
c:
RESEARCH. INC •.

CRAY® COMPUTER SYSTEMS

UNICOS PRIMER

SG-2010

Gopyright© 1986, 1987 by Gray Research, Inc. This manuat or
parts thereof may not be reproduced in any form unless permitted
by contract or by written permission of Gray Research, Inc.

B

Cli ::ai tIfJI',. 'V
RESEARCH, INC. PUBUCATION NUMBER SG-2010

..... 1'.-~ ~ Czay Raeudl. Inc. publicationa Ihculd be directed to the Diatributicn Center and comme:ntl .bouc tbeIe publications .hould be ctinIeted
to:

CRA Y JtBS8ARQI, INC.
Technia1 PublioadaaI
1345 NOIthIand Olive
M.doca 1WpM. MUu.Gca 55120

Revision Description

February 1986 - First printing. Docwnentation to support the Cray operating system
UNICOS, release 1.0. This documentation is derived from UNIX System V under
license from AT&T Technologies, Inc.

A Octo~ 1986 - Rewrite incorporating many editorial changes made in response to a
usability study. This version of the manual is issued with the Cray operating system
UNICOS, release 2.0. All trademarks are now documented in the record of revision.
All previous versions of this manual are obsolete.

B July 1987 - Complete rewrite and reorganization to support UNICOS release 3.0. This
printing includes new features of UNICOS, many new examples, and documentation for
the C shell as well as the Bourne shell. This printing obsoletes previous versions of
this manual.

ii SG-2010

The UNICOS operating system is derived from the AT&T UNIX System V operating system. UNICOS is also
based in part on the Fourth Berkeley Software Distribution under license from the Regents of The University' of
California.

The TCPIIP documentation is copyrighted by The Wollongong Group and may not be reproduced. transmitted.
transcribed. stored in a retrieval system. or translated into any language or computer language. in any fonn or by
any means. electronic. mechanical. magnetic. optical. chemical. manual or otherwise. except as provided in the
license agreement governing the documentation or by written pennission of The Wollongong Group, Inc .• 1129
San Antonio Road. Palo Alto. California 94303. The Wollongong software and documentation is based in part
on the Fourth Berkeley Software Distribution under license from The Regents of the University of California. @

The Wollongong Group 1985.

CRAY. CRAY-l. UNICOS. and SSD are registered trademarks and APML. CFr. CF177. CFT2. COS. CRAY-2. CRAY
X-MP. CSIM. 105. SEGLDR. SID. and SUPERLINK are trademarks of Cray Research. Inc. .

3B20 is a trademark of AT&T. Apollo and DOMAIN are registered trademarks of Apollo Computer Inc. CDC is
a registered trademark of Control Data Corporation. DEC. V AX, and VMS are trademarks of Digital Equipment
Corporation. mM is a registered trademark of International Business Machines Corporation. IRIS is a trademark
of Silicon Graphics, Inc. Pyramid is a trademark of Pyramid Technology Corporation. Sun Microsystems is a
trademark of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T.

SG-2010 iii B

PREFACE

This manual provides introductory information on the Cray operating system UNICOS running on Cray computer
systems.

Other Cray Research, Inc. (CRI) publications detail specific aspects of the operating system. The following CRI
manuals relate to UNICOS on any Cray computer system:

Publication Title/Description

SR-0066 Segment Loader (SEGLDR) Reference Manual; describes SEGLDR, an automatic loader
for overlaid and nonoverlaid programs.

SR-2011 UNICOS User Commands Reference Manual; describes UNICOS user commands.

SR-2012 UNICOS System Calls Reference Manual; describes all UNICOS system calls and the
error returns for these calls.

SR-2014 UNICOS File Fonnats and Special Files Reference Manual; describes file formats and
devices used by UNICOS.

SO-2016 UNICOS Support Tools Ouide; describes software tools available to aid the UNICOS
user.

SO-2050 UNICOS Editors Primer; describes the three editors available under UNICOS, vi, ed,
and ex.

The following CRI manuals relate to UNICOS on CRA Y -2 computer systems only:

Publication Title/Description

SR-2013 CRA Y-2 UNICOS Libraries, Macros and Opdefs Reference Manual; describes all library
routines available to users of the eRA Y -2 computer system. The manual also
describes macros and opdefs for UNlCOS and associated programming languages and
contains calling sequence documentation.

The following CRI manuals relate to UNICOS on CRA Y X-MP and eRA Y -1 computer systems:

SO-2010

Publication Title/Description

SR-0012 Macros and Opdefs Reference Manual; contains macro and opdef instructions for the
Cray operating systems UNICOS and COS.

SR-0113 Programmer's Library Reference Manual; describes the Cray Fortran routines available
to users of the CRA Y X-MP and CRA Y -1 computer systems.

v B

B

Publica don Title/Description

SR-0136 CRAY X-MP and CRAY~l C Library Reference Manual; desaibes the Clay C routines
available to users of the CRAY X-MP and CRAY-l computer systems.

vi 5G-2010

CONTENTS

1. IN'I'R.ODUC110N .••••.....•••.•.•......•.•••.•.•.•...•••.•..••..•.•.....•.•.••••.•.•.••••••.•••.••••.•.••••..•••.••.•.•.•.•.•••••......•.•.•.•.•. 1-1

1.1 USING TInS MANUAL: WHAT YOU SHOULD KNOW... 1-1
1.2 CONVENTIONS •...•...•...•.....•.•........•...•........•.•....•.....•.•.....•.....•.............••.•.•....•.•.•.....•..•.......... 1·2
1.3 DEFINTIONS ...•.•.............................•....••••...•.....••.....•..•........•.•..••..•.....•.......•.......•..•...•..•...... 1·2
1.4 ON-LINE MANUALS•..........•....•.•....•.•..•...•.•••.•...•..••.•••.•.•...•.......•....•......•.............•..... 1-3
1.5 READER COMMEN1"S•.....•...•.•....•.••...•... ~... 1-4

2. BASICS FOR BEGINNERS••....•.............•..•..•..........•••.••....•.•.•...•.•........•.•.•.....•....•.•........•.........•.. 2-1

2.1 ACCESSING 'UNICOS ... 2·1
2.1.1 LOGGING IN ... 2-2
2.1.2 CHANGING YOUR PASSWORD ... 2-2
2.1.3 LOGGING OFF ... 2-3
2.1.4 CO~ LINE SYNTAX•.....•...........•••......•..••.•.......••.....•......................•... 2-3

2.2 FILES.•............•.•......•............• .•.••...........•..•.....•• ...•..•........... 2-4
2.2.1 NAMIN'G FILES•...............•.....•.••....••••••.......•....•...•....•..........•... 2-4
2.2.2 CREATING AND SA VING FILES USING THE ed EDITOR ...•....•....•.•........... 2·5

2.2.2.1 Creating files with ed ..•..•.•••..•.•••••••••••.•••••••.••.•..•.•••••.••.•.•••....••••...••.••••••. 2-5
2.2.2.2 Editing files with ed commands .•...•.•.•••••••..••••••.••.•••••....••.•• .••.•.•.•••...•••. 2-5
2.2.2.3 Error messages and explanations in ed ••• 2-7
2.2.2.4 Saving files in ed ••••.•.•.•..•..•••••.•..•••.•••••..••••••.••••••.••..•.•.•.••.•.•.•.•••••.•.••..... 2-7
2.2.2.5 Exiting ed ... 2-7

2.2.3 LIS11N'G N~S OF FILES•..........•...•.....•.•..•.•....•.......•..•.•......•.•...•..•........... 2-8
2.2.4 DISPLA YIN'G FILES .•.......•..•...••••...•......••••..•••••.....•.......•..•.......•......•..•.••..•....•..•... 2-9

2.2.4.1 Displaying files using the pg command .. 2·9
2.2.4.2 Displaying files using the cat command ... 2-9
2.2.4.3 Displaying files using the pr command .. 2-9

2.2.5 RENAMING, COPYING, AND REMOVING FILES .. 2-10
2.2.5.1 Renaming a file•.•.•.... ..••....•........•.•....•...........•. 2-10
2.2.5.2 Copying a file••........................•••............................•................. 2-11
2.2.5.3 Removing a file•...•.....••......................•........••.•.....•...............•...... 2-11

2.2.6 USING METACHARACTERS IN FILE NAMES•................•........••............ 2-12
2.2.6.1 The • metacharacter•......................•..•...•...............•........•.....•........... 2·12
2.2.6.2 The 0 metacharacters ...•.......•.•...................•.........•....................•........... 2-13
2.2.6.3 The ? metacharacter•...•........•...•............................•.............. 2·14
2.2.6.4 The ' It and \ metacharacters ...•..................... 2-14

2.2.7 SEARCHING FILES FOR TEXT PATTERNS: THE grep
CO~•..•.......................•...........................•................. 2-15

2.2.8 INTERPRET A nON OF METACHARACTERS•..•.........•.•......... 2-17

SG·2010 vii B

2.2.9 USING MET ACHARACI'ERS WITHIN Fll..ES .. 2-18
2.2.9.1 The A metacharacter•.....•..............••..••....•..................•......•..•.•.•.... 2-18
2.2.9.2 The $ metacharacter ..•••..............................•.•..........•.•......•.•...•...•.•........ 2-18
2.29.3 The . metacharacter•.........•.•................. 00.......................... 2-19
2.2.9.4 The • metacharacter ..•..........•............ 2-19
2.29.5 The protective metacharacters ' "\ m..................... 2-19

2.3 STRUCTURE OF THE UNICOS FILE SYS1EM ..•....•.•..•.....••...••••...••.•..•.•....•..••..••.•........ 2-19
2.4 USING THE UNICOS FILE SYS1EM .•...........•..•............•...•••••••..•••••••.••.••••...•••....••.•..••••.• 2-24

2A.l MOVING AROUND IN THE FILE SYS1EM .. 2-25
2.4.2 LOCATING FILES ... 2-26

2.5 CIiANGING TIiE FILE SYS1'EM STRUCTURE ..••...•..•.•.•••••...••.••..••..••.....•.•.....•..•.•..•.•... 2-26
2.5.1 MOVING, COPYING, AND LINKING FILES BElWEEN

DIRECTORIES .•••.••.•••....••••....•.•.•...•.•..•...•..••.••••••.•.•••••••••••••••.••.••.•.•..••••...•.•.....•..... 2-27
2.5.2 CREATING AND REMOVING DIRECTORIES ... 2-28
2.5.3 PERMISSIONS ..••••...••.•......•...•.•..••...........•..•.•.••••.•.•.••••..•.••..•.•.•••.....•.....•...•••.•...•..• 2-31

3. BEYOND THE BASICS .•...•..•.•..•..•..•.•.....• ~... 3-1

3.1 REDIREC1'IN'G COMMAND INPUT AND OtrrPUT .••.•....•••.....••••.••..••........•.•.....•.•...•... 3-1
3.1.1 REDIREC11NG OtrrPUT· WI1li > .. 3-1
3.1.2 REDIRECI1NG OUTPUT WI1li» .. 3-2
3.1.3 REDIRECTING INPUT WITH < .. 3-2

3.2 MtJI.. TIPLE COMMANDS••.•.........•.•.........••.•......•••..••..•••••..••••..••..•...••••••...••.........•.•..•. 3-3
3.2.1 EXECUTING MULTIPLE COMMANDS IN A SERIES: THE

SEMICOLON ..••..•..•...•••••..•••....•....•••••....••.•••.••••••..•••••.••.•.•••••••••....•.•.••......••••.•.•.•.•.• 3-3
3.2.2 COMBINING COMMANDS INTO ONE: PIPES .. 3-4

3.22.1 Combining and sorting multiple files ... 3-4
3.2.2.2 Searching for strings in directory listings ... 3-4
3.22.3 Using pipes to count .. 3-5

3.2.3 EXECUTING MULTIPLE COMMANDS SIMULTANEOUSLY:
BACKGROUND PROCESSING ..•..••.•.••••••••.••••.•.••.•••.•••••••••••••.••••.•.•.•..•.••••.••.••.•.•• 3-6
3.2.3.1 Example: Background processing an editing job 3-6
3.2.3.2 Example: Background processing a compiling job 3-7
3.23.3 Commands for background processing: ps and kill............................ 3-1
3.23.4 Practice: Background processing an editing job 3-8

3.24 FII..ES OF COMMANDS: SIiELL SCRIPrS .. 3-9
3.3 COMMUNICATING WITH OTIIER USERS•••..••.•.•••••••..•••.•.••••••...•••••••.•..•...••..•.•.•... 3-11

3.3.1 TliEmail COMMAND .. 3-11
3.3.2 TliE write COMMAND .•.....•...•.•...•.••...••..••.••...•.•.••.•.•..••.•....•••.••••..•......•...•••••.•.. .•. 3-12

3.4 DELAYING EXECUTION OF SHELL PROGRAMS ... 3-13
3.5 FORTRAN PROGRAMS UNDER UNICOS .••.....••.•.•.•••..•.•••••••.••.•.........••••••.•.•..•....•.•..•..•.. 3-14

3.5.1 FORTRAN Fll..E-NAMING CONVENTIONS .•.•••...••.••.••.•.........•.•..•.........•....•..•.. 3-14
3.5.2 COMPILING. LOADING. AND EXECUTING FORTRAN

PROGRAMS .. ~ .. oe.. 3-14
3.5.3 LINKING UNICOS FU.ES TO FORlRAN LOGICAL UNITS 3-16

B viii SG-2010

3.6 PASCAL, C, AND CAL PROGRAM FILES UNDER UNICOS 3-16
3.6.1 PASCAL PROGRAM FILES ... 3-16
3.6.2 C PROGRAM FIl.ES .. 3-17
3.6.3 CAL PROGRAM FILES•..•..............................•....................... 3-18

3.7 THE TWO SHELLS: BOURNE SHELL AND C SHELL .. 3-18
3.8 CHANGIN'G SIfELLS ... 3-19

4. THE BOURNE ·SIfELL .. 4-1

4.1 SliELL SCRIPrS .. 4-1
4.1.1 BASIC SHELL SCRIPT DEBUGGING: TRACING MECHANISMS 4-1
4.1.2 VARIABLES IN SIfELL SCRIPrS ... 4-2

4.1.2.1 Named variables ... 4-3
4.1.2.2 Availability of variables: Scoping rules and commands 4-4
4.1.2.3 Command-line positional variables ... 4-5
4.1.2.4 More than nine positional parameters: The shift command 4-7
4.1.2.5 Special command-line variables .. 4-8

4.1.3 CON1ROL ROW .. 4-9
4.1.3.1 Evaluating conditions: The test command .. 4-9
4.1.3.2 Numeric tests and expressions .. 4-11
4.1.3.3 Branching on one condition: The if command 4-12
4.1.3.4 Branching on many conditions: The case command 4-13
4.1.3.5 Looping with a condition: The while and until commands 4-14
4.1.3.6 Looping with a specified index: The for command 4-16

4.1.4 SHEll. SCRIPTS CONTAINING THEIR OWN INPUT: here documents 4-18
4.1.5 A SAMPLE SHELL SCRIPT TO COMPll..E, LOAD, AND EXECUTE

PROGRAM FILES .. 4-19
4.2 SflELL PAR~1'ERS AND VARIABLES .. 4-20

4.2.1 SUBSTITIJTING A COMMAND'S OUTPUT FOR OTIlER SHELL
VALUES .. 4-21

4.2.2 SUBSTITIJTING V ALUES FOR VARIABLES ... 4-21
4.2.3 HOW VARIABLES, COMMAND ARGUMENTS. AND QUOTING

METACHARAC1'ERS ARE PROCESSED .. 4-22
4.2.4 A SAMPLE SHELL SCRIPT TO SEARCH FOR PATIERNS IN Fll...ES 4-26

4.3 CHANGING THE SHELL ENVIRONMENT: PREDEFINED SHELL
VARIABLES ... 4·26
4.3.1 ENVIR.ONMENT VARIABLES .. 4-27

4.3.1.1 The HOME variable .. 4-27
4.3.1.2 The PATH variable ... 4-28
4.3.1.3 The MAILCHECK variable ... 4-28
4.3.1.4 The PS 1 and PS2 variables ... 4-28
4.3.1.5 The TERM variable .. 4-29

4.3.2 THE .profile FILE ... 4-30
4.3.3 SHELL RJNCTIONS ... 4-30

SG-2010 ix B

B

4.3.4 SlmI..L INVOCATION OmONS•••.•.•..•••......••..•...••.•..•..•.•..•.....•...•...••.......•.. 4-31
4.4 DEBUGGING SlmLL SCR.IPrS ...••...•................•.........•.•.•..................•........•.....•.•..•..•....... 4·33

4.4.1 ERROR HANDLING AND COMMAND EXIT STAruSES 4-33
4.4.2 UNICOS SIGNALS•........•........•.•.•..........•.•..•.•.............•..•.•...•..........•.......... 4-35
4.4.3 USING SIGNALS: Tl1E trap COMMAND ... 4-35

5. TIm C SFmLL .. 5-1

5.1 SIiEI..L SCRIPrS .. 5 .. 1
5.1.1 BASIC SHELL SCRIPT DEBUGGING: TRACING MECHANISMS•......•... 5-2
5.1.2 VARIABLES IN' SlIELL SCRIPrS••......••...•...........•......•.•.........•.•..............•... 5-3

5.1.2.1 Named variables ...••....•.•••....•.•.•.........•..•.•........•..•......•........•......•........•... 5-3
5.1.2.2 Availability of variables: Scoping rules and commands 5-6
5.1.2.3 Command-line positional variables ... 5-8
5.1.2.4 Moving positional parameters: The shift command 5-9
5.1.2.5 Special command-line variables .. 5-10

5.1.3 CON1"R.OL FI..OW ..•••..•.••...•.•...•.•.......•..•...•.......•••.......•.•.•....•...........••.•.•......•......... 5-11
5.1.3.1 Evaluating conditions: Shell expressions .. So 11
5.1.3.2 Branching on one condition: The if command 5-13
5.1.3.3 Branching on many conditions: The switch command 5-14
5.1.3.4 Looping with a condition: The while command 5-17
5.1.3.5 Looping with a specified index: The (oreach and repeat

commands•.•..•......•.•••...............•.•.•.....•.•........•........•..•.•.......•.•.....•..... 5-18
5.1.4 SHELL PROGRAMS CONTAINING THEIR OWN INPUT: here

dc:x:uments •• 5-20
5.1.5 A SAMPLE SHELL SCRIPT TO COMPaE, LOAD, AND EXECUTE

PROGRAM FII.ES •• 5-21
5.2 SImll.. PARAME"I'ERS AND VARIABLES .•...•.....•••..•.....•••.•..•.•.••..•••....••••••••..•.•.•..•.•.•.•.. 5-22

5.2.1 SUBSTInJTING A COMMAND'S OUTPUT FOR OTHER SHELL
VALUES .. 5-22

5.2.2 HOW VARIABLES, COMMAND ARGUMENTS, AND QUOTING
MET ACHARAC1'ERS ARE PROCESSED ...••.•••.•••....•........•••.••••....••..•...•..•.•..•... 5-23

5.23 A SAMPLE SlIELL SCRIPT TO SEARCH FOR PA TIERNS IN FILES ..•.•.... 5-26
S.3 CHANGING THE SHELL ENVIRONMENT: PREDEFINED SHELL

VARIABLES ..•..•..•••••.••..•.•.•••.•.•.••.•..•••.••••.•...•••••..•••.....•...•.•...•.•••..•.•....•.•..•.••.....••......•..•....... 5-26
5.3.1 ENVIRONMENT VARIABLES ...•.•.....••...•.•••.•••.••••••.•••.••••...•••.•..•.••..••...•.•..••••..•. 5-26

5.3.1.1 The HOME variable•••...•••.•.•••.••••••.....••.......••......••.•..•....•.••.••••.•.••..••... 5-26
5.3.1.2 The PATH variable ..•.••.•.•••....•••.•....•..•.•...•.... .•••.•• .•••••...•••......•.•••.•.•••.•.•.. 5-28
5.3.1.3 The SHELL variable .. 5-29
5.3.1.4 The prompt variable .•.....•..••...•..••....•.•••.....••.•....•.....•......•..•.•.•.•.•....•..•.•.• 5-29
5.3.1.5 The TERM variable ..•••.•.•.•••..•.••.••...•......•••••..••.....•..•.•...•••..••.....•.•.••...••.• 5-30

5.3.2 RENAMING SHELL COMMANDS: THE alias COMMAND•........•.•.••.....•. 5-30
5.3.3 TlIE .login AND .cshrc Fn..ES .•..•..•••....•••...•.•.....•.••...••.••.••.•.•.•.....•.•....•.•......•••..... 5-31
5.3.4 SIiELL INVOCATION OmONS•..•.•.•.•••••..•••..•••.•.•..•..•...•...••.•.•••.....••...•.•...•. 5-32

5.4 DEBUGGIN'G SIiELL SCRIPrS ... 5-33
5.4.1 ERROR HANDLING AND COMMAND EXIT STAnJSES 5-33
5.4.2 UNlCOS SIGNALS .. 5-34
5.4.3 USING TIrE INTERRUPT SIGNAL: THE onintr COMMAND 5-34
5.4.4 USING SIGNALS WITII THE kill COMMAND .••..•.....•.......•.••••..•.•.•...•.•......••... 5-36

5.5 REPEATING PREVIOUS COMMANDS: TlIE HISTORY MECHANISM•...•.•..•.•.... 5-37

x SG-2010

SG-2010

A. UNICOS BA'I'CH FACn..ITIES•................••...........................•....•.....•.. A-I

A.I OVERVIEW OF NQS•...•.........................•........................... A-I
A.2 GETIIN'G STAR1"ED WITH NQS•.. A-3
A.3 USING CRAY STATION SOFIWARE TO SUBMIT NQS BATCH FILES .••.......••.•..•.. A-5
A.4 SUBMITTING A BATCH JOB FROM THE IBMNM STATION A-6

B. INTERACTIVE UNICOS COMMUNICATIONS FACll.ITIES ... B-1

B.1 TIiE TCP/IP PROTOCOL .. B-1
B.1.1 TIiE ftp CO~ ... B-2
B.1.2 TIiE rep CO~ ... B-3

B.2 USING STATION SOFIW ARE .. B-4
B.3 STATION SOFIW ARE EXAMPLE PROGRAMS .. B-7

B.3.1 ~E 'fRANSFER EXAMPLES ... B-7
B.3.2 JOB SUBMISSION EXAMPLES .. B-8

C. CRA Y STATION PUBLICATIONS ... C-1

D. UNICOS SIGNALS 0-1

E. ON-LINE MANUAL SECTION ABBREVIATIONS .. E-I

FIGURES

2-1 Basic Hierarchical Tree Structure .. 2-20
2-2 UNIOCS File System Names ... 2-21
2-3 Sample UNICOS Directories and Files ... 2-22
2-4 Example of an Altered Directory ... 2-29
4-1 Quoting Mechanisms and Metacharacter Interpretation .. 4-25
5-1 Quoting Mechanisms and Metacharacter Interpretation .. 5-26
A~ I Example of qstat Output for an NQS Batch Queue Summary ... A-2
A-2 Example of qstat Output for an NQS Batch Request .. A-5
A·3 Example of Output from crstatus ... A-8

GLOSSARY

INDEX

xi B

1. INTRODUCTION

This publication provides the following general information about UNICOS:

Section Description

2 Basics for Beginners Introduces basic information for using UNICOS, including logging
on, creating. searching, and finding files, and the UNICOS file sys
tem structure

3 Beyond the Basics

4 The Bourne Shell

5 The C Shell

Describes intermediate-level information about UNICOS. including
redirecting the input and output of commands, creating command
programs, communicating with other users, and working with
applications programs

Describes more advanced information specific to the Bourne shell
is presented in this section, including shell variables, program
ming constructs for shell programs, changing the shell environ
ment, and debugging shell programs

Discusses more advanced features specific to the C shell, includ
ing shell variables, programming constructs for shell programs,
changing the shell environment, and debugging shell programs

Using the primer as a tutorial will give you a cursory operational knowledge of UNICOS. Depending on your
previous experience with operating systems and the thoroughness with which you approach the exercises sug
gested, you can expect to complete each section of this manual in approximately 2 hours.

This primer is not intended to be a detailed description of UNICOS, nor does it describe all of the operating
system's capabilities. Many of the topics described are discussed in detail in other CRI publications, which are
listed in the preface.

101 USING THIS MANUAL: WHAT YOU SHOULD KNOW

It is assumed that you, as a reader of this manual, have some experience in programming and are familiar with
general programming concepts such as looping, files, file editing and editors, and conditional branches.

The manual is organized into three levels of difficulty. Section 2, Basics for Beginners, provides the fundamen
tals that a novice must learn to be able to use (UNICOS). Section 3, Beyond the Basics, covers intermediate
level skills for using the system and contains most of the infonnalion that general users need to know about
UNICOS to use it for submitting programming jobs and to do common operating system tasks, such as file
management.

Section 4. The Bourne Shell, and section 5, The C Shell, discuss more advanced material about the UNICOS
command interpreters.

SG-20IO 1-1 B

NOTE

Interruption of command input. program execution. or output printing is controlled
by thc front~nd computer system and differs froin system to system. Bcforeyou
begin working with UNICOS. it is a good idea to ask your system administnltor
how you can interrupt a process. Keys commonly used includc CONTROL-c.
BREAK. DELETE. and RUBOUT. This primcr uses "interrupt key" to refer to
whichever kcy is appropriate in your casco

1.2 CONVENTIONS

This primer uses the following typographic and lexical conventions:

Convention Description

Bold Indicates file names. including path names and directory names. when used in
text.

Italic Indicates UNICOS commands that are used within text. indicates specific
values that you supply for general tenns. indicates the system·s responses to
commands you type. and highlights terminology that is being defined.

blanks Separate arguments and options to a command in a command line. Blanks
may not always be required. but they arc used here for readability.

1.3 DEFINITIONS

This subsection defines a few of Ibe more commonly used terms in Ibis primer. See the glossary for a more
complete list of definitions.

SG-2010

Term Definition

Command The name of a UNICOS command (an executable file or the action of Ibe
command)

Command line A command along with option and arguments to it

Null string A string of nothing. specified with empty double or single quotes: "" or "
(the use of which becomes obvious later)

1-2 B

Term Definition

Process A program that is cUlTently executing

The system The UNICOS operating system. unless explicitly defined othezwise

1.4 ON-LINE MANUALS

The following UNICOS user documentation is available on-line so that you can display manual pages on your
tcnninal:

Publication

SR-Ol36
SR-2011
SR-2012
SR-2013
SR·2014

Title

CRA Y X-MP and CRA Y -1 C Library Rcference Manual
UNICOS User Commands Reference Manual

. UNICOS System Calls Reference Manual
CRA Y·2 UNICOS Libraries. Macros and Opdefs Reference Manual
UNICOS File Format and Special Files Reference Manual

To display a manual page on your terminal. type the following (where 1UlIne is the name of a command. system
call. or library call):

man 1UlIne (followed by a carriage return)

If there is. more information than will fit on your terminal screen. the last line of abe screen shows a colon in the
left comer. Press the space bar or RETURN (depending on your tenninal) to display the next screen of infonna
tion. For example. 10 display the manual page for the who command, type the following:

man who

To display the manual page for the man command. type the following:

man man

In some instances, a command has the same name as a system call or library routine. In such a case. issuing the
man command displays manual pages for all entities with the specified name, in the following order: user com
mand, administrator command, system call, and library routine (as applicable). If you want to see only one of
these entries (probably the command), use the following format of the man command, where section is one of
the abbreviations in the table in appendix D, On-line Manual Section Abbreviations:

man section name

SO-2010 1-3 B

1.5 READER COMMENTS

If you have any comments about the technical accuracy. content, or organization of this manual. we urge you to
share them with us. You can contact us in any of the following ways:

• Call our Technical Publications department directly at (612) 681-5729 during normal business
hours.

• _ Send us electronic mail from a UNICOS or UNIX system at:

ihnp4 ! cray ! publications
or
sun! tundra! hall! publications

• Use the postage-paid Reader Comment fonn at the back of this manual.

• Write us at the following address:

Cray Research, Inc.
Technical Publications Department
1345 Northland Drive
Mendota Heights, MN S5120

We value your comments and assure a prompt response.

SG-2010 1-4 B

2. BASICS FOR BEGINNERS

This section explains the basics of using UNICOS.

• Accessing UNICOS

• File operations, which includes creating and displaying files and directories; moving, copying, and
renaming files; and searching for text in files.

• Learning the structure of the UNICOS filing system

• Using the UNICOS file structure

• Changing the file and directory structure

2.1 ACCESSING UNICOS

To access UNICOS you must first establish a connection between your tcnninal and the Cray mainframe.
Because establishing this connection can be different at each site, ask your system administrator for the pro
cedure. It might involve a network or station command that brings you to the UNICOS login prompt You then
access UNICOS with a login (supplied by your system administrator). which identifies you to the system. You
must know the following two components of your login:

• Login name
• Password

A login name is a string of lowercase letters. numbers. or both that you use to identify yourself to the system.
The login name must begin with a letter and cannot be more than 8 characters. Any string of letters. digits. or
both can be a login name as long as it is unique, that is. different from all other login names on the system.

The password is a string of uppercase letters. lowercase letters. numbers. punctuation, or a combination of these
that you designate to control access to a login. The password string must have at least 6 characters; however.
the system uses only the first 8.

The password for a login is a UNICOS security feature. Usually. every login is assigned a password. When you
log in to the system. it requests a password. You must enter the password that corresponds to your login name
(your system administrator assigns your initial password. until you change it). The system does not allow you
access until you have entered the correct password. Once logged in, you can change your password as often as
needed (if periodically required on your system) to ensure that other users are not accessing your login and. con
sequently, your data (subsection 2.1.2, Changing Your Password, explains how to do this). -

SG-2010 2-1 B

2.1.1 LOGGING IN

To log in, first type the appropriate command on your terminal 10 establish communication between the front
end computer and the eray mainframe (see your system administrator for this). After you log on, UNICOS
responds with the following prompt

login:

Type in your login name followed by a RETURN (ASCn keyboard) or new-line character (non-ASCII keyboard).
(You must always press RETURN after your commands and responses.) UNICOS then prompts for your password,
as follows:

Password:

Type in your password. If you have entered your login name and password correctly, the system may display
one or more "messages of the day" (see subsection 3.3.1, The mail Command). UNICOS next displays the pri
mary prompt string, which is usually the dollar sign ($), followed by a space (though your system administrator
may have changed it to something else). If you make a mistake while logging in, or if the system administtator
has not set up your login on the system, the system displays the following enor message:

login incorrect

This error message is followed by the login prompt, indicating that you should attempt to log in again.

201.2 CHANGING YOUR PASSWORD

Your initial password is usually assigned by the system administrator and may be something fairly obvious, such
as your last name. To protect your infonnation, it is· wise to change your password as the first thing you do after
logging on. At the system prompt ($), type the following command:

passwd

UNICOS responds as follows:

Changing password for login 1UJII'Ie

Old password:

Enter your current password after the colon. UNICOS responds with the following:

New password:

Enter your new password, which can be 6 or more characters in length (only the first 8 are used). It is recom
mended that you avoid common words, names, and so on). UNICOS responds with the following:

Retype new password:

Reenter your new password. This is done in case you made a typographical error the first time, so that your
password will not be changed to a mystery word you do not know because it has a typo in it. If you do malee a
typing mistake, so that the two versions of your new password are not the same, the system starts over, prompt
ing you for your new password. When you have entered the same new password the second time, the system
assigns it to your login name, and you have a new password.

SO-2010 2-2 B

2.1.3 LOGGING OFF

Before you try to log offt your tenninal should be displaying the $ system prompt. This means that the system
is ready for you to enter a command (such as to log off). To log off of UNICOS, press an ASCll End-Of
Transmission (EOT) character. On most terminals, the Ear character is CONTROL-d. Alternatively, you can use
the exit command (if that does not work, try logout), which returns you to the login screen. Then, to disconnect
the connection between the Cray mainframe and your terminal, follow the procedure provided by the system
administrator.

2.1.4 COMMAND LINE SYNTAX

The UNICOS shell is a command interpreter. It is the interface between users and the system, interpreting their
typed requests and then initiating the appropriate action. Most actions that you request of UNICOS are per
formed by programs; most commands initiate programs to complete the requested action. You send requests to
the shell in the form of a single line, that is, a string of one or more words, followed by a RETI1RN. This single
line that you enter after the $ prompt is called a command line. The shell invokes the appropriate program to
complete the command and prompts you again with the $ when it is ready to accept another request

The first word of a command line is the command: This is the name of the program to be executed. All subse
quent words on the line are argU1nJ!nts to the command. Arguments provide infonnation required by the com
mand program.

The syntax for a command line is as follows:

I command argwnent argument ... RETURN I
The spaces are required to separate the command and its arguments. Generally, commands accept two types of
arguments:

• Options
• File-name arguments

Options consist of a minus sign (-), followed by an alphanumeric character and, in some cases, a value, with no
intervening space. File-name arguments specify the file(s) that the command is to process.

The following are examples of command line syntax. (Do not try these right now; they are just to show possi
ble formats):

Is -llbin (Command, option, file-name argument)

cat /etc/passwd (Command and a file-name argument)

Spaces and tabs, known as delimiters. separate the words on a command line. The command is the first set of
characters on a command line, up to the first space (or tab). The first argument is the second set of characters up
to the next space and so on for successive arguments.

The return indicates that you should press the RETURN key on an AScn keyboard (new-line character on other
keyboards). Although subsequent examples do not specify a return, remember to end every command line by
pressing RETURN.

B

When you need or want spaces or tabs within a single argument. enclose the argument in quotation marks. Gen
erally either double or single quotes may be used; for an explanation of the differences between double and sin
gle quotes, see either subsection 4.2.3, How Variables, Command Arguments, and Quoting Metacharacters are
Processed (Bourne shell), or subsection 5.2.2, How Variables, Command Arguments, and Quoting Metacharac
ters are Processed (C shell).

For example, to execute a program that requires two arguments such as john r and doe, the first argument should
be john and the initial r, that is, "john r". The second argument should be doe. The required command line in
this case would be as follows:

commtJnti "john r" doe

2.2 FILES

This subsection discusses the following skills and topics:

• Naming files
• Creating and saving files Using the ed editor
• List the names of files
• Displaying files
• Renaming, copying, and removing files
• Using the metacharacters • [] ?' with file names
• Searching files for text patterns
• Interpretation of metacharacters
• Using metacharacters within files

2.2.1 NAMING FILES

File names are limited to 14 characters. Although any character can be used in a file name, some characters
called metacharacters have special meaning; therefore, use only letters, numbers, periods, and the underscore in
file names. (Subsection 2.2.6, Using Metacharacters in File Names, defines the metacharacters and their func
tions.)

By convention, certain suffixes indicate specific file types to some UNICOS utilities; therefore, end file names
with these characters only when you want to identify the files as follows:

Suffix File Type

.a A file created by aT' or bid
oc A file containing a C language source program
of A file containing a Fortran source program
oh A C language include file with header data
.I A lex source file or a Fortran listing file
.0 Object code (output from a compiler)
.p A Pascal source file
.s An assembly language file
· y A yacc source file

SG-2010 2-4 B

2.2.2 CREATING AND SAVING FILES USING THE ed EDITOR

This subsection briefly covers one way in which you can create files under UNICOS and then save them in non
volatile storage. You can create files with the UNICOS line editor ed. Complete tutorials for the ed and ex line
editors, and the vi screen editor are in the UNICOS Text Editors Primer, publication 50-2050. The ed, ex, and vi
entries in the UNICOS User Commands Reference Manual, publication SR-2011, contain more brief reference
material on the two editors.

2.2.2.1 Creating files with ed

Create a file named doc, and type at least 10 lines in the file so you have enough text with which to practice the
next commands. Type the following lines at your terminal, substituting any content you like for text; be sure to
read the parenthetical explanations for each step:

ed doc (Invokes the ed text editor)
(Because this is the first time doc has been named, ed responds with "cannot open
input file." This sounds bad, but it is perfectly all right.)

a (Instructs ed to append text)
text
text (Enter at least 10 lines of text)
text

(The period signals the end of adding text)

The period character (.), which signals the end of the added text, must be on a line by itself. Until it is typed,
no other ed commands are recognized; everything you type is treated as text to be added. The $ does NOT
appear when you are typing in the text editor. From the time you type ed at the command line, until you exit
the editor with the q (quit) command, you will not see the $ prompt. After typing the period in the preceding
example, you can make various editing changes to the file, as the next subsection explains.

2.2.2.2 Editing files with ed commands

The ed commands all worle on the idea of line addressing; before a command letter, you specify the lines on
which it is to operate. To specify one line. use the line number. For example, to display the fifth line of your
file doc, use the p (print) command with the number 5 before it, as follows:

5p

To specify a range of lines, type the first line number of the range, a comma, and then last line number of the
range. For example, the following command displays the first 8 lines of a file:

1,8p

The ed editor may respond to the preceding command with a ?, which indicates that there· are fewer than the
specified number of lines (8) in your file.

The $ character in ed is a special line address, specifying the last line of a file. The following command line
displays an entire file in ed:

I,$p

SG-2010 2-5 B

Use the following command as a more brief way of displaying your entire file (this may not work on aU sys
tems):

,p

When you first entel' ed, you are in command mou, and all keys that you type are interpreted u·ed commands.
To insert text on a new line before the specified one, use the i (insert) command. This puts you in illSert moM
and lets you add lines of text befor~ the line you specified with the i command. To add text on a new line fol
lowing the specified one, use the a (append) command. This puts you in append mode and lets you add lines of
text after the line you specified with the a command. To escape either text mode (a or i) and return to com
mand mode, type a peziod on a line by itself. After· that, the next line that you type is interpJeted u a com ..
mand.

Try inserting the following new line 4 into your file doc::

4i
This is a new line 4

Try appending the following new line 5 to your file doc:

4a
This is a new line 5

Now display your file to see how it looks.

To delete lines, use the d (delete) command. Delete the two previously added lines with the following com
mand:

4,Sd

The s (substitute) command lets you substitute a new suing for an old string. To substitute new for the first
occurrence of old on the third line of a file, you would type the following:

35/01d/new

To substitute all occurrences of old with new on the third line, you would type the following:

35/01d/new/g

The g indicates global; all occurrences on the specified line.

