= PR Ay

RESEARCH, INC.

CRAY X-MP™ AND CRAY-1®
COMPUTER SYSTEMS

COS VERSION 1
REFERENCE MANUAL

SR-0011

Copyright® 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984,
1986, 1987 by CRAY RESEARCH, INC. This manual or parts
thereof may not be reproduced in any form without permission of
CRAY RESEARCH, INC.

C R AANY

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-0011

Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new version
and the new version is assigned an alphabetic level.

Every page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to part of a page are noted
by a change bar in the margin directly opposite the change. A change bar in the margin opposite the page number indicates that the
entire page is new. If the manual is rewritten, the revision level changes but the manual does not contain change bars.

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.
1345 Northland Drive
Mendota Heights, Minnesota 55120

Revision Description

June 1976 - Original printing.

A September 1976 - General technical changes; changes to JOB,
MODE, RFL, and DMP statements; names of DS and RETURN changed
to ASSIGN and RELEASE. STAGEI deleted, STAGEO replaced by
DISPOSE. RECALL macro added and expansions provided for all
logical I/0O macros. RELEASE, DUMPDS, and LOADPDS renamed to
DELETE, PDSDUMP, and PDSLOAD. Detailed description of BUILD
added (formerly LIB). EDIT renamed to UPDATE.

B February 1977 - Addition of Overlay Loader; deletion of Loader
Tables (information now documented in CRI publication
SR-0012); deletion of UPDATE (information now documented in
CRI publication SR-0013); changes to reflect current
implementation.

C July 1977 - Addition of BKSPF, GETPOS, and POSITION logical
I/0 macros and $BKSPF, $GPOS, and $SPOS routines. Addition of
random I/0. Changes to dataset structure, JOB, ASSIGN, MODE,
and DUMP statements; BUILD; logical I/0 and system action
macro expansions. General technical changes to reflect
current implementation.

CRAY, CRAY-1l, SSD, and UNICOS are registered trademarks and APML, CFT,
CFT77, CFT2, COS, CRAY-2, CRAY X-MP, CSIM, IOS, SEGLDR, SID, and
SUPERLINK are trademarks of Cray Research, Inc.

CDC is a registered trademark of Control Data Corporation. CYBER is a
trademark of Control Data Corporation., IBM is a registered trademark
of Internation Business Machines Corporation. VAX and VMS are
trademarks of Digital Equipment Corporation. UNIX is a registered
trademark of ATST.

ii SR-0011 O

F-02

SR-0011 ©

January 1978 - Correction to DISPOSE and LDR control statement
documentation, addition of description of $WWDS write routine,
miscellaneous changes to bring documentation into agreement
with January 1978 released version of the operating system.

February 1978 - Reprint with revision. This printing is
exactly the same as revision C with the C-01 change packet
added.

April 1978 - Change packet includes the addition of the ADJUST
control statement; MODE and SWITCH macros; and PDD, ACCESS,
SAVE DELETE, and ADJUST permanent dataset macros.
Miscellaneous changes to bring documentation into agreement
with released system, version 1.01.

July 1978 - Complete rewrite. Changes are not marked by
change bars. New features for version 1.02 of the operating
system that are documented in this revision include: addition
of the MODIFY control statement and the DSP, SYSID, and
DISPOSE macros; the addition of parameters to some control
statements, the implementation of BUILD. The POSITION macro
has been renamed SETPOS. Other changes to bring documentation
into agreement with released version 1.02 of the operating
system.

October 1978 - Change packet includes the implementation of
ACQUIRE and COMPARE control statements; changes to the AUDIT
and LDR control statements; changes to the MODE control
statement and macro; the addition of control statement
continuation, GETPARAM, and the GETMODE macro; and other minor
changes to bring documentation into agreement with the
released version 1.03 of the operating system.

December 1978 - Revision F is the same as revision E with
change packet E-01 added. No additional changes have been
made.

January 1979 - Change packet includes implementation of some

features of BUILD; the addition of the BUFIN, BUFINP, BUFOUT,
BUFOUTP, BUFEOF, and BUFEOD macros and other minor changes to
bring documentation into agreement with the released version

1.04 of the operating system.

April 1979 - Change packet includes the implementation of the
DEBUG, RERUN, and NORERUN control statements, the RERUN,
NORERUN, and BUFCHECK macros; changes to DUMP, DSDUMP, AUDIT,
and ASSIGN control statements; implementation of job rerun and
memory-resident datasets. Other minor changes were made to
bring documentation into agreement with the released version
1.05 of the operating system.

iii

iv

July 1979 - Reprint with revision. Changes are marked with
change bars. The changes bring this documentation into
agreement with the released version 1.06 of the operating
system. This printing obsoletes all previous versions.

December 1979 - Change packet includes the implementation of
the WAIT and NOWAIT options on the DISPOSE control statement;
the addition of a new DUMP format and CFT Linkage Macros; and
other minor changes to bring documentation into agreement with
the released version 1.07 of the operating system.

January 1980 - Revision H is the same as revision G with
change packet G-01 added. No additional changes have been
made.

April 1980 - Revision I is a complete reprint of this manual.
All changes are marked by change bars. New features for
version 1.08 of the operating system that are documented in
this revision include: the addition of the CALL and RETURN
control statements, job classes, the NA parameter on permanent
dataset management control statements, the NRLS parameter on
the DISPOSE control statement and PDD macro, and the CW
parameter on the COMPARE control statement. Changes to the
LDR control statement include the addition of the LLD, NA,
USA, and I parameters and the new selective load directives.
New documentation has been added for unblocked I/0, including
descriptions of the READU and WRITEU macros. Other new macros
include SETRPV, ENDRPV, DUMPJOB, and the debugging aids SNAP,
DUMP, INPUT, OUTPUT, FREAD, FWRITE, UFREAD, UFWRITE, SAVEREGS,
and LOADREGS. Documentation on CRAY-1 interactive
capabilities and changes to reflect the CRAY-1 S series have
also been added. Other changes were made to bring
documentation into agreement with released version 1.08 of the
operating system.

With this revision, the publication number has been changed
from 2240011 to SR-0011.

October 1980 - Change packet includes the implementation of
the IOAREA, SETRPV, ROLL, and INSFUN macros and the IOAREA
control statement; the addition of execute-only datasets
including adding the EXO parameter to the SAVE and MODIFY
control statements and the PDD macro; the lengthening of the
TEXT parameter field; the addition of the DEB parameter to the
LDR control statement; and a change to the formats of the
UFREAD and UFWRITE macros. The DEBUG option allowing
conditional execution of the SNAP, DUMP, INPUT, and OUTPUT
macros has been implemented. Other minor changes were made to
bring documentation into agreement with the released version
1.09 of the operating system.

SR-0011 O

I-02

SR-0011 O

July 1981 - This change packet includes changes to Job Control
Language syntax; the addition of JCL block control statements
for procedure definition (PROC, ENDPROC, &DATA, and prototype
statement), conditional processing (IF, ELSE, ELSEIF, and
ENDIF), and iterative processing (LOOP, EXITLOOP, and
ENDLOOP); the addition of ROLLJOB, SET, LIBRARY, ECHO, PRINT,
FLODUMP, and SYSREF control statements; the addition of CSECHO
macro; the addition of CNS parameter to CALL statement,
REPLACE parameter to BUILD statement, ARGSIZE parameter to
ENTER macro, KEEP parameter to EXIT macro, USE parameter to
ARGADD macro; the addition of the two JCL tables JBI and JST.
Other minor changes were made to bring the documentation into
agreement with the released version of 1.10 of the operating
system.

February 1982 - Reprint. This reprint incorporates revision I
with change packets I-01 and I-02. No other changes have been
made.

June 1982 - This change packet includes the following
additions: magnetic tape characteristics, temporary and local
dataset clarification, mass storage permanent datasets,
magnetic tape permanent datasets, tape I/0 formats,
interchange format, transparent format, new accounting
information, *gn=nr parameter, several CHARGES parameters,

the OPTION control statement, procedure definition, HOLD
parameter, new information to the ACCESS control statement,
new tape dataset parameters, tape dataset conversion
parameters, SUBMIT job control statement, PDSDUMP and PDSLOAD
sample listings, SID parameter on the LDR control statement,
new loader errors, relocatable overlays, CONTRPV macro, SUBMIT
macro, unrecovered data error information, POSITION macro, new
PDD macro parameters, the LDT macro, and new glossary terms.
The information formerly in appendix C is now in the COS
EXEC/STP/CSP Internal Reference Manual, publication SM-0040.
Other miscellaneous technical and editorial changes were made
to bring the documentation into agreement with version 1.11 of
the operating system.

July 1982 - Reprint. This reprint incorporates revision J
with change packet J-01. No other changes have been made.

vi

July 1983 - Rewrite. Extensive editorial changes have been
made, including moving macro information which was in part 3
to Macro and Opdefs Reference Manual, CRI publication

SR-0012. Other major reorganization has occurred. Part 3 now
contains job control language structures. Information has
been added on interactive job processing and job step abort
processing. Major new features documented include enhanced
support of tape datasets, the FETCH control statement, memory
management, enhancements to COS security, permanent dataset
privacy, and support of the CRAY X-MP computer system.
Miscellaneous editorial and technical changes have been made
to bring the documentation into agreement with version 1.12 of
the operating system. This printing obsoletes all previous
versions.

October 1983 - This change packet describes two new ACCOUNT
control statement parameters: APW and NAPW. The use of APW
and NAPW, and their interrelationship with existing parameters
on ACCOUNT, are also explained. A new parameter on the AUDIT
control statement, ACC, is described. 1In addition,
illustrative information is provided on how the OWN parameter
of the AUDIT utility affects output listings.

February 1984 - This change packet supports the COS 1.13
release. It includes editorial and technical amendments to
information that had been included in previous versions of
this manual. The contents reflect new multitasking
capabilities. Additional information has been included for
coding the CALL statement. New parameters have also been
documented in this manual for foreign dataset processing,
particularly on the ASSIGN and ACCESS control statements. The
LDR statement has been modified considerably; RELEASE, SAVE,
MODIFY, DELETE, PERMIT, ACQUIRE, and PDSLOAD also have new
parameters. Furthermore, new information is included for
managed memory capabilities, the EXITIF control statement
block identifier, the COPYU utility for unblocked datasets,
and new error codes for reprieve processing.

December 1984 - This reprint with revision describes many
technical changes to COS for the 1.14 release, including
contiguous disk allocation and the tape features multitape
mark, on-line tape ring processing, partial IBM multifile,
special end-of-volume processing, and superblock size. The
revision describes software to support four-processor

CRAY X-MP computer systems and systems with up to 8 Mwords of
memory. Appendix B provides instructions for Subsystem
Support: interjob communication, user channel access, and
event recall. This revision also documents the Integrated
Support Processor (ISP). Note that ISP code will be released
later.

SR-0011 O

This revision contains several format changes. To increase

—_ the accuracy of the tables and related information in appendix
A, the section is printed as generated by the system. In the
body of the manual the "parts" have been removed and the
sections numbered consecutively. Material in the four
sections of part 3 has been consolidated into one section,

— 16. This reprint obsoletes all previous editions.

N January 1986 - This reprint with revision brings the manual
into agreement with the COS 1.15 release. Technical
information added includes documentation of permanent dataset
archiving, the HOLD and NOHOLD commands to control an
allocated generic resource, changes to resource accounting,
and partial support for the IBM 3480 tape subsystem.

There is one significant editorial change: To make

— information more retrievable, the control statements in
sections 7 through 13 now appear in alphabetical order by verb
within each section. This reprint obsoletes all previous
editions.

(0] May 1987 - This reprint with revision brings the manual into
agreement with the COS 1.16 release. Technical information

- added includes access of SEGLDR with the new LD2 control
statement, the BLOCK and QUERY control statements, the FETCH
SF parameter, the RESTORE type parameter, the ASSIGN SPD
parameter, and new options for VMS tape files in the ASSIGN
and ACCESS RF parameter. Concatenated dataset information has
also been added. System error codes have been removed from
appendix E. Refer to the COS Message Manual, publication
SR-0039, for these messages. Appendix F, which lets you
record site-specific information, has been added.

SR-0011 O vii

PREFACE

This manual describes the external features of the Cray operating system
COS and is intended as a reference document for all users of COS. It
deals with three aspects of COS:

[4

Job processing. Sections 1 through 5 discuss the fundamentals of
creating and running jobs on a Cray computer system. These
sections describe the system components, storage of information on
a Cray computer system, and job processing. They also introduce
COS job control and describe the use of libraries.

Job control statements. Sections 6 through 15 describe each COS
job control statement and give the format of each with an
explanation of its function.

Control statement structures. Section 16 describes the control
statement block structures available with COS. Examples at the
end of the section demonstrate the COS control statement procedure
substitution process.

OTHER PUBLICATIONS

Other Cray Research, Inc. (CRI) publications that may be of interest to
the reader include the following:

Products and Utilities

SR-0010 Software Tools Reference Manual

SR-0013 UPDATE Reference Manual

SG-0055 Text Editor (TEDI) User's Guide

SG-0056 Symbolic Interactive Debugger (SID) User's Guide
SR-0066 Segment Loader (SEGLDR) Reference Manual

SR-0073 Cray Simulator (CSIM) Reference Manual

SR-0074 SORT Reference Manual

SR-0112 Symbolic Debugging Package Reference Manual
SR-0146 COS Performance Utilities Reference Manual

SN-0236 Foreign Dataset Conversion on CRAY-1 and CRAY X-MP

Computer Systems

SR-0011 O ix

¢ Languages

SR-0000
SR-0009
SR-0012
SR-0018
SR-0060
SR-0113
SR-2003
SR-2024

® Miscellaneous
SR-0039
SI-0154

SI-0178
SR-0222

CONVENTIONS

This manual uses the
statements:

Convention

italics

[1 Brackets

CAL Assembler Version 1 Reference Manual
Fortran (CFT) Reference Manual

Macros and Opdefs Reference Manual

CFT77 Reference Manual

Pascal Reference Manual

Programmer's Library Reference Manual
CAL Assembler Version 2 Reference Manual
Cray C Reference Manual

COS Message Manual

SUPERLINK/ISP General Information Manual
SUPERLINK/MVS User Guide

CRAY X-MP Multitasking Programmer's Manual

following conventions in presenting control

Description

Define generic terms representing the words or
symbols you supply

Enclose optional portions of a command format

Choice 1 Stacked items indicate two or more literal
Choice 2 parameters when only one choice can be used
] Numbers are decimal unless otherwise indicated.

SR-0011 O

CONTENTS

PREFACE .

. . .

. . . . -

1. INTRODUCTION TO JOB PROCESSING ¢ v & v o o o o o &

S S
w N =

(S

HARDWARE REQUIREMENTS ¢ ¢ o o « o o o & &
COS STARTUP . . .
CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS . . .
Memory-resident COS

1.3.1
1.3.2

User area
1.3.2.1
1.3.2.2

of memory o . < . . .
Job Table Area (JTA)
User field . . ¢« « . ¢ v ¢« ¢« « « .

MASS STORAGE CHARACTERISTICS . .+ &+ ¢« + &« & o o o & &
MAGNETIC TAPE CHARACTERISTICS « .+ .

2. DATASETS . .

2.1

SR-0011 O

DATASET MEDIA . .

2.1.1
2.1
2.1.
2.1

=W N

2.1.5
DATASET
2.2.1

N NN
N NN
.
oW N

DATASET
2.3.1
2.3.2

Mass storage datasets
Memory-resident datasets
Interactive datasets
Magnetic tape datasets + .+ . . .

2.1.4.1

FORMATS .

Gaining access to a tape dataset .
Bypass label processing
User tape end-of-volume processing
Tape mark processing

Multidataset access
Concatenated datasets

ntegrated Support Processor (ISP) datasets

Blocked format . . . ¢« + ¢« ¢ ¢ ¢ e 4 e e .

2.2.1.1
2.2.1.2
2.2.1.3
Unblocked

Blank compression
Block control word ¢« « . .
Record control word

format o 00 0. 0

Interactive format« +« ¢« « ¢ « ¢ « o .
Tape format ¢ . ¢ o o

2.2.4.1
2.2.4.2
LONGEVITY
Temporary
Permanent

Interchange format
Transparent format
datasets

datasets 0. .

ix

[
|
[

PR R RPRR PR e
[
AU D W W WWwWwwpE

]

[38]
I
[u—

NN NN NNDNNDNNDNNNDNDNDND NN
[I T e [e T T N

P PR O VYOO U DB WWNRNR R
w = O o

2-13
2-13
2-15
2-15
2-17
2-17
2-17

xi

xii

2.3.2 Permanent datasets (continued)
2.3.2.1 Magnetic tape permanent datasets
2.3.2.2 Mass storage permanent datasets .
2.4 LOCAL DATASETS
2.5 DATASET DISPOSITION CODES . . o e e .
2.6 USER DATASET NAMING CONVENTIONS o . .
2.7 USER I/O INTERFACES
COS JOB PROCESSING . . .« & ¢ & ¢ o o « o« o o o« &
3.1 JOB DATASET STRUCTURE
3.2 JOB FLOW . . . + ¢ ¢ ¢ ¢ ¢« ¢ ¢ o« o« & .
3.2.1 Job entry . ¢ .« ¢ 4 ¢ 4 e e . W . e .
3.2.2 Job initiation
3.2.3 Job advancement
3.2.4 Job termination . . .
3.3 JOB MEMORY MANAGEMENT . . . « o . . .
3.3.1 Initial memory allocatlon .- . . e e e .
3.3.2 Field length reduction . e . . e e
3.3.3 User management of memory« e .
3.3.3.1 Management by control statement from
the run stream
3.3.3.2 Management from within a program
3.3.3.3 Management associated with a program .
3.3.4 System management of memory
3.4 JOB RERUN ¢« « ¢« o o o & ..
3.5 EXIT PROCESSING « « .+ . . e o e e e
3.6 REPRIEVE PROCESSING o e e e
3.7 INTERACTIVE JOB PROCESSING o e e e
3.8 JOB LOGFILE AND ACCOUNTING INFORMATION . . .
JOB CONTROL LANGUAGE
4.1 SYNTAX VIOLATIONS . . . ¢ « o v v ¢ o o & o« . .
4.2 CONTROL STATEMENT VERBS o e s e
4.2.1 System verbs
4.2.2 Local dataset name verbs
4.2.3 Library-defined verbs . .
4.2.4 System dataset name verbs . .
4.3 SEPARATORS . ¢ « ¢« « o o o o o o o o o o & . .
4.4 PARAMETERS « e . . .
4 4.1 Positional parameters o e e e e .
.4.2 Keyword parameters o o e e
.4.3 Parameter interpretation« e

LIBRARIES . . . ¢ ¢ ¢ ¢ ¢ ¢ o o o« o o &

5.1 PROCEDURE LIBRARY

2-17
. 2-17
2-19
2-19
2-19
2-20

w
|
[u

1
bbb W W NN

W Wwwwwwwwww
|

.
W wwwwwwww
1

OO NNOOo0 O

|
[
o o

-
|
’_l

L I B

[F T N SV SO N S N N NN S
|
NOD R D PR WWWNN

SR-0011 O

5. LIBRARIES (continued)

5.2 PROGRAM LIBRARY . . e o o & o e e & & o o o o o 5-1
5.3 OBJECT CODE LIBRARIES et e e e e e e e e e e e e 5-2
6. JOB CONTROL STATEMENTS « « ¢« « « « . 6-1
6.1 JOB DEFINITION AND CONTROL . . . &+« + ¢« & o « o & & 6-1
6.2 DATASET DEFINITION AND CONTROL« v v & « o« « « + & 6-3
6.3 PERMANENT DATASET MANAGEMENT+ &« v « o« o o o o o & 6-3
6.3.1 Mass storage dataset attributes . . . 6-4
6.3.1.1 Permission control words 6-4

6.3.1.2 Public access mode attribute 6-6

6.3.1.3 Public access tracking attribute . 6-6

6.3.1.4 Permits attribute 6-6

6.3.1.5 Text attribute 6-6

6.3.1.6 Notes attribute . . . o« . .« e e 6-6

6 3.2 Establishing attributes for mass storage datasets 6-7
6.3.2.1 Existing permanent dataset 6-7

6.3.2.2 New permanent dataset 6-7

6.3.2.3 Attributes dataset 6-8

6.3.3 Protecting and accessing mass storage datasets . 6-8
6.3.3.1 Privacy . « ¢ ¢« ¢ o v v v e v e e e 6-9

6.3.3.2 Access mMode . ¢ . ¢ e e e e e e e e e 6-9
6.3.3.3 Dataset use tracking 6-10
6.3.3.4 Attribute association 6-10
6.4 DATASET STAGING CONTROL . . & «¢ ¢ « o o o o o s o o o« & 6-11
6.5 PERMANENT DATASET UTILITIES « « « « ¢« « o « & 6-13
6.6 LOCAL DATASET UTILITIES . . . ¢ ¢ o o o o o o o o o o = 6-13
6.7 ANALYTICAL AIDS e e e s e e e 4 e 4 e e e 6-14
6.8 EXECUTABLE PROGRAM CREATION e e e e e e e s e e o o o 6-15
6.9 OBJECT LIBRARY MANAGEMENT ¢« ¢« ¢« ¢ ¢ « o« « « & 6-16
7. JOB DEFINITION AND CONTROL . . &+ ¢ &« « « s o o o o o o o o = 7-1
7.1 * - COMMENT STATEMENT . . . e e e e e . 7-2
7.2 ACCOUNT - VALIDATE USER NUMBER AND ACCOUNT e e . 7-2
7.3 CALL - READ CONTROL STATEMENTS FROM ALTERNATE DATASET 7-4
7.4 CHARGES - JOB STEP ACCOUNTING 7-8
7.5 ECHO - ENABLE OR SUPPRESS LOGFILE MESSAGES . . . e e 7-10
7.6 EXIT - EXIT PROCESSING e e e e e e e e 7-11
7.7 IOAREA - CONTROL USER'S ACCESS TO I/O AREA 7-12
7.8 JOB - JOB IDENTIFICATION . . . &« & ¢ ¢ o ¢ o o o o « o & 7-12
7.9 LIBRARY - LIST AND/OR CHANGE LIBRARY SEARCHLIST . 7-14
7.10 MEMORY - REQUEST MEMORY CHANGE« ¢« « « ¢ « o « « . 7-15
7.11 MODE - SET OPERATING MODE 7-16
7.12 NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS . 7-18
7.13 OPTION - SET USER-DEFINED OPTIONS . . . « « « « « « « & 7-18

SR-0011 © xiii

7. JOB DEFINITION AND CONTROL (continued)

7.14 RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY 7-20
7.15 RETURN - RETURN CONTROL TO CALLER . ¢ ¢ ¢ ¢ o ¢ o o o & 7-21
7.16 ROLLJOB - ROLL A USER JOB TO DISK . + ¢ &+ ¢« o ¢ o « o & 7-22
7.17 SET - CHANGE SYMBOL VALUE . ¢ &+ ¢ ¢ ¢ o o o o o o o o @ 7-22
7.18 SWITCH - SET OR CLEAR SENSE SWITCH ¢ ¢« « o o « . 7-23
7.19 TARGET - SPECIFY CPU CHARACTERISTICS . ¢ ©+¢ « o o ¢ o o 7-23
8. DATASET DEFINITION AND CONTROL « &« « ¢ o o o o o o o o o o o 8-1
8.1 ASSIGN - ASSIGN DATASET CHARACTERISTICS « +« .« . 8-1
8.2 HOLD - HOLD GENERIC RESOURCE . . &« « ¢ ¢ o o o o o o o @ 8-12
8.3 NOHOLD - RESCIND THE EFFECT OF HOLD« ¢ ©« ¢ « « . 8-13
8.4 RELEASE - RELEASE DATASET I 8-13
8.5 INTEGRATED SUPPORT PROCESSOR (1ISP) DATASETS e e e e e e 8-14
9. PERMANENT DATASET MANAGEMENT . . . ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o o 9-1
9.1 ACCESS - ACCESS PERMANENT DATASET . ¢« ¢« ¢ o o o o o o« & 9-1
9.2 ADJUST - ADJUST PERMANENT DATASET . . ¢ ¢ ¢ ¢ o o o o o 9-13
9.3 DELETE - DELETE PERMANENT DATASET . . . « ¢ o o o o« o 9-14
9.3.1 Local dataset format + ¢ ¢ ¢« ¢« ¢« o 4 o 9-14
9.3.2 Nonlocal dataset format . . . « ¢ ¢ o« ¢ o o o & 9-15
9.4 MODIFY - MODIFY PERMANENT DATASET . . ¢ ¢ ¢ o « o o o & 9-16
9.5 PERMIT - EXPLICITLY CONTROL ACCESS TO DATASET 9-20
9.6 SAVE - SAVE PERMANENT DATASET e e e e 9-21
9.7 EXAMPLES OF PERMANENT DATASET CONTROL STATEMENTS PN 9-25
10. DATASET STAGING CONTROL . ¢ « ¢ & o o o o o o o o o o o o o @ 10-1
10.1 ACQUIRE - ACQUIRE PERMANENT DATASET . . « ¢ ¢ ¢ o s o o 10-1
10.2 DISPOSE - DISPOSE DATASET . .« ¢ ¢ ¢ ¢ « o« o o « o o o« o 10-6
10.3 FETCH - FETCH LOCAL DATASET . . &+ ¢ ¢« ¢ ¢ o o o o o o &« 10-10
10.4 SUBMIT - SUBMIT JOB DATASET . . . + 4+ + ¢ ¢ « o « ¢« « o« 10-13
11. PERMANENT DATASET UTILITIES . . ¢ &« ¢ ¢ o o « o o o o o o o & 11-1
11.1 AUDIT - AUDIT PERMANENT DATASETS . « + « ¢ ¢ o ¢ ¢ o o o 11-2
11.2 PDSDUMP - DUMP PERMANENT DATASETS . . ¢« ¢« ¢« ¢ ¢ o o o = 11-9
11.3 PDSLOAD - LOAD PERMANENT DATASETS . . . +« ¢« ¢ ¢ ¢« o« &« o 11-13
11.4 RESTORE - RECALL A DATASET TO ON-LINE DISK . . « . « « & 11-16
11.5 RETIRE - RETIRE A DATSET . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o 11-17
12. LOCAL DATASET UTILITIES . ¢ ¢ ¢ ¢ o o o o o o o o o o o o o 12-1

12.1 BLOCK - CONVERT UNBLOCKED DATASET TO BLOCKED DATASET . . 12-2

xiv SR-0011 O

12. LOCAL

DATASET UTILITIES (continued)

12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14

COPYD - COPY BLOCKED DATASET« .
COPYF - COPY BLOCKED FILES « . « « « .
COPYR - COPY BLOCKED RECORDS + « « .« .
COPYU - COPY UNBLOCKED DATASETS
NOTE - WRITE TEXT TO A DATASET
QUERY -~ RETURN STATUS AND POSITION INFORMATION .
REWIND - REWIND BLOCKED OR UNBLOCKED DATASET
SKIPD - SKIP BLOCKED DATASET
SKIPF - SKIP BLOCKED FILES « . .
SKIPR - SKIP BLOCKED RECORDS
SKIPU - SKIP UNBLOCKED DATASET

UNBLOCK - CONVERT BLOCKED DATASET TO UNBLOCKED DATASET .

WRITEDS - INITIALIZE A BLOCKED RANDOM OR
SEQUENTIAL DATASET . . ¢ ¢ ¢ o o o o o o« s o o

13. ANALYTICAL AIDS . . . & v & o ¢ ¢ o« o o o o o« o

13.1
13.2
13.3
13.4
13.5

COMPARE - COMPARE DATASETS « ¢ « « « o &
DSDUMP - DUMP DATASET . . ¢ & & v o « o o« o« o &
DUMP - DUMP REGISTERS AND MEMORY
DUMPJOB -~ CREATE $DUMP o e e e e
ITEMIZE - INSPECT LIBRARY DATASETS e o o + s
13.5.1 File-level output . . . e e e e e
13.5.2 Output for binary llbrary datasets
PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE .
SYSREF - GENERATE GLOBAL CROSS-REFERENCE LISTING
13.7.1 Use of SYSREF « ¢« ¢« « « & o &
13.7.2 Global cross-reference listing format .

14. CREATING AN EXECUTABLE PROGRAM e e e e e e e e e e s

14.1
14.2
14.3
14.4
14.5
14.6

SR-0011 O

LDR CONTROL STATEMENT « « « « « &
LD2 CONTROL STATEMENT « v « o « o & « &
LOAD ORDER FOR LDR AND LD2« « +« « « « « .
LOAD MAP . . . ¢ & ¢« o v o o o o o o o o o & o
SELECTIVE LOAD ¢« ¢ ¢ ¢ ¢ o o o o o o o o o o o o
OVERLAYS . ¢ & &« ¢ v o v ¢ o o o o o o o o &
14.6.1 Overlay directives ¢« « « + + &

14.6.1.1 FILE directive

14.6.1.2 OVLDN directive
14.6.1.3 SBCA directive
14.6.1.4 SMMA directive
14.6. Type 1 overlay structure
14.6.3 Type 1 overlay generation directives . .
14.6.3.1 ROOT directive
14.6.3.2 POVL directive .,
14.6.3.3 SOVL directive« e e .
14.6.3.4 Generation directive example

[\S]

.

.

12-3
12-4
12-4
12-5
12-6
12-6
12-7
12-8
12-8
12-9
12-10
12-10

12-12

13-1

13-2

13-4

13-7

13-11
13-11
13-13
13-14
13-16
13-17
13-18
13-19

14-1

14-1

14-10
14-12
14-13
14-16
14-17
14-18
14-18
14-18
14-19
14-19
14-20
14-22
14-22
14-22
14-23
14-23

Xxv

15.

16.

xvi

14.6

OVERLAYS (continued)
14.6.4 Type 1 overlay generation rules 14-24
14.6.5 Type 1 overlay execution 14-25

14.6.5.1 Fortran language call 14-26
14.6.5.2 CAL language call « « . . . 14-26
14.6.6 Type 2 overlay structure . . . e s e s e o . . l4-27

14.6.7 Type 2 overlay generation d1rect1ve e « < « « .+ 14-30

14.6.7.1
14.6.7.2

OVLL directive 14-30
Generation directive example 14-31

14.6.8 Type 2 overlay generation rules 14-32
14.6.9 Type 2 overlay execution 14-33

14.6.9.1
14.6.9.2

Fortran language call 14-33
CAL language call 14-34

14.6.10 Overlay generation log . . . « +« « « « « « « « . 14-35

BUILD UTILITY 15-1
15.1 BUILD CONTROL STATEMENT . . . & & & o 4 o o o o o o s 15-1
15.2 PROGRAM MODULE NAMES . . ¢ ¢ v ¢ ¢ o o o o o o o o s o o 15-3
15.3 PROGRAM MODULE GROUPS . . . ¢ « & ¢ ¢ ¢ o o o o o o o = 15-3
15.4 PROGRAM MODULE RANGES . . ¢ + ¢ « ¢« ¢ + o o o o o o« o +» 15-4
15.5 FILE OUTPUT SEQUENCE e
15.6 FILE SEARCHING CONSIDERATIONS . . ¢ ¢ &+ ¢ & o o o o« o 15-4
15.7 BUILD DIRECTIVES . © e 4 e 4 & 4 4 4 e 4 s+ e 4 & s s & 15-5
15.7.1 FROM directive . . « + + ¢« &+ ¢ &« ¢ o o o « &« o « 15-5
15.7.2 OMIT directive . + « « &+ « o o « o o « o o o« « « 15-6
15.7.3 COPY directive . . + ¢ ¢ ¢« o « ¢« &+ o « o o o« « o« 15-7
15.7.4 LIST dAirective . . « + « ¢ o s o o o « o &+ « « « 15-8
15.8 EXAMPLES . . e o ¢ o 4 e 4 e e e o o e s+ e 2 o o 15-8

JOB CONTROL LANGUAGE STRUCTURES « « « ¢ o « « « o« » » 16-1

16.1

16.2

CONTROL STATEMENT

LOGIC STRUCTURES « . « « « . . 16-1

16.1.1 Simple control statement sequences 16-1
16.1.2 Conditional control statement blocks 16-1

16.1.2.1
16.1.2.2
16.1.2.3
16.1.2.4
16.1.2.5
16.1.2.6
16.1.3 Iterative
16.1.3.1
16.1.3.2
16.1.3.3

ELSE - Define alternate condition . . 16-2
ELSEIF - Define alternate condition . 16-2
ENDIF - End conditional block 16-3
EXITIF - Exit from conditional block . 16-3
IF - Begin conditional block 16-4
Conditional block structures 16-4
control statement blocks 16-8
ENDLOOP - End iterative block 16-8
EXITLOOP - End iteratiom 16-9
LOOP - Begin iterative block 16-9

JOB CONTROL LANGUAGE EXPRESSIONS 16-10

16.2.1 Operands .
16.2.1.1
16.2.1.2

e e 4 e e s 4 4 e e e e 4 e e e . . . 16-10
Integer constants 16-11
Literal constants 16-11

SR-0011 O

16.2.1 Operands (continued)
16.2.1.3 Symbolic variables
16.2.1.4 Subexpressions . . . « « « .+ o+ o .
16.2.2 0perators . « ¢ o o o ¢« + o o e 0 e e e e
16.2.2.1 Arithmetic operators
16.2.2.2 Relational operators
16.2.2.3 Logical operators . e e e e e
16.2.3 Expression evaluation
16.2.4 Strings . e e e e s e e e e e e e e e
16.2.4.1 Literal strings . . .« « « « « + &
16.2.4.2 Parenthetic strings
16.3 PROCEDURES . . e e e e e e e e e e e e e e e
16.3.1 Simple procedures+ « ¢ « ¢ ¢ o o o+ .
16.3.2 Complex procedUIreS . + « « « o o o o o o o
16.3.2.1 PROC - Begin procedure definition
16.3.2.2 Prototype statement - Introduce
a procedure
16.3.2.3 Procedure deflnltlon body .
16.3.2.4 &DATA - Procedure data
16.3.2.5 ENDPROC - End procedure def1n1t1on
16.3.3 Parameter substitution
16.3.3.1 Positional parameters
16.3.3.2 Keyword parameters
16.3.3.3 Positional and keyword parameters
16.3.3.4 Apostrophes and parentheses .
APPENDIX SECTION
A. JOB USER AREA .,

BG
DD
DP
DR
ER
IJ
NC

MH
JB
JC
Js
JT
LD
LF
oD
oP
PM
TC

SR-0011

BEGIN CODE EXECUTION - BGN .
DATASET DEFINITION LIST - DDL . .
DATASET PARAMETER TABLE - DSP . . .
DISK RESERVATION TABLE - DRT . . .
FSERCL PARAMETER BLOCK - ERPB . .
F$IJMSG PARAMETER BLOCK - IJPB o« .
NODE CONTROL BLOCK - NCB . .

RCB RECEPTIVE CONTROL BLOCK - RCB .
INTER-JOB COMMUNICATION MESSAGE BUFFER

JCL BLOCK INFORMATION TABLE - JBI
JOB COMMUNICATION BLOCK - JCB . .
JCL SYMBOL TABLE - JST
JOB TABLE AREA - JTA
LABEL DEFINITION TABLE - LDT . . .
LOGICAL FILE TABLE - LFT
OPEN DATASET TABLE - ODN .
PARAMETER BLOCK FOR F$OPT - OPT .
PERMANENT DATASET DEFINITION - PDD
TASK CONTROL BLOCK - TCB

.

16-11
16-13
16-14
16-15
16-15
16-15
16-16
16-16
16-16
16-16
16-18
16-18
16-19
16-21

16-21
16-23
16-23
16-24
16-24
16-24
16-24
16-26
16-26

xvii

L

[N
PRRPRWWNNOMNDNDPRP P
Voo b
WINRNRPBAWNR NP

11-4
11-5
11-6
11-7
11-8
13-1
13-2

14-1
14-2
14-3
14-4

xviii

Cray Computer System Configuration

Central Memory Assignment

Data Hierarchy Within a Blocked Dataset . .

. .

B. SUBSYSTEM SUPPORT . . .« « « &« + o & .
B.1 INTERJOB COMMUNICATION
B.1.1 Establishing communication .
B.1.2 Sending and receiving messages
B.1.3 Closing communication paths
B.1.4 System requests o e .
B.2 USER CHANNEL ACCESS . . .
B.3 EVENT RECALL
B.4 SDT QUEUE MANIPULATION
B.5 OPERATOR MESSAGES o«
B.6 SYSTEM JOBS
c. CHARACTER SET
D. EXCHANGE PACKAGES
E. PERMANENT DATASET STATUS CODES .
F. CONTROL STATEMENT PARAMETERS o o e .
FIGURES

. .

.

.

.

.

. . .

Example of Dataset Control Words (Octal values shown) .
shown) .

Interchange-format Tape Dataset (Octal values
Relationship of Levels of User I/0

User Area of Memory for a Job .

Example of a Job Logfile . .
Audit, LO=S Listing
AUDIT, LO=P Listing
AUDIT, LO=L:P:N Listing . . .
AUDIT, LO=L Listing
AUDIT, LO=N Listing
AUDIT, LO=L:R Listing
PDSUMP Listing
PDSLOAD Listing
Sample Listing of ITEMIZE for
Sample Listing of ITEMIZE for
with X and NF Parameters

Load Map Example
Type 1 Overlay Loading Example
Type 2 Overlay Tree Example .
Type 2 Overlay Loading Example

.

Program

.

Library

.

. . .

. . .

. - .

Binary Library Dataset

N
=

. B-1

B-2

. B-3

. B-4

. B-5
B-5

. B-6

B-7

. B-7

B-7
c-1

. D-1
E-1

F-1

1-2

. 1-4
. 2-10
2-14

. 2-16
. 2-21
. 3-5
3-11

. 11-7

. 11-7

. 11-8
. 11-10
. 11-11
. 11-11
. 11-15
. 11-17
. 13-13
. 13-15
. 14-14
. 1la-21
. 14-28
. 14-29
SR-0011 O

FIGURES (continued)

| I I |
O oo N ;e WwN P

|
(S
NP O

.’P‘Z:’J’J’b‘ﬁ’ﬁ:’b‘i’l’ﬂ’l’b‘?’
-
w

I
.—i
'S

A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28
A-29
A-30
A-31
A-32
A-33
A-34
A-35
A-36
A-37
A-38
A-39
A-40
A-41
A-42
A-43
A-44
A-45
A-46
A-47
A-48
A-49

Begin Code Execution Table
Dataset Definition List
Dataset Parameter Table
CDC Record Format
Save Areas Used by Asynchronous
Disk Reservation Table . . .
F$ERCL Parameter Block . . .
F$IJMSG Parameter Block
Node Control Block
Receptive Control Block .

Inter-job Communication Message
JBI Conditional Format
JBI Iterative Format
Job Communication Block

Additional Tags for Diagnostics
JCL Symbol Table . o« e e e
Job Table Area

JTA User Breakpoints
JTA DNTs . . . o« o .

Provide Tags for JTUSR . .
Provide Tags for JTGRN . . .
Label Definition Table Header
Header Redefinition of LDDNT .
VOL1 Entry Description . . .
Redefinition of LDVSN? ., . .
HDR1 Entry Description . . .
HDR2 Entry Description . . .

Logical File Table
Open Dataset Table . .

Parameter Block for F$OPT . .
Permanent Dataset Definition .

PDD Format 2 . . « ¢ « ¢ .«
PDD Format 3
PDD Format 4

PDD for PMFCACDC LE@GPMACDC=3 .
PDD for PMFCADX LE@PMACDX=3

PDD for PMFCACMC, PMFCLDMC

PDD for PMFCACBC, PMFCLDBC . .
PDD for PMFCONBU .,
PDD for PMFCONSM
Device List Entry for PMFCONSM
PDD for PMFCONRC and PMFCONCU .
PDD for PMFCONxH through PMFCOFx
PDD for PMFCSDEI
PDD for PMFCCDEI

PDD for PMFCRET through PMFCSRLD

PDD for PMFCBUAC
PDD for PMFCRLD
PDD for PMFCWRBC

SR-0011 O

. . .

. . . .

¢ o s e
X o o« &

. . -

Xix

FIGURES (continued)

A-50 PDD for PMFCGLDV and PMFCGRRL . . . ¢ ¢ « ¢« « & « « &
A-51 PDD for PMFCSRET, PMFCSRES, PMFCSDEL
A-52 PDD for PMFCARCL . . ¢ ¢ ¢ ¢« ¢ o o o o o o o o o o &
A-53 PDD for PMFCGKEY . . . « + ¢ ¢ ¢ v v ¢ o o o o o o &
A-54 Task Control Block « « ¢« .+ «
B-1 A Typical Subsystem Interjob Communlcatlon Structure
D-1 CRAY-1 Exchange Package . . ¢« « ¢ ¢ ¢ ¢ o ¢ ¢ o o o &
D-2 CRAY X-MP Exchange Package« « « ¢ « « &
TABLES
1-1 Physical Characteristics of Tape Devices
2-1 Tape Formats for Multidataset Access
4-1 Control Statement Separators . . e e e e e e e e .
6-1 Permanent Dataset Management Control Statements for Each
Medium . . & ¢ ¢ 4 4t et e e e e e e e e e e e e
8-1 RS Defaults for IBM Tape Files « .« « « « .+ .
8-2 RS Restrictions for IBM Tape Files« « « . .
9-1 RS Defaults for IBM Tape Files « « ¢« &« & + &
9-2 RS Restrictions for IBM Tape Files + « . .
13-1 DSDUMP Output Format ¢« ¢ « ¢« & o « o« &
16-1 Symbolic Variable Table . . . « « ¢« &+ « ¢« « & o« o &
16-2 Expression Operator Table « « « « « .
16-3 Keyword Substitution after Expansion
16-4 Expansion of Parenthetic and Literal String Values .
A-1 Permanent Dataset Function Codes
Cc-1 ASCII Character Set . . .« v ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o &
E-1 PDD Status . . ¢ o ¢ ¢« ¢« v ¢ ¢ ¢ o e e e e e e e
F-1 Ranges and Installation Definitions
SUMMARY
GLOSSARY
INDEX
XX

. A-106

. A-107

. A-108

. A-109
A-111

. B-3

. D-1

. D-2

. 1-7

. 2-17
4-5

. 6-5

. 8-10

. 8-10
9-11

. 9-12

. 13-7
16-12

. 16-14
16-25

. 16-26

. A-76
c-1
E-1
F-2

SR-0011 O

COS 1.16 NEW FEATURES

The 1.16 release of COS includes numerous enhancements of and additions
to previous versions of the operating system.

New features include:

[]

Access of SEGLDR with the new LD2 control statement. LD2 is a new
product that has the same interface as does LDR, but it invokes
SEGLDR. The purpose of LD2 is to assist users in migrating from
LDR to SEGLDR.

The BLOCK/UNBLOCK control statements. BLOCK and UNBLOCK convert
between COS blocked and unblocked dataset formats. In addition to
converting datasets containing native Cray data, these utilities
interpret and convert between Cray and front-end record
structures.

The QUERY control statement. QUERY returns local mass storage
dataset status and position information.

The TYPE parameter on the RESTORE control statement enables you to
select retired and/or migrated datasets.

The SF parameter for FETCH has been added to $SYSLIB.

The SPD parameter on the ASSIGN control statement allows striping
without system stripe devices.

The RF parameter on the ACCESS and ASSIGN control statements
offers new options for VMS tape files.

Concatenated datasets. The concatenated dataset feature lets you
view logically connected tape datasets as one dataset for the
duration of a job step. This feature also provides positioning
and rewinding within the same dataset.

INTRODUCTION TO JOB PROCESSING 1

COS is a multiprogramming, multiprocessing, and multitasking operating
system for Cray computer systems. It makes efficient use of system
resources by monitoring and controlling work presented to the system in
the form of jobs. COS optimizes the use of system resources and resolves
conflicts when jobs compete for resources.

COS is a collection of programs that reside in either Cray mainframe
Central Memory or on system mass storage following startup of the

system. (Startup is the process of bringing the Cray computer system and
the operating system to an operational state.)

Jobs are submitted to the Cray computer system from one or more front-end
computers (also referred to as stations in CRI manuals). Front-end
computers can be any of a variety of computer systems. (Software
executing on the front-end computer system is beyond the scope of this
manual.)

COS provides for the initiation and control of interactive jobs and data
transfers between the Cray computer system and users on the front-end
system. These features are available only where supported by the
front-end system.

1.1 HARDWARE REQUIREMENTS

COS executes on the basic configuration of any CRAY X-MP or CRAY-1
computer system. Each computer system contains the following components:

¢ One or more central processing units (CPUs)
¢ (Central Memory

® An I/0 Subsystem (IOS) or a minicomputer-based maintenance control
unit (MCU). The IOS performs all required MCU functions.

® A mass storage subsystem. The mass storage subsystem consists of
disk drives, an optional SSD solid-state storage device, and IOS
Buffer Memory (BMR).

® An optional IBM-compatible tape subsystem. The tape subsystem
requires that an IOS be present.

SR-0011 O 1-1

The IOS consists of from two to four I/O processors (IOPs) and 1/2-, 1-,
2-, 4-, or 8-Mwords of shared BMR. The optional tape subsystem is
composed of at least one block multiplexer channel, one tape controller,
and two tape units. The tape units supported are IBM-compatible 9-track,
200 ips, 1600 or 6250 bpi devices, and IBM 3480 cartridge drives.

Figure 1-1 shows a basic system configuration.

Magnetic Tape

Displays .
Subsystem Option
R
Local or Remote
*— Front-end Cray
Interactive Terminals ~ &—
Computer Computer
Local or Remote — System
. S System
Job Entry Stations

Peripherals Mass Storage

1000

Figure 1-1, Cray Computer System Configuration

1-2 SR-0011 O

1.2 COS STARTUP

COS is loaded into Central Memory and initiated through a system startup
procedure performed at the IOS or MCU. At startup, linkage to the
Dataset Catalog (DSC) is reestablished on mass storage. All permanent
mass storage datasets are recorded in the DSC; thus, permanent datasets

survive startup and the user can always assume that they are present.
Refer to section 2 for more information on datasets.

1.3 CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS

Central Memory is shared by COS, jobs running on the Cray mainframe,
dataset I/0 buffers, and system tables associated with the jobs. COS
allocates the required resources to each job as these resources become
available. As a job progresses, information is transferred between
Central Memory and mass storage. These transfers can be initiated by
either the job or COS.

Figure 1-2 shows the assignment of memory to COS and to jobs.

1.3.1 MEMORY-RESIDENT COS

COS occupies two areas of Central Memory. The memory-resident portion of
COS occupying lower memory consists of Exchange Packages, the System
Executive (EXEC), the System Task Processor (STP), and optionally the
Control Statement Processor (CSP). The memory-resident portion of COS
occupying extreme upper memory contains station I/O buffers, space for
the system log buffer, and DSC information and buffers.

1.3.2 USER AREA OF MEMORY

COS assigns every job a user area in Central Memory. The user area
consists of a Job Table Area (JTA) and a user field.

1.3.2.1 Job Table Area (JTA)

The JTA of each job contains the parameters and information required for
monitoring and managing that job. You cannot access the JTA, but it can
be dumped for analysis (refer to section 13, Analytical Aids).

SR-0011 O 1-3

User Area 1

User Area2

User Area3

User Arean

v

Maximum
Memory

1008

Figure 1-2. Central Memory Assignment

1.3.2.2 User field

The job's user field is a block of memory immediately following the job's
JTA and is always a multiple of 512 words. The beginning address [Base
Address (BA)] and the end address [Limit Address (LA)] are set by COS.
The maximum user field size is specified by a parameter on one of the job
control statements (refer to section 6) or by installation-defined
default. You can request changes in your user field size while the job
is running.

Compilers, assemblers, system utility programs, and user programs are
loaded from mass storage into the user field and are executed in response
to control statements in the job control statement file. Each load and
execution of a program is referred to as a job step.

1-4 SR-0011 O

Section 3, COS Job Processing, gives a detailed description of the
contents of the user field. Briefly, however, the first 200g words of
the user field are reserved for an operating system/job communication
area known as the Job Communication Block (JCB). Programs are loaded
starting at BA+200g and reside in the lower portion of the user field.
The upper portion of the user field contains tables and dataset I/0
buffers. The user field addressing limit is equal to LA-1.

All memory addresses for instructions and operands are relative to BA.
The Cray mainframe adds the contents of BA to the address specified by a
memory reference instruction to form an absolute address. A user cannot
reference memory outside of the user field as defined by the BA and LA
register contents; LA-1 is the user limit.

1.4 MASS STORAGE CHARACTERISTICS

All information maintained on mass storage by COS (except specific
preallocated areas such as the Device Label) is organized into quantities
of information known as datasets. You do not need to concern yourself
with the physical transfer of data between disks and memory or with the
exact location and physical form in which datasets are maintained on mass
storage. COS translates your logical requests for data input and output
into disk controller functions automatically.

Each disk storage unit (DSU) contains a Device Label, datasets, and
unused space to be allocated to datasets. The Device Label lists
unusable (flawed) space on the DSU and indicates which DSU is the Master
Device. The Master Device is the DSU that contains the DSC table. The
DSC table contains information needed to maintain permanent datasets.

Mass storage permanent datasets are always present and available. This
permanence is achieved with techniques that permit the datasets listed in
the DSC to be recovered or reestablished if a system failure occurs.
Portions of COS (such as loaders, utility programs, compilers,
assemblers, and library maintenance and generation routines) reside on
mass storage devices as permanent datasets accessible by user jobs at any
time.

Job input and output datasets also reside on mass storage and are listed
in the DSC. Because they are listed in the DSC, they are also regarded
as permanent. This designation is somewhat misleading because their
permanence is by definition not status. The input dataset is '"permanent"
from the time it is staged from the front-end system to the Cray computer

SR-0011 O 1-5

system until the job terminates. Output datasets being disposed to a
front end are "permanent' from job termination (or whenever the
disposition was initiated) until the disposition is complete. The
"permanent" status of these system-defined datasets allows them to be
recovered (along with other permanent datasets) after a system failure.

Any job can create a mass storage permanent dataset that can be
subsequently accessed, modified, or deleted by any other job that has the
correct access privileges and produces the correct permission control
words. Permission control words are defined at the time the dataset is
designated as permanent (that is, saved).

A permanent dataset can be deleted by any user with the correct
permission control word. Deleting a dataset notifies COS that the space
occupied by the dataset is no longer permanent. However, the space is
still reserved by the dataset until you release it. (Refer to sections 8
and 10, respectively, for information on the RELEASE and DISPOSE control
statements.)

In addition to permanent datasets, mass storage is used for temporary
datasets. Temporary datasets are created by a job and remain temporary
unless designated permanent, released, or disposed to a front end by the
job. A temporary dataset that is not saved or disposed is termed a
scratch dataset and is deleted when the job releases it or when the job
terminates.

