CRAY-1® AND CRAY X-MP
COMPUTER SYSTEMS

CRAY-0OS VERSION 1
REFERENCE MANUAL

SR-0011

PR AY

RESEARCH, INC.

CRAY-1® AND CRAY X-MP
COMPUTER SYSTEMS

CRAY-OS VERSION 1
REFERENCE MANUAL

SR-0011

Copyright® 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983
by CRAY RESEARCH, INC. This manual or parts thereof
may not be reproduced in any form without permission of
CRAY RESEARCH, INC.

R AN

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-0011

Each time this manual is revised and reprinted, all changes issued against the previous version in the form of change packets are
incorporated into the new version and the new version is assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
carner, hanges to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:
CRAY RESEARCH, INC,,

1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision Description

June 1976 - First printing

A September 1976 - General technical changes; changes to JOB,
MODE, RFL, and DMP statements; names of DS and RETURN changed
to ASSIGN and RELEASE. STAGEI deleted, STAGEO replaced by
DISPOSE. RECALL macro added and expansions provided for all
logical I/0 macros. RELEASE, DUMPDS, and LOADPDS renamed to
DELETE, PDSDUMP, and PDSLOAD. Detailed description of BUILD
added (formerly LIB). EDIT renamed to UPDATE,

B February 1977 - Addition of Overlay Loader; deletion of Loader
Tables (information now documented in CRI publication
SR-0012) ; deletion of UPDATE (information now documented in
CRI publication SR-0013); changes to reflect current
implementation.

C July 1977 - Addition of BKSPF, GETPOS, and POSITION logical
I/0 macros and $BKSPF, $GPOS, and $SPOS routines. Addition of
random I/O. Changes to dataset structure, JOB, ASSIGN, MODE,
and DUMP statements; BUILD; logical I/0 and system action
macro expansions. General technical changes to reflect
current implementation.

C-01 January 1978 - Correction to DISPOSE and LDR control statement
documentation, addition of description of $WWDS write routine,
miscellaneous changes to bring documentation into agreement
with January 1978 released version of the operating system.

D February 1978 - Reprint with revision. This printing is
exactly the same as revision C with the C-01 change packet
added.

D-01 April 1978 - Change packet includes the addition of the ADJUST

control statement; MODE and SWITCH macros; and PDD, ACCESS,
SAVE DELETE, and ADJUST permanent dataset macros.
Miscellaneous changes to bring documentation into agreement
with released system, version 1.0l.

SR-0011 ii L

Revision

Description

E

F-02

SR-0011

July 1978 - Represents a complete rewrite of this manual.
Changes are not marked by change bars. New features for
version 1.02 of the operating system that are documented in
this revision include: addition of the MODIFY control
statement and the DSP, SYSID, and DISPOSE macros; the addition
of parameters to some control statements, the implementation
of BUILD. The POSITION macro has been renamed SETPOS. Other
changes to bring documentation into agreement with released
version 1.02 of the operating system.

October 1978 ~ Change packet includes the implementation of
ACQUIRE and COMPARE control statements; changes to the AUDIT
and LDR control statements; changes to the MODE control
statement and macro; the addition of control statement
continuation, GETPARAM, and the GETMODE macro; and other minor
changes to bring documentation into agreement with the
released version 1.03 of the operating system.

December 1978 - Revision F is the same as revision E with
change packet E-01 added. No additional changes have been
made.

January 1979 - Change packet includes implementation of some

features of BUILD; the addition of the BUFIN, BUFINP, BUFOUT,
BUFOUTP, BUFEOF, and BUFEOD macros and other minor changes to
bring documentation into agreement with the released version

1.04 of the operating system.

April 1979 - Change packet includes the implementation of the
DEBUG, RERUN, and NORERUN control statements, the RERUN,
NORERUN, and BUFCHECK macros; changes to DUMP, DSDUMP, AUDIT,
and ASSIGN control statements; implementation of job rerun and
memory resident datasets. Other minor changes were made to
bring documentation into agreement with the released version
1.05 of the operating system.

July 1979 - Reprint with revision. This printing obsoletes

all previous versions. Changes are marked with change bars.
The changes bring this documentation into agreement with the
released version 1.06 of the operating system.

December 1979 - Change packet includes the implementation of
the WAIT and NOWAIT options on the DISPOSE control statement;
the addition of a new DUMP format and CFT Linkage Macros; and
other minor changes to bring documentation into agreement with
the released version 1.07 of the operating system.

iii L

January 1980 - Revision H is the same as revision G with
change packet G-01 added. No additional changes have been

April 1980 - Revision I is a complete reprint of this manual.
All changes are marked by change bars. New features for
version 1.08 of the operating system that are documented in
this revision include: the addition of the CALL and RETURN
control statements, job classes, the NA parameter on permanent
dataset management control statements, the NRLS parameter on
the DISPOSE control statement and PDD macro, and the CW
parameter on the COMPARE control statement. Changes to the
LDR control statement include the addition of the LLD, NA,
USA, and I parameters and the new selective load directives.
New documentation has been added for unblocked I/0, including
descriptions of the READU and WRITEU macros. Other new macros
include SETRPV, ENDRPV, DUMPJOB and the debugging aids SNAP,
DUMP, INPUT, OUTPUT, FREAD, FWRITE, UFREAD, UFWRITE, SAVEREGS,
and LOADREGS. Documentation on CRAY-1 interactive
capabilities and changes to reflect the CRAY-1l S Series have
also been added. Other changes were made to bring
documentation into agreement with released Version 1.08 of the

With this revision, the publication number has been changed
from 2240011 to SR-0011.

Revision Description
H
made.
I
operating system.
I-01

SR-0011

October 1980 - Change packet includes the implementation of
the IOAREA, SETRPV, ROLL, and INSFUN macros and the IOAREA
control statement; the addition of execute-only datasets
including adding the EXO parameter to the SAVE and MODIFY
control statements and the PDD macro; the lengthening of the
TEXT parameter field; the addition of the DEB parameter to the
LDR control statement; and a change to the formats of the
UFREAD and UFWRITE macros. The DEBUG option allowing
conditional execution of the SNAP, DUMP, INPUT, and OUTPUT
macros has been implemented. Other minor changes were made to
bring documentation into agreement with the released version
1.09 of the operating system.

iv L

July 1981 - This change packet includes changes to Job Control
Language syntax; the addition of JCL block control statements
for procedure definition (PROC, ENDPROC, &DATA, and prototype
statement), conditional processing (IF, ELSE, ELSEIF, and
ENDIF), and iterative processing (LOOP, EXITLOOP, and
ENDLOOP) ; the addition of ROLLJOB, SET, LIBRARY, ECHO, PRINT,
FLODUMP, and SYSREF control statements; the addition of CSECHO
macro; the addition of CNS parameter to CALL statement,
REPLACE parameter to BUILD statement, ARGSIZE parameter to
ENTER macro, KEEP parameter to EXIT macro, USE parameter to
ARGADD macro; the addition of the two JCL tables JBI and JST.
Other minor changes were made to bring the documentation into
agreement with the released version of 1.10 of the operating

February 1982 - Reprint. This reprint incorporates revision I
with change packets I-01 and I-02. No other changes have been

June 1982 - This change packet includes the following
additions: magnetic tape characteristics, temporary and local
dataset clarification, mass storage permanent datasets,
magnetic tape permanent datasets, tape 1I/0 formats,
interchange format, transparent format, new accounting
information, *gn=nr parameter, several CHARGES parameters,

the OPTION control statement, procedure definition, HOLD
parameter, new information to the ACCESS control statement,
new tape dataset parameters, tape dataset conversion
parameters, SUBMIT job control statement, PDSDUMP and PDSLOAD
sample listings, SID parameter on the LDR control statement,
new loader errors, relocatable overlays, CONTRPV macro, SUBMIT
macro, unrecovered data error information, POSITION macro, new
PDD macro parameters, the LDT macro, and new glossary terms.
The information formerly in Appendix C is now in the COS
EXEC/STP/CSP Internal Reference Manual, publication SM-0040.
Other miscellaneous technical and editorial changes were made
to bring the documentation into agreement with version 1l.11 of
the operating system.

Revision Description
I-02
system.
J
made.
J-01
K

SR-0011

July 1982 - Reprint. This reprint incorporates revision J
with change packet J-0l. No other changes have been made.

Revision

Description

L

SR-0011

July 1983 - Revision L is a rewrite of this manual. Extensive
editorial changes have been made, including moving macro
information which was in part 3 to publication SR-0012, Macro
and Opdefs Reference Manual. Other major reorganization has
occurred. Part 3 now contains job control language
structures. Information has been added on interactive job
processing and job step abort processing. Major new features
documented include enhanced support of tape datasets, the
FETCH control statement, memory management, enhancements to
COS security, permanent dataset privacy, and support of the
CRAY X-MP Computer System. Miscellaneous editorial and
technical changes have been made to bring the documentation
into agreement with version 1.12 of the operating system. All
previous versions are obsolete.

vi L

PREFACE

This manual

describes the external features of the Cray Operating System

(COS). It is intended as a reference document for all users of COS.

This manual
presented.

PART 1

PART 2

PART 3

is divided into three parts to separate the types of material

INTRODUCTION TO JOB PROCESSING

Part 1 describes the fundamentals of creating and running
jobs on a Cray Computer System. This part describes the
system components, storage of information on a Cray Computer,
and job processing. Part 1 also introduces COS job control
and describes the use of libraries.

JOB CONTROL STATEMENTS

Part 2 describes each COS job control statement and gives the
format of each with an explanation of its function.

CONTROL STATEMENT STRUCTURES

Part 3 describes the control statement block structures
available with COS. Examples are provided at the end of part
3, section 4.

Other CRI publications that may be of interest to the reader are:

CRAY
CRAY
Mass

CRAY-
CRAY-1 S Series Mainframe Reference Manual, publication HR-0029
CRAY-

1 Hardware Reference Manual, publication HR-0004

1 M Series Mainframe Reference Manual, publication HR-0064
X-MP Series Mainframe Reference Manual, publication HR-0032
I/0 Subsystem Reference Manual, publication HR-0030

Storage Subsystem Hardware Reference Manual, publication

HR-0630

SR-0011

Macros and Opdefs Reference Manual, publication SR-0012
FORTRAN (CFT) Reference Manual, publication SR-0009

CAL Assembler Version 1 Reference Manual, publication SR-0000
Library Reference Manual, publication SR-0014

UPDATE Reference Manual, publication SR-0013

vii L

CONTENTS

P REF ACE L] . . L] L] L] . L] . . L] L3
PART 1 INTRODUCTION TO JOB PROCESSING

1. INTRODUCTION . . ¢ ¢ ¢ o o o o o o o o o o o

HARDWARE REQUIREMENTS . o« o o o o o o o o =

SYSTEM INITIALIZATION . o « o o o o o o s o
CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS

Memory-resident COS . . « 4o & ¢ « & o «

User area of memory . « « o« « o o o o o«

Job Table Area — JTA . «. « « & « &

User field ¢« o« o o o o o » o s o =

MASS STORAGE CHARACTERISTICS . ¢« « = « o o &

MAGNETIC TAPE CHARACTERISTICS . v« ¢ ¢ o « @

2. DATASETS « ¢ o o o o o o o o o o o o o o o =

DATASET MEDIUM . & « ¢« o o o o o o o o o o o
Mass Storage datasets . . ¢« « ¢ ¢« .« . .
Memory-resident datasets
Interactive datasets . . . « « . ¢« . &
Magnetic tape datasets

DATASET STRUCTURE . « o« o s o o » o o s o o«
Blocked format . . ¢ ¢ ¢ o o o « o o

Blank compression . « « o « o« o &
Block control word . .« . ¢«
Record control word . . . « . .
Interactive format . « « ¢ & o o o o o
Unblocked format . « ¢« ¢« o &+ ¢ o & o« &«
Tape formats . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o « &
Interchange format . . . «
Transparent format . . . « « « . &

DATASET LONGEVITY . « « o o o o o o o o o «
Temporary datasets « . .
Permanent datasets . . ¢« ¢« ¢« o o & & &

Magnetic tape permanent datasets .
Mass storage permanent datasets .
LOCAL DATASETS ¢« o ¢ o o o o o o o o o o o o

SR-0011 ix

vii

0
-

TR
[€, WS I S R VORI SRR

i

v
| ot

. TYY
| §
HFHOOUJQNOULLo & WD N RFPE

PYYEY

MNP
i]

(¥
!
o

N
|
o

N
§
[
o

2-12
2-12
2-12
2-13

DATASETS (continued)
DATASET DISPOSITION CODES . .

USER DATASET NAMING CONVENTIONS
USER I/0 INTERFACES «

COS JOB PROCESSING « + o « o o«

JOB DECK STRUCTURE +. & « « o

GENERAL DESCRIPTION OF JOB FLOW
Job entry « . « ¢« ¢ o o .
Job initiation
Job advancement
Job termination

JOB MEMORY MANAGEMENT
Initial memory allocation

Modes of field length reduction

User management of memory

Management by control statement from
Management from within a program . .

Management associated

with

System management of memory . .

JOB RERUN .+ ¢ ¢ ¢ o o o o o &
EXIT PROCESSING . « o ¢ o o
REPRIEVE PROCESSING
INTERACTIVE JOB PROCESSING . .

JOB CONTROL LANGUAGE

SYNTAX VIOLATIONS =« « o o o @
VERBS =« o o ¢« o o o o o o o o
System verbs
Local dataset name verbs
Library-defined verbs . .
System dataset name verbs
SEPARATORS ¢ ¢ o o o o o o o o
PARAMETERS ¢« v o ¢« o o o o o «
Positional parameters . .
Keyword parameters . . .
Parameter interpretation
Conventions . « « « « « .

LIBRARIES . ¢ « o o o o o o o
PROCEDURE LIBRARY . . « « .« &

PROGRAM LIBRARY =« ¢ o o o o o
OBJECT CODE LIBRARIES

SR-0011 X

e o .

JOB LOGFILE AND ACCOUNTING INFORMATION

program

2-13
2-14
2-14

w
|
[

wwwwwwwwwtfuwwwwwwwu
HHEO®OJINdOODE DB WWNDNNN

o o

o>
1
.

NS
RN

> ? > f [S 8
1 1]
NN R WWW NN

5-1

FIGURES

1-1 Cray Computer System configuration . . .« « « « ¢ ¢« ¢ o« + &
1-2 Central Memory assignment . . o« « o o o o o o o « o o o
2-1 Data hierarchy within a dataset . . . « . « ¢« ¢« « ¢ « « .
2-2 Format of a block control word . + « ¢ ¢ ¢ ¢ ¢ « o o« o & @
2-3 Format of a record control Word . « « « o o « « o « o o
2-4 Example of dataset control words (octal values shown) . .
2-5 Interchange-format tape dataset (octal values shown) . . .
2-6 Relationship of levels of user I/O ¢« v « «¢ « o« o o « o o
3-1 Basic JODb deCK « &« ¢ ¢ ¢ o ¢ ¢ o o o o o o o o o o o o o o
3-2 User area of memory for a job . . ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢« 4 e o W
3-3 Example of a job logfile « « ¢ v ¢ ¢ ¢ ¢ o o ¢ o o o o o
TABLES

1-1 Physical characteristics of disk storage units
1-2 Physical characteristics of 200 ips, 9-track tape devices
4-1 Control statement separators . . « « « ¢ ¢ ¢ ¢« ¢ o o o o .

PART 2 JOB CONTROL STATEMENTS

1. INTRODUCTION . & o o o o o o o o o o o o o o s o o o s o

JOB DEFINITION +. 4 o o « o 2 o o o o o s o o o o o o o o @
DATASET DEFINITION AND CONTROL &+ « « o o s o o o « o o o
PERMANENT DATASET MANAGEMENT . +. ¢ ¢ o o o « o o o o o o =
Mass storage dataset attributes
Permission control words . « o « « o o o« o o o

Public access mode attribute

Public access tracking attribute

Permits attribute . . . ¢« ¢ ¢ ¢ ¢ 4 4 4 4 . .

Text attribute ¢ ¢ ¢ ¢« ¢ ¢ ¢« 4 4 e e . .

Notes attribute . . . ¢ ¢ ¢« ¢ ¢ ¢« ¢ ¢ ¢ ¢ o o &
Establishing attributes for mass storage datasets . .
Existing permanent dataset . . « ¢« ¢« ¢ & & « .« &

New permanent dataset ¢« ¢« ¢« ¢ ¢« ¢ o o &

The attributes dataset « ¢« « ¢« ¢« ¢ ¢ & o« o o o &
Protecting and accessing mass storage datasets . . .
PrivaCy « o o o o« o o o o o o o o o o o o o o o

AcCesSsS MOAE &+ « o o « o o o o s s s o s o o o o

Dataset use tracking « « ¢« ¢« ¢ ¢« ¢ ¢ & 4 ¢ 4 . W

Attribute association . .« ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o .

DATASET STAGING CONTROL . & 4 « o o « o o « s s o o o o
PERMANENT DATASET UTILITIES . 4 o o o o s o « o o o o o o
LOCAL DATASET UTILITIES ¢ © « o o o o o s o o o o o o o @
ANALYTICAL AIDS ¢ ¢ « o o o o o « s o o o o o o o o o o @

SR-0011 x1i

1-3
1-4
2-4
2-5
2-6
2-8
2-11
2-15
3-1
3-5
3-11
1-6
1-8
4-5
1-1
1-2
1-3
1-3
1-4
1-4
1-6
1-6
1-6
1-6
1-6
1-7
1-7
1-7
1-8
1-8
1-9
1-9
1-10
1-10
1-11
1-13
1-13
1-14
L

INTRODUCTION (continued)

EXECUTABLE PROGRAM CREATION ¢ « « « s o o o o o o o o o o o o 1-15
OBJECT LIBRARY MANAGEMENT e © e e e e e @ o o o s e ° o e - . 1—15

2. JOB DEFINITION AND CONTROL o« ¢ « « o = o o o s o o o o o o o o 2-1

JOB - JOB IDENTIFICATION « « o o « o o o o o o o o o s o o o @ 2-1
MODE — SET OPERATING MODE . « « o ¢ o o o s o o o o o o o o o 2-3
EXIT — EXIT PROCESSING « ¢ « o o ¢ ¢ o o o s o o o o s o o o o 2-4
MEMORY - REQUEST MEMORY CHANGE e o o o o o o s o s o o o s 2-4
SWITCH - SET OR CLEAR SENSE SWITCH © e o e o s e s e o e e o @ 2-6
* — COMMENT STATEMENT =« o « ¢ o o o o o o o o o o o o o o s o 2-6
NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS 2-7
RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY « « ¢ ¢ « o o« o 2-7
IOAREA - CONTROL USER'S ACCESS TO I/OAREA . ¢ ¢ o« o o o o o o 2-8
CALL - READ CONTROL STATEMENTS FROM ALTERNATE DATASET 2-9
RETURN - RETURN CONTROL TO CALLER .+ « o o o o o o o o o o o o 2-9
ACCOUNT - VALIDATE USER NUMBER AND ACCOUNT « « o o o o o o + « 2-10
CHARGES - JOB STEP ACCOUNTING =« « « o o o o o o o o o o o s & 2-11
ROLLJOB — ROLL A USER JOB TO DISK =« « ¢ o o ¢ o o o o o o o = 2-13
SET - CHANGE SYMBOL VALUE .« ¢ « ¢ o o o o o o o o o o o o o 2-13
ECHO - ENABLE OR SUPPRESS LOGFILE MESSAGES . e o o o o o o o 2-14
LIBRARY - LIST AND/OR CHANGE LIBRARY SEARCHLIST e o o o s o 2-15
OPTION - SET USER-DEFINED OPTIONS .« . o « o o o « o o o o o o« 2-16

3. DATASET DEFINITION AND CONTROL « « ¢« « o o o o o o o o o o o @ 3-1

ASSIGN -~ ASSIGN DATASET CHARACTERISTICS =« ¢ o o o o ¢ o o o o 3-1
RELEASE - RELEASE DATASET e @ e e o e 8 e o o & °® o o e o o o 3-4

4. PERMANENT DATASET MANAGEMENT ¢ o o ¢ o o o ¢ o o o o o o o o o 4-1

SAVE - SAVE PERMANENT DATASET .« « ¢ ¢ o o o o o o o s o o« o @ 4-1

ACCESS = ACCESS PERMANENT DATASET .« « ¢ o o o o o o o o o o « 4-5

ADJUST - ADJUST PERMANENT DATASET . « o « o o o o o o o o o 4-12
MODIFY - MODIFY PERMANENT DATASET <« o« o o ¢ o o o o o o o o &« 4-12
DELETE - DELETE PERMANENT DATASET . o o « o o o s o o o o o = 4-15
PERMIT - EXPLICITLY CONTROL ACCESS TO DATASET =« ¢ ¢ o o o o o 4-16
EXAMPLES OF PERMANENT DATASET CONTROL STATEMENTS 4-17

5 . DATASET STAG ING CONTROL e e e o o o e e o o o e * o e e e o o 5-1

ACQUIRE - ACQUIRE PERMANENT DATASET .+ o o o o o o s o o o o « 5-1
DISPOSE — DISPOSE DATASET .« « « ¢ o o o o o o o o o o s o o @ 5-5
SUBMIT — SUBMIT DATASET ¢ « o o o o o o o s o o o o o o o o o 5-9
FETCH — FETCH LOCAL DATASET =« ¢ o« ¢ o o o o o o o o o o o o o 5-10

SR-0011 xii L

PERMANENT DATASET UTILITIES . ¢ « ¢ o ¢ o o o &

PDSDUMP - DUMP PERMANENT DATASET . « « ¢ ¢« o « &
PDSLOAD - LOAD PERMANENT DATASET . . . o« « « « «
AUDIT - AUDIT PERMANENT DATASET . ¢ ¢ o o o o o«

LOCAL DATASET UTILITIES . « o o o « o o o o o «

COPYR — COPY RECORDS « &« « « o o o s o o o o o &
COPYF — COPY FILES « o ¢ ¢ ¢ o o o s o * o o« o &
COPYD — COPY DATASET . ¢« ©¢ ¢ o ¢ o o o o o o o
SKIPR — SKIP RECORDS « « « ¢ « o o o o o s o s &
SKIPF = SKIP FILES . ¢« . o ¢ ¢ ¢ o ¢ ¢ o o o o« &
SKIPD — SKIP DATASET .+ « « ¢ « o o ¢ o s o o o &

REWIND - REWIND DATASET . ¢ « ¢ « ¢ o o o o o &
WRITEDS - WRITE RANDOM OR SEQUENTIAL DATASET . .

ANALYTICAL AIDS . & o o o o o o o o s o o s o &

DUMPJOB — CREATE $DUMP . . « « « o o o o o o o« @
DUMP - DUMP REGISTERS AND MEMORY . « o « o o ¢ o
DEBUG — PRODUCE SYMBOLIC DUMP . « o ¢ « o o o &
DSDUMP — DUMP DATASET . ¢« o o o o = o o s o o &
COMPARE - COMPARE DATASETS . « . . c o o o
PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE . .
FLODUMP - FLOW TRACE RECOVERY DUMP . « « « « &
SYSREF - GENERATE GLOBAL CROSS—-REFERENCE LISTING
Use Of SYSREF « ¢ ¢ & ¢ o o o« o o o s o o @
Global cross—-reference listing format . . .
ITEMIZE — INSPECT LIBRARY DATASETS ¢ « « ¢ o o o«
File-level output . « ¢ « ¢ o « o o o s o &
Output for binary library datasets

EXECUTABLE PROGRAM CREATION .« « o + o o o o o &

LDR CONTROL STATEMENT . & ¢ o « o o o o o o o &«
LOADER EXAMPLE . . ¢ «c o ¢ ¢ o o o o o o o o o o
LOADER ERRORS .« ¢ o ¢ o ¢ o o s ¢ o o o o o o &
JIOAD MAP . ¢ ¢ o o ¢ o o o s o o o o o o o o o o
SELECTIVE LOAD ¢« ¢ « ¢ o o o o o o o o o o o o @
PARTIALLY RELOCATED MODULES . 4 ¢« ¢ « o o o o &

Generation of relocatable overlays

Memory layout when relocatable overlays exist

Memory layout of a relocatable overlay image
OVERLAYS . ¢ o o o o o o o o o o o o o o o o o o
Overlay directives . « ¢« ¢ ¢ o ¢ « ¢ o o &
FILE directive . « ¢« ¢« ¢« ¢ s ¢ o o o &
OVLDN directive . « &« ¢« ¢« ¢« ¢ ¢ « o &
SBCA directive . « & ¢ & ¢ & & o o o &

SR-0011 xiii

\J\lxl\ll\l\l\l\l
AU e wWwN -

OVERLAYS (continued)
Type 1 overlay structure .

Type 1 overlay generation directives

ROOT directive
POVL directive « . . .
SOVL directive « . . .

e o o e o

e o o o o

Generation directive example . .
Type 1 overlay generation rules . . .

Type 1 overlay execution .
FORTRAN language call
CAL language call . .
Type 2 overlay structure .

e e o o o

e e o o o

e o o o

Type 2 overlay dgeneration directive .

OVLL directive

e e o o o

Generation directive example . .
Type 2 overlay generation rules . . .

Type 2 overlay execution .
FORTRAN language call
CAL language call . .
Overlay generation log . .

10. OBJECT LIBRARY MANAGEMENT . . .

BUILD CONTROL STATEMENT . . . o
PROGRAM MODULE NAMES . ¢ o « o «
PROGRAM MODULE GROUPS . « « « &
PROGRAM MODULE RANGES . o« o o @
FILE OUTPUT SEQUENCE ¢ ¢ « o o &
FILE SEARCHING CONSIDERATIONS .
BUILD DIRECTIVES ©« & « ¢ o o o &
FROM directive . . . « «
OMIT directive . « o« o« o
COPY directive . . « o o &«
LIST directive . ¢« o« o« o
EXAMPLES . ¢ ¢ o ¢ o o o o o o &

FIGURES

PDSDUMP listing . « ¢« ¢ o ¢ o &
PDSLOAD Listing . « « ¢« « « « &
AUDIT, LO=S listing
AUDIT, LO=P listing
AUDIT, LO=L:P:N listing
AUDIT, LO=L listing
AUDIT, LO=N Listing (AUDIT, LO=T
Example of a flow trace summary

Example of a flow trace recovery

@ ® © ? cx? A OO O
U I
W hoHFEF Qe W =

with X and NF parameters . . .

e e o o o
* e o o o
e o o o o

e o o o o

is nearly

dump . .

Sample listing of ITEMIZE for a PL
Sample listing of ITEMIZE for a binary library dataset

SR-0011 xiv

identical)

9-19
9-20
9-20
9-22
9-22
9-22
9-23
9-24
9-25
9-25
9-26
9-28
9-28
9-29
9-30
9-31
9-31
9-32
9-33

10-1

10-1
10-3
10-4
10-4
10-4
10-5
10-5
10-6
10-6
10-7
10-8
10-9

FIGURES (continued)
9-1 Example of a load map . « « « « « &«

9-2 Example of Type 1l overlay loading .
9-3 Example of Type 2 overlay loading .

TABLES
1-1 Permanent dataset management control
MEALiUM ¢« v o o o o o o o o o o o o

PART 3 JOB CONTROL LANGUAGE STRUCTURES

1. INTRODUCTION ¢ ¢ o« « o & o o o o o &«

SIMPLE CONTROL STATEMENT SEQUENCES .
CONDITIONAL CONTROL STATEMENT BLOCKS
Basic conditional block
Conditional block with ELSE . .
Conditional block with ELSEIF .

statements for each

Conditional block with ELSEIF and ELSE . . . « « .

ITERATIVE CONTROL STATEMENT BLOCKS .
PROCEDURES . ¢ 4 o o o « o s o o o «
Simple procedures
Well-defined procedures

2, JOB CONTROL LANGUAGE EXPRESSIONS . .

OPERANDS . . o o o o s o o o s o s
Integer constants « . ¢«
Literal constants . . «
Symbolic variables
Subexpressions . . . ¢ ¢ ¢ o

OPERATORS . «¢ ¢ o o o o s o o s o «
Arithmetic operators
Relational operators . . « « .
Logical operators . . « . .+ .+ .

EXPRESSION EVALUATION . . « « « « &

STRINGS + & o « o« o o o« o o o o o o
Literal strings « « « « o « « .
Parenthetic strings

3. CONTROL STATEMENT BLOCKS .,

IF - BEGIN CONDITIONAL BLOCK
ENDIF - END CONDITIONAL BLOCK . . .

SR-0011 XV

9-11
9-21
9-27

Ll I B R R S
1 U !
=

=
1

0 i
WOWOWaU WM

[
1

NSRS I CR SI SR SR N}
UL 1
[

NN[\I.)NN

Y v
[IR I . . N O - O R

w W
|

CONTROL STATEMENT BLOCKS (continued)

ELSE - DEFINE ALTERNATE CONDITION
ELSEIF - DEFINE ALTERNATE CONDITION
LOOP — BEGIN ITERATIVE BLOCK . . « ¢ o o o &
ENDLOOP - END ITERATIVE BLOCK . « « ¢ ¢« « &
EXITLOOP — END ITERATION . . ¢ ¢ ¢ o o o o &

PROCEDURES e e o e © o o o o e e o o o o o o

PROC - BEGIN PROCEDURE DEFINITION
PROTOTYPE STATEMENT - INTRODUCE A PROCEDURE
PROCEDURE DEFINITION BODY . . ¢ ¢« o « « o &
&DATA — PROCEDURE DATA ¢ ¢ « o « o o o o o
ENDPROC -~ END PROCEDURE DEFINITION . . « « &
PARAMETER SUBSTITUTION « o « o o o o o o o o
Positional parameters « « « « « o s o
Keyword parameters . « « « o o o o o «
Error messages « o« « o o o o o o o
Positional and keyword parameters . . .
Apostrophes and parentheses

FIGURES

Basic conditional block structure
Conditional block structure including ELSE .
Conditional block structure including ELSEIF
Conditional block structure including ELSEIF
Iterative block structure . « o« o o ¢ o o &
Procedure definition deck structure

Symbolic variable table . ¢« ¢« ¢ ¢ o ¢ ¢ o &
Expression operator table . « « ¢ o ¢ o o &
Keyword substitution after expansion

Expansion of parenthetic and literal string values . .

APPENDIX SECTION

JOB USER AREA . . ¢ o ¢ o o o o o o o o o o

JOB TABLE AREA = JTA . ¢ ¢ o o« o o ¢ o o o &
JOB COMMUNICATION BLOCK = JCB « o o o o o &
LOGICAL FILE TABLE = LFT . ¢ ¢ o o o o o o
DATASET PARAMETER AREA = DSP + &« « o o ¢ o &«

SR-0011 xvi

4-3
4-3
4-4
4-5
4-5
4-6
4-6
4-6
4-7
4-7
4-8

2-3
2-5
4-7
4-8

PERMANENT DATASET DEFINITION TABLE - PDD .
BEGIN CODE EXECUTION TABLE - BGN
DATASET DEFINITION LIST — DDL . ¢« ¢« « « &
OPEN DATASET NAME TABLE - ODN . . « <« « .
OPTION TABLE = OPT ©« ¢ « o o o o o o o o &
JCL BLOCK INFORMATION TABLE - JB o o o e
JCL SYMBOL TABLE = JST &« « « o ¢ o o o o &
LABEL DEFINITION TABLE = LDT ¢« o« e o o o &
LDT header . « o o ¢ o o « o o o o o
Volume 1 entry .« ¢« ¢« ¢ ¢ o o o o o «
Header 1 entry .« « o ¢ o ¢ o o o « &
Header 2 entry . « ¢« o o o o o o o &
B. CHARACTER SET ¢ ¢ o o o o o o o o o o o @
C. EXCHANGE PACKAGE . ¢ o « o o o o o s o o »
D. ERROR AND STATUS CODES o « ¢ o o ¢ o o o &«
SYSTEM ERROR CODES . &« o ¢ o o 2 o o o o «
PERMANENT DATASET STATUS CODES « « « « « &
FIGURES
A-1 Job Communication Block (JCB) .« « « « . .
A-2 Logical File Table (LFT) entry . . « « « &
A-3 Dataset Parameter Area (DSP) « ¢« « « o « &
A-4 Permanent Dataset Definition Table (PDD) .
A-5 Begin Code Execution Table (BGN)
A-6 Dataset Definition List (DDL) . .«
A-7 Open Dataset Name Table (ODN) . « « « . &
A-8 Option Table (OPT) . o« o ¢ o o o o o o o &
A-9 JCL conditional block information
A-10 JCL iterative block information
A-11 JCL Symbol Table (JST) « « o « o o o o o «
A-12 Label Definition Table (LDT) header . . .
A-13 Label Definition Table (LDT) volume 1 entry
A-14 Label Definition Table (LDT) header 1 entry
A-15 Label Definition Table (LDT) header 2 entry
C-1 CRAY-1 Exchange Package . ¢ ¢ ¢« ¢ & o o &«
C-2 CRAY X-MP Exchange Package « « « « « « + .
TABLES
D-1 Error codes for reprieve processing . . .
D-2 PDD statuUs . « ¢ ¢« ¢ e o « o o o o o o o =
GLOSSARY
INDEX

JOB USER AREA (continued)

SR-0011 xvii

A-14
A-21
A-22
A-24
A-25
A-26
A-27
A-28
A-28
A-29
A-31
A-34

A-6

A-7

A-14
A-21
A-22
A-24
A-25
A-26
A-26
A-27
A-28
A-30
A-31
A-34
Cc-1

c-2

PART 1
INTRODUCTION TO JOB PROCESSING

INTRODUCTION

The Cray Operating System (COS) is a multiprogramming and multiprocessing
operating system for Cray Computer Systems. The operating system
provides for efficient use of system resources by monitoring and
controlling the flow of work presented to the system in the form of

jobs. The operating system optimizes resource usage and resolves
conflicts when more than one job is in need of resources.

COS is a collection of programs residing in Cray mainframe central memory
or on system mass storage following startup of the system. (Startup is
the process of bringing the Cray Computer System and the operating system
to an operational state.)

Jobs are presented to the Cray Computer System by one or more computers
referred to as front-end computers (also referred to as stations in

Cray Research manuals). A front—end computer can be any of a variety of
computer systems. Software executing on the front-end computer system is
beyond the scope of this publication.

COSs includes linkages providing for the initiation and control of
interactive jobs and data transfers between the Cray Computer System and
front-end terminals. These features are available only where supported
by the front-end system.

The FORTRAN compiler (CFT), library routines, the CAL assembler, and the
UPDATE source maintenance program are described in separate publications.

HARDWARE REQUIREMENTS

The Cray Operating System (COS) executes on the basic configuration of
any CRAY-1 or CRAY X-MP Computer System. Each computer system contains
the following components:

® One or two central processing units (CPUs); a CRAY-1l contains one
CPU and a CRAY X-MP contains two CPUs.

® Central Memory. COS operates with any of four central memory size
options: one-half million, one million, two million, and four
million 64-bit words.

Part 1
SR-0011 1-1 L

® A minicomputer based Maintenance Control Unit (MCU) or I/0
Subsystem (IOS). The I/0 Subsystem, if present, performs all
required Maintenance Control Unit functions.

® A mass storage subsystem. The mass storage subsystem may consist
of DD-19 or DD-29 disk drives, a Solid-state Storage Device (SSD),
or Buffer Memory (BMR). BMR storage can be accessed only through
an I/0 Subsystem; disk drives may be connected either to an I/0
Subsystem or a CRAY-1 mainframe. SSD storage is connected
directly to the CRAY-1 or CRAY X-MP mainframe.

e An optional IBM-compatible tape subsystem. The tape subsystem
requires that an I/0 Subsystem is present.

The I/O Subsystem consists of from two to four I/0 processors and
one-half million, one million, four million, or eight million words of
shared Buffer Memory. The optional tape subsystem is composed of at
least one block multiplexer channel, one tape controller, and two tape
units. The tape units supported are IBM-compatible 9-track, 200 ips,
1600/6250 bpi devices.

Figure 1-1 illustrates a basic system configuration. For more

information about CRAY-1 or CRAY X-MP hardware characteristics, refer to
the appropriate mainframe reference manual listed in the preface.

SYSTEM INITIALIZATION

COS is loaded into Central Memory and activated through a system startup
procedure performed at the MCU or I/0 Subsystem. At startup, linkage to
the Permanent Dataset Catalog (DSC) is reestablished on mass storage.
All permanent mass storage datasets are recorded in the DSC; thus,
permanent datasets survive startup and the user can always assume that
they are present. See part 1, section 2 of this manual for more
information on datasets.

CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS

Central Memory is shared by COS, jobs running on the Cray mainframe,
dataset I/0 buffers, and system tables associated with those jobs. COS
allocates resources to each job, when needed, as these resources become
available. As a job progresses, information is transferred between
Central Memory and mass storage. These transfers can be initiated by
either the job or by COS.

Figure 1-2 illustrates the assignment of memory to COS and to jobs.

Part 1
SR-0011 1-2 L

MAGNETIC TAPE

DISPLAYS
SUBSYSTEM
OPTION
LOCAL OR
REMOTE
INTERACTIVE —@mz_____ CRAY
TERMINALS —=___| FRONT-END
COMPUTER COMPUTER
LOCAL OR
e MOTE SYSTEMS SYSTEM
JOB ENTRY
STATIONS

PERIPHERALS MASS STORAGE

Figure 1-1. Cray Computer System configuration

MEMORY-RESIDENT COS

COS occupies two areas of Central Memory. The memory-resident portion of
the operating system occupying lower memory consists of exchange
packages, the System Executive (EXEC), the System Task Processor (STP),
and optionally the Control Statement Processor (CSP). The
memory-resident portion of the operating system occupying extreme upper
memory contains station I/0 buffers, space for the system log buffer, and
Permanent Dataset Catalog (DSC) information and buffers.

Part 1
SR-0011 1-3 L

User area;

User area,

User areas

User ar‘ean

y

MAX1MUM
MEMORY

Figure 1-2. Central Memory assignment

USER AREA OF MEMORY

COS assigns every job a user area in Central Memory. The user area
consists of a Job Table Area (JTA) and a user field.

Job Table Area - JTA

For each job, the operating system maintains an area in memory that
contains the parameters and information required for monitoring and
managing the job. This area is called the Job Table Area (JTA). Each
active job has a separate Job Table Area adjacent to the job's user
field. The Job Table Area is not accessible to the user, although it can
be dumped for analysis (see part 2, section 8 of this manual).

Part 1
SR-0011 1-4 L

User field

The user field for a job is a block of memory immediately following the
job's JTA. The user field is always a multiple of 512 words. The
beginning or Base Address (BA) and the end or Limit Address (LA) are

set by the operating system. The maximum user field size is specified by
a parameter on one of the job control statements (see part 2, section 1)
or by installation-defined default. A user can request changes in user
field size during the course of a job.

Compilers, assemblers, system utility programs, and user programs are
loaded from mass storage into the user field and are executed in response
to control statements in the job deck. Each load and execution of a
program is referred to as a job step.

A detailed description of the contents of the user field is given in part
1, section 3 of this manual. Briefly, however, the first 200g words of
the user field are reserved for an operating system/job communication
area known as the Job Communication Block (JCB). Programs are loaded
starting at BA+200g and reside in the lower portion of the user field.
The upper portion of the user field contains tables and dataset I/O
buffers. The user field addressing limit is equal to LA-1l.

Memory addresses for instructions and operands are relative to BA. The
Cray mainframe adds the contents of BA to the address specified by a
memory reference instruction to form an absolute address. A user cannot
reference memory outside of the user field as defined by the BA and LA
register contents; LA-1 is the user limit. (Refer to the appropriate
mainframe hardware reference manual noted in the preface for more
information.)

MASS STORAGE CHARACTERISTICS

Mass storage for CRAY-1l Models A and B consists of 1 to 32 DD-19 or DD-29
Disk Storage Units (DSUs). Mass storage for CRAY-1l Models S/500 or
S/1000 consists of 2 to 32 DD-29 DSUs. Mass storage for the CRAY-1 M
Series, CRAY X~-MP Series, and CRAY-1l S Series Models S/1200 through
S/4400 consists of 2 to 48 DD-29 DSUs, depending on the number of I/0

Processors in the I/0O Subsystem. These devices are physically
non-removable.

Although normally configured as described above, DSUs can be connected
both to the mainframe and the I/0 Subsystem.

All information maintained on mass storage by the Cray Operating System
(except specific pre—allocated areas such as the Device Label) is
organized into quantities of information known as datasets. 1In

Part 1
SR-0011 1-5 L

general, the user need not be concerned with the physical transfer of
data between the disks and memory nor with the exact location and

physical form in which datasets are maintained on mass storage. COS
translates the user's logical requests for data input and output into

disk controller functions automatically.

For the orientation of the

user, physical characteristics of disk storage units are summarized in

table 1-1.

Table 1-1. Physical characteristics of disk storage units

Feature DD-19 DD-29
Word capacity per drive 3.723 x 107 7.483 x 107
Word capacity per cylinder 92,160 92,160
Bit capacity per drive 2.424 x 102 4,789 x 10°
Tracks per surface or 411 823
cylinders per drive
Sectors per track 18 18
Bits per sector 32,768 32,768
Number of head groups 10 10
Latency (revolution time) 16.7 ms 16.7 ms
Access time 15 - 80 ms 15 - 80 ms
Data transfer rate (average 35.4 x 106 35.4 x 106
bits per second)
Longest continuous transfer 92,160 words 92,160 words
per request (1 cylinder) (1 cylinder)
Total bits that can be 5.9 x 106 5.9 x 106
streamed to a unit (disk
cylinder capacity)

Each disk storage unit contains a device label, datasets, and unused

space to be allocated to datasets. The device label notes usable and
unusable (unflawed and flawed) space on the disk unit and designates one

Part 1
SR-0011 1-6 L

of the devices as the Master Device. The Master Device is the disk
storage unit containing a table known as the Dataset Catalog (DSC),
which contains information for maintaining permanent datasets.

To the user, mass storage permanent datasets are always present and
available on mass storage. This permanence is achieved through
techniques permitting the datasets noted in the DSC to be recovered or
reestablished in the event of system failures. Portions of COS, such as
the loader, utility programs, the compiler, the assembler, and library
maintenance and generation routines, reside in permanent datasets
accessible by user jobs at any time.

Datasets containing job input decks and output from jobs also reside on
mass storage. Because these datasets are listed in the Dataset Catalog
they are also regarded as permanent. This designation is somewhat
misleading since their permanence is by definition rather than by tenure
in the system. That is, the input dataset is permanent from the time it
is staged from the front-end system to the Cray Computer System until the
job terminates. Output datasets being disposed to a front end are
permanent from job termination (or whenever the disposition was
initiated) until the disposition is complete. The permanence of these
system—defined datasets allows them to be recovered along with other
permanent datasets after a system failure.

Any user job can create a mass storage permanent dataset. It can be
subsequently accessed, modified, or deleted by any other job having
correct access privileges and producing the correct permission control
words when attempting to associate it with the job. Permission control
words are defined at the time the dataset is designated as permanent
(that is, saved).

A permanent dataset ceases to be permanent when a user with the correct
permission control word deletes it. This deletion notifies COS that the
sSpace occupied by the dataset is no longer permanent. However, the space
is still reserved by the dataset until it is released by the user (see
part 2 sections 3 and 5, respectively, for information on the RELEASE and
DISPOSE control statements).

In addition to the various permanent datasets, mass storage is used for
temporary datasets. A temporary dataset is created by the job using it
and remains temporary unless it is designated as permanent, released, or
disposed to a front end by the job. A temporary dataset neither saved as
permanent nor disposed of is termed a scratch dataset and ceases to
exist when the job releases it or terminates.

COS allocates space to datasets as needed by tracks. Storage assigned to
a single dataset can be noncontiguous and can even be on multiple disk
units. Default and maximum sizes for datasets are defined by system
parameters. The user has limited control over the allocation of storage
to a dataset through the ASSIGN control statement.

Part 1
SR-0011 1-7 L

MAGNETIC TAPE CHARACTERISTICS

An I/0 Subsystem can include an Auxiliary I/O Processor (XIOP) with the
capability of addressing up to 16 block multiplexer channels of tape
units. Each block multiplexer channel can be attached to IBM-compatible
control units and tape units in a variety of configurations. The block
multiplexer channels communicate with the control units and tape units to
allow reading and writing data that can also be read and written on
IBM—-compatible CPUs. The physical characteristics of tape devices are
summarized in table 1-2. The block sizes in this table are used by the
COS tape system for transparent-format tape datasets (described in part
1, section 2).

Table 1-2. Physical characteristics of 200 ips,
9-track tape devices

Density Transfer rate Data/2400 ft. $ of reel Block size
(bits/inch) | (kilobytes/sec) | reel (megabytes)| containing (bytes)
data
6250 1170 168 94 32768
1600 300 43 94 16384
Part 1

SR-0011 1-8 L

DATASETS

Nearly all information maintained by the Cray Operating System (COS) is
organized into quantities of information known as datasets. The

following are some of the more important factors to remember about
datasets.

e The dataset medium is the type of physical device on which the
dataset resides.

® The dataset structure is the logical organization of the dataset.
e The dataset longevity is the retention period for the dataset.
® A dataset must be local to be usable.

® The dataset disposition code tells the operating system what
action to take when the dataset is no longer local.

® Each dataset is known by its dataset name.

e Datasets are read and written using operating system requests
(user 1/0 interfaces).

DATASET MEDIUM

Datasets can be classified by medium, as follows:
® Mass storage datasets
® Memory-resident datasets
® Interactive datasets

® Magnetic tape datasets

MASS STORAGE DATASETS

All datasets, unless otherwise specified, reside on Cray mass storage,

that is, on mass storage attached directly to the mainframe or to the I/O
Subsystem.

SR-0011 2-1 L

MEMORY-RESIDENT DATASETS

Some datasets can be specified by the user as memory-resident datasets.
A memory-resident dataset is wholly contained within one buffer (see BS
parameter on the ASSIGN control statement in part 2, section 3 of this
manual) and remains in memory at all times. Such a dataset ordinarily
occupies no mass storage. A memory-resident dataset is normally a
temporary dataset; however, a mass storage permanent dataset can be
declared memory resident.

A dataset can be declared memory resident to reduce the number of I/O
requests and disk blocks transferred. Memory residence is particularly
useful for intermediate datasets not intended to be saved or disposed to
another mainframe. All I/0O performed on a memory-resident dataset takes
Place in the dataset buffers in memory and the contents of the buffers
are not ordinarily written to mass storage. Such a dataset cannot be
made permanent, nor may it be disposed to another mainframe, unless
copied to mass storage.