To replace all occurrences of old with new on lines 4 through 8 of the file, type the following:

4,8s/old/new/g

If you accidentally. make an incorrect substitution, the u (undo) command undoes the most recent substitution
command. The u command also undoes other actions such as deletions, insertions, and so on.

Try the various substitution commands on your file doc: to become familiar with them.

The t command copies lines. The following command line copies the fourth line of your file doc and places it
after the seventh line in the file.

4t7

SG-2010 2-6 B

The m (move) command moves lines. Move the firstt secondt and third lines of your file doc and place them
after the sixth line with the following command:

It3m6

The last command this subsection covers is the escape command. Typing the ! character in an editing session
lets you temporarily escape the edit and perform UNICOS shell commands. While editing your file doct get a
listing of users on the system with the following command:

!who

Subsection 2.2.2.4t Saving Files in ed. covers saving filest and subsection 2.2.2.S. Exiting cd. covers exiting the
editor.

The ed editor has many more commands than those shown here. See the UNlCOS Text Editors Primer. publica
tion SG-2050t for a complete description of the edt ext and vi editors.

2.2.2.3 Error messages and explanations in ed

If at any time you make an error with commands in edt ed responds with the ? charactert fonowed by a terse
explanation of the error. Whenever you wish to see a very brief explanation for the most recent error. type the
h (hint) command as follows:

h

2.2.2.4 Saving files in ed

To save (write to permanent storage) information typed into a filet use the following ed command:

w

The editor responds with the number of characters it wrote into the file. You do not see any prompt because
you are still in ed. None of the text in your file is stored pennanenlly until you use the w (write) command. It
is a good safety measuret thereforet to periodically use the w command to save information while you are edit
ing a file.

2.2.2.5 Exiting ed

To quit the editort type the q (quit) command as follows:

q

If you try to exit without first saving your text with the w commandt the editor displays a question mark (1)t
which is its shorthand way of asking you if you want to save the text before you exit and lose it. If you want to
quit without saving your changest typing a second q gets you out of the text editor; otherwiset a w saves the
changes. Save your file now and then quit ed.

SG-2010 2-7 B

For practice, use the infonnation of the preceding five subsections to create a second file called temp, typing the
text that follows this paragraph into iL You will need the text for later exercises, so please copy it exactly
(punctuation and all). Before you begin, carefully reread the preceding subsections for the sequence of steps
you need to follow to create this new file. As you work, refer back to those subsections or the UNICOS Text
Editors Primer, publication SO-2050, if you don't understand how to do something.

This is a test line of only alphabetic characters
This line contains some numbers. 2 and 19, as well
On this line are the characters % @ !
The numbers 2 and 19, and odd characters % @ ! + are on this line
This line contains the UNICOS metacharacters $ > ' and * as text
All character types are mixed here: $45.00 * 8/carton 'units'

2.2.3 LISTING NAMES OF FILES

The Is (list) command lists the names (not contents) of your files. Type Is at your tenninal now. If you have
been given an unused login, you should see only the two files (doc and temp) that you have just created.

If you would like to have the list of names neatly ordered in columns, the ·C option (uppercase C) will fonnat
the listing into several columns. The following example shows the command and sample output:

Is -C

finances
memos

new_letters
old_letters

project

The names are listed in alphabetical order, but other variations are possible. For example, the following Is com
mand, using the -t option, lists files in the order in which they were last changed, with the most recently
changed first (the C serves only to Connat the output in columns):

calendar
memos

project
finances

The ·r option reverses the order in which files are listed. This is used along with the regular Is (reverse the
alphabetical listing of the files) or with the ·t option (reverse the last-lime-modified order). Compare the follow
ing two examples with their countelparts (Is -rC with Is 9C, and Is -nC with Is etC):

SO-2010

Is -rC

project
old_letters

Is -nC

old_letters
finances

new_letters
memos

project
memos

2-8

calendar
new_letters

calendar

B

There are a number of other options to the Is command that give you additional infonnation about files. Some
of those options are covered later in this section. See the UNICOS User Commands Reference Manual, publica
tion SR-2011. for more complete reference infonnation about the Is command.

2.2.4 DISPLAYING FILES

There are three commands you can use to display files on your tenninal. These three commands, pg. cat, and pr
are described in the following three subsections.

2.2.4.1 Displaying files using the pg command

The simplest way to display files is with the pg command, using it as follows:

pg filename(s)

This shows approximately 20 lines of a file, (the exact number depends on your tenninal) then stops to let you
read it on the screen. Pressing RETURN displays the next 20 lines of the file, and so on. You can list more than
one file name after the command and the files will be displayed, 20 lines at a time. in the order specified.

2.2.4.2 Displaying files using the cat command

Another easy way to display files is with the cat command (from concatenate). The cat command displays the
contents of all the files you specify, in the order you name them. with no breaks between the listings. Thus, the
files are concatenated and displayed. For example, to show one of the files you have created, type the follow
ing:

cat doc

To show both of your files, type the following:

cat doc temp

The two files are displayed one after the oLher on the tenninal with no break between them; they are con
catenated for display, though the files themselves are not actually merged. To slow down the display of these
files to see them one screen at a time, use the following command line:

cat doc temp I pg

The vertical bar is the pipe metacharacter and is explained in Subsection 3.2.2, Combining Commands into One:
Pipes. The pg is the page command.

2.2.4.3 Displaying files using the pr command

The pr (print) command produces formalled displays of files. As wiLh the cat command, pr shows all the files
named in a list The difference is that pr breaks the file display into pages, with a heading on each page that
includes the date and time when the file was last modified, the file's name, and the page number. The pr com
mand also adds extra lines to skip over the folds in tractor-feed paper. Thus, the following command line
displays file doc and then skips to the top of a new page and displays file temp:

SG-2010 2-9 B

pr doc temp

The pr command can also produce multicolumn output, though this only works if the lines in the file are short
enough. If your terminal displays 80 characters per line and you specify an output of 2 colwnns, the lines in
yOUi' file cannot be longer than 39 or 40 characters. For example, to display file doc in three-colwnn format
(you may have to shorten the lines), specify the following command:

pr -3 doc

The pr command has several other capabilities; see the pr entry in the UNICOS User Commands Reference
Manual, publication SR-2011.

2.2.5 RENAMING, COPYING, AND REMOVING FILES

To learn how to rename, copy, and remove files, you will use the two files you have created, doc and temp.
First, verify that these files exist using the Is command.

2.2.5.1 Renaming a file

This subsection discusses how to use the mv (move) command to rename files. The full function of the mv com
mand is to move files from one location to another in the UNICOS filing system, and that use is explained in
subsection 2.4, Using the UNICOS File System.

*************.*.********.*** •• ****.*******.* ••• * •••• *** •• ****.** •• *.*

CAUTION

If you rename a file with the same name as that of a file that already exists, the
existing file's contents are destroyed.

The generic format of the mv command is as follows:

mv oldname newname

Type the following command now:

mv doc newdoc

The contents of doc move to the new file named newdoc, and doc disappears. If you like, use the Is command
to confirm that the file named doc no longer exists and the new one, newdoc, has taken its place.

B

2.2.5.2 Copying a file

To copy a file9 use the cp command, followed by the existing file's name and then the new file's name.

CAUTION

As with renaming a file9 copying to an existing file overwrites the existing file.

Type this on your tenninal:

cp temp copy temp

This creates a new file9 copy temp, and duplicates the contents of the file named temp into it. IT you like, use
the Is command to confirm that both temp and copy temp exist. You can also use the cat or pr command to
verify that their contents are the same.

The generic format of the cp command is as follows:

cp oldname newname

Try this command again9 making a copy of newdoc with its former name doc9 verifying the process with the Is
command:

cp newdoc doc

2.2.5.3 Removing a file

The rm command permanently deletes files from the UNICOS filing system. It is used as follows:

nn -ifilename

The ·i option stands for interactive and is an option that makes UNICOS prompt you for a yes or DO response (y
or n) before it actually deletes the file. This is a safe way of removing files9 and it is recommended for new
users.

You can delete more than one file9 as follows:

rm -i filenamel filename2 ...

You get a warning message if a named file does not exist or if you are not allowed to write to the file; other
wise, there is no prompt or response. (Subsection 2.5.3, Permissions, covers file permissions.)

Try removing the two files that you have just made with the rename and copy commands. Type the following:

rm newdoc copytemp

Now use the Is command to see which of your files remain.

SG-2010 2-11 B

2.2.6 USING METACHARACTERS IN FILE NAMES

The metacharactezs ., [.1, and? are a shorthand notation for identifying file names when you want to do opera
tions such as displaying, listing. or removing certain files (this is known as paltern matching in UNICOS and
UNIX documentation). The metacluiracters ' and \ suppress the special meaning of metacharacters, letting you
use metacharacters nonnally without their special meanings.

Remember, the meanings of these metacharacters as given here are in the context of file and directory names in
the shell. Thesemetacharactezs have different meanings when used to match text patterns within the text of files
(as explained in subsection 2.2.9, Metacharacters Within Files).

2.2.6.1 The· metacharacter

The • means "any characters," matching 0 or more characters of any kind. It can save you repetitive typing of
similar file names in a command line. For example, suppose you are. typing a large document such as a book.
Logically, it divides into small pieces like chapters and sections, so you can type the document as a series of
files. One method is to have a separate file for each section of each chapter, as follows:

chapl.1
chapl.2
chapl.3
chapl.4
chap2.1
chap2.2

Create a series of practice files now, using the cp command repeatedly to copy one of your files into files with
related names like the ones just listed.

To display the whole book, you could enter the following:

pr chap 1.1 chap 1.2 chap 1.3 •••

Using the pr command like this would be tiresome and could lead to errors from typing so many names.
Instead, you can enter the following:

pr chap·

Because the • means "any characters. including none," this ttanslates into "display (in ascending AScn order) all
tiles whose names begin with chap".

This shorthand notation is not a characteristic of the pr command; it is a sezvice of the shell and can be used
with almost any shell command. For example, the names of the files composing the book can be listed by using:

Is chap·

SO-2010 2-12 B

This command line produces the following list of file names:

chap l. 1
chap 1.2
chap 1.3
chap 1.4
chap2.1
chap2.2

The • is not limited to the last position in a file name; it can be used anywhere and can occur several times.
The following command line displays all files that contain memo or crt as any part of their names:

cat ·memo· ·cft·

The preceding command line displays all of the following files:

CfLold cft.fourier memofile memold memory new.cft

Further~ • by itself matches every file name except names beginning with a . (period). so the following com
mand line following displays the contents of all your files (in alphabetical order):

cat·

•••

CAUTION

Because a • by itself matches every fire name not beginning with a . (period), the
rm • command line deletes all files listed by the Is command. Before using nn •
make sure that none of the files is needed.

Whenever you use the metacharacters ? • or [] with the rm command. it is
strongly recommended that you use the nn command's ·i option .

•••

2.2.6.2 The [] metacharacters

The • is not the only pattern-matching feature available. The metacharacters [] direct the system to match .any
one of the characters inside the brackets. The following command displays only chap1.l. chapl.3. and chap1.4,
out of all the chap 1 subsections:

cat chap 1.[134]

This command line does NOT display chap1.34 or chap1.l34, if they exist. because only one of the characters
within brackets is matched at a time. The pattern chapl.[134] tells the system to match the string ... chap}. ... fol
lowed by a 1 or a 3 or a 4. and nothing else after that.

SO-2010 2-13 B

To indicate a combination of l-digit and 2-digit numbers " such as 1, 3,4, 34, and 49, specify the tiles as follows:

cat chap [1 34] chap34 chap49

If you have broken the'chapters into subsections such as chapl.l, chapl.2, chap2.rour,e cbap9.5,and so on, you
could use the * metacharacter as follows to display all the subsections of the chapters I, 2, and 9:

cat chap(129]*

The preceding command means "Display the files whose names consist of the combination of chap followed by
1, 2, or 9, followed by any characters." For example, all of the following tiles would be displayed:

chap 1.4 chap l.axe chap2.99 chap9 chap9SS

A range of consecutive letters or digits can be abbreviated by placing the tirst and last characters of the consecu
tive range, separated with a hyphen, between the [] metacharacters as follows:

cat chap[l-49]. *

The preceding command line displays all existing subsections of chapters 1 through 49 (for example, chap 1.3,
chap4.6, chapI8.one, and so on). Letters can also be used within brackets. The [a-z] pattern-matching feature
matches any character in the range a through z (lowercase only). To match all letters, both lowercase and
uppercase, use [a-zA-Z]. There can be no space between the two ranges, a-z and A-Z.

2.2.6.3 The? metacharacter

The ? metacharacter matches any single character, so the following command line lists all tiles that have singlee
character names (for instance, b, x, or z):

Is ?

The following command lists all tiles that are the first subsections of all chapters with single--characters after the
chap pretix (chapl.l, chap2.l, chapY.I, chapd.l, and so on):

pr chap?1

202.6.4 The'" and \ metacharacters

There are two ways to suppress the special meaning of the metacharacters * t ?, [, and] so that you can use them
as ordinary characters. One method uses either the single- or double-quote metacharacters and suppresses the
meaning of several metacharacters at once. Place quotes around the argument that contains any of the metachar
acters *, ?, t [, or J. For example, if you have a file named what?, you could display it by typing either of the
following command lines:

cat 'What?'
cat "what?"

The t and " metacharacters cannot protect themselves, so if you had files named don't and can"t you would
have to use the following command lines to display them:

SO-2010

cat "don't"
cat 'can"t'

2-14 B

The second method of suppressing metacharacter meaning uses the \ metacharacter. \ suppresses the special
meaning of any single metacharacter that follows iL Place the \ immediately before another metacharacter
(including itself) to suppress the meaning of that one character. For example, another way to display the two
files, don't and can"t is with the following command lines:

cat don\'t
cat can\"t

The \ protects all the other metacharacters, too. The following command displays the contents of a file named
this*dragon:

cat this*dragon

Without the \, any file beginning with "this" and ending with "dragon", with any characters in between, would
be displayed, because the * would be treated as meaning "any characters, including none," rather than as simply
an asterisk. For example, all of the following would match the pattern this*dragon:

thisdragon this99thdragon thisolddragon thisisadragon

The \ metacharacter can also protect itself against interpretation. To display a file named six\pack, use this
command line:

cat six \\pack

The first \ protects the second \ against interpretation, letting the cat command take the second \ as literal input
(part of a file name).

The file names given in the preceding examples are merely to illustrate a poinL It is poor practice to name files
using anything other than letters, numerals, and the underscore, and it can lead to problems in finding or
referencing the file.

Another use of the \ is to let you enter input more than one line at a time. If you want to enter a command line
and it is more than one screen line in length, you must put a \ at the very end of the first (2nd, 3rd, •••) line, just
before pressing REnJRN. UNICOS responds with another prompt, and you can continue to type the remainder of
the command line. When you want to send the command line to be processed., just press RETURN with no \
befOre it as you normally would. Try it now:

pg\
temp

This has the same effect as typing pg temp on one line. This may not work with some tenninal connections to
UNICOS. If you have difficulties, try just typing one line that wraps down to the next line on your terminal.

2.2.7 SEARCHING FILES FOR TEXT PATTERNS: THE grep COMMAND

The grep (global regular expression printer) command locates a string (also known as a regular expression in
UNICOS terminology) in files that you specify. The term regular expression indicates that you can search for
more than just ordinary strings; metacharacters can be included, letting you search for whole classes of patterns,
though metacharacters are interpreted differenLly in text files than in the shell. Subsection 2.2.8, Interpretation
of Metacharacters, discusses these differences.

50-2010 2-15 B

The simplest format of the gr~p command is as follows (italics represent arguments you supply):

grep string fil~ntU'I'Ie

The grep command searches for string in file filenarM and displays all of the lines from the file th8t contain this
regular expression. You can search your file. temp, for all lines containing numerals, using metacharacters in
the search pattern, as in either of the following command lines:

~p [0123456789] ~p
grep [0-9] temp

This search function can be used in many ways. Try the following examples on your file temp, which you
created in subsection 2.2.2.5. The file should look like this:

This is a test line of only alphabetic characters
This line contains some numbers, 2 and 19, as well
On this line are the characters % @ !
The numbers 2 and 19, and odd characters % @ ! + are on this line
This line contains the UNICOS metacharacters $ > ' and • as text

, All character types are mixed here: $45.00 • 8/canon 'units'

Type the following command:

grep odd temp

The result is as follows:

The numbers 2 and 19, and odd characters % @ ! + are on this line.

The grep command returns all of the lines in a file that contain the specified pattern; odd. in this case.

Type the following command line:

grep This temp

You get only the first, second, and fifth lines of the file return~ because grep distinguishes between uppercase
and lowercase. To make grep ignore differences in case, use the ·i (ignore case) option, as follows:

grep oi This temp

From this command line, you would get all but the last line of the file returned, because this pattern matches
any cases of the string this (which is on all lines but the last).

If you want to find a string. but do not remember in which file it is, type grep, followed by the string. followed
by a pattern that will match all files in which the string may be. For example, suppose you want to locate the
string illustration in a book that is on the system. Suppose also that the book is divided up into chapters and
subsections, as discussed in subsection 2.2.6.1. The • Metacharact.er. If you know that the string illustration
occurs only in the second subsection of any chapter, you would use the following command:

grep illustration chap· .2

50-2010 2-16 B

This command line returns one line for each occurrence of illustration, listing first the name of the file, then a
colon and the line containing the string. illustration. The response could look like this:

chap1.2: as shown in the following illustration.
chap 1.2: Our discussion begins with an analysis of Nabokov' s illustration of
chap3.2: as previous evidence has shown, few illustrations have the impact

If you add the -D option to the grep command, line numbers are also displayed, showing you exactly where in
each file the string occurs. Try the -D option now, searching for a string in your file temp, to see how the out
put looks.

Suppressing the meaning of metacharacters is particularly useful in conjunction with the grep command. Often,
in files, metacharacters are used as characters with no special meaning intended. For example, the ? character
may frequently be used as punctuation, and the [] or () characters may be used to enclose notes, equations, or
asides. To search for any strings containing these characters, you must use either the single quotes, double
quotes, or backslash to treat the metacharacters as ordinary characters for which to search.

See the UNICOS User Commands Reference Manual, publication SR-2011, for more information about the grep
command and its many options.

2.2.8 INTERPRETATION OF METACHARACTERS

Using metacharacters in search or substitution patterns can be very tricky because there are two levels at which
metacharacters can be interpreted. The first level at which this happens is in the shell. When you enter a com
mand line, the shell looks for metacharacters in it If you do not want the shell to interpret those metacharac
ters, you must use the ',", or \ metacharacters to protect them by providing an outer layer for the shell to inter
pret.

When the shell has finished interpreting metacharacters, the resulting command line, with any unprotected meta
characters already interpreted and substituted, is sent to the command program. The command program can then
interpret any metacharacters remaining after the shell's interpretation pass.

To see how this works, read over the following paragraphs that step through the shell's interpretation of this
command line:

Is -I ch\$p*

This command line displays a long listing for all files in the current directory that have names beginning with
the four characters ch$p. The command line is sent LO the shell, which first looks for metacharacters. The first
metacharacter that the shell finds is the \. The shell removes it and ignores the character following it ($). The
shell next finds the * and then searches the current directory for all possible matches to the pattern ch$p*. All
of these matches (for example, chp, chp2, and ch$pfive) are then substituted for the pattern ch$p*. Next, the
shell searches for the Is command program. When it finds Is, the shell invokes the program, sending it the -I
option and the list of file arguments: chp, chp2, and ch$pfi ve. What the Is command program therefore actu
ally sees as input is as follows:

-1 ch$p ch$p2 ch$pfive

SG-2010 2-17 B

This is just as if you had typed the command line:

Is -I ch$p ch$p2 ch$pfive

This type of substitution occurs for all commands; therefore, if you want a command to' interpret metacharacters,
you must prevent the shell from interpreting them first. The protective metacharacters
t, ", and \ serve this function by providing another layer of metacharacters for the shell to interpret.

2.2.9 USING METACHARACTERS WITHIN FILES

When used to match patterns within files, metacharacters are somewhat different than when used at the shell
level to match file or directory names. When you use metacharacters to search for patterns within files, you
must usually protect them from interpretation by the shell with the 't ", and \ metacharacters.

2.2.9.1 The .. metacharacter

The .. matches the beginning of a line, unless it is within the [] metacharacters. The command line that follows
searches for lines in file temp that begin with the string on, but it ignores lines that have the string on in any
other position. The·i (ignore case) option to grep makes it match uppercase, lowercase. or mixed case instances
of the string.

grep -i '''on' temp

Try this command two ways on your file tern p, noting that the string of two letters. on, is match~ not just the
twcr!etter word, on:

grep -i on temp
grep -i 'A on' temp

When the ... is the first character within brackets, it acts as a NOT operator, matching anyone character not in the
set. The following command line searches for lines in temp that do not have any numerals in them:

grep '("'0_9]' temp

Try the following command lines, comparing their results:

grep '[0_9]' temp
grep t ("'0-9]' temp

2.2.902 The $ metacharacter

The $ is. the opposite of the caret's first meaning; it matches the end of a line. To see how this works, try the
following two command lines, remembering that you must protect the $ metacharacter:

grep lineS temp
grep line temp

To match only empty (blank) lines, use both the ... and the $, as follows:

grep 'A$ t filename

SG-2010 2-18 B

2.2.9.3 The. metacharacter

In a search pattern within a file, the • (period) metacharactcr bas the same meaning as the shell's ? metacharac
ttz; it matches any single character. The following command line searches for lines in temp containing the
words tent. test. tat. and so on. Try it now to see the results.

grep 'te.t' temp

2.2.9.4 The· metacharacter

When searching for patterns within files, the * metacharacter has a different meaning than it does at the shell
level, matching file or directory names. The asterisk matches zero or more occurrences of the single preceding
character; therefore, to match one or more (not zero or more) consecutive occurrences of the letter ~ use the
following command line:

grep t AA.' temp

Try the command line to see the results. To match any character(s), just as the asterisk does at the shell level,
use the following line:

grep , . *' filename

The . specifies anyone character and the * specifies zero or more occurrences of that character. Combined,
therefore, they match anything, just as the * metacharacter does at the shell level (in file name substitution).
Try the following two command lines:

grep , . *char' temp
grep '*char' temp

The second command line produces no output, because the search does not find any strings in temp to match the
string *char. With no character specified before it, the asterisk is taken literally as a character for which to
search, with no special meaning.

2.2.9.5 The protective metacharacters' "\

The three protective metacharacters have the same meaning within files as they do at the sbe1l level, as
described in subsection 2.2.6.4, The ' " and \ Metacharacters.

2.3 STRUCTURE OF THE UNICOS FILE SYSTEM

The UNICOS operating system organizes files into a hierarchical tree structure. This is accomplished by group
ing related files into directories. A directory or directory file is a file that contains information about the files
grouped immediately beneath it on the Iree. It is an index to those files, holding information about their size,
location, and attributes (such as who owns them, and who can manipulate them and how).

Figure 2-1 shows a sample tree structure.

SO-2010 2-19 B

A

H

o Directory File:
Index to all subdirectories
and files below it.

Spec,ial File:

Hardware devices such as disk
drives and terminals, and
their software drivers.

c::J Regular File:

Data, text, or executable
file (a program) .

1789

Figure 2 .. 1. Basic Hierarchical Tree Structure

At the top of the hierarchical tree structure is the root directory from which all other files and directories
branch. It forks into multiple branches, which, in turn, fork into more branches, and so on down the tree until
the files are reached.

A directory file is an index to all of the files and subdirectories one level below iL In figure 2 .. 1, the directory
shown as A has entries in it for its three subdirectories B, C, and D. Directory B has two entries in it one for
each of its subdirectories E and F. Directory F has entries for the two files G and H.

On most UNICOS systems, the directory structure is similar to that shown in figure 2-2. The directory marked I
is the root directory from which all other files and directories branch. It is common to all UNICOS systems.

50-2010 2·20 B

o Directory File:
Index to all subdirectories
and files below it.

Special File:

Hardware devices such as disk
drives and terminals, and
their software drivers.

r::J Regular File:

Data, text, or executable
file (a program) .

Figure 2-2. UNlCOS File System Names

1790

The directory bin that branches off the root directory in figure 2-2 is a file of system commands used by both
users and the system devices (such as tenninals and disk drives). The devices are treated as special files in the
directory dev. The users are generally subdirectories under the directory u (for user). such as jean in figure 2-2.
The file bin that branches from the directory u is a file of system commands used primarily by users (rather than
the system and its devices). As long as they are in different directories. more than one file or subdirectory can
have the same name. just as the two bin directories do in figure 2-2.

The specific names of these directories and files may vary from one eray system installation to the next, but the
basic structure is the same.

Type the pwd command (print working directory) at your terminal now. You will get a response similar to the
following:

/u/jean

This is the response that the user. jean. on the system shown in figure 2-2 would get from typing pwd. This
indicates that the user is currently located in the directory jean, which is located in the directory U t wHich is in
tum located in the root directory. The root directory is indicated by the leading slash in the pwd response; the
other slashes are only to separate directory and file names and have no special meaning.

SG-2010 2-21 B

In the response that you get from pwd, the last name, after the last slash, is the name of your current directory
(jean in figure 2-2). This is known as your home directory; it is the place your are always at when you first log
on to the system. The other names listed in the response from pwd are the names of the directories between
your home directory and the root directory.

The pwd command tells you what directory you are currently in and all of the directories that are above it on
the tree on a direct path back to the rool This list of directories, from any file upwards directly to the root, is
known as a path name. To see the path name for the the special file representing the terminal at which you are
logged on, type .the tty command (fonnerly an abbreviation for printing tenninals). The response you get is the
path name to the file representing the terminal you are on; the final name in that path name being the the
system's name for your terminal. On the system shown in figure 2-2, the response to tty would be the follow
ing:

/dev/ttypl

This indicates that the system·s name for the terminal is ttypl. the only terminal file shown, because DD39 is a
disk drive file.

Figure 2-3 shows a more complete directory structure, which is probably similar to the one on your system.

SG-2010

A

o

o
G

Directory File:
Index to all subdirectories
and files below it.

Special File:

Hardware devices such as disk
drives and terminals, and
their software drivers.

Reqular File:
Data, text, or executable
file (a proqram) .

1791

Figure 2-3. Sample UNICOS Directories and Files

2-22 B

To access a file that is not in your current directory (what you get from the pwd command). list the names of
the directories from the root directly down the tree to the file. Separate their names with slashes and begin with
a slash for the root directory. Examples of such path names (figure 2-3) are as follows:

Object Path Name

A I
B Ibin
C lu
D lulbin
E Iulanne
F Iulanne/project or Iuljean/project
G lulanne/novel/cbapU

As the examples show. path names must proceed downward. The path name lui jean/project/anne, fer example.
is invalid because it tries to go upward and because it tries to use a regular file. project, as a directory file.
Path names consist of a list of directory file names, separated by slashes, and optionally followed by one regular
file name, or a pattern with metacharacters, at the very end. To access the directory anne, you must use the
path name Iulanne.

NOTE

In UNICOS, anywhere that you can use an ordinary file name, you can instead use
a path name that ends in a file.

In aU of the preceding examples. the path names start at the root directory and work downward to the desired
file. These path names are called absolute path names. Another way of accessing a file is to use a relative path
name, which is the path from your current directory (rather than the root) to the desired file.

Enter the command line Is -a at your terminal. The first two entries that you see in the output are a dot and a
set of two dots. The single dot is UNICOS shorthand for your current directory. The two-dot set is sbonhand
for the directory one level above your current directory (known as the parent directory). If, for example. you
are currently in luldept13/egbert, the . represents egbert, and it is shorthand for the full path name to iL The ..
represents dept13 and is a shorthand way to access files or directories relative to your current directory. In
figure 2-3. a person at the directory Iulanne/novel could access the file manager by using the absolute path
name, Iulanne/manager, or by using the relative path name, •• /manager. This user could access the file
finance by typing the absolute path name, lui jean/finance, or by typing the relative path name,
•• 1 •• /jean/finance.

SO-2010 2-23 B

2.4 USING THE UNICOS FILE SYSTEM

All of the files you have created and used to this point have been created in your home directory. Now that you
see how the UNlCOS file system is set up, you will learn how to move around the structure and how to locate
files among the directories in the tree structure. .

The first step to using your system t s file structure is to explore it, so you can see how it is arranged. The Is
command, like any UNlCOS command, can take a path name as an argument. To this point, you have only been
using the Is command to see what files are in your home directory. Now you can see what files and subdirec
tories are elsewhere on your system.

Type the cd (change directory) command now with no arguments to be certain that you are in your home direc
tory. Next, type the pwd command (print working directory) again, to see the full path name to your home
directory. In figure 2-3. at the directory jean, the response to pwd would be as follows:

/u/jean

In the response, u is the parent directory of jean and is the directory that contains a subdirectory for each user
on the system. Your system should be set up similarly, though the complete set of users may be divided up
according to the manager for whom they work and grouped under a manager directory with a path name some
thing like: /ulmanager/individual or /ulgroup/individual. Whatever the case, type the following at your tenni
nal:

Is -C ..

This lists (in columns. because of the -C option) all of the files and subdirectories of your parent directory (..).
In figure 2 .. 3, at the directory jean, the parent directory (..) is u and the response to the command line Is -C ..
is as follows:

anne bin jean

If the arrangement of your system is analogous, the response will list all of the users on the UNlCOS system,
including yourself. If you are grouped under a manager, as previously mentioned, the response will list all of
the files and users in your manager's group. To see what files any other user has, type that user's login name
(from the response to Is -C ..) after the Is command, as follows:

Is /u/login_1IQI'M

In figure 2-3, the analogous command line that the user jean would type is as follows:

Is /u/anne

The response to this command line would be as follows:

manager novel

You will not be able to access all directories and files on the system. Some of them will have privacy permis
sions set so you cannot access them. Subsection 2.S.3, Permissions, discusses this in more detail.

Try the following command:

Is /

SG-2010 2-24 B

The response will be a list similar to the following:

bin
dev
etc
lib
lost+found
unp
u

This is a collection of the basic directories recognized by the system; those that branch directly off the root
directory (I). This same command. executed in figure 2-3. would respond with the following:

bin
dev
u

Use other path names with the Is command to develop a mental picture, analogous to that in figure 2-3. of your
system's structure. You may occasionally get messages to the effect that you do not have permission to access
a directory or file; just ignore them and try another path name.

2.4.1 MOVING AROUND IN THE FILE SYSTEM

Now that you know how your system is structured. you can move around in the tree of directories, locating
yourself at any directory so that its files are easily accessible. To change your directory. use the cd (change
directory) command, followed by the relative or absolute path name to the directory to which you want to
switch. For example. if you were at the directory Iulannelnovel in figure 2-3 and wanted to move to the direc
tory lui jean by using an absolute path name, you would type the following:

cd Iu/jean

To make the very same change using a relative path name, you would type the following:

cd . .I . ./jean

Similarly t to see what files that directory contained, while remaining in your own directory (Iulanne/novel), you
could type either of the following command lines:

Is Iu/jean
Is . . 1 . . /jean

If you use cd alone, with no arguments, it moves you to your home directory, which is the place you are always
at when you first log in. This is very helpful if you move around enough to get lost and do not remember the
exact path name to return you to a familiar area of the file system.

See the cd entry in the UNlCOS User Commands Reference Manual. publication SR-2011, for more infonnation
on the cd command and its options.

SO-2010 2-25 B

2.4.2 LOCATING FILES

When you have used the file system for a while and have created a number of files on i~ perhaps in different
directories, you may at times forget the name of a file or the name of the directory it is in. If this happens, you
can use the find command as follows ~ search for a file. The find command displays the path name of every
file that has the name you specify. It begins searching at the directory you specify and works its way down the
tree structure through all the subdirectories of that directory. The general fonnat of the find command is as fol
lows:

find directory -pa1hname -name filename 1 -print

For example, if user anne, in figure 2-3 wanted to find the file chapt2, knowing only that it is somewhere in a
subdirectory of her home directory, Iulanne, she would type the following command line when located at her
home directory:

find . -name chapa -print

If user anne were located at a directory other than the one she wants to specify in the search. she would use an
absolute path name for the search directory I as follows:

find /ulanne -name chapa -print

To find all files named bin in the root directory of figure 2-3, a user would type the following command line:

find / -name bin -print

The output looks like this:

/bin
/ulbin

If you are not certain what directory a file is in, specify the directory one level above the le~l 0/ directories
you know it is aL If, for example, you know that a file is in some user's directory, but you do not know which
one, specify the directory of all users, lu. and find will first search the /u directory itself and then all of its sub
directories (each one a user's home directory, like jean and anne in figure 2-3). Naturally, in such a tree struc
ture, the search time can increase exponentially with each higher level you specify in the tree.

See subsection 3.2.2.2, Searching for Strings in Directory Listings, for another, much faster, means of locating
files.

2.5 CHANGING THE FILE SYSTEM STRUCTURE

Now that you know how the existing structure is arranged and how to move around in it, you can learn to
modify that structure. There are five primary ways of modifying the structure: Creating new files, copying files,
moving files and directories to new locations, creating new directories, and linking files and directories to one
another. You have already learned the first of these, creating new files; this subsection covers the last four
methods of altering the tree structure.

SO-2010 2-26 B

2.5.1 MOVING, COPYING, AND LINKING FILES BETWEEN DIRECTORIES

In figure 2-3, if you were located at the directory jean and you wanted to copy the file dlaptl into your own
directory, you would use the following command line:

cp /ulanne/noveVchaptl .

The period (.) is shorthand for your current directory, jean, so this would copy the file chaptl into the directory
jean.

To copy chaptl into your current directory under the name book, you would type the following:

cp lu/anne/noveVchapt 1 book

The following are two general fonnats of the cp command that use path names. The words "file" and "direc
tory" in parentheses are NOT part of the command lines, they merely indicate whether the path name preceding
them is one file, one or more files. or a directory. the

cp existing-path_name (file) new..,path_name (file)
cp. existing-path_names (files) new-path_name_ (directory)

As the second fonnat indicates, you can simultaneously copy a number of files into one directory. In figure 2-3,
to copy all of the chapters of anne's novel into jean's directory, you would type the following:

cp Iu/anne/novel/* /u/jean

The mv command moves files analogously; its generic fonnats are as follows:

mv existing-path_name (file) new..,path_name (file)
mv existing-path_names (files) new..,path_name (directory)

With the first fonnat of the mv command. you can move a file from one directory to another. retaining the same
file name or giving it a new one. For example. in figure 2-3. the command line that follows would move the
file finance from directory jean to directory anne, keeping the same name:

mv Iu/jean/finance Iu/anne

To perfonn the same move. but rename the file budget, you would use the following command line:

mv Iu/jean/finance Iu/anne/budget

With the second fonnat of the mv command. you can move a number of files, or the entire contents of a direc
tory. to another directory. For example. in figure 2-3. you could type the following command line:

mv Iu/anne/novel/* Iu/jean

This would move all of the files. chapt. chapt2. and chptJ in directory novel to directory jean.

You can also use multiple path names with this format of the mv command For example:

mv Iu/anne/novel/* lu/anne/manager /u/jean

This command line moves all of the files in the directory novel, and the two files passwd, and manager to the
directory Iuljean.

SO-2010 2-27 B

Another means of sharing access to files is by linking them between directories. Unlike move or copy t this does
not change the location of the file or make more copies of iL The In (link) command allows a file or directory
to be accessed from more than one directory without the use of path names. In figure 2m 3, the file project has
been linked between the two user directories jean and anne so that they both direcdy access iL 1be general
format of the In command is as follows:

In file...JXJIh-1IIJI'M directory-paJh_fI01M

Suppose, in figure 2-3. that Iuljean had originally been the sale owner of the file project. To link it to directory
Iulanne so that both users could work on it, Jean would type the following command line:

In project /u/anne

This command accomplishes the link from project to Iulanne as shown in figure 2-3.

2.5.2 CREATING AND REMOVING DIRECTORIES

It is usually convenient to arrange your files so that files related to one topic are grouped together in one direc
tory separate from other projects. For example, suppose user jean, in figure 2-3, intends to start writing a novel
just as user anne is doing. As a first step, jean will want to create a subdirectory under her home directory jean;
all files related to the book will be stored in this subdirectory. To create such a directory, jean should first be
located in her home directory jean, and then type the following:

mkdir book

This creates a new subdirectory, book, under the current directory, jean. User jean may want to further subdi
vide the material related to the book into text, outline, and notes, with a subdirectory for each under the direc
tory book. The following command, executed from the home directory, jean, accomplishes this:

mkdir book/text book/oudine book/notes

Alternatively, these three subdirectories under book could be created from within directory book with the fol
lowing two commands:

cd book
mkdir text outline notes

After creating these directories, user jean would make some files under them, such as cbap 1 and cbapl under
directory text, and plot and lifelines under outline, and jan27 under notes.

After these changes, directory jean would be structured as figure 2-4 shows it:

SG-2010 2·28 B

o
o

Directory File:
Index to all subdirectories
and files below it.

Reqular File:
Data, text, or executable
file (a proqram) .

Figure 2-4. Example of an Altered Directory

1792

To see how such alterations of the file structure work. complete the following exercise:

1. From your home directory. (cd moves you there) create a subdirectory named book.

2. Move to directory book and create three files containing any sort of text (copy from this manual.
if you like).

3. Create three subdirectories. text. outline. and notes under directory book.

4. Copy the three text files, one into each of the three subdirectories, giving the files new names
within the subdirectories.

5. Move to your home directory.

6. Type the command line: Is -RC (note the uppercase letters).

The ·R option of the Is command means "Recursive." It makes the Is command list all of the entries in the
current directory, including the names of any of its subdirectories. Then it moves down a level into those sub
directories, listing all of their contents. and so on down the tree structure.

