CRAY-1® AND CRAY X-MP
COMPUTER SYSTEMS

COS
EXEC/STP/CSP
INTERNAL REFERENCE
MANUAL

SM-0040

CERANY

CRAY-1® AND CRAY X-MP
COMPUTER SYSTEMS

COS
EXEC/STP/CSP
INTERNAL REFERENCE
MANUAL

SM-0040

Copyright®© 1980, 1981, 1982, 1983, 1984 by CRAY RESEARCH, INC.
This manual or parts thereof may not be reproduced in any form
without permission of CRAY RESEARCH, INC.

CRRAY

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SM-0040

Each time this manual is revised and reprinted, all changes issued against the previous version in the form of change packets are
incorporated into the new version and the new version is assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets, Each change packet is assigned a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. (ghan es to part of a page are noted by a change bar along the margin of the page, A change bar in the margin opposite
the page number incﬂcates that the entire page is new; a dot in the same place indicates that information has been moved trom
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:
CRAY RESEARCH, INC.,

1440 Northland Drive,

Mendota Heights, Minnesota 55120

Revision Description
October, 1980 - Original printing; supports COS Version 1.09.
This manual obsoletes portions of the CRAY-0OS Version 1 System
Programmer's Manual, publication 2240012.

01 July, 1981 - This change packet reflects the feature changes
made to COS for the 1.10 release, including changes to JCL,
disk flaw processing, partial deallocation, and the Network
Systems Corporation HYPERchannel feature. Other minor
technical and editorial changes are also included.

A August, 1981 - This printing incorporates change packet 01.
No other changes have been made.

A-01 June, 1982 - This change packet describes the new Tape Queue
Manager (TQM) task; substantial changes to the Disk Queue
Manager (DQM) task, the Overlay Manager (OVM) task, and EXEC;
and other minor technical and editorial changes to bring this
publication into agreement with the 1.11 version of COS.

B July, 1983 - This rewrite describes the new Stager (STG) task:
substantial changes to the System Executive (EXEC), Job
Scheduler (JSH), and Tape Queue Manager (TQOM); other changes
required to bring this publication into agreement with the
1.12 version of COS. Numerous editorial changes have been
made to enhance readability. This printing obsoletes all
previous printings,

o] February, 1984 - This reprint with revision reflects the
feature changes made to COS for the 1.13 release, including
multitasking support, volatile device support, and tape
positioning. This printing obsoletes all previous printings.

SM-0040 ii C

PREFACE

This manual describes the internal features of the EXEC, STP, and CSP
portions of the Cray Operating System.

This publication is part of a set of manuals that describes the internal
design of the Cray Operating System (COS) and its product set.

Manuals in this set that describe the internal design of COS and other
software products from Cray Research, Inc. (CRI), are as follows:

SM—-0017 FORTRAN (CFT) Internal Reference Manual

SM-0040 COS EXEC/STP/CSP Internal Reference Manual

SM-0041 COS Product Set Internal Reference Manual

SM-0045 COS Table Descriptions Internal Reference Manual”
SM-0046 I0S Software Internal Reference Manual

SM-0049 Data General Station (DGS) Internal Reference Manual
SM-0072 COS Simulator (CSIM) Internal Reference Manual

Manuals that define procedures and external features of tools needed for
installing and maintaining CRI software are as follows:

SM-0043 COS Operational Procedures Reference Manual
SM-0044 COS Operational Aids Reference Manual
SR-0073 COS Simulator (CSIM) Reference Manual

The reader is assumed to be familiar with the contents of the CRAY-0S
Version 1 Reference Manual, publication SR-0011, and to be experienced in
coding the Cray Assembly Language (CAL) as described in the CAL Assembler
Version 1 Reference Manual, CRI publication SR-0000. In addition, the
I/0 Subsystem assembler language (APML) is described in the APML
Assembler Reference Manual, CRI publication SM-0036.

Operating information is available in the following publications:

SG-0006 Data General Station (DGS) Operator's Guide
SG-0051 I/0 Subsystem (IOS) Operator's Guide

+ This manual is distributed on magnetic tape and can be obtained
through your Cray Research analyst.

SM-0040 iii C

CONTENTS

PREFACE . ¢« ¢ ¢ ¢« o o « &

® e e & e e e o o © o e o o © & o e o o o iii

1. INTRODUCTION « o« o« o o ¢ o o o &

1.1 GENERAL DESCRIPTION . 4 4 « o o o o o o o o o o o o o « 1-1
1.2 SOFTWARE CONFIGURATION . ¢ « o s « o o s o o o o o o o o 1-2
1.2.1 Cray Operating System (COS c o o s o o o o o ® 1-2
1.2.2 Language SYStems o« « o« o o « o o o o o o o o o @ 1-3
FORTRAN COMPile@r « ¢« « o o « o o o o o o o o o » 1-4
CAL assembler . « ¢ o o o ¢ s o o o o o o o o o 1-4
Pascal compiler . o ¢« ¢ o« o o o o o o o o o o o 1-4
APML assembler « ¢« o« o o o o o o o o o o o o o & 1-5

SKOL macro translator . « ¢ ¢ o« o o o o o o o @ 1-5

1.2.3 Library routines . . ¢« ¢ o ¢ ¢ ¢ o o o o o o o o 1-5
1.2.4 Applications programs . ¢« ¢ o ¢ o ¢ ¢ o o o o o 1-5
1.3 SYSTEM RESIDENCE . ¢« « o o o o o o o o o s o o « o o o o 1-6
1.3.1 EXEC constant, data, and table areas « . 1-7
1.3.2 EXEC Program ar€a@ « « « s o« o o o o o o o o o o 1-10
1.3.3 System Task Processor (STP) table area « « . « 1-10
1.3.4 STP ProOgram ar€a « « « o o o o o o o o s o o o 1-13
1.3.5 Control Statement Processor (CSP) area . « « « o« 1-13
1.3.6 USEr QKA o o o o o s o s o o o o o o o o o o » 1-14
1.4 MASS STORAGE SUBSYSTEM ORGANIZATION . « « ¢ ¢ o« o o o o 1-15
1.4.1 Formatting . « « ¢ ¢ o o o o o o o o o « o o o o 1-16
1.4.2 Device label (DVL) « « o o o o o o o o s o o o o 1-16

Flaw information . . ¢« ¢ o« ¢« o o o o o o o o o o 1-16

Dataset Allocation Table (DAT) for DSC 1-16

1.4.3 Dataset catalog (DSC) . o « ¢ o o o o o o o o o 1-17

1.5 EXCHANGE MECHANISM . ¢ o o o o o o s o o o o o o o o o o 1-17
1.5.1 Exchange Package « « « o o « o s o o o ¢ o o o o 1-18
1.5.2 Exchange Package areas . « « « o o o o o o o o« » 1-18
1.5.3 B, T, and Vregisters . .« « ¢ o ¢ ¢ ¢ o o o o = 1-21

.6 COS STARTUP . « o o o o o o o o o o o s o e o o o o s @ 1-21
7 GENERAL DESCRIPTION OF JOB FLOW .« ¢« « o « o o o o o o &« 1-22

o
.

107. Job entry e e e e e o o e o o o o o o o o e o 1-22
1. 7. Job initiation e @ o @ o @ o © o e & o e o o o o 1-22
1 . 7 . JOb advancement ® o o6 e o o & o 6 e o+ o o e s 1—23
1

AND MULTITASKING e & o o e © o ° o e & o o o e e o 1-24
Multiprogramming . « « o « o« s o o o o o o o o @ 1-25

1
2
3
.7.4 Job termination ¢ 4 ¢ ¢ ¢ o o o o o o . 1-24
S
1
2 MultiprocesSing .« ¢« ¢« o« o o o o o o o s o o o o 1-25

SM-0040 v C

SM-0040

1.9

1.10

2.1
2.2

EXEC

2.3

2
2
2

4
5
6

1.8.3

1.8.4
1.8.5

TAaSKS o ¢ ¢« o o o o o o o o o o o s o o o o o
Idle memory correction tasks . « ¢« ¢« o ¢ o« « &
System task . ¢« ¢« o ¢ ¢ o ¢ ¢ ¢ ¢ ¢ + o o o
User task . ¢ o o o o o o o o o o o o o o o =«
User 1ibrary « o« o« o « o o o o o o o o o s o @
Multitasking « o« o« o o« o o o o o o o s o o o &
Jobs and user tasksS . ¢ ¢ ¢ ¢ o o o o o o o

MASS STORAGE DATASET MANAGEMENT. . . ¢ o ¢ ¢ ¢ o o o &
I/O INTERFACES L] . L] . L] . L . L] L3 . . L3 L] L . L4 .

® ®© e ® o o ® @ @ e o o & s+ © o o o o o o o o

INTERCHANGE ANALYSIS . « ¢ « o o o o o s o s s o o o =
I NTERRUPT I{AND LERS L] L4 . . L] L] . Ll . . L4 L] L] L]

2.2.1

L] L] []

DN DD NON
L] [)

VWO gL & W

[SHL S SN SR ST SR S
e o
e o

CHANNEL

N
w
=

I/0 interrupt handler (IOI) . ¢« « « o o o o &
Expired time event interrupt handler (TEI) . .
Programmable clock interrupt handler (PCI) . .
MCU interrupt handler (CII) . . « ¢ o o o o »
Error interrupt handler (EE) « o« ¢ ¢ « o o o «
Memory error interrupt handler (ME)
Normal exit interrupt handler (NE) . « « . .
Interprocessor interrupt handler (IPI)
Deadlock interrupt handler (DLI) . . « o o« o &
MANAGEMENT . ¢ o o ¢ o o o ¢ o o o o o o o o &
Channel management tables . . « « ¢ ¢« ¢ o o« o«
Channel Buffer Table (CBT) . « o « o o ¢ o o o
Channel Table (CHT) . o ¢« « o o o o o o o o &
Link Interface Table (LIT) . e o o o o s o o
Subsystem Control Table (SCT) e o o« o o v o o
System Task Table (STT) . <« ¢ o o o o o o o o
I/0 Service Processor tables . « « ¢« &« « o« o« &
Channel assignments . .« « o o o o o o o o o @
Channel ProcesSSOILS « « ¢ o o o« o s o o o o o &
Front-end Driver interrupt handlers
Disk/SSD Driver interrupt handlers
I/0 Subsystem MIOP command and status
PIOCESSOrS o« o « o o o o o o s o o a o o o @

TASK SCHEDULER o+ « ¢ o o o o o o o o o o o s s o s s @
EXEC RESOURCE ACCOUNTING « « o« o ¢ o o o o o o o o o o
EXECUTIVE REQUEST PROCESSOR . + ¢ « ¢ o o o ¢ o o o o

2.6.1

Executive requests « ¢« « ¢« ¢ o« o o o o o o o
Create a system task request (CTSK=01l)
Ready system task request (RTSK=02). . « « « &
System task self-suspend request (SUSP=03) . .
Front-end Driver request (FET=05)
Delay system task for time request (TDELAY—OG)
Reserved for site use request (RESERVED=07) .
Start second CPU request (STRTCP2=10)
Disk block I/0 request (IO=1ll) . o o« o o o« o &
Select single-bit error detection mode request
(SEDSEL=12) =+ 2 ¢ « ¢ o o o o« o« o o @

vi

1-25
1-25
1-25
1-26
1-26
1-26
1-26
1-27
1-28

[\
1
]

NNN[T)NMNN

NN DO
U

N NN

[
|
WY VWO N UTUUL W WW WN

[N
1
(V-

2-10
2-10
2-11
2-12

2-12
2-13
2-14
2-16
2-16
2-16
2-17
2-19
2-19
2-20
2-21
2-21
2-22

2-22

2.6 EXECUTIVE REQUEST PROCESSOR (continued)
Ready system task and suspend self request
(RTSS=14) o o ¢ o o o o o o o o o o o o o o = 2-23
Connect user task to CPU request (RCP=16). . . . 2-24
Disconnect user task from CPU request (DCP=17) . 2-26
Post message in history buffer request
(POST=20) =+ o ¢ ¢ o o o« o o o o o o« o o o o 2-27
Set memory size request (SMSZ=21) . . . « « o « 2-28
Packet I/0 request (PIO=22) . ¢ v o o o o o o 2-28
Boot a new system request (BOOT=23) . « « « « &« 2-29
Start system request (START=24) . . « « o o o o« 2-30
Stop system request (STOP=25) . . ¢« ¢ « ¢ o o & 2-31
Display memory request (DMEM=26) . . « « « o o » 2-31
Enter memory request (EMEM=27) . . . « o e 2-32
Display Exchange Package request (DXPR~30) e o o 2-33
Enter Exchange Package register request
(EXPR=31) . ¢ o o ¢ o s o o a s o s a o o o = 2-33
Set system breakpoint request (SBKPT=32) 2-34
Clear system breakpoint request (CBKPT=33) . . . 2-35
Report CPU use request (CPUTIL=34) . « o« o o o « 2-36
Report task use request (TASKUTIL=35) 2-36
Report EXEC request (EREQNT=36) . &« o « o o « 2-37
Report EXEC call counts request (ECALLCNT=37) . 2-38
Report interrupt counts request (CHINTCNT=40) . 2-39
Switch processors request (PSWITCH=41) 2-39
Dump CRAY X-MP cluster registers request
(DUMPCL=42) ¢ &« o ¢ o o o s o o s « s o o o o 2-40
2.6.2 EXEC €IrrOr CO3€S + « « o o o o o s o o s o o o 2-41
2.7 FRONT-=END DRIVER . « ¢ « o o o o s s s o o o o o o o o = 2-42
2.7.1 Theory of operation . « . ¢ ¢ ¢ ¢ o o ¢ o & o & 2-42
Channel onoperation . « « ¢« o « o« o o o o« o « « 2-43
Channel off operation . « ¢« ¢« « ¢« « o « & « o« o 2=-43
Output to front-end operation 2-43
2.7.2 System tables used by the Front-end Driver . . . 2-44
Channel Table (CHT) &« &« ¢« &« o o o o o o o o o« « 2-44
Channel Extension Table (CXT) &« ¢ ¢ o o o o o o 2-44
Link Interface Table (LIT) + « « ¢ o o o o o o o 2-44
Link Extension Table (LXT) « ¢ ¢« s o o o o o o @ 2-44
2.7.3 Front-end Driver ProcessSOLS . « « o o o o o o o 2-45
ROO5 request dispatcher . . ¢« o« ¢ o o o o o o » 2-45
FNDLX ¢ o o o o o o o s o o o o o o o o o o 2-45
GETLX o o o o = o o o o o o o o o o o o o &« 2-46
ITERM ¢ ¢ ¢ ¢ o o o o o o o o s o o o o o = 2-46
IPEND . ¢ ¢ o o o o o o o o s o o o o o o o 2-417
OTERM ¢ ¢ o o o o o o o o o o o o o o o o o 2-47
TACT & o o o o o o o o o o o o s o o o o o 2-47
ROOS5C request PrOCESSOL « « « o o o o o o o o o 2-47
CCLR/CCLRA . 4 2 o « o« o s o o o s s o o o 2-48
CCLRB ¢ v « o « o o o s o o o s o s s s o s 2-48
CCLRC &« ¢ o« o o o o o o s o s o o o o o o @ 2-48
CCLRD « o o ¢ o o o o s o s o o o s o s o o 2-49

SM-0040 vii c

2.7 FRONT-END DRIVER (continued)

CHEKSM o ¢ ¢ ¢ o o o o o o o o o s o o s o @ 2-49
FOLD ¢ ¢ o o o o o o o o o o o o o o o o o 2-49
LIRCV 4 4 & o o o o o o o o o s o o o o o 2-49
LORCV ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o 2-49
RECP & ¢ o o o o o o o o o o o o o o o o o 2-49
RLTP & & ¢ o o o o o o o o o o o o o o o o 2-50
RSSEG o ¢ o o o o o o » o o o o s o o o o & 2-50
WLECP & 4 ¢ ¢ o o o o o o o o o o s o o o o 2-50
WLTP ¢ 4« 4 o o o o o o o o o o o o s o o = 2-51
WSSEG ¢ ¢ ¢ ¢ o o o ¢ s o s o o o o o o o @ 2-51
WXLCP v« o ¢ o o o o s o o o o s s o s o o » 2-51
WAXLTP ¢ ¢ ¢ ¢ ¢ o o o o o o o o o s o o o « 2-51
ROOS5I request ProCeSSOr « « o o o o o o o o o 2-51
ROO5SN request ProceSSOr ¢ o o o o o o o o o o @ 2-52
NCLR/NCLRA . ¢ o o o ¢ o ¢ o o o o a s o @ 2-54
NCLRB ¢ ¢ o ¢ o o o o o o o a o o o o o o o 2-54
NEND . & ¢ ¢ o o o o o o o o o o o o o o o 2-54
NENDA &+ ¢ ¢ o o o o s o a o s o o o s o o @ 2-54
NETO &+ v o ¢ o o o o o o o o o s o o o o o 2-54
NIRCV ¢ ¢ ¢ o o o o s o s o o o o o o o o « 2-55
NORCV ¢ v o ¢ « o o ¢ o o o o o s o o o o & 2-55
NPEND . &4 o ¢ o o o o ¢ o o s o o o o o o« 2-56
NRLCF &« o o o o o o s o o o o o o o o o ¢ » 2-56
NRLCP ¢« o o o ¢ o s s o o o o o o o o o o @ 2-57
NRSEG ¢« 4 ¢ o o o o o ¢ o o o o o o o o o o 2-57
NWLICF ¢ o ¢ ¢ « o ¢ o o o o s o o s o o o o 2-58
NWLCP ¢ ¢« o o o o o o o o o o o o o o o o o 2-58
NWSEF ¢ o & ¢ o o s o o o o« o o o o s o o o 2-58
NWSEG ¢ ¢ ¢ o o o o o s o o o o o o o o o &« 2-59
NWXLC ¢ ¢ o ¢ o o o o o o o o o o s o o o o 2-59
NWXLE & o o o o o o o o o o o o o o o o o = 2-59
OUTFC &+ 2 « « o o o o o o o o o o o o o o o 2-59
STAT 4 o o o« o o o o o o o o o o o o o o 2-60
STATA o o ¢ o o o o o o o s o s o s o o o o 2-60
OUTFC o o o« o o o o o o o o o o o o o o o » 2-60
2.7.4 Front-end Driver error reCovery . « « « o« o o & 2-60
RO05C (IFC interface) error processing . « . . . 2-61
ROOS5I (I/O Subsystem) error processing 2-61

ROO5S5N (NSC HYPERchannel interface) error
ProcesSSing v o o o o o o o o o o o s s o o o o 2-61
2.8 DISK/SSD DRIVER « & ¢ o o o o o o o o o o o s o o o o o 2-62
2.8.1 Disk/SSD Driver tables . + ¢ ¢« ¢ ¢ ¢ o« o o o« o & 2-63
Device Channel Table (DCT) . « « o « o o o o o &« 2-63
Equipment Table (EQT) &« ¢ o ¢ o o o o o o o o 2-63
2 RO1l monitor request « « o+ o « o o o o o o o o & 2-63
3 Lost disk interrupts « o o o o o o o o o o o o o 2-64
.4 Status checking and error recovery . « o « « « o 2-64
5 Hardware sequences for sample requests 2-64
Multiple sector write . « o o o o o o o o o o & 2-65
Cylinder seleCt . o o o o o o o o o o o o o o 2-65

SM-0040 viii C

2.9

SM-0040

2.8.5 Hardware sequences for sample requests (continued)
Controller master clear . « « ¢« ¢ o o « o o o o
Margin select . ¢ ¢ ¢ o « e o o o o o o o o o
PACKET I/ODRIVER . « « ¢ o « o ¢ o o o« o o s o o o o o
2.9.1 Packet I/ODriver tableS « « « « « « o o o o o o
Any Packet Table (APT) . « « « « o o o o o o o »
Channel Extension Table (CXT) &« o o ¢ o o o o o
Free Input Queue Table (FIQ) « ¢« « o ¢ ¢« o « o «
Free Output Queue Table (FOQ) =« ¢« ¢« « « o o o o
Queue Control Table (QCT) &« ¢« o« « o o o o o o o
Subsystem Control Table (SCT) .« o « « o « o o «
9.2 Packet description . . ¢« ¢ o ¢« ¢ o o o o o o o o
9.3 RO22 monitor request . « « « ¢« o« o « o o s ¢« o o
«9.4 MIOP Ariver ProCeSSOILS « « o o = = o o o » o o o
9.5 Packet queueing ProcesSSOILS « « « « o o o o o o« o
MEMORY ERROR CORRECTION . o « o o o « o o o ¢ o o ¢ o o
IDLE TASK ¢ ¢ ¢ o ¢ o o o o o o o s o o o o o o o o o o
EXEC DEBUG AIDS .« o o« o« o o o o o o o o ¢ o o o o o o o
2,12.1 History trace . « ¢« ¢ o« o« o ¢ o o o o s o o o »
History Function Table (XFT) . « « ¢« o o o « o »
History Trace Table (XTT) o « o « o o = « o o &
I/0 interrupt (I0I=1l) v ¢ o« o o o « = o o o
User—-initiated normal exchange (UNE=2) . .
STP-initiated normal exchange (SNE=3) . . .
Exchange to system task (ENE=4) . . « « « «
Exchange to idle package (ENE=4). . . « . &
Exchange to user task (ENE=4) . . ¢« « ¢ «
Canceled timer event (PCI=5) . . ¢« ¢ o o »
Time event (PCI=5) &« ¢ ¢« ¢ o o ¢ e o o o »
Default time event pulse (PCI=5)
Unexpected PCI interrupt (PCI=5) . « « « «
Front-end input LCP (FEI=7) « « « « « « o »
Physical disk I/O request (DIO=11l)
Disk error retry part 1 (DIO=1l)
Disk error retry part 2 (DIO=11l)
Intertask message (ITM=12) . ¢« ¢« ¢ o o « o«
Error exchange (BEEI=13) o« o« o« ¢ o o o o o »
Front-end output LCP (FEO=14) . « ¢« « « « »
Front—-end segment (SEG=15) . ¢« ¢« ¢ o o o &
Front-end input SCBs (SCI=16) « o« « « o« o o«
Front-end error LCP (FEE=17) .« ¢ « o « « o
Front-end output SCBs (SCO=20) . « « « o «

User task status change (JST=24).

Job status change (JST-24). . ¢« « ¢ o o o o«

Search for a free memory segment (GET=25) .

Allocation of a memory segment (GET=25) . .

Liberation of a memory segment (LIB=26) . .

Request received by JSH (JSH=30) . . « «

SSD transfer (SSD=31) « « « « o « o o o o o

SSD error (SSD=31) =« ¢« ¢« « o o o o o o o o

J$ALLOC requests (MEM=32) . v o « o o o o «

ix

2-65
2-66
2-66
2-66
2-67
2-67
2-67
2-67
2-67
2-67
2-67
2-68
2-68
2-68
2-69
2-73
2-73
2-73
2-73
2-74
2-75
2-76
2-76
2-76
2-76
2-717
2-77
2-717
2-717
2-78
2-78
2-78
2-79
2-79
2-79
2-80
2-80
2-80
2-81
2-81
2-81
2-81
2-82
2-82
2-82
2-83
2-83
2-84
2-84
2-84

2.12 EXEC DEBUG AIDS (continued)

2.13
2.14

2.15

Entry to MOVEMEM routine (MEM=32) .
Entry to ERASEMEM routine (MEM=32)
Exit from RELOCATE routine (MEM=32)
MCU interrupt (HTMCU=33) . « . . &
Interprocessor interrupt (HTIPI=34)
Deadlock interrupt (HTDLI=35) . . .
System wait for single threading
(HTSYS=36) =« v ¢ o o o« & o o o «
Operating system entry after
single-thread wait (HTNWT=37) . .
Logical interprocessor request
(HTIPSET=40) . v ¢ ¢ « o« o « o =
Logical interprocessor request
acknowledgement (HTIPACK=41l) . .
Intertask message - task request
(HTASCII=42) . v « o« o o o s o =
Intertask message - task reply
(HTASCII=42) ¢ o o o o o o o o
Memory error (HTMEC=43)

2.12,2 System stop buffer . « ¢« ¢« v ¢« ¢« ¢ ¢ ¢
INTERACTIVE SYSTEM DEBUGGING « « o « o « o o o &
MULTIPROCESSOR CONSIDERATIONS . o« &« o ¢ o o o
2.14.1 Single threading « « « ¢« « ¢« ¢ o ¢ o o »
2,14.2 Semaphore USage .« « « « « o o o o o o =

2.14.3

Interprocessor communications . . .
2.14.4 Processor Working Storage area (PWS) . .

EXEC-SPECIFIC MACROS &+ & ¢ s « o o s s o o o o o
CLEARIP «. & 4 o o o o ¢ o o o o o o o o
COPYXP v v ¢« o o o o o o s o s o o o o
X6SIO: o o v o o o o o o o o o o o o o o
GETPW. « « ¢« o o o o o o s o o o o o« o o
GETSRO &« 4 v « o o o o o o o o o o o o o
ISFWB . . ¢ ¢ o o o o o o s o o o o o &
SETCL v ¢ ¢ « o o o o o o o o o o o o o
SETIP &+ v ¢« o o o o o o o o o o s o o &

2.15.1
2.15.2
2.15.3
2.15.4
2.15.5
2.15.6
2,15.7
2.15.8
2.15.9
2.15.10

STOP

FALLTHRU . ¢ ¢ ¢ o o o o o o o o o o o o

3. SYSTEM TASK PROCESSOR (STP) o o ¢ o o o o« o o o o o «

3.1
3.2

SM-0040

GENERAL DESCRIPTION . ¢ ¢ o o o o s o o o o o @
TASK COMMUNICATION . ¢ « « o o o o o o o s o o &
EXEC/TASK communication . . « o« ¢ « o &
Task-to-task communication . « « « « « &
PUTREQ « o ¢ o o o o o o o o o o s o o o
GETREQ ¢« « ¢ o o o o o o o s o o s s o =
PUTREPLY ¢ o« ¢ o ¢ ¢ o o o o o o o o o o
GETREPLY . ¢« ¢ o ¢ 2 o o o o o o o o o o«
TSKREQ o« o o o o o o o 2 o o o o o o o &
REPLIES ¢ o « 2 o o o o o o« o o o o o »

3.2.1
3.2.2

. 2-85
. 2-85
. 2-85
. 2-86
. 2-86
. 2-87
. 2-87
. 2-87
. 2-87
. 2-88
2-88
2-89

. 2-89
. 2-89
. 2-94
. 2-94
. 2-94
. 2-95
. 2-96
. 2-97
. 2-97
. 2-97
. 2-97
. 2-98
. 2-98
. 2-98
. 2-98
. 2-98
. 2-99
. 2-99
. 2-99
. 3-1
. 3-1
. 3-2
. 3-3
. 3-3
. 3-5
. 3-5
. 3-6
. 3-6
. 3-7
. 3-7

C

3.2.3
3.2.4

USER/STP communication . « « ¢ « ¢« ¢ o o o «
TASK/FRONT-END communication . . . « « « «

4 L] STP COMM()N ROUT INES L] - L] L d L] L] L] - . - - L] L L] L] L] * L] Ll

4.1

4.3

4.4

SM-0040

TASK I/o ROUTINES - - - * - L] L] L3 L] L] . L] L] L] - L] Ld

4.1.1

System tables used by TIO . . . ¢ ¢ ¢ « o =«
Dataset Name Table (DNT) . ¢« « o« o o o o o o
Dataset Parameter Area (DSP) . ¢« ¢ o o « o
Error ProcesSsSing « « « « o o « o« o o o o o o
TIO logical read routines . . ¢« ¢« o« o o o &«
SRWDP routine . ¢« « o ¢ « ¢« ¢ o o o o « « o
$RWDR routine . ¢ o o o« o ¢« o o o o o o o
TIO logical write routines . .« « ¢« « « o «
$WWDP routine . ¢« o« ¢ ¢ o o « o o o o o o &
SWWDR routine . . . o ¢ o ¢ o ¢« o o o s o =
PWWDS routine . o « o« o o o ¢ o o o o o o o
SWEOF routine . . « o ¢« ¢ « o o o o o o o
PWEOD routine . ¢« o o« ¢ ¢ o o « o o o o o =
Positioning routine ¢ . . .
Block transfer routines . . . ¢ ¢ ¢ o ¢ o «
$RBLK routine . . ¢« ¢ o« ¢ ¢ o o o o o o o o
$WBLK routine . ¢ « o ¢« ¢ « o o o o o o o o

CIRCULAR I/0O ROUTINES (CIO) &« o o o o o o o o o o

4.2.1
4.2.2
4.2.3
4.2.4

CIOentry points « « ¢« o« o ¢ ¢ o o o« o o o o
CIO main read/write entry. « « ¢ « « o o o o
CIO synchronous recall . . « o ¢« ¢« ¢ ¢ o o &
CIO asynchronous recall. . . e o o * & = »

MEMORY ALLOCATION/DEALLOCATION ROUTINES e o o s s o

4.3.
4.3.
4.3

4.4
4.4.
I

1
2
3
CHAINI
1
2

Memory allocation — MEMAL . . o ¢ ¢ « o o
Memory deallocation — MEMDE . . « o « « « &
Partial memory deallocation — PMEMDE

NG/UNCHAINING SUBROUTINES . . o« ¢ o o o o o«

Chain item - CHAIN @ e @ e o o o e © ° s o o
UnChain item - UNCHAIN e e @ o o o o o & o o

NTERACTIVE COMMUNICATION BUFFER MANAGEMENT ROUTINES

4.5.1
4.5.2
4,5.3

ENOMSG routine « « « ¢« o o ¢ ¢ o« o o o o« o o
NXTMSG routine . o« ¢ « o ¢ o o o o o o o o =
FREEMSG rout ine L] L] L] - L] L] - . L] - L] L] . *

PASSWORD ENCRYPTION . ¢ ¢ « o o o o o ¢ o o o o o o
SYSTEM BUFFER MANAGEMENT . . ¢« « ¢ ¢ o o o o o s o« o

oloe

4.7
4.7
4.7
4.7
4.7

System buffer initialization « . . .
System buffer internal management
Buffer allocation . « ¢« . ¢ ¢ ¢ o o ¢ ¢ o &«
System buffer deallocation . . « . « « ¢ . &
System buffer performance considerations . .

xi

4-10
4-11
4-11
4-12
4-12
4-13
4-13
4-14
4-14
4-19
4-19
4-20
4-21
4-22
4-23
4-23
4-24
4-25
4-25
4-27
4-27
4-28
4-28
4-29
4-29
4-30
4-32
4-33
4-33
4-35
4-36

5. COS STARTUP

5.1
5.2

5.3

v »n
*
S O

5.7

5.8

SM-0040

INSTALL OPTION .

e & ® o o © o o

DEADSTART OPTION . . « o o « o o &

wn

(S ENE S
* e e
¢« o 0

>
wwwwwwww%wmww
¢« o
QOmthH;-hwwH
=]

.

(GRS RNC R N IS B)]
) .
M)

5.3.9

Device space reservation .
Mass storage groups . . .
Dataset catalog extension
Other startup processing .
OPTION ¢ ¢ « o o o o o o
Job recovery by Restart .
Index entry validation . .
Roll dataset validation .
DAT validation . . . « . .
Dataset reservation . . .
Pseudo access of permanent
Resource deallocation . .
Job recovery completion .
Termination of RRJ

Z-PASS STARTUP . . e ® ¢ e e e o o
STARTUP FLAW PROCESSING
INPUT TO STARTUP . . ¢« o « o o « o«

5.6.1

5.6.2
5.6.3

5.6.4
5.6.5

L)
ot b o b e O ONOUW N

N
OCWwo~NoaLdWN KO

L] L]
. .

.
NN NN ONOUNNNCOSN NN NSNS GOSN
.

O oo oo e
.

Configuration changes . .
Parameter file . + « « . .

datasets

Dataset Catalog Extension datase

Recovery and validation .
DXT access and control . .

System Directory dataset ($SDR)

.

Rolled Job Index dataset ($ROLL)
TABLES USED BY STARTUP « & ¢ « « &

Active User Table (AUT) .
Configuration Table (CNT)

Dataset Allocation Table (DAT)

Dataset Name Table (DNT) .

L3

Device Reservation Table (DRT)

Dataset Catalog Table (DSC)

Dataset Parameter Area (DSP)

Device Label (DVL)

Dataset Catalog Extension (DXT)

.

Engineering Flaw Table (EFT)

Equipment Table (EQT) . .

Generic Resource Table (GRT)

Job Table Area (JTA) . . .
Job Execution Table (JXT)

Overlay Directory Table (ODT)
Permanent Dataset Information Table (PDI)

Queued Dataset Table (QDT)

Rolled Job Index Table (RJI)

System Dataset Table (SDT)
Tape Device Table (TDT) .

STARTUP SUBROUTINES . ¢« « ¢« o « o

5.8.1

Z subroutine « « ¢« ¢« o . .

xii

-

.

(DXT

5-1

5-3

5-4

5-5

5-6

5=7

5-8

5-10
5-11
5-12
5-12
5-13
5-14
5-14
5-15
5-15
5-16
5-16
5-18
5-18
5-18
5-19
5-19
5-20
5-21
5-22
5-24
5-25
5-25
5-25
5-25
5-25
5-25
5-26
5-27
5-27
5-27
5-27
5-27
5-27
5-28
5-28
5-28
5-28
5-28
5-28
5-28
5-29
5-29

5.8.2

5.8.3

RRJ subroutine . « ¢« « ¢« « ¢« &
RRJ execution during Install .
RRJ execution during Deadstart
RRJ execution during Restart .
SDRREC subroutine
File allocation . . « « « « «
SDR FECOVELY o o o o o o o o o
No recovery specified

Changes in the number of SDR entries

6 L] D I SK QUEUE MNAGER (w L] L] * L] * L] e - L] L3

6.1

.8

1.1
.l 2
1.3
4
2
2

] L]

.

nNnoctodm

.l
.2

1
2
2
2
2.
2,
2
2
2
2.

L]

3
5
6
7
.8
.9
1
1

O\O\G\C\G\O\O\O\O\O\m

o

M INTERFACE WITH OTHER TASKS

Allocation « « ¢« o o o o o o o
Deallocation . « « « « ¢ « o &
Queue I/O .+ o ¢ ¢ o o o o o @
Return status . « « ¢ ¢ ¢ o &

YSTEM TABLES USED BY DOM .

Dataset Allocation Table (DAT)
Device Channel Table (DCT) . .
Dataset Name Table (DNT) . . .
Device Reservation Table (DRT)
Dataset Parameter Table (DSP)

Equipment Table (EQT)
Generic Resource Table (GRT) .
Job Table Area (JTA) .« « « « .
Job Execution Table (JXT) . .
Request Table (RQT) . « « o «
Subsystem Control Table (SCT)

DATASET ALLOCATION « o« ¢ o ¢ o o o o o
RESOURCE MANAGEMENT . & ¢« ¢ ¢ o o o o

6.4.1
6.4.2

6.4.3

DCU-2 and DCU-3 controller management

DCU~4 controller management .
Storage unit management . . .

QUEUE MANAGEMENT o« ¢« « ¢ « o o o o « o
I/0 REQUEST FLOW INDOM . . « « « « .
DISK HARDWARE ERROR LOGGING . . « « &«
UNCORRECTED DATA ERROR RECOVERY . . .
MAINTENANCE TEST FEATURE . ¢« ¢« + o o &

7. STATION CALL PROCESSOR (SCP) « e ¢ o « o o o

7.1

SM~-0040

YSTEM TABLES USED BY SCP . « « « « &

Active User Table (AUT) . . .
Interactive Buffer Table (IBT)
Link Configuration Table (LCT)
Link Interface Table (LIT) . .
Link Extension Table (LXT) . .

L3

Permanent Dataset Definition (PDD)

xiii

5-30
5-30
5-31
5-31
5-32
5-32
5-32
5-32
5-33

6-1
6-1
6-2
6-3
6-4
6-4
6-5
6-6
6-6
6-6
6-8
6-8
6-8
6-8
6-8
6-8
6-8
6-9
6-10
6-11
6-11
6-11
6-11
6-12
6-13
6-14
6-14

7-1
7-2
1-2
7-2
7-2
7-2
7-2

7.2

7.1.7
7.1.8

System Dataset Table (SDT) . « « « ¢ o «
Stager Stream Table (SST) . ¢« « o « «

PROCESSING FLOW FOR SCP . « ¢ ¢ ¢ o o o o o o o

8 - ExCHANGE PROCESSOR (EXP) L] L L] L] . . Ll . . L3 L] . L] . L]

8.6

o 0
[]
[Vl < - BN

SYSTEM ACTION REQUESTS . « ¢ ¢ ¢ o o ¢ o o o o @
USER ERROR EXIT . ¢ ¢ o o o o ¢ o o ¢ o o o o &
EXCHANGE PROCESSOR REQUEST WORD . . « « &« & o «
JOB SCHEDULER REQUESTS . ¢ « ¢ o ¢ o ¢ o « o o o
SYSTEM TABLES USED BY EXP . ¢ ¢ o ¢ o o o o o o«

8.5.1

.

no,m
L]

> WN

0n
|}

L]
AN OO
L]
WoOJA N W

0 O 00 W owC oo
. L *
° .

8.6.10

Call Table (CALL) .+ « o o o o o o o o &
Job Execution Table (JXT) . « o « o o
Queued Dataset Table (QDT) . . &« « « « &
System Dataset Table (SDT) . « « « « « &

AREA TABLES USED BY EXP « o <« o ¢ o o o o o

Dataset Definition List (DDL) . « « « &
Dataset Name Table (DNT) o « o « « o «
Dataset Parameter Table (DSP) . . « « .
Job Communication Block (JCB) . « « « &
Logical File Table (LFT) ¢ « « « « o o «
Open Dataset Name Table (ODN)
Permanent Dataset Definition (PDD) . . .
Security Swap Table (SHT) . . « « o o &
Task Control Block (TCB) « o o o o o o
User Security Privilege Table (UPT) . .

JOB RERUN * L] L] L] L] L Ll - L L] L] L] L] L L3 Ld L] . Ld
REPRIEVE PROCESSING ¢ ¢ o ¢ ¢ o o o o o o o s &«
IRRECOVERABILITY OF JOBS .¢ ¢ ¢ o o o o o o o &

SCHEDULER (JSH) ¢ o ¢ ¢ o o o o o o o o o o o o o

O O
.
[4]

SM-0040

INTRODUCTION ¢ o « o o = o o o o o o o o o o o
JSH DESIGN PHILOSOPHY . ¢ ¢ ¢ ¢ o o o o o s o &
JXT ALLOCATION ¢ ¢ ¢ o o o o o o o o o o o o o &
MEMORY ALLOCATION . ¢ ¢ o o ¢ o o o ¢ o o o o &

Roll time versus responsiveness.
Memory request qUEUE . « o o o ¢ o o o
Memory Priority. « « « o« o o o o o o o
Thrash 1oCKkS « ¢« o o« ¢« o ¢ o o ¢ o o o &
Allocation flag . « ¢ « o o o o o o o o
Tables used by allocation « &

CPU CONNECT ION L] L] Ll L] Ll - * . Ld Ll L] L] L] L] L] . .
MEMORY MANAGEMENT . ¢« ¢ o o o o o o ¢ ¢ s o o o

9.6.1

JSH management of user memory
Deciding who gets memory . « « « . « « &
EXpansion Spac€ .« « « « « o s o o ¢ o «
Allocating, deallocating, and compacting

MEMOLY o o o o o o o s o o o s s o o o

xiv

7-3
7-3
7-3

8-1

8-2

8-23
8-24
8-25
8-25
8-26
8-26
8-26
8-26
8-27
8-27
8-27
8-27
8-28
8-28
8-28
8-29
8-29
8-29
8-29
8-29
8-31
8-32

Y-}
|
[

1 (U
HENNGNNUTO0 WD
~

w

O
[

(ST

[¢JEN}

9-18

9-20

O O
.
o ~J

9.6.2 Management of a job's memory

User requests . « . « . .
System requests

J$ALLOC request processing
JOB INITIATION . o« o o o o o o o o
JOB STATUS . &« « o o o o o o o o o«
9.8.1 Status changes involved in
9.8.2 Status changes involved in
9.8.3 Status changes involved in

and resumption

JSH INTERFACE WITH OTHER TASKS . .
9.9. Calling sequence . . « . «
9.9. Initialize request
9.9. Allocate request

Await request
Delay request . « « « « &
Suspend request
Stop request
Clear request . . « « « .
Abort request
Rerun request . « « « « &
Delete request « « « « « &
I/0-suspend request . . .
I/O-resume request
Resume request
Start request
Index request . o« « o o &
Start all request
Stop all request
Recover request . « . .« .
Shutdown request
Remove K request . . « . &
Invoke request
User roll request
Change priority request .

L]
L]

.
WO WOWWOWOUY OWVWWOUWYWVLYWOWYWOWYWOUY WO ILYWWYWIWYVUY OV VYD
L]
WWWINOMNMNMNNMNOMNMNOMNNNODHEERFEREERERRPFREOONOOG &®WNODHF

NHFOYVWONGOAUMdWNDNHFOWONOAU WM FO

. . L[] L] L[] L] L[] L] . L]
. . L] . " @ . . . s

.
.

Get memory request
Return memory request . .

OWWOWWOWWWOWY OOV WVOWVWWOVWYW VW WVWWYWWOUY WO LWYWWWYWYW WY WwWLY
D) .
e o

10. PERMANENT DATASET MANAGER (PDM)

l 0 L] 1 FUNCTIoNS . . Ld L3 L] L3 L3 . L] L3 L .
10.1.1 Save user dataset processing (function code

SM-0040

10) e o o o o & s o e o

cpU

swapping .

memory swapping

job

Force job into memory request

Initialize user task request .
Activate user task request . .
Deactivate user task request .
Single thread user task request
Process user task deadlock request

suspension

e e o e e o
e e o o o o

e e o o o

® o o o o o

10.1.2 Save input or output dataset processing

(function codes 12, 14)

Xv

.

9-21
9-21
9-22
9-23
9-28
9-29
9-34
9-34

9-35
9-36
9-38
9-41
9-42
9-45
9-46
9-47
9-48
9-48
9-49
9-49
9-50
9-51
9-51
9-52
9-52
9-53
9-53
9-54
9-54
9-55
9-55
9-56
9-57
9-57
9-58
9-59
9-59
9-60
9-60
9-61
9-61
9-62

10.2
10.3

0.

=y
uobsw

1.
0.1.
0.1.
10.1.6
10.1.7
10.1.8
10.1.9

10.1.10
10.1.11

10.1.12
10.1.13
10.1.14
10.1.15
10.1.16

10.1.17

Access processing (function codes 20, 26)
Delete processing (function codes 30, 36)
Page request processing (function codes 40

and 41) . . ¢ ¢ ¢ o o o

Load processing (function codes 50,
PDS/release processing (function code 60)
PDN request processing (function code 70)

52,

Dump time processing (function code 100)

Dequeue SDT processing (function code 110)
Queue SDT processing (function codes 120,

122’ 124) e ® e o o o o

Adjust processing (function code 130)
Modify processing (function code 140)
SDT rewrite processing (function code 150)

.

[

Pseudo-access processing (function code 160)

PDSDUMP access processing (function codes

170' 176) e ® o s o o o

Permit processing (function code

PDD STATUS « « ¢ o o« o o o o o » »
TABLES USED BY PDM . ¢« ¢« « o « « o«

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9
10.3.10
10.3.11
10.3.12
10.3.13
10.3.14
10.3.15
10.3.16
10.3.17

Class Structure Definition Table

.

Dataset Allocation Table (DAT)

Dataset Name Table (DNT) .

Device Reservation Table (DRT)

Dataset Catalog (DSC) . .

.

Dataset Parameter Area (DSP)

Dataset Catalog Extension (DXT)

Equipment Table (EQT) . .

Job Communication Block (JCB)

Job Table Area (JTA) . . .
Job Execution Table (JXT)

Permanent Dataset Definition Table
Permanent Dataset Information Table (PDI)
Permanent Dataset Table (PDS)

Queued Dataset Table (QDT)
System Dataset Table (SDT)
DXT Allocation Table (XAT)

10.4 THEORY OF OPERATION . « « « « o »

1l. LOG MANAGER (MSG) =« o « o o o « o o o &

11.1 LOG PROCESSING « « o « » o o o o «

11.2
11.3

SsM~-0040

11.1.1
11.1.2

System log processing . .
User log processing . . .

TASK CALLS TO MSG < « ¢ o « o o &
SYSTEM TABLES USED BY MSG

11.3.1
11.3.2
11.3.3
11.3.4
11.3.5

Active User Table (AUT) .