Normally, a memory-resident dataset is empty until written on. If an
existing dataset is declared memory resident, it is loaded when the first
read occurs. A user attempting to write to a memory-resident dataset
must have write permission. However, as long as the buffer does not
appear full, no actual write to mass storage ever occurs. Therefore,
changes made to an existing dataset declared memory resident are not
reflected on the mass storage copy of the dataset.

A memory-resident dataset must be defined through an ASSIGN control
statement containing the MR parameter or through an F$DNT call to the
system. If the F$DNT call is used, the Dataset Definition List (DDL)
supplied should specify DDMR=1. (See the description of the ASSIGN
control statement in part 2, section 3 of this manual.) In addition, the
buffer size parameter should specify a buffer large enough to contain the
entire dataset plus one block.

If at any time the system I/0 routines are called to write to the dataset
and the buffer appears to be full, the dataset ceases to be treated as
memory resident, the buffer is flushed to mass storage, and all
memory-resident indicators for the dataset are cleared.

Magnetic tape, execute-only, and interactive datasets cannot be declared
memory resident.

INTERACTIVE DATASETS

A dataset can be specified as interactive by an interactive job, provided
that interactive datasets are supported by the front end. Batch users
cannot create interactive datasets. An interactive dataset differs from
a local dataset in that a disk image of the dataset is not maintained.

Part 1
SR-0011 2=-2 L

Instead, records are transmitted to and from a terminal attached to a
front-end station. Record positioning (for example, REWIND or BACKSPACE)
is not possible.

Interactive datasets can be created by interactive jobs through the use
of the ASSIGN control statement or F$DNT system call.

MAGNETIC TAPE DATASETS

A magnetic tape dataset is available to any job declaring tape resource
requirements on the JOB statement and specifying the appropriate
information on its ACCESS request.

A magnetic tape (referred to in this manual as a magnetic tape dataset)
can be unlabeled (NL), ANSI standard labeled (AL), or IBM standard
labeled (SL), and can be recorded or read at either 1600 or 6250 bits per
inch (bpi). To gain access to an existing tape dataset for reading
and/or rewriting, the correct file identifier (permanent dataset name),
the desired device type, and, optionally, a volume identifier list must
be specified. The volume identifier list can consist of 1 to 255 volume
identifiers. If the permanent dataset name (PDN) is omitted from the
ACCESS request, the local dataset name is used as the file identifier.

To gain access to a tape dataset for creating, the file identifier,
desired device type, and the NEW parameter option must be specified on
the ACCESS request. If no file identifier is present, the local dataset
name is used. If the volume identifier list is missing from the access
request, it is called a non-specific volume allocation. A specific
volume allocation occurs when the volume identifier list is present at
the time of the access request. New tape datasets must be written to
before a read is allowed.

Other options describing the tape dataset are available from the access
request. See the ACCESS control statement description (part 2, section 4
of this manual) for more details. Using other parameter options allows
more efficient tape dataset descriptions.

COS automatically switches volumes during dataset processing and returns
to the first volume of a multivolume dataset in response to a REWIND
command. If a permanent write error occurs when trying to write a tape
block for the user, COS automatically attempts to close the current
volume and continues to the next volume.

The COS tape system uses Buffer Memory as a tape block buffering area so
that the job's I/0 buffer need not be as large as the tape block (as with
other operating systems). This technique can result in significant
memory savings whenever large tape blocks are being processed and in
increased transfer rates whenever smaller blocks are being processed.

The advantage in having a large COS buffer is a reduction in the overhead
in the tape subsystem.

SR-0011 2-3 L

DATASET STRUCTURE

COS supports several dataset structures:
® Blocked format
® Interactive format
® Unblocked format

e Tape formats (interchange or transparent)

BLOCKED FORMAT

Blocked format is used by default for external types of datasets, such as
user input and output datasets. Record positioning requires a blocked
format. The blocked format adds control words to the data to allow for
processing of variable-length records and to allow for delimiting of
levels of data within a dataset. A blocked dataset can be composed of
one or more files, which are, in turn, composed of one or more records.
Figure 2-1 illustrates the data hierarchy within a dataset.

Dataset
File, File, ... Filep,
Record, Record, | ... |Record,

Figure 2-1. Data hierarchy within a dataset

The data in a blocked dataset can be coded and/or binary. Blanks are
normally compressed in blocked coded datasets. Each block consists of
512 words. Blocked datasets use two types of control words: block and
record.

Part 1
SR-0011 2-4 L

Blank compression

Blank fields can be compressed for blocked coded files. Blank field
compression is indicated by a blank field initiator code followed by a
count. The default blank field initiator code is defined by the
installation parameter I@BFI which is either an ASCII code or 777g
indicating that blank compression will not be done. Blank compression
can be inhibited using an ASSIGN statement parameter or an F$DNT system
call. A blank field of 3 through 96 characters is compressed to a
2-character field. The count is biased by 36g; the actual character
count is limited to 41lg < character count < 176g (the ASCII graphics).

Block control word

The block control word (BCW) is the first word of every 512-word block.
The format of a block control word is depicted in figure 2-2,

0 8 16 24 32 40 48 56 63
MI///17777A\N1777777777/77777) BN | FWI
\ BDF

Figure 2-2. Format of a block control word

Field Bits Description

M 0-3 Type of control word (for block control word,
M=0)

BDF 11 Bad data flag; indicates the following data, up

to the next control word, is bad. This flag is
set by the I/O Subsystem for magnetic tape
datasets in interchange format.

BN 31-54 Block number. Designates the number of the
current data block. The first block in a
dataset is block 0.

FWI 55-63 Forward index. Designates the number of words

(starting with 0) to the next record control
word or block control word.

Record control word

A record control word (RCW) occurs at the end of each record, file, or
dataset. The format of a record control word is illustrated in figure
2-3.

SR-0011 2-5 L

Field

UBC

TRAN

BDF

PFI

PRI

SR-0011

0

8 [

BDF
16 24 32 40 48 56 63

M| UBC |¢I¢1/////I PFI | PRI | FWI

Figure 2-3. Format of a record control word

Bits

0-3

10

11

20-39

40-54

55-63

Description

Type of control word:
10g End-of-record (EOR)
l6g End-of-file (EOF)
17g End-of-data (EOD)

Unused bit count. For end-of-record, UBC
designates the number of unused low-order bits
in the last data word of the record terminated
by the end-of-record. For end-of-file and
end-of-data RCWs, this field is 0. The data
area protected by UBC must be zero-filled.

Transparent record field; used for an
interactive output dataset only. If set,
substitution of end-of-record RCWs is suppressed.

Bad data flag; indicates the following data, up
to the next control word, is bad. This flag is
set by the I/O Subsystem for magnetic tape
datasets in interchange format. If flag is set,
an irrecoverable error was encountered in
following data.

Previous file index. This field contains an
index modulo 220 (20,000,000g) to the beginning
of the file. The index is relative to the
current block such that if the beginning of the
file is in the same block as this RCW, the PFI
is 0.

Previous record (RCW) index. This field
contains an index modulo 21° (100,000g) to the
block where the current record starts. The
index is relative to the current block such that
if the first word of data in this record is in
the same block as this RCW, PRI is 0.

Forward word index. This field points to the
next control word (RCW or BCW) and consists of a
count of the number of data words up to the
control word (that is, if the next word is an
RCW or BCW, FWI is 0).

Part 1
2-6 L

Disregarding block control words occurring at 512-word intervals in a
dataset, RCWs have the following logical relationship in a dataset.

An end-of-record RCW immediately follows the data for the record it
terminates. If the record is null, that is, if it contains no data, an
end-of-record RCW can immediately follow an end—of-record or end-of-file
RCW or can be the first word of the dataset.

An end-of-file RCW immediately follows the end-of-record RCW for the
final record in a file. If the file is null, that is, if it contains no
records, the end-of-file RCW can immediately follow an end-of-file RCW or
can be the first word of the dataset.

An end-of-data RCW immediately follows the end-of-file RCW for the final

file in the dataset. If the dataset is null, the end-of-data RCW can be
the first word on the dataset.

The typical dataset has many end-of-record RCWs per block. An example of
dataset control words is illustrated in figure 2-4. 1In this example, a
dataset is contained within four physical sectors, each beginning with a
BCW (thus the four BCWs in this example are numbered 0, 1, 2, 3). The
dataset contains four files shown as F1l, F2, F3, and F4. Fl contains the
four records shown as Rl through R4; F2 contains records R5 through R7;
F3 contains no records at all; F4 contains record RS8.

INTERACTIVE FORMAT

Interactive format closely resembles blocked format; however, each buffer
begins with a block 0 BCW. Each record transmitted to or from COS by an

F$RDC or an F$WDC call must contain a single record consisting of a BCW,

data, and an end-of-record RCW.

Two formats for interactive output can be assigned when the dataset is
created: character blocked and transparent. Character blocked mode is
the default. In character blocked mode, an end-of-record RCW is
interpreted as a line feed or a carriage return. In transparent mode,
the end-of-record RCW is ignored and the user is responsible for
supplying carriage control characters.

UNBLOCKED FORMAT

Dataset I/0 can also be performed using unblocked datasets. The data
stream for -unblocked datasets does not contain Cray Operating System
record control words (RCWs) or block control words (BCWs).

Part 1
SR-0011 2-7 L

V7

o] o P 0
W) ' | o]

EOR

W44 2 — BCW
60007 1 0 EOF
F3 () 16 700 0 0 o I cor

Hp 0724

60 1 J T - eox
6 0000000 1 0 EOF
1000 0 0 0 EOD

Figure 2-4. Example of dataset control words
(octal values shown)

Part 1
SR-0011 2-8 L

The system does not allocate buffers in the job's I/O buffer area for
unblocked datasets; the user must specify an area for data transfer.
When a read or write is performed on an unblocked dataset, the data goes
directly to or from the user data area without passing through an I/O
buffer. The word count of data to be transferred must be a multiple of
512.

Unblocked I/0 cannot be performed on an interchange format tape dataset
(see below).

TAPE FORMATS

Tape datasets are written and read on tape volumes. A tape volume is a
reel of tape. A tape volume is also known as a dataset section (for
example, in FSEC= on the ACCESS statement).

Data is read or written in tape blocks. A tape block is a unit of data
recorded on magnetic tape between two consecutive interblock gaps. The
size of tape blocks can vary from one byte to a maximum of approximately
one million bytes.

Tape datasets can be read or written using two different formats:

interchange or transparent. Tape datasets can also be labeled or
unlabeled.

Interchange format

Interchange format facilitates reading and writing tapes that are also to
be read or written on other vendors' systems. In interchange format,
each tape block of data corresponds to a single logical record in COS
blocked format (that is, the data between record control words).

In interchange format, tape block lengths can vary up to an
installation-defined maximum which cannot exceed 1,048,576 bytes (131,072
64-bit words). It is recommended that the maximum block size not exceed
100 to 200 kilobytes. Blocks exceeding these sizes may require special
operational procedures (such as the use of specially prepared tape
volumes having an extended length of tape following the end-of-tape (EOT)
reflective marker) and yield little increase in transfer rates or storage
capacity.

When a tape dataset is read in interchange mode, physical tape blocks are
represented in the user's I/0 buffer with block control words (BCWs) and
record control words (RCWs) added by COS. The data in each tape block is
terminated by an RCW. The unused bit count field in the RCW indicates
the amount of data in the last word of the tape block that is not valid
data. A BCW is inserted before every 511 words of data, including the
RCWs. The formats of RCWs and BCWs are described previously in this
section and shown in figures 2-2 and 2-3.

Part 1
SR-0011 2-9 L

Figure 2-5 depicts a tape dataset in interchange format. Tape blocks
within tape label groups are not included in this format. The end of the
dataset is represented by an end-of-file (EOF) RCW followed by an
end-of-data (EOD) RCW.

When a tape dataset is written in interchange format, the data must be in
the I/0 buffer in the user field in COS blocked format. The data in each
logical record is written as a single tape block. BCWs and RCWs are not
recorded on tape. BCWs within a record are discarded and the unused bits
and terminating RCW are also discarded. The unused bit count must be a
multiple of 8. Tape datasets written in interchange mode must consist of
a single file (single EOF RCW). Multiple-file tape datasets are not
supported in interchange mode.

Transparent format

In transparent format (disk image), each tape block is a fixed multiple
of 4096 bytes (512 words), generally based on the dataset density (that
is, 16,384 bytes at 1600 bpi and 32,768 bytes at 6250 bpi). The data in
the tape block is transferred unaltered between the tape and the I/O
buffer in the user field; no control words are added on reading or
discarded on writing. 1In transparent mode, the data can be in COS
blocked format or COS unblocked format. Transparent format tapes are not
denerally read or written by other vendors' equipment.

DATASET LONGEVITY

Permanent datasets are retained by the operating system until instructed
otherwise. All other datasets are considered temporary.

TEMPORARY DATASETS

A temporary dataset is available only to the job that created it.
Temporary datasets can be created in two ways: either explicitly by use
of the ASSIGN control statement, or implicitly upon first reference to a
dataset by name or unit number on an I/0O request or an OPEN macro call.

A temporary mass storage dataset is empty until written on. Rewind or
backspace of the dataset is necessary before it can be read. A temporary
dataset can be made permanent by use of the SAVE control statement. If
the dataset is not made permanent, it is released at job termination or
by the specific RELEASE function request and its mass storage made
available to the system.

Part 1
SR-0011 2-10 L

TAPE DATA AS IT APPEARS IN I/0
BUFFER (IN 512-WORD UNITS)

DATA IN TAPE BLOCKS

HDR2

* (Tapemark)

Header Label
Group (if labeled)

block 0

block 1

block 2

last
data

block

End of Data

Label Group
(if labeled)

OR
End of Volume
Label
Group
{if labeled)

BCW 0 o | | @ e -]
q\\ ’,ﬂ—/‘"——
data
EOR 10 40 o] 0 N ‘\\\\
data \\\\\\ \\\\\\
EOR 10| 20 V% ol 0| | \\\\
N \\\\\\
X S~
~o ~~
\\ \\\
AN \\
~
\\ \\
~ | %% | ~ \
N ~
\\\ \\
\\ \\
data \\\ \\
S~ N
~o N
~_\
~\
~~ AN
EOR 10 o% 0 1 ,__“\\\\ 5
BCW N “~
data
,//////////A(o _
EOR 10 60 // N 1 0 * (Tapemark)
7
EOF 16 007// 5 o| o EOF1
Z
EOD 17 007/ 0 0| 0
/ EOF2
unused *
*
_
Figure 2-5. Interchange-format tape dataset
(octal values shown)
Part 1
SR-0011 2-11

* (Tapemark)

EOV1

EOV2

PERMANENT DATASETS

Only mass storage or magnetic tape datasets can be permanent.

Magnetic tape permanent datasets

Tape datasets are discussed under Dataset Media earlier in this section.

Mass storagde permanent datasets

A mass storage permanent dataset is available to the system and to
other jobs and is maintained across system startups. Permanent datasets
are of two types: those created by SAVE requests made by the user or
front-end system (user permanent datasets), and input, output, or COS
internal datasets (system permanent datasets).

User permanent datasets are maintained for as long as the user or
installation desires. They can be protected from unauthorized access by
use of permission control words and ownership values.

When a user permanent dataset is accessed via an ACCESS control statement
(see part 2, section 4 of this manual), it is treated as a local dataset
by the job requesting access. However, it still exists as a permanent
dataset on the system and can be used by other jobs unless unique access
to that dataset was granted. If any information in an existing permanent
dataset is overwritten or if the size of a permanent dataset is changed,
an ADJUST should be performed on that dataset (see part 2, section 4 of
this manual). An ADJUST is performed automatically when a permanent
dataset is released.

System permanent datasets relate to particular jobs or reflect the
current operational state of COS. A job's input dataset is made
permanent when the job is received by the Cray Computer System and is
deleted when the job terminates. Output datasets local to the job can

be disposed while the job is running or can be automatically made
permanent when the job terminates and then deleted from the Cray Computer
System after being sent to the front-end system for processing. An
example of a system permanent dataset is the system log.

An execute-only dataset is a user permanent mass storage dataset for
which all forms of examination and modification by users are prohibited.
An execute-only dataset is loaded by the Control Statement Processor
(CSP) for execution. It differs in usage from other user permanent
datasets in several ways:

® The accessor of the dataset cannot open the dataset for reading or
writing.

Part 1
SR-0011 2-12 L

® While an execute—-only dataset is loaded in memory, no DUMPJOB
requests are honored.

e The dataset cannot be staged via a DISPOSE request.

® The dataset must be loaded by a dataset name call rather than by
the LDR control statement.

® The dataset cannot be dumped via PDSDUMP for archiving purposes.

Because execute-only is a dataset state rather than a permission mode, it
is advisable to set, at minimum, a maintenance permission control word to
disallow modification or deletion of the dataset.

LOCAL DATASETS

A dataset to which a job has access is a local dataset. A local dataset
can be temporary or permanent. Permanent datasets are made local with
the ACCESS control statement or the ACCESS library subroutine (described
in the Library Reference Manual, CRI publication SR-0014). If the
dataset referenced is a tape dataset, the device resource must also be
specified on the JOB control statement (see part 2, section 2 of this
manual) .

DATASET DISPOSITION CODES

Each dataset is assigned a disposition code telling the operating system
the disposition to be made of the dataset when the job is terminated or
the dataset is released. The disposition code is one of the parameters
of the DISPOSE and ASSIGN control statements (see part 2, section 3 of
this manual).

Each disposition code is a 2-character alphabetic code describing the
destination medium of the dataset. The default disposition code for a
dataset is SC (scratch) when a dataset is opened, unless the dataset
named is one of a group of special names such as $PLOT, $PUNCH, and
$OUT. By default, COS assigns the disposition code PR (print) to $0UT
when the dataset is created. No DISPOSE statement is required for $0UT;
it is automatically routed back to the originating mainframe with a PR
(print) disposition.

Part 1
SR-0011 2-13 L

USER DATASET NAMING CONVENTIONS

The user assigns a symbolic name to each user dataset. This name, the
local dataset name, is one through seven characters, the first of which
can be A through Z, $§, @, or %; remaining characters can also be
numeric. However, a permanent dataset name does not have this
restriction; all characters in a permanent dataset name can be
alphanumeric. Certain language processors place further restrictions on
dataset names.

Most datasets defined by COS are assigned names of the form $dn. Since
datasets whose names begin with a $ may receive special handling by the
system, the user should refrain from using this format when naming
datasets.

USER I/0 INTERFACES

When using logical I/0, the user is never directly concerned with the
actual transfer of data between the devices and the system buffers.
Figure 2-6 illustrates the relationship of different levels of user
logical I/0 interfaces and routines. In this figure, the request levels
and routine calls are summarized without going into detail on the
movement of data between the system buffers and user program areas. For
details on logical I/0, see the Macros and Opdefs Reference Manual, CRI
publication SR-0012.

The highest level of user interface is FORTRAN I/O statements; the lowest
level is in the form of specially formatted requests called Exchange
Processor requests.

FORTRAN statements fall into two categories: formatted/unformatted and
buffered. The formatted/unformatted statements result in calls to
library routines $RFI through $WUF. If the dataset is blocked, these
routines call the logical record I/0 routines. The logical record 1/0
routines perform blocking and deblocking. The logical record I/0
routines communicate with COS through the Exchange Processor requests,
F$RDC and F$wWDC.

If the dataset is unblocked, $RUA or $WUA calls the unblocked dataset
routine $RLB or $WLB. These routines do no blocking or unblocking of
data. The unblocked I/O routines communicate with the system through the
F$RDC and F$WDC Exchange Processor calls.

Buffered I/0 takes a different path from formatted/unformatted I/0.

These routines interface (through an F$BIO Exchange Processor request) to
routines in COS that normally perform logical I/0 for system tasks.

These routines, called Task I/0 or TIO, closely resemble the logical
record I/0 routines. TIO and the logical record I/0 routines make

Part 1
SR-0011 2-14 L

Asynchronous I/0 Synchronous I/0

user
CFT BUFFERED I/0 CFT FORMATTED/ interface
STATEMENTS UNFORMATTED STATEMENTS
BUFFER 1IN READ PUNCH
BUFFER OUT PRINT WRITE CAL BLOCKED 1/0 MACROS

READ WRITE WRITEF

READP WRITEP WRITED
CAL BUFFERED READC WRITEC BKSP
1/0 MACROS CAL UNBLOCKED READCP WRITECP BKSPF
BUFIN BUFOUT BUFEQF 170 MACROS GETPOS
BUF INP BUFOUTP BUFEOD READU SETPOS
BUF CHE CK WRITEU REWIND

v ' library

routines
BUFFERED 1/0 SRFI WFI SRUI $WUI
SRFA SWFA SRUA SWUA
$RB SREV SWFV SRUV WUV
$wB $RFF SWFF $RUF $WUF
Y
CAL BUFFERED 1/0
INTERFACE
$CB10
y
UNBLOCKED DATASETS LOGICAL RECORD 1/0
SRWOR SWWOR $WEOF 3GPOS
$RLB SRWDP SWWDP SWEOD $SPOS
SHLB SRCHR SWCHR SREWD
SRCHP SWCHP $BKSP
SWWDS _$BKSPF

system
calls

USER

Y Y SYSTEM
T10 CI0
SRWOR $WWDR SWEOF > RDCS
SRWDP $WWDP $WEOD WDCS
$WWDS $REWD CIos

Figure 2-6. Relationship of levels of user I/0

Part 1
SR-0011 2-15 L

similar requests of circular I/0 routines in COS although the mechanism
for making these requests is different.

Circular I/0 routines (CIO) are the focal point for all logical I/O
generated by COS. CIO communicates its needs for physical I/0 to the
Disk Queue Manager or Tape Queue Manager.

A FORTRAN buffered I/O request issued for an unblocked dataset results in
the buffered I/0 routines calling the unblocked dataset routines $RLB and
$WLB, which then process these requests. These requests are processed
the same as formatted/unformatted requests except that buffered I/0
requests return control to the user after initiating I/O rather than
waiting for completion of the I/O request. For a CAL buffered I/0
request, $CBIO is called to route the request to either the blocked or
unblocked I/0 processing routines.

Cray Assembly Language (CAL) I/0 macros are described in the Macros and
Opdefs Reference Manual, CRI publication SR-0012. Logical record I/0
routines and FORTRAN I/0 routines are described in the Library Reference
Manual, CRI publication SR-0014. See the FORTRAN (CFT) Reference Manual,
CRI publication SR-0009, for a description of FORTRAN statements.

Part 1
SR-0011 2-16 L

COS JOB PROCESSING

A job is a unit of work submitted to the Cray Computer System. It
consists of one or more files of card images contained in a job deck

dataset. Each job passes through several stages from job entry through
job termination.

JOB DECK STRUCTURE

A job originates as a card deck (or its equivalent) at a front-end
computer system. Card images in the job deck dataset are organized into
one or more files. Figure 3-1 illustrates a typical job deck consisting
of a control statement file, a source file, and a data file. (The
physical card forms for end-of-file and end-of-data are defined by

the front-end system.)

<e€od>

JOB,JIN=. ..

JCL CONTROL STATEMENT
FILE

Figure 3-1. Basic job deck

Part 1
SR-0011 3-1 L

The first (or only) file of the job deck must contain the job control
language (JCL) control statements that specify the job processing
requirements (JCL is described in part 1, section 4 of this manual).
Each job begins with a JOB statement, identifying the job to the system.
If accounting is mandatory in the user's system, the ACCOUNT statement
must immediately follow the JOB statement. All other control statements
follow the JOB statement. Control statements can also be grouped into
control statement blocks as decribed in part 3, section 1 of this
manual. The end of the control statement file is designated by an
end-of-file record (or an end-of-data record if the job consists of a
control statement file only).

Files following the control statement file can contain source code or
data. These files are handled according to instructions given in the
control statement file.

The final card in a job deck must be an end-of-data.

GENERAL DESCRIPTION OF JOB FLOW

A job passes through the following stages from the time it is read by the
front-end computer system until it completes:

e Entry
e Initiation
® Advancement

® Termination

JOB ENTRY

A job can enter the system in the form of a dataset submitted from a
front-end computer system or a local or remote job entry station. The
job is transferred to Cray Computer System mass storage, where it resides
until it is scheduled to begin processing. The job input dataset is made
permanent until it is deleted at the completion of the job.

JOB INITIATION

The operating system examines the parameters on the JOB control statement
to determine the resources needed. When system resources required for
initiation are available, the job is initiated (scheduled to begin
processing).

SR-0011 3-2 L

Initiation of a job includes preparing a Job Table Area (JTA) and user
field, positioning the input dataset for the first job step, and placing
the job in a waiting queue for the CPU.

When COS schedules the job for processing, it creates four datasets:
$CS, $IN, $0UT, and $LOG.

$CS is a copy of the job's control statement file from $IN and is used
only by the system; the user cannot access $CS by name. This dataset is
used to read job control statements. The disposition code for $CS is SC
(scratch) .

$IN is the job input dataset. The job itself can access the input
dataset, with read only permission, by its local name, $IN, or as FORTRAN
unit 5.

$0OUT is the job output dataset. The job can access this dataset by name
or as FORTRAN unit 6. The disposition code for $0OUT is PR (print).

The job's logfile ($LOG) contains a history of the job. This dataset is
known only to the operating system and is not accessible by the user.
User messages can be added to the job's logfile with the MESSAGE system
action request macro (see the Macros and Opdefs Reference Manual, CRI
publication SR-0012) or the REMARK, REMARK2, or REMARKF subroutines (see
the Library Reference Manual, CRI publication SR-0014).

JOB ADVANCEMENT

Job advancement is the processing of a job according to the instructions
in a control statement file. Advancement occurs as a normal advance or
as an abort advance.

A normal advance causes COS to interpret the next control statement in
the job's control statement file.

An abort advance occurs if the operating system detects an error or if
the user requests that the job abort. Abort advances are described fully
under Exit Processing later in this section.

JOB TERMINATION

Output from a job is placed on system mass storage. At completion of a
job, the operating system appends $LOG to $0UT and makes $OUT permanent.
$IN, $CS, and $LOG are released. $OUT is renamed j»n (from the JIN
parameter value of the JOB control statement described in part 2,

Part 1
SR-0011 3-3 L

section 2 of this manual) and is directed to the output queue for staging
to the specified front-end computer system. When the front end has
received the entire contents of $0UT, the output dataset is deleted from
COS mass storage.

The front-end computer processes $OUT as specified by the dataset

disposition code. If, for any reason, $0UT does not exist, $LOG is the
only output returned at job termination.

JOB MEMORY MANAGEMENT

Central Memory is a resource that is allocated to jobs by the operating
system. A job's memory is composed of several distinct areas. Some of
these areas are managed exclusively by the system for the user; others
are managed by both the system and the user.

Figure 3-2 illustrates a job in memory. The total job size equals the
length of the job's Job Table Area (JTA) plus user field length. The
lined area between JCHLM and JCLFT is unused space within the job. This
area contains enough memory to guarantee that the job size is always a
multiple of decimal 512 words.

INITIAL MEMORY ALLOCATION

When the job initiates it is given sufficient memory for the Control
Statement Processor (CSP) to execute. Once the JOB statement is
processed, the job is allowed a field length no larger than the amount
specified by the MFL parameter on the JOB control statement (see part 2,
section 2 of this manual).

MODES OF FIELD LENGTH REDUCTION

There are two modes of field length reduction: automatic and user
managed.

® Automatic field length reduction mode
When the job is in automatic field length reduction mode, the
system automatically increases and decreases the job's field
length as the areas within the job increase and decrease. A job

initiates in automatic field length reduction mode.

® User-managed field length reduction mode

SR-0011 3-4 L

When the job is in user-managed field length reduction mode, the
system continues to increase the job's field length as before, but

never automatically decreases it.

The job's field length can be

decreased only by the user until the job is returned to automatic
field length reduction mode.

"

128

WQ@JCHLM

W@JCLFT

W@JCDSP

W@JCBFB

WQJCFL

SR-0011

[17717777777777///7/7///////7///7/7///////7/7/777/77777
////117117777777717777777777777777777777777777777///77/77
LI11177777777777777777777777777777/77777777//7/777/7/7777
/////////////////// Job Table Area ///////////////////
[11777777777777777777777777777777777777777/77777/77777777

L111111111111017101077101771777777710/70070777007/7777777

Job Communication Block

User code/data

LI111177777777777777777777777777777777/77777777////7777/
//////////////77/////// Unused [/////////7///////7/7/77
LLLL LTI L

Logical File Tables

Dataset Parameter Area

I/0 Buffers

Figure 3-2. User area of memory for a job

Part 1
3-5

user

field

The field length can be reduced at the beginning of each job step and
during each job step if the job is in automatic field length reduction
mode and any area of the job decreases. Since increases in field length
can result in the job's requiring more memory than can be immediately
supplied, which causes the job to be delayed until sufficient memory can
be given to it, the user may want to manage the job's field length when
it is known that the job will undergo frequent short-lived fluctuations
in size.

USER MANAGEMENT OF MEMORY

A user can dynamically manage the user code/data area of the job by
requesting an increase or decrease of memory at the end of the user
code/data area.

A user can manadge the field length of the job by requesting a specific
field length.

When the user manages the field length of the job, the job is placed in
user-managed field length reduction mode for the duration of the job step
(next job step when using the MEMORY control statement described in part
2, section 4 of this manual).

A user can place the job in user-managed field length reduction mode
across job steps by explicitly requesting that mode. The job remains in
user-managed field length reduction mode until the user explicitly
requests automatic field length reduction mode.

Management by control statement from the run stream

A user can use the MEMORY control statement to manage the job's field
length. When the user manages the job's field length, the job will be
placed in user-managed field length reduction mode for the duration of
the next job step. The MEMORY control statement may also place the job
in user-managed field length reduction mode across job steps or return
the job to automatic mode.

Management from within a program

From within a program, use of the MEMORY macro or MEMORY routine,
respectively, requests user management of the job's user code/data area
and field length. When the user manages the job's field length, the job
is placed in user—-managed field length reduction mode for the duration of
the job step. The MEMORY macro or MEMORY routine may also place the job
in user-managed field length reduction mode across job steps or return
the job to automatic mode.

Part 1
SR-0011 3-6 L

Management associated with a program

Use of the BC, PAD, and NORED parameters on the LDR control statement
(see part 2, section 9 of this manual) causes certain memory management
to be associated with the binary being loaded. This association is
stored with the binary if the binary is saved on a dataset. The
management associated can be user code/data area management or field
length management and occurs when the binary is loaded for execution. If
the field length is being managed, the job is placed in user-managed
field length reduction mode for the duration of program execution.

SYSTEM MANAGEMENT OF MEMORY

The system changes appropriate areas of the job's memory when a job
initiates certain system actions (that is, advances to the next job step,
does I/0, etc.). The Job Table Area, Logical File Tables, and Dataset
Parameter Area pictured in figure 3-2 can increase, but will never
decrease. The user code/data and buffer areas may both increase and
decrease in size. If the job is in automatic field length reduction
mode, the system automatically increases and decreases the job's field
length when any area in the job increases or decreases. If the job is in
user-managed field length reduction mode, the system continues to
increase the field length when it needs to, but never automatically
decreases the field length.

JOB RERUN
Under certain circumstances, restarting of a job from its beginning may
become necessary or desirable. This is referred to as rerunning a job.
Conditions causing the system to attempt to rerun a job are:
® Operator command,
® Uncorrectable memory error,
® Uncorrectable error reading the mass storage image of a job, and
e System restart.
A user job may perform certain functions that normally make its rerunning
impossible. The functions render a job nonrerunnable because they

produce results that might cause the job to run differently if it were
rerun. These functions include:

Part 1
SR-0011 3-7 L

e Writing to a permanent dataset
® Saving, deleting, adjusting, or modifying a permanent dataset
® Acquiring a dataset from a front—-end system

Ordinarily, when a job becomes nonrerunnable, it remains so. However,

the user may declare that the job is rerunnable. The user should do this
only when changes in job results due to execution of nonrerunnable
functions are acceptable. COS never makes a job rerunnable automatically.

The user can also override system monitoring of job rerunnability,
regardless of what functions the job performs. This ordinarily is done
only if the job is structured to run correctly regardless of whether
nonrerunnable functions are performed.

EXIT PROCESSING

When an error condition is detected by COS or when the user requests a
job step abort, COS checks to see if the condition is to be reprieved
(Reprieve Processing is described in the next subsection). If no
reprieve occurs, exit processing occurs. Generally, when a job step
abort occurs, the current job step is immediately abandoned and control
statements are skipped until the next eligible EXIT statement is
encountered (EXIT is described in part 2, section 2 of this section).
Normal job advancement occurs with the EXIT statement that is found. If
no eligible EXIT statement is found, the job is terminated.

EXIT statements that are within control statement blocks (iterative,
conditional, or in-line procedure) that have not yet been invoked are
ignored during the search for the next eligible EXIT statement.

If the block currently being processed is a conditional block (see part
3, section 1), only the group of control statements preceding the next
conditional statement in the block is searched for an eligible EXIT
statement; if none is found, the search continues with the first
statement following the conditional block. For example, in the following
sample control statement sequence, an abort advance occurs at the control
statement THIS IS A JOB STEP ABORT CONDITION because it does not begin
with a valid verb. Control statement interpretation resumes with the
control statement: *., RESUME HERE. The EXIT statements that are
included in the conditional block are ignored because they reside in
blocks that are not executed.

Part 1
SR-0011 3-8 L

SET,J1=0.
IF (J1.EQ.0)

THIS IS A JOB STEP ABORT CONDITION.
ELSEIF (Jl1.EQ.1)

EXIT.
ELSE.

EXIT.
ENDIF,

EXIT.
*_, RESUME HERE

Exit processing is not performed for interactive jobs except inside an
invoked procedure. After a job step abort occurs, the user is simply
prompted for the next control statement.

REPRIEVE PROCESSING

Normally, when a job step abort error occurs, exit processing begins (see
the previous section for a full description of exit processing).

Reprieve processing, however, allows a user program to attempt recovery
from many of the job step abort errors or to perform clean-up functions
before continuing with the abort.

Reprieve processing can also be used during the normal termination of a
job step. In this case, control transfers to the user's reprieve code
instead of to the next normal job step.

Two types of error conditions are related to a job step: nonfatal and
fatal.

e Nonfatal error conditions are those which can be reprieved any
number of times per job step by the user.

e Fatal error conditions can be reprieved only once for each type
per job step.

SR-0011 3-9 L

See Appendix D for a listing of all fatal and nonfatal error conditions.

When requesting reprieve processing, the user selects the error
conditions to be reprieved by setting a mask in the SETRPV subroutine or
macro call. If a selected error condition occurs during job processing,
the user's current job step maintains control. The user's exchange
package, vector mask register, error code, and error class are saved and
control passes to the user's reprieve code.

INTERACTIVE JOB PROCESSING

An interactive job dataset has interleaved control statements, program
or utility input, and program or utility output. In an interactive job,
the control statement file ($CS), standard input dataset ($IN), standard
output dataset ($0UT), and logfile ($LOG) are all defined by the system
to be interactive datasets. See part 1, section 2 for more information
on interactive datasets.

Each job step of an interactive job is initiated with a control
statement. Control statements can be either part of a procedure
invocation or entered directly from the interactive terminal. After
each control statement is received by COS, input to the job step can be
entered from the terminal and output and logfile information is returned
to the terminal. When the current job step is complete, normal job
advancement occurs and COS prompts for the next control statement (or
reads it from the invoked procedure file). Exit processing (see part 1,
section 3) is never performed on an interactive job except within a
procedure invocation.

Whenever a program or utility executing as part of an interactive job
requests to read from the standard input dataset, the interactive user
is prompted to enter data one record at a time. Likewise any data
written to $0UT, the standard output dataset, is sent to the interactive
terminal. User logfile messages are also sent to the interactive
terminal.

JOB LOGFILE AND ACCOUNTING INFORMATION

For each job run, the system produces a logfile-—an abbreviated history
of the progress of the job through the system. The logfile for a job
appears at the end of the job output. Each job control statement is
listed sequentially, followed by any messages associated with the job
step. Clock time, accumulated CPU time, and COS information are also

Part 1
SR-0011 3-10 L

given for each job step. A logfile usually consists of the items
illustrated in figure 3-3. 1Item 6 illustrates the accounting information
given to the user.

<:) First header line: Installation-defined message, usually
identifying the site and date the job was run.

<:> Second header line: Installation-defined message, usually
identifying the operating system, its current revision level, and
the date of the last revision.

14:57:06 0.0000 Csp

14:57:06 0.0000 Csp 03/07/83 - The current COS on SN27 is 03/03. This system was brought up
14:57:06 0.0000 csp @ at 1000, 03/07.

14:57:06 0.0000 csp

14:57:06 0.0000 csp

14:57:06 0.0000 CsP @ CRAY-1 SERTAL 27/4 CRI - MENDOTA HEIGHTS, MINN. 03/23/83
14:57:06 0.0000 Csp

14:57:06 0.0001 Csp @ CRAY OPERATING SYSTEM COS 1.12 ASSEMBLY DATE 03/03/83
14:57:06 0.0001 CSP

14:57:06 0.0001 csp

14:57:06 0.0001 Csp JOB,JN=SAMPJOB, US=PROJECT2013,MFL=28000,T=1.

14:57:06 0.0010 Csp ACCOUNT,AC=.

14:57:07 0.0017 EXP *

14:57:07 0.0017 EXP @* GENERATE A PERMANENT DATASET

14:57:07 0.0017 EXpP *

14:57:07 0.0022 csp COPYF (O=PERMDS)

14:57:07 0.0024 USER FT048 - COPY OF 9 RECORDS 1 FILES COMPLETED
14:57:07 0.0029 Ccsp COPYF , O=PERMDS .

14:57:07 0.0040 USER FT048 - COPY OF 72 RECORDS 1 FILES COMPLETED
14:57:08 0.0043 Csp SAVE (DN=PERMDS, ID=P2013)

14:57:08 0.0043 PDM PD0O00 - PDN = PERMDS ID = P2013 ED = 1 US = PROJECT2013
14:57:08 0.0043 PDM PD000 - SAVE COMPLETE

14:57:08 0.0043 csp EXIT.

14:57:08 0.0044 csp END OF JOB

14:57:08 0.0044 csp

14:57:08 0.0044 csp

14:57:08 0.0046 USER JOB NAME - SAMPJOB

14:57:08 0.0046 USER USER NUMBER - PROJECT2013
14:57:08 0.0047 USER TIME EXECUTING IN CPU - 0000:00:00.0046
14:57:08 0.0047 USER TIME WAITING TO EXECUTE - 0000:00:00.2999
14:57:08 0.0047 USER TIME WAITING FOR 1/0 - 0000:00:01.6256
14:57:08 0.0047 USER TIME WAITING IN INPUT QUEUE - 0000:00:00.0624
14:57:08 0.0048 USER MEMORY * CPU TIME (MWDS*SEC) - 0.11527
14:57:08 0.0048 USER MEMORY * I/O WAIT TIME (MWDS*SEC) -~ 47.48925
14:57:08 0.0048 USER @ MINIMUM JOB SIZE (WORDS) - 13312
14:57:08 0.0048 USER MAXIMUM JOB SIZE (WORDS) - 30208
14:57:08 0.0048 USER MINIMUM FL (WORDS) - 10240
14:57:08 0.0048 USER MAXIMUM FL (WORDS) - 27136
14:57:08 0.0048 USER MINIMUM JTA (WORDS) - 3072
14:57:08 0.0049 USER MAXIMUM JTA (WORDS) - 3072
14:57:08 0.0049 USER DISK SECTORS MOVED - 96
14:57:08 0.0049 USER USER I/O REQUESTS - 18
14:57:08 0.0049 USER OPEN CALLS - 11
14:57:08 0.0049 USER CLOSE CALLS - 9
14:57:08 0.0049 USER MEMORY RESIDENT DATASETS - 0
14:57:08 0.0049 USER TEMPORARY DATASET SECTORS USED - 0
14:57:08 0.0049 USER PERMANENT DATASET SECTORS ACCESSED - 20
14:57:08 0.0049 USER PERMANENT DATASET SECTORS SAVED - 1
14:57:08 0.0049 USER SECTORS RECEIVED FROM FRONT END - 0
14:57:08 0.0049 USER SECTORS QUEUED TO FRONT END - 0

Figure 3-~3. Example of a job logfile

<:> Columns: The leftmost column identifies the wallclock time for
each job step and the middle column identifies the accumulated CPU
time for the job. The rightmost column identifies a system module
or the user as the originator of the message. All times are in
decimal. Entries commonly noted include the following:

Part 1
SR—~-0011 3-11 L

CSP Control Statement Processor

PDM Permanent Dataset Manager
EXP Exchange Processor

ABORT Abort Message

USER Program in user field

<:> Control statements: Control statements are listed in the logfile
as they are processed unless requested otherwise with the ECHO
statement described in part 2, section 1 of this manual. When the
job terminates, the last control statement processed that may be
echoed is the last control statement printed. Control statements
are not listed if the JCL message class (see the ECHO control
statement) is disabled.

Logfile messages: Any messages related to control statement
processing are shown below the statement.

Accounting information: When a job reaches completion, COS writes
a summary of basic accounting data onto the logfile for the job.
All times given are in hours, minutes, and seconds (to the nearest
ten-thousandth of a second). The following accounting information
is provided (in decimal):

® ©

e Job name and user number
® CPU time used by the job

e Time waiting to execute; includes time waiting for the CPU,
memory, operator suspension, and recovery.

® Time waiting for I/0
® Time waiting in input queue

® Memory usage based on the execution and I/0 wait time in million
word-seconds

® Minimum and maximum job size including Job Table Area (JTA)
(words)

® Minimum and maximum field length used (words)
® Minimum and maximum JTA used (words)

® Number of 512-word disk blocks (sectors) moved
® Number of user I/0 requests made by the job

® Open and close calls

® Memory-resident datasets

Part 1
SR-0011 3-12 L

® Number of 512-word disk blocks (sectors) used for temporary
datasets

® Number of 512-word disk blocks (sectors) accessed and saved for
permanent datasets

® Number of 512-word disk blocks (sectors) received from and
queued to the front end

® Number of tape devices reserved; message issued only if magnetic
tape datasets have been processed.

e Number of tape volumes mounted; message issued only if magnetic
tape datasets have been processed.

e Amount of tape data moved, expressed as a multiple of 512 words;
message issued only if magnetic tape datasets have been
processed. Each disk sector consists of 512 words, and in COS
blocked format each block consists of 512 words.

® Number of tape blocks moved; message issued only if magnetic
tape datasets have been processed.

(:) System Bulletin: The system bulletin allows the installation to
print messages in the logfile, usually about the status of the
system environment. It is an installation-maintained message
dataset.

Part 1
SR-0011 3-13 L

JOB CONTROL LANGUAGE 4

The job control language of the Cray Operating System (COS) allows the
user to present a job to the Cray Computer System, define and control

execution of programs, and manipulate datasets.

The job control language is composed of control statements with each
control statement containing information for a job step. COS initially
creates a control statement dataset, $CS, to hold job control

statements. Additional control statement datasets can be created via
procedure definition or the CALL control statement (see part 2, section 1
of this manual).

The syntax of a control statement is:

verb | sepq | param, |sep, | param, |...| sep,|param,| term | comments

All control statements must adhere to a set of general syntax rules.
Every control statement consists of a verd and a terminator (term) as a
minimum, except for the comment control statement (*) which does not
require a terminator. Additionally, most control statements require
parameters (param;) and separators (sep;) between the verb and the
terminator. The maximum number of parameters (zero, one, or more)

depends on the verb.

The continuation separator (the caret symbol) allows a control statement
to consist of more than one line image (80 characters). The JOB,
ACCOUNT, DUMPJOB, EXIT, and comment control statements cannot be
continued. All other control statements can have any number of
continuation card images, subject to restriction by the verb. A caret
occurring within a literal string has no special significance.

A comment is an optional annotation to a control statement and can be a
string of any ASCII graphic characters. The comment follows the line
image terminator. The control statement interpreter ignores comments.
All comments appear in the logfile unless suppressed by the ECHO control
statement.

Blanks are ignored unless they are embedded in a literal string. Blanks
cannot precede the verb on the JOB control statement.

SR-0011 4-1 L

SYNTAX VIOLATIONS

COS notes syntax violations in the system and user logfiles. If the JOB
control statement is in error, processing of the job terminates
immediately. If accounting is mandatory, ACCOUNT statement errors also
cause job termination. All other syntax errors cause a job step abort
condition, which causes the system to search for an EXIT control
statement. A successful search resumes control statement processing with
the job step following EXIT. If no such job step exists or if an EXIT
statement is not found, the job is terminated. Job step abort can also
direct control to a user-specified routine (see exit processing and
reprieve processing in part 1, section 3).

VERBS

A control statement verdb is the first nonblank field of a control
statement specifying the action to be taken by COS during control
statement processing. COS recognizes three types of control statement
verbs: system verbs, dataset name verbs (local and system), and
Library-defined verbs. A control statement verb cannot be continued
across a card boundary.

When COS encounters a verb in a control statement f£ile, it searches for a
match to that verb in the following order:

1. System verbs

2. Local dataset name verbs
3. Library-defined verbs

4. System dataset name verbs

COS first searches the list of system verbs for a match. If the verb is
not a system verb, COS searches for a local dataset name that might match
the verb. 1If the verb is not the name of a local dataset, COS searches
each library in the library searchlist for a match. If it does not find
a library entry that matches the verb, it searches the System Directory
Table (SDR) for a matching system dataset name. If a match for the verb
is not found under any of these categories, COS issues a control

statement error and aborts the job step.

Part 1
SR-0011 4-2 L

SYSTEM VERBS

A system verb consists of an alphabetic charagter which can be followed
by one through seven alphanumeric characters. The verb requests that
COS perform the indicated function. The system verbs are:

* DISPOSE EXITROC LOOP PRINT SAVE
ACCESS ECHO EXITLOOP MEMORY PROC SET
ACQUIRE ELSE FETCH MODE RELEASE SIMABORT
ADJUST ELSEIF IF MODIFY RERUN SUBMIT
ASSIGN ENDIF IOAREA NORERUN RETURN SWITCH
CALL ENDLOOP JOB OPTION REWIND

DELETE ENDPROC LIBRARY PERMIT ROLLJOB

The SIMABORT control statement is described in the COS Simulator (CSIM)
Reference Manual, CRI publication SR-0073.

