­
tics of the tire, is currently impossible. 
Although the process of tire correction 
had been shown to be conceptually sound 
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through a previous, strictly analog 
machine, there were still many research 
questions to be answered. It was also 
necessary to test the practicality of 
correcting tires in production quantities. 
Thus the S. Sterling Company was confron­
ted with the problem of developing the 
electronic hardware and programs to con­
trol a tire correction machine to be 
operated in both a research and production 
mode by test engineers with no prior 
real-time computer experience. 

HARDWARE 

Figure 1 provides an overall view of the 
hardware involved in the system. The 
electronics cabinets contain the follow­
ing equipment: 

Digitec di~ital voltmeter (slide 
wire type) 

5 Dana amplifiers 
5 BLH signal conditioners 
8 Datronic signal conditioners 
9 Moog differential amplifiers 

(servo controllers) 
14 Strip chart recorder outputs 

1 PDP-8 computer with 4K core, ex­
tended arithmetic element, mem­
ory parity, and power failure 
options 

DF 32 di sc file wi t.h one surface 
Texas Instrument 16 channel AID 
converter-multiplexer 

Operator's control panel with a 
dial indicating current RPM, 
switches indicating rotation dir­
ection, tire size, and whether the 
tire is mounted or unmounted. 



The axle of the load drum contains six 
load cells (three at each end) that pro­
vide the means of measuring the various 
major forces of a tire. When the load 
drum is brought in against a tire, the 
load cells produce outputs equivalent, 
when summed in pairs, to the radial, 
lateral, and tangential forces exhibited 
by the tire. The summing is carried out 
in analog form, at the load cell, for the 
radial and lateral forces and in digital 
form, in the computer, for the tangential 
force. All resulting force signals are 
conditioned and amplified by the BLH sig­
nal conditioners and the Dana amplifiers 
before being brought to the A/D converter 
as input for the computer. The force 
signals are also available to the digital 
voltmeter as a visual aid for the 
operator during calibration checking. 
Once in digital form the force signals do 
not require further conversion (other 
than the summing of tangential) since 
they have been calibrated so that one 
binary digit represents one pound of 
force. 

The grinder carriages require the great­
est amount of control of any component of 
the system. The two carriages are mirror 
images of each other. During the actual 
grinding of a tire, the carriages move 
laterally across the face of the machine 
to a position over the outer edges of the 
tire. In order to grind a tire with re­
gard to its force characteristics, it is 
first necessary to keep the grinder wheels 
(see Figure 2) a small constant distance 
from, ~~d directly over, the edges of the 
tire. It is important to realize, at 
this point, that the physical roundness 
(called runout) of a tire is not directly 
related to its internal force character­
istics. It is possible, therefore, for a 
tire to be perfectly round and yet have 
an extremely variable force trace. The 
converse is also true as long as the tire 
runout is within industry quality control 
limits. Thus, maintaining a small cons­
tant distance between the grinder wheels 
and the tire edges first requires contin­
ual monitoring of both lateral and radial 
tire runout. The electronics used to 
perform this function include Datronic 
signal conditioners and Moog differential 
amplifiers that receive input from two 
LVDT's mounted on each of the runout 
probes shown in Figure 2. The lateral 
changes in runout are known to be gradual 
throughout a tire revolution and thus are 
monitored in closed loop, causing the 
corresponding lateral movement of the par­
ticular grinder carriage via two Moog 
servo valves. The radial changes in run­
out require more precise control due both 
to the abruptness of the changes and also 
the physical separation of the runout 
probes and the actual grinder wheels. As 
in the lateral control, the radial runout 
LVDT's also produces a signal that ulti­
mately controls the Moog servo valves 
positioning the particular runout probes, 
but now two additional signals are 
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required to be received by the computer, 
delayed in time, and used to position the 
actual grinder wheels. These additional 
signals are provided by two potentio­
meters, one for each carriage, whose case 
is attached to the given grinder carriage 
and shaft attached to the runout probe. 
Thus, when the probes change position cor­
responding to a change in radial runout, 
the potentiometer readings change. The 
computer receives the runout potentio­
meter output from both the left and right 
grinder carriages via the A/D converter. 

The positioning of the grinder wheels is 
accomplished by the two slides shown in 
Figure 3. The reader should also observe 
from this figure that the runout probe is 
extended to the edge of the tire (the left 
grinder carriage was disconnected for the 
photograph). The readings received from 
the runout potentiometers are delayed in 
the computer and sent to the runout slides 
via two D/A converters whose values ulti­
mately control two Moog servo valves (one 
for the runout slide on each grinder 
carriage). Since the force slides ride on 
top of the runout slides, a change in the 
position of the runout slides causes, by 
physical necessity, a corresponding 
change in the relative position of the 
force slides. Thus, by sending delayed 
runout values from the computer to the 
runout slides, the grinder wheels will 
follow radial runout at a known, small, 
constant distance from the tire. At this 
point the only components of the grinder 
carriages that have not been actively 
affected are the force slides. These 
slides, which, due to their physical po­
sition on top of the runout slides move 
with tire runout, are used to drive the 
grinder wheels into the tire at the 
points exhibiting force "bumps." The 
reader should recall that the force char­
acteristics of the tire are captured by 
the load cells within the axle of the load 
drum (180 0 from the grinder wheels). 
Thus, the readings from the force axis to 
be used for grinding are delayed in the 
computer, modified to represent grinder 
depth, and then sent to the force slides 
via two D/A converters. The delay for 
both the runout values and the force 
values is kept independent of RPM by using 
the 128 tooth gear clock attached to the 
motor drive shaft (see Figure 3). 

The decision as to which force axis to use 
in grinding, the criteria for choosing the 
points to be ground, and the number of 
revolutions to attempt grinding a single 
tire, are specified by the test engineer 
in a parameter table described in the 
following section. 



PROGRAMMING 

General 

From the previous section it is clear 
that the mechanical complexity of the 
system alone warrants a fair amount of 
control work from the computer. More im­
portantly, however, since the machine was 
to be used in both a production mode and 
a research mode, the software had to 
allow the "hands-on" flexibility required 
in the research environment and also the 
speed and simplicity-of-operation re­
quired in the production environment. 
And, finally, both these objectives had 
to be accomplished in a manner that 
would allow system operation to be car­
ried out by test engineers with no prior 
real-time computer experience. In order 
to achieve these goals a ~ood deal of 
time was initially spent (away from the 
computer) developing the basic system 
structure. 

The structure evolved from picturing the 
total task of measuring and correcting a 
tire as a set of linked subtasks. Each 
subtask consists of a logically complete 
unit, such as fetching a tire from the 
conveyor and loading it in the machine, 
recording data from the tire, correcting 
the tire, performing a Fourier Transform, 
saving data on the memory disc, entering 
operating parameters, etc. The subtasks 
were developed as separate programs 
whose exec~tion can be commanded by the 
test engineer via the system teletype. 
The major benefit of this approach is 
that the order in which the subtasks are 
linked is now at the operator's dis­
cretion. Obviously, certain sequences of 
commands are impossible to execute, such 
as attempting to correct a tire before a 
tire has been bro~ght into the machine, 
or attempting to list data before data 
has been recorded. This problem is auto­
matically handled by the system, however, 
by monitoring each of the operator's 
command req~ests and typing an error 
message if a command is requested that 
req~ires information not yet obtained. 

Another benefit of this approach results 
from the a~tonomous nature of each sub­
task. Since each subtask (command) is a 
separate program, new commands can be 
added to the system with minimum diffi­
culty. Thus, as the testing methodology 
expands, the system can also expand to 
incorporate the new techniques. 

Although the decision to subdivide the 
total task into linked subtasks provides 
maximum operating flexibility, it also 
carries with it the inherent disadvantage 
of reqairing the operator to physically 
enter each cormnand. When the system is 
used in a production mode versus a re­
search mode, such a disadvantage becomes 
overpowering. This problem, however, was 
foreseen during system development and 
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avoided by allowing the operator to com­
pile a sequence of up to 16 commands to be 
executed whenever req~ired. Additional 
commands were added to provide operator 
control over the sequence, e.g., begin 
using the sequence, pause during the use 
of the seq~ence, restart the sequence, etc. 
During execution of such a sequence the 
operator may still define commands, and 
thus, in effect, cause the temporary in­
sertion of a command in a previously de­
fined sequence. 

A command is entered via the teletype key­
board by typing a cOlon(:) followed by a 
command message. Since the system only 
uses the first two leters of the command 
message to determine what action has been 
requested, the operator may abbreviate 
commands to two letters or may type a 
complete message. A command is considered 
to be defined when the return key on the 
teletype is depressed. The entry of a 
command may occur at any time during sys­
tem operation. If a command is being 
executed when a new command is entered, 
the system will, if possible, execute 
both commands concurrently. If, dUe to 
logical or space constraints, it is not 
possible to execute both commands concur­
rently, the command presently in execution 
will be completed before the new command 
is carried out. 

There are currently 25 commands available 
to the operator of the system, many of 
which are shown in Figure 4. This figure 
also demonstrates the compilation of a run 
sequence. 

The system was organized in a way that 
attempted to minimize the dead time be­
tween the execution of commands. Clearly, 
when the operator is manually entering 
commands that are to be executed as soon 
as their definition is complete, (not 
using a previously compiled run sequence), 
the dead time between commands is irrele­
vant. However, when operating in a pro­
duction mode, with commands being taken 
from a run sequence, the more rapidly the 
commands are executed the higher the pro­
duction rate. The techniques used to ac­
complish this objective are described in 
the following section. 

Internal Structure 

The memory of the computer was divided 
into two segments: a resident segment and 
a background segment. The resident seg­
ment consists of the system monitor, 
(including a disc referencing routine and 
the table containing any compiled com­
mands), an interrupt processor, a circular 
buffer for all teletype output, a teletype 
output processor, and a common region con­
taining the parameters required by various 
commands during their execution. The 
background segment is continually over­
layed, from the disc, with the programs 
corresponding to the commands requested 



by the operator. All output generated is 
placed in the output buffer with each 
location containing two trimmed ASCII 
characters. It should be noted that it 
is necessary for the actual trimmed 
characters to be placed in the table, 
versus, in the case of a title, a pointer 
to a string of characters located within 
the command program being executed, since 
the command program is very likely to be 
overlayed before its output is completed. 
In order to avoid an overburdening of the 
disc transfer capability, the system was 
designed so that the occurrence of an in­
terrupt from the tire correction machine 
never requires a disc transfer for its 
processing. Thus the command programs 
that examine the sequence of interrupts 
to, fo~ example, bring a tire from the 
conveyor and load it in the machine, are 
also permanently located in the resident 
segment. Since these programs respond to 
interrupts generated by a relatively slow 
moving mechanical process, most of the 
time these programs are in execution is 
spent waiting for the next interrupt. In 
order to take advantage of this, the sys­
tem was designed to allow the execution 
of other command programs while waiting 
for the mechanical operations to be com­
pleted. Steps 11-14 of the run sequence 
of Figure 4 show an example of how to 
take advantage of this feature. Since the 
great majority of command programs require 
a disc transfer, a significant amount of 
design time was spent in developing the 
technique to initially store and subse­
quently retrieve information from the 
disc. For various reasons, the command 
programs are generally not stored in a 
single sequential block of memory, but 
rather in several noncontiguous blocks. 
The number of words in each block is 
never the same within a given command 
program and seldom the same across the 
various command programs. Finally, the 
various command programs generally do not 
begin at the same starting address. The 
above constraints lead to a design in 
which the disc image of each command pro­
gram contains its own loading information. 
The first two words of the image indicate 
the number of blocks and the starting 
address. Each of the subsequent blocks 
is preceded by a count of the number of 
words in the block and its loading ad­
dress. Since each of the control words 
must be processed by the computer before 
the information to follow can be loaded, 
the storing of the entire disc image in 
sequential disc locations would cause 
several needless disc revolutions to pass 
during the transmission of the entire 
image. To avoid this problem, each group 
of control words and each program block 
is padded with several trailing blank 
words. The blank words are not trans­
mitted from the disc to core, but rather 
serve as time gaps during the trans­
mission, to allow the disc routines to 
carry out the required control proces­
sing. 
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RESULTS 

Although the system has not been in 
existence long enough to effectively eval­
uate its contribution as a research 
device, there are certain observations 
that can be made. The test engineers 
have found system operation easily 
learned. With a single 15 minute practice 
session they are prepared to attack the 
problems confronting them in their re­
search. The feature of the system that 
they felt best contributed to their rela­
tive ease in learning was how the system 
apparently adjusted itself to the oper­
ator's level of sophistication. Initially 
the test engineers would type complete 
command messages but soon began abbrevi­
ating commands to the first two letters. 
They would also request for the printing 
of every bit of data available from a 
tire versus those results that were of 
actual concern. As they became more en­
thusiastic in the use of commands they 
also began making more logical errors, 
e.g., requesting the printout of the 
results of a calculation before requesting 
its computation. Since the system "looks" 
for this type of error, and, when dis­
covered, prints an error comment, the 
operator tended to be irritated at him­
self versus bothered by the system inter­
ference. 

Of course, all of this is strongly 
colored by the results produced by the 
system. If tires were not being cor­
rected, no amount of flexibility of oper­
ation could make up for it. Figure 5 
shows the results of grinding an 8.25 x 14 
tubeless two-ply passenger car tire. The 
relative increase in high frequency com­
ponents after grinding has been attri­
buted to the grinder wheels currently 
being used. The main initial objective, 
however, is to reduce the difference be­
tween the maximum point and minimum 
point (called peak-to-peak). The data 
shown in Figure 5 reflects a reduction in 
peak-to-peak from 37 pounds to 14 pounds. 
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Lincoln Laboratory, * Massachusetts Institute of Technology 
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ABSTRACT 

A software system for a PDP-7 digital computer with a 340 display has 
been designed to process seismic data. The system permits quick 
visual inspection of digitized data and allows easy application of power­
ful programs which operate on the digitized data or on the results of 
previously used programs. Some operations which can be performed 
are: epicenter location, beam forming, magnitude, complexity and 
spectral ratio computation, filtering, autocorrelation, Fourier trans­
formation, sonogram generation and automatic event detection. A 
human operator is in the processing loop, inspecting the output at each 
step before applying the next. This system has greatly increased the 
speed and efficiency of much of our seismic data processing. 

GENERAL 

There is a trend for data acquisition and other 
field systems to use digital magnetic tape as the record­
ing medium in lieu of analog devices such as chart, film 
or analog tape recorders. This trend is likely to in­
crease as cheaper and more reliable digital tape re­
corders become available and processing by digital 
computers becomes more popular. Digital tape record­
ing has some large advantages over most analog record -
ings, viz. multichannel capability, precise timing, 
increased dynamic range, improved accuracy;"* and com­
patibility with digital computer input devices. Experi­
menters are reluctant to use digital systems, however, 
because of the increased cost and complexity concomitant 
with these systems and also because it is difficult to 
visually examine the data. This paper describes a sys­
tem which not only circumvents the latter difficulty, but 
makes standard data processing schemes that require the 
full power of a digital computer easy to use, apply, and 
interpret. 

Our particular hardware configuration is shown in 
Fig. lao It consists of two identical PDP-7s, each with a 
340 display, 32 K of core memory, an EAE, and an API. 
They share a three million word drum and six 570 seven­
track IBM compatible tape drives. One of the PDP-7s can 
be connected to the M. I. T. Computation Center via a 
40.8 kilobaud phone link. The software system described 

* Operated with support from the U. S. Advanced 
Research Projects Agency. 

** Off-the -shelf digital systems claim over 80 db 
dynamic range with 0.01% accuracy, while it is difficult 
to get more than 60 db and O. 1%, respectively, from 
analog recordings. It is interesting to note that the dy­
namic range and accuracy of digital systems are not 
limited by the recording method per se, but by the 
analog-to -digital converting processes. 
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in this paper is self-contained in each PDP-7 and does not 
use the link to the 360 system. That is, we have, in 
effect, two data analysis consoles that can be run simul­
taneously. 

The Lincoln Data Analysis Console is a computer­
oriented system which is designed to analyze seismic data 
from the Large Aperture Seismic Array (LASA). 1 (It can 
be used to analyze any data which has been digitized onto 
magnetic tape in anyone of the several LASA formats. )2 
This system is designed to do many of the standard data 
processing tasks more efficiently and accurately, and yet 
be quicker and easier to use than a "batch processing" 
computer of the type that is found in most modern data 
centers. The system displays the input data or the com­
puter output on the 340 quickly and in an easily interpret­
able manner to a human data analyst who can alter the 
data or give new commands to the computer via a fiber 
optics light pen, adjustment knobs, or a teletypewriter 
keyboard (see Fig. lb). 

This man -machine system puts a man in the feed­
back loop to do pattern recognition and to make decisions 
based on his experience as a trained seismologist or geo­
phYSicist, and to do other tasks that are very difficult for 
a modern electronic computer. The computer is in the 
loop at a place where it can function with an efficiency 
equal to or better than that of a human. 

One of the difficulties of processing geophysical 
data in large computing centers arises from the large 
amounts of both input data that is required and output data 
that is produced. With data from a large seismic array 
such as the Montana LASA, the input might typically be a 
reel of magnetic tape and the physical output might be 25 
feet of 32 -channel chart recording, of which only 25 con­
stants are useful output (which may be the input, along 
with the original data tape, to the next step in the proc­
essing). Each iteration or pass through the computing 
center takes time, generates a lot of superfluous data, 



and can introduce error in each two-way digital-to -analog 
and analog-to-digital conversion process (e.g. errors in 
reading the chart recorder and transcribing to punched 
cards). 

The Lincoln Data Analysis Console is designed to 
eliminate these difficulties by presenting to the operator 
quickly and simply only that data which he desires to see. 
This data is presented in a quasi -analog manner, i. e. , 
it appears analog to the eye and can be manipulated by 
analog devices (e.g. light pen and knobs), yet the full 
accuracy of the digital values is retained for computation 
because the data never leaves the computer. For exam­
pIe, the operator can easily scan the input data tape to 
insure it is not only good, but it is indeed the data he de­
sires to have processed. Useless data is not put onto 
paper, but it is readily available for perusal if need be. 
Only after the data has been reduced, or after the oper­
ator decides he really wants it, is a permanent hard copy 
produced in the form of chart recordings, 'scope photo­
graphs, teletype copy or punched paper tape. 

The system is organized so that the operator can 
have all the processing programs that have been written 
and debugged available literally at his fingertips. This 
ability to process the results of a prior processing with­
out punching data cards and submitting for another pass 
through the computing center saves time. Typically, 
operations that take several days via other methods can 
be done in a few minutes on the analysis console. 

THE MONITOR SYSTEM 

The operation and control of the console are done 
by a master program which is called the MONITOR sys­
tem. This program always resides in the computer core 
memory and controls the calling and execution of all the 
console system programs which are stored on magnetic 
tape or a drum as a program file. The MONITOR pro­
gram always knows which programs have been used and 
hence which physical parameters have already been de­
termined. The MONITOR saves all these parameters so 
that further processing will have access to them. Any 
processing that tries to use parameters which have not 
yet been determined will not be executed by the MONITOR 
until they have been determined. The MONITOR pro­
gram is the only program that must be manually read in­
to the computer. This is done once at the start. A self­
protect feature makes it impossible to be destroyed by 
any of the software. 

All commands to the MONITOR are input to the 
computer via the teletypewriter keyboard in a one­
character mnemonic code. The MONITOR will fetch the 
proper program from the program file, transfer it into 
the core memory and execute it All the programs are 
arranged so that they return to the MONITOR automati­
cally. Control can be returned to the MONITOR prema­
turely by typing R (for return) on the keyboard. 

THE DISPLA Y SYSTEM 

The console display system is the basic program 
from which most of the other programs are called. It is 
designed to make digitized seismograms accessible to a 
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seismologist in a quasi analog manner to which he is 
accustomed. This program displays the seismograms 
(earth motion ~ time) on the' scope with six knobs con­
trolling the parameters of the display. 

The six knobs control the horizontal and vertical 
gain of the seismograms, the vertical separation between 
the seismograms, the horizontal and vertical poSition of 
the seismograms, and a clipping level. Figure 2 shows 
some typical examples. 

The operator can use this program to scan the data 
visually and pick a portion of any seismogram for further 
processing by other programs. This picking is done by 
pointing the light pen at any waveform which causes it to 
be saved in a "reference buffer." The contents of this 
reference buffer will be displayed at the top of the screen 
with a vertical cursor appearing at the exact point in the 
waveform that was touched by the light pen. This 
"reference" trace is unaffected by most of the knobs. 
Thus one can, for example, move all the traces, one by 
one, alongside this reference by adroit manipulation of the 
horizontal and vertical position knobs to do visual align­
ment and correlation. This process is used to pick arrival 
times for the various traces to be used for beamforming 
and location (see below). By proper adjustments of the 
gains, this time picking can easily be done with a precision 
of one sample (50 milliseconds when using short-period 
data) as illustrated in Fig. 3. 

THE CONSOLE PROORAMS 

Some of the operations that can be done with the 
analysis console will be briefly described. * The system 
is designed so that additional programs can easily be 
added when they are written and checked out. 

Initialize 

This is usually the first program that is called and 
executed. It reads the data tape and determines which of 
the several allowable formats the tape has been recorded 
in. (Each site may have its own tape format.) The pro­
gram types out this information, along with the date and 
starting time of the data tape. The operator can select 
which data channels he wants to operate upon (there may 
be up to several hundred channels recorded on the data 
tapes) and what sampling interval should be used. The 
sampling can be changed by instructing the computer not 
to use every sample that was recorded, but to skip a fixed 
number of data samples from each channel. This program 
initializes all the other programs to use these pre-selected 
parameters. 

Location 

If three or more arrival times are picked, either 
by the Display program or by manually typing them in, the 
best fitting plane wave that minim izes the r. m. s. error 
will be calculated. From this, the horizontal phase velo­
city and azimuth will be calculated. In addition, the 

* A detailed description of all the programs is available 
from the author on request. 



relative arrival times when this plane wave would hit all 
21 sites, along with the residuals from these times, is 
typed out. Provision is made for deleting times from any 
sites that may have large residuals and repeating the cal­
culations (If the data is from short-period seismometers, 
station corrections will have automatically been inserted 
in this calculation, and the distance from the center of 
LASA, the latitude and longitude of the epicenter will be 
computed. Also the G. M. T. time at which the portion of 
the seismogram corresponding to the reference cursor 
must have originated will be calculated, assuming a focal 
depth of 33 km.) Two constants giving the major and 
minor axes of the location uncertainty ellipse are also 
typed out. Provision is made for manually deleting the 
station corrections. Figure 4 shows the output for the 
event shown in Figs. 2 and 3. 

Beam forming 

If one or more time picks are made via the Display 
program or the manual type-in program, the delay-and­
sum beam will be formed and placed in the reference buf­
fer as in Fig. 5. From here, it can be filtered (see below) 
or used as a reference to pick arrival times from weak 
events. Channels that have been deleted in the Locate pro­
gram (above) will also be automatically deleted from the 
beam. 

Constants 

This program displays the reference waveform on 
the 'scope. Two points can be selected by the light pen 
and the G. M. T. time corresponding to each point will be 
displayed to the nearest O. 1 second. In addition, the time 
difference between the points and the amplitude difference 
in millimicrons corresponding to the two points picked 
(assuming normal calibration for the data) will be dis­
played. The magnitude based on these last two quantities 
will be typed out on request if the distance has already 
been computed. Provision is made for inputting the dis­
tance if it has not been computed. If the data is from a 
short-period instrument, the "Q" factors for a depth of 
33 km are used. See Fig. 6. 

Filtering 

The data stored in the c0mputer (21 seismograms, 
each 600 samples long) or the reference can be filtered. 
Currently, one has the choice of two filters which have 
been found useful in the past for short-period data. 

Notch Filter This is a low distortion filter with two 
notches in the frequency response (at 0.2 and 0.3 Hz) to 
attenuate microseismic noise occurring around these 
frequencies. Zero frequency is attenuated about 10 db 
and frequencies higher than about 1 Hz pass through with 
little attenuation or phase shift. 

Butterworth Filter This is a three -pole bandpass filter 
with 3 db points at 0.6 and 2.0 Hz. Both zero frequency 
and high frequencies (- 30 db at 5.0 Hz) are attenuated, 
but some phase distortion occurs. 

Figure 7 shows some examples of the use of these 
filters. 
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Plot 

This program plots all the waveform data stored 
in the computer on the Sanborn chart recorders so that 
hard copy can be obtained. This gives a much larger 
scaling than photographs of the' scope can. 

Transform 

This program computes and displays the auto­
correlation function of the reference waveform (512 data 
points), which has been modified as follows: 

0 j < A, j> B 
("f0D 
J 

fREF A ~ j ~ B j = 1, 512 
J 

where A and B are set to any values via the light pen. 

The finite Fourier transform of either the modi­
fied reference or of its autocorrelation function (both 
considered periodic with a period of 512 samples) can be 
computed. The autocorrelation function can be modified 
by an adjustable rectangular window. The periodogram 
of this transform is normalized and displayed (db versus 
frequency) and it can be output onto paper tape. Figure 8 
shows some examples. 

Complexity 

This program computes and types out the 
complexity of the reference trace (beam or seismogram) 
starting at the cursor. The complexity is defined as 
follows: 

C 
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where t is the time of the cursor that was set by the 
light peb, and 
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A sonogram is a display of signal intensity 
(represented by several different levels of brightness) 
as a function of frequency (vertically) and time (horizon­
tally). Figure 9b shows the sonogram of the test cali­
brate Signal of Fig. 9a. 

This sonogram uses a bank of 50 constant 
bandwidth filters, each with a (sin x/x)-type frequency 



response, with impulse response exactly 10 seconds in 
duration. The filters are spaced O. 1 Hz apart, and they 
cover a range of O. 1 to 5.0 Hz. The input to these filters 
is the reference trace starting 1200 samples before the 
data displayed in the reference buffer and continuing for 
3200 samples. The sonogram time scale, therefore, 
covers a range of 160 second s if short -period data is 
used or over 2 hours if long-period data is used. 

Each output of the 50 filters is full-wave -linear 
rectified to form the signal intensity, * and passed 
through two low-pa.ss filters in cascade. The first is an 
energy summing "integrate and dump" filter. It sums 
the output of the rectifier for 20 samples, then resets it .. 
self to zero and repeats~ The second filter takes these 
outputs, sampled just before the dump and performs "RC" 
type low-pass filtering. The 3 db cutoff of this latter fil­
ter is 0.11 Hz. The computer stores the output of this 
bank of 50 "RC" filters in a two -dimensional array of 
power vs frequency and time. The sonogram is simply 
the pseudo three-dimensional display of this two­
dimensional array. 

If, for every time element in the sonogram array, 
the intensity at every frequency is summed, a one­
dimensional "energy profile" array is formed. This 
program calculates and displays this energy profile as a 
series of 160 fine dots at the top of the display. 

If, for every frequency element in the sonogram 
array, the intensity between two set times is summed, a 
one -dimensional "frequency spe~trum" is formed. This 
program allows the two times to be manually set via the 
light pen. The spectrum is displayed as a series of 50 
coarsely spaced dots superimposed upon the energy pro­
file. Both these latter displays are automatically nor­
malized to use all the room on the 'scope available to 
them. 

The spectral ratio 3,4 can easily be calculated by 
summing the proper elements in the sonogram array and 
taking their ratio. This is done and the result is output 
on the teletypewriter. 

A utomatic Event Detection 

This program scans the data tape and types out 
the time of all teleseisms encountered. The actual mech­
anism by which teleseisms are distinguished from micro­
seismic and other types of interference has been discussed 
elsewhere. 5,6 This operation takes place much faster 
than real time so that one can start with this program 
and quickly find all the events on the data tape, then anal­
yze each separate event by using the programs described 
earlier. 

Convolutional Matched Filtering 

This program cross correlates the reference trace 
with a matched filter that is especially designed to enhance 
the SIN of long-period dispersed surface waves. 7 The 

* Intensity rather than power is computed because it 
makes less stringent requirements on the dynamic range 
of the internal computer calculations. 
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matched filter is a sinusoid with a linear frequency 
modulation (chirp). The matched filter has three param­
eters that can be input to the program via the teletype­
writer. They are: the period at the start of the chirp; 
the period at the end of the chirp; and the length of the 
chirp. The maximum allowable length of the chirp 
matched filter is 800 samples which corresponds to 160 to 
1920 seconds depending on the sampling chosen in the 
Initialize program. Enough of the input reference will be 
convolved with this chirp to give 512 samples of filtered 
output, which will appear in the reference buffer. 
Figure 10 shows a typical example of this tyPe of filtering. 
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Seismogram No. 4 Used as Reference 

and AligJled with No. 1 
The Top Four Seismograms with Greater Gain and Separation 

Figure 3b Same Except Aligned with No.2 and More Gain 
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Figure 4 Output of Locate Program 

Figure 6 Some constants for top seismogram 

of Fig. 2. Note that the vertical lines. 

can be moved at will with the light pen. 

The teletypewriter typed MAG = 5. 2. 

.085 

.1211 RAD/SEC 

Figure 5 Beam Formed from All 24 Seismograms 

at Top. Notice Improved SIN 

Figure 7a Top trace is notched filtered. Second trace: raw data. 
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Figure 7b Top trace is Butterworth filtered. Second trace: raw data. 

Figure 8c 

Figure 8b Periodogram of the bottom trace of Fig. 8a. 
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Top trace is input data. At the bottom, 
a certain portion is selected with the 
light pen. The middle trace is the 
autocorrelation function of the 
bottom trace. 

Same as Fig. 8b showing the first 

three Hz expanded. 



Figure 8d Periodogram of the autocorrelation function of Fig. 8a after it has been 
modified by a rectangular window (vertical lines in center portion of 
Fig. 8a). 

Figure 9a Calibrate signals on various channels. 
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Figure 9b Sonogram of top trace of Fig. 9a. Note energy profile (fine dotted 
line) and spectrum (coarse dotted line) at the top. Note slight third 
harmonic distortion inadvertently present in the calibrate signal. 

Figure 9c Sonogram of top trace of Fig. 2b. 

Teletypewriter typed 

SPECTRAL RATIO = 0.647. 

Figure 10 The top trace is the result of convolving the Rayleigh wave shown in 
the bottom trace with a chirp filter 400 seconds long with a starting 
period of 40 seconds, and an ending period of 16 seconds. The 
sampling interval is 1. 2 seconds and the horizontal scale is 10.24 . 
minutes. 
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COORDINATE MEASURING MACHINES AND COMPUTERS 

Neale F. Koenig 
Information Control Systems, Inc. 

Ann Arbor, Michigan 

ABSTRACT 

Digitizer applications of Coordinate Measuring Machines 
(CMM's) are directed toward the production of N/C tape for 
machining complex two and three-dimensional part configura­
tions. This task is best performed in a man computer coali­
tion, i.e., the man directs the CMM over the part and the 
computer performs the mathematical computations and trans­
lation of data to the desired tape format. In the immedi­
ate future, these tasks can be performed in a fully auto­
matic mode whereby a surface sensing probe provides infor­
mation that when processed by an interfaced computer, allow 
the computer/CMM to automatically digitize the part. The 
operator in this case takes the role of supervisor and only 
needs to define the limits of digitizing during the initial­
ization phase. 

In order to achieve the most cost effective (i.e., low cost, 
high effectivity) hardware system, a great deal of concern 
must be paid to the development of associated computer 
software. Thus, such techniques as foreground/background 
and priority interrupt processing must occur to effect total 
utilization of a small, inexpensive on-line computer inter­
faced to the CMM. Such a system has been developed for the 
production of N/C machine tapes to digitize turbine blades 
and is fully described in the text. 

A HISTORY OF COMPUTERIZED 
COORDINATE MEASURING MACHINES 

Little has been done to date in producting N/C* tape 
from CMM's due to the general lack of adequate data 
processing techniques in converting the raw data as 
received from the measuring mechanism. This problem 
was due in part to the lack of a high speed integral 
processing system that could convert directly the 
input data to a finished N/C machine tool tape. With 
the advent of inexpensive, highly flexible digital 
computer-s, the mating of the CMM and a small digital 
computer essentially solved the problem of real-time 
N/C tape production. The first appearance of such a 
combination occurred about a year ago (1967) on a 
production basis. At that time, the applications 
took the expected turn of solving basic coordinate 
rotation and translation problems as well as numer­
ous tolerance comparison problems. As progress 
would have it, attention was finally brought to the 
development of tape production. Several of these 
programs, which have been written during the past, 
have led to the production of tape to drive N/C 
machine tools. An example, which is included, rep­
resents a fairly sophisticated N/C tape production 
program. This program has as its main feature the 
ability to perform three axis contouring and thus, 
suggests CMM/Computer usage for producing N/C 
tapes for any complex three-dimensional surface 
which cannot be easily drafted in an engineering 
drawing. 

The applications of programs of this sort are unlim­
ited. Such programs are easily developed for car 
body design, inspection and model making. These ap­
plications can eventually be extended to the rough 
cutting of dies, thus effecting a great cost savings 
in automotive design and subsequent production. 

*N/C - Numerical Control 
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Ship model development for production of test hulls 
represents another area where CMM/Computer combina­
tions are valuable. Such things as scaling, pattern 
inversion, and other transformations are easy tasks 
for the computer to perform during data taking. 

The CMM Family Tree 

Coordinate Measuring Machines have proven to be a 
valuable aid in the inspection of precision parts. 
These machines, in conjunction with general purpose 
digital computers, also provide the answer to direct 
production of N/C machine tool tapes. The inspec­
tion uses of CMM's include both manual and automated 
gaging of parts for hole locations, cam tolerance 
measurements and, in general, comparing production 
parts to the desired part configuration. These 
tasks can be accomplished with or without the aid of 
an interconnected computer. In the former case, the 
inspector performs the calculations from the optical 
or digital outputs of the CMM. In the latter case, 
the computer provides an output if an out of toler­
ance condition exists. Computers, in this role, 
allow for computer alignment of parts on the table, 
polar coordinate measurements and numerous other 
user oriented functions. 

CMM's, when fully automated with feedback control 
systems, can be used to perform automatic inspection 
via the use of N/C machine tapes. These tasks can 
be either point to point inspections or continuous 
path with pre-selected inspection intervals. Once 
this type of inspection is utilized it becomes ap­
parent that the CMM can be used for actual milling, 
provided that the material to be milled is relative­
ly soft. The same techniques that are used to per­
form automatic inspection can be used in milling and 
point to point drilling, i.e., the input is obtained 
from a pre-punched N/C tape of the type used with 
conventional N/C milling machine tools. 



Digitizer applications of CMMIS are directed toward 
the production of an N/C tape (i.e., the production 
of a part). The CMM thus fills the role of N/C tape 
production from templates or a ffiodel of the desired 
part. 

Again, with CMMIS both cvmputer aided and unaided 
techniques are used in digitizer applications: 

1. Manually oriented system - the user performs all 
calculations for the eventual production of an N/C 
tape and uses an off-line tape punch machine (such 
as a Flexowriter) to produce the tape. 

2. Computer assisted system - a more costly tech­
nique, due to required programming in which the com­
puter performs all calculations and actually punches 
the tape to be used on the N/C controller. An added 
advantage in computer generated output lies in the 
elimination of mistakes encountered in manually per­
forming the hundreds of calculations necessary for 
the final production of the N/C tape. 

Figure 1 summarizes these many applications of CMMIS 
both for N/C and general inspection tasks. 

CMMls 

INSPECTION APPLICATIONS 

/ "-**N/C TAPE *STORED DATA 
INSPECTION INSPECTION 

-Inspection of N/C 
Tape Produced 
Parts 

-Cam Gaging, 
-Hole Location, 
-Etc. 

DIGITIZER APPLICATIONS 
\ 

N/C TAPE PRODUCTION 

I " *Manual Computer Assisted 
-Template -Template 
-Model ~Od~ 

**Adaptive *Manually 
Driven 

MILLING APPLICATIONS 
\ 

**N/C TAPE MILLING 
I ~ 

Drilling 

*Manually Operated 
**Computer Driven 

Figure 1. THE CMM TREE 

,illin, 

Adaptive Fixed Rate 
Milling 

Future systems include computer driven digitizer 
systems as shown in the tree. Such systems are al­
ready existent for inspection applications whereby 
the inspection machine is driven in much the same 
way as an N/C machine tool. 

Digitizers - Manual vs. Computer Assisted 

Producing the N/C tape via the manual method (see 
Fig. 2.) requires that the operator perform all cal­
culations necessary to convert the X and Y informa­
tion output from the CMM into the machine tool con­
troller tape code. This code usually includes the 
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following for each individual machine tool instruc­
tion: 

N - the instruction sequence number 

G - a code indicating the type of machine tool move­
ment, i.e., circular, (CCW or CW), linear or perhaps 
parabolic 

F - the tool feed rate, a number based on metal re­
moval rate 

~J- coordinates indicating the direction 
i for a specific G-function (code) 
j 
k 

MODEL 
or - CMM 

TEMPLATE 

~ 

OPTICAL or 
DIGITAL 
READOUT 

• ... - MANUAL CALCULATOR . PROCESSING .. 
.. ---

FLEXOWRITER 
--

N/C TAPE 

Figure 2. THE MANUAL WAY 

of movement 

The procedure for producing a tape manually is as 
follows: 

1. The operator places the model or template on the 
CMM and aligns it as desired. 

2. Data is recorded as the CMM probe scans the 
part. This is accomplished either by optically re­
cording data at descrete x or y increments, or by 
digital strobing via a footswitch, again at descrete 
x or y movements. In most cases, the probe must be 
stopped to allow recording (in automated systems, 
recording is done "on the fly", i. e., while the 
probe is moving along the part). 

3. The recorded data is "processed" manually via 
calculators; the result desired being the N/C tape. 
Optimization procedures designed to bring about min­
imum machine tape lengths or minimum machining time 
are very time consuming and thus not normally used. 

4. N/C coding forms are filled out and production 
of the tape is then accomplished via a manual tape 
punch such as a flexowriter. 

In the automated system, there is no operator inter­
ference with tape production except in movement and 
placement of the CMM probe. Figure 3 indicates how 
automatic production of tape is accomplished. 



TEMPLATE 
or 

MODEL 

Figure 3. THE AUTOMATIC WAY 

CMM 

G.P. 
DIGITAL 

In producing the N/C tape, the operator proceeds by 
entering the format of the tape to be produced via 
ccmputer input at the computer console. He has the 
ability to select any of several modes of output, 
including raw data printed and punched as well as 
optimized data punched in either ASCII or EIA code 
or any number of other user designated options. 

Once the system is initiated, the part is placed on 
the table as is done manually. After placing the 
probe on the part, the operator depresses a foot 
switch when he wishes to start recording. The com­
puter samples the input data and stores it in raw 
form. During the time between samples, the computer 
can perform optimizing and data conversion to final 
output format. At this point tape punching is ini­
tiated. All available computer time is utilized 
toward maximizing the continuous input of data and 
thus creating high scan speeds. During data taking, 
the probe is moving continuously and the data is 
stored in the computer memory in raw form, when this 
raw data is converted to output, the computer 
storage area becomes available for more input data 
shortly after the completion of the operator scan­
ning of the part. 

CMM & Computer: The Hardware Picture 

Connecting a computer to a CMM requires very special 
hardware which, in general, appears as shown in 
Figure 4. This block diagram illustrates how the 
computer "asks" for data from the CMM at descrete 
points in time. 

CMM 

FOOT 
WITCH 

READY 
LIGHT 

DISPLAY 
BUFFERS 

STROBE 
BUFFERS 

TELE­
PRINTER/ 
PUNCH 

Figure 4. INTERFACING CMM'S TO COMPUTERS 

PAPER 
TAPE 
PUNCH 

In essence, data is continuously input to the display 
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buffers (in BCD), which also supply an optical output 
of the probe position. On request from the computer, 
a signal is sent via the control buffer. This buf­
fered data can then be transferred to the computer 
memory at any time desired by the computer CPU (cen­
tral processing unit). Any required interaction 
between operator and computer is accomplished via 
the foot switch or the operator ready light. The 
ready light is turned on or off by the computer to 
indicate computer readiness. The foot switch is 
used by the operator, in a similar manner, to indi­
cate operator readiness to the computer. The paper 
tape punch is used to produce N/C tape, and the 
teletypewriter is used in program initialization 
and printing instructions or data to be used by the 
operator. 

This system provides high flexibility in a general 
purpose configuration. It can be used in any inspec­
tion or digitization application. Internal to the 
computer are various devices which aid in ease of 
programming and are used to maximize the total data 
processed. In particular, a clock interrupt of the 
computer is valuable to indicate when to strobe the 
display buffer for a data sample. This interrupt 
automatically halts the CPU from processing its 
current data and switches to an input data proces­
sing mode. When this input task is complete, re­
sumption of the former task is effected. 

Man/Machine Operation 

In any application tying a computer to a machine for 
factory production purposes, the most significant 
problem encountered is that of man/machine operation. 
Frequently (actually in 99% of the cases) the opera­
tor of such a device as a CMM/computer knows little 
or nothing about the operation of computers. It is 
thus important to minimize those tasks which would 
normally require a computer operator to perform. 
This can be achieved via the implementation of a 
"HELP" system whereby the initialization portion of 
the software asks questions concerning the desired 
program operation. These questions are designed in 
a manner such that the operator can answer with a 
simple "yes" or "no". Other questions asked by the 
computer are answered with a numeric input, and; as 
formai independent as possible to eliminate format 
errors. 

Problems such as stored data overflow are eliminated 
via the use of the teletypewriter bell, a device that 
can be actuated via the computer. At such time that 
the program detects an eminent overflow of the stored 
data buffer, the bell is rung to indicate the situa­
tion to the operator. Sufficient space is allowed 
to give the operator time to slow down. When the 
buffer is emptied sufficiently the bell is once again 
rung--this time twice, and the operator proceeds. 

The techniques mentioned above are quite valuable in 
achieving a minimum of problems when training an op­
erator to use the resulting computer/CMM in an expe­
di tious manner. 

An Application, The Sheffield Dual Optimizer Program 

Information Control Systems has developed an N/C 
tape production program for Bendix, Automation and 
Measurement Division, that allows the production of 
N/C tapes from turbine blade models. This system 
utilizes the Sheffield Cordax CMM and the DEC PDP-8/S 
computer with a high speed punch (50 characters/sec.) 
Software has been produced that allows maximum utili­
zation of ~ available components, for this special 



application, 

In digitizing the blade, a number of passes is made 
over the part in a manner similar to the N/C milling 
process. (See Figure 5.) 

J--x 
y 

Figure 5. SCANNING THE PART 

To eliminate the offset calculations for the milling 
tool, a probe is selected with the ieentica1 shape 
of the tool, and a preselected X spacing is used. 
This is done to achieve the required finish on the 
machined blade. The chord height tolerances are 
selected by the operator and input to the computer 
for optimization processing by the computer (see 
Figure 6.) During optimization, the computer 
samples and optimizes at a rate that produces a 
minimum length N/C tape. 

REQUIRED LINEAR INTERPOLATION 
TOLERANCE* (see note) 

Figure 6. CHORD HEIGHT TOLERANCE 

The processing program operates in foreground/back­
ground modes under 1/60 second clock interrup con­
trol. After the Cordax machine operator has keyed 
in program options and pressed the START button on 
the Cordax, the interrupt clock is enabled, and 
thereafter coordinate data are examined every 1/60 
second until the program determines the end of a 
pass has been reached. This is foreground proces­
sing, and takes approximately 8 m1sec., or half of 
each 1/60 second interval. During this time some 
optimization is performed; selected points are 
stored internally in a memory data buffer for fur­
ther optimization and subsequent output during the 
background processing. Background processing 
occurs during the second half of each 1/60 second 
interval and throughout the end of pass interval. 
When the program determines that the end of pass 
has been reached, the clock is disabled, allowing 
continuous operation in background mode uRtil the 
operator again presses START. Before allowing the 
operator to press START however, the program makes 
certain that there is sufficient room available in 
the memory data buffer to contain one eptire pass.** 

*NOTE: This process can be achieved with either 
linear, circular or parabolic approximations to the 
part surface. 

**A modification to the program will allow large 
parts to be digitized via a bell signal which signals 
the operator to halt scanning during the middle of a 
scan. When the buffer has been sufficiently emptied 
another bell is rung to signal continuance of the 
scanning process. 

136 

This foreground/background technique allows the op­
erator to "move ahead" of the program, i. e., he may 
be operating several passes ahead of the point at 
which the program is currently printing or punching 
output. The only restrictions then, on operator 
speed, are desired accuracy of output and core size 
of the computer. 

A functional flow diagram of this program is shown 
below. 

INTER-
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I 

DATA OUT 

I I 

I I 
f I 

- -,-

FOOT SWITCH 
INTERRUPT 

-- -

BACK­
GROUND 

PROGRAM 
INITIAL-
IZATION 

INTERRUPT 
ENABLE 

OPTIMIZER __ --------------~ 
PROGRAM 

CLOCK 
OPERATOR 

FOOT 
SWITCH 

INTERRUPT SCAN 
PROCESSOR ...... ___ PROCESSOR 

CLOCK 
ENABLED 

SCAN 
SET-UP 

Figure 7. PROGRAM FLOW FOR TURBINE BLADE N/C 
TAPE GENERATOR 

Clock interrupts have first priority and direct scan 
processing. Rough optimization occurs at this point 
as well as halted-probe detection (to minimize data 
storage) and "end of scan" detection. The computer 
detects "end of scan" as the probe drops off the 
part edge. The operator foot switch interrupt ini­
tiates scan data taking (i.e., turns on the clock), 
and the other interrupts return control to the back­
ground optimization routine which will continue op­
timization and output of data until another inter­
rupt is detected. With all modes of operation pro­
ceeding more or less in an interconnected manner, 
all tasks occur simultaneously and at their individ­
ual maximum speeds. Thus, while scanning occurs, 
both typewriter and paper tape output is occurring. 
Sufficient c~puter storage is available to allow 
the operator to be several scans ahead of the tape 
or printer output. Input and output optimization 
~reate the minimum required raw data to be stored 



and a minimum amount of tape punching in output. 

Appli~ations for the Future 

Applications such as the above point to the future 
in a vivid way. These systems are general and indi­
cate complete man-computer interaction. The limita­
tions lie in computer speed and memory size. Since 
computers are mathematically oriented, they are at 
their best in situations involving a large number 
of calculations. Optimization, coordinate trans­
lation, rotation and scaling are easy tasks for the 
computer, yet difficult and time consuming for the 
unaided operator. Thus, the following applications 
can be achieved as a direct result of the computer's 
calculating power: 

1. Automatic cam alignment, i.e., the part is 
aligned once and the computer shifts its internal 
data for cam checking, no part realignment is re­
quired. 

2. Several CMM's can be controlled by a single 
computer on a time-sharing basis. In this way, 
computer costs can be kept low per machine. 

3. Large circle centers can be located where probe 

size would not allow direct measurement. 

4. N/C produced parts can be checked directly from 
the N/C tape via computer interpretation of the tape. 
The computer would indicate which points to check on 
the printer and the operator proceeds as directed for 
the tolerance check. The computer would then indi­
cate when an out of tolerance condition existed. 

With the addition of servo drive motors to the probe, 
inspection of parts could be made fully automatic 
(such machines already exist). It is conceivable 
that the N/C tape that produced the part would also 
be the inspection tape. 

Digitization for the production of N/C tapes could 
also be made completely automatic. The servo drives, 
in conjunction with null seeking probes,would allow 
the probe to automatically follow the part in much 
the same manner as photo electric systems presently 
do. 

Figure 8 shows the functional orientation of a fully 
automatic system where the CMM is driven by the com­
puter. The computer here performs the task of calcu­
lating step velocity inputs to the CMM. This must be 
done in such a way that the required tolerances of 

START ~---.· __ ~I_~_~_~_i_E-J~TYPi~~~ER ~~I_~rI_T_IAL~I_Z_E~ I CMM I/O 

I 
I 

I 
I 
I 
I , ----.-- -1 

I I 

I I 

DATA IN ~ . 
SCAN LIMIT DATA 

I 
I .- - - - - --

I 
I 

- D"ATA r .- au; r - .. -
, I ,.---.. 

BACKGROUND 
PROCESSOR ~ - - - - - --I 

Ia 
~ 

I 

I 
I 

MACHINE 
INPUT 

PARAMETERS 
I I 

I I 
I, ------~--~ 

I 

I I 

1 J .. I 

I I 
I 

• 
I 
I 

• 
I 
I PAPER 

TAPE 
INPUT/ 
OUTPUT 

TYPE 
INPUT/ 
OUTPUT 

SCAN 
PROCESSOR 

VELOCITY • MACHINE 
~ INTERRUPT UPDATE DRIVEl I 

LP_R_O..,C~ES_S_O ... RJ-.PO~W~E~R"tt.r--__ .....---, 

FAIL 1 S~!;T: I 

• CMM 
DRIVE 
MOTORS 

POWER 
FAIL HALT 

INTERRUPTS 

1 
CLOCK 

DISPLAY I 

UPDATE 

~ POSITION I 
• DATA 

DISPLAY 
DRIVE t-~'t----.. DISPLAY 

I 

Figure 8. FULLY AUTOMATIC SERVO DRIVEN DIGITIZER (FUNCTIONAL FLOW DIAGRAM) 

1/1000" are maintained. One great advantage to the 
resultant system lies in it's adaptivity. When buf­
fers begin to fill during data taking, a slow down of 
the drive motors is affected. Thus the background 
processor will keep track of data stored in the buf­
fer and signal the machine drive program to slow 
down. All axes are coordinated via the machine drive 
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program to achieve m~n~mum deviation from the desired 
path. Any corrections necessary to achieve a display 
different than a direct read-out from the up/down 
counters of the CMM position, such as different co­
ordinate systems (the part's, for instance) or for 
detection-correction,are achieved in the display 
drive program and updating of the display occurs as a 



result. This updating need not occur any more fre­
quently than 15 times a second due to the response 
frequency of the eye. The remainder of the com­
pletely automatic CMM/computer system is identical 
to the semi-automatic configuration previously 
described, with the following exception; an automa­
tic restart capability is provided to allow restart 
of the motors after emergencies such as a power 
failure or a system failure detection. This is ac­
complished via a special interrupt after failure 
mode detect which resets parameters and restarts the 
motors from the zero velocity condition. If backup 
of the CMM position to pick up lost data is required, 
the restart program also handles the function. 

Eventually non-contacting systems will be developed 
with laser interferometers which will allow in digi­
tizing of soft materials. It is felt that at this 
point the limit of automation will be reached in the 
interfacing of computers to CMM's, the other changes 
will then 1i~ in the computer software itself to 
bring about a very efficient man/machine system of 
automatic digitization. 

1~ 
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ABSTRACT 

The SDS-94¢ user program communicates with the display hard­
ware through a communications package operating between the 
SDs-94~ and a PDP-5 which shares memory and the display 
controller. By transferring and buffering all data and 
control words, the communications package handles the timing 
problems for the user. 

With the aid of an unpluggable hardware addition, the PDP-5 
runs under an interrupt monitor which handles all of the I/O 
for its end of the communications package. 

The actual transmission between the two computers is done over 
a high-speed, half-duplex link and a low-speed, full-duplex 
path. All of the transfers over the half-duplex line are set 
up on the low-speed path. 

INTRODUCTION 

GOCOM is a communications package, for the Project 
Genie GO display system, that is designed to 
relieve the user of the tedious task of directly 
programming the display hardware (see Figure 1). 
The two main problems encountered when trying to 
use the display without a communications package 
are the need to program the PDP-5 and the task of 
timing the data traffic. 

Although the PDP-5 is a fairly basic computer, it is 
obviously desirable to avoid learning to program it 
if at all possible. Even if the display user took 
the time to learn how to program the PDP-5,-it is 
unlikely that he would program it very efficiently, 
not to mention the time that would be wasted. 

The second problem, that of timing the data, is a 
much more formidable one. The lead strokes have to 
be sent from the PDP-5 to the 94¢ while all of the 
display data must be sent the other way. In addition 
there is the data from the other devices associated 
with the display and the control data to be sent. 
The GOCOM package runs a fork in the 94¢ to read 
data, including lead strokes, from the PDP-5 as soon 
as it is available. Several units of the various 
data are bufferred in the 94¢ so the user does not 
have to get the data right away. 

The transmission of the data is handled in such a 
way that, whenever possible, the low-speed, full­
duplex link is used to transmit the information. 
Also, whenever the high-speed, half-duplex link is 
used, its timing is set up by the low-speed link. 

EJdGernal to the SDs-94¢, the components are the IDI 
~ontroller, the PDP-5, an unpluggable interrupt 
llDprovement for the small computer, and a software 
package running in the PDP-5. The software package 
CSIl be separated into three major components; there 
is an interrupt monitor that handles all of the 
physical I/O and task scheduling, a basic communi­
cations package which handles most of the data and 
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control flow between the PDP-5 and the 94¢, and a 
package to handle the generation and transmission 
of stylus strokes from the Rand tablet. 

The user interface in the 94¢ is through a single 
subroutine called DIO. This subroutine is called 
with different values in the A register to perform 
its various functions. When parameters are neces­
sary, they are passed by the X and B registers and 
by the location following the calling address. 

There are three versions of GOCOM. One version 
simply allows transmission to and from the 94¢ and 
transfer of control to any location in the PDP-5. 
Another version allows use of all of the features 
of DIO except those connected with the lead package. 
The final version uses all of the features of DIO 
including those associated with the lead package. 

SUMMARY OF THE DISPLAY SYSTEM HARDWARE 

The hardware external to the 94¢ consists of a 
considerably modified IDI (information Displays, 
Inc.) display controller, a slightly modified 
PDP-5 with an improved interrupt system hung on it, 
a Rand tablet, a keyboard, a five-key handset, a 
light pen, and a high-speed, half-duplex and low­
speed, full-duplex communications path between the 
PDP-5 and the 94¢ (see Figure 2). 

Below is a brief description of the display hard­
ware. For a more complete description see the 
GOI manual. 

Display Controller 

There have been several additions and modifications 
made to the display controller. The most important 
of these is the addition of a subroutine facility. 
An instruction equivalent to the JMS command in the 
PDP-5 was added as an external modification which 
fools the IDI logic into thinking it is a jump (JMP) 
instruction. 



Since the display controller shares memory with the 
PDP-5 CPU, it was necessary to modify the display 
controller so that it could not execute a JMS into 
certain cells critical to the operation of the 
PDP-5. These cells include location zero, which 
is the PDP-5 program counter, and cells 
77408-77778' which hold the link-loader code. 
Other changes to the basic unit delivered by !DI 
include frame mode changing under program control, 
display list match-mode control to facilitate using 
the match feature in subroutines, and a display 
halt feature that doesn't reset the display control­
ler. 

The display controller gets access to the PDP-5 
memory via the data-break facility of that computer. 
The time required to gain access to the memory is 
a function of the PDP-5 instruction being executed 
at the time the request for a memory cycle is made. 
Since this time can be fairly long, a one-word 
buffer has been added that fetches the next word 
from PDP-5 core while the !DI is operating on the 
last one. 

PDP-5 Hardware 

The PDP-5 is a one-address, fixed word length, 
parallel computer using 12 bits, two's complement 
arithmetic. The memory-cycle time is 6 ~s. There 
is just one control register, the AC. Associated 
with the 12-bit AC is an overflow bit, which is 
called the link bit (1). Shift instructions cause 
the AC and 1 to shift as a 13-bit ring register. 

There have been only two modifications made to the 
PDP-5 itself. The most drastic one is a change 
which prevents it from destroying the link-loader 
code in cells 77408-77778' This hardware is wired 
in the PDP-5 rack at the location which was pre­
viously wired for use as a D-to-A converter. Any 
attempt to modify the protected cells (with the 
exception of a JMS from above 77408) will cause a 
program halt without modifying the cell. The other 
modification is to the teletype line. A switch has 
been added which allows the speed of both the tele­
type input and output paths to be run at either 
normal speed or at 16 times normal speed. When the 
teletype line is connected to the 94~ as the low­
speed communications path, it is run at l~ charac­
ters per second. 

The standard PDP-5 has a single channel interrupt 
system that can be enabled or disabled. In order 
to locate the device that is causing the interrupt, 
it is necessary to poll the devices by a series of 
test-and-skip instructions. An improvement has 
been made to this by the addition of an unpluggable 
interrupt extension (see Figure 3). This hardware 
accessory was designed so that it could also be 
plugged directly into a PDP-8. 

The interrupt extension is built around a 16-chan­
nel scanner, which scans up to 16 devices at a 
rate of one device per microsecond. This scanner 
will stop when it encounters any device that is 
armed and has its attention flag raised. The 
scanner serves the function of deciding which 
device gets serviced, if more than one desires 
servicing; and it holds the number of the device 
causing the interrupt. 

There are several advantages the interrupt exten­
sion offers over the basic system provided with 
the PDP-5. First of all, it is now possible to 
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arm or disarm individual channels under program 
control. Thus, even if the interrupt feature of 
the PDP-5 is enabled and a device has its flag up, 
an interrupt will not occur unless the device had 
previously been armed by the program. Another 
advantage of the extension is in the way the inter­
rupting device is determined. Instead of polling 
all the flags with test-and-skip instructions, the 
device is now located by reading a "JMP* 6¢ + 
(Device no.)" into the accumulator with an ~OT. If 
transfer vectors for devices ¢-l78 are placed in 
cells 6¢8-778 respectively, then executing the above 
instructlon will cause control to be transferred 
directly to the routine which is to service the 
interrupting device. Thus, with the aid of the 
extensIon, it takes a lot fewer cells and requires 
much less time to get to the appropriate interrupt­
servicing routine. 

Instead of having a separate data-transfer lOT 
instruction for each device, the interrupt exten­
sion logic has only one data input-output command. 
The scanner selects the appropriate device and 
causes the data transfer to be completed between 
it and the AC. Whether this instruction causes 
data to be input or output is a function of the 
device being serviced; this information is hard 
wired into each scanner position. All device 
attention flags are also reset with a single I/O 
instruction, with the scanner directing the pulse 
to the appropriate device. Besides greatly redu­
cing the number of I/O instructions needed, this 
scheme has the advantage that more than one device 
can be serviced by the same routine (see Section 
on GOINT below). 

THE PDP-5 PORTION OF GOCOM 

There are three major components to the PDP-5 code. 
The components are called GOINT, 5GOCOM, and LEAD. 
Besides being separate logical elements of the 
PDP-5 software, they are actually physically 
separate in PDP-5 core. In fact, the version of 
GOCOM that runs without LEAD simply runs without 
the LEAD package; no other changes are necessary. 

GOINT 

GOINT is the PDP-5 interrupt monitor; it handles 
task scheduling and performs all physical I/O. 
This version of INT was written by the author spe­
cifically for use with the communications package, 
although, as you will see, it is quite general. 
The basic philosophy of this package is patter~ed 
after two similar versions written previously. 

The heart of GOINT is a task stack onto which pro­
cesses are placed when they are created or when 
being dismissed for certain types of I/O, and from 
where processes are taken to be run. Processes are 
put on and taken off the stack in a round-robin 
fashion. All processes run with equal status under 
GOINT. If a process wants to create a fork, it 
does so by executing JMS* FORK with the starting 
address of the new process in A. This address is 
placed on the bottom of the stack and the current 
process then continues with the next instruction. 
A fork can terminate itself by executing JMP* QUIT 
which transfers control to the top fork on the 
stack. 

Most I/O is done by executing JMS* IO with the 
first cell after the call containing the device 
code, the second cell containing the starting 



address, and the third cell containing the number 
of words to be transferred. This same routine is 
used for both input and output devices. On all IO 
calls the process is dismissed and the next fork on 
the stack is started up. A process dismissed by 
the IO routine is dismissed in a static sense; that 
is, it is not placed on the task stack to circulate 
until the I/O is completed, but is completely re­
moved until the interrupt routine places it on the 
bottom of the stack when the I/O is completed. 
When the word-count gets to zero for any standard 
I/O block, the interrupt routine will disarm the 
device and restart the fork requesting the I/O by 
placing the calling address plus four on the bottom 
of the stack. 

When a call is made on IO, a check is made to see 
if the specified device is in the process of satis­
fying a previous request. If it is, then the 
address of the call is placed on the bottom of the 
task stack. The process requesting I/O is thus 
periodically started and then restacked until the 
device is free to service it. 

For the sake of future exposition, a process that 
is dismissed waiting for an IO block to be com­
pleted.will be called statically dismissed, while 
a process currently residing in the task stack will 
be called dynamically dismissed. 

Input on the low-speed link is not handled by the 
IO routine. The low-speed link can present charac­
ters as close as 6.25 ms apart; and since this is 
actually a teletype line, the characters will keep 
coming whether or not they have been removed. 
Since most characters received on this link repre­
sent commands to 5GOCOM, it is necessary to look 
at each character as it arrives; that is, an IO 
call with word count greater than one would not be 
acceptable. Since it will often take longer than 
7 ms to work up through the task stack, it is 
obviously not possible to use the IO routine for 
teletype-link input. This problem was resolved by 
having the interrupt routine for this device read 
characters into a 2¢8 word ring buffer. A process 
obtains characters by executing JMS* TTYIN which 
returns with the character in A if one is available. 
If no character is available, the fork is stacked 
such that the request for a character is made again 
as soon as the process is awakened. 

There is a similar problem with the tablet. When 
the stylus is down, coordinates arrive at 7 ms 
intervals. To avoid losing points, the tablet 
coordinates are read into a 4¢8 word ring buffer 
by the interrupt routine. Thus, 2¢8 points are 
bufferred representing about l¢¢ ms worth of buf­
fering which is the same as for the low-speed link 
input. In order to keep track of the pen position 
of a point when it is input, the low order bit on 
the y coordinate is turned on if the pen is up and 
off if the pen is down at the time of input. Thus, 
even though a point may not be removed from the 
buffer for some time, the pen position of that 
point is retained. 

A process can obtain the next point by executing 
JMS* TABLET. This process will continue to be 
dismissed and restarted until a point is available 
in the same manner as a calIon TTYIN. When a 
point is obtained, the process continues with the 
instruction following the TABLET call if it was a 
pen-up point or the following instruction if it 
was a pen-down point. The A register is zero on 
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return for TABLET and the coordinates are left in 
XVAL and YVAL. These cells are also part of the 
display list and serve to position the cursor for 
displaying. 

It is usually desirable to know the last pen-down 
coordinates in any stroke. Using the pen-up flag 
for this purpose is somewhat difficult since its 
interrupt servicing routine must search for the 
last value in the tablet buffer. To facilitate 
locating the last pen-down point, a feature has 
been incorporated into the TABLET routine whereby 
points other than the next one can be requested. 
Calling TABLET with zero in A will return the next 
point, calling it with -2 in A will return the same 
point as it did the last time, and calling it with 
-4 in A will return the previous point. Thus, 
whenever the first point is found for which bit 11 
of the Y coordinate is a one, calling tablet with 
-4 in A will return the last pen-down point to 
XVAL and YVAL. 

There is no need to buffer the high speed link 
because it always transfers data and hence large 
word-count IO calls can be used. Also, the high­
speed-link input, unlike the low-speed link, will 
wait for one word to be read before sending the 
next. 

All of the input devices serviced by IO are treated 
by the same interrupt routine, as are all of the 
output devices. In fact, both routines first call 
a subroutine which locates the file for the device 
and determines the next address to be read from or 
written in to. The input routine then executes 
the IOC command which inputs the data and clears 
the device attention flag; this is followed by an 
indirect store through the above address. The out­
put routine differs only in two instructions; it 
does an indirect fetch followed by IOC which out­
puts the data and clears the attention flag and the 
accumulator. Both routines end by going to a com­
mon routine which first decrements the word-count 
and checks for the end of the I/O block and then 
terminates the interrupt routine in the appropriate 
manner. 

With the exception of teletype output, any I/O in 
progress by any of the devices serviced by IO can 
be terminated by executing JMS* DSABLE followed by 
the file number for that device. DSABLE will dis­
arm the device and reset its file. Resetting the 
file associated with a device includes setting the 
word count to zero so that it appears free to any 
process trying to use it and removing the return 
address from the file so that the fork that was 
dismissed for I/O is terminated. The reason for 
excepting the low-speed output link is because 
this routine waits until that device is not busy 
before closing the appropriate file. This is done 
to assure that certain forks are actually dismissed 
on the expected device and not on low-speed output. 

There are a few other features of GOINT, such as a 
subroutine that will continue to stack a fork 
until the low-speed output link is free, thus allo­
wing subroutines that use this device. But these 
features just represent frill and contribute little 
to the basic philosophy of the monitor. 

5GOCOM is the PDP-5 portion of the communications 
package. When this process is started up, it 



initializes itself and then commences to run as two 
forks. One of the forks is used to listen to the 
low-speed link, the other to the high-speed link. 

The fork that is listening for input on the high­
speed link spends most of its time statically 
dismissed. It starts out by making a request for 
two words and dismissing until it gets them. Upon 
being awakened, this fork takes the first word, 
which is one greater than the word count of the 
data block, subtracts one and stores it in the word 
count specification cell of another IO ~all. The 
second word is then placed in the starting address 
cell of the next IO call and the JMS* IO is execu­
ted. This reads the remaining words of the block 
and stores them starting at the specified address. 
After finishing the block the process is again 
restarted, and it simply transfers to the two-word 
IO call which again dismisses and waits for a new 
block. 

The fork that listens for input on the low-speed 
link is the heart of 5GOCOM. All of the commands 
from the 94¢ are sent over the full-duplex line, 
and this fork interprets the commands and takes 
the appropriate action. Many commands are accom­
panied with data; this data may be in the form of 
a single character or a series of characters to be 
assembled into full words. The commands are inter­
preted by adding the value of the command character 
to a transfer to the beginning of the service rou­
tines. This method has the annoying deficiency 
that the number of cells used by each routine must 
not be changed. For if one routine needs just one 
more cell, then the command character values for all 
of the following routines must be increased by one. 
The obvious way to avoid this is to add the command 
to an indirect transfer and store a series of trans­
fer vectors to the service routines; this method 
was not used, however, because of the prevailing 
desire to conserve space. 

The commands to reset, stop, start, and reset and 
start the display controller are handled by simply 
executing the appropriate lOT and then going back 
and waiting for the next character. The general 
PDP-5 reset is accomplished by transferring control 
to the beginning of GOINT which will clear the task 
stack, the teletype input buffer, and the tablet 
buffer, will disarm all devices, and then will 
transfer to the beginning of 5GOCOM which will 
again reinitialize itself. 

The lead-enable routine is a little more involved 
than those above, but it is still done entirely 
with the command fork. The next four characters 
on the low-speed link are data associated with this 
routine. The first character corresponds to the 
inner window value, the second corresponds to the 
outer window, and the last two are assembled as 
the time-out constant. Actually, the routine that 
checks the window expects the first character to 
be one less than the inner window value and the 
second character to be one less than the difference 
between the outer and inner values. This conver­
sion is done in the 94¢ before sending to save a 
couple of instructions in the PDP-5. Also, the 
negative of the time-out constant is actually sent 
over the link since that is what the routine that 
checks for time-out desires. Next, a check is 
made to see if the lead package is already running. 
If so, no more action is taken, and the net result 
is simply an updating of the parameters. If LEAD 
is not running, then a check is made to see if 
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BAND is enabled. If so, a flag is set to inform 
BAND that LEAD is to be started. The reason for 
doing it this way is to allow BAND to gracefully 
terminate itself before starting up the LEAD 
routine. If BAND was not running, LEAD is started 
from this routine by creating a new fork. The LEAD 
package will be explained in more detail in the 
next section. 

There is no data associated with the BAND routine. 
A check is simply made to see if LEAD is running; 
if so, a flag is set to tell LEAD to display in 
rubber band mode as well as lead mode. If LEAD is 
not running, the BAND fork is started up. The BAND 
routine simply displays a line from the first stylus­
down position to its present position. When the 
stylus is lifted, this routine will send the first 
and last "pen-down" coordinates to the 94¢. This 
information is sent over the low-speed link, and 
since an identification character preceeds the data, 
it takes nine characters to get the information to 
the 94¢. This represents the longest single block 
ever sent over the low-speed link. 

The LEAD and BAND routines are disabled by simply 
resetting the LEAD enabled and BAND enabled flags 
respectively. The routines themselves are periodi­
cally checking their enabled flag, and they will 
terminate themselves in a graceful manner upon 
encountering a reset flag. 

The lead-erase routine reads the next character 
which is the number of strokes to be erased, and 
it then calls the same erase subroutine that the 
LEAD package uses. If it attempts to erase strokes 
that have not yet been output, the call will be 
stacked until the appropriate number of strokes 
have been output. For this reason, it is a good 
idea not to try to erase more strokes than have 
been received by the 94¢. 

The routines that enable the Handset, Keyboard, 
Match, GO, and Display-Halt routines all work the 
same way. A fork is created that immediately dis­
misses on a one-word IO block. This, of course, 
arms the device; and the fork will wake up as soon 
as any data becomes available. For the keyboard, 
the fork just immediately outputs the character 
along with an identification code. For the Match, 
GO, and Display-Halt devices, their forks output 
the appropriate identification character followed 
by the word split into two characters. For the 
handset, the situation is a little more complex. 
Each time a word is read, the value is ored with 
the running-or value and this number becomes the 
new running-or word. Since there is an interrupt 
on every position change of every key, this algo­
rithm will give the assembled number whenever an 
interrupt occurs and the word read is a zero. 
Therefore, whenever the word read is a zero, the 
running-or value is output over the low-speed link 
as two characters preceeded by an identification 
character. 

The five devices above are all disabled the same 
way. The DSABLE subroutine is called with the 
appropriate file number in the next cell. This 
subroutine will wait until the low-speed output 
device is not busy, and it will then terminate the 
fork that is listening to the device by closing the 
file associated with the device. The device is 
also disarmed at this time. The reason for waiting 
for the low-speed link to be free is so that the 
fork that is listening to the device is guaranteed 



to be dismissed waiting for that device and not for 
teletype output. 

There are six data characters associated with the 
routine that moves a block in PDP-5 core. The 
first two characters are assembled into a word that 
represents the origin address minus one. The next 
two characters are assembled into one word that 
corresponds to the destination address minus one. 
These two addresses are loaded into auto-index 
registers to accomplish the transfers. Finally, 
the last two characters are assembled into a word 
which equals the negative of the number·of words 
to be moved. This control fork then proceeds to 
move the block by means of a three instruction 
loop. 

The command to send a block to the 94¢ is not 
handled entirely by the control fork. This fork 
reads the next four characters and assembles them 
into the starting address and word count of an IO 
call that is to send the block. A fork is then 
created to perform the block output since it could 
take a rather long time; and the controlling fork, 
which must listen to the low-speed link, cannot 
afford to be dismissed for very long. The fork 
that was created first issues a link-transmit lOT 
instruction. This is followed by a one-word IO 
call for the high-speed link output device. This 
word sends over the word count which is required by 
the 94¢. Next, an IO call is made with the starting 
address and word count previously assembled as 
parameters. Upon waking up from this I/O, the fork 
gives a link-transmit end command and then termi­
nates itself. 