COS allocates space to a mass storage dataset by disk tracks. The space
assigned to a single dataset can be noncontiguous and can even be on
several different disk units. Both default and maximum size limits for
datasets are defined by system parameters. Using the ASSIGN control
statement, you have limited control of how mass storage is allocated to a
dataset.

1.5 MAGNETIC TAPE CHARACTERISTICS

An IOS can include an Auxiliary I/0 Processor (XIOP) with the capability
of addressing up to 16 block multiplexer channels of tape units. Each
block multiplexer channel can be attached to IBM-compatible control units
and tape units in a variety of configurations. The block multiplexer
channels communicate with the control units and tape units to allow
reading and writing data that can also be read and written by
IBM-compatible CPUs. Table 1-1 summarizes the physical characteristics
of 200 ips, 9-track tape drives, and IBM 3480 cartridge drives. The
block sizes in this table are used by the COS tape system for
transparent-format tape datasets (described in section 2).

1-6 SR-0011 O

Table 1-1.

Physical Characteristics of Tape Devices

Data/2400-ft

I I | I
I I I I
| Density | Transfer Rate | Reel Equiv. | Block Size
Device | (Bits/In) | (Kbytes/s) | (Mbytes) | (Bytes)
] | |]
| I I |
Reel-to-reel | 6250 | 1170 | 168 | 32768
I | | |
Reel-to-reel | 1600 | 300 | 43 | 16384
| I I I
Cartridge | N/A | 2700t | 200 | 32768
| | |

+ Data-streaming mode

SR-0011 O

DATASETS

Nearly all information maintained by COS is organized as datasets.

supports blocked and unblocked, interactive and tape (interchange and
transparent) format dataset structures. Some important factors to
remember about datasets are the following:

*

Dataset medium is the type of physical device on which the
dataset resides.

Dataset structure is the logical organization of the dataset.
Dataset longevity is the retention period for the dataset.
Datasets must be local to the job to be usable.

The dataset disposition code tells the operating system what
action to take when the dataset is no longer 1local.

Each dataset is known by its dataset name.

Datasets are read and written using operating system requests
(user I/0 interfaces).

2.1 DATASET MEDIA

Datasets are often classified by medium. COS uses the classifications
identify the various types of datasets.

® 6 o o o

2.1.1

Mass storage datasets

Memory-resident datasets

Interactive datasets

Magnetic tape datasets

Integrated Support Processor (ISP) datasets

MASS STORAGE DATASETS

Cos

to

Mass storage datasets are those that reside on Cray mass storage devices;
that is, on mass storage devices attached directly to the mainframe or to
the I/0 Subsystem (IOS).

SR-0011 O

2.1.2 MEMORY-RESIDENT DATASETS

Datasets classified as memory-resident are those you specify to be kept
in memory and are typically temporary datasets. A memory-resident
dataset is wholly contained within one buffer (refer to the BS parameter
on the ASSIGN control statement in section 8) and remains in memory at
all times. Such a dataset ordinarily occupies no mass storage. A
memory-resident dataset is normally a temporary dataset; however, a mass
storage permanent dataset can be declared memory resident.

A memory-resident dataset is defined through an ASSIGN control statement
containing the MR parameter or through an F$DNT (described later) call to
the system. If the F$DNT call is used, the Dataset Definition List (DDL)
supplied should specify DDMR=1. (Refer to the description of the ASSIGN
control statement in section 8.) In addition, the buffer size parameter
on the ASSIGN control statement should specify a buffer large enough to
contain the entire dataset plus one block.

A dataset can be declared memory resident to reduce the number of I/O
requests and disk blocks transferred. Memory residence is particularly
useful for intermediate datasets not intended to be saved or disposed to
another mainframe. All I/0 performed on a memory-resident dataset occurs
in the dataset buffers in memory and the contents of the buffers are not
ordinarily written to mass storage. Such a dataset can neither be made
permanent, nor may it be disposed to another mainframe, unless copied to
mass storage.

If at any time the system I/O routines are called to write to the dataset
and the buffer appears to be full, the dataset ceases to be treated as
memory resident, the buffer is flushed to mass storage, and all
memory-resident indicators for the dataset are cleared.

Normally, a memory-resident dataset is empty until written on. If an
existing dataset is declared memory resident, it is loaded when the first
read occurs. A user attempting to write to a memory-resident dataset
must have write permission. As long as the buffer does not appear full,
however, no actual write to mass storage ever occurs. Therefore, changes
made to an existing dataset declared memory resident are not reflected on
the mass storage copy of the dataset.

Magnetic-tape datasets, mass storage execute-only datasets, and
interactive datasets cannot be declared memory resident.

2.1.3 INTERACTIVE DATASETS

Interactive datasets are those specified as such by interactive jobs.
Interactive datasets are supported by the front-end station. Batch users
cannot create interactive datasets.

2-2 SR-0011 ©

An interactive dataset differs from other datasets in that a physical
image of the dataset is not maintained. Instead, records are transmitted
to and from your terminal attached to the front-end station. Record
positioning (for example, REWIND or BACKSPACE) is not possible.

Interactive datasets are created by interactive jobs through the use of
the ASSIGN control statement or F$DNT system call.

2.1.4 MAGNETIC TAPE DATASETS

Magnetic tape datasets are available to any job that declares tape
resource requirements on the JOB control statement and specifies the
appropriate information on its ACCESS control statement. Refer to the
ACCESS control statement description in section 9 for more details.

COS automatically switches volumest during dataset processing unless

user end-of-volume (EOV) processing (defined later) is requested, and
returns to the first volume of a multivolume dataset in response to a
REWIND control statement. If a permanent write error occurs when trying
to write a tape block for the user, COS automatically attempts to close
the current volume. If the attempt succeeds, the system continues to the
next volume.

The COS tape system uses Buffer Memory (BMR) as a tape block buffering
area so that the job's I/O buffer need not be as large as the tape

block. This technique results in significant memory savings whenever
large tape blocks are processed and increases transfer rates when smaller
blocks are processed. The advantage in having a large I/0 buffer is a
reduction in the overhead in the tape subsystem.

This subsection discusses the following aspects of using tape datasets:

Gaining access to a tape dataset
Bypass label processing

User tape end-of-volume processing
Tape mark processing

Multidataset access

o & & o o

2.1.4.1 Gaining access to a tape dataset

To gain access to an existing permanent tape dataset to read or rewrite
or both, you must specify the file identifier (permanent dataset name),
the desired device type, and, optionally, a volume identifier (VOL)
list. The volume identifier list can consist of from 1 to 255 volume

+ 1In this context, the term "volume" means a reel of magnetic tape.

SR-0011 O 2-3

identifiers. If the permanent dataset name (PDN) is omitted from the
ACCESS control statement, the local dataset name is used as the file
identifier.

To create a tape dataset, the file identifier, the desired device type,
and the NEW parameter option must be specified on the ACCESS control
statement. If no file identifier is present, the local dataset name is
used. If a volume identifier list is not specified on the ACCESS control
statement, it is a nonspecific volume allocation (scratch tape). A
specific volume allocation occurs when a volume identifier list is
specified on the ACCESS request. COS records the volume label on the
tape. Like all other physical datasets, new tape datasets must be
written to before a read is allowed.

More than one tape ACCESS control statement with the same dataset name,
but a different permanent dataset name, will activate concatenation.
Refer to the Concatenated Datasets subsection for more information on
concatenated datasets.

2.1.4.2 Bypass label processing

Bypass label processing is a COS option controlled by the installation
parameter I@BPL that lets you bypass a tape's label by declaring BP as a
label type on the ACCESS control statement. Bypass label processing is
not supported for transparent datasets.

Normally, tape labels are scanned during the beginning of tape processing
and at the end-of-data (EOD) and volume processing. This label
processing is not performed when bypass label processing is operative.
When the tape is mounted, the tape subsystem positions it at the
beginning-of-tape (BOT). The first I/0 request (read or write) begins at
this point. If tape labels are present, you must take them into
consideration. Your job can read an existing label, overwrite it, or
position past it. A tape is treated as a nonlabeled tape with embedded
tape marks while bypass label processing is in effect if BP is the label
type specified for the LB parameter on the ACCESS control statement.

If system security (I@SLVL) is in warning or full mode, bypass label
processing is a privileged operation; otherwise, any user may request it.

2.1.4.3 User tape end-of-volume processing

The tape end-of-volume (EOV) feature, which may be used only by
interchange format tapes, uses special processing system macros to allow
you to gain control at tape EOV and perform special EOV and
beginning-of-volume (BOV) processing. The special processing macros
used, SETSP, STARTSP, ENDSP, TAPESTAT, and CLOSEV, affect individual
datasets. If EOV processing is needed for more than one dataset, the
macros must be issued for each tape dataset. Refer to the Macros and
Opdefs Reference Manual, CRI publication SR-0012, for more information.

2-4 SR-0011 O

You instruct the system to perform EOV processing by issuing the SETSP
macro (with the ON option) after a tape dataset is opened. Using SETSP
with the OFF option informs the system that EOV processing is no longer
needed. The CLOSE macro also terminates EOV special processing.

To test whether the tape dataset is at EOV, you must use the TAPESTAT
macro after every READ, WRITE, and SYNCH macro. Not all macros that
result in I/O operations return EOV status; for example, the CLOSE,
POSITION, and REWIND macros do not return EOV status. For output
datasets, you should use the SYNCH macro to flush the buffers and
determine if EOV has been encountered before using such macros.

After EOV is encountered, you can start EOV processing by issuing the
STARTSP macro. During EOV processing, you can execute read, write, and
position operations. Volume switching is done by issuing the CLOSEV
macro. When EOV processing is complete, the ENDSP macro notifies the
system to return to normal processing.

During EOV processing, no read ahead is performed. Data blocks are read
one at a time. Also, any position request with a relative block number

is positioned from the current physical tape position. For output
datasets, the physical and logical tape positions will differ because the
last few blocks written will still be in the IOP buffer. The TAPEPOS
macro lets your program determine how many blocks are buffered in the IOP.

For an output dataset, the data in the IOP buffer when EOV is encountered
is considered part of the dataset and may be read during EOV processing.
Once any of this data is read, it is no longer part of output data.
Because no read ahead is performed during EOV processing, the program may
position backwards and read only the blocks on the tape. If this is
done, the data in the IOP buffer is kept intact, and it will be written
to tape when the ENDSP macro is issued.

The use of the CLOSEV macro is not restricted to the EOV routine. You
can issue the CLOSEV macro anytime during dataset processing. This macro
lets you terminate an output tape anywhere and continue the dataset on
the next tape. It also lets you read part of a tape and switch to the
following tape.

2.1.4.4 Tape mark processing

Three label types are available that allow tape marks to be embedded in
the data. These "field" formats are field ANSI labels (FAL), field
standard IBM labels (FSL), and field nonlabeled (FNL). On output, a tape
mark is created by a write EOF operation. On input, a tape mark is
translated to an EOF.

Field format tapes cannot be used with the transparent recording format.

SR-0011 © 2-5

With these label types, when COS recognizes a tape mark, it translates it
to an end-of-file (EOF) record control word and puts it in the data. You
are responsible for recognizing EOF conditions.

An attempt to position past a tape mark (using the POSITION macro)
results in the following actions: The tape moves forward until the tape
mark is encountered. At that point, tape movement stops and you get
control. A residual record count is returned to find the position on
tape and the tape is physically positioned after the tape mark just
encountered.

For input, all field format tapes (FAL/FNL/FSL) are processed for labels
in the same way. If a label is encountered at BOT, it is validated based
on its type. If no label is found, there is no validation. When a
tapemark is detected, COS checks the next record for an EOV1 or EOF1
trailer label. If EOV1 is found, COS performs an automatic volume
switch. 1If EOFl is found, COS performs EOD processing. If neither EOV1
or EOFl is encountered, the tape is left positioned immediately following
the tape mark ready for the next read. Labeled tapes not terminated with
either SL or AL standard labels must be terminated by the program using
CLOSE or CLOSEV system calls.

For output, field format tapes are labeled based on the LB parameter on
the ACCESS control statement. EOV labels are processed when either the
EOT reflective marker is sensed or when the user program calls CLOSEV.

EOF labels are written when the dataset is closed, rewound, or released.

2.1.4.5 Multidataset access

The user job can access more than one dataset on a tape labeled AL, SL,
or NL. The FSEQ parameter on the ACCESS control statement identifies the
accessible dataset. FSEQ=1 accesses the first dataset, FSEQ=2 accesses
the second, and so on. Table 2-1 details the tape formats.

During ACCESS processing, the system requests a volume mount if the
volume needed is not currently mounted. Only one dataset can be opened
at a time on a volume.

During CLOSE processing, a volume remains loaded if it is the first
volume of another dataset in the same job. If it is not the first volume

of another dataset, the volume is unloaded.

During RELEASE processing, if the volume has not been unloaded, it
remains loaded until no more datasets require the volume.

The examples that follow show possible arrangements of ACCESS, OPEN,
CLOSE, and RELEASE processing.

2-6 SR-0011 O

Table 2-1.

Tape Formats for Multidataset Access

AL and SL Multivolume Tapes NL Single
AL and SL Volume and
Single Volume First Subsequent Multivolume
Tapes Volume Volumes Tapes
VOL1 VOL1 VOL1 DATA BLOCKS
HDR1 HDR1 HDR1
upr2Y upr2t HDR2T

*

DATA BLOCKS
%*

EOF1

gor2t
*

HDR1

Hpr2t
*

DATA BLOCKS
*

EOF1

gor2¥t

HDR1
upr2t
*

DATA BLOCKS
*
EOF1

gor2t
*

L

*

DATA BLOCKS
*

EOF1

gor2t
%

HDR1

Hpr2*t
]

DATA BLOCKS
*
EOF1

gor2t
]

%*
HDR1
upr2t

*

DATA BLOCKS
¥

EOV1

govat
%
%*

*

DATA BLOCKS
%*

EOF1

goF2t
*

HDR1

Hpr2t
*

DATA BLOCKS
e
EOF1

gor2T
*

Je

|

%*
DATA BLOCKS

*
DATA BLOCKS

Je

HDR2, EOF2, and EOV2 are written by COS, however,
optional on tapes created by other computer systems.

= Tapemark

SR-0011 O

their presence is

2-17

Example 1:

This job uses two datasets on volume TAPEl and reserves one tape drive.
The order of processing does not have to be the same as the order of
access.

JOB,JN=...,*TAPE=1.
ACCESS,DN=A,FSEQ=2,VOL=TAPE1.
ACCESS,DN=B,FSEQ=1,VOL=TAPE1l.

RELEASE,DN=A.
RELEASE, DN=B.

/EOF
In the user program . . .
Open B, process B, close B
Open A, process A, close A
Example 2:

This job uses two datasets which are contained on three volumes and
reserves one tape drive. The order of processing does not have to be the
same as the order of access.

JOB,JN=...,*TAPE=1.
ACCESS,DN=A,FSEQ=2,VOL=TAPE1:TAPE2:TAPE3
ACCESS,DN=B,FSEQ=1,VOL=TAPE1:TAPE2:TAPE3.

RELEASE,DN=A.
RELEASE,DN=B.
/EOF
In the user program . . .
Open A, process A, close A
Open B, process B, close B

2.1.4.6 Concatenated datasets

The concatenated dataset feature lets your job logically connect a group
of tape datasets for the duration of your job. The job treats the
connected datasets as one. Concatenation is activated when more than one
tape dataset with the same local dataset name (DN= parameter on the
ACCESS control statement) is encountered. Each dataset must have its own
ACCESS control statement. This example is for tapes with like blocksize
and recordsize.

2-8 SR-0011 O

Examples:

ACCESS,DN=F1, PDN=ABC,VOL=T03461.
ACCESS,DN=F1,PDN=DEF,VOL=T03462.

Datasets with different record sizes but the same blocksize can be
specified as follows:

ACCESS,DN=F1,PDN=ABC,RS=80,VOL=T03461.
ACCESS,DN=F1,PDN=DEF,RS=100,VOL=T03462.

The Front End Tape Management Catalog cannot be used with concatenated
datasets.

A mixture of tapes ending with EOV or EOF is allowed. End-of-information
is not returned to your program until all of the tapes accessed with the
same local dataset name (DN=) have been read.

2.1.5 INTEGRATED SUPPORT PROCESSOR (ISP) DATASETS

An ISP dataset resides on another mainframe that communicates with COS
using ISP software. COS and the ISP software function together to give
the COS user access to the remote dataset as if it resides on a device
directly attached to the Cray computer system. ISP datasets are
accessible through the ISP and CONNECT control statements. Refer to the
SUPERLINK/ISP General Information Manual, CRI publication SI-0154, or the
SUPERLINK/MVS User Guide, CRI publication SI-0178, for further
information on the ISP,

2.2 DATASET FORMATS

Dataset formats include blocked, unblocked, interactive, and tape. These
are described in the sections that follow.

2.2.1 BLOCKED FORMAT

Blocked format is the default format for external types of datasets such
as user input and output datasets. A blocked dataset is usually composed
of one or more files, which are, in turn, composed of one or more
records. Figure 2-1 shows the data hierarchy within a blocked dataset.

SR-0011 © 2-9

Data in a blocked dataset can be ASCII character, binary, or both.
Blanks are normally compressed in blocked coded datasets. Each block
consists of 512 words. Blocked datasets use two types of control words:
block and record.

Record positioning requires a blocked format. The blocked format adds
control words to the data to allow for processing of variable-length
records and to allow for delimiting of levels of data within a dataset.

Dataset
File; Flle, oo Fllep
Record; Recordy| ...| Recordp

1007

Figure 2-1. Data Hierarchy Within a Blocked Dataset

2.2.1.1 Blank compression

Blank fields can be compressed in files containing only ASCII

characters. Blank field compression is indicated by a blank-field
initiator code followed by a count. The default blank-field initiator
code is defined by the installation parameter I@BFI, which is either an
ASCII code or 777g indicating that blank compression will not be done.
Blank compression can be inhibited using an ASSIGN statement parameter or
an F$DNT system call. A blank field (3 to 96 characters) is compressed
to a 2-character field. The count is biased by 36g: the actual

character count is limited to 4lg < character count < 176g (the

ASCII graphics).

2.2.1.2 Block control word

The block control word (BCW) is the first word of every 512-word block.

2-10 SR-0011 O

Format:

0 4 11 31 55 63
\ MV 77777777\ %\//777777177777777] BN | FWI |
Field Bits Description
M 0-3 Type of control word (for BCW, M=0)
BDF 11 Bad Data flag; indicates that the following

data, up to the next control word, is bad. This
flag is set by the IOS for magnetic tape
datasets in interchange format.

BN 31-54 Block number; designates the number of the
current data block. The first block in a
dataset is block 0.

FWI 55-63 Forward index; designates the number of words

(starting with 0) to the next record control
word (RCW) or BCW.

2.2.1.3 Record control word

A record control word (RCW) occurs at the end of each record, file, or
dataset.

Format:
0 4 10 20 40 55 63
| M| UBC |* |*|*|///| PFI | PRI | FWI I
Field Bits Description
M 0-3 Type of control word:
10g End-of-record (ECR)
16g End-of-file (EOF)
17g End-of-data (EOD)
UBC 4-9 Unused bit count. For EOR, UBC designates the

number of unused low-order bits in the last data
word of the record terminated by the EOR. For
EOF and EOD RCWs, this field is 0. The data
area protected by UBC must be zero-filled.

SR-0011 O 2-11

Field Bits Description

TRAN 10 Transparent record field; used for an
interactive output dataset only. If set,
substitution of EOR RCWs is suppressed.

BDF 11 Bad Data flag; indicates the following data, up
to the next control word, is bad. This flag is
set by the IOS for magnetic tape datasets in
interchange format. If flag is set, an
irrecoverable error was encountered in the
following data.

SRS 12 Skip remainder of sector; indicates that the
next control word to follow is a BCW and the
data after this RCW is not to be processed.
This is used only in tape dataset processing.

PFI 20-39 Previous file index; this field contains an
index modulo 220 (20,000,000g4) to the
beginning of the file; the index is relative to
the current block such that if the beginning of
the file is in the same block as this RCW, the
PFI is O.

PRI 40-54 Previous record index; this field contains an
index modulo 215 (100,000g) to the block
where the current record starts. The index is
relative to the current block such that if the
first word of data in this record is in the same
block as this RCW, PRI is 0.

FWI 55-63 Forward word index (FWI):; this field points to
the next control word (RCW or BCW) and consists
of a count of the number of data words up to the
control word (that is, if the next word is an
RCW or BCW, FWI is 0).

Disregarding BCWs occurring at 512-word intervals in a dataset, RCWs have
the following logical relationship in a dataset.

An EOR RCW immediately follows the data for the record it terminates. If
the record is null (contains no data), an EOR RCW can immediately follow
an EOR or EOF RCW, or it can be the first word of the dataset.

An EOF RCW immediately follows the EOR RCW for the final record in a
file. If the file is null (contains no records), the EOF RCW can
immediately follow an EOF RCW, or it can be the first word of the dataset.

An EOD RCW immediately follows the EOF RCW for the final file in the

dataset. If the dataset is null, the EOD RCW can be the first word on
the dataset.

2-12 SR-0011 O

A typical dataset has many EOR RCWs per block. Figure 2-2 shows an
example of dataset control words. In this example, a dataset is
contained on four physical disk sectors, each beginning with a BCW (thus
the four BCWs in this example are numbered 0, 1, 2, and 3). The dataset
contains four files shown as F1, F2, F3, and F4. F1l contains the four
records shown as R1 through R4, F2 contains records R5 through R7, F3
contains no records at all, and F4 contains record RS.

2.2.2 UNBLOCKED FORMAT

Dataset I/0O can also be performed using unblocked datasets. The data
stream for unblocked datasets does not contain COS RCWs or BCWs.

COS does not allocate buffers for unblocked datasets in the job's I/O
buffer area. You must specify an area for data transfer. When a read or
write is performed on an unblocked dataset, the data goes directly to or
from the user data area without passing through I/0 buffers. The word
count for data to be transferred must be a multiple of 512.

Unblocked I/0 cannot be performed on an interchange format tape dataset.

2.2.3 INTERACTIVE FORMAT

Interactive format closely resembles blocked format: however, each buffer
begins with a block 0 BCW. Each record transmitted to or from COS by an

F$RDC or an F$WDC call must contain a single record consisting of a BCW,

data, and an EOR RCW.

Either of two formats for interactive output can be assigned when the
dataset is created: character blocked or transparent. Character blocked
mode is the default. In character blocked mode, an EOR RCW is
interpreted as a line feed or a carriage return. In transparent mode,
the EOR RCW is ignored and you supply carriage control characters.

2.2.4 TAPE FORMAT

Tape datasets are written to and read from tape volumes. A tape volume
is a reel of tape. A tape volume is also known as a dataset section
(for example, in FSEC= on the ACCESS control statement).

Data is read or written in tape blocks. A tape block is a unit of data
recorded on magnetic tape between two consecutive interblock gaps.

Tape datasets can be read or written using two different formats:

Interchange or transparent. Tape datasets can also be labeled or
unlabeled.

SR-0011 O 2-13

.

w3

10

66

10

20

i

10

U

i

R4

10

0

16

]
i

RS

10

74

Dataset | R6(null)

10

i

e |
R7

10

42

I

i

L

16

/
i

1 0

F3 (null)

16

I

0 0

T

Figure 2-2.

Example of Dataset Control Words
(Octal values shown)

EOR

EOR

EOR

BCW

EOR

EOF

1004

SR-0011 O

2.2.4.1 Interchange format

Interchange format is useful for reading and writing tapes that are also
to be read or written on other vendors' systems. In interchange

format, each tape block corresponds to a single logical record in COS
blocked format (that is, the data between RCWs).

In interchange format, tape block lengths can vary from one byte up to an
installation-defined maximum, which cannot exceed 1,048,576 bytes
(131,072 64-bit words). In general, the maximum block size should not
exceed 200 kilobytes. Blocks exceeding this size may require special
operational procedures, such as the use of specially prepared tape
volumes having an extended length of tape following the end-of-tape (EOT)
reflective marker and yield little increase in transfer rates or storage
capacity.

When a tape dataset is read in interchange mode, physical tape blocks are
represented in the user's I/0 buffer with BCWs and RCWs added by COS.

The data in each tape block is terminated by an RCW. The unused bit
count field in the RCW indicates the amount of data in the last word of
the tape block that is not valid data. A BCW is inserted before every
511 words of data, including the RCWs. The formats for RCWs and BCWs
were described earlier.

Figure 2-3 shows a tape dataset in interchange format. Tape blocks
within tape label groups are not included in this format. The end of the
dataset is represented by an EOF RCW followed by an EOD RCW.

Multifile datasets are supported in interchange format by field label

(FAL, FSL, and FNL) and BP label tapes.

2.2.4.2 Transparent format

In transparent format (disk image), each tape block is a fixed multiple
of 512 words, generally based on the dataset density (that is, 16,384
bytes at 1600 b/i and 32,768 bytes at 6250 bsi). The data in the tape
block is transferred unaltered between the tape and the I/O buffer in the
user field; no control words are added on reading or discarded on
writing. In transparent mode, the data can be in COS blocked or
unblocked format. Transparent format tapes are not generally read or
written by other vendors' equipment.

SR-0011 O 2-15

Tape Data as it Appears in I/O
Buffer (in 512-word Units)

1ol [N 27777 I I\ Bt et

Data

A

Data in Tape Blocks

Eor | 10[40 [/7do ol ¢ “.“"“'n-“

Data

%
Eor [10] 20 /4 o] o

S8 N 777777 BENE I gt

Data "\

EOR [10] 0 [/Aoj1|—:;i ------- .

BCW N |\
Data
VLA
EOR [10 40/ /A N1] 0

eoF [16loo}//4 nj 0] 0
eop [17[oop sl ofof o

Unused

HDR1

* (Tapemark)

Header Label Group
(if labeled)

Block 0

Block 1

Block 2

* (Tapemar

EQOF2

*
*

—

k)

Last Data
Block

End of Data —
*
Label Group (Tapemark)

Or

End of Volume
*

Label Group
(if labeled)

1037

Figure 2-3. Interchange-format Tape Dataset
(Octal values shown)

SR-0011 O

2.3 DATASET LONGEVITY

Permanent datasets are retained by COS until instructed otherwise. All
other datasets are considered temporary, and are deleted when the job
completes.

2.3.1 TEMPORARY DATASETS

A temporary dataset is available only to the job that created it. You
can create temporary datasets explicitly by use of the ASSIGN control
statement, or implicitly upon first reference to a dataset by name or
unit number on an I/O request or an OPEN macro call.

A temporary mass storage dataset is empty until written on. Rewinding or
backspacing of a dataset is necessary before it can be read.

To make a temporary dataset permanent, use the SAVE control statement.
If the temporary dataset is not made permanent, it is released when the
job terminates. A temporary dataset may also be released with the

RELEASE control statement. When a temporary dataset is released, its
mass storage (if used) is made available to the system.

2.3.2 PERMANENT DATASETS

Only mass storage or magnetic tape datasets can be permanent.

2.3.2.1 Magnetic tape permanent datasets

The subsection on dataset media earlier in this section discusses tape
datasets.

2.3.2.2 Mass storage permanent datasets

A mass storage permanent dataset is maintained across system startups.
Mass storage permanent datasets are of two types:

® Those created by SAVE control statements made by the user or as
the result of a front-end system SAVE command (user permanent

datasets)

® Input or output datasets

SR-0011 O 2-17

User permanent datasets are maintained for as long as the user or
installation desires. They can be protected from unauthorized access
using permission control words and ownership values on the SAVE control
statements.

When a user permanent dataset is accessed through an ACCESS control
statement (refer to section 9), it is copied to the job as a local
dataset by the job requesting access. It still exists, however, as a
permanent dataset on the system and can be used by other jobs unless
unique access to that dataset was granted. You must have write
permission to write to a permanent dataset. If any information in an
existing permanent dataset is overwritten or if the size of a permanent
dataset is changed, an ADJUST should be performed on that dataset (refer
to section 9). When a permanent dataset is released or closed, an ADJUST
is performed automatically if the size of the dataset changes.

System permanent datasets relate to particular jobs or reflect the
current operational state of COS. A job's Input dataset is made
permanent when the job is received by the Cray computer system and is
deleted when the job terminates. Output datasets local to the job can
be disposed of while the job is running or can be automatically made
permanent when the job terminates and are then deleted from the Cray
computer system after being sent to the front-end system for processing.

An execute-only dataset is a user permanent dataset for which all forms
of examination and modification by users are prohibited. An execute-only
dataset is loaded by the COS Control Statement Processor (CSP) for
execution. It differs from other user permanent datasets in several ways:

¢ The dataset can be accessed, but it cannot be opened for reading
or writing.

¢ While an execute-only dataset is loaded in memory, DUMPJOB
requests are not honored.

® The execute-only dataset cannot be staged to a front-end by a
DISPOSE request.

® The execute-only dataset must be loaded by a dataset name call
rather than by a load-and-go request by LDR or SEGLDR.

Because execute-only is a dataset state rather than a permission mode, it

is advisable to set, at minimum, a maintenance permission control word to
disallow modification or deletion of the dataset.

2-18 SR-0011 ©

2.4 LOCAL DATASETS

A dataset to which a job has access is a local dataset. A local dataset
can be a temporary or a permanent dataset. Permanent datasets are made
local with the ACCESS control statement or the ACCESS library subroutine
(described in the Programmer's Library Reference Manual, CRI publication
SR-0113). If the dataset referenced is a tape dataset, the device
resource must also be specified on the JOB control statement (refer to
section 7).

2.5 DATASET DISPOSITION CODES

Each dataset is assigned a disposition code that tells COS what to do
with the dataset when the job ends or the dataset is released. The
disposition code is one of the parameters of the DISPOSE and ASSIGN
control statements (refer to section 8).

Each disposition code is a 2-character alphabetic code describing the
destination of the dataset. The default disposition code for a dataset
is SC (scratch) when a dataset is opened, unless the dataset named is one
of a group of special names such as $PLOT, $PUNCH, and $OUT. By default,
COS assigns the disposition code PR (print) to $OUT when the dataset is
created. No DISPOSE statement is required for $OUT; a PR disposition
automatically routes it to the station and terminal from which the job
was submitted unless a DISPOSE statement changes either the disposition
code or destination station or terminal.

2.6 USER DATASET NAMING CONVENTIONS

There are two types of naming conventions for user datasets; one for
local datasets and a different one for permanent datasets. Each type
requires an assigned symbolic name.

A local dataset name consists of 1 to 7 characters: the first

character must be an uppercase A through 2, $§, @, or %; the remaining
characters may be any alphanumeric character. If you specify a lowercase
name, COS interprets the characters as uppercase. COS does not accept a
lowercase local dataset name that is within double quotes. For example:

JCL Name Assignment COS Interpretation
ASSIGN, DN = NAME. NAME
ASSIGN, DN = name. NAME

SR-0011 O 2-19

JCL Name Assignment COS Interpretation

ASSIGN, DN = ‘NAME'. NAME
ASSIGN, DN = 'name’'. NAME
ASSIGN, DN = "name". Error

A permanent dataset name is less restrictive; it can contain upper and
lowercase alphanumeric characters, $, @, or %. If a lowercase name is
specified, COS interprets the characters as uppercase. If a lowercase
name within double quotes is specified, COS accepts the name as
lowercase. For example:

JCL Name Assignment COS Interpretation
SAVE, DN=X, PDN = NAME. NAME
SAVE, DN=X, PDN = name. NAME
SAVE, DN=X, PDN = 'NAME’. NAME
SAVE, DN=X, PDN = 'name'. NAME
SAVE, DN=X, PDN = "name". name

Other considerations:

® Do not use characters with the octal codes 000 through 037 or 177
through 377. These are unprintable characters. Refer to the
ASCII character set in appendix C for details.

® Certain language processors place further restrictions on dataset
names.

® Most datasets defined by COS are assigned names of the form
$dn. Because datasets whose names begin with a $ may receive
special handling by the system, refrain from using this format
when naming datasets.

2.7 USER I/0 INTERFACES

When using logical I/O, you are never directly concerned with the actual
transfer of data between the devices and the system buffers. Figure 2-4
shows the relationship of different levels of user logical I/0 interfaces
and routines. In this figure, the request levels and routine calls are
summarized without going into detail about the movement of data between
the system buffers and user program areas. Refer to the Macros and
Opdefs Reference Manual, CRI publication SR-0012, for details on logical
I/0.

The highest level of user interface is I/O statements used by programming

languages such as Fortran and Pascal; the lowest level is in the form of
specially formatted requests called Exchange Processor requests.

2-20 SR-0011 O

Asynchrounous 1/0 Synchrounous 1/0

CFT Buffered CFT Formatted/
1/0 Statements Unformatted Statement Interface

Buffer IN READ READMS READDR

PUNCH
Buffer OUT PRINT WRITE WRITMS WRITDR

CAL Blocked 1/0 Macros

CAL Buffered READ WRITE WRITEF o
1/0 Macros CAL Unblocked READP WRITEP WRITED
1/0 Macros READC WRITEC BKSP GETHA
BUFIN BUFOUT BUFEOF READCP WRITECP BKSPF BUTHA Queued 1/0
BUFINP BUFOUTP BUFEOD READU GETPOS
BUFCHECK WRITEU SETPOS
REWIND
""""" Library
Buffered I/0 SRFI SWFI SRUI SWUL Routines
SRFA SWFA SRUA SWUA
SRB SRFV $WFV SRUV SWUV
5w SRFF SWFF SRUF SWUF
: l
Data
CAL Buffered
1/0 Interface Iranslation
$RUT IBMI, IBMO READWA
$CBIO coer, ¢bco WRITEWA
SwuT VMSI, VMSO
A
Unblocked Datasets
Logical Record I/0
SRLB SRWDR SWWDR SWEOF $GPOS
SWLB SRWDP SWWDE SWEOD $SPOS
SRCHR SWCHR SREWD
SRCMP SWCHP $BKSP
SWWDS $BKSPF
System
FsQIo Calls
F$BIO FSFSSCPY
User
v ¥ J System
TI0 cro
QRWDR @WWDR @WEOF CPROC CTRCL
@RWDP @WWDP @WEOD CRCIO CTRCLEXI
@NWDS @REWD CVDSE CIDTR

CUIOS CDSPE 1315

Figure 2-4. Relationship of Levels of User I/0

Fortran statements fall into two categories: formatted/unformatted and
buffered. The formatted/unformatted statements result in calls to
library routines $RFI through $WUF. If the dataset is blocked, these
routines call the logical record I/0 routines. The logical record I/0
routines perform blocking and deblocking. The logical record I/0
routines communicate with COS through the Exchange Processor requests,
FSRDC and F$WDC.

If the dataset is unblocked, $RUA or $WUA calls the unblocked dataset
routine $RLB or $WLB. These routines do no blocking or unblocking of
data. The unblocked I/0O routines communicate with the system through the
F$RDC and F$WDC Exchange Processor calls.

Buffered I/0 takes a different path from formatted/unformatted I/0O.

These routines interface (through an F$BIO Exchange Processor request) to
routines in COS that normally perform logical I/O for system tasks.

These routines, called Task I/0 (TIO), closely resemble the logical
record I/0 routines. TIO and the logical record I/0 routines make
similar requests of circular I/O routines in COS although the mechanism
for making these requests is different.

SR-0011 O 2-21

Circular I/0 (CIO) routines are the focal point for all logical I/O
generated by COS. CIO communicates its needs for physical I/0 to the
Disk Queue Manager (DQM) or Tape Queue Manager (TQM).

All I/0 on the lowest levels from DQM and TQM is asynchronous; meaning
that when you do a write, the information is passed to COS, but the
actual transfer to disk or tape is performed later. This method of I/O
is a performance feature termed write-behind (which for disk is
controlled by the COS installation parameter I@DTDREP). On a rare
occasion with write-behind enabled, a job can complete before the
physical transfer of data actually occurs, and if an error is found after
job completion, there is no mechanism for reporting it.

A Fortran buffered I/0 request issued for an unblocked dataset results in
the buffered I/O routines calling the unblocked dataset routines $RLB and
$WLB, which then process these requests. These requests are processed
the same as formatted/unformatted requests except that buffered I/0
requests return control to you after initiating I/0 rather than waiting
for completion of the I/0 request. For a Cray Assembly Language (CAL)
buffered I/0 request, $CBIO is called to route the request to either the
blocked or unblocked I/O processing routines.

The Macros and Opdefs Reference Manual, CRI publication SR-0012,
describes the CAL I/0 macros. The Programmer's Library Reference Manual,
CRI publication SR-0113, describes the logical record I/0 routines and
Fortran I/0 routines. Refer to the Fortran (CFT) Reference Manual, CRI
publication SR-0009, or the CFT77 Reference Manual, CRI publication
SR-0018, for a description of Fortran statements.

2-22 SR-0011 O

COS JOB PROCESSING 3

A job is a unit of work submitted to COS. It consists of one or more
files of statements, which may be control statements or input to a
processing routine. The files form a job dataset. Each job passes
through several stages from the time the job is entered until the job
terminates.

3.1 JOB DATASET STRUCTURE

A job originates as a dataset at a front-end computer system. Control
statements and data in the job dataset are organized into one or more
files. The following example represents a typical job dataset consisting
of a control statement file, a source file, and a data file. (The
statement formats for end-of-file and end-of-data are defined by the
front-end system.)

Example:

JOB,JN= . . .
Control statements

<eof>
Source file
<eof>

Data file

.

<eof>

The first (or only) file of the job dataset must contain the job control
language (JCL) statements that specify the processing requirements for the
job (section 4 describes JCL). Each job begins with a JOB control
statement that identifies the job to COS. 1If accounting is mandatory in

SR-0011 O 3-1

your system, the ACCOUNT control statement must immediately follow the
control JOB statement. All other control statements follow. Control
statements can be grouped into control statement blocks as described in
section 16,

At the end of the JCL file is an end-of-file (EOF) record (or an
end-of-data (EOD) record if the job consists of a control statement file
only).

Files following the control statement file can contain source code or

data. These files are handled according to instructions given in the JCL
file.

3.2 JOB FLOW

A job passes through the following stages from the time it is read by the
front-end computer system until it completes:

¢ Entry into COS
¢ Initiation on the system
® Advancement through the system

® Termination

3.2.1 JOB ENTRY

A job enters the system in the form of a dataset submitted from a
front-end computer system or by a JCL SUBMIT control statement and a job
already executing (described in section 10). The job is transferred to
Cray computer system mass storage, where it resides until it is scheduled
to begin processing. The job input dataset ($IN) is made permanent until
it is deleted at the completion of the job.

3.2.2 JOB INITIATION

COS examines the parameters on the JOB control statement to determine the
resources needed. When the system resources required to begin are
available, the job is scheduled to begin processing (initiated).

Initiation of a job includes preparing a Job Table Area (JTA) and user

field in memory, positioning the input dataset for the first job step,
and placing the job in a queue for the CPU.

3-2 SR-0011 O

When COS schedules the job for processing, it creates four datasets: $CS,
$IN, $0OUT, and $LOG.

$CS is the job's control statement file from $IN and is used only by the
system; you cannot access $CS by name. This dataset is used to read job
control statements, and its disposition code is SC (scratch).

$IN is the job input dataset. The job itself can access the input
dataset, with read-only permission, by its local name, $IN, or as Fortran
unit 5. The disposition code for $IN is SC (scratch).

$OUT is the job output dataset. The job can access this dataset by its
local name or as Fortran unit 6. The disposition code for $OUT is PR
(print).

$LOG is the job's logfile and contains a history of the job. This dataset
is known only to COS; you cannot access $LOG by name. User messages can
be added to the job's logfile with the MESSAGE system action request macro
(refer to the Macros and Opdefs Reference Manual, CRI publication
SR-0012,) or the REMARK, REMARK2, or REMARKF subroutines (refer to the
Programmer's Library Reference Manual, CRI publication SR-0113).

3.2.3 JOB ADVANCEMENT

Job advancement is the processing of a job according to the instructions
in a control statement file. Advancement occurs as a normal advance or as
an abort advance.

A normal advance causes COS to interpret the next control statement in the
job's control statement file. When a job step is multitasked, a job
advance deletes all user tasks except the one that causes the advance.

An abort advance occurs if COS detects an error or if you request that the
job abort. The Exit Processing subsection describes abort advances.

3.2.4 JOB TERMINATION

Output from a job is placed on system mass storage. At completion of a
job, COS appends $LOG to $OUT and returns $OUT to its originating
station. $IN, $CS, and $LOG are released. $OUT is renamed jn (from the
JN parameter value of the JOB control statement described in section 7)
and is directed to the output queue for staging to the originating
front-end computer system. When the front end receives the entire
contents of $OUT, the output dataset is deleted from COS mass storage.

The front-end computer processes $OUT as specified by the dataset

disposition code. 1If, for any reason, $0OUT does not exist, $LOG is the
only output returned at job termination.

SR-0011 O 3-3

If COS encounters an error as it attempts to copy $LOG to $0UT, $LOG is
disposed as a separate dataset.

3.3 JOB MEMORY MANAGEMENT

Central Memory is one of the resources allocated to a job by COS. A
job's memory is composed of several distinct areas. Some of these areas
are managed exclusively by COS; others are managed by both you and COS.

Figure 3-1 shows a job in memory. The total job size equals the length
of the job's JTA plus the user field length. The lined area bhetween
WJCHLM and WJCLFT is unused space within the job and contains enough
memory to guarantee that the user area is always a multiple of 512 words.

3.3.1 INITIAL MEMORY ALLOCATION

When the job initiates, it is given sufficient memory for the Control
Statement Processor (CSP) to execute. Once the JOB statement is
processed, the job is allowed a user field length no larger than the
amount specified by the MFL parameter on the JOB control statement (refer
to section 7).

3.3.2 FIELD LENGTH REDUCTION

There are two modes of user field length reduction: automatic and user
managed. A job initiates in automatic field length reduction mode, and
the system automatically increases and decreases the job's field length
as the areas within the job increase and decrease.

When a job is in user-managed field length reduction mode, the system
continues to increase the job's field length as before, but never
automatically decreases it. The job's field length can be decreased only
by the user until the job is returned to automatic field length reduction
mode.

Increases in field length can result in the job requiring more memory
than can be immediately supplied, which causes the job to be delayed
until sufficient memory can be given to it. Therefore, you may want to
manage the job's field length when it is known that the job will undergo
frequent short-lived fluctuations in size. The field length can be
reduced at the beginning of each job step and during each job step if the
job is in automatic field length reduction mode and any area of the job
decreases.

3-4 SR-0011 O

128

WJCHLM

WJCLFT

WJCDSP

WJCBFB

W@JCFL

| 7777777777777/ 77777777777772777777777777777777777/77777777]
|77777777777777777777777777777777/777777777/777777/7/777777])
V7177777777777 77777777777777777777077777/7777/77777777/777777]
{77/77/77/7777/777//7 Job Table Area ///////////777717777)
V7777777777777 77777777777777777777777777777777777/7777777)
| 7777777770777 7777777777777777777/7777/777777777777777/7777])

Job Communication Block

Blank Common

I I
I I
I |
| |
I |
| User Code/Data |
| I
I I
I I
| Heapf |
I |

| 7177777777777 77]
\/7777/777777777/77/77777// Unused /////7/7//7/77/7/7//77/77/777777)]
|77/777777/777777/777777/7777/777/777/7/77/7707/7/7/77777/777/777777777]
f |
Logical File Tables

Dataset Parameter Area

|
I
I
|
|
|
|
I
[
I
|
|
| I/0 Buffers
|

[

I

I
I
|
I
I
I
I
!
I
I
|
l
|
I
|
I

Figure 3-1. User Area of Memory for a Job

+ Although the heap follows blank common in the figure, it can
optionally precede blank common.

SR-0011 O

User
Field

3-5

3.3.3 USER MANAGEMENT OF MEMORY

A user can dynamically manage the user code/data area of the job by
requesting an increase or decrease of memory at the end of the user
code/data area.

A user can manage the field length of the job by requesting a specific
field length.

When the user manages the field length of the job, the job is placed in
user-managed field length reduction mode for the duration of the job step
(the next job step when using the MEMORY control statement described in
section 7).

A user can place the job in user-managed field length reduction mode
across job steps by explicitly requesting that mode. The job remains in
user-managed field length reduction mode until the user explicitly
requests automatic field length reduction mode.

3.3.3.1 Management by control statement from the run stream

A user can use the MEMORY control statement to manage the job's field
length. When the user manages the job's field length, the job will be
placed in user-managed field length reduction mode for the duration of
the next job step. The MEMORY control statement may also place the job
in user-managed field length reduction mode across job steps or return
the job to automatic mode.

3.3.3.2 Management from within a program

From within a program, the MEMORY macro or MEMORY routine requests user
management of the job's user code/data area and field length. When the
user manages the job's field length, the job is placed in user-managed
field length reduction mode for the duration of the job step. The MEMORY
macro or MEMORY routine may also place the job in user-managed field
length reduction mode across job steps or return the job to automatic
mode.

3.3.3.3 Management associated with a program

Use of the SEGLDR directives BCINC, PADINC, and NORED, and the LDR
control statement parameters BC, PAD, and NORED causes certain types of
memory management to be associated with the binary being loaded. (Refer
to the Segment Loader (SEGLDR) Reference Manual, CRI publication SR-0066,
for more information on SEGLDR and section 14 of this manual for more
information on LDR.) This association is stored with the binary if the

3-6 SR-0011 O

Linary ic cavaed on a dataset. The management associated can be user
code/data area management or field length management and occurs when the
binary is loaded for execution. If the field length is being managed,
the job is placed in user-managed field length reduction mode for the
duration of program execution.

3.3.4 SYSTEM MANAGEMENT OF MEMORY

The system changes appropriate areas of the job's memory when a job
initiates certain system actions (that is, advances to the next job step,
does I/0, and so on). The JTA, Logical File Tables (LFTs), and Dataset
Parameter Area (DSP) pictured in figure 3-1 can increase but will never
decrease. The user code/data and buffer areas may both increase and
decrease in size. If the job is in automatic field length reduction
mode, the system automatically increases and decreases the job's field
length when any area in the job increases or decreases. If the job is in
user-managed field length reduction mode, the system continues to
increase the field length when it needs to, but never automatically
decreases the field length.

3.4 JOB RERUN

Under certain circumstances, you may want to rerun a job from the
beginning. Conditions that cause the system to attempt to rerun a job
are as follows:

® An operator command

® An uncorrectable memory error

® An uncorrectable error reading the mass storage image of a job
® A system restart

A user job may perform certain functions that make it impossible to
rerun. The functions render a job nonrerunnable because they produce
results that might cause the job to run differently if it were rerun.
These functions include the following:

® Writing to a permanent dataset
e Saving, deleting, adjusting, or modifying a permanent dataset
® Acquiring a dataset from a front-end system

Ordinarily, when a job becomes nonrerunnable, it remains so; however, you
may declare that the job is rerunnable. You should do this only when
changes in job results due to execution of nonrerunnable functions are
acceptable. COS never makes a job rerunnable automatically.

SR-0011 O 3-7

You can also override system monitoring of job rerunnability, regardless
of what functions the job performs. This ordinarily is done only if the
job is structured to run correctly regardless of the functions
performed.

3.5 EXIT PROCESSING

When COS detects an error condition or when you request a job step abort,
COS checks to see if the condition is to be reprieved. (The next
subsection describes reprieve processing.) If no reprieve occurs, exit
processing occurs.

Generally, when a job step abort occurs, the current job step is
immediately abandoned and control statements are skipped until the next
eligible EXIT statement is encountered (section 7 describes EXIT).
Normal job advancement occurs with the EXIT statement that is found. If
no eligible EXIT statement is found, the job is terminated. EXIT
statements within control statement blocks (iterative, conditional, or
in-line procedure) that have not yet been invoked are ignored during the
search for the next eligible EXIT statement.

If the block currently being processed is a conditional block (refer to
section 16), and the system encounters an abort condition, COS suspends
execution until it reaches the first EXIT statement at the same
conditional level. If there is no EXIT within the block, COS suspends
execution until the first EXIT statement after the conditional block.

COS ignores all statements including EXITs within any unexecuted blocks
and, if no EXIT statement is at the same conditional level, also ignores
statements between that block and the first EXIT following it. For
example, in the following control statement sequence, an abort advance
occurs at the control statement THIS IS A JOB STEP ABORT CONDITION
because it does not begin with a valid verb. Control statement
interpretation resumes with the control statement *., RESUME HERE.

Exit processing is not performed for interactive jobs except inside an

invoked procedure. After a job step abort occurs, you are simply
prompted for the next control statement.

3-8 SR-0011 O

Example:

SET,J1=0.
IF(J1.EQ.0)

THIS IS A JOB STEP ABORT CONDITION.
ELSEIF (J1.EQ.1)

.
.

EXIT.
ELSE.

EXIT.
ENDIF.

EXIT.
*, RESUME HERE

.

3.6 REPRIEVE PROCESSING

Normally, when a job step abort condition occurs, exit processing begins.
Reprieve processing, however, lets a user program attempt recovery “from
many of the job step abort conditions or perform clean-up functions
before continuing with the abort.

Reprieve processing can also be invoked during the normal termination of
a job step. In this case, control transfers to the user's reprieve code

instead of to the next normal job step.

Two types of error conditions are related to a job step abort condition:
nonfatal and fatal. They are as follows:

e Nonfatal error conditions are those that you can reprieve any
number of times per job step.

e Fatal error conditions can be reprieved only once for each type
per job step.

SR-0011 O 3-9

When requesting reprieve processing, you select the conditions to be
reprieved by setting a mask in the SETRPV subroutine or macro call. If a
selected condition occurs during job processing, your current job step
maintains control. The user's Exchange Package, vector mask register,
error code, and error class are saved, and control passes to the user's
reprieve code.

3.7 INTERACTIVE JOB PROCESSING

An interactive job dataset has interleaved control statements, program or
utility input, and program or utility output. In an interactive job, the
control statement file ($CS), standard input dataset ($IN), standard
output dataset ($OUT), and logfile ($LOG) are all defined by the system to
be interactive datasets. Refer to section 2 for more information on
interactive datasets.

Each job step of an interactive job is initiated with a control

statement. Control statements can be either part of a procedure
invocation or entered directly from the interactive terminal. After each
control statement is received by COS, input to the job step can be entered
from the terminal, and output and logfile information is returned to the
terminal. When the current job step is complete, normal job advancement
occurs, and COS prompts for the next control statement or reads it from
the invoked procedure file. Exit processing (refer to section 3) is never
performed on an interactive job except within a procedure invocation.

Whenever a program or utility executing as part of an interactive job
requests to read from the standard input dataset, the interactive user is
prompted to enter data one record at a time. Likewise, any data written
to $OUT, the standard output dataset, is sent to the interactive

terminal. User logfile messages are also sent to the interactive terminal.