3

Dataset Parameter Area (DSP)

Job Table Area (JTA) . . .
Job Execution Table (JXT)
Log JXT Table (LGJ) . . .

xvi

.

.

200)

.

(CsD)

(PDD)

.

10-4
10-6

10-6
10-7
10-7
10-7
10-7
10-8

10-8
10-8
10-8
10-9
10-9

10-9

10-10
10-10
jo-14
10-14
10-14
10-14
10-15
10-15
10-15
10-15
10-16
10-16
10-16
10-16
10-16
10-17
10-17
10-17
10-17
10-17
10-17

11-1

11-1
11-1
11-3
11-4
11-6
11-6
11-6
11-7
11-7
11-7

11.3.6 Permanent Dataset Definition Table (PDD)
11.3.7 System Dataset Table (SDT) . o « o « « «
11.4 $SYSTEMLOG FORMAT . v « o « o o o s o o o o & o
0 - Null meSSages « « « o« » o o « »

11.4.1
11.4.

Type
Type
Type
Type
Type
Type
Type
Type

11.5 $LOG FORMAT

12. MESSAGE PROCESSOR (MEP)

SO W

ASCII string messages . « » « «
Station Call Processor messages
Hardware mesSsagesS « « « « « « o
Accounting messages . . « o« o o

Startup messages . .« « o o o o
System performance messages . .

Task debug messages . « « « « «

e ® o @ ®o © o ° © ° e ° © ° o o

12.1 EXEC MEMORY ERROR MESSAGE FORMAT . ¢« « « « o o =«
12,2 I/O0 SUBSYSTEM INTERFACE . o o « « o o o o o o &
12.3 I/0 SUBSYSTEM HARDWARE ERROR MESSAGE FORMATS . .
12,4 ASCII MESSAGES ¢ ¢ ¢ ¢ o o o o o o s o o o o o o

13. DISK ERROR CORRECTION (DEC) &« « « o o o o o s o« o s =

13.1 DEC INTERFACE WITH OTHER TASKS ¢« « ¢ o o o ¢ o «
13.2 SYSTEM TABLE USED BY DEC « « ¢ « o = o o o o o o

14, SYSTEM PERFORMANCE MONITOR (SPM) ¢ ¢ ¢ o o o o o o o o

14.1 SYSTEM TABLES USED BY SPM . o « ¢ ¢ ¢ ¢ o = o o
Class Structure Definition Table (CSD) .
Device Channel Table (DCT) ¢ « « « « « o
Interrupt Count Table (IC) « o« « « o o
Monitor Call Table (MCT) <« « ¢ o o o « »
System Task Table (STT) ¢ « « « o o o o
14.2 CONTROL PARAMETERS o+ « « « ¢ o « o = o o o o o o
14.3 METHOD OF DATA COLLECTION .+ ¢ o « ¢ o« o o o o »
1l4.4 DATA COLLECTION AND RECORD DEFINITION . . « . «
14,5 TASK FLOW FOR SPM . ¢ « o o o o o o o o o« o o o

14.1.1
14.1.2
14.1.3
14.1.4
14.1.5

15. JOB CLASS MANAGER (JCM)

® e e e e © @ o ©o @ o © o s o

15,1 JOB CLASS ASSIGNMENT + « o o o © o ¢ o « o o o o
15.2 JCM INTERFACE WITH OTHER TASKS ¢ « « o o o o ¢ o
15.2.1 Classify request . ¢« « ¢« ¢ ¢ o o o « o
15.2.2 Reclassify requesSt « « « « ¢ o« o « o o o
15.2.3 Assign request . « « o« o 2 « o o o » = o
15.2.4 Fixclass request « « « o ¢« « o o o o o =

SM-0040

xvii

11-7

11-8

11-8

11~-10
11-10
11-11
11-11
11-12
11-12
11-13
11-13
11-13

12-1

12-1
12-1
12-2
12-3

13-1

13-1
13-2

14-1

14-1
14-1
14-1
14-1
14-2
14-2
14-2
14-3
14-3
14-10

15-1

15-1
15-2
15-3
15-4
15-4
15-5

160 OVERI-IAY MANAGER (OVM) e ®© ® e @ e © ® & ° o o o e © s e e o o 16-1

16.1 SYSTEM TABLES USED BY OVM . &« « o « « « « o o « o o« « « 16-2
16.1.1 Overlay Call Stack (OCS) o« « « « o o o o« o« s » o 16-2
16.1.2 Overlay Control Table (OCT) . ¢ « « o = « o« « o« 16=-2
16.1.3 Overlay Directory Table (ODT) . « « « o« « o o » 16-2
16.1.4 Overlay Load Request List (OLL) &« « o o « o « o 16-2

16.2 USING OVM FUNCTIONS . ¢« ¢« o o o o o o o o o o o o o o » 16-3
16.2.1 1Initial load overlay request . « « « « « « « « o 16-3
16.2.2 Transfer of control requests « « « « ¢« « « « « « 1l6-4
16.2.3 Inhibiting overlay reuse . . « « « « « « o« ¢« « o 16=5
16.2.4 Returning to called overlay . . « « ¢« « « « « «» 16-6

16.3 OVM REQUEST PROCESSING « o o « o o « « s o o o« o o o o o« 1l6=7
16.3.1 OVS$FCLD request (LOADOVL) processing . . . « « . 16-7

16.3.2 OV$FCCL request (CALLOVL) processing . « « « « . 16-8
16.3.3 OV$FCGO request (GOTOOVL) processing . « « « « « 16-8
16.3.4 OV$FCDIS request (DISABLE) processing 16-9
16.3.5 OVS$FCRTN request (RTNOVL) processing . . « « -« . 16-9

17 . TAPE_QUEUE MANAGER L] L] L d L] L] L d L] L] Ll L3 . L] - - L d L] L] L] L] - L] L] 17-1

17.1 SYSTEM TABLES USED BY TQOM e o e o s o s o o o 17-2
17.2 TQOM INTERFACE WITH THE I/0 SUBSYSTEM e e o o o o o o o o 17-2
17.3 TOM INITIALIZATION . « o o o o « o o o o s o« o o o o o » 17-3
17.4 DELAYED FUNCTION PROCESSING &« « « o o « o o o o o o o o 17=3
17.5 I/0 SUBSYSTEM REPLY PROCESSING « « « o o ¢ ¢ o o o« s o« « 17-4
17.5.1 Reply packet format . « « o « o o o o o o o« o « 17-4
17.5.2 Types of I/0 Subsystem replies . . « « ¢« « « « . 17-4
17.5.3 1I/0 Subsystem reply processor structure 17=5
4 Reply-exit address . « « « « o« « « ¢« o o« o =« o o« 17-6
5 1Initialization subfunction (TQPXR) . . ¢ o o « o 17=7
6 Write tapemarks and rewind function 17-8
7 Continue read function . «. v ¢« ¢« ¢ ¢ ¢ ¢ ¢ o o o 17=9
8 Free-device function . « ¢« ¢ ¢« ¢ ¢ ¢ « ¢ o o o . 17-9
.9 Read-block function . . ¢« ¢« ¢« ¢ « ¢ ¢« ¢ ¢ o « o« 17-10
1
1
1
1l

0 Remount or mount processing function 17-13
1l Rewind function . . ¢« ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o ¢ o o 17-14
2
3

e
NN AN ONg
L]
Voot o,
.

Write-tapemark function ¢ . . « « . 17-16
Unload-volume function . « « ¢« ¢ « « o« o o « « « 17-17
17.5.14 Write-block function . . . «. ¢« « = ¢« ¢« « « « - «» 17-18

17.6 COS AND OPERATOR REQUEST PROCESSING &« « ¢ o ¢ « s o « » 17-21
17.6.1 SCP XePlyY .« o « o « = o o o« o o s o« o o s o o o« 17-22
17.6.2 Operator command « « « « « « ¢ « « o s« o o « o o« 17=22
17.6.3 CIO requestsS o« o« « « o o o « o s o o o o o o o » 17-23
FSRDC requesSt . « o « o o o « o o o« s o o o o o 17-24

FIWDC request .« « « « o o o o o « « o o o« o « » 17-24

17.6.4 P$CLS Close requeSt . o« o« o o « o o « o o « =« o« 17-24
17.6.5 FSOPN Open request « « « « o« o o o « o s o o« « » 17-25
17.6.6 F$PDM delete request . « o « « « o o s o« o o o« « 17-26
17.6.7 FSPDM Save request « « « « o o o« o o o« o o o« o » 17-26
17.6.8 T$POS position request . o ¢« « ¢« o o o o« o « « « 17-26

SM~-0040 xviii C

18.

17.6.9 F$RLS release request . o« ¢ o« o o ¢ o o« o
17.6.10 Sequencer requests (TQPSI or TOPSN)
IDLE-LOOP PROCESSING
TOM STEPFLOWS . . .

17.8.1
17.8.2
17.8.3
17.8.4

17.8.5

17.8.6

17.8.10

17.8.11
17.8.12
17.8.13
17.8.14
17.8.15

STAGER (STG)

18.1

18.2

18.3

18.4
18.5
18.6
18.7

19. FLUSH

TABLES
18.1.1
18.1.2
18.1.3

OVERVIEW OF STG PROCESSING . ¢« o« « ¢ o o o o o &

General flow
General flow
General flow
General flow
validation
General flow
processing
General flow
(TQ$WB200)
General flow
General flow
General flow
validation
General flow
processing

for
for
for
for

e ® e o e o & o e o o o o e

dataset access processing .
open processing . . « « . .
write dataset processing .
beginning of wvolume

(TQsWB300) e o e e e e * o e o

for
for
for
for
for

I/0 Subsystem write reply
volume switch during write
rewind/close processing . .
read dataset processing . .
beginning of volume read

(TQsRB300) e & o o o o . e

for

I/0 Subsystem read reply

Process traller labels (TQ$RB190)
Process volume switch for read (TQ$RB200) .
General flow for close processing
General flow for release processing
Process tape positioning request
17.9 TQM TRACE BUFFER . .

o o

USED BY STAGER .
Permanent Dataset Definition

¢ e o o o e e o o e o +s o o

System Dataset Table (SDT) « « « ¢ ¢ « o & &
Stager Stream Table (SST) &« o o ¢ o o o o «

18.2.,1 Input ProcessSing . « o« o « o o o o o o o o o

18.2.2 Output processing

e e o & o e o o o e s o o

Output termination phase . . .« ¢« « ¢« ¢« « « &
SCP/STG COMMUNICATION .
18.3.1 SCP message request codes . « « « « o o« o o
18.3.2 STG message reply codeS . « o« « o o o o o &
STG BUFFER MANAGEMENT .
MESSAGE REQUEST CODES AND VALID RESPONSES e o o o o
DATASET STAGING EXAMPLES . ¢ « o « o o o o o o o o &
DATASET TRANSFER TERMINATION PROCESSING . ¢« « « o

VOLATILE DEVICE (FVD)

19.1
19.2
19.3
19.4

SM-0040

® © o 8 e o e & e ° o o o o

e e o o ® ® ® o e ° o e o

FVD interface with other tasks « ¢« ¢« « ¢ « o o o o &

System tables used by FVD

FVD general flow . .

Interaction between FVD and Startup

e © o e © & © s e °o s = o

Xix

17-27
17-27
17-29
17-30
17-30
17-31
17-31

17-32

17-33

17-34
17-35
17-37

17-37

17-38
17-40
17-41
17-41
17-42
17-43
17-43

18-1

18-1
18-1
18-1
18-2
18-2
18-4
18-6
18-7
18-7
18-8
18-8
18-10
18-10
18-11
18-14

19-1

19-1
19-2
19-2
19-3

20 - CONTROL STATEMENT PROCESSOR (CSP) ® ® ® e ©® o © e ° ° o o * o 20-1

20.1 SYSTEM TABLES USED BY CSP « 2 & o ¢ o o « o o« o o o o « 20-1
20.1.1 Dataset Parameter Area (DSP) « « « « « o « « o » 20-1
20.1.2 Job Communication Block (JCB) « « o « o o« o » » 20-1
20.1.3 Logical File Table (LFT) o « « ¢ o o = = o « « o 20-2

20.2 THEORY OF OPERATION &+ o ¢« ¢ o o o o o o o s o o o o s o 20-2
20.2.1 CSP 10ad ProCeSS « o o « o s o o o o o o s o » o 20-2
20.2.2 Entry and exit conditions . ¢« ¢« ¢« ¢ ¢ ¢ o o « o 20-2

Entry condition . . ¢ & ¢ ¢ ¢ ¢« ¢ &+ ¢ ¢ ¢ o o o 20-3

Exit conditions . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ e o o o « o 20-4

20.2.3 Begin JOb . 4 4 ¢ ¢ o ¢ o ¢ o o o o o o o o o « 20-4
20.2.4 Crack statements . « « « o « o ¢ o « =« o o o « « 20-4
20.2.5 Process statements . « ¢« ¢« ¢ ¢ ¢ o o o o o o + o 20-4
System calls ¢« ¢« « ¢ ¢ ¢ o o o o s o o o o o o » 20-5

Parameters o« « « o o o o o o o s« o o o« o o o o o 20-5

20.2.6 Advance job . . ¢ ¢ o ¢ ¢ o o ¢ o o s e o o o« 20-5
20.2.7 Error exit processing . . . « ¢« ¢ ¢ o o o o o o 20-5
20.2.8 End JOD . ¢ ¢ o« o o o« o s o o s o s o o o o o+ o 20-6

20.3 RECOVERY STATUS MESSAGES « ¢ o« ¢ s o o o o« o o« o« » o o o« 20-6
20,4 CSP STEP FLOW « ¢ o o o o o o o = o o s o o s o o o « « 20-7

APPENDIX SECTION

A. THE COS SECURITY SYSTEM ® e o e o e o o o & o & ° e o o o o o A—l

THE USER «¢ ¢ o o o o o o o o o o o o o o o o s o o o o o A-1
COS SECURITY MANAGEMENT . ¢ « ¢ o o o ¢ o s o o s o o o A-1
A.2.,1 Defining user profiles . . « ¢« ¢ ¢ ¢ ¢ ¢ o« o o « A-2
A.2.2 Defining system privileges . . . « ¢« ¢« + + ¢ . . A-2
A.3 SECURITY IMPLEMENTATION . & ¢ o « o o o o o o o o o o o A-3
A.3.1 Security management utilities « . A-4

A.3.2 Account statement ¢ ¢« ¢ ¢ ¢ o o o o o A-4
A.3.3 System action requests . « ¢ ¢ ¢ o ¢ o o o o o o A-5
A.3.4 Data security . ¢« « o ¢ o ¢ o o o o o o o o o A-6
Password blankiRg . « ¢ ¢« ¢« ¢ o ¢ o o o o o o « A-6
6

6

7

> >
N

Control statement suppression . . « « « « o o« & A-
Password encryption . ¢ o« ¢ o o o ¢ o o o o o @ A-
Secure datasets e ®© ®© e ® o e ® ° ® e ®w s e e » A-

B. ADDING A TASK ® ®© ® e o @ ® © * © ®© © & e © o © & © o o o ° o B-l

Bel TASK ID o o v o o o o o o o o e o o o o o o o o o o o o B-1
B.2 INTERTASK COMMUNICATION . ¢ ¢ o ¢ o o o o o o o o o o o B-2
B.3 TASK I/0 ¢ o B-3
B.4 TASK SUSPENSION . ¢ o ¢ o o o o o o o o o o o o o o s o B-3
B.5 TASK CREATION . . ¢ ¢ o ¢« o o » o o o o o o o o s o o o B-~3
B.6 TASK EXECUTION ¢ ¢ o « o ¢ ¢ o o o s o o o s o o o o o & B-3
B.7 MODIFICATION TO FDUMP . . ¢ ¢ o o o o o s o o o = o o = B-4

SM-0040 XX C

FIGURES

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
i-9
2-1
2-2
2-3
2-4
2-5
2-6
3-1
4-1
4-2
4-3
4-4
4-5
4-6
4-7

Elements Of CRAY-0S . ¢« « ¢ « o o &«
Memory assignment . . « « « ¢ o o
Expansion of a user area . . « « »
Expansion of COS resident
Mass storage organization
CRAY-1 Exchange Package . . « « « «
CRAY X-MP Exchange Package
Exchange Package management
Overview of COS I/0 v« « o o o o o &
EXEC-controlled exchange sequences

System control . ¢« ¢ ¢« ¢ o o o o .
Channel Table linkage with assigned

Channel Table linkage for packet 1/0

Task scheduling table linkages. . .
Memory Error Log (MEL) . « « « o
Task communication tables
Dataset table linkages
TIO logical read . « ¢ o ¢« « o o &«
TIO logical write « « ¢« o o ¢ ¢ o «
Physical I/0 . ¢ ¢ o ¢ o o o o o «
Memory allocation tables
Chain tables . ¢« ¢« ¢ ¢ o ¢ o ¢ o »
System Buffer memory management . .
System Buffer control words
Initialized System Buffer
System Buffer space allocation . .
System Buffer space deallocation .
DOM Allocation interface
DOM Deallocation interface
DQM Queue I/0 interface « .« « o« + &
DOM table linkages . ¢« « o« o o « »
DAT structure . « ¢« o« ¢« o o ¢ ¢ o o

task

e s o

DCU-2, DCU-3 controller configuration . .

DCU-4 controller configuration . .
Header when dqueue is empty
Queue with two entries . . . « « &
Memory priority variation
Memory priority variation
Memory priority variation
Memory priority variation
Memory priority variation
Time slice for CPU-bound user task.
Time slice for I/0O-bound user task.
CPU competition « « « ¢« ¢« ¢« o o o &«
Suspended user task + « « o ¢« o o o
Interactive user task . « « « o «
Memory allocation « ¢ « o ¢ « o »

9-8a - 9-8e¢ Memory management

9 - 9 Melnor y Compact ion e ®© e ®© o o o © o
9-10 The areas of a job's memory
SM-0040 xxi

1-3
1-6
1-7
1-8
1-15
1-17
1-19
1-20
1-29
2-2
2~4
2-9
2-10
2-15
2-70
3-4
4-2
4-6
4-9
4-16
4-22
4-26
4-31
4-32
4-34
4-35
4-37
6-2
6-2
6-3
6-5
6-7
6-10
6-12
7-3
7-4
9-10
9-11
9-12
9-12
9-13
9-15
9-15
9-16
9-16
9-17
9-19
9-19
9-20
9-22

FIGURES (continued)

user code/data area

buffer area

buffer area
JTA area .

user code/data area

buffer area

user code/data area

buffer area

e o o o

usage record - subtype
requests record - subtype 3
memory usage record - subtype 4 . . .
usage record - subtype 5 . . .
channel usage record - subtype 6 . . .
usage record -~ subtype 7 . .
call usage record - subtype 8

call usage record ~ subtype 9

Job Scheduler management statistics

® ®© ©®© o o o o o

user code/data area . o o

® ® @ o o © o o

L] L 4

e ®o o o o

® ® o e o ° e

® ® © o o & o o

field length . =« « =« ¢« « .« &
field length . « ¢« « ¢ « «
Normal transitions between job states . . .
CSP control statement flow diagram

depending

on mainframe models

e o o o o

e e o o o
e o o o

record

Job class information record - subtype 12 .
CPU usage record — subtype 13 . . . « . . .
Interrupt count record - subtype 14

9-11 Decreasing the

9-12 Decreasing the

9-13 Decreasing the

9-14 Decreasing the

9-15 1Increasing the

9-16 Increasing the

9-17 1Increasing the

9-18 1Increasing the

9-19 Increasing the

9-20 1Increasing the

9-21 Decreasing the

9-22

20-1

TABLES

2-1 Address bits in word 0,
2-2 EXEC stop messages . . .
9-1 DNT initialization

9-2 Status bit assignments .
9-3 Status—-change sequences .
9-4 JSH functions . .

10-1 PDD status

11-1 ASCII message subtypes .
14-1 Task

14-2 EXEC

14-3 User

14-4 Disk

14-5 Disk

14-6 Link

14-7 EXEC

14-8 User

14-9

14-10

14-11

14-12

15-1 JCM functions &
GLOSSARY

INDEX

SM-0040

xxii

e ® o o o

.

- sgbtype 11

9-24
9-24
9-25
9-25
9-25
9-26
9-26
9-27
9-27
9-28
9-28
9-33
20-8

2-66
2-84
9-30
9-31
9-32
9-39
10-10
11-11
14-4
14-5
14-5
14-6
14-6
14-7
14-7
14-8
14-8
14-9
14-9
14-10
15-3

INTRODUCTION 1

1.1 GENERAL DESCRIPTION

CRAY-0OS (COS) is a multiprogramming operating system for the Cray
Computer System. The operating system provides efficient use of system
resources by monitoring and controlling the flow of work presented to the
system in the form of jobs. The operating system centralizes many job

functions such as input/output and memory allocation and resolves
conflicts when more than one job is in need of resources.

CRAY-0OS is a collection of programs that, following startup of the system,
resides in CRAY-1l or CRAY X-MP Central Memory, on system mass storage,

and in the I/O Subsystem (on some models). (Startup is the process of
bringing the computer and operating system to an operational state.)

Jobs are presented to the Cray mainframe by one or more computers
referred to as front-end systems, which may be any of a variety of
computer systems. Since a front-end system operates asynchronously under
control of its own operating system, software executing on the front-end
system is beyond the scope of this publication.

Cray Research, Inc., products, the FORTRAN compiler, the CAL assembler,
the UPDATE program, and utility programs, execute as parts of user jobs
and are described in separate publications.

The operating system is available in two forms: (1) preassembled into
absolute binary programs in an executable form and (2) source language
programs in the form of UPDATE program libraries. UPDATE is a system
program used to maintain programs and other data on permanent datasets.
See the UPDATE Reference Manual, CRI publication SR-0013.

The binary form of the program is provided for the installation of the
basic system. The UPDATE decks provide a means for modifying and
updating source code and for generating an installation-~tailored system
in binary form by reassembling the modified programs.

Details for generating, installing, and starting up the operating system
are given in the COS Operational Procedures Reference Manual, publication

SM-0040 1-1 C

SOFTWARE CONFIGURATION INTRODUCTION

1.2 SOFTWARE CONFIGURATION

The Cray computer requires three types of software: an operating system,
language systems, and applications programs. The I/O Subsystem, when
present, also requires its own software. The internal features of the
I/0 Subsystem Software are described in the IOS Software Internal
Reference Manual, CRI publication SM~-0046.

1.2.1 CRAY OPERATING SYSTEM (COS)

The Cray Operating System (COS) consists of memory resident and mass
storage resident programs that

® Manage resources,
® Supervise job processing, and
® Perform input/output operations.

COS also contains a set of disk resident utility programs. The operating
system is activated through a system startup operation performed from a
Maintenance Control Unit (MCU), which can be an I/0 Subsystem. A Jjob can
consist of a compilation or assembly of a program written in some source
language such as FORTRAN, followed by execution of the program resulting
from the compilation or assembly.

COS consists of the following modules that execute on the mainframe
central processing unit(s) (CPUs) (figure 1-1):

Executive (EXEC)

System Task Processor (STP)
Control Statement Processor (CSP)
Utility programs (not shown)

EXEC (described in section 2) runs in monitor mode and is responsible for
control of the system. It schedules STP tasks, manages exchange

packages, performs I/O, and handles all interrupts. EXEC has access to
all of memory.

STP (described in section 3) runs in object program (user) mode. It
accesses all memory other than that occupied by EXEC and is responsible
for processing all user requests. STP is composed of a number of
programs known as tasks, each of which has its own exchange package.

The Control Statement Processor (CSP), described in section 20, is
responsible for interpreting all job control statements and for either

SM-0040 1-2 C

INTRODUCTION SOFTWARE CONFIGURATION

performing the requested function or making the appropriate system
request. An installation option specifies whether an image of CSP
resides after the STP area in memory or whether it resides on disk. 1In
either case, it is copied into a user field for execution.

Utility programs (described in the COS Product Set Internal Reference
Manual, publication SM-0041) include the loader (LDR), a library
generation program (BUILD), a source language maintenance program
(UPDATE) , permanent dataset utility programs, copy and positioning
routines, and so on.

Ccsp Jobs

STP

EXEC

Figure 1-1. Elements of CRAY-0S

Images of utility programs are resident on disk storage and are summoned
through control statements for loading and execution in the user field.

1.2.2 LANGUAGE SYSTEMS

Currently, five language systems developed by Cray Research, Inc., are
provided for the Cray Computer System. They are the FORTRAN compiler
(CFT), the Cray Assembly Language program (CAL), the Pascal compiler, the
SKOL macro translator, and A Programming Macro Language (APML) for the
I/0 Subsystem.

SM-0040 1-3 C

SOFTWARE CONFIGURATION INTRODUCTION

FORTRAN compiler

Developed in parallel with the Cray Computer System, the Cray Research,
Inc., FORTRAN compiler is designed to take advantage of the vector
capability of the various computers.

The compiler itself determines the need for vectorizing and generates
code accordingly, removing such considerations from the programmer.
Optimizing routines examine FORTRAN source code to see if it can be
vectorized. The compiler conforms with ANSI FORTRAN 77 standards.

A description of the design of the compiler is outside the scope of this

pPublication, but is included in the Cray FORTRAN (CFT) Internal Reference
Manual, publication SM-0017.

CAL assembler

The CAL assembler provides users with a means of expressing all hardware
functions of the CPU symbolically. Augmenting the instruction repertoire
is a set of versatile pseudo instructions that provides users with
options for generating macro instructions, organizing programs, and so
on. Programs written in CAL may take advantage of Cray Research-provided
system macros that facilitate communication with the operating system.
CAL enables the user to tailor programs to the architecture of the Cray
computers. Much of the operating system as well as other software
provided by Cray Research, Inc., is coded in CAL.

A description of the design of the CAL assembler is beyond the scope of

this publication. See the CAL Assembler Version 1 Reference Manual, CRI
publication SR-0000, for assembler information.

Pascal compiler

The Cray Research, Inc., Pascal compiler supports the International
Standards Organization (ISO) Version 1 Pascal standard. Cray Pascal also
includes extensions to the ISO standard. The compiler optionally issues
messages identifying these extensions to help transport a program to a
machine running a different implementation of the language.

The Pascal Reference Manual, CRI publication SR-0060, describes the
language and notes all Cray Research, Inc., extensions. The Pascal
Internal Reference Manual, CRI publication SM-0061, describes the design
of the compiler.

SM-0040 1-4 C

INTRODUCTION SOFTWARE CONFIGURATION

APML assembler

The APML assembler executes on the mainframe CPU and generates absolute
code that is executable in the Cray I/0 Processors. APML allows the
system programmer to express symbolically all hardware functions of a
Cray I/O Processor. It is used to generate the I/O Subsystem software.

APML has a full range of symbolic instructions, which allow the APML user
to fully use the I/O Processors arithmetic and I/O instructions,
registers, and memory. In addition, APML provides a number of macro,
conditional assembly, and pseudo instructions that simplify the task of
creating assembly language programs.

APML is described in the APML Reference Manual, CRI publication SM-0036.

SKOL macro translator

SKOL, a high-level programming language that stresses readability and
extensibility, offers the user a well structured language while retaining
the power and efficiency of the CFT compiler. SKOL is translated into
FORTRAN code by a set of string-processing macro instructions. By adding
to these instructions, the user can extend the language to suit
individual needs. By inserting macros directly into the SKOL source
Program, the programmer can define changes in the language for a specific
run.

SKOL is described in the SKOL Reference Manual, CRI publication SR-0033.

1.2.3 LIBRARY ROUTINES

Cray software includes a group of subprograms that are callable from user
programs. These subprograms reside in the $FTLIB, $PSCLIB, $SYSLIB,
$ARLIB, $IOLIB, $UTLIB, and $SCILIB libraries. They are grouped by
UPDATE deck name within each library. The subprograms are divided among
the libraries on a functional basis.

1.2.4 APPLICATIONS PROGRAMS

Applications programs are specialized programs usually written in a
source language such as FORTRAN to solve particular user problems. These
programs are denerally written by customers and are not described in this
publication.

SM-0040 1-5 Cc

SYSTEM RESIDENCE INTRODUCTION

1.3 SYSTEM RESIDENCE

The system components reside in areas of memory defined during startup
(section 5). This section describes the locations of the various
components of the operating system without attempting to explain what
they are. The components are described in later sections.

CcOS
resident

User areaj

User area,

User areas

User area,

1e@MEM-17 COS resident

Figure 1-2. Memory assignment

Figure 1-2 illustrates the general contents of memory following startup.
Figure 1-3 illustrates the general layout of a user area at job
initiation. Figure 1-4 itemizes the memory resident portions of the
operating system.

t Installation parameter that defines maximum memory in words

SM-0040 1-6 Cc

INTRODUCTION SYSTEM RESIDENCE

User BA-IQIJTL'

Job Table Area
User BA

Job Communication
Block
User BA+200g

User program
User
Field
JCHLM

Y [/1/1171717777/77777777777/7///77
Y/I1111107171777177777777/7/7/7//7/7//77
JCLET /L[/L L,

Dataset buffers
and I/0 tables

User LA-1

Figure 1-3. Expansion of a user area

1.3.1 EXEC CONSTANT, DATA, AND TABLE AREAS

The EXEC constant area contains all EXEC constants. The constants are
functionally grouped, and include:

Constant memory locations
Front-end Driver constants
Packet I/0 Driver constants

The EXEC data area contains all EXEC data not in the form of tables. The
data in this area is functionally grouped, and includes:

Initial and warm-boot exchange packages (at location 0)
Space reserved for DDC (SYSDUMP utility)

Identification (at location 1400 octalj

Pointers to EXEC tables

Stop message buffer

X-MP cluster register dump area

+ This value is correct at job initiation and until JTA expansion occurs.

SM-0040 1-7 Cc

SYSTEM RESIDENCE INTRODUCTION

Disk/SSD Driver data
Packet I/0 Driver data
Front-end Driver data

Miscellaneous data
EXEC messages

0
EXEC constant, data and table areas
EXEC program area
XMTR
STP table area
STP program area
CSPBASE
CSP area’
CSPEND
' Available]
| for I
| jobs]

Memory for CRAY-0S
System Log and station
buffers

Figure 1-4. Expansion of COS resident

The EXEC table area contains all EXEC tables, alphabetically ordered.
Most table layouts are described in the COS Table Descriptions Internal
Reference Manual, CRI publication SM-0045. The other tables are
internally documented. The tables are:

+ This area is available for jobs if CSP resides on disk.

SM-0040 1-8 Cc

INTRODUCTION SYSTEM RESIDENCE
~

CAT Channel Address Table

CBT Channel Buffer Table containing one entry of working storage for
each disk driver channel.

CHT Channel Table containing a l-word entry for each side (input and
output) of a physical channel. An entry contains a pointer to
the Channel Processor Table for the channel-assigned task ID and
the address of the channel processor assigned to the side of the
channel. Input sides are assigned even numbers; output sides odd
numbers.

CLT Channel Limit Table

CXT Channel Extension Table

FIQ Free input packet queue

FOQ Free output packet queue

ICT Interrupt Count Table

IHT Interrupt Handler Table

MCT Monitor Count Table

MEL Memory Error Log Table

MRT Monitor Request Table

PWS Processor working storage

RMS Read Margin Select Table

SCT Subsystem Control Table

STT System Task Table consisting of three parts: a header, a task
parameter word area, and an exchange package area

STX System Task Exchange Package Table
TBT Task Breakpoint Table

TET Time Event Table

XFT History Function Table

XTT History Trace Table

SM-0040 1-9 C

SYSTEM RESIDENCE INTRODUCTION

1.3.2 EXEC PROGRAM AREA

Included in the area occupied by the System Executive (EXEC) are
interrupt handlers, channel processors, task scheduler, the drivers
(disk, I/O Subsystem, and front end), system interchange, request
processors, and debug aids. EXEC has a base address (BA) of 0 and a
limit address (LA) equal to the installation parameter I@MEM. EXEC is
described in section 2 of this manual.

1.3.3 SYSTEM TASK PROCESSOR (STP) TABLE AREA

This area contains tables accessible to all STP tasks (not necessarily in
the order noted).

AUT Active User Table containing an entry for each logged on
interactive user

CMCC Communication Module Chain Control for controlling task-to-task
communication. It is a contiguous area containing an entry for
each combination of tasks possible within the system. The CMCC
is arranged in task number sequence. The IDs of the requesting
task and requested task determine the appropriate CMCC entry.

CMOD Communications modules in 6-word groups that form a pool from
which they are allocated as needed. Two words are used as
control; two are used as input registers; and two are used as
output registers. A task receives all of its requests and makes
all of its replies through a CMOD.

CNT Configuration Table containing information on the availability
and type of each device known to the systemf

CPT Class Parameter Table used by JCM. It contains all job
statement parameters used to determine the job class.

CSD Class Structure Definition Table containing the job class
structure. For each class defined in the structure, there is a
class map; these appear in CSD in descending order. A header
precedes the class maps. Variable length characteristic
expressions for each class follow the maps.

DAT Dataset Allocation Table. A DAT exists for each dataset known
to the system and defines where the dataset logically resides on
mass storage, that is, on which logical devices and what portion
of a device.

t Currently used only for tape devices

SM-0040 1-10 c

INTRODUCTION SYSTEM RESIDENCE

DRT

DXI

ECT

EQT

GRT

IBT

JXT

LIT

LXT

MST

SM-0040

Device Channel Table serving as a link between a physical or
logical disk channel and the EQT. It is an interface to the
EXEC disk driver. The DCT holds channel system performance
data.

Device Reservation Table. A DRT exists for each logical disk
device known to the system. A DRT contains a bit map showing
available and reserved tracks on the device.

Permanent Dataset Catalog Extension Information Table
containing information used by the Permanent Dataset Manager
(PDM) such as the size of the Dataset Catalog Extension Table
{DXT)

Error Code Table for controlling abort and reprieve processing
done by EXP. It contains a l-word entry for each system error
code and is defined using the ERDEF macro.

Equipment Table containing an entry for each disk device known
to the system

Generic Resource Table containing an entry for each generic
resource in the system.

Interactive Buffer Table for managing the Interactive Buffer
Pool

Job Execution Table. The JXT controls all active jobs in the
system and can contain as many as 256 entries. Entry 0 (the
first entry) is used to represent the system itself.

Link Configuration Table containing an entry for each CPU
channel used for front-end communications

Link Interface Table. SCP assigns an LIT entry at startup to
each CPU channel used for front-end communications. This table
is used primarily for channel control.

Link Interface Extension Table. EXEC assigns an LXT entry for
a front-end station at log-on time and releases the entry at
log off. This table is used primarily for EXEC-STP
communication of information on a front-end station.

Memory Segment Table containing an entry for each segment of
memory allocated by the Job Scheduler (JSH) as well as an entry
for each free segment. The number of entries in the MST is set
to twice the number of JXT entries plus four words. BEach MST
entry is one word in length.

1-11 C

SYSTEM RESIDENCE INTRODUCTION

ODT

OLL

PDI

PDS

PXT

QDT

RQT

SBU

SDR

SDT

SM-0040

Overlay Directory Table. Each overlay defined by a DEFINOVL
macro contains an entry in the ODT. Each entry contains
addressing information and data on the overlay's use.

Overlay Load Request List holding a backlog of requests for
overlays. When an overlay load is requested and the memory
pool is full, an entry is added to the OLL to be processed when

space becomes available.

Permanent Dataset Information Table containing information used
by the Permanent Dataset Manager (PDM), such as the number of

overflow and hash pages.

Permanent Dataset Table consisting of a l1-word header followed
by a l1-word entry for each active permanent dataset. The entry
indicates how a dataset is accessed and if multiple access
exists. If so, the entry tells how many users are accessing
the dataset.

Processor Execution Table contains status information for each
physical processor, including which user task is currently
connected.

Queued Dataset Table describing the multitype attributes for a
disposed dataset. The table is managed by the Permanent
Dataset Manager (PDM) and Exchange Processor (EXP) tasks. The
number of entries in the QDT must equal the SDT entry count.

Rolled Job Index Table containing for each defined JXT, an
entry describing the job assigned to the JXT entry, allowing
the recovery of jobs from mass storage.

Request Table used to queue transfer requests for disk
management. DOM uses the RQT to manage both logical and
physical disk requests. RQT entries are queued to an EQT entry.

System Billing Unit Table containing the values obtained when
system billing units are calculated for system resources.

System Directory containing a Dataset Name Table for each of
the datasets comprising the system library. The SDR is
initialized after a system startup.

System Dataset Table containing an entry for each dataset
spooled to or from a front-end system. An SDT entry can have
appendages allocated out of an STP memory pool to contain TEXT
field and station slot information.

1-12 c

INTRODUCTION SYSTEM RESIDENCE

SST Stager Stream Table. Eight input stream and eight output
stream SSTs are contained within each LXT.

STPD STP Dump Directory containing pointers to task origins,
buffers, and so on. An entry gives a mnemonic in ASCII plus
the relative STP address for the area.

TDT Tape Device Table. The Tape Queue Manager task uses the Tape
Device Table to control online tape devices. The TDT contains
an entry for each tape device in the system.

TXT Task Execution Table contains all information to control all
user tasks within the system.

UCT User Call Table containing a count of the number of times each
type of user call is made. This table is used by the System
Performance Monitor (SPM).

Details of the STP tables are given in the COS Table Descriptions
Internal Reference Manual, publication SM-0045.

1.3.4 STP PROGRAM AREA

The System Task Processor (STP) consists of system tasks and reentrant
code common to all of the system tasks. System tasks cannot access the
memory area occupied by EXEC but can access the rest of memory.

Although system tasks are loaded into memory during startup, they are
recognized only through an Executive create system task request (usually
issued by the Startup task). The Startup task is a special case since it
executes only when the system is started up and is created by EXEC
itself. Recovery of rolled-out jobs executes as a portion of the Startup

task rather than as a separate task. STP is described further in section
3 of this publication.

1.3.5 CONTROL STATEMENT PROCESSOR (CSP) AREA

An image of CSP is maintained either in memory following STP or on mass
storage, depending upon the setting of an installation option. This
program is copied into each user field where it executes each time the
job requires interpretation of a control statement.

CSP is further described in section 20 of this publication.

SM-0040 1-13 Cc

SYSTEM RESIDENCE INTRODUCTION

1.3.6 USER AREA

The user area of memory is assigned to one or more jobs. Each job has an
area called the Job Table Area (JTA) preceding the field defined for the
user. A JTA is accessible to the operating system but not to the user.

The JTA contains job-related information such as accounting data; JXT
pointer; sense switches; areas for saving B, T, and V register contents;
control statement and logfile DSPs; a logfile buffer; and a DNT area,
which contains an entry for each dataset used by the job. 1In addition,
task control blocks (TCBs) defining attributes of each executable user
task are maintained in the JTA.

Each user field begins with a 128-word block called the Job Communication
Block (JCB), which contains a copy of the current control statement for
the job as well as other job-related information. The highest part of
the user field contains dataset buffers and I/0 tables.

The user field, in addition to being used for user-requested programs
such as the compiler, assembler, and object programs, is also the area
where utility programs such as the loader, copy and positioning routines,
and permanent dataset utility programs execute. CSP also executes in the
user field.

Tables that may reside in the user field include the following:

BAT Binary Audit Table. This table contains an entry for each
pPermanent dataset that meets requirements specified on the AUDIT
control statement, and for which the user number matches the job
user number.

DDL Dataset Definition List. A DDL in the user field accompanies
each request to create a DNT.

DSP Dataset Parameter Area. A DSP in the user field contains the
status of a particular dataset and the location of the I/O
buffer for the dataset.

JAC Job Accounting Table. This table defines an area for data to be
returned to the user by an accounting request.

JCB Job Communication Block, residing at the very beginning of the
user area and containing information used by both COS and
library routines. Copies of the more important pointers are
kept in the job's JTA to assist in JCB validation and
re-creation.

SM-0040 1-14 C

INTRODUCTION MASS STORAGE SUBSYSTEM ORGANIZATION

LFT Logical File Table. This table in the user field contains an
entry for each dataset name and alias referenced by FORTRAN
users. Each entry points to the DSP for a dataset.

ODN Open Dataset Name Table. A request to open a dataset for a job
contains a pointer to the ODN table in the user field.

PDD Permanent Dataset Definition Table. A PDD in CSP is used for
many permanent dataset requests.

See the COS Table Descriptions Internal Reference Manual, publication
SM-0045, for detailed descriptions of these tables. This table is
available as a listable tape.

1.4 MASS STORAGE SUBSYSTEM ORGANIZATION

Depending on the Cray computer model, mass storage consists of either
DD-19 or DD-29 Disk Storage Units and DCU-2, DCU-3, and DCU-4 Disk
Control Units. The controllers are Cray model-dependent. These
controllers are physically nonremovable.

Each disk storage unit contains a device label, datasets, and unused
space to be allocated to datasets (figure 1-5). Additionally, one disk
storage unit is designated as the master device and contains a table area
called the Dataset Catalog (DSC), which contains information about

permanent datasets.

7N

~ pd
\\\EXE//,7ﬂ

;

Al

*— ;
e DATASETS
DATASETS o
MASTER
DEVICE DEVICE DEVICE

Figure 1-5. Mass storage organization

SM—-0040 1-15 C

MASS STORAGE SUBSYSTEM ORGANIZATION INTRODUCTION

1.4.1 TFORMATTING

Before a unit can be introduced into the system, it must be formatted.
Formatting is the process of writing cylinder, head, and sector
identification on the disk storage unit. This process is performed
off-line by field engineers. Unless addressing information has been
inadvertently destroyed, formatting is performed only once.

1.4.2 DEVICE LABEL (DVL)

A disk storage unit (DSU) must be labeled before it can be used by the
system. The Install program writes a Device Label Table (DVL) on one
track of each DSU. The DVLs act as the starting point for determining
the status of mass storage when the system is deadstarted or restarted.
The location of the DVL is usually, but is not required to be, the first
track on the device.

Flaw information

A DVL contains a list of flaws (bad tracks) for its DSU. 1Initial flaw
information is obtained from an engineering diagnostic run before the
Install program. This initial flaw information is stored on the device
in a special table called the Engineering Flaw Table (EFT). The EFT is
written to sector 1773 of the first track that can be succesfully

reread on the device (no more than 10 tracks are tried). No EFT is
written if no track in the first 10 tracks can be written and reread
successfully. 1Install reads back each DVL after writing it to verify the
integrity of the DVL. If a DVL cannot be read back perfectly, then the
track is overwritten with a test pattern and a different track is tried.

The DVL is the last track written by Install so that all flaws, even any
discovered while trying to write the DVL itself, are recorded in the DVL.

Dataset Allocation Table (DAT) for DSC

The Device Label Table (DVL) for the master device maps the Dataset
Catalog (DSC) since it contains the complete Dataset Allocation Table
(DAT) for the DSC except for DAT page headers.

SM-0040 1-16 C

INTRODUCTION EXCHANGE MECHANISM

1.4.3 DATASET CATALOG (DsC)

The Device Label Table (DVL) for the master device states which tracks
comprise the Dataset Catalog (DSC). Similarly, the DSC states which
tracks comprise each of the currently cataloged datasets. Deadstart and
Restart update the Disk Reservation Table (DRT) in STP-resident memory to
reserve these dataset tracks so that the existence of permanent datasets
is known to the system when it is deadstarted or restarted, as opposed to
Install which assumes that all of mass storage is vacant. Special
consideration is given to job input and output datasets. Deadstart
deletes all input and output datasets, defined by flags in the DSC.
Entries for these datasets in the DSC are zeroed. Restart, on the other
hand, recovers the job input and output datasets.

1.5 EXCHANGE MECHANISM

The technique employed in Cray computers to switch execution from one
program to another is called the exchange mechanism. A l6-word block of
program parameters is maintained for each program. When another program
is to begin execution, an operation known as an exchange sequence is
initiated. This sequence causes the program parameters for the next
program to be executed and to be exchanged with the information in the
operating registers. Operating register contents are saved for the
terminating program and the registers entered with data for the new
program.

Exchange sequences are initiated automatically upon occurrence of an
interrupt condition or voluntarily by the user or by the operating system
through normal (EX) or error (ERR) exit instructions.

