
MAcsbug
68000 Debugger

User's Manual

Corvus Concept™

*** CORVUS SYSTEMS
* *

DISCLAIMER OF ALL WARRANTIES & LIABILITIES
Corvus Systems, I nco makes no warranties, either expressed or implied, with respect
to this manual or with respect to the software described in this manual, its quality,
performance, merchantability, or fitness for any particular purpose. Corvus Systems,
I nco software is sold or licensed "as is." The entire risk as to its quality or performance
is with the buyer and not Corvus Systems, Inc., its distributor, or its retailer. The buyer
assumes the entire cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Corvus Systems, Inc. be liable
for direct, indirect, incidental or consequential damages, even if Corvus Systems,
Inc. has been advised of the possibility of such damages. Some states do not allow
the exclusion or limitation of implied warranties or liabilities for incidental or con­
sequential damages, so the above limitation may not apply to you.
Every effort has been made to insure that this manual accurately documents the
operation and servicing of Corvus products. However, due to the ongoing modifica­
tion and update of the software along with future products, Corvus Systems, Inc.
cannot guarantee the accuracy of printed material after the date of publication, nor
can Corvus Systems, Inc. accept responsibility for errors or omissions.

NOTICE
Corvus Systems, I nco reserves the right to make changes in the product described in
this manual at any time without notice. Revised manuals and update sheets will be
published as needed and may be purchased by writing to:

Corvus Systems, Inc.
2029 O'Toole Avenue
San Jose, CA 95131
Telephone: (408) 946-7700
TWX 910-338-0226

This manual is copywrited and contains proprietary information. All rights reserved.
This document may not, in whole or in part be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form without
prior consent, in writing, from Corvus Systems, Inc.
Copyright© 1982 by Corvus Systems, I nco All rights reserved.
Mirror® patent pending, The Corvus Concept"', Transporter"', Corvus OMNINET",
Corvus LogicalcT", Time Travel EditingT", EdWordT", ConstellationT", CorvusT", Corvus
Systems''', Personal Workstation"', Tap BoxT" , Passive Tap Box"', Active Junction
BoxT" , Omninet Unit''' are trademarks of Corvus Systems, Inc.

FCC WARNING
This equipment generates, uses, and can radiate radio frequency energy and if not
installed and used in accorance with the instructions manual, may cause inter­
ference to radio communications. As temporarily permitted by regulation it has been
tested for compliance with the limits for Class A computing devices pursuant to
Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable
protection against such interference. Operation of this equipment in a residential
area is likely to cause interference in which case the user at his own expense will be
required to correct the interference. The following measures may help: reorient the
receiving antenna, plug the computer in a different branch circuit, or relocate the
computer.

* CORVUS SYSTEMS
*

* *
* CORVUS CONCEPT MACSbug 68000 DEBUGGER USER'S GUIDE

PART NO. : 7100-01387

DOr.UMENT NO. CCC/60-33/1.0b

RELF.AF;E DATE November, 1982

CORVUS CONCEPT (TM) is a trademark of Corvus Systems, Inc.

CORVUS CONCEPT

MACSbug 68000 DEBUGGER

USER'S MANUAL

Much of the information contained in this manual is reprinted with the
permission of Motorola Inc. from the Motorola MC68000 Design Module
User's Guide (Motorola part number MEX68KDM(D4) AUGUST, 1980).

EXORciser and MACSbug are trademarks of Motorola, Inc.

MACSbug

INSTALLATION AND OPERATING INSTRUCTIONS

1.1 INTRODUCTION

This document describes the Corvus Concept MACSbug Debugger Version
2.0. It includes a description of the commands for the resident
firmware monitor, MACSbug, and examples of its use.

1.2 INSTALLATION PROCEDURES

NOTE: Before powering the base unit ON or OFF, ensure that there is no
diskette in the floppy drive.

a) Power-off the Concept base and display.

b) Disconnect the keyboard cable and display monitor cable. Open the
drawer of the base unit and remove the power supply cables connected
at locations labeled J8 and Jl on the processor board and the memory
board respectively. Remove any tap cables or interface cards which
are currently in the drawer.

c) Lift up on the drawer assembly and completely remove it from
the base unit.

d) The procedure to install MACSbug ROMs is different for REV 03
processor boards and REV 04 processor boards. You can determine
whether you have a REV 03 or REV 04 by the configuration of the
Concept boot switches.

On the REV 03 processor boards, there is a 2-switch microswitch on
the right side of the processor board, opposite the I/O slots.

On the REV 04 processor boards, there is a 8-switch microswitch on
the right side of the processor board, opposite the I/O slots.

e) Revion 03 Installation Procedures

1. Locate the Boot ROMS on the processor board at locations U706 (ROM
OU) and U7ll (ROM OL). If they are not version 0.5 or later,
remove the ROMs at these locations and place the ROM labeled CC
0.5 H or later in location U706 and place the ROM labeled CC 0.5 L
or later in location U7ll on the processor board.

Low
"

(ATIC-

ROM
Low

Boor
ROM
LoW

2. Place the ROM labeled MACSbug 2.0 L in location U709 and place
the ROM labeled MACSbug 2.0 H in location U708 on the processor
board. The MACSbug ROM sockets are 28 pin sockets, and the
MACSbug ROMs are 24 pin devices. The sockets should have the
top four pin locations unused (i.e. pins 1,2,27 and 28).

3. Place both microswitches in the ON position.

OFF ON

Bootswitches

~

'is __ I:::: :::]

f) Revison 04 Installation Procedures

1. Locate the Boot ROMS on the processor board at locations U706 (ROM
OL) and U7l0 (ROM OU). If they are not version 0.5 or later,
remove the ROMs at these locations and place the ROM labeled CC
0.5 H or later in location U7l0 and place the ROM labeled CC 0.5 L
or later in location U706 on the processor board.

2. Place the ROM labeled MACSbug 2.0 L in location U708 and place
the ROM labeled MACSbug 2.0 H in location U709 on the processor
board. The MACSbug ROM sockets are 28 pin sockets, and the
MACSbug ROMs are 24 pin devices. The sockets should have the
top four pin locations unused (i.e. pins 1,2,27 and 28).