LOCAL DATASET NAME VERBS

A verb that is the name of a local dataset consists of an alphabetic
character followed by one through six alphanumeric characters. This
verb requests that COS load and execute an absolute binary program from
the first record of the named dataset. If the user job has a dataset
with the indicated name, COS loads and executes the program from that
dataset.

LIBRARY-DEFINED VERBS

A library-defined verb consists of one th;ough eight characters. The
library-defined verb is either a programf or procedure definition (see
part 3, section 1 of this manual) residing in a library that is a part of
the current library searchlist. (The library searchlist defines the
library and the order in which the libraries are searched by COS. This
order can be specified with the LIBRARY statement described in part 2,
Section 2.) A program in a library is an absolute binary program to be
loaded and executed. A procedure definition is a group of control

statements and/or data to be processed (see part 3, section 1).

t Alphabetic characters include $, %, @, and the 26 uppercase letters A
through Z. Alphanumeric characters include all the alphabetic
characters and the digits 0 through 9.

t+ Deferred implementation

SR-0011 4-3 L

SYSTEM DATASET NAME VERBS

COS searches for a verb that is the name of a system—-defined dataset in
the System Directory Table (SDR). A system-defined dataset name verb
consists of an alphabetic character which can be followed by one through
six alphanumeric characters.r The System Directory Table is a list of
common language processors and utilities known to the system and made
available to users at startup. The name of the program (for example,
CAL, CFT, or DUMP) is also the name of the dataset containing the
absolute binary of the program. The exact list of system dataset name
verbs is site dependent.

SEPARATORS

A geparator is a character used as a delimiter in a control statement.

It separates the verb from the first parameter, separates parameters from
one another, delimits subparameters, terminates verbs and parameters, and
sSeparates a keyword from its value in parameters having keyword form.

The control statement separators allowed by COS are given in table 4-l.

PARAMETERS

A parameter is a control statement argument, whose exact requirements
are defined by the control statement verb. Parameters are used in
control statements to specify information to be used by the verb-defined
Process. Parameters that can be used with COS control statements are
either positional or keyword. For certain verbs, a parameter value can
be an expression. Detailed information on the use of expressions is
presented later in this section. Parameters are separated by commas.

POSITIONAL PARAMETERS

A positional parameter has a precise position relative to the separators
in the control statement. Even a null positional parameter must be
delimited from the control statement verb or other parameters by a
separator.

t Alphabetic characters include $, %, @, and the 26 uppercase letters A
through Z. Alphanumeric characters include all the alphabetic
characters and the digits 0 through 9.

Part 1
SR-0011 4-4 L

Table 4-1. Control statement separators

Function Character Examples
Initial separator (comma or open , VERB,parameter,
parenthesis)f - Separates the { VERB (parameter)
verb from the first parameter
Statement terminator (period if . VERB.
initial separator is comma; close) VERB, parameter,

parenthesis if initial separator
is open parenthesis)f - Signifies
end of control statement

Parameter separator (comma) -
Indicates the end of one parameter
and the beginning of the next

Equivalence separator (equal sign) -
Delimits a parameter keyword from the
first parameter value for that key-
word. Adjacent equivalence separa-
tors are illegal.

Concatenation separator (colon) -
Separates multiple parameter values
from each other

Continuation character (caret) -
Indicates that the control statement
consists of more than one 80-character
card; may appear anywhere after the
initial separator

Literal delimiters (apostrophes) =
Identify the beginning and end of a
literal string

Parenthesis delimiters (open and close
parentheses) - Indicate a group of
characters to be treated as one value

(o)

VERB (parameter)

VERB(parameter, parameter)

VERB (keyword=value)

VERB (keyword=value; :valuey)

VERB(...parameters. ..
parameters)

VERB(...'string'...)

VERB (keyword= (value:value)

+ By convention in this manual, the comma and period are used as
initial and terminator separators for all control statements except
for the JCL block control statements (procedure definition, iterative,
and conditional) where paired parentheses are conventional.

Part 1

SR-0011

The formats for a positional parameter follow:

value

value :valuey:...:valuey,

Each value; is a string of alphanumeric characters, a literal string, or
a null string. All positional parameters are required to be represented

by at least one value, although the value can be null. Rules for strings
are given in part 3, section 2.
Examples of positional parameters:

«+«sABCDE,... Parameter value is ABCDE.

cecrpesee The adjacent parameter separators indicate a null
positional parameter.

eeesPl:P2:P3,... The parameter consists of multiple values.

VERB() or VERB,. Positional parameter 1 is null

KEYWORD PARAMETERS

A keyword parameter is identified by its form rather than by its position
in the control statement. The keyword is a string of one to eight
alphanumeric characters uniquely identifying the parameter. Parameters
of this type can occur in any order but must be placed after all of the
positional parameters for the control statement, or they can be omitted.

The formats of keyword parameters are:

keyword
keyword=value

keyword=valuej :valuey:...:valuey

keyword is an alphanumeric string that depends on the requirements of the
verb, and value; is the value associated with the keyword. A keyword
parameter can occur anywhere in the control statement after all
positional parameters are specified. Whether or not a keyword parameter
is required depends on the verb's requirements. If the keyword is not
included in the control statement, a default value can be assigned.

Part 1
SR-0011 4-6 L

Examples of keyword parameters:
««+,DN=FILE]l,... Parameter consists of keyword and value.
eeesUQpec. Parameter consists of keyword only.

«ee,DN=FILE1:FILE2:FILE3,... Parameter consists of keyword and list of
values.

«eesDN=,... Null parameter value, as if omitted from
the statement

esesDN=A:::B,... A, B, and two null parameter values are
listed.

The parameter associated with a keyword may be defined as a secure
parameter. Every secure parameter is edited out of the statement before
it is echoed to the user logfile. When a keyword is secure, all that
appears in the user's logfile is the keyword and the = sign, followed by
the next delimiter. Secure parameters are defined when calling GETPARAM
as described in the Library Reference Manual, CRI publication SR-0014.

PARAMETER INTERPRETATION

The decoding (cracking) of control statement parameters is normally
performed by the routines $CCS and GETPARAM, as described in the Library
Reference Manual, CRI publication SR-0014. Parameter interpretation is

performed by the particular program or utility that calls $CCS or
GETPARAM.

CONVENTIONS

The following conventions are used in this manual.

Convention Description
Italics Define generic terms representing the words or

symbols to be supplied by the user

[1 Brackets Enclose optional portions of a command format
‘ l Braces Enclose alternate choices, one of which must be used
Part 1

SR-0011 4-7 L

LIBRARIES S5

Job control statements, programs, and compiled subprograms are maintained
in libraries. The following types of libraries are available on the Cray
Operating system:

® Procedure libraries
® Program libraries
® Object code libraries

The CALL and LIBRARY control statements (see part 2, section 2 of this
manual) refer to procedure libraries; UPDATE (see the UPDATE Reference
Manual, CRI publication SR-0013) maintains program libraries; BUILD (see
part 2, section 10 of this manual) maintains object code and procedure
libraries. The LIB and NOLIB parameters of the LDR control statement
(see part 2, section 9 of this manual) refer to object code.

PROCEDURE LIBRARY

A procedure library is created by the in-line procedure definition
process described in part 3, section 1 of this manual. After creation,
procedure libraries are made available for use by the LIBRARY control
statement (see part 2, section 2 of this manual).

A procedure library is made up of procedures which are a sequence of
control statements and/or data saved for processing at a later time.
Procedures are described in part 3, section 1 of this manual.

PROGRAM LIBRARY

A program library is a means of maintaining programs and other data on
datasets. These datasets are created and maintained by the UPDATE
utility described in the UPDATE Reference Manual, CRI publication
SR-0013. A program library (PL) consists of one or more specially
formatted card image decks, each separated by an end-of-file record.
These decks can be programs, portions of programs, input data for
programs, or even job control statements. See the UPDATE Reference
Manual for full information on using program libraries.

Part 1
SR-0011 5-1 L

OBJECT CODE LIBRARIES

Object code libraries are termed library datasets or simply libraries. A
library dataset is a dataset containing a program file followed by a
directory file. Library datasets are designed primarily to provide the
Relocatable Loader (see part 2, section 9 of this manual) with a means of
rapidly locating and accessing program modules. Library datasets are
created and maintained by the BUILD utility as described in part 2,
section 10 of thisg manual. Any library dataset can be inspected and

described by ITEMIZE. See part 2, section 8 for more information on
ITEMIZE.

SR-0011 5-2 L

PART 2

JOB CONTROL STATEMENTS

INTRODUCTION

Job control statements perform the following functions:

e Identify a job to the system

e Define operating characteristics for the job

® Manipulate datasets

® Call for the loading and execution of user programs

® Call COS programs that perform utility functions for the user

® Define and manipulate other control statements
The first file of a job dataset contains control statements that are
read, interpreted, and processed one at a time. The sequential
processing of control statements determines the job flow through the
operating system. See part 1, section 3 for a general description of
job flow. Sequential processing of control statements can be altered by
exit or reprieve processing, or by control statement structures
described in part 3.
Information on the general syntax rules and conventions for control
statements is presented in part 1, section 4. This part describes COS
control statements individually and gives examples in some cases. The
control statements are described in the the following categories:

® Job definition

® Dataset definition and control

e Permanent dataset management

® Dataset staging control

® Permanent dataset utilities

® Local dataset utilities

® Analytical aids

® Executable program creation

e Object library management

Part 2
SR-0011 1-1 L

JOB DEFINITION

Several control statements allow the user to specify job processing
requirements. Control statements defining a job and its operating
characteristics to the operating system include the following.

Verb Function
JOB Introduces the job to the operating system and

defines characteristics such as size, time limit, and
priority levels

MODE Sets or clears mode bits in the job's Exchange Package

EXIT Indicates the point in a series of control statements
at which processing of control statements resumes
following a job step abort from a program or
indicates the end of control statement processing

MEMORY Requests a new field length and/or mode of field
length reduction

SWITCH Turns on or turn off pseudo sense switches
* Annotates control statements with comments
RERUN, NORERUN Controls job rerunnability

IOAREA, Denies or allows access to the job's I/0 area, the
upper (high-address) portion of user memory that
contains tables and buffers managed by the system I/O
library routines

CALL, RETURN Allows the use of alternate control statement files

ACCOUNT Validates the job's account number, user number, and
optional passwords

CHARGES Obtains partial or total resource reporting for a job
ROLLJOB Protects a job by writing it to disk
SET Changes the value of a job control language (JCL)

symbolic variable

ECHO Controls types of messages written to the job's
logfile

Part 2
SR-0011 1-2 L

Verb Function

LIBRARY Specifies the datasets to be searched, when looking
for defined procedures, during job processing.
LIBRARY also specifies the order in which to perform
the search.

OPTION Specifies user—defined options, such as the format of
the job's listing and the amount of dataset
accounting statistics produced

The job definition and control statements are fully described in part 2,
section 2.

DATASET DEFINITION AND CONTROL

Datasets can be defined and managed by the user with the following
dataset control statements: ASSIGN, ACCESS, and RELEASE.

Verb Function

ASSIGN Defines characteristics for datasets, such as the
amount of user memory to allocate for the dataset's
I/0 buffer. ASSIGN also can be used to create a mass
storage dataset. ACCESS must first be used to create
a tape dataset.

RELEASE Relinquishes access to the named dataset for the job
ASSIGN and RELEASE are fully defined in part 2, section 3. ACCESS is

described later in this section under Permanent Dataset Management
because it is primarily used in managing permanent datasets.

PERMANENT DATASET MANAGEMENT

Control statements for managing permanent datasets provide for creating,
protecting, and accessing datasets assigned permanently to mass storage
or magnetic tape. Such datasets cannot be destroyed by normal system
activity or engineering maintenance.

Front-end computer systems cannot directly affect Cray-resident
permanent datasets, since permanent dataset management is handled
entirely by COS. However, permanent magnetic tape dataset management
can optionally be coordinated with a front-end computer system.

Part 2
SR-0011 1-3 L

Users can manage user permanent datasets only; system permanent datasets
cannot be managed (modified or deleted) by the user. (See part 1,
section 2 for a description of the types of datasets.)

The control statements available for user permanent mass storage and
magnetic tape dataset management are shown in table 1-1. Actual
processing of these requests depends upon the medium on which the
dataset resides. Mass storage datasets are controlled by the COS system
task called the Permanent Dataset Manager (PDM). Magnetic tape datasets
are controlled by a system task called the Tape Queue Manager (TQM).
Both of these system tasks (PDM and TQOM) have mechanisms for retaining
the characteristic information about the dataset. Information for mass
storage datasets is retained in the Central Memory-resident Dataset
Catalog (DSC). Magnetic tape datasets can have characteristic
information retained on a front-end computer system.

The permanent dataset management control statements are fully described
in part 2, section 4.

MASS STORAGE DATASET ATTRIBUTES

Every mass storage permanent dataset has several attributes associated
with it. These attributes are:

® Read, write, and maintenance permission control words,
® Public access mode,

® Public access tracking,

® Permits,

e Text, and

® Notes

Permission control words

A permission control word is a password that must be supplied to gain
access to a particular permanent dataset. Permanent datasets are not
required to have a permission control word, but if a permission control
word is specified for the mode of dataset access desired (read, write,
maintenance), the control word must be specified to gain access to the
named dataset. If more than one mode of access is desired (for example,
both read and write), all appropriate control words must be supplied.

Part 2
SR-0011 i-4 L

Table 1-1.

for each medium

Permanent dataset management control statements

specified users or groups
of users access to a
permanent dataset

Verb Mass storage Magnetic tape

SAVE Enters a dataset's Supplies to a front-end
identification and location computer system the
in a system-maintained characteristic information
Dataset Catalog. Datasets about a dataset for its
recorded in the Dataset retention
Catalog via a user SAVE
request are user permanent
datasets and are recoverable
at deadstart.

ACCESS| Assigns (makes local) a user Assigns an existing tape
permanent dataset to the dataset to the job or
requesting job, with the defines a NEW-type tape
requested and/or allowable dataset that will be created
modes (execute, read, by the job. Also optionally,
write, maintenance) defines the front-end computer

system that will be the
central point for servicing
that dataset.

DELETE Removes the definition of Requests the front-end
a user permanent dataset computer system servicing
from the Dataset Catalog the dataset to remove
(DSC). It is possible (delete) any information
to delete a dataset's concerning the dataset
contents and have its
attributes retained by
the system.

MODIFY| Changes the characteristic Not applicable
information for an existing
user permanent dataset

ADJUST | Records the change in any of Not applicable
the size or allocation
information for a dataset
that might have contracted
or expanded

PERMIT| Explicitly grants or denies Not applicable

SR-0011

Part 2

1-5

Public access mode attribute

If all users are to be allowed some kind of access to a permanent
dataset, that dataset must have a public access mode defined. The
public access mode is the type of access, as a minimum, all users can
have to the permanent dataset. Users can be allowed read, write, and/or
maintenance mode access to the dataset. Users can be restricted to only
executing the dataset; the public access mode can alternatively be NONE,
signifying that public access is not permitted.

Public access tracking attribute

Public access tracking is a facility that can be turned on or off. A
record can be kept of every user who accesses a public dataset. See
Dataset Use Tracking later in this section for more details on the
public access tracking mechanism.

Permits attribute

User permanent mass sStorage datasets can have a list of alternate users
of the dataset and in what mode or modes each alternate user can access
the dataset. Each element of the list is known as apermit and names

a specific alternate user and that user's allowed mode of dataset
access. Permits are described more fully under Access Mode later in
this section.

Text attribute

text is a character string to be passed to a front-end computer system
when requesting transfer of the dataset to or from Cray mass storage.
Text is more fully described under Dataset Staging Control later in this

section.

Notes attribute

notes is a string of up to 480 characters associated with a permanent
dataset. There is no restriction on what 7notes contains. When

notes is listed using the AUDIT utility (see Permanent Dataset
Utilities later in this section), the caret symbol is interpreted as an
end-of-line signal and AUDIT advances to a new line when listing the
dataset notes. notes can contain such information as dataset
structure, usage instructions, or history. For example, if several
versions of a program exist as different permanent datasets, the notes
could identify the purpose, difference, and origin of each dataset.

Part 2
SR-0011 1-6 L

ESTABLISHING ATTRIBUTES FOR MASS STORAGE DATASETS

Mass storage permanent dataset attributes are established at dataset
creation time, though they can be later modified (or added to in the
case of permits). Attribute establishment depends on whether a dataset
with the same name (PDN), additional identification (ID), and ownership
already exists.

Supplying the entire set of attributes every time a new permanent
dataset is created, that is, when no permanent dataset with the same
PDN, ID, and ownership currently exists, can become quite tedious,
especially if a long list of permits must be established. Instead, the
dataset creator can supply an attributes dataset.

Existing permanent dataset

If a permanent dataset with the requested PDN, ID, and ownership already
exists, the current dataset's permission control words, public access
mode, public access tracking, and permit list are set to the
corresponding attributes of the permanent dataset with the highest
existing edition number (ED) and identical PDN, ID, and ownership.

The text attribute is also copied from the highest existing edition
unless otherwise specified; the notes attribute is not copied.

The discussion of creating a new edition of an existing permanent
dataset applies to datasets created by SAVE or PDSLOAD (see Permanent
Dataset Utilities later in this section for information on PDSLOAD). If
MODIFY is used to create a new edition of an existing dataset (by
changing the PDN or ID), any dataset attributes not explicitly modified
remain unchanged. Thus, it is possible, though not recommended, for
different permanent datasets with the same PDN, ID, and ownership to
have different attributes.

New permanent dataset

Using SAVE or ACQUIRE when no permanent dataset currently exists with
the same PDN, ID, and ownership causes a new permanent dataset to be
created.

All permanent dataset attributes can be established for a new permanent
dataset; no attribute is associated with any other dataset. For
example, if the new permanent dataset is to have a read permission
control word, then the control word must be supplied. If a list of
permits is needed, then the list must be supplied. Establishing an
attributes dataset provides a convenient way of supplying a list of
permits as described below.

Part 2
SR-0011 1-7 L

The attributes dataset

An attributes dataset is an existing permanent mass storage dataset

from which any (or all) permanent dataset attributes can be copied. The
actual dataset content is ignored; the attributes are copied from the
dataset's catalog entry. The attributes dataset can even be partially
deleted (see Dataset Staging Control later in this section for a
discussion of partial dataset deletion). The attributes dataset must be
local to the job referencing it.

The attributes dataset is referenced with the ADN parameter on the SAVE
or ACQUIRE control statement. When the attributes dataset is
referenced, all desired attributes (such as permission control words and
the public access mode) are copied from the attributes dataset and used
in establishing the attributes of the current dataset. Any attribute
explicitly specified on the SAVE or ACQUIRE control statement is used
instead of the attributes dataset's attribute. Examples of attribute
dataset use are included at the end of part 2, section 4.

An attributes dataset can also be used with the PERMIT control
statement, although it is used slightly differently. When an attributes
dataset is used with PERMIT, the entire permit list (but no other
attribute) is copied from the attributes dataset and added to the permit
list established (or being established) for the current dataset.

For example, suppose the same permit list is being used for several
different datasets. A single permanent dataset can be created and the
list of permits established. Then whenever a new dataset is created,
the original dataset can be accessed and used as an attributes dataset.

The new dataset creator need not even know what permits are being
established.

PROTECTING AND ACCESSING MASS STORAGE DATASETS

Access of mass storage datasets can be restricted on two levels:
® Which users can access the dataset (privacy)
® What type of access is allowed (access mode)

The mass storage dataset protection system has two other dataset
management aspects:

® Dataset use tracking

® Attribute association

Part 2
SR-0011 1-8 L

Privacy

Mass storage permanent datasets fall into three categories, depending on
which users can access the permanent dataset.

e Private datasets are accessible only to the dataset owner.

e Semiprivate datasets are accessible to the dataset owner and to
a specific group of other users.

® Public datasets are accessible to all users.

New mass storage datasets are either public or private (not semiprivate)
by default. Contact your Cray Research site analyst for the default
value at your site. A new dataset can be explicitly declared as either
public or private with the PAM (public access mode) parameter on the
SAVE control statement. (See part 2, section 4.)

Access mode

In addition to establishing which users may access a dataset, the owner
must establish what mode of access alternate users are allowed; that is,
whether users other than the dataset owner may execute, read, write, or
maintain the permanent dataset. Specifying the mode of alternate access
depends upon what category of user is being granted the access. The
three categories of users are:

® The dataset owner. The dataset owner is allowed all modes of
access.

® Specific alternate users. Specific alternate users are named
with the USER parameter of the PERMIT control statement (see part
2, section 4); the alternate user's allowed mode of access is
declared with the AM (access mode) parameter of the same PERMIT
control statement. Multiple PERMIT statements can be issued for
the same permanent dataset to provide a list of alternate users.
PERMIT can also be used to change or remove the allowed mode of
access for an alternate user of the dataset. The allowed access
mode for a specific user is known as a permit.

® All other users (the public). All users of a dataset not in the
two categories above can be allowed (or denied) access to the
dataset by using the PAM (public access mode) parameter on the
ACQUIRE (part 2, section 5), SAVE, or MODIFY control statement
(see part 2, section 4). The mode of public access to a dataset
can be changed at any time with the MODIFY control statement.

SR-0011 1-9 L

Any mass storage permanent dataset can have a public access mode with
any combination of permits. If an alternate user desiring access to a
permanent dataset is allowed both public access and is named in a
permit, the alternate user is allowed the access named in the permit.
The permit takes precedence over the public access mode.

Such a combination of public and permitted access is often desirable.
For example, suppose dataset FROG is to be used (executed as a program)
by many groups of users, maintained by the dataset owner, and backed up
or restored as needed by another user. Then, the dataset should have a
public access mode of execute only and a permit of maintenance mode
access for the alternate user who does dataset backup and restoration.

Note that all users, including the owner, must correctly specify any
existing permission control words corresponding to the mode of access
desired. For example, suppose dataset BIG has a public access mode of
READ and a read password of README. Any user desiring to read the
dataset must supply the read password (README) to gain access to the
dataset. An exception occurs if the permanent dataset utilities are
used. For more information, refer to part 2, section 6.

Dataset use tracking

The total access count and date/time of last access are recorded for
each dataset in the Dataset Catalog (DSC). Access tracking capabilities
include recording who accessed the dataset, how many times, and the
date/time of last access. The permit mechanism described earlier in
this section provides access tracking whenever a permit is issued for a
user. A dataset that allows public access can also be tracked.

However, the owner must explicitly state that public access tracking is
required with the TA (track accesses) parameter on the ACQUIRE, SAVE, or
MODIFY control statement; the system does not normally provide it.

Attribute association

The system allows permanent datasets having the same permanent dataset
name (PDN) and additional identification (ID) to be distinguished by an
edition number (ED). That is, there can be several datasets with
different edition numbers that have the same PDN, ID, and ownership
value.

A user permanent dataset is uniquely identified by the PDN, ID, ED and
ownership value. The ownership value recorded in the DSC when a
dataset is made permanent is normally equal to the user number as
specified on the ACCOUNT or JOB control statement. Specific
installations can choose to define dataset ownership as the account
number rather than the user number. Contact your Cray Research site
analyst to find out which type of ownership value is used.

Part 2
SR-0011 1-10 L

Permanent mass storage datasets with the same PDN, ID, and ownership are
assumed to be closely related. Therefore, most permanent dataset
attributes are the same for all editions of the permanent dataset. The
read, write, and maintenance permission control words, public access
mode, public access tracking, and permits are the same for all datasets
with the same PDN, ID, and ownership.

The text attribute is treated slightly differently. Any text supplied
when the dataset is created is kept as a dataset attribute; if no text
is supplied, the text attribute from the highest existing edition of the
pPermanent dataset, if any, is used.

The notes attribute is treated similarly to text except that notes are
assumed to be different for each dataset edition. notes supplied at
dataset creation time are used; if no notes are supplied, none are
used.

Deleting the data in a permanent dataset while leaving the dataset's
name and attributes recorded in the Dataset Catalog (DSC) is possible.
Such a dataset is referred to as a partially deleted dataset. Partial
dataset deletion is described under Dataset Staging Control.

DATASET STAGING CONTROL

Staging is the process of transferring jobs and data in the form of COS
datasets from a front—-end computer system to Cray mass storage or of
transferring datasets from Cray mass storage to a front—end computer
system. Three control statements support staging datasets between COS
and a front-end system: ACQUIRE, FETCH, and DISPOSE. Another control
statement, SUBMIT, directs datasets to the COS input queue.

Verb Function
ACQUIRE Checks to see if the requested dataset is currently

permanent on mass storage. If the dataset is already
pPermanent, ACQUIRE works exactly like ACCESS
(described earlier in this section) and allows
dataset access to the job making the request.
Alternatively, if the dataset is not mass storage
resident, ACQUIRE obtains a front-end resident
dataset, stages it to Cray mass storage, and makes it
permanent and accessible to the job making the
request. The dataset is staged from the front-end
only if it is not already permanent.

DISPOSE Directs a dataset to the specified queue for staging
to a front-end system. DISPOSE can also be used to
release a local dataset or to change dataset
disposition characteristics.

Part 2
SR-0011 1-11 L

Verb Function

SUBMIT Directs a dataset on Cray mass storage local to the
submitting job to the COS input queue

FETCH Obtains a front-end resident dataset and makes it
local to the requesting job

The above control statements are fully described in part 2, section 5.

DISPOSE is invalid with tape datasets because DISPOSE applies only to
the staging of datasets from mass storage to a front-end computer system.

Dataset control information such as save or access codes is usually
required by a front-end system for management of its own files. Such
control information can be sent by the Cray system user to the front-end
system through the use of the text parameter (expressed as TEXT=text),
which is a special parameter of the SAVE, MODIFY, ACQUIRE, FETCH, and
DISPOSE statements. The content of the character string provided with
the TEXT parameter is defined by the front-end system (see the
appropriate station reference manual for the use of the TEXT parameter
at your front-end system).

The text information not only provides most of the directives for
obtaining the dataset from the front-end computer system but can contain
sensitive or secure information as well. When using the ACQUIRE control
statement, the staged dataset is recorded in the Dataset Catalog (DSC)
and thus made permanent. Like any other mass storage permanent dataset,
the staged dataset's attributes are recorded and protected as described
under Protecting and Accessing Mass Storage Datasets, earlier in this
section. .

The owner of an acquired dataset can provide permission to acquire the
dataset to other users by specifying a public access mode or by issuing
permits. The actual dataset (that is, the data) need not reside on mass
storage for the permissions to be issued. For this reason the text,

as specified by the owner when the dataset was initially acquired, is
retained by the system as an attribute. The owner can, at a later date,
delete the data while still retaining all of the permanent dataset
attributes. A dataset registered in the DSC in this manner is referred
to as a partially deleted dataset.

When an authorized user acquires a partially deleted dataset, the text
required to obtain the dataset from the front—-end computer system is
retrieved from the Dataset Catalog and sent along with the request.
Therefore, the user need not specify the text in the ACQUIRE request.
In fact, if the ACQUIRE is being issued by an alternate user as opposed
to the owner, any text in the request is ignored. In this manner, the
owner does not have to disclose the text information to other users.

Part 2
SR-0011 1-12 L

The owner can at any time replace the text via the MODIFY command.
After a partially deleted permanent dataset has been successfully
acquired, the data is once again made permanent and is considered
completely Cray mass storage resident. A subsequent ACQUIRE request,
since the dataset is mass storage resident, is treated as an ACCESS
request. Remember that the ACQUIRE request stages a dataset only if it
is not already permanent on Cray mass storage.

PERMANENT DATASET UTILITIES

Three utilities (PDSDUMP, PDSLOAD, and AUDIT) can be used with any mass
storage permanent datasets available to the user. Datasets processed by
these utilities need not be local to the user job. The following
utility routines are provided for mass storage permanent datasets.

Verb Function
PDSDUMP Dumps all specified permanent datasets to a

user-specified dataset. Input and output datasets
managed by the operating system can be included in
the dump.

PDSLOAD Loads permanent datasets that have been dumped by
PDSDUMP and updates or regenerates the Dataset
Catalog. Input and output datasets managed by the
operating system are also loaded via PDSLOAD.

AUDIT Produces a report containing status information for
each permanent dataset. AUDIT does not include
system input or output datasets.

The above control statements are fully described in part 2, section 6.

LOCAL DATASET UTILITIES

Utility control statements provide the user with a convenient means of
copying, positioning, or initializing local datasets. The following
utilities are available to the user.

Verb Function

COPYR, COPYF Copies records, files, and datasets, respectively
COPYD

SKIPR, SKIPF Skips records, files, and datasets, respectively
SKIPD

Part 2
SR—-0011 1-13 L

Verb

REWIND

WRITEDS

Function

Positions a dataset at the beginning of data, that
is, before the first block control word of the dataset

Initializes a random dataset. WRITEDS can also
initializes a sequential dataset.

The above control statements are described in part 2, section 7.

ANALYTICAL AIDS

The following control statements provide analytical aids to the

programmer.

Verb

Function

DUMPJOB, DUMP DUMPJOB and DUMP are dgenerally used together to

DEBUG

DSDUMP

COMPARE

FLODUMP

PRINT

SYSREF

ITEMIZE

examine the contents of registers and memory as they
were at a specific time during job processing.
DUMPJOB captures the information so that DUMP can
later format selected parts of it.

Produces a symbolic dump of the same data produced by
DUMPJOB described above. DEBUG prints out the values
of symbolic variables defined in the FORTRAN program
being dumped.

Dumps all or part of a dataset to another dataset in
blocked or unblocked format

Compares two datasets and lists all differences

Dumps flowtrace tables when a program aborts with
flowtrace active

Writes the value of a JCL expression (as defined in
part 3, section 1 of this manual) to the logfile

Generates a global cross—reference listing for a
group of CAL or APML programs

Inspects and generates statistics about library
datasets. Libraries are described in part 1, section
5 of this manual; library dataset management is
described under Object Library Management below.

The above control statements are fully described in part 2, section 8.

SR-0011

Part 2
1-14 L

EXECUTABLE PROGRAM CREATION

The LDR control statement calls the COS Relocatable Loader into
execution. This utility prepares programs for execution from
relocatable modules. A series of relocatable modules is normally
created when a program is compiled or assembled. Each relocatable
module normally represents one subroutine of the whole program, or the
main program itself. Each relocatable module (also known as a module,
an object module, a relocatable, or a binary) consists of a series

of tables. The tables contain such information as executable machine
(program) instructions, references to other modules (such as when one
subroutine calls another), and the location of where the main program is
to start execution.

Before a collection of relocatable modules (the program) can be
executed, the collection of modules must be linked together into a
single module. This single module, the absolute load module, contains
the main program and a copy of every subroutine called, including ones
found in the various system libraries. An absolute load module can be
executed any time without having to be reprocessed by the Relocatable
Loader. The COS Relocatable Loader executes as a utility program within
the user field and provides the loading and linking in memory of
relocatable modules from datasets on mass storage.

Very large programs might not fit in the available user memory space or
might not use large portions of memory while other parts of the program
are in execution. For such programs, the Relocatable Loader includes
the ability to define and generate overlays--separate modules that the
user creates and then calls and executes as necessary.

Executable program creation is fully described in part 2, section 9.

OBJECT LIBRARY MANAGEMENT

BUILD, a utility called through the BUILD control statement, creates and
maintains object libraries.,

Compiled subroutines (relocatable modules) can be collected into
libraries that can be referred to later when creating a new program.
COS provides several standard object libraries (see the Library
Reference Manual, CRI publication SR-0014, for a description of the
standard library routines available).

Any number of object libraries can be created, however, in addition to
the ones supplied with COS.

Part 2
SR-0011 1-15 L

Library datasets are designed primarily to provide the Relocatable
Loader (see previous subsection) with a means of rapidly locating and
accessing program modules. A library dataset is a dataset containing

a program file followed by a directory file. The program file is
composed of loader tables for one or more absolute or relocatable
program modules. The directory file contains an entry for each program
module.

BUILD is fully described in part 2, section 10.

Part 2
SR-0011 1-16 L

JOB DEFINITION AND CONTROL 2

Several control statements allow the user to specify job processing
requirements. This section contains the specifications for the following
control statements used in defining a job and its operating
characteristics to the operating system.

JOB
MODE
EXIT
MEMORY
SWITCH
*
NORERUN
RERUN
IOAREA
CALL
RETURN
ACCOUNT
CHARGES
ROLLJOB
SET
ECHO
LIBRARY
OPTION

JOB - JOB IDENTIFICATION

The JOB control statement defines the job to the operating system. It
must be the first statement in a control statement file. The JOB control
statement cannot be continued to subsequent cards. No leading blanks are
allowed on the JOB statement. JOB is a system verb.

Format:

JOB,JIN=jn ,MFL=f1,T=tl,P=p,US=us ,OLM=0lm,CL=jcn ,gn=nr.

SR-0011 2-1 L

Parameters are in keyword form; the only required parameter is JN.

JIN=gn

MFL=f17

T=t]

P=p

US=us

OLM=0lm

Job name. 1 through 7 alphanumeric characters. This name
identifies the job and its subsequent output. JN is a
required parameter.

Maximum field length (decimal) allowed the job, in words.
The job's maximum field length is set to the greater of
fl, rounded up to the nearest multiple of 512 words, or
the amount needed to load the Control Statement Processor
(CSP). The job is aborted if the maximum field length is
greater than the system maximum described below.

If this parameter is omitted, the maximum field length is
set by the system to a value determined by an installation
parameter.

If MFL is present without a value, the field length is the
system maximum. The system maximum is the smaller of the
total amount of memory available after the operating system
is initialized minus the job's JTA size (see part 1,
section 1) or an installation-defined maximum job field
length.

Time limit (decimal) in seconds after which the job is
terminated by the system. If this parameter is omitted,
the time limit is set to a value determined by an
installation parameter. If T is present without a value, a
maximum of 16,777,215 seconds (approximately 194 days) is
allowed.

Priority level at which the job enters the system. This

parameter can assume the values of 0 through 15 decimal.

If P is 0, the job is not initiated. If omitted, a value
specified by the installation is assumed.

User number. 1 through 15 alphanumeric characters. The
default is no user number. This parameter identifies the
user submitting the job. Specific usage is installation
defined.

Maximum size of $0UT. olm specifies a decimal count of
512-word blocks. A block holds about 45 print lines. The
default and maximum values for olm are defined by the
installation.

t The fl parameter on the JOB statement excludes the job's Job Table
Area (JTA); space for the JTA is added by the system.

SR-0011

Part 2
2~-2 L

CL=jcn Name of the installation-defined job class where this job is
to be placed. 1 through 7 alphanumeric characters. The job
is aborted if it does not fit the requirements of the
indicated class or if the indicated class does not exist.
The default is no class name.

gn=nr Type and number of dedicated resources required by a job.

gn is a generic name of 1 through 8 alphanumeric
characters (currently required to begin with an

asterisk). A generic resource name corresponds to a
device type. For example, a generic name of *SSD could be
given to a Solid-state Storage Device. Generic names are
defined by site administration. COS provides one generic
name (*TAPE, which refers to a dual density tape unit
capable of 1600 or 6250 bpi), but sites may define up to
16 generic names. Contact your Cray Research site analyst
for the generic names used at your site.

nr is a positive integer and represents the maximum
amount of the associated resource that may be used
concurrently during job execution; the default is 0. A
job is initiated only when the amount of each resource
reserved is eligible for use. The job is aborted if it
attempts to access more resources than are reserved with
the JOB control statement.

MODE - SET OPERATING MODE

The MODE control statement allows the user to set or clear mode flags in
the Exchange Package for the job. MODE is a system verb.

Format:

MODE, FI=option,BT=option.

Parameters are in keyword form. At least one parameter must be
specified. The parameters are:

FI=option Floating-point interrupt mode. Option can be either:
ENABLE Enable floating-point error interrupts; default.

DISABLE Disable floating—-point error interrupts;
floating-point errors are ignored.

Part 2
SR-0011 2-3 L

BT=option Bidirectional transfer mode. The BT parameter is used
on CRAY X-MP Series Computer Systems only; it is ignored
on CRAY-1 systems. option can be either:

ENABLE Enable bidirectional memory transfers; default.

DISABLE Disable bidirectional memory transfers; block
reads and writes are not performed concurrently.

EXIT - EXIT PROCESSING

An EXIT control statement indicates the point in the control statement
file where processing of control statements resumes following a job step
abort from a program. If no job step abort occurs, the EXIT control
statement indicates the end of the control statement processing. EXIT
is a system verb.

Format:

EXIT.

Parameters: None

MEMORY -~ REQUEST MEMORY CHANGE

The MEMORY control statement allows the user to redquest a new field
length and/or mode of field length reduction. Job memory management is
further discussed in part 1, section 3.

MEMORY is a system verb.

Format:

MEMORY,FL=F1/,USER|
AUTO

The keywords USER and AUTO are mutually exclusive; at least one of them
must be specified.

SR-0011 2-4 L

FL=f1 Field length. fl specifies the decimal number of words
of field length to be allocated to the job. If FL is
specified without a value, the new field length is set to
the maximum allowed the job.

USER Field length reduction is managed by the user (user mode)
AUTO Field length reduction is managed by the system (automatic
mode)

The job's field length can be changed by using the FL parameter. The
field length is set to the larger of the requested amount rounded up to
the nearest multiple of 512 words or the smallest multiple of 512
decimal words large enough to contain the user code/data, LFT, DSP and
buffer areas. Field length management is in user mode for the duration
of the next job step.

The management of a job's field length can be changed by using either
the USER or AUTO parameters. When the USER parameter is specified, the
job is placed in user mode until a subsequent request is made to return
it to automatic mode. When the AUTO parameter is specified, the job is
placed in automatic mode.

The job step is aborted if completing the request results in a field
length greater than the maximum allowed the job. The maximum is the
smaller of the total number of words available to user jobs minus the
job's JTA or the amount determined by the MFL parameter on the JOB
statement.

Examples:

MEMORY, FL, USER.

The job's field length is set to the maximum allowed the job and the
job is placed in user mode until an explicit request is made to
return it to automatic mode.

MEMORY, AUTO.

The job is returned to automatic mode. 1Its field length is reduced
at the next job step.

MEMORY, FL=28988.

The field length is adjusted. If the job is in user mode by
explicit user request, no change in mode occurs; otherwise, the job
is placed in user mode for the duration of the next job step.

Part 2
SR-0011 2-5 L

MEMORY, FL=28988,AUTO.
The field length is adjusted and the job is placed in user mode for

the duration of the next job step. After the next job step, the job
is put in automatic mode.

SWITCH - SET OR CLEAR SENSE SWITCH

The SWITCH control statement allows a user to turn on or turn off pseudo
sense switches. SWITCH is a system verb.

Format:

SWITCH,n=x.

Parameters:
n Number of switch (1 through 6) to be set or cleared
x Switch position

ON Switch n is turned on; set to 1.
OFF Switch 7 is turned off; set to 0.

* - COMMENT STATEMENT

The comment control statement allows the user to annotate job control
statements with comments. A terminator is not required on a comment
control statement. * is a system verb.

Format:

* comment text

Parameters: None

SR-0011 2-6 L

NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS

The NORERUN control statement allows the user to specify whether the
operating system is to recognize functions that would make a job
rerunnable. The current rerunnability of the job is not affected.
NORERUN is a system verb.

Format:

NORERUN [, ENABLE | |
DISABLE

The keywords ENABLE and DISABLE are mutually exclusive. The default for
the system as released is NORERUN,ENABLE; however, this is an
installation option.

Selecting ENABLE instructs the system to begin monitoring functions
performed by the job and to declare the job nonrerunnable if any of the
nonrerunnable functions are performed.

Selecting DISABLE instructs the system to stop monitoring functions for

nonrerunnable operations. If a job has already been declared to be
nonrerunnable, specifying DISABLE does not make the job rerunnable again.

RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY

The RERUN control statement allows the user to unconditionally declare a
job to be either rerunnable or nonrerunnable. If RERUN is used to
declare a job rerunnable, the subsequent execution of a nonrerunnable
function may cause the system to declare the job nonrerunnable,
depending on whether a NORERUN control statement or macro is also
present. RERUN is a system verb.

Format:

RERUN ‘ , ENABLE
DISABLE

The keywords ENABLE and DISABLE are mutually exclusive. If no parameter
is specified on the control statement, installation option determines if
the job is to be rerunnable; the default for the system as released is
RERUN, ENABLE.

SR-0011 2-7 L

If ENABLE is selected, the system is instructed to consider the job to
be rerunnable, regardless of what functions have been executed
previously.

If DISABLE is selected, the system marks the job not rerunnable
regardless of what functions have been executed previously.

The RERUN control statement does not affect the monitoring of the user
job for nonrerunnable functions.

IOAREA — CONTROL USER'S ACCESS TO I/O AREA

The IOAREA control statement locks (denies the user access to) or
unlocks (gives the user access to) that portion of the user field
containing the user's Dataset Parameter Area (DSP) and I/0 buffers.
This area follows the High Limit Memory address (HLM) of the user
field. IOAREA is a system verb.

Format:

IOAREA [, LOCK ’
UNLOCK

The keywords LOCK and UNLOCK are mutually exclusive. A parameter must
be specified on the control statement. When the control statement is
not used, the user's I/0 area is assumed to be unlocked.

If LOCK is selected, the system sets the limit address to the base of
the DSPs, thereby denying direct access to the user's DSP area and I/O
buffers. When the I/0 area is locked, the library I/O routines make a
system request to gain access to the I/0 area. Although the system
request introduces additional overhead in job processing, it should
prevent accidental destruction of the I/0O area.

If UNLOCK is selected, the system sets the limit address to the value

specified in JCFL, allowing access to the user's DSP area and I/0
buffers.

SR-0011 2-8

CALL - READ CONTROL STATEMENTS FROM ALTERNATE DATASET

The CALL control statement instructs COS to begin reading control
statements from the first file of the indicated dataset. CALL can
appear anywhere in the control statement file. Nesting of CALL
statements to seven levels is allowed. COS reads and processes the
control statements from the indicated dataset until it encounters an
end-of-file or a RETURN statement. Control then reverts to the
previous control statement dataset; the named dataset is closed before
the invocation of the procedure. The CALL statement can also specify
values to be substituted in the procedure body. CALL is a system verb.

Format:

CALL,DN=d~n ,CNS.

Parameters are in Keyword form.

DN=dn Name of dataset from which to begin reading control
statements. This is a required parameter.

CNS Crack next statement. If specified, the control
statement that follows is a procedure calling
statement containing parameters for procedure string
substitution. The format of the procedure calling
statement depends upon the format of the prototype
statement. The prototype statement format is described
in part 3, section 4. If CNS is omitted, no
substitution is performed.

RETURN - RETURN CONTROL TQO CALLER

The RETURN control statement returns control to the caller. The
caller can be a procedure or the job's control statement file.
Processing resumes with the caller's next control statement. A RETURN
control statement can be embedded anywhere within the called
procedure. However, a RETURN control statement need not be placed at
the end of the procedure because an end—-of-file record is interpreted
as the control statement sequence of an EXIT, RETURN, and
RETURN,ABORT. A RETURN encountered in the primary control statement
file is ignored. RETURN is a system verb.

SR-0011 2-9 L

Format:

RETURN[,ABORT] .

Parameter:
ABORT After returning to the previous control statement level,

ABORT causes COS to issue a job step abort. ABORT is an
optional parameter.

ACCOUNT - VALIDATE USER NUMBER AND ACCOUNT

The ACCOUNT control statement validates the job's user number, user
password, account number, and account password. A job is processed
only if the user number/password pair and the account number/password
pair (if specified) are valid.

The ACCOUNT statement declares the user's account and charge numbers
to COS. It must immediately follow the JOB control statement if the
installation has defined accounting or security as mandatory. Only
one ACCOUNT statement is allowed per job. ACCOUNT is a system verb.

If the job is interactive, and accounting is mandatory, the ACCOUNT
statment must be the first statement entered in a session. If it is
not, a prompt is issued to the terminal requesting the ACCOUNT
statement. A similar prompt is issued for syntax errors made on the
ACCOUNT statement.

NOTE

The ACCOUNT control statement parameters do not appear
with the ACCOUNT control statement in the job logfile.

Format:

ACCOUNT, AC=ac , PW=pw , NPW=npw , US=us , UPW=upw , NUPW=nupw .

Part 2
SR-0011 2-10

Parameters are in keyword form. The only required parameter is AC; the
installation defines whether a password is needed.

AC=ac Account number. 1 through 15 alphanumeric characters
assigned to the user. This number identifies the user for
accounting purposes, and is a required parameter. The
account number is not the same as the user number on the
JOB control statement, unless the site chooses to use the
same characters for both numbers.

PW=pw Account password. 1 through 15 alphanumeric characters. A
password must be specified if the installation has made it
mandatory by installation parameter.

NPW=npw New account password. 1 through 15 alphanumeric
characters. This new password replaces the old account
password if the user number/password pair given by the AC
and PW parameters is valid.

Us=us User number. 1 through 15 alphanumeric characters assigned
to the user. This number identifies the user for system
access purposes and is an optional parameter. The user
number is not the same as the account number, unless the
site chooses to use the same characters for both numbers.
This parameter, if specified, overrides the user number on
the JOB control statement. If US is not specified on the
ACCOUNT control statement, the user number on the JOB
statement is used by COS.

UPW=upw User password. 1 through 15 alphanumeric characters. A
password must be specified if the installation has made
security checking mandatory.

NUPW=nupw New user password. 1 through 15 alphanumeric characters.
This new password replaces the old user password upw if
the user number/password pair given by the US and UPW
parameters is valid.

CHARGES - JOB STEP ACCOUNTING

The CHARGES control statement allows the user to monitor a job's usage of
computer resources up to a specific point in a job. Hence, CHARGES can
be used for either partial or total resource reporting.

Partial reporting occurs when parameters are specified on the control
statement. In this case, usage statistics for the computer resources
specified on the CHARGES statement are obtained for the job steps
preceding the CHARGES statement. The summary is placed in the user log
and the system log.

Part 2
SR-0011 2-11 L

Total reporting occurs when usage statistics are obtained for all the
resources in all the available resource groups. The summary is placed in
the user log and the system log.

A CHARGES statement can be placed in a job deck any number of times. If
no CHARGES control statements are used in a job deck, computer resource
usage statistics are gathered only upon job termination and placed in the
user log.

Format:

CHARGES, SR=options.

Parameters are in keyword form.