The routine to initialize a block simply assembles 
the next six characters into three words which 
represent, in order, the starting address minus 
one, the initialization character, and the negative 
of the word count. This fork then proceeds to 
initialize the block. 

The routine to create a process assembles the next 
two characters into a word which represents the 
starting address of the process to be created. 
This address is then placed on the bottom of the 
task stack by calling the FORK subroutine. If the 
operation of GOCOM is to continue, then this fork 
must be terminated with a 5452, which is a JMP* 
QUIT. In this manner, the process will be created 
and destroyed as a fork; and, if it doesn't take 
too long, GOCOM need not be adversely affected. 

Finally, the two commands that change the frame 
mode are handled by simply inserting or deleting 
the special frame-mode command in the display list. 
A display start command is given in the return-to­
normal frame mode request since this is necessary 
to switch the mode back after removing the special­
frame-mode command from the display list. 

In addition to the above commands, there are two 
which are invisible to the user. The/first of 
these is the clear-to-send-Iead command which is 
handled by executing the set-sync-flip-flop (SSFF) 
instruction. The lead-output fork will be dis­
missed on an IO call for the sync device. This 
command then will wake it up and the outputting of 
the stroke will commence. The last command that 
is sent to the PDP-5 over the low-speed link is one 
to determine when the PDP-5 has finished all pre­
vious requests. This command is satisfied simply 
by immediately sending a character back on the low-
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speed link to inform the 94¢ that 5GOCOM has 
finished with all previous requests. 

The basic elements of 5GOCOM have now been des­
cribed. It is obvious from the above descriptions 
that the fork that listens to the low-speed link 
is the heart of this package, and that th~ low­
speed, full-duplex path is the center of the 
control passed between 5GOCOM and DIO. 

LEAD 

The LEAD package runs as two forks. One of these 
forks inputs the tablet coordinates, checks to see 
if the points fall within the window, and places 
them in the display list. The other fork outputs 
the strokes to the 94¢. As soon as the stylus is 
pushed to the down position, the first "pen-down" 
coordinate is written into the lead buffer. Sub­
sequent points are read and checked to determine 
if they fall within the window that has previously 
been specified by the user. Points that do not 
fall within the window are discarded. As soon as 
a point is discovered that falls within the window, 
it is written into the lead buffer and this point 
is defined as the point from which the future 
window checks will be made. This process is con­
tinued until the stylus is raised at which point 
the last "pen-down" point is written into the lead 
buffer and the stroke is added to the stroke stack. 
The last pen-down point is written into the lead 
buffer regardless of whether or not it falls within 
the appropriate window. This is done to allow 
closure when using very large inner windows for 
approximating certain geometrical shapes. 

After the stylus is raised, the coordinates are 
continuously read but ignored except for displaying 
the cursor. Also, while the stylus is up, every 
time a pair of coordinates is read, the time-out 
counter is decremented. If the time-out counter 
gets to zero, a time-out character is sent to the 
g4¢ to inform the user. The time-out counter is 
not decremented while the stylus is down, and it 
is reset from the user specified time-out constant 
on every transition of the stylus from the down to 
the up position. The counter is also reset from 
the time-out constant if it ever hits zero. The 
time-out counter is set to its maximum value when 
the LEAD package is first enabled to avoid getting 
several time-out characters sent over the link 
before the user has a chance to start using the 
stylus. Since coordinates become available about 
every 50 ms, when the stylus is up, a time-out will 
occur if the stylus is up for a period of time 
equal to the time-out constant * 50 ms. 

The lead buffer has room for 1¢¢¢8 coordinates. 
This buffer is part of the display list SQ that 
the number of points that can be displayed by LEAD 
is 4¢¢8' The lead buffer is stroke oriented, and 
hence, there is a stroke stack which can hold 
pointers to as many as 5¢8 strokes. When writing 
points into the lead buffer, if a point that is 
part of a stroke in the buffer is about to be 
written over, then the entire stroke is erased 
before writing the point. Thus, the fork that 
writes into the lead buffer automatically makes 
room when necessary by erasing the oldest stroke 
in the buffer. The erase subroutine always checks 
to see if the stroke to be erased has been output 
yet before removing it from the buffer. If it has 
not been sent to the 94¢ yet, then the erase 
request is stacked where it will continue to make 



the request until the stroke is sent. Since this 
is the same fork that reads the tablet coordinates, 
the cursor will stop on the screen if too long a 
time passes before this process can continue. The 
system is fast enough, however, that under normal 
circumstances this should never happen. If, how­
ever, the fork which reads the lead strokes in the 
94¢ should die, then the cursor will stop complete­
ly as soon as enough strokes have been drawn to 
fill the lead buffer with strokes not yet output. 

The output fork keeps a pointer to the stroke 
stack; whenever this pointer does not coincide 
with the top of the stack, then there is a stroke 
to be output. The first thing that this fork does 
upon encountering a new' stroke is to determine the 
word count and set up the parameters for the IO 
calls to send the stroke over the high-speed link. 
Next, a lead transmission-request character is 
sent over the low-speed link followed by the word 
count split into two characters. The fork then 
dismisses on an IO call to the sync device. When 
the confirmation character comes back, the SSFF 
command will be issued, which will in turn wake up 
the fork dismissed on the sync device. Next, a 
one word IO call is made to output the word count, 
followed by one or two blo,cks depending on whether 
or not the stroke wraps around in the lead buffer. 
After outputting the stroke, this fork then goes 
back to check for more strokes. When no stroke is 
waiting to be output, this process is placed on 
the bottom of the task stack; and it continues to 
circulate through the stack until a stroke is 
entered. 

94¢ PORTION OF GOCOM 

Basically, there are three components of the 94¢ 
portion of GOCOM. The heart of this system is a 
subroutine called DIO which will handle a large 
number of tasks for the user when called with 
various values in the A register. Upon receiving 
an initialization call, DIO will start up a fork, 
herein called 9FORK, which will continue to run as 
long as the user program does. 9FORK is responsi­
ble for getting the lead, band coordinates, and 
device words out of the PDP-5 and buffering them 
in the 94¢ so that the user need not worry about 
the timing involved in accepting the data. There 
is a package called 50BJ which allows the user to 
specify, modify, and delete both subroutine and 
fixed display objects. In addition, this package 
handles all memory management within the PDP-5 so 
the user need not, and in fact should not, use DIO 
directly to send data to the PDP-5 if 50BJ is being 
used. 

DIO 

The best way to describe the extent of this sub­
routine is to list the various calls that can be 
made on it. The value of A that corresponds to 
each call is 'included but the parameters are not. 

A (in octal) 

¢ 
I 
2 
3 
4 
5 
6 
7 

Function 

Reset Display 
Stop Display 
Start Display 
Reset and Start Display 
Initialize PDP-5 
Enable Lead 
Disable Lead 
Enable Band 
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A (in octal) 

10 
11 
12 
13 
14 
15 
16 
17 
2¢ 
21 
22 
23 
24 
25 
26 
27 
3¢ 
31 
32 
33 

34 

35 

36 

37 
4¢ 
41 
42 
43 
44 
45 
46 
47 
5¢ 
51 

Function 

Disable Band 
Erase Lead 
Enable Handset 
Disable Handset 
Enable Keyboard 
Disable Keyboard 
Enable Match 
Disable Match 
Enable GO-Button 
Disable GO-Button 
Enable Display-Halt 
Disable Display-Halt 
Move a Block 
Send a Block 
Read a Block 
Initialize a Block 
Create a Process 
Set Special Frame Mode 
Return to Normal Frame Mode 
Read Current Lead Stroke in 

Absolute Format 
Read Next Lead Stroke in Absolute 

Format 
Read Current Lead Stroke in 

Relative Format 
Read Next Lead Stroke in Relative 

Format 
Read Band Coordinates 
Read Handset Word 
Read Keyboard Character 
Read Match Address 
Read GO Word 
Read Display-Halt Address 
Read Device Word 
Initialize Basic GOCOM 
Initialize Normal GOCOM 
Initialize Lead GOCOM 
Plot 

The calls for A from ¢ through 32a were covered suf­
ficiently in section on 5GOCOM. For the calls con-
cerning the lead strokes, absolute format refers 
to the pairs format in which points are generated. 
The relative format is not good for most types of 
computation, but is desirable if the stroke is to 
be sent back to be displayed. The reason for two 
types of calls for both modes is to allow the user 
to obtain any given stroke in both formats. This 
would be desirable, for example, if the user wished 
to perform computations on the absolute formatted 
data, but he also wanted to display it for awhile 
on the screen. The time-out referred to in Section 
5GOCOM manifests itself here in that a user program 
will return to the calling address plus two if a 
stroke is available. If no stroke is available, 
then the user program will hang; and if a time-out 
character arrives from the PDP-5 before a stroke, 
the user program will be returned without skipping. 

When reading band coordinates, the user program has 
the option of being dismissed until coordinates 
become available or of returning without skipping 
when there are none available. This option is 
determined by one of the parameters of the A = 378 
calIon DIO. A similar option exists for the five 
devices which can be individually enabled or dis­
abled. For the calls on DIO with A = 4¢8 through 
A = 44 , control will be returned to the user at 
the ca~ling location plus one if no word is availa­
ble. If a word is available, control will be 
returned at the calling location plus two with the 
word in A. If it is desired to hang and wait for a 



word, then DIO is called with A = 458' When any 
device word becomes available, control will be 
returned at the calling address plus two with the 
word in A and a code in X which identifies the 
device associated with the word. 

The three initialization calls differ mostly in 
that they send different packages to the PDP-5. 
The only other difference is that of the lead 
GOCOM initialization, the user must specify the 
starting address and word count of a lead buffer. 
Besides initializing all internal buffers, flags, 
and pointers, these routines attach the teletype 
line that is to be used as the low-speed link, 
open the files of the two high-speed paths, ship 
the code to the PDP-5 and start up 9FORK. Before 
the code is sent to the PDP-5, characters are sent 
over the low-speed link which simulate a create­
fork call on DIO. These characters attempt to 
create a fork running in the link loader. If the 
PDP-5 was already running in the link-loader, 
these characters will be ignored. If, however, the 
PDP-5 was running in any version of GOCOM, then it 
will be sent to the link-loader area. Once in the 
link-loader routine, the PDP-5 is ready to receive 
a new program from the 94¢. 

Because of a 14-bit address field, the 94¢ user 
program has an addressable space of 16K decimal. 
Since GOCOM is a general user interface, it will 
be used by many programs; some of these programs 
may be quite large so it is desirable to avoid 
keeping the 23¢¢8 words of PDP-5 code in the user 
space. In order to avoid this, the PDP-5 code, 
together with a very short program to transmit 
the appropriate portions of it, now exists as a 
subsystem which can be invoked by GOCOM. The 
actual sequence is to first read the address rela­
beling values for the subsystem along with the 
starting address and then use these values to 
create a fork which will run in an address space 
separate from the users. When the code has all 
been sent to the PDP-5, the fork terminates itself 
and releases all the memory it had acquired. 

The final call on DIO is one which causes the dis­
play list to be plotted on an incremental plotter. 

Figure 1 Block Diagram of GOCOM 
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The plotting is accomplished in a background fork 
in a similar setup to that for sending the PDP-5 
code. Thus, the plotting routine and core image 
of the PDP-5 do not occupy any of the users space, 
and the user can continue using GOCOM while the 
plotting is going on. 

9FORK is the fork that listens for data coming 
from the PDP-5. Upon receiving lead strokes, band 
coordinates, or device words, 9FORK executes the 
appropriate interrupt to wake up the user program 
if it happens to be dismissed in DIO. If the user 
program is not dismissed in DIO, then any inter­
rupt from 9FORK is ignored. When this fork re­
ceives the time-out character from the PDP-5, it 
simply enters it into the stroke table as a stroke 
of zero length. The same interrupt is then issued 
as if a stroke had just arrived, and DIO will know 
of the time-out by the stroke length. 

Summary 

The description of the PDP-5 portion of GOCOM was 
given in fairly great detail. The detail was 
provided with that section because most people 
reading this paper will be somewhat familiar with 
the PDP-5. Since most DECUS members will not be 
familiar with the SDs-94¢ and since the general 
ideas of the data and control traffic were presen­
ted in the 5GOCOM section the description of the 94¢ 
portion of GOCOM has been presented as just an over­
view. If the reader would like more detail on this 
portion of the display package, a more extensive 
paper is being written for Project Genie use, and 
this paper can be obtained by writing the author. 
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GRAPHIC SOFTWARE SYSTEM USING A PDP-9/339 
SUPPORTED BY A RM09 DRUM 

Glen C. Johnson 
Phillips Petroleum Company 

Atomic Energy Division 
Idaho Falls, Idaho 

ABSTRACT 

A package of PDP-9 subroutines has been developed to facilitate 
the use of the 339 display and conserve core storage by cre­
ating display files on the RM09 drum. This package requires 
2700 PDP-9 core locations, an RM09 drum, and a 339 display unit. 
These subroutines are both MACRO-9 and FORTRAN IV compatible 
and create display files in vector, text, and graphplot modes 
with parameters. Routines to initialize the 339 and service 
the light pen and function box are provided. A file swapping 
technique, from drum to core, permits execution of large files 
of display commands in a small core buffer. 

INTRODUCTION 

A PDP-9 system that includes a 339 Programmed Buffer 
Display and an RM09 Serial Drum offers a powerful 
display option for large files of display commands. 
The basic PDP-9 features S192 words of IS-bit core 
memory with a direct memory access (DMA) channel 
for a high rate of Input/Output transfer. The 339 
is an incremental CRT with a processor that shares 
the computer memory. The RM09 drum, on our system, 
has a storage size of 131,072 words and information 
is transferred in blocks of 256 words. 

While the display processor is reading data, the 
PDP-9 processor (through interrupts) is available 
for the transfer of display files from drum to mem­
ory. Digital data are required by the 339 display 
unit at a high transfer rate for visible images. 
The display unit is interfaced to the PDP-9 through 
the DMA multiplexer to meet this requirement. The 
drum is also interfaced through the DMA multiplexer. 
By controlling the transfer of data from drum to 
the display unit, via core memory, we can display 
large files of commands in a small memory buffer. 

Because interaction between the display unit and 
the drum is rather sophisticated, it was desirable 
to create a graphic software system to facilitate 
the use of this display option. When developing 
this graphic system the following were our require­
ments: 

1. Large display file capability. 

2. Minimal core storage requirements. 

3. Operator-Computer communication. 

4. Versatility for usage. 

The subroutines are FORTRAN IV and ~~CRO-9 compati­
ble to provide versatility for usage. Memory stor­
age requirements vary from 1600 to 3200 core loca­
tions, depending on the number of subroutines used. 
This includes storage requirements for subroutines, 
display buffers, and the character generator. Func­
tion box and light pen subroutines are available for 
communication between the operator and the computer. 
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CREATING GRAPHIC FILES 

Files of display commands are created on the drum 
with a series of calls to subroutines. These files 
are referred to as data sets. Each data set may have 
up to l2SO commands, which is 5 drum blocks. Five 
data sets can be constructed with this system giving 
a possible total of 6500 display commands, all of 
which can be displayed at the same time. 

Creating Data Sets 

A subroutine that names the data set and initializes 
conditions must be called. Following this call all 
display commands from mode and parameter subroutines 
are placed in the named data set until a call is made 
to end the data set. An excess of l2SO commands per 
data set will create an error condition and will be 
handled by an error subroutine. Only one data set 
can be created at a time. Data sets can be recreated 
at any time to update graphic images. 

Parameters and Modes 

The parameters that can be set when creating data 
sets include eight levels of intensity, four scales, 
and light pen sensitivity. Parameters can be set as 
desired and are in effect until changed in this or 
some other data set. The types of mode subroutines 
available for creating graphic images are graphplot, 
text, line, and set point. An unintensified line and 
set point are used to position the beam on the screen 
while graphplot, text, and line modes create visible 
images. Figure 1 is a flow chart showing the deci­
sions a user can make to create data sets and it sum­
marizes the subroutines available for each decision. 

DISPLAYING GRAPHIC FILES 

Two methods are used for displaying data sets after 
they have been created. The first is a general dis­
play subroutine and the second is a special rotate 
display subroutine. Only one of the two display 
methods can be executed at a time, but they can be 
used alternately as desired within the same user 
program. 



General Display 

This method of display is used to display images as 
they have been created in data sets. Any selected 
combination of data sets (up to five maximum) can 
be displayed at anyone time. This subroutine can 
be recalled as desired to display various combina­
tions of data sets. A file swapping technique, from 
drum to memory, has been developed to load the se­
lected data sets into a memory buffer for the 339 
to process. The file swapping is serviced by the 
PDP-9 interrupt system and continues to operate 
until it is terminated. 

Control is a function of this subroutine which keeps 
the display and drum transfer synchronous. After 
the file swapping and display have been initialized, 
program control returns to the user program. Fig­
ure 2 is a picture of four data sets being displayed 
simultaneously with 1024 graphplot points in each 
data set. 

Rotation Display 

This special display method was developed with this 
system to rotate graphplot data because of the de­
mand at this installation to analyze data utilizing 
the scope. A maximum of 5120 points can be rotated 
past the screen with a choice of 128 or 512 points 
displayed. The direction of rotation (right or 
left) can be selected as desired and there is a 
choice between two speeds. Selection of speed, num­
ber of visible points, and direction of rotation is 
normally made from the function box. Two additional 
blocks or 512 display commands of non-rotating data 
can also be displayed allowing for grids or other 
information with the rotating data. 

The automatic scissoring available on the 339 dis­
play unit is used by this subroutine for rotation 
by altering the visible sector of display. A file 
swapping technique is also used by this subroutine 
to minimize core storage requirements. The center 
point of this graphplot display has a higher inten­
sity and is identified by a number displayed on the 
screen. This can be used to retrieve information 
from the plot for analysis. Figure 3 is a picture 
of this special rotation feature. Observe that 512 
points are being displayed and the bright point iden­
tifies the 4l5th point in the plot. 

SYSTEM LINKAGE 

The assembler and compiler generate the linkage 
necessary to provide a path to the subroutines and 
a return path to the user's program. Linkage for 
the handling of light pen and function box inter­
rupts is generated by graphic system subroutines to 
provide paths to user service subroutines. 

OPERATOR COMMUNICATION 

Communication between the operator and the computer 
is an important capability, and has been integrated 
into the graphic software system. the light pen 
and function box gives the op'erator program control 
during execution while viewing graphic images. 
Service for light pen and function box interrupts 
must be handled by a user subroutine. Status of 
buttons and light pen hits can be obtained in the 
user service subroutine with calls to this package. 
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APPLICATIONS 

Presently the most demanding use of this graphic sub­
routine system is for data analysis, although this 
is not a limitation to its potential. Other areas 
in which we plan to use this package are text editing, 
information retrieval, and management information 
systems. 

fONCLUSION 

Development of this graphic system was desirable to 
facilitate the display option on our PDP-9. By stor­
ing display files on the drum we are able to display 
large files and minimize memory storage requirements. 
The ability to create graphic images from FORTRAN 
programs and communicate to them has made it possible 
to create elaborate displays quickly and easily. 
Figure 4 is a flow chart summarizing the utilization 
of this graphic system. This chart only suggests the 
general sequence to use the system. Between each 
call to this system user program effort will normally 
take place. Figure 5 is a listing of all callable 
subroutines and their functions. 
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SUBROUTINE 

INDSP 

BEGDS 

SETPT 

PARM 

GRAPHP 

LINE 

TEXTA 

TESTI 

ENDDS 

INDEV 

ROTATE 

ROTAL 

ROTAR 

RSPEED 

RSCALE 

LPSET 

LPSEV 

LPRET 

PBSET 

PBSEV 

PBRET 

NAME 

Initialize Display 

Begin a Data Set 

Set Point Mode 

Parameter 

Graphplot Mode 

Line Mode 

Text ASCII 

Text Integer 

End of Data Set 

Initialize the Display 
Device 

Rotate 

Rotate Left 

Rotate Right 

Rotate Speed 

Rotate Scale 

Light Pen Set 

Light Pen Service 

Light Pen Return 

Push Button Set 

Push Button Service 

Push Button Return 

FUNCTIONS 

Input the character generator if needed. Locate 
free drum blocks for data sets. 

Set conditions to create a data set. Name the data 
set. 

Add commands to the data set to set the beam to a 
screen position. 

Add commands to the data set to set the scale, inten­
sity, and light pen sensitivity. 

Add a maximum of 1024 points to the data set for 
plotting. 

Add commands to the data set to move the beam in a 
delta Y and delta X direction. 

Add commands to display 5/7 packed ASCII data or 
Hollerith constants. 

Add commands to display signed integer numbers. 

T~rminate the construction of the data set being 
created. 

Select the data sets to be displayed and initialize 
the 339 display unit. 

Set up data sets for rotation and initialize the 
339. 

Rotate graphplot data left. 

Rotate graphplot data right. 

Select between two speeds of rotation. 

Select between two scales for rotation. 

Generate linkage for the user's light pen service 
subroutine. 

Read the X and Y screen position of a light pen hit. 

Return program control to the main program following 
a light pen interrupt. 

Generate linkage for the users push button service 
subroutine. 

Read the push button status. 

Return program control to the main program following 
a push button interrupt. 

Figure 5 Callable Subroutines for Graphic System 
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Figure 1 Creation of Data Sets 

Figure 2 Graphic display of four data sets; 
each with 1024 graphplot points. 
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CREATION OF DATA SETS 

* Unintensified Line 

II.IC-S-12647 

Figure 3 

Graphic display using the ROTATE feature. 
The brighter point, at the peak, in the 
center of the display is identified as 
the 4l5th data point. 
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Figure 4 Utilization of the Graphic System 



REAL-TIME COMPUTING WITHIN A TIME-SHARING SYSTEM 

Peter M. Hurley 
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ABSTRACT 

This paper describes the capability of the PDP-lO 
to perform on-line real-time tasks concurrently 
with time-sharing activity. The PDP-lO is not 
limited to a single real-time job, nor is it 
limited to running solely in a background batch 
mode during real-time operation. While handling 
several real-time jobs, such as on-line process 
control or data acquisition, the PDP-lO system 
can support a complete time-sharing service 
including simultaneous data processing jobs, batch 
jobs, and program development. Of prime impor­
tance is the consideration of the general real­
time problems including high priority scheduling 
and real-time queues. The paper discusses the 
implementation of some of these real-time 
features and is supplemented by examples of the 
techniques employed at existing PDP-lO installa­
tions. The paper concludes with a description of 
the design goals for a multi-user real-time system 
which allows the running and testing of undebugged 
real-time jobs without degrading the perf0rmance 
of other jobs. 

THE PDP-lO REAL-TIME 
TIME-SHARING COMPUTER SYSTEM 

Real-t..ime c.;omput.er syst.ems nave t.I-aCi.i t..ion­

ally been dedicated to controlling a 
single real-time processor, eliminating 
the utilization of any remaining computa­
tional power of the system by other users. 
Likewise, most time-sharing systems have 
excluded real-time functions because of 
the strict demands which they place on the 
system. For instance, when a special 
real-time device requests attention, its 
controlling program must be activated 
quickly. A real-time job also needs to 
communicate directly with its special 
hardware through the use of I/O in_struc­
tions. Both of these demands are contrary 
to the general time-sharing philosophies. 

The PDP-lO time-sharing system, however, 
was designed to allow real-time activity 
to run concurrently with time-sharing. 
The software modularity permits easy 
additions and alterations. The flexi­
bility of the scheduling algorithms allows 
the addition of special job priority 
schemes. Real-time jobs can even run in a 
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special hardware mode which permits the 
execution of I/O instructions. The PDP-lO 
system is definitely the first dual 
purpose real-t..ime i:..illle-::;IldL .iw::J cUllIpuLeL 

system. 

REAL-TIME COMPUTER USAGE 

The crucial aspect which must be examined 
when considering any real-time problem is 
the response reauirement. Before a system 
can be deemed adeauate for real-time work, 
the response requirements must be satis­
fied. There are three types of real-time 
jobs (each classified by its response 
requirement), the time critical job, the 
time important job and the time periodic 
job. 

Time Critical Jobs 

The time critical class of real-time jobs 
is definitely the most demanding ""nd the 
hardest to satisfy. When M signal arrives 
from ~ time-criticMl device, the computer 
must respond (i.e. st~rt the device handl­
ing routine) within a specified period of 
time to avoid losing informM.tion. The 



card reader is a prime example of such a 
real-time device. Once the reader starts 
reading a card it cannot stop until the 
entire card is read. Since the reader 
reads a column at a time, overwriting the 
last one, the computer must fetch and 
process each card column before the next 
one is read. 

Time Important Jobs 

The time important job is very similar to 
the time critical jobs: the major differ­
ence being that if the computer fails to 
respond to the real-time request within 
the specified time period, nothing is lost. 
The paper tape reader and punch for example 
are time important devices. It is desir­
able to keep these peripherals running as 
fast as possible but if for some reason the 
computer cannot respond quickly enough, 
they will stop and wait for it to catch up. 
Likewise, if the computer fails to send the 
next picture to an on-line display soon 
enough, the display will flicker, but as 
long as the frequency of flickers is low, 
the system is adequate. 

Time Periodic Jobs 

The time periodic job requires that it be 
run at definite intervals of time providing 
it with a steady execution rate. An impor­
tant distinction between this class and the 
other classes is that the computer knows 
when it must run the real-time job and it 
may be able to schedule other activities 
around the job. For example, a picture on 
a display must be refreshed every 35 milli­
seconds to remain flicker free. One of the 
time periodic functions of the system is to 
restart the display at least every 35 
milliseconds. 

It should be noted that both the time 
important and the time periodic jobs can be 
treated as special cases of the time 
critical class. The time important job can 
be treated exactly the same as a time 
critical job, and the time periodic job can 
be put to sleep for its inactive period and 
when it wakes it too can be treated exactly 
like a time critical job. 

INTEGRATING REAL-TIME FUNCTIONS 
INTO THE PDP-lO SYSTEM 

The response requirements for real-time 
jobs can be segmented into three catego­
ries: immediate response (i.e. critical 
time period of less than 300 pseconds, 
priority response (response of about a 
millisecond), and user response. For jobs 
with real-time devices which require 
immediate response, a special service 
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routine to control this device must be 
built into the monitor. This routine runs 
at interrupt level and allows the user to 
communicate with the device in the same 
way he communicates with a standard 
peripheral unit. Since the monitor is 
truly modular, such a routine is inte­
grated into the system with ease. 

Those real-time jobs with very long criti­
cal time periods can run as standard time­
sharing jobs. However, to communicate 
directly to the real-time devices, these 
jobs can request to be placed in a privi­
leged mode where direct I/O instructions 
(which are normally forbidden during time­
sharing) can be executed. In fact, a 
privileged user can even use the priority 
interrupt system for brief periods of time 
so that uninterrupted bursts of data can 
be transmitted to or fr0m a real-time 
device at maximum speed. 

High Priority Scheduling 

When a real-time job demands to be run in 
priority response mode, the monitor gives 
this job a high priority, stops the 
present job, and forces the scheduling 
algorithm to choose another j0b. Thus, 
since the real-time job has higher prior­
ity, it is run immediately. There are two 
kinds of PDP-lO time-sharing systems~ the 
non-swapping system and the swapping sys­
tem, each with its own scheduling 
algorithm. Both of these schedulers 
depend on a priority queue structure from 
which to choose the next job to run. 
Since both of the scheduling algorithms 
are table driven, a high priority real­
time Queue is added to either one without 
difficulty. When a real-time job renuests 
to be executed (i.e. an interrupt has been 
received from one of the real-time 
devices) the monitor places this job in 
the high priority nueue and forces re­
scheduling. Of course, any number 0f jobs 
can be put in this Queue and a.re run on a 
first-in-first-out basis. 

Under the non-swapping (10/40) monitor. 
all jobs are resident in C0re. This 
greatly facilitates the solution to high­
priori ty scheduling. When rI. real-time 
job demands to be run, the monitor inter­
rupts the present job and starts the high 
priority job. However, under the swapping 
(10/50) monitor, high priority scheduling 
is considerably more complex. If the high 
priority job has been swapped out onto 
the swapping device, then it must be 
brought in before it can be executed. T0 
make enough room in core for this job to 
be swapped in, several other jobs may have 
to be swapped out first. Thus, even 



though a job has been placed in the high 
priority real-time queue, it might be 
hundreds of milliseconds before it is 
swapped in and started. 

Locking A Job In Core 

It is often desirable to lock a job 
physically in its position in core. In 
the swapping environment this prevents 
the job from being swapped out and insures 
a faster response time. This also pre­
vents the situation of finding the real­
time job half shuffled between two places 
in core (shuffling can often take many 
milliseconds to complete). However, lock­
ing real-time jobs in core can cuase 
several very subtle problems. The most 
obvious problem is core fragmentation. If 
a job is locked into the middle of core 
dividing the remaining core into two 
pieces each of less than half of the 
original available core, there might be 
many jobs stranded on the disk that are 
too big to fit into either segment. This 
problem is almost completely solved if the 
job is locked either at the bottom or the 
top of core leaving one large block of 
free core. There is still the case w.hen a 
job is still too big to be swapped in 
regardless of where the real-time job is 
locked in core. This bind can be elimi­
nated by restricting the allowable size 
of the user jobs and by restricting the 
size and number of real-time jobs. 

EXAMPLES OF EXISTING REAL-TIME 
APPLICATIONS DURING TIME-SHARING 

All of the previously mentioned real-time 
methods are being used at various PDP-IO 
and PDP-6 installations. The most common 
solution to individual real-time problems 
has been to build a service routine into 
the monitor to handle the real-time 
requests from special hardware. This 
approach is completely satisfactory when­
ever the service routine is small and 
unchanging. For instance the film advanc­
ing routine in the PEPR system at MIT runs 
in a real-time mode. This routine calcu­
lates how long it will take to advance to 
the next picture frame, starts the advanc­
ing mechanism, and puts in a request for a 
film stopping routine to be executed when 
that time has elapsed. Since the stopping 
of the film advance mechanism is done at a 
high priority level the system can contin­
ue scheduling and running the normal time­
sharing users until the real-time film 
controller requests to be run again. 

The University of Rochester has two 
PDP-8's doing simultaneous data collection 
under a non-swapping monitor. The PDP-8's 
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act as intermediate buffers between the 
experiment and the main computer. When one 
of the PDP-8 buffers becomes almost full, 
it initiates ~ real-time job in the PDP-6 
which reads and analyzes the accumulated 
data. This is accomplished by putting the 
data analysis job into a high priority 
queue. The monitor then halts the current 
job and starts the real-time job, guarantee­
ing it at least 17 milliseconds to complete 
its data transfer. This real-time aueue 
can handle any number of jobs, scheduling 
each according to its entry into the nueue. 

The Max Planck Institut at Mulheim, Ruhr, 
Germany is using a PDP-IO swapping system 
to control many on-line gas chromatographs 
and mass-spectrometers. The mass-spectrom­
eter data analysis program resides on the 
disk until a gas chromatograph signals that 
a mass-spectrometer is being activated. 
The mass-spectrometer control and analysis 
program is given the highest priority to 
run, cuasing it to be immediately swapped 
in and started. Since the data rate dur­
ing a mass-spectrometer run is very fast, 
the analysis program is run at this high 
priority until the run is completed. 

Stanford University, running under a swapp­
ing system, uses a time periodic real-time 
mode to handle their real-time jobs. Dur­
ing this mode of operation, the real-time 
jobs are locked into core a.nd each job is 
scheduled on a periodic basis. This type 
of scheduling is crucial for simulations 
which require a steady time base. For 
example without fixed periodic scheduling 
the simulation of human hand movements 
would be jerky, and computer generated 
music would be off key. 

The United Aircraft Corporation has a more 
sophisticated real-time system. The real­
time jobs are placed in a high priority 
queue where they are guaranteed a certain 
percentage of the CPU time. The leftover 
CPU time is used for time-sharing. This 
installation has also solved the core 
fragmentation problem which arises when 
real-time jobs are locked into core. Real­
time jobs are always shuffled to the bottom 
of core before being locked in place, and 
the monitor checks that no job will be kept 
out on the swapping device before it locks 
a real-time job into core. 

FUTURE GOALS 

The problems encountered in attempting to 
integrate real-time capabilities into the 
time-sharing world are numerous, and not 
all of them can be solved. An application 
which interrupts too often or uses too much 
CPU time at a high priority level can 



render background time-sharing useless. 
Likewise, a real-time job which can acci­
dently crash the system or destroy another 
user's area can also make background time­
sharing unworkable. There must be a real­
time package offering high priority sched­
uling and the ability to lock jobs in core. 
Service routines for real-time devices 
should not have to be built into the mon­
itor. Real-time users should be able to 
chain their service routines onto the PI 
channels and debug them in user mode with­
out being able to hang the rest of the 
system. These are the goals of the present 
real-time software development at Digital. 
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DESIGN AND USE OF A DATABREAK DISPLAY 
FACILITY FOR PDP-8 
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ABSTRACT 

Our current research requires the use of contact-analog displays 
simulating the motion of a landscape as seen in perspective from 
a moving automobile or other vehicle. By employing geometrical 
approximations and table-look-up methods, it proved possible to 
generate only marginally adequate displays using the Type 340 
display-controller. An improved display controller was, there­
fore, designed using: 1. hybrid computation,multiplying digital­
analog converter~and summing amplifiers, 2. data-compression by 
storing 6-bit X and 6-bit Y deflections in a single word, and 
3. adoption of databreak data-transfer under control of an auto­
matic-sequence-plotting interface. 

This interface permits highly-detailed, realistic contact­
analog displays to be generated on line while still allowing 
central-processor time for performance evaluation. Hardware 
and software problems will be discussed. 

INTRODUCTION AND OBJECTIVES 

The device described has been developed in connec­
tion with a car simulator used for automobile 
steering research. Its purpose is to provide a 
real-time display simulating objects and motions 
seen by the driver of a moving vehicle. This 
appears on a large C.R.T. screen~" placed in the 
windshield opening of a stripped-down car body in­
stalled in the laboratory. The steering-wheel 
output is connected to an analog computer which 
solves the differential equations of the vehicle's 
motion and feeds analog signals representing an­
gular heading, lateral position, and forward speed 
to the display system implemented by a real-time 
program running on a PDP-8. A "forcing function", 
representing the curvature of the simulated high­
way, is also suppl ied to the central processor via 
AID converter channels. Ideally the experimental 
subject should be able to "drive" the simulator as 
readily as a real car. In this paper we are con­
cerned with the display hardware and software 
required. 

CAPABILITY OF 34D DISPLAY-CONTROLLER 

The first usable version of the highway display 
util ized a regular (Type 34D) display controller, 
with conventional-type programming. A software 
shift register was used to store topographical data 
for highway curves up to 1,280 ft. ahead, the high­
way being represented by a series of 256 numbers 
represehting real-space planes 5 ft. apart. A 
"horizon" responded to heading changes only. Table 
look-up methods were used to compute the necessary 
perspective transformation for mapping the current 
topography onto the CRT screen, which was achieved 
by only a single multiplication (using EAE) per 
plane. Some 800 points could be plotted fl icker-
.', 
"An HP 1300A oscilloscope (8 11 X 10"). 
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free, permitting traffic lanes to be indicated by 
a single point each~but no scenery or pavement de­
tail could be included. 

A very large fraction of program running time was 
spent in computation, and the "brightening ratio"-­
the fraction of time during which the CRT spot is 
intensified--was quite small (around 2%) yielding 
a poorly-lit display. 

DESIGN OF AN IMPROVED NON-AUTOMATIC 
DISPLAY INTERFACE (Mk. I) 

Hardware developments aimed at improving display 
capability were therefore undertaken. It was de­
cided to transfer the computations required for 
object-positioning and magnification from software 
to hardware, retaining pointwise image construction 
as a software function and packing both horizontal 
and vertical components of each image-point into a 
single 12-bit data word. This permits 2-dimensional 
objects of each desired type to be constructed from 
a unique data string in core and to be shown in 
any desired relative direction (i.e., screen posi­
tion) and at any apparent distance (i.e., size) 
without digital computation. Vector generation 
using analog integration was rejected as being of 
1 ittle value for curvilinear images. No provision 
was made to rotate images. 

Detail-generation and magnification were implemented 
jointly by a pair of 6-bit hybrid mUltipl iers. Suc­
cessive detail-words were loaded from AC by execu­
ting a newly defined lOT instruction. Horizontal 
and vertical magnification data were loaded via two 
standard (AAOIA) DIA converters, while position 
data were contained in the two existing (34D) dis­
play-coordinate channels. Analog output to the 
CRT was provided by summing centroid-positions with 



scaled detail-point positions in horizontal and 
vertical summing ampl ifiers. In other respects the 
Mark I interface functioned as a Type 340 con­
troller. 

This interface permitted landscape features such as 
trees, rocks, hills on the horizon, pavement sur­
face detail, and other vehicles to be shown in 
cartoon form with 1 ittle restriction on shape or 
density. Since the eye is tolerant of imperfec­
tions in compound'curves such as occur in real 
objects, objects can be plotted convincingly in 
a 64 X 64 matrix, if one does not attempt to pro­
duce true geometrical forms such as. circular or 
elliptical arcs. 

The time saved by reducing the computation re­
quired for each point plotted permitted marked 
improvement in display realism for relatively 
small (c. $1,000) capital cost. However the dis­
play routine still occupied a large fraction of 
CPU time, and the brightening-ratio could only be 
raised to about 1~1o. A fully automatic version 
was therefore developed. 

DESIGN OF AN AUTOMATIC DISPLAY INTERFACE 
USING DATABREAK (MARK II) 

Since image plotting now required only loading a 
single register from a single core location fol­
lowed by spot intensification, an automatic 
loading and intensification sequence using the 
single-cycle databreak appeared feasible. This 
imposes the software restriction that detail 
points for a given object must be contained in 
sequential core locations, and also required an 
additional set of lOT instructions to control the 
automatic device. These include clearing and 
testing a flag to indicate the status of the auto­
matic device, as well as supplying the databreak 
starting address and initiating display activity. 
Termination of the display cycle must be indepen­
dent of CPU activity and was achieved by defining 
an end-of-file code and terminating the display 
sequence when this was encountered in the detail 
register. 

The only direct operating penalty for making the 
cycle automatic was an overhead of one core loca­
tion per object-type. The display flag, set on 
encountering the end-of-file code in detail re­
gister, was connected to the interrupt bus to free 
the CPU from need to monitor display activity. 
Compatibility with other databreak devices was 
achieved by assigning low priority; if Dectape 
or disc is in use the only result is to cause tem­
porary dimming or flickering of the CRT display. 

A description of the currently implemented (Mark 
II) version of the device, now termed the Data­
break Display Interface, follows. 

DETAILED DESCRIPTION OF THE DATABREAK 
DISPLAY INTERFACE 

The device permits the 2-dimensional image of an 
object to be generated anywhere on the CRT screen 
and enlarged or reduced (Jlzoomedll) to any size. 
This is done by loading two data-words to locate 
the center of the image and two to determine its 
size. The image itself consists of a number of 
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points arranged in a fixed pattern relative to one 
another and to the centroid. It is produced by 
automatically plotting a detail-string, that is a 
sequence of words obtained direct from core memory. 
The central processor is free for other work while 
the detail string is being plotted. Depending on 
the length of the string and the plotting rate in 
use, this may release from 5% to 95% of CPU time for 
non-display activity. When the detail string runs 
out, an end-of-file code inserted in core following 
the last point to be plotted causes CPU interrupt. 
The program is then responsible for setting a new 
centroid position and magnification, selecting a 
fresh detail string for the next object to be plot­
ted and then initiating plotting action. 

(i) Spot Positioning 

Assuming that the output terminals are connected to 
a CRT with symmetrical X and Y deflection ampli­
fiers, and that a positive input voltage produces 
deflection upwards and to the left, the device im­
plements the following pair of equations. 

where 

X Y p p 

X Y 
0 0 

M M x y 

Dx 0 y 

I Xp = Xo + (Mx • D) 

Y = Y + (M . 0 ) 
p 0 y y 

Horizontal & vertical 
spot position. 

Horizontal & vert ica 1 
centroid position. 

Horizontal & vertical 
image magnification. 

Horizontal & vertical 

components of 

components of 

components of 

components of 
the image-point or vector measured 
relative to the current centroid. 

The three paired input quantities are 
loaded into D/A registers under program control as 
follows. 

The components of centroid position (X ,Y) are 
stored in 12-bit Centroid Registers (us~ng tRe 
AA01A interface described in the Users Handbook). 

C (AC) -> X 
o 

on executing instruction DALl 
(6101 ) 

C(AC) -> Y 
o 

on executing instruction DAL2 
(6102) 

Centroid-position scaling is l2-bit 2 1 s complement, 
i.e. 

3777 -> Rightmost centroid position 
0000 -> Central centroid position 
4000 -> Leftmost centroid position 

The components of image magnification (M , M ) 
are stored in 10-bit Magnification Regist~rs y 
(using the 34D Display-control interface described 
in the Users Handbook). 

C (A C2-11) .... M x 

C(AC2-11) -> M 
Y 

on executing instruction DXL 
(6053) 

on executing instruction DYL 
(6063) 



Scal ing is lO-bit (positive) binary, right justi­
fied, i.e. 

1777 (AC2-+11 1) -+ Full-size (M or M 1. 0) 
(Mx MY 1000 -+ Half-size or 0.5) 
(Mx MY 0000 -+ Zero-size or 0.0) x y 

The components of the image-point vector (0 o ) , x y are stored in two 6-bit Detail Registers. 

C{SA + n) -+ (0 , 0 ) 
x y under automatic control 

following execution of 
instruction DLG (6134) 

where SA is the first core address of a string 
comprising points for the image to be displayed, 
and ~ is any integer up to 4095. For further 
description of the plotting sequence see below. 

Scaling for the image-point vector is 6-bit 2 1s 
complement, with the leftmost 6-bits producing 
Ox and the rightmost 6-bits producing Dy (see 
Figure 1), thus 

3737 -+ Point at upper rightmost corner (3,3 1 ) 
0000 -+ Point at centro i d (2) 
4141 -+ Point at lower leftmost corner (5,5 1) 
3741 -+ Point at lower rightmost corner (4,41) 
4137 -+ Point at upper leftmost corner (6,6 1) 

An image-point cannot be plotted at 4040 (the 
extreme lower leftmost corner) since this is the 
end-of-file code. However 4041 and 4140 may be 
used. The deflect ions produced by a given image­
point vector data-word are proportional to the 
current values of M , M • 

x Y 

Full image-point deflection equals half centroid 
deflection. i.e. 3700 in detail register produces 
the same deflection as 1777 in X centroid regis­
ter. 

(ii) Plotting Sequence 

The C(AC) at the time of executing instruction 
DLG (QDI. load and ~O; 6134) is interpreted as 
the starting address of a string of (6 + 6-bit) 
image-point words. These are obtained successively 
from core via the single-cycle databreak, loaded 
into the Detail Register, analog-converted and 
multiplied by the current values of the X and 
Y Magnification Registers, summed with the cur­
rent values of the Centroid Registers and dis­
played by intensifying the CRT spot. 

Sequential loading and intensification continues 
automatically at 13 to 25 ~-second intervals until 
the number 4040 is encountered in the Detail Regis­
ter. At this point the plotting action terminates, 
the DOl Flag is set, and CPU interrupt occurs if 
enabled. The DOl Flag may be cleared by executing 
instruction DOC (flear DOl Flag; 6132), and its 
status tested by Instruction DDS (Skip on DOl 
Flag = 1; 6131). ----

In normal use the DOl Flag will be cleared at the 
time of initiating each fresh detail plotting se­
quence, using the combined instruction DCG (Clear 
QDI Flag, Load SA of Detail String, and Go; 6136). 
There is no instruction for terminating plotting 
action once started. If this is required the end­
of-file code 4040 (JMS 40) may be placed anywhere 
in core. In its absence the device will display 
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all of core repeatedly. 

As at present implemented, the following times are 
required for display generation. 

Fetch next image-point word via 
databreak & deflect CRT spot 

Brighten spot 
5 to 10 ~s 
5 to 10 ~s 

Wait for CPU to accept fresh 
databreak request 3 ~s upwards 

Total Cycle Time 13-23 ~s/point 

W~iting time is small except when using EAE instruc­
tions (but see below). The above timing sets an 
upper limit of about 77k image-points per second in 
continuous plotting. For objects defined by 15-
point images, and assuming 30 ~sec overhead per 
object, whis would permit some 4,444 objects to be 
plotted per second; at the 20 per second repetition 
rate which is required to provide flicker-free 
vision this allows 222 separate objects. Using 
the 64 X 64 matrix to the full) 409615 distinct 
objects can be defined. 

For comparison, the 340 controller requires a 
minimum of about 50 ~sec per point (depending on 
the amount of computation required to select and 
position successive characters) and can thus gene­
rate some 20-50 fl icker-free characters, using 
the 6 X 4 format implemented by DECUS character­
generation software. The 64 X 64 format provided 
by the DOl permits much more freedom for detailed 
construction of characters, but this is paid for 
by additional storage requirements. 

(iv) Lack of Compatibility with EAE Instructions 

We have found that execution of certain EAE instruc­
tions while the automatic plotting sequence is 
running causes (with very low frequency) zeros to 
appear in the detail string in core memory. This 
produces image decimation, since points deleted 
reappear in the center of the image. This gra­
dually destroys the image; users are therefore 
advised to avoid operating the DOl in multiprocess 
mode with programs using EAE. 

(v) Summary of Operating Instructions 

Instruction set 

DAL 1 6101 
DAL2 6102 
DXL 6053 
DYL 6063 
DDS 6131 
DOC 6132 
DLG 6134 

DCG 6136 

Load X Centroid Register 
Load Y Centroid Register 
Load X Magnification Register 
Load Y Magnification Register 
Skip on DOl Flag = 1 
Clear DOl Flag (-+ 0) 
Load Starting Address of detail 
string and initiate display 
sequence 

Clear Flag, Load Starting Address, 
and Initiate display sequence 



Data format -----
X and Y Centroid 12-bit 2 1 s complement 
X and Y Magnification 10-bit (pos i t i ve) 

binary 
X and Y Deta i I (6 + 6)-bit 2 1 s com-

plement 

4040 encountered in detail string 

MULTIPROCESSING SOFTWARE FOR THE AUTOMATIC 
DISPLAY FACILITY 

Programming technique for the automatic display 
system dessribed above differs markedly from that 
employed with the Type 340 controller. To render 
display action independent of background CPU 
activity a communication file must be provided 
containing the following data for each of a speci­
fied number of objects or image-components cur­
rently being displayed--

X centroid 
Y centroid 
X and Y magnification (or separate data 

if desired) 
starting address of detail string 

Switch-bits may also be inserted at the (unused) 
bit 0 of the magnification datum locations, per­
mitting unwanted objects to be blanked without 
reorganizing the whole display file. A display­
maintenance subprogram, entered from CPU interrupt 
when the display-flag is set, iterates repeatedly 
through this file to provide a continuously re­
freshed display with brightening-ratio on the 
order of 8~1o. Changes of object selection, posi­
tion and size are accomplished by the main CPU 
program inserting fresh data in the display com­
munication-file at times independent of the dis­
play cycle. 

This technique is effective with 10 or more image­
points per object, below which point display re­
freshment begins to occupy a time large compared 
with total running time, causing reduced brightness; 
display refreshment will then also take an undue 
fraction of total CPU time away from the main pro­
gram. In highway simulation this is an insignifi­
cant limitation, but for alphameric characters it 
might suggest unduly detailed character-drawing. 

With 4 data per communication-file entry, the core 
requirement is I page per 32 objects in addition 
to the detail strings needed to generate object 
types. Complete objects such as characters could 
presumably be produced by combining several fea­
tures each defined by a separate detail-string, 
but this possibility has not been tested in prac­
tice. 

Using software of this type with the automatic 
display facil ity dessribed above, a highway dis­
?lay of 256 planes, equivalent to 1,280 ft of 
forward vision plus horizon, can be generated with 
highly realistic scenery and updated in real-time 
up to the equivalent to 100 mph, while still main­
taining excellent display brightness. The program 
requires about 2 k of core. 
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CONCLUSION AND SUGGESTED 
FURTHER APPLICATIONS 

The device described permits efficient display­
generation with high brightening-ratio while still 
leaving large amounts of CPU time free for non-dis­
play computation. The main penalty is use of ad­
ditional core storage for display detail, and for a 
display communication file if multiprocessing is 
desired. 

Apart from its primary purpose of permitting realis­
tic contact-analog simulation of moving scenery, 
the lnexpensive display system described would 
readily lend itself to online real-time character­
generation displays for text-editing and typesetting. 
It would facilitate the implementation of graphical 
design systems, using normal or storage CRT's. 
Other potential applications include automatic 
analog waveform generation for acoustic displays, 
and picture-plotting with analog XY recorder 

A picture-editor is currently being written to per­
mit rapid image-generation and storage by the human 
artist using eyboard and/or light-pen and/or 
graphical tablet. 

APPENDIX 

Example of a Program Using 001 

Display contents of core continuously (assuming 
that no location contains 4040). This may be used 
to examine all of core when program is halted. 
Any 7 locations may be used. 

~'~n 

SECOR,STA /Set full-scale 
DXL 
DYL 
CLA /Set X and Y centroids to center of 

DALl DAL2 
DCG 

DDS 

JMP.-I 

HLT 

/screen 

/Initiate display sequence at 
/SA = 0 , & clear flag 
/Automatic display interface 
/continues to display core 
/Test flag; unless JMS 40 is en­
/countered in core. In this case 
/halts at n + 10 . 
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Figure 1 Image Plotting with the Databreak Display Interface 
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FAST FOURIER TRANSFORM TECHNIQUES 
USING A DRUM FOR MEMORY EXTENSION 

Ric C. Davies 
Phillips Petroleum Company 

Idaho Falls, Idaho 

ABSTRACT 

A fast Fourier transform subroutine package which is FORTRAN 
compatible has been developed for a PDP-9 computer to trans­
form any type of discrete data. A 12SK RM09 serial drum is 
used to readily access and store the data during computation 
of the fast Fourier transform. A 339 display unit is used 
to display the original data and the transformed data 
separately or simultaneously for comparison. A paper tape 
punch option supplies the user with permanent copies of 
portions or of all the data. 

INTRODUCTION 

The recent development of a fast Fourier transform 
(FFT) has brought forth new prospects in experimen­
tal work at this laboratory as it has in many other 
places. We have found that the PDP-9 with extend­
ed storage is capable of doing a FFT in a real time 
environment. In fact, the FFT written for the 
PDP-9, can analyze S192 discrete data points and 
has capabilities of expansion. 

Two main problems must be considered in the 
formulation of the fast Fourier transform to run 
on a PDP-9. 

1. Core 

The basic PDP-9 has SK of core memory, but at 
least 32K of storage is needed for the data alone. 
For example, to transform S192 data points 163S4 
core locations are needed for the real part and 
163S4 for the imaginary part of the complex result 
obtained from the FFT. This is because all 
calculations are done in single precision floating 
point (2 words/data point). To conserve time, 
a sine table is used which needs 4096 additional 
storage locations. Thus 36K words of storage are 
required to transform S192 points. 

2. Time 

The PDP-9 with 1 ~sec cycle time fits very 
well into a real time environment. However, the 
floating point package requires a considerable 
amount of time to calculate sines and cosines and 
to load and store the floating point accumulator. 
The teletype and the paper tape punch also take too 
much time to output any great amount of data. 

EQUIfl.1ENT 

The configuration consists of an SK PDP-9 computer, 
a 12SK RM09 drum, a 339 display unit, a high speed 
paper tape reader and punch, and a teletype. 
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DEVELOPMENT 

A 12SK word drum extends the computer storage to 
the size needed to transform S192 points. In order 
to use the drum as an extension of core memory, an 
algorithm was developed which transfers data as few 
times as possible and is still compatible with FFT 
calculations. The FFT requires N = 2~ data points, 
where Y is an integer. The tracks on the drum 
contain 256 or 23 words. Because the FFT and the 
drum both use the form 2~ , the drum transfers can 
give the FFT the exact number of points needed for 
a calculation. Figure 1 shows the procedure used 
by the FFT to calculate the Fourier transform of 22 
data points. The first column is the original data. 
Each element or node is entered by a dashed and a 
solid line. The solid line brings a quantity from 
one of the elements in a previous column, multiplies 
the quantity by a determined value, and the product 
is added to the quantity brought by the dashed line. 
Notice that a pair of elements of one array is used 
to calculate the same pair of elements of the next 
array. This is true for any size of an array and 
for the complete transform. Now suppose that each 
of the elements in Figure 1 consists of 256 points. 
A pair of sets of 256 points of one array are used 
to calculate the same pair of sets of 256 points 
of the next array. This means that two sets of 256 
can be read in from the drum and used to calculate 
the same two sets of 256 points for the next array. 
Once the sets of one array are used to calculate the 
sets of the next array, they are not used again; 
therefore, the new sets are written on the drum in 
place of the old sets. 

The algorithm determines which sets of 256 data 
points are to be read in from the drum next. Figure 
1 gives the steps used in the algorithm. If N is 
the number of data points, NBLK = N/256 is the 
number of groups of 256. Let I be the particular 
array being computed (the left most array is 1), 
then M = NBLK/2**I is the incremental difference 
between the two sets of a pair 3hat are to be read 
from the drum. For example, if i:oach element of 
Figure 1 consisted of 256 points; N would equal 



1024, NBLK would equal 4, and M would equal 2 for 
I equal to 1. The element paired with element 1 
would be element 3, since 1 + M= 1 + 2= 3. 
When M becomes less than 1, set NBLK = 256 and per­
form the FFT on the elements within each set of 256. 
The transform is done when M becomes less than 1 
for each set of 256. 

A sine table is used to save time spent in 
calculation of sines and cosines. The first 
version of the FFT subroutine took about 17 
minutes for 1024 points, because sines and cosines 
were calculated for each data point. The table 
reduced the time to transform 1024 data points 
to about 10 minutes. 

The table is formed by dividing 2n into N (number 
of data points) equal angles and taking the sine 
of the angles within the first quadrant. The 
table need contain only the sines in the first 
quadrant. The rest of the sines are obtained from 
those of the first quadrant by determing which 
quadrant the desired sine is in and giving it the 
correct sign (+ or -). The cosines are found by 
reading the sine table in reverse order and 
assigning the correct sign. The table saves time, 
but not enough. 

Further analysis of the procedures used in the 
program showed that a great amount of time was 
being wasted in loading and storing the floating 
point accumulator of the FORTRAN package. The 
routine to load and store the floating point 
accumulator checks to see if single or double 
precision numbers are being used. The routine 
then does the appropriate conversion in order to 
do all calculations in double precision. Because 
our numbers are all single precision, a special 
routine was written to load and store the floating 
point accumulator. The time to transform 1024 
points was reduced from 10 minures to 2 minutes. 

Figure 3 shows the Fourier transform of the gamma­
ray spectrum shown in Figure 2. In our applications, 
the FFT is used as a smoothing algorithm. By 
eliminating some of the higher frequencies of the 
transform and doing the inverse FFT, the gamma-ray 
spectrum is smoothed, i.e. statistical fluctuations 
are removed. Figure 4 shows the gamma-raJ spectrum 
and its transform displayed together. 

A 339 display unit is used as an output medium 
because the teletype and the paper tape punch 
are too slow for our applications. The original 
data and the transform are displayed separately 
or simultaneously in a 1024 word core buffer by 
interchanging the data from drum to core. This 
gives a fast and efficient way of comparing the 
data (see Figure 4). Hard copies are obtained 
by taking pictures of the scope or by punching 
out desired portions of the data. 

CONCLUSION 

The PDP-9 with a drum is adequate for doing fast 
Fourier transforms in a real time environment. The 
drum gives the additional storage needed to process 
large amounts of data. The 339 scope gives immedia­
te output and limits the amount of information 
that is needed in hard copy. 
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Figure 3 Fourier transform of gamma-ray spectrum 

Figure 4 Gamma-ray spectrum and its transform 
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INTERACTIVE DEBUGGING UNDER SIMULATION 

David J. Waks 
Applied Data Research, Inc. 

Princeton, N. J. 

Abstract 

Debugging programs for small computers is hindered by 
the lack of adequate memory, proper hardware, and 
peripheral equipment on the machine on which these programs 
are ultimately to be run. This paper proposes that com­
prehensive simulators for small computers be developed ex­
plicitly for interactive debugging and be run on larger 
computers with adequate memory, peripherals and hardware to 
completely check out the program written for the small 
computer. This technique has been used at ADR for over two 
years in debugging large, real-time PDP-8 programs on a PDP-7. 

I. The Debugging Problem 

Getting a program from its pencil-and-paper 
form to a working program on a computer requires 
the application of assembly and debugging tech­
niques. Much has been written about assemblers; 
this paper will deal primarily with the often ne­
glected subject of debugging. 

It will be worthwhile to start with some of 
the history of assembly and debugging techniques. 
Before operating systems came along. this was 
usually done by assembling the program from cards 
or paper tape, producing a separate object program 
deck or tape; then loading the object program 
into memory and checking it out using the console 
of the computer as the primary debugging aid, 
stepping through susp~c~ous program sequences 
and using "break point" switches, tested by the 
program, to stop the program at selected places. 
These manual techniques were aided by octal patches, 
which permitted changing the program without re­
assembling; core dumps, which dumped the entire 
contents of memory on to the line printer to 
present a static picture of the state of the 
machine at a given time; and trace routines, which 
provided a dynamic picture of a small number of 
registers. Later, these were supplemented by 
selective trace and dump techniques which provided 
the programmer with the ability of selecting 
suspicious portions of the program and dumping 
selective portions of memory as pre-selected 
places were reached during execution. 

When operating systems were introduced on 
larger computers, and "closed-shop" operations (in 
which the programmer is not present while his 
program is being run) became the rule, we started 
using so-called "load and go" systems in which the 
various routines of the program were compiled or 
assembled, loaded into memory, and executed 
without any possible intervention from the pro­
grammer. In this context. e9re dumps became 
almost the only technique available to the pro­
grammer - with the possible addition of selective 
dump and trace techniques, at a high cost in 
machine time. The programmer was forced to preplan 
the debugging required in each run, since no 
prov~s~on was made for him to intervene during 
execution. The argument in favor of "closed-shop" 
over "open-shop" operation seemed to be that open­
shop operation uses the programmer better; 
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closed-shop uses the computer better; on large 
machines, at least, closed-shop always won. 

When small computers came along and became 
popular, we reverted to console debugging, which had 
always seemed the best approach to programmers. Now, 
however, we had the added problem that core dumps 
(the most effective debugging technique) coulG rarely 
be obtained in the absence of a line printer. So 
debugging programs, such as DDT, were written to 
permit the programmer substantial int~ractive 
capability while debugging. With the advent of 
dedicated small-computer systems, the normal 
approach seems to be to debug a program on the 
computer on which it will eventually be the 
dedicated program. But debugging programs on small 
computers generally raises these three major 
problems: 

1. Interference between the debugging tools 
and the program be~ng debugged. This interference 
takes two major forms - 1/0 and memory interference. 

The communications devices used by debugging 
systems such as DDT are inevitably the same ones 
used by the program being debugged. Thus the 
teletype in DDT is used by both systems. Its state 
(teletype flag up or down) is indeterminate when 
moving from DDT to the program being debugged and 
back. This interaction becomes a particular problem 
when attempting to debug programs designed to 
operate under interrupt. DDT does not operate 
properly in such a context. Moreover, it isn't 
really possible to design a DDT-type debugging 
system which will. 

The object program typically cannot afford to 
release as much space as DDT requires. This can be 
partially compensated for by debugging the program 
a section at a, time; but this is not really 
satisfactory since system integration, with no room 
left for DDT, usually requires the most intensive 
testing to uncover bugs - and the bugs, once en­
countered, are typically the most difficult to pin 
down and fix. 

2. Peripherals - For all the nice features 
offered by inte~act~ve systems such as DDT, a core 
dump has always been the best means to track down 
a large class of bugs - those which have caused the 
program to enter some forbidden state; most often by 
executing data as instructions or by clobbering an 



instruction by referring to it as a data operand. 
Moreover, a core dump provides the means for the 
programmer to get away from the machine environ­
ment and find a quiet place to sit down and think. 

But most small computers lack any kind of out­
put printer other than a Teletype, which 'is a 
singularly unattractive device for producing a core 
dump (note the printing of a formatted core dump 
of 4096 words, including decoding of instructions 
to make them reasonably readable, takes at least 
an hour on a Teletype - and it won't survive long 
with such usage). In addition to the lack of a 
line printer, most small computers, particularly 
in dedicated applications, lack the high-speed 
paper tape reader so critical in loading (and, 
particularly, re-loading) a program and some sort 
of bulk storage such as DECtape. magnetic tape, or 
disc which can save a great deal of time by pro­
viding checkpoint images of core at the end of a 
debugging session. 

3. Console - The consoles of all small 
computers - and the PDP-8 family is a particular 
case in point - are very unsuitable for debugging. 
In attempting to debug a program, one desperately 
needs the ability to stop a program as soon as it 
enters some forbidden state (and before it clears 
all of core to zero); one desperately needs to 
find out just which instruction is referencing 
location 1234. Most small computers do not pro­
vide any provision on the console for setting 
such address stops. They also rarely provide 
detection of invalid instructions. 

A second problem is that there are many 
registers available to the program which are not 
visible to the user (for example, the teletype 
flags and associated buffer registers). When 
debugging, this information is often very valuable. 
Besides, even those registers that are displayed 
are impossible to change without clobbering the 
program state and making ~t impossible to continue 
execution. 

II. Simulation as a Solution 

It should be clear, then, that small computers 
leave a lot to be desired as proper debugging 
environments. What alternative is available? We 
believe that the best way to debug programs 
written for small machines is under interactive 
simulation on a larger machine. SimUlation 
without interaction forces the programmer to pre­
plan his bugs; finding each bug requires a shot at 
the machine with an interval of several hours a 
day between. Interactive simulation, on the other 
hand, permits the experienced debugger to ferret 
out his bugs substantially faster than either con­
sole debugging or in a closed-shop situation. With 
the proper debugging tools, in an environment 
specifically created for debugging, his job can be 
made much easier. 

About two and a half years ago, faced with 
a large quantity of undebugged PDP-8 code, we 
designed a simulator for the explicit purpos~ of 
debugging our PDP-8 programs. The simulator was 
initially built to simulate an 8K PDP-S with high­
speed paper-tape reader and punch and teletype. 
It was designed to faithfully simulate all 
program-accessible registers, simulating these 
registers in such a way that a program operating 
under the simulator could not tell, except by 
timing, that it was not running on a PDP-S. 
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The simulator was written to run on the PDP-7/S 
configuration at our Research Computing Center 
(configuration shown in Figure 1). The simulator 
was debugged by running the DEC MAINDEC's until 
the program ran properly - which turned up a number 
of bugs in the PDP-8 User's ~anual as well as those 
of the simulator. 

Perhaps the best way to describe the simulator 
is to illustrate it by a conversation - a transcript 
of a teletype printout on the PDP-7. Numbers to the 
left of the teletype lines correspond to notes 
below. The conversation and footnotes are contained 
on the following pages. 

As we have seen, the simulator provides the 
debugger with the following facilities: (a) set 
PDP-8 memory either in its entirety or in part to 
any desired value; (b) load programs in whole or in 
part from paper tape or DECtape; (c) start and stop 
programs; (d) examine and modify any hardware 
register or memory location; (e) set and delete 
any number of instruction and/or data breakpoints 
in PDP-8 programs; (f) transfer memory between the 
PDP-7, the PDP-8 and other PDP-8/I's and PDP-S/L's; 
(g) obtain a formatted core dump on the line printer 
of any or all of memory; (h) turn on and off cycle 
counters which permit the timing of PDP-8 programs. 

The PDP-8 simulator has been substantially 
expanded since its original creation. The current 
version fully supports an 8K PDP-8 with teletype, 
high-speed paper-tape reader and punch, four DF-32 
platters (simulated on DECtape), and a line 
printer. The PDP-8 interrupt system is fully 
simulated, including the vagaries of interrupt 
operations on a multi-field PDP-8. Virtually ~o 
restrictions are placed on the programmer during 
coding and debugging. The simulator is designed in 
such a way that additional devices can be added 
quite easily; if a hardware-software implementation 
project requires custom hardware on a PDP-B, code 
to simulate ,the device is appended to the 
simulator so that the software for the system can 
be debugged before the hardware is built. 

The simulator has been used to debug programs 
ranging from an accounting system for the PDP-SIS, 
a real-time mass spectrometry system {described in 
a previous DECUS paperl >, The Engineering and 
Scientific Interpreter2, and a complete tele­
vision station Central Control Room automation 
system. 

Many people by now have contributed to the 
development of this simulation approach. Particular 
credit is due to the following members of the 
Control Systems Division - Michael P. McCarthy, 
who helped conceive the idea; Roger Frye, Robert 
Supnik, and Barbara Slaughter, who with the author 
are responsible for the code. 
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Notes on the Conversation 

(1) Our PDP-7/B operating system. based on 
DEC's DECSYS. uses GA("Go Ahead") to mean "What 
program do you want me to load?". 

(2) "I want to load SIMB!". 

(3) The simulator has a large number of 
named locations which operate a la DDT - they are 
"opened" by typing the name of the location, and 
may be changed by typing a new value when they are 
open. The contents of FILLER are used in the FILL 
command following. 

(4) Fill all of core with the contents of 
FILLER (0000). 

(5) Set locations 1000 through 1777 to 7777. 

(6) Load into memory, from DECtape. the 
binary program file called E"sIX. 

(7) Start ESIX running at location 5400. 

(B) This is ESI running under s"imulation. 

(9) We decide to stop the program execution 
so we type WRU, which simulates the PDP-8 "stop" 
button. This is done in such a way as to prevent 
interference between the dual uses of the 
teletype. 

(10) To request the contents of the PDP-8 
console panel registers. 

(11) We decide to investigate the loop in 
operation at the time of our WRU. 

(12) We observe that the loop is waiting for 
the keyboard flag; investigating it we discover 
that it is currently zero. 

(13) On the other hand, some device flag must 
be up since QANYINT (the logical OR of all 
device flags) is 1. 

(14) The teleprinter flag is a 1. Let us see 
what happens if we change it to a O. 

(15) GO simulates the PDP-B "continue" 
button. 

(16) We hit a few keys and nothing seems to 
be happening so we type WRU to investigate the 
situation. 

(17) The program is waiting for the tele­
printer flag, which we set to 0 earlier. Let's 
set it back to 1 and see what happens. 

(18) Set an instruction breakpoint at 
location 200 (used in the execution of the SET 
verb) • 

(19) The breakpoint occurs before the 
instruction is executed. We can examine the 
instruction before it is executed. 

(20) Reset the breakpoint. 

(21) Set "data breakpoint" in all of bank 1. 

(22) Reset all breakpoints. 
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(23) Transfer the contents of simulated PDP-B 
memory to the on-line PDP-B. Simulated memory is 
not affected. 

(24) We run into trouble operating on the on­
line PDP-B. We bring memory back from the PDP-B 
to the PDP-7. 

(25) We dump all of core on the line printer. 
formatted for ease of reading. 

(26) We dump the entire contents of simulated 
memory and all simulated registers on to DECtape so 
that we can correct the program when we come back 
after studying the core dump. 
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AN EXECUTIVE FOR A REMOTE 
INTERACTIVE GRAPHICS TERMINAL 

C. G. Conn, P. T. Hughes 
Computer Sciences Corporation 

Huntsville, Alabama 

ABSTRACT 

This paper describes the development of an executive system 
for a PDP-9/339 used as a graphics terminal remoted to a 
triple processor UNIVAC 1108. It includes the design of a 
higher-level interactive programming language which is pro­
cessed interpretively by the executive system. This language 
allows the programmer to monitor, direct, and respond to 
operator actions at the scope and to communicate with the 
terminal hardware or software. This executive system handles 
all I/O, interrupts, allocation of free storage, tracking, 
and display file management. 

I. INTRODUCTION 

The executive system described in this paper was 
designed on an 8K PDP-9 with two DEC tapes and a 
339 Display. The computer is connected through a 
637 communications interface to a triple-processor 
UNIVAC 1108 over a voice-grade phone line. The 
development of this prototype executive was under­
taken as a feasibility study for the design and 
implementation of advanced graphic display terminal 
software. 

Design criteria for the system included: 

1. Ability to define and manipulate graphic data 
structures; 

2. High level of program-operator interaction 
with good response time; 

3. Machine-independent interactive graphics pro­
gramming language with maximum flexibility; 
and 

4. General purpose, readily expandable executive 
system. 

II. LANGUAGE STRUCTURE 

As an interactive programming language, IPL is 
structured to permit a dynamic exchange between 
display operator and program under execution. It 
was designed for use as a general purpose graphics 
language, independent of the display hardware 
available. Syntactically a higher-level language, 
IPL relieves the programmer of the usually labori­
ous programming task associated with graphics appli­
cations. At the same time, it retains a level of 
flexibility comparable to assembly language with 
respect to program-operator communication. The 
language is generated in the central site computer 
and executed interpretively at the remote terminal. 
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IPL is a simple, event-oriented grammar, consist­
ing of structuring rules, instruction codes, and 
the logical operators AND, 0R, and N0T. Instruct­
ion codes are of two types: conditional, used in 
forming Boolean strings; and action, used in per­
forming tasks. A source program consists of a 
series of statements followed by an END command. 
Each statement consists of an optional conditional 
string (to be evaluated as a Boolean expression) 
preceded by IF and terminated by THEN, and an 
action string terminated by a period. Any state­
ment may be preceded by a statement number to be 
used in a logical transfer action command or to 
establish a logical register for arithmetic opera­
tion. The general format of a statement is: 

n IF conditional string THEN action string. 

If the conditional string evaluates TRUE, the 
actions in the action string are executed, other­
wise they are ignored. If the conditional string 
is omitted, the actions are unconditionally per­
formed. 

The conditional string consists of any number of 
conditional instruction codes separated by logical 
operators. The codes are processed from left to 
right with no operator hierarchy inherent. The 
action string is also composed of any number of 
action instruction codes separated by a concatena­
tion operator. The action codes are processed 
1eft-to-right in order of occurrence. Execution 
of a statement terminates upon detection of a 
period. 

Initially the hardware interface to the central 
site computer was unavailable. In order to develop 
and checkout the IPL processor, a teletype was 
used to simulate IPL program input. To reduce pre­
processing (translation of the source code to 



interpretive format) and typing time, an abbreviated 
syntax was adopted in which punctuation replaced 
operators and string terminators. Sematically, the 
language is the same. For example, a typical state­
ment such as 

n IF c AND c ~R c ~R c AND NOT c THEN a a a. 

appeared for teletype input as 

n c, c/c/c,-c = a,a,a. 

where 

n: statement number 
c: 
, . 
/: 

a: 

conditional instruction code 
logical AND operator (conditional) or con­
catenation operator (action) 
logical ~R operator 
logical N~T operator 
conditional string terminator 
action instruction code 
statement terminator 

There are at present 100 instruction codes incor­
porated in the language: 84 action, 16 conditional. 
The codes are grouped according to function in the 
following classes: 

1. Arithmetic - performs basic computational 
functions. 

2. Auxiliary - performs logical transfer of pro­
gram control, non-sequential single-statement 
executions, establish state parameter values, 
and assorted housekeeping functions. 

