
A High Performance
Interactive Programming ,.
Environment for the .
Apple :Macintosh® Computer

Level One

CREATIVE lOLUTIOHS
Problem Solving for Business and Computer Applications

®

User and
Reference Manual

Copyright 1984

Creative So1utions;, Inc.

All Rights Reserved

80th this physical document and the right to use it is owned
exclusiyely by Creati¥e Solutions. Inc. Use of this document by
others is licensed by CreatiYe Solutions under the terms of the
t1acFORTH Software License Agreement. This document may not be
reproduced in any form either in part or in whole without the
express written consent of CreatiYe Solutions. Inc.

Acknowledgments:

Portions of this document are derived and sometimes directly copied from the
documentation provided to the authors by Apple Computer, Inc. This has been
done to ensure technical accuracy, and 1S used with their permission.

This document was entirely prepared and produced on a MacintoshTN under
MacWriteTN. All output was produced on an ImagewriterTN printer.

MecFORTH wes designed by Don, Olive, end steve; implemented by Don and
Daye; and documented by Daye, Don, Richard, Chris,and Tara.

Version 1.0 April 1984
Version 1.1 June 1984
Version 1.2 October 1984

MacFORTH is a trademark of Creative S01utions, Inc.

MaCintosh, MacWnte, end Imegewr1ter ere tredemerks of Apple Computer, Inc.

Introduction Page i - 2 August 27, 1964

Creativity is more than just being different ...
Anybody can play weird -- that"s easy.

What's hard is to be as simple as Bach.
Making the simple complicated is commonplace ...
Making the complicated simple

-- awesomely simple;

That"s creativi t y .

-- Charles Mingus, jazz musician (1922-1919)

The MacFORTH project is dedicated to Alexander Ramsay.
and proudly bears the Ramsay tartan on its cover. In his
90th year, he is II continuing source of inspiration for the
road ahead.

Introduction Page i - 3 August 27, 1984

Introduction Page j - 4 August 27, 1964

Tab 1 e of Contents

Dedication

Table Of Contents

I ntroduct ion

Users Sui de:

Chapter 1: Installat10n

Chapter 2: Going FORTH

Ch8pter 3: Program Editing

Chapter 4 Getting Started

Chapter 5: Getting Results

Chapter 6: Graphic Results

Ref erence Sui de:

Chapter 7: Menus

Chapter 8: Windows/Eyents

Chapter 9: File System

Chapter 1 0: Pri nt i ng/Seri al I nten ace

Chapter 11: Advanced Topics

Chapter 12: Error Handling

Chapter 13: Glossary

Index

Appendi x: ASC II Chart

Introduction Page i - 5

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

August 271 1984 Index

Introduction

To

MacFORTH-rM

WELCOME I We are about to make what you do with a computer more fun.
We'll do it by making you more productive with results that are easier to
attain. The Apple MacintoshTM (or more fondly 'Mac') represents a revolution in
the way that people interface to computers. Few computer users who have
experienced the Mac's graphics, windows, menus, or mouse will choose to go
back to the same old alpha screen and keyboard interface.

In order to provide a consistent user interface across all applications, Apple
has included a large amount of software features in read-only memory (ROM)
built into every Macintosh. MacFORTH has been specifically tailored to put
these functions at your disposal.

Regardless of your prior programming experience, you will find writing
programs for the Macintosh to be a new and exciting experience. The
objective of this manual and the MacFORTH product is to equip you with the
necessary tools to write programs which fits comfortably within the
Macintosh environment.

Learning how to effectively use the Macintosh is in many ways similar to
learning FORTH.· Each is based on extensions to a small set of simple
concepts. Each requires you to re-orient your approach to computer related
applications, and both provide better results with less effort.

In order to learn how to use the Macintosh, you will first learn how to write
programs in MacFORTH, and then how to use such programs to interface to the
Macintosh.

Introduction Page i - 6 August 301 1984

We hflYe lncluded 6 Computer Alded Instruction Course c611ed "Going FORTH".
The course is designed to start novice FORTH users and programmers solving
problems with MacFORTH. Even if you are an old hand at FORTH} go through the
course to review some of the basics of MacFORTH and the Macintosh.

Creative S01utions has been producing 68000 based FORTH systems since
1979. The MacFORTH product is a derivative of our Multi-FORTH"" product
line, speciflcally tuned to take maximum advantage of the Macintosh features
and faCilities.

CSI 68000 FORTH Products have been used to solve problems across a wide
spectrum of applications:

Airborne Radar Systems
AT&. T CircuH Analyzers
General Accounting Systems
Video Games
Nuclear Power Plant Pipe Testers
Spread Sheet Programs
Data Base Managers
Hospital Operating Room Patient Monitoring
and some of the world's largest ROBOTS

Introduction Page 1 - 7 August 30} 1984

The "acFORTH product line is divided into three areas:

level I

For the hobbyist or those just getting started with the Macintosh. The
Leyel 1 product has been designed to put the tremendous power of the
Macintosh at your fingertips, without your haying to know a lot about
programming or computers. This and all levels of the MacFORTH
product line provide stand-alone programming capabilities with the
Mac, with trace, debug and toolbox access. The serial interface and
sound synthesi zer are al so supported.

level II

For the Professional who will be using MacFORTH in her/his work. The
Leyel 2 product includes many enhancements such as more advanced
graphics commands, a full 68000 in-line assembler, floating point,
and more documentation allowing further access to the toolbox. It is
specifically designed to meet the needs of the professional user.

level III

For software developers thinking of either converting existing
programs to run on the Mac or developing new programs. Leyel 3
allows you to do all of your program development on the Mac, and then
generate run-time only versions of your product (contact CSI for
details on royalties and other arrangements). This version includes
support from CSI, additional documentation and 250 -right to execute
licenses.

Introduction Page i - 8 August 27, 1984

The Hacintosh: An Appliance Computer

The Macintosh is intended to be the first mass-market personal computer. It
is designed to appeal to an audience of non-programmers, including people
who have traditionally feared and distrusted computers. To achieve this goal,
the Macintosh must be friendly; it must dispel any notion that computers are
difficult to use. Two key ingredients combine in making a system easy to use:
f ami 1 i ari ty and consi stency.

Familiarity means the user easily understands and is comfortable with what
is expected of her or him at all times. Most Macintosh applications are
oriented towards common tasks: writing, graphics and paste-up work, ledger
sheet arithmetic, chart and graph prep8r8tion, and sorting and fi1ing. The
actu81 environment for performing these tasks already exists in people's
offices and homes; we mimic that environment to an extent which makes
users comfortable with the system. ExtensiYe use of graphics plays an
important part in the creation of a familiar and intuitiye environment.

Consistency means a uniform way of approaching tasks across applications.
For example, when users learn how to insert text into a document, or how to
select a column of figures in one application, they should be able to take that
knowledge with them into other applications and build upon it. Uniformity and
consistency in the user interface reduces frustration and makes a user more
at ease with the task at hand.

Years of software development, testing, and research have gone into the
definition of the Macintosh user interface. On many other computers, since
little or no user interface aids are built in, each applications programmer
i nyents a new and ori gi nal i nterf ace for each program. Thi s 1 eads to many
different (and usually conflicting) interfaces.

Apple has attempted to avoid this situation on Macintosh by building tools for
a versatile, well-tested user interface and placing them in ROM to be used by
all application programs. There's no strict requirement that an applications
program must use any or all of the supplied interface tools; but programmers
who create their own interface do so at the expense of their own development
time, useable data space, and the overall consistency of the 8pplication.

MacFORTH is able to directly access the built-in toolbox functions. Since the
too 1 box has been desi gned for general app 11 cabi1 i ty, often the amount of
set-up required to perform even a Simple function (like adding a window or
menu item) is extensive. We have factored out the most common functions
(menu, window, mouse, and file operations) and provided you with clear and
simple FORTH operators which make them easy to use.

I ntroduct ion Page i - 9 August 27, 1984

"acFORTH:
A High Performance. Interactive Programming Environment

FORTH is a languagel but it is also a tailorable operating system and a set of
tools for developing and debugging your programs interactively. Since FORTH
is all of these things at oncel it has been accurately described as a
·programmi ng enyi ronment -.

We feel thet FORTH metches the process of human thought more closely than
eny other programming method. Defining your own commands as you go alongl
end using these commands in defining further commandsl you actually create
your own personalized programming enYironment that is natural to the way
you think.

FORTH gives you as much or as little control oyer the computer as you wantl
at any leyel -- from the most powerful application commands down to the
machine code instructions. Figure i-1 illustrates the various levels at which
comparab Ie programmi ng languages operate.

PhilosophicallYI FORTH takes a substantial1y different approach to developing
computer applications from other languages and operating systems. Most
other programming systems were designed to teach students how to solve
simplel self-contained problems on large timesharing or batch mainframe
computers. FORTH was developed specifically by and for the use of scientific
and engineering professionals in the solution of difficult real time data
acquisition and process automation problems. Since its inception oyer ten
years agol FORTH has been hammered into its current form on the hard anyil of
actual applications experience. What has emerged is a system which
encourages competence and technical responsibility by the user and delivers
unbridl ed performance.

MacFORTH is a very powerful 32-bit implementation of FORTH which includes
the tradi t j onal features of FORTH as well as many new i nnoyat ions.

MacFORTH puts the power of the computer in your hands. If you choose to
execute an endless loop or overwrite your program with datal MacFORTH will
not stand in your W8y. Consi der the 8n810gy of 8 power saw. The saw
substantially reduces the time required to cut a piece of wood to a desired
size. It does not protect you howeyerl from cutting in half the sawhorse on
which the board rests. Ayoiding such an obvious error is your responsibility.
Consider the cost of a saw which was able to detect sawhorses and turned
itself off whenever it encountered one. This is similar to the tremendous
overhead involved in many -traditional- computer languages.

Introduction Page i - 10 August 271 1984

While using MacFORTH, you will occasionally cause an error which will
require a restart of the system (for example the -bomb- alert box). This is
the natural result of the learning process. As you become more proficient,
this will occur less frequently.

FORTH
Assembly FORTH"S Hi gh leve I language
language

low High

Language Leve 1

Figure 1-1

Introduction Page i - 1 t August 27, t 984

Iterative Organization

The oldest .programming approach was simply to write code until you finished.
Later the fashion was to organize a program into "modules", then to code each
of the modules. This approach was named "top down design", and the older
approach was dubbed "bot tom up".

FORTH uses a still newer approach. Modularization is part of the method, but
the "modules" (or skeletal versions of the modules) are actually coded and
tested at the same time they are designed. You can code a "sketch" of the
applications, and test to see if your general solution to the problem is
correct. If not, you simply rewrite the simple outline, and continue testing
until you're satisfied. Then you can "flesh out" the outl1ne with more detail.

This process is called "iteratiye development: On each iteration you solve
the problem at a deeper leyel and gather information necessary to ayoid
problems at the neMt lower leyel. If you reach a point where insufficient
information is aYailable, it is easy to interactively eMplore alternative
approaches, selecting the best solution at that leyel.

We have utilized a similar approach in this manual. The manual is divided
into two main sections: the User's Guide and the Reference Guide. The
beginning chapters of the User's Guide show you to how to interact with
MacFORTH: creating, editing and saving. Later chapters of the User's Guide
walk you through successively more comprehensive eMamples, building on
previously developed skills and introducing the MacFORTH interface to each of
the major Macintosh features and faciJities.

The reference guide provides in-depth discussion of the MacFORTH interface
to each of the following Macintosh features: Menus, Windows/Events, the File
System, and the Printing/Serial Interface. We also discuss some advanced
topics, the error handling used by MacFORTH, and provide a glossary of al1
words in the system (words which are provided in source form -- like the
editor -- are not included in the glossary).

Introductfon Page 1 - 12 August 27, 1984

We hope our approech makes learning MacFORTH easy. We know you'll be happy
wlth the results.

We actively solicit any comments in reference to the form, content, or
accuracy of this manual. Your responses will allow this documentetion to
evolve to beUer meet the needs of our customers. Please send your comments
to:

MacFORTH Product Manager
Creative Solutions, Inc.
4701 Randolph Road, Suite 12
Rockyille, MO 20852
301-984-0262

Introduction Page i - 13 August 27, 1984

IntroducUon Page t - 14 August 27, 1964

Chapter 1: Installation

Overview

This chapter will show you how to install MacFORTH'" on your computer. It
will also discuss the f11es found on your MacFORTH system disk.

License Agreement

Before opening the package which contains the MacFORTH System Disc,
carefully read the License Agreement on the coyer of the package. Briefly, it
states.. . .

MacFORTH, including this manual and supplied diskette and contents of
both, is owned exclusively by Creative Solutions" Inc. A copyright is
registered with the Unlted States Copyright Office, for both the manual
and the accompanying object code. After paying the license fee,
agreeing to the terms of the l1cense agreement, and returning the
attached registration card, you are licensed to use MacFORTH on a
single computer system.

'Iou may not provide copies of CSI supplied materials to anyone else for
any reason. If you transfer your right to use MacFORTH to anyone else,
you are then no longer 1 i censed to use it yourse 1 f.

Weare quite serious about this. The MacFORTH product is the result of an
enormous amount of work. We have foregone any hardware coPY protection
scheme for your conyeni ence ; we si mp 1 y encode a seri a 1 number on each di sk.
This allows you to always have a backup in the event of a media or hardware
f a1 1 ure and allows us to trace the source of 111 egal cop1 es. We feel that we
have produced an outstanding product for the price, and that our customers
w111 respect our eft orts and the law by adheri ng to these terms.

If the coyer to the manual that you are reading does not include the
distinctive MacFORTH red, white and black logo, you are utilizing a copy which
was produced in violation of US copyright laws. Contact your attorney for
instructions on how to return this illegally produced material to Creative
Solutions.

Installation Page 1 - 1 August 27, 1984

Be sure you make a backup of your MacFORTH system disk
before you use the system.

Haking a Backup

Be sure to write protect your original MacFORTH disk before you make a
backup. This is described in your M8cintosh System documentation (on page 89
- "Locked Disks"). Place the MacFORTH disc in your drive and follow the
instructions in your Macintosh System document8tion (on page 81 - "Copying
an Entire Disk"). When you h8ve m8de 8 backup, store the original disk in a
safe place 8nd use your b8Ckup disk. This will protect you in the event of a
di sc related error.

Loadi ng "8cFORTH

Before you just start e)(perimenting with the system, you should proceed
through this mcmual, trying e8ch e)(ample. Feel free to try other e)(amples of
your own 8S the topics are being presented. The Macintosh is llke no other
computer. There are many unique features you need to know about to m8ke the
best use of this new computer. You can avoid most common mist8kes and
misunderstanding by just working your way through the entire manual the
first time you use the system.

When you are ready to load MacFORTH, pl8ce the MacFORTH system disk in the
drive and reset your computer (either press the programmer's reset button, or
turn the computer off, then back on).

Loading the MacFORTH System
To load the M8CFORTH system (which loads MacFORTH and the editor), double
c1ick on either the "MacFORTH" icon or the "FORTH Blocks" icon. "FORTH
Blocks" is 8 M8CFORTH document and will load the MacFORTH sytem first, then
load the source code cont8ined in the "FORTH Blocks" file itself. When you
double click "M8CFORTH" it 8utomatic8lly loads the "FORTH Blocks" file.

The MacFORTH window will appear emd you will see the soon-to-be-fami1iar
·ok". The arrow cursor will turn into a wristwatch, indicating you should
wait while the system is e)(tended to include the editor (you will notice that
whenever source code is loaded from disk, the cursor win turn into a
wristw8tch tempor8rily). Finally, you will be 8sked to enter your initials
(this is for the editor 8nd is e)(plained in more det8ilin the "Program Editing"
chapter). Enter your first, middle, and last initials.

Instal1ation Page 1 - 2 August 27, 1964

loading Only MacFORTH
If you want to loed the MacFORTH system itself, without the editor or any'
other -extras-, edit block 1 of the -FORTH Blocks- file end delete (or comment
out) any commands which loed other code (editing a block will be explained in
detail in the Program Editing chapter).

Setting MacFORTH as the -Startup- File
Finder 1.1 (the current level of the Macintosh operating system) allows you to
select a file to be automatically loaded when the computer is reset (or turned
on). To select MacFORTH as the auto-load file, from the Finder, select the
-MacFORTW icon (it will become inverted), and then select the ·Set Startup
item from the -SpeCial- menu. To verify that MacFORTH will be automatically
loaded, turn your computer off then on and watch Mac FORTH load.

loadi n9 the MacFORTH Demos
The demos provide a few graphic and music examples for your amusement as
well as examples of MacFORTH source code. To loed the demos from the
Finder, double click on the -Demo Blocks· file. To load the demos from
MacFORTH, execute the phrase

IHClUDE· Oeao Block~·

By the time you have completed the Users Guide section of this manual, you
wi 11 have an understandi ng of how to wri te programs s1 mi lar to the demos.

To select the demo you llke, activate its window (by clicking the mouse down
inside its window) or pull down the music menu. You can see the source code
for the demos by simply editing or printing the -Demo Blocks· file (as
described in the Program Editing chapter).

We provide the source code to the demos for you to use as examples. Feel free
to modify the code for the purpose of experimentation. We discuss how to do
this in the Editing chapter.

Installation Page 1 - 3 August 27, 1984

The demos provi ded are:

1.) Approach
Spins in the MacFORTH logo. Shows the rotation and scaling features
of the MacFORTH graphi cs package.

2.) Clock
Displays the current time (as read from the internal clock) in the
format of an analog clock. Shows real time update of the window.
You can change the size of the clock by resizing its window.

3.) Dark Beams
Displays a series of lines which can create some facinating results.
Try resizing the window.

4.) Bouncer
Displays a bouncing ball in the window. Resize the window for
different bouncing patterns.

5.) Spirals
Displays some geometric doodling. Shows the speed and power of the
MacFORTH graphics package. The code for this demo fits easily in one
block of source code.

6.) Sound
Plays Bach's Two Part Invention #6.

Instal1ation Page 1 - 4 August 27, 1964

Contents of the HacFORTH System Disk

In case you're wondering what each of the files on the disc are:

1.) -MacFORTW
Contains the MacFORTH system itself. When opened from the Finder
(by double-clicking or the Open item of the File menu) MacFORTH is
loaded. It then loads the -FORTH Blocks- file.

2.) -FORTH Blocks-
MacFORTH blocks file which contains the source code for some useful
utilities. It is loaded to extend the MacFORTH system. Modify block
one of this file if you want to load your application automatically
when MacFORTH is loaded.

3.) -GOing FORTW
MacFORTH blocks file which contains the source code for the Going
FORTH tutorial. Double-click on this file to load the computer-aided
instruction course.

4.) -GF Data-
Contains the text used in the Going FORTH tutorial.

5.) -Demo Blocks·
MacFORTH blocks fHe which contains the source code for the demos.
Double click on this icon to load just the demos.

6.) -MacFORTH F 0 I der-
A Mac folder used to hold files used by MacFORTH. The Finder and
system are contained in this folder to avoid cluttering up the screen.

7.) -More Examples·
A MacFORTH blocks file containing examples in source form.

You may want to delete the -GOing FORTW, -GF Data-, and -Demo Blocks- files
on your backup disc for more space.

Installation Page 1 - 5 August 27, 1964

"Be FORTH Customer- Support Hot line: (301) 984-3530

We have established the -MacFORTH Hotline- to assist you with Questions
and/or problems you have concerning the MacFORTH product. Help is aYailable
between the hours of 1 p.m. and 5 p.m. Eastern Standard Time, Monday thru
Friday at (301) 984-3530 on a first-come-first-served basis.

The following guidelines have been estab11shed for the MacFORTH Hotline:

1.) On I y MacFORTH customers who have si gned and returned thei r
registration cards m8Y use the M8CFORTH hotline. If you h8yen't
signed 8nd returned your c8rd (the one 8tt8ched to the disk enyelope)
yeti do it now.

2.) Know your seri81 number (its on the origin81 M8cFORTH disk you
received). You need to ten the person 8nswering the hotline your
n8me and disk number before you C8n 8sk your Questions.

3.) H8ye your Questions written down in front of you. We 8llow 8
m8)(i mum of 5 mi nutes per c811 when others 8re w8i t i ng. Thi sis
8mple time to 8nswer even a long list of Questions if they are clear
8nd wri t ten down.

4.) Please don't use the hotline for m8rketing Questions. This is for
technic81 support only.

We 8re happy to support Y81id, registered users who h8ye Questions about
MacFORTH.

You C8n also direct any Questions/comments/suggestions in writing to:

Inst8118tion

M8CFORTH Product M8n8ger
Creati ye So I uti ons I Inc.
4701 Randolph R08d, Suite 12
RockYi 11 e,MO 20852

P8ge 1 - 6 August 27, 1984

Chapter 2: Going FORTH

ll~ ~~

Overview 2

Preparat ion 2

Runn1 ng the Course 2

Stopping and Restarting the Course 3

Going FORTH Page 2 - 1 August 30, 1984

OvervIew

This chapter provides the instructions for running the Going FORTH computer
aided instruction course which is supplied on the MacFORTH system disc.

The tutorial is designed for everyone. The novice FORTH programmer wi11
learn the basics of FORTH, more experienced FORTH programmers wil1 get 6

fJavor for running MacFORTH on the Macintosh.

It is important that you run through the course, as many Macintosh specific
terms are introduced there. We wi1l assume you have run the course
and use these terms throughout the manual.

Preparation

To run the course, power up your Macintosh with the MacFORTH system disc in
the driye. Open the "Going FORTH" document (by double cHcking in it). Whl1e
it is loading, you will get the message "loading the Going FORTH Tutoria1." Be
sure you read this chapter before you begin the course (and remember to
re-size the window).

Once the course is 10aded, you need to shrink the size of the MacFORTH
window by dragging its size box oyer to the left. Figure 2.1 shows what your
screen should look Hke whi1e running Going FORTH.

Runni ng the Course

When you uncover the Going FORTH window, the course will start
automatically, displaying the first frame. On the right hand side of the
window you wil1 notice the scro11 bar. To move on to the next frame, click
the arrow in the lower right side of the window. To reyiew previous
material , cHck the arrow in the upper right side of the window.

To moye from chapter to chapter, cHck the mouse down in the shaded area
above or below the scroll box (the scrol1 box is the whHe box in the shaded
area of the scro11 bar). You can also moye the scroll box to any pOSition
wi thi n the course by draggi ng the scroll box up or down.

If you press any keys whiJe in the Going FORTH window, the Mac wil1 beep at
you, reminding you that you can only enter keystrokes in the MacFORTH
window while you are completing the tutorial.

Going FORTH Page 2 - 2 August 30, 1984

ok

If you close the GOing FORTH window, you can re-enter the course by selecting
the "Going FORTW item from the "Tutorial" menu.

That's H! That's all you need to know; the tutorial will give you any
additional instructions you need, now get going FORTH!

G01ng FORTH

A
Cornputer-A iljed In:;truct ion

Course on MacFORTH

Cref:lti '.Ie ~=;o lutl ons .. Inc.
Copyri grit 1984

(click HIe etTO"N in HIe lov'ler riQi-lt
corner to conti nue)

Figure 2.1

stopping and Restarting the Course

If you don't complete the course in one sitting, restarting where you left off
is easy. To leaye the course, make a note of where you are in the course (the
chapter and page), and select the "Exit MacFORTW Hem from the "Options"
menu. When you want to restart where you left off, run the course (as
described in "Running the Course" in this chapter) and move the thumb down
unt 11 you fi nd where you 1 eft off.

Going FORTH Page 2 - 3 August 30, 1984

Going FORTH Page 2 - 4 August 271 1964

Chapter 3: Program Editing

Overview 2
Preparat ion 2
Selecting a File for Editing 2

Displaying File Assignments 3
Using a Different File to Edit 3
Selecting a Different to Edit 3

Entering the Editor 4
Exiting the Editor 4
Block Buffers 4
Using the EdHor 5

Practice Editing Block 5
Edi tor Wi ndow 6

Experimenting with the Editor 7
Close Box 7
Scrolling 7
Edit Menu 6
Insertion Point 9
Selection Range 10

Loadi ng Blocks 11
Error Detection While Loading a Block 11
Listing Programs 12
Copying Blocks 13

Single Block Copying 13
Multiple Block Copying 13
Copying Blocks from One File to

Another 13
Bhmk Filling Blocks 14

Cutting and Pasting to/from the Desk
Accessories 14

A Final Note 14

Program Editing Page 3 - 1 August 271 1964

Overview

This chapter introduces you to one of the most used features of MacFORTH~
the editor. Using the editor~ you can create and save your progrems on disc.
This allows.you to create and modify program source code without retyping it
each time you load the system. The MacFORTH editor uses an editing
techni Que si mi lar to MacWri te ~ so if you are f ami 1 i ar wi th MacWri te ~ you wi II
be right at home using the MacFORTH editor.

The MacFORTH editor is used to edit progrem source files on the disc. We will
introduce some of the file system commands you will use normally with the
editor. For an in-depth discussion of the file system and its commands~ refer
to the File System chapter.

Preparation

To start this session load the MacFORTH system by resetting your Macintosh
(power off then on or press programmers reset button on the left side of your
machine) . With your MacFORTH disc in the driye~ double click on either the
-MacFORTH" or the -FORTH Blocks· file in the window that appears on your
screen (if you have set the MacFORTH file as the startup fj)e~ MacFORTH will
be loaded automatically). When this file loads~ it also loads the editor from
the file -Editor Blocks- automatically. (Remember to enter your initials when
asked.)

We'll stress again the importance of the editor to your effectiveness with
MacFORTH and urge you to spend the time now to understand how it works.
Try each example in this chapter before continl,Jing.

Be sure to restart your computer as instructed above so that the examples in
this chapter make sense.

Selecting 8 File for Editing

When you loaded MacFORTH from the Finder (if you don't know what the Finder
is~ refer to your Macintosh manuals), MacFORTH assigned the file -FORTH
Blocks- to file number O~ opened it and selected it as the current -blocks fUe-.
The MacFORTH editor allows you to edit the current -blocks flle- only. (File
aSSignment, opening~ selection and file numbers are discussed in more detail
in the File System chapter. For now, just execute the examples to practice
using the editor.)

Progrem Editing Page 3 - 2 August 27 ~ 1984

Displaying File ASSignments
You can see what files are assigned and opened by executing:

?FILES

You can see that "FORTH Blocks" is assigned to file number 0, that it is open
(by the capital "0"), and that it is the current "blocks file" (by the capital "B").

Since the "FORTH Blocks· file is the fUe you are going to work with in this
chapter, you don't need to do anything else to continue. For future reference,
we will discuss how to select a different file for editing.

Using a Different File to Edit
If you want to use a different file for editing, execute the USE- command in
the following format:

USE- <file no.e>·

USE- assigns the file specified by the name <file name> to the first ayailable
file number, opens it, and selects it as the current blocks fHe for editing (1f
it is a blocks file). For example, to specify the MacFORTH demos source file
for editing (contained in the file "Demo Blocks"), execute:

USE· De.o Blocks·

Selecting a Different File to Edit
Once a file has been opened (yia the USE- command, for example), you can
re-select it as the file to edit with the SELECT command. SELECT is used in
the f 0 11 owi ng format:

<file nu.ber> SELECT

For now, you just want to edit the program source code contained in the file
assigned to file number 0 (the "FORTH Blocks· file), e!<ecute:

8 SELECT

SELECT acts on a file which has already been assigned a number. USE
should be used when that file has not yet had a number assigned to it (le. the
flrst time you use the file after entering MacFORTH).

Program Edi ti ng Page 3 - 3 August 27, 1984

Enten ng the Edi tor

There are three ways to enter the editor:
1.) Execute the EDIT command in the following format:

<block.) EDIT
Try:

5 EDIT

Then exit the editor by cHcking in the MacFORTH window.

2.) ActiYate the editor window by clicking in it with the mouse.

3.) Pull down the "Edit" menu and select the "Enter Edie item
(or execute its equivalent keystroke, HE).

Exiting the Editor

There are three ways to exi t the edi tor:

1) Pull down the "Edit" menu and select "Exit Editor" item (or
execute its equivalent keystroke, HE) .

2) Click in another window with the mouse.

3) Close the editor window by cHcking in its close box.

Block Buffers

When a block is edited, it is read from disk into memory. The area of memory
it is kept in during the editing process is called a "block buffer". Each time a
change is made to the block, it is modified in the block buffer only. When you
exit the editor, or select another block to edit, data in the block buffer is
then written to disk.

Program Edi ti ng Page 3 - 4 August 27, 1984

Usi ng the Edi tor

The files you will edit are called ·block files· because they are made up of a
sequence of ·blocks· (old-time FORTH programmers may prefer the term
·screens·). A block is the fundamental unit of disc storage used by MacFORTH.
It is simply a fixed length record containing 1024 characters for programs.
The ·FORTH Blocks· file on the MacFORTH system disc contains the source
code for some MacFORTH utilities, as well as empty space for your use.

You should organize your program source code logically into files by
categories. For example, you can see that we put the MacFORTH utilities in
the ·FORTH Blocks· file, the demo programs in the ·Demo Blocks· file, and the
Going FORTH tutorial source code in the ·Going FORTW file. By logically
organizing your source code into files you will find program development
great1y simplified.

Practice Editing Block
In order to illustrate the use of the editor, we have provided a practice block
for you to work with while completing this chapter. Begin by displaying the
practice block with the editor. Execute

5 EDIT

You should now see on your screen an edit window which looks like figure 3.1
below:

~o Blk# 5 of 23 ; File=Forth Blotks
(Sample Editing Practice Block)

CR ," Loading Editor Practice Block, ,"

lfr

I
,PLUS (n1\n2 -- I add n1 to n2 and display the result
CR OUER, ," p I us .. OliP ,+ ," equa Is" ,

CR ," Editor Practice Block Loaded,"

Figure 3.1

Program Edi t i ng Page 3 - 5 August 27, 1984

Editor Window
The MacFORTH edi tor uses its own wi ndow. The wi ndow is large enough to
display one block of source code in a format 16 Hnes by 64 characters each for
a total of 1024 characters (as you can see in Figure 3.1). The following list
points out the features of the editor:

- Title Bar
Displays the current block number being edited, the total number of
blocks in the file and the file name. Each time you edit a different
block this information is updated to show you exactly what you are
editing.

- Close Box
lets you close the editor window by clicking in its close box. The
edi tor wi ndow wi 11 reappear the next time you enter the edi tor.

- Drag Regi on
Allows you to drag the edit window to a new position on the screen
(remember to keep the entire window Yisible when editing).

- Scroll Bar
The vertical bar on the right hand side of the window is the scroll bar.
It al10ws you to scroll up and down within the current program file,
selecting different blocks for editing.

-UpArrow
Selects the preYious block (numbered one less than the current
block) as the block to edit. Stops on the first block in the file.

- Down Arrow
Selects the next block (numbered one more than the current block)
as the block to edit. stops on the last block in the file.

- Scroll Box
Drag the scroll box to select another block to edit. Moye it up to
edit lower numbered blOCKS and down to edit higher numbered ones.

- Shaded Area
Click inside the shaded area aboye or below the scroll box to moye
3 blocks at a time in either direction (up or down).

Program Editing Page 3 - 6 August 27, 1984

Experimenting with the Editor

Let's try a few of the editor features:

Close Box
First, click inside the close box. The editor window disappears and the
MacFORTH window becomes the active window. To make the editor window
reappear, re-enter the editor by executing (from the MacFORTH window):

5 EDIT

Scrolling
With the edit window now the active window, here's how to move up in the
file to block 4: click the up arrow in the scroll bar on the right side of the
window. Click it once and it will move you up one block in the file (-up in the
file- meaning to a lower numbered block). You'll see the title of the window
change to

Blk- 4 of 23; File= FORTH Blocks

indicating that you are now displaying block number 4. Return to block 5 for
editing by clicking the down arrow in the scroll bar once. You can see that
you have returned to block 5 by the title of the editor window:

Blk- 5 of 23; File= FORTH Blocks

You can also move 3 blocks at a time in either direction in the file by clicking
within the shaded area above or below the scroll box. Click in the shaded area
below the scroll box once. You are now editing block 8 (you were previously
on block 5).

Each time you edit a new block, the scroll box is moved up or down. Its
position tells you what block you are editing relative to the start and end of
the file.

By dragging the scroll box up or down within the shaded area, you can position
the editor to edit any block in the file. Try dragging the scroll box to several
different positions now. Simply drag it to a new location and release the
mouse button to display the block being edited.

Moving the scroll box to the top position in the shaded area will position you
to edit block 0 of the file. The bottom position in the shaded area positions
you to edit the last block in the file. You can locate a particular block by
positioning the scroll box in the approximate location from the beginning or
end of the file. For example; since there are 24 (numbered 0 through 23)
blocks in the -FORTH Blocks- file, if you wanted to edit block 12 you would
pOSition the scroll box approximately half way between the top and bottom of
the scroll bar. Try to find block 12 now using the above technique.

Program Edi t i ng Page 3 - 7 August 27, 1984

Edit Menu
The Edit menu provides you with the following options while editing. Each
item in the menu provides a powerful function at your fingertips (don't try
these features just yet; simply read through the I1st to famillarize yourself
with them):

Undo (H2)
Undoes the previous cut, cOPy, or paste operation (including any
changes since the last operation). It actually restores the contents
of the block to the version since the last cut, copy or paste operation.

Cut (HX)
Cuts the current selection range (discussed later in this chapter)
from the text and places it on the clipboard. (Cut, copy and paste use
the clipboard just like other Macintosh applications).

Copy (He)
Copies the current selection range (discussed later in this chapter) to
the c 1 i pboard.

Paste (HU)
Inserts the contents of the clipboard to the block at the current
cursor position and/or replaces the current selection range.

Stamp (HS)
Stamps the current block with the current date, as read from the
internal clock, and initials stored in the user Yariable INITIALS. Use
the word @INIT to change the yalue in INITIALS. DATE displays the
current initials and date stamp. If the first three characters in
INITIALS are non-printable ASCII characters or blanks, the stamp
function is disabled.

Clean
Blank fills the contents of the block currently being edited. Use this
command with caution as you cannot undo it.

Revert
Resets the contents of the current block back to the version sayed on
the di sc. Use thi s command wi th cauti on as you cannot undo it.

Enter/Exit Editor (HE)
Allows you to enter or exi t the edi tor.

Program Edi ti ng Page 3 - 8 August 27, 1984

Insertion Point
Any time the edi~or window is active, you will see a flashing vertical bar.
This is called the illsert itlll poillt Enter the editor to edit block 5 (use
any of the methods described in the Entering the Editor section) and try typing
the phrase (type it in only, do not press Return):

Thi~ i~ the in~ertion point,

and you'll see it inserted at the insertion point. Eyerything to the right of the
insertion point is shifted oyer each time a character is typed. Char8cters in
the last position on the right are pushed right out of the window. Now delete
what you just inserted by pressing the Backspace key once for each character
you just entered (the key will repeat automatically if you hold it down).

You can change the insertion point by pointing with the mouse to the position
where you want to insert text and clicking once. In the edit window, the
cursor becomes an -I-beam- instead of an arrow to make it easier to select an
insertion point between characters. Try moving the insertion point to several
different places in the window now. Remember, position the i-beam cursor
and click once. Each time you reposition it, the insertion point will be
marked by the flashing yertica1 bar.

Try repositioning the insertion point to several places again, but this time,
each time you position the cursor, type the phrase -abc- and backspace it
away to get a feel for inserting and deleting text.

You can also insert a line at any point by positioning the insertion point and
pressing the Return key. For example, position the insertion point between
the words -Sample- and -Editing- in the first line in block 5 and press Return.
Eyerything on the line to the right of the insertion point is shifted down to
the beginning of the next line, all lines below it are shifted down one line.
Press the Backspace key once to -glue- the lines back together. When you
pressed the Return key, you inserted a carriage return. Pressing Backspace
deleted it.

When you insert text ina 11 ne, all text to the ri ght of it is shi fted to the
right. If you insert a Return, the text after the insertion point and an lines
below are shifted down one line. You can recover the text that was pushed off
the end of a line or the bottom of the screen by deleting some text (if off to
the right) or deleting some lines (if off the bottom). To delete a blank line,
just position the cursor against the left edge of the editor window and press
Backspace.

Program Editing Page 3 - 9 August 27, 1984

While you &An recover the text that has been pushed out of the window while
you are editing, only the visible text is sayed on the disc when you exit
the editor. After any operation that saves the data in the disk buffers (stamp,
clean, undo, etc. -- explained next) you cannot recover any text that you can't
see.

The MacFORTH editor uses a simple, yet powerful "cut and paste" style of
editing (similar to MacWrite). By now, you can see how to insert and de1ete
text at the insertion points by typing in new text or backspacing it away.

Se1ection Range
If you are familiar with MacWrite this deSCription wil1 be a review. Cut, Copy
and Paste operate on a range of selected information (ie: a text string). To
se1ect items for edit the I-beam cursor shou1d be p1aced at the beginning of
the desired text and dragged to the end of the "selection range".

For example, try entering the fo11owing line in the b10ck (put it anywhere you
like):

UeIco.e to the .orid of nacFORTH editing!!!

Now remove the word "MacFORTH" by selecting it and "cut"ting it out: cHck at
the beginning of "MacFORTW, drag to the end of the word (it is now disp1ayed
in inverse characters) and re1ease the mouse button when the entire word is
se1ected (entire1y in inverse characters). Select the "Cut" item from the
"Edit" menu; the se1ection range is now de1eted and sayed on the clipboard.
Bring it back by se1ecting "Paste" from the "Edit" menu.

You can now repOSition the insertion point and paste the word "MacFORTH"
anywhere in the current block. You can even move to a different block and
paste it in that block! This should give you an idea of the power of the editor.
You can cut or copy a se1ection from any block and paste it into any other
block.

Program Editing Page 3 - 10 August 27, 1984

Loading Blocks

To load a block from disc, execute the LOAD command in the following form:
<block·) LOAD

For example, to load the block you were editing, go back to the MacFORTH
wi ndow and execute

5 LOAD

When a block is loaded, the source code on the screen is interpreted just as if
you had typed it in from the keyboard. This enables you to mh< definitions
and commands to be executed immediately. When a block is loaded, the cursor
automatlcal1y is changed to a wnst watch. After the block has finished
loading it reverts back to the arrow cursor.

Error Detection While Loading a Block

If MacFORTH encounters an error while loading a block (an undefined word, a
typo, missing delimiter, etc.), it will abort immediately and issue an error
message. To find where the error occurred, simply enter the editor. The
insertion point (flashing vertical bar) will be located just after the error.
For example, if you have the sequence

QUERTY

in a block (and it was not a defined word) when you loaded the block, the
insertion point would be one space after the ."1.. This feature is invaluable
for locating the cause of an error dunng loading because it shows you where
MacFORTH encountered the error.

After an error has been detected, the vanable R- is set to the position just
after the error. The i ni t i a I posit i on of the insertion poi nt is determi ned by the
value in R-. If you want to have the insertion point at the upper left corner of
the edit window, execute

R. OFF

from the MacFORTH wi ndow.

Program Edi tl ng Page 3 - 11 August 27, 1984

listing Programs

The following words Ust your programs to the display and/or pnnter. If you
have an Apple Imagewnter connected to your Mac, select the -Pnnter- item
from the ·Options- menu to turn it on. All output to the screen will be sent to
the pnnter as well (refer to the Pnnter/Senal chapter for a discussion on
using other pnnters).

LIST
Displays the specified block. The dete, screen numbers, and llnes of the
block (numbered 0-15) are displayed. For example:

18 LIST
would llst the contents of block 10.

INDEX
Displays the first Une of a range of blocks. If you follow the convention
of using the first line of each block as a comment descnbing the
contents of the block, INDEX will allow you to see quickly what a
range of blocks contains. For example:

5 15 INDEX
would display the first line of blocks 5-15, with the block numbers
displayed on the left.

TRIAD
Displays three sequential blocks on one page, starting with a block that
is evenly divisible by three. You specify the number of any block in the
-triad- that you want to display. For example:

18 TRIAD
displays blocks 9, 10 and 11. This enables you to update your program
llstings with only the screens that have changed. The icon used for
MacFORTH blocks (program) files contain three rectangles to designate
tn ad 11 sti ngs.

SHOU
Displays a range of blocks (as a senes of tnads). Giyen the starting
and ending blocks to display, SHOW generates a llsting of tnads. For
example:

18 28 SHOU
would generate a listing of three blocks per page containing the
speCified range of blocks (it would actually list blocks 9-20).

Program Editing Page 3 - 12 August 27, 1984

Copying Blocks

The following routines allow you to copy the contents of one block (or blocks)
to another (or others).

Single Block Copying
When copying limited numbers of blocks, use the COpy command in the
following fonnat:

<source block.) <destination block.) COPY

For example, to copy the contents of block 6 to block 5, you would execute:
6 5 COpy

Multiple Block CoPYing
If more than a couple of blocks need to be copied, a copying utility program is
aYailable. Load these routines by loading block 10 of the ·FORTH Blocks· file.
To copy a series of blocks from one location on the disc to another, use the
COPY.BLOCKS in the f 0 11 owi ng f onnat:

<first) <last) <target) COPY.BLOCKS

For eX8mple, to copy blocks 3 thru 7 to screens 12 thru 16, execute (just an
eX8mp 1 e, do not try thi snow):

3 7 12 COPY. BLOCKS

During the copying procedure, you are shown which screens are being accessed
with the following message:

sss -) ddd
where sss is the source block number and ddd is the dest i nat ion block bei ng
copied.

Copying Blocks from One File to Another
Load the block transfer routines by loading block 12 of the ·FORTH Blocks·
file. The word XFER.BLOCKS will allow you to copy blocks between files,
promting you to enter the required infonnation. You will be asked for the file
numbers of both files as well as the range of blocks to be transferred.

Program Editing Page 3 - 13 August 27, 1984

Bltmk-Filling Blocks
To blenk-fill e single block, select the "Cleen" item from the "Edit" menu
while editing the block. If you went to blenk-fill e series of blocks, loed the
block copy routines (if you heye elreedy loeded them, you don't need to re-loed
them). You now heye the word CLEAR.BLOCKS. It is used in the following
formet:

<first> <last> CLEAR,BLOCKS

For exemple .. to blenk-fill blocks 20 thru 25 in the current blocks file, you
would execute (don't try this exemple):

28 25 CLEAR,BLOCKS

Eech time e block is cleered, the messege
ccc Cleered

is displeyed .. where ccc is the number of the block being cleered.

Cutting and Pasting to/from the Desk Accessories

You cen cut .. copy end peste selected text to/from the Desk Accessories. This
enows you to shere ASCII dete between MacFORTH end eny other Mecintosh
system.

To moye ASCII dete from MecFORTH to the Noteped for exemple, enter the
editor end cut (or copy) the desired text. Select the Noteped item from the
epple menu end peste the selected text into the Noteped.

To moye ASCII dete from the Notepad to MecFORTH, select the Noteped item
from the epple menu end cut (or copy) the desired text. Enter the editor in
MecFORTH end peste the selected text into e block.

A Final Note

If you heye modified block 5 (the exemple block) you should go beck now end
edit it so it looks like figure 3.1. This mekes it eesier jf you need to go beck
end try the exemples egein leter.

Program Editing Pege 3 - 14 August 27, 1964

Chapter 4: Getting Started

IIIlk.. ~

Overv1ew 2

Preperat 1 ons 2

F1nger Pe1nt Exemple Progrem 3
Creete e W1ndow 3
Track the Mouse 5
Def1ne the W1ndow Program 6
F1nger Pe1nt1ng 7
Re-t1t1e the W1ndow 7
Pr1nt1ng the P1cture 7
Def1ne the Pen S1ze Menu 6

Summery 9

Get t i ng St8rted P8ge 4 - 1 August 27, 1984

Overview

This chapter will give you first-hand experience in programming the
Macintosh. You will enter a sample program, try it out, make some changes,
and try it again to see the differences. Don't try to understand each command
now. The intent of this chapter is to give you a feel for programming the
Macintosh, not to give a comprehensive description of each command. Later
chapters wi1l fill in the missing information. For now, just enter the example
program and enjoy.

By the time you finish this chapter, you will have created a new window,
defined a program to be executed for the window, tracked the mouse, created
some graphics pictures (and printed them if you have an Apple Imagewriter
printer), and defined a menu.

Preparations

By now you should have completed the Going FORTH tutorial, if you haven't, do
so now before you continue. You wi11 be instructed to edit some source code
into the -FORTH Blocks· file. If you skipped the Program Editing chapter, read
it now before you continue.

It is important that you complete this chapter in one sitting.

The only thing you'll need is about 20 minutes of time, your Mac, MacFORTH,
and you.

Restart your computer (by turning the power off then on) and load MacFORTH
by opening the -FORTH Blocks- document from the Finder (by double clicking
it). When MacFORTH loads, enter your initials when asked and you'll get ·ok-.
You are now ready to start.

Getting Started Page 4 - 2 August 27, 1964

Finger Paint Example Program

The example program you win be entering will allow you to create pictures in
a new wi ndow usi ng the mouse. Press the Return key a few times to see
where your cursor is (some more ·ok·s will appear).

Prior to typing in the following example, resize the MacFORTH window and
drag it down to the lower one-third of your screen, keeping the whole window
on the screen (your screen should be similar to figure 4.2, except the Finger
Paint window won·t be present yet). This will expose the editor window.
During the course of the following example another window (the Finger Paint
window) will be defined and will appear in the upper left corner of the screen.

One other reminder before you start typing; spaces separate words in FORTH,
so pay careful attention to spacing in this example (particularly after
quotation marks).

You will use blocks 2 thru 4 of the ·FORTH Blocks· file to enter the source
code for this example. If there is already source code in any of the blocks,
clean the block by selecting the -Clean- item from the ·Edit· menu (be sure
that you are editing the correct block before you clean it).

Finally, remember to put the comment (in parentheses) in the topmost Une of
the block.

Create a Wi ndow
Edit the following source code into block 2:

(Finger Painting Uindo. Definition)

HEU.UIHDOU SHEET
- Finger Paint Uindo.-
6.8 5 288 388
SI2E.BOX CLOSE.BOX +

SYS.UIHDOU

SHEET ADD.UIHDOU

SHEET U.TITLE
SHEET U.BOUHDS
SHEET U.ATTRIBUTES
SHEET U.BEHIHD

. Get t i ng Started Page 4 - 3 August 27, 1984

Your block should now look like the block in figure 4.1. If there ere
differences use the editor to correct them before you continue:

Blk# 2 of 23 ; File fORTH Blocks
!I(Finger Pa i nt i ng t·l i ndow De fin it ion)

I
' NEW.WINDOW SHEET

" Finger Paint Window" SHEET W.TITLE
i 60 5 200 300 SHEET W.BOUNOS
I SIZE.BOX CLOSE,BOX + SHEET U,ATTRIBUTES
I SYS.WINOOU SHEET W.BEHIHD
I
I SHEET AOO.WINDOW
I

I

I

Figure 4.1

Now loed the block by eKecut i ng:
2 LOAD

At this point 8 new window will appear in the upper left corner of the screen.
Your screen should now look just llke figure 4.2.

Getting Started Page 4 - 4 August 27J 1984

:2 LOAD ok

Figure 4.2

If you click in the new window the system win just beep et you. Click beck
inside the MecFORTH window end continue.

Treck the Mouse
Edit the f 0 11 owi ng source code into the top of block 3:

(Finger Painting Source Code)
TRRCE.FIHGER (--- I word to follow the aouse when down)

HIDE. CURSOR
BEGIH STILL.oOUH UHILE @MOUSEXY DOT REPERT

SHOU.CURSOR

Get t i ng Sterted Pege 4 - 5 August 27, 1984

Deflne the Wlndow Program
EdH the followlng source code into the bottom of block 3 (under the source
code for TRACE.F I N&ER):

FIHGER.PRIHT (activate flag -- I prograa for SHEET)
IF 8EGIH OO.EUEHTS

CRSE nOUSE.OOUH OF TRRCE.FIHGER EHOOF
IH.SI2E.80X OF PRGE EHOOF

EHOCRSE
RGRIH

ELSE 7 SYS8EEP (beep on deactivation)
THEH

SHEET OH.RCTIURTE FIHGER.PRIHT

Your block should now look like the block in figure 4.3. If there are
differences, use the edltor to correct them before you continue.

o Blk# 3 of 23 ; file fORTH Blocks
Ie F i ngep Pa i nt i ng Source Code)

TRACE. FINGER (--- I word to fof low the mouse when down
H I DE . CUF:SOR

BEGIN STILL.DOWN WHILE @MOUSEXY DOT REPEAT
~;HOW ,CUF;SOR ;

I I: FINGER.PAINT (activate flag -- I program fop SHEET)
I IF BEGIN DO.EUENTS

II

! CASE MOUSE.DOWN OF TRACE.FINGER EHDOF
IN.SIZE.BOX OF PAGE ENDOF

ENDCASE

I
I AGA i ti

ELSE 7 SYSBEEP
I
i THEN

beep on deactivation

SHEET ON,ACTIUATE FINGER,PAINT

Load the block by execut 1 ng:
3 lORD

Gettlng Started

Figure 4.3

Page 4- 6 August 27, 1984

Finger Painting
Actiyate the finger paint window by pointing to it with the mouse and
clicking down inside it. When you drag the mouse around in that window, the
cursor dl sappears and ali ne f 0 11 ows where you move the mouse. You can even
drag outside the window and come back in. When you release the mouse
button (le. stop dragging" the cursor re-appears and you don·t get a line
following you anymore.

Try moving the cursor and clicking in the MacFORTH window now. The Mac
beeps at you when you de-activate the SHEET window (lts title is "Finger
Paint Window") as you told it to do in FINGER.PAINT. Now resize the SHEET
window so your drawing space is larger (but leaye both windows visible).

When you resize the SHEET window, the picture you drew is erased and you
are given a clear space to work in.

Hide the sheet window (by cl1cking in its close box at the top left corner). To
make it re-appear, execute (from the MacFORTH window):

SHEET SHOU.UIHDOU

You can now activate the SHEET window (by clicking in it) and do some more
drawing.

Re-Title the Window
Go back to the MacFORTH window (by cllcking in it). Now change the title of
the new window to your name. For example, if your name is Marge, execute:

• Marge's Artwork" SHEET SET.UTITlE
or Harry:

" Harry's Impressions" SHEET SET.UTITlE
or, if you pref er:

• My Very Own Ea~el· SHEET SET.UTITlE

Printlng the Picture
You can even print your work of art if you have an Apple Imagewrlter printer.
If you have one connected to your Mac, execute XS (hold down the X, shift,
and 4 keys simultaneously) If the Caps lock key is up, only your sheet is
printed, if the Caps lock key is down, the entire screen is printed.

Getting Started Page 4 - 7 August 30, 1984

Define the Pen Size Menu
As the final addition to the program, create a menu to change the size of the
pen you are drawing with. Edit the fol1owing code into block 4:

(Pen Size Menu)
7 COHSTAHT FIHGER.SI2E.MEHU

FIHGER.MEHU (---) FIHGER.SI2E.MEHU DELETE.MEHU
8 M Finger Size M FIHGER.SI2E.MEHU HEU.MEHU
M S.all;Mediu.;LargeM FIHGER.SI2E.MEHU APPEHD.ITEMS
DRAU.MEHU.BAR

FIHGER.SI2E.MEHU MEHU.SELECTIOH: 8 HILITE.MEHU
GET.UIHDOU >R SHEET UIHDOU

FIHGER.MEHU

CASE 1 OF 1 1 PEHSI2E EHDOF
2 OF 3 3 PEHSI2E EHDOF
3 OF 5 5 PEHSI2E EHDOF

EHDCASE R> UIHDOU

Your block should now look like the block in figure 4.4. If there are any
differences, go back into the editor now end correct them before you continue.

=0 81k:# 4 of 23 ; File-fORTH 8Ioc:k:s
(Pen Size Menu)

17 CONSTANT FiNGER.SiZE.MENU
I
I : F I tiGER, !lENU (---)

I
0» Finger Size»

FINGER,SIZE,MENU DELETE.MEtiU
FINGER,SiZE,MENU NEW,MENU

! » Sm(11 I ; Med I urn; L(H·'!~e» F I t'iGER, SIZE. MENU APPEND. ITEMS
DRAW. MEtiU , EiAFi

I
I
I

FINGER. SIZE, MENU MENU,SELECTION: 0 HILITE,MENU
GET,WINDOW >R SHEET WINDOW

CASE 1 OF PENSIZE EtmOF
2 OF
:) OF

EtiDCASE R>

3 3 PENSIZE EHOOF
5 5 PENSIZE ENDOF

~·ll tiDOW

I FINGER, I'lEHU

Figure 4.4

Getting Started Page 4 - B August 27, 1984

Now load the block by executing:
i LOAD

Now you will see the "Finger Size" menu on your menu bar line. Pull it down
and select a new finger size. Actiyate the SHEET window and draw a few
Hnes. Return to the "Finger Size" menu and select a new finger size. Draw a
few more Hnes and re-select a new finger size.

When you get tired of the current pattern, re-size the window and start all
oyer if you like.

Summary

You've seen how simple it is to create a new window, assign a program to the
window, track the mouse, create graphics pictures (and possibly print the
result), and create a new menu.

That's it! As we said at the beginning, our intent 1n this chapter was simply
to introduce you to some of the features of the Macintosh, not to give a
detailed description of each function.

Getting Started Page 4 - 9 August 27, 1964

Getting Started Page 4 - 10 August 27, 1984

Chapter 5: Getting Results

Overview 2
Set Up a Work File 3
Windows 5
Error Hand11ng 7
Forgetting a Window 7
Window Attributes 8
Changing the Window Title 8
Closing a Window 9
Hiding and Showing a Window 9
Window Bounds 10
Hiding the Cursor 10
Modifying the Cursor 11
Directing Output to a Window 12
The Mouse 13
Text Output 13

Creating a String 14
Keyboard Input 15

Input of Strokes 15
Number Input 15
String Input 16

Window Function 17
Assigning a Program to a W1ndow 18
Window Function Template 19
Multiple Windows 19
Menus 19
Sound Generat10n 20
Arrays 21

Creat i ng an Array 21
Initializing th Array 22
Access1 ng Data in an Array 22

Memory Allocation 23
Displaying the Amount of Memory

Available 24
Resi zi ng Memory 24

Getting Results Page 5 - 1 August 30, 1984

Overview

There are some basic features of the Macintosh you need to understand before
you can use it effectively. To illustrate these features I we will present a
series of examplesl similar to the method used in Getting Startedl but giving
a more detailed explanation of the commands as they are presented.

Many of the commands you w111 use in this chapter will be easy to understand
at first glance. The example in which the command was introduced should
make its usage clear. Others will require more explanation. We will explain
the topic being presented and give any additional information you need to
know to understand the example. If you want to know more about a particular
commandl refer to either the appropriate reference chapter of this manual or
the glossary.

