
I

•

)/sfrlbut/on Code SA

Burroughs

Reference
Manual

Priced Item
Printed in U.S.A.
April 1985

1180155

Burroughs cannot accept any financial or other re
sponsibilities that may be the result of your use of
this information or software material, including di
rect, indirect, special or consequential damages.
There are no warranties extended or granted by this
document or software material.

You should be very careful to ensure that the use of
this software material and/ or information complies
with the laws, rules, and regulations of thejurisdic
tions with respect to which it is used.

The information contained herein is subject to
change without notice. Revisions may be issued
from time to time to advise of such changes and/ or
additions.

Correspondence regarding this public~tion should be forwarded, using the
Documentation Evaluation Form at the back of the manual, or remarks may
be addressed directly to Burroughs Corporation, Corporate Product Informa
tion East, 209 W. Lancaster Ave., Paoli, PA 19301, U.S.A.

LIST OF EFFECTIVE PAGES

Page Issue

iii Original
iv Blank
v thru xiv Original
1-1 thru 1-23 Original
1-24 Blank
2-1 thru 2-82 Original
3-1 thru 3-48 Original
4-1 thru 4-30 Original
A-1 thru A-12 Original
B-1, B-2 Original
C-1 thru C-9 Original
C-10 Blank
D-1 Original
D-2 Blank
E-1 thru E-11 Original
E-12 Blank
F-1 thru F-8 Original
G-1, G-2 Original
H-1 , H-2 Original
1 thru 9 Original
10 Blank

iii

Section

TABLE OF CONTENTS

Title

INTRODUCTION••.•.••.•.........•.•.•.....•...•
Overview
Organization of the Manual••...••.••....•.••.
Section 1: General Information •••.•••••••••••.•••
Section 2: BASIC Commands •.•••..••..•••....••.••.
Section 3: BASIC Functions •••...••••••••••..••..•
Section 4: BASIC Error Messages .•••.•••...•..••..
Appendix A: Control of the Video Display .••••••••
Appendix B: Printing in BASIC with the Print
Spooler .. .
Appendix C: Disk Input/Output•.••...••.••••••
Appendix D: Mathematical Functions •••..••...•.•••
Appendix E: Calling Non-BASIC Procedures •.••..•..
Appendix F: Programming Hints ••••.•••••••••••••••
How to Use This Manual •••••.••.•.••.••.•.•••...•.•

GENERAL INFORMATION •••••••.•••••••••••••••••.•.•••
Invoking BASIC

Field Descriptions ••••••••••••.•.••••..••.••.•••
Memory Requirements: Swapping and Resident
Versions of Basic.run •••••••••••••••••.••••.••••••
Memory Organization •.•.•.•..•..•••••••••.••......•
Modes of Operation ••.••••.••...•••••••.•••••.•••••
Line Format

Line Numbers•••••••......•...•......••...•••
Input Editing
Character Set

Control Characters ••.•••••••••.•••..•..•••••.•••
Video Display Special Characters •.•••••.•..•••••

Constants .. .
Single- and Double-Precision Form for Numeric
Constants

Variables .. .
Variable Names and Declaration Characters •..••••
Array Variables •••••••••••••••••••••••••••••••••
Brackets and Parentheses ..••••..••••••.•••••••••
Pointer Variables •••••••••••••••••••••••••••••••

Type Conversion •••••••••••••••..•••.••.•••••••••••
Expressions and Operands ••••••••••••••••••••••••••

Arithmetic Operators ••.•.••••••••••..••.•••.••••
Integer Division and Modulus Arithmetic •••••••••
Overflow and Division by Zero ••..•••.•..•••.••••
Relational Operators •••••••••••••••.••••••••••••
Logical Operators ••••.•••••. ~ ••••••...••••..••••
Functional Operators ••••••••••••••.•••••••••••••
String Operations ••...•....••••.••••.•.•••..••.•

Page

xi
xi

xii
xii
xii
xii

xiii
xiii

xiii
xiv
xiv
xiv
xiv
xiv

1-1
1-2
1-2

1-3
1-4
1-4
1-5
1-6
1-6
1-7
1-8
1-9

1-10

1-11
1-12
1-12
1-13
1-13
1-13
1-14
1-16
1-16
1-17
1-18
1-18
1-19
1-22
1-22

v

Section

2

vi

TABLE OF CONTENTS (Cont.)

BASIC COMMANDS •••
AUTO ••
CALL ••••
CHAIN •••
CLEAR ••••••••••••
CLOSE ••
COMMON ••
CONT •••
DATA •••••••••
DEF FN •••
DEF ••••••••
DELETE •••••
DIM ••••••••
EDIT •••••
END ••••••••
ERASE •••
ERR/ERL.
ERROR •••
FIELD •••••••
FOR ••• NEXT ••••••••••
GET ••••••••••••••••

Title

GOSUB ••• RETURN •••••••••••
GOTO ••••••••
IF ••• THEN •••••••••
INPUT •••••••• ~ •••••••••••••
INPUT# •••••
KILL •••••••
LET ••••••••
LINE INPUT.
LINE INPUT# •••••••••••••
LIST •••••
LLIST ••••••••
LOAD ••••••••••••••••••••
LPRINT ••••••••••••
LPRINT USING ••••••••••••
LSET and RSET •••••••••••
MERGE •••••••••
MID$ ••
MID$ ••
NAME ••
NEW •••••••••••••••••
ON ERROR GOTO ••••••
ON ••• GOSUB ••
ON ••• GOTO •••••••••
OPEN •••.••••.•••••
OPTION BASE •••••••

Page

2-1
2-2
2-3
2-4
2-6
2-7
2-8
2-9

2-10·
2-11
2-12
2-13
2-14
2-15
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-53

Section

2
(cant.)

3

TABLE OF CONTENTS (Cant.)

PRINT# ...•...
OPTION COMMA.
OUT •••••••••••••••••

Title

POKE. •••••••
PRINT. . . . • . . • . •
PRINT USING .•.•.•.
PRINT# USING ..•
PUT ••••••••••••
RANDOMIZE •.•..•
READ •••....••.•
REM•...
RENUM ••••••••
RESTORE ..••••
RESUME ...•.••.•
RUN •.•...••
SAVE ...•.•.
STOP•.
SWAP ••..••.
SySTEM..... • ••••..•.
TRON/TROFF ••••.•.•
WAIT •••••••••••
WHILE ••• WEND •..
WIDTH ••..•.•••.
WRITE •••••••••.
WRITE# •.•••••••.