SG-2010 2-29 B

Typing the Is -RC command line at directory jean in figure 2-4 evokes the following response:

book

/book:
outline

/boOk/outline:

finances

notes

lifelines plot

/boOk/notes:
jan27

/book/text
chap! chap2

project

text

Now that you see how making directories works, you can remove the book directory sttucture just created, if
you would like to. The rmJir command removes directories from the file sttucture. Before you can remove a
directory. however, it must be empty; it cannot have any files in it To begin removing the book sttucture that
you have just set up, you must first remove all of the files in the lowest directories. The following commands.
executed from your home directory, accomplish this:

nn book/text/·
nn book/outline/·
nn book/notes/*

These commands remove the files cbapl. cbapl, lifelines, plot, and janl from their directorieso Now, to
remove all three subdirectories under book, type the following:

nndir boolc/*

Finally t to remove the book directory itself. type the following:

nndir book

•••

CAUTION

There is no way to undo the nn command. When you use the ",r option,
explained next, be certain that you will not need any of the files or directories
that you remove, and be certain that you are in the directory where the files are
located, or specify the path name to it .

•••

All of the preceding steps to remove the book directories and files could have been done with the single follow
ing command line:

nn -r book

The -r (recursive) option of the rm command removes the specified directory, all of its subdirectories, and all
files in those directories.

SG-2010 2·30 B

2.5.3 PERMISSIONS

When exploring your system's file StnlCtW'e, you may have received messages to the effect that you did not have
pennission to look at the files in certain directories or cenain files within a directory. You can arrange similar
degrees of privacy for your files and directories.

Each directory file and regular file has three sets of three permissions: read, write, and execute (rwx). You can
set any of these permissions for any of the three groups: owner (you), the "group" you belong to (if any is
defined on the system), and all other system users.

Before changing pennissions, you should first detennine how they are currently set. You can do this with the ·1
option of the Is command, which provides a long listing of the files in the specified directory (current directory
if none is specified). In your home directory, type the following command line:

Is -I

You will get a response similar to the following (explanation follows):

total 2
-rw-rw-rw- 1 you pubs 41 Jul 22 14:56
-rwxrw-r-- 2 you pubs 1204 Jan 19 08:11
-rw-rw-rw- 1 you pubs 213 Jul 22 16:29

doc
sample
temp

The total 2 is showing you how many blocks of system storage space this directory requires. A blocJc is a unit
of storage space defined in UNICOS as 4096 bytes. (Directories are a minimum of one block in size.) A discus
sion of column 1 follows, and the remaining columns of this output will be explained later in this subsection.

Look at column 1, which lists all of the permissions for a file. For file sample above, the permissions are
-rwxrw-r--. The very first letter indicates the type of file, in this case, a - which indicates that sample is a regu
lar file. The other possible first characters are a d, for directory, or other letters that indicate various types of
special files.

The first set of three permissions (rwx) for file sample show that the owner has all permissions for the file. The
owner may read the file (look at it), write to the file (alter or remove it), and execute it as a command (only if it
is a command). The second set of three permissions (rw-) applies to other users belonging to the same group to
which the owner belongs. For file sample, these users can read or write the file, but they cannot execute it as a
command. The last set of three permissions (r--) is for all system users other than the owner or members of the
owner's group, and it indicates that these users can only read the file. A pennission set of all hyphens (--)
would indicate that the users to whom the permission applied could do nothing with the file. (There is an
exception to the preceding statement. If you have write pennission to a directory, you can delete files from it,
even if you do not have write permissions for the files themselves.)

The pennissions are each assigned a number:

r=4
w=2
x = 1
-=0

For each set of three pennissions applying to one category of users (owner, group, others), the three (rwx)
numbers are added up. Therefore, for file sample, the owner has a permission value of 7; rwx = 4 + 2 + 1 = 7.
The owner's group members have a permission value of 6 (rw- = 4 + 2 + 0 = 6) and all others have a pennis
sion value of 4 (r-- = 4 + 0 + 0 = 4); therefore, the complete set of permissions for this file is represented by the

SG-2010 2-31 B

3-digit number 764. To change the permissions for a tile or for a directory and all its associated files, use the
chmod (change mode) command, followed by the 3-digit number representing the pennission values you want to
assign to the tile, followed by the tile or directory name. If, for example, you want to make your file doc more
private so that no one but you could look at it or write to it, you could type the following:

chmod 711 doc

The I's allow execute pennission to your group members and all others on the system, but this does not matter
in this case, because the file is not a command. To let anyone other than yourself look at the file and execute it,
but be unable to change it, (no write pennission), you can use the following command line:

chmod 755 doc

To have a completely open file for everyone to read, change, and execute, use the following command line:

chmod 777 doc

The general fonnat of the chmod command is as follows, where number is the three-digit pennission number
discussed previously and /UU1'Ie is one or more directory or file names (including path names):

chmod number 1ltlme

Try the chmod command now on several of your files, using different pennission numbers, then use the Is -I
command line to see how the files' pennissions have changed.

Changing directories does not change file pennissions. If, for example, you do not have permission to read or
write a file in another user's directory. changing to that directory (with ctl) does not give you access to that tile.
The system recognizes your login id and associated pennissions, regardless of where you are located in the filing
structure.

Now that tile permissions have been discussed, we will continue with an explanation of the sample output from
the Is -I command. shown previously. It is repeated here for your convenience:

total 2
-cw-cw-cw- 1 you
-cwxrw-r-- 2 you
orw-cw-cw- 1 you

pubs 41 JuI
pubs 1204 Jan
pubs 213 Jul

22 14:56
19 08:11
22 16:29

doc
sample
temp

Column 2 shows the number of links to each file. A link is a path to a file or directory. like an implicit version
of the path names you type to access files and directories. It is not a copy of the file, but a means of accessing
it.

In this listing, sample is the only tile with more than one link. Every file nonnaily has one link to the directory
it is under, allowing the file to be accessed from and listed in that directory. You can set up other links to
access the file from directories other than the one in which it is initially created (see subsection 2.5.1, Moving.
Copying, and Linking Files Between Directories).

In figure 2-3, file project is the only file with more than the usual single link. This file can be accessed from
either of the two directories, anne or jean and it is listed in both.

Column 3 of the Is -1 listing shows who is the owner of a file; that is, the user's login name (you in the exam
ple). Only the owner of a file and super users can change the file's pennissions.

SG-2010 2-32 B

Column 4 shows the group to which the owner belongs (pubs in the example).

Column 5 lists the number of bytes in the file.

Columns 6, 7, and 8 show the month, date, and time that the file was last modified, if that was within the last
six months. If the file has not been modified in the last six months, these three columns contain the year,
month, and date of the last modification.

Column 9 of the long listing gives the file's name.

To get this detailed information for only one or a few files, list the file name(s) after the command, as follows:

Is -1 filel file2 ...

Natmally, the file names can also be full path names.

See the chmod entry in the UNICOS User Commands Reference Manual, publication SR-2011, for more descrip
tion of the chmod command and its options.

SG-2010 2-33 B

3. BEYOND THE BASICS

This section covers intennediate-Ievel use of UNICOS, including the following topics:

• Redirecting command input and output
• Executing multiple commands and shell programs
• Communicating with other users
• Delaying execution of shell programs
• Fortran programs under UNICOS
• Pascal, C, and CAL program files under UNICOS
• The two shells: Bourne shell and C shell
• Changing shells

3.1 REDIRECTING COMMAND INPUT AND OUTPUT

Most of the commands explained so far produce output on the terminal. Other commands, such as the editor,
take input from the terminal. The terminal can be replaced by a file for input, output, or both. This is called
input/output redirection.

3.1.1 REDIRECTING OUTPUT WITH>

Type the following command to display a list of the files in your current directory on your terminal:

Is

Type this next command line to place that list in a file named file list:

Is > filelist

File filelist is created if it does not already exist, or it is overwritten if it does already exist. Symbol> means
"put the output of the preceding command into the following file, rather than on the terminal." No output
(except error messages) is produced on the terminal. Try this now at your tenninal, typing the following com
mand:

Is -C > filelist

To look at the contents of the file, use the command line:

pg filelist

The cat command normally lists the contents of one or more files on the terminal. By using it with the > sym
bol to place its output into a file, you can combine several files (fl, f2, and fJ) into one file (three):

cat f1 f2 f3 » three

SG-2010 3-1 B

Use the preceding fonn of the cat command now. combining your two files~ doc and temp. and placing the
combined output into a new file combo. Then use the pg command on combo to verify that it is the concatena
tion of doc and temp.

You can use this redirection with most UNICOS commands. Suppose that you want to know all of the lines con
taining metacharacters in your file temp. To have a pennanent record of just these lines in a file (called metas).
you could use the following command line:

grep. "[$> .*]" temp > metas

Type in the preceding command line now. File metas should contain the following two lines from temp:

This line contains the UNlCOS metacharacters $ > t and * as text
All character types are mixed here: $45.00 * 8/carton 'units'

You may. at times. not actually want to use the output of a command. but just send it somewhere so that it does
not interrupt you. You might do this in a background process (see subsection 3.2.3, Executing Multiple Com
mands Simultaneously: Background Processing) or when you only want to test a command for successful com
pletion. You can redirect output to the special system file. Idev/null. which takes output that is no longer
needed. Once you send output here. you cannot retrieve it.

3.1.2 REDIRECTING OUTPUT WITH »

Symbol » operates very much like >. but it does not overwrite the target file if it already exists; instead, it
places the new output at the end of that file. You can think of symbol » as meaning "add to the end of" or
"append." With it. you can add the output of a command onto the end of a file, without overwriting the existing
contents of the file. If the file does not already exist. it is created. The following command directs the system
to combine files n, 12. and t3 and place the result at the end of whatever is already in the file named temp,
instead of overwriting the existing contents of temp:

cat fl f2 f3 » temp

Try this command yourself with your two files. filelist and combo:

cat fiJelist » combo

Then use pg to verify the addition to combo.

301.3 REDIRECTING INPUT WITH <

Symbol < means to take the input for a command from the file following the < instead of from the terminal.
Thus. suppose you want to create a standard memo heading to automatically place at the beginning of memo
files as you begin writing them. instead of typing the same heading in from the terminal each time. You can
create a file named begin that contains the heading lines and the editing commands for inserting those lines.
For example. your begin file could contain the following:

3-2 B

a

MEMORANDUM

DATE:

TO:

FROM:

SUB1:

The a is the ed command to begin adding text The next nine lines (counting blank ones) are the text to be
added. The final period is the ed command to stop adding text. Whenever you want to type a memo, you can
automatically start it with these text lines by typing:

ed memofile < begin

This places the nine text lines from begin at the start of memofile. You can then continue your editing session
with ed to fill in the heading information and complete the memo.

You can use this same idea to create templates for batch job files that have some of the same information in
them (job name, account number, and so on). You would use the template file in the same way that begin is
used above, then adding the specific commands you wanted (to compile, load, and execute a program, for exam
pie) after the template infonnation.

Other examples of input redirection are shown later as you learn more commands that can make use of this
facility.

3.2 MULTIPLE COMMANDS

UNICOS has a number of ways in which you can combine or simultaneously run more than one command. You
can string commands together to run as they nonnally would, but in a series one after the other. You can com
bine commands so each successive one uses the previous one' s output, or run more than one command at the
same time. or store any of these actions to run repeatedly as a command of your own.

3.2.1 EXECUTING MULTIPLE COMMANDS IN A SERIES: THE SEMICOLON

You can run commands in series, using one command line, by separating the commands with a semicolon. The
shell recognizes the semicolon and breaks the line into its individual commands. The following command line
executes both commands, in the order specified, before returning a prompt:

date; who

You can do this with any number of commands that you want to run in a series. If the series is longer than one
line, remember to type the \ character just before pressing RETURN at the end of the line. This lets you con
tinue the input over more than one line. (See subsection 2.2.6.4, The'" and \ metacharacters.)

SO-2010 3-3 B

3.2.2 COMBINING COMMANDS INTO ONE: PIPES

A pipe is a way to connect the output of one program to the input of another program so that the two run in
sequence as if a single command. There is virtually no limit to the combinations of commands that you can
string together in this way. The only restriction is that the output of the preceding command must be suitable
input for the successive command. One indication of appropriate commands are those that take input from stan
dard input or write output to standard output as indicated on the man page that discusses them (type: man com
ma~). The following subsections are only a few examples of useful pipes.

3.2.2.1 Combining and sorting multiple files

For example, you have already seen that the following command line displays files fi, t1., and 13. beginning
each on a new page:

pg fl,f2 f3

To order the contents of these three files (ASCU· order) with the sort command and display the output, you could
type the following command lines:

sort fl f2 f3 > tempry
pg tempry
nn tempry

To do this more quicldy and simply you could use a pipe. The pipe symbol is the vertical bar, I t and it is
placed between two commands that are to be combined. For example, to achieve the same effect as the three
preceding command lines, you could use the following pipe:

sort f1 f2 f3 I pg

The I character means to take the output from the sort command, which would nonnally have gone to the tenni
nal. and use it as input to the pr command to be displayed on the tenninal in pages.

3.2.2 .. 2 Searching (or strings in directory listings

A pipe that is particularly helpful is the following, which searches for a file name, owner name, or group name
in all directories, from the current directory down through all its branching subdirectories:

Is -IR I grep string

This gives a long listing of the contents of the current directory and all subdirectories. The·1 option of the Is
command specifies long listing (see 2.5.3. Pennissions) and the ·R (recursive) option (mandatory uppercase)
specifies that all directories from the cmrent one down the tree structure will have their contents listed. This
long listing is then piped as input to the grep command which searches for string in it. If the specified string
were 100. the output could look like this:

·rw------
-rwxr-;u-x
-rw-rw-rw-
drw-r--r--

SG·2010

1 las
I las
1 foo
1 jan

proj 5533
proj 41
die 2426
foo 4096

3-4

Jul
Jan
Nov
May

22
04
13
29

14:56
9:31

18:12
11:42

foo
foo.2
mig
novel

B

Note two important things: First, the string is matched anywhere in the long listing, so it may match the file
name, owner name, or group name. Second, because the -R option generates listings for all directories, from the
one specified down to the end of the tree, doing this at the root directory or the directory of all users will prob
ably take some time, (though it is faster than using the find command).

If you are only searching for a file name (not group or owner name), and you know that it is somewhere below
directory lusr/group3, you could use the following command:

Is -R !usr/group3 I grep filename

Try the following useful pipe, which displays a three-column listing of the files in your current directory:

Is I pr -3t

The ·3 option to the pr command specifies three columns, and the -t option truncates the full-page listing,
preventing it from scrolling off the terminal display.

3.2.2.3 Using pipes to count

You can use a pipe to detennine the number of users logged onto the system at anyone time, beginning with
the who command The who command lists all of the users currently on the system, displaying information
about them on your screen, one user per line.

Type who at your terminal now just to see what the output looks like.

Obviously, if you only wanted to know the number of users on the system, this would be a clumsy way of going
about it, counting the lines on your terminal as they scrolled past. The we command counts the number of lines
(-I option), words (-w option), and characters (-c option) in its input, the default being to count all three. Try it
now with the file temp to see what the output looks like:

wc temp

If your file temp is identical to the one shown in subsection 2.2.2.5, you should get the following response:

6 68 333 temp

This indicates that file temp contains six lines; those six lines containing a total of 68 words, which comprise
333 characters.

By counting the number of lines in the output of the who command, you can determine how many users are on
the system. A pipe accomplishes this very effectively:

who I wc-I

Type this command line now. The result should just be one 'number; the number of users currently on the sys
tem.

To see a count of the files in your current directory, type the following:

Is I wc -1

SG-2010 3-5 B

If you want to know how many executable files you have in your current directory, use the following command:

Is -I I grep " ... \ - .. x" I wc -I

The ~ symbol in the pattern matches the beginning of a line. TIle baclcslash protects the - metacharacter,
preventing the shell from interpreting it as the - that precedes an option. The - metacharacter itself, at the
beginning of a line, matches a regular file (not directory file) in the Is -1 output. The two periods (..) match any
single character for the read and write permissions, and the x matches the user's executable permission. You
may want to review the explanation of long listings in subsection 2.5.3, Permissions.

Most commands that read from the terminal can read from a pipe instead, and most commands that write to the
tenninal can write to a pipe instead. As many commands as desired can be connected by pipe as long as each
one's output is suitable input for the following command.

3.2.3 EXECUTING MULTIPLE COMMANDS SIMULTANEOUSLY: BACKGROUND
PROCESSING

The shell can simultaneously run two or more programs or commands. This is beneficial' when you have a
time-consuming task. such as fonnatting a text file or compiling a program. Running commands simultaneously
lets you wode on something else while waiting for the results of one or more commands.

You can run programs simultaneously by putting one or more of them "in the background" where they run
noninteractively while you continue with other UNICOS tasks. The ampersand (&) command accomplishes this.
By putting the & at the end of a command line. you specify that the comamnd line t s action is to be performed
in the background. This is called background processing.

The following are examples of three separate legal command lines that initiate background processes (nohup is
explained in the following paragraph):

nohup who > whofile &
nohup who I grep jill &
nohup date > listing; Is -C » listing; pwd »listing &

The nolwp command automatically stops the background process (following it on the command line) and saves
any output in a file, Dobup.out, if you log out (or the system goes down) before the background process is com
plete. For more infonnation. see the nolwp entry in the UNICOS User Commands Reference Manual, publication
SR·2011.

The first creates a file, wbofile, listing all users currently logged on the system. The second searches for user jill
in the output of who to see if she is logged on the system. The third puts the date into a file, listing. adds a list
of the current directory's files, and then adds the path name of the directory at the end of the listing file.

The three preceding command lines are simple examples, but they are really too brief in execution time to take
advantage of the background feature; more complex examples follow.

302.3.1 Example: Background processing an editing job

Another instance in which background processing can be useful is if you have a file (textl) of text and a file
(edits) of editing commands to make changes to the text file; for example. many global replace actions that
would take some time. To prevent the output from these actions from interfering with what you are doing on
the terminal, name a file (text2out) to receive the editor's output. The command would look like this:

SO-2010 3-6 B

ed text2 < edits > text20ut &

The system immediately responds with a number like the following:

877

This is the PIO, process id number, of the backgrounded process. This is some number. different for each pro
cess, by which the system identifies the process. The 877 listed here is only an example; the numbers your sys
tem uses will be different.

Returning to the command line example, the results are as follows:

File text2 will be changed according to the editing commands in edits
Editor messages or output will be in the file text20ut
File edits will be unchanged

3.2.3.2 Example: Background processing a compiling job

As another example, you may have a long Fortran program to compile, requiring considerable time. Instead of
waiting for it, you can start it compiling and then go on to do other work. You would type the following com
mand:

cft77 program.f &

This command line begins the compilation process and puts it in the background, allowing you to do other work
with UNICOS. In effect. the & tells the shell, "start this command running, then take further commands from the
tenninal immediately; do not wait for the first command to complete." When the compilation is complete, cfl77
automatically places the output in a file with the name program.o.

The .f suffix is a convention, indicating a Fortran source file under UNICOS. For more information on the cfl77
command and its options, see the cft77 entry in the UNICOS User Commands Reference Manual, publication
SR-2011.

3.2.3.3 Commands ror background processing: ps and kill

There are two commands that relate to background processing, ps and /dll. The ps command provides informa
tion about all processes that you have running. After typing the command line in the preceding example, the
response from the ps command would look as follows:

PIO TIY TIME COMMAND
1779 ny47 0: 12 sh
1882 ny47 0:01 sh
1883 ny47 0:01 cft77
1891 tty47 0:00 ps

The first sh is your login shell (assuming your system runs the Bourne shell, indicated by the $ prompt). The
second sh is a subshell started for the background job initiated with the cft77 command. This allows the back
ground job to run with a shell, while still giving you access to a shell; you both need a shell (to interpret com
mands), so you both get a copy of one. This creation of a subs hell happens for all commands and shell pro
grams. It is called a subshell because it is created by a preceding shell and is subordinate to that preceding
shell. The second (sub) shell can be terminated without terminating the first shell, but if the first shell is ter
minated, both shells are terminated.

SG-2010 3-7 B

The cft77 is the background Fortran compile job, and ps is the ps command itself. The output of the ps com
mand provides the following information:

Heading Description

PIO The process id number for each process

TIY The special file name of the controlling terminal for each process (the terminal on
which you are logged)

TIME The cumulative execution time for each process in hours and minutes.

COMMAND The name of each command being processed

The -e option to the ps command (ps -e) provides this information about all processes on the system; for other
users as well as yourself.

The kill command lets you terminate any process by specifying its PID after the kill command. The kill com
mand terminates processes very neatly, closing any open files and taking care of other such "housekeeping." If
you begin a background process and then want to stop it (for instance, you realize that it is in an infinite loop or
you need to change it), type kill, followed by the process id number for the process/command that was returned
when you started the background process (also listed in the output of ps). For example, to stop the cft77 com
pile job just listed. you would type either of the following:

kill 1883
kill -9 1883

The PIO, 1883. is from the preceding example of the ps command. The -9 in the second command line is an
option to the kill command. It has the effect of making the kill command more effective in removing certain
processes from execution that an ordinary kill will not effect

3.2.304 Practice: Background processing an editing job

Create a file named edits containing the following editing commands. You may omit the parenthetical com
ments (indicated by the #). if you like; they are included here as explanatory information:

SO-2010

IS/only/55 99
1 slbetic/numeric
I,Ss/lll
2S/well/well as text
4i
This is a new line 4

1.$s!2l222/g
1 ,$s/l9/3 ,999/g
5st odd//
$a
This is the eighth line
And the ninth line (new)
and a new tenth line

w
q

#Line 1; replace only with 55 99.
#Line 1; substitute numeric for betic.
#Alllines; remove first space (indicated by the /1).
#Line 2; replace well with well as text
#Line 4; begin insert.
#Insert this text
#End insert mode.
#All lines; substitute 222 for 2.
#Alliines; substitute 3,999 for 19.
#Line 5; remove the word odd.
IAfter last line; begin appending text.
#Text to append
#Text to append
#Text to append
#End append mode
#Write (save) changes
#Quit the editor

3-8 B

You are now going to run this process in the background and enter other commands at the command line while
it is running. Because the process is not a large one, you will want to work quicldy to do the "foreground"
commands before the background process completes running. Look at the following command lines, so you
know ahead of time what you need to do. Once the actions are clear ~ you, proceed with the demonstration,
omitting the parenthetical explanatory comments:

cp temp dem
ed demo < edits > dem02 &

ps
who
Is -1

(Make a copy of temp.)
(Edit demo in the background with edits commands, putting output
in file dem02.)
(See what processes you currently have.)
(See who is on the system.)
(Get a long listing of the files in your current directory.)

When the background process is complete, you are not notified (Bourne shell only), though any output it pro
duces is displayed on your terminal (as if executing in the foreground). unless you have redirected its output to a
file. You must remember any background processes that you have and check them periodically with the ps
command to see if they have completed. When a background process is done. it is no longer listed in the output
from the ps command.

3.2.4 FILES OF COMMANDS: SHELL SCRIPTS

You can create files containing any of the shell commands and combinations of them, executing those files as
your own commands. This is useful when you frequently use a particular command line, command'sequence, or
pipe. Having command lines in files lets you simply type a file name to execute the command line(s) in the file.
These files are called shell scripts.

You can use shell scripts only in the directory in which they exist. If you move to another directory, you can
access only the script files that it contains, unless you specify the absolute or relative path name to the directory
in which the script is located. There are several ways around this limitation, discussed in the following subsec
tions:

4.3.1.2 The PATH Variable (Bourne shell)
4.3.3 Shell Functions (Bourne shell)
5.3.1.2 The PATH Variable (C shell)
5.3.2 Renaming Shell Commands: The alias Command (C shell)

Before you write any shell scripts, know that it is not a good idea to name any of your shell scripts with the
same names as UNICOS commands, and you cannot use the name test (it has a special meaning in the UNICOS

Bourne shell). In certain cases, trying to use a shell script with the same name as a system command can cause
infinite recursion, which will lock up your terminal and require intervention by your system administrator. If
you are not sure if a name you intend to use belongs to a system command. you can use the type command to
check. If your prompt is %, type sh before using the type command and type exit when you are done (for more
information about this, see subsection 3.7, The Two Shells: Bourne Shell and C Shell). Use the type command
as follows, where name is the name you want to check:

type name

If name is not used by the system for any commands, you will get the following response, and know that you
can safely use name for your script:

name not found

SG-2010 3-9 B

If you want to use the name of a system command for a script of your own, you should specify the absolute
path names to any of the system commands that you use within the script To find the absolute path name to a
system command, use the type command as follows, the response is indicated in italics (tty this example):

type Is
Is is /bin/ls

If the response tells you that the command is a shell builtin, you do not need to specify an absolute path name
for the command in your script

As an example of a use for a shell script, suppose you frequently want to use the Is command with its DC and ·F
options, to get output in columns and to indicate which entries are files and which are directories. You might
also want to add a blank line before and after the output. to make a neater display on the tenninaJ 0 Create the
following file, naming it Ir, then read the paragraphs of explanation following it:

echo
Is -CF
echo

The echo command, on the first and third lines of the file, does just what its name suggests; it echoes (displays
on the screen) the arguments given it. If it has no text to echo (as in this case). it displays a blank line. The
second line of the file contains the Is command and the options that you want. The third line of the preceding
script simply produces another blank line of output.

You cannot yet use this file as a command, however. Try to now to see what message you get; type the followm
ing:

If

You should get the following response:

If: cannot execute

Before you can use this file as a command, you must give it execute permission. (Subsection 2.5.3, Permissions,
discusses this.) If you want to give yourself all permissions and other users only read and execute permission,
type the following command:

chmod 755 If

Now type:

If

You should get a listing of all the files in your current directory. If you want the command to indicate what the
current directory is. add the pwd command to the file as follows:

echo
pwd
Is ~CF
echo

Once you have made a file executable, it remains that way when you make changes to it; you do not need to
change the permissions when you change the file. Thus, if you added the pwd command to your If command
file, you would not need to use the chmod command afterward to again make the· file executable.

50-2010 3-10 B

3.3 COMMUNICATING WITH OTHER USERS

You can use the mail and write commands to communicate with other system users. The mail command lets
you send a message to one or more users, and the receiver can read the message at any time. The write com
mand lets you have an interactive "conversation" with another user through your tenninals. The following sub
sections describe these two commands.

3.3.1 THE mail COMMAND

UNICOS provides a postal system so that you can communicate with other users of the system. Consequently,
you may sometimes get the following message, when you log in, or during a session on the system:

You have mail.

To read your mail. type the following command:

mail

The system displays your mail one message at a time, the most recent message first. After each message, mail
waits for you to respond. The two basic responses are d, which deletes the message, and RETURN, which does
not (so it will still be there the next time you read your mail). Other responses are described in the mail entry
in the UNICOS User Commands Reference Manual, publication SR-2011.

The following example shows you how you can send mail to another user. Assume that jones is the login name
of another user on the system. The easiest way to send mail to jones is as follows:

mail jones
Are you available this afternoon (Type the text on as many lines as you like.)
at 3:00 to go over the schedule?
smith

To end the message, type a period on a line by' itself. then press RETURN.

For practice, send mail to yourself. (This is not as strange as it might sound; mail to oneself is a handy rem
inder mechanism.)

There are other ways to send mail. For example. you can use ed to prepare a letter in a file named let. The
contents of file let could then be sent to several people as follows:

mail adam mary joe < let

For more details, see the mail entry in the UNICOS User Commands Reference Manual, publication SR-2011.
See also. the mailx entry in the UNICOS User Commands Reference Manual, publication SR-2011. for a more
complex electronic mail command with more features.

SG-2010 3-11 B

3.3.2 THE write COMMAND

NOlE

Before using the write comman~ be certain that you know what the EOF charac
ter is for your tenninal. Often it is CONTROL-~ but check with your system

. administrator. The EOF is your only way of quitting the write command.

At some point, you may get a message like the following on your tenninal:

Message from jones tty07

A beep may accompany the message, depending on the type of tenninal you are using. This message and beep
mean that the user whose login name is jones wants to talk to you, but unless you take explicit action, you will
not be able to talk back. The message may appear to clutter whatever you are working on, but it is only on
your screen; if you are editing a file, the message does not get entered into that file.

To respond to the message, type the following command:

write jones

This establishes a two-way communication path. Now, whatever Jones types on her tenninal appears on yours,
and vice versa The path is slow because it is limited by your typing speed, and because no characters are sent
until you press RETURN. If you are in the middle of a command or editing session, you have to get to the shell
prompt before you can type the command to respond. Nonnally, whatever program you are running has to ter
minate or be tenninated. If you are editing. you can escape temporarily from the editor (see subsection 2.2.2.2,
Editing Files with ed Commands).

The following example shows the typical protocol used to keep messages from each person separate:

1. Jones types "write smith" and waits.

2. Smith types "write jones" and waits.

3. Jones now types a message (as many lines as desired). When she is ready for a reply, she sig
nals it by typing the letter 0 (which stands for "over," as in radio communications) on a separate
line.

4. Now Smith types a reply, also tenninated by typing the letter o.

This cycle repeats until the messages are complete and Jones signals an intent to quit with 00 (for "over and
out").

To terminate the conversation, both Smith and Jones type a CONTROL-d character at the beginning of a line.
(The interrupt key also works.) When one user types CONTROL-d, the message EOF appears on the other user's
tenninal.

50-2010 3-12 B

If you do not want to be interrupted by write messages, you can type the following command to suppress receiv
ing any messages:

mesgn

To reinstate the ability to receive messages, use the following command line:

mesgy

If you write to someone who is not logged in or who does not want to be disturbed. you get the message "login
name is not logged on." If you write to someone who is logged in but who does not respond after a reasonable
interval. type CONTROL-d. For additional information, see the write entry in the UNICOS User Commands
Reference Manual, publication SR-2011. ,'J

3.4 DELAYING EXECUTION OF SHELL PROGRAMS

If your system administrator has enabled the at command for your login, you can use it to execute commands at
a later time and date. The command format is as follows:

at time date + increment

Indicate the time as follows:

• Specify I, 2, or 4 digits. The system interprets 1- and 2-digit numbers (such as 6 or 06) as hours,
4-digit numbers (such as 0630) as hours and minutes. Alternatively, you may express hours and
minutes as 3 or 4 digits with a colon; for example, 6:30.

• Append the optional suffix am or pm. If you do not include am or pm, the system assumes a
24-hour clock.

• Use the following words' in place of numbers if you like: noon, midnight, now, or next. Use a
day, date, or month after next.

The date is optional.

• It may be any of the following expressions: A month and day, such as Jan 24
• A month, day, and year, such as Jan 24, 1986
• A day, such as Monday, or the three-letter abbreviation, Mon
• The word today or tomorrow

If you do not specify a date, UNICOS assumes today if the hour is greater than the current hour or tomorrow if
the hour is less. If you do not include a year, UNICOS assumes the present year if the month is after the current
month or next year if the month is before.

An increment is optional. It consists of a +, a number, and one of the following units: minutes, hours, days,
weeks, months, or years (for example, + 2 weeks).

SO-2010 3-13 B

The following commands are legitimate:

• at 0815 Jan 24
• at now + 1 day
• at 5 pm Fri

You can specify more than one command with the at command. On one or more lines following the at com
mand line specify the commands to be execute~ as follows. ending with CONTROL-d:

at 7:30 Mon
command

CONTROL-d

As with any UNICOS comm~ the at command and the actions it is to perform can be placed in a file and exe
cuted repeatedly as a shell script.

3.5 FORTRAN PROGRAMS UNDER UNICOS

This subsection very briefly covers information necessary to use Fortran programs under UNICOS, including file
naming conventions~ loading. compiling, linking, flowttace, and libraries.

The Fortran compiler used in these examples is the Cray Fortran compiler CFT77 t based on the American
National Standards Institute (ANSI) standard X3.9-1978, often called Fortran 77. crn7 supports extensions to
this standar~ to offer broader capabilities and to take advantage of the features of Cray supercomputers.

3.5.1 FORTRAN FILE-NAMING CONVENTIONS

Fortran files should be named according to the UNICOS file-naming conventions. Names must begin with a
letter and after that, may contain any sequence of letters or numerals up to a maximum of 14 characters. By
convention, Fortran files should end with the suffix .f.

3.5.1 COMPIUNG, LOADING, AND EXECUTING FORTRAN PROGRAMS

To compile a Fortran program, use command line that follows, where fiie~ is the name of your file, with the •
suffix .f. (If you have a working Fortran program, use it with these steps.)

cft77 sOUTcefiie.f

If your program is very large and complex, you may want to put this process in the background and continue
with other UNICOS tasks (see subsection 3.2.3 Executing Multiple Commands Simultaneously: Background Pr0-
cessing).

SG-2010 3-14 B

When the shell prompt reappears (if you did not put the process in the background). the compilation is done.
The compiled file has the same prefix name as your input file. with a .0 suffix instead of the .r suffix. In the
preceding example. the compiled output file would be as follows:

sOUTcefile.o

The next step is to load this file with the segment loader:

segldr -0 execfile sOUTcefile.o

The executable output of this command is placed in the file you name in execfile with the -0 option. To execute
your program. type that name:

execfile

This is for the case in which you explicitly specify all input and output data files by name within the Fortran
code.

If you use the default output unit (used by the Fortran statements PRINT and WRITE(*)). use output redirection
with the name of the output data file on the command line:

execfile > outdata

If you use the default input unit in your Fortran code. use input redirection with the name of the input data file
on the command line:

execfile < datafile

If you use both default input and default output units. use the following command line:

execfile < indata > outdata

These directions are for some of the simpler cases of compiling and loading Fortran programs. There are many
options available with the cft77 and segldr commands that let you use special features and optimize those
processes and your own program. For a complete discussion of these commands and their options. see the fol
lowing publications:

• cft77 and segldr entries in the UNICOS User Commands Reference Manual, publication SR-2011

• CFT77 Reference Manual. publication SR-OOI8

• Segment Loader (SEGLDR) Reference Manual, publication S~-OO66

A complete shell program for perfonning all of these functions is in subsection 4.1.5. A Sample Shell Script to
Compile, Load. and Execute Program Files.

SG-2010 3-15 B

3.5.3 LINKING UNICOS FILES TO FORTRAN LOGICAL UNITS

UNICOS automatically makes any file premanent when it is opened within a Fortran program.

LO unit numbers can be in the range 0 through 101. Unit 0 is preconnected to tile stderr, where error and
infomative messages are written by executing processes. An asterisk (*) used as a unit identifier number
specifies unit 100 for reading and unit 101 for writing; these units are always connected to the files stdin and
stdout, respectively. and cannot be reassigned. Units 5 and 6 are also preconnected to files stdin and stdout.
but you can change these assignments with OPEN statements. so they are not equivalent to an asterisk identifier.

You can redirect stdin and stdout to and from other tiles. so that I/O statements using the • unit identifier can
indirectly access different tiles. For example. the command line, pgm < infile > outfile. makes READ(*) read
from infile and WRITE(*) write to outfile.

In addition to unit connections established by the OPEN statement. you can establish an I/O unit nn, using the
UNICOS In (link) command as follows: In filename fort.nn. Fortran I/O statements can then access unit nn
without a previous OPEN statement. The In command works only within one tile system. The link is per
manent. so to remove the file, you must remove both the original name and the alias name. An example for file
infile and I/O unit 8 follows:

In infile folt.8 (This allows WRITE(8) and READ(8) with no OPEN statement.)

3.6 PASCAL, C, AND CAL PROGRAM FILES UNDER UNICOS

The following subsections show simple compile. load, and execute instructions for Pascal. C, and CAL programs
on Cray computer systems running UNICOS. A complete shell script for performing all of the functions shown
here is in subsection 4.1.5, A Sample Shell Script to Compile. Loa~ and Execute Program Files.

3.6.1 PASCAL PROGRAM FILES

To compile a pascal source file. use the command line that follows. (If you have a working Pascal program. use
it with these steps).

pascal -i sourcefile.p

The -i option is required for you to be able to specify the source tile name. sourcefile.p. There are many other
options to the pascal command that provide other capabilities and optimizations. See the pascal entry in the
UNICOS User Commands Reference Manual. publication SR-2011 for a more complete description of the pascal
command and its many options.

The pascal command places the compiled code in a file named a.o. To load this file. use the following com
mand line:

segldr -0 execfile ao

The -0 option lets you specify the name of the file to which the executable output is to be sent. To then execute
this file. type the following:

execfile

SO-2010 3-16 B

If your program requires a data file as input, use input redirection with the name of that data file on the com
mand line:

execfile < datafile

These directions are for some of the simpler cases of compiling and loading Pascal programs. There are many
options available with the pascal and segldr commands that let you use special features and optimize those
processes and your own program. For a complete discussion of these commands and their options. see the fol
lowing publications:

• pascal and segldr entries in the UNICOS User Commands Reference Manual. publication SR-2011

• Pascal Reference Manual, publication SR-0060

• Segment Loader (SEGLDR) Reference Manual. publication SR-0066

3.6.2 C PROGRAM FILES

Compiling C programs is accomplished with the command line that follows. (If you have a working C program.
use it with these steps.)

cc sourcefile.c

The name of the C program source file is sourcefile.c. The C compiler automatically produces an executable
file. a.out. To execute your program. type that name at the shell prompt

a.out

To specify another name for the executable file. use the -0 option of cc and a file name:

cc -0 execfile sourcefile.c

The execfile argument is the name of the file receiving the executable output. To execute your program. type
that name at the shell prompt as follows:

execfile

If your program requires a data file as input, use input redirection with the name of that data file on the com
mand line:

execfile < datafile

These directions are for some of the simpler cases of compiling and loading C programs. There are many
options available with the cc and segldr commands that let you use special features and optimize those processes
and your own program. For a complete discussion of these commands and their options. see the following pub
lications:

• cc entry in the UNICOS User Commands Reference Manual. publication SR-2011

• Cray C Reference Manual. publication SR-2024

SG-2010 3-17 B

3.6.3 CAL PROGRAM FILES

To assemble a CAL source file. use the command line that follows. (If you have a wolking CAL program. use it
with these steps.)

as sOUTcefile.s

By default, this command line places the assembled output into a file named sOUTcefile.o. You may also expliG

citly specify die name of the output file with the -0 option of as:

as -0 assemfile sOUTcefile.s

Next. input the assembled file to the segment loader. using the -0 option to name an output file:

segldr -0 execfile assemfile

Finally. to execute your program, type the name of the executable file produced by segltir:

execfile

If your program requires a data file as input, use input redirection with the name of that data tile on the com·
mand line:

execfile < datafile

These directions are for some of the simpler cases of assembling and loading CAL programs. There are many
options available with the as and segldr commands that let you use special features and optimize those processes
and your own program. For a complete discussion of these commands and their options, see the following pub
lications:

• as and segldr entries in the UNlCOS User Commands Reference Manual, publication SR-2011

• CAL Assembler Version 2 Reference Manual, publication SR-2003

• Segment Loader (SEGLDR) Reference Manual, publication SR-0066

3.7 THE TWO SHELLS: BOURNE SHELL AND C SHELL

The shell is a UNICOS command interpreter that translates metacharacters (discussed in subsection 2.2.6, Using
Metacharacters in File Names) into lists of tile names and translates <, >, and » into changes of input and out
put streams. It also interprets commands and their options to initiate the appropriate actions from the operating
system kernel. The shell is like an interface to the UNICOS operating system itself. Because a shell is not the
operating system. but only your link to it, there can be more than one type of shell.