3. Place microswitches 7 and 8 in the ON position •

• 4

'3
, 2

: ' 1
~

g) Replace the drawer into the base unit and position the two
power supply cables along the speaker tray channel to prevent
chaffing of the cables. Reconnect the power supply cables to
J8 on the processor board and Jl on the memory board.

h) Reconnect any tap cables or interface cards originally within the
drawer.

i) Power on the display and then the base unit. The Concept will
emit a beep, and then request input from the user regarding
the boot device as follows:

Select the device : (D,F,L,O)

D - Debug (MACSbug)
F - Floppy Disk Drive
L - Local Disk Drive
o - Omninet Drive

j) Select your normal disk boot option to run a quick check of the
unit.

k) If the unit does not complete the boot, check the ROM locations and
that all pins of the ROMs are installed correctly. Repeat the
procedure until the system boots. If problems persist, contact
your local servicing dealer or Corvus Customer Service.

1.3 COMMMUNICATING WITH MACSbug

Communication with MACSbug is performed through the two serial ports on
the back of the Corvus Concept. When used with MACSbug, port 1 has a
default data rate of 9600 BAUD, parity is disabled and an 8 bit
character size is assumed. An ASCII terminal must be attached to port
1 with a null modem cable. This terminal is the MACSbug console.

MACSbug supports port 2 as a standard RS-232C data terminal connector
with a default data rate of 4800 BAUD, parity disabled and a 8 bit data
character size. Port 2 can be used to communicate with a host computer,
a printer or other serial device.

This two port communication arrangement allows the Corvus Concept to be
placed in series with an ASCII terminal and a host computer. The
transparant mode in MACSbug can be used to bypass the Corvus Concept.
This allows a program to be created on the host computer using the ASCII
terminal and then when the program code file is generated, it can be
downloaded into the Corvus Concept for execution and dubugging. This
can all be performed without reconfiguring the cabling.

1.4 OPERATIONAL PROCEDURE

After the MACSbug ROMs has been installed, MACSbug can be entered
before the Corvus Concept operating system is booted as follows:

a. Connect an ASCII terminal to port 1 of the Corvus Concept.

b. Ensure that the Concept boot switches are both in the ON position.

c. Power on the Corvus Concept.

d. Select option 0, for Debugger, when prompted.

MACSbug will initialize and display on the ASCII terminal- connected to
port 1 with the following message:

MACSBUG 2.0
*

If these two lines do not print out, perform the following:

a. Check to see that the ASCII terminal is attached to RS-232C
port 1 using a null modem cable.

b. Ensure that the terminal's BAUD rate is set to 9600, parity is
disabled and an 8 bit character size is selected.

1.5 COMMAND LINE FORMAT

Commands are entered the same as in most other buffer organized computer
systems. A standard input routine controls the system while the user types
a line of input. The delete (RUBOUT) key or control H will delete the
last character entered. A control X will cancel the entire line.
Control D will redisplay the line. Processing begins only after the
carriage return has been entered.

The format of the command line is:

*COmmand parameters ;options

where: *

CO

mmand

parameters

;options

is the prompt from the monitor. The user does
not enter this. In the examples given, the lines
beginning with this character are lines where the
user entered a command.

is the necessary input for the command. Each
command has one or two upper case letters
necessary in its syntax. In the examples, the
entire command may be used, but only those
letters in upper case in the syntax definition
are necessary. In actual usage, MACSbug converts
all lower case characters to upper case.

is the unnecessary part of the command. It is
given in the syntax definiton only to improve
readability. If this part of the command was
actually entered on the command line, it would be
ignored.

depends upon the particular command. Data is
usually in hex but most printable ASCII
characters may be entered if enclosed in single
quotes. The system also supports a limited
symbolic feature allowing symbols to be used
interchangeably with data values.

modifies the nature of the command. A typical
option might be to disregard the checksum while
downloading.

1.6 MACSbug COMMAND SUMMARY

COMMAND DESCRIPTION SECTION

reg#
reg# hexdata
reg# I ASCI I I

reg#:
class
class:
DM start end
SM address data
OPen address
SYmbol NAME value
wi
Wi. len EA
Mi data
Go
Go address
Go TILL add
BReakpoint
BR add: count
BR -address
BR CLEAR
TD
TD regi.format
TD Clear
TD ALI
TD A.1 D.1 L.c
T
T count
T TILL Address
:*(CR)
OFfset address
CV decimal
CV $hex
CV value,value
REad ~=test
VErify~=text
CAll address
P2
* .. data

CTL-A
CTL-D
CTL-H
CTL-X

Pri nt a regi ster
Put a hex value in the register
Put hex-equivalent characters in register
Print the old value and request new value
Print all registers of a class (A or D)
Sequence through-print old value request new
Display memory, hex-ASCII memory dump
Set memory with data
Open memory for read/change
Define and print symbols
Print the effective address of the window
Define window length and addressing mode
Memory in window. same syntax as register
Start running from address in program counter
Start running from this address
Set temporary breakpoint and start running
Print all breakpoint addresses
Set a new breakpoint and optional count
Clear a breakpoint
Clear all breakpoints
Print the trace display
Put a register in the display
Take all registers out of the display
Set all registers out of the display
Set register blocks or line separator
Trace one instruction
Trace the specified number of instructions
Trace until this address
Carriage return-trace one instruction
Define the global offset
Convert decimal number to hex
Convert hex to decimal
calculate offset or displacement
Expect to receive S records
Check memory against S records
JSR to user utility routine
Enter transparent mode
Transmit command to host

The control A key ends transparent mode (default)
The control D key redisplays the line

1.6.1

1.6.2

1.6.3
1.6.4
1.6.5

1.6.6

1.6.7

1.6.8
1.6.9

1.6.10
1.6.11

1.6.12

1.6.13
1.6.14

The control H key deletes the last character entered
The control X key cancels the entire line

1.6.1 Set and Display Registers REGISTER OISPLAY

68000 REGISTER MNEMONICS

00,01,02,03,04,05,06,07
AO,Al,A2,A3,A4.A5,A6,A7

PC
SR
SS

COMMANO FORMATS

reg# hexdata
reg# 'ascii data'
reg#:
reg#:

US

OESCRIPTION

Oata registers
Address registers
Program counter
Status register (condition codes)
Supervisor stack pointer (A7 in supervisor
mode)
User stack pointer (A7 in user mode)

OESCRIPTION

Put a hex value into register fregit
Put hex value of ASCII into register fregit
Print register value and request in new value
Print register value

class (where class=O or A) Print values of all registers in the class
Cycle through all registers in the class
printing old value and requesting new value

class:

EXAMPLES

*A5 123
*A5
A5=00000123
*04 FFFFFF
*00:
00=0000000 ? 45FE
*0:
00=000045FE ? 9EAB3

01=00000000 ? (CR)