SR=options
System resources used. Any one or more of the following
groups of resources can be specified. Options are
separated by colons. The default is a listing of the job's
usage of resources in all of the following groups:

JNU Job name and user number

DS Permanent dataset space accessed, permanent dataset
space saved, temporary dataset space used, 5l2-word
disk blocks (sectors) moved, user I/0 requests,
memory-resident datasets used, number of OPEN calls
and number of CLOSE calls

WT I/0 wait time, time waiting to execute and time
waiting in the input queue before beginning execution

MM Minimum job size (words), maximum job size (words),
execution-time memory usage in million word-seconds,
I1/0 wait-time memory usage in million word-seconds,
maximum field length used (words), minimum field
length used (words), maximum JTA used (words), and
minimum JTA used (words)

CPU Time executing in CPU
NBF Number of 512-word blocks (sectors) received from a

front end and number of 512-word blocks (sectors)
queued to a front end

Part 2
SR-0011 2-12 L

TPS Number of tape devices reserved, number of tape
volumes mounted, amount of tape data moved
(expressed as a multiple of 512 words) and number of
physical tape blocks moved

FSU Fast storage usage. Amount of SSD or BMR
(Solid-state Storage Device or Buffer Memory) space
reserved and used.

The amounts are returned as two values; one is the
wall-clock time times the reserved space usage
amount and the other is CPU time multiplied by the
reserved space usage amount for each device. Any of
the four usage amounts, if nonzero, are placed in
the user logfile.

ROLLJOB - ROLL A USER JOB TO DISK

The ROLLJOB control statement allows the user to protect a job by writing
it to disk so that it can be recovered in case a system interruption
occurs. ROLLJOB is a system verb.

Format:

ROLLJOB,

Parameters: None

SET - CHANGE SYMBOL VALUE

The SET control statement changes the value of a specified valid job
control language symbol. Valid symbols are those classified as alterable
by the user (U) in table 2-1 in part 3, section 2. A job step abort
occurs if a symbol included in a SET control statement is unknown to the
system, can be set only by COS, or is a constant. SET is a system verb.

Format:

SET (symbol=expression)

Part 2
SR-0011 2-13 L

Parameters:

symbol A valid user-alterable symbol; symbol is a required
parameter.

expression
A valid arithmetic, logical, or literal assignment
expression., It may be delimited with parentheses to
simplify interpretation during control statement
evaluation. expression is a required parameter.

Examples:
SET (J1=J1+1)
This example increments the procedure-local register J1 by 1.
SET (G1l=(SYSID.AND.177777B))

The global register Gl is given an ASCII value that is the low-order
two characters from the current system revision level (COS X.XX).

SET (G3=((ABTCODE.EQ. 74) .AND. (G2.EQ.0)))

The global register G3 is assigned a value, depending upon the
current values of ABTCODE and G2.

ECHO - ENABLE OR SUPPRESS LOGFILE MESSAGES

The ECHO control statement allows the user to control the message classes
to be written to the user's logfile by turning the classes ON or OFF.
ECHO can be used more than once during a job to toggle the
printing/suppression of message classes. ECHO is a system verb.

Format:

ECHO,ON=aZassl:cla882:...:classi,OFF=classl:classz:...:classi.

Parameters are in keyword form.

ON=class; Only the messages in the classes specified are written
to the user's logfile. If only the keyword ON or ON=ALL is
specified, all messages are written to the logfile.

Part 2
SR-0011 2-14 L

JCL and ABORT are the message classes that are currently
abailable. JCL messages are those messages which start in
the user's JCL input file. ABORT messages (system
traceback and ABxxX messages, for example) are those
messages which COS issues when it aborts a job.

OFF=class;
The messages in the classes specified are not written to
the user's logfile. If only the keyword OFF or OFF=ALL is
specified, all messages in defined classes (JCL and ABORT)
are suppressed., OFF=JCL suppresses echoing of JCL control
statements to the logfile; however, output resulting from
the execution of the control statements will appear.

The keywords ON and OFF can be used in any combination: both, either, or
neither. However, a particular class should not be included in both
ON=cZassi and OFF=cZassi, nor should both defaults (ON and OFF)

be included. When the ECHO statement is not used, all messages are
written to the user's logfile.

When a job calls a procedure, the echo state of the job is the same upon
return from the procedure as before, even though the procedure may use a
different echo state. The following occurs when ECHO is used in
conjunction with CALL and PROC: (1) The echo state of the caller (a job
or another procedure) is saved so that on return to the caller the same
state is in effect as before the call, and (2) when the procedure is
called, a new echo state is created that affects only the procedure. If
the procedure does not include an ECHO statement, the echo state of the
caller is in effect. The echo state of the procedure can be changed
during the procedure's execution.

LIBRARY - LIST AND/OR CHANGE LIBRARY SEARCHLIST

The LIBRARY control statement allows the user to specify the library
datasets to be searched during the processing of control statement
verbs. LIBRARY also allows the user to list the current or new
searchlist to the logfile for verification.

When modifying the searchlist, the current members of the searchlist can
be retained in the new searchlist by including an asterisk in the LIBRARY
control statement. The asterisk corresponds to all members of the
current searchlist in their present order. If the asterisk is omitted,
the new searchlist contains only the library dataset names identified on
the LIBRARY control statement. LIBRARY is a system verb.

The default library searchlist upon job initiation consists of the single
library dataset $PROC.

Part 2
SR-0011 2-15 L

Format:

LIBRARY,DN=dn;:dn,...:dngy,V.

DN=dni Library dataset names to become members of the new
library searchlist. A maximum of 64 names (separated by
colons) can be specified. The order in which they appear
is the order they are searched. An asterisk included in
the list signifies the current searchlist members are to be
part of the new searchlist in their current order. A
maximum of 64 names are allowed in the new searchlist.

\Y/ List the current library searchlist on the logfile for

verification. When specified along with the new
searchlist, the new searchlist is listed.

OPTION — SET USER-DEFINED OPTIONS

The OPTION control statement allows the user to specify user-defined
options, such as the format of the job's listing. OPTION is a system
verb.

Format:

OPTION,LPP=n,STAT= [ON }.
OFF

Parameters:

LPP=n Number of lines per page; a decimal number from 0 through
255. If 0 is specified, the current number of lines per
page is not changed. The default is an installation
parameter,

Part 2
SR-0011 2-16 L

STAT=[ON ISTAT=ON has two effects. First, it enables accounting

OFF) ¢4 any mass storage datasets created while STAT=ON is in
effect; statistics are reported separately for each device
containing all or part of such datasets. Second, it
enables the printing of the dataset I/O statistics
collected for all datasets to user $LOG at release time.
The statistics include dataset name, device name, dataset
size, number of user I/O requests, number of 512-word
blocks transferred, and total time blocked for I/O for the
dataset. No statistics are printed if STAT=OFF, which is
the default condition.

Examples:

1. ASSIGN,DN=X.
OPTION,STAT=ON.
COPYF,.....,0=X.
RELEASE,DN=X.

No I/0 statistics are printed for X.

2. OPTION,STAT=ON.
ASSIGN,DN=X.
COPYF,e.e..,0=X.
RELEASE, DN=X,

I/0 statistics are printed for X.

3. OPTION,STAT=ON.
ASSIGN,DN=X.
COPYF,..0e..,0=X,
OPTION, STAT=OFF.
RELEASE,DN=X.

No I/O statistics are printed for X, even though statistics were
collected.

4. OPTION,STAT=ON.
ASSIGN,DN=X.
COPYF,....,0=X.
OPTION,STAT=0FF.
OPTION, STAT=ON.
RELEASE,DN=X.

I/0 statistics are printed for X.

Part 2
SR-0011 2-17 L

DATASET DEFINITION AND CONTROL

Datasets are defined and managed by the user through three dataset
control statements: ASSIGN, ACCESS, and RELEASE.

® ASSIGN defines characteristics for datasets. ASSIGN also can be
used to create a mass storage dataset.

® ACCESS (described in part 2, section 4) makes an existing disk or
tape permanent dataset local to a job or can be used to create a
dataset on magnetic tape.

°

RELEASE relinquishes access to the named dataset for the job.

ASSIGN - ASSIGN DATASET CHARACTERISTICS

The ASSIGN control statement creates a mass storage dataset and assigns
dataset characteristics for tape and mass storage. If an ASSIGN is used
for dataset creation, it must appear before the first reference to the
dataset; otherwise, the characteristics are defined at the first

reference. If an ASSIGN is used for a tape dataset, it must follow the
tape ACCESS request. assiGN is a system verb.

Format:

ASSIGN,DN=dn,S=size,BS=blk,DV=1dv,DT=dt ,DF=df,

/ -/

RDM,U,MR,LM=1m,DC=dc,BFI=bf1,A=un.

/

Parameters are in keyword form. The only required parameter is DN.

t ASSIGN does not create a dataset which the CFT OPEN statement
recognizes as existing.

SR-0011 3-1

DN=dn

S=gize

BS=blk

DV=Ldv

DT=dt

DF=df

RDM

SR-0011

Local dataset name. 1 through 7 alphanumeric characters,
the first of which is A through %, $, %, or @; remaining
characters may also be numeric. DN is a required parameter.

Dataset size. Octal number of sectors (512-word blocks) to
be reserved for the dataset. The mass storage space
reservation occurs during the first physical write to the
dataset. If the dataset size is not given, the space for
the dataset is dynamically allocated as needed. This
parameter applies to mass storage datasets only and ignored
when used for magnetic tape datasets.

Buffer size. Number of 512-word blocks to be reserved for
a user buffer. The default number of blocks is set by an
installation parameter. BS generates an error if the U
parameter is specified (indicating unblocked dataset
structure).

Logical device on which the dataset begins. If a logical
device name is not given, one is chosen by the system.
Consult the on-site analyst for possible logical device
names. This parameter applies to mass storage datasets
only and is ignored when used for magnetic tape datasets.

Device type. The allowable device types are CRT
(interactive) and MS (mass storage). MS is the default.
This parameter is ignored when used for magnetic tape
datasets.

Dataset format. This parameter is used only on output; it
is valid only when DT=CRT. This parameter is ignored when
used for magnetic tape datasets. Two formats are supported:

CB Character blocked. End-of-record RCWs are converted
(normally to line feeds). This is the default.

TR Transparent. End-of-record RCWs are not converted.
The user is responsible for inserting line feeds.

Random dataset. If the RDM parameter is present, the
dataset is read and written randomly (that is, records may
be read or written out of sequence). If the RDM parameter
is not specified, only sequential or FORTRAN direct access
I/0 is allowed on the datasets. This parameter applies to
mass storage datasets only and is invalid for magnetic tape
datasets.

Part 2

MR

IM=1m

DC=dc

SR-0011

Unblocked dataset structure. If the U parameter is
present, the dataset is not in COS-defined blocked format.
If the U parameter is absent, the dataset is a COS blocked
dataset. (See part 1, section 2 for information on
unblocked dataset format.) This parameter is invalid for
interchange format tape datasets.

Memory-~resident dataset. If this parameter is present, the
system I/0 routines write the buffers to mass storage only
if they become full. If the MR parameter is absent, the
dataset is not a memory-resident dataset. MR generates an
error if the U parameter is specified. This parameter
applies to mass storage datasets only and is invalid for
magnetic tape datasets.

Maximum size limit for this dataset. Im specifies a
decimal count of 512-word blocks. The job step will be
aborted if this size is exceeded. The default and maximum
dataset size limits are set by an installation parameter.
This parameter applies to mass storage datasets only and is
ignored for magnetic tape datasets.

Disposition code. Disposition to be made of the dataset
when it is released. This parameter applies to mass
storage datasets only and is ignored for tape datasets.
The default is SC.

de is a 2-character alphabetic code describing the
destination of the dataset as follows:

IN The dataset is placed in the input queue of the
destination station.

ST Stage to mainframe. Dataset is made permanent at the
mainframe of job origin.

SC Scratch dataset. Dataset is deleted.

PR Print dataset. Dataset is printed on printer at the
mainframe of job origin.

PU Punch dataset. Dataset is punched on any card punch
available at the mainframe of job origin.

PT Plot dataset. Dataset is plotted on any available
plotter at the mainframe of job origin.

MT Magnetic tape. Dataset is written on magnetic tape
at the mainframe of job origin.

Part 2

BF1=bf1 Blank field initiation. Octal representation of ASCII code
indicating the beginning of a sequence of blanks. BFI=OFF
means that blank compression is inhibited. The default
code is 33g (ASCII ESC code) but can be changed by an
installation parameter.

A=un Unit name. Unit names allow the user to refer to a dataset
from a FORTRAN program. Each unit name is 4 characters in
the form FTxx, where xx is the unit number specified.

The unit number is an integer value in the range 0 through
102. However, because unit numbers 100, 101, and 102 are

reserved for system use, a user may designate unit numbers
0 through 99.

Use of this parameter associates the designated unit with
the dataset specified by the DN parameter. At job
initiation, unit FT05 is associated with dataset $IN and
unit FT06 is associated with dataset $OUT. Unit names
should not be used as dataset names.

NOTE

If a dataset name is used in place of a unit
name or vice versa, FORTRAN '77 auxiliary
statements (that is, OPEN, CLOSE, and
INQUIRE) produce unpredictable results.

RELEASE - RELEASE DATASET

The RELEASE control statement relinquishes access to the named datasets
for the job. If a dataset is not permanent and its disposition code is
SC (scratch), the mass storage assigned to the dataset is released to the
system. If the dataset is to be staged, the dataset is entered in the
output queue for staging to the destination station. An end-of-data
record is written to a permanent dataset and an ADJUST is performed when

it is released if the dataset is blocked sequential and the previous
operation was a write.

Format:

RELEASE, DN=dn; :dn,:. .. :dng,HOLD.

SR-0011 3-4 L

Parameters:

DN=dn; Name of dataset to be released. A maximum of eight
datasets may be specified.

HOLD Hold generic device; do not return it to the system pool.

Part 2
SR-0011 3-5 L

PERMANENT DATASET MANAGEMENT 4

The permanent dataset management control statements provide methods for
creating, protecting, and accessing datasets assigned permanently to mass
storage or magnetic tape. Such datasets cannot be destroyed by normal
system activity or engineering maintenance.

Permanent dataset management is introduced in part 2, section 1. The

following permanent dataset management control statements are described
in this section:

SAVE

ACCESS
ADJUST
MODIFY
DELETE
PERMIT

SAVE - SAVE PERMANENT DATASET

The SAVE control statement makes a local dataset permanent and defines
its associated characteristics for the system. For mass storage
datasets, saving involves making an entry in the COS-resident Dataset
Catalog (DSC), which uniquely identifies the dataset. For magnetic tape
datasets, saving involves front-end servicing to the defined front-end
computer system. Under the appropriate conditions, SAVE forces any
unwritten data (left in the output buffer) to be written, ensuring that
all the data is made permanent. Since this situation occurs when the
dataset has been recently written but not yet rewound or closed, SAVE
attempts to close the dataset. The specific conditions that the dataset
must meet are described under the SAVE macro (see the Macros and Opdefs
Reference Manual, CRI publication SR-0012). A permanent dataset is
uniquely identified by permanent dataset name (PDN), additional user
identification (ID), edition number (ED), and ownership value. SAVE is a
system verb.

SAVE has a twofold function:
® Creation of an initial edition of a permanent dataset

® Creation of an additional edition of a permanent dataset

SR-0011 4-1 L

Format:

SAVE, DN=dn, PDN=pdn, ID=uid,ED=ed ,RT=rt ,R=rd,Ww=wt,M=mn,UQ,NA,

/

EXO0= {ggF,,PAM=m0de,ADN=adn(m),TA=0pt,TEXT=text,NOTES=n0tes.

f

Parameters are in keyword form; the only required parameter is DN. Only
the DN parameter is valid for tape datasets.

DN=dn

PDN=pdn

ID=uid

ED=ed

RT=rt

R=rd

SR-0011

Local dataset name. The name the job will use to refer to
the dataset while it remains local to the job. This
dataset can be closed before the dataset is made permanent.

Permanent dataset name. The default value is dn. The
name can be 1 through 15 characters.

Additional user identification. 1 through 8 alphanumeric
characters assigned by the dataset creator. The default is
no user ID.

Edition number. A value from 1 through 4095 assigned by
the dataset creator. The default value is:

® One, if a permanent dataset with the same PDN and ID
does not exist, or

® The current highest edition number plus one, if a
Permanent dataset with the same PDN and ID does exist.

Retention period. User-defined value from 1 through 4095
specifying the number of days a permanent dataset is to be
retained by the system. The default value is an
installation~defined parameter.

Read control word. 1 through 8 alphanumeric characters
assigned by the dataset creator. The read control word of
the highest numbered existing edition of a permanent
dataset applies to all subsequent editions of that
dataset. The default is no read control word.

Part 2
4~2 L

W=wt

M=mn
uQ
NA
EXO=‘ON
OFF
PAM=mode
SR-0011

|

Write control word. 1 through 8 alphanumeric characters
assigned by the dataset creator. The write control word of
the highest numbered existing edition of a permanent
dataset applies to all subsequent editions of that

dataset. To obtain write permission, the user must also

have unique access (UQ) to that dataset. The default is no
write control word.

Maintenance control word. 1 through 8 alphanumeric
characters. The maintenance control word must be specified
if a subsequent edition of the same permanent dataset is
saved. The default is no maintenance control word.

Unique access. If the UQ parameter is specified, only this
job can access the permanent dataset at the completion of
the SAVE function. Otherwise, multiuser access to the
permanent dataset is granted.

No abort. If this parameter is omitted, an error causes
the job to abort.

Execute-only dataset. This parameter sets or clears the
execute-only status of the dataset. EXO only or EXO=0ON
causes the dataset to be saved as execute-only. EXO=0FF or
omission of this parameter causes the dataset to be saved as
a non-execute-only dataset. When EXO=ON has been specified
it overides permitted and public access modes.

NOTE

When processing for the SAVE request is
complete and EXO=0ON, all forms of examination
of this dataset are prohibited.

Public access mode. The following modes are allowed:

N No public access allowed
E Execute only

R Read only

W Write only

M

Maintenance only
The installation controls the default PAM value.

If multiple modes of access are to be allowed, more than
one mode must be specified, such as PAM=R:W.

ADN=adn (m)

TA=opt

TEXT=text

Name of the attributes dataset from which attributes,
indicated by the modifiers m, are selected. If no
modifiers are present, then all attributes are selected.
Attribute parameters such as NOTES=, TEXT=, PAM=, R=, etc.
take precedence over the modifiers. adn must be the
local dataset name of a permanent dataset. The modifiers

must be enclosed with parentheses and separated by colons.
The following modifiers are supported:

Modifier Selection from attributes dataset

PAM Public access mode attribute
TRACK Public access tracking attribute
Cw Control words

PERMITS Permit list

TEXT Text attribute

NOTES Notes attribute

ALL All attributes

Track accesses. opt can be either YES or NO and
indicates whether the owner requires that public accesses
to the dataset be tracked. See part 2, section 1 for a
description of public access and access tracking. The
default TA value is NO.

Text to be passed to a front-end computer system requesting
transfer of the dataset. A maximum of 240 characters can
be specified. This text information is considered an
attribute of the dataset and is retained along with any
other attributes. See part 2, section 1 for an explanation
of all permanent dataset attributes.

NOTES=notes

SR-0011

Notes to be associated with the dataset. A maximum of 480
characters can be specified. There is no restriction on
the content of notes. A caret symbol in notes signifies
end-of-line and causes AUDIT to advance to a new line when
listing the notes. The caret symbol is included in the 480
character maximum limit. 7o0tes is a permanent dataset
attribute. See part 2, section 1 for an explanation of all
permanent dataset attributes.

ACCESS - ACCESS PERMANENT DATASET

The ACCESS control statement makes an existing permanent dataset local to
a job and can be used to create a tape dataset. Following the ACCESS
statement, all references to the permanent dataset must be by the local
dataset name specified by the DN parameter. ACCESS assures that the user
is authorized to use the permanent dataset. The ACCESS control statement
must precede the ASSIGN control statement or the request call for the
dataset. All tape datasets, whether they are new or not, must be made
local via the ACCESS control statement or system request. ACCESS is a
system verb.

The. user need not access a permanent dataset entered into the System
Directory (SDR). A tape dataset cannot reside in the SDR. A basic set
of datasets is entered into the System Directory when the operating
system is installed. These datasets include the loader, the CFT
compiler, the CAL assembler, UPDATE, BUILD, and system utility programs
such as copies and dumps (all utilities described in part 2 are entered
in the System Directory). Other datasets can be entered into the System
Directory according to site requirements.

The processing of the ACCESS system request ensures the following:

® The dataset already exists or for new magnetic tape datasets the
dataset does not already exist.

® The requested permissions are allowed.
® The type of medium on which the dataset resides has been

previously allocated by the job, provided the medium is a
dedicated resource (such as magnetic tape).

Format:

ACCESS,DN=dn,NA,PDN=pdn, ID=uid ,ED=ed ,R=rd ,W=wt ,M=mn ,UQ,LE,OWN=00v,

/

/ /

DT=dt,NEw,DEN=den,MF=fés,v0L=vollzv012:...voln,sgggafsec,LB=lb,

/ , /

DF=df,PROT,MBS=mbs, XDT=yyddd ,RT=rt,CT=ct,RF=rf,RS=rs,CS=cs.

Part 2
SR-0011 4-5 L

Parameters are in keyword form; DN is the only required parameter for
mass storage datasets to make an existing permanent dataset local to a

job.

The following parameters can be used with mass storage datasets:

DN=dn

NA

PDN=pdn

ID=uid

ED=ed

Local dataset name. The name the job will use to refer to
the dataset while it remains local to the job. This is a
required parameter.

No abort indicator. This parameter when selected indicates
that the job step is not to be aborted if an error arises
from the access attempt. If omitted, an error condition
causes the job step to be aborted.

Name of a permanent dataset being accessed and already
existing in the system. The default value is dn. The
name can be 1 through 15 characters for mass storage
datasets.

Additional user identification. 1 through 8 alphanumeric
characters. If uid was specified at SAVE time, the ID
parameter must be specified on the ACCESS control
statement. The default is no user ID. This parameter
applies to mass storage datasets only; it is ignored for
magnetic tape datasets.

Edition number of permanent dataset being accessed; a value
from 1 through 4095 was assigned by the dataset creator.

If the ED parameter is not specified, the default is the
highest edition number known to the system (for this
permanent dataset). This parameter applies to mass storage
datasets only; it is ignored for magnetic tape datasets.

The following parameters are used to identify the permissions for the
accessing of a mass storage permanent dataset.

R=rd

SR-0011

Read control word as specified at SAVE time. 1 through 8
alphanumeric characters assigned by the dataset creator.
The default is no read control word. To obtain read
permission, this parameter must be specified on the ACCESS
control statement if a read parameter is specified when the
dataset is saved. This parameter applies to mass storage
datasets only; it is ignored for magnetic tape datasets.

W=wt

M=mm

uQ

LE

OWN=0V

Write control word as specified at SAVE time. To obtain
write permission, this parameter must be specified in
conjunction with a UQ parameter on the ACCESS control
statement if a W parameter is specified when the dataset is
saved. Write permission is required for an ADJUST and
applies to mass storage datasets only; it is ignored for
magnetic tape datasets.

Maintenance control word as specified at SAVE time. This
parameter is specified in conjunction with a UQ parameter
on an ACCESS control statement if the dataset is to be
subsequently deleted. That is, maintenance permission is
required to delete a dataset. This parameter applies to
mass storage datasets only; it is ignored when used for
magnetic tape datasets.

Unique access. This parameter indicates exclusive access
to the dataset is desired. If the UQ parameter is
specified and the appropriate write or maintenance control
words are specified, then write, maintenance, and/or read
permission is granted. If UQ is not specified, then
multiuser read access is granted by default (if at a
minimum, the read control word is specified). UQ is
required to delete a permanent dataset using the DELETE
control statement. This parameter applies to mass storage
datasets only; it is ignored for magnetic tape datasets.

Lowest edition number. If the LE parameter is specified,
the lowest edition number known to the system for this
dataset is accessed. LE cannot be specified in conjunction
with the ED parameter. This parameter applies to mass
storage datasets only; it is ignored when used for magnetic
tape datasets.

Ownership value. If the own parameter is specified and the
user has been granted access by the owner, the dataset is
made local to the job. OWN is ignored if ov matches the
active ownership value of the job (users need not be
permitted to their own datasets).

The following list describes the parameters available for the accessing
and/or definition of magnetic tape datasets.

DN=dn

Local dataset name. The name the job will use to refer to
the dataset while it remains local to the job. This
parameter must be present and equated to a valid local
dataset name not already in use.

t Deferred implementation

SR-0011

DT=dt

NEW

DEN=den

MF=fes

The following
accessed:

PDN=pdn

VOL=vol

SR-0011

Tape dataset generic device name. This parameter is
required for tape datasets. Up to 16 generic names can be
defined by the installation. Only one generic device name
is available with the released system:

Generic Name Significance
*TAPE Device capable of 1600 or 6250 bpi

Creation disposition. Selection of this parameter
indicates the dataset does not yet exist and is to be
created by this job. If omitted, the dataset is assumed to
already exist. NEW datasets must be written before any
read can occur.

Density of the tape dataset. This parameter applies only
to tape datasets; it is ignored when used for mass storage
datasets.

6250 Dataset density of 6250 bpi, default
1600 Dataset density of 1600 bpi

Front—-end servicing mainframe identifier. This parameter
allows specification of an alternate front-end computer
system to which servicing requests are directed. If
omitted, the front-end of job origin is used. Front—end
servicing is a mechanism whereby auxiliary servicing (such
as updating of front-end resident catalogs and tape
management systems) of the dataset and/or tape volumes is
performed.

parameters identify the magnetic tape dataset to be

Permanent dataset name or file identifier. This parameter
can be 1 to 44 characters and is the primary means of
identifying the dataset. For labeled tape datasets (AL and
SL), the rightmost 17 characters of the PDN are used to
match the file identifier from the label group. With
front-end servicing the whole value given is generally used
as the identifier. If PDN is omitted, then the DN value is
used.

Volume serial number list. An optional list of 1- through
6-character volume serial numbers (VSNs) identify tape
volumes where the dataset resides. The list contains up to
255 VSNs. If the VSN list is omitted for a new tape
dataset, then the tape volumes on which the dataset is
written are selected by the operator and/or front-end
servicing routine. This condition is termed a non-specific
volume allocation. If the VSN list is omitted for an old
tape dataset, then the volumes on which the dataset resides

are determined by front-end servicing. If front—-end
servicing has no knowledge of the dataset or is inactive,
the omission of the VSN list results in a job step abort.

FSEC=fsec File section number or volume sequence number. This
or parameter describes on which volume, relative to the first

VSEQ=fsec physical volume of the dataset, to begin processing.
The volume sequence number for the first volume of the
dataset is 1. If fsec is omitted, a value of 1 is
assumed. This parameter has a direct relationship to the
VSNs specified in the VOL parameter. The volume sequence
number corresponds to the first VSN identified in the VOL
parameter. For example, to access a tape dataset starting
with the eighth section, specify FSEC=8 on the ACCESS call.

LB=1b Tape dataset label type indicating the format of the tape
labels. If this parameter is omitted, label type NL is
assumed.

SL IBM standard labeled tapes
NL Unlabeled tapes; default.
AL ANSI standard labeled tapes

The following parameters identify the characteristics of a magnetic tape
dataset.

DF=df Recording format. This parameter identifies in which
format the tape dataset is to be read and/or written.
Legal values for this parameter are:

TR Transparent format
IC Interchange format

If omitted the format is transparent. For a description of
the formats and the associated properties see part 1,
section 2.

Front—-end protect indicator. This parameter indicates to
the front-end computer system performing the service
functions that the tape dataset and/or its volumes are to
be protected. PROT is recognized for new tape datasets
only. If PROT is omitted, the dataset and its volumes are
not protected.

PROT

MBS=mbs Maximum tape block size. This parameter specifies the
number of bytes in the largest tape block to be read or
written. mbs describes the maximum size of a tape block
in 8-bit bytes.

t Deferred implementation

SR-0011 4-9 L

XDT=yyddd

RT=rt

The following

If MBS is omitted and the dataset is new, a default size
determined by the site is used. The limiting value of the
parameter is also left to site definition (but subject to a
COS-imposed maximum of approximately one million bytes).

If omitted for an existing labeled dataset (AL or SL), the
maximum block size is set to the value from the label
group. Exceeding this size when writing results in a job
abort condition of WRITE FORMAT ERROR. When reading a tape
block that is larger than the specified value, a job abort
condition of LARGE BLOCK ENCOUNTERED is produced. Varying
this parameter in an orderly fashion can greatly improve
the performance of tape I/0. MBS is rounded up to the next
multiple of 4096 bytes for transparent format tape datasets.

Expiration date. Indicates the date this tape dataset

may be overwritten. Yy specifies the year and is a

number from 0 through 99. ddd specifies the day in the
year and is a number from 001 through 366. This parameter
identifies the year and the day on which a new tape dataset
is considered dormant. If omitted and the dataset is going
to be written, today's date is used. This parameter is
also used as a means of communicating with a servicing
front-end computer system. The XDT and RT parameters are
mutually exclusive.

Retention period. User-defined value from 0 through 4095
specifying the number of days a permanent dataset is to be
retained by the system. The RT parameter is similar to the
XDT parameter but allows the user to specify relative
expiration date. If RT is omitted, the default value used
is no days of retention. This parameter is mutually
exclusive with the XDT parameter.

tape dataset parameters specify that record and data format

conversion are to be performed on the tape dataset at run time.

CT=ct

SR-0011

Tape dataset conversion type. ¢t is a 3-character code
describing the machine internal data representation.

IBM 1IBM and compatible internal data representation

This parameter is required if run-time data format
conversion are to be performed; default is no conversion.
Specifying this parameter converts data on the tape from
32-bit IBM internal representation to 64-bit internal Cray
system representation. Real numbers and integers are
converted.

Part 2
4-10 L

RF=rf

RS=rs

CS=cs

SR-0011

Tape dataset record format. rf is a 1- to 8-character
code describing the record type. This parameter describes
one characteristic of records within the tape blocks.
valid values for RF using IBM compatible formatting are:

U Undefined

F Fixed length; all records are the same size.

FB Fixed length and blocked; all records are identical

length with each block containing an integral number

of records.

Variable length; records size may vary.

Variable length and blocked; records size may vary

and each block varies in size according to the

records it contains.

VBS Variable length, blocked, and spanning. Record
sizes can vary with the option of crossing tape
block boundaries. Each block varies in size
according to the records it contains.

§<

If this parameter is omitted, the following criteria is
used, based on NEW and LB:

RF=U if NEW and any label type (AL, SL, NL)

RF=U if not NEW and nonlabeled (NL)

RF is set to the format described by the label group, if
not NEW and labeled (AL or SL)

Tape dataset record size. rs is the decimal length of

the record expressed in units depending upon the conversion
type; if CT=IBM, rs is the record size expressed as a
decimal number of 8-bit bytes. This parameter defines the
limiting size of each record in a tape block. If RS is
omitted for an existing labeled dataset, rs is obtained
from the label group. RS might be required if the dataset
is new or unlabeled, depending upon the record format:

Record format RS parameter

F or FB Required

V., VB, or VBS Optional

U Irrelevant; U does not contain defined
records.

Character conversion type. This parameter indicates what
character set to be used when reading or writing character
data. 1If omitted, no conversion is performed. Valid
values are:

AS ASCII character set
SL EBCDIC character set

Part 2
4-11 L

ADJUST - ADJUST PERMANENT DATASET

The ADJUST control statement changes the size of a mass storage permanent
dataset; that is, it redefines the size of the dataset. When a permanent
dataset is overwritten, and the dataset size changes, issuing an ADJUST
statement informs the system of the dataset's new size. An ADJUST of a
permanent dataset can be issued if the dataset has been previously
accessed within the job with write permission. ADJUST is a system verb.

Under the appropriate conditions, ADJUST forces any unwritten data to
mass storage to ensure that all of the dataset is made permanent. Since
this situation occurs when the dataset has been recently written to but
not yet closed, ADJUST attempts to close the dataset. The specific
conditions that the dataset must meet are described under the ADJUST
macro (see the Macros and Opdefs Reference Manual, CRI publication
SR-0012).

The ADJUST statement is ignored when used with magnetic tape datasets.

Format:

ADJUST,DN=d~ ,NA.

Parameters:
DN=dn Local dataset name of a permanent dataset that has been
accessed with write permission. This dataset can be closed

before the ADJUST statement is processed.

NA No abort. If this parameter is omitted, an error causes the
job step to abort.

MODIFY - MODIFY PERMANENT DATASET

The MODIFY control statement changes permanent dataset information
established by the SAVE function or a previously executed MODIFY
function. A permanent dataset must be accessed with unique access (UQ)
and all permissions before a MODIFY can be issued. MODIFY is a system
verb.

Once a permanent dataset exists, the read, write, and maintenance control
words, public access mode, and access tracking may apply to subsequent
editions of that permanent dataset. MODIFY applies to mass storage
datasets only; it is ignored for tape datasets.

Part 2
SR-0011 4-12 L

Format:

MODIFY,DN=dn, PDN=pdn, ID=uid ,ED=ed ,RT=rt, R=rd,W=wt,M=mn,NA,

7
/

EX0=[ON ’,PAM=m0de,TA=opt,TEXT=text,NOTES=n0tes.
OFF

Ve

Parameters are in keyword form; the only required parameter is DN.

DN=dn

PDN=pdn

ID=uid

ED=ed

RT=rt

R=rd

W=wt

SR-0011

Local dataset name of a permanent dataset that has been
accessed with all permissions. DN is a required parameter.

New permanent dataset name to be applied to the existing
dataset. If this parameter is omitted, the existing
permanent dataset name is retained.

New additional user identification, to be applied to the
existing permanent dataset. 1 through 8 alphanumeric
characters. If this parameter is omitted, the existing
user ID is retained. If this parameter is present without
a value, user identification is established as binary zeros.

New edition number to be applied to the existing permanent

dataset. 1If this parameter is omitted, the existing
edition number is retained.

New retention period to be applied to the existing
permanent dataset. If this parameter is omitted, the
current retention period is retained. If this parameter is

Present without a value, the retention period is set to the
installation-defined value.

New read permission control word to be applied to the
existing permanent dataset. If this parameter is omitted,
the existing read permission is retained. If R is present
without a value, read permission is established as binary
zeros.

New write permission control word to be applied to the
existing permanent dataset. If this parameter is omitted,
the existing write permission is retained. If W is present
without a value, write permission is established as binary
zeros.

Part 2
4-13 L

M=mn New maintenance permission control word to be applied to
the existing permanent dataset. If this parameter is
omitted, the existing maintenance permission is retained.
If M is present without a value, maintenance permission is
established as binary zeros.

NA No abort. If this parameter is omitted, an error causes
the job to abort.

EX0=|ON } Execute-only dataset. This parameter sets or clears
OFF the execute-only status of a dataset. EXO only or
EXO=0ON causes the dataset to be modified to execute-only.
EXO=0OFF causes the dataset to be modified to a
non-execute-only dataset. If this parameter is omitted,
the execute-only status of a dataset is unchanged.

NOTE

When processing for the MODIFY request is
complete and EXO=ON, all forms of examination
of this dataset are prohibited.

PAM=mode Public access mode. The following modes are allowed:

N No public access allowed
E Execute only

R Read only

W Write only

M

Maintenance only

The installation controls the default PAM value. If
multiple modes of access are to be allowed, more than one
mode must be specified, such as PAM=R:W.

TA=0pt Track accesses. Opt can be either YES or NO and
indicates whether the owner requires that public accesses
to the dataset be tracked. See part 2, section 1 for a
description of public access and access tracking. The
default TA value is NO.

TEXT=text Text to be passed to a front-end computer system requesting
transfer of the dataset. A maximum of 240 characters can
be specified. This text information is considered an
attribute of the dataset and is retained along with any
other attributes. See part 2, section 1 for an explanation
of all permanent dataset attributes.

Part 2
SR-0011 4-14 L

NOTES=notes
Notes to be associated with the dataset. A maximum of 480
characters can be specified. There is no restriction on the
content of notes. A caret symbol in notes signifies
end-of-line and causes AUDIT to advance to a new line when
listing the notes. The caret symbol is included in the
480 character maximum limit. #notes is a permanent dataset
attribute. See part 2, section 1 for an explanation of all
permanent dataset attributes.

DELETE - DELETE PERMANENT DATASET

The DELETE control statement clears the permanence state for a dataset.
For mass storage datasets this involves clearing the dataset's definition
from the Dataset Catalog (DSC). For magnetic tape datasets, a request to
remove the dataset's definition from the front-end's catalog is sent to
the servicing front-end computer system. If PARTIAL is specified, the
dataset is deleted but its attributes are retained. To issue a DELETE of
a dataset, the job must have previously accessed the dataset with
maintenance permission, if a maintenance control word exists for the
dataset, and unique access (UQ). The dataset remains a local dataset
after deletion until job termination or execution of a RELEASE control
statement. DELETE is a system verb.

Format:

DELETE,DN=d7 ,NA,PARTIAL.,

Parameters:

DN=dn Local dataset name of a permanent dataset accessed with
maintenance permission and unique access

NA No abort. If this parameter is omitted, a fatal error
causes the job step to abort.

PARTIAL Partial delete. Presence of this keyword causes the system
to delete only the mass storage resident data. The DSC
entry and the dataset's attributes information are
retained. PARTIAL can be specified only for a mass storage
dataset.

Part 2
SR-0011 4-15 L

PERMIT - EXPLICITLY CONTROL ACCESS TO DATASET

The PERMIT control statement allows a user to explicitly designate who
can access a particular permanent dataset. PERMIT applies to all
editions of the permanent dataset. This dataset need not be local for
PERMIT to be executed. PERMIT applies to user permanent mass storage
datasets only. Access permission given with a PERMIT control statement
takes precedence over the PAM parameter described under SAVE and MODIFY.
PERMIT is a system verb.

Format:

PERMIT, PDN=pdn , ID=uid,AM=m, RP, USER=0v , ADN=ad7 ,NA.

Parameters:

PDN=pdn Name of an existing user permanent dataset. The name can
be 1 through 15 characters. PDN is a required parameter.

ID=uid Additional user identification. 1 through 8 alphanumeric
characters. If ID was specified on the SAVE request, the
ID parameter must be specified on the PERMIT control
statement. The default is no user ID.

AM=m Access mode permitted for alternate user. These modes are:
No dataset access allowed

Execute only

Read

Write

Maintenance

REOEZ

Each installation controls the default AM value. If
multiple modes of access are to be allowed, more than one
mode must be specified, such as AM=R:W.

RP Remove permit parameter. Removes the permit associated
with the specified ownership value.

USER=0V User ownership value associated with the user being
permitted

ADN=adn Local dataset name of the attributes dataset from which the
permit list is copied

NA No abort. If this parameter is omitted, an error causes
the job step to abort.

Part 2
SR-0011 4-16 L

EXAMPLES OF PERMANENT DATASET CONTROL STATEMENTS

To clarify the permanent dataset management control statements, some
examples follow:

1.

SR-0011

A user identified as USERXYZ creates a permanent dataset, which
no other user can access. All subsequent editions of this
dataset share this attribute.

SAVE,DN=ABC, PDN=EXAMPLE] , ED=1, PAM=N, TA=NO.
A user identified as USERXYZ, creates a permanent dataset, which
can be accessed by all other users in read mode.
SAVE,DN=XYZ , PDN=EXAMPLE2, ED=1,PAM=R, TA=NO.

An alternate user is accessing the permanent dataset created in
example 2.

ACCESS,DN=LOCAL, PDN=EXAMPLE 2, ED=1, ONN=USERXYZ.

The system does not track the alternate user access since the
dataset was created with TA=NO.

Allow another user (known in this example as USERl) to access the
permanent dataset created in example 1 in read and execute mode
only.

PERMIT, PDN=EXAMPLEl, USER=USER1, AM=R.

Enable public access tracking for the permanent dataset created
in example 2.

ACCESS, DN=LOCAL, PDN=EXAMPLE2, ED=1, UQ.
MODIFY,DN=LOCAL, TA=YES) .

Permit write mode access for PDN=EXAMPLE2 to users known as USER2
and USER3.

PERMIT, PDN=EXAMPLE2,USER=USER2, AM=W,
PERMIT, PDN=EXAMPLE 2, USER=USER3, AM=W.

Change the permission granted to USERl in example 4 to AM=W.
PERMIT, PDN=EXAMPLE1l, USER=USER1, AM=W.
Remove the access permission granted to USERl in example 7.

PERMIT, PDN=EXAMPLEL, USER=USER], RP.

Part 2
4-17 L

9. User USERXYZ acquires a dataset, then permits another user to use
it and subsequently partially deletes the dataset to retain just
the PERMITs and TEXT information.

ACQUIRE,DN=EX9, TEXT="4eeceeeess',UQ.

PERMIT ,PDN=EX9,USER=SOMEONE,AM=R,
DELETE ,DN=EX9,PARTIAL.

10. User USERXYZ creates a permits template.

SAVE,DN=EX10, PDN=PERMS, A
NOTES='PERMITS TEMPLATE FOR AERO USERS. A ' A
'THESE PERMITS SHOULD BE REMOVED AFTER OCT 31, 1983.°',UQ.
PERMIT, PDN=PERMS, USER=USERA, AM=E.
PERMIT, PDN=PERMS , USER=USERB, AM=R.
PERMIT, PDN=PERMS , USER=USERC, AM=W.
DELETE,DN=EX10,PARTIAL.

11. User SOMEONE acquires the dataset that was partially deleted in
example 9.

ACQUIRE,DN=LOCAL, PDN=EX9,O0WN=USERXYZ.
Note that the TEXT need not be specified and that after the

dataset has been acquired from the front—-end computer system, it
is made permanent and belongs to user USERXYZ.

Part 2
SR-0011 4-18 L

DATASET STAGING CONTROL 5

Staging is the process of transferring jobs and data in the form of COS
datasets from a front-end computer system to Cray mass storage or of
transferring datasets from Cray mass storage to a front-end computer
system. Dataset staging control is introduced in part 2, section 1.

Three control statements support staging datasets between Cray mass

storage and a front—-end system: ACQUIRE, FETCH and DISPOSE. Another
control statement, SUBMIT, directs datasets to the COS input queue.

ACQUIRE - ACQUIRE PERMANENT DATASET

The ACQUIRE control statement allows the user to make a dataset permanent
and accessible to the job making the request. ACQUIRE is a system verb.
Some ACQUIRE control statement examples are included with the permanent
dataset management examples (see part 2, section 5).

When an ACQUIRE control statement is issued, COS determines if the
requested dataset is front-end resident or permanently resident on Cray
mass storage by checking the COS Permanent Dataset Catalog (DSC) for a
dataset with matching PDN, ID, ED, and ownership value fields.

If COS determines that the requested dataset is already permanently
resident on Cray mass storage, dataset access is granted to the job
making the request.

If the requested dataset is not a COS mass storage permanent dataset, the
request for the dataset is sent to the front-end system. The front—end
system stages the dataset to Cray mass storage. COS then makes the
dataset permanent and grants dataset access to the job making the
request. Until the dataset is made permanent, processing of the job
making the request is delayed.

SR-0011 5-1 L

Format:

ACQUIRE,DN=dn,PDN=pdn,1D=uid ,ED=ed ,RT=rt ,R=rd ,W=wt ,M=mn,UQ, TEXT=text,

/

/

MF=mf , TID=tid ,DF=df ,OWN=own , PAM=mode ,ADN=adn (m) , TA=0pt ,NOTES=notes.

/

Parameters are in keyword form; the only required parameter is DN.

DN=dn Local dataset name. The name the job will use to refer to
the dataset while it remains local to the job. 1 through 7
alphanumeric characters, the first of which is A through %,
$, @, or %; remaining characters can also be numeric. DN
is a required parameter.

PDN=pdn Name of COS permanent dataset to be accessed or staged
from a front-end system, saved, and accessed. This is the
name saved by the system if the dataset is staged. pdn
is 1 through 15 alphanumeric characters assigned by the
dataset creator. The default for pdn is dn.

ID=uid Additional user identification. 1 through 8 alphanumeric
characters assigned by the dataset creator. The default is
no user ID.

ED=ed Edition number. A value from 1 through 4095 assigned by
the dataset creator. The default value is:

® One, if a permanent dataset with the same PDN and ID
does not currently exist, or

® The current highest edition number of that dataset if
the permanent dataset with the specified PDN and ID
does exist.

RT=rt Retention period. User-defined value from 0 through 4095
specifying the number of days a permanent dataset is to be
retained by the system. The default value is an
installation-defined parameter.

R=rd Read control word. 1 through 8 alphanumeric characters
assigned by the dataset creator. The default is no read
control word.

W=wt Write control word. 1 through 8 alphanumeric characters
assigned by the dataset creator. The default is no write
control word.

Part 2
SR-0011 5-2 L

M=mn

uQ

TEXT=text

MF=mf

TID=t1d

DF=df

SR-0011

Maintenance control word. 1 through 8 alphanumeric
characters assigned by the dataset creator. The control
word must be specified if a subsequent edition of the
pPermanent dataset is saved. If no staging occurs, and the
dataset is to be deleted, this parameter can be specified
in conjunction with the UQ parameter (that is, maintenance
permission is required to delete a dataset).

Unique access. If the UQ parameter is specified, the job
is granted unique access to the permanent dataset;
otherwise, multiaccess to the permanent dataset is
granted. If no staging is performed because the dataset
already exists, write, maintenance, and/or read permission
can be granted if the appropriate read, write, and/or
maintenance control words are specified.

Text to be passed to a front-end computer system requesting
transfer of the dataset. A maximum of 240 characters can
be specified. This text information is considered an
attribute of the dataset and is retained along with any
other attributes. See part 2, section 1 for an explanation
of all permanent dataset attributes.

Identifier for the front-end computer. 2 alphanumeric
characters. The default is the front end of job origin.

Terminal identifier. 1 through 8 alphanumeric characters
identifying destination terminal. The default is the
terminal of job origin.

Dataset format. This parameter defines whether a dataset
is to be presented to the Cray Computer System in COS
blocked format and whether the front-end system is to
perform character conversion. The default is CB.

For example, a user wishes to acquire a dataset from
magnetic tape in blocked binary as it appears at the
front-end system. In this case, BB is specified.

df is a 2-character alphanumeric code defined for use on
the front-end system. Cray Research, Inc., suggests
support of the following codes:

CD Character deblocked. The front-end system performs
character conversion to 8-bit ASCII, if necessary.

CB Character blocked. The front—-end system blocks the
dataset before staging and performs character
conversion to 8-bit ASCII, if necessary.

