=AY CRAY-1®

RESEARCH, INC. COMPUTER SYSTEM

CRAY-0S VERSION 1
SYSTEM PROGRAMMER'S
MANUAL
2240012

VOLUME TWO



CRAY-1®
COMPUTER SYSTEM

CRAY-0S VERSION 1
SYSTEM PROGRAMMER'S
MANUAL
2240012

VOLUME TWO

PART 2 SYSTEM GENERATION
PART 3 SYSTEM STARTUP AND RECOVERY
PART 4 SYSTEM MODIFICATION AND MAINTENANCE

Copyright © 1977, 1978, 1979, 1980 by CRAY RESEARCH, INC. This manual or parts there-
of may not be reproduced in any form without permission of CRAY RESEARCH, INC.

GCRRANY



R A

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER 2240012

Each time this manual is revised and reprinted, all changes issued against the previous version in the form of change packets are
incorporated into the new version and the new version is assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet Is assigned a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:
CRAY RESEARCH, INC.,

1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision Description

January 1977 - Original printing

A May 1977 - Reprint with revision. This revision obsoletes the
previous edition.

A-01 August 1977 - Update packet. This packet reflects changes to
EXEC, SCP, PFM, EXP, and operator commands. It also provides
interim procedures for system generation.

B January 1978 - Reprint with revision. This revision obsoletes
all previous editions. This printing coincides with the release
of Version 1 of the CRAY-1 Operating System.

B-01 April 1978 - Update packet. This packet reflects changes incor-
porated into Version 1.01 of the CRAY-1 Operating System.

B-02 July 1978 - Update packet. This packet reflects changes incor-
porated into Version 1.02 of the CRAY-1 Operating System.

C October 1978 - Reprint with revision. This revision obsoletes
all previous editions. With this reprint, this publication
has been divided into three volumes; Volume 1 contains Part 1
of this publication, Volume 2 includes Parts 2, 3, and 4,.
and Volume 3 contains Part 5. This printing coincides with
the release of version 1.03 of the CRAY-1 Operating System.

C-01 January 1979 - Update packet. This packet reflects changes
incorporated into Version 1.04 of the CRAY-1 Operating System.

c-02 April 1979 - Update packet. This packet reflects changes incorpo-
rated into Version 1.05 of the CRAY-1 Operating System.

C-03 July 1979 - Update packet. This packet reflects changes incor-
porated into Version 1.06 of the CRAY-1 Operating System.

D September 1979 - Reprint. Revision D is the same as Rgvjsion C
with change packets C-01, C-02 and C-03 added. No additional

changes have been made.

D-01 December, 1979 - Update packet. This packet ref]ec@s changes
incorporated into Version 1.07 of the CRAY-1 Operating System.

D-02 April, 1980 - Update packet. This packet reflects ghanges
incorporated into Version 1.08 of the CRAY-1 Operating System.

ii



May, 1980 - Reprint. Revision E is the same as Revision D with
change packets D-01 and D-02 added. No additional changes have
been made.



PREFACE

The System Programmer's Manual is written for programmers, analysts,
and field engineers who are responsible for installing, debugging, or
modifying the CRAY Operating System, Version 1.

This manual contains information to aid the programmer in making the
transition from the external features of the operating system as described
in the CRAY-0S Version 1 Reference Manual, CRI publication SR-0011 to the
listings. The reader is assumed to be familiar with the contents of the
CRAY-0S Reference Manual and to be experienced in coding in the CRAY
Assembly Language (CAL) as described in the CAL Version 1 Reference Manual,
CRI publication SR-0000.

Although a general familiarity with the concept of operating systems is
assumed, this publication does not presume that the reader knows the
principles or techniques of any other specific operating system.

This manual is in three parts, as follows:

VOLUME ONE

PART 1 SYSTEM COMPONENTS

This part familiarizes the reader with the structure, major components,
interfaces, and philosophy of the system.

VOLUME TWO

PART 2 SYSTEM GENERATION

This part describes the Cray Research released software materials and
how they are used to bring the CRAY-0S Operation System and its product
set to an operational state.

PART 3 SYSTEM STARTUP AND RECOVERY

This part gives the procedure for installing, starting, or recovering
the operating system.

2240012 v C



PART 4 SYSTEM MODIFICATION AND MAINTENANCE

This part gives the rules and conventions to be followed when modifying
or adding to the system. It also describes system macros, techniques
for adding features to the system, and tools and techniques for analyz-
ing and diagnosing problems and failures.

VOLUME THREE

PART 5 SYSTEM TABLE DESCRIPTIONS

This section contains detailed descriptions of tables resident in
EXEC and STP.

2240012 vi



Part 2

SYSTEM GENERATION



CONTENTS
PART 2 SYSTEM GENERATION

1. CRI SOFTWARE INITIALIZATION . . . . . « « « & & « o« o o o« 1.1-1
1.1 CRI SOFTWARE RELEASE MATERIALS . . . . . . . . . . . .. 1.1-1
1.1.1 UPDATE program libraries . . . . . . . . « . - - 1.1-2
1.1.2 General descriptions of release tape contents . . 1.1-3
1.2 INITIALIZATION PROCEDURE . . ..« « ¢ = o « « o o o o =« 1.2-1
2. COS MODIFICATION . . . & & o v v v v e e e e e e e e e e e 2.1-1
2.1 INSTALLATION DEPENDENT MODIFICATIONS . . . . . . . . . . 2.1-1
2.1.1 1Installation parameters . . . . . . . . . . . . . 2.1-1
2.1.2 Hardware parameters . . . . . . . . . . . . . . . 2.1-7
2.2 LOCAL SYSTEM GENERATION . . . . . . . . « . .« . . . . . 2.2-1
3. SAMPLE UPDATE JOB . . . . . « ¢« v ¢ v v v v e e v e e e e e 3.1-1
3.1 COSGEN JOB . . . & & v v v v i v e e e e e e e e e e . 3.1-1
4. DGS STATION GENERATION . . . . « ¢ v v v v v o o o o o o o 4.1-1
4.1 PROCEDURE . . . . . « v ¢« v ot v v v v e e o v e o s .. 4.1-1
4.2 LISTINGS . . & & v v i e e e e e e e e e e e e e e e e 4.2-1
4.2.1 GENERATE.MC . . . . ¢ « v v v v v v v o o o o o 4.2-1
4.2.2 UTILITY.MC . . . « v v v e v v o v o v e o o o 4.2-4
4.2.3 TAPE.MC . . . v v v ¢ o v o v o o e e e e e e e 4,2-6
4.2.4 LISTING.MC . . . & v ¢ v v v v v v v v o o o o« 4.2-7
Part 2

2240012 iii D-02



CRI SOFTWARE INITIALIZATION 1

This section describes the Cray Research released software materials and
how they are used to bring the CRAY-0S Operating System and its product
set to an operational state. Other sections in Part 2 tell how to modify
or configure the software according to a Tocal site's preferences.

1.1 CRI SOFTWARE RELEASE MATERIAL

Software for COS is delivered to a customer as a set of nine tapes. The
documentation accompanying these materials includes change packets, errata,
or addenda for external and internal documentation, if required; a software
problem report summary; a modification report describing each modification
included in the release; and a software release letter summarizing the cur-
rent status of the software. If any critical modifications need to be made
to the release software, the modifications will also be included.

The released software is configured for a minimum CRAY-1 hardware configur-
ation (one disk drive and one-quarter million words of memory). Using
this system, local modifications in the form of UPDATE input can be writ-
ten and applied to the source program libraries to generate a system
meeting local hardware configuration and software preferences.

The nine tapes are identified as:
1. RDOS

COSPL

COSPL 1listings

PRODPL

PRODPL Tistings

CFTPL with listings

FTLIBPL with 1istings

DGS software

DGS 1istings

O 00 N o o bW N

Part 2
2240012 1.1-1 D-02



1.1.1 UPDATE PROGRAM LIBRARIES

Four of the release tapes (COSPL, PRODPL, CFTPL, and FTLIBPL) contain
UPDATE program libraries. Decks in these libraries comprise all CRI
software that runs on the CRAY-1. In the following, decks that must be
modified and reassembled to generate a new binary for a program are listed
in the left columns. Datasets affected by the change are listed in the
right columns. (Common decks are not included in this list.)

COSPL PRODPL CFTPL FTLIBPL

Deck Dataset Deck Dataset Deck Dataset

ST $SYSTXT C CAL F CFT There is a separate

CcT COSTXT L L.DR deck name for each

E EXEC program within the

S STP UF] UPDATE $FTLIB dataset

J CSP uC

AR AUDIT CSFL csimr

AC €sc SCILBPL

CD COPYD BF BUILD —_—

CF COPYF There is a separate

CR COPYR FDF deck name for each

DD DSDUMP ppcf ~ FDUMP orogram within the

DM DUMP skl [SKOLTXT $SCILIB dataset.

EXF SKOL (SCILBPL and $SCILIB

exc/ ~ EXTRACT are 0? the FTLIBPL

JCF n tape.

JCC} JCSDEF |

PD PDSDUMP SYSLBPL

oL EE?ESAD SYSLBPL and $SYSLIB

SK{ SKIPF are on the FTLIBPL
SKIPR tape.

UN UNB

gD WRITEDS

M

cmc] COMPARE

DDC DDC

DBF DEBUG

STATS  STATS

To obtain a listing of all deck names in a program library, run UPDATE

with the ID Tist option selected.

Part 2
2240012 1.1-2 D-02



1.1.2 GENERAL DESCRIPTIONS OF RELEASE TAPE CONTENTS

General descriptions of the contents of the release tapes are given in this

subsection. These descriptions are not all-inclusive but highlight the
tape contents.

RDOS

This tape contains Data General-written and CRI-written software binaries
for execution on the ECLIPSE minicomputer system. The software includes
the RDOS Operating System and the operator station for the CRAY-1.

File Contents

0 TBOOT.SV, the tape boot program

1 Required programs for running RDOS

2 SYS.SV, the RDOS operating system save file

3 SYS.OL, the RDOS operating system overlay file

4 DKINIT.SV, the disk initializer program

5 BOOT.SV, the disk boot program

6 Other Data General-written programs executing under RDOS
7 Files for generating RDOS systems

8 Files for generating RDOS systems

9 CRI-written programs executing under RDOS (including DGS binary)
10 DPDF.SV, the disk pack formatter program

Part 2
2240012 1.1-3 C-01



COSPL

This tape contains all of the software associated with the COSPL program

library.

In addition, it contains some software common to the entire

operating system.

File

COSPL Listings

0

A pw N

Contents

The modification set(s) used to produce the present COSPL
from the last released COSPL, the job that generated the
present COSPL, UPDATE output from the generating job, a job
for creating a Tocal version of COS, Eclipse procedure files
for COSPL, and a report describing all modifications made

by this release and all Eclipse procedure files used.

A1l the binaries generated from COSPL plus $SYSTXT and
COSTXT. It also contains startup parameter file and station
command files for installing the system.

The present COSPL
A copy of file O
A copy of file 1
A copy of file 2

This tape contains source listings of the decks in COSPL. To print the
listing on file n, mount the tape and type OUT MTO:n.

File

2240012

00 N O O A W N+ O

Contents
$SYSTXT listing
COSTXT Tisting
EXEC listing
CSP Tisting
DDC Tisting
TAB Tisting
COM Tisting
CIO:TIO Tlisting
STP:Z Tisting

Part 2

1.1-4 ¢-03



File
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

PRODPL

Contents

SCP Tisting

EXP 1isting

PDM Tisting

DQM Tisting

MSG Tisting

MEP Tisting

JSH Tisting

DEC listing
AUDIT Tisting
COMPARE 1isting
COPY Tisting
DEBUG 1listing
DSDUMP 1isting
DUMP Tlisting
EXTRACT Tisting
PDSDUMP Tisting
PDSLOAD listing
SKIP Tisting
STATS Tlisting
UNB 1isting
WRITEDS 1listing

This tape contains all of the software associated with the PRODPL program

library.

-

o

g AW NN =

2240012

ile

Contents

The modification set(s) used to produce the present
PRODPL from the last released PRODPL, UPDATE output(s)

from the PRODPL generation, and Eclipse procedure files
for PRODPL.

A11 the binaries generated from PRODPL
The present PRODPL

A copy of file 0

A copy of file 1

A copy of file 2

Part 2
1.1-5 C-03



PRODPL Listings

This tape contains source listings of the decks in PRODPL. To print the
listing on file n, mount the tape and type OUT MTO:n.

File Contents
0 CAL Tisting

1 LDR Tisting

2 UPDATE 1listing

3 BUILD 1isting

4 CSIM Tisting

5 FDUMP Tisting

CFTPL with Listings

This tape contains all of the software associated with the CFTPL program
library and a source listing of CFT. To print the listing, mount the tape
and type OUT MTQ:6€

File Contents

0 Modification set(s) used to produce the present CFTPL from
the last released CFTPL, output from the CFTPL generation,
and Eclipse procedure files for CFTPL.

CFT binary
Present CFTPL

A copy of file O
A copy of file 1
A copy of file 2
CFT listing

SO O BWw N

Part 2 ' _03
2240012 1.1-6 ¢-0



FTLIBPL with Listings

This tape contains all of the software associated with the FTLIBPL, SCILBPL,
and SYSLBPL program libraries and source 1istings of all the decks within
FTLIBPL, SCILBPL, and SYSLBPL. To print the complete FTLIBPL 1isting,
mount the tape and type OUT MT@:6. To print the complete SCILBPL listing,
mount the tape and type OUT MT@:7. To print the complete SYSLBPL 1isting,
mount the tape and type OUT MTQ:8.

-n
N
—
¢

Contents

o

Modification set(s) used to produce the present FTLIBPL from
the last released FTLIBPL, modification set(s) used to pro-
duce the present SCILBPL from the last released SCILBPL,
modification set(s) used to produce the present SYSLBPL from
the last released SYSLBPL, and Eclipse procedure files for
FTLIBPL, SCILBPL, and SYSLBPL.

$FTLIB, $SCILIB, and $SYSLIB binary libraries
Present FTLIBPL, SCILBPL, and SYSLBPL

A copy of file O

A copy of file 1

A copy of file 2

$FTLIB listing

$SCILIB listing

$SYSLIB listing

o N O o A W N

Part 2 Cc-03

2240012 117



DGS software
Two tapes contain all of the software associated with the Eclipse station.

The Eclipse software tape contains the following files:

File Contents
0 Procedure files
1

Utilities and command files (i.e., a copy of deadstart
tape file 9)

STATPL

3 Load maps

4 Library files, SLA Tibrary files, binary files,
symbol tables

5 Copy of file O

6 Copy of file 1

7 Copy of file 3

8 Copy of file 4

The Eclipse software listings tape contains the following files:

File Contents
0 Utilities

1 Local station

2 SLA software

3 Concentrator

4 Remote station

Part 2
2240012 1.1-8 C-01



1.2 INITIALIZATION PROCEDURE

This procedure describes the steps necessary for creating an Install disk
pack and an Operations disk pack and installing the CRAY-0S Operating
System. The Install pack is used for installing the released or customized
system; the Operations pack is used when the ECLIPSE is used as a job
entry station or operator station and can be used for deadstart or restart
but not for install.

This procedure assumes the reader is familiar with RDOS and DGS operation.

1. Initialize the packs.

a. Label one ECLIPSE pack as "CRI INSTALL" and another as "CRI
OPERATIONS" with visual identifiers.

b. Mount the Install pack and the latest RDOS tape and initialize
the pack using the procedure described in the DGS Operator's Guide,
CRI publication 2240006.

c. Repeat step 1b for the Operations pack.

2. Copy Cray Research software onto the Install pack, as follows:
a. Mount the Install pack.

b. Mount each of the four PL tapes in turn, copying files 1 and 2 of
each tape onto the Install pack. When this step is completed, all
of the Cray Research software is on the Install pack.

3. If there are any disk flaws on the master device, modify the INSTALL
parameter file to flaw those parts of the disk. (See part 3 for par-
ameter file options and formats.)

4. 1Install the system on the CRAY-1.

a. On the 1440, type DELETE $STAT-.- to delete any existing input
and output queue files and any print output.

b. On the 1440, type STATION to bring up the station.

c. On the 455, type @INSTALL.CM. This initiates a system startup
with the install option, stages in all system programs, and
builds the system directory.

d. When the station display shows that there are 0 input files left
and there is 1 output file, the system should be installed. Verify
that the system is running, type OUTPUT on the 1440. This prints
the logfile of SYSDIR, the job that builds the system directory.

e. Type QGQUEDS.CM on the 455. This command file stages in the six
CRI UPDATE program libraries and any other datasets that the local

Part 2
2240012 1.2-1 c-01



site wants made permanent at install time. The command file can
be updated as more datasets are added to the Install pack. The
staging is complete when the station display again shows 0 input
files.

The basic system has been installed on the CRAY-1 and the CRAY-1
disk storage units at this time.

5. Selectively copy software onto the Operations pack:

a. Remove the Install pack by typing END on the 455 and then CLEAR/A
and RELEASE DP® on the 1440. :

b. Mount the Operations pack and mount the COSPL tape. Selectively
load COS from file 1.

When this step is complete, COS has been initialized and is ready for

jobs. Usually, one of the first jobs run is a job that generates a

local system that is tailored for the site's hardware configuration

and for local software preferences (see section 2).

CAUTION

When working with the released PLs, make
temporary modifications local to the job
only. Do not dispose these PLs. The re-
leased PLs must be the only ones known to
the system.

Part 2
2240012 1.2-2

(gp]



COS MODIFICATION

2.1 INSTALLATION DEPENDENT MODIFICATIONS

Two types of installation dependent modifications are described in
this section. The first, installation-dependent parameters, describes
the basic site hardware configuration, scheduling parameters, and
defaults. The second type consists of hardware parameters such as
disk flaws.

2.1.1 INSTALLATION PARAMETERS

Installation parameters represent those values in the system that can
be adjusted to the needs of the site either by modifying and
reassembling the COSTXT or EXEC portions of the system
(installation-dependent parameters) or by modifying constants in STP
while the system is running (installation-variable parameters). Both
types begin with the characters 1@. Below is a listing of all
installation parameters in alphabetical order. The values are those
assembled into the released version of the system.

Installation-dependent parameters set by equates in COSTXT are flagged
with CDs, and those set by equates in $SYSTXT are flagged with SDs.
Those in EXEC are flagged with EDs. Installation-variable parameters
set by CON instructions in STP are flagged with SVs.

Parameter Type Value Significance

IGAGECP SV 0 Flag enabling the aging of CPU
priorities, if set. If this flag is
zero, CPU priorities are not aged,
and memory priorities are used
instead for scheduling the CPU.