To this point, you have been using one shell or command interpreter, probably the Bourne shell. The Bourne
shell is indicated by a default system prompt of $ and is also known as sh, which is the UNICOS command that
invokes it. The other UNICOS shell is the C shell, indicated by a default system prompt of %, and known as
csh, which is the UNICOS command that invokes it.

SG·2010 3-18 B

These two shells differ somewhat in how they interpret commands. the set of commands they offer. and in their
inuinsic options. All of the commands (except background job notification) in the previous sections of this
manual operate identically under either the Bourne or C shell. Section 4, The Bourne Shell, and Section 5, The
C Shell. describe more detailed and advanced operations that can differ between the two shells.

Each shell can have advantages and disadvantages, depending on how you use it and for what you use it If you
skim the table of contents. you will see that sections 4 and 5 have very similar structures, covering analogous
material in their subsections. To decide which shell you prefer to use, review these sections, comparing analo
gous subsections, to see which shell has features that best meet your needs in an operating system.

3.8 CHANGING SHELLS

Nearly all systems default to the Bourne shell on startup. giving you the $ prompt (unless your system adminis
trator has changed the prompt, in which case ask what your default login shell is). If your system defaults to
the C shell. you will see a system prompt of %. To start a C shell from within a Bourne shell, just type the csh
command, as follows:

$ csh
%

The preceding command invokes a C shell under your current Bourne shell, while the Bourne shell continues to
exist. To start a Bourne shell from within a C shell, use the sh command. as follows:

% sh
$

These two commands, csh and sh, in effect create another layer to the operating system. The initial shell you
were in upon logging in remains; you just start another shell executing as a process under it, just as a compiling
job or editing job runs as a process under that shell.

If you have the $ prompt. indicating the Bourne shell. type the following command to create a C shell:

csh

You should now see a % prompt. indicating that you are in a C shell environment.

If you have the % prompt from login. type the following command to create a Bourne shell:

sh

You should now see a $ system prompt, indicating that you are now in a Bourne shell environment

After typing either of these commands, type the process status command to see how many processes you have in
operation:

ps

SG-2010 3-19 B

If your default shell is Bourne ($), and you typed the csh command, you should see something like the follow
ing output:

PID
12046
14803
14809

TrY
tty06
tty06
tty06

TIME
0:41
0:01
0:00

COMMAND
sh
csh
ps

The sh is your login shell; you can tell because it has the lowest PIO (it's the first process started during this
login session). This will not, however, always be true. Just like an automobile odometer, the PIO's on your sys
tem tum over, in which case processes that you start afterwards will have lower PIO's than your login shell pro
cess.

The csh is the C shell that you just started with the csh command.

Because you have two shells, when you press CONTROL-d or type exit to logout, you will first exit the C shell
you have started, but still be in the initial login Bourne shell. Pressing CONTROL-d again (or typing another
exit) discontinues lhat shell, logging you out.

You can, if you wish, invoke many shells, each one creating another shell layer and requlnng another
CONTROL-d or exit to get out. Each of these can be a different environment. or interface to the operating sys
tem. You can specify different characteristics for these shells, as discussed in later sections of this manual.
(For the Bourne shell, see subsection 4.3.4, Shell Invocation Options. For the C shell, see subsection 5.3.4.
Shell Invocation Options)

Your default login shell can be either the Bourne shell or the C shell. If. after looking over the following two
sections. you prefer a different shell than your current default login shell. you can change your default login
shell with the chsh command. Depending on the shell that you want (lbin/sh is Bourne shell and Ibinlnew/csh
is C shell), use one of the following two command lines, where loginname is your login (what you type after the
login prompt):

chsh loginname /bin/sh

chsh loginname /bin/new/csh

After typing one of these command lines, when you login you will automatically be put into the shell that you
have chosen.

SO-2010 3-20 B

4. THE BOURNE SHELL

This section covers the UNICOS Bourne shell, including the following topics:

• Creating shell scripts
• Using shell parameters and variables
• Changing the shell environment
• Debugging shell scripts

4.1 SHELL SCRIPTS

In section 3, you began to write shell scripts in the Bourne shell. To go beyond such scripts to more complex
ones requires using features specific to either the Bourne shell or the C shell. This section covers features of the
Bourne shell that let you create more advanced and useful shell scripts, using shell commands as you would a
programming language. These features include variables, control flow (if-then-else, while, for. case), and input.
among others.

Now that you will be writing more complex shell scripts, it is a good idea to add comment lines to them. docu
menting what the scripts do. The comment character is the pound sign (#). Place it anywhere on a line to
begin a comment. Once a # is encountered. the rest of the line is ignored by the shell as nonexecutable.

Examples:

This a comment-only line.
Is -CF I pg # This line contains both code and comment

4.1.1 BASIC SHELL SCRIPT DEBUGGING: TRACING MECHANISMS

Before you begin to write more complex shell scripts. it is a good idea to know the tools available to help in
debugging those scripts. This subsection will explain two of the tracing mechanisms that the Bourne shell pro
vides for debugging. As you proceed to the next subsections, refer back to this discussion as you need the
debugging tools. This subsection covers only the simplest of several debugging tools. Later in section 4. as
your shell scripts become more complex. the other tools will be discussed (subsection 4.4. Debugging Shell
Scripts). The shell has two tracing mechanisms, the -v and -x options. that you will find useful in debugging
shell scripts. Both are invoked within a shell script with the following lines:

set -v
set -x

These are options to the sh (shell) command and they act like flags; they can be set on or off, and when on, they
tell the shell to perform certain actions. Other shell options will be covered in subsection 4.3.4, Shell Invocation
Options.

The line set -v causes the script to display each line before it is interpreted or executed, so you can see if there
are any syntax or typographical errors.

SG-2010 4-1 B

The line set -x causes the script to display the interpreted version of each line before it is executed. Each such
line is preceded with the plus (+) character. Write and execute the following shell script. tracer. to see how
both of these options work:

set -vx
echo
Is -I ·mp
echo

Your output should look similar to the following:

Ibin/ls -I ·mp
+ Ibin/ls -1 temp
-rwxr-xr-x 1 name group 335 Mar 21 10:53 temp

Your login name will be in place of 1IaI1I4 and your group will be in place of group. !be date and time will
also be different in your output. as will the pennissions. if your system sets them diffezently.

The following command line unsets these options:

set -

To use these options without having to edit and change the shell script itself. use the following command line
where scriptname is the name of the shell script:

sh -vx scriptname

The preceding command line has the effect of creating a subshell with the appropriate option(s) set as an
environment in which the shell script, scriptname. can run. The discussion of the ps command in subsection
3.2.3.3, Commands for Background Processing: ps and kill. contains more information about subshells.

The current setting of these shell options is stored in the variable $-.

•••••••••••••• * ••

CAUTION

There is an option -n that you can also set within shell scripts to prevent execu
tion of any commands following it. DO NOT type set -n at a terminal because
this causes that tenninal to ignore all commands, including any commands to log
out. Only a system· administrator can remedy this situation .

•••

As you learn about variables and learn more about metacharacters in this section, try these options (particularly
option .x) with more complex shell scripts. to see more exactly what their output is in different situations.

4.1.2 VARIABLES IN SHELL SCRIPTS

As with any programming language. the Bourne shell lets you use variables to contain infonnation. These vari
ables come in two basic types: predefined variables and user-defined variables. This subsection covers user
defined variables, which can be either named variables or command-line positional variables.

SG-2010 4-2 B

4.1.2.1 Named variables

Named variables in the shell do not need to be declared before use as they do in some programming languages
(such as Pascal). Whenever you first use the name of a new variable. that variable exists. having a default null
value. Variables may be any legal UNICOS name which consists of 1 to 14 alphanumeric characters. UNICOS
distinguishes between uppercase and lowercase. so the variables name and Name are different To set a vari
able, use the following syntax:

variable=value

No spaces are allowed on either side of the equal sign (=).

To access the value of a variable, use a dollar sign (S) in front of the variable's name as follows: $variable.

NOTE

Variables are correctly interpreted inside of double quotes. the value being
correctly substituted for the variable name. Inside of single quotes, however. the
string is interpreted literally as a S with other characters after it

Make a simple shell script now to try using variables. Create the following file, carfile:

car::Ferrari
driver=Mathilda
tires=Pirelli
echo $car
echo $driver
echo Stires
echo
echo "Sdriver drives a $car with Stires tires"

Save this file, then give it execute pennission (see subsection 2.5.3. Pennissions) so you can execute it as a pro
gram. Now. at the shell prompt, type the following:

carfile

You will get the following response:

Ferrari
Mathilda
Pirelli

Mathilda drives a Ferrari with Pirelli tires

You can also assign values to variables as input to a shell script with the read command. Write the following
shell script, car2, and then run it:

SG-2010 4-3 B

echo
echo "Please enter the name of the driver:"
read driver
echo "Please enter the make of car:"
read car
echo "What sort of tires:"
read tires
echo
ec~o "$driver drives a Scar with Stires tires."

4.1.2.2 Availability or variables: Scoping rules and commands

The export command lets you use the value of a variable in a shell other than the one in which it is defined.
Recall from the discussion of the ps command (subsection 3.2.3.3) that subshells are created for most commands
and all shell scripts that are executed. Therefore, such commands are not executing in your current shell and
cannot use the values of variables declared in your current shell. To see this, write the following shell script,
scope:

varl=one
var3=three
echo
echo "varl equals $varl"
echo "var2 equals $var2"
echo "var3 equals $var3"
echo

Now type· the following commands at the command line:

$ varl=lll
$ var2=222
$ var3=333
$ export vat2 var3

Now execute scope. You should get the following results:

var 1 equals one
vat2 equals 222
var3 equals three

Because varl was not exported from the login shell, its value of III is not available to the script scope, execut
ing in a subshell. vat2 was exported from the login shell so scope echoes its login shell value. var3 was
exported from the login shell, but it was reassigned a new value in the subshell by scope, so scope echoes its
new subshell value. This does not change the value of var3 in the login shell, as you can verify by typing the
following command line after running scope (output indicated in italics):

$ echo $varl $var2 $var3
111 222 333

This shows that exporting variables is a one-way process; variables can be exported down to subshells which can
receive the values and change them locally, but subshells cannot export the changed values up to the shell in
which the variable was defined.

SG-20IO 4-4 B

If you want variables that can only be referenced and not changed, you can define variables as read-only, with
the readonly command, where name is the variable name:

readonly name

Once a variable has been set to a value and declared read-only. its value cannot be changed. When you log out
and log back in, however, the variable will be gone just like all others.

You can prevent the creation of subshells to execute commands, by using the period (.) command. The. forces
the command or shell script following it to execute in the current shell. Execute scope with the . command:

. scope

The results will not appear to be any different than before, until you echo the values of the login-shell variables:

$ echo $var! $var2 $var3
one 222 three

Because scope executed in the current shell--the shell in which the variables were defined--it changed their
defined values.

Another way to give variables specific values in commands or shell scripts, without changing the variable's
value in the current shell, is with the following syntax:

name=value command

name is the variable name and value is its new value for use within the shell script, command. Variables
assigned in this way are called keyword parameters.

Use the echo command at the command line to see what the current values are of variables, $varl, $var2. and
$var3. Then call scope with the following command line:

var!=AAA var2=BBB var3=CCC scope

You will get the following response:

varl equals one
var2 equals BBB
var3 equals three

Assignment of the variables within the script still temporarily overrides the values they are given at the invoking
command line. If they are not reassigned in the script, however, (as var2 is not) they have the values given
them on the invoking command line. Now again echo variables var!, var2 and, var3 at the command line to
verify that their values in the shell in which they were defined are the same as they were before and have not
been·changed to AAA, BBB, and CCC.

4.1.2.3 Command-line positional variables

Command-line positional variables are variables that automatically exist in the shell. These variables are the
numerals 0 through 9, and the shell sets them to the values of the words on a command line, according to the
order of the words. Look at the following command line and then at the breakdown of it in the next paragraph:

Is -CF bookdirectory

SG-2010 4-5 B

In the preceding command line. the first word. the Is command. goes into the variable O. The second word. -eFt
goes into the variable 1. The third word. bookdirectory, goes into the variable 2. Because there is this associa
tion by order or position on the command line. these variables are know as positional parameters. The posi
tional parameter 0 is unlike the others (1 through 9), in that it always is set (automatically by the shell) to the
value of the command on a command line. You cannot explicitly set it to anything else.

To access the values in positional parameters. place a $ before the numeral, just as you would access the value
of a named variable.

To set the positional parameters 1 through 9, substitute the appropriate numeral into the command line in a shell
script for the argument that you want it to take on as a value. For example. in the preceding command line, to
put the value of the directory to be listed into a positional parameter, you would use the following line in a shell
script:

Is -CF $1

Write the following shell script, parms. to demonstrate these concepts: (Please copy it exactly, you will be using
it again later.)

echo "The first parameter is: $1 "
echo "The second parameter is: $2"
echo "The third parameter is: $3"

Change the file's permission so you can execute it (see subsection 2.5.3, Permissions), then try it with the fol
lowing input (the $ characters should be your shell prompt):

Input Response

$ parms one The first parameter is: one
The second parameter is:
The third parameter is:
$

$ parms one two The first parameter is: one
The second parameter is: two
The third parameter is:
$

$ parms one two three The first parameter is: one
The second parameter is: two
The third parameter is: three
$

$ parms "one two" three The first parameter is: one two
The second parameter is: three
The third parameter is:
$

As another example. create the following shell script. parms2:

SO-2010

echo "The command is: $1"
echo "The first argument is: $2"
echo "The second argument is: $3"
$1 $2 $3

4-6 B

Make the file executable. then use it as follows, examining the output carefully:

panns2 Is -CF .

Try it again with the following input:

panns2 grep d carfile

The twO preceding examples demonstrate that you can use the contents of these positional parameters (or of
named variables) as either data or as executable commands. You can assign to variables the full path names of
executable files. You are encouraged to explore this flexibility further with your own exercises and experimental
shell scripts.

Create the following shell script for your own use, naming it x:

chmod 755 $1

This shell script, x, changes the pennissions of the file argument you give it, to make that file executable for
everyone, readable by everyone, and writable only by you. Use it as follows:

x filename

4.1.2.4 More than nine positional parameters: The shift command

The shell keeps track of all arguments on the command line, even when there are more than the nine that can be
held in positional parameters. There are no names for the arguments greater than nine. but you can access them
by moving them into the nine positional parameter variables. The shift command accomplishes this by moving
the values of all the positional parameters down one number and discarding the value of $1. Therefore, you can
operate on more than nine parameters by using them sequential I y, discarding each as you use it This lets you
design a shell script to iterate over an unknown number of arguments. Write the following shell script. ten
parms, to see how this works:

echo $1; shift
echo $1; shift
echo $1; shift
echo $1; shift
echo $1; shift
echo $1; shift
echo $1; shift
echo $1; shift
echo $1; shift
echo $1

Now execute the script, calling it with the following arguments:

$ tenparms one two three four five six seven eight nine ten

SG-2010 4-7 B

You can specify a numeric argument with the shift command to shift more than one positional parameter. Try
the following shell script. moreparms:

echo $1
shift 3
echo $1
shift 3
echo $1
shi(t3
echo $1

Invoke it with the following command line:

$ morepanns one two three four five six seven eight nine ten

You should get the following response:

one
four
seven
ten

4.1.2.5 Special command-line variables

This subsection discusses five special variables. automatically set by the shell, that are related to those in the
previous subsection. The first of these special parameters, SO, is a variable that always contains the name of the
command currently executing. In your login shell. it contains the name of the shell you are running (sh or esh),
because your login shell is a continuous process for as long as you are logged on. To see this, just type the fol
lowing command at your tenninal:

echo $0

Another special variable automatically set by the shell is $#. This variable contains the number of positional
parameters typed on a command line and can be used in shell scripts to count arguments to a script

Add the following line at the end of your shell script parms:

echo "The number of parameters is: S#"

Now run the script with the same data as you did in subsection 4.1.1.2. looking carefully at the output

The special shell variable $. takes on the values of all the positional parameters, except $0. Add the following
line to the end of your shell script parms:

echo" All arguments are: $*"

Run parms just as you did before. examining the results. The $. variable lets you apply a command to more
than one argument. Use it again to alter your shell script x. Substitute $. for $1, so the file looks like the fol
lowing one:

chmod 755 $*

SO-2010 4-8 B

Shell script x will now change the permissions to 755 for any number of files you give it, making all of them
executable. Use it as follows:

x filenamel filename2 ... filenamen

The next special shell variable is $!. This variable contains the process ID number of the last process that you
put in the background during the current login session. It is an easy way to get the number of the process if you
want to see its status or kill it:

ps -p $!
kill $!

See subsection 3.2.3 for more information on background processing.

The last special shell variable that this subsection will discuss is $$. This variable contains the process id
number (PID) of the current shell. Because every command and shell script gets its own subshell when it exe
cutes (subsection 4.1.2.2, Availability of Variables: Scoping Rules and Commands), this number is unique to
each invocation of a command or shell script. Therefore, this number is often used to name temporary output
files. That way, successive uses of a command/script do not overwrite previous output files. Use it as follows:

who I grep mygroup > groupfile.$$

This gives you a different file name, groupfile.number than another user gets from using the same command line,
the difference being number. You also get a unique number for $$ each time that you run a shell script with a
$$ in it

4.1.3 CONTROL FLOW

The Bourne shell has the following five control flow constructs basic to programming languages: test condition,
for, while, if-then-else, and case. The following five subsections discuss the Bourne shell's treatment of these
constructs.

4.1.3.1 Evaluating conditions: The test command

Before you can do any conditional programming. you must be able to test conditions. The test command lets
you check many different conditions. The general conditions that you can test for are as follows:

• File information such as existence, size, permissions, and type
• Variable and string information such as length. equality, and relational operators
• Numeric comparison with the relational operators such as = > < and so on
• Test combinations with the logical operators AND. OR, and NOT

The test command can take either of the following two formats:

test expression
[expression] (Spaces around the brackets are required)

Many people prefer the latter syntax for use within conditional constructs (such as if and case) because of its
brevity.

SG-2010 4-9 B

The logical operators of the lest command are as follows:

test expression -a expression
test expression -0 expression
test !expression

Logical AND
Logical OR
Logical Nor

The conditions for files are as follows:

-b file
-c file
-dfile
-f file
-gfile
-p file
-r file
-sfile
-ufile
-w file
-x file

True if file· exists and is a block special file
True if file exists and is a character special file
True if file exists and is a directory file
True if file exists and is a regular file
True if file exists and the set-group-ID bit is set
True if file exists and is a fifo special file (named pipe)
True if file exists and can be read by the user making the test
True if file exists and has a size greater than zero
True if file exists and the set-user-ID bit is set
True if file exists and can be written to by the user making the test
True if file exists and can be executed by the user making the test

You can combine commands with tests, using the && metacharacter. Putting the && metacharacter afte>z a test
command and before another command will execute the second command only if the test returns a true value.
To see how this works, type the following command lines at your tenninal, observing their output:

$ test -f carnie && echo "carfile exists"
$ test -x carnie && echo "carfile is executable"
$ test -d carnIe && echo "carfile is a directory"
$ test -w panns2 && echo "panns2 is writable"
$ test -w / && echo "I can write to the root directory"

The II metacharacter has the opposite effect, executing the second command only if the test returns a false value.
Try the following command lines, comparing them with the preceding five:

$ test -f carnIe II echo "carfile does not exist"
$ test -x carfile II echo "carfile is not executable"
$ test -d cartile II echo "carfile is not a directory"
$ test -w parms2 II echo "parms2 is not writable"
$ test -w /11 echo "I cannot write to the root directory"

Now try using the lest command's logical operators -a, -0, and !:

SG-2010

$ test -f carfile -a -w carfile && echo "carfile regular and writable"
$ test -x parms2 -a -d panns2 II echo "panns2 is not an executable directory"
$ test -r / -0 -x / && echo "root is readable or executable"
$ test !-w / && echo "root is not writable"
$ test !-f carfile && echo "carfile not regular"

4-10 B

The test commands for strings/variables are as follows:

-z string
-n string
string
string 1 = string2
stringl != string2

True if the length of the string is zero
True if the length of the string is nonzero
True if string is not null
True if stringl is equal to string2
True if stringl is not equal to string2

To try out these tests, type the following series of commands at your terminal:

S name=kelly ; animal=bat ; person=kelly
S echo Snothing

S test Snarne = "kelly" && echo "true"
S test Snarne = Sperson && echo "true"
S test -n Sname && echo "true"
S test -z Soothing && echo "true"
S test Sperson != Sanimal && echo "true"

4.1.3.2 Numeric tests and expressions

The tests available for numeric values are as follows:

numl -eq num2
numl -ne num2
numl -gt num2
numl -ge num2
numl -It num2
numl -Ie num2

Trueunumlisequaltonum2
True u numl is not equal to num2
True u numl is greater than to num2
True u numl is greater than or equal to num2
True u numl is less than to num2
True u numl is less than or equal to num2

The numeric expression evaluator is the expr command and it recognizes the basic arithmetic operators, + - • I
as well as a remainder operator (modulus), %. The syntax of expr is as follows:

expr expression

You can use command substitution (subsection 4.2.1, Substituting a Command's Output for Other Shell Values)
to assign the value of an expression to a variable. This is useful for operations such as incrementing or count
ing. Try the following example at the shell prompt:

SG-2010

S counter=4
S echo Scounter
4
S counter:" expr Scounter + 1"
S echo Scounter
5

4-11 B

4.1.3.3 Branching on one condition: The if command

The if command lets you test one condition and perform a command or series of commands if the condition
evaluates to true. All of the conditions of the test command may be used in th~ if construct.

The simplest fannat of the if construct is as follows (note the bracket fonnat of the test command):

Format-1

if condition
then

command list
fi

Example

if [-f carnIe]
then

echo "# Exists and is regular" » carnIe
1i

Try out the example on your system, then substitute other file and directory names for car file, to see the results.

The if and condition must be together on one line by themselves. If condition is longer than one line, use a pro
tected new line (backslash before ,the RETURN) to start the second line. The then must be on a line by itself.
Any number of commands may follow the then, either on separate lines or separated by semicolons. Pipes of
commands, I/O redirection, and any other valid shell constructs or functions are also allowed in this command
list. The fi ends the if construct It must be the last line of the if construct and must be on a line by itself.

Two other fonnats of the if construct follow. (Note the bracket form of the test command.)

Format-2

if condition
then

command list}
else

command list2
fi

Format-3

if condition}
then

command list
elif condition2
then

command list

elif condition n
then

command listn
else

command list
fi m

Example

if [-w /]
then

echo "I can write to root directory" > tileR
else

echo ttl cannot write to root directory" > fileR
fi

Example

if [-b unknown]
then

echo "This is an existing block special tile"
elif [-c unknown]
then

echo "This is an existing block special file"
(test the other file conditions, d through w, with eli[sequences)
elif [-x unknown]
then

echo "This is an existing file for which I have execute permission"
else

echo 'File "unknown" does not exist.'
fi

Try the preceding examples on your system, then substitute other tile and directory names for carfile, examining
the results to gain a clear understanding of how the various file tests work.

SG-2010 4-12 B

For further practice, try using variable and numeric tests with these if command formats.

4.1.3.4 Branching on many conditions: The case command

The case command provides a way to quickly and simply test a condition for many possible values.

Format:

case $variable in
pattern 1) command list 1""
pattern2) command list2 ,' "
patternn) command listn;;
esac

This is a pattern-matching command, checking the pattern in variable against any patterns that you specify in
the list following the case line, including patterns containing the metacharacters ?, *, and [] to match groups of
similar patterns.

Create the following shell script, month. to print out month names, given a numeric argument:

case $1 in

1) echo "January";;
2) echo "February";;
3) echo "March";;
4) echo "April";;
5) echo "May";;
6) echo "June";;
7) echo "July";;
8) echo "August";;
9) echo "September";;

10) echo "October";;
11) echo "November";;
12) echo "December";;
*) echo "You can only use numbers between 1 and 12.";;

esac

The last pattern, *. matches any pattern, just as it does with the shell's filename substitution capability (subsec
tion 2.2.6, Using Metacharacters in File Names), therefore; * acts as the default case when either nothing. or
something not in the list of case choices is specified. Give this script executable permission, then test it with
command lines like the following:

SG-2010

$ month 11
$ month 13

4-13 B

The following shell script, language, uses metacharacters to detennine if the first argument it is given ($1, a file
name) is a Fortran, C, or Pascal source file. The naming conventions given in subsection 2.2.1, File-Naming
Conventions, must be followed for the file names.

case $1 in

*.f) echo "Fortran source file";;
*.c) echo "C source file";;
* .p) echo "Pascal source file";;

*) echo "unknown";;

esac

You can use the case command to set up options for your shell scripts. For example, you can write a shell
script that prints out the current list of system users in various fonnats. Write the following script, menu:

-c displays calendar for current year
-d displays the date and time
-I provides a listing of the current directory
-q quits the shell script
-w provides a list of who is currently on the system
Anything other than the above options tenninates the program
case $1 in

-c)

-d)
-1)

-q)
-w)

*)

esac

echo "What is the current year?"
read year
cal $year I pg;;
date;;
echo "Directory is: 10

pwd
Is -CF I pg::
exit;;
who I pg:;
echo "The pennitted options are: c, d, 1, q, and wIt:;

Use the script with each of its options and some incorrect ones, as follows:

menu -option

For more infonnation on processing command-line options within shell scripts, see the getopt entry in the
UNICOS User Commands Reference Manual, publication SR-2011.

4.1.3.5 Looping with a condition: The while and until commands

The while construct lets you repeat a series of commands in a shell script until a condition becomes false.

Fonnat:

5G-2010

while condition
do

command_list
done

4-14 B

There can be a single condition, or a compound condition using the logical AND, OR. and NaT options (-a. -0.

-n) of the test command The commands in the command list may be on separate lines or on one line. separated
by semicolons. Pipes of commands and redirection of I/O are also permitted. The while and condition are on a
line by themselves. and the do and done must by on lines by themselves. the done ending the while loop.

Write the following shell script, which executes the functions of the menu shell script until the user exits with
the -q choice:

choice::null
while ["$choice" -ne "-q"]
do
echo "-<: displays calendar for current year"
echo tt -d displays the date and time"
echo "-I provides a listing of the current directory"
echo "-q quits this menu of options. You remain logged on."
echo "-w provides a list of who is currently on the system"
echo "Anything other than the above options repeau this menu."
echo
echo "What is your choice?"
read choice
case $choice in

esac
echo
done

-c) echo "What is the current year?"
read year
cal $year I pg;;

-d) date;;
-1) echo "Directory is:"

pwd
Is -CF I pg;;

-q) exit;;
-w) who I pg;;

*) echo;;

Practice with the script, entering correct and incorrect options as it asks you for them. Alter the menu if you
want to try other actions. You can create a menu just like this to simplify, to one keystroke. actions that you
commonly perfonn. such as submitting jobs for compiling. loading. and executing. You can have the options
preset in the shell script, or you can have it ask you for them. just as it will need to ask you for the name of the
program file to compile.

The while command is often used with the shift command to operate on an unknown number of arguments until
all have been processed. The following shell script is a simple example of this:

SG-2010

echo
while [$# -ne 0]
do

echo $1
shift

done
echo

4-15 B

Try it if you like, calling it with any number of arguments. Compare the effects of this script with the one in
subsection 4.1.2.4, More Than Nine Positional Parameters: The shift Command. The two are identical in what
they do.

The until command lets you repeat a series of commands in a' shell script until a condition becomes true; the
converse of the while command. The general format of the until command is analogous to that of the while
command:

until condition
do

command_list
done

There can be a single condition or a compound condition using the logical AND. OR, and NOT options (-at -0,

-0) of the test command. The commands of the command list may be on separate lines or on one line,
separated by semicolons. Pipes of commands and redirection of 00 is also permitted. The until and condition
are on a line by themselves. and the do and done must by on lines by themselves, the done ending the until
loop.

Contrast the following two equivalent loop conditions, either of which would work in the preceding shell script
using the shift command:

while [$# -ne 0]
until [$# -eq 0]

4.1.3.6 Looping with a specified index: The for command

With the for command. you can repeat a sequence of commands in a shell script a specified number of times.
One format of the for command is as follows:

for variable
do

done

This command will perform the commands in the commantClist as many times as there are arguments passed to
the shell script, the variable taking on the value of each successive argument on each iteration through the loop.
To see this, create the following shell script, repeater:

for index
do

echo $index
done

Call the shell script with the following command lines:

SO-2010

repeater arg 1 arg2 arg3 arg4
repeater this that "the other"
repeater you me them it

4-16 B

The script repeats the arguments with which you call it. Try the following shell script, commander:

for command
do

$command
done

Call it with UNICOS commands passed as arguments, such as:

commander Is
commander who
commander Is who date

Another fonnat of the for command explicitly specifies the list of indices over which to iterate:

for variable in word_list
do

command_list
done

This will iterate commaruClist as many times as there are words in word_list, with variable successively taking
on the values of those words. The following shell script performs similarly to the preceding example, com·
mander:

for command in Is who date
do

$command
done

The word_list can contain variables, in which case the values of those varialbes are substituted into the word
list. The following shell script shows this:

commandlist="Is who date tl
for command in Scommandlist
do

done

echo $command
$command

If the actions of the preceding shell script are not obvious on inspection. write and execute the shell script to
correlate its output with the commands in it.

You can combine the for and case commands to make shell scripts that accept more than one option. Recall
from subsection 4.1.3.4 the example shell script, menu, that was called with one option letter, each option letter
having one associated action. By adding a/or command to that shell script, you can make the script accept any
number of option letters at one time, performing the appropriate action.

SG-2010 4-17 B

Modify that script, menu, to look like this:

-c displays calendar for current year
-<1 displays the date and time
-q quits the shell script
-w provides a list of who is currently on the system
Anything other than the above options tenninates the program
for option
do--

case Soption in

esac
done

-c) echo "What is the current year?"
read year

-<1)
-1)

cal $year I pg;;
date;;
echo "Directory is:"
pwd
Is -CF I pg::
exit;;
who I pg;;
echo "The pennitted options are: c, d, 1, q, and w";;

You can now call the script with any number of options (separated by spaces), and it will perfonn the associated
actions in the order in which you specify the options:

menu -1 -d -w -q

4.1.4 SHELL SCRIPTS CONTAINING THEIR .oWN INPUT: here documents

You can create shell scriptS that provide some or all of the input that they require; these are called MT~ docu
ments. This is useful for operations that you perfonn repeatedly, such as creating files that have the same con
tent or fonnaL Examples of such uses are batch files that have the user ID. account number, and such, the same
for each job, or memos that have standard headings.

Fonnat:

command « string
command_ input

string

The command is a UNICOS command, command_input is the input that the command requires, and string is a
delimiter, not found in the input, indicating where the input begins and ends.

SG-2010 4-18 B

Example:

ed textfile « EOF
a
Line one of the input text for the new file. textfile.
Line two of text to make up the new text file.
Last line of input for the new file. textfile.

w
q
EOF

This inclusion of input within a command can be done either in a shell script or from the command line. An
example of doing it from the command line is as follows:

S mail Jeanne «STOP

Hi. Jeanne.

There is a new shell script. phoney. on the system that creates and maintains a phone directory. I
have already found it very handy. It is in the directory lusrllbin.

Howard
STOP
$

4.1.5 A SAMPLE SHELL SCRIPT TO COMPILE, LOAD, AND EXECUTE PROGRAM FILES

You can use the concepts presented in subsection 4.1 to greatly simplify the repetitive tasks of compiling. load
ing. and executing program files. Writing a shell script to perfonn these tasks will make it easier and faster for
you to do them. Such a shell script can even make it possible for users who do not know UNICOS to perform
these tasks. with simple menus such as the menu script in subsection 4.1.3.5.

You can write the following shell script to compile. load. and execute programs. having it specify a few simple
options for the procedures and asking you for names of input and output files. This example shell script is for
Fortran programs. but it can easily be adapted to call other language processors. or give you options to select
among language processors. Read through the shell script carefully until you understand how it works. then
read the suggestions that follow it to see how you can further tailor the script to your panicular needs.

SG-2010 4-19 B

echo
echo "What is the name of your source code file?"
read sourcefile
cft77 -a stack Ssourcefile
echo "What do you want the name of your executable file to be?"
read execfile
segldr -0 Sexecfile $sourcefile.o
echo "Does your program require an input data file (Y /N)?"
read answerl
if [$answer 1 = tty"]
then

fi

echo "The name of the input data file?"
read indata

echo "Does your program require an output data file (Y /N)?"
read answer2
if [$answer2 = "Y"]
then

fi

echo "The name of the output data file?"
read ourdata

if [$answer 1 = "Y"]
then

if [$answer2 = "Y"]
then

$exec file < $indata > Soutdata
else

$exec file < $indata
fi

elif [Sanswer2 = "Y"]
then

Sexecfile > Soutdata
else

Sexecfile
fi

You can enhance this sheD script so that more options are included in the compiling and loading commands, so
that it asks the user for different options to those commands, and/or it asks the user for the language of the
source file to invoke the appropriate compiler/assembler.

4.2 SHELL PARAMETERS AND VARIABLES

This subsection discusses more complex details of the ways that the Bourne shell uses and interprets variables
and parameters. Previous discussions have focused more on the use of variables; this subsection explains some
of the concepts behind such usage.

SO-2010 4-20 B

4.2.1 SUBSTITUTING A COMMAND'S OUTPUT FOR OTHER SHELL VALUES

The accent grave metacharacter [) lets you use the output of a command in a number of ways. You can store
that output in a variable or use it as as input to another command or shell script. To store the output in a vari
able, use the following syntax:

variable:" command'

Storing the output of a command in a variable is handy when you will want to use that output repeatedly. Hav
ing the output in a variable requires less typing on your part and reduces the execution time of shell scripts over
having the information in a file or repeatedly executing the command.

If, in a shell script, you want to use the date and time in several places, you can use the following line to place
the output of the date command into the variable d and then use $d for the infonnation:

d='date'

To use the output of a command as input to another command or shell script. use the following syntax:

command} 'command2"

The command (command}) receiving the output can be a simple command. a pipe. or any other legal UNICOS
command line.

As an example, suppose you have a file, maillist, containing the login names of several people to whom you
regularly send mail on the system. If you discover some infonnation you want to send them. you can use the
following command line:

mail .. cat maillisf
yoUI' m/!ssage
CONTROL-d

4.2.2 SUBSTITUTING VALUES FOR VARIABLES

User-defined variables (subsection 4.1.2.1. Named Variables) can be assigned alternate or default values and can
be used to produce new values. The special characters used to do this are braces, ().

If a variable has not yet been assigned a value. or it has been assigned the null string (' '), you can test for this.
and then give the variable a default value in the same command line. This command has two general fonnats.
producing identical results:

S (variable:-value)
S (variable:=value)

Try the following examples at the command line to see how this works (responses are given in italics):

SG-2010

Scar="
S echo "The car is a S { car:=Mercedes} "
The car is a Mercedes
S echo Scar
Mercedes
S

4-21 B

$ car="Ford"
$ echo "The car is a $ (car:=Mercedes) "
The car is a Ford
$ echo $car
Ford
$

Another version·of variable substitution lets you test a variable to see if it has a value and then reset it to a new
value, leaving it null if it is currently null or has not been set at all. The general format for this is as follows:

$ (variable:+value)

Try the following examples at the command line to see how this works (responses are given in italics):

Scar="
$ echo "The car is a S{car:+Mercedes)"
The car is a
$ echo $car

$

$ car="Ford"
$ echo "The car is a $ {car:+Mercedes}"
The car is a Mercedes
$ echo $car
Ford
S

4.2.3 HOW VARIABLES, COMMAND ARGUMENTS, AND QUOTING METACHARACTERS
ARE PROCESSED

The shell is a command interpreter that performs positional-parameter substitution, command substitution, and
file-name generation for the arguments to commands. This subsection discusses the order in which these evalua
tions occur and the effects of the quoting mechanisms. You may find this helpful when trying to debug or write
shell scripts.

The following substitutions occur before a command is executed:

SO-2010

1. Variable substitution. The actual values of user-named variables such as $file are substituted into
the command line for the variable name. Positional parameters are also evaluated in this step.

2. Command substitution. The output of command lines enclosed in accent graves (') is substituted
into the command line. Only one evaluation occurs so that if, for example, the value of variable
X is the string "$y", 'echo SX' results in "Sy", not the value contained in variable y.

4-22 B

3. Blank intelpretation. Following the preceding substitutions, the resulting characters are broken
into nonblank words (blanJc interpretation). For this purpose, blanks are the characters of the
predefined variable "SIPS". By default. this string consists of blank. tab, and new- line charac
ters. The null string is not regarded as a word unless it is quoted as in the following example,
where the null string is passed as the first argument to echo:

echo ,t

The next example calls echo with no arguments if variable nada has not been assigned a value
or has been assigned the null string (tt): .

echoSnada

4. Pile-name generation. After blank interpretation has divided the command line into words, each
word is then scanned for the file metacharacters ., ?, and []. These metacharacters are used to
match names of files in the directory in which the process is running (as in subsection 2.2.6,
Using Metacharacters in Pile Names). Any files matching the specified patterns are assembled
into an alphabetical list, with each file name being a separate argument to the command.