BASIC FUNCTIONS •.
ABS •.....•.••..•.
ASC •••••••••••••••••••••••••
ATN •••••••••••••••••
CDBL••.
CHR$••.
CINT •••••••
cos
CSNG ••••••••••••••••••••••••
CVI, CVS,
EOF •••.••
EXP •....•
FIX ••••••
FRE ••.•.•
GETRA ..•.

CVD •••••••

GET SA ••••••••••••••••••••••••••••
HEX$..••••••••••••••••••••••••
INP .•••.•.•
INPUT$ •••••
INSTR •.••••

Page

2-61
2-54
2-55
2-56
2-57
2-58
2-64
2-65
2-66
2-67
2-68
2-69
2-70
2-71
2-72
2-73
2-74
2-75
2-76
2-77
2-78
2-79
2-80
2-81
2-82

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20

vii

Section

3
(cont.)

4

A

viii

TABLE OF CONTENTS

Title

LOG ••••.•
INT ••.
LEFT$ ••..
LEN •.••..
LaC ..•
LOF •.•.•..
LPOS .•••.••.
MAKEPOINTER ..•••..
MID$..•••...•...••
MKI$ MKS$ MKD$.
OCT$.•
PEEK .•.•••.•.•...•.
POS •••••••••••••••
PTR •..••••.•••..
PWA ••••••••••••••••
RIGHT$ •••..•..
RND ••••••••••••••••
SGN ...••.•.•.•...•.
SIN
SPACE$ •.•••.•.•..•.
SPC •••••••••••••••••••
SQR ...••.•.•...••••
STR$ •••••••••••••••
STRING$ ••..•••.••..
SySERC •••.
TAB ••..••..
TAN••........•.
VAL ..•.•••••....••..•

(Cant.)

......
·

· ..

·
......

BASIC ERROR MESSAGES .••••••.•••.•••••••••••••••••.
Cross-Reference to Run-Time Errors .••.••••.••••••.
Run Time Errors .•••..••••••••

CONTROL OF THE VIDEO DISPLAy •.•..••.•••.•••
Control of the Video Display •••••••••
Controlling Character Attributes ••.•...••••.•••.
Controlling Screen Attributes •..••..•.•••••.••••••
Controlling Cursor Position and Visibility •••.•••.
Controlling Line Scrolling •••.•••••.•.•••••.••••••
Controlling Pauses Between Frames •..•...•.•.•••••.
Controlling the Keyboard LED Indicators ••••.••••••
Directing Video Display Output •••.•.•••.•••.•.•.•.
Filling a Rectangle .•••.•••••••.•••.•••••...•.•••.
Erasing to the End of the Line or Frame .•.•••••.••
Displaying Special Characters Literally ••••.••••••

Page

3-26
3-21
3-22
3-23
3-24
3-25
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48

4-1
4-1
4-4

A-1
A-1
A-2
A-4
A-6
A-7
A-8
A-9

A-10
A-10
A-11
A-12

Section

B

C

D

E

F

G

H

INDEX

TABLE OF CONTENTS (Cont.)

Title

PRINTING WITH THE PRINTER SPOOLER •••••••••••••••••
LPRINT and LPRINT USING •••••••••••••••••••••••••••
LLIST •••••••••••••••

DISK INPUT/OUTPUT •••••••••••••••••••••••••••••••••
Program File Commands •••••••••••••••••••••••••••••
Protected Files

Sequential Files ••••••••••••••••••••••••••••••••
Adding Data to a Sequential File ••••••••••••••••
Random Fi les •.•......•..........................
Creating a Random File •••••••••••••••••••••
Accessing a Random File ••••••••••••••••••••

MATHEMATICAL FUNCTIONS •••••••••••••••

CALLING NON-BASIC PROCEDURES ••••••••••••••••
Overv iew•.......•••...............•.•.
Invoking Value-returning Procedures •••••••••••••••
Par am e t e r Pas sin g • ~ • • • • • • • • • •

Modifying BASIC Variables from Non-BASIC
Procedures ••••••••••••••••••••••••••••••••••••••
Array Parameters ••••••••••••••••••••••••••••••••
Word-Aligned Data •••••••••••••••••••••••••••••••

Programming Recommendations •••••••••••••••••••••••
Recommendation 1 ••••••••••••••••••••••••••••••••
Recommendation 2 ••••••••••••••••••••••••••••••••
Rec ommenda t ion 3 ••••••••••••••••••••••••••••••••

Configuring BASIC •••••••••••••••••••••••••••••••••
Creating Basic.run ••••••••••••••••••••••••••••••

Error Detection•......
Sample Program .•................•......•..•..••.

PROGRAMMING HINTS •••••••••••••••••• ~ ••••••••••••••
Using SamGenAll with BASIC ••••••••••••••••••••••••
Single- and Double-Precision Numbers in BASIC •••••
Accessing the System Date and Time Using BASIC ••••

Miscellaneous•........................
Linking with Nonstandard Segments •••••••••••••••••

INSTALLATION PROCEDURES •••••••••••••••••••••••••••
Hard Disk Installation ••••••••••••••••••••••••••••
XE520 Installation ••••••••••••••••••••••••••••••••

DUAL FLOPPY STANDALONE INSTALLATION •••••••••••••••
Helpful Hints for Dual Floppy Standalone Systems ••
ISAM Installation 4.0 •••••••••••••••••••••••••••••

.

