~ Operating

- System
Reference
Manual

THE CORVUS CONCEPT

OPERATING SYSTEM
REFERENCE MANUAL

Part No.: 7100-02825
Document No.: CCC/36-33/1.2
Release Date: September, 1983

Corvus Concept™ is a trademark of Corvus Systems, Inc.

Table of Contents

Chapter 1. General information

File and Volume Names............. 1
The Dispatcher. 3
Units and Valumes. 3
Operating system Data Types............. &
The System Communications Area............ 7
The System Call Vector. 11
The System Device Table. 14
The File Information Bloeck. 17
The Device Divectory.. 21
IORESULT codes. 24

Chapter 2: Memory and 1/Q

Concept Memory Map. 26
The Stack Pointer. 27
Concept Display Memory. 29
CCOS Register Usage. 31
1/0 Mapping and Interrupt Structure. 32

Chapter 3: System Calls

Introduction. 39
Unit input/output, UNITREAD, UNITWRITE. 41
UNITBUSY, UNITCLEAR, UNITSTATUS............. ... 42
File I/70.. ... 44
Memory management., 56
System Procedure Declarations in Pascal.. 58

Chapter 4: Writing a Unit Driver

Calling Conventions. &1
Unit Driver Command Parameters. 62
Driver Notes...... 63
A Sample Unit Driver. 64

Chapter S: Standard Drivers

Introduction. &9
Driver Overview. 71
The ConsolesSysterm Driver. 74
The KYBD driver., 75
The DISPLAY driver. 93
The DATACOMM driver. 102
The TIMER driver. 111
The disk drivers. ... 117

The Enhanced Printer Driver.................... 123

Chapter & Everything else not covered in chapters 1-5

Use of EXEC files. 133
Spooler and despooler parameters............... 137
BLDACT~ The Printer Action Table utility....... 141
BLDALT- The Alternate Character Table utility.. 144
BLDCRT- The CRT Table Builder wtility.......... 146
Program segmentation.................. e e 149
The Linker. e 153
The Librarian. e 157
Running the compilers. 158

Chapter 7: 0S Global Declarations and Appendices

General

Information

. wm - wm -
-

Topics covered in this chapter include:

CCOS devices and units

CCOS internal data structures

The system communications area (SYSCOM)
The system call vector

Device directories

IORESUL.T codes

¥ % % %k ¥ %

Devices, Units, Volumes, and Drivers

The primary function of an operating system is to control
the interaction between the computer and its various peri—
pherals. The actual, physical peripherals, such as printers
and disk drives, are called devices. The operating system
may view the device as one or more logical peripherals or
volumes. Modems and printers are examples of devices that
the operating system treats as a single volume. Hard disks
are generally treated as multiple volumes.

CCOS uses the unit mechanism to assign logical volumes to
physical devices. At boot time, each volume is assigned a
specific unit number that the operating system uses to
communicate with it. This unit number may vary depending
upon the system’s configuration

Drivers are the software that implement the unit mechanism.
A driver has two purposes: to transform generic operating
system commands into device-specific actions, and to perform
whatever format conversion is necessary when passing data
between the computer and the peripheral. CCOS recognizes

two types of devices: block devices, which communicate in
312-byte chunks, and character devices, which communicate

on a character—-by—-character basis.

File and Volume Names

CCOS volume names may be up to seven characters long, and
can contain only letters, digits, and periods. A volume name
can start with letters or digits, but not periods. File
names may start with letters, digits, or periods, and may

be up to 15 characters lang.

CCOS Manual Page 1

Many CCOS file names use the period character to mark exten-—
sions to the file name. This period character is included as
one of the 15 allowable characters.

CCO8 uses three standard extensions in file names:

_TEXT - A text file is human readable text,
such as file produced when an EdWord
wordpad is saved.

I - Intermediate code files produced by
various compilers. These files are nor-
mally deleted automatically as part o#f
compiler operation.

_OBJ - The end result of a compilation or assembly
These files are machine executable. although
most will require an additional linking
step.

User files may have any extensions desired.

CCOS Manual Page 2

Temporary #files

Temporary files are normally not seen during standard CCOS
operation. They are most often encountered after a system
crash or power failure during & compilation or assembly.
Temporary files are easily indentified by their scrambled
datestamps— a directory listing will show a file with a 7?77
replacing the month specifier, and a year of 100. When a
compilation or assembly aborts with a

Can‘t open intermediate code file

message:. it’s generally an indication that a previous
operation has left a temporary file that needs to be erased.

Temporary files can only be deleted with the [DletTempl
command from the file manager. If necessary, a temporary
file can be made permanent by changing the date record of
the file entry to a legitimate value with a user-written
program.

The Dispatcher

After CCOS is booted, the file CC. DISPAT is automatically
executed. This program is called the dispatcher, and is the
primary user interface to CCOS.

All CCOS utility and applications programs are run from the
dispatcher. When other programs are executed, the operation
of the dispatcher is suspended, and its state saved.

In some situations it may be useful to exit the dispatcher
and issue commands directly to the operating system. The
dispatcher is exited by pressing

CLExecFilel %4 <Return>

The function key labels will disappear from the bottom of
the screen, and the CCOS % prompt will appear in the system
window. The dispatcher, however, is still in memory, and

typing control-D will cause the system to return control to
it.

Units and Volumes
CCOS communicates with peripherals and devices through the
unit mechanism. There are two types of units: character

units and block units. As their names imply, character units
work with I/0 on a character—by-character basis, while block

CCOS Manual Page

units deal with 512-byte blocks. Block units are generally
disk drives, tape drives, or other mass storage devices.

Devices on the system may be refered to either by their
volume name or their unit number, depending upon the envi-
ronment. From the dispatcher. volume names must be used.
From a program, use of the file I/0 intrinsics requires
volume names, while use of the UNIT I/0 intrinsics requires
unit numbers.

CCOS assigns unit numbers to devices on the system during
the boot process. While physical devices such as the key-
board, display, and RS-232 ports will always be assigned the
same unit number, logical devices such as disk volumes may
be assigned different unit numbers, depending on the order
in which they are mounted. Therefore, it‘’s generally a good
idea to use volume names when referencing disks from within
programs. Two special forms of the [ListVoll function are
available:

! CListVoll and / fListVoll

These can be issued from either the dispatcher or the file
manager. The first form shows all current devices and
volumes, along with their unit numbers, slot numbers, size
in blocks, and other information. The second form show
more abbreviated information consisting of just the unit
numbers, volume type, and size in blocks

All volume names are preceeded by @ slash character. For

example, the string /WORK refers to the volume named WORK,
while /WORK/GRAPHICS is the PATHNAME for the file GRAPHICS
on the volume WORK.

The standard CCOS unit numbers and their assignments are:
Unit Number Name Description

¢) /Null Null device. May be writ-
ten to indefinitely; when
read, an end-of-file is
returned. UNITBUSY will
always return a FALSE.

i /Console The system keyboard and
screen, with echo.

2 /Systerm Same as /console, but with-
out echo.
3 e Unassigned and available for

CCOS Manual Page

user devices.

4 /CC8YS The root volume, or volume
from which the system was
booted. On the Concept., this
is generally /CCSYS.

o ———— A user volume. The name de-
pends on the volume assign-
ed to that unit. If a vol-
ume is assigned, CCOS makes
it the default volume.

) /printer The system printer, if one
is available.

7 /remin Not currently used by CCOS;
available for user devices

8 /remout Not currently used by CCOS;
available for user devices

P-29 0 —em—— User devices; generally
disk volumes.

30 /SLOTIO General slot I/0 routines.
31 /DTACOM1 RS-232 port 1 driver.

32 /DTACOM2 RE6-232 port 2 driver.

33 /JOMNINET Omninet port driver.

34 /TIMER Timer driver used by CCOS.
35 /KYBD Keyboard driver.

36 /DISPLAY Horizontal or vertical

display driver.

Floppy disks: if present, will be mounted starting on unit
?. Unless specifically mounted to a certain unit (via the
mount manager utility), hard disk volumes start usually
mounting at unit 10, or the first unit number available
after all floppies have been mounted.

The dispatcher recognizes two special volumes: the boot
volume and the default volume. The root volume is the volume
the system was booted from: and always has a unit number of
4. The default volume is set during & boot to whatever vol-

CCOS Manual Page 5

ume is mounted on unit S5, or the root volume if there is no
volume mounted on unit 5. The default volume may be changed
wktx the [SetVoll command from the file manager or dispat-
cher.

Operating System Data Types

BYTES: 8 bit quantities which are interpreted as values in
the range -128 to +127.

BLOCKS: A block is a group of 512 bytes, and is the stan-—
dard unit of disk I/0. 'S

WORDS: Occupy 16 bits, and are equivalent to the Pascal type
integer. Words represent signed integers in the range
-32768 to 32767 and are always aligned on word boundaries.

LONG WORDS: Long words are 32 bits long and correspond to
the Pascal longint data type. Long words are aligned on word
boundaries. Long words represent signed integers in the
range -2, 147,483,648 to 2,147,483, 647.

BOOLEANS: A Boolean data type occupies a single byte. A
value of 1 represents TRUE; a value of O represents

FALSE. Other values are not valid Booleans. Packed Booleans
occupy ane bit each.

POINTERS: A pointer is a long word structure whose contents
are a specific address within the 16M address space of the
68000 processor.

The NIL pointer: Pointers, as mentioned above, are long word
quantities. The NIL pointer points to nothing and is repre-—
sented by a value of O.

STRINGS: A Pascal data type consisting of a (packed) array
of characters with a preceding length byte. Thus, a string
has a maximum of 255 elements. The length byte does not
count as part aof the length of the string. Strings are
aligned on word boundaries.

PACKED ARRAY OF CHARACTER: Similar to the string type:. but

without the preceding length byte. Also aligned on word
boundaries.

CCOS Manual Page &

The System Communications Area

CCOS maintains a system communications area, or SYSCOM,

in

memory. SYSCOM contains important, global system informa-—

tion that is used by the operating system.

The exact location of SYSCOM varies, but its address is

contained in the pointer at $180. Below is a diagram of the

data in SYSCOM. The numbers to the left of each field indi-

cate the displacement of the field into SYSCOM, in bytes.

Following the diagram are short explanations of each of the

fields.

e ——————————— e e e e e i s s +
+0! IORESULT :
+2: Proc;ss Number ?
+4T_;;;nter to ;;xt available—;:ee sp;;; on t;; heap:
+Bt_—-_Pointer_;; start of the system call v;:;;; ;

+12? Poin:;:—to the system ;;tput file T ?
+16?___ Pointer ;;—the sqst;;-;;put F;Ie ?
+20T ————— ;;;;;;;-;;-;;;-sgste; device ta;;; __________ ?
+24T_-;;;;ter to the default volume directo;;-;;;;——_T
+281 Pointer to start of the user command table i
+32: ;;;;;; dat;—:packed) o ;
+34T ———————————— a;;:;;q Jump t;ble a;;:ess o T
el Next process mumber &
+40? a—;umber of processes) _T
+42? - Po;;;er to the process ;;;I; _________ :
+46: Pointer_;;—;he boot volume direct;rq name ?
+50T___ Poi;;;r to memory bounds map o :
+54? o Boot dev:ce nu;ber ;
+56? ----- Temporary window record pointer ;
CCOS Manual

Page 7

Slot table pointer

t
+64: Ne;t window record pointer - :
+6B: Cur:;;;—;;;dow record pointer ;
+72:) C;;rent keyboard record pointer :
+76?—— E;;stellation vser 10 T
+78?— Poin;;; to CCOS version number T
+82T —————————— ;;;;;;r to~ECDS vers;;n date _T
+86? ———————————————— ;;;;ow table pointer T
+90T___- -—-;uspe;;-;;;ibit count o T

e e e e e e e e e e - ——
+921 Suspend requested if non-zero H
+94T— T Tit;;-line offset for volume T
wost Title line offset for time :

e e e e e e e e e e i e e e e e e e e o e +

IOResult: A word value which contains a result code after
the completion of any I/0 process.

Process number: A word value which is the current process
number. The dispatcher has a process number of 0. A
maximum of ten processes may be in use at any one time.

Free heap: A pointer to the start of free memory available
for storage allocation on the heap.

System call vector— A pointer to the system call vector.
This is a jump table to the various system routines and is

described in further
System Call Vector.

detail in the section SYSCOM: The

Sysout: A pointer to the standard output file. This is

generally the screen.

SYSIN and SYSOUT are used by the

system for last resort error messages, such as when the
system runs aout of memory.

Sysin: A pointer to the standard input file, generally th
keyboard (handling routine).

System device table:

A pointer to the device table. The

device table describes each unit number to the system.

CCOS Manual

Page 8

Directory name: A pointer to the default directory name.

User table: A pointer to the start of the user command
table.

Date record: A packed, one—word record containing the
current system date,

Overlay table address: A pointer value pointing to the start
of the current process overlay table. Used only when the
current process contains overlays; otherwise contains a O.

Next process number: A word value to be assigned to the
next process.

Number of processes: A word value representing the number
of processes currently active, including the dispatcher.

Process table address: A pointer to the process table. The
process table contains information on the processes current-
ly in the system.

Boot name: A pointer to the directory of the device used to
boot the system.

Mem map: A pointer to a table describing the limits of
memory available to CCOS on the current hardware.

Bootdev: A word value containing the number of the initial
boot device

Temp window record pointer: A pointer to a window record for
a temporary window.

Slot table pointer: A pointer to the slot table

Next window rec: A pointer to the next window record; valid
only when more than one window is in use (CCOS normally
keeps 3 windows active).

Current window rec: A pointer to the current window record.

Current keyboard rec: A pointer to the current keyboard
character translation tables.

Constellation user ID: A word containing the current user
number.

CCOS version number: A pointer to the a string containing
the current CCOS version number.

CCOS Manual Page 9

CCOS version date: A pointer to the release date for the
current version of CCOS.

Window table: A pointer to the window table.
Suspend inhibit count: Not used.
Suspend requested if not zero: Not used.

Title line offset for volume: Assuming the default & by 10
character set, the number of spaces over to print the volume
name on the title line at the top of the screen. This will
vary depending upon the screen orientation.

Title line offset for date: The number of spaces over to
print the date.

Additional information on the various fields in SYSCOM can
be found in chapter 6.

Accessing SYSCOM from Pascal

You can easily access SYSCOM from a Pascal program. The
following program fragment illustrates the technique:

Program Raskin;
Uses {$U /ccutil/os.globals. obj) globals;

Var
PSys : PSysCom; { Defined in GLOBALS)}

Begin
PSys := Pointer(SysComRec); <{ Defined in GLOBALS)
WritelLn(’'Current IORESULT is ‘,psys~. sioresvlt)
End.

Note that this program assumes the existence of the GLOBALS
unit in CCUTIL. The globals unit cannot be used in a
program that uses the standard library unit CCdefn since
many identifiers are declared in both units. In some cases
it will be necessary to extract only the data structures
needed (such as SYSCOMREC and FIB declarations) from the
globals unit.

CCOS Manual Page 10

SYSCOM: The System Call Vector

All CCOS system calls are made through a table of routine

addresses.

This table is the system call vector.

in the table is a pointer to the address of the desired

Each entry

Troutine. The address of the system call vector may be found
in the SYSCOM (see previous section). The table layout is as
follows:
Fo e ————————— e o e e e e e e +
i Offset | Routine Name ! Description :
e o e e o s . o e e e e o e +
H (o] ! UNIT WRITE i Direct write to a unit H
o o o e ————— - — +
H 4 { UNIT READ { Direct read from a unit {
H 8 { UNIT CLEAR { Reset a unit~ flush buffers, |
H H i it any. i
e +
H 12 { UNIT BUSY ! Check to see if unit is busy |
e e e e et o i e - ————————————— +
{ 16 { FPUT { Write one record to a file !
e e e e e e e e e e e e e e e e e +
H 20 i FGET { Get oane record from a file i
e e e e e e e —————————————————— ————————————— +
H 24 { FINIT { Initialize a file H
B e e e e e et e B e P e e e e +
{ 28 { FOPEN { Open a file !
+ —— — e e e e e s e e e e +
! 32 ! FCLOSE i Close a file i
B i LRI — ——— — +
H 36 ! WRITE CHAR ! Write a character to a file !
e e e ot e o - +
H 40 ! READ CHAR { Read a character from a file !
B S P — ———————————— —_——— +
t 44 { BLOCK 1/0 { Block file I/0 H
o e e e e e e e e e e e et e e e o o B e e i e e e e e +
t 48 i FSEEK { Position a file to a record |
o e o B - ——— ———— -+
i 52 ! NEW { Allocate memary on the heap |
o e e e e e e o s e i e —_— B +
H 56 i DISPOSE { Remove allocated memory. This!
! H i is currently a NOP; use MARK!
b H i and RELEASE to manage memory!
A e e e ———— e e e et o e o e e o e +
H &0 ! MARK ! Mark the current top of heap |
o —— e e e e e e e e e e e +
H &4 { RELEASE i Cut heap back to MARKed pos. |
A e i e e e e +
MEMAVAIL Returns memory available for !
:

CCOS Manual

dynamic storage allocation

Page 11

; 72— ?_GETDIRNA;;-‘ { Get current directo:;—;;;;-__?
:———;;— ! CRACKPATHNAME E_ParSQ a pathname :
?_—_;5_ ! UNITSTA;GS E-Unit status call) ;
T 8a 1 LNEW 1 LONGINT version of NEW :
T_——;;-_~—_T—:BISPDSE) :-:a;GINT version of DISPOSE :
Tn——;;____-:-gzz--‘~-_————_?_g;;mand line interprete: ;
i\ 96 1| GETVOLNAMES ! Get volume names i
1100 i GHKDIR | i Chack for valid directory
T__;BZ—__ H FLPD;R T H ;;;;_directorq ;
1 loe | SEARCHDIR | i Search directerg for £1lename!
?——;;;_ H BELDIRENT;;—__T—B;Iete directory e;;:; _______ T
116 i PUTDIR | 1 Write directars :
1120 1 UNITINSTALL ¢ Install a unit driver i
e e e e e —_— o +

Calling a System Routine

Most user programs in a high level language will not need to
issuve direct system calls, since the standard rouvtines sup-
plied in each language (i.e. WRITE and READ in Pascal) will
provide all the necessary functions. The only way to call a
CCOS routine directly from a high level language is to code
an external assembly language routine and link it teo the
main praogram.

Yo call a system routine from an assembly language program,
the appropriate parameters for the routine are pushed onto
the stack, and a JSR to the appropriate routine address
(extracted from the system call vector table) is executed.

Below is an example of a system call to close an open file:

PEA FBUF i Push FIB address

CLR. W —(5P) ;i Close type := NORMAL

MOVE. L $180. W. A0 ; A0 now SYSCOM address

MOVE. L 8(A0), AO i AQ now sys call vector address

CCO0S Manual Page 12

MOVE. L 32(¢(A0), A0
JSR (AOD)

i AO now = FCLOSE address

; CCOS call

i CCOS returns here. Remember to
i check IORESULT!!'!

The program fragment above assumes that the user has de-—
clared an appropriate FIB for the file being opened. The
FCLOSE routine expects this address on the stack, which is
accomplished by the first instruction. The third, fourth,
and fifth instructions locate syscom, then locate the system
tall vector and extract the address of the FCLOSE routine,
leaving it in AO. An indirect JSR then calls the routine.
The system call vector should always be used to call system
routines since their addresses may change in different
releases of CCOS and different memory size machines.

System calls and details on the various parameters are
dicussed more fully in chapter 3.

CCOS Manual Page 13

SYSCOM: The Device Table

The device table or unit table contains a list of all devi-

ces currently recognized by the operating system.
dress of this table is kept in SYSCOM at an offset of 20

bytes.

+0
+2
+20

+38

‘The first word of the table contains a number representing
the maximum number of devices available on the system.
successive 1B byte entry contains the characteristics of a

single device. The format of a device entry

+0

+2

+&

+8

+14

+20

+21

+22

+23

+24

+25

+26

+27

The table structure is:

+ - +
i Max number of devices H
o o e +
! Entry for device O H
+ s e e o e e e e +
! Entry for device 1 H
A e e e e e - -—+
: Entry for device 2 i
+——= - - - -+
: etc. :

¥

e e ——— -—

' Valid operations
e e e e e e s i e e et -

' Pointer to device driver

Blocked H Mounted

wrd)

Disk drive number

Disk drive type

Sectors per track

Tracks per side

Device read only

! Vol directory flipped

CCOS Manual

N T G S A I ETEE JESNE JECEE SEENE P 3

-+

is:

Each

Page 14

+28 Disk base block

+ -

1
1
e
>

Note: For the Revision B 8“ floppy disk driver, the "disk
base block" parameter becomes "sector size in bytes. " Only
the lower order word of the parameter is used

Valid Operations: This is a word quantity whose individual
bits specify which operations are possible. The bits used
and their definitions are:

0: UNITREAD
1: UNITWRITE
2: UNITCLEAR
3: UNITBUSY
4: UNITSTATUS

Pointer to device driver: A pointer to the entry point for a
device driver.

Blocked: A Boolean that indicates (when TRUE) that a device
is blocked, such as a disk drive. Non-blocked devices, such
as printers, handle I/0 on a character by character basis

Mounted: A Boolean that indicates (when TRUE) that a device
is mounted.

Device name: An 8 byte string field containing the name of
the device. The first byte is a length bytei the remaining
seven bytes contain the actual device name. If no valid
media is present (such as might occur when there is no
floppy disk in a disk drive), the length byte will be O.

Device size: A long word quantity indicating the number of
512 byte blocks residing on the device. This is applicable
only to blocked devices. For unblocked devices such as
printers or modems, this is set to 32, 7&7.

Device slot: Applicable only for devices attached to the
Concept via the 50-conductor I/0 slots. A byte which con-
tains the slot number the device resides in. Set to 5 for
Omninet devices.

Device server: A byte quantity ctontaining the device’s
server number. Applicable only to network systems.

Disk drive: A byte containing the number of the disk drive
the volume resides on.

Sectors per track: For floppy disks, a byte containing the
number of sectors per track.

CCOS Manual Page 15

Tracks per side: For floppy disks, a byte containing the
number of tracks per side.

Device read only: A Boolean quantity set to TRUE if the
device is read only.

Vol directory flipped: A Boolean quantity set to TRUE if
the device directory is byte flipped. Applicable only to
blocked devices. A flipped directory has its integer fields
stored in a format of low order byte first, instead of the
CCOS standard of high order byte first.

Disk base block: A long integer containing the starting
block number of the device on a disk. Used for volume off-—
sets on a hard disk. For floppy drives, this field contains
the sector size in bytes in its low order word. woerds
Accessing the device table from Pascal

The following program fragment shows how the information in
the device table may be accessed from a Pascal program:

Program Raskin;

Uses {$U /ccutil/os.globals. obj) globals;

Var

PSys : PSysCom;
PTab : PDevTable;

Begin
PSys := Pointer(PSysCom)i
PTab := PSys~. SysDevTab;

PTab now points to the system device table.

CCOS Manual Page 16

The File Information Block

Each open file has an associated file information block or
FIB. A FIB must be created before a file can be opened.

FIB describes the type of file, buffering, etc. to CCOS s
that the file can be handled correctly. FINIT will initia

lize a FIB passed by the user;

with a particular file.

The size of the FIB depends upon the type of file being

opened.

Files accessed with block I/0, such as Pascal un-—

T
o

he

FOPEN will associate the FIB

typed files, have &4-byte FIBs, in addition to a user-allo-
cated block buffer. Unblocked files, i.e. TEXT files or
typed files, have a FIB that is 57& bytes long, plus enough
buffer space to hold one record.

The structure of a FIB is given below:

+81

+101

+121

+14]

+281

+341

____________________ [— e e et e e e et s
Pointer to start of file buffer H
___________________ e e — e o e e s e v e
End of line H End of file '
___ +
Text file ! File states !
____________________ o e e e e e e e e e e s e e
Record length !
___ +
File is open i File is blocked H
___ +
Unit number on which file resides H
___ +
Length of volume name | Volume name (7 bytes) i
___ +
Maximum block number H
——— +
Next block number H
___ -+
Repeat count H

_________________ -— e e e e e e P e e e e S S e S e e e e
File has been modified ! << Unused 2> H
___ +
First block H
___ +
Next block H

______ —— e e e . s e e S . e S S S S i o i S i e i S o i st
File kind ! <L Unused > H
___ -+
Length byte of filename! Filename (15 bytes) '
Number of bytes in the last block of the file i
___ -+

CCOS Manual

Page 17

+54! Year (7 bits) | Day (5 bits) | Month (4 bits)

H

e ——— e e e +
+56! << Unused>> { File has soft buffer H
D - — - +
+58! Maximum byte i
o e o e e e — — +
+601 Next byte !
e e e i e o o e et i e s e +
+62¢ << Unused 3> { Buffer has been changed!
e e - +
+64-5711 512 byte buffer if the file has a "soft" buffer |
o e e e e e e e - +
+572! "Window" large enough for one file record !
o e e e - - +

Pointer to file buffer: A pointer to the buffer at the end
of the FIB. Only valid for TEXT or untyped files.