As you go through this chapterl be sure that you try each example before you
go on to the nextl as we will use each step to build the next (yery much llke a
FORTH program).

Some of the examples are short enough that you can execute them directly
from the keyboard without saying them (you will be instructed to "execute"
the example). Others are longer and you may be asked to modify them later.
To avoid re-typing the entire example, you will be instructed to save the
example in a block on disc (using the editor -- you will be instructed to "edit"
the example, then "load" it). If you skipped oyer the Editor chapterl stop now
and read it. We will assume that you know how to use the editor to complete
thi s chapter.

When MacFORTH words are included within text, they are printed in bold face
capital letters to differentiate them from the rest of the text. We use the
convention of capitalizing all MacFORTH words. This is by no means
mandatoryl as MacFORTH does not discriminate between upper and lower case
FORTH words (WORDS is equivalent to words or Wordsl or eYen WoRdS)
when executing the n,me of a definition. If this is important to you I refer to
the AdYanced Topics chapter discussion of the LOWER.CASE option.

Getting Results Page 5-2 August 271 1964

Set Up 8 Work File

We begin this section by creating a blocks fHe for you to use. If you or
someone else has already gone through this chapter, the f11e may already
exist.

Disp-laY.ing the Disk Directory
Look at the contents of the disc by executing

ItHEAtiAL DIA

This will display the directory of the disc in the internal drive.

If the F11e Exists
If the f11e "Work F11e Blocks" already exists (it is in the directory listing),
someone else has created it~ execute

USE u Uork File Blocks M

Vou can now edit the "Work FHe Blocks" file.

If the FHe Doesn't Exist
If the file "Work File Blocks" doesn't exist (it doesn't appear in the directory
listing), you need to create H. Execute the following (don't forget a space
after the quotation marks):

12 II Uork File Blocks" NEU,BLOCKS,FILE COHSTAHT UOAK,FILE

This will give you a working f11e named "Work File Blocks H with 12 blank
blocks to use as you complete this chapter. (Vou may want to keep it around
as you go through the manual in order to keep any examples you might want to
reload.)

File Commands Used
NEW.BLOCKS.FILE creates a new blocks file with the specified name and
number of blocks. If successful, it returns the f11e number of the new file. If
an error occurs while creating the new f11e, an error message is displayed,
and processing is aborted.

The constant WORK.FILE is used as a convenient reference to the newly
created f11e. Vou should use a constant when referring to a file for the sake
of readabi 1 i ty.

Getting Results Page 5 - 3 August 27, 1984

Windows

One of the most innoyetiye feetures of the Mec is its ebility to creete end
display windows. Eech window cen be used for e different purpose end cen
run its own progrem. Let's begin this exemple by resizing the MecFORTH
window to ebout two inches high et the bottom of the screen.

Dreg the size box upwerds to shrink the window to ebout two inches high.
Next dreg the entire MecFORTH window down to the bottom of the screen.
Your screen should now look like figure 5.1 below.

Figure 5.1

Next creete e new window nemed TEST. WINDOW and add it to the display.
Execute the following:

HEU.UIHDOU TEST.UIHDOU
TEST.UIHDOU ADD.UIHDOU

At this point the new window will eppeer end become the active window.
Click in the MacFORTH window end continue.

Getting Results Pege 5 - 4 August 27 I 1984

NEW.WINDOW created a window definition named TEST.WINDOW. Each
window created in MacFORTH has an array associated with it which contains
information about the window. Information about the size, starting location,
program to execute, text font, size, mode and style, etc. that pertains to the
window is stored in this array. The address of this array (the ·window
pointer") is left on the stack when you execute the name of the window. When
you want to reference your new window, use the MacFORTH word
TEST.WINDOW which you just created. TEST.WINDOW will place the
·window pOinter" (or "wptr· in stack notation) for this window on the stack.
The MacFORTH routines which manipulate windows require the window
poi nter for the wi ndow to be on the stack.

All windows that can be displayed are kept in a list of windows maintained by
the Macintosh. ADD.WINDOW inserts the window specified (by its window
pointer) into the Mac's list of windows, displays itl and makes it the active
window.

Only one window can be active at a time. All input/output is by default sent
to the active window. To activate a new window, simply click the mouse
down in the window that you want to become active. Click down in the new
window and then back in the MacFORTH window.

The default action of any window when it is activated is to beep for all user
events (mouse down, keystrokes, etc.). The ON.ACTIVATE command allows
you to specify the program to execute when the window is activated.
Execute:

TEST,UIHDOU OH,ACTIUATE QUIT

to specify the program QUIT to execute when TEST.WINDOW is activated.
QUIT is the program which runs MacFORTH itself (it waits for input, executes
it, and responds ·ok"). Now try clicking in TEST.WINDOW and pressing
Return. Go back to the MacFORTH window (by cUcking in it) and continue.

You can also activate another window by using the SELECT.WINDOW
command. SELECT.WINDOW expects the window pOinter of the window to be
selected on the staCk. For example, to activate the new window from the
MacFORTH wi ndow I execute:

TEST,UIHDOU SELECT,UIHDOU

and go back to the MacFORTH window by clicking in it.

Try dragging each window around on the screen (if you don't know how to do
this, run the Guided Tour provided with your Macintosh).., Place them in any
position you like, but be sure each window is visible when you are done.

Getting Results Page 5 - 5 August 271 1984

Error Handling

When an error occurs in a window other than the MacFORTH window1 the
MacFORTH window is actiyated. The error message (if any) is displayed in the
MacFORTH window1 not the window the error occurred in.

This enables you to do any debugging from the MacFORTH window 1 allowing
you to see when and how the error occurred. For e)(amplel actiyate
TEST. WINDOW and e)(ecute:

QUERlY

and you will see the error message
QUERlY ?

appear in the MacFORTH window because MacFORTH doesn't understand the
word QWERTY.

Forgetting a Window

When you forget a window1 it is remoyed from the Macintosh window list and
taken off of the display (if yisible). Forget your new window now by
execut lng:

FORGET TESl,UIHDOU

Any references to TEST.WINDOW, as with any other forgotten FORTH word,
will not be understood by MacFORTH as it has been remoyed from the
dictionary.

Getting Results PageS -6 August 27, 1984

Window Attributes

You can see that the MacFORTH window has both a size box and a close box;
the editor window has only a close box, and the new window has neither.
These are all attributes about a window that can be included or left off,
dependi ng on what you want the wi ndow to do.

Let's continue by creating a new window to work with. Edit the following
example into block 2 of your ·Work File Blocks· file:

(He. Uindo. Exaaple)
HEU.UIHDOU EX.UIHDOU

• Exaaple Uindo.- EX.UIHDOU U.TITLE
CLOSE.BOX SI2E.BOX + EX.UIHDOU U.ATTRIBUTES

EX.UIHDOU ADD.UIHDOU

Now load it by executing
2 LOAD

EX.WINDOW has two new features that the preyious window you created
didn·t haye: a close box and a size box. The word W.ATTRI8UTES allows you
to define the features of a window when it is created. These features were
gi yen to the wi ndow when you executed:

CLOSE. BOX SI2E.BOX + EX.UIHDOU U.ATTRIBUTES

Refer to the Window chapter for a complete listing of all possible window
attributes.

The default title for a window is "Untitled" (as you saw in the first window
you created). W.TITLE allows you to assign your own title to a window.
W.TITLE expects a string address on the stack (the string address was left
on the stack by the word -) under the window pointer. By executing

- Exaaple Uindo.- EX.UIHDOU U.TITLE

in the aboye example, you assigned the title "Example Window" to the window
EX.WINDOW (we refer to windows by their FORTH name for clarity.)

Getting Results Page 5 - 7 August 27, 1984

Changing the Window Title

You can also change the window title after it has been displayed using the
word SET.WTITLE. For example, execute the following to change the name
of the new window to "Example Workspace":

• Exa.ple Uork~pace· EX.UIHOOU SET.UTITlE

Activate the editor window now (by either clicking in it or choosing the
"Enter Edit" item from the "Edit" menu). Its title is:

BIIc# 2 of 11; File - WORK FILE BLOCKS

Now edit block 1 by clicking the up arrow of the editor control bar. The title
of the menu changes to:

BIIc# 1 of 11; File = WORK FILE BLOCKS

The MacFORTH editor uses the SET.WTITLE command to change the title of
the editor window each time a different block is displayed.

Closing a Window

When you close a window by clicking in its close box, it is hidden from view.
The window closest to the "front" of the display (the "top" window is then
activated. Select EX.WINDOW by executing

EX.UIHOOU SElECT.UIHOOU

Now click in its close box. When EX.WINDOW disappeared, the "top" window
became active. Be sure the MacFORTH window is active now by clicking in it.

Hiding and Showing a Window

From the above example, you saw how you can hide a window by clicking in its
close box. To make a window re-appear, use the SHOW.WINDOW command.
SHOW.WINDOW re-displays the window specified by the window pOinter
given. Execute the following to make EX.WINDOW re-appear:

EX.UIHOOU SHOU.UIHOOU

EX.WINDOW is now there, but it is behind the active window, in this case, the
MacFORTH window. To see EX.WINDOW, close the editor window (enter the
editor and click in its close box), then close the MacFORTH window by clicking
in its close box. There it is!! Remember, SHOW.WINDOW makes the speCified
window visible, but not active. A "visible" window is on the desktop, but may
be currently under another window.

Getting Results Page 5 - 8 August 27, 1984

You can also hide a window with the HIDE.WINDOW command. Like
SHOW.WINDOW, HIDE.WINDOW expects a window pointer on the stack.
Return to the MacFORTH window by selecting the "MacFORTH Window" item
from the "Options" menu. Execute the following to make the MacFORTH
window disappear:

SYS.UIHDOU HIDE.UIHDOU

Return to the MacFORTH window by selecting the "MacFORTH Window" item
from the "Options" menu.

Window Bounds

You can also set the initial position and size of a window using the
W.BOUNDS command. Edit the following example into block 3:

(He. Uindo. TEST.UIHDOU2 Exa.ple)

HEU.UIHDOU TEST.UIHDOU2
- Te~t Uindo. 2- TEST.UIHDOU2 U.TITLE
188 158 388 i88 TEST.UIHDOU2 U.BOUHDS

TEST.UIHDOU2 ADD.UIHDOU

Now load it by executing
3 LOAD

You created a new window named TEST.WINDOW2, gave it the title "Test
Window 2", set its starting position to 100,150 relative to the top left corner
of the screen (which is at 0,0) and made it a window 200 dots (300-100=200)
by 250 dots (400-150=250).

The values 100 150 300 400 defined the window size by giving its "tlbr" <1op,
left, bottom, right) values. This 1s easy to remember, because windows have
four sides: top, left, bottom, and right. So in the example, the top of the
window is100 dots from the top of the screen, the left side of the window is
150 dots from the left side of the screen, the bottom of the window is 300
dots from the top of the screen, the right side of the window is 400 dots from
the left side of the screen.

The default window bounds are
188 188 288 388 U. BOUHDS

Getting Results Page 5 - 9 August 27, 1984

Hodifying the Cursor

You can change the type of cursor (currently an arrow) using the SET.CURSOR
command. For examplel to change the cursor to the wristwatch cursor (the
cursor displayed when the Mac wants you to wait)1 execute:

UATCH SET.CURSOR

Return to the arrow cursor by executing:
I HIT. CURSOR

The optional cursors you can select with SET.CURSOR are:
I BEAM (the cursor used in the edi tor)
UATCH (the wri st watch)

You can also fetch the current cursor with SET.CURSOR. This is useful for
the times you want to change the cursor during a specific operation and then
restore it to its previous image. The fonowing example changes the cursor to
a wristwatch during a delay 100PI then restores the cursor to its previous
image (enter it into block II 4):

DELAY (---)
GET. CURSOR (~ave t he current cursor on the

stack)
UATCH SET.CURSOR
18888 8 DO LOOP (a delay loop that does nothing)
SET.CURSOR (re~tore the cursor)

Load it by executing
i LOAD

and try a few tests:
IHIT.CURSOR DELAY
IBEAM SET.CURSOR DELAY

Rememberl if you try
UATCH SET.CURSOR DELAY

you won·t know when the test is complete until you get "ok-.

Execute
IHIT.CURSOR

to return the cursor to the arrow before you continue.

Refer to the -More Examples- file for more examples of cursors.

Getting Results Page 5 - 10 August 271 1984

Hi di ng the Cursor

You can hide the cursor (make it invisible) by executing the HIDE.CURSOR
command. To make it reappear, execute the SHOW.CURSOR command. These
commands are useful when you don't want the cursor to interfere with the
process being performed. We used them in the Getting Started chapter finger
painting example.

Use them with one important caution in mind, however. The user expects to
see the cursor move when she or he moves the mouse. If the cursor is hidden,
it will appear that the system is not responding. If you hide the cursor, be
sure to make it reappear when you are done.

Directing Output to 8 Window

There are times you want to get information or change some characteristic of
a window without activating it. The commands WINDOW and SET.WINDOW
allow you to access the information about a window without activating the
window. WINDOW selects a specified window for output, and SET.WINDOW
returns the wi ndow poi nter of the current wi ndow.

For example, the window EX.WINDOW was created with the default text font
and mode (these characteristics are discussed in de tan in the Graphic Results
chapter). The MacFORTH window uses text font 41 and text mode 2. To set the
EX.WINDOW text font and text mode to be the same as the MacFORTH window,
edit the following definition into block five:

CHAHGE, TEST (---)
GET,UIHDOU (save current wptr on the stack)

EX,UIHDOU UIHDOU (select EX.UIHDOU)
CA . II Be fore, , . II
4 TEXTFOHT ~elect the text font
2 TEXTMODE ~elect the text mode
CR ." After"

UIHDOU (restore the window)

CHAHGE.TEST

Load and test it via
5 LOAD

Getting Results Page 5 - 11 August 271 1984

When WINDOW is executedl it makes the selected window the current window
for output. If you execute WINDOW outside of a definition (via the keyboard)1
be sure to re-select the MacFORTH window before you press return (the name
of the M.acFORTH window is SYS.WINDOW). If you don't re-select the
MacFORTH window1 a11 output is directed to the other window untiJ you
execute

SYS,UIHDOU UIHDOU

You can see that the word "Before" was displayed in the default Macintosh
font. "After" was displayed in the MacFORTH default textfont.

The House

You can read the current position of the mouse at any time with the word
eHOUSEXY. The x and y coordinates of the mouse are returned on the stack
(x under y). Here's a word to fonow the mouse and report its current position
relati¥e to the acti¥e windoH-:

TRACK ,MOUSE (---)
BEGIH CR • Mouse At: • @MOUSEXY SUAP , , AGAIH i

TRACK ,MOUSE

This wi11 send you into an infinite loop which prints the current position of
the mouse. Try it out. Move the mouse a11 over the screen and you'l1 see the
position change.

To get out of this word (or to escape from any endless loop that displays
output) I select the "Abort" item from the "Options" menu (or press HA).

Text Output

So farl we have used .- exclusively as the way to output character data. You
can also type a string from memory or emit a single character. The word
EHIT displays the ASCII character given on the stack (refer to the ASCII
Chart on the last page of the manual for specific ASCII characters). For
examplel to output an asteriskl execute (in decim(1):

12 EMIT
To type a string from memoryl use the words COUNT and TYPE. MacFORTH
strings contain the length of the string in the first character positionl
fonowed by the string itself. Given the address of a stringl COUNT returns
the address of the first character in the string under the length of the string
(in bytes). TYPE displays a string given an address and length on the stack.

Getting Results Page 5 - 12 August 271 1984

Creeting e String
There are many ways to creete strings in MacFORTH. Here are the two most
common methods:

e.) The word .. creetes a string in the object area (delimited by It) and leaves
its address on the stack. You have already used this technique when
defining window end file names earlier in this chapter. The format for
thi s method is:

• <stri ng>·

Rememberl the leading quote is a MacFORTH wont it must have a space
before and efter it. The space after it is not included in the stringl it
separ8tes the string from the forth word -. The delimiting quote does
not need a space before or after it (we recommend you leave a space
after it for readability). For examplel to create and displey a string
containing the name of the first NASA Space Shuttlel you would execute:

• Colu.bio· COUHT TYPE

Note: The string eddress is left on the stack and cannot be re-calculated.
If you need to use the address more than once, duplicate the address
bef ore usi ng it.

b.) You can create a named stri ng usi ng CREATE and ~ - in the f 0 11 owi ng
format:

CRERTE <string no.e> ,. <string>·

Like - I you must have a space immediately following :. The advantage
to this method is that you can refer to the string by name. For examplel

to create a string containing the neme of the second NASA Space Shuttlel

execute:
CRERTE SHUTTLES ,. Challenger·

To display the namel execute:
SHUTTLE$ COUHT TYPE

Getting Results Page 5 - 13 August 27, 1984

Keyboard Input

MacFORTH allows you to control input from the keyboard from the level of a
single keystroke at a time to input of numbers and strings.

I nput of Keystrokes
The word KEY captures ASCII keys from the keyboard (command keys are
executed automatically) and returns the character value on the stack (refer to
the ASCII chart appendix for the ASCII character values). For example,
execute:

KEY ,

and press the "*" key (shifted 8), and you'l1 see that the ASCII character value
for asterisk is 42. When KEY executes, it does not display the keystroke (as
you saw, the * was not displayed). If you want the keystroke displayed,
duplicate the value (with DUP) and EMIT it. This word is handy for words
like:

ANSUER,Y/N (-- flag I flag = -1 if Y, 8 if anything e15e)
," Ans.er Yes or No (YIN) -)- KEY OUP EMIT 89 (Y). j

Now try executing ANSWER.V/N and responding with uppercase V or N. The flag
returned on the stack is true if a capital V was pressed. Now try it out.
Execute

ANSUER,Y/H ,

and press uppercase V. Now try the same test, but this time press a different
key.

If you wanted to look for either an upper or lowercase V (uppercase V has
ASCII value 89, lowercase y has ASCII value 121), you could modify
ANSWER. YIN and replace the phrase

89 (Y) •

wlth:
DUP 89 (Y) = SUAP 121 (y) = OR

Note: KEY traps the f 0 11 owi ng keys:
Return (converts it to 8)
Backspace (ignores it and beeps)
Tab (converts it to an ASCII space)

Refer to the "Handling Keystrokes" section of the Windows chapter for more
information.

Getting Results Page 5 - 14 August 30, 1984

Number Input
To input a number using MacFORTHI use INPUT.NUMBER. INPUT.NUMBER
accepts a number of up to the width specified (1n digits). After you press
Returnl the number is converted from a string to binary. If the string is a
yalid numberl the number is returned on the stack under a true flag. If the
string is not a yaUd numberl a zero ;s returned under a true flag. If no number
is input (the operetor just pressed Return) a false flag is returned. Try:

5 IHPUT.HUMBER CR ..

After you press Returnl MacFORTH will be waiting for input. Input the number
123# then press Return. The numbers on the top of the stack are -1 and 123.
This indicates a number was inputl and the number is 123. Now try another
example. Execute:

5 IHPUT.HUMBER CR ..

Againl after you press Retuml MacFORTH will be waiting for input. This timel

input an invalid number. Input
DUD

Since -DUO- is not a yalid numberl a 0 was returned on the stack under a -1 1

indicating a string had been inputl but it was invalid.

During conversion of the string to binarYI if an invalid numeric character (not
o thru 9 or minus sign) is encounteredl MacFORTH will stop converting the
stri ng to a number. The number converted up to that poi nt wi 11 be returned on
the stack under a true flag. If the first character is inya1idl a zero is
returned under a true flag.

If nothing is input (the operetor just presses Return)1 a zero flag is returned.

If this seems like a lot of things to remember for just inputting a numberl you
could define a word like:

: ASK.HUMBER (-- n)
BEGIH CR ." Input Hu.ber ->" 3 IHPUT.HUMBER UHTIL j

When ASK.NUMBER is executed I it will repeat the prompt "Input Number -)"
until a number is entered} and leave the converted number on the stack.

Getting Results Page 5 - 15 August 27} 1984

String Input
The word INPUT.STRING accepts a string of characters from the keyboard. It
takes an address to store the string under the maximum number of characters
to input (up to 255). This way you can control how many characters can be
input. When INPUT.STRING is executedl the system will stop what it is dOing
and wait for a string to be input. The following example will input a string of
up to 12 characters to PAD (the MacFORTH scratchpad buffer)1 and then
display it. Rememberl once you execute INPUT.STRING (by entering the
following phrase)1 the system will wait for a string to be input. Now try:

PAD 12 INPUT,STRING

After you press Returnl MacFORTH will wait for you to input a string. Input
the string (up to 12 characters) and press Return. To see the string you inputl

execute:
PAD COUNT TYPE

You can also use INPUT.STRING to input into a string variable. The following
example will create a string Yariable named NAMES and input a string into it:

CREATE NAMES J- Bill Smith"
NAMES COUNT TYPE

After you enter the next 11nel the system will wait for you to enter the name
stringl so input the name Joan Jones.

NAMES 18 INPUT,STRING
NAMES COUNT TYPE

Waming: If you try to enter a string longer than the original string into a
string yariablel you will overwrite part of the object area and may cause the
system to crash. Be sure that the stri ng Yari ab 1 e you are usi ng is long enough
by counting the number of characters in it. An easy way to create a string
variable of the proper length is to use numbers in the string. For examplel to
create a string variable 18 characters longl you could execute:

CREATE MYS J- 123456789812345678- (18 char ~trin9)

If you aren't sure of the current length of a stringl just fetch the count. For
examplel to fetch the length of MV$ you would execute

MY$ C@

Getting Results Page 5 - 16 August 271 1984

Window Function

The default program for a newly created window when it is activated is to
just beep at all mouse CliCKS or keystrokes. You can assign a program to a
window using the ON.ACTIVATE command. When the window is activated.
the program assigned to it is executed.

When a window is activated, its program is passed a flag telling whether it is
being activated (a true flag) or deactivated (a false flag). The program then
determi nes what to do and runs.

When a window is deactivated (by activation of another window. or by closing
the window), the program it is running is aborted immediately. and the
activated window is given control to run its program.

To l1lustrete this point, activate the MacFORTH window and execute the
following:

TEST (---)
188 8 DO I, lOOP CR ,. Te~t Done"

TEST

As you would expect, TEST displayed the numbers 0 through 99, output a
carnage return and displayed 'Test Done".

Execute TEST again. but this time, before it completes. activate EX.WINDOW
(by clicking in it). As soon as you activated EX.WINDOW. did you see that
TEST stopped executing and control was passed to EX.WINDOW? Re-activate
the MacFORTH window and you'll get "ok", indicating TEST was aborted, and
MacFORTH is waiting for your next request.

Assigning 8 Program to 8 Window

You assign a progrem to a window using the ON.ACTIVATE command. This
progrem will replace the default progrem. Any program assigned to a window
will be passed a flag when the window is activated telling it whether the
window was activated (a true flag) or deactivated (6 false flag). This allows
you to do any initialization when the window is activated. and perform any
clean up when the window is deactivated. Your program must be aware of this
flag and handle any special cases for activation or deactivation.

Getting Results Page 5 - 17 August 27. 1964

To illustrate this feature# assign a program to EX.WINDOW and watch it run.
Edit the fol1owing example into block -6 (and then load it):

TEST,ACTIUATE (flag --)
IF ,- Uindo. Activated!!- 3 SYSBEEP UORDS
ELSE ,- Uindow Deactivated!!- 3 SYSBEEP
THEti

EX.UItiDOU OH.ACTIUATE TEST.ACTIUATE

ON.ACTIVATE assigned the program TEST.ACTIVATE to EX.WINDOW.

ActiYate EX.WINDOW by either clicking in it or using SELECT.WINDOW.
When the window is actiYated# it will run the program TEST.ACTIVATE#
which displays the message "Window ActiYated!r# and executes WORDS. When
WORDS has completed# it will pass control back to the MacFORTH interpreter#
which will display "ok".

Now cl1ck down in another window. When the window is deactivated,
TEST.ACTIVATE will be executed again, but this time a false flag is passed#
indicating the window is being deactivated. The message "Window
Deactivated!!" will be displayed# and control is passed to the newly selected
window.

Window Function Template

Each program assigned to a window should be similar to the following
template:

UItiDOU.FUtiCTIOti (activate flag --)
IF <activate code>
ELSE <deactivate code>
THEN

This is discussed in more detail in the Windows chapter.

Hultiple Windows

The number of windows you can have and display at the same time is limited
only by the amount of memory avallable. When a window is activated, its
program will run until it completes or another window is activated.

Getting Results Page 5 - 18' August 27# 1984

Menus

Another important innovation of the Macintosh is the use of menus. Menus
allow you to present a large number of options to the user while at the same
time not requiring him or her to go through seyeral layers of traditional
menus or remember a large number of commands.

The menu examples presented in the previous chapter should have given you a
good foundation for creating your own menus. For an in-depth discussion of
menus, refer to the Menus chapter.

Sound Generation

The Macintosh supports a wide range of sound capabilities. MacFORTH
provides access to the ROM sound driver for complex sounds (free form and 4
voice wave form) as well as versatile support for simple square waye tone
gene rat ion.

5i mp 1 e Tone Generation
In order to generate distinctive sounds to alert the operator or play simple
me 1 odi es, MacFORTH proyi des the word TONE. TONE expects three thi ngs on
the stack:

durat ion \ YO 1 ume \ frequency

Duration is expressed in increments of 1/60 of a second -ticks" and is in the
range 0 through 256 (0-4.5 seconds).

Volume is expressed in a scale from 1 through 255, with 255 representing the
loudest. The volume is also determined by the yalue you haye chosen in the
control panel.

Freguency is expressed in hertz * 10.

For example,
68 128 1888 TOME

wi 11 generate a tone of 100 Hz at hal f YO 1 ume for 1 second. Here are a few
others to try:

68 128 188 TOME
68 128 18888 TOME
128 64 38888 TOME

Getting Results Page 5 - 19 August 27, 1984

Detecting Sound in Progress
The word ?SOUND lets you check to see if a tone or series of tones 1S
currently be1ng sounded.

Aborting Sound in Progress
The word HUSH allows you to abort any sounds currently being generated.

Rest Notes
A frequency of 0 walts the supplled duration wlth no sound output.

Note/FreQuenc~uivalence
The following table provides frequency equivalence for notes 1n an 8 octave
human tempered scale:

Octave (freQuency*10)

Mote ~ 1 ~ d 1 ~ 2- 1
C 164 327 654 1388 2616 5233 18466 28938
Ca 173 348 693 1386 2772 5544 11887 22175
0 184 367 734 1468 2937 5873 11747 23493
oa 194 389 778 1556 3111 6223 12445 24898
E 286 412 824 1646 3296 6593 13185 26398
F 218 437 673 1746 3486 6985 13969 27936
Fa 231 462 925 1858 3788 7788 14888 29688
G 245 498 968 1968 3928 7848 15688 31368
Ga 268 519 1838 2872 4153 8388 16612 33224
A 275 558 1188 2288 4488 6888 17688 35288
Aa 291 563 1165 2331 4662 9323 16647 37293
B 389 617 1235 2469 4939 9678 19755 39511

Gett lng Results Page 5 - 20 August 30, 1984

Arrays

Arrays are simple! An array is just an area of memory you set aside to store
data in. You decide what is kept in the array and how the data is accessed.
This can range from a very simple, one dimensional array storing single
characters to a multi-dimensional array storing complex data items.

Creat i ng an Array
To create an array, you s1 mp 1 y assi gn a name to an area of memory and
a 11 ocate the amount of space you need. Use CREATE to name the area and
ALLOT to allocate the space. For example, to allocate space for an array
whi ch wi 11 hold the ages of 10 of your employees, you woul d execute:

CREATE AGES 18 ALLOT

You now have an area of memory allocated (10 bytes) to the array AGES.
Since the values in this array will each fit into 1 byte (0-255), only 10 bytes
are needed.

If you wanted to create another array which would keep track of their
salaries (in the range $ 1 5,000-$75,000), each element in the array would
require 4 bytes (a 32-bit integer). You could create an array named
SALARIES for this information:

CREATE SALARIES 18 4* ALLOT

Why did we specify 10 4* instead of 40? Which do you think more clearly
describes 10 elements, each 4 bytes long?

Initializing the Array
You can initialize an array in many ways. The MacFORTH words ERASE and
BLANKS are convenient for zero and blank filling arrays. Try zero filling the
AGES array now by executing:

AGES 18 ERASE

Ref er to the MacFORTH Glossary entry FILL for a general purpose word to 1111
memory wi th any character.

Getting Results Page 5 - 21 August 30, 1984

Accessing D8t8 in 8n Arr8Y
Given the b8se 8ddress of the 8rr8Y (given by its n8met you C8n 8dd the
8ppropri8te offset to c81cu18te the address of 8ny element in the 8rr8y. For
example, to get the first element in the AGES arr8Y (with subscript 0), you
would execute:

AGES C@ ,

and you'll see that the value is zero. To re8d the second element in the AGES
8rr8Y (with subscript 1), you would execute:

AGES 1+ C@ ,

and so on. Remember, the subscript of 8n element is zero b8sed, me8ning that
the first element is subscript 0, the second, subscript 1, the third, subscript
2, 8nd so on. This is 10gic81 if you think of the start of the 8rr8Y 8S the base
of the 8rray, 8nd e8ch element is just 8n offset from the base. The first
element is located at the b8se, the second is located one up from the base,
and so on ...

Storing d8ta in the AGES array is just as easy. For example, to store 27 in
the third element (subscript 2), you would execute:

27 AGES 2+ C!

Since e8ch element in the AGES array is one byte long, calculating the
address of any element is as easy as adding its subscript to AGES. In the
SALAR I ES array, it is almost as easy.

Each element in SALARIES is 4 bytes, so you need to multiply the subscript
by 4 (the length of each element) to get the address of any element in the
array. For example, to get the first element (subscript 0), you would execute:

SALARIES @, (or) SALARIES 8 4* + @ ,

To get the third element (subscript 2), you would execute:
SALARIES 2 4* + @ ,

Why did we use 2 4* + instead of 8? The first expression (2 4*) tells you
that you were getting the second 4-byte element, the second (8) is ambiguous.

Here's 8 word to disp18Y each element in the AGES 8rray:
SHOW ,AGES (---)

188 DO CR I, ,R. RAGES 1+ C@, LOOP

or, e8ch element in the SALARIES array:
SHOW, SALARIES (---)

18 8 DO CR I, R = R SALARIES I 4* + @ , LOOP

Getting Results P8ge 5 - 22 August 27, 1984

You've noticed by now that MacFORTH doesn't check to see if you are using a
valid subscript when accessing an array. This saves the tremendous overhead
of checking each and every subscript each and every time an element in the
array is accessed. It is your responsibility to check the values when
necessary.

As we said, what you do with an array and the data you keep in it is
completely up to you. Arrays in MacFORTH are free-form areas of memory. If
you are new to FORTH programming, some interesting words to remember
when using arrays (or any time you are manipulating memory) are:

@ ue <U@ U! C@ c! eMOUE
FILL ERASE BLAHKS

Getting Results Page 5 - 23 August 27, 1984

Memory Allocation

Memory 1n the Macintosh is allocated from a pool of available memory called
the "heap." Although most memory allocation is handled automatically by
MacFORTH, there are two areas which you must be aware of and explicitly
control: the object and current vocabulary areas. We leave the al1ocation of
memory up to you in order to give you more control of this resource.

When a new word is created 1n MacFORTH, the name is placed in the current
vocabulary area (usually the FORTH vocabulary). The parameter field (which
includes data, memory addresses or 68000 instructions) is placed in the
object area.

If you need more room while compillng a program and you get one of the
f 0 11 owi ng error messages:

VOCABULARY FULl!
or

OBJECT FULl!
you wi11 need to resize the appropriate space.

Dis~YiDg the Amount of Memo[y AYallable
You don't have to watt untll you get one of these errors in order to resize the
appropriate space. You can monitor both areas as you add definitions by
executing the word ROOn. See how much room you have allocated and
available now by executing

ROO"

and you wll1 see the display:
aaaa OF bbbb Object Bytes Available
cccc OF dddd Current Vocabulary Bytes Available

eeee Heap Bytes AvaHable

aaaa is t.he number of unused object bytes available and bbbb is the total
number of object bytes allocated. Subtracting aaaa from bbbb will give you
the number of object bytes used).

cccc is the number of unused bytes in the current vocabulary and dddd is the
total number of bytes allocated. Subtracting cccc from dddd will give you the
number of current vocabulary bytes used).

eeee is the amount of heap space available. This tells you how much memory
is available for use. This is actually the maximum amout of available heap
space, including purgable resources (Hke fonts). If you allocate all of this
space, the current font wi 11 def aul t back to the system font

Get t i ng Resul ts Page 5 - 24 August 30, 1984

Resizing Memory
You explicitly specify the amount of space to be used by either the object
space or current vocabulary space. This way you can increase or decrease
e1 ther as you needs requi reo

To resize the object space, use the command RESIZE . OBJECT, specifying the
amount of space to allocate to the area. For example, to allocate 10,500
bytes to the object area you would execute:

185S8 RESIZE.OBJECT

To resize the current vocabulary space, use the command RESIZE.VOCAB,
specifying the amount of space to allocate to the area. For example} to
allocate 9500 bytes to the current vocabulary space you would execute:

9588 RESIZE.UOCAB

After resize either memory area, it is wise to verify the change by executing
ROOM. You will notice the amount of heap bytes available change as well as
the amount of space allocated to the area modified.

You can also resize the vocabulary and object area with nIHInUn. UOCRB and
nIHInUn. OBJECT respecti\lely. Suppose you need at least 1500 bytes of
object space to load a particular program. You could execute ROOM and
calculate the appropriate value for RESIZE.OBJECT. MINIMUM.OBJECT will
do all that work for you. All you would need to do is execute:

1588 MINIMUM.OBJECT

If you try to allocate more space than is available, or to shrink either memory
area smaller than its current contents, MacFORTH will issue an error
message. Refer to the Error Hand11ng chapter for more information when one
of these errors occurs.

Getting Results Page 5 - 25 August 27, 1984

Gatting Results Page 5 - 26 August 27# t 964

Chapter 6: Graphi c Results

Overview 2
Preparation 2
QuickDraw™: A Solid Base 2
Your Window, Your Canvas 3
The MacFORTH Window 3
Graphics Initialization 4
The Native QuickDraw Coordinate System 4

Cartesi an Coordi nate System 4
The QuickDraw Coordinate System 5
The Magic of QuickDraw 6

Range of Coord1 nates 7
A Handy Tool 7
Line Drawing 8
Window Pen Characteristics 9
T e)(t Output 14

Character Font 14
Text Style 16
Text Mode 17
Text Size 18
Line Height 18

Moving the Origin 19
Background Pat tern 20
Qui ckDraw Shapes 20

Rectangles 21
Ovals 22
Rounded Corner Rectangl es 22
Arcs and Wedges 23

Relative Line Drawing 24
Scaling to User Coordinates 25
Rotate to User Coordinates 26
Point Pairs to Rectangle Coordinate Conversion 27
Integer Trig Functions 27
Finding Out What's There 28
Drawing to Other Windows 28
Demo Programs 29

Graphi c Results Page 6 - 1 August 30, 1984

Overview

Thi s chapter d.i scusses how to produce graphi cs i mages on the Maci ntosh. It
is intended to introduce you, through examples .. to each of the features of the
MacFORTH graphics package. In our examples, we frequently use the analogy of
drawing with a pen on a piece of paper for clarity.

Preparations

It's a good idea to complete this ch6pter in one sitting (it should take you
20-30 minutes). If you h6ve read straight through the preceding chapters you
may w6nt to take a bre6k, then come back to thi s chapter.

As you go through this chapter, let your imagination run free. Explore. Be
creative! Our examples are intended to trigger your own examples. Of all the
wonderful things that Macintosh graphics package is, perhaps the most
important feature is that it's fun to use!

QuickDraw-: A Solid 8ase

QuickDraw is the underlying graphics package from which the M6cintosh User
Interf6ce (ie. menus, windows, etc.) is constructed. Written by Bi11 Atl<inson,
Quicl<Draw represents many major innovations in graphics software
technology.

Quicl<Draw lives up to its name! It's very fast. You can do good quality
animation, fast interactive graphiCS, and complex yet speedy text displays
using the full features of Quicl<Draw. Using Quicl<Draw, you can divide the
Macintosh screen into a number of individual windows. Within each window
you can draw:

- Straight Hnes of any length and width.

- Text characters in a number of proportional and fixed spaced fonts,
with variations that include boldface, itallcs, underline, Sh6dow,
and outline.

- A variety of shapes, either soUd or hollow, including rectangles with
or without rounded corners, ovals, arcs, and wedges.

- An arbitrary shape or collection of shapes, either soHd or hollow.

Graphic Results Page 6-2 August 30, 1984

In addition, QuickDraw has some other abllities that you won't Hnd in many
other graphics packages. These features take care of most of the
"housekeeping" -- the triyial but time-consuming and bothersome oyerhead
that's necessary to keep things in order:

- The ability to deHne many distinct windows on the screen, each with
its own complete drawing enYironment -- its own coordinate system,
drawing location. character set, location on the screen, and so on. You
can easily switch from one window to another.

- Full and complete "clipping" to arbitrary areas, so that drawing will
occur only where you want. You don't haye to worry about accidentally
drawing oyer something else on the screen, or drawing off the screen
and destroyi ng memory.

MacFORTH proyides you with direct access to most of the features of
QuickDraw. Upon this strong foundation we have bunt a two dimensional
graphics package capable of translating pictures and images which are
expressed in natural user coordinates (ie; feet, miles, furlongs, centimeters)
into actual images on the screen. The images that you create may be offset,
rotated, and scaled with respect to the window in which you are drawing.

Your Window ~ Your Canvas

All drawing occurs within the content region of a window. The content region
of a window is the area inside the window excluding the HUe bar, grow box
and any control bars. Each window is a complete and separate drawing
enYironment that defines how and where graphic operations will haye their
effect. Each window has it's own coordinate system, drawing pattern,
background pattern, pen size and location, and character font size and style.
You may instantly switch between windows for graphic output.

The t1acFORTH Window

I n the f 0 11 owi ng examples, you wi 11 use the MacFORTH wi ndow for graphi cs
output. Although both interactiYe transactions with MacFORTH and graphics
output wlll occur on the same window, we will later discuss how to do each
in separate windows.

Now, resize the MacFORTH window to take up most of the aYailable desktop
space. (If you don't understand how to do this, run the Guided Tour to
Macintosh and review the preceding chapters).

Graphic Results Page 6-3 August 30, 1984

Graphics Initialization

Before you begin drawing, execute
GINIT

This wil1 restore the state of the graphics system to it's default state. If.
while trying the examples in this chapter, you become confused as to what is
going on (e.g. drawing in white ink on a white background) use 61NIT to
restore the system to a known state - black ink on white background. Vou will
notice that the cursor moves immediately to the upper left corner of the
window.

The Qui ckDraw Coordi nate System

GUHT also resets coordinate interpretation to QuickDraw native mode (which
we call "native coordinates"), and places the pen at 0,0. let's move the origin
to the center of the screen and display the xy-axis. Execute

CEHTER XYAXIS

Take Noten" QuickDraw native coordinates are different from the normal
Cartesian coordinates that you may have learned in school:

Cartesian Coordinate Sytem
Here's a diagram of the coordinate system most people learned in school. As
you would expect I increasing y-axis values progress YDward l increasing
x-axis values progress to the right.

Hi !I.lJer 'V'
1\
I
I
1(0/0)

lower 'X (-----------------------> Higher 'X'
I

Graphi c Resul ts

I
I
\1

LowerY

Page 6-4 August 30, 1984

QuickDraw Coordinate System
Here's a diagram of the QuickDraw coordinate system. Notice the dHference?
In QuickDraw, as in Cartesian coordinates, x-axis values progress to the right.
The difference is ttll3t y-axis values progress downward.

LowerY
/\
I
I
I

lower 'X (-------------------) Higher 'X'
1(0,0)

When you executed
CEHTER XYAXIS

I
I
\/

Hio.herY

you directed MacFORTH to center the coordinate system and draw an xy-axls.
look carefully at the xy-axis on the screen. The '+' sign for the y-axis (up an
down direction) is at the bottom, not the top (where 1t would be in CarteSian
coordi nates).

GIN IT restores the position of the point (0,0) to the upper left corner of the
window (which you changed by executing the word CENTER). The diagram
below shows how your window relates to the coordinate system in native
QuickDraw coordinates:

top 1 eft corner of screen -.,
V
-----------------) higher'x'

Graphic Results

I --------------
1 10,0
1 1 Mac
I 1 "'lindow
I 1 or Page of
I I Text I
1 1------------- I
I
\I
higher 'Ii

Page 6 - 5 August 31, 1984

Execute the following example:
18 18 MOUE.TO 58 58 DRAU,TO

This will move' the pen to 10, 10 and draw a llne to 50, 50. Notice the line
slopes downward.

MOVE.TO expects two values on the stack (the x and y coordinate of a poi nO,
and moves the starting point for drawing to that posHion. If you think of
drawing l1nes wHh a pen, MOVE.TO Simulates lifting the pen off of the paper
and moving it to the specified location.

DRAW.TO expects two values on the stack (the x and y coordinate of a poinO,
and draws a llne from the current point to the specified point. The new
location becomes the starting point for the next operation. If you think of
drawing llnes wHh a pen, DRAW.TO Simulates keeping the pen down as you
move it to the specified location.

The Magic of QuickDraw
Most major innovation is the result of relaxing traditionally accepted
constraints and discovering new ways of looking at a problem. By relaxing
the CarteSian y-axis constraint, Bill Atkinson was able to construct a
mathematlcally pure model capable of expressing a two dimenSional
coordinate system on bit-mapped graphics screens. Much of the startllng
performance of the QuickDraw package is the result of the far simpler
arithmetic relationships between pOints in graphics memory and QuickDraw
coordinates rather than CarteSian coordinates.

But don't panic! You don't have to learn a new method of dra"Ning points if you
don't want to. MacFORTH allows you to express pOints in the Cartesian

coordinate system if you prefer. Try the fo11owing example:
CARTESIAN ON (specify the Cartesian system)
PAGE (clear the window)
CENTER (center the xy axis in the window
XVAXIS (display the xy axis)
18 18 MOUE,TO 58 58 DRAU,TO (draw a line)

The line that was drawn slopes upward, just as !Jou would expect it to when
drawn 1n a Cartesian coordinate system. To go back to the native QuickDraw
coordinate system. execute:

CARTESIAN OFF

Ttlat's how easy it 1s to change between the two coordinate systems!

Graphic Results Page 6-6 August 31, 1984

Range of Coordinates

Coordinate values are between -32768 and +32767 for both x and y. Based
upon where you place the axis origin, pOints that are calculated to appear
within the \f'/indow will be displayed; all others are not. Execute:

CARTESIAN ON
CENTER discussed later)
1 9 1 9 MOlJE. TO 1 ggg HJg9 DRAW. TO

Notice that the line was drawn right off of the window. Now execute:
29 19 MOUE.TO 1B889B 19999g DRAW.TO

Numbers greater than 32767 "wrap around" to the negative end of the
coordinate system. Coordinate values outside the range :.32767 are invalld.
Refer to the "Scallng to User Coordinates" section of this chapter for how to
deal wi th larger nlJmbers.

A Handy Tool

Enter the following definition to save yourself some typing:
: CLEAN (---) PAGE CENTER CARTESIAN ON ~YA~IS

Try it out now, execute:
CLEAN

** Programming Tip ** \"'/hen writing and testing MacFORTH programs, any
sequence of commands you use a lot should be defined and given a name.

In examples in the rest of this chapter, we will ask you to execute CLEAN to
be sure you are in a known state. Remember, if you re-boot MacFORTH, or
FORGET the word CLEAN, you will need to re-enter the definition. From now
on we'll just use CLEAN to clean up the display and redraw the xy-axis.

Graphic Results Page 6-7 August 31, 1984

Here's a quick summary of the commands we have presented so far:

CARTESIAN OFF Sets mode to native QuickDraw coordinates

CARTESIAN otf Sets mode to cartesian coordinates

CEtHER Positions the xy origin in the center of the window

CLEAN V1ipes the display and places the xy-axis in
Cartesian coordinates on the screen
(this word is only present 1f you enter the definition
given on the previous page)

DRAW. TO Draws with the pen to the specified location from
the current 1 ocat ion
(for now use MOVE.TO before every DRAW.TO on the
same 11ne)

GINIT Reverts to Macintosh native coordinates and places
the xy origin in the upper left corner of the window

MOUE. TO Moves the pen to the specified locatlon

PAGE Cl ears the screen

XYAXIS Displays the xy-axis

Une Drawing

As you have seen, lines are defined by two pOints: the current pen location
and a destination location. When drawing a line, QuickDraw moves the pen
(actually the top left corner of the pen) along the calculated line from the
current location to the destination.

If you draw a line to a location outside your window the pen location will
move there, but only the portlon of the Hne that is calculated to be inside the
window will actually be drawn. This is true for all drawing procedures.

Graphics Results Page 6-8 August 31, 1984

Window Pen Characteristics

The graphics "pen" associated v-lith each window has the following unique
characteri st i cs:

a locatlon
a size and shape
a drawing pattern
a draWl ng mode

Pen Location
The pen location is a point in the coordinate system of the window and is
where QuickDraw will begin drawing the next line, shape, or character.
V-tithin the range of coordinates there are no restrictions on the location or
placement of the pen. Remember, if you posHion the pen outside of the
window, you V10n't see part of the next line or shape dra''''tn (if you leave it
there).

As you have already seen, MOVE.TO positions the pen at the specified
location, and DRAW.TO draws from the current location to the specified
point.

Notice the emphasis that DRAW.TO draws from the current location. To
111ustrate this point, execute the following example (on three separate lines):

CLEAN
Hl 1B MOUE, TO
100 lSS DRAU.TO

"'that happened?? Let's try it again, one step at a time. Execute:
CLEAN

You see that the window was cleared, the xy-axis was displayed, and the "ok"
was displayed in the upper left corner. Next, execute:

lS lS MOUE.TO

look at the xy-axis, where the point (10,10) is. See the "ok"? This tells you
where the pen location was moved to. After MacFORTH processed the
command, it output the "ok" and then moved the pen to the start of the next
line (at the current cursor position). Each time you enter a character, the pen
location is moved to the right (at the pOSition of the cursor). So, when you
exuecte:

lBB 100 DRAU,TO

Where was the current 10catlon when the command was processed? At the
cursor position, just to the right of the DRAW.TO command.

Graphics Results Page 6 - 9 August 31, 1984

This IS why you were given examples v'/ith MOVE.TO and DRAW.TO on the
same 1 j ne. Now try:

CLEAH
18 18 MOUE.TO 188 188 ORAU.TO

and you'll see the line you expected. Remember, the current pen location is
changed when MacFORTH finishes what you just asked in interactive (or
interpretive) mode. While running a program, your pen wi11 move only to
where you specify.

Pen Drawing
You've already seen how to draw using the commands MOVE.TO and DRAW.TO.
If you already know the starting and ending positions of a line, you can
simplHy drawing it with the word VECTOR. VECTOR draws a line between 2
specified points. For example, to draw the same line !'-ivo different ways, you
could execute either:

88 MOUE.TO 188 188 LIME.TO
or:

8 8 188 188 UECTOA

If you only want to display a single dot, you can use the word DOT. DOT
expects the x and y coordinate of the dot you want to display. Try displaying
a few dots by executing:

CLEAH
28 28 DOT
18 18 DOT
38 58 DOT
-18 35 DOT

In MacFORTH, it is easy to define your oV'm shapes. For example, here's a
definition to draw a small box (you may want to edit this definition into a
block and then load it):

BOX (--- I draws a square on the screen
18 18 MOUE.TO -18 18 OAAU.TO

-18 -18 OAAU.TO 18 -18 ORAU.TO
18 180AAU.TO

Now try it out by executing:
CLEAN BOX

Feel free to modify the definition for BOX to create some graphics shapes of
your own. You may want to increase the size of the box, or make a diamond, or
whatever ...

Graphics Resu1ts Page 6 - 10 August 31, 1984

Pen 5i ze and 5ha~
The pen is rectangular in shape, and has a user-deflnable width and height.
The default size (reset by GINIT) 1s a 1 by 1 bit square; the width and height
can range from 0,0 (no pen show), all the way up to 32,767, 32,767 (a very,
very thick pen). If elther the pen width or the pen height is less than 1 the
pen wi 11 not draw on the screen.

You can modify the size of a pen by specifying its width and height in terms
of dots to the 'v1ord PENSIZE . For example,

5 18 PEHSIZE

would specify a pen 5 dots wide and 10 dots high. To see what effect this
has, try a few examples:

CLEAH
t t PEHSIZE 188 188 DOT
5 18 PEHSIZE 58 58 DOT
1 1 PEHSIZE 8 8 -58 -58 UECTOA
t8 3 PEHSIZE 8 8 188 -188 UECTOA

CLEAH
t 1 PEHSIZE BOX

CLEAH
1 5 PEHSIZE BOX

CLEAH
5 1 PEHSIZE BOX

CLEAt!

The pen appears as a rectangle with its top left corner at the pen location; it
hangs below and to the right of the pen location. You can see this by
executing:

18 18 PEHSIZE B BOOT

Think of the coordinate plane as a grid. Individual dots are separated by the
lines of the grid. As the pen moves across the grid, only dots below and to the
right of the pen which fall within the pen size rectangle are affected by the
pen.

Graphics Results Page 6 - t 1 August 3 t I 1984

Pen Mode and Pen Pattern Characterlstjcs
The pen mode and pen pattern characteristics determine how the bits under
the pen are affected when Hnes or shapes are drawn. The pen pattern is an
8-bH by 8""bH pattern that is used like the "ink" in the pen. Five patterns are
predefined: (WHITE, LTGRAV, GRAV, DKGRAV, BLACK). Try a few examples:

CLEAN
18 18 PENSI2E
GRAY PENPAT
-188 188 -18 18 UECTOR
DKGAAY PENPAT
-128 188 -28 18 UECTOR

For fun try:
CLEAN
CREATE <BRICKS>
HEX 888888FF J 888888FF J DECIMAL

CLEAN 28 28 PEHSI2E
<BRICKS> PENPAT
18 18 188 188 UECTOR

Some of the other patterns that we have worked with include:
HEX

CREATE <SPIRAL> 88FEB2FA J 8ABA82FE J

CREATE <CHECKS> CCCC3333 J CCCC3333 J

CREATE <BIG. CHECKS> F8F8F8F8 , 8F8F8F8F ,
CREATE <SIGMAS> 887C4i28 , 1B28447C
CREATE <t.lEAUE> F87422i7 , 8F172271 ,
CREATE <MARBLES> 77896F8F J 7798F8F8 J

CREATE <t.lAFFLES> BFC8BFBF J BaB8BaB8 J

DECIMAL

As you can see, the pen pattern is used to flll in the bits that are affected by
the drawing operation.

Pen Mode
The pen transfer mode determines how the pen pattern is to affect those dots
which pass under the pen. When the pen draws, QuickDra\·v first determines
what bits of the bit map will be affected and finds their corresponding bits in
the pattern. It then does a bit-by-bH evaluatlon based on the pen mode, which
specifies one of eight boolean operatlons to perform. The resulting bit is
placed back into memory.

Graphics Results Page 6 - 12 August 31, 1984

The word PENMODE allows you to specify the current pen mode. Choose the
pen mode from one of the following constants (each mode specified below is
represented by a MacFORTH constant of the same name):

Dot was Dot was
Mode Bl eck Whi te

PAT COpy
PATOR
PATXOR
PATBIC
NOTPATCOPY
NOTPATOR
NOTPATXOR
NOTPATBIC

Force Black
Force Black
Invert
Force White
Force White
No Change
No Change
No Change

Force White
No Change
No Change
No Change
Force Black
Force Black
Invert.
Force White

For each type of mode, there are four basic operations -- Copy, Or, Xor, and
Bic. The Copy operation simply replaces the dots in the destination with the
dots in the pattern, "painting" over the destination without regard for what
is already there. The Or, Xor, and Bic operations leave the destination dots
under the white part of the pattern or source unchanged, and differ in how
t.hey affect the dot.s , t.hus "overlaying" the destinat.ion with the black pert. of
the pattern. Xor inverts the dots under the black part. Bic erases them to
''''thite.

Each of the basic operations has an alternate form in which every pixel in the
pattern is inverted before the operatlon is performed. Each mode is deflned
by name as a constant in MacFORTH, e.g. (PATCOPV). The best way to
understand each mode is to experiment with them. Try the following
examples to start with, and then try some of your own:

CLEAN
<BRICKS> PENPAT
PAnmR PENMOOE
28 28 PEHSI2E
8 8 la8 -la8 UECTOR

BLACK PEHPAT
8 4 58 -58 UECTOR

Graphi cs Resul ts Page 6 - 13 August 31, 1984

Text Output

MacFORTH allows you to output in any text font, style, mode, or size avallable
on the Macintosh. Text drawing does not use the pensize pen pattern or pen
mode, but 1t does use (and mod1fy) trle pen 10ca11on. Each character is placed
to the right of U,e current pen 10ca11on, with the left end of its base llne at
the pen's locatton. The pen 1s moved to the right to the 10cat10n where 1t will
draw the next character. Enter:

GINIT CLEAtf
188 188 DRAIJ,TO

All text drawn on the screen is drawn by QuickDraw. As a result, when the
word DRAW.TO was echoed back to the user as it was typed in, the current
point advanced and was left at the end of U,e text. The line was then drawing
from that point to 100 100 (from the center of the window).

Text echoed back to MacFORTH is a special case, and only effects graphics
drawn interactively in the MacFORTH window. When a carriage return or line
feed is output. MacFORTH determines wtlere to put the next line of text. Text
advances down along the QuickDraw nattve V coordinate unt11 the next llne
would be partially off of the window. MacFORTH then scrolls the window up
to make room for the new 11ne. Enter:

CLEAtf
188 188 MOUE.TO "Now is the time a

-188 -188 MOUE.TO 5 .

To move text around the screen. use MOVE.TO and then ouput the text. If you
attempt to output a llne feed at a point which is not currently in the window,
MacFORTH w111 force it back onto the screen. This is so that all error
messages will appear on the display.

Any text wh1ch occurs with1n a window 1s drawn according to the currently
specified font. style, transfer mode and size. QuickDraw can draw characters
as QU1ckly and easlly as it draws Unes and stlapes, and in many prepared fonts.