0 8 16 24 32 40 48 56 63
0 E| s IRl BI///] P | A0
1 c 1///1 BA /g 1M Al
2 \////////////\RB1///] LA | M| A2
3 Y///////7//7///) A | vL | F | a3
a=7 |///777777777777177777777777777777777777) A4 to A7
8-15 S0 to S7

Figure 1-6. CRAY-1l Exchange Package

SM-0040 1-17 C

EXCHANGE MECHANISM INTRODUCTION

Field Word Bits
Error type (E) 0 0-1
Syndrome bits (S) 0 2-9
Read mode (R) 0 10-11
Bank error address (B) 0 12-15
Program register (P) 0 18-39
Chip error address (C) 1l 0-15
Base address (BA) 1 18-35
Interrupt Monitor Mode bit (IMM) 1 39
High-order bits of memory error read

address (RH) 2 14-15
Limit address (LA) 2 18-35
Mode bits (M) 2 36-39
Exchange address (XA) 3 16-23
Vector length (VL) 3 24-30
Flag register (F) 3 31-39
Current contents of the eight A registers 0-7 40-63
Current contents of the eight S registers 8-15 0-63

As shown in section 2, the System Executive (EXEC) is always a partner in
the exchange; that is, it is either the program relinguishing control or
receiving control. All other programs must return control to EXEC. The
contents of the interrupt flag register (F) are instrumental in the
selection of the next program to be executed.

1.5.1 EXCHANGE PACKAGE

An Exchange Package is a 16-word block of data in memory that is
associated with a particular computer program. An Exchange Package
contains the basic hardware parameters necessary to provide continuity
from one execution interval for the program to the next. The CRAY-1
Exchange Package is illustrated in figure 1-6; the CRAY X-MP Exchange
Package is illustrated in figure 1-7.

1.5.2 EXCHANGE PACKAGE AREAS

System hardware requires all Exchange Packages to be located in the first
4096 words of memory. In addition, the deadstart function expects an
Exchange Package to be at address 0. This Exchange Package initiates
execution of EXEC and, consequently, the operating system. The EXEC
Exchange Package is either active or is in one of the other Exchange
Package areas (figure 1-8).

SM—-0040 1-18 C

INTRODUCTION EXCHANGE MECHANISM
PN 0 8 16 24 32 40 48 56 63
0 |IEl s 1///1 P | A0
1 RICs | B |/////] IBA IML1 | Al
2 |90WNU/////117777) ILA IML2 | A2
3 yY////////////71F1 XA VL | F | A3
a |////711711/1171/7) DBA PS MI/I“] cLN a4
5 Y///////7/7//77771 DLA \//7/7) a5
6=7 \/////////7///7//7/7/////7///7//77//7/777) A6 to A7
8-15 S0 to 87
Figure 1-7. CRAY X-MP Exchange Package
Field Word Bits
Processor number (PN) 0 1
Error type (E) 0 2-3
Syndrome bits (S) 0 4-11
Program Address register (P) 0 16-39
Read mode (R) 1 0-1
Read address (CSB) 1 2-6 (CS); 7-11 (B)
Instruction Base Address (IBA) 1 18-34
Instruction Limit Address (ILA) 2 18-34
Mode register (M) 1-2 35-39
Vector not used (VNU) 2 0
Flag register (F) 3 14-15; 31-39
Exchange Address register (XA) 3 16-23
Vector Length register (VL) 3 24-30
Data Base Address (DBA) 4 18-34
Program State (PS) 4 35
Cluster Number (CLN) 4 38-39
Data Limit Address (DLA) 5 18-34
Current contents of the eight A registers 0-7 40-63
Current contents of the eight S registers 8-15 0-63

The exchange packages summarized below are selected by

EXEC depending on

interrupt flags and other conditions as defined later:

® Any of a set of Exchange Packages in the System

Task Table (STT).

This second portion of the STT is called the System Task Exchange
Package Table (STX), and contains one Exchange Package for each STP

task.

SM-0040

1-19

EXCHANGE MECHANISM

INTRODUCTION

L User XP 44]
[idlexp |
EXEC
STP l Error XP AJ
- , Task 0 XP
. ” EXEC
| USERS] // XP Task'l XP
Ve
L - jLA)
< Operating Registers Task n XP
Program Areas Exchange Package Areas
A. EXEC IN EXECUTION
[User XP j
-~
EXEC A | ldle XP |
_(BA) L~ rod
- e [
STP - l Error XP J
//
7/
.] 4 Task 0 XP
e TASK 1
- USERS - XP EXEC XP
-~ -4 (LA) :
’ Operating Registers Task n XP
Program Areas Exchange Package Areas
B. TASK 1 IN EXECUTION
| Exec xp |
EXEC S | Idle XP J
’ el
(BA) | ~ d
STP A I Error XP l
¥ e
; (PYL
/ 4 ’
L __:__,/,(’LA; USER Task 0 XP
- USERS e - XP Task.l XP
-
Operating Registers Task n XP

Program Areas

Exchange Package Areas

C. CURRENT USER IN EXECUTION

Figure 1-8. Exchange Package management

SM-0040 1-20 C

INTRODUCTION COS STARTUP

® The active user Exchange Packages. One user Exchange Package per

CPU resides in the Processor working storage (PWS) entry at
W@PWUSXP and is copied from the user's Job Table Area (JTA) when

the job is connected to a CPU. The Exchange Package is then
copied into the user's JTA when the job is disconnected from a CPU.

e The idle task Exchange Packages. One idle Exchange Package per
CPU resides in the PWS entry at W@PWIDXP and is selected when no
STP tasks or user jobs are scheduled for execution for a
particular CPU,

® The Memory Error Correction task Exchange Packages. One
correction Exchange Package per CPU resides in the PWS at W@PWCOXP
and is selected when a memory parity error causes an exchange.

1.5.3 B, T, AND V REGISTERS

On any exchange to EXEC, the task or user program's B00 register (EXEC
uses register B00) is saved. A task's B00O register value is stored in
the System Task Table (STT). The active user's B00 value is stored
during interrupt processing. When EXEC exchanges out, it restores the
proper B00 register value.

B, T, and V register values are saved by EXEC only when the current user
job is being disconnected from the CPU in favor of some other job. A
job's B, T, and V register values are restored when the job is
reconnected to the CPU. These registers are maintained in the job's Job
Table Area (JTA).

1.6 COS STARTUP

During system startup, the operating system is loaded into Central
Memory, begins execution, and generates or recovers tables for the
operating system. There are three types of startup: Install, Deadstart,
and Restart. A deneral description follows; details are given in section
5 of this manual.

Install COS is started as if for the very first time. All Cray mass
storage is assumed to be vacant. The startup program labels
devices and establishes the Dataset Catalog (DSC) on mass
storage.

SM-0040 1-21 c

GENERAL DESCRIPTION OF JOB FLOW INTRODUCTION

Deadstart COS is started as if after a normal system power-down.
Permanent datasets are recovered but input queues and output
queues are not reconstructed. Rolled-out jobs cannot be
recovered during a deadstart.

Restart COS is started as if after a system failure (crash). Input
queues and output queues as well as permanent datasets are
recovered. Rolled-out jobs may be recovered according to
operator selection.

1.7 GENERAL DESCRIPTION OF JOB FLOW

A job passes through the following stages from the time it is read by the
front-end system until it terminates:

® Entry
e Initiation
e Advancement

® Termination

1.7.1 JOB ENTRY

A job enters the system from a front—-end system. The Station Call
Processor task (SCP) in STP is responsible for making the job's existence
known to the system. It does this by executing the following steps:

1. Making an entry in the System Dataset Table (SDT) and creating a
memory pool entry containing station slot data

2. Requesting that an entry be created in the Dataset Catalog (DSC),
thereby making the dataset permanent

3. Readying the Job Scheduler Task (JSH)

1.7.2 JOB INITIATION

The Job Scheduler Task (JSH) scans the SDT looking for candidates for
processing. A job is scheduled to begin processing (initiated) when:

SM-0040 1-22 C

INTRODUCTION GENERAL DESCRIPTION OF JOB FLOW

® An entry for a job of the correct class is available in the Job
Execution Table (JXT),

® No other job in the same class of higher priority is waiting to
begin processing, and

® The requested generic resources (for example, tape devices) are
available.

JSH uses an available entry in the JXT to create an entry for the job
being initiated. The Job Scheduler continues to use the JXT entry during
the life of the job to control CPU use, job roll in/roll out, and memory
allocation.

JSH also moves the job's SDT entry from the input queue to the executing
queue, still in the SDT.

The Rolled Job Index entry corresponding to the assigned JXT entry is
also initialized at this point.

1.7.3 J0OB ADVANCEMENT

The Job Scheduler (JSH) gives each job a CPU priority reflecting its
history of CPU usage so that I/O-bound jobs can have a greater chance of
being assigned to the CPU. A job requiring a large memory area is
allowed to stay in memory longer to compensate for its greater roll
in/roll out time. A job assigned more than average CPU time for its
priority is liable to be rolled out sooner as a consequence. The
Operator can change a job's priority while a job is running.

Not all jobs having entries in the JXT are in memory; some are rolled out
to mass storage when an event occurs causing other jobs to replace them
in memory.

The Control Statement Processor (CSP) advances a job through its program
steps. CSP is first loaded and executed in the user field following job
initiation; thereafter, it is loaded whenever a job step terminates.
Normal job step termination occurs when an F$ADV call is made to the
system by the user program. Abnormal termination occurs upon detection
of an error by either COS or hardware error interrupts during the job
Step or an F$ABT call by the user program.

SM-0040 1-23 c

TASKS

1.7.4

AND MULTITASKING INTRODUCTION

JOB TERMINATION

When a job terminates, the following actions occur:

A DSC entry is created for each of the job's output datasets.
A SDT entry is created for each of the job's output datasets.
The user logfile, $LOG, is copied onto the end of $OUT.

The DSC entry is deleted for the input dataset.

The SDT entry is deleted from the executing queue.

The JXT entry, TXT entry, and the memory assigned to the job are
released.

The Rolled Job Index entry is cleared (zeroed).

SCP is readied at the next interrupt from a front end and scans
the SDT for output to send to the front-end system.

SCP deletes the corresponding DSC and SDT entries after each
output dataset is successfully transmitted to the front-end system.

1.8 TASKS AND MULTITASKING

While
types

this manual frequently refers to some particular task, several
of tasks occur in COS:

The idle and memory error correction tasks resident in EXEC
System tasks resident in STP
User tasks resident in user jobs

User library tasks resident in user jobs but under library control

This section defines several terms related to the above types of tasks.
See the Multitasking User Guide, CRI publication SN-0222, for a full
description of multitasking concepts.

SM-0040 1-24 C

INTRODUCTION TASKS AND MULTITASKING

1.8.1 MULTIPROGRAMMING

Multiprogramming is a mode of operation that provides for the sharing

of processor resources among multiple, independent, software processes.
This mode, used by many computing systems, makes most efficient use of a
single CPU. In the multiprogramming mode, when several processes are
ready to run, should one process be delayed by I/0, for example, another
process can immediately be switched in to run on the CPU. In contrast, a
system running in monoprogramming mode has only one process ready to run
and any delays will leave the CPU idle. Processor resources could
include more than one CPU, and in a multiprogramming environment, these
multiple CPUs would be shared between multiple, independent software
processes.

1.8.2 MULTIPROCESSING

Multiprocessing is a mode of operation that provides for parallel
processing by two or more processors. That is, all processors work at
the same time without adversely affecting each other.

1.8.3 TASKS

A task is a software process. It is a unit of computation that can be
scheduled and whose instructions must be processed in sequential order.

Idle and memory error correction tasks

The EXEC idle task is described in section 2.11. Memory error correction
is described in section 2.10. The memory correction task is unique in
that it is not executed through the EXEC task scheduler.

System task

The tasks comprising the System Task Processor (STP) are referred to as
system tasks. STP is described in section 3.

NOTE

The term task, as used in this manual, refers to a
system task, unless otherwise noted.

SM-0040 1-25 C

TASKS AND MULTITASKING INTRODUCTION ‘

User task

A user task is the entity referred to in the F$TASK system action
request, as described in section 8.1l. User jobs are generally unaware of
user tasks; user task management requests are usually made by the
multitasking library routines.

User library task

A user library task is the entity created by calling TSKSTART (initiate
a task) in the multitasking library. Multitasking in a FORTRAN program
is done as user library tasks. That is, when a FORTRAN program creates
multiple tasks, the tasks created are user library tasks. User library
tasks are created and synchronized by user-program calls to the
multitasking library.

The multitasking library scheduler manages (schedules) user library
tasks. The library scheduler creates, deletes, activates, and
deactivates user tasks as needed; the library scheduler is responsible
for assigning user library tasks to user tasks. Within a user job, the
user program only knows about user library tasks; EXEC and STP only know
about user tasks; the multitasking library scheduler forms the interface
between user tasks and user library tasks.

1.8.4 MULTITASKING

Multitasking is a special case of multiprocessing, where more than one
task can be executing in a user job. When multitasking, there is no
dguarantee that more than one processor will be allowed to work on the
tasks of a given job, no guarantee that the tasks will execute in any
particular order, and no guarantee of which task will finish first.

In this manual, multitasking refers only to user-level tasks (user
tasks and user library tasks).

1l.8.5 JOBS AND USER TASKS

Each user job consists of one or more user tasks. Most COS-managed
resources, except a CPU, are allocated to the entire job, whereas each
user task includes an exchange package, and an environment save/restore
area. A user task can have a physical CPU allocated to it, and on the
CRAY X-MP, can have a physical cluster allocated.

SM-0040 1-26 C

INTRODUCTION MASS STORAGE DATASET MANAGEMENT

When the Job Scheduler (JSH) initially places a job into memory, the
first task control block is created automatically by the system. An
initial task is entered on the CPU queue. Other task creations within
the job are the responsibility of the first task or tasks that are
spawned by the first task. Other than this relationship, no hierarchy of
tasks exists within a job.

A job can be rolled into and out of memory. An individual task cannot be
rolled. Whenever JSH rolls a job out of memory, all tasks are marked as
not schedulable and any tasks currently connected are disconnected from
the CPU. A task has the same execution priority as the parent job.

When the cumulative execution times of all the tasks within a job exceed

the job's time limit (from the JOB control statement), the job is marked
as time limited and aborted.

1.9 MASS STORAGE DATASET MANAGEMENT

All information maintained on mass storage by the Cray Operating System
(COS) is organized into collections of information called datasets. Mass
storage datasets are of two types: 1local or permanent. A local dataset
exists only for the life of the job that created it and can be accessed
only by that job. A permanent dataset is available to the system and can
survive system deadstarts.

A mass storage dataset is permanent if it has an entry in the Dataset
Catalog (DSC) on disk. Permanent datasets are of two types: those
created with directives (user permanent datasets), and those representing
standard job input and output datasets (system permanent datasets).

User permanent datasets are maintained for as long as the user or
installation desires. A user permanent dataset is protected from
unauthorized access through permission control words. The user can
create a user permanent dataset by prestaging a dataset from a front-—-end
computer system or by using the SAVE or ACQUIRE control statement or
macro. A user accesses a user permanent dataset by using the ACCESS
control statement or macro. The dataset can be removed from the system
with the DELETE control statement or macro. More than one authorized
user can access a permanent dataset. A user wishing to write on, or
otherwise alter a permanent dataset, must have unique access; multiple
users wishing to read the dataset may have multiaccess.

Some permanent datasets similar to user permanent datasets are created
and maintained by the system. Users cannot delete or access these

SM-0040 1-27 C

1/0 INTERFACES INTRODUCTION

datasets, because the system has unique access to them. One such dataset

is the Rolled Job Index dataset, which is created or accessed by the
Startup task and remains in use throughout the operation of the system.

System permanent datasets are job related. Each job's input dataset is
made permanent when the job is received by the Cray Computer System.

When job processing ends, certain of the job's local datasets having
special names or which were given a disposition other than scratch by the
user are made permanent and the job's input dataset is deleted from mass
storage. The output datasets that were made permanent are sent to a
front-end computer system for processing. They are deleted from mass
storage when their receipt has been acknowledged by the front-end
computer system.

1.10 I/0 INTERFACES

Figure 1-9 presents an overview of the interfaces and system components
involved in performing input and output in the system. This figure
summarizes the request levels and routine calls without going into
details on the movement of data. That is, it does not describe how data
is transferred from disk to a circular buffer and then to a user area on
a read; nor does it describe how it is transferred in the reverse
sequence on a write.

Major interfaces exist between the user and STP and between STP and

EXEC. Details of the user levels of I/O are presented in the FORTRAN
(CFT) Reference Manual, publication SR-0009, and in the CRAY-0S Version 1
Reference Manual, publication SR-001l1. Details for EXEC (driver level)
I/0 are given in section 2. Details for STP interfaces are given in
section 3.

I/0 can be on any dataset structure and can be initiated by the user or
by the system.

FORTRAN statements for logical I/0 represent the highest level of I/0
requests. The FORTRAN statements fall into two categories:
formatted/unformatted and buffered. The formatted/unformatted statements
(that is, READ, PUNCH, WRITE, and PRINT) result in calls to library
routines $RFI through $WUF. These routines contain calls to the Logical
Record I/0 routines, also on the library. These calls can be formatted
by the user or made through CAL macros.)

The Logical Record I/0 routines issue Exchange Processor requests (that

is, F$ calls) consisting of read circular and write circular requests to
the Circular Input/Output (CIO) routines resident in STP (see section 4).

SM~-0040 1-28 Cc

INTRODUCTION I/0 INTERFACES

Asynchronous 1/C Synchronous 1/0
user
CFT BUFFERED 1/0 CFT FORMATTED/ interface
STATEMENTS UNFORMATTED STATEMENTS
BUFFER IN READ PUNCH
BUFFER OUT PRINT WRITE CAL BLOCKED 1/0 MACROS
READ WRITE WRITEF
READP WRITEP WRITED
CAL BUFFERED READC WRITEC ~ BKSP
1/0 MACROS CAL UNBLOCKED READCP WRITECP BKSPF
BUFIN BUFOUT BUFEOF 1/0 MACROS CETPOS
BUF INP BUFOUTP BUFEOD READU SETPOS
BUFCHECK WRITEU RENIND
N T - ' ______ library
routines
BUFFERED 1/0 SRFI SWFI $RUI $WUL
SRFA SWFA SRUA SHUA
$RB SRFY $WFY SRUV WUV
U3 SRFF SWFF IRUF SWUF
CAL BUFFERED 1/0
INTERFACE
$C810
/
UNBLOCKED DATASETS LOGICAL RECORD 1/0 |
SRWIR $WWDR SWEOF §GPOS
L8 SRWDP $WHDP SWEQD $SPOS
JuLs SRCHR $WCHR SREWD
RCHP WCHP §BKSP
SWWDS _$BKSPF
T system
calls
FSROC
F3810
S FEHOC
USER
T10 cio
SRR SR SWEOT ROCS NON-CI0
SRWDP §WWDP SWEOD »> WOCS (2, 5CP, and JSH)
WHDS SREWD c10s
|
i |
|
oM oM e« — —— —]

L
v

[7 PACKET DRIVER I 147 OISK DRIVER J

/77T T VAN

Disk Controller Functions

EXEC

1/0 SUBSYSTEM

Figure 1-9. Overview of COS I/0

SM-0040 1-29 c

I/0 INTERFACES INTRODUCTION

System logical I/0 required by COS tasks (for example, management of the
DSC) is generally performed through Task I/O (TIO) routines resident in
STP (see section 4). TIO routines closely resemble the Logical Record
I/0 routines. 1In addition to supporting I/O for system tasks, TIO
routines also handle FORTRAN buffered I/0. At the FORTRAN level, the
BUFFER IN and BUFFER OUT statements are compiled into calls to two
library routines, $RB and $WB. These routines issue F$BIO Exchange
Processor requests that interface with a subset of TIO routines in STP.

Since TIO routines reside jointly with CIO in STP, they directly call CIO
routines to perform the same functions as requested through F$ calls by
the Logical Record I/0 routines. Thus, CIO becomes the focal point for
all logical I/0 in the system.

CIO communicates its needs for physical I/O either to the Tape Queue

Manager (TQM) or to the Disk Queue Manager (DOM) through DNT and DSP

tables. The DNT for a dataset points to its DSP, which specifies the
request.

CIO is the normal mode of communication with DQM. However, DOM also
communicates with the station and startup interfaces. In these
interfaces, SCP and Startup pass a caller-built DNT containing the 1/0
request for DQM. The Job Scheduler (JSH) also uses a non-CIO interface
to process job roll-in/roll-out and to manipulate the Rolled Job Index
dataset.

DOM coordinates physical I/O activity on the disks by queueing executive
requests for the disk driver (see section 2.8) or, if an I/O Subsystem is
present, to disk I/O software in the I/O Subsystem (see the IOS Software
Internal Reference Manual, CRI publication SM-0046). The disk driver
consists of a number of channel processors that issue functions to the
disk controllers.

TOM manages tape I/O between user jobs and the I/0O Subsystem (IOS).
Software in the IOS responds to requests for tape I/O received from TQM
and physically controls block multiplexer channels, control units, and
tape devices. (See the IOS Software Internal Reference Manual, CRI
publication SM—-0046, for a description of this software.)

SM-0040 1-30 C

EXEC

The system Executive module (EXEC) is the control center for the
operating system. It alone accesses all of memory, controls the I/0
channels, and selects the next program to execute. Components of EXEC
include the following.

® An interchange routine

® Interrupt handlers

e Channel processors

® A monitor request processor
® A Front—-end Driver

e A Disk and SSD Driver

e A Packet I/0 Driver

® A task scheduler

These routines are integral to EXEC. Control transfers from routine to
routine through simple Jjumps.

After CPU startup, EXEC begins execution (at EX) whenever a system, user,
or idle task is interrupted. The interrupt can result from the execution
of an exit instruction (EX or ERR), or from a variety of hardware-related
interrupts (operand range, program range, programmable clock, I/O
channel, deadlock, or interprocessor interrupts). On reentry EXEC saves
B00, performs various accounting and validation functions, ensures that
the operating system is single-threaded (that is, it executes in only one
CPU in multiprocessor systems), and enters the interchange analysis
routine (ENA).

The interchange analysis routine examines the interprocessor
communications area, the channel interrupt register, the real-time clock,
and the interrupted exchange package to determine the cause of the
interrupt and passes control to the appropriate handler. Each interrupt
handler clears the appropriate flag in the interrupted exchange package
and, after processing the interrupt condition, returns to interchange
analysis (which checks for additional conditions). When all outstanding
interrupt conditions have been processed, the system task scheduler (TSO0)
is entered.

SM-0040 2-1 C

INTERCHANGE ANALYSIS EXEC

The task scheduler selects the highest priority system task which is

ready to run and causes it to be executed. If no system tasks are ready,
the user task scheduler (SCHUSER) is invoked.

If no user task is currently connected, the user task scheduler selects
either the currently-connected user task, or the idle task for execution.

After the selection of a task (system, user, or idle), an exchange out of
EXEC occurs. The cycle begins again when the task is interrupted.
Figure 2-1 illustrates the execution flow into and out of EXEC.

«——EXEC exit

<« --I/0 or other interrupt,
program exit, or
error condition

Active

User
Task

Figure 2-1. EXEC-controlled exchange sequences

2.1 INTERCHANGE ANALYSIS

Each time ENA is entered, the interprocessor request queue is checked for
an interprocessor message. If a message is found, IPREQST is called to
process it. The message is then cleared, and control returns to ENA.

ENA next looks for pending 1/0 channel interrupts. When an I/O channel
is found to have an interrupt pending, control transfers to IOI which
clears the I/0 interrupt bit in the active exchange package, selects a
processing routine based on the channel number, and enters that routine.
The channel processor returns control to ENA.

Next, the real-time clock and the time event table are examined. If a
timer event is pending, control is passed to TEI (the expired time event
interrupt handler). After processing the timer event, control is
returned to ENA,

SM-0040 2-2 C

EXEC INTERRUPT HANDLERS

Finally, after ENA has processed all of the above conditions, the flags
in the interrupted exchange package are examined to determine the cause
of the exchange. Note that the I/0 Interrupt flag is ignored since ENA
has already processed pending I/0 interrupts. The Interrupt Handler
Table (IHT) maps each flag into a handling routine. The flags are
processed in order from left (high-order) to right (low-order). When a
flag is set, the corresponding interrupt handler is entered. Again, when
processing is complete, control returns to ENA,

After a pass through ENA with none of the above conditions encountered,
the task scheduler (TS0) is invoked.

Figure 2-2 jillustrates the relationship of the elements of EXEC to other
system components.

2.2 INTERRUPT HANDLERS

Each interrupt handler routine can invoke further routines for
processing. When an interrupt is processed, control returns to
Interchange.

2.2.1 1I/0 INTERRUPT HANDLER (IOI)
IOI clears the I/O Interrupt flag in the interrupted exchange package,
increments the interrupt count for the channel, sets the next channel

processor to RJ (reject), makes a history trace entry, and exits to the
current channel processor.

2.2,2 EXPIRED TIME EVENT INTERRUPT HANDLER (TEI)
TEI clears the Programmable Clock Interrupt flag in the interrupted

exchange package, makes a history trace entry, sets up the next scheduled
time event for the CPU, and exits to the time event processor.

2,2.3 PROGRAMMABLE CLOCK INTERRUPT HANDLER (PCI)

PCI clears the Programmable Clock Interrupt flag in the interrupted
exchange package, makes a history trace entry, and sets up the next

SM-0040 2-3 C

INTERRUPT HANDLERS

EXEC

Mass TCB n
Storage
Resident 4
Cos
LDR TCB 1|4
Cc Idle STP
s 1 Program
P
3
Common
to Routines
current
user task
Interrupt xpf Task
xpf 0
/{;;;:
EXEC Task
.| Interchange 1
Pimg
Task
Scheduler Task
Interrupt Handlers \\\\ 2
N L1
Xp
Channel Processors
y pr ™ Task
Monitor Front- Disk/ Packet n
Request end SSD I/0
Processor Driver Driver Driver
Y Y Y y
Figure 2-2, System control

+ One Exchange Package per CPU

SM-0040

EXEC INTERRUPT HANDLERS

default time event. This interrupt is unexpected, since the calculated
time event expiration should process all PCI interrupts. This routine is
present but unused on mainframes without a programmable clock.

2.2.4 MCU INTERRUPT HANDLER (CII)

CII clears the MCU Interrupt flag in the interrupted Exchange Package.

2.2.,5 ERROR INTERRUPT HANDLER (EE)

EE clears the appropriate flag in the interrupted Exchange Package and
makes a history trace entry. Interrupts handled by this routine are:

e Floating-point error interrupt
e Operand rande error interrupt
® Program range error interrupt
e Error exit

Processing depends on the type and cause of the error.

2,2.6 MEMORY ERROR INTERRUPT HANDLER (ME)

ME clears the Memory Error flag in the interrupted Exchange Package,
corrects the error if it is a single-bit error, and logs the error by
sending a packet to the Message Processor task (MEP). A multibit error
causes the system to halt if the error occurred in the operating system
or by a channel read from an I/0 buffer.

2,2.7 NORMAL EXIT INTERRUPT HANDLER (NE)

NE clears the Normal Exit flag in the interrupted exchange package and
determines whether a system task or user job made the exit. A system
task exit causes the Monitor Request Processor to be invoked; a user job
exit causes the Exchange Processor (EXP) task to be scheduled.

SM-0040 2-5 C

INTERRUPT HANDLERS EXEC

2.2.8 INTERPROCESSOR INTERRUPT HANDLER (IPI)

IPI clears the Interprocessor Interrupt flag in the interrupted exchange
package on a CRAY X-MP mainframe.

2.2.9 DEADLOCK INTERRUPT HANDLER (DLI)

On the CRAY X-MP mainframe, deadlock interrupts can occur that do not
indicate that a programming error occurred. For instance, a deadlock
interrupt occurs whenever a Test & Set Semaphore (0034) instruction is
executed while the semaphore in question is already set and no other CPUs
are in the executing CPU's cluster.

The only level where detection of true deadlocks can take place is user
task scheduling (in JSH) and the only path to JSH from EXEC is through
EXP. Thus, deadlock interrupts generally require the scheduling of both
EXP and JSH, a large burden on the system when multitasking is used.

In order to reduce this system overhead, EXEC does some screening of
deadlock interrupts. The goal of this screening is to avoid the trip
through EXP/JSH when there is a high probability that the user task can
successfully resume processing, while at the same time avoiding needless
deadlock interrupts. To these ends, EXEC maintains a counter in the
user's TCB, and uses this counter plus other global information to
(selectively) return to the user task, rather than scheduling EXP when a
deadlock is encountered. This direct return to the user takes place when
all of the following conditions hold:

® The user is multitasking (that is, more than one user task is
active).

® More than one CPU is in the user's cluster.

® An excessive number of deadlock interrupts have not occurred since
the user task's last trip to EXP. This number is defined in STP
low-memory location DLIGNORE,

If any of the above conditions does not hold, EXP deals with the
deadlock.

Deadlock interrupts should never occur from within system tasks, such
interrupts cause a system halt.

SM-0040 2-6 C

EXEC CHANNEL MANAGEMENT

2.3 CHANNEL MANAGEMENT

EXEC manages channels in pairs, with the even-numbered side an input
channel and the odd-numbered side an output channel. A channel pair
consisting of channels 2 and 3 is referred to as channel pair 1, and so
on,

.EXEC manages the mainframe's physical I/0 channels based on parameter
settings in the configuration deck CONFIG@P. The channel parameters are:

C@CPLCHN Lowest physical I/0 channel number. This parameter is
an even number.

CQ@CPHCHN Highest physical I/0 channel number. This parameter is
an odd number.

CQ@CPMCHN Maintenance Control Unit (MCU) input channel number.
May be equal to C@CPLCHN. This parameter is an even
number .

CQ@CPSCHN CRAY X~-MP Solid-state Storage Device (SSD) control

channel number. This value is used during system
initialization to master clear the SSD channel.

For more information on the configuration deck CONFIG@P, consult the COS
Operational Procedures Reference Manual, publication SM—-0043.

Typical channel layouts are shown below.

CRAY-1 mainframes:

Channel Pair Description

2,3 1 6 Mbyte channel to MCU (MIOP or Data General

Eclipse)

4,5 2 Depends on configuration

6,7 3 Depends on configuration

8,9 4 Depends on configuration
10,11 5 Depends on configuration
12,13 6 Depends on configuration
14,15 7 Depends on configuration
16,17 8 Depends on configuration
18,19 9 Depends on configuration
20,21 10 Depends on configuration
22,23 11 Depends on configuration
24,25 12 Depends on configuration

SM-0040 2-1 c

CHANNEL MANAGEMENT EXEC

CRAY X-MP mainframes:

Channel Pair Description
6,7 3 SSD 1250 Mbyte channel’
8,9 4 6 Mbyte channel (MIOP)
10,11 5 6 Mbyte channel
12,13 6 6 Mbyte channel
14,15 7 6 Mbyte channel

2.3.1 CHANNEL MANAGEMENT TABLES

The following tables aid in channel management:

CBT Channel Buffer Table
CHT Channel Table

LIT Link Interface Table
SCT Subsystem Control Table
STT System Task Table

LIT or CBT 1I/0 Service Processor Tables

Detailed information on these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

Figure 2-3 illustrates how these tables are linked together.

Channel Buffer Table (CBT)

EXEC assigns one CBT entry to each pair of Channel Table (CHT) entries
during EXEC initialization. The CBT is the default processor table for
channel activity and is used by the Disk/SSD Driver.

Channel Table (CHT)

Each site configures one CHT entry per mainframe I/O channel, plus enough
dummy entries at the beginning, so the physical I/0 channel number is an
index into the CHT. (Site configuration information is provided in the
COS Operational Procedures Reference Manual, publication SM-0043.) Each
entry contains: a task parameter block address linking the channel to an
STP task (not for the MIOP channel), a table address, and an interrupt
handler address.

t Optional. Channel 6 is unused but is allocated to make a pair if this
option is present.

SM~-0040 2-8 C

EXEC CHANNEL MANAGEMENT

I/0 Service
Processor Table

CHT

STT

Figure 2-3. Channel Table linkage with assigned task

Link Interface Table (LIT)

The Front-end Driver assigns one LIT entry to a pair of Channel Table
(CHT) entries if the channel pair is to be used for front-end I/0.

Subsystem Control Table (SCT)

EXEC uses the SCT to select a processor for a packet received from the
MIOP (I/O Subsystem). See the discussion on the Packet I/O Driver for
details, in section 2.9.

System Task Table (STT)

The STT contains information about each STP task for scheduling a task to
run if channel activity warrants it.

I/0 Service Processor tables

The I/0 Service Processor tables contain information for control of the
channel processor and can contain pointers to other tables. Front-end
and mass storage channels have different I/0 Service Processor tables.
The service table is the LIT for Front-end Driver requests and the CBT
for Disk/SSD Driver requests.

SM-0040 2-9 Cc

CHANNEL MANAGEMENT EXEC

2.3.2 CHANNEL ASSIGNMENTS

When an STP task makes an I/0 request for a specified channel pair, EXEC
assigns the STP task that channel pair. The monitor requests involved
are R005 (Front—-end Driver) and R0Oll (Disk/SSD Driver). The R022 request
(packet I/0) can also involve I/0, but the channel to the I/O Subsystem
is not assigned to a specific task.

CHT

SCT

Figure 2-4. Channel Table linkage for packet I/0

2.3.3 CHANNEL PROCESSORS

The Channel Table (CHT) has a processor address for each physical
mainframe channel configured. By default, this channel processor is the
reject (RJ) processor, which ignores all interrupts on the channel. If
an I/0 operation is in progress, each processor address indicates the
interrupt handler that receives control when an interrupt is received on
a particular channel.

EXEC has the following categories of interrupts (and corresponding
interrupt processors):

® Front-end Driver interrupts (R005)
® Disk/SSD Driver interrupts (R01ll)

e MIOP (I/O Subsystem) Driver interrupts (R022)

SM-0040 2-10 C

EXEC CHANNEL: MANAGEMENT

Front-end driver interrupt handlers

Any of the following processors are assigned to a CPU I/0 channel as a
result of monitor request 5 (Front-end Driver) for front-end computers
and network adapters attached directly to a CPU channel.

Processor Function

RO0O5C/RLCP Reads (or waits for) a link control package (LCP)

RO0O5C/RSSEG Reads (or waits for) a data subsegment

ROO05C/RLTP Reads (or waits for) a link trailer package (LTP)

RO05C/WLCP Writes a link control package

RO05C/WSSEG Writes a data subsegment

ROO5C/WLTP Writes a link trailer package

RO05C/WXLCP Writes an error link control package

ROO5C/WXLTP Writes an error link trailer package

RO05C/CCLRB Reads input channel before master clear

R0O05C/CCLRD Writes a Select function code (VAX interface only)

ROO5N/NRLCF Reads zero data (Wait for Message function
acknowledgement)

RO05N/NRLCP Reads a link control package and link control package
extension (LCPE)

RO0O5N/NRSEG Reads a data segment

ROOS5SN/NWLCF Reads zero data (Transmit Message function
acknowledgement)

ROO5N/NWLCP Writes a link control package and link control package
extension

ROO5N/NWSEF Reads zero data (Transmit Data function
acknowledgement)

RO05N/NWSEG Writes a data segment

ROO5N/NWXLF Reads zero data (Transmit Message function
acknowledgement)

SM-0040 2-11 C

CHANNEL MANAGEMENT EXEC

Processor Function

ROOS5N/NWXLC Writes an error link control package or link control
package extension

ROO5N/NCLRB Reads zero data (Clear Adapter function
acknowledgement)

ROO5N/STATA Reads an adapter status word

XPROC/ENA No operation
When a processor completes its function, it assigns the next front-end
processor or reject (RJ) to the channel without involving the Station

Call Processor (SCP). See section 2.7 for details on the Front-end
Driver.

Disk/SSD Driver interrupt handlers

EXEC assigns any of the following processors to a mainframe I/O channel
as a result of monitor request llg (Disk/SSD Driver). This request
performs 1/0 on disk controllers and disk storage units connected
directly to mainframe channels or to an optional Solid-state Storage
Device (SSD).

Processor Function

DDC280 Indicates disk block transfer is complete

DDFCT10 Output interrupt handler, no response expected
DDRSP Output interrupt handler, response expected

DDTO Disk software timeout interrupt handler

DDE140 Input interrupt handler, correction vector received
SSINT Input interrupt handler, SSD status received

When a processor completes its function, it assigns the next processor to
the channel without involving a task. See section 2.8 for details on the
Disk/SSD Driver.

I/0 Subsystem MIOP command and status processors

Either of the following processors is assigned to a mainframe I/0O channel
as a result of monitor request 22 (packet I/0).

SM-0040 2-12 C

EXEC TASK SCHEDULER

Processor Function
APIIP Processes MIOP status input interrupt
APOIP Processes MIOP command output interrupt

These interrupt processors are part of the Packet I/0 Driver, which is
detailed in section 2.9.

2.4 TASK SCHEDULER

Task scheduling is entered when all interrupt conditions are processed
and the CPU is looking for something to do. If one or more system tasks
are ready to run, the task with the highest priority is selected for
execution. If no system task is eligible, the user task connected to the
CPU in question is selected. If no user is connected, the idle package
is selected for execution. The variables used in system task scheduling
are:

® STAPB, a field in the System Task Table (STT) header that contains
the STT address of the previously-active system task.

® STPLK, the STP lock indicator. When nonzero, the
previously-executing STP task has disabled preemptive task
scheduling, indicating that the task scheduler should return to
that task.

e TBIDLE, a field in the Task Breakpoint Table. When nonzero, a
system task is stopped at a breakpoint, indicating that only the
breakpoint-processing task (SCP) is a candidate for scheduling.

® TPT, the Task Priority Table. This table is indexed by priority,
and each table entry contains the address of the system task with
the corresponding priority.

® STPRL, the System Task Priority Ready List, contains a bit for
each possible task priority. When a bit in STPRL is set, the
system task with the corresponding priority is ready to run, that
is, it is not suspended.

The basic decisions of task scheduling, in order, are:

SM-0040 2-13 Cc

EXEC RESOURCE ACCOUNTING EXEC

Figure

If STPLK is nonzero, return to the previously active system task.

The STT address of this task is contained in STT field STAPB. 1If
any system tasks with a higher priority than the selected task are

found, set the STP Lock Recall flag (LKRCL) so that the UNLOCK
macro will exchange to EXEC to allow the higher-priority task to
be executed when the lock is released.

If a system task is at a breakpoint (TBIDLE is nonzero), select

SCP if it has been initialized and is not suspended. If SCP has
not yet been initialized, or if it is suspended, select the idle
pPackage instead.

If any system task is ready to run, select the task with the
highest priority and cause it to be executed. (The tests for
ready-to-run and highest-priority are combined since STPRL
implicitly contains a priority-ordered list of ready tasks.)

If no exchange package was selected as a result of the above
steps, user task scheduling (SCHUSER) is entered.

2-5 illustrates the table linkages for task scheduling.

2.5 EXEC RESOURCE ACCOUNTING

EXEC maintains the following performance information in EXEC tables:

SM-0040

Accumulated CPU time for itself (in Processor Working Storage)
Accumulated CPU time for each task (in STT)
Total time given to users (in Processor Working Storage)

Count of all channel interrupts for both real and pseudo channels
(IC)

Each user's execution time (in TCB)
Number of normal exits for each task (in STT)

Number of ready task requests, both from other tasks and from
external and internal interrupts, for each task (in STT)

Number of each type of EXEC request

2-14 C

EXEC EXEC RESOURCE ACCOUNTING

STPRL

(Bit n set means the task with priority n is ready)
Y

0 STT addr task i, with priority 0

1 STT addr task j, with priority 1

n STT addr task k, with priority n

STT
Y
STT entry for task k
@STPRI=priority (=n)
@STXPAD=XP address
STX
Y

Exchange Package for task k

Figure 2-5. Task scheduling table linkages

SM-0040 2-15 Cc

EXECUTIVE REQUEST PROCESSOR EXEC

2.6 EXECUTIVE REQUEST PROCESSOR

The Executive Request Processor is initiated by the Normal Exit (NE)
channel processor when a normal exchange from a task implies the presence
of a request for the Executive. The request is passed to EXEC in
registers S6 and S7 of the task's exchange package. The Executive
Request Processor handles the requests defined by the Monitor Call Table
(MCT) .

When EXEC returns to a task following processing of an Executive request,
control returns at (P)+2 for a normal return and at (P) if an error
occurred. (P) is the address of the instruction following the exit to
EXEC. When an error return is made by EXEC to (P), S6 contains an error
code.

2.6.1 EXECUTIVE REQUESTS

This section provides the request format and functional flow of executive
requests issued by tasks. Executive replies are described in section
3.2.1 of this publication, EXEC/Task Communication; error return codes
are described in section 2.6.2 of this publication, EXEC Error Codes.

Create a system task request (CTSK=01l)

This request initializes table space within EXEC defining a new system
task and invokes the newly created task.

Format:
0 8 16 24 32 40 48 56 63
S5 @CTTN
S6 Y///////7///77/77/7/7//7//7//7//7/////7////////////1@CTPRT | @CTID
87 ////////7//////) @CTPR | ecTFC
Field Word Bits Description
@CTTN S5 0-63 Task name, left-justified, binary
zero—-filled; must be unique.
@CTPRI S6 48-55 Task priority; must be unique.
@CTID S6 56-63 Task ID number; must be unique.

SM-0040 2-16 C

EXEC EXECUTIVE REQUEST PROCESSOR

Field Word Bits Description
QCTPR s7 16-39 Initial P register for task
QCTFC YY) 55-63 Request code (CTSK=018)

System tasks (normally Startup) use the CTSK request to create and invoke
a new system task. Control returns to the requesting task as priorities
permit, but EXEC allocates space in the System Task Table (STT) for the
newly created task. EXEC sets the task status to not suspended,
initializes an entry in the Task Priority Table (TPT) pointing to the new

STT entry, and marks the task as ready in the System Task Priority Ready
List (STPRL).

EXEC sets up a standard system task Exchange Package for the task, with a
base address set to B@STP, the initial P register as specified in the
request, X-MP cluster CLSYS selected, @XPSEI (selected for external
interrupt) set, @XPORE (interrupt on operand range error) set, and
interrupt on memory errors (single~ and double-bit) set according to
system defaults.

ERROR CONDITIONS:
(P) exits:

(S6) =ERTALC (026) if task is already created

(S6)=ERNTS (001) if all tasks have already been created

$sTOP023: if a duplicate task priority is encountered

Ready system task request (RTSK=02)

The ready system task request causes another system task to be readied,

and (optionally) causes an entry to be entered into the system trace
buffer.

Format:
0 8 16 24 32 40 48 56 63
sl Trace-1
S2 Trace-2
S6 Task
81 RI/////77777/7//711717/7//////7/////77/////////////////) EC

SM-0040 2-17 (o

EXECUTIVE REQUEST PROCESSOR EXEC

Field Word Bits Description

Trace-1 S1 0-63 First word of intertask message
Trace-2 S2 0-63 Second word of intertask message
TASK S6 0-63 Task number to be readied

T s7 0 Intertask Message flag: If set, S1

and S2 hold an intertask message which
is to be entered into the History
Trace Table. S1 and S2 are ignored if
T=0.

FC s7 55-63 Request code (RTSK=02g)

System tasks use the RTSK request to ready another system task. Since
this function is often associated with intertask messages (replies), the
request allows the caller to place an entry in the History Trace Table as
part of the call (rather than requiring an additional EXEC request to
perform the trace).

If the sign bit of S7 is clear in the request, the target task is readied
with no additional processing. If the sign of S7 is set in the request,
then S1 and S2 in the requesting task's Exchange Package are assumed to
contain a two-word entry for the History Trace Table. The message set
produced by the latter looks like:

Trace code Words 1 and 2 in the history trace
012 S1 and S2 from requesting task's Exchange Package
042 "READY xxx->yyy" in ASCII

xxx are the first three characters of the requesting task
name, and yyy are the first three characters of the target
(readied) task name. 042 is the history trace code for EXEC
ASCII message, and 012 is the history trace code for
intertask message.

ERROR CONDITIONS:
(P) exits:

(S6)=ERTNX (003) if target task does not exist

SM-0040 2-18 C

EXEC EXECUTIVE REQUEST PROCESSOR

System task self-suspend request (SUSP=03)

A system task uses the system task self-suspend request when it wishes to
suspend itself.

Format:

0 8 16 24 32 40 48 56 63
86 |///1/1//11117711717111771177177171717171/17171/17/11///171//////

87 L1117107777177777/7777/7777//////////7/////////////////) FC

Field Word Bits Description
FC s7 55-63 Request code (SUSP=03g)

The request has no parameters. When the task is readied (by some other
task, or by EXEC), the task resumes at (P)+2.

Front-end Driver request (FET=05)

This request invokes the Front-end Driver (FED). FED either processes the
request and/or formats a message for the Master I/O Processor (MIOP) and
the IOP Driver. See section 2.7 for a more detailed description of the
Front-end Driver.