Part 2
5-3 L

OWN=0v

PAM=mode

ADN=adn (m)

SR-0011

BD Binary deblocked. The front-end system does not
perform character conversion. For ACQUIRE, BD is
the same as TR.

BB Binary blocked. The front-end system blocks the

dataset before staging but does not do character
conversion.

TR Transparent. No blocking/deblocking or character
conversion is performed.

Ownership value. If the own parameter is specified and the
user has been granted access by the owner, the dataset is
made local to the job. OWN is ignored if ov matches the
active ownership value of the job (users need not be
permitted to their own datasets).

Public access mode. The following modes are allowed:

N No public access allowed
E Execute only

R Read only

W Write only

M

Maintenance only

If more than one mode of access is to be allowed, multiple
access modes must be specified, such as PAM=R:W. Each
installation controls the default PAM value.

Name of attributes dataset from which attributes, indicated
by the modifiers m, are selected. If no modifiers are
present, then all attributes are selected. Attribute
parameters such as NOTES=, TEXT=, PAM=, R=, etc. take
precedence over the modifiers. adn must be the local
dataset name of a permanent dataset. The modifiers must be
enclosed with parentheses and separated by colons. The
following modifiers are supported:

Modifier Selection from attributes dataset

PAM Public access mode attribute
TRACK Public access tracking attribute
CwW Control words
PERMITS Permit list
TEXT Text attribute
NOTES Notes attribute
ALL All attributes

Part 2

5~4 L

TA=0pt Track accesses. Opt can be either YES or NO and
indicates whether the owner requires that public accesses
to the dataset be tracked. See part 2, section 1 for a
description of public access and access tracking. The
default TA value is NO.

NOTES=notes
Notes to be associated with the dataset. A maximum of 480
characters can be specified. There is no restriction on
the content of notes. A caret symbol in notes signifies
end-of-line and causes AUDIT to advance to a new line when
listing the notes. The caret symbol is included in the
480 character maximum limit. #7notes is a permanent
dataset attribute. See part 2, section 1 for an
explanation of all permanent dataset attributes.

DISPOSE - DISPOSE DATASET

The DISPOSE control statement directs a dataset to the COS output queue
for staging to a specified front-end computer system. DISPOSE can also

be used to alter the effects of a previous DISPOSE,DEFER of the same
dataset.

Defining the DISPOSE characteristics can be done before the actual
staging via the DEFER parameter. The DEFER parameter saves all selected
dispose parameters for use when the dataset is released, which is when
the actual staging is initiated. DISPOSE is a system verb.

Format:

DISPOSE,DN=dn,SDN=sdn ,DC=d¢,DF=df ,MF=mf,SF=sf, ID=utd, TID=t1d,

/
/

ED=ed ,RT=rt,R=rd ,W=wt ,M=mn, TEXT=text ,WAIT, NOWAIT, DEFER, NRLS.

/

Parameters are in keyword form; the only required parameter is DN.

DN=dn Local dataset name. Name by which the dataset is known to
the user job. DN is a required parameter.

SDN=sdn Staged dataset name. 1 through 15 character name by which

the dataset is to be known at the destination front end.
The default for sdn is dn.

Part 2
SR-0011 5-5 L

DC=dc

DF=df

SR-0011

Disposition code. Disposition to be made of the dataset.
If the DC parameter is omitted, the default is PR.

de is a 2-character alphanumeric code describing the
destination of the dataset as follows:

IN Input (job) dataset. Dataset is queued as a job on
the mainframe specified with the MF parameter.

ST Stage to front end. Dataset is made permanent at the
front end designated by the MF parameter.

SC Scratch dataset. Dataset is released, unless another
DISPOSE request is still pending on the dataset.
This parameter has the same effect as RELEASE,DN=dn.

PR Print dataset. Dataset is printed on a printer
available at the front end designated by the MF
parameter.

PU Punch dataset. Dataset is punched on any card punch
available at the front end designated by the MF
parameter.

PT Plot dataset. Dataset is plotted on any available
plotter at the front end designated by the MF
parameter.

MT Write dataset on magnetic tape at the front end
designated by the MF parameter.

NOTE

The dataset dispositions noted above are by
convention only. Actual dataset disposition
is determined by the destination front end.

Dataset format. This parameter defines whether a dataset
is sent from the Cray Computer System in COS blocked format
and whether the front—-end system is to perform character
conversion. The default is CB.

For example, a user wishes to save a dataset on magnetic
tape in blocked binary as it appears on COS mass storage.
In this case, BB is specified. A user who wants a dataset
printed can specify CB if the front-end computer handles
deblocking.

MF=mf

SF=sf

ID=uid

TID=t1id

SR-0011

df is a 2-character alphanumeric code defined for use on
the front-end system. Cray Research, Inc., suggests
support of the following codes:

CD Character deblocked. The front-end system performs
character conversion from 8-bit ASCII, if necessary.

CB Character blocked. No deblocking is performed at the
Cray mainframe before staging. The front-end system
performs deblocking and character conversion from
8-bit ASCII, if necessary.

BD Binary deblocked. The front-end system does not
perform character conversion. For DISPOSE, BD is the
same as TR.

BB Binary blocked. The front-end system does not

perform character conversion. The Cray mainframe
does not perform deblocking before staging. The
front-end system is expected to perform deblocking.

TR Transparent. No blocking/deblocking or character
conversion is performed.

Other codes can be added by the local site. Undefined
pairs of characters can be passed but are treated as
transparent mode by COS.

Front—end computer identifier. 2 alphanumeric characters.
Identifies the front end to which the dataset is to be
staged. If omitted, the front end where the issuing job
originated is used. If MF is given a value of a Cray
mainframe ID and DC=IN, an error message is issued and the
job step is aborted (see the SUBMIT control statement later
in this section).

Special form information to be passed to the front-end
system. 1 through 8 alphanumeric characters. SF is
defined by the needs of the front-end system.

Additional user identification. 1 through 8 alphanumeric
characters assigned by the dataset creator. The default is
no user ID.

Terminal identifier. 1 through 8 alphanumeric characters
identifying destination terminal. The default is terminal
of job origin, where applicable.

ED=ed Edition number, meaningful only if DC=ST. A user-defined
value from 1 through 4095. The default value depends on
the destination front end.

RT=rt Retention period, meaningful only if DC=ST. A user-defined
value from 0 through 4095 specifying the number of days a
dataset is to be retained by the destination front end.

The default value depends on the destination front end.

R=rd Read control word, meaningful only if DC=ST. 1 through 8
alphanumeric characters. The default is no read control
word.

W=wt Write control word, meaningful only if DC=ST. 1 through 8
alphanumeric characters. The default is no write control
word.

M=mn Maintenance control word, meaningful only if DC=ST. 1

through 8 alphanumeric characters. The default is no
maintenance control word.

TEXT=text Text to be passed to the front-end system requesting
transfer of a dataset. The format for TEXT is defined by
the front-end system for managing its own datasets or
files. Typically, text is in the form of one or more
control statements for the front-end system; these
statements must contain their own terminator for the front
end. text cannot exceed 240 characters.

NOTE

text specified on the DISPOSE control
statement is not the same as the permanent
dataset text attribute. Any text existing
as a permanent dataset attribute is ignored
by DISPOSE (see part 2, section 1 for
discussion).

WAIT Job wait. When this parameter is specified, the job does
not resume processing until the disposed dataset has been
staged to the front-end system. If the front-end system
cancels the transfer, the waiting job is aborted and job
Step abort processing occurs as described in part 1,
section 3. 1If WAIT is not specified, processing can resume
immediately upon issue of the DISPOSE, depending upon an
installation option. The WAIT parameter is useful in
detecting unsuccessful transfers.

Part 2
SR-0011 5-8 L

NOWAIT

DEFER

NRLS

When this parameter is specified, the job does not wait
until the dataset has been staged to the front—-end system
but resumes processing immediately. If the front-end
system cancels the transfer, no special action is taken;
that is, the job is not aborted. If neither WAIT or NOWAIT
are specified, processing can resume immediately upon issue
of the DISPOSE, depending upon an installation option.

When this parameter is specified, the disposition occurs
when the dataset is released either by a RELEASE request or
job termination. The dispose characteristics are saved and
used when the dataset is released.

No release. When this parameter is specified, the dataset
remains local to the job after the DISPOSE request has been
processed. When NRLS is specified on a DISPOSE control
statement, the dataset cannot be written to, until the
transfer to the specified front end is completed.
Therefore, it is advisable to use WAIT with NRLS.

SUBMIT - SUBMIT JOB DATASET

With SUBMIT, a job running on the Cray mainframe can direct another
dataset (which must also be a job) to the COS input queue. The job that
is submitted executes independently of the submitting job. SUBMIT is a

system verb.

Format:

SUBMIT,DN=d~n,SID=sf,DID=df,TID=tid ,DEFER,NRLS.

Parameters are in keyword format; the only required parameter is DN.

DN=dn

SIiD=sf

SR-0011

Local dataset name. A valid local dataset name. DN is a
required parameter and must be given a value.

Default source front—-end system identifier; 2 alphanumeric
characters. If an MF parameter is not specified in an
ACQUIRE or FETCH control statement within the submitted
job, the SID parameter defines the default source front-end
system for the dataset to be acquired. If the MF and SID
parameters are omitted, the default source identifier of
the submitting job is used.

DID=df Default destination front-end identifier; 2 alphanumeric
characters. If an MF parameter is not specified in a
DISPOSE control statement within the submitted job, the DID
parameter defines the default destination front-end system
for the dataset to be disposed. If the MF and DID
parameters are omitted, the default destination identifier
of the submitting job is used.

TID=t1d Default terminal identifier. 1 through 8 alphanumeric
character identifier defining the default terminal ID for
the submitted job. 1If TID is omitted, then the terminal ID
of the submitting job is used.

DEFER Deferred submit. Selection of this parameter causes the
SUBMIT characteristics to be defined, with a release of the
dataset actually initiating the submit of the dataset. If
DEFER is omitted, the SUBMIT occurs immediately.

NRLS No release. This parameter indicates if the dataset is to
remain local to the job after SUBMIT has been processed.
If NRLS is omitted, the dataset is released after the
SUBMIT. If selected, the dataset remains local to the job
after the SUBMIT and is available for reading only.

FETCH - FETCH LOCAL DATASET

The FETCH control statement allows the user to make a dataset reside on a
front-end computer system local to the COS job. The dataset is
transferred from the front-end. The dataset is not made permanent on the
Cray Computer System. The originating job is delayed until the dataset
arrives on Cray mass storage.

Format:

FETCH, DN=dn , SDN=sdn , TEXT=text ,MF=mf , TID=t1d ,DF=df .

Parameters are in keyword form; the only required parameter is DN.

DN=dn Local dataset name. The name the job will use to refer to
the dataset while it remains local to the job. 1 through 7
alphanumeric characters, the first of which is A through Z,
$, @, or %; remaining characters can also be numeric. DN
is a required parameter.

Part 2
SR-0011 5-10 L

SDN=sdn

DF=df

MF=mf

TID=t1d

SR-0011

Staged dataset name. 1 through 15 alphanumeric
characters. Name by which the dataset is known on the
front end. The default for sdn is dn.

Dataset format. This parameter defines whether a dataset
is sent from the Cray Computer System in COS blocked format
and whether the front-end system is to perform character
conversion. The default is CB.

For example, a user wishes to save a dataset on magnetic
tape in blocked binary as it appears on COS mass storage.
In this case, BB is specified. A user who wants a dataset
printed can specify CB if the front-end computer handles
deblocking.

df is a 2-character alphanumeric code defined for use on
the front-end system. Cray Research, Inc., suggests
support of the following codes:

CD Character deblocked. The front-end system performs
character conversion from 8-bit ASCII, if necessary.

CB Character blocked. No deblocking is performed at the
Cray mainframe before staging. The front-end system
performs deblocking and character conversion from
8-bit ASCII, if necessary.

BD Binary deblocked. The front-end system does not
perform character conversion. For DISPOSE, BD is the
same as TR.

BB Binary blocked. The front-end system does not
perform character conversion. The Cray mainframe
does not perform deblocking before staging. The
front-end system is expected to perform deblocking.

TR Transparent. No blocking/deblocking or character
conversion is performed.

Other codes can be added by the local site. Undefined
pairs of characters can be passed but are treated as
transparent mode by COS.

Mainframe computer identifier. 2 alphanumeric characters.
The default is the front end of job origin.

Terminal identifier. 1 through 8 characters identifying
destination terminal. The default is terminal of job
origin where applicable.

Part 2
5-11 L

TEXT=text Text to be passed to the front-end system requesting

SR-0011

transfer of a dataset. The format for TEXT is defined by
the front-end system for managing its own datasets or
files. Typically, text is in the form of one or more
control statements for the front-end system; these
statements must contain their own terminator for the front
end. text cannot exceed 240 characters.

Part 2
5-12 L

PERMANENT DATASET UTILITIES 6

The following utility routines support permanent datasets:

e PDSDUMP dumps all specified permanent datasets to a user-specified
dataset. Input and output datasets can be included in the dump.

® PDSLOAD loads permanent datasets that have been dumped by PDSDUMP
and updates or regenerates the Dataset Catalog. Input and output
datasets are also loaded through PDSLOAD.

e AUDIT produces a report containing status information for each
permanent dataset. AUDIT does not include input or output
datasets.

All of the permanent dataset utilities permit a shorthand notation for
the arguments to the PDN (or PDS), ID, US, and OWN parameters. Using
this notatation, a dash represents any number of characters or no
characters and an asterisk represents any one character.

Examples:
PDN=ABC- List all permanent dataset names beginning with ABC.

PDN=A*** List all 4-character permanent dataset names beginning with
A.

PDN=-A*- List all permanent dataset names containing the letter A
followed by one or more other characters.

PDN=- List all permanent dataset names.

PDN=***- List all permanent dataset names having three or more
characters.

When permanent dataset privacy is enabled, callers of these utilities are
limited to actions on their own datasets unless the CW parameter is
pPresent on the control card. The OWN and NOWN parameters cannot be
specified unless CW is also specified. When privacy is enabled, the US
value from the JOB or ACCOUNT control statement is not used as a
selection criterion., When privacy is not enabled, the US value from the
JOB or ACCOUNT control statement is an implied dataset selection
criterion, unless the CW parameter is present. CW must be specified if
US is specified on the permanent dataset utility control statement.

Part 2
SR-0011 6-1 L

PDSDUMP -~ DUMP PERMANENT DATASET

PDSDUMP dumps specified permanent datasets to a dataset that can be saved
or staged to a station as desired. Characteristics and conditions that
cause a dataset to be omitted from dumping include:

Execute-only dataset

Dataset allocation conflict

Catastrophic dataset error

Inconsistent dataset allocation

Device on which the dataset resides is down

Inactive dataset entry in the system's Queued Dataset Table (QDT)

Format:

/

PDN .
PDSDUMP,DN=dn,DV=ldv,[PDSl=pdn,ED=ed,CW=cw,ID=u1d,

/
/ /

Us=usn,OWN=0v, INC=mm/dd/yy: ' hh:mm:ss"*,

/o P 4

ARC=mm/dd/yy : *hh:mm:ss"* , TS=0pt,X,C,D,I1,0,S,SO.

/

All parameters are in keyword form. Optional parameters identify which
datasets are to be dumped or not dumped.

DN=dn Name of dataset to which dump is written. The default is
$PDS. Multiple dumps to a dataset are possible; if the
dataset specified already exists, the dump is appended to
it‘

DV=1ldv Dumps all datasets residing on logical device ldv.
Currently only one 1dv can be specified.”

PDN=pdn Dumps all editions of the specified permanent dataset.

or Editions can be limited by ED parameter.
PDS=pds
ED=ed Edition number of permanent dataset dumped; meaningful

only if PDS parameter is specified.

t By default, all permanent datasets that could be specified by the
parameters are dumped.

Part 2
SR-0011 6-2 L

Cw=cw Installation-defined control word regulating use of
PDSDUMP. If the CW parameter is omitted, only the datasets
belonging to the job owner can be dumped. If the CW
parameter is present and the correct control word is used,
any dataset can be dumped. If an invalid control word is
given, the job step is aborted.

ID=uid Dumps all datasets with additional user identification as
specified.r If ID is specified without a value, all
datasets which meet the rest of the criteria and have a
null ID are dumped.

Us=usn Dumps all datasets with specified user number .’

OWN=0v Dumps all datasets with specified ownership value.”

INC=mm/dd/yYy: *hh:mm:ss"
Incremental dump. Dumps only datasets modified since the
specified date and time.

ARC=mm/dd/yy: *hh:mm:ss"*
Archive datasets. Dumps and deletes datasets, regardless
of the D option, that have not been accessed since the
specified date and time.

TS=opt Timestamp conversion option. opt may be:
NS Writes timestamp in nanosecond (new) format.
RT Writes timestamp in real-time clock (old) format.

SAME Does not convert timestamp.
CURR Writes timestamp in whatever format is the current
system default for writing timestamps.
If TS is not specified, TS=CURR is assumed.

X Dumps expired datasets.

C Dumps selected datasets never dumped or datasets modified
since the last dump of the dataset.

D Deletes datasets that are dumped.

I Dumps system input datasets

0 Dumps system output datasets See note following.
S Dumps user permanent datasets

t By default, all permanent datasets that could be specified by the
parameters are dumped.

Part 2
SR-0011 6-3 L

SO Performs selection only (suppress actual dumping or
deleting) .

NOTE

If none of these parameters is specified, the
input, output, and user permanent datasets

are all dumped. If any of these parameters
is specified, only those datasets of the type
specified are dumped.

Multiple calls to PDSDUMP can be made if the dump dataset is to include
several permanent datasets requiring specification of different
parameters.

Example:

PDSDUMP, DN=DUMPA, PDS=LIB1.
PDSDUMP, DN=DUMPA, PDS=LIB 2.

This example results in a dataset DUMPA that contains all editions of
LIB1 and all editions of LIB2,.

PDSDUMP produces a listing (see figure 6-1) on $OUT identifying the
datasets dumped or bypassed and summarizing the dump run. The date and
time in the heading line refer to the time when the dump run started.
The permanent dataset name, edition number, ID, and user number are
extracted from the DSC entry for each dataset selected. Each message is
followed by the notation DUMPED, DUMPED AND DELETED, or NOT DUMPED. The
notation NOT DUMPED indicates the dataset was selected but could not be
accessed for dumping. A user logfile message further explains the
problem encountered.

When dumping to a tape dataset, the recording format for the tape dataset
must be transparent (for example, DF=TR on ACCESS statement). If the
dataset is recorded in interchange format, loading of the dumped datasets
cannot be performed.

PDSLOAD - LOAD PERMANENT DATASET

PDSLOAD loads permanent datasets from a dataset created by PDSDUMP. 1If

any of the permanent datasets already exist on Cray mass storage, it is
reloaded only if the RP parameter is present.

Part 2
SR-0011 6-4 L

PDSDUMP - PERMANENT DATASET DUMP UTILITY DUMP ON 01/07/82 AT 14:50:44
AUDPL ED=0001 ID=QITTYQAT USR=SYSTEM DUMPED
AUDPL ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED
DSCED ED=0001 ID=QITTYQAT USR=SYSTEM DUMPED
DSCED ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED
TXBUILD ED=0001 ID=QITTYQAT USR=SYSTEM DUMPED
TXBUILD ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED
TXBUILD ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED
LONGDATASETNAME ED=0001 ID=QITTYQAT USR=SYSTEM DUMPED
LONGDATASETNAME ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED
LONGDATASETNAME ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED
LONGDATASETNAME ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED
DSBUILD ED=0001 ID=QITTYQAT USR=SYSTEM DUMPED
DSBUILD ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED
DSBUILD ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED
DSBUILD ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED
AUDPL ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED
DSCED ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED
TXBUILD ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED
AUDPL ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED
DSCED ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED
20 DATASETS SELECTED FOR DUMPING
Figure 6-1. PDSDUMP listing
Format: j/

PDN ,
PDSLOAD, DN=dn, | ppg [~Pds yED=ed , CW=cw , ID=uid ,US=usn , OWN=0v

/

/

NOWN=nov,DvV=dvn,RP,CR,A,I1,0,S5,NA,SO.

YA

All parameters are in keyword form.
datasets are to be loaded or not loaded.

DN=dn

SR-0011

Optional parameters identify which

Name of dataset from which permanent datasets are to be

loaded.

The default is $PDS.

Part 2

6-5

PDN=pdn
or

PDS=pdn

EDzed

Cw=cw

ID=uid

Us=usn
OWN=0V

NOWN=nov

DV=dvn

RP

CR

Loads all editions of the specified permanent dataset.
Editions can be limited by the ED parameter.

Edition number of dataset to be loaded; meaningful only if
PDS parameter is specified.f

Installation-defined control word reqgulating the use of
PDSLOAD. If CW is omitted, only datasets belonging to the
job owner are loaded.

Loads all datasets with additional user identification as
specified

Loads all datasets with specified user number’

Loads all datasets with specified ownership value.’

Loads selected datasets to owner 7nov, This parameter is
used to change the ownership value of the selected datasets.

Name of logical device where the output dataset is

assigned before it is opened. If omitted, COS assigns a
device at open time. If this parameter is specified, the
supplied device name is requested for the output dataset
(the one being loaded). Note that COS can choose not to
honor this assignment (for example, the device might not be
currently available). This parameter is not involved in
any way in the selection of a dataset for loading.

If any of the specified datasets already exists, replaces
with the one being loaded.

Loads the most current version of a dataset, based on
creation time. This option allows incremental loads to be

performed in any order.

Loads only active datasets; that is, does not load expired
datasets.

Loads input datasets
Loads output datasets See note following.

Loads saved datasets

t By default, all permanent datasets that could be specified by the
parameters are loaded.

SR-0011

Part 2

NA Does not abort if there is not a dataset matching the
specifications to load on the $PDS dataset. This parameter
applies only to this situation. It does not prevent any
other abort condition from occurring or offer reprieve
processing of any kind.

SO Performs selection only; suppresses actual loading of
datasets.

NOTE

If none of these parameters is specified, the
input, output, and saved datasets are

loaded. If any of these parameters is
specified, only those datasets of the type
specified are loaded.

PDSLOAD produces a listing on $OUT identifying the datasets loaded or
bypassed and summarizing the load run (see figure 6-2). The date and
time in the heading line refer to the time when the load run started.
The permanent dataset name, edition number, ID, and user number are
extracted from the PDD for each dataset selected and successfully
loaded. Each message is followed by the notation LOADED or NOT LOADED.
The notation NOT LOADED indicates the dataset was selected but not
loaded. An error message further explains the problem encountered.

PDSLOAD - PERMANENT DATASET RESTORE UTILITY LOAD ON 01/07/82 AT 17:13:47

ENTIT ED=0001 ID=TAQI USR=SYSTEM LOADED
DSBUILD ED=0001 ID=TAQI USR=SYSTEM LOADED
TXBUILD ED=0001 ID=TAQI USR=SYSTEM LOADED
AUDPL ED=0001 ID=TAQI USR=SYSTEM LOADED
DSCED ED=0001 ID=TAQI USR=SYSTEM LOADED

5 DATASETS SELECTED FOR LOADING

Figure 6-2. PDSLOAD listing

AUDIT - AUDIT PERMANENT DATASETS

The AUDIT utility provides reports on the status of each permanent dataset
known to the system. AUDIT does not include input and output datasets.

Part 2
SR-0011 6-7 L

If more than one parameter is selected, only those datasets which meet all
criteria are listed.

AUDIT supplies the following information on the listing:

Permanent dataset name Creation date/time

Dataset identifier Last dump date/time

Edition number Last access date/time

User identifications Last modification date/time

Dataset size in words Device name

Retention time in decimal note information

Number of accesses in decimal text information

Public access mode Permitted users

Total block count in decimal Access counts by user

Track access flag setting Number of datasets selected
Format:

/

AUDIT, L=1ldn,B=bdn, PDN=pdn , ID=uid ,US=usn,bv=dvn,Sz=dsz,

/
/ /
X=mm/dd/yy :'hh:mm:ss"’ , TCR=mm/dd/yy : "hh:mm:ss",
/ 7
/ /
TLA=mm/dd/yy : *hhsmm:ss" , TLM=mm/dd /yy : *hh:mm:ss"' ,CW=Cw,
/ /

/

OwWN=0v, LO=0pt :0pt :0pt :0pt :0pt ,BO=0pt :opt :opt :0pt.

/
Parameters are in keyword form.

L=1dn List dataset name. The default is $OUT.

B=bdn Name of dataset to receive the binary output. If B is
specified alone, the dataset is $BINAUD. If the B parameter
is omitted, no binary output is written. For a description
of the binary output format, see the Binary Audit Table
description in the COS Table Descriptions Internal Reference

Manual, CRI publications SM-0045.

PDN=pdn Name of permanent dataset or datasets to be listed

SR-0011 6-8 L

ID=uid List all permanent datasets with the specified additional
user identification. The default is to list all IDs. If ID
is present without an equated value, datasets having a null
ID are selected.

US=usn List all permanent datasets with the specified user number.
The default is to list all user numbers.

DV=duvn List all permanent datasets on the specified logical
device. The default is to list permanent datasets on all
devices.

Sz=dsz List all permanent datasets greater than or equal to the

specified size. Size is specified in words. The default is
to list all sizes.

X=mm/dd/yy: ' hh:mm:ss'
List all permanent datasets expired as of the specified
mm/dd/yys: " hh:mm:ss'. mm/dd/yy can be specified alone. The
default expiration date and time are "now" if only X is
specified.

TCR=mm/dd/yy: ' hh:mm:ss'
List all permanent datasets that have been created since the
specified mm/dd/yy:'hh:mm:ss'. The keyword cannot be
specified alone; however, TCR=mm/dd/yy is sufficient.

TLA=mm/dd/yy: ' hh:mm:ss"
List all permanent datasets that have not been accessed
since the specified mm/dd/yy:'hh:mm:ss'. The keyword cannot
be specified alone; however, TLA=mm/dd/yy is sufficient.

TLM=mm/dd/yy: * hh:mm: ss'
List all permanent datasets that have been modified since
the specified mm/dd/yy:'hh:mm:ss'. The keyword cannot be
specified alone; however, TLM=mm/dd/yy is sufficient.

CW=cw Installation-defined control word requlating use of AUDIT.
If the CW parameter is omitted, only the datasets belonging
to the job owner can be listed. If the CW parameter is
present and the correct control word is used, any dataset
can be listed. If an invalid control word is given, the job
step is aborted.

OWN=0v List all permanent datasets with the spécified ownership
value. If OWN is not specified, the job's ownership value
is used.

Output formatting parameters:
LO=opt:opt:opt:opt:opt

Listing option selection. The options are:

Part 2
SR-0011 6-9 L

Short list which includes PDN, ID, and ED listed two
per line. This is the default for interactive jobs
when LO is not specified. This list option cannot be
mixed with any others.

The following options can be specified alone or in
combination separated by colons:

L

Long list which includes PDN, ID, ED, size in words,
retention time, access count, track access flag, public
access mode, creation, last access, last modification,
last dump time, and device name. L is the default for
batch jobs when LO is not specified.

Permit list which includes permitted owner name, access
mode, access count, time of last access, and time of
permit creation

Access tracking which includes accessing owner name,
access count, time of last access, and time of first
access

Text list which displays the dataset catalog text
field

Notes list which displays the dataset catalog notes
field

BO=opt:opt:opt:opt

Binary audit options. These options specify what additional
information, if any, is to be added to the standard binary
audit file. They are ignored without comment unless a
binary audit is requested (via the B parameter). If more
than one option is desired, separate them with colons. The
options are:

SR-0011

P

Permits; one permit record is generated for each
permitted user for each selected dataset.

Access tracking; one record is generated for each
accessing user for each selected dataset.

Text; one record is generated for each selected dataset
that has text.

Notes; one record is generated for each selected
dataset that has notes.

Part 2
6-10 L

Figures 6-3 through 6-7 illustrate some of the LO options as they appear
when the listing is directed to a mass storage dataset. Interactive
reports omit the page header line.

AUDIT COs X.12 05/24/83 12:35:33 PAGE 1
PDN ID ED PDN ID ED
$DEBUG DJB 1 $DS DJB 5
30VL DJB 5 ARCHIVE DJB 1
ARCHIVE DJB 2 AUDIT DJB 1
COSNL DJB 1 ISAMPL DJB 1
PROFILE DJB 1
9 DATASETS, 3099 BLOCKS, 1585585 WORDS
Figure 6-3. AUDIT, LO=S listing .
AUDIT COS X.12 05/24/83 12:35:45 PAGE 1
IiD = DJB
PERMITTED USERS FOR PDN = ARCHIVE ID = DJB
USER AM ACC LAST ACCESS CREATED
XYZ RWM 0 05/16/83 12:09:09
ABCD R 0 05/20/83 06:46:13
QRZX RW 0 05/20/83 06:46:28
ZILCH E 0 05/20/83 06:46:49
PERMITTED USERS FOR PDN = ARCHIVE ID = DJB
USER AM ACC LAST ACCESS CREATED
XYZ RWM 0 05/16/83 12:09:09
ABCD R 0 05/20/83 06:46:13
QRZX RW 0 05/20/83 06:46:28
ZILCH E 0 05/20/83 06:46:49

9 DATASETS,

3099 BLOCKS,

1585585 WORDS

SR-0011

Figure 6-4., AUDIT,

Part 2
6-11

LO=P listing

AUDIT Cos X.12 05/24/83 12:36:10 PAGE
ID = DJB
PDN ID ED LAST LAST LAST DEVICE
SZ RT ‘ACC TA PAM CREATED ACCESSED MODIFIED DUMPED

$DEBUG DJB 1 05/16/83 05/16/83 05/20/83 DD-Al-24
5574 45 4 N RWM 11:47:36 12:22:27 06:02:22

$DS DJB 5 03/29/83 05/18/83 05/14/83 05/20/83 DD-A2-20
4608 45 7N N 10:45:29 14:27:09 15:08:22 06:03:00

NOTES:

THE FOLLOWING NOTES LINE IS MORE THAN 72 CHARACTERS IN LENGTH. A
123456789012345678901234567890123456789012345678901234567890123456789012

1

34567890/
THE NEXT LINE IS ONLY ONE CHARACTER LONG. A
1
PDN ID ED LAST LAST LAST DEVICE
SZ RT ACC TA PAM CREATED ACCESSED MODIFIED DUMPED
$0OVL DJB 5 03/29/83 05/14/83 05/20/83 DD-Al-21
39424 45 6 N RWM 10:45:29 17:15:38 06:05:29
NOTES:
SAMPLE NOTES DXT
PDN ID ED LAST LAST LAST DEVICE
SZ RT ACC TA PAM CREATED ACCESSED MODIFIED DUMPED
ARCHIVE DJB 1 05/12/83 05/20/83 05/20/83 DD-Al-24
4096 45 4 N RAM 11:18:10 06:44:22 06:04:01
PERMITTED USERS:
Figure 6-5. AUDIT, LO=L:P:N listing
Part 2
SR-0011 6-12 L

AUDIT COoSs X.12 05/24/83 12:36:10 PAGE

USER AM ACC LAST ACCESS CREATED
XY?7 RWM 0 05/16/83 12:09:09
ABCD R 0 05/20/83 06:46:13
QRZX RW 0 05/20/83 06:46:28
ZILCH E 0 05/20/83 06:46:49

PDN ID ED LAST LAST LAST DEVICE

S¥/ RT ACC TA PAM CREATED ACCESSED MODIFIED DUMPED

ARCHIVE DJB 2 05/20/83 05/20/83 05/20/83 DD-A2-21
3671 45 1 N RWM 06:45:12 06:45:12 17:08:48

PERMITTED USERS:

USER AM ACC LAST ACCESS CREATED
XYZ RWM 0 05/16/83 12:09:09
ABCD R 0 05/20/83 06:46:13
QRZX RW 0 05/20/83 06:46:28
ZILCH E 0 05/20/83 06:46:49

PDN ID ED LAST LAST LAST DEVICE

SZ RT ACC TA PAM CREATED ACCESSED MODIFIED DUMPED

AUDIT DJB 1 05/24/83 05/24/83 DD-Al-22
26467 45 3N RWM 10:13:33 12:35:30
COSNL DJB 1 04/06/83 04/07/83 05/20/83 DD-A2-20
1498112 45 3 N RWM 11:28:00 09:41:58 06:05:04
ISAMPL DJB 1 08/11/81 04/22/83 03/03/83 05/20/83 DD-A2-20
3584 100 24 N RWM 10:07:41 17:21:54 10:02:58 06:04:46
PROFILE DJB 1 04/30/83 05/24/83 05/20/83 DD-A2-21
49 45 52 N RWM 14:10:28 10:13:32 06:02:54
9 DATASETS, 3099 BLOCKS, 1585585 WORDS

Figure 6-5. AUDIT, LO=L:P:N listing (continued)

Part 2
SR-0011 6-13 L

AUDIT COS X.1l2 05/24/83 12:35:37 PAGE
ID = DJB
PDN ID ED LAST LAST LAST DEVICE
SZ RT ACC TA PAM CREATED ACCESSED MODIFIED DUMPED
$DEBUG DJB 1 05/16/83 05/16/83 05/20/83 DD-Al-24
5574 45 4 N RWM 11:47:36 12:22:27 06:02:22
$DsS DJB 5 03/29/83 05/18/83 05/14/83 05/20/83 DD-A2-20
4608 45 7N N 10:45:29 14:27:09 15:08:22 06:03:00
$OVL DJB 5 03/29/83 05/14/83 05/20/83 DD-Al-21
39424 45 6 N RWM 10:45:29 17:15:38 06:05:29
ARCHIVE DJB 1 05/12/83 05/20/83 05/20/83 DD-Al-24
4096 45 4 N RWAM 11:18:10 06:44:22 06:04:01
ARCHIVE DJB 2 05/20/83 05/20/83 05/20/83 DD-A2-21
3671 45 1 N RWM 06:45:12 06:45:12 17:08:48
AUDIT DJB 1 05/24/83 05/24/83 DD-Al-22
26467 45 3N RWM 10:13:33 12:35:30
COSNL DJB 1 04/06/83 04/07/83 05/20/83 DD-A2-20
1498112 45 3N RWM 11:28:00 09:41:58 06:05:04
ISAMPL DJB 1 08/11/81 04/22/83 03/03/83 05/20/83 DD-A2-20
3584 100 24 N RWM 10:07:41 17:21:54 10:02:58 06:04:46
PROFILE DJB 1 04/30/83 05/24/83 05/20/83 DD-A2-21
49 45 52 N RWM 14:10:28 10:13:32 06:02:54
9 DATASETS, 3099 BLOCKS, 1585585 WORDS
Figure 6~6. AUDIT, LO=L listing
Part 2
SR-0011 6-14 L

AUDIT COs X.12 05/24/83 12:35:53 PAGE
ID = DJB

NOTES FOR PDN = $DS ID = DJB ED = 5

THE FOLLOWING NOTES LINE IS MORE THAN 72 CHARACTERS IN LENGTH. A

123456789012345678901234567890123456789012345678901234567890123456789012
34567890 A

THE NEXT LINE IS ONLY ONE CHARACTER LONG., A
1
NOTES FOR PDN = $OVL ID = DJB ED = 5

SAMPLE NOTES DXT

9 DATASETS, 3099 BLOCKS, 1585585 WORDS

Figure 6-7. AUDIT, LO=N listing (AUDIT, LO=T is nearly identical)

Part 2
SR-0011 6-15 L

LOCAL DATASET UTILITIES

Local dataset utilities provide the user with a convenient means of
copying, positioning, or initializing local datasets. The following
utilities are available to the user:

e COPYR, COPYF, and COPYD copy records, files, and datasets,
respectively.

e SKIPR, SKIPF, and SKIPD skip records, files, and datasets,
respectively.

® REWIND positions a dataset at the beginning of data, that is,
before the first block control word of the dataset.

® WRITEDS initializes a random dataset but can also initialize a
sequential dataset.

NOTE

The utilities described in this section operate only on
datasets in COS blocked format.

COPYR - COPY RECORDS

The COPYR utility copies a specified number of records from one dataset
to another starting at the current dataset position. Following the copy,
the datasets are positioned after the EOR for the last record copied.
The COPYR control statement is described below.

Format:

COPYR, I=idn ,0=0dn ,NR=n.

SR-0011 7-1 L

Parameters are in Keyword form.

I=tdn
O=odn

NR=n

Name of dataset to be copied. The default is $IN.
Name of dataset to receive the copy. The default is $OUT.

Decimal number of records to copy. The default is 1. 1If
the dataset contains fewer than n records, the copy
prematurely terminates on the next EOF. EOF or EOD is not
written. If the keyword NR is specified without a value,
the copy terminates at the next EOF, If the input dataset
is positioned midrecord, the partial record is counted as
one record.

COPYF - COPY FILES

The COPYF utility copies a specified number of files from one dataset to
another starting at the current dataset position. Following the copy,
the datasets are positioned after the EOF for the last file copied. The
COPYF control statement is described below.

Format:

COPYF, I=idn,0=0dn ,NF=n.

Parameters are in keyword form.

I=idn
O=o0dn

NF'=n

SR-0011

Name of dataset to be copied. The default is $IN.
Name of dataset to receive the copy. The default is $OUT.

Decimal number of files to copy. The default is 1. If the
dataset contains fewer than n files, the copy prematurely
terminates on EOD. EOD is not written. If the keyword NF
is specified without a value, the copy terminates at the
EOD. If the input dataset is positioned midfile, the
partial file counts as one file.

COPYD - COPY DATASET

The COPYD utility copies one dataset to another starting at their current
positions. Following the copy, both datasets are positioned after the
EOF of the last file copied. The EOD is not written to the output
dataset. The COPYD control statement is described below.

Format:

COPYD, I=idn,O=odn.

Parameters are in keyword form.
I=idn Name of dataset to be copied. The default is $IN.

O=o0dn Name of dataset to receive the copy. The default is $OUT.

SKIPR - SKIP RECORDS

The SKIPR utility directs the system to bypass a specified number of
records from the current position of the named dataset. The SKIPR
control statement is described below.

Format:

SKIPR,DN=dn,NR=n.

Parameters are in keyword form.
DN=dn Name of dataset to be bypassed. The default is $IN.

NR=71 Decimal number of records to skip. The default is 1. If
the keyword NR is specified without a value, the system
positions dn after the last EOR of the current file. If
n is negative, SKIPR skips backward on dn.

SKIPR does not bypass an EOF or beginning-of-data. If an
EOF or beginning-of-data is encountered before n records
have been bypassed when skipping backward, the dataset is
positioned after the EOF or beginning-of-data. When

SR-0011 7-3 L

skipping forward, the dataset is positioned after the last
EOR of the current file. This statement is available for

use with online tapes except that a negative value cannot

be used for NR.

SKIPF - SKIP FILES

The SKIPF utility directs the system to bypass a specified number of
files from the current position of the named dataset. The SKIPF control
statement is described below.

Format:

SKIPF,DN=dn ,NF=n,

Parameters are in keyword form.

DN=dn

NF=n

SR-0011

Name of dataset to be bypassed. The default is $1IN.

Decimal number of files to bypass. The default is 1. If
the keyword NF is specified without a value, the system

positions dn after the last EOF of the dataset. If n
is negative, SKIPF skips backward on dn.

If dn is positioned midfile, the partial file skipped
counts as one file.

SKIPF does not bypass an EOD or beginning-of-data. If
beginning-of-data is encountered before 7n files have been
bypassed when skipping backward, the dataset is positioned
after the beginning-of-data. When skipping forward, the
dataset is positioned before the EOD of the current file.
This statement is available for use with online tapes
except that a negative value cannot be used for NF; for
interchange format tapes (DF=IC), NF can only be 1.

For example, if dn is positioned just after an EOF, the

following control statement positions dn after the
previous EOF. 1If dn is positioned midfile, dn will be
positioned at the beginning of that file.

SKIPF,DN=dn,NF=-1.

Part 2
7-4 L

SKIPD - SKIP DATASET

The SKIPD utility directs the system to position a dataset at EOD, that
is, after the last EOF of the dataset. It has the same effect as the
following statement:

SKIPF,DN=d7,NF.

If the specified dataset is empty or already at EOD, the statement has no
effect. The SKIPD control statement is described below.

Format:

SKIPD,DN=dn.

The parameter is in keyword form.

DN=dn Name of dataset to be skipped. The default is $IN.

REWIND - REWIND DATASET

The REWIND control statement positions the named datasets at the
beginning-of-data, that is, before the first block control word of the
dataset. The $IN dataset represents an exception. After REWIND, $IN is
positioned after the control statement file. REWIND opens any of the
named datasets that are not open. REWIND is a system verb.

REWIND causes an EOD to be written to the dataset if the previous
operation was a write or if the dataset is null. If the dataset is not
memory resident, the buffers are flushed to mass storage when REWIND
follows a write operation. If the dataset is memory resident, the EOD is
still placed in the buffer, but the buffer is not flushed. For an online
magnetic tape dataset, REWIND positions the tape dataset to the beginning
of the first volume accessed by the user. The REWIND control statement
is described below.

Format:

REWIND,DN=dnj :dny:...:dng.

Part 2
SR-0011 7-5 L

Parameters are in keyword form.

DN=dni Names of datasets to be rewound. A maximum of eight
datasets can be specified, separated by colons.

WRITEDS - WRITE RANDOM OR SEQUENTIAL DATASET

The WRITEDS utility is intended for initializing a blocked dataset. It
writes a dataset containing a single file consisting of a specified
number of records of a specified length. This utility is especially
useful for random datasets because a record written on a random dataset
must end on a pre-existing record boundary. Direct-access datasets,
implemented in CFT as defined by the ANSI X3.9-1978 FORTRAN standard, can
be initialized, and even extended, without the help of WRITEDS.

WRITEDS can also be used to write a sequential dataset.

The WRITEDS control statement is described below.

Format:

WRITEDS,DN=dn ,NR=nr,RL=rl.

Parameters are in keyword form; the only required parameters are DN and
NR.

DN=dn Name of dataset to be written. DN is a required parameter.

NR=nr Decimal number of records to be written. NR is a required
parameter set to the largest value that may be needed,
since a dataset is generally not extended when it is in
random mode.

RL=r1l Decimal record length, that is, the number of words in each
record. The default is zero words, which generates a null
record.

If the record length is 1 or greater, the first word of
each record is the record number as a binary integer
starting with 1.

Part 2
SR-0011 7-6 L

ANALYTICAL AIDS

The following utilities provide analytical aids to the programmer:
e DUMPJOB and DUMP are generally used together to examine the
contents of registers and memory as they were at a specific
during job processing. DUMPJOB captures the information so

DUMP can later format selected parts of it.

® DEBUG produces a symbolic dump.

® DSDUMP dumps all or part of a dataset to another dataset in
two formats: blocked or unblocked.

e COMPARE compares two datasets and lists all differences.

e FLODUMP dumps flowtrace tables when a program aborts with
flowtrace active.

® PRINT writes the value of an expression to the logfile.

time
that

one of

® SYSREF generates a global cross-reference listing for a group of

CAL or APML programs.

e ITEMIZE inspects and generates statistics about library datasets.
Libraries are described in part 1, section 5; library dataset

management is described in part 2, section 10.

DUMPJOB - CREATE $DUMP

The DUMPJOB control statement causes creation of the local dataset

$DUMP,

if not already existent. $DUMP receives an image of the memory assigned

to the job (JTA and user field) when the DUMPJOB statement is
encountered. Placing the DUMPJOB statement after a system verb,

excluding the comment and EXIT statements, causes a dump of the Control
Statement Processor (CSP). A DUMPJOB statement is not honored if an
execute-only dataset is loaded in memory; a DUMPJOB to an execute-only

dataset is rejected.

SR-0011 8-1

If the $DUMP dataset already exists, it is overwritten each time a
DUMPJOB control statement is processed. If $DUMP is permanent and the
job does not have write permission, DUMPJOB aborts. If $DUMP is
permanent and the job has write permission, the dataset is overwritten.

If the DUMPJOB/DUMP sequence fails because of such situations as
destroyed system-managed Dataset Parameter Areas, assign $DUMP and save
it with unique access. DUMPJOB writes to $DUMP, and job termination
automatically adjusts $DUMP. $DUMP can then be inspected in a separate
job.

$DUMP is created as an unblocked dataset by DUMPJOB for use by DUMP.
DUMPJOB is a system verb and cannot be continued to subsequent cards.

Format:

DUMPJOB.

Parameters: None

DUMP - DUMP REGISTERS AND MEMORY

The DUMP utility reads and formats selected parts of the memory image
contained in $DUMP and writes the information onto another dataset. The
DUMP control statement can be placed anywhere in the control statement
file after $DUMP has been created by the DUMPJOB control statement.

Placing the DUMPJOB and DUMP statements after an EXIT statement is
conventional and provides the advantage of giving the dump regardless of
which part of the job causes an error exit. The usage of DUMP and
DUMPJOB, however, is not restricted to this purpose.

DUMP can be called any number of times within a job. This might be done

to dump selected portions of memory from a single $DUMP dataset or it
might be done if $DUMP has been created more than once in a single job.

Format:

DUMP, I=idn,0=0dn ,FW=fwa ,LW=lwa ,JTA,NXP,V,DSP,FORMAT=f , CENTER.

SR-0011 8-2 L

Parameters are in keyword form.

I=idn

o=odn

Fw=fwa

LW=lwa

JTA

NXPp

DSP

FORMAT=f

CENTER

SR-0011

Name of the dataset containing the memory image. The
dataset $DUMP is created by DUMPJOB and is the default, but
any dataset in the $DUMP (unblocked) format is acceptable.

Name of the dataset to receive the dump; default is $OUT.

Octal first word address of memory to dump. The default
is 0.

Octal last word address+l of memory to dump. The default
is 200 (octal). Specifying the keyword LW without a value
causes the limit address to be used.

Job Table Area to be dumped. The default is no dump.

No Exchange Package, B registers, or T registers dumped.
The default causes Exchange Package, B registers, and T
registers to be dumped.

Vector registers to be dumped. The default is no dump of V
registers.

Logical File Tables (LFTs) and Dataset Parameter Areas
(DSPs) to be dumped. The default is to not dump LFTs and
DSPs.

Format for the part of memory selected by FW and LW. The
options are:

O Octal integer and ASCII character. This is the
default.

D Decimal integer and ASCII character
X Hexadecimal integer and ASCII character

G Floating-point or exponential, depending on the value
of the number, and ASCII character

P 16-bit parcel (4-word boundaries are forced for FW and
LW)

M Mixed hexadecimal and octal written in ASCII. Each
16-bit parcel is represented as five characters; the
first character is a hexadecimal digit representing
the high-order 4 bits and the next 4 are octal
characters representing the low-order 12 bits.