IGALLSDT SV 1 Flag enabling the display of all SDT
entries on all station displays

2240012 2.1-1 D-02



Parameter Type Value
IGAUTOFL SV 0

[@BF I CD,SD 033g
I@BULLIT  CO 0
I@CONFLT SV 80,000,000%*2
IGCPDBT CD 74,000
I@CPMULT SV 1
[GCPPRI SV 1
IGCSDMAX  CD 512
[1@DCUMC ED 8
IGDEFLM CD 100,000
I@DKRTRY SV 18
I1@DMPSIZ (D 40050004
IGDPWAIT  SD,CD 0
IGDSCERR  CD 1

2240012

Significance

Flag disabling all reductions in
user field length (except from RFL
statements) if zero

ASCII character to be used as

default Blank Field Initiator
(777g indicates no blank field
compression)

System bulletin dataset option:
0 No bulletin dataset
1T Bulletin dataset

Initial time during which the job's
field length is not allowed to
shrink (two seconds)

Minimum number of cycles needed to
transfer one disk block; used in CPU
priority calculations.

Flag making CPU priority depend on
memory priority, if set.

Flag governing CPU priorty
calculations. See part 1, section
3.8.2.

Maximum job class structure
definition size.

Maximum number of disk master clears
during deadstart

Default dataset size limit.
Maximum disk retries.

Size, in words, to reserve for
system dump. Two additional sectors
will be reserved for dump header,
etc.

Default value for DISPOSE=WAIT
0O NOWAIT
1 WAIT

Option for Startup handling of DSC
entries containing fatal errors.

0 Delete from DSC

1 Flag and retain DSC entry

Part 2
2.1-2 D-02



Parameter Type Value
IGDSPINC  CD 128
[GDTRDLY  CD 4
[@DVLRES  CD 2
[O@ENQRT ED 128
[GERASE CD 0
[ GF EMSK CD -1
[BFLINC SV 0.5
I@IAPOLL SV 40,000,000
[@IJTL CD 7000g
IGINQLIM SV NEGBSDT/2
IGJCCHAR  CD 16
[@JFLDEF SV 1450008
[@JFLMAX SV 3400000g
I@JFLMIN SV 22000g
[@JFLMSG SV 0

2240012

Significance

Fixed number of words added to DSP
area when the D bit is set in a
memory request

Dataset transfer postpone delay
count

Number of tracks reserved for
writing device labels

Maximum number of delayed returns
queued in EXEC; must be an integer
multiple of 64.

Leftmost 16 bits of fill word for
user areas

Bit mask allowing user control over
fatal errors:

0 Error is fatal for job

1 Error is fatal tor job step

Priority increment for minimum job
size; used in computing initial
memoty priorities. Allowable range
is 0.0 - 15.0.

Delay interval in RTC units between

responses to synchronous mode
terminals if no output is queued

Initial length of the JTA. This
value must be a multiple of 1000g;
5000g is the minimum value.

Maximum input queue size

Maximum job class characteristic
size, in words

Default job size, in words,
including JTA

Maximum job size, in words,
including JTA

Minimum initial job size, in words,
including JTA

Flag disabling field-length change
and open/close messages, if O

2.1-3 D-02



Significance

Maximum number of jobs in memory;
allowable range is 0 to I@JXTSIZ.

Amplitude of priorty curves; used in
computing memory priority.
Allowable range, 0.0-7.0.

Deadband; used in comparing memory
priorities. Allowable range,
0.0-7.0.

Decay rate; used in computing memory
priority. Allowable range, 0.0-1.0.

Weighting factor for job size; used
in computing memory priority.
Allowable range, 0.0-1.0.

Past history (damping) factor; used
in computing CPU priority.

Allowable range, 1-8. Higher values
cause greater damping of changes in
CPU priorty.

Rise rate; used in computing memory
priorty. Allowable range, 0.0-1.0.

80,000,000%*5 Memory scheduling interval (five

seconds)

80,000,000*%3 Amount of time 1imit extension

Parameter Type Value
IGJOBMAX SV 4
[@JSHAMP SV 1.0
[@JSHDB SV 0.6
I1@JSHDR SV 0.2
[@JSHISW SV 1.0
[@JSHPHW SV 1
[@JSHRR SV 0.05
[@JSHSI SV
[@JSHTLE SV
I@JTLDEF  CD 8
[BJIXTSIZ CD 15
I1@LGBSZ cD 2000g
16LGDSZ CD 2000
16LGUSZ CD 608
IBMAXDSZ  SZ 512*411*2
[BMAXLM CD 20000
IGMAXWPT  CD 512*18

e 2240012

(three seconds)

Default value for the job time limit
in seconds

Number of jobs that can run in this
system. Allowable range, 1-63.

$SYSLOG buffer size in words
$SYSLOG dataset size in sectors
$LOG size Timit in blocks
Maximum dataset size

Maximum dataset size limit

Maximum track size in words for all
disks

Part 2
2.1-4 D-02



Parameter Type Value
IGMEM CD 10000008
IGMEMPRI  CD 7
IGMINDEC CD 2000g
IGMINWPT  CD 512*18
I6GMP1SZ cD 2000
1@MP25Z CD 500
IGMXDRET  ED 3
IGNCLASS CD 16
I@GNORRN CD 0
IGNPD CD 1000
[@PDRT CD 1
IGPDSBFL  CD 512*18
I@PRLVL CD 8
IGPRSZW cD 60g
IGRFLMIM SV 6000g
IGRRJ CD 1
IGRRN CD 0

2240012

Significance

Memory size for minimum hardware
configuration

Default value when no P parameter is
given on JOB statement

Threshold value for field length
decrease. Field length reductions
less than this amount are not
performed.

Minimum track size, in words, for
all disks

Size of memory pool 1
Size of memory pool 2

Maximum number of disk retries in
EXEC DD-19/DD-29 Disk Driver

Maximum number of job classes that
can be defined

Enable no rerun checking
Maximum number of permanent datasets

Default permanent dataset retention
period in days

PDSDUMP/PDSLOAD buffer size; must be
a multiple of 512.

Maximum procedure level, including
primary level

Weighting factor (given as a
percentage) used in determining
output queue priority based on
dataset size

Minimum job size after performing a
reduction in field length

Default if recovery of rolled jobs
enabled for a Restart

Enable job rerun

Part 2
2.1-5 D-02



2240012

Parameter Type Value

I I0SDR e 0
IGSFLMIN SV 13000g
IGSIMBFZ SV 1
IeSIMDSZ  CD 400000g
I@SPMDLY SV 1800

I IGSPMMIN SV 10
I1@SPMON Sv 1
I@SPMTYP SV 34544
IGSTRTHR SV 264g
IGTLBIAS SV 16
IGTSCTM SV 2.0
I@TSMIN Sv 0
I@TSMPM SV 8.0
I1@ZOPT CD 3
IG$INS2 Sv 4
10$0DLM cD 2000
16$0MLM CD 20000g

Significance

Flag enabling SDR recovery
0 Recover SDR
1 Do not recover SDR

Maximum initial job size if on
simulator

Default buffer size if on simulator

Size in words to reserve for system
dump when executing in simulator

SPM collection interval in seconds
Delay when SPM needs memory (seconds)
SPM task enable flag
SPM subtype enable vector
Block transfer Timit for streaming
Time limit bias (chosen
empirically); used for computing
initial memory priorities.
Connect time multiplier; used for
computing variable time slice.
Allowable range, 0.0-10.0.
Minimum time slice in milliseconds.
If I@TSMIN is O, the maximum value
allowed (32767) is used.
Memory priority multiplier used when
computing a variable time slice;
allowable range, 0.0-50.0.
System startup default option:

1 Install

2 Restart

3 Deadstart

Default CIO buffer size for job's
$IN dataset

Default JOUT size Timit

Maximum $0UT size Tlimit

Part 2
2.1-6 D-02



1e$0UTSZ SV 4 Default CIO buffer size for job's
$OUT dataset

1@819MS SV 18 Number of micro positions for 819
2.1.2 HARDWARE PARAMETERS

Hardware parameters represent those values in the system that depend
wholly on the number and type of peripherals present at the site.
These parameters provide the site with the ability to specify
significant characteristics of peripherals.

Disk flaws

Disk flaws and tracks reserved for engineering diagnostics can be
reserved during system assembly of STP through the FLAW macro (part 3,
section 1). There are no default values for such parameters. The
FLAW macro is contained in COSTXT and uses the helper macros STRTFLW,
ENDFLW, and %GETNUM. The sequence of calls needed to reserve tracks
is:

STRTFLW driname, DT=disk-type
FLAW flawq

FLAW flaw,
ENDFLW

The STRTFLW macro indicates which device is being flawed. The driname
parameter must be specified and is the CAL symbol that identifies word
0 of the DRT header. In the released system, these are DRTOO,
DRTO1,...,DRT17. The disk-type parameter can be DD19 or DD29 and must
be specified.

- NOTE
The drtname is not the logical device name. Also,
be sure that the DRT definition occurs before the
STRTFLW macro is called because the SET pseudo
instruction references drtname, and the assembler
requires that symbols used on SET pseudo
instructions be previously defined.

Part 2
2240012 2.1-7 D-02



The ENDFLW macro terminates the setting of flaws for a device. It
must be present to prevent subsequent code from being assembled into
the DRT bit map. ENDFLW uses an ORG pseudo instruction to position to
the word address having the value of the origin counter prior to the
most recent STRTFLW macro.

The FLAW macro specifies a track or range of tracks to be reserved. A
single track, a range of tracks within one cylinder, or a range of
entire cylinders may be specified but sector numbers currently are
treated as documentation only and the entire specified track is
flawed. A FLAW macro call has one of the following formats (in which
all numbers are octal):

FLAW Crnnn Flaw all tracks of cylinder wun.
FLAW Crren—rmmm Flaw all tracks of all cylinders

between nnn and mmm, inclusively.
FLAW Crnn, Tmm Flaw track mm of cylinder wnun.
FLAW Crnn, Tmm-pp Flaw tracks mm through P>

inclusively, on cylinder nmn.

FLAW Crrn, Tmm,Ssgs
Same as FLAW Cuwnn, Trm
FLAW Crwn, Tmm ,Sss-tt

Setting the DRT header to reflect the number of allocation units
flawed is not necessary. Routine Z of Startup initializes the count
correctly without using the DRAIA value assembled into STP.

Configuring additional station channels

The default system has only an MCU station configured. To add other
station channels, the installation must expand the Link Configuration
Table (LCT). The LCT allows separate configuration of each channel.

To configure an additional station channel, the installation must
increase the number of active physical channels (field LCNA) in the
LCT header and add an LCT entry for the new station channel. The LCT

entry includes:

e The channel pair number (1-12).
¢ The maximum number of logical IDs to be supported by the
channel.

Part 2
2240012 2.1-8 D-02



e The number of streams per physical channel. The total number
of streams is the sum of the maximum number of streams for each
logical ID.

e The size of the disk buffer in words; this must be a multiple
of 512. In general, large disk buffers will increase
throughout at the sacrifice of memory.

e The maximum allowable segment size. The segment buffer size
must be set to the size of the largest segment to be used.

Changing disk unit configuration

The hardware configuration of disk units is communicated to COS through
the following tables:

DCT Device Channel Table

PUT Physical Unit Table

EQT Equipment Table

DRT Disk Reservation Table plus associated FLAW macros
AET Attached Equipment Table

The DCT, EQT, and DRT are located in STP, while the PUT and AET are in
EXEC. The Disk Queue Manager (DQM) moves information from the DCT to the
disk driver. The DCT, which contains an entry for each disk channel, is
set up initially to manage 16 disk units (four per channel) and need not
be changed unless more disk channels are present. Each entry in the DCT
initially contains pointers to the first EQT assigned to that channel and
to the number of units on that channel.

The EQT, PUT, and DRT are closely related. Each table has an entry for
each disk unit in the system.

The order of entries in the EQT determines the selection sequence for the
assignment of new datasets. Therefore, all of the first units on each
channel must appear first, all of the second units next, and so on. The
PUT and DRT entries must appear unit for unit in the same order. Each EQT
entry points to the next EQT on the same channel. The last EQT of each
channel is linked back to the first, forming a circular linked list.

The following table entries represent a configuration of 16 disk units
(four units per channel). Only one EQT entry can be defined as the master
device (MSD=1).

Part 2
2240012 2.1-9 D-02



EQTo0
EGTO1
EQTOZ2
EQTe3
EQTO4
EQTA5
EQTO6
EQT@?
EQTi0
EQT11
EQT12
EQT13
EQT14
EQT1S
EQT16
EQT17

2240012

EQT
EQT
EQT
EQT
EQT

EQT

EQT
EQT
EQT
EQT

EQT
EQT
EQT
EQT
EQT

EQUIPMENT TABLE (EQT)

LDV="DD-19:-20" , CH1=2, UT1=0. DRT=DRTO®, DT=DD19, N&=@, OFF=0, MSD=1 , LNK=EQTQ4

LDV="DD-19-30", CH1=3, UT1=0, DRT=DRT®1 , DT=DD19, NA=1 , OFF =1, LNK=EQT@5
LDV="DD~19-40", CH1=4,UT1=0, DRT=DRT@2, DT=DD19, NA=1, OFF=1 , LNK=EQT®6
LDV="DD-19-50" , CH1=5, UT1=0, DRT=DRTO3, PT=DD19, NA=1, OFF =1, LNK=EQT®7
LBV="DD~19-21".CH1=2,UT1=1, DRT=DRT@4 , DT=DD1 3. N=1 , OFF=1 , LNK=EQT10
LDV="DD~19-317, CH1=3,UT1=1, DRT=DRTOS. DT=DDTY; Nr=1 , OFF =1, L NK=EQT11
LDV="DD-19-41" , CHI*=4, UT1=1, BRT=DRTYE, DT=DD19, Na=1 , OFF =t , | NK=EQT12
LDV="DD-19-51", CH1=5,UT1=1, DRT=DRT@?, DT=DD19. NA=1, OFF=1, LNK=EQT13
LDV="DD-19-22", CHi=2,UT1=2, DRT=DRT10., DT=DD19, N&=1 , OFF=1 , LNK=EQT14
LDV="DD~19--32", CH1=3,UT1=2, DRT=DRT11, DT=DD19, NA=1.0FF=1, LNK=EQT15
LDV="DD-19-42" ,CH1=4 ,UT1=2, DRT=DRT12, DT=DD19.NA=1, OFF=1, LNK=EGT16
LDV="DD-19-52" , CH1=5,UT1=2, DRT=DRT13, DT=DD19, NA=1, OFF=1, LNK=EQT17
LDV="DD~-19-23", CH1=2,UT1=3, DRT=DRT14, DT=DD19. NA=1 , OFF=1 , LNK=EQTO@
L.D¥="DD~19-33", CH1=3.UT1=3. DRT=DRT15, DT=DD19, NA=1 , OFF=1, LNK=EQT®1
LDV="DD-19-43’,CH1=4,UT1=3. DRT=DRT16., DT=DD19. NA=1 , OFF=1 , L NK=EQT®2
LDV="DD-13-53" , CH1=5, UT1=3,DRT=DRT17,DT=DD19,NA=1, OFF=1, LNK=EQTO3

DISK RESERVATION TABLE ¢DRT)

DRTe@ BRT LDV="DD-19-20” . DT=DD19
DRTO1 DRT LDV="DD-19-3@", DT=DD19
DRTOZ2 DRT LDV="DD~19-49’,DT=DD19
DRTO3 DRT LDY="DD~-19-5@’ , DT=DD19
DRTO4 DRT LDV="DD-15~21", DT=DD1S
DRTOS- DRT LDV="DD-19~31", DT=DD19
DRTe6 DRT LDV="DD~19-41’, DT=DD19
DRTO? DRT LDV="DD~-19-51’, DT=DD13
DRT10 DRT LDV="DD-19-22", DT=DD19
DRT11 DRT LDv="DD~19-32’ ,DT=DD19
DRT12 BRT LDV="DD~19-42” , DT=DD19
DRT13 DRT LDV="DD-19-52’, DT=DD19
DRT14 DRT LD¥="DD--19-23", DT=DD19
DRT15 DRT LDV="DD~19~33", DT=DD193
DRT16 DRT LDV="DD~13-43",DT=DD19
DRT17 DRT LDV="DD-19-53", DT=DD19

PHYSICAL UNIT TABLE (PUT)

uee PUT ICH=4,LUT=@, DT=DD19
uz1 PUT ICH=4,LUT=1,DT=DD13
Uze PUT ICH=4,L.UT=2,DT=DD19
U223 PUT ICH=4,LUT=3, DT=DD19
Uu3e PUT 1CH=6,1_.UT=0.,DT=DD13
U31 PUT ICH=6,LUT=1,DT=DD19
u3zz PuUT ICH=6,LUT=2, DT=DD19
u33 PUT ICH=6,LUT=3, DT=DD19
(€% 17] PUT 1CH=19.,LUT=9, DT=DD19
U4l PUT ICH=10.,1L.UT=1, DT=DD19
Ug2 PUT ICH=10,LUT=2, DT=DD19
u43 PUT ICH=10,LUT=3,DT=DD19
Use PUT ICH=12.L.UT=0,DT=DD19
Us1 PUT ICH=12,LUT=1,DT=DD19
use PUT ICH=12, . UT=2, DT=DD19
Us3 PUT ICH=12.LUT=3,DT=DD19
Part 2

2.1-10

D-02



The tables demonstrate the use of DRT, EQT, and PUT macros supplied in
COSTXT. Keywords used in these macros are defined as follows:

LDV Logical device name

CH1 Primary channel number

uTl Primary unit number

DRT DRT address _

DT Disk type, either DBD19 or DD29
NA Unit not available

OFF Unit off
MSD Master device flag

LNK Link to next equipment on channel
ICH Input channel number (twice the value of CHI1)
LUT Logical unit number

Part 2

2240012 2.1-11 D-02



2.2 LOCAL SYSTEM GENERATION

This procedure assumes that as a minimum, the COS initialization procedure
described in section 1.2 has been completed. The Operations pack should be

mounted.

1. Write the local modifiéations in UPDATE format, block them, and
stage them in as a dataset named LOCIN.

2. Load LOCJOB from file 0 of the COSPL tape and run LOCJOB. This job
disposes to the station, COSLOC (local system binary), DDCLOC (local
DDC binary), ESYMLOC (EXEC symbol table), SSYMLOC (STP symbol table)
and SLSLOC (STP listing).

3. By convention, COS is the name linked to the production system and
DDC, SSYM, and ESYM are the names linked to the corresponding dead
dump creator and symbol tables for FDUMP processina. Rename and
relink as follows:

a. Rename COSLOC, DDCLOC, ESYMLOC and SSYMLOC to COSmmdd, DDCmmdd,
ESYMmmdd and SSYMmmdd, respectively, where mmdd is the month and
day of generation.

b. Link COS, DDC, ESYM and SSYM to COSmmdd, DDCmmdd, ESYMmmdd,
SSYMmmdd respectively. If any name already exists as a link,
unlink it. If any name already exists as a file, rename it as
in step a. Note the DDC must exist in DP@ in order for the
SYSDUMP command to work.

c. Stage ESYM and SSYM to the CRAY for use by FDUMP.

d. A system start-up of COS will bring the newly generated local
system into operation.

e. Save COSmmdd, DDCmmdd, ESYMmmdd and SSYMmmdd on tape and load
onto the INSTALL pack. Follow the same naming and Tinking
procedure used in step b.