Format:

0 8 16 24 32 40 48 56 63
56 REQI////////7/71) LXT | LIT

871 Y////////////7///////////////////////1CBT] CHO | CHN | 05

Field Word Bits Description
REQ S6 0-3 Operation request code:

FETCON (0) Channel on
FETCOF (1) Channel off
FETOUT (2) Output to front end

LXT 56 16-39 Absolute address of LXT entry (only if
REQ=FETOUT)
LIT S6 40-63 If REQ is FETCON or FETCOF, absolute

address of LIT entry

SM-0040 2-19 C

EXECUTIVE REQUEST PROCESSOR EXEC

Field
CHT

CHO

CHN

FC

Word Bits Description

s7 37-40 Channel type

s7 41-48 Channel ordinal (nonzero only for IOP
- channel)

s7 49-54 Channel pair number

s7 55-63 Monitor request number (05g)

The flow is as follows:

l'

If channel ordinal is 0:

Ae
bo

Assign task to channel.
Set input and/or output active flags.

c. Set channel registers CA and CL for input and/or output.
d. Start processing by station channel driver.

e. Release task from channel.

Otherwise:

a. Build MIOP station request in CXT.

b.

When MIOP requests addresses, put message on send queue to
MIOP. (The CXT contains a flag indicating that an address
request has arrived and addresses should be queued
immediately.)

Return to requesting task.

Delay system task for time request (TDELAY=06)

A system task uses the delay system task request when it wishes to delay
(give up the CPU) until a specified time.

Format:

S6
s7

Field

RT

FC

SM—-0040

8 16 24 32 40 48 56 63

RT

////77777777/777777/77/777777///7/7/7////////////////////) FC

Word Bits Description

S6 0-63 RT clock after which task wishes to be
readied.

s7 55-63 Request code (06g)
2-20 C

EXEC EXECUTIVE REQUEST PROCESSOR

Several warnings are associated with this request:

® The requesting task may be readied before the time specified in
the event of requests by other system tasks.

® The requesting task may be readied any time after the specified RT
clock value has arrived, depending on system load and task
priorities.
Because of the above conditions, callers of the TDELAY request must

conduct their own timing when they are concerned with specific delays.

Reserved for site use request (RESERVED=07)

This request is reserved for site use.

Start second CPU request (STRTCP2=10)

This request is valid only on CRAY X-MP mainframes. It sets up an
initial Exchange Package at location 0 and deadstarts the second CPU.

Format:

0 8 16 24 32 40 48 56 63
86 V////111111177777777777777777777777777777/77//777//////////7/////

ST Y//1/17171717177171777/17/77777777/7/7/17/7/7/7/////////7) 10g

Field Word Bits Description
FC s7 55-63 Monitor request number (10g)

The flow is as follows:
1. Error if mainframe is not CRAY X-MP.
2. Build an initial Exchange Package at location 0.
3. Deadstart the second CPU with an interprocessor interrupt.
4. Exit to exchange processor.

When the second CPU gains control, the flow is:

SM-0040 2-21 C

EXECUTIVE REQUEST PROCESSOR EXEC

1. Clear interprocessor interrupt.

2, Wait for access to operating system, if necessary.
3. Set up initial default time event.
4, 1Indicate second processor is started.

5. Set up Processor Execution Table (PXT) entry to reflect the
status of the newly-started processor.

6. Set up HIGHCPUN cell in low-STP memory to reflect the number of
the newly-started processor.

7. Exit by simulating an exchange into EXEC at EN.

Disk block I/0 request (I0=11l)

The disk block I/0 request results in execution of the disk driver. See
section 2.8 for detailed information on the Disk/SSD Driver.

Format:
0 8 16 24 32 40 48 56 63

S6 /11111111777 77/77//7//77/7777/77//7//7] EQT address

81 Y//////////////) DCT address | Channel no. | 1l
Field Word Bits Description
EQT S6 40-63 Equipment Table address
DCT s7 16-39 Device Channel Table address
CHN s7 40-54 Software channel (channel pair) number
FC 57 55-63 Monitor request number (1lg)

Select single-bit error detection mode request (SEDSEL=12)

This request enables or disables single-bit memory error detection for
the idle and all STP tasks. Memory error detection mode bits are set for
user jobs only when the user's Exchange Package is copied to the active

user Exchange Package area. The memory error detection mode applies to
all CPUs in the mainframe.

SM-0040 2-22 C

EXEC EXECUTIVE REQUEST PROCESSOR

Format:

0 8 16 24 32 40 48 56 63
S6 |/////1//////////////7//////77//77/777/77/7/77777//77/7/7/7/7//777777)4— Mode

ST Y////17/171/111771717171/17/177777117777/7/17//7/7//7) 12g

Field Word Bits Description
Mode S6 63 Memory error detection mode:
0 Disable single-bit error
interrupts

1 Enable single-bit error interrupts
FC s7 55-63 Monitor request number (1l2g)
The flow is as follows:
1. Set selected mode for idle tasks.

2. Set selected mode for all STP tasks.

Ready system task and suspend self request (RTSS=14)

The ready system task and suspend self request permits one system task to
ready another and then suspend itself. This request is typically used in
intertask communications.

Format:
0 8 16 24 32 40 48 56 63
Sl Trace-1
S2 Trace-2
S6 Task
81 WI/////7//17777///777/77/7////7////////////////////////) EC

Field Word Bits Description

Trace-1 Sl 0-63 First word of intertask message
Trace-2 s2 0-63 Second word of intertask message
Task S6 0-63 Task number to be readied

SM-0040 2-23 Cc

EXECUTIVE REQUEST PROCESSOR EXEC

Field Word Bits Description
T s7 0 Intertask Message flag: if set, S1

and S2 hold an intertask message which
is to be entered into the History

Trace Table. Sl and S2 are ignored if
T=0.

FC S7 55-63 Request code (RTSS=1l4g)

The RTSS request readies a system task and suspends the caller. Since
this request is generally associated with intertask messages, the caller
is allowed to place an entry in the History Trace Table as part of the
call (rather than requiring an additional EXEC request to perform the
trace).

If the sign bit of S7 is clear in the request, EXEC readies the target
task with no additional processing. If the sign bit of S7 is set in the
request, then S1 and S2 in the requesting task's Exchange Package are
assumed to contain a two-word entry for the History Trace Table. (The
calling task is suspended in any case.) The message set produced when the
sign of S7 is set has the following format:

Trace code Words 1 and 2 in the history trace

012 S1 and S2 from requesting task's Exchange Package
042 "RDY-SUS xxx->yyy" in ASCII

rxx are the first three characters of the requesting task
name, and yyy are the first three characters of the target
(readied) task name. 042 is the history trace code for EXEC
ASCII message, and 012 is the history trace code for
intertask message.

ERROR CONDITIONS:

(P) exits:

(S6)=ERTNX (003) if target task does not exist

$STOP064: when task ID in request indicates the calling task.

Connect user task to CPU request (RCP=16)

The connect user task to CPU request logically connects a user task to a
physical CPU.

SM-0040 2-24 C

EXEC EXECUTIVE REQUEST PROCESSOR

Format:
0 8 16 24 32 40 48 56 63
s6 |,|@RCCLNI|///////////////////////] @RCTXT
s7 / @RCTS | @RCFC
@RCLDCL
Field Word Bits Description
@RCLDCL S6 0 =1 to load CRAY X-MP cluster from JTA
@RCCLN Sé 1-5 CRAY X-MP cluster number for user task
@RCTXT S6 32-63 STP-relative TXT address of user task
to connect

@RCTS s7 0-54 Number of CPU cycles in time slice
@RCFC s7 55-63 Request code (0l6g)

The job scheduler task (JSH) uses this request to associate a user task
with a particular CPU. When a user task is connected and no system tasks
are ready to execute, EXEC's task scheduler will exchange to the user
task connected to its CPU.
Processing for this request consists of the following:

e Ensure CPU not already connected to another user task.

® Ensure cluster number selection valid for machine type.

@ Calculate EXEC-relative addresses for TXT, TCB, JTA, task status
block (TSB), Exchange Package, and store in PWS.

® Load CRAY X-MP cluster if requested to do so, and execute on CRAY
X-MP .

® Set connected task information into TXT and TSB (if present).
® Set up timer event for time slice expiration.

e If SPY is enabled for user, set up timer event for SPY event.

SM-0040 2-25 C

EXECUTIVE REQUEST PROCESSOR EXEC

ERROR CONDITIONS:
(P) exits:

(S6)=ERNCP (014) if a user task is already connected in the requesting
CPU

(S6)=ERCLN (035) if an invalid cluster number is specified

(S6) =ERMT (034) if cluster loading is selected on a non- CRAY X-MP
mainframe

$STOP034: occurs if a zero time slice is specified on the connect
$STOP044: occurs if a zero SPY time slice is encountered
$STOP045: occurs if the SETCL macro does not find the requested cluster

number in its tests; indicates a hardware problem,

Disconnect user task from CPU request (DCP=17)

The job scheduler task (JSH) uses this request to disassociate a user
task from a physical CPU to which it had been previously connected.

0 m 16 24 32 40 48 56 63

s6 |%1/// eocsTCL /7777777777777 @DCTXT
ST Y/117/177177777771777777777777777777777777777777777/777) @DCEC

Format:

Field Word Bits Description
@DCSTCL S6 0 =] to store X-MP cluster in the JTA
@DCTXT S6 32-63 STP-relative TXT address of user task

to disconnect
@DCFC S7 55-63 Request code (017g)

JSH uses this request to remove the association between a user task and a
particular CPU and CRAY X-MP cluster.

Processing for this request consists of the following:

® Ensure that the specified user is connected to the requested CPU.

SM-0040 2-26 C

EXEC EXECUTIVE REQUEST PROCESSOR

e Ensure that the TXT address specified in the request matches that
of the connected user.

® Cancel time slice event.
® Cancel SPY time slice event.

® If requested to save cluster, and a cluster is assigned, save
cluster in the JTA.

® Copy Exchange Package to the TCB, if it isn't already there.
e Clear all connected user fields from the PWS.

ERROR CONDITIONS:

(P) exits:

(S6)=ERNTC (033) if no user task is connected to the CPU

$STOP016: occurs if the TXT address passed in the request does not match
the address of the TXT entry connected

$STOP047: occurs if the SETCL macro does not find the cluster number
from the PWS in its tests

Post message in history buffer request (POST=20)

This request permits any STP task to enter two S registers of information
into the history buffer, when that debug function is selected.

Format:

0 8 16 24 32 40 48 56 63
86 V////1111777777777777177777/7/7777777777/777//7//77/7/////7/////

ST Y/1111111111111111111111171171717171071717) 4| ol] 20

7
1st S 2hd s ﬂébug function

reg. reg. code
Field Word Bits Description
First S s7 42-44 Ordinal of S register containing first
register word of information to post
Second S s7 45-47 Ordinal of S register containing
Register second word of information to post

SM-0040 2-27 C

EXECUTIVE REQUEST PROCESSOR EXEC

Field Word Bits Description

Debug s7 48-54 History trace function number (see
function code section 2.12.1 of this manual)

FC s7 55-63 Monitor request number (20g)

The flow is as follows:

1. sSet up call to EXEC subroutine DEBUG by moving debug function
code to A5, first S register to S6, and second S register to S7.

2. Call subroutine DEBUG to enter message in trace with time and
issue location stamp.

Set memory size request (SMSZ=21)

This request is used during system initialization when the size of memory
is changed through a Startup *MEMSIZ parameter.

Format:

0 8 16 24 32 40 48 56 63
86 V///1/1117777/7/777777/7///77/7777/7//7/7] New limit address

s7 [111111177171171117/1771771/777777777777/17/17/7/77/77/1 21g

Field Word Bits Description
LA S6 40-63 New system limit address
FC s7 55-63 Monitor request number (21g)

The processing consists of setting the new system limit address in all
system exchange packages.

Packet I/0 request (PI0=22)

This request invokes the I/0 Subsystem driver called the IOP driver.

Format:

0 8 16 24 32 40 48 56 63
S6 [/ ////11///////77///////////////////////) SCT

ST Y/I//1771777777717777777777777777777777/77777/7/777/71PFC| 224

SM-0040 2-28 C

EXEC EXECUTIVE REQUEST PROCESSOR

Field Word Bits Description
SCT S6 40-63 Subsystem Control Table address
(absolute)
PFC s7 52-54 Function code:
0 Clear

1 Send packet
2 Receive packet

FC s7 55-63 Monitor request number (22g)

Before a task uses this request to perform I/O, the IOP driver must be
linked to the STP-resident table called the Subsystem Control Table
(SCT). This linking is accomplished when the task issues the first clear
PIO request. The SCT address can only thereafter be changed if a task
issues a new PIO clear function. A task monitors the status of the
subsystem by inspecting the status field (SCSTAT) of the SCT table. The
following flags are maintained by the IOP driver in the SCSTAT field:

e SCDOWN=1 I/0 Subsystem Down flag
® SCRST=1 I/0 Subsystem Reset flag
® SCIR=1 Input Ready flag

Flag SCDOWN is cleared and flag SCRST is set by the IOP driver when the
I/0 Subsystem is restarted or initialized. A task can then acknowledge
reset by issuing a PIO clear request to clear the SCRST flag. The driver
cannot accept a clear until all input is processed, which means flag SCIR
must be clear.

Sending or receiving a packet requires that a packet address (SCCIP) and
packet size in words (SCPSZ) be passed in the SCT table. 1In general, a

packet is received when the SCIR flag is set, and a packet is sent when

all status flags are clear.

Boot a new system request (BOOT=23)

This request moves an image of an operating system down to the executable
area.

SM-0040 2-29 C

EXECUTIVE REQUEST PROCESSOR EXEC

Format:

0 8 16 24 32 40 48 56 63
s6 Y/////////77/771) BOOTNW | BOOTAD

ST Y/I/11177177177777777771717777777777177777/717777777/771 23

Field Word Bit Description
BOOTNW S6 16-39 Number of words in new system,

including parameter file

BOOTAD S6 40-63 Base address of new system, EXEC
relative
BOOTFC s7 55-63 Function code (238)

The flow is as follows:
1. Copy the new system down to location 0.

2. Set the system length in the new system's exchange package
register S7.

3. Exchange to the new system's boot exchange package.
When the new system gets control, the flow is:

1. Save the system length.

2. Continue with system initialization.

Start system request (START=24)

This request starts the system after a system breakpoint is encountered
or after a stop function is issued.

Format:

0 8 16 24 32 40 48 56 63
86 \//////117111777777777777777777777177//77777/7//7////////////////
ST Y////1111117777777171771717117777777777777771771//7/7/71 234

Field Word Bit Description
FC s7 55-63 Monitor request number (24g)

SM-0040 2-30 C

EXEC EXECUTIVE REQUEST PROCESSOR

The flow is as follows:

1. Clear Alternate Task Scheduling flag that forced system to idle
except for external requests to the station (SCP).

2. Request execution of the Task Scheduler.

Stop system request (STOP=25)

This request stops the system except for entry of station debugging
commands.

Format:

0 8 16 24 32 40 48 56 63
S6 |////11117117711171177111717177711717717171717177711717771777777/

s7 L111711777170717777777/171777171717/7/1777/7/7////7//7////1 234

Field Word Bit Description
FC s7 55-63 Monitor request number (25g)

The flow consists of setting the Alternate Task Scheduling flag. The

alternate scheduling allows only SCP to execute so station debugging
commands can be entered.

Display memory request (DMEM=26)

This request copies memory to a specified area. It is used to display
memory during debugging.

Format:
0 8 16 24 32 40 48 56 63
S6 ///////7/7/777/7) Display area FWA | Buffer area FWA
ST Y////////7//77771 Length 1//7///7/77/77771 264
Field Word Bit Description
Source S6 16-39 Absolute address of first word of

memory to copy for display

SM-0040 2-31 C

EXECUTIVE REQUEST PROCESSOR EXEC

Field Word Bit Description

Destination S6 40-63 Absolute address of display buffer

Length s7 16-39 Number of words to copy to display
buffer

FC s7 55-63 Monitor request number (26g)

The flow consists of copying the memory block from the requested area to
the display buffer.

Enter memory request (EMEM=27)

This request enters the bit string into memory at the specified bit
position.

Format:
0 8 16 24 32 40 48 56 63
S6 @EMVAL REMBCT
+
s7 Y///////////7/7) @EMADR |eeMBITI//1 “1///1 274
Field Word Bit Description
QEMVAL sS6 0-63 Value to be entered; right-justified.
QEMADR s7 16-39 Absolute address of memory word to
modify
@EMBIT s7 40-45 Starting bit position of field to
modify within memory word
QEMBCT s7 48-53 Number of bits to modify in memory
word
FC s7 55-63 Monitor request number (27g)

The flow is as follows:

1. Get value, bit position, bit count, and absolute address from the
request.

2. Get the word to be modified.

SM-0040 2-32 C

EXEC EXECUTIVE REQUEST PROCESSOR

3. Form and position a mask of bits to save in the requested word.
4. Shift the new value to the specified bit position.
5. Clear the old contents of the field and merge in the new value.

6. Update the memory copy of the word.

Display Exchange Package request (DXPR=30)

This request moves the contents of the Exchange Package and BO to a
buffer.

Format:

0 8 16 24 32 40 48 56 63
86 \//////1/1/7/////7/7//7/7//////////7/////] Buffer area FWA

8T Y///////17//////7//7///7/7/7////////////////////|Task ID| 304

Field Word Bit Description

Buffer area §S6 40-63 Absolute address of a 17-word buffer
FwA to receive the information

Task ID s7 47-54 ID of the task being displayed.

Nontask Exchange Packages can be
displayed using the display memory
request.

FC 57 55-63 Monitor request number (30g)

The flow is as follows:

1, Copy Exchange Package to words 0 through 15 of buffer.

2., Copy (BO) to word 16 of buffer from the task BO Save Table.

Enter Exchange Package register request (EXPR=31)

This request inserts the bit string into the specified Exchange Package
register.,

SM~-0040 2-33 Cc

EXECUTIVE REQUEST PROCESSOR EXEC

Format:
e R 16 24 32 40 as 56 63
S6 Value
. . Register Bit
s7 |///////|Task ID|IRegister desig.| n%mber | o 1//11engtn! 313
i
Bit offset
Field Word Bit Description
Value S6 0-63 Value to be entered
Task ID s7 8-15 ID of the task being modified.
Nontask Exchange Packages can be
modified using the enter memory
request.
Register s7 16-31 Register designator (see below)
designator
Register s7 32-39 Ordinal of designated register
number
Offset s7 40-45 Starting bit position of value being
entered
Bit length S7 48-53 Number of bits in value being entered
FC S7 55-63 Monitor request number (31lg)

The flow is as follows:

l. Determine word length and position of specified register in
memory.

2. Shift value to desired position.
3. Merge into addressed memory word.
Register designators can be any of those noted in the Debug Function

Request (027g), as documented in the Front-end Protocol Internal
Reference Manual, CRI publication SM-0042,

Set system breakpoint request (SBKPT=32)

This request sets a single or double breakpoint in the system by changing
an instruction parcel to an error exit instruction with the breakpoint
number in the rightmost bits. If a breakpoint exists at the address, an

SM-0040 2-34 C

EXEC EXECUTIVE REQUEST PROCESSOR

error is reported. The double breakpoint allows for automatic resetting

of the initial breakpoint when the second breakpoint is encountered. Up
to eight system task breakpoints are allowed.

Format:

0 8 16 423 32 40 48 56 63
S6 Y/II111111111170 pavees address 2 | pareel address 1
ST W/) 2 \/////////7//71 323

/
Breakpoint number

Field Word Bit Description

Parcel 2 Sé 16-39 Absolute parcel address of first
breakpoint

Parcel 1 13 40-63 Absolute parcel address of second
breakpoint

Number s7 40-42 Breakpoint number (0-7)

FC s7 55-63 Monitor request number (32g)

The flow is as follows:
l. Verify breakpoint number.
2. Verify breakpoint number not in use.
3. Verify memory address not already in Breakpoint Table.
4. Store information in Task Breakpoint Table.
5. Save breakpoint instruction parcel.

6. Set breakpoint.

Clear system breakpoint request (CBKPT=33)

This request clears a system task breakpoint entry.

SM-0040 2-35 Cc

EXECUTIVE REQUEST PROCESSOR EXEC

Format:

0 8 16 24 32 40 48 56 63
S6 ////1/117111111177777777777777777777777/7777777777777777177/7777

8T Y//////1/77/777777//7//7/77/7//7//77//7\ ~ \///////////] 33g
Breakpbint number

Field Word Bit Description

Breakpoint s7 40-42 Breakpoint number (0-7)
number

FC s7 55-63 Monitor request number (33g)

The flow is as follows:
1. Verify breakpoint number.
2. Verify breakpoint number in use.
3. Determine which of two possible breakpoint addresses is active.
4., Restore instruction parcel at the active address.

5. Clear breakpoint table entry.

Report CPU use regquest (CPUTIL=34)

This request puts data on CPU use into the assigned buffer.

Format:

0 8 16 24 32 40 48 56 63
s6 \///////////////////////] Buffer length | Buffer address

ST Y////11111171777717777777777717777777777711717777777777) 3%

Field Word Bit Description

Buffer length Sé6 24-39 Buffer size in words

Buffer S6 40-63 Absolute address of receiving buffer
address

FC Ss7 55-63 Monitor request number (34g)

SM—-0040 2-36 c

EXEC EXECUTIVE REQUEST PROCESSOR

The flow is as follows:
1. Validate buffer size.

2. Fill the buffer with CPU usage data, zeroing the fields in EXEC
that collect such data.

Report task use request (TASKUTIL=35)

This request puts task usage data into the assigned buffer.

Format:

0 8 16 24 32 40 48 56 63
s6 ///////////////////////) Buffer length | Buffer address

ST Y///171711111117711771177177717177717777777/117/717117//71 354

Field Word Bit Description

Buffer length S6 24-39 Buffer size in words

Buffer S6 40-63 Absolute address of receiving buffer
address

FC s7 55-63 Monitor request number (35g)

The flow is as follows:
1. Validate buffer size.

2. Put number of tasks into buffer.

3. Put number of readies of each task into buffer, zeroing the fields
that collect such data in the STT.

Report EXEC request (EREQNT=36)

This request puts the EXEC request count of each task into the assigned
buffer.

SM-0040 2-37 c

EXECUTIVE REQUEST PROCESSOR EXEC

Format:

0 8 16 24 32 40 48 56 63
se |/////////7//////////////1 Buffer length | Buffer address
ST Y/I/11117171717177777717717117/1777777777/17777/77/7//71 364

Field wWord Bit Description

Buffer S6 24-39 Buffer size in words

length

Buffer S6 40-63 Absolute address of receiving buffer
address

FC s7 55-63 Monitor request number (36g)

The flow is as follows:
1. Validate buffer size.
2. Put number of tasks into buffer.

3. Put number of requests made by each task into buffer, zeroing the
fields that collect such data in the STT.

Report EXEC call counts request (ECALLCNT=37)

This request puts the number of EXEC requests of each type into the
assigned buffer,

Format:

0 8 16 24 32 40 48 56 63
S6 /////////7/7/////////77///]1 Buffer length | Buffer address

s7 LI1II11171017771777777777777777777777777777777777777771 3¢

Field Word Bit Description

Buffer S6 24-39 Buffer size in words

length

Buffer S6 40-63 Absolute address of receiving buffer
address

FC s7 55-63 Monitor request number (37g)

SM-0040 2-38 C

EXEC EXECUTIVE REQUEST PROCESSOR

The flow is as follows:
1. Vvalidate buffer size.
2. Put number of task EXEC request types into buffer.

3. Put number of requests of each type into buffer, zeroing the
fields that collect such data in the STT.

Report interrupt counts request (CHINTCNT=40)

This request puts interrupt counts of each channel and pseudo channel
into the assigned buffer.

Format:

0 8 16 24 32 40 48 56 63
s6 V//////////////////////) Buffer length | Buffer address

ST Y///111717117717777771171771777117/7777717717/177117//71 “0g

Field Word Bit Description

Buffer S6 24-39 Buffer size in words

length

Buffer S6 40-63 Absolute address of receiving buffer
address

FC s7 55-63 Memory request number (40g)

The flow is as follows:
1. Validate buffer size.
2. Put number of interrupt channels into buffer.
3. Put interrupt count of each channel into buffer, zeroing the

table entries that collect such data.

Switch processors request (PSWITCH=41l)

On CRAY X-MP mainframes, the switch processors request causes STP to be
switched to the processor number specified in PN field.

SM-0040 2-39 Cc

EXECUTIVE REQUEST PROCESSOR EXEC

Format:

0 8 16 24 32 40 48 56 63
86 V///1/11111117/7//77/7/7//7//////////7//////7////////////////)

ST Y///1/1/17717717777777177777771717/7771777/1//17//7////) 41g

Field Word Bit Description
PN S6 60-63 Ordinal of CPU to switch to
FC s7 55-63 Monitor request number (41lg)

Processing for this request consists of the following:
e Increment the P register of the calling task by 2.
® Ensure that the calling task is the job scheduler, JSH.

e Suspend the calling task, and clear all system task scheduling
information pertaining to it.

e Issue an interprocessor message to the other CPU, requesting that
it complete processing of the PSWITCH request.

® Clear all operating system locks, and wait for the other CPU to
enter the operating system.

e Jump to LOCKOS to reenter single-threaded operation.
ERROR CONDITIONS:

$STOP012: occurs if the calling task is not JSH.

Dump CRAY X-MP cluster registers request (DUMPCL=42)

System tasks use the dump CRAY X-MP cluster registers request to obtain a
copy of all registers in a CRAY X-MP cluster.

Format:
0 8 16 24 32 40 48 56 63

S6 |@DUCLN | /////////////////////7/71} @DUADDR
s7 11177771777/ 777//7/7//77/77///7/7/7/7///7///7////////////1 @DUEC

SM-0040 2-40 Cc

EXEC EXECUTIVE REQUEST PROCESSOR

Field Word Bits Description
@DUCLN S6 0-7 CRAY X-MP cluster to be dumped
@DUADDR S6 32-63 STP-relative address of buffer to

receive cluster image; must be at
least CQCLSIZE words long.

@DCFC s7 55-63 Request code (042g)
Processing for this request consists of the following:

® Ensure that a buffer was specified, that the request is being made
on a CRAY X-MP mainframe, and that the cluster number is valid.

® Enter the selected cluster, dump the cluster to the specified
buffer, and reenter the system cluster.

ERROR CONDITIONS:
(P) exits:
(S6) =ERIA (036) if a zero buffer address is specified

(S6) =ERMT (034) if the request is made on a machine other than
a CRAY X-MP mainframe

(S6)=ERCLN (035) if an invalid cluster number is specified

$STOP048: occurs if the SETCL macro does not find the requested
cluster number in its tests; indicates a hardware problem.

2.6.2 EXEC ERROR CODES

EXEC returns one of the following error codes in register S6, if a
request cannot be processed. The requester's P register is not
incremented in this case.

Octal
Symbol code Processing routine and significance
ERNTS 1l <R0O0O1> No task space left
ERIDA 2 <R011~> No task assigned
ERTNX 3 <R000, R002, ROO4, RO14, RO31>

Task does not exist

SM-0040 2-41 Cc

FRONT-END DRIVER EXEC

Octal
Symbol code Processing routine and significance
ERRAT 4 <R004> Resource already assigned to a task
ERCHA 5 <RO11~> Channel already active
ERITN 6 <R014> Illegal task call (also returned if
unknown task makes a request)
ERBPN 11 <R032, R033> Illegal breakpoint number
ERBPB 12 <R032~> Address already has a breakpoint
ERBFD 13 <R027, R031> Bad field definition
ERNCP 14 <rRO1l6~> Job already connected
ERGSY 15 <R021> Disk malfunction
ERIPS 16 <R033~> Breakpoint invalid
ERIRN 20 <R031> Illegal register name
ERQFULL 24 <R006~> Time queue is full
ERINB 25 <R034, R035, R036, R037, R040>
Insufficient buffer length
ERTALC 26 <R001> Task already created
ERSID 27 <rR022~> Source ID mismatch
ERBFC 30 <R022> Bad function
ERTPB 31 <R022> Task parameter block changed
ERICH 32 <R022> Invalid channel number

2.7 FRONT-END DRIVER

The Front-end Driver (FED) physically controls I/O between the Cray
mainframe and front-end computers attached directly to the Cray
mainframe. 1In addition, it passes requests to the MIOP for I/O between
the Cray mainframe and front-end computers attached to an I/O Subsystem.

The Front-end Driver is invoked by EXEC monitor request 5. The Station
Call Processor (SCP) is the only task to use FED. FED requires the use

of COS front-end protocol. See the Front-end Protocol Internal Reference
Manual, CRI publication SM-0042, for detailed information on COS protocol.

FED processes task requests for channel control and front-end 1I/0. FED

performs hardware-level error recovery and some logical error recovery.
Most logical error recovery is provided by the requesting task.

2.7.1 THEORY OF OPERATION

FED processes the following operations:

® Channel on

SM-0040 2-42 C

EXEC FRONT-END DRIVER

® Channel off

® Output to front end

Channel on operation

The following processing flow performs the channel on operation:

Assign channel pair to requesting task
Master clear interface
IF direct coupled interface THEN
Send restart message
ENDIF
WHILE channel remains on
Wait for input message
IF direct coupled interface THEN
Terminate any output active on channel pair
ENDIF
IF input error THEN
Increment error count
IF error retry count not exceeded THEN
Send MESSAGE ERROR message
ELSE
Exit and wait for operator intervention (channel hung)
ENDIF
ELSE
Notify requesting task of an input message
ENDIF
Check for deferred output operation on this channel
ENDWHILE

Channel off operation

The following processing flow performs the channel off operation:
Deassign channel

Terminate any I/O on channel
Reject further interrupts from channel

Output to front-end operation

The following processing flow performs the output to front-end operation:

Send output message
IF network error THEN

SM-0040 2-43 Cc

FRONT-END DRIVER EXEC

IF local adapter busy THEN

Defer output operation
ELSE

Increment error count
IF error retry limit not exceeded THEN
Resend output message
ELSE
Exit and wait for operator intervention (channel hung)
ENDIF
ENDIF
ENDIF

2.7.2 SYSTEM TABLES USED BY THE FRONT-END DRIVER
FED uses the following system tables:

CHT Channel Table

CXT Channel Extension Table
LIT Link Interface Table
LXT Link Extension Table

Detailed information on these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

Channel Table (CHT)

A channel pair is assigned to the requesting task when the channel is
turned on, by placing the task parameter block address and LIT entry
address in the CHT entries for the channel pair. The interrupt handler
address is updated by the FED after each interrupt.

Channel Extension Table (CXT)

The Channel Extension Table (CXT) has an entry for each I/0 Subsystem
channel ordinal. A request is passed to the MIOP by building a message in
the entry for the channel ordinal specified in the monitor request.
Further communication with the MIOP is handled by the IOP driver.

Link Interface Table (LIT)

The Link Interface Table (LIT) has an entry for each channel configured

for front-end communications. The entry address is passed in the monitor
request. FED uses the LIT to control the interfaces and to multiplex
multiple logical front ends on one channel.

SM-0040 2-44 C

EXEC FRONT-END DRIVER

Link Extension Table (LXT)

The Link Extension Table (LXT) has an entry for each logical front-end ID
configured. It is used for communication between EXEC and STP. An entry
is allocated by FED upon receipt of a logon message, and released after an
output operation if the OFF bit is set. Receipt of a front-end message is
signaled by FED with the INT (interrupt) bit. FED does not modify an
entry after setting INT until the next output request is received for that
entry.

2.7.3 FRONT-END DRIVER PROCESSORS

The Front-end Driver consists of a request dispatcher (R005) and the
following request processors:

Processor Function

ROO5C IFC (channel coupler) request processor
ROO5I IOP request processor

ROO5N NSC (HYPERchannel) request processor

R005 request dispatcher

The R005 request dispatcher determines the pertinent request processor
and transfers control to it. RO005 processing is as follows:

IF nonzero channel ordinal THEN
Exit to RO05I
ELSE
IF channel off THEN
Perform processing and exit
ELSE
Set up tables
Exit to R005C or ROO5N, depending on type
ENDIF
ENDIF

The following R005 subroutines are available to all request processors:
Processor Function

FNDLX Looks up an LXT entry

SM-0040 2-45 c

FRONT-END DRIVER EXEC

Processor Function

GETLX Allocates an LXT entry

ITERM Performs input termination processing

MVLCP Moves an LCP from an LIT entry to an LXT entry
OTERM Performs output termination processing

TACT Activates requesting task

FNDLX - Processing is as follows:

Look up:
An LXT entry allocated to a given ID
Return to calling routine

GETLX - Processing is as follows:

LABEL 1
Find an LXT with the same ID as the input LCP.
If no matching LXT entry:
Get an inactive LXT.
If a free entry exits:
Set up the free entry.
ELSE
Set an error and return.
ENDIF
ELSE
If the LXT is not on the same channel:
Set an error and return.
ENDIF
If the LXT is logging off:
If the LXT is ready for input:
Clear the ID (deactivate the LXT).
Jump to LABEL 1.
ELSE
Reject the logon (allowing SCP to finish current processing).
ENDIF
ENDIF
Set the relog flat in the LXT.
ENDIF

ITERM - Processing is as follows:

Set LXT Entry Interrupt flag
Mark LXT entry ineligible for input (RDY=0)

SM-0040 2-46 C

EXEC FRONT-END DRIVER

Save channel information in LXT entry for next output operation
Increment message counters in LIT entry
Return to calling routine

LPEND

Find first LXT that has deferred output pending.
OTERM - Processing is as follows:

Increment message counters in LIT entry

IF the OFF bit is set in the LXT entry THEN

Deallocate the entry

ENDIF

Return
TACT - Processing is as follows:

Activate the requesting task

Return to the calling routine

RO0O5C regquest processor

RO05C processing is as follows:

IF channel on THEN
Call CCLR to master clear the interface
Set up to write a restart message LCP; WLCP is interrupt handler

Set up to read an LCP into the LIT entry; RLCP is interrupt handler
ELSE IF output THEN

Mark the LXT entry eligible for input (RDY=1)
Set up to write an LCP from the LXT entry; WLCP is interrupt handler
ENDIF

Each routine designates another routine as an interrupt handler if I/0O is
pending on the channel pair. The R0O05C routines are:

Processor Function

CCLR Master clears interface

CCLRB Processes interrupt from reading input channel
CCLRC Processes timeout interrupt and master clear channel
CCLRD Processes interrupt from writing function code

SM-0040 2-47 C

FRONT-END DRIVER

Processor
CHKSM
FOLD
LIRCV
LORCV
RLCP
RLTP
RSSEG
WLCP
WLTP
WSSEG
WXLCP

WXLTP

Function

Checksums a given area

Folds a 64-bit checksum

Processes input error

Processes

Processes

Processes

Processes

Processes

Processes

Processes

Processes

Processes

output error

interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt

interrupt

CCLR/CCLRA - Processing is as follows:

from

from

from

from

from

from

from

from

reading
reading
reading
writing
writing
writing
writing

writing

Terminate any input or output on channel

Set up a timer for I@MCLDLY clock ticks; CCLRC is interrupt handler
Set up to read any input in LCP-size pieces; CCLRB is interrupt

handler

CCLRB - Processing is as follows:

Cancel the timer

Exit to CCLRA

CCLRC - Processing is as follows:

Issue the master clear sequence for low-speed asynchronous channel

IF a VAX channel type THEN

Set up to write a SELECT function code; CCLRD is interrupt handler

ELSE

Return to calling routine

ENDIF

SM-0040

2-48

LCP
LTP
subsegment
LCP
LTP
subsegment
error LCP

error LTP

EXEC FRONT-END DRIVER

CCLRD -~ Processing is as follows:

Return to calling routine
CHKSM - Processing is as follows:

Calculate checksum and return to calling routine
FOLD - Processing is as follows:

Fold checksum and return to calling routine
LIRCV - Processing is as follows:

Increment error counters
IF error retry count exceeded THEN
Exit
ELSE IF output channel is not active THEN
Format a message error message LCP
Set up to write the error LCP; WXLCP is interrupt handler
ENDIF
Set up to read the next LCP; RLCP is interrupt handler

LORCV - Processing is as follows:

Increment error counters
IF no LXT entry is available for the ID THEN

Set up to send a restart LCP; WLCP is interrupt handler
ELSE

Set up to resend last output LCP; WLCP is interrupt handler
ENDIF

RLCP - Processing is as follows:

Call DEBUG for history trace entries (HTFEI=7 and HTSCI=16)
IF channel error or short input THEN
Exit to LIRCV
ELSE
Stop any output in progress on channel
IF a logon message THEN
Set up to read short segment; RSSEG is interrupt handler
ELSE IF a hardware (3xx) message error message THEN
Exit to LORCV
ELSE IF the ID has no LXT entry or no LXT entries are available THEN
Exit to LIRCV
ELSE
Call MVLCP to move the LCP to the LXT entry
IF a segment is present THEN

SM-0040 2-49 C

FRONT-END DRIVER

EXEC

Set up to read the first subsegment; RSSEG is interrupt handler

ELSE IF checksumming enabled THEN
Set up to read the LTP; RLTP is interrupt handler
Call ITERM to perform input termination processing
Call TACT to activate the requesting task
ENDIF
ENDIF
ENDIF

RLTP - Processing is as follows:

IF a channel error or short input THEN
Exit to LIRCV

ELSE
Set up to read the next LCP; RLCP is interrupt handler
Call ITERM to perform input termination processing
Call TACT to activate the requesting task

ENDIF

RSSEG - Processing is as follows:

IF a channel error or short input THEN
Exit to LIRCV
ELSE IF a logon message segment THEN
Call GETLX to allocate an LXT entry and move the logon segment
IF no LXT entries are available THEN
Exit to LIRVC
ELSE
Call MVLCP to move the LCP into the LXT entry
Call DEBUG for history trace entry (HTSEG=15)
Set up to read the next LCP; RLCP is interrupt handler
Call ITERM to perform input termination processing
Call TACT to activate the requesting task
ENDIF
ELSE IF no more subsegments are available
Set up to read the next subsegment; RSSEG is interrupt handler
ELSE IF checksumming enabled THEN
Set up to read the LTP; RLTP is interrupt handler
ELSE
Call DEBUG for history trace entry (HTSEG=15)
Set up to read the next LCP; RLCP is interrupt handler
Call ITERM to perform input termination processing
Call TACT to activate the requesting task
ENDIF

WLCP - Processing is as follows:

Call DEBUG for history trace entries (HTFEO=14 and THSCO0=20)
IF a segment is present THEN

SM-0040 2-50

EXEC FRONT-END DRIVER

Set up to write the first subsegment; WSSEG is interrupt handler
ELSE IF checksumming enabled THEN

Set up to write the LTP; WLTP is interrupt handler
ELSE

Call OTERM to perform output termination processing
ENDIF

WLTP - Processing is as follows:
Call OTERM to perform output termination processing
WSSEG - Processing is as follows:

IF no more subsegments are present THEN
Set up and write the next subsegment; WSSEG is interrupt handler
ELSE
Make history trace entry (HTSEG=15)
IF checksumming enabled THEN
Set up to write the LTP; WLTP is interrupt handler
ELSE
Call OTERM to perform output termination processing
ENDIF
ENDIF

WXLCP - Processing is as follows:
Call DEBUG for history trace entry (HTFEE=17)
IF checksumming enabled THEN
Call CHKSM and FOLD to calculate checksum; format error LTP
Set up to write the error LTP; WXLTP is interrupt handler
ENDIF
WXLTP - Processing is as follows:

Clean up

R005I request processor

The processing for R0O05I is as follows:

IF the operation is a channel on or channel off operation THEN
Format an X packet in the CXT entry for ordinal specified
ELSE IF the operation is an output operation THEN
Format a B packet in the CXT entry for ordinal specified
ENDIF
Call IOPRDV/APENQ to queue the packet to the MIOP

SM-0040 2-51 (o

FRONT-END DRIVER EXEC

Further communication with the MIOP is handled by the IOP driver (R022).

The APRCV subroutine recovers from an I/O Subsystem shutdown or restart.
APRCV issues a K packet to the MIOP for each active CXT entry. The IOP
driver uses the K packet upon receipt of an initialization sedquence from
the MIOP.

APRCV processing is as follows:

LOOP for all CXT entries
IF entry is active THEN
Call DEQ to obtain a packet from the free gqueue
Build a K packet
Call IOPDRV/APENQ2 to queue the packet to the MIOP
ENDIF
ENDLOOP

ROO5N request processor

ROO5N processing is as follows:

IF a CHANNEL ON redquest
Master clear the adapter.
Set up to write a WAIT FOR MESSAGE function.
Exit - input pending.
ELSEIF an output request
Build the output message LCPE based on
information received for that ID.
If the adapter is busy (a non-WAIT FOR MESSAGE
function or if output recovery in progress)
Defer the current output operation.
Exit.
ELSE
Clear outstanding WAIT FOR MESSAGE function
with two END OPERATIONS,.
Get the adapter status.
IF error
Issue END OP to clear adapter.
ELSEIF message received
Defer current write request.
Exit - input pending.
ENDIF
ENDIF
Set up to write a transmit message function.
Exit - output pending.
ELSE (unknown request)
STOP
ENDIF

SM~-0040 2-52 C

EXEC FRONT-END DRIVER

Each routine designates another routine as an interrupt handler if I/0 is
pending on the channel pair. Since the NSC adapter gives both an output
interrupt and an input interrupt for each function, output interrupts
require no special processing and are assigned to ENA in XPROC. The
ROO5N routines are:

Processor Function

NCLR Master clears adapter

NCLRA Processes interrupt acknowledging clear-adapter
function

NEND Issues adapter end operation function

NENDA Processes interrupt acknowledging end operation
function

NETO Processes interrupt from a time event expiration

NIRCV Processes input error

NORCV Processes output error

NPEND Processes any pending output

NRLCF Processes interrupt acknowledging wait-for-message
function

NRLCP Processes interrupt from reading LCP

NRSEG Processes interrupt from reading segment

NWLCF Processes interrupt acknowledging transmit—-data
function

NWLCP Processes interrupt from writing LCP

NWSEF Processes interrupt acknowledging transmit-data
function

NWSEG Processes interrupt from writing segment

NWXLC Processes interrupt from writing error LCP

NWXLF Processes interrupt acknowledging transmit-message
function

SM-0040 2-53 C

FRONT-END DRIVER EXEC
Processor Function
QOUTFC Writes a function code
STAT Obtains adapter status
STATA Processes interrupt from reading adapter status word

ROO5N also uses the alternate entry point MVLCE of routine MVLCP to
perform the move of both LCPE and LCP from the LIT to the LXT.

NCLR/NCLRA - Processing is as follows:

Save return address in LIT entry

Terminate any input or output active on channel

Set up to write a clear—-adapter function; ENA is interrupt handler

Set up to read the acknowledgment; NCLRA is interrupt handler

NCLRB - Processing is as follows:

IF channel error or adapter error THEN
Increment error counters
IF error retry limit exceeded THEN
Exit
ELSE
Exit to NCLRA
ENDIF
ELSE
Return to calling routine
ENDIF

NEND - Processing is as follows:
Ensure no interrupts.
Set up return address.
Issue END OP function.

NENDA - Processing is as follows:

Ensure no output interrupts.
Cancel time event.
Set up return address.

NETO - Processing is as follows:
IF time out recovery already in progress

Set channel hung.
Exit.

SM-0040 2-54

ENDIF
Increment the timeout counter.
Issue an NSC END operation to clear errors.
IF output in progress
Increment output error count for this LXT.
IF error count exceeded
EXIT - check for transfer pending.

ENDIF
Set up to restart output.
ENDIF
I Exit - check for transfer pending.

NIRCV - Processing is as follows:

] Save message error subcode.
Ensure input and output channels are inactive.
Issue an ENDOP to clear the adapter.
Increment error counters in the LIT
IF too many errors
Clear error counter, and increment retry
counter exceeded.
Exit - check for transfer pending.
ENDIF
If message has no source or destination
Increment the unknown interrupt counter.
EXIT - check for transfer pending.
ENDIF
Set up to write a transmit message function.
EXIT - input pending.

NORCV - Processing is as follows:

Deactivate both sides of the channel pair.
Issue an END OP to clear the adapter.
Increment the error counters in the LIT.
Set up to write a transmit message function.
IF within error limit
Wait before retrying. This means exit
and reenter here. Issue a Wait For Message
during the delay time.
IF output has been completed when the delay
expires
Clear error counts.
IF current function is WAIT FOR MESSAGE
Clear WAIT FOR MESSAGE with END OF.
EXIT - check for transfer pending.
ELSE
EXIT - to ENA.