3.8 JOB LOGFILE AND ACCOUNTING INFORMATION

For each job that runs, COS produces a logfile, which is an abbreviated
history of the progress of the job through the system. The logfile for a
noninteractive job appears at the end of the job output. Each job control
statement is listed sequentially, followed by any messages associated with
the job step. Clock time, accumulated CPU time, and COS information are
also given for each job step. Figure 3-2 shows the items usually
contained in a logfile. Item 6 illustrates the accounting information
given to the user.

3-10 SR-0011 O

1:51:10.5987 0.0000 [0 e
1:51:10.5990 0.0000 cse

1:51:10.5993 0.0000 csep Use the NEWS control statment for General CRAY news, Use NEWS(HOURS) for
1:51:10.5996 0.0000 CSP the CRAY Batch Schedules. Use NEWS(CLASS) for Job Class information.
1:51:10.5999 0.0001 (014

1:51:10.6058 0.0003 [] A Tttt e L L L L L L L L DL PP
1:51:10.6322 0.0003 CSP CRAY X-MP SERIAL-201/40 CRI - MENDOTA HEIGHTS, MINN. 10/14/86
1:51:10.6325 0.0003 csp

1:51:10.6329 0.0003 csp @CRAY OPERATING SYSTEM COS 1.16 ASSEMBLY DATE 10/05/86
1:51:10.6332 0.0003 csp

1:51:10.6335 0.0003 csp

1:51:10.6626 0.0003 csP JOB(JN=TEST, T=4)

1:51:10.7136 0.0012 CcsP ACCOUNT(AC=,US=,UPW=)

1:51:11.3553 0.0575 EXP *

1:51:11.3556 0.0575 EXP * Compite and run a program.

1:51:11.3559 0.0575 EXP #*

1:51:11.4401 0.0580 CSP CFT77(L=0)

1:51:17.5634 0.1890 USER FFO0Y - CFT77 VERSION 1.1 09/25/86 22:33:06

1:51:17.5641 0.1893 USER FFO02 - COMPILE TIME .123 SECONDS

1:51:17.5647 0.1896 USER FFOO3 - 5 SOURCE LINES

1:51:17.5654 0.1899 USER FFOO4 - 0 ERRORS, O OTHER MESSAGES

1:51:17.5662 0.1903 USER FFO05 - CODE: 7 WORDS, DATA: 7 WORDS

1:51:17.7286 0.1908 csp EGLDR(GO)

1:51:17.9139 0.1915 USER SGO00 - SEGLDR VERSION 2.2 - 09/29/86

1:51:25.6768 0.4228 USER SG001 - BEGIN EXECUTION

1:51:25.6813 0.4229 USER UT010 - STOP in TEST

1:51:25.6817 0.4229 EXP *

1:51:25.7006 0.4230 CSP EXIT,

1:51:25.7024 0.4230 CSP END OF JOB

1:51:25.7080 0.4230 CcsP

1:51:25.7082 0.4230 CSP

1:51:25.8395 0.4232 USER JOB NAME -

1:51:25.8399 0.4232 USER USER NUMBER -

1:51:25.8405 0.4232 USER JOB SEQUENCE NUMBER -

1:51:25.8412 0.u4232 USER

1:51:25.8416 0.4232 USER TIME EXECUTING IN CPU -

1:51:25.8420 0.4232 USER TIME WAITING TO EXECUTE -

1:51:25.8424 0.4232 USER TIME WAITING FOR 1/0 -

1:51:25.8428 0.4232 USER TIME WAITING SEMAPHORE -

1:51:25.8432 0.4232 USER TIME WAITING IN INPUT QUEUE -

1:51:25.8u436 0.4233 USER MEMORY # CPU TIME {MWDS*SEC) - .

1:51:25.8443 0.4233 USER MEMORY #* 1/0 WAIT TIME {MWDS*SEC) ~ 0.93982

1:51:25.8448 0.4233 USER MEMORY * SEM WAIT TIME (MWDS*SEC) - 0.00000

1:51:25.8452 0.4233 USER MINIMUM JOB SIZE (WORDS) - 32256

1:51:25.8456 0.4233 USER MAXIMUM JOB SIZE (WORDS) - 326144

1:51:25.8460 0.4233 USER MINIMUM FL (WORDS) - 27136

1:51:25.8464 0.4233 USER MAXIMUM FL (WORDS) - 321536

1:51:25.8467 0.4234 USER MINIMUM JTA (WORDS) - 4096

1:51:25.8471 0.4234 USER MAXIMUM JTA (WORDS) - 5120

1:51:25.8475 0.423Y4 USER DISK SECTORS MOVED - 3620

1:51:25.8479 0.4234 USER FSS SECTORS MOVED - 0

1:51:25.8483 0.4234 USER USER 1/0 REQUESTS - 119

1:51:25.8487 0.4234 USER USER 1/0 SUSPENSIONS - 522

1:51:25.8491 0.4234 USER OPEN CALLS - 26

1:51:25.8495 0.423Y4 USER CLOSE CALLS - 28

1:51:25.8499 0.4234 USER MEMORY RESIDENT. DATASETS - [

1:51:25.8503 0.4234 USER TEMPORARY DATASET SECTORS USED - 603

1:51:25.8507 0.u234 USER PERMANENT DATASET SECTORS ACCESSED - 191

1:51:25.8510 0.423Y4 USER PERMANENT DATASET SECTORS SAVED - 0

1:51:25.8514 0.4235 USER SECTORS RECEIVED FROM FRONT END - 0

1:51:25.8518 0.4235 USER SECTORS QUEUED TO FRONT END - 0 1011

Figure 3-2. Example of a Job Logfile

SR-0011 © 3-11

©® ©®

© ®

First header line: Installation-defined message, usually

identifying the site and date the job was run.

Second header line: Installation-defined message, usually
identifying the operating system, its current revision level, and
the date of the last revision.

Columns: The leftmost column identifies the wallclock time for
each job step and the middle column identifies the accumulated CPU
time for the job. The rightmost column identifies a system module
or the user as the originator of the message on that line. All
times are in decimal. Entries commonly noted include the following:

Entry Meaning

CSp Control Statement Processor
PDM Permanent Dataset Manager
EXP Exchange Processor

ABORT Abort Message

USER Program in user field

Control statements: The logfile lists every control statement
processed.

Logfile messages: Any messages related to control statement
processing are shown below the statement.

Accounting information: When a job reaches completion, COS writes
a summary of basic accounting data onto the logfile for the job.
All times given are in hours, minutes, and seconds (to the nearest
ten-thousandth of a second). The following accounting information
is provided (in decimal):

® Jobname and user number

e CPU time used by the job and by each job task in a multitasked
job step

e Time waiting to execute for the job and each job task in a
multitasked job step; includes time waiting for the CPU,

memory, operator suspension, and recovery.

¢ Time waiting for I/O for the job and each job task in a
multitasked job step

e Time waiting in input queue

e Memory usage based on the execution and I/0 wait time in
million word-seconds

¢ Minimum and maximum job size including JTA (words)

SR-0011 ©

Minimum and maximum field length used (words)
Minimum and maximum JTA used (words)
Number of 512-word disk blocks (sectors) moved

Number of fast secondary storage (FSS) sectors moved to either
the SSD solid-state storage device or Buffer Memory (BMR)

Number of user I/0O requests made by the job
Open and close calls
Memory-resident datasets

Number of 512-word disk blocks (sectors) used for temporary
datasets

Number of 512-word disk blocks (sectors) accessed and saved
for permanent datasets

Number of 512-word disk blocks (sectors) received from and
queued to the front end

For each generic resource specified on the JOB control
statement, the accounting information includes a report
describing the device type (tape, disk, or ISP), number of
units reserved from the JOB control statement, number of
sectors transferred, largest number of units allocated
concurrently during job execution, and resource allocation
integral. If the resource consists of tape devices, the
report includes the number of tape volumes mounted and number
of tape blocks transferred.

For each FSS device not configured as a generic resource, the
accounting information includes a report describing the
logical device name, number of sectors transferred, maximum
number of sectors allocated concurrently during job execution,
and resource allocation integral.

(:) System bulletin: The system bulletin allows the installation to

print messages in the logfile, usually about the status of the
system environment. It is an installation-maintained message
dataset and may not be present.

SR-0011 O

JOB CONTROL LANGUAGE 4

The job control language (JCL) for COS lets you present a job to the Cray
computer system, define and control execution of programs, and manipulate
datasets.

The JCL is composed of control statements. Each control statement
contains information for a job step. COS initially creates a control
statement dataset, $CS, to hold job control statements. Additional
control statement datasets can be created through procedure definition or
the CALL control statement (refer to section 7).

The syntax of a control statement is as follows:

| verb |sepy |param; |sep, |paramy |... |sep, |param, |term |comments |

| 1 1 I | | | | | | |

All control statements must adhere to a set of general syntax rules.

Every control statement must have a verb and a terminator (term) as a
minimum, except for a comment control statement (introduced by an
asterisk *) which does not require a terminator. Most control statements
also require parameters (param) and separators (sSep) between the verb

and its parameters. The maximum number of parameters depends on the verb.

Lowercase letters are converted to uppercase letters unless they are used
in a literal string.

The continuation separator (the caret symbol ") allows a control
statement to consist of more than one record (80 characters). The JOB,
DUMPJOB, EXIT, and * (comment) control statements cannot be continued.
All other control statements can have any number of continuation lines,
subject to restriction of the verb. (A caret occurring within a literal
string has no special significance. Refer to section 16 for more
information about literal strings.)

A comment is an optional annotation to a control statement and can be a
string of any ASCII graphic characters. The comment follows the
statement terminator. The control statement interpreter ignores
comments. All comments appear in the logfile unless suppressed by the
ECHO control statement.

SR-0011 O 4-1

Blanks are ignored unless they are embedded in a literal string. Blanks
cannot precede the verb on the JOB control statement.

4.1 SYNTAX VIOLATIONS

COS notes syntax violations in the system and user logfiles. If the JOB
control statement is in error, processing of the job terminates
immediately. If accounting is mandatory, ACCOUNT statement errors also
cause job termination. All other syntax errors cause a job step abort
condition, which causes the system to search for an EXIT control
statement. A successful search resumes control statement processing with
the job step following EXIT. If no such job step exists or if an EXIT
statement is not found, the job is terminated. Job step abort can also
direct control to a user-specified routine (refer to exit processing and
reprieve processing in section 3).

4.2 CONTROL STATEMENT VERBS

A control statement verb is the first nonblank field of a control
statement. It specifies what action COS will perform for that
statement. COS recognizes three types of control statement verbs:
system verbs, dataset name verbs (local and system), and
library-defined verbs. A control statement verb cannot be continued to
a second record.

When COS encounters a verb in a control statement file, it searches for a
match to that verb, First, it searches the list of system verbs for a
match. If the verb is not a system verb, COS searches first for a local
dataset, next for a matching program name in the datasets in the library
searchlist, and then for a matching system dataset name in the System
Directory Table (SDR). If a match for the verb is not found under any of
these categories, COS issues a control statement error and aborts the job
step.

4-2 SR-0011 O

4.2.1 SYSTEM VERBS

A system verb consists of an al¥habetic character that can be followed by
1 to 7 alphanumeric characters. The system verb requests that COS
perform a function. The system verbs are as follows:

* ACCESS ACQUIRE ADJUST ASSIGN CALL
&DATA DELETE DISPOSE DUMPJOB ECHO ELSE
ELSEIF ENDIF ENDLOOP ENDPROC EXIT EXITIF
EXITLOOP FETCH HOLD IF IOAREA JOB
LIBRARY LOOP MEMORY MODE MODIFY NOHOLD
NORERUN OPTION PERMIT PRINT PROC RELEASE
RERUN RESTORE RETIRE RETURN REWIND ROLLJOB
SAVE SET SUBMIT SWITCH TARGET

The Cray Simulator (CSIM) Reference Manual, publication SR-0073,
describes the SIMABORT control statement.

4.2.2 LOCAL DATASET NAME VERBS

Local dataset name verbs begin with an alphabetic character followed by 1
to 6 alphanumeric characters.T Local dataset name verbs request that
COS load and execute an absolute binary program from the first record of
the named dataset. If the user job has a dataset with the indicated
name, COS loads and executes the program from that dataset.

4.2.3 LIBRARY-DEFINED VERBS

Library-defined verbs consist of 1 to 8 characters. The library-defined
verb is either a program or procedure definition residing in a library
that is a part of the current library searchlist. (The library
searchlist defines the library and the order in which the libraries are
searched by COS. This order can be specified with the LIBRARY statement
described in section 7.) A program in a library is an absolute binary
program to be loaded and executed. A procedure definition is a group of
control statements or data or both to be processed (refer to section 16).

+ Alphabetic characters include $, %, @, and the letters A through 2
(uppercase and lowercase). Alphanumeric characters include all the
alphabetic characters and the digits 0 through 9.

SR-0011 O 4-3

4.2.4 SYSTEM DATASET NAME VERBS

COS searches for a verb that is the name of a system-defined dataset in
the SDR. A system-defined dataset name verb begins with an alphabetic
character followed by 1 to 6 alphanumeric characters. The SDR is a list
of common language processors and utilities known to the system and made
available to users at startup. The name of the program (for example,
CAL, CFT, or DUMP) is also the name of the dataset containing the
absolute binary of the program. The exact list of system dataset name
verbs is site-dependent.

4.3 SEPARATORS

A separator is a character used as a delimiter in a control statement.
It separates the verb from the first parameter, separates parameters from
one another, delimits subparameters, terminates verbs and parameters, and
separates a keyword from its value in parameters having keyword form.

Table 4-1 shows the control statement separators allowed by COS.

4.4 PARAMETERS

A parameter is a control statement argument whose exact requirements

are defined by the control statement verb., Parameters are used in
control statements to specify information to be used by the verb-defined
process. Parameters that can be used with COS control statements are
either positional or keyword. For certain verbs, a parameter value can
be an expression, Detailed information on the use of expressions is
presented later in this section. Parameters are separated by commas.

4.4.1 POSITIONAL PARAMETERS

A positional parameter has a precise position relative to the separators
in the control statement. Even a null positional parameter must be
delimited from the control statement verb or other parameters by a
separator.

4-4 SR-0011 O

Table 4-1. Control Statement Separators

Function Character Examples
Initial separator (comma or open , VERB, parameter.
parenthesis)f ~ Separates the (VERB(parameter)
verb from the first parameter
Statement terminator (period if . VERB.
initial separator is comma, close) VERB, parameter.
parenthesis if initial separator VERB(parameter)

is open parenthesis)f - Signifies
end of control statement

Parameter separator (comma) -
Indicates the end of one parameter
and the beginning of the next

Equivalence separator (equal sign) -
Delimits a parameter keyword from the
first parameter value for that key-
word. Adjacent equivalence separa-
tors are illegal.

Concatenation separator (colon) -
Separates multiple parameter values
from each other

Continuation character (caret) -
Indicates that the control statement
consists of more than one 80-character
card; may appear anywhere after the
initial separator.

Literal string delimiters
(apostrophes) +t _ Identifies the
beginning and end of a literal string

Parenthesis delimiters (open and close
parentheses) - Indicates a group of
characters to be treated as one value

I
I
[
I
I
[
!
I
I
I
I
I
|
I
I
|
I
I
[
I
I
I
I
|
|
I
|
|
|
I
I
|
I
I
I
I
I
I
I
I
I
|

(...)

|
|
|
I
I
I
I
I
I
I
I
|
I
[
I
I
l
|
I
I
I
I
[
|
I
I
I
I
I
[
I
[
I
I
I
I
I
I
|
I
I

I

VERB(parameter,parameter)

VERB(keyword=value)

VERB(keyword=value,:value,)

VERB(...parameters..."
parameters)

VERB(keyword="'string')

VERB(keyword=(value:value)

+ By convention, the comma and period

parentheses are conventional.

are used as initial and terminator
separators for all control statements except on the JCL block control
statements (procedure definition, iterative, and conditional), where paired

++ Refer to section 16 for additional information on strings and string

delimiters.

SR-0011 O

1003

The formats for a positional parameter follow:

value

| I
I I
[I
| valueq:valuey:...:valuep, |
I I

Each value; is a string of alphanumeric characters, a literal string,

or a null string. Positional parameters are represented by at least one
value, unless the value is null. To represent null values, use only

the closing comma.

Examples of positional parameters:

...,ABCDE, ... The parameter value is ABCDE.

ceesrrees The adjacent parameter separators
indicate a null positional parameter.

.+.,P1:P2:P3,... The parameter consists of multiple values.

VERB() or VERB,. or VERB. The positional parameter 1 is null,

4.4.2 KEYWORD PARAMETERS

A keyword parameter is identified by its form rather than by its

position in the control statement. The keyword is a string of 1 to 8
alphanumeric characters uniquely identifying the parameter. Parameters
of this type can occur in any order but must be placed after all of the
positional parameters for the control statement, or they can sometimes be
omitted.

The formats of keyword parameters are as follows:

keyword

I I
I I
I I
| keyword=value |
| |
| keyword=value;:valuey:...:valuep |
I I

keyword is an alphanumeric string that depends on the requirements of the
verb. Value; is the value associated with the keyword. A keyword
parameter can occur anywhere in the control statement after all positional

4-6 SR-0011 O

parameters are specified. Whether a keyword parameter is required depends
on the verb's requirements. If the keyword is not included in the control
statement, a default value can be assigned.

Examples of keyword parameters:

...,DN=FILE1, ... The parameter consists of the keyword and
a value.

cee,UQ, ... The parameter consists of the keyword
only.

«++,DN=FILE1:FILE2:FILE3,... The parameter consists of the keyword and
a list of values.

ee.,DN=,... The parameter contains a null value.
(The value is omitted from the statement.)

++«s,DN=A:::B,... The parameter value contains A, two null
parameters values, and B.

The parameter associated with a keyword may be defined as a secure
parameter. Every secure parameter is edited out of the statement before
it is echoed to the user logfile. When a keyword is secure, all that
appears in the user's logfile is the keyword and the = sign, followed by
the next delimiter. Secure parameters are defined when calling GETPARAM
as described in the Programmer's Library Reference Manual, CRI
publication SR-0113.

4.4.3 PARAMETER INTERPRETATION

The decoding (parsing) of control statement parameters is normally
performed by the routines $CCS and GETPARAM, as described in the
Programmer's Library Reference Manual, CRI publication SR-0113.
Parameter interpretation is performed by the particular program or
utility that calls $CCS or GETPARAM.

SR-0011 O 4-7

LIBRARIES

Job control statements, programs, and compiled subprograms are maintained
in libraries. The following types of libraries are available on COS:

® Procedure libraries
® Program libraries (PLs)
® Object code libraries

The CALL and LIBRARY control statements (refer to section 7) refer to

procedure libraries; UPDATE (refer to the UPDATE Reference Manual, CRI
publication SR-0013) maintains program libraries.

5.1 PROCEDURE LIBRARY

A procedure library is made up of procedures that consist of a sequence
of control statements or data (or both) saved for processing at a later
time.

A procedure library is created by the in-line procedure definition
process described in section 16. After it is created, a procedure
library is made available for using the LIBRARY control statement (refer
to section 7).

5.2 PROGRAM LIBRARY

A program library (PL) is a means of maintaining programs and other

data on datasets. These datasets are created and maintained by the
UPDATE utility described in the UPDATE Reference Manual, CRI publication
SR-0013. A PL contains one or more specially formatted files consisting
of records of ASCII characters. The files are separated by end-of-file
(EOF) records. The decks can be programs, portions of programs, input
data for programs, or even job control statements. Refer to the UPDATE
Reference Manual for full information on using PLs.

SR-0011 © 5-1

5.3 OBJECT CODE LIBRARIES

Object code libraries are termed library datasets or simply libraries. A
library dataset is a dataset containing a program file followed by a
directory file. Within the category of object code libraries are
relocatable libraries and absolute libraries. Relocatable libraries are
designed to provide the loader with a means of rapidly locating and
accessing program modules. Relocatable library datasets are created and
maintained by the BUILD utility as described in section 15. Any library
dataset can be inspected and described by ITEMIZE. Refer to section 13
for more information on ITEMIZE.

Absolute binaries are created by LDR or SEGLDR. From them, BUILD
produces a collection of absolute binaries called an absolute library.
The absolute libraries are searched for system verbs when the object
library's dataset name is in a search list specified by the LIBRARY
control statement. For information on library-defined verbs, refer to
section 4.

5-2 SR-0011 O

JOB CONTROL STATEMENTS 6

Job control statements perform the following functions:

Identify a job to the system

Define operating characteristics for the job

Manipulate datasets

Call for the loading and execution of user programs

Call COS programs that perform utility functions for the user
Define and manipulate other control statements

e & ¢ & ¢ o

The first file of a job dataset contains control statements that are
read, interpreted, and processed one at a time. The sequential
processing of control statements determines the job flow through the
operating system. Refer to section 3 for a general description of job
flow. Sequential processing of control statements can be altered by exit
or reprieve processing, or by control statement structures described in
section 16.

Section 4 presented information on the general syntax rules and
conventions for control statements. Sections 6 through 15 describe COS
control statements and give examples in some cases. The control
statements are described in the following categories:

Job definition and control
Dataset definition and control
Permanent dataset management
Dataset staging control
Permanent dataset utilities
Local dataset utilities
Analytical aids

Executable program creation
Object library management

® & 6 0 ¢ 06 0 o o

6.1 JOB DEFINITION AND CONTROL

Several control statements let you specify job processing requirements.
Control statements defining a job and its operating characteristics to
the operating system include the following:

SR-0011 O 6-1

Verb

ACCOUNT

CALL, RETURN
CHARGES
ECHO

EXIT

IOAREA

JOB

LIBRARY

MEMORY

MODE

OPTION

RERUN, NORERUN
ROLLJOB

SET

Function
Annotates control statements with comments

Validates the job's account number, user number, and
optional passwords

Allows the use of alternate control statement files
Obtains partial or total resource reporting for a job
Controls types of messages written to the job's logfile

Indicates the point in a series of control statements
at which processing of control statements resumes
following a job step abort from a program, or
indicates the end of control statement processing

Denies or allows access to the job's I/0 area, the
upper (high-address) portion of user memory that
contains tables and buffers managed by the system I/0
library routines

Introduces the job to the operating system and defines
characteristics such as size, time limit, and priority
levels

Specifies the datasets to be searched when looking for
defined procedures during job processing. LIBRARY
also specifies the order in which to perform the

search.

Requests a new field length and/or mode of field
length reduction

Sets or clears mode bits in the job's Exchange Package
Specifies user-defined options, such as the format of
the job's listing and the amount of dataset accounting
statistics produced

Control job rerunnability

Protects a job by writing it to disk

Changes the value of a job control language (JCL)
symbolic variable

SR-0011 O

Verb Function
SWITCH Turns on or turns off pseudo sense switches
TARGET Sets CPU characteristics

Section 7 fully describes job definition and control statements.

6.2 DATASET DEFINITION AND CONTROL

You can define and manage datasets using the following dataset control
statements:

Verb Function

ACCESS Makes a permanent dataset local to a job. ACCESS can
cause the creation of a tape dataset. If both are
used, ACCESS must precede the ASSIGN control statement.

ASSIGN Defines characteristics for datasets, such as the
amount of user memory to allocate for the dataset's
I/0 buffer. ASSIGN also can be used to create a mass
storage dataset. The ACCESS control statement must
precede ASSIGN when creating a tape dataset.

HOLD Declares that dataset release occurs with implicit HOLD
NOHOLD Rescinds the effect of the HOLD control statement
RELEASE Relinquishes access to the named dataset for the job

Section 8 describes ASSIGN, HOLD, NOHOLD, and RELEASE. Section 9
describes ACCESS.

6.3 PERMANENT DATASET MANAGEMENT

Control statements for managing permanent datasets provide for creating,
protecting, and accessing datasets assigned permanently to mass storage
or magnetic tape. Such datasets cannot be destroyed by normal system
activity or engineering maintenance.

Front-end computer systems cannot directly affect Cray-resident permanent
datasets, because permanent dataset management is handled entirely by
COS; however, permanent magnetic tape dataset management can be
optionally coordinated with a front-end computer system.

SR-0011 O 6-3

Users can manage user permanent datasets only; system permanent datasets
cannot be managed (modified or deleted) by the user. (Refer to section 2
for a description of the types of datasets.)

Table 6-1 shows the control statements available for user permanent mass
storage and magnetic tape dataset management. Actual processing of these
requests depends upon the medium on which the dataset resides. Mass
storage datasets are controlled by the COS system task called the
Permanent Dataset Manager (PDM). Magnetic tape datasets are controlled
by a system task called the Tape Queue Manager (TQM). Both of these
system tasks (PDM and TQM) have mechanisms for retaining the
characteristic information about the dataset. Information for mass
storage datasets is retained in the Central Memory-resident Dataset
Catalog (DSC). Magnetic tape datasets can have characteristic
information retained on a front-end computer system.

Section 9 fully describes the permanent dataset management control
statements.

6.3.1 MASS STORAGE DATASET ATTRIBUTES

Every mass storage permanent dataset has several attributes associated
with it. These attributes are as follows:

® Read, write, and maintenance permission control words
® Public access mode

® Public access tracking

® Permits

® Text

® Notes

6.3.1.1 Permission control words

A permission control word is a password that must be supplied to gain
access to a particular permanent dataset. Permanent datasets are not
required to have a permission control word, but if a permission control
word is specified for the mode of dataset access desired (read, write, or
maintenance), the control word must be specified to gain access to the
named dataset. If more than one mode of access is desired (for example,
both read and write), all appropriate control words must be supplied.

6-4 SR-0011 O

Table 6-1.

for Each Medium

Permanent Dataset Management Control Statements

I | I

| Verb | Mass Storage | Magnetic Tape

| | |

I I |

| ACCESS | Makes a user permanent | Makes an existing tape dataset
| | dataset local to the | available to the job or

| | requesting job with the | defines a NEW-type tape

| | requested and/or allowable | dataset that will be created
| | modes (execute, read, | by the job. Also optionally
| | write, or maintenance) | defines the front-end computer
} | | system that will be the

| | | central point for servicing
| | | that dataset.

I | I

| ADJUST | Records the change in any of | Not applicable

| | the size or allocation |

| | information for a dataset |

| | that might have contracted |

| | or expanded |

I I !

| DELETE | Removes the definition of | Requests the front-end

| | a user permanent dataset | computer system servicing

| | from the DSC. It is | the dataset to remove

| | possible to delete a | (delete) any information

| | dataset's contents and | concerning the dataset

| | have its attributes |

| | retained by the system. |

| | I

| MODIFY | Changes the characteristic | Not applicable

| | information for an existing |

| | user permanent dataset |

| I I

| PERMIT | Explicitly grants or denies | Not applicable

| | specified users or groups |

| | of users access to a |

| | permanent dataset |

| I I

| SAVE | Enters a dataset's | Supplies to a front-end

] | identification and location | computer system the

| | in a system-maintained | characteristic information

| | DSC. Datasets recorded | about a dataset for its

| | in the DSC using a user SAVE | retention

| | request are user permanent |

| | datasets and are recoverable |

| | at deadstart. |

I | |

SR-0011 O 6-5

6.3.1.2 Public access mode attribute

If all users are to be allowed some kind of access to a permanent
dataset, that dataset must have a public access mode defined. The
public access mode is the type of access, as a minimum, all users can
have to the permanent dataset. Users can be allowed read, write, and/or
maintenance mode access to the dataset. Users can be restricted to only
executing the dataset; the public access mode can alternatively be NONE,
signifying that public access is not permitted. When public access to a
dataset is granted, any required permission control words must still be
supplied in order to gain access to the dataset.

6.3.1.3 Public access tracking attribute

Public access tracking is a facility that can be turned on or off. A
record can be kept of every user who accesses a public dataset. Refer to
the Dataset Use Tracking subsection for more information on the public
access tracking mechanism.

6.3.1.4 Permits attribute

User permanent mass storage datasets can have a list of alternate users
of the dataset and in what mode or modes each alternate user can access
the dataset. Each element of the list is known as a permit and names a
specific alternate user and that user's allowed mode of dataset access.
Refer to the Access Mode subsection for more information on permits.

6.3.1.5 Text attribute

Text is a character string to be passed to a front-end computer system
when requesting transfer of the dataset to or from Cray mass storage.
Refer to the Dataset Staging Control subsection for more information on
text.

6.3.1.6 Notes attribute

Notes is a string of up to 480 characters associated with a permanent
dataset. There is no restriction on what notes contains. When notes

is listed using the AUDIT utility (refer to the Permanent Dataset
Utilities subsection), the caret symbol is interpreted as an end-of-line
signal and AUDIT advances to a new line when listing the dataset

notes. Notes can contain such information as dataset structure,

usage instructions, or history. For example, if several versions of a
program exist as different permanent datasets, the notes could identify
the purpose, difference, and origin of each dataset.

6-6 SR-0011 O

6.3.2 ESTABLISHING ATTRIBUTES FOR MASS STORAGE DATASETS

Mass storage permanent dataset attributes are established at dataset
creation time, though they can be later modified (or added to, in the
case of permits). Attribute establishment depends on whether a dataset
with the same Permanent Dataset Name (PDN), additional identification
(ID), and ownership already exists.

Supplying the entire set of attributes every time a new permanent dataset
is created, that is, when no permanent dataset with the same PDN, ID, and
ownership currently exists, can become quite tedious, especially if a
long list of permits must be established. Instead, the dataset creator
can supply an attributes dataset.

6.3.2.1 Existing permanent dataset

If a permanent dataset with the requested PDN, ID, and ownership already
exists, the current dataset's permission control words, public access
mode, public access tracking, and permit list are set to the
corresponding attributes of the permanent dataset with the highest
existing edition number (ED) and identical PDN, ID, and ownership.

The text attribute is also copied from the highest existing edition
unless otherwise specified; the notes attribute is not copied.

The discussion of creating a new edition of an existing permanent dataset
applies to datasets created by SAVE or PDSLOAD (refer to the Permanent
Dataset Utilities subsection for information on PDSLOAD). If you use
MODIFY to create a new edition of an existing dataset (by changing the
PDN or ID), any dataset attributes not explicitly modified remain
unchanged. Thus, it is possible, though not recommended, for different
permanent datasets with the same PDN, ID, and ownership to have different
attributes.

6.3.2.2 New permanent dataset

Using SAVE or ACQUIRE when no permanent dataset currently exists with the
same PDN, ID, and ownership causes a new permanent dataset to be created.

All permanent dataset attributes can be established for a new permanent
dataset; no attribute is associated with any other dataset. For example,
if the new permanent dataset is to have a read permission control word,
the control word must be supplied. If a list of permits is needed, the
list must be supplied. Establishing an attributes dataset (described in
the next subsection) provides a convenient way of supplying a list of
permits.

SR-0011 O 6-17

6.3.2.3 Attributes dataset

An attributes dataset is an existing permanent mass storage dataset

from which any (or all) permanent dataset attributes can be copied. The
actual dataset content is ignored; the attributes are copied from the
dataset's catalog entry. The attributes dataset can even be partially
deleted (refer to the Dataset Staging Control subsection for a discussion
of partial dataset deletion). The attributes dataset must be local to
the job referencing it.

The attributes dataset is referenced with the ADN parameter on the SAVE
or ACQUIRE control statement. When the attributes dataset is referenced,
all desired attributes (such as permission control words and the public
access mode) are copied from the attributes dataset and used in
establishing the attributes of the current dataset. Any attribute
explicitly specified on the SAVE or ACQUIRE control statement is used
instead of the attributes dataset's attribute. The end of section 9
includes examples of attribute dataset use.

An attributes dataset can also be used with the PERMIT control statement,
although it is used slightly differently. When an attributes dataset is
used with PERMIT, the entire permit list (but no other attribute) is
copied from the attributes dataset and added to the permit list
established (or being established) for the current dataset.

For example, suppose the same permit list is being used for several
different datasets. A single permanent dataset can be created and the
list of permits established. Then whenever a new dataset is created, the

original dataset can be accessed and used as an attributes dataset. The
new dataset creator need not even know what permits are being established.

6.3.3 PROTECTING AND ACCESSING MASS STORAGE DATASETS

Access of mass storage datasets can be restricted on two levels:
¢ Which users can access the dataset (privacy)
® What type of access is allowed (access mode)

The mass storage dataset protection system has two other dataset
management aspects:

e Dataset use tracking

® Attribute association

6-8 SR-0011 O

N

6.3.3.1 Privacy

Mass storage permanent datasets fall into three categories, depending on
which users can access the permanent dataset:

® Private datasets are accessible only to the dataset owner.

e Semiprivate datasets are accessible to the dataset owner and to
a specific group of other users.

e Public datasets are accessible to all users.

New mass storage datasets are either public or private (not semiprivate)
by default. Contact your CRI site analyst for the default value at your
site. A new dataset can be explicitly declared as either public or
private with the public access mode (PAM) parameter on the SAVE control
statement. (Refer to section 9.)

6.3.3.2 Access mode

In addition to establishing which users may access a dataset, the owner
must establish what mode of access alternate users are allowed; that is,
whether users other than the dataset owner may execute, read, write, or
maintain the permanent dataset. Specifying the mode of alternate access
depends upon what category of user is being granted the access. The
three categories of users are as follows:

® The dataset owner who is allowed all modes of access.

® Specific alternate users who are named with the USER parameter of
the PERMIT control statement (refer to section 9); the alternate
user's allowed mode of access is declared with the access mode
(AM) parameter of the same PERMIT control statement. Multiple
PERMIT statements can be issued for the same permanent dataset to
provide a list of alternate users. PERMIT can also be used to
change or remove the allowed mode of access for an alternate user
of the dataset. The allowed access mode for a specific user is
known as a permit.

¢ All other users (the public). All users of a dataset not in the
preceding two categories can be allowed (or denied) access to the
dataset by using the PAM parameter on the ACQUIRE (section 10),
SAVE, or MODIFY control statement (section 9). The mode of public
access to a dataset can be changed at any time with the MODIFY
control statement.

Any mass storage permanent dataset can have a public access mode with any
combination of permits. If an alternate user desiring access to a
permanent dataset is allowed public access and is named in a permit, the
alternate user is allowed the access named in the permit. The permit
takes precedence over the public access mode.

SR-0011 © 6-9

Such a combination of public and permitted access is often desirable.
For example, suppose dataset FROG is to be used (executed as a program)
by many groups of users, maintained by the dataset owner, and backed up
or restored as needed by another user. Then, the dataset should have a
public access mode of execute only and a permit of maintenance mode
access for the alternate user who does dataset backup and restoration.

All users, including the owner, must correctly specify any existing
permission control words corresponding to the mode of access desired.
For example, suppose dataset BIG has a public access mode of READ and a
read password of README. Any user desiring to read the dataset must
supply the read password (README) to gain access to the dataset. An
exception occurs if the permanent dataset utilities are used. Refer to
section 11 for more information.

6.3.3.3 Dataset use tracking

The total access count and date/time of last access are recorded for each
dataset in the DSC. Access tracking capabilities include recording who
accessed the dataset, how many times, and the date/time of last access.
The permit mechanism described earlier in this section provides access
tracking whenever a permit is issued for a user. A dataset that allows
public access can also be tracked. The owner must explicitly state,
however, that public access tracking is required with the track accesses
(TA) parameter on the ACQUIRE, SAVE, or MODIFY control statement; the
system does not normally provide it.

6.3.3.4 Attribute association

The system allows permanent datasets having the same PDN and additional

ID to be distinguished by an ED. That is, there can be several datasets
with different edition numbers that have the same PDN, ID, and ownership
value.

A user permanent dataset is uniquely identified by the PDN, ID, ED, and
ownership value. The ownership value recorded in the DSC when a
dataset is made permanent is normally equal to the user number as
specified on the ACCOUNT or JOB control statement. Specific
installations can choose to define dataset ownership as the account
number rather than the user number. Contact your CRI site analyst to
find out which type of ownership value is used.

Permanent mass storage datasets with the same PDN, ID, and ownership are
assumed to be closely related. Therefore, most permanent dataset
attributes are the same for all editions of the permanent dataset. The
read, write, and maintenance permission control words, public access
mode, public access tracking, and permits are the same for all datasets
with the same PDN, ID, and ownership.

6-10 SR-0011 O

The text attribute is treated slightly differently. Any text supplied
when the dataset is created is kept as a dataset attribute; if no text
is supplied, the text attribute from the highest existing edition of the
permanent dataset, if any, is used.

The notes attribute is treated similarly to text except that notes are
assumed to be different for each dataset edition. Notes supplied at
dataset creation time are used; if no notes are supplied, none are used.

Deleting the data in a permanent dataset while leaving the dataset's name
and attributes recorded in the DSC is possible. Such a dataset is
referred to as a partially deleted dataset. The subsection on Dataset
Staging Control describes partial dataset deletion.

6.4 DATASET STAGING CONTROL

Staging is the process of transferring jobs and data in the form of COS
datasets from a front-end computer system to Cray mass storage or of
transferring datasets from Cray mass storage to a front-end computer
system. Three control statements support staging datasets between COS
and a front-end system: ACQUIRE, DISPOSE, and FETCH. Another control
statement, SUBMIT, directs datasets to the COS input queue. Section 10
fully defines the following control statements:

Verb Function
ACQUIRE Checks to see if the requested dataset is currently
permanent on mass storage. If the dataset is already

permanent, ACQUIRE works exactly like ACCESS
(described earlier in this section) and allows
dataset access to the job making the request.
Alternatively, if the dataset is not mass storage
resident, ACQUIRE obtains a front-end resident
dataset, stages it to Cray mass storage, and makes it
permanent and accessible to the job making the
request. The dataset is staged from the front end
only if it is not already permanent.

DISPOSE Directs a dataset to the specified queue for staging
to a front-end system. DISPOSE can also be used to
release a local dataset or to change dataset
disposition characteristics.

FETCH Obtains a front-end resident dataset and makes it
local to the requesting job

SUBMIT Directs a dataset on Cray mass storage local to the
submitting job to the COS input queue

SR-0011 O 6-11

Dataset control information such as save or access codes is usually
required by a front-end system for management of its own files. Such
control information can be sent by the Cray system user to the front-end
system through the use of the text parameter (expressed as TEXT=text),
which is a special parameter of the SAVE, MODIFY, ACQUIRE, FETCH, and
DISPOSE statements. The contents of the character string provided with
the TEXT parameter are defined by the front-end system (refer to the
appropriate station reference manual for the use of the TEXT parameter
on your front-end system).

The text information not only provides most of the directives for
obtaining the dataset from the front-end computer system but can contain
sensitive or secure information as well. When using the ACQUIRE control
statement, the staged dataset is recorded in the DSC and thus made
permanent. Like any other mass storage permanent dataset, the staged
dataset's attributes are recorded and protected as described under the
Protecting and Accessing Mass Storage Datasets subsection earlier in
this section.

The owner of an acquired dataset can provide permission to acquire the
dataset to other users by specifying a public access mode or by issuing
permits. The actual dataset (that is, the data) need not reside on mass
storage for the permissions to be issued. For this reason the text,

as specified by the owner when the dataset was initially acquired, is
retained by the system as an attribute. The owner can, at a later date,
delete the data while still retaining all of the permanent dataset
attributes. A dataset registered in the DSC in this manner is referred
to as a partially deleted dataset.

When an authorized user acquires a partially deleted dataset, the text
required to obtain the dataset from the front-end computer system is
retrieved from the DSC and sent along with the request. Therefore, the
user need not specify the text in the ACQUIRE request. In fact, if

the ACQUIRE is being issued by an alternate user as opposed to the
owner, any text in the request is ignored. In this manner, the owner
does not have to disclose the text information to other users.

The owner can at any time replace the text using the MODIFY command.
After a partially deleted permanent dataset has been successfully
acquired, the data is once again made permanent and is considered
completely Cray mass storage resident. Because the dataset is mass
storage resident, a subsequent ACQUIRE request is treated as an ACCESS
request. The ACQUIRE request stages a dataset only if it is not already
permanent on Cray mass storage.

6-12 SR-0011 O

6.5 PERMANENT DATASET UTILITIES

Three utilities (AUDIT, PDSDUMP, and PDSLOAD) can be used with any mass
storage permanent datasets available to the user. Datasets processed by
these utilities need not be local to the user job. The following
utility routines are provided for mass storage permanent datasets:

Verb Function

AUDIT Produces a report containing status information for
each permanent dataset. AUDIT does not include system
input or output datasets.

PDSDUMP Dumps all specified permanent datasets to a
user-specified dataset. Input and output datasets
managed by the operating system can be included in the
dump.

PDSLOAD Loads permanent datasets that have been dumped by
PDSDUMP and updates or regenerates the DSC. Input and
output datasets managed by the operating system can
also be loaded with PDSLOAD.

RESTORE Recalls a retired dataset to on-line disk

RETIRE Declares a dataset retired

These utilities are defined in Section 11.

6.6 LOCAL DATASET UTILITIES

Utility control statements provide the user with a convenient means of
copying, positioning, or initializing local datasets. The following
utilities are available to the user:

Utility Function

BLOCK Converts an unblocked dataset to a blocked dataset

COPYD Copies blocked datasets

COPYF Copies files of blocked datasets

COPYR Copies records of blocked datasets

COPYU Copies unblocked datasets or sectors of unblocked
datasets

SR-0011 O 6-13

Utility Function
NOTE Writes text to a dataset

QUERY Returns local mass storage dataset status and
position information

REWIND Positions a blocked or unblocked dataset at
beginning-of-data, that is, before the first word of
the dataset

SKIPD Skips blocked datasets

SKIPF Skips files of blocked datasets

SKIPR Skips records of blocked datasets

SKIPU Skips sectors of unblocked datasets

UNBLOCK Converts a blocked dataset to an unblocked dataset
WRITEDS Initializes a blocked random or sequential dataset

Section 12 describes these utilities.

6.7 ANALYTICAL AIDS

The following control statements provide analytical aids to the
programmer.

Verb Function

COMPARE Compares two blocked datasets and lists all
differences

DSDUMP Dumps all or part of a blocked or unblocked dataset

DUMPJOB DUMPJOB and DUMP are generally used together to

DUMP examine the contents of registers and memory as they

were at a specific time during job processing.
DUMPJOB captures the information so that DUMP can
later format selected parts of it.

FLODUMP Dumps flowtrace tables when a program aborts with
flowtrace active

FTREF Generates information about a Fortran application

6-14 SR-0011 O

Verb Function

ITEMIZE Inspects and generates statistics about library
datasets. Section 5 describes libraries; the Object
Library Management subsection that follows describes

dataset management.

PRINT Writes the value of a JCL expression (as defined in
section 16) to the logfile

SYSREF Generates a global cross-reference listing for one or
more CAL or APML programs

Section 13 describes these control statements.

6.8 EXECUTABLE PROGRAM CREATION

Two utilities are available under COS to prepare programs for execution.
The segment loader (SEGLDR) is described in the Segment Loader (SEGLDR)
Reference Manual, CRI publication SR-0066; the COS relocatable loader
(LDR) is described in section 14. These utilities prepare programs for
execution from relocatable modules. A series of relocatable modules

is normally created when a program is compiled or assembled. Each
relocatable module normally represents one subroutine of the whole
program, or the main program itself. Each relocatable module (also known
as a module, an object module, a relocatable, or a binary)

consists of a series of tables. The tables contain such information as
executable machine (program) instructions, references to other modules
(such as when one subroutine calls another), and the location of where
the main program is to start execution.

Before a collection of relocatable modules (the program) can be executed,
the collection of modules must be linked together into a single module.
This single module, the absolute load module, contains the main program
and a copy of every subroutine called, including ones found in the
various system libraries. An absolute load module can be executed any
time without having to be reprocessed by SEGLDR or LDR. The loaders
execute as utility programs within the user field and provide the loading
and linking in memory of relocatable modules from datasets on mass
storage.

Very large programs might not fit in the available user memory space or
might not use large portions of memory while other parts of the program
are in execution. For such programs, both loaders provide overlay
capabilities. With SEGLDR, these are called segments; with LDR,
overlays. Creating and using segments requires no source code changes;
creating and using overlays requires source code to be changed to invoke
the overlay processor.

SR-0011 O 6-15

In general, the capabilities (except overlays) that are available with
LDR are available with SEGLDR. Most applications that use more than 4
Mwords of Central Memory, however, cannot be loaded by LDR because of
internal limitations of its memory allocation algorithm. Such programs
must use SEGLDR. SEGLDR also provides additional features not available
with LDR. The LD2 utility assists in conversion from LDR to SEGLDR; LD2
is described in section 14.

6.9 OBJECT LIBRARY MANAGEMENT

BUILD, a utility called through the BUILD control statement, creates and
maintains object libraries.

Compiled subroutines (relocatable modules) can be collected into
libraries that can be referred to later when creating a new program. COS
provides several standard object libraries (refer to the Programmer's
Library Reference Manual, CRI publication SR-0113, for a description of
the standard library routines available).

Any number of object libraries can be created, however, in addition to
the ones supplied with COS.

Library datasets are designed primarily to provide the Relocatable Loader
(refer to previous subsection) with a means of rapidly locating and
accessing program modules. A library dataset is a dataset containing a
program file followed by a directory file. The program file is composed
of loader tables for one or more absolute or relocatable program

modules. The directory file contains an entry for each program module.

Section 15 describes BUILD.

6-16 SR-0011 O

JOB DEFINITION AND CONTROL 7

Several control statements let you specify job processing requirements.
This section contains the specifications for the following control
statements used in defining a job and its operating characteristics to

the operating system:

Control Statement

Function

* (Comment)

ACCOUNT

CALL

CHARGES

ECHO

EXIT

IOAREA

JOB

LIBRARY

MEMORY

MODE

NORERUN

OPTION

SR-0011 O

Allows the annotation of job control statements

Provides privacy and security; also provides
accounting information for the installation.

Instructs COS to begin reading control statements
from an alternate dataset

Monitors a job's usage of computer resources

Controls the message classes to be written to
your logfile

Indicates the end of the control statement
processing or the point in the control statement
file where processing of control statements
resumes following a job step abort

Controls access to your Dataset Parameter Area
(DSP) and 1I/0 buffers

Defines the job to COS

Specifies the library datasets to be searched
during the processing of control statement verbs

Requests a new field length, mode of field length
reduction, or both

Sets or clears mode flags in the Exchange Package

Permits COS to recognize functions that would
make a job rerunnable

Specifies the format of the job's listing,
selects the processor to be used, and specifies
the level of statistics to gather on datasets

Control Statement Function

RERUN Declares a job to be rerunnable or nonrerunnable

RETURN Returns control to the caller

ROLLJOB Protécts a job by writing it to disk

SET Changes the value of a job control language (JCL)
symbol

SWITCH Sets or clears sense switches

TARGET Sets CPU characteristics

7.1 * - COMMENT STATEMENT

The comment control statement is a system verb that you can use to
annotate a job with comments. A terminator is not required for such
statements. There are no parameters.

Format:

I |

| * comment text |

7.2 ACCOUNT - VALIDATE USER NUMBER AND ACCOUNT

The ACCOUNT control statement validates the job's user number, user
password, account number, and account password. A job is processed only
if the user number/password pair and the account number/password pair (if
specified) are valid. As implied by its name, the ACCOUNT control
statement provides accounting data for the installation. In addition,
privacy and security are ensured through the use of ACCOUNT parameters.

The ACCOUNT statement declares the user's account and charge numbers to
COS. It must immediately follow the JOB control statement if the
installation has defined accounting or security as mandatory. Only one
ACCOUNT statement is allowed per job.

If the job is interactive and accounting is mandatory, the ACCOUNT
statement must be the first statement entered in a session. If
accounting is not mandatory, the first statement entered, a prompt is
issued requesting the ACCOUNT statement. A similar prompt is issued if
syntax errors are made on the ACCOUNT statement.

7-2 SR-0011 O

NOTE

ACCOUNT control statement parameters do not appear with
the ACCOUNT control statement in the job logfile.

The installation generally sets up AC, APW, US, and UPW parameters. The
user, however, specifies NAPW and NUPW. Including a new account password
provides the user accounting protection, because only the person who
knows the NAPW can run a job under a given user's account number., NUPW
is available as an additional security check. Therefore, NAPW and NUPW
values should be known only to the individual user who specifies them.

Format:

| I
| ACCOUNT,AC=ac,APW=apw,NAPW=napw,US=us,UPW=upw, NUPW=nupw. |

AC=ac Account number. 1 to 15 alphanumeric characters assigned
to the user. This number identifies the user for
accounting purposes and is a required parameter. The
account number is not the same as the user number on the
JOB control statement unless the site chooses to use the
same number.

APW=apw Account password. 1 to 15 alphanumeric characters or
null. A password must be specified if the installation has
made the password mandatory.

NAPW=napw New account password. 1 to 15 alphanumeric characters or
null. This new password replaces the old account password
if the account number/password pair given by the AC and APW
parameters is valid. NAPW may be specified without a value
to change the account password to null. To change an
account password, you must specify the keyword APW with the
0ld password and NAPW with the new password.

us=us User number. 1 to 15 alphanumeric characters assigned to
the user. This number identifies the user for system
access purposes and is a site-optional parameter. The user
number is not the same as the account number unless the
site chooses to use the same number for both. This
parameter, if specified, overrides the user number on the
JOB control statement. If US is not specified on the
ACCOUNT control statement, the user number on the JOB
statement is used by COS.

SR-0011 O 7-3

UPW=upw User password. 1 to 15 alphanumeric characters. A
password must be specified if your site has made security
checking mandatory.

NUPW=nupw New user password. 1 to 15 alphanumeric characters.
This new password replaces the old user password upw if
the user number/password pair given by the US and UPW
parameters is valid.

7.3 CALL - READ CONTROL STATEMENTS FROM ALTERNATE DATASET

The CALL control statement tells COS to begin reading control statements
from the first file of the dataset specified as a parameter to CALL.
CALL can appear anywhere in the control statement file. Nesting of CALL
statements to seven levels is allowed., COS reads and processes the
control statements from the specified dataset until it encounters an
end-of-file (EOF) or a RETURN statement. Control then reverts to the
dataset that contained the CALL control statement. CALL rewinds the
dataset before reading it.

The dataset that is called can contain either simple control statements
or a procedure definition. Simple control statements are executed
without any parameter substitution. On the other hand, parameter
substitution is possible when the dataset that is called contains a
procedure definition. The optional CNS parameter on the CALL statement
allows COS to determine the form of control statements used. If CNS is
not present, the statements on the dataset are assumed to be simple
control statements and they are executed exactly as read from the
dataset, beginning with the first statement.

If CNS is present on the CALL statement, the control statements on the
dataset are treated as a procedure definition. This means that parameter
substitution can be performed before executing the statements. In this
case, the first statement is assumed to be a prototype statement and
subsequent statements are the procedure body definition. 1If the dataset
contains a procedure definition, the dataset is closed after parameter
substitution and before invocation of the procedure.

If the dataset contains a procedure definition, the PROC and ENDPROC
statements must not enclose the definition, unlike a procedure defined
in-line within a control statement file. The PROC and ENDPROC statements
may appear within the definition. Any statement enclosed by PROC and
ENDPROC becomes a procedure definition that is included in the $PROC
system procedure dataset when the enclosing procedure is invoked by a
CALL statement. The enclosing procedure is not added to the $PROC
dataset.