02=00000000 ? (CR)
03=00000000 ? (CR)
04=00FFFFFF ? (CR)
05=00000000 ? 55555
06=00000000 ? (CR)
07=00000000 ? (CR)
*0
00=0009EAB3 01=00000000
04=00FFFFFF 05=00055555
*PC:
PC=0008B3 ? 2561
*SR 0
*A7 4321
*US
US=00004321
*SS FFC
*SR 2000
*A7
A7=00000FFC
*

COMMENTS

Set address register A5 to hex value 123
Command to print the value of register A5
Computer response
Set a data register
Command to print old value and take in new value
Computer prompts with old value; new value entered
Command to cycle through all data registers
Change value of register 00 from 45FE to 9EAB3

Carriage return (null line) means the value
remains the same

Change register 05 to a new value

Oisplay all~data registers
02=00000000 03=00000000
06=00000000 07=00000000

Oisplay and request input for program counter
Set the program counter to new value
Set status register to zero (user mode)
Set address register (same as US now)
Oisplay user stack pointer

Set supervisor stack pointer
Set status register to supervisor mode
Print A7 which is now the SS register
Initialize system stack pointer value from
MACSbug

1.6.2 Display and Set Memory MEMORY DISPLAY

COMMAND FORMAT

DM start end

DM start count
DM2 start end
SM address data
SM address 'ASCII'
SM address data N

EXAMPLES

*SM 92000 'ABC'
*SM 92003 4445 46 'G'
*DM 92000 92010

DESCRIPTION

Display Memory in hex and ASCII where start
< end
Where start > count
Send output to PORT 2
Set Memory to hex
Set Memory to ASCII
The 'N' as the last character means start a
new line; the system will prompt with the
current address

COMMENTS

Set memory to some ASCII data
Set some more locations
Command to dump memory

0092000 41 42 43 44 45 46 47 00 00 00 00 00 00 00 00 00 ABCDEFG •••••••
0092010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ••••••••••••••

In the following usage of the DM
command the second number is smaller than
the first so it is decoded as a count.

*DM ,92003 12
0092003 44 45 46 47 00 00 00 00 00 00 00 00 00 00 00 00
0092013 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

DEFG ••••••••••
*SM 9l00n , ?~ 4~6 7890 ABCDE 12345678 Size can be up to 8 characters
*DM 91000
091000 01 23 04 56 78 90 OA BC DE 12 34 56 78 00 00 00 •••••••••••••••

*SM 91000 , TABLE 00005678 N Use of the 'N' parameter to
start a new line

0009l00C? 'START 00023456

*DM 91000 20
091000 54 41 42 4C 45 20 20 20 00 00 56 78 53 54 41 52 TABLE •••• VxSTAR
091010 54 20 20 20 00 02 34 56 00 00 00 00 00 00 00 00 T ••••• 4V ••••••

*OFFSET 2030 Global offset will be added
*DM 91000 command parameters
093030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
*SM 91005 1234 N Global offset added to address 91005
00093037 ? AB
*DM 91noo
093030 FF FF FF FF FF 12 34 AB FF FF FF FF FF FF FF FF ••••••••••••••

*SM 20000 AB CD EF
ERROR
*

Trying to set ROM
I Error message

to

1.6.3 Open Memory for Read/Change OPEN MEMORY

COMMAND FORMAT

OPen address

SUBCOMMAND FORMAT

(CR)

=

EXAMPLES

ADDRESS

*OP EOO
OOOEOO

OOOEOl

000E02
OOOEOl
OOOEOO
OOOEOO
OOOEOO
*
*OP 21234
021234
NO CHANGE
021234
*OP EOO
OOOEOO OO? W
W IS NOT A HEX
*

CONTENT

= FF?

= AB?

= 44?
= AB?
= l2?
= 77?
= 77?

= FF?

= FF?

DIGIT

DESCRIPTION

Open memory at specified address and enter subcommand
mode

Go to next sequential location

Go to previous location

Stay at same location

Return to MACSbug(exit the OPen command)

USER
ENTERS

12

(CR)

34 A

77=
=

99=

COMMENTS

Open memory location EOO
User enters data and system goes to next
location
Carriage return means go to the next
location
UP arrow means go to previous location
Can be entered without data
Equal sign means stay at same address
Can be used without any data
Period means return to MACSbug
Returns to command level

Example of trying to change ROM
Warning message
Does not abort command

Enter invalid character
Print error message
Command is aborted

1.6.4 Define and Print Symbols SYMBOLS

COMMAND FORMAT

SYmbol name hex value

SY -name
SY name
SY value
SY

DESCRIPTION

Put a symbol in the symbol table with a hex value
or assign a new value to a previously defined
one. NAME can be 8 characters long, consisting
of:A-Z,0-9,(period), and $(dollar sign). It must
begin with letter (A-Z) or period.

Remove a symbol from the symbol table
Print the current value of the symbol (absolute)
Print the first symbol with the given value
Print the sorted symbol table

NOTE

Offset is not used by this command. Some commands
recognize the words TILL, ALL. and CLEAR as key words
and will not interpret them as symbols.

EXAMPLES

*SY XYZ 5000
*SY-XYZ
XYZ=5000
*SY XYZ 123
*SY ABC34 2500
*SY Z17.RT5 XYZ
*SY 123
XYZ=123
*SY B$67ABC 4300
*SY RFLAG 200
*SY MVP2 9990
*SY

COMMENTS

Puts the symbol in the table
Command prints out the symbol's current value

Change a symbol's value
Define another symbol
Define a symbol with value from another symbol
Print first symbol with val~e of 123

Define some more symbols

Print the sorted symbol table
ABC34 00002500
RFLAG 00000200

B$67ABC 00004300 MVP2 00009990'
XYZ 00000123 Z17.RT5 00000123

*SY TTT
T IS NOT A HEX DIGIT
*SY 567
00000567=567

SYNTAX EXAMPLES

*BR MVP2
*CALL RFLAG
*PC ABC34
*DM MVP2 10

Print a value for symbol not in table. when not
found, it tries to convert parameter to number

Attempt to print value for symbol not in table

COMMENTS

Set a symbolic breakpoint
User define routine
Set a regi ster
Display some memory

EXAMPLES OF KEY WORDS IN COMMANDS

*BR CLEAR
*GO TILL Z17.RT5
*T TILL ABC34

The word CLEAR is not considered a symbol here
The word TILL is part of the command
The word TILL is part of the command

1.6.5 Displaying and Accessing Memory through Windows WINDOWS

A "window" is an effective address through which the user can "see" memory.
the windows are labeled WO to W7 and are defined using the syntax listed
below. The windows address corresponding memory locations labeled MO to M7
which use the same syntax as registers. These memory locations can be
examined, set or defined in the display the same as a register.