Character Font
A character font is defined as a collection of bit images: U,ese images make
up the individual characters of the font. The characters can be of unequal
widths (proportional space characters). A font can consist of up to 256
distinct characters, yet not all characters need be deflned in a single font.
Each font contains a misslng2.ymbol to be drawn in case of a request to draw
a character that is missing from the font (usualllJ 0 -- a ho11ow rectangle).
Each font is assigned a specific reference number. If you have deleted any

Graphics Results Page 6 - 14 August 31, 1984

fonts from the MacFORTH disc (as explained in the Macintosh Users manual
provided with your computer), they won't be available from MacFORTH. The
word TEXTFONT allows you to speclfy the current text font. Choose the text
font from one of the following values (no MacFORTH constants are provided
for the text fonts):

Font
Chicago
Application
New York

Value
o (System font)
1 (New York)
2

3 Geneva
Monaco
Venice

4 (fixed space -- the default MacFORTH font)
5

London
Athens
San FranciSCO

Toronto

6 (Gothic)
7
8 (ransom notes)

9

For example, those of you who are hooked on television police shows will
recognize:

CR 8 TEXTFONT ," Have your goldfish, send cash or tartar sauce"
'1 TEXTFotH

And English history buffs will think of:
CR 6 TEXTFONT ," King Richard III"

To return to the normal MacFORTH system font execute:
'1 TEXTFONT

To read the value of the currently selected textfont, execute:
GET.TEXTFONT .

Graphics Results Page 6 - 15 August 31, 1984

Text Sty~
The text style controls the appearance of the font. The following styles are
avallable: bold l itallc 1 underline l outllne, shadow, condense, and extend. You
can apply these either alone or in combination. Most combinations usually
look bet ter on a larger character Sl ze.

If you specify bold, each character is repeatedly drawn one bit to the right an
appropriate number of times for extra thickness.

Italic adds an italic slant to the characters. Character bits above the base
Hne are skewed right; bits below the base line are skewed left.

Underllne draws a line below the base hne of the characters. If part of a
character descends below the base hne (ie: p) the underhne is not drawn
through the dot on either side of the descending part.

You may specify elther _UIII or ilia ••• Outline makes a hollow outlined
character rather than a soUd one. 'WUh shadow. not only is the character
hollow and outHned, but the outl1ne 1s tt,lckened below and to the rlgttt of the
character to ach1eve the effect of a shadow. If you specify bold along with
outline or shadow. the r,ol1ow part of the character is widened. For both of
these type styles. the text mode (discussed next) must be SRCOR or
SRCXOR.

Condensed and extended affect the horlzontal distance between all
characters, including spaces. Condensed decreases the distance between
characters and extended increases 11.

The word TEXTSTYlE al10ws you to specify the current text style. Choose
the text style from one of the following constants (each style l1sted 1s
represented by a MacFORTH constant of the same name):

51y~ ~ Hex value
PLAIN 0/0 8
BOLD 8 1
ITALIC 1 2
UNDERLINE 2 4
OUTLINE 3 a
SHADOU 4 18
CONDENSED 5 28
EXTENDED 6 48

For example. tf!J:
BOLD TEXTSTYLE ,N Sample N

BOLD UNDERLINE + TEXTSTYLE ,N Sample N

Graphics Results Page 6 - 16 August 31, 1984

To read the current text style, execute
GET,TEXTSTYLE ,

For example, to enhance the current text style with bold face, you would
execute:

GET,TEXTSTYLE BOLD + TEXTSTYLE

Reset the text style to the default (plain setting) enter:
PLA I H TEXTST'ILE

Text Mode
The text mode controls the way characters are placed on a bit image. It
functions much like a pen mode: when a character is drawn, QulckDraw
determines which bits of the ba image will be affected, does a bit-by-bit
comparison based on the mode, and stores the resu1ting bits into the bit
image.

The word TEXTMODE allows you to specify the current text mode. Chose the
text mode from one of the following constants (each mode listed is
represented by a MacFORTH constant of the same name):

SRCCOPY (source copy)
SRCOR (source or)
SRCXOR (source exclusive or)
SRCBIC (source bit clear)

The best way to understand each text mode is to experiment with each. The
default text mode is SRCXOR. Try the following examples to get started,
then continue wah a few of your own:

SRCXOR TEXTMOOE (be sure its the default)
PAGE
l88 l88 MOUE.TO ." HELLO"

(press Return an extra time here to avoid overwr1ting the previous 11ne)
181 181 MOUE.TO ." HELLO·

(again, press Return a few times to avoid overwriting the previous Hnes)
SRCCOPY TEXTMODE
188 l88 MOUE.TO .K HELLO"

Return to the default text mode when you finish experimenting by executing:
SRCXOR TEXTMOOE

Finally, clean up the window by executing:
PAGE

Graphics Results Page 6 - 17 August 31, 1984

Text 51ze
The text size specifies the type size for the font in pOints ("points" here 1S a
printing term meaning 1/72 inch). Any size may be specified. If the
Macintosh Font Manager does not have the font in a specified size, it will
scale a size it does have in order to produce the size desired. A value of 0
directs the Font Manager to select the size from among those it has for the
font; it will choose whichever size is closest to the system font size
(12-point).

The word TEXTSllE allows you to specify the text size. For example, to set
the text size to be 20, you would execute:

28 TEXTSIZE

You can read the current text size by executing
GET.TEXTSIZE .

Here are a few examples to try:
34 TEXTSIZE
21 TEXTSIZE
5 TEXTSIZE
18 TEXTSIZE

and finally, return to the default text size by executing:
12 TEXTSIZE

You can see that when you increase the size of the font., 1t overwrites letters
on previous lines. This is due to the line height for output explained next.

Une Hei91l1
The llne height determines how far to advance down the page or scroll up
when a llnefeed is encountered. Une height should normally be a little larger
than the text size (usually 3 points larger).

The word lINE.HEIGHT allows you to specify t.he line height,
GET.lINE.HEIGHT returns the current line height. Here are a few examples
to try:

15 LIHE.HEIGHT 12 TEXTSIZE (the default values)
28 LI HE. HE I GHT
38 LI HE. HE I GHT
15 LINE. HEIGHT

Execute GINIT to restore text size and Une height.

Graphic Results Page 6 - 18 August 31, 1984

Hoyi ng the Ori gl n

MacFORTH allows you to move the origin for graphics output around on your
window. As you have already seen, XYAXIS draws the xy-axis around the
center of the coordinate system. Execute

PAGE
CEHTER
CARTESIAH OM
X'iAXIS

and you'll see the xy-axis drawn 1n the center of your window. You can also
select the upper and lower left corner of the window as the origin. Try:

PAGE
LOWER,LEFT XYAXIS

and you'll see the xy-axis (only the upper right quadrant) displayed in the
lower left corner of your window. Now t.f!J:

PAGE
UPPER,LEFT XYAXIS

and you'll see the xy-axis (only the lower right quadrant) displayed in the
upper left corner of your window.

From any of these new origins, you can draw graphics just as you did from the
center of t.he window. As before, only those points that are inside the bounds
of the window wll1 be displayed.

You can take moving the xy origin one step further and position it anywhere
(inside or outside the window). The word XVOFFSET allows you to express
the offset from the upper left corner of your window in native QuickDraw
coordinates for your xy origin. For example, to position your origin 150 dots
from the left and 75 dots from the top of your window (the content region),
you would execute:

158 75 XYOFFSET

Now verify this by executing:
XYAXIS

Tryout your new origin location by executing:
PAGE
XYAXIS
8 8 183 -188 UECTOR

and you can see that the origin has indeed been moved.

Graphic Results Page 6 - 19 August 31, 1984

8ackground Pat tern

The default pattern for the background of a given window is white. Vou can
change this to any pattern you ltke using the word 8ACKPAT. Here are a few
examples to try (the word PAGE simply fHIs the background with the current
background pattern):

SRCCOPY TEXTMOOE (so you can see what you type)
DKGRAY BACKPAT PAGE
<BRICKS> BACKPAT PAGE
GRAY BACKPAT PAGE
BLACK BACKPAT PAGE

And finally, return to the default background pattern by executing:
WHITE BACKPAT PAGE
SRCXOR TEXTMODE

Qui ckOraw Shapes

QuickDraw supports a number of predefined shapes:

Rectangles
Ovals (lncludes circles)
Rounded Corner Rectangles
Arcs (includes wedges)

Each shape may be FRAMEd, PAINTed, CLEARed, INVERTed or PATTERNed.

The outlines of FRAMEd shapes are drawn with the current pen size, shape
mode, and pattern. As the pen traces just inside the boundaries of the shape,
dots to the right and below the pen (within the pen size) are modified. The
pen location 1S not affected.

Dots within the boundaries of PAINTed shapes are filled with the current pen
pattern and mode. The pen location 1s not effected.

Dots within the boundaries of CLEARed shapes are set to the background
pattern in pattern coPy mode.

Dots within the boundaries of INVERTed shapes are toggled. Dots that 'f(ere
black become white and white dots become black.

Dots within the boundaries of PATTERNed shapes are fi11ed with the supplled
pattern in pattern copy mode.

Graphic Results Page 6 - 20 August 31, 1984

Rectangles
Rectangles are defined by two points at opposing corners. For example:

GINIT PAGE
58 58 288 288 FRAME RECTANGLE
288 188 188 288 INUERT RECTAHGLE
CARTESIAH OH

CEHTER PAGE
X'~AXIS

-188 -188 188 188 GRAY PATTERN RECTANGLE

If you sUll have bricks around, try:
PAGE
-138 -288 138 -188 <BRICKS> PATTERH RECTAHGLE

(If you have forgotten <BRICKS>, execute:
HEX

CREATE <BRICKS> 888888FF J 888888FF J

DECIMAL
and then try the previous example again.)

The stack arguments for a rectangle are:
()(1 \y 1 \x2\y2\(pat tern]\mode --)

Notlce the top two stack items. The pattern parameter is optiona1. This
convention holds true for the standard QuickDraw patterns. If you use one of
the standard modes, you don't specify a pattern. Standard QuickDraw modes
are:

FRAME PAINT CLEAR IHUERT

(as explained in the beginnning of this section). In the previous example, to
draw a framed rectangle, you executed:

58 58 288 288 FRAME RECTAHGLE

If you use a pattern (like WHITE, GRAY, DKGRAY, BLACK, or one !Jou have
created -- llke the <BRICKS> example), you need to supply the pattern
address and specify the mode as PATTERN. In the previous example, to draw
a gray rectangle, you executed:

-188 -188 188 188 GRAY PATTERN RECTANGLE

Graphi c Resul ts Page 6 - 21 August 31, 1984

Ovals
Ovals are drawn within a specifled rectangle. A square rectangle results in a
circle. For example:

CLEAH
8 8 288 188 IHUERT ~UAL

<BRICKS> PEHPAT
-28 -28 8 8 PAIHT OUAL

OK GRAY BACK PAT
-188 8 188 188 CLEAR ~UAL

BLACK PEHPAT UHITE BACKPAT

-158 -158 188 188 FRAME OUAL

The arguments to an oval are the same as those to a rectangle.

Rounded Corner Rectangles
A rounded corner rectangle is specified by a rectangle and the height and
width of an oval which describes the corners.

For example:
CLEAH
58 58 128 128 28 18 IHUERT RRECTAHGLE
-58 -58 28 28 5 5 FRAME RRECTAHGLE

The stack arguments for a rounded rectangle are

xl \y 1 \x2\y2\oval wldth\oval height\[pattern]\mode --

The oval width and height specify the oval the corners of the rectangle 11e
within. If this seems confusing, experiment with these two values on a
rounded rectangle a few times -- a picture really is worth a thousand words!

Graphic Results Page 6 - 22 August 31 J 1984

Arcs and 'v-Iedges
Arcs are specified by, an enclosing rectangle, and the starting angle of where
the arc begins and the arc angle of the extent. of the arc. The angles are
treated modulo 360 and may be expressed in positive or negative degrees. A
positlve angle proceeds clockwise, a negative angle, counter clockwlse. As
\Nith the rounded rectangles, this may seem confusing at first, but
experimentlng with a few makes them much clearer.

While you are experimenting, if you imagine the screen is the face of a clock:
8 degrees is at 12:88

98 (or -278) degrees is at 3:88
188 (or -188) degrees is at 6:88 etc.

Arcs use the following stack arguments:
(xl \y 1 \x2\y2\start angl e \arcangl e \[pat tern]\mode --)

For example:
CLEAN
5 5 PEHSIZE BLACK PENPAT
28 28 188 188 98 128 FRAME ARC
-188 -188 188 188 -45 248 GRAY PATTERN ARC

Graphic Results Page 6 - 23 August 31, 1984

RelaUye line Drawjng

Frequently, groups of lines and dots are more related to each other than to
their posHton on the screen. For example, the relationshtp between the Hnes
that make up a particular character make more sense described in terms of
each other. If the starting point is moved, then a11 relative Hnes and pOints
can be redrawn wlthout converting all of the pOints to the new location. For
example:

CLEAH
RBOX (--- I draw the sides relative to eachother

5 5 AMOUE -18 8 ADRAW
8 -18 ADAAU 18 8 RDAAW
8 18 ADRAU j

1 1 PEHSIZE PAT COpy PEHMODE
28 28 MOUE.TO ABOX
48 38 MOUE.TO ABOX

Here's a definition to draw a symbol for FORTH (you may want to edit this
definition into an empty block tn your work fHe):

4TH (--- I draw an ab~tract ~ymbol for FOATH)
58 8 AMOUE 8 -28 ADAAU

-38 8 AMOUE 8 48 ADAAU
-28 8 AMOUE 8 -48 ADAAW
-28 8 AMOUE 8 48 ADAAW
-38 8 AMOUE 8 -28 ADAAW
18'8 8 ADAAW

Now move to any position and draw it. For ex amp leI try:
CLEAN
18 18' PEHSIZE
188 188 MOUE.TO 4TH

1 1 PEHSIZE
8 8 MOUE.TO 4TH

CLEAN

Graphic, Results Page 6 - 24 August 31, 1984

Seal i ng to User Coordi nates

MacFORTH allows you to scale your drawings to arbitrary user coordinates.
You can think of "scaling" as expressing values in terms of a percentage of
another value. The word XYSCALE allows you to set the scale for both the x
and y-axis. The default xy scale is 100,100. Try a few examples to illustrate
this:

For example:
CLEAN XYAXIS

18 18 MOUE.TO 4TH
188 58 XVSCALE
18 18 MOUE.TO 4TH
188 288 XYSCALE
18 18 MOUE.TO 4TH

188 188 XYSCALE
-58 -58 18 18 GRAY PATTERN RECTANGLE
25 158 X'/SCALE
-58 -58 18 18 OK GRAY PATTERN RECTANGLE

If you wanted to draw the dimensions of a plot of land, expressed in feet, how
would you map this to a Macintosh window? If the window is 100 x 100 dots
and the maximum dimenSion of the plot of land was 500 feet, you could set
the scale to:

28 28 XYSCALE

and enter the coordinates in feet (each dot equals 5 feet). MacFORTH will
automatically scale the data and display 1t for you.

Graphic Results Page 6 - 25 August 31, 1984

Rot8te to User Coordin8tes

MacFORTH also allows rotation of the coordlnate system around the origin. By
temporarily 'offsetting the origln, other objects may be rotated. The word
XYPIVOT allows you to set the angle of rotation (1n degrees) for the xy axis.
For example, try rotating the 4TH symbol 30 degrees:

PAGE CENTER
38 XYPIUOT
XYAXIS
58 58 188 188 UECTOR

Now try:
8 XYPIUOT
XYAXIS
58 58 188 188 UECTOR

and you can see how the first line and axis was rotated 30 degrees.

Here's a definition to spin the 4TH symbol by just changing the pivot:
SPIN (--- I spin the 4TH symbol)
PAGE PATXOR PENMOOE
CENTER CARTESIAN ON 368 8

00 I XYPIUOT
88 MOUE.TO 4TH 88 MOUE.TO 4TH

3 +LOOP

By simply rotating the xy axis, you were able to rotate the 4TH symbol
without modifying the word 4TH itself. Now try:

5 5 PENSI2E SPIN
188 288 XYSCALE SPIN
288 188 XYSCALE SPIN

Remember, only user defined shapes are rotated. QuickDraw shapes (using
RECT ANGLE, OVAL, and RRECTANGLE) are not rotated.

Graphic Results Page 6 - 26 August 31, 1984

Point Pairs to Rectangle Coordinate Conversion

Converting between two pOints (xl,yl,x2,y2) and QuickDraw rectangles
(top)eft,bottom,right) is periodically necessary.

While most use of QuickDraw shapes for drawing purposes will occur 1n user
coordinates (x 1 \y 1 \x2\y2), most toolbox operations actually expect point
pairs (le. a rectangle) to be expressed in QuickDraw coordinates
(top\left\bottom\right). MacFORTH normally takes care of this conversion
for you, and lets you deal in point coordinates. As your use of QuickDraw
graphics and other functions which use them (such as windows and controls)
increases, you wi 11 have to be more aware of both formats. The MacFORTH
word XY><TlBR performs the conversion for you (either way -- given
top\left\bottom\right, it returns xl \y 1 \x2\y2 and vice-versa).

Integer Trig Functions

Included in the MacFORTH graphics are two integer trig functions: sine and
cosine. The words SIN and COS each convert an angle, expressed in degrees,
into the angle's sine or cosine scaled up by 10,000. For example, the phrase

45 SIH .

tells us that the sine of a 45 degree angle is .7071 (.7071 times 10,000 is
7071).

Deflne a word to plot one complete cycle of a sine wave. Since the input to
SIN is an angle, we can set. up a DO ... LOOP that runs from 0 t.o 360, and use t.he
index as the argument for SIN. This will return all the results from -10,000
t.o + 1 0,000, since SIN is scaled up by a factor of 10,000. If our window is
only 200 x 200, you clearly cannot fit a full scale sine wave on the display.
By scallng the data, however, it will easily flt. Try the following example:

UAUE (--- I draw a 5caled sine ~ave)
-188.13 DUP SIN MOUE.TO
1888 -1.1388 DO I I SIH DRAW.TO LOOP

Now try:
GIN IT CLEAH
PATOR pEt-mODE
18 1 XYSCALE WAUE

Graphic Results Page 6 - 27 August 31 J t 984

Finding Out What"s There

The word GET.P I XEl lets you f1 nd out the state of any dot on the screen.
Given an xy position in QuickDraw coordinates, GET.PIXEl returns a true flag
if the dot at that coordinate is black, a false flag otherwise. The xy
coordinates are expressed in Quickdraw coordinates relative to the ul2p-er left
corner of the screen. For example, to determine if the dot at 100,100 1S on,
you woul d execute:

188 188 GET.PIXEL .

Drawi ng to Other Wi ndows

Anything that can be done in the graphics system window can be done in
another window. (Resize MacFORTH 'window to a wide rectangle at the bottom
of the screen like you did in the Getting Started chapter -- for figure 4.2).
First, create a new window:

HEW.UIHDOW EASEL
48 48 288 358 EASEL W.BOUHDS
" EASEL" EASEL W.TITLE

EASEL ADD.WIHDOW

Now click in the MacFORTH window to continue. The following definitions are
used as a shorthand method for specifying the current window (your
fingertlps will thank us).

>E (--
>M (---

select Easel window) EASEL WIHDOW
select MacFORTH window) SYS.WINDOW WINDOW

Note: If an error occurs while switching between windows, execute >M to
return output to the MacFORTH window.

Now, resize the MacFORTH window so that both it and the EASEL windows are
visible. Then try the following examples:

>E 6IHIT CENTER XYAXIS >M
>E 18 18 58 58 GRAY PATTERN RECTAHGLE >M

HIIST (---)
61HIT CENTER CARTESIAH ON
368 8 DO I XYPIUOT 88 MOUE.TO 58 58 DRAW.TO LOOP

>E TWIST >n

Graphic Results Page 6 - 28 August 31, 1984

Try some examples of your own. Remember pulling down ABORT 1n the
opt ions menu or enteri n9 the :Jf:A keystroke wi 11 return you to the MacFORTH
system window.

Demo Programs

We have included some demo programs on your system disc. To load them,
execute

INCLUDE" Demo Blocks"

(or, you could double cllck the Demo Blocks icon from Ule finder). The demo
programs are provi ded in source form so you can see the techni Ques used.
Feel free to examine the demos (and make changes if you like). Have fun! We
certainly did when we wrote them! To edit the demo source code, execute:

USE" Demo Blocks"

and then edit whichever block you like. Block 1 of the file will give you a
good idea of where speclfic demos are located.

Graphic Results Page 6 - 29 August 31, 1984

Graphic Results Page 6 - 30 August 31, 1984

Chapter 7: Menus

Togic Peg!

Overview 2
Menu Example 2
Menu List 3
Menu Creation 3

Menu Insertion Poi nt 3
Menu 10 3
Menu Title 3

Menu Items 4
Item Ust 4
Special Characters 4
Special Strings 5

Separating Menu Items 5
Displaying the Menu 5
Menu Item Selection 6

Menu I tern Numbers 6
Menu Item Execution 6
Menu Highlighting 7
Modifying Menu Execution 7

Modifying Menu Items 8
De 1 eti ng a Menu 9
Disabling a Menu 9
Appendix A: Example Menu 10

Menus Page 7 - 1 August 301 1984

Oyeryiew

MacFORTH allows you to define and control menus easlly. You can specify the
order of the menus on the menu bar, their titles, and the items 1n each menu.
Menu items can be selected via the mouse or command keys, disabled,
highllghted, deleted, or even have their function changed.

This chapter discusses how to create, activate, de-activate, and delete menus
from the menu bar. Using MacFORTH, you can create and use up to 31 menus
simultaneously, each having up to 16 items; however, ten to twelve items per
menu are all that will usually fit.

"enu Example

In order to simpJ1fy the presentation of this matenal, try the following
example first. It creates and displays a sample menu, showing how easily
menus can be defined. You may find it easier to edit this code into a blank
block and then load it . That way if you make a typing error you don't have to
re-type the whole example.

18 CONSTANT EXAMPLE

MY.MENU (--- I aenu creation using aenu id 18)
8 • My Menu U EXAMPLE NEU.MENU (create the aenu)

(append the items to the list:)
• Item l<B<Uiltea 2/2iItea 3<1(- EXAMPLE

APPEND. ITEMS
DRAU.MENU.BAR (dra. the menu bar)

(define the action to take place)
EXAMPLE MENU.SELECTION:

MY.MENU

CASE 1 OF CR n Item 1 Selected'·
2 OF CR ,. Item 2 Selected'·
3 OF CR ,. Itea 3 Selected'·

ENDCASE 8 HILITE,MENU j

EHDOF
EHDOF
ENDOF

Now try each of the items in "My Menu" by selecting them with the mouse (or
as shown for item 2; X2 -- hold down the X key and press 2).

Menus Page 7 - 2 August 30, 1984

Menu list

The menus displayed by MacFORTH are maintained in a "menu 11st." Each entry
in the 11st has a menu id (a number assigned to a menu), and its position in the
list determines the order of the menus in the menu bar. Note that this 11st is
not maintained in numeric order, but in the order of display in the menu bar.

Henu Creation

The word NEW.t1ENU creates a new menu and inserts it into the menu 11st.
NEW.MENU is used in the following form:

<menu insertion point> <"menu title"> <menu id> HEU. MEHU

So, in our example, we created a new menu, inserted it at the end of the menu
list, called it "My Menu", and assigned it menu number 10 with the phrase
(remember, EXAMPLE is a constant with yalue 10):

8 • My Menu" EXAMPLE HEU.MEHU

Menu Insertion Point
This is the menu id that the newly defined menu is to be inserted before in
the menu list. Specifying the menu insertion point of 0 is a special case; it
means that you want the menu to be inserted at the end of the menu bar.

Menu 10
The menu id is any number from 1 to 31 that you choose to refer to your new
menu as. We recommend that you use a CONSTANT for your menu ids for later
ref erence to the menu (1 i ke we di d with EXAMPLE). You can choose any
number you like, but we recommend that you use numbers greater than 10 in
order to ayoid possible conflicts with system menus. In case of a conflict,
the system will use the first menu it finds with the menu id giyen.

Menu Tltle
The title you choose for your menu is a string of up to approximately 80
characters (as long as it fits on the screen). You should use conCise,
meaningful names for your menu titles.

Menus Page 7 - 3 August 30. 1984

Henu Items

Each of the avallable selections in a menu is referred to as a "menu item: The
items in "My Menu" ("Item l"/'ltem 2" and "Item 3") were appended to "My
Menu" with the word APPEND.lTEHS used in the following form:

<"Hem 11st"> <menu id> APPEND.lTEMS

In our example, the phrase
a Item l<B<UjItem 2/2jItem 3<1(- EXAMPLE APPEHO.ITEMS

passed the item 11st (the Quoted string) to APPEND.lTEHS for menu id 10
(using the constant EXAHPLE).

Item Ust
The item list from our example may seem strange at flrst, but take a closer
look. You can see the menu items listed ("Item 1", 2 and 3), which contain
some special character suffixes. The fol1owing are special characters used
as suffixes and cannot be specified as part of an item in the item 11st:

Special
Character

<

Meaning
Separates Hems in the list (eg." Item 1 ;Item 2;item 3").

highHghts the preceding item according to the character
following <. The available highlight characters are:

B for Bold (letters must be uppercase)
I for Italic
Oforldll.
Sfor
U for Underline

(eg. " Item 1 <B<U;ltem 2<0;")

Disables the preceding item, displaying H in light gray.
The item cannot be selected until it is enabled.

(eg ... Function 1; Function 2(; Function 3(;")

/ Assigns the key immediately following the / as the
X key sequence for that menu item.

(eg ... Attack/ A;RetreatlR;")

Precedes the item with the character immediately
following the! (eg ... Firel*;")

Menus Page 7 - 4 August 30, 1984

Now, using the above table, let's go back: and look: at the ltem str1ng aga1n.
The first item:

Item 1<B<U;
specified the string "Item 1" as the menu item and made it bold faced,
underlined. The second item:

Item 2/2
specified the string "Item 2" as the menu item and assigned the 3C2 key to it.
When the :t€2 key is pressed, Item 2 will be executed. The third item:

Item 3<1(
specified the string "Item 3" as the menu item and italicized it. The "<
disabled the item, preventing the operator from accessing it.

~gecial Strin{m You can display the Apple logo (apple with a bite), a check
mark, any of the special characters, or any of the displayable characters on
the Mac by creating a string and modifying it directly. For example, the Apple
logo is character 20 (decimal) (a check marl< is decimal 18). Try finding that
key on the keyboard! (Vou can't, it doesn't exist.) To create a string with the
app 1 e in it you coul d execute:

CREATE APPLE$ 1 C, (for the count) 28 C, (logo character)

You could then use APPLES in your menu defintion in place of the Quoted
string:

APPLE$ EXAMPLE APPEHD.ITEMS

Segarating Menu Items You can separate items in a menu with a horizontal
bar by using a "-" character and disabHng it as an item. For example, the
string

• Ite. lj-(jlte. 2· <.enu a> APPEHD,ITEMS
passed to APPENDJTEMS would separate Item 1 and Item 2 with a 11ne. Note
that the Une is considered an item in the list when a menu item is selected.
This means that in the above item list, "Item ,. would be item # 1, the Une
would be item #2, and "Item 2" would be ltem #3.

Displaying the Menu

DRAWJ1ENU.8AR displays the new menu bar. Your menu is now active and
ready to be used just like any other menu. If you are adding several menus,
use DRAW.MENU.8AR after you have created and inserted the menus in the
menu list to avoid having the menu bar flash each time a menu is added.

Menus Page 7 - 5 August 30, 1984

Menu Item Selection

The word MENU.SELECTION: determines what action is taken when an Hem
is selected in your new menu and is used in the form:

<menu id> MENU.SELECTION: <action to take>

Where the menu id is the id you assigned to the menu. When an item is
selected, the item number of the selection is passed to the code following
MENU.SELECTION: for execution of the appropriate action.

Menu Item Numbers Each menu Hem is assigned a number when it 1S appended
to the menu. The numbers start at 1 and are incremented by one for each
item. For clarity, in our example, we numbered the items according to their
item number. This means that our "Item 1" selection is actual1y item number
1, '" tem 2" is item number 2 and so on. When an item se 1 ect i on occurs, thi sis
the number which determines the action to take.

Menu Item Execution When a menu item is selected, the code immediately
following MENU.SELECTION: for that menu is executed with the item
number on the stack. The code executed is usua1Jy a case statement which
tests the value on the stack and executes the appropriate code.

To make this more clear, let's examine what happened when you cllcked Item
1 in "My Menu." The system saw a mouse cllck on menu item one and passed
control to the MENU.SELECTION: code for menu 10 (which was deflned with
the EXAMPLE HENU.SELECTION: ... phrase). The code for menu 10's menu
selection is the following case statement:

CASE 1 OF CR "Item 1 Selected!" ENDOF
2 OF CR ." Item 2 Selected!" END OF
3 OF CR ." Item 3 Selected!" ENDOF

ENDCASE 8 HIlITE.MENU

which executed case 1 of the statement and returned to what you were doing
before the mouse click occurred. The items in a menu are executed
transparently, returning immediately to what was executing before the
se I ect i on occurred.

Menus Page 7 - 6 August 27, 1984

Menu Hlghllghtlng
The word HllITE.MENU serves two purposes: (0 to hlghllght a menul and (2)
to unhighllght all others. HllITE.MENU highlights (inYerts the title of) the
menu whose menu id is on the stack. For example l to highlight the "Options"
menu (its menu id is 3)1 execute

3 HIlITE, MENU

To un-highlight ttl execute
a HIlITE. MENU

Since there is no menu wHh id 01 all the menus were unhighlighted when the
above command was executed.

After selection of a menu iteml the menu title remains highllghted. This
allows you to indicate to the operator that the selected item is still
executing. You need to unhighlight the menu under program contro1. That is
why we execute

a HIlITE, MENU

after the case statement in our example menu.

Modifying Menu Execution You can modify the function of a menu by simply
re-defining the menu selection definition. Try the following to change the
execution of our example menu:

NEU.EXAMPlE.FUHCTION (---)
EXAMPLE MENU.SElECTIOH:

CASE 1 OF CR "Hew Function 1" EHOOF
2 OF CR ," New Function 2" EHOOF
3 OF CR ,N New Function 3" EHOOF

EHOCASE a HILITE,MENU

HEW.EXAMPlE.FUHCTION

Now try the items in "My Menu" and you'll see the new functions executed
when you make your selections. This powerful feature allows you to change
the function of any menu at any time.

Menus Page 7 - 7 August 271 1984

Modifying Menu Items

You can modify the menu items (type style, enable/disable, add/delete check
marks or characters, etc.) with the fo11ow1ng functions (each function takes
item- and menu id, where the Hem- is the Hem number in the menu; menu id
is the number of the menu):

ITEM.STYLE allows you to change the style of the item. Used in the form:
<item-> <style> <menu id> ITEM.STVLE

where <style> is one or a combination of the following styles:

style Value
PLAIN 0
DOLO 1
ITALIC 2
UNDERLINE 4
_ 8

111'11111 16

To get mu1tiple styles, add the values together. For example, to get
underllned shadow as the style, you would execute:

<iteml> UHDERLIHE SHADOU + <menul> ITEM.STYLE

ITEM.MARK allows you to attach to or remove a character from an item.
Used in the form:

<item l > <mark> <menu id> ITEM.MARK
where <mark> is the character to append to the item. If <mark> is zero, any
character currently appended is removed. <mark> is any valid ASCII character
or special Mac character (je: 20 is the Apple logo).

ITEM.CHECK allows you to append to or remove a check mark from a menu
11em based on a flag value. Used 1n the form:

<iteml> <flag> <menu id> ITEM. CHECK
where <f1ag> is a boolean flag. If <flag> is -1 , a check mark is appended to
the Hem, if <f1ag> is 0, the check mark is removed.

ITEM.ENABLE a110ws you to enable or disable any Hem in the menu. Used in
the form:

<iteml) <flag> <menu id> ITEM.EHABLE
where <flag> is a boolean flag. If <flag> is -1, the Hem is enabled, if <flag> is
0, the item is disabled.

SET.lTEMS allows you to change the string associated with any menu item.
<Item l > <string addr> <Menul > SET.ITEMS

Menus Page 7 - 8 August 30, 1984

De 1 eli ng 8 Menu

You can delete a menu from the menu llst by executing the word
DELETE.MENU. Given a menu number on the stack, DELETEJ1ENU deletes the
menu from the menu llst and re-draws the menu bar, removing the menu.

<menu I> DELETE. MENU

It is a good idea to execute DELETEJ1ENU for the menu number you are about
to add (with NEW.t1ENU). This ensures that you won·t inadvertently add the
menu twice and is a good way to insure against multiple menus with the same
number.

The apple menu (the solid apple with a bite taken out of it) has menu id 1; the
Optlons menu has menu id 3. You can delete either or both of these menus
using DELETE.MENU. To re-install them, execute APPLE.MENU or
OPTIONS.MENU for the apple and Options menus respectively.

OJ s8b 11 ng 8 Menu

You can enable/disable a menu at any time using the command t1ENU.ENABLE
in the following form:

<flag> <menu id> MENU.ENABLE

where <flag> is a boolean flag. If <flag> is true, the menu is enabled, if <flag>
is false, the menu is disabled.

Menus Page 7 - 9 August 27, 1984

Appendix A: Example Menu

The follow1ng menu example 1s provlded for you to use as a template for your
menus. It creates a menu that is slmllar to the MacFORTH Optlons menu.

Menus

13 COHSTAHT OP.MEHU
OPTIOHS.MEHU (--)
8 "OPTIOHS _ OP.MEHU HEU.MEHU
"TRACE/TjDEBUG/DjUORDSjABORT/A A OP.MEHU APPEHD.ITEMS
DRAU.MEHU.BAR OP,MEHU MEHU.SElECTIOH: 8 HIlITE,MENU
CASE

1 OF TRACE @ HOT DUP TRACE SUAP OP,MENU
ITEM. CHECK EHDOF

2 OF DEBUG @ HOT DUP DEBUG 2 SUAP OP.MEHU
ITEM.CHECK EHDOF

3 OF UORDS EHDOF
1 OF 1 ERROR- ABORTED!!" EHDOF

EHDCASE

Page 7 - 10 August 271 1984

Chapter 8: Windows/Events

Top-ic

Overv1ew
Den n1 ng a Wi ndow
Wfndow Components

Window Title
Wi ndow Bounds
Window Attributes
Window Types
Window Program
C1 OS1 ng a Wi ndow
Sizing a Window
Event Handl1ng 1n a W1ndow

The Mouse Interface

2
2
3
3
3
4
4
5
5
6
6
7

Dynami c Mouse Operations 7
Dynamic Mouse Posit1on in User CoorcHnates 7
Dynamic Mouse PosH10n in Screen Coord1nates 8
Pofnt 1n Rectangle Computat1on 9
Dynami c Mouse But ton Moni tori ng 1 0

Event Related Mouse Operations
Format of the Mouse Down Record
Event Related Mouse Button Operations
Detecting Double Cl1cks
Example
Handling Keystrokes

Default Event Act10ns
Complete Events Ust
Event Mask1ng

Event Precedence
Events During Text Input or Output

Windows/Events Page 8 - 1

11
11
11
12
12
13
14
15
15
16
17

August 30 J 1984

Overview

This chapter discusses w1ndow and event management using MacFORTH. By
now you should have completed both the Getting Started and Getting Results
chapters which introduce and g1ve examples of windows and event handling.
The intent of this chapter 1s to provide you with an in-depth reference guide
to windows and events.

The concept of wi ndows and event handl i ng j s very j mportant in the Maci ntosh
environment and MacFORTH aHows you to control virtual1y every aspect of a
these features (or leave it to the default handlers).

MacFORTH does al1 the hard work relating to using windows and events in a
fashion compatible with the Macintosh user interface. Default event handlers
provide for what you should expect to happen when a particular event occurs.
You canl of coursel override the default operations to handle special cases.

Defining 8 Window

The command NEW.WINDOW creates and defines a new window structure for
MacFORTH. To create a new window, simply execute NEW.WINDOW followed
by the name you want to call the new window. For example:

HEU.UIHDOU nY.UIHDOU

creates a new window named nY.WINDOW with the standard MacFORTH
defaults. These defaults are:

a.) title = ·Untitled Window·
b.) bounds = (100 1 100) (200 1300)
c.) no close box or size box
d.) the action of the window is to beep when an event occurs

NEW.WINDOW can only be executed; you cannot use it inside a colon
definition.

Wi ndows/Events Page 8 - 2 August 281 1984

Wj ndow Components

A window is made up of one or more of the following components:

Window Title
The title assigned to a document window is displayed in the title bar across
the top of the window. You can choose eny title you like for e window and
assign it using the W.TITLE command during the definition of the window in
the following format:

- <title ~tring>- <.indo. pointer> U.TITlE

For example, to essign the title ·My Very Own Window· to a window nemed
HY. WINDOW, you woul d execute

- My Uery O.n Uindo.- MY.UIHDOU U.TITLE

You can al so re-assi gn a title to a wi ndow wi th the SET. WT ITLE command
used in the following format:

- <title string>- <.indo. pointer> SET.UTITLE

When SET.WTITLE is executed, the title bar of the window is immediately
redrawn with the new title.

Wi ndow Bounds
To set the i ni t i al posi t i on and si ze of a wi ndow, use the W.BOUNDS command
when the window is defined. Use the following format:

<top> <left> <botto.> <right> <.indo. pointer> U.80UHDS

The <top> <left> <bottom> and <right> values are the coordinates of the
rectangle for the window, relatiYe to the upper left comer of the screen. For
example:

188 158 388 358 MY. U I HDOU U. 80UHDS

wilt set the upper left comer of HY.WINDOW (used for example only) to be
100 dots from the top of the screen, 150 dots from the left side of the
screen. The lower right comer of the window is 300 dots from the top of the
screen, 350 dots from the left of the screen.

Wi ndows/EYents Page 8 - 3 August 28, 1984

Window Attribytes
When a ·window is defined, you can set the attributes for it with the
W.ATTRIBUTES command. The attributes for a window are:

aJ CLOSE, BOX gives the window a close box
bJ HOT, UISIBLE makes the window invisible
cJ SIZE, BOX gives the window a size box
dJ SCROLL.UP/DOUH gives the window a vertical scroH bar
eJ SCROLL. LEFT/RIGHT gives the window a horizontal scrol1 bar

To set the attributes for a window when defining it, select the attributes you
want the window to have and add them before executing W.ATTRIBUTES. For
examp1e, to give the window n'.WINDOW a c10se box and size box, you wou1d
execute:

CLOSE,BOX SIZE,BOX + nY,UIHDOU U,ATTRIBUTES

when you define the window.

WindowTy~

Another attribute of a window is the window type. The default window type
is the one you are the most faml1iar with, a document window (a rectang1e
with a tit1e bar/drag region). There are three other types:

Type 1 is a simp1e frame. A thick rectangle outlined by a thin rectangle. Try
the fol1owing example:

HEU,IUHDOU UIHl
1 UIH1 U,TYPE

UIH1 ADD,UIHDOU

Click back in the MacFORTH window to continue.

Type 2 is a thin rectang1e. Try the fol1owing examp1e:
HEU,IHHDOU UIH2

2 UIH2 U,TYPE
UIH2 ADD,UIHDOU

Cl1ck back in the MacFORTH window to continue.

Type 3 is a shadowed rectangle (like an alert box). Try the fo11owing example:
HEU,UIHDOU UIH3

3 UIH1 U,TYPE
UIH3 ADD,UIHDOU

Click back in the MacFORTH window to continue.

Wi ndows/Events Page 8 - 4 August 28, 1984

Wi ndow program
Use ON.ACTIVATE to define the function of a window. ON.ACTIVATE
specifies the word to be executed when a window is activated. The default
for this function is
a word whi ch will just beep when any event occurs wi thi n a wi ndow. Use
ON.ACTIVATE in the following form:

<window na.e> OH,ACTIUATE <word to execute>

For example, to assign the word MY.PROGRAM to a window named
MY.WINDOW, you would execute

MY,UIHDOU OH.ACTIUATE MY,PROGRAM

As we discussed in the Getting Results chapter, when a window is actiYated,
the word specified by ON.ACTIVATE for the window is passed a flag. This
flag is true (-1) if the window was activated and false (0) if another window
is activated (hence the current window is deactivated). This allows you to
start up your program when the window is activated and perform any cleanup
when the window is deactivated. It is important to check this flag as the
first thing when you execute your program. Any programs you assign to a
wi ndow shoul d follow a template si mi lar to:

UIHDOU,PROGRAM (activate flag --)
IF (code for activate)
ELSE (code for deactivate)
THEH

If you FORGET the word which defines the function of a window, and attempt
to select the window wlthout redefining It, you will get unpredictable results
when the window is activated. If you don't specify a word following
ON.ACTIVATE (i.e. you just press return) you will get the error message
-ATIEMPTED TO REDEFINE NULLr.

Cl osi ng a Wi ndow
When a window is closed by a cUck in its close box, MacFORTH automatica11y
hides the window from view and returns an IN.CLOSE.DOX event from
DO.EVENTS. You don't need to be concerned with hiding the window, as it has
already been hidden before you are notified that the close box has been
clicked. This lets you perform any cleanup that should occur when a window
is closed. Since the window is hidden, the next occurence of DO.EVENTS will
select the window closest to the front of the display.

Wi ndows/Eyents Page 6 - 5 August 26, 1964

Sizing a Window
When a window is resized by dragging its size box, MacFORTH wHl
automatically handle the resizing for you and return an IN.SllE.BOX event
from DO.EVENTS. You don·t need to be concerned with actually resizing the
window, as it has already been resized before you ere notified of the event.

Event HandHng in a Window
The Nacintosh is an event driven computer. This means that your programs
should be aware of the events occurring when they are executing. The word
DO.EVENTS handles this automatically for you1 performing any default
actions (resizing a window, hiding it when a close box is clicked, accepting
keystrokes, etc.) and notifying you that the event occured. If you ignore
events as they occur, your program may not be consistent with the Macintosh
environment. To maintain consistency, your programs should be running an
endless loop that checks for the occurence of events by executing
DO.EVENTS.

With this in mind, you should expand the above template to be:

UIHDOU.PROGRAn (activate flag --)
IF BEGIH DO. EVEHTS

(code for activate .hich checks the events)
AGAIH

ELSE (code for deactivate)
THEH

The code for activation should check the code returned by DO.EVENTS against
ali st of any events you care about.

The following Mac FORTH constants contain the event codes for the most used
events that occur (refer to the end of this chapter for a complete l1sting of
event codes):

MacFORTH Cons tent
nOUSE.DOUH
IH,CLOSE.BOX
IN,SIZE.BOX

Wi ndows/Events

Event
mouse button pressed
mouse cUck inside the close box
mouse click inside the size box

Page 8 - 6 August 281 1984

The House Interface

An important feature of the Macintosh user interface is the mouse. It provides
a highly flexible, easy to use method of input/choice selection. The current
mouse position and state of the button (up or down) are automatically
monitored by the Macintosh operating system. System related functions (like
menu selection; activation of another window; closing, resizing, and dragging a
window) are handled automatically for you -- you are notified of the event
after the default action has been taken.

We have broken down our discussion of the mouse interface into two areas:
dynamic mouse operations and event related mouse operations.

Dynamic House Operations

Dynamic mouse operations provide a real-time glimpse of the position of the
mouse and/or the state of the mouse button (up or down).

Dynami c Mouse Posi t ion in User Coordi nates
~HOUSEXY returns the current position of the mouse in ·user coordinates·.
User coordinates refer to a point relative to the currently actiYe window,
taking into account the values of XYPIYOT, XYSCALE, and XYOFFSET. Here's
a definition to display the current mouse position:

?nOUSE (--- I display the current .ouse position)
BEGIH 13 EnIT @nOUSEXY SUAP" AGAIH j

(Since this is an endless loop, you'll need to select Abort from the Options
menu -- or XA to stop output.) Now try:

GIHIT SACCOPY TEXTnODE (to over.rite the old)
?nOUSE

You can now see the position of the mouse in QuickOraw coordinates being
displayed continuously. Move the mouse around now. If you move it up, you can
see the y-axis yalue decrease, if you move it to the right, you can see the
x-axis value increase. Abort by selecting Abort from the Options menu.

Wi ndows/Events Page 6 - 7 August 28, 1984

Try the following to display the mouse coordinates in Cartesian coordinates:
CARTESIAH OH PAGE
CEHTER XYAXIS
?MOUSE

Now move the mouse around. You can see that the mouse position is reported
to you in Cartesian coordinates now; if you move the mouse up, the y-axis
value increases.

A word like ?MOUSE is helpful for digitizing the points of a graphics image
you have (or would llke to) produce. It's also a good learning tool for showing
the difference between Cartesian and QuickDraw coordinates.

Remember to abort ?MOUSE before continuing (by either pressing 3CA or
selecting Abort from the Options menu) .

.Qynamic Mouse Position in Screen Coordinates
Most Macintosh toolbox operators that deal with the position of the mouse
expect to deal with a "polnt" relative to the current window in local
coordi nates.

A "point" is simply two 16-blt values (x and y) packed into one 32-bH long
word (one item on the stack). The y coordinate is 1n the high-order 16-bits of
the long word, the x coordinate is in the low-order 16-bits. We have provided
two operators to simplify working with "point" values: POINT>XY and
XY>POINT. POINT>XY converts the pOint on the stack to its x and y
coordinate values. XY>POINT converts the x and y coordinate values on the
stack to a point.

Coordinates for the mouse are expressed in two basiC forms: local and global.
local coordinates use the upper left corner of the content (under the drag
region) region of the current window as the origin (0,0) in QuickDraw
coordinates. Global coordinates use the upper left corner of the screen as the
origin (0,0) in QuickDraw coordinates.

The word ~MOUSE returns the current pOlnt of the mouse in local coordinates.
Try:

@MOUSE DUP.
POIHT>XY SWAP (need to SWAP to display it as x/y)

Here's a word to try using eMOUSE and POINT>XY:
SCAH.MOUSE (---)

BEGIN 13 EMIT @MOUSE POIHT>XY SWAP AGAIH

Windows/Events Page 8 - 8 August 30, 1984

Now execute
GIHIT PAGE
XYAXIS (the xy-axis is drawn in the upper left corner)
SCAH.MOUSE

Move the mouse around. Notice that as you go up, as you would expect 1n
QUlckDraw coordinates, the y-axis value decreases. If you move up above the
content region of the window, the y-axis yalue goes negative. Abort
SCAN. MOUSE and continue.

Point in Rectangle Computation
Frequently it is necessary to determine if a point is within the bounds of a
given rectangle. This is useful for controlling the cursor (as 1n the editor,
where we use an i-beam if the mouse 1S in the content region of the window,
otherwise an arrow cursor), determining the selection made by an operator, or
just following the mouse. Used in the form:

<point> <rect> PTIHRECT

PTINRECT (for "point in rect") checks a given pOint to see if it is within the
bounds of a specified rectangle. A true flag is returned if the point is within
the rectangle, otherwise a false flag is returned. Edit the following example
into a blank block:

(Mouse Tracking Exalple

1 g 3.9' 58 188 RECT BOX

FOLLOU.MOUSE (---)
PAGE GIHIT XYAXIS BOX @RECT XY><TLBR FRAME RECTAHGLE

BEGIH 158 158 MOUE.TO
@MOUSE BOX PTIHRECT

AGAIH j

IF " Mou~e in Box!!"
ELSE ." Mou~e Hot in Box!!"
THEH

Load the block and execute FOLLOW.MOUSE. Move the mouse around inside and
outside the framed rectangle and watch the message change.

Wi ndows/E vents Page 8 - 9 August 30, 1984

Here ere e few more exemples of trecking the mouse. Edit them into blenk
blocks, 10ed them end try eech one:

(Gale Board Telplate Exalple)

189 158 288 258 RECT GAnE. BOARD

: GAnE (--- I silulate changing of the cursor on a gale board)
(** this is the lethod used in the editor **)
(press any key to end the loop)

GIHIT PAGE 'GAnE.BOARD @RECT XY><TLBR FRAnE RECTAHGLE
BEGIH @nOUSE GAnE.BOARD PTIHRECT

UHTIL

IF IBEAn SET.CURSOA ELSE IHIT.CURSOA THEH
?TERnIHAL

(Hide Cursor Exalple)

: HIDDEH.CURSOR (--- I hide the cursor if the louse loves)
(outside the content region of the .indo.)
(End the loop by pressing any key. Also,)
(try resizing the .indo. and .atch the cursor)

BEGIH @nOUSE LOCAL>GLOBAL FIHD.UIHDOU 3·
SUAP SYS.UIHDOU· AHD

IF (in content region of SYS.UIHDOU)
IHIT.CURSOR

ELSE HIDE.CURSOR
THEH ?TERnIHAL

UHTIL IHIT.CURSOR

Dynemic Mouse Button Monitoring
You cen reed the current stete of the mouse button with HOUSE.BUTTON.
HOUSE.BUTTON returns e true f1eg if the mouse button is down, e felse f1eg
if the mouse button is up.

Wi ndows/Events Pege 8 - 10 August 28, 1984

EYent Related Mouse Operations

When DO.EVENTS is executed, MacFORTH places the next event from the event
Queue into the EVENT.RECORD array. Mouse down events copy the event
record to the mouse down record, mouse up events copy the event record to the
mouse up record. Event related mouse operations operate on the contents of
elther the mouse up or mouse down records following notHicatlon by
DO.EVENTS that a mouse related event has occurred. Refer to the Event
Masking section of this manual for how to mask mouse related events.

Format of the Mouse Down Record
The following table describes the contents of the mouse down record:

Offset
o
4
8

12
16

Length
4
4
4
4
2

Descri p-t ion
eyent code (1)
message (releyant wptr set by MacFORTH)
when (1n ticks)
where (point in global coordinates)
modHiers (special key state)

The modHier bits are:
Bi t· Mask (hex)
7 80
8 100
9 200

10 400
11 800

Meaning
mouse but ton down
3€ key down
Shi ft key down
Caps Lock key down
Option key down

MacFORTH provides two operators t~at access the mouse down record "where"
field: HOUSE. WAS .. returns the point in global coordinates, ~MOUSE.DN
returns the point in local coordinates. Each operator returns the point where
the mouse but ton was I ast pressed.

Event Related Mouse Button OP-erators
When executed after a mouse down event, STILLDOWN tests to see if the
mouse button is still down. It returns a true flag if the button is down and
there are nor more mouse events in the event queue. This is a true test H the
button is stlll down from the original press (unlike MOUSE.HUTTON which
simply gives you the current state of the mouse button).

WAIT.HOUSE.UP works just like STILl.DOWN, except that if the mouse
button is not still down from the original press, WAIT.MOUSE.UP removes the
corresponding mouse up event before returning a zero flag.

Wi ndows/E vents Page 8 - 1 t August 30, 1984

Detecting Qouble Clicks
To determine if a double cHck has occurred, use the word ?DOU8LE.CLICK.
?DOU8LE.CLlCK returns a true flag if a double cHck has occurred. Try the
f 011 owi ng example:

Example

DOUBLE. TEST (--- I test for clicks until a key is pressed)
BEGIH DO.EUEHTS nOUSE.DOUH =

IF ?DOUBLE.CLICK
IF .- Double- ELSE.- Single- THEH

. - Click- CR
THEH ?KEYSTROKE

UHTIL DROP j

In order to further illustrate tracking the mouse, closing a window, and sizing
a window, try the following example (edit it into 2 blank blocks on disc):

(Finger Paint Uindo. Exa.ple)
HEU.UIHOOU SHEET

- Finger Paint Uindo.- SHEET U.TITLE
18 18 288 288 SHEET U.BOUHOS
CLOSE.BOH SIZE.BOH + SHEET U.ATTRIBUTES

SHEET ADD.UIHDOU

TRACE.FIHGER (---)
HIDE. CURSOR

BEGIH STILL.DOUH UHILE @nOUSEHY DOT REPEAT
SHOU.CURSOR

(Finger Paint Exa.ple Continued)
: FIHGER.PAIHT (activate flag --)

IF BEGIH DO.EUEHTS
CASE nOUSE.DOUH OF TRACE.FIHGER EHDOF

IH.SIZE.BOH OF . - Uindo. Resized! - EHDOF
IH.CLOSE.BOX OF 7 SYSBEEP EHDOF

EHDCASE
AGAIH

ELSE .- Uindo. Deactivated
THEH

SHEET OH.ACTIUATE FIHGER.PAIHT

Wi ndows/E vents Page 8 - 12 August 28, 1984

Handl i ng Keystrokes
If you want to input data from the keyboard in another window, you should look
for keystrokes in the activate portion of your program. Input of keystrokes are
handled differently from other events in that you can check for the presence of
a keystroke (if one has been pressed) and get the key at any time in the
activate loop part of the program.

The word ?KEYSTROKE checks for a keystroke (returned by DO.EVENTS) and
returns either a false flag indicating no keystroke was pressed, or a key yalue
under a true flag if a key was pressed.

Here's an example which modifies the finger painting example to include check
for input of an "5" key for skinny mode, aM" key for medium mode, or "Fa for fat
mode:

DO.FINGER.KEY (key value --)
CASE 83 ("S") OF 1 1

77 ("M") OF 3 3
78 (-Fit) OF 5 5

7 SYSBEEP
ENDCASE j

Now modify FINGER.PAINT to be:
FINGER.PAINT (activate flag

IF BEGIN DO.EUENTS
CASE MOUSE.DOWN OF

?KEYSTROKE IF
ENDeASE

AGAIN

PENSI2E ENDOF
PENSI2E ENDOF
PENSI2E ENDOF

--)

TRACE. FINGER
DO. FINGER. KEY

ENDOF
THEN

ELSE 7 SYSBEEP
THEN

H Finger Painting Finished"

SHEET ON.ACTIUATE FINGER.PAIHT

Now when you activate the Finger Paint window, you can change the pen size
by pressi ng the 5, M or F key.

Another use of ?KEYSTROKE is to trap any non-X keys (remember KEY traps
Return, Enter, Tab and Backspace). Here's a word which will trap any non-X
keys:

ALL. KEY (-- key.)
BEGIH DO.EUENTS DROP ?KEYSTROKE UNTIL j

Now execute ALLKEY and press Return (yalue 13), or Enter (yalue 3t or Tab
(yalue 9), or Backspace (yalue 8).

Windows/Events Page 8 - 13 August 30, 1984

Def 8UU EYent Acti ons

MacFORTH executes a default operation for each event, within DO.EVENTS,
prior to returning an event code to the user. The default operation typically
handles all of the messy details required by the Mac User Interface and just
returns an event code to let you know what happened. The default actions are
summarized below for each event.

Common to all events: If a keystroke has been received but not picked up b!J
the user (via KEY) no further keystroke events are aHowed untn the current
one is cleared. Type-ahead characters are thus accumulated in the event
Queue. If a mouse down event occurs outside the content region of the current
wi ndow 1 events 17-24 are systhesi zed to i ndi cate a speci a 1 mouse down
event.The following events have special default actions:

t1acFORTH
Event Constant
MOUSE ,DOWN

MOUSE,UP

KEY.DOlJH

UPDATE,EUEHT

lJINDOlJ

COMMAND,KEY

IN,DESKTOP

IN,SYS,lJIHDOW

Default Action
Checks for events 17-23 and if appropriate returns
that code instead. A code of 1 indicates a mouse
down in the content region of the current windo'y"1 and
the event record is copied to the mouse down record.