Dump 100 (octal) words on each side of the address contained
in the P register of the Exchange Package. The format is P.

Part 2
8-3 L

Examples:

The following example is a portion of the dump obtained using format
O, the default format type:

JOP1925

Q200109
PO0A10O4
0220110

O erifg
ur001,°0
a1 1
QXY 0P
22000d
20D
2200714

USER FIELLD

04511720420471 14632400
ommnwoo@m%mm

(FOPMAT=0)

2OV AVOB220001 37000
100202RRCO00RCRONAOA
QA

RO

FaA% 43
OGN
AKX IORCOAAANIOOCOON0
o e aaol e lo s R e a e A b 6
Q152375004021 44 757
0304 °0164320°'1 16431465
331403146314631463145%
QAN 10020000203

¥4 END OF DLMP Xix

ROQODN

[5.48% 2 225% 418 % 501250 0518 2.9 B a)
BOAOACOONNORCHOIANN
RS Bie SR WITA R |
B4GEAL TN 123 0RIH0
GOV K IANIOC S
B1044.04 Y2172 3092
QOGO OAOIORONSA] QO

DUME X 07 79254 09/11/79

2AA0VA201 170001 15600
QRACOAACCROMIVOCIAARCD
QOO IICINNIONOCR

QIR 3636113633471
DOOOCAHOOOOAROCNOID
OIMIAHAZPA T 164468

L85 1420000000 O0RONON

VITIRZRPIIIDIII PP
LAOM- 2GUA 4243211734
VOO, R AN

A portion of the dQump in format D:

JOB123G

2000100
2000104
2000110

00021654
0001 70
00174
QRN 00
0 0 ‘Od

USER FIFLLD (FORMAT=D)

5354571261147297024 I 744

0 -2223370036754 7 SLaR

@ o

XKk

o sl

Q@ @

14 34 TIREQA TR RLPATN
4923926774 133706578 RGER2AT BB ARATE S
354R648702527091509 o
737869762948332064 4 1034567201134 0R 8D
4611586928955 750 5705311 210 23

AXK EHD OF DUMP hkk

OO0V 720OV0CCVAR1 16562 JOR193S

RO CIIIIA00ACOA
QRO MCODOACN

QHO470154 37071 164 465
COACODOOTNOCAOQNTOODND
[AEEAEN CRAL LR LR R LA AL
QIONZ113GR0461 13G334 7
12345627012344601 2345465
OF77124002000000C0R0M
OQAOANZI0A4G1027244111

DUMP X. @7 79254 09-11/79

1106578511715%712
5]
(2]

WAOATERS129709
e

2RARNAR7R 252091409

GUER RS 11RO ERRT

-1

- IGGEORIMG3Y1 434340
711343400 "G

1032483014398
]
e

3546R48 7202027091509
(4

[}

3474804 75R1R129209
—€3393310117,61074
ALIGGE107

SPELAQEIIRBEAABLG) 4

A portion of the same dump specifying format X:

JOR1™3S

Q0100
(8¢ SANARY
2000110

[« 313 4TI Y
OONAT 0
QOO

USFR FIELD (FORMAT=X)

4A4F 423139333500 VOO PERQ
2 2O

0ODOVOVAODAIONNA OORCARCIDACNN

TXEKK

DACAPAIIONNINQ QOOCROORAOOOY

BOOOARN YNNI QOOCOOM DO Y

2528704 e s Aas s Al R RSV JC3 BED PR IR G

445540204 6AF L ADD 1 LA20 Al 0

31383A34333A 33" 0\’\(\00\)00(‘00’«\(\00

GEREEEELHHELE0! <

402240400033 &\E\B@toc\ﬁrv\m 2RO

¥¥X END OF DUMP Xxx

SR-0011

MR X o7 73254 0301172
CRR4OAEMRINIO 20A700000NCID7T
ORI DACAOCTAOOICD
(5,8 2235 2 0 AL b 5] DAOOAANOOAAIOCD

WALCF I ARV 1 3A[IAITAAIEG
DOOROBOC RO OOVCOOCONCAON

R ETR IS R N
TN ARALAN Y
FETFIFEFEF FEFEFF
COI DR 1ARDIZNC
DOZAASOOAOACOMA

Part 2
8-4

AUOCOONOANNONN
B0 IR EFID
ACELOAZSEEMRCE
3FCASROMINOOCN
@EOV4RIA424 24849

DA FORMAT TYPES

18 42 35

POGE 1

024177218 49 .38

A 11 /7M S 49 35
179
" 2. bl
e ()) HIHIHL
PrGE 1

23-11/72{R 4235

a9/11/701 8 49 3T
DMP FORMAT TYFES

0211779

" E >

a @ - HIHIHL

0911/ 492 35

DRSS R IR LI
UM FORMAT TYPES

w1179

@ @ a

HIHMIHT

Format G specified on the same dump portion:

JOB193S USER FIELD (FORMAT=G)
0020100 9.677213997398+794 9. ORI
2000104 0 . OAAAACCARND Q. CROIOND
0020110 2 . 200V 9 . 200NNV
xxny
2030164 Q . 20DANARND B OOV
MO0 . QOO0 X b
fran1 Y [ANC.5.5 20 3.6 04 5] S 2P1OF
200, O 0 2100287247904 334 3T
(75 R 9. 181639066368-1139 @ O0OVMXNOD
00010 R © . COMVAONO
2200214 9.3434717701726-04 Q. 2AOAOMORAD

WKX END OF DUMP XXX

DUMP X.07 79254 e3r11/79

Q. 220NV
9 . OARONNNN
2 0NN

9. 002G
9. OO0V
9. 2200

B 2ZAPRT2E0N6-1218
0. (OO0

@ 1 EOEETNR-11139
Q. (ONOMRA0

0. 1R1FIVGRIGR-11D
Q. GANACLNNOC
2. EOONA0OANC?

@ 277555561568 - 16

R
=9.301503151190€E+17
200N 9 . OCOA0AO00

-]

The same portion of the dump in format P:
Lop1ang USER FIELD (FORMAT=F) DU X. 07 79254 09/11/79
eoNN120 (45117 941061 834463 032400 0020 PRONNQ 110200 13700 004 AMO2E ACAONG 115500
200104 CORANY AOVO00 SVAANO VYOV 100020 CQAORA PO YOV 202000 (VAR (VOVRD BAOVOO
000110 C000RD AR GVOAND PRV 2002AC AAONNY PAONAC POORAG P00 0ROMAY OG0 A2
rerxer
00154 QORRD 20000 AV PAPIDRA DOAIN) OOOMD DMAOD AQAOOD BO32071 827461 033457 0323471
2000170 20020 AR OANARD PRARNX OO OAVD (ROD OO QAN PO OCRANG OOAXQ
2000174 (DN XA 2ROV COXXQ QINO71 AL 461 020457 R Q470 035064 034472 Q21465
QOO N @115 OIEE2D) @AY B4 2 QANEAL O%AOA0 02131 0NAtgs 051400 FROCOO OVONCY AV
PONNSAd @470 ATGAGE QA2 OINA0T (AR5 Al 5 R LIV E o R ATalNaTala A) 1P22502 A2P002 12000 17, -
2000’18 063146 063145 063146 ©R1I145 010447 010X 4 OGUSE 1OV4LS 140067 153073 015215 011234
ROR0Z14 A4 00000Z V40100 VRO QOAN DAOQ0R MOOMI QTN QAAZ2L RR4ORA (MROCY NOAMQ
X¥x END OF DUMP XXX
The same portion of the Qump in format M:
JOB1935 USER FIELD (FORMAT=M) DUMP X. @7 732% e3/11/79
2000120 4511741061 3445332400 00RRAAOACO FNARNORIOND QOO I6 COXANIGH0 COOA730000 LA ETR2
00104 HOOOAIONNO DAYOAAAMA ROGONCANIR QUM OGO 2OV XNRGHOC AANTONNNAN ARAACDOACD
0000110 0RO 0ROV CARIINOOY OO AACOANAAY AANMNAAN AUXNBCNA0 CEONCRVA0
R222%]
00154 DOOAOAND PORONXNY FONT7127461 IMME2I3AC1 04P0F R4 344231465
(oA MBS 77 QAR ANONCNMAY GIRANCIND PAOARCNA0 ORI AAOCONROCD
0ON:174 AOORANR PO A ZZA6T 057G TR GO FTV2A14065 €000N000 20CNOA00NQ
QOO d21554RR20 810647522 4658152040 5213150105 5140200000 000ANN00 2007127°4G1 304%,°33471
2020204 M4ATER64 3447231465 00NCQNON QARQONRO FIIIN 272 F7I/ZFI77 ABMGRENZA7 27340n3456
2000210 E214R53146 6314663145 10442 103G4 L tsndcl. COORTNIWRTIE 1501511234 3771280000 00000000
000%714 4QQN0VNNRZ 4B1000MZ03 O4OARMVNND ONGMZACIAY QSN0 dNEOAORCN0 dARR4d111 4411144111
¥X¥ END OF DUMP XXX
Part 2
SR-0011 8-5

18-49-35

JOB193S

0 2SM3GV260R6-1216 DUMP FORMAT TYPES
=0 1580083734>-1912 18.49 35

e e

18:49:3%

(8.5 L8 §
12346
[Cckeos V-4
24002

18 49 3%

JOB123S

PAGE 1

0/11/7NR 49: 8
0/11/791]-42 3
11773

e e e MMM

PAGE 1

00002
QOO
022000

QO 116562
BAOCAO CAOD
AR AT

035064
A0
B0000)
O2P464
1heea”
100000
o111

Q24472 031465
AO0ANY 2ANCNY
QAN AN
A304S” 031
Q270 1TWGR
QOO GO
Q14111 Q111

PAGE 1

@3/11/791R - 42385

02-11.7918 4236

DMP FORMAT TYFES 001179
18 42 35
" > :
e ee e @ e HIKIHI
L

DEBUG - PRODUCE SYMBOLIC DUMP

The symbolic debug utility, DEBUG, provides a means of dumping
portions of memory and interprets the dump in terms of FORTRAN or CAL
symbols. DEBUG is normally used after an EXIT, DUMPJOB sequence when
a job step aborts; however it can be used anywhere provided that a
valid version of $DUMP exists.

To be useful, both CFT and CAL must write special tables, which the
loader (LDR) augments with a version of the load map. The loader
writes this information on a dataset called $DEBUG, which gives the
FORTRAN or CAL symbol names associated with memory addresses. Table
creation is initiated by specifying the ON=Z option for CFT or the SYM
option for CAL. DEBUG reads $DEBUG and $DUMP and prints out variable
names and values in a format appropriate for the variable type.

The following example shows the conventional use of DEBUG:

JOB, ¢..
CFT,ON=%.
LDR.

EXIT.
DUMPJOB.
DEBUG.

The library routine SYMDEBUG is called from either FORTRAN or CAL with
one argument, which is a Hollerith string containing any of the DEBUG
parameters. SYMDEBUG produces output similar to that produced by DUMP
but interprets the memory of the running program rather than $DUMP.
The SYMS, NOTSYMS, BLOCKS, and NOTBLOCKS parameters permit a shorthand
notation for the arguments specified. Using this notatation, a dash

represents any number of characters or no characters and an asterisk
represents any one character.

Examples:
SYMS=ABC- Dump all symbols beginning with ABC.
SYMS=A*** Dump all 4-character symbols beginning with A.

SYMS=-A*- Dump all symbols containing the letter A followed by
one or more other characters.

SYMS=- Dump all symbols.

SYMS=***- pDump all symbols having three or more characters.

SR-0011 8-6

Format:

DEBUG, I=tdn ,0=0dn ,DUMP=ddn , TRACE=n , SYMS=8ym , NOTSYMS=nysm,

/

/

MAXDIM=dim,BLOCKS=blk ,NOTBLKS=nblk ,PAGES=np, COMMENTS="'string"’.

/

Parameters are in keyword form.

I=idn Name of dataset containing debug symbol tables. The
default is $DEBUG, which is created by the loader f£rom the
symbol tables produced by CFT and CAL.

0=0dn Name of dataset to receive the listing output from the
symbolic debug routine. The default is $OUT.

DUMP=ddn Name of dataset containing the dump of the user field.
This dataset is created by the DUMPJOB control statement.
ddn is used when the symbolic debug routine is invoked
after an abort. The default is $DUMP.

TRACE=n Number of routine levels to be looked at in symbolic dump.
DEBUG traces back through the active subprograms the number
of levels specified by n. If this parameter is omitted or
if TRACE is specified without a value, the default is 50.

SYMS=sym List of symbols to be dumped by DEBUG. Up to 20 symbols
can be specified; symbols are separated by a colon. This
parameter applies to all blocks dumped. The default is all
symbols.

NOTSYMS=nsym
List of symbols to be skipped. Up to 20 symbols can be
specified; symbols are separated by a colon. This parameter
applies to all blocks dumped. The default is that no
symbols are to be skipped. This parameter takes precedence
over the SYMS parameter.

MAXDIM=dim
Maximum number of each dimension of the arrays to be
dumped. This parameter allows the user to sample the
contents of arrays without creating huge amounts of output.
For example:

eee oMAXDIM=3:2:3, ...

Part 2
SR-0011 8-7 L

causes the following elements to be dumped from an array
dimensioned as A(10,3,6):

A(1, 1, 1) A(2, 1, 1) A(3, 1, 1) A(1, 2, 1) A(2, 2, 1)
A(3, 2, 1) A(1, 1, 2) A(2, 1, 2) A(3, 1, 2) A(l, 2, 2)
A(2, 2, 2) A(3, 2, 2) A(, 1, 3) A(2, 1, 3)
A(3, 1, 3) A(l, 2, 3) A(2, 2, 3) A(3, 2, 3)

This parameter applies to all blocks dumped. The default
is MAXDIM=20:5:2:1:1:1:1. The arrays are dumped in storage
order.

BLOCKS=blk
List of common blocks to be included in the symbolic dump.
A maximum of 20 blocks can be specified. All symbols
(qualified by the SYMS and NOTSYMS parameters) in the
blocks named here are to be dumped. If BLOCKS is specified
without a value, all common blocks are dumped.

NOTBLKS=nblk
List of common blocks to be excluded from the symbolic
dump. A maximum of 20 blocks can be specified. The
default is to exclude no blocks. NOTBLKS specified without
a value excludes all but the subprogram block. This
parameter takes precedence over the BLOCKS parameter.

PAGES=np Pade limit for the symbolic debug routine. The default is
70 pages.

COMMENT="'string"
Identifier to be printed on the DEBUG output title line.
Up to 8 ASCII characters can be specified.

DSDUMP - DUMP DATASET

The DSDUMP utility dumps specified portions of a dataset to another
dataset. The dataset can be dumped in either blocked or unblocked format.

In the blocked format, a group of words within a record, a group of
records within a file, and a group of files within a dataset can be
selected. Initial word number, initial record number, and initial file
number begin with 1 and are relative to the current dataset position.
Specifying an initial number greater than 1 causes words, records, or
files to be skipped starting from the current position.

SR-0011 8-8 L

Since the initial word, record, or file number is relative to the current
position of the dataset, the dataset must be positioned properly before
calling DSDUMP. A rewind of the dataset before calling DSDUMP makes the
initial word, record, and file numbers relative to the beginning of the
dataset. When DSDUMP is completed, the input dataset is positioned after
the last record dumped. '

The unblocked format is used for dumping a dataset without regard to
whether it is blocked. Dumping a blocked dataset in unblocked format (by
sectors) is possible. A group of sectors within the dataset or a group
of words within each sector can be selected. The initial word and
initial sector numbers begin with 1 and are always relative to the
beginning of the dataset. Specifying an initial sector greater than 1
causes sectors to be skipped from the beginning of the dataset;
specifying an initial word greater than one causes words to be skipped
from the beginning of each sector. Following a dump in unblocked format,
the dataset is closed.

Format:

DSDUMP, I=idn ,0=o0dn ,DF=df, IW=n,NW=n, IR=n, NR=n, IF=n,NF=n, 1S=n, NS=x.

Parameters are in keyword form; the only required parameter is I.

I=idn (or DN=idn)
Name of dataset to be dumped. This is a required parameter.

O=odn (or L=odn)
Name of dataset to receive the dump. The default is $OUT.

DF=df Dump format. The default is B.
B Blocked
U Unblocked

Iw=n Decimal number (n) of initial word for each record/sector
on 1dn. The default is 1.

NW=n Decimal number (7n) of words per record/sector to dump.
Specifying NW without a value dumps all words to the end of
a record/sector. The default is 1.

IR=N Decimal number (n) of initial record for each file on
idn. BApplicable only if DF=B. The default is 1.

NR=n Decimal number (7) of records per file to dump.

Specifying NR without a value dumps all records to the end
of the file. Applicable only if DF=B. The default is 1.

SR-0011 8-9 L

IF=n Decimal number (n) of initial file for dataset on idn.
Applicable only if DF=B. The default is 1.

NF=n Decimal number (7n) of files on i2dn to dump. Specifying
NF without a value dumps all files to the end of the
dataset. Applicable only if DF=B. The default is 1.

IS=n Decimal number (n) of initial sector on idn.
Applicable only if DF=U. The default is 1.

NS=n Decimal number (1) of sectors to dump. Specifying NS
without a value dumps all sectors to the end of the
dataset. Applicable only if DF=U. The default is 1.

For blocked format, each record from idn dumped to odn is preceded by

a header specifying the file and record number. For unblocked format,
each sector is preceded by a header specifying the sector number.

Format of each dump record:

Word count Octal interpretation Character interpretation
(decimal) of four words of four words

A row of five asterisks indicates that one or more groups of four words
have not been formatted because they are identical to the previous four.
Only the first group is formatted. The number of words not formatted can
be determined from the word counts of the formatted lines before and after
the asterisks. The final group of four or less words is always formatted.

COMPARE - COMPARE DATASETS

The COMPARE utility compares two blocked datasets and lists all
differences found. The output consists of a listing of the location of
each discrepancy, the contents of the differing portions of the datasets,
and a message indicating the number of discrepancies. See the CRAY-0OS
Message Manual, publication SR-0039.

Keyword parameters allow the user to specify the maximum number of errors
and the amount of context to be listed.

If portions of two datasets are being compared, the portions must be
copied to a separate dataset before comparison; COMPARE compares complete
datasets only.

COMPARE rewinds both input datasets before and after the comparison.

Part 2
SR-0011 8-10 L

Format:

COMPARE, A=adn ,B®dn ,Lidn ,DF=df ,MEsmxe ,CP=cpn ,

/
ya

CS=csn,Ci=wy: oWy, ABORT=aC .

Va

Parameters are in keyword form; both A and B must be specified.

A=adn and B=bdn

Lidn

DF=df

ME=maxe

CP=Ccpn

Cs=csn

SR-0011

Input dataset names. If adn=bdn, an error message is
issued and the job step is aborted. A and B are required
parameters.

Dataset name for list of discrepancies. ldn must be
different from adn and bdn. The default is $OUT.

Input dataset format. The default is T. df is a
l-character alphabetic code as follows:

B Binary. The input datasets are compared logically to
verify they are identical. If they are not identical,
the differing words are printed in octal and as ASCII
characters. The location printed is a word count in
decimal. The first word of each dataset is called
word 1.

T Text. The input datasets are compared to see if they
are equivalent as text. For example, a
blank-compressed record and its expansion are
considered equivalent. If the two datasets are not
equivalent, the differing records are printed as
text. The location is printed as a record count in
decimal. The first record of each dataset is called
record 1.

Maximum number of differences printed. The default is 100.

Amount of context printed. c¢pn records to either side

of a difference are printed. The CP parameter applies only
if DF=T; if DF=B and CP are specified, an error message is
generated. The default is 0.

Amount of context scanned. ¢sn records to either side

of a discrepancy are scanned for a match. The CS parameter
applies only if DF=T; if DF=B and CS are specified, an
error message is generated. The default is 0.

Part 2
8-11 L

If a match is found within the defined range, subsequent
comparisons are made at the same interval. That is, if
record 275 of dataset A is equivalent to record 277 of
dataset B, the next comparison is between record 276 of
dataset A and record 278 of dataset B.

NOTE

If identical records occur within csn

records of each other, the pairing is
ambiguous and COMPARE can match the wrong

pair.

CW=cw or CW=cw, :c

ABORT=ac

Compare width. If CW=cw is specified, columns 1 through

cw are compared. If CW=Cw;:cw, is specified, columns

cwy through cw, are compared. Specifying CW without a
vaiue is not permitted. The default is to compare columns 1
through 133, but this can be changed by installation option.
The CW parameter applies only if DF=T; if DF=B and CW are
specified, an error message is generated.

If ac or more differences are found, the job step aborts.
Specifying ABORT alone is equivalent to ABORT=1 and causes
an abort if any differences are found. Specifying ABORT
does not prevent the listing of up to maxe differences.

PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE

The PRINT control statement writes the value of an expression on the
logfile. The value of the expression is written in three different
formats: as a decimal integer, as a 22-digit octal value, and as an ASCII
string. PRINT is a system verb.

Format:

PRINT (expression)

SR-0011

Part 2
8-12 L

Parameter:
expression
Any JCL expression (see part 3, section 2). This parameter
is required.

Logfile format:

FT060 decimal octal ASCII

FT060 Message code indicating origin is PRINT statement
decimal 16-digit decimal representation of evaluated expression
octal 22-digit octal representation of evaluated expression

ASCIT 8-character ASCII representation of evaluated expression

FLODUMP - FLOW TRACE RECOVERY DUMP

The FLODUMP utility recovers and dumps flow trace tables when a program
aborts with flow tracing active. The flow trace tables are dumped in the
FORTRAN flow trace format.

FLODUMP is invoked by specifying the F option on the CFT control
statement and including the FLODUMP control statement in the COS control
statement file. (Refer to the FORTRAN (CFT) Reference Manual, CRI

publication SR-0009, for more information on the F option.)

Format:

FLODUMP.

Parameters: None

The following example illustrates the use of the FLODUMP control
statement.

Part 2
SR-0011 8-13 L

JOB,
CFT,ON=F.
LDR.

EXIT.
DUMPJOB.
FLODUMP.

A flow trace summary is illustrated in figure 8-1; a flow trace recovery
dump is shown in figure 8-2.

The examples in figures 8-1 and 8-2 show that the total time reported for
the main program, ONF, is larger for the flow trace recovery dump

(FLODUMP) than for the flow trace summary.

The difference is that the

time reported with FLODUMP includes the main program's execution time,
the time required to abort the program, and the time required to recover
the flow trace tables.

FLOW TRACE —--- SUMMARY
ROUTINE TIME % CALLED AVERAGE T
1 ONF 0.000053 5.42 1 0.000053
CALLS SUBl
2 SUB1 0.000323 32.80 9 0.000036 CALLED BY ONF
CALLS SUB2
3 SUB2 0.000322 32.75 9 0.000036 CALLED BY SUBl
CALLS SUB3
4 SUB3 0.000286 29.04 9 0.000032 CALLED BY SUB2
*kk TOTAL 0.000985
**% OVERHEAD 0.000712
SUBROUTINE LINKAGE OVERHEAD SUMMARY 28 CALLS
MINIMUM MAXIMUM AVERAGE CYCLES SECONDS %
T REGISTERS 1 2 2.0 838 1.05E-05 1.0640
B REGISTERS 2 3 3.0 894 1.12E-05 1.1351
ARGUMENTS 0 0 0.0 0 0.00E+00 0.0000
TOTAL 1732 2.17E-05 2.1991
MAXIMUM SUBROUTINE DEPTH = 4
Figure 8-1. Example of a flow trace summary
Part 2
SR-0011 8-14 L

FLOW TRACE RECOVERY DUMP --- RECOVER WITH ONFDMP ACTIVE
FLOW TRACE --- SUMMARY

ROUTINE TIME % CALLED AVERAGE T
1 ONFDMP 0.000328 26.04 1 0.000328
CALLS SUB1
2 SUB1 0.000323 25.64 9 0.000036 CALLED BY ONFDMP
CALLS SUB2
3 sUB2 0.000322 25.61 9 0.000036 CALLED BY SUB1
CALLS SUB3
4 SUB3 0.000286 22.70 9 0.000032 CALLED BY SUB2
* k% TOTAL 0.001259
*k*x OVERHEAD 0.000712
SUBROUTINE LINKAGE OVERHEAD SUMMARY 28 CALLS
MINIMUM MAXIMUM AVERAGE CYCLES SECONDS
T REGISTERS 1 2 2.0 838 1.05E-05 0.83
B REGISTERS 2 3 3.0 894 1.12E-05 0.88
ARGUMENTS 0 0 0.0 0 0.00E+00 0.00
TOTAL 1732 2.17E-05 1.71

MAXIMUM SUBROUTINE DEPTH = 4

Figure 8-2. Example of a flow trace recovery dump

SYSREF - GENERATE GLOBAL CROSS—REFERENCE LISTING

The SYSREF utility generates a global cross—-reference listing for a group
of CAL or APML programs. The number of CAL or APML programs that can be
included in such a group is limited by the amount of Cray Computer System
memory allocated to a user.

SYSREF reads special binary symbol tables written by CAL or APML and
produces a single cross-reference listing for the program modules
represented in the tables. When the X parameter appears on a CAL or APML
statement, a record is written for each program unit assembled. The
records are written to a dataset specified by the X parameter ($XRF by
default or if X appears alone). Each record has a header containing the
name of the program unit. The rest of the record consists of
cross-reference information for every global symbol used in that program.

Part 2
SR-0011 8-15 L

Format:

SYSREF , X=xdn ,L=ldn.

Parameters:
X=xdn Name of dataset whose first file (normally the only file)
contains one or more symbol records written by CAL and/or
APML. The default is $XRF,.
L=ldn Name of output dataset. The default is $OUT.

USE OF SYSREF

SYSREF is usually used to process symbol records written by CAL and/or
APML earlier in the same job. To do so, add X parameters to each CAL or
APML control statement and follow them with a SYSREF control statement:

CAL, X.
APML,X.

CAL, X.

SYSREF, L=XROUT.

$XRF is used as default in all cases.

To process symbol records written in an earlier job, the following
sequence is used:

The first job:
CAL,X.
APML, X.
SAVE,DN=$XRF, ID=XX.

The second job:

ACCESS, DN=$XRF , ID=XX.
SYSREF, L=XROUT.

To add more symbol records before invoking SYSREF, use:

ACCESS,DN=$XRF, ID=XX,UQ.
SKIPR,DN=$XRF,NR.

CAL, X.

SYSREF.

Part 2
SR-0011 8-16 L

The format above has the same effect as if the CAL step had been done
before the SAVE step.

GLOBAL CROSS-REFERENCE LISTING FORMAT

The global cross-reference listing contains only global symbols. A
symbol is global if it is any one of the following:

® Named in an ENTRY or EXTERNAL statement

e Defined before an IDENT statement and after any preceding END
statement

® Defined within a system text such as $SYSTXT

® Defined within a section of source code bracketed by TEXT and
ENDTEXT pseudo instructions

The order of the symbols in the global cross-reference listing is
lexicographic, based first on the symbol name and then (within each
symbol name) on the module name. An exception to the order is made for
symbol names beginning with N@, S@, or W@. These symbol names are sorted
as if @ is the most significant (leftmost) character and the N, S, or W
is the least significant character. The listing displays the symbol name
correctly. The effect is a grouping of all the N@, S@, and W@ symbols
that refer to the same field in a table.

The global cross-reference listing consists of 13 columns:

Column Heading Contents

1 Value The symbol's value

2 Symbol The symbol's name

3 Origin The IDENT of the system text in which the symbol is

defined; or the label of the TEXT block in which
the symbol is defined; or *GLOBAL*, if the symbol
is defined outside any program unit; or blank.

4 Module The IDENT of the module within or before which the
symbol is defined or referenced
5-13 References A list of the lines on which the symbol is defined

or referenced

The symbol's name, value, and references appear in the same format as in
a CAL or APML listing. The page number in each reference is a local page
number which starts at 1 for each module. 1In a CAL or APML listing, this
is the page number that appears in parentheses to the right of the second
title line on each page.

Part 2
SR-0011 8-17 L

ITEMIZE - INSPECT LIBRARY DATASETS

The ITEMIZE utility prints a formatted report of the contents of a
dataset generated by CAL, CFT, BUILD, LDR, UPDATE, and other compatible

processors.

ITEMIZE is executed using the following control statement.

Format:

ITEMIZE,DN=dn,L=odn ,NREW,NF=n,T,BL,E,B,X.

Parameters:

DN=dn

L=odn

NREW

NF=n

BL

SR-0011

Local dataset name of the dataset to be listed. The default
is $OBL.

Local dataset name where listing is written. If L is
omitted or is specified alone, $OUT is used.

No rewind. Specifies the dataset is not rewound. If NREW
is omitted, the dataset to be listed is rewound before and
after ITEMIZE is executed.

Number of files within a dataset to be listed. 1If NF is
used alone, the contents of all files within the dataset are
listed. If NF=n, the contents of 7 files within the

dataset are listed. The default is NF=1.

Truncation. Specifying this parameter truncates lines on
the listing dataset to 80 characters. Optional parameter;
however, specifying this parameter precludes specifying the
E, B, and X parameters.

Burstable listing. When this parameter is specified, each
dataset heading starts at the top of a page. The default is
a compact listing in which a page eject occurs only when the
current page is nearly full.

Entry points. Specifying E causes all entry points to be
included in the listing. Use for binary library datasets
only.

Part 2
8-18 L

B Blocks. Specifying B causes all entry points, code, and
common block information to be included in the listing. Use
for binary library datasets only. (B overrides E.)

X Externals. Specifying X causes all entry points, code,

common block, and external information to be included in the
listing. (X overrides B.)

Restrictions:

® An UPDATE PL is recognized only if it is the only item in a
dataset.

® ITEMIZE operates on standard COS blocked datasets only.

A header containing the jobname, ITEMIZE version number, date, time, and
page number appears at the top of every page. The line shown below
appears following the header on page 1 (or only page). The line gives
the local dataset name of the dataset being processed.

ITEMIZE OF dn

ITEMIZE normally produces file-level output. However, for binary library
datasets, it produces a more detailed record-level output. The following
subsections describe both levels of output.

FILE~-LEVEL OUTPUT

ITEMIZE prints one line for each file examined (up to the maximum
specified by the NF parameter or the default of 1). A second header line
appears on each page and contains the column headings shown in figure 8-3.

TITEMA ITEMIZE 1.08 05/10/82 08:58:15 PAGE 1
ITEMIZE OF TESTPL
FILE RECORDS TYPE LENGTH CHECK PART DATE

1 6 PL 18 0650 0650 05/10/82
2 5 PL 15 0512 0512 05/10/82
3 4 PL 12 0313 0313 05/10/82
4 1 PL 6 3075 3075 05/10/82
5 1 PL 6 5756 5756 05/10/82
0 * EOD * 57 2334 2334

Figure 8-3. Sample listing of ITEMIZE for a PL

Part 2
SR-0011 8-19 L

Figure 8-3 is an example of ITEMIZE operating on a program library. The
control statement used to generate the listing was ITEMIZE,BL,NF.

FILE Sequence number of the file within the dataset
RECORDS Number of records within the file

TYPE Type of information contained within the file. If the file
is a member of a PL, the column contains PL. Other values
which may appear in this column are ABS, REL, DAT, and
???2. ABS and REL indicate absolute and relocatable program
modules, respectively. DAT indicates data, and 2?? is used
for otherwise unrecognized files.

LENGTH Length of the file in words

CHECK Checksum of the data within the file
PART This field is the same as CHECK for file-level output.
DATE Date of the PL from its directory or blank if other types

of datasets

A PL created by the UPDATE utility consists of many files. The last file
of the dataset must be a PL directory. If NF is not specified on the
control statement, ITEMIZE prints information only for the first files,
although it has examined the last file. The dataset must contain only a
PL.

OUTPUT FOR BINARY LIBRARY DATASETS

A binary library is a collection of binary records recognized by the
existence of a Program Description Table (PDT) Table. For binary library
datasets, ITEMIZE operates record-by-record rather than file-by-file.

The second header line for binary library datasets contains the column
headings shown in the following figure.

Figure 8-4 is an example of ITEMIZE operating on a binary library
dataset. The control statement used to generate the listing was
ITEMIZE,BL,NF,X. If the control statement had been ITEMIZE,BL,NF.,
lines with no entry in the REC column would not have appeared.

REC Sequence number of the record within the file
NAME Name of the program from the PDT
TYPE ABS or REL. ABS and REL indicate absolute and relocatable

program modules, respectively.

Part 2
SR-0011 8-20 L

TITEMA ITEMIZE 1.08 05/10/82 08:58:15 PAGE 1
ITEMIZE OF TESTLIB FILE 1
REC NAME TYPE LENGTH CHECK PART DATE
1 DUMMY1l REL 41 6200 0344 05/10/82 08:58:14 CFT 1.09 03/25/82
COMMENT :
* ENT * DUMMY1
* BLK * DUMMY1 MODULE LENGTH : 11
* BLK * #TB MODULE LENGTH : 4
* EXT * DUMMY2 DUMMY3
2 DUMMY2 REL 38 2177 0244 05/10/82 08:58:14 CFT 1.09 03/25/82
COMMENT :
* ENT * DUMMY 2
* BLK * DUMMY2 MODULE LENGTH : 10
* BLK * #TB MODULE LENGTH : 4
* EXT * DUMMY3
3 DUMMY3 REL 34 6403 0637 05/10/82 08:58:14 CFT 1.09 03/25/82
COMMENT :
* ENT * DUMMY 3
* BLK * DUMMY 3 MODULE LENGTH : 9
* BLK * #TB MODULE LENGTH : 4
1 * EQF * 113 0742 0065
TITEMA ITEMIZE 1.08 05/10/82 08:58:15 PAGE 2
ITEMIZE OF TESTLIB FILE 2
REC NAME TYPE LENGTH CHECK PART DATE
1 * DIR * REL 19 3512 3512
DIRECTORY ID : DOl DIRECTORY LENGTH : 19 WORDS .
MODULE NAME : DUMMYl NO. OF BLOCKS 1, NO. OF ENTRIES : 1, NO. OF EXTERNALS :
* ENT * DUMMY1
* BLK* #TB
* EXT * DUMMY2 DUMMY3
MODULE NAME : DUMMY2 NO. OF BLOCKS 1, NO. OF ENTRIES : 1, NO. OF EXTERNALS :
* ENT * DUMMY2
* BLK¥* #TB
* EXT * DUMMY3
MODULE NAME : DUMMY3 NO. OF BLOCKS 1, NO. OF ENTRIES : 1l, NO. OF EXTERNALS :
* ENT * DUMMY3
* BLK* #TB
2 * EOF * 19 3512 3512
0 * EOD * 132 1130 0246

Figure 8-4.

with X and NF parameters

LENGTH

CHECK Checksums
PART Checksums
DATE

Length of the record in words

Date of compilation from the PDT

Ccos 1.11 05/09/82

COS 1.11 05/09/82

COS 1.11 05/09/82

Sample listing of ITEMIZE for a binary library dataset

One line containing the data listed above is generated for each record.
If any of the E, B, or X options are specified on the control statement,

several additional lines can be printed.

is labeled separately as described below.

SR-0011

Part 2
8-21

The information in these lines

When E, B, or X is specified, the comment field of the PDT is printed on
a separate line. 1In addition, the entry point names are printed with
five names per line.

When B or X is specified, a separate line is printed for each block
containing its name and length.

When X is specified, the externals referenced by the program are printed
with five external names per line.

A binary library dataset contains a second directory file containing one
record. If E, B, or X is specified on the control statement, a line is
printed specifing the directory ID and length. In addition, entries,
blocks, and externals are printed as described above for program records.

Part 2
SR-0011 8-22 L

EXECUTABLE PROGRAM CREATION 9

The COS Relocatable Loader is a utility program that executes within the
user field and provides the loading and linking in memory of relocatable
modules from datasets on mass storage.

The relocatable loader is called through the LDR control statement when a
user requires loading of a program in relocatable format. Absolute load
modules can also be loaded. The design of the COS loader tables and
relocatable loader allows program modules to be loaded, relocated, and
linked to externals in a single pass over the dataset being loaded. This
minimizes the time spent in loading activities on the Cray Computer
System. The loader allows the immediate execution of the object module
or the creation of an absolute binary image of the object module on a

specified dataset. Loader features are governed by parameters of the LDR
control statement.

The relocatable loader can also generate a partially relocated module.

This module, referred to as a relocatable overlay, is described later in
this section.

LDR CONTROL STATEMENT

The loader is called into execution by the LDR control statement.
Parameters of the control statement determine the functions to be
performed by the loader.

Format:

LDR,DN=dn,LIB=1dn,NOLIB=1dn,LLD,AB=adn ,MAP=0p,SID="string"',T=tra,

/
[
NX,DEB=1,C=com,0OVL=dir,CNS,NA,USA,L=ldn,SET=val,E=n, I=sdir,
/ /
/
NOECHO, SECURE, GRANT=8C :8C . .. :8C,,,BC=b¢c, PAD=pad , NORED.
/

Part 2
SR-0011 9-1 L

Parameters are in keyword form.

DN=dn

LIB=ldn

SR-0011

Dataset containing modules to be loaded. The default is
$BLD. Loading continues until an end-of-file is reached.
Modules are loaded according to block name as determined by
a CAL IDENT card or a CFT PROGRAM, SUBROUTINE, BLOCK DATA,
or FUNCTION statement. Duplicate blocks are skipped and an
informative message is issued.

Multiple files from the same dataset can be loaded by
specifying the dataset name multiple times separated by
colons. A maximum of eight files can be indicated.

Datasets specified by the DN parameter are closed at the
end of the load process. Closing a dataset has the effect
of rewinding the dataset and releasing I/0 tables and
buffers.

Modules to be loaded can be relocatable or absolute.
However, the two types of modules cannot be mixed.

For example,
DN=LOAD1 :LOAD2: $BLD

causes the loading of all modules in the first file of
datasets LOAD1l, then LOAD2, and then $BLD.

Normally the dataset is rewound before loading; however,

consecutive occurrences of a dataset name inhibit
subsequent rewind operations. Therefore, the statement

DN=LOAD3:LOAD3

causes the loading of all modules in the first two files of
dataset LOAD3.

The DN parameter takes on a special quality when OVL is
specified: only one dn can be specified. The dataset
named is the initial LOAD file used by the overlay loader.
(See the description of overlay loading later in this
section for more information.)

The LIB parameter names the dataset from which unsatisfied
externals are loaded. A maximum of eight datasets can be
named, with the dataset names separated by colons.

Any default libraries are automatically included in the
library list unless the NOLIB parameter is specified. The
loader accesses the default libraries from the COS System
Directory (SDR) if they are not local to the job; no ACCESS
statement is required.

Part 2
9-2 L

Datasets specified by the LIB parameter are closed at the
end of the load process. Closing a dataset has the effect

of rewinding the dataset and releasing I/0 tables and
buffers.

NOTE
These datasets should be generated using the
BUILD utility to prevent unnecessary overhead in
the loader.

The libraries cannot be tape resident.

NOLIB=ldn The NOLIB parameter value names the specific default

LLD

AB=udn

SR-0011

library to be excluded from the load. Selecting NOLIB with
no value specifies the exclusion of all default system
libraries. If NOLIB is not specified, any default
libraries that a site has are automatically included in the

library list, along with any libraries specified on the LIB
parameter.

Specifying the LLD parameter causes any libraries included
in the load to be retained as local datasets at load
completion. These local datasets remain open. If the LLD
parameter is not specified, the loader closes all libraries
at load completion. Datasets automatically accessed are
not released at load completion.

Absolute binary object module generation. Use of this
parameter causes an absolute binary object module to be
written to the named dataset after the load process is
completed. Selecting AB does not imply NX (no execution).
Unless NX is also selected, the loaded program begins
execution after the binary is generated. Specifying AB
without adn causes the module to be written on a dataset
named $ABD, the default dataset. Some other dataset can be
specified by AB=adn. The dataset is not rewound before

or after the file is written.

If the AB parameter is omitted, no binary generation occurs.

If OVL is specified on the loader statement, the OVLDN
directive replaces AB; any value specified for AB is
ignored in overlay mode. Overlay loading is fully
described later in this section.

Part 2
9-3 L

MAP=0p

Map control. The MAP parameter causes the loader to
produce a map of the loaded program on the specified
dataset. MAP can take any of the following values:

ON Produces a block list and an entry list including
all cross references to each entry

FULL Same as MAP=ON
OFF No map is produced. MAP=0OFF is the default.

PART Produces a block list only. Equivalent to MAP
with no value specified.

SID="string'

T=tra

SR-0011

Debug routine loading. The SID parameter indicates the
system debugging routines (SID) are to be loaded with the
code. These routines comprise an additional binary dataset
loaded after all DN specified datasets and before any
libraries.

The 'string', if provided, is passed to SID for

evaluation as a control statement. The verb and initial
separator are not required. For example,
SID='I=IN,ECH=ELIST.' is a proper string specification (the
period is a required terminator). For a complete
description of SID parameters, see the Symbolic Interactive
Debugger (SID) User's Guide, CRI publication SG-0056. If
only SID is specified, all keyed default SID control
statement parameter values are used.

Transfer name. The T parameter allows specification of an
entry name where the loader transfers control at completion
of the load. The T parameter also specifies the entry
included in absolute binary object modules.

The entry name is a maximum of 8 characters. If no T
parameter is specified, the loader begins object program
execution at either the entry specified by the first
encountered START pseudo from a CAL routine or at the entry
of the first main program in CFT compiled routines. If no
START entries are encountered, a warning message is issued
and the first entry of the first relocatable or absolute
module is used.

Part 2
9-4 L

NOTE

When the SID parameter is used, the load
transfer is to the system debugger; the T
parameter is ignored; and a warning message
is issued to the user logfile.

NX No execution. Inclusion of this parameter inhibits
execution of the loaded program.

DEB=1 Job Communication Block (JCB) length. The default
length is 200g. Specifying DEB without a value
changes the JCB length to 3000g.

C=com Compressed load. The C parameter allows control of the
starting locations of modules and common blocks. An
align bit is set for each relocatable module and common
block that contains an ALIGN pseudo-op (see the CAL
Assembler Version 1 Reference Manual, CRI publication
SR-0000). C can take on any of the following values:

ON Forces the loading of each module and common
block to begin at the next available location
after the previous module or common block,
ignoring the align bit. Equivalent to C with no
value specified.

PART Forces the loading of each module and common
block with the align bit set to an instruction
buffer boundary.r If the align bit is not
set, then that module or common block is loaded
at the next available location after the

previous module or common block. C=PART is the
default.

OFF Forces the loading of every module to an
instruction buffer boundary.f Common blocks
are forced to 20g-word or 40g-word
increments only if the align bit is set.

+ Instruction buffer sizes are 208 words for the CRAY-1 S and 408
words for the CRAY X-MP.

SR-0011 9-5 L

OVL=dir Overlay load. The OVL parameter indicates an overlay
load sequence is specified on dir. Overlay loading is
explained in detail later in this section. If the OVL
keyword is specified without a value, the loader
examines the next file of $IN for an overlay load
sequence. The default is no overlay load. Selecting
OVL implies NX (no execution).

CNS Crack next control statement record image. This feature
allows the loader to pass parameters on to the loaded
Program for analysis and use during execution of the
loaded program. The control statement cracked follows
the LDR control statement and is not available for
processing by the Control Statement Processor (CSP)
after processing by the loaded program.

NOTE

When the SID parameter is specified, the CNS
parameter is ignored and a warning message is
written to the user logfile. SID prompts for
the control statement for the code being
debugged.

NA No abort. If this parameter is omitted, a caution or
higher level loader error causes the job to abort.

UsSA Unsatisfied external abort. When USA is specified, the
loader aborts at the end if it finds one or more
unsatisfied externals. A load map listing all unsatisfied
externals is produced, if called for.

L=Lldn Listing output. This parameter allows the user to specify
the name of the dataset to receive the map output. If L=0,
all output is suppressed. The default is $OUT.

SET=pal Memory initialization. Variables, named and blank common
blocks, and storage areas defined by DIMENSION statements
are set to 0, -1, or an out-of-range floating-point value
during loading. The default is an installation option.

SET=ZERO Memory is set to binary zeros.

SET=ONES Memory is set to -1 (all bits set in word).

Part 2
SR-0011 9-6 L

E=n

I=sdir

NOECHO

SR-0011

SET=INDEF Memory is set to a value that causes an
out-of-range error if the word is referenced
as a floating-point operand. The ones
complement of each memory address is placed in
the low-order 24 bits of the respective word
to aid in reading register and memory dumps.
An example, in octal, of the value loaded into
memory word 13216 is: 0605050037740177764561.

Lists error messages. This parameter indicates which
level of loader-produced error messages are not to be
listed. The user specifies one of five levels of severity,
where 7 is the highest level to be suppressed. The
default for this parameter is E=2.

Level Type Description
1 COMMENT Error does not hinder program
execution.
2 NOTE Error probably hinders program
execution.
3 CAUTION Job aborts when load process

completes unless NA is selected;
program might not execute properly.

4 WARNING Job aborts when load process
completes unless NX is selected;
program execution is not possible.

5 FATAL Job aborts immediately.
Example:

E=2 suppresses COMMENT and NOTE messages and allows
CAUTION, WARNING, and FATAL messages to appear. FATAL
messages are never suppressed.

Selective load. Modules from other datasets can be loaded
according to a set of directives. 8dir indicates the
dataset containing the directives. If the I keyword is
specified without a value, the directives are taken from
the next file of $IN. The selective load directives are
described later in this section.

Suppress writing the current control statement to the user
logfile (that is, the control statement which invoked the
actual loading into memory will not be written to the
logfile).

Part 2
9-7 L

SECURE Define each dataset created during this job step to be
secure (that is, to be released during job advancement
unless specifically overridden with a F$DSD operating
system request).

GRANT Grant the privileges defined as parameters if this module
is loaded from the System Directory (SDR). (These

privileges will be merged with the users' only for the
duration of the job step.) The following parameters are

defined:

SCRDSC Read DSC page

SCSPOL SAVE/ACCESS/DELETE/LOAD/DUMP spooled dataset
SCLUSR Load user dataset

SCDTIM Dump time request

SCOSDT Dequeue/queue SDT requests

SCUPDD Access user dataset for PDSDUMP

SCACES Access user-saved dataset without passwords
SCODXT LINK/MODIFY DXT requests

SCENTR ENTER option on ACCESS

SCNVOK Invoke job class structure

SCDUMP Allow F$DJA requests anytime

SCPRIV Allow special system requests

BC=be¢ Blank common. bc¢ specifies the decimal number of words
to be added to the size of blank common when the program is

loaded for execution. The default is 0.