End of line: A Boolean value that is TRUE if an end-of-line
character was encountered in the last read of the file.

End of file: A Boolean value that is TRUE if the file is
currently positioned at its end.

Text: A Boolean value that is TRUE for TEXT or INTERACTIVE
files.

State: A field that can have the values 0-3, and is wvalid
only for text files. Represents the state of the files‘s
buffer and is used by FCGET.

Record size: A word quantity denoting the number of bytes
in a record.

File is open: A Boolean value that is TRUE if the file is
currently open. The fields AFTER this field are valid ONLY
if this field is TRUE.

File is blocked: A Boolean that is TRUE if the file resides
on a blocked device (e.g. a disk).

Unit number: A word that contains the unit number for the
volume the file resides on.

Volume name: A B byte string that contains the name of the
volume the file resides on. The first byte contains the
length of the volume name.

Maximum block: A word denoting the number of the last
block in the file.

CCOS Manual Page 18

Next block: A word value containing the number of the next
block to be read from or written to the file. Valid only
for blocked devices

Repeat count: A word value representing the number of lead-
ing spaces on a line. Included for UCSD file compatibility.
Valid only for current record of text files. The normal
sequence is DLE N, where N is a binary number representing
the number of spaces at the start of the line.

Modified: A Boolean value that is set to TRUE if the con-
tents of the file have been changed.

Header: This is the current directory entry for the file. It
contains all fields from byte +30 to byte +56.

Soft buffer: A Boolean value that indicates that the file
buffer for this file is part of the FIB, as opposed to being
separately allocated as in the case of a blocked file. The
following fields are valid only if the soft buffer field is
TRUE.

Next byte: A word pointer to the next byte to be read from
or written to the current file buffer.

Maximum byte: A word quantity that is the number of the
last byte in the buffer.

Buffer changed: A Boolean that is TRUE when the buffer for
this file has been changed. Used to notify the system that
the buffer must be written to the disk.

Buffer: For typed files only, the 512-byte buffer area at
the end of the FIB.

Record window: For typed files, a buffer area large enough
to hold one record of the file
Accessing a FIB from Pascal
The following program fragment illustrates a technique that
may be used to access a FIB from Pascal. This example as-—
sumes the existance of a file called TEST.
Pragram GetFib;

Uses {$U /ccutil/os. globals. ob)} globals:;

CCOS Manual Page

Var
DemoFile : File;

PtrFib : PFIB;

Begin
Reset(DemoFile, ‘TEST');
PtrFib = @DemoFile;

PtrFib now points to the FIB of DemoFile.

CCOS Manval Page 20

The Device Directory

Directories reside on blocked devices (i.e. disk volumes).
and contain information about files on the volume, such as
the size of the file, its type (text file, code file, etc.),
its starting location on the disk, and the date of its last
modification.

The volume directory has space for a maximum of 77 entries,
$0 a volume may have a maximum of 77 files, regardless of
the amount of space available on the volume. In addition,
each directory contains a special entry which describes the
particular volume. This header record contains information
on the volume in a format similar to that of a directory
entry for a file.

The structure of a directory entry is shown below. The first
part of the structure, i.e. the first 6 bytes, is common to
all directory entries. Of the last portion., the left part
Tepresents the structure of the entry if it is a volume
header. and the right part represents the structure of the
entry if it is a directory entry for a file.

+ - +

+0 | First Block H

+ - +

+2 | Next Block H

o e e +

+4 | File type | Unused H

e - +
e e e e e e e e e e + - ——— +
+4 | Disk volume name { IName length ! 1lst char. |
+ + + !
+14 | Last block number { iremaining chars of name |
+-— —_—+ + . !
+16 | Number of files HE :
+— e ———+ 4 :
+18 | Last boot HE !
e o e e e e e + + !
+20 | Last access L H
e —— + +- +
+22 | Mem flip‘d | Disk £lip‘d! ! Last byte H
+ —— —— - +
+24 | Unused N Last access {
+—— - —— e —————— e +

Volume header entry

First block:

CCOS Manual

File divectory entry

A word quantity denoting the starting block

number of the file. For a volume header, denotes the first
available block on the disk. normally O.

Next block: A word denoting the next available block after
the end of the file. For a volume header, the first availa—
ble block on the volume, normally 6, since the directory and
other systems data occupy blocks O through 5.
File type: A four—~bit quantity which designates the type of
file this entry represents. The possible values for this
are as follows:

O or 8 -~ directory header entry

2 — code file

3 —~ text file

5 - data file
The "code file" type designation refers to a P-system code
file. CCOS code files are flagged as data files. This metho-
dology was adopted for P-system compatibility.

The remaining 12 bits of the field are unused

If the directory entry is for a file:

Name length: A one byte field containing the number of
characters in the file name, up to a maximum of 15

Name: The actual file name. This field is actually part of
a string, with the name length field as the string length
specifier.

Last byte: A word containing the number of characters in
the last block of the file. The remainder of an end block
is padded with ASCII null characters.

Last access: A word containing a date record representing
the last time the file was changeced.
I the directory entry is a volume header:

Disk volume name: An 8 byte field consisting of a length
byte followed by up to 7 characters of volume name.

Last block: A word denoting the number of the last available
block on the volume.

CC0OS Manual Page 22

Number of files: A word containing the number of files on
the volume (maximum of 77).

Last access: A date record specifying the last write access
to the directory.

Last boot: A word containing the most recent setting of the
date. This is vpdated automatically when CCOS is booted.
Only the record on the boot volume is affected.

Memory flipped: A Boolean used by the system when a direct-
ory read into the Filer is byte flipped.

Disk flipped: A Boolean used by the system to indicate that
the disk directory is byte flipped.

Accessing device directories from Pascal
Routines to read and write device directories are contained

in the CCdirlI0 unit in CCLIB. See "The System Library Users
Guide" for more information.

CCOS Manual Page 23

IORESULT codes
The IORESULT field in the system communications area (SYS-
COM) is an integer value that is set every time an I/0
operation is performed. This value is available in Pascal
by calling the predeclared function IORESULT, as in:
IF IOResult <> O Then Begin...

The possible values for IORESULT are:

O: Good result. IO operation completed successfully.

1: Bad block. Usually caused by a CRC error when reading
a disk.

2: Either a nonexistent unit number has been referenced,

or no driver is installed for the unit.

3: An attempt was made to perform an invalid output ap-
eration, generally a unit I/0 request not supported
by the driver in use.

4: Nebulous Hardware Error.
5: Lost device: A previously valid device went offline.
6: Lost file: A prevously accessed file has disappeared

from the directory.

7: Invalid file name

8: No room left on the device (usuvally caused by an
attempt to write a file larger than the remaining

space on a disk).

9. Fatal ID error: A device has become unavailable in
the middle of an IO operation.

10: No such file— The file specified does not exist
11: Duplicate file name: Attempt to create a file on a
device which already has a file of that name

resident.
12: File is already open: Attempt to open a previously

opened file.
13: File is not open: Attempted IO operation on a closed

or unitialized FIB, such as an attempt to read a file
without opening it.

€CCOS Manual Page 24

14: Bad format: Non-numeric data was read in an integer
or real format READ operation.

15 Ring buffer overflow Currently unused by system.

16: Write protect error: Attempted write to a write
protected device.

17: Seek error: Attempted seek on a file that is not
a blocked or TEXT file. Also caused by a seek to
a negative record number, or a floppy track seek
error.

18: Invalid block number A request was made to a blocked
device with a block number that was negative or
greater than the highest block number on the device.

24 Device timeout. The system has timed out while wait-
ting for a device to respond. Currently used only
with floppy disks.

25: Attempted seek to track O of a floppy failed.

26: Failure to read or write floppy diskette, usvally
indicates an unformatted disk.

27: Invalid sector length on floppy disk. Usually indi-
cates an attempt was made to read a diskette for-
matted on another system.

28: Floppy track read was not the same as the track re-
quested. Usually indicates foriegn diskette format
or clobbered disk.

29: Track read was flagged as a bad track. (as per IBM
spec)
&4 Device error of unknown origin.

Some devices on the system may generate device—specific
IORESULT codes. IORESULT codes for Corvus supplied device
drivers are specified in chapter 5, "Standard Device
Drivers. "

CCOS Manual Page 25

CCOS Resource Usage and Concept Memory Map

Memory and I/0 |

Top of memory +——————-— e e e e +
($100000 on i CCOS kernel code !
912K unit) 4 ———— —————————— +

0 Dispatcher H

H Program 1 :

H Program 2 {

i Program 3 i

! .etc. i

H H

{ Loadable drivers, tables, char sets, etc. !

Stack Ptr—=2 44— e i e +
($CEOOO an H CCOS globals H
512K uniti +———m—em——en . e e e e e e +

! Dispatcher globals H
e e T T - +

H Dispatcher stack H

o e e - - +

H Program 1 globals and stack H

o e i s e e et 0t e e e e +

] Stack !

H H H

H v H

) [}

! Heap H

$B8EQO0Q —-—-2 o ———— e e e +
H Display RAM i

$80000 ——-> + e e e e e e e e e e e o e e e et e e +

<< nothing >>

$£40000 —--——2 P ——— ——————————— +
H Hardware 1/0 H

$30000 ———2> e et +

<< nothing 22>

$22000 —> e e e e e e e e e e e e e e e +
! MACSBUG (if installed} H

$20000 -—-> o e e e e e e e e e e ——— e +

CCOS Manual

<< nothing 2>

$12000 ——> e e e e e e e e e e e e e +
{ boot PROM. local disk driver, floppy disk:

{ driver, OmniNet disk driver, keyb and H

{ display driver... i

$10000 ———> + +

<< nothing 2>

$2000 —=-~> + +
H Static RAM: H

H H

e e e e ———— +

$ 180 —-> i Poginter to SYSCOM data area ‘
$ 100 —==D> o e e e e e e - +
; Trap vectors H

$ o —-—> + +

The system stack pointer determines how memory is appor-
tioned between code space and data space. The current
setting of the system stack pointer can be seen by typing:

SP [Returnl

at the dispatcher level. The stack pointer value may be
changed from the dispatcher by typing:

SP {newvalue> <& of “K" RAM avail>

This causes the system to warm boot and reallocate its
memory. The second parameter is optional. For example, a
812K system could be turned into a 296K system by typing:

SP 9C400 256

Users requiring a different allocation of code and data
space can force the system to come up with any desired
stack pointer setting by putting an "SP <pointer value>
STARTUP" line in the startup file STARTUP. TEXT on unit S.
This will lengthen the amount of time the system takes to
come up since the system will first perform a normal boot.
then immediately warm boot to reset the stack pointer.

The STARTUP at the end of the line must be included. or the
system will reboot in an infinite loop.

The system stack pointer should not be confused with the
68000 stack pointer; they are completely seperate.

In a 512K machine with a standard complement of drivers,

approximately 170K of code space and 200K of data space is
available with the standard stack pointer setting

CCOS Manual Page 27

Program code is loaded starting at the top of available
memory (initially, just under the dispatcher) and grouws
downwards. CCOS drivers are loaded starting at the stack
pointer and grow uUpwards. The address of the current top of
driver space is contained in the pointer starting at $10C,
while the current bottom of code space is contained in the
pointer starting at $108. The amount of available code/dri-
ver space is the difference between these two values.

Static data structures (simple variables, constants, and
arrays) are allocated starting at the stack pointer and
growing downward towards low memory addresses; this data is
collectively referred to as the stack. Dynamic data struct-
ures, such as those created with NEW in Pascal:. are alloca-
ted starting at the top of display RAM and growing uvpwards;
this data structure is called the heap. Data memory is full
when the stack and the heap collide; code memory is full
when the drivers and program code collide

The Pascal function MEMAVAIL returns the approximate amount
of space remaining between the stack and the heap. The
VOLUTIL utility on /CCUTIL can display & graphic and numeri~
cal indication of available memory.

CCOS Manual Page 28

Concept Display Memory

The Concept display is bitmapped—— each pixel on the screen
represents the state of one bit of memory. If the bit is a
logical 1, the corresponding pixel is light. If the bit is
@ logical O, the corresponding pixel is dark

The display contents are changed by writing values to memory
locations between $80000 and $8DFFF (524288 to 981631 deci-
mal).

Screen memory is mapped to the physical display in the same
fashion regardless of whether the display is vertical or
horizontal. Thus, low memory addresses which reference the
lower right hand corner of the display when it is horizontal
will refer to the upper right hand corner of the display
when it is vertical.

When the screen is oriented horizontally, increasing addres—
ses in memory reference scanlines on the screen from right
to left, bottom to top:

P ——— High address
o ———— e e et s e e s ——— -
H (Concept display) !
(]]
L <~ One byte, bits are 01234547 H
. <~ Another byte, one scan line down. :
H Scan line offset is $560 (96 dec) H
3]
1 1
H H
P —————— e e +
Low address - +
+ — + L +
H i L
i : o
i ! w

CCOS Manual Page 29

£

H H a
) === bit 7 H d

H H H d

i H H T

g H ! e

h H H s
H H s

a H === bit O H

d H H

d ! :

T H H

e H H

s H H

s § H

H H H

[] 1

! H H

+==D> + +

The ReadBytes routine in the CCgrfID library unit can be
used to read data directly from screen memory.

CCOS Manual

Page 30

CCOS Register Usage
68000 register usage in CCOS is as follows:

A4~ Holds address of overlay jump table

AD— Holds address of user global data

Ab- Holds the base address of the local
stack frame. Aé6 contents are undefined
for a program at the outermost (main)
level.

A7— Holds the current top-of-stack address.

All other register contents are destroyed when system calls
are made.

When a program is started. the top portion of the stack

contains:

(A7) + 20 : Pointer to standard error file FIB ;
(A7) + 16 T ARGC_I;rgument count) - a word T
(A7) + 12 ? AR;; (pointer to arguments) ;
(A7) + 8 : Po;;;;: to standard output file FIB :
(A7) + 4 : Poi;ter to standard input file FIB— ?
(A7) ? Ret;rn address ;
(A5} ——==> ? Old copy of A5 contents o) ?

———————— - ——

ARGC and ARGV are special values set when a program is
invoked from the dispatcher. ARGC points to an integer,
while ARGV points to an array of pointers to strings. For
example, if you called the linker by typing:

Linker C[Returnl

ARGC would be O and the ARGV pointer would be invalid. I,
however, you invoked it by typing:

Linker testprog /ccutil/cclib 'paslib [Return)

then ARGC would be 3, and ARGV would peint to an array of
pointers to the memory where the three strings were stored.

CCOS Manual Page 31

Concept I/0 Mapping and Interrupt Structure

All Concept hardware I/0 occurs in the address range $30000-
$3FFFF. This includes:

The keyboard port;

The two RS-232C (datacomm) ports;

The 6522 VIA and real-time clock;

The OmniNet porti

The four Apple-compatible 50 pin slots.

& %k ¥ ¥ %

Interrupts

Most Concept I/0 is interrupt driven. The 68000 user inter-
rupts are not used since the 6302-family devices used for
1/0 (6522, 6551) do not produce vectors. The NMI (non
maskable interrupt) is not normally used on the Concept.

Interrupt Levels

Priority Level Signal Name Device

7 NMI Not used

& NKeylInt Keyboard

S NTimInt VIA timer

4 NSTOInt RS-232 port O
3 NOmInt Omninet

2 NSTiInt R5-232 port 1
1 NIOcInt S0 pin slots/

datacomm ctrl

Time-critical sections of code can disable interrupts by
setting the &BK interrupt priority mask to 7. Since the
Concept has no level 7 interrupts, these sections of code
can then run without being interrupted.

The following sections detailing CCOS interrupts and the
detailed I/0 map will necessarily involve some hardware
description. For details on the various hardware items
identified, consult the "Corvus Concept Hardware Descrip-
tion" manual.

Keyboard Interrupts
The keyboard UART is a 6551 device. It operates in a receive

only mode. Each time a new character becomes available, a
level 6 interrupt is generated.

CCO8 Manual Page 32

Timer Interrupts

The Concept timer is part of a 4522 device. One of the
internal counters is used to cause a level 3 interrupt every
30 milliseconds. This is used in repeat key timing, among
other things. None of the other interrupt possibilities of
the 6522 can be used.

DataComm Interrupts

The Concept’s RS-232 ports are serviced by a 6551. This
device can be set to interrupt on receiving or transmitting
a character. The 6331 can be configured (in software) for a
variety of baud rates and data formats (see the 63551 data
sheet for details).

The datacomm port O (or RS-232 port O) generates level 4
interrupts. Datacomm port I has its own 6551 and is pri-
marily used for driving printers. The only functional dif-
ference is that it generates level 2 interrupts.

Omninet Interrupts

Whenever the Concept’s internal Omninet transporter com-—
pletes an operation, it generates a level 3 interrupt.
Omninet cannot turn the interrupt off, so NOMOFF must be
sent at the end of an Omninet interrupt to turn the inter-
rupt off. Care must be taken not to respond to the same
interrupt more than once.

Additional details of Omninet programming may be found in
the Omninet Programmer ‘s Guide.

Detailed I1/0 Map

Note: An "x" in an address means "Don‘t care". All I/0
addresses MUST BE ODD. The 350-pin connectors used in the
Concept follows the signal conventions and addressing
established in the Apple 1L computer.

This section of the manval is intended for use by program-

mers familiar with the Concept I/0 devices. Detailed tech-

nical information on such things as the 6522 and 4551 devi-
ces may be found in the "Hardware Description” manual. De-

tailed information on programming the Omninet hardware may

be found in the “Omninet Programmer‘s Guide. "

CCOS Manual Page 33

I/0 Ports

"
-+
H
1
-
-+
1
1

H

{ Key | DComm | DComm { 659522 | Clock ! Omni | Omni ! I/0
iboardi portl | port2 { VIA | ALTMAP!strobe!intrptistrobe!
e Rttt et T U — +
130FOx:{ 30F2x ! 30F4x | 30F&x! 30FB8x | 30FAx! 30FCx!{ 39FFF!
H ! ! { 30F7x! H H { H
tm——— — - +
i ROM mapping of I/0 slots (Apple addresses in parens) H
+ - - +
{ Blot # | Byte O { Byte 1 { Byte 2 i ... 1 Byte N!
+—- - -—— +
H 1 { (C100) | «(C101)Y I <(C102) ! i (C1IFF) !
! { 30201 { 30203 i 30205 H ! 303FF !
B T S S —— — ——
H 2 i (€200} | (C201) ¢ (C202) ¢ ... | (C2FF)!
! { 30401 i 30403 i 304035 { { 305FF |
o - +
H 3 { (C300) | (€C301) ! (C302) ! ... | (CAFF)!
H i 30401 i 30603 H 30603 i { 307FF |
+—— i - ———— e e e e e e +
H 4 H (C400) H (C401) i (C402) i t (C4FF)
H { 30801 { 30803 { 30803 H { 309FF |
Note: The initial $Cxxx of an Apple address is replaced by
$30xxx. The lower three nibbles of the Apple address are
shifted left one bit and 1 added. ROM tables and ID may be
read and vused, but the 6502 code cannot be executed. Device

drivers in 68000 code may be written and linked to devices
with the ASSIGN utility.

CCOS Manual

Page 34

— —

1/0 slot register addresses

3003F 3009F

: :
{ I/0 register i Slot 1! Slot 21! 8Sloet 3 ! Slot 4 !
+ — +
: (o) {t 30021 { 30041 | 30061 { 3o081 |
! 1 { 30023 | 30043 | 30063 { 30083 !
¢ 2 {t 30023 { 30043 | 30063 { 30085 !
H 3 i 30027 | 30047 | 30067 i 30087 |
H 4 i 30029 | 30049 | 30069 i 30089 |
H 5 i 3002B | 3004D | 3006B i 3o008B !
{ 6 { 3002D | 3004B | 3004D { 3008D !
t 7 i 3002F | 3004F | 3006F { 3008F !
H e i 30031 ¢ 30051 ¢ 30071 ! 30091 -i
H - i 30033 ¢ 30083 | 30073 { 30093 |
H A ! 30035 t 30035 | 30075 ! 30095 |
H B i 30037 | 30057 | 30077 { 30097 !
H c i 30039 | 30059 | 30079 {30099 !
H D i 3003B ! 3005B | 3007B ! 3009B !
! E i 3003D { 3005D | 3007D { 30090 !
t F ! { 3005F | 3007F ! H

Note: These addresses correspond to the Apple device control
addresses, which are of the form $COxO — $COxF, where x is
the slot number + 8. Unlike the Apple, these addresses are
NOT CONTIGUOUS: but alternate bytes. This is an artifact of
the 468000 16 bit data bus structure

+ - m ——— e o s s e i e e e s i +
{ 6522 VIA general purpose I/0 {
e o e e ——— -——— +
{ 30F61 | Output register B, input register B H
+ e 1 e e s 4 i i i s e e ——— - +
i O | Video of#¢ { Qutput :
+ + e +
S § { Video address 17 ! Output i
B e | - - - +——— +
! 2 | Video address 18 { OQutput H
———— o e - —r————————— +
i 3 | Horizontal/vertical switch ! Input H
e o ————— e e e - + +
! 4 | CH rate select DCO ! Output H
F——— + - + +
{ 5 1| CH rate select DC1 { Output !
et - - + +
{ & | Boot switch O { Input :
+——— - + - +
i 7 | Boot switch 1 { Input H
+—— + + - ———— —_
! 30F&3 | Output register A, Input register A handshake i

CCOS Manual Page 35

ey

{ 30F65 | Data direction register B—-Set to 37 by boot PROM!
+ + =t
{ 30F67 | Data direction register A~Set to 80 by boot PROM!
+— + — +
i 30F6? | Timer 1 latch low byte, write latch, read cnter !
—— + —_—— - -t
i JOF&B | Timer 1 latch high byte H
+ P e e e e e e +
{ 30F&D | Timer 1 latch low byte i
——————— o e e o e e e e - +
{ 30F&F | Timer 1 latch high byte H
- e e - +
t 30F71 | Timer 2 latch low byte, write latch, read cnter !
e ————— e —_— e e e +
{ 30F73 | Timer 2 counter high byte !
i 30F73% | Shift register i
+ + - - +
{ 30F77 | Auxillary control register i
+ e o + e +
{ 30F79 | Peripheral control register H
e e + —— —— —_— - +
i JOF7B | Interrupt control register H
r——————— o e e e e e i e e e e —————— e ———— +
i 30F7D | Interrupt enable register !
- e e e e e e e — —
t 30F7F | Qutput register A, input register A, no handshake!
P e o ————————— +
{ 0 | Omninet ready { Input i
Fm——— o e e - - e +
{ 1 | Clear to send (Dtacom O) i Input :
e o ————— e - o +
i 2 | Clear to send (Dtacom 1) i Input i
o e ————— e e —_— + - +
i 3 | Data set ready (Dtacom O) i Input i
———— e - - F———— +
i 4 | Data set ready (Dtacom 1) i Input i
o o ——— e e e - + - +
i 9 | Data carrier detect (Dtacom O) | Input H
+———— e e e +———— ——
i & | Data carrier detect (Dtacom 1) ! Input !
i 7 | Exclusive OR of above signals | Output H
i ! for interrupt H !
+———— o e + -+
o + - - e —————————————— +
{ 30FA1 — 30FBF { Omninet transporter resgister H
o ———— e e +

CCOS Manual Page 36

30FC1 - 30FDF Reset Omninet interrupt

& ==

+ -

]
L
-
+

T Register ; Keyboard ; Data Comm O ; Data—;omm 1 ?
; Data ; 30F01 ; —_;8;21 ? SOFZI ;
? Status) ? SOFO;—— : 30F23 ? 30;;; ————— T
T-Eommand : —GOFOE—_- : 30F25 ; 35F45 :
T_Control ? 38;8;—— ? 30F27 ? 35;;7 ?
+ + ———————— - F—————— +

CCOS Manual Page 37

H

H
System Calls ! 3

(]

!

This chapter provides a complete description of the system
call interfaces. System calls are made to CCOS by pushing
parameters on the &8000 stack, and performing a JSR to the
desired routine. Results from the call, if any, are returned
on the stack. Unit and file I/0 calls will also set the
value of IORESULT. the first field in SYSCOM.

Since CCOS uses many of the 6B000’s internal registers, the
SAVEM. L instruction should be used to save the register
contents prior to the actual call of the system routine.

Parameters for each call are described in the order in which
they should be pushed. All system calls act as either Pascal
proceddres or Pascal functions. The system calls which are
procedures return the stack as they received it, with var-
ious fields changed- i.e. the stack pointer will be in the
same place, and the user must remove the various items from
the stack before proceeding. System calls which act as Pas-
cal functions will return a single value on the stack., the
type of value returned depending upon the function defini-
tion. Space for the result must be pushed onto the stack
before any of the parameters the function may take.

One-byte values (such as Booleans) are pushed onto the stack
with the MOVE.B instruction. This actually pushes a word
onto the stack and decrements the stack pointer by two. The
low address of the word (or the most significant byte of the
word is considered as an integer) contains the actual one
byte value desired.