COMMAND FORMAT

Wi
Wi. len EA

Mi data or 'ASCII'

EA SYNTAX EXAMPLES

FE8
(A6)

100(A6)
-10(A6,D2)

-100(*)
10(*,D4)

EXAMPLES

*W3.4 (A6)
*A6 92000
*W3
W3.4 (A6)=92000
*M3 87342
*M3
M3=00087342
*DM 92000
092000 00 08 73 42 00 00
*TD CLEAR
*TD PC.2 A6.3 M3.1
*TD
PC=00A2 A6=092000 M3=42
*W3.2 (A6)
*TD M3.2
*TD
PC=00A2 A6=092000
WO.l 10(,A6)
*WO

M3=0008

WO.l 10(*,A6)=920B2
*W3.0
*TD
PC=00A2 A6=092000

DESCRIPTION

Print the effective address of a given window
Define a window size and effective address

i is the window number 0 to 7
len is the length in bytes
1=byte1 2=word1 3=3 bytes1 4=long word
O=close a window (undefine it)

EA is Effective Addressing mode
(see EA SYNTAX EXAMPLES in table below)

Pseudo registers have same syntax as registers

DESCRIPTION

Absolute address in hex
Address register indirect in hex
Indirect with displacement in hex
Indirect with index and displacement in hex
Program counter with displacement in hex
Program counter with index and displacement in hex

COMMENTS

Define a window:
Enter a value for the address register indirect
Print the effective address of a window

Set memory through the window
Command to print memory through the window

Display a line of memory
00 00 00 00 00 00 00 00 00 00 •• sB •••••••
Clear all registers from the trace display
Define some registers for the display
Command to print the trace display
NOTE:W3.4 and M3.l only lowest byte displayed
Change width of window
Cha~ge width of display

Define a new window:PC+A6+l0
Print effective address of window WO

Close window W3, undefine it

Closed/undefined windows are not in the display

n ~nd Breakpoints GO, BREAKPOINT

COMMAND FORMAT

Go
Go address
Go TILL address

BR
BR address
BR -address
BR address:count
BR CLEAR

DESCRIPTION

Begin execution at address in PC register
Begin execution at this address
Set a temporary breakpoint at the address and run
until a breakpoint is encountered
Print the address of all breakpoints (8 maximum)
Set a breakpoint at this address
Remove the breakpoint at this address
Set a breakpoint at this address with a count
Remove all breakpoints

EXAMPLES COMMENTS
(see example program in section 1.7)

*PC EOO
*TD CLEAR
*TD PC.2 DO.]
*TD
PC=OEOO DO=OO
*G TILL E08
PC=OE08 DO=04
*BR OE02
*G
PC=OE02 DO=Ol
*BR E08:4
*BR
BRKPTS= OE02 OE08:4
*G
PC=OEOO DO=4
PC=OE02 DO=l
*BR
BRKPTS= OE02 OE08:3
*BR -E02
*G
PC=OE08 DO=4
PC=OE08 DO=4
PC=OE08 DO=4
*BR
*BRKPTS= OE08

*BR E08:2
*G
PC=OE08 DO=4
PC=OE08 DO=4
*BR EOO
*G EOO
PC=OE08 DO=4
*SY JUMPER EOA
*BR JUMPER: 5
*BR 123456:7897 11
TABLE FULL BRKPTS=

Set program counter to starting address

Set trace display format
Print trace display

Run until address
System displays when it stops
Set a breakpoint
Run until breakpoint
Trace di splay
Set a breakpoint with a count
Print the breakpoints

Run
Decrements count, prints display, continues
Stops at breakpoint with zero count
Print the breakpoints
Count has been decremented by one
Remove a breakpoint
Run
Count from 3 to 2 •••

••• 2 to 1 •••
••• 1 to 0 and it stops here

Print the breakpoints
No count for this breakpoint, does not reset
back to count value
Reseting count

Count 2 to 1
Count 1 to 0 and stop
Set another breakpoint
Start running from EOO, bypass breakpoint at

starting address and stop at next breakpoint
Define a symbol
Set a breakpoint at a symbolic address

22 33 44 55 66 Try to overflow table (holds 8)
E08 EOO EOA:5 123456: 7897 11 22 33 44

~ ~et the Trace Display Format (Individual Registers) TRACE DISPLAY

COMMAND FORMAT

TD
TD Clear
TD ALI
TD req#.format

EXAMPLES

*PC 0
*Dl 5
*A6 8F
*TD CLEAR
*TD PC.3 Dl.l
*TD
PC=OOOOOO Dl=05
*TD PC.O A6
*TD
Dl=05 A6=0000008F
*W3.2 92000
*M3 20
*TD M3.2
*TD

DESCRIPTION

Print the trace display
Take everything out of the display
Put all registers in display (see section 3.6.8)
Add or delete registers in display where reg# is
DO-D7,AO-A7.WO-W7.MO-M7,PC.SR.TT~_~~.A.D, or L (see
the next section).
Format can be 0,1,2,3,4.Z,D,R. or S.

O=remove the item from the display
1,2. 1 .4=print this number of bytes as hex

characters, include all leading zeros
Z=signed long word hex with zero suppress
D=signed long word decimal with zero suppress
R=subtract offset (see OFfset command) then print

with Z format with letter 'R' at end
S=search symbol table for 4 byte value, if found

print symbol name as 8 characters, if not found
print hex value as 8 characters

COMMENTS

Initialize registers for example below
Initialize registers for example below
Initialize registers for example below
Turn off all the registers in display
Define PC as 3 bytes and Dl as one
Command to display
This is the trace display
Remove PC and add A6 which defaults to 4 bytes
Display
Display with two new registers
Define a window
Set value of memory pseudo register
Add a memory pseudo register to the display
Display

Dl=05 A6=0000008F M3=0020
*TD A6.1 Dl.3 M3.Z

New display
Change length of registers already in display
Display *TD

Dl=000005 A6=8F M3=20
*TD DI.R M3.D
*OFFSET 12345
*TD
Dl=-12340R A6=8F M3=32
*SY TABLE 8F
*TD A6.S M3.0
*TD
Dl=-12340R A6=TABLE
*A6 123
*TD
Dl=-12340R A6=00000123

New display, M3 now suppresses leading zeroes
·D1 is relative and M3 is decimal

Set the offset (see OFfset command)
Display
5-offset=-12340r~ 20 hex = 32 decimal
Define a symbol (see SYmbol command)
Make A6 print symbol if value is in table