Part 2 =
2240012 2 2.1 C-03



SAMPLE UPDATE JOBS 3

3.1 COSGEN JOB

The following is a sample statusing job used for creating the entire
released system.. The user may consider this job as a guide]iné for
designing jobs to modify decks in COSPL. However, in no case should new
program libraries be disposed to the station.

JOB, JN=COSGEN . M=50@ , T=2000 .

Xx. ,

X. GENERATE CRAY-1 OPERATING SYSTEM FOR RELEASE.
*.

*.

X. GENERATE FTULIBMNL. FROM FTLIBPL AND FTLIBIN

X.

ACCESS, DN=FTLIEPL .

ACCESS, DN=FTLIBIN.

UPDATE, P=FTLIBPL, I=FTLIBIN, N=FTLIBNL, C=0, L= IROUT.ED, 1D.
DISPOSE. DN=LIBOUT . DC=ST, MF=LS.

RELEASE . DN=FTLIBPL .

RELEASE. DN=FTLIBIN.

X.

X. GENERATE SYSLBNL FROM SYSLBPL AND SYSLBIN

9

ACCESS . DN=SYSLEPL .

ACCESS. DN=SYSLBIN.

UPDATE . P=SYSLBPL. I=SYSLBIN,N=SYSLBNL, C=@, L=SYSOUT.ED, ID.
DISPOSE, DN=SYSOUT, DC=ST.MF=LS.

RELEASE . DN=SYSLBPL .

RELEASE . DN=SYSLBIN.

X.

X

X. GENERATE SCILENL FROM SCILBPL AND SCILBIN

X.

ACCESS., DN=SCII_BPL .

ACCESS . DN=SCILEIN.

UPDATE ., P=SCILBPL. I=SCILBIN,N=SCILBNL., C=0,L=5CIOUT.ED, ID.
DISPOSE, DN=SCIQUT, DC=ST.MF=LS.

RELEASE . DN=SCILBPL .

RELEASE . DN=SCILBIN.

Xx.

X. GENERATE PRODNL FROM PRODPL AND PRODIN

X.
ACCESS, DN=PRODFL .

ACCESS, DN=PRODIN.

UPDATE , P=PRODPL., I=PRODIN., N=PRODNL , C=8, 1. =PRODOUT,ED, 1D, Di4=80 .
DISPOSE , DN=PRODOUT , DC=8T, MF=PS.

RELEASE . DN=PRODPL .

RELEASE . DN=PRODIN.

Part 2
2240012 ‘ 3.1-1 D-02



Sample COSGEN job (continued)

X,

x. GENERATE CFTHL FROM CFTPL AND CFTIN
X,

ACCESS, DN=CFTPL .

ACCESS . DM=CT TN

UFDATE, P=CFTPL, I=CFTIN, N=CFTNL,C=0,L=CFTOUT,ED, ID, ¥=X
DISPGSE , DN=CFTOUT, DC=5T, MF=FS.

RELEASE , DN=CFTPFL .

RELESSE, DH=CFTIN.

*.
X GEMERATE COSML FROM COSFL AND COSIN
*

ACCESS, DN=COSPL .

ACCESS, DN=COSIN.

URDATE, P=COSPL ., I=COSIN, N=COSNL, C=@, L=C0OS0UT.ED, ID.
DISPOSE, DN=COSOUT ., DC=5T, MF=C5.

RELEASE . DN=COSFL .

FELEASE, DN=COSIN.

.

*.

* FSYSTHT, COSTHT ., SKOLTKT, $FTLIE, $SYSLIB.SCILIR ARE PARTS OF THE

X. INPUT TO OTHER BINGRIES 50 THEY @RE NOT DISPOSED UNTIL THE END

X OF THE JOB. CAL.LDR.UFDATE,BUILD.CFT.UNB,SKOL ARE USED TO GENERATE
X. EINARIES 50 THEY ARE NOT DISPOSED UMTIL THE END OF THE JOB.

¥

*. GEMNERATE #$=YSTKT

¥

UéDQTE,P=COSNL,C=$SYSTXT,Q=ST,I=®‘
CAL, I=$5SYSTHT, B=@, S=0. L=STLS.ABCORT.E.
DISPOSE, DHN=STLS, DC=8T. . WF=C3.

X
*. GENERATE COSTRT
*

U#DﬁTE;P:CﬁSHL,C:COSTXT,Q=CT,I=@.
CAL, T=COSTRT, B=0, S=$3VSTXT. L=CTL.S, ABORT.E.
DISPOSE, DMN=CTLS, DC=5T, MF=CS.

¥

X, GENERATE SKOL

£

i BECAUSE SKOL IS NEW PRODUCT WITH THE 1.08 RELEASE AND IS USED

*. IMN GEHERATIMNG 1.08 $FTLIE. SKOL MUST BE GENERATED BEFORE #FTLIB.

UPDATE , P=PRODNL . C=CF , 0=SKOL , 1=0 .
CFT, 1=CF . L=SKOLLS , OFF=ECT .

LDR . AB=SKOL, MAP=FULL_, N, L=SKOLLS .
REWIND, DN=SKOL

REWIND . DN=CF _

DISFOSE , DN=SKOLLS, DC=5T, MF=FS .
REWIND, DN=$ELD

X

X GENERATE SKOLTXT

.
UPDATE . P=PRODNL , C=SKOLTXT, Q=SKOLTXT , [=0, DIJ=80 .
X

X TO PRINT @& LISTING OF SKOLTXT, USE *0UT/S SKOLTXT

Part 2
2240012 3.1-2 D-02



Sample COSGEN job (continued)

*.
¥. GENERATE #FTLIR
¥

UPDATE, P=FTLITBNL. I=@, C=CF ,F .

Cid, T=CF, L=L1BLS.ABORT.E.

CFT, I=CF.L=L1ELS,OFF=ECT.
FASSTGN, DN=CF . fa=FT17.

SKOL, I=FT17.L=LIBLS.

CFT: I=83KF , =0, E=5.

LDR, MAR=FULL, L=LIBLS, Nx .
RELEASE . DN=$FTLIR.

BUILD, 1=0,0BL =0, NBL=¢FTLIB,L=L.IBLS .
FEWIND. DN=3FTL 1B

DISPOSE, IN=LIELS., DC=ST., MF=LF .
FELEASE, DN=CFL .

REWIND, DM=CF .

REWIMND, DN=%ELD.

X.

4. GENERATE $SYSLIB

X.

UPDATE. P=SYSLBHL . [=0, C=CF,F.

CAL, I=CF . L=SYSLLE, S=#SYSTKT : COSTHT. ARORT. E .
CFT. I=CF.L=5Y5L5.0FF=ECT.

LDR, MAP=FULL., L=5YSL%, NX.

RELEASE, DN=%SYSLIR.

BUILD. I1=0.0BL=0, NEBL=#5YSL IR.L=5SYSLS.
REWIND, DN=#SYSILIE.

DISPOSE, DN=SY&LS, DC=ST, MF=LP .
REWIND, DN=CF .

REWIND, DN=$BL.D .

X.

X, GENERATE $SCILIE

Xx.
UFDATE, P=SCIL.BNL., C=CF . Q.

Cal_, I=CF.L=SCILS, ARORT.E.

REW [MND, DN=CF .

UPDATE . P=SCILENL.. C=CF, Q.
CFT.T=CF.L=SCILS. OFF=BCT.

LDR, MAP=FULI_, L=SCILS,NX.
RELEASE. DN=#5CILIB.

BUILD, I=@.0BL=0,NBL=$SCILIR,L=SCILS.
DISPOSE., DN=SCIL.S, DC=ST.MF=LP.
REWIND, DN=CF .

REWIND, DN=$BLD.

X.

X. GENERATE UPDATE

X.

UPDATE . P=PRODNL., C=CF , Q=UF, [=@.
CFT., I=CF,L=UDLS,OFF=BCT .
REWIND, DN=CF .

UFPDATE , P=PRODNL , C=CF, @=UC, 1=0.
CAl, I=CF,L=UDLS, ABORT.E.

LDR. AB=UPDATE , MAP=FULL, L=UDLS,NX.
REWIND, DN=UPDATE .

DISPOSE. DN=UDLS, DC=ST, MF=PS .
REWIND, DN=CF .

REWIND. DN=$BLD.

Part 2
2240012 3.1-3 D-02



Sample COSGEN job (continued)

X.

X. GENERATE CAL

X.

UPDATE , P=PRODML , C=CF ., Q=C, i=0.
CAL, I=CF,L=CLS,ABORT.E.

LR, AR=CAL , MAP=FULL, L=CL.S,NX.
REWIND, DN=CAL .
DISPOSE, DN=ULS, DC=ST . MF=PS.
REWIND. DN=CF .

FEWIND, DN=#BLD.

X.

X. GENERATE CFT

X
UPDATE., P=CFTNL, C=CF,Q=F, 1=92, xX=%.
CpL . I=CF,L=CFTLS.ABORT.E.

LDR. &B=CFT.NX.

REWIND, DN=CFT.

D1SPOSE, DN=CFTLS, DC=ST.MF=FS.
REWIND, DN=$BLD.

REWIND, DN=CF .

X.

Xx. GENERATE LDR
*

UPDATE , P=PRODNL. , C=CF , G=L_, 1=0.
cAL. I=CF ,L=LLS. ABORT.E .

LDR, AB=LDR, MAP=FULL , L=LLS,NX.
REWIND, DN=LDR . ,

DI1SPOSE ., DN=LLS, DC=ST, MF=PS..
REWIND, DN=CF .

REWIND, DN=$BLD .

X

X. GENERATE BUILD

¥

UPDATE . P=PRODNL , C=CF, Q=BF , [ =0,
CFT. I=CF.L=RL.S., OFF=ECT.

LDR, AB=RUILD, MAP=FULL,L=RLS,NX.
REWIND ., DN=BUIID.
DISFOSE. DM=BELS, DC=ST. MF=PS.
REWIND . DN=CF .

REWIND, DN=SBLD .

%,

X, GENERASTE. UNB

*.
UPDATE , P=COSNL, C=CF . Q=UN, 1=0.
CAL. I=CF,L=UNLS,ABORT.E.

LDR, AB=UNB , MAP=FULL , L=UNLS.Nx.
REWIND . DN=UNE .

DISPOSE , DN=UNLS, DC=ST . MF=CS .
REWIND. DN=CF .

REWIND. DN=$RLD .

k4

THE FOLLOWING ARE "IN ALPHABETICAL ORDER

GENERATE AUDIT
UPDATE , P=COSNL , C=CF , 0=AF , 1=0 .
CFT, 1=CF, L=AULS , OFF=BCT .

-

Part 2
2240012 3.1-4 D-02



Sample COSGEN job (continued)

REWIND, DN=CF .

UFPDATE, P=COSNL , C=CF , G=AC, I=0.
CAL, I=CF., L=AULS,ABORT.E.

LDR, AB=AUDIT, MAP=FULL . L=AULS,NX.
REWIND, DN=AUDIT .

DISPOSE, DN=AUDIT, DC=ST.MF=CP.
DISPOSE, DN=AULS ., DC=ST, MF=CS .
REWIND, DN=CF .

REWIND. DN=%BLD.

X.

X. GENERATE COMPARE

X

UFDATE ., P=COSML, C=CF , @=CM, [=0.
CFT. I=CF,L=CMLS.0FF=ECT.
REWIND, DN=CF .

UPDATE , P=COSNL., C=CF . @=CHMC, I=0.
CAL . I=CF.L=CMLS,ABORT.E.

LDR, AB=COMPARE . MAP=FULL , L=CML.S,NX.
REWIND . DN=COMPARE .

DISPOSE . DN=COMPARE . DC=5T . MF=CP .
DI SPOSE, DN=CMLS, DC=ST,MF=CS.
REWIND, DN=CF .

REWIND, DN=%BLD .

*.

X GENERATE COPYD

*.

UPDATE . P=COSNL, C=CF , @=CD, 1=0.
CFT, I=CF,L=CPLS.,0FF=BTC.

LLDR. AB=COPYD. MAP=FULL . L.=CPLS,NX.
REWIND ., DN=COPYD .

BISPOSE, DN=COPYD. DC=5T . MF=CP .
FEWIND, DN=CF .

REWIND, DN=$BLD .

x.

¥, GENERATE COPYF

X

UPDATE , P=COSNL., C=CF , Q=CF, I=0.
CFT. I=CF.L=CPLS,0OFF=BTC.

LDR., AB=COPYF . MAP=FULL.. L=CPRLS, NX .
REWIND, DN=COPYF .

DISPOSE ., DN=COPYF . DC=ST. MF=CP .
REWIND. DN=CF .

REWIND., DN=$BLD .

X.

X, GENERATE COPYR

X.

UPDATE . P=COSNL , C=CF . @=CR. I1=0,
CFT. I=CF,L=CPLS,OFF=BTC.

LDR. AB=COPYR . MAP=FULL_, L=CPLS, NX.
REWIND, DN=COPYR .

DISPOSE . DN=COPYR. DC=ST.MF=CP.
DISPOSE, DN=CPLS, DC=ST.MF=CS.
REWIND, DN=CF .

X.

X. GENERATE CSIM

X,

UPDATE, P=PRODNL . @=CSF . C=CF, [=0.

Part 2
| 2240012 3.1-5 D-02



Sample COSGEN job (continued)

UPDATE . P=PRODNL , C=CSIMTXT, Q=CSIMTXT, 1=0.
UPDATE . P=PRODML , C=CSIMMAC, G=CSTMMAC, 1=0.
SKOL, I=CF.L=C5LS.

CFT.I=%SKF.L=9.B=C3IMR.

RELEASE, DN=CF .

UFDATE, P=PRODNL., @=CSC. C=CF, [=0.

caL. 1=CF . L.=CSLS, B=CSIMR, ABORT. E, ON, LIST,LIS.
LDR. IN=CSIMR, N, L=CSLS, MAP=FULL , AB=CSIM.
FREWEIND, DN=CF . ’

REWIND, DN=CSIMR.

REWIND, DN=CSIMTXT .

REWIND ., DN=CS IMMAC .

REUIHL, DN=$BLD.

DI3POSE, DN=CSIMR, DC=ST, MF=PP .

DISPOSE, DN=CSIMTKT , DC=ST.MF=PP.

D SPOSE, DN=CS IMMAC . DC=ST. MF=PP.

DISPOSE, DN=CSLS, DC=ST. MF=PS5.

RELEASE, DN=CZ1IM.

X.

X GEMERATE DDC

*.
UPDATE , P=COSNL., C=CF, @=DDC, I=0.
AL, 1=CF, L.=DDCL.S.E.ABORT, S=COSTXT .
REWIND. DN=$ELD.

UNE. I=$ELD, O=DDC.
NISPOSE, DN=DDC. DC=ST, MF=CP .
D1SPOSE, DN=DDCLS, DC=ST, MF=CS..
REWIND . DN=CF .

REWIND., DHN=$BL.D.

X,

X GENERATE DEEUG

*.
LUPDATE , P=C0OSNL . C=CF , G=DBF , I=@.
CFT, I=CF,L=DELS, OFF=ECT.

REWIMND, DN=DEBUG.

LDR . AB=DEBUG, MAFP=FULL , L=DBLS. NX.
REWIND. DN=DEBUG.

DISPOSE . DN=DEBUG, DC=5T, MF=CP .
DI1SPOSE, DN=DBLS, DC=ST. MF=CS .
REWIND, DN=CF .

FEWIND. DN=$ELD.

*.

X. GENERATE DSDUMP

%

UFDATE . P=COSNL, C=CF, @=DD, I=0.
CAL, I=CF.L=DDLS, ABORT.E .

DR, AR=DSDUMP , MaP=FULL , L=DDLS, NX.
FEWIND, DN=DSDUMP .

DISPOSE, DN=DSDUMP, DC=ST . MF=CP.
DISPOSE, DN=DDLS, DC=ST., MF=CS.
REWIND, DN=CF .

REWIND, DN=$BLD.

X.

X, GENERATE DUMP

¥,

Part 2
2240012 3.1-6 D-02



Sample COSGEN job (continued)

LDR, AB=DUMP . MAP=FULL , ( =DML5, KX
REWIND , DN=DUMP .
DISPOSE., DN=DUMP . DC=ST . MF=CP .
DISPOSE. DN=DMLS., DC=58T, MF=CS.
REWIND, DN=CF .

REWIND, DN=#BLD.

X.

X. GENERATE EXTRACT

X :

UPDATE . P=COSNL . C=CF , G=EXF, =0
CFT. I=CF,L=EXLS.0FF=BTC.

REWIND, DN=CF .

UPDATE , P=COSNL., C=CF , Q=EXC, [=0.
CAL, I=CF.L=EXLS,ABORT.E.

LDR, AB=EXTRACT . MAP=FULL., L=EXLS, NX.
REWIND, DN=EXTRACT .

DISPOSE., DN=EXTRACT, DC=ST.MF=CP.
DISPOSE. DN=EXLS . DC=ST, MF=CS .
REWIND, DN=CF .

REWIND, DN=%BLD.

*.

X. GENERATE FDUMP

X.

UPDATE . P=FRODNL . C=CF . Q=FDF , I=0.
CFT. I=CF,L=FDLS.OFF=EBCT.

REWIND, DN=CF .

UPDATE . P=PRODML.. C=CF , @=FDC, 1=0.
CAL. I=CF.L=FDLS.ABORT.E.

LDR. AB=FDUMP , MAP=FULL_, L=FDLS.NX.
REWIND, DN=FDUMP .

DISPOSE ., DN=FDUMP, DC=ST . MF=PP .
DISPOSE., DN=FDLS, DC=ST, MF=PS.
REWIND, DN=CF .

REWIND. DN=$%$BLD.

X.

x. GENERATE .JCSDEF

*.

UFDATE . P=COSNL . 9=JCF . C=CF , [=8.
CFT., I=CF.l.=JCLS.QFF=ECT.

REWIND, DN=CF .

UPDATE , P=COSNL.. Q=JCC, C=CF, 1=0.
CAL, I=CF,L=JCLS, ABORT. E, S=COSTXT : $SYSTXT.
LDR. AB=JCSDEF , MAP=FULL . L=JCL 5. NX .
REWIND, DN=JCSDEF

DISPOSE . DN=JCSDEF , DC=ST, MF=CP .
DISPOSE ., DN=JCLS, DC=ST, MF=CS .
REWIND; DN=CF .

REWIND., DN=$BLD .

X

b S GENERATE PDSDUMP

X.

UPDATE, P=COSNL . C=CF, @=FD. [=0.
CAL , I=CF ., S=COSTXT : $SYSTXT. L.=PDLS ., ABORT .E.
LDR., AB=PDSDUMP ; MAP=FULL , L=PDL.S, NX.
REWIND, DN=PDSDUMP .