The entry points to the various system routines are kept in
the system call vector table. The location of the table may
be found in SYSCOM. SYSCOM and the system call vector are
described in chapter 1. The various data structures referen-
ced by these calls (such as directories, file entries, etc.)
may be found in chapter 6: "0S Global Declarations. “

The discussions below cover the following topics:

Unit I/0

* File I/0

CCOS Manual Page

39

* Memory management

Warning: Direct system calls should be used with a great
deal of caution! Conflicts can arise when direct system

ctalls are made since the supporting action of the high level
language is bypassed.

CCOS Manual Page 40

Unit Input/Output

Unit I/0 is the lowest level of the CCOS I/0 facilities.
Unit I/0 communicates with system devices in terms of BLOCKS
(chunks of 512 bytes) on blocked devices and characters on
character devices. All unit I/0 procedure and functions set
the syscom field IORESULT. Programs using unit I/0 should
check this field after every operation.

Unit I/0 is accessed by pushing a group of parameters on the
stack, and then performing a call to the specific procedure
desired.

Five system interfaces are provided for unit I/0:

#+ UNITREAD- Read a unit;

UNITWRITE- Write to a unit;

UNITBUSY- Check to see if unit is in use;
UNITCLEAR— Reset unit; .

UNITSTATUS- Device dependent functions.

These system interfaces are described in detail in the
following sections.

UNITREAD and UNITWRITE

UNITREAD and UNITWRITE are procedures which transfer data
between a memory buffer and a specific unit. Parameters for
these calls are:

o -

H Unit number H
o e et e . e e o e e . e +
t
1
+
[
1

! Buffer address

o - B o — T o 1" - " Sortd B

H Byte count
o —— - ————
! Block number {
- - - ———
! ' Made !
TOS ———l e ———— ——————— e e +
Unit number— A word quantity representing the unit number

involved in the transfer.
Buffer address— A pointer to the memory buffer.
Byte count~- A word quantity containing the number of

bytes to be transferred.

CCOS Manual Page 41

Block number- A word quantity containing the number of the
starting block to be read or written. This
parameter is ignored by character units such
as printers or the keyboard.

Mode- A word quantity that affects device-depen-
dent characteristics. The characteristics
affected will depend on the device driver
and are documented for each driver.

UNITBUSY

UNITBUSY is a function which is called to see if a unit is
ready for I/0. For input purposes, this generally means that
the unit queried should have characters ready. For output,
it simply means that the unit is ready to accept data.

UNITBUSY takes only one parameter, a word quantity contain-
ing the number of the unit desired. The Tesult returned is a
Boolean which is TRUE if the unit is busy, or FALSE if it is
not. The UNITBUSY function will overwrite the top of stack
with the result. Note that this is different from the other
UNIT intrinsics.

e —— +

Input stack: H Unit number H
TOS ———2 o+ - ———+

Output stack: : i BUSY Boolean |
TOS —-—-2> 4+ - -——+

Only a single byte is removed from the stack to get the
UNITBUSY result. This is accomplished with a MOVE. B (SP)+,Dn
instruction where Dn is a data register from DO through D7.

UNITCLEAR

UNITCLEAR is a procedure used to reset a unit to a knoun
state. Like UNITBUSY, it takes a word parameter containing
the number of the unit. The exact function of UNITCLEAR is
device dependent, but in general it serves to cancel any
pending I/0D to the unit and to flush any associated buffers.

o [Ry

H Unit number H
TOS ———D e ———

CCOS Manual Page 42

UNITSTATUS

UNITSTATUS is a catch-all procedure designed to return the

current status of a unit,

as well as to change various u

parameters. The parameters affected depend upon the unit
driver; see the appropriate driver documentation for de-

tails.

TAS

Unit number-—

——=>

A word
number,

+ ——
H Unit number i
o it ot e e e e +
H Parameter block address H
+ ——+
H Function code H
+ ———

quantity representing the unit

nit

Parameter block—-A long word pointer to the buffer for the
data passed to and from the unit.

Function code-

A word quantity the selects the function to

perform.

UNITSTATUS may or may not return results in the parameter

block.,

CCOS Manual

depending vpon the operation performed.

Page 43

File Input/Output

This section describes the CCOS facilities for direct file
1/0. Before file I/0 can be performed, a File Information
Block (FIB) must be allocated (see chapter 2 for details of
FIB structure). In addition. blocked files require a buffer
of sufficient size to accomodate the largest amount of data
to be transferred at any one time.

From the programmer’s point of view, there are three types
of data files: typed files, text files, and untyped files.
A typed file is a file whose records follow some sort of
structure, and are declared FILE OF <whatever>;. The GET,
PUT:, and FSEEK command in Pascal are used to manipulate
these files.

CCOS text files exmploy the UCSD text file structure.
Leading blanks on a line are compressed to the form DLE N,
where DLE is the ASCII Data Link Escape code (decimal value
16), and N is a binary number representing the number of
spaces compressed. Thus, the numbers 16 8 at the beginning
of a line indicate that 8 spaces exist at the start of the
line. In addition, lines in text files may not be broken
across 1024-byte "pages. * The first two blocks in a text
file comprise the first page. If a line will not #fit on the
current page, it is moved to the next page, and the remain~
ing bytes of the current page are set to ASCII Null charac~-
ters (decimal 0). From Pascal, the READ. READLN, WRITE, and
WRITELN procedures are used to access text files. The DLE~-
blank compression and page structure are handled automati-
cally.

Untyped files are declared as simply FILE:;, and are treated
as collections of blocks with no other structure. The BLOCK—~
READ and BLOCKWRITE functions are used to access these files
from Pascal.

The basic file I/0D procedures are FINIT, FOPEN, FPUT, FGET,
FCLOSE, READCHAR: and WRITECHAR.

All strings pointed to (such as volume, device, and path
names) are Pascal strings: the first byte contains the
number of characters in the string.

FINIT
FINIT is a procedure that creates a File Information Block
(FIB). While FINIT is handled automatically in Pascal pro-

grams, machine code programs must call it to establish a FIB
prior to calling FOPEN.

CCOS Manual Page 44

FGET

volume name is used, the default volume
is assumed. The boot volume may be
abbreviated as !, i.e. !/<filename>.

Pointer to FIB- ‘A pointer to the file information
block.

New file indicator— A Boolean which, when set to TRUE,
indicates that a new file is being
created.

and FPUT
The FGET and FPUT procedures operate identically with the

exception of the direction in which the data is transferred.
The only parameter to either procedure is:

o e e e e e e e e e e e e e +
i Pointer to FIB H

TOS -2

Pointer to FIB— A pointer to the file information block.

Both FGET and FPUT transter one record of the current file
to or from the buffer pointed to by the FIB. The SEEK proce-
dure can be used to position the file at the desired record
prior to using FGET or FPUT. FGET and FPUT cannot be used
with untyped files.

CCOS Manual Page 45

Pointer to FIB

4~

Bytes in record

[}
i
i
4+ - 4 -+

TO§ --->

Pointer to FIB- A long word pointer to the file information
block.

Bytes in record— A word quantity which, if positive, repre-
sents the number of bytes in each record of
the file. If zero, the file is an interac-
tive file, such as the keyboard, and is
handled in a manner similar to text files,
with some minor differences in the treat-
ment of end-of—-line. There are two passible
negative numbers:

-1: File is a UCSD P-system compatible file. These
are untyped files (i.e. VAR UCSDFile : File;),
and the user must provide the file buffer. Only
block I/0 may be performed.

~2: File is an IS0 Standard Pascal compatible file
These are text files, i.e. VAR ISOFile : Text:

FOPEN

The FOPEN procedure opens a file for data transfer. The
parameters are:

f————— —_——

Fomm e ——

+
|
|
|
]
{
i
i
+ -+ -

Pointer to pathname- A pointer to a character string con-
taining the pathname of the file to be
opened. Currently, a maximum of 24
characters may be in this string: a 7
character volume name enclosed with “/"
slash characters, followed by a file
name of up to 15 characters. If no

CCOS Manual Page 46

FCLOSE

The FCLOSE procedure closes a file, first flusing any I/0
buffers associated with the file. The actual file is
"disposed” of in & manner determined by the MODE parameter.
The parameters for FCLOSE are:

H Pointer to FIB

Made

+ -+

TOS ———>2

|
I
|
[R X

Pointer to FIB- The pointer to the file information block.

Mode- A word quantity indicating the disposition
of the file after it is closed. Possible
values are:

0: NORMAL- If the file existed prior to the FOPEN
condition closed by this FCLOSE, it is re—
tained. If it was created by the FOPEN, it
is purged from the file system.

1: LOCK- Just like NORMAL, except the file is ALWAYS
retained, even if it was created by the
the FOPEN.

2: PURGE- The file is always removed from the file
. system, even if it previously existed.

READCHAR

The READCHAR function reads a single character from a file.
It can only be used with file of type INTERACTIVE (mode O}
or TEXT (mode —2). The parameters for READCHAR are:

o ——
! Return byte space H

+m——— +

! Pointer to FIB H

Tas ———> o+ ——
Return byte- The user must push a byte quantity on the

stack prior to executing this call. The byte
read from the file will be returned here.

Pointer to FIB~ A pointer to the file information block.

CCOS Manual Page 47

READCHAR returns @ single character on the top of the stack.

WRITECHAR

The WRITECHAR procedure writes a character to a file. An
optional field width parameter can be used to cause space
filling. Like READCHAR, WRITECHAR can be used only with
INTERACTIVE or TEXT files. The parameters are:

o ——— i e et o +
H Pointer to FIB H
e e e e —_—_—_—_—————— +
H Character !
t——— —— +
H Size H
TOS —_——2 de——- - +

Pointer to FIB- A pointer to the file information block.
Character- The character to be written to the file.

Size— A word quantity representing a field width,
normally set to one. If greater than one.
the character written is preceeded with
(Size—1) spaces.

SEEK

The SEEK procedure positions the file to the start of a
given record. Normally used with typed files (i.e. FILE OF
<whateverX) , it can also be used with TEXT files, which are
treated as files of character records. Thus: seeking to
position 120 of a TEXT file would leave the file pointer
positioned at character 121 (record numbers start with 0O).

Parameters to SEEK are as follows:

Pointer to FIB

Record number

+ -+ - ¢
i
i
R G

TS —_—2

Pointer to FIB~ A pointer to the File Information Block.

Record number~ A long word quantity representing an

€COS Manual Page 48

absolute record number.

BLOCK I/0

Block oriented file I/0 is used to read and write entire
blocks (groups of 312 bytes) from disk files. The Block I/0
procedure can only be used with untyped files— files created
with a mode of -1. Parameters to BLOCKIO are as follows:

m—— -t
: Return value !
—_——— —_—————— e e +
H Pointer to FIB !
———— - —— +
i Pointer to buffer {
o - - +
! Block count i
e - ———
H R/7W indicator H
Tas e - ———
Return value- An integer whose value is set by BLOCKIO.
Pointer to FIB- A pointer to the File Information Block.

Pointer to buffer~ A pointer to the area of memory to be
used for the data transfer.

Block count- A word quantity representing the number
of blocks to be transferred.

R/W Indicator- A Boolean quantity which indicates a read
when TRUE and a write when FALSE.

BLOCKIO returns a word quantity on top of the stack. If this
value is non—zero, it represents the number of blocks ac-
tually transferred. It is important to note that this may
not be the same as the number of blocks rTequested- as might
occur when an end-of-file condition is encountered. If the
value is zero, some form of error has occured.

FlipDir

The FlipDir procedure "flips" a directory— i.e. it changes
the order of bytes in integers from high, low to low, high
in certain fields in the directory. FlipDir is allows CCOS
to access P-system directories, which are flipped with
respect to CCOS directories.

CCOS Manual Page 49

Byte O Byte 1

msb 1sb <—-— CCOS

lsb msb L~~~ P-system

R
1
+ -4 -+

+ -+ ¢

Specifically, FlipDir flips all the integer fields— words
0, 1, 3, 7, 8 10, 11, and 12 within a given directory.
The fields affected are FirstBlock, LastBlock, Misc,
DeovBlock, DNumFiles, DiLastBoot, DLastByte. and DAccess.
FlipDir takes as parameter the address of a directory in
memory— a directory must be read from disk into a memory
buffer before FlipDir can be used.

TOS ———D e ———

Pointer to directory- A word pointer to a directory data
structure in memory.

ValidName

The ValidName function returns a Boolean TRUE on the stack

if the file name passed to it is valid. Validity checking

is simple: if the name is of the right length and contains
only characters in the set C'A’.. 7Z/,70"..7'9", 7. 7", =", ‘_"'1,
then it‘s valid.

———— - +
H Boolean rTeturn value H
e e e e +
H Pointer to filename H
TOS ———2> + Y

Boolean return value- One word space for return value.
Pointer to file name- A pointer to a file name string in
memorTy.
ValidDirectory

This function returns a Boolean TRUE on the stack if the
directory passed is valid. The directory to be checked must

CC0OS Manual Page 50

first be read into memory with GetDir.

Boolean return value

Pointer to directory

4 -4t
|
i
i
+--+-4

TO0S ———2

Boolean return value- A word space for the return value.

Pointer to directory-— A pointer to a directory data
structure.

GetVolNames

Presumably gets vol names, but I don‘t really know. ..

m——-— ———
H NameSearch i
———— - -t
! CleanUp :
———— -
' Pointer to FName i
T0S el e e e e e e e e e e e e e +

I also don’'t know what any of these parameters are...

GetDir

This procedure is used to read a directory into memory from
a blocked device

o ——— +
H Pointer to vaol name H
+ s
H Pointer to directory i
———— +
H Unit blocked H
+———— - +
H Unit number H
o ———
H Unit valid H
TOS ———Dd 4+ —_—

Pointer to vol name—~ A pointer to a volume name.

CCOS Manual Page 91

Pointer to directory— A pointer to a directory.

Unit blocked~— A pointer to a Boolean value which is
TRUE if the device is blocked.

Unit number-— A pointer to a word containing the
device number.

Unit valid- A pointer to a Boolean which is TRUE
if the device is valid.

GetDir will attempt to read & directory from the given
device. If the device indicated is not a blocked device or
has an invalid directory, CGetDir will start searching all
volumes, starting with the next highest device number, and
continue until all volumes have been searched or a valid
directory is found. Thus: the user should always check the
device number on the stack when the routine returns to make
sure that the directory returned was from the requested
volume.

PutDir

The PutDir procedure writes a directory to a given unit.

Pointer to directory

Unit number

i
i
I
-+ -+

4+ -4

TOS

]

|

]
v

Pointer to directory—- A pointer to a directory structure
in memory.

Unit number- A word value containing the unit
number of the device.

CrackPathName

The CrackPathName procedure takes a pathname (such as "/CC-
SYS/ED"), determines if it’s valid, and returns seperate
volume and file names, as well as the file type and size of
the file, in blocks,

Pointer to pathname

+ -+
i
i

|
]
|
$ - ¢

CCOS Manual Page

Pointer to

Pointer to

Pointer to

File type~

hall s B

File size-

SearchDir

Pointer to vol name

Pointer to file name

File type

R

TOS

File size

]
!
|
(A T T

-—=>

+
'
|
{
I

pathname-

vol name-

A pointer to the pathname.

by the procedure.

file name-—

A pointer to the file name returned

by the procedure.

A pointer to the volume name returned

A word quantity designating the file
type. Legitimate values are:

Directory
XDSKFile
Code file (P—-system)
Text file
Info file

Data file
Graffile
Foto file
Securdir

TN

A word quantity containing the size of

the file,

in blocks.

The SearchDir procedure searches a given directory for an
occurence of a given file name.

the directory,

for second

file,

file is not found.

CC0OS Manual

its place number (i.e.
etc.) is returned.

If the name exists within
1 for first file, 2
O is returned if the

Fom—— +
H Place number :
———— ——
{ Pointer to directory H
o ——t
H Pointer to filename !
+ —
H Temp file indicator H
TOS ———D e -——

Page 53

Place number-— A word for the returned value.
Pointer to directory~ A pointer to a directory structure.

Pointer to file name~ A pointer to the name to be searched
for.

Temp file indicator— A Boolean which, if TRUE, causes the
search to occur only on existing temp~

orary file. If FALSE, onlt non-temp-—
orary files are searched.

Note: No IDRESULT error is possible with this procedure.

DelEntry

The DelEntry procedure removes a file's directory entry.

Pointer to directory

File paosition

- e T p——

4 - -
]
S JTI e

T4as —-——=>

Pointer to directory~ A pointer to a directory.

File position-— An integer indicating a file‘s po-
sition in the directory., from 1 to
77.

Note that to use this procedure, a directory must first be

read into memory with GetDir, and the file’s position loca-
ted with SearchDir. No IORESULT error is possible with this
procedure.

InsertEntry

The InsertEntry procedure inserts a file entry into a direc-
tory. No checking on the validity of the entry is performed;
it is the user’s responsibility to make sure that the entry

is well—-formed.

o ——am -
H Pointer to directory H
e e e e e e e e e +
! Slot {
- -

CCOS Manual Page 54

Pointer to file entry

+ -

+ -

TOS ———l

Pointer to directory-— A pointer to the directory.

Slot- A word quantity denoting the posi-
tion in the directory the new entry
will occupy (1-77)

Pointer to file entry- A pointer to the file entry.

Note: No IORESULT error is possible with this procedure.

CC0OS Manual

Page 55

MemoTy Management

This section describes CCOS calls dealing with memory ma-—
nagement. The memory allocation is performed on the heap, a
dynamic data structure that grows uvpwards from the bottom of
data memory. The heap is vused for all dynamic memory work.
The stack, on the other hand, grows downward from the top of
data memory, and is used for local variables. When

the stack and the heap collide, the system dies a messy
death.

NEW

The NEW procedure allocates storage on the heap. The
parameters to NEW are:

Pointer to storage pointer

Byte count

+ -4 - 4

+ -+t

TOS ——->

Pointer to storage- A pointer which points to another poin—
ter. The second pointer receives the
starting address of the newly allocated
storage, assuming that there is enough
heap space to process the call. NEW
always returns a pointer that is assign-
ed to a word boundary.

If the second pointer is NIL (0), then
there is insufficient memory for the
data structure.

Byte count- A word quantity representing the number
of bytes to be allocated. NEW will
round an odd byte count up to the next
even number and allocate that number of
bytes.

DISPOSE

Currently, DISPOSE is not implemented and acts as a No-Op.
It returns a NIL pointer to the caller., and no storage space
is deallocated. The parameters to DISPOSE are as follows:

+-- +
s
.

{ Pointer to storage pointer

CCOS Manual Page 56

Byte count

+ -+
-+

T0S --->

Pointer to storage— A pointer which points to another long
word pointer which points to the address
of the storage space to be deallocated

Byte count- A word quantity representing the number
of bytes to be freed.

MARK and RELEASE

The MARK and RELEASE procedures are used together to de-—
allocate previously allocated storage. They take the
(functional) place of the DISPOSE statement. Both MARK and
RELEASE take the same parameters:

4 —

! Pointer to storage pointer H
TOS ———D em——— ———— e +

Pointer to storage— A pointer which points to another
pointer which points to the address of
the storage to be marked or released.

MARK is used to “remember” the current position of the top
of the heap. RELEASE subsequently uses the pointer returned
by MARK to cut the top of the heap back to the previously
MARKed position.

MEMAVAIL
The MEMAVAIL function returns a long word quantity which is
the number of free bytes between the stack and the heap.
This can serve as & rough indicator of the amount of data

memory available to the system.

MEMAVAIL takes no parameters.

CCOS Manual Page 57

System Procedure Declarations in Pascal

Following is a summary of the major system I/0 routine
declarations in Pascal. The parameters are pushed onto the
stack from left to right; i.e. for FInit, £ is pushed onto
the stack, followed by RecBytes. For functions, space for
the return values must be pushed onto the stack before the
parameters.
All pointer parameters (pfib, pstringd4, pbytes) are 4 byte
quantities containing the address of the appropriate struc-
ture. Integers are two bytes long; long integers are four
bytes long. All strings have a preceeding length byte whose
contents indicate the length of the string in characters
(one byte per character), not including the length byte.
Procedure FInit(f: pfib; RecBytes : integer);
Procedure FGet(f: peib);
Procedure FPut(f:. pé¢ib);
Procedure FClose(f: pfib; var mode: Integer);
Procedure FOpen(var fpathname: pstringé4d;

var f: pfib;

Newflag: Boolean);
Function FReadChar(f: p#fib): byte;
Procedure FWriteChar(f: pfib; ch: byte; fsize: integer);
Procedure FSeek(f: pfib; frecno: longint);
Function BlockIO(f: pfib; fbuff: pbytes;

fblocks, fbock: integer;

ReadFlag: Boolean): Integer;
Procedure FlipDir(Var FDir: Directory);
Function ValidName(FName: PStringé4): Boolean;

Function ValidDirectory(Var FDir: Directory): Boolean;

Function SearchDir(Var FDir: Directory; FTid: Tid;
TempFile: Boolean): Integer;

Procedure DelEntry(Var FDir: Directory: Slot: Integer);

Procedure InsertEntry(var FDir: Directory; Slot: Integer;

€COS Manual Page

Var FEntry: DirEntry);

Procedure GetVolNames(NameSearch, CleanUp: Boolean;
FName: PStringé4);

Procedure GetDir(FVid: Vvid; Var FDir: Directory;
Var DevBlocked: Boolean;
Var FDevno: Integer;
Var DevValid: Boolean);

Procedure PutDir(Var FDir: Directory; FDevNo: Integer);
Procedure CrackPathName(FPathName: PStringé&4; Var FVid:Vid;

Var FTid: Tid; Var FFKind: FileKind;
Var FSize : Integer):

CCOS Manual Page 59

Writing A Unit Driver

This chapter discusses the basic structure of a unit driver

for CCOS.

and presents an example of a driver written in

68000 assembly language.

Calling Conventions

Parameters to a unit driver are passed in the 6B000 registers as

follows:

DO.

D1.

D2.

D3.

D4.

DS.

D7.

W- Unit Number. UNITBUSY returns its Boolean
result here.

L~ Address of buffer to or from which the data
transfer is to be made, or the address of a
parameter block.

W—- Number of bytes of data to be transferred,
a function code for UNITSTATUS.

or

W—- Block number at which the transfer is to start
(This is applicable only to blocked devices.)

W~ Command- determines the operation (unitread.

unitbusy, and so on) that the driver is to

perform. This parameter is described in more

detail below.

W— Mode—- a device dependent control whose func-

tion is defined in the driver of the device
being addressed. It is included to allow
control of device operations that are not

defined in the standard I/0 operations provi-

ded by CCOS.

W- The driver passes a completion code (0O indica-—
tes successful completion) back to the caller

in this register. This becomes the Pascal
IORESULT.

CCOS Manual

Page 61

Unit Driver Command Parameters

The command passed in register D4 W describes the operation
to be performed. The command values are summarized here and
described in greater detail below. When a driver receives
control from the operating system, the caller has already
verified from the unit tables that the given command is
valid for the particular driver. The possible values for the
command parameter are:

+——= + - - - -+
d O | UnitiInstall —-- Install the driver H
H H When the operating system installs a unit, either {
H i at boot time or when a unit is explicitly assigned, !
H H the driver is called with the install parameter. i
{ ! This section performs any initialization code H
H i necessary to set up cyclic buffers, place interrupt |
{ H vectors and so on. i
+—= + ——————— e - -+
i 1 1§ UnitRead —— Read from the unit i
! ! Self-explanatory. :
o o e e e e e e e e e e e e e e ———
i 2 | UnitWrite —— Write to the unit H
! ! Self-explanatory. :
F—————— +—— —_—— ———— —-———
! 3 | UnitClear -~ Clear the unit i
: i Reset the device to its initial state. Initialize !
i ! the device, clear pending interrupts and such. !
+ ~—+ —— e e i o o e e +
H 4 | UnitBusy —- Test if unit is busy H
H H Check if the unit is ready for data transfer. !
H H Driver returns DO.B = 1 (TRUE) if data is ready for |
H i transfer, DO.B = O (FALSE) otherwise. :
+ —— — - —— -——— - ———+
i 5 | UnitStatus —- Device dependent control and status. 1
! H This command is device dependent. Using the {
H H function code (D2. W), the driver can return device |
H H dependent information to the caller. The buffer H
H : address may be vused as a pointer to a UnitStatus {
H { parameter block. !
$—————— - - - - ~———— e +
i 6 | UnitUnmount —-- Unmount the unit :
H H This command is vused when the unit is deassigned. :
H : At this time the driver must perform any clean up H
H H which includes the restoration of any interrupt H
H H vectors the driver might have replaced. i
e e —_——— - — —_—————— e +

CCOS8 Manual Page &2

Driver Notes

A driver must be completely relocatable. In addition, it
cannot use the stack or heap for storage between calls.

The operating system uses Tegisters A4-A&6. Thus, a driver
must either not use these registers, or save and restore
their contents.

Each I/0 slot is assigned a 256 byte area in static RAM.