The event record is copied to the mouse up record.

The event record is copied to the keystroke array.

Begins update, passes control to the 'y'-lindov", update
token, and ends the update event.

Passes control to the window's activate token.

Simulates a menu event.

Beeps.

Passes control to the execution procedure posted for
the menu by MENU.SELECTION:.

IN. LOlJER, WIHDOlJ Actiyates the lower window.

IN.DRAG.BOX Drags the window.

IH,SIZE.BOX Resizes the window.

IN.CLOSE.BOX Hides the window.

Wlndows!Events Page 8 - 14 August 31 J 1984

Complete £¥ents Ust

DO.EVENTS always returns one of the following event codes:
Code Event Code Event

.9 HUlL.EUEHT 1.9 HEHIORK. EUEHT
1 MOUSE.DOlJH 11 DRUR.EUEHT
2 MOUSE.UP 16 COMMAHD.KEY
3 KEY.OOlJH 17 IH.DESKTOP
4 KEY.UP 18 IH.MEHU.BAR
5 AUTO.KEY 19 IH.SYS.lJIHOOlJ
6 UPDATE.EUEHT 2.9 IH.lOlJER.lJIHDOlJ
7 OISK.EUEHT 21 IH.DRAG.BOX
8 ACTIUATE.EUEHT 22 IH.SIZE.BOX
9 ABORT.EUEHT 23 IH.ClOSE.BOX

Note: Refer to "Inside Macintosh" documentation from Apple for the meaning
of events not described in this chapter.

Event Masking

MacFORTH maintains an event mask in the variable EVENTS. This mask is
used by DO.EVENTS to retrieve the next available event from the event queue.
The bit number within the mask corresponds to the event number. You can
convert an event code to a mask bit by executing:

<event code> 1 SlJAP SCALE

Since we use this quite frequently in the upcoming examples, here's a word to
do the converSl0n:

: EUEHT.BIT (event code -- bit .) 1 SUAP SCALE

If a keystroke is waiting in the keystroke array (indicated by
KEYSTROKE @

returning a true flagL DO.EVENTS maSKS the contents of EVENTS with the
result of

AUTO.KEY EUEHT.BIT KEY.OOUH OR
KEY.UP OR -1 XOR

to avoid keyboard events overwriting each other. If you don't care, execute
KEYSTROKE OFF

prior to executing DO.EVENTS.
Event Precedence

Windows/Events Page 8 - 15 August 30, 1984

The Maclntosh toolbox only supports 16 of MacFORTH's 24 event types. When a
keystroke or mouse down event occurs, MacFORTH automatically synthesizes
one of the other event types if appropriate.

Event {Code>'
KEY.DOIJH (3)

MOIJSE.DOIJH (1)

Synthesl zed Event {Code>'
COMMAHD.KEY (16)

IH. MEHU. BAR (18)
IH.SYS.IJIHDOIJ (19)
IH.LOIJER.IJIHDOIJ (28)
IH. DRAGBOX (21)
I H . S I 2E. BOX (22)
IH.CLOSE.BOX (23)

In order to enable an event produced by KEY.DOWN or MOUSE.DOWN, you need
to enable the respective producing event. For example, if you choose to
disable 811 events, you would execute:

EUEHTS OFF

To re-enable all events, execute
EUEHTS OH

The MacFORTH text interpreter automatically executes
EUEHTS OH

to avoid the problem of having all events disabled (which would hang the
computer).

To enable only one event, for example, a mouse down in the menu bar, you
would execute:

MEHUS.OHLY (--- I allo. only .ou~e do.n~ in menu bar~)
MOUSE.DOIJH EUEHT.BIT
IH.MEHUBAR EUEHT.BIT OR EUEHTS! j

MEHUS.nHLY.EXAMPLE (---)
MEHUS.OHLY

BEGIH DO.EUEHTS DROP AGAIH
EVEHTS OH (re-set the events)

Wi ndows/Events Page 8 - 16 August 30, 1984

EYents During T.,xt Input or Output

MacFORTH executes DO. EVENTS after every string is output} es well as every
time ?TERHINAL is executed (8S in KEY). When an event occurs during text
I/O} its default action is taken} and the event record is remoyed from the
queue. Two strategies ere available for hendling eyents during text I/O:
masking and eyent detection.

EYent Masking During Text I/O
Masking simply ignores any specified events which you don't want discarded
by DO.EVENTS. The simplest case is:

EUEHTS @ EUEHTS OFF
.- Ho. is the ti.e -
EUEHTS !

In the above example} we poHtely restored the event mask the way that we
found it. You can also selectiyely enable or disable eyents with a mask.

EYent Detection During Text I/O
You can also set a flag which will change if an eyent is serviced. The
contents of the first four bytes of the following eyent data structures will be
modified if an eyent occurs:

KEY. STROKE KEY.UP.RECORD
nOUSE.DOUH.RECORD nOUSE.UP.RECORD

For example:
EUEHT.TEST (---)

nOUSE.DOUH.RECORD OFF
BEGIH CR .- Text Output- MOUSE.DOUH.RECORD @ UHTIL j

Note that the mouse down event has} by default} setup for HOUSE.WAS .. and
@HOUSE.DOWN.

Windows/Events Page 6 - 17 August 26} 1964

Windows/Events Page 8 - 18 August 28, 1984

Chapter 9: File System

Overview 3
File I/O Operation Result Codes 3
File Assignment 4

Fi 1 e Numbers 4
Displaying File Assignments 4
Opening a File 4
Alternate Volumes 5

Displaying the Disk Directory 5
MacFORTH File Types 6
Data Files 6

Creating a Data File 6
Allocating Space in a Data File 7

Reading/Writing in a Data File 7
Fixed Record Data Files 8

Specifying Record Size
Accessi ng Records

Text Files
Rewinding a Text File

8
9
9
9
9 Reading Records in a Text FHe

Writing Records in a Text File
Virtual Files

10
11

Accessing Data in a Virtual File 11
Blocks Files 12

Creating a Blocks File 12
Changing the Size of a Blocks File 12
Accessing Program Source Code

in a Blocks File 13
MacFORTH Blocks File Structure 13
Including a File

Closing a File
Deleting a File
Ejecting a Disk
Mounting a New Volume
References to Volumes

File System

14
14
14
15
15
15

Page 9 - 1 August 31 ~ 1984

AdYanced FHe System Topics 16
Flle Control Blocks 16
File Pointer 16
Position Modes 16
FHe Name length 17
Volume Name length 17
Maximum File length 17

Appendix A: Example File Usage 18
Appendix B: FHe System liD Result

Codes 20

File System Page 9 - 2 August 30, 1984

Overview

This chapter discusses how MacFORTH interfaces to the Macintosh file
system. Using MacFORTH1 you can createl reed and write any stenderd
Macintosh file. This allows you to share data among applications.

You can have up to 9 f11es assigned and open at a time for accessing the data
within a file. MacFORTH supports two file types: data and program (or
"blocks") files. The records within a data file can be one of three types: fh<ed
length records l text records and virtual data files (free-format records). The
records within a program file are fixed length records l each containing 1024
characters.

We refer to program files as "blocks" files because they are made up of source
code blocks (as explained in the Editor chapter).

File Input/Output Operation Result Codes

For each file operation a result code is returned in the Yariable IO-RESULT.
This result code allows you to check the operation to see if it completed
successfully, and if not, why not.

Each of the 110 result codes are Hsted in Appendix B of this chapter for your
reference. If the file operation is successful 1 the result code is 01 otherwise
the yalue indicates an error condition. This allows you to monitor the result
of each file operation. You can then set the leyel of error checking from no
checking to full error checking/re-try attempts l etc. If you aren't concerned
with the result of the operation l ignore it.

The word ?FILE.ERROR is provided to handle most file operation error
conditions. You should execute ?FILE.ERROR immediately following a file
operation and l if an error occurred l it will abort the current task displaying
the appropriate error message. For example if you executed the phrase (don't
try it now):

OPEH- My File- ?FILE,EAAOA

and the file named "My File" was not found (110 result code -43), the current
task would be aborted and the error message "File Not Found'" would be
displayed.

File System Page 9 - 3 August 28, 1984

File Assignment

The Macintosh f11e system is based on assigning files (using their names) to a
file number and using that number in referring to the f11e. In MacFORTH} we
recommend that you use a CONSTANT value to refer to the file number to make
your programs more readable.

FiJe Numbers
MacFORTH allows you to access up to 9 files using file numbers 0-8. If you
use a file number outside of the range 0-8} Mac FORTH will issue the error
message "Illegal File-". The "f11e number" is just an index into a table of file
control blocks (FCBs) which contain information about each file. When we
refer to an FCB we mean the address of the FCB for the specified file. When
we refer to a file number} we mean the index of the FCB.

You don't need to be concerned with what the actual file number is for a given
file} as MecFORTH can automatically assign it to the next available FCB for
you. If you want to know the index of the next ayal1able FCB} the word
NEXT.FeD will leaye it on the stack. The error message "No FCBs AvaiJable'"
indicates all of the FCBs are in use. (We'll discuss the REHOYE command
later in this chapter which is used to free up an FCB).

DisplaYing FHe ASSignments
You can display the current file aSSignments by executing the ?FILES
command. Each file number is displayed with its associated file name. A
capitalized "0" next to the number implies the fiJe is open. A lowercase "b"
indicates it is a blocks file} a capitalized "B" next to a file number indicates
it is the current blocks file.

Opening a File
If a f11e already exists on disc} you can open it with the OPEN- command in
the following format:

OPEH- <file na.e>-

OPEN- will attempt to open the fHe named <file name>. If successfut the
FCB index is left on the stack so you can reference the fHe. If there is an
error during the attempt to open the f11e} an appropriate error message is
displayed} and the system aborts execution. For. example} here's a phrase
which will try to open the file named "Salary File"} and create a constant
named SALARY.FILE if the f11e is opened correctly:

OPEH- Salary File- COHSTAHT SALARY,FILE

File System Page 9 - 4 August 28} 1984

You cen reference the file using the cons tent SALARY.FILE. If you eren't
concerned with the file number, you cen just DROP it from the steck efter
opening the file.

OPEN- is similer in function to USE-, e)(cept that it wnl open any type of fne
(blocks end non-blocks filest it returns the file number, and does not select
the opened file.

A 1 ternete Volumes
You can access files on another (previously mounted) volume by simply using
the volume name es a prefi)(to the file name in the OPEN- stetement. For
e)(ample, to open the file named "Employee Salary" on the volume named
"Employee Informetion", you would e)(ecute:

OPEH· E.ployee Infor.ation:E.ployee Salary·
COHSTAHT SALARY.FILE

When you access the file leter, you will be prompted to insert the "Employee
Information" disk if it is not in the drive.

Displaying the Disk Directory

The DIR commend displays the contents of the disk directory of the disc in
the specified drive. To display the directory of the disk in the internal drivel
e)(ecute: IHTERHAL DIR

To displey the directory of the disk in the e)(ternal drive (if present). e)(ecute:
EXTERHAL DIR

The following information is presented when you use the DIR command:
1.) YO 1 ume neme
2.) number of files
3.) amount of spece aYailable
4.) volume creation dete
5.) volume last modified dete
6.) for eech f11e:

e.) f11e neme (first 19 characters)
b.) file ettributes

1.) "L II for locked, "-" for unlocked
11.) "U" for in use, "-" for not in use

c.) file type
d.) file size
e.) file creation date
f.) f11e last modified dete

File System Page 9 - 5 August 26, 1964

"ecFORTH File Types

There Dre two stDndDrd types of f11es you will use with MDCFORTH: dDtD flIes
Dnd blocks f1'les. DDtD flIes contein dDte 1n D free-formDt. Blocks f11es
contDin progrem source code in seQuentiel fixed length records.

From the Finder, you CDn distinguish between these two f11e types by their
icons. DDtD f11e icons Dre the stendDrd f11e icon used (plein rectenguler
document icons). Blocks f11e icons ere rectDngulDr document icons with three
rectengles wahin the bounds of the icon. These rectDngles represent the
three blocks of source code you CDn print out on D sheet of peper using the
word TRIAD (explDined in the Editor chDpter).

You CDn 10Dd e blocks f11e from the Finder by double clicking it. When D blocks
fHe is loeded in this menner, MecFORTH is loeded first, then block 1 of the
selected fHe is loeded (more ebout this leter).

Dete Files

Dete flIes contein dDte in whetever formet you specify. The detD can be
stored as D virtuel erray with no perticuler format al1 the way up to fixed
fields within fixed records.

Creating a Dete File
If the file you heve essigned elreedy exists on the diskl there is no need to
re-creete it; go on to -Reed/Writing in e Dete File-.

To creete e new dete f11e on disc, use the NEW.FILE commend in the fol1owing
form:

<aize> - <file na.e>- HEU.FILE

This wi11 creete the f11e on disc end pIece it into the disc f11e directory es e
-DATA- type f11e with the specifled size. If the fHe wes successful1y
creeted, its f11e number is returned on the steck. If en error wes encountered
during creetlon of the fHe (eg. enough room on the diSk, 1n the cetelog, no
neming confl1cts, etc.) the eppropriete error messege is displeyedl end the
system eborts. For exemple, to creete e f11e nDmed -My Dete FHe- with initiel
size 1001 Dssigning its file number to the constDnt DATA.FILEI you could
execute:

188 - My Data File- HEU.FIlE COHSTAHT DATA.FIlE

Future references to the newly creeted file CDn be mede using the cons tent
DATA.FILE.

File System Pege 9 - 6 August 28, 1984

Allocatin~p'ace in a Data Flle
There are three methods you can use for allocating space in data:

a) Allocate the space when you create the file (wfth the NEW.FILE
command)

b) Don't (let the system do it for you)
c) Both a) and b)

When you create a data file, you can to allocate space for it by specifying the
size. Suppose you wanted to allocate enough space for 100 records, each 50
characters in 1 ength. The number of bytes needed is 5000 (100 * 50).

To create some space using method b), you can simply start writing data into
the file. This appends data to the f11e, allocating space for the data as
needed. Each time you write data into the file, the furthest write operation
into the fHe sets the end-of-file pointer. You can write past the end-of-fHe
pointer (and re-set it), but you can't read past it. This simply means that you
should write data to the last position in the file you will access before trying
to read from it.

You can also combine both methods to create space in your file. You may want
to allocate a minimum amount of space when you create the f11e and as the
file grows, simply append data to the end, increasing as size.

Reading/Wrlting In a Data FHe

MacFORTH supports three data file record types: fixed, text, and virtual. Each
type has is own best use and you are free to use any type you llke within an
application. Fixed record f11es are the simplest and most useful, text record
files make efficient use of disk space for text storage, and virtual record
files are the most flexible.

The MacFORTH f11e system reads and writes data records from a record buffer
from/to a f11e. A record buffer is simply an area in memory that you specify
for reading/writing records. To create a record buffer, simply allocate the
amount of space needed for the longest record you will read or write.

File System Page 9 - 7 August 30, 1984

For examplel 1f you will be accessing data records in a fHe and know that the
maxi mum record 1 ength is 60 bytes} you coul d create a record buffer by
executing:

68 COHSTRHT REC.BUF.SI2E
CRERTE REC.BUF REC,BUF.SI2E RLLOT

This phrase created a record buffer called REC.BUF and allocated 60 bytes
for it. If you create a record buffer smaller than your record size
and read data into it~ you could crash the system. When the data 1S
read from the f11el It will continue to oyerwrlte your dlctl0narYI so be sure to
al10cate enough space. That is why we created the constant REC.BUF.SIZE 1n
the above example. When reading or wrlting, you can specify the size of the
buffer as a constant to be sure you use the right s1ze.

Vou may also use the scratchpad buffer, PAD, but be sure to use a reasonable
record size to avoid overwriting the end of the object space.

Fixed Record Data Files

Fixed files are made up of records of the same size. This format allows you
to access any record in the fUe by lts record number. The records in a fixed
file are in sequence starting at record number 0 through the last record in the
f11e.

~Ilecjfying Record Size After you assign a fixed file, before you can read or
write data in the f11e, you need to specify the size of each record in the file.
Use the SET.REC.LEN command 1n the following format:

<max rec size> <filea> SET.REC.LEH

For examplel if you were using fixed record lengths of 37 in fixed f11e #3
(using the constant MYFILE) you would execute:

37 MYFILE SET.REC.LEH

This 1S the value used by the MacFORTH system when reading/writing records
in a fixed f11e. If you don·t specify the record size, you'll get the error
message "Fixed Record Length = or when you try to read or write records in
the f11e.

FHe System Page 9 - 8 August 30} 1984

Accessing Records Once you have assigned and opened the fHe, and allocated
a record buffer for the f11e, accessing records within the f11e 1S simple. To
read a record into your buffer, you supply the buffer address, record number
and f11e number to the command READ.FIXED. For example, to read record 5
from f11e #3 (represented by the constant t1YFILE) into a buffer named
REC.BUF, you would execute:

REC.BUF 5 MYFILE READ. FIXED

Sim11arly, to write a record, you use the same format. For example, to write
record 12 to f11e # MYFILE from a buffer named REC.BUF, you would execute:

REC.BUF 12 MYFILE WRITE.FIXED

Text Flles

Text f11es are made up of a sequence of text (ASCII characters) records
separated by carriage returns. This is an efficient way to store text files
because only the space needed for the text is used (no wasted space as may be
found in using fixed records for variable length text storage).

Because the records in a text f11e are variable length, you won·t know how
long a particular record is until you have read the entire record into your
buffer.

Rewinding a Text File
To rewind a text file (set its position pOinter to point to the start of the
f11e), use the word REWIND in the following format:

<file#> REWIHD

For example, to rewind file # t1YFILE (where MYFllE is simply a constant
containing the f11e number). you would execute

MYFILE REUIHD

Reading Records in a Text Flle
Once you have opened the text file you want to use, and created a record
buffer for the records, reading and writing records from/to the fHe is simple.
For example, to read the first text record in file number t1YFILE into a record
buffer named REC.BUF with length of REC.BUF.LEN, you would execute:

MYFILE REUIHD
REC.BUF REC.BUF.LEH MYFILE READ. TEXT

Flle System Page 9 - 9 August 30, 1984

To read the next record 1n the f11e, you would execute:
REC.BUF REC.BUF.LEH MYFILE READ. TEXT

and so on. After each read operation in a text f11e, the file pOinter is
positioned to the first byte of the next record. Subsequent read operations
read the next record in the f11e automatical1y.

What if your buffer isn·t long enough for the record being read? Unlike the
fixed record fHes, you can use a buffer that is shorter than the length of the
record being read. (We recommend you use record buffer long enough to accept
the longest text record in the f11e for simplicity.) Let's look at an example to
illustrate this point. Suppose that the next record in the text file you are
reading from 1s 10 characters in length, consisting of the fo11owing:

Char -: 1 2 3 4 5 6 7 8 9 10
Chars: Bob S mit h <cn

If you read this record 1nto a buffer of length 10 or more, you will get the
enUre record and can continue. But, on the other hand, if you read this record
into a record buffer of length, say 7, you will only get the first seven
characters. To get the rest of the record (''1'', "hn

, and the carriage returnt
perf orm a read command just as if the rest of the record was the next record
in the file. The read wi11 terminate on the carriage return, so only the 3
characters remaining will be read.

When MacFORTH reads a text record into a buffer, it transfers characters to
the buffer one at a time unt11 it encounters a carriage return in the fHe
("normal" termination) or unt11 the record buffer is full. If the record buffer
is full prior to encountering a carriage return, the fUe pOinter is left pointing
at the next character to be read from the current text record. Subsequent
reads will begin at that character (just as if 1t were the first character in
the record).

Writing Records in a Text File To add records to a text file use the
WRITE.TEXT command as fonows:

<buffer addr> <record length> <file'> URITE.TEXT

For example, to add the record in the buffer REC.8UF whi ch is 10 bytes long
(including a carriage return at the end) to file number MYFILE, you would
execute:

REC.BUF 18 MYFILE URITE.TEXT

When writing text records, you must append a carriage return to the end of
the record (EOL). For example, to append a carriage return to the record just
written (from the above example), you could execute:

CRLF 1 MYFILE URITE.TEXT

FHe System Page 9 - 10 August 30, 1984

Virtual Files

Virtual files are the most flexible fHe format of the three types supported by
MacFORTH. Using virtual ftles, you could re-write each of the existing file
structures or create your own new file types. To MacFORTH, a virtual file is
simply a virtual array of characters. You can manipulate this array in any
way you like.

Accessing Data in a Virtual FHe
To read data within the file to a buffer, use READ.VIRTUAl in the following
format:

<buffer addr> <length> <file addr> <file a> AERD.UIATURL

The only new parameter you may not recognize is <file addr>. This is the
offset from the start of the file where you would like to start reading data.
For example, to read 100 bytes from the fHe number 6 (represented by the
constant MYFllE) startfng at the beginning of the file into the record buffer
REC.BUF, you would execute:

AEC,BUF lBB B MYFILE AERD.UIATURL

To read 7 bytes from the same file, starting at the 23rd element in the fHe
1nto the record buffer REC.BUF, you would execute:

AEC,BUF 7 23 MYFILE RERD.UIRTURL

Writ i ng data into the fi lei s done ina si mil ar manner us; ng the word
WRITE.VIRTUAl in the following format:

<buffer addr> <length> <file addr> <file l > URITE,UIATURL

For example, to write 30 bytes of data from PAD, starting at position 100,
you would execute:

PAD 3B lBB MYFILE UAITE.UIRTURL

File System Page 9 - 11 August 30, 1984

Blocks Files

Blocks fnes contain program source code. Each fUe is made up of a sequence
of blocks (1024 bytes) numbered from zero through the maximum block tn the
fHe.

Creating a Blocks FHe
If the fHe you have assigned already eXlsts on the disk, there is no need to
re-created it; go on to "Opening a Blocks File."

To create 6 new blocks f11e} use NEW.BLOCKS.FILE 1n the following format:
<# of blocks> " <file name>N NEU.BLOCKS.FILE

This will create a new blocks fHe on disk and place it 1nto the disc file
directory. If the file was created and allocated successfully} the file number
for the new file is left on the stack. If an error is encountered 1n the process,
an error message is di sp 1 ayed and the system aborts.

As with the NEW.FILE command, you may want to create a constant value for
the file number} or if you aren·t going to use tt, simply drop it from the stack.
Here's an example to create a new blocks f11e named "Game Blocks"} allocating
12 blocks to it and creating the constant GAME.BLOCKS for future references
to the file:

12 "Game Blocks" NEU.BLOCKS.FILE CONSTANT GAME.BLOCKS

Chan9.iDg the Size of a Blocks FHe
Once you have allocated space to a blocks file, you can change the size of the
fUe with the APPEND.BLOCKS command used 1n the foHowlng format:

('" of blocks> <file"') APPEND. BLOCKS

where <"'of blocks) 1S positive to add blocks, or negative to delete blocks
from the specified blocks file. For example, to add 6 blocks to the file
identified by the constant MY.FILE, you would execute

6 MY.FILE APPEND,BLOCKS

or to delete 3 blocks from that f11e:
-3 MY.FILE APPEND.BLOCKS

FHe System Page 9 - 12 August 30, 1984

Accessing Program Source Code in a Blocks Flle
To access the data within the file as a blocks file, you select it as the
"current blocks file." To select a file, use the SELECT command in the
following format:

< f il e l > SELECT

This command selects the specified file as the current fHe for block access.
Once opened, you can select any blocks file to be the current blocks file with
this command. If you try to select a data file as the current blocks fHe, the
error message "Not a Blocks File!" is displayed. We recommend that you use
the word "blocks" in the name of your file to distinguish it from other fHes on
your disk (ie. "Graphics Blocks" or "Checkbook Blocks", etc.).

When executed, SELECT saves the block buffers and the file information out
on the disk, insuring that any unwritten data from the previous blocks file is
saved, and then selects the specified file as the current blocks file.

The MacFORTH word USE- is provided for convenience when you want to edit a
blocks file. Used 1n the form

USE" <file name>"

the file specified is opened, and selected as the current blocks.

MacFORTH Blocks File Structure
MacFORTH reserves the first two blocks in a fHe (blocks 0 and 1) for a special
purpose. Block 0 is used as a comment block for the file and can't be loaded.
Block 1 is used as a load block for the entire file.

Use block 0 to make notes about the file, current revision of the program, etc.
This is handy for later reference.

Use block t as a load block for your application. This important because when
you open (by double cUcking) a MacFORTH blocks file from the Finder,
MacFORTH selects the file and loads block 1.

File System Page 9 - 13 August 301 1984

Including a FHe
The word INCLUDE- allows you to load another blocks file. The specified flle
will be opened and loaded (by loading block 1). You can use INCLUDE- from
any file to load another fOe, then continue loading the original file. For
example, H you had the source code to a flle named "Checkbook Blocks", you
could load it by executjng

INCLUDE" Checkbook Block~n

INCLUDE- may be nested. This means that a fHe that 1s being included can
include a f11e itself.

When INCLUDE- is executed, the specified file is assigned to the first
avallable FeB.

Closing 8 File

When you have flnlshed using a file, you should close it. Thjs ensures that all
data is written to the disk and that the f11e system updates all necessary
information about the file. To close a f11e, simply execute the CLOSE
command using the file number to be closed. For example, to close f11e# 7,
you woul d execute:

7 CLOSE

You should always check the I/O result code when you close a file to be sure
it was properly closed.

Deleting 8 File

To remove a f11e from the disk (and destroy a11 deta contained in the f11e), use
the DELETE command. Once a file is deleted, you cannot recover the date
from it, so use this command with caution. To delete a file from the current
diSk, execute the DELETE command as follows:

<fi leI> DELETE

FHe System Page 9 - 14 August 30, 1984

Ejecting 8 Disk

You can eject a disk from the drive with the command
I tHERtiAL EJECT

To eject the disk in the external drive (if present) execute
EXTERNAL E.JECT

Mounting 8 New V01ume

To mount a new volume, simply eject the disk that is in the drive and insert
the desired disk (volume). MacFORTH will automatically mount the new
volume.

References to Volumes

As we have said, you can reference a volume by name when opening a file by
simply inserting its name followed by a colon before a f11e name. A volume
may also be referenced by volume number. Volume numbers 0 1 1 and 2 refer to
whatever volume was the boot volume (volume '0)1 and the volumes residing
in the internal drive (yolume ' 1) and the external drive (yolume '2).

Assignment of specific volume numbers start at 0 for the default drive and
increase by -1 in the order order that each new volume is mounted (ie. the
first volume mounted is 01 the second is -1 1 the third is -2 1 and so on).

Specific volumes may be ejected, or have their directories displayed by using
the volume number.

File System Page 9 - 15 August 30 1 1984

Adyanced File System Topics

This section ·discusses some of the inner wOrkings of the MacFORTH fHe
system. It is intended for the advanced user. Vou do not need to read this
section to use the fHe system.

FHe Control Blocks MacFORTH uses an array for each fHe number used. The
information in this array is required by the Macintosh fHe commands. Vou can
examine and alter (at your rrtm. risk!!) any information about a flle by
examining its fHe control block.

The command >FC8 returns the address of the fcb array for the given fHe
number. Each array is 90 bytes long.

File POinter The basiS of the MacFORTH fHe system js the word POINT which
pOints into a file. POINT allows you to point anywhere in a f11e, randomly,
sequentially, relative to the front, back or anywhere in-between. POINT lS
used in the f 0 11 OWl ng format:

<position> <position mode> <f11e#> POINT

Position Modes There are four posHion modes for use with POINT :

Position Ty~ Mode
FROM.START
FROM.END
FROM.CURRENT
VIRTUAL

posHion relative to the start of the fne
position relative to the end of the fHe
position relative to the current file position
position to any specified location in the fHe

To clarify this point, let's look a some examples (we'll use the dummy
constant FILE- to represent a vahd file number):

a) position at the start of the f11e:
8 FROM.STRRT FILE- POINT

b) posH ion at the end of the fHe
8 FROM.END FILE' POINT

c) posHion at the 17th character in the fHe
17 FAOM.STRRT FILE' POINT

d) posHion 4 characters before the current position in the file
-4 FAOM.CURRENT FILE- POINT

File System Page 9 - 16 August 301 1964

Note: The above three operators set the fne mode to text. This means that
the file pOinter will be positioned where you specify, but until you change the
mode (if text is not the desired modet you will be reading and writing text
records (terminating on carriage returns).

You can also use the position mode VIRTUAL to point to any byte in the file.
Using the above examples:

a) posit i on at the start of the til e
a UIATUAL FILEs POIHT

b) position at the end of the file
<max S of bytes in file> UIATUAL FILE' POIHT

c) position at the 17th character in the f11e
17 UIATUAL FILES POIHT

d) position 4 characters before the current position in the file
CUAAEHT.POSITIOH 4 - UIATUAL FILES POIHT

Flle Name Leng1h The name given to a file is any string of up to 255
characters in length. Invalld characters include colon (:) and double quote (").

Volume Name Length A volume name is any string of up to 26 characters in
length and terminated by a colon (J

Maximum Flle Length For practical purposes, the maximum file size is
limited only by the amount of avallable space on a disc. The absolute f11e size
maximum is 16 megabytes (16,722,216 bytes). The maximum record size to
be read at one time 1s 64 kllobytes (65,535 bytes), but is currently limited to
the amount of memory available.

File System Page 9 - 17 August 301 1 984

Allgendlx A: EX8mg1e Fl1e US8gft

In order to simplify your task of using the f11e system 1n your appll cation, we
present the following simple example as a temp1ate. The example is a simple
system of keeping track of three people (by their last names) and their ages
in the fixed fHe "Ages Flle". Their names and ages are:

Name A~
SMITH 26
JONES 38
WILSON 31

and we will translate them to:
CREATE REC 1 26 C, ," SMITH ..
CREATE REC2 38 C, ," JONES ..
CREATE REC3 31 C, ," WILSON"

(Note that we are simply placing the data into the dictionary for the purpose
of example. This data would normally be accessed via another file or input
directly from the keyboard.)

Now, continue with creating and opening the file:
8 U Ages File" NEW.FILE CONSTANT AGES.FILE

The buffer used to read the records into:
8 CONSTANT AGES.REC.SIZE
CREATE AGES_BUF AGES.REC.SIZE ALLOT

Set the fixed record size:
AGES,REC.SIZE AGES.FILE SET.REC.LEN

Next, we'll write the records into the f11e:

RECl AGES.FILE WRITE.FIXED ?FILE.ERROR
REC2 2 AGES.FILE WRITE.FIXED ?FILE.ERROR
REC3 3 AGES.FILE WRITE.FIXED ?FILE.ERROR

(Notice that we didn·t need to set the end of file pointer; it was done
automatically by writing data at the end of the file each time. The f11e
system automatica11y increased the file size.)

File System Page 9 - 18 August 30, 1984

Here's a word which will read each record and print the informatlon:

DISPLAY. RECORD (--- I display data for the current rec)
AGES_BUF 1+ COUHT TYPE (display the name)
" is" AGES_BUF C@ (di splay the age)
" years old."

SHOW. AGES (---) 4 1
DO AGES_BUF I AGES.FILE READ. FIXED ?FILE.ERROR

CR DISPLAY.RECORD
LOOP

Suppose you wanted to change JONES' age to 39?

AGES_BUF 2 AGES.FILE READ. FIXED
39 AGES_BUF C!
AGES_BUF 2 AGES. FILE WRITE.FIXED

File System Page 9 - 19

(read Jones' record)
(change the age)
(re-write the record)

August 30, 1984

AlloendlX 8: FHe System I/O Result Codes

The following resu1t codes are returned by the system ROM after an
Input/Output operation has taken place:

Result
Code
o

-33
-34
-35
-36

-37
-38
-39
-40
-41

-42
-43
-44
-45
-46

-47
-48
-49
-50
-51

-53
-54
-55
-56

-57

-58
-59
-60
-61

File System

Meaning
No error. Operation completed successfully.
Directory full
Disc full
No such "101 ume
D1 sc ! /0 error

Bad filename
Fork not open
End of fork
PosHion error. Tried to position before start of fHe.
Memory ful1

Too many forks - more than 12 forks open
Flle not found
Di sc wri te protected
Flle locked
Volume locked

One or more flles are opened
Duplicate fHe name
Fork already opened with read/write permission
No drive number specified
No fHe assigned, reference number specifies nonexistent
access path

Volume not on-line
Locked volume can't be written to
Volume already mounted and on-line in drive
Inyalid drive number - number specified doesn't match an
exi st i ng dri "Ie
Inya1id disc directory

External file system; can't recognize yolume
Problem during rename
Master directory block 1s bad
Read/wrHe or open permissions - wrHing not allowed

Page 9 - 20 August 30, 1984

Chapter 10: Printer ISerial

Overview

Text Output
Wl ndow /Screen Output

Other Pnnters
Interfacing to Another Printer
Printer Port Conl1guratlons
Graph1 cs Output

2

2
3

3
4
4
4

Ser1al Interface 5
Serial Communicat1ons w1th a Host Computer 5
Serial Interface Implementation Detalls 6

Pnnter/Senal Page 10 - 1 August 28, 1984

Overview

MacFORTH aJ10ws you to output anything that you can put on the screen, both
characters and graphics, to an Apple Imagewriter printer. If you have any
other type of printer, refer to the "Other Printers" section of this chapter.

Text Output

Any character output to the screen can also be output to the printer. To do
thi s, use one of three methods:

a.) Select the "Printer" item from the "Options" menu. Output is then
directed to both the printer and the screen.

b.) Press XP (a shortcut for selecting the "Printer" item from the
"Opt ions" menu).

c.) Execute PRINTER ON to activate the printer.

To disable output to the printer, you can use A or 6 above (they actual1y
toggle the printer function) or execute

PRINTER OFF

If you are doing any special formatting on the printer and don't want the
output to appear on the screen, execute:

PRINTER,ONLY CONSOLE !

To return output to both the printer and the screen, execute:
MAC.CON CONSOLE !

PRINTER.ONt Y does what its name implies. In the eyent of an error or ff the
end of the input is reached MacFORTH always returns to the console as the
output devi ceo

You can also direct any string to the printer with the word PRINT. PRINT
works just like TYPE, only the string is output to the printer instead of the
display.

Many pri nters need a term; nat 1 on character (1 i ke CR or LF) before they wi 11
print the data sent to them. To output a carriage return or line feed execute

CRLF 2 PRINT (CR,LF)
CRLF 1 PRINT (just CR)

Printer/Serial Page 10 - 2 August 30, 1984

Wi ndow /Screen Output
MacFORTH allows you to dump the contents of either only the active window
or the entire screen to an Imagewriter printer. There are two methods of
dumpi ng the entire screen:

a) Depress the caps lock key and press shifted 3C4

b) Execute PRI"1 • SCREE"

To dump only the contents of the front window use one of the following two
methods:

a) Release the caps lock key and press shifted 3C4

b) Execute PRI"1 .11"001

It is also possible to print just a portion of the current window with the
word PRINT.BITS. Used in the form

<top> <left> <bottom> <right> <bitmap addr> PRINT.BITS

the rectangle specified by <top> <left> and <bottom> <right> in the active
window will be printed. The bitmap for a window is offset 2 bytes into the
window record} so the address for the bitmap is GET.WINDOW 2+

For example} to print the contents of the upper left comer of the window}
execute:

995968 GET.UIHDOU 2+ PRIHT.BITS

Other Printers

For best results, we strongly suggest you purchase an Apple Imagewriter
printer. If you choose to use another type of printer, you will have to either
provide your own cabling and printer configuration or arrange with someone
who can.

Note: CSI does not guarantee that the instructions provided will enable you to
interface to any printer other than the Imagewriter. The following
information is intended to provide background information to individuals who
have fabricated cables for and interfaced printers to other computers. It is
not something that be attempted by inexperienced users. Beyond supplying
this background information, CSI will not SUI2Dort non-Imagewriter printers.

Printer/Serial Page 10 - 3 August 28} 1984

Interfacing to Another Ponter
In order to interface your non-Imagewnter pnnter to the Macintosh, you w111
need the fo11owing:

8) a printer with an RS-232C Senal interface, and

b) a specially fabncated cable to connect between the pnnter and
the Mac (refer to ST.MAC Magazine, 1984, pg.44 for Mac pinouts)

c) be sure to sat1sfy the control signal requirements of your pnnter
(le. DSR, CD, RTS)

Pri.,ter Port Configurations
Default text output to the printer port occurs at 9600 baud, no parity, 8 data
bits, 1 stop bit. Handshake protocol for output flow control is)(ON/)(OFF. If
your pnnter cannot be configured to this format, you wi11 need to reconfigure
the Mac printer port to a format your pnnter is capable of. Use:

<'stop bits> <parity> <'bits> <baud rate> COHFIGURE.PRIHTER

where 'stop bi ts
par-ity
'bits
baud rate

For examp1e:

1,2 • 1 stop bit, 2 stop bits
8,1,2,3 • none,odd,none,even
5, 6, 7, 6 • • 0 f dot a bits

• 75 - 57688

1 g 6 1288 COHFIGURE.PRIHTER

reconfigures the printer port for 1 stop bit, no panty, 8 data bits, 1200 baud.

Graphics Output
Unfortunately, the industry has no real standards for dumping graphics to a
printer. In order to output graphics data to your printer, you will need the
following:

8) The ability to output text as descnbed above (consider a printer buffer
if necessary).

b) A complete understanding of the way in which your printer accepts
graphics information.

c) You will then have to wnte a program which determines which bits
are set in the desired display area, format them into a output buffer
which wHl be compatible with your pnnter, and then dump successive
output buffers to the printer. Use the MacFORTH graphics word
GET.PIXEL to determine the state of each dot on the screen.

Printer/Serial Page 10 - 4 August 26, 1984

Seri al I ntert ace

Starting on block15 of the "FORTH Blocks" f11e on the MacFORTH system disc
contain source code for the Macintosh senal communications port (the phone
lcon). This code is followed by an eKample of a minimal terminal emulator
program capable of communicating over the senal port with a remote host
computer, as well as upline and downline loading of text f11es. In the
remalnder of this section we will discuss each of the primitive senal
interface operators, and discuss how they are used in the terminal emulator
program.

We have provided the senal communications in source code form for three
reasons:

First, it lS optionally loadable. If you don't want to use it, you aren't
penalized in memory usage.

Second, many users of MacFORTH are newcomers to FORTH. This provides
another example of FORTH source code. We encourage you to follow our
example of spreading your applications source code over many blocks, leaving
plenty of "white space" in your blocks. Note that each word is commented
with both what is expected on the stack and a bnef descnption of the action
it takes. Many novice FORTH programmers try to cram as much as possible
into a single block of source code, making it unreadable. Disks are cheap
compared to the headache of trying to unravel an overstuffed blockll

Third, for those users who hove "Inside Macintosh", this is a good example of
how to interface to a device dnver entirely in high level FORTH.

Pn nter ISen al Page 10 - 5 August 26, 1964

Serial Interface Primitives

SERIAL.FILE- -- addr
Variable containing the fl1e number to use for serial I/O operations.
ActuallYI two files are required to support full duplex operations.

SERIAL.IN -- t11e-
Returns the f11e number tor the input side of the serial interface.

SERIAL.OUT -- file-
Returns the f11e number for the output side of the serial inteface.

INPUT.SIZE -- size
Constant containing the size of the serial input type ahead buffer.
Change it to suit your requirements.

INPUT .BUFFER -- addr
Returns the address of the input buffer.

SERIAL.OPTIONS -- addr
Returns the addres of the array used to configure the serial
interface protocol.
Offset (bytes>, Description

o XON/XOFF handshake enabled if byte is non-zero
1 CTS handshake enabled if byte is non-zero
2 XON character for software handshake
3 XOFF character for soft ware handshake
4 I nput abort codes:

bi t 4 = pari ty error
bl t 5 = overrun error
bit 6 = framing error

5 Status change generates event
bi t 7 = BREAK state change
bi t 5 = CTS state change

6 Enable XON/XOFF input flow control if byte is
non-zero

After modifying the contents of this array, use BAUD (discussed
later) to put the new options lnto effect.

Printer/Serial Page 10 - 6 August 261 1964

OPEN.SERIAL addr\cnt\file- --
Opens serial device driver on the specified file-. (Note: ?FILES
will show the serial files as ".AIN" and ".AOUT".) addr and cnt
specify the address and length of the input buffer to be used for
type ahead. This buffer is used to make up for the time It takes to
scroll up all bits within the window.

To change from the comm port (phone icon) to the printer port
(printer icont replace ".AIN" and ".AOUT" with ".BIN" and ".BOUT"
withi n the def i nit i on of OPEN.SER I AL.

S.TYPE addr\cnt --
Analagous to TYPE or PRINT. Output is sent to the serial port.

S.EXPECT addr\cnt--
Analagous to EXPECT. No character editing (eg. backspace) is
performed.

S.?TERHINAL -- n
Returns n as the number of characters aYailable in the input buffer.
Returns 0 if none are ayailable.

S.ST ATUS -- stat2\stat 1
Returns the serial device status.
stat 1:

bi t 30 f rami ng error
bi t 29 hard overrun
bi t 28 pari ty error
bit 24soft overrun (input buffer overflow)
bits 16-23 non-zero: XOFF received to stop input data
bits 8-15 read command pending
bits 0-7 wrlte command pending

stat 2:
byte Onon-zero XOFF flag
byte 1 non-zero CTS flag

S.?READY -- flag
Returns a true flag if the serial driver is able to output (not held off
by CTS or XOFF).

Printer/Serial Page 10 -7 August 28, 1984

S.KEY -- char
Reads char from the serial port. If no characters are ayallable,
S.KEY waits until one is sent.

S.EMIT char --
Wntes char to the senal port. Waits if not ready untl1 ready for
output.

S.BREAK ---
Transmits a break signal to the remote computer.

BAUD baud rate --
Opens the serial port if necessary and sets the baud rate, input
buffer, and communications options.

Using the Serial Interface
Before attempting to input or output to the senal port, you first need to set
the baud rete. For example

388 BAUD

initializes the serial port, setting the baud rate and communications options.

Sen al Output
To output e character to the serial port, use S.EMIT. For example

65 S .EnIT

will transmit the character "A" out to the serial port. Refer to the ASCII
chart at the end of the manual for a complete listing of ASCII codes.

To output e string to the serial port, use S.TYPE. For example
CRLF 1 S.TYPE
- LOGOH- COUHT S.TYPE

will output a carriage return, then the stnng "LOGON" to the senal port.

Printer/Senal Page 10 - 8 August 28, 1984

Seri al Input
S.?TERHINAL returns the number of characters 8ya118ble in the input buffer.
To input a single character use S.KEY. To input a string of characters, use
S.EXPECT.

You can combine the function of S.?TERHINAL and S.EXPECT to input the
entire string in the serial input buffer:

PAD S.?TEAMIHAL S.EXPECT

Usi ng the T ermi nal Emulator
Refer to the first screen of the terminal emu18tor code (8t the end of the
seri81 interface code) for instructions on how to operate it.

Pri nter ISeri al Page 10 - 9 August 28, 1984

Printer/Serial P8ge 10 - 10 August 28, 1984

Chapter 11: Advanced Topics

In this chapter we will discuss a variety of MacFORTH features which you
will find useful in the course of programming.

Time and Date Functions 2
Timer Functions 2
TRACE and DEBUG Features 3

I nterrupt But ton Support 3
DEBUG Option 3
TRACE Option 4
UNIQUE.MSG Option 5
LOWER. CASE Option 5
QUIET Option 6

User Specified Error Handlers 7
Error Recovery 7
Di sab 11 ng Error Recovery 8
Uncondi tiona 1 Error Recovery 9

Recovery Stack Frame Chart 10
Memory All ocat 1 on 12
Macintosh/MacFORTH Memory Map 13
Vocabul ary Data Structure 14
Vocabulary Data Structure Diagram 15
Character Cursor Symbol 16
Cutting and Pasting Between

Appllcations 17
Macintosh Toolbox Interface 18

Pre-ReQu1 s1 tes 18
Review of Pascal Data Types 18
Toolbox Traps 18

OS Traps 18
Pascal Procedures 19
Pascal Functions 19

Complex Sound Generation 20

Advanced T opt cs Page 11 - 1 August 31 1 1984

Time and Date Functions

Your Macinto~h maintains a count of the number of seconds that have passed
since Januery 1, 1904 in its own internal counter. This counter is updated
every second eutometically by the computer and can be read by executing the
word eCLOCK. To facl1itate using this feature, we have provided you with
the fol1owing words to display the time and dete:

.TIME$
Displays the current time (as read from the internal clock) and
displays 1t in the fol1owing format:

HH:MM:SS XM
.DATES

Displays the current date (as read from the internal clock) and
displays 1t in the following format:

MM/DD/VV

GET.TIMES addr--
Copies the 11 byte time field ("HH:MM:SS XM") to addr. Be sure
that you have 11 available bytes at addr as it will be
overwri t ten.

GET.DATES addr--
Copies the 8 byte date field ("MM/DD/VV") to addr. Be sure that
you have 8 aval1able bytes at addr as 1t wil1 be overwritten.

For more information on using the internal clock for display of time and date,
refer to the MacFORTH Glossary entries for:

FMT.DATE$ FMT.TIME$ DAYS> ?SECONDS ?DAYS

Timer Functions

You can also use the clock as a timer. For example, to see how long 1t takes
to display the entire words list of the current dictionary, you could execute:

@CLOCK WORDS @CLOCK SWAP - CR. ," Seconds"

or to wait a speCified number of seconds before continuing:

WAIT (# of seconds --)
@CLOCK +

BEGIN @CLOCK OUER = UNTIL DROP

38 IJAIT

Advanced Topics Page 11 - 2 August 31, 1984

TRACE and DEBUG Features:

To facilltate debugging your program (1f it has any bugst we have provided
you with an extensive set of tools for tracing and locating the problem.

I nterrupt But ton SUIlPort
When the user presses the interrupt but ton (the second but ton on the
programmers buttons on the left side of the Mac) while MacFORTH is in
control, MacFORTH locks out interrupts for a few seconds and then aborts the
clJrrent operation. This action will recover from most unterminated loops and
return control to the MacFORTH window. For example, try a definition Hke:

: ENDLESS BEGIN CR." again and again ... N AGAIN j

ENDLESS

Now reach around and press the interrupt button (not the reset button).

DEBUG Option
The debug option is present on the options menu bar. A check mark indicates
the debug option is active. The keyboard equivalent command is command D.

When the debug option is on, the text interpreter will check the stack depth
after completion of each request. If any items are left on the stack, they are
displayed using .S in the following format

[depth1 \ 3rd stack item \ 2nd stack item \ top stack item

The 3rd and 2nd stack items are only displayed if they exist. Refer to the
trace option for other features of the debug option.

AdYanced Topics Page 11 - 3 August 31, 1984

TRACE Option
The trace opti.on provides a compHe time electlYe trace feature. Basically
this option instructs the compHer to compile new definitions in such a way
that when they are executed, the name of each word wi11 be printed along
with the depth and contents of the stack. The trace option may be set and
cleared Yia the optlons menu bar. Pull down TRACE to toggle this function.

For example, execute
DEBUG 0"
TRACE 0"

: TEST

TEST

ill' Il' nn
14J 4J uu " . " I nnn Luur

Because the definition was compiled with the trace optton on, when 1t
executes, each word that is executed is preceded by printing its name and
followed by printing the contents of the stack. (You can use the Menu Bar to
ha I t and resume output.)

The debug option enables and disables the run-tim~ trace option's output.
Now execute

DEBUG OFF
TEST

and you wi11 see that the trace feature was not executed because the debug
option was off.

NOTE: The trace optlon forces compilation of the trace feature into each word
when it is turned on. The trace output is generated at run-time. This means
that a great deal of overhead is carried with each word when it is executed
with the trace option on. To get accurate timing information in time-critical
operations, and for productlon appllcations code, disable the trace feature and
re-compt1e the code.

Remember, the TRACE option is altered by command D. You can toggle the
trace function on and off during output by pressing command D (or by
selecting the Debug item from the Optlons menu).

AdYanced T opi cs Page 11 - 4 August 31, t 984

UNIQUE.MSG Ogtion
The text interpreter searches the current words in the dictionary when a new
definition is created. If a new entry with a name field the same as a prior
entry is created, the interpreter can optionally display the error message

ISH'T UHIQUE
The phrase

UHIQUE.MSG OH

enables output of this warning message when a word is re-defined (or given
the same name as a prior word). The phrase

UHIQUE.MSG OFF

disables output of this message. For example, execute the fol1owing
UHIQUE.MSG 0"

TEST
: TEST j

UHIQUE.MSG OFF
: TEST j

Vou normally want to operate with the UNIQUE.MSG option enabled, however,
when loading production code with known re-deflnltions, you may choose to
disable this message.

LOWER.CASE Ogtion
I f you enter MacFORTH words in lower case, the text interpreter norma 11 y
converts them to upper case before looking them up or creating a new
dictionary entry. This allows you to reference a word by typing its name in
upper or lower case. The phrase

LOUER.CASE 0"

defeats this automatic conversion and allows you to deftne MacFORTH words
in lower case that have different name ftelds than their upper case
equivalents. The phrase

LOUEA.CASE OFF

causes words to be again converted to upper case. The default state of this
switch (at startup) is OFF.

Advanced Topics Page 11 - 5 August 31 1 1984

QUIET Ootlon
MacFORTH normally sounds the beeper to attract your attention to an error. In
some enVironments, this noise may be inappropriate. To quiet the beeper on
errors, enter

QUIET 0"

to sound the beeper on errors, enter
QUIET OFF

Default setting for this switch 1s OFF at startup.

AdYanced TopiCS Page 11 - 6 August 31, t 984

User Specified Error Handlers

MacFORTH allows you to dynamically install and remove handlers which
intercept errors defined by ABORT- or ERROR- . Error handler entry points,
specified by TRY and ON.ERROR , are dynamically installed and remain actiye
for the current definitions. If an ABORT- occurs or 6 RECOVER attempt is
made within that defintion or any definition which it executes, the speclfied
error handler will be invoked (unless another handler has been invoked at a
lower level). When the current definition completes, error handling speciftc
to that definition is replaced by that of the next higher leyel. Thus, error
recovery 1s fully nested, and the scope of any error handler specified within
a definition is relevant only to that definition (or those it references). For
example,

: OOPS! 8 8 U/MOD ;
OOPS!

invokes a division by zero processor exception handler to execute the
following (by default):

ABORT- ZERO DIUIDE TRAP ! "

Error Recoyery
Because no exception handler was specified, the default error action occurred.
By using ON.ERROR to specify a new handler, you can override the default
actton. Try:

TEST (---)
OH.ERROR I" TEST ABORTED" ABORT RESUME

I" TEST STARTED HOOPS!
," TEST COMPLETED • j

TEST

What happened? In the definition of TEST, you created an error handler to
process any abort conditions (defined using ABORT- or ERROR-). The phrase:

OH,ERROR I" TEST ABORTED" ABORT RESUME

defined the error handler to display the message "TEST ABORTED" and then
execute ABORT when an error occurred.

When the zero divide trap (caused by executing oopsn was encountered,
MacFORTH executed the new error handler (that you installed in TEST) instead
of the default. Try

OOPS!

Advanced T opi cs Page 11 - 7 August 3 1, 1984

Newly defined error handlers are in place only during execution of the word
which defines them with ON.ERROR. After the word flnishes execution, the
new error handler 1s discarded. This a110ws you to nest error recovery
routines.

In TEST, the new error handler executedA80RT, which aborted execution
back to the interpreter. Your error handler wi 11 re-execute the code fo11owing
RESUME 1f you don·t execute A80RT (or some equivalent). For example, try:

TRY&TRY.AGAIH (---)
OH.ERROR CR.N Hew Error Handler ... N RESUME
CR .R Try & try again code ... R OOPS!
." Finished!!"

TRY&TRY.AGAIH

TRY& TRY .AGAIN will contlnue executing until you execute stA (or select
"Abort" from the "Options" menu). Why? Take a close look at the code. First,
a new error handler was installed via

OH.ERROR CR.R Hew Error Handler ... R RESUME

Notice that there is no A80RT to halt execution. After MacFORTH executes
OOPSI, it is directed to execute the new error handler, then resume executing
the code after RESUME, which executes

CR ." Try & try again code .. ,n OOPS!

which causes an abort, which causes the new error handler to execute, which
resumes, and so on (and so on ..)

(Notice that the end of TRY& TRY.AGAIN -- the message "Finished!!" -- will
never be executed.)

Advanced TOPlCS Page 11 - 8 August 31, 1984

Disabling Error Recovery
How does MacFORTH know 1f you have posted (defined) your own error
handler? The variable RETRY pOints to the current error handler. If RETRY
is zero, it implies that MacFORTH should use the default error handler.
Non-zero RETRY tells MacFORTH you have posted your own error handler (it is
actually the address of the new error handler).

Vou can cancel a posted error handler at any point with the phrase
RETRY OFF

As we explained above, this will instruct MacFORTH to use the default error
handler. For example, try:

TRY.OHCE (---)
ON.ERROR CR ." Error Encountered!!" CR RETRY OFF
RESUME
CR ." Trying ... " OOPS! ;

TRY.ONCE

Let's follow what happened when you executed TRY.ONCE;
OH.ERROR CR ." Error Encountered!!" CR RETRY OFF
RESUME

set up the new error handl er;
CR ." Trying ... II

displayed the message .. Trying , and
OOPS!

caused an error condi t i on to occur.

The first time through, the new error handler was installed, the message
.. Trying was displayed, and OOPS, caused an error. When the new error
handler was executed, it displayed the message "Error Encountered!!", disabled
itself (by setting RETRY to zero), and then continued after RESUt1E.

The second time through (executing the code after RESUt1E), the message
·Trying was again displayed and OOPSI caused an error. This time,
however, MacFORTH saw that RETRY was zero and executed the default
handler which caused the system to abort with the message "ZERO DIVIDE
TRAP r.

Advanced T opi cs Page 11 - 9 August 31, 1984

Setting RETRY to zero only affects the most recently defined error handler
(which is automatically removed at the end of the current definition anyway).
Any previously defined error handler wi11 be re-installed when the current
definition is completed, allowing nesting of error handling routines.

Uncondi t i onal Error Recoyery
You can unconditionally recover at the most recently specified error handler
with the word RECOVER. Try the foHowing example:

RECOUER.TEST (f --)
OH.ERROR RETRY OFF 1 ABORT M Aborting RECOUER.TEST n

RESUME
IF RECOUER ELSE 28 SYSBEEP THEN

B RECOUER.TEST
1 RECOUER.TEST

MacFORTH can even detect when you try to fool it!!
: MICE.TRY! n yyM RECOUER ;
MICE. TRY!