SM-0040 2-55

FRONT-END

DRIVER

FRONT-END DRIVER EXEC

ENDIF

ELSE
IF function is not WAIT FOR MESSAGE

Requeue output operation.
EXIT - to ENA,
ELSE
Clear WAIT FOR MESSAGE with END OF
Set up to retransmit the message.
EXIT - output pending.
ENDIF
ENDIF
Exit - output pending.
ELSE
Clear error count, and increment retry
count exceeded.
Exit - check for transfer pending.
ENDIF

NPEND - Processing is as follows:

Get adapter status.
IF status error
Issue END OP to clear adapter.
ELSEIF message received
Setup to input message.
Exit - input pending.
ENDIF
IF error message pending
Set up to write error message.
Exit - output pending.
ENDIF
IF output pending and no output recovery in progress
Look for pending LXT.
IF LXT found
Set up to write TRANSMIT MESSAGE function.
Exit - output pending.
ELSE
Clear output pending count.
ENDIF
ENDIF
Set up to write WAIT FOR MESSAGE function.
Exit - input pending.

NRLCF - Processing is as follows:
Ensure the output channel is inactive.
Set up to write an INPUT MESSAGE function code and read the message

proper (LCPE/LCP) into the LIT entry.
Exit.

SM-0040 2-56 C

NRLCP - Processing is as follows:

Ensure the output channel is inactive.
Cancel the time event.

Record the input LCP in the history trace buffer.
IF a channel error, short LCP, or adapter error

Exit - input error.
ENDIF
IF a LOGON message
Set up to write an INPUT DATA function, and
read the short LOGON segment.
Exit - input pending.
ENDIF
IF a MESSAGE ERROR message with a 3xx subcode
Look up the LXT entry for input source ID.
IF no matching LXT
Exit - input error.
ENDIF
Exit - output error.
ENDIF
IF LXT entry not ready for input
Exit - input error.
ENDIF
Move the LCPE and LCP into the LXT entry.
IF a data segment expected
Set up to write the INPUT DATA function code
and read the segment.
Exit - input pending.
ELSE
IF associated data present
Exit - input error.
ENDIF
Issue END OP to complete transfer.
Perform input termination.
Exit - check for transfer pending.
ENDIF

NRSEG — Processing is as follows:

Ensure the output channel is inactive.
Cancel the time event.

IF a channel error, short segment, or adapter
Exit - input error.
ENDIF

Issue an END OP to complete the transfer.
IF a LOGON message

Allocate an LXT entry.
IF no available entries

SM-0040 2-57

error

FRONT-END DRIVER

FRONT-END DRIVER

Exit - input error.

ENDIF

Move the LCPE and LCP into the LXT.
ELSE

Get the LXT address for this message.
ENDIF

Record the input segment in the history trace.
Perform input termination.
Exit - check for transfer pending.

NWLCF - Processing is as follows:

Ensure no output interrupts.
Cancel the time event.

Set up to write the message proper (LCPE/LCP) from the LXT.
Bxit.

NWLCP - Processing is as follows:

Ensure output channel is inactive.
Cancel the time event.
Record the output LCP in the history trace buffer.
IF adapter status good
IF there is a segment
Set up to write a TRANSMIT LAST DATA function.
Exit - output pending.
ELSE
Perform output termination.
Exit - check for transfer pending.
ENDIF
ELSE
IF status indicates no message received
Exit - output error.
ENDIF
Issue an END UP to clear the adapter.
Defer current operation.
Exit - input pending.
ENDIF

NWSEF - Processing is as follows:
Ensure the output channel is inactive.
Cancel the time event.

Set up to write the segment.
Exit.

SM-0040 2-58

EXEC

NWSEG - Processing is as follows:

Ensure the output channel is inactive.

Cancel the time event.

Record the output segment in the history trace.
Perform output termination processing.

Exit - check for transfer pending.

NWXLC - Processing is as follows:

Ensure the output channel is inactive.
Cancel the time event.
Record the LCP in the history trace.
Get the adapter status.
IF the status indicates an error
IF message received
Issue an END OP to clear the adapter.
Defer the current output operation.
Exit - process forced input.
ELSE
Increment retry count exceeded.
Exit - check for transfer pending.
ENDIF
ENDIF

FRONT-END

DRIVER

Set up to write a wait-for-message function; ENA is interrupt handler

Exit - output pending
NWXLF - Processing is as follows:

Ensure the output channel is inactive.

Set up to write the message proper (LCPE/LCP) .
Exit.

OUTFC - Processing is as follows:

Ensure input channel inactive.

Set up to input response.

Output function code.

IF not WAIT FOR MESSAGE or CLEAR ADAPTER functions
Set time event timer.

ENDIF

WHILE time to wait not exceeded
EXITIF any 1/0 interrupt received.
Decrement time to wait.

ENDWHILE

SM-0040 2-59

FRONT-END DRIVER EXEC

STAT - Processing is as follows:

Save return address in the LIT entry
Issue STATUS function.

Set up to write a status function; ENA is interrupt handler
Set up to read the acknowledgment; STATA is interrupt handler

STATA - Processing is as follows:

Determine response code
Exit

OUTFC - Processing is as follows:

Ensure input channel inactive.

Set up to input response.

Output function code.

IF not WAIT FOR MESSAGE or CLEAR ADAPTER functions
Set time event timer.

ENDIF

WHILE time to wait not exceeded
EXITIF any I/0 interrupt received.
Decrement time to wait.

ENDWHILE

2.7.4 FRONT-END DRIVER ERROR RECOVERY
The Front-end Driver (FED) attempts recovery from hardware-related
errors. In addition, it detects and attempts recovery from some
software-related errors (for example, lack of table space).
An error condition results in one of the following:

® Retry of the operation that caused the error

® Generation and transmission of a Message Error message

If error conditions persist and the error retry limit for a channel is
exceeded, operator intervention is required.

A typical sequence for recovering from multiple errors is as follows:
1. At the master operator station, turn the affected channel off.

2. Terminate the front-end stations using the affected channel
(perhaps turn off the front-end channel).

SM~-0040 2-60 Cc

EXEC FRONT-END DRIVER

3. If necessary, manually master clear the interfaces.
4., Turn on the channel.
5. Restart the front-end stations including the front-end channel.

If this sequence fails, contact the Cray Research engineers.

RO0O5C (IFC interface) error processing

An input error causes the issue of a Message Error message to the front
end. If the input error retry count is exceeded, operator intervention
is required. The error retry limit for RO05C is 8192.
The following circumstances indicate an input error:

e The Channel Error flag is set.

® A transfer length error (short transmission) occurs.

® No LXT entries are available for a front-end log on.
An output error causes a retry of the last operation by the front end.
If the output error retry count is exceeded, no further retries are

attempted, but the channel remains active.

A Message Error message with an octal 3xx message subcode indicates an
output error.

ROO5I (I/O Subsystem) error processing

All error processing is handled by the I/0 Subsystem. See the IOS
Software Internal Reference Manual, CRI publication SM-0046, for details.

ROO5N (NSC HYPERchannel interface) error processing

An input error results in a Message Error message to the front end. 1If
the input error retry count is exceeded, no further retries are
attempted, but the channel remains active. The error retry limit for
ROO5N is 10.

The following circumstances indicate an input error:

e The Channel Error flag is set.

SM-0040 2-61 C

DISK/SSD DRIVER EXEC

e A transfer length error (short transmission) occurs.

® An invalid HYPERchannel adapter status is returned.

® No LXT entries are available for a front-end log on.
An output error causes a retry of the last operation by the front end.
If the output error retry count is exceeded, no further retries are
attempted, but the channel remains active.
The following circumstances indicate an output error:

® An invalid HYPERchannel adapter status is returned.

® A Message Error message with an octal 3xx message subcode is
received.

2.8 DISK/SSD DRIVER

The Disk/SSD Driver controls the following devices connected to a
mainframe I/0 channel:

e DCU-2 Disk Controller
e DCU-3 Disk Controller

® SSD (Solid-state Storage Device)

Bach disk controller can drive from one to four disk storage units of the

following types:

e DD-19 Disk Storage Unit
® DD-29 Disk Storage Unit

As an option, an SSD can be part of the configuration.

® On the CRAY-1 M Series and CRAY-1 S Series mainframes, the SSD is
controlled by a High-speed Channel Controller (HSC) which connects
to a 6-Mbyte channel pair. The HSC moves data to and from the SSD

over a 100-Mbyte channel.

® On the CRAY X-MP mainframe, the SSD is connected directly to the
mainframe through a 1250-Mbyte channel. Note that only one half

of a channel pair is required to control a CRAY X-MP SSD, but the

pair must be configured.

SM-0040 2-62

EXEC DISK/SSD DRIVER

2.8.1 DISK/SSD DRIVER TABLES

The parameters in the requesting task's S6 and S7 registers specify table
addresses and a channel pair number to use for all devices controlled by
the R01ll monitor request.

The monitor request includes addresses of the following tables:

DCT Device Channel Table
EQT Equipment Table

Device Channel Table (DCT)

The DCT contains the channel characteristics.

Equipment Table (EQT)

The EQT contains information on the type of I/0 request and the device
characteristics (disk storage unit type, SSD, and so on).

2.8.2 RO01ll MONITOR REQUEST

RO11l checks the validity of the request parameters. If there is an
illegal value or if the request would interfere with a request already in
progress (except for master clear requests), R0Oll immediately makes an
error return.

A normal return is scheduled if the request is well formed.
RO1ll selects the initial processor depending on device characteristics.

Once the parameter validation is performed, one of the following
processors is selected:

Processor Description

DDI DD19/29 disk request initialization
SSREQ CRAY-1 M Series or S Series SSD request
XSREQ CRAY X-MP Series SSD request

RO1ll is interrupt driven and executes a request in short bursts. Each
processor selects the next processor to execute upon receipt of an

SM~-0040 2-63 c

DISK/SSD DRIVER EXEC

interrupt. Time between interrupts is available to the rest of the
system for task or user job execution.

RO11 informs its calling STP task of the progress of the request after
each transfer of a sector (if I/0 interrupts occur after each sector is
transferred) and at the completion of the request. The Disk Queue
Manager (DQM) is the only task that calls ROll.

2.8.3 LOST DISK INTERRUPTS

An interrupt could fail to occur due to hardware failure. Therefore,
RO1ll protects itself by scheduling a timeout interrupt for each request
to RO1ll. As a result, each execution of Interchange compares the current
contents of RTC (real-time clock) to the timeout value. Interchange
gives control to R01ll if the timeout occurs.

Exchanges or other interrupts might not occur for an extended period.
The MCU real-time interrupts should be enabled, if available, to ensure
frequent execution of Interchange if the computer is not equipped with a
programmable clock. The time delay scheduled for timeout reflects the
magnitude of the request to RO1ll while being liberal enough to avoid
needless timeouts.

A single ROll request can involve many interrupts; thus, the single
timeout scheduled per ROll request acts as a blanket protection.

Lost interrupts are rare; generally, only expected interrupts occur.

When the request completes, the timeout is released.

2.8.4 STATUS CHECKING AND ERROR RECOVERY
RO11l checks hardware status at the start and completion of each request.
RO1l notifies the calling STP task when a request completes whether

successfully or in error. To effect error recovery, the calling task
must make the appropriate calls to ROll.

2.8.5 HARDWARE SEQUENCES FOR SAMPLE REQUESTS

This subsection assumes the reader is familiar with the Mass Storage
Subsystem Hardware Reference Manual, CRI publication HR-0630. The
processing sequence for several requests is presented here.

SM-0040 2-64 (o

EXEC DISK/SSD DRIVER

Multiple sector write

A multiple sector write resembles the multiple sector read; however,
retry is disabled implicitly and write continuity is checked. Either a

margin select function or a read function destroys write continuity. A
write function destroys read continuity.

Cylinder select

A cylinder select resembles a multiple sector read or write except that
sectors to transfer are 0 on entry to the driver.

Controller master clear

Processing is as follows:
1. Master clear channel with recommended I/0 master clear sequence.
2, Reserve unit.
3. Read subsystem status.
4, Read fault status.
5. Read interlock status.
6. Read cylinder status.
7. Read head status.
8. Read sector status.
9. Read offset status.
10. Release unit, clear fault, and return to cylinder 0.
11. Reserve unit.
12, Release unit, clear fault, and return to cylinder 0.

13. Reserve unit.

SM-0040 2-65 C

PACKET I/0 DRIVER EXEC

Margin select

The margin select is driven by the Margin Select Table in EXEC. The
table is initialized for 40 retries, starting at the smallest offset and
working out to two-thirds of the maximum offset. Each word in the Margin
Select Table contains eight margin values, one per byte.

2.9 PACKET I/O DRIVER

The Packet I/O Driver consists of two major parts:

1. The MIOP driver, which controls the 6-Mbyte channel to the Master
I/0 processor in the I/0 Subsystem.

2. Packet queueing, which routes packets among three areas of the
system:

® STP tasks

e EXEC
® I/0 Subsystem

Packets can originate in and be sent to any of these areas.

2.9.1 PACKET 1I/0 DRIVER TABLES

The following tables are used by the Packet 1/0 Driver:

APT Any Packet Table

CXT Channel Extension Table
FIQ Free Input Queue Table
FOQ Free Output Queue Table
QCT Queue Control Table

SCT Subsystem Control Table

Any Packet Table (APT)

The APT defines most of the packet formats and all of the packet formats
recognized by EXEC.

SM-0040 2-66 C

EXEC PACKET I/0 DRIVER

Channel Extension Table (CXT)

The CXT controls front ends connected through the I/0 Subsystem. Each IO0S
channel ordinal has one entry for handling one or more of the logical
front-end IDs.

Free Input Queue Table (FIQ)

The FIQ contains input packets. The packet to be read from the MIOP
contains "NEXTPACK" in ASCII replicated throughout.

Free Output Queue Table (FOQ)

The FOQ contains pointers to queued output packets.

Queue Control Table (QCT)

The QCT is a general format for tables manipulated by the EXEC queue
management subroutines. Specific tables using this format are the FIQ,
FOQ, and SCT.

Subsystem Control Table (SCT)

The SCT contains an entry for each type of packet EXEC can receive from
the MIOP or send to STP. Each entry contains the address of a routine
that either processes the packet or forwards it to an STP task for
processing.

Detailed information on these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

2.9.2 PACKET DESCRIPTION

The unit of information passed is known as a packet and is always six
64-bit words long. The Any Packet Table (APT) describes most of the
formats the packet can take. The packet always has a 16-bit destination
ID (DID) and a l6-bit source ID (SID) used by the Packet I/O Driver to
route the packet to its destination.

The following ASCII identifiers are valid in the SID and DID fields. The
identifiers are right-justified and null (binary zero) filled.

SM-0040 2-67 C

PACKET 1/0 DRIVER EXEC

Identifier Description
Cl Cray mainframe identifier

E EXEC identifier

Disk I/0

Front-end 1/0

Error message

Tape I/0

Echo

Tape configuration
Initialization part 1
Initialization part 2
Kernel request

Null request
Statistics request

nNZRUHQEBOOODP X

2.9.3 R022 MONITOR REQUEST
STP tasks can send packets to and receive packets from the I/O Subsystem
with a R022 monitor request (Packet I/0). STP tasks can also receive

packets from EXEC using the R022 request. See the PIO request in section
2.6.1 for details of this R022 monitor request.

2.9.4 MIOP DRIVER PROCESSORS

The following processors are interrupt-driven:

Processor Description
APIIP Input interrupt handler; packet received from MIOP.
APOIP Output interrupt handler; MIOP has received packet.

The APIIP routine uses the Subsystem Control Table (SCT) to determine the
packet queueing processor for the packet.

2.9.5 PACKET QUEUEING PROCESSORS
The following processors are used by the MIOP driver to process packets

from the I/0 Subsystem and are also used by EXEC to send packets to STP
tasks.

SM-0040 2-68 C

EXEC MEMORY ERROR CORRECTION

Packet Processor Action taken

A APXP Forward packet to DOM

B APBP Forward packet to SCP, or process request
C APXP Forward packet to MEP

D APXP Forward packet to TQOM

E APEP Process request (echo the packet)

I APIP Process request (Subsystem is down)

J APJP Process request (Subsystem is up)

N APNP Process request (ignore packet)

S APSP Process request (return statistics)

2.10 MEMORY ERROR CORRECTION

Memory error correction logs memory errors in an Executive table (MEL) at
the time of interrupt. In addition, all memory errors are logged with
MSG in the System Log except those which are double bit in nature and
have forced a STOP at the time of interrupt. Between the MEL table and
the System Log, all memory errors should be fairly easy to locate. When
a memory error occurs, it is logged in the MEL. The MEL format is
illustrated in figure 2-6.

A STOP (see section 2.13.2) occurs immediately after receiving the
interrupt if any of the following conditions occur:

e Double-bit count (IEMEUCT) is exceeded ($STOP037).
e Population count of the syndrome bits is all zero ($STOP038)
indicating the hardware reported an error with contradictory

syndrome bits.

® Decoded syndrome bits do not match the correctable/uncorrectable
code contained within the exchange package ($STOP039).

® EXEC idle loop detects a multibit memory error ($STOP040).
® Multibit memory error occurs while STP is executing ($STOP041) .
® Multibit error occurs during an I/0 reference ($STOP042).

® An IOP packet cannot be obtained to send the error packet to MEP
($sTOPO3]) .

If an uncorrectable memory error stops the system, the MEL should contain
sufficient information, through raw dump or system dump, to isolate the
error and failing module.

SM~-0040 2-69 C

MEMORY ERROR CORRECTION

W 0 & 600 N W NN = O

T
N e O

0 8 16 24 32 40 48 56

EXEC

63

Total Error Count

Single-bit Count

Double-bit Count

Current Bank

Current Chip Select

Current Syndrome

Current Error Type (Correctable/Uncorrectable)

Current RTC

Last Bank

Last Chip Select

Last Syndrome

Last Error Type (Correctable/Uncorrectable)

Last RTC

Figure 2-6. Memory Error Log (MEL)

Messages from EXEC to the Message Processor task (MEP) consist of the
standardized Any Packet Table (APT) header (1 word) followed by five
words of memory error information as follows:

(G, B - VR S =,

Field
DID
SID

FC

SM-0040

0 8

16 24 32 40 48 56

63

o~ DID

| SID V\//777/7/77/7/7/7//7/7/7/771

FC

|/SYS//|

MF | BANKS | CHIP | CONF |//////////////7]

JXO0

JN

ET\////////// |\ RM| CODE | SYN | ERROR ADDRESS

/7177777777 /////7] BASE ADDRESS | P ADDRESS

RTC

Word
0

0

Bits Description

0-15 Destination ID (ASCII "C")
16-31 Source ID (ASCII "EX")

56-63 Function code (6)

2-70

EXEC

Field

SYs

BANKS

CHIP

CONF

JXO

JN

ET

SM-0040

Word

Bits

8-15

16-23

24-31

32-39

56-63

0-63

14-15

MEMORY ERROR CORRECTION

Description
If set, error occurred in system

Mainframe type as follows:
@CRAY1=1
@CRAY1S=2
QCRAYXMP=3

Number of banks in mainframe
(C@MMBANK)

Chip size as follows:
@M1KCH=1 1024 bits
@M2KCH=2 2048 bits
@M4KCH=3 4096 bits

Memory configuration:
@MLEFT=1
GMRIGHT=2
@BOTH=3

Job Execution Table offset if error
occurred in job; otherwise, 0.

Job name of job in which error
occurred. If error occurred in STP,
this field is filled with ASCII "STP".

Error type:
10 Uncorrectable
01 Correctable

Read Mode:
CRAY~-1 mainframes:
0 Scalar
1 1/0
2 Vector, Bor T
3 Instruction fetch
CRAY X~MP mainframes:
0 I1/0
1l Scalar
2 Vector, Bor T
3 Instruction fetch

2-71 C

MEMORY ERROR CORRECTION

Field

CODE

SYN

Word

3

3

ERROR ADDRESS 3

BASE ADDRESS 4

P ADDRESS

RTC

4

5

Bits

16-31

32-39
40-63
16-39

40-63

0-63

Description

Code indicating type of error
encountered:

B w N Oo

Syndrome bits

Error address (see below)

Base address

P address of interrupted exchange
package

No error encountered
Check bit
Double bit
Single bit
Multiple bit

EXEC

RT value at time of error interrupt

The error address in word 0 has different values based upon which

mainframe type is being used.

interpretation.

See table 2-1 for the error address

Also note that MEP communicates only the last five words of this message
to the MSG task (through PUTREQ) when requesting entry of the error in
the System Log.

Table 2-1. Address bits in word 0, depending on mainframe models
CRAY-1 CRAY-1
Field | Description Model A or B S or M Series CRAY X-MP
Banks Banks Banks
8 16 8 16 16 32
ca High-order bits | 41-42 40-41 40-41 31-40 43-47 42-46
BIT Bit in chip 43-60 42-59 42-60 41-59 48-59 47-58
BK Bank address 61-63 60-63 61-63 60-63 60-63 59-63
SM-0040 2-72 (o]

EXEC IDLE TASK

2.11 IDLE TASK

When the Task Scheduler finds no work for the CPU to perform, the Task
Scheduler exchanges to the Idle task. The Idle task is a small loop that
periodically reads EXEC's portion of memory. The Idle loop continues
until an interrupt occurs.

The Idle task loops making memory references because EXEC normally
executes with memory error detection disabled. The Idle task is designed
to pick up any memory failures that EXEC does not normally detect.

2,12 EXEC DEBUG AIDS

EXEC has two debugging aids: history trace and the stop buffer.

2.12.1 HISTORY TRACE

The history trace is an EXEC-resident circular buffer of 4-word
messages. The EXEC routine DEBUG makes entries in the History Trace
Table (XTT) based on a function code plus control information in the
History Function Table (XFT). DEBUG is accessed from STP with monitor
request R020 (Post). The following tables are used by DEBUG:

XFT History Function Table
XTT History Trace Table

History Function Table (XFT)

The XFT determines which calls to the DEBUG routine result in entries in
the History Trace Table (XTT). The first word is a global-enable word,
with the mnemonic "ALL"™ in ASCII. If the low-order 24 bits of this word
are set to nonzero, all calls to the DEBUG routine result in entries in
the XTT. This is the default setting.

If the low-order 24 bits of this global—-enable word are 0, the history
trace function number passed to DEBUG is used as an index into the XFT.
For example, a function code of 1 would point to the entry with the
mnemonic *IOI"™ in ASCII, for I/0 interrupt trace. If the low-order 24
bits of the indexed word are nonzero, then an entry is made in the XTT.
If the low-order 24 bits of the indexed word are 0, no entry is made.

To disable all traces, clear the low-order 24 bits of the global-enable
word, and ensure that no individual functions are enabled.

SM-0040 2-73 c

EXEC DEBUG AIDS EXEC

To selectively enable traces, clear the low-order 24 bits of the

global-enable word, and set the low-order 24 bits of one or more other
words in the XFT.

STP functions are further selected by assembly selection of the POST

macro. An STP function not listed in the POST macro in the early part of
STP is disabled and can be re-enabled only through reassembly.

History Trace Table (XTT)

The header of this table contains the real time of the last call to DEBUG
and the offset from B@XTT where the next trace entry is formatted.

Each entry in this table contains the following information:

0 7 10 24 48 51 63
0 FC | PN | SM | P 1777771 XA
1 BOO | INT
2 WD1
3 WD2
Field Word Bits Description
FC 0 0-6 Function number
PN 0 7-9 Processor number (CRAY X-MP only)
SM 0 10-23 First 14 semaphores in system cluster
(CRAY X-MP only)
P 0 24-47 Current exchange package P register
XA 0 51-63 Current exchange package address
BOO 1 0-23 Last B00 value (if task related)
INT 1 24-63 Interval in cycles since previous entry
WD1 2 0-63 Caller supplied word 1
WD2 3 0-63 Caller supplied word 2

Consult the COS Table Descriptions Internal Reference Manual, publication
SM-0045, for detailed information on these tables.

SM-0040 2-74 C

EXEC EXEC DEBUG AIDS

Use the following macro to make a trace entry from a task in STP., This
example assumes that 0'77 is the function number and S2 and S3 contain

the information to be captured. Note that any register values other than
S0 and S7 can be used instead.

Operand

POST 0'77,s82,S83

In EXEC, to perform a history trace, place the information of interest in
S6 and S7 and execute the following:

LocationjResult Operand Comment
1 10 20 35
A5 0'77 function number
R DEBUG

The history trace is easily expandable so new function types can be

added. New DEBUG function numbers can be assigned up to a maximum value
of 77 octal.

I/0 interrupt (IOI=1) - For I/O interrupt trace entries, the first data
word transferred serves as the only trace of the following events:
HYPERchannel function output, HYPERchannel status input. The contents of
word 2 is the HYPERchannel status for input and output HYPERchannel
segment interrupts.

Trace entry format:

0 8 16 24 32 40 48 56 63
2 CHE | CHN | CHT | IH
3 Data
Field Word Bits Description
CHE 2 0-6 Channel Error flag
CHN 2 7-15 Hardware channel number
CHT 2 16-39 Channel Table address

SM-0040 2-75 C

EXEC DEBUG AIDS EXEC
Field Word Bits Description
IH 2 40-63 Interrupt handler address
Data 3 0-63 First data word transferred
User—initiated normal exchange (UNE=2) - Trace entry format:
0 8 16 24 32 40 48 56 63
2 S0
3 sl
Field Word Bits Description
S0 2 0-63 User SO
sl 3 0-63 User S1
STP-initiated normal exchange (SNE=3) - Trace entry format:
0 8 16 24 32 40 48 56 63
2 S6
3 s7
Field wWord Bits Description
S6 2 0-63 Task S6
s7 3 0-63 Task S7
Exchange to system task (ENE=4) - Trace entry format:
0 8 16 24 32 40 48 56 63
2 "TO:" in ASCII
3 target
Field wWord Bits Description
target 3 0-63 ASCII name of system task
Exchange to idle package (ENE=4) - Trace entry format:
0 8 16 24 32 40 48 56 63
2 "TO:" in ASCII

"IDLE" in ASCII

SM-0040 2-76

EXEC EXEC DEBUG AIDS

Exchange to user task (ENE=4) - Trace entry format:

0 8 16 24 32 40 48 56 63
2 "TO:" in ASCII
3 "USER"™ in ASCII | TXT
Field Word Bits Description
TXT 3 40-63 STP-relative TXT address of user task

being entered

Canceled timer event (PCI=5) - Trace entry format:

0 8 16 24 32 40 48 56 63
2 "CANCEL" in ASCII
3 "TIMEVENT" in ASCII

This trace entry occurs when a global timer event, which is set up for
processing by both CPUs, is processed by a CPU. Since the timer was set
in each CPU but need be processed by only one, the timer for the other
CPU is canceled.

Time event (PCI=5) -~ Trace entry format:

0 8 16 24 32 40 48 56 63
2 Zero | PT | EH
3 TN
Field Word Bits Description
PT 2 16-39 Parameter table address
EH 2 40-63 Event handler address
TN 3 0-63 "TIMEVENT"® in ASCII

Default time event pulse (PCI=5) - Trace entry format:

0 8 16 24 32 40 48 56 63
RTC

TN

SM-0040 2-77 C

EXEC DEBUG AIDS EXEC

Field Word Bits Description
RTC 2 0-63 Real-time clock at interrupt
TN 3 0-63 "DEFPULSE" in ASCII

Unexpected PCI interrupt (PCI=5) - Trace entry format:

0 8 16 24 32 40 48 56 63
RTC
TN
Field Word Bits Description
RTC 2 0-63 Real-time clock at interrupt
TN 3 0-63 "UNEX PCI"™ in ASCII

Front—-end input LCP (FEI=7) - Trace entry format:

0 8 16 24 32 40 48 56 63
LCPO
3 LCP1
Field Word Bits Description
LCPO 2 0-63 LCP+0
LCP1 3 0-63 LCP+1

Physical disk I/0 request (DIO=11l) - This entry is not used for disk storage
units connected through the I/0 Subsystem.

Trace entry format:

0 8 16 24 32 40 48 56 63
2 LDV
3 CDR
Field Word Bits Description
LDV 2 0-63 W@EQLDV, logical device name
CDR 3 0-63 WQCBCDR, current disk request word

SM-0040 2-78 C

EXEC EXEC DEBUG AIDS

Disk error retry part 1 (DIO=1l) - This entry is not used for disk storage
units connected through the I/0 Subsystem. Disk error retry part 1 and
part 2 always occur in contiguous pairs of trace entries.

Trace entry format:

0 8 16 24 32 40 48 56 63
2 LDV
3 TD
Field Word Bits Description
LDV 2 0-63 WEEQLDV, logical device name in ASCII
TD 3 0-63 WE@EQTD, transfer direction word

Disk error retry part 2 (DIO=11l) - This entry is not used for disk storage
units connected through the I/O Subsystem. Disk error retry part 1 and
part 2 always occur in contiguous pairs of trace entries.

Trace entry format:

0 8 16 24 32 40 48 56 63
2 STO
ST1
Field Word Bits Description
STO 2 0-63 WEEQSTO0, first status word
ST1 3 0-63 WE@EQST1, second status word

Intertask message (ITM=12) - Trace entry format:

0 8 16 24 32 40 48 56 63
2 WDl
3 WD2
Field Word Bits Description
WD1 2 0-63 Input word 0 or output word 0
WD2 3 0-63 Input word 1 or output word 1

SM-0040 2-79 C

EXEC DEBUG AIDS EXEC

Error exchange (EEI=13) - Trace entry format:

0 8 16 24 32 40 48 56 63
2 "ERR EXCH" in ASCII
Flags
Field Word Bits Description
Flags 3 0-63 WEXPF (exchange package flags word)

from the package which detected the
error exchange

Front-end output LCP (FEO=14) - Trace entry format:

0 8 16 24 32 40 48 56 63
2 LCPO
LCP1
Field Word Bits Description
LCPO 2 0-63 LCP+0
LCPLl 3 0-63 LCP+1

Front—-end segment (SEG=15) - This entry is not used for front-end
mainframes connected to the Cray mainframe through an I/O Subsystem.

Trace entry format:

0 8 16 24 32 40 48 56 63
2 Zero
Zero | LA | BA
Field wWord Bits Description
LA 3 16-39 Absolute limit address of the segment
buffer
BA 3 40-63 Absolute base address of the segment
buffer

SM—-0040 2-80 C

EXEC

EXEC DEBUG AIDS

Front-end input SCBs (SCI=16) - Trace entry format:

0 8 16 24 32 40 48 56 63
2 LCP3
3 LCP4
Field Word Bits Description
LCP3 2 0-63 LCP+3
LCP4 3 0-63 LCP+4
Front-end error LCP (FEE=17) - This entry is not used for front-end
mainframes connected to the Cray mainframe through an I/0 Subsystem.
Trace entry format:
0 8 16 24 32 40 48 56 63
LCPO
LCP1
Field Word Bits Description
LCPO 2 0-63 LCP+0
LCP1 3 0-63 LCP+1
Front—-end output SCBs (SC0=20) - Trace entry format:
0 8 16 24 32 40 48 56 63
2 LCP3
3 LCP4
Field Word Bits Description
LCP3 2 0-63 LCP+3
LCP4 3 0-63 LCP+4
User task status change (JST=24) - Trace entry format:
0 8 16 24 32 40 48 56 63
OST | "->" in ASCII
NST | TXT

SM-0040

2-81

EXEC DEBUG AIDS EXEC

Field Word Bits Description

ST 3 0-39 01ld TXSTCH (ASCII task status) field

NST 4 0-39 New TXSTCH (ASCII task status) field

TXT 4 40-63 TXT ordinal associated with status
change

Job status change (JST=24) - Trace entry format:

0 8 16 24 32 40 48 56 63

2 OST | "=>" jn ASCII

3 NST | JXT
Field word Bits Description
ST 3 0-39 01ld JXSTCH (ASCII task status) field
NST 4 0-39 New JXSTCH (ASCII task status) field
JXT 4 40-63 JXT ordinal associated with status

change

Search for a free memory segment (GET=25) - This entry is disabled in the
default system.

Trace entry format:

0 8 16 24 32 40 48 56 63
2 STCH
3 SZ
Field Word Bits Description
STCH 2 0-63 JXSTCH for job that needs memory
SZ 3 0-63 Size of free segment sought

Allocation of a memory segment (GET=25) - This entry is disabled in the
default system.

SM-0040 2-82 C

EXEC EXEC DEBUG AIDS

Trace entry format:

0 8 16 24 32 40 48 56 63
2 MST
3 N
Field Word Bits Description
MST 2 0-63 MST entry for the free segment from
which the allocation is to be taken
JXORD 2 0-15 JXT ordinal
SGZ 2 16-39 Segment size
SGA 2 40-63 Segment address
N 3 0-63 Number of words to allocate

Liberation of a memory segment (LIB=26) - This entry is disabled in the
default system.

Trace entry format:

0 8 16 24 32 40 48 56 63
2 MSTO
3 MST
Field Word Bits Description
MSTO 2 0-63 Offset of MST entry for segment to be
freed
JXORD 2 0-15 JXT ordinal
SGZ 2 16-39 Segment size
SGA 2 40-63 Segment address
MST 3 0-63 The MST entry itself

Request received by JSH (JSH=30) - This entry is disabled in the default
system.

Trace entry format:

0 8 16 24 32 40 48 56 63
2 FN | JXORD

3 JN \ /777777

SM-0040 2-83 c

EXEC DEBUG AIDS EXEC
Field Word Bits Description
FN 2 0-39 ASCII function name
JXORD 2 40-63 JXT ordinal
JN 3 0-55 ASCII job name
SsD transfer (SSD=31) - Trace entry format:
0 8 16 24 32 40 48 56 63
2 TN
3 FCT
Field Word Bits Description
TN 2 0-63 "GO SSD"™ in ASCII
FCT 3 0-63 Function word (CBFCT from CBT)
SSD error (SSD=31) - Trace entry format:
0 8 16 24 32 40 48 56 63
2 TN
3 EC
Field Word Bits Description
TN 2 0-63 "SSD ERR" in ASCII
EC 3 ~0-63 Error code
J$ALLOC requests (MEM=32) - Trace entry format:
0 8 16 24 32 40 48 56 63
2 Y//I111777177777//777/77777777//7///7/7//7//1 MRWA
3 MRW
Field Word Bits Description
MRWA 2 40-63 Address of memory request word;

initial processing done in STP

MRW 3 40-63 Memory request word itself

SM-0040 2-84

EXEC

Entry to MOVEMEM routine (MEM=32) - This trace
is moved.

Trace entry format:

0 8 16 24 32

EXEC DEBUG AIDS

entry is suppressed if no data

40 48 56 63

[\%)

TN | FA

3 V//11/7/77//777/71 TA

Field Word Bits Description
TN 2 0-15 "MV" in ASCII
FA 2 16-39 From address
FL 2 40-63 From length
TA 3 16-39 To address
TL 3 40-63 To length

Entry to ERASEMEM routine (MEM=32) -~ This trace entry is suppressed if no

data is erased.

Trace entry format:

0 8 16 24 32 40 48 56 63
2 TN
1/1/////7/////71 EA | EL
Field Word Bits Description
TN 2 0-63 YERASE" in ASCII
EA 3 16-39 Address
EL 3 40-63 Length of area to be erased

Exit from RELOCATE routine (MEM=32) - There are always two trace entries,

one for before and one for after, relocating.

SM-0040

EXEC DEBUG AIDS

Trace entry format:

EXEC

0 8 16 24 32 40 48 56 63
2 HLM | LFT | DSP
3 BFB | BBFL | FL
FPield Word Bits Description
HLM 2 0-21 High limit of memory
LFT 2 22-42 LFT address
DSP 2 43-63 DSP address
BFB 3 0-21 BFB address
BBFL 3 22-42 Buffer boundary in first entry;
change in FL in second entry.
FL 3 43-63 Field length
MCU interrupt (HTMCU=33) - Trace entry format:
0 8 16 24 32 40 48 56 63
2 RTC
3 TN
Field Word Bits Description
RTC 2 0-63 Value of real-time clock at event
detection
TN 3 0-63 "MCU INT" in ASCII
Interprocessor interrupt (HTIPI=34) - Trace entry format:
0 8 16 24 32 40 48 56 63
2 RTC
3 TN
Field Word Bits Description
RTC 2 0-63 Value of real-time clock at event
detection
TN 3 0-63 " IP INT" in ASCII
SM-0040 2-86 C

EXEC EXBEC DEBUG AIDS

Deadlock interrupt (HTDLI=35) - Trace entry format:

0 8 16 24 32 40 48 56 63
2 RTC
3 TN
Field Word Bits Description
RTC 2 0-63 Value of real-time clock at event
detection
TN 3 0-63 "DEADLOCK" in ASCII

System wait for single threading (HTSYS=36) - Trace entry format:

0 8 16 24 32 40 48 56 63
2 RTC
3 TN
Field Word Bits Description
RTC 2 0-63 Value of real-time clock at entry to

code at SYSWAIT
TN 3 0-63 "SYSWAIT" in ASCII

Operating system entry after single-thread wait (HTNWT=37) - Trace entry
format:

0 8 16 24 32 40 48 56 63
2 cyCc
3 TN
Field Word Bits Description
CcYc 2 0-63 RT clock cycles spent waiting
TN 3 0-63 "ENDWAIT" in ASCII

Logical interprocessor request (HTIPSET=40) - Trace entry format:

0 8 16 24 32 40 48 56 63
2 REQ

3 TN

SM-0040 2-87 Cc

EXEC DEBUG AIDS EXEC

Field Word Bits Description
REQ 2 0-63 Interprocessor request code:

0 (IPRQNOOP) No specific request
1 (IPRQPSW) Switch operating
system to other CPU

TN 3 0-63 "IP SET" in ASCII

Logical interprocessor request acknowledgement (HTIPACK=4l) - Trace entry
format:

0 8 16 24 32 40 48 56 63
2 REQ
TN
Field Word Bits Description
REQ 2 0-63 Interprocessor request code:

0 (IPRQNOOP) No specific request
1 (IPRQPSW) Switch operating
system to other CPU

TN 3 0-63 "IP ACK" in ASCII

Intertask message - task request (HTASCII=42) - Trace entry format:

0 8 16 24 32 40 48 56 63
2 "RDY SUS"™ in ASCII
3 source "->" dest
Field Word Bits Description
Source 3 0-23 Name of system task that initiated an

intertask message and issued an RTSS
(ready task, suspend self) request

Dest 3 40-63 Name of system task that was readied
to receive an intertask message

This trace message is always part of a set of messages:

003- System task normal exchange
012~ Intertask message; request in trace words 2 and 3
042- Intertask message; task request "RDY SUS xxx->yyy"

SM-0040 2-88 c

EXEC EXEC DEBUG AIDS

Intertask message - task reply (HTASCII=42) - Trace entry format:

0 8 16 24 32 40 48 56 63
"READY" in ASCII

source "->" dest

Field Word Bits Description
Source 3 k 0-23 Name of system task which initiated an

intertask message and issued an RTSK
(ready task) request

Dest 3 40-63 Name of system task which was readied
to receive an intertask message

This trace message is always part of a set of messages:
003 System task normal exchange
012 Intertask message; request in trace words 2 and 3.

042 Intertask message; task reply "READY xxx->yyy".

Memory error (HTMEC=43) - Trace entry format:

0 8 16 24 32 40 48 56 63
2 SYNDROME
3 , "MEM ERR" in ASCII
Field Word Bits Description
Syndrome 2 0-63 Syndrome bits of memory error

This trace message always occurs for single and double-bit memory errors.,

2.12,2 SYSTEM STOP BUFFER

The System Stop Buffer is a feature of EXEC which assists the computer
operator or system analyst in finding the general cause of a system
crash. When EXEC detects a fatal error condition, it builds a STOP
messadge in a buffer called the stop buffer. This buffer is located in
EXEC at B@STOP. The buffer is loaded with the label in EXEC where the
error is detected, the word address of P and BO, and an ASCII stop
message. The buffer is formatted as follows:

SM-0040 2-89 C

EXEC DEBUG AIDS EXEC

S —— =%
. STOP BUFFER :
U —— *
EXEC STOPPED AT LABEL: $STOP006
W.P = W.BO =
message
———————————— END BUFFER —-——=-—=——

The stop label is used in EXEC with the STOP macro. The STOP macro does
not convert the values in P and B0 to ASCII characters, so their values
appear in the dump. The value of P is in the word after the word
containing W.P and the value of B0 is in the word after the word
containing W.B0. These two values have been truncated to words.

The following convention is used for STOP labels and messages: the label
has the form $STOPec, where ec is a unique decimal number for each

error condition. The stop message contains the routine name where the
stop occurred and a short, descriptive error message. Table 2-2 shows
the EXEC stop messages.

Table 2-2., EXEC stop messages

Label Code Significance

$STOP000 EEF Unknown error

$STOP001 EX (Al) does not equal XP exchange
address

$STP0002 APOIP IOP channel error

$STOP003 APIIP IOP channel error

$STOP004 EE Program address range error

$STOP005 EEF Floating-point error

$STOP006 EEF Operand range error

$STOP007 EEF Program range error

$STOPOO08 EEF STP error exit (usually
accompanied
by SY006 message in STP memory)

$STOP009 EN CPU halt requested by IOS

$STOP010 TECAN Invalid event number

$STOP011 TS0 The STP Lock flag STPLK is set,
but no task is marked as active.

$STOP012 RO41 A PSWITCH request was received
from a task other than the job
scheduler (JSH).

SM-0040

2-90

EXEC DEBUG AIDS

Table 2-2. EXEC stop messages (continued)
Label Code Significance
$STOP013 TS2 No system task was selected on
entry to TS2.
$STOPO14 TEREQ Invalid event number
$STOPO015 ENQ Queue entry contains bad ID
$STOP016 RO17 The TXT address specified in the
request does not match the address
of the TXT entry which is
connected in the requesting CPU.
$STOP017 ROO5I/APRCV | B@FIQ empty
$STOP018 APENQ B@FOQ empty
$sSTOP019 API B@FIQ empty
$STOP020 ENQ Maximum queue length exceeded
$STOPO021 DEQ Queue empty
$STOP022 DEQ Header queue ID does not equal
entry queue ID
$STOP023 ROO1 This error occurs when a duplicate
task priority is encountered on a
task create.
$STOP024 ROO5 Undefined operation
$STOP025 ROO5 Undefined channel type
$STOP026 ROOS5C Undefined operation
$STOP027 EXA A zero exchange package address
was presented to the exchange
processor.
$STOP028 ROO5I Undefined operation
$STOP029 ROO5N Undefined operation
$STOP030 RO11 Maximum cylinder exceeded
$STOPO31 MCOR/XBMSG An IOP packet cannot be obtained
to send the error packet to MEP.
$STOP032 XPROC/EN System cluster not set up
$STOP034 R022/APIIP Short packet received from IOS
$STOPO35S INIT Error reading date and time from
MCU
$STOP036 INIT/GETRT Bad time or date parameter from MCU
$STOP037 MCOR/XMCNT This error occurs when the
double-bit count (I@MEUCT) is
exceeded.
$STOPO038 MCOR/XSYND This error occurs if the
population count of the syndrome
bits is 0, indicating the hardware
reported an error but the syndrome
bits show no error.

SM-0040

2-91

EXEC DEBUG AIDS

Table 2-2.

EXEC stop messages (continued)

Label

Code

Significance

$STOP039

$STOP040

$sSTOP041

$STOP042

$STOP043

$STOP044

$STOP045

$STOP046

$STOP048

$STOP050
$STOP051

$STOP052

$sSTOP053

MCOR/XSYND

MCOR/XMHLT

MCOR/XMHLT

MCOR/XMHLT

RO16

RO16

RO16

RO17

RO42

EX
EX

EX

EX

This error occurs if the decoded
syndrome bits do not match the
correctable/uncorrectable code
contained within the exchange
package.

This error occurs if the EXEC idle
loop detects a multibit error.
This error occurs if a multibit
error occurs while STP is
executing.

This error occurs if any multibit
error occurs during an I/0
reference.

A zero time slice was selected in
the RCP=016 EXEC request.

A zero time slice for SPY was
found in the connected user task's
TCB.

The SETCL macro was unable to find
the requested cluster number in
the list of valid clusters. Since
the cluster number has been
previously validated, this
indicates a hardware problem.

A zero time slice for SPY was
found in the connected user task's
TCB.