Page

B-1
B-1
B-2

C-l
C-l
C-2
C-2
C-4
C-5
C-5
C-6

D-l

E-l
E-l
E-3
E-3

E-4
E-4
E-4
E-5
E-5
E-5
E-5
E-6
E-6
E-8
E-8

F-l
F-l
F-3
F-5
F-8
F-8

G-l
G-l
G-l

H-l
H-l
H-2

1

ix

Figure

C-1
C-2
C-3
C-4
C-5

Table

A-1
A-2

x

LIST OF ILLUSTRATIONS

Title Page

Creating a Sequential Data File................... C-3
Accessing a Sequential File....................... C-4
Creating a Random File............................ C-6
Accessing a Random File........................... C-7
Inventory. .. C-8

LIST OF TABLES

Title Page

Character Attribute Control •.•.•••...••.• ·•••.•.••• A-2
Control Codes for LED Indicators.................. A-9

INTRODUCTION
OVERVIEW

The BASIC Language Reference Manual is divided into four
main sections. Section 1 deals with a variety of topics,
including invocation of the BASIC Interpreter from the Executive
and information representation when using BASIC. Section 2
discusses BASIC commands, the third section deals with the
system-supported functions of BASIC, and the fourth section
explains the error messages used by BASIC. There are also seven
appendices, which deal with special topics. Appendix A outlines
the proced~res used to produce special effects on the screen
using B20 BASIC. This appendix shows how to produce effects suc~
as reverse video, underlining, and flashing messages. Appendix B
gives the necessary procedures for printing in BASIC when your
B20 system has the print spooler option. This appendix outlines
the necessary steps required to use the LLIST, LPRINT, and LPRINT
USING commands when operating a B20 computer that uses the
Spooler utility to print. Appendix C gives the necessary
procedures and examples for creating sequential and random access
files. Appendix D outlines mathematical functions not intrinsic
to BASIC but that can be calculated using BASIC functions.
Appendix E explains the steps for calling non-BASIC procedures
and how to configure a new Basic.run file. Appendix F provides
programming hints for the programmer. Appendix G deals
specifically with dual floppy use.

In this manual, underlined words represent the information
that you supply when using the BASIC command or function. For
example, the manual treats the PRINT command with the form:

10 PRINT variable1, variable2, ••.

This tells you that the PRINT command may be used with any
number of variables and that you fill in the variable name when
you write a print statement.

This manual presents BASIC system commands without line
numbers. For example, the AUTO command is presented as:

AUTO beginning line number, line number interval.

All other BASIC commands and functions used in this manual
are presented with BASIC statement numbers.

xi

ORGANIZATIO"N OF THE MANUAL

This manual consists of four main sections and seven
appendices. Their contents are described below.

SECTION 1: GENERAL INFORMATION
The first section contains general information about BASIC.

It also contains instructions on how to load the BASIC
Interpreter distribution disk B20BI4 (Level 4.0) on your B20
system and how to invoke BASIC from the executive.

SECTION 2: BASIC COMMANDS

The second section lists all BASIC commands alphabetically
for easy reference. Each command is presented with the following
information:

• a statement that shows the general form of the command

• a description of the command that explains how it works

• an example of the command used in a BASIC program

• an explanation of the example describing the action
caused by the command

SECTION 3: BASIC FUNCTIONS
The third section defines the BASIC functions available on

your B20 system. Again, each function is listed alphabetically
for easy reference.

xii

The functions are presented with:

• an example of the general form in which the function is
used

• a description of how each function works

• an example of the function in a program

• an explanation of the example describing the action
caused by the function

SECTION 4: BASIC ERROR MESSAGES

The fourth section lists the error messages you may
encounter when using BASIC. These messages are listed
sequentially by error number. A cross-reference is also provided
listing error messages alphabetically so that you can locate the
message quickly. The error message section describes each error
message and even suggests some possible actions to solve the
problem.

APPENDIX A: CONTROL OF THE VIDEO DISPLAY
Appendix A describes how to control the display of

information on the B20 screen. B20 BASIC can control the
following:

• character attributes (reverse video, underlining, half
brightness, and blinking)

• screen attributes (half brightness and reverse video)

• cursor positioning and visibility

• line scrolling

• pausing between frames of information

• keyboard LED indicators

• directing video display output

In addition, B20 BASIC allows you to:

• fill in various size rectangles with a specified
character

• erase information in lines or frames

• display special characters literally

This appendix gives the procedures for creating these
effects. Each procedure is described and presented with an
example of its use.

APPENDIX B: PRINTING IN BASIC WITH

THE PRINT SPOOLER
Appendix B presents the steps necessary to use the BASIC

commands LPRINT, LPRINT USING, and LLIST on B20 systems that use
the Spooler utility to print. Once again, the necessary steps
and examples are presented.

xiii

APPENDIX C: DISK INPUT/OUTPUT

Appendix C details the steps to create sequential and random
access files. Examples are given.

APPENDIX D: MATHEMATICAL FUNCTIONS

Appendix D gives the BASIC equivalent of mathematical
functions not intrinsic to BASIC.

APPENDIX E: CALLING NON-BASIC PROCEDURES

Appendix E explains how to call non-BASIC procedures, gives some
programming recommendations, and explains how to configure a new
Basic.run file.

APPENDIX F: PROGRAMMING HINTS

APPENDIX G: INSTALLATION PROCEDURES

APPENDIX H: DUAL FLOPPY STANDALONE

HOW TO USE THIS MANUAL

This manual is designed for users who have a working
knowledge of the BASIC language and is not intended to teach a
user how to write a program in BASIC. The manual is complete in
its treatment of BASIC commands, functions, and error messages so
that a user can easily create and run a BASIC program. If the
user desires to learn how to write in BASIC, the B20 BASIC
Training Course is available.

xiv

SECTION 1
GENERAL INFORMATION

The BASIC Interpreter distribution diskette level 4.0
contains the following files:

**
**

Disk B20BI4

<SYS>FileHeaders.Sys
<SYS> r1fd. Sys
<SYS>Log.Sys
<SYS>SysImage.Sys
<SYS>BadBlk.Sys
<SYS>DiagTest.Sys
<SYS>BootExt.Sys
<SYS>CrashDump.Sys
<SYS>Install.Sub
<SYS>Sys.cmds
<SYS>FdSys.version
<SYS>BasicRes.run
<B20BI4>Basic.run
<B20BLD>StartBasicLink.sub
<B20BLD>Basic.lib
<B20BLD>MaxMemArrayRes
<B20BLD>ObjBasIntRes.fls
<B20BLD>Basgen.asm
<B20BLD>MaxMemArraySwp
<B20BLD>ObjBasIntSwp.fls

** These system files do not exist on the 5-1/4 inch diskette.

1-1

INVOKING BASIC

Field Descriptions

[Initial programJ

To invoke the BASIC Interpreter from the
Executive, type "BASIC" (or as many letters as
are required to make the command unique; see the
Executive Manual) in the command field of the
command form. The form illustrated below then
appears.