The error message "ILLEGAL RECOVERV ATTEMPTED" indicates that an
attempted was made to recover with no handler posted.

Here's another way to specify an error handler:

TRY.IT (---)
2 TRY 1- .M XX· OUP

IF MICE. TRY! THEM
• 22· j

TRY. IT

ON.ERROR posts a handler and jumps oyer H, TRY posts a handler and
continues to execute. In either case the stack pOinter is returned to the depth
that it was when the error handler was identified. This technique is most
often used to identify the last ditch error handler in a fault tolerant system.
TRV may be used to restart the current program funcUon in case of an
unexpected error condition.

Advanced Topics Page 11 - 10 August 31, 1984

1
1

1
1 <-

1
II

I I
II 1

Recovery Stack Fraae

_______________ 1 1

---------------------1 1
Prior Retry I-I

-----------------1 Recovery SP 1

-----------------,1.
Recovery IP 1

User Uariable
RETRY

--------------------1
I I

Addre5s of NO.RETRY 1 <-----------1
----------------_1 1-----

1

II II
1--------------_1

RP--> 1 1
1 1

This stack frame approach allows you to specify your own error handler at
any level without disrupting a handler posted at a higher leve1. When the
current definition completes, the posted handler is automatically replaced by
the immediately higher level (if present).

The llst of stack frames is terminated by zero which, when RETRV points to it
(the zero entry), indicates that the default error handler is to be used.

Advanced Topics Page t t - t t August 31, 1964

Memory Al1ocaUon

Macintosh memory is partitioned into the five major areas shown tn the
Macintosh and MacFORTH Memory Maps that follow. The areas titled
"AppHcation Heap" and the stack are all that you need concern yourself with.
The remaining areas support system functions normally outside the scope of
applications programs. The applications heap area is a chunk of memory under
the contr01 of the toolbox memory manager.

When wrlting MacFORTH programs, you control the amount of memory
allocated to your current object and vocabulary data structures. When
MecFORTH is loaded into memory from disc, it is placed by the tooibox
memory manager at the base of the applications heap. The appHcations heap
1S just a pool of memory from which programs can request variable length
chunks.

The memory manager wi11 attempt to satisfy your request by looking at all of
the available pieces in the heap and if a big enough piece isn't available, it
wi11 reshuffle the heap until It can put together enough smaller chunks to
satisfy your request. You can also ask the memory manager to increase or
decrease the size of an existing chunk of memory.

After it is loaded, and the desktop window is initiahzed, MacFORTH asks the
memory manager to allocate a chunk of memory to put programs and data in.
Because the Object area will contain executable code, 1t must be locked down
in memory, while its size may still grow and shrink.

A default allocation of 8K of Object space and 9.5K of FORTH vocabulary space
is made.

AdYanced T opi cs Page 11 - 12 August 31, 1984

Macintosh
Memory Map

Oi sp I ay Memory

Stack

~
Applicat ion

Heap

System

Heap

Globals

and

Vectors

Advanced Topics Page 11 - 13

MacFORTH
Memory Map

Block Buffers

T I B \ Return Stack

STACK
(grows down)

HEAP
(grows up)

Other Vocabularies

Reslzable
MacFORTH Vocabulary

Reslzable
MacFORTH Object

Desktop Window

MacFOATH
PreCompi led

Object

User Area

Handles

August 31 J 1984

Vocabulary Data Structure

MacFORTH departs significantly from other FORTH systems in trow it handles
word 11sts (vocabularies). Most other FORTH systems intermingle name, code
and data structures within the dictionary. While this technique greatly
simpllfies reclaiming dictionary space via FORGET, it requires that you
metacomplle production programs to separate name fields from code and data
structures. MacFORTH maintains name fields in a separate relocatable heap
data structure.

A compile program is then able to purge this data structure from the heap,
effectively reclaiming the space typically required by FORTH name fields.

When a 'y'iord is defined in MacFORTH, its "head" (the text for the name it its
associated token) is placed into the CURRENT vocabular!J. The "body" (its
execution and data structures) are placed into the object area.

CONTEXT, CURRENT, and TRUNK contain the address of a handle to a
vocabulary data structure within the vocabulary. The first four bytes contain
a self relative offset to the token field of the most recent definition. Token
fields may occur on odd byte boundaries, and are followed by the name of the
word (which is preceded by its length). Bits 6.1, and 8 of the count byte are
used by MacFORTH to contain word precedence. Because MacFORTH uses
natural length names (up to 32 bytes longt there is no typical FORTH l1nk
field, as the location of the next token can be computed from the name field.
A zero token at the bottom of the vocabulary signifies the end.

The following MacFORTH words relate to vocabulary management:
UOCABULARY -LATEST
APPEND BEHEAD
DEFINITIONS AXE
RESI2E.UOCAB FINO
MINIMUM.UOCAB NFA

Advanced Topics Page 11 - 14 August 31, 1984

MacFORTH

Vocabulary Structure

0000

T

I

X

E
04

TOKEN

~ • • •
W

E

N
03

TOKEN

•
~ • •

FENCE
SIZE

LATEST

Context

Handle

Advanced TOP1CS

~

~

Zero Token indicates
end of Vocabulary List

/'
~

J-

First Name in Vocabulary
"EXIT"

Token for First Name in
Vocabulary

Names and Tokens Bet ween
Fi rst and Latest

~ Latest Name in vocabulary

________ Token for Latest Name
~ "NEW"

~-

Page 11 - 15

Avai lable Space in Vocabulary

Forget Barrier: Relative to
Start of Vocabu lary. Use
SET.FENCE to copy LATEST to
Fence

Current Vocabulary Size

Self Relative pointer to
Latest NAME.

August 31, 1984

Character Cursor Symbol

When MacFORTH is waiting for text from the keyboard, a f1ashing cursor is
displayed at the point where the text will be placed. The flash rate is set via
the control panel.

Any character font may be used as the cursor. The variable CURSOR.CHAR
contai ns the font' in the f1 rst 16 bits and the character 1 n the second 16 bits.
For example:

HEX 5F CURSOR. CHAR ! DECIMAL

sets the cursor to the default underline cursor.
Bl CURSOR.CHAR !

sets the cursor to blank (invisible)
HEX 7C CURSOR. CHAR ! DECIMAL

sets the cursor to a vertlcal bar (as in MacWrite) and
HEX 878841 CURSOR. CHAR ! DECIMAL

sets the cursor to character 41 (A) of font'7.

Changing the cursor symbol is a good way of alerting the user -'/'Ihen the
system is in some special mode. Some of the different character cursors we
have experimented with are llsted below:

Hex Value
11
12
13
14
C6
60
60

AdYanced Topics

.2ymbol
command key symbol (X)
checkmark
diamond
solid apple
triangle
infinity symbol
omega

Page 11 - 16 August 31, 1984

CutUng and Pasting Between AppHcotions

One of the more innovative features of the Macintosh is its ability to cut and
paste between appllcations. This is done utilizing a facillty known as the
Desk Scrap. The Desk Scrap is mai nta1 ned by the Toolbox Desk Manager.
MacFORTH currently supports two types of scrap entries: TEXT and PleT.

MacFORTH Level 1 supports cutting and pasting of text data between the text
editor and the desk accessories, or other applications. This is built in to the
editor and explained in the Program Editing chapter. Unless you need to
handle text larger than fits on a block of source code, you don·t need to
concern yourself with the desk scrap.

Accessing the Scrap-
The following words are avallable for accessing the desk scrap (refer to their
def1nftions in the glossary for more informatlon on each):

SCRAP.LEN SCRAP.HANDLE SCRAP. COUNTER
ZERO.SCRAP GET.SCRAP PUT. SCRAP
UNLOAD. SCRAP LOAD. SCRAP NTEXT
"PICT

The text editor source code is a good example of accessing the desk scrap.
Refer to the source code in the "Editor Blocks" file.

AdYanced T opi cs Page 11 - 17 August 31, 1984

Macintosh Toolbox Interface

This secUon documents the facilities to directly can routines 1n the
Macintosh toolbox from high level MacFORTH.

Pre-regul $i tes
The objective of this section is neither to document the contents of the
Macintosh toolbox, nor explain the jnterworkjngs of Mac/Usa Pascal. To gajn
insight into those areas you need to obtain a copy of "Inside Macintosh."

As a minimum, you wil1 need to read and understand the "Programming
Macintosh Applications in Assembly Language" section of the manua1. Add to
this any parts of the tooibox that you want to access.

Review of Pascal Data Ty~
The following data types are used throughout:

Boolean: 16-bH word with LS bit set in the high order byte to
indicate true or false (true = 1)

Byte: 16-bH word with byte in LS 8 bits
Char: same as Byte
Integer: 16-bH word
Long Integer: 32-blf. word
Pointer: 32-blf. address
Handle: 32-bit pOinter to an address which contains a 32-blf.

pointer

Toolbox Tral2§.
Macintosh toolbox traps occur 1n 3 areas:

OS Traps: All OS traps uniformly expect an I/O buffer pOinter in AO and
return an I/O result in DO. The MacFORTH defining word OS.TRAP creates a
new word. which when later executed. pops the top item of the stack into AO,
executes the trap. saves the result in the user variable 10-RESUl T, and then
executes NEXT. OS traps are defined in the following form:

HEX
A882 OS. TRAP READ
A182 OS. TRAP ASYHC.READ
DECIMAL

and may be used in the form:
1 >FCB READ ?FILE.ERROR

buf ptr -
buf ptr --

(Refer to the File System chapter for details on each command.)

Advanced Topics Page 11 - 18 August 31, T 984

P8SC8l Procedures: Pascal procedures are a llttle more complicated. There
may be more than one argument passed and they may be of jumbled data types
(16-bit values, including booleans, bytes, or words intermixed with 32-bit
values). Fortunately, the majority of toolbox procedures either expect all
32-bH items or only the last one or two items are 16-bH values.

Uniform 32-Bit Procedure Calls: Because MacFORTH works with 32-bit stack
data, Pascal procedures which expect. 32-bit arguments may be easlly defined
''''/ith MT. For example:

HEX A915 MT HIOE.UIMOOU (wptr --) DECIMAL

YO/hen HIDE.WINDOW is executed, the trap A915 (hex) is executed with wpt.r
on the stack.

Note: When passing parameters to Pascal procedures, just leave them on the
stack in the order described in the Apple documentation (left is deepest stack
item).

Procedure Call with 1 16-bit Item on the Tog of the Stack: Enough of these
eXl st to warrant a specl a 1 operator.:

HEX A9C8 U>MT SYSBEEP (duration) DECIMAL

This operator works for all cases in which all arguments below the top of the
stack (if any) are 32-bits.

Procedure Call with 2 16-bit Items on the Tog of the Stack: Enough of these
exist to warrant a special operator:

HEX A893 2U>MT (LIME. TO) (x\y --) DECIMAL

Note: The trap values shown differ from those in the Apple documentatlon (ie.
ADC8 for SysBeep, AC93 for LineTo, etc.). The 11th bit set in the Apple
documentaion is an artifact of a prior generation Pascal compHer. Don't ask
why, just use the correct lower value. It's what the new compiler uses.

Pascal Functions: Unfortunately, Pascal functions expect space reserved to
return the result under any passed arguments. This means we haye to pop off
all of our arguments, push space into the stack for the returned result, and
the push back the arguments. This is further compllcated by the fact that the
result. may be either 16 or 32-bits in length. As you may have guessed, some
of your faYorite toolbox traps (like NEW.WINDOW which takes 9 parameters!!)
are function calls.

MacFORTH provides toolbox trap defining words for simple function calls. For
more comp 1 ex calls, you'll either have to include a zero in your argument 11 st

Advanced Top; cs Page 11 - 19 August 31, 1984

(to reserve space for the result), or write in with the Level 2 MacFORTH
68000 assembler. The following function traps are supported:

FUNC>W returns a 16-blt result
(eg. A861 FUNC>W RANDOM)

FUNC>l returns a 32-blt resul t
W>FUNC>l
l>FUNC>l
l>FUNC>W

16-bit parameter, 32-blt result
32-blt parameter, 32-bH result
32-blt parameter, 16-blt result

Comp J ex Sound General ion

MacFORTH provides access to the Macintosh OS sound driver. The sound driver
provides three different sound synthesizers:

- square wave synthesizer: produces a pre-programmed series of tones
- four tone synthesizer: produces Simple harmonic tones ("'1lth up to 4

voices)
- free form synthesizer: produces complex music and speech

When the system 1s loaded, MacFORTH opens the device driver ".sOUND" and
assigns it to its own FeB cal1ed SOUND.FCB. The Getting Results chapter
discusses how to generate simple tones via the sound driver. For more
complex sounds, you wi11 need to create your own waveform record. For
instructions on how to construct any desired free form or four-tone
synthesizer record, refer to the in-depth discussion on sound generation in
the Apple documentation.

A MacFORTH sound record consists of a synthesizer record proceded by a
16-blt word containing the length of the fo11o·.",l1ng synthesizer record. Two
operators are avallable to play your synthesizer record:

PlA Y sound record address --
Plays the desired synthesizer record, hangs the cpu until It finishes.

APlA Y sound record address --
Asynchronously plays the desired synthesizer record. The processor
continues execution and the sound is generated concurrently.

Refer to the source code of the demos for examples of how to define you own
musi c usi ng the square wave synthesi zero

Advanced Topics Page 11 - 20 August 31, 1984

Chapter 12: MacFORTH Error Handling

This section discusses the method MClCFORTH uses to hClndle errors. The
topics discussed in this section Clre:

Overview 2

Compiler Clnd Interpreter Errors 3

File Errors and Processor Exceptions 4

MacFORTH Default Error Message Summary 5

Error Handl i ng Page 12 -1 August 26# 1964

Overview

By default when MacFORTH encounters an error condition. an error message
1s displayed. the current operation 1s aborted. and control is returned to the
system w1ndow. Error cond1t10ns occur in the following categones:

Interpreter
CompHer
Utl11ty
Fl1e
Processor

You can override any defauit exception error handier. An of the messages in
the preceding secUons are 11sted 1n alphabeUcal order in the back of th1s
section with accompanying text discussing the probable cause of the error
and what action to take.

The errors suppl1ed by the Mac1ntosh that are spec1f1c to fl1e hand11ng are
listed in Appendix B of the FHe System chapter.

CompIler and Interpreter Errors

Compiler and interpreter errors can be divided as follows:

I nteroreter Errors
?
STACK EMPTV
MISSING STRING DELIMITER
DECLARE VOCABULARY
MISSING IFEND OR OTHERWISE

Comoi 1 er Errors
?
COMPILATION ONLY, USE IN A DEFINITION
CONDITIONALS NOT PAIRED
DEFINITION INCOMPLETE
DICTIONARV FUll
EXECUTION ONLY
MISSING STRING DELIMITER
ATTEMPTED TO REDEF I NE NULL

Error Handl i ng Page 12-2 August 26, 1964

Because these errors are more pertinent to the program development
process rather than run time applications, they are defined with the word
ERROR-. An example of ERROR-is

8 < ERROR- Illegal Argu.ent-

If the value of the stack is non-zero, the console buzzer is sounded (1f the
QUIET option is ON), a carriage return is output followed by the most
recently interpreted word and the error message. If the error occurs while
interpreting text from disc, the screen- and offset are placed in the user
vanables SCR and R- When you enter the editor the cursor will
positioned immediately after the error.

Processor Exceptions

ADDRESS ERROR TRAP AT XXXXXX
BUS ERROR TRAP AT XXXXXX
ILLEGAL INSTRUCTION TRAP!
OVERFLOW TRAP!
ZERO DIVIDE TRAP!

These errors are defined with the word ABORT- . An e)(ample of ABORT-is

8- ABORT- Illegal Argu.ent-

If the value on the top of the stack is non-zero, and no user supplied
recovery stack frame has been established (discussed in next section), the
default error handler outputs the message text and executes ABORT to
return control to the console. While the default handler works well in the
normal program development process, you will often choose to supply your
own error handlers to recover from device errors tmd processor exceptions
in actual applications.

Error Handll ng Page 12-3 August 28, 1984

HacFORTH Default Error Hess age Summary

When 6 system error is encountered, the M6CFORTH system stops 6nd outputs
6n error rness6ge. A11 system error mess6ges 6nd 6 discussion of their
prob6b 1 e cause is provi ded below.

File I/O errors are d1scussed separately 1n the File system chapter.

Mess6ge prob6bJ e C6yse

(string> ?
Ttle text interpreier W6S un60ie to Hnd (string> In the CONTEXT or
TRUNK voc6bul6r1es 6nd W6S un6ble to convert it to 6 number.
Prob6bly 6 typo or the word has not been 106ded.

ABORTED FROM KEVBOARD
A keyboard 6bort event occurred.

ADDRESS ERROR TRAP AT XXXXXXX
An attempt was m6de to fetch or store a 16-bit or 32-b1t v61ue 6t
odd 6ddress XXXXXXX (dlsp16yed 1n hex). The 66000 hardware does
not 6110w th1s. Either align the dat6 structure on 6n even word
bound6ry (USing ?ALlGN) or use CMOVE.

AITEMPED TO REDEFINE NULL
M6CFORTH prevents the user from In6dvertently redef1n1ng the end
of Hne function (NULL) by typing : followed by 6 c6rri6ge return,
as this would C6use the system to respond to C6rr1age returns in
6n unpredict6ble manner. If you truly wish to redefine the
function of NULL, 6nd underst6nd fully the over6ll system 1mp6ct,
use the follow1ng:

: X <your definition for null>
HEX R828 TOKEH.FOR X HFA U!

BUS ERROR TRAP AT XXXXXXX
An 6ttempt W6S m6de to 6ccess d6t6 6t 6ddress XXXXXXX which Is
lnv61id. Neither memory nor h6rdware Is c6p6ble of responding 6t
the address.

CANNOT CLOSE SVSTEM WINDOW!
While it is possible to hide the M6CFORTH window, you cannot
close 1t.

Error H6ndling P6ge 12-4 August 26, 1964

Message Probable Cause

CANNOT LOAD BLOCK 0 I
Block 0 of each f11e is reserved for data or comments. You are
unable to load it. Use a higher block number.

COMPILATION ONLY USE IN A DEFINITION!
The offending word was encountered 1n execution state. The word
is a compller primitive and has no meaning when not compiling (1e:
DO IF LOOP BEGIN).

CONDITIONALS NOT PAIRED
The text interpreter expects all conditionals to be properly nested.
A terminating conditional (THEN , UNTIL , REPEAT , AGAIN,
LOOP, +LOOP) was encountered for which there was not a
corresponding acceptable initializing conditional (IF, ELSE, DO ,
BEG IN, WH I LE) at the correct nesting 1 eve 1.

DEFINITION INCOMPLETE!
The stack depth changed inside a colon definition. This is normally
the result of an unpaired conditional (1e: a missing THEN). It may
however, result from using a literal inside a definition to compile
a literal yalue that was left on the stack prior to defining 8 word.
In this case modify the user yariable CSP to indicate the
difference, ie: one item dropped from the stack requires

[4 CSP +1]
Waming: Conditionals leaye various information (address,
conditional type) on the stack at run time. Be aware of this when
placing literals inside colon definiUons.

DICTIONARV FULL !
Less than 260 (decimal) bytes exist in the object dictionary. If
allowed to continue, scratch pad buffers above dictionary could
overwrite the end of the object space. FORGET to free up
dictionary space or resize the object area.

EXECUT I ON ONL V !
The offending word may not occur while compiling.

FILE ERROR - _
An unidentified file error occurred. Refer to the File System
chapter for identHied file errors.

Error Handling Page 12-5 August 28, 1984

Probab Ie Cause

FILE NOT OPEN'
An attempt was made to access a file that was not open. Open the
file and continue.

FIXED RECORD LENGTH = 0'
FORTH blocks are merely fixed length records within a file. In
order to access them, the record length for the f11e must be 1024.
Vou probably attempted to read a text fHe as blocks.

ILLEGAL FILE NUMBER'
MacFORTH f11e numbers range between 0 and 9, any other value is
illegal. Check the order of your operands.

ILLEGAL INSTRUCTION TRAP'
The 68000 attempted to execute an invalid (unrecognizable)
instruction probably due to accidentally overwriting the
dictionary. Try to locate erroneous code which overwrites
di ct i onary.

ILLEGAL RECOVERY ATTEMPTED'
An Attempt was made to recover from an error condition with no
ON. ERROR recovery handler posted.

ILLEGAL VOLUME'
The MacFORTH DIR command expects either a drive name (lnternal
or external) or a volume reference number to produce a directory.

ISNT UNIQUE
A word was created in the dictionary which is not unique in the
CURRENT I CONTEXT I or TRUNK vocabularies and the UNIQUE.MSG
switch is on. The most recent definition will be used for future
references. The prior definition probably cannot be found. This
warning message may be disabled when loading production code by:

UNIQUE.MSG OFF

MISSING { STRING DELIMITER ,
The input stream was exhausted (null encountered) before a
dellmiting right paren was found. See the MISSING STRING
DELIMITER error message also.

Error Handli ng Page 12-6 August 28, 1984

Message Probable Cause

MISSING { STRING DELIMITER
The input stream W8S exhausted (null encountered) before a
delimiting right brace was found. See the MISSING STRING
DELIMITER error message also.

MISSING IFEND OR OTHERWISE
MacFORTH does not allow IFTRUE ... OTHERWISE ... IFEND ... or
IFTRUE ... IFEND conditional compilation sequences to cross either
input line or block boundaries. Reorganize your text to start and
end such sequences on the same source block or input line.

MISSING STRING DELIMITER
The input stream was exhausted (null encountered) before the
required del1miter was found. Delimited strings may not cross
block or terminal input line boundaries. Insert trailing delimiter
1 n source text.

NO FeB'S AVAILABLE
All FCB's were in use when the NEXT.FeB command was executed.

NOT A BLOCKS FILE!
An attempt was made to select a non-blocks file as the current
blocks file for editing.

NOT ENOUGH STACK ITEMS!
Insufficient stack items where placed on the stack before
executing the most recently entered word. MacFORTH selectively
contains a few operators which provide this check. In applications
code use:

X NEEDED
Where X is the number of items required to properly execute.

OBJECT DICTIONARY FULL!
Object dictionary space is full. Use ROOM and RESIZE.OBJECT to
allocate more Object space from the heap.

OBJECT WON. FIT!
An attempt was made to resize the object dictionary into a
memory segment which is too small.

OVERFLOW TRAP !
Default handler for exception caused by TRAP V . instruction - see
Motorola documentation.

Error Handling Page 12-7 August 281 1984

Message Probable Cause

RANGE TRAP ,
User assembly code generated a range TRAP from a CHK 1

instruction. See MacFORTH Level 2 Assembler documentation.

ST ACK EMPTY ,
Text interpreter found the stack pOinter greater than the top of
the stack. An attempt was made to access nonexistent stack data.
'NOTE: There is no run-time check made by the address interpreter.
When executing code underflows the stack 1 the contents of the
text input buffer and eventually the return stack are unpredictable.
A buffer zone of 2 bytes is reserved for minor underflows.

SOUND ERROR!
The sound generation dri ver reported an error to MacFORTH.

UNABLE TO RESIZE OBJECT !
The memory manager was unable to increase the size of the object
space due to the placement of a fixed/locked memory segment
immediately behind it. Refer to the Advanced Topics chapter for a
discussion of memory allocation and resizing.

UNABLE TO RESIZE VOCABULARY!
The memory manager was unable to increase the size of the
vocabulary space due to the placement of a fixed/locked memory
segment immediately behind it. Refer to the Advanced Topics
chapter for a discussion of memory allocation and resizing.

VOCABULARY FULL'
The current vocabulary is full. Use RESIZE.VOCAB to allocate more
vocabulary space. ROOM displays current allocation. Refer to the
AdYanced Topi cs chapter f or more i nf ormat i on on memory
allocation.

VOCABULARY WON'T FIT!
An attempt was made to resize the vocabulary into a memory
segment which is too small.

WARNING: Disc fu11 at block - __
ADD.BLOCKS encountered an end of volume condition. No more
space exists on the disk. Al1 6vailable space is al1ocated.

ZERO DIVIDE TRAP ,
The 68000 attempted to divide by zero in hardware.

Error Handllng Page 12-8 August 28 1 1984

CHAPTER 13: MacF ORTH 610ssary

This chapter is broken down into three parts:

1.) An ASCII sorted index to each word in the glossary (with the page
number the word's definition is on) for quick reference. For finding
a word which starts with a special ASCII character (like! or ") you
will probably find it easier to look it up in this index to find which
page it is on (instead of flipping through the glossary itself).

2.) A listing of the words by category. We have broken down the words
in the system and organized them into groups for your convenience.
This is helpful when you are working with a certain class of words
(like Numeric Conversion) to see what other commands are
available. As with the ASCII sorted index, each entry gives the page
number in the glossary where the definition is found.

3.) All MacFORTH system words sorted in ASCII ascending sequence,
with their stack contents and a description of the action of the
word.

We have spent a great deal of time putting this glossary together so it is easy
to use and understand. In order to get the most out of your MacFORTH system,
we recommend that you read through the entire glossary (yes, from start to
finish) to get an idea of the wide range of capabilities that are available.

GlossaLY~y
The following symbols are used in the glossary to indicate the contents of
the parameter stack before and after execution of the particular word:

addr

MacFORTH Glossary

Meaning
Prefix used to indicate a string field
operat i on. By i tse 1 f, it i ndi cates a
string address. As a prefix to cnt
($cnt) it indicates a string field
count.

A memory address. A number suffix is
used to differentiate between
addresses.

Page 13 - 1 August 31, 1984

~ymbol

bool

char

cnt

dest

false

fcb

file$

flag

n or un

pos mode

src

MacFORTH Glossary

Meaning
A boolean flag. A value of zero
indicates a false flag; non-zero
indicates true. MacFORTH words which
return pure boolean results use -1 as
a true flag (all bits set).

An 8-bit character value.

A count value. Usually used with an
addr symbol to deSignate the start-
lng address and count for 6n array of
string value. Also used to deSignate
the width of a field.

Ref ers to a dest i nat j on address.

A boolean false flag (0).

A fHe control.block address.

A vaHd flle number (0-8) referring to a
file.

The string address of a file name.

A special flag value. The specific
meanings for different flag values are
discussed in the text of the defin
it ions for the word whi ch uses the
flag.

A 32-blt integer. A number suffix is
used to differentiate between num
bers. The prefix u indicates the
number is unSigned.

The positioning mode used for file
system operations (ie. FROM.START).

Refers to a source address.

Page 13 - 2 August 28, 1984

~ymbol

true

w

wptr

\

[",1 or l...1

Meaning
A boolean true flag (-1).

A 16-bit integer. A number suffix is
used to di ff erent iate between num
bers.

Refers to the pointer to a window
whi ch contai ns all of the i nf ormat ion
about the wi ndow needed by the system.
This value is returned by a window
specifier (its name).

De li mi ts items on the stack. It is pro
nounced "undera. For example,

n 1 \n2 -- addr
is read an 1 under n2 leaves addr" .

Indicates different possible stack
outcomes. For example, the word ?DUP
duplicates the top item on the stack
if it is non-zero. It's stack notation is

n -- [n\n] or [n]
Indicating an integer is expected
on the stack and 1 eavi ng ei ther two
items (n under n) or the original
integer itself.

In some of the definitions, we have used a more mnemonic name for a
parameter instead of a standard symbol for clarity. For example, "index" is
used to indicate an index value, "token" refers to the token of a word, "blk-"
refers to a block number, and so on.

Always refer to the text of the definition for a more complete explanation of
the required parameters.

Glossary 5i ze
Most FORTH glossaries are noted for their small size (typically less than 250
items). The MacFORTH glossary contains about 900 entries. This is due to the
extensive access to the Macintosh toolbox provided by MacFORTH.

MacFORTH Glossary Page 13 - 3 August 28, 1984

ASCII (Alphabetic) MacFORTH Glossary Index

The following list sorts the MacFORTH Glossary entries in ASCII sequence.
Each word is listed in ASCII order with the page number (in the glossary) that
its description is found.

Pagea Uord Pa~ Uor~ Pa~ Uord
18 I (ERROR) +POIHT

ICSP 35 (EXCPT) +PRIHTER
IPEHSTATE (FIHo) i8 +REC.SI2E
IPOIHT (GET) +SCRa
!RECT (GET.FILE) +THRU
ISR (LIHE) +TVISRECT

(LIHE. TO) +VBAR
-BU~S (LOOP) +U.ATTRIBUTES

31 -DATA (MEHU.SELECTIOH:) +U.BEHIHo
-MiTH 36 (MOVE) i1 +U.LIHK
-PICT (MOVE. TO) +U.TYPE
-TEXT (OF) +UBOUHDS
a (OH.ERROR) +UCBOUHOS
a> (PEHSI2E) +UFILE.PTR
aFILES (PUT.FILE) +ULI HE . HE I GHT
aFIHO (R/U) +UREFCOH
as (TEXTSI2E) +UTITLE

32 SAooR (TRACE) i2 +XYBIAS
SLIT 31 (TRACK.COHTROL) +XYOFFSET

(UORo) +XYPIVOT
, IHTERPRET)COHSTAHT +XYPOS
()U +XYSCALE
(I OH . ACTIVATE) *

33 (IOH.UPoATE) */ -,
(SUT) */MOo
«ABORT) 38 + i3 -->
«ERROR» +1 -1
(+LOOP) +CARTESIAH -2
(. .) +FIHD -3
(.S) +FOLLOUER -i

3i (jCOoE@) +HBAR -FIHO
(>COoE) 39 +LOAO -FOUHO
(ABORT-) +LOOP -KEYBOARD
(ABORT) +MAX.BLKa -LATEST
(DO) +OH. ACTIVATE ii -HULL
(ERROR-) +OH.UPoATE -POIHT

MacFORTH Glossary Page 13 - 4 August 281 1984

Pa~ Uord Pa~ Uord fgg~ Uord
44 -STRIHG 2DUP >~<

-TEXT 20UER ?
-TRRILIHG 2SUAP ?ALIGH

2U>nT ?BLOCKS.FILE
3 ?Conp

45 . ABORT 3+ ?CSP
. DATES 3- ?DAYS
.FILE.ERROR 4 ?DOUBLE.CLICK
.R 4* ?DUP
.S 4+ 53 ?EOF
. TInES 4- ?EUEHT
. TYPE 4/ ?EXEC
/ 49 5+ ?FILE.ERROR

46 /nOD 5- ?FILES
8 6+ ?HEAP.SI2E
8< 6- ?IH.COHTROL
8- 7+ ?KEYSTROKE
8> 7- ?LOADIHG
8BRAHCH 8* 54 ?OPEH
8MAX 8+ ?PAIRS
1 8- ?PUHCT
1+ 8/ ?ROOn
1- 58 ?SECOHDS
18+ ?SOUHD
18- < ?STACK

47 12HOURS <- ?TERnIHAL
16* <~ ?TRACE
16+ 55 ?UORD
16- =CELLS @
16/ -DROP @@

lDAY 51 > @CLOCK
1 HOUR >.FILE.ERROR< @EUEHT
2 >FCB @FILE.HAnE
2! >IH @IHIT
2* >JSR @nOUSE
2+ >LIST< @nOUSE.DH
2- >R 56 @nOUSEXY
2/ >RECT @PEH
2@ >SYS.UIHDOU @PEHSTATE

48 2DROP 52 >U!< @POI"T

MacFORTH Glossary Page 13 - 5 August 28, 1984

fgg§! Uord Po9.§! Uord Po~ Uord
56 @RECT BRIHG.TO.FROHT CREATE.FILE

@SR BS 65 CRLF
ABORT BUFFER CSP
ABORT- BYE CURREHT
ABORT.EUEHT 61 C! CUAREHT-FILE

57 ABS C, CUAREHT.POSITIOH
ACTIUATE.EUEHT C/L CURSOR
ADD. BLOCKS C@ CURSOR. CHAR
ADD.COHTROL CARTESIAH DAYS>
onn nr-t" •• "·UII
nuu.n~.:J."~nu CASE DEALLOT
ADD.UIHDOU CEHTEA DEBUG
AGRIH CHARUIDTH 66 DEBUG.OHLY
ALIT CHECK. BOX DECIMAL
ALLOCATE 62 CIRCLE DEFAULT.ACTIUATE

58 ALLOT CLEAA DEFI H IT I OHS
AHD CLIP>COHTEHT DELETE
APLAY CLOSE DELETE.BLOCKS
APPEHD CLOSE.ALL DELETE.MEHU
APPEHD.BLOCKS CLOSE.BOX DEPTH
APPEHD . ITEMS CLOSE.UIHDOU DEUICE.COHTROL
APPLE.MEHU CMOUE DEUICE.STATUS
AAC CMOUE> 67 DFLT.COHTAOL
ASSIGH CHT DFLT.UIHDOU.TAIL
AUTO.KEY 63 CHTA DIGIT

59 AXE COL DIR
B/OUF COMMAHD.KEY DIRECTORY
BACK COMPILE DISCARD. UPDATES
BACK PAT COMPILIHG DISK
BASE COHDEHSED DISK.EUEHT
BEGIH COHFIGURE.PAIHTEA DISPOSE.COHTROL
BHEAD COHSOLE DKGRAY
BL COHSTAHT 68 DO
BLACK 6i COHTEXT DO.EUEHTS

6B BLAHKS COHUERT DOES>
BLK COPY DOT
BLOCK COS DOUH.BUTTOH
BLOCK-FILE COUHT DP
BOLD CR DPL
BOOLEAH CREATE 69 DRAU.CHAR
BRAHCH CREATE.BLOCKS.FILE DRAU.COHTROLS

MacFORTH Glossary Page 13 - 6 August 28, 1984

Page8 lJord Pa~ lJord Pa9!t! lJord
69 DRAIJ.MEHU.BAR FLUSH GIHIT

DRAIJ.TO FLUSH.EUEHTS GLOBAL>LOCAL
DRAIJSTRIHG FLUSH.FILE GRAY
DROP FLUSH.UOL 79 HAHDLE.SI2E
DRUR.EUEHT 75 FMT.DATE$ HAHDLER
DUP FMT. TInE$ HBAR.BOUHDS
DUP>R FOLLOIJER HERE
EJECT FORGET HEH

78 ELSE FORTH HIDE.CURSOR
EMIT FRAME HIDE.PEH
EMPTY FROM.CURREHT HIDE .IJ I HDOIJ
EMPTY-BUFFERS FROM.EHD HILITE.COHTROL
EHCLOSE 76 FROM. HEAP HILITE. nEHU
EHDCASE FROM.START 88 HILITE. UIHDOU

71 EHDOF FROHT.IJIHDOIJ HLD
EHTER.FLAG FUHC>L HOLD
ERASE FUHC>IJ HUSH
ERASE.RECT GET I
ERROR GET.COHTROL I!
ERROR" GET. CURSOR 1+
EUEHT.LOOP GET.DATE$ I+!

72 EUEHT.RECORD GET.EOF I+@
EUEHT.TABLE 77 GET .FILE. IHFO I+IJ!
EUEHTS GET.FILE.TYPE I+~

EHECUTE GET. ICOH 61 1-
EXIT GET. ITEM I@
EXPECT GET. LIME. HEIGHT IBEAM
EHTEHDED GET.PICTURE IC!

73 EHTERHAL GET.PIHEL IC@
FALSE GET.REC.LEH ID.
FCB.LEH GET.SCRAP IF
FEHCE GET.TEHTFOHT IFEHD
FIELD GET.TEHTMOOE 82 IFTRUE
FILE.ERROR.nSGS 78 GET.TEHTSI2E ILLEGAL. FILE
FILE. TYPE GET.TEHTSTYLE IMMEDIATE
FILL GET. TInE$ IH.BUTTOH
FIHD GET.UIHDOIJ IH.CHECKBOH

74 FIHO.COHTROL GET.HYOFFSET IH.CLOSE.BOH
FIHD.UIHDOU GET.HYPIUOT IH.DESKTOP
FIRST GET. HYSCALE IH.DRAG.BOH

MacFORTH Glossary Page 13 - 7 August 28 J 1984

Page· Uord Pa~ lJord Pag~ lJord
83 IH.HEAP LITERAL MOUSE .IJAS ..

IH.LOIJER.IJIHDOIJ LMOUE MOUE.TO
IH.MEHUBAR LMOUE> MT
IH .SIZE.BOX LOAD MT>IJ
IH.SYS.UIHDOU LOAD.SCRAP MUHGER
IH.THUMB 88 LOCAL>GLOBAL HEEDED
IHCLUDE- LOCK.FILE 92 NEGATE
IHDEX LOCK. FOHT HETIJORK.EUEHT
I HIT. CURSOR LOCK.HAHDLE HEIJ.BLOCKS.FILE
IHHIAlS LOOP HEi.i.FiLE

84 IHPUT.HUMBER LOIJER.CASE HEIJ.MEHU
IHPUT.STRIHG LOIJER.LEFT HEIJ.STRIHG
IHTERHAL LTGRAY HEIJ.TOKEH
IHTERPRET M* HEIJ.IJIHDOIJ
IHUALID.RECT M/MOD 93 HEXT.FCB
I HUERT 89 MAC.COH HEXT.PTR
IO-RESULT MAC.COHSOLE HFA
ITALIC MAC.FILES HO.CLIP
ITEM. CHECK MAC.R/IJ HO.ECHO

85 ITEM.EHABLE MAKE.RECT HO.FEHCE
ITEM.ICOH MAKE.TOKEH HO.RETRY
ITEM.MARK MASK. HANDLE HOH.PURGABLE
ITEM.STYLE MATCH HOT
J MAX HOT.UISIBLE
KEY MAX.X 94 HOTPATBIC
KEY. DOIJH 98 MAX.Y HOTPATCOPY
KEY. STROKE MEHU.EHABLE HOTPATOR
KEY.UP MEHU.HAHDLE HOTPATXOR
KILL.COHTROLS MEHU.SELECTIOH: HOTSRCBIC

86 KILL. 10 MEHUS HOTSRCCOPY
L>FUHC>L MIH HOTSRCOR
L>FUHC>U MIHIMUM.OBJECT HOTSRCXOR
LAST. TOKEH MIHIMUM.UOCAB HULL.EUEHT
LATEST MOD HUMBER
LEAUE MOHTHS 95 OBJECT.FULL!!
LIMIT MOUSE.BUTTOH OBJECT.HAHDLE
LIHE· 91 MOUSE.DOIJH OBJECT. ROOM
LINE. HEIGHT MOUSE. DOIJH. RECORD OF

87 LIST MOUSE.UP OFF
LIT MOUSE.UP.RECORD OFF.COHTROL

MacFORTH Glossary Page 13 - 8 August 28, 1984

Pa~ Uord Page- Uord Pa~ Uord
95 OFFSET PLOT.ICOti RECOUER

Otl PtlTR RECOUER.HRtiDLE
Otl.ACTIUATE POCKET 184 RECT

96 Otl.COtiTROL POltiT RECTAtiGLE
Otl.ERROR POItlT>)(Y REG. SET
Otl.UPDATE 189 POLYGOti REGIOti
OPEti POSITIOtl.FI)(ED RELEASE
OPEtI- POST.EUEtiT REMOUE
OPEtI.DA PREU REtiAnE
OPEtI.DEUICE PRltlT REPEAT
OPEtI.PORT PRIHT.BITS RESIZE.HAHDLE
OPEH.PRIHTER PRltlT.FCB RESIZE.OBJECT
OPEtI.RSRC PRIHT.SCREEH 185 RESIZE.UOCAB

97 OPEtI.SOUtiD PRIHT.UItiDOU RESUnE
OPTIOtiS.MEtiU PRIHTER RETRY
OR 181 PRIHTER.OtlLY REUIHD
OS. TRAP PTIHRECT RnOUE
OTHERUISE PURGE.nEtiUBAR ROLL
OUTLItiE PURGE.UIHDOUS ROOn
OUAL PUR GABLE ROT
OUER PUSH.BUTTOH 186 RP!
PAD PUT.SCRAP RP@
PAGE QUERY RRECTAtiGLE
PAGE.DOUti QUIET RSRUnEn

98 PAGE.UP QUIT RST.PRltlTER
PAItiT 182 R- 58
PATBIC R/U SAUE-BUFFERS
PAT COPY R8 SCALE
PAT OR R> SCALE>)(Y
PATTERti R>DROP SCALE>Y
PAT)(OR ~ 187 SCAtI.FROn
PAUSE RADIO. BUTTOti SCR
PEH.HORMAL RAHDOn SCRAP.COUtiTER
PEHnODE RANGE SCRAP.HAtiDLE

99 PEtiPAT un RAtlGE.OF SCRAP.LEti
PEHSIZE RDRAU SCRATCH
PFA READ.FI)(ED SCREEH.BITS
PICK READ.TE)(T SCREEH.BOUHDS
PLAIti READ.UIRTUAL SCROLL
PLAY REAL.FOtlT? SCROLL.LEFT/RIGHT

MecFORTH Glossary Page 13 - 9 August 28, 1984

Page' Uord· Pa~ Uord Pa~ Uord
187 SCROLL.UP SRCHOR TEHTSI2E

SCROLL.UP/DOUH STACK.ERROR TEHTSTYLE
urn SEED START.FLAG 115 THEH

SELECT STATE THIS.COHTROL
SELECT.UIHDOU STATUS THIS.PART
SEHD.BEHIHD STILL.DOUH THRU
SET.COHTROL STRIHGUIDTH TIB
SET.COHTROL.MAH SUAP TICKCOUHT
SET.COHTROL.MIH 112 SYS.FILE TO.HEAP
SET.COHTROL.RAHGE SYS.UIHDOU TOGGLE
SET.CURSOR SYSBEEP TOGGLE.COHTROL
SET.EOF SYSPARMS TOKEH.FOR
SET.FEHCE SYSTEM.EDIT TOKEH>ADDR
SET.FILE.IHFO TAB. STOPS 116 TOHE

189 SET.ITEM$ TEACTIUATE TRACE
SET.ORIGIH TECALTEHT TRACE.TOKEH
SET.REC.LEH TECLICK TRACK.COHTROL
SET.STRIHG TECOPY TRIAD
SET.UTITLE TECUT TRUE
SETUP.SERIAL TEDEACTIUATE TRUHK
SHADOU TEDELETE TRY
SHOU 113 TEDISPOSE TYPE
SHOU.COHTROLS TEIDLE UHDERLIHE
SHOU.CURSOR TEIHSERT 117 UHIQUE.MSG
SHOU.PEH TEKEY UHLOAD.SCRAP

118 SHOU.UIHDOU TEHEU UHLOCK.FILE
SIGH TEPASTE UHLOCK.HAHDLE
SIH TERECORD UHTIL
SI2E.BOH TESCROLL UP.BUTTOH
SI2E. UIHDOU TESET.JUST UPDATE
SMUDGE TESET.SELECT UPDATE. EUEHT
SOUHD.FCB TESET.TEHT UPPER
SP! TEST.COHTROL 118 UPPER.LEFT
SPEI TEUPDATE USE
SPACE TEHT.BOH USE-
SPACES 111 TEHT . CLICK USER

111 SQRT TEHT.FIELD UARIABLE
SRCBIC TEXT.RECORD UBAR.BOUHDS
SRCCOPY TEXTFOHT UECTOR
SRCOR TEXT MODE UERSIOH

M8CFORTH Gloss8ry P8ge 13 - 10 August 28, 1984

Pa~ Uord Pa~ Uord
118 UERSIOHa 123 ZERO.SCRRP

UIRTURL [
119 UOCABULRRY [COMPILE]

UI]

U* {

U,
U.RTTRIBUTES
U.BEHIHO
U.80UHOS
U.LIHKRGE

128 U. TITLE
U.TYPE
U/
U/MOO
U>FUHC>L
U>MT
l@

URIT
UR IT . MOUSE. UP
URTCH
UCOHSTRHT

121 UHILE
UHITE
UIHOOU
ULIT
UMOO
UORO

122 UOROS
UR ITE. F I XED
URITE.TEXT
URITE.UIRTURL
XEXPECT
XLRTE
XOR
XY><TLBR
XY>POIHT
XYRXIS

123 XYOFFSET
XYPIUOT
XYSCRLE

MacFORTH Glossary Page 13 - 11 August 281 1984

MacFORTH G1 ossary Page 13 - 12 August 28, 1984

MacFORTH Glossary Index by Subject

This index lists the words in the MacFORTH glossary into the following
logicel groups:

1.) Stack Manipulation
2.) Compari son
3.) Arithmetic and Logical
4.) Memory
5.) Contro 1 Structures
6.) Console Input/Output
7.) Numeric ConYersion
8.) Mass Storage
9.) Vocabularies and Dictionary

Management
10.) CompHer
11.) Toolbox Interface
12.) Error Handli ng

1. Stack Manipulation:

Uord
2DROP
2DUP
20UER
2SUAP
=DROP
>R
>RECT
?DUP
DROP
DUP
DUP>R
OUER
PICK
R8

2. Co.pari~on:

Uord
-STRIHG
8<
8=
8>

Pagel
(46)
(46)
(46)
(46)
(5.8)
(51)
(51)
(52)
(69)
(69)
(69)
(97)
(99)
(182)

fggel
(44)
(46)
(46)
(46)

13.) Menus
14.) Windows
15.) Graphics
16.) String Manipulation
17.) User I nterf ace
18.) Machine Interface
19.) Trace and Debug
20.) Printer end Serial
21.) EYent Related
22.) Mi SC. Constants
23.) Sound Driyer
24.) Misc. Toolbox Words

Uord
R>
R>DROP
R@

ROLL
ROT
RP!
RP@
58
SP!
SP@
SUAP

Uord
<

>
RAHGE

Pa~
(182)
(182)
(182)
(185)
(185)
(186)
(186)
(186)
(118)
(118)
(111)

Pa~
(5.8)
(58)
(51)
(182)

MacFORTH Glossary Page 13 - 13 August 281 1 984

3. Arith.etic and Logical:

Uord f.,agea Uord Pa~

* (31) 7+ (19)
*/ (31) 7- (19)
/noo (31) 8 (i9)
+ (38) 8+ (19)

(12) 8- (19)
/ (15) 8/ (19)
/noo (16) =CELLS (58)

8I1AX (16) ADS (57)
1+ (16) AHO (58)
1- I .. , " \"to} BOOLEAn (68)
1.8'+ (16) COS (61)
1.8'- (16) FALSE (73)
16* (17) n* (88)
16+ (17) nlnoo (88)
16- (17) nAX (89)
16/ (17) MIH (98)

2* (17) nOD (98)
2+ (17) HE GATE (92)
2- (17) HOT (93)
21 (17) OR (97)
3+ (18) RAHDOn (1.8'2)
3- (18) TRUE (116)
1* (18) UI (12.8')
1+ (18) UlnOD (12.8')
1- (18) UnOD (121)
1/ (18) XOR (122)
5+ (19)
5- (19)
6+ (19)
6- (19)

MacFORTH Glossary Page 13 - 14 August 28, 1984

4. Me.or!jl

Uord Pa~ Uord Parut!
! (38) IC@ (81)
)COHSTAHT (37) IH.HEAP (83)
)U (37) LMOUE (87)
+! (38) LMOUE> (87)
+FOLLOUER (38) LOCK. FOHT (88)
2! (47) LOCK.HAHDLE (88)
2@ (47) HOH.PURGABLE (93)
<~ (58) OFF (95)
>U!< (52) OH (95)
>1J!l< (52) PUR GABLE (181)
?HEAP.SI2E (53) RECOUER.HAHDLE (183)
@ (55) RESI2E.HAHDLE (184)
@@ (55) RRECTAHGLE (186)
@CLOCK (55) RSRUMEM (186)
C! (61) TO. HEAP (115)
C@ (61) TOGGLE: (115)

FROM. HEAP (76) UHLOCK.HAHDLE (117)
HAHDLE.SI2E (79) U! (119)
I! (88) u* (119)
1+ (88) ~ (128)
I+! (88)
I+@ (88)
I+U! (88')
I+~ (88')

1- (81)
I@ (81)
IC! (81)

MacFORTH Glossary Page 13 - 15 August 28, 1984

5. Control Structures:

!.lord Pa9§! !.lord Pa9§!
(+LOOP) (33) I (68)

(DO) (3i) IF (81)
(LOOP) (35) IFEND (81)
(OF) (36) IFTRUE (82)
+LOOP (39) J (85)
8BRAHCH (i6) LEAUE (86)
AGAIH (57) LOOP (88)
BACK (59) OF (95)
BEGIH (59) OTHER!.IISE (97)
BRAnCH 1,I6 \. RAHGE.OF (183) \o.t:J}

CASE (61) REPEAT (18i)
DO (68) THEN (115)
ELSE (78) UHTIl (117)
EHDCASE (78) !.IHIlE (121)
ENDOF (71)
EXIT (72)

6. Console Input/Output:

!.lord Pa9§! !.lord Po9§!
. TYPE (is) MAC.CON (89)
?KEYSTROKE (53) MAC.CONSOLE (89)
?TERMIHAl (5i) HO.ECHO (93)
CHT (62) PAGE (97)
CHTR (63) PNTR (99)
COL (63) QUERY (181)
COHSOlE (63) SCROLL (187)
CR (6i) SCROlL.UP (187.)
CURSOR.CHAR (65) SPACE (118.)
DFLT.CONTROL (67) SPACES (118)
EMIT (78) TAB.STOPS (112)
EHTER.FLAG (71) TYPE (116)
EXPECT (72) XEXPECT (122)
KEY (85)
LIHEa (86)

MacFORTH Glossary Page 13 - 16 August 28 J 1984

1. Nu.eric Conversion:

lJord Pa!m! lJord Pa~
I> (31) FMT.DRTE$ (15)
IS (31) FMT. TIME$ (15)

(41) GET.DRTE$ (16)
.DRTE$ (15) GET. TIME$ (18)
.R (15) HEX (19)
. TIME$ (15) HLD (88)
<I (58) HOLD (88)
? (52) MOHTHS (98)
?DRYS (52) HUMBER (91)
?PUHCT (51) SEED (188)
?SECOHDS (51) SIGH (118)
BRSE (59) SIH (118)
COHUERT (61) SQRT (111)
DRYS> (65) TICKCOUHT (115)
DECIMRL (66)
DIGIT (61)
DPL (68)
EHCLOSE (18)

8. Mass Storag.e:

Uord Pagel lJord Pagel
IFILES (31) ?OPEN (51)
(GET. FILE) (35) @FILE.tlRME (55)
(LIHE) (35) RDD.BLOCKS (51)
(PUT. FILE) (36) RLLOCATE (51)
(R/IJ) (36) APPEHD.BLOCKS (58)
+MAX.BLKI (39) ASSIGN (58)
+REC.SI2E (18) BLOCK (68)
+SCRI (18) BLOCK-FILE (68)
>.FILE.ERROR< (51) BUFFER (68)
>FCB (51) CLOSE.AlL (62)
?BLOCKS.FIlE (52) COpy (61)
?EOF (53) CREATE.BLOCKS.FILE (61)
?FILES (53)

MacFORTH Glossary Page 13 - 17 August 281 1984

«8. nass Storage Continued»

lJord Pa~ lJord Pa~
CREATE.FILE (61) OPEH- (96)
CURRENT-FILE (65) OPEH.RSRC (96)
CURRENT.POSITIOH (65) POIHT (99)
DELETE (66) POSITIOH. FIXED (188)
DELETE.BLOCKS (66) PREU (188)
DISK (67) R/IJ (182)
EJECT (69) READ.FIXED (183)
EMPTY-BUFFERS (7.8) READ. TEXT (183)
EXTERNAL (73) READ.UIRTUAL (183)
FCB.LEH {7'=t' REMOUE I.~ .. "

,IVI \ UJI"t J

FILE.ERROR.MSGS (73) REHAME (1.81)
FILE. TYPE (73) REIJIND (1.85)
FIRST (71) SAUE-BUFFERS (1.86)
FLUSH (71) SELECT (188)
FLUSH. FILE (71) SET.EOF (188)
FLUSH.UOL (71) SET.FILE.INFO (188)
FROM.CURREHT (75) SET.REC.LEH (1.89)
FROM.EHD (75) SYS.FILE (112)
FROM. START (76) UNLOCK. FILE (117)
GET.EOF (76) UPDATE (117)
GET. FILE. IHFO (77) USE (118)
GET.FILE.TYPE (77) USE- (118)
GET. ICON (77) UIRTUAL (118)
GET.PICTURE (77) IJRITE.FIXED (122)
GET.REC.LEH (77) &.fRITE.TEXT (122)
ILLEGAL.FILE (82) IJRITE. UIRTUAL (122)
INCLUDE- (83)
IHTERNAL (81)
IO-RESULT (81)
KILL. IO (86)
LIMIT (86)
LOCK.FILE (88)
MAC.FILES (89)
MAC.R/IJ (89)
HEIJ.BLOCKS.FILE (92)
HEIJ.FILE (92)
HEXT.FCB (93)
OFFSET (95)
OPEH (96)

MacFORTH 610ssary Page 13 - 18 August 26 1 1964

9. Uocabularies and
Dictionary Manage.ent:

Uord Pagel Uord Pa~
IFIttD (31) ttFR (93)

(32) OBJECT.FULL!! (95)
(FIttD) (35) OBJECT.HRttDLE (95)
+FIttD (38) OBJECT.ROOM (95)

(12) PFR (99)
J (12) RESIZE.OBJECT (181)
-FIttD (13) RESIZE.UOCRB (185)
-FOUttD (13) SET.FEttCE (188)
-LRTEST (13) TRUttK (116)
?RLIGtt (52) UOCRBULARY (119)
RLLOT (56) UJ (119)
RPPEttD (56)
RXE (59)
BHERD (59)
CJ (61)
COttTEXT (61)
CURREttT (65)
DERLLOT (65)
DEFIttITIOttS (66)
DP (66)
EMPTY (18)
FEttCE (13)
FIttD (13)
FORGET (15)
FORTH (15)
HERE (19)
LRTEST (66)
MlttIMUM.OBJECT (98)
MlttIMUM.UOCRB (98)

MacFORTH Glossary Page 13 - 19 August 28, 1984

18. COIDi ler:

Uord
!CSP
I INTERPRET
(
(jCODE@)
(>CODE)
(UORD)
+LOAD
+THRU
-->
-HUll

;
>IH
?LOADIHG
ALIT
BLK
COnPILE
COnPILIHG
CONSTAttT
CREATE
DOES>
EXECUTE
FIELD
InnEDIATE
INTERPRET
LAST. TOKEH
LIT
LITERAL