7-4 SR-0011 O

When the CNS option is used and the procedure definition contains a
nested PROC/ENDPROC sequence, the parameter substitution performed
according to the prototype statement for the outermost procedure
definition (the first statement of the dataset) is also performed on all
nested definitions. This can produce warning messages if the inner
definitions use keywords or positional parameters different from those
specified for the outer definition. The nested definitions are written
to $PROC with all matching substitutions performed and all nonmatching
substitutions retained in the original form.

CALL is a system verb.

Format:

| I
| CALL,DN=dn[,CNS]. |

DN=dn Begin reading control statements from this dataset. This
is a required parameter.

CNS Crack next statement. This is an optional parameter. If
present, the first statement on the dataset named by DN is
treated as the prototype statement for the procedure whose
body is defined by the remaining statements in the first
file of the dataset, and the next statement in the control
statement dataset containing the CALL statement is read by
COS and treated as an invocation of the procedure.
Parameters supplied on that statement are substituted
according to the rules of parameter substitution described
in section 16.

Example 1:
Use of CALL without CNS
Assume that dataset X contains the following control statements:
ACCESS,DN=A,PDN=B,UQ.

DELETE,DN=A.
RELEASE,DN=A.

SR-0011 O 7-5

If dataset B has been saved, the result of the statement
CALL,DN=X.
would be

ACCESS,DN=A,PDN=B, UQ.

PDOQ0O - PDN = B ID = ED = 1 OWN = ABC
PD001 -~ ACCESS COMPLETE

DELETE,DN=A.

PDOOO - PDN = B ID = ED = 1 OWN = ABC

PD001 - DELETE COMPLETE
RELEASE,DN=A.

Example 2:

Use of CALL with CNS

Assume the contents for dataset X are the same as in example 1. The
result of the statement

CALL,DN=X,CNS.
would be

ACCESS,DN=A,PDN=B, UQ.

CS109 - POSITIONAL PARAM. AFTER KEYWORDS IN PROTOTYPE: UQ
*,DN=A.

CS122 - NO VALUE WAS ASSIGNED TO UQ

AB025 - USER PROGRAM REQUESTED ABORT

ABOOO - JOB STEP ABORTED. P = 00000743b

In this case, the CNS parameter causes COS to consider the ACCESS
statement to be a prototype statement; the DN, PDN, and UQ keywords
are assumed to be the identifiers of substitutable parameters.
Example 3:
Valid CALL with CNS without nested definitions
Assume that the contents of dataset X are the following:
D,A,B.
ACCESS,DN=&A, PDN=&B, UQ.

DELETE,DN=8&A.
RELEASE,DN=8A.

7-6 SR-0011 O

If the permanent dataset EXAMPLE exists, the result of the statements

CALL,DN=X,CNS.
*,DS,EXAMPLE.

would be

ACCESS,DN=DS, PDN=EXAMPLE, UQ.

PDO0OO - PDN = EXAMPLE ID = ED = 1 OWN = ABC
PDOO1 - ACCESS COMPLETE

DELETE,DN=DS.

PDO00 - PDN = EXAMPLE ID = ED = 1 OWN = ABC

PD001 - DELETE COMPLETE
RELEASE,DN=DS.

Example 4:
CALL with a nested PROC/ENDPROC definition
Assume that dataset X contains the following statements:

D,A,B.

PROC.

A,Q,B.

ACCESS,DN=&Q, ID=&B.
ENDPROC.

ACCESS,DN=&A, ID=&B,UQ.
DELETE,DN=§&A.
RELEASE,DN=8&A.

If permanent dataset Z with ID D exists, the result of the
statements

CALL,DN=X,CNS.
*,2,D.

would be

CS125 - NO SUCH FORMAL PARAMETER: Q

<DEFINITION> PROC.

<DEFINITION> A,Q,B.

<DEFINITION> ACCESS,DN=&Q, ID=D.

<DEFINITION> ENDPROC.

ACCESS,DN=Z,1D=D,UQ.

PDOOO - PDN = 2 ID = ED = 1 OWN = ABC
PD001 ACCESS COMPLETE

DELETE,DN=2Z.

PDO00 - PDN = Z ID = ED = 1 OWN = ABC

PDO01 - DELETE COMPLETE
RELEASE,DN=2Z.

SR-0011 O 7-7

The $PROC dataset would contain a procedure with the following
definition:

A,Q,B.
ACCESS,DN=&Q, ID=D.

The &B in the original definition was replaced by the value that was
specified for the corresponding parameter B in the outermost
procedure. The &Q was retained, because there was no corresponding
replacement in the outermost procedure.

7.4 CHARGES - JOB STEP ACCOUNTING

The CHARGES control statement lets you monitor the computer resources
used by your job up to a specific point in the job. Hence, CHARGES can
be used for either partial or total resource reporting.

Partial reporting occurs when parameters are specified on the CHARGES
control statement and usage statistics for the computer resources
specified on the CHARGES statement are given for the job steps preceding
the CHARGES statement. The statistics are placed in the user log and the
system log.

Total reporting occurs when usage statistics are obtained for all the
resources in all the available resource groups. The summary is placed in
the user log and the system log.

CHARGES is automatically invoked when a job terminates so that usage

statistics of the entire job are reported.

Format:

| |
| CHARGES,SR=options. |

SR=options
System resources used. Any one or more of the following
groups of resources can be specified. Options are
separated by colons. The default is a listing of the job's
usage of resources in all of the following groups:

CPU Time executing in CPU, I/0 waiting time, and time

waiting for CPU. CPU gives the totals for the
entire job.

7-8 SR-0011 O

SR-0011 O

DS

FSU

GRU

JNU

JSQ

NBF

Permanent dataset space accessed, permanent dataset
space saved, temporary dataset space used, disk
sectors moved, fast secondary storage (FSS) sectors
moved (SSD or Buffer Memory), user I/0 requests,
memory-resident datasets used, number of OPEN calls,
and number of CLOSE calls

FSS usage. An FSS device is either an SSD or the
Buffer Memory in the IOS. When a job uses an FSS
device not configured as a generic resource, the FSU
option reports device usage. The option reports the
following information in the user log and system log:

Device name

Maximum concurrent allocation

Unit allocation integral (sector*sec)
Number of sectors transferred

Generic resource usage. For each generic resource
named on the JOB control statement, the following
information appears in the user log and system log:

Generic resource name

Device type (tape, disk, or ISP)

Job limit

Maximum concurrent allocation

Unit allocation integral (tape unit*sec or
sector*sec)

Number of sectors transferred

Number of tape blocks transferred

Number of tape volumes mounted

Jobname and user number
Job sequence number

Minimum job size (words), maximum job size (words),
execution-time memory usage in million words/second,
I/0 wait-time memory usage in million words/second,
maximum field length used (words), minimum field
length used (words), maximum JTA used (words), and
minimum JTA used (words)

Number of 512-word blocks (sectors) received from a
front end and number of 512-word blocks (sectors)
queued to a front end

TASK Time executing in CPU, I/O wait time, and time
waiting for CPU. The TASK option breaks down the
time information according to user task number, and
provides a total for the entire job.

WT Time waiting in the input queue before beginning
execution

7.5 ECHO - ENABLE OR SUPPRESS LOGFILE MESSAGES

The ECHO control statement controls the message classes written to your
logfile by turning them ON or OFF. ECHO may be used more than once
during a job to toggle the printing or suppression of message classes.
ECHO is a system verb. ON is the default at the start of a job.

The keywords ON and OFF may be used in any combination. Ensure that the

classes specified do not overlap between the keywords, however, and that
both defaults are not included.

Format:

[I
| ECHO,ON=classqy:...:classp,OFF=classqy:...:classp. |

ON=class; When a COS or a program issues messages, they are written
to your logfile in the classes specified. If any other
classes were specified but not turned off by this statement,
the union of the two sets of classes is enabled. If the
ECHO control statement contains only the keyword ON or
ON=ALL, all messages are written to the logfile.

OFF=classj
Messages in the classes specified are not written to the
job's logfile. If any other classes were specified but not
turned on by this statement, the union of the two sets of
classes is suppressed. If the ECHO control statement
contains only the keyword OFF or OFF=ALL, all messages in
defined classes are suppressed.

Messages that are not classified may not be turned off.

7-10 SR-0011 ©

The operating system recognizes the following classes:

Class Description

ABORT ABxxx and system traceback messages that COS issues when
a job fails

JCL Messages that originate in the job's JCL input file

PDMERR Error messages produced by PDM

PDMINF Dataset information messages produced by PDM
When a job calls a procedure, the echo state of the job is the same upon
return from the procedure as before, even though the procedure may use a
different echo state. The following occurs when ECHO is used with CALL

and procedure invocations:

¢ The echo state of the caller is saved so that on return to the
caller the same state is in effect as before the call.

¢ When the procedure includes an ECHO statement, the new echo state
is in effect only for the duration of the procedure. If the
procedure does not include an ECHO statement, the echo state of
the caller is in effect.

7.6 EXIT - EXIT PROCESSING

An EXIT control statement points to the place in the control statement
file where processing of control statements resumes following a job step
abort from a program. If no job step abort occurs, the EXIT control
statement indicates the end of control statement processing. EXIT is a
system verb. It has no parameters.

Format:

| EXIT. |

SR-0011 © 7-11

7.7 IOAREA - CONTROL USER'S ACCESS TO I/O AREA

The IOAREA control statement locks or unlocks that portion of the user
field containing the user's DSP and I/0 buffers. Locking denies the user
access, unlocking allows the user access. This area follows the High
Limit Memory (HLM) address of the user field. The user of the stack
version of the COS libraries needs to note that IOAREA does not protect
I/0 buffers or DSPs that have been allocated within the user's stack
space. IOAREA is a system verb.

Format:

| |
| IOAREA,LOCK |
| |
[|

UNLOCK
LOCK The keywords LOCK and UNLOCK are mutually exclusive. A
UNLOCK parameter must be specified on the control statement. When

the control statement is not used, the user's I/0 area 1is
assumed to be unlocked.

If LOCK is selected, the system sets the limit address to
the base of the DSPs, thereby denying direct access to the
user's DSP area and I/0 buffers. When the I/0 area is
locked, the library I/O routines make a system request to
gain access to the I/0 area. Although the system request
introduces additional overhead in job processing, it should
prevent accidental destruction of the I/0 area.

If UNLOCK is selected, the system sets the limit address to

the value specified in JCFL, allowing access to the user's
DSP area and I/0 buffers.

7.8 JOB - JOB IDENTIFICATION

The JOB control statement defines the job to COS and must be the first
statement in a control statement file. The JOB control statement cannot
be continued, and no leading blanks are allowed. JOB is a system verb.

Format:

I |
| JOB,JN=jn,MFL=f1,T=t1,P=p,US=us,OLM=0lm,CL=jcn,gn=nr,S. |

7-12 SR-0011 O

JN=jn

MFL=F1t

P=p

US=us

OLM=olm

CL:jcn

gn=nr

Job name; 1 to 7 alphanumeric characters. This name

identifies the job and its subsequent output. JN is a
required parameter.

Maximum field length allowed the job, in 64-bit words.

The job's maximum field length is set to the greater of f1,
rounded up to the nearest multiple of 512 words, or the
amount needed to load the Control Statement Processor
(CSP). The job is aborted if the maximum field length is
greater than the system maximum,

If this parameter is omitted, the maximum field length is
set by the site parameter.

If MFL is present without a value, the field length is the
system maximum. The system maximum is the smaller of the
total amount of memory available after COS is initialized
minus the job's JTA size (refer to section 1) or an
installation-defined maximum job field length.

Time limit in seconds that the job may run. If this
parameter is omitted, the time limit is set to a value
determined by an installation parameter. If T is present
without a value, a maximum of 16,777,215 (approximately 194
days) is allowed.

Priority level 0 to 15 at which the job enters the system.
If P is 0, the job is not initiated. If omitted, a value
specified by the installation is assumed.

User number; 1 to 15 alphanumeric characters. The default
is no user number. This parameter identifies the user
submitting the job. Specific usage is installation defined.

Maximum size of $OUT. olm is a count of 512-word blocks.
A block holds about 45 print lines. The installation
defines the default and maximum values for olm.

Name of the installation-defined job class that this job
fits in; 1 to 7 alphanumeric characters. The job is aborted
if it does not fit the requirements of its class or if the
class does not exist. The default is no class name.

Type and number of dedicated resources required by a job.

gn is a generic resource name of 1 to 7 alphanumeric
characters. A generic resource name corresponds to a device
type. For example, a generic name of SSD could be given to

+ The fl parameter on the JOB statement excludes the job's Job Table
Area (JTA); space for the JTA is added by the system.

SR-0011 O

gn=nr an SSD. Site administration defines generic names. COS
(continued) provides one generic name (*TAPE, which refers to a dual
density tape unit capable of 1600 or 6250 b/i), but sites
may define up to 16 generic names. Contact your CRI site
analyst for the generic names used at your site.

nr is the decimal number of units of the specified

resource type. If gn refers to a tape device type, nr

is the number of tape units to be used concurrently. If
gn refers to a disk device type, nr is the decimal

number of sectors required. The default is 0. A job is
initiated only when the amount of each resource reserved is
eligible for use. The job is aborted if it attempts to
access more resources than are reserved with the JOB
control statement.

S System job. This is a privileged parameter that designates

the job as a system job. Privileges are verified during
account processing.

7.9 LIBRARY - LIST AND/OR CHANGE LIBRARY SEARCHLIST

The LIBRARY control statement lets you specify the library datasets that
will be searched during the processing of control statement verbs.
LIBRARY may also be used to list the current or new searchlist to the
logfile for verification.

When modifying the searchlist, the current members of the searchlist can
be retained in the new searchlist by including an asterisk in the LIBRARY
control statement. The asterisk corresponds to all members of the
current searchlist in their present order. If the asterisk is omitted,
the new searchlist contains only the library dataset names identified on
the LIBRARY control statement. LIBRARY is a system verb.

When a job initiates, the default library searchlist consists of the
library dataset.

Format:

I I
| LIBRARY,DN=dnj:dn,...:dn,,V. |

DN=dn; Library dataset names that will be part of the new
library searchlist., A maximum of 64 names can be given.
The order in which they appear on the control statement is

7-14 SR-0011 O

DN=dn; the order in which they are searched. An asterisk included
(continued) in the list signifies the current searchlist members are to
be part of the new searchlist in their current order.

v For verification, list the current library searchlist on

the logfile. When specified along with the new searchlist,
the new searchlist is listed.

7.10 MEMORY - REQUEST MEMORY CHANGE

The MEMORY control statement lets you request a new field length, change
the mode of field length reduction, or both. Section 3 discusses job
memory management. MEMORY is a system verb.

You must specify at least one parameter for the MEMORY control statement.

Format:

| |
| MEMORY[,FL:fl][,USER], |
| AUTOJ |
| |

FL=f1 Field length. fl specifies the number of words to be
allocated to the job. If FL is specified without a value,
the new field length is set to the maximum allowed the job.

USER Field length reduction is managed by the user (user mode)
AUTO Field length reduction is managed by the system (automatic
mode)

The field length is set to the larger of the requested amount rounded up
to the nearest multiple of 512 words or the smallest multiple of 512
decimal words large enough to contain the user code/data, LFT, DSP, and
buffer areas. Field length management is in user mode for the duration
of the next job step.

When the USER parameter is specified, the job is placed in user mode
until a subsequent request is made to return it to automatic mode. When
the AUTO parameter is specified, the job is placed in automatic mode.

The job step is aborted if completing the request results in a field
length greater than the maximum allowed the job. The maximum is the
smaller of the total number of words available to user jobs minus the
job's JTA or the amount determined by the MFL parameter on the JOB
control statement.

SR-0011 O 7-15

Examples:
MEMORY, FL,USER.

The job's field length is set to the maximum allowed and the job is
placed in user mode until an explicit request is made to return it to
automatic mode.

MEMORY, AUTO.

The job is returned to automatic mode. 1Its field length is reduced at
the next job step.

MEMORY,FL=28988.
The field length is adjusted. If the job is in user mode by explicit
user request, no change in mode occurs; otherwise, the job is placed in
user mode for the duration of the next job step.

MEMORY,FL=28988, AUTO.
The field length is adjusted and the job is placed in user mode for the

duration of the next job step. After the next job step, the job is put
in automatic mode.

7.11 MODE - SET OPERATING MODE

The MODE control statement sets or clears mode flags in the Exchange
Package for the job. MODE is a system verb.

Format:

| MODE,FI=option,BT=option,EMA=option,AVL=option,ORI=option. |

FI=option Floating-point interrupt mode. option can be either of
the following:

ENABLE Enables floating-point error interrupts:
default.

DISABLE Disables floating-point error interrupts:;
floating-point errors are ignored.

7-16 SR-0011

BT-option Bidirectional transfer mode. The BT parameter is used
- on CRAY X-MP series computer systems only. option can be
either of the following:

ENABLE Enable bidirectional memory transfers; default.
DISABLE Disable bidirectional memory transfers; block
reads and writes are not performed concurrently.

EMA=option
Extended memory addressing mode. The EMA parameter is used
on CRAY X-MP' series computer systems only; it causes an
abort on CRAY-1 systems. option can be either of the
following:

ENABLE Enables extended memory addressing

DISABLE Disables extended memory addressing; the
default is an installation option released as
EMA=DISABLE. On the CRAY X-MP model 48, the
default is released as EMA=ENABLE.

AVL=option
Second vector logical functional unit mode. The AVL
parameter is used on CRAY x-MpT series computer systems
only: it causes an abort on CRAY-1 systems. option can
be either of the following:

ENABLE Makes two logical functional units available,
the first of which shares reservation logic
with the vector floating multiply unit.

DISABLE Makes only one vector logical unit available.
The vector multiply reservation path is not
shared; default is an installation parameter
released as AVL=DISABLE.

ORI=option
Operand range error interrupt mode. The ORI parameter is
used on CRAY X-MP series computer systems only; option
can be either of the following:

ENABLE Enables interrupts on operand range errors;
default.
DISABLE Disables interrupts on operand range errors

+ Not available on all CRAY X-MP systems. Check with a CRI site analyst
to determine if this feature is available.

SR-0011 O 7-17

7.12 NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS

The NORERUN control statement specifies whether COS is to recognize
functions that would make a job rerunnable. The current rerunnability of
the job is not affected. NORERUN is a system verb.

Format:

| |
| NORERUN,ENABLE _
| DISABLE |
| |

ENABLE The keywords ENABLE and DISABLE are mutually exclusive.
DISABLE The default for the system as released is NORERUN, ENABLE;
however, this is an installation option.

ENABLE instructs the system to begin monitoring functions
performed by the job and to declare the job nonrerunnable
if any of the nonrerunnable functions are performed.

DISABLE instructs the system to stop monitoring functions
for nonrerunnable operations. If a job has already been
declared to be nonrerunnable, specifying DISABLE does not
make the job rerunnable again.

7.13 OPTION - SET USER-DEFINED OPTIONS

The OPTION control statement specifies user-defined options, such as the
format of the job's listing. OPTION is a system verb.

Format:

| D ON l
: OPTION[,LPP=n] ,PN:ANY].STAT=0FF o

LPP=n Number of lines per page (0 through 255) for a job
listing. If 0 is specified, the current number of lines
per page is not changed. The default is an installation
parameter.

This value is used by CRI products that do pagination and
is available to user software through the GETLPP subroutine
call. It has no effect on I/O processing from user jobs
that do not perform their own pagination.

7-18 SR-0011 O

PN=P

ON

SR-0011 ©

Select processor. Select a processor by specifying its
number as the argument. Use ANY to indicate that any
processor is acceptable. The default is ANY.

If the processor specified by p is not available (because
it does not exist on the mainframe or is inoperative), an
error message appears and the job aborts.

Specifies the level of I/O statistics gathered for
datasets local to the job. The statistics appear on the
user logfile when the dataset is released. The statistics
can be on two levels:

® User level statistics (sometimes called accounting
information) that identify the type of system requests
you made for the dataset.

e System level statistics (sometimes called device
information) that indicate how the system handled the
requests device by device.

The options are as follows:

ON User information as defined by the site or, if not
defined by the site, as determined by the preset
categories of USR. ON is the default if STAT is
specified without an option.

OFF No statistics. OFF is the default if STAT is not
specified on the OPTION control statement.

The output is a logfile message of one or more lines with
the following format:

SY005 - Idn XWRDS, XIOS, XREQ, XSECTRS, XX.XXSEC
1dv XSECTRS mode: XREQ, XSECTRS, XX.XXSEC

The first line of the message reports the following
user-level information (it is issued when STAT equals ON):

ldn Local dataset name
XWRDS Size of the dataset in words (decimal)
XIOS Number of I/0 suspensions performed for the

dataset by F$RCL

7.14

XREQ Number of the start I/0 requests (FWDC, FSRDC,
and F$QIO0) resulting in queue manager requests

XSECTRS Number of sectors moved as a result of the
FWDC, FRDC, F$BIO, and F$QIO requests

XX.XXSEC Time in seconds that the job spent in I/O
suspension waiting for the dataset

Subsequent lines in the message report system level
information. Each line corresponds to an I/0 transmission
to a device on which the dataset resides. A line appears
for every device on which the dataset has space allocated.
The lines contain the following information:

1dv Logical device name (optional)

XSECTRS Number of sectors allocated on the device for
the dataset (optional)

mode Direction of I/0 data transfer requests: READ
or WRITE
XREQ Number of data transfer requests issued to the

device driver

XSECTRS Number of sectors moved as a result of the data
transier requests

XX.XXSEC Time in seconds that the system (queue
manager) waited for the device driver to
respond to the data transfer requests

STAT gathers I/O statistics on every dataset created or
accessed after STAT is specified on the OPTION control
statement. The level of statistics gathering that is in
effect at the time a dataset is created with ASSIGN or
accessed with ACCESS remains in effect until the dataset is
released, regardless of subsequent changes to STAT.

- UNCONDITIONALLY SET JOB RERUNNABILITY

The RERUN control statement unconditionally declares a job to be either

rerunnable

or nonrerunnable. If RERUN is used to declare a job

rerunnable, the subsequent execution of a nonrerunnable function may
cause the system to declare the job nonrerunnable, depending on whether a
NORERUN control statement or macro is also present. The RERUN control
statement does not affect the monitoring of the user job for
nonrerunnable functions. RERUN is a system verb.

SR-0011 O

Format:

} |
| RERUN,ENABLE
| DISABLE |
| |

ENABLE The keywords ENABLE and DISABLE are mutually exclusive. If

DISABLE no parameter is specified on the control statement, the
installation option determines if the job is to be
rerunnable; the default for the system as released is
RERUN, ENABLE.

If ENABLE is selected, the system is instructed to consider
the job to be rerunnable, regardless of previously executed

functions.

If DISABLE is selected, the system marks the job not
rerunnable, regardless of previously executed functions.

7.15 RETURN - RETURN CONTROL TO CALLER

The RETURN control statement returns control to the caller. The caller
can be a procedure or the job's control statement file. Processing
resumes with the caller's next control statement. A RETURN control
statement can be embedded anywhere within the called procedure. A RETURN
control statement does not have to be placed at the end of the procedure,
however, because an EOF record is interpreted as the control statement
sequence of an EXIT, RETURN, and RETURN,ABORT. A RETURN encountered in
the primary control statement file is ignored. RETURN is a system verb.

Format:
l |
| RETURN[,ABORT]. |
| I
ABORT After returning to the previous control statement level,

ABORT causes COS to issue a job step abort.

SR-0011 O 7-21

7.16 ROLLJOB - ROLL A USER JOB TO DISK

The ROLLJOB control statement protects a job by writing it to disk at any
point in its execution so that it can be recovered at that point in the
event of a system interruption. The use of ROLLJOB does not guarantee
that a job will remain recoverable. It merely ensures that at the
current stage there is a recoverable image. Subsequent job activity may
invalidate this image. Performing ROLLJOB does not make a job
recoverable that has on-line tape datasets accessed.

ROLLJOB is a system verb. There are no parameters.

Format:

I I
| ROLLJOB. |
1

7.17 SET - CHANGE SYMBOL VALUE

The SET control statement changes the value of a valid job control
language symbol. Valid symbols are those you classify as alterable (U)
in table 16-1. A job-step abort occurs if a symbol included in a SET
control statement is unknown to the system, can be set only by COS, or is
a constant. SET is a system verb.

Format:

I I
| SET(symbol=expression) |

symbol A valid symbol that you can alter
expression
A valid arithmetic, logical, or literal assignment
expression. It may be delimited with parentheses to
simplify interpretation during control statement
evaluation.
Examples:

This example increases the procedure-local register Jl1 by 1.

SET(J1=J1+1)

7-22 SR-0011 O

The global register Gl is given an ASCII value that is the low-order 2
characters from the current system revision level (COS X.XX).

SET(G1=(SYSID.AND.177777B))

The global register G3 is assigned a value, depending on the current
values of ABTCODE and G2.

SET(G3=((ABTCODE.EQ.74) .AND.(G2.EQ.0)))

7.18 SWITCH - SET OR CLEAR SENSE SWITCH

The SWITCH control statement turns pseudo-sense switches on or off.
SWITCH is a system verb.

Format:
I |
| SWITCH,n=x. |
| |
n Number of switch (1 to 6) to be set or cleared
b4 Switch position:

ON Switch n is turned on; set to 1.
OFF Switch n is turned off: set to O.

7.19 TARGET - SPECIFY CPU CHARACTERISTICS

The TARGET control statement:

® Reports the current default settings for CPU characteristics in
the job's machine specification table

¢ Changes the current default settings for the CPU for the job's
target machine specification table

The CPU can be any of the following:
e *HOST, the machine on which the job is running
e *TARGET, a site-specified target machine

® A named CPU

SR-0011 O 7-23

At job initiation the *HOST and *TARGET settings are preset to those of
the machine on which the job resides. The *TARGET settings can be
altered by the user. The actual *HOST and named-CPU characteristics
cannot be changed, but a copy of those settings becomes the *TARGET
specifications and can be altered.

The characteristics set by TARGET remain in effect for a job until they
are changed by another TARGET command or a library request. TARGET is a

system verb

Format:

.

EMA CIGS VPOP PC
TARGET,CPU=cpu |: NoemA | |° NociGs| |* nNovpop | |¢ NopC

REA

DVL VRECUR AVL HPM STATRG
‘* NOREADVL ! NOVRECUR * NOAVL * NOHPM ¢ NOSTATRG

BDM

L NoBDM | [:BANKS=banks][:NUMCPUS=numcpus](:IBUFSIZE=ibufsize]
[:MEMSIZE=-memsize] [:MEMSPEED=memspeed] [: CLOCKTIM=clocktim]

[:NUMCLSTR:numclstr][:BANKBUSY:bankbusy]I;VERIFY=*TARGET

*HOST]

CPU=cpu

Identification of the CPU whose characteristics are to be
reported or changed. c¢pu can be *HOST, *TARGET, or a
named CPU. The named CPU can be any one of the following:

CRAY-1 CRAY-XMP CRAY-1A
CRAY-X1 CRAY-1B CRAY-X2
CRAY-1M CRAY-X4 CRAY-1S

The CPU parameter is required except when VERIFY is the
only parameter specified.

The following parameters that have a NO prefix indicate that the
characteristic is not available.

EMA
NOEMA

CIGS
NOCIGS

VPOP
NOVPOP

PC
NOPC

Extended memory addressing

Compressed index, gather/scatter

Vector population count

Programmable clock

SR-0011 O

READVL
NOREADVI, Read vector length

VRECUR
NOVRECUR Vector recursion

AVL

NOAVL Additional vector logical functional unit
HPM

NOHPM Hardware performance monitor

STATRG

NOSTATRG Status register

BDM
NOBDM Bidirectional memory

BANKS=banks
Number of memory banks

NUMCPUS=numcpus
Number of CPUs

IBUFSIZE=ibufsize
Instruction buffer size

MEMSIZE=memsize
Memory size in words. The words can be expressed as follows
(the # represents a number):

Words
#K Words multiplied by 1024
#M Words multiplied by 1,048,576

Thus, the following values are equal: 1,048,576, 1024K,
and 1M.

MEMSPEED=memspeed
Memory speed in clock periods

CLOCKTIM=clocktim
Clock period in integer picoseconds (10%*-12)

NUMCLSTR=numclstr
Number of clusters

BANKBUSY=bankbusy
Number of clock periods that the memory bank has reserved

SR-0011 O 7-25

*HOST

Logfile report of the current settings of *HOST or

Example 1:

*TARGET. VERIFY can be the first parameter or the last.
If VERIFY is specified without a value, the default is
*TARGET.

In this use of TARGET, the only parameter on the control statement
requests a report of the current settings for the target machine, a

CRAY X-MP computer system.

The

TARGET,VERIFY=*TARGET.

TA005
TA006
TA006
TA006
TA006
TA006
TA006
TAQ06
TA006
TA006
TA006
TA006
TAQ006
TAQ006
TA006
TA006
TA006
TA006
TAQ006

Example 2:

Primary machine type is:

BANKS
NUMCPUS
IBUFSIZE
MEMSIZE
MEMSPEED
CLOCKTIM
NUMCLSTR
BANKBUSY
EMA

CIGS
VPOP

PC
READVL
NOVRECUR
AVL

HPM
STATRG
BDM

64

4

32
8388608
14

9500

5

4

report follows:

CRAY-XMP

This use of TARGET changes the specifications for the clock period,
number of clusters, availability of vector population count, and

availability of additional vector logical functional unit.

It also

requests a report of the settings, as follows:

TARGET, CPU=*TARGET : CLOCKTIM=12500 : NUMCLSTR=0 : NOVPOP : NOAVL, ~
VERIFY=%TARGET.

TA005
TA006
TA006
TA006

Primary machine type is:

BANKS
NUMCPUS
IBUFSIZE

64
4
32

CRAY-XMP

SR-0011 O

TA006
TA006
TA006
TA006
TA006
TA006
TA006
TA006
TA006
TAO0O06
TAQ006
TA006
TA006
TA006
TA006

SR-0011 O

MEMSIZE
MEMSPEED
CLOCKTIM
NUMCLSTR
BANKBUSY
EMA

CIGS
NOVPOP
PC
READVL
NOVRECUR
NOAVL
HPM
STATRG
BDM

8388608
14
12500

0

4

DATASET DEFINITION AND CONTROL 8

The dataset control statements, ASSIGN, HOLD, NOHOLD, and RELEASE, let
you define and manage datasets. ACCESS is not used for Integrated
Support Processor (ISP) datasets. The ISP control statement gives your
jobs access to an ISP, and the CONNECT control statement accesses a
specific dataset. Refer to the SUPERLINK/ISP General Information Manual,
CRI publication SI-0154, or the SUPERLINK/MVS Users Guide, CRI
publication SI-0178, for details.

Control Statement Function

ASSIGN Defines characteristics for datasets. ASSIGN can
also be used to create a mass storage dataset.

HOLD Declares that dataset release occurs with
implicit HOLD

NOHOLD Rescinds the effect of the HOLD control statement
RELEASE Relinquishes access by the job to the named
dataset

8.1 ASSIGN - ASSIGN DATASET CHARACTERISTICS

The ASSIGN control statement assigns dataset characteristics for tape and
mass storage and can create a mass storage dataset.T If an ASSIGN is
used for dataset creation, it must appear before the first reference to
the dataset; otherwise, the characteristics of the dataset are defined at
the first reference to it. If an ASSIGN is used for a tape dataset, it
must follow the tape ACCESS request (see section 9 for a description of
ACCESS). ASSIGN is a system verb.

+ ASSIGN does not create a dataset that the Fortran OPEN statement
recognizes as existing. Refer to the Fortran (CFT) Reference Manual,
CRI publication SR-0009, or the CFT77 Reference Manual, CRI
publication SR-0018.

SR-0011 O 8-1

Format:

ASSIGN,DN=dn,S=size,SZ=size,NOF,BS=bsz,XSZ=xmx:xmn,DV=1dv,DT=dt,
DF=df,RDM,U,MR,LM=1Im, INC=nds,C,DC=dc,BFI=bfi,A=alias,FD=fd,CV=cv,

CS=c¢s,F=f,RF=rf,RS=rs,MBS=mbs,DEF=dtI[:dt2:dt3],ST=st,SPD=spd.

DN=dn

S=size

SZ=size

Local dataset name beginning with an alphabetic character
or §, %, or @, and consisting of 1 to 7 alphanumeric
characters. DN is a required parameter.

Dataset size. Octal number of sectors (512-word blocks) to
be reserved for the dataset. If the dataset size is not
given, the space for the dataset is dynamically allocated
as needed. The S and SZ options are mutually exclusive.
Furthermore, S applies to mass storage datasets only, and
is ignored when used for magnetic tape datasets.

Dataset size. Decimal number of sectors (512-word blocks)
to be reserved for the dataset. If the DV option specifies
a generic resource or if Idv is a controlled device, SZ

is the largest number of sectors associated with this
dataset that can reside on the device. The mass storage
space reservation occurs when the ASSIGN command is
processed. If the SZ option is not specified, the space
for the dataset is dynamically allocated as needed. The S
and SZ options are mutually exclusive. SZ applies to mass
storage datasets only and is ignored when used for magnetic
tape datasets.

Although the SZ option specifies decimal sectors, disk
space is allocated by COS in tracks that are larger than
sectors. When an ASSIGN statement declares dataset size,
COS rounds the sector count up to an integral multiple of
track size and allocates that number of tracks. For
example, when ASSIGN(...,S2=1,...) is specified, COS
allocates one track to the dataset, even though the request
is for one sector. Track sizes for the various mass
storage device types are as follows:

DD-19 disk drive 18 sectors
DD-29 disk drive 18 sectors
DD-39 disk drive 24 sectors
DD-49 disk drive 42 sectors
Extended Buffer Memory 18 sectors
SSD solid-state storage 32 sectors
device

SR-0011 O

—

SZ=size
(continued)

NOF

BS=bsz

When the disk device specified on the ASSIGN statement is a
controlled device with a generic resource name, the total
concurrent use of the device must be declared on the JOB
statement as decimal sectors. If the space on the device
is divided among several datasets with the SZ option on the
ASSIGN statement, a rounding error may occur with each use
of the SZ or S options. The result can be an unexpected
GENERIC RESOURCE LIMIT EXCEEDED error or an unexpected
device overflow. The SZ option can produce other results
when it is used with the NOF parameter of ASSIGN. Those
results are described under NOF in this section.

If both INC and SZ are specified, SZ is used initially and
INC is used thereafter.

To divide space among several datasets on a generic
resource such as Buffer Memory or SSD, sector counts should
be specified as multiples of track size. Track size is
device dependent.

No overflow. When NOF is indicated, the dataset does not
span any more than the device specified by the DV
parameter. (If a device is not specified, the system
selects one.) The SZ and NOF options on the ASSIGN
statement produce the following:

SZ and NOF specified Abort at MIN (Remaining Job
Limit, S2)
SZ specified without NOF Overflow at MIN (Remaining

Job Limit, SZ)
NOF specified without SZ Abort at Remaining Job Limit

Neither SZ nor NOF Overflow at Remaining Job
specified Limit

Buffer size. bsz is an octal number that specifies the
size of a dataset's circular I/0O buffer in 512-word
blocks. The default is the value defined by the
installation parameter. The U and BS parameters are
mutually exclusive.

XSZ=xmx:xmn

SR-0011 O

Transfer sizes. This parameter permits the circular buffer
to be partitioned into specific zones, tailoring the I/O to
a dataset and the program that uses the dataset.

xmx is the maximum transfer size in octal sectors to a
device. If it is omitted, a system default is used:
generally half the buffer size.

DV=1dv

DT=dt

DF=df

RDM

MR

xmn is the minimum transfer size in octal sectors to a
device. If it is omitted, a system default is used:
generally one sector.

Logical device on which the dataset begins. If a logical
device name is not given, one is chosen by the system.

1dv can also be a generic resource name. Ask site
operations for possible logical device names and generic
resource names. When Idv is a generic resource or a
controlled device, the number of sectors consumed by the
dataset before overflow is counted against the resource
allocation limit specified on the JOB control statement.
The DV parameter applies to mass storage datasets only and
is ignored when used for magnetic tape datasets.

Device type. The allowable device types are CRT
(interactive) and mass storage (MS). MS is the default.
This parameter is ignored when used for magnetic tape
datasets.

Dataset format. This parameter is used only on output and
is valid only when DT=CRT. This parameter is ignored when
used for magnetic tape datasets. The following two formats
are supported:

CB Character blocked:; end-of-record (EOR) record control
words are converted by the station to the format that
the station supports. CB is the default.

TR Transparent; EOR record control words are not
converted. You must insert cursor controls.

Random dataset. If the RDM parameter is present, the
dataset is read and written randomly (that is, records may
be read or written out of sequence). If the RDM parameter
is not specified, only sequential or Fortran direct access
I/0 is allowed on the datasets. This parameter applies to
mass storage datasets only and is invalid for magnetic tape
datasets.

Unblocked dataset structure. If the U parameter is
present, the dataset is not in COS-defined blocked format.
If the U parameter is absent, the dataset is a COS blocked
dataset. (Refer to section 2 for information on unblocked
dataset format.) This parameter is invalid for interchange
format tape datasets. The U and BS parameters are mutually
exclusive.

Memory-resident dataset. If this parameter is present, the
system I/0 routines write the buffers to mass storage only
if they become full. If the MR parameter is absent, the

dataset is not a memory-resident dataset. MR generates an

SR-0011 O

LM=1Im

INC=nds

DC=dc

SR-0011 ©

error if the U parameter is specified. This parameter
applies to mass storage datasets only and is invalid for
magnetic tape datasets.

Maximum size limit for this dataset. Im specifies a

number of 512-word blocks. The job step is aborted if this
size is exceeded. The default and maximum dataset size
limits are set by an installation parameter. The default
is 100,000 sectors. This parameter applies to mass storage
datasets only and is ignored for magnetic tape datasets.

Number of sectors to allocate each time allocation occurs.
The maximum value is 255 sectors. If both INC and SZ are
specified, SZ is used initially and INC is used thereafter.

Contiguous space allocation. Use C to allocate contiguous
space requested by the SZ or INC parameter or the default
size. If C is not specified, the system tries to find
contiguous space on the selected device only. If C is
specified, the system searches on every eligible device.

If contiguous space cannot be found when C has been
specified, the return status CONTIGUOUS SPACE NOT AVAILABLE
appears.

Disposition code. Disposition of the dataset when it is
released. This parameter applies to mass storage datasets
only and is ignored for tape datasets. The default is SC
(scratch).

dc is a 2-character alphabetic code describing the
destination of the dataset as follows:

IN Input queue. The dataset is placed in the input
queue of the destination station.

MT Magnetic tape. The dataset is written on magnetic
tape at the mainframe of job origin.

PR Print dataset. The dataset is printed on the printer
at the mainframe of job origin.

PT Plot dataset. The dataset is plotted on an available
plotter at the mainframe of job origin.

PU Punch dataset. The dataset is punched on a card
punch available at the mainframe of job origin.

SC Scratch dataset. The dataset is deleted.

ST Stage to mainframe. The dataset is made permanent at
the mainframe of job origin.

BFI=bfi Blank field initiation. An octal representation of ASCII
code that indicates the beginning of a sequence of blanks.
BFI=OFF means that blank compression is inhibited. The
default code is 33g (ASCII ESC code) but can be changed
by an installation parameter. BFI is ignored for ISP
datasets.

A=alias Alternate unit name. Unit names let you refer to a dataset
by an alternate name in a program. Each unit name must be
a valid COS dataset name.

If the unit name is to be used with Fortran unit numbers,
alias has the form FTxx, where xX is the unit number
specified. By default, this unit is formatted. If you
wish to open it as unformatted, first close it and then
reopen it to change the default. The unit number is an
integer value in the range O through 102. Because unit
numbers 100, 101, and 102 are reserved for system use,
however, you may designate unit numbers 0 through 99.

Use of this parameter associates the designated unit with
the dataset specified by the DN parameter. At job
initiation, unit FTO05 is associated with dataset $IN and
unit FT06 is associated with dataset $OUT. Unit names
should not be used as dataset names.

NOTE

If a dataset name is used in place of a unit
name or vice versa, Fortran auxiliary
statements (that is, OPEN, CLOSE, and
INQUIRE) produce unpredictable results.

Fp=fdt Foreign dataset translation identifier. fd is a
3-character code that indicates that foreign dataset
translation is to be performed by the libraries on the
dataset. This parameter is required for run-time
translation. If FD is coded, RF must also be coded.
Valid values for fd are:

CDC CDC-compatible tape dataset
IBM IBM-compatible tape dataset
VMS VAX/VMS-compatible tape dataset

The default is no translation.

+ See Foreign Dataset Conversion on CRAY X-MP and CRAY-1 Computer
Systems, publication SN-0236, for more information.

8-6 SR-0011 O

CV:CVT

cs=cst

F=ft

RF:Z‘f‘r

Foreign dataset conversion mode. CV indicates if
implicit data conversion is to be done by the run-time
library. CV values are as follows:

ON Data conversion on. ON causes the library to
convert the foreign internal representation to or
from Cray internal representation according to the
Fortran I/0 list.

OFF Data conversion off. The data type is not
considered when OFF is specified. Full Cray words
are moved to or from the foreign dataset.

The default is OFF.

Foreign data character set. This parameter specifies
the character set to represent the internal data on the
foreign dataset. Run-time library routines convert
character data from the ¢s character set to ASCII when
implicit data conversion is turned on. The valid cs
values are as follows:

AS ASCII: AS is the default for VAX/VMS tape file
translation.

DC CDC display code; this option is illegal when IBM
tape file translation is requested. DC is the
default for CDC tape file translation.

EB EBCDIC; EB is the default for IBM tape file
translation.

Tape format. f is a 1- or 2-character code which
describes a CDC tape format type. It is required for CDC
tape file translation; no default value is provided for F.
Valid F values are as follows:

I Internal tape format
SI System or SCOPE internal tape format

Record format, or block and record type. When defined
for IBM files, RF refers to record format. rf is a 1- to
3-character code that describes an IBM record format.
Valid values for RF when defining IBM files are the
following:

¥ See Foreign Dataset Conversion on CRAY X-MP and CRAY-1 Computer
Systems, publication SN-0236, for more information.

SR-0011 O

RF:l’f
(continued)

F Fixed-length records

FB Fixed-length blocked records

U Undefined-length records

v Variable-length records

VB Variable-length blocked records

VBS Variable-length blocked spanned records

No default value is provided, but RF can be omitted when
accessing an IBM standard-labeled tape file. In that case,
the record format designated by the label is used. If NEW
is specified, RF=U.

When defined for CDC tape files, RF refers to block and
record type. In this case, rf is a 2-character code;

the first character of the 2-character code describes the
block type:

c Character-count block type
I Internal block type

The second character of the 2-character code describes the
record type:

S System-logical record type
W Control-word record type
2 Zero-byte record type

No default value is provided. RF is required for CDC tape
file translation. The following rf values are supported
for CDC tape files:

CS Character-count block type, system-logical record type
CW Character-count block type, control-word record type
CZ Character-count block type, zero-byte record type

IW Internal block type, control-word record type

When defined for VMS files, RF refers to record format.
Here, rf is a 1- or 2-character code that describes a VMS
record format. Values for rf are as follows:

F Fixed-length records
UF Unblocked fixed-length records
D ANSI D variable-length records
v Variable-length records
s Variable-length segmented records
us Unblocked variable-length segmented records

Certain formats are valid only on specific applications.

See Foreign Dataset Conversion on CRAY X-MP and CRAY-1
Computer Systems, publication SN-0236, for details.

SR-0011 O

RS:Z‘S.'.

Tape dataset record size. rs is the length of the
record, and its expression varies for IBM and CDC tape
files.

When defined for IBM files, rs is the length of the

record in 8-bit bytes. The default is set according to the
requested record format. Table 8-1 shows the defaults for
RS for IBM files. No default value is used, however, when
accessing an IBM standard labeled tape file. Instead the
record size designated by the label is used.

In addition, restrictions may be imposed on IBM files at
ASSIGN processing time. Table 8-2 summarizes those
restrictions.

When defined for CDC tape files, rs is the length of the
record in 6-bit characters. rs refers to the maximum
record length when W is specified as a value for RF. The
default, RS=0, implies no maximum record length.

When Z is specified as a value for RF, rs becomes the CDC
equivalent of the FL parameter: rs specifies the length

to which zero-byte records are to be extended on input, and
the length of a zero-byte record on output. This parameter
is required for zero-byte record translation. No default
value is provided for rs when Z is specified as an RF
value.

For CDC system-logical records, rs is the maximum record
length. The default, RS=0, implies no maximum record
length.

For VAX/VMS tape files, rs is the length of the

record in 8-bit bytes. For fixed-length (F-format) or
unblocked fixed-length (UF-format) records, rs can be
between 1 and 32767. There is no default.

For ANSI D variable-length (D-format) records, rs is the
maximum record length in 8-bit bytes; rs can be between 1
and 9995. The default is a maximum record length of MBS-4
or 9995, whichever is smaller. For variable-length (V
format) records, rs can be between 1 and 32767. rS may
not exceed MBS for variable-length (V-format) records.

+ See Foreign Dataset Conversion on CRAY-1 and CRAY X-MP Computer
Systems, publication SN-0236, for more information.

SR-0011 O

MBS=mbs

8-10

Table 8-1. RS Defaults for IBM Tape Files

Variable-length, blocked, spanned

|
Record Format | Default

]

|
Undefined-length |

I
Fixed-length | RS=MBS

|
Fixed-length, blocked |

|
Variable-length |

I
Variable-length, blocked | RS<MBS-4

I

I

|

For variable-length segmented and unblocked variable-length
segmented (S and US formats) records, rs is the maximum
record length in 8-bit bytes. The value of rs is

unrestricted.

Table 8-2. RS Restrictions for IBM Tape Files

Record Format

Restriction

Undefined-length

Fixed-length

RS=MBS

Fixed-length, blocked

RS is multiple

e e e — e e e e ——— e ——

of MBS
Variable-length RS<MBS-4
Variable-length, blocked
Variable-length, blocked, spanned None

Maximum tape block size. If you request foreign dataset
translation by specifying FD (see the description of the FD

parameter), values for mbs are different.

are different for IBM, CDC, and VMS tape files.

mbs values

SR-0011 O

MBS=mbs
(continued)

When defined for IBM files, mbs is the maximum block
length in 8-bit bytes. The only mbs restriction for IBM
files is that the value be less than or equal to 32760
bytes.

When defined for CDC tape files, mbs is the maximum block
length in 6-bit characters. The default is 5120
characters. It is recommended that you not override this
default value.

When defined for VMS files, mbs is the maximum block
length in 8-bit bytes. The value must be no greater than
32767.

DEF=dtl[:dt2:dt3]

SR-0011 O

User-defined default space. The default space is allocated
starting with the first device type specified. If that
space is not available, the system tries the next device
type. Up to three device types may be specified. The
device types are as follows:

DD19 Disk drive

DD29 Disk drive

DD39 Disk drive

DD49 Disk drive

EBM Extended Buffer Memory

SsD Solid-state storage device
* Any available device

If DEF is not specified, the device type defaults to *.

Example 1:

The system attempts to allocate space first on the SSD,
next on EBM, and finally on all other default devices. If
space is available on the SSD, overflow would be allocated
on EBM and subsequent overflow would go to other default
space.

ASSIGN,DN=A,DEF=SSD:EBM:*.

Example 2:

The system attempts to allocate space on the SSD. If space
is not available on the SSD, the status NO MORE DISK SPACE
AVAILABLE returns.

ASSIGN,DN=A,DEF=SSD.

ST=st User-specified storage for the dataset. The storage types
are the following:

SCR Scratch device
PERM Permanent space device

The installation parameter IQ@STYPE defines the default.

Example:
The dataset named A is placed on a scratch device:
ASSIGN,DN=A,ST=SCR.

SPD=spd Sectors per device. spd is the number of sectors to
allocate to a device before overflowing to a different
device that is part of the user-defined default space.
Simultaneous transfers can occur from different devices
when the request spans more than one device (i.e., pseudo
striping). spd ranges from a minimum of the number
sectors allocated to one track on a device to a maximum of
2047.

If no spd is specified or if SPD=0, all data is

transferred to the default device. If DV is specified, the
SPD function will not occur until the specified DV
overflows.

8.2 HOLD - HOLD GENERIC RESOURCE

The HOLD control statement declares that any dataset associated with the
indicated generic resource will be released as if HOLD were specified on
the RELEASE control statement. The HOLD parameter on the RELEASE control
statement prevents the return of the resource allocation to the system
pool. The HOLD control statement is useful when the dataset resides omn a
generic resource, and dataset assignment and release are controlled by
applications over which you do not have direct control.

Format:

| |
| HOLD,GRN=grn. |

GRN=grn Generic resource name

8-12 SR-0011 O

8.3 NOHOLD - RESCIND THE EFFECT OF HOLD

The NOHOLD control statement rescinds the effect of the HOLD control
statement for the specified generic resource.

Format:

| I
| NOHOLD,GRN=grn. |

GRN=grn Generic resource name

8.4 RELEASE - RELEASE DATASET

The RELEASE control statement relinquishes access to the named datasets
for the job. If a dataset is not permanent and its disposition code is
SC (scratch), the system releases the mass storage assigned to the
dataset. If the dataset is to be staged, it enters the output queue for
staging to the destination station. If the dataset is permanent, the
system updates the allocation information in the system catalogs if the
size of the dataset has changed since the last SAVE, ACCESS, or ADJUST
request. Finally, if the disposition code is not scratch (whether or
not the dataset is permanent), the system writes an end-of-data (EOD)
record to the dataset if it is blocked sequential and the last operation
on it was a write.

A dataset associated with a generic resource has a resource allocation as
well as a physical allocation. The resource allocation for a tape
dataset is one tape unit. The resource allocation for a disk dataset is
the number of allocation units used by the dataset. Resources needed for
a dataset are counted against the resource allocation limit specified on
the JOB control statement during ACCESS (for tape) or ASSIGN (for disk).
When a dataset is released, the physical allocation and the resource
allocation are released to the system. When HOLD is specified on the
RELEASE control statement, the physical allocation is released, but the
resource allocation is retained for those datasets specified that are
associated with a generic resource. HOLD is ignored for datasets not
associated with a generic resource.

SR-0011 O 8-13

Format:

I I
| RELEASE,DN=dnq:dnj:...:dng,HOLD. |

DN=dnj Name of dataset to be released. A maximum of eight
datasets may be specified.

HOLD Hold generic resource. Do not return the resource
allocation to the system pool.

8.5 INTEGRATED SUPPORT PROCESSOR (ISP) DATASETS

ISP datasets are controlled by two types of COS control statements:

Control Statement Description

CONNECT Provides access to a dataset in the MVS system by
a COS job
ISP Initiates communication with the ISP system on

behalf of a COS job

Refer to the SUPERLINK/ISP General Information Manual, CRI publication
SI-0154 or the SUPERLINK/MVS User Guide, CRI publication SI-0178, for a
complete description of these control statements and their uses.