The SETCL macro was unable to find
the requested cluster number in
the list of valid clusters. Since
the cluster number has been
previously validated, this
indicates a hardware problem.
SM@PLOCK was cleared while EXEC
was executing.

SMEEXEC was cleared while EXEC was
executing.

The PWS addresses calculated
before and after an exchange do
not match.

SM@PLOCK was cleared during the
execution of an STP task.

SM-0040

2-92

EXEC EXEC DEBUG AIDS

Table 2-2. EXEC stop messages (continued)

Label Code Significance

$STOP054 EX The SETCL macro was unable to find
the requested cluster number in
the list of valid clusters.

$STOP055 IPREQST An invalid interprocessor request
code was found in the IPRQ table.
$STOP056 EX The current task ID, maintained in

low-STP memory by EXEC, was found
to exceed the maximum task number.

$STOP057 NE A system task made an EXEC request
while holding STPLK.
$STOP058 NE The active task STT addresses in

the PWS entry for the executing
CPU and in the STT header differ.
$STOP059 SCHUSER WQTCEPAL in the connected user
task's TCB was found to have all
flags clear, but to be nonzero.

$STOP060 IPCPU An interprocessor request is
already pending for the other CPU.
$STOP061 EX No system task was selected for

execution at label EX, in
violation of the specified entry
conditions.

$STOP062 TSO The active system task STT
addresses in the PWS (for the
executing CPU) and in the STT
header differ. This indicates a
problem with CPU scheduling in

EXEC.

$STOP063 DLI A deadlock condition was detected
that did not occur in the user
area.

$STOP064 RO14 A system task is attempting to
both ready and suspend itself.

$STOP065 IDLE An exit was made from the main
idle loop, indicates a hardware
problem.

$STOP069 APSP An unknown S-packet type was
received from the I/0 Subsystem.

$STOP072 BOOT .| Undefined CPU type.

$STOP073 SETLA Undefined CPU type.

$STOP074 SETXP Undefined CPU type.

SM-0040 2-93 C

INTERACTIVE SYSTEM DEBUGGING EXEC

2.13 INTERACTIVE SYSTEM DEBUGGING

Executive requests described in section 2.6.1 provide the mechanism
through which interactive system debugging control passes from the user
to SCP to EXEC. The debugging capability provides for memory entry and
display, operating register entry and display, setting and clearing
breakpoints, and starting and stopping the system.

SCP, common routines used by SCP, and EXEC cannot be breakpointed; the
debugging commands use SCP and EXEC to communicate with the operator.

Operator debug commands that use this capability are described in the COS
Operational Procedures Reference Manual, publication SM-0043.

2.14 MULTIPROCESSOR CONSIDERATIONS

Several aspects of EXEC reflect its need to support multiprocessor as
well as uniprocessor configurations.

2.14.1 SINGLE-THREADING

COSs was originally developed on a uniprocessor system. Many code
sequepnces reflect the assumption that only one processor is active by how
they access and update tables.

Rather than locating and changing all explicit and implicit assumptions
regarding process synchronization within COS, the much less timeconsuming
decision was made, that COS should run in only one CPU at any one time.

On the CRAY X-MP mainframe, the hardware semaphore registers are used by
EXEC to ensure that only one CPU is active in either EXEC or in the STP
area. When one CPU is found to be in COS, the other CPU waits for the
other CPU to leave the operating system; the code that accomplishes this
begins at label LOCKOS in EXEC and extends through the end of the SYSWAIT
subroutine.

Because SYSWAIT executes in monitor mode with external interrupts
disabled, and because when one CPU is in monitor mode no I/0 interrupts
are posted to another CPU of a CRAY X-MP system, SYSWAIT polls for I/0
interrupts. When an I/O interrupt is found and when the other CPU is not
in EXEC, SYSWAIT sends an interprocessor message and interrupts the other

CPU.

SM-0040 2-94 C

EXEC

MULTIPROCESSOR CONSIDERATIONS

2.14.2 SEMAPHORE USAGE

Management of CRAY X-MP cluster registers is the responsibility of three
entities in the COS environment: EXEC, which manages the system cluster,
COS locks, and saves and restores user cluster registers; JSH, which
assigns nonsystem clusters to user jobs (and the contained user tasks)
and directs EXEC to load or save user clusters; and to user-mode code,
both user programs and library subroutines.

EXEC saves and restores user cluster registers at the direction of JSH.

As an aid to the library scheduler, EXEC also clears semaphore SM@BWAIT

(sM00) on every exchange to a user task. EXEC does not modify any other
registers in user clusters.

Several semaphore registers are used within EXEC for interprocessor
communication and coordination:

® SMEALOCK - referred to as the active lock - is the master lock

within EXEC. It is a short-term lock, used when attempting to
gain access to other longer-term locks. Code sequences involving
SMEALOCK always follow the general pattern:

WAIT$SET ALOCK Test and set master lock
GETSM XXXX Test secondary lock
$IF SO,MI If secondary lock is busy
CLRSM ALOCK Release master lock
J delay Exit to do something else, or try again
$ENDIF
SETSM XXXX Set secondary lock
CLRSM ALOCK Release master lock

SM@PLOCK - called the passive lock - is used within EXEC to ensure
single-threading of COS. The only portions of COS that are not
single-threaded are small portions of EXEC: between labels EN and
LOCKOS, and subroutines called by SYSWAIT (DEBUG, and IPCPU).

When SM@PLOCK is set, one X-MP CPU is active in COS.

SMEEXEC flags for the SYSWAIT subroutine. When SM@EXEC is set, a
CPU is in the single-threaded section of EXEC; when clear, then no
CPU is in EXEC. SM@PLOCK is always set when SM@EXEC is set,
though the reverse is not true.

SM@IPRQ controls access to the Interprocessor Request Table
(B@IPRQ). Writes into the table can only take place after issuing
a WAIT$SET IPRQ instruction. This lock is needed because writes
into the IPRQ table can take place outside of code protected by
SM@PLOCK.

SM—-0040 2-95 c

MULTIPROCESSOR CONSIDERATIONS EXEC

® SM@DEBLK ensures single-threading in the DEBUG subroutine. This
semaphore will always be set in the history trace entries for X-MP
systems. This lock is needed because DEBUG calls can be made from
outside of code protected by SM@PLOCK.

e SM@BWAIT flags for the memory error correction code. When set,
SM@BWAIT indicates that a CPU is in the SYSWAIT subroutine.
Memory error correction uses this flag to determine that the other
CPU is parked in EXEC so that memory correction can be safely
done. SM@BWAIT (in the system cluster) is set and cleared only in
the SYSWAIT subroutine.

2.14.3 INTERPROCESSOR COMMUNICATIONS

The RCP and DCP Executive redquests (connect and disconnect user task) are
issued by JSH to associate and disassociate a user task from the
specified CPU. Because the requests are CPU-specific, EXEC provides JSH
with a mechanism (PSWITCH) for switching between physical CPUs.

The PSWITCH Executive request, available only to JSH, performs the
necessary interprocessor communication. When JSH calls PSWITCH, EXEC
suspends the caller and verifies that the caller was indeed JSH.

EXEC, in addition to accomodating JSH, also needs the ability to switch
physical CPUs. EXEC causes the other CPU to enter EXEC either because an
I/0 interrupt is found while in SYSWAIT, or because memory error
correction needs to have all user-mode exchange packages in memory
(having all CPUs in EXEC guarantees no user-mode exchange package is
active).

Processor switching is accomplished through a mechanism called
interprocessor communication. Interprocessor communication takes place
through messages. Interprocessor messages are currently of two types:

® Processor switch messages to allow JSH to use the other CPU

® No-op messages to allow EXEC to use the other CPU
EXEC routine IPCPU places the interprocessor message in the
Interprocessor Request Table (IPRQ) and issues an interprocessor
interrupt (IP 1) instruction. Interprocessor interrupts, while used in
sending messages, are basically ignored by EXEC.
When the other CPU enters EXEC, EXEC receives the message. IPREQST

processes processor switch messages and schedules JSH in the receiving
CPU.

SM-0040 2-96 Cc

EXEC EXEC-SPECIFIC MACROS

2.14.4 PROCESSOR WORKING STORAGE AREA (PWS)

The processor working storage area (PWS) contains data specific to each
CPU, including:

® Addresses and fields associated with a connected user task,
including the user task exchange package, if any.

e Idle task exchange package and B00 register save areas.
® Memory error correction exchange package.

® Statistics and timing counters, both cumulative and in last
statistics interval.

e A word indicating which software process is executing in the CPU
in question (USER, EXEC, MEM-COR, or system task).

The GETPW macro can be used to determine the PWS address of the current
CPU (see section 2.15.4).

2.15 EXEC-SPECIFIC MACROS

A number of macros are defined locally within EXEC. These macros are
generally appropriate only in the EXEC environment, or are used to ease
the writing of machine-independent code without conditional assembly at
the source statement level.

2.15.1 CLEARIP

The CLEARIP macro clears the Interprocessor Interrupt flag in the CRAY
X-MP CPU which encounters the macro; on other systems the macro does not
denerate any code.

2.15.2 COPYXP

The COPYXP macro copies exchange packages from one area of memory to
another. The macro was written with the goal of removing the run-time
loops and vector-register operations which had previously been used to
perform the copy.

SM-0040 2-97 C

EXEC-SPECIFIC MACROS EXEC

2.15.3 X$SIO

The X$SIO macro initiates an I/0 operation on a low-speed channel, to
record the Interrupt Handler Table address for the channel in question,
and to record the starting and ending addresses sent to the channel (for
debugging) .

2.15.4 GETPW

The GETPW macro obtains the address of the processor working storage area
for the CPU which is executing the GETPW macro. On uniprocessor systems,
this is always the first PWS entry; on multiprocessor systems the PWS
address is based on the CPU number.

2.15.5 GETSRO
The GETSRO macro (defined in comdeck GETSRO) extracts fields from CRAY

X~-MP status register zero. When assembled on uniprocessor systems, the
macro returns a zero as the value of the requested field.

2.15.6 I3$FWB
The I$FWB macro forces alignment of code to a specific word boundary.

Its most typical usage is to force tables to 4~ or 8- word boundaries to
make dumps easier to read.

2.15.7 SETCL

The SETCL macro issues one of the CRAY X-MP set cluster number
instructions, and was written because:

® Selection of a cluster by the hardware requires that the cluster
number be a constant embedded in the instruction. No instruction
is available to set the cluster number from a register.

e CAL allows only the numbers 0, 1, 2, 3 on the CLN instruction; it
does not allow constants with the values above.

SM-0040 2-98 C

EXEC EXEC-SPECIFIC MACROS

SETCL allows either a constant or a register as the cluster designator,
and either issues the instruction directly (if a constant was specified)
or uses a set of $IF/CLN statements to select the desired cluster.

When assembled on uniprocessor systems, SETCL does not generate any code.

2.15.8 SETIP

The SETIP macro sets the Interprocessor Interrupt flag in the other CPU
in CRAY X-MP systems. On uniprocessor systems, the macro does not
asssemble any code.

2.15.9 STOP

The STOP macro stops EXEC and issues a message when a fatal error

occurs. The STOP call can be either unconditional, or alternately the
programmer can elect to stop only when a specific condition or set of
conditions occurs. 1In the latter case, any condition accepted by the $IF
family of macros may be used on a STOP call.

2.15.10 FALLTHRU

The FALLTHRU macro allows the programmer to insert visual aids for
comprehension while ensuring that later modifications (possibly by
another programmer) do not insert code into what was originally intended
to be contiguous code sequences.

SM-0040 2-99 C

SYSTEM TASK PROCESSOR (STP)

3.1 GENERAL DESCRIPTION

The System Task Processor (STP) runs in non-monitor (user) mode and
accesses all memory other than that occupied by EXEC. STP is responsible
for processing all user requests. STP consists of tables, a set of
programs called tasks, and some reentrant routines common to all tasks.

A system task serves a specific purpose and usually recognizes a set of
subfunctions that can be requested by other tasks. Characteristics of a
task are that it has its own ID (a number in the range 0-35g), an
assigned priority (000-377g), its own exchange package area in the
System Task Table (STT), and its own intertask communication control
table which defines the tasks allowed to communicate. Each task and many
of the common subroutines are separate UPDATE decks and CAL IDENTs.

The system tasks (deck and IDENT names are noted in parentheses) are:

Startup (STP, STARTUP)

Disk Queue Manager (DQOM)
Station Call Processor (SCP)
Exchange Processor (EXP)

Job Scheduler (JSH)

Permanent Dataset Manager (PDM)
Log Manager (MSG)

Message Processor (MEP)

Disk Error Correction (DEC)
System Performance Monitor (SPM)
Job Class Manager (JCM)
Overlay Manager (OVM)

Tape Queue Manager (TQM)

Stager (STG)

Flush Volatile Device (FVD)

Each system task is fully described in a later section of this manual.

The addresses in the Base Address (BA) register and Limit Address (LA)
register are the same for all tasks; BA is set to the beginning of STP
and LA is set to I@MEM (an installation-defined maximum memory value).

Although a task is loaded into memory during system startup, it does not
normally become known to the system until an existing task issues an
executive request for the creation of some other task. COS Startup is
the necessary exception. A create task request assigns an ID and a
priority to a task through the task's parameter block in the STT.

SM-0040 3-1 C

TASK COMMUNICATION SYSTEM TASK PROCESSOR

Tasks execute in program mode and are thus interruptible. An interrupt
occurs as a result of the task executing an exit instruction (ERR or EX)
or results from one of the interrupt flags being set automatically (for
example, an I/0O interrupt occurred).

When a task is created, it is forced into execution. During this initial
execution, it usually performs some initialization and setup operations
and then suspends itself. Thereafter, a task is executed only if it is
readied. Readying of a task consists of altering its suspend bit. A
task is not a candidate for execution, however, unless all of the bits in
its status field are 0, including the breakpoint and stop bits.

Task readying occurs automatically or explicitly. Readying occurs
automatically for tasks assigned to a channel when an interrupt occurs on
the assigned channel. Readying of a task also occurs as a result of an
explicit EXEC request issued by one task for the execution of another
task. A task is readied or suspended by a master operator station
request (station DEBUG command). A task remains ready (unless
breakpointed or stopped) until EXEC receives a request to suspend it.

A task requests self-suspension when it has completed an assigned
function or posts a request for another task. Note that if the task
being requested is of lower priority than the task making the request,
the requesting task must suspend itself to allow the lower priority task
to execute.

Subsequent requests to ready a task already readied cause the ready
request bit in the task's parameter word to be set. When this bit is
set, the next suspend request for the task causes the task to be
rereadied rather than suspended. The task ready request bit is then
cleared.

3.2 TASK COMMUNICATION

Tasks communicate with EXEC, with each other, with user jobs, and with
the front end.

3.2.1 EXEC/TASK COMMUNICATION

A task communicates with EXEC by placing a request and parameters in
registers S6 and S7 and by executing an EX instruction. When a task

executes an EX, the error return is to the instruction following the EX;
the normal return is to the instruction following the error return. The

SM~0040 3-2 C

SYSTEM TASK PROCESSOR TASK COMMUNICATION

error return instruction must be a 2-parcel instruction. A reply to the
request is returned in registers S6 and S7.

EXEC requests are described in detail in section 2.6 of this publication.

3.2.2 TASK-TO-TASK COMMUNICATION

STP contains two areas used for intertask communication. The first area
is the communication module chain control (CMCC); the second area is the
communication module (CMOD).

The CMCC is a contiguous area containing an entry for each combination of
tasks possible within the system. The CMCC is arranged in task number
sequence, that is, all possible task 0 combinations of requests to task 0
are followed by all possible combinations of requests to task 1. The
task ID of the requesting task and the task ID of the requested task are
the values that determine the appropriate CMCC entry.

CMODs are allocated from a pool as needed and, therefore, have no fixed
location. Memory pool 2 is reserved exclusively for use by intertask
communications. A CMOD consists of six words: two are used for control;
two are used as input registers; and two are used as output registers. A
task receives all of its requests and makes all of its replies through a
CMOD.

Figure 3-1 illustrates the tables used for task communication.

One task communicates with another by placing a request in the input word
of a CMOD. The requested task replies by placing the request status in
the output words of the CMOD. The format of a request is subject to the
requirements defined by the called task. Requests recognized by a task
are described with the task later in this section. However, some
conventions do exist. Conventionally, the requested function is placed
in INPUT+0. Output usage is conventionally defined such that OUTPUT+0 is
0 if no error has occurred; otherwise, it contains a nonzero error code.

Six reentrant routines in STP that are common to all tasks facilitate
intertask communication. They are:

PUTREQ Put request routine, asynchronous; destroys A6.
GETREQ Get request routine; destroys A6 and A7.
PUTREPLY Put task reply routine; destroys A6 and A7.

GETREPLY Request status routine; destroys A6.

SM-0040 3-3 c

TASK COMMUNICATION SYSTEM TASK PROCESSOR

Communication Module Chain Control

Task 0
Header
Task 1
' “ Task 0 to Task 1
1 [] \\
] 1N
1] \
: : N Task 1 to Task 1
i 1 N
: PN
! ! “ Task 2 to Task 1 [
1] \
1 1 1\
1 1 \
: i N i
) 1 .
\
\
\
Task n \' Task n to Task 1
\
Communication Modules
L
CMOD 1 . PR
Task 2 to Task 1 »” e Control —-—--
B -~
Cd
'l
I’
,,’ S Input ———-
,’
Cd
CMOD 2 o’
Task 2 to Task 1 j———— Output ——
3 .
L
CMOD n
Task 2 to Task 1

Figure 3-1. Task communication tables

SM-0040 3-4 C

SYSTEM TASK PROCESSOR TASK COMMUNICATION

TSKREQ Task request routine, synchronous; destroys A3.

REPLIES Queues unrequested reply; destroys A6.

The task placing a request calls PUTREQ to place the request and calls
GETREPLY to check for a status from the requested task. Conversely, the
requested task uses GETREQ to locate outstanding requests and uses
PUTREPLY to return the status. If TSKREQ is used, PUTREQ and GETREPLY
must not be used.

TSKREQ is incompatible with PUTREQ and GETREPLY; if TSKREQ is used,
PUTREQ and GETREPLY must not be.

PUTREQ

This STP common subroutine places the request in the input registers of a
CMOD and links the appropriate communications module chain control. 1If
the request cannot be chained because no CMODs are available or the chain
is at its maximum, PUTREQ suspends the calling task or, at the caller's
discretion, returns control to the requester with no action taken. Once
PUTREQ has successfully generated the CMOD and linked it to the CMCC, the
requested task is readied and control returns to the requester. PUTREQ

is called through a return jump with the caller providing the following
values.

INPUT REGISTERS: (Al) Discard indicator. If (Al) is positive, control
does not return to the caller until the request
is queued. If (Al) is negative and the request
cannot be queued without suspending the caller,
control returns with no action taken.

(A2) Requested task's ID

(S1l) INPUT+O

Request
(S2) INPUT+1

OUTPUT REGISTERS: None

GETREQ

This STP common subroutine locates any outstanding request for the
caller. Using the CMCC, GETREQ searches for a CMOD representing a
request not yet given to the requester. GETREQ begins the CMCC search
with the lowest numbered task and returns the first request encountered
to the caller. A task calls GETREQ through a return jump.

SM-0040 3-5 C

TASK COMMUNICATION SYSTEM TASK PROCESSOR

INPUT REGISTERS: None

OUTPUT REGISTERS: (A0) Found indicator. If (A0)=0, no outstanding
requests exist. If (A0)#0, a request is
returned.

(A2) ID of task that generated the request

(S1l) INPUT+O
Request
(S2) INPUT+1

PUTREPLY

This STP common subroutine places the reply to a request in the first
available CMOD. Requests and replies are stored in the CMOD in the
sequence in which they are generated. Therefore, a single CMOD
represents an unrelated request and reply. The subroutine readies the
task where the reply is directed and returns to the requester. PUTREPLY
is called through a return jump.

INPUT REGISTERS: (A2) 1ID of task to receive the reply
(S1) OUTPUT+O
Reply
(S2) OUTPUT+1

OUTPUT REGISTERS: None

GETREPLY

This STP common subroutine searches for a reply to the calling task. The
search begins with the lowest numbered task and ends with the highest
numbered task, returning the first reply encountered. GETREPLY removes
the CMOD from the CMCC and releases it for reallocation. The subroutine
is called through a return jump.

INPUT REGISTERS: None

OUTPUT REGISTERS: (A0) PFound indicator. If (A0)=0, no reply is
located; if (A0)#0, a reply is returned
to the caller.

(A2) ID of replying task

SM-0040 3-6 C

SYSTEM TASK PROCESSOR TASK COMMUNICATION

(Sl1) OUTPUT+0
Reply
(S2) OUTPUT+1

TSKREQ

This STP common subroutine makes a request to a task for processing and
suspends the caller until a reply is received. If the request cannot be
dqueued immediately, because either the queue is at its maximum or because
no communication modules are available, the caller is suspended until the
request is queued. Once the request is queued, the caller is suspended
until a reply is received. TSKREQ is called through a return jump. I£
one task makes a request to another using TSKREQ, all requests from the
first task to the second must be made using TSKREQ. Mixed use of TSKREQ
and PUTREQ/GETREPLY can cause unpredictable results.

INPUT REGISTERS: (A2) 1ID of requested task

(sl) INPUT+0

Request
{s2) INPUT+1

OUTPUT REGISTERS: (S1) OuUTPUT+O0
Reply
(S2) OUTPUT+1

REPLIES

This subroutine queues a reply for which no corresponding request has
been made. The reply is queued at the beginning of the reply queue. A
reply sent through this subroutine is seen by GETREPLY before any reply
sent through PUTREPLY.

INPUT REGISTERS: (Al) Discard indicator. If (Al) is positive, control
does not return to the caller until a reply is
queued. If (Al) is negative and the reply
cannot be queued without suspending the caller,
control returns with no action taken.

(A2) 1ID of task to receive the reply
(S1) INPUT+0

Reply
(S2) INPUT+1

OUTPUT REGISTERS: None

]

SM-0040 3-7 C

TASK COMMUNICATION SYSTEM TASK PROCESSOR

3.2.3 USER/STP COMMUNICATION

User tasks initiate user/STP communication. A user program request to
STP is performed when the user task loads register SO0 (and optionally S1
and S2) and executes the normal exit instruction. Most system action
requests can be issued through a CAL macro (see the Macros and Opdefs
Reference Manual, CRI publication SR-0012). The user macro also results
in a normal exit from the user program. EXEC routes all normal exits
from a user task to the User Exchange Processor. The handling of these
requests by the User Exchange Processor is described in section 8 of this
manual.

3.2.4 TASK/FRONT-END COMMUNICATION

Tasks can issue messages to any logged on front-end station with a
message processing capability. Messages are either strictly informative
or require a response by the operator.

Messages are queued by the common subroutine MSGQUE and processed by the
Station Call Processor (SCP) task at the first opportunity for
communication to the front end. (See section 7 for detailed information
on message handling by SCP.)

The MSGQ system macro queues a message to the front end using the
interactive queueing mechanism and assigns a message number. The macro
call has the following format:

Operand

ADR=x

x Symbolic name of, or an A or S register containing the
address of the message buffer

The calling task builds the message buffer (including the header and the
text) and supplies a buffer address pointer, ADR. The macro routine
queues the message and supplies any necessary default values.

Register S1 is set up and returned as follows:

0 8 16 24 32 40 48 56 63
SL V//////77717/77777777777777//777/] MN | Status

SM-0040 3-8 C

SYSTEM TASK PROCESSOR TASK COMMUNICATION

MN Assigned message number, not meaningful if status is not
normal reply.

Status One of the following status codes:
Code Meaning
000 Normal reply
100 Station not logged on
101 Station message processing disabled
102 Message format error
103 Outstanding message count exceeded
104 Message word count too large for station
105 Message type not supported

MSGQ enters either the complete message, the message header, or nothing
at all into the COS System Log depending on what is specified in the
message's LOG field. (The Log Manager task is not active during
Startup. Therefore, messages sent during Startup are not entered into
the System Log, regardless of the contents of the LOG field.)

SM-0040 3-9 C

STP COMMON ROUTINES

Certain reentrant routines resident in STP are called by return jumps
rather than by a call to another task. These include:

e Task logical I/0 routines (TIO)

® Circular I/0 routines (CIO)

® Memory management routines

e Item chaining/unchaining routines

® Interactive communication buffer management routines
e Password encryption

e System buffer management

4.1 TASK I1/0 ROUTINES (TIO)

Task I/0 (TIO) is a set of reentrant common routines in STP logically
considered part of any system task that calls it. TIO interprets only
COS blocked format and therefore, only operates on blocked datasets. It
allows a systems programmer to do logical I/O at the system task level
without being concerned about physical I/0. The following COS system
tasks currently call TIO:

Exchange Processor (EXP)
Startup (2)
Log Manager (MSG)

Primary inputs to TIO consist of a Task Execution Table (TXT) address, a
Dataset Name Table (DNT) address, a Dataset Parameter Table (DSP)
address, and the address of the system buffer area. The logical I/0 may
be performed on either a dataset related to the system or a user task
related dataset. TIO does not allocate or deallocate any of the control
structures or buffers for the request, but assumes all control structures
and buffers are set up correctly before the request by the system task.
Figure 4-1 illustrates the linkages between the DNT, DSP and buffers.

SM-0040 4-1 C

TASK I/0 ROUTINES STP COMMON ROUTINES

DNT Buffer

DSP

Figure 4-1. Dataset table linkages

A system task calls TIO directly by performing a return jump to one of
the TIO externalized labels after setting up the proper input parameters
as delineated in section 4.1.3. After calling TIO, the calling system
task should perform the I/0 complete sensing by directly calling a
routine in CIO (CRCIO). The sensing consists of receipt of the DQM or
TOM acknowledgement through a GETREPLY call. It should be noted at this
point that TQM acknowledgements must first be converted to DOM
acknowledge format before calling CRCIO. The format of the input to
CRCIO is as follows:

0 8 16 24 32 40 48 56 63
Sl Return status
Return address DNT address
s2 (optional) | TXT offset | (JTA relative)
Partial”

Field Register Bits Description
Return Sl 0-63 Return status of request; 0 indicates
status no error. Other errors are described

in UPDATE comdeck COMEXERR.

Return S2 0-23 Optional return address returned on

address acknowledge

Partial s2 24 Partial Recall flag. If set, the
request is a partial recall from DQM
or TOM.

TXT offset s2 25-39 Relative TXT offset (from B@TXT)

SM-0040 4-2 C

STP COMMON ROUTINES TASK I/0 ROUTINES

Field Register Bits Description
DNT address S2 40-63 JTA-relative DNT address (if an STP

DNT the address is relative to B@STP)

TIO exits to the calling system task's main interrupt loop when awaiting
completion of physical I/0. This exit is performed through CIO when it
is called to perform physical sector reads and writes. TIO returns to
the calling task only upon completion of the logical 1/0 request. The
calling task cannot make another TIO request for a given dataset until
any previous logical request is complete.

The following stepchart illustrates the TIO flow:
1. sSystem Task calls TIO with proper input parameters

2. TIO blocks or deblocks the user data between the user buffer and
the system buffer.

3. If necessary, TIO calls CIO to perform a physical read/write.
CIO exits to the calling task's main interrupt loop.

The calling task is responsible for calling CRCIO in CIO upon receipt of
the DOM acknowledge for the physical sector read/write complete. CRCIO

returns to the main interrupt loop of the calling task until all sectors
have transferred.

When all physical sectors of the request have been transferred and the
block/deblock is complete, the calling task receives control immediately
after the call to TIO.

The following TIO routines are available to system tasks:

Routine Functions
$RWDP Read one or more words; partial mode (will not skip to

next end of record).

$RWDR Read one or more words; record mode (will skip to next
end of record).

$WWDP Write one or more words; partial mode (no end of
record written).

SM-0040 4-3 C

TASK 1/0 ROUTINES

Routine

$WWDS

$WWDR

$WEOF
$WEOD

$REWD

STP COMMON ROUTINES

Functions

Write one or more words with unused bits in last word;
record mode (end of record written).

Write zero or more words; record mode (end of record
written).

Write EOF; calls $WWDR if no end of record was written.
Write EOD; calls $WEOF if no end-of-file was written.

Rewind dataset; calls $WEOD if the dataset is in write
mode and no end-of-data was written.

To call a TIO routine, a task places parameters required by the routine
in A registers and executes a return jump to the routine. The routine
returns results to the caller through A registers.

khkkkhkhkkhkhkhkkhkhkkhhhhhkkhkhhhhkhhkhkhkkkhhkhkkkkkhkkkrkkkkkhhkhkk

CAUTION

These TIO routines have the same names as logically
equivalent routines in the system library, $SYSLIB.
However, the TIO routines reside in STP and the source
for library routines resides in the IOLIBPL program

library.

hhkhkhhkhkhkkkkkkhkkhkkkhhkhkkhkhkhkhkhhkkhkkkkkkkkhkkkkkkkkkkkkkkk

4.1.1 SYSTEM TABLES USED BY TIO

TIO uses the following system tables for the dataset where I/O is to be

performed:

DNT Dataset Name Table
DSP Dataset Parameter Area

Detailed information on these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

SM-0040

4-4 C

STP COMMON ROUTINES TASK I/0 ROUTINES

Dataset Name Table (DNT)

TIO uses the DNT as indicated by the F$RDC and F$WDC routines available
to users (see description of the Exchange Processor in section 8 of this
publication).

Dataset Parameter Area (DSP)

TIO uses certain DSPs located in the user field, such as those for $IN,
$0OUT, datasets read or written by BUFFER IN/OUT, and sequential COS
blocked datasets that are being closed when in write mode and not
positioned to end of data (EOD). TIO uses reserved words at the end of
the DSPs. These are saved in the JTA when a TIO routine goes into recall
for a job doing buffered 1/0.

4.1.2 ERROR PROCESSING

When TIO detects an error, a negative value is returned in AO. The
caller is responsible for processing these errors. Appropriate error
bits in the Dataset Parameter Table (DSP) error status (DPERR) indicate
which error occurred.

4.1.3 TIO LOGICAL READ ROUTINES

The TIO read routines transfer partial or full records of data from the
I/0 buffer to the task's data area. The data is placed in the data area
in full words, depending on the read request issued. Figure 4-2 provides
an overview of the logical read operation. The calling routine must
examine DPEOR, DPEOF, and DPEOD in the Dataset Parameter Table (DSP) to
determine end-of-record (EOR), end-of-file (EOF), or end-of-data (EOD)
status. If the record control word indicates unused bits in the last
word of the record, these bits are zeroed in the data area and field
DPUBC is set to the number of unused bits.

$RWDP routine

Words are transmitted from the I/0 buffer defined by the Dataset
Parameter Table (DSP) to the area beginning at the first destination word
address (FWA) until either the word count in A3 is satisfied or an EOR is
encountered. $RWDP calls $RBLK, as necessary.

SM-0040 4-5 C

TASK I/0 ROUTINES STP COMMON ROUTINES

(A2) -~

(A6) dn
(d
___—1|psP]
:j DNT
(A1
DSP
I1/0 BUFFER
CMCC
for
DQM TASK I/0

PHYSICAL I/0
disk

queue

manager

mass
storage

Figure 4-2. TIO logical read

SM-0040 4-6 Cc

STP COMMON ROUTINES TASK I/0 ROUTINES

SUBROUTINE NAME : $RWDP - Read words, partial mode
ENTRY CONDITIONS: (Al) DSP address

(A2) FWA of task's data area

(A3) Word count; if 0, no data is transferred.
(A6) DNT address
(A7) TXT address; 0 if not user task related.

RETURN CONDITIONS: (AO) Status:
<0 TIO error (block number error, null
dataset, etc.)
=0 Logical I/0 complete

(Al) DSP address

(A2) FWA of task's data area
(A3) Word count

(A4) LWA+l, end of data area
(A6) DNT address

(A7) Same value as on input

(S0) sStatus:
<0 End-of-record (EOR)
=0 Null record
>0 End-of-count

STEPFLOW: 1. Move words out of buffer; if end of move, go to 5.
2. If not at BCW, go to 5.
3. Call $RBLK.
4. Go to 1l.
5. If not record mode ($RWDR), go to 9.
6. Skip to next EOR.
7. If not at BCW, go to 9.
8. Call $RBLK.
9. Update DSP.
10. Exit.

SM-0040 4-7 C

TASK 1I/0 ROUTINES STP COMMON ROUTINES

$RWDR routine

This routine resembles $RWDP; however, following the read, the dataset is
positioned after the EOR that terminates the current record.

SUBROUTINE NAME: $RWDR - Read words, record mode
ENTRY CONDITIONS: Same as $RWDP
RETURN CONDITIONS: Same as $RWDP

STEPFLOW: Same as $RWDP

4.1.4 TIO LOGICAL WRITE ROUTINES

The TIO write routines transfer partial or full records of data from the
task's data area to the I/O buffer. The data is transferred in full words
depending on the write operation requested. Two additional write routines
provide for writing an EOF or an EOD on the dataset. Figure 4-3 provides
an overview of the logical write operations. When writing in record mode,
it is possible to provide a count of unused bits in the last word of the
record. These bits are not zeroed in the buffer, but the record control
word (RCW) indicates unused bits, and the bits are then cleared when the
record is read.

$WWDP routine

The number of words specified by the count are transmitted from the task's
data area beginning at the supplied first word address (FWA) and are
written in the i1/0 buffer defined by the Dataset Parameter Table (DSP).
$WWDP automatically calls $WBLK, as needed.
SUBROUTINE NAME: $WWDP - Write words, partial mode
ENTRY CONDITIONS: (Al) DSP address

(A2) FWA of task's data area

(A3) Word count; if 0, no data is transferred.

(A6) DNT address

(A7) TXT address; 0 if not user task related.

SM-0040 4-8 Cc

STP COMMON ROUTINES TASK 1/0 ROUTINES

(A2) =g~
T Task's
Data
(73) Area

SWEOF SWEOD

(A6) dn V
[
BUF 4 IRST data:
l’_/,,,__————-tﬁiﬁi IN
sz//' DNT
A1)
N> 0UT ——
DSP . data
LIMIT :
1/0 BUFFER
cMee
o TASK 1/0

PHYSICAL I/0

queue
manager

Figure 4-3. TIO logical write

SM-0040 4-9 Cc

TASK I/0 ROUTINES STP COMMON ROUTINES

RETURN CONDITIONS: (AQ) Status:
<0 TIO error
=0 Logical I/0O complete

(Al) DSP address

(A2) FWA of task's data area
(A3) Word count

(A4) LWA+l of data area

(A6) DNT address

(A7) Same value as on input

(S0) Status:
<0 End-of-record (EOR)
=0 Null record
>0 End-of-count

STEPFLOW: 1. If preceding function was a write, go to 3.
2. Process write after read.
3. Move words into buffer; if end of move, go to 7.
4., If not at BCW, go to 3.
5. Call $WBLK.
6. Go to 3.
7. If not record mode ($WWDR), go to 1l.
8. 1Insert EOR.
9. If not at BCW, go to 11.
10. Call $WBLK.
11. Update DSP.
12, Exit.

$WWDR routine

The $WWDR routine resembles $WWDP. However, an EOR record control word
(RCW) terminating the record is inserted in the I/O buffer in the next
word following the data. To simply write an EOR, the task issues a $WWDR
with (A3)=0.

SUBROUTINE NAME: $WWDR - Write words, record mode

ENTRY CONDITIONS: Same as $WWDP

RETURN CONDITIONS: Same as $WWDP

STEPFLOW Same as $WWDP

SM-0040 4-10 C

STP COMMON ROUTINES TASK I/0 ROUTINES

$WWDS routine

The $WWDS routine is identical to $WWDR, except that the last word of the
record contains unused bits, and the EOR record control word (RCW)
constructed contains the unused bit count.

SUBROUTINE NAME: $WWDS - Write words, record mode, with unused bit count
ENTRY CONDITIONS: Same as $WWDR, plus:

(A4) Unused bit count in the last word of the record;
a value from 0-63.

RETURN CONDITIONS: Same as $WWDR

STEPFLOW: Same as $WWDP

$WEOF routine

This routine writes an EOF record control word (RCW) preceded by an EOR
RCW, if necessary, as the next words in the I/O buffer.

SUBROUTINE NAME: $WEOF - Write end~-of-file RCW
ENTRY CONDITIONS: (Al) DSP address
(A6) DNT address
(A7) TXT address; 0 if not user task related.
RETURN CONDITIONS: (AO) Status:
<0 TIO error
=0 Logical I/0 complete

(A6) DNT address

(A7) Same value as on input

STEPFLOW : 1. If EOR not written, call $WWDR.
2. Call $WWDR to write EOF.
3. Exit.

SM-0040 4-11 C

TASK I/O ROUTINES STP COMMON ROUTINES

$WEOD routine

This routine writes an EOD record control word (RCW) preceded by an EOR
and an EOF, if necessary, as the next words in the I/O buffer. $WEOD
forces the final block of data to be written on the disk; that is, it
flushes the I/0 buffer. A $WEOD cannot be followed by a write.

SUBROUTINE NAME: $WEOD - Write end-of-data RCW
ENTRY CONDITIONS: (Al) DSP address
(A6) DNT address
(A7) TXT address; 0 if not user task related.
RETURN CONDITIONS: (AQ0) Status:
<0 TIO error
=0 Logical I/0 complete

(A6) DNT address

(A7) Same value as on input

STEPFLOW : 1. If EOF not written, call $WEOF.
2. Call $WWDR to write EOD.
3. Exit.

4.1.5 POSITIONING ROUTINE
TIO supports a single positioning routine, $REWD.
The $REWD routine positions the dataset at the beginning-of-data (BOD).
If the dataset is in write mode and no EOD has been written, $REWD calls
$WEOD.
SUBROUTINE NAME: $REWD - Rewind dataset
ENTRY CONDITIONS: (Al) DSP address
(A6) DNT address
(A7) TXT address; 0 if not user task related.
RETURN CONDITIONS: (A0) Status:

<0 TIO error
=0 Logical I/0 complete

SM-0040 4-12 C

STP COMMON ROUTINES TASK I/0 ROUTINES

(A6) DNT address

(A7) Same value as on input

STEPFLOW : l. If EOD not written, call $WEOD.
2. Reset DSP.
3. BExit.

4.1.6 BLOCK TRANSFER ROUTINES

TIO supports two block transfer routines, $RBLK and $WBLK.

$RBLK routine

$RBLK is called only by other task I/0 routines and cannot be called
directly by a task. $RBLK looks to see if the buffer is less than half
full. 1If it is, it calls CIO to initiate a disk read. CIO continues to
read as long as the user continues to empty the buffer fast enough that
CIO finds buffer space available. If the buffer is more than half full
when $RBLK is called, $RBLK verifies the next block control word (BCW)
(its block number must equal the relative sector number of the dataset)
and returns to the caller.
SUBROUTINE NAME: $RBLK - Read blocks
ENTRY CONDITIONS: (Al) DSP address

(A5) Current BCW address

(A6) DNT address

(A7) Base address of DSP buffer pointers; uses either
BA or JM address.

RETURN CONDITIONS: (A0) Status:
<0 TIO error
=0 Logical I/0 complete
(Al) DSP address
(A4) DPOUT field from DSP

(A6) DNT address

(A7) Same value as input

SM-0040 4-13 Cc

CIRCULAR I/0 ROUTINES STP COMMON ROUTINES

STEPFLOW: l. If buffer more than half empty, call CIO at entry
point RDCS.
2. Update DSP.
3. Exit.

$WBLK routine

$WBLK is called only by other task I/0 routines. $WBLK checks to see if
the buffer is more than half full. If it is, it calls CIO to initiate a
disk write and writes a block control word (BCW). CIO continues to write
as long as the user continues to fill the buffer fast enough to keep it
more than half full. If the buffer is less than half full when $WBLK is
called, $WBLK does no more than insert BCWs as needed.
SUBROUTINE NAME: $WBLK - Write blocks
ENTRY CONDITIONS: (Al) DSP address
(A5) Next BCW address
(A6) DNT address
(A7) Base address of DSP buffer pointers
RETURN CONDITIONS: (AO) Status:
<0 TIO error
=0 Logical 1I/0 complete
(Al) DSP address
(A6) DNT address

(A7) Same value as input

STEPFLOW: l. If buffer more than half full, call CIO at entry
point WDCS.
2, Update DSP.
3. Exit,.

4.2 CIRCULAR I/O ROUTINES (CIO)

Physical I/0 on a dataset uses a circular buffering technique initiated
by a set of STP common routines known as CIO (Circular Input/Output).

SM-0040 4-14 Cc

STP COMMON ROUTINES CIRCULAR I/O ROUTINES

CIO routines are directly callable from system tasks. The following
system tasks directly call CIO within COS:

Exchange Processor (EXP)
Log Manager (MSG)
Permanent Dataset Manager (PDM)

CIO calls either the Disk Queue Manager (DQM) or the Tape Queue Manager
(TOM) to perform physical sector transfers. These calls occur through
intertask communication (PUTREQ) from CIO.

These calls are issued by user programs or tasks when data is to be
transferred between the I/0O buffer defined by the DSP and mass storage.
However, these requests need not be explicitly issued. FORTRAN 1/0
routines in user programs and TIO routines in STP manage the I/O buffers
and make calls to CIO.

The I/0O buffer consists of an integral number of fixed-length sectors.
The default number of sectors is defined as installation parameter
I@DNBFZ sectors. For a COS blocked file, the first word of each sector
is a block control word. The size and location of the buffer are
normally defined when the DSP is generated. The default size is defined
by an installation parameter.

Logical I/0 on a buffer can be concurrent with physical I/0. That is, on
a read operation, the user can be extracting data from the buffer at the
same time the system is inserting data, with the user read lagging the
system read (sometimes referred to as read-ahead).

Alternatively, on a write operation, the user can be inserting data into
the buffer at the same time the system is emptying it. In this case, the
user write leads the system write (sometimes referred to as write-behind).

The buffers are managed through the IN, OUT, FIRST, and LIMIT pointers in
the DSP. Figure 4-4 illustrates the format of physical I/0. Referring
to step A, the IN pointer advances from FIRST to LIMIT as data is
inserted into the buffer.

Step B illustrates how emptying the buffer lags filling the buffer. The
OUT pointer, which is initially the same as IN, advances toward LIMIT but
always lags IN.

For writing, a buffer can become full when data is inserted faster than
it is extracted.

For reading, a buffer can become empty if data is extracted faster than
it is inserted.

SM-0040 4-15 C

CIRCULAR I/0 ROUTINES

OUT=F IRST~

- ———,——— —————

IN->

A. Filling the buffer

FIRST +

IN~>

ouT -»

LIMIT~

STP COMMON ROUTINES

P —— e e e

IN -

LIMIT >

B. Emptying the buffer

processing
flow

C. Concurrently filling
and emptying the buffer

Figure 4-4.

Physical I/0

Physical reads and writes always involve C@BLKSZ words. On a read, IN is
always at a sector boundary, but OUT, which is being modified by the
user, need not be. Conversely, on a write, OUT is always at a sector

boundary but IN need not be.

SM-0040

4-16

STP COMMON ROUTINES CIRCULAR I/0 ROUTINES

On a read operation, the physical device queue manager (DQM, TQM) and CIO
modify the IN pointer and the caller modifies the OUT pointer. If
IN=0UT, the buffer is empty if errors have occurred (DPERR#0) or if the
DSP is busy (DPBSY=1). The buffer is full when IN=OUT, the DSP is not
busy, and no errors have occurred.

% Je de e Je Je Jo Je % d Je d de e de K Kk de g K g Kok J K J K e g K K d d K d K Kk de ke Ko do Kk kK K Kk kK ok kk Kk
CAUTION

When executing on multiple CPU machines such as the
CRAY X-MP, it is possible for the operating system to
be executing in one CPU at the same time that the user
program is executing in another CPU. When both the
user and the operating system are operating on the same
DSP, a timing condition can exist which might cause the
user to believe that the buffer is full (IN=OUT and not
busy following a read) when in fact the buffer is
empty. This timing condition occurs when the user
examines IN after the operating system has set it.
During the filling of the buffer, after the user has
emptied the buffer, the user can empty the buffer
quickly enough so that the operating system has not yet
cleared the DPBSY field when the user reads it. If the
user program then enters recall believing that an I/O
operation is still active, when resumed, the buffer is
in fact empty, since no I/O request was actually
outstanding -- the previous request was being
terminated. It is the user program's responsibility to
determine whether the buffer is full, and if not, to
initiate an I/O request. All CRI products and library
routines concerned with I/0 correctly determine the
true state of the buffer, and re-issue I/0 requests
when necessary. It is the responsibility of the
developer of any non—-CRI program to make the necessary
modifications. This caution does not apply to those
programs which wait until all I/0 has completed on the
dataset before attempting to reference the IN and OUT
pointers.

khkkkkkdkhkhkhkhhkdhdkhhhhhkhkhkhkkkkhkhkhkkhkkkkkkkhkhkhkhkkkhkkhhhkkkhdk

Dataset I/0 streaming occurs when the user is able to remove data from
the buffer (on a read) quickly enough, so the buffer always has room for
the queue manager to initiate another physical I/0 request when the
previous request completes.