S. Variable assignmenL Actual values are assigned to variable names for storage; for example,
name=value. This is the converse of step 1.

The evaluations just described also occur in the list of words associated with a for loop. Only parameter and
command substitution occur in the word used for a case branch; blank interpretation and file-name generation do
not occur.

These five stepS in command-line evaluation occur in the order listed; therefore, if one step produces output that
is only evaluated in a previous step, that output is not evaluated. If, for example. the evaluation of a file name
metacharactel' results in the name of a command file, such as ls, that command is not executed and its output is
not substituted. because command substitution occurs before file-name generation.

Another aspect of command evaluation to be aware of is that only one level of evaluation occurs; therefore, the
following three command lines will produce the result shown in italics:

S two='one'
S t.hree= 'Stwo'
SecboSthree
Stwo

The variable Sthree is evaluated to its value, Stwo, but the evaluation does not go any further. The result of one
evaluation, Stwo, is not evaluated to see if it is a variable with a value. You can get the shell to interpret
another level of variable or command substitution with the eval command. Try the following command lines,
which demonstrate the eval command, at your terminal:

S two='''Is _Cpo., # single quotes around accent graves around Is -CF
S t.hree=tStwo'
S eva! echo Sthree

The result of the three previous command lines is as follows:

"Is -CF"

50-2010 4-23 B

Retype the third command line, evaJ echo $three, changing it as follows:

eval eval echo $three

The result is the execution of command line Is -CF; a listing of the files in your current directory.

In general, the eval command evaluates its argwnents and treats the results as input to the shell. The shell then
reads the input and executes any commands. Try the following example command lines:

$ wg="eval who I grep"
$ $wg fred

They are equivalent to the command line:

$ who I grep fred

In the preceding example, evaJ is required because there is no interpretation of metacharacters. such as I, follow
ing substitution; this is another example of the specific order of command-line parsing.

The following example sets up variables containing command substitutions, then executes a command calling
those variables. The parsing process is shown at each step, with intermediate results:

SG-2010

$ user= 'Iusc'
$ dirs='$user /*bin'
$ Is .. eval $dirs'

Variable user gets the name of system directory lusr
Variable dirs gets a string value, "$08er I*bin"
Note accent graves indicating command substitution

Step 1.

Step 2.

Step 3.

Step 4.

Step S.

Positional parameter and variable evaluation.

$0 gets the string "Is" $1 gets the string "eval $dirs"

Command substitution. The string value of Sdirs is substituted.

Command line becomes: Is $user I*bin

Blank interpretation. The substituted string value of $dir becomes two arguments.

Command line becomes: Is $user I*bin

File-name generation. The shell searches for all file names that match string r bin, coming
with two standard system files.

Command line becomes: Is $user /bin /lbin

Variable assignment. The assigned value of variable $user is substituted for the variable.

Command line becomes: Is luSf /bin /lbin

4-24 B

In addition to the backslash and single quote metacharacters, there is a third quoting mechanism using double
quotes. Within double quotes, parameter and command substitutions occur, though file name generation and the
interpretation of blanks do not, just as with single quotes. Try the following two examples, comparing their out
put (in italics):

$ ship=Titanic
$ echo '$ship'
$ship
$ echo "$ship"
Titanic

$ echo 'This directory is: "pwd't
This directory is: "pwa
S echo "This directory is: 'pwd""
This directory is: /u/john

To prevent variable and command substitution within double quotes, use the backslash metacharactel.

Example:

$ echo "You can\tt have \$99.00."
You can't have $99.00.

The following are characters that have a special meaning within double quotes and can be quoted using \:

Cbaracter Meaning

$ Parameter substitution
• Command substitution

Ends the quoted string
\ Quotes special characters S, ., "t and \

Figure 4-1 shows, for each quoting mechanism, which shell metacharacters are evaluated.

SG-2010

quoting
mechanism

metacharacter
\ S •

t 'I ~ y Y

-= Not interpreted
t = Terminator
y = Interpreted

"

t

t

Figure 4-1. Quoting Mechanisms and Metacharacter Interpretation

4-25 B

4.2.4 A SAMPLE SHELL SCRIPT TO SEARCH FOR PATIERNS IN FILES

You can use the methods presented in subsection 4.2 to simplify and speed up repetitive searches. Writing a
shell script to perform multiple searches will make them easier and faster for you to do them. Such a shell
script can even make it possible for users who don't know UNlCOS at all to perform these tasks, with simple
menus such as the menu script in subsection 4.1.2.4, Looping With a Condition: The while and until Com
mands

The sample shell script presented here will search for all of the patterns listed in an input pattern file. The pat
terns must all be on one line, separated by spaces, although you can use the backslash to protect carriage
returns, allowing you more than one line of patterns in the pattern file. The shell script also asks you for the
name of the target file to search.

Example:

echo
echo "What is the name of the file you want to search?"
read search file
echo "What is the name of the file you want to create to contain the results of the search?"
read resultfile
echo "What is the name of the file containing the patterns to search for1"
read pattern file
patterns::' cat $ pattern file '
for apanern in $patterns
do

grep $apauern $searchfile » $resultfile
done

Note the append redirection in the next-to-last line of the shell script. Append redirection must be used when
inside a loop so that each successive iteration does not overwrite the output file with the output from only the
latest iteration (as it would if> were used instead of »).

You can enhance this script to ask for options to the grep command, and/or to search more than one file for the
patterns. To search multiple files, create one file containing the names of the files to be searched, and use it in
the same way this script uses a file containing multiple search patterns. You could also use this concept to per
form multiple substitutions in a file (or files). Use two input files, one for the old strings to search for and one
for the new replacement strings.

4.3 CHANGING THE SHELL ENVIRONMENT: PREDEFINED SHELL VARIABLES

The shell environment is the set of characteristics that determine how you interact with the shell and how it
appears to you. Examples of such characteristics are what sort of shell prompt is displayed, where you can
access the value of variables, and how your terminal is defined for the system. UNICOS lets you modify these
characteristics and many others, with special predefined shell variables called environment variables.

SG-2010 4-26 B

4.3.1 ENVIRONMENT VARIABLES

Environment varilJbies are predefined shell variables. usually with uppercase names. that affect your shell
environment They have the following properties:

• Yau can define. change. and access their values just as you do any of the variables that you
define. as discussed in subsections 4.1.2.1. Named Variables. and 4.1.2.2. Availability of Vari
ables: Scoping Rules and Commands.

• H you change their values and then log off the system. when you log on again the variables will
have returned to their original values, because these values are system defaults.

• You can set up your login shell so that some environment variables automatically take on the
values you want when you log in (subsection 4.3.2. The .profile File).

There are many of these variables that connol the shell environinen~ but this subsection discusses only six of
the most commonly used ones.

4.3.1.1 The HOME variable

The HOME variable contains the full path name of your home directory; the directory that you are always
located at when you first log in. This is the directory that you automatically go to when you use the cd com
mand with no arguments.

Type the following command lines at your tenninal. The responses you see to the last two command lines will
be the same:

$ cd
$pwd
$ echo SHOME

You should not change the HOME variable without storing its value in another variable of your own and restor
ing the correct value of HOME when you are done. One occasion where you might want to do this is if you are
doing work in a directory other than your home directory and the work requires a great deal of switching to
other directories. In such a case, it would be convenient to be able to just type cd to return to your primary
working directory. The following command lines let you do this:

$ realhome=SHOME
$ HOME;::new _directory

new _directory is the full path name of the directory that will be your temporary "home base It for the work you
are doing. When you are done working in this new directory. be sure to use the following command line, if you
are going to do any more work on the system:

$ HOME=$realhome

The HOME variable is also useful in making your shell scripts more portable. If you write a shell script that
references files in your home directory, you cannot use that script in any directory other than your home direc
tory, because it will not be able to locate those files. Suppose that you have a script that must be able to use cat
to display the contents of the file sturr in your home directory. To make this script portable, so you can execute
it from other directories on the system, use the following line in the script:

cat SHOME/stuff

SG-2010 4-27 B

If stuff were in a subdirectory. project. of your home directory. you would use the following:

cat SHOME/project/stuff

4.3.1.2 The PATH variable

The PATH variable contains a series of path names that end in directories and are separated by colons. The
shell uses these path names to search for the files containing the commands that you type. The shell searches
these directories in the order in which they are specified in the PATH variable. To see what paths are in your
PATH variable. type the following:

S echo SPATH

Most system commands are in the directories Ibin, lusr/bin, lusr/ucb. and lusr/lbin so these directories are usu
ally specified in the PATH variable. Additionally. if you write many of your own shell scripts and use them
more often than most system commands. you may want to create a subdirectory, bin, in your home directory.
placing all of your shell script files in it. Then. if you want that directory searched first for commands (like
shell script names). you can change your PATH variable as follows:

PA TH=SHOME/bin:SPA TH

•••

CAUTION

If. as shown here, you add SHOME/bin before the system directories (in SPATH),
you must be careful about naming your shell scripts. If you name a shell script
with any system command name (such as Is. rm. pwd. and so on). the shell can
not access that system command. because it first checks your SHOME/bin direc
tory. and finds a command there by that name. Further. if your script (for exam
ple. Is) calls a system command that has the same name (Is). the result is infinite
recursion. See subsection 3.2.4. Files of Commands: Shell Scripts. for more
infonnation about this .

•••

4.3.1.3 The MAILCHECK variable

The MAILCHECK variable lets you specify how often the system is to notify you of incoming mail from other
uselS. The variable is specified in seconds. the default being 600 seconds. which is every 10 minutes. If you
specify MAILCHECK=O. you will be immediately notified of any incoming mail. For infonnation about the mail
command. see subsection 3.3.1, The mail Command, or the mail entry in the UNICOS User Commands Refer
ence Manual. publication SR-2011.

4.3.1.4 The PSI and PSl variables

The PSt variable contains the primary shell prompt string. By default. this is simply $ for the Bourne shell.
You can set this to anything you want; to specify what machine you are on. what day it is (substitute the output
of the date command). or other values:

SG-2010 4-28 B

PS l="CRA Y2$ "
PSl='date'

Seuing the PSI variable is a way to demonstrate that subshells invoked either explicitly with the sh command or
automatically to run commands, are separate environments from your login shell (subsection 3.2.3.3. Commands
for Background Processing: ps and kill). Write and execute the following shell script:

echo
echo SPSI
echo "No PS I value in this shell yet"
PS l="prompt"
echo SPSI
echo

Your output should be as follows:

No PS I value in this shell yet
prompt

The first echo SPSI produces a blank line, because the subshell that is automatically created to run the shell
script does not have a default value for PS 1. This also shows that the value of PS 1 in your login shell is not
available in subshells. You could get around this using the export command, specifying the PS I variable (sub
section 4.1.2.2, Availability of Variables: Scoping Rules and Commands). The second echo $PSl produces the
value, prompt. that the subshell's PSI variable was set to within the subshell.

The PS2 variable contains the secondary system prompt string. The only time that this is displayed is if. at the $
shell prompt. you do not complete a quoted string or definition before entering a command line. or if you enter
a multiline command such as if, while, or case. The default value for the PS2 variable is the character >. as you
can see by typing the following command line:

$ echo "This is incomplete

The system responds with >. which is not very helpful. Type" to complete the command. You may want to
use the following command line to assign PS2 a more explanatory string:

$ PS2="Qose quotes! "

Do this, then repeat the preceding incomplete command line.

4.3.1.5 The TERM variable

The TERM variable contains a string value that tells the shell what kind of terminal you have. You would only
want to reset this if you logged in from a different terminal. The strings to which to set TERM are frequently
site-specific, so if you have occasion to reset this variable, you will need to ask your system administrator for
your system's name for the terminal you want to define.

SG-2010 4-29 B

4.J.l THE .profile FILE

The .profile file is a file of commands and environment variables that is automatically executed each time that
you log on to the system. You can check to see if you already have a .profile file (you may not), with the ·a
option of the Is command This option lists all files, including those that have names beginning with periods.
Try it now:

Is -aCF

If you already have a .profile file, display its contents with the cat command:

cat .profile

You will probably see several of the environment variables being set to various values, along with other site
specific commands .

•••

CAUTION

If you are uncertain of the meaning or purpose of some of the lines in .profile,
DO Nor modify them. Because this file is automatically executed when you log
in, incorrectly altering it can lock up your terminal or cause other problems until
your system administrator redefines your .profile file .

•••

Changing the values of environment variables in .profile is the way that you can automatically
redefine them, so that every time you log in they take on the values you have given them, rather
than their original values (the values they had when you first received your system account).
You can also define your own system commands within .profile, as the next subsection
discusses.

4.J.J SHELL FUNCTIONS

Shell functions are commands that you can define either at the command line or in your shell environment file,
.profile. Shell functions work just like other system commands, but are memory-resident. rather than fetched off
of disk, so they usually execute more quickly. Unlike shell scripts, shell functions execute within the current
shell; no subshell is created for them.

Shell functions that you define at the command line are temporary t being lost when you log oul Shell functions
that you define in .profile are automatically set each time you log in, remaining the same until you change them
in .profile.

When you define shell functions, avoid naming them with the same names as system commands. For the full
caution about this, see subsection 3.2.4, Files of Commands: Shell Scripts. The generic fonnat for a function
definition is as follows:

SG-2010

name 0
(

4-30 B

Define the following useful example function, list, by typing it at the command line (note the secondary
prompts):

$ list 0
> (
>ecbo
> echo "Directory: "pwd""
> echo
> Is -alP I pg
> echo
>)
$

. Now type list.

4.3.4 SHELL INVOCATION OPTIONS

When a shell is invoked it looks for options that specify what son of environment it is to set up. Three of these
options, -x, -v, and -n, were discussed in subsection 4.1.1.

There are three ways that Bourne shells are invoked. First, there is the login shell which is automatically
invoked when you log in. Next, there are subshells invoked for the commands and shell scripts that you run.
Finally, you can explicitly invoke Bourne shells with the sh command, as discussed briefly in subsection 3.8,
Changing Shells.

When you explicitly invoke (create) subshells with sh, you can specify options to the command. You can then
add the name of a command or shell script as a final argument, to execute that command/script in a subshell
with panicular characteristics that you specify with the options. The general format of such a command line is
as follows. where options is one or more shell invocation option letters and name is the name of the command
or shell script that you want to run in the specified shell environmenL

sh -options name

To set options in your login shell, use the set command in your .profile file:

set -options

The following is a list of the more common options to the sh command:

Option Description

-c string The· shell, immediately upon invocation, reads commands from a file named string.

-e The shell tenninates upon detecting any command execution errors (even minor ones).

-i The shell is interactive; this is the nonnal default mode.

SG-2010 4-31 B

-n The shell ignores all commands upon having this option set

**

CAImON

Setting the -n option at the command line locks up your tenninal. caus
ing it to ignore all input. including commands to log out. Use this
option only in shell scripts and subshells that terminate themselves.

**

-r The shell is restricted. This is a special security feature. Such shells prohibit the user
from changing directories (cd). changing the value of the PATH variable, specifying path
or command names containing I. and redirecting output (> ».

-5 The shell reads commands from standard input (terminal); this is the nonnal default
mode.

-v The shell is in verbose mode, echoing all commands, uninterpreted, to the screen as they
are executed.

-x The shell echoes all commands. interpreted, to the screen as they are executed.

The special shell variable $- contains the names of all shell options that are set in the current shell (in whatever
shell $- is accessed). To see the values for your login shell, type the following command line:

echo S-

If you are doing a great deal of debugging and do not want to keep typing the command line. sh -options
scriptname, to debug scripts, you can set shell options for the duration of your login session by replacing your
login shell with a different one that has different options set. You do this by combining two commands; the sh
command which creates a shell with the specified options set, and the exec command, which replaces the current
shell with the command that follows it (in this case a different shell). The command line is as follows:

exec sh -options

It is not necessary to replace your login shell; instead. use the sh command without the exec command, creating
a subshell with the ttacing mechanisms set, and leaving your login shell intact. Use the following command
line:

sh -vx

When you want to get out of this "debugging mode" and execute shell scripts normally. just press CONTROL·d
to exit this subshell and return to your login shell.

SG·2010 4·32 B

4.4 DEBUGGING SHELL SCRIPTS

Subsection 4.1.1, Basic Shell Script Debugging: Tracing Mechanisms, discussed the Bourne shell's basic debug
ging tool, the tracing mechanisms. This subsection covers two more complex debugging features of the Bourne
shell, error handling and signal handling.

4.4.1 ERROR HANDUNG AND COMMAND EXIT STATUSES

The shell handles errors in different ways depending on the type of error and on whether the shell is being used
interactively. The UNICOS definition of an interactive shell is a shell that has its input and output connected to
a terminal as determined by the system call ioetl (see the ioetl entry in the UNICOS System Calls Reference
Manual, publication SR-2012). A shell invoked with the -i option is interactive.

Execution of a command can fail for any of the following reasons:

• Input or output redirection can fail if, for example, an input file does not exist or an output file
cannot be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally; for example, with a Bus error or Memory Fault signal.

• The command terminates normally but returns a nonzero exit status.

In all of these cases, the shell goes on to execute the next command, be it in a shell script or from the command
line of a terminal. All other errors cause the shell to exit from a command procedure.

When any command executes, it returns an exit status, zero or nonzero, to the shell. You do not see this
number, but you can test for it with the logical command combining metacharacters, && and II (discussed
briefly in subsection 4.1.3.1, Evaluating Conditions: The test Command). The exit status of the last command
executed is stored in the special shell variable $?

The metacharacters && and II can be used to combine two or more commands. Successive commands execute
conditionally, depending on the exit status of the immediately preceding command. The && metacharacter exe
cutes a command following it only if the exit status of the preceding command is zero (completely successful).
The II metacharacter is the converse, executing a command that follows it only if the exit status of the preceding
command is nonzero. Examples of each of these cases follow.

A zero exit status indicates that the command completed normally with no problems. Other exit statuses have
other meanings. A command can have a nonzero exit status without producing an error message if it terminates
normally, but without accomplishing its task. An example of this is the grep command:

grep pattern file

If pattern is not found in file, the result is neither an error nor a successful completion; therefore, the command
terminates with no error message and a nonzero exit status. You can use this as an implicit test command. For
example, suppose you are searching for a particular line in a file and you know that it contains one of two
unique patterns, but not which one. The following command line will locate that line:

$ grep pattern1 file II grep pattern2 file

SG-2010 4-33 B

If the first search does not find a line containing pattern], it will have a nonzero exit status (though no error
message is returned), causing the II metacharacter to execute the second search.

Another use for these metacharacters is to test system conditions for simple yes/no answers, as the following
command line does:

$ who I grep victoria> /dev/null && echo "Victoria is logged on."

Because we are not interested in the actual output of the search, that output is redirected to the special system
file /dev/null. This is a sort of system wastebasket for unwanted output.

Write the fonowing shell script, loggedon:

$ who I grep $1 > /dev/null
$ echo $1

Call it repeatedly with different names of users on your system:

$ loggedon I1IJI7I/!

You cannot see the output of the search this way, but you will know whether or not the person- is logged on,
because a zero result indicates the search succeeded (the person is logged on) and nonzero indicates that the
search failed (the person is not logged on).

4.4.2 UNICOS SIGNALS

A signal is the mechanism that UNICOS uses to notify a process (an executing command or shell script) that
something has happened to influence the execution of that command/script. Signal types are indicated by
numbers. UNICOS has 27 defined signals and another 32 available for users. These signals are defined in the
system heathr file, /usr/includeJsignal.b, and are listed in appendix 0, UNICOS Signals.

4.4.3 USING SIGNALS: THE trap COMMAND

The trap command lets you control what· the system does when an error signal occurs. Place trap commands at
the beginning of a shell script, before any other commands. 'The general format of the trap command is as fol
lows:

trap 'command list; exit' signaCnumber

The command list must be enclosed in single or double quotes, individual commands must be separated by
semicolons, and the last command is usually the exit command, which terminates the subshell invoked to exe
cute the script (subsection 4.1.2.2, Availability of Variables: Scoping Rules and Commands). Generally, scripts
should terminate when they receive signals, because signals usually indicate some change affecting the script. If
exit is omitted, the shell resumes executing the process from the point at which it received the signal. The trap
command with no arguments displays all of the current signals that have traps set, showing those traps (the com
mands to be executed).

SG-2010 4-34 B

To display the message, "Program tenninated by user," whenever a user enters an interrupt (usually CONTROL
c) to prematurely end a shell script, you would add the following line at the beginning of a shell scripe

trap 'echo "Program tenninated by user." ; ~xit' 2

The 2 is the interrupt signal as specified in the list in appendix D, UNICOS Signals.

SG-2010 4-35 B

S. THE C SHELL

This section discusses the UNICOS C shell, including the following features:

• Shell scripts
• Parameters and variables
• Changing the shell environment
• Debugging shell scripts
• Repeating previous commands

5.1 SHELL SCRIPTS

In section 3. you began to write shell scripts in the Bourne shell. These simple programs also run under the C
shell. To go beyond such scripts to more complex ones requires using features specific to either the Bourne or
the C shell. This section covers features of the C shell that let you create more advanced and useful shell
scripts, using shell commands as you would a programming language. These features include variables. control
flow (if-then-else. while. for. case). and input. among others.

Now that you will be writing more complex shell scripts, it is a good idea to add comment lines to them, docu
menting what the scripts do. The comment character is the pound sign (#). Place it anywhere on a line to
begin a comment Once a # character is encountered, the rest of the line is ignored by the shell as nonexecut
able. Examples of comments are as follows:

This is a comment-only line.
Is -CF I pg # This line contains both code and comment

The # character has another use in the C shell. As the first line of every shell script. you must have the follow
ing line, beginning at the first character position of the line and typed exactly as shown:

#!/bin/csh .

This line tells the C shell that the shell script is a C shell script, rather than a Bourne shell script. This is neces
sary because the UNICOS C shell assumes that shell scripts are Bourne shell scripts, unless explicitly told other
wise.

Because you must· put this line at the beginning of every C shell script file. write one of the following two C
shell scripts (depending on which editor you prefer) to automatically begin editing sessions for script files with
this first line.

Shell script. edscript, for the ed editor:

SO-2010

#!/bin/csh
ed $1
a
#!/bin/csh

5-1 B

Whenever you are going to write a shell script, use edscript as follows (the % is your system prom~):

% edscript scriptname

Shell script, viscript, for the vi editor:

#!/bin/csh
vi $1
a
#!/bin/csh

Whenever you are going to write a shell script, use viscript like this:

% viscript scriptname

Before you try to use either of these scripts, remember to make them executable as follows:

chmod 755 edscript

5.1.1 BASIC SHELL SCRIPT DEBUGGING: TRACING MECHANISMS

Before you begin to write more complex shell scripts, it is a good idea to know the tools available to help in
debugging those scripts. This subsection explains two of the tracing mechanisms that the C shell provides for
debugging. As you proceed to the next subsections, refer back to this discussion as you need the debugging
tools. This subsection covers only the simplest of several debugging tools. Subsection 5.4, Debugging Shell
Scripts. discusses other debugging tools, useful for debugging more complex shell scripts.

The shell has two tracing mechanisms. the ·v and ·x options, that you will find useful in debugging shell scripts.

To set these options in a C shell, you must invoke the shell with the following options. where options is one ro
both of the option letters ·v or -x:

csh ·options

This command line creates a subshell with the specified options set, in essence creating a particular environment
(one useful for debugging) in which you can run scripts. For more information on subshells, see subsection
3.2.3.3. Commands for Background Processing: ps and kill. A complete list of shell options is presented in
subsection 5.3.4, Shell Invocation Options.

The ·v option causes the script to display commands after the shell has done history substitution (see subsection
5.5, Repeating Previous Commands: The History Mechanism), allowing you to see exactly what commands and
options are being executed.

The ·x option causes the shell to display commands after command substitution, file name generation, and vari
able substitution have taken place (subsections 5.1.l.1, 5.2.1. and 5.2.3). You can see exactly what input the
shell is getting for each command and its options.

Write the following shell script, tracer, to see the ·v and ·x options in operation:

SO-2010

#!/bin/csh
Is ·1 *mp

5-2 B

Now execute the file with the following command line (the % is your system prompt):

% csh -vx tracer

Your output should look as follows:

/bin/lS -1 ·mp
/bin/lS -1 temp
-rw-r--r- 1 name group 333 Mar 21 10:53 temp

Your login name will be in place of name and your group will be in place of group. The date and time will be
different in your output. as will the permissions. if your system sets them differently.

Each command line (there is only one here) is repeated twice. The -v option echoes it. just as it appears in the
script file. checking the line for syntax errors. The -x option again echoes the line after interpretations and sub
stitutions. which. in the preceding example. is the substitution of all file names that match the pattern. ·mp.

As you learn about variables and learn more about metacharacters in this section, try the -v and -x options with
more complex shell scripts. to see more exactly what their output is in different situations .

•• * ••••••••••••••••••••••••••••

CAUTION

There is another option you can set. the -n option. that causes the shell to read
commands and display them. It does not ,however. execute them. but checks
them for syntax errors.

Setting the -n option at the command line (the $ or % prompt) locks up your ter
minal. causing it to ignore all input. including commands to log out Use this
option only in shell scripts and subshells that tenninate themselves .

••••••••••••••••••• * •••••••••••••••••••• * ••••••••••••••••••••••••••••

5.1.2 VARIABLES IN SHELL SCRIPTS

As with any programming language. the C shell lets you use variables to contain information. These variables
come in two basic types: pre-defined shell variables and user-defined variables. This subsection covers
userdefined variables. which come in two varieties; named variables and command-line positional variables.

S.1.2.1 Named variables

Variables may be any legal UNICOS name which can consist of one to 14 alphanumeric characters. UNICOS
does distinguish between uppercase and lowercase. so the variables name and Name are different.

50-2010 5-3 B

To set a variable to a value. use either of the following syntaxes:

set variable = value
set variable=value

As a geneml rule, there must be an equal number of spaces on each side of the equal sign (=). The value can
be a word list, which is one or more words (contiguous nonblank characters) enclosed in parentheses. To set a
variable to the default null value. use either of the following command lines:

set variable
set variable = ""

NOTE

Named variables in the C shell do not have a default null value; they must be set
to some value before you try to access them with the $. Trying to access the
value of an undefined variable is an error in the C shell. Any shell script attempt
ing this is immediately tenninated.

The set command with no arguments displays a list of all set variables and the values to which they are set.
Type the following command line, and you should see a list of variables that you have set:

set

These variables are system variables that are set by the shell to default values when you log in. Some of them
will be discussed in later subsections.

The C shell has several different ways to access the value of a variable. The simplest is to use a dollar sign ($)
in front of the variable's name: $variable. With another syntax, $variable[integer], you can access the indivi
dual words of a variable's word list, as if the words were in an array and integer were the index to that array.
Try the following example (the % is your system prompt, and output is indicated in italics):

% set list = (one two three four "five six")
% echo $list
one two three foUT five six
% echo $list[3]
three
% echo Slist[S]
five six
% echo Slist[6]
Subscript out of range

You can set a variable equal to itself plus an increment for counting operations, but you cannot use arithmetic
with the set command. You must use the @ operator (explained in subsection 5.1.3.1, Evaluating Conditions:

SG-2010 5-4 B

Shell Expressions). Try the following example at the shell prompt (italics indicate output):

% set counter = 4
% echo $counter
4
% @ counter = $counter + 3
% echo $counter
7

Another syntax for incrementing variables by 1 (and only 1) is as follows (try it):

% set count = 0
% echo $count
o
% @ count ++
% echo $count
1

NOTE

Variables are correctly interpreted inside of double quotes, the value being
correctly substituted for the variable name. Inside of single quotes, however, the
string will be interpreted literally as a S character with other characters after it.

Make a simple shell script now to try using variables. Create the following file, carfile:

#!/bin/csh
set car = (Alpha Romeo)
set driver = Emily
set tires = Pirelli
echo $car
echo $ear[1]
echo Scar[2]
echo Sdriver
echo Stires
echo "Sdriver drives an Scar with Stires tires"

Make the file executable, then execute it at the command line as follows:

% carfile

SG-2010 5-5 B

You will get the following response:

Alpha Romeo
Alpha
Romeo
Emily
Pirelli
Emily drives an Alpha Romeo with Pirelli tires.

You can also have variables accept values typed in from the command line as interactive inpu~ using the special
shell variable $<:. Write the following shell script, car2. and then execute it:

#!/bin/csh
echo "Please enter the name of the driver:"
set driver = $<
echo "Please enter the make of car:"
set car = $<
echo "What son of tires:"
set tires = $<
echo "$driver drives a $car with Stires tires."

You can unset one or more variables with the unset command as follows:

unset variable1 variable2 ...

5~1.2.2 Availability or variables: Scoping rules and commands

The setenv command lets you use the value of a variable in a shell other than the one in which it is defined. Its
syntax for setting a variable is as follows:

setenv variable val~

To display a list of all setenv variables and their values, use setenv with no arguments. Recall from the discus
sion of the ps command (subsection 3.2.3.3) that subshells are created for all commands and shell scripts that
are executed. Therefore, such commands are not executing in your login shell and cannot use the values of
variables declared in your login shell. To see this, write the following shell scrip~ scope:

#!/bin/csh
set vat I = one
set var3 = three
echo "varl equals Svarl"
echo "var2 equals Svar2"
echo "var3 equals Svar3"

Next, type the following commands at the command line:

% set var I = 111
% setenv var2 222
% setenv var3 333

Now verify the results of the preceding three command lines with the following commands (output in italics):

% set

5G-2010 5-6 B

var1 111

% setenv

var2=222
var3=333

Now execute scope:

% scope

You should get the following results:

varl equals one
var2 equals 222
var3 equals three

Because varl was not set in the login shell with setenv, its value of III is not available to the saipt scope. exe
cuting in a subshell. var2 was set with setenv in the login shell so scope echoes its login shell value. The vari
able var3 was also set with setenv in the login shell, but it was reassigned a new value in the subshell in which
scope is running. so scope echoes the new subshell value of var3. This change in the value of var3 is local to
the subshell and does not change the value of var3 in the login shell. as you can verify by typing the following
command lines after running scope (output indicated with italics):

% set

var 111

% setenv

var2=222
var3=333

This shows that setting variables with setenv is a one-way process; variables defined in shells can be accessed in
subshells and locally redefined subshells. Those local redefinitions. however. are not transferred upward to the
shell in which the variable was originally defined. Variables. even when set with setenv, can only be altered in
the shell in which they were originally defined.

You can prevent subshells being created to execute commands with the source command. This forces the com
mand or shell script to execute in the current shell. Execute scope with the source command:

% source scope

The results will appear to be the same as they were before, until you check the values of the variables in the
login-shell:

% set

var1 one
var3 three

% setenv

SG-2010 5-7 B

var2=222
var3=333

Because scope executed in the current shell where all the variables were originally defined, it changed the
values for the two variables assigned within the script (varl and var3). The value of the set variable, varl, was
changed. The value of the setenv variable, var3, remains the same, but a new set variable, var3, is created, tak
ing on the value assigned to it within the shell script.

The unsetenv command is analogous to the unset command. It removes the values of setenv variables, removing
them from the list of defined variables:

unsetenv variable

5.1.2.3 Command-line positional variables

Command-line positional variables are variables that automatically exist in the shell. These variables are the
numerals 0 through 9, and the shell sets them to the values of the words on a command line, according to the
order of the words. Look at the following command line and then at the breakdown of it in the next paragraph:

Is -CF bookdirectory

The first word, Command Is, goes into variable O. The second word. -CF t goes into variable l. The third word,
boo/cdirectory, goes into variable 2. Because there is this association by order or position on the command line,
these variables are known as positional parameters. Positional parameter 0 is unlike the others (1 and greater),
in that it always is set (automatically by the shell) to the value of the command on a command line. You can
not explicitly set it to anything else.

To access the values in positional parameters, place a $ before the numeral, just as you would access the value
of a named variable.

To set positional parameters 1 through n, substiblte the appropriate numeral into the command line in a shell
script for the argument that you want it to take on as a value. For example, in the preceding command line, to
put the value of the directory to be listed into a positional parameter, you would use the following line in a shell
script:

Is..cF $1

Write the following shell script, parms, to demonstrate these concepts: (Please copy it exactly, you will be using
it again later.)

#!/bin/csh
echo "The first parameter is: $1 "
echo "The second parameter is: $2"
echo "The third parameter is: $3"

Change the file's permission so you can execute it (subsection 2.5.3. Permissions), then try it with the following
input:

Input

% parms one

SG-2010

Response

The first parameter is: one
The second parameter is:
The third parameter is:

5-8 B

%
% panns one two The first parameter is: one

The second parameter is: two
The third parameter is:
%

% panns one two three The first parameter is: one
The second parameter is: two
The third parameter is: three
%

% panns "one two" three The first parameter is: one two
The second parameter is: three
The third parameter is:
%

As another example. create the following shell script. parms2:

#!/bin/csh
echo "The command is: $1"
echo "The first argument is: $2"
echo "The second argument is: $3"
$1 $2 $3

Make the file executable. then use it as follows. examining the output carefully:

% panns2 Is -CF .

Try it again with the following command line:

% panns2 grep d carfile

The two preceding examples demonstrate that you can use the contents of positional parameters (or of named
variables) as either data or executable commands. You can assign to variables the full path names of executable
files. You are encouraged to explore this flexibility further with your own exercises and experimental shell
scripts.

Create the following shell script for your own use, naming it x:

#!/bin/csh
chmod 755 $1

This shell script, x. changes the permissions of the file argument you give it, to make that file executable. Use
it as follows:

% x filename

5.1.2.4 Moving positional parameters: The shift command

The shell keeps track of all arguments on the command line, held in the positional parameters. I through n.
You may want to have a shell script iterate over any number of arguments with which you call it. operating on
each one of them. The shift command makes this possible by moving the values of all the positional parameters
down one number and discarding the value of $1. Therefore. you can operate on any number parameters by
using them sequentially, discarding each as you use it. Write the following shell script. tenparmsl, to see how
this works:

SO-2010 5-9 B

#!/bin/csh
echo $1 ; shift
echo $1 ; shift
echo $1 ; shift
echo $1 ; shift
echo $1 ; shift
echo $1 ; shift
echo $1 ; shift
echo $1 ; shift
echo $1 ; shift
echo $1

Now execute the script, calling it with the following arguments:

% tenparms one two three four five six seven eight nine ten

You can specify a numeric argument with the shift command to shift the arguments by more than one positional
parameter. Try the following shell script, moreparms:

#!/bin/csh
echo $1 ; shift 3
echo $1 ; shift 3
echo $1 ; shift 3
echo $1

Invoke it with the following command line:

% moreparms one two three four five six seven eight nine ten

You should get the following response:

one
four
seven
ten

S.1.2.S Special command-line variables

This subsection discusses six special variables, automatically set by the shell, that are related to those in the pre
vious subsection.

The first special parameter, SO, is a variable that always contains the name of the command currently executing.

Another special variable automatically set by the shell, is $#argv. This variable contains the number of posi
tional parameters typed on a command line. It is used in shell scripts to count arguments to a script.

Add the following line at the end of your shell script parms:

echo "The number of parameters is: $#argv"

Now run the script with the same data as you did in subsection 5.1.1.2. looking carefully at the output.

SG-2010 5-10 B

The special shell variable S* (also $argv) takes on the values of all the positional parameters. except the special
one. SO. Add the following line to the end of your shell script parms:

echo "All arguments are: $*"

Run parms just as you did before. examining the results. The S* variable lets you apply a command to more
than one argument. Alter your shell script x. substituting S* for SI. so the file looks like this:

#!/bin/csh
chmod 755 $*

Shell script x will now change the permissions to 755 for any number of files you give it. making all of them
executable. Use it as follows:

% x filenamel filename2 ... filenamen

The next special shell variable is $#name. This variable contains the number of words (contiguous nonblank
characters) in the variable name. If name contains a word list of 5 words. S#name has the value 5.

Another special shell variable is $?name. This variable is useful in setting up conditions for conditional branch
ing in shell scripts (discussed in subsection 5.1.3.1). It returns a I if the variable name is defined or it returns a
o if the variable name is undefined or null.

The last special shell variable that this subsection will discuss is SS. This variable contains the process id
number (PID) of the current shell. Because every command and shell script gets its own subshell when it exe
cutes (subsection 5.1.2.2. Availability of Variables: Scoping Rules and Commands) this number is unique to
each invocation of a command or shell script. Therefore. this number is often used to name temporary output
files. That way. successive uses of a command/script will not overwrite previous output files. Use it as follows:

who I grep mygroup > groupfile.SS

This gives you a different file name. groupfile.number than any other user gets from using the same command
line. the difference being number. You also get a unique number for SS each time that you run a shell script
with a $$ in it.

5.1.3 CONTROL FLOW

The C shell has five of the control flow constructs basic to programming languages: conditional branching. for.
while. if-then-else. and case. The following five subsections discuss the C shell's treatment of these constructs.

5.1.3.1 Evaluating conditions: Shell expressions

Before you can do any conditional programming. you must be able to set up conditions.- The C shell has a
number of facilities for doing this, most of them arithmetic. The C shell has a built-in capability to perfonn
arithmetic operations, which allows you to test any condition for which you can devise a mathematical test. The
following operators are available:

Standard arithmetic operators:

+ * I> < ~~

SG-2010 5-11 B

Additional arithmetic operators:

%

,-.-
()

Modulus
Equal (can also compare strings)
Not equal (can also compare strings)
Arithmetic grouping

Logical ope~tors:

II Logical OR
&& Logical AND

Logical NOT

Bit operators:

one's complement
» right shift
« left shift
» right shift
& bitwise AND

bitwise exclusive OR
bitwise inclusive OR

The C shell's arithmetic function, @, can be executed any of the three following ways:

@ Prints the values of all variables (like the set command does)

@ name = expr
Assigns the value of the arithmetic expression, expr to the variable name

name[index] = expr
Assigns the value of the arithmetic expression, apr, to the index-th word of the predefined word
list in variable, name. (You cannot index a variable that is not a word list.)