DISPOSE , DN=PDSDUMP; DC=8T, MF=CP .
DISPOSE, DN=PDLS, DC=ST, MF=CS
REWIND DN=CF

Part 2
2240012 3.1-7 D-02



Sample COSGEN job (continued)

FELHIMD, DN=#BLD.

X.

X. GENERATE PDSLOAD
X
UFDATE , P=COSML., C=CF , Q=PL, [=0.

CAL . [=CF ., S=COSTXT : $5YSTXT,L=FLLS,ABORT,E.
LDR ., AB=PDSLOAD, MAP=FULL . L=PLLS, NX.
REWIMND, DN=PDSLOAD.

DISPOSE, DN=FPDSLOAD, DC=ST. MF=CP .

DISPOSE, DN=PLLS, DC=ST. MF=CS.

REWIND, DN=CF .

REWIMND, DN=%BLD.

X

X. GEMERATE SKIPD, SKIPF., SKIPR

X
UPDATE , P=COSNL., C=CF , @=8K, [=0.

CAL ., I=CF.L.=SKLS.,ABORT.E.

LDR, AB=SKIFD, T=SKIPD, MAP=FULL , L=SKLS,NX.
LDR. AE=SKIPF ., T=SKIPF . NX.

LDR, AE=SKIPR, T=SKIPR,NX .

REWIND, DN=SKIPD.

DISPOSE, DN=SKIFD. DC=ST., MF=CP.

REWIND, DN=SKIFF .
DBISPOSE, DN=SKIPF . DC=ST. MF=CF .

REWIND, DN=SKIPR.

DISPOSE . DN=SKIPR, DC=ST., MF=CP .

DISPOSE, DN=SKLS, DC=5T . MF=CS .

REWIND, DN=CF .

REWIND, DN=%BLD .

X.

X, GENERATE STATS

X

UPDATE, P=COSNL , C=CF , @=5TATS, 1=@.
CFT., 1=CF.L=8TATSLS,OFF=BCT.

LDR. AE=STATS, MAP=FULL . L=STATSLS, NX.
REWIND, DN=STATS.

DISPOSE, DN=STATS, DC=ST. MF=CP.
[ISPOSE, DN=STATSLS, DC=ST, MF=CS.
FEWIND, DN=CF .

“EWIND, DN=$ELD .

X.

X. GENEFATE WRITEDS

X.

UPDATE , P=COSNL., C=CF , Q=WD, 1=0.

CaL, I=CF.L=WDLS, ABCORT.E .

LDR, AB=WRITEDS, MAP=FULL , L=WDLS,NX.

REWIND, DN=WRITEDS .

DISPOSE. DN=WRITEDS, DC=5T, MF=CP.

DISPOSE, DN=WDLS, DC=8T . MF=CS.

FEWIND, DN=CF .

REWIND. DN=$BLD.

X,

¥ GENERATE COS — THIS IS THE LAST STEP IN BINARY GENERATION
X.

UPDATE. . P=C0OSNL., C=E.G=E, I=0.

UPDATE . P=COSNL.. C=8.Q=5, [=0.

UPDATE ., P=COSHL.,C=J,Q=J, [=@.

2240012 Part 2 D-02



Sample COSGEN job (continued)

CAL. 1=E. B=BE, S=C0STXT, L=ELS, L 1.5, ABURY., E, SYM=EXECSYM,
CAL . 1=5,B=BS. S=COSTXT.L=SLS.L15.ABORT. E, SYM=STPSYM,
CAL. I=J, B=%BLD, S=COSTXT : #SYSTXT.L=JLS.L.IS.ABORT.E.
LDR. DN=$%BLD, AB=BJ, MAFP=FULL . L=JL5.NX.

REWIND, DN=BE .

FEWIND, DN=ES .

REWIND, DN=EJ.

FEWIND., DN=EXECSYM .

REWIND. DN=STPS5YM.

UHE, I=BE, 0=CC0S.

LUNB., I=BS. 0=C0OS.

LUNB, I=BJ. 0=C0S .

DISPOSE., DN=COS, DC=5T, MF=CS.

DISPOSE, DN=EXECSYM, DC=ST.MF=CS .

D ISPOSE. DH=STPSYM. DC=5ST . MF=CS.

DISPOSE. DN=ELS. DC=ST.MF=CS.

DISPOSE. DN=SLE., DC=8T . MF=CS.

DISPOSE. DN=JLE, DC=ST ., MF=CS .

*.

X. GENERATE SEPARATE STP TASK LISTINGS
X,

FPELIND, DN=S.

CAL., I=8, 5=COSTXT, B=0, NXNS,E,L1S,LIST=TAB. L=TARLS.
DISPOSE, DC=ST., DN=TABLS . MF=CS.

FEWIND, DN=5.

CAL.. I=8,5=COSTAT, B=0.NXNS,E.L1S. LIST=COM. L=COMLS .
DISPOSE, DC=5T., DN=COMLS, MF=CS.

REWIND, DN=5

CaL, I=8, 5=COSTXT, B=0, NXNS,.E. LIS, LIST=CI10: TIO, L=TIOLS.

DISPOSE, DC=ST, DN=TIOLS, MF=CS.
REWIND. DN=5 .
CAL., I=5, S=COSTXT. B=0. NXNS . E. LIS, LIST=STP: 2. L=ZLS.
DISPOSE. DC=ST. DN=ZL5 . MF=C5.

“WIMND, DN=S.
Cril_, I=5,5=COSTAT, B=0, N¥NS,E, LIS, LIST=8CP, L=SCPLS.
LISPOSE, DC=5T, DN=SCPFLS. MF=CS .
FEWIND.DN=S.
CAlL, [=5, 5=COSTXT, B=0, N¥NS,E. LIS, LIST=EXP, L=EXPLS.
DISPOSE. DC=ST. DN=EXPLS. MF=C5.
REWIND, DN=5 ,
CAL., I=5.5=COSTKT. B=A,NXNS.E. LIS, LIST=PDM, L=PDML.S .
DISPOSE., DC=ST, DN=PDML.S . MF=CS.
REWIND., DN=5.
CAL; I=S, S=COSTXT, B=0,NXNS, E, LIS LIST=DAM, L=DOMLS .
DISPOSE, DC=ST, DN=DQMLS , MF=CS .
REWIND . DN=S .
CAL.. I=5, S=COSTXT. B=0,NXNS. E, LIS, LIST=MSG, L.=MSGLS.
DISPOSE, DC=ST, DN=MSGL.S ., MF=C¥.
REWIND. DN=5.
Crl_, I=8., S=COSTXT, B=0,NxXNS, E,L1&, LIST=MEP. L=MEPLS.
DISPOSE. DC=ST. DN=MEPL.S . MF=CS.
REWIMD . DN=S .
CAL, I=8,5=COSTXT. B=0, NXNS,E,LIS.LIST=5PM, L=SPMLS .
DISPOSE, DC=ST. DN=SPMLS. MF=CS.
REWIND,.DN=S.
CAL., [=5, S=COSTXT, 5=0, NMNS . £, LIS, L ISTeJSH, L=JSHLS .
DISPOSE. DC=ST., DN=USHL.S. MF=CS .

Part 2

I 2240012 318

D-02



Sample COSGEN job (continued)

REWIND, DN=5 .
CAL., I=5,5=COSTXT,B=0,N¥NS,E. LIS, LIST=DEC. L=DECLS.
DISPOSE ., DC=ST, DN=DECL S, MF=CS .

¥ DISPOSE BINARIES NOT ALREADY DISPOSED

DIEPOSE, DN== fFTLIE DC—”T MF LP
DISPOSE, DN=$SYSLIB, DC=ST.MF=LP.
DI“POVE DN= $\LILIB Df~<T MF LP.

"ZEIMAﬁLD&éTMFPP
£ DN=L DR, DC=ST , MF=PP .
DISPOSE , DN=UPDATE , DC=ST, MF=PP .
DISPOSE, DN=BUILD, DC=ST, MF=FP .
DISPOSE , DN=CFT, DC=ST . MF=FF .
DISPOSE , DN=UME , DC=ST , MF=CP .

*

¥ DISPOSE Al MNEW PROGRAM LIBRARIES

X THE PROGRAM LIBRARIES ARE TO BE DISPCSED ONLY AFTER THE REST
¥, OF THE JOB HAS RUN SUCCESSFULLY

.

DISPOSE, DN=FTLIENL , SDH=FTLIBPL , DC=ST.MF=LF.

DISPOSE ., DN=SCILENL , SDN=SCILEBFL , DC=ST.MF=LP.

DISPOSE ., DN=SYSLENL , SDN=5YSLEPL . DC=5T. WF=LP.

DISPOSE , DN=PRODML , SDN=PRODPL , DC=ST, MF=FF .

PIEPCEE, DM=CFTHL_, SDH=CFTPL_, DC=ST. MF=FP .

DISPOSE , DN=COSHL , SDN=CO3ZPL., DC=ST . MF=CF .

¥.

kA

X.

EXIT.

JEQF

¥C I1SAMAX. ICAMAX. SASUM, SCASUM, SAXPY ., CAXPY, SCOPY ., CCOPY. SDOT, CDOT
*C SNRMZ ., SCNRMZ, SROT, SROTG. SROTM, SROTHG, SSCAL , CSSCAL , C5CAL , SSWAP ., CSWAP
¥C MXMA,MINY. CRFFTZ. RCFFTZ. PACK . UNPACK , FILTERS, FILTERG, SSUM. CSUM
¥C MxM, SCATTER, GATHER, CROT., CROTG., CFFTZ., SCERP., 1SMaX, ISMIN

~EOF

*¥C OFFILT

SEOF

Part 2
2240012 3.1-10 D-02



4.1

DGS SOFTWARE GENERATION

PROCEDURE

The following steps provide for generating the Eclipse local station
(STAT.<OL,SV> and STATF.<OL,SV>), the concentrator (CON.<OL,SV> and
CONF.<0L,SV>), the remote station (REM.<OL,SV> and REMF.<OL,SV>),
the CRAY-1 simulator (SIM.<OL,SV> and SIMT.<OL,SV>), and the CRI-
supplied Eclipse utilities.

1.

Create a directory for station generation:
(a) CDIR STAT )

(b) DIR STAT )

2. load procedure, command, and source files from the DGS software
release tape:
(a) Mount the release tape on unit O.
(b) INIT MTp )
(c) DPP:LOAD/V MTP:(0,1,2) )
(d) Release MTP
3. Generate the station and simulator using the following procedures:
(a) LOGON ST )
(b) SUBMIT STATJOB )
(c) GENERATE' )
NOTE
Wait until STATJOB has completed and trans-
ferred station files before typing GENERATE.
4. Generate the Eclipse utilities using the procedure file:
(a) uTILITYT )
5. If desired, save the files on tape using the procedure file:
(a) LOGON ST )
(b) SUBMIT GETPL )
(c) TAPE" )
(d) LisTING' )
¥ Responds appropriately to any prompts output by the procedure files
Part 2
2240012 4.1-1

D-02



2240012

4.2 LISTINGS

Listings of the procedure files used in the station generation follow:

4.2.1 GENERATE.MC

MESSPGE :
MESSAGE “ THIS PROCUDURE GENERATES ALL VERSIOMS OF THE ECLIFSE"
MESSAGE " STATION ANDG THE SIMULATOR STATION:

MESSAGE

MESSAGE " CON.<OL SU> BACKGROUND CONCENTRATOR. “

MESSAGE " CONF.<OL SU>  FOREGROUND CONCENTRATOR. "

MESSAGE " REM. <OL SU> BACKGROUND REMOTE STATION. “
MESSAGE " . REMF.<OL SV>  FOREGROUND REMOTE STATION. "
MESSAGE " STAT.<OL SU>  BACKGROUND LOCAL STATION. ™
MESSAGE STATF.<OL SY>  FOREGROUND LOCAL STATION. *
MESSAGE " SIM.<OL SU> CRAY-1 JOB SIMULATOR. "

MESSAGE " SIMT.<OL SV>  CRAY-1 SIMULATOR. ™

MESSAGE, ,

MESSHGE * THE GENERATION PROCEDURE TAKES 4 HOLRS.

MESSAGE ,
MESSAGE “ JOB STATJOB MUST BE RUN AND COMPLETED BEFORE CONTINUTING"
MESSAGE

MESSAGE/P “ IF YOU WISH TO STOP NOW, PRESS CTRL-A. OTHERWISE"
UNLINK — — :
ZMDIRY: LINKS -

UNLIMK MAC. PS '

GTOD

DELETE L$-.LS

OUT/S (BL$SOURCE. FLE). <BL, SR>
OUT/S L$GLOBA. BL L$GLOBA. SR
DELETE L$— BL

MAC/F/L/N L$GLOBA MHCE. PS/T
MAC/S  L$GLOBA MACE.PS/T
DELETE L$MAC. PS

RENAME MAC.PS L$MAC. PS

GTOD

MESSAGE

MESSAGE “ GENERATING SLA LIBRAR
MESSAGE

BSLA. CMB

GTOD

MESSAGE

MESSAGE " ASSEMBLING  CONCENTRATOR ROUTINES.
MESSAGE

DELETE C$-.LS

QUT/S (BCHOUT. FLB). <BL, SR>

OUT/S C$GLOBA. BL. C$GLOBA. SR
DEXETE C$—-. BL

MARC/F/L/N C$GLOBA L$MAC. PS/T
MAC/S C$GLOBA L$MAC. PS/T
DELETE CHMAC.FS

RENAME MAC. PS. CSMAC. PS
BCHLINKS. CM2

Part 2
4.2-1

C-03



MAC/F /L (RCEZ0URCE FL@) C#MAC PS/T
MAC/F AL ZLADF/S (CHCONFI,CE#SLAY CEMAZ .PSAT
UNLINK C8- SR

DELETE C¢- SF

GTOD .

OUT/S (AFE0UT FL®)  <BL.SE>

OUT72 REGLOBA . EL REGLORA . SR

DELETE R$- EL

MAC/F - LoN REGLOEBA C®HAC. PS/T

MAC~5 FEGLOBA CHMAC . PS/T
DELETE REMAC P2

FEHAME MAC . PS REMAC PSS
ERELINKE . C@

MEC/F /L (ERESOURCE FLE) REMAC FPS/T
UNLINK RE-.SF

DELETE Rg$-.SR

GTOD

MESSAGE

GE " ASSEMEBLING CRAY-1 SIMULATOR ROUTIMNES. "
yGE

DELETE T$~.LS

QUT/S (@TEOUT FLE)  <EL.SR>

OUT/S TH#GLOEA . EBL THGLOEA . SR

DELETE T¢—.EL

MAC/F LN TEGLOBA LEMAC . PSAT

MACAS TH#GLCOBA LBMAC PS/T
DELETE T#MaC . FPS

RENAME MAC . PSS THMAC .PS

TR IHKS . Cha

MAC-F-L (@TESCURCE FL@) TH#MAC . PS/T
UNLINK T$-.SE

DELETE T%-.SR

GTOD

MESSAGE

MESSAGE " ASSEMELING JOB SIMULATOR ROUTINES."
MESSAGE

DELETE S#%-.LS

OUT/S (@SEOUT FLE) . <BL.SR>

OUT-S S#GLOEA.BL SEGLOEA . SR

DELETE S$-.BL

MACF - L/N SEGLOEA THMAC.PS/T

MBCoS SEGLOBA TEMAC . PS/T
DELETE S$MAC.FS

FENAME MAC.PS S$MAC . FS

@Sl INKS . @

MAC-F /L (@5$SOURCE .FL@) SEMAC . PS/T
UNLINK S¢— . SR

DELETE S$%- SR

GTOD

MESSAGE

MESSAGE " ASSEMBLING STATION ROUTINES .M

Part 2 -
I 2240012 4.2-2 Cc-03



MESSAGE
M F /L (RLESOURCE FLE@) LEMAC PS-T

MESSAGE " LOADING LOCAL STATION. ™
GE

@_EITAT . Chi@

=L ESTATE . CH@

DELETE L$-.5R

GTOD

MESSAGE

HAE E Y LOADING REMOTE STATIONY
MESZAGE

FREREM . CH@
EREREMF . CH@

GTOD
MESSAGE
MESSAGE " LOADING CONCENTRATOR

MESSAGE
BCHECON . CHME
BCETONF . CHME@

] CRAY-1 SIMULATOR"
GE

ETHESIM . ClR

GTOD

JOE SIMULATORY

GE
MESSAGE " SIMULATOR AND STATION GENERATION IS COMPLETE . "
MESSAGE

2240012 part 2 C-03



4.2.2 UTILITY.MC

DELETE UTILITY.SC

MESSAGE
MESSHGE
MESSAHGE
MESSAGE
MESSAGE
MESSRGE
MESSAGE
MESSAGE
MESSAGE

* THIS PROCEDURE GENERATES ALL OF THE ECLIPSE UTILITIES:™

i

BLOCK CcAL DMP D ouT"
RDF READ RESET UPDATE  XFERC"
AOSLOD cup"

JOB STATJOB MUST BE RUN BEFORE CONTINUTING"

MESSAGEZP " IF YOU WISH TO STOP NOW, FRESS CTRL-A. OTHERWISE “

MESSAGE

UNLIMK ~ -

%MDIR%: LINKS

OUT-S (BUTILOUT FLE). <BL, SR>
DELETE (BUTILOUT.FL2). LS

MESSAGE

MESSAGE “ ASSEMBLING £0"

MESSAGE

MAC-F/L ED

MACE. PS-T

UNLINK EDF. s
DELETE EDF.MP

RLDR/A“E-P

MESSAGE

254,22 1780a-F ED EDF.SU/S ED.MP/L

MESSAGE " ASSEMBLING XFERC"

MESSAGE

MAC/F -1 XFERC MACE.PS-T
UNLIMK XFERC. SU

DELETE XFERC. MP

RLOR/A/E-P KFERC XFERC.MP-L

MESSAGE
MESSAGE
MESSAGE
MAC/F 7L
MAC/F~L.