3. Character - performs basic character manipula­
tion within text strings and handle teletype 
input. 

4. Definition - uefines basic display elements: 
point, line, etc. 

5. Light button - defines, displays, and manipu­
lates light buttons. 

6. Light pen - enables and disables light pen and 
control of associated functions (blink, copy, 
move, scale, etc.). 

7. Positioning - controls tracking and point 
(screen location) designation. 

8. Response buffer - controls entries into the 
buffer and transmission to central site com­
puter. 

9. Text-editing - controls cursor and text (line) 
manipula t ion. 

The instruction set is open-ended. Because of the 
interpretive design of the processor, new instruc­
tion routines are very simple to add. 

Features intrinsic to the system include a tracking 
routine, cursor, push-down program label stack, and 
automatic manipulation of display items through a 
bit mask. Tracking is done with a displayed cross 
and the light pen. The position of the tracking 
cross is always available to the program. Operator 
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repositioning of the cross can be programatically 
constrained and/or tested. The cursor is a unique 
character which may be positioned by the program 
and/or by the operator's use of the physical push 
buttons. Its principal use is in text-editing and 
character manipulation. The push-down, pop-up 
label stack provides automatic alternate execution 
paths somewhat like an ASSIGNED GO TO in FORTRAN. 
Utilizing this feature, the programmer may establish 
a number of execution levels within the program and 
provide for response to operator actions without 
regard to the current level of execution. At any 
given time, the top entry on the stack automatically 
reflects the level of program execution. In addi­
tion, a prompting message is associated~ch 
stack entry providing a method of program communica­
tion to the operator. Since this message is dis­
played on the screen whenever the entry is brought 
to the top of stack, it can be used to: 

1. Give the operator instructions; 

2. Inform the operator of the level of program 
execution; and 

3. Verify to the operator that he is performing 
the desired function. 

A l2-bit mask associated with each display item 
controls functions commonly desired with reference 
to a display item; i.e. hide, delete, blink, copy, 
move, etc. Identification information is associated 
with each item defined for the display. This ID in­
cludes a definition mask, each bit of which corre­
sponds, in a set format, to one of the above func­
tions. Setting a maBk bit to one enables the 
associated function for that item. In addition, a 
state mask variable is maintained whose value may 
be set by the IPL program. When an item is picked 
with the light pen, the definition mask associated 
with that item is AND-ed with the program state 
mask variable; functions associated with the bits 
set as a result of the logical product are auto­
matically performed on that item. In this manner, 
an item definition mask establishes a set of per­
manently allowable manipulations for that item, 
while the program state mask provides dynamic con­
trol over the functions to be performed by the 
system at any given time. Other mask functions 
allow recording of item identification in the re­
sponse buffer, designation of an item as a light 
button, and control of it~ light-pen sensitivity. 

Use of the above features together with the IPL 
instructions which control them provides the pro­
grammer with a high degree of interaction and pro­
gram flexibility in design of a graphics applica­
tion. 

III. EXECUTIVE STRUCTURE 

The terminal executive is designed to execute inter­
pretively an IPL program; to maintain a display file 
structure and process operator light pen, push 
button, and teletype actions as dictated by the IPL 
program; and to handle communications with the 
central site computer. Figure 1 illustrates the 
communications paths between the terminal and cen­
tral site. IPL source code is pre-processed in the 
UNIVAC 1108 and transmitted to the PDP-9 under con­
trol of the user's FORTRAN program. Buffers 



containing the data bases for figures to be display­
ed may als~ be transferred to the PDP-9 by the 
FORTRAN program. This data after being converted 
to 339 display format is inserted directly into the 
display file by the display manager. Response 
buffers are transmitted from the PDP-9 to the 1108; 
this buffer is the only method of communication 
fr~ the IPL program being executed in the remote 
t~inal to the central site computer. 

The terminal system is interrupt-driven and as 
seen in Figure 2, consists basically of the idle 
loop, the interrupt processor with its associated 
handlers including the IPL interpreter, the dis­
play file manager, and the dynamic storage alloca­
tion program. The display file is composed of 
entries (obtained from free storage) which are for­
ward and backward chained. Permanent file struc­
ture consists of the header and trailer blocks as 
illustrated in Figure 3. System display features 
such as the cursor, stack prompting message, and 
amount of free core remaining are contained in the 
header. The trailer consists of a STOP code and 
the transfer command (JUMP) to the top of the file. 
Entries are forward-chained through the display 
JUMP commands; each entry contains the identifica­
tion information for the displayed item and a sub­
routine call (PJUMP) to the buffer containing the 
commands to display the item (see Figure 4). An 
item is positione~ relative to the preceding one by 
the x- and y- positioning commands in the entry un­
less the clear co-ordinate, clear sector bits com­
mand is included in the mode word. In the latter 
case, the item is positioned (x and y) from the 
origin. The STOP/BLINK word is used to blink an 
item or to provide fast pen response. It normally 
contains a BLINK OFF command. 

The STOP code at the end of the display file pro­
vides an interrupt to the mainframe. The IPL 
interpreter gains control to execute the IPL code 
string as a result of this interrupt, if since the 
last interpretive pass: 

1. The tracking cross (if active) has been. re­
positioned; 

2. An item has been picked with the light pen; 

3. A key has been hit on the teletype; and 

4. A light button is down (state is set on). 

Normally, interpretive control is possible at the 
end of each display cycle (single execution of the 
display file). By use of appropriate IPL instruc­
tions display STOP codes can be inserted in each 
display file entry; the interpreter may then 
assume control before execution of each displayed 
item rather than only at the end of the entire file. 
For large display files wi th many entries' -this 
latter technique provides quicker tracking response. 

The interpreter itself controls the tracking routine 
and executes the IPL code string. The code string 
is processed one statement at a time: 

1. The conditional string is evaluated with the 
Boolean result stored in a state parameter; if 
no conditional string is present, the state 
parameter is set to TRUE. 
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2. If the state parameter is set to TRUE, the 
action string is executed; otherwise, it is 
ignored. 

3. The next statement is retrieved for processing 
in the above manner. 

Interpretive execution terminates upon detection of 
the IPL STOP instruction code. Instruction codes 
appear in the code string as addresses of the 
routines performing the corresponding functions. 
An instruction code is executed by transferring 
control to the address contained in the code string. 
The interpretive control logic has common return 
points for conditional and action instruction rou­
tines. Conditional routines return the Boolean re­
sult of evaluation in the accumulator. To allow 
unlimited nesting of non-sequential single state­
ment executions, a push-down execution stack of pro­
gram address pointers is built by the IPL control 
transfer commands. Upon detection by the interpre-. 
tive control logic of an IPL statement terminator, 
control is transferred to the code string address 
at the top of the execution stack; this address 
entry is then removed from the stack. If the exe­
cution stack is empty, sequential statement process­
ing resumes. A logic flowchart of the interpretive 
control program is given in Figure 5. 

Three interrupt handlers deal with operator actions 
at the remote terminal; light pen strike, teletype 
keyboard input, and physical push buttons. To 
avoid multiple light pen strikes, the manual in­
terrupt button must be depressed before the system 
registers a strike. Interrupts resulting from 
light detection by the pen are ignored until the 
manual interrupt occurs. Automatic functions 
called for by the display item bit mask (See 
Section II) are performed in the light pen strike 
interrupt handler. A teletype interrupt inputs a 
single character from the teletype keyboard buffer 
provided keyboard input has been enabled in the con­
trolling IPL program. Six-bit characters are packed 
three per word into a character buffer. Instruc­
tions may be input and dynamically executed from the 
character buffer under control of the IPL program. 
The physical push-buttons are used to move the dis­
played character cursor. As long as the button re­
mains down, the cursor moves at a standard rate in 
the direction indicated by the button. 

The 637 communications handler controls all full­
duplex transmission for the PDP-9. Eight-bit char­
acters are input and output on an interrupt basis 
allowing concurrent execution of an IPL program. As 
shown in Figure 2, IPL code strings and data buffers 
are received; response buffers are transmitted. 
Upon receipt of a new code string, the old one (if 
any) is flushed from the system. The address of 
the new code string is made available to the in­
terpreter and an initial execution pass is forced. 
The display file is not cleared. Data buffers are 
translated into display commands. The identifica­
tion information associated with the data buffer is 
used to construct a display file entry (see Figure 
4) which is inserted .in the display file by the dis­
play file manager. 

The response buffer may be transmitted to the cen­
tral site computer as a result of an explicity IPL 
command or a buffer over-flow condition. Transmisskn 



clears the buffer; if a buffer over-flow condition 
occurs, the item causing the overflow is not trans­
mitted but is stored in the cleared buffer after 
transmission has been initiated. 

The standard transmission sequence consists of an 
output request containing the ID and length of the 
data buffer to be transferred followed by the data 
buffer itself. The data is not transmitted until 
the request is acknowledged by the other computer. 
A "no acknowledge" received after transmission of a 
data buffer means a parity error was found by the 
receiving computer and the data buffer is retrans­
mitted. 

Communications are controlled using three chains: 

1. Receive: Composed of output requests from cen­
tral site. Each entry contains the request ID, 
the address and length of a buffer obtained 
from free storage for the data to be received. 

2. Transmit-active: Composed of PDP-9 output re­
quests, "acknowledges" and "no acknowledges". 
Transmission occurs from the top of this chain. 
Requests for output to the central site are 
placed on the end of the chain as they occur. 

3. Transmit-inactive: Composed of PDP-9 output 
buffers which have been transmitted. They are 
saved pending receipt of an "acknowledge" from 
the central site computer. 

For the format of chain entries, see Figure 6. The 
637 handler has two main section - Receive Control 
(RC~NT) and Transmit Control (TC~NT). As output 
requests are received from central site they are 
placed on the receive chain and acknowledged. When 
a data buffer is received it is stored in the buffer 
address contained in the receive chain entry with 
matching ID. The entry is removed from the receive 
chain when the data buffer is successively received 
without parity error. The type code in the request 
designates the executive routine which is to re­
ceive the buffer; i.e. an IPL code string goes to 
the interpreter. Control buffers; 1. e. "acknow-

UNIVAC 1108 

Figure 1 

ledge" or "no acknowledge", received from central 
site ar~ processed by: 

1. "Acknowledge" to output request - transmission 
of data buffer on top of transmit-active chain 
is initiated. 

2. "Acknowledge" to data - entry removed from 
transmit-inactive chain and data buffer re­
turned to free storage. 

3. "No acknowledge" to data - entry transferred 
from transmit-inactive to transmit active chain. 

TC0NT transmits the top entry of the transmit­
active chain. Following transmission, if the entry 
is an output request it is converted to a data entry 
and left at the top of the chain. Transmission of 
the data will be initiated by receiving an "acknow­
ledge" to the output request from the central site. 
If it is a data buffer, the entry will be trans­
ferred from the transmit-active chain to the trans­
mit-inactive chain after the data buffer itself has 
been transmitted. 

IV. CONCLUS ION 

At the present stage of development, the system as 
described meets the design criteria. outlined in 
Section I. The graphic support software is opera­
tional; final checkout of the transmission handler 
is dependent on the completion of the EXEC VIII 
operating system by UNIVAC. 

A UNIVAC 1558 will be interfaced to the PDP-9 to 
improve terminal display capability. The modularity 
of the executive system will allow this addition 
with minimum modification to the system program; 
i.e. coding of another display manager and ~xpan­
sion of the interrupt routine. Because of this 
modular construction and the interpretive design 
of the IPL processor, both the terminal executive 
and the IPL language can be expanded as necessary 
in response to application program and hardware 
requirements. 
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ABSTRACT 

The paper describes a CAI multi-terminal system being implemented 
on the PDP-9. The OISE configuration is briefly outlined and the 
Author Language is discussed in addition to its processors and the 
ancillary programs. 

THE CONFIGURATION 

Figure 1 shows the OISE configuration. 
omitting two QUIKTRAN terminals located within 
another department. Most major processing is 
done at other installations via panel truck. 

The CRT's shown are both storage mode devices 
and a system compatible handler has been written 
for textual display; the 1004 handler is underway. 
In addition to our open shop keypunches we have 
access to a keypunch service and are hoping to 
retrieve much of the time at present spent keying 
in and listing programs at the console teletype. 
The 1004 will be shared with our job processing 
group who use it for remote job entry to a 
commercially operated Univac 1108 in addition to 
reproducing and listing card decks. This is not 
expected to produce any insuperable scheduling 
problems. 

The disk is on order and eagerly awaited, as 
is the disk handler, as many facets of the 
detailed system design will not be finally resolved 
until we have some operating experience with the 
disk software. 

BACKGROUND TO THE PROJECT 

In the fall of 1967, working in cooperation 
with Mr. David Stansfield of this department, I 
developed the CAN CAI language and implemented a 
source language interpreter for it on the CGE time 
sharing system. This language is described in an 
OISE publication "A User's Guide to CAN". This 
facility has been used internally for introducing 
graduate students to CAI and is also in use at 
three project locations in schools. Although the 
response times are very bad (often in excess of 
10 seconds) it has served two purposes; it has 
taught us much about what we would like to do, in 
other words provided a concrete basis for comment 
and discussion; secondly it has served to acquaint 
a wide cross-section of the educational fraternity 
with the basic concepts and ration~e of CAI and 
the production of hidden multi-choice programs. 

The principal criticism of CAN is that it 
does not allow very much freedom to the author; 
basically he may ask questions and branch on the 
subject's response. The program cannot access 
the scores or any other "historical" data while 
it is executing, and about its only advantage over 
a stand-alone teaching machine is that it allows 
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open-ended questions rather than option lists (there 
is a PDP-lO implementation that contains certain 
conditional branching instructions). Although an 
easy language to learn it is tedious to write as the 
lines are sequentially numbered and these line 
numbers constitute the branch addresses. The 
language has no computational power whatever. 

In addition to our experience with CAN we 
were also faced with a number of research 
proposals which required for their execution the 
production of conversational programs controlling 
a variety of devices (teletype, CRT, juke box, 
random access slide projector, etc.) and also 
demanding complex branching structures based on 
numerical and logical data accumulated on-line. 
To code these in Macro-9 would be prohibitive in 
time even if all of those originating the proposals 
were skilled assembler language proqraMMers. 

Language Design Objectives 

The new language was to be a generalized 
author language for writing hidden multi-choice 
programs and contain sone computational power; it 
was not to favour any particular instructional 
strategy and was to allow the coding of certain 
programs communicated to the author. In addition 
it was to be simple enough to be readily taught 
to people other than computer professionals. 

THE LANGUAGE 

Figures 2 and 3 list the instructions and 
their operands. 

There are 42 variables (RO-R20, SO-SlO, CO-C9) 
of which RO and SO have special meaning (time of 
day in seconds and number of keywords fou~d last 
match respectively). Proqrams cannot alter these 
special variables. Otherwise the R stores are 
general working storage, the S stores are uniquely 
associated with the subject and the C-stores are 
uniquely associated with the program (they are its 
first ten words). The S & C stores are read in at 
the start of a run and updated on backing store at 
the end of the run. In this way limited profile 
building and adaptive programming experiments may be 
performed. The time of day is the only pseudo­
random facility available to a program. 

Constants may be signed or unsigned integers 



up to 99999, octal up to 777777 (written as 
Onnnnn), or up to three characters written as 
"aa"). octal is right-aligned, characters left 
aligned in six-bit trimmed ASCII. Both are zero 
padded. (The limits are clearly implementation 
restrictions) . 

A string (as distinct from a text string) 
consists of up to six variables or constants 
linked by arithmetic or logical operators. The 
valid operators are + addition, - subtraction, 
* multiplication, / division, # modulus with 
respect to, & logical AND, • logical OR. All 
computation is performed according to the laws of 
integer arithmetic and overflow (out of 18-bit 
signed range) produces low-order results. Division 
or modulus with respect to zero produces zero. 
The valid relations are EQ, NE, GT, LT, GE, LE. 
Mode switches currently available are: A ignore 
characters not alphanumeric or space, B ignore 
spaces, K search for anticipated response as 
keyword (B off) or keystrlng (B on), and S use 
Demerau's algorithm-for matching (~imilarity). 

Program names must be valid PDP-9 file names. 
Text strings may contain any character represented 
in the six-bit trimmed ASCII code but the 
character @ has special meaning. In the textual 
operand of an ANS instruction it delimits sub­
strings and may be considered as an OR operator. 
In a DIS or REC instruction it may be used to 
define the start of the text string (else leading 
spaces will be ignored) or to denote a special 
function. These include TAB, vertical forms 
control, sounding the TTY bell, outputting 
variables in integer, octal, or character form, 
and the output of either the answer buffer or the 
subject name. 

LANGUAGE PREPROCESSOR 

This program, coded in Macro-9, is working at 
the time of writing but is not exhaustively 
tested. It acts as a pseudo-compiler translating 
the source into an interpreter format. Each page 
or block of output is self-contained; all 
references are resolved to 18-bit addresses (high 
order 10 bits page number, low order 8 bits 
relative word within page) and all constants 
appear within the instruction referencing them. 
No attempt has been made to form literal pools. 
Each instruction contains in its first word the 
instruction code in the low order six bits. End 
of page is marked by an instruction first word of 
all 1 bits and no instruction may extend over a 
page boundary. Instructions start and end on word 
boundaries. Page length was chosen at 252 words 
in order that complete pages might be handled 
under the Advanced Software System as single 
records. 

A modified one-pass technique is used; as the 
source program is read the listing (if requested) 
is generated and error diagnostics are produced, 
interpreter format code is assembled, and a 
reference table is formed. The reference table 
consists of three words per entry; two containing 
the label in six-bit and the third containing 
either the object program address of the label or, 
if it has been found only as an operand, zero. 
During ,this phase the interpretive format code 
contains, for each address field, the address in 
core of the third word of the label entry. The 
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code and reference tahle contend for the free core 
pointed to by .SCGrH2 and +3, a scratch area on 
DEC tape being used in the event of overflm". 
(The program aborts if the reference tahle over­
flows free core). 

On finding an END pseudo-instruction the 
source input is closed and the reference table is 
scanned for undefined references; these are 
reported on the listing or error stream alonq with 
the progran length in pages. Unless output has 
been requested the program reinitializes. 

If the output switch has been set on the 
program starts resolvinq the references from the 
reference table addresses contained in the object 
code and writing the final version to the output 
device (DECtape) in maximum size lOPS binary 
records, one page at a time. Any undefined 
references are thus set to zero and this is trapped 
at run time. (Location 0 is CO). A switch is 
available to copy the C stores from a previous 
version of the program already on the output 
device into the new version at the start of the 
first phase. 

The principal disadvantage of this technique 
is that undefined references are reported without 
any indication of where they were referred to; 
however the approach minimizes I/O (and processor) 
time and makes source input on cards or paper 
tape a more reasonable proposition than with a 
two-pass system. Alternatively it is possible to 
write the processed version of a file back onto 
the same tape as the source (a special extension 
is used). The preprocessor is hiqhly modular and 
a new operation code which has the same operand 
format as an existing one can be added bv inserting 
one six-bit constant and two JMP instructions, 
each at the end of a table. 

RUN-TIME SYSTEH 

The Scheduler 

The present scheduler is not multi-access and 
is being used solely to test the other components 
mentioned below. Ultimately three versions of the 
scheduler are envisaged; a single terminal version, 
an LT09 (five terminal) version, and a line 
concentrator version. No decision will be made on 
expansion beyond five terminals until the system 
has been operational for some time. 

The scheduler maintains a line control block 
(LCB) for each terminal. This core resident 
block is used by application programs for storing 
resume information and for communication with the 
scheduler. The COMmon area contains a line status 
flag word, resume time of day, resume address 
(service routine entry), required block number 
(device block number of a program paqe while 
running a program), page address in core, keyboard 
input buffer and text output buffer (both 75 
characters). The remaininq area is used as 
required; during program execution it contains the 
R, C, & S stores, program address of the next 
instruction, current paqe number, a return address 
stack (currently 4 words lonq), the time-out 
branch address, the BRK address, mode switches, 
program base page block number, student name, 
student record address, and a twelve word scratch 
pad. 



The scheduler also maintains a pool of 256 
word buffers for allocation for disk I/O. In a 
five terminal system there will be five of these 
buffers permanently allocated one per line; with 
more lines they will be dynamically allocated and 
freed before and after line service. Before 
granting service to a line the scheduler checks 
as to whether the required disk block indicated in 
the LeB (if any) is in core; if not it is read in 
under scheduler control before the line is granted 
service. In practice this will be done by a one­
stage look-ahead; before granting service to a 
line the scheduler will check whether it can also 
initiate a disk transfer on behalf of the next 
line to receive service. 

Eight line states are recognized from the 
LCB flag word:-

1. Under service, 
2. Ready for service, 
3. In disk I/O 
4. Waiting for disk, 
5. Waiting for the first of 6 & 7, 
6. waiting time interval completion, 
7.~ Waiting line I/O completion, 
8. Inactive (not connected). 

Log tape output is achieved by a subroutine 
which adds a line number code to the message. 
Double-buffering should ensure that it will not 
be necessary to wait for physical transfer to the 
device. 

The scheduler is entered on I/O completion, 
service routine exit (always in the form of a 
request) and time interval end. The requests are 
disk read, disk write, line read, line write, idle, 
timed line read. It will be noted that an implicit 
disk read can be generated on any other request by 
altering the required block number in the LCB 
before issuing the request. 

Inactive lines have a service routine entry 
address of the sign-on routine and the line 
connect status is checked once per second (a new 
lOT to do this is under investigation). Un­
expected disconnection of a line causes it to be 
reset to inactive and a message to be logged. 
Note:- none of the application routines described 
below is reentrant, but each is serially reuseable 
from any entry to 'any exit, all resume information 
being held in the LCB. This poses a problem, yet 
to be fully overcome, if it is wished to bump a 
line for holding the CPU for too long. It is not 
possible just to save the active registers and 
restart later at the same point. 

Sign-on 

This application routine asks the subject 
for name and validation number; if a corresponding 
student on-line record can be found control is 
passed to the select routine, otherwise the line 
is disconnected (again the implementation of an 
lOT is in hand). 

Select 

The student on-line record is stored into 
the LCB. This 40 word record contains, in 
addition to identification information, the S 
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stores and a variety o·f status and routing 
information. A student may be enrolled in up to 
four suites (each with an arbitrary name) having 
next-program pointers updated dynamically by the 
NEX command. The status indicator word denotes him 
as an "instructor", "free agent", allows him to work 
cyclically (one program from each suite). An 
instructor may examine and MOdify other student on­
line records the first two letters of whose valid­
ation code are the same as his and may examine 
program C stores in addition to having the same 
right as a free agent to list the on-line program 
directory and run any program from it. Dependent 
on the setting of the status indicator word the 
select routine will determine the alternatives 
(if any) and offer them to the student. All the 
functions available except executing a program re­
side within the select routine itself. If a program 
is chosen (or is mandatory) the application program 
section of the LeB is set up, start of program 
logged, and control is passed to the interpreter. 

Select is also entered from the interpreter 
at end of program to reset the routing pointers if 
required, log completion, and initiate new action 
or sign off. 

The Interpreter 

At the time of writing the interpreter is 
fully coded and being tested under the pilot single 
terminal scheduler. Its actions are fairly well 
defined by the language and the LCB format. On 
gaining control it retains it until it detects an 
out of page branch, requires line I/O, finds an IDL, 
STP, PAS, or NEX instruction or detects an abort 
condition. At every opportunity it protects itself 
and the system, and attempts to keep the program 
going wherever possible. Thus there are default 
options for every error which can escape the pre­
processor (variable out of range on a TRE 
instruction, time limit less than 1 second or 
greater than 2 minutes, branches to zero, invalid 
special functions on DIS & REC instructions, etc). 

Although it is highly modular in concept it 
has been coded in one routine to save time and 
space on linkages. The principal problem foreseen 
at this time is that of infinite loops containing 
no I/O; as noted above there is no system means of 
escaping from these at this time. 

BATCH-Tum JOBS 

Log Tape Sort/Explosion 

The log tape contains student information 
which must be sorted first by line number and then, 
if it is possible that the same student may have 
used more than one line in one day, by student. In 
a full system the log tape will also contain student 
history dunp requests, program updates, program 
listing and C store print requests, and enrollments 
(on-line deletion of students is allowed). Each of 
these message streams must be isolated. 

Student File Update 

The student master file is merged with the 
student update file produced from the log tape and 
the student on-line records from the disk to form 
the new student master. Listings are produced as 



directed by either the update stream or the 
operator. 

Program File Update 

The master program file is merg.ed with the 
program update file extracted from the log tape 
and listings again generated as required. 

Object Program Update 

Phase 1: the C-stores from disk are merged 
into the object program master file. Completion 
of this phase frees the disk space used by the on­
line system. 

Phase 2: using a control stream generated 
from the log tape and/or by the operator, source 
programs are run through the preprocessQr from 
the program master file onto the object update 
file. 

Phase 3: the object master file is merged 
with the update file from phase 2 to produce the 
new object master. 

Disk Loader 

A large contiguous space is allocated on 
disk, and the student on-line records extracted 
from the student master and written out; in so 
doing a required program index is formed from the 
next-program pointers. This index is merged with 
a control stream defining other programs to be 
loaded (i.e. standard library programs) and 
program loading commences from the object master 
file. A directory is built up and after completion 
of program loading the directory is written out 
and a disk loading map produced. This map is the 
basis for a very short control stream to the on­
line system when it is loaded. 

SYSTEM SUMMARY 

Although certain experiments which we wish 
to carry out using the language will be available 
to only one terminal because of the device 
configuration required, the system should in 
general permit a number of terminals to run con­
currently on the same or different programs. 
Certain critical limitations are imposed to make 
this more easily achieved. 

Each terminal has a core block in which all 
of its status and resume information is held and 
this block is of fixed length (currently 128 words); 
the program itself resides on disk and may not be 
altered at any time during a run, thus only one 
copy is required. The need for roll-out is 
eliminated and the critical factor on the 
flexibility of the system is the size and use 
made of the core resident block. All data created 
during the execution of a program is logged rather 
than updating an on-line file and only very 
limited on-line modifications to data are 
performed. 

For the scheduler to allocate a line for 
service it need only ensure that the required 
program page is in core; were the program pages 
executable core there would be several problems 
in doing this. The PDP-9 has no paging or 
relocation hardware and most CAl work is done in 
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system subroutines necessitating the resolution of 
transfer vectors. Direct solutions to these 
problems do exist, but an interpretive system has 
been adopted in the interests of simplicity. The 
scheduler/service routine interface is simply the 
address of the line control block. 

A source language interpreter would, however, 
be prohibitive in time (particularly searching for 
reference labels) and core thus the source program 
is translated by a batch program into an inter­
mediate form known as interpreter object code; all 
the references are resolved and the first word of 
each instruction is in a standard format. This 
gives relatively fast entry to the appropriate 
system subroutine and affords direct access to the 
target instruction on any branch. 

No provision has been made for the on-line 
updating of programs but a facility allowing the 
logging of updates and print requests for 
processing in batch mode has been incorporated 
in the design and the system has flexible student 
routing and history building facilities. 

Despite its limitations it is hoped that the 
system will provide a viable low-cost base for 
research and development in the broad field of 
"CAl". 
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LANGUAGE (1) 

Line or card format 

Reference label ~ operation code ~ operands ~ comment OR 

* comment 

Pseudo-operation 

END terminates program 

OEeration codes 

mnemonic operands 

PAS program name 

NEX program name 

STP none 

RET none 

JMP {reference label} 

BRI< {reference label} 

CAL {reference label} 

must be the last statement of every program 

function 

the next statement obeyed is the first 
instruction of the named program 

program execution ends ; the suite pointer 
is updated to the operand n~e 

program execution ends 

the next instruction obeyed is that pointed 
to by the bottom member of the return 
address stack 

the next instruction obeyed is that with the 
operand reference label; if none the next 
instruction in sequence is skipped. 

if the subject replies BRI< to any input 
cue the next instruction to be obeyed will 
be that with the operand reference label; 
if none the BRI< will be ignored. 

the address of the next instruction is placed 
at the bottom of the return addreRs stack and 
the next instruction to be obeyed is that with 
the operand reference label; if none the next 
instruction is obeyed and a next-inRtruction 
pointer inserted in the stack. 

INC variable name, variable name, ••• one is added to each specified var. 

DEC as above one is subtracted from each specified variable 

NEG as above each specified variable is negated 

CLR as above each specified variable is zeroized 

Figure 2 Language (1 ) 
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LANGUAGE (2) 

Operation codes (continued) 

mnemonic 

IPT 

DIS 

REC 

ASK 

USE 

TRE 

ANS 

LET 

TST 

IDL 

operands function 

variable name, variable name, ••• packs from the answer buffer into 
the specified variables; signed or unsigned 
integers are converted to binary and other 
characters are packed into six-bit left­
aligned zero padded. Space is used as a 
delimiter and not input. 

text string the operand text is displayed at the terMinal 

text string the operand text is logged 

{f.rariable name\, 
\ constant I 

reference label} 

{mode mnemonic, mode 
mnemonic, ••• } 

the subject is cued for input; if the 
optional operands are present and a reply 
is not completed in the number of seconds 
indicated by the first operand the next 
instruction to be obeyed is that with the 
operand label. 

the mode switches specified are set on, all 
others are set off. 

variable name; reference label, reference label, 
the next instruction to be obeyed is that with 
the operand reference label whose positional 
value in the list is equal to the value of 
the specified variable. 

reference label {,variable name}; text string 

variable name=string 

the answer buffer is checked against the 
text string according to the modes in effect. 
If no match is found the next instruction is 
obeyed else a JMP is made using the operand 
reference label and the specified variable, if 
any, is incremented. 

the value of the string computed left to 
right is substituted for the current value 
of the variable. 

string (relation) (variable 
constant 

name);reference lab~l 
if the relationship is true a 
JMP is performed using the 
operand reference label. 

(
variable name) 
constant 

the next instruction is not oheyed until 
the number of seconds specified in the 
variable/constant have elapsed. 

The graphics { } indicate optional operands. 

Figure 3 Language (2) 
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* ILLUSTRATIVE SECTION OF CODING 
* (PREPARED ON A TYPEWRITER IN ORDER 
* TO ACHIEVE HIGH-CONTRAST FOR PHOTOGRAPHING) 

* 

LP 

LPI 

LPS 

LP3 

LP4 
LP6 
LP7 
LP71 

LP8 

LP9 

LPT 

* 
LP2 

LPE 

Nl 
N2 
N3 
N4 

DIS 

CLR 
ASK 
USE 
ANS 
USE 
ANS 
DIS 

JMP 
TST 

DEC 
JMP 
TRE 
TRE 

JMP 
DIS 
JMP 

JMP 

JMP 

LET 
REC 

ASK 
IPT 
TST 

JMP 

LET 
TRE 
PAS 
PAS 
NEX 
NEX 
END 

Figure 4 

@LAST PHASE@+3 
@WHAT IS THE WELSH FOR "FIVE STRANBERRIES" 
R20 
20,LPT 

*SWITCHES ALL THE MODES OFF 
LP2,R6;PUMP 0 MEFUS 
K KEYWORDS 
LP3,R20;PUMP@MEFUS 
FIVE=PUMP STRAWBERRIES=MEFUS 
@TRY AGAIN, @N 
LPI 
R20(NE)4;LP4 
@THE CORRECT ANS\VER IS 
@PUMP 0 MEFUS 
@TYPE THAT NOW 
R6 
LPI 
SO;LPS,LP6 
R20;LP7,LP8,LP9 
@IN WELSH YOU SAY "NUMBER OF ITEMS" 
@TRY AGAIN 
LPI 
@ OF = 0 
LP71 
@ JUST TYPE IN WELSH "FIVE OF STRANBERRIES" 
LP71 
@YOU ARE TAKING TOO LONG 
LPS 

R~=R6+R7*lOO/R6/10 

SCORE= @R5@ 
COMPUTE SCORE OUT OF TEN 

@ WHAT DO YOU RECKON YOUR SCORE IS OUT OF TEN 
*NO TIME LIMIT 
R8 
R8(EQ)RS;LPE 
@NO, IT'S @R5@ 

@YOU 'RE RIGHT 
R9=RS/3--1 
RS;Nl ,N2 ,N3 ,N4 
REMEDI 
REMED2 
NELSH3 
\l1ELSH7 

Typical segment of code 
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CONVERSATIONAL BASIC ON THE PDP-8 LINE 

Bud R. Pembroke and David W. Gillette 
Computer Instruction NETWORK 

Salem, Oregon 

ABSTRACT 

This paper will concern itself with the use of CINET-BASIC in 
the classroom. It will include sample problems and a discus­
sion of the variations between this BASIC and other existing 
BASIC languages. CINET-BASIC (Computer Instruction NETWORK's 
BASIC) was written using FOCAL's subroutines for the standard 
PDP-8 series with 4K memory and ASR-33 Teletype. 

After a six-month study and planning period, the 
Computer Instruction NETWORK came into being in May 
of 1967. One of the outcomes of the planning was a 
decision to offer to our students in Oregon a survey 
of the levels of programming, starting with machine 
language and ending with a compiler language. It 
was further felt that being a survey, we would 
attempt to teach concepts rather than concentrated 
details. In order to achieve an understanding of 
those fundamental concepts without a great deal of 
bit chasing, we restricted our machine language to 
relatively simple subsets of instructions. In the 
same manner, we felt that there were important con­
cepts that were fundamental to most compiler pro­
gramming and that these should be emphasized, elim­
inating as many of the extraneous restrictions as 
possible from instruction. 

We therefore attempted to find a language that had a 
minimum of extraneous and superfluous compiler re­
quirements -one that would give a minimum turnaround 
time with on-line debugging for hands-on use by stu­
dents. We also felt that it should be a language 
that could be readily used as a tool by the differ­
ent high school classes and reflect recent develop­
ment in computers and compilers. The language we 
chose was BASIC, and during the summer of 1967 Dave 
Gillette and I wrote a conversational compiler 
called CINIC, patterned after BASIC, for the PDP-8. 
with a 4K memory. This language was severely limi­
ted by the lack of functions and no list capabili­
ties. There were plans for extensive revision and 
rewriting in the summer of 1968. However, with the 
advent of DEC's interpretive language, FOCAL, we de­
cided that the easiest approach might be to cannibal­
ize this and use those subroutines that would apply. 

This was the approach used, and we now have a much 
stronger version of the language with CINET-BASIC 
than we did with CINIC. As in most things, we paid 
a price in one area to make a gain in another: we 
lost speed to gain strength. The interpretive ap­
proach is about ten times slower than the compiler. 
However, for our needs, this was a minor price to 
pay in comparison to the value gained. 

We feel that we now have a language that satisfies 
our original requirements. 

A brief description of the language follows: 

Statement Numbers 

For a stored program each statement must be preceded 
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by a statement number (1 through 2047). You may 
type statement numbers in any order. The program 
will run in numerical order. 

Variables 

Variables in CINET-BASIC are denoted by any single 
letter. Thus A, B, X, and N are variables. A vari­
able may also have a subscript. The subscript is 
designated by immediately following identifiers with 
the subscript value enclosed in parentheses. 

Examples: 

A(3) 
M(I) 

Variations from Other Basics - Only single subscripts 
allowed (range ±2046). Subscript may be computed; 
however, only the integer value within the accepted 
range will be used. 

Examples: 

A(I+2) 
X(3*4-3) 

Numbers 

Input - Numbers may be typed in with or without 
signs. They may be typed in fixed point, floating 
point or exponential form. However, no more than 6 
significant digits may be given. 

Output - The printout of numbers will be given in 
floating points unless the value exceeds the range 
of 10-5 to 109 • Numbers that exceed this range will 
automatically be printed in exponential form. 

Examples: 

1.5 
-2035. 
0.3200000Ell 

Instructions 

Following each statement number is an instruction. 
The instruction name must be followed by a space. 
Correct spacing in CINET-BASIC is important. How­
ever, in general, correct spacing can be achieved 
if the user will use the normal conventions of spac­
ing between words and not spacing in algebraic ex­
pressions. Following is a list of instructions with 



examples and explanations. 

The print instruction commands the computer to Out­
put information. 

If print is followed by a letter or series of let­
ters separated by commas or semicolons, the values 
presently assigned to these variables will be typed. 
If print is followed by any series of characters en­
closed within quotation marks, the enclosedcharac­
ters will be reproduced exactly. 

Examples: 

100 PRINT A 

5. 

If "A" were first computed to be 5, the 
Teletype would type: 

50 PRINT "AMOUNT IS", A 

The Teletype would type: 
AMOUNT IS 5. 

The print instruction may also be used to evaluate 
one or more expressions. 

Examples: 

1000 PRINT 2-5, SQR(64) 

2-5 would be evaluated and output as-3. 
Then the square root of 64 would be 
found and output as 8. 14 spaces are 
reserved for each numerical value~. 
The output would appear as 

-3. 8. 

The print statement will normally give a carriage 
return and line feed at the completion of typing. 
This carriage return, line feed, may be suppressed 
by ending the statement with a comma or semicolon. 

Examples: 

WELL! 

20 PRINT "WELL!" 

30 PRINT "HI ", 

40 PRINT "THERE" 

The TTY would type the following, sup­
pressing the carriage return and line 
feed, after the "HI " 

HI THERE 

The print instruction can be used to give line spac­
ing. 

Example: 

1000 PRINT 

The TTY would give only a carriage 
return and line feed. 

Variation from other Basics - There is no distinc­
tion made between a comma and a semicolon in a print 
statement. 14 spaces are reserved for each Variable 
regardless. 
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No attempt is made to give an automatic carriage re­
turn, line feed, at the end of 72 characters (width 
of line on TTY). The carriage return line feed is 
only given when the print statement is complete. 

It is possible to get a carriage return without a 
line feed. This is accomplished by placing a # sep­
arated from other output by commas, but not in 
quotes. This will cause the TTY to give a carriage 
return only. 

Example: 

10 PRINT "IS RIGHT?" ,iF 

20 PRINT" ",A 

If A is 5, then the TTY will type: 
IS 5. RIGHT? 

This is very useful in plotting or graphing. 

A carriage return may be substituted for a " sign if 
the quote is the last character in a line. 

The input instruction should be followed by a letter 
or series of letters separated by commas. When the 
instruction is executed, the computer will type a 
question mark "?", stop, and wait for you to type 
the values you wish assigned to each variable. 

Example: 

21 INPUT A, B 

On executing this instruction, the fol­
lowing would result: the computer 
prints a "?" and waits for input from 
the keyboard. If you type a 5 termi­
nated with a comma, the computer 
assigns the value 5 to the variable A, 
types a "?" and waits again. If you 
type a 70.2 terminated by a comma, the 
machine sets B = 70.2 and types a car­
riage return. The result on paper 
looks like this: 

?5, ?70. 2, 

A value may also be terminated with a space, carr~e 
return, or semicolon. 

Variations from Other Basics - The control characters 
" and iF of the print statement are also operative on 
the input statement. 

Example: 

150 INPUT "TYPE THE AMOUNT OF INCOME", A 

The TTY would type the following and then 
wait for you to assign a value to 'A' as 
shown below. 

TYPE THE AMOUNT OF INCOME? 

The LET instruction is used to define a value for a 
variable. This assigned value may be a single num­
ber or an algebraic expression involving some arith­
metic operations. The arithmetic operations possible 
are: 



ggg 
+ 

* 
/ 
l' 

( ) 

operation 
addition 
subtraction 
multiplication 
division 
exponentiation 

parentheses may be 
used in pairs to 
clarify any alge­
braic expression. 

example 
A + Z 
3 - 5.03 
B -!~ C 
12/3 
A l' 2 (means A2) 
only integer portion of 
an exponent will be used 

Order of priority of operations: 

1. Values inside parentheses 
2. Exponentiation 
3. Multiplication and division 
4. Addition and subtraction 

Examples: 

32 LET S = 5 

Defines the variable S as equal to 5. 

40 LET Y = 4*A*X 1" 2+X 

Defines Y to equal 4AX2+X 

55 LET Y = 2*(2*A-B)/3 

Defines Y to equal 2(2A-B) 
3 

Functions - In addition to the five arithmetic oper­
ations, the computer can evaluate several mathemati­
cal functions. These functions are given special 
3-1etter names. 

Functions: 

SIN (X) 
COS (X) 
ATN(X) 
EXP(X) 
LOG (X) 
ABS(X) 
SQR(X) 
INT(X) 

RND(X) 

Interpretation: 

Find the sine of X 
Find the cosine of X 
Find the arctangent of X 
Find eX or (2.7l828l)X 
Find the natural log of X 
Find the absolute Value of X 
Find the square root of X 
Find integer part of number in 

the range +2046 
Find a nonst~tistical pseudo­

random number between +1 

Variations from Other Basics - The Tangent function 
is not available. It is possible in CINET-BASIC to 
allow one LET statement to define a series of vari­
ables by separating each equation with a comma or 
semicolon. 

Example: 

10 LET A = 2, B = 3, C B*A 

20 PRINT A, B, C 

This program would give 
2. 3. 6. 

A GO TO instruction is always followed by a state­
ment number, directing the computer to that state­
ment. The computer will execute instructions in 
numerical order unless re-directed by a GO TO state-
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ment or an IF, THEN statement. 

Example: 

50 GO TO 25 

IF, THEN 

This statement allows the computer to make a deci­
sion. Each statement must be of the form: 

IF (variable) (relation) (expression) THEN 
(line number) 

The relation may be made up of a (, >, 
or any combination of the three. 

Examples: 

20 IF X = O. THEN 85 

The computer will go to statement 85 if 
X = 0.; otherwise, it will execute the 
next statement after 20. 

34 IF X < = 3+5*A THEN 97 

If X is less than or equal to 3+5*A, 
statement 97 will be executed. If not, 
the next statement after 34 will be exe­
cuted. 

Variations from other Basics - The left member may 
only be a variable. 

This instruction is used for setting up program Wops 
and iterations. It must be used in conjunction with 
a NEXT statement. The general format is: 

100 FOR A = X TO Y STEP Z 

The variable A is initialized to the value of X, then 
those statements following the FOR are executed until 
a NEXT statement is encountered. When a NEXT state­
ment is found, control is sent back to the preceding 
FOR. The value A is then inc.remented by Z and com­
pared to the value Y. If A is less than or equal to 
Y, then those statements following the FOR will once 
more be executed. This process will be repeated un­
til A is greater than Y. At that time the statements 
following the NEXT will be executed. X, Y, and Z may 
be algebraic expressions. Z must have a positive 
value. If STEP is omitted, then the increment will 
be one. 

Example: 

10 FOR A 1 TO 21'2 STEP 2.5 

20 PRINT A 

30 NEXT A 

When RUN is typed, this program would give: 
1. 

3.5 

NEXT 

Used only with FOR statements. The general form is: 

20 NEXT A (See FOR) 



When a particular part of a program is to be per­
formed at several different places in the program, 
it is most efficiently programmed as a subroutine. 
The subroutine is entered with a GOSUB statement, 
where the number is the first line number in the sub­
routine. The subroutine must logically end with a 
RETURN instruction. This transfers control back to 
the statement following GOSUB. 

Example: 

10 PRINT "A", 

20 GOSUB 100 

30 PRINT "B", 

40 GOSUB 100 

50 PRINT "c" 

60 STOP 

100 PRINT "XXX" 

110 RETURN 

This program would give: 

AXXX 
BXXX 
C 

READY 

The RETURN must be the last statement in a subroutine. 

DIMENSION (DIM) 

DIM is used to reserve space for subscripted vari­
ables greater than 10. However, the DIM statement 
may be omitted, as it is not necessary to reserve 
space in CINET-BASIC. 

REMARKS (REM) 

This statement is used to allow the programmer toin­
sert explanatory remarks in a program. The computer 
will completely ignore the line when RUN is typed. 

Example: 

STOP 

100 REM STATEMENT 100 MAY BE CHANGED TO GIVE 
NEGATIVE ROOTS. 

The stop instruction is used to designate a logical 
stop in the middle of a program. 

END 

The END instruction is used to designate the last 
statement in a program. 

Variations from Other Basics - In CINET-BASIC the 
END instruction is not necessary. However, the com­
puter will not acknowledge the completion of the 
program with READY, unless END or STOP is used. 
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DIRECT MODE 

If you wish to run a short program only once, suchM: 

PRINT SQR(49) 

you may use direct mode in CINET-BASIC. This is 
accomplished by simply typing the above instruction 
(without a statement number) followed by a carriage 
return. In this example, "7." will be printed imme­
diately. The instruction is executed but not stored 
for future use. 

COMMANDS 

There are certain commands that are intended for 
direct mode only. These are: 

RUN 

RUN will direct the computer to execute the stored 
program. 

Examples: 

LIST 

RUN This executes a stored program starting 
with the lowest-numbered instruction. 

RUN 50 This executes a stored program starting 
with statement 50 and ignoring all 
lower-numbered instructions. 

The LIST command will direct the computer to list out 
the stored program. LIST followed by a statement 
number would direct the computer to list from that 
statement number on. 

Examples: 

EDIT 

LIST Lists the complete stored program 

LIST 37 All instructions with statement num~ 
equal to or greater than 37 will be 
listed. 

This command must be followed by a statement number. 
The statement designated will be set up for edit 
upon receiving a carriage return. The user then 
types a search character. The computer will type 
out the contents of that line until the search char­
acter is typed. The user may then use a number of 
operations within the Edit mode, such as typing new 
characters to be added to the line at the point of 
insertion; or he may type a RUBOUT. This deletes 
characters to the left. One character is deleted 
for each time that the user strikes the RUBOUT key. 

Erase must be followed by some parameter. 

Examples: 

ERASE 30 

The above command will erase from the 
stored program statement number 30. 

ERASE ALL 

The above command will erase the entire 
stored program. 



INTERRUPT 

You may interrupt CINET-BASIC at any time to return 
control to the user by typing a CTRL/C. 

With only a few short minutes of instruction, stu­
dents can use CINET-BASIC in direct mode. They 
would use the compiler as they might a desk calcula­
tor. If they wanted the square root of a number, 
they would simply type: 

PRINT SQR(l024) 

and upon rece~v~ng the carriage return, the computer 
would type: 

32. 

In this case no program is stored nor is any exist-

PLEASE TYPE A, B, AND,C?2 ?O ?2 
Xl= O. +1 1. 
X2= O. -I 1. 

From a linear program with simple branching, we would 
proceed to an elementary loop using an IF THEN deci­
sion statement to test the limit. This would be fol­
lowed by automatic looping, using the FOR statement. 
This program for printing out the value of factorials 
to the limit given is an example: 

0010 INPUT "PLEASE TYPE A LIMIT ",L 
0020 LET X=l 
0030 ,FOR 1=1 TO L 
0040 LET X=I~\-X 

0050 PRINT I,if," FACTORIAL IS ",X 
0060 NEXT I 
0070 END 

ing program affected. RUN 

It is possible to define variables in direct mode as 
you see in this example of defining the coefficients 
of a quadratic equation. 

LET A=l, B=5, C=6, D=SQR(B 2-4*A~~) 

In this case the values for the variables are defined 
and stored in the computBr. The LET statement is not 
saved but simply executed. The direct command: 

PRINT (-B+D) / (2;',A), (-B-D) / (2~\-A) 

would cause the computer to look up the stored val­
ues for B, D and A, compute and print out 

-2. -3. 

Should the student wish to use the program again, it 
is necessary to retype it with the new coefficients. 

An hour or so of additional instruction will allow 
the student to write stored programs. Using this 
concept, he may write a permanent program that may 
be used again without retyping. However, this will 
force him to consider the general case for all pos­
sibilities such as imaginary roots. As a result, 
the permanent program will be somewhat longer as 
you see here: 

10 PRINT "THIS PROGRAM GIVES SOLUTION TO THE QUAD-
RATIC" 

20 PRINT "EQUATION OF THE FORM A*Xt2+B*X+C=0" 
30 PRINT 
40 PRINT "PLEASE TYPE A, B, AND, C", 
50 INPUT A,B,C 
60 LET D=Bt2-4*A~~ 
70 IF D O. THEN 110 
80 PRINT "Xl=", (-B+SQR(D)) / (2~';A) 
90 PRINT "X2=", (-B-SQR(D)) / (2;',A) 

100 GO TO 30 
110 PRINT "Xl=", -B/ (2;',A), "+1", SQR(ABS (D)) / (2;',A) 
120 PRINT "X2=",-B/(2;"A),"-I",SQR(ABS(D))/(2~\-A) 
130 GO TO 30 

When RUN is typed, the program is executed; an~with 
the appropriate input, the following would result: 

RUN 
THIS PROGRAM GIVES SOLUTION TO THE QUADRATIC EQUA­
TION OF THE FORM A*Xt2+B*X+C=0 

PLEASE TYPE A, B, AND, D?l ?5 ?6 
Xl=-2. 
X2=-3. 
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PLEASE TYPE A LIMIT ?14 

1. FACTORIAL IS 1. 
2. FACTORIAL IS 2. 
3. FACTORIAL IS 6. 
4. FACTORIAL IS 24. 
5. FACTORIAL IS 120. 
6. FACTORIAL IS 720. 
7. FACTORIAL IS 5040. 
8. FACTORIAL IS 40320. 
9. FACTORIAL IS 362880. 

10. FACTORIAL IS 3628800. 
11. FACTORIAL IS 39916800. 
12. FACTORIAL IS 479002000. 
13. FACTORIAL IS 0.62270 E 10 
14. FACTORIAL IS 0.87178 E 11 

READY 

Notice that there is no need to specific format of 
Input or Output statements. Once the limit has been 
reached, exponential notation is automatically used. 

The study of programming would continue to encompass 
the important concept of subroutining using the GO­
SUB statement. From this point, students branch out 
and apply their programming knowledge to areas of 
interest ranging from games and computing basketball 
statistics to doing their physics homework. There 
seems to be no limit to the ways that their imagina­
tive minds can find to use the computer. 

With the 4K memory, there is understandably a limit 
to size of program possible, but most programs that 
are attempted at the highsfhool level can be handled 
by CINET-BASIC. Depending on the number of variables 
and types of instructions, it is possible to have up 
to about sixty stored instructions. 

With our multi-level language approach to computer 
science, ending with CINET-BASIC, we of the C. I. 
NETWORK feel that students get a good well-rounded 
survey of computers and programming. Although we do 
not claim to necessarily train technologically-capa­
ble programmers, we do feel that our students have 
the general knowledge necessary for an informed pub­
lic in this age of computers. We also feel that he 
is now in a position to make a knowledgeable decisiDn 
about choosing a career in the computer field. 





PATTERN AND RATE OF CONVERGENCE OF THE 
PERTURBATION TECHNIQUE IN THE TREATMENT OF 

LINEAR AND NONLINEAR PLATE PROBLEMS 

S.F. Ng 
University of Ottawa 

Ottawa, Canada 

ABSTRACT 

An approximate method based on the perturbation technique 
is used to solve the small and large deflection problems 
of the bending of plates resting on an elastic support. 
The influence of the various parameters such as the plate 
aspect ratio, skew angle and foundation modulus on the 
pattern of convergence is investigated. Results of this 
investigation indicate that in general, the rate of con­
vergence of the method decreases with increase in the 
number of variable parameters both in the linear and 
nonlinear theory of plates. The algorithm of the solu­
tions and the manipulations of the matrix equations are 
programmed utilizing direct access devices. 

INTRODUCTION modified and expressed in terms of the three 
displacement components U, V, and W of a point 

Based on the small deflection theory of thin 
elastic plates, approximate sol~tions to the pro­
blems of bending of plates of various shapes are 
knownl . These solutions are obtained either by 
solving approximately the biharmonic fourth order 
partial differential equation 

in the middle plane of the plate. In rectangular 
cartesian co-ordinates, these equations can be 
written as: 

W + 2W +W = q/D 'xxxx 'xxyy 'yyyy 

or by minimizing the total energy of the plate 
using the energy integral equation 

(1) 

I = 11 f( R2 ( W , + w, ) 2 - 2 ( 1-v) [w , W , - (w , ) 2Jl1 J' t xx yy xx vy xy 1 
-wq)dxdy (2) 

Here, W is the lateral deflection of the plate 
q is the uniform distributed load on the 

plate 
D is the rigidity of the plate material 
V is the Poisson's ratios 
I is the total energy (potential energy+ 

strain energy) 

In using Eqs. (1) or (2) to solve plate pro­
blems, it is understood that the maximum deflec­
tion of the plate is considered to be of such ma­
gnitude that the effect of stretching of the 
middle plane of the plate on its curvature can be 
neglected. When the lateral deflection of the 
plate is moderately large, that is, in the neigh­
bourhood of one half the plate thickness or more 
the small deflection theory is no longer appli­
cable and the effect of the forces acting in the 
middle surface must be taken into account. By 
considering the effect of the membrane forces on 
plate curvature, the analysis becomes nonlinear 
and much more complicated. The governing nartial 
differential equations for such an analysis were 
first formulated by von Karman2 . For plates 
uniformly loaded and resting on elastic founda­
tions, the von Karman equations can be slightly 
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1 
U, +W, w, +V(V, +W, w, )+-2(l-V) xx x xx xy y xy 

(U + V +.W W + W W ) = 0 'yy 'xv 'x 'yy 'y 'XV 

1 
V, +W, w, +V(U, +W, w, )+-2(l-V) yy y yy xy x xy 

(V + U +W W +W W ) 0 'xx 'xV 'y 'xx 'x 'XV 

D \/2,;2w = q-kw+ h~ [U'x+ %(W'x)2 
tel-V ) 

I 2] E [ 1 2 + V (V 'y+ "2( W 'y ) w, + --2- V, "2( w, ) 
xx (I-V) y y 

I 2~ E + V(U, + -2(W, ) ) w, + --2-
x x yy (I-v) 

(U, +V, +W, W, ) w, } y x x y xy 

Where U, V, and Ware the displacements of the 
plate in the x, y, and z 
directions respectively and k is the foundation 
modulus. 

METHOD OF SOLUTION 

(3) 

(4) 

(5) 

The perturbation technique 3 is now used to solve 
approximately the linear (Eq. 1) and nonlinear 
(Eqs. 3, 4, and 5) problems of the bending of 
plates. This technique requires the expansion of 
the displacement components U , V, and W as well as 
the uniformly distributed load q in a power series 
in ascending powers of the center plate deflection 



Woo Thus, 

3 5 
q = alwo +a3wo +a5wo 

W = w
l 

(X,y)WO+W
3

(X,y)W0 3 

U = U
2

(X,y)W02+ 'U
4

(X,y)W04 

2 4 
V = v2(x,y)Wo + v4(x,y)Wo 

By substituting equation 6 through 9 into the 
three governing partial differential equations 
Eqs. 3, 4, and 5 and by equating coefficients of 
terms containing Wo, the following differential 
equation governing the linear deflection problem 
is obtained: 

(6) 

(7) 

(8) 

(9) 

(10) 

By successively equating higher powers of Wo, 
differential equations governing the in-plane 
displacements and the non-linear load-deflection 
relationships are obtained. 

Thus, for example, by equating Wo
2

, the diffe­
rential equations governing the first approxima­
tion for the in-plane displacements are~ 

2U2 'xx+(1-V)u2 , +(1+V)v2 , +2wl , w, yy xy xx 1 x 

2v2 ,y +(1-V)v2 , +(1+V)u2 , +2w, w y xx xy 1 yy l'y 

+ (l+v)w,. w,. +(l-v)w. w = 0 
~ xy ~x l'xx l'y 

(12) 

Plate Shapes and Displacement Functions 

For plates of a given shape, displacement 
functions satisfying the kinematic boundary condi­
tions have to be assumed. The accuracy of the 
solution depends not only on the numbe~ of unde­
termined parameters but also on their convergence. 
For the sake of brevity, the theoretical aspects 
of convergence of the perturbation technique and 
the choice of suitable displacement functions are 
not elaborated here but can be found elsewhere in 
the technical literature. 4 ,5 

DISCUSSION OF RESULTS 

Typical results for center deflections of cir­
cular, skewed, elliptical, and rectangular plates 
are shown graphically in Figs. 1, 2, 3, and' 4, 
respectively. For the case of the small deflec­
tion of circular plates (Fig. 1), it can be obser­
ved that when the plate is free from foundation 
support (k = 0), the center deflection of the pla­
te agrees exactly with that obtain~d by Timoshenkol 

and is invariant with the number of terms used in 
assumed displacement function. As the foundation 
modulus K is increased, the rate of convergence 
decreases slightly but nevertheless all the results 
reach a stationary value after a six-term solution. 
This is in contrast with the typical small deflec­
tion result for a skewed rhombic plate' shown in 
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Fig. 2. Here, due to the additional parameter of 
the skew angle, the rate of convergence deteriorates 
significantly and the results do not corne to a 
stationary value. For the sake of comparison the 
result obtained by Kennedy6 using the Galerki~'s 
method is also plotted. 

Typical non-linear results for elliptical and 
rectangular plates are plotted in Figs. 3 and 4. 
From these figures it can be observed that while 
there is no absolute monotonic convergence the 
results seem to vary cyclically and within reaso­
nably narrow limits. 

CONCLUSION 

From the brief analysis presented herein, the 
following conclusions may be drawn: 
1. The small parameter perturbation technique is 
relatively simple to apply both to linear and non­
linear problems. 
2. For linear plate problems with simple geome­
tric shapes (circular, elliptical and rectangular), 
the ~ate of conve~gence is fast and invariably a 
statlonary value In the results is reached for a 
6th-term solution. The rate of convergence decrea­
ses with an increase in the number of variable pa­
rameters such as the plate aspect ratio, the foun­
dation modulus and the angle of skew. 
3. While there is no well-defined pattern of con­
vergence of the perturbation technique in the non­
linear treatment of plate problems, the results 
seem to vary cyclically as the number of terms is 
increased. The numerical results vary only within 
narrow limits and are, in general, accurate enough 
for engineering purposes. 
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A GENERALIZATION OF COMPUTER-ASSISTED INSTRUCTION 

Dr. Ludwig Braun 
Polytechnic Institute of Brooklyn 

Brooklyn, New York 

ABSTRACT 

A description is given of the Huntington Computer Project, its 
objectives, and its methods of operation. Its objectives are: 

1. To explore the potential impact of the computer on learn­
ing in high school courses in biology, chemistry, physics, 
mathematics, and social studies. In this Project, the com­
puter is used as a highly flexible laboratory rather than as 
a "programmed-instructional" device. 

2. To explore the relative merits of time-shared and stand­
alone computing. 

3. To attempt to determine the differential effect, if any, 
of socio-economic conditions on the learning experience of 
participating students. 

Some of the programs already written and under development 
are described; also, a compiler and operating system which 
implements the full capability of BASIC on a PDP-8/1 is 
described. 

CAl -- A DIFFERENT APPROACH 

1. Introduction 

Conventionally (if one can use that term in such a 
new field), the term CAl (computer-assisted instruc­
tion) has been employed to describe the use of a 
computer in a programmed-instructional environment. 
In this application, the educator lays out a pro­
grammed lesson as a series of statements and ques­
tions. The computer is programmed to present the 
text and questions to the student in a step-by-step 
manner. The answer to the present question is used 
by the computer to determine the next piece of text 
and the next question. In some CAl systems, the 
computer also controls the presentation ;of 'visual 
cues with slides and auditory cues using a tape 
recorder. 

Professor B. F. Skinner, one of the pioneers in pro­
grammed instruction, has been quoted in Computer­
world to the effect that a "simple programmed work­
book will do what the computer can do at one-tenth 
the cost". This author does not wish to add to the 
controversy -- the validity of claims and counter­
claims will be resolved as we gain experience in 
this field; however, it does seem clear that conven­
tional CAl takes advantage only of a small part of 
the power and flexibility of the modern digital 
computer. 

Professor W. H. Huggins,of Johns Hopkins University, 
has suggested that the digital computer is a general­
purpose laboratory device which may be used to create 
real or imaginary environments which the student may 
explore, preferably in an interactive mode. Utiliz­
ing the computer in this manner, appears to take 
full advantage of the capabilities of the digital 
computer. 
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The Huntington Computer Project, to be described in 
this paper, was conceived to explore the potential 
which the latter mode of computer utilization has to 
offer to the high-school teacher. The Project has 
been funded by the Office of Computing Activities 
of the National Science Foundation. 

2. Objectives of Huntington Computer Project 

There are three major objectives of the Huntington 
Computer Project. These are: 

a. Verification of the hyposthesis that the digital 
computer may be used as a general-purpose modelling 
device, rather than merely as a device for solving 
mathematical equations. Used in this way, the com­
puter permits the teacher and the student to explore 
situations which otherwise would be in~ccessible be­
cause of time required, cost, danger, complexity, 
requirement for elaborate equipment, or needed ex­
pertise. This hypothesis will be tested in regular 
courses in biology, chemistry, mathematics, physics, 
and social studies. 

b. Exploration of the relative merits of time-shared 
and stand-alone computing. Over a three-year period, 
purchase of a Digital Equipment Corporation PDP-8/I, 
with a 4096-word core and a 32000-word disk, costs 
about $21,000 including maintenance. The cost of 
time-sharing over the same period, from the most in­
expensive service company (Call-A-Computer Company 
of Raleigh, North Carolina) of which the author is 
aware, also is about $21,000 including communication 
costs. The stand-alone machine has the clear econ­
omic advantage, because it represents purchase of a 
piece of capital equipment, rather than a service. 
The time-sharing has the advantage that the partici­
pating schools can access the same program library, 
that there is more computing power available, and 
more storage. 



c. Exploration of the relative motivating capabil­
ity and learning effectiveness which the computer 
offers to schools in communities with widely-differ­
ent socio-economic backgrounds. The participating 
schools are in communities ranging from upper-middle 
income to poverty-level. 

3. Participating Schools 

All of the participating schools are in Suffolk 
County, New York. There are thirteen schools in all: 

Cold Spring Harbor High School 
Commack High School 
John H. Glenn High School 
Half Hollow Hills High School 
Harborfields High School 
Holy Family High School 
Huntington High School 
Longwood High School 
Northport High School 
Patchogue High School 
Setauket High School 
Walt Whitman High School 
Wyandanch High School 

There are 45 high-school teachers and about 1200 
students participating in the Project. 

Nine of these schools have been supplied with time­
shared terminals into a GE 265 computer owned by 
Call-A-Computer Company, two have been supplied with 
Digital Equipment Corporation PDP-8/1 computers, one 
has been supplied with both time-sharing terminals 
and a PDP-8/I, and one is using its own IBM 1130. 

4. Teacher Preparation 

Only two or three of the 45 participating teachers 
had any experience with computers prior to the ini­
tiation of the Project. A six-week summer institute 
was held during the summer of 1968 in order to pre­
pare the teachers to work with the computer during 
the 1968-69 school year. 

During this institute, each day was divided into 
three parts: the first was a two-hour lecture on the 
programming language, programming technique, or com­
puter-related mathematics; the second was devoted to 
a two-hour discipline-oriented seminar led by a fac­
ulty member from the discipline (there were five 
such groups -- biology, chemistry, mathematics, 
physics, and social studies) who explored their 
curricula with the teachers to uncover places where 
the computer might be used fruitfully, and who re­
viewed with the group each program as it was devel­
oped; and, third, a laboratory period during which 
the teachers got hands-on experience on the time­
shared computer through one of sixteen teletype­
writer terminals, and during which they were able 
to de-bug and test the performance of their programs. 
This latter phase was of indefinite duration. The 
computer terminals were available 22 hours each day, 
seven days each week, and were used frequently on 
weekends, past midnight, and before six in the morn­
ing. 

The teacher preparation is continuing during the 
school year through monthly general lectures on 
programming and other computer-related topics, 
twice-monthly seminar meetings in subject-matter 
groups, and through individual assistance by a 
circulating consultant. 
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5. Examples of P-rograms 

By January 1, a total of 80 programs has been en­
tered into the system library (including a Christmas 
message from Snoopy), and more than 50 others are 
under development. Among these are: 

a. DROS**. This program determines the genetic 
characteristics of the offspring of a pair of dro­
sophila flies with specified traits. 

b. PAV-7*. Here the student learns about the doubl­
ing of -a colony of paramecia using a gambling-casino 
environment for motivation. 

c. DAMMA*. The boy student develops an intuition 
about metric units by expressing the critical meas­
urements of his ideal girl in centimeters, meters, 
and kilograms, and is told what she looks like in 
English units. 

d. PAV-4*. The student specifies the angle of in­
cidence of a light ray at a boundary and the refrac­
tive indices of two materials, and the computer 
plots the indicent and refracted rays. 

e. EPIDM*. Epidemic model which permits student 
to vary size of population, number initially in­
fected, percent immunized, and infection and re­
covery rates. He then receives a plot of the course 
of the disease. 

f. CACll*. A simulation of Young's 2-slit experi­
ment. 

g. EDER3*. A model of the economy of the U.S.A. 
dealing with the flow of goods and services. 

In addition, there are mathematics programs covering 
the curriculum from tenth grade through twelfth, 
ecology programs, programs on chemical equilibrilli~, 
and on a variety of physics problems. 

6. Evaluation of Project 

Since enthusiasm and personal biases tend to color 
the opinions of participants in an experiment such 
as the one described here, the Psychological Corpor­
ation has been engaged to prepare an independent 
evaluation of the extent to which the objectives 
of the Project have been fulfilled. 

7. Development of BASIC Compiler 

The time-sharing language chosen for use in this 
Project was BASIC, because of the ease with which 
it is learned, and because it appears to be the 
universally-accepted language in high schools. 
Easy interchange of programs between the time­
sharing and stand-alone schools was desired, which 
required the availability of BASIC on the PDP-8/1 
computers. Only a subset of BASIC is available for 
these machines, and, so, a decision was made to de­
velop a compiler which would be compatible with the 
BASIC available on the time-shared computer. In or­
der to make this compiler as powerful as possible, 
it was necessary also to write a new operating 
system. 

The configuration for which the compiler and oper­
ating system were written is a PDP-8/1 with a 4096-
word core, and a 32000-word disk. The compiler has 



the following features: 

a. It has all BASIC system commands (NEW, OLD, 
RENAME, SAVE, LENGTH, etc.). 

b. It has all BASIC operations (LET, FOR-NEXT,etc.) 

c. It contains all built-in functions except TAN. 

d. Its accuracy is 1 part in 223 rather than 1 part 
in 235 , because of word-size difference. 

e. Maximum program size is 6144 characters as in 
regular (Dartmouth) BASIC. 

f. Maximum useable statement number is 4095 rather 
than 99999. 

g. Maximum array space is 3600 characters, and max­
imum number of statements is 330; however, these 
can be traded off against one another at the rate 
of 2.5 array elements per statement. 

h. There are no matrix operations. 

i. There are no EDIT commands (EDIT MERGE, EDIT 
DELETE, etc.); however, EDIT RESEQUENCE is under 
development. 

j. There is a set of error messages to signal com­
pilation errors (e.g., unbalanced FOR-NEXT group, 
no END statement, uneven parentheses, etc.), and a 
set for execution errors (e.g., program out of data, 
log of negative number, division by zero, etc.). 

As soon as the documentation is complete, the com­
piler and operating system will be released to 
DECUS. 

8. Background 

The program outlined here is patterned after a sim­
ilar computer experiment initiated during the 1967-
68 school year within the Engineering Concepts Cur­
riculum Project (ECCP), a National Science Founda­
tion-sponsored curriculum-development project. 
Within the ECCP computer project, the computer is 
used in the following ways: 

a. As a general-purpose modelling device (as de~ 
scribed earlier in this paper). 

b. To help the students to understand the culture 
of computers (i.e., an awareness of what computers 
can -- and cannot -- do, in order to contribute 
to the students' technological literacy). 

c. To assist in the development of an understanding 
of algorithmic problem formulation. 

d. To enhance the students' precision of thought. 
(The development of programs for a computer is 
very valuable in developing analytic thinking.) 

e. To provide a substantial increase in the stu­
dents'motivation. 

During the 1967-68 school year, eight high schools 
located in Connecticut, New York City, Long Island, 
Northern New Jersey, and Maryland, participated 
in this experiment. The results of the first 
year's effort was sufficiently encouraging that 
the ECCP Directors and the National Science Founda­
tion approved a continuation into the 1968-69 school 
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year, and an expansion to 20 schools. 

A report describing this computer project, and the 
programs which were developed, is available from 
the Engineering Concepts Curriculum Project, at the 
Polytechnic Institute of Brooklyn. 
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THE COMPLEAT COMPUTER ENGINEERING LABORATORY 

Fred F. Coury 
Department of Electrical Engineering 

The University of Michigan 
Ann Arbor, Michigan 

ABSTRACT 

This paper describes a laboratory facility currently in use 
in the Department of Electrical Engineering at The University 
of Michigan. This facility provides for a wide range of laboratory 
experiments and research into many aspects of digital computer 
engineer ing. 

Equipment available includes small scale digital computers, 
analog computers, logic labs, and data sets. The laboratory also 
contains two unique devices interfaced to a PDP-B. They are the 
"micro-B" (a device for external control of PDP-B interr.al 
micro-operations) and a powerful patchboard-oriented logic 
breadboard device. 

The paper also describes how this equipment is integrated 
with a sequence of computer engineering courses offered in the 
Department to provide extens ive laboratory exper ience in such 
areas as small computer programming (PDP-B and Linc-B), 
computer organization and operation (micro-B), logical design 
(logic labs and special patchboard device), and hybrid com­
puter systems (Linc-B/ AD-24). 

INTRODUCTION 

In the development of a computer engineer­
ing program, the need arises for a "hands-on" 
computer engineering laboratory facility. The 
student specializing in computer engineering needs 
more intimate contact with a computer than a re­
mote teletype terminal or the program input/ 
output window of a busy computing center. The 
study of sw itching theory benefits from practical 
experience with real switching circuits; and the 
actual solution of realistic design problems for 
a small- scale system - from system specifi­
cation, through detailed design, to actual con­
struction, debugging, and demonstration - pro­
vides a solid foundation for advanced studies in 
large scale system design. Such practical ex­
perience gives the student an intuitive feeling for 
the topics which are discussed in class in a more 
theoretical vein, and allows him to view parti­
cular areas of study with a better perspective. 

PURPOSE 

The facilities of the Digital Computer Lab­
oratory in the Department of Electrical Engin­
eering at The University of Michigan have been 
developed to provide extensive "hands-on" ex­
per ience in the follow ing areas: 

1. Small computer programming 
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2. Computer organization and operation, and 
3. Logical des ign. 

The laboratory facilities are used in conjunc­
tion with regularly scheduled courses, and are 
available for undergraduate and graduate research 
projects as well as to the faculty and staff for special 
appl icat ions. 

The intent here is to provide opportunities for 
students which are not available elsewhere on the 
campus. 

DESIGN CRITERIA 

The design of such a facility is subject to the 
following constraints: 

1. It must afford many student "hands-on" contact 
with the equipment in parallel and for as long a time 
as possible. Scheduled laboratory sessions typical­
ly last three hours and involve as many as fifteen 
students. When doing a programming exerCise, for 
example, it is desirable that as much as possible be 
done off-line (e. g. source tape preparation and 
listings) and that the actual time on the machine be 
used as efficiently as possible. 