Try the following example (system's response in italics):

SG-2010

% @ eight = 6 + 2
% echo $eight
8

5-12 B

The conditions for files return a 1 if they are true; otherwise, they return a O. These conditions are as follows:

-dfile
-e file
-f file
-0 file
-r file
-w file
-x file
-zfile

True if file exists and is a directory file
True if file exists
True if file exists and is a regular file
True if the user making the inquiry is the owner of file
True if file exists and can be read by the user
True if file exists and can be written to by the user
True if file exists and can be executed by the user
True is file has zero length (is empty)

Try the following conditions at the command line, being certain to unset the variable, result, after each use so
successive tests do not accidentally use the results of a previous test. Conditions evaluating to true result in a I,
and conditions evaluating to false result in a O. Italics indicate the shell's responses:

Example 1:

Example 2:

Example 3:

Example 4:

Example 5:

% @ result = 99 == 9 * 11
% echo $result
1
% unset result

% @ result = -f carnIe
% echo $result
1
% unset result

% @ result = -d temp
% echo $result
o
% unset result

set animal = rabbit
% @ result = $animal == bunny
% echo $result
o
% unset result

% set name = kelly ; set animal = bat ; set person = kelly
% @ result = $animal == bat II $person == "kelly"
% @ echo $result
1

SO-2010 5-13 B

5.1.3.2 Branching on one condition: The if command

The if command lets you test one condition and perfonn a command if the condition evaluates to true (1). All
of the conditions in the preceding subsection may be used in the if construct.

The simplest fonnat of the if construct is as follows9 where expr is a condition and command is a simple com
mand (not a command list, pipe~ine, or sequence of commands separated by semicolons).

if (expr) command

If command involves redirection of I/O, that redirection occurs even if the expression evaluates to false.

Another fonnat of the if construct is as follows:

if (apr 1) men
command_listl

else if (expr2) then
command list2

else
command_list3

endif

The if. expr, and then must all be on one line with nothing else. If expr is longer than one line, use a protected
new line (backslash before the return) to start the second line. Any number of else if statements are allowed and
any number of commands may be in the command_list, either on separate lines or separated by semicolons.
Pipes of commands and I/O redirection are also allowed in this command list. The endif ends the if construc~ it
must be me last line of the if construct, and it must be on a line by itself. As an example of this fonnat of the
if command, write and execute the following shell script:

#!/bin/csh
set varO = something
if (-w \ I) then

echo "I can write to root directory" > condl
else if ($varO == something) then

echo "varO equals $varO"
else if (-w doc && $varO == something) then

echo "I can write to file doc and varO equals something"
else

echo "The date is: ' date'"
endif

Execute this script The output should be as follows:

1 can write to file doc and varO equals something

Try changing the conditions so that file cond1 is created with a message in i~ and/or the command substitution
of the last condition is perfonned. For further practice. try other types of conditions and numeric tests to gain
familiarity with memo

SG-2010 5-14 B

5.1.3.3 Branching on many conditions: The switch command

The switch command provides a way to quickly and simply test a string for many possible matches. The format
of the switch command is as follows:

switch (string)
case pattern]:

command_list]
breaksw

case pattern2:
command_list2
breaksw

default:
command_listn
breaksw

endsw

This is a pattern-matching command, checking the string against the patterns in each of the case lines. You can
use the file metacharacters *, ?, and [] in any of the patterns. If no matches are found in any of the case pat
terns, the commands after the keyword default are executed. If no default exists, execution continues after the
endsw. Any number of commands may be in the command_lis~ either on separate lines or separated by semi
colons. Pipes of commands and 1/0 redirection are also allowed in this command list.

Create the following shell script, weekday, to print out weekday names, given a numeric argument:

SG-2010

#!/bin/csh
switch ($1)
case 1:

echo "Sunday"
breaksw

case 2 :
echo "Monday"
breaksw

case 3 :
echo "Tuesday"
breaksw

case 4 :
echo "Wednesday"
breaksw

case 5 :
echo "Thursday"
breaksw

case 6 :
echo "Friday"
breaksw

case 7 :
echo "Saturday"
breaksw

default:
echo "You must enter a number between 1 and 7"
breaksw

endsw

5-15 B

Make the file executable, then test it with command lines like the following:

% weekday 2
% weekday 8

The following shell script, language, uses metacharacters to detennine if the file argument it is given is a For~
tran, C, or Pascal source file. The naming conventions given in subsection 2.2.1, File-Naming Conventions,
must be followed.

#!/bin/csh
switch ($1)
case *.f:

echo "Fortran source file";;
breaksw

case *.c :
echo "C sowce file";;
breaksw

case *.p:
echo "Pascal source file";;
breaksw

default:
echo "unknown";;
breaksw

endsw

You can use the switch command to set up options for your shell scripts. For example, you can write a shell
script that prints out the current list of system users in various fonnats. Write the following script, menu:

SG-2010 5-16 B

#!/bin/csh
-c displays calendar for current year, -d displays the date and time,
-I provides a listing of the current directory, -q quits the system, logging you out.
and -w provides a list of who is currently on the system.
Anything other than the above options terminates the script
switch ($1)
case -c :

echo "What is the current year?"
set year = $<
cal $year I pg
breaksw

case -d :
date
breaksw

case -I :
echo "Directory is:"
pwd
Is -CF I pg
breaksw

case -q :
echo
breaksw

case -w :
who I pg
breaksw

default:
echo "The permitted option letters are: c, d, 1, q, and w"
breaksw

endsw

Use the script with each of its correct options and some incorrect ones; menu -option

For more information on processing command-line options within shell scripts, see the getopt entry in the
UNICOS User Commands Reference Manual, publication SR-2011.

5.1.3.4 Looping with a condition: The while command

The while construct lets you repeat a series of commands in a shell script until a condition becomes false. The
following is the general fonnat of the while command:

while (expr)
command_list

end

The while and apr must be on one line with nothing else, and the end must by on a line by itself, ending the
while loop. For expr, you can use any of the conditions mentioned in subsection 5.1.3.1, Evaluating conditions:
Shell expressions. Any number of commands may be in the command_list. either on separate lines or separated
by semicolons. Pipes of commands and I/O redirection are also allowed in this command list

Write the following shell script. which uses the while command to execute the functions of the menu shell script
until the user exits by typing -q:

SG-2010 5-17 B

#!/bin/csh
set choice # give choice the default null value
while ($choice != -q)

echo "-<: displays calendar for current year, -d displays the date and time,"
echo "-I provides a listing of the current directory, -q quits this menu of options, "
echo "and -w provides a list of who is currently on the system."
echo "Anything other than these options repeats this menu."
echo "What is your choice?"

-set choice = $<
switch ($choice)
case -c :

echo "What is the current year?"
set year = $<
cal $year I pg
breaksw

case -d:
date
breaksw

case -I :
echo "Directory is:"
pwd
Is -CF I pg
break:sw

case -q : # Dummy action for the -q option. until it exits at top of loop
echo
breaksw
case -w :
who I pg
break:sw

default:
echo "The pennitted option letters are: c, d, I, q, and w"
breaksw

endsw
end lend the while loop

Practice with the script. entering correct and incorrect options as it asks you for them. Alter the menu, if you
want to try other actions. You can create a menu just like this to simplify, to one keystroke, actions that you
commonly perfonn, such as submitting jobs for compiling, loading. and executing. or searching files for strings.

You can have the compiler, loader, or search options present in the shell script, or you can have it ask for them,
just as it must ask you for the name of the program file to compile, load, or search.

The while command is often used with the shift command to operate on an unknown number of arguments until
all have been processed. The following shell script is a more elegant version of the first script in subsection
5.1.2.4, Moving Positional Parameters: The shift Command:

#!/bin/csh
while ($#argv != 0)

echo $1
shift

end

Try it if you like, calling it with any number of arguments.

SO-2010 5-18 B

5.1.3.5 Looping with a specified index: The foreach and repeat commands

With the foreach command, you can repeat a sequence of commands in a shell script a prespecified number of
times. One fonnat of the foreach command is as follows:

foreach variable (wordlist)
co1ll1fllJ1Ul_list

end

The foreach, variable, and wordlist must be on the same line, with nothing else. The parentheses around the
wordlist are required. Any number of commands may be in the conufla1U.Clist, either on separate lines or
separated by semicolons. Pipes of commands and I/O redirection are also allowed in this command liSL The
end must be on a line by itself, and it ends the foreach loop.

This construct will perform the commands in the command_list as many times as there are words in the word/ist,
the variable taking on the value of each successive word on each iteration through the loop. To see this, create
the following shell script, forscript:

#!/bin/csh
foreach index (word! word2 word3)

echo $index
end

Execute the shell script as follows (output in italics):

% forscript
word}
word2
word3

This simple example script merely repeats the words in the wordlist. The real use for the foreach command is
when you need to perform a command or series of commands on many arguments, data, or inputs.

The words in the wordlist can be executable commands, which is useful if there is a series of commands that
you repeatedly perform.

The following example might be something a person would do at the start of each session:

#!/bin/csh
foreach index ("cal 1987" who "Is -CF')

$index I pg
end

This script will perform each of the commands in the order specified in the wordlist.

You can combine the foreach and switch commands to make shell scripts that accept more than one option.
Recall the example shell script, menu, from subsection 5.1.3.3 that was called with one option letter, each
option letter having one associated action. By adding aforeach command to that shell script, you can make the
script accept any number of option letters at one time. performing the appropriate action. Modify that script to
look like the following one:

SG-2010 5-19 B

#!/bin/csh
-c displays calendar for current year, -d displays the date and time,
-I provides a listing of the current directory. -q quits script,
and -w provides a list of who is currendy on the system
echo "What options do you want? (specify each option with a dash,
echo "putting spaces between the options: -c -d -q)
set options = S<
foreach opt (Soptiom)

end

.. switch ($opt)
case -c :

echo "What is the current year?"
set year = S<
cal $year I pg
breaksw

case -d :
date
breaksw

case -I :
echo "Directory is:"
pwd
Is -CF I pg
breaksw

case -q:
exit
breaksw

case -w:
who I pg
breaksw

default:
echo "The penniued option letters are: c, d, I, q, and w"
breaksw

endsw

You can now call the script with any number of options (separated by spac;es), and it will perfonn the associated
actions in the order you specify the options. Call it with a number of options as follows:

menu -I -d -k -w -q

Another command that iterates a specified number of times is the ,~pt!at command. This will repeat a simple
UNlCOS command the number of times specified with a counter. The syntax is as follows, where cowat is an
integer and command is a simple command (not a command list, pipeline, or sequence of commands separated
by semicolons).

repeat cowal COmmtJM

If command involves redirection of 110, that redirection occurs exactly once, even if count=O.

50-2010 5-20 B

5.1.4 SHELL PROGRAMS C.ONT AlNING THEIR OWN INPUT: here documents

You can create shell scripts that provide some or all of the input that they require; these are called here docu
ments. This is useful for operations that you perform repeatedly, such as writing memos that have a standard
heading. The following is the general fonnat for a here document

command « string
command_input

string

The command is a UNICOS command. command_input is the input that the command requires, and string is a
delimiter. not found in the input, indicating where the input begins and ends.

Example:

ed textfile « EOF
a
Line one of the input text for the new file, textfile.
Line two of text to make up the new text file.
Last line of input for the new file, textfile.
w
q
EOF

This inclusion of input within a command can be done either in a shell script or at the command line. An
example of doing it from the command line is follows:

Smail Jeanne «STOP

Hi, Jeanne.

There is a new shell script, phoney. on the system that creates and maintains a phone
directory. I've already found it very handy. it is in the directory /usr/lbin.

Howard
STOP
$

5.1.5 A SAMPLE SHELL SCRIPT TO COMPILE, LOAD, AND EXECUTE
PROGRAM FILES

You can use the methods presented in subsection 5.1 to greatly simplify the repetitive tasks of compiling, load
ing, and executing program files. Writing a shell script to perfonn these tasks will make it easier and faster for
you to do them. Such a shell script can also make it possible for users who do not know UNICOS to perform
these tasks, with simple menus such as the menu script in subsection 5.1.2.4.

You can write the following shell script to compile. load, and execute programs. having it specify a few simple
options for the procedures and ask you for names of input and output files. This example shell script is for For
tran programs, but it can easily be adapted to call other language processors, or give you options to select
among language processors. Read through the shell script carefully until you understand how it works, then
read the suggestions that follow it to see how you can further tailor the script to your particular needs.

SG-2010 5-21 B

#!/bin/csh
echo "What is the name of your source code tile?"
set sowcetile $<
cft77 -a stack Ssourcetile
echo "What do you want the name of your executable tile to be?"
set exectile $<
segldr -0 $exec tile $sourcetile.o
echo "Does your program require an input data tile (Y /N)?"
set-answerl S<
if ($answer 1 == Y II $answerl == y) then

echo "The name of the input data file?"
set indata = So<

endif
echo "Does your program require an output data tile (Y/N)?"
set answer2 = $<
if ($answer2 == Y II $answer2 == y) then

echo "The name of the output data file?"
set outdata = S<

endif
if ($answerl == Y II $answer I == y) then

if ($answer2 = Y " $answer2 == y) then
Sexecfile < $indata > Soutdata

else
Sexecfile < $indata

endif
else if ($answer2 = Y II Sanswer2 == y) then

$execfile > Soutdata
else

$exec file
endif

You can enhance this shell script with any combination of the following features:

• Include more options to the compiling and loading commands

• Have the script ask users for options to the compiling and loading commands

• Have the script ask users for the language of the source tile and invoke the appropriate
compiler/assembler

There are many other capabilities you can build into this script to tailor it to you specific needs for flexibility.
usability. and convenience.

5.2 SHELL PARAMETERS AND VARIABLES

This subsection discusses more complex details of the ways that the C shell uses and interprets variables and
parameters. Previous discussions have focused more on the use of variables; this subsection will explain some
of the concepts behind such usage.

SG-2010 5-22 B

5.2.1 SUBSTITUTING A COMMAND'S OUTPUT FOR OTHER SHELL VALUES

The accent grave metacharacter (') lets you use the output of a command in a number of ways. You can stol'e
that output in a variable or use it as as input to another command or shell script. To store the output in a vari
able, use the following syntax, where command can be a simple command, a pipe, or any other legal UNICOS
command line:

set variable = .. command"

Storing the output of a command in a variable is handy when you will want to use that output repeatedly. Hav
ing the output in a variable requires less typing on your part and reduces the execution time of shell scripts over
having the infonnation in a file or repeatedly executing the command.

If, in a shell script, you want to use the date and time in several places, you can use the following line to place
the output of the date command into the variable d and then use $d for the infonnation:

set d = .. date"

To use the output of a command as input to another command or shell script, use the following syntax:

commandl .. comntlJlld2'

The command (commandl) receiving the output can be a simple command, a pipe, or any other legal UNICOS
command line.

As an example, suppose you have a file, maillist, containing the login names (all on one line) of several people
to whom you regularly send mail on the system. If you discover some information you want to send them, you
can use the following command line:

mail 'cat maillisf
your message

CONTROL-d

5.2.2 HOW VARIABLES, COMMAND ARGUMENTS, AND QUOTING METACHARACTERS
ARE PROCESSED

The C shell is a command interpreter that perfonns positional parameter substitution, command substitution, and
file-name generation for the arguments to commands. This subsection discusses the order in which these evalua
tions occur and the effects of the quoting mechanisms. The following substitutions occur before a command is
executed:

50-2010

1. Variable substitution. The actual values of user-named variables such as $file are substituted into
the command line for the variable name. Positional parameters are also evaluated in this step.

2. Command substitution. The output of command lines enclosed in accent graves r) is substituted
into the command line. Only one evaluation occurs so that if, for example, the value of variable
X is string "$y", then 'echo $X" results in "$y", not the value contained in variable y.

3. Blank interpretation. Following the preceding substitutions, the resulting characters are broken
into nonblank words (blank interpretation). 'blanks' are the characters of the predefined shell
variable fBSIFS. By default. this string consists of blank, tab, and new line characters. The null

5-23 B

string is not regarded as a word unless it is quoted as in the following example where the null
suing is passed as the first argument to echo:

echo tt

The next example calls echo with no arguments if variable nada has not been assigned a value
or has been assigned the null string ("):

echo $nada

4. File-name generation. After blank interpretation has divided the command line into words. each
word is then scanned for the file metacharacters • t ? and []. These metacharacters are used to
match names of files in the directory in which the process is running (as in subsection 2.2.6,
Using Metacharacters in File Names). Any files matching the specified patterns are assembled
into an alphabetical list, with each file name being a separate argument to the command.

5. Variable assigmnent. Actual values are assigned to variable names for storage; for example. set
~ :II value. This is the converse of step 1.

The evaluations just described also occur in the wordlist of a foreach loop. Only parameter and command sub
stitution occur in the pattern used for a switch branch (in parentheses after switch): blank interpretation and file
name generation do not occur.

These five steps in command-line evaluation occur in the order listed, so if one step produces output that is only
evaluated in a previous step, that output does not get evaluated. If. for example, the evaluation of a file name
metacharacter results in the name of a command file, such as Is, that command is not executed and its output not
substituted, because command substitution occurs before file-name generation.

Another aspect of command parsing and evaluation to be aware of is that only one level of evaluation occurs;
therefore, the following three command lines will produce the indicated result

% set two = one
% set three = '$two'
% echo $three
$two

$three is evaluated to its value, $two, but the evaluation does not go any further. The result of one evaluation,
$two, is not evaluated to see if it is a variable with a value. You can get the shell to interpret another level of
variable or command substitution with the eval command. Try the following command lines, which demonstrate
the eval command, at your tennina1:

% set two = "Is -CF
% set three = '$two'
% eval echo $three

The result of the three previous command lines is as follows:

If the third command line, eval echo $three. is changed as follows, the result is the execution of
command line Is -CF; a listing of the files in your current directory.

% eval eval echo Sthree

SG-2010 5-24 B

In general, the eval command evaluates its arguments and treats the results as input to the shell. The shell then
reads the input and executes any commands. Try the following example command lines:

% set wg = "eval who I grep"
% $wg fred

These two command lines are equivalent to the following command line:

- % who I grep fred

In the preceding example, eval is required because there is no interpretation of metacharacters, such as I, follow
ing variable evaluation. This is another example of the specific order of command-line parsing.

The following example sets up variables containing command substitutions, then executes a command calling
those variables. The parsing process is shown at each step, with intermediate results:

% set user = · lusr' # Variable user gets name of the system directory lusr
Variable dirs gets a string of two words % set dirs = '$user 1* bin '

% Is 'eval $dirs' # Note the accent graves indicating command substitution

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Positional parameter and variable evaluation.

SO gets the string "Is"
SI gets the string "eval $dirs"

Command substitution. The string value of $dirs is substituted.

Command line becomes: Is Suser I*bin

Blank interpretation. The substituted string value of $dir becomes two arguments.

Command line becomes: Is Suser I*bin

File-name generation. The shell searches for all file names that match string I*bin,
coming up with two standard system files.

Command line becomes: Is $user /bin /lbin

Variable assignment. The assigned value of variable $user is substituted in for the
variable.

Command line becomes: Is lusr /bin /lbin lusr/bin

In addition to the backslash and single-quote quoting mechanisms, there is a third quoting mechanism using dou
ble quotes. Within double quotes, parameter and command substitutions occur, although file-name generation
and the interpretation of blanks do not, just as with single-quotes. Try the following two examples, comparing
their output (in italics):

SG-2010 5-25 B

% set ship = Titanic
% echo 'Sship'
$ship
% echo "Sship"
Titanic

% echo 'This directory is: 'pwcf'
This directory is: "pwd'
% echo "This directory is: 'pwd""
This directory is: /Jur/john

To prevent variable and command substitution within double quotes, use the backslash metacharacter.

Example:

% echo "You can"t have \$99.00."
You can't have $99.00.

The following are characters that have a special meaning within double quotes and can be quoted using \:

Character Meaning

$ Parameter substitution
• Command substitution

Ends the quoted string
\ Quotes special characters $ •• , ", and \

Figure 5-1 shows, for each quoting mechanism, which shell metacharacters are evaluated.

quoting
mechanism

\
metacharacter

S •

t

Y Y

-= Not interpreted
t = Tenninator
y = Interpreted

Figure 5-1. Quoting Mechanisms and Metacharacter Interpretation

5.2.3 A SAMPLE SHELL SCRIPr TO SEARCH FOR PATTERNS IN FILES

You can use the methods presented in subsection 5.2 to speed up and simplify repetitive sealChes. Writing a
shell script to perfonn multiple searches will make them easier and faster for you to do. Such shell scriptS can
even make it possible for people who do not know UNICOS to do these tasks, with simple menus such as the
menu script in subsection 5.1.2.4.

SG-2010 5-26 B

The sample shell script presented here will search the file you specify for matches to all of the patterns listed in
an input pattern file. The patterns in the pattern file must all be on one line. separated by spaces. although you
may use the backslash to protect carriage returns. allowing you more than one line of patterns in the pattern file.
The shell script also asks you for the name of the target file to search.

#!/bin/csh
echo "What is the name of the file you want to search?"
set searchfile = $<
echo "What is the name of the file you want to create to contain the results of the search?"
set resultfile = $<
echo "What is the name of the file containing the patterns to search fotl"
set patternfile = S<
set patterns = .. cat $pattemfile"
foreach apattem ($pattems)

grep Sapattem $searchfile » $resultfile
end

Note the append redirection in the next-to-last line of the shell scripL Append redirection must be used inside a
loop so that each successive iteration does not overwrite the output file with the output from only the latest
iteration (as it would if> were used instead of »).

You can enhance this script to ask for options to the grep command (such as -i. ignore case). You can also
make it search several files for patterns, by using an input file containing the names of the files to be searched;
this is analogous to way this script uses a file containing several search patterns. You could also use this gen
eral idea to perform multiple substitutions in a file (or files). using two input files; one for the old strings to
search for and one for the new replacement strings.

5.3 CHANGING THE SHELL ENVIRONMENT: PREDEFlNED SHELL VARIABLES

The shell environment is the set of characteristics determining how you interact with the shell; how it appears to
you. Examples of such characteristics are what sort of system prompt is displayed. where you can access the
value of variables. and how your terminal is defined for the system.

UNICOS lets you modify these characteristics and many others, with special predefined shell variables called
environment variables. You use these variables as you would any variables that you define. but these are inter
preted by the shell. have effects on it. and most have default values if you do not specify them.

5.3.1 ENVIRONMENT VARIABLES

Environment variables are pre-defined shell variables. often with uppercase names. that effect your shell environ
menL They have the following properties:

SG-2010

• These variables (except for prompt) are maintained with the setenv command. rather than the set
command. so their values are accessible in subshells. (They are in your environment.)

• You can define. change. and access their values just as you do any of the variables that you
define. as discussed in subsection 5.1.2.1. Named Variables and in subsection 5.1.2.2, Availabil
ity of Variables: Scoping Rules and Commands.

5-27 B

• If you change their values and then log off the system. when you log on again the variables will
have returned to their original values, because they are system defaults.

• You can set up your login shell so that some environment variables automatically take on the
values you want when you log in or create a new shell (discussed in subsection 5.3.3, The .login
and .cshrc Files).

There are many ()f these variables that control the shell environment, but this subsection will only discuss five of
the most commonly used ones.

The csh entry in the UNICOS User Commands Reference Manual. publication SR-2011. has a more detailed
description of precisely how the C shell exports and defines predefined and environment variables.

5.3.1.1 The HOME variable

The HOME variable contains the full path name of your home directory; the directory that you are always
located at when you first log in. This is the directory that you go to when you use the cd command with no
arguments.

To see this type the following command lines at your tenninal. The responses you see to the last two command
lines will be the same:

%00
%pwd
% echo SHaME

You should not change this variable without storing its value in another variable of your own and restoring the
correct value of HOME when you are done. One occasion where you might want to do this is if you are doing
work in a directory other than your home directory and the work requires a great deal of switching to other
directories. In such a case, it would be convenient to be able to just type cd to return to your primary working
directory. The following command lines let you do this:

% set realhome = SHOME
% setenv HOME new_directory

The new _directory is the full path name of the directory that will be your temporary home base for the work
you are doing. When you are done working in this new directory, be sure to use the following command line, if
you are going to do any more work on the system:

% setenv HOME Srealhome

The HOME variable is also useful in malcing your shell scripts more portable. If you write a shell script that
references files in your home directory, you cannot use that script in any directory other than your home direc
tory, because it will not be able to locate those files. Suppose that you have a script that must be able to con
catenate the contents of file stuIT in your home directory. To make this script portable, so you can execute it
from other directories on the system, use the following line in the script:

% cat SHOME/stuff

If stuff were in a subdirectory, project, of your home directory, you would use the following:

% cat SHOME/project/stuff

SO-2010 5-28 B

5.3.1.2 The PATH variable

The PATH variable contains a series of path names that end in directories and are separated by colons. The shell
uses these path names to search for the files containing the commands that you type. The shell searches these
directories in the order in wnich they are specified in the PATH variable. To see what paths are in your PATH
variable, type the following:

% echo SPATH

Most system commands are in directories Ibin, /usrlbin, /usr/ucb, and /usr/lbin, so these directories are usually
specified in the PATH variable. Additionally, if you write many of your own shell scripts and use them more
often than most system commands, you may want to create a subdirectory, bin, in your home directory, placing
all of your shell script files in it. Then, if you want that directory searched first for commands (like shell script
names), you can that directory name to the beginning of your PATH variable with the following command line
(parentheses enclose a word list):

•••

CAUTION

If, as shown following, you add SHOME/bin before the system directories (in
SPATH), you must be careful about naming your shell scripts. If you name a
shell script with any system command name (such as Is. rm. pwd. and so on), the
shell cannot access that system command, because it first checks your
SHOMElbin directory, and finds a command there by that name. Further, if your
script (say it is named Is) calls a system command that has the same name (Is),
the result is something like an infinite loop_ See subsection 3.2.4, Files of Com
mands: Shell Scripts, for more infonnation about this .

•••

% set PATH = (SHOME/bin SPAnn

5.3.1.3 The SHELL variable

The SHELL variable contains the full path name from the root directory to the executable file that runs your
shell. For the C shell, this path name is as follows:

/bin/csh

This is the path name that you have been typing at the beginning of all your C shell scripts. You are simply tel
ling the system where to locate the appropriate executable shell to run your shell script

5.3.1.4 The prompt variable

The prompt variable contains the system prompt string. By default, this is simply % for the C shell. You can
set this to anything you want, to specify what machine you are on, what day it is (substitute the output of the
date command), or other values.

SG-2010

set prompt = "CRA Y2S "
set prompt = 'date'

5-29 B

Setting the prompt variable is a way to see how subshells that are invoked, either explicitly with the csh com
mand or automatically to run commands, are separate environments from your login shell (subsection 3.2.3.3,
Commands for Background Processing: ps and kill). Write, but do not execute, the following shell script, prmt:

#!/bin/csh
echo Sprompt

At the command. line type the following line:

% echo Sprompt

The response will be the percent symbol (%), which is the default prompt value. Now run the shell script prmt.
Your output should be as follows:

prompt: Undefined variable.

Because the prompt variable is defined with the setenv command, rather than the set command, it is not defined
in any subshells, such as the one automatically created to run the script, prmt. This can be useful in keeping
subshells distinct if you create a number of different subshells (perhaps with different environments for different
uses). You can set the prompt in each subshell to indicate the level of that subshell.

Example:

% csh
% set prompt = 'subl% •
% csh
% set prompt = · sub2% •

5.3.1.5 The TERM variable

Create subshell from login shell
Set prompt to indicate shell level
Create subshell from within subshell
Set prompt to indicate shell level

The TERM variable contains a string value that tells the shell what kind of terminal you have. Yau would only
want to reset this if you logged in from a different terminal. The strings which to set TERM are frequently site
specific. so if you have occasion to reset this variable, you will need to ask your system administrator for the
system • s name for the term ina! you want to define.

5.3.2 RENAMING SHELL COMMANDS: THE alias COMMAND

The alias mechanism of the C shell allows you to define a command or series of commands and associate a
name with it. You can then execute the command(s) by typing the name. In this way, you can tailor the C
shell commands to mimic other operating systems, or customize it to perform commands uniquely suited to your
needs.

Aliases can do all of the operations that shell scripts can. including using positional variables
(SI. S2. . ..). command substitution, and so on. The general format of the alias command is as follows:

alias name' command_list'

SG-2010 5-30 B

The NJ~ is the name you assign to the commtJnd_list. The command_list must be in single quotes and may be
a simple command or a series of commands separated by semicolons, and it may involve pipes of commands,
I/O redirection, and may reference other aliases. Try the following examples at the shell prompt:

% alias dir 'Is -al'
%dir

% alias lsfile 'echo "directory: "pwd"" > dirfile ; dir » dirfile'
% lsfile
% cat dirfile I pg

% alias sayhi 'echo "hello there, $1"'
% sayhi Freida

A useful alias is your own rm command that is an alias of the rm -i command line. This provides a safeguard
against accidentally removing files; the -i (interactive) option asks your for a yes or no answer before removing
a file. Similarly, you may want to alias the cp command to always use the -i option, to prevent accidentally
overwriting files. Another useful alias. if you use the vi editor, is to alias vi to its -r (recover) option. This will
always recover files, before editing them, so that if there is a system aash while you are editing, when you log
back on, typing vi will automatically recover the file for you. The command lines that set up these aliases are
as follows:

alias nn 'nn -i $*'
alias cp 'cp -i $*'
alias vi 'vi -r $1'

Unlike shell scripts. aliases are not files and are not stored on disk; they are memory-resident pans of the shell.
Aliases therefore are faster to execute, but they are also impermanent; when you log off, they are lost If there
are aliases that you use particularly often and want as pennanent features of your shell environment, you can
have them automatically defined each time that you log on by putting their definitions in your .cshrc file.

5.3.3 THE .Iogin AND .cshrc FILES

The .Iogin file is a file of commands and environment variables that is automatically executed each time that
you log on to the system. Use the cat command to see what is in your .Iogin file. You can add shell scripts to
be executed or aliases or variable definitions to this file to automatically perfonn commands or set variables or
options each time that you log on to the system. Except for environment variables, however, the definitions in
this file are NOT available in any subshells; whether they are created explicitly with csh or created automatically
to run shell scripts.

The .cshrc file is similar to .Iogin, but it is executed every time that a C shell is created (including login). It
can contain environment variables such as uprompt, and alias definitions, as well as shell scripts to execute.
Because it is executed every time a C shell is created, the values and definitions in .cshrc, unlike those in .Iogin,
are available in subshells.

SG-2010 5-31 B

•••

CAUTION

If you are uncertain of the meaning or pwpose of some of the lines in JogiD or
.csbre, DO Nor modify them. Because these files are automatically executed
when you log in, incorrect! y altering them can lock up your terminal or cause
other problems until your system administrator redefines your Jogin and .cshrc
files .

•••

5.3.4 SHELL INVOCATION OPTIONS

When a shell is invoked (created) it looks for options that specify what sort of environment it is to set up.
1bree of these options, -x, -v, and en, were discussed in subsection S.1.1, Basic Shell Script Debugging: Trac
ing Mechanisms.

There are three ways that C shells are invoked. First, there is the login shell which is automatically invoked
when you log in. Next, there are subshells invoked for the commands and shell scripts that you run. Finally,
you can explicitly invoke C shells with the csh command, as discussed briefly in subsection 3.8, Changing
Shells.

When you explicitly invoke (create) subshells with csh, you can specify options to the command. You can then
add the name of a command or shell script as a final argument, to execute that command/script in a subshell
with particular characteristics that you specify with the options. The general format of such a command line is
as follows:

csh -options ~

In the preceding command line, options is one or more shell invocation option letters and name is the name of
the command or shell script that you want to run in the specified shell environment. To set options in your
login shell use the following line in your .Iogin file:

source Ibin/csh -options

The following is a list of the more common options:

Option Description

-c fnam.e The shell, immediately upon invocation, reads commands from a file named fname.

-e The shell terminates upon detecting any command execution errors (nonzero exit status).

-f The shell starts faster because it does not execute the .cshre file before startup.

-i The shell is interactive. This is the normal default mode.

5G-2010 5-32 B

Option

-n

Description

The shell ignores all commands upon having this option set

**

CAUTION

Setting the -n option at the command line locks up your terminal, caus
ing it to ignore all inpu.t, including commands to log out. Use this
option only in shell scripts and subshells that terminate themselves.

**

-s The shell reads commands from standard input (terminal). This is the normal default
mode.

-t Causes the shell to read and execute one line of input.

-v The shell is in verbose mode, echoing all commands, uninterpreted, to the screen as
they are executed.

-x The shell echoes all commands. interpreted, to the screen as they are executed.

-V Sets the verbose mode before .csbrc is executed, letting you check the commands in
.csbrc as they are executed.

-x Sets the -x option before .cshrc is executed, letting you check the commands in
.csbrc as they are executed.

If the -v or -V options are set, the set command with no options displays the word verbose in the list of set vari
ables.

If you are doing a great deal of debugging and do not want to have to type the command line, csh -qptions
scriptname, to debug scripts, you can set shell options for the duration of your login session. You do this by
combining two commands; the csh command which creates a shell with the specified options set, and the exec
command which executes the specified command in place of the shell in which you invoke it You can there
fore replace your login shell with a different shell that has different options set, with the following command
line:

exec csh -options

It is not necessary to replace your login shell. You can instead use the csh command alone. creating a subshell
with the ttacing mechanisms set. and leaving your login shell intact Use the following command line to accom
plish this:

csh -vx

When you want to get out of debugging mode and execute shell scripts nonnally. just press CONTROL-d to exit
this subshell and return to your login shell.

SG-2010 5-33 B

5.4 DEBUGGING SHELL SCRIPTS

Subsection 5.1.1, Basic Shell Script Debugging: Tracing Mechanisms, discussed the shell's basic debugging
tool, the tracing mechanisms. This subsection covers two more complex debugging features of the C shell. error
handling and signal handling.

5.4.1 ERROR-HANDLING AND COMMAND EXIT STATUSES

The shell handles errors in different ways depending on the type of error and on whether the shell is being used
interactively. UNICOS's definition of an interactive shell is one that has its input and output connected to a tera

minal as determined by the system call iocrl (see the iocrl entry in the UNICOS System Calls Reference Manual.
SR-2012). Any shell invoked with the -i option is interactive.

Execution of a command can fail for any of the following reasons:

• Input or output redirection can fail if. for example, an input file does not exist or an output file
cannot be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally; for example, with a Bus Error or Memory Fault signal.

• The command terminates normally but returns a nonzero exit status.

In all of these cases, the shell goes on to execute the next command, be it in a shell script or from the command
line of a terminal. All other errors cause the shell to exit from a command procedure.

When any command executes. it returns an exit status, zero or nonzero, to the shell. You do not see this
number, but you can test for it with the logical command combining metacharacters, && and II (discussed
briefly in subsection 5.1.3.1, Evaluating Conditions: Shell Expressions).

The && and II metacharacters can be used to combine two or more commands, executing successive commands
depending on the exit statuses of preceding ones. The && metacharacter executes a following command only if
the exit status of the preceding command is zero (completely successful). The /I metacharacter is the converse,
executing a following command only if the exit status of the preceding command is nonzero.

A zero exit status indicates that the command completed normally with no problems. Other exit statuses have
other meanings. A command can have a nonzero exit status without producing an error message if it terminates
normally. but without accomplishing its task. An example of this is the following grep command:

grep pallern file

If pallern is not found in file, this is neither an error. nor a successful completion; therefore, the command ter
minates with no error message and a nonzero exit status. You can use this as an implicit conditional test. For
example, suppose you are searching for a particular line in a file. You know that it contains one of two unique
patterns, but not which one. The following command line wiIJ locate that line: .

% grep pallernl file /I grep paltern2 file

If the first search does not find a line containing patternl. it will have a nonzero exit status (though no error
message is returned). causing the " metacharacter to execute the second search.

SO-2010 5-34 B

Another use for these metacharacters is to test system conditions for simple yes/no answers, as the following
command line does:

% who I grep victoria> /dev/null && echo "Victoria is logged on."

Because we are not interested in the actual output of the search, that output can be redirected to the special sys
tem file /dev/null. This is a sort of system wastebasket for unwanted output Write the following shell script.
loggedon:

#!/bin/csh
who I grep $1 > /dev/null
echo $1

Use the following syntax to call the script. substituting the names of various users on your system for name:

% loggedon name

You cannot see the output of the search this way, but you will know whether or not the person is logged on,
because a zero result indicates the search succeeded (the person is logged on) and a nonzero result indicates that
the search failed (the person is not logged on).

5.4.2 UNICOS SIGNALS

A signal is the mechanism that UNICOS uses to notify a process (an executing command or shell script) that
something has happened to influence the execution of that command/script. Signal types are indicated by
numbers. UNICOS has 27 defined signals and another 32 available for users. These signals are defined in the
system header file, lusr/includelsignal.h, and they are listed in appendix D. UNICOS Signals.

5.4.3 USING THE INTERRUPT SIGNAL: THE onintr COMMAND

With the onintr command, you can specify the actions to be taken when a shell script receives the interrupt sig
nal. The interrupt signal is system-specific. Often you enter it by pressing CONTROL-Co but check with your
system administrator to know for certain how to enter the interrupt signal on the system you use.

The onintr command is usually specified at the beginning of a shell script. because it does not take effect in the
script until the onintr command is reached in the flow of execution. The following is one format of the onintr
command. where the ellipses indicate the body of a shell script:

onintr label

label:
command_list
exit

The label is a unique string that must have a colon after it and be on a line by itself. The label marks the
beginning of a section of commands that you. want executed when the script receives an interrupt command.
The command_list can be any number of commands, either on separate lines or separated by semicolons. Pipes
of commands and I/O redirection are also allowed in this command list. An exit must terminate the command
list so that the shell script ends; this is not strictly necessary, if you do not want your script to end when you
send it interrupt signals. If, however. you do not have it exit, you will not be able to interrupt execution of that

SG-2010 5-35 B

script except with the kill command. The label should be at the end of the shell script. because once execution
begins at the first command following the label, it continues to the end of the script

You can use oninJ' to remove temporary files that the shell script creates during its execution or to save inter
mediate results in a file. Saving intermediate results can be very· useful, if you have a long shell script running
and you get a system broadcast from the administtator that the system is going down soon.