"ASSEMBLING OUT"

OUT MACE.PS-T
CUD MACE.PS/T

UNLINK OUT.SY
DELETE OUT.MP
RLDR-AZE-P OUIT CUD OUT. MP/L

MESSAGE

MESSAGE. " ASSEMBLING READ"

MESSAGE

MAC/F /L READ MACE. PS/T
UNLINK READ. SV

DELETE RERD.MP

RLOR/A/E/P READ RERD MP/L

MESSAGE

MESSAGE " ASSEMBLING CAL "

MESSAGE

2240012

C-03



MaT AL CALD, @ 1, 2, %) MACE PSAT
DHLIME CAL Qi CAL SV

LDELETE CAL.MP

RLTF-A-/E-F AL CALY [CALR, CALL, CALZ] CAL . MP/L
MAC-F.-L CRLCREF MACE PS-T

UMLIM CREF. =M

LELETE CALCREF.IMF

FL DR A-E-/F CAL_CREF CREF . SU-S CALCREF . MP/L

" ASSEMBLING BLOCK "

LIHL I BLOCH, SU

DELETE BLOCKLMF

RLDR-A-E-F BLOCK BLOCK. MP/L
SE

MESSAGE " ASSEMBLING UFDATE

MAC/F/L UPDATE MACE PS/T

UNLINK UPDATE. SU

DELETE UFDATE. MP

RLDOR-AE-F UPDATE UPDATE. MF/L

ME SSAGE

MESSAGE " ASSEMELING DMP"

MESSAGE

MAC/F /L DMP MRCE. PS/T

UMLIMHE TP, S

DELETE DNF. 1P

RLOR-A/E-F [MP OMP . MPAL

MESSAGE

MESSAGE " ASSEMELING AOSLOD"

MESSAGE

MAC/F-L ADSLOD MACE PS/T

UMLINK ADSLOD. SU

DELETE ADSLOD. MP

RLDR/A/E/F AOSLOD 18-K AOSLOD. MPAL

MESSAGE

MESSAGE " ASSEMBLING RDF"

MESSAGE

MAC/F /L FDF MACE. PS-T

UNLIMK RDF. SV

DELETE RDF . MP

RLDR-A-E-F FOF ROF MP/L

MESSAGE

MESSAGE " ASSEMBLING RESET"

MESSAGE

MAC/F /L RESET MACE. PS/T

UNLINK RESET. SV

DELETE RESET. MP

FLOR-A/E-F RESET RESET. MP/L

DELETE (RUTILOUT FLE) BL

DELETE (EUTILOUT FLE) RE

OELETE (RUTILOUT FLE) SR

MESSAGE
cE ¢ UTILITY GEMERATION 1S COMPLETE

‘ Part 2
2240012 2o

c-03



4.2.3 TAPE.MC

MESSAGE
MESSAGE " THIS PROCEDURE GENERATES A TAPE CONTAINING ECLIPSE UTILITY"
MESSAGE " GEMERATION FILES.

MESSAGE :

MESSHGE. FILE 8@ — PROCEDURE FILES WHICH GENERATE THE ECLIPSE UTIL-"
MESSAGE ITIES. "

MESSAGE. ™ FILE 1 — ECLIPSE UTILITIES AND COMMAND FILES. THIS FILE"
MESSAGE IS A COPY OF FILE 9 ON THE DEADSTART TAPE. ™
MESSAGE ™ FILE 2 — STATION PROGRAM AND UTILITY PROGRAM PL'S. "
MESSAGE FILE 3 — LOAD MAPS.

MESSAGE FILE 4 — LIBRARY FILES, BINARY FILES, AND SYMBOL TABLES,
MESSAGE - * AND SLA SOURCE FILES. ™

MESSAGE FILE 5 - A COPY OF FILE 8. "

MESSAGE FILE 6 — A COPY OF FILE 1."

MESSAGE FILE 7 — A COPY OF FILE 3. "

MESSAGE " FILE 8 - A COPY OF FILE 4. "

MESSAGE '

MESSAGE ASSEMBLY LISTINGS ARE ON A SEPERATE TAPE. "

MESSAGE

MESSAGE " TAPE GENERATION TRAKES 28 MINUTES. ™

MESSAGE

- MESSAGE " IF YOU WISH TO STOF NOW, PRESS CTRL-A.  OTHERWISE"
EQUIU-P TAPE MT@

INIT TAFE

GTOon :

DUMP-/AKAA) TRPE: @ CHCON. CM CHCONF . CM CSLINKS. CM CHOUT.FL RBOUT.FL ~
CHSOURCE . FL. GENERATE. MC UTILOUT{FL STATJOB ~
L$SOURCE.. FL. L$STAT.CM L$STHTF.CM LISTING.MC ~
REI_INKS. CM R$REM. CM RSREMF. CM R$SOURCE. FL. —
S$LINKS. CM S$SIM. CM S$SOURCE.FL T$OUT.FL S$OUT.EL. ~
SLA. CM T$LINKS.CM T$SIM. CM T$SOURCE.FL —
TAPE.MC UTILITY.MC GETPL

DUMP-AAC/Y TRPE: 1 BCRI.FLE

DUMPAAKAJ TAPE: 2 STATPL

DUMP/A/KA) TAPE: 3 — MP

DUMP/A-K-Y TAPE: 4 - RB ~-LB —. PS SLA-.SR.

DUMP/A/KAY TAPE: 5§ C$HCON. CM CHCONF. CM CSLINKS. CM C$OUT. FL R$OUT.FL ~
C$SOURCE . FL. GENERATE. MC UTILOUT.FL STATJOB ~
LESOURCE . FL. L$STAT. CM LSSTATF.CM LISTING. MC ~
R$LINKS. CM R$REM. CM R$REMF.CM R$SOURCE.FL = .
SHLINKS. CM S$SIM.CM SESOURCE. FL T$OUT.FLL S$OUT.FL ~
SLA.CM T$LINKS. CM T$SIM. CM T$SOURCE.FL ~
TAPE. MC UTILITY.MC GETPL

P AKA) TAPE: B BCRI.FLE

DUMP/AAKA) TAPE: 7 —. MP

DUMP/A/K-Y TAPE: B -~ RB ~.LB -~ PS SLA-.SR

RELFASE TAPE

GTOD

MESSAGE

MESSAGE. “ TAPE GENERATION IS COMFLETE."
MESSAGE

Part 2



4.2.4 LISTING.MC

MESSAGE
MESSAGE
MESSAGE
MESSAGE

MESSAGE
MESSAGE *
MESSAGE "

MESSASE
MESSAGE

MESSHGE

MESSAGE

MESSAGE ™

MESSAGE
MESSAGE
EQUIV-P

" THIS PROCEDURE GENERATES A TAPE CONTAINING UTLLITY AND™
" STATION LISTINGS: ™

FILE
FILE
FILE
FILE
" FILE
' FILE

[0 I S A S T |

UTILITY ROUTINES. ™
LOCAL STATION. "
SLA ROUTINES. ™
CONCENTRATOR .
FEMOTE STATION.
SIMULATOR.

TAFE GEMERATION TAKES ZB MINUTES.

" IF YOU WISH TO STOP NOW, FPRESS CTRL-A.  OTHERWISE®

TAPE MTB

INIT TAPE

GTOD

DUMP-A/K-Y TAFE:

]

BLOCK. LS CALL, @8, 1,2, X,CREF>. LS DMP.LS ED.LS QUT.LS ~

FOF. LS READ.LS RESET.LS UWPDATE. LS XFERC LS ADSLOD. LS

DUMF/AKAYU TAPE: 1 L. LS
ouMR AAKA) TARE: 2 SLA-. LS
DUMP ARKAS TAPE: 2 CF-. LS
DUMP-AKAAY TAPE: 4 F3—. LS
DUMP A-KAU TAFE: & S$—. LS T$-.LS
RELEASE TAFE
GTOD
MESSAGE
MESSAGE " TAPE GENERATION IS COMPLETE. "
MESSAGE
2240012 part 2

C-03



Part 3

SYSTEM STARTUP
AND RECOVERY



CONTENTS \
PART 3 SYSTEM STARTUP AND RECOVERY

1. COS SYSTEM STARTUP . v v v v v v v e e v e vt e e e e e s
1.1 PARAMETER FILE . . & v v v v v v v 0 v v 0 v o v o o

.1 Startup mode parameters . . . . . < . . . . . .

.1.13 Boot control parameters . . . . . . « . « ¢ .« .

1.2 STARTUP PROCEDURE . .+ & v v v ¢ ¢ e o v o o o o o o o
1.3 ZL0G . & v v vt e e e e e e e e e e e e e e e e e e
1.4 SYSTEM LOG MESSAGES . . . . « ¢« v v v v ¢ v v o v o« v &
2. SDR INITIALIZATION . & & & v v v ¢ o o v o o o o o o o o o o o
SYSTEM DUMP PROCESSING . . + & ¢ v & o o o v v o o v o o o o o
3.1 SYSTEM DUMPING. . v v v v v 4 v o o v o o o o o o o o o o
3.1.1 DUMP - Dump through Data General Station. . . .
3.1.2 DDC - Dump to CRAY-1 disk . . . . . « « . « . .

3.2 SYSTEM DUMP FORMAT . & v v v v 4 o e v o o o o o o o o o
3.2.1 Dump format from Data General dump. . . . . . . . .

3.2.2 Dump format from dump to disk . . . . . . . . .

Part 3
2240012 iid

.10 Permanent dataset recovery parameters . . . . .
.11 System Directory recovery parameter . . . . . .
.12 Job class structure parameters. . . . . . . . .

1

1.1.2 Enter memory parameters . . . . . « . « « « . .
1.1.3 Breakpoint selection parameters . . . . . . . .
1.1.4 END parameter . . .« & ¢ ¢ ¢ ¢ ¢ v ¢ o o 4 o o @
1.1.5 CRAY-1 memory size parameter. . . . . . . . . .
1.1.6 Device parameters . . « . ¢ ¢« v ¢ ¢ « v + ¢ o
1.1.7 Disk flaw parameters . . . v v v v v v v o . .
1.1.8 Dump control parameters . . . . . « « « .« ¢« « .
1.1.9 Rolled job recovery parameters. . . . . . . . .
1.1

1.1

1.1

1

N
w NN -

D-02



4, RECOVERY OF ROLLED JOBS. . v & & v ¢ v v v v v v v v v o o o o 4-1
4.1 INTRODUCTION. . v ¢ v v 4 ¢ o o o o o o o o o o o o o o o = 4-1
4.2 ROLLED JOB INDEX DATASET. . ¢ v ¢ ¢ ¢ v ¢ v v v o o v o o 4-1
4.3 RRJ SUBROUTINE . & v v v v v v o v v e o v o o o o o o o 4-4

4.3.1 RRJ execution during Install. . . . . . . . . . .. 4-4
4.3.2 RRJ execution during Deadstart. . . . . . . . . .. 4-5
4.3.3 RRJ execution during Restart. . . . . . . . . . . . 4-5
4.4 JOB RECOVERY. . & & ¢ v 4 v v o o o o o o o o o o o o o o o 4-6
4.4.1 Index entry validation. . . . . . . . .+ o . o . . 4-6
4.4.2 Roll dataset validation . . . . . . . . . . .. .. 4-6
4.4.3 DAT validation. . . . . ¢« ¢ v v ¢ v v v 6 o 0 e . . 4-7
4.4.4 Dataset reservation . . . . . . . . 00000 . 4-8
4.4.5 Pseudo-access of permanent datasets . . . . . . . . 4-9
4,4.6 Resource deallocation . . . . . ¢« ¢ ¢« ¢ ¢ ¢ o ¢« o . 4-9
4.4.7 Job recovery completion . . . . . . . . . . o . .. 4-9
4.5 TERMINATION OF RRJ. . . . . . . . . L 4-10
4.6 MESSAGES FROM RRJ & v v ¢ ¢ ¢ v v ¢ ¢ v o o o o o o o o o = 4-10
4.6.1 Messages during $ROLL processing. . . . . . . . . . 4-10
4.6.2 Job-related mesSsSagesS. « v ¢« ¢ ¢ ¢ o 4 e e e e e .o 4-11

5. RECOVERY OF THE SYSTEM DIRECTORY . . « « v ¢« v ¢ v ¢« o o v o o & 5-1
5.1 INTRODUCTION. . ¢ & ¢ v 4 v v v v o v o o o o o o o o o o @ 5-1
5.2 SYSTEM DIRECTORY DATASET. + v v ¢ ¢ v ¢ v v v o o o o o o @ 5-1
5.3 SDRREC SUBROUTINE . « &« v & ¢ v v o v o ¢ o v o o o o o o & 5-2

5.3.1 File allocation . . . . ¢« ¢ v v ¢« v v ¢ ¢ o« o v o & 5-2
5.3.2 SDR FECOVErY. v v« v o o o o o o o o o o o o o o o o 5-2
5.3.3 No recovery specified . . . . . . . . . . o 0. . 5-3
5.3.4 Changes in the number of SDR entries. . . . . . . . 5-3
5.4 MESSAGES FROM SDR RECOVERY. . . « ¢ ¢ ¢« ¢ v v ¢ v o o o o & 5-3
5.4.1 Messages issued by SDR recovery . . . . . . .+ « . . 5-3
Part 3
2240012 iv

D-02



COS SYSTEM STARTUP 1

1.1 PARAMETER FILE

A parameter file must reside on the Eclipse disk in order for the COS
system to be started via the STARTUP command issued at the Eclipse

station.

The parameter file is generated under RDOS by the operator or an analyst
and contains one record per parameter. One method of generation could
be to punch the parameters onto cards and then transfer the cards to an
Eclipse file. The STARTUP command assumes that the name of this file
will be COSPAR, by default.

A parameter record consists of an asterisk, a parameter verb (except for
memory entry parameters), and arguments as required by the verb. Arguments
are separated from each other and from the verb by commas. Except for
asciidata (see section 1.1.2), the first space encountered is considered
the start of a comment and ends the effective portion of the parameter
record. Each parameter record, including any comment portion, is
terminated by an ASCII carriage return code, 015g.

1.1.1 STARTUP MODE PARAMETERS

Formats:

*INSTALL
*DEADSTART
*RESTART

These parameters are mutually exclusive. Each selects one of the startup
modes. The last parameter encountered is used. None of these parameters
has any arguments. The default startup mode if no parameter file is
present is determined by an installation parameter. If there is a para-
meter file, however, one of these parameters must be specified.

2240012 1-1 C



For *INSTALL, COS is started as if for the very first time. Al1 CRAY-1
mass storage is assumed to be vacant and the DSC and device labels are

initialized.
For *DEADSTART, COS is started as if after a normal system shutdown.

For *RESTART, COS is started as if after a system interruption.

Jobs that were in execution and the job class structure that was in effect
at the time of the interruption may be recovered in progress at operator

option.

1.1.2 ENTER MEMORY PARAMETERS

The parameter file can contain any number of the following parameters
presented in the forms noted. If two or more parameters change the same
parcel, the last one encountered is valid.

*addr Stores 64-bits of zero at address addr.

* addr,data Stores octal value right adjusted with zero fill
at word address addr.

*addr,L data Stores octal value left adjusted with blank fill
at word address addr.

*Aaddr,asciidata Stores ASCII data right adjusted with zero fill:
at word address addr.

*addr,p,data Stores octal value right adjusted with zero fill
at parcel p of word addr.

addr Word address in octal. However, if the characters A,
B, C, or D appear in the address, they are each
interpreted as a 2-bit binary value of 00,01,10, and
11, respectively. The occurence of A, B, C, or D in the
address does not designate a parcel address. A command
consisting of only the address causes zeros to be stored
in the word.

2240012 1-2 D-02



data

Ldata

asctidata

2240012

Octal data. For convenience in entering parcel
addresses, the characters A, B, C, and D can appear in
the data and are interpreted as binary 00, 01, 10, and
11, respectively. For word entries, bits beyond the
64th are truncated. For parcel entries, bits beyond
the 16th are truncated. Truncation is from left to
right. Fewer than 64 bits (or 16 bits for a parcel)
are stored right adjusted with zero fill.

Resembles data; however, the presence of L before the
octal data causes data to be stored left adjusted with
zero fill. The leftmost digit must be 0 or 1.

A string of not more than 8 ASCII characters. ASCII
data is stored right adjusted with zero fill. Data is
interpreted as ASCII characters when an A precedes the
word address.

Parcel designator (A, B, C, or D). Only 16 bits of
octal data will be stored. The comma separating the
designator from the address is required. Left adjust
and ASCII data features are not supported.



1.1.3 BREAKPOINT SELECTION PARAMETERS

There exist two methods of setting breakpoints during system Startup:
*EBP and *DEBUG. The *DEBUG command is specifically intended for use
in debugging Startup; *EBP may be used to debug any portion of STP,
including Startup.

*EBP sets a breakpoint in any STP-relative parcel address. This may
include any address within Startup.

Format:
*EBP ,n ,paddr
Parameters:
n Number of breakpoint (0-7)

paddr Parcel address relative to STP; must be terminated by
A, B, C,orD

*DEBUG allows Startup to calculate and set a breakpoint automatically.
This breakpoint is set at the entry point to the specified Startup
option (Install, Deadstart, or Restart) and may be used to halt Startup
without requiring changes to the parameter file each time the system is
reassembled. The S registers contain an ASCII message informing the
operator that the breakpoint was set due to a *DEBUG card rather than
due to parameter file errors.

Format:

*DEBUG

The *DEBUG command performs the same function as the following command,

where nnnnp equals the address of ZINSTALL, ZDEAD, or ZRESTART:
*EBP,1,nnnnnp

*EBP and *DEBUG may be used in the same parameter file, but if *DEBUG is

present, breakpoint number 1 may not be used on a *EBP parameter within

the same parameter file.

2240012 1-4 c-01



Note that when breakpoints are placed in Startup, some special problems
arise. Since breakpointed code must be restarted by commands from the
operator station, the breakpoint must occur after SCP has been initialized.
It is then possible to log on while Startup is waiting at a breakpoint.
Because SCP allows output datasets to be transferred to the station even
though Startup is not complete, STAGE OFF must be specified at LOGON
while Startup is breakpointed. When the transferred dataset is deleted,
the Permanent Dataset Manager attempts to place a message in the system
log; however, the log task has not been created, since Startup has not
completed. As a result, the system crashes calling an unknown task.
This same result can occur through operator command (i.e., LIMIT or
DATASET). When Startup is at a breakpoint, only the debug functions
should be used.

1.1.4 END PARAMETER

The *END parameter signals the end of the parameter file. It has no
arguments. *END is a required parameter.

Format:
*END

1.1.5 CRAY-1 MEMORY SIZE PARAMETER

The *MEMSIZ parameter overrides the I@MEM installation parameter but must
not exceed the actual memory size or IGMEM.

Format:

*MEMSIZ ,memory size in words

2240012 1-5 C



1.1.6 DEVICE PARAMETERS

Device parameters are used to define attributes of peripheral devices and
to specify what action Startup will take when permanent datasets or 1/0
queue datasets are found residing on specific devices. Device parameters
allow a device to be logically deleted from the system, logically added
to the system, and designated as read-only. They may also be used to
delete permanent datasets residing on a device, or to retain a dataset

but flag it as inaccessible.

Device allocation control

Two parameters control subsequent allocation of datasets to a device:
*ON and *OFF.

The *ON parameter declares a device allocatable. This means that during
operation of the system, the Disk Queue Manager allocates new datasets
onto the device in accordance with the queue manager allocation

algorithm.
Format:
*ON,Zdvl, Zdvz, cees Zdvn
The *OFF parameter is used to declare a device non-allocatable. This means
that during operation of the system, the Disk Queue Manager will not allocate
any new datasets onto the device.
Format:

*OFF ,2dvq s2dvos. .. ldvy,

If an *ON and an *QFF parameter reference the same device name, the last
parameter encountered is used. The master device may be referenced by
*0ON but not by *OFF.

2240012 1-6 C-03



Device availability control

The *DOWN, *RELEASE, and *UP parameters control the availability of
devices. A device may be configured (meaning the device has an entry

in the Equipment Table and a Disk Reservation Table) when it is not
physically present. Such a device must be deciared unavailable.
(Similarly, a device that was previously not available may become avail-
able.) A device that was once available and has become unavailable may
contain permanent datasets or I/0 queue datasets. These datasets may
be retained even though the device is not available, or they may be
discarded.