2. The student-to-student transitions within a giv­
en session or between sessions must be optimized. 
Eq uipment setup and takedown time must be kept to 
a minimum. 



3. The overall system must be flexible. It must 
allow for very simple investigations and rather 
sophisticated projects to be carried on at the same 
time or alternated on a random basis. 

4. The components of the system must be mobile, 
both to add flexibility and to allow certain subsys­
tems to be connected and disconnected with mini­
mum effort. This allows, for example, instruc­
tors to actually bring a small computer into a lec­
ture room for demonstration purposes. 

5. The individual component cost must be kept 
to a minimum. In most cases it is better for four 
students to carry out independent investigations 
on rather simple devices than to have three stu­
dents watch the fourth doing an experiment on a 
rather sophisticated device. 

6. The equipment should be as near state-of-the­
art as possible. 

7. The equipment must be maintainable. The 
failure of a crucial component can cause up to 
forty-five precious student- hours lost in a sin­
gle afternoon. Backup systems, preventive main­
tenance, and immediate malfunction reporting are 
absolute necessities. 

DESCRIPTION 

Computers 

A block diagram of the laboratory system is 
given in Figure 1. The system is built around 
two DEC computers, a PDP-8 donated by DEC and 
a Linc-8 purchased by the EE department with 
matching funds from NSF. 

Each CPU and its corresponding teletype has 
been connected to a lor speed dataset through a 
rather simple adapter , thence to the sw itched 
telephone network. This adds flexibility to the 
system and aids in maintenance. It also provides 
at least a superficial introduction to data communi­
cations equipment. Each student using either com­
puter operates this simple, yet complete, full­
duplex system. He sees that each CPU and teletype 
has its own telephone number and he can set up any 
desired interconnection by merely dialing one data­
set from another. 

The lab also contains two more ASR 33 teletypes. 
These are used primarily for off-line tape prepar­
ation and listings, but they are also used in hard­
ware experiments and can be directly substituted 
for the dataset teletypes in case of malfunction. 

Switched I/O 

In order to provide for programming experience 
at any reasonable level of efficiency, high speed 
110 on both machines is an absolute necessity. 
However, due to budget constraints, only one high 
speed paper tape reader I punch could be purchased. 
Rather than being committed to one machine, it is 
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connected to a special set of interface lines which 
can be connected to either processor's 110 bus 
by means of a single toggle switch (and two ECI 48-
pole-double-throw relays). This approach has 
proven to be quite effective, since students generally 
use high speed 110 somewhat less than 50 percent of 
their allocated machine time. 

This sw itched 110 interface is also used to 
share other peripherals between the two computers. 
An example of this is a high speed dataset and adap­
ter2 which can be connected to either computer via 
the sw itched interface. This provides computer­
to-computer communications capability for graduate 
research projects.. Either computer can also be used 
to test high speed data 1 inks at other installations. 
Simply load in the appropriate operating system into, 
say, the PDP-8 and switch the interface to the PDP-8. 
Then dial the PDP- 8 from a teletype located at the 
remote installation. Using this scheme, a single 
operator at the remote station can control and mon­
itor both ends of the link without the need for anoth­
er operator in this laboratory. 

Interfac ing to the sw itched 110 lines is no dif­
ferent from interfacing directly to either computer. 
Pin connections, voltages, loading, driving, clamp­
ing, and daisy-chaining conventions are identical. 
Each CPU is connected to the switched 110 panel via 
a twenty foot cable. The indiv idual interface lines 
are available for connections both at the computers 
and at the sw itched 110 panel. These points are 
shown as large arrowheads in Figure 1. 

Analog Facilities 

Two Applied Dynamics AD-24 analog computers 
are also provided for analog experimentation. In 
addition, a simple level converter allows for the 
interconnection of the Linc-8 to one (or both) of the 
AD-24's to form a simple hybrid computing system. 

"micro-8" 

Special control lines are brought out ~f the PDP-
8 to allow for its use with the "micro-8." The 
"micro-8" is a device which allows its user to cause 
basic micro-operations to be executed within the 
adjoining PDP-8. The "micro-8", with its il­
lustrated front panel and functionally located push­
buttons is a useful device for graphic classroom 
demonstrations of the principles of computer or­
ganization and operation in the introductory com­
puter course. For example, the concept of a 
"core memory cycle" is reinforced by actually going 
through a memory cycle step-by-step. The 'What 
happens if ... " questions can be answered by direct 
observation rather than abstract reasoning, and 
students come away with a deeper understanding of 
the topics demonstrated. 

It is also very effective in the "hands on mode" 
in which students attempt to perform a certain 
complex operation (such as loading the RIM Load­
er) as a sequence of basic micro- instructions. 



Such an exercise is especially valuable, since 
the student is actually simulating a computer's 
control unit at the level at which he may some day 
be designing a control unit. At this level "nobody 
does anything for you. " That is to say, if the stu­
dent does not push the button to rewrite the memory 
buffer into core after a core read half- cycle 
(or if the designer does not explicitly provide 
a signal to do so), the original contents of the 
core location are lost forever. 

The "micro-8" teaches students to think in 
an orderly fashion and to check at each step for 
details which must be taken care of at that time. 
These are two qualities necessary to become a good 
design engineer. It also provides unique insight 
into control unit operation since the approach is 
basically one of synthesis rather than the more 
common analysis. 
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Logical Des ign 

The facility includes four DEC R- series logic 
labs which have been and continue to be used ex­
tensively for relatively simple stand-alone ex­
per iments in logical des ign. 

More complex design projects and experiments 
which involve designing computer peripherals 
require a more powerful breadboarding device, one 
which can be permanently interfaced to a small com­
puter. Such a device must contain more modules 
than are normally available on a DEC logic lab. 
And, since it is permanently connected to the com­
puter, it must be time- shared in a very effic ient 
manner. Such a device, in the form of a patchboard­
oriented logic lab4 was developed and is currently 
being used in the lab. Although intended primarily 
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Figure 1. Block Diagram of Educational Laboratory System 
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as a prototype device to point the way to bigger and 
better things, it has become a very useful device 
in itself and should continue to be useful for some 
time to come. 

COURSE INTEGRATION 

The Electrical Engineering Department offers 
an introductory course which surveys the field of 
computer engineering. A three-hou:r-per-week 
laboratory session is included in the course, and 
deals primarily with small computer assembly­
language programming. (A comprehensive se-
q uence of large- scale Computer programming 
courses is offered in the Mathematics Department. ) 
All program tape preparation, assembly, and de­
bugging for this course is done using the two PDP-
8's (one in the Linc-8) and other laboratory equip­
ment described above. Some simple logical design 
work is also assigned to be done on the DEC logic 
labs. 

Students interested in further work in digital 

Figure 2 shows the DEC logic labs, spare tele­
types, and some of the workspace available in the 
lab. It also points up the fact that the room can 
also be used for lab lectures and demonstrations. 

Figure 3 includes the two computers, their 
teletypes, and as soc iated datasets. The high- speed 
paper tape unit and interface switch are mounted 
on the table between the cOlI)puters, and their as­
sociated hardware, as well as the 201 line adapter, 
are mounted in the pedestals below. 

Figure 4 is a detail of the sw itched interface 
panel. The two "'shoes" bring in the computer I/O 
interface leads and the three (PDP-8, Linc-8, 
and switched) interface connectors are visible. 

Figure 5 shows the same PDP-8 as above on its 
movable table with the "micro-8" .and patchboard 
logic lab nearby. 

FUTURE PLANS 

design may then elect a laboratory-oriented course In spite of our attempts to optimize the facility 
stressing practical design problems. In this course, for multi-student use, equipment access is still 
stUdents use the DEC logic labs to investigate a major constraint. Current plans include making 
some of the non-ideal characteristics of real switch- the lab facilities available on a signup basis from 
ing devices, then go On to design some useful de- eight a. m. to midnight each weekday. Priority 
vices. The "micro-8" is used to gain inSight into is given to regularly scheduled classes during the 
the actual operation of a real computer's control day, and student research projects at night. 
unit while, at the same time, students are building 
what amounts to act,ive registers of a simple computer. Future expansion is planned in three directions: 

Finally, the students do some rather sophisti­
cated experiments involving the design of computer 
peripheral devices. Here the emphasis is placed on 
the hardware- software interface. These experi~ 
ments are carried out using the PDP-8 and the 
patchboard logic lab. 

CONTINUITY 

Note how the PDP-8 provides continuity 
throughout. In the first course, the student be­
comes very familiar with the PDP-8's outward 
behavior and attains a reasonable level of pro­
fiCiency in PDP- 8 programming. In the second 
course the student looks at the PDP- 8 through the , 
eyes of a control unit designer when experimenting 
with the "micro-8". Finally, the student becomes 
a peripheral unit designer, involved in PDP-8 
I/O interface characteristics and hardware/ 
software interaction. 

OTHER USES 

Bes ides being used in these 'courses , the 
facilities are also available to graduate students 
and undergraduates for research projects. The 
DEC logic labs, Applied Dynamics AD-24's, and 
the PDP-8/ "micro-8" are mounted on wheeled 
tables for use in classroom demonstrations. The 
equipment is also available to faculty and staff 
members for computer programming and logic 
circuit breadboarding applications. 
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1. The only way to further increase "hands- on" 
access to small computers is to get more small 
computers. Simulation of many small machines on 
a larger system defeats the purpose of the lab. 
We will probably add a number of PDP8/L's with 
inexpensive or shared high speed 110 to solve this 
problem. 

2. We plan to take a new approach to laboratory 
experiments involving relatively small- scale logical 
design problems. Rather than have students come 
to the lab, we are developing small, inexpensive, 
self- contained integrated circuit logic labs which 
the students can take horre with them. This approach 
offers many advantages to the student and greatly 
reduces the scheduling problems in the main labora­
tory facility. 

3. For more sophisticated design projects, we 
are developing a large-scale logic lab based on 
experience gained on our current patchboard sys­
tem. 'This new device will contain its own core 
memory, a large number of integrated circuits, 
and extens ive I/O capabil ities. It w ill be time­
shared in much the same manner as our current 
patchboard,device. Using this scheme, it will be 
possible for several groups of students to actually 
build and demonstrate several complex systems (a 
variety of small computers, display terminals, 
data communications deVices, etc.) in parallel 
and without interference between groups. 
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THE "micro - B" 

Fred F. Coury 
Department of Electrical Engineering 

The University of Michigan 
Ann Arbor, Michigan 

ABSTRACT 

The "micro-B" is a device designed to demonstrate and 
provide insight into the detailed internal operation of a digital 
computer, specifically, a PDP-B. It consists of a pushbutton 
control panel, minimal internal circuitry, connecting cables, 
and wiring additions to a standard PDP-B. 

The pushbuttons are so arranged on an illustrated front 
panel, outlining the major functional blocks of the PDP-B, 
that they show the micro-operations which can be performed 
on and between the various blocks. Pushing the appropriate 
button causes the desired operation to actually be performed 
within the PDP-B. 

Toggle switch registers simulate data input buses, and 
the results of an operation are visible in the PDP- B console 
indicators. External logic can be used in place of the push­
buttons, allowing student-designed control units to manipulate 
the PDP- B registers. 

When the "micro-B" is disabled, it has nO effect on the 
standard operation of the PDP-B to which it is connected. 

INTRODUCTION 

The "micro-B" is a teaching aid designed and 
constructed in the Department of Electrical Engin­
eering at The University of Michigan. It allows 
its user to selectively initiate basic hardware micro­
operations in its adjoining PDP-B. In this way a 
student or instructor can effectively simulate the 
control unit of a small computer and generate more 
complex operations as sequences of these micro­
operations. It is currently in use as a classroom 
demonstration device and as a laboratory tool in 
computer courses offered in the Department. 

HARDWARE 

The "micro-B" consists of four major parts: 
the illustrated pushbutton control panel, some 
internal logic circuits, interconnecting cables, 
and additional wiring in the adjoining PDP-B. It 
is not the intent of this paper to go into the de­
tailed circuit description of the "micro-B", rather 
to describe its operation and use. Two design 
features, however, should be mentioned here: 

1. The TIm icro- B" was des igned in such a way that 
when it is turned off it has no effect on the normal 
operation of the PDP-B to which it is connected. 

2. The control signals can also be generated by 
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external hardware "daisy-chained" through the 
"micro-B" pushbutton panel. This allows students 
to construct their own hardware control units to 
manipulate the PDP- B registers. 

OPERATION 

The "micro-B" push1:;mtton control panel is 
shown in Figure 1. The three twelve-bit toggle 
switch registers on the left allow the user to simu­
late data on the accumulator, memory buffer, and 
memory address register input lines. The PDP- B 
registers (the link, accumulator, memory buffer, 
memory address register, front panel switch regis­
ter, and the program counter) as well as the core 
memory are shown as large blocks. Each operation 
which can be performed on or between blocks using 
the "micro-B" is represented by an arrow. The 
pushbutton which causes that operation is placed 
next to the arrow, and labeled as to the type of 
operation performed. The types of operations 
are as follows: 

Clear 
Complement 
One's transfer (OR) 
Zero's transfer (AND) 
Rotate 
Half Add (EXOR) 
Generate carry 



Increment 
Jam Transfer 
Shift 

The data to be right- shifted into MBfD is de­
termined by the setting of the toggle switch ad­
jacent to the "shift right" pushbutton. For com­
pleteness, a list of the "micro-S" operations is 
given in the appendix. 

The toggle switch marked "ON" in the lower 
left- hand corner functionally connects the "micro­
S" to the PDP-S when in the up position. When 
down the "micro-S" is effectively disconnected, , 
allowing the PDP-S to be used as a standard 
machine. The pushbuttons marked "RUN" and 
"STOP" have the same effects as the PDP-S 
console '.'CONTINUE" and "STOP" switches re­
spectively. 

The "DISABLE" sw itch is used to cause more 
than one operation to be performed at the same 
time. When it is depressed, it inhibits the effects 
of all other pushbuttons on the "micro- S". When 
released, it causes the operations spec ified by 
any and all pushbuttons currently held depressed 
to be performed simultaneously. 

For example, in order to exchange the contents 
of the Memory Buffer with the contents of the 
Program Counter: 

1. Depress and hold "DISABLE", 

2. Depress and hold both "PC jam MB" and "MB 
jam PC" (This has no effect at this time. ) 

3. Release "DISABLE" (This causes the exchange.) 

4. Release the other buttons. 

More than two operations can be performed using 
this scheme. 

EXAMPLE 

As an example of the "micro-S" in operation, 
let us examine the contents of location 7756S in 
the PDP-S core memory using only the "micro-S" 
pushbuttons. The follow ing is a sequence of oper­
ations which will have that result: 

1. Press "STOP" (if the PDP- S is running) 

2. Set the "Data Address Input" switches to 7756S 

3. Jam the Data Address into the Memory Ad­
dress Register (the MA indicators on the PDP- S 
console should now show 7756S') 

4. Clear the Memory Buffer (all the MB console 
lights should now be off) 

5. "OR" the core memory into the MB. 
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6. "OR" the MB back into core! (Destructive read, 
you know.) 

7. Read the contents of location 7756 from the 
MB console indicators. 

It is also possible to perform operations util­
izing core memory half- cycle operations as well 
as complex arithmetic-logic instructions which are 
of particular educational value to students. 

APPENDIX 

Operations on the Link (L) 
1. Clear the Link 
2. Complement the Link 

Operations on the Accumulator (AC) 
1. Clear the AC 
2. Complement the AC 
3. Rotate the AC (and L) left one 
4. Rotate the AC (and L) right one 
5. "OR" the AC Input into the AC 
6. "OR" the PDP-S SR into the AC 
7. Half Add (EXOR) the MB into the AC 
S. Generate Carry in the AC 
9. "AND" MB into the AC 

Operations on the Memory Buffer (MB) 
1. Clear the MB 
2. Increment the MB 
3. "OR" Data Bit Input into the MB 
4. Jam the PC into the MB 
5. "OR" the AC into the MB 
6. "OR" Core Memory into the MB 
7. Shift the MB right one 

Operations on the Program Counter (PC) 
1. Clear the PC 
2. Increment the PC 
3. "OR" the PDP- S SR into the PC 
4. Jam the MB into the PC 

Operations on the Memory Address Register (MA) 
1. Clear the MA 
2. Jam the Data Address Input into the MA 
3. Jam the MB into the MA 
4. Jam the PC into the MA 

Operations on the Core Memory 
1. Select a cell (passively determined by the 

contents of the MA) 
2. "OR" the MB into that cell 
3. Clear that cell (when executing a core 

memory read) 

Operations on the PDP- S Control Unit 
1. Start the PDP- S CPU 
2. Stop the PDP-S CPU 

Miscellaneous Operations 
1. Connect the "micro-S" to the PDP-S 
2. Temporarily inhibit (disable) the "micro­

S" pushbutton switches. 



Figure 1 Photograph of "micro-8" Front Panel 
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A PATCHBOARD-ORIENTED DIGITAL LOGIC BREADBOARD 

Fred F. Coury 
Department of Electrical Engineering 

The University of Michigan 
Ann Arbor, Michigan 

ABSTRACT 

This paper descr ibes a prototype patchboard bread­
boarding device currently in use in The University of Mich­
igan Department of Electrical Engineering. The purpose 
of the device is to allow students to carryon advanced 
digital design projects in parallel and with minimal 
equipment expenditure. 

The patchboard-oriented device can be compared to 
a standard D. E. C. logic lab in principle, but is much 
more powerful in many respects. It provides many more 
available module positions, a much greater range of 
support functions, a greatly expanded control panel, and 
access to aU standard PDP- 8 110 lines. 

The principal difference, however, is that all of these 
signals are mapped into a 34 by 66 pin patchboard recep­
table. This allows for off-line wiring of several devices 
on removable patchboards, and "time-sharing" of the 
main facility for on-line debuggtng and demonstration. 

Devices built using this facility are described, and an 
extension of the patchboard concept is discussed. 

INTRODUCTION 

In the process of setting up a facility for student 
experimentation in the field of logical design, the 
need was felt for a vehicle to allow for the construc­
tion and operation of rather sophisticated devices. 
A careful search of the literature for commercially 
available breadboarding devices failed to turn 
up one which met our requirements. Consequent­
ly we decided to attempt to build a device which 
would overcome the problems which we had 
encountered. 

DESIGN CRITERIA 

The device in which we are interested must 
work in a student laboratory environment, which 
imposes some rather unique design constraints. 
Specifically, the design criteria include: 

1. The device must be powerful enough to allow 
for the construction and operation of a variety of 
complete, rather complex devices. Students 
should be able to design and implement meaning­
ful, useful devices such as they would encounter 
in industrial design projects. 

2. In order to provide experience in the design 
of an increasingly important class of devices, 
computer peripherals, the new breadboard 
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should have access to the 110 lines of a small com­
puter whose electrical characteristics are com­
patible with the logic contained in the breadboard. 

3. The breadboard should include provisions for 
a wide variety of I/O including analog-to-digital 
and digital-to-analog converters, and a variety of 
input jacks of different types. It should also pro­
vide for ease of operator communication in the 
form of an ample set of input switches and output 
indicators. 

4. Such a device, with its connection to a computer 
and with the complexity and I/O capability de .. 
scribed above is bound to be too expensive to provide 
on a one-to-a- student basis. This introduces 
the need to time- share the device and the req uire­
ment that this be done as efficiently as possible. 
In order to allow for efficient student time- sharing 
of a hardware device of this type, two criteria 
must be met: 

(a) the time spent on the device must be used 
as effectively as possible. Any operations 
which can be performed off-line should be 
done so, and the more that can be done off-
1 ine, the better. 

(b) the student-to- student transitions must be 



accomplished as quickly and efficiently as pos­
sible. Setup time must be kept to an absolute 
minimum. 

5. The cost of any equipment used off-line on a 
one-to-a-student basis must be kept low in order 
to provide for as many students as possible. 

6. Hopefully, the design techniques evolved can 
be extended to a much more powerful stand-alone 
device which can be used for the construction of 
much more complex devices including a variety 
of complete small- scale computers. 

THE PROTOTYPE 

The patchboard technique, which is used ex­
tensively in analog computer systems and low 
speed digital programming applications, seemed 
to be an ideal solution to the time- sharing prob­
lem. A 34 by 66 pin patchboard receptacle and 
eleven patchboards were salvaged from a dis­
carded computer and used as the basis for a pro­
totype version of the new breadboarding device. 
Since this approach had not, to our knowledge, 
been used before in this particular application, 
the decision was made to build a prototype as 
quickly and inexpensively as possible. Experience 
gained by using the prototype in a student laboratory 
environment should prove or disprove the feasibi­
lity of the approach and point the way to bigger 
and better devices. 

DEC R-series modules were used throughout 
because of their availability and compatibility with 
the rest of the lab equipment, including a PDP-8. 

CONSTRUCTION 

The prototype device is shown in Figure 1. The 
components from top to bottom, are as follows: 

1. A DEC power supply, 

2. A DEC mounting panel containing support 
modules and PDP-8 I/O connectors, 

3. A DEC mounting panel whose signal pins are 
mapped into the patchboard receptacle (shown with 
a full complement of modules), 

4. The 34 x 66 pin patchboard receptacle (shown 
with a patchboard in place), and 

5. The control panel for user interaction. 

A complete list of the signals available at the 
patchboard is given in the appendix. 

OPERATION 

Since eleven patchboards and a number of 
patchboards are available, up to eleven different 
experimental devices can conceivably be wired 
by different students at the same time. Since the 

208 

wiring operation requires only a patchboard and a 
set of patchcords, the patchboards are usually taker 
home by students and wired within the time normall~ 
allocated for lab preparation. The scheduled lab­
oratory periods are then used exclusively for dy­
namic testing and debugging. 

The whole device is normally used in a "time­
slice" mode." That is, a student has access to the 
whole device until his time slice is used up or 
until he finds an error which can be corrected off­
line. 

The transitions are very fast. All that is nec­
essary to go on-line is to insert a patchboard (and 
load a program into the PDP-8, if necessary). 
Program support can be developed off-line using 
a Linc-8 with high speed I/O which is also avail­
able in the laboratory. 

RESULTS 

The prototype device has been used extensively 
for three semesters and has met with enthusiastic 
student reaction. The final experiment in one lab­
oratory course requires that students (usually in 
groups of two or three) design, build, test, and 
de monstrate a display controller. This device op­
erates as a peripheral unit to the PDP- 8 and dr ives 
a standard Tektronix oscilloscope. It uses the PDP-
8 data break facility to read a series of coordinates 
from a display file in core, sequentially displays 
each point, then ceases operation and causes a pro­
gram interrupt when it detects an end-of-file (de­
noted by an all-zero word at the end of the vector). 

Hardware/ software interaction is stressed in 
this experiment, and each student is required to 
write diagnostic and demonstration programs for 
his display. Figure 2(a-d) shows the end result of 
one group's efforts - an animated display produced by 
a device designed, built, and programmed entirely 
by students using the prototype breadboard device. 
Three weeks are allocated to the experiment and 
up to four different displays have been built and test­
ed at the same time. 

FUTURE PLANS 

As a result of the experience gained in the con­
struction and use of the prototype device, we have 
received funds from NSF and the Electrical Engineer­
ing Department of The University of Michigan for 
the construction of a successor to the prototype. 
The proposed system is shown in Figure I. It 
will contain a very large number of integrated cir­
cuits and an extended control panel. Also included 
will be analog-to-digital and digital-to-analog con­
verters, and a rack- mounted oscilloscope for 
displays and signal tracing. It will also contain its 
own core memory, a feature which we believe will 
be unique in educational devices of this type. The 
system is intended to accomodate a large number 
of sophisticated designs including small computers, 
data channels, display controllers, and remote 



computer terminals. 

It is currently in the spec ification stage. 
Actual construction is expected to begin in early 
1969. 

APPENDIX 

Signal Lines Mapped Into the Patchboard 

1) From the Support Bay (Input/ Output Pins 
Only) 

a) Four Three- Bit Digital to Analog 
Converters 

b) An Analog Comparator 
c) Three Schmitt Triggers 
d) Teletype Connector 

POWER SUPPUES 
AND 

SUPPORT ELECTRONICS 

LAYOUT OF PROPOSED PATCHBOARD LOGIC SYSTEM 

Figure 1. 

Layout of Proposed Patchboard Logic System 
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2) From Module Bay 
a) Ninety-Six PDP-8 I/O Lines 

(Condensed) 
b) Fifty-Eight Modules (Pins D- V) 

3) From Control Panel 

A 

B 

C 

D 

a) x, y, and z Scope Inputs 
b) Four 20 K Log Potentiometers 
c) Four SwitclrSelectable Capacitors 

(5 Values Each) 
d) Twenty- Four Indicator Lamp Inputs 
e) Twelve Toggle Switch Contacts 

(N.O. ) 
f) Ten Pushbutton Outputs (Filtered) 
g) Telephone Dialer Contacts (2 Sets) 
h) Four Shielded Two- Circuit Phone 

Jacks 
i) Twelve Binding Posts 

Figure 2. 
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ARBUS - ADVANCE BED RESERVATION AND UTILIZATION SYSTEM* 

Robert P. Abbott and Judith Ford 
Institute of Medical Sciences 

San Francisco, California 

ABSTRACT 

ARBUS was originally designed to meet the two specific hospital needs as 
impl ied in the name • Subsequently, the goals were modified to include 
other scheduling, inventory, and commun ication needs within the hospital 
environment. The system employs the concept of a small computer at the 
hospital site with a communication link to a larger computer located else­
where. Terminals located throughout the hospital are connected to a small 
computer-the PD P-8 . 

Ten years ago, the United states began 
to phase out the aircraft industry in 
favor of the missile industry. Some of 
the resultant surplus talent was directed 
towards the problems of the Medical 
Sciences. This shifting of technological 
might was, of course, motivated by that 
prime American motivator, money. Indeed, 
the gross annual expenditure in the health 
field exceeds $45 billion. Approximately 
90% of this amount is spent on patient 
care. Hospitals and medical office com­
plexes constitute the primary resource for 
patient care. It is then no surprise that 
the subject of Hospital Automation has en­
joyed the attention of hardware manufac­
turer and software entrepreneur alike. 

Let us pause for a moment and enumerate 
the areas within the hospital in which 
automation is expected to make a contri­
bution: 

Patient billing 
Payroll 
General ledger preparation 
Inventory 
Information interchange 
Management and operational information 

systems 
Diagnosis of patients (e.g. EKG, EEG 
analysis) 

Treatment of patients (e.g. calculation 
of radiation dosages) 

Automated clinical laboratories 
X-ray analysis 
Physiological monitoring of patients 
Automated multiphasic examinations (i.e. 

screening) 
Closed loop control of certain equipment 

(e.g. respirators, IV feeding) 
Optimum scheduling of doctors, patients, 

and procedures 
Medical records. 

Let us also reflect on those techniques of 
the Computing Sciences which will be required 

to implement an integrated whole con­
sisting of the above parts: 

Time sharing 
Fail safe modularity 
Highly interactive remote terminals 
On-line real-time signal processing 
Information storage and retrieval 
Mass storage (on the order of 1012 bits) 
Linear programming algorithms. 

To date, some abortive attempts have been 
made to attack the total problem. They have 
not been successful. The most success has 
been attained by attacks on individual 
areas. Some of these activities will be 
reported in the papers presented here 
today. 

The Research Data Facility (RDF) of the 
Institute of Medical Sciences, Pacific 
Medical Cellter, is engaged in certain re­
search and development activities which 
pertain to hospital automation. The two 
major activity areas are physiological 
patient monitoring and management and 
operations information systems. 

ARBUS is a management and operations infor­
mation system, describing the initial funct­
tions implemented. ARBUS is an acronym, 
namely: ~dvance ~eservation and ~ed Qtili­
zation £Ystem. In addition to performing 
certain tasks, the system has the goal of 
reducing hospital automation costs by 
sharing hardware costs between more than 
one hospital. 

The Advance Reservation portion of the 
system is very similar to the airline re­
servation systems. There is one notable 
difference 0 As far as the airlines are 
concerned, a seat is sold for the length 
of time between reservation placement and 
when the plane comes down, regardless of 
how the plane comes down. A hospital bed 
has a variable time period. In maternity 
cases, even the onset of occupancy has a 
variable time period. 
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We must make one thing clear: the 
system did work - on Thursdays and 
Fridays between the hours of 6:00 AM 
and 10:00 AM. It did not work very 
well after 10:00 AM because that's 
when the programmers from other time­
sharing customers would get to work 
and swamp the system. The system would 
show some signs of life around 12:30 PM 
when some of the other customers would 
go to lunch. The response time was 
still sluggish (up to 10 minutes as 
compared to nearly instantaneous at 
6:00 AM). The system would again dis­
appear as the programmers for the other 
users would reappear from their ex­
tended lunch hours. 

By the time the other users went home, 
the hospital would be so far behind in 
its transactions that it took the rest 
of the evening to catch up. The time 
sharing vendor went off the air at 
11:00 PM Mondays thru Thursdays. This 
wasn't too bad in spite of the 24 hour 
a day nature of a hospital. There are 
relatively few transactions over night. 
It is not unusual for an admission of­
fice to be closed between midnight and 
6:00 AM. 

On Fridays, the vendor turned off at 
6:00 PM. Saturday, the turn-off time 
was 5:00 PM, and on Sunday there was 
no time-sharing at all. It also turns 
out that Sunday is the biggest admission 
day of the week, so by Monday morning 
there was really a lot of catching up to 
be done. Catching up lasted Monday and 
Tuesday. Wednesday was spent reconcil­
ing the errors. It would be fine again 
on Thursday and Friday between the hours 
of 6:00 AM and 10:00 AM. 

We thus see that time-sharing fails to 
qualify as a utility for two reasons: 
1) it is not available 24 hours per day, 
seven days per week: 2) time-sharing 
service is overloaded (i.e. oversold) 
during the peak user hours. Electric 
utilities, by comparison, must design 
their circuits to function on the 21st 
of December. It is the shortest day of 
the year and the height of the Christ­
mas season. I don't think any of you 
have gone without electricity on that 
day, nor have your Christmas three 
lights burned any dimmer. 

When the conventional utilities make 
an improvement in their service to you, 
it is· seldom noticed. Your appliances 
do not suddenly go kaput because of a 
change in service. Indeed, utility 
changes are invisible to the subscriber. 
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Not so with time-sharing systems. A 
change mayor may not be invisible to 
a programmer sitting at his terminal. 
In general, system changes are NOT 
invisible to a computer whose respon­
sibility it is to count characters, 
search for pre-ordained sentinels, in­
sert certain required sentinels, and 
activate various programs. 

A so-called "invisible" change would 
frequently result in the complete re­
compilation of our entire set of programs. 
The programs which resided in the time­
sharing computer were in excess of 6000 
Fortran statements. It was no small 
task to recompile the lot. As you well 
know, an action as drastic as complete 
recompilation normally results from a 
major change in the vendor's system. 
It is conceivable that one such require­
ment per six month period might be 
tolerated. Anything more frequent than 
that is clearly intolerable. It is un­
fortunate that we experienced a partial 
to complete recompilation once every 30 
days. And so we have a third reason as 
to why time-sharing fails as a utility: 
3) it is not sophisticated enough to 
mask the user from system improvement 
procedures. 

We do not intend to take any vendor to 
task. The vendor which was used in this 
experiment has, in our considered opinion, 
one of the best time-sharing systems 
currently available. Let the experience 
recorded here be a warning to potential 
users and to vendors alike that the time­
sharing utility is not only not here, it 
is not even on the horizon. If and when 
it does arrive, it must stand the three 
tests developed herein. Since this is 
not the case, then ••• 

In the interim, the projects at hand re­
quire solutions. The economic reality of 
hospital automation is that the patients 
must bear the automation costs. Sharing 
a computer dedicated to hospital use 
seems to be the most convenient course. 
ARBUS,using a dedicated PDP-9 and Data 
Cell,will return to operation with two 
hospitals on or about 2 April, 1968. 

*Supported by USPHS Contract No. 
PH 108-66-288 



The Bed utilization portion of the system 
provides information as to bed occupancy, 
forecasted bed occupancy, discharge 
schedules, surgical schedules, nursing 

station census reports, hospital census 
reports, utilization effectiveness re­
ports, etc. 

The system consists of terminals located 
at the admission office, administration 
office, and at each nursing station with­
in a hospital. For economic reasons the 
first terminals are teletypes and Selec­
trics. Any bit serial terminal could be 
used. Typical functions which may be 
exercised from the terminals are: reserve, 
cancel, admit, transfer, expiration, dis­
charge, census, etc. In addition, v~iDus 
listings are also available. 

The connection between the terminals and 
a PDP-8 are full duplex with the excep­
tion of the Invac modified Selectrics. 
There are a variety of validity checks 
to insure that unwarranted transactions 
do not jeopardize the data. A nurse at 
station X cannot perform a transaction 
affecting a patient belonging to station 
Y. Admission clerks and administrative 
personnel cannot perform any transac­
tions which would affect a patient be­
longing to nursing station X. Prior to 
updating the computer files for a trans­
fer or discharge, the file for the bed 
in question is checked to see if it is 
indeed occupied. If it is not, appro­
priate messages are printed on the ter­
minal which requested the transaction. 

Transactions are initiated at a nursing 
station by simultaneously pressing the 
color coded CNTRL key and the appro­
priate color coded transaction key. As 
an illustrative example, let's say that 
DSCH is in red in the upper case po­
sition on the letter W on the teletype 
keyboard. When the nurse presses the 
control W, the PDP-8 responds with the 
date and time of day. The PDP-8 will 
also print: "DISCHARGE", and, finally 
the PDP-8 will print: "BED NO.". 

As the nurse might suspect, the terminal 
wants the bed number of the patient being 
discharged. When she types, say, 123-A, 
the bed files associated with that ter­
minal will then print the patient's name 

on the terminal for the nurse to 
visually verify that she is indeed dis­
charging the correct patient. Again, 
assuming a valid transaction, the nurse 
types a period to signify verification. 
At this point the nurse is finished with 

the transaction. The computer files, 
however, are only now updated to re­
flect the transaction. If this were not 
a valid transaction, appropriate error 
messages would have appeared on the 
'terminal. 

The terminals, thus, interact with the 
nurse to guide her towards the appro­
priate actions. As a further aid to 
the nurse, if she cannot recall how to 
use the terminal, she may type: "HELP" 
and she will receive a short paragraph 
of instructions. 

The PDP-8 is located on the premises of 
the hospital. It serves as a message 
collector and distributor. A special 
electronic interface was de~igned and 
constructed to permit the PDP-8 to 
service the hospital terminals. That 
interface is described in a separate 
paper being presented at this DECUS 
meeting. The PDP-8 is connected via 
telephone lines to a centrally located 
larger computer with appropriate stor­
age facilities to contain 90 days worth 
of bed reservations, and various files 
describing the hospital, nursing sta­
tions, and beds. The second version 
of ARBUS will go on the air in April 
of 1969 and will use a PDP-9 attached 
to an IBM Data Cell as the main pro­
cessing and storage units. 

Two hospitals will be served initially 
by this configuration. This system 
will be described in a later paper. 

The first version of ARBUS was tested 
using the services of a time-sharing 
vendor as the main processor and stor­
age facility. The remainder of this 
paper will review that experience. 

Our use of a PDP-8 as a data concen­
trator is not unique. Many other 

applications have used this technique. 
There was, however, some uniqueness in 
requiring that the PDP-8 function both 
as a data collector and as an inter­
preter between the lay personnel (i.e. 
nurses, etc.) and the highly special­
ized language of a programmer oriented 
time sharing system. As a matter of 
fact, in the environment of a time­
sharing utility, the idea still sounds 
pretty good. The user, in this case 
a hospital, need only pay for the amount 
of gas, water, electricity, and com­
puting actually used. We were, un­
fortunately, born about ten years too 
soon. The time-sharing utility does 
not exist today. 
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DESIGN PHIlDSOPHY OF AN INTffiRATED 
IABORATORY -HOSPITAL INFORMATION SYSTEM 

Garth Thanas, Systems Research Department 
The Ohio State University Hospitals 

Columbus, Ohio 

ABSTRACT 

The integration of a laboratory Information System being 
developed within the larger framev.urk of a Hospital Information 
System will be presented. Using a small UNC-8 ccmputer to 
perform the required functions wi thin the clinical laboratories 
and di vo~ing its operation from any required hospital functions, 
provides the maximum flexibility in its utilization with ·the 
laboratory operation. Whereas, those functions which can be 
perfonned more conveniently and econcmically by a central 
canputer facility can be used to maximum advantage without any 
major effect upon efficient operation of the laboratory. The 
significant consequences, advantages, and disadvantages will 
be discussed wi thin the framew::>rk of the general system design 
philosophy employed. 

Introduction 

In as much as this paper deals with a system 
which is still under developnent it may be re­
garded as an exe~ise in wishful thinking, however, 
it may also serve to motivate those individuals 
who have not canmitted themselves to a specific 
point of view. The widespread interest in hospital 
and laboratory systems and extensive efforts to 
independently develop both systems require that 
they eventually be integrated in a fashion consis­
tant with effective hospital and laboratory oper­
ation. The following ,discussion delineates those 
factors of primary importance to both systems and 
presents a schematic of how the tv.u systems may be 
effectively canbined. It is presented in tenns of 
functions and procedures as opposed to the actual 
hardware and software elements required to imple­
ment the system since these tv.u items are normally 
peculiar to the individual hospital or laboratory. 

Hospital Information System 

Ini tiall y, the primary application of computer 
tec1mology within the hospital was confined to 
accounting and administrative applications. Within 
the past few years however, there has been an 
increasing proliferation in hospital ccmputer 
applications in such diverse areas as patient 
monitoring, EKG analysis, patient scheduling, and 
clinical laboratories. It was soon realized that 
the additional persormel and equipnent required 
to support each of these independent applications 
would offset both in terms of cost and efficiency, 
any individual gains which could be realized. This 
observation has resulted in the construction of 
what has cc:me to be known as the Hospital Informa­
tion System, which basically provides a framew:::>rk 
in which the varied applications of hospital systems 
can be supported in a single environment. This 
environment consists of a canputer-based netv.urk 
of remote terminals located in strategic areas 
throughout the hospital, each serviced by its own 
set of application programs which in turn share a 
COJIm:)n data base , namely the patient master record, 

215 

containing all data relative to the particular 
patient. Since each terminal is associated with a 
given hospital area or department , it is possible 
to tailor the programs which service the terminal 
to the requirements of the individual users, while 
providing the necessary mechanics of an exchange of 
information between application areas by applying 
the contraint of the conm::>n data base. Consequent­
ly' when a request for a glucose tolerance study is 
ordered, the clinical chemistry application programs 
may issue a diet mId by setting the appropriate 
flag in the patient master record. Later, this flag 
is detected by the dietary application programs and 
a message indicating the diet hold may then be given 
to the floor dietitian. Similarly, when the result~ 
of the laboratory procedures are reported, the fact 
that the patient has been receiving drugs which may 
influence the value of the laboratory determination, 
may be noted for evaluation by the physician. With­
in these tv.u examples lies the primary motivation 
for the Hospital Information System in that it pro­
vides the necessary mechanics to develop a balanced 
and consistant program of total patient care, the 
mere logistics of which, when approaChed 111 a less 
formal manner, are clearly impossible. In addition, 
by autcmating the flow of information within the 
hospital canplex, it is impossible to significantly 
reduce the volume of transactions and consequently 
the time, required to initiate, execute and. report 
a given request for patient services, resulting in 
an increased level or intensity of patient care. 
The level of pat~ent care refers to the ratio of 
administrative or clerical tasks to the total task 
of providing the necessary service to the patient, 
or equivalently the time available for rendering 
professional medical service to the patient. It is 
then, this canbination of a program of total patient 
care operating in conjunction with an increased 
level of patient care which makes the Hospital 
Information System a desirable quantity and the 
increased efficiency of hospital operations which 
nakes it possible. It must be realized, on the 
other hand, that the Hospital Information System 



remains in the embryonic stages of developnent and, 
as such, is saneth:ing' less than a reality. How­
ever, the limited successes of its early versions 
give every reason to accept it as a w:>rkable con­
cept • Table 1 gives a stJ'l'lIlar'Y of the Hospital 
Information System as currently defined at the 
Ohio State University Medical Center. 

Laboratory Information System 

Analogously, there exists a variety of clinical 
laboratory applications such as data acquisition, 
quality control, test r'equisi tion procedures and 
patient stlJ'IlIla.ry reports that are susceptible to 
computer techniques but offer the same disadvant­
ages in terms of cost and efficiency as before, 
when approached in an individual fashion. The 
utilization of a computer within the laboratory 
has been necessitated in order to process the 
output of the autanatic instrumentation and to 
assist in the clerical functions associated with 
the ever increasing voltDne of laboratory tests. 
This increased reliance upon laboratory findings 
has been precipitated by the increasing body of 
knowledge concerning disease mechanisms and treat­
ments to that the test volume will tend to increase 
as new advances are made. The Laboratory Informa~ 
tion System concept evolved in order to accarmodate 
these applications on an integrated basis by creat­
ing a patient file from the test requisitions, rron­
i toring the autanated instrunents and providing a 
sl.JIll'I'larY report from the information contained in 
the patient file as well as facilitating the vari­
ous clerical and management functions of the labor­
atory. In order to implement the previously 
defined program of total patient care, the demands 
of the Hospital Information System and toose of' the 
Laboratory Information System must be integrated in 
a consistent manner so that the operation of the 
hospital compliments the operation of the labora­
tory , resulting in an increased level of available 
patient care services. This has been accanplished 
by defining an envirorunental control system and a 
mutually dependent laboratory control system, since 
the hospital information systems currently in 
development either employ stand-alone data acquisi­
tion devices or rely entirely upon manual entry to 
incorporate laboratory results into the system, 
both of Which have serious deficiencies with 
respect to solving the problems of the laboratory 
operation, especially when large aTIDunts of 
instrumentation are used. On the other hand, a 
stand-alone laboratory information system is also 
unsatisfactory in that the benefits of the Hospital 
Information System cannot be obtained and it re­
quires the laboratory to assune responsibility for 
supplying oomputer support to the hospital. 

Environmental Control System 

The environmental control system is supported by 
the IBM 360 Model 40 computer and uses the IBM 1050 
terminal for data communications as well as the IBM 
2260 data display stations. From the remote term­
inals, laboratory test results may be ordered, 
inquiry into a patient file concerning laboratory 
test results may be made and in those areas not 
serviced by the laboratory oontrol system, labora­
tory tests results may be entered. For example, in 
bacteriology where the results are primarily text­
ual in nature as opposed to numerical, the result 
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,may be reported in a conversational rrode using the 
data display station rather than requiring fixed 
format entries using a typewriter. 

Stat results can be immediately displayed upon a 
terminal after receipt qf such results from the 
laboratory and in the event the patient has moved 
since the test was ordered, the result will be 
routed to the appropriate terminal.. The phleboto­
mist on the floor may inquire for a list of speci­
mens to be collected for the nursing unit at which 
she is currently located, eliminating the need for 
elaborate specimen oollection schedules. Patient 
s1..llIlJla.ry reporting and ward reports may be canpiled 
using the central computer's high speed line printer 
eliminating the need for duplication of such equip­
ment in the laboratory while providing equivalent 
service. Additional information processed by the 
Hospital Information System may be reported in 
conj unction with the patient and ward reports, as 
requested by the hospital staff. Processing of 
cunulative files of laboratory data may be performed 
using the extensive facilities of the hospital's 
main ccmputer for long term analysis of quality 
control and normal values. 

Management reports for use in laboratory adminis­
tration may be expanded to incluqe year to date, 
and other historical summaries in order to provide 
the laboratory director with the required informa­
tion. Research projects are greatly enhanced by the 
availability of historical, diagnostic and clinical 
findings in one central location in a machine 
processable form'. Correlation of such data was 
formerly impossible because of the sheer mechanics 
of collecting and organizing the necessary data for 
processing. Patient billing and laboratory income 
reports may be generated as a by-product 9f the 
aforementioned activities allowing the laboratory to 
make a more direct oorrelation between cost and 
price resulting in a nore equitable charging policy. 
These items are summarized in Table II. 

Laboratory Control System 

The LINC-8 computer is used to support the activ­
ities under the Laboratory Control System. Its 
primary responsibilities include data acquisition 
and instrumentation control, serving as a reactive 
element in the laboratory by nonitoring the auto­
matic instrl.mlentation and alerting the medical 
technologist to any possible sources of error or 
malfunction. Using the resources of the computer, 
the laboratory has available a wider range of 
instrumentation techniques which w:>uld not be 
feasible using manual procedures. For example, 
techniques have been developed for driving the 
auto analyzer systems at steady-state increasing the 
effective throughput of the device and a procedure 
for determining amylase involving the subtraction 
corresponding data values for the same sample 
processed on separate channels of the auto analyzer 
can be implemented. The most obvious use of the 
computer is to assist in the calculation of labora­
tory results obtained in manual and autanatic pro­
ce~s. Laboratory data files giving the labora­
tory personnel a single source of information 
concerning tests performed and tests ordered can be 
accessed through any terminal and results determined 
manually can also be entered at any convenient 
terminal. Short range quality control giving the 
controls which are out of tolerance and daily 



statistics for immediate review can be generated 
on a routine or a request basis. Research studies 
can be facilitated by providing a shorter turn 
around time than can be obtained from the central 
computer facilities when the data to be analyzed 
is available to the system and the programming 
already exists. The laboratory computer can 
also be used on an educational basis for the 
medical technology students who, if the current 
trend in laboratory computer systems continues, 
will be required to work with them throughout 
their careers. Table III st..lll1Ilarizes these items. 

Summary 

In surrrnary, the concept of an integrated hospital­
laboratory information system provides the 
necessary operational facilities to the laboratory 
and the hospital by particularizing the computer 
system to the requirements of the application, 
using the facilities of each oamputer to maximum 
advantage as opposed to forcing either or the 
other to satisfy all requirements of the system. 
The additional complexity introduced by inter­
facing the two computer systems is offset by the 
increased flexibility in application design and 
overall efficiency of the resulting system. The 
applicability of the system described above is 
obviously confined to those institutions in which 
patient care is a critical factor and the 
econanics of scale are such, that the required 
computer hardware can be supported, however, the 
increasing availability of shared hospital 
computer services will make this a realistic 
consideration. 

TABU: I 

HOSPITAL INFORMATION SYSTEM 

MOTIVATION: 

a) A balanced and consistant program of 
total patient care. 

b) 1m increased level of patient care. 

JUSTIFICATION: 

a) Increased efficiency and effectiveness 
in hospital operation. 

ENVIRONMENT: 

a) Network of remote terminals each 
serviced by its own set of application 
programs. 

b) A ccmnon data base tenned the Patient 
Master Record. 
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STATUS: 

a) Pre-admission and Admissions System 

b) Medical Records Identification and 
Retrieval System 

c) Clinical Laboratories (chemistry only) 

TABLE II 

ENVIRONMENTAL CONTROL SYSTD1 

1) Total Patient Care Program 

2) Test Requisition 

3) Result Reporting including STATS 

4) Inquiries to Patient Files 

5) Specimen Collection 

6) LDng Tenn Quality Control 

7) Laboratory Management Reports 

8) Laboratory Research Projects 

9) Laboratory Billing 'and Accounting System 

TABLE III 

lABOPATORY CONTROL SYSTD1 

1) Data Acquisition 

2) Instrumentation Control 

3) Improved Instrumentation or Laboratory 
Techniques 

4) Laboratory Calculations 

5) Establish and Maintain Laboratory Files 

6) Short Range Quality Control 

7) Laboratory Research Studies 





THE PDP-8/1 AS A SATELLITE COMPUTER FOR 
BIO-MEDICAL APPLICATIONS (SYSTEMS SOFTWARE) 

R. Bush, D. Domizi, R. Lee,* M. McKeown 
University of Chicago, Lying-in Hospital 

*IBM Corporation 
Chicago, Illinois 

ABSTRACT 

This paper describes the configuration and software 
system used to support a patient file and an on-line 
fetal-monitor. The PDP-8/1 (satellite) to 360/50 
communication is described. 

The Chicago Lying-in Hospital is 
evaluating the effectiveness of automated 
data processing in improving obstetric 
patient care. Although a complete hospital 
system is still in the future, segments of 
such a system can be implemented now which 
will interface with the full system when 
it arrives. Given a hypothetic future 
system (Fig. 1), two particular projects 
illustrate implementation of one section 
of this plan; the satellite computer and 
its private section of the central facili­
ty. Some of the systems software develop­
ed to support these two projects may be of 
general interest. 

as: 
The satellite is presently configured 

1. a PDP-8/I with 4K of core, extend­
ed arithmetic, and powerfail/re­
start; 

2. a PT08 connection to a 360/50 at 
110 baud and a remote KSR-33; 

3. two TU-55 DECtapes with TCOI 
control; 

4. a Tektronix 601 storage CRT with a 
VD8/1 control; 

5. an analog subsystem interface using 
an AD08B A/D converter, a KW8I/F 
crystal clock, twelve relays} and 
twelve sense-lines. 

A disk will be added in the future to allow 
more sophisticated use of the CRT(l). The 
central computer is an IBM 360/50 running 
under release 15/16 of MVT. For the pur­
pose of this discussion, an abbreviated 
view of the two projects will SUffice, as 
more detail is available elsewhere (2,3). 

The OBFILE is a patient record IS&R 
system which runs once a day, in batch, on 
the 360. It will have provision for on­
line retrieval of a patient record via a 
remote teletype. Since the main file on 
the 360 is updated daily, the economics of 
the situation make it desirable to support 
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the remote facility from a satellite 
computer.* The PDP-8 will be updated by 
the 360 batch program, and the teletype 
will access the PDP-8 subset of the file. 
The patient records in the PDP-8 will be 
stored on DECtape, one record to one 128-
word block. Later phases of this project 
will include data acquisition utilizing 
the satellite. 

The second project is an on-line fetal 
monitor which is designed to run mainly in 
the PDP-8. The satellite is connected via 
A/D, sense lines, and relays to an analog 
subsection which is used to monitor fetal 
parameters. CRT output is relayed by 
closed circuit television to the patient's 
bedside as a display for the physician. As 
new parameters are investigated and new 
algolrithms are tried, it is desirable to 
do the exploratory work in a high-level 
language on the central computer; with the 
satellite doing only data acquisition and 
display. A later phase of the project may 
require on-line statistic evaluation of a 
large data base. This would be done by the 
central computer. 

In this discussion, the two projects 
are considered as users of the system. 

PDP-8 I/O 

All I/O ip the satellite is done by the 
system in response to user requests and 
hardware interrupts. The system is device 
oriented, with specialized routines to 
handle each I/O unit. Once a requested 
I/O operation has been initiated, control 
is returned to the user. Each device has 
an IN USE/COMPLETION flag which may be 
tested by the user. If the user issues an 
I/O request specifying a device whose flag 
is in the IN USE state, the system retains 
control until processing of the new request 
has been initiated. 

*360 core is expensive, as is a large 
resident disk file. 



CONCLUSION 

The system presented in this paper is 
an example of the small satellite system 
in a large hospital environment. With 
the advent of the central hospital compu­
ter system the satellite system will be 
completely interfaceable. Such systems 
may be the most economic and least per­
formance degrading approach to special 
use situations in the larger hospital 
systems. 
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In cases in which the user is dealing 
with a character or a character string 
(ie. teletype, 360 communication, etc.), 
a packed 6-bit code is supported as well 
as ASCII. 

INTERPROCESSOR COMMUNICATION 

The PDP-8 user cnnsiders all interpro­
cessor communication as the transmission 
of a record of not more than 96 characters 
in length. He may read or write, request 
a record be sent from the 360 consisting 
of the time and date, or send a message to 
the 360 system console. The 360 operator 
may reply. All communication, as seen in 
core by the user, is in the character set 
of the appropriate machine; in the 360, 
EBCDIC: in the PDP-8, packed 6-bit code. 

The content of all transmissions between 
the two processors (excluding control 
characters and the checksum) is in ASCII 
with the parity bit in the hold state. 
Control characters have the parity bit in 
the mark state (Fig. 2. Tab. 1). Transla­
tion is done by the 360 from ASCII to 
EBCDIC and vice versa. The types of allow­
able transmissions are shown in Tables 2 
and 3. 

Due to hardware peculiarities in the 
360, a byte transmitted by the PDP-8 is 
seen as the mirror image in 360 core. The 
360 program deals with this in two ways: 
I-translation tables set up as mirror 
ASCII-EBCDIC; and 2- addition used in 
checksumming is done with the carry propa­
gated to the right instead of to the left. 

To ensure proper data transfer, all 
transmissions are vertically checksummed 
in the following manner. The last four 
characters of a transmission are: IICKSM" , 
"1 XXX XXX", III YYY YYY", "XOF"; where 
XXXXXXYYYYYY* is the least significant 
twelve bits of the sum of all eight bits 
of every byte preceding the '''CKSM'' charac­
ter. When either machine detects a trans­
mission error, it requests the other to 
repeat the invalid transmission. Provision 
has been made to prevent looping upon 
multiple errors. 

There are two versions of the communi­
cations package for the 360, differing 
only in their handling of "data ll trans­
missions. Both versions appear identical 
to the PDP-8 system, and no adjustment is 
necessary by the system or by the PDP-8 
user program. 

Version "oneil resides permanently in a 
6K partition of the 360. At very small 
cost it provides "off-line"** communication 
facilities to the satellite. It gets all 

*as seen by the PDP-8 
**That is, off-line to a user's 360 program. 
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"datal! to be sent from a small file, and 
saves received data on another. A user 
batch job can be run on the 360 to update 
the two files and to deal with the received 
data. 

Version IItwo" consists of a 4K PL/I 
callable subroutine which may be used to 
communicate directly with the satellite. 
This version provides to the user's 360 
programs the analogous facility that the 
PDP-8 system provides his PDP-8 programs; 
ie. he may read or write. Thus the user 
can maintain direct communication between 
two processes; one in the satellite, and 
the other in the central computer. When 
using version "two", the 360 user may 
access the "off-line" files used by ver­
sion "one"; making alternate use of the 
two versions quite profitable. When 
ROLLIN/ROLLOUT is implemented on the 360, 
a facility will be developed whereby the 
PDP-8 user may choose not only which 
version is active in the 360, but also 
which of a library of 360 user programs 
he is communicating with. 

PDP-8 RESOURCE ALLOCATION 

The 4K of PDP-8 core is allocated in 
the following manner (Fig. 3.): 

The system occupies locations 6000-7577, 
0000-0007, and uses 0140-0177 for linkage 
between it and the user(s). 

The fetal monitor (which may be consi­
dered the foreground) may occupy locations 
0200-3777 and 0010-0137. It is given con­
trol by the system at one of a number of 
different entry pOints depending on what 
type of interrupt has required action on 
its part (ie.: clock or sense lines). 

The OBFILE (considered the background) 
may occupy locations 4000-5777. One set 
of three pages is used to handle each re­
mote teletype currently active. The three 
pages are used in the following manner: 
Page one contains the appropriate patient 
record as it is read from the subset file; 
page two is occupied by consecutive segments 
of an overlay structure which handle the 
record for the teletype (uncoding, formatt­
ing, etc.); page three is used for buffers 
and for communication between the overlays 
and with the system. 

The background has control of the pro­
cessor until an interrupt occurs which 
requires activation of the foreground. 
Control then passes to the foreground at 
the appropriate entry point. It handles 
the interrupt, updates its data and/or 
display(s), and returns control (via the 
system) to the interrupted background. 
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CONTROL CHARACTERS 

PDP-8 360 NAME EXAMPLE USAGE 

200 01 CKSM ALL PRECEDES CHECKSUM AS THIRD FROM LAST 
CHARACTER IN ALL TRANSMISSIONS. 

201 81 GETR E SENT BY PDP-8 TO REQUEST A 360 ffDATAI! 
TRANSMISSION (A'). 

202 41 HELO C,C' SENT BY EITHER ON SYSTEM RESTART, 
ECHO'D IF RECEIVED BY 360 WHILE RUNNING. 

203 C1 RDER G,G' SENT BY EITHER ON RECEIPT OF AN IMPROPER 
TRANSMISSION, (IE: CHECKSUM, ERROR, 
UNKNOWN CONTROL CHAR, ETC), 

206 61 GDBY D,D' SENT BY PDP-8 (D) TO CAUSE TERMINATION 
OF 360 PROGRAM. SENT BY 370 (D') UPON 
OPERATOR REQUEST FOR EXIT (NOTE: 360 
CONTINUES NORMAL OPERATION UNTIL RECEIPT 
OF (D) ). 

207 E1 RDOK H' SENT BY 360 IN ACKNOWLEDGEMENT OF 
PROPER RECEIPr OF "DATAl! (A) FROM PDP-8. 

210 11 SEND B,B' SENT BY EITHER AS FIRST CHARACTER IN 
TRANSMISSION TO THE OTHER'S CONSOLE. 
TYPEWRITER. 

211 91 GETT F SENT BY PDP-8 TO REQUEST TIME AND DATE 
TO BE TRANSMITTED BY THE 360 (I'). 

Table 1. Control characters 
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ALLOWABLE TRANSMISSIONS 

360 to PDP-8 

A' B' C' D' H' G' I' 

SEND HELO GDBY RDOK RDER H 

CKSM CKSM CKSM CKSM H 
(DATA) 

(TEXT) IXX IXX LXX IXX M 

. IYY l·YY IYY IYY M 
CKSM . 

CKSM XOF XOF XOF XOF S 
IXX 

IXX S 
IYY 

IYY Y 
XOF 

XOF Y 

D 

D 

D 

CKSM 

IXX 

IYY 

XOF 

Table 2. Allowable transmission records; 
360 to PDP-8 

ALLOWABLE-TRANSMISSIONS 

PDP-8 to 360 

A B C D E F G 

SEND HELO GDBY GETR GETT RDER 

CKSM CKSM CKSM CKSM CKSM 

lXX IXX lXX lXX IXX 
(DATA) (TEXT) 

IYY lYY IYY IYY IYY 

XOF XOF XOF XOF XOF 
CKSM CKSM 

IXX IXX 

IYY IYY 

XOF XOF 

Table 3. Allowable transmission records; 
PDP-8 to 360 
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LIFE WITH A LABORATORY COMPUTER SYSTEM* 

Irwin R. Etter 
The Mason Clinic 

Seattle, Washington 

ABSTRACT 

The Laboratory of the Mason Clinic a~d Virginia Mason Hospital 
has used a totally dedicated computer system for the past two 
and a half years. During that time the laboratory staff has 
become highly dependent on the functioning of the computer. 
Despite great increases in work load in the laboratory, the 
size of the staff has been held constant with a decrease in 
direct line personnel. The use of the computer allows the 
staff to pay greater attention to the technical aspects of the 
laboratory while the computer handles an ever growing portion 
of the clerical chores. The role of the computer is continual­
ly being modified as our experience increases. These changes 
are due to both the technical changes in the laboratory and to 
revision of our concepts of the role of the computer. The 
success of our program is due to the high reliability of the 
computer system as well as the widespread interest in data pro­
cessing among the staff. 

The laboratory without a computer system is 
completely reliant upon the technologists for acc­
urate and reliable information. At current work 
loads, the technologists are under significant 
pressure to turn out not only high quality work, 
but high quantity as well. Under such conditions, 
a technologists' life is not a happy one. In a 
typical laboratory, a technologist must care for 
the instrumentation, performing preventive equip­
ment maintenance and making at least minor repairs 
to keep the laboratory operating. Assuming the 
equipment is operational she must also insure that 
the results produced are reliable and accurate. 
In addition the technologist must d~cument the lab­
oratory work performed both for the physician and 
for medical records besides maintaining a labora­
tory file of work performed. 

On a typical day the technologist must assem­
ble and in some cases prepare the reagent required, 
start the instruments, sort samples to be process­
ed, perform analyses and associated calculations, 
compile work sheets, maintain the instruments, and 
file reports. Nearly all these procedures can be 
made less time consuming without loss of accuracy 
or reliability by computerizing them. Approximate­
ly four years ago the laboratory staff began learn­
ing the basic facts about computers. At that time 
the small computers at reasonably low prices were 
just beginning to be made commercially available. 
At the same time, interest in laboratory automation 
was growing among computer manufacturers as a 
marke area for their new equipment. This re­
quired learning most of the procedures followed by 
the laboratory. As each side learned about the 
other, mutual interest grew. The laboratory had a 
requirement that could well be handled by the small 
digital computer. Laboratories represented a sig­
nificant market area for small, highspeed, low 
priced computers. 

Out of this mutual interest several laborator­
ies and computers were lImarried". The laboratory 
of the Mason Clinic was "married" with the computer 
in April 1966. The system was composed of a PDP-8 
with 4-K of core. A special purpose interface com-
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posed mainly of DEC logic modules was built to 
connect the computer to the laboratory instruments. 
A complete set of software. was also provided which 
would handle the basic processing of the raw data. 
The tasks of the initial system were limited to 
data acquisition and reduction in order to obtain 
a system that would provide useful data while at 
the same time allowing for continual reassessment 
laboratory requirements and allowing the labora­
tory personnel to adjust to the computer. 

The system functioned in the initial con­
figuration for one and one half years. During 
that time, extensive evaluations of both hard­
ware and software were conducted. Based on the 
findings it was decided that the hardware con­
figuration was sound and should be expanded to 
handle a larger work load. The software was ad­
equate but major revisions were made to improve 
system operation. Personnel training began 
during this period and c'ntinues as additional 
people become involved with the system. Initial 
response to the computer was very good and ranged 
from immediate acceptance to minor reluctance to 
accept the computer results. As improvement in 
the software were made, reSUlting in greater 
reliability all resistance to the computer disap­
peared. 

One of the major difficulties encountered in 
using the system was that of monitoring the opera­
tion without interrupting the on-line real time 
procedures. This was especially important during 
the debugging phases of new programs. Some of 
this monitoring could be done with the software 
supplied but it became necessary to be able to 
check any core location and if necessary change 
the contents of the location. A routine was 
written to allow this to be done on-line which has 
resulted in a greater of the functioning of the 
system. Another type of difficulty with the system 
was the determination of sources of error or mal­
function that occurred with very low frequency. 
In most cases, the computer very quickly hides all 
traces of its work making it very difficult to 
determine a pattern for the malfunction. Tracking 



down such problems is very much like playing detec­
tive, hunting for a clever criminal. One such pro­
blem was an occasional sugar determination that the 
computer would read significantly higher than the 
actual result. Several software traps were devised 
to force duplicate calculation or other checks but 
none solved the problem. Part of the difficulty 
in finding the error lay in retrieving the scratch 
areas of core used for calculation as these would 
be overwritten as soon as another calculation was 
performed. After several weeks of closely moni­
toring the system, the error was caught while all 
evidence was still available and the problem was 
solved. Part of the difficulty in solving these 
problems is that once a correction is made there 
is no sure way to know the problem is solved 
except for its lack of occurrence over a long per­
ion of time. 

The interaction of the laboratory staff with 
the computer has been interesting. The dislike 
for manual calculation methods becomes obvious 
as the dependency upon the computer grows. It has 
become difficult to work on the computer during 
normal laboratory hours. The technologists 
raise very strong objections to any interference 
with the normal computer operation. Significant 
time savings have resulted from use of the 
computer. As a result, we have been able to 
reduce the size of the automated laboratory staff 
by 20%. This decrease is possible despite an 
increase in work load each year of 10%-20%. 
Further increases in work load will be offset by 
increasing the work load of the computer. 

The laboratory staff has been a great help in 
the success of the computer program. Periodic 
training courses have been run to acquaint them 
with the workings of the computer system and in 
the basics of programming. Several staff 
members have begun writing programs to increase 
their understanding of computers. They have also 
been very helpful, suggesting modifications to the 
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system to make their jobs easier. Many of these 
suggestions have been successfully implemented. 

The state of the system is continually under­
going change. An additional 4-K of core and the 
extended arithmetic option have been added to the 
system. These additions have enabled us to 
improve the methods of calculation and typeout 
separating to give more reliable data in a more 
usable form. We have recently added both disc 
and tape bulk storage to allow for the develop­
ment of patient laboratory records. This will 
greatly decrease the clerical work load of the 
laboratory with the elimination of a major source 
of error, the hand transferring of data. The bulk 
storage will also make it possible to maintain 
a large library of routines for the processing of 
data from the manual test procedures. 

The design philosophy of the system is open 
ended, allowing for additions and modifications as 
laboratory procedures change. It is anticipated 
that in the next few years new laboratory 
instrumentation will be developed that will be 
directly computer compatible. Much of the present 
instrumentation requires major engineering to 
make the output signals available to the computer. 
The widespread acceptance of computers in 
hospital laboratories will force instrument 
designers to develop compatible equipment. Simi­
larly, a new breed of computers will be forth­
coming that will be designed primarily of 
laboratory usage will include flexible interfaces 
to enable instruments to be rapidly "married" to 
it. 
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DIAGNOSTIC USES OF THE AVERAGED EVOKED POTENTIAL 
IN CLINICAL NEUROPSYCHIATRY 

Enoch Callaway, M.D. 
Langley Porter Neuropsychiatric Institute 

University of California School of Medicine 
San Francisco, California 

ABSTRACT 

Over the past four or five years, small high-speed digital 
computers have been used to process human brain waves in a 
variety of ways that have potential clinical value. The usual 
procedure has been to digitize a set of potentials from the 
head and treat these by a variety of techniques, the most pop­
ular of which is averaging sequences of potentials with each 
sequence having the same time relation to some recurrent event. 
These averages, frequently referred to as Averaged Evoked 
Potentials or AEPs, have been put to a variety of uses. The 
purpose of this paper is to review some of these uses. 

AEPs can be used to test the various input channels to the 
central nervous system such as hearing, vision, touch, smell, 
and acceleration. They undergo changes with growth and devel­
opment and hence can be used as measures of central nervous 
system maturation. They appear much more sensitive to destruc­
tive lesions in the central nervous system than the conventional 
EEG, although they may not be as sensitive or useful as a 
conventional EEG in detecting irritative lesions such as 
a p pe a r i n e p i 1 e p s y . 

In the borderland of application, we find these computer­
derived brain wave measures being related to such things as 
intelligence, motivation, perceptual style, and psychiatric 
diagnosis. In spite of the tremendous promise of this area, 
only one of these techniques has reached the status of a routine 
clinical procedure. That is the use of the averaged evoked 
potential in performing audiometry in children and infants. 
There is much to be done in closing the gap between laboratory 
demonstrations and routine clinical use. 

When, for any reason, normal communication is poor, 
then the unique qualities of evoked responses can 
be used to advantage in evaluating psychological 
function. To get an evoked response, various stim­
uli are given, various brain wave samples are taken, 
and various computations are made using these brain 
wave samples. By properly designing the test situ­
ation and the data analysis, things such as atten­
tion deployment, distractibility, and certain 
aspects of intell igence can be probed--all without 
demanding much in the way of voluntary responses 
from the subject. No matter whether the subject is 
uncooperative because of neurological defects, 
cultural differences, or willfulness, if he will sit 
relatively still, his mind can be probed. 

A variety of more or less complex computational 
schemes have been devised for studying evoked re­
sponses, but simple averaging has yielded so many 
interesting findings that we can profitably restrict 
this review to the so-called averaged evoked poten­
tial or AEP. 

Of all the AEP techniques that hold promise for 
clinical appl ication, only one at present has the 
status of a routine procedure. That one is AEP 
audiometry in neonates. In neonates, vocal anu 
other motor functions have not developed to a very 
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useful point so that electrical activity from the 
head has much to recommend it as an output device 
for the computer inside the infant's skull. In 
most cases, however, language is the output device 
of choice for humans. 

To be applied in the clinic, a technique must be 
useful in addition to being feasible. Here I will 
discuss technical feasibility, but I want to empha­
size that these technical possibilities are not 
useful in practice unless, for some reason, there 
is something the matter with simply asking the sub­
ject what we want to know. 

There are roughly three classes of situations when 
just asking doesn't work, so that evoked response 
procedures hold real promise. These are: (1) when 
neurological factors such as lesions or lack of 
maturity block verbal exchange; (2) when psycholog­
ical factors such as cultural difference or mendac­
ity interfere; (3) when the state we're testing for 
is not accessible to introspective report and its 
behavioral consequences are most inexpensively 
tapped by our evoked potential measure. 



I. SENSORY TESTING 

A. Hearing 

The audi tor~ evoked potential test for hearing 
lossI4,36,15 is a straightforward procedure. A 
tone, a tone-pip, or click, is presented and this 
presentation is repeateda number of times. Using 
vertex to ear leads, the averaged evoked potential 
is computed, and if an AEP is distinguishable from 
the background activity, the subject is inferred 
to have heard the sound. This is close enough 
to the truth to be quite useful. Using this method, 
estimates of auditory threshold approximate those 
obtained by conventional techniques in cooperative 
subjects. 

Averaged evoked potentials can be 0 tained with 
subthreshold stimuli 28 , deaf subjects may have AEPs 
because of a myogenic reflex ll to the vestibular 
effects of loud sound, and the absence of a sound 
may even evoke a response 3. Nonetheless, good 
audiometry can be done using AEPs. Some of the 
above points do, of course, have practical conse­
quences. For example, an AEP evoked by a very loud 
sound does not rule out total hearing loss if vest­
ibular function remains intact, although the myo­
graphic responses usually are earlier than the 
actual auditory evoked potentials. Perhaps of more 
clinical importance are those cases where gross 
brain damage prevents the appearance of the AEP 
even though hearing may be relatively intact. 

Marked moment-to-moment variability in AEP ampli­
tude occurs without apparent cause. In addition, 
background EEG and state of arousal are confounded 
and both probably also affect the AEPs. Although 
these must be considered in evaluating a record, 
good AEPs can be obtained during sleep. Although 
slow wave sleep raises the auditory threshold about 
10 db in adults, it has no measurable effect on the 
thresholds of infants. This is iucky because it is 
hard to find a time when a small infant is quiet 
except when he is asleep. 

B. Vision 

The visual evoked response is potentially useful 
for testing the presence or absence of vision. In 
addition, both color and form resolution can also 
be assessed. Finally, since the averaged electro­
retinogram (ERG) and the averaged occipital EEG 
(AEP) can both be computed, lesions along the optic 
pathways can be localized. 

Different colors apparently induce different AEPs 
in individuals with color vision, and this differ­
ential responsiveness is absent in the color-bl indo 
Several meth~ds §f obtaining color AEPs have been 
suggested42 ,5,3 but the one described by Clynes lO 
is probably the most feasible for clinical use. 
Use is made of a patch that alternates between two 
test colors at about 24 cycles per second. If the 
colors are matched for brightness, these alternations 
will evoke a response in normals, but will not do so 
in subjects bl ind to thepart'icular color change. 
This procedure has certain obvious advantages for, 
at f4 cycles per second,.,epochs of two cycles in 
length can be averaged a number of times in a very 
short period. By having two or more cycles in an 
average, an estimate of the reliability of the AEP 
can be obtained by simply looking at the record

4 However, it should be noted that Shipley et al. 6 
found the most dramatic effects of color in 4 to 
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8 cps fourier components, and so slower stimulus 
repetition rates may have some advantages that still 
need evaluation. 