Create the following shell script, interr, which demonstrates the action of this format of the onint, command:

#!/bin/csh
oninn- savedata
set count = 0
while ($count < 10000)

@ count ++
end
savedata:
echo $count> countfile
exit

Increment counter by 1

When you type the interrupt signal, there may be a delay of several seconds before the system responds and
stops the shell script. Run the shell script and interrupt it (usually CONTROL-c), then look at file countfiJe, to
see at what count the shell script was intemlpted.

Another format of the onint' command is as follows:

onintt -

This fonnat causes the shell script to ignore all interrupt commands (not usually a good idea, particularly if
there is any chance the script can get into infinite recursion or loops).

The last format of the onintr command is as follows:

onintt

This restores the shell to performing its default action in response to interrupts, which is to terminate shell
scripts and return to the command line.

5.4.4 USING SIGNALS WITH THE kiD COMMAND

In the C shell, the kill command can be used to send any of the 22 defined UNICOS signals to a process (and
executing command or shell script). In this way t you can terminate or effect your executing shell scripts in
many different ways. This format of the kill command is as follows:

kill -sig pid

The sig is the number, 1 through 23, of any of the UNICOS signals, or it can be the name of a UNlCOS signal.
The name of a UNICOS signal is the name given in the list in appendix D, stripped of the first three letters, SIG.
For example, the name of the interrupt signal is INT.

The pid is the process id number of the executing process to which you want to send the signal. These numbers
are output by the ps command.

SG-2010 5-36 B

Suppose that the following is the output from the ps command on some system:

PID TIY TIME COMMAND
5419 tty06 0:08 sh
5967 tty06 0:01 sh
5968 tty06 0:01 Iongjob
5969 tty06 0:00 ps

To interrupt longjob. a user could type either of the following two command lines:

kill -!NT 5968
kill -2 5968

5.5 REPEATING PREVIOUS COMMANDS: THE HISTORY MECHANISM

The C shell history mechanism gives you the capability to quickly reexecute a previous command line or recall
parts of it to create a new command line. This is particularly helpful when you use long path names or complex
command lines involving redirection. pipes. or other operations.

Every command line that you type at the command-line prompt (% is the default) is stored in a buffer called the
history list. You must explicitly set this buffer each time that you log in. letting the system know how large you
want the buffer to be (how many command lines you want saved). This is often done in a user's .Iogin file.
The format for this definition is as follows:

set history = count

The count is an integer specifying the number of lines that you want to save. Set your history buffer now to a
value of 10 with the following command line:

set history = 10

The history buffer is maintained on a first-in. first-out basis; that is. only the most recent commands are saved.
When you enter the count+l command on the command line. it becomes the last entry in the history buffer and
the very first command line that you typed is removed from the history buffer.

Each command in the history buffer has a unique number associated with it. known as an event number. These
numbers count from the very first command entered into the history buffer. Only the most recent count number
of commands are saved. but their numbers reflect the tOtal number of commands that you have entered during
this logon session. To see your list of commands and their event numbers. type the following:

history

Enter several commands now (date, Is, who, and so on). periodically typing the history command to see the list
of commands. As you do this, the numbers in the history buffer count upwards. When you type the eleventh
command line, the first command, set history = count, is the first command in the buffer is number 2 and the
last command is number 11.

You can use the event numbers to retrieve previous command lines. This retrieval uses the special history com
mand character, !. followed by the event number of the command line that you want to repeal Assume that you
have a history buffer that looks like this:

SO-2010 5-37 B

1 set history = 5
2 Is
3 who
4 date
5 history

Typing the following command line will produce the indicated response:

% f4
Wed Mar 2507:58:17 CST 1987

The history list will now appear as follows:

2 Is
3 who
4 date
5 history
6 date

You can also use the ! character with a subtraction to repeat a previous command Given the immediately
preceding history list. me following command line will produce me indicated response:

% t-2
3 who
4 date
5 history
6 date
7 history

Before executing the !-2. the cUlTent event number was seven. because six commands had already been exe
cuted. Consequently. subtracting two from the current number produced an event number of five, which reexe
cuted event number five. the history command.

If you use event numbers often, you may find it useful to set your prompt equal to the current event number.
Given the most recent preceding history list, the following command would set the prompt and produce the indi
cated response, where the final "10%" is the next system prompt:

SG-2010

% set prompt = '% '
9%

9% history
5 history
6 date
7 history
8 set prompt = '0/(, ,

9 history
10%

5-38 B

Another way of referencing previous commands with the ! character is to specify a character suing. This exe
cutes the most recent command that begins with the indicated character suing. Assume that you have the fol
lowing history list:

1 set history = 5
2 Is -1
3 pwd
4 Is-CF

The command I Is reexecutes the command line, Is -CF. The command I cd produces the error message, cd:
Event not found.

You can also retrieve portions of previous commands, such as some or all of their arguments. The history
mechanism has a number of special characters that retrieve arguments from previous command lines. Not only
does the shell retrieve the arguments. but it immediately tries to execute them. Consequently, you must use the
history commands within a new command line that will correctly interpret the arguments they return. The argu
ment retrieval commands are as follows:

!N' Retrieves the first argument of the Nth command line
INS Retrieves the last argument of the Nth command line
IN· Retrieves all arguments of the Nth command line
!N:m Retrieves the mth argument of the Nth command line
! ! Reexecutes immediately preceding command line

Practice using the history command with these special characters. Type the history command now, to detennine
what your current event number is (remember to add I to the last event number in the history list). Enter the
following series of commands, substituting the event number (corresponding to the command line "cat doc temp
> bigfile") for N (you must have the two files doc and temp that you created in section 3, Beyond the Basics):

SO-2010

% cat doc temp > bigfile
% cat !N:l
cat doc
% cat IN:2
cat temp
% IN:O bigfile
cat bigfile
% echo "IN·"
echo "doc temp> bigfile"
doc temp > bigfile

5-39 B

APPENDIX SECTION

Ae UNICOS BATCH FACIUTIES

This appendix provides a brief user-level introduction to the use of the Network Queuing System (NQS), which
is the batch facility available with UNICOS. It also supplies a number of brief user examples, then refers the
reader to the appropriate Cray publications which provide more specific information. This appendix is divided
into the following subsections:

• Overview of NQS
• Getting started with NQS
• Using Cray station software to submit an NQS batch file

For NQS administrative information, see the UNICOS System Administrator Guide for CRAY-2 Computer Sys
tems, publication SO-2019, or the UNICOS System Administrator Guide for CRAY X-MP and CRAY-I Computer
Systems, publication SO-2018.

A.I OVERVIEW OF NQS

The nature of the batch environment provided by UNICOS is of great importance to many customers using Cray
computer systems. Several standard UNIX batch facilities, including commands, utilities, and system calls, have
been ported to UNICOS:

Facility

&
cron
at
kill and killall

Function

Runs a process in the background
Executes a command at the specified time and date
Schedules a command list at some time
Terminate a process from another process

NQS lets you submit, terminate, monitor, and, within limits, control batch requests submitted to the batch sys
tem. You can send batch requests to your own system (the local host) or to other appropriately configured com
puter systems in your network (remote hosts).

Specifically, NQS lets you perform the following activities:

SO-2010

• Submit requests to a batch queue with qsub.
The qsub command lets you specify a number of qualifications for your batch request, including
start time, memory and CPU resource limits, exponiog of environment variables, and the queue
to which the request is submitted. See the UNICOS User Commands Reference Manual, publica
tion SR-20II, for more information about the qsub command.

• Display the status of NQS queues with qstat.
The qstat command displays information about NQS queues and requests. Figure A-I provides
an example of the information you might receive from qstat about a request (cftjob) submitted
with qsub.

A-I B

The ·1 option, specifying "long fonnat," has been included on the qstat command line in the
example. By default, qstat displays the following infonnation about a request: the request-
1IQ11W, the request-id, the owner, the relative request priority, and the current request state. For
running requests (like the one in figure A-I), the UNICOS job identifier group is also shown, as
soon as this infonnation becomes available to the local NQS daemon. .

When the ·1 option is specified, however, qstat output also shows the time at which the request
was created, an indication of whether or not mail will be sent, and the USer name on the originat~
ing machine. If qstat is examining a batch queue (as in figure A-I), it also shows resource lim
its, the planned disposition of standard error and standard output. any advice concerning the
command interpreter, and the user file-creation mode mask (umask).

See the UNICOS User Commands Reference Manual, publication SR-2011, for more information
about the qsub command.

cray2: NQS BATCH REQUEST SUMMARY

REQUEST NAME IDENTIFIER OWNER QUEUE JID PRTY REOMEM REQTIM
----------.------- -------~----- -----_ ... -------------- ------ ------
batjob1 9844.cray2 dqe A little

A-medium
31 20 10

batjob2 9257.cray2 dqe
A:monster

1123 20 135 432
batjob3 9855.cray2 dqe 10 256 10000
--------------- ------------- ------- -------------- ------ ------

SG-2010

Figure A-I. Example of qstat Output for an NQS Batch Queue Summary

• Delete or signal NQS requests with qdel.
The qdel command lets you delete requests from NQS queues or signal all of the processes asso
ciated with a request by using the UNICOS signal mechanism. For more information, see the sig
nal entry in the UNICOS System Calls Reference Manual, publication SR-2012, or the qdel entry
in the UNICOS User Commands Reference Manual, publication SR-2011.

• Display the status of NQS devices with qdev.
The qde" command displays the status of devices known to NQS. If no devices are specified~
qde" displays the current state of each NQS device on the local host. See the UNICOS User
Commands Reference Manual, publication SR-2011. for more information about the qde" com
mand.

• Display supported batch limits and shell strategies for each host with qlimit.
The qlimit command displays the batch request resource limit types that NQS can directly
enforce. When you attempt to queue a batch request. each specified limit-value is compared
against the limit-value configured for the destination batch queue. If the batch queue limit-value
is greater than or equal to the corresponding batch request limit-value, your request can be suc
cessfully queued. The qlimit command also displays the batch request shell strategy defined by
your system administrator. See the UNICOS User Commands Reference Manual, publication
SR-2011. for more infonnation about the qlimit command.

• Submit a hardcopy print reques~ to NQS with qpr.
The qpr command places files in an NQS queue to be printed by a device such as a line printer
or a laser printer. See the UNICOS User Commands Reference Manual, publication SR-2011, for
more infonnation about the qpr command.

A-2 B

ST

q
R
q

The following UNICOS data transfer commands are often used in NQS batch files:

acquire Stages a file from the front-end computer system to UNICOS. The acquire command semches the
Cray system for a file of the same name before staging the file from the front-end system to the Cray
computer. If the file is found on the Clay system, the file is not staged from the front-end system.

~pose Transfers a file from UNICOS to a front-end computer system. By default, the file is transferred to
the front-end system that originated the transfer request

fetch Stages a file from a front-end computer system to UNICOS. It does not first check the UNICOS file
system for a file of the same name, as does the acquire command. The fetch command does not
delete the file from the UNICOS file system after job completion. UNICOS does not prevent two users
from staging files to the Cray system at the same time and with the same path name. If two users
attempt this, the file that is transferred last will overwrite the first one transfeJTed.

A.l GETTING STARTED WITH NQS

The first step in using NQS is to create a sheil script of commands to execute the sequence of actions to by per
fonned by the batch request Within this file you can include flags that modify the qsub user command, as long
as the flags appear before the shell commands and are preceded by It @, and $ characters. For example, the
following batch request file specifies that the request is to be sent after 11 p.m. on Tuesday and that a list of
current system users is to be produced:

#@S-a llpm Tuesday who

The following is a slightly more complex example of a batch request file:

I
I Slightly more complex
I
I @$..q queuel I Queues request to queuel
I @$-lt 00:01:00 I Specifies a per-process CPU limit of 1 minute
I
qstat -1
cd junk
Is -I
cc -0 teslhomer ralph.c
teslhomer
Is -I
nn testhomer
Is -I

You can use two methods to include data on which the shell commands must act The first method is to create
a separate data file to which the command is linked, as follows:

son < soninput

SG-2010 A-3 B

In this example~ sortinput contains lines of text that you want sorted.. The second method of including data
within your batch request is to use the here document operator as follows:
(For information on the here document operator~ see either subsection 4.1.4~ or 5.1.4, Shell Scripts Containing
Their Own Input Here Documents)

sort « EOF Robert Cohn was once middleweight boxing champion of Princeton. EOF

This example sorts the specified lines of text. In contras~ the following shell script will not sort these lines:

sort Robert Cohn was once middleweight boxing champion of Princeton.

In this example~ the so,.t command encounters an immediate end-of-file indicator when reading the standard
input file stdin~ which defaults to Idev/null.

After creating a batch request file~ use qsub to send the batch request for execution. The qsub command lets
you specify several controling factors~ including per-process CPU time limits~ time the batch request begins exe
cution~ and the queue to which the batch request is submitted. For example~ the following command submits
file request! to queuel at II p.m. on the following day. and exports all environment variables:

qsub -a "lipm Tom." -q queuel -x request!

Specify limits no larger than those required to execute your request. because NQS uses these limits for batch
request scheduling. For example, batch requests requiring large amounts of CPU time are generally run less
often than batch requests requesting small amounts of CPU time.

The qsub command also lets you interactively enter the commands to be executed by the batch request Exclude
the script-file from the qsub command line and press RETURN. All lines that you enter in the standard input
buffer are then executed as the batch request Signal the end of the standard input file with a CONTROL-d, as
follows:

$ qsub -a "llpm Tom." -q queuel
Is
who
(CONTROL-d)
$

If your batch request is successfully submitted~ NQS returns a message that displays the request id and destina
tion queue of your batch request. For example, the following message indicates that NQS assigned your request
a sequence number of 125~ you are working on machine MH-VAX, and your request was sent to queue!.

Request 12S.MH-Vax submitted to queue: queue!.

By default. NQS also assigns a request-name to your batch request. The default NQS request name is equivalent
to the name of the script file you specified on the command line. The request name and the request-id are ass0-

ciated with your request throughout the network.

SG-20l0 A-4 B

After submitting the request, use the qstat command to display the queue and batch request status, as follows:

qstat queue 1

If this command is entered soon after the previously submitted batch request is sent, it produces the following
output:

--------------~---------------
cray2: NQS BATCH QUEUE SUMMARY

QUEUE NAME LIM TOT ENA STS QUE RUN WAI HLD ARR EXI
---------------.
A little 10 14 yes on 3 10 0 1 0 0
A-medium 5 4 yes on 0 3 1 0 0 0
A monster 2 5 yes off 4 0 0 0 1 0

<TOTAL> 15 23 7 13 1 1 1 0

Figure A-2. Example of qstat Output for an NQS Batch Request

QUEUE COMPLEXES

compl comp2
comp1
comp2

See the qstat entry in the UNICOS User Commands Reference Manual. publication SR-2011. for more infonna
tion on displaying the status of NQS batch requests.

Use the qdel command with its -k option, to delete a running NQS batch request To delete a batch request, you
must be the owner of that request. unless you have super user privileges or are an NQS manager. To delete a
batch request, specify the request-id, as follows:

qdel 4.cray2

This command deletes the batch request with request-id 4.cray2.

You can also use the qdev, qpr, and qlimit commands to display the status of NQS devices, submit a hardcopy
request, and display the NQS resource limits, respectively.

After the batch request completes processing on the executing machine, the output and error messages files are
returned. by default. to your home directory on the originating machine. By default, the name of the output file
contains the first 7 characters of the request name, followed by the characters .0, followed by the request
sequence number of the request ide The error messages file has the same naming convention, except that the
second set of characters begins with .e. For example, the output file of the batch request submitted above is
named requestl.04, and the error messages file is named requestl.e4.

You can also submit NQS batch job files using Cray station software facilities, as described in the next subsec
tion.

SG-2010 A-5 B

A.3 USING CRAY STATION SOFTWARE TO SUBMIT NQS BATCH FILES

The following three general steps outline the process for using Cray station software to submit an NQS batch job
from a local computer system to UNICOS. The next subsection supplies a specific example of the three steps
necessary for submitting the batch job with the mM/YM station.

The station manuals listed in appendix C. Cray Station Publications, provide specific details on using NQS in
your environment.

1. On the front-end computer system, prepare the job file or files that will be submitted to UN/COS.
The first element in the job file must be the NQS statements that provide explicit instructions
for UNICOS on how to process the job. The job files you create on the front-end system can
contain other elements, such as code and data to be used by the program.

2. Use the job submission station commtJnd to send the job file or files from the front-end computer
system to the era] computer system for processing. You can use other station commands to
monitor and modify the job as it runs. The UNICOS job output is returned to the front-end com
puter system and placed in a location specified by the station software.

3. Use the front-end computer system to manage the output from the submitted job. For example.
you can read the file at your terminal. print a copy of it, or modify it if it contains errors.

A.4 SUBMITTING A BATCH JOB FROM THE IBMNM ST A nON

This subsection presents an example of a Fortran job submitted to a Cray mainframe from an IBM/YM station.
following the steps outlined in Figure 4-1. Examine the file shown, then read the explanation that follows it, for
information about what each of the lines in the file does. The line numbers in this file are only for reference
purposes; the files you create cannot contain line numbers.

Step 1. Preparing the job and data files on your IBMIVM station

To perform this step. you will need the following batch job file, named crayjob of type job on your mM/VM
front-end system. Before you actually create the following file on your local mM/VM station (without the line
numbers), read through the explanation in the paragraphs following:

SG-2010

1 # @$user=u4407 pw=bombo
2 # @$-r crayjob
3 fetch for.f -nfor -t'ft=t'
4 fetch indata -nindata -t'ft=data'
5 touch outdata
6 In indata fon.7
7 In outdata fon.8
8 cft77 for.f
9 segldr for.o
10 chmod 700 a.out
11 a.out
12 dispose outdata -noutdata -t'ft=data'

Lines 1 and 2 contain NQS directives, with the information necessary to submit your job (naming it
crayjob) to the Cray mainframe.

A-6 B

Lines 3 and 4 contain the NQS fetch commands that copy your Fortran source file. for.l. and
datafile. indata, from your IBMNM station to the Cray mainframe.

Line 5 contains the UNICOS touch command that creates a blank file, outdata to contain the output
of your Fortran program. "

Lines 6 and 7 use the UNICOS In command to link the Fortran units fort. 7 and fortA to the UNICOS
files, indata and outdata.

Line 8 compiles the Forttan program file, for.l. creating the binary object file, for .0.

Line 9 loads the Fortran object file produced by line 8, and produces the executable file, a.out.

Line lOuses the UNICOS command chmod to give you execute pennission for the executable file,
a.out.

Line 11 executes the Forttan program in the executable file, a.out, produced by line 9.

Line 12 disposes the UNICOS output file outdata, containing the output of the Fortran program, to
your mM/YM front-end computer.

In addition to the job file preceding. you need to create two other files on your IBMNM front-end system. These
are the Fortran program file, named for and of type F, and the input datafile, named indata and of type data.
These two files are shown following

Fortran program file, for.f:

PROORAM TEST
INTEGER IARR(10),JARR(10)
READ(7. *)(IARR(I).I= 1,10)
DO 10, J = 1, 10

JARR(J)=IARR(J) / 2
10 CONTINUE

WRITE (8,*) (JARR)(K)J(=1,10)
END

Input data file, indata:

1.3.7.9.6.5,2.4,8.10

Step 2. Using IBMIVM station commands to submit and monitor the job

To submit your batch job file, crayjob to the Cray mainframe from your IBM/YM station, use the following sta
tion command:

crsubmit crayjob

SG-2010 A-7 B

The system responds with output similar to the following:

PUN FILE 2561 TO S218 COpy 001 NOHOLD

R; T=O.06,u.15 11:20:36

To check on the status of your job, you can use the crstatus station command, which provides output similar to
the following:

11:29:57 Cray System Status (E I 0 R S) S218 Frame
CSDN - nqs_job

Job name Seq DC Status Class Pri FL CPU Limit MF TID

1

------- ---------------- ------- ------ ------ --------
U4407 22298 IN RUNNING little 8.0 14 17 ****** V4 U4407
JUNK 4 22300 IT send O-strm 0.0 V4 U4734
JUNK3 22301 IT send O-strm 0.0 V4 U4734
JUNK2 22302 IT send O-strm 0.0 V4 U4734
JUNK 22303 IT send O-strm 0.0 V4 U4734

End Of Data

Figure A-3. Example of Output from crstatus

When your job is done and the Cray system sends your output file back to your virtual reader, you will get a
message similar to this:

R; T=O.02,u.l0 11:21:18

PRT FILE 2569 FROM S218
PRT Fll..E 2571 FROM S218

COpy 001 NOHOLD
COpy 001 NOHOLD

To transfer the output file from your reader to pennanent storage, type receive at your tenninal and you will see
a response similar to the following:

File OUTDATA DATA A received from S218 at ~Ml sent as OUTDATA DATA A

R; T=O.06,u.17 11:21:52

Step 3. Use your tront-end computer system to manage the output trom the submitted job

Once the data file outdata has been disposed to your IBM/VM front-end station, you can read, print, or modify it
as you would any other file, using xedit and your local printing command.

SG-2010 A-8 B

B. UNICOS INTERACTIVE COMMUNICATIONS FACILITIES

This appendix supplies a brief introduction to the following products, which provide communication with
UNlCOS:

• TCP/IP, which runs on most UNIX systems, allows Cray computer systems to panicipate as peers
in TCP/IP network environments. TCP/IP provides file transfer applications, virtual terminal
access, and tools upon which distributed networking applications are built .

• Station software provides access to proprietary protocol implementations (SNA, DECnet, CDCNET,
and so on) through gateways resident on front-end systems. Station software provides data
conversion and reformatting to allow the Cray system to act as a natural extension to your
environment.

Because detailed information about system communication is supplied in other CRI publications, this appendix
provides a brief introduction, referring you to the appropriate manuals for more specific information.

See the TCP/IP Network User Guide, publication 50-2009, for complete user information regarding the TCPJIP
network. For complete user information on Cray station products, see the list of publications in appendix C.

B.l THE TCP/IP PROTOCOL

The Transmission Control Protocolllntemet Protocol (TCP/lP) is a set of computer networking protocols that
allows two or more individual computers, called hosts, to communicate over a network. TCP/IP was originally
defined by the Defense Advanced Research Projects Administration (DARPA), an agency of the U.S. Department
of Defense (DoD). It is now a government standard implemented on a wide variety of computing equipment.

TCP/IP includes a variety of commands that provide communication facilities, not just with Cray computer sys
tems, but with any systems that support the TCP/IP protocol.

TCP/IP provides the following basic communications facilities (the commands associated with them are listed
also, and they can be found in the UNICOS User Command Reference Manual, publication SR-2011):

• Remote login and execution (telnet, rlogin. and remsh)
• File transfer utilities iftp and rep)
• Network mail

For example, the telnet and rlogin utilities let you use hosts on your network as if they were directly connected
to your terminal. The computer system LO which your terminal is hard-wired is your local host; the Cray com
puter system and other computer systems on the network are considered remote hosts.

The telnet utility uses the DoD TCP for reliable virtual terminal communication. One important virtue of telnet
is that it can connect you to any host on your network that supports DoD standard TCP/IP, regardless of the
resident operating system. Actual use of a remote host. however, requires knowledge of its operating system,
because telnet does not perform command translation.

When you use telnet. the remote host may prompt you for your login name and password. It then checks the
system authorization before granting you access.

SG-2010 B-1 B

In the following example. the user is prompted for a login name on the name host.

$ telnet name
login: loginame
password:

$

The 1IIJme argument to the telnet command is specific to each system and is set by your system administtator. It
is the name by which your front-end computer system knows the Cmy mainframe. See your system administra
tor for the 1IIJme of the Cray system(s) at your site that you want to log on to. After typing this command~ you
will be at the logon screen of the Cray system as discussed in subsection 2.1.1. Logging in. where loginame is
explained.

B.1.1 THE ftp COMMAND

The ftp command is the user interface to the ARPANET standard File Transfer Protocol (FTP). This lets users
transfer files to and from a remote network site. Use the Itp command as follows:

ftp name

The 1IIJme argument is the same as the name you would use with the telnet command This name is system
specific. so if you do not know what it is. ask your system administrator.

Once you have logged in to the Cmy mainframe with the ftp command, you can use a number of commands
specific to Itp to accomplish file transfers. Some of the more commonly used Itp commands include the follow
ing:

SG-2010

bye Tenninate the FrP session with the remote server and exit ftp.

close Tenninate the FrP session with the remote server, and return to the command interpreter.

delete remote-jile
Delete the file remole-file on the remote machine.

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If the local file name is not
specified, it is given the same name it has on the remote machine.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mget remote-files
Expand the remole-files on the remote ritachine and do a get for each file name thus pro
duced.

mput local-files
Transfer· multiple local-files from the current local directory to the current working directory
on the remote machine.

B-2 B

put local Gfile [remote-file]
Store a local file on the remote machine. If remote-file is left unspecified, the local file name
is used in naming the remote file. File transfer uses the current settings for type, format,
mode, and structure.

quit A synonym for bye.

recv remote-file [local-file]
A synonym for get.

send local-file [remote-file]
A synonym for pUi.

user user-name [password] [account]
Identify yourself to the remote FrP server. If the password is not specified and the sezver
requires it, ftp will prompt the user for it (after disabling local echo). If an account field is
not specified, and the FrP server requires it, the user is prompted for it Unless ftp is
invoked with "auto-login" disabled, this process is done automatically on initial connection to
the FrP server.

B.1.2 THE rep COMMAND

The rep command performs a remote file copy between two machines. The allowed syntaxes for the command
are as follows:

rep filel file2
rep [-r] file ... directory

The rep command copies files between machines. The file arguments may refer to remote files, local files. or
directories; arguments may consist of either absolute or relative path names. Remote files are specified in the
form rhost:file, where rhost is a remote hostname or alias (described in hosts(4N». The local file name file may
not contain a colon (:) unless it is preceded anywhere in the name by a slash (I).

If the -r option is specified and any of the source files are directories, rep copies each subtree rooted at that
name; in this case the destination must be a directory.

If path is not a full path name, it is interpreted relative to your login directory on rhost. A path name on a
remote host may be quoted (using \ "t or ,.) so that metacharacters are interpreted remotely.

The rep command does not prompt for passwords; your current local user name must exist on rhost and must
permit remote command execution via remsh(l).

The rep command handles third party copies, where neither source nor target files are on the current machine.
Hostnames may also take the form rhost.rname to use rname rather than the current user-name on the remote
host

SG-2010 B-3 B

B.2, USING STATION SOFIWARE

H you are using a station software product to communicate with UNICOS, you should have access to a set of
publications describing how to use that product with UNICOS. This section is not intended to replace the publi
cations listed in appendix C. Cray Station Publications, but rather to provide a brief introduction to UNICOS sta
tion facilities.

Station software products are a means of connecting Cmy computer systems to those of other vendors. CRI pr0-

vides communications software products that link UNICOS to the following front-end environments:

• DEC V AX/VMS

• mMMVS

• mMVM

• CDCNOS

• CDC NOS/BE

• Apollo DOMAIN

• AT&T UNIX System V and Berkeley UNIX 4.2BSD running on several hardware systems. includ
ing the following:

AT&T 3B20
DEC VAX
Pyramid
Sun Microsystems
Hewlett-Packard
Silicon Graphics IRIS workstation

These products provide connectivity and extensive functional capabilities. including the following:

• Interactive access
• File transfer
• Job transfer. status, and control

Stations can be used to integrate a Cray system into a multivendor, multiple-protocol environment. Stations are
connected using either the direct channel front-end interface (FEI) attachment, or the Network System Corpora
tion (NSC) HYPERchannel attachment for multiple connections.

Interactive access through station software can be accomplished by entering a single station command, followed
by entering your UNICOS user name and password. For example. you can initiate and tenninate a UNICOS
interactive session through the V AXNMS station as follows: •

SO-2010 B-4 B

$ cint
CINT> inter

Welcome to Mendota as ttyOO

login: xxx
password: xxx

Be sure to read the news --

CINT> quit
bye
CINT> exit
$

Several additional interactive slation features let you perform special functions, depending on the version of sta
tion software you are using. For example, the UNIX station interactive facility lets you redirect output from a
UNICOS command to a file on a UNIX front-end system.

The following is a list of station commands used to start an interactive UNICOS session from different local
computer systems.

Station

UNIX
VAXNMS
ffiM/MVS
Apollo
NOS

Command

ias
cinteractive
cray
CINT
HELLOJCF
/LOGON

mMNM crint

(note the two lines required)

Station software also provides batch job submission to UNICOS. As a station user, the first step in submitting a
batch job through the station is to prepare a shell script containing NQS commands, shell commands, and pr0-

gram data. (NQS is the UNICOS batch system.) See appendix A or the publications listed in appendix C, Cray
Station Publications, for information on submilting a batch job to UNICOS with a Cray station.

If you are accessing UNICOS through station software on a front-end system, you can transfer files with a set of
UNICOS commands that provide for data transfer between systems. You can include these commands in a batch
file or you can enter them during an interactive session. The data transfer commands are acquire, dispose. fetch,
and scpqsub. TheSl! commands conform to the syntax of UNICOS commands and are executed by your UNICOS
shell.

The acquire command transfers a file from the front-end computer system to UNICOS. searching for a file of the
same name before transferring the file to Cray memory from the front-end system. If the file is found on the
Cray system, the front-end file is nOl transferred. Depending on how your site installs USCP, you may have to
specify the full path name of this command, which is lusr/bin/acquire.

SG-2010 B-5 B

Fonnat

acquire sdn -lloca/palh [-i termid] [am mainframe] [ad de] [-fjm][-t'lextfield']

sdn

local path

-i termid

-m mainframe

-d dc

-fjm

-t'text field'

Name of the source file on the front-end system

Location of the file on UNICOS; can be a relative or full path name. This
is a required parameter.

Tenninal identifier for front-end verification. The default is the tenninal
identifier from the front-end system from which the job was submitted
or through which the inLeracti ve session was initiated.

A 2-character. front-end identifier; the default is the originating main
frame.

Disposition code. All COS disposition code values are supported; the
default is PRo

File format; it can be one of the following:

CB Character blocked; the file is sent to the front-end system
in COS blocked format. CB is the default.

TR Transparent: the data is treated as a continuous byte string.

UD UNICOS data; the format is mixed-case Ascn character
data commOR to most UNIX systems.

Front-end specific text to be passed to the front-end system. See the sta~
tion reference manual for your

The fetch command transfers a file from the front-end computer system to UNICOS. The fetch command does
not check the UNICOS file system for the existence of the specified file before sending the transfer request to the
front-end system and it does not delete the file from the UNICOS system following job completion.

The dispose command transfers a file from UNICOS to a front-end computer system. By default. the file is
transferred to the front-end system from which the request originated. Depending on how your site installs
USCP, you may.have to specify the full path name of this command, which is lusr/binldispose.

The scpqsub(l) command lets you spawn additional UNICOS jobs from within the original UNICOS job sent to
the Cray computer system. You can route the output of the job to the front-end system of your choice. This
process is called recursive submission.

For more infonnation on the format of felch. dispose. and scpqsub. see the station reference manual specific to
your front-end system.

SG-2010 8-6 B

8.3 STATION SOFfWARE EXAMPLE PROGRAMS

The following examples provide an illustration of interactive and batch jobs you can run through station
software. This subsection assumes that you are using a UNIX front end and the UNIX station; you will have to
make minor modifications to the programs (mainly in the text fields of the acquire, fetch, and dispose com
mands) to make these programs run on your own front-end system.

The examples are shown in both interactive and batch mode. The interactive examples assmne that you are
already logged on interactively to UNICOS.

8.3.1 FILE TRANSFER EXAMPLES

Transferring a file from the front-end system to reside as a file on UNlCOS is accomplished with the acquire
command, as follows:

$ acquire datal -mTZ -t'/u/xyz/datll'

The datal argument is the UNICOS file to which the datl is transferred: unless you specify a full path
name, the file is placed in your current directory. The·m option specifies the mainfl3llle id for your
front-end system. The -t option specifies the front-end text, or the file on the front-end to be
transferred.

The equivalent batch job is as follows:

JOBJN=EXI.
ACCOUNT .AC=xxx,US~xxx,UPW=xxx.
@$-r exl
@$-eo
@$-lt 10
acquire datal -mTZ -t' /u/xyz./datal '

#USCP job
#USCP account validation
#lob card
#Combine standard error and output
#Time limit of 10 seconds

The following interactive command transfers a file from UNICOS to a front-end system:

$ dispose datal -mTZ -dST -t'/u/xyz/datll'
$ exit

This command transfers a copy of file datal to Iulxyzldatal; if the front-end file already exists, it is
overwritten. The fonnat is similar to acquire, except that the -d option specifies the ST disposition
code. The ait command causes the login prompt to reappear on the screen.

The following batch file has the same effect as the previous interactive command:

SO-2010

JOB,JN=EX2.
ACCOUNT .AC=xxx,US=xxx,UPW=xxx.
@$-r ex2
@$
dispose datal -mTZ -dST -t'/u/xyz/daral'

B-7 B

B.3.l JOB SUBMISSION EXAMPLES

This subsection provides examples on four types of programs in which you will use station software to submit
jobs. The programs describe how to run a job on a Cray system when the source exists on UNICOS, on the
front-end system, and in various combinations. The subsection assumes that you understand how to run a
UNICOS Fortran program; if you do not, see subsection 3.S, Fortran Programs Under UNICOS.

The following batch file nulS with both the program and data existing as files on the front end:

JOB,JN=EX3.
ACCOUNT ,AC=xxx,US=XXX,UPW=xxx.
@$-r ex3
@$
fetch source.f -mTZ -t'u/xyz/source'
fetch data -m1Z -t'u/xyz/data'
eft source.f
segldr source.o
a.out < data

#Output is placed in executable file a.out
#Runs a.out and takes input from file data

The following batch file nulS with the program on UNICOS, and the data on the front-end system:

JOB,JN=EX4.
ACCOUNT ,AC=xxx,US=XXX,UPW=xxx.
@$-r ex4
@$
fetch data -mTZ -t'/u/xyz/data'
eft progl.f
segldr prog 1.0
a.out < data

The following batch file nulS with the program on the front-end system, and the data on UNICOS:

JOB,JN=EXS.
ACCOUNT ,AC=xxx,US=XXX,UPW=xxx.
@$-r exS
@$
fetch prog.f -mlZ -l'/u/xyz/prog'
In datal fon .. lO
eft prog.f
segldr prog.o
a.out

The following batch file runs with both the program and the data on UNICOS:

SO-2010

JOB,JN=EX6.
ACCOUNT ,AC=xxx,US=XXX,UPW=xxx.
@$-r ex6
@$
In datal fort.IO
In prog 1 prog 1.f
eft eeL prog 1.£; cat prog 1.1
segldr prog 1.0
a.out

B-8 B

C. CRAY STATION PUBLICATIONS

The following publications contain detailed user-level information and examples for the indicated Cray station
software:

Apollo DOMAIN Station Reference Manual, publication SA-0250

Apollo DOMAIN Station Differences for UNICOS Installations, publication SN-0253

UNIX Station User Guide, publication SU-OI07

UNIX Station Summary of Differences for UNICOS Installations, publication SU-OI03

CDC NOS Station Reference Manual, publication SR-()()35

CDC NOS Station Summary of Differences for UNICOS Installations, publication SN-0237

CDC NOS/BE Station Reference Manual, publication SR-0034

CDC NOS/BE Station Summary of Differences for UNICOS Installations, publication SN-0240

DEC V AXNMS Station Reference Manual, publication SV ·0020

DEC V AXNMS Station Summary of Differences for UNICOS Installations. publication SN-0239

mM MVS Station Reference Manual, publication SI-0038

mM MVS Station Summary of Differences for UNICOS Installations. publication SN-0149

mM VM Station Reference Manual, publication SI-016O

mM VM Station Differences for UNICOS Installations. publication SN-Ol66

SG-2010 C-l B

D. UNICOS SIGNALS

UNICOS has 27 defined signals and 32 more available for users. These signals are defined in the system header
file, /usr/includelsignal.h, as well as being listed here.

Signal
Name

SIGHUP
SIGINT
SIGQUIT

SIGILL

SIGTRAP

SIGHWE
SIGERR
SIGFPE
SIGKILL
SIGPRE
SIGORE
SIGSYS
SIGPIPE

SIGALRM
SIGTERM
SIGUSRI
SIGUSR2
SIGCLD
SIGPWR
SIGMT
SIGMTKILL
SIGBUFIO
SIGRECOVERY
SIGUME
SIGCRAY8
SIGDLK
SIGCRAY7
SIGCPUUM
SIGSHUTDN

Number Description

01* Hangup; user logged off
02* Interrupt (rubout); user pressed the interrupt key
03* Quit (ASCII FS) user pressed CONTROL-c or the program failed and output a core

dump
04* Illegal instruction (not reset when caught); user requested unknown command

(usually a typographical error)
05* Trace trap (not reset when caught); a signal used by program debuggers such as

adb
06* Hardware error (fp table, 1m parity, double bit); abon
07* Error exit
OS* Floating-point exception; an arithmetic error
09 Kill signal from the kill command (cannot be caught or ignored)
10* Program range error
11* Operand range error
12* Bad argument to system call
13 Write on a pipe with no one to read it; the user piped a command's output, but

14
15
16
17
IS
19
20
21
22
23
24
24
25
25
26
27

specified no recognized command to receive it as input
Alarm clock
Software termination signal from the kill command
User defined signal 1
User defined signal 2
Termination of a child process; a command and its invoked subshell tenninated
Power failure
Multitasking wake-up signal
Multitasking kill signal
Fortran asynchronous I/O completion
Recovery signal (advisory)
CRAY X-MP and CRAY-l systems: Uncorrectable memory error
CRAY-2 systems: Reserved for Cray Research, Inc.
CRA Y X-MP and CRAY-} systems: True deadlock detected
CRA Y -2 systems: Reserved for Cray Research, Inc.
CPU time limit exceeded (see limil(2»
System shutdown imminent (advisory)

Signals marked with * produce a core dump if they are not caught with the Bourne shell trap command.