The RAM designated for each slot may be used in any manner
by the device in the slot. Additionally., a 512 byte static
RAM buffer is available for very temporary operations. This
buffer may only be used during a single call to the driver.

The static RAM locations are:
0900-09FF: Static RAM for slot 1 device
OAOO-0OAFF: Static RAM for slot 2 device
OBOO-OBFF: Static RAM for slot 3 device
OCOO-0OCFF: Static RAM for slot 4 device
ODOO-OEFF: 312 bytes temporary RAM

The Concept PROM contains default interrupt handlers. If a
driver uses system interrupts, the interrupt vector used by
the driver must be restored when the driver is unmounted.
The PROM also contains a table of default interrupt vectors
which must be used when restoring an interrupt vector during
unmount. The PROM locations for the default interrupt
vectors are:

1 10070-10073 | CPiveci | level 1 interrupt vectar (SLOTS) |
1 10074-10077 | CPivecz | level 2 interrupt vector (1) |
:—I8078—1007B ? CPiv;;;_—?_I;vel 3 interrupt vecto;_(UHNINE;;T
: 1007C~-1007F ; CPivec;-—?—;evel 4 interrupt ;::tor :DCO) :
:—ISOBO—IOOBS ? CPi;;:;——: level 5 interrupt vector (TIMER)_—?
: 10084—;8887 ; CPi;;:;--?-I;:;;—; int;;rupt vector-(KYBD) :
:_;0088—10083 : CPivec;~—:-level 7 interrupt-;::tor ;

CCOS Manual

[——

Page 63

A sample unit driver

The following code is the source to the non-interrupt
driven datacomm driver. It provides a good overview of
driver construction methodologies and architecture.

Note the use of the jump table the driver uses to call its
own internal procedures. The use of this jump table makes
the driver relocatable since it does not have to be assigned
to any one memory area. Remember that all drivers must be
relocatable.

i File: drv.dcomm. text
i Date: 11-Jan—-83

IDENT DRVDTACOM
GLOBAL DRVDTACOM

DRVDTACOM - The DataComm unit driver

i Parameters: DO. W - Unit number

i DP1.L - Address of buffer

i D2. W - Count

i D3.W - Block Number

i D4. W - Command

i D3. W - Access Mode

i Input Parameters: " Result values:
i Command Unit Addr Count Block Mode IORESULT Busy
i 0 - Install DO. W D7. W

i 1 — Read DO.W Di.L. D2. W D3. W DS W D7. W

i 2 - Write DO.W Di.L D2.W D3. W D5 W D7. U

H 3 - Clear DO. W D7. W

i 4 - Busy DC. W D7. W DO. B
i 5 — Status DO.W Di1. L D2 W D7. W

i & - Unmount DO. W D7. W

i

i Some UART equates

DemPort equ $30+£21

i Slot &6 (datacomm 1) UART pointer
Uda equ (o] i UART data port offset
Ust equ 2 i UART status port offset
Ucm equ 4 i UART command port offset
Uct equ 6 i UART control port offset
RdBit equ 3 i Busy bit for input

CCOS Manual Page &4

WrBit
LfBit

1¢
cr
cq
cs

equ
equ

equ
equ
equ
equ

include
list O

include
list 1

page

DRVDTACOM

hm
hmlen

comIOrq

DCMRtrn

DecmTABL

bra. s
data.
data.
data.
data.
data.
data.
equ

=2 - g - - gl - g -

movem. 1
moveq
move. 1
tst. w
blt. s
move. 1
move. 1
cmp. w
bgt. s
move. w
mulu
adda. w
move. 1
move. b
ext. w
subq. w
1sl. w
adda. w
clr. w
lea
1sl. w
move. w
Jsr
movem. 1
Tts

data. w

CCOS Manual

4 i Busy bit for output

2 i Auto line feed suppress flag
$0A i Line feed

$0D i Carriage return

$11 i Control—-@ - Start output
$13 i Control-S - Stop output

‘/ccos/os. gbl. asm. text’ (not listed)

‘/ccos/os. gbl. asm. text’

i This is the driver header

comIOrgq istart of code

o) idevice not blocked

15 ivalid commands

83,01, 11 idate

0 ifill

hmlen i header message length
‘Non—-interrupt DataComm driver’

“-hm i

dl-d&/a0—ab, ~(sp) ;i Save those registers!
#2,d7 i Set IORESULT to 2

dl, a0 Data address to AO
do Is unit number valid?
DcmRtrn No. return (IOresult = 2)

(A2) = SYSCOM
(A2) = device table

pSysCom. W, a2
SCdevtab(a2). a2

(a2)+, dO Is unit number valid?

DemRtrn No: return (IO0Oresult = 2)

40, d& Compute offset into Unit Table
#UTlen, d& *

dé, a2 Get painter to Unit Table entry

Get slot & UART pointer
Get slot number (&-7)

#DcmPort, al
UTslt(a2).dé6

Mo M M M M % e M B M W me e e S e e e me e

dé *

#&, db Compute UART pointer for slot
#35,d6 »*

dés al *

d7 Clear IORESULT

DcmTABL, a2

#1,d4 D4 to word count

0(a2,d4q. w), d4 D4 = dist from DcmTABL

O(a2, d4. w) Go to appropriate driver

(sp)+,d1—-dé&, a0-a& i Restore those registers!

DcmINST-DecmTABL ; Internal routine jump table

Page 695

data.
data.
data.
data.
data.
data.

EEEEEE

i

i DcmINST

DecmINST rts

i DcmUNMT

DemUNMT rts

!

i DemST

DcmST rts

i

i DemRD

DcmRD

Crdl.oop subq. w
bmi. s

CrdBusy btst
bof+f. s
mave. b
bra. s

CrdExit rts
page

i DcmWR

DcmWR

CwrbLoop subq. w
bmi. s
btst
boff. s
move. b
cmpi.b
bne. s

Curl btst
boff. s
move. b
cmpi. b
bne. s

CCOS Manual

DcmRD-DcmTABL
DemWR-DemTABL
DemCLR-DemTABL
DecmBSY~-DemTABL
Dem8T-DcmTABL
DemUNMT-DcmTABL

#1,d2
CrdExit

#RdBit.Ust(al)
CrdBusy
Udacal), (aQ)+
CrdLoop

#1,d2
CurExit

#RdBit,Ust(al)
Cwr2
Uda(al), DO
#cs, DO

Cur2

#RdBit, Ust(al)
Cuwrl
Uda(al), DO

#c q, DO

Curl

- e we M W e e e

M me e e M w wr N e e e e e e

Return

Return

Return

More to read?
No.

Is char in UART?
No. Try again.
Yes. Fetch next character.

Return

More to write?
Na.

Is char in UART?

Na. output next character
Get character

Stop output?

No:. ignore character

Is char in UART?

No, wait some more
Get character

Start output?

No, ignore character

Page &6

Cwr2 move. b
bsr. s
cmpi. b
bne. s
btst

baon. s
maveq
hsr. s
Cwr3 bra. s

CwrExit rts

CrtOuttl
CwrBusy btst

boff. s
move. b
rts
page

i

i DemCLR

Ki

DcmCLR rtts

i DcmBSY

i Returns:

DcmBSY moveq
btst
boféf. s
moveq

DemBSYr rts
page
end

CCOS Manual

(AO)+, dO
CrtOuti
#cr, d0
Cuwr3
#_fBit, dS
Cwr3d
#1¢,d0
CrtOutt
CwrlLoop

#WrBit, Ust(al)
CwrBusy
40, Uda(al)

DO. B — Result

#0, dO
#RdBit.Ust(al)
DcmBSYr

#1,d0

M % M % e e e M W s me e

P R

[

Get next character.

Output character

Was it a <CR>?

No., go on

Suppress line feed insertion?
Yes, bypass <LF> insertion
Add a <LF>

OQutput character

Check if finished with output

Return

This routine preserves all registers

Is UART output busy?
Yes. Try again.
Qutput the character
Return

Return

Assume FALSE (no character read:

Character to read?
No, return

Set TRUE

Return

DrvDtaCom

Page 67

Standard Drivers

A

This chapter deals with the operation of the standard CCOS
drivers. There are two types of standard drivers: resident
drivers, which are always present in the system. and load-
able drivers, which are loaded after the boot process is

omplete. Corvus—supplied loadable driver files have names
that are prefixed with a “"DRV. " and reside on the CCSYS
volume.

Most driver operations are implemented in the extensive
functions in the CCLIB library (see "System Library Users
Guide"). Before performing any exotic programming, it‘s a
good idea to check and see if what you are trying to do
hasn‘t already been done

Direct communication with drivers is accomplished with the
Pascal unit I/0 mechanism. Specifically, UnitRead is used to
retrieve data from the driver, UnitWrite is used to send
data to the driver, UnitInstall initializes the driver,
UnitClear flushes any buffers the driver may maintain, and
UnitBusy is used to determine whether or not the driver has
any data available. The remaining unit I/0 procedure, Unit-
Status, has special significance

Special Functions

The UnitStatus call is used primarily for those functions
which are not generic to all drivers. For example, setting
the interleave and skew is a function that has meaning only
in the context of a disk driver.

The special functions available to each driver will be
described in the section dealing with that driver. The form
of a UnitStatus call (from Pascal) is:

UnitStatus(UnitNumber, Buffer, FunctionCode);

where "UnitNumber” is the Pascal device number assigned to
the device in question, "FunctionCode" is a driver depen—
dent code for the action to be performed. and "Buffer" is a
pointer to an arbitrary data structure which may be used
either to pass information to the driver or receive infor-
mation from it. UnitNumber and FunctionCode are always
integers, while Buffer is always a VAR parameter (i.e. its
address is passsed).

CCOS Manual Page &9

The data structure that Buffer points to will be described
for each driver using Pascal syntax. Simple data struc-
tures will be Tepresented as "word" or other base data
type:; while more complex structures will be shown as record
declarations.

UnitStatus calls may also be made from a machine language
program. See chapter 3, “Making System Calls", for details.

CCOS Manual Page 70

Driver Overview

Drivers are the software routines that control physical
devices under CCOS. At boot time, CCOS loads its drivers
from the boot volume and assigns them to the various physi-
cal devices on the system. This assignment process may also
be performed manvally with the ASSIGN utility.

A one-to~one correspondence between devices and drivers
should not be assumed. A single driver routine may handle
more than one physical device: for example, the DTACOM
driver is responsible for both RS-232 ports. In addition, a
single physical device may be addressed by more than one
driver. For example, the second RS5-232 port may be control-
led by both the printer driver and DTACOM driver.

When a single driver controls more than one physical device,
it is accessed as though there were a separate driver for
each device. There is only one driver to control a local
hard disk. although each volume on the disk will appear as a
seperate device.

Direct communication with drivers is accomplished with the
low—level unit I/0 routines: UNITREAD, UNITWRITE., UNITBUSY,
UNITSTATUS, and UNITCLEAR. Note that not all drivers support
all unit routines! However, all drivers do support UNITMOUNT
and UNITUNMOUNT, which are used to associate drivers with
units.

To communicate with a driver you must know the unit number
CCOS has assigned to it. The basic drivers the system has to
work with are as follows:

Driver What it does

DRV. ADISK The (read only) Apple floppy
disk driver.

DRV. DISPHZ and
DRV.DISPVT The display drivers, one for
each screen oritentation.

DRV. DTACOM The datacomm driver for the
RS5-232 ports.

DRV. EPRNT The enhanced printer driver.

DRV. FDISK The 8" floppy disk driver.

DRV. KYBD The keyboard driver.

CCOS Manual Page

71

DRY. SYSTRM Keyboard and display. Uses
DRV. KYBD and DRV. DISPxx

DRV. TIMER The timer driver.
DRV. DISPVT The vertical display driver.
DRV. DISPHZ The horizontal display driver.

In addition to these drivers, (which are referred to as
loadable drivers) there are several resident drivers that
are bound into the CCOS kernel. These are the SLOTIO, LOCAL
(disk) and OMNINET drivers

As mentioned above:, drivers are assigned to unit numbers
when CCOS is booted. The standard unit assignments are:

Unit Driver
0 NULL device
1.2 DRV. SYSTRM
4 Boot volume
] Default volume
) DRV. PRNTR
9 -7 DRV. ADISK, DRV.FDISK
? — (MaxDev-7) LOCAL, OMNINET, or user
MaxDev ~ & (30) SLOTIO
MaxDev — 3 (31) DRV. DTACOM
MaxDev - 4 (320 DRV. DTACOM
MaxDev —~ 3 (33) OmniNet
MaxDev ~ 2 (34) DRYV. TIMER
MaxDev — 1 (35) DRV. KYBD
MaxDev (36) DRV. DISPxx (may be DISPHZ

or DISPVT)

MaxDev is the largest device number supported by the opera-
ting system: and is set to 36 in CCOS version 1.1a. The
DTACOM. OMNINET, TIMER. KYB, and DISPLAY drivers are always
loaded starting at MaxDev and working down., and this will
remain constant in future releases of the system. Programs
written to use these devices should use the standard library
routines to determine the device number, as hardcoding the
the device number may mean that the program will not work
correctly on future operating system releases.

Some of the device assignments are not fixed. This is espe-
cially true in the case of disks (units 4,5, and 9 through
MaxDev — 7), which may be local disks (Apple or 8 inch),
local hard disks, or Omninet disks. Unit 4 is always the

CCOS Manual Page 72

volume you boot from, and unit 5 is generally the default
volume. These units might be floppies, local disks, or Omni-
net, so the physical device assigned to these units will
vary.

If the boot is performed from a hard disk, any floppy disks
will be mounted starting on unit 9 and working up.

Units 3,7, and 8 are unassigned and may be used for user de-

vices. Additionally, any of the disk units that are not in
use may be assigned to a user device.

€COS8 Manual Page 73

The Console/Systerm Driver

The consale/systerm driver (DRV.SYSTRM) is responsible for
the keyboard and display I/0 of the Concept under CCOS. It
addresses two separate drivers: DRV. KYBD and either the ver-—
tical display driver DRV.DISPVT or the horizontal display
driver DRV. DISPHZ.

The console and systerm appear as units 1 (console) and 2
(systerm). Although DRV. SYSTRM is used for both devices,
there are two important operational differences:

1. UNITREADs from /CONSOLE will be echoed
to the screen, while UNITREADs from /SYSTERM
will not;

2. UNITREADing an escape character (ASCII %18)

from /SYSTERM will return TWO escapes; UNIT-
READing an escape from /CONSOLE will not.

CCOS Manual Page 74

The KYBD Driver

Reading characters from the keyboard driver is normally done
with the standard READ routine in whatever high level lang-—
vage is being used. UNITREADs may also be employed where a
finer control is desired.

The KYBD driver recognizes three special UNITSTATUS calls:

Function code : O Name: Send Raw
StatusRecord : 1 word

This call sets or clears the SEND RAW flag in the driver.
I1f the StatusRecord parameter is O, then flag is cleared;
if it is 1 then the flag is set.

If# the SEND RAW flag is set, the keyboard driver will send
all characters to the user, including control-S and
control-Q.

Function code : 1 Name: Break flag
StatusRecord : 1 word

This call returns the value of the BREAK flag (in Status-—
Record), then clears it. If the StatusRecord is O on return.
the flag was clear. If it is 1 then the flag was set.

The BREAK flag represents the status of the Break key an the
Concept keyboard. If it is set, then the Break key has been
pressed since the last time this function was called. The
Break flag is reset upon unit initialization of the keyboard
driver or the execution of this call.

Function code : 2 Name: Chars available
StatusRecord : 1 word

This function returns the number of characters waiting in
the keyboard input buffer.

EXAMPLE: The following Pascal fragment illustrates the use
of function code O to set the SEND RAW flag:

CONST

KEYB = 36 { KEYB driver unit }
VAR

StatusCode : Integer; { Occupies 1 word 2

CCOS Manual Page 75

BEGIN
StatusCode (= 1; { Set "SEND RaAW")}
UnitStatus (KEYB, StatusCode, 1); { Perform call }

The Keyboard Translation Tables

The keyboard driver receives keyboard characters after they
have been altered by the keyboard translation tables. These
tables are used by the keyboard driver to generate the
character sequences corresponding to the key pressed by the
user. If a different set of key caps are used or a differ—
ent set of character codes are desired then new Translation
Tables must be built and loaded into the system.

The keyboard is connected to the computer by a transmission
line. Through the line, the keyboard sends keycodes descri-
bing which key has been pressed or released. These key-—
codes, in conjunction with the Translation Tables, are used
to generate the character sequences produced by the keyboard
driver. Some keys. like the Shift key, affect which charac-
ters are generated when other keys are pressed. Some keys
cause character sequences to be generated. What happens
when a key is pressed or release is determined by the Trans-
lation Tables.

The Concept keyboard sends one byte of data, the keycode,
when a key is pressed. and another byte when the key is
released. The two bytes sent differe in the most significant
bit: when the key is pressed, the MSB is set to 1, when it
is released. the keycode‘s MSB is clear. The keycode genera-—
ted is used as an index into the keyboard translation tables
to generate the character(s) that the keyboard driver will
return.

In order to build the Translation Tables a keycode map is
needed. This map shows the keycode values for every key on
the keyboard. Figure 1 is a keycode map for the current
keyboard (Version 04, Selectric (R) style keyboard). Nor-
mally, the key caps show which character is generated for
each keycode transmitted to the keyboard driver. Figure 2
is a key cap map for this same keyboard.

Version 04 keyboard key caps have either 1 or 2 symbols on
them. A single symbol key cap specifies that the character
is the same when it is either gshifted or unshifted, except
for the alphabet characters which get lower case if unshift-
ed. Key caps with two symbols have the character for the
lower symbol when unshifted and the character for the upper
symbol when shifted.

CCOS Manual Page 74

1
w ! 0 ~
m‘go 8]
- - | w
w gl a3 3 S| «
w o ow | w
3,81 8|°%] s8]«
© | « -]
81 &1 81 8
Q Q
? <
©
b4
m va-v
w { -
v {9
o -
ol <
a
w
<
mmo"
= e o
3]
< | -
o | ® | -~ ~
a1 =
3Il"
8
& b3
°
8 o | @
8| ° 5
9
<]
o <
s]
QV
N‘
gag" w
QN
gﬂ
-3
o | o "N‘
~ 9]
gﬂ
N~
2 5
@
:: @ o
s 3
g | 3
[’
o
”
- ® a
o~ gﬂ
o0
3 <
w
o 58"’
o~ | @
3 ¢
Figure 1

CCOS Manual Page 77

Figure 2

Page 78

CCOS Manual

The translation tables must be defined in an assembly lang-
vage program, such as the program CSK. REV4. TEXT listed in
section 6. 0. This program is actually a group of tables
The first table is TRANTBL which points to seven the
translation tables. :

The seven entries in this table point to the translation tables
in the following order:

1) Shift Table (STABLE)

2) Regular table (RLTABLE)

3) Escape # sequence table (ETABLE)

4) Standard multiple character sequence table (SMTABLE)
3) Caps qualifier flag table (CQTABLE)

&) Release table (RLTABLE)

7) Break keycode table (BKEYCOD)

These entries must be in the above order.

The Shift Table

This table contains one byte for each keycode $00 — $5F.
The byte is normally the character code for the specified
keycode when the SHIFT key is depressed. Four special byte
values are

used:
FE - use standard multiple character sequence table
?F — use caps qualifier flag table
?D - use escape # sequence table

00 - no character for this keycode.

The Regular Table

This table contains ane byte for each keycode $00 ~ $5F.
The byte is normally the charater code for the specified
keycode when the SHIFT key is not depressed. Four special
byte values are used:

PE - use standard multiple character sequence table
@F - use caps qualifier flag table
@D - use escape # sequence table
00 - no character for this keycode
The Escape Sequence Table
This table is used when a table code of $9D is found in key

closure or a table code of %9D is found in key shift table

CCOS Manval Page 79

(STABLE) or the regular table (RLTABLE). It specifies a key

which has an ESC # character sequence. Each keycode may
have a different character based on the state of the two
qualifier keys (SHIFT and COMMAND).

Each table entry has the form (entry length = 10 bytes)

1) Keycode (1 byte)

2) filler byte : its value is O (1 byte).
3) UnSHIFTed & UnCOMMANDed (2 bytes).

4) SHIFT only (2 bytes).

9) COMMAND only (2 bytes).

&) COMMAND & SHIFT together (2 bytes).

Values for the version 04 keyboard:

KEYCODE | FILL { US/UC | S only | C only | C/S | KEY NAME

————————— b + -+ + s
$20 it 00 i 00 : 0A H 14 ! 1E | Function key 1
$21 t 00 | 01 H OB H 15 { 1IF | Function key 2
$22 00 o2 H ocC H 16 { 20 | Function key 3
$23 i 00 | 03 H oD { 17 { 21 | Function key 4
$24 ¢t 00 04 H OE H i8 i 22 | Function key 35
$4A ¢t 00 | FF : FF i FF { FF | COMMAND (closure)
$58 {00 03 H OF H 19 i 23 | Function key 6
$59 i 00 | 06 : 10 H 1A ! 24 | Function key 7
$5A i 00 | 07 H i1 H iB i 25 | Function key B8
$£3B i 00 i 08 i i2 i iC ! 26 | Function key 9
$5C i 00 | a9 H 13 H 1D t 27 | Function key 10
$CA i 00 i FE ! FE H FE { FE | COMMMAND (release!

1 1 1]] H H

The Standard Multiple Character Sequence Table

This table is used on key closure when a $9E table code is
in the shift table (STABLE) or regular table (RLTABLE).
Every entry with a $9E table code in the STABLE or RLTABLE
must be in this table

Each entry is composed of 3 fields. 1) the keycode, 2) the
string length, and 3) the actual string. The string is th
sequence of character codes placed in the buffer for this
key. The Table does not have to be in keycode order. The
table ends with a special keycode of $FF and length of O.

CCOS Manual

Page 80

Values for the version 04 keyboard:

KEYCODES H STRING LENGTH | STRING

$00 (cursori 2 { $1B %43 (esc C)
right)! H

403 (HOME | 2 { $1B %48 (esc H)
up) ! H

%07 (enter)! 2 i %$1B %64 (esc d)

%08 (cursori 2 i %1B %44 (esc D)
left) | i

$0B (cursori 2 i $1B %42 (esc B)
down) | H

$3A (back H 2 i %$1B %69 (esc i)
tab) H H

45D (cursor! 2 H $1B $41 (esc A)
up) ! :

$4F (double! 2 ! $30 $30 (00)
zera) | H

SFF H (o] H

END OF THE TABLE

The Caps Lock and Qualifier Flag Table

This table contains one byte for each keycode $00 — $5F.

The keycode is a direct index into the table. Each byte is
a set of flags. All unused bits must be cleared (value =
0). The high order bit is the caps lock flag for the cor-
responding Keycode. If the bit is set, this keycode gener-—
ates a shifted character if the CAPS LOCK key is locked.

Bit & is a special COMMAND key flag. The remaining bits are
special key qualifier flags

The bits currently defined are

7 — Caps lock flag : when set means this keycode gener-
ates a shifted character when Caps lock is locked.

& — Special COMMAND key flag:
0O uses ETABLE for closure - keycode high order bit
closure.
0 uses ETABLE for release — keycode has high order
bit set.
D special non-repeating key.

CCOS Manual Page 81

3 -~ Command ———=——-—

4 - Alternate H These bit indicate which type of
3 - Fast H special key the keycode represents
2 — Caps lock H At most. one bit can be set on.

1 - Control H

0 - Shift ———==—-

The values for the version 04 keyboard are listed in the
attached program CSK. REV4. TEXT.

The Release Table

This table specifies which keycodes have an action on key
release. Each table has 2 fields. 1) the keycode. and 2) the
action code.

The action code has 3 possible value types. If the action
code is $9D it specifies a key with a escape # sequence
table (ETABLE) entry. If the action code is $9E it speci-—
fies a qualifier keycode. Any other action code is & char-—
acter code to be placed into the buffer. The end of the
table is specified by a special keycode of $FF and an action
code of %$00.

Values for the version 04 keyboard:

KEYCODE | ACTION CODE | KEY NAME
$1F i $7E ! Right SHIFT
$3C b $9E ! CAPS LDCK
$3E ! $9E t Left SHIFT
$48 | $9E { Control (CTRL)
$49 ' $9E i FAST
$4A t $9E { COMMAND
$4C H $9E ! Alternate (ALT)
$FF i $00 ! NULL keycode - END OF TABLE

The Break Key Code Table
This table consists of one byte. It is the Keycode for the
key which performs the start/stop toggle. The value for the

version 04 keyboard is : $DF. This is the keycode for BREAK
closure.

Translation Table Examples

CCOS Manual Page 82

8ingle characters

This section gives the user several examples of how to
change the keyboard tranlation tables. The examples deal
with the unmarked key on the top row of keys (keycode $3E).

The first example is to use the unmarked key (keycode $3E)
as a standard alphabetic character key. This involves
setting a value in the translation tables for the unshifted,
shifted, and qualifier cases of the key.

A. These tables use the keycode value as an offset into the
tables. Locate the unmarked key on the keyboard and
note the position. Locate the same key in the keycode
chart and note the keycode for closure (5E).