8-14 SR-0011 O

PERMANENT DATASET MANAGEMENT 9

The permanent dataset management control statements provide methods for
creating, protecting, and accessing datasets assigned permanently to mass
storage or magnetic tape. Such datasets cannot be destroyed by normal
system activity or engineering maintenance.

Section 6 introduces permanent dataset management. This section
describes the following permanent dataset management control statements:

Control Statement Function

ACCESS Makes an existing permanent dataset local to a
job and is used to create a tape dataset

ADJUST Records the change in any of the size or
allocation information for a dataset that might

have contracted or expanded

DELETE Clears all or part of a dataset edition's entry
in the system catalogs

MODIFY Changes the characteristic information for an
existing user permanent dataset

PERMIT Explicitly grants or denies specified users or
groups of users access to a permanent dataset

SAVE Makes a local dataset permanent and defines its
associated characteristics for the system

9.1 ACCESS - ACCESS PERMANENT DATASET

The ACCESS control statement makes an existing permanent dataset local to
a job and can be used to create a tape dataset. Following the ACCESS
statement, all references to the permanent dataset must be by the local
dataset name specified by the DN parameter. ACCESS permission parameters
ensure that the user is authorized to use the permanent dataset. The
ACCESS control statement must precede the ASSIGN control statement or the
request call for the dataset. All tape datasets, whether or not they are
new, must be made local by an ACCESS control statement or a system
request. ACCESS is a system verb.

SR-0011 O 9-1

More than one tape ACCESS control statement with the same dataset name,
but a different permanent dataset name, will activate concatenation.
Refer to the Concatenated Datasets subsection in section 2 for more
information on concatenated datasets.

You do not have to access a permanent dataset entered in the System
Directory (SDR). A basic set of datasets is entered into the SDR when the
operating system is installed. These datasets include the loaders,
Fortran compilers, the CAL assemblers, UPDATE, BUILD, and system utility
programs such as copies and dumps (all utilities described in sections 6
through 15 are entered in the SDR). Other datasets can be entered into
the SDR according to site requirements. A tape dataset cannot reside in
the SDR.

The processing of the ACCESS system request ensures the following:

¢ The dataset already exists or, for new magnetic tape datasets, the
dataset does not already exist.

¢ The requested permissions are allowed.

¢ The type of medium on which the dataset resides has been previously
allocated by the job, provided the medium is a dedicated resource
(such as magnetic tape).

If the Permanent Dataset Archiving feature is enabled, the following
factors can cause a delay between the issue of the ACCESS request and its
completion while the system recalls the dataset edition to on-line mass
storage.

e The dataset edition being accessed has migrated off-line.

e The dataset edition being accessed has been retired off-line and
the recall process initiated by a preceding RESTORE statement has
not completed.

The Permanent Dataset Manager (PDM) issues a message to your job's logfile

indicating the reason for the delay.

Format:

ACCESS,DN=dn,NA,ERR,MSG, IR, PDN=pdn, ID=uid, ED=ed, R=rd, W=wt,M=mn, UQ,
IN
OWN=0v,DT=dt,NEW,MOD, RING=¢y7, DEN=den,MF=fes,
VOL=volj:voly:...vol,, FSEC=fsec,LB=1b,DF=df, PROT,MBS=mbs,

XDT=yyddd,RT=rt,FD=£fd,CV=cv,CS=cs,F=f,RF=rf ,RS=rs,FSEQ=fseq.

9-2 SR-0011 O

The following parameters can be used with mass storage datasets:

DN=dn

NA

ERR

MSG

IR

PDN=pdn

ID=uid

ED=ed
SR-0011 O

Local dataset name. The name the job uses to refer to the
dataset named in PDN while it remains local to the job.
This parameter must be present and equated to a valid local
dataset name not already in use.

No abort indicator. This parameter indicates that the job
step is not to abort if an error results from the access
attempt. If omitted, an error causes the job step to
abort. NA is ignored if it is used for magnetic tape
datasets.

Error message. If this parameter is specified, error
termination messages are suppressed.

Termination message. If MSG is specified, normal
termination messages are suppressed.

Immediate reply. An ACCESS request cannot always be
honored immediately. When this is the case, the operating
system automatically delays the request until it can be
honored. 1If IR is specified and the ACCESS control
statement cannot be honored immediately, the job will abort
and the caller has to reissue the ACCESS request.

Name or file identifier of the permanent dataset to

access. For a mass storage dataset, the name can be 1 to
15 characters; for a magnetic tape dataset, 1 to 44
characters. For labeled tape datasets (AL and SL), the
rightmost 17 characters of pdn are used to match the file
identifier from the label group. With front-end servicing,
the whole value is generally used as the identifier. 1If
PDN is omitted, the DN value is used.

Additional user identification; 1 to 8 alphanumeric
characters. If uid was specified at SAVE time, the ID
parameter must be specified on the ACCESS control
statement. The default is no user ID. This parameter
applies to mass storage datasets only; it is ignored for
magnetic tape datasets.

The edition number of the permanent dataset being accessed;
a value from 1 through 4095 was assigned by the dataset
creator. If the ED parameter is not specified, the default
is the highest edition number known to the system (for this
permanent dataset). This parameter applies to mass storage
datasets only; it is ignored for magnetic tape datasets.

The following parameters identify the permissions for accessing mass
storage permanent datasets.

R=rd Read control word as specified at SAVE time; 1 to 8
alphanumeric characters assigned by the dataset creator.
The default is no read control word. To obtain read
permission, this parameter must be specified on the ACCESS
control statement if a read parameter was specified when
the dataset was saved. This parameter applies to mass
storage datasets only; it is ignored for magnetic tape
datasets.

W=wt Write control word as specified at SAVE time. To obtain
write permission, this parameter must be specified in
conjunction with a UQ parameter on the ACCESS control
statement if a W parameter was specified when the dataset
was saved. Write permission is required for an ADJUST and
applies to mass storage datasets only; it is ignored for
magnetic tape datasets.

M=mn Maintenance control word as specified at SAVE time. This
parameter is specified in conjunction with a UQ parameter
on an ACCESS control statement if the dataset is to be
subsequently deleted. That is, maintenance permission is
required to delete a dataset. This parameter applies to
mass storage datasets only; it is ignored when used for
magnetic tape datasets.

uQ Unique access. This parameter indicates exclusive access
to the dataset is desired. If the UQ parameter is
specified and the appropriate write or maintenance control
words are specified, write, maintenance, and/or read
permission is granted. If UQ is not specified,
multiple-user read access is granted by default (if at a
minimum, the read control word is specified). UQ is
required to delete a permanent dataset using the DELETE
control statement. This parameter applies to mass storage
datasets only; it is ignored for magnetic tape datasets.

Access to the requested dataset edition is delayed if
either of the following conditions exist:

® You have requested unique access and another user
already has access to the dataset edition.

¢ You have requested multiple-user read access and another
user has unique access to the dataset edition.

When the condition blocking access is resolved, the delay

state is cancelled. When multiple-user jobs or tasks are
waiting for access to the same dataset edition, the delay

9-4 SR-0011 O

uQ

(continued)

OWN=0vV

state is cancelled for all the jobs or tasks at the same
time. Thus, you cannot assume that the first of several
jobs or tasks to be delayed for the same dataset edition
will be the first to access it after a delay state is
cancelled.

Ownership value. If the OWN parameter is specified and the
user has been granted access by the owner, the dataset is
made local to the job. OWN is ignored if ov matches the
active ownership value of the job (users need not be
permitted to their own datasets).

The following list describes the parameters available for accessing
and/or defining magnetic tape datasets. The DN=dn parameter names the

dataset.

DT=dt

NEW

MOD

SR-0011 O

Tape dataset generic resource name. This parameter is
required for tape datasets. Up to 16 generic resource
names can be defined by the installation. Only one generic
resource name is configured with the released system:

*TAPE Device capable of 1600 or 6250 b/i

The number of generic resources needed by the job is
declared on the JOB control statement, and it is the
resource allocation limit. (Refer to the JOB control
statement description for details.) When a tape dataset is
accessed, the number of tape drives associated with the
dataset (usually one) is counted against the resource
allocation.

Creation disposition. Selection of this parameter
indicates the dataset does not yet exist and is to be
created by this job. NEW treats a tape as if it were blank
and overwrites an existing tape label. If omitted, it is
assumed the dataset already exists. NEW datasets must be
written to before any read can occur. NEW and MOD are
mutually exclusive. NEW automatically selects RING=IN if
ring processing is in effect.

Existing tape dataset modification identifier. This
parameter lets you position single volume and multivolume
datasets on tape. It specifies that data is to be added at
the end of an existing dataset on either labeled or
unlabeled tapes. Access requests using MOD for tape volume
positioning are successful only if the end of a dataset is
indicated by the EOF trailer label for a labeled tape
volume, and by a tape mark for an unlabeled tape. MOD and
NEW are mutually exclusive. MOD selects RING=IN if ring
processing is in effect. MOD cannot be used with the
transparent recording format.

9-5

RING=IN Tape write ring option. The choices are IN if the tape
OUT js to be written and OUT if the tape is only to be read.

DEN=den

MF=fes

This parameter is in effect only if the installation
parameter I@RNGABT is selected at your site.

Density of the tape dataset. This parameter applies only
to tape datasets; it is ignored when used for mass storage
datasets. Density values are:

6250 Dataset density of 6250 b/i, default
1600 Dataset density of 1600 b/i

Front-end servicing mainframe identifier. This parameter
specifies an alternate front-end computer system to which
servicing requests are directed. If MF is omitted, the
front end from which the job originated is used. Front-end
servicing is a mechanism whereby auxiliary servicing (such
as updating front-end resident catalogs and tape management
systems) of the dataset and/or tape volumes is performed.

The following parameters identify the magnetic tape dataset to be

accessed.

VOL:voli

FSEC=fsec

The PDN=pdn parameter names the dataset.

Volume identifier list. An optional list of 1- to
6-character volume identifiers (VIs) identify tape volumes
where the dataset resides. The list contains up to 255
VIs. If the VI list is omitted for a new tape dataset, the
tape volumes on which the dataset is written are selected
by the system operator and the front-end servicing
routine. This is called a nonspecific volume allocation.
If the VI list is omitted for an old tape dataset, the
volumes on which the dataset resides are determined by
front-end servicing. If front-end servicing has no
knowledge of the dataset or is inactive, the omission of
the VI list results in a job step abort.

File section number or volume sequence number. This
parameter describes on which volume, relative to the first
physical volume of the dataset, to begin processing.

The volume sequence number for the first volume of the
dataset is 1. If fsec is omitted, a value of 1 is
assumed. This parameter has a direct relationship to the
VIs specified in the VOL parameter. The volume sequence
number corresponds to the first VI identified in the VOL
parameter. For example, to access a tape dataset starting
with the eighth section, specify FSEC=8 on the ACCESS
call.

If both the MOD and FSEC=fsec are coded, the FSEC
parameter is not used for validating the header label.

SR-0011

FSEC=fsec
(continued)

LB=1b

The following
dataset.

DF=df

proTt

Instead, it represents the position of the volume serial
number in the volume list where MOD processing begins.

For example, the following statement causes processing to
start with tape T2.

ACCESS, ...MOD,VOL=T1:T2:T3,FSEC=2,...

Tape dataset label type that indicates the tape format. 1If
this parameter is omitted, label type NL is assumed. Label
types are as follows:

AL ANSI standard labeled tapes

BP Bypass label processing

FAL Field format with ANSI standard labels
FNL Field format with no labels

FSL Field format with IBM standard labels
NL Unlabeled tapes (default)

SL IBM standard labeled tapes

Field format tape datasets treat embedded EOFs or tapemarks
as data. Tapemarks that are not followed by a label are
returned in the data as EOF control words. On output, EOF
control words that are not followed by an EOD control word
are converted to physical tapemarks.

parameters identify the characteristics of a magnetic tape

Recording format. Identifies the format in which the tape
dataset is to be read or written or both. Values for this
parameter are the following:

IC Interchange format
TR Transparent format (invalid for field format
tape datasets)

If DF is omitted, the format is transparent. Refer to
section 2 for a description of the formats and the
associated properties.

Front-end protect indicator. Indicates to the front-end
computer system performing the service functions that the
tape dataset or its volumes or both are to be protected.
PROT is recognized for new tape datasets only. If PROT is
omitted, the dataset and its volumes are not protected.

¥ User privilege is required if the system security option (I@SLVL) is
in warning mode or full mode. Refer to the CRI site operations staff
to acquire this privilege.

++ Station-dependent parameter

SR-0011 O

MBS=mbs

XDT=yyddd

RT=rt

Maximum tape block size. If foreign dataset translation is
requested by specifying FD, values for mbs are different.
Refer to the description of the FD parameter. mbs values
are different for IBM, CDC, and VMS tape files.

When defined for IBM files, mbs is the maximum block

length in 8-bit bytes. The only mbs restriction for IBM
tape files is that the value be less than or equal to 32760
bytes.

When defined for CDC tape files, mbs is the maximum block
length in 6-bit characters. The default is D'5120
characters. It is recommended that you not override this
default value.

When defined for VMS files, mbs is the maximum block
length in 8-bit bytes. The value must be no greater than
32767.

If MBS is omitted and the dataset is new, a default size
that has been determined by the site is used. The limiting
value of the parameter is also left to site definition. If
omitted for an existing labeled tape dataset (AL or SL),
the maximum block size is set to the value from the label
group. Exceeding this size when writing results in a job
abort condition of WRITE FORMAT ERROR. When reading a tape
block that is larger than the specified value, a job abort
condition of LARGE BLOCK ENCOUNTERED is produced. MBS is
rounded up to the next multiple of 4096 bytes for
transparent format tape datasets.

Expiration date. Indicates the date this tape dataset

is considered dormant and may be overwritten. yy

specifies the year and is a number from 0 through 99.

ddd specifies the day in the year, 001 through 366. If
omitted and the dataset is going to be written, the current
date is used. This parameter is also used as a means of
communicating with a servicing front-end computer system.
The XDT and RT parameters are mutually exclusive.

Retention period. User-defined value from 1 through 4095
specifying the number of days a permanent dataset should be
retained by the system. The RT parameter is similar to the
XDT parameter but lets you specify relative expiration
date. If RT is omitted, the default value is 0. The RT
and XDT parameters are mutually exclusive.

The following tape dataset parameters specify that record and data format
conversion are to be performed at run time.

SR-0011 O

FD=fdt

CV:CV?

cs=est

F=f+

Foreign dataset translation identifier. fd is a
3-character code that indicates foreign dataset
translation should be performed on the dataset. This
parameter is required for run-time translation. Valid
values for fd are the following:

CDC CDC-compatible tape dataset
IBM IBM-compatible tape dataset
VMS VAX/VMS-compatible tape dataset

The default is no translation.

Foreign dataset conversion mode. CV indicates whether or
not implicit data conversion should be done by the run-time
library (RTL). CV values are the following:

ON Data conversion turned on. ON causes the library
to convert the foreign internal representation to
or from Cray internal representation, according to
the I/0 list.

OFF Data conversion turned off means the data type
is not considered. Full Cray words are moved to or
from the foreign dataset.

The default is OFF.

Foreign data character set specifies the character set to
represent the internal data on the foreign dataset. RTL

routines convert character data from the ¢s character set
to ASCII when implicit data conversion is turned on. The
valid c¢s values are the following:

AS ASCII. AS is the default for VAX/VMS tape file
translation.

DC CDC display code. DC is the default for CDC tape
file translation. This option is illegal when IBM
tape file translation is requested.

EB EBCDIC. EB is the default for IBM tape file
translation.

Tape format. f is a 1- or 2-character code that
describes a CDC tape format type. It is required for CDC
tape file translation. No default value is provided for
F. Valid F values are the following:

I Internal tape format
SI System or SCOPE internal tape format

+ See Foreign Dataset Conversion on CRAY X-MP and CRAY-1 Computer

Systems, publication SN-0236 for more information.

SR-0011 O

RF:I‘f*

Record format, or block and record type. When defined for
IBM files, RF refers to record format. rf is a 1- to
3-character code that describes an IBM record format. Valid
values for RF when defining IBM files are the following:

F Fixed-length records

FB Fixed-length blocked records

U Undefined-length records

v Variable-length records

VB Variable-length, blocked records

VBS Variable-length, blocked, spanned records

No default value is provided, but RF can be omitted when
accessing an IBM standard-labeled tape file. In that case,
the record format designated by the label is used. If NEW
is specified, RF=U.

When defined for CDC tape files, RF refers to block and
record type and is a 2-character code. The first character
of the 2-character code describes the block type:

C Character-count block type
I Internal block type

The second character of the 2-character code describes the
record type:

S System-logical record type
W Control-word record type
YA Zero-byte record type

No default value is provided. RF is required for CDC tape
file translation. The following rf values are supported
for CDC tape files:

CS Character-count block type, system-logical record type
CW Character-count block type, control-word record type
CZ Character-count block type, zero-byte record type

IW Internal block type, control-word record type

When defined for VMS files, RF refers to record format.
Here rf is a 1- or 2-character code that describes a VMS
format. Values for rf are as follows:

F Fixed-length records

UF Unblocked fixed-length records

D ANSI D variable-length records

v Variable-length records

S Variable-length segmented records

US Unblocked variable-length segmented records

+ See Foreign Dataset Conversion on CRAY X-MP and CRAY-1 Computer
Systems, publication SN-0236 for more information.

SR-0011 O

RS:I'S*

Tape dataset record size. rs is the decimal length
of the record, and its expression varies for IBM and
CDC tape files.

When defined for IBM files, rs is the decimal length of

the record in 8-bit bytes. The default is set according to

the requested record format. No default value is used,

however, when accessing an IBM standard labeled tape file.
Instead, the record size designated by the label is used.
Table 9-1 shows the defaults for which RS is set for IBM

files.

Table 9-1. RS Defaults for IBM Tape Files

Variable-length, blocked, spanned

I I

| Record Format | Default
I |

I I

| Undefined-length |

| I

| Fixed-length | RS=MBS
| I

| Fixred-length, blocked |

| |

I I

| Variable-length |

I I

| Variable-length, blocked i RS=-MBS-4
I |

| I

I |

In addition, restrictions may be imposed on IBM tape files

at ACCESS processing time. Table 9-2 summarizes those

restrictions. Nonetheless, restrictions are not enforced
if the file accessed is an IBM standard labeled tape file,

and if neither RS nor MBS is specified.

¥ See Foreign Dataset Conversion on CRAY X-MP and CRAY 1 Computer
Systems, publication SN-0236 for more information.

SR-0011 O

Table 9-2. RS Restrictions for IBM Tape Files

Record Format Restriction

Undefined-length RS=MBS

Figxed-length

| | I
| | |
| | |
I I I
I I I
| I |
I I I
| 1 I
I | I
I I I
| Fixed-length, blocked | MBS is multiple |
| | of RS |
| 1 |
| I I
| | |
| Variable-length | RS <MBS-4 |
| (I I
| Variable-length, blocked | |
I 1 I
I | |
[I |
| Variable-length, blocked, spanned | None |
[1 |
RS=rs For CDC tape files, rs is the decimal length of the

(continued) record in 6-bit characters. rs refers to the maximum
record length when W is specified as a value for RF. The
default, RS=0, implies there is no maximum record length.

When Z is specified as a value for RF, rs becomes the
equivalent of the CDC FL parameter: rs specifies the
length to which zero-byte records are to be extended with
blank characters on input and the length of a zero-byte
record on output. This parameter is required for zero-byte
record translation. No default value is provided for rs
when Z is specified as an RF value.

For CDC system-logical records, rs is the maximum record
length. The default, RS=0, implies that there is no maximum
record length.

For VAX/VMS files, rs is the length of the record in
8-bit bytes. For fixed-length (F-format) or unblocked
fixed-length (UF-format) records, rs can be between 1 and
32767. There is no default.

For ANSI D variable-length (D format) records, rs is the

maximum record length in 8-bit bytes. rs can be between
1 and 9995. The default, RS=0, implies a maximum record

9-12 SR-0011 O

RS=rs length of MBS-4 or 9995, whichever is smaller. For
(continued) variable-length (V format) records, rs can be between 1
and 32767; rs may not exceed MBS.

For variable-length segmented and unblocked variable-length
segmented (S and US formats) records, rs is the maximum
record length in 8-bit bytes. The value of rs is
unrestricted. The default, RS=0, implies no maximum record
size.

FSEQ=fseq File sequence number. This is a 1- to 4-digit number

that describes the relative position of the dataset on the
tape volume. The default is 1.

9.2 ADJUST - ADJUST PERMANENT DATASET

The ADJUST control statement redefines the size of a mass storage
permanent dataset by modifying the information in the Dataset Catalog
(DSC) to reflect changes in the dataset size and disk allocation. When a
permanent dataset is overwritten, and the dataset size changes, issuing
an ADJUST statement informs the system of the dataset's new size. An
ADJUST of a permanent dataset can be issued if the dataset has been
previously accessed within the job with write permission. ADJUST is a
system verb.

Under the appropriate conditions, ADJUST forces any unwritten data to
mass storage to ensure that all of the dataset is made permanent.

Because this situation occurs when the dataset has recently been written
to but not yet closed, ADJUST attempts to close the dataset. CLOSE
disposes of current positioning information for that dataset. Therefore,
subsequent operations on that dataset must reopen it and begin at the
beginning-of-data (BOD). The specific conditions that the dataset must
meet are described under the ADJUST macro (refer to the Macros and Opdefs
Reference Manual, CRI publication SR-0012).

The ADJUST statement is ignored when used with magnetic tape datasets.
If a dataset's size is reduced sufficiently to require fewer disk

allocation units, the unused disk space returns to COS. The size of a
disk allocation unit is dependent on the device type.

Format:

| |
| ADJUST,DN=dn,NA,ERR,MSG. |

SR-0011 O 9-13

DN=dn Local dataset name of a permanent dataset that has been
accessed with write permission. This dataset can be closed
before the ADJUST statement is processed.

NA No abort. If this parameter is omitted, an error causes
the job step to abort.

ERR Error message. If this parameter is specified, error
termination messages are suppressed.

MSG Termination message. Normal termination messages are
suppressed when MSG is specified.

9.3 DELETE - DELETE PERMANENT DATASET

The DELETE control statement clears all or part of a dataset edition's
entry in the system catalogs: the Master Catalog Dataset (MCD), the
Dataset Catalog (DSC), and the Backup Catalog (BCD). DELETE's effect
depends both on the residence of the dataset and on the parameters
specified. The control statement has two formats: one for local
datasets and another for nonlocal datasets.

9.3.1 LOCAL DATASET FORMAT

The local dataset format of the DELETE control statement requires that
the dataset be accessed as a local dataset with both unique access (the
UQ parameter on the ACCESS control statement) and maintenance permission.

For a mass storage resident dataset, the action of DELETE depends on the
PARTIAL parameter. If the parameter is specified, the entries in the
system catalogs for the dataset are retained, but the allocation
information is erased; the dataset itself remains accessible to the job
as an empty permanent dataset. If the PARTIAL parameter is omitted, the
entries in the system catalogs for the dataset are erased, and the
dataset remains accessible to the job as a temporary dataset.

For a magnetic tape resident dataset, DELETE causes COS to send a request

to the front-end computer to remove the dataset's definition from its
catalogs.

Format:

I I
| DELETE,DN=dn,NA,ERR,MSG,PARTIAL. |

9-14 SR-0011 O

DN=dn Local dataset name of a permanent dataset accessed with
maintenance permission and unique access. This is a
required parameter.

NA No abort. If this parameter is omitted, a fatal error
causes the job step to abort.

ERR Error message. If this parameter is specified, error
termination messages are suppressed.

MSG Termination message. If MSG is specified, normal
termination messages are suppressed.

PARTIAL Partial delete. Presence of this parameter causes COS to
delete only the mass storage resident data. The DSC entry
and the dataset's attributes information are retained.
PARTIAL can be specified only for a mass storage dataset:
it is ignored for tapes.

9.3.2 NONLOCAL DATASET FORMAT

The nonlocal dataset format of the DELETE control statement is used to
permit the deletion of permanent datasets without accessing them in
advance. It can be used only for mass storage resident datasets. If you
get an error message, it could mean that the system does not have the
Master Catalog option enabled. In this case, use the local dataset
format of the DELETE control statement.

This form of DELETE erases all record of the specified datasets from the
system catalogs; there is no PARTIAL parameter. Deletion from the system
catalogs is immediate if the dataset or datasets are not currently
accessed. If the datasets are currently accessed, the Permanent Dataset
Manager (PDM) processes the request for deletion when the last accessor
releases the dataset. 1In either case, there is no delay to the job
issuing the DELETE.

The arguments for PDN, ID, and OWN can use the notations * to indicate
any one character and - to indicate an arbitrary string of characters.

Format:

! I
| DELETE, PDN=pdn, ERR,MSG, ID=id,OWN=owner,ED=ed,M=m. |

PDN=pdn Permanent dataset name; required parameter.

SR-0011 O 9-15

ERR Error message. If this parameter is specified, error
termination messages are suppressed.

MSG Termination message. Normal termination messages are
suppressed if MSG is specified.

ID=id Permanent dataset ID; optional. Omission implies a null ID.

OWN=owner
Owner of the permanent dataset. The default is the job
owner. If the requester is not the dataset owner, the
requester must have maintenance permission.

ED=ed Edition number of the dataset. Options for ed are as
follows:
Specification Meaning
Unsigned integer (ed) The specific edition of the
Example: ED=2 dataset

Negative integer (-ed) All but the ed highest editions
Example: ED=-2

Positive integer (+ed) The ed highest editions
Example: ED=+2

ED=ALL All editions of the dataset
The default is the highest edition.

M=mn Maintenance control word. Must be specified if the dataset
has a maintenance control word.

9.4 MODIFY - MODIFY PERMANENT DATASET

The MODIFY control statement changes permanent dataset information
established by the SAVE function or a previously executed MODIFY

function. A permanent dataset must be accessed with unique access (UQ)
and all permissions before MODIFY can be issued. MODIFY is a system verb.

Once a permanent dataset exists, the read, write, and maintenance control
words, public access mode, and access tracking apply to subsequent
editions of that permanent dataset.

Parameters are in keyword form; the only required parameter is DN. If
any combination of PDN, ID, and ED (including omission of one or more of
them) is specified, and the resulting PDN/ID/ED combination already
exists, the MODIFY aborts, and no changes are made.

9-16 SR-0011 O

MODIFY applies to mass storage datasets only; it is ignored for tape

datasets.

Format:

MODIFY,DN=dn, PDN=pdn, ID=uid,ED=ed,RT=rt,R=rd, W=wt,M=mn, NA ,ERR,
MSG, EXO=npf, PAM=mode, TA=opt, TEXT=text ,NOTES=notes,

RESIDE=qppr,NE- BACKUP=gg -

ON

ONLINE YES

DN=dn

PDN=pdn

ID=uid

ED=ed

RT=rt

W=wt

SR-0011 O

Local dataset name of a permanent dataset that has been
accessed with all permissions; DN is a required parameter.

New permanent dataset name to be applied to the existing
dataset. If this parameter is omitted, the existing
permanent dataset name is retained.

New user identification to be applied to the existing
permanent dataset; 1 to 8 alphanumeric characters. If this
parameter is omitted, the existing user ID is retained. If
this parameter is present without a value, user
identification is cleared.

New edition number to be applied to the existing permanent
dataset. If this parameter is omitted, the existing
edition number is retained.

New retention period to be applied to the existing
permanent dataset. If this parameter is omitted, the
current retention period is retained. If this parameter is
present without a value, the retention period is set to the
installation-defined value.

New read permission control word to be applied to the
existing permanent dataset. If this parameter is omitted,
the existing read permission is retained. If R is present
without a value, the read permission control word is
cleared.

New write permission control word to be applied to the
existing permanent dataset. If this parameter is omitted,
the existing write permission is retained. If W is present
without a value, the write permission control word is
cleared.

M=mn

NA

ERR

MSG

EX0=ON
OFF

PAM=mode

TA=opt

TEXT=text

New maintenance permission control word to be applied to
the existing permanent dataset. If this parameter is
omitted, the existing maintenance permission is retained.
If M is present without a value, the maintenance permission
control word is cleared.

No abort. 1If this parameter is omitted, an error causes
the job to abort.

Error message. If this parameter is specified, error
termination messages are suppressed.

Termination message. Normal termination messages are
suppressed when MSG is specified.

Execute-only dataset. This parameter sets or clears

the execute-only status of a dataset. EXO only (EXO=ON)
causes the dataset to be modified to execute-only. EXO=OFF
causes the dataset to be modified to a nonexecute-only
dataset. If this parameter is omitted, the execute-only
status of a dataset is unchanged.

Public access mode. The following options are allowed:

Option Mode

E Execute only

M Maintenance only

N No public access allowed
R Read only

W Write only

Each site controls the default PAM value. Combinations of
R, W, and M permissions are allowed; for example, PAM=R:W
gives both read and write permissions. PAM=E has the same
effect as the EXO or EXO=ON parameter and nullifies any
other permissions specified.

Track accesses. opt can be either YES or NO and indicates
whether the owner requires that public accesses to the
dataset be tracked. Refer to section 6 for a description of
public access and access tracking. The default TA value is
NO.

Text to be passed to a front-end computer system requesting
transfer of the dataset. Specify a maximum of 240
characters. This text information is considered an
attribute of the dataset and is retained along with any
other attributes. Refer to section 6 for an explanation of
all permanent dataset attributes.

To clear the text, specify TEXT without a value.

SR-0011 O

NOTES=notes

Notes to be associated with the dataset. Specify a maximum
of 480 characters. There is no other restriction on the
contents of notes. A caret symbol in notes signifies
end-of-line and causes AUDIT to advance to a new line when
listing the notes. The caret symbol is included in the
480-character maximum limit. notes is a permanent dataset
attribute. Refer to section 6 for an explanation of all
permanent dataset attributes.

To clear the notes, specify NOTES without a value.

ONLINE

RESIDE=QfFFLINE

+ ¥
BACKUPT=y,

The preferred residency of a dataset. ONLINE specifies the
dataset should remain on-line. This option requires the
SCRESON privilege.

OFFLINE specifies the dataset should receive priority when
datasets are selected for migration. The speed with which
the dataset migrates depends on factors such as how often
the site runs space management. This option does not
require a privilege.

To clear the preferred-residency setting, specify RESIDE
without a value. This causes the dataset edition to become
a candidate for space management based on site-defined
criteria.

ES
(0]

Dataset backup. YES specifies the dataset should be backed
up after it is created and whenever it is modified. NO
specifies that the dataset should not be backed up under any
circumstance. A dataset with no backup may be subject to
rules defined by the site, especially regarding retention
time. The default is YES.

+ Deferred implementation

SR-0011 O

9.5 PERMIT - EXPLICITLY CONTROL ACCESS TO DATASET

The PERMIT control statement explicitly designates who can access a
particular permanent dataset. PERMIT applies to all editions of the
permanent dataset. The dataset does not need to be local for PERMIT to be
executed. PERMIT applies to user permanent mass storage datasets only.
Access permission given with a PERMIT control statement takes precedence
over the PAM parameter described under SAVE and MODIFY. PERMIT is a
system verb.

Format:

I I
| PERMIT,PDN=pdn,ID=uid,AM=m, RP,USER=0vV,ADN=adn,NA, ERR,MSG. |

PDN=pdn Name of an existing user permanent dataset; 1 to 15
characters. PDN is a required parameter.

ID=uid Additional user identification; 1 to 8 alphanumeric
characters. If ID was specified on the SAVE request, the
ID parameter must be specified on the PERMIT control
statement. The default is no user ID.

AM=m Access mode permitted for alternate user. The options are
as follows:

Option Mode
E Execute only
M Maintenance only
N No public access allowed
R Read only
W Write only

Each site controls the default AM value. Combinations of R,
W, and M permissions are allowed; for example, AM=R:W gives
both read and write permissions. AM=E gives the permitted
user execute-only access to the dataset, effectively
nullifying any other permissions specified.

RP Remove permit parameter. Removes the permit associated with
the specified ownership value.

USER=0V User ownership value associated with the user whose access
permissions are being specified.

9-20 SR-0011 O

ADN=adn Local dataset name of the attributes dataset from which the
permit list is copied. The permits are created for the
dataset specified by PDN, overwriting existing permits.

Na No abort. If this parameter is omitted, an error causes the
job step to abort.

ERR Error message. If this parameter is specified, error
termination messages are suppressed.

MSG Termination message. Normal termination messages are
suppressed when MSG is specified.

9.6 SAVE - SAVE PERMANENT DATASET

The SAVE control statement makes a local dataset permanent and defines its
associated characteristics for the system. For mass storage datasets,
saving involves making entries in the system catalogs, which uniquely
identify the dataset. For magnetic tape datasets, saving involves
front-end servicing on the defined front-end computer system.

Under the appropriate conditions, SAVE forces any unwritten data (left in
the output buffer) to be written, ensuring that all the data is made
permanent. Because this situation occurs when the dataset has been
recently written but not yet rewound or closed, SAVE attempts to close the
dataset. CLOSE disposes of current positioning information for that
dataset. Therefore, subsequent operations on that dataset must reopen it
and begin at the beginning of the dataset (BOD). The specific conditions
that the dataset must meet are described under the SAVE macro (refer to
the Macros and Opdefs Reference Manual, CRI publication SR-0012). A
permanent dataset is uniquely identified by permanent dataset name (PDN),
additional user identification (ID), edition number (ED), and ownership
value. SAVE is a system verb.

NOTE

Because COS does not identify unblocked and random
datasets, these datasets must be assigned as unblocked
or random (use the ASSIGN control statement) after they
have been accessed.

SAVE creates an initial edition or an additional edition of a permanent
dataset.

SR-0011 O 9-21

Format:

SAVE,DN=dn,PDN=pdn, ID=uid, ED=ed, RT=rt,R=rd,W=wt ,M=mn, UQ,NA, ERR,
MSG, EXO=npf,PAM=mode, ADN=adn(m), TA=opt, TEXT=text,NOTES=notes,

ON

ONLINE YES

DN=dn

PDN=pdn

ID=uid

ED=ed

RT=rt

W=wt

Local dataset name. The name the job uses to refer to the
dataset while it remains local to the job. This dataset can
be closed before the dataset is made permanent. This is a
required parameter.

Permanent dataset name. The default value is dn. The
name can be 1 to 15 alphanumeric characters.

Additional user identification. uiId can be 1 to 8
alphanumeric characters assigned by the dataset creator.
The default is no user ID.

Edition number. A value from 1 through 4095 assigned by the
dataset creator. The default value is:

e 1, if a permanent dataset with the same PDN and ID
does not exist

¢ The current highest edition number plus one, if a
permanent dataset with the same PDN and ID does exist

Retention period. User-defined value from 1 through 4095
specifying the number of days a permanent dataset is to be
retained by the system. The default value is an
installation-defined parameter.

Read control word; 1 to 8 alphanumeric characters assigned
by the dataset creator. The read control word of the
highest-numbered existing edition of a permanent dataset
applies to all subsequent editions of that dataset. The
default is no read control word.

Write control word; 1 to 8 alphanumeric characters assigned
by the dataset creator. The write control word of the
highest-numbered existing edition of a permanent dataset
applies to all subsequent editions of that dataset. To
obtain write permission, you must also have unique access
(UQ) to that dataset. The default is no write control word.

SR-0011 O

M=mn Maintenance control word; 1 to 8 alphanumeric characters.
The maintenance control word must be specified if a
subsequent edition of the same permanent dataset is saved.
The default is no maintenance control word.

UQ Unique access. If the UQ parameter is specified, only this
job can access the permanent dataset at the completion of
the SAVE function. Otherwise, multiple-user read access to
the permanent dataset is granted.

NA No abort. If this parameter is omitted, an error causes the
job to abort.

ERR Error message. If this parameter is specified, error
termination messages are suppressed.

MSG Termination message. If MSG is specified, normal
termination messages are suppressed.

EX0=ON Execute-only dataset. This parameter sets or clears the
OFF execute-only status of the dataset. EXO only or EXO=ON
causes the dataset to be saved as execute-only. EXO=0FF or
omission of this parameter causes the dataset to be saved
as nonexecute-only dataset. When EXO=ON has been
specified, it overrides permitted and public access modes.

PAM=mode Public access mode. The following options are allowed:

Option Mode
E Execute only
M Maintenance only
N No public access allowed
R Read only
W Write only

Your site controls the default PAM value.

Combinations of R, W, and M permissions are allowed; for
example, PAM=R:W gives both read and write permissions.
PAM=E has the same effect as the EXO or EXO=ON parameter and
nullifies any other permissions specified.

If the dataset is to be used for a segmented load with
SEGLDR, use PAM=R (rather than PAM=E) to enable SEGLDR to
read the dataset.

ADN=zadn(m)
Name of the attributes dataset from which attributes,
indicated by the modifier m, are selected. If no
modifiers are present, all attributes are selected.
Attribute parameters such as NOTES=, TEXT=, PAM=, R=, and so

SR-0011 O 9-23

ADN=adn(m)

(continued) on, take precedence over the modifiers. adn must be the

local dataset name of a permanent dataset. The modifiers
must be enclosed with parentheses and separated by colons.
The following modifiers are supported:

Modifier Selection from Attributes Dataset

ALL All attributes

CW Control words

NOTES Notes attribute

PAM Public access mode attribute

PERMITS Permit list

TEXT Text attribute

TRACK Public access tracking attribute
TA=opt Track accesses. opt can be either YES or NO and

indicates whether the owner requires that public accesses
to the dataset be tracked. Refer to section 6 for a
description of public access and access tracking. The
default TA value is NO.

TEXT=text Text to be passed to a front-end computer system requesting

transfer of the dataset. A maximum of 240 characters can
be specified. This text information is considered an
attribute of the dataset and is retained along with any
other attributes. Refer to section 6 for an explanation of
all permanent dataset attributes.

NOTES=notes

Notes to be associated with the dataset. A maximum of 480
characters can be specified. There is no restriction on
the content of notes. A caret symbol in notes

signifies end-of-line and causes AUDIT to advance to a new
line when listing the notes. The caret symbol is

included in the 480 character maximum limit. notes is a
permanent dataset attribute. Refer to section 6 for an
explanation of all permanent dataset attributes.

ONLINE

The preferred residency of a dataset. ONLINE specifies the
dataset should remain on-line. This option requires the SCRESON
privilege.

OFFLINE specifies the dataset should receive priority when
datasets are selected for migration. The speed with which the
dataset migrates depends on factors such as how often the site
runs space management. This option does not require a privilege.

SR-0011 ©

If RESIDE is not specified, the dataset's selection for
migration is based on site-defined criteria established for
space management,

4 YES
BACKUPT=yq

Dataset backup. YES specifies the dataset should be backed
up after it is created and whenever it is modified. NO
specifies the dataset should not be backed up under any
circumstance. The default is YES.

9.7 EXAMPLES OF PERMANENT DATASET CONTROL STATEMENTS

To clarify the permanent dataset management control statements, some
examples follow:

Example 1:

A user identified as USERXYZ creates a permanent dataset that no other
user can access. All subsequent editions of this dataset share this

attribute.

SAVE,DN=ABC, PDN=EXAMPLE1,ED=1, PAM=N, TA=NO.

Example 2:

A user identified as USERXYZ creates a permanent dataset that can be
accessed by all other users in read mode.

SAVE,DN=XYZ, PDN=EXAMPLE2,ED=1, PAM=R, TA=NO.

Example 3:
An alternate user is accessing the permanent dataset created in example 2.
ACCESS,DN=LOCAL, PDN=EXAMPLE2,ED=1, OWNN=USERXYZ.

The system does not track the alternate user access because the dataset
was created with TA=NO.

+ Deferred implementation

SR-0011 O 9-25

Example 4:

Allow another user (known in this example as USER1) to access the
permanent dataset created in example 1 in read and execute mode only.

PERMIT, PDN=EXAMPLE1,USER=USER1, AM=R:E.

Example 5:

Enable public access tracking for the permanent dataset created in example
2.

ACCESS,DN=LOCAL, PDN=EXAMPLE2,ED=1,UQ.
MODIFY,DN=LOCAL, TA=YES.
Example 6:

Permit write mode access for PDN=EXAMPLE2 to users known as USER2 and
USER3.

PERMIT, PDN=EXAMPLE2 ,USER=USER2, AM=W.
PERMIT, PDN=EXAMPLE2,USER=USER3, AM=W.
Example 7:
Change the permission granted to USER1 in example 4 to AM=W.

PERMIT, PDN=EXAMPLE1l,USER=USER1, AM=W.

Example 8:
Remove the access permission granted to USER1 in example 7.

PERMIT, PDN=EXAMPLE1,USER=USER1,RP.

Example 9:

User USERXYZ acquires a dataset, then permits another user to use it and

subsequently partially deletes the dataset to retain just the PERMITs and

TEXT information. Section 10 discusses the ACQUIRE control statement.
ACQUIRE,DN=EX9,TEXT='.........."',U0Q.

PERMIT , PDN=EX9,USER=SOMEONE, AM=R.
DELETE ,DN=EX9,PARTIAL.

9-26 SR-0011 O

Example 10:

User USERXYZ creates a permits template.

A~

SAVE,DN=EX10, PDN=PERMS,
NOTES='PERMITS TEMPLATE FOR AERO USERS. '
'THESE PERMITS SHOULD BE REMOVED AFTER OCT 31, 1983.°',UQ.
PERMIT, PDN=PERMS, USER=USERA, AM=E.
PERMIT, PDN=PERMS, USER=USERB, AM=R.
PERMIT, PDN=PERMS, USER=USERC, AM=W,
DELETE, DN=EX10, PARTIAL.

Example 11:

User SOMEONE acquires the dataset that was partially deleted in example
9. Section 10 discusses the ACQUIRE control statement.

ACQUIRE, DN=LOCAL, PDN=EX9, ONN=USERXYZ.
The TEXT need not be specified and after the dataset has been acquired

from the front-end computer system, it is made permanent and belongs to
user USERXYZ.

SR-0011 O 9-27

DATASET STAGING CONTROL 10

Staging is the process of transferring COS datasets (jobs and data) from
front-end computer systems to Cray mass storage or vice versa. Dataset
staging control is introduced in section 6.

Three control statements support staging datasets between Cray mass
storage and a front-end system: ACQUIRE, DISPOSE, and FETCH. Another
control statement, SUBMIT, directs datasets to the COS input queue.

Control Statement Function

ACQUIRE Makes a front-end resident dataset permanent and
accessible to the job making the request

DISPOSE Directs a dataset to the COS output queue for
staging to a specified front-end computer system

FETCH Makes a dataset that resides on a front-end
computer system local to the COS job

SUBMIT Directs a dataset to the COS input queue

10.1 ACQUIRE - ACQUIRE PERMANENT DATASET

The ACQUIRE control statement converts a front-end resident dataset into
a permanent dataset so that it is accessible to the job making the
request. ACQUIRE is a system verb.

When an ACQUIRE control statement is issued, COS determines if the
requested dataset is resident on the front end or permanently resident on
Cray mass storage by checking the system catalogs for a dataset with
matching PDN, ID, ED, and ownership value fields.

If COS determines that the requested dataset is already permanently
resident on Cray mass storage, dataset access is granted to the job

making the request if the user has the appropriate access permissions.

If the requested dataset is not a COS mass storage permanent dataset, the
request for the dataset is sent to the front-end system.

SR-0011 O 10-1

The front-end system stages the dataset to Cray mass storage if the front
end grants the user access. Such access is determined by the front-end
operating system and may be dependent on the contents of the TEXT
information from a FETCH or ACQUIRE control statement, or of a SAVE or
MODIFY control statement preceding a partial DELETE. COS then makes the
dataset permanent on Cray mass storage and grants dataset access to the
job making the request. Until the dataset is made permanent, processing
of the job making the request is delayed.

Format:

ACQUIRE,DN=dn,PDN=pdn,AC=ac, ID=uid,ED=ed,RT=rt,R=rd,W=wt,M=mn,UQ,

TEXT=text,MF=mf,TID=tid,DF=df,OWN=0ov, PAM=mode, ADN=adn(m),

ONLINE YES
TA=opt,NOTES=notes, ERR,MSG, RESIDE=gpp 1NE - BACKUP=yo .

DN=dn Local dataset name; begins with A-Z, §, @, or %, followed
by 1 to 6 alphanumeric characters. The name the job will
use to refer to the dataset while it remains local to the
job. DN is a required parameter.

PDN=pdn Name of the COS permanent dataset to be accessed or
staged from a front-end system, saved, and accessed. The
permanent dataset name is passed to the front-end system;
it is the name saved by the system if the dataset is
staged. pdn is 1 to 15 alphanumeric characters assigned
by the dataset creator. The default for pdn is dn.

AC=ac Acquisition code. The source from which the dataset is to
be acquired. If the AC parameter is omitted, the default
is ST.

ac is a 2-character alphanumeric code describing the
source of the dataset as follows:

IN Input (job) dataset. Use the SUBMIT control
statement to run the job.

IT 1Intertask communication

MT Magnetic tape at the front end designated by the MF
parameter

ST Staged dataset from the front end designated by the
MF parameter

10-2 SR-0011

ID=uid

ED=ed

RT=rt

W=wt

M=mn

uQ

SR-0011 O

NOTE

The dataset acquisitions previously noted
are by convention only. Actual dataset
acquisition is determined by the front end.

Additional user identification, 1 to 8 alphanumeric
characters assigned by the dataset creator. The default is
no user 1ID.

Edition number. A value from 1 to 4095 assigned by the
dataset creator. The default value is one of the following:

¢ 1, if a permanent dataset with the same PDN and ID
does not currently exist

¢ The current highest edition number of that dataset if
the permanent dataset with the specified PDN and ID
does exist

Retention period. User-defined value from 1 through 4095
specifying the number of days a permanent dataset is to be
retained by the system. The default value is an
site-defined parameter.

Read control word. 1 to 8 alphanumeric characters assigned
by the dataset creator. The default is no read control
word.

Write control word. 1 to 8 alphanumeric characters
assigned by the dataset creator. The default is no write
control word.

Maintenance control word. 1 to 8 alphanumeric characters
assigned by the dataset creator. The control word must be
specified if a subsequent edition of the permanent dataset
is saved and the previous editions have an associated
maintenance control word.

Unique access. If the UQ parameter is specified, the job
is granted unique access to the permanent dataset;
otherwise, multiple-user read access to the permanent
dataset is granted. If no staging is performed because the
dataset already exists, write, maintenance, and/or read
permission can be granted if the appropriate read, write,
and/or maintenance control words are specified.

10-3

TEXT=text Text to be passed to a front-end computer system
requesting transfer of the dataset. A maximum of 240
characters can be specified. This text information is
considered an attribute of the dataset and is retained
along with any other attributes. See section 6 for an
explanation of all permanent dataset attributes.

MF =mf Identifier for the front-end computer. Two alphanumeric
characters. The default is the front end on which the job
originated.

TID=tid Terminal identifier. 1 to 8 alphanumeric characters
identifying the destination terminal. The default terminal
is the terminal where the job originated.

DF=df Dataset format. This parameter defines whether a dataset
is to be presented to the Cray computer system (see the
FETCH control statement) in COS blocked format and whether
the front-end system is to perform character conversion.
The default is CB.

df is a 2-character alphanumeric code defined for use on
the front-end system. CRI suggests support of the
following codes:

BB Binary blocked. The front-end system blocks the
dataset before staging but does not do character
conversion.

BD Binary deblocked. The front-end system does not
perform character conversion. For ACQUIRE, BD is the
same as TR.

CB Character blocked. The front-end system blocks the
dataset before staging and performs character
conversion to ASCII, if necessary.

CD Character deblocked. The front-end system performs
character conversion to ASCII, if necessary.

TR Transparent. No blocking/deblocking or character
conversion is performed.

OWN=oV Ownership value. If the OWN parameter is specified and the
user has been granted access by the owner, the dataset is
made local to the job. OWN is ignored if ov matches the
active ownership value of the job (users need not be
permitted to their own datasets).

10-4 SR-0011 O

PAM=mode Public access mode. The following options are allowed:

Option Mode
E Execute only
M Maintenance only
N No public access allowed
R Read only
W Write only

Combinations of R, W, and M permissions are allowed; for
example, PAM=R:W gives both read and write permissions.
Note that PAM=E has the same effect as the EXO or EXO=ON
parameter and nullifies any other permissions specified.
Each installation controls the default PAM value.

ADN=adn(m)
Name of attributes dataset from which attributes, indicated
by the modifiers m, are selected. If no modifiers are
present, then all attributes are selected. Attribute
parameters such as NOTES=, TEXT= and PAM=, and R= take
precedence over the modifiers. adn must be the local
dataset name of an accessed permanent dataset. The
modifiers must be enclosed with parentheses and separated
by colons. The following modifiers are supported:

Modifier Selection from Attributes Dataset
ALL All attributes
Cw Control words
NOTES Notes attribute
PAM Public access mode attribute
PERMITS Permit list
TEXT Text attribute
TRACK Public access tracking attribute
TA=opt Track accesses. opt can be either YES or NO and indicates

whether the owner requires that public accesses to the
dataset be tracked. See section 6 for a description of
public access and access tracking. The default TA value is
NO.

NOTES=notes
Notes to be associated with the dataset. A maximum of 480
characters can be specified. There is no other restriction
on the content of notes. A caret symbol in notes signifies
end-of-line and causes AUDIT to advance to a new line when
listing the notes. The caret symbol is included in the 480
character maximum limit. notes is a permanent dataset
attribute. Refer to section 6 for an explanation of all
permanent dataset attributes.

SR-0011 O 10-5

10.2

ERR Error message. If this parameter is specified, error
termination messages are suppressed.

MSG Termination message. Normal termination messages are
suppressed when MSG is specified.

ONLINE

The preferred residency of a dataset. ONLINE specifies the

dataset should remain on-line. This option requires the
SCRESON privilege.

OFFLINE specifies the dataset should receive priority when
datasets are selected for migration. The speed with which
the dataset migrates depends on factors such as how often
the site runs space management. This option does not
require a privilege.

If RESIDE is not specified, the dataset's selection for
migration is based on site-defined criteria established for
space management.

4 YES
BACKUPT=yq

Dataset backup. YES specifies the dataset should be backed
up after it is created and whenever it is modified. NO
specifies the dataset should not be backed up under any
circumstance. A dataset with no backup may be subject to
rules defined by the site, especially regarding retention
time. The default is YES.

DISPOSE - DISPOSE DATASET

The DISPOSE control statement directs a dataset to the COS output queue
for staging to a specified front-end computer system. You can also use
DISPOSE to alter the effects of a previous DISPOSE,DEFER of the same
dataset.

Defining the DISPOSE characteristics can be done before the actual
staging by using the DEFER parameter. The DEFER parameter saves all
selected dispose parameters for use when the dataset is released, which
is when the actual staging is initiated. DISPOSE is a system verb.