SO-2010 D-1 B

The following alternative definitions are also available:

SIOIOT 06
SIOEMT ,07
SlOB US 10
SIOSEOV 11

Signals 33 th!ougb 64 are available for users.

SG-2010 0-2 B

E. ON·LINE MANUAL SECTION ABBREVIATIONS

To retrieve entries with the man command from only one particular section of the UNICOS on-line documenta
tion set, specify the section abbreviation before the name of the entry as follows:

man section entry

The following example displays only the name command, and not a system call, library routine, or other entry
that may have the same name:

man 1 name

The complete set of section abbreviations for the UNICOS on-line documentation set are as follows:

1 User command entries in the UNICOS User Commands Reference Manual, publication SR-2011

Ibsd User command entries from UNIX 4.2 BSD in the UNICOS User Commands Reference Manual, publica
tion SR-2011

1m Administrator command entries in the UNICOS Administrator Commands Reference Manual, publication
SR-2022

2 System call entries in the UNlCOS System Calls Reference Manual, publication SR-2012

3c C library routine entries in the CRA Y -2 UNICOS Libraries, Macros, and Opdefs Reference Manual, pub
lication SR-2013, for UNICOS running on a CRAY-2 computer system, or in the CRAY X-MP and
CRAY-l C Library Reference Manual, publication SR-OI36, for UNICOS running on a CRAY X-MP or
CRA Y -I computer system

3db CRAY X-MP and CRAY-I SYMDEBUG library routine entries in the Programmer's Library Reference
Manual, publication SR -0113. for UNICOS running on a CRA Y X -MP or CRA Y -1 computer system

3f Fortran library routine entries in the CRA Y -2 UNICOS Libraries, Macros, and Opdefs Reference Manual,
publication SR-2013, for UNICOS running on a CRAY-2 computer system, or in the Programmer's
Library Reference Manual, publication SR-0113, for UNICOS running on a CRAY X-MP or CRAY-l com
puter system

3io CRA Y X-MP and CRA Y-I I/O library routine entries in the Programmer's Library Reference Manual,
publication SR-0113 for UNICOS running on CRAY X-MP or CRAY-l computer systems.

3m Math library routine entries in the CRAY-2 UNICOS Libraries, Macros, and Opdefs Reference Manual,
publication SR-2013, for UNICOS running on a CRAY-2 computer system, or in the Programmer's
Library Reference Manual, publication SR-0113, for UNICOS running on a CRAY X-MP or CRAY-l com
puter system

3n TCP/IP network library routine entries in the TCP/IP Network Library Reference Manual, publication
SR-2057

3q CRA Y -2 calling sequence entries in the CRA Y -2 UNICOS Libraries, Macros, and Opdefs Reference
Manual, publication SR-2013, for UNICOS running on a CRAY-2 computer system, or

SO-2010 E-! B

3rpc RPC library routine entries in the TCP/IP Network Library Reference Manual, publication SR-20S7

3s CRA Y -2 standard C library routine entries in the CRA Y -2 UNICOS Libraries. Macros. and Opdefs Refer
ence Manual, publication SR-2013, for UNICOS runl'!ing on a CRA Y-2 computer system

3 sci Scn.m (libsci) library routine entries in the CRA Y -2 UNICOS Libraries, Macros, and Opdefs Reference
Manual, publication SR-2013, for UNICOS running on a CRAY-2 computer system, or in the
Programmer's Library Reference Manual, publication SR-0113, for UNICOS running on a CRA Y X-MP
or CRA Y-l computer system

3u Utility library routine entries in the CRA Y-2 UNICOS Libraries, Macros, and Opdefs Reference Manual.
publication SR-2013, for UNICOS running on a CRA Y-2 computer system, or in the Programmer's
Library Reference Manual, publication SR-0113, for UNICOS running on a CRAY X-MP or CRAY-l com
puter system

3w TCP/IP socket compatibility library routine entries in the TCP/IP Network Library Reference Manual,
publication SR-2057

3x CRA Y-2 Miscellaneous library routine entries in the CRA Y-2 UNICOS Libraries, Macros, and Opdefs
Reference Manual, publication SR-2013. for UNICOS running on a CRA Y-2 computer system

3z CRA Y-2 macros and opdef entries in "the CRA Y-2 UNICOS Libraries. Macros. and Opdefs Reference
Manual, publication SR-2013. for UNICOS running on a CRAY-2 computer system

4d Special file (device) entries in the UNICOS File Formats and Special Files Reference Manual, publica
tion SR-2014

4f File formats entries in the UNICOS File Formats and Special Files Reference Manual. publication SR-
2014

4n TCP/IP file and facility entries in the UNICOS File Formats and Special Files Reference Manual. publi
cation SR-2014

SG-2010 E-2 B

GLOSSARY

GLOSSARY

The following list defines terms and acronyms used in this manual that may not be familiar.

A

Absolute path name - See full path name.

Argument - Words following the command name on a command line that provide information necessary
to execute a program. Command arguments are very often file names.

Ascn - American Standard Code for Information Interchange

B

Background - A mode of program execution when the shell does not wait for the command to terminate
before prompting for another command

Block - A unit of disk storage space equal to 4096 bytes.

Bomne shell - One of two UNICOS command int.epreters that acts as an interface between USC2'S and the
UNICOS operating system. It can be thought of as a layer over the operating system (hence "shell")
providing some commands, command interpretations, and utilities as an interface to the operating sys
tem. The Bourne shell is derived from AT&T UNIX System V. See also, C shell.

C

C language - A general-purpose, medium-level programming language used to write programs (such as
numerical, text processing, and database) and operating systems.

C shell - One of two UNICOS command intepreters that acts as an interface between usm and the
UNICOS operating system. It can be thought of as a layer over the operating system (hence "shell")
providing some commands. command interpretations, and utilities as an interface to the operating sys
tem. The C Shell is derived from the 4.2 release of the Fourth Berkely Software Distribution (4.2BSD).
See also, Bourne shell.

Child process - A duplicate of the parent process created with the system call fork(2).

Command - The first word of a command line. It is the name of an executable file that is a compiled
program, shell built-in command, or shell procedure.

Command line - A sequence of nonblank arguments separated by blanks or tabs typed in by a user.
The first word usually specifies the name of a· command and the other words are options and arguments
to the command.

Command list - A sequence of one or more simple commands separated or terminated by a new-line
character or a semicolon.

Command procedure - See shell script

SO-2010 Olossarv-I B

Command substilUtion - When the shell reads a command line, any command or commands enclosed
between accent grave charactetS, as in 'command', are executed first, and the output from these com
mands replaces the whole expression, .. command' .

Core fi1e - A file produced by a running process when it receives a particular signal. This file contains
a memory image of the process and is named core. See appendix C. UNICOS Signals.

Cament directa'y - The directory in which the user is currently located. It is the value returned by the
pwd command - The current directory is used as the point of reference for accessing data within the file
structure when relative path names are used.

D

Delimiter - Any character(s) that mark the beginning and ending of any separate unit: piece of text, pr0-

gram input, or program block; the symbol(s) that mark an item as separate from its environment.

Din:ctory - A type of file that is used to group and organize files and other directories.

E

echo - A UNICOS command that repeats the text arguments given it. It can also evaluate metacharac
ters, performing variable substitution, and command substitution. See the echo entry in the UNICOS
User Commands Reference Manual, publication SR-20ll, for meR infonnation on the echo command.

Environment variables - predefined sheD variables that detennine some of the characteristics of your
sheD.

BOP - The end-of-file character. EOP is used to terminate a shell; if the login shell is tenninated. the
user is logged off the system. By default, an EOP is generated at a keyboard by CONTROL-d.

Ear - The end-of-transmission character. This is the same as the ASen EOP character. See EOP.

eS(Jc - Indicates the end of the UNICOS case command; no more conditions are listed.

Exit status - A number returned to the system by a command once it completes execution, indicating
eithtz that the command executed successfully or that the command encountered some sort of error.
See subsection 4.4.1, Error Handling and Command Exit Statuses.

F

File - An organized collection of information containing data or programs or both, which allows users
to store, retrieve, and modify infonnation. A file is either a regular file or a special file. A simple file
name is a sequence of characters other than a slash (j).

rue descriptor - A nonnegative integtz returned by the open(2) or create(2) system call. By conven
tion, UNICOS commands use file descriptor 0 for standard input, file descriptor 1 for standard output,
and file descriptor 2 for standard error. Upon login, standard input, standard output, and standard error
are assigned to the user's tenninal.

rdter • A command that reads its standard input, transfonns it in some way t and displays the result on
its standard output.

SO-20l0 01ossarv-2 B

Foreground - A mode of program execution when the shell waits for the command to terminate before
prompting for another command.

fork - The system call that duplicates a parent process, creating a child process.

Full path name - The path name between the root directory (/) and a specific file. This is a list of the
names of all directories on a direct path between the root directory and the filet beginning with a slash
for the root directory, and ending in the name of the file, with slashes between all of the names. See
Path name.

G

Group identification number (gid) 0 A unique number, assigned to one or more logins, that is used to
identify groups of related users.

H

Here document - A combination of a command and input to that command that has the following for
maC

command« delimiting_string
text
delimiting_string

This causes the shell to read subsequent lines as standard input to the command, beginning on the line
following the first occurrence of the delimiting_string and continuing to the second occurrence of the
delimiting_string. You can use any character(s) for the delimiting_string.

HOME - Another name for the login directory. It is a predefined shell variable; the value of this vari
able is accessed with SHOME.

Home directory - The default working directory for a user; the user is placed in this directory after log
ging in.

In-line input documents - See here documenL

K

Keyword parameters - An argument to a Bourne shell command or script, with the following format.
where name is the keyword parameter:

name = value command argl arg2 ...

It allows shell variables to be assigned values when a shell procedure is called. The value of name in
the invoking shell is not affected. but the value is assigned to name before execution of the procedure.
The arguments (argl arg2 ...) are available as positional parameters ($1 $2 ...).

SG-2010 Glossarv-3 B

L

Link - A link allows a file to be accessed from more than one directory. It is not a copy of the file, but
a path to it, like an implicit version (that you cannot see) of a path name that is continuously in effect

Log in - A procedure to connect a user to a UNICOS system.

Log off - A procedure to disconnect a user from a UNICOS system.

Login - A means by which a user can gain access to a UNICOS system.

Login directory - See Home directory.

Login name - A unique string of letters and numbers used to identify a login

M

Metacharacters - Characters that have a special meaning to the shell, such as <, >, ., ? I, &, S, ;, (,), ,
", 't ., [,]

Mode (of a file or directory) - The pennissions for the file or directory (read, write, and execute for
owner, group, and other). The mode is referenced by either an octal nwnber (absolute mode) or a
sequence of characters (relative mode). The mode is used in conjunction with the cJunod command to
change the pennissions of files and directories.

N

New-line character - The character that appears on a screen as a combination of a carriage return and
line feed. To indicate a new-line character on an AScn keyboard, press RETURN. The character is
commonly represented in code as 'no

Null suing - A suing of nothing, specified with empty double or single quotes: "" or ".

P

Parent directory - The directory immediately above another directory. A " .• " is the shorthand name for
the parent directory. To make the parent directory of your current directory your new current directory I
enter the command "cd •• ".

Parent process - A process that has created a child process with the forlc(2) system call.

Password - A string of 6 to 13 characters chosen from a 64-cbaracter alphabet (., , 0-9, A-Z9 a-z). If a
user chases a password with more than 8 characters, any characters beyond the first 8 are ignored.

Path name - A sequence of directory names separated by the / character and ending with the name of a
file. The path name defines the connection path between a directory and a file. See also Full path
name and Relative path name.

Pipe - A simple way to connect the output of one program to the input of another program so that each
program will run as a sequence of processes.

SG-2010 Glossarv-4 B

Pipeline - A series of programs, filters, or commands separated by the character I. The output of each
filter becomes the input of the next filter in the line. The last filter in the line writes to its standard out
put.

Positional parameters - Arguments supplied with a command procedure that are placed into variable
names $1, $2, . 0 • when the command procedure is invoked by the shell. The name of the file being
executed is positional parameter SO.

Primary prompt - A notification (by default "$" or "%") to the user that the UNICOS shell is ready to
accept another request.

Process - A program that is in some state of execution. The execution of a compufa' environment
including the process' status, (ruDl18ble, sleeping swapped), the process ID (pm), the user's ID (UID),
the contents of memory (if any), register values, the current directory, status of open files (if any), and
various other items.

R

Relative path name - The path name between the current working directory and a specific file. See
Path name. °

Root directory - The directory at the apex of the hierarchical directory tree structure of the UNICOS file
system. It is the single directory from which all other files and directories branch.

S

Secondary prompt - A notification (by default ">" or "?") to the user that the command typed in
response to the primary prompt is incomplete.

Shell - A UNICOS program written in the C language that handles the communication between the sys
tem and users. The shell accepts commands and causes the appropriate program to be executed. There
are two shells in UNICOS: the Bourne shell (sh) and the C shell (csh). The Bourne shell is the "stan
dard," or default shell; hence "the UNICOS shell" means the Bomne shell. The teon "the shell" is used
when referring to either shell; used in those cases where the Bomne shell and the C shell are the same.

Shell environment - The set of characteristics that determine how you interact with the shell and how it
appears to you. These characteristics include what shell prompt is displayed, where in the directory
system you can access variables, and how your terminal is defined for the system.

Shell procedure - See shell script.

Shell script - An executable file that is not a compiled program and is composed of shell commands
and input to them. A shell script is a call to the shell to read and execute commands contained in a
file. A sequence of commands may thus be preserved for repeated use by saving it in a

O

file that may
also be called a shell program, shell script, command procedure, command file, or runcom according to
local preference.

sort - A UNICOS command that orders the lines of files alphabetically, numerically, or in AScn order.
See the sort entry in the UNICOS User Commands Reference Manual, publication SR-2011. for more
information on the sort command and its many options.

SO-2010 Glossarv-5 B

Standard error - Error messages produced by most commands are sent to an open file. which is nor
mally connected to the printer or screen. Standard error is file descriptor 2; the output may be
redirected by an argument to the shell of the fonn "2>file". which Opens the specified file as standard

~rror.

Standard input - TIle standard input of a command is sent to an open file. which is normally connected
to the keyboard. An argument to the shell of the fonn "< file" opens the specified file as the standard
input. thus indicating that input is to come from the file named instead of the keyboard. Standard input
is file descriptor O.

Standard output - Output produced by most commands is sent to an open file. which is nonnally con
nected to the printer or screen. This output may be redirected by an argument to the shell of the form

, "> file". which opens the specified file as the standard output Standard output is file descriptor 1.

String - A sequence of keyboard characters bounded by spaces. tabs, or returns.

Super user - A UNICOS user who has special pennissions to access and alter the system defaults; usu
ally the system administrator.

T

Trap - 'The process of using the Bourne shell trap command to conditionally perfonn some action(s).
based on the exit status of a preceding command. See subsection 4.4.3. Using Signals: 'The ttap Com
mand.

U

UID - See user identification number.

User-defined variables - A user variable can be defined using an assignment statement of the form
fIIJIIW=value. where fIIJIIW must begin with a letter or underscore and may then consist of any sequence
of letters. digits. or underscores up to 512 characters. The ~ is the variable. Positional parameters
cannot be in the name.

User identification number (uid) - A unique number assigned to each login that is used to identify users
and the owner of information stored on the system.

v

Variables - A variable is a name representing a string value. Variables that are nonnally set only on a
command line are called parameters (POSitional parameters and keyword parameters). Other variables
are simply names to which the user (user-defined variables) or the shell itself may assign string values.

w

Working directory - See current directory.

SG-2010 Glossarv-6 B

INDEX

I

V

INDEX

& character. A-I
character

Bourne shell. 4-1
C shell. 5-1

, character
Bourne shell. 4-21
C shell. 5-22

& character. 3-6. 4-33
* character. 2-12. 2-19

Bourne shell. 4-13
C shell. 5-23

\ character. 2-14
Bourne shell. 4-25
C shell. 5-25

II character. 4-33
{ character. 4-21
[] characters. 2-13

Bourne shell. 4-13
C shell. 5-23

A character. 2-18
$ character. 2-5. 2-18

Bourne shell. 4-3. 4-25
C shell. 5-25

" character. 2-14
Bourne shell. 4-25
C shell, 5-25

? character. 2-14
Bourne shell. 4-13
C shell. 5-23

. character. 2-19
• character. 2-5
; character. 3-3
! character, 2-7. 5-37
+ character. 5-5
= character

Bourne shell. 4-3
C shell, 5-4

< character. 3-1
> character, 3-1
» character. 3-2

a (append) (editor) command. 2-5
a.out file, 3-17
Absolute path name, 2-23
Accent grave r)

Bourne shell. 4-21
C shell. 5-22

Access permissions, 2-31
Accessing UNICOS. 2-1
alias command. 5-30

SG-20!O Index-!

Ampersand (&). 3-6. 4-33
Argument. 2-3
Arithmetic operators

Bourne shell, 4-11
C shel1, 5'-11

Append symbol (»). 3-2
AScn, 2-3

EOT character. 2-3
as command. 3-18
Asterisk (*), 2-12

Bourne shell. 4-13
C shell. 5-23

at command. 3-13
Availability of variables (scoping)

Bourne shell. 4-4
C shell. 5-6

Background processing. 3-6
background processing a compiling job. 3-7
background processing an editing job. 3-6
commands (ps and kill), 3-7

Backquote r)
Bourne shell. 4-21
C shell. 5-22

Backslash (\). 2-14
Bourne shell. 4-25
C shell. 5-25

Bars (II). 4-33
Basics for beginners. 2-1
Bin directory. 2-21

Bourne shell. 4-28
C shell. 5-28

Blank interpretation
Bourne shell. 4-23
C shell. 5-23

Bourne shell. 3-18. 4-1
arithmetic evaluator, 4-11
commands. Bourne shell

case. 4-13
esac.4-13
eval.4-24
exec. 4-32
expon.4-4
expr.4-11
fit 4-12
for. 4-16
getopt. 4-14
if, 4-12
readonly, 4-5
set. 4-1
shift. 4-7

B

test, 4-9
trap. 4-34
type. 3-9
until. 4-14
while. 4-14

debugging mechanisms. 4-1. 4-33
environment

.profile file. 4-30
invocation options. 4-31
renaming commands. 4-30
variables. 4-27

functions. 4-30
invocation options. 4-31
prompt, 3-19
tracing mechanisms. 4-1
variables

availability of. 4-4
moving. 4-7
named, 4-3
positional. 4-5
scoping rules. 4-4
special. 4-8

shell scripts. 4-1
branching, 4-12. 4-13
conditions. 4-9, 4-11
containing input, 4-18
control flow. 4-9
looping. 4-14. 4-16
samples. 4-19. 4-26

Branching
conditions

Bourne shell. 4-9. 4-11
C shell. 5-11

on many conditions
Bourne shell. 4-13
C shell. 5-14

on one condition (if)
Bourne shell. 4-12
C shell. 5-13

Braces ({ }). 4-21
Brackets ([D. 2-12

Bourne shell. 4-13
C shell. 5-23

-C option (with the Is command). 2-8
C program files. 3-17
CAL program files. 3-18
cat command, 2-9
cc command. 3-17
C shell. 3-18. 5-1

arithmetic function, 5-12
commands

alias. 5-30
csh, 3-19. 5-2
endif.5-14
endsw, 5-14

SG-2010 Index-2

exec. 5-33
foreach. 5-18
if. 5-13
onintr. 5-34
repeat. 5-18
set, 5-3
setenv.5-6
shift. 5-9
source. 5-7
switch, 5-14
unset, 5-6
unsetenv. 5-7
until. 5-17
while. 5-17

debugging mechanisms. 5-2, 5-33
environment

.cshrc file. 5-31
invocation options. 5-32
.login file. 5-31
renaming commands. 5-26
variables. 5-26

history mechanism. 5-37
invocation options. 5-32
prompt. 3-19, 5-2
tracing mechanisms. 5-2
variables

availability of. 5-6
moving. 5-9
named, 5-3
positional. 5-8
scoping rules. 5-6
special. 5-10

shell scripts. 5-1
branching, 5-13. 5-14
conditions. 5-11
containing input, 5-20
control flow. 5-11
looping. 5-17. 5-18
samples. 5-21. 5-26

case command
Bourne shell. 4-13
C shell. 5-14

cd command. 2-25
cft71 command, 3-7, 3-14
Changing shells. 3-19
Changing file pennissions. 2-32
Changing the file system structure. 2-26
Changing the shell environment

Bourne shell. 4-26
C shell. 5-26

Changing your password. 2-2
chmod command, 2-32
Circumflex (..) metacharacter. 2-18
Columnar listings (with Is -e), 2-8
Combining and sorting multiple files.3-4
Combining commands (pipes). 3-4
Comma (.) with ed (editor). 2-5

B

Commands, Bourne shell
case, 4-13
esac,4-13
eval,4-24
exec, 4-32
export. 4-4
expr, 4-11
fi, 4-12
for, 4-16
getopt. 4-14
if. 4-12
readonly, 4-5
set, 4-1
shift, 4-7
test, 4-9
trap, 4-34
type,3-9
until,4-14
while, 4-14

Commands, C shell
alias. 5-30
exec, 5-33
foreach. 5-18
if. 5-13
onintr, 5-34 .
repeat, 5-18
set, 5-3
setenv, 5-6
shift, 5-9
source, 5-7
switch, 5-14
unset, 5-6
unsetenv. 5-7
until. 5-17
while, 5-17

Commands. editor
a, 2-5
comma (,). 2-5
d.2-6
dollar sign (5). 2-5
exclamation mark (!). 2-7
h.2-7
i,2-6
m. 2-7
p.2-5
q.2-7
s,2-6
t, 2-6
w.2-7

Commands. UNICOS

as. 3-18
at, 3-13
cat, 2-9
cc,3-17
cd, 2-25
cft77, 3-7. 3-14
chmod,2-32

SG-2010 Index-3

cp,2-11
csh, 3-19. 5-2
echo. 3-10
ed, 2-5
find, 2-26
getopt. 4-14
grep. 2-15. 4-26
Is,2-8
kilL 3-7
In. 2-28
logoUt, 2-3
Is,2-8
mail. 3-11
man. 1-3
mkdir.2-28
mv,2-10
nohup.3-6
pascal, 3-16
pg.2-9
pr.2-9
ps.3-7
pwd, 2-21
rm. 2-11
rmdir.2-30
segldr. 3-15
sh. 3-18. 4-31
sort, 3-4
tty. 2-22
type,3-9
wc.3-5
who. 3-5
write. 3-12

Command argwnents. processing
Bourne shell. 4-22
C shelL 5-23

Command exit status
Bourne shell, 4-33
C shelL 5-33

Command interpreter (shell). 2-3
Command line syntax, 2-3
Command line positional variables

Bourne shell. 4-5
C shell, 5-8

Command substitution
Bourne shell. 4-21. 4-22
C shelL 5-22, 5-23

Comment character
Bourne shell. 4-1
C shell. 5-1

Communicating with other users, 3-11
Compiling Fortran programs. 3-14
Compiling program files

C programs. 3-17
CAL programs. 3-18
Fortran programs. 3-14
Pascal programs. 3-16
Sample shell scripts for

Bourne shell. 4-19
C shell. 5-21

B

Conaolftow
Bourne shell. 4-9
C shell, 5-11
case comman~ 4-13
for command. 4-16
fcreach command, 5-18
if command

Bourne shell. 4-12
C shell, 5-13

tests and expressions
Bourne shell. 4-11
C shell, 5-11

repeal command. 5-18
switch command, 5-14
test command, 4-9
while and until commands

Bourne shell. 4-14
C shell, 5-17

Conventions. 1-2
Copying a file (see cp command)
cp command. 2-11

interactive option (-i). 5-31
Creating directories. 2-28
Creating files. 2-5
Copying a file. 2-10
cm command, 3-19. 5-2
Current directory. 2-23

d (delete) command (with editor). 2-6
Debugging shell scripts

Bourne shell. 4-1. 4-33
C shell. 5-2. 5-33

Definitions. 1-2
Delaying execution of shell programs.3-13
Delimiters. 2-3
dev files. 2-21
Directories. 2-19. 2-28

bin directory. 2-21
Bourne shell. 4-28
C shell, 5-28

current directory. 2-23
creating. 2-28
dev directory. 2-21
home directory. 2-21
removing. 2-30
root directory. 2-20

Displaying arguments (with echo). 3-10
Displaying files

with the cat command, 2-9
with the PI command, 2-9
with the pr command, 2-9

Dollar sign ($)

5G-2010

Bourne shell. 4-3. 4-25
C shell, 5-25
in files. 2-18

Index-4

with ed (editor). 2-5
with pep. 2-18

Dot metacharacter (see Period)
Double quotes (It). 2-14

Bourne shell. 4-25
C shell. 5-25

echo command. 3-10
ed (editor)

commands (see Commands. editor)
creating files. 2-5
editing files, 2-5
CITOr messages and explanations in ed, 2-6
modes (command and insert). 2-6
exiting cd, 2-6
saving files. 2-6

endif command, 5-14
endsw command. 5-14
Envinmmen1variab1es

Bourne shell. 4-27
C shell, 5-27
Bourne shell

defined, 4-26
PSI and PS2. 4·28
HOME. 4-27
MAILCHECK.4-28
PATII.4-28
TERM. 4-29

C shell
defined. 5-27
prompt. 5-29
HOME,5-27
PATII.5-28
SHEll.. 5·29
TBRM. 5·30

BOP. 3·12
EOT character. 2·3
Equal sian (=)

BODIM .hell. 4·3
C IheU. 5-4

&ror handling
Bourne shell. 4-33
C shelL 5-33

esac command, 4-13
escape command (editor). 2-7
eva! command, 4-24
Evaluating conditions: shell expressions. 5-11
Evaluating conditions: the test command, 4--9
ex editor. 2-5
Example of an altered directory (figure), 2-29
Exclamation point (!). 2-7. 5-37
exec command

Bourne shell. 4·32
C shell, 5-33

Executing multiple commands in a series (the semicolon), :
Executing multiple commands simultaneously, 3-6

B

Executing program files
Bourne shell. 4-19
C shell. 5-21

Execution time. 3-8
Exit status

Boume shell. 4-33
C shell. 5-33

Exiting a shell. 3-20
export command. 4-4
expr command. 4-11

fi command. 4-12
Files of commands (shell scripts). 3-9
Files. 2-4

C program files. 3-16
CAL program files. 3-16
changing pennissions. 2-32
combining multiple files.3-4
copying. 2-11. 2-27
cshrc. 3-31. 5-31
displaying

with the cat command. 2-9
with the pg command, 2-9
with the pr command. 2-9

linking. 2-27
.login. 3-31
metacharacters within. 2-17
moving around in the file system. 2-25
naming. 2-4
Pascal program files. 3-16
permissions. 2-31
.profile. 4-30
renaming. 2-10
removing. 2-11
saving. 2-6
structure of the UNICOS file system. 2-19
suffixes. 2-4

File system structure. 2-19
find command, 2-26
Flags (options). 4-1
For. 4-16
Foreach. 5-18
Fortran file-naming conventions, 3-14
Fortran programs under UNICOS. 3-14
getopt command

Boume shell. 4-14
C shell. 5-16

Grave accent (').
Boume shell. 4-21
C shell. 5-22

Greater than sign (». 3-1
grep command. 2-15, 3-4

Boume shell. 4-26. 4-33
C shell. 5-34
-i (ignore case) option. 2-16
-n option. 2-16

SG-2010 Index-S

h command. 2-7
Hat ('") metacharacter. see Circurnfiex
Here documents

Bourne shell. 4-18
C shell. 5-20

Hierarchical Iree structure (figure). 2-20
History. 5-37

special character (!). 5-37
Home directory. 2-21
HOME variable. 4-27

i (insert) rommand (with ed). 2-6
-i (ignore case) option (with grep). 2-16
-i (interactive) option (with rm). 2-11
if command

Bourne shell. 4-12
C shell. 5-13

Incrementing variables. 5-4
In-line input documents

Bourne shell. 4-18
C shell. 5-20

Input/output redirection, 3-1
Input within a command

Bourne shell. 4-18
C shell. 5-20

Interrupt signal. 1-2
Bourne shell. 4-35
C shell. 5-35

Interpretation of metacharacters. 2-17
Introduction, 1-1
Invoking a shell

Boume shell. 4-31
C shell. 5-32

iocd (system call)
Boume shell. 4-33
C shell. 5-33

Keyword parameters. 4-5
kill rommand. 3-7. 5-36

Less than symbol «). 3-2
Linking files. 2-28
Linking UNICOS files to FOrlran logical units, 3-16
Links. 2-32
Listing names of files. 2-8
In rommand, 2-28
Is command. 2-8

-C option. 2-8
-r option, 2-8
-R (recursive) option. 3-4
-t option, 2-8

Locating files. 2-26
Loading FOrlran programs. 3-14

B

Loading program files
Bourne shell. 4-19
C shell. 5-21

Login directory (see Home directory)
Logging in. 2-2

files
Bourne shell. 4-30
C shell. 5-31
.cshn:. 5-31
.login. 5-31
.profile. 4-30

procedure. 2-2
Logging off. 2-3
logout command. 2-3
Looping

for, 4-16
foreach. 5-18
repeat. 5-18
until,4-14
while

Bourne shell. 4-14
C shell. 5-17

Is command. 2-8

m (move) command (editor). 2-7
MAll..CHECK variable. 4-28
mail command. 3-11
mailx command. 3-11
Manuals. on-line. 1-3
Metacharacters

accent grave r)
Bourne shell. 4-21
C shell. 5-22

ampersand (el). 4-33
asterisk (*). 2-19

Bourne shell, 4-13
C shell. 5-23

backquote r)
Bourne shell. 4-21
C shell. 5-22

backslash (\)
Bourne shell. 4-25
C shell. S-25

bars (II). 4-33
braces ({ }), 4-21
brackets ([])

Bourne shell. 4-13
C shell. 5-23

circumflex (), 2-18
dollar sign ($). 2-18

Bourne shell. 4-25
C shell. 5-25

double quotes (")
Bourne shell. 4-25
C shell. 5-25

in file names

SO-2010

*,2-12
[]. 2-13

Index-6

1. 2-14
't ", and \ 2-14

period (.). 2-19
protecting. 2-14
question mark (1)

Bourne shell. 4-13
C shell. 5-23

quoting
Bourne shell. 4-22
C shell. 5-23

suppressing, 2-14
within files. 2-18. 2-19

mkdir command, 2-28
Mode (see Pennissions)
Moving files. 2-10, 2-27
Moving positional parameters. 5-9
Multiple commands. 3-3

in a series. 3-3
simultaneous execution. 3-6

mv command. 2-10

-n option (with grep). 2-16
Naming files, 2-4
Named variables

Bourne shell. 4-3
C shell. 5-3

New-line character. 2-2
nohup command. 3-6
Null string, 1-2. 4-23
Numeric tests and expressions. 4-11
Onintr. 5-34
On-line manuals. 1-3
OPEN statement, 3-16
Options. 2-3. 4-1

p command (editor). 2-5
Parent directory. 2-23
pascal command. 3-16
Pascal program files. 3-16
Password. changing 2-2
Padt name., 2-22

absolute, 2-23
relative, 2-23

PATH variable. 4-28
Pattern marching, 2-11
Period (.) character (with ed), 2-5
Period metacharacter (.), 2-19, 4-5
Pennissions. 2-31
pg command. 2-9
PlD,3-7
Pipes

combining and sorting multiple files. 3-4
searching for strings in directory listings. 3-4
Using pipes to count. 3-5

Plus sign (+). 5-5

B

Positional parameters
Bourne shell, 4-7
C shell. 5-8
substitution, 4-22

pr command, 2-9
Predefined variables, 4-2
Process id number (PID), 3-7
Program files

Bourne shell, 4-19
C shell. 5-21

Prompts. 3-19
Bourne shell, 2-2
C shell. 5-2

Protecting metacharacters, 2-14
ps command, 3-7
pwd command, 2-21

q (quit) command (editor). 2-7
Question mark (1), 2-12

Bourne shell, 4-13
C shell. 5-23

Quitting the editor (ed), 2-7
Quoting metacharacters, processing

Bourne shell, 4-22
C shell, 5-23

-r option (with Is), 2-8
-R option (with Is). 2-8
Range of lines (with editor). 2-5
readonly command, 4-5
Redirecting command input and output

with <, 3-1
with >, 3-1
with »,3-2

Regular expression, 2-15
Relative path name, 2-23
Removing files. 2-11
Renaming files, 2-10
Renaming shell commands (alias), 5-30
repeat command, 5-18
Repeating previous commands (history mechanism), 5-37
RETURN,2-2
Reversing file listings (with Is -r), 2-8
rm command, 2-11

interactive option (-i), 2-11. 5-31
rmdir command, 2-30
Roof C) metacharacter, see Circumflex
Root directory, 2-20

s (substitute) command (editor), 2-6
Sample UNICOS directories and files (figure), 2-22
Saving files in ed, 2-6
Scoping rules and commands

Bourne shell, 4.4
C shell, 5-6

SG-2010 Index-7

Searching
searching files for text patterns (grep), 2-15
searching for strings in directory listings, 3.4

segldr command, 3-15
Semicolon (;), 3-3
set command

Bourne shell, 4-1
C shell. 5-3

setenv command. 5-6
sh command, 3-18, 4-31
Shells

Bourne. 4-1
Bourne and C compared, 3-18
C,5-1
changing shells, 3-19
delaying execution of shell scripts.3-13
exiting a shell, 3-21
functions, 4-30
invocation options

Bourne shell. 4-31
C shell. 5-32

parameters and variables
Bourne shell, 4-20
C .hell. 5-22

prompts, 3-19
Bourne shell, 4-28
C shell. 5-29

Shell environment, 4-26
Shell parameters

Bourne shell, 4-20
C shell. 5-22

Shell scripts, delaying execution of. 3-13
Shell scripts, 3-9

Bourne shell, 4-1
C shelL 5-1
debugging
Bourne shell, 4-33
C shell, 5-33
debugging with tracing mechanisms

Bourne shell, 4-1
C shell, 5-2

samples
to compile, load. and execute program files

Bourne shell, 4-19
C shelL 5-21

to search for paaems in files
Bourne shell, 4-26
C shelL 5-26

variables
Bourne shell, 4-2
C shelL 5-3

shift command
Bourne shell, 4-7
C shell, 5-9

Signals
defined

Bourne shell, 4-34
C shelL 5-35

B

kill. 5-36
trap. 4-34
onintr. 5-34

sort command. 3-4
sourc::e command. 5-7
Special command-line variables. 5-10
Standard input. 3-4
Standard output. 3-4
Serings. locating with grep. 2-15. 3-4
Structure of the UNICOS file system, 2-19
Subshell. 3-7

Bourne- shell. 4-4
C shell. 5-7

S ubstiwtion
substiwting a command's output for other shell values

Bourne shell. 4-21
C shell. 5-22

substiwting values for variables. 4-21
Suppressing metacharacters. 2-14
switch command. 5-14
System call (ioctl)

Bourne shell. 4-33
C shell. 5-33

system commands
Bourne shell. 4-28
C shell. 5-28

System header file. 5-35

t command (editor), 2-6
-t option (with the Is command). 2-8
TERM variable

Bourne shell. 4-29
C shell. 5-30

test command. 4-9
11ME (execution). 3-8
Tracing mechanisms

Bourne shell. 4-1
C shelL 5-2

trap command. 4-34
Tree structure (figure). 2·20
It)' commmd. 2-22
type commmd. 3-9

unsetenv command. 5-7
UNICOS commands (see Commands. UNICOS)
UNICOS file system names (figure). 2-21
UNICOS signals

Bourne shell. 4-34
C shell. 5-35

unset command. 5-6
until command

Bourne shell. 4-14
C shell. 5-17

User-de6.ned variables. 4-2
substiwting value~ 4-21

SG-2010 Index-S

Vuiables
UlilJlllUSlU. 4-23
command-line positional variables
Bourne shell. 4-5
C shell. 5-8
environment variables

defined
Bourne shell. 4-26
C shell. 5-27

prompt. 5-29
PSI and PS2. 4-28
HOME

Bourne shell. 4-27
C shelL 5-27

MAILCHECK. 4-28
PATH. 4-28. 5-28
SHElL. 5-29
TERM

Bourne shell. 4-29
C shell. 5-30

MAn..CHE~ 4-28
named variables

Bourne shell, 4-3
C shell. 5-3

special command-line variables
Bourne shell. 4-8
C shell. 5-10

positional
Bourne shell. 4-5
C shell. 5-8

predefined. 4-2
processing. 4-22

Bourne shell. 4-22
C shell. 5-23

scoping rules and commands
Bourne shell, 4-4
C shelL 5-6

shell script
Bourne shell. 4-2
C shelL 5-3

special command-line. 5-10
user-defined, 4-2

substiwting values, 4-21
Vi editor. 2-5

'II (write) command (editor), 2-7
wc command, 3-5
while command

Bourne shell. 4-14
C shelL 5--17

who command. 3-5
write command. 3-12

Your comments. 1-3

B

READER'S COMMENT FORM

UNICOS Primer SG-2010 B

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below, and use the blank space for additional comments.

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years
3) your occupation: __ computer programmer __ non-computer professional

__ other (please specify): ___________ _
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide

__ for troubleshooting

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria:

5) Accuracy __ 8) Physical qualities (binding, printing) __
6) Completeness __ 9) Readability __
7) Organization __ 10) Amount and quality of examples __

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name __________ _ Address ________ _
Title ___________ _ City ______________ _
Company ____________ _ Statel Country ______ _
Telephone _______ _ Zip Code _______ _
Today's Date ______ _

.--~

I II II I

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 61 M STPAUl MN

POSTAGE WIll BE PAlO BY AOORESSEE

RESEARCH, INC.

Attention: PUBLICATIONS
1346 Northland Drive
Mendota Heights. MN 55120

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

--~