BASIC
[Initial ProgramJ
[Maximum number of open files (0-15)J
[Maximum random record lengthJ

Fill in the fields. All the fields are
optional. You can default optional fields by
leaving them blank.

Press GO when the form is correctly filled in.

Fill in the "[Initial programJ" field with the
name of an initial BASIC program for BASIC to
load and run.

The default is none; that is, entering no
response causes no initial program to be
executed, and BASIC enters direct mode (see
"Modes of Operation" below).

[Maximum number of open files {0-15)J
Fill in the "[Maximum number of open files
(0-15)J" field with the number of files than can
be open at the same time. The maximum is 15.

1-2

The default is 6; that is, entering no response
limits to six the number of files that can be
open at the same time.

The parameter given can affect the amount of
free memory available to a BASIC program. See
the discussion under the "[Maximum random file
record lengthJ" field.

[Maximum random record lengthJ
Fill in the "[Maximum random record length]"
field to limit the size of random file records.

The default is 128; that is, entering no
response limits to 128 bytes the size of random
file records.

The parameters given to "[Maximum number of open
files (0-15)J" and "[Maximum random file record
length]" can affect the amount of free memory
available to a BASIC program. Before allocating
fre~ memory, BASIC allocates a buffer for each
file that can be opened. Each buffer is as
large as the maximum random file record length.
If less than 61K bytes of free memory is
available, you can recover free memory by
decreasing either the maximum number of open
files or the maximum record length.

MEMORY REQUIREMENTS: SWAPPING AND RESIDENT
VERSIONS OF BASIC. RUN

The distribution diskette contains two versions
of the BASIC Interpreter: swapping and resident.
The installation procedure described earlier
installs the swapping version.

The swapping BASIC Interpreter, Basic.run, uses
the Virtual Code Management facility. Selected
runtime procedures remain on the disk as
overlays until they are required.

The swapping version reduces the memory
requirements of the runtime system with the cost
of a small performance degradation. In
applications where it is preferable to trade
memory for performance, BasicRes.run should be
used.

The following amounts of memory are required to
execute BASIC with a maximum allocation of free
memory to the BASIC program.

Resident Version

Swapping Version

128,896 bytes

122,680 bytes

1-3

If these amounts of memory are not available,
the amount of free memory available to the BASIC
program is reduced.

Additional memory is required by BASIC for use
as buffers when files are opened.

Each open sequential file requires an additional
512 bytes.

Each open random file requires a DAM buffer.
Its size is generally a multiple of 512 greater
than or equal to the record size plus 519.
There are two exceptions to this formula.
First, if 512 is a multiple of the record size
plus 8, then the buffer size is 512. Second, if
the record size plus 8 is a multiple of 512,
then the buffer size is the record size plus 8.

MEMORY ORGANIZATION
BASIC is distributed among several code
segments. An additional segment, the BASIC data
segment, contains BASIC's stack, internal
variables, and all free memory available to the
BASIC program.

BASIC allocates up to 64K bytes to the BASIC
data segment. If the largest data segment is
allocated, 61K bytes of free memory are
available. (If you use the defaults, see the
previous section, "Invoking BASIC".)

MODES OF OPERATION

1-4

When BASIC is initialized, it types the prompt
"Ok". "Ok" means BASIC is at command level and
is ready to accept commands. At this point,
BASIC can be used in either of two modes: direct
or indirect.

In direct mode, BASIC statements and commands
are not preceded by line numbers. They are
executed as they are entered. Results of
arithmetic and logical operations can be
displayed immediately and stored for later use,
but the instructions themselves are lost after
execution. This mode is useful for debugging
and for using BASIC for quick computations that
do not require a complete program.

LINE FORMAT

Indirect. mode is used for entering programs.
Program lines are preceded by line numbers and
are stored in memory. The program stored in
memory is executed by entering the RUN command.

If you are using indirect mode and wish to save
your program during the work session, before
invoking BASIC check the amount of storage space
you have available on the media that you will
use to save your work. If there is a chance
that you do not have enough available storage,
either create additional storage space (possibly
by deleting unnecessary files) or use another
media. If your program is larger than the
available storage space, by the time the DISK
FULL error message appears your program may have
been corrupted.

Program lines in a BASIC program have the
following format (square brackets indicate
optional items):

nnnnn BASIC statement[:BASIC statement •..]
<RETURN>

At the programmer's option, more than one BASIC
statement can be placed on a line, but each
statement on a line must be separated from the
previous statement by a colon.

A BASIC program line always begins with a line
number, ends with a <RETURN>, and can contain a
maximum of 255 characters.

It is possible to extend a logical line over
more than one physical line. If you press
<RETURN> at the end of a line, the logical line
is terminated. If you press <MARK>, the
physical line ·is terminated but you can continue
typing the same logical line on the next
physical line. Pressing <MARK> echoes a
triangle and moves the cursor to the beginning
of the next line. .

1-5

Line Numbers

Every BASIC program line begins with a line
number. Line numbers indicate the order in
which the program lines are stored in memory and
are also used as references when branching and
editing. Line numbers must be in the range zero
to 65529. A period can be used in the EDIT,
LIST, AUTO, and DELETE commands to refer to the
current line.

INPUT EDITING

1-6

If an incorrect character is entered as a line
is being typed, it can be deleted with the
BACKSPACE key. Once a character is deleted,
simply continue typing the line as desired.

To delete a line that is in the process of being
typed, press the DELETE key.

To correct program lines for a program that is
currently in memory, simply retype the line
using the same line number. BASIC automatically
replaces the old line with the new line.

On a Burroughs Information Processing System,
there are three more sophisticated tools
available for the preparation and editing of
BASIC programs: the EDIT command (described in
the "EDIT" subsection below), the Editor, and
the word processor.