The *DOWN parameter declares a device unavailable. The device remains
in the EQT and has a DRT, but no datasets will be allocated onto the
device and any datasets already on the device will be flagged in the
DSC entry as inaccessible. The Permanent Dataset Manager will not
permit users to use the ACCESS control statement to access these data-
sets. The master device may not be referenced in a *DOWN command.

Format:

*DOWN ,Zd’()]_ ,Zd?)z 2+ s ,Zd?)n

The *RELEASE parameter causes the Dataset Catalog entries for a dataset
that resides on a named device (whether wholly or in part) to be deleted
by Startup. The device may or may not also be referenced by a *DOWN
parameter. The master device may not be referenced by a *RELEASE
parameter.

Format:

*RELEASE ,Zdvy, Ldva, ..., Ldv,

22240012 1-7 C



The *UP parameter declares a device available during a Deadstart or
Restart when the device was previously not available. It may be used to
add a device not previously present or to make a device available after
hardware problems (e.g., bad cables) that previously prevented access to
the device have been remedied.

Format:

*UP,2dvy ,1dvg,s. .. »ldv,
The *UP parameter for the device takes precedence over a previous *DOWN
in the same parameter file but a subsequent *DOWN for the device is
illegal. *UP cannot be the default and cannot be specified for the
device identified as the master device in the EQT.

If a device becomes unavailable because of problems unrelated to data,
such as bad cables, power supply, etc., it may be downed by a *DOWN
parameter on the next Restart. When the problem has been corrected,
removing the *DOWN parameter from the parameter file makes the device
available again. If the device label is no longer present, the *UP
command is required to make a device available again.

Examples:

Assume that device DD-19-30 is configured, and has been available. Due to
hardware problems, DD-19-30 must be removed from the system. Later, the
hardware problems are corrected, and the DD-19-30 is put back into use.

1)  Startup parameter file before hardware problem

*RESTART
*FLAW,DD-19-30
c5,Th

*ENDFLW
*FLAW,DD-19-20
c241,T7-10
*ENDFLW

*END

2240012 18



2a)

2b)

I 2240012

2¢)

Startup parameter file to make device unavailable.
*RESTART

*DOWN,DD-19-30

*END

Note that datasets allocated to the device remain in the DSC,
but may not be accessed by users.

Startup parameter file to make device unavailable.

*RESTART
*DOWN,DD-19-30
*RELEASE ,DD-19-30

*END

Note that datasets allocated to the device are deleted from
the DSC. This format should be used if the hardware problems
are such that data errors are likely (head crash, scratched
pack, etc.)

Startup file to leave device available for reading.

*RESTART
*0FF ,DD-19-30

*END

This format allows the operator to attempt to dump datasets that
reside on the device. Normally, this would be followed by a
Startup using the parameter file in (2b) to delete the datasets
after they have been dumped.



3) Startup parameter file to restore DD-19-30.

a) If the data on the pack is still valid, it is possible to
restore the device simply by removing the *DOWN parameter
file entry. The DSC flags for datasets on the device will
be cleared to allow access from user jobs.

b) If the data on the pack is believed to be invalid, or if the
device label cannot be found, the pack can be relabeled and
restored to the system by the following parameter file:

*RESTART
*UP,DD-19-30
*RELEASE,DD-19-30

*END

*RELEASE will delete any datasets that are in the DSC and reside
on DD-19-30. *UP will allow Startup to re-label the device with-
out doing an Install-type Startup. The *RELEASE should be re-
moved before the next Startup.

1.1.7 DISK FLAW PARAMETERS

Three parameters provide for reserving disk tracks that have flaws or for
reserving tracks for engineering diagnostic use. The parameters must
appear in sequence and once the sequence begins no other parameter is
legal until the sequence ends. An illegal parameter in the sequence

will be treated as an unrecognized keyword. The required sequence is:

*FLAW, Zdv

<flaw cards>

*ENDFLW
In the *FLAW parameter, Idv,identifies the device to which all subsequent
flaw cards apply until a *ENDFLW parameter is encountered.

: Part 3 C
2240012 1-10



The flaw cards following the *FLAW parameter can be in the following
formats:

Cnnn Flaw all of cylinder wnun.

Crimm=mmm Flaw cylinders wnn through mmm, inclusively.
Crinm, Trm Flaw track mm of cylinder wnmn.

Crnn s Trm-pp Flaw track mm through track pp of cylinder nun.

Flaw cards are recognized only between *FLAW and *ENDFLW parameters.
Flaws for a device can be in any order. ATl numbers are octal.

Normal processing of parameters resumes following the *ENDFLW parameter.

These parameters provide for adding flaws encountered during system
operation without requiring reassembly of the system. Note that currently,
the addition of a flaw does not affect a permanent dataset that may occupy
a flawed track. Prevention of further read errors on a flawed dataset
requires that the dataset be recreated after the flaw is added. No new
dataset will be allocated on the flawed track. Note also that setting a
flaw onto a track that has a permanent dataset allocated to it can be
negated if the permanent dataset is deleted following the Startup.

1.1.8 DUMP CONTROL PARAMETERS

Two parameters control system dump processing during Startup: *DUMP and
*NODUMP. *DUMP forces Startup to create a saved dataset containing the
image of the preallocated system dump area. *NODUMP inhibits Startup
from processing the system dump. Note that *DUMP and *NODUMP may appear
in the same parameter file without any error indication, but *NODUMP
will take precedence.

Ordinarily, when a system dump is written to the pre-allocated area of
disk, a flag is set in the first sector of the dataset, indicating that
a new (uncopied) system dump exists. During the next Restart or Dead-
start, this flag will be recognized and a copy of the pre-allocated
area will be made and saved as a permanent dataset. After successfully

Part 3
2240012 1-11 C



saving the copy of the dump, Startup rewrites the sector to clear the
flag so that subsequent Startups will not copy the same dump again. If
the user wishes to make another copy of the dump or if the flag does not
get set properly during the dump process, *DUMP may be used to cause
Startup to unconditionally copy and save the dataset even though the
flag is clear in the pre-allocated area.

Format:
*DUMP

The *NODUMP command inhibits Deadstart and Restart from attempting to
recover the pre-allocated area or copy a dump.

When a system including the system dump feature is installed, the pointer
in the device Tabel is set and a system dump area is allocated on disk.
The first sector of the allocated area contains a list of allocation
units set aside for the system dump.

If, following the installation of a system including the system dump
feature, a system without the feature is recovered, the disk space for
the dump will no Tonger be reserved in the DRT and the AI 1list may be
overwritten during operation of the new system. Then, Startup of a
system including the dump feature would be unable to recover the dump
area correctly, even though the device label pointer exists. Under such
conditions, Startup may be unable to complete without inhibiting dump
recovery; once dump recovery is inhibited, it must always be inhibited
until after the next INSTALL.

Format:

*NODUMP

Part 3
2240012 1-12 C



1.1.9 ROLLED JOB RECOVERY CONTROL PARAMETERS

When a Restart is selected, it is possible for the operator to also
select recovery of rolled jobs. For any other option, recovery cannot
be selected; if an attempt is made to select recovery for either a
Deadstart or Install, the parameter is ignored and a message is sent to
the system log indicating that recovery was not possible.

Recovery is selected by the parameter:

*RRJ ,n
where n represents the level of recovery to be performed. Presently,
only n=1 or n=0 is supported. If n=1, recovery is attempted If n=0, no
recovery is performed.

1.1.10  PERMANENT DATASET RECOVERY PARAMETERS

When either a Restart or a Deadstart is selected, Startup may encounter
permanent datasets in the DSC whose entries contain catastrophic errors
such as incomplete DSC entries; entries with bad allocations, indexes or
device names; or invalid text lengths. Depending on the installation
selected option, Startup either deletes any such datasets from the

DSC or leaves the datasets in the DSC and flags them to prevent them from
being accessed. Any mass-storage space already reserved for the dataset
remains allocated until the next Startup. An SDT entry already allocated
is deleted.

The operator may override the installation selected option during
Startup. Normally, this would be done to clean up the DSC after the
cause of the problem has been determined. This is done by the parameter:

*DSCERR, DELETE
RETAIN

DELETE Invalid datasets are to be removed from
the DSC;

RETAIN Invalid datasets are to remain in the DSC
with an error flag set in the DSC entry.

Part 3
2240012 1-12.1 D-01



1.1.11 SYSTEM DIRECTORY RECOVERY PARAMETER

Whenever a Restart or Deadstart is selected, the operator may request
that the System Directory not be recovered by specifying this
parameter. If the System Directory Recovery parameter is not
specified, the operating system recovers the resident System Directory

by processing records from the $SDR file.

A new edition of $SDR is allocated, and any datasets to be added to
the System Directory must be re-entered when this parameter is
specified. The parameter is:

*SDR

1.1.12 JOB CLASS STRUCTURE PARAMETER

The operator can invoke a new job class structure when either a
Deadstart or a Kestart without recovery of rolled jobs is selected.
This is done by the parameter:

*JCLASS, filename

Parameter:
filename The name of the dataset containing the job class
structure definition to be invoked. If the dataset does
not exist or cannot be read, an appropriate system log
message is issued, and the default job class structure

goes into effect.

Part 3
2240012 1-12.2 D-02



1.1.13 BOOT CONTROL PARAMETERS§
For either a Deadstart or a Restart, Startup may startup a system that
resides on CRAY-1 local disk. The system must be a valid user

permanent dataset that is accessihble to Startup.

*SYSTEM tells Startup on which dataset the system resides.

Format:

*SYSTEM, PDN=pdn[ ,ID=user-id ][ ,ED=edition][ ,RD=read]

Parameters:

pdn

user-id

edition

read

The permanent dataset name. This is a required
parameter.

The user identifier (optional). ,

The edition of the dataset. If omitted, the highest
edition is used.

Read permission control word (optional).

This parameter may be present during single pass startups.

The *BOOT parameter indicates to Startup that the current system
should be discarded and replaced by the system defined by the *SYSTEM

parameter.

If no *SYSTEM parameter is found in the parameter file,

Startup halts when it completes processing the parameter file.

Format:
*BO0T

This parameter is changed to *NOOP for pass 2.

§ Deferred implementation

I 2240012

Part 3
1-12.3 D-02



1.2 STARTUP_ PROCEDURE

1. Generate a parameter file using the parameters defined in the
preceding sections.

Example of parameter deck:

#DEADSTART
*ON,DD-19-30,DD-19-31
*FLAW,DD-19-30
C27,Th

€37,Th-6

*ENDFLW
*FLAW,DD-19-31
c403,T2

XENDFLW
*UP,DD-19-32
*FLAW,DD-19-32
c12,T11

*ENDFLW

*DOWN, DD-19-33
*RELEASE,DD-19-33
*END

This deck can be copied to the ECLIPSE disk from the card reader by
jssuing the following RDOS command:
XFER/A $CDR cospar/R )

where cospar is the name of the parameter file. This file must be
a direct access file; that is, it must have the D attribute obtained
by appending a /R local flag to the file name.

2. Bring up the ECLIPSE station as described in part 3, section 1 or
in the DGS Station Operator's Guide, CRI publication 2240006.

Part 3
2240012 1-13 C



3. At the 455 data screen, enter the following command:
STARTUP ,cos ,cospar

cos Name of the Eclipse file containing the COS operating
system in binary form.

cospar Name of an Eclipse file containing COS parameters.
The default for cos is COS; the default for cospar is COSPAR.

1.3 ZLOG

The Startup program, Z, maintains a message log for recording errors
encountered while checking parameters and errors encountered dynamically
during the startup process. If errors are encountered during parameter
processing, a special breakpoint is set at the entry to the Z subroutine.
When Z is entered, Startup halts at this breakpoint. The Startup exchange
package contains an ASCII message in the S registers informing the
operator that Startup has halted at a breakpoint due to errors in ZY (the
parameter checking routine). The operator may then examine ZLOG to
determine the nature of the errors. If the errors are minor, Startup may
be instructed to continue by entering the command:

RUN,TASK,?
Otherwise, the operator must correct the parameter file and re-initiate
the Startup process. To view the Startup exchange package, the operator
may enter the following sequence of commands:

ASSIGN,TASK,@) ( p= carriage return)
DIS,Y,X,,T ) (this is the default)
Y.p (note: the period is required)

The contents of ZLOG can be dumped or displayed. To determine the loca-
tion of ZLOG, look in the low-order area of STP for the STPDD pointers.
One of these pointers gives the ZL0OG Tlocation.

Messages in ZLOG are in ASCII. A1l messages pertaining to parameter
checking identify the character location of the last character scanned.
The address in a parameter checking message is a character address. That
is, the low order digit of the address identifies the character after the
last scanned character, where characters in a word are numbered 0 through
from left to right. The remaining digits of the address form the word
address relative to STP origin.

2240012 Part 3 -
1-14 C-01



The following messages may be issued by Z:

1dv DEVICE LABEL NOT FOUND.
Device Tabel 1dv not where expected.

BAD ADDRESS.

Address is missing or exceeds available memory. For EBP, the second
address is required if its comma is present.

BAD BREAKPOINT NO.
Breakpoint number missing or out of range.

BAD DATA SPECIFICATION
Memory entry command contains bad data to be entered.

BAD END OF FILE.
End of parameter file was encountered before *END parameter.

BAD END OF LINE.

Parameter is not terminated by a carriage return or by a space,
optional comments, and carriage return.

BAD FORMAT ON FLAW CARD
Non-octal character specified for cylinder or track or a Cor T
not present where expected during *FLAW/*ENDFLW sequence.

BAD MEMORY SIZE.
Memory size parameter missing or out of range.
BAD PARAMETER VALUE

An invalid option was specified or a keyword parameter was followed
by an out-of-range value.

ERROR COUNT OTHER THAN STARTUP.

Total number of errors other than those encountered during
checking errors.

ILLEGAL SINCE MASTER DEVICE.

Parameter not legal for the master device.

MISSING COMMA.
Required parameter is missing.

MISSING STARTUP OPTION.
*INSTALL or *DEADSTART or *RESTART must be present.

Part 3
2240012 1-15 D-01



ONLY FLAW CARD ALLOWED
First character of card following *FLAW must be C, or *ENDFLW must

appear.
PARAMETER ERROR COUNT.

The total count of parameter checking errors encountered in the
parameter file.

RLS MUST NOT BE DEFAULT.

Operating system was incorrectly assembled with release flag set.
Use *RELEASE parameter to set the flag.

UNKNOWN LOGICAL DEVICE.
Specified logical device name not found in equipment table.

UNKNOWN PARAMETER TYPE.
Keyword unintelligible to system.

1.4 SYSTEM LOG MESSAGES

In addition to the messages placed in ZLOG, Startup also places messages in
the system logfile. This is done by stacking messages at the end of the
table area used by Z and extending toward the highest available memory
address. At the end of Startup, any messages that have been stacked are
issued to the system log by calling the log manager task until all stacked
messages are exhausted. If too many messages are required and all of the
available memory is used for stacking messages, a special message is placed
at the end of the buffer (overwriting the last message in the buffer, if
necessary); all subsequent attempts to stack a message are ignored and no
error indication is given. The system utility EXTRACT may be used to Tist
these messages (refer to part 4, section 7).

Messages that may be issued during Startup are:

pdn-info DATASET RESIDES ON DOWN DEVICE ldv

The dataset identified by pdn-info contains at least
one reference in its DAT to a device that is indicated
in the Equipment Table as being down, but the release
flag for that device is not set. The dataset is
flagged in the DSC as inaccessible, but is not deleted.

Part 3

2240012 1-16

C-01



The last device encountered in the DAT that has the down flag
set is identified by 1dv.

pdn-info DATASET RESIDES ON MISSING/RELEASED DEVICE 1dv

The dataset identified by pdn-info contains at least one
reference in its DAT to a device for which the EQT entry shows
the release flag set. The dataset is deleted from the DSC.
The last device encountered in the DAT that has the release
flag set is identified by 1dv.

pdn-info DATASET DAT CONTAINS A1 CONFLICT AT TRACK trnmum ON Idv

The DAT for the dataset references at least one track that is
also referenced by at least one additional dataset, or that was
declared flawed. The first such track and its device name are
identified in the message. Additional conflicts may exist;
they are recognized but not identified in the log.

pdn-info DSC ENTRY CONTAINS CATASTROPHIC ERROR - ENTRY option

The DSC entry for the dataset contains at least one
catastrophic error. Depending on the installation-selected
option or the presence of a *DSCERR parameter, the dataset DSC
entry is either deleted or flagged as in error and the option
in the message is deleted or retained accordingly.

DATASET CATALOG ALLOCATES RESERVED TRACK tynum ON Zdy

The DSC as defined in the master device label is reserving a
DRT bit that is already set. This usually means a flaw has
been added since the previous INSTALL. Each such conflict will
be identified in the log.

SYSTEM DUMP AREA ALLOCATES RESERVED TRACK ¢rwmum ON Zdv

The preallocated system dump area is reserving a DRT bit that
is already reserved. This usually means a flaw has been added
since the previous INSTALL. Each such conflict will be
identified in the log.

SYSTEM DUMP NOT SAVED - PDM RETURNED STATUS stat
The system dump could not be saved. The Permanent Dataset
Manager returned an error status at stat.

SYSTEM DUMP SAVED - STATUS=stat PDN=pdn UID=uid ED=ed

The system dump was successfully saved, with the
permanent dataset name, user ID, and edition given in
the message.

Part 3
2240012 1-17 D-02



pdn-info MULTI-TYPE DATASET HAS INCONSISTENT ALLOCATION - QDT INDEX =
nnnn, ENTRY option.

The disk reservation for at least one DSC entry differs
from the other DSC entries with the same QDT index. As
with catastrophic errors, either I DSCERR or *DSCERR
determines whether or not the entry remains in the DSC.
If the option is RETAIN, the dataset is inaccessible.

pdn-info MULTI-TYPE DATASET INACTIVATED DUE TO QDT INDEX OUT OF RANGE -
INDEX index, QDT SIZE=size.

A QDT index of a DSC entry pointed beyond the allocated
area of the QDT. The dataset remains in the DSC but is
flagged as inaccessible. It becomes accessible once a
system with a large enough QDT is restarted.

keyword ~ UNKNOWN KEYWORD

A valid parameter card contains an unknown keyword.

keyword ~ KEYWORD MUST BE EQUATED

The keyword for a valid parameter card must be
associated with a value.

keyword  BADLY EQUATED KEYWORD T

The keyword for a valid parameter card is illegal,
perhaps because the value is too long, non-numeric, or
null.

Additional messages may be issued during an attempt to recover rolled jobs.

These messages are described in part 3, section 4.