PAD=pad Pad. pad specifies the decimal number of words of
unused space to be made available in the job when the
program is loaded for execution. After the program is
loaded with its requested extra space the job is placed in
user-managed field length reduction mode for the duration
of the job step. The default is 0.

NORED No field length reduction. Before the program is loaded

the job is placed in user-managed field length reduction
mode for the duration of the job step.

LOADER EXAMPLE

To generate a routine to allow any user to dump datasets, the following
would be used (this would then work only if the loaded module resides in

the COS System Directory):

LDR,MAP,NX, AB=PDSDUMP, GRANT=SCRDSC : SCUPDD, SECURE,

Part 2
SR-0011 9-8 L

LOADER ERRORS

Following is a list of the errors encountered by the loader. The errors
are listed by level.

Comment :
Blank common redefined
Named common redefined smaller
Generating BUILD directory for Library
All files searched
Name included before
Name excluded before
Note:
Overlay member not found
Multiple load datasets ignored in overlay mode
Illegal map value
No start address found - first entry used
Duplicate entry loaded and ignored
Duplicate program block name encountered and skipped
Bad directory format on library dataset
Unsatisfied external
Disabled parameter selected and ignored
Dataset replaced by file DN
Invalid read, try again
No selective modules from dataset
Skip dataset included before
Invalid selective file
Caution:
Blank common address not large enough
Dataset name too long
Named common defined larger
Relocatable load module in absolute mode
Member error
Directive error
Illegal character in overlay directive
Compile error
Transfer is to SID; T parameter ignored.
SID loaded; CNS parameter ignored.
Absolute load module in relocatable load
Warning:

Start entry not found
Bad XI field in External Relocation Table (XRT) Table

SR-0011 9-9 L

Fatal:

More than one internal relocation block

Invalid table type

Unable to open specified dataset

Null file or abnormal table found

Invalid program block name

Initial table not Program Description Table (PDT)

LOAD MAP

Each time the loader is called, the user has the option of requesting a
listing that describes where each module is loaded and what entry points
and external symbols are used for loading. This listing is called a load
map.

The user specifies the contents of the map or the dataset to receive the
map by setting parameters of the LDR control statement to the desired
values. The MAP parameter of the LDR control statement allows the user
to specify the contents of the map requested. MAP=ON or MAP=FULL
produces a block list and an entry list. The block list gives the names,
beginning addresses and lengths of the program and subroutines loaded on
this loader call; the entry list includes all cross references to each
entry. MAP=PART supplies a partial map, that is, the block map only.

The load map is printed when requested even if fatal errors abort the
load. In this case, the map contains only those modules loaded up to the
point where the fatal load error occurred.

Figure 9-1 illustrates the load map generated by the following LDR
statement:

LDR,DN=$BLD:LOAD2, LIB=MYLIB,MAP=FULL.

The block list consists of items 1 through 16 in figure 9-1; the entry
list includes items 17 through 21.

Job name from the JOB control statement

Loader level and Julian date of assembly of the loader
Date and time of loader execution

Page number

Load type; either relocatable, absolute, or overlay

Entry name to which initial transfer is given

OOOGEO

Part 2
SR-0011 9~-10 L

®

T3675D2 <:) LDR X.12 83126 05/18/83 08:39:37 PAGE 1
RELOCATABLE LOAD <:>
LOAD TRANSFER IS TO <:> AT ((:))
DATASET BLOCK<:> ADDRESS LENGTH DATE 0S REV PROCSSR VER. COMMENT
® svorm o e @ ® W ®
$BLD TYPECHK 200 1227 05/18/83 COS X.12 CFT X.11 05/10/83
LOAD2 ABCDEFGH 1427 23 05/18/83 COS X.12 CFT X.11 05/10/83
MYLIB X1 1500 30 05/18/83 COS X.12 CFT X.11 05/10/83
X2 1540 30 05/18/83 COS X.1l2 CFT X.l1ll1 05/10/83
$WFD 13727 2027 05/06/83 COS X.12 CAL X.12 05/06/83
$wWuT 15756 1035 05/06/83 COS X.1l2 CAL X.1l2 05/06/83
BLOCK NAME ENTRIES ENTRY VALUE ABSOLUTE REFERENCES
TYPECHK TYPECHK 736a
ABCDEFGH ABCDEFGH 1432a 14104
X1 X1 1510a 14354
$wuT WUTI 16056a 15205c 15206b
WUTD$% 16174a 15213c 15217a 15220c
(:) WUTF 16254a 15221b
% LOAD IMAGE STATISTICS ***
ABSOLUTE BINARY LENGTH: 7691 (10), 17013(8) WORDS
PROGRAM IMAGE: FWA = 200(8), LWA = 17213(8)

Figure 9-1. Example of a load map

Part 2
SR-0011 9-11 L

©EE

OEEO® ®® ® GGG

®

SR-0011

Entry address where initial transfer is made
Name of load or library dataset containing modules to be loaded

Names of blocks loaded from the named dataset. These are common
blocks (identified by the slashes around their names, for
example, /LABEL/) are names of program blocks.

*SYSTEM is always the first block listed in a relocatable load.
It consists of the first 200 (octal) words of the user field,
which is reserved for the Job Communication Block (JCB). For an
absolute load, *SYSTEM is not allocated. Therefore, the CAL
user must set the origin to 200 (octal) via an ORG pseudo
instruction to allow space for the JCB. If this is not done,
the job aborts.

Blank common, indicated as //, is allocated last and appears at
the end of the list (if it has been defined).

Octal starting address of the block
Octal word length of the block
Date the object module was generated

Operating system revision date at the time the object module was
generated

Name and revision level of the processor that generated the
object module

Revision date of the processor that generated the object module

Comment (if any) from CAL COMMENT pseudo included in the load
module

Name of program block referenced
Entry points in the program block
Word address, parcel address, or value of each entry point

Absolute parcel addresses of references to each entry point.
Eight references are listed per line; some entry points have no
references.

Actual length of the binary; the minimum amount of memory
required to load the program. FWA is the first word address of
the load image. LWA is the last word address of the load
image. The numbers in parentheses are (10) decimal and (8)
octal.

Part 2
9-12 L

SELECTIVE LOAD

If the I keyword is present on the LDR control statement, one or more
INCLUDE and/or EXCLUDE directives are examined in the specified dataset.

Formats:

INCLUDE, SDN=8dn , FN=f7n ,MOD=md 1 :md gz .. . :md 5.

EXCLUDE, SDN=8dn,FN=f7,MOD=md | :md 5t « . « :md 5+

Parameters are in keyword form.

SDN=sdn

FN=fn

MOD=mnd

SR-0011

Name of dataset containing modules to be selectively
loaded. If SDN is specified without a value, the first
dataset specified on the DN parameter of the LDR statement
is the default. If the SDN parameter is omitted, an error
message results, and the directive is skipped; the load
does not abort. The SDN and FN parameters must refer to
the same dataset.

File number of the specified dataset. A number from 0
through 7. fn refers to the file by its numerical
position in SDN or in the DN parameter of the LDR statement.

For example, if DN=D1:D1:D2, the first file of D1 has an
fn of 0, and the second file of D1 has an fn value of

1. If FN is specified without a value, the default is 0.
If FN is omitted, the whole of sdn is searched for the
correct module; a message is issued for a complete 8dn
search. The SDN and FN parameters must refer to the same
dataset.

To load a module from the first file of D1, the directive
can include the parameter FN=0; however, if FN is specified
without a value, the default is to load a module from the
first file.

Module name or entry point to a module to be included or
excluded from the load. Up to 50 modules can be specified;
the modules must be separated by colons. If the MOD
parameter is omitted, an error message results, and the
directive is skipped.

Part 2
9-~-13 L

Example: Given the LDR statement
LDR,DN=D1:D1:D2,...,1.

A directive to load a module from the second file of dataset D1 includes
the following directive in the next file of $IN:

INCLUDE, SDN=D1,FN=1,MOD=... .

Selective load messages are never suppressed.

PARTIALLY RELOCATED MODULES

When a binary module is defined as a relocatable overlay, the loader can
generate an image of the module that has been only partially relocated.
The image of the binary module contains sufficient information for a user
program to relocate all address references within the module program
block according to the actual address where the user program determines
the module should be executed.

The relocatable overlay is useful because program modules are generated

so that a common memory pool can execute the overlay and any of several
overlays can execute at any address within the pool.

GENERATION OF RELOCATABLE OVERLAYS

The CAL assembler defines a module as a relocatable overlay at assembly
time with the MODULE pseudo-op.

ignored |MODULE type

Parameters:

type A keyword parameter identifying the type of module being
defined. RELOCOVL is the only type currently available.

When the relocatable overlay is defined by the assembler, COS sets a
special flag in the Program Description Table (PDT) for use by the
relocatable loader.

Part 2
SR-0011 9-14 L

The loader, recognizing that the current module being loaded is a
relocatable overlay, performs limited relocation of the address
references in the module. That is, all references to labeled common
blocks and all references to entry points defined within other modules
are adjusted according to the address where the other module resides in
the memory image being constructed. References to blank common are
illegal. It is also illegal for any other module to make any reference
to any entry point defined to be within the relocatable overlay module.
References from within the module to addresses within the module are not
adjusted at this time. Instead, a copy of the necessary Block Relocation
Table (BRT) entries is included in the memory image of the module. All
BRT entries not needed for satisfying internal references are deleted.

The absolute memory image of the program constructed by the loader
contains the loaded programs, including all relocatable overlay modules.

The relocatable overlays are physically located at the end of the memory
image; all nonrelocatable overlay modules are loaded contiguously in the
order they are encountered. Relocatable overlay modules can appear at
any point in the load sequence and can be contained in libraries. The
loader moves modules in memory as required to order the relocatable
overlays at the end of the image. This placement of the overlays makes
it possible for a user program to locate the images of each overlay and
to copy the overlays to mass storage, if it is desired, in order to make
the memory space used by the overlay images available for use by the
program.

MEMORY LAYOUT WHEN RELOCATABLE OVERLAYS EXIST

When the loader has detected the existence of one or more relocatable
overlays, memory is laid out in the following manner:

1. All nonrelocatable modules, in the order they are encountered on
load datasets or in libraries

2. Labeled common blocks interspersed among the nonrelocatable
modules so that a labeled common block precedes the absolute
image of the first block encountered which defines the block

3. All labeled common blocks defined first within a relocatable
overlay module and not defined within any other type of module

4. 1Images of all relocatable overlays in the order they are
encountered on load datasets or in libraries

5. Unsatified external (USX) program which is the loader's internal
program for processing unsatisfied external references

6. Blank common if defined by any program module

Part 2
SR—-0011 9-15 L

Note that the placement of USX and blank common can defeat the purpose of
relocatable overlays, since the overlay images must remain reserved.
With proper care, the program can use the space occupied by the overlay
images for internal tables and other data with nonallocated space.

MEMORY LAYOUT OF A RELOCATABLE OVERLAY IMAGE

When the loader completes constructing the image of the complete program
being loaded, the relocatable overlay portions have a different structure
than do the nonrelocatable overlay portions. Normal modules are loaded
as an absolute image with all loader-related tables removed. All address
references, both internal to the module and to other modules, are
adjusted so that the code executes correctly. If the C parameter is
specified when the loader is called into execution, individual modules
can begin immediately after the previous module, or they can begin at the
next l6-word (decimal) boundary.

Because relocatable overlay modules are expected by the loader to be
moved to a different address for execution, the C specification has no
meaning to a relocatable overlay module, and the first and subsequent
such modules begin immediately after the last word of the previous module.

Relocatable overlay module images also contain loader-relocated tables.
These tables are required so that the user program can adjust address

references within a relocatable overlay when it has determined the
address where the overlay will execute. The tables are:

PDT Program Description Table

TXT Text Table
BRT Block Relocation Table

The PDT contains information regarding the number of entry points defined
and the number of blocks and external references. The TXT contains a
count of the words in the actual image of the code, followed by the
semi-absolute image of the code. The BRT contains information necessary
for adjusting address references within the module. If the user program
wants to write the overlays to mass storage, the information in the PDT
can be used to construct a directory or similar table for locating
specific overlays or entry points, and then can be discarded. TXT and
BRT must be retained in the mass storage copy for future relocation of
address references.

Part 2
SR-0011 9-16 L

OVERLAYS

Very large programs might not fit in the available user memory space or
might not use large portions of memory while other parts of the program
are in execution. For such programs, the COS relocatable loader includes
the ability to define and generate overlays--separating modules that

the user creates and then calling and executing as necessary.

Two types of overlays are available.

e Type 1 overlays are dgenerated by using the directives ROOT,
POVL, and SOVL. Two levels of overlays in addition to the root
overlay are allowed with calls to a maximum of 999 adjacent
overlays.

e Type 2 overlays are dgenerated by using the directive OVLL. Ten
levels of overlays in addition to the root overlay are allowed
with calls to a maximum of 63 adjacent overlays.

The overlay loader can also generate a partially relocated module,
referred to as a relocatable overlay. Relocatable overlays have been
fully described earlier in this section.

The overlay structure, rules for overlay generation, and overlay calls
for both types are described in this section. The control statements
used to generate the overlay and the directives common to both types of
overlays are described first. Specific rules for generation of Type 1
and Type 2 overlays are described separately in the following subsections.

Overlay generation consists of a load operation in which the loader
performs relocatable loading and writes the resulting binary image to
disk. One named absolute binary record is written per root and each
overlay.

If the LDR control statement has the parameter OVL=dir, the loader

finds the overlay generation directives on the named dataset, dir. If
no dataset is given (that is, OVL), then the loader reads overlay

deneration directives from $IN.

The format of the control statement is:

LDR,...,OVL=d1?r,

Part 2
SR-0011 9-17 L

OVERLAY DIRECTIVES

An overlay directive consists of a keyword and a parameter. A blank,
comma, or open parenthesis must separate the keyword from the parameter.
A period, closed parenthesis, or two consecutive blanks serve as the
terminator. A caret at the end of the directive line indicates that the
next line is a continuation of the current directive. The caret cannot
be preceded by a blank; it must immediately follow the last character of
the line.

FILE directive

The FILE directive indicates the dataset, dn, containing the routines

to be loaded. This directive's function is similar to that of the DN
parameter on the LDR control statement. It is generally the first
directive on the directives dataset but appears at any time and as often
as necessary thereafter. If no FILE directive appears, the loading
Proceeds from the dataset specified on the DN parameter of the LDR
control statement. If that too has been omitted, loading initially
occurs from $BLD. This directive is common to both overlay types.

Format:

FILE,dn.

OVLDN directive

The function of this directive is similar to that of the AB parameter on
the LDR control statement. This directive names the dataset, dn, on
which overlays are written. The dn parameter must be present. If no
OVLDN directive is present, the default overlay binary dataset ($OBD) is
assigned. All overlays dgenerated following an OVLDN directive reside as
separate binary records on dataset dn. OVLDN directives appear as

often as desired. This directive is common to both overlay types.

Format:

OVLDN,dn .

Part 2
SR-0011 9-18 L

SBCA directive

The SBCA directive sets the blank common starting address to the
specified address. This directive allows the user to place blank common
after all load modules in the current overlay structure. The address
specified must be larger than any address used in the overlay structure.
This directive must appear before any overlay generation directive, such
as ROOT or OVLL.

Format:

SBCA,address.

where address is the octal address assigned to blank common.

TYPE 1 OVERLAY STRUCTURE

Each Type 1 overlay is identified by a pair of decimal numbers, each from
0 through 999. There must be one and only one root overlay; its level
numbers are (0,0). This root remains in memory throughout program
execution. Primary overlays all have level numbers (7,0) where 7 is

in the range 1 through 999.

Primary overlays are called at various times by the root and are loaded
at the same address immediately following the root. A secondary overlay
is associated with a specific primary overlay. The secondary level
numbers are (n,m), where n is the primary level, and m is in the

range 1 through 999. All secondary overlays associated with a given
primary (that is, the same 7n) are loaded at the same address

immediately following that primary.

Only the root, one primary overlay, and one secondary overlay can be in
memory at one time.

Figure 9-2 is a diagram of a sample Type 1 overlay loading. The primary
and secondary overlays are shown in time sequence. The sequence of
generation does not imply that the routines are loaded into memory in the
same sequence or that they remain in memory for a set period of time when
they are executed.

All external references must be directed toward an overlay nearer to the
root. For example, overlay (1,0) can contain references to the root
(0,0) but not to overlay (1,1). Overlay (1,1) can contain references to
both (1,0) and (0,0).

Part 2
SR-0011 9-19 L

The loader places named common before the routine that first references
it. All named common references must be directed toward a lower level
routine. The lowest level routine with a named common block must contain
data statements for that block.

For example, in figure 9-2,

MAIN can reference named common A only

SUBl1 and SUB2 can reference named common A and B only

TEST can reference named common A, B, and C
The loader allocates blank common immediately after the first overlay
where it is declared. If blank common is declared in the root overlay
(0,0), it is allocated at the highest address of the root overlay and is
accessible to all overlays. If blank common is first declared in primary
overlay (1,0) and not declared in the root (0,0), then it is accessible
only to the (1,x) overlays. Allocation and placement of blank common
is also manipulated by the user through the SBCA director.
JCHLM is set to the highest address of the root overlay before loading.

If a subsequent overlay module requires additional memory, JCHLM is reset
to the highest address of that module.

TYPE 1 OVERLAY GENERATION DIRECTIVES

The overlay generation directives define the structure of the overlay.
Included in this class are the ROOT, POVL, and SOVL directives.

ROOT directive

This directive defines programs, subroutines, and/or entry points
comprising the load from dn. For programs written in CAL, list each
entry referenced. FORTRAN programs need the program name only. All
members for this directive reside on the same dataset, dn, as defined
by the FILE directive.

Format:

ROOT ,member ,member,,member.,.

Part 2
SR-0011 9-20 L

0 | | . |
JOB COMMUNICAT | ON
BLOCK
2004
NAMED COMMON A
PROGRAM MAIN
NAMED COMMON B
SUBROUTINE SUBI ROOT (0,0)
SUBROUTINE SUB2
>
5 BLANK COMMON
5
= Inamep comMon ¢ 1 |suBROUTINE
PRIMARY ALPHA (3,0) (2,0)
(1,0) ’ ’
SUBROUTINE TEsT '|* | (2,0) |]
SUBROUTINE
SUB= SUB= BETA
ROUT INE ROUT INE (5.0)
NEW1 NEW2 | yBROUTINE
SECONDARY | (1,2) DELTA
semm| (D] (2.1)

(5,1) { (5,2) | (5,3)

- —— e — — e e — e e — e ——

Figure 9-2. Example of Type 1 overlay loading

Part 2
SR-0011 9-21 L

POVL directive

This directive causes relocatable loading of the named blocks to the
primary overlay with the name plevel:000. The size of the root
determines the base location. All members for this directive reside on
the same dataset, dn. The first member in the list is the one that
receives control when the overlay is loaded. For routines written in
CAL, the first entry point of the first routine receives control.

Format:

POVL,plevel ,membery,member,, ... ,member,,.

where plevel is between 1 and 999.

SOVL directive

This directive causes relocatable loading of the named blocks to the
secondary overlay with the name plevel:slevel. The length of POVL
(plevel :000) determines the base location. All members for this
directive reside on the same dataset, dn. The first member in the
list is the one that receives control when the overlay is loaded. For
routines written in CAL, the first entry point of the first routine
receives control.

Format:

SOVL,slevel,membery,member,, ... ,member,,.

where slevel is between 1 and 999.

Generation directive example

In the following example,
DSET1 contains routines THETA, TEST, GAMMA, SUBl1, MAIN, SUB2.

DSET2 contains routines NEW2, ALPHA, OVER, NEWl, DELTA, EPSILON,
SIGMA, BETA.

Part 2
SR-0011 9-22 L

Format of the control statement that initializes overlay generation:
LDR,...,0OVL=0OVLIN,....

Dataset OVLIN contains the following directives:
FILE,DSET1. Loader selectively loads from dataset DSETI.

OVLDN, LEV0O. The following overlay modules are written to the
dataset LEVO0O.

ROOT,MAIN,SUB1 The absolute binary of MAIN,SUB1,SUB2 is
,SUB2. written as the first record on dataset LEV(O.
POVL,1,TEST. The binary of TEST is named 001:000 and is

binary record 2 on dataset LEVO0O.
FILE,DSET2. Loader selectively loads from dataset DSET2.

SOVL,1,NEWl. The binary of NEWl is named 001:001 and is
binary record 3 on dataset LEV0O.

OVLDN,LEV12, The subsequent overlay modules are written to
the dataset LEV12.

SOVL, 2,NEW2. The binary of NEW2 is named 001:002 and is
binary record 1 on dataset LEV12.

POVL, 2,ALPHA,BETA. The binary of ALPHA,BETA is named 002:000 and is
record 2 on dataset LEV12.,

eof End of overlay load sequence

TYPE 1 OVERLAY GENERATION RULES

1. Overlay members are loaded from datasets named in FILE
directives. Members are searched for in the most recently
mentioned dataset only. In the absence of a FILE directive,
members are loaded from the dataset specified on the LDR control
statement. If that is also omitted, loading will initially
occur from $BLD. Currently, the relocatable modules of all
members for any overlay level must reside on the same file.

2. The overlays are generated in the order of the directives.

Part 2
SR-0011 9-23 L

3. There must be one and only one root.

4. Level hierarchy must be maintained. The root overlay must be
generated first; hence the ROOT directives appear first.
Following the root generation, a primary overlay (POVL) is
generated. No limitation is placed on which primary overlay
number (plevel) is generated; however, all secondary overlays
(SOVL) associated with the plevel must follow. The secondary
overlay slevels can be generated in any order following their
respective primary level.

5. An end-of-file in the directives file ends the input of overlay
directives; hence overlay generation.

6. Any directive other than FILE, OVLDN, SBCA, ROOT, POVL, or SOVL
causes a fatal error.

7. The list of members can be continued to another line by using a
caret immediately following the last character at the end of the
directive line (that is, no blanks). The A does not replace a
separator and must not appear within a member name.

8. Any number of lines can be used to name the members of an
overlay.

TYPE 1 OVERLAY EXECUTION

A control statement call of the dataset containing the ROOT overlay
initiates its loading and execution. If no OVLDN directives are used
before generating the ROOT, the dataset $OBD contains the ROOT overlay.

The following sequence executes the root overlay after generation:

LDR,...,OVL=dir,... .
$OBD.

During overlay deneration the members are loaded from the FILE dataset
in the order they appear on the dataset, regardless of their order of
appearance in the members list. The entry for POVL and SOVL overlays is
defined by the first member listed on the generation directive. Control
is transferred to this address after loading by the $OVERLAY routine
during program execution. The ROOT entry is named using the T parameter
on the LDR control statement.

The user calls for the loading of overlays from within the program, and
the method by which they are called depends on the program language in

use (FORTRAN or CAL). OVERLAY is a subroutine of the root overlay and

is loaded into memory with the root.

Part 2
SR-0011 9-24 L

FORTRAN language call

A FORTRAN program calls for the loading of overlays as follows:

CALL OVERLAY(nLdn,leveZl,levelz,r)

n Number of characters in the name

L Left-adjusted; zero-filled.

dn Name of the dataset where this overlay resides
levell Primary level number of the overlay

levelz Secondary level number of the overlay

r An optional recall parameter. If the user wishes to

re-execute an overlay without reloading it, 6LRECALL is
entered. If not currently loaded, it will be loaded.

CAL language call

A sample call sequence from a CAL program is as follows:

Location|Result Operand
EXT OVERLAY
CALL OVERLAY, (OVLDN, PLEV,SLEV)
OVLDN CON A'LEV12'L
PLEV CON 2
SLEV CON 0

where OVLDN is the address of the dataset name, PLEV is the address of
the primary level, and SLEV is the address of the secondary level. If
recall is desired, the address of the literal 'RECALL' is transmitted as
the fourth argument.

Part 2
SR-0011 9-25 L

Example:

Location}Result Operand Comment
(1 10 20 35
CALL OVERLAY, (OVLDN,PLEV,SLEV,RECL)
RECL CON '"RECALL'L

For both FORTRAN and CAL language calls, during execution of the
ROOT (0,0) program MAIN, the statement

CALL OVERLAY (5LLEV12,2,0) or the above CAL sample call

causes OVERLAY to search dataset LEV12 for the absolute binary named
002:000. OVERLAY positions the dataset LEV12 to the location of the
absolute binary named 002:000 using information supplied by the loader,
loads the overlay, and transfers control to the first member specified on
the POVL or SOVL directive. After execution of the overlay, control
returns to the statement in MAIN immediately following the CALL
statement. Following the load, dataset LEV12 is positioned immediately
after the end of record for the overlay (2,0). If overlay (2,0) is not
on dataset LEV12, a fatal error results.

Placing a call for a secondary overlay for which the corresponding
pPrimary overlay is not already loaded causes OVERLAY to load both
overlays. Control transfers to the secondary after both overlays are in
memory. A fatal error results if the primary and secondary overlays are
not both on the named ovlidn. If the overlays reside on different
datasets, the user must place separate calls to load the overlays in the
correct order.

TYPE 2 OVERLAY STRUCTURE

A Type 2 overlay is identified by a pair of decimal numbers indicating
the overlay level and the number of the overlay within that level. The
overlay notation is of the form (level, number) where the value of
level is in the range 1 through 10 and the value of number is in the
range 1 through 63. Only one root overlay exists; its level number is
0. The root overlay remains in memory during the entire program
execution and calls only level 1 overlays.

Figure 9-3 shows a sample Type 2 overlay loading diagram. The overlays
are shown in time sequence. The sequence of generation does not imply
that the programs are loaded into memory in the same sequence or that
they remain in memory for a set period of time when they are executed.

Part 2
SR-0011 9-26 L

JOB COMMUNICATION
BLOCK

2004

NAMED COMMON A
PROGRAM MAIN

memory

NAMED COMMON B
SUBROUTINE SUB1

SUBROUT INE SuUB2

BLANK COMMON

LEVEL
(ROOT)

(=]
~—

SUBROUT INE

NAMED COMMON C

LEVEL 1
(1,1)
TEST

(1,5)

SUBROUT INE
NEWI1

LEVEL 2
(2,1) |

SUB=
ROUT INE
NEW2
(2,2)

(1,2)

(1,3)

SUB=
ROUTINE
ALPHA

LEVEL 3

JCHLM

(3,1) |

SuB=
ROUT INE

BETA
(3,2)

(2,1)

(2,1)

(2,4)

(3,1)

SR-0011

Figure 9-3.

(4,1)

(4,2)

Example of Type 2 overlay loading

Part 2

9-27

Level 1 overlays are called at various times by the root overlay. Each
call loads the named overlay at the same address, immediately following
the location of the root. The first level overlay must be called by the
root. Each upper level overlay is called by the associated overlay at
the adjacent lower level. A hierarchy exists among overlay levels; an
upper level overlay is subordinate to the proximate lower level

overlay. An upper level overlay associated with overlay (2,1) might be
(3,2), (3,3) or (3,4).

An overlay can call into memory any overlay in the next higher level; it
cannot call an overlay more than one level above it in the hierarchy.
For example, overlay (2,1) can call (3,1) through (3,63), but it cannot
call (4,1). Each call for an overlay loads the named overlay at the
same address location immediately following the location of the calling
overlay. Only the root and one overlay at each level can be in memory
concurrently.

All external references must be directed toward an overlay nearer the
root overlay. Overlay (1,1) can contain references to the root overlay
but not to overlay (1,2) or overlay (2,1). The (2,1) overlay can
reference externals in both the (1,1) overlay and the root overlay.

The loader places named common blocks before the routine that first
references it. All named common references must be directed toward a
lower level routine (toward the root overlay). If blank common is
declared in the root overlay, it is allocated at the highest address of
the root and is accessible to all overlays. If blank common is declared
first in a level 1 overlay, for example, and is not declared in the root
overlay, it is accessible only to level 1 and upper level overlays.

JCHLM is set to the highest address of the root overlay before loading.

If a subsequent overlay module requires additional memory, JCHLM is
reset to the highest address of that module.

TYPE 2 OVERLAY GENERATION DIRECTIVE

The Type 2 overlay directive defines the structure of the overlay within
the directive format.

OVLL directive

This directive causes relocatable loading of the named blocks of an
overlay. The size of the lower level overlays in the group determines
the base location. All members for this directive reside on the same
dataset, dn, specified by the FILE directive. The first member in the
list is the one that receives control when the overlay is loaded. For
programs written in CAL, the first entry point of the first routine
receives control.

Part 2
SR-0011 9-28 L

Format:

OVLL,level ,number,member, ,member,, ... ,member,.

level Either a level number of the overlay (1 through 10), or the
root phase (0). If the root phase is being generated,
number must be omitted.

number Number of the overlay (1 through 63) within the level

member Module names for the individual overlays

Generation directive example

In the following example,
DSET1 contains routines THETA, TEST, GAMMA, SUBl, MAIN, SUB2.
DSET2 contains routines NEW2, ALPHA, OVER, NEWl, DELTA, EPSILON,
SIGMA, BETA.
Format of the control statement that initializes overlay generation:

LDR,...,OVL=0VLIN, ...

Dataset OVLIN contains the following directives:
FILE,DSET1. Loader selectively loads from dataset DSET1.

OVLDN, LEVO0O. The following overlay modules are written to the
dataset LEVO0O.

OVLL,0,MAIN,SUBl, The absolute binary of MAIN,SUBl,SUB2 is the first

SUB2. record on dataset LEVO0O0.

OVLL,1,1,TEST. The binary of TEST is binary record 2 on dataset
LEVO0O.

FILE,DSET2, Loader selectively loads from dataset DSET2.

OVLL, 2,1,NEW1. The binary of NEW1l is binary record 3 on dataset
LEV0O.

OVLDN, LEV12. The subsequent overlay modules are written to the

dataset LEV12.

Part 2
SR~-0011 9-29 L

OVLL, 2, 2,NEW2. The binary of NEW2 is binary record 1 on dataset

LEV12.

OVLL, 3,1,ALPHA, The binary of ALPHA is binary record 2 on dataset

LEV12.

OVLL, 3,2,BETA. The binary of BETA is binary record 3 on dataset

eof

LEV12.

End of overlay load sequence.

TYPE 2 OVERLAY GENERATION RULES

l‘

SR-0011

Overlay members are loaded from datasets named in FILE
directives. Members are searched for in the most recently
mentioned dataset only. In the absence of a FILE directive,
members are loaded from the dataset specified on the LDR control
statement. If that is also omitted, loading initially occurs
from $BLD.

The overlays are generated in the order of the directives.
There must be one and only one root per dataset.

Level hierarchy must be maintained. The root overlay must be
generated first. Following the root generation, a first level
overlay is generated. No limitation is placed on which overlay
number is generated; however, all overlays associated with that
first level overlay must follow. The overlays can be generated
in any order; the same restrictions apply for all levels of
overlays (1 through 10).

An end-of-file ends the input of overlay directives.

Any directive other than FILE, OVLDN, SBCA or OVLL causes a
fatal error.

The list of members can be continued to another line by using a
caret immediately following the last character at the end of the
directive line (that is, no blanks). The caret does not replace
a separator and must not appear within a member name.

Any number of lines can be used to name the members of an
overlay.

Part 2
9-30 L

TYPE 2 OVERLAY EXECUTION

A control statement call of the dataset containing the root overlay
initiates the root overlay's loading and execution. If no OVLDN
directives are used before generating the root, the dataset $OBD
contains the root overlay. All overlays reside on the datasets
specified on the overlay directives. The entry for higher level
overlays is defined by the first member listed on the generation
directive. Control is transferred to this address after loading by the
$OVERLAY routine during program execution. The root entry is named
using the T parameter on the LDR control statement.

The following sequence executes the root overlay after generation:

LDR, «+.,0VL=dir,... .
$0BD.

When the program is to be executed, the root overlay is brought into
memory as a result of a control statement call in the job deck.
Thereafter, additional overlays are called into memory by the executing
program. Overlay loading allows any overlay to call for the loading of
an adjacent upper level overlay.

The user calls for the loading of Type 2 overlays from within the
program, and the method by which they are called depends on the program
language in use (FORTRAN or CAL). OVERLAY is a subroutine of the root
overlay and is loaded into memory with the root.

FORTRAN language call

A FORTRAN program calls for the loading of Type 2 overlays as follows:

CALL OVERLAY (nLdn, Level,number, r)

n Number of characters in the name

L Left-adjusted; zero-filled.

dn Dataset name where this overlay resides
level Level number of the overlay

number Number of the overlay within the level

r Optional recall parameter. If the user wishes to
re-execute an overlay without reloading it, 6LRECALL is
entered. If not currently loaded, it will be loaded.

Part 2
SR-0011 9-31 L

CAL language call

A sample call sequence from a CAL program is as follows:

| LocationjResult Operand
EXT OVERLAY
CALL OVERLAY, (OVLDN, PLEV, SLEV)
OVLDN CON A'LEV12'L
PLEV CON 2
SLEV CON 0

where OVLDN is the address of the dataset name, PLEV is the address of
the primary level, and SLEV is the address of the secondary level. If

recall is desired, the address of the literal 'RECALL' is transmitted as
the fourth argument.

Example:
Location|Result Operand Comment
1 10 20 35
CALL OVERLAY, (OVLDN, PLEV, SLEV, RECL)
RECL CON 'RECALL'L

For both FORTRAN and CAL language calls, during execution of the ROOT
program MAIN, the statement

CALL OVERLAY(5LLEV12,1,2), or above CAL sample call

causes OVERLAY to search dataset LEV12 for the absolute binary named 2.
OVERLAY positions the dataset LEV12 to the location of the absolute
binary named 2 using information supplied by the loader, loads the
overlay, and transfers control to the first member specified on the OVLL
directive. After execution of the overlay, control returns to the
statement in MAIN immediately following the CALL statement. Following
the load, dataset LEV12 is positioned immediately after the end of record

for the overlay 2. If overlay 2 is not on dataset LEV12, a fatal error
results.

Part 2
SR-0011 9-32 L

OVERLAY GENERATION LOG

When MAP is specified on the LDR control statement, a listing is obtained
describing where each module is loaded and what entry points and external
symbols are used for loading. This listing is an overlay load map and is
similar to the map of a non-overlay load. A log of the directives used
follows the map of the last overlay dgenerated. If overlay loading
aborts, the directives are not listed.

Part 2
SR-0011 9-33 L

OBJECT LIBRARY MANAGEMENT

BUILD is an operating system utility program for generating and
maintaining library datasets. A library dataset contains a program
file followed by a directory file. Library datasets primarily provide
the loader a means of rapidly locating and accessing program modules.
The program file is composed of loader tables for one or more absolute
or relocatable program modules. The directory file contains an entry
for each program. The entry contains the name of the program module;
the relative location of the program module in the dataset; and block
names, entry names, and external names.

The BUILD program constructs a library from one or more input datasets
named by the user when BUILD is called. A library dataset created by
a BUILD run can be used as input to a subsequent BUILD run. Through
BUILD directives, the user designates the program modules to be copied
from the input datasets to the new library and their order in the
library. However, no directives or control statement parameters are
needed for the most frequent application of BUILD, which is to add new
binaries from $BLD to an existing library of binary programs,
replacing the old binaries where necessary.

BUILD does not use tape datasets.

BUILD CONTROL STATEMENT

Format:

BUILD, I=idn,L=ldn ,0BL=0dn,B=bdn ,NBL=ndn , SORT,NODIR, REPLACE.,

Parameters are in keyword form.

I=1idn Name of dataset containing BUILD directives, if any.
Directives can be included in the $IN dataset, or they can
be submitted in a separate dataset.

If the I parameter appears alone or is omitted, all
directives are taken from the $IN dataset, starting at its
current position and stopping when an end-of-file is read.

Part 2
SR-0011 10-1 L

L=1dn

OBL=o0dn

B=bdn

NBL=ndn

SR-0011

1f I=ddn, all directives are taken from the specified
dataset, ddn, stopping when an end-of-file is read.

If I=0, no directives are read. The most common condition
is to merge the modules from odn (the OBL dataset) with
those from bdn (the B dataset), replacing OBL modules
with B modules whenever the names conflict, and to write
the output to ndn (the NBL dataset). Note that the input
dataset specified by the B parameter corresponds to the
binary output from CAL and CFT, also designated by B.

Name of list output dataset.

If the L keyword appears alone or is omitted, list output
is written to $OUT.

1f L=ldn, list output is written to ldn.
If L=0, no list output is written.

Name of the first input dataset, usually a previously
created library dataset.

If the OBL parameter is omitted or appears alone, the
first dataset read is $OBL.

If OBL=odn, the first dataset read is odn.

If OBL=0, no old binary library exists. This is a
creation run.

Name of the second input dataset, whose modules will be
added to or will replace the modules in the first
dataset.

If the B parameter appears alone or is omitted, the
second dataset read is $BLD.

If B=bdn is specified, the second dataset read is
bdn, which is read to the first end-of-file.

If B=0, no modules are being added. This run edits an
old library.

Name of the output dataset, usually a new library
dataset. If the NODIR parameter is also present, ndn
is not in library format.

If the NBL parameter appears alone or is omitted, output
is written to $NBL.

Part 2
10-2 L

Any

SORT

NODIR

REPLACE

I1f NBL=ndn, output is written to ndn.
If NBL=0, no output is written.

Specifies that all modules are to be listed
alphabetically according to their new names. The
default is to list the modules in the order they are
first read. Note that SORT only applies to the list
dataset and not to the output library.

Specifies that no directory is to be appended to the
output dataset, resulting in an ordinary sequential
dataset like $BLD. The default is to append the
directory.

The dataset ndn specified by NBL is not rewound if
NODIR is specified.

Specifies that the output library is to contain modules in
the same order as the o0ld library. If omitted, the new
library contains modules from the old library which are not
replaced by modules from the input binary dataset, followed
by modules from the input dataset, whether the module from
the input dataset replace modules from the old library, or
are new, in the order encountered on the input dataset.

of the following errors causes BUILD to abort:

® A module specified explicitly in a COPY or OMIT directive is
not in the current input dataset.

® A module specified explicitly in a COPY directive has already
been selected for output.

® Improper syntax is used in the BUILD control statement or in
the directive dataset.

® An unrecognized directive or control statement keyword is used.

® A dataset name or module name is too long or contains illegal
characters.

PROGRAM MODULE NAMES

BUILD directives refer to program modules by their names as given in

the directory or, if the directory is missing or is unrecognizable, by

the names given in the program modules.

SR-0011

Part 2
10-3

PROGRAM MODULE GROUPS

In the COPY and OMIT directives, program modules with names containing
one or more identical groups of characters can be specified together.
To accomplish this, variable parts of each name are replaced by one or
more hyphens. For example, XYZ- represents all names beginning with
XYZ, including XYZ itself. 1In the extreme case, a name consisting of
only a hyphen represents all possible names.

In addition, up to eight asterisks can be used anywhere in a name as
wild characters matching any character other than a blank. For
example, GE* specifies a group of modules having 3-character names
including GET and GEM but not GE or GEMS, although GE*S could
represent GEMS.

PROGRAM MODULE RANGES

In order to facilitate the copying of large numbers of contiguous
program modules, the COPY directive allows use of a range specifier
instead of a single name or group specifier. The range specifier has
the general form:

(first,last)

which means: skip to the first module specified and copy all modules
from the first up to and including the last module specified.

FILE OUTPUT SEQUENCE

If the SORT parameter appears in the BUILD control statement, all
modules are copied alphabetically according to their new names. 1In
the absence of a SORT parameter, modules are written in the order they
are originally read from the input datasets.

The order of the entries in the directory is always the same as the
order of the modules themselves.

Part 2
SR-0011 10-4

FILE SEARCHING CONSIDERATIONS

The user need not be aware of the order of modules in the input
dataset unless (1) two or more modules have the same name or (2) a
range is specified in a COPY directive.

If two or more modules with the same name are in the input datasets,
the last of the modules read is the one that survives, unless the user

specifically omits that last module while its original dataset is the
currently active input dataset.

The concept of current position in the input file is used to interpret
range specifiers where the first name is omitted as in (,last) or (,).
In such cases, the current position is defined to be either immediately
after the last module copied or at the beginning of the dataset if no
modules have yet been copied.

BUILD DIRECTIVES

BUILD is controlled through directives in a dataset defined by the I
parameter on the BUILD control statement. A directive consists of a
keyword and, if the keyword requires it, a list of dataset names or
module names. When names are required, the keyword must be separated
from the first name by a blank; subsequent names (if any) in the list are
separated from each other by commas. Extra blanks are optional except
within the keyword.

A line can contain more than one directive; periods or semicolons are
used to separate directives on the same line from each other. A
directive cannot be continued from one directive line to the next.
Examples of directives:

OMIT ENCODE,DECODE

COPY **CODE.
Examples of multiple directives on one line:

FROM OLDLIB; LIST; OMIT ENCODE,DECODE,XLATE

FROM $BLD. LIST.

Part 2
SR-0011 10-5 L

FROM DIRECTIVE

A FROM directive names a single dataset, which is thus established as
the input dataset for succeeding COPY, OMIT, and LIST directives, or
it lists several datasets that (except for the last dataset in the
list) are to be copied in their entirety to the output dataset
(B6NBL). The last dataset in the list is established as the current
input dataset, just as if it were specified alone in the FROM
directive. If no COPY or OMIT directive follows, the last dataset is
also copied in its entirety to the output dataset.

An input dataset can be a library (with a directory) or an ordinary
sequential dataset (such as $BLD). BUILD always determines whether a
directory is present at the end of the dataset and attempts to use it
if it is there. A library dataset is treated as sequential if its
directory file is unrecognizable any reason.

Format:

FROM dnl,dnz, ...,dﬂn

The following rule allows the user to copy several datasets with one
FROM directive or to omit COPY (which means copy all) when it would be
the only directive (except for OMIT directives) in the range of a
particular FROM directive:

If any dataset named on a FROM directive is not acted on by any
LIST or COPY directive, then BUILD copies all of the modules
belonging to that dataset. BUILD takes this action when it
encounters the next FROM dataset name or the end of the directive
file, whichever comes first.

If there are two input datasets to be read as soon as BUILD begins to
execute (that is, if neither OBL=0 nor B=0 is specified), the modules
from these two datasets are treated as if they belong to a single
dataset as far as the OMIT, COPY, and LIST directives are concerned.
However, if either of them is named in a FROM directive, it is treated
as a separate dataset and OMIT, COPY, and LIST directives apply only
to whichever is the current input dataset.

OMIT DIRECTIVE

The OMIT directive allows a user to specify certain modules otherwise
included in a group be omitted from the group on subsequent copy
operations. An OMIT affects modules on the current input dataset
only; its effect ends when a FROM directive is encountered.

Part 2
SR-0011 10-6

Format:

OMIT fnl,fnz, cee 'fn

Each frn; can be one of the following:

® A single name, such as $AB@CDEF or CAB22, by which binary
records can be explicitly prevented from being copied, or

® A group name, such as F$- or *AB**, by which binary records are
prevented from being copied unless they are specified
explicitly (that is, singly) in a COPY directive (see the
introduction to this chapter under Program Module Groups for a
description of * and - usage).

If an fn parameter specifies a module not in the input dataset or a
group of modules having no representatives in the input dataset, a
diagnostic message is included in the list output and BUILD aborts.

COPY DIRECTIVE

COPY directives cause BUILD to select the specified modules for
copying from current input dataset to the output dataset. The user
specifies single modules, groups of modules, or ranges of modules to
be copied. If the user specifies a module not in the current input
dataset, a diagnostic message is included in the list output and BUILD
aborts.

Format:

COPY fny,fny,eeesfny,

Each fn; is either of the two forms valid in OMIT directives:

® A single module name by which modules are explicitly selected
for copying even if they belong to a group named in a previous
OMIT directive, or

Part 2
SR-0011 10-7

® A group specifier by which all the modules in the group are
selected for copying unless they are specified either
explicitly or implicitly in a previous OMIT directive.

In addition, two special forms are allowed for each frn; in COPY
directives:

® A form to rename a single module whose old name is specified
explicitly; for example, OLDNAME=NEWNAME. (The name is changed
both in the output directory and in the module's Program
Description Table.)

e A form to copy an inclusive range, as in (FIRST,LAST), by which
all the modules in the range are selected for copying unless
they are specified either explicitly or implicitly in a
previous OMIT directive.

These two forms are mutually exclusive. A module copied by being

included in a range cannot at the same time be renamed. Nor can
either form accept a hyphen or asterisk specifying a group .of modules.

Examples:

BUG=ROACH Copies BUG, renaming it to ROACH
(LOKI, THOR) Copies all modules from LOKI through THOR
(THOTH,) Copies all modules from THOTH to the end of the

input dataset

(,ISIS) Copies all modules from the current dataset
position through ISIS

(/) Copies all modules from the current dataset
position to the end of the input dataset

The current dataset position is defined as the beginning of the input
dataset if no modules have been selected for copying yet, or else as
the beginning of the record immediately after the last module that has
been selected for copying.

LIST DIRECTIVE

The LIST directive tells BUILD to list the characteristics of the
modules in the current input dataset. Its effect is immediate.
(BUILD's standard list output describes the contents of the output
dataset and is produced at the end of the run so as not to interfere
with output triggered by LIST directives.)

Part 2
SR-0011 10-8

Format:

LIST

EXAMPLES

The following are examples of various uses of the BUILD program:

e Creating a new library dataset, using as input whatever binary
modules have been written out to $BLD (for example, by CAL
and/or CFT).

Control statements:

BUILD,OBL=0,I=0.
SAVE, DN=$§NBL, PDN=MLIB.

e Adding one or more modules to an already existing library
dataset, again taking the input from $BLD.

Control statements:

ACCESS,DN=$0BL, PDN=MYLIB.
BUILD,I=0.
SAVE,DN=$NBL, PDN=MYLIB,

Any modules whose names were already in the directory of MYLIB
are replaced by the new binaries from $BLD in the new edition
of MYLIB that is created by BUILD and saved by the SAVE control
statement.

® Merging several libraries.
Control statements:

ACCESS ,DN=LIBONE, PDN=HERLIB.
ACCESS,DN=LIBTWO,PDN=HISLIB.
ACCESS,DN=ANOTHER, PDN=ITSLIB.
ACCESS ,DN=LASTONE, PDN=MYLIB.
BUILD,I,OBL=0,B=0.
SAVE,DN=$NBL, PDN=NEWLIB.