The Edit command lets you view and edit your
program one line at a time, without leaving
BASIC. If, however, you wish to make extensive
changes in your program, you will probably find
it easier to SAVE the program (using the ASCII
option) and exit from BASIC to the Executive.
Then invoke the Editor (see the Editor Manual
for details), edit as desired, and finally
reinvoke BASIC and reload your program.

You can create BASIC source programs and data
files using WRITEone. These programs and data
files can be formatted. However, BASIC
processes formatted files as if they were not
formatted.

To delete the entire program that is currently
residing in memory, enter the NEW command. (See
the NEW subsection in the "Commands and
Statements" section below.) NEW is usually used
to clear memory before entering a new program.

CHARACTER SET
The BASIC character set is comprised of
alphabetic, numeric, and special characters.

The alphabetic characters are the uppercase and
lowercase letters of the alphabet.

The numeric characters are the digits 0 through
9.

The following special characters and keys are
recognized by BASIC:

Character
or Key

+

*
/
~

(
)
%

$

[
]

"

&
?

Name

Space
Equal sign or assignment symbol
Plus sign or contatenation symbol
Minus sign or hyphen
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent sign or integer type

declaration character
Number (or pound) sign or double

precision declaration character
Dollar sign or string type

declaration character
Exclamation point or single-

precision declaration character
Left bracket
Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)

or remark delimiter symbol
Double quotation mark or string

delimiter symbol
Semicolon
Colon or multiple statement

separator
Ampersand or continuation symbol
Question mark

1-7

Control Characters

Character
or Key

<
>
\

@

BACKSPACE
GO
TAB

MARK
RETURN

Name

Less than
Greater than
Backslash or

integer division symbol
At-sign
Underscore

Deletes last character typed
Escapes Edit Mode subcommands
Moves print position to next

tab stop. Tab stops are every
eight columns.

Moves to next physical line
Terminates input of a logical line

BASIC has the following control functions:

ACTION-CANCEL

ACTION-O

ACTION-S

ACTION-Q

CANCEL

CODE-A

CODE-R

1-8

If a program is not
waiting for keyboard
input, interrupts program
execution and returns to
BASIC command level.

Halts program output
while execution
continues. A second
ACTION-O restarts output.

Suspends program
execution.

Resumes program execution
after an ACTION-S.

If a program is waiting
for keyboard input,
interrupts program
execution and returns to
BASIC command level.

Enters edit mode on the
line being typed.

Retypes the line that is
currently being typed.

DELETE

FINISH

Video Display Special Characters

Deletes the line that is
currently being typed.

Asks if BASIC is to be
exited. If FINISH is
pressed again, BASIC is
exited.

BASIC interprets the following characters in a
special way when they are output on the video
display:

Decimal
Value Key

1 up arrow

7 CANCEL

11 down arrow

12 NEXT PAGE

13 BOUND

14 left arrow

18 right arrow

Interpretation

Move the cursor up one
line. If the cursor is
in the top line of the
frame, reposition it to
the bottom.

Activate audio alarm for
one half-second.

Move the cursor down one
line. If the cursor is
in the bottom line of the
frame, reposition it to
the top line.

Blank the frame and
position the cursor in
its upper left hand
corner.

Ignored.

Move the cursor left one
character position. If
the cursor is in the
first column of the
frame, reposition it to
the last column.

Move the cursor right one
character position. If
the cursor is in the last
column of the frame,
reposition it to the
first column.

1-9

CONSTANTS

1-10

Constants are the actual values BASIC uses
during execution. There are two types of
constants: string and numeric.

A string constant is a sequence of up to 255
alphanumeric characters enclosed in double
quotation marks. Examples of string constants:

"HELLO"
"$25,000.00"
"Number of Employees"

A string constant cannot contain a double
quotation mark. Use the CHR$ function (see
Section 3) to construct a string containing this
character.

Numeric constants are positive or negative
numbers. Numeric constants in BASIC cannot
contain commas. There are five types of numeric
constants: integer, fixed-point, floating
point, hexadecimal, and octal.

1. Integer Constants
Whole numbers between -32768 and +32767.
Integer constants do not have decimal
points.

2. Fixed-point Constants
Positive or negative real numbers, that
is, numbers that contain decimal points.

3. Floating-point Constants
Positive or negative exponential form
(similar to scientific notation). A
floating-point constant consists of an
optionally signed integer or fixed-point
number (the mantissa) followed by the
letter E and an optionally signed integer
(the exponent). The allowable range for
floating-point constants is 10-38 to
10+38. Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double-precision floating-point constants
use the letter D instead of E. See
below.)

4. Hexadecimal Constants
Hexadecimal numbers with the prefix &H.
Examples:

&H76
&H32F

5. Octal Constants
Octal numbers with the prefix &0 or &.
Examples:

&0347
&1234

Single- and Double-Precision Form for Numeric Constants

Numeric constants can be either single- or
double-precision numbers. Single-precision
numbers are stored with seven digits of
precision and printed with up to six digits.
Double-precision numbers are stored with 16
digits of precision and printed with up to 16
digits.

A single-precision constant is a numeric
constant that has one of the following:

• seven or fewer digits
• exponential form using E
• a trailing exclamation point (!)

Examples:

46.8
-1.09E-06

3489.0
22.5!

A double-precision constant is a numeric
constant that has one of the following:

• eight or more digits
• exponential form using D
• a trailing number sign (#)

Examples:

345692811
-1.09432D-06

3489.0#
7654321.1234

1-11

VARIABLES

Variables represent values used in a BASIC
program. The value of a variable can be
assigned explicitly by the programmer, or it can
be assigned as the result of calculations in the
program. Before a numeric variable is assigned
a value, its value is assumed to be zero.
Before a string variable is assigned a value,
its value is assumed to be null.

Variable Names and Declaration Characters

1-12

BASIC variable names can be any length; however,
only the first 40 characters are significant.
The characters allowed in a variable name are
letters, numbers, and the decimal pOint. The
first character must be a letter. Special type
declaration characters are also allowed (see
below) •

A variable name cannot be a reserved word. If a
variable begins with FN, then it is assumed to
be a call to a user-defined function. Reserved
words include all BASIC commands, statements,
function names, and operator names.