Clynes et al., also records from four bipolar pairs 
derived from a rosette of electrodes at the occiput. 
This arrangement demonstrates color evoked potentials 
in some leads and not in others. It would appear 
from his data that tne use of multiple leads in­
creases the precision with which a response can be 
detected and hence, increases the confidence in 
identifying cases where the response is absent. The 
more recent work of Regan39 also indicates some pe­
culiar interactions between color and stimulus fre­
quency for maximum response amplitude. 

Pattern also influences the AEP and here it seems 
clear that lateral bipolar leads, as for example 
Oz - 01 may be more sensitive than an AP arrangement 
at right angles as, for example, Oz - Cz9,40. In 
general, the ampl itude of the AEP and particularly 
the 200 msc component increases with the number of 
contrasting borders resolved at the fovea. If the 
number of contrasting borders is increased stepwise 
and the AEP is recorded at each step, then at the 
point when resolution is lost, the AEP is found to 
drop abruptly. 

The fovea i~ almost entirely responsible for the 
visual AEPI . Thus in infants with severe retinal 
disease with macular sparing, the retinogram may be 
absent, while the visual AEP may be almost normal 53 

There are, naturally, pitfalls. For example, the 
effect of pattern can be obliterated by using very 
bright flashes. The results depend on the subject 
fixing and focusing on the target, so the procedure 
is not applicable to very uncooperative or sleepy 
subjects. However, Carol White, in a personal com­
munication, has suggested that the use of brief 
flashes can allow cl inical refraction without cyclo­
plegia because the flash can be brief enough to 
supply the stimulus before pupilary constriction can 
compensate for refractive errors. 

Lesions in the optic pathway distal to the optic 
nerve will reduce both the ERG and the AEP. More 
central lesions, however, will leave the ERG intact 
and abolish or diminish the AEP. Asymmetry of the 
left and right occipital AEP with stimulation of 
one eye occur as would be predicted from the anatomy 
of the optic nerve27,5,20 

C. Somatosensory 

In somatosensory evoked responses to electrical stim­
ulation of the nerve, the peripheral nerve action 
potentia

4
1 can substitute for the ERG in the visual 

analogue 1. There are, however, some additional in­
teresting complexities. The somatOsensory AEP to 
electrical stimulation of the nerve seems to reflect 
primarily the activity of the dorsal white columns, 
since total lesions of the anterio-lateral columns 
can leave the AEP quite normal. When lesions involve 
a peripheral nerve, latencies of almost all AEP peaks 
are lengthened. Wave durations are increased and 
the whole AEP may be prolonged. This is because an 
afferent peripheral lesion reduces excitabil ity and 
results in a temporal dispersion of the afferent 
volley. 

Bergamini and Bergamasco5 , in their discussion of 
the above points, give an interesting clinical appli­
cation of the somatosensory evoked potential, al­
though one that is not likely to present itself 



every day in clinical practice. They encountered a 
pair of 6 year old siamese twins who were joined 
through a partial dorsal fusion of the lumbar sacral 
spinal column. Before surgical separation it was 
important to determine whether or not any nerves or 
roots were fused. Cl inical evaluation was unsatis­
factory, but somatosensory evoked potentials saved 
the day. Evoked potentials could only be recorded 
from the scalp of the twin receiving the electrical 
stimulus. With this evidence that the twins had no 
spinal nerves in common, surgical separation was 
undertaken and successfully completed. 

D. Other Sensory Pathways 

There is no reason that other sensory modalities 
could not be assessed using AEPs. Allison and Goff 2 
for example, have described an olfactory AEP which 
might be appl ied to testing smell. Greiner et 
al. 23 , have shown that vestibular evoked responses 
can be obtained by rocking the individual. This is 
an interesting AEP for it is of long duration and 
almost completely unilateral (tempero-occipita!), 
being on the right side in right-handers and on the 
left in left-handers. 

Evoked potentials can be produced by using touch or 
a puff of air as a stimulus. Although there is 
still some doubt on the matter, the consensus is 
that hysteria does not abolish the evoked potential. 
Therefore, the differentiation between organic and 
hysterical sensory loss could be made by using the 
AEP. However, touch evoked potentials can, unlike 
shock evoked potentials, be almost totally abolished 
by distraction l9 . This is not surprising in view 
of the rapid accommodation of touch and the contrast­
ing stabil ity of vibration and position sense over 
long periods of stimulation. 

I I. NEUROLOGICAL DISEASE 

As the search for pathology leads us rostral along 
the neuraxis, we come to consider neurological dis­
eases of the cerebrum. For our purposes, these may 
be divided into disorders of maturation, destructive 
lesions, and irritative lesions. 

A. Disorders of Maturation 

Evoked potentials showed dramatic changes with matu­
ration. The auditory evoked potential is easily 
obtained in infants as noted above, but it does not 
show the marked changes with maturation that are 
found in the visual evoked potential 18 . Recording 
from inion and presenting flashes to a sleeping in­
fant, a primary visual evoked response can be re­
corded. The latency of the onset of this component 
is linearly related to conceptual age and ranges 
from about 200 msec at 35 weeks gestation to 400 
msec at 45 weeks. Engel used the onset rather than 
the more conventional wave peak as the point for 
measuring latency since he found that blink arti­
facts tend to obscure the peak. This recommends 
itself as a pediatric technique for distinguishing 
full term II run ts ll from premature infants. 

Maturational changes continue in a fairly dramatic 
fashion up to and perhaps past puberty, to be 
followed by evidences of aging, such as increased 
amplitude and length of latency commencing at 
about age 40 17 ,51. 

The interval between infancy and puberty holds great 
promise but is still being explored. Eventually, 
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the AEP should provide a handy measure of central 
nervous system developmental age that could be used 
for comparison with chronological age, skeletal age, 
and so on. This should be of particular interest 
to those doing cross-cultural studies. Arakawa et 
al. 1, found children about age 9 with ariboflavinosis 
showed prolonged AEP latencies to light. This needs 
to be confirmed and compared with developmental 
changes. Does a child with ariboflavinosis simply 
have a less mature AEP, or does he have a distinctly 
different AEP? Actually, the reported effects of 
ariboflavinosis on the AEP are much less obvious 
than effects on power spectra of background EEG. 
However, these preliminary reports are enough to 
merit further study. 

B. Destructive Lesions 

Destructive intercranial lesions make themselves 
known by marked asymmetry in the AEP. Later, we 
will indicate how AEP asymmetry may be a correlate 
of intelligence. This, however, relates to the 150 
msec parietal AEP to flashes. The asymmetry produced 
by cortical lesion is non-specific, gross, and total. 
For example 21 , in a patient with a rather small, 
superficial parietal lesion on the dominant hemi­
sphere, nerve shock contralateral to the lesion pro­
duced little or no response on the affected side and 
an abnormal response on the unaffected side. Nerve 
shock ipsilateral to the lesion evoked a normal re­
sponse on the unaffected side and a slightly reduced 
but otherwise normal late response on the diseased 
side. This is of some theoretical interest since it 
indicates that the late somatosensory AEP apparently 
requires a functioning lemniscal pathway for its 
normal development. The AEP may also be grossly 
asymmetrical when the raw EEG is symmetrical, thus, 
the AEP gives some gain over conventional electro­
encephalography5. 

A prognostic test for brain damage due to cerebral 
circulatory insufficiency has been proposed by 
Crighel et al. 13. They observed that normals show 
an increase in visual AEP amplitude and recovery 
after breathing 02. Hyperoxia also increases AEP 
responsiveness in patients with circulatory insuffi­
ciency when the prognosis for return of function is 
good but may actually have a reverse effect and 
further diminish AEPs in cases that subsequently 
show no recovery. 

C. Irritative Lesions 

In epilepsy, the AEP may not even offer as much as 
does the conventional EEG. Amplitudes may be in­
creased during spike and wave discharge, and the 
late IIringingll of the visual AEP may be more marked 
during interseizure period s5,3 1. In general, how­
ever, the raw EEG serves as well as or better than 
the AEP. Morrel13 2, however, has reported the in­
teresting case of a patient who had an epileptogenic 
lesion in the auditory cortex. Recording from over 
the area of the lesion ordinarily revealed little 
or no response to flash. However, by a prior repet­
itive pairing of flash and click, the patient could 
be II conditioned" so his auditory cortex would give 
an abnormally large visual evoked response. The 
general ity of such a phenomenon, however, remains 
to be explored. 

I I I . I NTELL I GENCE 

The first study relating intelligence to averaged 
evoked potentials was reported by Chalke and Ertl 8 



They used a population with widely dispersed I.Q.s 
and found shorter latencies in the brightest sub­
jects. This has been confirmed in essence by 
Pl um35, although the correlations between latency 
and I.Q. in the study of a more homogeneous group of 
subjects was not impressive. 

The m04t recent work on intelligence is that of Beck 
et al. . They recorded flash evoked responses from 
parietal leads and found that the negative going 
wave at about 150 msec is larger on the right than 
on the left in the bright subjects, but almost iden­
tical on the two sides of the dull subjects. The 
larger right-sided potentials in the bright children 
were also more stable than those of the dull children. 

Unpublished studies from a number of laboratories 
(American Psychological Association meeting, 1968 
Symposium: Brain Function, Cognitive Performance, 
and the Developing Child, San Francisco) suggest 
that various AEP measures may be related to both age 
and adequacy of performance in children under the 
age of 9 years. These same measures also seem re­
lated to performance in children when age is held 
constant. 

In summary, good (older) performance goes with high 
amplitude, assymetry, stability (i .e. low single 
sample variability) and long latency. This last is 
notable since it seems opposite to the finding in 
adults noted above. 

IV. PSYCHIATRIC DIAGNOSIS 

The sensitivity of the AEP to subtle psychological 
and physiological influences makes this potential 
application very intriguing. Certainly for the 
psychiatrist, electroencephalography has been more 
impressive in promise than in payoff. Although 
work such as that by Stevens et al .50 and L. Gold­
stein, et al. 22 , would suggest that all the poten­
tials of the standard EEG have not been exhausted, 
the AEP has a great appeal. 

A. Recovery Cycles 

One of the first applications of averaged evoked 
potentials in clinical psychiatry was made by 
Shagass and his group43. They examined the recovery 
cycle of the early components of the somatosensory 
AEP using carefully place bipolar leads over the 
appropriate sensory field. They gave pairs of 
shocks to the ulna nerve. The first, or condition­
ing shock, was presumed to produce a phasic inhibi­
tion and recovery. This recovery cycle was then 
probed by the second, or test, shock. By varying 
the time interval between the conditioning and test 
shock, the time course of the recovery cycle could 
be plotted. 

Psychiatric patients were found to have slower and 
less adequate recovery than normals. As studies 
progressed, however, it appeared that the situation 
was more complex. Some of the patients studied had 
abnormally large initial responses §o that a delayed 
recovery might be relative (i .e. a small per cent of 
a large conditioning response) rather than absolute. 
Older patients were found to have larger responses, 
and females were found to have both larger responses 
and shorter latencies. This problem was tackled and 
solved by means of statistical procedures which re­
moved the effect of the conditioning response ampli­
tude. In spite of this, the reduced recovery cycle 
was still observed. 
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This appears to be a rather general phenomenon. For 
example, they counted 10 peaks in the first 80 msec. 
of the somatosensory averaged evoked potential, and 
found the recovery cycle effect to a greater or 
lesser degree in all of these peaks. Furthermore, 
the phenomenon was found in almost all psychiatric 
conditions. In fact, the only psychiatric patients 
who did not differ from normals were a group com­
posed of psychoneurotics with anxiety and d~pression 
and a group suffering from psychophysiological re­
actions. 

These studies were done with fairly intense stimuli 
More recent studies using milder stimuli have shown 
that some subjects who show a delayed recovery with 
high intensity stimuli may show a supernormal re­
covery with iow intensity stimuii. 

The recovery cycle phenomenon seems to be a real one, 
for other laboratories have confirmed it, using 
visual evoked potentials48 ,24. However, since de­
pressed recovery to intense stimuli can be observed 
in such a variety of conditions, it would seem pre­
mature to attempt any clinical use. However, as 
the complexities of the recovery cycle are unraveled 
and the underlying neurophysiology is clarified, 
this technique may offer promise for clinical use. 

Inter-modal recovery cycle effects have been des­
cribed by Goff21. These effects are highly subject­
dependent and can be noted with interstimulus inter­
vals as great as one second. This intriguing effect 
has yet to be inv_estigated for possible cl inical 
significance. 

B. Contingent Negative Variation 

If the active electrode is place somewhere over the 
front of the head, a slow negative-going wave can be 
observed during the period that the subject antici­
pates a stimulus. This slow wave has been called 
he contingent negative variation (CNV). Because of 
ts slow t~me course, it must be recorded with di­

rect coupled amplifiers and relatively nonpolarize­
able electrodes. In the usual experimental situa­
tion, a warning stimulus is presented, and then, 
after a predetermined interval of, say, two seconds, 
a second stimulus is presented to which the subject 
must make some response. The CNV goes to a maximum 
just before the final or "imperative" stimulus, then 
resets to normal. 

This QUenomenon was discovered by Grey Walter's 
group~ ,12. They observed that in reaction time ex­
periments, the amplitude of the CNV is related to 
the speed of the response. It seemed to them as 
though this reflected a kind of expectancy--the 
greater the expectancy, the higher the negative wave, 
and the faster the reaction time. 

The CNV can be ovserved when the second stimulus 
does not require any gross motor response as for ex­
ample in viewing the presentation of a picture. How­
ever, the amplitude of the CNV has been shown to be 
related to the amount of energy required by the 
motor response if motor response is, indeed, re~ 

qui red37 . If the second stimulus is occasionally 
omitted, then, presumably, the subject's expectancy 
is reduced and the negative contingent wave is also 
reduced. 

Grey Walter has suggested that some level of intelli­
gence is necessary for the development of the contin­
gent negative wave so that this can be used as an 



estimate of intelligence. It is reduced in anxiety 
and in schizophrenia, is increased in obsessive 
neuroses, and is absent entirely in psychopaths. 
Thus, it would appear that the contingent negative 
wave might be the basis for an entire psychodiag­
nostic inventory55. 

There are, however, some problems with this. DC re­
cordings in an uncooperative subject can be difficult 
because lead sway may cause blocking of the ampli­
fier. Eye movements also are difficult to exclude 
as a factor in slow wave changes, particularly with 
frontally placed electrodes. Naatanen33 has pre­
sented evidence that phasic arousal of any sort 
causes a negative DC shift and that this is the 
cause of enhanced AEP amplitudes with attention. 

An important series of objections is raised by 
Vaughan52 . He finds that the contingent negative 
wave actually occurs over motor cortex and parallels 
an inhibition of motor activity that sets the stage 
for a sudden release of a motor response. Vaughan 
suggested that most of Grey Walter's findings could 
have been predicted by looking at the distributions 
of the reaction times. For example, the relation­
ship between reaction time and the CNV reflects the 
fact that when reaction times are slower, their 
distribution is more spread out. In such a case, if 
peak CNV coincided with response, peak CNVs would 
not be well time-locked to the stimulus when react­
ion times were slow, and the average CNV would be 
smaller than in a more closely time-locked average 
associated with fast reaction times. To demonstrate 
this, he averaged backwards from the motor response 
in situations of fast and slow reaction times and 
showed that the CNV was not different in the two 
conditions, when one thus time-locked the averaging 
to the response rather than to the stimulus. 

The CNV is also accused of being a motor inhibitory 
potential because the amplitude of the H-ref1ex 
(the monosynaptic reflex observed by stimulating 
the nerve in the pOR1itea1 fossa and recording from 
the gastrocnemius), is reduced in proportion to the 
amplitude of the CNV. Obviously, the CNV supports 
considerable controversy. Nevertheless, the poten­
tial of the CNV for psychodiagnostic procedures 
should not be discounted at this time. 

C. Stimulus Intensity Control 

Buchsbaum and Si1verman6 intropuced the averaged 
evoked potential amplitude in the investigation of 
a phenomenon that they call stimulus intensity con­
trol. Based on the work of Petrie34 and of Si1ver­
man47 they assume that some people are able to 
reduce their r~sponsiveness to strong stimulation. 
Petrie had used a kinesthetic figural after effects 
measure to assess this tendency. She found that 
after interposed tactile stimulation, some subjects 
would judge the width of a bar to be narrower than 
previously. Such people who did this were called 
II reducersll and she found such people to be less 
sensitive to pain. Silverman had also noticed that 
nonparanoid schizophrenics tended to be reducers. 
Buchsbaum and Silverman then reasoned that the 
characteristic of these people was an ability to 
reduce their responsiveness to strong stimulation, 
and if this was the case, they should show a reduced 
AEP to intense light stimulation. 

They used a mastoid to vertex derivation and varied 
the flash of a light provided by a Grass Photostim­
u1ator. They found that the subjects classified 
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as reducers on the kinesthetic figural after effects 
measure showed less increase in the amplitude of 
evoked potentials as the intensity of the stimulus 
was raised (and some showed a paradoxical decrease!). 

This correlation between IIreducingll as determined 
by visual AEP and as determined by kinesthetic judg­
ment has been confirmed using 10 Hz sine wave light 
as a stimu1us49 . Thus, the phenomenon seems to be 
a genuine cross-modal ity perceptual style. The rel­
evance of this for clinical work (e.g., pain sensit­
ivity, schizophrenia, etc.) remains to be determined. 
However, preliminary data from our laboratory indi­
cates that chronic LSD users tend to be IIreducersll 
while feeble minded children tended to be lIaugment­
ers.1I 

D. Auditory AEP Variability and Schizophrenia 

The thought disorder of schizophrenia is character­
ized by variability of behavioral responses. It 
appears that an increase in auditory AEP variability 
parallels this behavioral variability. 

Some years ago we designed an AEP procedure to study 
schizophrenic thought disorder. In this procedure, 
tones of 600 and 1,000 Hz are repeated in a hap­
hazard order, and the subjec~ is told to ignore the 
tones. The subject, in a quiet, semidark room, 
watches his brain wave (C~ - A1) on an oscilloscope 
monitor. After demonstrating the effects of tens­
ing muscles, rolling eyes, and so on, he is asked 
to maintain a stead EEG. Under such conditions the 
tones seem trivial and, in nonschizophrenics, the 
high (1,000 cycle) tone averaged evoked potential 
and the low (600 cycle) tone averaged evoked poten­
tial will be almost identical. In other words, the 
two physically different tones evoke almost identi­
cal responses when no particular psychological dis­
tinction is being made between them. However, when 
a normal individual has reason to distinguish be­
tween the tones, there is then a difference between 
the two AEPs. 

A variet440f models of schizophrenia ranging from 
Shakow's notion of segmental set to McGhie's30 
notion of over-inclusiveness predicted that schizo­
phrenics would behave as though they had some reason 
to make a distinction between these tones. In 
assigning psychological significance to difference 
between tones, the schizophrenic should also show a 
differentiation in his AEPs. That is to say, the 
averaged evoked potentials to the two different 
tones should be more dissimilar in the schizophrenic. 

In the situation described above, schizophrenics 
tend to have more dissimilar AEPs than do nOn­
schizophrenic psychiatric patients. And among 
schizophrenics, disturbed nonparanoid patients have 
the most dissimilar AEP s7,25,26. 

There are, of course, a number of possible explana­
tions for such an observation. One possibility is 
the effect of drugs. In our hospital, we have no 
good facility for keeping schizophrenics drug-free 
for the several months that is probably required. 
However, we are able to follow patients as their 
clinical course fluctuates and have been able to 
show that two tone averaged evoked response test 
results vary in parallel with the thought disorder 
even while drug dose remains relatively constant. 
Furthermore, normal values are obtained from neurotic 
patients and patients with affective psychoses even 
though such patients may also be on fairly large 



doses of phenothiazines. 

Our findings could also result from the use of corre­
lation coefficients as a measure of similarity be­
tween the two AEPs. Such a measure cannot be inter­
preted like ordinary correlation coefficients since 
the points along an AEP are ~ot serially independent. 
Nevertheless, a high correlation between two averaged 
evoked potentials indicates that the two curves are 
very similar. Two dissimilar curves (yielding low 
correlations), could result from consistent distinc­
tion being made between individual evoked potentials. 
On the other hand, low correlations could also be 
produced by a low signal-noise ratio (e.g., a large 
amount of background activity, considerable irregu­
larity in evoked potentials or low voltage evoked 
potentials). This is a serious problem. for schizo­
phrenics tend to have low voltage evoked potentials. 
Furthermore, we have found both a correlation be­
tween amplitude and clinical state and also a corre­
lation between the two-tone evoked potential measure 
and evoked potential amplitude. 

In our most recent study we use the old two-tone pro­
cedure and in addition a mock two-tone procedure 
where both "tones" were 1,000 Hz. The correlation 
measure distinguished schizophrenics from normals in 
both the old and mock procedures. When only a 
single tone was sounding the correlation measure can 
only be reflecting sample variability. 

This matter of AEP variability is made more explicit 
by computing the standard deviation at each AEP time 
point. If, for each AEP, the maximum peak to trough 
amplitude is plotted against the largest one of the 
standard deviations, then it can be seen that the 
two are highly correlated. A regression line will 
however separate schizophrenics (low amplitude, high 
standard variations) from normals. 

An elegant discriminant function measure developed 
by Donchin was the only one of several methods tried 
that distinguished the real two-tone from the mock 
procedure. Yet schizophrenics did not differ from 
normals significantly on this measure. Although 
some problems of background EEG remain to be solved 
it seems that auditory AEP variability accounts for 
the two-tone correlations sensrtivity to schizo­
phrenic thought disorder. 

This AEP test is rarely of value clinically. Occas­
ionally it has helped confirm the diagnosis of 
hysterical pseudo-psychosis. Although patients with 
depression and with character disorders usually have 
normal two-tone AEP scores, an abnormal score is not 
specific to schizophrenia. For example, Korsakoff 
patients have low scores (low correlations) and two­
tone AEP scores correlate with clinical rating of 
confabulation and confusion in such patients29. 

CONCLUSION 

The AEP has been feasible as a routine procedure 
for almost 10 yeais. Except fOi the diagnosis of 
deafness in infants, it st ill rema i ns a resea rch 
technique. The promise of clinical utility seems 
brighter each year, however, and the challenge for 
the researcher to close the gap between laboratory 
and cl inic is becoming harder to ignore. 
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A DESIGN CRITERIA FOR DOC SYSTEM FOR 
ULTRASONIC IRRADIATION OF BRAIN 

Dr. Hideo Seo 
Biophysical Research Laboratory 
University of Illinois 
Urbana, III inois 61801 

ABSTRACT 

Ultrasound irradiation for quantitative neuroanatomy at the 
Biophysical Research Laboratory requires 0.001 inch accuracy 
positioning of the transducer anywhere in the brain so that 
carefully controlled lesion can be introduced without des- 1 2 
troying the intervening brain tissue except at its focal point. ' 

The above operation is done manually until the forthcoming use 
of automatic DOC system to prevent human errors and reduce 
operation period substantially. 

This paper describes the basic procedures and steps desired 
for optimum design for automatic irradiation. The associated 
hardware for the PDP8 interface and software programs for the 
system diagnostics and the routine operating procedures are 
discussed. 

INTRODUCTION 

The ultrasonic irradiation system developed at 
the Biophysical Research Laboratory requires the 
precise positioning with equally controlled irrad­
iation in power levels in recent years. The latest 
transducer with a xtal oscillator plate and plastic 
lens can focus the ultrasound field to a conical 
shape and introduces a carefully selected lesion 
and the center of the focus can be positioned to 
0.001 inch without destroying the intervening 
tissue. Histological study of the above animal 
brains (primates and cats) provided the finest 
of quantitative network structure of the nuclei 
in detai 1. 

Manual positioning of the transducer to place 
its focal point to exactly preselected spots and 
subsequent irradiation of ultrasound are slow 
and tedious procedures; the tension of the oper­
ator in order to prevent errors increases as the 
number of irradiation increases. Since the above 
procedures are repetitive in nature and similar, 
this type of fatigue can be removed and the tech­
nician could run with less supervision the irrad­
iation process if the system is driven by a small 
and reI iable process control EDP on-l ine system. 
Also, it is felt that the selected number of 
lesions could be increased by more than a factor 
of 100 with other advantages such as simple data 
storage and retrieval capabil ities. 

The basic criteria in the automatic system for 
irradiation involves the following requirements: 

(a) Precision beam plotting of transducers, 
(b) System diagnostic and tests before irrad­

iation, 
(c) Data logging of the operating step for 

irradiation, 
(d) Infalliable and simple programming methods 

to avoid human errors in certain sequen­
tial procedures. 

The first dry run operation of the entire sys­
tem was conducted successfully in November, 1968 
and proved the feasibil ity of the automatic irrad­
iation system. 
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IRRADIATION SYSTEM 

A block diagram of the overall system is shown 
in Fig. 1. The heart of this system is a 4K PDP8 
with additional 4K core storage. Inputs as well as 
outputs are TTY ASR 33 and high speed paper RIP 
(Model PCOI and Model PC03). A combination of lOT 
pulse circuit~ and interrupt facil ity are employed 
for appropriate selection of the peripheral system 
components and also for proper sequencial steps 
within the specific system components. 

The positioning of a transducer is accompl ished 
by three stepping motors (Superior Elec. Co.) which 
drive the lead screws of the Bridgeport mill ing 
machine carriage. Each stepping motor is pulse 
driven both ways by its indexer from the manual 
setting, or via PDP8 interface. The hardware 
feature of the indexer prevents backlash error. 

The sensing of the position of the transducer is 
done with the 1 inear measurement system by Philbrick 
Inc., within 0.0001 inch, utilizing the optical en­
coder, metallic grating 1 ines on a glass plate, and 
the reversible electronic counter. 

The output power level is regulated by the GR 
Precision Capacitor (Cs). The angular positioning 
of Cs is done by the same stepping motor indexer 
combination as in the x,y, or z positioning. The 
angular encoder is suppl ied from Theta, Inc. 

The irradiation period is set by the program. 
The last block indicated by the RADIATION is the 

ultrasound generator and shown in Fig. 2. This is 
a X-tal controlled R.F. amp 1 ifier in mHz range which 
drives the ultrasonic transducer. The power level 
of the output in Fig~ 2 is up to 2 KW. However, we 
have a facil ity to produce 200 KW max. if needed. 

OPERATIONAL PROCEDURES 

(a) Precision Beam Plotting of Transducers: 
This program is to determine the focal point of 

the ultrasonic transducer. The thermocouple is 
initially placed near the focal point. Ultrasonic 
field pattern is then properly scanned in order to 
determine the exact position of the focal point. It 
is convenient to select the path of scanning in the 



direction parallel to x,y or z axis. A small pro­
gram which makes a decision to select the minimum 
number of travels of the transducer is incorpor­
ated. 
(b) System Diagnostics and Prel iminary Test 

Before Irradiation: 
It consists of all I/O tests by operator inter­

vention. For example, if the key T on TTY key­
board is depressed with the proper X-coordinates, 
the machine carriage is moved to that position and 
the X-sensing mechanism transmits the X-coordinate 
to PDP8 with the TTY printout. This is adequate 
and simple for X-positioning and sensing. The 
operator will repeat the similar test procedure 
by means of TTY keyboard intervention. Also, 
small logic program is added to check if all nec­
essary tests are completed. If not, the program 
does not repiy with printout a message wnlcn states 
lithe test is completed". The operator should 
look carefully at the TTY printout again so that 
what tests were missing. Therefore, t~e operator 
must depress all required keys on TTY before 
entering the irradiation procedure. 
(c) Irradiation Program 

A new version of the operating system for auto­
irradiation is being compiled and tested. PDP8, 
(1) computes many irradiation sites from the 
given X-ray data, (2) positions the transducer, 
(3) records the resultant coordinates sensed by 
the position detectors, and finally (4) irradiate 
the given amount of ultrasonic energy with the 
power level specified by Cs and also with the 
period given. 

In this system, infalliable and simple pro­
grams are added to avoid human errors in certain 
p rocedu res. 

Some of the system components are not automated 
because of simplicity and less chance of error, 
however, we do not wish to overlook these errors. 
The+bath and brain temperatures must be kept with­
in - .1 degree C. This temperature must be 
observed and verified at least for every five 
irradiations. The program simply count the number 
of irradiations and ask operators to look at the 
temperature and to press key T on TTY keyboard for 
verification if the operator forgets to press key 
T on TTY after five shots ~nd proceeds. Also, 
similar programs are included to confirm the oper­
ator to see if high and low 1 imits of A.C.R.F. 
power levels. The high power 1 imit test will pre­
vent the damage of expensive transducers and also 
the undesirable destruction of tissue. The low 
power I imit test will avoid missing proper lesion 
introduction to the tissue. 

SUMMARY 
The preliminary test shows that the human 

error due to fatigue may be almost el iminated in 
this automatic system and that the number of irrad­
iations can be definitely increased (10 to 100 
times) by this procedure. 

The separate program on beam plotting reduces 
the usual manual procedure to a factor of at least 
10. 

Also, considerable time saving is expected in 
the orderly daily logging of the system test and 
the operational procedure. 

This is a precision N/C machine. If cutters 
and bits are attached instead of the transducers 
this system can cut the transducer parts from 
the program and data tape. 

This shows the great advantage of employing 
N/C system combined with DOC system in the Bio­
medical area and could obtain a high degree of 
accuracy, automatic logging of test and operation, 

238 

reduction in processing time and the number of 
operators where procedures are long and tedious. 
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AN APPROACH TO MICRO-IMAGE ENCODING AND AREA SCANNING 
OF CELLS OR NUCLEOLI OF BRAIN 

Dr. Hideo Seo 
Biophysical Research Laboratory 
University of III inois 
Urbana, III i no i s 

ABSTRACT 

A new system consists of the three sub-systems, namely (1) 
~DP338-PDP8, (2) optical sybsystem which overlays visual dis­
play and photomicrographic images, and (3) photomicrograph 
projector. 

Significant contributions in this system.are i? the u:e o~ a 
1 ight pen with visual display as a data Inputting ~ev~ce In­
stead of mere functional control of the computer via Interrupt 
mode and in the optical image superposition technique. 

The boundary of a cell or nucleous is traced with alight pen, 
and the area is computed immediately within three percent 
accuracy. Real microscopic image is also successfully pro­
cessed with CCTV (closed Circuit Television System). 

Several ophthalmoscopic attachments were designed for the 
1 ight pen so that the tracing of the image boundary can be 
made easily. 

INTRODUCTION 

The physical neuroanatomy research at the Bio­
physical Research Laboratory, the University of 
III inois called for the precision area measure- l 2 
ment of cells and nucleol i in the animal brain. ' 
The initial attempt was made by using a planimeter 
for the area measurement of the cells and nucleol i 
in the photomicrograph. The specimen was first 
magnified optically with a Leftz microscope and 
the photomicrograph was taken in 3S mm black and 
white film. Each negative was then enlarged with 
the ordinary photographic enlarger ten times and 
the final positive print was obtained. The aver­
age size of the nucleol i in the above positive 
print was in the order· of one square cm. The 
routine area measurement taken by a planimeter 
introduces an error greater than 10%. The accur­
acy of 3% or better is desired for our cell scan­
ning for the cell population distribution measure­
ment in the latest quantitative physical neuro­
anatomy research. 

In view of the above requirements, the archi­
tecture of the first real istic and economical 
system was formulated as shown in the Fig. 1. The 
above new system consists of the following three 
subsystems: (1) Qirect Qigital Computer Controlled 
(DDC) display sub-system (PDP338-PDP8), (2) opti­
cal sub-system which produces overlay of visual 
display and photomicrographic images, (3) photo­
micrographic projector. 

PDP8-PDP338 SUBSYSTEM 
The computer organization in this paper is 

shown in Fig. 2. PDP8 with 4K main memory is 
augmented by 12K extra core memory. Two DEC 
tape units are used for high speed data trans-
fer with the data break mode. Also, TTY ASR 33 
is attached with a standard tape reader/punch 
and typewriter keyboard. PDP338 has alight pen 
and program display buttons. A l024xl024 discrete 
point raster is used for the visual display. PDP 
338 has hardware vector and character generators. 
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Data transfer ~o and from PDP is via data break 
mode. 

OPTICAL SUBSYSTEM 
The heart of the optical subsystem which super­

imposes the photomicrographic images onto the vis­
ual display scope of PDP338 was the dichotomic 
mirror. The mirror was constructed at EERL (Elec­
trical Engineering Research Laboratory), Univer­
sityof Illinois. A glass plate (SIIXSIXI/32") is 
placed inside the large vacuum deposition system 
and the silver coating of ISO 200 A produced a 
satisfactory mirror. 

In order to facil itate the proper and firm mount­
ing of the optical system components, namely, pro­
jector, opaque screen on which the photomicrographic 
image is projected, and the half mirror, an en­
closed oblong box of 1 'xl ' x4 1 was constructed with 
plywood. The box was mounted on two wedge-l ike 
supports so that the tilted surface of the display 
oscilloscope may be co-planar with the mirror image 
plane of the photomicrograph image as shown in the 
photographic print I. 

PHOTOMICROGRAPH PROJECTOR 
A small movie camera Bolex-Hl6 attached to the 

ocular end of a microscope with a syl indrical 
coupler and a 16 mm motion picture of the photo­
micrograph is taken frame by frame. The micro­
scope was the Olympus Model EHCrTr. The above 16 
mm movie film is then developed and projected on the 
opaque screen by the movie projector Bolex-G816. 
The advancement of the movie film was made by 
manually turning the gear mechanism. 

SYSTEM PERFORMANCE 
The accuracy of the area of the cell surrounded 

by its boundary depends on the qual ity of the photo­
micrograph and the number of dots (bright spots) 
which represent the boundary on the display screen. 

There was no problem in setting the accuracy of 
the area on the display screen by the polygoral 



approximation to 3% in our experiment. This 
accuracy was tested by placing several stencils 
which were calibrated to 1% before the experiment. 

A sl ight difficulty was encountered in tracing 
the cell boundary due to the uncertainty of photo­
graphic reproduction. 

CONCLUSION 
(1) This is essentially a machine-aided image 

enhancement and area measurement system. Depending 
on the qual ity of photographic images, the accur­
acy of measurement can be made to 3% or better 
whereas 10% is the 1 imit of measurement by the 
ordinary planimeter. 

(2) The processing time of this system in­
creases the output production more than ten times 
easily. 

(3) This system provides two additional ad­
vantages: 

(a) Economical storage of data: The coord­
inates of the boundary and its associated area 
can be recorded in the digital tape in the most 
economical and compact manner. 

(b) Verification of data: the stored coord­
inates and area associated with the particular 
cell can be displayed on the visual display screen 
from the magnetic tape so that the old record of 
tracing can be verified by another operator or 
yourself at a later date. 

(4) The same system can be used to count the 
total number of cells in the specifically bounded 
area. The minor change in the program leaves a 
flag (visually observable) near the cell which 
should be counted. After all the desired cells 
are tagged, the stored program can be initiated 
to count the total number of flags (which is equal 
to the number of cells) in less than a fraction 
of a second. 

(5) The steep and tIlted surface of the oscillo­
scope in this system made it difficult to trace 
the cells physically. However, the scope can be 
mounted so that the face is horizontal and then 
there will be no difficulty in the tracing. 

(6) A similar system with CCTV (COFU System) 
and microscope (Olympus Model EH Cr Tr) was 
tested satisfactorily as shown in Fig. 3. In the 
latest laboratory test of the similar system with 
the photomicrograph image from the video tape was 
found very satisfactory. The photomicrograph was 
taken by Sony's CCTV system with the Leitz micro­
scope. 
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USE OF A PDP 8/S COMPUTER FOR ON-LINE MONITORING AND CONTROL 
OF BLOOD GLUCOSE IN HUMAN SUBJEC TS 

Arnold Henry Kadish, M. D., Cedars Sinai Medical Research Institute, Los Angeles, 
California, and Robert L. Litle, BeckInan Instruments, Inc., Fullerton, California 

ABSTRACT 

During the past several years, a continuous monitor for blood glucose has been 
used to study the response of human subjects to various inputs, thus providing 
dat9- for modeling the human homeostatic system. Recently, a PDP-8/S com­
puter has been incorporated into the system making possible on-line reduction 
of the data. In addition, a control system has been developed whereby computer 
derived control signals regulate glucose infusion rates to the subject. This has 
made possible more detailed studies of human natural control mechanisms. 

INTRODUCTION 

The study of glucose homeostasis and its aberrations 
has received considerable impetus from the develop­
ment, during this decade, of methods for the con­
tinuous monitoring of blood glucose in human sub­
jects. 1, 2, 3 
In our laboratory, continuous glucose monitoring 
is carried out on a routine basis in support of two 
areas of re search: 
1. Theoretical studies of the homeostatic control 
system, i. e. modeling studies 4, 5 and 

2. Studies in insulin-carbohydrate utilization 
relationships as they affect diabetic therapy. 6 

Experiments typically include intravenous tolerance 
tests (glucose, insulin, glucagon, growth hormone), 
and control experiments in which various glucose 
input policies are eInployed in an attempt to main­
tain a constant glucose level following the adminis­
tration of insulin in various dose s. 

Since Inost of the data processing, siInu1ation stud­
ie s, file maintenance, etc. for the research are done 
in batch or tiIne-sharing modes on large computers, 
it was decided to dedicate a real-tiIne system to 
acquisition and control functions, with a IninimuIn 
of data processing. Since the required data rates 
are very slow K =4/min) and data storage require­
Inents are Inodest, a small, slow computer is ade­
quate. 

LABORATORY SYSTEM 

The experiInental arrangeInent is shown in figure 1 .. 
Signals from the glucose Inonitor (0-10 MV.) are 
aInplified and presented to a standard 138E A/D 
Converter interfaced with an 8/S. NUInerical input 
and output are by way of an ASR33 teletype. Not 
shown are a 60 HZ l2-bit clock, used for saInp1e­
tiIning, and an analog recorder at the glucose 
monitor. The latter is a research prototype de­
veloped froIn a version previously de scribed. 7 

The flow systeIn required to transport blood con­
tinuously through the Inonitoring systeIn of nece ssity 
introduces transport delay into the glucose signal. 
Under typical operating conditions delay tiInes of 
about 5 Inin. are observed. 
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CONTROL PREDIC TORS 

This tiIne delay introduces a complication into the 
control algorithm. We have used a conventional 
approach to control--proportional, derivative and 
integral modes, but the error signal, its derivative 
and integral are predicted values: 

C = Kl*EP + K2*D(EP) / DT + K3* S (EP) DT 

Where EP is the predicted error signal. 

The prediction, or extrapolation, froIn current data, 
is done by least-squares fit of a function of M pa­
rameters and time, to the current data point and 
its N -1 predeces sors (N)=M). To avoid long initial 
delays and to simplify the fitting process we have 
used N=3, i. e. a three -point predictor "window", 
and have used only polynoInial predictor s (1st or 
2nd degree). Our initial work has been with a 
quadratic. While this gives a good fit to rapidly 
changing glucose levels, the use of three points to 
fit a three parameter curve leaves no degree of 
freedoIn for noise-smoothing, hence the quadratic 
predictor is quite noise-sensitive. SiInulation 
studies have shown that in the presence of our 
typical noise (1 mg% glucose), a 3-point linear 
predictor will generally perform better (in the sense 
of minimum RMS deviation froIn setpoint) than a 
quadratic. Figure 2 shows the predictor equations 
for the linear quadratic cases. 

CONTROL SYSTEM 

In our work to date the control loop has been closed 
through a hUInan operator Inanning a SigmaInotor 
variable infusion pump. The control signals are 
scaled to correspond directly to meter readings on 
the pump. As a control value is typed out at the 
TTY, the operator sets this value on the pUInp. 

A completely automated control system is currently 
under construction. In this system each of twelve 
individual inputs may be enabled froIn a single 

(12 -bit) control word. Where Inultilevel control of 
a variable is required, e. g. for glucose, several 
bits Inay be grouped in parallel. For example, as 
shown in figure 3, bits 8-11 of the control word 
activate four parallel input pumps operating at 
relative pUInping rate s of 1:2 :4: 8. Any of 16 dis­
crete control levels can thus be selected. Other 
variables than glucose, viz. pH, electrolytes, etc. 
will be entered for control in subsequent studies. 



PROGRAM OPERATION 

The requests and typical responses generated by 
the program in the initialization phase are shown 
in figure 4. 

A. Name:, Date:, Miscl: 
Provide for entering identification information. 
B. Accepting system baseline: 
When this message is printed the program enters 
an "idle" phase. When a carriage return is entered 
at the keyboard the current analog signal is con­
verted and the value stored as the zero glucose level. 

Following assignment of the base line the subject 
is catheterized. The time delay and time consta.l~t 
are determined from the analog record and entered 
at the keyboard. Meanwhile a sample of blood ob­
tained at catheterization has been analyzed for 
glucose. 8 This value is then entered as the value 
of the calibration standard. 

C. Accepting calib. : 
Program idle s until carriage return is received. 
Then current analog signal is assigned to the glu­
cose level of the calibration standard. All sub­
sequent calculations of glucose value s are relative 
to this standard value. 

D. Setpoint: {etc} 
The control setpoint may be entered as a numerical 
value or assigned the current glucose level. 

E. Kl = {etc} 
The control parameters are entered. The example 
is of proportional control only {K2=K3=0}. 

F. Headings 
The headings represent respectively, time, glu­
cose, predicted glucose, predicted error, pre­
dicted derivative, predicted integral, and control 
signal. 

After the headings are printed the program idles 
until a carriage return is entered. This synchro­
nizes time zero, and initiates data acquisition and 
control. 

Figure 5 shows print-out during execution of the 
program. 

RESULTS 

Figures 6-9 show some typical results obtained 
with the monitor/control system. 

Figure 6 shows an intravenous insulin tolerance 
test in a normal subject. Insulin was infused at 1 
unit/min during the first three minutes. At the 
nadir of the glucose curve one mg. glucagon was 
administered i. v., and produced the rapid rise in 
blood glucose shown. Results of this type of test 
are used for determination of control parameters 
for models of the glucose regulatory system. 

Figure 7 shows the results of a control experiment 
following infusion of three units of insulin. An 
initial open-loop policy was followed. Figure 8 
shows a more successful control run for the same 
insulin dose. In this case full closed-loop control 
was used. 
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Figure 9 shows results obtained with a severe 
diabetic. The initial high fasting level of glucose 
was reduced by i. v. insulin injection before the 
control experiment. The control phase followed 
the injection of 5 units of insulin. 

REFERENCES 

1. Weller, C. et al., Ann. N. Y. Acad. Sci., 
87: 658 1960. 

2. Ferrari, A. and Kessler, G. IBID., 729 

3. Kadish, A.H., Am. J. Med. Elect., 3: 82 1964 

4. Charette, W. P., Kadish, A. H. and Sridhar, R. 
Math. Bio. Sci. Spec. Ed. 1969 

5. Charette, W. P., Thesis, Cal. Inst. 
Technology, 1968 

6. Kadish, A. H., Proc. 5th Ann. Symp. 
Biomath. & Compo Sci. 1967 

7. Kadish, A. H. and Hall, D., Clin. Chern. 
11: 869 1965 

8. Kadish, A. H., Litle, R. L. and Sternberg, J. C. 
Clin. Chern. 14: 116, 1968 

ACKNOWLEDGEMENT 

These studies were supported by a John A. 
Hartford Foundation Grant. 



Figure 1 

GLUC~I 

MONITOR 

GLUCOO-E LEVEL + 
COlll'ROL S lGlIlL 

Glucose Monitor/Control System 

1381 

A/D 

PDP 

8/S 

3-POINT PREDICTOR 

FIT: 

FRCM: THREE EQUALLY SPACED POINTS, b_1, bo ' b+1 

LINEAR 

8 0 = (b_1 + bo + b+1 ) /3 

81 = (b+1 - b_1 ) /2 

8 2 = 0 

Figure 2 

QUADRATIC 

8 = b o 0 

81 ~ (b+l - b_1 ' /2 

82 = (b+l + b_1 -2bo ) /2 

Predictor Equations 

249 



o '} 3 4 s 6 7 8 9 10 11 

OCIlla 

I _____ J I 
I 
J 

______ 1 

'JA,'1E: r(IC;.iA~LJ aRrA,'JT 
LJ ATE: 1 2 I) C TuB E K 1 9 6d 

s 

4 

2 

1 

!IlL. 
1A1'I 

Figure 3 Control Logic 

'1 I SCL: t'KI)P:)K r I I) \J AL CtJ'J rKJL '1:) uE 
4CCEPTI~G StSTEM BAS£LI'JE; 
T~A~S?J~T DELAt: 5 
rI~~ C0~STA~T: 1.5 
GL~CQS£ LEVEL OF CALIB. STD.: 106 
~CCEPTI\JG CALIS. 
SETP0I"T: r<ET~ ESTABLIS,;J C~ ACCEPT; RU8, 480~T. 

l{1= -.72 
"<2= \1 
{3= (1 

AT A PA 

Figure 4 

PE PD 

Program Print-Out: Initialization 

250 

PI c 



+ 38 + 99.32 + 97.65 9. 18 .41 + 155.66 + 6.61 
+ 4.1 + 98.48 + 100.99 5.84 + 1 .04 + 147.45 + 4.20 
+ 4U + 96.81 + 95. 14 11 • 68 .41 + 127.70 + 8.41 
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+ 6'-3 + 1'13.49 + 103. 49 3.33 + .00 25.45 + 2.4;) 

Figure 5 Program Print-Out: Execution 
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Introduction 

A COMPUTER CONTROLLED CONTRACTILE COMPONENT 
LENGTH CLAMPING TECHNIQUE FOR SKELETAL MUSCLE 

Paul J. Paolini, Jr. 
Division of Biological Sciences 

The University of Georgia 
Athens, Georgia 30601 

ABSTRACT 

An experimental method has been devised to allow the 
computer-controlled determination of stress-strain char­
acteristics of the parallel and series elastic components 
(PEC,SEC) of excised amphibian skeletal musc.le, according 
to the well-known three component mechanical analog of 
Hill. The information is used to calculate an extension 
vs time waveform of the muscle's SEC during an isometric 
twitch; the calculated curve is mechanically applied to 
the muscle during a subsequent twitch so that, on the 
average, no contractile component (C~) shortening is 

"allowed to occur. The muscle's tension and" volume change 
waveforms are recorded with this condition imposed. The 
tension-time response, corrected for PE~ extension during 
the applied stretch, represents the muscle's active state 
intensity vs time curve, Le. active tension:developed at 
constant CC length. The system employed to control and 
moni tor contraction p.arameters consists of an EAE-equipped 
PDP-8 computer and Teletype, a multiplexed A-to-D con­
verter, a set of programmable relays, a display interface 
to an oscilloscope, and the required length, tension and 
volume transducers. One of the interface's two D-to-A 
converters provides the analog input to a high speed 
servo motor which sets muscle length. Program output 
consists of many keyboard-selectable oscilloscope display 
formats, x-y pen recorder graphs, and data table listings 
on the Teletype. 

Muscle Contraction Model 

An accurate analysis of the variations in 
several physical properties during the contract­
ion of living, excised muscle (and the dependence 
of these variations upon the many physicochemical 
factors which affect contractility) continues to 
be a major goal of the muscle physiologist. This 
task has been facilitated considerably in recent 
years by the advent of small laboratory computers 
which make possible on-line acquisition and re­
duction of data otherwise'inaccessible during 

The configuration of the three elements consti­
tuting the Hill mechanical analog of muscle is 
shown in figure 1.1 This analog provides a sim­
plified operational model which can successfully 
explain many of the fundamental properties char­
acterizing skeletal muscle behavior, i.e. the 
active and passive isometric length-tension 
curves, the force-velocity relationship, the 
series elastic tension-extension curve, and the 
active state intensity vs time curve. 2 

the course of the physiology experiment. 
The Lechniques outlined in this paper rely 

not only upon the computer's ability as a high 
speed data processor, but also upon its potential 
as a feedback control device, where independent 
parameters (the input) are regulated in real time 
during the experiment to produce a desired be­
havior of dependent variables (the gytput). Spec­
ifically, the techniques allow (1) a single twitch 
contraction of muscle to be switched almost 
instantaneously from isometric (fixed length, 
tension varying) to isotonic (fixed tension, 
length varying) mode by using a program controlled 
servo motor to continuously adjust muscle length, 
and (2) a calculated length change to be imposed 
on the muscle during a twitch in such a way as to 
maintain length constancy of its contractile 
element (the active element of the widely accept­
ed mechanical model of muscle, described below) . 
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In the illustration, "CC" designates the 
muscle's contractile component, that portion 
capable of active shortening and tension develop­
ment. "SEC" represents the series elastic com­
ponent, an inert, undamped elastic structure 
which transmits the force developed by the CC to 
the muscle's external connections. An additional 
elastic property of the muscle, one which acts in 
parallel with the CC and the SEC, is the parallel 
elastic component, or "PEC." While some corres­
pondence exists between the three lumped para­
meters and identifiable histological structures, 
these properties are in general distributed 
throughout the muscle. 

The SEC obscures the actual time course and 
magnitude of the ce's capacity to shorten and 
develop tension: these are the mechanical para­
meters which are of greatest interest to the 
physiologist. Although the so-called force-



velocity relation characterizes the CC's rate of 
shortening as a function of external load, obtain­
ed in a sequence of isotonic contractions, no 
simple method is available for establishing the 
time course and magnitude of CC tension develop­
ment during a single twitch. If the muscle is 
stretched passively, tension is borne almost ex­
clusively by the PEC, since the resting CC is 
highly extensible (figure lb). If the active 
muscle is allowed to shorten against a load (lc), 
the SEC must first be stretched to an extent indi­
cated by its tension-extension curve so that the 
SEC may bear the load. Or, if the muscle is acti­
vated but is held at a fixed length (ld), the CC 
still shortens as the SEC is being stretched: 
during the relaxation phase of the twitch, the 
extended SEC shortens to return the CC to its 
initial length. Externally monitored force de­
velopment in this case corresponds to a complex 
situation of CC tension development at a continu­
ously changing length. In these three simplest 
configurations of recording muscle length and 
tension interdependence (figure lb-ld), the CC's 
ability to develop tension at a fixed length is 
not measurable. However, two indirect methods 
can be used to allow the curve representing CC 
tension vs time, at constant length, to be con­
structed. 

The first method involves the release of 
an isometrically contracting muscle at various 
times following stimulation, so as to allow the 
muscle to take up slack in its connection to a 
force transducer and thereby redevelop to some 
extent its isometric twitch tension. 3 The peaks 
of resultant tension vs time curves represent 
coordinates on the falling phase of a tension­
time curve at constant CC length, since these 
peaks represent the only instant during each 
curve when tension is maximum and the CC is 
therefore neither shortening nor lengthening. 
There are several means of estimating the rising 
phase of the twitch tension-time curve at constant 
CC length, but all are subject to some error. In 
one method, the muscle's developed peak tension 
is recorded as the response to quick stretches 
applied at various moments after stimulus. l 
A quick stretch extends the SEC so that the CC 
need not shorten against the SEC before external 
tension can manifest itself. 

The curve illustrating tension development 
a4 constant CC length is also designated as the 
muscle's active state curve; the intensity of 
this curve at any time during the twitch ~an be 
defined in an equivalent way- as " ... the isometric 
tension which the contractile component can de­
velop (or just bear) at that instant.,,2 The 
active state curve is perhaps the best single 
parameter available as a measure of muscle con­
tractility: it provides a measurement, in terms 
of a convenient-mechanical parameter, of the 
basic molecular processes occurring within the 
muscle's contractile machinery, processes which 
are directly responsible for the muscle's abil­
ity-todevelop force and to shorten. 

There are several additional interesting 
thermodynamic-parameters which change during con­
traction besides the" fundamental mechanical var­
iables of length and tension. In particular, a 
considerable amount of work has been done during 
the past five or six years, in the muscle bio­
physics laboratory at the University of Califor­
nia, Davis, concerning the slight change in total 
volume undergone by contracting muscle. 5 
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During a single twitch, for example, a 100 mg 
frog sartorius muscle will rapidly undergo an in­
crease in-volume by about 10-6 cc, reaching a peak 
in about 5 msec after stimulus (at room tempera­
ture), then-abruptly-decrease by approximately 
2 or 3 x lO~6 ccandreturn to initial value, all 
within 50-or 60 msec~- One major goal in this lab­
oratory-has-beento-establish a correlation be­
tween-length-tension-relationships of the three 
Hill model- components-, - and" the volume change. 

Three PDP-8 programs-have been prepared 
specifically to allow length-tens ion-volume inter­
dependences to be distinguished among the PEC, SEC 
and-CC. These programs will be outlined in turn. 

Instrumentation 

A block diagram of the data acquisition 
and- experiment control system is shown in figure 
2. During an experiment, transducer output wave­
forms corresponding to muscle length, volume and 
tension are multiplexed, digitized and stored in 
the core memory of a PDP-S computer. Stimulus 
application to the muscle is initiated by lOPs 
through device selector circuitry, as is the 
connection of one of the digital-to-analog con­
verters to the input of a servo amplifier. To 
control muscle length the computer loads one 
D-to-A converter buffer with a number corres­
ponding to the required length. A fast response 
servo motor rotates a shaft to which the muscle 
is tied; the muscle is clamped at its other end 
to a force transducer. The muscle is enclosed 
in a sealed chamber entirely filled with a phys­
iological saline solution. Pressure fluctuations 
inside the chamber correspond exactly to volume 
changes_ within the muscle. S 

PEe Program 

Table 1 lists the experiment control input 
variables and data output parameters used in the 
first of the three programs, a program designed 
to allow evaluation of the tension and volume 
change dependence upon imposed PEC length changes. 
The last six listings designate the relevant data 
output from the experiment. The first three 
correspond to single tension and volume coordi­
nate responses to rapidly applied step changes 
in muscle length. Data output in-these forms 
consist of x-y oscilloscope-displays of sets of 
these coordinates (for a wide range of applied 
steps in length). The last three listings repre­
sent digitized waveform responses of tens-ion and 
volume to a slowly applied-length change (a ramp 
function). In this case, data output consists 
of all 400S coordinates of-one waveform plotted 
against the time~correspondent-400S coordinates 
of another" waveform. Distinction is made between 
rapidly and slowly-appiied length-changes because 
the differences which occur in the muscle's re­
sponse to each-are-physiologically significant. 

6L. 
J..n 

6L 

Table i 

Parameters for PEC Program 

programmed step change in length in­
put signal to servo motor 

muscle length transducer output re­
sponse to applied input 6L

in 



o 
L. 

1n 

L~ (t) 
1n 

L~ (t) 
1n 

L(t) 

o 
L 

o 
P 

P. (t) 
1S0 

v. (t) 
1S0 

P (t) 

vet) 

6P (6L) 

6V(6L) 

6V(6P) 

length input signal producing no 
change in muscle length 

step change length input vs time 

(from L? to 6L. to L? 
1n 1n 1n 

programmed ramp length input sig­
nal vs time 

actual time course of applied 
length change: servo output re­
sponse to Lin(t), step or ramp 

o 
length transducer output at Lin 
input signal 

o 
tension transducer output at Lin 
input signal 

o 
volume transducer output at Lin 
input signal 

isometric twitch tension vs time 

isometric twitch volume change vs 
time 

tension vs time response to Lin(t) 
input (step or ramp) 

volume change vs time response to 
Lin(t) input (step or ramp) 

PEC tension vs (rapidly applied) 
extension 

passive stretch volume change 
(rapid step) 

PEC volume change dependence upon 
passive tension 

p(t)vs LR(t) tension vs (slowly applied) 
length ramp coordinates 

V(t)vs LR(t) volume change vs length ramp 
coordinates 

vet) vs pet) volume change vs passive tension 
coordinates 

F~gure 3 diagrams the flow chart of the PEC 
evaluation program. All operations of display 
format selection ("A" through IIJII), data gener­
ation ("K,L") and experiment control ("M-Z") are 
initiated via single letter keyboard commands. 
The program runs in display mode until a command 
is sensed, returning to the last chosen display 
format upon completion of any requested oper­
ation. Rapidly applied step functions ("M") or 
slow ramp functions ("N") of length change can 

.be chosen as the length input signal, and the 
magnitude of the step function can be varied 
("O,p"). Tension and volume coordinate step re­
sponses can be printed out singly ("X") or all 
stored data can be tabulated at the termination 
of the experiment. X-y recorder plots of stored 
waveforms can also be generated ("T"). 

The flow chart of figure 4 illustrates the 
manner in which keyboard selected subroutines 
set a branch point for two i~dependent coordinate 
display (x,y) or for single parameter waveform 
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display (y, t). Data output produced by t:<e pro­
gram in the form of x-y pen plots, Teletyped 
length-tension-volume tables, and Polaroid photo­
graphs of oscilloscope displays, provide infor­
mation not only about the tension-extension char­
acteristic of the muscle's PEC, but also about 
the relative contribution to the net observed 
volume change in active muscle from the PEC. 

SEC Program 

The conventional method of SEC evaluation 
is known as the "quick release" technique. A 
muscle is attached to an isotonic lever which is 
held fixed in position by an electromagnetic 
stop. The muscle is stimulated and develops 
tension; some time during this isometric twitch 
the stop is removed and the muscle shortens 
against a load attached to the lever arm. Upon 
release, the muscle shortens quite suddenly, be­
cause the SEC shortens from one length charac­
teristic of isometric tension at the instant of 
release, to a length corresponding to the new 
isotonic (load) tension~ After this sudden 
length- change-, the muscle continues to shorten in 
a slower fashion as the CC is allowed to con­
tract. This experiment- is rather elaborate, 
requiring as it does a specialized apparatus, 
including the electromagnetic release, isotonic 
lever and intrinsic force transducer; and, 
during the experiment the after load on the lever 
must be changed frequently. Such a technique 
could not easily be employed simultaneously with 
volume measurements, which require the muscle to 
be enclosed in a sealed chamber. 

The new approach described here avoids many 
such experimental inconveniences by relying on 
the controlled tension-via length feedback capa­
bility of the computer system represented by 
figure 1. Figure 5 helps to explain the basic 
features of this approach. The magnitude of an 
isometric twitch tension~time record is calcu­
lated and a range of convenient isotonic loads 
is chosen (from a heavy load P

i
= Po to a light 

load P
i

= 6P'). The lower segment of figure 5 

illustrates an idealized controlled tension re­
sponse of the SEC program. Basically, this pro­
gram mimics the quick release technique by allow­
ing the muscle to develop tension isometrically 
from to (stimulus applied) to tl (release time). 

At t
l

, muscle length is driven by the computer 

so that tension reaches the desired isotonic load 
Pi as quickly as possible. If t2 is the time at 

which release is accomplished, then the controlled 
length change from tl to t2 corresponds to SEC 

shortening 6XSEC under tension chang,e 6P SEC' 

Table 2 summarizes those terms (in addition 
to table 1) used for input control and data output 
parameters of an SEC evaluation experiment. Here 
L. (t) is now the stored servo input which has 

1n 
been generated by the program during the release, 
to accomplish the release. The last three terms 
constitute the required data output coordinates, 

The basic flow chart for the SEC evaluation 
program is presented in figure 6. As before, 
there are many keyboard-selectable wavefprm dis­
plays. The quick release controlled length twitch 
is elicited by the command "H": during this oper­
ation the length control waveform Lin(t) 



is synthesized and stored. "I" causes Lin(t) to 

be reapplied passiveJ.y tG the muscle, and the 
accompanying pressure transducer output Vart(t) 

is stored (see Artifact Subtraction below) . 
"J" triggers a simple isometric twitch, while "K" 
and "L" initiate the calculation of isotonic load, 
and "M" causes the SEC length-tens ion-volume co­
ordinates' to'be' listed on the Teletype. 

Table 2 

Additional Parameters for SEC Program 

L. (t) 
l.n 

l'lP' 

P. 
l. 

t 

Vart(t) 

program-synthesized length control 
signal vs time 

maximum amplitude of Piso(t) 
waveform 

programmed tension interval 
(e.g. P

O
/16) 

current "isotonic load": a pro­
grammed value of tension 

current time (relative address in 
a stored waveform) 

time of isotonic release (apply 
condition of pet) = P. ) 

l. 

time after release instruction 
at which P ~ P. (mechanical re­
sponse time) l. 

time at which L returns to LO 
(isotonic~isometric transition of 
afterloading) 

time of forced return to isometric 

mode (set L. = L~ 
l.n l.n 

volume vs time waveform with L. (t) 
applied passively l.n .' 

V(t)-Vart(t) volume change vs time in muscle 
during SEC evaluation (quick re­
lease) twitch, less reproducible 
artifact caused by rapid mechani­
cal movement during application of 
L. (t) 

t.XSEC 

l'lPSEC 

l'lVSEC 

l.n 

LO - L(t
2

) SEC extension 

SEC tension P(tl ) - Pi 

(V(tl)-Vart(tl» -

(V(t2)-Vart(t2» 

volume change accompanying ex­
tension of SEC 

Figure 7 presents the sequence of operat­
ions" performed during the quick" release con­
trolled length twitch. In each" cycle", V, P and 
L coordinates (sampled transducer outputs) are 
stored and then tested: first, time" limits (the 
relative" channel' numbers" of' a" waveform" being 
stored)" are checked to see' if" it· is too early 
(preceding the release time) or too late (almost 
at the conclusion of the twitch) to exert 
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experimental control. Next, length is tested to 
insure that it has not been set to exceed a max­
imum allowable (equal to initial, resting) 
length. Then the length input is incremented or 
decremented according to whether tension is 
greater than or less than what the released ten­
sion should be. The cycle stores the time co­
ordinates"representing the instant at which the 
release is achieved-{t

2
) and the time at which 

the after loaded stop is applied: that is, the 
moment when the muscle is about to be stretched 
beyond reference length by the load (t

3
). The 

time required, for each cycle following data 
coordinate storage and during the test sequence 
is independent of the path; each branch point 
out' of the sequence'cycles a delay subroutine 
the required number of times before reinitiating 
A-to .... D conversion for the next set of "coordi­
nates'. 

Significant_data outputted from this pro­
gram consist" of the Teletype compilation of SEC 
length and volume changes corresponding to a 
range-of isotonic release" loads between l'lP' and 
PO' A curve representing SEC extension vs ten­
Sl.on is punched out as a binary tape through 
the' DEC software package", ODT (which is used in 
conjunction with all programs involved in these 
experiments); the curve constitutes essential 
input" for" the CCLC program described below. 

Artifact" Subtraction 

The rapidity with which changes in length 
must be imposed upon' the muscle during the re­
lease- experiment introduces a serious problem 
in making simultaneous volume measurements. The 
rapid (complete in 60 or 70 msec) clockwise 
(stretch) and counterclockwise (release) movement 
of the shaft-and pulley' to which" the muscle is 
attached"cause-a" relatively enormous shock arti­
fact in' the volume waveform. It can be demon­
strated thatthese"artifactsare'caused by the 
rapiditY'of-the"movement" rather than by an 
actual change inthe"muscle'chamber volume. 6 

However, shock artifacts in the volume 
change records" are consistent· and repeatable dur­
ing the'course of an experiment. Because of this 
consistency it-is possible" to "extract" the 
effect" of artifact-by subtracting such a waveform 
from the original record of active muscle response 
with- superimposed" artifact'.-

Figure 8 demonstrates' how this is done. "A" 
represents the volume change accompanying the 
application of a rapid stretch pulse to a resting 
muscle: the' volume response' is totally obscured 
by artifact. (Some overloading of the display 
interface 10 bit range is occurring here.) If 
this record is regenerated' and the newly evoked 
record subtracted digitally, time coordinate by 
coordinate, from the original waveform, a differ­
encewaveform such as "B" results. This baseline 
wave form- shows some scatter, especially where 
onset and return of the- rapid stretch occur, but 
most of the- artifact is- absent'. In the same 
way, if a V t (t) signal accompanying the c'on­
trolled str~Echresponse'of unstimulated muscle 
is subtracted from a V(t) signal, most of the 
artifacts effect can be removed and the resultant 
V(t)-Vart(t) waveform presumably corresponds to 

an actual response of the muscle, during contract­
ion. ("C") This method of artifact subtraction 
is used by display subroutines in both the SEC 
evaluation and CCLC programs to provide usable data. 



CC Length Clamp Program 

The third program utilizes data provided by 
the previous program in order to control muscle 
length in such a way as to prevent the CC from 
shortening at the expense of the SEC as it does 
during an isometric twitch (figure Id). A con­
trolled rate stretch, during the rising phase of 
the twitch, followed by a controlled release back 
to initial length during the relaxation phase, is 
applied so that the SEC is "pulled out" by the 
stretch (figure le). Since the stretch is ap­
plied slightly after the CC has been activated, 
the CC is no longer compliant, as it is in rest­
ing muscle, but exhibits a high resistance to 
stretch,l so that the effect of the stretch is to 
extend the undamped SEC. 

Table 3 lists those parameters required, in 
addition to tables 1 and 2, to specify input and 
output variables in the CCLC experiment. 
~XSEC(~PSEC) represents the source data, a se-

quence of x-y coordinates which are most easily 
fitted by an exponential function. 4 Since t 
. 1 
1S constant and the course of developed 
tension is identical throughout the sequence of 
isometric twitches released to various isotonic 
loads in the SEC evaluation program, the tension 
P(t

l
) is the same for each release. Therefore, 

the calculated sequence of SEC tension changes, 
~PSEC' vayy by intervals of ~P'. A tension-

extension curve for the SEC can then be stored 
as a sequence of extension values, starting in 
some memory address identified with ~P' tension, 
with successive locations representing 2~P' , ... 
through PO. The number of memory locations 

required for curve storage (called "w" here) 
for the_illustrative example in figure 5, would 
be 8. ~XSEC(t) designates the controlled 

length change signal to be applied to the 
muscle for the purpose of holding CC length 
fixed. P art-(t) is analogous to- Vart (t): it is a 

transducer output waveform accompanying the 
length change applied to the unstimulated 
muscle. Since the muscle is being extended be­
yond reference length, its PEC bears a changing 
tension component. As described under Muscle 
Contraction Model, the active tension response 
during CC length clamping, when corrected by 
Part(t), characterizes the muscle's active 

state intensity-time curve. 

Table 3 

Additional Parameters for CCLC Program 

~XSEC(~PSEC) SEC tension-extension relation 
evaluated from previous program 

W 

Part(t) 

waveform synthesized from Piso(t) 
and ~XSEC(~PSEC) data: 

used as Lin(t) to clamp the CC 

width of ~XSEC(~PSEC) waveform: 

number of addresses correspond­
ing to SEC tension in range of 
o to Po 

tension vs time response of muscle 
stretched passively by Lin(t) 
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P (t) -P (t) 
art 

active tension vs time during 
CC length clamping, less passive 
tension vs time: this waveform 
represents the muscle's active 
state curve 

The flow chart in figure 9 illustrates the 
major features of the CCLC program. Once again, 
the program cycles continuously- in display mode 
until a letter is struck on the keyboard. "A" 
through "K" call for various waveforms to be 
displayed, while "L" through "R" elicit fresh 
data. Two DEC software packages are used with 
the program to provide floating point calculation 
capability: calibrated markers are shown with each 
possible" waveform display. 

Figure 10 indicates roughly how the control­
led length change waveform is calculated. (The 
steps involved with interpolation of extensions 
corresponding to tensions between the evenly 
spaced tension increments are not shown.) Basic­
ally, each coordinate of a stored isometric ten­
sion-time waveform-is "looked up" in the SEC 
tension-extension curve, and stored to make a new 
waveform with the same time scale. 

Sample Data 

Figure 11 summarizes representative data 
from a typical CCLC experiment. The first curve 
is a smoothed plot of SEC tension-extension (i.e. 
somewhat idealized compared to the actual appear­
ance of experimental data). Each waveform display 
includes an identification tag, x and y markers, 
and a listing of marker magnitudes and units of 
measure. Three words of storage space are pro­
vided for fixed point marker magnitudes of each 
display. 

Waveform "A" of figure 11 corresponds to 
isometric twitch tension developed by a 125 mg 
frog sartorius muscle. Each tension coordinate 
of "A" has been transformed into a SEC extension 
coordinate from "H" and assembled into the wave­
form "I". This last waveform constitutes L. (t), 
the servo motor input applied as a length 1n 
change to the muscle. The data waveform beneath 
"I", designated "G", is the length transducer 
output signal, i.e. the resultant change in 
muscle length with time. "G" lags "I" by a few 
mseCi since the waveform is roughly sinusoidal 
(or at least exhibits no sharp breaks) it is 
possible to partially compensate for the mechan­
ical response time of the servo motor by shifting 
the input waveform slightly to the left, that is, 
to apply it slightly earlier in phase than actual 
twitch occurrence." 

The last curve of figure 11 illustrates the 
muscle's tension development during application 
of the controlled stretch. Assuming the validity 
of the three component-mechanical model, it is 
this waveform which represents theCC's active 
state- intensity vs-time-curve. 

This last waveform, "F", was adjusted to max­
imum usable display height by the subroutine 
entered through keyboard-command "u" of the CCLC 
program -(figure 8), a normalization subroutine. 
Since "F" is the largest-anticipated tension re­
sponse generated in the experiment, it is conven­
ient to then multiply all" other tension displays 
by the same-normalizing factor, so that all 
display amplitudes can be compared directly. The 
normalizing factor is used in conjunction with 



calibration copstants for the various trans­
ducers, preamplifier gain settings, etc., to 
provide automatic calibration of the x-y scale 
markers for each waveform, in the subroutine 
mentioned earlier. 

The active state curve differs from an iso­
metric twitch tension waveform in several conspic­
uous ways. A comparison of "A" and "P" in" figure 
11 indicates that, while tension onset occurs at 
about the same instant, its rate of rise is con­
siderably greater in "P". Active state peak 
intensity is 2 1/2 to 3 times as large as PD' and 
occurs several msec earlier than peak twitch 
tension"; and, the active state curve exhibits a 
more rapid rate of tension" decay, returning to 
resting tension considerably" earlier than in the 
isometric· twitch. A'more complete and quanti-
tative description of experimental results from 
the CCLC technique will be presented elsewhere. 

summary 

The incorporation of a small, high speed 
on-line digital" computer as a data reduction 
and control device for a muscle physiology lab­
oratory" has" made possible several innovations in 
experimental techniques. In particular, the 
following have been discussed in the present 
paper: (1) the calculation of controlled 
stretches exactly tailored to the elastic prop­
erties of a muscle preparation, designed to 
maintain a constant contractile component length 
during contraction; (2) the availability of pro­
grammable contraction modes, isometric or iso­
tonic, with possible instantaneous transitions 
between the two modes, or to phrase it"differ­
ently, the control of instantaneous tension 
during twitch contraction; and, (3) the sub­
traction of repeatable artifacts much larger 
than the" data signal itself. 