Prints symbolic value
Set A6 to a value NOT inm symbol table

A6 prints value with 4 byte format

1.6.8 Set the Trace Display Format (Blocks of Registers) TRACE DISPLAY

COMMAND FORMAT DESCRIPTION

TO CLear
TO 0.1
TD A.l

Take everything out of the display
Put all data registers in display as a block
Put all address registers in display as block
(for D.l and A.l the format is fixed at 4
bytes)

TO L.character Define a line separator at the end of display
(.0 will reverse A.I, D.l, and L. char commands)
Same as key ing: TD ALI

EXAMPLER

*rrD r.I.EAR
*TO 0.1
*TD
00=00000000
04=00000000
*TO CLEAR
*TO A.l
*TO
AO=OOOOOOOO
A4=00000000
*TO L. ra
*TD

*TO PC.3 SR.2 US.4 SS.4 0.1 A.l L.-
does not affect other registers and windows
that have been previously defined to
display

COMMF.N'T'~

Clear the display
Define all data registers in a block
Print the trace display

Dl=OOOOOOOO 02=00000000 03=00000000
05=00000000 06=00000000 D7=00000000

Define all address registers in a block

Al=OOOOOOOO A2=00000000 A3=00000000
A5=00000000 A6=00000000 A7=00000FFC

Define a line separator (a row of '@')

AO=OOOOOOOO Al=OOOOOOOO A2=00000000 A3=00000000
A4=00000000 A5=00000000 A6=00000000 A7=00000FFr
Ba~@@
*TO L.& Define a line separtator (a rQW of '&')
*TD
AO=OOOOOOOO Al=OOOOOOOO A2=00000000 A3=00000000
A4=00000000 A5=00000000 A6=00000000 A7=0000nFFC
&&&
*TD ALL Turn on commonly used registers •••
*TD ••• this is also the default or reset condition
PC=OOOOOO SR=2000 US=00007FOO SS=00007FFE
00=00000000 Dl=OOOOOOOO 02=00000000 03=00000000
04=00000000 05=00000000 06=00000000 07=00000000
AO=OOOOOOOO Al=OOOOOOOO A2=00000000 A3=00000000
A4=OOOOOOOO A5=00000000 A6=00000000 A7=00000FFC

*

1.6.9 Tracing

COMMAND FORMAT

Trace
Trace count

TRACE

DESCRIPTION

Execute one instruction and print trace display
Trace specified number of instructions

Trace TILL address Trace to the given address

:*(CR)
(breakpoint will stop the trace)
A colon (:) before the prompt indicates a
special trace mode is in effect, a carriage
return will trace the next instruction

EXAMPLES COMMENTS
(see example program in section 1.7)

*TD CLEAR
*TD PC.2 DO.l
*DM EOO
OOOEOO 70 01 70
*PC EOO
*TD
PC=OEOO DO=OO
*T
PC=OE02 DO=Ol
:*(CR)
PC=OE04 DO=02
:*T3
PC=OE06 DO=03
PC=OEOa DO=04
PC=OEOA DO=05
*T·TILL E04
PC=OEOO DO=05
PC=OE02 DO=Ol
PC=OE04 DO=02
*

Remove all of trace display
Display only PC and DO
Example program in memory

02 70 03 70 04 70 05 4E Fa OE 00 FF FF
Set the program counter
Print the trace display

Trace one instruction

Special prompt appears, carriage return will
trace the next instruction
Trace three instructions

Trace till instruction at address E04

1.6.10 Offset OFFSET

The 68000 instruction set lends itself to relocatability and position
independence. A general purpose, global offset feature has been provided.
The single offset address applies to all of the commands listed below.
Registers displayed in the trace display may have the offset subtracted by
using R as the format. See paragrpah 1.6.7 on trace display.

The offset may be overriden by entering a comma and alternate offset. All
commands do not use the offset but any number can be forced to be relative
(have the offset added) by entering an R as the last character of the
number.

WARNING: This is a very simple offset feature and may not be able to solve
complex relocation problems. The user is encouraged to experiment with the
global offset and the window features to determine their limitations and
usefulness in a particular application.

COMMAND FORMAT

OFfset
OFfset hex value
OFfset 0

DESCRIPTION

Display offset
Set the offset to a given value
Set the offset to zero - begin absolute
addressing

command data, alternate
c<;>mmand data,

Disregard offset, add alternate offset to data
Data is absolute, no offset added

command data,OR Used in commands that do not normally use
offset, adds offset .to data

The offset affects the following commands:

TD reg.R
BReakpoint
Go
SM
DM
REad

EXAMPLE

*PC 2010
*TD PC.R
*TD
PC=20l0R
*OF 2000
*TD
PC=lOR
*BR 6
*BR
BRKPTS=2006
*BR 24,3000
*BR
BRKPTS=2006 3024

Trace display, substract offset from register value
Set breakpoint (display is in absolute)
All addresses
All addresses
All addresses (display is in absolute)
All addresses

COMMENTS

Set the program counter
Set trace display.R means nex long word minus offset
Display
Displayed relative to offset (zero now)
Set the offset ot 2000
Display
PC - offset = 2010-2000 = 10 Relative
Set a breakpoint: hex data+offset = 6+2000 = 2006
Display breakpoint
Breakpoints are always displayed as absolute hex
Set a breakpoint with alternate offset 24+3000

1.6.11 Number Base Conversion

COMMAND FORMAT

CV decimal or & decimal
CV $hex
CV symbol
CV value, offset

NUMBER CONVERSION

DESCRIPTION

Decimal to hex conversion
Hex to decimal conversion
Use value from symbol table
Calculate offset or displacement

NOTE

This command DOES NOT automatically use the global
offset. The default base for this command only is
decimal. All numbers are signed 32 bit values.

EXAMPLES

*CV 128
$80=&128
*CV $20
$20=&32
*CV -$81
$FFFFFF7F=-$8l=-&129
*CV $444,111
$555=&1365
*CV $444,-111
$333=&819
*SY TEN &10
*SY THIRTY &30
*CV TEN
$A=&lO
*CV -TEN
$FFFFFFF6=-$A=-&10
*CV THIRTy,-TEN
$14=&20
*OF 2000
*CV $123R

$2123=&8483
*CV TEN, OR
$200A=&8202

COMMENTS

Command to convert decimal to hex
Computer response
Hex to decimal

Negative numbers

Adding an offset (second number's base
defaults to first number's)
Subtracting an offset (forward displacement)

Defining a symbolic decimal constant

Command can be used with symbols

Define a global offset
R at the end
of a number means add the
global offset
Symbolic relative

1.6.12 Download and Verify DOWNLOAD

COMMAND FORMAT

REad,-CX =text

VErify,=text

EXAMPLE

DESCRIPTION

Load S records - default PORT 2
option -C means ignore checksum,
option X means display data being read,
if equal sign is used in this command line then
everything after it is sent to PORT 2

Verify memory with S records - print difference,
verify does not use checksum

NOTE

These commands use the offset. No attempt is made to
control the host transmissioins. For the REad and VErify.
any line received not beginning with the letter S is ignored
(see appendix A for S record formats). If an error occurs
causing the system to take the time to print out an error
message, one or more lines sent during the error message may
have been ignored.