Variables can represent either a numeric value
or a string. Strin~ variable names are written
with a dollar sign ($) as the last character.
For example,
A$ = "SALES REPORT". The dollar sign is a
variable type declaration character; that is, it
"declares" that the variable represents a
string.

Numeric variable names can declare integer,
single-, or double-precision values. The type
declaration characters for these variable names
are as follows:

% Integer variable
! Single-precision variable
Double-precision variable

The default type for a numeric variable name is
single-precision.

Array Variables

Examples of variable names are:

PI#
MINIMUM!
LIMIT%
N$
ABC

declares a double-precision value
declares a single-precision value
declares an integer value
declares a string value
represents a single-precision value

There is a second method by which variable types
can be declared. The BASIC statements DEFINT,
DEFSTR, DEFSNG, and DEFDBL can be included in a
program to declare the types for certain
variable names. These statements are described
in detail under DEFINT/SNG/DBL/STR in Section 2.

An array is a group or table of values
referenced by the same variable name. Each
element in an array is referenced by an array
variable that is subscripted with integers or
integer expressions. An array variable name has
as many subscripts as there are dimensions in
the array. For example, V[10] references a
value in a one-dimensional array, T[1,4]
references a value in a two-dimensional array,
and so on. The maximum number of dimensions for
an array is 255. The maximum number of elements
per dimension is 32767.

Brackets and Parentheses

Pointer Variables

Although you can use parentheses to delimit
array subscripts, use brackets. This permits
BASIC to easily distinguish between arrays and
value-returning non-BASIC procedures. Brackets
improve the readability and performance of BASIC
programs.

BASIC stores pointers as single-precision
numbers, since both pointers and single
precision numbers require four bytes of memory.
Pointer values are created by the BASIC PTR
function (and by non-BASIC procedures). The
only meaning~ul operations ~or pointer variables
are assignment and equality.

Pointer variables can be used as parameters to
non-BASIC procedures, the POKE command, and the
PEEK ~unction.

1-13

TYPE CONVERSION

1-14

When necessary, BASIC converts a numeric
constant from one type to another. Keep the
following rules and examples in mind.

1. If a numeric constant of one type is set
equal to a numeric variable of a different
type, the number is stored as the type
declared in the variable name. (If a string
variable is set equal to a numeric value or
vice versa, a "Type mismatch" error message
occurs.) Example:

10 A% = 23.42
20 PRINT A%
RUN

23

2. During expression evaluation, all operands
in an arithmetic or relational operation are
converted to the same degree of precision,
that is, that of the most precise operand.
Also, the result of an arithmetic operation
is returned to this degree of precision.
Examples:

10 D# = 6#/7
20 PRINT D#
RUN

.8571428571428571

10 D = 6#/7
20 PRINT D
RUN

.857143

The arithmetic was performed
in double precision and the
result was returned in D# as
a double-precision value.

The arithmetic was performed
in double precision and the
result was returned to D
(single-precision variable),
rounded and printed as a
single-precision value.

3. Logical operators (see the subsection of
that name below) convert their operands to
integers and return an integer result.
Operands must be in the range -32768 to
32767 or an "Overflow" error message occurs.

4. When a floating-point value is converted to
an integer, the fractional portion is
rounded. Example:

10 C% = 55.88
20 PRINT C%
RUN

56

5. If a double-precision variable is assigned a
single-precision value, only the first seven
digits, rounded, of the converted number are
valid. This is because only seven digits of
accuracy were supplied with the single
precision value. The absolute value of the
difference between the printed double
precision number and the original single
precision value is less than 6.3E-8 times
the original single-precision value.
Example:

10 A = 2.04
20 B# = A
30 PRINT A;B#
RUN

2.04 2.039999961853027

1-15

EXPRESSIONS AND OPERANDS

An expression can be simply a string or numeric
constant, a variable, or a value-returning non
BASIC procedure. It can combine constants,
variables, and procedure calls with operators to
produce a single value.

Operators perform mathematical or logical
operations on values. The operators provided by
BASIC can be divided into four categories:
arithmetic, relational, logical, and functional.

Arith metic Operators

1-16

The arithmetic operators, in order of
precedence, are:

Operator

*
/

\

MOD

+

Operation

Exponentiation

Negation

Multiplication

Floating-point Division

Integer Division

Modulus Arithmetic

Addition

Subtraction

Sample
Expression

X"'y

-x
x*y

X/y

X\y

X MOD Y

x+y

X-y

To change the order in which the operations are
performed, use parentheses. Operations within
parentheses are performed first. Inside
parentheses, the usual order of operations is
maintained.

Here are some sample algebraic expressions and
their BASIC counterparts.

Algebraic Expression BASIC Expression

X+Y*2 X+2Y

X-y/z

XY/Z

(X+Y)/Z

(X2)Y
yZ

X

X(-Y)

Integer Division and ModulusArithmetic

X-Y/Z

X*y/Z

(X+Y)/Z

(X"2)"Y

X"(Y"Z)

X*(-Y) Two
consecutive
operators
must be
separated by
parentheses.

Integer division is denoted by the backs lash
(\). The operands are rounded to integers (must
be in the range -32768 to 32767) before the
division is performed, and the quotient is
truncated to an integer. For example:

10\4 = 2
25.68\6.99 = 3

The precedence of integer division is just after
multiplication and floating~point division.

Modulus arithmetic is denoted by the operator
MOD. It gives the integer value that is the
remainder of an integer division. For example:

10.4 MOD 4 = 2 (10/4 =
2)

25.68 MOD 6.99 =
5)

5 (26/7 =

2 with a remainder

3 with a remainder

The precedence of modulus arithmetic is just
after integer division.

1-17

Overflow and Division by Zero

If, during the evaluation of an expression, a
division by zero is encountered, the "Division
by zero" error message is displayed, machine
infinity with the sign of the numerator is
supplied as the result of the division, and
execution continues. If the evaluation of an
exponentiation results in zero being raised to a
negative power, then the "Division by zero"
error message is displayed, positive machine
infinity is supplied as the result of the
exponentiation, and execution continues.

If overflow occurs, then the "Overflow" error
message is displayed, machine infinity with the
algebraically correct sign is supplied as the
result, and execution continues.