Deferred implementation

Part 3
2240012 1-18 D-02



SDR INITIALIZATION 2

The System Directory (SDR) is memory resident and must be initialized
after an Install. SDR entries can be initialized as soon as the
datasets to be entered into the directory reside on system mass

storage

TJo enter datasets into the directory, submit a job consisting of
ACCESS control statements for which the ENTER parameter is specified.
This job should have a high priority so that it runs before any other
job in the input queue. This parameter directs COS to enter the
dataset name in the system directory. After the dataset has been
entered in the directory, it is accessible from any job without the
need for ACCESS control statements in each job.

The SDR is recovered during a Restart or Deadstart unless no recovery
is specified with the *SDR parameter.

Sample job:
JOB, JN=SYSDIR, T=2,M=20,P=15. ACCESS,ENTER, DN=FDUMP.
*. ACCESS,ENTER,DN=LDR.
*, SDR initialization job ACCESS,ENTER, DN=PDSDUMP.
*. ACCESS,ENTER,DN=PDSLOAD.
ACCESS,ENTER,DN=AUDIT. ACCESS,ENTER,DN=SKIPD.
ACCESS,ENTER,DN=BUILD. ACCESS,ENTER,DN=SKIPF.
ACCESS,ENTER,DN=CAL. ACCESS,ENTER,DN=SKIPR.
ACCESS,ENTER,DN=CFT ACCESS,ENTER,DN=UNB.
ACCESS,ENTER,DN=COMPARE. ACCESS,ENTER, DN=UPDATE.
ACCESS,ENTER,DN=COPYD. ACCESS,ENTER ,DN=WRITEDS.
ACCESS,ENTER,DN=COPYF. (EOF)

ACCESS,ENTER,DN=COPYR.
ACCESS,ENTER, DN=DSDUMP.
ACCESS,ENTER,DN=DUMP.
ACCESS,ENTER,DN=EXTRACT.

Part 3
2240012 2-1 D-02



SYSTEM DUMP PROCESSING 3

3.1 SYSTEM DUMPING

Following a system failure, the operator has the option of dumping CRAY-1
memory. This may be done in either of two ways: through the Data General
station or to CRAY-1 DD-19 disk.

3.1.1 DUMP - DUMP THROUGH DATA GENERAL STATION

The station software that runs on the Data General Eclipse connected to
the CRAY-1 MCU channel provides the operator with the ability to dump
selected portions of CRAY-1 memory to the disk pack associated with that
Eclipse. When this dump completes transferring to the Eclipse disk, the
operator may issue a START command to reinitialize COS in the CRAY-1
memory. The operator then has the optibn of immediately printing the
dump or staging it into COS, where it can be made a permanent dataset
and can be printed by system utilities. The command to dump CRAY-1
memory to the Eclipse disk is:

DUMP , filename , fwa ,lwa
Parameters:

filename  Data General filename to associate with the dump
fwa Beginning CRAY-1 memory address (absolute)
lwa Ending CRAY-1 memory address (absolute)

To send this dump in to be saved as a CRAY-1 permanent dataset, use:

SAVE, fZ Lename ,pdn
Parameters:

filename Data General filename to associate with the dump
pdn CRAY-1 permanent dataset name to be created by COS

Once the dump is resident on the CRAY-1 disk, it may be accessed by a user
job that may print selected portions of the dump using system utilities.

Part 3
2240012 3-1 C-02



3.1.2 DDC - DUMP TO CRAY-1 DD-19 DISK

The DDC utility dumps memory directly from CRAY-1 main memory to the DD-19
disk. The device label for the master device must contain a pointer to
the first track of a disk area preallocated to hold a system dump, and

the first sector of that track must contain the Tist of all tracks reserved
for the dump. A block of words is reserved in EXEC so that this program
may be loaded and executed without overwriting EXEC code or tables. The
memory dumped includes all memory from 0 to IGMEM, or until the reserved
disk space is filled. A flag is set in the first sector (word 511) to
indicate that a new dump exists. During the next Startup, this flag is
recognized and a copy of the pre-allocated area is made and saved as a
permanent dataset. The flag is then cleared. This permanent dataset

may then be accessed by user jobs in order to print selected portions.

Normally, the permanent dataset created by Startup is called CRAY1SYSTEMDUMP;
this may be changed by the installation. Under certain conditions, Startup
may change the name of the dataset and try to save it again, in response to
errors returned by the Permanent Dataset Manager. Errors thus handled
include "too many editions" and "maintenance permission not granted." The
log message issued when the dataset is successfully saved identifies the
name by which the dataset is known to the DSC. When it is necessary to
change the name, Startup locates the last non-zero character in the PDN and
increments it by one. If the resulting character is alphanumeric, the old
name is replaced and the SAVE is attempted again. If the resulting char-
acter is not alphanumeric, the original character is left alone and

Startup moves one character to the left and repeats the process. I¥ no
character in the name can be incremented by one without producing a
non-alphanumeric character, Startup is unable to save the dataset and a
system 1og message is issued to that effect.

The DDC utility is invoked by using the SYSDUMP command. The COS gene-
ration job stages the absolute binary of the DDC program to the MCU
in unblocked format.

Format:

SYSDUMP

2240012 C-03



3.2 SYSTEM DUMP FORMAT

System dump datasets created by the DUMP and DDC utilities are in unblocked
format, and thus cannot be read by FORTRAN Tibrary blocked I/0 routines. A
utility called FDUMP is provided for processing these dumps. (For a
complete description of the FDUMP utility, refer to part 4, section 9.)

3.2.1 DUMP FORMAT FROM DATA GENERAL DUMP

When a dump is staged in from the Data General Eclipse using the sequence
below, the permanent dataset created is an unblocked binary dataset, where
word zero of the dataset represents fwa and the last word of the dataset
represents Zwa, as specified on the DUMP command. There are no headers

or trailers in the dataset. This dataset can be printed using the FDUMP
utility.

DUMP, fi lename, fwa, lwa
SAVE, fi lename ,pdn

3.2.2 DUMP FORMAT FROM DUMP TO DD-19 DISK

When the COS utility DDC is used to create the Deadstart dump, the per-
manent dataset created is an unblocked dataset having the following format:

Word address Contents
0-511 Dump header
512-end CRAY-1 memory dump

The dump header is a 512-word block containing information regarding the
dump; the format of the header is given in part 4, section 9 of this

manual. Beginning at word 512 of the dataset is an image in unblocked format
of CRAY-1 memory at the time of the dump.

2240012 Part 3 C-02



RECOVERY OF ROLLED JOBS

4.1 INTRODUCTION

Following any system failure, whether due to software, hardware, or
environmental problems, the system operator may choose to attempt to
recover any job that may have been in the execution queue at the time
of the failure. This section describes the process used to attempt to
recover thesé jobs.

Currently, Startup can successfu]Iydrecover and restart all of

those jobs that were rolled out to mass storage at the time of the system
failure, or those that had been rolled out, rolled back in, and performed
no additional activity that would cause the roll image on mass storage to
be unusable. A job can be recovered if and only if it is certain that
the roll image is valid and that repeating any of the activities of the
job that may have occurred following roll-in will not cause the results
of the job to differ from those that would have been obtained had the
failure not occurred. However, permanent datasets accessed following
rol1-in might not be available following a system recovery if one or more
mass storage devices become unavailable; in this event the recovered job
receives an error status when attempting to re-access the datasets. Any
permanent datasets already accessed by a job prior to rollout must be
re-accessed successfully during Startup before the job is considered
successfully recovered.

4.2 ROLLED JOB INDEX DATASET

For Startup to be able to determine which jobs were in execution

prior to a system recovery, the operating system maintains a special
permanent dataset. This dataset, referred to below as $ROLL , contains.
information about each job that has entered execution and has not yet
terminated. $ROLL is maintained in the DSC with a PDN of SYSROLLINDEX;
read, write, and maintenance passwords are defined for it. $ROLL 1s

2240012 Part 3 C-02



initialized and saved during an Install. During either a Restart or

a Deadstart, subroutine RRJ attempts to access $ROLL. If the ACCESS
fails, a new edition of $ROLL is created, initialized, and saved, and
recovery of rolled jobs is disabled (with a message to the system log
if recovery would have been performed otherwise; no message appears if
$ROLL cannot be accessed but recovery was not requested).

The information in $ROLL consists of fixed-length entries, one for each
defined JXT entry. The entry corresponding to JXT ordinal zero is used
for validation of the $ROLL dataset and does not correspond to any job in
the system. Information in entry zero consists of:

o The number of JXT entries defined in the previously deadstarted
system. Recovery is not possible if the previous system defined
more JXT entries than the current system. An error message is

issued in this case.

e The memory size of the previously deadstarted system. This is

informational only.

e The logical name of the device containing $ROLL. This is compared
with the device name from the DAT that is supplied by the Permanent
Dataset Manager when $ROLL is accessed. A mismatch causes an error
message to be issued, and recovery is disabled.

e The track number allocated to $ROLL. JXT limitations allow the
assumption that $ROLL will never exceed one allocation unit. This
number is compared with the Al from the DAT for the accessed $ROLL.
A mismatch causes an error message to be issued, and recovery is
disabled.

o The sizes of key tables contained in the JTA on the roll index,
in particular, LEGRJ, LEGDNT, and LE@IXT. These must be the same
in the recovered system or RRJ will halt. RRJ halts rather than
continuing with recovery disabled so the operator can restart with
a correct system file without having the roll index overwritten.

A11 other entries in $ROLL correspond to one specific JXT entry. These
entries contain enough information to identify which job has been assigned
to the JXT entry and to locate the roll image if the job has been rolled

2240012 % £-03



out. The index entry also contains a flag that indicates whether a job

has performed some function that will invalidate the roll image. (See
the description of the RJ table for detailed descriptions of the formats

of these entries.)

Information contained in these entries includes:

2240012

The first three words of the first partition from the DAT for the
roll image dataset. This includes the two-word partition header
and one word containing up to four allocation unit indices. If
the job has never been rolled out, these words are zeroes.

The job name, job seauence number, station, and terminal ID of
job origin. These are used to determine which SDT entry in the
input queue corresponds to this job.

A "not recoverable" flag. This is used to indicate that the
job cannot be recovered from the roll image. This flag is set
whenever the job performs one of the following functions:

(1) DELETE, ADJUST, or MODIFY on a permanent dataset. Since
these functions change the DSC in a manner that could
cause the job to fail if they were repeated, the roll
image cannot be relied upon.

(2) Random write to any dataset. The system CIO routines
recognize a random write to a dataset and declare the
job not recoverable, since the difference in data may
change job results if the job is restarted at an earlier
point.

(3) Write following read, rewind, or skip forward on any
dataset. Since a program that reads or skips to end-of-data
(or end-of-file) may have different results if the termi-
nator is moved or even removed completely by overwriting,
the job is considered not recoverable.

(4) Release of a local dataset. Since disk space returned
to the system is available for use by other jobs, release
of a local dataset causes the job to be not recoverable.
Release of a permanent dataset does not affect disk allo-
cation and therefore does not affect recoverability.

Part 3
4-3 C-03



Note that every job that becomes irrecoverable due to any of
the above becomes recoverable again as soon as it has
subsequently been successfully rolled out.

$ROLL is maintained during system operation jointly by the Exchange
Processor (EXP) and the Job Scheduler (JSH). At job initiation JSH
sets up the corresponding index entry to refiect job never rolled out
and job not recoverable. Subsequently, each time JSH rolls the job it
sets up the index to point to the roll dataset and designates the job
to be recoverable. The index is written to disk when the Disk Queue
Manager informs JSH that the rollout has completed successfully. EXP
recognizes the fact that a job is performing one of the functions that
causes the job to become irrecoverable and signals the Job Scheduler
to set the index entry accordingly and rewrite the index. The rewrite
of the index always occurs before EXP completes processing the

function.

4.3 RRJ SUBROUTINE
During Startup, the RRJ subroutine executes as a closed subroutine

called by Z. RRJ is called before Z executes SDR recovery and copies
any existing system dump, since disk space needed to restart a rolled
job must be recovered and allocated in the DRT before any new space
can be used. RRJ does not return any status used by Z; it does set a
status word indicating the type of recovery performed, which is used
by JSH to determine how much JXT initialization JSH must perform.

RRJ performs one of several activities depending on the type of

Startup being performed.

4.3.1 RRJ EXECUTION DURING INSTALL

During an Install, recovery of rolled jobs cannot be performed, since
permanent datasets and input/output queues are not recovered.
Therefore, RRJ merely initializes $ROLL and issues a SAVE request to
PDM. The initialization of $ROLL consists of setting up entry zero
(see RJ table description in part 5) and zeroing all other entries.
The buffer used to write $ROLL remains intact in memory throughout
normal operation of the system, and $ROLL is never read during normal

operation.

Part 3
2240012 4-4 D-02?



4.3.2 RRJ EXECUTION DURING DEADSTART

Since input/output queues are not recovered during a Deadstart, rolled
jobs cannot be recovered either. RRJ attempts to access $ROLL, and

reads it into memory. The buffer remains intact throughout normal opera-
tion, and SROLL is never read again during normal operation. If RRJ

was enabled by operator specification, RRJ detects that it is a Deadstart,
issues an error message, and disables recovery. Once $ROLL has been
successfully accessed and read in, the entry zero contents are checked.

If errors occur on the access or read, or if entry zero does not validate
correctly, RRJ issues error messages and re-initializes $ROLL. A new
edition of $ROLL is created if the access was unsuccessful or the existing
edition received an error while reading it. Otherwise, the new $ROLL is
written over the existing one. If no errors are received, the $ROLL
buffer is cleared to indicate no executing jobs and the dataset is
rewritten.

4.3.3 RRJ EXECUTION DURING RESTART

If Restart was selected, RRJ may attempt to recover jobs. This depends
on whether RRJ is able to successfully access and read $ROLL. Error
conditions here are handled as for Deadstart. If the access and read
are successful but RRJ was not enabled by the operator (no *RRJ card in
the parameter file), then RRJ clears $ROLL as for Deadstart. If RRJ is
enabled, RRJ begins scanning the index entries following verification of
entry zero. If an error occurs during entry zero validation, RRJ
disables recovery with a message to the system log and continues as for
a Deadstart.

If no errors occur during $ROLL validation, RRJ attempts to recover jobs.
Messages are issued to the system log explaining why a job mentioned

in the index is not recovered, or indicating a successful recovery. A
successful recovery means that the job has been entered into the JXT
chain at the appropriate spot and the input SDT has been moved from the
input queue to the execute queue. The job status in the JXT is then

Part 3

2240012 hes

C-02



set to rolled-out and suspended-byv-recovery. The waiting-for-memory and
overator-suspended bits are maintained. Al1 other status bits are set to
zero, as are any event wait words. It is the responsibility of any caller
who requested recall based on an event to determine for itself whether

the event is satisfied or whether the recall should be re-issued. For
example, it may be necessary to re-issue any outstanding ACQUIRE requests.

4.4 JOB RECOVERY

Recovery of a job from its latest roll image consists of the steps
described below. Any error in any validation step causes the job to
become irrecoverable, and an appropriate message is sent to the system
log.

4.4.1 INDEX ENTRY VALIDATION

The first step is to validate the information in the index entry. The
job cannot be recovered if the index states that the job is irrecover-
able, or if the roll dataset is non-existent or resides on a non-existent

or unavailable device.

4.4.2 ROLL DATASET VALIDATION

The partition header information in the index entry is used to read in

as much of the roll dataset as can be located from the one word of
allocation indices contained in the index. It must contain enough of

the JTA for the job to be able to locate the copy of the full roll dataset
DAT, which was copied to the JTA by the Job Scheduler immediately before
rollout along with the JXT image. An error on the read makes the job
irrecoverable. Once the first read completes, the JTA size taken from
the JTA and from the saved copy of the JXT are compared. An error occurs
if the two do not match. This size is then used to determine if more

JTA exists. If so, the additional information is read in. Normally, the
entire JTA will be read in by the first read, but if many large datasets
exist, the JTA may be quite large. RRJ must have the whole JTA in

memory at once. It is an error if the JTA does not fit into available

i 220012 4-6



memory above the Startup message stack. The image of the roll DAT is
moved from the JTA to the STP DAT area. It is an error if enough DAT
nages cannot be allocated in STP to hold the DAT. The roll DAT is then
validated. 1If no errors are found in the DAT, any remaining portion of
the JTA and the last block of the user field are read in. They must fit,
and there must be no error on the reads. The last block of the user
field is Tocated using the JXCJS field of the saved JXT copy. The Job
Scheduler stores the current value of the real-time clock in the first
block of the JTA and in the Tast block of the user field immediately
prior to rollout. If these do not match, the rollout was only nartially
complete at the time the system failure occurred.

4.4.3 DAT VALIDATION

Each dataset, including the roll image dataset, must have a zero DAT
address in the DNT or must point to a valid DAT. The roll image dataset
and the $CS and $IN datasets point to DATs in the STP tables; all

others noint to DATs in the JTA. To be considered a valid DAT, the
following points must be satisfied:

e A multipage DAT must be entirely within the STP tables, or
entirely within the JTA. It cannot be in both places.

o A DAT in STP must have DAJORD ecual to zero; a DAT in the JTA
must have DAJORD equal to the JXT ordinal.

e Successive pages must be numbered correctly.

o A DAT in the JTA must be pointed to by a negative offset that
must be within the range indicated by the JTA size; the same
is true for each successive page.

e For each partition, the named device must exist and must be
available (EQNA must equal zero).

e Each allocation unit index for a partition must be within range
for the device.

e For a multitype DAT (DNQDT is nonzero), each allocation unit
index must have its corresponding DRT bit set; otherwise an in-
consistent allocation has occurred.

Part 3

2240012 0.7

D-02



e For a DAT that is not multitype (DNQDT is zero), each allocation
unit index must not have the corresponding DRT set; otherwise an
allocation conflict has occurred.

e When the end of the Tast page or last partition is reached, the

remaining Al count and next partition pointers must be zero.

e MWhen the end of a partition is reached, the next partition
pointer (DANPA) must point to either the next word in the
current page or the first word following the page header in the
next page, or it must be zero.

DAT validation occurs in two passes. The first pass serves as an error
scan, and does not set the DRT bits. The second pass actually sets the
DRT bits and decrements the available space counts for the device. In
this way, RRJ can be sure that a dataset is either completely reserved
or completely unreserved. This is necessary for successful deallocation
of resources if a later dataset is found to have an error.

4.4 .4 DATASET RESERVATION

Each dataset named in the DNT chain in the JTA must be processed. Local
datasets must have their DATs validated and the DRT bit maps updated.
Permanent datasets must be validated against the Dataset Catalog.

Startup will already have updated the DRT bit maps for permanent datasets.

PDS entries must also be reconstructed for permanent datasets.

The DNT chain is scanned from the beginning to the end. The memory

nool control word preceding each DNT is checked to be sure that the
pool entry is in use, and the DNT is checked to ensure that there is

a name. If there is no DAT, RRJ goes on to the next DNT. If there is

a DAT, and it is in STP (DNDAT is greater than zero) the DNT must be

for either $CS or $IN. The SDT entries are searched for an SDT with the
correct sequence number, and the DAT address field of the DNT is correc-
ted. RRJ then goes to the next DNT. If the DAT is in the JTA ( DNDAT
less than zero), the DNT is checked to see if the dataset is permanent.
If not, the DAT is validated. If so, a pseudo-access is performed.