SM-0040 4-17 C

CIRCULAR 1/0 ROUTINES STP COMMON ROUTINES

On a write operation, the physical device queue manager and CIO modify
the OUT pointer and the caller modifies the IN pointer. If IN=OUT, the

buffer is full if errors have occurred (DPERR is not equal to 0) or if
the DSP is busy (DPBSY=1). The buffer is empty if IN=OUT, the DSP is not

busy, and no errors have occurred.

khkkkkkkkkkkkkkkhkkkkkkkhkkkkhkkkkhkkhkkhkkkkkkkkkkkkkkkk
CAUTION

When executing on multiple CPU machines such as the
CRAY X-MP, a timing condition can exist which might
cause the user to believe that the buffer is empty
(IN=0UT and not busy following a write) when in fact
the buffer is full. See the preceding caution
concerning a false buffer full condition following a
read.

kkhhkhkkhkkhkkhkhkhkkkhhkkkkkkhkhhhkhkhkdkhkkhkhkkhhkkhhkkhkkhhkhkkkkhkk

A mass storage dataset can be declared memory resident. If so, CIO
determines whether a physical I/0 request should be issued for the
dataset based on processing direction and whether the buffer is full or
empty. If the request is to write the dataset and the buffer is full
(IN=0UT), CIO issues a physical I/0 request. In this case, CIO also
clears the memory-resident indicators in the DSP and DNT. If the buffer
is not full, CIO merely returns to the caller.

If the request is to read the dataset and the buffer is empty (IN=OUT and
DPIBN=0) , CIO issues a physical request if the DNT shows that mass
storage space exists. If CIO is called to read and the buffer is not
empty, CIO returns as if a successful read had occurred. If the buffer
is empty, CIO determines whether the requested block (DPIBN) is within
the buffer (IBN*C@BLKSZ<LIMIT-FIRST) and whether the block exists
(IBN<DNLBN) . If either condition is not true, CIO clears the memory
resident flags and the read proceeds as for a null dataset. If both
conditions are true, CIO:

l. Sets DPIBN=DNLBN,

2, Sets DPOBN=requested block (old DPIBN),

3. Sets IN and OUT to point to the correct block boundaries within
the buffer, and

4, Sets the EOI bit in DSP. Any 1/0 suspend calls made to the Job
Scheduler are canceled before returning.

SM-0040 4-18 C

STP COMMON ROUTINES CIRCULAR I/0 ROUTINES

If mass storage space is allocated and the dataset size from the Dataset
Allocation Table (DAT) is greater than the buffer size, CIO clears the
memory-resident indicators and the read proceeds normally.

4.2.1 CIO ENTRY POINTS

Three main entry points within CIO are externalized for direct linkage
between system tasks and the CIO routines:

CPROC - Main read/write entry point to CIO
CTRCL - Synchronous System Task dataset recall
CRCIO - Asynchronous System Task dataset recall

A system task calls CPROC to initiate I/O on a dataset. The type of
recall the system task performs depends on whether the system task has no
other processing to do while the I/0 is in progress (synchronous), or
whether the system task has other processing to do while the I/O is in
progress (asynchronous).

Calls to CTRCL can suspend the calling system task until the DQM/TOM
acknowledge has been received.

Calls to CRCIO assume the initiating system task has already received the

DOM/TQM acknowledge and only wants to perform common acknowledge
Processing.

4,2.2 CIO MAIN READ/WRITE ENTRY

The following describés the entry and exit parameters for the main entry
point into CIO:

ENTRY CONDITIONS: (Al) TXT address of the task entry (if user task)
0 (if system task)

(A2) DNT address
(A3) DSP address

(A7) Calling system task stack address-XXXSTK. This
address must also be stored in field DNSTK in
the DNT before the call.

(S1) 0 for Read
1 for Write

R CPROC

SM-0040 4-19 C

CIRCULAR 1I/0 ROUTINES STP COMMON ROUTINES
RETURN CONDITIONS: (Al) TXT address of the task entry (if user task)
0 (if system task)

(A2) DNT address

(A3) DSP address

(A7) Stack address
Control returns immediately to the caller.
The field DNRCL should be set if the caller wishes to be I/0 suspended
when the I/0O is initiated and I/0 resumed when the I/0 is done. This
field is set automatically by CIO in CTRCL. The equivalent of this field

within CIO is DNCRC which gets set whenever a user task is to be I/0
suspended and cleared when the task is I/O resumed.

4.2.3 CIO SYNCHRONOUS RECALL

The following describes the entry and exit parameters for the synchronous
entry point into CIO:

ENTRY CONDITIONS: (Al) TXT address of the task entry (if user task)
0 (if system task)

A2 = DNT address

A3 = DSP address

A7 = Calling system stack address-XXXSTK. This
address must also be stored in field DNSTK in
the DNT before the call.

R CTRCL

RETURN CONDITIONS: (A0) O if no error, nonzero if error

(Al) TXT address of the task entry (if user task)
0 (if system task)

(A2) DNT address
(A3) DSP address
(A7) Stack address

(S0) 0 if no error, nonzero if error

SM-0040 4-20 C

STP COMMON ROUTINES CIRCULAR I/0 ROUTINES

Control returns to the caller when the entire request has been completed.
The field DNRCL should be set if the caller wishes to be I/0 suspended
when the I/0 is initiated and I/0 resumed when the I/0 is done. This
field is set automatically by CIO in CTRCL. The equivalent of this field

within CIO is DNCRC which is set whenever a user task is to be I/O
suspended and cleared when the task is I/0 resumed.

4.2.4 CIO ASYNCHRONOUS RECALL

The following describes the entry and exit parameters for the
asynchronous entry point into CIO:

ENTRY CONDITIONS: (Al) TXT address of the task entry (if user task),
0 (if system task)

(A2) DNT address

(A3) DSP address

(A7) Calling system stack address—XXXSTK. This
address must also be stored in field DNSTK in

the DNT before the call.

(Sl) DOM/TOM reply word 0. See section 4.1 for the
reply word format.

(S2) DQEM/TQM reply word 1
R CRCIO
RETURN CONDITIONS: (AO) O if no error, nonzero if error

(Al) TXT address of the task entry (if user task),
0 (if system task)

(A2) DNT address

(A3) DSP address

(A7) sStack address

(s0) Zero if no error, nonzero if error

Control returns to the caller at its main interrupt loop.

SM-0040 4-21 (o

MEMORY ALLOCATION/DEALLOCATION ROUTINES STP COMMON ROUTINES

4.3 MEMORY ALLOCATION/DEALLOCATION ROUTINES

The MEMAL, MEMDE, and PMEMDE common subroutines provide for allocation
and deallocation of variable size memory areas for temporary use by a
task.

Allocation and deallocation are from memory pools. The number and size
of memory pools are determined when the operating system is generated.

As illustrated in figure 4-5, the Pool Table and the header and trailer
words are used for controlling memory allocation and deallocation. The
Pool Table consists of a header word and one word for each memory pool in
the system. The Pool Table header defines the maximum valid pool

number. The word associated with the memory pool provides the base
address and the size of the memory pool.

Pool Table

HEADER
Pool No. 1

! | Memory Pool No. 1

Pool No. n

Memory Pool No. n

Figure 4-5. Memory allocation tables

SM-0040 4-22 C

STP COMMON ROUTINES MEMORY ALLOCATION/DEALLOCATION ROUTINES

Each area of a memory pool is surrounded by a header word and a trailer

word. The header and trailer words are identical and indicate the status
(available or unavailable) and the size of the area. The number and size

of the areas change dynamically as tasks obtain words from or return
words to a pool.

4,3.1 MEMORY ALLOCATION - MEMAL

MEMAL is an STP common subroutine that allocates a variable size memory
area for temporary use by a task.

Memory is allocated from a memory pool. The caller provides MEMAL with
the pool number from which allocation is to occur and the number of words
desired. The number of words must be at least one and not more than the
pool size less 2. MEMAL allocates two words more than requested; these
are used by MEMAL as header and trailer words for the area to be
allocated. On return to the caller, MEMAL provides a status and, if
memory is allocated, the address of the first usable word. The allocated
area is zeroed.

ENTRY CONDITIONS: (A6) Number of memory pool from which to allocate
(A7) Number of words desired

RETURN CONDITIONS: (A6) Status:
0 Good status

1 Invalid memory pool number
2 Invalid number of words requested
3 Memory not available

(A7) Address of first usable word of memory to be
allocated; meaningless if A6#0.

4.3.2 MEMORY DEALLOCATION - MEMDE

MEMDE is an STP common subroutine that returns memory to its memory pool
for reallocation.

In addition to marking the memory as available for allocation, MEMDE

combines the area with any adjacent available areas, thereby maintaining
the largest possible size for allocation.

SM-0040 4-23 c

MEMORY ALLOCATION/DEALLOCATION ROUTINES STP COMMON ROUTINES

The caller must provide MEMDE with the memory pool number to which memory
should be returned and the address of the first usable word of the memory
to be deallocated.

ENTRY CONDITIONS: (A6) Memory pool number

(A7) Address of first usable word of memory to be
deallocated

RETURN CONDITIONS: (A6) Status:

Good return

Invalid address

Area not currently allocated
Invalid memory pool number

w N o

(A7) Address of memory released; meaningful only if
status is 0.

4,3.3 PARTIAL MEMORY DEALLOCATION - PMEMDE

PMEMDE is an STP common subroutine that returns a portion of memory to
its memory pool for reallocation. The portion being returned can be at
either end of the allocated space. Memory cannot be returned to the pool
from the middle of the allocated space. The freed area is combined with
any adjacent available space.

ENTRY CONDITIONS: (A6) Memory pool number
(A7) Address of first usable word of allocated area

(A5) Count of words to free. If (A5) is negative,
ABS (A5) words are released from the beginning
of the allocated space. If (A5) is positive,
(A5) words are released from the end of the
allocated space. :

RETURN CONDITIONS: None The requested number of words have been made
available for other use.

The minimum request to PMEMDE is to release three words. A request to
deallocate fewer than three words is ignored without comment unless the
request would result in the deallocation of the entire allocated area.
If the request is greater than or equal to the size of the allocated
area, the entire area is released.

SM-0040 4-24 Cc

STP COMMON ROUTINES CHAINING/UNCHAINING SUBROUTINES

4.4 CHAINING/UNCHAINING SUBROUTINES

The CHAIN and UNCHAIN common subroutines provide tasks with a means of
linking data. Bach piece of data is termed an item and consists of two
words of header information followed by the information being added to
the chain. As an example, an item can be the input and output registers
used for intertask communications. By chaining registers, tasks need not
be limited to two words of input and two words of output. However, the
CHAIN/UNCHAIN subroutines are not restricted to use for intertask
communications; the amount of information in an item and its type is
defined entirely by the task using the subroutines.

Chaining is established through a chain control word and the first two
words of each item in the chain. Figure 4-6 illustrates a chain of items.

Pointers in the chain control word identify the first and last items on
the chain. The chain control word also contains space for the maximum
number of items that exist on the chain and a count of the number of
items on the chain. However, because the chain control word reflects
only a portion of the entire chain, the maintenance of the count is the
responsibility of the calling task.

The two words used in the chain item provide a forward link to the next

item on the chain, a backward link to the preceding item on the chain,
and the address of the chain control word where this item is linked.

4.4.1 CHAIN ITEM - CHAIN

CHAIN is an STP common subroutine that places an item in a queue
(chain) . CHAIN always adds items at the end of the existing queue.
Therefore, if a single destination accepts multiple priorities, creation
of a separate queue for each priority is necessary.

The caller must provide CHAIN with the address of the chain control word
and the address of the chain item.

ENTRY CONDITIONS: (A6) Address of chain control word
(A7) Address of the item to be chained
RETURN CONDITIONS: (A6) Unchanged from input

(A7) Unchanged from input

SM-0040 4-25 C

STP COMMON ROUTINES

CHAINING/UNCHAINING SUBROUTINES

= =] = [
O— L= O=— L= K= kL Z
<L [TO <L IO <L O
<l B1E) N koo 0 oo

CHAIN CONTROL
| heap 4 [TAIL/
RD]
/
RD
/'
RD

—~ o —

Chain tables

4-26

Figure 4-6.

SM-0040

STP COMMON ROUTINES INTERACTIVE BUFFER MANAGEMENT

4.4.2 UNCHAIN ITEM - UNCHAIN

UNCHAIN is an STP common subroutine that removes an item from a queue.
The item to be removed can be anywhere in the queue.

Although the chain control word contains a count of the items in the
queue, UNCHAIN does not adjust this count; this is the responsibility of
the caller.

The caller must provide UNCHAIN with the address of the item to be
unchained. UNCHAIN determines the appropriate chain control word from
the item.

ENTRY CONDITIONS: (A7) Address of item to be unchained

RETURN CONDITIONS: (A7) Unchanged from input

4.5 INTERACTIVE COMMUNICATION BUFFER MANAGEMENT ROUTINES

The interactive communication buffer management routines are a set of
common routines that operate on the Interactive Buffer Table (IBT) and
queue control words in the Active User Table (AUT). They allocate and
deallocate buffer space, queue and dequeue messages, and transfer
messages to and from the buffer area. To ensure proper management of the
buffers, these routines allocate and deallocate buffers in STP in
nonpreemptable mode.

The interactive communication buffer area is in the upper range of
memory, and the IBT is constructed so that, in the future, the buffer can
be expanded, contracted, or relocated as required by dynamic memory
management. Features of the IBT and the management routines that
minimize overhead in providing dynamic memory management of this area are
the interactive buffer base address, the use of buffer identifiers, and
inverting entry allocation (the highest address buffer is allocated
first). Furthermore, the bit map in the IBT minimizes overhead in
allocating and deallocating buffer space. Buffer area fragmentation is
prevented by allocating memory in small, fixed-size blocks, which can be
linked together.

The interactive buffer management routines manipulate a queue control
word with the following structure:

0 16 32 48 63
QCOUNT \///7////7//7////1 QTAIL | QHEAD

SM-0040 4-27 C

INTERACTIVE BUFFER MANAGEMENT STP COMMON ROUTINES

Field Bits Description

QCOUNT 0-15 Count of entries on the queue

QTAIL 32-47 Buffer identifier of the last buffer on the queue
QHEAD 48-63 Buffer identifier of the first buffer on the queue

4.5.1 ENQMSG ROUTINE

This routine allocates buffer space, moves the message into the buffer,
and queues the buffer on the desired queue.

ENTRY CONDITIONS: (A0) Enqueue type:
=0 Queue at tail
#0 Queue at head
(A4) Queue control word address
(A5) Message length
(A6) Message address
RETURN CONDITIONS: (AO) Operation status:
=0 Successful

#0 Inadequate buffer space

Registers Al through A4, A7, and S1 through S5 are saved and restored.

4.5.2 NXTMSG ROUTINE

NXTMSG moves the next message in the queue to the record area.

ENTRY CONDITIONS: (AO) Type of move (presently only block is supported)
(A4) OQueue control word address
(A5) Maximum move size
(A6) Move address

RETURN CONDITIONS: (A0) Operation status:

=0 Successful
#0 No message or message too long

SM-0040 4-28 C

STP COMMON ROUTINES PASSWORD ENCRYPTION

(A4) OQueue control word address

(A5) Buffer ID

(A6) Address within record area where next buffer can
be moved

Registers Al through A4, A7, and S1 through S5 are saved and restored.

4.5.3 FREEMSG ROUTINE

This routine removes a message from the queue and releases the buffer
space.

ENTRY CONDITIONS: (A4) OQueue control word address
(A5) Buffer ID
RETURN CONDITIONS: (AO) Operation status:
=0 Successful

#0 Buffer not on queue

Registers Al through A5, A7, and S1 through S5 are saved and restored.

4.6 PASSWORD ENCRYPTION

PWENC is a common routine used to encrypt passwords. The parameters are
passed through the Encryption Parameter Table (ETT), which is described
in publication SM-0045, the COS Table Descriptions Internal Reference
Manual. The table parameters currently used are:

® The password to encrypt

® The ordinal of the keyword to use in the encryption
The supplied encryption algorithm contains three keywords; any one may be
specified for use in the encryption. PWENC replaces the password to be
encrypted by its encrypted version in the ETT.

SUBROUTINE NAME: PWENC - Password encryption

ENTRY CONDITIONS: (S1) User ETT address

SM-0040 4-29 Cc

SYSTEM BUFFER MANAGEMENT STP COMMON ROUTINES
EXIT CONDITIONS: Encrypted passwords replace unencrypted passwords in
ETT
(s0) Status:

=0 Normal return
<0 Invalid keyword index specified

4,7 SYSTEM BUFFER MANAGEMENT

The System Buffer or SYSBUF is an area of memory between PDM tables and
user memory. This places the buffer area very high in Central Memory.
This buffer zone is used by SCP and STG for COS/front-end communication
buffers. This is the same relative location of memory that the
communication buffers were allocated from in pre-1.12 releases of COS.

The original buffer is allocated by JSH and is IQ@SYSBUF words. As more
space is needed, the buffer manager, a common subroutine called BFMAN,
requests JSH for I@BFINCR words to be added to the System Buffer. The
maximum size of the buffer area cannot exceed all of user memory because
STP cannot be rolled. If there is space that is unused (2*I1@BFDECR words
or more), BFMAN requests JSH to deallocate I@BFDECR words of memory from
the available buffer pool. Memory is added or removed from the end of
the buffer adjacent to user space, which means that availability of user
memory space is affected by fluctuations in communication load. Figure
4-7 shows these memory usage states.

The allocation and deallocation of buffers within the System Buffer is
handled by the BFMAN common subroutine. There are two types of
allocation requests:

® A request for space
® A reallocation

In the second form of allocation request, an existing buffer is traded
for another buffer, allowing BFMAN to attempt to pack buffers together.

Allocation is always done on a first-fit basis, starting at the highest
addresses to force buffer space to be at the user end of the System
Buffer. If no buffer space is available, the request is rejected and a
request for more memory is posted to JSH. The requester should wait and
then renew the request. SCP and STG reissue such requests after an
exchange of messages with the front end. This message exchange allows
enough time for JSH to allocate the memory, and ensures that there are no
front-end timeouts while SCP or STG are waiting for memory. However,

SM-0040 4-30 C

STP COMMON ROUTINES SYSTEM BUFFER MANAGEMENT

PDM etc.
SYSBUF
U
S
E
R
STP
EXEC
INCREMENT DECREMENT
STATE STATE
PDM PDM
SYSBUF SYSBUF New SYSBUF SYSBUF SYSBUF ﬁius
after after one some number
2 allocate I@BFINCR allocate I@BFDECR of increments
request
requests I@BFINCR
USER
USER
STP STP
EXEC EXEC

Figure 4-7. System Buffer memory management

SM-0040 4-31 C

SYSTEM BUFFER MANAGEMENT STP COMMON ROUTINES

suspensions of a transfer or initially slow transfers may result. If SCP
or STG is reallocating a buffer, then BFMAN should be able to at least
reallocate the same buffer.

The processing of a deallocation request is a simpler process. The space
is freed and the BFMAN routine attempts to combine the free space with
adjacent free buffers.

4.7.1 SYSTEM BUFFER INITIALIZATION

The BFMAN common subroutine uses control words within the System Buffer
to manage the individual buffers. A control word precedes and terminates
each buffer within the System Buffer, as shown in figure 4-8.

PDM etc.
SYSBUF
CONTROL WORD
USER BUFFER
CONTROL WORD
STP and ACT
EXEC |
! 7

0 1 16 40 63

Figure 4-8. System Buffer control words

SM-0040 4-32 C

STP COMMON ROUTINES SYSTEM BUFFER MANAGEMENT

Each control word has three fields.

® An Activity flag (ACT) indicating that the buffer above the
control word, with a higher address, is allocated and active.

e The higher pointer (HP), which points to the next control word
having an address greater than the current control word.

e The lower pointer (LP), which points to the next control word
having an address lower than the current control word.

The high and low pointers provide links through the buffer chain that the
buffer manager traverses when looking for allocatable space.

4.7.2 SYSTEM BUFFER INTERNAL MANAGEMENT

The BFMAN routine initializes the System Buffer by putting control words
in the first and last words of the buffer, and setting the highest
address in the variable BUFMAX and lowest address in BUFMIN. As shown in
figure 4-9, the variables BUFMAX and BUFMIN provide pointers to the
buffer limits.

In the just initialized System Buffer, the control word at BUFMAX has the
Active flag set. This flag is a secondary indicator of a lack of buffer
space above that point. The higher pointer is 0, indicating no control
word above BUFMAX. The lower pointer points to the control word at
BUFMIN where the only other control word has been placed. The control
word at BUFMIN does not have the Active flag set indicating that the
space between that control word and the control word pointed to by the
higher pointer, pointing to BUFMAX, is available for allocation. The
lower pointer is 0, indicating no space exists beyond this control word.

4.7.3 BUFFER ALLOCATION

In the allocation of a buffer, the BFMAN routine searches the buffer
space for the first available space at least large enough for the
requested buffer. The search starts at the highest memory address,
forcing buffers to be allocated as high in the buffer zone as possible.
If a perfect fit is found, then only the Active flag need be set and the
request is complete. If a perfect fit is not available, a new control
word is created.

SM-0040 4-33 C

SYSTEM BUFFER MANAGEMENT

STP COMMON ROUTINES

«—— BUFMAX

BUFMIN

ACT
1\ 77 Lp
?r?(')rt set) 0////// HP 0
Figure 4-9. 1Initialized System Buffer

The following method is used for allocations requiring creation of a

control word.

1. Subtract the requested buffer size plus one from the address of the
control word above the available space, giving the address of the new

control word, NCW.

2. Subtract the request buffer size from the higher pointer of the
control word below the available space (HPB), creating a new HPB, or

HPBl.

3. Place the old HPB in the new control word higher pointer. Place HPBl
in the control word below the space, that is, in the lower control

word (LCW).

4, Place the old LPA in the NCW.

SM-0040

4-34

STP COMMON ROUTINES

SYSTEM BUFFER MANAGEMENT

5. Place the address of the new control word (NCW), in the lower pointer
of the control word above the space, that is, in the higher control

word (HCW).

6. Set the Active flag in the NCW.

Figure 4-10 illustrates System Buffer space allocation.

[

% HP LPA

\

[=)

% HPB LP

Figure 4-10.

4.7.4 SYSTEM BUFFER DEALLOCATION

HIGHER CONTROL
WORD

NEW CONTROL

WORD <

LOWER

CONTROL WORD

Z/ IEE.
\

NEW BUFFER
7/% HPB | LPA
V/A HPB; | LP

System Buffer space allocation

The deallocation of buffers within the System Buffer can be separated

into two cases:

e Deallocation that does not allow merging of either of the adjacent
buffers or spaces with the area to be deallocated

® Deallocation that does allow at least one of the adjacent areas to

be joined

SM-0040

SYSTEM BUFFER MANAGEMENT STP COMMON ROUTINES

Deallocation that does not allow the merger consists of clearing the
Active flag in the control word below the buffer. The deallocation with
merge is more complicated. The following procedure shows the processing
necessary to merge both adjacent buffers. Deallocation where only one
adjacent buffer is inactive is only slightly different.

1. Take the control word's higher pointer and pick up the HCW,

2. Verify that the HCW's lower pointer does point to the original
control word (OCW).

3. If the Active flag is not set in the HCW, use that pointer for the
OCW higher pointer.

4, Take the OCW's lower pointer and pick up the LCW.
5. Verify that the LCW's higher pointer points to the OCW.

6. If the Active flag is not set, then replace the OCW's lower pointer
with the LCW's lower pointer.

7. Place the LCW's address in the HCW's lower pointer.
8. Place the OCW at the LCW's address.

Figure 4-11 illustrates System Buffer space deallocation.

4.7.5 SYSTEM BUFFER PERFORMANCE CONSIDERATIONS

Use of memory within the System Buffer is the primary performance
consideration. Optimum use is achieved when all allocated buffers are
packed in the upper end (higher addresses) of the System Buffer. The
lower end of the System Buffer should contain enough space for frequent
bursts of front-end activity but should not have space that is unused for
long periods.

Achieving optimum use requires the following:
e Buffers must be packed; that is, holes must be squeezed out.

® Space at the end of the buffer area must be monitored so that
unused space can be returned to the user area of memory.

SM-0040 4-36 C

STP COMMON ROUTINES SYSTEM BUFFER MANAGEMENT

The first-fit method of allocation is one means of achieving buffer
packing. The other is assuring that buffers do not stay allocated for
long periods. The tasks SCP and STG reallocate buffer space after each
use. In the case of output to a front end after a segment buffer is
transmitted, the BFMAN routine is called to reallocate the buffer. The
worst case of reallocation is that the same buffer is reallocated. The
only cost of reallocation is CPU overhead.

AFV/// HP LP AFV/A HP | LP
N Z 7] Hp, | Lp, |HCW %
Z IEABEAC Z

N\

HP, LPg

C
C
.
(e

///A HP LP AF

Figure 4-11. System buffer space deallocation

>

HP LP

N

SM-0040 4-37 C

SYSTEM BUFFER MANAGEMENT STP COMMON ROUTINES

The second consideration is monitoring space at the end of the System
Buffer. Having enough extra space to efficiently buffer data can be
balanced against a need for keeping unused space at a minimum, thus
increasing the amount of user memory. This monitoring is accomplished,
in part, by setting a timer if the size of the space passes some
threshold. The space is returned if it stays over the threshold size
until the timer expires. The other part of this balance ensures that the
buffer allocation increment and decrement are set to values that avoid
constant requests to JSH.

SM-0040 4-38 C

COS STARTUP

System startup is the process of loading the Cray Operating System (COS)
into Central Memory, beginning execution, and generating or recovering
tables for the operating system. The operating system to be started can
be on a user permanent dataset. If it is on a user-permanent dataset,
then a 2-pass startup is performed, and the parameter file must specify a
2-pass startup. There are three ways to start the system:

e Install
® Deadstart

® Restart

Most of COS Startup resides in the System Task Processor (STP) so that it
can conveniently access system tables and facilities. However, some COS
Startup logic resides in the station software of the station from which
startup occurs (such as the I/0O Subsystem station) and in EXEC. Some
tables, such as the Permanent Dataset Information Table, are initialized
when STP is assembled.

5.1 INSTALL OPTION

With Install, COS is started as if for the first time. All CRAY-1l or
CRAY X-MP mass storage is assumed to be vacant, except for areas reserved
for Cray Research customer engineers and for the Engineering Flaw Table
(EFT). Briefly, when the Install option is selected, the Startup task:

® Searches for the EFTs, if they exist

® Writes a device label (DVL) on each mass storage unit

® Accumulates flaw information. Flaw information can originate from
the parameter file, from flaws assembled into COS, or from the
Engineering Flaw Table (EFT) which is constructed by engineering
diagnostics and written to sector 17 of the first track on the
device with a usable sector 17.

® Processes mass storage groups. Mass storage groups are described
in section 5.2,

e Creates the Dataset Catalog (DSC) on the master device

SM~-0040 5-1 C

INSTALL OPTION COS STARTUP

® Sets up the DSC and tables in memory, indicating that the only

existing dataset, permanent or temporary, is the one containing
the DSC itself

® Reserves space on the master device for system dumps for use if
the system fails

® Reserves space for the three datasets maintained by an IOS

® Allocates disk space to contain copies of the system overlay
dataset

e Initializes the Rolled Job Index dataset (RJI) and enters it into
the DSC

e Optionally creates the Dataset Catalog Extension Table (DXT) on
the master device (or on some other device according to
installation parameter) and enters it in the DSC

® Initializes job class structure and system directory datasets and
enters them into the DSC

® Allocates disk space for volatile device backup dataset

When Install writes a device label on each mass storage unit, it uses the
first track on each mass storage device that the Device Reservation Table
(DRT) identifies as good for the device label. After writing the device
label, Install reads it back to verify it. If the verification fails,
the track is noted in the DRT as being bad, and the next available track
is used.

The device label on the master device points to the DSC by containing the
Device Allocation Table (DAT) for the DSC. The master device label also
contains a pointer to the first track of an area allocated by Install to
contain system dumps.

The Install procedure accumulates flaw information for a device during
startup. (Startup flaws are described in detail in section 5.5.) At the
end of the Install process, Install packs this information into the
device label created in memory and writes the label to the disk. Install
acquires flaw information from the following: the previously existing
label, if one exists; the Engineering Flaw Table, if one exists;
information assembled into the Disk Reservation Table entry for the
device; and parameter file directives. Whatever Install writes to disk
is validated; any flaws are noted in the DRT and the device label.

SM-0040 5-2 Cc

COS STARTUP DEADSTART OPTION

Install creates the Dataset Catalog (DSC) in blocked format on the master
device while logging any disk errors found in the Device Reservation
Table (DRT) and in the flaw table in the DVL image being built in

memory. Install initializes the DSC to all zeros, except for block and
record control words.

Install optionally creates the Dataset Catalog Extension (DXT) in a
manner similar to the DSC. It can be created during Install or
Deadstart, and is fully described in section 5.2 (Deadstart option).

When Install reserves space on the master device for system dumps for use
if the system fails, it zeroes the reserved area. Any flaws are entered
into the DRT and flaw tables. The amount of space allocated for system
dumps is determined from the value of the installation parameter
I@DMPSIZ. Install writes the list of allocation indexes allocated to the
system dump to the first sector of the first track in the reserved area,
so that Deadstart and Restart can use it.

If an I/0 Subsystem (IOS) with at least one disk is part of the
installation, Install reserves and zeroes space for the three directories
maintained by an IOS. The amount of space allocated for each directory
is determined by the installation parameters IQIOPCOS, I@IOPPRM, and
I@IOPIOP. 1Install also writes the allocation index list to sector 0 of
each dataset.

In general, I/0 on a dataset requires a buffer, Dataset Parameter Table
(DSP) , Dataset Name Table (DNT), and Dataset Allocation Table (DAT).
Install uses separate buffers and DSPs of its own when working with
device labels and the DSC. At assembly of STP, space for the DNT and DAT
is set aside for post-Install use by Startup. However, Install must
complete initialization of the DNT and the DAT.

The default job class structure is in effect after an Install.

A 2-pass startup is meaningless during an Install. If one is requested,
Startup halts and issues a message to the operator in the S registers
explaining why it has halted.

Install allocates space for the backup datasets for all volatile devices,

then saves these datasets as $dname, where dname is the corresponding
device name.

5.2 DEADSTART OPTION

For a Deadstart, COS is started as if after a normal system shutdown.
That is, permanent datasets mentioned in the DSC are preserved through

SM-0040 5-3 C

DEADSTART OPTION COS STARTUP

proper setup of tables in memory. However, input or output queues
mentioned in the Dataset Catalog are deleted.

Briefly, when the Deadstart option is selected, the Startup task:
® Searches for the Engineering Flaw Table (EFT)
e Finds device label (DVL) on each mass storage unit
® Preserves flaw information
® Processes mass storage groups

e If master device, reserves DSC and the disk space occupied by
system dump; initializes DNT and DAT for the DSC.

® Preserves allocated space for the three datasets maintained by I/0
Subsystem

® Attempts to locate and reserve all disk space allocated for system
overlay dataset copies

® Restores all data on volatile devices from the backup datasets as
directed by the parameter file

® Deletes all input and output datasets and reserves all other
permanent datasets

® Either creates the DXT or recovers and validates the DXT if one
already exists

e Establishes Rolled Job Index in memory

e Copies system dump, if one exists, from the preallocated area to
available space and saves the copy as a permanent dataset

® For volatile devices, either allocates and saves backup datasets,
or invalidates information contained on the previously existing
datasets

5.2.1 DEVICE SPACE RESERVATION

Deadstart updates the Device Reservation Table in memory to reflect the
tracks reserved by datasets mentioned in the Dataset Catalog and tracks

mentioned in the flaw portion of the device label, the Engineering Flaw
Table (EFT) on the disk, if one exists, and parameter file directives.

SM-0040 5-4 Cc

COS STARTUP DEADSTART OPTION

Deadstart rewrites the label on the disk at the end of Deadstart, if any
flaws other than those already mentioned in the device label are added by

the EFT or the parameter file, or are specified to be deleted by the
parameter file.

Deadstart attempts to locate the disk area preallocated for the system
dump. If this area can be found, Deadstart reserves the tracks in the
Device Reservation Table. If a dump that has not been copied exists in
the preallocated area, Deadstart copies the dump to a new dataset and
requests the Permanent Dataset Manager to save the copy so that it can be
accessed by user jobs following completion of Startup. If no new dump
exists, the disk space remains reserved, but the preallocated area is not
copied. If the preallocated area cannot be found, no space is reserved
in the Device Reservation Table.

5.2.2 MASS STORAGE GROUPS

The installation can choose to group several physical mass storage
devices together as one logical device. The logical device is called a
stripe group. When device striping is used, Startup sets up the
Equipment Table (EQT) entries to reflect all such groups.

Groups are identified by a group identifier contained in the device
label. Devices can be added to or deleted from the group and new groups
can be defined during Startup by an entry in the parameter file or by an
operator entry during configuration change processing.

The logical device corresponding to a stripe group must be present in the
EQT or added during configuration change processing and must have the
device name STRIPE-n. # is a decimal digit in the range 1-9. Up to

9 stripe groups can be defined; each stripe group can contain up to 7
physical devices. Device Reservation Table (DRT) space must also be
available the logical device.

Following processing of all groups, Startup sets all physical members of
a group to indicate the device is down and all datasets are released.
Startup discards all permanent datasets residing on a physical member of
a group. Permanent datasets residing on the logical group device are
retained unless the device is configured as released. If permanent
datasets reside on a group device, devices can not be added to or deleted
from the group.

When a group member is identified, all flaw information for that member
is merged into the DRT entry for the group device. Thus a flawed track

on one physical device causes that track to be unused on all devices that
are members of the same group.

SM-0040 5-5 C

DEADSTART OPTION COS STARTUP

See the COS Operational Procedures Reference Manual, publication SM-0043,
for a description of how to define a group, add a device to a group, or
delete a device from a group.

The master device cannot be part of a mass storage group.

5.2.3 DATASET CATALOG EXTENSION

Deadstart locates or creates the Dataset Catalog Extension Table (DXT).
The DXT is a system dataset similar to the DSC itself and serves as a
repository for information that will not fit into the DSC conveniently.

The DXT is a permanent dataset with a permanent dataset name of
$DSC~-EXTENSION and edition number of 4095. Startup ensures that this
dataset belongs to the system and prohibits unauthorized access. An
exception is made for utilities such as PDSDUMP and AUDIT.

The DXT is created during an Install or a Deadstart. Once created,
subsequent Deadstarts or Restarts recover the DXT dataset during the
normal DSC recovery and validate the DXT information. When the DXT is
created, it is, by default, placed onto the master device; overflow to
another device is not allowed. An installation parameter can be changed
allowing both a nonmaster device to be selected and/or overflow to
occur. Contiguous disk allocation for the DXT is not guaranteed, even
though it can be requested.f A site might wish to free disk space on
the selected device through PDSDUMP and PDSLOAD before a Deadstart.
Although contiguous disk space for the DXT is not required, it enhances
the AUDIT,PERMIT and/or AUDIT,TEXT,NOTES and/or AUDIT,B=bdn performance
significantly.

An installation parameter controls the size of the DXT. The parameter
can be altered during Startup through a Startup parameter file

directive., Startup can be requested to create the DXT or to increase the
size of the DXT.

To provide high performance in allocating entries in the DXT and to
minimize the impact of introducing another element in the structure of
the current permanent dataset directory, a memory resident allocation
table is maintained in the upper end of memory.

t When contiguous space is requested, Startup ensures that the
contiguous space is available. However, even if the requested
contiguous space is available, there is no guarantee that DOM will
allocate it; DQM currently does not guarantee contiguous allocation.

If contiguous space is requested but unavailable, a fatal error occurs.

SM-0040 5-6 Cc

COS STARTUP DEADSTART OPTION

The public access mode and access tracking attributes are placed in the
main DSC entry. This placement is primarily done to reduce the I/O
requirements for the default use of AUDIT. All other attributes
(permits, tracking, text, and notes) are placed in the DXT. Each
permanent dataset has its own chain of DXT entries which significantly
reduces the search time required when interrogating permit information at
the expense of increased disk space needed for the DXT. The DXT entries
are designed to be installation friendly; that is, additional DXT entry
types can be defined by a site without concerning themselves with future
changes that might be made by CRI.

Any inconsistencies between the DSC and DXT entries for a given permanent
dataset encountered during Startup cause the DXT error flag to be set in
the main DSC entry for the dataset and cause a message to be posted to
both the System Log and the operator.

5.2.4 OTHER STARTUP PROCESSING

If an I/O0 Subsystem (I0S) with at least one disk is part of the
installation and space has been allocated for the three datasets
maintained by the IOS, the space is preserved. If the space has not been
allocated, it is allocated following permanent dataset and rolled job
recovery.

Before system dump processing, Deadstart calls the RRJ routine (Recover
Rolled Jobs) to set up the Rolled Job Index. Deadstart attempts to
access the Rolled Job Index dataset. If the dataset can be accessed, all
entries other than entry 0 are cleared (since I/0 datasets are not
recovered by a Deadstart) and the dataset is rewritten. If the dataset
cannot be accessed, Deadstart creates and initializes a new edition.

Deadstart also attempts to locate the system overlay area. If it can be
found, Deadstart reserves tracks for it in the DRT. If not found, it is
allocated.

Deadstart scans the Dataset Catalog for input and output datasets,
deleting all such datasets to create an idle system. Permanent datasets
are preserved.

The buffers and Dataset Parameter Tables (DSPs) for the Dataset Catalog
and its extension are assembled into STP.

Deadstart places into effect the job class structure that was written to
the permanent dataset named in the Deadstart parameter file. If no

dataset is named, or if it cannot be accessed or read, the default job
class structure goes into effect.

SM-0040 5-7 C

RESTART OPTION COS STARTUP

If a 2-pass Deadstart is requested, Deadstart locates the specified
system dataset and reads it into memory on pass 1. Once the system is
read, the system and the parameter file are moved down over the current
system, and a normal startup is initiated.

Deadstart attempts, for all volatile devices, to access the backup
dataset, $dname, where dname is the corresponding device name. If
such a dataset exists, the data contained on it is marked invalid.
Otherwise, Deadstart allocates space and saves the dataset.

5.3 RESTART OPTION

Restart is an operator option after a system interruption when recovery
of input and output queues and possibly the jobs in process is desirable.

Briefly, when the Restart option is selected, the Startup task:
® Searches for the Engineering Flaw Table (EFT)
® Finds device label (DVL) on each mass storage unit
® Reserves flaw information

® Processes mass storage groups. Mass storage groups are described
in section 5.2.

® If master device, reserves Dataset Catalog and initializes Dataset
Name Table (DNT) and Dataset Allocation Table (DAT) for the
Dataset Catalog

® Attempts to preserve the area reserved for system dumps

® Restores information on volatile devices from their associated
backup dataset as directed by the parameter file

® Attempts to preserve all permanent datasets and recovers input and
output queues. In memory, builds DAT and System Dataset Table
(SDT) for each input/output dataset. (The SDT entry can have one
or more attached memory pool areas containing TEXT field or
station slot information.)

® If specified, recovers rolled out jobs through call to Recover
Rolled Jobs routine (RRJ)

® Preserves or allocates space for the three datasets maintained by
I/0 Subsystem

SM-0040 5-8 C

COS STARTUP RESTART OPTION

® Allocates the system overlay dataset

® Locates the Dataset Catalog Extension if available, validates it,
and builds an allocation table in upper memory

® Copies system dump if necessary and saves the copy as a permanent
dataset (in the same way as for Deadstart; see section 5.2.)

® TFor all volatile devices if the backup dataset already exists, the
data contained on it is marked invalid; otherwise, the dataset is
created.

Restart updates the Device Reservation Table in memory to reflect the
tracks reserved by datasets mentioned in the Dataset Catalog and tracks
mentioned in the flaw portion of the device label, the Engineering Flaw
Table (EFT) on the disk (if one exists), and parameter file directives.
The label on the disk is rewritten at the end of Restart if (a) any flaws
other than those already mentioned in the device label are added through
the EFT or the parameter file, or (b) any flaws are specified to be
deleted through the parameter file.

If an I/O Subsystem (IOS) with at least one disk is part of the
installation, and if space has been allocated for the three datasets
maintained by the IOS, the space is reserved. If the space has not been
allocated, it is allocated.

The system overlay dataset is reserved in a way similar to the way in
which the system dump area is treated. (The system dump area for Restart
is recovered and copied as described under Deadstart, section 5.2.)

If a system overlay dataset was not preallocated or if the validation
checks for it fail, recovery of rolled jobs cannot be performed. In this
case, Startup halts if recovery is specified, or it allocates the area
following permanent dataset recovery, if recovery was disabled.

In attempting to recover rolled out jobs, Restart accesses the Rolled Job
Index dataset and loads it into memory. If the access or the read
receives an error, Restart initializes a new edition and writes it to
disk. 1If the operator chooses not to recover rolled jobs, Restart clears
and rewrites the index.

The DSPs for the Dataset Catalog are defined during assembly of STP.
Restart scans the DSC to find all entries with the input flag or output
flag set. From these input and output DSC entries on mass storage,
Restart creates SDT entries and DATs in memory. The input and output
queues are threaded by forward and backward link pointers. The first
item in the queue is the one first encountered in the DSC.

SM-0040 5-9 Cc

RESTART OPTION COS STARTUP

During Dataset Catalog (DSC) recovery, Startup processes the allocation
information for multitype datasets. Startup processes the first DSC
entry for a multitype dataset as a normal entry, allocating the dataset
and initializing it for associated DSC entries. Processing of the
subsequent entries differs from normal recovery for error preprocessing,
DAT body processing, and post-DAT validating. Since all DSC entries for
a dataset are interrelated, any recovery errors are carried through to
all of the entries.

DAT body processing involves a comparison of the DAT body chain from a
previous DSC entry. Any differences cause the dataset to be flagged as
having inconsistent allocation, and all DSC entries are processed
accordingly during a second pass over the DSC.

Post-DAT validation processing essentially involves QDT update and is
performed only when all preceding entries for the dataset pass recovery

validation.

When Restart completes execution, the Startup task creates the JSH task.

A nonempty input queue causes JSH to begin job scheduling. Similarly, a

nonempty output queue activates SCP. The SCP task was created before the
call to the Z routine within Startup.

JSH can also be activated if at least one job was recovered and placed
into the execution queue by subroutine RRJ.

A Restart with recovery of rolled jobs recovers the job class structure
that was in effect before the system interruption from a permanent
dataset, PDN=JOBCLASSROLLED. If a disk error makes recovery impossible,
the structure that was written to the permanent dataset named in the
Restart parameter file goes into effect.

Restart without recovery of rolled jobs places into effect the structure
that was written to the permanent dataset named in the Restart parameter
file.

In either case (Restart with or without recovery), the default structure
goes into effect if no dataset is named or if the named dataset is
inaccessible.

The first pass of a 2-pass Restart is identical to the first pass of a
2-pass Deadstart. (See section 5.2.)

5.3.1 JOB RECOVERY BY RESTART

Following any system failure, whether due to software, hardware, or
environmental problems, the operator at the master operator station can

SM-0040 5-10 C

COS STARTUP RESTART OPTION

attempt to recover any job in the execution queue at the time of the
failure. This section describes job recovery and related operations.

Startup successfully recovers and restarts all jobs that are rolled out
to mass storage at the time of the system failure, or those that rolled
out, rolled back in, and performed no additional activity to cause the
roll image on mass storage to be unusable. A job can be recovered only
if it is certain that the roll image is valid, and that repetition of the
activities of the job following roll in will not cause the results of the
job to change. A job with on-line tapes assigned cannot be recovered.

In some cases, a job that has been rolled out but has subsequently been
rolled in and reconnected to the CPU may have executed some function that
makes the system unable to determine whether the job can be successfully
restarted from the roll dataset image. In this case, the job is declared
irrecoverable and the Startup task leaves the job in the input queue.
Subsequently, COS attempts to rerun the job from the beginning. If a job
is irrecoverable and is ineligible for rerun, Startup returns it to the
input queue, and it terminates with an informative message in both the
user and system logs as soon as the Job Scheduler attempts to reinitiate
the job.