Acknowledgements 

Much of the work described here was done 
while the author was a Public Health Service 
Postdoctoral Trainee" in the Department" of Zoology, 
University of California, Davis"campus, in the 
laboratory of Prof. Ronald J. Baskin, under PHS 
grant no. AM 10726-03. Dr. Baskin's generosity 
in continuing to make available the equipment 
necessary for this work is gratefully acknow­
ledged. 

References 

1. Hill, A.V. The abrupt transition from rest 
to activity in muscle. Proc. Roy. Soc. (London) 
Ser.B 136 pp. 399-420 (1949) 

2. Wilkie, D.R. The mechanical properties of 
muscle. British Med. Bull. 12 (3) pp. 177-
182 (1956) 

3. Ritchie, J.M. The effect of nitrate on the 
active state of muscle. J. Physiol. 126 
pp. 155-168 (1954) 

4. Davson, H. A Textbook of General Physiology 
3rd ed. Li ttle, Brown & Co.", Boston (1964) 
pp.954-5. 

260 

5. Baskin, R.J. and P.J. Paolini. Muscle Volume 
Changes. J. Gen. Physiol. 49 (3) pp. 387-
404 (1966) 

6. Paolini, P.J. Volume Changes upon Stretch 
of Resting and Active Striated Muscle. 
Ph.D. Dissertation, University of California, 
Davis. June, 1968. 



a b c 

isotonic 
contraction 

d 

isometric 
twitch 

Figure 1 Three component mechanical analog of muscle 

DEC 
4 K 

PDP-B 

display interface· 
(DEC 34-0) 

two 10 bit D-to-A 
converters 

force 
transducer 

Figure 2 Experiment control and data acquisition system 

261 

e 

stretched 
during 

contraction 



display: lIP(lIL), 

6V(6L),6V(AP), 

pet) vs LR(t), 

vet) vs LR(t), 

and vet) vs pet) 

A 

T 

di~play: Piso(t) pr pet) 

Viso(t) or vet) 

Lin(t) (ramp or step) 
L (t) (response) 

y 

store 
P iso (t) 

V iso (t) 

print last table 
entry, lIL, liP, lIV /"':'\ 

store 
pet) 
Vet) 
L(t) 

x 

~ 

load Lin(t) with 
step of .bL magnitude 

L-~~------IIA---------n---------TO--------~------~S 

load Lin (t) 

with L~ (t) 1n 

FLOW CHART FOR P.E.C. 

EVALUATION PROGRAM 

Figure 3 Flow chart for PEe evaluation program 
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invert 
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waveform 



Figure 4 

subroutines A - J 
load X " Y axes 

starting addresses, 
set X or t coordi­

nate switch 

load waveform 
address pointers 
initialize t 
and counters 

load X, incre';' 
ment X address 

P.E.C. PROGRAM WAVEFORM 

DISPLAY SUBROUTINE 

PEC program waveform display subroutine 
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SERIES ELASTIC COMPONENT 

EVALUATION PROGRAM 

isometric tension vs. time 

Piso(t) 

calculation of ~p' 
(P i ser;es superimposed) 

here ~P E P 0/8 

tension developed during 
isotonic twitches at 
various values of Pi: 

(a) first Pi (heavy load) 

(b) last Pi (light load) 

idealized responses to 
release at moderate Pi: 

I muscle shortening L(t) 

I muscle tension P (t) I 

servo motor connected 

stimulus trigger 

timing sequence 

~ 
~,-1.. 
I " lP I . s:-t 

( . " 
-../ '----

----~{~.~~----~-

• Iff 

J~ ______ ~ ____ __ 

Figure 5 Illustrating steps of the SEC 
evaluation technique 



change waveform dis­
played to: 

Viso(t), Vet), Vart(t), 

V(t)-Vart(t), Piso(t), 

pet), L(t), Lin(t) 

FLOW CHART FOR S.E.C. 

EVALUATION PROGRAM 

Q p 
H 

store and test sequence: 
store pet), vet) and L(t) 
while controlling Lin(t) 

invert 
current 
waveform 

o N 

store (but no 
test) sequence: 
Var~(t) and L(t) 

calculate .and 
print llPSEC ' 

llXSEC ' llVSEC 

M 

Figure 6 Flow chart for SEC evaluation program 
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set Pi to 

Pi-flY 

L 
I( 

store Piso(t), 
calculate Po 



store V. & P. from 
J J 

ADC; store current 
value of Lin coord. 

STORE AND TEST SEQUENCE FOR 

S.E.C. EVALUATION PROGRAM 

C 

set L. =L? 
1n 1n 

delay (a) 

set L. =L? 1n 1n 
delay (b) 

A I----_~.., 

increment j ~ 

Figure 7 store and test sequence for SEC evaluation program 
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Figure 8 

Volume artifact subtraction. 
(A) artifact (B) artifact minus artifact 
(c) signal minus artifact 

alphanumeric display 
corresponding to "Y" 

CONTRACTILE COMPONENT 

LENGTH CLAMP PROGRAM 

with calibrated scales;~ __ --~ A 
uses Digital 8-5-S 
and DECUS 5/8-23 

change display to P iso (t) , 

Viso(t), V(t), Vart(t), 

V (t) -Vart (t), P (t) -Part (t) , 

P(t), 6XSEC(6PSEC)' L(t) 

or 6X
SEC

(t) 

adjust X-Y markers 
to sensitivity of 
specified waveform 

o 

L-R 

control program functions: 

make an X-Y plot 
center display 
normalize current waveform 
adjust current waveform to 

normalized sensitivity 
go to ODT 
stop 
instruction display "on" 

evoke new waveforms: 

P iso (t), V iso (t), V(t), 

Vart(t), PIt), Part(t) 

or L(t) 

Figure 9 CC Length Clamp program 
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C.C.L.C. PROGRAM: 

EVALUATING AXSEC(t) 

initialize counters 
and starting addresses 
of source waveforms 

Piso(t) and AXSEC(APSEC) 

B ~--------------~~ 

find relative address (RA) 
in AXSEC(P) waveform repre-
sented by rounded-off value 
of 

(Piso(tj)/Po) x W 

Figure 10 

load starting add­
ress of synthesized 
AXSEC(t) into Y 

CCLC program: evaluating AXSEC(t) 
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Figure 11 Sample data output display from CCLC program 
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FLIRT: FILE LANGUAGE IN REAL TIME 

Kenneth R. Morin 
Department of Pathology, University of British Columbia 

and st. Paul's Hospital 
Vancouver, British Columbia 

ABSTRACT 

FLIRT, an intermediate-level language which directs file 
transactions between teletype, core and DECtape is being de­
veloped for a clinical laboratory application using a PDP-9 
computer. A fLIRT file may contain any number of records; 
each record contains a number of items. An item can be 12-
bit binary, variable-length alphanumeric, or it can be another 
record (nesting limited to 4-deep). Each file is stored in 
as many blocks on DECtape as necessary. 

fLIRT contains about 25 verbs, e.g., ASK (ask question on 
teletype and store response in core), MOVE (move item(s) from 
one record to another in core), ~ffiNFL (write a new file on 
DECtape), and LOCREC (locate a record on DECtape which meets 
the specified conditions). Four verbs direct movements tol 
from a queue-buffer area. Record formats and most mnemonics 
are user-defined. The file structure,.FLIRT language, and 
some aspects of the internal software are described. 

1. BACKGROmm 

A fi1e-hand1in~ scheme is a major requirement in a 
data-processing system for a clinical laboratory. 
Many such systems use a dedicated computer, usually 
having a 12- to 18-bit word, 8K to 24K word core 
memory, 250K to 1000K word disc memory, analog multi­
plexer and AID converter, several teletypes or other 
input terminals, and perhaps a low-speed line print­
er and one or more magnetic tape units (DECtape andl 
or IBM-compatible tape). Few if any computers of 
this size offer suitable file-handling software such 
as COBOL. For the laboratory computer system at 
st. Paul's Hospital an 8K PDP-9 is being used and 
FLIRT, an intermediate-level file-handling language, 
is being developed. The present version of FLIRT 
stores files on DECtape, and we plan a second version 
which will store files on disc as well. 

2. FILE STRUCTURE 

A general file structure was chosen which can be 
tailored easily to the user's specific requirements. 
The largest entity in FLIRT is a file, which con­
sists of one or more records; each record consists 
of one or more items; each item consists of one or 
more characters. ~he 6-bit character is the small­
est unit of data. 

The FLIRT file structure and language are suffic­
iently general to be useful for many applications 
besides hospital laboratory systems. 

2.1 Files 

Any number of files can be created, each being of a 
specific type. For example, laboratory data will 
be stored in a separate file for each patient, pro­
ducing between 500 and 1000 Patient Files (PATF), 
and test data will be stored in a separate Test file 
(TESTF) for each test batch. Each file of a given 
type may contain any number of records. The mnemonic 
names, chosen by the user, can be up to 6 characters 
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long. 

2.2 Records 

Each record type must be defined by giving the re­
cord name, and a list of the items which the record 
will contain. For example, Patient Identification 
records (PATIDR) will include such items as Patient 
Name (PATNA}1), Patient Number (PATNO), and Birth 
year (BRTlNR). 

2.3 Items 

Each item in a record can be either: 

- a variable-length alphanumeric item; 
- a 12-bit binary item; or 
- another record. 

The latter produces a nested record structure which 
allows many types of data to be stored. This nest­
ing has been arbitrarily limited to four levels. 

2.4 Characters 

All three types of items are composed of 6-bit bytes 
or characters, the smallest unit of data manipulated 
in FLIRT. 

2.5 File Numbers 

Each file is uniquely identified by its type and 
number. When a file type is defined, the name of 
the item to be taken as the file number must be 
specified. A code for the file type is automati­
cally stored in a special location in the file. The 
file number must appear in every record in the file. 
For example the patient number will be taken as the 
file number in our patient files, so all records in 
a patient file must contain the patient's number 
(at nesting level 1). 



3. THE FLIRT LANGUAGE 

There are about 25 verbs in the FLI~T language at 
present. Some verbs require no arguments, and 
others require as many as eight. Some arguments 
may assume different forms; e.g., the file number 
for the search verb can be specified by either a 
literal, the name of a poi~ter which points to the 
fi Ie number, or the mnemOnlC "ALL". 

3. I The Queue 

We expect file transactions to be required at an 
average rate of one every 5 to 10 seconds, and the 
maximum rate may greatly exceed this. DECtape has 
a maximum access time of about 30 seconds. To 
overcome this disparity, requests for DECtape trans­
actions are entered into a ~~eue; a search routine 
continously cycles the DECtape from end to end un­
less the queue is empty, checking every file it 
encounters against the list of requests, and execut­
ing all matching requests. fLIRT verbs are used to 
queue and to delete the transaction data. 

3.2 An Example 

The example shown in Fig. I will introduce the 
reader to the fLI~ language. This is the admitting 
section of a demonstration program; several ques­
tions are asked on the teletype, and the responses 
are stored in a new file on DECtape. 

/~~-~DEMON~~ DEMONSTRATION PROGRAM USING FLIRT. 
/DEMON ALLOTrJS THE SELECTION AND EXECUTION OF 
/SIMPLE DEI"lONSTRATIOl'I ADNITTING, RETRIEVAL, 
/AND DELETION PROG!W1S. 
/NUMERICAL ARGUMENTS ARE IN OCTAL. 

RECORD 76,REC 

PRSEL ASKX <"PROGS: I-Am-l 2-RETR 3-0EL SELECT ?">,3 
J~W ADM /ADMITTING 
JMP RErR /~~RIEVAL 
JM? DEL /DELETION 

/-:H:-ADNITTIN~* 
ADM OPNREC REC,PATIDR 
ASK 1 ASK <II 1 NAf'lIE "> , P il. TNAf,1 ,ROC, 25 

ASK <"2 HCSP NO.">,PATNO,q£C,6 
ASK <"3 ROOM-BED"~,ROCM,REC,6 
ASK <"4 COYIPLAItIT'.'> ,4.Dr:]!::lIA,REC ,60 
EDIT ASKI 

QREC REG 
QINS 
~VRNFL PATF ,REG 
DEL):{EC REG 
DELINS 
ASKYN <"MORE? n>,ADH,PRSEL 

FIG. 1 EXANPLE O? A fLIRT PROJRAr1. 

The RECCRD assignment reserves 76 8 locations for a 
record, with the tag REC. The ASRX verb asks the 
question in quotation marks, accepts a response X 
from 1 to 3, and jumps to the Xth location follow­
ing; thus if the response is 1, the Jjl.lP Am! instruc­
tion is executed and the admitting program is en­
tered. 

The OPNREC verb opens a blank PAT lOR record at 
REC, to provide a place to store the admitting 
information. The first ASK verb asks the question 
in quotation marks on the teletype, accepts a re-
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sponse up to 258characters long, and stores the re­
sponse as the PATNA1~ item in the record at REG. 
After the last ASK, the EDIT verb is executed; it 
types EDIT> on the teletype, and any of the preced­
ing questions can be repeated by typing in the line 
number (1 to 4). Typing only a carriage return 
causes the program to proceed. 

The QREC verb transfers the record at location REG 
into the queue, thus freeing the area at REG for 
furthur input. The QINS verb queues an instruction 
group containing the verbs which follow QINS, up to 
and including the first DELINS. At the same time a 
request (section 3.1) is automatically queued in 
accordance with the first verb in the group. In the 
example the request is for a blank block of tape, 
since the WRNFL verb will write a new PATF file con­
taining the record which was ~ueued from location 
ROC. After the QINS has been executed, the ASKYN 
verb is executed, while the DECtape search program 
(section 3.1) seeks to satisfy the request. If the 
operator's response to the question MeRE? is Y for 
yes, the program branches to ADM to admit another 
patient; if N for no, the program branches to PRSEL; 
meanwhile the DECtape search progr~m runs concur­
rently (time-interlaced). 

When the search program has located a blank block of 
DECtape, the WRNFL verb in the queued instruction 
group is executed: the record which was queued from 
REC is transferred to an output buffer, the neces­
sary file information is added, and the output trans­
fer is initiated. Next, the DELREC verb deletes the 
record from the queue, and finally the DELINS verb 
deletes the instruction group (and request) from the 
queue, which will now be empty unless furthur data 
has been added. 

3.3 Reference to Queued Records 

After a record is queued, the instruction group 
which defines the required file transaction is 
queued. Since these instructions specify the record 
to be processed by giving the location from which 
the record was queued, ambiguity might arise if the 
queue contained several records which had been queued 
from the same location'. This ambiguity is avoided 
by the QINS verb which, when executed, replaces each 
reference the instruction group contains to a queued 
record with an internally-assigned label which refers 
to the record most recently queued from the specified 
location. 

3.4 Pointers 

Several coordinates are required to identify an item 
which is nested several levels deep within a record. 
Pointers are used for this purpose. Space for a 
pointer (3 words) is allocated by the PCINTR TAG 
verb. The pointer at TAG can be set to identify an 
item P which is nested in the record at RECSA by 
using the POSPNT TAG, RECSA, ELTl, ELT2, ELT3, ELT4 
verb. The item R (another record) at nesting level 
1 which contains P is specified by ELTI. The item 
within the record R and which contains P is speci­
fied by ELT2, and so on. 

3.5 Summary of FLIRT verbs 

figure 2 is a list of FLIRT verbs. APTFL appends a 
record to a file; the file number is implicit in the 
record contents (section 2.5). DELfL deletes the 
specified file. NOVE moves the SELT item in the re­
cord at SR~SA to the DELT item in the record at 



DRECSA (the SELT is unchanged); these arguments can 
take several forms, such as simple mnemonics, -
pointers, and "CORESP". 

RECORD SIZE, TAG 
POINTR TAG 
QREC RECSA 
DELREC RECSA 
QINS 
DEUNS 
CLOSE 
EXIT 
WRNFL FLTYP, RECSA 
APTFL FLTYP ,RECSA 
DELFL FLTYP, FLN 
POSPNT TAG,RECSA,ELT1,ELT2,ELT3,ELT4 
LOCREC FLTYP,FLNO,RECTYP,NLEVEL,ITEM,FN,SIZEl,SIZE2 
MOVE SELT,SRECSA,DELT,DRECSA 
COMPAR ITEMA,FN,ITEMB,ITEr.c 
INSREC RECSA,WHERE 
OPNREC DRECSA,RECTYP 
OPMATR DRECSA,Nl,N2 
PUrCR DRECSA 
OVRLAY SRECSA 
ASK <"QUESTION"'> ,DELT ,DRECSA,NCHARS 
ASKX <IIQUESTIONII>,N 
ASKYN <~UESTION">,YADR,N.ADR 
EDIT TAG 
PRINT RECSA 

fIG. 2 SUMrJIARY OF FURT VERBS. 

LOCREC is the tape search verb, and requests that a 
file of type FLTYP and number FLNO be found, con­
taining a record of type RECTYP at nesting level 
NLEVEL, in which the contents of the ITEM item obeys 
the FN relationship (greater than, equal, etc.) to 
SIZEl (and SIZE2 if FN = between or outside). The 
return is with the accumulator positive if success­
ful, and negative if unsuccessful. The record so 
found becomes the current record (CURSC). If it is 
modified by a MOVE, it must be re-written with the 
CLOSE verb. The whole current record may be copied 
into core with the purCR verb, or overlaid by 
another record with the OVRLAY verb. A record may 
be inserted into the file in front of or following 
the CUREC with the INSREC verb; this allows records 
to be stored in sequence in a file. 

A one or two-level "matrix" record may be opened 
with the OP~~TR verb. In a matrix record, items are 
referenced by their numerical coordinates rather 
than by user-assigned mnemonics. The PRINT verb, as 
tentatively defined, will print the contents of a 
2-level record in a row-column array; this could be 
used for printing patient summary reports. 

The EXIT verb is used instead of DELHJS to exit from 
a queued instruction group without deleting it; 
e.g., after a LCCREC with the FLNO = "ALL", an EXIT 
would leave the instruction group in the queue and 
thus the next file which meets the specified condi­
tions would be found. The COJVIPAR verb is similar to 
the comparison function in the LOCRSC verb, with the 
result indicated by the contents of the accumulator. 

Severa I verbs to do floating-point ad thmetic have 
been defined tentatively. As FLIRT evolves, some of 
the verbs defined above may be deleted and others 
may be added. 

L. I~lERNAL STRUCTUrtc 

Several aspects of the internal structure of ?LIRT 
files and the subroutines which execute FLIRT verbs 
are discussed below. 
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4.1 Program Size 

A FURT program is assembled with the PDP-9 macrO 
assembler, which expands the FLIRT verbs and argu­
ments into subroutine calls. The subroutines which 
execute the FLIRT program will probably occupy about 
8K words when all the verbs have been implemented. 
We hope to use program-swapping between core and 
disc to reduce the resident core requirement to 
about 3K. 

4.2 File Storage on DECtape 

There is no limit to the length of a FLIRT file: 
each file is stored in as many chained blocks of 
DECtape as are necessary. We plan to increase the 
present 64-word block size and perhaps allow the 
block size to be defined by the user. A record 
cannot be greater than one block in length. 

4.3 Index and Keys 

In the present DECtape version of FLIRT, no index 
is used, and the number of the block in which a 
given file starts bears no relationship to the file 
type or fi Ie number. An index or a "mos t 1i ke ly 
starting address" computed from the file number may 
be used in the disc version of FLIRT. 

4.4 Internal File Delimiters 

Each record begins with a three-character header 
"(HI-lY and ends wi th a II)". HH is the code for the 
record tJ~e. Items in a record are separated either 
by a colon, which precedes a binary item, or by a 
semi-colon, which precedes an alphanumeric or a re­
cord item. The characters ( ) ; and : cannot be 
used as data. The following example shows what a 
file containing a patient identification record and 
a test result record might look like. 

(HH;DOE,J;3568l;2ll-l;UREMIA) (HH;35681;3JAN;327 
;(HH;ELECT;(HH;123;3.5;82;20»;(HH;BUN;69»)) 

In a record of given type, the items are always 
stored in the order they were listed in the record 
definition. Specific items are located according 
to their sequence within the record. 

4.5 Queue Manipulations 

When records or instruction groups are queued, they 
are added to the end of the queue; when they are 
deleted, the remainder of the queue is moved up to 
fill the gap. If all records and instruction groups 
were the same size a list of free space (more effi­
cient) could be used instead. 

~Ihen a MOVE verb will alter a queued record, that 
record is moved to the end of the queue, so a change 
in the size of the record will not affect the re­
mainder of the queue. 
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RECENT EXPERIE~CES I~ DESIGNING HODULAR 
INTERFACES USING H-SERIES LOGICt 

Gary B. Horgan 
National Reactor Testing Station 

Idaho Nuclear Corporation 
Idaho Falls, Idaho 

ABSTRACT 

The use of H-series (T2L integrated circuit logic) modules for 
interfacing to computers which are constructed using Band R 
series modules involves some new considerations. This paper 
will deal with three major areas of concern: (1) the economics 
of using H-series vs standard R-series, (2) system design of 
I/O using T2L logic for interfacing on-line control and data 
acquisition experiments, and (3) specific problems and solu­
tions when using the H-series line for an interface (including 
special cards which have been designed). A specific data 
acquisition and control interface for a PDP-9 will be used as 
an example of the three general areas above. 

INTERFACING SYSTEH CONCEPTS 

The task of interfacin~ external instruments, experi­
ments, controllers, etc. to small general purpose 
computers is one which should be approached from an 
over-all systems standpoint. The idea of adding one 
interface after another without considerin~ the over­
all system development will undoubtedly lead to poor 
results when the system grows beyond the first few 
small interfaces. Three major areas of consideration 
are discussed below. 

System Hodularity 

The users of these general purpose digital computers 
for data acquisition and control of experiments must 
have the ability to change the system configuration 
and alter its capabilities easily and without a great 
amount of manpower effort or wasted component costs. 
To satisfy this demand the system must be designed in 
a modular fashion. It must grow or change within 
this modular environment. Hodules must be designed 
such that the system does not depend on anyone of 
them to be installed or working for the rest of the 
system to function correctly. 

Programability vs Versatility 

The design of all parts of the interface which inter­
act with a program (the program controlled input/ 
output) must be given careful attention from a soft­
ware (program) point of view. Ideally the person 
designing such a system should be a competent pro­
grammer as well as a logic designer. There should 
also be a constant interchange of ideas and/or con­
cepts between the three types of people involved in 
the project (logic designer, programmer, experimental 
user). The modular components of the system should 
be designed such that the program tan determine un­
attended the status of the module (is the module on 
or off line, etc.). Whenever possible the hardware 
design should be such that the interface is as versa­
tile as possible, allowing the program and programmer 
or user to exercise their options on how the device 

will be run. This means that the same piece of hard­
ware may be used for several different experiments 
without major future modifications. The hardware may 
be used by different programs in completely different 
operating environments (interruptable real-time ~ 
non-interruptable program controlled). 

Hain ta inab i1 ity 

By designing the interfaces with an over-all system 
modular concept in mind, it is possible to greatly 
reduce the down time of the total system due to minor 
hardware failures or experimental changes. An obvi­
ous, but often overlooked, area is making sure that 
when a module is unplut'~ed from the system (cable is 
disconnected for off-line maintenance or because of 
a failure) the open circuited logic inputs don't tie 
vital signal lines in the processor to the wrong 
state (the interrupt bus or skip bus enabled). 

A second point is the cable configuration of the 
system. If every cable in the system is made in some 
standard configuration, then when a module is dis­
connected for changes or maintenance it can easily 
be connected to some general kind of simulation jig 
or mock-up device to enable bench check-out. The 
simulator jig could be as simple as a set of switches 
to simulate a register output or a set of indicator 
lights to simulate a register input. 

The systems concepts discussed in the preceeding 
section are illustrated by the following discussion 
of a time-of-flight interface to a PDP-9. Figure 1 
shows a block diagram of the complete PDP-9 I/O sys­
tem as designed. The devices on the left side are 
shown daisy-chained to the PDP-9 I/O bus in the nor­
mal manner. The high-speed paper tape equipment 
could be a device 1 and 2 for example. Device 3, as 
shown in Figure 1, is a large interface which will 
control several remote (100-500 feet) experimental 
interfaces. Device 3 (IC common logic) changes the 
PDP-9 bus appearance from the display chain to a fan­
out where each remote interface is completely modular. 
All lines to and from the IC common logic (Device 3A, 

t Work performed under the auspices of the U. S. Atomic Energy Commission. 
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3B, ... 3N) are driven and received by active gates 
in such a way as to allow any separate remote device 
to fail or to be disconnected without affecting the 
rest of the PDP-9 system. All the logic in device 3 
(IC common and remote interfaces 3A, 3B, ... ) with 
the exception of one set of I/O bus level converters 
is implemented using TTL integrated circuits. Fig­
ure 2 shows the time-of-flight interface in more de­
tail. The interface is capable of measuring the time 
between nuclear events from up to 32 different detec­
tors. At each event, the time (from some relative 
to) is stored in a buffer register 1 (13 bits). A 
5-bit tag word indicating in which detector the event 
occurred is stored along with the event time. This 
makes up the full l8-bit word which is dropped down 
through the 5 buffer registers and into the PDP-9 
memory through. the DMA 09 multiplexer. The dead time 
of the front end Is less than 200 nsec. Since there 
are 5 buffer registers in front of the DMA 09, as 
many as 5 random events may be accumulated in one 
microsecond before a hardware overflow will occur. 
If any buffer register has data in it a DMA request 
is given to the PDP-9 processor. 

All initial set-up parameters (channel width, timed 
initial delay, list location and size, etc.) are under 
program control. The remote time-of-flight chassis 
also has a set of switches and indicators on its 
front panel to allow the experimenter to communicate 
with the PDP-9 program (these are very useful in de­
bugging and maintenance as well as during routine 
operation). Figure 3 shows the remote time-of-flight 
interface front panel and chassis unit. The word 
count and current address logic for the DMA channel 
is located in the PDP-9 cabinet since its logic is 
not necessarily associated with a time-of-flight ex­
periment. An indicator panel is located at the top 
of the cabinet in the PDP-9 logic and is shown in 
Figure 4. Note also in Figure 4, there are flag 
indicators for every interrupt coming into the com­
mon logic and power indicators for every experiment 
hooked to the cornmon logic. 

lNTERFACES BUILT USING M-SERIES LOGIC MODULES 

PDP-8 Interfaces 

1. A hardware bootstrap loader. This bootstrap will 
load any twenty-word program into the core of the 
PDP-8 under pushbutton control. 

2. A general data acquisition and control interface 
for an 8/S using integrated circuits (scalers, 
counters, clock, DAC and ADC). 

3. Data acquisition and control interface for an 
8/S to control a bet~-ray spectrometer using 
integrated circuits. 

PDP-9 Interfaces 

1. Remote modular interface for 3-axis spectrometer 
on the MTR reactor. 

2. Remote modular interface for measuring the time­
of-flight information on the MTR reactor experi­
ments. 

3. General purpose control switch panel for inputing 
information to the processor. 

4. 10-key function box. 

Logic Circuit Considerations 

The interfaces listed above were constructed using 
M-series logic modules. This logic was chosen for 
two reasons: (1) The T2L logic is superior to DTL 
logic. It has a wider system bandwidth, its noise 
susceptibility is better and its drive capability is 
higher. This reduced problems and cost in driving 
long wire runs and cables. (2) At the time we started 
design (August 1967) the M-series line was the least 
expensive T2L module line on the market. 

A number of cards were designed and built "in house" 
to supplement the DEC M-series line. Since then DEC 
has added these functions to their standard M-series 
inventory. 

We find that the reliability of the T2L integrated 
circuits is very high (better than R-series)' and the 
logic is easy to use. The power distribution system 
for T2L logic must be very low inductance and well by­
passed to keep system noise to a m1n1mum. Reasonable 
care at the time of construction is sufficient. 

All interfaces designed for DEC machines (-3 volts 
machines included) should be designed using T2L 
integrated circuits. The time-of-flight interface 
described earlier was priced out at $3200 using M­
series logic. The same functional unit would cost 
$5300 using Band R series modules. 

1 This interface was designed and built by Donald Staples. 

2 This interface was designed by Paul Hofhine (Phillips Petroleum Company employee). 
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Figure 3. Time-of-Flight Chassis. 

Figure 4. PDP-9 and Common Logic. 
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A DATA COMMUNICATION SYSTEM FOR THE PDP-8 IN ARBUS* 

Thomas G. Taussig 
Lawrence Radiation Laboratory 

University of California 
Berkeley, California 

ABSTRACT 

A data communication interface developed for ARBUS (Advanced 
Reservation and Bed Utilization System--paper to be presented 
by R. Abbott, Biomedical Session) will be described. The low 
cost, high speed data break interface allows the connection of 
multiple duplex Teletype stations and data phones to the PDP-8. 
The design of this system results in low program overhead 
requiring less than 5 percent of computation time to assemble 
characters from 32 lines, sampling at 4 times the 110 baud 
rate. The system requires 2 words of memory per line. 

Introduction 

The Advanced Reservation and Bed Utilization 
System (ARBUS), consists of a PDP-8 System operating 
in conjunction with a commercial time-sharing 
facility. The PDP-8 system is located within the 
hospital and continuously executes the ARB US system 
program to provide local control functions. 
Connection is established as required to the Tym­
share facility via the Data Set and commercial 
telephone lines on a "dial-up" basis under control 
of the PDP-8 program. 

The PDP-8 system consists of various remote input/ 
output devices, a special interface to allow the 
devices to communicate with the computer, and the 
PDP-8 computer. The devices that were to be 
required by the system are; Model 33 Teletype units, 
Invac modified Selectric typewriters, Type 103A 
Data Set, Type 801A Data Auxiliary Set (Automatic 
Calling Unit), and a real-time clock derived from 
60 cycle ac power. 

Interface Description 

A block diagram of the ARBUS system is shown in 
Figure 1. The Computer Interface Control is 
basically a software controlled multiplexer with 
serial to parallel assembly and parallel to serial 
disassembly capability. Extensive use is made of 
PDP-8 control logic and core memory by use of the 
Data Break facility in a modified form. All devices 
are connected to the ARBUS Comp~ter Interface 
Control, and send or receive data, bit serially, 
at Teletype rate of 110 baud. As an exception the 
Real Time Clock sends a 60 Hz square wave that is 
used to synchronize the programs to real time. The 
ARBUS Interface may be expanded to control a maxi­
mum of 128 channels. Expansion beyond this number 
will result in real time problems unless average 
activity is very low. We have implemented control 
for 32 channels in the ARBUS prototype, with TTY 
line circuits for 18 channels. Expansion is a 
straight-forward procedure. 

Input/Output Devices 

Although the channels appear identical to the programs 
and to the remote devices, it was convenient to 
make certain channel assignments. Channel 0 input 
is used for the 60 Hz real time clock. Channel 0 
output is unused. Channels I and 2 are reserved 
for the Data Set and the associated Automatic 
Calling Unit. Channell input and output are used 
for the data receive and transmit functions of the 
Data Set. Channel 2 input provides status informa­
tion for both the Data Set and the Automati4: Calling 
Unit, while Channel 2 output is used for Automatic 
Calling Unit Control. The rema1n1ng channels are 
used for Teletype or Invac Selectric typewriters. 

Memory Allocations 

When operating, the ARBUS Interface associates with 
each input or output channel two memory locations. 
One of these locations is called the "channel control 
word", the other is the "channel data word". The 
channel control word is loaded by the program and 
specifies; the number of bits to be shifted into or 
out of the channel data word, the relative phase of 
actual input or output of the bit to the initiation 
of the process, and the status of the channel. For 
the 32 channel system, the output control words are 
located in core memory at locations 2008 through 
2378, while the input control words are located at 
locations 2408 through 2Tt 8 (see Figure 2). The 
least significant five bits of the memory address 
of these locations are therefore the channel number. 
The associated output data words are located at 
locations 300a through 337a and the input data words 
at locations 340a through 3778. The data word 
address for a particular channel is therefore always 
100a greater than the control word. For a 128 
channel system the least significant 7 bits of address 
would correspond to channel number and the data word 
address would be 400a greater than the control word 
address. The four arrays, containing control and 
address Yords, would each be 128 words in length or 
one full page. 

* Thi~work was done under the auspices of Contract HPH 108-66-288. 

277 



Operation 

In explaining the operation of the interface, one 
might note that the proce~sing of the arrays of 
control words and data words always begins in 
synchronism with an internal 440 Hz clock. This 
clock, when "on", initiates a set of PDP-8 Data 
B~eak cycles every 2.273 milliseconds. The clock 
may be turned on by an lOT Instruction or by the 
presence of a logical zero or "Space" (tl'>e beginning 
of any character) on any input channel. The first 
Data Break cycle of the set is associated with the 
output control word for channel 0 (location 2008)' 
If the control word indicates that this channel is 
active, it is incremented and every fourth time 
(every 9.09 msec) a bit is shifted out of the output 
data word (location 3008) by a subsequent Data Break 
cycle. The remaining output and then the input 
control words are sequentially incremented, if 
active, and bits shifted out of the associated 
output data words or into the associated input data 
words as specified by the control word timing. The 
data Break cycles taken by the interface alternate 
with memory cycles taken by the PDP-8 central 
processor until the last control word is reached. 
No additional Data Break cycles take place until 
the next set begins at the output of the 440 Hz 
clock. During a set of Data Break cycles, any 
active control word that is incremented to equal 
zero indicates that the corresponding data word 
has been fully transmitted or received. 

Program Control 

The completion of transmission of a character is 
indicated to the program by the setting of the 
Input Interrupt Flag or the Output Interrupt Flag 
in the interface. These flags cause an interrupt 
if the Interrupt Enable is set. The Interrupt 
Enable is controlled by the following lOT instructions: 

6404 and ACO one Set the Interrupt Enable. 

6404 and ACr one Reset the Interrupt Enable. 

The 6404 instruction also turns on the 440 Hz clock. 
Two other instructions allow interrogation of the 
Output and Input Flags: 

6401 

6402 

Reset Output Flag and skip if 
flag is ON. 
Reset Input Flag and skip if flag 
is ON. 

These are the only lOT Instructions used by the inter­
face. 

Control Word (See Figure 3) 

The Control Word is composed of four logically 
distinct segments: A the Active bit, E the Enable 
bit, NB the Number of Bits to be shifted, and T the 
Timing Bits. 

Bit 0 of the Control Word is the A or Active bit. If 
this bit is on, the channel and the associated line 
is actively transmitting or receiving data. It is 
set by the program to initiate data output but is 
set by the interface logic for Input Control Words 
after the line associated with the control word 
becomes active. The control word is incremented 
during Data Break cycles if this bit is set. Bit 
1 of the Control Word is the E or Enable bit. For 
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input control words only, the Enable bit enables the 
setting of the Active bit during the associated Data 
Break cycle when a Start Space (a logical zero) is 
detected on the line. If the Enable bit is a zero 
the associated line is ignored and thus disabled 
by the program. Bit 1 is always set for output 
control words. Bits 2 through 9 provide control for 
the Number of Bits (NB) to be input or output. The 
number of bits to be input or output is essentially 
equal to the two's complement of NB. Bits 10 and 11 
provide the Timing (T) for shifting bits into or out 
of the data words. 

Data Word 

Data bits ~re shifted into or out of data words when 
T = 3 in the associated control word. For input, 
for example, the time of sampling and shif~ing a 
data bit after the transition of a Start baud is; 

= (3-T) 2.273 + 1.136 tl.136 msec. Data words 
are shifted one bit right, by the Data Break cycle 
that occurs after the corresponding Control Word 
is incremented such that T = 3. This shift takes 
place every 4 x 2.273 msec = 9.09 msec (correspond­
ing to 110 baud) on active channels. Input data is 
shifted into bit 0 and information in bit 11 is 
lost. Output data is shifted to the right, and 
bit 11 is shifted into the corresponding output line 
flag. The output line flag is a one bit register 
that will hold the bit that drives the line until 
the next bit is to be transmitted. 

Summary 

The total time overhead of the interface is quite 
low. For an output character. 11 bits are shifted 
onto an output line using 5 Data Break cycles per 
bit. The full character is output in 100 msec 
using a total of 55 Data Break cycles. The over­
head for outputting is approximately 83 microseconds 
out of every 100 milliseconds or .083% per line. 
For input only 10 bits are shifted in at 5 Data 
Break cycles per bit. The input overhead is then 
75 microsecon~s out of every 100 milliseconds or 
.075% per line. For a 128 channel system, the total 
interface overhead would be about 20.2% of computer 
time available. 

This system represents an effort to design a low 
cost, synchronous communications interface utiliz­
ing a minimum of wired logic and a maximum of the 
power available in the logic of the PDP-8 computer. 

Acknowledgements 

I would like to give credit to Joe Strople of 
Data Systems Design for contributions to the design 
and to Dave Pehrson of Lawrence Radiation Laboratory, 
Livermore for system checkout and documentation, 
and members of the Research Data Facility of the 
Institute of Medical Sciences in San. Francisco for 
their support. 



Bit No. 
o 1 2 3 4 

A E 

5 
I 

NB 

6 7 8 9 

A = Active bit. If this bit is on, the line is 
actively transmitting data. 

10 
I 

T 

E = Enable bit. The active bit will automatically be 
set on, for an input control word, if this bit is 
on and the corresponding input line is zero. 

~B = Number of bits. This field determines the number 
of bits to be input or output. 

For input: 
Number of bits input = two's complement of NB 

11 

For Output: 
Number of bits output = two's complement of NB if T I 3 

two's complement of NB-1 if T = 3 

T = Timing. These bits determine the time at which bits 
are shifted into or out of the data words. 

For Input: 
Time to sampling after Start baud 

= (3-T)2.273 + 1.136 + 1.136, msec 

For Output: 
Time to output after control word initialization 

(2-T)2.273 + 1.136 ± 1.136, msec, if T 4 3 
= 7.955 ± 1.136, msec if T = 3 

CONTROL WORD FORMAT 

FIGURE 3 
XBL 691-104 
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A DISC ORIENTED REAL-TIME EXECUTIVE FOR THE PDP-8/S COMPUTER 

W. T. Lyon 
Development Engineer 

Aluminum Company of America 
Pittsburgh, Pennsylvania 

ABSTRACT 

An executive was written for the PDP-8/s Computer to 
allow it to be used in a real-time environment for 
process contro 1. 

In its present form, it allows 12 levels of program 
priority, with a maximum of 115 programs running at 
the various levels within the priority structure. 
It decodes 24 process interrupts and provides 24 
software timers. 

Although the system was tailored to a particular 
process, it can be restructured by reassembly. 

INTRODUCTION 

Real-time control of a process with a com­
puter presents a variety of problems to 
the programmer. 

Many movements or events can occur concur­
rently in the process, demanding the 
computer's attention at unpredictable 
times. In addition, the computer's own 
peripherals must be scheduled in an 
efficient manner to gain the greatest 
throughput from them. 

Because of the complexity of this sched­
uling problem, a real-time operating 
system was written to satisfy the demands 
of all the interactive programs that 
would go into the process control environ­
ment. 

The system was tailored to a particular 
process application, but was written to 
enable it to be easily modified for other 
applications. 

The requirements to be placed on the 
computer were as follows: 

(1) Control material handling equipment 
associated with a machining process. 

(2) Provide scheduling information to 
the truckers who supply the process. 

(3) Keep a complete inventory of all 
material within the process. 

(4) Classify and identify the pieces 
prior to their leaving the process. 

(5) Provide communications with the 
operator to alert him of alarm 
conditions or to provide him with infor­
mation about the process upon demand. 
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HARDWARE 

To satisfy the demands of the-process, the 
following hardware was selected: 

(1) PDP-8/s Processor with 4K of core 
memory. 
(2) DF32 Disc File 
(3) CR02 High Speed Tape Reader 
(4) CR03 Card Reader 
(5) 132 Digital Outputs for Control 
(6) 180" " Displays 
(7) 180" Inputs 
(8) 24 process interrupts including 
1 - 10 Hz timer 
(9) 1 R033 Teletype Machine 
(10) 1 ASR33 Teletype Machine 

SOFTWARE 

The executive was written in modular form 
and consists of five parts: 

Scheduler 

(1) Scheduler 
(2) Interrupt Procesoor 
(3) Disc Driver 
(4) Time Delay Program 
(5) Keyboard Monitor 

The executive centers around the Scheduler, 
which determines the order in which 
programs will be executed. All programs 
communicate either directly or indirectly 
with the Scheduler. As can be seen in 
Figure 1, the only exception to this rule 
is the fast response interrupt programs 
and the portion of the Disc Driver that 
processes a disc interrupt. 

The Scheduler was intended to be as 
flexible as possible. It provides up to 
12 separate levels of priority. Any 



number of programs can be run at sub­
levels of a priority level. Programs can 
be either core resident or disc resident, 
but must all be the same at anyone 
priority level. All of these options are 
fixed at the time the system is assembled 
by the way the system tables are 
structured. 

Figure 1 illustrates the flow of control. 
Every program that runs is called for by 
the Scheduler. When the program 
terminates, it exits to the Scheduler. 
If the program is momentarily suspended 
by a disc call or a time delay, control 
is returned to the Scheduler via the Disc 
Driver or the Time Delay Program. 

Programs are requested to run by setting 
a bit in a bidding matrix. The Scheduler 
scans this matrix periodically to see if 
any programs have been bid for. If so, 
the highest priority program is run. 

Interrupt Processor 

The Interrupt Processor runs whenever a 
program is interrupted. It saves the 
contents of the accumulator, linc and 
program counter, and then checks to see 
if the interrupt was caused by the disc. 
If so, it goes to the Disc Driver. The 
Disc Driver returns control to the 
Interrupt Processor which then proceeds 
to decode other interrupts that may have 
occurred and to take appropriate action. 
The "appropriate action" falls into 
three categories: 

(1) Run a short program immediately (a 
"fast response program"). 

(2) Bid for the Time Delay Program 
(when the timer interrupts.) 

(3) Bid for a process program. 

After processing the interrupts and 
taking action, control is returned to 
the Scheduler. 

Disc Driver 

The Disc Driver is necessary to provide 
an orderly flow of information between 
core and disc memory. All disc trans­
fers, whether they be requested by the 
Scheduler, Keyboard Monitor, or a 
process program, are implemented by the 
Disc Driver. 

When a process program requests a disc 
transfer, its priority level is 
suspended until the transfer is complete. 
If the disc is busy when the request is 
made, the request is queued up until the 
disc becomes free. The queue is 
processed according to priority rather 
than on a first-come basis. 

Completion of a transfer is sensed when 
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a disc interrupt is received. When this 
occurs, the Disc Driver bids to continue 
the suspended program. At this time, it 
also initiates the next transfer if one 
is being requested. 

Time Delay Program 

The Time Delay Program runs as a process 
program under the Operating System. It 
is bid for by the Interrupt Processor 
when a timer interrupt occurs and runs at 
the highest priority level, level 1. 
This program allows other process programs 
to momentarily suspend their own operation 
or to request that another program run 
after some time has elapsed. It also 
keeps a real-time clock. 

Keyboard Monitor 

The Keyboard Monitor program provides the 
ability for the programmer to communicate 
with the computer from the Teletype key­
board. It runs as a process program 
under the Operating System at the lowest 
level of priority, level 12. Any time 
there are no process programs to run, the 
Keyboard Monitor is scanning the keyboard 
waiting for input. This allows one to 
interrogate or modify portions of computer 
memory without interrupting the control 
of the process. 

The functions available with the Keyboard 
Monitor are as follows: 

(1) DC xxxx yyyy (Dump core in octal 
from location xxxx to location yyyy). 

(2) LC xxxx (Load core starting at 
location xxxx with the octal numbers to 
be input on the keyboard). 

(3) BP xxxx yyyy (Binary Punch from 
core from location xxxx to location yyyy). 

(4) BL (Load a Binary tape into core). 

(5) DD xxxx (Dump 2 blocks from disc in 
octal starting with block xxxx). 

(6) LD xxxx yyyy (Modify block xxxx on 
disc starting with relative address yyyy). 

(7) CD (Call DEC Disc System). 

TIME AND SPACE REQUIREMENTS 

The executive was written for a mini-disc 
based system, but can be used for an all 
core resident system. It requires a 
minimum of 21008 words of core memory 
including half of page zero. 

Included in the 21008 words are several 
subroutines, which can be used by any 
program as long as it turns interrupt off 
before going to the subroutine and turns 
it back on after returning. These sub-



routines include the following: 

(1) Exclusive Or 

(2) Inclusive Or 

(3 ) Single Precision Multiply 

(4) Single Precision Divide 

(5) Single Precision Arithmetic Right 
Shift 

(6) Single Precision Arithmetic Left 
Shift 

Also included in the 2100 words are the 
tables which contain all the parameters 
needed to define the way the Operating 
System is structured. These tables vary 
in length with the maximum number of 
programs, interrupts and time delays, 
but occupy a minimum of 110S locations, 

In addition to the 21008 locations 
required for the executlve, 400S words 
are required for the Keyboard Monitor. 

The original version of this system 
occupies a total of 3200S locations. 
It allows for up to 115 separate programs, 
24 process interrupts and 24 software 
timers. 

The Scheduler is the largest time user. 
It requires between 2.1 and 12.7 milli­
seconds to execute. The time of 
execution is measured from the time the 
Scheduler is entered until it exits to 
a program. It varies with the priority 
of the first bidding program that is 
found. To determine that a program is 
bidding to run would require the 
Scheduler 2.1 milliseconds if the program 
is assigned to levelland 12.7 milli­
seconds if the program is assigned to 
level 12. 

The Interrupt Processor requires about 
5 milliseconds to execute. This means 
that the fastest recognition rate for 
interrupts approaches 200 interrupts per 
second. 

INTEGRATION WITH THE DEC DISC SYSTEM 

To be able to use PALD, Disc Editor and 
other options of the DEC Disc System, it 
was necessary to devise a scheme to 
integrate the DEC system and the Alcoa 
system on the same Disc. 

The approach taken was to save the Alcoa 
system as a "user" program under; the DEC 
system. Then, dummy entries were stored 
into the DATA NAME FILE and SAM table to 
reserve some space on disc for the 
process programs to reside. 

One of the options of the Keyboard 
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Monitor calls the DEC System and gives 
control to the DEC Monitor. (This 
function will operate only if the com­
puter is in the off-line mode). The 
Alcoa System, in turn, can be called by 
name with the DEC Monitor. 

CONCLUSION 

A small computer like the PDP-SIS, can 
be used for process control. Even though 
it is slow, there is no reason why it 
should be confined to overseeing one task 
at a time. The process that this computer 
is to direct is not yet in operation, but 
all preliminary tests indicate that when 
it does go on line it will be another 
example of the process industry moving 
away from the "overkill" approach to 
computer control. 
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TMF - A PROCEDURAL SOFTWARE PACKAGE FOR BIOMEDICAL 
AND SCIENTIFIC APPLICATION ON THE PDP-8 

Fred R. Sias, Jr. and Allen B. Wilson 
Division of Neurology, Department of Medicine 

University of Mississippi Medical Center 
Jackson, Mississippi 39216 

ABSTRACT 

TMF is a procedural software package including an Input-Output 
Control System (IOCS-8) for use with the PAL III or MACRO-8 
assembly systems on the PDP-8 series of machines. A number of 
definitions are added to the permanent symbol table of each 
assembler to permit execution of procedural subroutines 
analogous to Fortran statements such as IF, GOTO, DO, READ, 
WRITE, CALL, and RETURN. A keyboard monitor is included in 
the basic system. 

INTRODUCTION 

Programmers using higher-level compilers such as For­
tran find the procedural capabilities of the lan­
guage at least as useful as the arithmetical featur~. 
While floating point arithmetic software packages 
are usually provided by computer manufacturers to 
ease the programming effort when using assembly lan­
guages, analogous procedural packages are usually 
not available. TMF is a first effort at developing 
such a procedural software system. 

The basic requirements for a procedural software 
package were suggested by the procedural statements 
we take so much for granted in FORTRAN. We first 
implemented IF, Computed GOTO, DO loop and two­
dimensional array handling routines. Then it became 
apparent that a useful software package should in­
clude an input-output control system and some means 
of formatting input-output records. After adding 
some device handlers we had a package of programs 
that look much like the operating system used with 
an interpretive FORTRAN such as PDP-8 Fortran. How­
ever, programs are prepared using either the PAL III 
or Macro-8 assembler. A number of definitions are 
added to the symbol table of either assembler to 
permit execution of procedural subroutines analogous 
to Fortran statements. The nature of the assemblers 
are such that several statements may be strung to­
gether in a manner reminescent of a Fortran statement. 

In addition to analogs of the basic procedural For­
tran statements, we have incorporated a keyboard mon­
itor system, CALL and RETURN statements for handling 
subroutines, as well as necessary~erlays so that 
TMF will function with the PDP-8 Floating Point In­
terpreter and Input-Output controller. Using some 
offerings of DECUS we have provided for automatic 
round-off and proper handling of integers when out­
put is by the DEC Floating Point output controller. 
Finally, TMF includes a linking or chaining feature 
for segmenting programs. 

The Table in the appendix shows the core allocation 
for the basic TMF package. Note that only four ex­
tra pages of coding are required beyond the space 
required by the floating point interpreter. If we 
compare this operating system with the analogous 
Basic 4K PDP-8 Fortran operating system we find that 
TMF leaves about 3200 octal locations for user pro­
grams while PDP-8 Fortran leaves only 2400 octal 10-
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cations. In addition, TMF user programs tend to be 
shorter and optional subroutines such as the extend­
ed functions can be deleted from TMF when not needed. 
PDP-8 Fortran does not offer this option. 

STRUCTURE OF TMF 

The structure of TMF is determined by five factors: 

1. The structure of PAL III Macro-8 Assembler. 

2. The structure of the Floating Point 
Interpreter. 

3. The requirements of device independent 
of 1-0 handling. 

4. Operation on data in the real Accumulator. 

5. Operation on data in the Floating accumu­
lator. 

Of course, shifting data back and forth between the 
real and floating accumulators is handled by pseudo 
instructions FIX and FLOAT. We chose to define all 
subroutine jumps on page zero rather than entering 
the procedural package through an interpreter. This 
is faster than using an interpreter and is not too 
restricting since the keyboard monitor and CALL table 
is located on page one rather than on page zero. 

All input-output functions are handled by IOCS-8, a 
one page device independent control system. It may 
be used independently of the rest of TMF by entering 
the device number in location DEVICE on page zero 
and entering the subroutine with data to be outputted 
in the real accumulator. A (decimal) 12 slot device 
assignment table contains the addresses of appropri­
ate device handlers. Also included in IOCS-8, is a 
text handler and a subroutine for chaini~g program 
segments. Input-output formatting is handled by an­
other segment of the TMF package. 

Fortran-like input-output statements are interpreted 
by a one page set of subroutines entered by the pseu­
do instructions READ or WRITE. To be compatible with 
PAL III, the following form may be used: 

WRITE 
4 
306 
6 
2 

IWRITE JMS I IRITE 
IDEVICE NUMBER 
IASCII CODE FOR F FORMAT 
ILIKE F6.2 
I IN FORTRAN 



Using Macro-8 the following format produces the same 
object code and is easier to read: 

WRITE; 4; "F; 6; 2 (carriage return) 

This is the first example of what might be called a 
TMF language except that its really assembly lan­
guage. 

WRITE is defined as a JMS to a write handling sub­
routine. 4 is the device number and is the first 
parameter provided to the subroutine. "F is assem­
bled as 306 and is the second parameter delivered to 
the subroutine. "F; 6; 2 then is the Format des­
cription. This certainly isn't Fortran but a know­
ledge of Fortran provides the understanding needed 
to prepare programs using TMF. The fact that PAL 
III and Macro-8 interpret a semicolon like a carriage 
return enables one to string out assembly language 
coding so that it looks like a higher language and 
provides the capabilities of a higher language. 

READ statements have the same structure. A,B,E, F, 
and I formats are the same as the analogous Fortran 
formats. C format outputs a carriage return and 
line feed. A and B formats are via the real accumu­
lator while E, F, and I formats utilize the floating 
point accumulator. Decoding is handled by these 
routines while actual input-output is handled by 
IOCS-8. The subroutines that decode the E, F, and I 
formats set control words on page zero that then 
utilize the floating point I-O controller for actual 
format control. 

Another page of coding is used to interpret several 
Fortran-like procedural pseudo-instructions. These 
include IF, computed GOTO, FIX, FLOAT, DO loops with 
unlimited nesting, and an ARRAY pseudo code to handle 
two-dimensional arrays. 

IF; ADDRI; ADDR2; ADDR3 

causes a JMS to a subroutine that examines the con­
tents of the real accumulator and causes a jump to 
one of the three addresses based on whether the 
accumulator is negative, zero or positive. 

A statement with the form 

GOTO; ADDRl; ADDR2; etc. 

is interpreted as the standard computed GOTO based 
on the integer contained in the real accumulator. 
The unconditional GOTO was not implemented since the 
standard JMP instruction is adequate. 

The following format is used to set up a DO loop: 

DO; N; J, 0 
(Instructions in do loop) 

CONT; J 

As implemented nm·!, J must be set to the starting 
value before entering the DO loop and CONT increments 
J N-times following each pass through the loop. Since 
independently defined indexes are used any nesting 
depth is possible. 

Arrays are frequently handled in DO loops. To faci­
litate this, the following statement is used: 

ARRAY; NAME; INDEXl; INDEX2 
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Where the indices are defined in a DO loop or else­
where and INDEXI and INDEX2 are addresses of the 
index values. The array must be defined in memory 
as follows: 

NAME, A /NO. OF WORDS PER ELEMENT 
B /NO. OF ROWS 
C /NO. OF COLUMNS 
(REST OF ARRAY) 

The subroutine is designed to handle two-dimensional 
arrays. If a one-dimensional array is specified, 
INDEX2 is not required, however, the number of 
columns in array definition must be set to zero. 
Execution of the ARRAY subroutine leaves the address 
of the selected array element in POINT on page zero. 
Of course, data is deposited or retrieved from the 
array by indirect instructions. 

Finally, the basic TMF package includes coding for 
a keyboard monitor and routines for locating sub­
routines named by single ASCII characters. For 
example: 

CALL; "D or CALL; 304 

causes a JMP to the address stored at location 304. 
The return to the mainline program is executed by 
the pseudo code RETURN via an indirect address 
stored on page zero. Locations corresponding to 
the ASCII code for letters of the alphabet are 
available to name subroutines. In addition, the 
same table of addresses is used by the keyboard 
monitor, so subroutines must not have the same "nalres' 
as programs to be accessed by the keyboard monitor. 
Separate address tables could be used but the letters 
of the alphabet should provide plenty of names for 
both subroutines and keyboard called programs. The 
statement CALL; "K is used to return to the keyboard 
monitor. 

The appendix defines the complete structure of TMF. 

CONCLUSION 

A procedural Software Package, TMF, has been develop­
ed to simplify assembly language programming. A set 
of pseudo-instructions similar in appearance to 
analogous FORTRAN procedural statements are inter­
preted by the basic TMF package. Combined with the 
floating point interpreter the system is both faster 
and more compact than the PDP-8 Fortran Operating 
System. Since we only appear to be using a higher­
level programming language we have the efficiency of 
assembly language programming along with the speed 
and documentation advantages of a higher-level 
language. TMF has been used both to prepare stand­
ard statistics programs, and to program a real-time 
data-acquistion system for neurophysiological re­
search. 
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APPENDIX 

I T~F: TrlIN~ING ~ANtS FORTRAN - A PROCEDURAL 
I SOFTWARE PAC~AGE 
I 
IFRED R. SIAS, JR. AND ALLAN 8. wiLSON 
IDIVISION OF NEUROLOGY 
IUNIVERSITY OF MISSISSIPPI MEDICAL CENTER 
IJAC~SON, MISSISSIPPI 39216 
126 JUNE 1968 
I 
I 
ITriE FOLLOWING SET OF SUBROUTINES CAN BE USED TO SIMULATE 
IFORTRANLIKE STATEMENTS WHILE ACTUALLY PROGRAMMING IN PAL III 
lOR MACRO-~. TrlE PAC~AGE IS ORGANIZED AS A GROUP OF MODULES 
ILOADED DOWNWARD IN MEMORY BELOW THE STANDARD FLOATING POINT 
IPACKAGE (DIGITAL 8-58-S> THAT STARTS AT LOCATION 5400. 
I 

ILOADED IN THE FOLLOWING ORDER, EACH IS INDEPENDENT OF ANt 
IMODULE IN LOWER ORDER MEMORY. 
I 

I 

I 

I 
I 
I 

I 
I 

I 
I 

I 

I 
I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

I 
I 
I 

I 

7600-7777 

540kj-7577 

52'10-5377 

5000-5177 

46kJ0- 4777 

420k1-4577 

3600-4177 

020tJ-0332 

~ll 55-01 77 

!{J04kJ-0062 
0010 5-£11007 

01004 

ILOADERS 

/BASIC FLOATING PT PACKAGE 
I WITH 1/0 CONTROLLER 
IIOCS8, TEXT, AND LIN~AGE ROUTINES 

IFORTRANLI~E SUBROUTINES 

IFORMATTING SUBROUTINES 

ISCOPE OUTPUT PAC~AGE 

IFLOATING PT EXTENDED FUNCTIONS 

IKEY80ARD MONITOR AND CALL HANDLER 

IINDIRECT ADDRESSES 

IFLOATING PT PACKAGE 

10DT 

/INTERRUPT 

ILIBRARY TAPE IS A SERIES OF MODULES STARTING WITH IOCSd. 
I(FLOATING POINT PACKAGE ~Ar BE PLACED FIRST ON THE SA~E TAPE.) 
IPRESS CONTINUE REPEATEDLY FOR AS MANY MODULES AS REQUIRED. 
ILOWER ORDER MEMORY MODULES INSERT REQUIRED OVERLAYS. FOR INSTANCE 
I SCOPE PACKAGE OVERLAY SITS DAT SLOT I j\) I OCSo • 
I 

I 

I 
I 

IOCS8: INPUT-OUTPUT CONTROL MODULE 

II0CS~ USED WHENEVER THERE IS 1/0 TO BE DONE 
ITEl( T SUlHWlITPJE REQUI RES THAT S1A'RTI NG ADDRESS 
I OF STRING BE IN ACC ON ENTRY 
IFLOATING PT PACKAGE, IF USED, SHOULD BE LOADED 
I BEFORE THESE ROUTINES 
I 

I 

IIOCSd IS AN INPUT - OUTPUT CONTROL SUBROUTINE 
I ENTERED WITH NUMBER TO BE OUTPUTTED IN ACC 
I AND THE DEVICE CODE I''J "DEVICE" AT LOCATlO,\J 
I L 177 
I DEVICE REMAINS SELECTED UNTIL 177 IS CHANGED 
I EXIT FRO~ SUBR WITH I~PUT CrlAR IN ACC 
I 
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IA DEVICE ASSIGNMENT TA8LE STARTS AT LOCATION 52~5 WITH TWELVE 
IPOSITIO~S AVAILABLE. THE FOLLOWI~G DAT SLOTS HAVE BEEN 
IASSI (,NED: 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

1 
2 
3 
4 
5 

6-12 

ITTt PUi\JCrl 
ITT'( READER 
Irl I Gli SPEED READER 
ISTORACiE SCOPE 
Iii I Gli SPEED PUNCH 

ISPARES 

ITHE MESAGE SUBROUTINE CAN ALSO BE USED ALONE BY ENTERING WITH 
ITHE ADDRESS OF THE PAC~ED, TRIMMED ASCII CODES IN THE ACC. 
ITHE COD~S ARE INDENTICAL WITH TrtE DEC ALPrlATtPEOUT CODES AND 
I~UST TERMINATE WITH A 00 CODE. RETURN IS TO THE STATEMENT 
IFOLLOWING TrlE 00 WORD~ 

I 

I 

I LINKAGE FACILITY 
I 
IGI VES THE PROGRAr"1.>1ER THE ABILI Tt TO SEG,VjENT LONG PROGRAi'1S 
lAND CALL IN THE SEGMENTS AS NEEDED. 
I 

I LINK 
I 3 IDEVICE NO. 
I ";"1 IPROGRA,"1 NAi"1E (ONE ASCII CHAR) 
I 
lOR LINK; 3; Hi., 
I 
IBINARY PROGRAM SOUGHT MUST HAVE THE ASCII CODE PUNCHED 
IPRECEDI~G IT. THE CORRECT PROGRAM IS FOU~D AND LOADED 
18'-( THE i"liSSISSIPPI LOADER wHICH WILL START IT AUTO;...,ATICALLY. 
I 

I 
IFORTRANLIKE STATEMENTS AODULE 
I 

IDESIGNED TO APPROXIMATE FORTRAN STATEMENTS 
I 

ISTATEME~T StNTAX: 
I 
I 

I IF STATEi"1ENT 
I 

IENTERED WITH TEST QUANTITY IN ACCUMULATOR 
I 
I IF; ST1; ST2; ST3 
IWHERE STl, ST2, 5T3 ARE AODkESSES OF STATEMENTS FOR HANDLING 
IMINUS, ZERO, AND PLUS CONDITIONS, RESPECTIVELY. 
I 
I 

ICO;""PUTED GOTO 
I 
IENTERED WITH INDEX IN ACCUMULATOR 
I 
I GOTO; STl; ST2; 5T3; ST4 ••• 
IW~ERE STl, ST2, ••• STN ARE ADDRESSES OF STATEMENTS 
IFOR I NDEX EQUAL 1, 2, ••• N 
I 
I 

I DOLOOi-' 
I 
IUSED TO ITERATE A SEOUENCE OF STATEMENTS 
I 
I DO; N; INDEX, 0 
I 
I COI\JT 
I INDEX 
I 
IWHER~ N IS THE NU~8ER OF ITERATIONS TO 8E MADE, AND I~DEX 
IFOLLOWING CONTCINUE) IS TrtE ADDRESS OF TrlE LOOP INDEX. 
ITHE INCREMENT FOR INDEX IS AL~AtS ONE. UNLIMITED NESTING 
I I S P t: R :"1 ITT ED. 
I 
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/ 
/ fLOAT 
/ 

fUSED TO fLOAT A NUMBER IN THE REAL ACCUMULATOR. IT IS 
/LEFT IN THE fLOATING ACCUMULATOR. 
/ 
/ FIX 
/ 
fUSED TO FIX A NUMBER IN THE FLOATING ACCUMULATOR. 
/NUM8ER MUST BE LESS IN MAGNITUDE THAN 2047. RESULT 
/LEfT IN REAL ACCUMULATOR. 
/ 
/ 
/ INPUT-OUTPUT FORMATTING MODULE 
/ 

/ READ 
/ 

fUSED TO READ AN ASCII CHARACTER, A DECIMAL NUMBER OR A 
/BINARY It,IQRD. 
/ READ 

/DEVICE NO. / 
/ 

2 
If I /FORMAT TYPE - A, B, E, F, I 

/ 
lOR READ; 2,; "I 
/ 
/READING BY A FORMAT INPUTS A CHAR AND LEAVES IT IN 
/THE ACCUMULATOR. READING BY B FORMAT INPUTS TWO CHARACTERS 
/AND ASSEMBLES A 12 BIT BINARY WORD. THIS CONTINUES UNTIL 
/LEVEL 8 CODES ARE fOUND <RUBOUT OR LEADER/TRAILER CODES). 
/THE DATA STRING IS LOADED INTO SEQUENTIAL WORDS STARTING AT 
/THE ADDRESS STORED I N "PLACE" < LOC 160) ON PAGE ZERO. 
/A CHECKSUM IS CALCULATED ON PAGE LERO AND COMPARED WITH THE 
/CHECKSU~ ON THE DATA TAPE; If THE TWO 00 NOT AGREE PROGRAM 
/HALTS. REPOSITION THE BAD SEGMENT OF TAPE AND REREAD BY 
/PUSHING CONTINUE. 
/ 

/READING BY E, F, OR I FORMAT USES THE FL PT INPUT 
/ROUTINES BUT OF COURSE USES THE DEVICE SPECIFIED AFTER 
/" READ" • 
/ 

/ 

/ \tJRI TE 
/ 

/ WRI TE 
/ 4 /DEVICE NO. 
/ "F /FORMAT TYPE - A, B, C, E .. F .. ri, I 
/ 6 /LIKE F6.2 IN FORTRAN 
/ 2 
/ 
lOR WRI TE; 4; "F; 6; 2 
/ 
/A FORMAT OUTPUTS THE CHAR IN THE ACC. 8 FORMAT OUTPUTS 
/TWO 6 BIT CHARACTERS AND INCREMENTS CHEC~SUM. CHECKSUM 
/MUST BE EXPLICITELY SET TO ZERO AND PUNCHED BY PROGRAM. 
/ C FORMAT OUTPUTS 
/A CARRIAGE RETURN - LINEFEED. E FORMAT OUTPUTS LI~E THE 
/FORTRAN E FORMAT. F FORMAT OUTPUTS LI~E THE fORTRAN F 
/~ORMAT. I IS ALSO LIKE THE FORTRAN OUTPUT. E .. f, AND I 
/FORMATS ALL OUTPUT THE QUANTITY IN THE FLOATING ACC. H OR 
/rlOLLERITrl fORMAT OUTPUTS THE TEXT IN THE CODED STRING FOL­
/LOWING THE CALL: 
/ 

/ ltJRI TE; 4; "H 
/ TEXT *THIS IS HOLLERITH TEXT%#* 
/ 

/ 

/ STORAGE SCOPE OUTPUT 
/ 

/CALLED BY USING DEVICE NO.4 FOLLOWING "WRI TE". t,.HLL 
/HANDLE ANY OF THE OUTPUT FORMAT SPECS. 
/ 

/ 
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I 
I ARRAY SUBROUTINE 
I 

IGIVES THE ADDRESS OF AN ELEMENT IN A ONE OR TWO 
IDIMENSIONAL ARRAY. 
I 

IARRAY MUST APPEAR IN MEMORY AS: 
I 
I *STARTING ADDRESS OF ARRAy' 
I NAivJE" A INO. OF ~}ORDS PER ELEr'1ENT 
I B INO. OF ROlliS 
I C INO. OF COLUI'1NS 
I 
I"C" SHOULD BE 0 FOR A ONE DIMENSIONAL ARRAy' 
I 

IUSE: 
I 
/ ARRAY 
I 
I 

I 
I 

NA;"1E 
I 
J 

INAME (STARTING ADDRESS> OF ARRAY 
INO. OF ROW OF ELEMENT 
INO. OF COLUMN OF ELEMENT 

lOR ARRAY; NAME; I; J 
I 
ITHE SECOND SUBSCRIPT SHOULD NOT BE PRESENT FOR A 
lONE DIMENSIONAL ARRAY (THOUGH tiC" OF NAME" A; B; C 
n1UST BE 0). 
I 
ICALLI NG THE SUBROUTI NE PUTS THE ADDRESS OF TrfE 
IDESIRED ELEi'1ENT IN "POINT" ON PAGE ZERO" LOCATION 
1164. IT CAN THEN BE USED TO REFER TO THE ELEMENT 
IINDIRECTLY. 

I 
I KEYBOARD MONITOR AND CALL ROUTINES 
I 
I 
IKEYBOARD MONITOR WHEN OPERATING READS A ONE 
ICHAR ASCII CODE FROM THE TELETYPE. THIS CHAR 
lIS USED IN A TABLE LOOKUP TO JMP TO THE 
IAPPROPRIATE ROUTINE. THE FINAL STATEMENT OF 
IA KEYBOARD MONITOR CALLED PROGRAM SHOULD 
IBE CALL; 11K" "JHI CH WILL RETURN CONTROL TO THE 
IKEYBOARD MONITOR. THE MONITOR CAN THEN 
IBE USED TO CALL OTHER PROGRAMS. 
ITELETYPE BELL SIGNALS RETURN TO MONITOR. 
I 
I CALL ROUTINE 
I 

ITHE CALL STATEMENT" USED MUCH LIKE THE SAME FORTRAN 
ISTATEMENT" SERVES TO CALL SUBROUTINES LOCATED 
IANY WH ERE IN ('1E;vJORY. THE SY NTAX I S CALL; lIN 
IWHERE N IS THE NAME OF THE DESIRED SUBROUTINE. 
ITHE FIRST STATEMENT OF THE SUBROUTINE SHOULD NOT 
IBE 0" BUT AN EXECUTABLE STATEMENT. THE TERMINATING 
ISTATEMENT OF THE SUBROUTINE SHOULD 8E RETURN. 
ITHE CALL STATEMENT MAY NOT REFER TO ANY SUBROUTINE 
INAME USED By' THE KEYBOARD MONITOR AS THE SA~E TABLE 
lIS USED FOR 80TH SUBROUTINES AND KEYBOARD CALLED 
IMAIN ROUTINES. 
I 

ISUBROUTINES SHOULD BE COlvJPILED I·HTH THE FOLLOIJJING 
IFORM WHICH AUTOMATICALLY LOADS THE CALL TABLE: 
I 
I 
I 
I 

I 
I 

*"A 
A 

*ADDR 
A" INSTRUCTION 

/ADDRESS T ,'\1 f" f\ I I 
""""II V,--U ... '-

INAf'1E OF PROGRAf-i 
TABLE 

IACTUAL DESIRED ADDRESS OF START 
IEXECUTABLE STATEMENT 

ITHE SUBROUTINES MAY BE MADE RELOCATABLE BY USING 
ITHE MISSISSIPPI LOADER. 
I 
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ACCESSING DATA ARRAYS AND 
TELETYPE TEXT INPUT/OUTPUT 

David G. Frutchey 
Beckman Instruments, Inc. 

Fullerton, California 

ABSTRACT 

Two subroutine packages are presented which, when used with any 
of the standard Floating Point Packages, provide the user with a 
powerful, yet concise programming methodology. Data storage or 
retrieval with floating to fixed, or fixed to floating point 
conversion can be performed on terms analogous to single vari­
able, subscripted FORTRAN array terms such as "ARRAY (a*J+b)." 
A concise facility for text output (63 characters), character 
input, line spacing and tabulating is also demonstrated. These 
subroutine packages were written for the PDP-8 family of com­
puters and were intended for use with the PAL-III language. 

EFFICIENT STORAGE UTILIZATION 

The programming of a digital computer requires a 
knOWledge of both procedural and arithmetic tech­
niques. Higher level languages such as FORTRAN 
and FOCAL are recognized as being a significant 
aid to the programmer particularly for procedural 
operations and through the relative ease in which 
the language can be learned. Also, the complete­
ness of these languages can be illustrated by the 
simple, direct way in which the procedural tasks 
of input/output, branching logic, data conversion 
(integer storage/floating point storage), looping 
to repeat procedures, etc. can be done. Among these 
procedural tasks is the ability to process single­
subscripted-variable data array terms of the form 
ARRAY (a*J+b). The terminology used here is as 
defined in the American Standard FORTRAN in that 
the symbol, ARRAY, is a name given the beginning 
of successively stored data values and the sub­
script enclosed in par~ntheses with integer 
values of 1, 2, 3, ••• refers, respectively, to 
the first, second, third, ••• data array number. 

Analogous procedural programming requires more 
effort in the assembly language of the computer 
than of the higher level languages available. 
However, quite often, reverting to the use of 
assembly language can permit significant gains 
in the critical availability of computer core 
storage. In a small machine, such as the PDP-8 
family of computers, core storage is extremely 
limited and the desire to achieve improved core 
storage utilization is often an application pro­
gram necessity. 