B. For this example let us assume the desired output of the
Translations Tables is to be the alphabetic character
‘t’ for unSHIFTed, ‘T’ for SHIFTed, and ‘T’ for CAPS
LOCK.

C. Create a file with the same tables as the program
CSK. REV4. TEXT.

D. Locate the position SE in the SHIFT Table. Note that
the current entry is 9F hex, which indicates the key is
a qualifier. In this example the SHIFT Table entry will
be changed to a ‘T’ or 354 hex. Edit the STABLE at
pastion SE hex to contain the value 34 hex.

CCOS Manual Page 83

The shift table is indexed by keycode. Each byte represents
the character code for the corresponding keycode

The character symbol is above each character code
SMC = special value for Standard Multiple Character Sequence ($9E)
QUL = special value for GQualifier ($9F)
EST = special value for Escape Sharp Character Sequence ($9D)
= No key for this keycode

STABLE
sMC 3 ? SMC & ' - cr SMC 1 7 SMC 4 8 -} 2
DATA. B $9E, $33, $39, $9E, $364, $2C., $2D:$0D:$9E:$31:$37:$9E;334:5381535:$32
+ ... € del cr 1}) ? P ~ "QUL
DATA. B $ZB.GOO:$7B,$7F.$OD.$7D,$7C 'OO:SZ?:SGF.SSO:$5F,$3A.$7E.$22.$9F
EST EST EST EST EST ... $ % R T F G v B
DATA. B ‘9D:‘9D-S9D.‘9D.!9D.$OO.$OO,$OO.$24.$25.‘52,$54.‘461‘47.$56.$42
e * W E S b X €C e@sc ! SBMC G QUL A QUL Z

DATA. B %40, $23, $57, $435, 353, $44, $38, 843, $1B, $21, $9E, $51, $9F, $41, $9F, $5A
~ & Y V) H J N M QUL QUL GUL sp QUL O SMC .
DATA. B $5E, $26. $39, $35, $48, $4A, $4E, $4D, $9F, $9F, $9F, $20, $9F, $30, $9E, $2E
L ¢ I v} K L < > EST EST EST EST EST SMC GUL QUL
DATA. B $2A, $28, $49, $4F, $4B, $4C, $3C, $3E, $9D, $79D, $9D, $9D, $9D, $TE, $9F, $9F
LSB 0 1 2 3 4)) 7 8 9 A B c D E F

Change the last line to the following

-~ < -+

* ¢ I 0 K L < > EST EST EST EST EST SMC QUL
DATA. B $2A, $28, $49, $4F, 348, $4C, $3C, $3E, $7D, $9D, $9D, $9D, $9D, $FE, $34, $9F
L.SH o] 1 2 3 4 95) 7 8 9 A B Cc D E F

E. Locate the position SE in the REGULAR Table. Note that
the current entry is 9F hex which indicates the key is a
qualifier. In this example the REGULAR table entry will
be changed to a ‘t‘ or 74 hex. Edit the RTABLE at pos—
ition SE hex to contain the value 74 hex.

RTABLE (The Regular Tabla)

SMC 3 F SMC & ' - cr SMC 1 7 SMC 4 8 - 2
DATA. B $9E, $33, $39, $9E, $36, $2C, $2D, $0D, $9E, $31, 837, $9E.334.$38.$35.332
= .. L bs cr 1] \ o / p - H “ QuL
DATA. B $3D,$OO.CSB,soa.tOD,$5D.SSC,‘OO.’S0.0ZF;‘?O.'ZD.‘SB $60, $27, $9F
EST EST EST EST EST ... 4 S r t £ g v b

DATA. B 690.$9D,$90.t?D,$9D,$OO,QOO.IOO.$34.$35.t72.s74.t66.t67.$76,$62
2 3 w e [d X € esc 1 SMC q QUL a QUL 2
DATA. B 832, 833, $77, 865, 873, $64, $78, $63, $1B, $31, $09, $71, $9F, $&1, $9F, $7A

CCOS Manual

i MSB
i $00

i$10
i $20
i $30
i $40

i $50

i 830

i MSB
i $00

i $10
i $20

i $30

Page 84

6 7 "} 7] h J n m QUL QUL QUL sp QUL O SMC

DATA. B $36, $37, $79, $79, $68, $6A, $6E, $6D, $9F, $9F, $9F, $20, $9F, $30, $7E, $2E

8 9 i -] k 1 ' . EST EST EST EST EST SMC GUL QUL
DATA. B 38, $39, $469, $6F, $6B, $4C, $2C, $2E, 89D, $9D, $9D, 7D, $9D. $FE, $9F, $9F
LSB (o) 1 2 3 4 3 6 7 8 9 A B c D E F

Change the last line to the following:

8 k4 i o k 1 ' . EST EST EST EST EST SMC t QUL
DATA. B 838, $39, $&69, $4F, $6B, $&4C, $2C, $2E, $9D, $9D, $9D, $7D, $7D: $9E, $74, $9F
LSB [o) 1 2 3 4 S & 7 8 9 A B o} D E F

F. Locate the position SE in the CAPS/GUALIFIER Table.
Note that the current entry is OO hex which indicates
the key does not have any flags set in the CAPS/GQUALI-
FIER Table. In this example the CAPS/QUALIFIER Table
entry will be changed to a 80 hex, to set the Caps lock
flag in the table. Edit the CQTABLE at position 5E hex
to contain the value BO hex.

Each byte has 8 flags
D7 = Caps lock flag : when set means this keycode generates a
shifted character when the Caps lock qualifier flag is set.

i $40

i $30

i $30

D6 = Qualifier has an ESC # sequence flag. When set then must process
the keycode as a non-repeating ESC # sequence. Also has a Release

sequence.
DS = Command —————w—
D4 = Alternate !
D3 = Fast H This bit says which type of Gualifier
D2 = Caps lock H key the Keycode represents
Df = Contrel i
DO = Shift H

CQTABLE (The caps/qualifier table}

DATA. B $00, $00, $00, $00, $00, $00, $00, $00, $00, $00, $00, $00, $00. $00, $00, $00
DATA. B $00. $00, $00, $00, $00, $00, $00, $00, $00, $00, $80, $00, $00, $00, $00., $01
DATA. B $00; $00, $00, $00. $00, $00, $00, $00, $00, $00, $80. $80, $80, $80, $80, $80
DATA. B $00: $00, $80, $80, $80, $80, $80, $80, $00, $00, $00, $80, $04, $80, $01, $80
DATA. B $00, $00, $80, $80, $80, $80, $80, $80, 302, $08, 8460, $00, $10. $00, $00, $00
DATA. B $00, $00, $80, $80, $80, $80, $00, $00, $00, $00, $00, $00, $00., $00, $00, $00
L.SB o 1 2 3 4 3 6 7 8 9 A B [D E F

Change the last line to the following:

DATA. B $00. $00, $80, $80, $80. $80, $00, $00, $00, $00. $00, $00, $00, $00, $80. $00

; MSB
i $00
i $10
i $20
i $30
i $40
i $30

i $50

CCOS Manual Page 85

LSB [s] 1 2 3 4 S 6 7 8 e A B [D E F
G. Save the edited version of the Keyboard Translation

Tables to a test file. Assemble the file as follows:

ASM&BK filename [RETURNI]

Upon completion of the assembly, link the file for quick
load as follows:

LINKER filename [RETURN]

The last step is to load the new Keyboard Translation
Table.

Press [WndowMgr]

Press [LLdKybdChl

Enter the filename, [RETURNI.

A successful load of the tables will be noted in the
Command Line. Begin testing the results of the new

tables by pressing the unmarked key. Use the SHIFT key
and the CAPS LOCK key and note the results.

CCOS Manual Page 86

Translation Table Examples
Multiple character sequences

This example deals with the modification of the standard
multiple character sequence table. In this example, the
translation tables will be modified so that the unmarked
key (keycode $5E) will be treated as cursor right.

A. Create a file with the same entries as the CSK. REV4. TEXT
file.

B. Locate the standard multiple character sequence table
within the file. It should be as follows:

Standard multiple character sequence table
FORMAT (KEYCODE, LENGTH, CHARACTER _SEQUENCE)
The LENGTH field is the number of characters in the CHARAC-

TER SEQUENCE field. The CHARACTER SEQUENCE is the charact-—
ers to return for the Keycode

SMTABLE
KEYCODE LENGTH CHARACTER SEGQUENCE
DATA. B $00, 2 %18, $43 i CURSOR RIGHT
DATA. B %03, 2, $1B, $48 i HOME UP
DATA. B $07, 2, $1B, $64 i ENTER
DATA. B %08, 2 1B, $44 i CURSOR LEFT
DATA. B $0B, 2, 1B, $42 i CURSOR DOWN
DATA. B $3A, 2, 1B, $469 i BACK TAB
DATA. B $5D, 2 $1B, $41 i CURSOR UP
DATA. B $4E, 2 $30, $30 ; DOUBLE ZERO-(OO0 KEY)
DATA. B $FF, Q i NULL KEYCODE — END OF TABI

C. Enter a duplication of the first entry in the table as
the last entry in the table Change the KEYCODE from $00
to $5E. The unmarked key is now defined as CURSOR RIGHT

SMTABLE
KEYCODE LENGTH CHARACTER SEGUENCE

DATA. B %00, 2, $1B, $43 i CURSOR RIGHT

DATA. B $03, 2. $18B, $48 i HOME UP

DATA. B $07, 2, $1B, $64 i ENTER

DATA. B %08, 2, $1B, $44 i CURSOR LEFT

DATA. B $0B, 2, €13, $42 i CURSOR DOWN

DATA. B $3A, 2, $1B, $69 i BACK TAB

DATA. B $5D, 2, %18, $41 i CURSOR UP

DATA. B $4E, 2 $30, $30 i DOUBLE ZERO-(00 KEY)
DATA. B $5E, 2, %18, $43 i CURSOR RIGHT

DATA. B $FF, o] i NULL KEYCODE - END OF TAB

CCOS Manual Page 87

D. Locate the position SE in the shift table. Note that

the

current entry is 9F hex which indicates the key is a

qualifier. In this example the shift table entry will
be changed to a %9E hex. Edit the STABLE at postion 5E

hex

to contain the value 9E hex.

The character symbol is above each character code

SMC
QUL
EST

STABLE

DATA. B

DATA. B

DATA. B

DATA. B

DATA B

DaTa. B
LSB

DATA. B
LSB

= special value for Standard Multiple Character Sequence ($9E)
= special value for Qualifier (43F)
= special value for Escape Sharp Character Sequence ($9D)

No key for this keycode

(The shift table)

SMC 3 ? SMC 6 ' - cr SMC 1 7 SMC 4 8 5 2
$9E, $33. 39, $9E, $34&, $2C. $2D, $0D, $9E, $31, $37, $9E, $34, $38, $35, $232
+ { del cr 1} oL) ? P - : ~ " QUL
$2B, $00, $7B, $7F, 30D, $7D, $7C, $00, $29, $3F, £50, $5F, $3A, $7E, $22, $9F
EST EST EST EST EST ¢ % R T F G Vv B
$7D, $9D. $9D, $9D, $70, $00, $00, $00, $24, $25, $52, $54, $46, $47, $56, $42
@ # W E s D X €C esc ! SBMC Q@ QUL A QUL 2

$40, $23, $37, $45, $53, $44, $58, $43. $1B, $21, $9E, $51, $9F. $41, $9F, $5A
-~ % Y u H J N M QUL QUL QUL sp QUL O SMC

$35E, $246, $39, $55, $48, $4A, $4E, $4D, $9F, $9F, $9F, $20, $9F, $30, $9E, $2E
(I 0 K L X > EST EST EST EST EST SMC QUL QUL
$2A, $28, $49, $4F, $4B, $4C, $3C, $3E, $9D, $9D, $9D, $9D, $9D, $9E, $FF, $SF
o] 1 2 3 4 9) 7 8 9 A B [of D [F

Change the last line to the following:

(I (o] K L < > EST EST EST EST EST SMC SMC QUL
$2A, $28, $49, $4F, $4B, $4C, $3C, $3E, $9D, $3D, $9D, $5D, $9D, $9E, $9E, $9F
0 1 2 3 4 5 & 7 8 ? A B C D E F

E Locate the position SE in the regular table. Note that

the

current entry is 9F hex which indicates the key is a

qualifier. In this example the regular table entry will
be changed to a 9E hex. Edit the RTABLE at position 5E

hex

to contain the value 9E hex.

The character symbol is above each character code

SMC
QUL
EST

CCOS Manual

= special value for Standard Multiple Character Sequence {(&9E)
= special value for Qualifier ($9F)
= special value for Escape Sharp Character Sequence (%9D)

i M5B
i 800

;i $20

i $30

i 40

i 30

i $50

Page 88

No key for this keycode

RTABLE (The regular table)

SMC 3 ? SMC & - cr SMC 1 7 SMC 4 8 5 2 i MSB
DATA. B $9E 533:539,$9E,$36.$2C $2D, $0D, $9E, $31, $37, $7E, $34, $?B.$35 $32 , $00
C bs cr] \ L o / p © QUL
DATA. B $3D 500.353 $08, 30D, $5D, $5C, $00, $30, $2F, $70, SZD,$SB $60, $27, $9F i %10
EST EST EST EST EST 4 S5 T t L4 g v b
DATA. B $9D, $9D, $9D, $9D, $9D:$OO.$OO,$OO.$34 $35, $72, $74, $66, $467, $76. $62 i $20
2 3 w e 5 d % c esc 1 SMC q QUL a QUL
DATA. B $32, 333, $77, $65, $73, $64, $78, $63, $18, $31, $09, 71, $9F, $61, $9F, $7A ; €30
& 7 y u h J n m QUL QUL QUL sp QUL O 5SMC
DATA. B 36, $37, %79, $75, $68, $6A, $6E, $6D, $9F, $9F. $9F, $20, $9F, $30. $9E, $2E , $40
8 ? i o k 1 , . EST EST EST EST EST SMC QUL QUL
DATA. B $38, $39, $69, $6F, $6B, $6C, $2C, $2E, $9D, $9D, $9D, $7D, $9D, $9E, $7F ., $9F , $50
LS8 0 1 2 3 4) & 7 B8 ? A B C D E F
Change the last line to the following:
8 ? i 5} k 1 f . EST EST EST EST EST SMC SMC QUL
DATA. B $3B, $39. $69, $6F, $63, $6C, $2C, $2E, $9D, $9D. $9D, $7D, $9D, 3FE, $9E., $9F , $50
LSB (o) 1 2 3 4 5 =) 7 8 ? A B c D E F
F. Save, Assemble. Link, and Load as in the previous example.

CCOS Manual

Page 89

Translation Table Examples

Escape sharp se

quences

This example deals with the modification of the escape sharp

sequence t

able.

The translation tables will now be modified

to use the unmarked key as the function key 1.

A. Create a file with the same entries as the CSK. REV4. TEXT

file.

B. Locate the escape sharp sequence table within the file
It should be as follows:

ESCAPE SHARP (#) SEGQUENCE TABLE
FORMAT

The fill ¢

ield is

(KEYCODE, FILLER, US/UC, SHIFT, COMMAND, C/S)

added to keep each record on an even byte

boundary The other fields contain the character sequence to

follow the ESCAPE # characters:

Us/uc = when the Shift and Command key are released

SHIFT = when only the Shift key is still being pressed

COMMAND = when only the Command key is still being pressed

c/s = when the Shift and Command keys are still

being pressed
ETABLE (The escape sharp sequence table)
KEYCODE FILL UsS/uC SHIFT COMMAND c/s

DATA. B %20, 0, ‘00, ‘0A, ‘147, “1E’ i FUNCTION KEY
DATA. B $21, 0, ‘017, ‘OB, ‘157, “1F‘ j FUNCTION KEY
DATA. B %22, 0, ‘02, ‘oc ., ‘167, ‘207 JFUNCTION KEY
DATA. B %23, o5 ‘Q3’, ‘oD, ‘177, ‘217 iFUNCTION KEY
DATA. B %24, 0, ‘04, ‘0E”, 187, ‘22 iFUNCTION KEY
DATA. B %44, Q, ‘FF’, ‘FF 7, ‘FF 7, ‘FF’ i LEFT COMMAND
DATA. B $58, 0, ‘057, ‘OF 7, ‘197, ‘237 iFUNCTION KEY
DATA. B %59, 0, ‘067, ‘107, ‘1A, ‘247 ; FUNCTION KEY
DATA. B %54, 0, ‘077, ‘117, ‘1B‘, ‘25 iFUNCTION KEY
DATA. B $5B, 0, ‘087, ‘127, ‘1c’, ‘247 i FUNCTION KEY
DATA. B $5C, 0, ‘09, ‘13, ‘1D’, ‘27 iFUNCTION KEY
DATA. B $CA, 0, ‘FE’, ‘FE’, ‘FE’, ‘FE’ i LEFT COMMAND

c. Enter a duplication of the first entry in the table as

the last entry in the table

Change the keycode from

$20 to $5E. The unmarked key is now defined as function
key 1.
ETABLE
KEYCODE FILL UsS/UC SHIFT COMMAND c/s
DATA. B $20, 0, ‘007, ‘OA 7, ‘147, “1E’ iFUNCTION KEY
DATA. B $21, 0, ‘017, ‘OB, ‘157, ‘1F 7 s FUNCTION KEY
DATA. B $22, o, ‘o2, ‘0C 7, ‘167, ‘20’ iFUNCTION KEY

CC0S Manual

NMONC~ NN~

10

CLOSURE)

(RELEASE)

WK =

Page 90

DATA. B $23, Q, ‘037, ‘oD, ‘177 ‘21 iFUNCTION KEY 4

DATA. B %24, o, ‘04’, ‘0B, ‘18, ‘22 iFUNCTION KEY 5

DATA. B %434, Q. ‘FF ., ‘FF ‘. ‘FF’, ‘FF‘ ;LEFT COMMAND (CLOSURE)
DATA. B $538, 0, ‘057, ‘OF ‘. ‘197, ‘23‘ iFUNCTION KEY &

DATA. B 359, 0, ‘067, ‘107, ‘1A, ‘247 ; FUNCTION KEY 7

DATA. B 354, 0, ‘077, ‘117, ‘1B, ‘25’ iFUNCTION KEY B

DATA. B $35B, 0, ‘o8, ‘127, r1c’, ‘267 iFUNCTION KEY 9

DATA. B $5C, 0, ‘09, ‘137, ‘1D, ‘27 i FUNCTION KEY 10
DATA. B $5E, Q, ‘00, ‘0A", ‘147, ‘1E’ iFUNCTION KEY 1

DATA. B sCA, Q, ‘FE', ‘FE’, ‘FE’, ‘FE‘ i LEFT COMMAND (RELEASE)

D. Locate the position SE in the shift table. Note that
the current entry is 9F hex which indicates the key is a
qualifier. In this example the shift table entry will
be changed to a $2D hex. Edit the STABLE at postion 5E
hex to contain the value %D.

STAEBLE
sMc 3 ? SMC &6 - cr SMC 1 7 SMC 4 8 S 2 iMSB
DATA. B $9E, $33, $39, $9E, $36, $2C %2D, 30D, $9E, $31, $37, S?E,$34 538 $35, $32 ; $00
+ - { del «¢er 1} [) ? P " QUL
DATA. B %2B, 500:575 $7F, $0D, $7D, $7C, $OO,$29.$3F $50, $5F, $3A $7E, $22, $9F , $10
EST EST ESTY EST EST $ % R T F G v B
DATA. B 49D, $9D. $9D, $9D, $9D, $00, $00:$OO;$24.525 $52, $54, $46, $47, 56, $42 . $20
e # W E s D X C esc ' SMC G QUL A QUL Z

DATA. B 540 %23, $57, $45, $53, $44, $58, $43, $1B8, $21, $9E, $51, $9F, $41, $9F, $5A , $30
% Y U H J N M QUL QUL QUL sp QUL ©O SMC
DATA. B 85E. $2&, $59, $55, $48, $4A, $4E, $4D, $9F, $9F, $9F, $20, $9F, $30, $FE, $2E ; $40
* (I 0 K L < > EST EST EST EST EST SMC QUL GUL
DATA. B $2A. $28. $49, $4F, $43, $4C, $3C, $3E, $9D, $9D, $9D, $9D, $9D, $9E, $9F, $9F , $50
LSB (o) 1 2 3 4 5 & 7 8 9 A B C D 3 F

Change the last line to the following:

* (I [u] K L < - » EST EST EST EST EST SMC EST QUL
DATA. B $2A, $28, $49, $4F, $4B, $4C, $3C, $3E, $9D. $9D, $9D, $9D., $9D, $7E, $7D. $9F i$
LsB [o] 1 2 3 4) [7 8 9 A B C D E F

E. Locate the position SE in the regular table. Note that
the current entry is 9F hex which indicates the key is a
qualifier. In this example the regular table entry will
be changed to a $9D hex. £dit the RTABLE at position 5E
hex to contain the value 9D hex

RTABLE (The regular table)

CCO0S Manual Page 91

SMC 3 ? SMC & ' - cr SMC 1 7 SMC 4 8 5 2 iMSB
DATA. B %9E, $33, $39, $9E, $36, $2C, $2D., 0D, $9E, $31, $37, $FE, $34, $38, $35, $32 ; $00

= L bs cvr 1 Nl (o) / P - i N c GUL
DATA B %3D. $00, $3B, £08, $0D, $5D, $5C, $00, $30, $2F, $70, $2D, $3B, $40, $27, $9F ; $10
EST EST EST EST EST . .. 4 S r t £ g v b

DATA B $9D, 20, $9D, $9D, $9D, $00, 300, $00, $34, $35, $72, $74, $656, $47, $74, $62 ; $20
2 3 w e 5 d x c esc 1 SMC gq QUL a QUL 1z

DATA. B %32, ¢33, %77, $65. $73, $64, %78, $463, 1B, $31, $09, $71, $9F, $461, $9F, $7A ; $30
& 7 y u h J n m QUL QUL QUL sp QUL 0O SMC

DATA. B $34, $37, $79, $75, $6B, $6A, $6E, $6D, $FF, $9F, $9F, $20, $9F, $30, $9E, $2E ; $40

a8 9 i o k 1 . . EST EST EST EST EST SMC QUL QUL
DATA. B %38, $39. $69, $6F, $6B, $6C, $2C, $2E, $9D, $9D, $9D, $9D, $9D, $9E, $9F, $9F ; $50
LsB ¢} 1 2 3 4 S & 7 8 9 A B [D E F

Change the last line to the following:

1] 9 i ¢} k 1 , . EST EST EST EST EST SMC EST QUL
DATA B #38, $39, $69, $6F, $68, $6C, $2C, $2E, $9D, $9D, $9D, $9D, $9D, $9E, $9D, $9F ,; $50
LSE 0 1 2 3 L S & 7 8 ? A B C D £ F

F Save. Assemble, Link, and Load as in the previous example.

Making a default keyboard tahle
To make a keyboard translation table the system default

table, merely transfer 1t to the system volume with the name
CSK. DEFAULT.

CCOS Manual Page 92

The Display Driver

The display driver is normally controlled with the intrin-
sic output capabilities of the high level languages in use
(i. e WRITE and WRITELN in the case of Pascal). However,
the UNITWRITE and UNITSTATUS functions can also be used.

Windows

The display driver’s output is always to the current window
CCOS supports up to 10 windows on the screen at any one
time. Normally, three windows are in use: the large system
window, the two~line command window immediately below it,
and the function key window containing the function key
labels.