If no errors are found, RRJ goes to the next DNT. When the &nd of the
DNT scan is reached, the job is considered successfully recovered.

Part 3

2240012 18

B=92



4.4.5 PSEUDO-ACCESS OF PERMANENT DATASETS

When a permanent dataset is encountered in the DNT scan, RRJ requests

the Permanent Dataset Manager perform a pseudo-access on the dataset.
This process causes the Permanent Dataset Manager to locate the DSC entry
for the dataset from the DADSC field of the DAT, and to compare the DAT
in the JTA with the DAT in the DSC.

If the DAT appears valid, the Permanent Dataset Manager attempts to
construct or update a PDS entry. The DNT permission flags are used to
set the PDS permission flags. If the PDS entry already exists, the DNT
must indicate read-only permission.

4.4.6 RESOURCE DE-ALLOCATION

If an error occurs at any point in the recovery of a job, any system
resources assigned to that job by RRJ must be released. In particular,
any disk space reserved for local datasets prior to finding an error on
a later dataset, or any PDS entries corresponding to datasets that have
already been pseudo-accessed must be de-allocated. For this purpose,
the DNT chain is searched once more, until the DNT with the error is
reached again. For releasing local datasets, the Disk Queue Manager
de-allocate request is used. For releasing PDS entries, the PDM request
PMFCRL is used. The disk space for datasets such as $CS or $IN, where
the DAT is in STP, is not released. The roll image dataset is released
and the STP DAT pages are returned to the system.

4.4.7 JOB RECOVERY COMPLETION

When the end of the DNT chain is reached without error, the job is success-
fully recovered. The copy of the JXT from the JTA is placed in the JXT
area, and the JXT entries are re-linked by priority. The roll image DNT
within the JXT is updated to point correctly to the DAT; the SDT entry

is moved to the execute queue and the JXT ordinal is placed in the SDT.

A1l wait words are cleared. The JXT status bits are set to R, N, and B
(rolled out, not in memory, suspended by recovery) and all other bits
except 0, A and M (operator suspended, abort pending, and waiting for

Part 3 -
2240012 4-9 D-01



memory) are zeroed. The SDT address in the JTA is corrected and the JTA
is rewritten to the roll image dataset. A message is sent to the system
log and RRJ advances to the next index entry.

4.5 TERMINATION OF RRJ

When the end of the roll index is reached, all entries corresponding to
jobs that were not recovered have been cleared. The input queue is
scanned, and all jobs that were previously initiated are flagged with

a status in the SDT so that CSP will issue log messages when they are
re-initiated. Such jobs may be ineligible for rerun, in which case the
status passed to CSP reflects that condition; CSP thus terminates the
job immediately after issuing the log file messages. The status word
RRJISTAT is set to indicate to the Job Scheduler that the JXT entries are
already initialized and linked, and the JSH flag SWAPFLAG is set if

any jobs were recovered. RRJ then returns to Z.

4.6 MESSAGES FROM RRJ

RRJ issues log messages that:

o Identify the recovered jobs

e Give reasons why unrecovered jobs were not recovered

e Detail any abnormal conditions encountered while processing $ROLL.
These messages are stacked at the end of Startup (as are messages issued
while recovering permanent datasets) and are issued to the system log at
the end of Startup. Message texts and meanings are as described below.

4.6.1 MESSAGES DURING $ROLL PROCESSING

The following messages are issued during $ROLL processing.

DEADSTART SELECTED - RECOVERY OF ROLLED JOBS DISABLED
Recovery is possible only on a Restart-type Startup.

INDEX Al »uml MISMATCH ENTRY ZERO Al num2

$ROLL DAT shows $ROLL occupies track numl, entry zero shows
track numa.

,,22_4_0.0_1 - ml, ,,3, - - =
‘ 4-10 b=01



INDEX DEVICE Zdv MISMATCH ENTRY ZERO DEVICE Idvl

$ROLL DAT shows $ROLL resides on Zdv, entry zero shows device
name Zdvl.

{/0 ERROR ON SROLL - DQM REPLY WAS stat
Disk Queue Manager returned error status stat on the read of
$ROLL.

OLD SYSTEM JXT COUNT cetl GREATER THAN CURRENT SYSTEM COUNT ct2
Recovery is not allowed when the previous system defined more
JXT entries than the current system.

RECOVERY OF ROLLED JOBS ABORTED
Recovery terminated due to an error. Usually this message is
preceded by an explanatory message identifying the error.

UNEXPECTED STATUS ON ACCESS OF SROLL WAS stat -~ NEW EDITION CREATED -

RRJ NOT POSSIBLE

The Permanent Dataset Manager returned error status stat on the
attempt to access $ROLL. Recovery is not possible. Status
111 (Dataset not found) is never unexpected.

4.6.2 JOB-RELATED MESSAGES

The following are job-related messages.

JOB jname - DATASET dname DAT VALIDATION ERROR
An error was found in the DAT for a local dataset.

JOB jname - DATASET dname PDM STATUS stat ON PSEUDO-ACCESS
PDM returned error status stat when RRJ attempted to access a
dataset for the job.

JOB jname - DATASET dname POINTS TO STP TABLES
Only $CS or $IN may have a DAT in STP.

JOB jname - DAT SPACE FULL
Insufficient STP DAT space exists for the roll image DAT.

JOB jname - DNT CHAIN BAD

A DNT in the chain has no name, or the memory pool entry is not
in use, or the link points outside JTL.

Part 3

1-11 ¢-03

2240012



JOB

JOB

JOB

JOB

JOB

JOB

JOB

JOB

JOB

JOB

JOB

2240012

Jname - INDEX DECLARES NOT RECOVERABLE
The index entry for job jname says the job is not recoverable
(RINRCV equals 1).

gname - |1/0 ERROR szat ON ROLL DATASET
DQM returned error status stat when RRJ attempted to read the
roll image.

Jname - JTA IMAGE ROLL DAT BAD ORDINAL
The DAJORD field must be zero in all pages of the roll DAT.

Jgname - JTA IMAGE ROLL DAT NEXT PAGE POINTER BAD
The roll image DAT in the JTA must always point to the STP DAT
area for the next page, or must indicate no more pages.

gname - JTA IMAGE ROLL DAT PAGE NUMBER ERROR

The roll image DAT in the JTA is bad; pages are not numbered
consecutively.

Jjname - JTA LENGTH (JTL) J¢7 JXT LENGTH (UXJTL) gxjtl MISMATCH
The JTA and JXT disagree on the JTA size.

Jname - JXT NAME jxt MISMATCH JTA NAME jta
The JXT and JTA job names disagree. The name given as jnrame
is from the index entry.

Jname - JOB SUCCESSFULLY RECOVERED

Jname - NO INPUT SDT

No input queue entry exists with a matching job sequence number.
This could result if a device were removed from the configura-
tion.

Jjname - REQ SIZE size GREATER THAN AVAIL. LWA = lwa, FWA = fuwa

Insufficient memory is available to read part of the JTA or
the last block of the user field. FWA and LWA give the first
and last available memory addresses.

Jname - ROLL DAT POINTS TO DOWN DEVICE dv

EQT entry for Idv shows device down (EQNA equal to 1).

Part 3. .
4-12 ¢-02



JOB jname - ROLL DAT POINTS TO MISSING DEVICE Zdv
No EQT entry for device 1dv can be found.

JOB gjname - ROLLOUT APPARENTLY INCOMPLETE
First and last block data/time words disagree.

For the above job-related messages, an additional message is appended at
the end of the main message text giving the job sequence number of the
job described in the message. This message has the format:

(JSQ=nnnnn)

Part 3
2240012 4-13

D-01



RECOVERY OF THE SYSTEM DIRECTORY

5.1 INTRODUCTION

Whenever a Restart or a Deadstart is performed by the operating
system, the resident System Directory (SDR) is recovered unless the
operator specifies that recovery is not to be performed by means of
the *SDR parameter. When an Install is performed, the System
Directory is not recovered, and a user job (JSYSDIR) must be run to
create the initial System Directory entries.

5.2 SYSTEM DIRECTORY DATASET
A permanent dataset, $SDR, is maintained to contain records specifying

system directory datasets to be recovered during a Restart or
Deadstart. The Dataset Catalog (DSC) contains an entry for $SDR,
which is initialized during an Install. Space is allocated based on
the number of SDR entries specified in the system. During a Restart
or Deadstart, the dataset is read to rebuild the System Directory. If
a failure occurs, a message is issued to the system log, and the
operating system initialization is abnormally terminated.

The $SDR dataset is constructed of 512-word blocks. Each block
contains eight logical records, with the first word of each block
holding the block number relative to the beginning of the $SDR file.
The first block in the dataset is a header record containing the
maximum number of SDR entries as specified in the last system that
recovered the System Directory. The value is updated if the number of
entries in the system increases or decreases and recovery is not to be
performed. Logical records in the file are accessed by using the
formula: (Relative resident SDR entry +1)/8. The quotient gives the
block number of the entry within the file, and the remainder gives the
logical record number within the block.

Part 3
2240012 5-1 D-02



Each $SDR record except the header contains the Permanent Dataset
Definition Table (PDD) of a dataset entered into the System

Directory. When an ACCESS request with the ENTER operand is processed
by the Exchange Processor (EXP), the Dataset Name Table (DNT) of the
dataset is saved in the resident SDR table. The PDD of the dataset is
written to the $SDR dataset. The dataset update is complete before
EXP completes processing the request.

5.3 SDRREC SUBROUTINE
SDRREC is executed as a closed subroutine that is called by Z after
Recovery of Rolled Jobs (RRJ) is complete but before the system dump

is copied. RRJ must be executed first to ensure the integrity of
datasets belonging to any jobs being recovered. Any failures during
SDR recovery cause the operating system to terminate abnormally.

5.3.1 FILE ALLOCATION

SDR recovery begins with a request to access the $SDR dataset. If no
dataset exists, the number of blocks (segments) required to contain
the current number of generated resident SDR entries is computed. A
request is issued to the Disk Queue Manager to allocate disk space for
the dataset. Then a request is made to the Permanent Dataset Manager
to SAVE the dataset. Once the operating system initialization is
complete, entries can be added to the SDR by ACCESS requests
specifying the ENTER parameter.

5.3.2 SDR RECOVERY

If the $SDR dataset exists, each block of the dataset is read and
processed until a logical record with a binary zero dataset name is found
or until the system-specified number of SDR entries is processed. A
Dataset Name Table (DNT) is built for each dataset. The DNT and PDD

in the logical record are used to ACCESS the dataset. Then the

dataset is entered into the Permanent Dataset Table (PDS). If the
dataset access fails, a message is issued to the system log, and the
entry is ignored.

Part 3
2240012 5-2 D-02



5.3.3 NO RECOVERY SPECIFIED

If the operator specifies *SDR in the parameter file to indicate that
the System Directory is not to be recovered, a new edition of $SDR is
allocated. Once the operating system initialization is complete,
entrries can be added to the SDR by ACCESS requests specifying the
ENTER operand.

5.3.4 CHANGES IN THE NUMBER OF SDR ENTRIES

If System Directory recovery detects that the system-generated number
of SDR entries 1is greater than the value saved in the $SDR header
record, the number of blocks required by the system is calculated. If
additional blocks are required, write requests are issued until all
blocks are allocated. An ADJUST request is issued to the Permanent
Dataset Manager to update the DSC for $SDR, and processing continues
for SDR recovery.

If System Directory recovery detects that the number of SDR entries
specified by the system has decreased, and if no recovery is
specified, then the dataset is cleared, and the altered number of SDR
entries is recorded in the header record. Once the operating system
initialization is complete, entries can be added to the SDR by ACCESS
requests specifying the ENTER parameter.

If the number of SDR entries specified by the system has decreased and
recovery is to be performed, a message is issued to the system log,
and initialization is abnormally terminated.

5.4 MESSAGES DURING SDR RECOVERY
Messages issued during SDR recovery processing are stacked and issued

to the system log at the end of Startup. Message texts and
interpretations are described below.

5.4.1 MESSAGES ISSUED BY SDR RECOVERY
$SDR, FILE ACCESS FAILED xxx

xxx is the Permanent Dataset Manager status. The initial
ACCESS of the $SDR dataset failed as indicated by the PDM

status.

Part 3
I 2220012 5-3 D-02



$SDR, FILE ADJUST FAILED axxx
xxx is the Permanent Dataset Manager status. After an increase
in the $SDR dataset size, the ADJUST request failed as
indicated by the PDM status.

dataset name FILE ACCESS FAILED xxx
dataset name is the SDR entry dataset name, and xxx is the
Permanent Dataset Manager status. The ACCESS request of the
specified dataset failed as indicated by the PDM status.

NUMBER OF RESIDENT SDR ENTRIES DECREASED
SDR recovery detected that the number of resident SDR entries
in the system is less than the number saved in the dataset, and
recovery is requested.

Part -3

2240012 5-4 D-02



Part 4

SYSTEM MODIFICATION
AND MAINTENANCE



CONTENTS
PART 4 SYSTEM MODIFICATION
AND MAINTENANCE

1. SYSTEM CODING CONVENTIONS . . & & & & v v ¢ v v o 4 o o v o o 1-1
1.1 INTRODUCTION. + & v v v v vttt e e et e e e e e e e 1-1
1.2 SOURCE LANGUAGE . . . & v v ¢ ¢ v v v it e et e s e e o s 1-1

1.2.1 CAL source statement format. . . . . . . . . . . . . 1-1
1.2.2 Comment 1ine . « ¢ & v ¢ v ¢« ¢ ¢ ¢ o o o o o o o & &« 1-2
1.2.3 Comment field documentation . . . . . . . . . . .. 1-3
1.3 PROGRAM ORGANIZATION. . . v & ¢ v v v v ¢ ¢ o o o o o o o 1-3
1.3.1 IDENT statement. . . . . . . . . ¢« ¢ ¢ v o v v o .. 1-3
1.3.2 ABS statement. . . . . . . . . . .00 .00 . ... 1-4
1.3.3 BASE statement . . . . . . . . . . o o0 0 ... 1-4
1.3.4 TITLE and SUBTITLE . . . . . . ¢ ¢ ¢« ¢ ¢ v v ¢ o . . 1-4
1.3.5 System definitions . . . . . . . ¢ v . v v v . .. 1-5
1.3.6 Preamble . . . & ¢ & ¢ ¢ v v 6 e 4 b e e e e e e .. 1-6
1.3.7 Local definitions. . . . . . . . . ¢ ¢ . o o o v .. 1-8
1.3.8 Body « & v v v ot ot i e et e e e e e e e e e e e .. 1-9
1.3.9 END statement. . . . . . .. ... e 1-14
1.4 COMMON DECKS. & & v v v 4 v 6 4 v v e o o o o o o o o o o & 1-15

2. SYSTEM MACROS AND OPDEFS . . & v v ¢ ¢ v v 4 6 6 v o e o o o o & 2-1

2.1 INTRODUCTION. . . + & & v v v v vt et e e e e e e o o o s 2-1
2.1.1 General rules for macros . . . . . . « ¢« .+ « . . .. 2-1

2.2 TABLE MANAGEMENT MACROS AND OPDEFS. . . . . . . . . . . L. 2-2
2.2.1 TABLE MACro. + v & v v v ¢ 4 o ¢ o o o o o o o o o & 2-2
2.2.2 FIELDmacro. . « ¢« ¢ v v v v v v v v s o o o ¢ o o & 2-3
2.2.3 BUILD macro. . . &« v v v v v v v 4 ¢ 4 4 4 4 0 o o . 2-4
2.2.4 ERDEF maCro. . ¢« ¢ ¢ v o v v 4 v 6 o o o o o o o o 2-8
2.2.5 Partial-word opdefs. . . . + v ¢ ¢« ¢ v ¢ ¢ 4 o o o W 2-8

2.3 DIVIDE OPDEF. . . v v ¢ v ¢ ¢ v ¢ v 6 6 6 v o o o o o o o &« 2-19

3. ADDING A TASK. & v v v v v e e e v e e s o s e o o o o o o o o 3-1
3.7 TASK ID v v v v v e e e e e e e e e e e e e e e e e e e 3-1
3.2 INTER-TASK COMMUNICATION. . « & v v v ¢ 6 v v o o o o o o & 3-1
3.3 TASK I/0. v v v v i e e e e e e e e e o o o o e e e e e 3-2

Part 4

2240012 iii D-02



3.4 TASK SUSPENSION . . . . . o . v v v v v v v v o v o s
3.5 TASK CREATION
3.6 TASK EXECUTION

SYSTEM DEBUG COMMANDS . . . . . « « « « o v v v o o v v o v

4.1 PROGRAM CONTROL COMMANDS
4.

4.2 REGISTER AND MEMORY MODIFICATION . . . . . . . . . . . .
4.3 DEBUG DISPLAY COMMANDS . . . . . . « « « « ¢« « v o« . .

B S A I S
R
~N oY O BN

1

.1

4.3.1

4.3.2
4.3.3
4.3.4

4.3.5

4.3.6
4.3.7 Examples of displays
UNB UTILITY PROGRAM . . . . . & . ¢ v v v o v v e e e e e e

ASSIGN - Assign default job SDT or task number

BREAKPOINT - Set program breakpoint . . . . . . .
REMOVE - Remove program breakpoint . . . . . . .
MODE - Specify default debug mode . . . . . . . .
RUN - Run jobor task . . . . . . . . . o . . ..
STOP - Stop job or task . . . . . . . . . . . ..
INITIATE - Initiate task . . . . . . . . . . ..

General form of debug displays . . . . . . . ..
Debug display command . . . . . . . . . . . . . .
Display roll command . . . . . . . . . . . . ..
DISPLAY - Display definition . . . . . . . . . .
ALTER - Alter display definition . . . . . . . .

DEBUG - Debug display directory . . . . . . .

5.1 INTRODUCTION . . .
5.2 UNB CONTROL STATEMENT
5.3 RESTRICTIONS

CRAY-1 SIMULATOR (CSIM)

6.1 INTRODUCTION

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

2240012

Simulated configuration . . . . . . . . . . . ..
CRAY-1 CPU simulator . . . . . . .« . . « « o . .
DCU-2 controller . . . . .« . « o o o o o o ...
Front-end processor . . . . . . . .« .« . . . . . .

Bipolar memory . . . . .« « .« . o o . .o . .

...................

.....................

................

..............

...................

.................

......................

...................

......................



6.1.6 Disk storage. . . . « ¢ v ¢ i i 4t i e e e e e e 6-2.2

6.2 CSIM EXECUTION. . & & v v v v v o v v v v s e o o o o o o 6-4
6.2.1  CRAY-0S simulation. . . . . + ¢ ¢ v ¢« v ¢ o v ¢ o & 6-4
6.2.2 Checkpoints of the simulated system . . . . . . . . 6-5