What are some of the programming concepts which 
adversely affect core utilization? The following 
are a few: 

1. Direct storage of higher level language in a 
form much more lengthy than the assembly 
language equivalent code. 

2. Use of an inte~pretive system for all coding 
which in equivalent assembly form would not 
always require the use of an interpreter 
program. 
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3. Lengthy preparations for calling subroutines or 
lengthy calling sequence requirements to 
subroutines. 

4. Duplication of coding in that an internally 
available routine is not used. 

5. Failure to share work region requirements; that 
is, core storage which is temporarily used and 
otherwise available. 

6. Overemphasis of the coding consideration of the 
seldom used (if ever) requirements, rather than 
permitting omissions with an attendant savings 
in core; or by providing alternately coded 
packages so that the user may have a choice. 

The appearance of programming systems which attempt 
to preserve the procedural niceties of the higher 
level languages are prevalent today; however, many 
of these systems suffer from some of these same 
adverse conditions and produce little improvement 
in core utilization. The adverse concepts listed 
above may serve as a guide when evaluating both the 
system presented herein and other such systems. 

TWO NEW PACKAGES 

Two subroutine packages were developed during a 
biomedical project in which minimizing the core 
storage requirements was essential. To this end, 
the packages entitled "Teletype Text Input/Output 
Package" and the "Array Accessing Subroutine 
Package" were written. The usage and features of 
these routines enable a user to code several pro­
cedural tasks such as teletype page formatting, 
output and input, and processing data arrays. Also 
illustrated in the examples given are means by which 
other procedural tasks such as looping and decision 
branching could be coded. These two packages 
require the use of the Floating Point Package l and 
are partially integrated in their use and perform­
ance. The overall purpose in developing these 
packages was to ENABLE MINIMUM CORE STORAGE REQUIRE­
MENTS. At the same time, the peripheral benefits of 
being able to think or plan a program in FORTRAN are 
not altogether lost. In fact, the examples show 
FORTRAN equivalents which are a suggestion that 
FORTRAN coding could readily precede t;ie use of 



these routines. A second peripheral benefit is in 
the increase obtained in computational computer 
speed by these routines when compared to the pres­
ent FORTRAN-produced code. 

THE TELETYPE TEXT I/O PACKAGE 

This package consists of three routines; namely, 
subroutines TAB, TEXT and ECHO. The subroutines 
are "called" in the PAL-III assembly language 
through the use of the Jump to Subroutine (JMS) 
mnemonic. As in the Floating Point Package, a 
TLS must be used at least once prior to using 
routines TAB and TEXT. 

The Teletype Text I/O Package is available in two 
forms which are a ~~ana-fi~one version and a version 
to be used when the Floating Point Package is resi­
dent which will be referred to as the FPP version. 
The Stand-Alone version occupies 63 decimal storage 
locations. The FPP version requires 55 decimal 
storage locations. The FPP version has the distinct 
advantage of using the Floating Point Package for 
all teletype commands. This feature is useful in 
that if interrupt I/O is implemented, modification 
to the Floating Point Package only need be made. 

Subroutine TAB 

It performs tabulation across a page by typing 
blanks, or performs mUltiple line spacing down a 
page by typing carriage return (CR), line feed (LF) 
combinations. The routine reacts to the accumulator 
c(Ac) contents as follows: 

If c(Ac) Output 

=0 One CR and one LF 

=n positive, One CR and n+1 LF 

=n negative, Inl-l blanks 

No calling sequence parameters are expected by 
subroutine TAB other than the c(Ac), and the 
routine always returns with c(Ac)=O. 

Subroutine TEXT 

This subroutine performs the output of a message 
stored as six-bit (stripped) code with two char­
acters per computer word. The message is formed 
by subtracting octal 240 from any USASC-II eight­
bit code in the octal range 240 to 336, inclusively. 
The two-digit, octal results representing a char­
acter are placed into the first half, followed by 
a character in the last half of each computer word 
and continued into successive core storage loca­
tions. The two-digit, octal code 77 is used as 
the message termination signal and must appear in 
either the first or last half of the final computer 
word used for the messages. Messages may be as 
long as desired and may overlap page boundaries. 
The code includes the use of the alphabet, numerals, 
punctuation, etc. The routine is called without 
regard to the c(Ac) and requires the address of the 
first word of the message to follow the call. This 
feature was provided rather than following the call 
with the message itself to enable portions of a 
message to be reusable and to permit the placement 
of the message into core locations which would not 
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otherwise be used. The routine differs from previ­
ously written routines in that the link register (a 
one-bit, two-state register) is used to alternately 
point to the character to be printed. Also, the 
switching of the link pointer is performed without 
command through the arithmetic in testing for the 
terminating character. 

Example 1 - Using Subroutine TEXT to type "NO GO" 

· · · JMS TEXT 
MSGADR 

IJUMP TO SUBROUTINE TEXT 

+ PROCESSING CONTINUES HERE · · · MSGADR, 5651 
0047 
5111 

1M) 
I-G 
10 TERMINATION 

Subroutine TEXT always returns with the c(Ac)=O. 

Subroutine ECHO 

This routine performs the input and typing of a sin­
gle USASC-II, eight-bit code character. When called, 
the routine will "wait" until a keyboard entry is 
made and will return to the location immediately 
following with c(Ac)=O if the RUB-OUT key is entered. 
If any other key is entered, the routine will return 
to resume past the RUB-OUT return point and will con­
tain the USASC-II character in the c(Ac). Addition­
ally, the character will be stored at location CHAR 
in the listing of the subroutine ECHO used. When 
the Floating Point Package is to be used, the char­
acter is returned at octal location CHAR=0057. The 
Stand-Alone version of ECHO deposits the character 
at location CHAR=TEXT and it will be destroyed upon 
any subsequent call to either TAB, TEXT or ECHO. 

Example 2 - Using subroutine ECHO to input a 
character. 

AGAI N, JMS ECHO 
JMP AGAIN IWHEN RUB-DUT I S ENTERED 

PROCESSING CONTINUES HERE 
WHEN THE CHARACTER I S NOT 
THE RUB~UT KEY. 

THE ARRAY ACCESSING SUBROUTINE PACKAGE (AASP) 

This package provides subroutines which can be used 
to access single subscripted variable arrays of the 
form ARRAY (a*J+b). The use of the Floating Point 
Package is required in that several of the Floating 
Point Package internal routines and services are 
used. Also, work regions of the Floating Point 
Package are shared. 

The Array Accessing Subroutine Package requires 110 
(decimal) storage locations and is designed to reside 
beginning at core location octal 4400. When a Float­
ing Point Package version is used which does not 
include the subroutine FIX at location 4557, the 
Array Accessing Subroutine Package will supply 
subroutine FIX. In this event, all of the locations 
on the page between octal 4400-4577 are required. 
Ten of the locations required reside at the end of 
two pages within the Floating Point Package (octal 
6173-6177, and 6573-6577). 

The routines to be used are named as follows and will 
perform the attendant procedure: 



Name 

LOAD 

ILOAD 

STORE 

Procedure 

Clear the floating accumulator c(FAC) and 
load from a floating point array. 

Clear c(FAC) and load from an integer data 
array. 

Store c(FAC) into a floating point data 
array. 

ISTORE Store c(FAC) into an integer data array. 

FIND Without disrupting c(FAC), load a temporary 
accumulator defined as ANS at location 52, 
53 and 54 from a floating point data array. 

IFIND Without disrupting c(FAC) load c(ANS) from 
an integer data array. 

The routines are entered while operating within the 
Floating Interpreter via the table provided at 
octal locations 6556 through 6563. The proper 
contents of these locations will be furnished in 
the Array Accessing Subroutine Package. A user 
must define the table entry naming convention by 
providing the following octal equates to the 
Assembler: 

LOAD = 0012 
ILOAD = 0013 
STORE 0014 
ISTORE = 0015 
FIND = 0016 
IFIND = 0017 

The FIXTAB pseudo-op may be used for this purpose 
if desired. It may be well to note that 
these routines may not be called while not witnin 
the floating interpreter. Notice that the UGe of 
the ILOAD, ISTORE initiates both data array access­
ing and c(FAC) conversion. The routines can cer­
tainly be used for the simpler usage where conver­
sion only is desired. The resulting value will be 
found in the c(FAC) after either the ILOAD (load & 
fix/float) or the ISTORE (float/fixed & store). 

Each routine requires either a two or three-word 
calling sequence as follows: 

ENTRY NAME 
ARGUMENT 1 
ARGUMENT 2 (OPTIONAL) 

The routine to be entered. 
The address of the array. 
The values of a and b. 

The ENTRY NAME is coded by selecting the desired 
array operation, namely, LOAD, ILOAD, etc. Argu­
ment one is the array starting address which can 
be supplied by writing the same name used to iden­
tify the beginning of the data array in the pro­
gram. If the optional argument two will follow 
argument one, bit zero of argument one must be 
turned on. This can be accomplished in a variety 
of ways, but perhaps the most direct way is to 
add octal 4000 to the array name coded as argument 
one. 

The second argument is optional and should be 
coded only when the first argument has bit zero 
set to a one. This argument two contains the 
subscript values for a and b in the subscript 
(a*J+b). If the second argument is not supplied, 
these values are taken as a=l and b=O. Otherwise 
both of these values are supplied in argument two 
as shown in the following l2-bit computer word: 
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Bit 0 1 2 3 4 5 6 7 8 9 10 11 

lbOJ~l~~l~I.:LJ~~bl~~~L:l 
h 

j t t 
T e s~gn The value of a. The value of b. 
of b. 

If b is negative, b must be supplied as a twos com­
plement number. 

Lastly, the variable parameter, J, of the array sub­
script is provided as an integer value by the user 
on page zero at core location 0050. This location 
is internal to the Floating Point Package require­
ments and, hence, does not constitute an additional 
core storage requirement. The value of J should be 
set to 1, 2, 3, ••• etc. to access the first, second, 
third, ••• etc. data array number regardless of 
whether the data is stored as floating point or fixed 
point data. Additionally, J may be given the value 
of zero as a special case in which the first number 
of either a floating or fixed data array will be 
accessed. 

Arrays may consist of either integer values stored 
successively in core storage or as three-word group­
ings of floating point numbers. In either case, the 
first computer word of an array should be given a 
name in a PAL-III program to be used as the array 
starting address. Arrays may be of any desired 
length and may overlap page boundaries in any way 
desired. Also, arrays may consist of only one value 
which is not really an array; however, the ability 
to access any symbolic named integer in a program is 
useful in that the value can be loaded with conver­
sion to floating point for computational use. The 
load with conversion characteristic is also useful 
in that arrays which otherwise might have been 
maintained as floating point arrays can, in some 
cases, be stored as integer arrays with a signifi­
cant savings in core space. 

The following examples will illustrate the usage of 
the ArrdY Accessing Subroutine Package: 

Example 3 - Move array named HERE to occupy the 
array named THERE. Both arrays are 
10 words long. 

CLA 
TAD NEG TEN 
DCACTR 
DCAJ 
LOOP, ISZ J 
FINT 
LOAD 
HERE 
STORE 
THERE 
FEXT 
ISZ CTR 
JMP LOOP 

. 
• 

/DATA SECTION 
J=50 
ANS=52 
FINT=JMS I 1 
NEGTEN,-1.2 
CTR,QJ 

IPREP ARE FCR LOOP 

IZERO J 
IINCREMENT J 
IENTER INTERPRETER 
ICLEAR AND LOAD C(FAC) 
IFROM HERE (J) 
ISTCRE C(FAC) 
IINTO THERE (J) 
IEXIT INTERPRETER 

ITO ENTER THE INTERPRETER 



HERE=. 
*.+36 

THERE=. 
*.+36 

!DIMENSION HERE(lO),THERE(lO) 
ITHA T' S DC TAL LENGTH OF 10 FLOATING 
IPOINT NLJomERS 

In the preceding example, the coding of a loop is 
seen to be a direct feature of the PAL-III language 
Also, the equivalent of a FORTRAN DIMENSION state­
ment is shown. The coding of the equivalen.ts to a 
FORTRAN 'DO' loop and a FORTRAN 'IF' statement is 
shown in the following example, in addition to 
further use of the Array Accessing Routines, LOAD 
and FIND. 

Example 4 - Write the following FORTRAN coding in 
PAL-III with use of the Array Accessing 
Subroutine Package (AASP). Notice. that 
the use of mixed mode computation is 
indicated. 

FORTRAN 
DO 1.80 J=1.,4 
IF(DATA(2*J+3)-IVAR(J» 1.55,l.60,l6O · 1.55 : 
l.60 : · 1.80 CONTINUE · • • · Using AASP 
CLA 
TAD NEG4 
DCACTR 
DCAJ 
DOl.80,ISZ J 
FINT 
LOAD 
DATA+4000 
0203 
IFIND 
IVAR 
FSUB ANS 
FEXT 
TAD 45 
SMA CLA 
JMP Sl.60 
W5, • 

• · 51.60, • · S1.80, isz CTR 
JMP OOJ,80 · · • 
!DATA SECTION 
DATA=. 
*.+:1.4 
IVAR=. 
*.+4 

ITHAT'S -4 

IZERO J 
!BEGINS DO LOOP, DO 1.80 
IFLOATING INTERPRETER 

lLOADS DATA (2*J+3) 
lNOTICE MIXED MODE IS SUPPORTED 
ICCANS) HAS IVAR(J) tDJ CONVERTED 
I SUBTRACT 
IEXIT INTERPRETER 
lGET WORD WITH SIGN FOR 'IF' 
ISKIP 'IF' MINUS 

11.80 CONTIt-{JE 

!DIMENSION DATA(4),IVAR(4) 
lFOUR FLOATING POINT NUMBERS 

IFOUR INTEGER NlMBERS 

Limitations of AASP 

The Array Accessing Subroutine Package has several 
deliberate limitations; however, the major objec­
tive in permitting savings in core storage is the 
underlying justification for these limitations. 
The limits are as follows: 

Consider the term ARRAY (a*J+b) 

< < 
1. Range of a is given by 0=a=3l 

< < 
2. Range of b is given by -64=b=63 
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3. Range of J is given by -2048~J~2047 (Range of 
41< machine) 

4. The starting address of any array to be 'accessed 
must be in the first 21< of storage (0000-3777 
octal) • 

5. The temporary accumulator, ANS, located at 
c(0052, 0053, 0054) will be destroyed during the 
use of the square root, square, or an I/O con­
troller INPUT or OUTPUT. Note that in the case 
of an OUTPUT operation, the c(FAC) is destroyed 
also. 

Numeric Input and Output 

The Array Accessing Subroutine Package provides an 
additior~l service to augment the use of the stand­
ard Floating Poin.t Package numeric input and output 
routines. The subroutine entry table is supplied 
with input and output transfer addresses at octal 
locations 6554 and 6555. Hence, I/O can be per­
formed while within the interpreter if the octal 
equates INPUT=OOlO and OUTPUT=OOll are supplied to 
the Assembler. Numeric input in integer, fixed 
point or floating point notation may be encoded bV 
simply writing INPUT while within the interpreter. 
Similarly, output of the c(FAC) may be initiated by 
encoding OUTPUT. Use of the output controller is 
expected when using this OUTPUT feature; however, if 
desired, the omission of the output controller must 
be indicated by placing octal 7200 into location 
6555 by the user. When the output controller is 
used, the octal storage locations at c(62) and c(63) 
control the output format where c(62) should be 
given the field width, c(63) the decimal field 
width. These locations must be maintained by the 
user and are not initialized. If the output con­
troller is not used, the locations are not required. 
A routine is provided to place the decimal field 
width into the accumulator as required when using 
the Floating Point Package output controller. 

OTHER TECHNIQUES 

Relational Operators 

It might be valuable to point out that the Relation­
al Operators usable in 'IF' statements of recent 
FORTRAN versions can be equivalently coded in 
PAL-III through the use of the following convenient 
mnemonics: 

SKIP NEXT INSTRUCTIrn 
t-f\IEtOIIC IF CCAC) ... 
SGT=7550 ISPA SNA SKIP IF .GT. QJ 
SGE=751.0 ISPA SKIP IF .GE. QJ 
SEQ=7440 ISZA SKIP IF .EQ. 0 
SNE=7450 ISNA SKIP IF .NE. 0 
SLE=7540 ISMA SZA SKIP IF .LE. 0 
SLT;;7500 ISMA SKIP IF .LT. 13 

These mnemonics have been found to be extremely 
beneficial to the FORTRAN-oriented mind and have 
been made a permanent part of our PAL-III Assembler. 

Coding Across Page Boundaries 

Another procedural benefit in using FORTRAN or FOCAL 
is the absence of 'page' considerations in the PDP-8 
family of computers. A technique can be employed in 
the PAL-III language which can greatly reduce the 
problems associated with pages. 



Coding may begin at a convenient location (sav octal 
0200) and continue straight through crossing page 
boundaries. 

Adopt the following coding conventions to obtain 
this end: 

1. Use page zero for integer constants, a small 
work area (loop control, etc.) and for indirect­
ly addressing absolute references to floating 
point values or subroutines. 

2. Use the Array Accessing Subroutine Package for 
array processing. 

3. Use the Teletype Text I/O package for referenc­
ing messages. 

4. Code all jump (JMP) instructions' without using 
indirect addressing. 

Upon assembling a program written by these conven­
tions, the Assembler will report which jump instruc­
tions must be changed to indirect addresses. Chang­
ing the jump instructions and adding the indirect 
addresses to page zero will produce a program which 
will execute across page boundaries. 

SUMMARY 

When combined with the Floating Point Package, the 
Teletype Text I/O Package and the Array Accessing 
Subroutine Package provide a PAL-III programming 
methodology. The discussion and several examples 
presented show the coding of the following tech­
niques: 

1. Multiple ~abulating and line spacing. 

2. Multiple-word, message output stored as two 
characters per word. 

3. USASC-II, eight-bit code character input with 
RUB-OUT key recognition. 

4. Numeric input and output in any of the formats: 
integer, fixed or floating point. 

5. Accessing single variable, subscripted array 
terms of the general form ARRAY (a*J+b) to 
perform loading, storing, locating and, 
inherently, data conversion and in supporting 
mixed mode data calculation. 

6. The directly available features of PAL-III in 
coding equivalents to FORTRAN 'DO' loops, 'IF' 
statements with either arithmetic or relational 
arguments, DIMENSION statements, and coding 
across page boundaries. 

The emphasis in developing and presenting these 
techniques has been to utilize a minimum of core 
storage for each procedural task presented. These 
routines have been intensively used and appear to 
be completely reliable. 

A brief testimonial is contained in my initial 
usage of these routines. A biomedical computer 
applicationfwhich was only partly written in 
FORTRAN, occupied 96 per cent of available core 
storage. Text information was stored as two char­
acters per word and routines not required within 
the FORTRAN Controller were overlaid when the pro­
gram was in working order. The need for additional 
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computational application features prompted the 
rewrite of this program to eliminate the use of the 
FORTRAN controller" and the remaining FORTRAN 
code. The resulting program (which also worked) not 
only occupied less core space, now requiring only 
63 per cent of core storage, but also executed much 
faster. The former FORTRAN program version required 
12 seconds per compute cycle to initiate plotter 
movements while the program version employing the 
techniques of this paper required less than three 
seconds per compute cycle to initiate plotter move­
ments. 
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I TTY TEXT 1/0 SUBROUTINE PACKAGE. STAND-AU)III: VERSIOII 
_5.00 I PLACE WHERE WANTED 
I THIS PACKAGE PERFORMS INPUT AND OUTPUT (I.IO) 
I 
I PREPARED BY D 6 ,.RUTCHEY. BECKMAN IIIST.S • .JUNE. 1968 
I 
I SUBROUtINE TAB 
I THIS ROUTINE OUTPUTS BLANKS, CARRIAGE RETURNS eCR). 
I AND LINE FEEDS eLF> ACCORDING TO THE ACCUMULATOR CONTENTS. 
I t,. C(AC) - POSITIVE INTEGER. N. GET CR I 11+1 1."'5 
I I,. ceAC) - tERO. GET CRU' 
, I' ceAC) - -1. GET A CR 
I I,. C(AC) - NEGATIVE INTEGER. N. GET ABSeN)-1 BLANKS 
TAB,NOP 
STL lAC 
SMA 
CMA eLL ICe I.) - 0 HARKS CRLFS 
DCA TEMP 
SNL 
TAD POS3 
TAD BLANK 
SNL 
TAD 01,.1' 
.JMSTYPE 
1St T£MP 
....... -5 
...... I TA8 
POS3.3 
DIF,.375. 
BLANK. 0240 
TEJIJP-TEXT , TEMPORARY STORAGE , 
, SUBROUTINE TEXT 
I OUTPUT. STRIPPED CODE BEG]NNING AT ADDRESS PASSED. 
I EXAMPLE OF USAGE. 
, .JMS TEXT ITO CALL THIS ROUTINE 
I MSGI ITHE SYMBOL USED TO BEGIN THE MESSAGE 
TEXT. HOP 
CLA CLL , INSURE THAT L]D IS CI.!:AIl 
TAD I TEXT 
1St TEXT 
DCA T~ 
GETI • TAD I TEMPI 
StL 
.- .+5 
RTR ,,.IRST TIME THROUGJI 
ara 
Bra 
eLL 
AND MSIC 
TAD 1'177 
SNA 
.JoIP I TEXT I DONE. qTURIf 
TAD MSK .IRESTORl: AC AND COMP LINX 
TAD BLAn 
.... STypE 
SNL 
1St TEMPa , SECOND TIME THROU6JI 
.- GETl 
MSK.0071 
1'117.1101 
TEMP2-TAB , TEMPORARY STORAGE 
I 
, SUBROUTINE ECHO 
I USAGE. 
I .JMS ECHO ITO GET ASC] I CHAR INTO CCAC) I TYPEJ) 
I ..MP AGAIN II' RUBOUT VAS INPUT 
ECHO.HOP 
KS" / SKIP ON INPUT 
.- .-1 , VAIT 
J<RB / CLEAR CeAC). READ BUFFER. CLEAR FLAG 
DCA CHAR 
TAD CHAR 
SNA 
.l'!P ECY.')+I I ALSO WAIT WHEN NULL OR BLANK TAPE • 
.JMS TYPE I ECHO THE CHARACTER 
TAD CHAft 
TAD MnBOUT I HAVE RUB-Oun 
SNA C1..A 
JHP ] ECHO , RUB-OUT VAS ENTERED 
]SZ ECHO I INCREMENT TO BYPASS 
TAO CJl.J:lR 
.l'IP I ECHO 
I'!RBOUT.-317 
CHAR-TEXT 
I 
I SUS?'OUTINE TYPE 
rYi'E.NOfo 
TS, 
.JoIP .-1 
TLS 
CLA 
.... P 1 TYPE 
S 
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I TTY TEXT 1/0 SUBROUTINE PACKAU. "PP VERSIOII 
_5400 I PLACE "'HERE "'ANTED 
/ THIS PACKAGE PERFORMS INPUT AND OUTPUT (J/O) 
/ BY USING THE ROUTINES FURNISHED I. THE 
I 1"L0ATiNG POINT PACKAGE (INPUT, oun TO 
/ PERFORM SING1.1: CHARACTER TRANS,.U. , 
, PREPARED BY 0 6 ,.RUTCHEY'. BECKMAN INST.5. JUNE. 196. 
I 
I SUBROUTINE TAB 
I THIS ROUTINE OUTPUTS BLANKS. CARRIAGE RETURNS (CR). 
I AND LINE FEEDS (LF> ACCORDING TO THE ACCUMULATOR CONTDITS. 
/ I,. C(AC) - POSITIVE INTEGER. N. GET CR & N+I U·S 
I I,. C(AC) ZERO. GET CRL,. 
/ I,. CeAC) -1. GET A CR 
I IF CeAC) NEGATIVE INTEGER. N. GET ABSeN)-1 BLANKS 
TAB. HOP 
STL lAC 
SMA 
CHA CLL I CeL) - 0 MARKS CRUS 
DCA TEMP 
SNL 
TAD POS3 
TAD BLANK 
SNL 
TAD DIFF 
.... S 1 TYPE 
1St TEMP 
.JtP .-5 
.JtP I TAB 
POS3.3 
01,.,..3751 
BLANK.Oa.O 
TEMP-TEXT I TEMPORARY STORAU , 
I SUBROUTINE TEXT 
/ OUTPUT STRIPPED CODE BEGINNING AT ADDRESS PASSU. 
, EXAMPLE 0,. USAGE' 
/ .JMS TEXT ITO CALL THIS ROUTINE 
I MS61 ITHE SYMBOL USED TO BEGI. THE MESSA. 
TEXT. HOP 
(LA CLL I INSURE THAT LINX IS CL.&AIl 
TAD I TEXT 
ISZ TEXT 
DCA TEMPI 
GET I. TAD I TOIPI 
SZL 
.JtP .+5 
BTB I,.IRST Tnn: THROUGII 
an 
R11I 
eLL 
AIID MSIC 
TAD .. n 
SMA 
..I'IP I TEXT I DONE. RETURN 
TAD MSK IRES TORE AC AND COMP LID 
TAD BLANK 
.... S I TYPE 
SNL 
1st TEMPa , SECONll TIl'll: THROUGH 
.JtP enl 
MSK.0011 
1'117.1101 
TEMPe-TAB I TEMPORARY STORAGE 
/ 
/ SUBROUTINE ECK) 
I USAGE. 
I JMS ECHO ITO GET ASCII CHAR INTO CeAC) & TYPED 
I .JMP AGAI. II,. RUBOUT VAS INPUT 
ECHO.MOP 
(LA CLL 
TAD ECHO 
DCA I RESTRT 
.I'IS I INPUT 
Cl.A CLL 
TAD INPK6 
DCA I RESTRT 
ISZ ECHO ITO RETURN PAST THE RUBOUT .JtP 
TAD CHAR IRETURNS WITH CHAR IN CeAC) , AT LOC 0057 
.- I ECHO 
RESTRT .1167 
INPUT. 11 ... 1 /FPP ROUTINE INPUT 
INPKG.l.01 
TYPE. 734. IFPP ROUTINE OUT ADDRESS 
CHAR-0057 
S 



/ , , ARRAY ACCESSING SUBROUTINE PACKAGE 
LOAD AFTER LOADING THE FLOATI~G POINT PACKAGE. 

, THESE ROUTINES ARE USED TO A:::ESS ARRAYS OF THE 
, FORM. ARRAYCA*J+B) AND TO PRO';lDE FIXED/FLOAT 
, AND FLOAT'FIXED DATA CONVERSIO,,,. 
, THI S PACKAGE WAS PREPARED BY 0 G F,,;;TCHEY. 
, BECKMAN INSTRUM~TS. FUL.U:RTON. CALIP'. OCTOBER. 1968 
*655. 
FINT-•• 07 
7400 , 
DECOUT 
LOAD 
ILOAD 
STORE 
ISTORE 
FIND 
IFIND 
*6573 
DECOUT.NOP 
DEC-63 

,,JIIS I 7 
INPUT - 10 
, OUTPUT - II 
, LOAD - II 
, ILOAD - 13 
, STORE - I .. 
, ISTORE - 15 
, FIND - 16 
, IFIND - 17 

TAD DEC 'LOAD NR OF DE~ PLACES 
..JoIS I FPPOUT 
..M? I DECOUT 
tpPOUT.7:::00 
*6173 , 
, SUBROUTINE GET 
GET. NOP / R!:::$ TOilE THE C (FAC) FROM ANS 
FINT 
FGET ANS 
FEXT 
..JoIP I GET , 
, EQUATE SYMBOLS 
A-40 
&-"1-
SEE-... 
.,..50 
ADR-51 
ANS-52 , , tEMPORARY ACCUMULATOR. ~S 

, SUBROUTINE LOAD 
e4400 
LOAD.NOP , LOAD CC"AC) WITH FLOATlIIG POINT IfJl 
..JoIS P'lND 
..JoIS I AGET 
J'IP I LOAD , 
, SUBROUTINE ILOAD 
ILOAD.NOP , LOAD CCFAC) WITH ,.IXED POINT NR 
LFIND-IFlND 
JoI5 LF'IND 
..1'15 I AGET 
.w I ILOAD , 
, SUBROUTINE STORJ: 
STORE.NOP 
.... S FORM 
,.1 NT 
FPUT I ADR 
,.EXT 
.I1P I STORE , 
, SUBROUTINE ISTORE 
ISTORE.NOP , CONVERT CCFAC) TO FIXED & STOR!: 
..JoIS POINT 
TAD ADR 
DCA ADR , POINTS TO PLACE TO STOR!: 
J'lS f'lX 
TAD 45 
DCA I ADR 
TAD 1'13 

DCA .. " 

DCA ". .Jo!S I NORM 
..l'!P I ISTOR!: , 
, SUBROUTINE FIND 
FIND.NOP , LOAD ARRAYcA*J+B) INTO AllIS 
.!'IS FORM 
TAD I ADR , HOVE INTO ANS 
DCA ANS 
ISZ ADR 
TAD I ADR 
DCA ANS+I 
ISZ; ADR 
TAD I ADR 
DCA ANS+2 
.I1P I FIND 
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, 
, SUBROUTINE I,.INJ) 
I,.IND.NOP , LOAD FIXED INTO ANS & FLOAT 
.JI!S POINT 
TAD ADR 
DCA ADR , POINTS TO FIXED POINT ARRAY MDC8D 
TAD I AM 
DCA P13+1 
FINT 
FPUT BIN 
,.GET P13 
mOR 
FPUT ANS 
FGET BIN 
nxT 
.J1P I IP'IND , 

, SET UP I NTI:GD 

, HOLD CCFAC) 

, NORMALIU 

, RESTORE CC,.AC) 

, SUBROUTINE ,.ORM 
FORM.NOP , FORM ADDRESS FOR n.OATING POINT 
J'lS POINT , RETURN WlTH A*J+B-I 
TAD B 
TAD B , TRIPLE 
TAD ADR , FORM POINTER 
DCA ADR 
JMP I ,.ORM , 
, SUBROUTINE POINT 
, CALCULATE A.J+D-l AND RETURN IN CCAC) 
, ALSO. HETURN ARHAY ADDRESS IN ADR 
POINT.NOP 
TAD I 602 
DCA SEE 
TAD I SEE 
AND MSKI 
DCA AM 

, GET PO INTER TO CALLING SEQUU':E 

, GET ARRAY ADDRESS 
, 3777 DELETE ZEROTH BIT 

TAD I SEE , ARRAY ADDRESS AGAIII 
ISZ; I GOC , TO BYPASS ARGUMEIIT 
SPA CLA 
.w A5 
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ABSTRACT 

The U.C.C. FASBAC System provides for remote access 
to a general purpose file editing capability and a 
string handling programming language. Input files 
may be UNIVAC 110B program files or data files 
which are to be submitted through direct access to 
run on the 110B. The time sharing operating system 
has been implemented on a 32K PDP-9 with a 524K drum 
and a specially built controller to allow sharing of 
a FASTRAND mass sto~age device with the 110B and 
direct core-to-core transfers between the PDP-9 and 
110B. This paper consists of a functional descrip­
tion of the PDP-9 operating system and some imple­
mentation problems w~ich should be of common interest 
to PDP-9 users. 

INTRODUCTION 

The time sharing operating system described 
in this paper comprises the heart of the 
FASBAC Remote Access System. 

FASBAC provides the facility for large vol­
ume input dnd output processing on a 
UNIVAC 110B data processing system initiat­
ed from remote terminals (Fig. 1). 

The user's programs and data files may be 
accessed selectively for debugging pur­
poses (to obtain, for example, a compiler 
diagnostic typeout) or directed to a 
high-speed printer connected to a COPE re­
mote terminal subsystem for larger volume 
output. 

A general purpose direct access file system, 
along with line and context editing capa­
bilities, is provided to allow storing and 
editing of customer programs and data 
files. In additio~, a string manipulative 
language called PASTRAC and an interpretive 
arithmetic expression analyzer called CALC 
are part of the FASBAC Remote Access System. 

The PDP-9 Time Sharing Operating System has 
been implemented on the following hardware 
configuration: 

32K PDP-9 with all processor options 

524K Drum, B.65 ms average latency 

Special multi-access controller to 
allow sharing of UNIVAC FASTRAND 
with UNIVAC 110B and provide di­
rect core-to-core transfers be­
tween PDP-9 and 110B. 

1000 card-per-minute reader 
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DEC Tapes (3) 

Interprocessor Buffer for core-to­
core transfers between PDP-9 and 
PDP-B. 

MAJOR SYSTEM COMPONENTS 

The Message Handler 

All communication over the Interprocessor 
Buffer between the PDP-B and PDP-9 is con­
trolled by this program. 

Processor Scheduler 

The queuing of all requests by various sys­
tem facilities for use of the PDP-9 pro­
cessor is handled by this program. 

Processor Dispatcher 

This component is responsible for the order~ 
ly dispatching of control to the highest 
priority system facility currently request­
ing the PDP-9 processor. 

I/O Handlers 

All input/output processing is controlled 
through standard device handlers providing 
queuing, where applicable, error detection 
and automatic retry. 

PDP-9/ll0B Commun~cations 

The handling of all I/O between PDP-9 and 
110B is through a device handler which 
makes the 110B look like a peripheral to 
the PDP-9. 

Service Functions 

Certain service routines and status tables 



are essential in the operating system. 
They include an overlay loader, memory 
dump routine, trace facility, time keep­
ing routines, a "CAL" handler, a system 
communications region, system macros, and 
a Logical Channel Table which provides 
status information about each active user. 

File System 

The File System provides a common inter­
face for creating, retrieving, updating 
and deleting files on the system's perma­
nent storage device which is the FASTRAND 
Drum. Both random and sequential files 
are allowed, and in fact either mode may 
be used to access any file created by the 
file system. A file security system is 
provided to maintain file protection 
against unwanted access. 

Language Processor Scheduler 

This component is responsible' for maintain­
ing control over the language processors. 
(The term language processors refers to 
the FASTRAC and EDIT processors.) 

Language Processor Interface 

This component contains many subroutines 
common to the language processors and also 
provides a common interface with the file 
system and with various operating system 
procedures. 

BASIC DESIGN PHILOSOPHY 

Queuers and Doers 

In order to provide efficient a~d equit­
able access to system resources, it is 
necessary to utilize a method for queuing 
requests for a given facility and a method 
for processing these requests. 

The operating system contains routines 
called "Queuers" to provide a means for 
scheduling the use of system facilities. 
The operating system also contains routines 
called "Doers" which obtain their 
input from the queues, perform the required 
actions to initiate the use of the system 
facility, and make the required alterations 
to the queue itself. Queuers are generally 
activated by software calls; (except for 
certain processor dispatching) Doers are 
generally activated by hardware events. 
Examples of System Facilities requiring 
Queues: 

PDP-9 Central Processor 

PDP-9 Drum 

FASTRAND Drum 

PDP-9 to PDP~8 Output Processing 

PDP-8 to PDP-9 Input Processing 

Queuers and Doers possess the following 
characteristics: 
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1. 

2. 

3. 

Multi-priority level queues are 
provided. 

Processing is first-in first-out 
within a given priority level. 

The capability exists for deleting 
items from a queue. 

Lockout: 

Only one queuer or one doer may be actively 
manipulating a given que~e item at any time. 
This is obtained by establishment of ap­
propriate hardware and software priorities. 

Many operating system processes are re­
quired to enter a "waiting" state until 
some external event occurs before they can 
continue processing. Examples are 1) wait­
ing for an I/O command to terminate before 
using requested input information, or 2) 
waiting for an overlay area to become free 
so a subsequent overlay may be read into 
the same area. 

A "tell" is a means by which information 
is passed to inform a given process (ac­
tually via processor queuing) that an 
awaited event has occurred. The request 
for a tell is normally attached to a 
queued request and is activated by the 
satisfaction (completion) of its associat­
ed requested event. After telling, the 
doer (the processor dispatcher) initiates 
the next entry in its multi-priority queue. 

A tell is not a process in itself, but 
rather is information associated with a 
queue entry which is to be passed on by 
the Doer of the queue to a destination 
queue upon completion of the requested 
action. The destination queuer is usually 
the Processor Scheduler. 

Summary: 

Three operating system scheduling facili­
ties have been discussed to this point. 
They are: 

Queuers 

Doers 

Tells 

Queuers and Doers work together to provide 
optimum use of critical system hardware. 
Queuers make entries in queues according 
to priorities established by the programs 
which call them. Dequeuing must be also 
provided, as in removing outstanding I/O 
requests when a process has been aborted. 
Doers process items in the queues and re­
move items when appropriate. A tell is a 
software event similar to a hardware in­
terrupt event. 



Storage 

Queue entry storage must generally be pro­
vided by the program calling the queuer. 
The program activated by the tell must 
arrange for release of the storage if it 
comes from a pool, as well as examine I/O 
status for error exception conditions (if 
appropriate). 

A queue entry contains for example: 

1. Forward link (used by queuer and 
doer) . 

2. Backward link (used by queuer and 
doer) . 

3. Status parameters, such as error 
coun t. 

4. Tell parameters such as software 
priority level and program entry 
point (more fully explained 
later). 

5. Job ID for accounting or aborting. 

6. Other parameters as needed by 
told program. 

Time-Out Lists 

The operating system provides means for 
keeping track of time so that processes 
may be timed and "awakened" if required. 
An alarm time may be either a time inter­
valor an absolute time of day. 

Time of day and date may be read on re­
quest. Hardware interrupts caused by 
real time clock overflow causes control 
to be passed to a routine which scans the 
appropriate clock lists to determine if 
any clocks have exceeded their alarm time. 
If so, a tell function is then activated 
to notify a prearranged process that time 
has run out. By definition, the acti­
vated program must be core resident. 
The identification of the affected activi­
ty is made available to the processing 
program, which in turn schedules any 
necessary successors. 

The time-out capability is especially use­
ful in the following situations: 

Notifying the language processor 
scheduler when a swap-out is in 
order for a particular user program. 

Providing a means for notifying 
the system when a new process is 
to be initiated. (e.g., an account­
ing run is to be initiated at mid­
night.) 

Memory Layout 

The memory resources have been divided 
into three major portions: 

1. Operating system, related 
functions and buffer areas. 
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2. FASTRAC processor and its buffer 
areas. 

3. EDIT (or other processors) overlay 
area. 

The operating system functions are basic­
ally core resident with overlay areas for 
bringing in routines which are infrequently 
used. 

The FASTRAC processor remains core resident. 
It is used by certain operating system pro­
cesses as well as by user programs. CALC, 
the calculation language runs essentially 
as a FASTRAC program, in a time sharing mode 
and is swapped in and out of memory. The 
Language Processor Scheduler initiates action 
to load waiting programs into assigned mem­
ory and to swap long-running programs. Swap­
ping is performed by using standard routines 
provided through tb~ o~erating system for 
physical I/O processing, queuing, etc. The 
Language Processor Scheduler is responsible 
for scheduling the FASTRAC processor when 
a FASTRAC jeb has been swapped in and is 
ready to execute. In addition, a timer is 
set, allotting a certain time quantum to 
the new FASTRAC user. If the time quantum 
is exceeded, a time-out occurs and a tell 
causes an entry to be made in the processor 
queue. The FASTRAC processor is allowed 
sufficient time to perform clean-up func­
tions after which the user work area is 
swapped to the drum (swapping occurs only 
if other users are waiting in the Language 
Processor's queue for the FASTRAC processor). 

The third area of memory is occupied by the 
EDIT processor, although this particular 
area is designed such that the processor 
occupying this space can be swapped to al­
low other language processors to use the 
area. The language processor is responsible 
for scheduling the use of the EDIT user 
area and assigning a time quantum. 

Both FASTRAC and EDIT are designed such that 
the processors need not be swapped. Only 
their data areas (variable for each user) 
need by swapped. The FASTRAC processor is 
effect~vely re-entrant since it is allowed 
the opportunity to clean up prior to having 
its user area swapped. The EDIT processor 
has been implemented as an actual re-entrant 
program. 

VRC Drum Layout 

An area is set aside on the VRC fast-access 
drum for each possible simultaneous remote 
user. Two drum sectors are allocated for 
input file building. Teletype input is ap~ 

pended to this area. Overflow goes to 
FASTRAND mass storage. One sector is re­
served for output information. Sixteen 
sectors (4096 words) are reserved for a swap 
area. The FASBAC. System object programs 
(Operating System and Language Processors) 
are also maintained on the drum. 

Maintaining Control over Remote Users 

Each user who is logged on to the FASBAC 



system is assigned a logical channel num­
ber. This number is used as an inde~ to a 
table of status information maintained in 
core memory. Included in this logical 
channel table (LCT) is the physical line 
number allocated to this user, user identi­
fication information, the language proces­
sor or system facility currently being used, 
and other information necessary to maintain 
control over a given remote user at all 
times. In order to allow referencing of 
information in this table, the address of 
the first word of a given logical channel 
table is frequently passed from one process 
to another and is a vital part of the te~l 
process. The address of the first word 
of a given logical channel table is re­
ferred to as the LCTA for a given user. 
System macros are provided to allow: 

Accessing information from the LCT 

Storing information in the LCT 

Setting indicators on or off in 
the LCT 

Testing indicators in the LCT 

The Executive Functions 

An underlying and somewhat unique phLl­
osophy has been used in th~ design of the 
"hard core" executive portions of the 
operating system. This executive con­
sists of the Message Handler, Processor 
Scheduler, and Dispatcher. 

These components have been designed to al­
low other portions of the operating systea 
and the language Frocessors to perform 
their work as though they are never inter­
rupted except for the voluntary relin­
quishes as described above. In fact, it 
is possible for these service functions 
to alter the executive's procedures with 
respect to message handling in order to 
provide for the unique requirements of a 
given remote user. Message handling then 
can become flexible instead of a very rigid 
set of rules enforced from the executive 
end. This philosophy encourages additional 
capabilities being added to the language 
processors without major overhauling of 
thes e "hard corell exe cut i ve func t ions. 

Th~ system component or language processor 
can in effect program (by means of software 
switch settings) the action to be taken by 
the Message Handler as well as the PDP-8 
remote processor due to input from a user 
terminal. 

The idea is for these executive functions 
to act as a good traffic cop (to perform 
a service without getting in everyone's 
way or making a nuisance of himself). 

The following portion of this paper provides 
a more detailed look at those components 
which make up the executive portion of the 
operating system. 
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THE EXECUTIVE FUNCTIONS IN DETAIL 

Processor Scheduler 

The processor Scheduler is the Queuer of re­
quests for the PDP-9 normal level processor 
(non-interrupt). 

Level 9 and its Priority Scheduling - The 
term "level 9" is used to describe those 
activities which run at the normal proces­
sing level on the PDP-9. For example, the 
FASTRAC processor, the EDIT processor, the 
langua~e processor interface functions, the 
file system, and parts of the operating 
system run at this level. 

While the API and Program Interrupt features 
of the PDP-9 hardware provide the mechanism 
for the operation of levels 0 through 8, the 
scheduling and dispatching of control to 
level 9 processes is a service provided by 
the Executive. Provision has been made for 
5 priority sub-levels within level 9. This 
number can be easily increased or decreased 
by a minor program change. The following 
level 9 priority assignments are used: 

9-0 

9-1 

9-2 

Operating System functions associ­
at~d with file building. 

Other Operating System functions. 

File System. 

9-3 Language Processor Scheduler 

9-4 FASTRAC and EDIT. Operating System 
clean-up tasks, and other lov pri­
ority processing. 

Current API (Hardware Priority) Assignments 

o 

I 

2 

3 

4 

5 

6 

7 

Power failure imminent, dead man 

VRC Drum transfer completed 

FASTRAND, DECtape, card reader, 
line printer 

Interprocessor Buffer, clock 

CAL handler 

VRC Drum read/write initiation for 
message handling 

Not used 

Processor dispatcher 

Current Program Int~rrupt Assignments 

Paper Tape Reader/Punch 

Console Teletype 



Scheduling an Activity 

There are 4 elements associated with a re­
quest for processor scheduling: 

1. Priority of the requested 
activity. 

2. Entry address (core memory 
location to which control is 
to be transferred. 

3. Logical Channel Table Ad­
dress (LCTA), described 
under "Maintaining Control 
over Remote Users". 

4. Parameter pointer (to list 
elsewhere in memory). 

Relinquishing the Processor 

When an activity has run to its logical 
completion, or when some form of I/O 
is required before processing can con­
tinue, the activity executes a Relinquish 
macro. 

Queuing the Processor Request 

The Processor Scheduler accesses the four 
parameter words and the queue entry is 
made at the end of the queue such that 
a "first-in, first-out" relationship pre­
vails within a given priority level. Pri­
ority 0 (zero) is considered highest and 
(for example) no priority 1 activity will 
be permitted until all priority 0 activi­
ties have been completed. 

Format of the Processor Queue 

The processor queue is a multi-level queue 
composed of entries built from a common 
pre-linked space pool. For each priority 
level there is a pointer to the first entry 
in the queue, and a pointer to the last 
entry in the queue. Also available at any 
time is a pointer to the next free entry 
in the space pool. At the time the queue 
entry is made the tell parameter words 
are inserted in the queue. 

Processor Dispatcher 

The Processor Dispatcher acts as the Doer 
on the queues built by the processor sched­
uler. Its function is to determine the 
highest priority activity currently re­
questing the processor and to dispatch 
control to that activity. The Dispatcher 
is called in the following two ways: 

1. Each time a new activity is 
scheduled, a request is made by 
the Processor Scheduler for an 
interrupt at software level 7. 
When all higher priority processing 
has been completed, the Dispatcher 
program gains control at its entry 
point due to this earlier interrupt 
request. It determines if the newly 
sCheduled activity is equal to or 
lower in priority to the one inter-
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If the new request is of higher 
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terrupted activity are saved and 
control is given to the new higher 
priority activity. 

2. Wh~n an activity has completed, it 
relinquishes the level 9 processor by 
executing the Relinquish macro. At 
this point control goes to the Dis­
pat~her and the queue is searched 
for the highest priority waiting 
activity. If no activity was sus­
pended, a new queue entry is selected. 
If an activity had been suspended and 
is now of highest priority, control 
is returned to the point of original 
interrupt. 

Savins Control Information - The following 
registers are saved when level 9 control is 
sWitched. 

1) AC 
2) MQ 
3) Auto index registers (10-17) 
4) Program counter, link, extend mode, 

memory protect mode. 

The four parameters associated with each 
entry in the system communication region at 
all times during execution of a level 9 pro­
gram. When an activity is suspended, this 
information is also saved and restored at 
the appropr~ate time. 

Degueuing the Entry - Immediately prior to 
dispatching control to the entry address of 
an activity, the entry is dequeued as de­
scribed in the section entitled "Format 
of the Processor Queue." 

The Idle Loop - When there are no requests 
for the level 9 processor and no API or PI 
interrupt processing is active, the operat­
ing system enters an idle loop. This loop 
runs essentially as a level 9 lowest pri­
ori ty ac ti vi-ty. 

Message Handler 

The MeSsage Handler is the operating system 
component responsible for the processing 
of all messages going to or coming from the 
remote processor subsystem (PDP-8) via the 
interprocesso; buffer. 

Significance of User Mode - The PDP~8 and 
PDP-9 comp-on:ents of FASBAC must be aware 
of the processing mode in order for all 
required message hand1ifi~ logic to be 
handled correctly. The following four pro­
cessing modes have been defined. 

0) Line 
1) Text 
2) FASTRAC N (normal) 
3) FASTRAC S (sp-ecia1) 

Line Mode is used by the EDIT Processor. 
In this m:od-e an input line which begins 
with a numb~r (0-9) Ls automatically 
appended to the input file. Each line 



is transmitted from the PDP-8 to the PDP-9 
with a "meta received" message type (the 
"meta character" or "end of message char­
acter" is a carriage return in line mode). 
A line beginning with a non-numeric charac­
ter is assumed to be command information 
(see heading "Handling of Command In­
formation"). 

FASTRAC N is the normal FASTRAC mode. In 
this situation input information is auto­
matically appended to the input file. When 
a "meta received" message type is received, 
the message is appended to the input file 
and after completion of the append to drum 
or FASTRAND, the meta received entry (see 
"Language Processor Entry Points") is sched­
uled for the FASTRAC processor. 

FASTRAC S is used when a one character in­
put message is anticipated from the user. 
This character is transmitted to the FAS­
TRAC processor through memory and no ap­
pending to file on VRC drum is required. 

Text is used to build a file where all 
characters typed on the terminal become 
part of the text of the file. No line 
deletes or character deletes are allowed 
and no meta character is recognized. This 
mode is terminated by use of the break key 
from the terminal. 

Normal file building to VRC Drum or FASTRAND 
occurs up to the time the break is depressed. 
The last message typed up to the break 
character is also appended to the file and 
the "break received" entry for the appropri­
ate EDIT process is scheduled. Thus, the 
language processor may exercise certain 
types of control over the PDP-8 remote 
processor and the responses of the PDP-9 
message handler by setting the proper mode 
for a given logical channel. 

Language Processor Entry Points - The term 
language processor or "system" is used to 
describe the 

FASTRAC Processor 

EDIT Processor 

Each logical channel connected to FASBAC has 
associated with it a particular system. 
Five different events cause the active sys­
tem to be scheduled by the operating system. 
These events are: 

1) Input message received 
2) Break received 
3) Meta received 
4) Command Analysis required 
5) "Send" has been completed (remote 

message has been typed on user's 
console) 

Each system may specify its unique entry 
points for receiving control upon detection 
of an appropriate event by the operating 
system. For example, FASTRAC may wish to 
receive control at a location called 
%BROKE (a global symbol) upon detection of 

306 

of a "break received" message while EDIT 
may wish to receive control at a location 
called %BREAK for the same event. Each 
system has its own jump vector associated 
in numerical correspondence to the five 
commun events mentioned earlier. The 
operating system computes the correct en­
try point by accessing the specified sys­
tem for a given logical channel and 
scheduling the appropriate language pro­
cessor activity. 

Handling of a Large Input File - Storage 
for approximately 1000 characters is 
available on the VRC drum for building 
an input file from a teletype. Two sectors 
containing space for approximately 500 
characters each are permanently assigned 
for each logical channel. 

When sufficient input has been re-
ceived to fill the first sector, the 
operating system switches over and begins 
appending to the second sector. It then 
schedules a request to open a temporary 
file on FASTRAND and writes the first drum 
sector to FASTRAND. This procedure is 
essentially repeated as many times as is 
required to complete the input file build­
ing procedure. (The only file size limi­
tation is that imposed by the file system). 
If the input file does not exceed two drum 
sectors, there is no need for a FASTRAND 
file. In the situation where more than 
one sector, but not more than two sectors, 
are required to hold the input file, the 
FASTRAND file is "killed" and the language 
processor is informed that the file is con­
tained on the VRC drum. 

Handling of Command Information - When the 
user is processing in line mode the operat­
ing system performs a check on the first 
character of each line received from the 
PDP-8. If the first character is numeric 
(0-9) the line is appended to the input 
file. If the first character is non-numeric 
the command analysis entry is scheduled for 
the current active language processor. In 
addition, the input line is written to the 
VRC drum sector normally used for output 
message buffering (no output may be sent 
concurrent with input file building). This 
strategy allows the operating system to 
dispose of the input message, schedule a 
lower priority task to make a detailed 
analysis of the "command" line, and immedi­
ately be in a position to begin processing 
another input message. The language pro­
cessor's command analyzer determines if 
the input line is a legitimate command. If 
so, the operating system must determine if 
the input file is totally contained on the 
two VRC drum sectors or if a FASIRAND file 
has been created. This information is 
passed to the language processor and pro­
cessing of the requested command begins. 

If the command is not recognized, a "WHAT?" 
message is sent to the user terminal. 

Message Acknow1edment - Each message re­
ceived by the PDP-9 from the PDP-8 contains 



a transmission number. The message is 
examined for format and validity and if 
no errors are detected, an acknowledgment 
is sent to the PDP-8. This acknowledgment 
contains the transmission number of the 
PDP-8 message. The PDP-8 in like manner 
acknowledges receipt of all PDP-9 initi­
ated messages. 

If any errors are detected, a negative 
acknowledge message is sent. This results 
in a re-transmission by the originating 
processor. 

Interface with the IPB Handler - All trans­
mission over the Interprocessor Buffer is 
managed by a special handler which operates 
essentially like any other I/O device 
handler. The IPB handler allows for a 
"receive" and a "transmit" to be active 
simultaneously. Two buffers are available 
for handling IPB input and two also for 
sending output information to the PDP-8. 
Thus, it is normally possible to be pro­
cessing an input message and simultaneously 
receiving into the other buffer; the same 
strategy applies to output processing. 

All IPB message buffers are 128 words in 
length. In fact, all messages transmitted 
over the IPB are 128 words long. Due to 
header and trailer information, a maximum 
of 119 data characters can be sent in one 
message. 

Output Message Handling - Two basic types 
of messages are required in the FASBAC 
System. One is used for sending data to 
remote terminals; these are called data 
messages. The second is used to control 
information to the PDP-8. This control 
information may pertain to a given remote 
channel or it may be of a general nature. 
These are called operational messages. 

Output messages are initiated through 
system macros provided for this purpose. 
The execution of these macros results in 
the queuing of a message for transmission 
to the PDP-8. All operational messages 
receive priority over data messages. The 
Output Message Processor Routine acts as 
the doer on the remote output message queue. 

The strategy of the Output Message Proces­
sor Routine (OMPR) is to keep the two 
output buffers ready to transmit. When 
a transmission terminates (detected by 
the IPB handler), OMPR gets an opportunity 
to initiate another transmission if a 
buffer is ready to send. Any time an out­
put buffer is free, this routine attempts 
to fill it so that another transmission 
may begin as soon as the one in progress 
terminates. 

Data Messages on Drum - A 256 word drum 
sector is reserved for output data for 
each logical channel. The language pro­
cessors make use of this facility to store 
up to 510 characters of remote output (ap­
proximately 51 seconds of teletype output). 
Normally a given user will be swapped dur­
ing the processing of this lengthy output 
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request. At the time an output buffer is 
filled by a language processor, the in­
formation is written to the drum and the 
appropriate macro is executed. The Message 
Handler provides the facility for the build­
ing of interprocessor buffer messages, and 
transmitting these messages until the drum 
sector has been "emptied" without additional 
action by the language processor. At the 
completion of the processing of the output 
buffer, the language processor will be 
scheduled at its "send complete" entry with 
the logical channel number as an entry 
parameter. 

The facility to send a message from core 
memory is also available. This type of 
message is limited to a maximum of 119 
characters (for one IPB buffer) and the 
message area must be guaranteed to be 
present in memory when processed by the 
Output Message Processor Routine. This 
facility is primarily for standard mes­
sages such as the log-in, "WHAT", "READY", 
etc. 

OBSERVATIOMS 

Debugging a Time Sharing System 

Time sharing debugging presents serious 
problems in that it is often impossible to 
repeat the exact time-event sequence which 
causes a bug to appear. Several debugging 
aids have been implemented to help solve 
this problem. The best and most frequently 
used is a system trace facility. Each 
component of the operating system has been 
assigned a unique two character alpha-numeric. 
This code along with certain interesting 
variables (up to 6 locations) and the time 
of day is traced (total of 8 words) at stra­
tegic places within the system. This infor­
mation is placed in memory in a circular 
fashion such that the last 64 system traces 
appear in core memory. In addition, a 
switch option allows tracing to DECtape or 
to drum. A post mortem trace listing pro­
vides a very helpful picture of system ac­
tivity. Each 8 word trace appears as a 
line in the listing. 

In addition, the old reliable mnemonic 
memory dump is ~sed with both absolute 
core locations and a relativized reference 
for each subprogram available. The ASCII 
representation is also printed in a separ­
ate column. 

It is also possible to display specified 
areas of memory on the console teletype 
and patch specified memory locations from 
the teletype while the system is in opera­
tion. 

Use of the Advanced Software 

Heavy use has been made of MACRO 9, PIP and 
EDIT provided by D.E.C. during system de­
velopment. Although DDT was useful in early 
debugging, it is not possible to use it in 
the time sharing environment. The Input/ 
Output Monitor system is not used in the 
time sharing software, but many good ideas 



were used from its design. The Linking 
Loader has been modified and is used in 
our system generation procedure. 

The Keyboard Monitor has been modified 
and can be run as either a VRC drum or 
FASTRAND resident system. 

In summary we have made extensive use of 
the D.E.C. Advanced Software package, we 
have been very pleased with it and feel 
that we would not be nearly as far along 
as we are without it. The device inde­
pendent features have been especially 
useful in helping us make use of the 
VRC drum and FASTRAND during development. 

Implementation Problems 

Our largest single problem has been one of 
memory size. We attribute this to two 
primary reasons. 

1) A very limited instruction 
set means many memory locations 
must be used to get a given job 
done. 

2) Lack of index registers is a 
serious handicap in any program 
development, but especially 
serious in time sharing work. 
Much space is used up in ad­
dress calculations. Even ~ 
index register would be nice. 
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ABSTRACT 

At th~ end of 1968, the time-sharing hardware of the PDP-9T 
was not fully operational. Design changes in the operation of the 
XMR have been implemented, to permit ORing of the 6 bits of the ex­
tension of the XMR with the target address of any memory reference 
instruction found in the vector table other than JMP, JMS, or CAL. 
This provides the user machine with an additional form of memory, 
supplementary memory, which is available in 64-word blocks outside 
the 32K working memory. Another modification permits the monitor 
machine access to the current user's supplementary memory, and to 
supplementary memory tables of its own. 

The minimonitor design and coding is essentially complete. It 
awaits completion of the hardware before it can be properly debugged 
and used. In the initial version, three 8K user machines reside in 
the 32K of core available in each of the delivered PDP-9Ts. The 
fourth 8K contains the minimonitor itself. With core to disc swapping 
of one of the user areas, the machine will be capable of supporting 
half-a-dozen conversational users using independent languages. The 
other two user machines each may support one or more real-time pro­
cesses, with response latencies of the order of a few milliseconds. 
The DEC Advanced Software System will be available to all users, but 
with some of the restrictions on the use of large device handlers in 
8K machines lifted. Users are not forced to use the ADSS, since they 
are provided with a simulated 8K PDP-9 with program interrupt. Essen­
tially, any operation that does not require the full speed of the 
PDP-9 may be run within any of the user machines. 

This paper reports the status of the PDP-9T 
hardware and software at the end of 1968. We 

work memory. All of the memory reference commands 
except JMP, JMS, and CAL will have their analogues 
in supplementary memory reference instructions, 
though indirect addressing in supplementary memory 
will be possible only by the use of Vector Service 
Routines (VSRs) which will be implemented only for 
certain commands. 

assume that the reader is familiar with the prev­
ious reports on the PDP-9T, published in the 
proceedings of the last two DECUS Symposia (Fall, 
1967 and Spring, 1968). The earlier of these 
papers presented the major elements of the hard­
ware design and the overall plan of the time­
sharing monitor system eventually to be implemented, 
while the second paper presented the outlines of 
the interim minimonitor software. The present 
paper is intended to be read as an updating of 
these two reports, rather than as an independent 
entity. 

HARDWARE 

Supplementary Memory 

The action of the XMR (Execute Monitor) com­
mand has been altered to permit the user access to 
64-word blocks of memory totally outside his 32K 

* This is DRET Tech. Paper #733. 
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The revised action of the XMR command is shown 
in Fig. 1. The XMR has an operation code field of 
4 bits, an 8-bit function or address field, and a 
6-bit extension or microcode field. If the machine 
is in user mode, or if the command MVEC or UVEC (see 
below) has just. been executed in monitor mode, then 
the operation code 70, normally associated in the 
PDP-9 with lOT, becomes an XMR. The function field 
then selects a word from the appropriate "Vector 
Table"· the selected word is executed as an instruc­
tion, ~xcept that the contents of the extension 
field of the XMR is ORed with the last 6 bits of the 
effective address of the instruction found in the 
vector table. This DRing does not happen if the 



command is JMP, JMS, or CAL, which operations remain 
as described in the earlier report. The action is 
like that previously described (Taylor, Forsyth and 
Seligman, 1967) for the case when lOT is found in the' 
vector table. 

As an example of the use of supplementary mem­
ory, suppose that the command XMR 12345 is issued by 
the user, and that location 523 (400+123) of the 
monitor machine contains LAC 4000; the instruction 
actually executed is LAC 4045, where the target 
address is in the monitor machine. Supplementary 
memory thus supplies a small region of readily 
accessible memory which can be used without alter­
ing the contents of the virtual core of the user 
machine. By changing the target addresses of the 
instructions in the vector table, one supplement­
ary memory table after another can be made avail­
able to the user. Such changes must be made at the 
activation of each new user, and whenever a user 
demands to open a new supplementary memory table. 

One use of supplementary memory is to facili­
tate the use of pure procedure (1) bodies in read­
only memory. In the original design of the PDP-9T, 
it was envisaged that the impure parts of shared 
procedures would be held in read-write pages of 
each user's work memory. There are several reasons 
why this approach is unsatisfactory in practice. It 
is inefficient in terms of core usage, in that the 
ratio of the sizes of the pure and impure parts may 
vary greatly. Routines with small pure parts are 
not worth writing since little if any oore is 
saved and system overhead is added in keeping track 
of the sharing operation. Routines which have small 
impure parts are worth writing, but lead to difficul­
ties when more than one shared routine is used at a 
time, because the loader needs to know about ad­
dressing conflicts in all the sharing machines. If 
the PDP-9 had an index register, this difficulty 
would be much less severe. 

The use of supplementary memory improves the 
situation, in that although the addressing is still 
absolute within the supplementary memory table, the 
table itself is outside the work memory; it is auto­
matically changed for each new user and on a request 
from any user. Loading conflicts may be alleviated, 
if not eliminated, by the judicious use of supple­
mentary memory tables. 

A related second benefit of the use of supple­
mentary memory is that the system can provide the 
user with small data areas which do not use any 
read-write page of core. This means that there may 
sometimes be no need for any read-write page of user 
memory to be in core during the execution of a 
shared routine. Most important, there is no need 
for one particular read-write page to be always in 
core when a particular pure procedure is active. 

The modified XMR operation permits another 
variation in the use of the vector table. If the 
instruction found in the table is XCT, the 6 bits 
of the extension field are ORed into the effective 
address field of the XCT. This permits the XCT to 
address any of 64 different commands, some of which 
may be JMS, and some not. If the command found by 
the XCT is JMP, JMS, or CAL, the operation is 
exactly as if the command had been found in the 
vector table directly by the XMR; priority is 
raised to API level 4, and the jump performed. 
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Hence, the use of XCT in the vector table provides 
entry to 64 Vector Service Routines (VSRs) which 
do not use the extension field for numerical para­
meters. If the extension field is needed for a 
numerical parameter of a routine, then that routine 
will still be accessed by a JMS placed directly in 
the vector table. Potentially, the user machine 
now has quick access to a great many more VSRs 
than was hitherto the case. 

Monitor Vectoring 

A second change in the hardware, used in con­
junction with supplementary memory, is the provision 
of monitor vectoring. This provides the monitor 
machine with the equivalent of the XMR command. If 
the monitor issues lOT 3121 (MVEC) or lOT 3161 (UVEC) 
the next instruction, which must be an lOT, is inter­
preted as an XMR. If UVEC was issued, the XMR 
operates exactly as in the user machine, but if MVEC 
was issued, the vector table is taken to start at 
location a instead of 400. 

The provision of the MVEC and UVEC commands 
permits the monitor to access directly the user's 
supplementary memory, and to enter VSRs in the same 
way that a user does. Previously, to enter a VSR 
from the monitor machine required the use of an ISA 
command to activate API level 4, with the concomit­
ant necessity of saving and restoring the accumula­
tor. MVEC permits the monitor a rudimentary index­
ing capability which assists in handling the 
various control tables used in the system. 

SOFTWARE 

The construction of the software is proceeding 
in two stages. The full system will be that de­
signed largely by Strom, and described by Taylor, 
Forsyth and Seligman (1967). An interim system, 
intended to permit useful real-time work under a 
time-sharing regime, is a modified version of that 
described by Forsyth, Forshaw and Taylor (1968). It 
permits several simulated 8K PDP-9s to run "simul­
taneously" and independently. A whole simulated 
machine must be entirely in core in order to run; 
this "minimonitor" does not permit page-turning. 

A basic decision valid for both the minimonitor 
and the full system is that the DEC Advanced Soft­
ware System (ADSS) will at all times be available 
to the users. This decision requires that the user 
machines include a simulated programme interrupt. 
The implementation of the minimonitor is thus some­
what different from that described in the earlier 
report, in that virtual machines, rather than tasks, 
are the natural unit of user programming. The 
current design, which has been coded and is now 
being debugged along with the hardware, is due 
largely to R. Walton of Princeton University and 
to R. Strom of Harvard. 

The initial minimonitor is intended to run on 
the PDP-9Ts at Harvard and DRET. Both these mach­
ines have 32K of physical core at present. The 
minimonitor uses 8K, and runs 3 in-core simulated 
8K machines. Early revisions to the minimonitor 
should permit core to disc swapping of one of the 
user areas, thus providing adequate service at 
conversational teletypes for 4-8 users, while still 
maintaining service latencies of a few milliseconds 



for users in the remalnlng two areas. Another an­
ticipated early revision should relax the 8K 
boundary size, thus permitting more smaller mach­
ines to be locked into core without disturbing 
either the rapid response time of the locked-in 
machines or the use of the conversational terminals 
on the machines being swapped to and from disc. 

A standard 8K PDP-9 cannot handle Fortran or 
Macro-9 when DECtape is used for both input and 
output, because of the size of the device handlers. 
The 8K user machines under the minimonitor do not 
have this problem, since the handlers are simply 
XMR calls to routines held in the monitor area, and 
thus take very little space in the user's 8K work 
memory. These XMRs are activated directly by the 
.READ and similar calls to the lOPS system of the 
ADSS. This type of operation applies to all those 
devices which users think they alone have, but 
which are actually shared, such as the DECtapes, 
Paper Punch and Reader, and the Line Printer. 
Devices which do belong uniquely to a user, such 
as his teletype or a special interface, normally 
have their handlers in his space and the actual 
lOTs become XMRs which are interpreted by the 
monitor. On the DRET machine, one user at a time 
may have the 340 display, which he may use just as 
if he had an 8K machine with a 340. 

The scheduling algorithm is not uniquely de­
termined within the minimonitor, and many schedul­
ing variations are possible. Initially, users are 
scheduled on around-robin basis, every user who 
has work to do being given 2 msec of computing 
time before being deactivated. If a programme 
interrupt has come up since the start of his last 
computing period, he starts at location 1, with 
the return information stored at 0, just as if a 
natural PI had happened in his simulated PDP-9 
at the moment when he was last deactivated. He 
can test simulated device flags by using the same 
lOTs (which become XMRs) that he would have used in 
the standard PDP-9. Programmes written for a PDP-9 
without API and which do not use cycle counts for 
timing purposes should run unmodified on the 
simulated machines under the minimonitor. The 
simulated real-time clock should tick every real 
1/60 sec in location 7 of each user machine in 
core, so that real-time programmes should be no 
less precise in the simulated machines than in the 
standard PDP-9. In addition, the initial version 
of the minimonitor permits real-time operations to 
occur at times pre-specified to the nearest 10 
msec. 

In the ADSS system, the user must be able to 
communicate with his own user programme and with 
the monitor, using the command teletype. When he 
initiates the system, he communicates enough with 
the monitor to bring in a system programme or his 
own programme, which then takes over control. 
Typing CTRL/C puts him back in communication with 
the monitor. In the time-sharing system, another 
level of communication is necessary. The user 
must communicate with the time-sharing monitor as 
well as with the ADSS monitor. The TS monitor 
allocates resources, in particular processor 
power, to the user, and at the very least the 
user must make his presence known to the system 
before he can begin work. He may also want to 
communicate with the TS monitor at other times. 
To accommodate this, typing CTRL/A returns con­
trol to the TS monitor, as CTRL/C does for the 
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ADSS monitor. In addition, CTRL/B bootstraps a copy 
of the ADSS monitor into the user machine, thus el­
iminating the need for a paper tape bootstrap. 

FOOTNOTE 

(1) Any routine may be divided into those locations 
which change during the execution of the routine and 
those which remain fixed throughout. If the unchang­
ing locations are grouped together, :they are called 
the "pure" part of the procedure. The res.t, by 
changing locations, are collectively called the 
"impure" part of the procedure. In a time-sharing 
system, considerable saving of real core may some­
times be gained by writing commonly used routines 
as "pure procedures", that is to say, by deliberat­
ely separating the pure and impure parts of the 
procedures, and ~haring the pure parts in a read­
only region of memory common to the users who 
"simultaneously" require the procedure. Each user 
then has his own copy of the impure parts of the 
procedure. 
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Fig. 1. Modified action of the XMR command when the instruction 

found in the vector table is not JMP, JMS, or CAL. The 8 bit 
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instruction is executed, but the 6 bits of the extension field 

of the XMR are ORed with the last 6 bits of the effective target 

address of the vector instruction to determine the final target 

address. In practice, the vector instruction defines the base 

of a supplementary memory table, while the extension field of 

the XMR defines the target address within that table. 
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OPERATING THE KEYBOARD MONITOR SYSTEM FROM A DISK 

C. Wendell Richardson 
Phillips Petroleum Company 

Atomic Energy Division 
Idaho Falls, Idaho 

ABSTRACT 

The Disk Monitor Program is designed to allow efficient use 
of a disk or drum by the Keyboard Monitor System. A basic 
PDP-9 with DEC tape and any size drum or disk is sufficient 
to operate the monitor. DECtape is used for permanent stor­
age. There is no need for protected or reserved areas for 
system programs since only those programs being used need be 
on the disk. System and user programs and user data sets are 
transferred from the DECtape to the disk for fast access by 
the computer. The time required for such tasks as program 
editing and compiling can be reduced by a factor of 10. 

THE SYSTEM 

The Digital Equipment Corporation has developed a 
significant amount of software (The PDP-9 Advanced 
Software System) for the PDP-9 computer. The system 
includes a FORTRAN compiler, a MACRO Language assem­
bler, a peripheral interchange program, a system gen­
erator, a linking relocatable loader, two monitor 
systems, and others. One monitor is used on the 
basic PDP-9 without DECtape or other bulk storage. 
On configurations with at least DECtape a more versa­
tile monitor (The Keyboard Monitor) is used. It will 
execute commands from the keyboard to load system 
programs into core with designated device handlers 
and will provide communication between the programs 
and the handlers. The monitor allows complete device 
independent programming. 

The system generator can be used to create new sys­
tems to fit any configuration. Any bulk storage 
device may be used as the system device provided 
suitable handlers are available. On configurations 
with both DECtape and high speed auxiliary storage 
(disk) there is a question as to which one should be 
used for the system device. The space which must be 
dedicated to the system and the time required to 
access the system programs are the main factors to 
be considered. 

At least 400 blocks (256 words per block) are required 
for the system since there is no provision for delet­
ing unused parts. The use of 400 dedicated blocks 
for the system is acceptable on DECtape because the 
amount of storage medium is unlimited. However, that 
amount is serious on smaller disks and prohibitive on 
a 512 block drum. 