11. Toolbox Interface:

Uord
2U>nT
FUNC>L
FUNC>U
L>FUNC>L
L>FUNC>U
nT

MacFORTH Glossary

Pa9.§!
(38)
(32)
(32)
(31)
(31)
(37)
(39)
(18)
(13)
'.t,.n
'\ I II

(58)
(58)
(51)
(53)
(57)
(68)
(63)
(63)
(63)
(61)
(68)
(72)
(73)
(82)
(81)
(86)
(87)
(87)

Pa9.§!
(18)
(76)
(76)
(86)
(86)
(91)

Uord
LOAD
nAKE.TOKEN
NEU.TOKEN
NEXT.PTR
NO. FENCE
POCKET
PURGE.nENUBAR
PURGE.UINDOUS
QUIT
i'nnu rnn ..
~l.nl1 • r nUll

SnUDGE
STATE
THRU
TIB
TOKEN. FOR
TOKEN>ADDR
USER
UARIABLE
IJCONSTANT
ULIT
UORD
[
[COnPILE]
]
{

Uord
nT>U
OPEN.DA
OS. TRAP
U>FUNC>L
U>nT

Page 13 - 20

Page·
(87)
(89)
(92)
(93)
(93)
(99)
(181)
(181)
(181)
(i8r)
(118)
(111)
(115)
(115)
(115)
(115)
(118)
(118)
(128)
(121)
(121)
(123)
(123)
(123)
(123)

Po9.§!
(91)
(96)
(97)
(128)
(128)

August 28, 1984

12. Error Handlin91

Uord
«ABORT»
«ERROR»
(ABORT-)
(ABORT)
(ERROR-)
(ERROR)
(EXCPT)
(ON. ERROR)
. ABORT
.FILE.ERROR
.S
?COMP
?CSP
?EXEC
?FILE.ERROR
?PAIRS
?STACK

13. Menus:

Uord
(MEMU.SELECTIOH:)
APPEHD.ITEMS
DELETE.MEHU
DRAU.MEHU.BAR
GET. ITEM
HILITE. MEHU
IH.MEHUBAR
ITEM. CHECK
ITEM.EHABLE
ITEM. ICOH
ITEM. MARK
ITEM. STYLE

MacFORTH Glossary

Pa9.!t!
(33)
(33)
(34)
(34)
(34)
(34)
(35)
(36)
(45)
(45)
(45)
(52)
(52)
(53)
(53)
(54)
(54)

Pag~·
(35)
(58)
(66)
(69)
(77)
(79)
(83)
(84)
(85)
(85)
(85)
(85)

Uord
ABORT
ABORT-
CSP
ERROR
ERROR-
NO.RETRY
ON.ERROR
RECOUER
REG. SET
RESUME
RETRY
TRY

MEHU.EHABLE
MEHU.HAHDLE
MEHU.SELECTIOH:
MEHUS
HEU.MEHU
OPTIOHS. MEHU
SET. ITEMS
SYSTEM .EDIT

Pa9.!t!
(56)
(56)
(65)
(71)
(71)
(93)
(96)
(183)
(184)
(185)
(185)
(116)

(98)
(98)
(98)
(98)
(92)
(97)
(189)
(112)

Page 13 - 21 August 28, 1984

li. Uindo.s:

Uord PaS§! lJord Pa~
(!OH.ACTIVATE) (32) HIDE .1.1 I HDOIJ (79)
(!OH.UPDATE) (33) HILITE. UIHDOU (88)
+HBAR (38) IH.CLOSE.BOX (82)
+OH.ACTIVATE (39) IH.DESKTOP (82)
+OH.UPOATE (39) IH.DRAG.BOH (82)
+VBAR (i8) IN. LOIJER. 1.1 I HDOIJ (83)
+IJ.ATTRIBUTES (i8) IH.SIZE.BOX (83)
+IJ.BEHIHD (i8) IH.SYS.IJIHDOIJ (83)
+IJ.LIHK (i1) IHVALID.RECT (8i)
+j.j.TYPE (i1) LINE. HEIGHT (86)
+IJBOUHDS (i1) NEIJ.IJIHDOIJ (92)
+UCBOUHDS (i1) HO.CLIP (93)
+UFILE.PTR (iO HOT. V I SIBLE (93)
+ULIHE.HEIGHT (iO OH.ACTIVATE (95)
+UREFCOH (i1) OH.UPDATE (96)
+UTITLE (iO SCREEH.BOUHDS (187)
+XYBIAS (i2) SCROLL. LEFT/RIGHT (187)
+XYOFFSET (i2) SCROLL.UP/DOUH (187)
+XYPIVOT (i2) SELECT.IJIHDOU (188)
+XYPOS (i2) SEHD.BEHIHD (188)
+XYSCALE (i2) SET.IJTITLE (189)
>SYS.IJIHDOU (51) SHOIJ.CURSOR (189)
?IH.COHTROL (53) SHOU.PEH (189)
ADD.UIHDOU (57) SHOU.UIHDOU (118)
BRIHG.TO.FROHT (68) SIZE.BOH (118)
CHECK. BOX (61) SIZE.UIHDOU (118)
CLIP>COHTEHT (62) SYS.UIHDOU (112)
CLOSE (62) VBAR.BOUHDS (118)
CLOSE. BOX (62) U.ATTRIBUTES (119)
CLOSE.UIHDOU (62) U.BEHIND (119)
DEFAULT. ACTIVATE (66) U.BOUHDS (119)
DFLT.UIHDOU.TAIL (67) U.LIHKAGE (119)
DISCARD. UPDATES (67) U. TITLE (128)
FIHD.COHTROL (74) 1.1. TYPE (128)
FIHD.UIHDOU (7i) UIHDOU (121)
FROHT.UIHDOU (76)
GET.UIHDOU (78)
HBAR.BOUHDS (79)

MacFORTH Glossary Page 13 - 22 August 28 1 1984

15. GraDhi C3 :

Uord Page- Uord Pa~
!PEHSTATE (38) GET.TEXTnODE (17)
!POIHT (38) GET.TEKTSI2E (18)
!RECT (38) GET.TEXTSTYLE (78)
(LIHE. TO) (35) GET.KYOFFSET (18)
(MOUE) (36) GET.HYPIUOT (18)
(MOUE. TO) (36) GET.KYSCALE (78)
(PEHSI2E) (36) GIHIT (78)
(TEKTSI2E) (36) GLOBAL>LOCAL (18)
+CARTESIAH (38) GRAY (18)
+POIHT (39) HIDE.CURSOR (79)
-POIHT (....) HIDE.PEH (19)
@PEH (56) IBEAM (81)
@PEHSTATE (56) I HIT. CURSOR (83)
@POIHT (56) IHUERT (8 ..)
@RECT (56) ITALIC (8 ..)
ARC (58) LOCAL>GLOBAL (88)
BACKPAT (59) LOUER.LEFT (88)
BLACK (59) LTGRAY (88)
BOLD (68) MAKE.RECT (89)
CARTESIAH (61) MAK.K (89)
CEHTER (61) MAK.Y (98)
CHARUIDTH (61) MOUE.TO (91)
CIRCLE (62) HOTPATBIC (9 ..)
CLEAR (62) HOT PAT COPY (9")
COHDEHSED (63) HOTPATOR (9 ..)
CURSOR (65) HOTPATKOR (9 ..)
DKGRAY (67) HOTSRCBIC (9 ..)
DOT (68) HOTSRCCOPY (9 ..)
DRAU.CHAR (69) HOTSRCOR (9 ..)
DRAU.TO (69) HOTSRCKOR (9 ..)
DRAUSTRIHG (69) OPEH.PORT (96)
ERASE.RECT (11) OUTLINE (97)
EKTEHDED (72) OUAL (97)
FRAME (75) PAIHT (98)
GET.CURSOR (76) PATBIC (98)
GET.LIHE.HEIGHT (17) PAT COpy (98)
GET.PIXEL (17) PATOR (98)
GET.TEKTFOHT (17) PATTERH (98)

MacFORTH Glossary Page 13 - 23 August 28, 1984

«15. Graphics Continued»

Uord Pa~ Uord fg~
PATHOR (98) SHADOU (189)
PEH.HORMAL (98) SRCBIC (111)
PEHMODE (98) SRCCOPY (111)
PEHPAT (99) SRCOR (111)
PEHSI2E (99) SRCXOR (111)
PLAIH (99) STRIHGUIDTH (111)
PLOT. ICOH (99) TEHTFOHT (11i)
POIHT>XY (99) TEHTMODE (11i)
POLYGOH (188) TEHTSI2E (11i)
PiiHRECi (181) TEXTSTYLE (11i)
RDRAU (Un) UHDERLIHE (116)
REAL.FOHT? (183) UPPER.LEFT (118)
RECT (18i) UECTOR (118)
RECTAHGLE (18i) UATCH (128)
REGIOH (18i) UHITE (121)
RMOUE (185) HLATE (122)
SCALE (186) HY><TLBR (122)
SCALE>XY (186) HY>POIHT (122)
SCALE>Y (186) HYAXIS (122)
SCREEH.BITS (187) HYOFFSET (123)
SET.CURSOR (188) HYPIUOT (123)
SET. ORIGIH (189) HYSCALE (123)

16. String Manipulation:

Uord Pa9§.! Uord Page-. (38) CMOUE (62)
$ADDR (32) CMOUE> (62)
$LIT (32) COUHT (64)
($LIT) (33) CRLF (65)
(..) (33) ERASE (71)
-TEXT (44) FILL (73)
-TRAILIHG (i4) MATCH (89)

(i4) PAD (97)
?UORD (55) UPPER (117)
BLANKS (68)

MacFORTH Glossary Page 13 - 24 August 281 1984

17. User Interface:

Uord Pa~ Uord Pa~
(GET) (35) STRTUS (111)
>LIST< (51) STILL. DOUH (111)
?ROOM (51) TRIRD (116)
@IHIT (55) UERSIOH (118)
@MOUSE (55) UERSIOHa (118)
@MOUSE.DH (55) URIT (128)
@MOUSEXY (56) UORDS (122)
BYE (68)
DIR (67)
DIRECTORY (67)
FOLLOUER (75)
GET (76)
10. (81)
MOUSE.BUTTOH (98)
RELERSE (181)
SHOU (189)

18. Machine Interface:

Uord Pa~
!SR (38)
>JSR (51)
@SR (56)
DEUICE.COHTROL (66)
DEUICE.STRTUS (66)
STRRT.FLRG (111)

MtlcFORTH Glosstlry Ptlge 13 - 25 August 28, 1984

19. Trace and Debu91

Uord PQ~ Uord Pa9§!
(.S) (33) ROOM (185)
(TRACE) (36) SCR (187)
?TRACE (5i) SCRATCH (187)
DEBUG (65) STACK. ERROR (111)
DEBUG.OHLY (66) TRACE (116)
DEPTH (66) TRACE. TOKEH (116)
HAHDLER (79) UHIQUE.MSG (117)
IHDEX (83)
IHITIALS (83)
IHPUT.HunOER 10A\

\O"TJ

IHPUT.STRIHG (8i)
LIST (87)
LOUER.CASE (88)
HEEDED (91)
PAUSE (98)
QUIET (181)
R· (182)

28. Printer and Serial:

Uord Page·
+PAIHTER (39)
COHFIGURE.PRIHTER (63)
OPEH.DEUICE (96)
OPEH.PRIHTER (96)
PRIHT (188)
PRIHT.BITS (188)
PRIHT.FCB (188)
PRIHT.SCREEH (188)
PRIHT.UIHDOU (188)
PRIHTER (188)
PRIHTER.OHLY (181)
RST.PRIHTER (186)
SETUP. SERIAL (189)

MacFORTH Glossary Page 13 - 26 August 28 I 1984

21. Event Related:

Uord
-KEYBORRD
?DOUBLE.CLICK
?EUEHT
@EUEHT
RBORT.EUEHT
RCTIURTE.EUEHT
RPPLE.MEHU
RUTO.KEY
COMMRHD.KEY
DISK.EUEHT
DO.EUEHTS
DRUR.EUEHT
EUEHT.LOOP
EUEHT.RECORD
EUEHT.TRBLE
EUEHTS
FLUSH. EUEHTS

22. Misc. Constants:

Uord
-BLKS
-DRTR
-M1TH
-PICT
-TEXT

--1
-2
-3
-1
.8
1
l2HOURS
lORY

MecFORTH Glossery

PaM
(13)
(52)
(53)
(55)
(56)
(57)
(58)
(58)
(63)
(67)
(68)
(69)
(71)
(72)
(72)
(72)
(71)

Pqg~
(38)
(31)
(31)
(31)
(31)
(31)
(13)
(13)
(13)
(13)
(16)
(16)
(17)
(17)

Uord
KEY.DOUH
KEY. STROKE
KEY.UP
MOUSE.DOUH
MOUSE.DOUH.RECORD
MOUSE.UP
MOUSE.UP.RECORD
MOUSE.URS ..
HETUORK.EUEHT
HULL.EUEHT
POST . EUEHT
UPDRTE.EUEHT
UR IT . MOUSE. UP

Uord
1 HOUR
2
3
1
B/BUF
BL
BS
C/L

Pa~
(85)
(85)
(85)
(91)
(91)
(91)
(91)
(91)
(92)
(91)
(198)
(117)
(12.8)

Pa~
(17)
(17)
(18)
(18)
(59)
(59)
(68)
(61)

Pege 13 - 27 August 28 1 1984

23. Sound Driver:

Uord Pa9!!
?SOUND (5i)
RPLRY (58)
HUSH (88)
OPEN. SOUND (97)
PLRY (99)
SOUND.FCB (118)
SYSBEEP (112)
TOHE (116)

2i. Misc. Toolbox Uords:

Uord Pa~· Uord Pa~
(TRRCK.COHTROL) (37) PUSH.BUTTOH (181)
+TUISRECT (i8) PUT.SCRRP (181)
RDD.COHTROL (57) RRDIO.BUTTOH (182)
RDD. RES. MENU (57) SCRRP.COUNTER (187)
DISPOSE.COHTROL (67) SCRRP.HRHDLE (187)
DOUN.BUTTON (68) SCRRP.LEH (187)
DRRU.CONTROLS (69) SET.CONTROL (188)
GET. CONTROL (76) SET.CONTROL.MRX (UJ8)

GET.SCRRP (77) SET.COHTROL.MIN (188)
HILITE. CONTROL (79) SET.CONTROL.RRNGE (188)
IN.BUTTON (82) SET.STRING (UJ9)
IN.CHECKBOX (82) SHOU.CONTROLS (189)
IN.THunB (83) SYSPRRMS (112)
KILL.CONTROLS (85) TERCTIURTE (112)
LORD.SCRRP (87) TECRLTEXT (112)
MRSK.HRHDLE (89) TECLICK (112)
MUHGER (91) TECOPY (112)
NEU. STR ItfG (92) TECUT (112)
OFF.COHTROL (95) TEDERCTIURTE (112)
ON.CONTROL (96) TEDELETE (112)
PRGE.DOUN (97) TEDISPOSE (113)
PRGE.UP (98) TEIDLE (113)

MacFORTH Glossary Page 13 - 28 August 28, 1984

«2i, Misc, Toolbox Uords Continued»

TEIHSERT (113)
TEKEY (113)
TEHEU (113)
TEPASTE (113)
TERECORD (113)
TESCROll (113)
TESET.JUST (113)
TESET.SELECT (113)
TESET.TEXT (113)
TEST.COHTROl (113)
TEUPDATE (113)
TEXT.BOX (113)
TEXT.CLICK (lli)
TEXT,FIELD (11i)
TEXT ,RECORD (lli)
THIS,COHTROl (115)
THIS,PART (115)
TOGGLE.COHTROL (115)
TRACK,COHTROl (116)
UHlOAD.SCRAP (117)
UP. BUTTOH (117)
ZERO.SCRAP (123)

MacFORTH Glossary Page 13 - 29 August 28, 1984

'CSP

n\addr --
Store n at addr. "store"
The error message "ADDRESS ERROR TRAP AT addr" indicates addr is
odd (!Sddr fs displayed as a hexadecfmal value) Refer to the Error
Handling chapter for a further exp1anat10n. See also W! C!

Save the current stack position in the user variable CSP . This is used
as part of the compiler security to ensure the stack does not change
durfng compilation of a word. "store-c-s-p"

IPENSTATE 20 bytes (5 stack 1 tems) --
Restores the prior penstote from the stock. See @PENSTATE .
"store pen stote"

'POINT x\y\addr--
Packs the 16-blt values x and y lnto a 32-blt integer and stores the
\/al ue at addr.

'RECT top\left\bottom\right\addr--
Packs the rectangle coordlnates on the stack into 4 16-bit values and
stores them at addr. Packed rectangle contains 4 16-bH elements in
top-Jeft-bottom-rlght seQuence. "store rect"

'SR n--
Directly stores the least signHicant 16 bits of n into the 68000
hardware status register. The supervisor and trace modes, interrupt
level, and condition codes are affected. "store-s-r"

-- addr
Compiles a string dellmHed by " , leaving its address when the word
is later executed. Used during compilaUon in the form:

II <string literal>"
to compile ($L1T) followed by <string lHeral> wHh Hscount in the
first posHion. When later executed, ($L1T) places the address of
<string literal> on the stock, advancing the instruction pOinter to the
word following the string IHeral. See $L1T , ($LlT) , ." , ,"
"Quote"

"BlKS -- n
32-bft constant containing the 4 character ASCII string "BLKS" . Used
to deSignate the blocks file type. "Quote B-L-K-S"

MacFORTH Glossary Page 13 - 30 August 28, f 984

HDATA -- n
32-bH constant conta1n1ng the 4 character ACSII str1ng "DATA" . Used
as a ffle or resource type. "Quote DATA"

"M4TH -- n
Constant MacFORTH File creator id code. Placed in the creator field of
all files created by MacFORTH. "Qoute M-4th"

"PleT -- n
32-bit constant containing the 4 character ASCII string "PICT". Used
to designate a picture file or resource types. "Quote P-I-C-T "

IITEXT -- n
32-bit constant containing the 4 character ASCII string "TEXT" . Used
to designate text files or resource types. "Quote TEXT "

n1 -- n2
Uses n 1 to generate the next ASCII character for numeric output,
leaving n2 as n 1 /BASE. The result n2 is maintained for further
processing. Unchecked error if not used between <- and ->. See <
and -> . "sharp"

#> n -- addr\cnt
End pictured numeric output conversion. Drop n from the stack and
leave the address and count of the text string created during numeric
convers10n ... sharp-greater"

#FllES -- n
Constant spectfing the maximum number of files that can be opened at
a time.

#FIND -1 \voc addr 1 \ ... \voc addr n -- [token\len\true) or [false)
Vocabulary search primitive. Searches the -1 terminated vocabulary
11st for the word in 1nput stream. If the word is not found during the
search, leaves a false flag. If the word is found, leaves its token,
length byte and a true flag. Voc addr is the handle of the vocabulary
token. "hash-find"

#S un -- 0
Converts all digits of unsigned un. Each is added to the pictured
numeric output string until the remainder is zero. A single zero is
added to the output string if un was initially zero. "sharp-s"

MacFORTH Glossary Page 13 - 31 August 28, 1984

SADDR -- addr
Sk1ps over follow1ng 1n-l1ne str1ng 11teral, leav1ng address on stack.
"str1ng address"

Sll T -- addr\cnt
Executes ($L1T). Necessary to match nesting leyel (return stack
depth) for other inHne string literal operators such as (ABORT") and
(ERROR") which also use ($L1T) . See (SLIT) . "string-lit"

-- pfa
Used in the form:

. <nome>
to get the pfa of <name>. If executing, leave the pfo of the next word
in the input streom. If compi1ing, compile this pfa os a relocated
literal; later execution will place it on the stack. Issue an error
message if the word is not found ofter a search of the CONTEXT and
then the CURRENT Yocabularies. Within 0 colon deflnition

I <name>
is identical to

[' <name>] lITERAL
Error if the following word is not found in the dictionary. The system
will print the nome followed by 0 question mork. "tick"

·,NTERPRET

(

6eg1n 1nterpretation of the input stream p01nted to by >IN and 6lK. If
BlK is non-zero, >IN p01nts to the character with1n the block p01nted
to by BlK. If BlK is zero, the input stream 1s taken from the
Term1nal Input Buffer. See >IN , BlK I TIB. "tick-interpret"

Accepts and ignores comment characters from the input stream until
the next ri ght parenthesi s. Used in the form:

(ccc) or (ccc)
The left parenthesis must be fo11owed by at least one space (as with
all FORTH words). It may be used freely whi1e compiling or executing.
The error message

MISSING (STRING DELIMITER!
indicates the input stream has been exhausted before the dellmiting
right parenthesis was encountered. "parenN

The delimiter (right parenthesis) is pronounced: "close-paren"

(ION.ACTIVA TE)
Runtime word for !ON.ACTIVATE . Use !ON.ACTIVATE .

MacFORTH Glossary Page 13 - 32 August 28} 1984

(ION.UPDA TE) --
Runt 1 me word for !ON.UPDATE . Use !ON.UPDATE .

(SLIT) -- addr
Fetches the inline string literal address from the return stack,
leaving the string address on the stack. The value on the return stack
(the instruction pointer) is incremented to pOint just past the string,
so when (SLIT) executes EXIT , execution wll1 continue beyond the
string literal. "paren-string-11t"

«ABORT»
Default version of ABORT (initi6lly placed in (ABORT)). Empties the
d6t6 stack, sets BASE to DECIMAL, copies TRUNK to CONTEXT and
CURRENT, and finally QUITs, which aborts execution and returns
control to the console. "paren-poren-obort"

({ ERROR» addr\cnt --
Default error handler (initially placed in (ERROR». If QUIET is off,
sounds the console's buzzer, outputs a CR LF and the most recently
interpreted word (from POCKET) followed by the string at the addr
and cnt given. The data stack is cleared. If BLK is non-zero
(compiling from disc). SCR is set to BLK , and R- is set to >IN , so
that entry 1nto the editor will point to the location of the error.
Finally, QUIT 1s executed, aborting the current task and returning
control to the console. See (ERROR) , POCKET, BLK , >IN , WHERE.
"paren-paren-error"

(+LOOP) n--

Cn)

tS)

The run-time procedure compiled by +LOOP. It increments the loop
index by n and tests for loop completion. See +LOOP .
·paren-plus-loop"

The run-time procedure compiled by Outputs the string
immediately following it in the dictionary. See."
"paren-dot-Quote"

Non-destructive stack display primitive. No CR before execution.
Displays the contents of the stack using the following format:

[d) c\b\a
where d is the stack depth, and a band c are the top three stack
items. If d is less than 3, only the stack items present are displayed.

MacFORTH Glossary Page 13 - 33 August 28, 1984

(;CODE@)
stores the suppl1ed cta 1nto the cta ot the latest word. The suppl1ed
cta 1s pOinted to by the value on the return stacl<.

(>CODE)
Jumps to the address contained in the IP. Compiled by >CODE .

(ABORT") flag --
Pri mi t i ve rout i ne campi 1 ed by ABORT" whl ch precedes the in 1 i ne
string literal. When executed, if flag is true, the string is output and
ABORT is executed. If flag is false, flag is dropped from the stacl<
and execution resumes at the word following the string literal.
"paren-abort -quote"

(ABORT) -- addr
User vari ab 1 e contai ni ng the cf a to be executed by ABORT .
"paren-abort ..

(DO) n 1 \n2 --
The run-time procedure compiled by DO , which moves the loop control
parameters to the return stacl<. See DO . "paren-do"

(ERROR") flag --
Compi 1 ed by ERROR" pri or to an in 1 i ne error message stri ng. When
executed, if flag is true, the most recently executed word (in POCKET)
is displayed, followed by the inline error message string. If flag is
false, flag is dropped from the data stack and execution continues
beyond the stri ng. See $L1T , ($L1T) , ERROR" , ABORT" .
"paren-error-quote"

(ERROR) -- addr

User variflble contflining the address of the word to be executed when
on error is detected by the text j nterpreter. "pflren-error"

MacFORTH G10ssary Page 13 - 34 August 28, 1984

(EXCPT)
Code definition which copies the contents of the 68000 registers to
the array REG.SET. The first 16 bytes on the return stack (hardware
stack pointer) are also moved. This routine is called by all of the
processor and unimplemented instruction handlers during exception
processing before they execute ABORT • prov1ding a snapshot of the
registers and the supervisor stack when the exception occured. The
loadable utll1ty .REGS (MacFORTH Level 2) wll1 give you a formatted
dump of this information. Use the Motorola Processor Execept10n
Documentation to interpret the supervisor stack contents.
"paren-except ..

(FIND) oddr\Yoc hond1e -- [token\prec flog\true] or [fo1se]
Vocabulary search primitive. Searches the vocabulary for a match
with the name found at addr. If a match is found. the token and
precedence flag for the word are returned under a true flag. otherwise
only a false flag is returned. "paren-find"

(GET) addr --
Multitasking stub for source compatibility with future CSI MacFORTH
products.

(GET.FILE) n1\n2\n3\n4\n5\ --
Standard file hook for uniform access to the Macintosh standard file
package. Unsupported in Level 1. "paren GET.FILE"

(LINE) x\y --
Qui ckDraw 1i ne pri mi t i yeo X and V are expressed in local wi ndow
Qu1ckDraw coordinates and are unaffected by XVSCALE. XVPIVOT. or
XVORIGIN. "paren 11ne"

(LINE-TO) x\y --
QuickDraw relative line drawing primitive. X and V are in local
window QuickDraw coordinates and are unaffected by XVSCALE.
XVPIVOT, or XVORIGIN. "paren 11ne-to"

(LOOP)
The run-time procedure compiled by LOOP which increments the loop
index and tests for loop completion. See LOOP. "paren-1oop"

(MENU.SELECT ION:) --
Run time code for MENU.SELECTION: retained for clarity during tracing.
"paren menu selection"

MacFORTH Glossary Page 13 - 35 August 28, 1984

(MOVE) X\V--
Qu1ckDraw Hne draw1ng pr1m1t1ve. X and V are 1n local w1ndow
Qu1ckDraw coord1nates and are unaffected by XV5CALE, XVPIVOT, or
XYORIGIN. "paren move"

(MOVE.TO) X\V--
QuickDraw Hne drawing primitive. X and V are in local window
QuickDraw coordinates and are unaffected by XVSCALE, XVPIVOT, or
XYORIGIN. "paren moye-to"

(OF) n 1 \n2 -- [n 1) or []
Run-time code compiled by OF. See OF .

(ON.ERROR)
Pushes the recovery stack frame into the return stack. It then
branches over the error recovery code.

(PENSIZE) w/h --
Sets PENSIZE regardless of XV scale. "paren pen size"

(PUT.FILE) n1\n2\n3\n4--
Stemdard file hook for uniform access to the Macintosh standard file
packoge. Unsupported in Level 1. "paren PUT.FILE"

(R/W) -- addr
User Variable containing the address of the word which obtains a
requested block from the disc. "paren-r-slash-w"

(TEXTSIZE) size --
Sets physical text size regardless of V scahng. "paren textsize"

(TRACE)
Rout1ne which executes the trace funct10n of the compl1er. Compl1ed
by the interpreter before every token if the TRACE option switch 1S
on. When the later executed, 1f the DEBUG opt10n swttch 1s on, output
1s tabbed to column 16, the stack 1s d1splayed (us1ng (.S». A CRLF 1s
output, and the name field of the following inline token 1s displayed.
If the DEBUG option switch 1s off, no output 1s generated. See TRACE,
DEBUG. "paren trace"

MacFORTH Glossary Page 13 - 36 August 28 J 1984

(TRACK.CONTROl) n1\n2\n3 -- flag
MacFORTH l'evel 2 controls pr1m1t1ve. Refer to MacFORTH level 2
documentat 1 on.

(WORD) char\addr -- addr
Moves the string delimited by char from the input stream to addr.
"paren-word"

lCONST ANT n --
Creotes 0 relocotoble constont. Similor to CONSTANT, used in the
form:

n)CONST ANT <nome>
to creote 0 relocotoble constont with nome <nome> ond yolue n. When
creoted, NEXT.PTR is subtrocted from the stored 32 bit value. When
the constant is later used, the saved value is summed with NEXT.PTR
to produce the actual physical address.

)U addr -- n
Converts the user area address given to the offset from the base of
the user area. It is simply deffned as:

:)U STATUS - ;
It is used to access the bootup literal area. "close-paren-u"

* n1\n2 -- n3
Leaves the product of (n 1 *n2). Error if the product is greater than
31-bits plus sign. System response is to truncate the product to
32-bits with no error message. "times"

*1 n 1 \n2\n3 -- n4
Leaves the result of the product n 1 times n2 divided by n3. The result
n4 is rounded toward zero. The intermediate product (n 1 *n2). is
maintained as a 54-bit value for greater precision than the otherwise
equivalent sequence: n1 n2 * n3 1
Error if diVision by zero, or quotient overflows, with NO system
check. "t i mes-di vide"

*/MOD n 1 \n2\n3 -- n4\n5
Multiply n 1 by n2, divide the result by n3, leaying the remainder n4
and quotient nS. A 64-bit intermediate product is used (as for *1).
The remainder has the same sign as n 1. Error if division by zero, or
quotient overflows with NO system check. "times-divide-mod"

MacFORTH Glossary Page 13 - 37 August 28, 1984

+ nl\n2 -- n3
Add n 1 to n2 and leave the result n3. Error 1f the sum overflows
resultfng fn a 32-btt truncated unnormallzed sum with no system
check. "plus"

+1 n\addr--
Add n to the 32-bit value at addr according to the convention for +.
Error if the sum overflows with no system check (see +). The error
message "ADDRESS ERROR TRAP at addr" indicates addr is odd (see!).
"plus-store"

+CARTESIAN wptr -- addr
Returns the oddress of 0 varioble in the window record (for the
window speclfied by wptr) whose contents determine whether
coordinate pOints for the window are to be interpreted in QuickDraw
or Cartesian coordinates (see the Grophics Results chopter). When the
variable is TRUE, all coordinates are expressed in Cortesion
coordinotes. "plus Cortesian"

+FIND -- ltoken\f1ag\true] or [false]
Dictionary search primitive. Searches the dictionary for a match on
the next word 1n the input stream. The next word 1n the fnput stream
1s extracted us1ng WORD and placed 1n POCKET. If the word fs found
1n the CONTEXT, CURRENT, or TRUNK vocabular1es, the token for the
word, tts precedence flag and true flag are returned. The precedence
flag is true if the word ls an immediate word and should be executed
when complling (le. DO , IF , ."). If the word is not found, only a false
flag is returned. See I MMED I ATE I CREATE I WORD I POCKET .
"plus-find"

+FOLLOWER n 1 -- n 1 +FOLLOWER
Returns the sum of n 1 plus the offset to the user variable FOLLOWER
from the base of the user area.

+HBAR wptr -- wptr+off set
Returns the address of a variable within a window record which
contains the handle for 0 horizontal scroll bar control which is
ottoched to the window speclfied by wptr. Refer to MacFORTH Level 2
Controls documentation for further information.

MacFORTH Glossary Page 13 - 38 August 28, 1984

+LOAD rell!tiYe scr- --
Loads the screen number g1yen relat1Ye to the current screen be1ng
loaded. For example, the sequence

10 +LOAD
encountered whl1e 10ad1ng screen 100 would cause screen 110 to be
loaded. "plus-load"

+LOOP n--
Add the signed increment n to the loop index using the convention for
+ and compare the total to the limit. Return execution to the
corresponding DO until the new index is equal to or greater then the
limit (for n>O), or until the new index is less than the limit (for n<O).
Upon exit from the loop, discard the loop control parameters from the
return stack and pass control to the word following +LOOP. The error
message "CONDITIONALS NOT PAIRED" indicates the +LOOP was not
matched with a DO. See DO . "plus-loop"

+MAX.BLK # f cb -- addr
Returns the address of trhe maximum block number field (32-bits) in
the file control block. For eXl!mp1e.

8 >FCB +MAX,BLKa @
returns the ml!ximum number of blocks in the blocks file with file
number O.

+ON.ACTIVA TE wptr -- addr
Returns the address of the field within the window record (specified
by wptr) which contains the token to be executed when the window is
activated.

+ON.UPDA TE wptr -- addr
Returns the address of the field within the window record (specified
by wptr) which contains the token to be executed when the window is
updated.

+POINT X1\V1\X2\V2 -- Xl+X2\V1+V2
Returns the sum of two poi nts.

+PRINTER addr\cnt --
If the value of the variable PRINTER is true. the string at addr for cnt
bytes is output to the printer, then to the display. If the value of
PRINTER is false, the string is only displayed. "plus-printer"

MacFORTH Glossary Page 13 - 39 August 28, 1984

+REC.SIZE fcb -- oddr
Returns the address of the record size element (16-bHs) ln the
spec1fied fl1e control block. For example:

8 >FCB +REC.SIZE U@

returns the record size of the fl1e wHh f11e number zero.

+SCR # f cb -- addr
Returns the address of the block (or "screen") number field (32-bHs)
in the specified fOe control block.

+THRU relative start\relative end --
Lood screens stort through end relotive to the current screen. For
eXamp i e 1 the sequence

5 15 +THRU
encountered whll e 1 oodi ng screen 10 woul d cause screens 15 through
25 to be loaded. "plus-thru"

+ TVISRECT text record addr -- addr
Returns the address of the Yisible rectangle field within the text edit
record. Refer to MacFORTH Level 2 Text Edit interface documentation
f or further detai 1 s.

+ VBAR wptr -- addr
Returns the address of a variable within the window record which
contains the handle for a vertical scroll bar control which is attached
to the window. Refer to MacFORTH Leyel 2 Controls documentatlon
for further information.·

+W.ATTRIBUTES wptr -- addr
Returns the address of the 16-bit Held within the window record
(specified by wptr) which contains the window attributes to be
assigned when the window is created:

bit8 CLOSE.BOX bit1 NOT.UISIBLE
bit2 SIZE.BOX bitJ SCROLL.UP/DOUN
bit1 SCROLL.LEFT/RIGHT bitS TEXT.RECORD
bits 6-15 Reserved

+W.BEHIND wptr -- addr
Returns the address of the field within the window record (specified
by wptr) which contains the wptr to place the new window behind
when it is created. 0 places it up front l -1 places it at back.

MacFORTH Glossary Page 13 - 40 August 281 1984

+W.lINK wptr -- addr
Returns the 6ddress of the f1eld w1th1n the w1ndow record (spec1f1ed
by wptr) wh1ch conta1ns the address of the pr10r chronolog1cally
defined window. This linked list is traversed. during FORGET. to close
any w1ndows wh1ch are about to be forgotten.

+ W. TYPE wptr -- addr
Returns the address of a 16-bit field within the window record which
contains the window type. Type 0 is a document window, type 1 is a
dialog box window, type 2 is a rectangle, and type 3 is a shadowed
rectangle.

+WBOUNDS wptr --addr
Returns the address within the window record (specified by wptr) of
a rectangle to be used as the window bounds when the window is
created.

+ WCBOUNDS wptr -- addr
Returns the address withi n the wi ndow record of the current content
area rectangle for the window. This rectangle 1s kept current when
the window is resized, and reflects the presence or absence of scroll
bars.

+ WF IlE.PTR wptr -- addr
Returns the address within the window record of a field which
contains the f11e number of f11e which is associated with the
specified window.

+WlINE.HEIGHT wptr -- addr
Returns the address within the window record of a field which
contains the current line height. Windows are scrolled by the value
contained in this field bits up elt the end of the screen.

+WREFCON wptr -- addr
Returns the address within the window record of a field which
contains the window reference constant. This held normally contains
the address of the handle for the current Text Edit record. Refer to
MacFORTH Level 2 Text Edit documentation for further information.

+WTITlE wptr -- addr
Returns the address within the window record of a variable which
contains the address of a string to be used as the window title.
Executed when the window is created with ADD.WINDOW .

MacFORTH Glossary Page 13 - 41 August 28, 1984

+XVBIAS wptr -- addr
Returns the address w1th1n the w1ndow record of a 32-b1t f1eld which
conta1ns the integer 16-b1t s1ne and cosine of the current XVPIVOT
angle.

+ XVOFFSET wptr -- addr
Returns the address within the window record of a 32-bH field which
contains the 16-blt V and)(offsets which are applied to all
coordi nates re lat i ng to the wi ndow.

+XVPIVOT wptr -- addr
Returns the address within the window record of a 16-blt field which
contoins the ong1e of rototion to be opplied to 011 coordinotes reloting
to the window.

+XYPOS wptr -- addr
Returns the address within the window record of a 32-blt field
containing the current XV position. This is used for all relative
coordinates.

+ XYSCALE wptr -- addr
Returns the address within the window record of a field which
contains the current XVSCALE to be applied to all window coordinates.

n --
Allot 4 bytes in the diction~ry, storing n there. An error is reported if
insufficient object space is available. "comma"

Complles a string literal into the dictionary. Extracts the following
string, terminated by .. (double quote), from the input stream and
emplaces it into the dictionary preceded by its count byte. For
example:

CREATE TEST.STRIHG ," THIS IS A TEST" TEST.STRIHG COUHT TYPE
will output

THIS IS A TEST
This operator is generally used to emplace string l1terals into the
di ct ionary for words like." I ABORT" I ERROR" , etc. "comma-Quote"

nl\n2 -- n3
Subtract n2 from n 1 and leave the difference n3. Error if the
difference overflows. Returns a 32-bit value similar to that of the
case of overflow from addition w1th no system check. See + . "minus"

MacFORTH Glossary Page 13 - 42 August 28, 1984

--)

Continue interpretation on the next sequential block. May be used in a
colon or code definition that crosses a block boundary. "next-block"

-1 -- -1
Constant containing the value -1.

-2 ---2
Constant containing the volue -2.

- 3 -- -3
Constant containing the value -3.

-4 ---4
Constant containing the value -4.

-FIND -- ltoken\f1ag\truel or [false]
Dictionary search primitive. Searches the dictionary for a match on
the next word in the input stream. Extracts the next word in the input
stream (via WORD). placing it in POCKET. If the word is found in the
CONTEXT or TRUNK vocabularies, the token for the word, its
precedence f1091 and a true flag are returned. The precedence flag is
true if the word is immediate and should be executed when compiling
(ie. DO , IF , ."). If the word is not foundl a false flag is returned.
See IMMEDIATE 1 INTERPRET.
"dash-find"

-FOUND token --
Reports an error" ?" if token is zero.

-KEVBOARD -- n
Constant mask which allows all but keyboard events to be received.
This value is ended with the contents of EVENTS if a keystroke
already exists prior to execution of DO.EVENTS allowing type-ahead.
"rni nus-keyboard"

-LATEST
Removes the latest token, name, and object space from current
dictionary. It ignores the smudge bit.
"ml nus-l at est ..

MacFORTH 610ssary Page 13 - 43 August 28 1 1984

-NULL
Aborts 1f the f1rst byte at POCKET equals zero wHh the message
"ATTEMPTED TO REDEFINE NULLr

-PO I NT xl \y 1 \x2\y2 -- x l-x2\y l-y2
Returns the difference of two points. See +POINT

-STRING addrl \addr2 -- flag
Returns a non-zero flag if the string at addrl is not equal to the
string at addr2. The first byte of each string contains its length.
Case and diacritical marks are ignored (eg. "T~sk" and "TASK" are
considered equal).

- TEXT addr 1 \cnt \addr2 -- f1 og
Compares the two strings at addr1 and addr2 for cnt bytes. The flag
returned 1s zero 1f the strfngs are eQu1valent, otherwfse the flag
equals the d1fference between the last two characters compared, as
follows: addrHO - addr2(O
"dash-text"

-TRAILING addr\cnt 1 -- addr\cnt2
Strips trailing blanks from the string at addr. Adjusts the character
count cntl of a text string beginning at addr to omit trailing blanks
Oe. the characters from addr+cnt 1 to addr+cnt2 are blanks). Error if
cntl is negative with no system check.
"minus-trailing"

n --
Displays n. n is converted according to BASE in a free format field
with one trailing blank. Displays 0 negative sign if n is negative.
"dot"

Outputs a string of text delimited by ... Executed or compiled in the
form

." aaaaaaaa"
Accept the following text from the input stream, terminated by ..
(double-quote). If executing, transmit this text to the selected
output device. If compiling, compile so that later execution will
transmit the text to the output device. Up to 255 characters are
allowed in the text. The error message "MISSING STRING DELIMITER"
indicates the input stream was exhausted before the delimiting
double Quote was encountered. "dot-Quote"
The double quote delimiter is pronounced "quote"

MacFORTH Glossary Page 13 - 44 August 28, 1984

.ABORT n--
Pr1nts the number n 1n hexadec1mal, and aborts .

. DATES
Displays the current date from the internal clock in the follo~ing
format: MM/DD/VV

.FllE.ERROR error number--
Disploys the oppropriote file error messoge for the given f11e error
number. Unkno~n error numbers ore printed with the messoge "File
Error ." .

. R n\~1dth --

.s

D1splays n r1ght-Just1f1ed, blank-fl1led. The f1eld 1s w1dth characters
~1 de, and n is dl sp 1 ayed accord1 ng to BASE. I f wi dth 1 s 1 ess than 1, no
leading blanks are supplied. "dot-f"

Non-destructively displays the current contents of the stack. The
number of items on the stack is first displayed, enclosed in brackets,
follo~ed by the top three stack items (the top stack item is furthest
to the right) after a carriage return. For example, if you enter

1 2 3 .S
you ~ill see

[3] \ 1 \ 2 \ 3
If you then add another stack item (say 4 for example), you wlll see

[4] \ 2 \ 3 \ 4
"dot-s"

.TIMES
Displays the current time as read from the internal clock in the
f 0 11 owi ng format: HH:MM:SS XM

.TYPE addr\cnt --
Default Macintosh console output operator. Scrolls up at the bottom
of the screen.

I n 1\n2 -- n3
Divide n 1 by n2, leaving the quotient n3. n3 is rounded to~ard zero
(truncated). Error on division by zero with no system check. "divide"

MacFORTH Glossary Page 13 - 45 August 28, 1984

IMOO n 1 \n2 -- remai nder\Quot i ent
D1v1de n 1 by n2 and leave the rema1nder under the Quot1ent. The
rema1 nder has the same si gn as n 1. Error on d1 vi 51 on by zero wi th no
system checl<. "divide-mod"

o -- 0
Constant containing the value O.

0< n -- flag
Returns a true flog 1f n is less thon zero (negotive). "zero-less"

0= n -- flag
Returns a true flag 1f n is equal to zero. "zero-equals"

0> n -- flag
Returns a true flag if n 1S greater than zero. "zero-greater"

OBRANCH flag --
The run-t1me procedure used for conditional branching. If flag is
false (zero), the following in-line parameter is added to the
interpreter pointer to branch ahead or back. Compiled by IF , UNTIL,
and WHILE. "zero-branch"

OMAX n -- In] or 10]
Code routine which returns the maximum of nor O. "zero-max"

-- 1
Constant containing the value 1.

1 + n -- n+ 1
Increments the lop slacl< Hem by one.

1- n -- n-1
Decrements the top stacl< item by one.

10+ n -- n+10
Increments the top stack item by ten.

10- n -- n-10

Decrements the top stack item by ten.

MacFORTH Glossary Page 13 - 46 August 28, 1984

12HOURS --n
Constant return1 ng the number of seconds 1 n 12 hours.

1 6* n -- n* 16
Multiplies the top stack item by s1xteen.

1 6+ n -- n+ 16
Increments the top stack Hem by sixteen.

1 6- n -- n-16
Decrements the top stack Hem by s1xteen.

1 61 n -- n/16
DiYides the top stack item by sixteen.

1 DAV -- n
Constant returning the number of seconds in one day.

1 HOUR -- n
Constant returning the number of seconds 1n one hour.

2 -- 2

Constant conta1n1ng the value 2.

21 n 1 \n2\addr --
Stores n2 at addr, n 1 at addr+4.

2* n -- n*2
Multiplies the top stack item by 2.

2+ n -- n+2
Increments the top stack Hem by 2.

2- n -- n-2
Decrements the top stack item by 2.

21 n -- n/2
DiYides the top stack item by 2.

2@ addr -- n 1 \n2
Fetches n2 from addr, n 1 from addr+4.

MacFORTH Glossary Page 13 - 47 August 28, 1984

2DROP n 1 \n2 --
Drops n 1 and n2 from the stack.

2DUP n 1 \n2 -- n 1 \n2\n 1 \n2
Duplicates n 1 and n2.

20VER n 1 \n2\n3\n4 -- n 1 \n2\n3\n4\n 1 \n2
Copies n 1 and n2 to the top of the stack.

2SWAP n 1 \n2\n3\n4 -- n3\n4\n 1 \n2
Swaps n 1 ,n2 with n3,n4.

2W>MT n1 --
Macintosh Tooltrap interface word. See the Advanced Topics toolbox
interface section for more information.

3 -- 3

Constant containing the value 3.

3+ n -- n+3
Increments the top of the stack by three.

3- n -- n-3
Decrements the top of the stack by three.

4 -- 4

Constant contai ni ng the value 4.

4* n -- n*4
Multiplies the top of the stack by four.

4+ n -- n+4
Increments the top stack item by 4.

4- n -- n-4
Decrements the top stack j tern by 4.

41 n -- n/4
01 Vl des the top stack 1 tern by 4.

MacFORTH Glossary Page 13 - 48 August 28, 1984

5+ n -- n+5
I ncrements the top stack 1 tem by 5.

5- n -- n-5
Decrements the top stack item by 5.

6+ n -- n+6
Increments the top stack item by 6.

6- n -- n-6
Decrements the top stack item by 6.

7+ n -- n+7
Increments the top stack item by 7.

7- n -- n-7
Decrements the top stack item by 7.

8* n -- n*8
Multiplies the top stack item by 8.

8+ n -- n+8
I ncrernents the top stack 1 tern by 8.

8- n -- n-8
Decrements the top stack item by 8.

81 n -- n/8
Divides the top stack Hem by 8.

MacFORTH Glossary Page 13 - 49 August 28. 1984

Begins compilation of a new definition. A defining word used in the
form:

: <nale> . . . ;
Set CONTEXT to CURRENT and create a dictionary entry for <name> in
the CURRENT vocabulary. Words thus defined are "colon definitions"
and the compilation address of subsequent words from the input
stream which are not immediate are compiled into the dictionary to
be later executed when <name> is executed. IMMEDIATE words are
executed as encountered. Words encountered that are not found in the
dictionary (CONTEXT and TRUNK vocabularies) cause compilation to
stop with a question mark printed after the offending word. The
warning message "ISN'T UNIQUE" indicates that a previous definition
for <name> exists. "colon"

Terminate a colon definition and stop compilation. The error message
"DEFINITION INCOMPLETE" indicates the stack depth changed within
the current colon definition. "semicolon"

< n1\n2 -- flag
Returns a true fl6g if n 1 is less th6n n2. "less-than"

In1tiallze p1ctured numeric output. The following group of words are
used to conyert a number to 11s ASCII string equiyalent:
<# #>" "S HOLD SIGN
"1 ess-sharp"

<W@ addr -- n
Fetches the 16-bit contents at addr and sign extends it to 32-bits.
An address error trap will result if add is odd. Use >W@< for odd or
eyen addresses.
"extended-word-f etch"

= n1\n2 -- flag
Returns a true flag if n 1 is equal to n2. "equals"

=CEllS n1 -- n2
Ensures n 1 is eyen by adding one to it if it is odd. "equals-cells"

=DROP n 1 \n2 -- [n 1 \n2] or [n 11
Drops n2 if n 1 =n2. "equals-drop"

MacFORTH Glossary Page 13 - 50 August 281 1984

> n1\n2 -- flag
Returns a true f1 ag 1 f n 1 1 s greater than n2. "greater-than"

> .F IlE.ERROR < error code --
Default file error handler. Displays the appropriate error message for
the error code given.

>FCB f11e# -- feb
Returns the file control block address for the f11e number specified.

>IN -- addr
User variable pointing to the current character in the input stream.
Error if the value stored is outst de the range 0 to 1023 with no
system response. See: WORD' (." and FIND. "to-1n"

>JSR addr--
Jumps to the assembly code subroutine at addr. Registers AO-A2,
00-03 are available; A3-A 7, and 04-07 should be saved and restored
by the assembly routine if they would be modified. The JSR
instruction places the address (containing NEXT) on the return stack
(A 7). Return to FORTH via an RTS instruction. NOTE: MacFORTH
expects to run in supervisor state, NOT user state. "to-j-s-r"

>llSl <
Indirectly references the word to execute at the top of every llsted
screen. Used to time and date stamp listings.

>R n--
Pushes the top stack item onto the return stack. Remember, DO ...
LOOP's affects the return stack. (DO pushes 2 items, LOOP pops them).
Error if not balanced inside of a colon definition or inside aDO ...
LOOP structure with a matching R> with an unpredictable system
response. "to-r"

> RECl xl \y 1 \x2\y2 -- RB\L T\SP~
Returns the address within the stack of the reformatted rectangle
xl \y 1 \x2\y2. Rectangle coordinates are translated and offset
according to XVSCALE, XVPIVOT, and XVOFFSET before reformatting
occurs. The rectangle is in QuickOraw top,left, bottom, right format.

>SVS.WINDOW
Directs output to system window.

MacFORTH Glossary Page 13 - 51 August 28, 1984

>WI< n\addr--
Stores the 16-bH value n at addr. Addr may be an odd address.

) W@< 'addr -- n
Fetches the 16-bH Yalue at addr. Addr may be an odd address,

1 addr--
Displays the 32-blt value at addr. "Question mark"

7AliGN
Forces the dictionary pOinter to an eyen address. The user variable DP
is incremented by one if it is odd. "Query-align"

?BlOCKS.FllE f11e# -- flag
Returns a true flag if the specified file is a BLKS type file.
"Query blocks file"

1COMP

1CSP

Verifies compilation state, Issues the error message "COMPILATION
ONLYI USE ONLY IN A DEFINITION" if STATE does not indicate
compi 1at i on mode ... Query-comp"

Verifies the stack did not change during compi1ation. The error
message "DEFINITION INCOMPLETE I" indicates the value in the user
variable CSP is different from the current stack position. See CSP .
" Query-c-s-p"

1DAYS n 1 -- n2
converts n 1 seconds 1 nto n2 days. n 1 1 s di v1 ded by the number of
seconds 1n one day, leaving the result n2.

1DOUBlE.ClICK -- flag

1DUP

Following a mouse down event, detects if a double click occurs within
the time period set on the control panel. If a double click occurs. flag
is true. otherwise false.

n -- [n\n] or [n]
Duplicate n if it is non-zero. "Query-dup"

MacFORTH Glossary Page 13 - S2 August 281 1984

1EOF -- fltlg
Returns a true f1 ag 11 the end-of -111 e marker of the current fl1 e has
been reached for the 111e that was most recenty accessed.

1EVENT record\mask -- event code
Copies the next event that passes the mask to record, returning the
event code of the event. The event is not removed from the event
Queue. "Query-event"

1EXEC
Verifies execution state. Issue the error message EXECUTION ONLY
if STATE does not i ndi cate execution mode. "Query-exec"

1FllE.ERROR ---
Checks the value of IO-RESULT and aborts the current task, displaying
an error message if IO-RESULT 1s non-zero.

1FIlES
Displays the current file control block assignments.

1HEAP.SIZE -- size
Returns total amount of space available in heap, including any grow
region. Refer to Apple Developer's documentation for further detail
Reference: FreeMem

?IN.CONTROl --flag
Returns a true flag if most recent MOUSE.DOWN even occurred in a
control attached to the currently active window. The variable
THIS.CONTROL contains the handle to the affected control. The
variable THIS.PART contains the relevant control part code. Refer to
MacFORTH Level 2 Controls documentation for further details.

1KEVSTROKE -- [key\true] or [false]
Checks for a keystroke from the Mac keyboard. Returns a key value
under a true flag if a key was pressed, otherwise just returns a false
flag.

1l0ADING
Verifies loading from disc. Issue the error message "CAN'T USE FROM
TERMINAL '" if a word is executed from the terminal which should only
be executed from disc. "Query-loading"

MacFORTH Glossary Page 13 - 53 August 28, 1984

10PEN file- -- f16g
Returns a true f1 ag 11 the spec1f1 ed 111 e 1 s open.

1PAIRS n 1 \n2 --
Verlfies conditl0nals were paired in the latest definition. The error
message "CONDITIONALS NOT PAIRED" indicates n 1 is not equal to n2,
meaning compiled conditionals do not match. "Query-pairs"

1PUNCT addr -- flag
Checks for v611 d punctu6t i on. Returns a true flag if the ASC II
character at addr is one of the following:

J • I :
"QlJery-punct ..

7ROOM
Reports the amount of space available in the heap, object and
vocabulary memory areas.

?SECONDS n 1 -- n2
Converts n 1 seconds into n2 seconds since midnight of the current
day. n 1 is divided by the number of seconds in one day, leaving the
ramal ndar n2.

?SOUND -- flag
Returns a true flag if sound driver is active asynchronously.

7STACK
Checks for underflow of the parameter stack. The message "5T ACK
EMPTV'" i ndi cates the parameter stack underflowed.
"Query-stack"

?TERMINAl -- flag
Returns a non-zero flag if a key has been pressed, otherwise false.
"Query-terminal"

?TRACE
Complle (TRACE) 1nto the dictionary 1f the TRACE option switch 1s on.
"Query-trace"

MacFORTH Gl ossary Page 13 - 54 August 28, 1984

?WORD chelr -- addr
Parses a str1ng from tIle 1nput stream. Performs the same funct10n as
WORD (see WORD), except it aborts with the error message "MISSING
STRING DELIMITER!" if the input stream is exhausted before the
del1miter was encountered. "Query-word"

@ addr -- n
Returns the 32-bt t contents of addr. The error message "ADDRESS
ERROR TRAP AT addr" indicates addr was odd. If you need to fetch
data from odd addresses, use CMOVE or >W@< .
"fetch"

@@ addr -- n
Returns the 32-bit contents of the contents pointed to by oddr. The
error message "ADDRESS ERROR TRAP AT addf" indicates oddr or its
contents were Odd.
"f etch-f etch"

@ClOCK -- n
Returns the number of seconds s1nce 12:00 am 01/01/04 as read from
the internal clock.

@EVENT record\mask -- event code
Copt es next event from event queue to record. Returns event code if it
applies to current window, otherwise O.

@FllE.NAME file- -- f11e$
Returns the address of the name string for the specified file.

@INIT
Asks for input of the user's initials. The message:

ENTER YOUR INITIALS [XXX] --)
The initials input are stored in the user variable INITIALS.

@MOUSE -- point
Returns the current location of mouse tn local coordinates.
See POINT>XV LOCAL>GLOBAL

@MOUSE.DN --pOi nt
Returns the location of where the mouse last went down (button
pressed) in local coordinates. See POINT>XV LOCAL>GL06AL

MacFORTH Glossary Page 13 - 55 August 28, 1984

@MOUSEXY --x\y
Returns mouse pos1t10n 1n user w1ndow coord1nates. Sens1t1ve to
CARTESIAN flag and XVOFFSET.