This error condition can not be trapped by
conventional error-trapping routines. This
allows for program execution to continue in
spite of the error condition. The message is
displayed, but variables ERR and ERL will not be
set.

Relational Operators

1-18

Relational operators compare two values. The
result of the comparison is either "true" (-1)
or "false" (0). This result can then be used to
make a decision regarding program flow. (See IF
in Section 2.)

Operator Relation Tested Expression

= Equality X=Y

<> Inequali ty X<>y

< Less than X<Y

> Greater than X>Y

<= Less than or equal to X<=Y

>= Greater than or equal to X>=y

(The equal sign is also used to assign a value
to a variable. See LET in Section 2 below.)

Logical Operators

When arithmetic and relational operators are
combined in one expression, the arithmetic is
always perf~rmed first. For example, the
expression:

X+Y < (T-1)/Z

is true if the value of X plus Y is less than
the value of T-1 divided by Z. More examples:

IF SIN(X)<O GOT01000
IF I MOD J <> 0 THEN K=K+1

Logical operators perform tests on multiple
relations, bit manipulation, or Boolean
operations. The logical operator returns a
bitwise result that is either "true" (not zero)
or "false" (zero). In an expression, logical
operations are performed after arithmetic and
relational operations. The outcome of a logical
operation is determined as shown in the
following table. The operators are listed in
order of precedence.

1-19

NOT
X NOT X
1 0
0 1

AND
X Y X AND y
1 1 1
1 0 0
0 1 0
0 0 0

OR
X y X OR y
1 1 1
1 . 0 1
0 1 1
0 0 0

XOR
X Y X XOR Y
1 1 0
1 0 1
0 1 1
0 0 0

IMP
X Y X IMP Y
1 1 1
1 0 0
0 1 1
0 0 1

EQV
X Y X EQV Y
1 1 1
1 0 0
0 1 0
0 0 1

Just as relational operators can make decisions
regarding program flow, logical operators can
connect two or more relations and return a true
or false value to be used in a decision (see IF
in Section 2). For example:

IF D<200 AND F<4 THEN 80
IF 1)10 OR K<O THEN 50
IF NOT P THEN 100

1-20

Logical operators work by converting their
operands to 16-bit, signed, twos-complement
integers in the range -32768 to +32767. (If the
operands are not in this range, an error
results.) If both operands are supplied as zero
or -1, logical operators return zero or -1. The
given operation is performed on these integers
in bitwise fashion; that is, each bit of the
result is determined by the corresponding bits
in the two operands.

Thus, it is possible to use logical operators to
test bytes for a particular bit pattern. For
instance, the AND operator can be used to "mask"
all but one of the bits of a status byte at a
machine input/output port. The OR operator can
be used to "merge" two bytes to create a
particular binary value. The following examples
help demonstrate how the logical operators work.

63 AND 16=16 63 = binary 111111 and 1 6 =
binary 10000, so 63 AND 16 = 16

15 AND 14=14 15 = binary 1111 and 14 = binary
1110~ so 15 AND 14 = 14 (binary
1110)

-1 AND 8=8 -1 binary 1111111111111111 and
8 = binary 1000, so -1 AND 8 =

8

4 OR 2=6 4 = binary·100 and 2 = binary
10,
so 4 OR 2 = 6 (binary 110)

10 OR 10=10 10 = binary 1010,
so 1010 OR 1010 = 1010 (10)

-1 OR -2=-1 -1 = binary 1111111111111111 and
-2 = binary 1111111111111110, so
-1 OR -2 = -1. The bit
complement of sixteen zeros is
sixteen ones, which is the twos
complement representation of -1 •

NOT X=-(X+1) The twos complement of any
integer is the bit complement
plus one.

1-21

Functional Operators

String Operations

1-22

A function in an expression calls a
predetermined operation that is to be performed
on an operand. BASIC has "intrinsic" functions
that reside in the system, such as SQR (square
root) or SIN (sine). All BASIC intrinsic
functions are described in Section 3.

BASIC also allows "user-defined" functions,
which are written by the programmer. See DEF FN
in Section 2.

Strings can be concatenated using +. For
example:

10 A$="FILE" : B$="NAME"
20 PRINT A$ + B$
30 PRINT "NE\/ " + A$ + B$
RUN
FILENAME
NEW FILENAME

Strings can be compared using the same
relational operators that are used with numbers:

=
<>
<
>
<=
>=

String comparisons are made by taking one
character at a time from each string and
comparing the ASCII codes. If all the ASCII
codes are the same, the strings are equal. If
the ASCII codes differ, the lower code number
precedes the higher. If, during string
comparison, the end of one string is reached,
then the shorter string is said to be smaller.
Leading and trailing blanks are significant.

Examples:

"AA"
"FILENAME"

< "AB"
"FILENAME"

"X&" > "x#"
"CL " > "CL"

"kg" > "KG"
"SMYTH" < "SMYTHE"

B$ < "9/12/78" WHERE B$ = "8/12/78"

Thus, string comparisons can be used to test
string values or to alphabetize strings. All
string constants used in comparison expressions
must be enclosed in quotation marks.

1-23

SECTION 2

BASIC COMMANDS

This section of the manual lists all BASIC commands
alphabetically. Each command is presented with the following
information:

• the general form of the command

• an explanation of how the command works

• an ex~mple of the command used in a BASIC program

• an explanation of the example describing the command's
action

Underlined words represent the information that you supply when
using the BASIC command. For example, the manual treats the
PRINT command with the form:

10 PRINT variable1,variable2, ••.

This tells you that the PRINT command may be used with any number
of variables, and that you fill in the variable name when you
write a PRINT statement~

2-1

AUTO

AUTO

DESCRIPTION

Form of Statement

AUTO

AUTO beginning line number

AUTO beginning line number, line
number increment

The AUTO command is entered before you begin program input. It
automatically numbers the lines of the program as they are
entered. There are three forms of the AUTO command.

The first form of AUTO begins with line number 10 and increases
by 10 for each new line entered.

The second form begins with the number you put in as the
beginning line number and increases by 10 for each new line
entered.