+ Deferred implementation

10-6

SR-0011 O

Format:

DISPOSE,DN=dn, SDN=sdn,DC=dc,DF=df ,MF=mf ,SF=sf,ID=uid,TID=tid,

ED=ed,RT=rt,R=rd,W=wt,M=mn, TEXT=text,WAIT, NOWAIT, DEFER, NRLS.

DN=dn

SDN=sdn

DC=dc¢

SR-0011 O

Local dataset name. Name by which the dataset is known to
the user job. DN is a required parameter.

Staged dataset name. 1- to 15-character name by which the
dataset is to be known at the destination front end. The
default for sdn is dn.

Disposition code. Disposition to be made of the dataset.
If the DC parameter is omitted, the default is PR (print).

dc¢ is a 2-character alphanumeric code describing the
destination of the dataset as follows:

IN Input (job) dataset. Dataset is queued as a job on
the mainframe specified with the MF parameter.

IT Intertask communication

MT Write dataset on magnetic tape at the front end
designated by the MF parameter.

PR Print dataset. Dataset is printed on a printer
available at the front end designated by the MF
parameter.

PT Plot dataset. Dataset is plotted on any available
plotter at the front end designated by the MF
parameter.

PU Punch dataset. Dataset is punched on any card punch
available at the front end designated by the MF
parameter.

SC Scratch dataset. Dataset is released, unless another
DISPOSE request is still pending on the dataset.
This parameter has the same effect as RELEASE,DN=dn.

ST Stage to front end. Dataset is made permanent at the
front end designated by the MF parameter.

VC Station-specific code. Refer to station
documentation for more information.

10-7

10-8

DF=df

NOTE

The dataset dispositions previously noted
are by convention only. With the exception
of SC, actual dataset disposition is
determined by the destination front end.

Dataset format. This parameter defines whether a dataset
is sent from the Cray computer system in COS-blocked format
and whether the front-end system is to perform character
conversion. The default is CB (character blocked).

For example, a user wishes to save a dataset on magnetic
tape in blocked binary as it appears on COS mass storage.
In this case, BB is specified. A user who wants a dataset
printed can specify CB if the front-end computer handles
deblocking.

df is a 2-character alphanumeric code defined for use on
the front-end system. CRI suggests support of the
following codes listed below. Other codes can be added by
the local site. Undefined pairs of characters can be
passed but are treated as transparent mode by COS.

BB Binary blocked. The front-end system does not
perform character conversion. The Cray mainframe
does not perform deblocking before staging. The
front-end system is expected to perform deblocking.

BD Binary deblocked. The front-end system does not
perform character conversion. For DISPOSE, BD is the
same as TR.

CB Character blocked. No deblocking is performed at the
Cray mainframe before staging. The front-end system
performs deblocking and character conversion from
8-bit ASCII, if necessary.

CD Character deblocked. The front-end system performs
character conversion from 8-bit ASCII, if necessary.

TR Transparent. No blocking, deblocking, or character
conversion is performed.

SR-0011 O

MF =mf

SF=sf

ID=uid

TID=tid

ED=ed

RT=rt

W=wt

TEXT=text

SR-0011 O

Front-end computer identifier; 2 alphanumeric characters.
Identifies the front end to which the dataset is to be
staged. If omitted, the front end where the issuing job
originated is used. If MF is given a value of the ID of
the Cray mainframe on which the job is running and DC=IN,
an error message is issued and the job step is aborted (see
the SUBMIT control statement in subsection 10.4).

Special form information to be passed to the front-end
system. 1 to 8 alphanumeric characters. SF is defined by
the needs of the front-end system.

Additional user identification. 1 to 8 alphanumeric
characters assigned by the dataset creator. The default is
no user ID.

Terminal identifier. 1 to 8 alphanumeric characters
identifying the destination terminal. The default
terminal is the terminal where the job originated, where
applicable.

Edition number, meaningful only if DC=ST. A user-defined
value from 1 through 4095. The default value depends on
the destination front end.

Retention period, meaningful only if DC=ST. A user-defined
value from 1 through 4095 specifying the number of days a
dataset is to be retained by the destination front end.

The default value depends on the destination front end.

Read control word, meaningful only if DC=ST. 1 to 8
alphanumeric characters. The default is no read control
word.

Write control word, meaningful only if DC=ST. 1 to 8
alphanumeric characters. The default is no write control
word.

Maintenance control word, meaningful only if DC=ST. 1 to 8
alphanumeric characters. The default is no maintenance
control word.

Text to be passed to the front-end system requesting
transfer of a dataset. The format for TEXT is defined by
the front-end system for managing its own datasets or
files. Typically, text is in the form of one or more
control statements for the front-end system; these
statements must contain their own terminator for the front
end. text cannot exceed 240 characters.

10-9

WAIT

NOWAIT

DEFER

NRLS

NOTE

text specified on the DISPOSE control
statement is not the same as the permanent
dataset text attribute. Any text

existing as a permanent dataset attribute is
ignored by DISPOSE (refer to section 6 for
more information).

Job wait. When this parameter is specified, the job does
not resume processing until the disposed dataset has been
staged to the front-end system. If the front-end system
cancels the transfer, the waiting job is aborted and job
step abort processing occurs as described in section 3. If
WAIT is not specified, processing can resume immediately
upon issue of the DISPOSE, depending upon an installation
option. The WAIT parameter is useful in detecting
unsuccessful transfers.

When this parameter is specified, the job does not wait
until the dataset has been staged to the front-end system
but resumes processing immediately. If the front-end
system cancels the transfer, no special action is taken;
that is, the job is not aborted. If neither WAIT or NOWAIT
are specified, processing can resume immediately upon issue
of the DISPOSE, depending upon an installation option.

When this parameter is specified, the disposition occurs
when the dataset is released either by a RELEASE request or
job termination. The disposition characteristics are saved
and used when the dataset is released.

No release. When this parameter is specified, the dataset
remains local to the job after the DISPOSE request has been
processed. When NRLS is specified, the dataset cannot be
written to until the transfer to the specified front end is
completed. Therefore, it is advisable to use WAIT with
NRLS.

10.3 FETCH - FETCH LOCAL DATASET

The FETCH control statement makes a dataset that resides on a front-end
computer system local to the COS job. The dataset is transferred from
the front-end computer system if the front-end system grants access to the

10-10

SR-0011 O

dataset. The dataset is not made permanent on the Cray computer system.
The originating job is delayed until the dataset arrives on Cray mass
storage.

Format:

FETCH,DN=dn, SDN=sdn, AC=ac, TEXT=text ,MF=mf, TID=t id,

DF=df,SF=sf.

DN=dn Local dataset name. The name the job will use to refer to
the dataset while it remains local to the job; 1 to 7
alphanumeric characters, the first of which is A through 2Z,
$, @, or %. DN is a required parameter.

SDN=sdn Staged dataset name. Name by which the dataset is known on
the front end; 1 to 15 alphanumeric characters. The
default for sdn is dn.

AC=ac Acquisition code. The source from which the dataset is to
be acquired. If the AC parameter is omitted, the default
is ST (staged dataset).

ac is a 2-character alphanumeric code describing the
source of the dataset as follows:

IN Input (job) dataset. Use the SUBMIT control
statement to run the job.

IT Intertask communication

MT Magnetic tape at the front end designated by the MF
parameter

ST Staged dataset from the front end designated by the
MF parameter

NOTE

The dataset acquisitions previously noted
are by convention only. Actual dataset
acquisition is determined by the front end.

SR-0011 O 10-11

TEXT=text Text to be passed to the front-end system requesting
transfer of a dataset. The format for TEXT is defined by
the front-end system for managing its own datasets or
files. Typically, text is in the form of one or more
control statements for the front-end system; these
statements must contain their own terminator for the front
end. text cannot exceed 240 characters.

MF=mf Mainframe computer identifier. 2 alphanumeric characters.
The default is the front end of job origin.

TID=tid Terminal identifier. 1 to 8 characters identifying the
destination terminal. The default is the terminal where
the job originated.

DF=df Dataset format. This parameter defines whether a dataset
is sent from the Cray computer system (see the FETCH
control statement) in COS blocked format and whether the
front-end system is to perform character conversion. The
default is CB (character blocked).

For example, a user who wishes to save a dataset on
magnetic tape in blocked binary as it appears on COS mass
storage can specify BB. A user who wants a dataset printed
can specify CB if the front-end computer handles deblocking.

Other codes can be added by the local site. Undefined
pairs of characters can be passed but are treated as
transparent mode by COS.

df is a 2-character alphanumeric code defined for use on
the station. CRI suggests support of the following codes:

BB Binary blocked. The front-end system blocks the
dataset before staging but does not do character
conversion.

BD Binary deblocked. The front-end system does not
perform character conversion. For FETCH, BD is the
same as TR.

CB Character blocked. The front-end system blocks the
dataset before staging and performs character

conversion to 8-bit ASCII, if necessary.

CD Character deblocked. The front-end system performs
character conversion to 8-bit ASCII, if necessary.

TR Transparent. No blocking, deblocking or character
conversion is performed.

10-12 SR-0011 O

DF=4f
(continued)

SF=sf

Other codes can be added by the local site. Undefined
Pairs of characters can be passed but are treated as
transparent mode by COS.

Special form information to be passed to the front-end
system. 1 to 8 alphanumeric characters. SF is defined by
the needs of the front-end system.

10.4 SUBMIT - SUBMIT JOB DATASET

The SUBMIT control statement is used by one job to direct another dataset
(which must have the structure of a job dataset as defined in section 3)
to the COS input queue. The job that is submitted executes independently
of the submitting job. SUBMIT is a system verb.

Format:

| SUBMIT,DN=dn,SID=sf,DID=df,TID=tid, DEFER,NRLS. |

DN=dn

SID=sf

DID=df

TID=tid

SR-0011 O

Local dataset name. Must be a valid local dataset name.
DN is a required parameter.

Default source identifier; 2 alphanumeric characters. If
an MF parameter is not specified in an ACQUIRE or FETCH
control statement within the submitted job, the SID
parameter defines the default front-end system for the
dataset to be acquired. If the MF and SID parameters are
omitted, the default source identifier of the submitting
job is used.

Default destination identifier; 2 alphanumeric characters.
If an MF parameter is not specified in a DISPOSE control
statement within the submitted job, the DID parameter
defines the default destination front-end system for the
dataset to be disposed. If the MF and DID parameters are
omitted, the default destination identifier of the
submitting job is used.

Default terminal identifier; 1 to 8 alphanumeric characters
that define the default terminal ID for the submitted job.
If TID is omitted, the terminal ID of the submitting job is
used.

10-13

DEFER Deferred submit. This parameter causes the SUBMIT
characteristics to be defined, with a release of the
dataset actually initiating the submit of the dataset. If
DEFER is omitted, the SUBMIT occurs immediately.

NRLS No release. This parameter indicates if the dataset is to
remain local to the job after SUBMIT has been processed.
If NRLS is omitted, the dataset is released after the
SUBMIT. If NRLS is selected, the dataset remains local to
the job after the SUBMIT and is available for reading only.

10-14 SR-0011 O

PERMANENT DATASET UTILITIES 11

The following utility routines support permanent datasets:

Utility

Function

AUDIT

PDSDUMP

PDSLOAD

RESTORE

RETIRE

Produces a report containing status information for each
permanent dataset. AUDIT does not include input or
output datasets.

Dumps all specified permanent datasets to a
user-specified dataset. Input and output datasets can be
included in the dump.

Loads permanent datasets that have been dumped by PDSDUMP
and updates or regenerates the Dataset Catalog (DSC).
Input and output datasets are also loaded through PDSLOAD.

Recalls retired or migrated datasets to on-line disk

Declares a dataset retired

All of the permanent dataset utilities permit a shorthand notation for
the arguments to the PDN (or PDS), ID, US, and OWN parameters. Using
this notation, a dash represents any number of characters or no
characters and an asterisk represents any one character.

Examples:

Notation

Description

PDN=ABC-

PDN=A***

PDN=-A%—

PDN=-

PDN =k _

SR-0011 O

Lists all permanent dataset names beginning with ABC

Lists all 4-character permanent dataset names beginning
with A

Lists all permanent dataset names containing the letter A
followed by one or more other characters

Lists all permanent dataset names

Lists all permanent dataset names having three or more
characters

11-1

When permanent dataset privacy is enabled, callers of these utilities are
limited to actions on their own datasets unless the CW parameter is
present on the control statement. The OWN and NOWN parameters cannot be
specified unless CW is also specified. When privacy is enabled, the US
value from the JOB or ACCOUNT control statement is an implied dataset
selection criterion, unless the CW parameter is present. When privacy is
not enabled, the US value from the JOB or ACCOUNT control statement is
not used as a selection criterion. CW must be specified if US or OWN is
specified on the permanent dataset utility control statement.

11.1 AUDIT - AUDIT PERMANENT DATASETS

The AUDIT utility reports the status of all the permanent datasets known
to the system. AUDIT does not include input and output datasets.

If more than one parameter is selected, only those datasets that meet all
criteria are listed.

AUDIT can supply the following information on the output listing:

Permanent dataset name
Dataset identifier
Edition number

User identifications
Dataset size in words
Retention time

Number of accesses

Public access mode

Total block count

Track access flag setting
Creation date/time

Last dump date/time

Last access date/time
Last modification date/time
Device name

note information

text information
Permitted users

Access counts by user
Number of datasets selected
Current residency
Preferred residency

® O & & & 6 6 0 0 ¢ 0 0 0 0 0 0 0 O 0 O 0 o0

11-2 SR-0011 O

Format:

AUDIT,L=1dn,B=bdn, PDN=pdn, ID=uid,US=usn,ACN=acn,DV=dvn, SZ=dsz,
ACC=opt:opt,X=mm/dd/yy: 'hh:mm:ss',TCR=mm/dd/yy:"'hh:mm:ss"',
TLA=mm/dd/yy: 'hh:mm:ss',TLM=mm/dd/yy: 'hh:mm:ss"',CW=cw,

OWN=o0v,LO=0opt:...opt,BO=opt:...opt.

— L=1dn

B=bdn

PDN:pdn

ID=uid

US=usn

ACN=acn

— DV=dvn

SZ=dsz

Lists dataset name; default is $OUT.

Name of dataset to receive the binary output. If B is
specified alone, the dataset is $BINAUD. If the B
parameter is omitted, no binary output is written.

Name of permanent dataset or datasets to be listed

Lists all permanent datasets with the specified additional
user identification. The default is to list all IDs. If
ID is present without an equated value, datasets having a
null ID are selected.

Lists all permanent datasets with the specified user
number. The default is to list all user numbers.

Ligts all permanent datasets with the specified account
number. The default is to list datasets without respect to
account number.

Lists all permanent datasets on the specified logical
device. The default is to list permanent datasets on all
devices.

Lists all permanent datasets greater than or equal to the
specified size. Size is specified in words. The default
is to 1list all sizes.

ACC=opt:opt

SR-0011 O

Access option parameters. The options are as follows:

AM Lists only those datasets belonging to OWN that have
an explicit permit for the job's ownership value

PAM Lists only those datasets belonging to OWN that
have any form of public access (R:W:M:E)

11-3

If the OWN parameter is omitted, all datasets are searched
for the permit or public access. If the CW parameter is
specified, the AM includes any permit for any owner value.
If the OWN parameter is specified and the CW and ACC
parameters are omitted, AUDIT assumes the ACC=AM:PAM
parameter on the control statement.

X=mm/dd/yy: 'hh:mm:ss’
Lists all permanent datasets expired as of the specified
mm/dd/yy:'hh:mm:ss'. mm/dd/yy can be
specified alone. The default expiration date and time are
"now" if only X is specified.

TCR=mm/dd/yy: 'hh:mm:ss"'
Lists all permanent datasets that have been created since
the specified mm/dd/yy:'hh:mm:ss'. The keyword
cannot be specified alone; however, TCR=mm/dd/yy is
sufficient.

TLA=mm/dd/yy: ' hh:mm:ss'
Lists all permanent datasets that have not been accessed
since the specified mm/dd/yy:'hh:mm:ss'. The keyword
cannot be specified alone; however, TLA=mm/dd/yy is
sufficient.

TLM=mm/dd/yy: 'hh:mm:ss'
Lists all permanent datasets that have been modified since
the specified mm/dd/yy: 'hh:mm:ss'. The keyword cannot be
specified alone; however, TLM=mm/dd/yy is sufficient.

CW=cw Site-defined control word regulating the use of AUDIT. If
the CW parameter is omitted, only the datasets belonging to
the job owner can be listed. If the CW parameter is
present and the correct control word is used, any dataset
can be listed. If an invalid control word is given, the
job step is aborted. When the CW and ACC parameters are
omitted, but the OWN parameter is specified, AUDIT assumes
the ACC=AM:PAM parameter on the control statement.

OWN=0V Lists all permanent datasets with the specified ownership
value. If OWN is not specified, the job's ownership value
is used.

Output formatting parameters are the following:

LO=opt:...opt
Listing option selection. S is the default for interactive
jobs; L, for batch. The S option cannot be mixed with any
others.

The following options can be specified alone or in
combination separated by colons:

11-4 SR-0011 O

LO=opt:...opt
(continued) A

BO=opt:...opt

Access tracking. 1Includes accessing owner name,
access count, time of last access, and time of first
access.

Backup. Reports the tape volume names on which the
current back-up copy resides, the number of space
management deletions and reloads, and the status of
internal flags indicating whether the dataset is a
candidate for backup or recall. Also specify the CW
parameter if this option is used.

Long list. Consists of PDN, ID, ED, size in words,
retention time, access count, track access flag,
public access mode (PAM), creation, last access, last
modification, last dump time, device name, preferred
residency (PR), and current residency (CR). L is used
for batch jobs when LO is not specified. It lists
information for on-line or migrated datasets only.

Notes list. Displays the dataset catalog notes
field.

Permit list. 1Includes permitted owner name, access
mode, access count, time of last access, and time of
permit creation.

Retired datasets listing. Consists of the same
categories of information as LO=L but for retired
datasets only.

Short list. 1Includes PDN, ID, and ED listed two per
line. This is used for interactive jobs when LO is
not specified.

Text list. Displays the dataset catalog text field.

Extended long list. Includes everything in the long
list (L) plus an indication of the dataset's allocated
(ALLOC) size (shown immediately below the dataset's
size (SZ)). The extended long list also includes a
line immediately below the dataset size summary that
gives the number of blocks and words allocated.

Binary audit options. These options specify what
additional information, if any, is to be added to the
standard binary audit file. They are ignored without
comment unless a binary audit is requested by the B
parameter. If more than one option is desired, separate
them with colons. The options are as follows:

SR-0011 O

11-5

BO=opt:...opt
(continued) A

Access tracking. Generates one record for each
accessing user for each selected dataset.

Backup. Reports the tape volume name(s) on which the
current back-up copy resides, the number of space
management deletions and reloads, and the status of
internal flags indicating whether the dataset is a
candidate for backup or recall. The CW parameter must
be specified if this option is used.

Notes. Generates one record for each selected dataset
that has notes.

Permits. Generates one permit record for each
permitted user for each selected dataset.

Retired datasets listing. Consists of PDN, ID, ED,
size in words, retention time, access count, track
access flag, PAM, creation, last access, last
modification, last dump time, device name, PR, and CR.

Text. Generates one record for each selected dataset
that has text.

Adds a field to the regular binary audit record
indicating the allocated word size of the dataset.
This is the same value as the ALLOC field on the LO=X
output.

Figures 11-1 through 11-6 show some of the LO options as they appear when
the listing is directed to a mass storage dataset. Interactive reports
omit the page header line. Systems in which the Permanent Dataset
Privacy feature is not enabled suppress the owner line unless OWN is used
as a control statement parameter.

11-6

SR-0011 O

AUDIT
OWN = TNG
PDN

"DIANE"
DATA
DATA1234
ENG.SCORES
NDAT

NEWL 1B
OBJECT

SDCVALUES_V1

VOTE

CO0S 1.16

1D

U1520
u1520
U1520
U1520
U1520
u1520
u1520
U1520
U1520

18 DATASETS,
L DATASETS,
14 DATASETS,

03/23/87
ED PDN
1 "GOTCHA"
7 DATA
2 DI
1 LETEM
8 NEWDATA
1 NLIB
6 OO0PS. 34
1 TEST
1 WHATISIT
34 BLOCKS,
6 BLOCKS,
28 BLOCKS,

Figure 11-1.

PERMITTED USERS FOR PDN = DI

USER

TNG1520

TNG12

AM ACC
RWM 0
RWM 0

AUDIT, LO=S Listing

LAST ACCESS

NO REQUESTED INFO FOUND FOR PDN = ENG.SCORES

PERMITTED USERS FOR PDN =

USER

U1520
TNGOO
TNG99
RJJ

SR-0011 O

LETEM

AM ACC
RM 0
N 0
E 0
RWM 0

Figure 11-2.

LAST ACCESS

AUDIT, LO=P Listing

14:30:09

ID

U1520
u1520
u1520
u1520
Uu1520
U1520
u1520
u1520
u1520

13217 WORDS
3072 WORDS ARE ONLINE
10145 WORDS ARE OFFLINE

ID = U1520

PAGE

m
Q

—
- ad \) = O = O~

ED =

CREATED

03/18/87
03/18/87

ID = U1520

ID = U1520

15:19:08
15:24:58

ED =

ED =

CREATED

11/04/86
03/23/87
11/04/86
03/23/87

11:32:31
12:29:53
11:32:33
11:35:51

1540

1541

11-7

DEVICE

LAST

LAST

LAST

CREATED ACCESSED MODIFIED DUMPED

ENG. SCORES
527

LETEM
0

ED
ACC TA PAM
1520 1
3
1520 1
34 N M

PERMITTED USERS:

USER

U1520
TNGOO
TNG99
RJJ

NOTES:

11/04/86 01/23/87
14:03:12 11:55:22

10/30/86 03/23/87
14:20:27 13:36:28

LAST ACCESS

These are permits to beused in exercise 4

566

NEWDATA
532

NEWLIB
1024

NLIB
512

OBJECT
633

OOPS. 34
512

SDCVALUES V1

11-8

45

45

45

u5

us5

45

U1520

u1520

u1520

U1520

u1520

u1520

Figure 11-3.

23 N N

20

N

N

N

10

Figure 11-4.

16:59:04

01/06/87
16:40:12

10:37:20

03/18/87
16:19:43

01/08/87
11:04:09

11/06/86
17:13:09

03/12/87
15:29:51

01/06/87
16:04: 34

06/18/86

01/23/87
11:26:51

03/19/87
16:51:19

03/19/87
13:12:49

03/23/87
12:47:46

01/23/87

AUDIT, LO=L:P:N Listing

AUDIT, LO=L Listing

CR PR
o1/2u/87
02:36:45 MIG NO
03/14/87 39-1-36A
02:14:22 ON NO
CREATED
11/04/86 11:32:31
03/23/87 12:29:53
11/04/86 11:32:33
03/23/87 11:35:51
1542
02:35:17 MIG NO
01/06/87 02/21/87
16:40:15 01:45:21 MIG NO
01/24/87
02:36:43 MIG NO
03/21/87 u49-1-31A
01:39:56 NO
03/21/87
01:38:06 MIG NO
01/19/87 01/24/87 39-1-36A
15:27:43 02:36:19 NO
01/23/87 01/24/87
1543
SR-0011 O

DI ID = U1520 ED = 1

NO REQUESTED INFO FOUND FOR PDN

NO REQUESTED INFO FOUND FOR PDN = ENG.SCORES ID = U1520 ED = 1

NOTES FOR PDN = LETEM 1D = U1520 ED = 1

These are permits to beused in exercise 4
1544
Figure 11-5. AUDIT, LO=N Listing
1024 L5 4N N 11:04:09 11:26:51 02:36:43 MIG NO
R TP SRR R L —_
s s 0w w ! 13(35088 S8la3es 0173575 “on' "N
S T T R L AL 0138706 mic wo
O e s P SHBYST SHEVAS B AN
A A T TR AL AL 02133154 Rer o
1815

Figure 11-6. AUDIT, LO=L:R Listing

11.2 PDSDUMP - DUMP PERMANENT DATASETS

PDSDUMP dumps specified permanent datasets to another dataset that can
then be saved or staged to a station. Datasets that have the following
characteristics or conditions cannot be dumped:

Execute-only dataset

Dataset allocation conflict

Catastrophic dataset error

Inconsistent dataset allocation

Device on which the dataset resides is down

Inactive dataset entry in the COS Queued Dataset Table (QDT)
Retired or migrated dataset

o & &6 0 0 0 o

When dumping to a tape dataset, the recording format for the tape dataset
must be transparent (for example, DF=TR on ACCESS statement). If the
dataset is recorded in interchange format, loading of the dumped datasets
cannot be performed.

SR-0011 O 11-9

-

PDSDUMP produces a listing (refer to figure 11-7) on $OUT identifying the
datasets dumped or bypassed and summarizing the dump run. The date and
time in the heading line refer to the time when the dQump run started.

The permanent dataset name, edition number, ID, and user number are
extracted from the DSC entry for each dataset selected. Each message is
followed by the notation DUMPED, DUMPED AND DELETED, or NOT DUMPED. The
notation NOT DUMPED indicates the dataset was selected but could not be
accessed for dumping. A user logfile message further explains the
problem encountered.

Format:

PDN
PDSDUMP,DN=dn, DV=1dv, ppg=pdn, ED=ed, CW=cw, ID=uid, US=usn, OWN=0V,
INC=mm/dd/yy: 'hh:mm:ss',ARC=mm/dd/yy: 'hh:mm:ss’',

TS=-o0pt.X,C,D,B,SO,I,0,S.

DN=dn Name of dataset to which dump is written. The default is
$PDS. Multiple dumps to a dataset are possible; if the
dataset specified already exists, the dump is appended to
it.

DV=1dv Dumps all datasets residing on logical device 1dv.
Currently only one Idv can be specified. (By default,
all permanent datasets that could be specified by the
parameters are dumped.) Datasets can be limited by the B
parameter.

PDN
PDS=pdn Dumps all editions of the specified permanent dataset.

Editions can be limited by ED parameter.

ED=ed Edition number of permanent dataset dumped; meaningful
only if PDS parameter is specified.f

CW=cw Site-defined control word regulating use of PDSDUMP. If
the CW parameter is omitted, only the datasets belonging to
the job owner can be dumped. If the CW parameter is
present and the correct control word is used, any dataset
can be dumped. If an invalid control word is given, the
job step is aborted.

ID=uid Dumps all datasets with additional user identification as
specified. If ID is specified without a value, all
datasets that meet the rest of the criteria and have a null
ID are dumped.

11-10 SR-0011 O

Us=usn Dumps all datasets with specified user numbert
OWN=o0vV Dumps all datasets with specified ownership valuet

INC=mm/dd/yy: ' hh:mm:ss"'
Incremental dump. Dumps only datasets modified since the
specified date and time.

ARC=mm/dd/yy: 'hh:mm:ss’
Archive datasets. Dumps and deletes datasets, regardless
of the D option, that have not been accessed since the
specified date and time.

TS=opt Time-stamp conversion option. opt may be one of the
following:

CURR Writes time-stamp in whatever format is the
current system default for writing time-stamps
NS Writes time-stamp in nanosecond (new) format
RT Writes time-stamp in real-time clock (0ld) format
SAME Does not convert time-stamp
If TS is not specified, TS=CURR is assumed.

X Dumps expired datasets

C Dumps selected datasets never dumped or datasets modified
or adjusted since the last dump of the dataset

D Deletes datasets that are dumped

B Dumps only datasets that begin on the logical device
specified by the DV parameter

o] Performs selection only (suppress actual dumping or
deletion)

I Dumps system input datasets

6] Dumps system output datasets

S Dumps user permanent datasets

+ By default, all permanent datasets that match the criteria specified
by the parameters are dumped.

SR-0011 O 11-11

NOTE

If none of the I, O, or S parameters is specified, the
input, output, and user permanent datasets are all
dumped. If any of these parameters is specified, only
those datasets of the type specified are dumped.

Multiple calls to PDSDUMP can be made if the dump dataset is to include
several permanent datasets requiring specification of different
parameters.

Example:

PDSDUMP, DN=DUMPA, PDS=LIB1.
PDSDUMP, DN=DUMPA, PDS=LIB2.

This example results in a dataset DUMPA that contains all editions of
LIB1 and all editions of LIB2.

PDSDUMP produces a listing (refer to figure 11-7) on $0OUT identifying the
datasets dumped or bypassed and summarizing the dump run. The date and
time in the heading line refer to the time when the dump run started.

The permanent dataset name, edition number, ID, and user number are
extracted from the DSC entry for each dataset selected. Each message is
followed by the notation DUMPED, DUMPED AND DELETED, or NOT DUMPED. The
notation NOT DUMPED indicates the dataset was selected but could not be
accessed for dumping. A user logfile message further explains the
problem encountered.

When dumping to a tape dataset, the recording format for the tape dataset
must be transparent (for example, DF=TR on ACCESS statement). If the
dataset is recorded in interchange format, loading of the dumped datasets
cannot be performed.

11-12 SR-0011 O

PDSDUMP - PERMANENT DATASET DUMP UTILITY

AUDPL
AUDPL
DSCED
DSCED
TXBUILD
TXBUILD
TXBUILD

ED=0001
ED=0002
ED=0001
ED=0002
ED=0001
ED=0002
ED=0003

LONGDATASETNAME ED=0001
LONGDATASETNAME ED=0002
LONGDATASETNAME ED=0003
LONGDATASETNAME ED=0004

DSBUILD
DSBUILD
DSBUILD
DSBUILD
AUDPL
DSCED
TXBUILD
AUDPL
DSCED

ED=0001
ED=0002
ED=0003
ED=0004
ED=0003
ED=0003
ED=0004
ED=0004
ED=0004

ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT

USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM

20 DATASETS SELECTED FOR DUMPING

DUMP ON 08715785 AT

DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
NOT DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED

14:50:44

Figure 11-7.

11.3 PDSLOAD - LOAD PERMANENT DATASETS

PDSLOAD loads permanent datasets from a dataset created by PDSDUMP.

PDSDUMP Listing

If

any of the permanent datasets already exist on Cray mass storage, they

are reloaded only if the RP parameter is present.

Format:

PDN

PDSLOAD,L:ldn,DN:dn,PDS:pdn,ED:ed,CW:cw,ID=uid,NID=nuid,

US=usn,OWN=0v,NOWN=nov,DV=dvn,RP,CR,A,I,0,S,NA, SO, TLA.

L=1dn

DN=dn

SR-0011 O

Lists dataset name.

Name of the dataset from which permanent datasets

be loaded.

The default is $OUT.

The default is $PDS.

are to

11-13

PDN
PDS=pdn Loads all editions of the specified permanent dataset.

Editions can be limited by the ED parameter.

ED=ed Edition number of the dataset to be loaded; meaningful
only if the PDS parameter is specified.*

CW=cw Installation-defined control word regulating the use of
PDSLOAD. If CW is omitted, only datasets belonging to the
job owner are loaded.

ID=uid Loads all datasets with additional user identification as
specified

NID=nuid Loads selected datasets with new user identification.
This parameter changes the user identification of selected

datasets.
US=usn Loads all datasets with the specified user numbert
OWN=0V Loads all datasets with the specified ownership valuet

NOWN=nov Loads selected datasets to owner nov. This parameter
changes the ownership value of the selected datasets.

DV=dvn Name of logical device the output dataset is assigned
before it is opened. If omitted, COS assigns a device at
open time. If this parameter is specified, the device name
is requested for the output dataset (the one being loaded).
COS can choose not to honor this assignment (for example,
the device might not be available). This parameter is not
involved in selecting a dataset for loading.

RP Replaces a specified existing dataset with the one being
loaded
CR Loads the most current version of a dataset, based on

creation time. This option allows incremental loads to be
performed in any order.

A Loads only active datasets; that is, does not load expired
datasets.

I Loads input datasets

0] Loads output datasets

+ By default, all permanent datasets that could be specified by the
parameters are loaded.

11-14 SR-0011 O

) Loads saved datasets

NOTE

If I, O, or S is not specified, the input,
output, and saved datasets are loaded. If
any one of these parameters is specified,
only the datasets of the type specified are
loaded.

NA Does not abort if there is not a dataset matching the
specifications to load on the $PDS dataset. This parameter
applies only to this situation. It does not prevent any
other abort condition from occurring or offer reprieve
processing of any kind.

SO Performs selection only; suppresses the actual loading of
datasets.
TLA Updates the time of the last access as the time that the

load was performed

PDSLOAD produces a listing on the list dataset that identifies the
datasets loaded or bypassed and summarizing the load run (refer to figure
11-8). The date and time in the heading line refer to the time when the
load run started. The permanent dataset name, edition number, ID, and
user number are extracted from the Permanent Dataset Definition Table
(PDD) for each dataset selected and successfully loaded. Each message is
followed by the notation LOADED or NOT LOADED. The notation NOT LOADED
indicates the dataset was selected but not loaded. An error message
further explains why the dataset was not loaded.

PDSLOAD - PERMANENT DATASET RESTORE UTILITY LOAD ON 01/07/82 AT 17:13:47

ENTIT ED=0001 ID=TAQI USR=SYSTEM LOADED
DSBUILD ED=0001 ID=TAQI USR=SYSTEM LOADED
TXBUILD ED=0001 ID=TAQI USR=SYSTEM LOADED
AUDPL ED=0001 ID=TAQI USR=SYSTEM LOADED
DSCED ED=0001 ID=TAQI USR=SYSTEM LOADED

5 DATASETS SELECTED FOR LOADING

Figure 11-8. PDSLOAD Listing

SR-0011 O 11-15

11.4 RESTORE - RECALL A DATASET TO ON-LINE DISK

RESTORE recalls retired or migrated datasets to on-line disk. The
specified dataset must be present in the Master Catalog and marked as
either "retired" or "migrated" and the user must have maintenance
permission. RESTORE does not make the dataset local to the job.

The arguments for PDN, ID, and OWN can use the notations * to indicate
any one character and - to indicate an arbitrary string of characters.

Format:

I |
| RESTORE,PDN=pdn,ID=id,ED=ed,OWN=0V,M=m, TYPE=type. |

The only required parameter is PDN.

PDN=pdn Permanent dataset name; required parameter. The keyword
cannot appear alone.

ID=1id Permanent dataset ID. If this parameter is omitted or
present without a value, the ID is null,

ED=ed Edition number of the permanent dataset. Options for ed
are as follows:

Specification Meaning
Unsigned integer (ed) The specific edition of the
Example: ED=2 dataset

Negative integer (-ed) All but the ed highest editions
Example: ED=-2

Positive integer (+ed) The ed highest editions
Example: ED=+2

ED=ALL All editions of the dataset

The default is the highest edition.
OWN=0V Owner of the permanent dataset. The default is the job
owner. If the requester is not the dataset owner, the

requester must have maintenance permission.

M=m Maintenance control word. The default is null. M is
required if the dataset has a maintenance control word.

11-16 SR-0011 ©

TYPE=type Dataset type. The type can be RET for a retired
dataset or MIG for a migrated dataset. Only on-line
datasets can be selected for a PDSDUMP. The default is
RET. You can specify both by using RET:MIG.

11.5 RETIRE - RETIRE A DATASET

RETIRE retires a dataset; that is, it moves an on-line or migrated
dataset to backup medium. The dataset to be retired does not have to be
local to the job. A retired dataset is not recalled to on-line disk by
user access or by system or device reload. To recall a retired dataset,
use the RESTORE utility.

The arguments for PDN, ID, and OWN can use the notations * to indicate
any one character and - to indicate an arbitrary string of characters.

Format:

| I
| RETIRE,PDN=pdn,ID=id,ED=ed,OWN=ov,M=m,X. |

The only required parameter is PDN.

PDN=pdn Permanent dataset name; required parameter. The keyword
cannot appear alone.

ID=id Permanent dataset ID. If this parameter is omitted or
present without a value, the ID is null,

ED=ed Edition number of the permanent dataset. Options for ed
are as follows:

Specification Meaning
Unsigned integer (ed) The specific edition of the
Example: ED=2 dataset

Negative integer (-ed) All but the ed highest editions
Example: ED=-2

Positive integer (+ed) The ed highest editions
Example: ED=+2

ED=ALL All editions of the dataset

The default is the highest edition.

SR-0011 O 11-17

OWN=0V Owner of the permanent dataset. The default is the job
owner. If the requester is not the dataset owner, the
requester must have maintenance permission.

M=m Maintenance control word. The default is null. M is
required if the dataset has a maintenance control word.

X Specification that the dataset is to be retired only if it
is expired; that is, if the retention time has been
exhausted.

11-18 SR-0011 O

LOCAL DATASET UTILITIES

Local dataset utilities copy, position, or initialize local datasets.
The following utilities are available:

Utility
BLOCK
COPYD
COPYF
COPYR

COPYU

NOTE

QUERY

REWIND

SKIPD
SKIPF
SKIPR
SKIPU
UNBLOCK

WRITEDS

Function

Converts an unblocked dataset to a blocked dataset
Copies blocked datasets

Copies files of blocked datasets

Copies records of blocked datasets

Copies unblocked datasets or sectors of unblocked
datasets

Writes text to a dataset

Returns local mass storage dataset status and
position information

Positions a blocked or unblocked dataset at

12

beginning-of-data, that is, before the first word of

the dataset

Skips blocked datasets

Skips files of blocked datasets

Skips records of blocked datasets

Skips sectors of unblocked datasets

Converts a blocked dataset to an unblocked dataset

Initializes a blocked random or sequential dataset

You invoke these utilities by issuing control statements in your JCL.
This section describes these control statements.

SR-0011 O

12-1

12.1 BLOCK - CONVERT UNBLOCKED DATASET TO BLOCKED DATASET

BLOCK copies a specified unblocked dataset to a blocked dataset, adding
blocked dataset control words as the copy proceeds. For datasets that
you did not assign as foreign datasets (with the ASSIGN control
statement), a fixed-record length must be provided on a control statement
parameter. For datasets previously assigned as foreign, the values for
record length and type are taken from the ASSIGN control statement.

Never use BLOCK with tape datasets. To use BLOCK with foreign datasets,
see Foreign Dataset Conversion on CRAY-1 and CRAY X-MP Computer Systems,
publication SN-0236.

The BLOCK control statement has two mutually exclusive forms, as follows:

Format 1:

I I
| BLOCK,DN=1dn,BLKSIZE=size. |

Format 1 is valid for nonforeign datasets only.

DN=1dn Name of dataset to be blocked. When the utility
terminates, the Idn local dataset has been replaced by
the blocked copy. (During the copy process, a temporary
blocked copy is made in dataset $BLOCK. BLOCK then
releases the original Idn dataset and $BLOCK is copied
back to a new dataset named ldn. The ldn dataset is
rewound before and after processing.

This is a required parameter.

BLKSIZE=size
The BLOCK operation on nonforeign datasets merely adds Cray
blocking control words to create the blocks of length equal
to that specified in the BLKSIZE parameter. The BLKSIZE
parameter is only used on nonforeign datasets and describes
the record length in 64-bit words of the output dataset.

Format 2:

| [
| BLOCK,I=idn,O=odn,BLKSIZE=size. |

12-2 SR-0011 O

I1=idn Name of the unblocked input dataset. The copy proceeds
from the current dataset position throughout the dataset to

end-of-data (EOD). This is a required parameter; there is
no default.
O=odn Name of the local dataset to which the blocked copy is

written. If you previously opened this dataset (using, for
instance, the job control language (JCL) ASSIGN control
statement), BLOCK writes from the current position;
otherwise, BLOCK creates the dataset. This is a required
parameter.

BLKSIZE=size
For foreign datasets, appropriate Cray blocking control
information corresponding to the foreign control words in
the input dataset are added and the result is written to
the output dataset. For datasets previously assigned as
foreign, the values for record length and type are taken
from the ASSIGN control statement for the input dataset.
For these datasets, the BLKSIZE parameter is not permitted.

BLOCK is intended primarily as a post processor for datasets created by
or for certain stations.

12.2 COPYD - COPY BLOCKED DATASET

COPYD copies one blocked dataset to another dataset starting at their
current positions. Following the copy, both datasets are positioned
after the end-of-file (EOF) of the last file copied. The end-of-dataset
(EOD) is not written to the output dataset. COPYD expands compressed
blanks when writing to the output dataset if an ASSIGN control statement
contains BFI=OFF for the output dataset.

Format:

| |
| COPYD,I1=idn,0O=0dn,S=m. |

I=idn Name of dataset to be copied. The default is $IN.
O=odn Name of dataset to receive the copy. The default is $OUT.
S=m Shift count. The value m is the number of ASCII blanks

to insert at the beginning of each line of a character
file. The maximum is 132, If S is omitted, the shift
count is 0. If S is specified without a value, S=1.

SR-0011 O 12-3

12.3 COPYF - COPY BLOCKED FILES

COPYF copies a specified number of files from one blocked dataset to
another dataset starting at the current dataset position. Following the
copy, the datasets are positioned after the EOF for the last file
copied. COPYF expands compressed blanks when writing to the output
dataset if an ASSIGN control statement contains BFI=OFF for the output
dataset.

Format:

| |
| COPYF,I1=idn,0O=o0odn,NF=n,S=m. |

I=idn Name of dataset to be copied. The default is $IN.
O=odn Name of dataset to receive the copy. The default is $OUT.
NF=n Decimal number of files to copy. The default is 1. If the

dataset contains fewer than n files, the copy terminates
on EOD. EOD is not written. If the keyword NF is
specified without a value, the copy terminates at the EOD.
If the input dataset is positioned midfile, the partial
file counts as one file.

S=m Shift count. The value m is the number of ASCII blanks
to insert at the beginning of each line of a character
file. The maximum is 132. If S is omitted, the shift
count is 0. If S is specified without a value, S=1.

12.4 COPYR - COPY BLOCKED RECORDS

COPYR copies a specified number of records from one blocked dataset to
another dataset starting at the current dataset position. Following the
copy. the datasets are positioned after the end-of-record (EOR) for the
last record copied. COPYR expands compressed blanks when writing to the
output dataset if an ASSIGN control statement contains BFI=OFF for the
output dataset.

Format:

| I
| COPYR,I=idn,O=odn,NR=n,S=m. |

12-4 SR-0011 O

I=idn Name of dataset to be copied. The default is $IN.
O=odn Name of dataset to receive the copy. The default is $OUT.

NR=n Decimal number of records to copy. The default is 1. 1If
the dataset contains fewer than n records, the copy
terminates on the next EOF. EOF and EOD are not written.
If the keyword NR is specified without a value, the copy
terminates at the next EOF. If the input dataset is
positioned midrecord, the partial record is counted as one
record.

S=m Shift count. The value m is the number of ASCII blanks
to insert at the beginning of each line of a character
file. The maximum is 132, If S is omitted, the shift
count is 0. If S is specified without a value, S=1.

12.5 COPYU - COPY UNBLOCKED DATASETS

COPYU copies a specified number of sectors or all data until EOD. The
copy is made to or from the current position on both datasets. At the
end of the copy., the datasets remain positioned after the last sector
copied.

Format:

| I
| COPYU,I=idn,0O=o0odn,NS=ns. |

Parameters I and O are required; they have no defaults.

I=idn Name of unblocked dataset to be copied
O=o0dn Name of unblocked dataset to receive the copy
NS=ns Decimal number of sectors to copy. The default is 1. 1If

the unblocked dataset contains fewer than ns sectors, the
copy terminates on EOD. If the keyword NS is specified
without a value, the copy terminates at EOD.

SR-0011 O 12-5

12.6 NOTE - WRITE TEXT TO A DATASET

NOTE writes text included in the NOTE control statement to a dataset
named in the control statement.

Format:

| |
| NOTE,DN=dn, TEXT=text. |

DN=dn Name of the dataset to be written. The dataset is written
at its current position. If the dataset does not exist, it
is created. The dataset is not rewound. If DN is omitted
or appears without a value, the dataset defaults to $OUT.

TEXT=text
Information to be written to the dataset. The text can
have a maximum of 153 characters. It is subject to the
same conventions as other strings, as discussed in
subsection 16.2.4, Strings.

12.7 QUERY - RETURN STATUS AND POSITION INFORMATION

QUERY determines the current status and position of a local mass storage
dataset. QUERY issues this information in the form of a user logfile
message. It can also set this information in user-specified symbolic
variables for later use in JCL statements.

Format:

| I
| QUERY,DN=1dn, STATUS=sym,POS=sym. |

DN=1dn Local dataset name, 1 to 7 characters. This is a required
parameter.

STATUS=sym
JCL symbol name in which the dataset status is to be
returned. Symbols are described in subsection 16.2.1.3,
Symbolic variables. Return values are as follows:

Dataset is not local
Dataset is closed

Dataset is open for output
Dataset is open for input
Dataset is open for I/0

W N RO R

12-6 SR-0011 O

POS=sym JCL symbol name in which the dataset position is to be
returned. Return values are as follows:

-1 Position indeterminate (dataset is either not local,
unblocked format, or closed)

Beginning-of-data

End-of-data

End-of-file

End-of-record

Mid-record

» w N e O

The logfile message issued has the format:
QU001 - DN: 1dn STATUS: status POS: pos
ldn Local dataset name

status UNKNOWN if Idn is not local
CLOSED if Idn is local and closed
OPEN-0 if 1dn is local and open for output
OPEN-I if ldn is local and open for input
OPEN-I/0 if Idn is local and open for both input and
output

pos N/A position is not available (dataset is not local, is
closed, or is in unblocked format)
BOD if dataset is at beginning-of-data
EOD if dataset is at end-of-data
EOF if dataset is at end-of-file
EOR if dataset is at end-of-record
MID if dataset is in the middle of a record

12.8 REWIND - REWIND BLOCKED OR UNBLOCKED DATASET

REWIND positions the named datasets at the beginning-of-data (BOD).
REWIND opens any of the named datasets that are not open. REWIND is a
system verb. The $IN dataset, however, is an exception. After REWIND,
$IN is positioned after the control statement file.

REWIND causes an EOD to be written to the dataset if the previous
operation was a write or if the dataset is null. If the dataset is not
memory resident, the buffers are flushed to mass storage when REWIND
follows a write operation. If the dataset is memory resident, the EOD is
still placed in the buffer, but the buffer is not flushed. For an
on-line magnetic tape dataset, REWIND positions the tape dataset to the
beginning of the first volume accessed by the user.

SR-0011 O 12-7

Format:

| |
| REWIND,DN:dnltdnzt oo :dna. |

DN=dn; Names of datasets to be rewound. A maximum of eight
datasets can be specified, separated by colons.

12.9 SKIPD - SKIP BLOCKED DATASET

SKIPD positions a blocked dataset at EOD (after the last EOF of the
dataset). It has the same effect as the following statement:

SKIPF,DN=dn,NF.
If the specified dataset is empty or already at EOD, the statement has no

effect.

Format:

| I
| SKIPD,DN=dn. |

DN=dn Name of dataset to be skipped. The default is $IN.

12.10 SKIPF - SKIP BLOCKED FILES

SKIPF bypasses a specified number of files from the current position of
the named blocked dataset.

Format:

I |
| SKIPF,DN=dn,NF=z=n, |

DN=dn Name of dataset. The default is $IN.

12-8 SR-0011

NF=n

Number of files to bypass. The default is 1. If the
keyword NF is specified without a value, the system
positions dn after the last EOF of the dataset. If n

is negative, SKIPF skips backward on dn. If dn is
positioned midfile, the partial file skipped counts as one
file.

SKIPF does not bypass an EOD or BOD. If BOD is encountered
before n files have been bypassed when skipping backward,
the dataset is positioned after the BOD. When skipping
forward, the dataset is positioned before the EOD of the
current file.

This utility is available for use with on-line tapes,
except that a negative value cannot be used for NF; for
interchange format tapes (DF=IC), NF can only be 1.

For example, if dn is positioned just after an EOF, the
following control statement positions dn after the
previous EOF. If dn is positioned midfile, dn is
positioned at the beginning of that file.

SKIPF,DN=dn,NF=-1.

12.11 SKIPR - SKIP BLOCKED RECORDS

SKIPR bypasses a specified number of records from the current position of
the named blocked dataset.

Format:

| SKIPR,DN=dn,NR=n. |

DN=dn

NR=n

SR-0011 O

Name of dataset. The default is $IN.

Number of records to skip. The default is 1. If the
keyword NR is specified without a value, the system
positions dn after the last EOR of the current file. If

n is negative, SKIPR skips backward on dn. If dn is
positioned in the middle of the record, the partial record
skipped counts as one record.

SKIPR does not bypass an EOF or BOD. If an EOF or BOD is
encountered before n records have been bypassed when

12-9

NR=n skipping backward, the dataset is positioned after the EOF
(continued) or BOD. When skipping forward, the dataset is positioned
after the last EOR of the current file.

This utility is available for use with on-line tapes except
that a negative value cannot be used for NR.

12.12 SKIPU - SKIP UNBLOCKED DATASET

SKIPU bypasses a specified number of sectors or all data from the current
position of the named unblocked dataset.

Format:

I |
| SKIPU,DN=dn,NS=ns. |

I I

DN=dn Name of unblocked dataset. There is no default value.

NS=ns Number of sectors to bypass. The default is 1. If the
keyword NS is specified without a value, the system
positions dn after the last sector of the dataset. If
ns is negative, SKIPU skips backwards on dn.

12.13 UNBLOCK - CONVERT BLOCKED DATASET TO UNBLOCKED DATASET

UNBLOCK copies a specified blocked dataset to an unblocked dataset,
removing all blocked dataset control words as the copy proceeds. When
you assign the input dataset as foreign, the ASSIGN control statement
also causes addition of control words, as appropriate, for the foreign
host according to the blocking and record format information from
ASSIGN.

Never use UNBLOCK with tape datasets.

The UNBLOCK control statement has two mutually exclusive forms, as
follows:

12-10 SR-0011 O

Format 1:

| |
| UNBLOCK,DN=Idn. |

This format is illegal for foreign datasets.

DN=1dn Name of dataset to be unblocked. During the copy process,
a temporary unblocked copy is made in the dataset $UNBLK.
The original Idn dataset is then released and $UNBLK is
copied back to a new dataset named 1dn. When the utility
terminates, the l1dn local dataset has been replaced by
the unblocked copy. The ldn dataset is rewound before
and after processing.

This is a required parameter.

Format 2:

| |
| UNBLOCK,I=idn,O=odn. |

I=idn Name of the blocked input dataset. The unblocking copy
proceeds from the current dataset position through the
dataset to EOD for nonforeign datasets, and to EOF for
foreign datasets. The default is $IN.

O=odn Name of the local dataset to which the unblocked copy is
written. If you previously marked the dataset to be
unblocked (using, for instance, the JCL ASSIGN statement),
UNBLOCK writes from the current position. Otherwise,
UNBLOCK closes the dataset and assigns the unblocked
attribute. This has the effect of rewriting the dataset,
losing its previous content. This is a required parameter.