Windows can be created with the window manager or through a
user program. Each window has a variety of attributes that
are described in its window record. The SYSCOM field Cur-
rent Window Record Pointer always points to the address of
the record of the window currently in use

The format of a window record is as follows:

WndRcd = Ttecord
{length offset)
{ 4 [2 charpt: pCharSet; {character set record pointer)}
{ 4 4 3 homept: pBytes; {home (upper left) pointer}
{ 4 8 } curadr: pBytes; {current location pointer}
{ 2 12 homeof: integer; {bit offset of home location}
{ 2 14 % basex: integer; {home x value., rel to root windowl}
{ 2 16 ¥ basey: integer; {home y value, rel to root windowl}
{ 2 18 3 lngthx: integer; {maximum x value, bits rel to window}
{ 2 20 Ingthy: integer; {maximum y value, bits rel to wimdow}
£ 2 22 ¥ cuTsx: integer; {current x value, bits rel to window)
{ 2 24 cuTrsy: integer; {current y value, bits rel to window}
< 2 26 } bitofs: integer;, {bit offset of current address?}
{ 2 28 3 grorgx: integer; {graphics — origin x, bits rel to home)
{ 2 30 3} grorgy: integer; {graphics - origin y, bits rel to home}
{ 1 32 1 attri: byte: {inverse, underscore, insert)
{ i 33 1 attr2: byte: {v/h, graphics/char, cursor on/off
cursor inv/underlinel}
{ 1 34 > state: byte, {used for decoding escape sequences)
{ 1 35 > rcdlen: byte; {window description record leéngth}
{ 1 3&6) attr3: byte; {enhanced character set attributes}
{ 1 37) filll: byte; {currently unused)
{ 1 38 2 fill2: ©byte: {currently unused)
{ 1 37 1} £ill3: byte; {currently unused?
{ 4 40 ¥ filla4: longint; <{currently unused?}
{ 4 44 X wwsptr: pBytes: {fwindow working storage pointer}

CCOS Manual Page 93

{ total 48) and;

Character sets

Each display window has an associated character set record
that describes the size of the font in use, as well as the
dot patterns of the individual characters. The format of
the character set record is:

CharSet = Record
{ Length Offset)
{

4 o] } TblLoc: PBytes; {Char set data pointer }
{ 2 4 > Lpch : Integer; {Scan lines per char. >
{ 2 & >} Bpch : Integer: {Bits per character >
{ 2 8 } FrstCh: Integer; {ASCII of 1st char.)
{ 2 10 > LastCh: Integer; {ASCII of last char. b
{ 4 12 } Mask : LonglInt; {Mask used in cell pos.)}
{ 1 16 } Attrl : Byte i {Attributes...not used %
< 1 17 } Filll : Byte i {Not used b
{ total - i8 b g

The Lpch and Bpch fields describe the height and width of
the character cell in pixels. If the screen is vertical,
Lpch describes the width of the character, and Bpch
describes the height. If the screen is horizontal, the
fields’ meanings are reversed

A character set file consists of four integers giving the
cell width, cell height, 1st character ASCII code. and last
character ASCII code, followed by an arraylfirst.. last] of
CharData. Each element of CharData is an arraylil.. height]
of Byte if the character width is less than or equal to 8,
or arrayll. . heightl] of Integer if the character width is
more than 8. Scanline data is left—justified within the
data type.

Controlling the display

UNITWRITE can be used to send bytes to the display. How-
ever, the display driver uses many control and escape codes
to activate its various features. A list of these codes
follows:

CCOS Manual Page 94

Command Sequence Hex Codes Description

Ctl-G o7 bell

Ctl-H 08 cursor left (backspace)

ctl-I o9 tab (8 spaces)

Ctl-J oA cursor douwn (linefeed)

Ctl-K oB cursor up

ctl-L ocC cursor right

Ctl-M oD carriage return

ESC = col row 1B, 3D, col:.row gotoxy

ESC A 1B, 41 CUTsSOT Up

ESC B 1B, 42 cursor down (linefeed)

ESC C 1B, 43 cursor right

ESC D 1B, 44 cursor left (backspace)

ESC E iB, 45 insert line

ESC ¢ O 1B, 47. 30 set video to normal

ESC G 4 1B, 47, 34 set video to inverse

ESC ¢ 8 1B, 47,38 set video to underline

ESC ¢ « 1B, 47, 3C set video to inverse+un-—
derline

ESC H 1B, 48 cursor home

ESC J 1B, 49 clear window, home cursor

ESC K 1B, 4B clear to end of line

ESC O c1 c2 1B, 4F.,cl,c2 aoverstrike cl, c2

ESC Q 1B, 51 insert character

ESC R 1B, 32 delete line

ESC W 1B, 57 delete character

ESC Y 1B, 59 clear to end of window

ESC Z 1B, 60: N invert N characters

ESC a 1B, 61 page mode on

ESC b 1B, 62 turn off cursor

ESC ¢ 1B, &3 turn on cursor

ESC d 1B, 64 enter key: carriage
return

ESC e 1B, 65 character enhancements

ESC ¢ 1B, &6 #fill block

ESC g iB, 67 graphics mode

ESC i 1B, 69 back tab (8 spaces)

ESC 1 1B, &C ¥draw line

ESC n 1B, 6D #copy block

ESC n 1B, 6E turn off scrolling

ESC o 1B, &6F #set graphics origin

ESC p iB, 70 #plot point

ESC q iB. 71 insert mode

ESC r iB, 72 insert mode of#f

ESC s 1B, 73 turn on scrolling

ESC t iB, 74 text mode

ESC u 1B, 795 underscore cursor

ESC v 1B, 76 inverse cursor

ESC w iB. 77 wrap at end & beginning
of line

CCOS Manual Page 95

ESC «x 1B. 789 no wrap at end & beg

of line

ESC y 1B, 79 page made off
ESC 2 1B. 7A invert screen
@Graphics functions:
Function Parameters Byte count
Set origin x, Yy, qualifier 7 (11221)
Plot point X, Yy, mode 7 (11221)
Draw line x1,yl, x2, y2, mode 11 (1122221)
Fill block Xy, height,width, density 11 (1122221)
Copy block x1,yl,height, width, x2, y2 14 (11222222)
WriteBytes (see UnitStatus)
ReadBytes (see UnitStatus)

mode: <0 invert, =0 clear. >0 set

density: 1 dense, 2 less dense, etc.

1 rel to graphics origin
2 abs graphics origin

3 rel to cursor position
4 abs text origin

qualifier:

These driver capabilities can easily be used directly from

a program. For example, a Pascal program could invert the

current window (the ESC—-2z sequence) with:
WRITE(Chv(27), ‘1)

Note: Control of most of the display driver’'s special capa-—
bilities is provided in the CCcrtIO unit in CCLIB.

The display driver also supports various character enhance-
ments: overstriking, underline, double underline, super-—
scripting, subscripting, strike out, and bold face.
The overstrike enhancement is specified as follows:

ESC O <chari> <char2>
<Char1l> and <char2> are OR‘’ed together at the cursor posi-
tion. If a character is not in the character set, a blank is

substituted. Only two characters may be overstruck at one
cursor position.

The other character enhancements are specified:

CCOS Manual Page 96

ESC e <byte

>

<Byte> is a bit pattern of 7 flags, where 1 means the fea-
ture is on, O - off.

xlxxxxxx

- —— o 1 i i s S S0 S

baold

strike out
inverse
underline
superscript
subscript
(always on)
double underline

NOrOUhWN=OQ

The inverse and underline attributes are also implemented
in the ESC-G sequence. They are included for compatibility
with earlier versions of the display driver.

Two pairs of enhancements are mutually exclusive:

i.
2.

superscript and subscript.
underline and double underline.

If both flags of a pair are set, the flag with the lower bit
number takes precedence. The order of checking flags and
applying enhancements to the character is as follows:

1)
2)
3)
4)
5)

super/subscript
bold

strikeout
double/underline
inverse

The algorithms used for displaying the enhancements are as

follows:

BOLD -

SUPERSCRIPT -

SUBSCRIPT -

CCOS Manual

character is OR‘’ed over itself one dot
position to the right in the character
cell.

character is shifted up two dots and
the top three rows of the character
cell are ORed together to make room for
the superscripted character.

character is shifted down twe dots and

the bottom three rows of the character
cell are DRed together to make room for

Page 27

the subsripted character.

UNDERLINE - the bottom row of the character cell is
filled with dots.

DOUBLE UNDERLINE - the bottom two rows of the character
cell are filled with dots.

STRIKEQUT - the fifth row of the character cell
(first row is row one) is filled with
dots.

The character set enhancements will not work in any cell
smaller than 7 by 11 dots. The CCOS default character set is
& by 10. If use of the enhancements is planned, setting up a
STARTUP. TEXT file to automatically load a larger character
set is recommended.

Special display driver control

Some driver functions are not accessible by using the high
level language I/0 or the UNITWRITE function. These other
functions are accessed by using the UNITSTATUS call. The
format of the call is:

UnitStatus(DisplayUnitNo, Buffer, Func);
where DisplayUnitNo and Func are integers and Buffer is a

parameter block containing the parameters in the order
shown. For CCOS version 1.1, the display unit number is 36.

Function Code Parameters

Read cursor position 0 xposition, yposition: integer;

Create window 1 NewWindowRec: WndRcd;

Delete window 2 WindowRec: WndRcd;

Select window 3 WindowRec: WndRcd;

Clear window 4 WindowRec: WndRcd;

Get window status S homex, homey, width, height:
integer;

WriteBytes & bytecount: integer; pBuf#f:
pBytes;

ReadBytes 7 bytecount: integer; pBuféf:
pBytes;

LLoad CRT Table 8 see below

For example, to retrieve the current X and Y position
(relative to the current window, of course) of the cursor:

CCOS Manual Page

98

Const
DispUnit = 36;

Var
CPos : Record
XCo : Integer;
YCo : Integer
End;

Begin
UnitStatus(DispUnit, CPos, 0);
Writeln{(‘’Current cusor X was: ‘,CPos. XCo);
WritelLn(~’ Y was: ‘. CPos. YCa)

Note: When declaring records for UnitStatus calls, each
field MUST have its type declared seperately. If the
variable CPos had been declared as:

Var
CPos : Record
XCa:
YCo : Integer
End;

the fields XCO and YCo would have been allocated in memory
in reverse order, and the cursor co-ordinates would have
been returned in the wrang order.

LOADABLE CRT TABLES

The display driver provides user—loadable translation ta-
bles. This means that the CRT function contrel codes can be
changed to emulate other terminals at the driver level. The
driver contains a default translation table which is in
effect when the system is booted. You can switch to a
different table by loading the new table into memory and
passing its address to the CRT driver to make it the current
table:

UnitStatus (CRTunitnumber, Table, 8)i
where Table is the new translation table. Since the second
parameter in the UnitStatus procedure is a VAR parameter,

the CRT driver receives the address of the new table. 1+
this address is nil (0) the default table becomes currvrent.

CCOS Manual Page 99

The BLDCRT utility program can be used to build new CRT
function tables. The BLDCRT utility is described in chapter
&.

The ASCII value of the control character is used as an index
into the table. Non-negative bytes in the CRT table corre-
spond to entries in the jump table of the CRT driver. Table
indices from O..%1F (first 2 rows) refer to control charact-—
ers; table indices from $20..%7F refer to the character
after an ESC. A byte value of $FF means the code is invalid
or not implemented. This is the default table contained in
the CRT driver:

0 1 2 3 4 5 & 7 8 9

Each byte in the CRT table refers to a driver function Here
is the list of available functions (codes are in hex). The
defavlt sequence follows.

CCOS Manual Page 100

He x

00
01
o2
o3

05
06
07
o8
o9
0A
OB
oC
oD
OE
oF
10
11
12
13
i4
15
16
17
i8
12
1A
1B
1C
1D
1E
iF
20
21

22

23
24
25

jou 3
=

27
28
29

o}
-4

2C
2D

2E

Function description

cursor up

cursor down (linefeed)
cursor tight

cursor left (backspace)
cursor home

carriage rteturn

tab

back tab

sound bell

clear screen and home cuTsar

clear to end of line
clear to end of screen
insert character
delete character
insert line

delete line

invert screen

viden command
inverse video

normal wvidea

set auvuto L.F on CR
suppress auto LF
page mode on

page mode off

CUTSOT On

cursor off

graphics mode

text mode

scrolling on
scrolling off

inseri mode on
insert mode off
uyngerscure CUrsor
inverse cursor

wrap at eoln

no wrap at eoln

CCOs type gotoxy
CP/M type gotorxy
skip two characters
plot point

draw line

11l block

copy block

set origin
overstrike 2 chars
character set enhancements
invert characters at cursor

CCOS Manual

Default sequence(s)

ESC A or CTL-K

ESC B

ESC C or CTL-L
ESC D or CT1-H

ESC H
CTL-M
CTL-~1I
ESC 1
CTL~-G
ESC J
ESC K
ESC Y
ESC Q
ESC W
ESC E
ESC R
ESC z
ESC &

ESC L
ESC M
ESC a
ESC y
ESC ¢
ESC b
ESC g
ESC t
ESC s
ESC n
ESC q
ESC
ESC u
ESC v
ESC w
ESC x
£8C =

ESC #
ESC p
ESC 1
ESC
ESC m
ESC o
ESC O
ESC e
ESC Z

mode

col row

cl c2 %
‘parms::
parms
‘parms.
Zparms’
<parms’
cthi cha
flags

count

ESC P cl c2

Page 101

The DataComm Driver

The datacomm driver controls I/0 at the two RS-232 ports on
the Concept. The driver is interrupt—-driven and will send
and receive characters without explicit program control.
Input is always accepted (until the input buffer is filled).
and the contents of the output buffer are automatically
sent. Once the data has been put in the buffer, the program
need no longer be concerned with it.

This can lead to problems in some cases. Since the driver
will always accept incoming characters (unless the interrupt
mask is set to disable the interrupt), applications that
receive data from the RS-232 ports may get a burst of gar-
bage when first executed. Clearing the buffer with the
UnitClear procedure avoids this, but since this also resets
all the datacomm parameters (baud, parity, etc.) to their
defaults, the settings should be read, saved, and restored
after this aperation.

Both input and output buffers are 296 bytes initially, but
may be set as large as 32K bytes of necessary. In addition.
alternate buffers of up to 32K may be set up for both input
and output.

UnitRead
UnitRead reads data from the input buffer. If no data is
present, the call will "hang" and wait for data to be re-
ceived. To avoid this, use the UnitBusy function to check
for the presence characters in the input buffer prior to
issuing the UnitRead.

UnitWrite
UnitWrite write data to the output buffer. Note that the
data will not necessarily be transmitted at the time it's
written, since in most cases UnitWrite can fill the buffer
much faster than the data can be transmitted.

UnitBusy
The UnitBusy function returns TRUE if there are characters

in the input buffer.

UnitClear

CCOS Manual Page 102

Clears both the input and output buffers, as well as
rsetting the datacomm parameters to the defaults. The
default settings are:

Port 1: 1200 baud, space parity, 7 bits, XOn/XOff
Port 2: 9600 baud, no parity, 8 bits, XOn/XOff

UnitInstall, UnitMount, UnitUnmount

These unit procedure have no function in the datacomm dri-
ver. No errors will result from their use, but no action
will occur.

In additional to the normal UNIT commands. the datacomm
driver supports a number of special UnitStatus calls. These
calls are described below. The datacomm driver supports
three units: O for the printer (assumed to be connected to
R5-232 port 2), 1 for dtacoml, and 2 for dtacom2.

Several of the datacomm parameters, such as baud rate and
tharacter size, are represented by single digit codes.
These codes are used to refer to the specific settings and
must be used in the following UnitStatus calls

Baud rate codes

Baud300
Baud&00
Baud1200
Baud2400
Baud4800
Baud9?600
Baud 19200=

cUHWN-O

Parity Codes

Parity disabled
Parity odd
Parity even
Parity mark
Parity space

nuonnn
RWN~CO

Port Codes

Port 1
Part 2

in
-

CCOS Manual Page 103

Character Size Codes

Handshake Codes

CTS line inverted
CTS line normal
DSR line inverted
DSR line normal
DCD line inverted
DCD line normal
XOn/X0f+¢

Enq/Ack

Etx/Ack

No protocol

NNV ARWN=O

UnitStatus codes

Following are the special UnitStatus codes, their functions,
and the required parameters.

Function code: ©
Name : Return write buffer free space
Param : Integer

Returns the number of byte available in the output (write)
buffer. This call can be used to make sure that an
application does not overflow the output buffer by writing
data faster than it can be sent.

Function code: 1
Name : Return baud rate setting for unit
Param : Integer

Returns the baud rate code corresponding to the baud rate

set for the device.

Function code: 2
Name : Return parity setting for unit
Param : Integer

Returns parity code corresponding to the parity setting for
the unit.

CCOS Manual Page 104

Function code: 3

Name : Set print unit / Return free space in input
buffer
Param : Integer

For unit O (the printer): Associates the /printer device
with either RS-232 port 1 or 2.

For units 1 and 2 (the dtacoms): Returns the number of free
bytes in the read (input) buffer.

Function code: 4
Name : Return char size setting
Param : Integer

Returns a 1 (7 bits) or O (B bits) depending upon the
character size setting for the specified unit.

Function code: 5
Name : Return handshake type
Param : Integer

Returns the handshake code for the setting used by the
specified unit.

Function code: &
Name . Return datacomm unit settings
Param : Record

BaudRate.

Parity.,

Port,

CharSize,

HandShake : Integer

End;

This call returns the parameters for the printer, dtacoml.
or dtacom2. For example:

Var

Status : Record
Bd.,
Prty.,
Prt,
ChSz,
HndSk : Integer

End;

CCOS Manual Page

105

Begin

UnitStatus(l, Status, 7);

Function code:
Name
Param

7

Return write buffer status

Record
BufferSize Integer;
FreeSpace Integer;
HiWater Integer;
LoWater Integer;
InputDsAbld: Boolean:;
OutptDsAbld: Boolean;
AutolL inFeed: Boolean;
AltBufAvail: Boolean:
AltBufAddr pByte;
AltBufSize Integer

gEnd;

Returns the write buffer status for the desired unit. The
individual fields in the parameter block are:

BufferSize—

FreeSpace-—

HiWater-

LoWater—

InputDsAbld-

OutptDsAbld—

Autol inFeed~—

AltBufAvail-

AltBufAddr-

AltBufSize~

Function code:

CCOS Manvual

B

The size of the current buffer, in
bytes.

The number of unused bytes in the
buffer.

?

?

If TRUE, characters written to the
unit will be ignoved.

If TRUE, characters in the write
buffer will not be transmitted.

If TRUE, a line feed will be sent
after every carriage return.

TRUE if an alternate buffer is avail-
able.

The address of the alternate buffer.

The size in bytes of the alternate
buffer.

Page

106

Name : Return read buffer status

Param : Record
BufferSize : Integer;
FreeSpace : Integer;
HiWater : Integer;
lLoWater : Integer;

InputDsAbld: Beolean;

OutptDsAbld: Boolean;

LostData : Boolean;

AltBufAvail: Boolean;

AltBufAaddr : pByte;

AltBufSize : Integer
End;

All parameters have the same meaning as the equivalent write
buffer status parameters except:

LostData- I+ TRUE, parity, framing, or overrun
errors, or buffer overflow. has re-
sulted in the loss of some input
data.

HiWater- The “high water mark." When this many
characters are in the buffer, the
driver will tell the host to stop
sending characters using the assigned
protocol. This prevents buffer over-—
flow.

LoWater— The “low water mark." When the level
of characters in the buffer has drop-
ped to this point, the driver tells
the host to resume transmission.

InputDsAbld- I# TRUE, characters received by the
unit will be ignored.

QutptDsAbld- I# TRUE, characters in the write
buffer cannot be read by the user.

Function code: 9
Name : Set high water mark for read buffer
Param : Integer

Sets the number of input characters for the high water mark.

I# the buffer f£ills to this point, the driver will force the
host to cease transmission using the appropriate protocol.

CCOS Manual Page

107

Function code: 10
Name : Set low water mark for read buffer
Param : Integer

If reception of new data has been suspended by the driver
due to a "high water" condition occuring, when the number
of characters in the buffer drops to this level, the driver
will allow the host to resume transmission.

Function code: 11
Name : Toeggle read buffer output disable
Param o Nil

If disabled, the user will be unable to get characters from
the buffer. The current status of this toggle can be
obtained with UnitStatus call 7.

Function code: 12
Name : Toggle read buffer input disable
Param : Nil

If disabled, characters coming into the port will be
dropped, and not put into the buffer.

Function code: 13
Name : Toggle write buffer output disable
Param ;ONil

If disabled, characters in the output buffer will not be
sent. The status of this flag can be checked with UnitStatus
code 8.

Function code: 14
Name : Toggle write buffer input disable
Param o Nil

If disabled, characters written to the device will be thrown
away and not transmitted

Function code: 135
Name . Return number of characters in input buffer
Param : Integer

Returns the number of characters available in the input

buffer. Useful in situations where no handshaking protocol
can be used as it allows the application program to manage

CCOS Manual Page

108

the buffer.

Function code: 164
Name : Return number of characters in output buffer
Param : Integer

Returns number of characters in the output buffer

Function code: 17
Name : Toggle auto linefeed
Param © Nil

Toggles the status of the auto linefeed flag. If set, line
feeds (ASCII 4$0A characters) will be automatically sent
after each carriage return (ASCII %$0C) The status of this
flag can be checked with UnitStatus code 8.

Function code: 18
Name . Get # of chars between Enq or Etx
Param : Integer

Only valid when the appropriate protocol is used. Sets # of

characters that must be received after an Enq or Etx bhefore
Ack is sent.

Function code: 19

Name . Set alternate read buffer
Params . Longint, integer

The parameter to this call takes the form of a record:

Recaord
NewBuf: LonglInt:
Size : Integer
End;

NewBuf contains the address of the alternate buffer, while
Size contains its size in bytes. The maximum size is

32, 767 bytes. After executing this function, all subse-
quent incoming date will be deposited in the alternate
buffer. Calling this function with NewBuf set to O will
tause the datacomm driver to reset to the primary input
buffer.

Function code: 20
Name : Set alternate write buffer

CCOS Manual Page

109

Params : Longint, integer

The parameters and actions of this function are the same as
those for function code 19, except that the buffer affected
is the write buffer.

Function code: 21
Name : Clear read buffer
Param : Nil

Clears the read (input) buffer. If UnitBusy was true prior
to the execution of this function, it will be false after
execution. Attaches input to alternate read buffer if one
has been established.

CCOS Manual Page 110

The Timer Driver
The CCOS timer driver performs three functions:

1. A table of user timer service routines is main-—
tained and the various routines are serviced
(if necessary) at each 50 millisecond timer
interrupt.

2. VIA timer number 2 is used to produce the various
bell sounds through the Concept speaker.

3. It maintains the real-time clock.

User service routines

Users can set up small service routines that the timer
driver will automatically call (approximately) every S5O ms.
This is NOT a precise time; and applications requiring a
different or more precise interval must set up and monitor
VIA timer #2. Timer #1 is for the exclusive use of the
timer driver.

The UNITSTATUS procedure for the timer driver performs four
functions Telated to the creation and maintenance of a
table of user routines. These functions are:

UnitStatus function code Function
1 Create a table entry
2 Delete a table entry
3 Enable a table entry
4 Disable a table entry

All the actions will place error condition codes within the
IORESULT field in SYSCOM. Only two error conditions are
defined. They are a) table full amd b) no such entry (or
invalid table entry ID).

Function 1: Create a User Table Entry

This function takes as input the address of the user rou-
tine, the number of 50mg timeouts before service (range of 1
to 65,535):, and a word of flags. It returns the table entry
ID (word) of the entry made.

Only two bits are currently used in the flags word. Bit

one is the continuvous/one shot flag. When it is clear. the
table entry is used (every COUNT timeouts) until is is

CCOS Manual Page 111

removed by the Delete call. When it is set, the associated
routine is deleted after the first time it is called.

Bit 2. when set. serves as a "skip first call" flag. This
flag causes the timer driver to ignore the FIRST call to be
made to the corresponding user routine. All subsequent
call are performed. The need for this flag arises due to
the fact that the Create operation is performed asynchro-
nously to the interrupts generated by the driver, which
implies that the first call to the user routine will be
made before the specified number of SOms timeouts. This
flag is set when a desired MINIMUM time is necessary before
a user toautine is called.

Bit # 7 é S 4 3

»

>

3

»

»
LRI o V)

Skip ist Call hit —m——e—mm-—

4 o e e

Continuoaus/one shot bit ——

“x" = Not used

Below is a Pascal program fragment that creates a timer
parameter block:

CONST
OneShat = 2;
SkipFirst = 4;
Timer = 34,
Create = 1; { UnitStatus function code }
TYPE
TimerRec
record
UserServiceRtn : pointer; {Input parameter)
Count : integeri {Input parameter)}
Flags : integer; {Input parameter)}
TablelID : integer A{Output parameter}
end;
Var
TimerDemo : TimerRec;
Begin
With TimerDemo Do Begin
UserServiceRtn = Pointer(@(<{some user stuff>));
Count := 10; { Every 3500ms, more or less)

CCOS Manual Page

112

Flags := 0;
TablelID := Qi { Set by UnitStatus }
End;
UnitStatus(Timer, TimerDemo, Create); { Create entry 1}

Function 2: Delete a user table entry

The delete table entry procedure takes the table entry ID
(word) for the entry desired and deletes that entry from
the table. This table entry ID is the same value returned
by the Create function. The Delete procedure has 1 input
parameter and no (zero) output parameters, for a tatal of 2
bytes.

UnitStatus(Timer, TablelID, 2);

In this example, TableID is an integer containing the ID of
the user routine (returned by Create) to delete.

Function 3: Disable user routine

The disable procedure allows the user to prevent the Timer
interrupt routine from calling the user‘s timer service
routine without deleting the user‘s table entry. The proce-
dure has one input parameter, the table entry ID of the
entry to disable. It has no output parameters. The total
number of bytes for this procedure’s parameter block is 2.

Example:

UnitStatus(Timer, TablelID, 3);

Function 4: Enable user routine

The Enable procedure allows the user to restart a table
entry. It clears the Disable condition and resets the down
counter to its starting condition. It can be used for
either starting up a Disabled table entry or restarting a
running entry before it causes a call to the service
routine. This procedure has only 1 parameter, the table
entry ID, for a total of 2 bytes.