Part 2
SR-0011 10-9

Directives:
FROM LIBTWO,ANOTHER,LIBONE,LASTONE

The order of the dataset names in the FROM directives, not the
order of the ACCESS control statements, determines the order of

processing. If two datasets contain modules of the same name,
the surviving module is the one in the dataset whose name
occurs later in the FROM directive. (Any module could be
renamed before input from a succeeding dataset is begun, in
order to prevent it from being discarded. Note the section on
File Searching Considerations in the introduction to this
chapter for a description of the interaction with OMIT
directives.)

® Deleting a program module from a library.
Control statements:

ACCESS,DN=$0BL, PDN=MYLIB.
BUILD,B=0.
SAVE,DN=$NBL, PDN=MYLIB.

Directive:
OMIT BADPROG

® Extracting a program module from a library for input to the
system loader, using the local dataset name $BLD as the
intermediate file.

Control statements:

ACCESS,DN=XXX, PDN=MYLIB.
BUILD, I,OBL=XXX,B=0,NBL=$BLD,NODIR.

Directive:

COPY RUNPROG

Part 2
SR-0011 10-10

PART 3
JOB CONTROL LANGUAGE STRUCTURES

INTRODUCTION

The COS job control language allows three fundamental logic structures:

e Simple control statement sequence. Control statements are
processed one after another.

e Conditional control statement block. A sequence of control
statements is processed only if the specified condition is met.

e Iterative control statement block. A sequence of control

statements is processed repetitively until the specified condition
is met.

Most computer algorithms can be expressed in terms of the three above
structures or as combinations of them.

Just as FORTRAN programs can be divided into separate modules called
subprograms, control statement sequences can be divided into modules

called procedures. Procedures simplify control statement use in three
ways:

® Generalized procedures can be written to perform many similar
tasks. Work is saved because a new control statement sequence
need not be written to perform each separate task.

e Complex control statement structures can be decomposed into
separate subtasks, with a separate procedure written for each
subtask. Such modularization reduces the job's design complexity
and allows each subtask to be individually tested.

® Procedure libraries can be built. Procedures need be defined only
once and placed in a library; different jobs and users can use the
procedures and make them part of their own control statement
structures.

SIMPLE CONTROL STATEMENT SEQUENCES

A simple control statement sequence is a series of one or more of the
control statements described in part 2 of this manual. The individual

control statements are processed sequentially as described in part 1,
section 3 of this manual.

Part 3
SR-0011 1-1 L

CONDITIONAL CONTROL STATEMENT BLOCKS

The conditional control statement block is a group of control statements
that is processed only if a specified condition is met. The control
statements IF, ELSE, ELSEIF, and ENDIF allow other control statements to
be placed in a conditional block structure.

® IF defines the beginning of a conditional block.

e ENDIF defines the end of a conditional block.
® ELSE is used to define an alternate condition.

e ELSEIF defines an alternate condition to test when the previous
one tested is false.

ELSEIF and ELSE sequences are optional. Within a conditional block, only
one ELSE sequence is permitted. The ELSE statement, if present, must be
the last conditional statement in the block. An unlimited number of
ELSEIF sequences can be used in a conditional block.

The conditional block is first scanned to verify the validity of the
block's syntax. If any syntax errors exist, the block is skipped without
being evaluated and a job step abort error occurs. Note that any EXIT
control statements within the conditional block are ignored when a syntax
error exists in that conditional block. This validation occurs when the
control statement file where it is contained is invoked (validation
occurs at job initiation, if the control statement file is $CS).

Null blocks (for example, an ELSE statement immediately following an
ELSEIF) are ignored without comment.

Conditional blocks can be constructed in the following ways:

Basic conditional block

Conditional block with ELSE
Conditional block with ELSEIFs
Conditional block with ELSEIFs and ELSE

BASIC CONDITIONAL BLOCK

The format of a basic conditional block (figure 1-1) begins with an IF
statement and ends with an ENDIF statement. When the IF statement
expression is true, the control statement sequence that follows is
processed. If the expression is false, the control statement sequence is
not processed.

Part 3
SR-0011 1-2 L

H[control statement
”“ sequence

IF(expression)

Figure 1-1. Basic conditional block structure

Example:
Following is an example of the conditional block structure.

ACCESS, DN=MYPROG.
MYPROG.
EXIT.

IF (PDMST.EQ.1)
*

*, UNEXPECTED JOB STEP ABORT ERROR
*

EXIT,
ENDIF.

In this example, if the ACCESS request or execution of MYPROG fails, the
conditional block after the EXIT control statement is processed. The
conditional block determines if the job step abort occurred because the
ACCESS (for example, the dataset was not found), in which case the
processing of control statements resumes after the ENDIF control
statement. If this is not the reason for the abort, the job terminates
with the EXIT control statement.

CONDITIONAL BLOCK WITH ELSE

The second conditional block structure includes the ELSE control
statement. The control statement sequence is processed if the expression
on the IF statement is true. If the expression is not true, the sequence
following the ELSE statement is processed. The block structure is
illustrated in figure 1-2.

SR-0011 1-3 L

control statement
I sequence

o

I
|M1 control statement
il sequence

IF(expression)

Figure 1-2., Conditional block structure including ELSE

Example:

An example of a conditional block structure using the ELSE statement
follows.

ACCESS,DN=INITJCL,
ACCESS,DN=PREPROG.
ACCESS , DN=PROG.
PREPROG.

IF (JSR.NE.O0)
CALL,DN=INITJCL.
SWITCH, 1=ON,

ELSE.

SWITCH, 1=OFF,

ENDIF.

PROG,

After PREPROG is executed, the conditional block determines if PREPROG
has successfully executed (by its setting of JSR). The procedure INITJCL
is executed and a sense switch is set if JSR is nonzero. The sense
switch is cleared if PREPROG set JSR to zero.

Part 3
SR-0011 1-4 L

CONDITIONAL BLOCK WITH ELSEIF

The third conditional block structure (figure 1-3) includes one or more
ELSEIF statements. Each logical expression on the IF and ELSEIF
statements is tested in sequence until a true condition is found; then
the corresponding control statement sequence is processed.

—

|| control statement
ih sequence

me control statement

m sequence
[F(expression) ™

Figure 1-3. Conditional block structure including ELSEIF

A conditional block can contain any number of ELSEIF control statements.
The block of control statements following an ELSEIF statement is
processed under the following conditions:

® The expression for the IF statement is false.

® All preceding ELSEIF statement expressions are false.

e The ELSEIF expression is true.

Example:
An example of a deck including the ELSEIF statement is:
IF (SYSID.EQ.'COS 1.07'")
ACCESS,DN=$FTLIB, ID=V107.

ELSEIF (SYSID.EQ.'COS 1.08')
ACCESS,DN=$FTLIB, ID=V108.

SR-0011 1-5 L

ELSEIF (SYSID.EQ, 'COS 1.09')
ACCESS,DN=$FTLIB, ID=V109.

ENDIF.

LDR,NOLIB,LIB=$FTLIB.

This conditional block tries to access the correct version of the FORTRAN

library, $FTLIB, for the execution of the loader following the
conditional block.

CONDITIONAL BLOCK WITH ELSEIF AND ELSE

The conditional block structure in figure 1-4 uses ELSEIF and the ELSE
statements. A block can contain any number of ELSEIF statements but can
contain only one ELSE, which must be the last conditional statement
before the ENDIF.

The ELSE control statement sequence in this case is processed only if:

® The expression on the IF statement is false, and

e All ELSEIF statement expressions are also false.

Ll| control statement
Wh sequence

hw control statement
me sequence

| control statement
sequence

!
u\ 1F(expression)

Figure 1-4. Conditional block structure including ELSEIF and ELSE

Part 3
SR-0011 1-6 L

Example:

This example is an expansion of the example for the third format and
allows execution of the compiled program if there is enough time left and
if the correct library is accessible. On a successful run, the dataset
called RESULTS is disposed as a staged dataset.

IF (TIMELEFT.GT.175)
IF (SYSID.EQ.'COS 1.08')
ACCESS ,DN=$FTLIB, ID=V108.
ELSEIF (SYSID.EQ.'COS 1.09')
ACCESS ,DN=$FTLIB, ID=V109.

ELSE.
*

*, CURRENT SYSTEM LEVEL NOT RECENT ENOUGH
*

3

EXIT.

ENDIF.
LDR,NOLIB,LIB=$FTLIB.
SET,J1="YES'L.

ELSE.
SET,J1="NOTIME'L.

ENDIF.

IF(J1.EQ.'YES'L)
DISPOSE,DN=RESULTS,DC=ST.

ELSE.
*

*, JOB DID NOT RUN TO NORMAL COMPLETION
ENDIF.
EXIT.

ITERATIVE CONTROL STATEMENT BLOCKS

An iterative block (figure 1-5) contains a control statement sequence
that is to be processed more than once during the processing of a job.

® LOOP defines the beginning of an iterative block.
® ENDLOOP defines the end of an iterative control statement block.

® EXITLOOP defines the conditions under which the control statement
block iteration is to end.

Part 3
SR-0011 1-7 L

/

ENDLOOP.

|'contro] statement

“Mh sequence

EXITLOOP (expression)

I1!11%
‘\ﬂ control statement
=il sequence

LOOP.

Figure 1-5., Iterative block structure

Iterative blocks are prescanned for syntax errors before actual
processing begins. Any errors in the block structure cause a skipping of
that block followed by a job step abort. If an iterative block is
included within a conditional block, it must be totally contained within

that conditional block.

Example:

The following example merges the two datasets DSIN1 and DSIN2 for 60

records.

SET,J1=0.
SET,J2=60.
LOOP.
EXITLOOP (J2.EQ.0)
IF(J1.EQ.0)
COPYR, I=DSIN1,0=0UTDS.
SET,J1=1.
ELSE.
COPYR, I=DSIN2,0=0UTDS.
SET,J1=0.
ENDIF,
SET,J2=J2-1.
ENDLOOP.
REWIND,DN=DSIN1:DSIN2:0UTDS.

Part 3
SR-0011 1-8

PROCEDURES

A procedure is a sequence of control statements and/or data that has
been saved for processing at a later time. Procedures have two formats.

e A simple procedure consisting of only the control statement body

e A well-defined procedure consisting of a prototype definition
statement, control statement body, and optional data.

SIMPLE PROCEDURES

A simple procedure is a series of control statements that does not reside
in the primary control statement dataset ($CS). No parameter
substitution occurs in a simple procedure.

Since a simple procedure has no name associated with it, a simple
procedure can only reside in a non-library dataset. It therefore must be
invoked with the CALL control statement without the CNS parameter.

Example:

The first file of dataset MOVER contains five control statements. The
five control statements can be executed with the following procedure
calling statement:

CALL,DN=MOVER.
In the above example, interpretation of control statements from dataset
MOVER terminates when a RETURN statement is encountered (see part 2,

section 2 of this manual), when the end of the first file (in dataset
MOVER) is reached, or an EXIT statement.

WELL-DEFINED PROCEDURES

A well-defined procedure provides the capability of replacing values
within the procedure body with values supplied from the procedure call.
These values are called substitution parameters and are governed by the
prototype statement of the procedure.

A well-defined procedure can reside in a library or non-library dataset.

Well-defined procedures are invoked (executed) in one of two fashions:

Part 3
SR-0011 1-9 L

® Procedure name call. The procedure must first reside in a known
control statement library (either $PROC or a local dataset named
with a LIBRARY control statement); the procedure is called
(invoked) by using the procedure name as the control statement
verb.

® CALL statement call. The procedure must reside in the first file
of a separate dataset; the dataset is named in the CALL control
statement. The CNS (crack next statement) parameter must be used
for the operating system to properly recognize and process the
procedure prototype statement. PROC and ENDPROC are not used with
CALL.

Well-defined procedures can be defined within the control statement
stream (in-line definition) or as input to the BUILD utility.” When

an in-line procedure definition is encountered in the JCL control
statement file, it is processed and written to the system default library
$PROC. See example 8 in part 3, section 4 of this manual for an example
of how to create a user permanent procedure library.

A well-defined procedure can contain formal parameters that define what
substitution is to occur in the procedure body. A character string that
is eligible for substitution is listed in the prototype statement as a
formal parameter specification. This name, when preceded by an
ampersand in the definition body, indicates that a value is to be
substituted during procedure invocation. COS replaces the ampersand and
parameter name with corresponding value supplied by the procedure
invocation. If the parameter listed in the prototype statement is not
preceded by an ampersand in the body, substitution does not occur. If
two ampersands precede the string, one is removed and substitution is
inhibited.

Any string consisting of one through eight characters (ampersand
included) can be selected for substitution.

When a statement in the current control statement file calls a procedure,
COS searches the definition body for the character strings preceded by
ampersands. For each occurrence, COS substitutes the values supplied by
either the calling statement or the prototype statement.

* BUILD currently does not suppport procedure entries in libraries.

Part 3
SR-0011 1-10 L

JOB CONTROL LANGUAGE EXPRESSIONS 2

Much of the power of the control statements described in part 3 of this
manual derives from the use of expressions. Expressions allow

operations such as incrementing counters, checking error codes, and
comparing strings.

An expression is a string consisting of operands and operators.
Expressions are evaluated from left to right, honoring nested parentheses
and operator hierarchy. This section begins by defining operands and
operators, and ends with discussions of expression evaluation and strings.

OPERANDS

Expression operands are of four types:
® Integer constants
e Literal constants
e Symbolic variables

® Subexpressions

INTEGER CONSTANTS

An integer constant is a character string with two possible forms:
+ ddd...
nmn...B
d is a decimal digit and »n is an octal digit.

An integer constant has an approximate decimal range 0:]1]5}019. Range
overflow is not detected and overflow results may be unpredictable.

Part 3
SR-0011 2-1 L

LITERAL CONSTANTS
A literal constant is a string of one to eight characters of the form:

‘cee...'L
‘eee...'R
‘eee...'H

C is a character code with an ordinal number in the the range 040
(octal) through 176. The value of a character constant corresponds to
the ASCII character codes positioned within a 64-bit word. Alignment is
indicated by the following suffixes: :

L Left-adjusted, zero-filled
R Right—-adjusted, zero-filled
H Left—-adjusted, space-filled

If no suffix is supplied, H is assumed.

SYMBOLIC VARIABLES

A symbolic variable is a string of one to eight alphanumeric characters,
beginning with an alphabetic character.

A symbolic variable always has an associated value. COS defines a set of
symbols when the job is initiated. Symbols are mnemonics for values
maintained by COS and/or the user. The user can manipulate the group of
symbols listed in table 2-1 through COS control statements or through
system requests.

Certain symbols allow communication between COS and the job being
processed. Used in the JCL block control statements defined in part 3 of
this manual, these symbols provide the user with powerful tools for
analyzing the progress of a job. For example, a job can request the
reason for an abort situation and proceed, based on the reply from COS,
through the use of conditional control statements. Symbols that are
preserved over subprocedure calls are called local to a procedure; they
are saved when a subprocedure is called. Those that are not preserved
are global over all procedures and can be altered by any procedure.
Constants are symbols that are never altered.

Information on predefined symbols is summarized in table 2-1. 1In table
2-1, the only local symbols are J0 through J7.

Part 3
SR-0011 2-2 L

Table 2-1.

Symbolic variable table

Symbol Set by Range

Description

J0-J7 Any 64-bit value

G0-G7 Any 64-bit value

JSR Any 64-bit value

FL] 0-777717777¢

FLM S 0=7777771717¢

SYSID 1 Literal value

SID I Literal value

SN I 64-bit integer

Sswn s (1<n<6)

ABTCODE S System error codes

(See Appendix D)
0-nnn

TRUE I

FALSE I 0

Job pseudo-registers; represent
user—-alterable data local to a
procedure. Each procedure level can
be considered to have its own set of
J registers.

Global job pseudo-registers;
represent user-alterable data global
over all procedure levels. Data can
be passed into or returned from
procedures with the G registers.

Job status register; previous job
step completion code (normally 0).

Current job field length; can be
set with MEMORY statement.

Maximum job field length; determined
by JOB statement.

COS system level of the form
'COS X.XX!

Mainframe identifier for front-end
of job origin; 2 right-justified
ASCII characters.

CPU serial number

Job pseudo sense switch settings;
can be set with the SWITCH statement.

COS job abort code; abort code
corresponding to the last job step
abort. The abort code corresponds
to the abort message number (the
nnn in ABnnn) issued by COS.

True value

False value

U User
S CoS
I System constant

SR-0011

Table 2-1. Symbolic variable table (continued)

Symbol |Set by Range Description

TIME S Literal value Time of day in the form: hh:mm:ss
DATE S Literal value Date in the form: mm/dd/yy
TIMELEFT S 64-bit integer Job time remaining in milliseconds

as an integer value

PDMFC S 64-bit value Most recent user-issued Permanent
Dataset Manager request. See
Appendix D.

PDMST S 64-bit value Status of most recent Permanent
Dataset Manager request. See
Appendix D.

U User
S Cos
I System constant

SUBEXPRESSIONS

A subexpression is an expression that is evaluated so that its result
becomes an operand.

OPERATORS

Expression operators are of three types:
® Arithmetic
e Relational
e Logical

These operators are used in the FORTRAN sense. The expression operators
are detailed in table 2-2.

SR-0011 2-4 L

Table 2-2.

Expression operator table

Type Function Symbol Results
A Addition + 64-bit sum of operands
A Unary plus + Following integer operand is positive.
A Subtraction - 64-bit difference of operands
A Unary minus - Following integer operand is negative.
A Multiplication * 64-bit product of operands
A Division / 64-bit quotient of operands
R Equal -EQ. True/false
R Not equal .NE. True/false
R Less than .LT. True/false
R Greater than .GT. True/false
R Less than or .LE. True/false
equal
R Greater than or .GE. True/false
equal
L Inclusive OR .OR. A 1 bit in either operand sets
corresponding bit in the result.
L Intersection <AND. A 1 bit in both operands sets
corresponding bit in the result.
L Exclusive OR «XOR. A 1 bit is set in the result if
either (but not both) corresponding
bit in the operands is 1.
L Unary complement .NOT. A 1 bit (or 0) is set in the result
if the corresponding operand bit is 0
(or 1).
A Arithmetic
R Relational
L Logical
Part 3

SR-0011

ARITHMETIC OPERATORS

All arithmetic operations are performed on 64-bit integer quantities.
Care must be used with arithmetic operators because:

® Multiplication/division underflow or overflow of the result is not
detected,

e Division by zero produces a zero result, and

® Intermediate and final results are truncated. For example,
2*(13/2) yields 12 whereas (2*13)/2 yields 13.

RELATIONAL OPERATORS

Relational operations return a -1 value for a TRUE result and a 0 value
for a false result. A value produced by an arithmetic or logical
operation is considered true if it is a negative value.

LOGICAL OPERATORS

Logical operations return a 64-bit result. Their functions are
performed on a bit-by-bit basis.

EXPRESSION EVALUATION

Expressions are evaluated from left to right, honoring nested
parentheses. The operator hierarchy is:

1. Multiplication and division

2. Addition, subtraction, and negation
3. Relational operation

4. Complement (.NOT.)

5. Intersection (.AND.)

6. Inclusive OR (.OR.)

7. Exclusive OR (.XOR.)

Parentheses can be used to change the order of evaluation. For example,
2+3*4 is evaluated as 14 whereas (2+3)*4 is evaluated as 20.

Part 3
SR-0011 2-6 L

kkhkkhkhkhkkkhkhkkkhkhkhkhhkkkkkkhkdkhkkkkkhkkkkhkkkkhkkkhkhkkhkhkkkkkkx

CAUTION

Because COS does not check for type, the results of
expression evaluation may not be as expected. For
example, although both J1.EQ.1l and J2.EQ.2 are TRUE,
(J1 .AND. J2) is FALSE.

khkhkkkhkkhkkkhkhhkhhhhkkkkkhkhkkkhkkhkhhkhkkhkkkhkhkhkhkkkkhkkhkkhkkkkkkkk

STRINGS

A string is a group of characters which is to be taken literally as a
parameter value.

® Strings are normally delimited with apostrophes, in which case
they are referred to as literal strings.

® Strings can also be delimited with open and close parentheses, in
which case they are referred to as parenthetic strings.

Characters in a string can be any ASCII graphic characters (codes 040g
through 176g) . Characters otherwise recognized as separator characters
are not evaluated as such when part of a string.

Examples:

' SEPARATORS IN STRING, .=()" The literal string contains separator
characters which are not interpreted as
such.

(ABC=DEF) The parenthetic string contains an

equal sign which is not interpreted as
a separator.

LITERAL STRINGS

Apostrophes are never treated as part of a literal string during
evaluation except when doubled (see below). Two adjacent literal
delimiters are interpreted as a null string.

Part 3
SR-0011 2-7 L

To continue literal strings across card images, place an apostrophe
followed by a continuation character at the end of the line, and place
the remainder of the string on the next card image preceded by an
apostrophe.

Example:
« o« 'LITERAL STRING CONTINUED'A This is the format for continuing
'ACROSS CARD IMAGES' literal strings across card images.

An apostrophe within the string is indicated by doubling it.

Example:

'DON''T' The literal string is interpreted as DON'T.

PARENTHETIC STRINGS

Unlike literal strings, the delimiters of a parenthetic string are
optionally treated as part of the string during evaluation (literal
delimiters are never considered part of the string during evaluation),
depending on the type of preceding control statement separator. See part
1, section 4 of this manual for a definition of control statement
separators and their types.

e If the preceding separator is an initial, parameter, equivalence,
or concatenation separator, the outermost parentheses are not
treated as part of the string during evaluation.

e If the preceding separator is any other type of separator (that

is, a continuation character or string delimiter), the outermost
parentheses are treated as part of the string during evaluation.

Examples:

KEYWORD= (ABC. DEF) ABC.DEF is the value assigned to
KEYWORD.
KEYWORD= ((ABC.DEF)) (ABC.DEF) is the value assigned to
KEYWORD.
'ABC.DEF' ABC.DEF is the string value.
1e or () Both are null strings.
Part 3

SR-0011 2-8 L

To continue parenthetic strings, place a continuation character at the
end of the line and the remainder of the string on the next card image.
A string can be any length, depending upon the control statement
parameter requirements.

Example:
« + « (PARENTHETIC STRING CON- A This is the format for continuing
TINUED ACROSS CARD IMAGES) parenthetic strings across card

images.

The continuation and literal string delimiters are interpreted when
included in a parenthetic string.

Example:

eeet(STRING WITH 'EXTRA CLOSE PAREN) ')...
STRING WITH EXTRA CLOSE PAREN) is
the value of the string following
the concatenation separator.

«+.=(STRING CONTINUED ACROSS A

CARD IMAGES)... STRING CONTINUED ACROSS CARD
IMAGES is-the value of the string
following the equivalence
separator.

SR-0011 2-9 L

CONTROL STATEMENT BLOCKS

The COS job control language supports two types of control statement
blocks:

e Conditional control statement blocks. The user can identify
control statements that are to be processed only if certain

conditions are met.

e Iterative control statement blocks. The user can identify
control statements to be processed repetitively.

See part 3, section 1 of this manual for an introduction to the use of
control statement blocks.

The following control statements identify control statement blocks:

Verb Function

IF Begin conditional block
ENDIF End contitional block

ELSE Define alternate condition
ELSEIF Define alternate condition
LOOP Begin iterative block

ENDLOOP End iterative block

EXITLOOP End iteration

IF - BEGIN CONDITIONAL BLOCK

The IF control statement defines the beginning of a conditional block.
Each IF control statement must have a corresponding ENDIF control
statement. IF is a system verb.

Part 3
SR-0011 3-1

Format:

1F (expression)

Parameters:

expression
A valid JCL expression (see part 3, section 2 of this
manual). This parameter is required.

ENDIF - END CONDITIONAL BLOCK

The ENDIF control statement defines the end of a conditional block.
ENDIF is a system verb.

Format:

ENDIF.

Parameters: None

ELSE - DEFINE ALTERNATE CONDITION

The ELSE control statement is used to define an alternate condition. An
IF statement, as well as any ELSEIF statements, must precede the ELSE
control statement. If all conditions specified by the IF and ELSEIF
statements that precede the ELSE in the conditional block test as false,
then the sequence of statements that follow the ELSE statement is
executed. ELSE is a system verb.

Format:

ELSE.

Parameters: None

Part 3
SR-0011 3-2 L

ELSEIF - DEFINE ALTERNATE CONDITION

The ELSEIF control statement defines an alternate condition to test if
the previously tested condition was false. The sequence of statements
following the ELSEIF statement is executed when the ELSEIF expression is
true. All ELSEIF control statements must precede the optional ELSE
control statement for a conditional block. An ELSEIF statement without a
previously processed IF statement results in a job step abort. ELSEIF is
a system verb.

Format:

ELSEIF (expression)

Parameters:

expression
A valid JCL expression (see part 3, section 2 of this
manual). This parameter is required.

A conditional block can contain any number of ELSEIF control statements.
The block of control statements following an ELSEIF statement is
processed under the following conditions:

® The expression for the IF statement is false.

® All preceding ELSEIF statement expressions are false.

® The ELSEIF expression is true.

LOOP - BEGIN ITERATIVE BLOCK

The LOOP control statement is required to define the beginning of an
iterative block. An ENDLOOP control statement is required at the same
nesting level to terminate the iterative block. LOOP is a system verb.

Format:

LOOP.

Parameters: None

SR-0011 3-3 L

ENDLOOP -~ END ITERATIVE BLOCK

The ENDLOOP control statement terminates an iterative control statement
block. If an ENDLOOP control statement occurs without a preceding LOOP
statement at the same nesting level, a job step abort occurs. Execution
of the ENDLOOP statement results in control being passed to the preceding
LOOP statement which begins another iteration of the loop.

Format:

ENDLOOP.

Parameters: None

EXITLOOP - END ITERATION

The EXITLOOP control statement defines the conditions under which the
control statement block iteration is to end. If its expression is true,
the loop is exited; if it is false, the control statements which follow
are executed.

An EXITLOOP statement that appears outside of an iterative block causes a
job step abort. When nesting iterative control statement blocks, the
EXITLOOP control statement defines the exit conditions for only the most
immediate iterative block. EXITLOOP is a system verb.

Formats:

EXITLOOP.

EXITLOOP (expression)

Parameters:

expression
Optional valid JCL expression (see part 3, section 2 of
this manual). If omitted, an unconditional exit from the
iterative block occurs.

Part 3
SR-0011 3-4 L

PROCEDURES

A procedure is a sequence of control statements and/or data that has
been saved for processing at a later time. Procedures have two formats.

e A simple procedure consists of only the control statement body.

e A well-defined procedure consists of a prototype definition
statement, control statement body, and optional data.

See part 3, section 1 for an introduction to the use of procedures.
Since simple procedures consist only of a control statement body, the

rest of this section refers primarily to well-defined procedures.
Well-defined procedures contain five elements as shown in figure 4-1.

[k
h‘ih'
il
&DATA, dn.

definition body

’WI C0S control
statements

prototype statement !
PROC.

Figure 4-1. Procedure definition deck structure

SR-0011 4-1 L

® PROC defines the beginning of an in-line procedure definition
block.

® The prototype statement specifies the name of the procedure and
identifies character strings within the procedure that are to be
substituted when the procedure is called. COS uses values
supplied with the procedure call and default parameter wvalues from
the prototype statement to replace these strings.

® The procedure definition body is a sequence of COS control
statements processed as part of the current control statement file
when the procedure is called. It can optionally include lines of
text data preceded in the definition body by an &DATA control
statement.

e &DATA introduces text information to be included in the procedure
definition body, and names the dataset to be created and written
to when the procedure is invoked. When the procedure is invoked,
the named dataset is created and the text information is available
in that local dataset, including any substitutions resulting from
the call. This temporary dataset remains local and allows
programs such as CAL or CFT to use the temporary dataset as source
data.

® ENDPROC indicates the end of an in-line procedure definition block.

The first control statement in an in-line procedure is PROC; the last is
ENDPROC. A prototype statement follows PROC providing the name of the
procedure and optionally a list of parameters that identify the
substitution values within the definition body.

In addition to defining the values to be substituted, the prototype
Statement parameters control the selection or omission of the parameters
and define the default value assignments. The control statements and
data to be processed are contained in the definition body. The control
statements are grouped in a sequence.

If data is included in a procedure, the data is preceded by an &DATA
statement and follows the control statement sequence. The &DATA
statement also includes the name of the dataset to which the data is to
be written after processing so that programs can use the data as source
data.

A definition can be placed within a definition; such nesting can occur to
any level. However, nested definitions do not become defined until the
outermost procedure is invoked.

Part 3
SR-0011 4-2 L

PROC - BEGIN PROCEDURE DEFINITION

The PROC control statement defines the beginning of an in-line procedure
definition block. PROC is a system verb.

Format:

PROC.

Parameters: None

PROTOTYPE STATEMENT — INTRODUCE A PROCEDURE

The prototype control statement has two functions: (1) to specify the
name of the procedure and (2) to provide the formal parameter
specifications that define where substitution is to occur within the
definition body. Value substitution is described later in this section.

Format:

namelplrp21p3r DR rpn-

name Procedure name; 1 to 8 alphanumeric characters. The name
should not be the same as a system verb; if it is, the
results are unpredictable.

pi Formal parameter specifications, using one of the formats
listed below. A formal parameter identifies a character
string within the definition body. All formal positional
parameters, if any, must precede all formal keyword
parameters; if they do not, the procedure definition is in
error and the job aborts.

pos; Positional formal parameter specification, or
key ;= dvalue:kvalue
Keyword formal parameter specification as

follows:

key ; Formal keyword parameter

SR-0011 4-3 L

dvalue Optional default value; this
value is substituted if entire
keyword parameter is omitted from
the calling statement.

kvalue Optional keyed default value;
this value is substituted if the
keyword is present but no value
is specified.

Special cases:

key ;= Provides no default values and
requires the caller to provide a
non-null value.

key ;=: Provides no default values,

but allows the user to specify
key;= or just key;.

PROCEDURE DEFINITION BODY

The procedure definition body consists of a sequence of COS control
statements processed as part of the current control statement file when
the procedure is called. (It can optionally include lines of text data
preceded in the definition body by an &DATA control statement. See
&DATA below.)

The prototype statement identifies character strings within the
procedure that are to be substituted when the procedure is called. COS
uses values supplied with the procedure call and default parameter
values from the prototype statement to replace these strings.

An ampersand (&) must precede each parameter to be substituted
(substitution parameter) within the definition body. If a parameter
appears in the prototype, a matching string in the body is found but not
preceded by an ampersand, substitution does not occur.

Part 3
SR-0011 4-4 L

&DATA - PROCEDURE DATA

Data can be included within the procedure definition body after the
procedure data card.

The dn parameter creates a temporary dataset composed of the data
identified in the procedure, including any substitutions resulting from
the call. This temporary dataset allows programs such as CAL or CFT to
use it as source data.

Format:

&DATA ,dn.

dn Name of dataset to contain the data that follows; dn is
required.

The initial separator for an &DATA statement can be a blank, comma, or
an open parenthesis; the statement terminator can be a blank, period, or
a close parenthesis.

An &DATA specification cannot be continued to subsequent cards. All
card images following an &DATA card up to the next &DATA card are
written to the specified dataset after string substitution is
performed. See example 7 later in this section.

ENDPROC - END PROCEDURE DEFINITION

The ENDPROC control statement indicates the end of an in-line procedure
definition block. ENDPROC is a system verb.

Format:

ENDPROC.

Parameters: None

SR-0011 4-5 L

PARAMETER SUBSTITUTION

Formal parameter specifications (see part 3, section 1) can be selected
for substitution. Character strings to be substituted are delimited by
any character other than numerals, alphabetics, commercial at (@),
dollar sign ($), and the percent sign (%). An ASCII underline is used
as a string delimiter when the next character is one of these
characters. See example 3 later in this section. COS deletes the
underline after evaluating the string it delimits. Thus, the underline
concatenates the strings it delimits.

Formal parameter specifications can be in positional or keyword format.

POSITIONAL PARAMETERS

Positional formal parameters allow the user to list the strings within
the body that can be substituted. The calling statement lists values to
be substituted for these strings in the same order in which they are
listed in the prototype statement. The value supplied with the calling
statement is substituted for every occurrence of the corresponding
formal positional parameter within the definition body. If the caller
passes too few positional parameters, null strings are substituted for
the remaining formal positional parameters. If too many positional
parameters are passed, the procedure call is in error and the job aborts.

KEYWORD PARAMETERS

Keyword formal parameters are listed in any order after all positional
parameters are given on the prototype statement and the calling
statement. A keyword formal parameter allows the user to specify
substitution values on the prototype statement that are to be used when
one is not given on the calling statement.

If the keyword formal parameter is included in the calling statement
with a value, that value is substituted. If the entire keyword formal
parameter is omitted from the calling statement, the default value on
the prototype statement is substituted. If a default value is not
provided on the prototype statement, the character string within the
body corresponding to that formal parameter is not included in the
procedure expansion.

If only the keyword portion of the keyword formal parameter (the
character string itself) is included in the calling statement, without a

SR-0011 4-6 L

value assigned to it, then a keyed default value from the prototype

statement is substituted.

If a keyed default value is not provided on

the prototype statement, again the character string within the body
corresponding to that formal parameter is not included in the procedure
expansion.

A keyword parameter enclosed in apostrophes ('KEY'=value) is
considered a positional parameter.

The forms of keyword substitution are summarized in table 4-1.

Table 4-1. Keyword substitution after expansion

Calling
Statement

Keyword

Format For
Prototype key

Statement (key

key=:kvalue
key=: (kvalue)

key=dvalue:kvalue
key=(dvalue) :kvalue
key=dvalue: (kvalue)

key=
key=dvalue
key= (dvalue

1. name, value. Value
2. name, key. Key
3. name. Null
name, (null).
4. name, key=value. Value
5. name, key=. Error GP0OO3

Error CS119
kvalue

Error GP0O3

Value

Error GP0O3

Error CS119
kvalue

dvalue

Value

Error GP003

Errors CS119 and CS122
Error CSl2l

Error CS122

Value

Error GP0O3

Error messages

Cs119
Cs121
Csl22

GP003 - KEYWORD keyword MUST BE SPECIFIED

EXTRA POSITIONAL PARAMETER: #
KEYWORD USED WITHOUT ASSIGNING IT A VALUE: n
NO VALUE WAS ASSIGNED TO 7

POSITIONAL AND KEYWORD PARAMETERS

When supplying both positional and keyword parameters, all positional

parameters must precede all keyword parameters; COS evaluates the call's
positional parameters first.
parameters is signaled by the appearance of a keyword parameter,
statement terminator, or by specifying all positionals.

SR-0011

The end of the caller's list of positional

APOSTROPHES AND PARENTHESES

Sometimes parameter values in a procedure definition or a procedure
calling statement require a special format. If a literal string (a
string delimited with apostrophes) appears in either of these
statements, it is processed as if it were a literal constant. That is,
all apostrophes in the value remain when the value is substituted. See
example 5 later in this section.

To avoid any possibility of erroneous processing, use parentheses as
string delimiters in these statements. Outermost parentheses preceded
by the initial, parameter, equivalence, or concatenation separators are
removed during value substitution. This procedure delays processing of
any separator characters in the string until the statement itself, with
substituted values, is processed.

This delay is also required when specifying multiple values for the
default value and/or keyed default value parameters on a procedure
definition statement. See examples 1, 2, 4, and 6. Parentheses are
advised in the procedure calling statement when the use of the value in
the procedure statements is unknown. See examples 4, 5, and 6 later in
this section.

The forms of parenthetical substitution are summarized in table 4-2.

Table 4-2. Expansion of parenthetic and
literal string values

Invocation Expansion
value value
(valuel=value2) valuel=value2
valuel'. 'value2 valuel'.'value2
valuel (.) value2 valuel .value2

Examples:

The following examples demonstrate the COS control statement procedure
substitution process.

Part 3
SR-0011 4-8 L

Example 1:

Consider a single statement procedure called LOAD defined as follows:

Definition

PROC.

LOAD, NOGO=:NX, LIBRARY= ($§FTLIB:$SYSLIB) :MYLIB. Prototype statement
LDR, &NOGO, LIB=&LIBRARY, Definition body
ENDPROC.

The prototype statement in this example defines two formal parameters,
both of which are in keyword format. The keyword NOGO has a null value
when omitted from the calling statement and a value of NX when included
on the calling statement in keyword-only format. The keyword LIBRARY
has the default value of $FTLIB:$SYSLIB. When LIBRARY is used in the
calling statement without a value, the keyed default value, MYLIB, is
substituted.

When the LOAD procedure is invoked, it expands to a single statement
whose form depends on the choice of parameters:

Invocation

LOAD,NOGO.

LOAD,

LOAD, LIBRARY=THISLIB.
LOAD, LIBRARY,NOGO.

Expansion

LDR,NX, LIB=$FTLIB:$SYSLIB.

LDR, ,LIB=$FTLIB:$SYSLIB.
LDR, ,LIB=THISLIB.

LDR,NX,LIB=MYLIB.

Example 2:

The following in-line procedure definition creates a procedure called
BLDABS.

Definition

PROC.
BLDABS, SOURCE, LIST,GO="'NO"':'YES' ,LIB= A

: (3SYSLIB :$FTLIB) ,MAP=FULL : PART. Prototype statement
REWIND, DN=$BLD: &SOURCE.
CAL, I=&SOURCE, L=&LIST, ABORT.
LDR,NX,LIB=&LIB,MAP=§MAP,L=&LIST,AB=$ABD.
REWIND,DN=$ABD:&LIST. Definition body

SR-0011 4-9 L

SAVE, DN=$ABD, PDN=MYPROGRAM,
IF (&GO.EQ.'YES')

$ABD.

ENDIF.

ENDPROC.

Invocation

BLDABS,WORK, ,GO,LIB=VLIB2.

Expansion

REWIND, DN=$BLD:WORK.

CAL, I=WORK, L=, ABORT.

LDR,NX, LIB=VLIB2,MAP=FULL, L=,
REWIND,DN=$ABD:.
SAVE,DN=$ABD, PDN=MYPROGRAM.
IF('YES'.EQ.'YES')

$ABD.

ENDIF.

Example 3:

This procedure exemplifies the proper use of the underscore character for
the definition of a formal parameter. It creates a procedure called
AUDJCL.

Definition

PROC.

AUDJCL, DN, LEVEL, L=§0UT : AUDLST. Prototype statement
AUDIT,PDN=&DN&LEVEL JCL, ID=JCL, L=&L. Definition body
ENDPROC.

Invocation

AUDJCL,-,05.

Expansion

AUDIT, PDN=-05JCL, ID=JCL, L=$0OUT.

Example 4:

Parentheses are required when specifying multiple values for a single
parameter value on a procedure definition prototype statement or on a
calling statement. 1In these cases, the colon is used to separate default
and Boolean values in a keyword parameter. For example:

Part 3
SR-0011 4-10 L

Procedure-definition prototype statement

MYPROC, POS1,KEY= (DEF1:DEF2) : (B001:B002).
Invocation
MYPROC, (POS1A:POS1B) .

When substitution occurs during this call, POS1A:POS1B replaces all POS1
occurrences within the definition body. Both values (POS1A and POS1B)
are evaluated separately during control statement evaluation. If
apostrophes are on the call, 'POS1A:POS1B' is evaluated as one literal
string.

Example 5:

The following procedure definition exemplifies the use of literal strings
instead of parenthetical strings.

Definition

PROC.

PURGER, PDN, ID,ED,M. Prototype
ACCESS, DN=$PURGE , PDN=§&PDN, ID=&ID,ED=&ED,M=&M, UQ, NA.

DELETE, DN=3$PURGE,NA. Definition body
RELEASE , DN=$PURGE.

ENDPROC.

Invocation

PURGER, 'SOURCE.MAIN', PROJECT.

Expansion

ACCESS ,DN=$PURGE, PDN="'SOURCE.MAIN' , ID=PROJECT, ED=,M=,UQ,NA,
DELETE, DN=3PURGE,NA.

The apostrophes remain as part of the string in the expansion. If
parentheses had been used in the invocation instead of apostrophes for
the permanent dataset name, (SOURCE.MAIN), the value when the ACCESS
statement is evaluated would be SOURCE.MAIN because the outermost
Parentheses are removed when preceded by a valid separator. This action
would cause an error because the period in SOURCE.MAIN would be evaluated
as a statement terminator during evaluation.

Part 3
SR-0011 4-11 L

Example 6:

The following example illustrates the use of parenthetical strings
instead of literal strings in a procedure definition.

Definition

PROC.
LGO,CALSORC,ABS ,NLIB=$SCILIB: ($SCILIB: A
$SYSLIB:$FTLIB) . Prototype
CAL, I=&CALSORC.
LDR,NX, AB=&ABS, NOLIB=&NLIB. Definition body
ENDPROC.

Invocation

LGO,, ,NLIB.

Expansion

CaL, I=.
LDR,NX,AB=,NOLIB=$SCILIB:$SYSLIB:$FTLIB.

Parentheses were not included for the expansion of the NLIB keyed default
value because parentheses are removed during processing when preceded by
the concatenation delimiter (:).

If apostrophes had been used instead of parentheses for the NLIB
parameter value, the colons would have been ignored as separators during
expansion. Also, apostrophes are treated as part of the value when
included in a procedure definition prototype statement or a calling
statement. Therefore, if apostrophes had been used, the following
expansion would have occurred.

CAL, I=,
LDR, NX,AB=,NOLIB="'§SCILIB:$SYSLIB:$FTLIB"'.

When the LDR statement is executed, the value assigned to the NOLIB
parameter is the literal string $SCILIB:$SYSLIB:$FTLIB which violates the
syntax for the NOLIB parameter.

Example 7:

Consider the following procedure definition. This procedure is used to
retrieve specified source decks from an UPDATE program library by the use
of the &DATA option.

Part 3
SR-0011 4-12 L

PROC.

GDECK , PLNAME , MASTERCH, DECKRNGE . Prototype statement
ACCESS, DN=§PLNAME,

UPDATE, I=QZRRZQ2,Q,C=0,S,P=4PLNAME.

RELEASE, DN=QZRRZ(Q2 : §PLNAME, Definition body
&DATA QZRRZQ2

SMASTERCH_COMPILE &DECKRNGE

ENDPROC.

sample invocations and their expansions follow:

Invocation Expansion
GDECK,COSPL, *, (ST,CT) . ACCESS,DN=COSPL.

UPDATE, I=QZRRZQ2,0Q,C=0,S,P=COSPL.
RELEASE,DN=QZRRZQ2 :COSPL.

(Dataset QZRRZQ2 contains:
*COMPILE ST,CT)

GDECK, FTLIBPL,*, (COS.RFD). ACCESS,DN=FTLIBPL.
UPDATE, I=QZRRZQ2,Q,C=0,S,P=FTLIBPL.
RELEASE, DN=QZRRZQZ2 :FTLIBPL.,

(Dataset QZRRZQ2 contains:
*COMPILE COS.RFD)

Example 8:

Ths

example illustrates one mechanism for defining and maintaining user

procedure libraries. Note the new procedure library is saved on mass
storage for later use.

The

ACCESS ,DN=GENLIB.
CALL,DN=GENLIB.

permanent dataset GENLIB contains:

ECHO, OFF .
RELEASE, DN=$PROC.

*, Define procedure for ACCESS of commonly used ID.

PROC.

UQ,DN,ED=:1, PDN=:GENLIB, R= :READCW,W=:WRITECW,M=:MAINCW, NA=:NA.
ACCESS ,DN=&DN, ID=MYUID, PDN=&PDN, ED=&ED,R=&R,W=&W ,M=&M , NA=&NA .
RETURN.

EXIT.

RETURN, ABORT.

ENDPROC.

Part 3

SR-0011 4-13 L

*, Edit a local dataset.

PROC.

ED,DN,AC=:"'ACCESS'.

IF('&AC' .EQ.'ACCESS')
UQ, &DN.

ENDIF

TEDI,DN=&DN.

RETURN.

EXIT.

RETURN, ABORT.

ENDPROC.

*, End of definitions

UQ,PROCLIB,NA.

SAVE, DN=$PROC, PDN=PROCLIB, ID=MYUID.
DELETE, DN=PROCLIB,NA.

RELEASE, DN=$PROC.
ACCESS,DN=PROCLIB, ID=MYUID.
LIBRARY,DN=* :PROCLIB.

ECHO,ON.

Part 3
SR-0011 4-14

APPENDIX SECTION

JOB USER AREA A

JOB TABLE AREA - JTA

Each job has an area referred to as the Job Table Area (JTA) preceding
the field defined for the user. A JTA is accessible to the operating
system but not to the user. The format of a JTA is described in the COS
Table Descriptions Internal Reference Manual, CRI publication SM—-0045.
The Job Table Area contains job-related information such as accounting
data; a JXT pointer; sense switches; an area for saving B, T, and V
register contents, control statement and logfile DSPs; and buffers; a

copy of the user's LFTs; and a Dataset Name Table (DNT) for each dataset
used by the job.

JOB COMMUNICATION BLOCK - JCB

Following the JTA is a 128-word block referred to as the Job
Communication Block (JCB). The user accessible JCB contains a copy of
the current control statement for the job and other job-related
information.

Figure A-1 illustrates an expansion of the JCB.

0 8 16 24 32 40 48 56 63
0
. (Available for scratch space)
5
. CCI
16
. CPR

Figure A-1. Job Communication Block (JCB)

SR-0011 A-1 L

64
65
66
67
68
EFI 69
70
71
72
73
74
75
76
77
78
79
80
81

102

116

118
119

120

127

SR-0011

0 8 16 24 32 40 48 56 63

JIN \//////7/
Lep 1//////101 HLM I FL
NPF | BFB I DSP
NLE | MFL | LFT
flags V//77/7/7/7777/77/77//////////////] PNST | STRM
\WN /7| CYCL| CPTP |////////////////////1//////////////////////
OVL N SCB CRL
ACN1
ACN2 /7777777
PWD1
PWD2
PROM
//////1////7/7//77] PLEV I ILEV I CLEV
MMIN I MMIS
MMBA | MMEP
STIN M STRT STIS
/1171777777777 //7//7//7/77/77/771 AVBA
Reserved
LDR
/11771771777 777777777777777777777777777777777//7/7/77/777777//77

J/1117177//7//777777/7777

BDAT

BTIM

DIG

Figure A-1. Job Communication Block (JCB) (continue