The UNBLOCK operation on nonforeign datasets merely discards the blocked
dataset control words. (Refer to section 2 for a detailed description of
the blocked format and its control words.) For foreign datasets, it also
adds appropriate host control information so that you can dispose the
dataset (use the DISPOSE control statement) transparently to a supported
front end. In a nonforeign dataset containing text, it discards record
boundaries. The UNBLOCK utility is intended primarily as a postprocessor
for datasets created by or for certain stations.

SR-0011 O 12-11

12.14 WRITEDS - INITIALIZE A BLOCKED RANDOM OR SEQUENTIAL DATASET

WRITEDS initializes a blocked dataset. It writes a dataset containing a
single file consisting of a specified number of records of a specified
length. This utility is useful only for random datasets, because a
record written on a random dataset must end on a preexisting record
boundary. Direct-access datasets, implemented in Cray Fortran CFT77 and
CFT as defined by the ANSI X3.9-1978 Fortran standard, can be
initialized, and even extended, using WRITEDS.

You can also use WRITEDS to write a sequential dataset.

Format:

| I
| WRITEDS,DN=dn,NR=nr,RL=rl. |

DN=dn Name of dataset to be written. DN is a required parameter.

NR=nr Decimal number of records to be written. NR is a required
parameter set to the largest value that may be needed,
because a dataset is generally not extended when it is in
random mode.

RL=rl Decimal record length (the number of words in each
record). The default is zero words, which generates a null
record.

If the record length is nonzero, the first word of each
record is the record number, represented as a binary
integer starting with 1.

12-12 SR-0011 O

ANALYTICAL AIDS 13

The following utilities provide analytical aids to the programmer:

Utility
COMPARE

ppat

DEBUG

DSDUMP

DUMP and DUMPJOB

FLODUMP

FTREF

ITEMIZE

Function

Compares two blocked datasets and lists all
differences

Dynamic Dump Analyzer. Allows interactive
symbolic analysis of a dump. The Symbolic
Debugging Package Reference Manual, CRI
publication SR-0112, describes DDA in detail.

Produces a symbolic dump. The Symbolic Debugging
Package Reference Manual, CRI publication SR-0112,
describes DEBUG in detail.

Dumps all or part of a dataset to another
dataset. The input dataset may be either blocked
or unblocked.

Generally used together to examine the contents of
registers and memory as they were at a specific
time during job processing. DUMPJOB captures the
information so that DUMP can later format selected
parts of it.

Dumps flowtrace tables when a program aborts with
flowtracing active. Refer to the COS Performance
Utilities Reference Manual, publication SR-0146,
for a description of FLODUMP,

Analyzes Fortran source code to show the calling
tree, common block usage, and information for
multitasking. Refer to the COS Performance
Utilities Reference Manual, publication SR-0146,
for a description of FTREF.

Inspects library datasets and generates statistics
about them. Section 5 describes libraries;
section 15 describes library dataset management.

+ Deferred implementation

SR-0011 O

13-1

MTDUMP Produces formatted listings of dumps of the
multitasking history buffer. Refer to the
CRAY X-MP Multitasking Programmer's Manual,
publication SN-0222, for more information.

PERFMON Monitors machine activity in detail, by means of
the performance monitor that is part of most CRAY
X-MP computer systems. Refer to the COS
Performance Utilities Reference Manual,
publication SR-0146.

PRINT Writes the value of an expression to the logfile

SPY Indicates approximate amounts of time used by
different loops and code segments, including a
histogram to show "spikes." Refer to the COS

Performance Utilities Reference Manual,
publication SR-0146.

SYSREF Generates a global cross-reference listing for a
group of Cray Assembly Language (CAL) or APML
programs

You can invoke these aids by including a control statement in your JCL.
This section describes these control statements.

13.1 COMPARE - COMPARE DATASETS

COMPARE compares two blocked datasets and lists all differences found.
The output consists of a listing of the location of each discrepancy, the
contents of the differing portions of the datasets, and a message
indicating the number of discrepancies. Refer to the COS Message Manual,
CRI publication SR-0039.

Keyword parameters let you specify the maximum number of errors and the
amount of context to be listed.

If portions of two datasets are being compared, the portions must be
copied to separate datasets before comparison; COMPARE compares complete
datasets only.

COMPARE rewinds both input datasets before and after the comparison.

Format:

| |
| COMPARE,A=adn,B=bdn,L=1dn,DF=df ,ME=maxe,CP=cpn, |
I I
| CS=csn,CW=cwq : CW,,ABORT=ac. |
I I

13-2 SR-0011 O

A=adn and B=bdn

L=1dn

DF=df

ME=maxe

CP=cpn

CS=csn

SR-0011 O

Input dataset names. If adn=bdn, COMPARE issues an
error message and aborts the job step. Both A and B are
required parameters.

Dataset name for the list of discrepancies. 1ldn must be
different from adn and bdn. The default is $OUT.

Input dataset format. The default is T. df is a
l-character alphabetic code as follows:

B Binary. The input datasets are compared logically to
verify that they are identical. If they are not
identical, the differing words are printed in octal
and as ASCII characters. Nonprinting characters
appear as blanks in the ASCII representation. The
location printed is a word count. The first word of
each dataset is called word 1.

T Text. The input datasets are compared to see if they
are equivalent as text. For example, a
blank-compressed record and its expansion are
considered equivalent. If the two datasets are not
equivalent, the differing records are printed as
text. The location is printed as a record count. The
first record of each dataset is called record 1.

Maximum number of differences printed. The default is 100.

Amount of context printed. c¢pn records to either side

of a difference are printed. The CP parameter applies only
if DF=T; if DF=B and CP are specified, an error message is
generated. The default is 0.

Amount of context scanned. c¢sSn records to either side

of a discrepancy are scanned for a match. The CS parameter
applies only if DF=T; if DF=B and CS are specified, an
error message is generated. The default is 0.

If a match is found within the defined range, subsequent
comparisons are made at the same interval. That is, if
record 275 of dataset A is equivalent to record 277 of
dataset B, the next comparison is between record 276 of
dataset A and record 278 of dataset B.

NOTE

If identical records occur within c¢sn
records of each other, the pairing is
ambiguous and COMPARE can match the wrong
pair.

13-3

CW=cw or CW=cwj:cwy
Compare width. If CW=cw is specified, columns 1 through
cw are compared. If CW=cwj:cw, is specified, columns
cwq through cw, are compared. Specifying CW without a
value is not permitted. The default is to compare columns
1 through 133, but this can be changed by installation
option. The CW parameter applies only if DF=T; if DF=B and
CW are specified, an error message is generated.

ABORT=ac If ac or more differences are found, the job step aborts.
Specifying ABORT alone is equivalent to ABORT=1 and causes
an abort if any differences are found. Specifying ABORT
does not prevent the listing of up to maxe differences.

13.2 DSDUMP - DUMP DATASET

DSDUMP dumps specified portions of a dataset to another dataset. A disk
dataset can be dumped in either blocked or unblocked format. A tape
dataset can be dumped only in blocked format.

Unblocked format is used to dump a disk dataset without regard to whether
it is blocked. Dumping a blocked dataset in unblocked format (by
sectors) is possible. A group of sectors within the dataset or a group
of words within each sector can be selected. The initial word and
initial sector numbers are relative to the beginning of the dataset.
Specifying an initial sector greater than 1 causes sectors to be skipped
from the beginning of the dataset; specifying an initial word greater
than 1 (or 0, if the control statement includes the Z parameter) causes
words to be skipped from the beginning of each sector. Following a dump
in unblocked format, the dataset is closed.

For a blocked format, a group of words within a record, a group of
records within a file, or a group of files within a dataset can be
selected. The initial word number, initial record number, and initial
file number are relative to the current dataset position. Specifying an
initial number greater than 1 (or 0, if the control statement includes
the Z parameter) causes words, records, or files to be skipped starting
from the current position.

Because the initial word, record, or file number is relative to the
current position of the dataset, the dataset must be positioned properly
before calling DSDUMP. If you rewind the dataset before calling DSDUMP,
the initial word, record, and file numbers are relative to the beginning
of the dataset. When DSDUMP is completed, the input dataset is
positioned after the last record dumped.

13-4 SR-0011 O

Two groups of
the values of

DSDUMP parameters require the specification of numbers:
the initial word, record, file, and sector (I values) and

their counts (N values). These values may be specified in three ways:

¢ Explicit decimal number (for example, D'1234' or D1234)

® Explicit octal number (for example, 0'1234' or 01234)

® Simple

number (for example, 1234). This is interpreted as a

decimal number.

The following lines reference the same first word:

DSDUMP, ...,IW=4096.
DSDUMP, ...,IW=D'4096".
DSDUMP, ...,IW=0'10000".

Format:

DSDUMP, 1=

NF=n,IS=n,NS=n,Z,DB=db,DSZ=s5Z.

idn,0O=odn,DF=df,IW=n,NW=n,IR=n,NR=n,IF=n,

The only required parameter is I.

I=idn (or

O=odn (or

DF=df

IW=n

NW=n

IR=n

SR-0011 O

DN=idn)
Name of dataset to be dumped. This is a required parameter.

L=odn)
Name of dataset to receive the dump. The default is $OUT.

Dump format. The default is B.

B Blocked
U Unblocked

Decimal or octal number (n) of the initial word for each
record or sector on idn. The default is 0 if 2 is
specified; 1 if Z is not specified.

Decimal or octal number (n) of the words per record or
sector to dump. Specifying NW without a value dumps all
words to the end of a record or sector. The default is 1.

Decimal or octal number (n) of the initial record for

each file on idn. Applicable only if DF=B. The default
is 0 if Z is specified; 1 if Z is not specified.

13-5

NR=n Decimal or octal number (n) of the records per file to
dump. Specifying NR without a value dumps all records to
the end of the file. Applicable only if DF=B. The default
is 1.

IF

il
3

Decimal or octal number (n) of the initial file of the
dataset on idn. Applicable only if DF=B. The default is
0 if 2 is specified; 1 if Z is not specified.

NF=n Decimal or octal number (n) of the files on idn to dump.
Specifying NF without a value dumps all files to the end of
the dataset. Applicable only if DF=B. The default is 1.

IS=n Decimal or octal number (n) of the initial sector on idn.
Applicable only if DF=U. The default is 0 if 2 is
specified; 1 if Z is not specified.

NS=n Decimal or octal number (n) of the sectors to dump.
Specifying NS without a value dumps all sectors to the end
of the dataset. Applicable only if DF=U. The default is 1.
Z Zero-based initial-value parameters (IW, IR, IF, and IS).
If Z is specified, the value for each I parameter is 0, and
output referring to word, record, file, and sector numbers
begins at 0. The following lines reference the same first

word:

DSDUMP, ...,IW=4096.
DSDUMP, ...,2,IW=4095.

If Z is not specified, the value for each I parameter is 1.
The Z parameter does not affect the Nx parameters.
DB=db Numeric base in which to display the data words

OCTAL or O Octal (base 8)
HEX or X Hexadecimal (base 16)

The default is OCTAL.
DSZ=s5Z Size of the data items to dump

WORD or W Cray 64-bit words
PARCEL or P Cray 16-bit parcels

The default is WORD.
For blocked format, each record from idn dumped to odn is preceded by
a header specifying the file and record number in both octal and

decimal. For unblocked format, each sector is preceded by a header
specifying the sector number in both octal and decimal.

13-6 SR-0011 O

Table 13-1 summarizes the DSDUMP output records according to the
specification of DB and DSZ parameters.

A row of five asterisks indicates that one or more groups of 4 words have
not been formatted because they are identical to the previous 4 words.

Only the first group is formatted.

be determined from the word counts of the formatted lines before and

after the asterisks.

The final group of 4 or fewer words is always

The number of words not formatted can

hexadecimal numbers

interpretation

formatted.
Table 13-1. DSDUMP Output Format
I | | I
| | Word | Number | ASCII
| DB,DSZ | Count | Interpretation | Interpretation
| | | |
| I | I
| OCTAL,WORD | F | Four 22-digit | One 32-character
| i | octal numbers [interpretation
| I | I
| HEX,WORD | t | Four 16-digit | One 32-character
| | | hexadecimal numbers | interpretation
| I | |
| OCTAL,PARCEL | t | Sixteen 6-digit | None (insufficient
| | | octal numbers | space)
I | | |
| HEX,PARCEL jF | Sixteen 4-digit | One 32-character
I | I |
|]

+ 1If the Z parameter is used, the word count is O-based and octal.
the Z parameter is not used, the word count is l-based and decimal.

13.3 DUMP - DUMP REGISTERS AND MEMORY

DUMP reads and formats selected parts of the memory image that is
contained in $DUMP and writes the information to another dataset. The
DUMP control statement can be placed anywhere in the control statement
file after $DUMP has been created by the DUMPJOB control statement.

If

Normally the DUMPJOB and DUMP control statements are placed after an EXIT

control statement.

part of the job causes an error exit.

This ensures the dump is performed no matter which
The use of DUMP and DUMPJOB is

not, however, restricted to this purpose.

SR-0011 O

13-7

DUMP can be called any number of times within a job. This might be done
to dump selected portions of memory from a single $DUMP dataset or it
might be done if $DUMP has been created more than once in a single job.

Form

13-8

at:

DUMP,I=idn,0O=0dn,FWA=fwa, LWA=1wa,JTA,NXP,V,DSP,FORMAT=f, CENTER,

BIAS=address,BUFFER.

I=idn

O=odn

FWA=fwa

LWA=1wa

JTA

DSP

FORMAT=f

Name of the dataset containing the memory image. The
default dataset $DUMP is created by DUMPJOB but any dataset
in the $DUMP (unblocked) format is acceptable.

Name of the dataset to receive the dump; default is $OUT.

First word address of memory to dump. The default is word
0 of the Job Communication Block (JCB).

Last word address of memory to dump. The default is word
200 of the JCB. Specifying the keyword LWA without a value
causes the limit address to be used. Specifying LWA=0
causes no memory to be dumped.

Dump Job Table Area. The default is no JTA dump.

No dump of Exchange Package, B registers, T registers,
cluster registers, or semaphore registers dumped. The
default causes the Exchange Package, B registers, T
registers, cluster registers, and semaphore registers to be
dumped. Cluster registers and semaphore registers are
available only on CRAY X-MP mainframe types. NXP overrides
the V parameter if the two are used together.

Dumps vector registers. The default is no dump of V
registers.

Dumps Logical File Tables (LFTs) and Dataset Parameter
Tables (DSPs). The default is no LFTs and DSPs are dumped.

Format for the part of memory selected by FWA and LWA.
All of the following options except I are appropriate for
formatting a data dump. The I format is for dumping
program instructions only. O is the default.

D Decimal numbers and ASCII character

SR-0011 O

FORMAT=f G
(continued)

Floating-point or exponential numbers, depending on

the value of the number,

Instruction format.

printed with ASCII characters.

and ASCII character

CAL instruction mnemonics are

Mixed hexadecimal and octal numbers and characters

written in

as 5 characters:

ASCII.

Each 16-bit parcel is represented
the first character is a hexadecimal

digit representing the high-order 4 bits, and the next
4 are octal characters representing the low-order 12

bits.

Octal numbers and ASCII characters

Dump is given in 16-bit parcels (4-word boundaries are

forced for

FWA and LWA)

X Hexadecimal numbers and ASCII characters

CENTER

BIAS=address

Print of dump will begin at user address

BUFFER

Example 1:

Dump I/0 buffers

Dump 100g words on each side of the address in the P

register of the Exchange Package. The format is P.

The following example is a portion of a data dump obtained using format

0O, the default fo

Q000100 0521611523 106020200000
DOOO 10N 0GO0HTHB00000D0B0ONO0])
QO0OTI0 DOBDOBDOOONNDHONDORDON
H000 114 000000NBONNOHNNNN00000
0OHOHT20*0000HO0N00GONONDO0NON
0000160 HONOONOVOHDOHHHNNONDDID
000016 0OBOONBLRNONHDOBONDOOD
QOO T7O*¥O000000000000B0000BO0

QU020 0N253020206520230020h0

Example 2:
The same portion

0000100
[SISIVR SN

61387L62H567H6899840
PBINTNGTH 10656

0000110 0
00V 1Y L8}
QOO0 T20*0000000000000CO0BOD00
0000160 0
0000164)
0000T70%000000000000000000D0UOG
QLOO200 H996815586883028256
SR-0011 O

rmat type.

Q360000001403200125000
TIHI507000650 110022000
0H00000000000000000000
H000000000000000000000
THRY 0000157

0000000000000000000000
000000000000000000V0VY
THRY 0000177

0104000010045217620000

0000100003100000030200
041517211620061 13430166
0000000000000000000000
0000000000000000000000

0000000000000000000000
0300711363107113634066

0002211104247237625601

of the dump in format D.

4323455745791142400
-7510826839300037632
0

0

THRU 0000157
0
0

THRU 0OOO1TT
1224979653404336128

2252014562062464
4850186721430483254
0

0

[}
3474860080247314486
L40853751375801217

0000163230400000030144 U1520A
0000000000000000000000
0374400000000000000000
0000000000000000000000

06000000000000000000000
0310601643146416430064

0250021000000045422102 EXAMPLE

H056682510430308 U1520A
0
U5486356236u4200960
0

0
3616454492372480052
3027017083928323138 EXAMPLE

<

<

2 o
(A $COS 1.16
?

i od

09/29/8620:34:04
*7 SE: + # $B

1794

2 0 i od
A S COS 1.16
?

09/29/8620:34:04
*2 SE: + * S8

1795

13-9

Example 3:

The same portion of the dump in format X.

0000100 55313532300 10000
0000104 0001000000000000
0000110 0000000000000000
INSIVARE] 0000000000000000

3C0000181A00AAN0
9928E£00D4 1802400
0000000000000000
0000000000000000

0000120%0000000000000000000000 THRU 0000157

0008003200003080 000E698800003064 U1520A < 2 0 od
434F5320312E3136 0000000000000000 { A $COS 1.16
0000000000000000 3F20000000000000 ?
0000000000000000 0000000000000000

Q000160 0000000000000000
0000 16Y 000VBLODVOOVBOVY
QUOB T 70*6000H0C0YOCHONVLOO0VOY
0000200 HH58UIIIDSOHCUS20

Example 4:

The same portion

0000100 0.250311434135+1633
00001040 0. 000000000000E+00
0000110 0. 000000000000 E+00
000011 0. 0GOEOVDHVOVVE+0D

0000 120%0000003000000060000000
0000160 0. 000000000000E+00
ouooioh 0. 000000000VVDVE+00
00001 70%0000000000000000000000
0000200 0.161331427366+412

Example 5:

0000000000000000
0000000000000000
THRU 0000177

0000000000000000
30392F32392F3836

0000060000000000
32303A33343A3034

09/29/8620: 34:04

110000812A3F2000 009124453A7F2B81 2A02200000962442 EXAMPLE *7 SE: + * $B
1796

of the dump in format G.

0.204573742730-311 0.000000000000E+00 0.000000000000E+00 U1520A < 2 0 i od

0. 0Q00000NN0VOE+OD 0.304720688618+255 0.000000000000E+00 (A S$cCOS 1.16

0. 0000000DOVOVE+0O 0.000000000000E+00 0.000000000000E+00 ?

0. 000000000000E+00 0.000000000000E+00 0.000000000000E+00
THRU 0000157

0., 000000000000E+00 0.000000000000E+00 0.000000000000E+00

0. 000000000000E+00
THRU 0000177
0. 000000000000E+00

0.254398439672-1216
0.000000000000E+00

The same portion of the dump in format P.

Example 6:

0000100
0000102
0000104
0000106
0000110
0000112
0000114

000010 000062
000001 000000
041517 051440
000000 000000
000000 000000
000000 000000

0000116 000000 000000 Q00000 0
0000120*0000000000000000000000 THRU
0000160 000000 0000UQ G00OGC 0COCOC
0000162 000000 000000 000000 00000Q
0000164 000000 000000 000000 0O
0000166 030071 027462 034457 034066
DODOI70”0000000000000002000800 THRU

0000200 042530 040515 0!

0000202 000221 022105 035177 025601

052461 032462 030101
000000
000000
030456
000000
000000
000000

036000
000016
114450
000000
000000
037440
000000
000000
0000157
000000
000000
000000
031060

000030
064610
160015
000000
000009
000000
000000
000000

000000
000000
000000
035063

000201
020000

015000
000000
040600
000000
000000
000000
000000
000000

000000
000000
000000
032072

000000
31 03014

o
3

0000

ou2uto 025077

025002 000226

The same portion of the dump in format M.

0000100
000102
0000104
0000106
0000110
Q000112
0anoo1
0000

5531353230410000
0H008003200003080
HON1O0LLO00VOLO
n34F5320312E3136
0000000000N00000
0000000000000000
G00000000000000
0000000000000000

116
VOO T20*000DO00VOROVNOHNOD0V0Y

0000160
0000162
0000164
0000166

00D000O0O000VOO0
00000000DO0DN000
00000e0000L00000

0392F32392F3836

00001 70*0000000000000000000000

0000200
0000202

Example 7:

45584 14D504CL520
00912Lul53A7F2B81

3C00M0181A00AA00
000E698800003064
9928LH0DH 1802400
0000000000000000
0000000000000000
31200G0000000000
0000000000000000
0N00000000000000
THRU 000U157
00UO00R000000000
0000000000000
0080000000000000
32303A33343A3034
THRU 0000177
110000812A3F2000
2A02200000962442

0524611523106020200000
0000100003100000030200
00000100000¢0000600000
0415172462006113430466
0000000000000000000000
0000000000000000000000
0000000000000000000000
0000000000000000000000

0000000000000000000000
0G00000000000000000000
000000000000000000VNV0
0300711363107113634066

0425302024652023042040
0002211104247237625601

A dump of program instructions in format I.

13-10

000007¢40000000000000000000000 THRU 0000077
0000100a SO Su<61 A

00001012
00001028 ERI

onoo103s £RR

0000104a ERI
€Ry
00001058 12
00001068 55
A
00001073 ERI
ER

u
Al Al ERR
100, A0 o ERR
252008
R oio ERR
R 000 42
R 016 6
000 At
R 001 ERR
R 000 €RR
160015, A4 Al
22000
14126337
5446 Ay
R 000 ERR
R a00 ERR

I25000

032000 (
000000 COS 1.16

000000

000000 ?
000000

000000

000000
000000
000000

03006‘6

020000
022102

0.821520619736-1065
0.198625290891-1695 EXAMPLE

U1520A <
2 0 i 0d

>

09/29/8620:34:04
EXAMPLE *?
SE: + * $B

1798

0360000001403200125000
0000163230400000030144
1144507000650180022000
0000000000000000000000
0000000000000000000000
0374400000000000000000
0000000000000000000000
0000000000000000000000

0000000000000000000000
GOO0000000000000000000
0000000000000000000000
0310601643 146416430064

0104000010045217620000
0250021000000045422102

EXAMPLE
SE: + #

09/29/8620:34:04
SE: sB
1797

#2 + *

09/29/8620:34:04

*7

$B
1799

A6®AZ
000
030
062
041

S1%FsB
Aural
200

0524611523106020200000
0360000001403200125000
0000100003100000030200
0000163230400000030 144
0000010000000000000000
1144507000650140022000

v1520A
<

20

(as

OU15172462006113430466
0000000000000000000000

AG+AG
000
000

€0s 1,16

1800

SR-0011

13.4 DUMPJOB - CREATE $DUMP

DUMPJOB creates the local dataset $DUMP, if it does not already exist.
When the DUMPJOB statement is encountered, $DUMP receives an image of the
memory assigned to the job (the Job Table Area (JTA) and user field).
Placing the DUMPJOB statement after a system verb, excluding the *
(comment) and EXIT statements, causes a dump of the Control Statement
Processor (CSP). A DUMPJOB to an execute-only dataset is rejected.

If the $DUMP dataset already exists, it is overwritten each time a
DUMPJOB control statement is processed. If $DUMP is permanent and the
job does not have write permission, DUMPJOB aborts. If $DUMP is
permanent and the job has write permission, the dataset is overwritten.

If the DUMPJOB/DUMP sequence fails because of such situations as
destroyed system-managed Dataset Parameter Areas (DSPs), rewind $DUMP
before the job step for which the dump is to be written and save it with
unique access. DUMPJOB writes to $DUMP, and job termination
automatically adjusts $DUMP. $DUMP can then be inspected in a separate
job. This procedure applies only to situations in which the user
overwrites certain system tables without the detection of the system.

DUMPJOB creates $DUMP as an unblocked dataset so it can be used by DUMP,
FLODUMP, DEBUG, and ppa.t DUMPJOB is a system verb and cannot be

continued to subsequent statements.

There are no parameters.

Format:

I I
| DUMPJOB. |
I

13.5 1ITEMIZE - INSPECT LIBRARY DATASETS

ITEMIZE prints a formatted report of the contents of a dataset generated
by compilers, loaders, assemblers, UPDATE, or BUILD. For additionmal
information about the contents of an UPDATE PL, use AUDPL. Refer to the
UPDATE Reference Manual, CRI publication SR-0013.

+ Deferred implementation

SR-0011 O 13-11

A header containing the jobname, ITEMIZE version number, date, time, and
page number appears at the top of every page. The line shown below
appears following the header on page 1. The line gives the local dataset
name of the dataset being processed.

ITEMIZE OF dn

ITEMIZE normally produces file-level output. For binary library
datasets, however, it produces a more detailed record-level output. The
following subsections describe both levels of output.

Restrictions:

® An UPDATE PL is recognized only if it is the only item in a
dataset. A PL created by the UPDATE utility consists of many
files. The last file of the dataset must be a PL directory. If
NF is not specified on the control statement, ITEMIZE prints
information only for the first file, although it has examined the
last file. Again, the dataset must contain only a PL.

e ITEMIZE does not operate on a tape dataset.

Format:

[I
| ITEMIZE,DN=dn,L=odn,NREW,NF=n,T,BL,E,B,X. |

DN=dn Local dataset name of the dataset to be listed. The
default is $OBL.

L=odn Local dataset name where listing is written. If L is
omitted or is specified alone, $OUT is used.

NREW No rewind. Specifies the dataset is not rewound. If NREW
is omitted, the dataset to be listed is rewound before and
after ITEMIZE is executed.

NF=n Number of files within a dataset to be listed. If NF is
used alone, the contents of all files within the dataset
are listed. If NF=n, the contents of n files within the
dataset are listed. The default is NF=1.

T Truncation. Specifying this parameter truncates lines on
the listing dataset to 80 characters. Optional parameter;
however, specifying this parameter precludes specifying the
E, B, and X parameters.

13-12 SR-0011 O

BL Burstable listing. When this parameter is specified, each
dataset heading starts at the top of a page. The default
is a compact listing in which a page eject occurs only when
the current page is nearly full.

E Entry points. Specifying E causes all entry points to be
included in the listing. Use for binary library datasets
only.

B Blocks. Specifying B causes all entry points, code, and
common block information to be included in the listing.
Use for binary library datasets only. B overrides E.

X Externals. Specifying X causes all entry points, code,
common block, and external information to be included in
the listing. X overrides B.

13.5.1 FILE-LEVEL OUTPUT

ITEMIZE prints one line for each file examined (up to the maximum
specified by the NF parameter or the default of 1). A second header
line appears on each page and contains the column headings shown in
figure 13-1.

Figure 13-1 is an example of ITEMIZE operating on a program library (PL).
The control statement used to generate the listing was ITEMIZE,BL,NF.
The list following figure 13-1 describes the contents of each column.

Itemize 1.16 11/10/86 09:37:55 Page 1

Itemize of COSPL

File Records Type Length Check Part Date

1 60 PL 245 7314 7314 10/15/86
File count limit (NF parameter) reached.

Sum= 245 7314 7314

% K kK K Kk ok K Kk K Yk ok kK k% sk ok ok Kk % ok %k ok sk %k k% ke ok ok K ok ok %k kK ok ok Kk K ok
* Dataset is UPDATE PL -- use AUDPL for more details *

A KKK KKK KKK A KKK AA KA AR AR KA AR kA ATk kokhkxkkkkkdkkkk k%

1743

Figure 13-1. Sample Listing of ITEMIZE for a Program Library

SR-0011 O 13-13

Heading Description

FILE Sequence number of the file within the dataset
RECORDS Number of records within the file
TYPE Type of information contained within the file. If the

file is a member of a PL, the column contains PL. Other
values that may appear in this column are ABS, REL, DAT,
and ???. ABS and REL indicate absolute and relocatable
program modules, respectively. DAT indicates data, and
77?7 is used for otherwise unrecognized files.

LENGTH Length of the file in words

CHECK Checksum of the data within the file

PART Same as CHECK for file-level output

DATE Date of the PL from its directory; blank if other types

of datasets.

13.5.2 OUTPUT FOR BINARY LIBRARY DATASETS

A binary library is a collection of binary records recognized by the
existence of a Program Description Table (PDT). For binary library
datasets, ITEMIZE operates record-by-record rather than file-by-file.

The second header line for binary library datasets contains the column
headings.

Figure 13-2 is an example of ITEMIZE operating on a binary library
dataset. The list following figure 13-2 describes the contents of each
column. The control statement used to generate the listing was
ITEMIZE,BL,NF,X. If the control statement had been ITEMIZE,BL,NF.,
lines with no entry in the REC column would not have appeared.

13-14 SR-0011 O

Figure 13-2.

SR-0011 ©

TITEMA Itemize 1.16 11/19/86 16:51:56 Page 1
Itemize of TESTLIB File 1
Rec Name Type Length Check Part Date
1 DUMMY1 REL 15 6737 0234 11/19/86 16:51:55 CFT 1.
Hardware requirements : CRAY-XMP EMA
* ENT * DUMMY1
* BLK * DUMMY1 9
* BLK * 4#TB 4
* BLK * #CL 2
* BLK * #ST 0
* BLK * #RG 0
* BLK * #DA 3
* EXT * DUMMY2 DUMMY3
2 DUMMY2 REL 70 1230 0274 11/19/86 16:51:55 CFT 1.
Hardware requirements : CRAY-XMP EMA
* ENT * DUMMY2
* BLK * DUMMY2 8
* BLK * #TB 4
* BLK * #CL 1
* BLK * #ST 0
* BLK * #RG 0
* BLK * #DA 3
* EXT * DUMMY 3
3 DUMMY3 REL 63 2431 0241 11/19/86 16:51:55 CFT 1.
Hardware requirements : CRAY-XMP EMA
* ENT * DUMMY3
* BLK * DUMMY3 7
* BLK * #TB 4
* BLK * #CL 0
* BLK * #ST 0
* BLK * #RG 0
* BLK * 4#DA 3
1 * EOF * 208 0531 0026
TITEMA Itemize 1.16 11/19/86 16:51:56 Page 2
Itemize of TESTLIB File 2
Rec Name Type Length Check Part Date
1 * DIR * DOl 31 2564 2564
Dir entry:DUMMY1 REL No. of blocks 5
No. of entries : 1
No. of externals : 2
* ENT * DUMMY1
* BLK * #TB
* BLK * #CL
* BLK * #ST
* BLK * #RG
* BLK * #DA
* EXT * DUMMY2 DUMMY 3
Dir entry:DUMMY2 REL No. of blocks 5
No. of entries H 1
No. of externals 1
* ENT * DUMMY2
* BLK * #TB
* BLK * #CL
* BLK * #ST
* BLK * #RG
* BLK * #DA
* EXT * DUMMY3
Dir entry:DUMMY3 REL No. of blocks H 5
No. of entries : 1
No. of externals : 0
* ENT * DUMMY 3
* BLK * #TB
* BLK * #CL
* BLK * #ST
* BLK * #RG
* BLK * #DA
2 * EOF * 31 2564 2564
* EOD * Sum= 239 0664 0173
/EOQF
i015

Sample Listing of ITEMIZE for a Binary Library Dataset
with X and NF Parameters

13-15

Heading Description

REC Sequence number of the record within the file
NAME Name of the program from the PDT
TYPE ABS or REL, which indicate absolute and relocatable

program modules, respectively

LENGTH Length of the record in words
CHECK Checksums

PART Checksums

DATE Date of compilation from the PDT

One line containing the data previously listed is generated for each
record. If you specify any of the E, B, or X options on the control
statement, several additional lines can be printed. The information in
these lines is labeled separately:

® When you specify E, B, or X, the comment field of the PDT is
printed on a separate line. The hardware required for the module
to execute correctly is listed on a separate line. 1In addition,
the entry point names are printed with five names per line.

¢ When you specify B or X, a separate line is printed for each block
containing its name and length.

¢ When you specify X, the externals referenced by the program are
printed with five external names per line.

A binary library dataset contains a second directory file containing one
record. If E, B, or X is specified on the control statement, a line is
printed specifying the directory ID and length. 1In addition, entries,
blocks, and externals are printed as described previously for program
records.

13.6 PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE

PRINT writes the value of an expression on the logfile. The value of the
expression is written in three different formats: as a decimal integer,
as a 22-digit octal value, and as an ASCII string. PRINT is a system
verb.

13-16 SR-0011 O

Format:

I I
| PRINT(expression) |

expression
Any JCL expression (refer to section 16). The maximum
length is 8 characters. This parameter is required.

Logfile format:

UT060 decimal octal ASCII

UT060 Message code indicating the origin is a PRINT statement

decimal A 16-digit decimal representation of the evaluated
expression

octal A 22-digit octal representation of the evaluated
expression

ASCII An 8-character ASCII representation of the evaluated
expression

13.7 SYSREF - GENERATE GLOBAL CROSS-REFERENCE LISTING

SYSREF generates a global cross-reference listing for a group of CAL or
APML programs. The number of CAL or APML programs that can be included
in such a group is limited by the amount of Cray computer system memory
allocated to a user.

SYSREF reads special binary symbol tables written by CAL or APML and
produces a single cross-reference listing for the program modules
represented in the tables. When the X parameter appears on a CAL or APML
statement, a record is written for each program unit assembled. The
records are written to a dataset specified by the X parameter ($XRF by
default or if X appears alone). Each record has a header containing the
name of the program unit. The rest of the record consists of
cross-reference information for every global symbol used in that program.

SR-0011 O 13-17

Format:

I |
| SYSREF,X=xdn,L=1dn. |

X=xdn Name of dataset whose first file (normally the only file)
contains one or more symbol records written by CAL or
APML. The default is $XRF.

L=1dn Name of output dataset. The default is $OUT.

13.7.1 USE OF SYSREF

SYSREF is usually used to process symbol records written by CAL and/or
APML earlier in the same job. To do so, add X parameters to each CAL or
APML control statement and follow them with a SYSREF control statement:

CAL,X.
APML, X.
CAL,X.
SYSREF, L=XROUT.

$XRF is used as the default in all cases.

To process symbol records written in an earlier job, the following
sequence is used.

The first job:
CAL,X.
APML,X.
SAVE, DN=$XRF, ID=XX.

The second job:

ACCESS,DN=$XRF, ID=XX.
SYSREF, L=XROUT.

To add more symbol records before invoking SYSREF, use:
ACCESS,DN=$XRF, ID=XX, UQ.
SKIPR,DN=$XRF,NR.
CAL,X.
SYSREF.

The previous format has the same effect as if the CAL step had been done
before the SAVE step.

13-18 SR-0011

13.7.2 GLOBAL CROSS-REFERENCE LISTING FORMAT

The global cross-reference listing contains only global symbols. A
symbol is global if it is any one of the following:

e Named in an ENTRY or EXTERNAL statement

¢ Defined before an IDENT statement and after any preceding END
statement

e Defined within a system text such as $SYSTXT

® Defined within a section of source code bracketed by TEXT and
ENDTEXT pseudo instructions

The order of the symbols in the global cross-reference listing is
lexicographic, based first on the symbol name and then (within each
symbol name) on the module name. An exception to the order is made for
symbol names beginning with N@, S@, or W@. These symbol names are sorted
as if @ is the most significant (leftmost) character and the N, S, or W
is the least significant character. The listing displays the symbol name
correctly. The effect is a grouping of all the N@, S@, and W@ symbols
that refer to the same field in a table.

The global cross-reference listing consists of 13 columns:

Column Heading Contents
1 Value The symbol's value
2 Symbol The symbol's name
3 Origin The IDENT of the system text in which the

symbol is defined; or the label of the "TEXT
block in which the symbol is defined; or
GLOBAL, if the symbol is defined outside
any program unit; or blank.

4 Module The IDENT of the module within or before
which the symbol is defined or referenced

5-11 References A list of the lines on which the symbol is
defined or referenced

The symbol's name, value, and references appear in a format similar to
that of a CAL or APML listing. The page number in each reference is a
local page number that starts at 1 for each module. 1In a CAL or APML
listing, this is the page number that appears in parentheses to the right
of the second title line on each page.

SR-0011 O 13-19

CREATING AN EXECUTABLE PROGRAM 14

The COS Relocatable Loader is a utility program that executes within the
user field. It is used for loading and linking, in memory, relocatable
modules from datasets on mass storage.

The relocatable loader is called with the LDR control statement when you
need to load a program in relocatable format. Absolute load modules can
also be loaded. The design of the COS loader tables and relocatable
loader allows program modules to be loaded, relocated, and linked to
externals in a single pass over the dataset being loaded. This minimizes
the time spent in loading activities on the Cray computer system. The
loader allows the immediate execution or the creation of an absolute
binary image of the object module on a specified dataset.

The relocatable loader can also generate a partially relocated module.
This module, referred to as a relocatable overlay, is described later in
this section.

Most applications that require more than 4 Mwords of Central Memory
cannot be loaded by LDR. LDR messages LD064, LD065, LD066, or all three
are issued if problems are found. These applications may have to be
loaded with the Segment Loader (for details refer to the Segment Loader
(SEGLDR) Reference Manual, CRI publication SR-0066). You can use the LD2
control statement to change from the LDR control statement to SEGLDR.

14.1 LDR CONTROL STATEMENT

The LDR control statement begins execution of the loader. Parameters of
the control statement determine the functions to be performed by the
loader.

SR-0011 © 14-1

Format:

14-2

LDR,DN=dn,LIB=1dn,NOLIB=1dn,LLD,AB=adn,MAP=0p,SID[="'string'],T=tra,
NX,DEB=1,C=com,0OVL=dir,CNS,NA,USA,L=1dn,SET=val,E=n,I=sdir,
NOECHO, SECURE, GRANT=5C1:5C5:...:5C,,BC=bc,PAD=pad, NORED,
STK[=initial size(:increment]] ,MM[=initial size[:increment]],

MMEPS=epsilon, MMLOC=gEFORE

AFTER

DN=dn

Dataset containing modules to be loaded. The default is
$BLD. Modules are loaded in $BLD unless you specify a
block name with a Fortran PROGRAM, SUBROUTINE, BLOCK DATA,
or FUNCTION statement. Loading continues until an
end-of-file (EOF) is reached. Duplicate blocks are skipped
and an informative message is issued.

Multiple files from the same dataset can be loaded by
specifying the dataset name multiple times separated by
colons. You can indicate a maximum of eight files.

Datasets specified by the DN parameter are closed at the
end of the load process. Closing a dataset has the effect
of rewinding the dataset and releasing I/0 tables and
buffers.

Modules to be loaded can be relocatable or absolute; but do
not mix the two types of modules. Neither LD2 nor SEGLDR
supports absolute modules.

For example, the following statement causes the loading of
all modules in the first file of datasets LOAD1, then
LOAD2, and then $BLD:

DN=LOAD1:LOAD2: $BLD
Normally the dataset is rewound before loading; however,
consecutive occurrences of a dataset name inhibit
subsequent rewind operations. Therefore, the following
statement causes the loading of all modules in the first

two files of dataset LOAD3:

DN=LOAD3 :LOAD3

SR-0011 O

LIB=1dn

NOLIB=1dn

LLD

SR-0011 O

The DN parameter takes on a special quality when OVL is
specified. Then only one dn can be specified. The

dataset named is the initial LOAD file used by the overlay
loader. (Refer to the description of overlay loading later
in this section for more information.)

The LIB parameter names the dataset from which unsatisfied
externals are loaded. A maximum of eight datasets can be
named, with the dataset names separated by colons.

Any default libraries are automatically included in the
library list unless the NOLIB parameter is specified. LDR
accesses the default libraries from the COS System
Directory (SDR) if they are not local to the job; no ACCESS
statement is required.

Datasets specified by the LIB parameter are closed at the
end of the load process. Closing a dataset has the effect
of rewinding the dataset and releasing I/0 tables and
buffers.

NOTE
Use the BUILD utility to generate object datasets
specified by the LIB parameter to prevent

unnecessary overhead in the loader.

The libraries cannot be tape datasets.

The NOLIB parameter value names the specific default
library to be excluded from the load. Selecting NOLIB with
no value specifies the exclusion of all default system
libraries. If NOLIB is not specified, any default
libraries that a site has are automatically included in the
library list, along with any libraries specified on the LIB
parameter.

Specifying the LLD parameter will retain any libraries
included in the load as local datasets when the load is
completed. These local datasets remain open. Datasets
automatically accessed are not released when the load is
completed. If the LLD parameter is not specified, the
loader closes all libraries and releases automatically
accessed datasets at load completion.

LD2 uses the LLD parameter to inhibit the release of
datasets generated to assist in using SEGLDR. Use the LLD
parameter to keep these datasets for subsequent conversion
to SEGLDR.

14-3

AB=adn

MAP:Op

Absolute binary object module generation. This parameter
causes an absolute binary object module to be written to
the named dataset after the load process is complete.
Selecting AB does not imply no execution (NX). Unless NX
is also selected, the loaded program begins execution after
the binary is generated. Specifying AB without adn

causes the module to be written on a dataset named $ABD,
the default dataset. The dataset is not rewound before or
after the file is written.

If the AB parameter is omitted, no binary generation occurs.
If OVL is specified on the LDR statement, the OVLDN
directive replaces AB; any value specified for AB is

ignored in overlay mode. Overlay loading is described

later in this section.

Map control. The MAP parameter causes the loader to

produce a map of the loaded program on the specified

dataset. MAP can take any of the following values:

ON Produces a block list and an entry list including
all cross-references to each entry

OFF No map is produced. Default is MAP=OFF.
FULL Same as MAP=ON

PART Produces a block list only. Equivalent to MAP with
no value specified.

SID[='string"']

Debug routine loading. The SID parameter indicates the
system debugging routines are to be loaded with the code.
These routines comprise an additional binary dataset loaded
after all DN specified datasets and before any libraries.

The 'string', if given, is passed to SID for evaluation as

a control statement. The verb and initial separator are not
required. For example, SID='I=IN,ECH=ELIST.' is a proper
string specification; the period is a required terminator.
Refer to the Symbolic Interactive Debugger (SID) User's
Guide for a complete description of SID parameters. If only
SID is specified, all keyed default SID control statement
parameter values are used.

SR-0011 O

T=tra

DEB=1

C=com

SR-0011 O

Transfer name. Lets you specify an entry name for the
loader to transfer control at completion of the load.

The T parameter also specifies the entry included in
absolute binary object modules. The entry name is 8
characters maximum. If no T parameter is specified, the
loader begins object program execution at either the entry
specified by the first encountered START pseudo from a CAL
routine or at the entry of the first main program in Fortran
compiled routines. If no START entries are encountered, a
warning message is issued and the first entry of the first
relocatable or absolute module is used.

NOTE

When the SID parameter is used, the load
transfer is to the system debugger, and the T
parameter is ignored. If T is coded, however,
a warning message is issued to the user
logfile.

No execution. This parameter inhibits execution of the
loaded program.

Job Communication Block (JCB) length. The default length
is 200g words. Specifying DEB without a value changes
the JCB length to 3000g.

Compressed load. Allows control of the starting locations
of modules and common blocks. An align bit is set for each
relocatable module and common block that contains an ALIGN
pseudo-op. Refer to the CAL Assembler Version 1 Reference
Manual, CRI publication SR-0000, or the Fortran (CFT)
Reference Manual, CRI publication SR-0009.

C can take on any of the following values:
ON Forces the loading of each module and common block
to begin at the next available location after the

previous module or common block, ignoring the align
bit. Equivalent to C with no value specified.

14-5

PART Forces the loading of each module and common block
with the align bit set to an instruction buffer
boundary.f If the align bit is not set, that
module or common block is loaded at the next
available location after the previous module or
common block. C=PART is the default.

OFF Forces the loading of every module to an
instruction buffer boundary.* Common blocks are
forced to instruction buffer boundaries only if the
align bit is set.

OVL=dir Overlay load. Indicates an overlay load sequence is
specified on dir. Overlay loading is explained in detail
later in this section. If the OVL keyword is specified
without a value, the loader examines the next file of $IN
for an overlay load sequence. The default is no overlay
load. Selecting OVL implies NX (no execution).

CNS Crack next control statement record image. Allows the
loader to pass parameters to the loaded program for
analysis and to use the parameters during execution of the
loaded program. The control statement that is cracked
follows the LDR control statement and is not available for
processing by the Control Statement Processor (CSP) after
processing by the loaded program.

NOTE

When the SID parameter is specified, the CNS
parameter is ignored and a warning message is
written to the user logfile if CNS is present.
SID prompts for the control statement for the
code being debugged.

NA No abort. If this parameter is omitted, a caution or
higher level loader error causes the job to abort.

USA Unsatisfied external abort. When USA is specified, the
loader aborts at the end if it finds one or more
unsatisfied externals. If called for, a load map listing
all unsatisfied externals is produced.

+ Instruction buffer sizes are 40g words for the CRAY X-MP computer
system and 20g words for all CRAY-1 S models.

14-6 SR-0011 O

L=1dn

SET=val

SR-0011 O

Listing output. Lets you specify the name of the dataset,

1dn, to receive the map output. If L=0, all output is
suppressed. The default dataset is $OUT.

Memory initialization. Variables, named and blank common
blocks, and storage areas defined by DIMENSION statements
are set to 0, -1, or an out-of-range floating-point value
during loading. The default is SET=ZERO.

SET=2ZERO Memory is set to binary zeros.
SET=0ONES Memory is set to -1 (all bits set).
SET=INDEF Memory is set to a value that causes an

out-of-range error if the word is referenced
as a floating-point operand. The ones
complement of each memory address is placed in
the low-order 24 bits of the respective word
to aid in reading register and memory dumps.
An example, in octal, of the value loaded into
memory word 13216 is: 0605050037740177764561.

List error messages. Indicates the highest level of
loader-produced error messages to be suppressed. One of
five levels of severity can be suppressed, where n is the
highest level to be suppressed. The default for this
parameter is E=1.

Level Type Description
1 COMMENT Error does not hinder program
execution
2 NOTE Error probably hinders program
execution
3 CAUTION Job aborts when load process

completes unless NA is selected;
program might not execute properly.

4 WARNING Job aborts when load process
completes unless NX is selected;
program execution is not possible.

5 FATAL Job aborts immediately. FATAL
messages are never suppressed.

Example:

E=2 suppresses COMMENT and NOTE messages and allows
CAUTION and WARNING messages to appear.

14-7

14-8

I=sdir

NOECHO

SECURE

Selective load. Modules from other datasets can be
loaded according to a set of directives. sdir

indicates the dataset containing the directives. If the
I keyword is specified without a value, the directives
are taken from the next file of $IN. The selective load
directives INCLUDE and EXCLUDE are described later in
this section.

Suppresses writing the current control statement to the
user logfile (that is, the control statement that invoked
the actual loading into memory is not written to the
logfile).

Defines each dataset created during this job step to be
secure (that is, to be released during job advancement
unless specifically overridden with a F$DSD operating
system request).

GRANT:SC1:SC2: +es385Cph

Grants the privileges defined as parameters if this
module is loaded from the System Directory (SDR). (These
privileges are merged with the user's only for the
duration of the job step.) The following parameters are
defined if security is enabled. They are operative only
if the dataset is executed from the SDR.

Parameter Privilege

SCACES Accesses user-saved dataset without
passwords

SCDIAG Allows F$DIAG request for on-line
diagnostics

SCDTIM Allows use of PDM '"set time of PDSDUMP"
function

SCDUMP Allows F$DJA requests anytime

SCENTR Allows ENTER option on ACCESS

SCERCH Allows F$DRIVER requests

SCERQM Allows SDT queue manipulation

SCISPT Allows F$TRB requests for Integrated
Support Processor (ISP) testing

SCLUSR Loads user dataset

SCMLOG Lets you send messages to another user's
logfile

SCNVOK Invokes job class structure

SCPDAD Allows access of system catalog dataset

SCPRIV Allows special system requests

SCQDXT Allows LINK DXT requests

SCQSDT Allows dequeuing and queuing of SDT
requests

SCRDSC Allows reading of Dataset Catalog (DSC)
page

SR-0011 O

BC=bc

PAD=pad

NORED

Parameter Privilege

SCRESIDE Allows declaring a dataset to be on-line,
preventing it from being migrated or
retired

SCRESON Allows you to request that a dataset reside
on-line

SCSPOL Allows SAVE/ACCESS/DELETE/LOAD/DUMP
spooled dataset

SCSYSJ Allows a job to be a system job

SCSYSPRG Allows system programmer functions such as
F$PROF and F$CMEM

SCTPBLP Allows bypass label processing for
magnetic tape

SCUPDD Allows access user dataset for PDSDUMP

SCURID Allows use of reserved ID in interjob
communication

SCWNSC Allows you to randomly seek a direct access
dataset beyond an area to which you have
written

Blank common. bc specifies the number of words to be
added to the size of blank common when the program is
loaded for execution. The default is O.

Pad. pad specifies the number of words of unused space

to be made available in the job when the program is loaded
for execution. After the program is loaded with its
requested extra space, the job is placed in user-managed
field-length reduction mode for the duration of the job
step. The default is 0.

No field-length reduction. Before the program is loaded,
the job is placed in user-managed field-length reduction
mode for the duration of the job step.

STK([=initial size[:increment]]

SR-0011 O

Initializes for stack processing. STK is a run-time memory
management parameter.

Iinitial size indicates the initial size of a stack in
number of words. An installation parameter defines the
default value. 1If the initial size value is less than
128, LDR substitutes the default value.

increment specifies the size of additional segments to a
stack (in number of words) if a stack overflows. An
installation parameter defines the default value. A value
of 0 indicates that overflow is prohibited.

14-9

MM([=initial size[:increment]]
Initializes for managed memory processing. The values
assigned to MM specify the number of words available to
the heap manager.

initial size indicates the number of words initially
available to the heap manager. An installation parameter
defines the default value. The loader changes the
specified value if the heap is not allowed to grow and if
there is no room for heap and stack overhead.

Increment specifies the minimum size, in words, of a

request to the operating system for additional memory if

the heap overflows. Zero means that the size of the heap

is fixed. An increment other than zero cannot be specified
if the heap is before blank common. An installation
parameter defines the default value. If the BEFORE value

is specified for the MMLOC parameter, the default value is O.

MMEPS=epsilon
epsilon is the smallest block that can be left on the
list of available space in the heap. If a request for
additional memory from the heap is made by the run-time
routines, and the request leaves a memory fragment of less
than epsilon words, the additional words are given to the
request. The value must be at least 2. An installation
parameter defines the default value.