Example:

UnitStatus(Timer, TableID, 4);

CCOS Manual Page 113

Notes on user routines

User timer service routines are called during the interrupt
processing. They should take a minimal amount of time; 500
microseconds is the recommended maximum. Therefore, don’t
use them for doing any significant processing. They would
be best used for setting flags informing the program that a
timeout event has occurred.

The table operations are not indivisible. Therefore, a user
timer service routine may be called while the user is making
a delete or disable call. Consequently, any operation done
by the user service routine must be easily reversable after
the table cperation call. This only reinforces the need for
keeping the user service Toutines simple with few destruc—
tive operations.

All user timer service routines must return to the Timer
driver interrupt routine via the RTS instruction. Also, no
argument passing is available to the the user’s timer
service routine.

For Pascal programs which must incorporate user timer inter-—
Trupt service routine there are a few restrictions. Obvious—
ly, the routines must be coded in machine language and
linked as externals to the pascal program. Only procedures
can be wused, since the user routines cannot return results
The procedure must be glebal. The procedure must return to
the Timer driver and cannot use Global GOTO's. When the
table entry is created:, the routine that calls the timer
driver create function must be a resident part of the pro-
gram which contains the user’s service routine procedure

The Bell service

The timer driver’s Bell service is also activated by a
UNITSTATUS call. The code is O, and the parameter passed is
the Bell parameter block. The declaration for the Bell
parameter block is:

Type
BellParm: Record
Freq : Integer;
Ptrn : Byte;
Filr : Bytei
Drtn : Integer
End;

The first field is the frequency of the tone to be produced

The second field contains a pattern of 1ls and Os whichy

CCOS Manual
Page

describe the way in which the speaker will be toggled; it
can be used to produce interesting variations in the note
produced. The Filr field is ignored., and is included as a
filler to align the next parameter on a byte boundary. The
last field is the duration of the tone produced, in terms of
S0ms timeouts.

Real time clock service

The third service, the time and date clock, is accessed via
the Unitread and Unituwrite driver interfaces. The clock
interfaces require a Clock Parameter Block. This is a fixed
length, fixed format interface. Unlike other drivers, the
timer driver cannot do reads and writes of variable length
data strings. The Clock Parameter Block is one field longer
for the Unitwrite procedure then for the Unitread procedure
The following is a Pascal fragment which describes the Clock
Parameter Block.

type
clockPB = record
DayofWeek : Integer; €1..7}
Month : Integer; {1. .12}
Day : Integer; {1..31)
Hour . Integer; {0. . 23}
Mins ; Integer; {0.. 59}
Secs : Integer; {0. . 59>
Tenths : Integer; {0. . 9}

case INTEGER of
O : ({Write onlyl} LeapYear : 0. .3);
end {variant)}
end; {record}

Though each field is a sub range of the integer type and
could fit in less space then a word, each field MUST be a
word long. Therefore, declare each field as an integer, but
restrict your useage to the valid range. The real parameter
block is B bytes long

The driver does validate the range in case of a user error.
Unfortunately, the Day parameter is not completely verified.
I# the month specified is February (Month := 2), but the Day
is 30, the driver does not report an error.

Except for the fields DayofWeek. Tenths. and LeapYear the
field meanings are self-explanatory. DayofWeek specifies
which day it is, such as Monday, Tuesday. etc. The value 1
specifies Sunday while 7 specifies Saturday. The field
Tenths is tenths of a second. Finally., the clock has no
Tegister set for years. However, to keep the correct date

CCOS Manual Page 115

after a year change the clock tracks if this year is a leap
year. The LeapYear field specifies the number of years
AFTER the last leap year. Therefore, if this year is leap
year then the field should be assigned to O (zero0). Conse—
quently, if last year was leap year then the field should be
assigned to 1 (one), and so forth. The LeapYear field is
only used when setting the clock (Unitwrite). It is not
returned when reading the clock (Unitread).

To set the clock, first fill in all the fields in the clock
parameter Block. including the LeapYear field. Next, call
the timer driver Unitwrite to set the clock.

Unitwrite(TimerDriverNumber, WriteParmBlock., 8);

The driver will set the IORESULT variable if the parameter
block is in error.

To read the clock Just call the timer driver Unitread with
the Clock Parameter Block.

Unitread(TimerDriverNumber, ReadParmBlock, 8);

Unitinstall

The Timer driver unitinstall procedure sets—up the VIA,
initializes the timer table to no entries value, starts the
50 ms. interrupt driven interval timer (VIA timer #1), and
initializes the clock chip. Clock initialization makes sure
the clock is running, the chip is not in test mode, and the
interrupt capabilities of the chip are reset. The chip can
interrupt, however. it is not connected to the system inter-

rupt system and it‘s interrupt is ignored. The interrupt is
cleared and reset so it does not effect the running of the
clock.

Unitunmount

The Timer driver unitunmount procedure turns off the VIA
timer interrupt for Timer #2. It also installs in the timer
interrupt vector a pointer to a ReTurn from Exception (RTE)
instruction to insure system integrity in case of a spur-—
rious level 5 interrupt.

CCOS Manvual Page 116

The Disk Drivers

There are three basic types of disks that the Concept can
use:

1. A hard disk;
2. An B inch floppy disk;
3. An Apple floppy disk.

With the exception of the Apple floppy disk driver, which
is read-only, all of these drivers are functionally identi-
cal. A program need not be concerned whether the disk on
unit 12 is a hard disk or a floppy— the UNIT I/0 procedures
all operate in the same fashion.

The two possible differences in the various type of disks
are differences in capacities and UNITSTATUS calls

The disk system is not interrupt driven, so the UNITCLEAR
and UNITBUSY procedures have no function. UNITREAD and
UNITWRITE may be used to directly read and write blocks
from the disks.

The Revision B Floppy Disk Driver
8 inch floppy formats

The driver can handle most variations of the standard single
and double density formats. The standard single density
format is the IBM 3740 +format. The standard double density
format is the "System 34" format. For single density it can
use 128, 2956 or 512 byte sectors and any number of sectors
per track: the standard is 26 128 byte sectors per track.
For double density it can use 256 or 512 byte sectors and
any number of sectors per track, the standard is 26 2356 byte
sectors per track. It can use any number less than 128 as
the number of tracks per side. The standard is 77 for both
density. It also can use single and double sided diskettes
in either format.

A double sided diskette can be distinguished from a single
sided diskette by the location of the index on the diskette
Single sided diskettes have index holes in the center of the
diskette, while double sided diskette have the index hole
off-center.

When the driver finds that a new diskette has been placed in

the drive it will determine the density, number of sides
used and the sector size any action from the user. The

CCOS Manual » Page 117

driver can also determine the number sectors per track base
on the sector size if the user is using standard diskettes.

The standard sectors per track are

Density | Bytes per sector | sectors per track

Single | 128 | 26
Single | 2546 : 1%
Single | S512 { a8
Double ! 296 H 26
Double ! 512 H 15

Logical interleave, skew, and track offset

Interleave is the logical reordering of physical sector
numbers on a single track. Skew is the varying physical
sector number used as the first logical sector on the track.
Track offset is the physical track number, from O to number
of tracks per side, used as logical track O.

System Interface and driver operation

The driver uses slot static RAM for it‘s static local ta-
bles. Each slot has own page(25&6 bytes of RAM) but drives
in the same slot have the same tables, i.e. interleave,
skew, etc. The driver allocates its local temporary data
area on the stack.

Unitinstall

The install procedure must be called at least twice for
every controller card in the system. For the first call,
the drive number in the device table for the unit must be
set to zero(0) and the slot number field set to the correct
slot number. The unitinstall procedure will then determine
the number of drives connected to the controller card.
Drives addresses range from O to 3. The driver starts
searching at drive address O and looks to find the first
drive number that does not respend. It reports the number
of drives found in the number of drives field of the slot
array in the system slot table

The unitinstall procedure is then called with a different
unit number for each drive to be mounted. The calling
program must fill in the slot number and drive number field
in the unit‘s device table entry before calling the install

CCOS Manual Page 118

procedure. Legal drive numbers are 1-4.

One copy of the driver in the system can be used for all the
floppy units. The driver kaeps the static information on
each controller in the slot‘s RAM page in the static RAM.
Therefore, multiple drives attached to different controller
cards can have different parameters

Unitunmount

Does nothing.

Unitread
Reads blocks from floppy. It reads single/double density
and single/double sided. Reads partial blocks. Returns to
user only the number of bytes requested starting at the
START BLDCK parameter passed to driver. Partial blocks
start at beginning of block, not in middle of block.
Unitwrite
Writes blocks from floppy. It writes single/double density
and single/double sided. Partial blocks can be written, but
only from the start of a blocki i.e. the middle 128 bytes
of a block could not be seperately written.

Unitbusy

Always true.

Unitclear
Initializes the floppy disk controller then restores drive
to track zero and determines type of floppy in drive.
Unitstatus
The revision B floppy driver supports a number of new UNIT-
STATUS calls. These are listed below.
1) change logical sector interleave

function code o]

cCCOs Manual Page 119

Parameter Block
Interieave = word, range = 1.. (sectors per track).

2) change logical skew

function code : 1
Parameter Block
Skew = word, range = 1.. (sectors per track).

3} change track offset

function code 2

Parameter Block

StartTrack = word, range = O.. (tracks per side).
4) change step rate

function code : 3

Parameter Block

StepRate = word, range = 1..16.
5) change number of sectors per track

function code : 4

Parameter Block

Sectors per track = word, range = 0..127

A value of O means use the default internal table
based on density and sector size.

6) change number of tracks per side
function code S
Parameter Block

Tracks per side = word. range = 0..127.

A value of O means use the default 48 TPI standard
number of tracks, 77.

7) change timeout counter for waiting for drive to come

Ready.
function code : 6
Parameter Block
TimeOut = leongint, range = positive integer.
8) get driver state. the function returns

all changeable attributes

a) interleave

CCOS Manual Page 120

b)) skew

c) track offset

d) step rate

e) sectors per track
£) tracks per side

g) Ready wait timeout

and driver determined diskette states
(queries floppy to find out)

a) presence of a floppy in drive
b) density

c) sides

d) sector size

function code 7

Parameter Block : all fields set by driver.
record

intrlv, {interleavel}

skew,

StartTrack,

StepRate,

spt, {sectors per track?

tps, {tracks per sidel)
SectorSize : integer;

TimeDut : longint;

Diskette, {true if diskette in drivel}
OneSided. {true if 1 side onlyl}
SnglDensity., {true if single densityl}
UserSPT . boolean; {true if user set sptl}
end;

The Diskette field must be true to have valid One-
Side, SectorSize and SnglDensity fields” values

IOresult codes returned by driver

Name Value Comment

I0Ecrcer i CRC error

I0Eioreqg 3 Invalid I/0 request
I0OEnebbrd 4 Nebulous hardware error
IOEoffln) Drive off line

I0OEwrprot 16 Device write protected
I0OEinvblk 18 Invalid block number
I0Efipto 24 Timeout error

IOEnoTO 25 Cannot restore to track O
IOEnfmtd 26 Disk not formatted

CC0OS Manual Page 121

CCOS Manual

I0Einvsct
IOEwrngC
IDEbdtrk
IOEuiopm
IOEfnccd

27
28
29
54
56

Invalid sector length error
Read wrong track

Track marked as bad (IBM sp
Invalid unit I/0 parameter

Invalid function code

ec

Page 122

The Enhanced Printer Driver

The enhanced printed driver operates as a "front end" pre-
processor to the standard /printer or /dtacom driver. It
supports the printing of the on-screen (display driver}
enhancements of underlining, superscript, subscript, strike
out, and boldface (assuming the printer can print them).

The driver operates by intercepting the ESCAPE e enhancement
sequence and translating it to the sequence of characters
required by the printer in use. The translation is directed
by a printer action table (created with the BLDACT utility
supplied by Corvus). In addition, a seperate table of alter
nate characters allows the user to define and print special
characters, which are entered through the keyboard by hold-
ing the [ALT] key down while pressing another key. The user
can define special characters for these ASCII codes (128-
255) and direct their printing with the appropriately con-
structed alternate character table. The alternate character
table is created with the supplied BLDALT utility

The enhanced printer driver normally operates through data-
comm port 2 and supports all normal datacomm parameters

The printer driver uses the following standard driver com-—

mands

1) Unitwrite : send characters to printer or turn on/off
enhancements.

2) Unitbusy : Boolean response stating whether or not the
printer driver is able to accept more charac
ters,

3) Unitclear : Clear the internal buffer of the driver and
reinitialize the state of the driver enhance
ments.

4) Unitinstall : Initializes the driver to its default
state.

a) Attach the driver to the default Datacom driver,
b) initialize the UART to its default state,
c) initialize the driver‘s internal variables,

5) Unitunmount : Deattach driver from system.

6) Unitstatus : used for several driver dependent functions
a) change or return the UART state

b) return state of driver, i.e. buffers

CC0OS Manvual Page 123

c¢) change state of driver Unitwrite to Transparent
mode or Translate mode

d) install & new Alternate Character Translation
Table.

e) Attach driver to another unit.

) select the pitch the driver/printer is working in

g) select the number of lines per inch.

h) install a new Printer Action table

i) return state of pitch and number of lines per
inch.

Unitwrite
The Unitwrite function sends characters to the printer.

When the driver is in Translation mode, it will translate
the character stream going to the printer. In this mode the
driver can add or remove enhancements to the characters sent
to the printer. Enhancements are controlled by an escape
ctharacter sequence. The sequence is

ESCAPE e FLAGBYTE

where ESCAPE is the control character escape (hex value
$1B), e is the ASCII character for lower case e (hex value
$65), and FLAGBYTE is a byte (one character) of bit flags
representing the state of the enhancement flags. The
FLLAGBYTE has the form

Bit Number Function

Bold enhancement
Strike OQut enhancement
Inverse enhancement
(not implemented)
Underline enhancement
SuperScript enhancement
SubScript enhancement
bit must always bhe 1
Double Underline enhancement
(not implemented)

NOrULL N~ O

The Inverse and Double Underline enhancements are not imple-—
mented in the printer driver. Bit 6 is always 1 so the byte
can never have a value in the control code range (hex $00
through $1F). This is necessary to prevent trouble when trans-
mitting this character sequence over DataCom lines

After an printer enhancement sequence is started. all subse-

quent characters will be printed with the specified enhance-
ments until a terminating command (enhancement sequence with

CCOS Manual Page 124

all flag bits off) is sent.

The strikeout enhancement is performed on a per character
basis. A character to be struckout is first printed. A
backspace operation is performed on the printer. Finally,
the overstrike character, the minus sign "-" (hex value
$2D), is printed. Any printer used with this driver must be
able to perform a single character back space using the
backspace character code (hex value $08). Furthermore, the
printer must perform the backspace operation uvsing the same
Ccharacter spacing used on the character that is struckout.
This last requirement is needed to properly do proportional
spacing.

Superscript and subscript are performed by first making the
forms advance distance shorter. Then a line feed or reverse
line feed operation is done to lower or raise the print
position to an area between lines. The forms advance dis-—
tance is then restored to the normal value for the current
number of lines per inch. This is necessary in case the
enhancement is carried on after a CR. When the enhancement
is turned off, the same operations are performed except the
opposite forms advance direction is used

The function in translate mode accepts another escape se~
quence to do overstrike. This sequence is

ESCAPE 0O <FirstChat> <OverChar>

where ESCAPE is the control character escape (hex value
$1B), O is the ASCII character for upper case o (hex value
$4F), FirstChar is the character to be overstruck, and
OverChar is the character to overstrike FirstChar.

The overstrike enhancement is performed with the same methad
as the strikeout enhancement. It also has the same require-
ments in terms of the backspace operation on the printer.

The Unitwrite function will also perform proportional spa-
cing on & line per line basis. Proportional spacing does
not have to start at the beginning of the line or stop at
the end of the line- it can begin and end anywhere. To
turn on proportional spacing, send the following escape
tharacter sequence to the driver before sending all the
characters to be proportionally spaced.

ESCAPE P <# of Chars> <# of Pads>
where ESCAPE is the ASCII escape char ($1B), P is the pro-

portional spacing indicator character upper case P (hex
value $50), <# of_Chars> is an unsigned byte representing

CCOS Manual Page 123

the number of characters to do the proportional spacing
with, and >#% of Pads> is an unsigned byte representing the
number of character spaces to pad with.

The driver performs proportional spacing by adding extra
microspaces between each of the character symbols. This
mechanism takes the number of full character pads needed an
divides the space as equally as possible among the charac-
ters. It will add an extra 1, 2, or 3 1/120ths of an inch
between each character. The maximum number of character
space pads is a function of the pitch.

10 pitch @ 3712 % <# of_Chars> maximum number of pads
12 pitch : 3710 * <% of Chars> maximum number of pads

If the number of pads needed is greater than the amount of
microspaces the driver can add the driver will return an
error I/0 result code. Unlike with most errors the driver
detects, it does not immediately return to the caller if
more characters are available. It processes the remaining
characters with the proportional spacing of#f.

The driver recognizes a special character, hex code $A0, for
alternate space. This is the "rubber" space code. It is used
by some applications such as EdWord for proportional spa-
cing. This character is not sent to the printer, but is

used by the driver. If proportional spacing is turned off,
then $A0 is treated as an alternate character and is vused

to index into the alternate character translation table.

All characters, except characters within the escape sequen-
ces and the "rubber" space previously mentioned, which are
in the alternate character set (hex values $A0 to $FF) are
translated via the Alternate Character Translation Table
into a character sequence which will get the character’s
symbol printed. This translation is performed prior to any
other processing of the Unituwurite character stream. There-
fore, the escape sequence for overstrike may be used as the
translated sequence for an alternate character. The table
has the following form

RECORD
PTR_CHAR_SEQ : pCHAR_SEQG;
CHAR_INDEX : ARRAYLO. . 961 OF Unsigned_byte;
CHAR_SEG : ARRAYLO..LAST_STR] OF str8;
END;

PTR_CHAR_SEQ is a pointer to the CHAR_SEQ array. The array
CHAR_INDEX is indexed by the alternate character minus $AO.
The value is either an index into the array CHAR_SEG or S$FF

€CO0sS Manval Page 126

which means no CHAR_SEQ string exists for this alternate
character. CHARSEG is a variable length character sequence
(with a maximum length of 8 characters) which is sent to the
printer for any alternate character with a CHAR_INDEX which
points to it. Therefore, several alternate character codes
can use a single character sequence. Alternate characters
with a CHAR_INDEX value of $FF do not have a character se-—
quence— they are sent to the printer with bit 7 clear, and
translated to a 7 bit character code.

The driver has a default table defined for the NEC 7710
printer with NEC thimble Courier 72,

If the driver is in transparent mode NONE of the previously
mentioned character stream processing is performed. The
characters are sent directly to the printer with no enhance
ments. This mode is useful for sending special printer

control escape sequences directly to the printer. It is
also useful for utilizing the graphics capabilities of some
printers.

Unitbusy

This function states whether the printer driver can accept
characters into it‘s buffer. TRUE means the buffer is NOT

Unitstatus

All functions that are passed through to the attached unit
have function codes less than $80. All internally processed
functions, except the port select function, have function '
codes greater than or equal to %80 and less than or equal to
$FF. The select port function is processed internally but
has a function code less than $80 in order to maintain
compatibility with the old printer driver.

The general form of the UnitStatus call to the enhanced
printer driver is:

Unitstatus(PrinterUnitNumber, ParamBlock, FuncCode)i
where PrinterUnitNumber is the unit number for the printer
driver (&), ParamBlock is the parameter block which varies

according to the function performed. and FuncCode is a word
containing the function code.

There are several classes of UnitStatus calls:

CCOSs Manual Page 127

1) pass through functions (compatible with old driver)

Baud rates Function code 1
parity Function code 2
word size Function code 4
handshake protocol Function code 9

2) internally processed functions (compatible with old
driver)

port Function code 3

b) return state of driver, i.e. buffers
Free space in transmit buffer Function code O

The Buffer should be an integer; the call will return the
number of bytes free in the transmit buffer.

€) change state of driver Unitwrite to Transparent
mode or Translate mode.

This is a very important call!

When the driver is in transparent mode, all enhancements
performed by the printer are turned off. Thus, all charac-
ters will be sent directly to the printer with no processing
performed. Since characters in the output buffer will be
affected, the user should not switch driver modes unless the
buffer is empty. The default state of the driver is the
translate mode.

d) install a new Alternate Character Translation

Table.
The function code for this call is %B81; Buffer is a pointer
to the address of the new translation table. The default is
the table for the NEC 7710 type printer with the Courier 72
thimble.
I# the pointer to the new table is Nil (equal to zero) then
the default Alternate Character Translation table is used.
e) Attach driver to another unit.
The function allows the user to send the output to any

driver mounted in the system, vusing the UnitWrite and Unit-

CCOS Manual Page 128

Status interfaces. Appendix B contains the listing of a
Pascal program that will attach a new output driver to the
enhanced printer driver.

The function code for this call is $82; Buffer in an integer
which contains the unit number of the new driver.

£} Change the pitch (CPI) of the driver.

The function code for this call is $83; Buffer is an integer
contains either @ O (12 pitch) or a 1 (10 pitch)

The default is 10 pitch.

g) Change the lines per inch of the driver.

The function code for this call is $84; Buffer is an integer
which is either O (8 LPI) or 1 (&6 LPI).

The default is & lines per inch

h) Install a new Printer Action Table

The function code for this call is $85; Buffer points to the
new printer action table

If the pointer to the new table is Nil (equal to zero) then
the default Action table is used.

The following is a list of the functions necessary for a
given printer:

1) Turn on underline.
2) Turn off underline.
3) Turn on bold (Nec calls this enhancement

Shadow).
3) Turn off bold
4) Reverse (or Negative) line feed. This function

must be affected by a change to the form
advance distance (see 9).
5) Change form advance distance for variable line

feed size, This is used with 4 and 5 to perform
and superscript.
6) Change the character spacing. This is needed

for proportional spacing.

The table has the following structure, represented as a
pseudo Pascal record. It is currently 102 bytes long.

CCOS Manual Page 129

record

UnderLineOn : str7;

UnderlLineOf¢f : str7;

BoldOn : str7;

BoldOf+ : str7;

RevrslLF : str7;

BackSpace : str7;

SixLinesInch : record
SubSuperFormAdv : str7;
NormalFormAdv : str7;
end;

EightLinesInch : record
SubSuperFormAdv : str7;

NormalFormAdv : str7;
end;

Pitchl10O . record
NormalSpacing : str7;
MicrolExtra : str7;
Micro2Extra : str7;
Micro3Extra : str7i
end;

Pitchl2 . record
NormalSpacing : str7;
MicrolExtra : str7;
Micro2Extra : str7;
Micro3Extra : str7i
end;

end;

Str7 is a Pascal string with a maximum of 7 characters, not
including the leading length byte.

Field descriptions:

UnderLineOn : Character sequence for printer to turn
underline on. This must stay on until sent
sequence to turn underline off.

UnderLineOff : Character sequence for printer to
turn underline off.

BoldOn : Character sequence for printer to turn bold
printing on. This enhancement is called
Shadow on the NEC spinwriter. This enhance-
ment is assumed to turn off automatically
after the printer receives a CR (Carriage
Return hex value $0D) character.

BoldOf# Character sequence for printer to turn bold

CCOS Manual Page 130

printing off.

RevrsLF : Character sequence for printer to perform a
reverse linefeed operation. This function is
necessary for subscript and superscript.

BackSpace : Character sequence for printer to perform a
back space operation. On most printers this
is the code $08 for BS. This function is
necessary for overstrike and strikeout.

SixLinesInch : This record’s fields are used when the prin-
ter is in & lines per inch mode.

EightLnsInch : This record’s fields are used when the prin-
ter is in 8 lines per inch mode.

SubSuperFormAdy : Character sequence to change the form
advance distance to roughly a guarter of the
normal form advance distance. This field
varies according to the lines per inch used
by the printer. For the Nec 7710 printer
using & lines per inch, this form advance
distance is 2/48 of an inch. The character
sequence is escape, "1", "Q". This function
must change the form advance distance on the
reverse line feed operation as well as the
line feed operation.

NormalFormAdv :Character sequence to change the form advance
distance to the standard distance used by the
current pitch. This field varies according
to the lines per inch used by the printer.
For the Nec 7710 printer using & lines per
inch, the normal form advance distance is

8748 of an inch. The character sequence is
eSCape' I!]ll' llwll.

Pitchl10O : This record’s fields are used when the prin-
ter is in 10 pitch or 10 characters per inch
(CPI).

Pitchl2 : This record’s fields are used when the prin-

ter is in 12 pitch or 12 CPI.

NormalSpacing :Character sequence to set the printer spacing
to normal distance for the given pitch. For
the NEC 7710 running at 10 pitch the spacing
value is 127120 of an inch and the character
sequence is escape, "1", "L".

CCOS Manvual Page 131

MicrolExtra : Character sequence to change the character
spacing by adding an extra 1/120th of an
inch. For the NEC 7710 running at 10 pitch
the spacing value is 13/120 of an inch and
the character sequence is escape, "1", "M".