COMMENTS

*READ,=COPY FILE.MX,#CN Download from an EXORciser.
*DM EOO 10 Check to see if data was loaded
OOOEOO 70 01 70 02 70 03 70 04 70 05 4E F8 OE 00 FF FF
*VERIFY,=COPY FILE.MX,#CN
*SM E05 FF
*DM EOO
OOOEOO 70 01 70 02 70 FF 70
*VERIFY,=COPY FILF..MX.tCN

Normal verify retu~ns with prompt
Deliberately change memory to show verify
Verify that 03 was changed to FF

04 70 05 4E F8 OE 00 FF FF

Sll10EOO 03 Displays only nonmatching data bytes
*RE,=COPY FILF.2.MX,#CN Example of file with bad cHaracter
Sll10E007001700270/3700470054EF80E0049 NOT HEX=/
*RE,=COPY FILE2.MX,tCN Example of file with bad checksum
Sll10E00700170027003700470054EF80E0039 CHKSUM=49
*RE,=COPY FILE.MX,tCN Normal read returns with prompt
*OF 5423
*RE,=COPY FILE.MX,#CN Download with offset
*DM 1000
006423 70

Display memory. adds offset to parameters
01 70 02 70 03 70 04 70 05 4E F8 OE 00 FF FF

1.6.13 The CALL Command CALL

The call command can be used to add commands. This is done by writing
a subroutine which ends with an RTS.

The call command does not affect the user's registers and is not to be
confused with the GO command. The user may use a symbol as the
command parameter instead of an absolute starting address. Registers
AS and A6 point to the start and end of the I/O BUFFER (see RAM
equate file listing, paragraph 1.11) so the user may pass additional
parameters on the comand line.

COMMAND FORMAT

CALL address

EXAMPLE

*CALL 3000 23 45 ZZ

*SY FlXUP 2300
*CALL FlXUP

DESCRIPTION

JSR to user subroutine, routine must
end with RTS

COMMENTS

JSR to user routine at location 3000
note that 23 45 & ZZ may be additional
parameters that the user's subroutine
will decode and are ignored by MACSbug
Define a symbol as absolute address 2300
JSR to symbolic address

1.6.14 Transparent Mode and Host Communication TRANSPARENT

COMMAND FORMAT

P2 [char]

(control A)

* ••• data •••

EXAMPLES

MACSBUG 2.0
*P2
TRANSPARENT EXIT=$Ol

}

(CONTROL A)

MACSBUG

**MAID

**E800; G

*P2 &

TRANSPARENT EXIT=$26

}&

MACSBUG
*

DESCRIPTION

Enter transparent mode: The optional user
defined exit character [char], defaults to
control A ($01). This command logically
connects port 2 (host) and port 1 (console).
Host transmissions go directly to the console
and console transmissions go directly to the
host. The BAUD rates on the two ports may be
the same or port 2 may be less.

Default character to end the
transparent mode, alternate character
may be defined in P2 command

Asterisk.*, as the first character of
the console input buffer means transmit
the rest of the buffer to the host
(PORT 2), the BAUD rates of the two
ports (1 and 2) do not have to be the same.

COMMENTS

Start up or reset condition
Command to enter transparent mode
MACSbug prints this, the EXIT=$Ol
means to exit this mode, enter control A

User talks direct to the host, uses the
editor, assembler, etc.

Ends the transparent mode

MACSbug prints this and system is ready
for new command

System prompts with * and user enters
I *MAID'

Everything after the second * is sent
to the host
(NOTE: the BAUD rates do not have to be the same)

Enter transparent mode, I & I is the exit
character

Displays exit character (&) as hex value 26

User exits transparent mode by entering I & I

Command mode prompt

1.7 EXAMPLE OF COMMAND PROCEDURES

MACSBUG 2.0
*P2

TRANSPARENT EXIT=$Ol

Start up condition
MACSbug prompts with * user enters P2 to
enter transparent mode.
Message printed to indicate user is now
directly connected with host system

- NOTE: The following example is using a MOTOROLA EXORciser host system -

MAID
**E800:G
MDOS3.0
=MACS FILE:CO

Boot up MDOS

Assemble a source file (see M68000 Cross
Macro Assembler manual)

FILE
1
2
3
4
5
6
7
8
9

MC68000 ASM REV= 1.OC - COPYRIGHT BY MOTOROLA 1978

10
11

OOOEOO
000E02
000E04
000E06
000E08
OOOEOA

OOOOOEOO
7001
7002
7003
7004
7005
4EF80EOO

******TOTAL ERRORS 0 - 0

SYMBOL TABLE
JUMPER OOOEOA START

=COPY FILE. MX, ICN

*
* EXAMPLE PROGRAM FOR 68000 MACSBUG
* TO DEMONSTRATE TRACING, BREAKPOINTS, AND GO

START
ORG $OEOO
MOVE.L #l,DO
MOVE.L #2,DO

1 LOADED INTO REG DO
2

MOVE.L #3,DO
MOVE.L #4,DO
MOVE.L #5,DO

JUMPER JMP START
END

OOOEOO

3
4
5

DO IT AGAIN

MDOS command to list file on console
S0060000484452lB
SlllOE00700l70027003700470054EF80E0049
S9030000FC

Header record
Data record
End-of-file

= (control A)
MACSBUG

*READ :=COPY
*DM EOO
OOOEOO 70 01
*PC EOO
*TD CLEAR
*TD PC.2DO.l
*TD
PC=OEOO DO=OO
*BR E04
*T TILL 0
PC=OE02 DO=Ol
PC=OE04 DO=02
*GO
PC=OE04 DO=02

*

FILE.MX,IC

70 02 70 03 70

Ends transparent mode
Message put out by MACSbug to indicate user is
now in MACSbug command mode
Download from EXORciser host (see sec. 1.6.12)
Display memory (see sec. 1.6.2)

04 70 05 4E F8 OE 00 FF FF
Set program counter to START (see sec. 1.6.1)
Clear the trace display (see sec. 1.6.7)
Specify which registers to print in display
Print the trace display

Set a breakpoint (see sec. 1.6.6)
Trace command (see sec. 1.6.9)

Stopped at breakpoint
(see sec. 1.6.6)

Stopped at breakpoint
Program is ready to run

1.8 I/O SPECIFICATIONS

Provisions have been made for the user to substitute his own I/O routines
and direct the I/O for some commands to these routines. There are three
pairs of locations in RAM that hold the addresses of the I/O routines.
(See paragraph 1.11 on the equate file of RAM locations used by MACSbug.)
They are initialized when the system is booted to contain the addresses of
the default routines in MACSbug ROMs.