A job that has been initiated but has not been rolled out cannot be
recovered since there is no roll image to recover.

Permanent datasets accessed following roll in might not be available
following a system recovery if one or more mass storage devices become
unavailable. In this event, the recovered job receives an error status
when attempting to reaccess the datasets. Any permanent datasets already
accessed by a job before roll out must be reaccessed successfully during
Startup for a job to be considered successfully recovered.

Recovering a job from its latest roll image is performed in the items
described below. An error in any validation step renders the job
irrecoverable, and an appropriate message is sent to the System Log.

5.3.2 INDEX ENTRY VALIDATION

The first step of validation of job recovery is validation of the
information in the index entry. The job cannot be recovered if the index
states that the job is irrecoverable, or if the roll dataset is either
nonexistent or resides on a nonexistent or unavailable device.

The job is also considered irrecoverable if the date/time stamp in the

index entry does not match the date/time stamp of the system being
restarted, if field JTEPC is nonzero in the job's JTA, and if the
operator or installation specifies not to recover such jobs.

SM-0040 5-11 C

RESTART OPTION COS STARTUP

5.3.3 ROLL DATASET VALIDATION

The partition header information in the index entry is used to read in as
much of the roll dataset as can be located from the one word of
allocation indices contained in the index. Enough of the JTA must be
available for the job to locate the copy of the full roll dataset Dataset
Allocation Table (DAT). This DAT was copied along with the Job Execution
Table (JXT) image to the Job Table Area (JTA) by the Job Scheduler
immediately before rollout. An error on the read renders the job
irrecoverable.

Once the first read completes, the JTA size values taken from the JTA and
from the saved copy of the JXT are compared. An error occurs if the two
do not match. This size is then used to determine if more JTA exists.

If more does exist, the additional information is read in.

Normally, the entire JTA is read in by the first read, but if many large
datasets exist, the JTA can be quite large. RRJ must have the whole JTA
in memory at once. It is an error if the JTA does not fit into available
memory above the message stack, and the job is considered irrecoverable.

The image of the roll DAT is moved from the JTA to the STP DAT area. An
error results if not enough DAT pages can be allocated in STP to hold the
DAT. The roll DAT is then validated. If no errors are found in the DAT,
any remaining portion of the JTA and the last block of the user field are
read in. They must fit, and the reads must have no errors. The last
block of the user field is located using the JXCJS field of the saved JXT
copy. The Job Scheduler stores the current value of the real-time clock
in the first block of the JTA and in the last block of the user field
immediately before roll out. If they do not match, the roll out was only
partially complete at the time the system failure occurred, which is an
error condition.

5.3.4 DAT VALIDATION

Each dataset, including the roll image dataset, must have a Dataset
Allocation Table (DAT) address of zero in the DNT or must point to a
valid DAT. The roll image dataset and the $CS and $IN datasets point to
DATs in the STP tables; all others point to DATs in the Job Table Area
(JTA). To be considered a valid DAT, the following points must be
satisfied:

e A multipage DAT must be entirely within the STP tables or entirely
within the JTA; it cannot be in both places.

SM-0040 5-12 C

COS STARTUP RESTART OPTION

e The DAJORD field for a DAT in STP must be equal to 0; the DAJORD
field for a DAT in the JTA must be equal to the JXT ordinal.

® Successive pages must be numbered correctly.

® A DAT in the JTA must be pointed to by a negative offset that is
within the range indicated by the JTA size; the same is true for
each successive page.

® For each partition, the named device must exist and must be
available (EQNA must equal 0).

® FEach allocation unit index for a partition must be within range
for the device.

® For a multitype DAT (DNODT is nonzero), each allocation unit index
must have its corresponding DRT bit set; otherwise, an
inconsistent allocation has occurred.

® For a DAT that is not multitype (DNQDT is 0), each allocation unit
index must not have the corresponding DRT set; otherwise, an
allocation conflict has occurred.

® When the end of the last page or last partition is reached, the
remaining AI count and next partition pointers must be 0.

® When the end of a partition is reached, the next partition pointer
(DANPA) must point to either the next word in the current page or
the first word following the page header in the next page, or it
must be 0,

DAT validation occurs in two passes. The first pass serves as an error
scan and does not set the DRT bits. The second pass actually sets the
DRT bits and decrements the available space counts for the device. 1In
this way, RRJ can be sure that a dataset is either completely reserved or
completely unreserved, which is necessary for successful deallocation of
resources if a later dataset has an error.

5.3.5 DATASET RESERVATION

Each dataset named in the Dataset Name Table (DNT) chain in the Job Table
Area (JTA) must be processed. Local datasets must have their Dataset
Allocation Tables (DAT) validated and the Device Reservation Table (DRT)
bit maps updated. Permanent datasets must be validated against the
Dataset Catalog. Startup will already have updated the DRT bit maps for
permanent datasets. Permanent Dataset Table (PDS) entries must also be
reconstructed for permanent datasets.

SM-0040 5-13 C

RESTART OPTION COS STARTUP

The DNT chain is scanned from beginning to end. The memory pool control
word preceding each DNT is checked to be sure that the pool entry is in
use, and the DNT is checked to ensure that there is a name. If there is
no DAT and the dataset device type is not online tape, RRJ goes on to the
next DNT. 1If the device type is online tape, the job cannot be
recovered. If there is a DAT and it is in STP (DNDAT is greater than 0),
the DNT must be for either $CS or $IN. The SDT entries are searched for
an SDT with the correct sequence number, and the DAT address field of the
DNT is corrected. RRJ then goes to the next DNT.

If the DAT is in the JTA (DNDAT is less than 0), the DNT is checked to
see if the dataset is permanent. If it is not, the DAT is validated. 1If
it is, a pseudo access is performed. If no errors are found, RRJ goes to
the next DNT. When the end of the DNT scan is reached, the job is
considered successfully recovered.

5.3.6 PSEUDO ACCESS OF PERMANENT DATASETS

When a permanent dataset is encountered in the Dataset Name Table (DNT)
scan, RRJ requests the Permanent Dataset Manager to perform a pseudo
access on the dataset. This process causes the Permanent Dataset Manager
to locate the Dataset Catalog (DSC) entry for the dataset from the DADSC
field of the Dataset Allocation Table (DAT) and to compare the DAT in the
Job Table Area (JTA) with the DAT in the DSC.

If the DAT appears valid, PDM attempts to construct or update a Permanent
Dataset Table (PDS) entry. The DNT permission flags are used to set the
PDS permission flags. If the PDS entry already exists, the DNT must
indicate read-only permission.

5.3.7 RESOURCE DEALLOCATION

If an error occurs at any point in the recovery of a job, any system
resources assigned to that job by RRJ must be released. 1In particular,
any disk space reserved for local datasets before finding an error on a
later dataset, or any PDS entries corresponding to datasets that have
already been pseudo accessed must be deallocated. For this purpose, the
Dataset Name Table (DNT) chain is searched until the DNT with the error
is reached again. For releasing local datasets, the Disk Queue Manager
(DQM) deallocate request is used. For releasing Permanent Dataset Table
(PDS) entries, the Permanent Dataset Manager (PDM) request PMFCRL is
used. The disk space for datasets such as $CS or $IN, which have their
Dataset Allocation Table (DAT) in STP, is not released. The roll image
dataset is released and its STP DAT pages are returned to the system.

SM-0040 5-14 C

COS STARTUP RESTART OPTION

5.3.8 JOB RECOVERY COMPLETION

When the end of the Dataset Name Table (DNT) chain is reached without
error, the job is successfully recovered. Assigned resource information

is moved from the Job Execution Table (JXT) to the Generic Resource Table
(GRT). The copy of the JXT from the Job Table Area (JTA) is placed in
the JXT area, and the JXT entries are relinked by priority. The roll
image DNT within the JXT is updated to point correctly to the Dataset
Allocation Table (DAT), the System Dataset Table (SDT) entry is moved to
the execute queue, and the JXT ordinal is placed in the SDT. All wait
words are cleared. The JXT status bits are set to R, N, and B (rolled
out, not in memory, and suspended by recovery) and all other bits except
O, A and M (operator suspended, abort pending, and waiting for memory)
are zeroed. If there is a dataset in the output queue which was disposed
by this job with the WAIT parameter, the E (waiting for event) bit is set
and an event-wait table entry is constructed. The SDT address in the JTA
is corrected, and the JTA is rewritten to the roll image dataset. If the
operator or installation has decided to recover and lock out certain jobs
(IRLOCK=1), the following conditions cause the JXT and SDT lockout bits
to be set and a message to be issued to the System Log.

e JTEPC is nonzero and the date/time stamps in the index entry and
the current system do not match.

® The current job size or requested job size exceeds the maximum
available.

Under the above conditions with IQLOCK=0, the jobs are recovered as
normal and, with IQLOCK=2, the jobs are rerun if possible.

RRJ then advances to the next index entry.

5.3.9 TERMINATION OF RRJ

When the end of the roll index is reached, all entries corresponding to
jobs that were not recovered have been cleared. The input queue is
scanned, and all jobs that were previously initiated are flagged with a
status in the System Dataset Table (SDT) so that Control Statement
Processor (CSP) will issue log messages when the jobs are reinitiated.
Such jobs may be ineligible for rerun, in which case the status passed to
CSP reflects that condition. CSP then terminates the job immediately
after issuing the logfile messages. The status word RRJSTAT is set to
indicate to the Job Scheduler that the JXT entries are already
initialized and linked. RRJ then returns to Z, the main Startup routine.

SM-0040 5-15 Cc

2-PASS STARTUP COS STARTUP

5.4 2-PASS STARTUP

A 2-pass startup is detected when Startup encounters the *BOOT and
*SYSTEM directives in the parameter file. These directives tell Startup
that the system currently executing is for locating and transferring
control to another version of the operating system resident on the Cray
mainframe disks.

The procedure followed by pass 1 is identical to that of a l-pass Startup
to the point where the datasets in the Dataset Catalog (DSC) are to be
recovered. At that point, pass 1 makes a task request to the Permanent
Dataset Manager (PDM) to locate the system dataset. Once the system
dataset has been found, Startup validates the DSC entries for the
dataset. Next, the Disk Queue Manager (DQM) reads the dataset into
available memory. The final step Startup performs before requesting EXEC
to move the system is to build the boot exchange package, location 20, of
the new system. This indicates that pass 2 is about to begin.

Pass 2 of a 2-pass startup is exactly the same as a regular startup

except that the *BOOT parameter file directive is ignored (by changing it
to a *NOOP directive before beginning pass 2).

5.5 STARTUP FLAW PROCESSING

During the initial installation of a disk drive, engineering diagnostics
are executed to analyze the surface of the disk and note any disk
addresses that cannot be reliably written and reread. Such areas are
called flaws. A special table referred to as the Engineering Flaw Table
(EFT) is written to the disk and contains information identifying the
flaws found by the surface analysis. By convention, this table is always
written at a specified address. If this address is flawed, the table may
be offset by as much as 10 tracks (decimal). The address used by the
diagnostic is cylinder 0, head group 0, sector 17 (decimal).

If this sector cannot be written and successfully reread, an attempt is
made to write the table to the next head group address, same cylinder and
sector. This continues to a limit of 10 head groups.

Regardless of which startup option is selected, Startup searches each
device for the EFT during the startup process. If Startup finds an EFT,
it prevents the operating system from overwriting the EFT by setting the
Device Reservation Table (DRT) for the device to indicate that the
allocation unit corresponding to the EFT address is not available.
Startup first examines the predefined disk location for the EFT. If it
does not find an EFT or if an error is received on the read request for

SM-0040 5-16 Cc

COS STARTUP STARTUP FLAW PROCESSING

the predefined address, Startup advances to the next head group address

and tries again. This process continues until Startup has attempted 10

reads. If no EFT can be found on the device, Startup optionally sends a
warning message to the master operator station, giving the operator the

option of continuing without EFT information. (A *SKIPEFT directive in

the startup parameter file means no warning messages are sent.)

Once the EFT search is complete, Startup searches each device for a
device label. When the device label is located, Startup reserves the
corresponding track in the DRT. The device label can be on the same
track as the EFT. If no device label is found, Startup examines the
Equipment Table (EQT) entry for the device. A fatal Startup error occurs
if no device label is found and if the parameter file does not contain
the WDL parameter on a CONFIG parameter file directive.

If a device label exists, Startup reserves in the DRT any tracks
indicated in the label as flaws. These flaws normally overlap with flaws
indicated by the EFT, but they also normally contain tracks not mentioned
in the EFT. If no device label exists and the UP flag in the EQT is set,
Startup omits this step. Additional flaws may have been specified by
either assembling them into the DRT during system generation (the method
usually used to reserve a specific set of disk addresses for use by
engineering diagnostics) or by *FLAW directives in the Startup parameter
file, If any *FLAW directives were present for the device, Startup
automatically assumes that the specified flaws are new; that is, not
already in the list in the device label. This causes Startup to force a
rewrite of the device label to update the flaw list.

A *DELFLAW directive in the parameter file can cause a flaw previously
noted in the device label to be removed. 1In this case, Startup forces a
rewrite of the device label to update the flaw list. Depending on how
the flaw being deleted was initially specified, either the flaw is
permanently deleted or each subsequent startup repeats the *DELFLAW
directive. If the flaw was initially entered through a parameter file
*FLAW directive, the deletion is permanent, and the *DELFLAW directive
can be removed. If the flaw is mentioned in the EFT, the *DELFLAW
directive must be retained. If the flaw is assembled into the DRT during
system generation, the *DELFLAW directive must be retained until the
system is reassembled without the flaw.

In either case, if there are differences between the flaws accumulated in
the DRT and the flaw list in the device label, the flaw list in the label
is recreated and the label is rewritten. If the label and the EFT occupy
the same allocation unit, the sector containing the EFT is not

rewritten. Not rewriting prevents problems encountered during the label
rewrite from overwriting the EFT.

SM—-0040 5-17 C

INPUT TO STARTUP COS STARTUP

5.6 INPUT TO STARTUP

Input to Startup may consist of a parameter file, the Dataset Catalog
Extension (DXT) Table, and the $SDR and $ROLL datasets. Startup may also
receive configuration and status changes to devices from the system
master operator station.

5.6.1 CONFIGURATION CHANGES

Startup can receive configuration information from any of the following
sources.

o Information assembled into tables at system generation time
e Information entered through parameter file commands

e Information entered interactively during Startup at the
configuration change time

At these times, devices can be added or deleted, or attributes or status
can be changed. These devices include any described in the Equipment
Table (EQT) or Tape Device Table (TDT)/Tape Configuration Table (CNT).
To be able to enter information during the actual Startup processing, the
master operator station must support the station message feature. If
station messages are supported and the operator enters a CONTINUE reply
once all configuration changes are made, Startup scans the Configuration
Table (CNT) in STP memory to ensure that everything is correct. Then,
from the information contained in the EQT, Startup constructs the Device
Channel Table (DCT) and Device Reservation Table (DRT). If any errors
are detected during the configuration processing, the operator is
informed and, if possible, is allowed to correct the error.

5.6.2 PARAMETER FILE

Control of the COS startup procedure is through parameters in the form of
statements on a special file. These statements, which are described in
the COS Operational Procedures Reference Manual, publication SM-0043, are
sent from the operator station. The parameter file can be prepared from
punched cards or from the operator station with the aid of a text

editor. Each parameter must be terminated by an ASCII carriage return
character and cannot be in COS blocked format. Parsing of the command
language is performed in COS, eliminating rewriting of the parsing logic
for each front-end system. The operator station commands copy the
parameter file into Central Memory along with EXEC, STP, and CSP.

SM-0040 5-18 C

COS STARTUP INPUT TO STARTUP

The ZY portion of Startup processes the parameter file and modifies
memory as specified by the directives. This processing takes place
before any of the other tasks are initialized or Startup begins the
processing of any information in the STP tables, thus allowing the
ability to change critical system installation information without
requiring system reassembly. If the operator station handles operator
messages, Startup requests configuration and other necessary information
during its processing.

5.6.3 DATASET CATALOG EXTENSION DATASET (DXT)

The Dataset Catalog extension is further described in section 5.2. This
Section describes Startup processing of:

® DXT recovery and validation

® DXT access and control

Recovery and validation

No DXT recovery or validation occurs during an Install or Deadstart when
the DXT is being created. DXT creation is described under Deadstart,
section 5.2. When the DXT is recovered, Startup completes the
intialization of the STP assembled DNT and DAT for the DXT dataset. The
memory-resident DXT Allocation Table (XAT) is also set up at this time.

Presence of the permanent DXT dataset during a Deadstart or Restart is
determined immediately after the DSC recovery. If the DXT is permanent
and the *DXT directive indicates an adjustment to the DXT is required,
the adjustment is made after the DXT recovery is completed if the main
DSC entry for the DXT has no error flags set. For DXT expansion, the
following conditions must also be satisfied:

e Sufficient disk space is available to satisfy the overflow
requirement (the OVF= parameter on the *DXT directive or I@DXTOVF).

® Enough contiguous disk space is available to satisfy the
contiguous allocation requirement (the CAI= parameter on the *DXT
directive or I@DXTCAI).

If any of these conditions is not satisfied, the operator is informed
through the operator interface mechanism.

Any DSC error flag set in the main DSC entry for the DXT dataset causes
one or more informative messages describing the error flags encountered,
followed by a request that a Startup-Install be performed.

SM-0040 5-19 Cc

INPUT TO STARTUP COS STARTUP

If, during the DSC recovery, it was determined that one or more DSC
entries had associated DXT entries, DXT validation occurs before any DXT
size adjustment. If DXT validation is not required, then any requested
DXT size adjustment is accommodated and followed immediately with the
construction of the upper memory DXT entry allocation bit map (XAT). The
XAT size is directly proportional to the DXT dataset size. The DXT
validation worst case causes the DSC to be scanned twice followed with a
final complete read of the DXT dataset.

Validation begins with the DSC being read sequentially. As each main DSC
entry is encountered, any DXT entries chained to it are reserved in the
DXT allocation bit map (XAT). If a DXT entry is found to be already
reserved in the XAT, the equivalent bit in a pseudo bit map is set rather
than re-setting the real bit and the DSC main entry flagged as having a
DXT chain error. As each DXT entry is read, the In-use flag (DXUSE), the
ordinal sequence (DXORD), and DSC main entry pointer (DXTFPE) are
verified. Any discrepency causes the DXT error flag (DCDXE) to be set in
the main DSC entry. When the end of the DXT chain is reached, the last
DXT entry pointer (DCLDX) in the main DSC entry is verified. Here again,
an error causes DCDXE to be set. The DCDXE flag in the main DSC entry is
similar to other DSC error flags. After the DSC read is completed, a
second DSC read is performed if any bits were set in the pseudo XAT.
During this second DSC read, the pseudo XAT is used to capture all other
crossed allocations. Whenever an error is encountered while validating a
DXT chain, the individual DXT chain validation is halted and continues
onto the next DSC main entry in order to avoid looping. When the second
DSC read completes, any orphaned DXT entries are deactivated. Orphaned
entries result from the Startup DXT validation or from a system
interruption occurring while DXT entries are being deallocated through a
user's delete command. To remove these orphaned entries and to ensure
that the whole DXT dataset can be read from disk without I/O errors,
Startup reads the DXT dataset sequentially. During this read operation
each DXT entry not allocated in the XAT has its In-use flag (DXUSE)
cleared on disk. This procedure ensures that all unreserved DXT entries
are marked. Thus, whenever a new DXT entry is requested by the running
system the DXUSE flag is examined. If the DXUSE flag is already set, the
system is halted. This technique should protect the system against XAT
disagreement with the actual disk allocation.

DXT access and control

During Startup, the Dataset Catalog Extension Table (DXT) dataset is
either created or recovered, and Startup makes an entry indicating the
DXT dataset is held in unique access mode into the Active Permanent
Dataset Table (PDS). In order to facilitate DXT I/0, Startup also
completes the initialization of the STP-resident Dataset Name Table (DNT)
and Dataset Allocation Table (DAT) for the DXT dataset. The Dataset

SM-0040 5-20 Cc

COS STARTUP INPUT TO STARTUP

Parameter Table (DSP) and associated buffer space for the DXT are created
during the initialization of task PDM.

A job cannot access the DXT dataset because the PDS indicates it already
has been accessed uniquely. However, System Directory (SDR) utilities,
such as PDSDUMP and AUDIT, must be able to access the DXT. This
capability is provided with the PDM function PMFCPX (41 octal). This
function is similar to the PDM function PMFCPG (40 octal) except that
PMFCPX reads DXT pages rather than DSC pages. The same security offered
to the PDM function PMFCPG is also offered to PMFCPX.

5.6.4 SYSTEM DIRECTORY DATASET ($SDR)

A permanent dataset, $SDR, is maintained to contain records specifying
System Directory datasets to be recovered during Restart or Deadstart.
The Dataset Catalog (DSC) contains an entry for $SDR, which is
initialized during Install. Space is allocated based on the number of
SDR entries specified in the system. During Restart or Deadstart, the
dataset is read to rebuild the System Directory. If a failure occurs, a
message is issued to the System Log, and an empty $SDR is created.

The $SDR dataset consists of 512-word blocks. Each block contains eight
logical records, with the first word of each block holding the block
number relative to the beginning of the $SDR file. The first block in
the dataset is a header record containing the maximum number of SDR
entries as specified in the last system that recovered the System
Directory. The value is updated if the number of entries in the system
increases or decreases and recovery is not to be performed. Logical
records in the file are accessed by using the formula: (Relative
resident SDR entry +1)/8. The quotient gives the block number of the
entry within the file, and the remainder gives the logical record number
within the block.

Each $SDR record except the header contains the Permanent Dataset
Definition Table (PDD) of a dataset entered into the System Directory.
When an ACCESS request with the ENTER operand is processed by the
Exchange Processor (EXP), the Dataset Name Table (DNT) of the dataset is
saved in the resident SDR table. The PDD of the dataset is written to
the $SDR dataset. The dataset update is complete before EXP completes
processing the request.

Whenever Restart or Deadstart is performed by the operating system, the
resident System Directory (SDR) is recovered unless the operator
specifies that recovery is not to be performed by means of the *SDR
parameter. When Install is performed, the System Directory is not
recovered, and a user job (JSYSDIR) must be run to create the initial
System Directory entries.

SM~-0040 5-21 C

INPUT TO STARTUP COS STARTUP

5.6.5 ROLLED JOB INDEX DATASET ($ROLL)

The operating system maintains a special permanent dataset so Startup can
determine which jobs were in execution before a system recovery. This
dataset, referred to as $ROLL, contains information about each job that
has entered execution and has not yet terminated. $ROLL is maintained in
the Dataset Catalog (DSC) with a permanent dataset name of SYSROLLINDEX.
Read, write, and maintenance passwords are defined for it. $ROLL is
initialized and saved during Install.

During either Restart or Deadstart, the recovery of rolled jobs
subroutine, RRJ, attempts to access $ROLL. If the access fails, a new
edition of $ROLL is created, initialized, and saved. If recovery is
requested but $ROLL cannot be accessed, recovery of rolled jobs is
disabled with a message to the System Log. No message appears if $ROLL
cannot be accessed and recovery was not requested.

The information in $ROLL consists of fixed-length entries, one for each
defined Job Execution Table (JXT) entry. The entry corresponding to JXT
ordinal zero is used for validation of the $ROLL dataset and does not
correspond to any job in the system. Information in entry 0 consists of:

® The number of JXT entries defined in the previously deadstarted
system. Recovery is not possible if the previous system defined
more JXT entries than the current system. An error message is
issued in this case,

® The memory size of the previously deadstarted system. This is
informational only.

e The logical name of the device containing $ROLL. This is compared
with the device name from the Dataset Allocation Table (DAT) that
is supplied by the Permanent Dataset Manager when $ROLL is
accessed. A mismatch causes an error message to be issued, and
recovery is disabled.

® The track number allocated to $ROLL. Job Execution Table (JXT)
limitations assume that $ROLL will never exceed one allocation
unit. This number is compared with the Allocation Index (AI) from
the DAT for the accessed $ROLL. A mismatch causes an error
message to be issued, and recovery is disabled.

® The sizes of key tables contained in the Job Table Area (JTA) on
the roll index, in particular, LE@RJ, LE@DNT, and LE@JXT. These
must be the same in the recovered system or RRJ halts. RRJ halts
rather than continuing with recovery disabled so the operator can
Restart with a correct system file without having the roll index
overwritten.

SM-0040 5-22 C

COS STARTUP INPUT TO STARTUP

All other entries in $ROLL correspond to one specific JXT entry. These
entries contain enough information to identify the job assigned to the
JXT entry and to locate the roll image if the job is rolled out. The
index entry also contains a flag indicating whether a job has performed
some function that invalidates the roll image. (See the description of
the RJ table in the COS Table Descriptions Internal Reference Manual,

publication SM-0045, for detailed descriptions of the formats of these
entries.)

Information contained in these entries includes:

® The first three words of the first partition from the DAT for the
roll image dataset. This includes the 2-word partition header and
one word containing up to four allocation unit indices. 1If the
job has never been rolled out, these words are zeros.

® The job name, job sequence number, station, and terminal ID of job
origin. These determine which SDT entry in the input queue
corresponds to this job.

® An Irrecoverable flag. This indicates that the job cannot be
recovered from the roll image. This flag is set whenever the job
performs one of the following functions:

1. Deletes, adjusts, or modifies a permanent dataset. Since
these functions change the DSC in a manner that could cause
the job to fail if repeated, the roll image is unreliable.

2. Randomly writes to any dataset. The system circular I/O (CIO)
routines recognize a random write to a dataset and declare the
job irrecoverable, since the difference in data may change job
results if the job is restarted at an earlier point.

3. Writes following a read, rewind, or skip forward on any
dataset. Since a program that reads or skips to end of data
or end of file may have different results if the terminator is
moved or removed completely by overwriting, the job is
considered irrecoverable.

4. Releases a local dataset. Since disk space returned to the
system is available for use by other jobs, release of a local
dataset causes the job to be irrecoverable. Release of a
permanent dataset does not affect disk allocation and
therefore does not affect recoverability.

Every job rendered irrecoverable by any of the above becomes
recoverable again as soon as it is successfully rolled out.

SM-0040 5-23 C

TABLES USED BY STARTUP COS STARTUP

® Date/time stamp of system that was running when job was rolled
out. This is generated from the STP assembly date and time; it
detects jobs being recovered on a different system.

$ROLL is maintained jointly by the User Exchange Processor (EXP) and the
Job Scheduler (JSH) during system operation. At job initiation, JSH sets
up a corresponding index entry reflecting that the job was never rolled
out and is, therefore, irrecoverable. Subsequently, each time JSH rolls
the job, it sets up the index to point to the roll dataset and designates
the job to be recoverable. The index is written to disk when the Disk
Queue Manager (DQM) informs JSH that the rollout has completed
successfully. EXP recognizes the fact that a job is performing one of
the functions that causes the job to become irrecoverable and signals the
Job Scheduler to set the index entry accordingly and to rewrite the
index. Rewriting of the index always occurs before EXP completes
processing the function.

5.7 TABLES USED BY STARTUP

The Startup task uses the following tables to initialize the system for
Install, Deadstart, or Restart.

AUT Active User Table

CNT Configuration Table

DAT Device Allocation Table
DNT Dataset Name Table

DRT Device Reservation Table
DSC Dataset Catalog

DSP Dataset Parameter Area
DVL Device Label

DXT Dataset Catalog Extension
EFT Engineering Flaw Table
EQT Equipment Table

GRT Generic Resource Table
JTA Job Table Area

JXT Job Execution Table

ODT Overlay Directory Table
PDI Permanent Dataset Information Table
ODT Queued Dataset Table

RJI Rolled Job Index Table
SDT System Dataset Table

TDT Tape Descriptor Table

Detailed information about these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

SM-0040 5-24 C

COS STARTUP TABLES USED BY STARTUP

5.7.1 ACTIVE USER TABLE (AUT)

Startup creates and initializes an Active User Table entry for any
interactive job it recovers.

5.7.2 CONFIGURATION TABLE (CNT)

The CNT informs the operating system of the status of online tape
devices. The table can be changed during startup by the parameter file
or by operator commands.

5.7.3 DATASET ALLOCATION TABLE (DAT)

The Startup task creates a DAT for the Dataset Catalog (DSC) dataset.

5.7.4 DATASET NAME TABLE (DNT)

The Startup task initializes the DNT for the Dataset Catalog (DSC). DNTs
are also used for 1I/0 on datasets such as $ROLL.

5.7.5 DEVICE RESERVATION TABLE (DRT)

The DRT, as initially assembled and updated through parameter file
options, lists disk flaws that Startup uses during an install to locate
the first good track. Install updates the DRT upon detecting additional
flaws. Deadstart and Restart reconstruct the DRT based on flaw table
information and DATs for permanent datasets, and set up the area reserved
for system dumps.

5.7.6 DATASET CATALOG TABLE (DSC)

Install creates the DSC dataset on the master device. Deadstart and
Restart use the DSC for bringing up the system following an idle down or
system interruption.

Startup sets the DRT bits for the Dataset Catalog (DSC), the system dump

area, the system overlay dataset, or datasets encountered in the DSC, and
checks the DRT to see if the bit is already set. If a conflict is found,

SM-0040 5-25 C

TABLES USED BY STARTUP COS STARTUP

a special flag is set and a note is made of each such device and track
number. Following completion of the normal l-pass dataset recovery pass,
a second pass is made through the DSC to identify datasets with
conflicts, with System Log messages.

5.7.7 DATASET PARAMETER AREA (DSP)

Startup and Permanent Dataset Manager (PDM) use their own internal
separate DSPs for manipulating the Dataset Catalog (DSC). There is no
central DSP in this regard.

5.7.8 DEVICE LABEL (DVL)

Install writes a device label on the first usable track of each mass
storage or SSD device. The label contains the device name and flaw
information for each device. The master device label also contains the
Dataset Allocation Table (DAT) for the Dataset Catalog (DSC), a pointer
to the first track of the reserved system dump area, and a pointer to the
system overlay dataset. A special flag in the label identifies the
master device.

The Device Label (DVL) usually resides on the first track of its disk
storage unit (DSU) because I@DVLRES, an installation parameter, reserves
tracks at the front of a DSU for attempts to write the DVL. Usually, the
first attempt is successful and the rest of the I@DVLRES tracks are
available for user datasets. However, if enough bad tracks are
discovered when trying to write a DVL, the DVL can inhabit any track.

Because the DVL track location cannot be known beforehand, Deadstart and
Restart search for each DVL. To prevent false DVL finds, each DVL
contains the ASCII characters DLB, the logical device name, and a
checksum.

When a DVL is located, its track is reserved in the Device Reservation
Table (DRT). Also, each flaw mentioned in the DVL is reserved in the
DRT. For the master device, the DSC tracks mentioned by the DVL are also
reserved in the DRT and the DSC DAT is rebuilt in memory. The master
device label also contains the track number of the first track
preallocated for system dumps and the system overlay dataset. These
areas are also reserved in the DRT.

SM-0040 5-26 C

COS STARTUP TABLES USED BY STARTUP

5.7.9 DATASET CATALOG EXTENSION (DXT)

The *DXT directive in the Startup Parameter File controls DXT creation at
Install and Deadstart. The size may be changed through the *DXT
directive during any startup. DXT recovery and validation is described
in section 5.6, Input to Startup. DXT creation is described in section
5.2, Deadstart. Use of the *DXT directive is described in the COS
Operational Procedures Reference Manual, publication SM-0043.

5.7.10 ENGINEERING FLAW TABLE (EFT)
Startup uses the Engineering Flaw Table (EFT) as a source of flaws to be

entered into the DRT. The EFT exists in sector 17 (decimal) of one of
the first 10 tracks on the device.

5.7.11 EQUIPMENT TABLE (EQT)
The EQT is used by Startup as a source of information to describe devices

and the hardware configuration. The EQT can be modified by the parameter
file.

5.7.12 GENERIC RESOURCE TABLE (GRT)
Startup uses the GRT to preset the JOB Statement Parameter Table, and
initialize available resource counts in the GRT from information in the

EQT and TDT. Allocated resource counts for rolled jobs are moved from
the JTA to the GRT during rolled job recovery.

5.7.13 JOB TABLE AREA (JTA)
When recovering rolled jobs, Startup searches the JTA for local

datasets. Startup verifies and allocates the Allocation Indexes (Als)
associated with these local datasets.

5.7.14 JOB EXECUTION TABLE (JXT)

Startup gets the Job Execution Table image for a job from the roll file
and rebuilds the entry in the JXT.

SM-0040 5-27 C

TABLES USED BY STARTUP COS STARTUP

5.7.15 OVERLAY DIRECTORY TABLE (ODT)

The ODT defines what overlays exist in the system and is used by Startup
when it is searching for overlays and moving them to their resident
locations. Errors occur if overlays are found which are not in the ODT
or the ODT contains overlays which are not located by Startup.

5.7.16 PERMANENT DATASET INFORMATION TABLE (PDI)

Install computes the number of hash pages and the number of overflow
Pages in the Dataset Catalog and stores them in the PDI and in the device
label. Deadstart and Restart retrieve these values from the device label.

5.7.17 QUEUED DATASET TABLE (QDT)

Install and Deadstart initialize the QDT with no entries in use. Restart
uses the Dataset Catalog (DSC), as well as the information in the roll
files, to recover the QDT. During a Deadstart, those user-permanent DSC
entries with a nonzero QDT index are rewritten with the QDT field cleared.

5.7.18 ROLLED JOB INDEX TABLE (RJI)

The Rolled Job Index (RJI) is either initialized or read into memory,
depending on the type of startup and operator options in the Startup
parameter file. This index controls the recovery of rolled out jobs.

5.7.19 SYSTEM DATASET TABLE (SDT)

Install and Deadstart initialize the SDT as having all entries in the
available queue. Restart uses the Dataset Catalog (DSC) to recover the
Jueues for system input and output datasets and makes entries in the SDT
accordingly. SDT entries are threaded into the input and output queues.

5.7.20 TAPE DEVICE TABLE (TDT)
The Tape Queue Manager (TQOM) uses the Tape Device Table (TDT) to control

online tape devices. The TDT can be changed by Startup as the result of
changes made in the Tape Configuration Table (CNT).

SM-0040 5-28 C

COS STARTUP STARTUP SUBROUTINES

5.8 STARTUP SUBROUTINES

The COS initialization task (Startup) is created by EXEC. Startup
executes only once -- when the operating system is loaded and started
up. Although communication areas exist for Startup, no tasks can ever
place requests in the registers or request that this task be readied.
(In this section, readying the task means clearing its suspended bit.)

Startup leaves messages in memory to notify the operator of failures
during the COS Startup procedure.

Three main subroutines along with many helper subroutines comprise the
Startup Task. The main routines are: Z, RRJ, and SDRREC.

5.8.1 Z SUBROUTINE

The three Startup options (Install, Deadstart, and Restart) run as the
first portion of Startup in STP in the form of a closed subroutine called
by Startup through a return jump to entry point Z. Z resides at the
upper end of STP. Z is executed just after Startup has created all STP
tasks with the exception of the Job Scheduler (JSH), Log Manager, Job
Class Manager, and Message Processor tasks. When Z completes execution,
Startup creates the remaining tasks in STP. 2% executes a return jump to
subroutine RRJ (Recovery of Rolled Jobs) just before exiting. RRJ in
turn carries out any manipulation of the Rolled Job Index dataset that
may be required due to operator specification or installation-selected
defaults.

Since the code of Z is not needed again, as one of its final functions,
Startup moves the image of CSP to overwrite Z and adjusts pointers
accordingly so that the unused memory is made available for user jobs;
Startup can also place one or more copies of the image of CSP on mass
storage (installation defined). 1In the latter case, pointers are
adjusted to allow the space otherwise occupied by CSP to be used for user
jobs.

JSH and the Station Call Processor (SCP) are two of the tasks created by
Startup. JSH activity is stimulated by the System Dataset Table (SDT)
entries comprising the input queue. JSH is not readied if the input
queue is empty. Similarly, SCP activity is stimulated by entries in the
output queue. The queues are assembled as being empty and are left empty
by the Install and Deadstart options; therefore, JSH and SCP remain idle
when either of these options is selected during Startup. Similarly, the
queue of available SDT entries is assembled as containing all of the SDT

entries.

SM-0040 5-29 C

STARTUP SUBROUTINES COS STARTUP

When the Restart option is selected, however, it sets up SDT entries from

the Dataset Catalog (DSC) and, therefore, alters the input, output, and
available queues. In this way, Restart notifies JSH and SCP that queues

exist for them to process.

If recovery of rolled jobs is selected, Job Execution Table (JXT) entries
can also be constructed to reflect jobs that can be successfully
recovered. In this case, certain JSH flags are set up so that the Job
Scheduler will be aware that jobs are already in the execution queue.

The COS startup procedure requires the time and date for handling the DSC
entries. It obtains the current time and date from the operator station
which is passed to EXEC. EXEC converts the date and time to machine
clock periods and sets the real-time clock to this value.

The SCP task can be active during execution of Z, responding to station
messages. However, a flag in STP controls which messages STP processes
immediately and which are postponed until Z completes.

Also required is the memory size of the Cray computer on which COS is
executing. The actual memory size is defined by an installation
parameter (I@MEM) or through a Startup parameter file statement (*MEMSIZ).

5.8.2 RRJ SUBROUTINE

All three Startup routines call subroutine RRJ before calling System
Directory Recovery (SDRREC) and before processing system dumps. RRJ
executes as a closed subroutine called by Z and performs any processing
of rolled out jobs or the index dataset required. RRJ is called before 2
executes SDR recovery or copies any existing system dump, since disk
space needed to restart a rolled job must be recovered and allocated in
the Disk Reservation Table (DRT) before any new space can be used. RRJ
does not return any status used by Z; it does set a status word
indicating the type of recovery performed, which is used by Job Scheduler
(JSH) to determine how much JXT initialization JSH must perform.

RRJ performs one of several activities depending on the type of startup
being performed.

RRJ execution during Install

Recovery of rolled jobs cannot be performed during an Install, since
permanent datasets and input/output queues are not recovered. Therefore,

RRJ merely initializes $ROLL and issues a SAVE request to the Permanent
Dataset Manager (PDM). The initialization of $ROLL consists of setting

SM~0040 5-30 C

COS STARTUP STARTUP SUBROUTINES

up entry 0 (see RJ table description in the COS Table Descriptions
Internal Reference Manual, publication SM-0045) and zeroing all other
entries. The buffer used to write $ROLL remains intact in memory
throughout normal operation of the system, and $ROLL is never read during
normal operation.

RRJ execution during Deadstart

Since input/output queues are not recovered during Deadstart, rolled jobs
cannot be recovered. RRJ attempts to access $ROLL and read it into
memory. The buffer remains intact throughout normal operation, and $ROLL
is never read again during normal operation. If RRJ is enabled by
operator specification, RRJ detects that it is a Deadstart, issues an
error message, and disables recovery.

Once $ROLL has been successfully accessed and read in, the contents of
entry 0 are checked. If errors occur on the access or read, or if entry
0 does not validate correctly, RRJ issues error messages and
reinitializes $ROLL. A new edition of $ROLL is created if the access was
unsuccessful or if the existing edition received an error while being
read. Otherwise, the new $ROLL is written over the existing one. If no
errors are received, the $ROLL buffer is cleared to indicate no executing
jobs and the dataset is rewritten.

RRJ execution during Restart

If Restart is selected and if RRJ is able to successfully access and read
$ROLL, RRJ attempts to recover jobs. Error conditions here are handled
as for Deadstart. If the access and read are successful but RRJ was not
enabled by the operator, then RRJ clears $ROLL as for Deadstart. If RRJ
is enabled, RRJ begins scanning the index entries following verification
of entry 0. If an error occurs during entry 0 validation, RRJ disables
recovery with a message to the System Log and continues as for Deadstart.

If certain key tables (for example, DNT or PDD) change in size, RRJ
detects the change during validation of entry 0. This causes a fatal
Startup error.

If no errors occur during $ROLL validation, RRJ attempts to recover

jobs. Messages are issued to the System Log when a job is not recovered
and when recovery has been successful. A successful recovery means that
the job has been entered into the JXT chain at the appropriate spot and
the input System Dataset Table (SDT) entry has been moved from the input
queue to the execute queue. The job status in the JXT becomes rolled out
and suspended by recovery. The waiting for memory, pending abort, and
operator suspended bits are maintained. All other status bits are set to

SM—-0040 5-31 C

STARTUP SUBROUTINES COS STARTUP

0, as are any event wait words. Any caller who requested recall based on
an event is responsible for determining if the event is satisfied or if
the recall should be reissued. For example, any outstanding ACQUIRE
requests may have to be reissued. Event wait can be reset if the job has
an outstanding DISPOSE,WAIT request.

5.8.3 SDRREC SUBROUTINE

System Directory (SDR) Recovery (SDRREC) is executed as a closed
subroutine that is called by Startup after Recovery of Rolled Jobs (RRJ)
is complete but before the system dump is copied. RRJ must be executed
first to ensure the integrity of datasets belonging to any jobs being
recovered. Any failures during SDR recovery cause the operating system
to terminate abnormally.

File allocation

SDR recovery begins with a request to access the $SDR dataset. If no
dataset exists, the number of blocks (segments) required to contain the
current number of generated resident SDR entries is computed. A request
is issued to the Disk Queue Manager (DQOM) to allocate disk space for the
dataset. Then a request is made to the Permanent Dataset Manager (PDM)
to SAVE the dataset. Once the operating system initialization is
complete, entries can be added to the SDR by ACCESS requests specifying
the ENTER parameter.

SDR recovery

If the $SDR dataset exists, each block of the dataset is read and
processed until a logical record with a binary zero dataset name is found
or until the system-specified number of SDR entries is processed. A
Dataset Name Table (DNT) is built for each dataset. The Permanent
Dataset Definition Table (PDD), in the logical record, and the Dataset
Name Table (DNT) are used to access the dataset. Then the dataset is
entered into the Permanent Dataset Table (PDS). If the dataset access
fails, a message is issued to the System Log, and the entry is ignored.

No recovery specified

If the operator specifies *SDR in the parameter file, indicating the
System Directory is not to be recovered, a new edition of $SDR is
allocated. Once the operating system initialization is complete, entries
can be added to the SDR by ACCESS requests specifying the ENTER operand.

SM-0040 5-32 Cc

COS STARTUP STARTUP SUBROUTINES

Changes in the number of SDR entries

If System Directory Recovery detects that the system-generated number of
SDR entries is greater than the value saved in the $SDR header record,
the number of blocks required by the system is calculated. If additional
blocks are required, write requests are issued until all blocks are
allocated. An ADJUST request is issued to the Permanent Dataset Manager
to update the DSC for $SDR, and processing continues for SDR recovery.

If System Directory recovery detects that the number of SDR entries
specified by the system has decreased, and if no recovery is specified,
then the dataset is cleared, and the altered number of SDR entries is
recorded in the header record. Once the operating system initialization
is complete, entries can be added to the SDR by ACCESS requests
specifying the ENTER parameter.

If the number of SDR entries specified by the system has decreased and

recovery is to be performed, a message is issued to the System Log, and
initialization is abnormally terminated.

SM-0040 ¥ 5-33 c

DISK QUEUE MANAGER (DQM) 6

The Disk Queue Manager task (DQM) controls the simultaneous operation of
disk storage units on CPU I/0O channels or the I/0 Subsystem. DQOM
provides:

® Allocation/deallocation of mass storage

® Management of mass storage resources (channels, controllers, and
disk storage units)

® Management of disk storage unit request gqueues

Another task readies DQM whenever it needs allocation, deallocation, or
access of mass storage. After satisfying the request, DQM readies the
calling task and suspends itself. In a Cray Computer System without an
I/0 Subsystem, EXEC readies DQM when an I/O request finishes or when a
sector transfer completes for a dataset in recall. In an I/0 Subsystem,
EXEC readies DQOM when an I/0 request finishes.

6.1 DQM INTERFACE WITH OTHER TASKS

A task calls DQM through the PUTREQ routine which places the requested
function in INPUT+l1 and the dataset's Dataset Name Table (DNT) address in
its INPUT+0 register and exits with an EXEC request to ready DQM.

In the following, JXO is the Job Execution Table (JXT) offset, calculated
by subtracting B@JXT, the base address of the JXT, from the individual
JXT entry address. JXO is 0 if the call is not job related. DNT is the
DNT address; this address is relative to the JTA if the call is job
related. RCL is a flag that is set if DQM sends an intermediate reply to
recall a task or job whe