Micro2Extra : Character sequence to change the character
spacing by adding an extra 2/120ths of an
inch. For the NEC 7710 running at 10 pitch
the spacing value is 14/120 of an inch and
the character sequence is escape, "31", “N".

Micro3Extra : Character sequence to change the character
spacing by adding an extra 3/120th of an
inch. For the NEC 7710 running at 10 pitch
the spacing value is 13/120 of an inch and
the character sequence is escape, "1, "O"

CCOS Manual Page 132

Everything else not covered in chapters 1-5

o~

This chapter deals with all of the other CCOS ancillary
information and miscellanea not covered in the first four
chapters. This includes startup and exec files, as well as
the command line parameters accepted by the systems utili-
ties.

Also covered are use of the linker, including the linking of
Pascal, FORTRAN, and machine code segements; using the
library utility to maintain custom routines in libraries,
instructions on the use of the Pascal and FORTRAN compilers,
and the use of various system utility programs.

CCOS Manual Page 133

Use of EXEC Files

Exec files are simple lists of commands in a standard text
file that can be used to automate some processes. An example
would be the avtomatic compilation and linkage of a Pascal
or FORTRAN program.

Each record (line) in an Exec file is interpreted Just as if
it had been typed on the command line by the user. The
format for a command line is:

(command) (arg 1) (arg 2) ... (arg n) (< ifile) (> ofile)

where the values of the command and arguments depend upon
what ‘s being done. The command parameter represents the
system command or program file to be executed. A program
file name with a ! prefix indicates that the program is in
the system volume /CCSYS.

IFILE and OFILE are the input and output file for the pro-
gram I/0. These optional parameters make use of the I/0
redirection facility in CCOS.

Comments may be imbedded in a command file by using :, !, <
or } as the first character of the line. The special command
"PAUSE" can be used and followed with a text message whose
context indicates a Y or N reply. Y replies continue Exec
file processing; "N" replies abort the process. When a PAUSE
record is encountered, Exec file processing halts and the
text message is displayed. The system accepts a keystroke
from the user and evaluates as described.

-CCOS recognizes a special command file with the name START~-
UP. TEXT if it is on volume 5. If CCOS finds this file during
4 boot, it will avtomatically be executed. This facility can
be used to automatically configure a system (i.e. display
character set, printer parameters, etc.) to a user’s
requirements.

Examples of Exec files are given after the system utility
parameters.
File Manager Parameters
The file manager commands are as follows:
CATFIL Filel (File2...) > Outputfile
CPYFIL -VDstVol (-D) (-Q) (-85) SrcFill (SrcFil2...)

CRUNCH (-@) /Voll (sVol2...)
DELFIL (-Q) (-T) Filel (File2...)

CCOS Manual Page 134

FLPDIR /Volume

LSTFIL Filel (File2. ..)

LSTVOL (-B) (~H) (-L) svoll (/Vol2...)

LsTvaL / (Lists default volume)
LsTvoL ! (Lists system volume)
MAKFIL NewNamelflengthl (NewName2f{Lengthl...)

RENFIL OldName NewName

RENFIL /01dVol /NewVol

SETVOL /Volume

All of these commands must be prefixed with !CC. FILMGR.

System Manager Parameters
The system manager commands are:

SETDAT (NewDate)
SETTIM (NewTime)
DRVVRS (Display driver versions)

SETDAT and SETTIM will display the date or time if no para-
meters are given, or set the date or time if parameters are
given. The date parameter must be in the form dd-mmm—yy. and
the time parameter must be in the form HH:MM: SS (24 hour
time).

These commands must be prefixed with !CC. SYSMGR.

Window Manager Parameters

The window manager parameters are:

BOXWND — Box or unbox current window.

CLRWND -~ Clear current window.

CSDISP Filename — Load display char set for current
windouw.

CSKYBD Filename ~ Load keyboard character set.

DEFSCN ~ Clear screen and display border.

DEFTTL -~ Update screen data.

REVBKG - Reverse window background.

SCRLMD —~ Toggle scroll mode.

All of these commands must be prefixed with !CC. WNDMGR.
Note that you cannot create, delete, or select windows from
a command file.

Parameters for DataComm and Printer

CCOS Manual Page 135

The SETDCP utility allows the user to set the protocol and
parameters for the datacomm drivers. Command lines for
setting up the datacomm and printer drivers take the form:

KeyWord=Parameter

1. NO BLANKS are permitted within a parameter

2. Parameters and keywords can be abbreviated to
their shortest UNIQUE string.

Key Words
UNIT

BAUD

PARITY

HANDSHAKE

DATACOM
CHARSIZE
ALTCHARTABLE
ACTIONTABLE
CPI

LPI

AUTOL INEFEED

Detavlt values:

CCDOS Manual

Parameters
PRINTER, DC1, DC2

300, 600, 1200, 2400,
4800, 2600, 19200

DISABLED. EVEN, 0ODD,
MARK, SPACE

LINE/CTS/NORMAL.,
LINE/CTS/ INVERTED,
LINE/DSR/NORMAL,
LINE/DSR/ INVERTED,
LINE/DCD/NORMAL.,
LINE/DCD/ INVERTED,
XONXOFF

ENGACK

ETXACK

NONE

1, 2 (Only #for printer)
7, 8
<file name>

<file name>

10, 12
6, 8B
ON., OFF

Page

136

DataComm 1 (RS-232 port 1)

BAUD=9&600
PARITY=DISABLED
HANDSHAKE=XONXOFF
CHARSIZE=8

AUTOL INEFEED=0N

DataComm 2 (RS-232 port 2)

BAUD=4800
PARITY=DISABLED

HANDSHAKE=L INE/DSR /NORMAL

CHARSIZE=8
AUTOL INEFEED=0N

Printer (configured for NEC 7700 Spinuwriter)

BAUD=1200
PARITY=SPACE
HANDSHAKE=XONXOFF
CHARSIZE=7
DATACOM=2

AUTOL INEFEED=0N
CPI=10

LPI=6

Note: The UNIT parameter MUST be specified before any

other parameter!

Parameters for spooler and despooler

For the spooler, command line parameters are as follows:

Keyuiords

Set or Alternate
Include

Message

New

Text

Enhance

Pipe

CCOS Manual

Parameters

1,2,3, 4,5

<include string>

<{message string>

<new page string>

Yes, No, True, False, Y. N, T, F
Yes, No, True,False, Y,N, T, F

<file named>

Page 137

Defavlts are:

Set = U

Include = {$1

New = PG

Text = YES

Message = Route to <user> on <date>

Enhance = YES { TRUE strips enhancements }

Pipe = PRINTER

The Set and Alternate keywords specify that spooling be
directed to a slot other than the default of 5. The

Include and New keywords specify the strings that cause the
spooler to recognize include files and page breaks. For
example, EdWord uses PG to specify a page break, while the
Pascal compiler uses {#P} The Message keyword specifies a
message that is printed on the title page of the spooled
text file. The default message is "Route to <user name> on
<date>

Example: 5pooling a Pascal program listing:
Spool N={$PG I={%$I /Pascal/Newprog

Note that the new page and include file parameters are set
correctly for a Pascal file. The spoaler default for
include file is the Pascal notation, while the default for
the new page is EdWord notation. EdWord doesn’t use
include files, so the Include parameter can be ignored.
When spooling a Pasral file, only one defavlt need be
changed.

Since the spooler can also be used to send non-textual

(i.e. program and data files) to another machine, the Text
flag is provided to allow the user to disable some of the
translation that normally takes place on text files. Non-
textual files should never be spooled to a printer!

Example: Spooling a data file
Spool T=N P=Fiscal /Datail/FiscalB83. DTA

Note that a new pipe name was specified to prevent the
default pipe name of PRINTER from being used

Notes: All keywords may be abbreviated to their first

letter. If Text is false, the Include, New page, and
Enhance parameters are invalid.

CCOS Manual Page 138

The despooler takes a seperate set of parameters from the
spooler, keeping only the Set/Alternatre and Pipe parame—
ters in common.

Keyuwords Parameters

Device <file name>

Expand integer

Header True, False:. Yes, No.
T, F. ¥, N

Linefeed True, False, Yes, No.
T, F,» ¥, N

Maximum lines/page integer

Trailer page True, False, Yes., No;

Defaults are:

Device = PRINTER
Expand = B8
Header = YES
Linefeed = YES
Maximum = 58
Trailer = YES

T, F, Y. N

The Device parameter specifies the device or file name to

send the despooled output to
the number of spaces to expand tab characters.

Expand takes as a parameter
Header and

Trailer specify the printing of header or trailer pages.
useful in seperating files on a network printer.
sets the maximum number of lines per page before a new page
is forced. Linefeed forces a linefeed after every carriage

return.

Example: Despooling the Pascal file:

Despoal D=PRINTER

Example: Despooling the data file:

Despool D=/MyVol/FiscalB83

CCOS Manual

Maximum

Page

139

Examples

The following example is a hypothetical STARTUP. TEXT file:

{ First we’ll set up our printer

'CC. SETDCP U=PRINTER BAUD=1200 PAR=DISABLED HAND=XONXOFF
{ Now our modem }

!CC. SETDCP U=DC1 BAUD=300 CHAR=8 HAND=XONXOFF

{ Now load a big character set }

!CC. WNDMGR CSDISP /CCUTIL/CSD. 0%9. 14. ALT

{ Fire up EdWord »

'ED /WORK/NOVEL

The first two lines could have been combined and abbreviated
as follows:

'CC. SETDCP U=P B=1200 P=D H=XONXOFF U=DC1 B=300 C=8 H=XONXOF

CCOS Manual Page 140

BLDACT— The printer action table utility

The BLDACT utility normally resides on the /CCUTIL volume
and is vused to build printer action tables. A printer action
table consists of @ list of the special character sequences
used to enable certain printer functions, such as boldface
and underlining. The enhanced printer driver uses the
information in the printer action table (if present) to
control the printing of these enhancements by sending the
correct character sequences to the printer. A given
character sequence may contain up to seven characters.

It’s a good idea to have a copy of the printer manual nearby
when executing BLDACT. The enhanced printer driver makes
the following assumptions about a printer:

Boldface and underlining can be turned on and off
by character sequences.

The printer can perform reverse linefeeds

The printer can set the amount of space a linefeed
or reverse linefeed causes the platen to move.

Some printers will not be able to support the full range of
enhancements. For example, on printers that cannot underline
directly, a popular underlining method is to backspace and
overstrike with an underbar. This methodology is not suppor-
ted.

When BLDACT is executed, the following screen appears:
BLDACT [1.0b1 Build Printer Action Table

(c) Copyright 1983 Corvus Systems Inc.

Character sequences to perform

Reverse line feed.....
Back space............

Superscript and subscript control sequences

6 LPI : Normal form advance distance.......
Sub and superscript form advance..

o
=]

v
a
o

»
-

8 LPI : Normal form advance distance.......

CCOS Manual Page 141

Sub and superscript form advance..
Proportional spacing control sequences

10 CPI : Normal character spacing...........
Plus 1/120th of an inch spacing. ..
Plus 2/120th of an inch spacing.. ..
Plus 3/120th of an inch spacing. ...

12 CPI : Normal character spacing...........
Plus 1/120th of an inch spacing. ...
Plus 2/120th of an inch spacing....
Plus 3/120th of an inch spacing. ...

e e ——— - e o e o e e e e e e +
F1 Fa2 F3 F4 FS
e —————— B
{ Prev | Next | ! DelChariClrField!
o e e e —_— -
Fé F7 F8 F9 F10
P ————— e ———
{ReadFile! tWritFilel i Exit H
e e e e e o S e e e o e +

The cursor will be positioned at the top of the form, just
by the Underline On positiaon. The idea is to type in the
characters needed to perform each function. The cursor can
be moved up or down with either the arrow keys or the [Prevl
and [Nextl keys.

For example, if the printer is use takes Escape—E as a
command to turn on boldface. moving the cursor next to the
Bold On position and pressing the "Escape" and "E" keys
would show:

H Bold on. ESCAPE "E"

The left and right arrow keys can be used to move the cursor
to the various characters in a control sequence. (DelCharl
and [ClrField] provide a simple editing capability that can
be used to modify existing fields. Previously created tables
may be edited by reading them into the vutility with the F&
key.

After the action table is finished, save it back out to the

/CCUTIL wvolume, preferably with an . ACT extension to distin-
guish it as an action table

CCOS Manual Page 142

Before an action table can be used, it must be connected to
the enhanced printer driver. The SETDTACOM function of
SysUtils is used to perform this function. From the dispat-—
cher, type:

LF31 -~ Invoke the systems utilities
CF31 = SetDtaCm

LF71 - PtrFunc

[FS51 ~ LdAction

The system will prompt for the name of the action table
file. After it‘s entered. pressing [F10] a few times will
get out of everything, and the printer will be ready to
use.

An alternate method of attaching an action table is to use
the ACTION keyword in the CC. SETDCP utility. This can be
put into a startup file:

'CC. SETDCP UNIT=PRINTER ACTION=<filename>

However, note that the SETDCP utility forces the printer to
one or the other of the serial ports. If a printer is
attached to a parallel card, this sequence would reassign
the enhanced printer driver output to a serial port. In
this case, execute the SETDCP utility before loading the
parallel printer driver. The action table will remain
active.

CCOS Manual Page 143

-DALT~ The printer alternate character table uvtility

The enhanced printer driver supports an alternate character
table. This allows the user to print special combinations of
characters that are not part of the standard ASCII character
set.

Alternate characters are those characters typed when the ALT
key to the right of the space bar is held down. This sets
the high order bit of the character’s ASCII value to 1. If
an alternate character translation table is in use, the
enhanced printer driver will use the alternate character as
an index into a table of strings, and the corresponding
string will be printed in place of the alternate character.

For example, ALT-E could be used to specify the string "e",
backspace, "‘", to print an "e" with an accent mark over it
By using the character set editor to edit the appropriate
character (ASCII of "E" + 128), it‘’s possible for ALT-E to
display correctly on the screen!

When invoked. the BLDALT utilitiy will display:

P ——————— e — —————— - +
! BLDALTC1.0al: Build Alternate Character Xlation Table H
{ (c) Copyright 1983 Corvus Systems, Inc. H
H !
1 1
B T T yu—— v +
+ ————— e e —_— -—+
i Enter alternate character or press function key: H
B - - +
Fi F2 F3 F4 FS5
e e et e e e e et e e e e e e e +
{ReadFile! Select (ShowStrs! iDlet Str!
+————— - +
Fé& F7 F8 F9 F10
iWritFilel { ! ¢ Exit |

To create a new alternate character table, hold that ALT
key and press another key. Almost any key on the keyboard
may be used. The screen will display:

CCOS Manual Page 144

BLDALTL1.0al: Build Alternate Character Xlation Table
(c) Copyright 1983 Corvus Systems. Inc.

Current alternate character
Alternate "1" Decimal value xxx
Hex value $xx

H oo e o e e e

L Y

After a character has been entered, pressing [Selectl causes
the system to prompt for the string to be sent in place of
the alternate character. The string is entered by pressing
the appropriate keys. The screen will display:

e e e e e e e e e e - +
i BLDALTI1.0al: Build Alternate Character Xlation Table i
i (c) Copyright 1983 Corvus Systems, Inc. !
i Current translation string: i
i <string appears here> :
{ Enter new string for Current Character: i
{ <new string appears here> H
{ Alternate "1" Decimal value xxx i
H Hex value $xx i

-+

A maximum of nine characters may be in a string for any
alternate character. After one alternate character has been
defined, another is selected by pressing ALT and the desired
ctharacter. (ShowStrs] will show all alternate characters and
their associated strings; [DletStr] will delete the table
entry for the current alternate character. (ReadFilel and
CWritFilel load and save the alternate character tables,
respectively., It‘s a good practice to use an .ALT extension
on alternate character files.

BLDALT has no string editing facility; to change a string.
Teenter it in its entirety

CCOS Manual Page 145

BLDCRT- The CRT Table Builder utility

The Concept display drivers DRV. DISPVT and DRV. DISPHZ are

table driven— the control sequences they respond to are

kept in the CRT table
way the display will react to given control codes,

and

allows the system to emulate other types of terminals at

the driver level.

For example,

a communications program

that was used to talk to a computer configures for Lear
Siegler terminal could just load the appropriately config-

ured CRT action table.

Changing the CRT table changes the

This methodology frees the appli-

cations program from having to handle the screen protocols

When it is executed,

the BLDCRT utility displays:

o e . e i i S e i i i i S St Y s i e e e e
{ BLDCRT [1.0]: Build a CRT table

t (c) Copyright 1983 Corvus Systems, Inc.

H Common - Edit common CRT functions

i Cursor - Edit cursor movement functions
H Video - Edit video functions

{ Graphics— Edit graphics functions

H Misc — Edit miscellaneous functions

H Test - Test current table

H ReadFile— Read file

H WritFile- Write current table to disk

H Exit - Exit

P e o e e s e T o e e e i e e -

Fi F2 F3 F4 FS
P e o e e e e e e - s
iReadFile! Test { Common | iWritFilel
+ - - - +

F& F7 F8 F9 F10
+- e 1 e e e e i o -
i Cursor | Video iGraphicsi Misc | Exit |
+ - ——— —— +
When [Commonl, [Cursor], [Videol., [Graphicsl,

pressed, the apprpriate functions will eb displayed on the
screen:, and the function keys will change to:

F1 F2 F3 F4 F5
+ - e e e e e e e ——
iReadFile! { Clear ¢ iWritFile!
T —_—t

F& F7 F8 Fe Fi0

CCOS Manual

-

or [Miscl is

Page 146

<+
H iPrevious! Next | { Exit

+ -+

For example, pressing the [Graphics] key would

display:

Plat Point.
Draw Line.
Copy Block...:..:::.
Set Ovrigin.

$ mem e e em e e -}

§ mn e an an on e ae ee P
n
.
-
-t
m
et
o
n
-

The cursor can be moved from one field to the next with
[Previous]l and [Nextl keys. Typing any other character

the

cavses that character to be entered at the cursor position.

Each CRT function may be either one character (regular or
The char-—

control), or an Escape followed by a character.

acter sequence is entered by typing it.

Character sequences cannot be edited. but must be replaced
by pressing [Clearl and then entering the appropriate char-

acters.

Pressing the [Exit] key at this point will return to the

outer level of the program.

To attach a new function table to the display driver, a

short Pascal program must be written:

Program LoadCRTTable;

Uses {$U /ccutil/cclibl
CCdefn;

Const
DispUnit = 36;

Var

F : File;

FName : String[801;

Blk : Arrayfl0..511] of Byte;
Begin

Write(’Enter name of CRT table
ReadLn(FName);

CCOS Manual

file:

‘)i

Page 147

ReSet(F, FName);
I# IOResult <> O Then Begin
Writeln:
Writeln(‘'No such file!’);
Exit(LoadCRTTable)
End; - ’
Blks := BlockRead(F,Blk,1);
If Blks <> 1 Then Begin

WritelLn;
Writeln(‘Can’’t read that file!’);
Exit(LoadCRTTable)
End;
UnitStatus(DispUnit.Blk, 8) { Attach')}

End.

More information on CRT tables can be feund in chapter 5.

CCOS Manual Page 148

Program segmentation

CCOS compilers support a segmentation directive that allows
large programs to be broken up into segments. A segment is
a collection of procedures that is either in memory, or
not. When any procedure in a segment is called, the entire
segment is swapped in from disk, if it is not already in

memory. The maximum size of a segment is 32K words (64K
bytes). Thus, programs larger than 464K bytes must be
segmented.

A segment will remain in memory as long as any procedure in
the segment is executing or being called. (A procedure can
be called, but not executing, if it has in turn called
another procedure.) As soon as no procedure in the segment
is in use, it is swapped out. Once a segment has been
swapped out, further references to any procedures in the
segment force the segment to be called from disk.

Calling a segment from disk takes roughly 30ms per block.,
while calling a procedure in memory takes only 20us. Thus,
careless segmentation of a program can result in excessive
disk thrashing and consequent dramatic reductions in perfor—
mance.

Ideally, a program’s segments should divide the code into
working sets. A working set is simply a collection of
procedures that tend to get called in the same time frame.
An example of procedure that belong in the same working set
are the INSERTLINE and DELETELINE functions in an editor.

A simple segmentation scheme is:

r————— + o —— + e +
! Seg A! <--> | Seg B! <{--> | Geg C! <——— etc. --—-2
o + Fm———— + ————— +
- +
tkernel!
o — +
——=> 1| In memory | <——-—

In the above diagram, segments kernel and Seg C are resi—
dent in memory. while segments A, B, ... N are on disk.
With this scheme, only two segments are ever in memory at
one time. The program mainline is kernel, which always
resides in memory. and calls the other segments. A Pascal
program’s mainline is always memory resident, since by

CCOS Manual Page 149

definition it is always either running or calling other
procedures. If the kernel or any of the working segments
exceed the 32K word segment size 1limit, then they must be
segmented in turn.

Both Pascal and FORTRAN support segmentation. The segment
scheme is controlled through compiler directives. Proce-

dures and functions in a segment need not be contiguous in
the program source. For example. in the following Pascal

program:

{$S segl}

Procedure Glatzy;
L

Procedure Zilch;
< L0

{$S seg2)

Procedure Hiccup;
<D

Function Querty: Integer
<.

{$S segl)
Procedure Largesse;

the procedures Glotzy, Zilch, and Largesse would all be
in segment segl, while Hiccup and Quwerty would be in seg 2.

Segment locking

Normally, only 32K words of a program’s code may be resi-
dent. In order to make use of the Concept’s large memory,
multiple segments may be locked in memory using the SeglLock
and SegUnlLock procedures in CCLIB (the equivalent FORTRAN
subroutines are SEGLCK and SEGUNL). There are some restric—
tions on the use of these procedures:

Calls to SeglLock and SegUnLock must
be made from the segment being locked
or unlocked,

* Segments may be locked only one time
before being unlocked.

* Segments may be unlocked only one time
before being locked again.

* Segments must be unlocked in the reverse
order in which they were locked.

CCOS Manual Page 130

Following is a sample program demonstrating the use of

SeglLock and SegUnlLock:

Program SegText;

Var
J : Integer;
Ch: Char;

Procedure Seglock; External;
Procedure SegUnLock; External;

{#%S segl)}
Procedure LockIt;
Begin

Segl.ock
End;
Procedure UnLocklt;
Begin

SegUnLock
End;
Procedure SeglA;

Begin

Writeln(’Segment not locked’)

End;

Procedure SeglB;

Begin
WritelLn(‘Segment locked’)
End;
{
{$5) { Main segment 1}
Begin
Far J := 1 Te 50 Do SeglS;
lLockIt;
For := 1 To 50 Do SeglB;
UnLockIt;
Read(Ch); { Wait for user to hit
Writeln:

CCOS Manual

keyl

Page 151

For J := 1 To S0 Do SeglA
End.

CCOS Manual Page 152

The Linker

The linker is a standard CCOS utility used to connect or
link various object modules into a single, directly execut-
able program. The OBJ files produced by the Pascal and
FORTRAN compilers cannot be Tun, since they do not include
the standard system I/0 routines and whatever other special
library units they might require. Additionally., they are
not in the correct format, so even a completely standalone
machine code routine would have to be put through a dummy
link in order to work.

The linker operates by taking as input the pathnames of an
arbitrary number of object files. The first file in the
sequence is considered the "main" file. The linker attempts
to complete unresolved references in the main file by find-
ing the appropriate objects in the succeding files. The
linker does type check the objects involved to make sure
that the number and type of parameters in the main file’s
invocation match those of the actual object.

Below is an example of the dialogue created when the linker
is invoked with no parameters:

LINKER - MC&B00O Object Code Linker 1.1 O1-Dec—-82
(C) Copyright 1982 Silicon Valley Software, Inc.

Listing file -

! Output file — Raskin C=-— Output file :
! Input file [.0OBJ] - Raskin {=-— Praogram file !
! Input file [.0BJI - /ccutil/celib <—— System lib stuff |
{ Input file [.0BJ]1 - !paslib {~— Pascal I/0 stuff |
{ Input file [.0BJ] - <=— We’'re done H
! Linking segment " " !
! The output is executable. :
o e i b B o e +

The linker can optionally generate a listing file showing
memory map information and various linker messages. In this
example, the generation of a listing file was skipped by
pressing [Return] without entering a file name. Note that
all input files are assumed to have .0OBJ extensions; thus,
the output file name does not conflict with the first input
file name, which is really RASKIN. OBJ.

The linker can also be invoked by entering all the necessary

Jarameters on the command line. The parameter list consists
of a list of pathnames. The first pathname is taken as b

CCOS Manual Page 133

first input file, and the output file name is generated by
dropping the OBJ from the input file name. The preceding
example could be called in this fashion:

Y
{ Select function: linker raskin /ccutil/cclib ‘paslib {
-+

e e e e e e o e st S e i s e e e o e e e e e e

The final results would have been identical; only the mes-—
sages output to the screen would be different.

Linker Options
The linker has several optional capabilities which can be

entered on the command line when it is invoked. Linker
options are gsingle letter codes preceeded with a + sign to

activate them or a -~ sign t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>