@PEN -- x\y
Returns the current pen position in local coordinates to the currently
active window.

@PENSTATE -- 20 bytes (5 stack items)
Fetches the current pen size, pen pottern, pen locotion, ond pen mode
to the stock. (see !PENST ATE)

@POiNT aaar -- x\y
Fetches 32-b1t value from addr and unpacks to x and y coordinates.

@RECT addr -- t\l\b\r
Unpacks rectangle at address. Top Left Bottom Right are pushed into
stack.

@SR -- n
Returns the contents of the 68000 hardware status register. This
16-bit volue is contained 1n the leost significont bits of n.
"fetch-s-r"

ABORT
Aborts the current task. Clears the data and return stacks and returns
control to the console in execution mode.

ABORT" flag--
Aborts the current task with the supplied message if flag is true and
RETRV is zero. Used in the form:

ABORT" <user message>"
Complles (ABORT") followed by <user message> preceded by its count
byte. At execution time, if flag is true, <user message> is displayed
in the MacFORTH window, and ABORT is executed. If flag is false, no
action is taken. If RETRV is non-zero, error recovery occurs at the
stack frame in the return stack pOinted at by RETRV .
See the Advanced Topics chapter and ABORT , (ABORT") J RETRV .
"abort -quote"

ABORT .EVENT -- n
Constant event code returned by DO.EVENTS on an abort event.

MacFORTH Glossary Page 13 - 56 August 28 J 1984

ABS n1 -- nf
Returns n2 as the absolute value of n 1. Error occurs when the
argument 1s the most negat1ve 32-b1t number. That argument 1s
returned unchanged wHh no error message. "absolute"

ACTIVATE.EVENT -- n
Constant event code returned by DO.EVENTS on an activate event.

ADD.BLOCKS -blocks\flle#--
Primitive used by APPEND.BLOCKS to add -blocks to the specified
blocks file.

ADD.CONTROL xxx -- xxx
Refer to MacFORTH Level 2 Controls Documentation.

ADD.RES.MENU type\menu id--
Appends as items the name of all resources 1n the current resource
file of the specfied type to the specfied menu.

ADD.WINDOW wptr --
Builds a window from w.title, w.bounds, w.type, and w.attrlbutes, and
links it into window list and displays it if visible. W.6EHIND
determines where window will appear in the window 1ist.
See NEW.WINDOW

AGAIN
Marks the end of an infinite loop structure. Causes an unconditional
branch back to the start of a

BEGIN . . . AGAIH
loop construct. It is equivalent to

BEGIN . . . B UNTIL
See BEGIN, UNTIL.

ALIT -- address
Pushes the sum of the next 32-blt value in the interpretation stream
and NEXT.PTR into the stack. Advances over the value. Compiled by •
to relocate a literal address.

ALLOCA TE file size\f11e- --
Allocates the spec1fied number of bytes to the specified fl1e.

MacFORTH Glossary Page 13- 57 August 28, 1984

ALLOT n--
Increments the d1ct10nary p01nter by n. Aborts if object area 1s too
small to conta1n n add1t10nal bytes.

AND n1\n2 -- n3
Returns n3 as the bitwise logical AND of n 1 and n2.

APLA V addr --
Passes addr+2 to the Macintosh sound driver. Addr contains the
16-blt size of the waveform record at addr+2. The sound is generated
osynchronoous 1 y.

APPEND tOKen\:tiaaar --
Appends the str1ng wlth token to the current vocabulary. An error
message is generated if insufficient space is available in the
vocabulary. Resize the vocabulary with RESIZE.VOCAB .

APPEND.BLOCKS n\file # --
Appends n blocks to the blocks file specified by f11e#.

APPEND.lTEMS item$\menu id--
Appends elements in the Hem$ (seporoted by';') to the specified
menu.

APPLE.MENU
Installs the Apple desk accessory menu on the menu bar.

ARC x t \y 1 \x2\y2\sa\ca\[paUern addr]\mode --
Draws an arc wHhin the rectangle (x 1,y 1,x2,y2) starting at angle sa
(start angle) and ending at angle ca (completion angle). The pattern
addr IS required for the PATTERN mode.

ASSIGN file$\file# --
Assigns the file name specified to the f11e number specified. Any f11e
previously assigned to f11e# is closed before the new f11e is assigned.
See OPEN"

AUTO.KEY -- n
Constant event code returned by DO.EVENTS on an auto key (repeat)
eyent.

MacFORTH Glossary Page 13 - 58 August 28, 1984

AXE
Looks up and removes the next word 1n the 1nput stream from the
current vocabulary. The vocabulary 1s closed up to recover space.
Object space for the word 1s not affected.

B/BUF -- n
Returns the number of bytes per block buffer (1024).
"b-s 1 ash-buf"

BACK addr --
Calculates the bockward bronch offset from HERE to addr. It is then
compil ed into the next avail ab 1 e 16-blt memory celli n the di ct i onary.

BACKPA T pattern addr --

BASE

Sets the QulckDraw background pattern to the supplied pattern
address.

-- addr
User variable containing the current I/O numeric conversion base.
Error if the value in BASE is outside the range 2 through 70 with no
system check.

BEGIN
Marks the start of a loop structure for repetitive execution. Used 1n a
colon definition in one of the following forms:

6EGIN . . . UNTIL
6EGIN . . . AGAIN
6EGIN . . . WHILE . . . REPEAT

The words ofter UNTIL and REPEAT (remember, BEGIN ... AGAIN is an
endless loop -- see AGAIN) will be executed after the loop
terminates. The error message "DEFINITION INCOMPLETE !" indicates
the BEGIN was not matched with an UNTIL , AGAIN , or WHILE ...
REPEAT sequence.

BEHEAD token --
Removes the name and token fields for the supplied token from the
current vocabulary.

BL -- 32 (decimal)
Returns the value for the ASCII blank character. "b-l"

BLACK -- addr
Returns the address of the black pattern.

MacFORTH Glossary Page 13 - 59 August 28, 1984

BLANKS addr\cnt --
F111s memory at addr for cnt bytes w1th ASCII blanks. See FILL

BlK -- addr
User yariable containing the block currently being interpreted as the
input stream. If BLK is zero, the input stream 1S coming directly from
the termina1. "b-l-k"

BLOCK block# -- addr
Returns the buffer address of the requested block number. If the
requested block is not already in a block buffer, it is transferred from
mass storage into the least recently accessed buffer. If the preyious
data in that buffer has been UPDATEd, it is written out to mass storage
before the new block is read in. Only dato within the lotest block
referenced by BLOCK is yalid due to sharing of the block buffers.

BLOCK-FilE -- addr
'Variable containing the file number of the current blocks file.

BOLD --1
Constant bit mask for bold text attribute.

BOOLEAN n -- true or false
Converts n to a true flag (-1) if n is non-zero.

BRANCH
The run-time procedure to unconditionally branch. An inllne offset is
added to the interpreter pointer, IP , to branch ahead or back. BRANCH
is complled by ELSE, AGAIN, and REPEAT.

BRING.TO.FRONT wptr--
Brings the window specified by wptr to the front.

BS -- 08 (decimal)
Returns the value for the ASCII backspace character.

BUFFER block# -- buffer eddr
Returns the addr of an aYailable block buffer for the block number
given.

BYE
Exits MacFORTH, passing control to Finder.

MacFORTH Glossary Page 13 -60 August 28, 1984

C I char\addr --
Stores the 8-bit value char at addr. "c-store"

C, char--
Emplaces char into the dictionary. stores the a-bit value into the
dictionary at the current dictionary pOinter value, and increments the
di cll onary pof nter by 1.

Cll -- n
Returns the number of chorocters per line (64) in 0 block of source
code.
"c slash 1"

C@ addr -- char
Returns the 8-bit value char located at addr. "c-fetch"

CAR TES I AN -- addr
Returns the address of the Cartesian coordinate flag. When this flag is
true (on), coordinates are interpreted in Cartesian coordinates
(positive y up). When flag is false (off), QuickDraw coordinates
(negative y up) are used. Refer to the Graphics Results chapter for a
complete discussion of this feature.

CASE n -- n
Marks the beginning of a case statement. Used in the form:

CASE)(OF ... ENDOF
V OF ... ENDOF

ENDCASE

CENTER
Sets the graphics XVOFFSET to 1/2 MAX,X , 1/2 MAX.V, the center of the
current wi ndow.

CHARWIDTH char -- width
Returns the width (in pixels) for the specified character in the current
text font.

CHECK.BOX n 1 \n2\n3\n4\nS --
Check box control deflnition word. Refer to MacFORTH Level 2 Controls
documentat ion.

MacFORTH Glossary Page 13 - 61 August 28, 1984

CIRCLE x\y\rodius\[pattern addrJ\mode --
Draws a c1rcle of rad1us at XV wHh1n current w1ndow accord1ng to
mode. The pattern addr 1s neccessary for PATTERN mode only.

CLEAR -- 2
QuickDraw fill mode that specifies using the background pattern to fill
the specified shape.

ClIP>CONTENT wptr--
Clips 011 drawing in the specified window to the content region.
Controls wlll not be updated. Refer to NO.CLlP

CLOSE file- --
Closes the specified f11e.

ClOSE.All
Closes all files.

ClOSE.BOX -- n
Constant containing bit mask for close box attribute in window
attribute field.

ClOSE.WINDOW wptr--
Closes the window specified by wptr. All window-related heap data
structures are returned to the heap and the specified window is
removed from window linked list. You cannot close SVS.WINDOW, use
HIDE.\A./INDOW to hide the MacFORTH window.

CMOVE src oddr\dest oddr\cnt --
Moves cnt bytes from src addr to dest addr. The transfer begins in low
memory and moves toward high memory (ie. the byte at src addr is
moved to dest addr, then the byte at src oddr+ 1 1s moved to dest
addr+ 1, etc,). Error if the count is less than one; the system drops the
parameters from the stack and no movement occurs. "c-move"

CMOVE> src addr\dest oddr\cnt --
Moves cnt bytes from src addr to dest addr. Starts at the end of the
string and proceeds toward low memory. See CMOVE "c-move-up"

CNT -- addr
User variable containing the total count of characters transferred by
TVPE or EXPECT. Immediately following execution of EXPECT, CNT
contains the actual number of bytes received. "c-n-t"

MacFORTH Glossary Page 13 -62 August 28, 1984

CNTR -- addr
User var1able conta1n1ng the current count of characters to be
transferred. Th1s number counts toward 0 for both 1nput and output
operat10ns. "c-n-t-r"

COL -- addr
User variable containing the current output column position.
"cor

COMMAND. KEY -- n
Constant event code returned by DO.EVENTS when 0 menu item is
selected from the keyboard.

COMPILE
Used to compile the token for a word into the dictionary. When a word
containing COMPILE 1s executed, the token for the word following
COMPILE in the deflntlon is compiled into the d1ctionary. An unchecked
error exists if the word follow1ng COMPILE 1s not found 1n the
dictionary or convert1ble to a number.

COMPILING -- flag
Returns a true flag if STATE is non-zero. STATE = non-zero indicates
compllation mode, STATE = zero indicates execution mode.

CONDENSED -- 32
Constant bit mask for condensed text attribute.

CONFIGURE.PRINTER -stop blts\parlty\- data bits\ baud rate --
Used to custom configure the printer port for non-Imagewriter
printers. Refer to the Printer chapter for more information.

CONSOLE -- addr
User variable containing the address of the current console device
table.

CONST ANT n --
Creates a constant with value n. A defining word used in the form:

n CONSTANT <name>
to create a dictionary entry for <name>. which when later executed will
leave n on the top of the stack. n 1s complled into the pfa of <name>.
See)CONST ANT

MacFORTH Glossary Page 13 -63 August 281 1984

CONTEXT -- addr
User var1able conta1n1ng the handle for the vocabulary where d1ct10nary
search~s are to beg1 n dur1 ng 1 nterpretat 1 on of the 1 nput stream.

CONVERT n 1 \addr 1 -- n2\addr2

COpy

Converts the ASC II stri ng at addr 1 + 1 to as bi nary equ1 val ent. The
number is accumulated into n 1 and returned as n2. Addr2 1 s the. address
of the first unconvertible character. See NUMBER (# # #S #) HOLD

src blk#\dest blk# --
Copies src blk# into dest blk# in the current blocks file.

COs angle -- cos1ne * 10000
Returns 1nteger cos1ne of angle * 10000 (4 d1g1ts of prec1s10n).

COUNT addr -- addr+ 1 \cnt

CR

Returns the address and count of the text stri ng at addr+ 1. The count
byte is at addr and text is at addr+ 1 on. The range of n is 0 - 255.

Emits a CR LF to the current output device. "c-r"

CREATE
A defining word to create a dictionary entry for the name given. Used
in the form:

CREATE <name>
to create a dictionary entry for <name>, al10cating 2 bytes for the
token. When <name> is later executed, the address of <name>'s
parameter field is left on the stack. If the UNIQUE.MSG is on (true) and
the word already exists 1n the CONTEXT or TRUNK vocabularies, the
message "ISN'T UNIQUE" is displayed. See UNIQUE.MSG

CREATE-BLOCKS.FILE f11e#--
Creates the specified file as a blocks file on disc. The file is specified
as a MacFORTH blocks file and can be loaded from the Finder.

CREATE.FILE file#--
Creates the speCified file as a data file on disc.

MacFORTH Glossary Page 13 -64 August 28, 1984

CRLF -- oddr
Returns the address of a lHeral strlng contaln1ng a CRLF sequence. Used
1n the form:

CRLF 2 TYPE
to output a CR LF sequence. See CR. "c-r-l-fH

CSP -- addr
User variable which temporarily holds the value of ' the stack pOinter
during compilation for error checking. "c-s-p"

CURRENT -- oddr
User variable which contains the handle for the vocabulary into which
newly created words are appended. This is the second vocabulary to be
searched during a dictionary search (after CONTEXT).

CURRENT-FILE -- addr
Scratch variable used in the file system operators.

CURRENT.POSITION file# -- current fne position
Returns the current position of the file pOinter for the specified file.

CURSOR -- oddr
Var1able containing the address of the current cursor array.

CURSOR.CHAR -- addr
Variable containing the text font for the cursor symbol in the flrst
16-bi ts and the character code for the symbol in the second 16-bi ts.

DAVS> #days since 01/01/04 -- year\days\month
Converts the number of days since 01/01/04 to days to year, days,
month si nce 01/01/04.

DEALLOT token --
Deallots object space for and above the specified token.

DEBUG -- addr
User Variable containing the flag which indicates the debug mode.
When DEBUG is on (true), items left on the stack during execution are
displayed with .S and words being executed have their name and stack
implications displayed, if they where complled with TRACE mode set.
See TRACE and the Advanced Topics chapter.

MacFORTH Glossary Page 13 -65 August 28, 1984

DEBUG.ONlY
Ex1ts the current def1n1t10n 1f DEBUG 1s zero.

DECIMAL
Set the 1/0 numeric conversion base to decima1. See BASE.

DEFAUlT.ACTIVATE --
Defou1t activate function for all defined windows. Beeps on activate,
(mouse down) nothing on deactivate.

DEFINITIONS ---
Determines the vocabulary new deflnitl0ns 8r~ compiled In. Sets
CURRENT to the CONTEXT vocabulary so that subsequent definitions will
be created in the vocabulary previously selected as CONTEXT.

DELETE file- --
Deletes the specified file from disc.

DElETE.BLOCKS -b10ci<s\file---
Primitive used by APPEND. BLOCKS to delete bloCKS from a blocKs flle.

DElETE.MENU menu fd--
Deletes the specified menu from the menu bar and redraws the menu
bar.

DEPTH -- n
Returns the number of stack Hems (32-bit values) currently on the
stack (before n was added).

DEVICE.CONTROl parm 1 \parm2\cmd\fcb -
Primitive device controlling word.
Stores: 16 Bft CMD at FCB+26

32 Bit PARM 1 at FCB+28
32 Bft PARM2 at FCB+32
o at FCB+36

Issues: OS CONTROL TRAP with FCB .

DEVICE.STATUS cmd\fcb -- parml\parm2
Primitive device status word.
Stores: 16 Bi t CMD at FCB+26
Issues: OS STATUS TRAP with FCB
Fetches: 16 Bit PARM 1 from FCB+32

32 Bit PARM2 from FCB+28

MacFORTH Glossary Page 13 - 66 August 30, 1984

DFL T .CONTROL ---
Default word used to handle control characters on input and output for
special console devices.

DFLT.WINDOW.TAIL -- addr
Array containing the default values for the MacFORTH extension to the
standard wi ndow record.

DIGIT char\base -- [n\true] or [false]
Converts the ASCII character chor, using the bose given, to its binary
eQuivolent. If the conversion was valid, n is left as the binary
equivalent under a true flog, otherwise only a folse flog is returned.

DIR drive - --
Displays the catalog for the media in the specified drive.
See INTERNAL EXTERNAL

DIRECTORY -- addr
Returns the address of the user variable which contains the disc
directory load screen. Currently not used.

DISCARD.UPDA TES --
Discards any pending update events for the current window. Used to
eliminate double flash at window activation if ACTIVATE code redraws
the window contents anyway.

DISK -- addr
Multltasking stub for source compatibility wlth future products.

D I SK.EVENT -- n
Constant event code returned by DO.EVENTS on a disk inserted event.

DISPOSE.CONTROL n--
Disposes control. Unsupported 1n Level 1. Refer to MacFORTH Level 2
Controls documentation.

DKGRA Y -- addr
Returns the address of the dark grey pat tern.

MacFORTH Glossary Page 13 -67 August 28, 1 984

DO upper llmit\lower limit --
Marks the beg1nn1ng of a f1n1te loop structure. Used 1n a colon def1n1t10n
1n the form:

DO ",' LOOP or DO, " n +LOOP
6eg1ns a loop wh1ch w1ll term1nate based on the upper and lower 11mHs
given. DO .. LOOP's may be nested as long as each DO 1s matched wHh a
corresponding LOOP or +LOOP wHhln the same colon definition. The
error message "DEFINITION INCOMPLETE !" indicates a DO was not
matched with a corresponding LOOP or +LOOP . See LOOP and +LOOP .

DO.EVENTS -- event code
Removes the next event from the event Queue. Executes any supp 11 ed
default token in the events 11st, and returns the event code.

DOES>
Defines the run-time action within a high-level defining word. Used in
the form:

: <name> . ,. CREATE ,., DOES> .. ,;
It marks the termination of the defining part of the defining word
<name> and begins the definition of the run-time action for words that
will later be defined by <name>. On execution of a word defined by
<name>, the words between DOES> and; will be executed, with the
parameter field address of the new word on the stacl<. "does"

DOT (x\y --)
Draws a dot at (x,y). Pen pattern, size, and mode determines effect on
dots below and to the r1ght of (x,y). The point is rotated, scaled and
translated within the window according to the values in XYPIVOT,
XYSCALE and XYOFFSET.

DOWN.BUTTON -- part code
Constant containing the part code for a mouse button down part code.
Refer to MacFORTH Level 2 Controls documentation.

OP -- addr
User variable containing the current value of the dictionary pOinter.
This value may be read using HERE and altered using ALLOT. See HERE
and ALLOT . "d-p"

DPl -- addr
User variable containing the number of places after the decimal point
for numeric input conversion,

MacFORTH Glossary Page 13 -68 August 28, 1984

ORA W .CHAR chor --
Draws char at the current pen posH1on wHh the current text transfer
mode in the current textstyle textfont and textsize. See EMIT

DRAW.CONTROlS wptr--
Draws controls associated with the specified window. Refer to
MacFORTH Level 2 Controls documentation.

ORA W .MENU.BAR --
Redrows the menu bor from the current menu list. Execute this word
after adding or deleting Hems to or from the menu llst.

DRAW. TO x\y--
Draws to the supplied (x,y) coordinate. Dots to the right and below the
pen are modif1ed according to the current pen size, shape, pattern, and
mode.

DRAWSTRING addr--
Draws string at addr with count in first position at current pen
position according to the current text style, mode, size and font.

DROP n--
Drops the top stack item.

DRVR.EVENT -- n
Constant event code returned by DO.EVENTS on a DR I VER event

DUP n -- n\n
Duplicates the top stack item. "dupe"

DUP>R n -- n
Duplicates the top item on the stack and places it on the top of the
return stack.

EJECT dri ve- --
Ejects media in drive. See INTERNAL EXTERNAL

MacFORTH Glossary Page 13 -69 August 28 J 1984

ELSE
Marks the beginning of the "else portion" of a condit10nal structure.
Used 1 n a colon-def1nition 1n the form:

IF ... ELSE ... THEN
If the cond1t1onal for the IF 1s true, when the ELSE 1s encountered, lt
passes control to the word follow1ng THEN. If the cond1t1onal for the IF
1s false, control 1s passed to the word following ELSE. The error
message "DEFINITION INCOMPLETE '" indicates the control structure was
m1ss1ng its THEN. The error message "CONDITIONALS NOT PAIRED"
1ndicates the control structure was missing its IF .

EMIT char--
Outputs char. See DRAWCHAR

EMPTY
Removes all words and vocobularles above the currently specified
task-dependent FENCE from the dlctlonory.
See (FORGET), FENCE , SET .FENCE

EMPTY-BUFFERS --
Clears the contents of the disc buffers, marking all buffers as unused.

ENCLOSE addr\de11m -- addr\offset 1 \offset2\offset3
Text parsing primitive. Given an address to parse from and a delimiter,
this operator skips over leading delimiters returning the address under
offset to the first non-dell miter (offset 1), under the offset to the last
non-delimiter (offset2), under the offset to the following delimiter
(offset3). The enclosed test starts at addr+offset2. Parsing for the
next word should begin at addr+offset3. A null (zero) character always
acts as a dell miter regardless of the speCified delimiter.

ENDCASE n--
Terminates a case statement. Used 1n the form:

CASE X OF ... ENDOF
ENDCASE

Completes the case statement by dropping n and resolving all
unresolved branch addresses (left on the stack by ENDOF) to pOinter
after ENDCASE .

MacFORTH Glossary Page 13 -70 August 28, 1984

ENOOF
Term1nates a cond1t10nal w1th1n a case statement. Used 1n the form:

CASE
X OF ... ENDOF

ENDCASE
If the OF portion of the statement is true, ENDOF branches to the first
1nstruct10n after ENDCASE. See CASE OF ENDCASE

ENTER.FLAG -- addr
Varlable contalnlng the enter key flag. This flag is set when the enter
key is used to terminate a line of input. The user is responsible for
clearing and checking this flag. It is set by EXPECT.

ERASE addr\n
Zero fllls memory at addr for n bytes. If n is less than or equal to zero,
toke no oction. See FILL BLANKS

ERASE.REeT address --
Fills the contents of rectangle at address with the current background
pattern. The rectangle 1s 4 16-btt values representtng the top, left,
bottom, and right sides.

ERROR addr\cnt --
Executes the token contained in the user variable (ERROR). Addr and cnt
point to a string to be output. See (ERROR) I «ERROR» , (ERROR") , and
ERROR" .

ERROR"" flag --
Aborts the current task, displays the name of the word executed and
the suppl1ed message if flag is true. Used 1n the form:

ERROR" <user error message>"
Compiles (ERROR") followed by the inline lHeral string. If flag is true
when (ERROR") executes, the name field of the most recently
interpreted word (in POCKET) is displayed, followed by the string <user
error message>, finally the system ABORTs, returning control to the
console. If flag is false, control is passed to the word following the
string literal. "error-quote"

EVENT.LOOP
Default loop which dispatches to the next active window. If all
windows are deactivated, this word executes DO.EVENTS until a window
activate event occurs.

MacFORTH Glossary Page 13 -71 August 28, 1984

EVENT .RECORD -- oddr
Array cont01n1ng the event record for the current event.
bytes: 8- 1 contain the event code

2- 5 contain the event message
6- 9 contain the mouse

18-13 contain the time in ticks when the event occured
li-15 contain the modifiers bits (kbd state)

EVENT. TABLE -- oddr
Array containing defoult tokens to be executed for each of the 24
stondard events. DO.EVENTS alwoys executes this token whenever the
appropriate event occurs. The caller to DO.EVENTS is also notified with
on event code.

EVENTS -- oddr
Returns the address of the varioble containing the mask for all events.

EUEHTS OFF
Disables all events. No events are em~bled when DO.EVENTS is called.

EUENTS ON
Enables 011 events.
NOTE: If 0 keystroke is waiting in the keystroke orroYJ the contents of
EVENTS is ended with the constant -KEYBOARD J effectively disabl1ng
keyboard events until the keyboard data is read. This allows for type
ohead.

EXECUTE token --

EXIT

Execute the dictionory entry whose token is on the stock.

Terminates execution of 0 deftnltion. When compiled into a colon
definition, causes the word to terminate at that point when later
executed. An unchecked error exists if used wlthin a DO .. LOOP
structure or a >R .. , R> pair.

EXPECT addr\max cnt --
Accepts up to mox cnt characters from the terminol and stores them at
oddr. Input terminates on receipt of either 0 carrioge return or max
cnt characters. No action is token for max cnt less than one. The user
vorioble CNT is set to the octual number of charoters received.

EXTENDED --64
Constant bit mask for extended text attribute.

MocFORTH Glossary Page 13 -72 August 28, 1984

EXTERNAL -- 2
Constant dr1ve number for the external dr1ve. Use wHh EJECT. DIR

FALSE -- 0
Boolean false constant.

FCB.LEN -- n
Constant containing the length of a f11e control block.

FENCE -- addr
Returns the address conta1n1ng a p01nter below wh1ch FORGETt1ng 1s
prevented. to FORGET below this p01nt, alter the value in fence or use:
NO.FENCE . Note: FENCE is set by the system to prevent FORGETt1ng of
interrupt handlers and vectored words so use caution when chang1ng as
value. See SET.FENCE FORGET NO. FENCE

FIELD n--
MacFORTH field deflning word. Creates a 16-bit constant which will
add itself to the word on the top of the stack when executed. Used in
the form:

n FIELD <field name>
to create a field definition <field name> which, when later executed
will add n to the value on the top of the stack.

FILE.ERROR.MSGS -- addr

String array containing file/os error messages.

FILE.TYPE file.type\flle-
Sets the f11e type for the f11e. For example:

"TEXT 1 FILE. TYPE
would set file number 1 to a text f11e type.
See "TEXT "DATA "4TH "PICT

FILL addr\cnt \char --
Fills memory at addr for cnt bytes with char. No action taken for cnt
less than one.

FIND -- [token] or [0]

Returns the token for the next word in the input streom. If thot word
cannot be found in the dictionary after a search of CONTEXT or TRUNK
vocabularies, returns a zero.

MacFORTH Glossary Page 13 -73 August 28, 1984

FIND.CONTROl potnt\wptr -- [contro1.handle\control part code] or [0)
G1ven a po1nt (1n local w1ndow coord1nates) and w1ndow pOinter, 1f the
polnt 1s wHh1n a control reglon for the w1ndow, returns the control
handle and part code of the control. If the polnt does not lie w1tin a
control region, a zero 1s returned. The avallable part codes are (refer
to their glossary entr1es for more information):

IN.BUTTON IN. CHECKBOX UP.BUTTON DOUN.BUTTON
PAGE.UP PAGE.DDUN IN. THUMB

As with other controls, this lnformat1on 1s more completely
documented in MacFORTH Level 2 Controls documentation.

FIND.WINDOW point -- wptr\window part code
Given a point (in global coordinates), returns the window pOinter and
part code for the window. The window part codes are one of the
fol1owing:

FIRST

Location
desktop
menu bar
system window

Wi ndow Part Code
o
1
2

content region of active wi ndow 3
drag region of active window 4
grow box of active window 5
close box of active window 6

-- addr
Returns the address of the first block buffer.

FLUSH
Writes all blocks that have been UPDATEd to mass storage. Identifies
all blocks as 7FFFFFFF (hex) to force any new block to be re-read from
mass storage.

FlUSH.EVENTS --
Flushes all pending events from the event queue.

FlUSH.FILE file#--
Writes the file control block of the specified fne out to disc.

FLUSH.VOl volume # --

Writes the volume information for the specified volume (use the fUe
number of any file on the desired volume) out to disc.

MacFORTH G1 ossary Page 13 -74 August 28, 1984

FMT .DA TES -days\f1ag -- addr\cnt
Formats a date string for output. The date formatted 1s in terms of
-days since 01/01/04. If the flag is true the month. day and year are
separated by slashed (U!,,). The formatted string is placed at addr for
cnt bytes.

FMT.TIMES addr--
Formats the Ume output string at addr in the following format:

HH:MM:SS XM

FOLLOWER -- addr
Mu1titosking stub used for compoUbllity with future products.

FORGET
Removes entries from the d1ctionary. Used in the form:

FORGET <name>
to delete all entries added after and including <name> from the
dictionary (in the CONTEXT vocabulary). Forgotten Menus or windows
are removed from their respective 11sts and purged from the display. If
<name> is not found in the CONTEXT or TRUNK vocabularies, an error
message is issued «name> is displayed followed by"?''). FORGETting is
term1nated at the FENCE. See SET.FENCE EMPTV NO.FENCE

FORTH
The name of the primary ocabulary. When executed, FORTH becomes
the CONTEXT ocabulary.

FRAME -- 0
QuickDraw shape mode attribute. Shape will be drawn in outl1ne mode.

FROM.CURRENT -- position mode
Constant used to indicate that file posltioning should be done relative
to the current file position.

FROM.END -- position mode
Constant used to indicate that f11e positioning should be done relative
to the end of the file.

MacFORTH Glossary Page 13 -75 August 28, 1984

FROM.HEAP size -- handle
Requests the memory manager to allocate a relocatable data structure
1n the heap of s1ze bytes. The handle returned 1s non-zero 1f successful
and contains the address of a pOinter to the allocated data structure.
The contents of the handle ch6nges dynam1cally wHh the heap. however
the address of the handle WIll never change. Refer to the Apple
Developer's documentat10n for further details. Reference: NewHandle.
See also: IN.HEAP. TO.HEAP. RESIZE.HANDLE

FROM.START -- position mode
Constant used to indicate that file positioning should be done relative
to the start of the f11e.

FRONT.WINDOW -- wptr
Returns wptr to currently active (or front) window.

FUNC>L n--
Defining word used to for function calls to the Macintosh toolbox.
Refer to the Advanced Topics Toolbox Interface section.

FUNC>'W n--
Defining word used to for function calls to the Macintosh toolbox.
Refer to the Advanced Topics Toolbox Interface section.

GET addr--
Multitasking stub for source compatibility with future products.

GET .CONTROL n -- n
Not supported in Level 1. Refer to MacFORTH level 2 Controls
documentat 1 on.

GET.CURSOR
Returns the address of the cursor in use (0 indicates default NW arrow).

GET .DA TES addr --
Formats the current date into a string in the format t1M/DD/VV and
places it at addr.

GET.EOF f11e- -- -bytes
Returns the number of bytes in the speCified file (its end of file
pointer).

MacFORTH Glossary Page 13 -76 August 28. 1984

GET.FllE.lNFO file---
Reads the f11e 1nformat1on from d1sc for the spec1f1ed fl1e. The
1nformat1on is read into the fl1es FC6.

GET.FllE.TYPE file# -- file type
Returns the fi 1 e type of the specl f1 ed fil e.

GET.lCON res id -- handle
Reods the ICON specified by res id from the resource file. The hond1e to
the ICON is returned. See PLOT.ICON .

GET.lTEM menu handle\1tem-\$ addr--
Returns text for the spec1f1ed menu 1tem at $ addr.

GET.LINE.HEIGHT -- line height
Returns the line height for the current window. See the Graphics
Results chapter.

GET.PICTURE res id -- handle
Reads the picture specified by res id from the resource file, returning
its handle.

GET.PIXEL (x\y -- flag)
Returns TRUE if the pixel at (x,y) in the current window is on. The
specified (x,y) position must be in QuickDraw coordinates.

GET.REC.LEN fi1e# -- rec len
Returns the fixed record length of the fixed fi Ie specified by fne#. If
the specified file is not a fixed f11e type, the rec len returned will be
an arbitrary value.

GET.SCRAP handle\res type -- io result
Fetches the contents of the desk scrap specified by res type to handle.
If the 10 result is zero, the contents were fetched successfully.

GET. TEXT FONT -- font #
Returns text font number for current window. See the Graphics Results
chapter.

GET. TEXTMODE -- mode
Returns text mode for current window. See the Graphics Results
chapter.

MacFORTH Glossary Page 13 -77 August 28, 1984

GET.TEXTSIZE -- text size
Returns current text size. See the Graphics Results chapter.

GET.TEXTSTYlE -- style bits
Returns text style bits for the current window. See the Graphics
Resul ts chapter.

GET.TIMES addr--
Stores the formatted time string (in the format HH:MM:SS XM) at addr.

GET.WINDOW -- wptr
Returns the window pOinter of the currently active window.

GET.XYOFFSET -- x\y
Returns the offset in QuickDraw coordinates to the origin (0 10) of the
current window.

GET.XYPIVOT -- angle
Returns the current XVPIVOT angle for the current window.

GET.XYSCAlE -- x scale\y scale
Returns the X and V scale factors for the current window.

GINIT
Initializes graphics parameters for the current window. The following
defaults are set:

XYPOS --> XYBIAS erased
188 188 XYSCALE
8 XYPIUOT

12 TEXTSIZE
15 LHtE. HEIGHT
11 PENSIZE BLACK PENPAT
8 8 XYOFFSET
3' 0 MOUE.TO

GLOBAL>LOCAL point (global) -- point (local)
Converts a point 1n global coordinates to a point in local coordinates
for the currently active window.

GRAY -- addr
Returns the address of the gray pat tern.

MacFORTH Glossary Page 13 -78 August 28, 1984

HANDLE.SIZE handle -- size
Returns the size of a relocatable data structure in the heap.
Reference APDEVDOC: GetHandleSize

HANDLER -- addr
Multitasking stub maintained for compatibllity with future products.

HBAR.BOUNDS wptr -- t\l\b\r
Returns rectangle for horizontal scroll box within window. Refer to
MacFORTH Level 2 Controls documentotion.

HERE -- addr

HEX

Returns the address pOinted to by the dictionary pOinter. It is the next
available memory location in the dictionary.

Sets the current numeric I/O base to hexadecimal.

HIDE.CURSOR --
Hides the cursor. Increments the cursor level, which is decremented by
SHOW.CURSOR. When the cursor level is 0, the cursor is visible. Use
INIT.CURSOR to reset the cursor level.
See INIT.CURSOR SHOW.CURSOR

HIDE.PEN
Hides the pen. Decrements the pen level in the current graphport, which
is incremented by SHOW.PEN.
See SHOW. PEN

HIDE.WINDOW wptr --
Hides the specified window. Clears the visible flag in the window
record, and the window disappears from the screen.

HllITE.CONTROL n1\n2--
Refer to MacFORTH Level 2 Controls Documentation.

HILITE.MENU n --
Highlight menu n . Where n is an inval1d menu id (like 0), no menus are
highlighted. Normally used to turn off menu highHght which is auto
matically done when a menu item is selected.

MacFORTH Glossary Page 13 - 79 August 28} 1984

HILITE.WINDOW flag\wptr--
Window primitive. Hillghts the specified window based on flag.

HLD -- addr
User lIariab1e which holds the address of the latest character of text
during numeric output conversion. "h-1-d"

HOLD char--
Inserts char into a pictured numeric output string. May only be used
between <- and -> . An unchecked error occurs when used outside <,

ond -> . See <- and -> .

HUSH
Immediately terminates any sound being produced by the sound driller.

-- n
Copies the loop index (maintained on the top of the return stack) onto
the data stack. Must be used only within a DO ... LOOP structure.
Unchecked error occurs if used outsi de a DO ... LOOP or DO ... +LOOP
structure. Warning: If you use R> or >R inside a 100p, the loop indices
may be altered.

II n --
Stores n at the address corresponding to the current value of the loop
index. "1 -store"

1+ n -- n+(1oop index)
Increments the top of the stack by the current loop index.

1+1 n\offset --
EQu1va1ent to I + !

I+@ offset -- n
Equivalent to I + @

1+\111 n\offset --
Equivalent to I + W!

I+\II@ offset -- n
Equivalent to I + W@

MacFORTH Glossary Page 13 - 80 August 281 1984

1- n -- n-(loop index)
Decrements the top of the stack by the current loop 1ndex.

I@ -- n
Fetches n from the address corresponding to the current value of the
loop index. "i-fetch"

IBEAM -- addr
Returns the oddress of the i-beam cursor arroyo

IC' char--
Stores char (using C!) at the address corresponding to the current value
of the loop 1ndex. "1-c-store"

IC@ -- char
Fetches char (using C~) from the address corresponding to the current
value of the loop index. "i-c-fetch"

10. nfa --
Prints the name field of the deflnition whose nfa is given. "i-d-dot"

IF flag --
Marks the beginning of the "true portion" of a condHional structure.
Used in a colon definition in the form:

IF ... THEN
or

IF ... ELSE ... THEN
If flag is true, the words following IF until the ELSE (if present) or
THEN (If ELSE is not present) are executed. If flag is false, control is
passed to the words following ELSE (if present) or THEN (if ELSE is not
present). The error message "DEFINITION INCOMPLETE !" indicates the IF
was not matched wi th a THEN. See ELSE and THEN.

IFENO
Marks the end of an executable conditional structure. Executed in the
form:

IFTRUE ... OTHERWISE ... IFEND or IFTRUE ... IFEND
Execution version of the compiled IF ... ELSE ... THEN structure. This
word is used as a marker for IFTRUE and OTHERWISE and if executed
does nothing. See IFTRUE and OTHERWISE. "if-end"

MacFORTH Glossary Page 13 - 61 August 26 J 1984

IFTRUE flag --
Marks the beg1nn1ng of the "true portion" of an executable cond1tional
structure. Executed ln the form:

IFTRUE ... OTHERWISE ... IFEND or IFTRUE ... IFEND
Execut10n version of the complled IF ... ELSE ... THEN structure. IFTRUE
performs the execution version of IF in the compiled version. If flag is
true, the words followlng IFTRUE up to the OTHERWISE (if present) or
IFEND (If OTHERWISE is not present) are executed. If flag 1s false,
control is passed to the words following OTHERWISE (if present) or
IFEND (1f OTHERWISE ls not present). The error message "MISSING
OTHERWISE OR IFEND" lmplles the lnput stream was exhausted before an
OTHERWISE or IFEND was encountered. See IFEND and OTHERWISE.

ILLEGALFILE ---
Displays the message "Illegal File"" and aborts the current task.

IMMEDIATE
Marks the most recently defined word as "immediate". The word will be
executed when encountered during compilation rather than compiled
into the dictionary.

I N.BUTTON -- n
Refer to MacFORTH Level 2 Controls DocumentaUon.

IN.CHECKBOX -- n
Refer to MacFORTH Level 2 Controls Documentation.

IN.CLOSE.BOX -- n
Constant event code returned by DO.EVENTS when a mouse down occurs
in the close box of the current1y active window.

IN.DESKTOP -- n
Constant event code returned by DO.EVENTS when a mouse down occurs
on the desktop.

I N.DRAG.BOX -- n
Constant event code returned by DO.EVENTS when a mouse down occurs
in the drag region of a window.

MacFORTH Glossary Page 13 - 82 August 28, 1984

IN.HEAP
Marks the latest word as conta1n1ng a heap handle 1n tts parameter
field. When the word is later forgotten. the handle w1ll be
automatically returned to the heap.

IN.LOWER.WINDOW -- n
Constant event code returned by DO.EVENTS when a mouse down occurs
in a non active window.

IN.MENUBAR -- n
Constant event.code returned by DO.EVENTS when a mouse down occurs
1n the menu bor.

IN.SIZE.BOX -- n
Constant event code returned by DO.EVENTS when a mouse down occurs
1n the size box of the currently active window.

IN.SVS.WINDOW -- n
Constant event code returned by DO.EVENTS when a mouse down event
occurs in a system (desk accessory) window.

IN.THUMB -- n
Refer to Level 2 Controls Documentation.

INCLUDE"
Used in the form:

IHCLUDE" <blocks file name>"
to include (load) the contents of the specified blocks file, by loading
the first block in the file.

INDEX first block#\last block# --
Displays the first line of each block over the range given. The first line
of each block should be a comment describing the contents of that
block.

INIT.CURSOR
Resets the cursor level to 0 and displays the default northwest arrow
cursor. See HIDE.CURSOR SHOW.CURSOR

INITIALS -- addr
User variable containing the user's initials.

MacFORTH Glossary Page 13 - 83 August 28, 1984

INPUT.NUMBER width -- [n\true] or [false]
Inputs a number of up to the w1dth spec1f1ed. If noth1ng 1s entered (the
operator Just pressed return), a false flag 1s returned. If a number is
entered, the number is returned under a true flag. Invalid characters
(non 0-9 or "-"), termlnate number convers10n when encountered.

INPUT.STRING addr\cnt--
Inputs a string to a string variable (or any address). After the string
has been input, the number of characters entered 1s stored at addr, the
strt ng at addr+ 1 on.

INTERNAL -- 1
Constont drive number for the lnteiiial drive.

INTERPRET
Executes 'INTERPRET. You may use an alternate text 1nterpreter (for
example, one that accepts floatlng p01nt numbers) by storing the token
of your new interpretation word into the pfa of INTERPRET. The actual
definition of INTERPRET is simply:

: INTERPRET 'INTERPRET

I NV All D.RECT addr --

Marks the rectangle at addr within the current window as not requiring
updates.

INVERT -- n
QuickDraw shape mode attribute shape will be drawn with all bits
inverted in the destination.

IO-RESUl T -- addr
Variable containing the I/O result code of a file operation.

ITALIC -- n
Constant bit mask for italic text attribute.

ITEMS -- addr

Returns the address of the 32-byte array used by MacFORTH to
manipulate 11em strings such as desk accessories.

ITEM.CHECK Hem\check.flag\menu td --
Sets or clears the check mark associated with the specified menu item.

MacFORTH Glossary Page 13 - 84 August 28, 1984

ITEM.ENABLE item\flog\menu id --
Enables or disables the specified menu Hem. Disabled Hems cannot be
selected.

ITEM.ICON item\icon\menu id --
Displays the selected icon with the spec1fied menu item.

ITEM.MARK item\mark\menu 1d--
Attaches a mark (1ike a check mark or apple) to associate with the
specified menu item.

ITEM.STYLE item\style char\menu id
Selects the text style for the specified menu item from style
character. Refer to the Menu chapter for a l1sting of style characters.

J -- n
Returns the index o-f the next outer finite loop construct. May used only
within a nested DO .. LOOP (or DO .. +LOOP). An unchecked error occurs
if used outst de a DO ... LOOP or DO ... +LOOP structure.

KEY -- char
Returns the ASCII value of the next available character from the
current input de vi ceo Wai ts until a key is pressed if no keystroke is
waiting in the type ahead buffer.
** Note ** Return (CR) and Backspace CBS) are ignored.
See ?KEVSTROKE

KEY. DOWN -- n
Constant event code returned by DO.EVENTS on a key down event.

KEV.STROKE -- addr
Array containing the event record for the most recent keystroke. A two
byte filler is added to the front of the record so that the first four
bytes may be used as a flag.
See EVENT.RECORD for the field layout

KEY.UP -- n
Constant event code returned by DO.EVENTS on a key up event

KILLCONTROLS wptr--
Refer to MacFORTH Level 2 Controls Documentation.

MacFORTH Glossary Page 13 - 85 August 28, 1984

KILLIO buf ptr--
Aborts any pend1ng 1/0 transact10n on dev1ce assoc1ated wah buf ptr.

L>FUNC>L n--
Defining word used to access Macintosh function calls. Refer to the
Advanced Topics chapter.

L> FUNC> W n --
Defining word used to access Mocintosh function calls. Refer to the_
Advonced T opt cs chopter.

LAST. TOKEN -- addr
Variable containing the negative token table offset to the most
recently allocated token. The least significant 16-bits of this variable
are actually the value of the latest token. LAST.TOKEN - 4 is a
variable containing the maximum negative token table offset.

LA TEST -- nf a
Returns the nf a of the most recently deti ned word in the CURRENT
vocabul ary.

LEAVE
Forces termination of a finite loop structure at the next LOOP or +LOOP.
Sets the loop limit equal to the current value of the index. The index
itself remains unchanged and execution proceeds normally until the
loop terminating word (LOOP or +LOOP) is encountered. An unchecked
error occurs if used outside of a DO ... LOOP or DO ... +LOOP with
unpredictable results.

LIMIT -- addr
Returns the address just above the highest memory avallable for a disc
buffer. This is usually the highest system memory.

LINE# -- addr
User variable containing the number of lines output. This variable is
incremented by CR and set to zero by PAGE Useful for page
formatting.

LINE.HEIGHT n-
Sets 11 ne het ght to n.

MacFORTH Glossary Page 13 - 86 August 28, 1984

LIST block- --
L1sts the contents of the g1ven block number. The value in OFFSET 1s
taken 1 nto account. See OFFSET .

LIT -- n
Places the complled number following 1t on the stack. Within a colon
definition, LIT is automatically complled before each literal number
encountered in the input stream. Later execution of LIT causes that
number to be placed on the stack. If LIT is compiled, the following
32-blt value (usually a compiled cfa) will be pushed on the data stack
at run time.

LITERAL n--
If compiling, compile n as a literal number, which when loter executed
tokes the number off of the data stack at compile time. For example, to
compile the number of the current block, you could execute:

[BlK @] lITERAL
This would return the block number that the definition wos compiled
into at run time.

LMOVE addr 1 \addr2\cnt --
Moves cnt 32-bi t words from address 1 to address2. See CMOVE

LMOVE> src addr\dest addr\cnt --
Moves cnt long words (32-blt, 4 byte) from src addr to dest addr. Starts
at the end of the array and proceeds towards low memory.
See CMOVE> "move-up"

LOAD block- --

Interprets the contents of block-. Begins interpretation of the block
number given by making it the input stream and preserving the current
contents of >IN and BlK. If interpretation is not terminated explicitly,
it will be terminated when the input stream is exhausted. Control then
returns to the input stream containing lOAD, determined by the input
stream locators >IN and BlK . The value in the user variable OFFSET is
added to the block- given. Error if the specified block cannot be
loaded from mass storage. See BLOCK I >IN , BlK , and OFFSET.

LOAD. SCRAP -- i 0 resul t
loads the clipboard file from the system disc into the desk scrap
memory.

MacFORTH Glossary Page 13 - 87 August 28, t 984

LOCAL>6LOBAL point (loco]) -- point (globo])
Converts p01nt 1n coord1nates local 1n the currently act1ve w1ndow to
global screen coord1nates.

LOCK.FILE file# --
Locks the specified f11e.

LOCK.FONT font# --
locks the specified font in memory. Will not be lost on heap
compression.

LOCK.HANDLE handle--
Marks the specified handle as locked. See Apple Developer's
documentation for further deta1ls. Reference: Hlock

LOOP
Termi nates a fi n1 te loop structure. Used in the form:

DO ... lOOP
Increments the DO .,. LOOP index by one, terminating the loop 1f the new
index is equal to or greater than the loop limit. The error message
"CONDITIONALS NOT PAIRED" indicates the LOOP was not preceded by a
matching DO . See DO and +lOOP .

LOWER.CASE -- addr
User variable containing a flag which, when true, causes FIND to
convert all interpreted strings to upper case.

LOWER.LEFT ---
Sets the graphics XVOFFSET to the lower left corner of the current
window.

L TGRA Y -- addr
Returns the address of the light gray pen pattern.

M* nt\n2 -- d
Returns the signed 54-bit product of the two signed 32-bit numbers
g1 ven. "m-star"

M/MOD d\n -- remainder\Quotient
Divides the 54-bit number d by the 32-bit number n, returning the
32-bit signed remainder and Quotient. "m-divide-mod"

MacFORTH Glossary Page 13 - 88 August 28) t 984

MAC. CON -- oddr
Array conta1n1ng console Clev1ce 1/0 vectors for Mac1ntosh console. See
CONSOLE

MAC.CONSOLE
Sets Macintosh console as default console device.
See MAC.CON CONSOLE

MAC.FILES
Sets the file read/write operotor for blocks to MAC.R/W.
See MAC.R/W, (R/W)

MAC.R/W addr\block-\flag --
Primitive used for blocks file I/O. Standard Macintosh block file
read/write primitive. If flag is non-zero, Block is read to address, if
flag 1s zero, block is written from address.

MAKE.REel xl \y 1 \x2\y2 -- xy\xy\ addr
Compresses XV coordinate pairs into a TLBR rectangle. The address of
the rectangle within the stack is left on the stack.

MAKE. TOKEN addr -- token
Converts the address on the stack to a 16-bi t token. I f the address is
greater than NEXT.PTR+32k, a new entry is made in the token table, and
the relative offset to the token table entry (below NEXT.PTR) is
returned. All tokens are 16-bit values, Token table offsets are negative
from NEXT.PTR. See NEXT.PTR, NEWTOKEN, TOKEN>ADDRESS.

MASK.HANDLE handle -- addr
Converts the contents of a handle to an address by ANDing off the
high-order byte (used for memory manager flags).

MA TCH $\$ cnt\addr\cnt -- [O\addr+cnt+ 1] or ltrue\$+$ cnt+ 1]
String comparison routine to find a match on the string at $ (its
address) for $ ent bytes over the range addr for ent bytes.

MAX nl\n2 -- n3
Leaves the maxi mum of n 1 and n2. "max"

MAX.X -- x
Returns the maximum x-axis value of the content region of the current
wi ndow in Qui ckDraw coordi nates.

MacFORTH Glossary Page 13 - 89 August 28, 1984

MAX. V -- y
Returns the maximum y-axis value of the content region of the current
window in Qu1ckDraw coordinates.

MENU.ENABLE flag\menu id --
If menu 1S non-zero, the specified menu is enabled, otherwise it 1S
disabled, and cannot be selected.

MENU.HANDLE menu id -- menu handle
Returns the menu handle for specified menu.

MENU.SELECTION: menu id--
Exits the current definition, placing the following address into the
menus array at menu ld*4. When the menu 1s later executed, control is
passed to the following address.

MENUS -- addr
Array containing the addresses to execute for each of the possible
act i ve menus.

MIN n1\n2 -- n3
Leaves the mi ni mum of n 1 and n2. "mi n"

MINIMUM.OBJECT size--
If the current Object size is less than the specified size, MacFORTH
attempts to resize the object image to the specified size.
See RESIZE.OBJECT

MINIMUM.VOCAB size--
If the current vocabulary size is less than the speclfied size, MacFORTH
attempts to resize the vocabulary image to the specHied Slze.
See RESIZE.VOCAB

MOD n1\n2 -- n3
Returns the remainder of n 1 divided by n2, with the same sign as n 1.
Error if division by zero (see * I). "mod"

MONTHS -- addr
T'able containing the number of days in each month.

MOUSE.BUTTON -- flag
Returns the state of the mouse button. True when down.

MacFORTH Glossary Page 13 - 90 August 28, 1984

MOUSE.DOWN -- n
Constant event code returned by DO.EVENTS if a mouse down event
occurs. See EVENT .RECORD for fi e 1 d 1 ayout.

MOUSE.DO\llN.RECORD -- addr
Array containing the event record for the most recent mouse down
event. A two byte fill er is added to the record so that the f1 rst four
bytes may be used as a flag. See EVENT.RECORD for field layout.

MOUSE.UP -- n
Constant event code returned by dO.events if a mouse up event occurs.
See EVENT.RECORD for field l6yout

MOUSE.UP.RECORD -- addr
Array containing the event record for the most recent mouse up event. a
two byte fill er has been added to the start of the record so that the
first 4 bytes may be used as a flag. See EVENT.RECORD for field layout.

MOUSE.\11 AS.. -- point
Returns the point location of where the mouse last went down (in
global coordinates). See GlMOUSE.DN GLOBAL>LOCAL

MOVE. TO x\y --
Moves the pen to the supplied (x,y) position.

MT n--
Defining word to call Macintosh toolbox rOQutines. Refer to the
Advance Topics chapter.

MT>W n--
Defining word to call Macintosh toolbox rooutlnes. Refer to the
Advance T opi cs chapter.

MUNGER handle\offset\addrl \cnt 1 \addr2\cnt2 -- result
Macintosh universal string operator. Refer to Inside /'/lJcintosh.

NEEDED (n --)

Aborts the current definition with the error message "Not Enough Stack
I terns!" if 1 ess than n i terns are on the stack.

MecFORTH Glossary Page 13 - 91 August 28 1 1984

NEG A TE n -- -n
Returns the two's complement of n. Error 1f n is the most negative
1nteger, system response 1s to return the same value given.

NETWORK.EVENT -- n
Constant event code returned by DO.EVENTS on a net work event.

NEW.BLOCKS.FILE -blocks\flle$ -- f11e-
Used 1 n the form:

<size> "<file name>" NEW.BLOCKS.FILE
to create a new blocks f11e with the speclfied number of blocks and file
name. !f the file is successfully created, 1t is opened and selected as
the current blocks fl1e and lts file number 1s returned on the stack.

NEW.FILE size\f11e$ -- file-
Used in the form:

<size> "<file name>" NEW.F IlE
to create a new data file with the specified length and file name. If
the file is successfully created, it is opened and its file number is
returned on the stack.

NEW.MENU position\title$\menu id --
Defines a new menu and links it into menu list. Menu id must be in the
range 0-31, titleS is the title for the menu, and position of 0 places
item on the left, -1 on the right. See the Menu chapter for examples.

NEW.STRING str addr -- handle
Allocates new handle from heap for a string and copies the string into
the handle. The handle of the string is returned on stack. Use IN.HEAP
to tag any word defined with this handle in order to deallocate handle
when word is forgotten.

NEW. TOKEN addr -- token
Converts addr on stack to an indirect token. An entry is made in the
token table, and the negaUve relative address to NEXT.PTR of the token
table entry is returned. Used by NEW.TOKEN to handle addresses)
NEXT.PTR+32k.

NEW.WINDOW
MacFORTH window defining word. Creates a named window record
wh1 ch wi 11 return 1 ts wptr when executed.

MacFORTH Glossary Page 13 - 92 August 28, 1984

NEXT.FeB -- f11e-
Returns the file number for ttle next available f11e control block for
assignment. Aborts wah the error message "No FCBs Avallab1e!" if all
FCBs are in use.

NEXT.PTR -- addr
Returns the address contained in the relocation base register A4.

NF A token -- nf a
Converts the token given to the nfa for the definition. "n-f-((

NO.CLIP wptr --
Disables cllpping within window bounds. Note that controls may only
be drawn or updated if CLlP>CONTENT is active.