INPORTI and OUTPORTI are defaulted to port 1 which is MACSbug's console.
The MACSbug prompt, command entry. all error messages, and all other
unassigned I/O use these addresses to find the I/O routines. Most
commands do not need a port specifier to use PORT 1. The REad and VErify
commands, however, default to PORT 2.

INPORT2 and OUTPORT2 are defaulted to port 2 which is the host system (an
EXORciser or timesharing system, etc.). Output or input is directed to
this port by including a port specifier in the command field of the
command line.

For example: *RE2;-C

The 2 in the command RE2 specifies that the addresses for the I/O routines
will be found in the RAM locations INPUT2 and OUTPUT2. Error messages,
however, will be printed on PORT 1 - MACSbug's console.

INPORT3 and OUTPORT3 are inititalized to the same routine addresses as PORT
1 when the system is booted. The user can insert the addresses of his own
I/O routines into these locations. I/O can then be directed to his
configuration by using a 3 in the command field.

EXAMPLES

*READ3;-C
*VERIFYI
*DM2 50 80

COMMENTS

Memory load from port 3; checksum ignored
Verify memory with'S' records coming in from PORT 1
Display memory sending output to PORT 2

The BAUD rates of the two RS-232C serial ports can be changed by setting
memory locations $06BA and $06BC.

The Hex digit

X

BAUD RATE

EXAMPLES

SM 6BA 16
SM 6BC IF

=

=

ADDRESS
$06BA
$06BC

X can be

6

300

PORT
1
2

VALUE
IX
IX

set to select various BAUD rates as

7 8 A C E F

600 1200 2400 4800 9600 19200

COMMENTS

Set BAUD rate to 300 for port 1
Set BAUD rate to 19200 for port 2

shown below:

1.9 USER I/O THROUGH TRAP 15

Format in user program:

TRAP #15 Call to MACSbug trap handler
DATA.W function Valid functions listed below.

FUNCTION

o
1
2
3
4

DESTINATION

PORTI console
PORTI console
PORT2 host
PORT2 host

EXAMPLE PROGRAM:

0000
0004

0006
0008

OOOA

4BFA
2C4D

4E4F
0001

4E4F

OOlA+

1*
2* ;
3*
4*
5* ;
6* ;
7* ;
8*
9* ;

10*
11*
12*
13* ;
14* ;
15*
16*
17* START
18*
19*
20* ;
21 * ;
22*
23*
24*
25* ;
26* ;
27*

Program resumes with next instruction.

FUNCTION

Coded Breakpoint
Input line
Output line
Read line
Pri nt 1 ine

file: MBUG.EX.TEXT

BUFFER

A5=A6 is start of buffer.
A5 to A6-1 is buffer.
A5=A6 is start of buffer.
A5 to A6-1 is buffer.

Example of using TRAP #15 facility in
MacsBug. This program is assembled with
ASM68K then linked using the Concept
LINKER. It was executed by calling out
the code file.

COMMAND LINE:
asm68k mbug.ex
linker mbug.ex
mbug.ex

LEA BUFFER, A5
MOVEA.L A5, A6

Input buffer from Port 1

TRAP #15
DATA.W 1

Output buffer to Port 2

TRAP #15

COMMENT:
assemble file
link
execute

; Ini t buff er
;pointer s

;echoes input

OOOC 0004 28* DATA.W 4
29*
30* Enter MacsBug a coded breakpoint
31*

OOOE 4E4F 32* TRAP #15
0010 0000 33* DATA.W 0

34*
35* if first char in buffer = "I" then exit
36*

0012 7021 37* MOVEQ #' 1 I • DO
0014 B03A 0006+ 38* CMP.B BUFFER, DO 1lst char = " ! "
0018 66E6 39* BNE.S START 1no, do again

40*
OOIA 4E75 41* RTS

42*
43* 1 BUFFER
44* . I

OOIC 00000000 45* BUFFER DATA.L 0,0,0,0,0,0,0.0.0.0,0,0,0,0
0054 00000000 46* DATA.L 0,0,0,0,0,0,0,0,0,0,0,0,0,0
008C 00000000 47* DATA.L 0,0,0,0,0,0,0,0,0,0,0,0,0,0

48*
00000000+ 49* END START

BUFFER OOOOlC+ START 000000+

1.10 GENERAL INFORMATION

TRAP ERROR is the general message given when an unexpected trap occurs.
Nearly all of the low vectors including the user traps, interrupts, divide
by zero, etc. are initialized during booting to point to this simple error
routine. No attempt is made to decipher which trap happened, but the userls
registers are saved. The system usually retrieves the right program counter
from the supervisor stack but some exception traps push additional informa­
tion on to the stack and the system will get the program counter from the
wrong place. It is recommended that the userls program reinitialize all
unused vectors to his own error handler.

The REad command may have problems in some configurations. No attempt is
made to control the equipment sending the information. When the system
recognizes the end of a line it must process the buffer fast enough to be
able to capture the first character of the next line. Normally the system
can download from an EXORciser at 9600 baud. If the system is having
problems, it might be worthwhile to experiment with lower BAUD rates.

The REad routine DOES NOT protect any memory locations. The routine will
not protect itself from programs trying to overlay the I/O buffer. This
will, of course, lead to errors during the download. Any location in memory
can be loaded into, including MACSbugls RAM area. This allows the user to
initalize such locations as the starting and ending address of the symbol
table. All the registers may be initialized except the program counter
which takes its address from the S8 or S9 record.

The REad command, supports the normal SO, Sl, S2, S8. and S9 record formats.
(See Appendix for a description of these S Records.)

TRAP 15 is used by both the user I/O feature and breakpoints. When the
program is running, the address of the breakpoint routine is normally in
the TRAP 15 vector. When program execution is stopped, the I/O routine
address is normally inserted into TRAP 15 vector. If I/O is not needed
in the program, the user may change the vector with the SM command. If
breakpoints are not needed, the program may change the vector while the
program is running. It is recommended, however, that the user should use
the other 15 vectors (or other programming techniques) and let MACSbug
control TRAP 15.