Even though the system uses DECtape very efficiently 
the time required for access is undesirable espe­
cially during program development. It was determined 
that 70% of the time required to update, assemble, 
and load a program is DECtape access time. A high 
speed device can reduce the access time by an aver­
age of 90%. Thus, operating the system from a disk 
is considerably faster than from DECtape. 

In February 1968 we received a PDP-9, two DECtape 
units, l3l-K word drum, and a 339 display scope. 
Soon after beginning our program development we re­
alized that operating the system on DECtape was much 
too time consuming but the drum was too small to be 
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the system device. We solved the problem by develop­
ing a program which we named the Drum Monitor. The 
drum monitor together with five drum device handlers, 
a drum bootstrao, and the advanced software programs 
make up the system. 

The drum monitor was designed to use DECtape for 
permanent storage of programs and the drum for tempo­
rary storage and high speed transfers between the 
drum and the comouter memory. The user first initial­
izes the drum with 2ElY those programs he intends to 
use. ~~en he has completed his operation the complete 
drum image can be saved and later restored from DEC­
tape. Any system or user program can individually 
be added to or deleted from the drum. Hence, the 
entire drum is available for each user and no portion 
must be dedicated or protected. 

The time required to save or restore the drum image 
is less than the time needed to load one program from 
DECtape. Thus, both the time and space problems have 
been solved. 

Some of the capabilities of the drum monitor are as 
follows: 1) One block of the drum is reserved for 
an index. ~~en a data set is written on the drum its 
name, ~ize, and location are entered in the index. 
Upon request the monitor will print on the teletype 
the information contained in the index. 2) The sy~­
tem and user programs can be loaded into core from 
the drum for execution. 3) Up to 8 different core 
images can be dumped on the drum and restored from 
the drum. 4) The entire drum image can be dumped on 
DECtape and restored from DECtape. 5) System programs, 
user programs, and user data sets can be individually 
transferred to and from DECtape. 6) The keyboard 
monitor can still be used to execute commands from 
the keyboard. However, the keyboard monitor is now 
loaded into core only by the drum monitor. 

THE DRUM r~NDLERS 

Five drum handlers with varying capabilities have 
been written for the system. They are designated as 
DRA, DRB, DRC, DRD, and DRE (see Figure 1). 

The DRA handler is the most versatile and combines 
the capabilities of all the other handlers. It con­
trols 3 files (input or output) simultaneously with 
all modes and functions applicable to the drum. The 



three files are chann~led through the same 256-word 
buffer to conserve core storage. 

The DRB handler also has a simultaneous 3-file capac­
ity but does not allow any but the system lOPS (Input/ 
Output Programming System) ASCII and binary data modes 
and the standard input-output functions. Its purpose 
is to be used in place of the DRA handler to conserve 
core storage when the special functions and modes are 
not needed. 

The DRC handler is the smallest being designed for 
input only applications. It has a one-file capacity 
with all modes but has only the standard functions 
available. 

The DRD handler allows all of the functions and data 
modes but only one file (input or output) at any 
given time. The one-file limitation gives it a much 
higher rate of transfer than the DRA handler has. 
Any number of sequential file references are allowed. 

The DRE handler allows all of the functions and data 
modes and has a simultaneous 2-file (input-output) 
capacity. Included are two 256-word buffers giving 
it the high rate of transfer of the D handler but 
making it approximately 256 words larger than the A 
handler. 

THE DRUM 

The drum monitor was written specifically for a l3l-K 
word drum. However, the system will work from larger 
drums or disks. The drum is divided into 256-word 
blocks. The blocks on a l3l-K word drum are numbered 
from 0 to 777 8 , Block 0 is used for the drum index 
maintained by the drum monitor. The drum monitor 
bootstrap makes use of block 7778 for temporary stor­
age purposes. Figure 3 shows a drum monitor printout 
of a sample index. Figure 4 shows the format of the 
drum index. 

DECTAPE 

lhree different types of DECtape are used with the 
drum monitor system. They are the drum monitor tape, 
the copy tape and the data tape. The copy tape is 
the only tape without a keyboard monitor system in­
dex. No DEC tape backup is required once the drum is 
loaded with the necessary data. Only the drum moni­
tor tape is necessary in initializing the drum. The 
copy tape and the data tape are used only for storage. 

The following changes to the standard keyboard moni­
tor tape are made to create a drum monitor tape: 
1) The drum monitor program is dumped into the tQ 
dump area (see Section 3.2.3.5 of the PDP-9 Honitors 
Hanual). 2) The system loader is altered (at system 
generation time) to load the linking loader from the 
drum rather than from DECtape. 3) -The drum device 
handlers are assigned to most device assignment table 
slots (see Figure 2). 

The copy tape is used to quickly store the entire 
drum image. The copy tape has no other use than to 
store the drum contents for future retrieval. The 
transfer is accomplished by a special double-buffered 
routine. The 512 blocks of the drum are copies di­
rectly into the first 512 blocks of DECtape. On 
larger drums or disks only 512 blocks would be stored 
on the copy tape. 
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The data tape may be used instead of/or in addition 
to the copy tape for permanent storage. Since all 
system programs exist on the drum monitor tape the 
storage may consist of only user programs and user 
data sets. Transfers between the data tape and the 
drum are identical to those between the drum monitor 
tape and the drum. The index of the drum monitor or 
data tape may be obtained with the peripheral inter­
change program. 

THE BOOTSTRAP 

The keyboard monitor DECtape bootstrap handles many 
transfers between the computer memory and DECtape. 
The various kinds of transfers can be listed as fol­
lows: 1) The keyboard monitor from tape-to-core upon 
initial loading or upon unrecoverable errors. [hiS 

transfer includes both resident and non-resident 
portions of the keyboard monitor. 2) All system pro­
grams except DDT, Chain, and the linking loader 
from the tape-to-core. 3) tQ dumps from core-to­
tape. 4) tQ dumps from tape-to-core. 

The drum monitor bootstrap handles only transfers 
between the drum and core. The various transfers 
can be listed as follows: 1) The drum monitor pro­
gram from drum-to-core. 2) All system programs 
except DDT, Chain, and the linking loader from drum­
to-core. 3) tQ dumps from core-to-drum. 4) tQ 
dumps from drum-to-core. 

The drum monitor bootstrap differs considerably from 
the keyboard monitor bootstrap. The drum monitor 
bootstrap searches the drum index for the element to 
be transferred, whereas the keyboard monitor boot­
strap loads all elements from absolute physical loca­
tion on the bulk storage device. To make room for 
the additional instructions in the drum monitor boot­
strap, 256 words starting at core location 10,000 are 
temporarily stored in block 7778 on the drum. The 
additional instructions for the bootstrap are then 
read from the bottom portion of block 0 at the end 
of the index into the locations starting at 10,UOO 
and are executed. The bootstrap then restores the 
original instructions at location 10,000 from block 
7778 . 

THE INDEX 

The format of the index entries is shown in Figures 
3 and 4. The general entries use three words to 
specify the entry name. The first two words of the 
entry specify a six-character name which appears as 
six-bit ASCII in the index. The third word is used 
for a three-character extension to the name also in 
six-bit ASCII. The fourth word of an entry indicates 
the number of blocks used by the data and the start­
ing block of the data. System programs can be iden­
tified by SYS as their ~xtension. General entries 
will use SRC for alphanumeric information and BIN 
for data or binary information in most cases. Entries 
not using an extension of SYS, SRC or BIN must use 
the peripheral interchange program for any transfers. 
Additions to the drum index use the first available 
blocks. All entries use contiguous blocks. Deletions 
cause the drum to be repacked. 

fORE DUMPS 

tQ is a keyboard monitor command. If the keyboard 
monitor is being operated from DECtape a number is 



typed with the tQ to specify which unit the dump is 
to be written on. The dump is a complete core image 
into prespecified blocks (101 8-141 8) on the DECtape. 

The keyboard monitor command GET is used to retrieve 
core dumps. If DECtape is being used a number is 
typed with the command to specify the unit. The 
keyboard monitor bootstrap handles the transfers 
between the bulk storage device and core. 

The drum monitor bootstrap allows core dumps to be 
handled differently. The tQ command initializes the 
dump and the number specifies which of 8 possible 
dump areas is to be used. The numbers can be any 
between 0 and 7. Any number of dump areas up to 8 
can be reserved on the drum at drum initialization 
time. Areas which have not previously been reserved 
should not be used. 

lIm DRUB MONITOR COMMANDS 

When the drum monitor is ready for the user to type 
a command it will print an asterisk at the left-hand 
side of the page. The return of an asterisk after 
receiving a command indicates to the user that the 
command has been successfully executed (see Figure 5.) 

Index 

Form: INDEX 

Index prints the drum index on the teletype. Figure 
3 is an example of an index printout. This command 
can in no way be used to print the index of DECtapes. 
The peripheral interchange program can be used to 
print the index of DECtape. 

Prime 

Form: PRIME 

Prime causes the following items to be added to the 
drum: 1) the keyboard monitor, 2) the drum monitor, 
3) system skip block, 4) the system loader,S) the 
indicated number of core dump areas. The user is 
interrogated as to the number of core dump areas to 
be reserved on the drum. Each area takes forty 256-
word drum blocks. Any number from 0 to 8 is 
acceptable. 

This command also transfers the resident drum boot­
strap instructions to the core. 

Clear Index 

Form: CLEAR 

Clear will create a new drum index on the drum. 
Everything previously in the index is deleted. 

Set Transfer Direction: Tape-to-Drum 

Form: DRUM 

The direction tape-to-drum is initially set when the 
drum monitor is loaded and remains set unless changed 
by the command TAPE. To reset the transfer direction 
to tape-to-drum the command DRUM is given. Transfers 
in either direction will replace any file with the 
same name. If it is desired to change a file name 
during a transfer, the peripheral interchange pro­
gram should be used for the transfer. 
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Set Transfer Direction: Drum-to-'1ape 

Form: TAPE 

The command TAPE is used to set the transfer direc­
tion to drum-to-tape. This direction will remain 
set until the DRUM command is given or until the drum 
monitor is reloaded. In order fDr this command to 
work the DECtape unit ~ffiITE-ENABLE switch must be on. 
Transfers in either direction will replace any file 
with the same name. If it is desired to change a 
file name during a transfer the peripheral inter­
change program should be used for the transfer. 

Copy Drum Image 

Form: COpy 

The COpy command transfers the entire drum image from 
druTh-to-tape or from tape-to-drum depending upon the 
current transfer direction. The transfer will be to 
and from DECtape unit 1. 

Transfer File 

Form: xxxxxx yyy 

Typing any file name and extension will cause the 
corresponding file to be transferred from drum-to­
tape or from tape-to-drum depending on the current 
status of the transfer direction. The transfer will 
always be to DEC tape unit 8. The file name and ex­
tension will be inserted in the index of the destina­
tion device but will also remain on the source device. 
Only the three extensions, BIN, SRC and SYS, are 
recognized by the drum monitor. Files with an exten­
sion of SYS may be transferred only from the DEC tape 
to the drum. Files with extension of other than 
these three must be transferred with the peripheral 
interchange program. 

Delete 

Form: DELETE 

When the DELETE command is given the user will be 
asked to type a name and extension of the file to be 
deleted from the drum. Any files existing below the 
deleted files will be repacked. 

Load Keyboard Monitor 

Form: K 

The K command will cause the drum monitor to load 
the core with the keyboard monitor. The keyboard 
monitor can now be used for all functions ~xcept 
printing or creating a DEC tape index. The DEC tape 
index can be obtained only from the peripheral inter­
change program. All other aspects of the keyboard 
monitor remain the same. 

Replace DECtape Bootstrap with Drum Bootstrap 

Form: BOOT 

When the drum monitor is not on the drum the DECtape 
bootstrap must be used for loading (see section on 
loading procedures). The BOOT command can be used 
to replace the DECtape bootstrap with the drum boot­
strap after the drum monitor is placed on the drum 
from a COpy tape. 



THE LOADING PROCEDURE 

It should be noted that when the user first sits down 
to use the computer he has no way to determine what 
is on the drum. Even if the drum index indicates 
the presence of certain programs, there is no assur­
ance that the programs are there in their correct 
form. However, if the last user was using the drum 
monitor system it is fairly certain that the current 
programs are safe to use. 

The suggested way to initialize the drum assuming 
nothing about the present contents is as follows: 

1. Place the paper tape labeled "Drum Monitor 
Bootstrap" in the paper tape reader and set the 
ADDRESS switches to 000000. Push and release 
the hard-wire READIN switch. 

2. If the words DRUM MONITOR are printed on the 
teletype the monitor should be ready to use and 
steps 3, 4 and 5 can be skipped. Under any other 
condition go on to step 3. 

3. Mount the DECtape labeled Drum Monitor and dial 
to unit number 8. Place the unit switches on 
RIGHT-LOCK and REMOTE. y.1ithout changing the 
paper tape bootstrap position in the paper tape 
reader or the ADDRESS switches as they were left 
from step number 1, again push and release the 
hard-wire READIN switch. The second half of the 
drum monitor bootstrap will read in. 

4. The teleprinter will type MONITOR. The regular 
keyboard monitor is now in core with the regular 
keyboard monitor bootstrap. Since the drum moni­
tor is stored in the DECtape dump file, it can 
now be loaded with the keyboard monitor command 
GET. 

5. The teleprinter will type DRUM MONITOR. At this 
point the drum monitor has been loaded and is 
ready to use. However, the keyboard monitor 
bootstrap rather than the drum monitor bootstrap 
is in core. This will cause all bootstrap trans­
fers to be to and from DEC tape rather than the 
drum. The drum monitor bootstrap may be placed 
in core in three ways. The commands PRIME or 
BOOT will place the drum monitor bootstrap in 
core or after the drum monitor is placed on the 
drum from a copy tape the drum monitor bootstrap 
may be reloaded as in step 1. 

6. The drum monitor is now ready to use and any of 
the commands may be given. 

9PERATION SUGGESTIONS 

Figure 6 is an example of the teletype record for an 
initial setup. Only those words that are underlined 
were typed by the user. The user followed steps 1, 
2 and 3 of loading procedures to load the keyboard 
monitor from DECtape which then printed out the first 
line. The user typed "GET 0" to load the drum moni­
tor from the dump file on the DECtape. The user 
next issued the PRIME command. At this point there 
are 4 system programs in the index. The next 4 com­
mands were given to transfer the system library, the 
linking loader, the editor and the FORTRAN compiler 
to the drum. An INDEX was requested with the expected 
results. At this point the drum was initialized to 
meet his particular needs. The user next desired to 
reserve his drum image for future use. The TAPE 
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command was given to set the transfer direction to 
drum-to-tape. The COpy command was given to write 
the complete drum image on DEC tape unit 1. 

Figure 7 is an example of how the user initializes 
the drum from a COpy tape. The single command COpy 
is used to transfer a complete drum image from DEC­
tape to the drum. The system and user programs can 
now be operated from the drum or additional system 
and user programs can be readily added. 

It is intended that most usually the drum monitor 
will be on the drum allowing the user to just load 
his COpy tape and type COpy to get started. 

lPE SYSTEM PROGRP~S 

The following is a list of required system programs 
for drum operation. 

Command to Transfer 
Name Index Entry to Drum 

Keyboard Monitor KM9 SYS PRIME 

Skip Block SD'BLK SYS PRIME 

System Loader SYSLD SYS PRIME 

Drum Monitor DRUM M SYS PRIME 

Linking Loader . LOAD BIN . LOAD BIN 

System Library .LIBR BIN .LIBR BIN 

The following is a list of optional system programs 
operable from the drum. 

Dump Files 0-7 

Editor 

MACRO Assembler 

MACROA Assembler 

FORTRAN Compiler 

Update 

Execute 

Patch 

Peripheral 
Interchange 

Dump 

Index Entrv 

DMPBLK SYS 

EDIT SYS 

MACRO SYS 

MACROA SYS 

F4 SYS 

UPDATE SYS 

EXECUTE SYS 

PATCH SYS 

PIP SYS 

DUMP SYS 

Command to Transfer 
to Drum 

PRIME 

EDIT SYS 

MACRO SYS 

MACROA SYS 

F4 SYS 

UPDATE SYS 

EXECUTE SYS 

PATCP SYS 

PIP SYS 

DUMP SY~ 



DRUM HANDLERS 

MODES SIZE NAME FILES 

ALL 1001 DM 3 
lOPS 872 DRB 3 
lOPS 576 DRC 1 (input) 
ALL 937 DRD 1 
ALL 1267 OOE 2 

DEC TAPE HANDLERS 

ALL 2316 
lOPS 1547 
lOPS 674 
ALL 1564 

Figure 1. DECtape and drum handler comparison. 

C 
DRUM MONIIDR 
*K 
MONIIDR V3C 
$REQUEST 

OAT 

-15 
-14 
-13 
-12 
-11 
-10 
-7 
-6 
-5 
-4 
-3 
-2 
-1 

1 
2 
3 
4 
5 
6 
7 
10 

DEVICE 

DRE 
DRE 
DRB 
TTA 
DRB 
PM 
DRC 
NONE 
NONE 
DRC 
TTA 
ITA 
DRC 
TTA 
PM 
NONE 
OTDI 
DRD 
NONE 
NONE 
NONE 

USE 

OUTPUT 
INPUT 
OUTPUT 
LISTING 
INPUT 
INPUT 
SYSTEM DEVICE FOR .SYSLD 
OUTPUT 
EXTERNAL LIBMRY FOR .LOAD 
SYS TEM INPUT 
TELEPRINTER OUTPUT 
KEYBOARD INPUT 
SYSTEM DEVICE FOR .LOAD 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 

Figure 2. Device assignment table. 

* INDEX 

DRUM DIRECIDRY 
NAME NUMBER 

OF BLOCKS 
.LIBR BIN 200 
.LOAD BIN 014 
DMPBLK SYS 040 
DMPBLK SYS 040 
DRUM M SYS 040 
KM9 SYS 036 
SKPBLK SYS 001 
SYSLD SYS 011 
MACRO SYS 027 
EDIT SYS 012 
F4 SYS 031 
DUMP SYS 004 
USERPG SRC 003 
251 FREE BLOCKS 

* 
Figure 3. Drum index. 
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STARTING 
BLOCKS 

001 
201 
215 
255 
315 
355 
413 
414 
425 
454 
466 
517 
523 



. SIXBT CODE 
OR SPECIAL 

PROGRAM SYSTEM PROGRAM STARTING 
NAME INDEX WORD CODE BLOCK # # OF BLOCKS 

SYSTEM 561411 .LI 
LIBRARY 022200 BR 

021116 BIN 
200001 1 200 

LINKING 561417 .LO 
LOADER 010400 AD 

021116 BIN 
014201 2Ql 14 

DUMP 021101 BLK 101 
AREA 0 041520 DMP 

233123 SYS 
040215 215 40 

DUMP 121101 BLK 101 
AREA 1 041520 DMP 

233123 SYS 
040255 255 40 

DRUM 560414 . DL 
MONITOR 170104 OAD 

233123 SYS 
040315 315 40 

KEYBOARD 000000 BLK 0 
MONITOR 041520 DMP 

233123 SYS 
036335 355 36 

SKIP 000044 BLK 44 
BLOCK 041520 DMP 

233123 SYS 
001413 413 1 

SYSTEM 000056 BLK 56 
LOADER 041520 DMP 

233123 SYS 
011414 414 11 

MACRO 000742 BLK 742 
041520 DMP 
233123 SYS 
027425 425 27 

Figure 4. Format of drum index. 
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Command 

INDEX 

PRIME 

CLEAR 

DRUM 

TAPE 

COpy 

xxxxxx yyy 

DELETE 

K 

BOOT 

Action 

Drum index printed on teletype. 

Create following items on drum: 

1. Keyboard Monitor 
2. System Skip-block 
3. System Loader 
4. Drum Monitor 
5. The indicated number of core dump block. 

The user is interrogated as to the number 
of core dump blocks to be reserved on 
drum. Each block takes 40 256-word drum 
blocks. Any number from zero to seven is 
acceptable. 

Create new drum index. 

Set transfer direction: tape to drum. 

Set transfer direction: drum to tape. 

Copy entire drum on tape or retrieve drum 
image from tape depending on current transfer 
direction. Transfer is on DECTAPE unit 1. 

Transfer file name xxx xxx extension yyy from 
drum to tape or from tape to drum depending on 
current status of the transfer direction. The 
DECTAPE unit must be dialed to 8. The file name 
xxx xxx with extension yyy will be inserted in 
the destination device index. If it is already 
in the index the old file will be deleted. 

User will be asked to type the name and ex­
tension of file to be deleted from drum. 

Load core with keyboard monitor 

Replace DECtape bootstrap with drum bootstrap. 

Figure 5. Summary of drum monitor commands. 
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MONITOR V3C 

$GET 0 

DRUM MONITOR 

*CLEAR 

*PRIME 

TYPE NUMBER OF CORE DUMP BLOCKS 
o 

*.LIBR BIN 

*.LOAD BIN 

*EDIT SYS 

*F4 SYS 

* INDEX 

DRUM DIRECTORY 
NAME 

DRUM M 
KM9 
SKPBLK 
SYSLD 
.LIBR 
. LOAD 
EDIT 
F4 

SYS 
SYS 
SYS 
SYS 
BIN 
BIN 
SYS 
SYS 

NUMBER 
OF BLOCKS 

040 
036 
001 
011 
200 
014 
012 
031 

407 FREE BLOCKS 

* TAPE 

* COpy 

* 
Figure 6. Initial drum setup. 

DRUM MONITOR 

* COpy 

* INDEX 

DRUM DIRECTORY 
NAME 

DRUM M SYS 
KM9 SYS 
SKPBLK SYS 
SYSLD SYS 
.LIBR BIN 
. LOAD BIN 
EDIT SYS 
F4 SYS 
407 FREE 

* 

NUMBER 
OF BLOCKS 

040 
036 
001 
011 
200 
014 
012 
031 

BLOCKS 

Figure 7. Day-to-day usage of the drum. 
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STARTING 
BLOCKS 

001 
041 
077 
100 
III 
311 
325 
337 

STARTING 
BLOCK 

001 
041 
077 
100 
III 
311 
325 
337 



PDP-9 MONITOR SYSTEM WORKSHOP 

David Leney and James Murphy 
Digital Equipment Corporation 

Maynard, Massachusetts 

ABSTRACT 

This lecture, discussion session, and demonstration is directed towards­
the presentation of major new developments in the PDP-9 ADVANCED 
Software System and towards the solution of existing trouble areas of 
genera I concern. 

The new developments include: 

1. Background/Foreground (two user time-sharing) Monitor System. 

2. Multi-user FOCAL system which may operate as the Foreground or 
Background job under control of the BIF Monitor System. 

3. The 339 Software Package. 

On Friday and Saturday, December 13 and 14, 1968, the PDP-9 
equipped with 32K of core memory, API, EAE, Memory Protect, and 
DECtapes along with knowledgeable DEC personnel was available for 
the purposes of problem solving and specific demonstrations. 

Three major developments in the PDP-9 Advanced Software 
area are: 

1. Background/Foreground Monitor System which is a two 
user time sharing system. The Foreground job is quite 
applicable to real-time work and is completely protected 
from the Background job, which is anything currently 
available under the Keyboard Monitor System. 

2. FOCAL language within Advanced Software 

3. 339 Graphics package 

BACKGROU ND/FOREGRO) ND MONITOR SYSTEM 

The prime goal is to give the user more of the avai lable 
CPU time to accomplish his work. With the Keyboard 
Monitor System a statisical analysis would show that any­
where from 60 to 80% of the time the system is I/O bound 
(waiting for some I/O to complete so processing can con­
tinue on). With the Background/Foreground System, 
control goes to the Background job to accomplish some­
thing useful if the Foreground is I/O bound. The way we 
define the system is that the Foreground job is a checked 
out user program, which is quite applicable to real-time 
processing, and this program will have complete priority 
over core memory, peripherals that are available, and 
CPU time. The only time it gives control to the Back­
ground job is when it is I/O bound. This program is com­
pletely protected from the Background job which could be 
a non-checked out program, which the user might be de­
bugging at this time. It is protected by hardware with a 
hardware memory protect option which won't let the Back­
ground job reference the core of the Foreground area. It 
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is also protected software-wise by the Background/ 
Foreground Monitor System. All I/O that the Background 
job does is accomplished via the CAL instruction identical 
to the current method in the Keyboard Monitor environment. 
The Monitor will verify all addresses and word counts that 
the Background job is passing on before it al lows the actual 
operation to take place. The Time-Sharing Algorithm is 
that control does not go to the BackgrolJnd job unti I the 
Foreground job becomes 110 bound. When control goes to 
the Background job, it keeps control until the Foreground 
job's I/O, which caused the Foreground job to become 110 
bound, is completed. 

There are two sections to the Background/Foreground 
Monitor System which control this operation: 

'. The CAL handler takes control from the Foreground job 
in the I/O busy situation; 
2. Each of the I/O device handlers, upon completion of a 
Foreground I/O operation which caused an I/O busy situa­
tion, will return control to the Foreground job. 

One of the nicest features of the system, especialiy to 
peopJe familiar with the size of DECtape handlers, is that 
both users can utilize the serne DECtape handler. Currently, 
we have four versions of the DECtape handler and four ver­
sions of the DISK handler. They vary according to the 
number of data modes that each handler will process, and 
the number of functions each will perform. 

In the Background/Foreground Monitor System there wi" be 
one handler. Its called the N-file handler. The buffer 
space required is built dynamically at run-time and both 
users can use the same basic handler. The buffers that the 



handler requires for each job are in the appropriate job area. 
The way it works is that the Foreground job (even if there is 
Background I/O underway, say for DECtape) will push its 
way in, stop the Background I/O so it won't delay the Fore­
ground real-time environment, and process the Foreground 
I/O request. Upon completion of the Foreground job's I/O, 
the Background job's 1/0 wi II be restarted again. 

HARDWARE REQU IREMENTS FOR 
BACKGROUND/FOREGROUND SYSTEM 

To run the Background/Foreground Monitor requires at least 
16K of memory, the memory protect option, bulk storage 
device (DECtape or DISK), and LT19 teletype multiplexer 
with at least one additonal teletype. One teletype is the 
Background control teletype and this is the normal console 
teletype. The other teletype on the L n 9 is the Foreground 
job control teletype. 

One of the options which brings more power to the system is 
the automatic priority interrupt. Without the API, the 
Foreground job runs at the mainstream level with its I/O at 
the program interrupt level, and the Background job also runs 
at mainstream, with its I/O at the program interrupt level. 
With the API, the Foreground job gets 3 additional levels 
of priority (software levels 5, 6, 8. 7). The Foreground job 
can uti lize all these levels. Also, control does not go to 
the Background job unti I the Foreground job is I/O busy at 
all levels it happens to be using at th is time. 

MONITOR CONTROL FUNCTIONS 

There have been two major additions to the Monitor control 
functions. The. TIMER Macro has been expanded to allow 
many intervals to be going on at the same time, so that the 
clock can be used by both Background and Foreground and 
can be used many times by each job. The address that is 
specified for the completion of the interval can also have a 
priority level attached to it. So this gives you all kinds of 
program priority capabilities. Now we also have real-time 
• READs (. REALR) and • WRITEs (.REALW) so that, rather 
than waiting for completion of I/O with a .WAIT, an address 
can be specified with a priority level for I/O completion 
(like. TIMER). The API brings these three additional levels, 
so there cou Id be four Foreground programs running at differ­
ent priority levels as all the internal workings are there to 
allow this to happen quite easi Iy. 

Question: With these mu Itiple calls to the clock, does 
that mean that each time you get an overflow it will reset 
the clock and then transfer control to the user address? 

Answer: As a • TIMER request comes in, the question is 
asked "Is there an interval going on at the moment?". If 
there isn't, this request gets stuck in the actual clock register 
(register7). If there is one going on, the decision is made 
as to if th is one is shorter than the current one. If it is, the 
shorter one gets stuck in the clock register, and all the 
other ~ntries in the queue are updated, based on the 
current interval. The clock doesn't interrupt every 1/60th 
of a second; it depends on the smallest interval that has 
been requested at this time. 
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Question: How big is the clock Queue? 

Answer: Th is wi II be a system generation variable. The 
~ning at the Fall Joint had 20 slots in it for the clock 
intervals. You can specify as large a queue as you like. 

Question: Can you use the system without adding the tele­
type multiplexer and 2nd teletype? 

Answer: It's possible that you won't have to add it. The 
reason we requested it is because we feel the API is a 
strong option in this system and that you would want an 
external device that was connected to API. The console 
teletype is only on the program interrupt, so that there is 
no way you could break into your program if you saw an 
error condition while you were running at API software 
levels. The console teletype would not get service. The 
LTl9 is an API device. 

Question: How do you determine if the program is I/O 
bound? 

Answer: The way a program becomes I/O bound is that 
JrrAl) or .WRITE operation actually runs into a .WAIT or 
another .READ or .WRITE to the same .DAT slot. It then 
becomes I/O bound. If the program user saw fit to use 
.WAITR, then he would keep control and go to the busy 
address of the • WAITR. So a Foreground program cou Id 
keep control completely. But this is a function of your 
installation. If you want to utilize the Background, you 
shouldn't keep control forever by using .WAITR in the 
Foreground • 

Question: Is the Foreground area actually fixed? 

Answer: No. The hardware memory protect option on the 
PDP-9 allow you to move the bound in 1 K decimal incre­
ments. What happens is that the Foreground job gets loaded 
first, and the rest of core is for the Background. In addition, 
there is a FCORE command which allows you to specify the 
amount of additional space (free core) you want to give to 
the Foreground job. 

Question: Can the Background/Foreground jobs communicate 
with one another? 

Answer: Yes. We have a core to core handler, which looks 
like any other I/O device. It accepts Monitor. READs and 
.WRITEs. One time you could be using this handler and 
another time DECtape. When a job requests a core to core 
transfer, the request won't get honored unless there is a 
complimenting request from the other job. The Foreground 
program could be passing live data (output) to the Back­
ground job as test data (input). 

Question: Please discuss operation procedures; that is, how 
do you get started? 

Answer: The Foreground job gets loaded first in Linking 
Loader fash ion • You can spec ify the program you want to 



load. It gets loaded. The protection registers get set. The 
Background Monitor comes in, which looks like the key­
board monitor as it is now. Now both jobs are running. If 
you hit Control C on the Background control teletype, the 
Background job ends and Background monitor comes in, 
just like under the keyboard monitor. If you hit Control C 
on the Foreground teletype, it does the same thing, also 
killing the Background job. If the Foreground job completed 
naturally I then the Foreground user has the option of hitting 
Control C to ki II the Background job, or let the Background 
job continue to completion. 

Question: What kind of restrictions are there for the real­
time loader? Will it load a main program and all its 
associated subroutines, or must the Foreground job be one 
program? 

Answer: It is essentially the Linking Loader as it stands now. 
Tt"WTITload whatever you specify in the command string, 
plus any I ibrary routines required. 

Question: Can you run Fortran as the Foreground job? 

Answer: You cannot compi Ie Fortran programs, but you can 
run the Fortran object time sytem. 

Question: Would a program be considered I/O bound if it 
requested a • WAIT for a software level? 

Answer: There is no • WAIT for the software levels. Only 
the real-time reads and writes or the. TIMER requests have 
software level specification. These will not give control to 
Background. Once the real-time. READs, • WRITEs, or 
• TIM ERs have been initiated, a .IDLE (equivalent of JM P.) 
can be given to give control to the Background. 

Question: Will the N-file handler allow multiple output 
files to one device? 

Answer: You can't have two output files open at the same 
time or. the same DECtape. The Background and Foreground 
jobs can both use the DECtape handler, but they can't 
share the same physical unit; this is to protect the Fore­
ground job. 

Question: Would you comment on the kind of environment 
this Monitor System was written for: 

Answer: It is mainly applicable to the real-time environ­
ment, where someone has a parti cu lar job wh ich takes up 
most of the computer's 24 hour day (e.g. laboratoryexper­
iments, process control, etc.). We are buying a customer 
two computers with Background/Foreground Monitor System. 
In addition to running his production type work, he can 
develop new things, which can then be put into the pro­
duction system as soon as they are checked out. 

Question: Can the system be run in Background only? 
325 

Answer: There will be monitor commands which specify 
Background on Iy or Foreground only. 

Question: Can there be simu Itaneous output files to the 
same unit on a DISK system::> 

Answer: Not on the interm DISK system, which is currently 
available. But on the final system, many output files can 
be opened at the same time. You will also be able to have 
files of the same name with different user ID codes. 

Question: Can Foreground programs be developed in the 
Backgrou nd? 

Answer: Yes. One of the main features of the system is 
that you can develop and test the Foreground programs in 
the Background (even using DDT). 

Question: What happens if a Foreground error occurs 
( e. g. mark track error on D EC tape) ') 

Answer: Foreground error gives the Foreground control 
teletype the option of letting the Background go to comple­
tion or hitting Control C, which aborts the Background 
job. 

Question: How is Foreground system loaded in core? 

Answer: The Foreground Linking Loader will load up 
rather than down. It will not use any core in the second 
bank until there is no area large enough left in the first 
bank, etc • 

Question: How are the Background I/O requests prevented 
from destroying the Foreground job by random writes into 
core? 

Answer: Any I/O handler that the Background job requires 
that isn't already in core will get brought in below the 
memory protect boundary. All handlers run with the 
memory protect off. The mon itor checks to see that the 
word counts and addresses on I/O requests are legal. It 
also prevents the Background job from modifying the 
handlers. We assume the handlers to be checked out, like 
the Foreground user program. 

Question: Is memory protect a complete protection? 

Answer: Our memory protect scheme is write only protect. 
You can read anywhere in core. The hardware is the com­
plete protection, but the software will allow you to use 
the index registers for both jobs and to reference for read 
only all areas of core. One application in this area would 
be a Background job, which was actually monitoring the 
Foreground system. (e.g. was checking registers and pro­
ducing on-the-f1y data for immediate analysis). 

Question: Are any auto index registers reserved for the 



system use? 

Answer: The Monitor System does not utilize the autoindex 
registers and neither do the I/O handlers. The only system 
program that requires an index register is DDT, and that 
allows you to specify before you set break points which 
index register it should use. The standard is 17. You can 
change it by opening the register AX$ and change the index 
register number. 

Question: Has the restriction which prohibits CAL's from 
being executed in the. TIMER completion subroutine been 
removed? 

Answer: The problems of re-entrancy, due to issuing of 
"'LA['iSfrom real-time subroutine~ have been solved in 
Background/Foreground System. A CAL can be issued 
from any: real-time routi ne. 

Question: What is the minimum size of the Background 
job? 

Answer: There is a minimum of 4K on the Background job. 
This will allow you to run the non-resident Monitor and to 
do things such as editing, loading, and running of very 
small programs. The recommended size for the Background 
is 6 to 8K. If you want to use the 4K for the Foreground 
job, at load time you specify no Background and then 
Foreground has the entire machine. 

Question: How can I tell if a device is bu Ik storage or 
not? 

Answer: That the buffer size is 3778 is the clue to the fact 
"illat"Cihandler is bulk storage. Any other buffer size 
assumes non-bu Ik storage. 

Question: I understand that the new version of the Monitor 
will allow assembl ies of the .ABS codes on DECtaoe. Is 
there any faci lity for loading from the DECtape? 

Answer: That feature was put in primarily to allow you to 
assemble system programs and load them with PATCH. We 
have not written a loader for these DECtape files. 

Question: Can I prevent the system from returning to the 
Mon itor on an error? 

Answer: The new system never returns directly to the 
Monitor except on a • EXIT. It will print the error and sit 
there. If you want to go back to the Monitor use Control C, 
or if you want to restart the program use Control P. 

Question: What is the maximum block length with the 
Editor in Block Mode? 

Answer: It is a function of I ine length and core size, so 
with an 8K machine and average size lines, stick to the 
standard (5510), 
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Question: How can I speed up load time of system and user 
programs? 

Answer: If you are not using handlers for devices, such as 
the drum, card reader, etc., you can speed up loading time 
by deleting unwanted handlers from the library. 

Question: !-low can I add symbols to DDT permanently? 

Answer: Get sources from Program Library and edit new 
symbols into DDT. Then reassemble DDT (requires 16K for 
reassembly) • 

Question: How can I assemble large. ABS programs? 

Answer: If the program is too large to assemble with MACRO 
W'ff'hl5RB. and PPB., then you can try the PDP-9L COMPACT 
assembler. 

Question: What work is being done on the DISK system? 

Answer: The DISK System is currently available as modified 
DECtape system, but work is being done to treat the entire 
DISK as a real disk. We are also looking into the possibility 
of using an area of the DISK for symbol table storage. 

Question: How can I find the starting address of a user 
program. 

Answer: Location. SCOM + 6 (1~68) contains the starting 
address of the main program. If you are using DDT it is 
contained in the register SA$. 

Question: How about optional deletion of the memory map 
by the linking loader? 

Answer: In the Background/Foreground System there is an 
option to delete the loader memory map and an option to 
list common allocation and/or global definitions. 

Question: Why do undefined globels cause a fatal error? 

Answer: If this is a problem in development of new programs, 
there is a way to get around it. Besides writing the initial 
call ing program, you can write another program which defines 
all the globals as dummy entries. Then in the loader command 
dummy string, specify that the dummy program be loaded 
after any of the real programs you are developing. 

Question: Can a program in the library request a • DAT slot 
by using a .IODEV? 

Answer: You have to make sure the program with the .IODEV 
is in the library before all the I/O handlers. In the Back­
ground/Foreground System we have gone to a three library 
structure: an I/O Library which contains nothing but I/O 
handlers; a Fortran Library which contains the Fortran Object 



Time System; and the standard user library. YOLI can have 
all three on the same system tape. Right now, in order to 
have a user I ibrary routine on a system tape, you- have to 
insert it into the system library which increases the length 
of time requ ired to load system programs. 

Question: Can I load parameter tapes for MACRO using 
an ASR33? 

Answer: The ASR33 does not have a select the reader lOT, 
so you can end lip losing characters because of the speed. 
The minute you read one character, the next character is 
selected and when you are running in the intern'pt system 
you could be interrupted from the Teletype handler long 
enough to get the next interrupt from the ASR. A solution 
would be to write on ASR handler which runs with the 
interrupt off. 

FOCAL FOR THE PDP-9 

Focal on the 9 takes the FOCAL language as it appears on 
the PDP-8 * with a few expanded features. The current 
version which we are hoping to release in ~Aarch will be a 
single user FOCAL with library facilities. The FOCAL 
language itself is a language similar to BASIC or JOSS. It 
is an on-line interactive laY1guage which allow most of the 
features which are available in FORTRAN • However, it is 
an interpeter rather than a compi lerr so it tends to be 
slower than the object code generated by FORTRAi'-I. 

Question: What are the limits on array dimensioning? 

Answer: There are no dimensions for an array. You do not 
have to dimension a variable in order to subscript. There 
are no array declarations. It is a completely flexible sub­
scripting. Storage for an array is allocated on an individ­
ual element basis. 

Question: How can I modify FOCAL Programs? 

Answer: There is a dynamic editing program built right in 
~AL. If you type in a line aY1d make a mistake, you 
can use the MODIFY command which allows you to change, 
add or delete individual characters within the line. 

Question: Is there a subroutine facility in FOCAL? 

Answer: Yes. The DO statement allow you to execute a 
single line or group of lines, which has been typed else­
where in you program, as a subroutine. 

* See FOCAL PROGRAMMING MANUAL (DEC-¢8-AJAC­
D) or INTRODUCTION TO PROGRAMMIi'-IG (Small Com­
puter Handbook Series) Chapter 9 for description of the 
FOCAL language. 

Question: Can I define subroutines as part of FOCAL? 

Answer: External subroutines can be added as functions to 
FocAL for the PDP-9. The names of the new llser functions 
are built into a user defined function table, which is loaded 
with FOCAL. A dummy function table will be sl,pplied for 
those users not desiring external functions. 

Question: Can the FOCAL functions be defined in FOCAL? 

Answer: That is something else we are looking into, hut 
there are no definite plans. 

Question: Does FOCAL take advantage of EAE? 

Answer: The version which will be released from the Program 
Library will use the standard PDP-9 arithmetic library. So 
if you have EAE, in the library as a resu It of System Genera­
tion, FOCAL wi II automatically use it. 

Question: How can I save FOCAL Programs? 

Answer: There are library commands which allows the 
FocAL programs to be created, stored, and loaded from 
bulk storage or paper tape as named files. FOCAL programs 
can also be prepared off line on a teletype or prepared on 
line using PIP or the EDITOR. These files can have calls to 
other files within themselves so that you can actually chain 
FOCAL programs and let one call another or just call part of 
another. 

Question: !-low is FOCAL laaded by the system? 

Answer: FOCAL is a user program which is loaded using the 
Linking Loader. It will make use of all available core which 
is left after loading for text, variable, and push-down list 
storage. 

Question: How about multi-user FOCAL? 

Answer: This is what we had in the Foreground system at the 
F"J"IT":"" With the Background/Foreground System, we will be 
offering a multi-user FOCAL package, which will allow from 
two to eight users. 

Question: How can I get a single paper tape of F0CAL and 
thereby not have to use the Linking Loader each time I want 
to use FOCAL? 
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Answer: There is a utility program in the new paper tape 
system which will allow you to link load any program with its 
I/O handlers and punch it out as a standard .ABS tape. 

Question: Can you read in the FOCAL sOllrce program from 
the reader and sti" have te I etype i npu t? 

Answer: The way the FOCAL has been set up on the PDP-9 
is that it assumes -2 and -3, which are the standard teletype 



.DAT slots, as your nonnal FOCAL control teletype. It 
then uses • OAT slots 3 as input and 5 for output. So you 
can assign any device to input and output. 

Question: Can I have FOCAL output on the line printer 
rather than teletype? 

Answer: One possible extension of the language would be 
to allow you to change the ASK device or the TYPE device 
and thereby make FOCAL really device independent. This 
feature may be added at a later date. 

Question: How does FOCAL accomplish mix mode arith­
metic? 

Answer: All numbers are converted into floating point 
fonnat. That is why you can use mixed modes. It just 
assumes a decimal point. 
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ABSTRACT 

Most remote card reader/printer terminals (whether 
computer or wired logic controlled) utilize the 
synchronous communication method of data trans­
mission. The University has developed a controller 
for use with the PDP-IO in order that it may provide 
remote computing facilities. This controller places 
minimum requirements on PDP-IO software/hardware 
while communicating at 2400 bits per second. Use is 
made of teletype receiver/transmitter modules (DEC 
W706, W707) as a front end to a PDP-IO data line 
scanner communication line. Worst case I/O service 
requirement is approximately one character time as 
opposed to the data line scanner requirement of 1.S 
bit times. 

OVERVIEW OF THE FACILITY 

Introduction 

Figure 1 illustrates the UWO 
Computing Facility (as of December, 1968). 
The centre is involved in providing 
computing facilities for research and 
teaching in most disiplines. Typical job 
loads are from 3000-6QOO per month. A 
GE-llS is presently acting as a remote 
card reader/printer terminal (RPT) proto­
type on a local telephone loop. It has 
been in operation for about one month 
while developing the necessary software. 

The PDP-IO section of the facility 
will be expanded in early 1969 by the 
addition of :-

1. A further 8 data line scanner 
ports. 

2. An additional 32K of 1.6 micro­
sec core. 

3. Another RD-IO disk and synchron­
izer. 
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Plans are in hand to have three RPT'S 
operational by early February 1969. These 
will be 2 - GE-llS's, 1 - UNIVAC 9200. 

COMMUNICATION PRINCIPLES 

Two methods of communication are 
generally used when it is necessary to 
transfer information between digital 
computers over telephone lines. 

1. Asynchronous 
2. Synchronous 

Asynchronous 

Essentially each character transmitted 
contains information that' will allow the 
receiver to synchronize on that character 
without reference to any other. Figure 2 
(a) shows a typical asynchronous trans­
mission sequence. Most terminals used on 
the PDP-IO are teletypes, they utilize 
asynchronous transmission at 110 bits per 
second. 



Synchronous 

In synchronous communication a contin­
uous bit stream is used to transmit a 
message. The initial three or four 
characters transmitted allow the receiver 
to lock onto the bit stream. Figure 2(b) 
illustrates 2 characters transmitted in 
synchronous system. Additionally at the 
end of a message a special character is 
appended to indicate to the receiver that 
it should go to an examine mode. In this 
mode the receiver is again looking for the 
beginning of a message. 

Comparison of the Systems 

Synchronous is inherently faster since 
stop/start bits are not required, it tends 
not to be used at low bit rates because 
more complicated and hence expensive hard­
ware is required.· A loss of synchronism 
may cause only one character to be in error 
for the asynchronous system. In a synchron­
ous system however, this may destroy the 
remainder of the message. 

SIMPLIFIED VIEW OF THE CONTROLLER 

Figure 3 shows the basic data flow 
paths in the controller. It is worthwhile 
noting at this point that although the 
system was developed with a view to provid­
ing a synchronous communication facility it 
may be used wherever conversion from 8 bit 
synchronous to 11 bit asynchronous (and 
vice versa) is required. 

The controller uses one communication 
port on the PDP-IO Data Line Scanner (DC-
10). This port is a bidirectional, full 
duplex asynchronous communication device 
with a maximum rate of lOOK bits per second. 
Communication with the data set occurs at 
2400 bits per second. 

The 11 bit serial asynchronous output 
of the DC-10 is received by an unmodified 
W706 receiver. The 8 data bits contained 
in that stream are parallel transferred to 
a modified W707 for synchronous transmiss­
ion. Synchronous data is received in a 
modified W706. After 8 bits have been 
received they are parallel shifted to an 
unmodified W707 for asynchronous transmiss­
ion to the DC-IO. The W707 performs the 
functions of bit rate change and addition 
of start and stop bits to the 8 bit data 
character. 

The controller is a full duplex device. 
Due to the extra registers outside the DC-
10 more time is allowed for the monitor to 
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service peak I/O demands. Since the device 
is interfaced to the I/O bus by the Dc-10 
minimal changes are necessary to the 
monitor I/O service routines. 

DETAILED DESCRIPTION OF THE CONTROLLER 

Figure 4 shows more details of the 
controller. W706A, W707A are the asyn­
chronous unmodified modules. W707S, W706S 
are the synchronous modified modules. The 
DC-IO is an open loop device, that is it 
does not rely on demand response control. 
If it's output register (W707) is empty, 
that fact is indicated to the PDP-IO and 
another character will be sent to the 
register. This will be serially output as 
soon as synchronism (with the scanner cloc~ 
is achieved. The controller must only 
allow the DC-IO to transmit if it requires 
another character. The "WAIT" signal 
achieves this requirement. It only allows 
the DC-IO to transmit if the W706A is 
empty. The asynchronous section of the 
controller i.e. W708, W706A, W707A is 
identical in components and logical operat­
ion to one port of the DC-IO. The W708 
module organizes the 800KHZ scanner clock 
for both transmission and reception of 
asynchronous data. 

Output Sequence 

Output is initiated by a sequence of 
synchronizing characters, these are under 
program control. Typically four 'SYNC's' 
are sent. On initiation of transmission, 
no data is contained in the controller. 
Thus the WAIT signal will allow transmiss­
ion from the DC-IO. When the first 'SYNC' 
character is received by the W706A, 
(contents of this register are continuously 
decoded), the command 'REQUEST TO SEND' is 
issued to the data set. This instructs the 
data set to go into transmit mode (in a 
half duplex system the line will turn 
around, typical turn around time 200m sec. 
Minimum 8 msecs). The data set responds 
with 'CLEAR TO SEND' when it is ready. 

At this time the SYNC character 
contained in the W706A is transferred in 
parallel to the W707S for synchronous 
transmission to the data set. While data 
was in the W706A the WAIT signal inhibited 
transmission from the DC-IO. Once the SYNC 
character is loaded to the W707S another 
character may be sent from the DC-IO. It 
in turn will request a further character 
from the PDP-IO as appropriate. When the 
first SYNC character has been transmitted, 
the next SYNC will be loaded to the W707S. 
After the first ~YNC character all other 



SYNC's are treated in an identical manner 
to the data characters that follow SYNC. 
Data characters will be appended to the 
synchronous bit stream after all the SYNC 
characters have been transmitted. Some of 
these characters may have program control 
significance. 

The last character of the message 
must be an END OF MESSAGE CHARACTER (EOM). 
This is used by the remote receiver to 
change it to a search for SYNC character 
mode. The REQUEST TO SEND signal is held 
for the full duration of transmission. 
The character END OF TRANSMISSION (EOT) is 
used by the controller to turn of the 
REQUEST TO SEND command. This is 
accomplished by a decoder on the W706A out­
put. EOT is only issued by the program if 
it is desired to turn off the data set 
carrier. In a half duplex system it is 
advantageous not to issue EOT unless 
necessary since this will save line turn­
around delays. 

Input Sequence 

The normal state for input is that of 
searching for a SYNC character. The out­
put of the W706S is decoded continuously. 
Shifting of the received signal taking 
place as soon as a carrier is detected. 
As soon as one SYNC is detected the 
receiver is considered locked. The SYNC 
character is transferred in parallel to the 
W707A for serial transmission at lOOK bits 
per second to the DC-IO. It is assumed 
that the DC-IO is always ready to receive 
a character. 

All following characters are trans­
ferred as appropriate. The EOM character 
is detected in order to take the receiver 
out of lock. When this occurrs no further 
transfers take place between the controller 
and the DC-IO until another SYNC character 
is detected. 

Figures 5 and 6 show the actual logic 
for the controller. Figure 5 is the out­
put logic, figure 7 the input. 

331 

Conclusion 

In conclusion I would like to summar­
ize the reasons for this particular implem­
entation. 

1. the converter had to be developed 
quickly. The time from conception 
of the idea to a working system was 
about four weeks. Hardware was 
chosen that was available quickly. 

2. changes to the PDP-IO hardware and 
software were to be kept to a 
minimum. 

3. physical size and complexity to be 
minimized. 

I consider that this goal was achiev­
ed. Other implementations are possible as 
are systems with additional features. 
Future designs may encompass some of these 
features. 
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RAPID PROGRAM GENERATION PROGRAM 

William F. Weiher 
Stanford University Artificial Intelligence Laboratory 

and 

Richard P. Gruen 
Digital Equipment Corporation 

Palo Alto, California 

ABSTRACT 

Rapid Program Generation on the PDP-6/10 has been made possible by the 
addition of five commands to the DEC Time-Sharing Monitor. These commands 
(EXECUTE, DEBUG, COMPILE, LOAD, and CREF) allow the time-sharing user 
to specify the names of the programs which he wishes to use and then delegate 
to the Rapid Program Generation System the task of compiling, assembling, and 
loading these programs, as needed, without requiring the user to type CUSP 
commands. The implementation makes use of an RPG cusp and some small files 
on the disk; only nine additional instructions have been added to the Time­
Sharing Monitor. 

INTRODUCT ION AND EXAMPLE 

Several new commands have been added to the DEC PDP-6/10 
Time-Sharing System to facilitate Rapid Program Generation. 
In the ordinary case a time-sharing user need type only the 
EXECUTE command, followed by a list of the files with which 
he would I ike to work. The Rapid Program Generation Sys­
tem (RPG) translates to machine language those of the user IS 

programs which need translation, loads all of the programs 
into core, and starts execution of the object program. Thus 
the ordinary time-sharing user need not be concerned with 
the var ious and sundry command lists requ ired by each of the 
individual translators which he uses. 

· create main. f4 
*i1~~ 
~~1~~ 
~~~~ 69 
~~3~~ 
~~4~~ $ 
*e 
EXIT 

1'C 
· create sub 1 . f4 

*i1~~ 
~~1,0,0 
~,0~~ 
,0,03~,0 1,05 
,0~4,0~ $ 
*e 
EXIT 
tc 
· execute main, sub 1 

type 69 
format (' this is the main program l

) 

call sub1 

subroutine subr 
type 1~5 
format (' this is sub 11) 
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An example will help to illustrate the use of the new com­
mands. Suppose a time-sharing user wanted to work with 
a main program and a subroutine, both in the FORTRAN 
language. He might proceed as follows: 

;create a disk file 

;begin inserting on line 1,0,0 
;statements in FORTRAN 

;ALT -MODE ends the insert 
;e ends the edit and ex its 

;control has returned to monitor 
; use another disk fi Ie 
;insert starting at line 1,0,0 
;FORTRAN subroutine 

;ALT -MODE ends the insert 
;end and exit to monitor 

;request RPG execution 



MAIN. ERRORS DETECTED: X1 
SUBR ERRORS DETECTED: X1 
LOADING 
?X1X1X1X1X11 UNDEFINED GLOBALS 
? SUBl X1X1X1152 
LOADER 5K CORE 
? EXECUTION DELETED 
EXIT 
tC 
.edit 

subroutine sub 1 

SUBl ERRORS DETECTED: X1 

LOADING 
LOADER 5K CORE 
THIS IS THE MAIN PROGRAM 
THIS IS SUBl 
EXIT 

'C 

COMMAND DESCRIPTIONS 

COMPILE command 

COMPILE takes a list of file names as its argument. It is 
assumed that a II of the fi les are on the disk. Each fi Ie is 
processed by, the appropriate processor if necessary. It is 
considered necessary to process a file if no .RELfile of the 
same name exists or if the. REL file was created before the 
last time the text file was edited. COMPILE determines 
which processor is appropriate by examining the extension 
of the fi Ie. The following is a table showing which processor 
will be used for various extensions: 

.MAC 

.FAI 

.F4 

.REL 

MACRO 
FAIL {an assembler developed at Stanford} 
FORTRAN 
No processing will be done 

If the fi Ie has the blank extension, COMPILE wi II use which­
ever processor is considered IIstandard. II The IIstandard II 
processor starts out as FORTRAN and may be changed by use 
of the various switches (see below). It is not necessary to 
indicate the extension of a file to COMPILE. If only the file 
name is given it wi II first look to see if there is a fi Ie of that 
name with no extension. If there is not, it wi II look for one 
with the extension .FAI then .MAC then .F4 then .REL. 
It is on Iy if none of these are found that it wi II use the 
IIstandard II processor. 

As an example, suppose you wished to compile the files 
FOO.FAI with FAIL, GARP.FAI with FAIL and BAl.F4 
with FORTRAN. Any of the following command strings would 
be appropriate: 

;FORTRAN reports its progress 

;there is no subroutine named sub 1 
;this includes the space for loader 
; no execut ion 

;user now asks to edit sub 1 . f4 
;he need not mention the name, since 
;this is the file he edited last 
;replace line lX1X1 

;user asks to go to his program 
;this ends the edit {like e command} 
;and then does the last command typed 
ito the RPG system 
ionly the subroutine is recompiled, 
;since only it has been edited 
;both main and sub 1 are loaded 

;execution begins 

;execution ends 
;and so does this example 

COMPILE F90. FAil GARP. FAI, BA~. F4 
COMPILE FOO,GARP, BAZ 
COMPILE FOO, GARP. FAI, BAZ 

LOAD command 

LOAD operates as COMPILE, and then loads the specified 
files. 

EXECUTE command 

EXECUTE operates as load, and then starts execution of the 
ob je ct program. 

DEBUG command 

DEBUG operates as LOAD, but also loads DDT (the DEC 
Debugging Tape). It then starts DDT rather than the object 
program. 

CREF command 

Each of the above commands generates information as to which 
cross-reference listings have been generated since the last 
time CREF was used. The command CREF prints {on device 
LPT:} all cross-reference listings generated since the last 
time this command was used. In some systems, this command 
is CROSS. 

CROSS command 

Same as CREF command. 

EDIT command 

Takes a single file name. Brings EDITlX1 into core, and 
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CREATE command 

Operates like EDIT, except that it first initializes a disk 
file with the given name. CREATE should be used to creat-e 
a file wh ich has never before been used. 

TECO command 

Operates as EDIT, but brings in TECO rather than ED ITl,0. 

MAKE command 

Operates as CREATE, but uses TECO rather than EDIT1,0. 

TYPE command 

Types the fi Ie {whose name is the argument of the command 
on devi ce TTY:. 

LIST command 

Lists the fi Ie whose name is the argument of the command on 
device LPT: 

DE LET E command 

Accepts a list of file names, separated by commas, and 
deletes those files from the disk. Wild names or extension 
may be specified by asterisks {*}; for example DELETE * .MAC 
would delete all files with the extension .MAC from the 
disk. 

RENAME command 

Rename accepts a list of file name pairs, with the elements 
of a pair separated by equals (=) and the pairs separated by 
commas. The file having the second name of each pair is 
renamed to have the first name of each pair. For example, 
RENAME NEW1= OLD1, NEW2=OLD2 would rename OLD1 
to be NEWl and rename OLD2 to be NEW2. 

DIRECTORY command 

Lists on device TTY: the names and creation dates of all fi les 
on the user's disk. area. Ifan argument is given, that argu­
ment is taken as the name of the device whose directory is 
desired (rather than DS K:). 

NOTES ON GENERAL SYNTAX 

Spaces, tabs, and form feeds are completely ignored in all 
commands. Carriage returns and line feeds are ignored if 
they are followed by a comma, and are treate-d as commas 
otherwise. Blank lines are ignored completely. Asemi-· 
colon may be used to insert a comment; all characters between 
the semi-colon and the following linefeed (inclusive) are 

ignored. 

NOTES ON FILE DESCRIPTORS 

Fi les have been shown in most examples as just a name, per­
haps with an extension. In general files are described as: 

DEV:NAME. EXTCPRJ, PRc;J 
where DEV: is a device name (followed by a colon; assumed as 
DSK: if absent) 

Name is the name of the fi Ie 
EXT is the filename extension, preceeded by a period 
tpRJ, PRGlis the project and programmer pair describing some 
disk area other than that of the current user. For example, 
execute DTA4:PROG 1, PROG2 would compile and execute 
two files from DTA4: {since device names are sticky}. 
Similarly, LOADFOO. F4[1 >NFWl would compile and load the 
fi Ie F 00. F4 from the disk area of 1, WFW . Whether or not 
re-compilation was needed would have been determined from 
the dafe and time (if extent) of the file FOO.REL in the 
current disk area. 

SWITCHES TO COMPILE 

Switches. to COMPILE are preceeded by a "/" and are 
multiple character rather than single character. They may 
appear either before or after a file name (i .e. 

COMPILE FOO/MACRO, BA;;! 
COMPILE /MACRO FOO, BA~ 

If a switch appears after a file name (first example) it 
applies only to that file, if it appears before a file name it 
changes the "standard mode II of the compi Ie command for 
that file and all following files {until changed by another 
switch}. In the above examples if neither FOO nor BA;;! 
had an extension then in the first example FOO would be 
processed by MACRO and BA;;! by FORTRAN. In the second 
example both FOO and BA;;! would be processed by ty'ACRO. 

All switches may be abbreviated, requiring only enough 
characters to distinguish them from all other switches. The 
switches currently available are: 

FORTRAN set standard mode to FORTRAN (originally set 

MACRO 
M 
FAIL 
F 

LIST 
L 
NOLIST 
N 
REL 
CREF 

to FORTRAN) 
set standard mode to MACRO 
same as above 
set standard mode to FAIL. 
same as FORTRAN (the M and F switches are to 
allow frequently used commands to be shortened 
without confusion) 
create listing files (. LST) for all files processed 
same as above 
turn off I isting (original setting is NOLlST) 
same as above 
do not process fi Ie at a II 
create cross-reference fi les (. LST) for a II fi les 
processed 

C same as above 
LIBRARY do not process and if loading (see LOAD) do a 

I ibrary search 
NOLIBRARY turn off library mode 
COMPILE process even if dates indicate it is not needed 
NOCOMPILE turn off COMPILE mode 
MAP if loading create a loader map at this point, 

output file is MAP.MAP There is no difference 
in placing this switch before rather than after 
a file name. 
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EXAMPLE: Suppose FOOl, F002, and F003 were to be 
processed by MACRO and GARP1, GARP2, and GARP3 by 
FORTRAN. Also suppose that listings of F002,GARPl and 
GARP2 and a cref of F003 were desired. In addition suppose 
a I ibrary search of the hand-eye I ibrary were necessary. The 
following command string would accomplish this: 

COMPILE /MACRO F001,/LiST F002, F003/C,/FORT 
GARP1, GARP2, GARP3/N, HELlBC1,3J/L 

MULTIPLE FILES 

It is sometimes necessary to indicate to the processor that the 
program to be processed is contained in the concatenation of 
several files. For example consider the command string 

APRSER+-S,APRSER 
given to macrox. Such constructions are allowed by COMPILE 
us ing the "+ II feature, to get the same effect as above the 
proper command to COMPILE is 

COMPILE S+APRSER/MACRO 

A maximum of 7 fi les may be combined in this way. The name 
given to the binary (. REL) and listing (. LST) files wi II be that 
of the last program in the string (thus APRSER in the above 
example). It is possible to give the binary and listing files 
some other name by the use of the "= II feature. Suppose it 
were desired to give the name FOO to the binary produced 
above. Either of the following would work: 

COMPILE FOO=S+APRSER/MACRO 
COMPILE S+FOO=APRSER/MACRO 

SWITCHES TO LOADER 

It is possible to pass switches to the loader (assuming one of 
LOAD, EXECUTE, or DEBUG is being used). For example 
to pass the liS II switch to the loader, one wou Id use %S. This 
construction may appear either before or after a file name and 
the place of appearance is preserved in the commands given 
to the loader. Thus the command LOAD %SFOO would give 
the command string /SFOO to the loader while LOAD FOO%S 
would give FOO/S to the loader. The 11%11 take the next 
letter following it to pass to the loader. There is one excep­
tion to this. If the character following the 11%11 is a digit, 
it and all the digits following it and the letter following them 
will be taken. Thus to pass the string /6~~~0 to the loader 
use %6~~~0. 

SWITCHES TO PROCESSORS 

Switches may also be passed to processors by enclosing them 
in II() II. Let #1, #2, and #3 each denote a string of letters 
and digits. The construction (#1) will pass the string #~ to 
the source portion of the processor. (#1, #2) wi II pass #1 
the binary portion and #2 to the source and (#1, #2, #3) will 
pass #1 to binary, #2 to list and #3 to source. 

EXAMPLE : COMPILE FOO=GARP.MAC/L1ST(,A,Q) 
+GARP2(B, C)+GARP3(G) 
This wi II produce the macro command string: 
FOO(B), FOO(A}t-GARP(Q), GARP2(C), GARP3(G) 

The "( ) II construction must follow the file name. An error 
wi II resu It if an attempt is made to specify more than one 
set of binary or I isting switches for any given output fi Ie or 
if the "( )" construction is used more than once after any 
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PARAMETER FILES 

It is sometimes useful to assemble several programs with the 
same set of parameters such as accumu lator assignments, etc. 
This results in commands of the form 

LOAD S+APRSER, S+SCNSER, S+DISSER 

Such commands may be simplified by using the following format 
LOAD S+<APRSER, SCNSER, DISSER> 

Note that the constructions 
LOAD <FOO, BA~GARP 
LOAD GARP+<FOO, BA~>+FOOBAR 

are not perm i tted . 

COMMAND FILES 

At any point in the command string, the construction 
@Filename may occur. The@fileflame is replaced by the entire 
contents of the fi Ie named. This construction may be nested 
to a depth of 9 (this number may change). An error message 
wi II be given if deeper nest i ng occurs. 

REMEMBERED COMMANDS 

The last command given is remembered by the program so that 
the sequence of commands 

COMPILE FOO 
DEBUG FOO 

may be replaced by 
COMPILE FOO 
DEBUG 

HOW COMPILE WORKS 

Compile works by generating files containing command for 
the various processors. These have the following names 

QQMACR.RPG 
QQFAIL.RPG 
QQFORT.RPG 
QQCREF.RPG 
QQLOAD.RPG 
QQPIP.RPG 
QQSYCM.RPG 
QQSYED.RPG 

MACRO 
FAIL 
FORTRAN 
CREF 
LOADER 
PIP 
To remember last command given 
To remember last fi Ie edited. 

ERRORS 

TOO MANY SWITCHES too many switches for the internal 
storage have been given for either the 
loader or a processor 

TOO MANY NAMES too many names given in the + 
construction 

DISK NOT ABAILABLE something is probably wrong 

OUT PUT ERR OR 

INPUT ERROR 

with the system 

an output error on the disk which writinga 
command fi Ie 

an input error from disk whi Ie reading a 
file indicated by an @ 

PROCESSOR CONFLICT COfMPILE does not .kn.ow what 
processor 0 use, can resu rf trom a 
command string line 
COMPILE FOO.MAC+GARP.FAI 



NOT ENOUGH CORE there is not enough core for buffers 
available 

SYNT AX ERROR something is wrong with your syntax 

NESTING TOO DEEP the depth of permissible use of 
@,as been exceeded 

UNRECOGNIZABLE SWITCH a switch V type) has been 
given which COMPILE does not recognize, try 
typing more of the full name of the switch 

NO SUCH FILE - filename this file could not be found 

FILE IN USE OR PROTECTED - filename COMPILE could 
not write one of the QQ files 

Any error will cause COMPILE to call exit 
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A FLYING SPOT SCANNER ON-LINE TO A PDP-6 

I. G. Nicholls and C. L. Jarvis 
Computing Centre 

The University of Western Australia 

ABSTRACT 

The interest in image processing shown by several research groups within the 
University of Western Australia has resulted in a standard Fernseh flying 
spot scanner being linked on-line to the PDP-6 within the time snaring system. 

The paper reports the interface design and control in view of the restraints 
imposed by the existing PDP-6 configuration and the needs of the research 
groups involved. 

INTRODUCTION 

The acquisition and interpretation of data in the form of 
photographic images is becoming increasingly important in 
many fields of research. In the biological sciences scanning 
microscopes on-line to small computers are opening up the 
way to computer interrogation and quantitative measurement 
of images of many kinds. Such integrated special purpose 
systems are commonplace among the bigger research institu­
tions. Yet the cost of these systems, whi Ie not great, is 
often beyond the resources of smaller research teams where 
the decision of what system to implement or build is always 
governed by the availability of funds and the nature of 
existing equipment. This has been the case at the University 
of Western Austral ia for a number of workers interested in 
image processing. 

The flying spot scanner belonging to the Electrical Engineering 
School has been coupled to the University PDP-6 to meet the 
combined needs of these groups for a picture digitizer. 

This paper briefly describes the on-line linkage and discusses 
the resulting design in view of the user's needs and the sys­
tem restra i nts. 

DESCRIPTION OF EQUIPMENT 

The Computing System 

The University's computing system is an integrated one based 
on a time-shared 32K PDP-6 computer which has had exten­
sive additions made to it by the rea I time group. These 
additions include: 

1. A disc sub-system based on CDC 854 diskpacs upgraded 
to 12 million bytes and driven by a PDP-8. 

I 

2. A unit to communicate with up to 16 remote computers. 

3. Six real time on-line experiments which unless hardware 
is common may run simultaneously in the system. 

Flying Spot Scanner 

The FSS is a standard Fernseh whi ch accepts sl ides with a 
21 x 28 mm picture size and densities between 0.2 and 2.2. 
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Vertically these are made up of two interlaced fields of 312 
and 313 lines. Time to scan one pitcure is 1/25 second and 
at a sample rate of 14 Mc/s approximately 700 nyquist ele­
ments are sampled in a horizontal direction. For the 
Australian standard of 10 Mc/s 500 elements are possible. 
The current quantizer built by the Electrical Engineering 
School has 16 adjustable quantization level settings. 

DESIGN PHILOSOPHY 

As the link will be used by a number of research groups with 
varying goals, a flexible system is required. To achieve this 
it has been decided to have the computer send to the FSS an 
(x, y) coordinate and have the FSS return the quantized op­
tical density at that point, together with those of the next 
eight points (36 bits of information). 

This allows the user to either: 

1. Generate a matrix of points to cover the whole picture. 

2. Select a portion of the picture for digitization. 

3. Or generate (x,y) requests conditional on the data 
acqu ired to date. 

The immediate requirements of other devices and .the unpre­
dictable nature of other users within the system make it 
desirable to design an asynchronous link. While it is true 
the computer is far from saturated, the number of real time 
devices already in the system and the demands of the swapping 
system argue further for making the FSS an on-line asyn­
chronous linkage. 

The synchronous nature of the device has been bypassed by 
having the scanner's response to a point request wait until 
it next passes that point in its synchronous scan. It then 
collects the generated levels of the required 9 points and 
transmits them to the computer. 

Two other features are included in the design. A manual 
interrupt button that allows the user to cease data collection 
halfway through a picture and regain program control together 
with a "resolution switch" that allows halving of the sample 
rate in each direction. 



SCAN TIME CONSIDERATIONS 

Assuming that the user requests consecutive points he would 
collect data for 9 points once per scan taking 32.4 minutes 
to collect a fu II picture. It is obvious that if estimates can 
be made of the response time of the PDP-6 to service interrupts 
within anyone configuration, then the time to scan one pic­
ture can be appreciably reduced by ordering the coordinate 
requests in a systematic manner to optimize on the movement 
of the sampl ing spot. For example, if the user anticipated 
that the computer wou Id take on an average 500 IJsec. per 
sampling period (and was correct in this assumption) then 
allowed for this in generating the coordinates, it follows the 
computer would collect 8 amounts of data or 72 points per 
seen, taking 4.05 minutes to collect a full picture or lust 
over 1 minute at half resolution. 

HARDWARE 

The control register of the interface with the PDP-6 contains 
3 flip flops for the P.1. channel number, a done flag, a busy 
flag, a manual interrupt flag and an error flag which is set by 
the FSS if the (x, y) coordinates requested are out of range. 
A maintenance flag is also available so that the x and y co­
ordinate flip flops may be read back instead of data. 

The data register is used to buffer 10 bits for the x coordinate 
and 10 bits for the y coordinate. They are wired to come 
from different halves of the I/o bus so as to allow the use of 
the half word instructions in setting them up. 

SOFTWARE 

The FSS service routine added to the time shared monitor 
accepts a buffer of (x, y) coordinates and once started uses a 
BLKI followed by a BLKO to accept data and send out the 
next request coordinate pair. This cuts monitor overheads on 
the normal INPUT I OUTPUT UUO's to a minimum. 

The buffer length is set at 100 words and a 1 K user program 
can be used for straight data collection. To avoid setting in 
the middle of core for long periods while the device is active 
{shuffling being inhibited)1the job can be made a real time job 
by using the REALT UUO. This prevents the job from being 
swapped out of and into core, resu lting in it always being 
resident in lower core with all other real time jobs. 

COMMENTS 

The total cost of the linkage including additions to the FSS 
but excluding labour is under $2,500. It should be noted, 
however, that the quantizer unit at the FSS had been built 
by the Electrical Engineering School as part of another project 
and is not included in this figure. 

This is the second on-line device at our installation where 
the I/o service routine handles inputs to, mixed with out­
puts from the same buffer and it is clear that a REPLACE UUO 
would be useful. As well as being more meaningful, it could 
save the user fiddling with the lOUSE bit to keep buffers in 
order. 
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