NO. ECHO -- addr
User Variable containing a flag which is used by EXPECT. When NO.ECHO
is non-zero, EXPECT does not echo keystrokes to the console. QUIT
resets this flag to the default cleared. Uses include: passwords,and
fully intrepreted text fields (ie: left zero fill calculator type text
entry) NO.ECHO ON disabled keystroke echo; NO.ECHO OFF echoes
keystrokes in EXPECT.

NO. FENCE
Resets the fence to the top of the top of the current vocabulary.

NO.RETRY
Procedure which pops the recovery stack frame from the return stack.
Pushed onto the return stack at the bottom of the recovery frame.

NON.PURGABLE handle--
Marks a relocatable heap data structure (a "handle") as non-purgable.
See Apple Developer's documentation for further detalls: reference:
HNoPurge

NOT flag -- -flag
Reverse the boolean value of the flag given. See 0= .

NOT.VISIBLE -- n
Constant bit mask for not visible window attribute.

MacFORTH Glossary Page 13 - 93 August 31, 1 984

NOTPA TBIC -- n
Constant specHy1ng bH transfer mode. The current pattern is
complemented and used to clear correspond1ng bits 1n the destinat1on.

NOTPA TCOPY -- n
Constant specifying bit transfer mode. The current pattern is
complemented and copied directly into the destination.

NOTPATOR -- n
Constant specifying bit tnmsfer mode. The current pattern is
complemented and Or'ed into the destination.

NOTPA TXOR -- n
Constant specifying bH transfer mode. The current pattern is
complemented and Exclusive Or'ed into the destination.

NOTSRCBIC -- n
Constant specifying bit transfer mode. The source pattern is
complemented and used to clear corresponding bits in the destination.

NOTSRCCOPV -- n
Constont specifying bit tronsfer mode. The source pottern is
complemented and copied directly to destination.

NOTSRCOR -- n
Constant specifying bH transfer mode. The source pattern is
complemented and Or'ed with the destination.

NOTSRCXOR -- n
Constant specifying bit transfer mode. The source pattern is
complemented and exclusive Or'ed with destination.

NULLEVENT --n
Constant event code. No events posted.

NUMBER addr -- n
Attempts to convert the string at addr+ 1 to a number. The character
immediately following the numeric string must be an ASCII blank. If
successful, n is ret.urned, otherwise an error is generated indicating
that the string was not recognized as a number in the current base.

MacFORTH Glossary Page 13 - 94 August 28, 1984

OBJECT.FULL" ---
Aborts with the error message "Object Full!" 1f the object area 1s full.

OBJECT .HANDLE -- addr
User variable which contains the address of the handle pointing to the
base of the current object area. The object area is allocated from the
heap and is set up as locked and nonpurgable. This area may be resized
with the RESIZE.OBJECT operator as long as no other non-re10catable
memory all oeat i on has occured above thi s address.

OBJECT .ROOM -- # bytes
Returns number of bytes avoilable in the current object space.

OF n 1 \n2 -- [n 1] or []
Marks the beginning of a conditional branch within a case statement.
Used in the form:

CASE .. .
X OF ... ENDOF

ENDCASE
If n 1 is equal to n2, both arguments are dropped, and execution
continues through ENDOF and then skips just past the next ENDCASE . If
n 1 is not equal to n2, n2 is dropped and execution continues after
ENDOF.

OFF addr--
stores a 32-bH zero at addr (eg. DEBUG OFF). See ON

OFF. CONTROL n--
Refer to Level 2 Controls Documentation.

OFFSET -- addr
User variable containing the block offset value. Used by BLOCK to
determine the actual physical block number to be accessed. See BLOCK

ON addr--
Stores a 32-blt -1 at eddr. See OFF

ON.ACT I V A TE wptr --
Defines token to execute when window is activated. Used in the form:

<wptr> ON.ACT IVA TE <procedure>
W~len <procedure> is leter invoked (as a result of the window becoming
active) 8 flag is left on the staCk. If Ule flog is true, it is on octivote
event. if false, it is (;I deactivate event.

MecFORTH Glossary Page 13 - 95 August 28, 1984

ON.CONTROL n--
Refer to Level 2 Controls Documentation.

ON.ERROR
Establishes the recovery stack frame. Complles (ON.ERROR) to
establish this frame and branches over the recovery code past the
delimit1ng RESUME. Used in the form:

ON. ERROR <recovery code> RESUME
Refer to the Advanced Topics chapter for more information.

ON.UPDATE wptr --
Defines the token to be executed when an update event occurs for the
speCified window. Used in the form:

wptr ON.UPDATE xx
When an update event occurs, xx will be executed to perform any upd6te
action for the specified window.

OPEN 111 e- --
Opens the spec1fied f11e.

OPEN" -- file-
Used j n the form:

OPEN" <file name>"
to open the specified f11e. If the f11e is opened successful1y, the file
number it is assigned to is returned on the stack.

OPEN.DA $ 6ddr--
Opens the desk accessory whose name matches the supplied string.

OPEN.DEVICE name$\fcb--
Attempts to open the device named nameS using the specified fcb.

OPEN.PORT wptr --
Initializes the graphport at wptr.

OPEN.PRINTER ---
Opens the printer device driver.

OPEN.RSRC file---
Opens the resource fork of the specified file.

MacFORTH 610ssary Page 13 - 96 August 30, 1984

OPEN. SOUND ---
Opens the sound deYl ce dri yer.

OPTIONS.MENU ---
Installs the MacFORTH "Options" menu on the menu bar. See APPLE.MENU

OR n1\n2 -- n3
Leaye n3 os the bitwise inclusive-OR of n1 ond n2.

OS.TRAP n--
Defining word used to access the Macintosh toolbox. Refer to the
AdYanced T opi cs chapter.

OTHERWISE
Marks the beginning of the "else portion" of an executable conditional
structure. Used in the form

IFTRUE ... OTHERWISE ... IFEND
Equiyalent in control flow to ELSE in the compiled

IF ... ELSE ... THEN
construct. See IFTRUE IFEND IF ELSE THEN

OUTLINE -- 08
Constant bi t mask f or out 1 i ne text at tri buteo

OV AL xl \y 1 \x2\y2\lpattern addr)\mode --
Draws an oval within the rectangle (x 1,y 1 ,x2,y2) according to mode.
Pattern addr is need 11 the mode is PATTERN.

OVER n 1 \n2 -- n 1 \n2\n 1
Copy the second stack item over to the top of the stack.

PAD -- addr
Returns the address of a scratchpad area. Used to hold character
strings for intermediate processing, as wen as a scratchpad area for
other tasks. The minimum capacity of PAD is 64 characters.

PAGE
Outputs a form feed to the current display devices. This clears the
console display and ejects a page on any attached printers.

PAGE.DOWN -- n
Refer to MocFORTH Level 2 controls documentotion.

MacFORTH .Glossary Page 13 - 97 August 30, 1984

PAGE.UP -- n
Refer to MacFORTH level 2 controls documentat10n.

PAINT -- 1
QuickDraw shape mode attribute which specifies that the figure will be
drawn filled with the current pen pattern.

PATBIC -- n
Constant specifying bit transfer mode. The current pattern is used to
clear corresponding bits in the destination.

PATCOPY -- n
Constant specifying bit transfer mode. The current pattern is directly
copied lnto the dest1nation.

PATOR -- n
Constant specifying bit transfer mode. The currrent pattern is OR'ed
into the destination.

PA TTERN pattern -- pattern\4
QuickDraw shape mode attribute shape win be flled with supplied
pattern.

PATXOR -- n
Constant specifying bit transfer mode. Current pattern is exclusive
OR'ed into desh natt on.

PAUSE
Multitasking stub for source compatability with future products.

PEN.NORMAl
Resets the state of the pen in the current graphport:

pensize = t, 1
penmode = patcopy
penpat = black

PENMODE n--
Sets pen transfer mode. Allowable modes include:

PATCOPY PRTXOR PRTOR PRTBIC
NOTPATCOPY NOTPATXOR NOTPATOR NOTPATBIC

See individual modes for defini tion of function.

MacFORTH Glossary Page 13 - 98 August 28 J 1984

PENPAT addr --
Sets the pen pattern for current w1ndow.

PENSIZE width\height --
Sets pen size to width and height scaled by XVSCALE.

PF A token -- pf 13

Convert the token of a compiled definition to its pfa. "p-f-a"

PICK n1 -- n2
Return the stack item nJ items from the top {not including n 11, For
example, 2 PICK is functionally eQuivalent to OVER; 1 PICK 1s
functionally eQuivalent to DUP . An error cond1t1on exists for n t less
than 1, system response is to leave n 1 on the staCk.

PLAIN -- n
Constant for no text enhancements.

PLAY addr--
Passes addr+2 to the Macintosh sound generator. Addr contains 16-bit
length of the waveform description record at addr+2 on. System will
wait until the sound is completed.

PLOT.ICON rect\handle --
Plots icon at handle within supplied rectangle.

PNTR -- addr
User variable containing the address to which characters are
transf erred. "p-n-t -r"

POCKET -- addr
User area array used for parsing text strings from the input stream.
\.yORD uses th1s 256 byte area when extracting strings from the 1nput
stream.

POINT position mode\position\flle- --
Posltions the file pOinter to the specified location in the specified file
(it "points" into the f11e).

POINT> XV point -- x\y
Unpacks poi nt into x under y.

MacFORTH Glossary Page 13 - 99 August 28 I 1 984

POL YGON handl e --
Refer to Level 2 advanced graph1cs documentation.

POSITION.FIXED rec-\flle- -- rec len\f11e-
Primitive used for fixed length record file access. Positjons the file
pOinter at the start of the specified record in the specified f11e.

POST. EVENT event.code\event.msg --
Places event of type event.code into event Queue with message of
event.msg. BE CAREFUL not to post events for such things as activote or
update events as these are sure to crash the system. Normally posted
events should be limited to user designated range 12-15.

PREY -- addr
Variable which pOints to the disc buffer most recently referenced. The
UPDATE command marks this buffer as changed so it 1s later written to
dl sc when needed.

PRINT addr\cnt --
Sends the string of characters starting addr for cnt bytes to the
printer.

PRINT.BITS t\l\b\r\bit map --
Prints the pixels within the top, left, bottom, right rectangle of bitmap
to an Apple Imagewnter printer. bitmap is wptr+2.

PRINT.FCB -- addr
Returns the address of the printer device driver FCB.

PRINT.SCREEN ---
Transmits the contents of the screen to the Apple Imagewriter printer.

PRINT. WINDOW ---
Transmits the contents of the currently active w1ndow to the Apple
Imagewriter printer.

PRINTER -- addr
Returns address of printer resource variable. Used to turn on and off
duplicating screen output to the printer. PRINTER ON turns on printer
PRINTER OFF turns off printer.

MacFORTH Glossary Page 13 - 100 August 28, 1984

PRINTER.ONLY -- oddr
Returns the address of the dev1ce console table wh1ch directs output to
the pr1nter only.

PTINRECT pOint\rect addr -- flag
Returns a true flag if pOInt is within the specified rectangle.

PURGABLE handle --
Morks the specified handle os purgable by the memory manoger.

PURGE.MENUBAR addr --
Removes all menu entries between addr and HERE from the menu llst.

PURGE.WINDOWS oddr --
Closes and deletes all windows between addr and HERE.

PUSH.BUTTON n 1 \n2\n3\n4\n5 --
Refer to Level 2 controls documentation.

PUT .SCRAP addr\cnt \res type -- i 0 resul t
Writes cnt bytes from addr to the desk scrap and marks it with res
type.

QUERV
Accepts input of up to 80 characters from the keyboard. A carriage
return will stop input when encountered. The string is stored in the
terminal input buffer. Two nulls are appended to the input stream and
CNT contains the actual number of characters input. A space is output
when a CR is entered. WORD may be used to accept text from this
buffer as the input stream by setting >IN and BLK to zero. See TIB ,
WORD, >IN , and BLK .

QUIET -- oddr
User variable mode switch. When non zero. indicates the buzzer is not
to sound when a user-defined error condition is encountered (ie. using
ERROR"). QUIET ON enables Quiet mode. QUIET OFF disables Quiet
mode.

QUIT
Stops execution of the current task, clears the return stack and returns
control to the terminal. The data stack is preserved.

MacFORTH Glossary Page 13 - 101 August 28, 1984

R/W addr\block\flag --
Mass storage read/write primitive. Addr specifies the source or
destination block buffer, block is the number of the referenced block,
and nag determines the operation to take place (0 implles wrHe, 1
1mplles read). Execution 1s vectored through the user variable (R/W) to
the user speciffed read/wr1te handler.

RO -- addr
User variable containing the initiallocatlon of the return stack.
See RPf Ar-zero"

R> -- n
Pops the top Hem off of the return stack and pushes it onto the data
stack. MUST be matched with a >R within the same colon definition or
an unpredictable error will occur. See >R
"r-from"

R>DROP
Code routine which drops the top item from the return stack.
"r-from-drop"

R@ --n
Copies the top of the return stack to the data stack. Should only be used
between a >R ... R> sequence. "r-fetchH

RANDOM -- n
Returns a psuedo random number between 0 and 32767. See SEED

RANGE n\min\max -- n\bool
Performs a range cheCk for min <= n <= max. Bool is the boolean result
(true jf min <= n <= max).

RADIO.BUTTON n 1 \n2\n3\n4\n5 --
Refer to MacFORTH Leyel 2 controls documentatlon.

MacFORTH Glossary Page - 102 August 30, 1984

RANGE.OF n 1 \min\max -- [n 1] or []
Marks the beginn1ng of a cond1t10nal branch w1th1n a case statement.
Used 1n the form:

CASE ...
<m1 n> <max> RANGE.OF ... ENDOF

ENDCASE
If n 1 1s <= max and >= min, all arguments are DROPped and executlon
continues through ENDOF and then sk1ps past the next ENDCASE . If n 1 is
not with m1n and max, min and max are DROPped and execution
continues after ENDOF . See OF , ENDOF , CASE, and ENDCASE .

RDRA W dx\dy --
Relatiye draw. Draws from current XV position to XV posHion at x + dx,
Y + dy dots to the right of and below the pen ere modified according to
the pen size, shepe, paltern and mode.

READ.FIXED addr\rec#\file# --
Reads the fixed length record rec· from the specified file to addr.

READ.TEXT addr\cnt\flle# --
Reads the data record from the specified file at the current file
posHion to addr, for a maximum of cnt bytes. If the record 1s larger
than cnt bytes, the painter 1n the f11e 1s left pointing at the last byte
transferred. The next read (without adjusting the pOinter), will begin
wi th the rest of the record.

READ.VIRTUAl addr\cnt\flle addr\flle· --
Reads data from the specified file to addr for a maximum of cnt bytes
starting at the file addr given.

REALFONT? font·\s1ze -- flag
Returns true if font is an actual rather than synthesized font.

RECOVER
Unconditionally recovers at the most recently specified recovery stack
frame. Refer to the Advanced Topics chapter for more information.

RECOVER. HANDLE ptr -- handle
Returns handle for address if address corresponds with a yalid
relocatable data structure in the heap. Reference APPDEVDOC:
RecoverHandl e

MacFORTH Glossary Page 13 - 103 August 28 J 1984

RECT t\l\b\r --
Creates rectangle data structure wh1ch w1ll place H's address on the
stock when executed (11ke var1able). Used 1n the form:

<top> <left> <bottom> <right> RECT <rect name>
To create a rectangle data structure called <rect nome>.

RECT ANGLE x 1 \y 1 \x2\y2\[pat tern addr1\mode --
Draws a rectangle.

REG.SET -- addr
Returns the address of a reg1 ster snapshot array. Contol ns 0 snapshot
of the 68000 registers and the last 16 bytes of the parameter and
return stocks when the lost exception occurred. See (EXCPT) .

REGION
Refer to Level 2 advanced graphics documentation.

RELEASE addr --
Multitasking stub for source compatibility with future products.

REMOVE f11e# --
Removes the speclfied f11e from the list of f11e control blocks.

RENAME new f11e$\f11e# --
Renames the specified file with the new name.

REPEAT
Terminates a finite control structure. Used within a colon definition in
the form:

BEGIN ... WHILE ... REPEAT
Returns control to the word fo11owing the corresponding BEGIN. The
error message "CONDITIONALS NOT PAIRED" indicates the structure is
missing either 8 BEGIN or WHILE command.

RESIZE.HANDLE handle\size -- flog
Attempts to resize the specH1ed handle 1n the heap. Returns non-zero if
unsuccessful. Reference APDEVDOC: realloc.handle

RESIZE.OBJECT size--
Attempts to resize the current object space. An error message results
11 insufficient heap space exists or if the requested size is unable to
contain the current Object image. Use the ROOM function to determine
the current Object space allocaUon. See MINIMUM.OBJECT ROOM

MacFORTH Glossary Page 13 - 104 August 28, 1964

RES I ZE. VOCAB si ze --
A t tempts to rest ze the current vocabulary to the requested s1 ze. An
error message is generated if insufficient heap space 1s available or 1f
the vocabulary is currently larger than the requested size.
See MINIMUM.VOCAB ROOM

RESUME ---
Terminates a user spec1fied error handler. See ON.ERROR

RETRY -- addr
User variable pointing to the most recently spec1fied error recovery
frame. See ABORT" , RECOVER, ON.ABORT .

REWIND file' --
"Rewinds" the specified file's pOinter to the beginning of the file.

RMOVE dx\dy --
Relative move. Moves the current pen position to current position plus
the supplied offset.

ROll n 1 -- n2
Extracts the stack item n 1 from the top (not including n 1). The
remaining stack items are moved into the vacated position. For
example, 3 ROLL is equivalent to ROT 2 ROLL is equivalent to
SWAP. Error if n 1 is less than or equal to one with no action taken.

ROOM
Displays the amount of remaining memory avallable for use. The
message displayed is

xxxxxxxx Object Bytes Available
yyyyyyyy Current Vocabulary Bytes Available
zzzzzzzz Heap Bytes Available

Where xxxxxxxx represents current object area (pointed to by
OBJECT.HANDLE), yyyyyyyy represents the amount of space in the
CURRENT vocabulary (pointed to by CURRENT) and zzzzzzzz represents
the total amount of space remaining in the HEAP.

ROT n 1 \n2\n3 -- n2\n3\n 1
Rotates the top three stack items. The third \tern is brought to the top.
"rote"

MacFORTH Glossary Page 13 - 105 August 28, 1984

RPI
In111al1zes the return stack to polnt to the value contalned 1n the user
variable RO . "r-p-store"

RP@ -- addr
Returns the address of the top of the return staCk.

RRECT ANGLE xl \y 1 \x2\y2\ch\cw\[pattern}\mode --
Draws a rounded rectangle with ch by ch radius rounding.

RSRVMEM s1ze -- 10 result
Requests the memory manager to reserve s1 ze bytes 1 n the heap for an
upcoming, relatively static or locked data structure. See Apple's
Developer's documentation for further detalls. Reference: ResrvMem

RST.PRINTER
Resets the Apple Imagewriter printer by sending an esc c sequence.

so -- addr
User Variable containing the address of the top of the stack when it is
empty. "s-zero"

SA VE -BUFFERS ---
Writes all UPDATEd blocks to disc. The contents of the block buffers
remain unchanged and available. See BLOCK, UPDATE, and FLUSH.

SCALE n 1 \n2 -- n3
Arithmetlcally shifts n 1 according to the value of n2. If n2 is negative,
n 1 is shifted right, 1f n2 is positive, n 1 is shifted left. The absolute
value of n2 determines the actual shift. For example:

: HEU.2* (n -- n*2) 1 SCALE j

is equivalent to 2* . Error if n2 is greater than 31; system responds by
leaving n3 as zero.

SCALE> XV x\y -- x'\y'
Scales the x and y coordinates given as follows:

x' = x 188 * x-scale /
y' = y 188 * y-scale /

SCALE> Y n -- n * 100\y scale
Scales n to y-axis coordinates.

MacFORTH Glossary Page 13 - 106 August 28, 1984

SCAN.FROM -- addr
Computes the address wahln the 1nput stream of the next word. addr 1s
e1ther TIB + >IN or BLK + >IN 1f BLK is non- zero. See BLK , TIB , and >IN .

SCR -- addr
User variable containing the number of the block (or "screen") most
recently LISTed or EDITed. "s-c-r"

SCRAP .COUNTER -- n
Returns the number of times the desk scrap has been zeroed.

SCRAP .HANDLE -- addr
Returns the address containing the desk scrap handle.

SCRAP .LEN -- addr
Returns the address containing the 16-bH length of the desk scrap.

SCRATCH -- addr
User variable used to hold the most recently referenced option bit
switch. All switch references set the appropriate bit at this location.

SCREEN.BITS -- addr
Returns the address of the entire screen bitmap.

SCREEN.BOUNDS -- addr
Returns the address of the rectangle which contains the maximum
screen coordinates.

SCROLL scroll rect\dh\dv\update handle --
Refer to MacFORTH Level 2 Advanced Graphics documentation for more
information.

SCROLL LEFT IRIGHT -- n
Constant blt mask for the horizontal scroll bar window attribute.

SCROLL UP
Scrolls the current window up the number of pixels contained in the
current line height of the window. See GET.L1NE.HEIGHT L1NE.HEIGHT

SCROLL UP/DOWN -- n
Constant bit mask for the vertical scroll bar window attribute.

MacFORTH Glossary Page - 107 August 30 1 1 984

SEED -- oddr
Returns the address of the random number generator seed. The previous
seed is ·saved at SEED +2.

SELECT f11e"'--
Selects the specified f11e as the current blocks file.

SELECT.WINDOW wptr--

Selects the specified w1ndow as the currently active window.

SEND.BEHIND wptr\behind wptr--
Re-1inks the window specified by wptr behind the window specified by
behind wptr.

SET .CONTROL n 1 \n2 --

Refer to MacFORTH Level 2 Controls documentation.

SET .CONTROl.MAX n 1 \n2 --
Refer to MacFORTH Level 2 Controls documentation.

SET.CONTROl.MIN n 1 \n2 --
Refer to MacFORTH Level 2 Controls documentation.

SET.CONTROl.RANGE n1\n2\n3--
Refer to MacFORTH Level 2 Controls documentation.

SET .CURSOR cursor address --
Sets cursor to supplled address (0 indicates default NW arrow).
See INIT.CURSOR CURSOR

SET.EOF "'bytes\flle'" --
Sets the size of the specified f11e to "'bytes.

SET.FENCE
Sets the FENCE to point to the current dictionary offset within the
relocatable vocabulary structure. FENCE is stored at CURRENT @@ 8+ .
The current vocabulary offset pOinter is stored at CURRENT @@

SET.FILE.lNFO file"'--
Writes the information from the specified file's fcb to disc.

MacFORTH Glossary Page 13 - 108 August 28 I 1984

SET.ITEMS item\new item$\menu id --
Rep laces the current menu Hem str1 ng wHh suppl1 ed strl ng.

SET.ORIGIN X\V --
Establ ishes window origin in QuickDraw screen coordinates.

SET.REC.LEN ree len\file# --
Sets the fixed record length for the specified fixed file.

SET.STRING handle\$ addr --
Places strl ng into handl e. Pri or handl e contents are lost.
See NEW.5TRING

SET.WTITLE $ addr\wptr --
Sets the window title to supplied string. If the window is visible, its
title will be updated immediately.

SETUP.SERIAL #' stop bits\parity\#' data bits\baud rate\FCB addr-
Sets up the serial interface. Refer to the Printer/Serial Interface
chapter:

SHADOW -- 16
Constant bit mask for shadow text attribute.

SHOW starting block#\ending block#' --
Generate a listing of TRIADs between the starting and ending block
numbers g1 "len. See TR I AD .

SHOW.CONTROLS wptr--
Displays controls for window. Refer to MacFORTH Level 2 Controls
document at 1 on.

SHOW. CURSOR --
Decrements the cursor level. When the cursor level is 0, the cursor is
visible. Use INIT.CURSOR to reset cursor level to 0. See HIDE.CURSOR

SHOW.PEN
Increments the pen level in the current window. When the pen level is
0, drawing functions are displayed on the screen. This is used when
defining regions, or pictures where the pen is used to depict a region or
picture without actuolly drawing the outline on the screen.
See H IDE.PEN

MacFORTH Glossary Page 13 - 109 August 28, 1984

SHOW.WINDOW wptr--
Sets the vis1ble flag 1n the spec1fied window. Visible port1ons of the
w1ndow w1ll appear on the d1splay immediately.

SIGN n--
Insert the ASCII negative sign lnto the pictured numeric output string
if n is negatlve. *** Note: You must retain the s1gn of the original value
being converted and place it on the stack before executing SIGN. Error
if used outside of (# and #) pair wi th no system response. See (# and
#>.

SIN angle -- sine * 10000
Returns integer sine of angle * 10000. (4 digit precision).

SIZE.BOX -- n
Constant bit mask for size.box window attribute.

SIZE.WINDOW wptr--

Recalculates the specified window's content region, allocating space
for only desired scroll bars.

SMUDGE
Used during word definition to toggle the "smudge bit" in a definition's
name field. This prevents the incomplete definition from being found
during dictionary searches, until compilation is completed without
error.

SOUND.FeB -- addr
Returns the address of the sound dri ver FeB.

Procedure to 1n111a11ze the stack pOinter to SO. See SO . "s-p-store"

SP@ -- addr

Returns the address of the top of the stack just before SP@ was
executed. "s-p-fetch"

SPACE
outputs on ASCII space.

SPACES n--
outputs n spaces. No action is taken for n less than one.

MacFORTH Glossary Page 13 - 110 August 28, 1984

SQR T (n -- square root)
Computes a 16-b1 t square root from 32-b1 t sQuflre n.

SRCBIC -- 3
QuickDraw bit transfer mode. Bits set in the source pattern are cleared
in the destination.

SRCCOPV --4
QuickDrow pottern tnmsfer mode. All blts set in the source pottern ore
copi ed to the dest 1 noli on.

SRCOR --4
QuickDraw pattern transfer mode. Bits set in the source pattern are
set in the destination.

SRCXOR -- 3

QuickDraw blt transfer mode. Blts set in the source pattern are
inverted in the destination.

ST ACK.ERROR (flag --)
Aborts wlth .. Not Enough Stack I tems" error message if f1 og is true.

ST ART.FLAG -- n
Constant used by MacFORTH to determine if the system has been booted.

STATE -- addr
User variable contain1ng the compilation state. A non-zero value
indicates compilation mode, zero indicates execution.

STATUS -- addr
Returns the base address of the user area.

STILl.DOWN -- flag
Returns true whOe the mouse is still down. If the mouse comes up and
goes down between samples, returns false.

STRINGWIDTH addr -- n
Returns the width, in pixels of the string ot oddr.

SWAP n 1 \n2 -- n2\n 1
Swaps the top two stack items.

MacFORTH Glossary Page 13 - 111 August 28, 1 984

SYS.F IlE -- addr
FeB address used for system related fl1e funct10ns.

SYS.WINDOW -- wptr
Default lnteracUve MacFORTH "'lindow.

SYSBEEP durat 1 on --
Sounds the buzzer for the number of specified 1/60 sec ticks.

SYSPARMS -- addr
Returns the low memory address of data copi ed from battery backed-up
memory.

SYSTEM.EDIT n -- flag
Allows the desk manager to respond to editing functions pressed while
a desk accessory is active. If flag is true, the event was handled by the
desk manager, and no user action is required. Refer to the supplied
Macforth editor source code for examples.

T AB.STOPS -- addr
Variable containing the number of spaces between tab stops.

TEACTIVATE
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TECAlTEXT
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TECllCK
Refer to MacFORTH MacFORTH Level 2 TE interface documentat1on.

TECOPY
Refer to MacFORTH MacFORTH Level 2 TE interface documentaUon.

TECUT
Refer to MacFORTH MacFORTH Level 2 TE interface documentaUon.

TEDEACTI VA TE
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TEDElETE
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

MacFORTH Glossary Page 13 - 112 August 28, 1984

TEDISPOSE
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TEIDLE
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TEINSERT
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TEKEY
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TENEW
Refer to MacFORTH Level 2 TE interface documentation.

TEPASTE
Refer to MacFORTH Level 2 TE interface documentation.

TERECORD
Refer to MacFORTH Level 2 TE interface documentation.

TESCROLL
Refer to MecFORTH Level 2 TE interface documentation.

TESET.JUST
Refer to MacFORTH Level 2 TE interface documentation.

TESET .SELECT
Refer to MacFORTH Level 2 TE interface documentation.

TESET.TEXT
Refer to MocFORTH Level 2 TE interfoce documentation.

TEST .CONTROL
Refer to MacFORTH Level 2 TE interface documentation.

TEUPDATE
Refer to MacFORTH Level 2 TE interface documentation.

TEXT. BOX
Refer to MacFORTH Level 2 TE interface documentation.

MacFORTH Glossary Page 13 - 113 August 28, 1984

TEXT.CLICK
Refer to MacFORTH Level 2 TE interface documentat10n.

TEXT.FIELD
Refer to MacFORTH Level 2 TE interface documentation.

TEXT .RECORD -- n
Constant bit mask for window attribute which indicates that a text
record is pOinted to by the refcon field of the window. Refer to
MacFORTH Level 2 TE documentat ion.

TEXTFONT n --
Selects the current text font. Font 0 is reserved for the system, font 1
is the default for user appl1catlons. MacFORTH uses font 4 (fixed space
Monaco).

TEXTMOOE text mode --
Sets the current text bit transfer mode. Valid modes include:

SRCCOPY SRCOR SRCXOR SRCBIC
HOTSRCCOPY HOTSRCOR HOTSRCXOR NOTSRCBIC

TEXTSIZE size --
Sets the text size for current window. MacFORTH windows maintain
LlNE.HEIGHT for scrolling and general text output. If you set textsize
greater than LlNE.HEIGHT you will overwrite data on the prior line.

TEXTSTYLE n--
Selects the text style. Each of the first 7 bits enable a particular text
enhancement:

Bit#' Hex Value
ff 1
1 2
2 4
3
4
5
6

8
16
32
64

MacFORTH Glossary

Text Mode (t1acFORTH Constantl
BOLD
ITALIC
UNDERLINE
OUTLINE
SHADOW
CONDEHSED
EXTENDED

Page 13 - 114 August 28, 1984

THEN
Marks the eod of a conditional structure. Used within a colon definition
in the form:

IF ... ELSE ... THEN or IF ... THEN
The word following THEN is executed after the code for IF or ELSE (if
present). The error message "CONDITIONALS NOT PAIRED" indicates
there was no precedl ng IF.

THIS.CONTROL -- addr
Refer to MacFORTH Level 2 Controls documentation.

TH I S.P ART -- addr

Refer to MacFORTH Level 2 Controls documentation.

THRU starting block#\ending block* --

Loads screens between and including the starting and ending block
numbers gl ven.

TIB -- addr
User variable containing the address of the terminal input buffer.

TICKCOUNT -- tick count
Returns real time clock ticks (in 60ths of a second).

TO.HEAP handle --
Returns the specified handle to the heap manager.

TOGGLE addr\mask --

Complements the 8-bit value tn addr by the bit mask given.

TOGGLE.CONTROL -- n
Refer to MacfORTH Level 2 Controls docurnentation.

TOKEN.FOR -- token
Inputs the next word in the input stream and converts it to a token. If
no token is found, 0 is returned instead.

TOKEN> ADDR token -- addr
Converts a relocatable token to a physical address.

MacFORTH Glossary Page 13 - 115 August 28, 1984

TONE duratlon\volume\freQuency * 10 --
Outputs a tone via the sound generator. duration (0-255) is 1/60ths of
a second. volume (0-255) is a relative volume. and freQuecy is
hertz* 10.

TRACE -- addr
Compiler Mode switch. When enabled, the compiler emplaces the token
(TRACE) into the dictionary prior to every token that would otherwise
normally be compiled. At run-Ume, (TRACE) tests the state of DEBUG,
and if true, displays the stack contents with .5 and the name of the
following token. (See (TRACE), DEBUG, and ?TRACE)
TRACE ON enables trace mode. TRACE OFF disables trace mode.

TRACE. TOKEN -- addr
Returns the address of the variable containing the token to be compiled
when the trace swi tch is on. See TRACE

TRACK.CONTROl n 1 \n2 -- flag
Refer to MacFORTH Level 2 Controls documentation.

TRIAD block# --
Displays the triad containing block#. The three blocks include block#,
begi nni ng wi th a block number evenly di vi ded by three. Output is
suitable for source text records and can be used to replace only updated
blocks in the master listing.

TRUE ---1

Constant for boolean true value.

TRUNK -- addr

TRY

User variable containing the task unique address of the task's FORTH
vocabul ary.

Pushes t.he recovery stack frame into the return stack. See RECOVER,
ABORT" .

TYPE addr\cnt --
outputs a string. Transmits cnt characters beginning at addr to the
current output device. No action is taken for cnt less than 1.

UNOERll NE -- 04
Constant bit mask for underline text attribute.

MacFORTH G10ssary Page 13 - 116 August 28, 1984

UNIQUE.MSG -- oddr
User Variable containing flag wh1ch when true, causes CREATE to issue
the warning message "ISN'T UNIQUE" when a newly created word name
field is not unique within CONTEXT and TRUNK,

UNLOAD.SCRAP -- io result

Writes the desk scrap to disc under the file name "CLIPBOARD",

UNLOCK.FILE f11e#-

Unlocks the specifield file,

UNLOCK.HANDLE handle--
Marks the spec1fied handle as unlocked, See Apple Developer's
documentation for furtherdetai1s, Reference: HUnlock

UNTIL flag --

Terminates a finite control structure. Within a colon definition, marks
the end of a BEGIN ... UNTIL loop which will terminate based on the
value of flag. If flag 1S true, the loop is terminated and control is
passed to the word following UNTIL. If flag is false, the loop continues
and control is passed back to the word following BEGIN, BEGIN .. , UNTIL
loops may be nested freely as long as each BEGIN is paired with an
UNTIL or WHILE .. ,REPEAT , The error message "CONDITIONALS NOT
PAIRED !" may indicate an UNTIL is not paired with a BEGIN, See BEGIN J

WHILE, and REPEAT.

UP.BUTTON -- n
Refer to MacFORTH MacFORTH Level 2 Controls documentation.

UPDATE
Mark the most recently referenced block buffer as modified. The block
will subsequently be written to mass storage when its buffer is needed
for ston~ge of 0 different block, or when SAVE-BUFFERS or FLUSH is
executed.

UPDA TE.EVENT -- n
Constant event code returned by DO.EVENTS on (} update event.

UPPER addr\cnt --

Converts lowercase characters to uppercase. Any lowercase ASCII
alpha characters in the string at addr for cnt bytes are converted to
uppercase ASCII alpha characters.

MacFORTH Glossary Page 13 - 117 August 28, 1984

UPPER.LEFT (--)
Sets the graphics XVOFFSET to the upper left corner of the current
window.

USE -- addr
Variable containing the address of the block buffer to use next. This is
the least recently written block buffer.

USE"
Used in the following format:

USE" <blocks file nome>"
to assign, open and select the specified blocks file.

USER n--
User vari ab Ie deti ni ng word. Used in the form:

n USER <name>
to create a user variable named <name>. n is the cell offset within the
user area where the value of <name> is stored. Execution of <name>
leaves its absolute user area storage address.

VARIABLE
Defining word to create variable definitions. Used in the form:

VARIABLE <name>
to create a dictionary entry for <name> and allot four bytes for storage
in the parameter field. When <name> is later executed, it will place the
pf a of <name> on the stack.

VBAR.BOUNOS wptr -- t\l\b\r
Refer to MacFORTH Level 2 Controls documentation.

VECTOR (xl \y 1 \x2\y2 --)
Draws a llne from (x 1 ,yO to (x2,y2).

VERSION
Types the current software version number and CSI copyright notlce.
Used in TR I AD and COLD.

VERSION# -- n
Constant containing the specific version of the software release.

VIRTUAL -- position mode
Constant for the virtual file positioning mode. See POINT

MacFORTH Glossary Page 13 - 118 August 28, 1984

VOCABULARY slze--
A defining word to create a new vocabulary. Used in the form:

(Si ze> VOCABULARY <name>
to create (in the CURRENT vocabulary) a dictionary entry for <name>,
wFlich specifies a new ordered list of word definitions. SUbsequent
execution of <name> will make it the CONTEXT vocabulary. When <name>
becomes the CURRENT vocabulary (see DEFINITIONS). new definitions
will be created in that list (vocabUlary). size represents the desired
initial size of the vocabulary.

WI w\addr--
Stores the 16-blt value w at addr. The error message "Address Error
Trap at addr" indicates addr is odd. See >W!<
"w-store"

'11* wl\w2 -- n3
Returns the signed 32-bit product of the signed 16-blt numbers w 1 find
w2."w times"

'W, w--
Emplaces w into the dictionary. Stores the 16-bit value in the
di ct i onary at the current di ct i onary poi nter value and increments the
dictionary pOinter by 2.

W.A TTRIBUTES attributes\wptr--
Sets window attributes before window is displayed. Valid attributes
include:

CLOSE. BOX
SCROLL.UP/DOWH

HOT.UISIBLE
SCROLL.LEFT/RIGHT

'W.BEHIND front wptr\bflck wptr--

SIZE.BOX
TEXT.RECORD

Sets window order before window is displayed. The back wptr will be
placed behind front wptr when the window is added to the window list.

'VI.BOUNDS t\l\b\r\wptr --
Determines the position and size of a window before it is added to the
Vv'indovo/ list and displayed.

'W.LINKAGE -- addr
Variable containg the latest pOinter to a linked list of windows in
chronological order. This list is traversed during FORGET to close any
window which is about to be forgotten.

MecFORTH Glossary Page 13 - 119 August 28 J 1984

W. TITLE $addr\ wptr --
Sets title for window before window is displayed.

W.TVPE w.type\wptr--
Sets window type for window before it is displayed.

Win 1 \n2 -- Quotient
Divides 32-blt n 1 by 16-blt n2 leaving a 16-blt Quotient. This routine
uses the 68000 signed divide hardware instruction for speed.
"w-divide"

W 1M 00 n 1 \n2 -- rem8inder\Quotient
Divides the 32-bit signed number n 1 by the 16-bit signed number n2,
leaving the 16-bH remainder and Quotient. This routine directly
ut 11 i zes the 66000 si gned di vi de hardware instruction. "w-di vi de-mod"

W> FUNe> L n --
Defining word for creating Macintosh function calls. Refer to the
Advanced Topics chapter.

W>MT n--
Defining word for creating Macintosh function colls. Refer to the
Advanced Topics chapter.

W@ addr -- w
Return the 16-bit value at addr. The error message "Address Error Trap
at addf" i ndi cates addr is odd. See> W@< "w-f etch"

WAIT n--
Stub used to maintian source compatability with later products.

WAIT.MOUSE.UP -- flag
Waits for mouse button to come up. Returns false 1f button is alread!d
up.

WATCH -- addr

Returns the address of the watch cursor array.

weONST ANT n --
16-bit constant defining word. When later executed, pushes signed
16-bit value on the stack.

MacFORTH Glossary Page 13 - 120 August 28 J 1984

WHILE flag ~-
Marks the beginning of the "true portion" of 8 finite loop construct.
Used in a colon definition 1n the form:

BEGIN ... WHILE ... REPEAT
On a true flag, continue execution through to REPEAT , which then
returns control back to the word following the BEGIN. On a false flag,
skip to the word following the REPEAT, exiting the control structure.
The error message CONDITIONALS NOT PAIRED ind1cates the WHILE
was not nested within a BEGIN .. REPEAT control structure within the
current definition.

\IIHITE -- addr
Returns the address of the whi te pat tern.

WINDOW wptr --
Directs output to the specified window.

\IILIT -- n
Pushes the next. 16 bit value in the interpretation stream into the stack
and advances the interpreter pOinter over it.

WMOO n\w -- remainder
Divides 32-bit n by 16-bH w leaving the 16-bit remainder of the
division. This routine uses the 68000 signed divide hardware
instruction for speed. "w-mod"

WORD chor -- oddr
Parses a string from the input stream. Parse characters from the input
stream until the non-zero delimiting character (char) is encountered,
or the input stream is exhausted, ignoring leading delimiters. The
characters are stored as a packed string with the character count in
the first position. The actual delimiter encountered (char or null) is
stored at the end of the text string, but not included in the count.

If the input stream was exhousted as WORD was executed, a zero length
string will result. The address left on the stack pOints to the beginning
of the string (the count byte), the text is placed within the user area at
POCKET. An error condltion exists if the string length exceeds 255,
leaving only the last 255 characters available. An unchecked error
occurs if the char given is O.

MacFORTH Glossary Page 13 - 121 August 28, 1984

WORDS
L1st the CONTEXT vocabulary start1ng w1trl the most recent definition.
(Some old-time FORTH programmers may call this function "VLlST".)

WRITE.FIXED addr\rec#\fi le# --
Writes the data at addr to the fixed record rec# in the specified file.

WRITE.TEXT addr\cnt\flle# --
Writes the data at addr for cnt bytes (remember to append a carriage
return to text records) into the specified file at the current file
pOinter location.

WRITE.VIRTUAL addr\cnt\flle addr\file# --
Writes the data at addre for cnt bytes into the specified fne starting
at the file addr given.

XEXPECT addr\cnt --
Primitive Mac console string input operator (see EXPECT). Flashes the
cursor, allows Backspaces to edit the input string and terminates on
Return, setting CNT to the actual number of characters received.

XLA TE x\y -~ x'\y'
Rotates, scales and translates the point (x,y) according to the current
window XVPIVOT (angle), XVSCALE, and XVOFFSET . If the cartesian flag
is true, the V coordinate is negated. (x',y') are expressed in QuickDraw
coordinates relative to the current window.

XOR n1\n2 -- n3
Leave the bitwise exclusive-or of n 1 and n2. "x-or"

XV><TLBR xl \y 1 \x2\y2 -- top\left \bottom\right
« or»

top\left\bottom\right -- xl \y 1 \x2\y2
Converts two xy point pairs to tlbr form, or vice-versa.

XV>POINT x\y -- point
Packs x under y into 32 bit point. V resides in high order word, x in low
order.

XYAXIS
Displays a 100 x 100 cross hair at the current screen origin. Positive x
and yare marked with '+', negatlve with '-'.

MacFORTH Glossary Page 13 - 122 August 28, 1984

XVOFFSET x\y --
Sets the offset to the center of the coord1nate system to x dots from
the right and y dots from the top of the current w1ndow.

XVPIVOT angle--
Causes all subsequent line and dot coordinates withln the current
window to be pivoted to angle degrees. Shapes are not pivoted.

XV SCALE x scale\y scale --
Couses 011 pOints in the current window to be scoled by the specified x
and y scale. Full scale is 100 100.

ZERO.SCRAP --;0 result

[

Zeroes the desk scrap and increments SCRAP .COUNTER .

Begin execution mode. The text from the input stream is subsequently
executed. See 1 . "left-bracket"

[COMPILE]

]

{

Forces compilation of on immediate word. Used in a colon- definition
in the form:

[COMPILE] <name>
where <name> is on immediate word. This allows compilation of a
compll1ng word wh,en It would otherwise be executed.
"bracket -compi 1 e-bracket"

Begin compilation mode. The text from the input stream 1S
subsequently complled. See ["right bracket"

Accepts and ignores comments from the input stream until the next
delimiting right brace. Very similar in usage to (, but cen be used
when multiple occurrences of parentheses are des1red 1n a comment.
For example:

{ ~~xx (xxx) xxxx (xxx) xxxx }
is a valid comment. "brace"

MacFORTH Glossary Page 13 - 123 August 28 J 1 984

MecFORTH Glossery Pege 13 - 124 August 281 1984

MecFORTH Index

Accessi ng fi 1 es
Acknowledgements
Activating a window
Allocation

of f11e space
of memory

Alternete volumes (disks)
Appllcet10ns
Arcs
Arreys
ASC II output
Ass1gn1ng Files
Auto-loed

Background pat tern
Backups
Beeper
Bitmaps .. printing
Blanks, filling with
Blocks fil es

accessi ng source code
allocation
buffers
creating
including
loading
structure

-A-

Chepter 9
1-2
5-5,8-5

9-7.12
5-24,11-10
9-5, 9-14.15
1-7
6-24
5-21
5-12
9-4
1-3

-8-

6-20
1-2,3-13
11-20
10-3
3-14
9-6,9-11
9-12
9-12
3-4
9-12
9-13
9-13
9-13

Boot i ng MacFORTH
Buffers

see loading t'lacFORTH

block
record

Index

3-4
9-7,9, 10

Pege 1- 1 August 31, 1984

Cartesian coordinates
Case statement
Catalog of files see Directory
Character fonts
Closing a window
Comments
Compilation
Computer-aided course
Coordinate range
Coordinate system
COPYIng blocks
Creating

files
menus
windows

Current vocabulary
Cursor

modifying
hiding
showing

Cutting and Pasting

Data files
allocating space in
fixed record
reading/writing

Debugging
Deletion of

fnes
menus
windows

Demos, editing
Dictionary
Directory
Disks

accessing other
ejecting

Double clicks

Index

-(-

6-4
G01ng FORTH

6-14
8-5
Going FORTH
Going FORTH
2-2
6-7
6-4
3-13

9-6, 9-7
7-3
4-3/8-2
5-24

5-10/11-15
5-11
5-11
3-14/11-16

-0-

9-6
9-9
9-10
9-7 .. 9
11-3

9-14
7-9
5-7
1-3,6-29
5-24
9-5

9-5,9-15
9-14
8-12

Page I - 2 August 31 J 1984

Editor
entering
exiting
menu
scrolling
editing a file

Ejecting a disc
Erasing bloCKS
Error conditions, default
Errors

frequency
messages
compHer
interpreter
processor except tons
recovery
summary
whlle load1ng

Error handling
overview

Event
actions, default
constants
during text lID
11st
masklng
precedence

External di sks

File control blocks
FHe pOinters
Files

8ss1 gnments
bloCKS f11es
closing f11es
data files
errors
examples

Index

-E-

3-4
3-4
3-8
3-7
3-2
9-13
3-14
12-2

j-11
9-3,20;12-4
12-2
12-2
12-3
11-6
12-4
3-11

12-2

8-14
8-14
8-17
8-15
8-15
8-16
9-5

-F-

9-15
9-15

3-3, 9-4
9-12
9-14
9-6
9-3,20
9-18

Page 1-3 August 31, 1984

-F- (cont)

Files (cont)
MacFORTH interface 9-3
I/O result codes 9-3, 9-20
maxi mum size 9-17
name length 9-17
numbers 9-4
opening fUes 9-4
pOinter position modes 9-16
program files See Files, block
readl ng/ writ 1 ng data 9-7 ,9
record buffers 9-7
text 9-9
types 9-6
virtual 9-11
volumes 9-4.13

Fixed-length record files 9-6,8
buffer size 9-9,10

Fonts, character 6-14
Forget t i ng wi ndows 5-6
Frequency tabie 5-20

-6-

Glossary contents 1-12
Going FORTH 2-2

stOPPl ng and restarting 2-3
Graphics initialization 6-4
Graphics features 6-2
Graphi cs output 10-4

-H-

Hotline 1-6

Index Page 1-4 August 31, 1984

IF statement
Including a File
Input

from keyboard
number
string

Insert i on poi nt
I nterrupt. user
Installing MacFORTH
I/O

events
error resul t codes

Item execution

Keystrokes

Levels 1,2,3
Licensing information
Line drawi ng
Line height
List i ng programs
Loading blocks
Loading demos
Loading MacFORTH
Loops
Lower case

Index

-1-

Going FORTH
9-13

5-14
5-15
5-16
3-9
11-3
1-1

8-17
9-3,20
7-6

-J-

-K-

5-14

-L-

i-8
1-1
6-8,6-24
6-18
3-12
3-11
1-3
1-2
Going FORTH
11-5

Page 1-5 August 31, 1984

-M-

MacFORTH envl ronment 1-9
Matri ces see Arrays
Memory allocation 11-10
Memory aval1ab 1 e 5-24,25
Memory maps 11- t t
Menu items

attributes 7-4
item numbers 7-6
mOdifying characteristics 7-6
modi f yl ng execut j on 7-7
number posslole 7-2
separating 7-5

Menus
creation 7-3
deletion 7-9
disab1e/enab1e 7-9
display 7-5
example 7-2, 7-10
execution 7-7
highllghtlng 7-7
ID 7-3
insertion point 7-3
11st 7-3
number possible 7-2
order 7-3
Ht1e 7-3

Mount1ng a Vo1ume 9-14
Mouse

but ton state 6-10
c1ick in rectangle 6-9
coordi nates 6-8
double clicks 6-12
dynam1c operations 8-7
event related operations 8-11
interface 8-7
position 4-5,6-7
record 6-11
tracking 4-5, 6-7,9,10

Multiple windows 5-18

Index Page 1-6 August 31, 1964

Notepad
Number input

Object space
Opening a file
Operat ions on shapes
Options
Origin
Output

text
to other windows
graphics
window

Ovals

PAD
Pen characteristics
Pen modes
Philosophy of MacFORTH
Point, definition
Point conversion
Pointers to files
Printer output
Printers
Printing a window
Processor exceptions

Qui ckDraw system

Index

-N-

3-14
5-15

-0-

5-24
9-4
6-20
11-4,5,6,7
6-19

5-12,10-2
5-11,6-28
10-4
10-3
6-22

-p-

5-16
6-9
6-t3
1-6,1-10
8-8
6-27
9-13
10-2
10-4
4-7,10-3
12-4

-0-

6-2,6-4

Page 1-7 August 3 t. 1984

-R-

Re-titling a window 4-7,5-8
Rectangles 6-21
Relative graphics 6-24
Release dates i-2
Recoven n9 text (REVERT) 3-8
Resetting a f11e, See Rewinding text files
Rewinding text files 9-9
Room in memory 5-24
Rotating coordinates 6-26

ScaHng coordinates
Scrapbook
Scrolling
Selecting a FHe
Serial1nterface
Serial primatiyes
Shapes, Qui ckdraw
Sound
Special characters
Special strings
Subscripts
Storage map
Strings
System di sk contents

Terminal emulator
Text

characteri st 1 cs
liD events
mode
output
size
style

Index

-s-

6-25
3-14
3-7
3-3
10-5
10-6
6-20
5-19.11-19
7-4
7-5
5-22
11-11
5-13,5-16
1-6

-T-

10-9

6-14
8-17
6-17
5-12,6-14,10-2
6-18
6-16

Page I - 8 August 31, 1984

Text files
buffer s1ze
rewinding
reading
writing

Timer
Toolbox I nterf ace
Trig functions
TRACE
Tracking the mouse

Virtual files
accessing data

Vocabulary size
Vocabulary structure (FORTH)

WHILE statement
Wi ndow /Screen output
Windows

activate flags
assi gni ng a program
attributes
bounds
changing a title
closing a window
creating
event constants
event handh ng
example

Index

- T - (cont)

9-7
9-9
9-9
9-9
9-10
11-2
11-17
6-27
11-4
4-5

-u-

-v-
9-11
9-11
5-24
11-12, 11-14

-'y{-

Going FORTH
10-3

8-5
5-17,8-5
5-7,8-4
5-9,8-3
8-3
5-8,8-5
4-3,5-4,8-2
8-6,15
8-6
4-3,8-12

Page 1-9 August 31 , 1984

Windows (continued)
default values
defining
forgetting
functlon template
hi dl n9 a wi ndow
program
resizing
show
sizing
title
tracking the mouse
types

Work files
Wrap around
Wri t i ng records

Xy-axis

Index

-w- (continued)

8-2
8-2
5-7
5-19
5-9
4-6,5-19,8-5
8-6
5-9
8-5

4-5.8-7.9.10
8-4
5-3
6-7
9-10

-x-
6-4

-y-

-z-

Page 1- 10 August 31.. t 984

ASCII CODE CHART

MSD
(HEX) 0 1 2 3 4 5 6 7

B1 B2 0 o 0 o 1 o 1 1 1 1 1
0 0 0 1 1

LSD BITS B3
0 1 0 1 0 1 0 1

(HEX)
CONTROL

8485 86 87

0 Q 0 o 0 NUL OLE SP 0 @ P \ P
0 (0) 10 (16) 20 (32) 30 (48) 40 (64) 50 (80) 60 (96) 70 (112)

1 o 0 0 1 SOH DC1 ! 1 A 0 a q
1 (1) 11 (Hl 21 (33) 31 (49) , (65; oi iSH 61 is;) 71 (1131

2 0 0 1 0 STX DC2 " 2 B R b r
2 (2) 12 (18) 22 (34) 32 (50) 42 (66) 52 (82) 82 (98) 72 (114

3 0 0 1 1 ETX DC3 # 3 C S c S
3 (3) 13 (19) 23 (35) 33 (51) 43 (87) 53 (831 63 (991 73 (115)

4 o 1 0 0 EOT DC4 $ 4 0 T d t
4 (4) 14 (20) 24 (36) 34 (521 44 (68) 54 (841 64 (100) 74 (116)

5 o 1 0 1 ENO NAK % 5 E U e u
5 (5) 15 (211 25 (37) 35 (531 45 (691 55 (85) 65 (101) 75 (117)

6 o 1 1 0 ACK SVN & 6 F V f v
6 (6) 16 (22) 26 (38) 36 (541 46 (70) 56 (86) 66 (1021 76 (118)

7 o 1 1 1 BEL ETB I 7 G W 9 w
7 (7) 17 (23) 27 (39) 37 (55) 47 (711 57 (87) 67 (103) 77 (1191

8 1 0 o 0 BS CAN (8 H X h x
8 (81 18 (24) 28 (40) 38 (56) 48 (72) 58 (88) 68' (104) 78 (120)

9 1 o 0 1 HT EM) 11 I V I Y
9 (9) 19 (25) 29 (41) 39 (57) 49 (73) 59 (89) 69 (1051 79 (121)

A 1 o 1 0 LF SUB * · J Z j z · A (10) lA (26) 2A (42) 3A (58) 4A (74) 5A (90) 6A (1061 7A (1221

B 1 0 1 1 VT ESC + · K [k { ,
8 (11) 18 (27) 2B (431 38 (59) 4B (75) 5B (91) 6B (107) 7B (123)

FF FS < L \ r I
c 1 1 0 0 , I

C (12) lC (28) 2C (44) 3C (60) 4C (761 5C (92) 6C (1081 7C (124)

0 1 1 0 1 CR GS - = M] m }
0 (13) 10 (29) 20 (45) 30 (61) 40 (77) 50 (931 60 (109) 70 (1251

E 1 1 1 0 SO RS . > N 1\ n ,."

E (14) lE (301 2E (46) 3E (62) 4E (78) 5E (941 6E (110) 7E (126)

SI US / ? 0 RU80UT
F 1 1 1 1 - 0 (DEL)

F (15) 1F (31) 2F (47) 3F (63) 4F (79) 5F (95) 6F (111) 7F (1271

CREATIVE ,SOLUTIO"S
4701 Randolph Road , Suite 12
Rockville, Maryland 20852
(301) 984-0262

1~