AFTER
MMLOC=BEFORE

Specifies the location of the heap. AFTER specifies that

the heap is located after blank common; default. If the
heap is located before blank common, BEFORE is specified.

14.2 LD2 CONTROL STATEMENT

LD2 is a utility program that converts programs using LDR to programs
using SEGLDR. You will find LD2 useful with applications that require
more than 4 Mwords of Central Memory and with applications (especially
those that use overlays) being migrated to the Cray operating system
UNICOS, where LDR is not available. Normally, LD2 builds auxiliary CAL
source files, SEGLDR directive files, and COS job control language (JCL)
files, and automatically invokes the COS JCL file. This has the effect
of retaining LDR control statements, directive files, and overlay methods
while actually using SEGLDR.

Use the LLD parameter on the LD2 control statement to capture the CAL
source and SEGLDR directive intermediate files. This simplifies creation

14-10 SR-0011 O

of a hybrid job using SEGLDR more directly. This can save time for jobs
with large, complex overlay programs by removing the need to execute LD2
each time.

You might detect some differences between LDR and LD2. 1In general, the
LD2 control statement produces the same result as the LDR control
statement; however, LD2 does not convert programs that rely on loading
one or more common blocks at a specific address. Unlike LDR, LD2 does
not allocate the first common block encountered in the first module
loaded at 200(8).

Before using LD2, remove from your program any names that conflict with
the following LD2 output names:

® Program names of the form Z0000001 through 29999999

® OVERLAY. If you have a private copy of the library module
OVERLAY, you must remove it before using LD2.

¢ Dataset names $ILDR, $DLDR, $XLDR, and $A00001 through $A99999

LD2 does not fully support multiple file object datasets, although it
does handle many straightforward cases.

The LD2 control statement has the same parameters as the LDR control
statement with some exceptions. These are: LD2 does not support the SID
parameter, but it does support the VIEW and CMD parameters. Refer to the
LDR parameter descriptions for other minor differences. The LD2 VIEW and
CMD parameters function as follows:

VIEW=1evel Echoes the LDR directives being converted to the
SEGLDR listing dataset. This produces a sometimes
large listing detailing the joint actions of LD2 and
SEGLDR. The level specifies the degree of detail
desired in the report. By default, level is 1. The
range is from 1 to 255; currently, however, useful
values are 1 and those greater than 8. Larger values
produce more detailed information. A level greater
than 8 writes to the listing dataset a possibly
voluminous report of each dataset examined.

CMD=string CMD lets you specify one or more SEGLDR directives.
The string is passed to SEGLDR as its first
directive. This permits you to obtain SEGLDR specific
load maps, for example. Occasionally, you must use
the CMD parameter to supply the proper SLT count for
SEGLDR (for example, you must code "CMD='SLT=number'",
where number can be obtained from a SEGLDR error
message in an earlier, failed run). For more
information on the SLT directive and on the CMD
parameter, refer to the Segment Loader (SEGLDR)
Reference Manual, CRI publication SR-0066.

SR-0011 O 14-11

14.3 LOAD ORDER FOR _LDR AND LD2

Loaders (LDR and LD2) load in the following order:

¢ Routines you supply are loaded first. These routines usually come
from $BLD. You may specify other datasets with the DN parameter
in both LDR and LD2 or use the BIN directive with SEGLDR.

¢ If any externals remain unresolved, the libraries are scanned, in
this order:

- Libraries you supply with the LIB parameter are scanned
first, in the order in which you gave them.

- The default libraries are scanned next, in this order:

$IOLIB
$UTLIB
$SYSLIB
$ARLIB
$FTLIB
$PSCLIB
$SCILIB
$SLLIB

Loaders load only one module with a given external name. LDR and LD2 use
different methods to select the module that is loaded if you have
duplicate external names, either within your own libraries or in the
complete set of libraries. LDR loads the first module encountered after
the external call becomes known; this is not always the first module in
the library scan order. SEGLDR (and hence LD2) loads the first module in
the library scan order and generates a warning message for duplicates
that are ignored.

Example:

Suppose your main program references FOO, which you expect to satisfy
from library USER2. FOO, in turn references BAR. You specified
LIB=USER1:USER2 on the LDR or LD2 control statement and there are
instances of BAR in both USER1 and USER2. For LDR, USER2 is used,
because at the time USER1 was scanned, FOO had not yet been
encountered and the need for BAR was not known. For LD2 (SEGLDR),
USER1 is used.

14-12 SR-0011 O

NOTE

Because of differences between loaders, and because
Cray Research reserves the right to modify, reorganize,
and reorder standard libraries, you are cautioned
against developing applications that depend on how
loaders process duplicate entry points.

14.4 LOAD MAP

Each time the loader is called, you have the option of requesting a
listing, called a load map. This load map describes where is module is
loaded and what entry points and external symbols are used for loading.

Specify the contents of the map or the dataset to receive the map by
setting the LDR control statement parameters. The MAP parameter of the
LDR control statement lets you specify the contents of the map

requested. The Segment Loader (SEGLDR) Reference Manual, CRI publication
SR-0066, decribes the load maps produced by LD2 and SEGLDR. MAP=ON or
MAP=FULL produces a block list and an entry list. The block list gives
the names, beginning addresses, and lengths of the program and
subroutines loaded on this loader call; the entry list includes all
cross-references to each entry. MAP=PART supplies the block map only.

When a load map is requested, it is printed even if fatal errors abort
the load. 1In this case, the map contains only those modules loaded up to
the point where the fatal load error occurred.

Figure 14-1 shows the load map generated by the following LDR statement:

LDR,DN=$BLD:LOAD2, LIB=MYLIB,MAP=FULL,MM=16000:4000,STK=1280:128

The block list consists of items 1 through 16; the entry list includes
items 17 through 23.

SR-0011 O 14-13

®

TOTAL: 1321 LDRMAP LDR X.14 84251 09/24/84 11:54:11 PAGE 1
RELOCATABLE LOAD
LOAD TRANSFER IS TO _@ AT (@)
DATASET BLOCK<::) ADDRESS LENGTH DATE 0S REV PROCSSR VER. Comment
$BLD LDRMAP 200 1321 09/24/84 COS X.14 CFT 1.13 09/21/84
LOAD2 ABCDEFGH 1521 36 09/24/84 COS X.14 CFT 1.13 09/21/84
MYLIB X1 1557 41 09/24/84 COS X.14 CFT 1.13 09/21/84
X2 1620 41 09/24/84 COS X.14 CFT 1.13 09/21/84

MODULE NAME ENTRIES ENTRY VALUE REF. MODULE ABSOLUTE REFERENCES

LDRMAP LDRMAP 717a

ABCDEFGH ABCDEFGH 1525a LDRMAP 1425a

X1 X1 1570a ABCDEFGH 153la

NLERP% 3234a

$FDP $FDP 4640 $WUT 10603b

$WFD $WFI 545la LDRMAP 1410a 1416d
%% MANAGED MEMORY STATISTICS ***
INITIAL STACK SIZE: 1280(10) 2400(8) WORDS
STACK INCREMENT SIZE: 128(10), 200(8) WORDS
INITIAL MANAGED MEMORY SIZE: 16000(10), 37200(8) WORDS
MANAGED MEMORY INCREMENT SIZE: 4000(10), 7640 (8) WORDS
MANAGED MEMORY EPSILON: 2(10),
2(8) WORDS
BASE ADDRESS OF MANAGED MEMORY/STACK: 15566 (10), 36316(8)
WORDS
MANAGED MEMORY/STACK LOCATION: AFTER BLANK COMMON
*** LOAD IMAGE STATISTICS *** (::)
ABSOLUTE BINARY LENGTH: 31438(10), 75316 (8) WORDS
PROGRAM IMAGE: FWA = 200(8), LWA = 75516 (8)

1009

Figure 14-1.

Page number

ONONONORONONONC

14-14

Load Map Example

Job name from the JOB control statement
Loader level and the assembly date of the loader

Date and time of loader execution

Load type; either relocatable, absolute, or overlay.
Entry name to which initial transfer is given
Entry address where initial transfer is made

Name of load or library dataset containing modules to be loaded

SR-0011 O

®©@0 ® ©O006 6

© © 0006

SR-0011 O

Names of blocks loaded from the named dataset. These are common
blocks (identified by the slashes around their names, for
example, /LABEL/) are names of program blocks.

*SYSTEM is always the first block listed in a relocatable load.
It consists of the first 200g words of the user field, which

is reserved for the Job Communication Block (JCB). For an
absolute load, *SYSTEM is not allocated. The CAL user must set
the origin to 200g with an ORG pseudo instruction to allow
space for the JCB. If this is not done, the job aborts.

Blank common, indicated as //, is allocated last and appears at
the end of the list (if it has been defined).

Starting address of the block, in octal
Word length of the block, in octal
Date the object module was generated

Operating system revision date at the time the object module was
generated

Name and revision level of the processor that generated the
object module

Revision date of the processor that generated the object module

Comment (if any) from CAL COMMENT pseudo included in the load
module

Name of program block referenced

Entry points in the program block

Word address, parcel address, or value of each entry point
Module name of reference to each entry point

Absolute parcel addresses of references to each entry point.
Eight references are listed per line; some entry points have no

references.

Managed memory statistics. The numbers in parentheses indicate
the base: decimal (10) and octal (8).

Actual length of the binary; the minimum amount of memory
required to load the program. FWA is the first word address of
the load image. LWA is the last word address of the load
image. The numbers in parentheses indicate the base: decimal
(10) and octal (8).

14-15

14.5 SELECTIVE LOAD

If the I keyword is present on the LDR control statement, one or more
INCLUDE and/or EXCLUDE directives are examined in the specified dataset.

Formats:

| INCLUDE,SDN:Sdn,FN:fn,MOD=Md1:Mdz:...:Mdso. |

| EXCLUDE,SDN:SdD,FN:fn,MOD=md1:mdz:...:mdso. |

SDN=sdn

FN=fn

MOD=md

Name of the dataset containing modules to be selectively
loaded. If SDN is specified without a value, the first
dataset specified on the DN parameter of the LDR statement
is the default. If the SDN parameter is omitted, an error
message results and the directive is skipped; the load does
not abort. The SDN and FN parameters must refer to the
same dataset.

File number of the specified dataset; a number from 0 to
7. fn refers to the file by its numerical position in
SDN or in the DN parameter of the LDR statement.

For example, if DN=D1:D1:D2, the first file of D1 has an
fn of 0, and the second file of D1 has an fn value of
1. If FN is specified without a value, the default is 0.
If FN is omitted, all of sdn is searched for the correct
module; a message is issued for a complete sdn search.
The SDN and FN parameters must refer to the same dataset.

To load a module from the first file of D1, the directive
can include the parameter FN=0; however, if FN is specified
without a value, the default is to load a module from the
first file.

Module name or entry point to a module to be included or
excluded from the load. Up to 50 modules can be specified;
the modules must be separated by colons. If the MOD
parameter is omitted, an error message results, and the
directive is skipped.

Example: Given the LDR statement

LDR,DN=D1:D1:D2,...,1I.

14-16

SR-0011 O

A directive to load a module from the second file of dataset D1 includes
the following directive in the next file of $IN:

INCLUDE, SDN=D1,FN=1,MOD=... .

Selective load messages are never suppressed.

14.6 OVERLAYS

Very large programs may not fit in the available user memory space or
might not use large portions of memory while other parts of the program
are in execution. For such programs, the COS relocatable loader includes
the ability to define and generate overlays, separating modules that

the user creates and then calling and executing as necessary.

Two types of overlays are available:

e Type 1 overlays are generated by using the directives ROOT,
POVL, and SOVL. Two levels of overlays in addition to the root
overlay are allowed with calls to a maximum of 999 primary
overlays and up to 999 secondary overlays per primary overlay.

e Type 2 overlays are generated by using the directive OVLL. Ten
levels of overlays in addition to the root overlay are allowed
with calls to a maximum of 63 overlays per branch.

The overlay structure, rules for overlay generation, and overlay calls
for both types are described in this subsection. The control statements
used to generate the overlay and the directives common to both types of
overlays are described first. Specific rules for generating Type 1 and
Type 2 overlays are described separately in the following subsections.

Overlay generation consists of a load operation in which the loader
performs relocatable loading and writes the resulting binary image to
disk. One named absolute binary record is written per root and each
overlay.

If the LDR control statement has the parameter OVL=dir, the loader

finds the overlay generation directives on the named dataset, dir. If
no dataset is given, the loader reads overlay generation directives from
$IN.

Format:

| |
| LDR,...,OVL=dir, |

SR-0011 O 14-17

dir Name of the dataset containing the overlay generation
directives

14.6.1 OVERLAY DIRECTIVES

An overlay directive consists of a keyword and a parameter. A blank,
comma, or open parenthesis must separate the keyword from the parameter.
A period, closed parenthesis, or two consecutive blanks serve as the
terminator. A caret at the end of the directive line indicates that the
next line is a continuation of the current directive. The caret cannot
be preceded by a blank; it must immediately follow the last character of
the line.

14.6.1.1 FILE directive

The FILE directive indicates the dataset, dn, containing the routines

to be loaded. This directive's function is similar to that of the DN
parameter on the LDR control statement. It is generally the first
directive on the directives dataset but appears at any time and as often
as necessary thereafter. If no FILE directive appears, the loading
proceeds from the dataset specified on the DN parameter of the LDR
control statement. If that too has been omitted, loading initially
occurs from $BLD. This directive is common to both overlay types.

Format:
| |
| FILE,dn. |
1

dn Name of the dataset containing the routines to be loaded

14.6.1.2 OQVLDN directive

The function of the OVLDN directive is similar to that of the AB
parameter on the LDR control statement. This directive names the
dataset, dn, on which overlays are written. The dn parameter must be
present. If no OVLDN directive is present, the default overlay binary
dataset ($0BD) is assigned. All overlays generated following an OVLDN
directive reside as separate binary records on dataset dn. OVLDN
directives appear as often as desired on the LDR control statement. The
LD2 control statement accepts only the first OVLDN directive that you
specify; it silently ignores any others. This directive is common to
both overlay types.

14-18 SR-0011 ©

Format:
| |
| OVLDN,dn. |
| |

dn Name of the dataset on which overlays are written

14.6.1.3 SBCA directive

The SBCA directive sets the blank common starting address to the
specified address. This directive lets you place blank common after all
load modules in the current overlay structure. The address specified
must be larger than any address used in the overlay structure. This
directive must appear before any overlay generation directive, such as
ROOT or OVLL. The SBCA directive is mutually exclusive.

Format:

| I
| SBCA,address. |

address Address assigned to blank common, in octal. For LD2, even
though the octal address is ignored, it must be present.
SEGLDR can automatically determine blank common location.

14.6.1.4 SMMA directive

The SMMA directive sets the managed memory (heap) address to the
specified address. This directive lets you place managed memory after
all load modules in the current overlay structure. The address specified
must be larger than any address used in the overlay structure. This
directive must appear before any overlay generation directive, such as
ROOT or OVLL. The SMMA directive is mutually exclusive.

Format:

I I
| SMMA,address. |

address Octal address assigned to the heap

SR-0011 O 14-19

14.6.2 TYPE 1 OVERLAY STRUCTURE

Each Type 1 overlay is identified by a pair of decimal numbers, each from
0 to 999. There must be one and only one root overlay: its level numbers
are (0,0). This root remains in memory throughout program execution.
Primary overlays all have level numbers (n,0), where n is in the

range 1 through 999.

Primary overlays are called at various times by the root and are loaded
at the same address immediately following the root. A secondary overlay
is associated with a specific primary overlay, and it can be called only
by the corresponding primary overlay. The secondary level numbers are
(n,m), where n is the primary level, and m is in the range 1 through
999. All secondary overlays associated with a given primary (that is,
the same n) are loaded at the same address immediately following that
primary.

Only the root, one primary overlay, and one secondary overlay can be in
memory at one time.

Figure 14-2 is a diagram of a sample Type 1 overlay loading. The primary
and secondary overlays are shown in time sequence. The sequence of
generation does not imply that the routines are loaded into memory in the
same sequence or that they remain in memory for a set period of time when
they are executed.

All external references must be directed toward an overlay nearer to the
root. For example, overlay (1,0) can contain references to the root
(0,0) but not to overlay (1,1). Overlay (1,1) can contain references to
both (1,0) and (0,0).

LDR places named common before the routine that first references it. All
named common references must be directed toward a lower-level routine.
The lowest level routine with a named common block must contain data
statements for that block.

For example, in fiqure 14-2,

MAIN Can reference named common A only

SUB1 and SUB2 Can reference named common A and B only

TEST Can reference named common A, B, and C
LDR allocates blank common immediately after the first overlay where it
is declared. If blank common is declared in the root overlay (0,0), it
is allocated at the highest address of the root overlay and is accessible
to all overlays. If blank common is first declared in primary overlay
(1,0) and not declared in the root (0,0), it is accessible only to the

(1,x) overlays. Allocation and placement of blank common is also
manipulated by the user through the SBCA directive.

14-20 SR-0011 O

Named Common A }
Program Main
M
Named Common B 2
E Subroutine SUB1 e
............................. "
M Subroutine SUB2 §
Heap
0 Blank Common
) 4
Named Common C Subroutine
= Alpha
R R (3,0)
Al (2,0)
al™ (2,0)
Subroutine Test T PRI eY 1 -
Subroutine (5,0) /
y [Sub- Ty | SUR- Beta ’
routine| g |routine \ 4 s 3
v (2,3)
NEW1 &2 | NEw2
8:‘ (1,2) Subroutine
JCHLM ? Delta
(5,1)) (5,2)} (5,3) /
227, /
N e 7
Time o 1316
Figure 14-2. Type 1 Overlay Loading Example
SR-0011 O 14-21

JCHLM is set to the highest address of the root overlay before loading.
If a subsequent overlay module requires additional memory, JCHLM is reset
to the highest address of that module.

14.6.3 TYPE 1 OVERLAY GENERATION DIRECTIVES

The overlay generation directives define the structure of the overlay.
Included in this class are the ROOT, POVL, and SOVL directives.

14.6.3.1 ROOT directive

This directive defines programs, subroutines, and entry points, that
comprise the load from dn. For programs written in CAL, list each
entry referenced. Fortran programs need the program name only. All
members for this directive reside on the same dataset, dn, as defined
by the FILE directive.

Format:

I I
| ROOT, memberq,member,, ...memberpn. |

member; Module names for inclusion in the root

14.6.3.2 POVL directive

This directive causes relocatable loading of the named blocks to the
primary overlay with the name plevel:000. The size of the root

determines the base location. All members for this directive reside on
either the dataset specified in the last FILE directive or, if none was
named there, the dataset specified on the LDR statement. The first member
in the list is the one that receives control when the overlay is loaded.
For routines written in CAL, the first entry point of the first routine
receives control.

Format:

| I
| POVL,plevel,member,,member,, ...membery. |

plevel Primary overlay name; between 1 and 999.

14-22 SR-0011 O

member; Module names for inclusion in the primary overlay number
plevel

14.6.3.3 SOVL directive

This directive causes relocatable loading of the named blocks to the
secondary overlay with the name plevel:slevel. The length of PQOVL
(plevel:000) determines the base location. All members for this
directive reside on the same dataset, dn. The first member in the list

is the one that receives control when the overlay is loaded. For routines
written in CAL, the first entry point of the first routine receives
control.

Format:

| SOVL,slevel,memberq,member,, ..., membery. |

slevel Secondary overlay name; between 1 and 999.

member ; Module names for inclusion in the secondary overlay number
slevel

14.6.3.4 Generation directive example

In the following example:
e DSET1 contains routines THETA, TEST, GAMMA, SUB1, MAIN, and SUB2.

® DSET2 contains routines NEW2, ALPHA, OVER, NEW1l, DELTA, EPSILON,
SIGMA, and BETA.

Format of the control statement that initializes overlay generation
follows:

LDR,...,OVL=0OVLIN,

Dataset OVLIN contains the following directives:

Directive Description
FILE,DSET1. The loader selectively loads from dataset DSETI.
OVLDN, LEVO0O. The following overlay modules are written to

the dataset LEVO0O.

SR-0011 O 14-23

Directive Description

ROOT,MAIN, SUB1 The absolute binary of MAIN, SUB1,SUB2 is
,SUB2. written as the first record on dataset LEV0O.
POVL, 1,TEST. The binary of TEST is named 001:000 and is

binary record 2 on dataset LEVOO.
FILE,DSET2. The loader selectively loads from dataset DSET2.

SOVL,1,NEW1. The binary of NEW1l is named 001:001 and is
binary record 3 on dataset LEVO0O.

OVLDN,LEV12. The subsequent overlay modules are written to
the dataset LEV12.

SOVL, 2 ,NEW2. The binary of NEW2 is named 001:002 and is
binary record 1 on dataset LEV12.

POVL, 2,ALPHA,BETA. The binary of ALPHA,BETA is named 002:000 and
is record 2 on dataset LEV12.

EOF End of overlay load sequence

14.6.4 TYPE 1 OVERLAY GENERATION RULES
The Type 1 overlay generation rules are as follows:

1. Overlay members are loaded from datasets named in FILE
directives. Members are searched for in the most recently
mentioned dataset only. 1In the absence of a FILE directive,
members are loaded from the dataset specified on the LDR control
statement. If that is also omitted, loading initially occurs
from $BLD. Currently, the relocatable modules of all members
for any overlay level must reside on the same file.

2. The overlays are generated in the order of the directives.
3. There must be only one root.

4., Level hierarchy must be maintained. The root overlay must be
generated first; hence, the ROOT directives appear first.
Following the root generation, a primary overlay (POVL) is
generated. No limitation is placed on which primary overlay
number (plevel) is generated; however, all secondary overlays
(SOVL) associated with the plevel must follow. The secondary
overlay slevels can be generated in any order following their
respective primary level.

14-24 SR-0011

5. An EOF in the directives file ends the input of overlay
directives; hence, overlay generation.

6. Any directive other than FILE, OVLDN, SBCA, ROOT, POVL, or SOVL
causes a fatal error.

7. The list of members can be continued to another line by using a
caret () immediately following the last nonblank character at
the end of the directive line. The ~ does not replace a
separator and must not appear within a member name.

8. Any number of lines can be used to name the members of an
overlay.

9. A secondary overlay can only be called by the corresponding
primary overlay.

14.6.5 TYPE 1 OVERLAY EXECUTION

A control statement call of the dataset containing the ROOT overlay
initiates its loading and execution. If no OVLDN directives are used
before generating the ROOT, the dataset $0OBD contains the ROOT overlay.

The following sequence executes the root overlay after generation:

LDR,...,0VL=dir,... .
$0BD.

During overlay generation, the members are loaded from the FILE dataset
in the order they appear on the dataset, regardless of their order of
appearance in the members list. The entry for POVL and SOVL overlays is
defined by the first member listed on the generation directive. Control
is transferred to this address after loading by the $OVERLAY routine
during program execution. The ROOT entry is named using the T parameter
on the LDR control statement.

You call for the loading of overlays from within the program, and the

method by which they are called depends on the program language in use
(Fortran or CAL). OVERLAY is a subroutine of the root overlay and is

loaded into memory with the root.

SR-0011 O 14-25

14.6.5.1 Fortran langqguage call

A Fortran program calls for the loading of overlays as follows:

| I
| CALL OVERLAY(dn, level,,level,,r) |

dn Dataset name or unit number that contains the file. Must
be a character constant, integer variable, or an array
element containing Hollerith data of not more than 7
characters.

levely Primary level number of the overlay
level, Secondary level number of the overlay
r An optional recall parameter. If you wish to reexecute an

overlay without reloading it, enter 6LRECALL. If the
overlay is not currently loaded, it is loaded.

14.6.5.2 CAL langquage call

A sample call sequence from a CAL program follows:

|Location|Result _ |Operand

| | [

] | EXT | OVERLAY

| |. [.

| l. [.

I |. [.

| | CALL | OVERLAY, (OVLDN, PLEV, SLEV)
| I [

| l. |.

[l. [

|OVLDN |CON |A'LEV12'L
| PLEV | CON |2

| SLEV | CON |0

OVLDN is the address of the dataset name, PLEV is the address of the
primary level, and SLEV is the address of the secondary level. 1If
recall is desired, the address of the literal ‘'RECALL' is transmitted as
the fourth argument.

14-26 SR-0011 ©

Example:

|Location |Result |Operand | Comment

|1 110 120 135

| | | |

| |CALL | OVERLAY, (OVLDN, PLEV,SLEV, RECL)
I I . | . |

I I . | . I

| | . . |

| RECL |co | 'RECALL'L I

For both Fortran and CAL language calls, during execution of the
ROOT(0,0) program MAIN, the statement

CALL OVERLAY(5LLEV12,2,0)

or the preceding CAL sample call causes OVERLAY to search dataset LEV12
for the absolute binary named 002:000. OVERLAY positions the dataset
LEV12 to the location of the absolute binary named 002:000 using
information supplied by the loader, loads the overlay, and transfers
control to the first member specified on the POVL or SOVL directive.
After execution of the overlay, control returns to the statement in MAIN
immediately following the CALL statement. Following the load, dataset
LEV12 is positioned immediately after the EOR for the overlay (2,0). If
overlay (2,0) is not on dataset LEV12, a fatal error results.

Placing a call for a secondary overlay for which the corresponding
primary overlay is not already loaded causes a fatal error. A fatal
error also results if the primary and secondary overlays are not both on
the named ovldn.

14.6.6 TYPE 2 OVERLAY STRUCTURE

Figure 14-3 shows the tree structure of the Type 2 overlay. There is
only one root overlay, and its level number is 0. The root overlay
remains in memory during program execution and calls only level 1
overlays. Only one branch is in memory at any time. Overlay (2,1)
under overlay (1,1) is different from the (2,1) under (1,5). Moreover,
overlay (2,1) under overlay (1,1) can be called only by overlay (1,1).

SR-0011 O 14-27

ROOT
(0)
[[| l
(1,1) (1,5) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,1) (2,1) (2,4) (2,1)
(3,1) (3,2) (3,1)
(4,1) (4,2)

Figure 14-3. Type 2 Overlay Tree Example

Figure 14-4 shows a sample Type 2 overlay loading diagram. The overlays
are shown in time sequence. The sequence of generation does not imply
that the programs are loaded into memory in the same sequence or that
they remain in memory for a set period of time when they are executed.

14-28 SR-0011 O

Named Common A
Program Main
M
Named Common B Ci
o
E Subroutine SUB1 -
............................. o
M Subroutine SUB2 §
Heap
Blank Common
o \ 4
Named Common C ~
o - (1,3)
R el (1,5) (1,2)
Subroutine Test | Ei;// (1,4)
v Subrout 1 Sub- /
ubroutine :
SR ™ _ routine 2,1) (2, 4) /////
~ NEW2
0) - (2I3)
(2,1) 5 < "
’ A (212) (2,1)
L/
/ (3,1)
Sub- Sub-
routine routine
Alpha ™ |_|Beta
~ |- -
JCHLM olal 3,2 / (4,)| ¥
ol //// N
l Ny 7777 7 //
............ fa
Time o 1317

Figure 14-4, Type 2 Overlay Loading Example

SR-0011 O 14-29

Level 1 overlays are called at various times by the root overlay. Each
call loads the named overlay at the same address, immediately following
the location of the root. The first level overlay must be called by the
root. Each upper-level overlay must be called by the associated overlay
at the adjacent lower level. A hierarchy exists among overlay levels; an
upper-level overlay is subordinate to the proximate lower-level overlay.
An upper-level overlay associated with overlay (2,1) might be (3,2),
(3,3), or (3,4). Upper-level overlays appear on the page after the
lower-level overlays.

An overlay can call into memory any overlay in the next higher level; it
cannot call an overlay more than one level above it in the hierarchy.

For example, overlay (2,1) can call (3,1) through (3,63), but it cannot
call (4,1). Each call for an overlay loads the named overlay at the same
address location immediately following the location of the calling
overlay. Only the root and one overlay at each level can be in memory
concurrently.

All external references must be directed toward an overlay nearer the
root overlay. Overlay (1,1) can contain references to the root overlay
but not to overlay (1,2) or overlay (2,1). The (2,1) overlay can
reference externals in both the (1,1) overlay and the root overlay.

The loader places named common blocks before the routine that first
references it. All named common references must be directed toward a
lower-level routine (toward the root overlay). If blank common is
declared in the root overlay, it is allocated at the highest address of
the root and is accessible to all overlays. If blank common is declared
first in a level 1 overlay, for example, and is not declared in the root
overlay, it is accessible only to level 1 and upper-level overlays.

JCHLM is set to the highest address of the root overlay before loading.

If a subsequent overlay module requires additional memory, JCHLM is reset
to the highest address of that module.

14.6.7 TYPE 2 OVERLAY GENERATION DIRECTIVE

The Type 2 overlay directive defines the structure of the overlay within
the directive format.

14.6.7.1 OVLL directive

This directive causes relocatable loading of the named blocks of an
overlay. The size of the lower-level overlays in the group determines
the base location. All members for this directive reside on the same
dataset, dn, specified by the FILE directive. The first member in the
list is the one that receives control when the overlay is loaded. For
programs written in CAL, the first entry point of the first routine
receives control.

14-30 SR-0011 O

Format:

I I
| OVLL, level, number,memberq,member,, ...member,. |

level Either a level number of the overlay (1 to 10), or the root
phase (0). If the root phase is being generated, number
must be omitted.

number Number of the overlay (1 to 63) within the level

member ; Module names for inclusion in the individual overlays

14.6.7.2 Generation directive example

In the following example:
® DSET1 contains routines THETA, TEST, GAMMA, SUB1, MAIN, and SUB2.

e DSET2 contains routines NEW2, ALPHA, OVER, NEW1l, DELTA, EPSILON,
SIGMA, and BETA.

Format of the control statement that initializes overlay generation:
LDR,...,OVL=0OVLIN, ...

Dataset OVLIN contains the following directives:

Directive Description
FILE,DSET1. The loader selectively loads from dataset DSET1.
OVLDN,LEVO0O. The following overlay modules are written to the

dataset LEVO0O.

OVLL,0,MAIN,SUB1, The absolute binary of MAIN,SUB1,SUB2 is the first

SUB2. record on dataset LEVO0O.

OVvLL,1,1,TEST. The binary of TEST is binary record 2 on dataset
LEVO0O.

FILE,DSET2. The loader selectively loads from dataset DSET2.

OVLL,2,1,NEW1l. The binary of NEW1l is binary record 3 on dataset
LEVO0O.

SR-0011 O 14-31

Directive Description

OVLDN,LEV12, The subsequent overlay modules are written to the
dataset LEV12,.

OVLL, 3,1,ALPHA. The binary of ALPHA is binary record 2 on dataset

LEV12.

OVLL, 3,2,BETA. The binary of BETA is binary record 3 on dataset
LEV12.

OVLL, 2,2,NEW2. The binary of NEW2 is binary record 1 on dataset
LEV12.

EOF End of overlay load sequence

14.6.8 TYPE 2 OVERLAY GENERATION RULES
The Type 2 overlay generation rules are as follows:

1. Overlay members are loaded from datasets named in FILE
directives. Members are searched for in the most recently
mentioned dataset only. In the absence of a FILE directive,
members are loaded from the dataset specified on the LDR control
statement. If that is also omitted, loading initially occurs
from $BLD.

2. The overlays are generated in the order of the directives.
3. There must be one and only one root per dataset.

4. Level hierarchy must be maintained. The root overlay must be
generated first. Following the root generation, a first level
overlay is generated. No limitation is placed on which overlay
number is generated; however, all overlays associated with that
first level overlay must follow. The overlays can be generated
in any order; the same restrictions apply for all levels of
overlays (1 to 10).

5. The first level overlay must be called by the root. An overlay
can call into memory any overlay in the next higher level;
however, an overlay cannot call an overlay that is more than one

level above it in the hierarchy.

6. An EOF ends the input of overlay directives.

14-32 SR-0011 O

7. Any directive other than FILE, OVLDN, SBCA, or OVLL causes a
fatal error.

8. The list of members can be continued to another line by using a
caret immediately following the last character at the end of the
directive line (that is, no blanks). The caret does not replace
a separator and must not appear within a member name.

9. Any number of lines can name the members of an overlay.

14.6.9 TYPE 2 OVERLAY EXECUTION

A control statement call of the dataset containing the root overlay
initiates the root overlay's loading and execution. If no OVLDN
directives are used before generating the root, the dataset $OBD
contains the root overlay. All overlays reside on the datasets
specified on the overlay directives. The entry for higher-level
overlays is defined by the first member listed on the generation
directive. Control is transferred to this address after loading by the
SOVERLAY routine during program execution. The root entry is named
using the T parameter on the LDR control statement.

The following sequence executes the root overlay after generation:

LDR,...,OVL=dir,... .
$0OBD.

When the program is to be executed, the root overlay is brought into
memory as a result of a control statement call in the job deck.
Thereafter, additional overlays are called into memory by the executing
program. Overlay loading allows any overlay to call for the loading of
an adjacent upper-level overlay.

You call for the loading of Type 2 overlays from within the program, and
the method by which they are called depends on the program language in
use (Fortran or CAL). OVERLAY is a subroutine of the root overlay and
is loaded into memory with the root.

14.6.9.1 Fortran language call

A Fortran program calls for the loading of Type 2 overlays as follows:

| |
| CALL OVERLAY(dn, level,number,r) |

SR-0011 O 14-33

dn Name of the dataset in which this overlay resides. The
name must be left-adjusted and zero-filled.

level Level number of the overlay
number Number of the overlay within the level
r Optional recall parameter. If you wish to reexecute an

overlay without reloading it, enter 6LRECALL. If not
currently loaded, it is loaded.

14.6.9.2 CAL lanquage call

A sample call sequence from a CAL program is as follows:

|Location [Result _ |Operand

| i I

| | EXT | OVERLAY

I l. |

[[. [-

| |. l.

| | CALL | OVERLAY, (OVLDN, PLEV, SLEV)
I l. l.

I I l.

l | . l -

| OVLDN | CON |A'LEV12'L
|PLEV | CON |2

| SLEV | CON |0

OVLDN is the address of the dataset name, PLEV is the address of the
primary level, and SLEV is the address of the secondary level. If recall
is desired, the address of the literal 'RECALL' is transmitted as the
fourth argument.

Example:
|Location |Result | Operand | Comment
11 _ 110 120 135
! I | |
| | CALL | OVERLAY, (OVLDN, PLEV, SLEV,RECL)
[| . | . I
| (. (. |
[[. | . |
| RECL | CO | 'RECALL'L |

14-34 SR-0011 O

For both Fortran and CAL language calls, during execution of the ROOT
program MAIN, the statement

CALL OVERLAY(SLLEV12,1,2)

or the preceding CAL sample call causes OVERLAY to search dataset LEV12
for the absolute binary named 2. OVERLAY positions the dataset LEV12 to
the location of the absolute binary named 2 using information supplied by
the loader, loads the overlay, and transfers control to the first member
specified on the OVLL directive. After execution of the overlay, control
returns to the statement in MAIN immediately following the CALL
statement. Following the load, dataset LEV12 is positioned immediately
after the EOR for the overlay 2. If overlay 2 is not on dataset LEV12, a
fatal error results.

14.6.10 OVERLAY GENERATION LOG

When MAP is specified on the LDR control statement, a listing is obtained
describing where each module is loaded and what entry points and external
symbols are used for loading. This listing is an overlay load map and is
similar to the map of a nonoverlay load. A log of the directives used
follows the map of the last overlay generated. If overlay loading
aborts, the directives are not listed.

SR-0011 O 14-35

BUILD UTILITY 15

BUILD is a utility program used for generating and maintaining library
datasets. A library dataset contains a program file followed by a
directory file. The program file is composed of loader tables for one or
more absolute or relocatable program modules. The directory file
contains an entry for each program. The entry contains the name of the
program module, the relative location of the program module in the
dataset, and block, entry, and external names. Library datasets
primarily provide the loader with a means of rapidly locating and
accessing program modules.

The BUILD program constructs a library from one or more input datasets
named in the BUILD control statement. A library dataset created by one
BUILD run can be used as input to a subsequent BUILD run. Through BUILD
directives, you designate the program modules to be copied from the input
datasets to the new library and their order in the library.

No directives or control statement parameters are needed for the most
frequent application of BUILD, which is to add new binaries from $BLD to
an existing library of binary programs, replacing the old binaries where

necessary.

BUILD does not use tape datasets.

15.1 BUILD CONTROL STATEMENT

Keywords can be in any order.

Format:

| » I
| BUILD,I=idn,L=1dn,OBL=odn,B=bdn,NBL=ndn, SORT,NODIR, REPLACE. |

I=idn idn is the name of the data containing BUILD directives,
if any. Directives can be included in the $IN dataset, or
they can be submitted in a separate dataset. BUILD
directives are discussed later in this section.

If the I parameter appears alone or is omitted, all
directives are taken from the $IN dataset, starting at its

SR-0011 O 15-1

I=idn
(continued)

L=1dn

OBL=0dn

B=bdn

NBL=ndn

SORT

NODIR

15-2

current position and stopping when an end-of-file (EOF) is
read.

If I=ddn, all directives are taken from the specified
dataset, ddn, stopping when an EOF is read.

If I=0, no directives are read. The most common condition
is to merge the modules from odn (the OBL parameter
dataset) with those from bdn (the B parameter dataset),
replacing OBL modules with B modules whenever the names
conflict, and to write the output to ndn (the NBL
parameter dataset). The input dataset specified by the B
parameter corresponds to the binary output from CAL and
Fortran, also designated by B.

Name of list output dataset. If the L keyword appears
alone or is omitted, list output is written to $OUT. If
L=1dn, list output is written to 1dn. If L=0, no list
output is written.

Name of the first input dataset, usually a previously
created library dataset. If the OBL parameter is omitted
or appears alone, the first dataset read is $OBL. If
OBL=odn, the first dataset read is odn. If OBL=0, no

old binary library exists; this is a creation run.

Name of the second input dataset, whose modules are added
to or replace the modules in the first dataset. If the B
parameter appears alone or is omitted, the second dataset
read is $BLD. If B=bdn is specified, the second dataset
read is bdn, which is read to the first EOF. If B=0, no
modules are being added; this run edits an old library.

Name of the output dataset, usually a new library

dataset. If the NODIR parameter is also present, ndn is
not in library format. If the NBL parameter appears alone
or is omitted, output is written to $NBL. If NBL=ndn,
output is written to ndn. 1If NBL=0, no output is

written.

Specifies that all modules will be listed alphabetically
according to their new names. The default is to list the
modules in the order they are first read. SORT applies
only to the list dataset and not to the output library.

Specifies that no directory is to be appended to the output
dataset, resulting in an ordinary sequential dataset like

$BLD. The default is to append the directory.

The dataset ndn specified by NBL is not rewound if NODIR
is specified.

SR-0011 O

REPLACE Specifies that the output library is to contain modules in
the same order as the old library. If REPLACE is omitted,
the new library contains modules from the o0ld library that
are not replaced by modules from the input binary dataset.
These are followed by modules from the input dataset,
whether the modules from the input dataset are new or
replace modules from the old library. The modules appear
in the order encountered on the input dataset.

Build aborts if any of the following errors occur:

¢ A module specified explicitly in a COPY or OMIT directive is
not in the current input dataset.

¢ A module specified explicitly in a COPY directive has already
been selected for output.

¢ Improper syntax is used in the BUILD control statement or in
the directive dataset.

® An unrecognized directive or control statement keyword is used.

e A dataset name or module name is too long or contains illegal
characters.

15.2 PROGRAM MODULE NAMES

BUILD directives refer to program modules by their names (as given in
the directory) or, if the directory is missing or is unrecognizable,
by the names given in the program modules.

15.3 PROGRAM MODULE GROUPS

In the COPY and OMIT directives, program modules with names containing
one or more identical groups of characters can be specified together.
To accomplish this, variable parts of each name are replaced by one or
more hyphens. For example, XYZ- represents all names beginning with
XYZ, including XYZ itself. The extreme case is a name consisting of
only a hyphen which represents all possible names.

In addition, up to eight asterisks can be used anywhere in a name as
wild characters matching any character other than a blank. For
example, GE* specifies a group of modules having 3-character names
including GET and GEM but not GE or GEMS. GE*S would represent GEMS.

SR-0011 O 15-3

15.4 PROGRAM MODULE RANGES

To make it easy to copy large numbers of contiguous program modules,
the COPY directive allows use of a range specifier instead of a single
name or group specifier. The range specifier has the following
general format:

| |
| (first,last) |

This means skip to the first module specified and copy all modules
from the first up to and including the last module specified.

15.5 FILE OUTPUT SEQUENCE

If the SORT parameter appears in the BUILD control statement, all
modules are copied alphabetically according to their new names. In
the absence of a SORT parameter, modules are written in the order they
are originally read from the input datasets.

The order of the entries in the directory is always the same as the
order of the modules themselves.

15.6 FILE SEARCHING CONSIDERATIONS

You do not need to know the order of modules in the input dataset
unless two or more modules have the same name or a range is specified
in a COPY directive.

If two or more modules with the same name are in the input datasets,
the last of’ the modules read is the one that survives, unless you
specifically omit that last module while its original dataset is the
currently active input dataset.

The concept of current position in the input file is used to interpret
range specifiers where the first name is omitted as in (,last) or (,).
In such cases, the current position is defined to be either immediately
after the last module copied or at the beginning of the dataset if no
modules have yet been copied.

15-4 SR-0011 O

15.7 BUILD DIRECTIVES

BUILD is controlled through directives in a dataset defined by the I
parameter on the BUILD control statement. A directive consists of a
keyword and, if the keyword requires it, a list of dataset names or
module names. When names are required, the keyword must be separated
from the first name by a blank; subsequent names (if any) in the list are
separated from each other by commas. Extra blanks are optional except
within the keyword.

A line can contain more than one directive. Use periods or semicolons to
separate directives on the same line from each other. You cannot
continue a directive from one directive line to the next.

Examples of directives:
OMIT ENCODE,DECODE

COPY **CODE.

Examples of multiple directives on one line:
FROM OLDLIB; LIST; OMIT ENCODE,DECODE,XLATE

FROM $BLD. LIST.

15.7.1 FROM DIRECTIVE

A FROM directive names a single dataset, which is used as the input
dataset for succeeding COPY, OMIT, and LIST directives, or it lists
several datasets that (except for the last dataset in the list) are to be
copied in their entirety to the output dataset ($NBL). The last dataset
in the list is established as the current input dataset, just as if it
were specified alone in the FROM directive. If no COPY or OMIT directive
follows, the last dataset is also copied in its entirety to the output
dataset.

An input dataset can be a library (with a directory) or an ordinary
sequential dataset (such as $BLD). BUILD always determines whether a
directory is present at the end of the dataset and attempts to use it if
it is there. A library dataset is treated as sequential if its directory
file is unrecognizable.

Format:

| I
| FROM dnq,dny,...,dn, |

SR-0011 O 15-5

The following rule lets you copy several datasets with one FROM directive
or omit COPY (which means copy all) when it would be the only directive
(except for OMIT directives) in the range of a particular FROM directive:

If any dataset named on a FROM directive is not acted on by any LIST
or COPY directive, BUILD copies all of the modules belonging to that
dataset. BUILD takes this action when it encounters the next FROM

dataset name or the end of the directive file, whichever comes first.

If there are two input datasets to be read as soon as BUILD begins to
execute (that is, if neither OBL=0 nor B=0 is specified), the modules
from these two datasets are treated as if they belong to a single dataset
as far as the OMIT, COPY, and LIST directives are concerned. If either
of them is named in a FROM directive, however, it is treated as a
separate dataset and OMIT, COPY, and LIST directives apply only to
whichever is the current input dataset.

15.7.2 OMIT DIRECTIVE

The OMIT directive lets you specify that certain modules, that would
otherwise be included in a group, be omitted from the group on subsequent
copy operations. An OMIT affects modules on the current input dataset
only; its effect ends when a FROM directive is encountered.

Format:

| I
| OMIT fnl,fnz,...,fnn |

Each fn; can be one of the following:

® A single name, such as $AB@CDEF or CAB22, by which binary records
can be explicitly prevented from being copied

® A group name, such as F$§- or *AB**, by which binary records are
prevented from being copied unless they are specified explicitly
(that is, singly) in a COPY directive. (Refer to subsection 15.3,
Program Module Groups, for a description of * and - usage.)

If an fn parameter specifies a module not in the input dataset or a

group of modules having no representatives in the input dataset, a
diagnostic message is included in the list output and BUILD aborts.

15-6 SR-0011 O

15.7.3 COPY DIRECTIVE

COPY directives cause BUILD to select the specified modules for copying
from the current input dataset to the output dataset. You can specify
single modules, groups of modules, or ranges of modules to be copied. 1If
you specify a module not in the current input dataset, a diagnostic
message is included in the list output and BUILD aborts.

Format:

| |
| COPY fnq,fny,...,fn, |

Each fn; is either of the two forms valid in OMIT directives:

e A single module name by which modules are explicitly selected for
copying even if they belong to a group named in a previous OMIT
directive

® A group specifier by which all the modules in the group are
selected for copying unless they are specified either explicitly
or implicitly in a previous OMIT directive

In addition, two special forms are allowed for each fn; in COPY
directives:

e A form to rename a single module whose o0ld name is specified
explicitly; for example, OLDNAME=NEWNAME. (The name is changed
both in the output directory and in the module's Program
Description Table.)

e A form to copy an inclusive range, as in (FIRST,LAST), by which
all the modules in the range are selected for copying unless they
are specified either explicitly or implicitly in a previous OMIT
directive.

These two forms are mutually exclusive. A module copied by being
included in a range cannot simultaneously be renamed. Both forms cannot
accept a hyphen or an asterisk specifying a group of modules.

Examples:
BUG=ROACH Copies BUG, renaming it to ROACH
(LOKI, THOR) Copies all modules from LOKI through THOR

SR-0011 O 15-7

(THOTH,) Copies all modules from THOTH to the end of the input
dataset

(,ISIS) Copies all modules from the current dataset position
through ISIS

(.) Copies all modules from the current dataset position
to the end of the input dataset

The current dataset position is defined as the beginning of the input
dataset if no modules have been selected for copying yet. Otherwise the
position is the beginning of the record immediately after the last module
that has been selected for copying.

15.7.4 LIST DIRECTIVE

The LIST directive tells BUILD to list the characteristics of the modules
in the current input dataset. Its effect is immediate. (BUILD's
standard list output describes the contents of the output dataset and is
produced at the end of the run so as not to interfere with output
triggered by LIST directives.)

Format:

15.8 EXAMPLES
The following are examples of various uses of the BUILD program:

® (Creating a new library dataset, using as input whatever binary
modules have been written out to $BLD (for example, by CAL or
Fortran, or both)

Control statements:

BUILD,OBL=0,I=0.
SAVE,DN=$NBL, PDN=MYLIB.

15-8 SR-0011 O

® Adding one or more modules to an already existing library dataset,
again taking the input from $BLD

Control statements:

ACCESS,DN=$0BL, PDN=MYLIB.
BUILD,I=0.
SAVE, DN=$NBL, PDN=MYLIB.

Any modules whose names were already in the directory of MYLIB are
replaced by the new binaries from $BLD in the new edition of MYLIB
that is created by BUILD and saved by the SAVE control statement.

® Merging several libraries
Control statements:

ACCESS,DN=LIBONE, PDN=HERLIB.
ACCESS,DN=LIBTWO, PDN=HISLIB.
ACCESS,DN=ANOTHER, PDN=ITSLIB.
ACCESS,DN=LASTONE, PDN=MYLIB.
BUILD,I,0OBL=0,B=0.

SAVE, DN=$NBL, PDN=NEWLIB.

.

Directives:
FROM LIBTWO, ANOTHER, LIBONE, LASTONE

The order of the dataset names in the FROM directives, not the
order of the ACCESS control statements, determines the order of
processing., If two datasets contain modules of the same name, the
surviving module is the one in the dataset whose name occurs later
in the FROM directive. (Any module could be renamed in order to
prevent it from begin discarded before input from a succeeding
dataset is begun. See the File Searching Considerations
subsection for a description of the interaction with OMIT
directives.)

SR-0011 O 15-9

® Deleting a program module from a library
Control statements:
ACCESS,DN=$0BL, PDN=MYLIB.

BUILD,B=0.
SAVE, DN=$NBL, PDN=MYLIB.

Directive:
OMIT BADPROG

¢ Extracting a program module from a library for input to the system
loader, using the local dataset name $BLD as the intermediate file

Control statements:

ACCESS,DN=XXX, PDN=MYLIB.
BUILD, I,0BL=XXX,B=0,NBL=$BLD,NODIR.

Directive:

COPY RUNPROG

15-10 SR-0011 O

JOB CONTROL LANGUAGE 16
STRUCTURES

This section discusses three aspects of Job Control Language (JCL)
structures:

® Control statement logic structures
® JCL expressions
¢ Procedures

16.1 CONTROL STATEMENT LOGIC STRUCTURES

The COS JCL allows three fundamental logic structures:

e Simple control statement sequences. Control statements are
processed one after another.

¢ C(Conditional control statement blocks. A sequence of control
statements is processed only if the specified condition is met.

e TJterative control statement blocks. A sequence of control
statements is processed repetitively until the specified condition
is met.

Most computer algorithms can be expressed in terms of these structures or
as combinations of them.

16.1.1 SIMPLE CONTROL STATEMENT SEQUENCES

A simple control statement sequence is a series of one or more of the
control statements described in sections 6 through 15. The individual
control statements are processed sequentially as described in section 3.

16.1.2 CONDITIONAL CONTROL STATEMENT BLOCKS

A conditional control statement block is a group of control statements
that is processed only if a specified condition is met. The control
statements ELSE, ELSEIF, ENDIF, EXITIF, and IF allow other control
statements to be placed in a conditional block structure, as follows:

SR-0011 O 16-1

e IF defines the beginning of a conditional block.
® ENDIF defines the end of a conditional block.

¢ EXITIF defines a condition which causes an escape from a
conditional block.

e ELSE defines an alternate condition.

¢ ELSEIF defines an alternate condition to test when the previous
one tested is false.

ELSE, ELSEIF, and EXITIF sequences are optional.

16.1.2.1 ELSE - Defines alternate condition

The ELSE control statement defines an alternate condition. An IF
statement, as well as any ELSEIF statements, must precede the ELSE
control statement. If all conditions specified by the IF and ELSEIF
statements that precede the ELSE in the conditional block test as false,
the statements that follow the ELSE statement are executed.

Within a conditional block, only one ELSE sequence is permitted. The
ELSE statement, if present, must follow any ELSEIF statement. ELSE is a
system verb. (System verbs are defined in subsection 4.2, Control System
Verbs.) There are no parameters.

Format:

| ELSE. |

16.1.2.2 ELSEIF - Defines alternate condition

The ELSEIF control statement defines an alternate condition to test if
the previously t