1.11 EQUATE FILE OF RAM USED BY 68000 MACSbug 2.0

* WARNING TO USER: The addresses listed below and their usage as described
in this document are intended for only this version (2.0) of MACSbug.
Corvus does not guarantee the usage of these locations.

400 REGPC
404 REGSR
408 REGS
444 REGA7
448 REGUS
44C OFFSET
450 FORMAT
474 ADALL
478 WINDOWS
4B8 LOOPR1
4BC LOOPR2
4CO BPADD
4EO BPTILL
4E4 BPCNT
508 BPDATA
51A SAVETRAP
51E NULLPADS
520 CRPADS
522 SBIT
524 OUTTO
528 INFROM
52C ALTACIA1
530 ALTACIA2
534 INPORT1
538 OUTPORT1
53C INPORT2
540 OUTPORT2
544 INPORT3
548 OUTPORT3
54C TRACECNT
550 TRACEON
552 RUN
554 BPSTATUS
556 SCREEN1
55A SCREEN2
SSE BASE
560 SIGN
562 VECTOR
564 TEMP
568 WORK1
56C WORK2
570 STRSYM
574 ENDSYM
578 CMDTABLE
57C BUFFER
6A4
6B8 SYSTACK

ORG $400
DS.L 1
DS.L 1
DS.B 4*2*8
EQU REGS+60
DS.B 4
DS.L 1
DS.B 36
DS.L 1
DS.B8*8
DS.L 1
DS.L 1
DS.L 8
DS.L 1
DS.L 9
DS.W 9
DS.L 1
DS.B 2
DS.B 2
DS.B 2
DS.B 4
DS.B 4
DS.L 1
DS.L 1
DS.L 1
DS.L 1
DS.L 1
DS.L 1
DS.L 1
DS.L 1
DS.L 1
DS.W 1
DS.W 1
DS.W 1
DS.L 1
DS.L 1
DS. B 2
DS. B 2
DS. B 2
DS. B 4
DS.L 1
DS.L 1
DS.L 1
DS.L 1
DS.L 1
DS.B $~28
DS.B 20
DS.B 2

USERS PROGRAM COUNTER
USERS CONDITION CODES
4BYTES*3SECTIONS*8REG(OR MEM)
WHERE A7 REG IS
USER STACK
ASSUMED OFFSET
TRACE DISPLAY FORMATS
SPECIAL FORMAT FLAGS
WINDOW PARAMETERS
LOW RANGE FOR LOOP FEATURE
HIGH RANGE FOR LOOP FEATURE
BREAKPOINT ADDRESSES
TEMPORARY BREAKPOINT
BREAKPOINT COUNTS
HOLD USER WORDS REPLACED BY TRAP IN SET
HOLDS USER'S TRAP 15 VECTOR
CHARACTER NULL PADS
CARRIAGE RETURN NULL PADS
STOP BITS (ACIA PROGRAM)
HOLDS ADDRESS OF OUTPUT ROUTINE
HOLDS ADDRESS OF INPUT ROUTINE
ALTERNATE ACIA PORTi1
ALTERNATE ACIA PORT#2
INPUT ROUTINE ADDRESS
ADDRESS FOR OUTPUT ROUTINE
ADDRESS FOR INPUT ROUTINE
FOR OUTPUT ROUTINE
PORT #3 INPUT ROUTINE
PORT i3 OUTPUT ROUTINE
TRACE COUNTER
FLAG FOR TRACE ON
l=SAVE USER REGISTERS;O=NOT
l=BP ARE IN; O=ARE OUT OF MEMORY
PRINT THIS BEFORE TRACE DISPLAY
PRINT THIS AFTER
WORK VARIABLE
WORK VARIABLE
WORK VARIALBE
WORK SPACE
WORK SPACE
WORK SPACE
START OF SYMBOL TABLE
END OF SYMBOL TABLE
START OF COMMAND TABLE
WORKING STORAGE BUFFER
ROOM FOR STACK
START OF STACK (GOES DOWN)

- T'\Ty A

S RECORDS

An 8 record is a standard Motorola record format used in downloading
programs and data with MACSbug.

There are ten possible standard S record types, five of which can be used
with MACSbug. They are as follows:

so Header record
81 16 bit address Data record
82 24 bit address Data record
S8 24 bit address End of File/Execution Address record
S9 16 bit address End of File/Execution Address record

The standard S record is defined as follows:

BYTE CHECK
FRAME VALUE DESCRIPTION COUNTED SUMMED

1 $53 (S) Start of Recor d
2 $30-$39 (0-9) Record Type
3,4 Byte Count *
5-8 Address (for 16 bi t) * *
5-10 Address (for 24 bi t) * *

* *
Data * * . * * .

N-l,N Checksum *
The letter "S" and the Record Type are represented directly in ASCII.

The byte count, address, data, and checksum are represented in ASCII
encoded hexadecimal: i.e., two frames per data byte, with the most
significant digit in the leading frame.

The checksum is the lis complement of the sum of all 8-bit data/address
bytes from byte count to last data byte, inclusive.

TYPICAL OBJECT S-RECORD FORMAT

S0060000484452lB
Sl13l000307Cl000327ClFFE123C00804280428300
Sl13l0l0383C09964A016A000012lA18BOC96600El
Sl13l020000AD2FC00026000002EE3ll3400E352F7
Sl13l0300242000BE30D050466000006E25860D48A
Sl13l040E2580840000F60CC4A016AOOOOOAlA18EE
Sl13l050BOC96700002AE3ll3400E3520242000BD6
Sl13l06005046600000CE35B08C300006000000890
Sl13l070E3~B08830000E25808COOOOF60CA3lC374
Sl07l080lFFE4E728B
S0060000484452lB
S20AOl0000323C0003564lED
S9030000FC

First two characters - SO Starts of the first record.

- Sl Indicates that the object data that
follows will be at a two-byte
memory address.

- S2 Same as Sl, but indicates a three­
byte memory address.

- sa Same as S9, but indicates a three­
byte memory address.

- S9 Last Record

Third and fourth characters Hexadecimal byte count of the remaining
characters in the record.

Fifth through eighth characters - Hexadecimal memory address where the
data that follows is to be loaded. If
the record is "S2" or "sa" type, the
fifth through tenth characters contain
the memory address.

Last two characters - Checksum of all characters from byte
count to the end of data.

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