The third form of AUTO begins numbering lines with the number you
put in as the beginning line number and increases by the value
specified as the line number interval. The AUTO command does not
appear in your program listing. Terminate AUTO by pressing
CANCEL.

EXAMPLE

AUTO

AUTO 100

AUTO 100, 20

2-2

EXPLANATION

This command numbers lines in
increments of 10, beginning with 10
for the first line.

This command numbers lines in
increments of 10, beginning with
100 for the first line.

This command numbers lines in
increments of 20, beginning with
100 for the first line.

CALL

DESCRIPTION

CALL

Form of Statement

10 CALL procedure name

20 CALL procedure name (first
parameter, second
parameter, •••)

The CALL command calls a nonvalue-returning, non-BASIC procedure.
The command may call a procedure using only the procedure name,
as in statement 10 above, or it may call a procedure and pass
information to that procedure as is done in statement 20.

The parameters must be integers or single-precision numbers. You
can not pass strings, arrays or double-precision numbers
directly.

EXAMPLE

10 REM USING CALL COMMAND
20 CALL INITIALIZE (PTR(A#))

EXPLANATION

The program calls the procedure
INTIALIZE, passing a value that
is a pointer.

2-3

CHAIN

CHAIN

DESCRIPTION

Form of Statement

10 CHAIN "filename"

10 CHAIN "filename""ALL

10 CHAIN "filename",
line number

10 CHAIN "filename", line
number, ALL--

10 CHAIN MERGE "filename"

10 CHAIN MERGE "filename""
DELETE line number
range

10 CHAIN MERGE "filename",
line number, DELETE line
Iiliiilber range

The CHAIN command calls a BASIC program and may pass variables to
it from the current program. The filename in the statement
format above is the name of the called program. Programs load
faster if they are stored in binary instead of ASCII.

When the option line number is used, execution of the called
program begins at that line. If the line number option is not
used, execution begins at the first line of the called program.

When the ALL option is used, every variable in the current
program is passed to the called program. If the ALL option is
not used, only those variables listed in a COMMON statement are
passed to the called program.

When the ALL option is not used, a COMMON statement must be
included in the current program before the second program is
called if variables are to be passed to the called program.

When the MERGE option is used, the called program is overlayed on
the existing program. The merged program must be an ASCII file.

The DELETE option deletes an overlay that was previously included
with the MERGE option. For example, if the following statement
is executed:

CHAIN. MERGE "OVERLAY1" , 1000

2-4

CHAI N (Cont.)

then it may be desirable to delete it when the program is done
with it so that a new overlay can be brought in as in the
following statement:

EXAMPLE

CHAIN MERGE "OVERLAY2", 1000, DELETE 1000-5000

NOTE

If the MERGE option is omitted, CHAIN does not
preserve variable types or user-defined
functions for use by the chained program.
That is, any DEFINT, DEFSNG, DEFDBL, DEFSTR,
or DEF FN statements containing shared
variables must be restated in the chained
program. Also, OPTION BASE is not preserved.

EXPLANATION

120 CHAIN "MYPROG" Statement number 120 calls the
program MYPROG and begins execution
at the first line of MYPROG.*

150 CHAIN "MYPROG", 200

180 CHAIN "MYPROG""ALL

220 CHAIN MERGE "MYPROG"

240 CHAIN MERGE "MYPROG",
DELETE 10-50

Statement number 150 calls the
program MYPROG. Execution of MYPROG
begins at line number 200 of
MYPROG.*

Statement number 180 calls the
program MYPROG. Execution begins at
the first line of MYPROG and all
variables from the current program
are passed to MYPROG.*

Statement number 220 calls the
program MYPROG and overlays it on
the program currently in memory.

Statement number 240 calls the
program MYPROG and overlays is on
the program currently in memory.
When MYPROG is executed, it is
deleted from memory.

* The program MYPROG replaces the program currently in memory.

2-5

CLEAR

CLEAR Form of Statement

20 CLEAR

DESCRIPTION

The CLEAR command clears all memory, sets all numeric variables
to 0 and sets all string variables to null. It is recommended
that you do not use the clear command in subroutines.

EXAMPLE

10 A$ = "GOOD"
20 B$ = "DAY"
30 PRINT A$ +B$
40 CLEAR
50 C$ = "BYE"
60 PRINT A$ +B$ +C$

2-6

EXPLANATION

This program displays GOODDAY in
statement 30 and then sets the
variables A$ and B$ as having no
value

Statement 60, which displays the
string values of A$ + B$ + C$, will
only display BYE. Variables A$ and
B$ have no value.

CLOSE

CLOSE Form of Statement

150 CLOSE

180 CLOSE # first filenumber,
! second filenumber, •••

DESCRIPTION

The CLOSE command ends either input to or output from a disk.

The CLOSE command without a file number closes all open files.

The CLOSE command with a file number closes the indicated file.
CLOSE file numbers must agree with the file numbers used in the
OPEN command to begin output or input.

The END command also closes all open files automatically.

EXAMPLE

120 CLOSE

240 CLOSE #1

EXPLANATION

This command closes all open files.

This command closes the file opened
as #1. All other open files remain
open.

2-7

COMMON

COMMON

DESCRIPTION

Form of Statement

10 COMMON first variable,
second variable, •••

The COMMON statement indicates the variables to be passed to a
program when that program is called by the CHAIN command.

Common statements may appear anywhere in a program, although it
is recommended that they appear at the beginning.

The same variable cannot be in more than one COMMON statement.

If an array is to be passed to a called program, the array name
followed by a () should be included in the COMMON statement.

EXAMPLE

100 COMMON A, B, C, XYZ (), G$
110 CHAIN IlMYPROG Il

2-8

EXPLANATION

The MYPROG program is called
from the current program. The
three numeric variables (A, B,
and C), an array (XYZ), and a
string variable (G$) are passed
to program MYPROG.

CONT

CONT Form of Statement

CONT

DESCRIPTION

The CONT command continues the execution of a program when
execution is interrupted by pressing ACTION-CANCEL or when a STOP
statement is encountered in the program.

The program execution continues from the point at which the
interruption was encountered.

The CONT command does not work if the program is edited during
the interruption.

EXAr1PLE

10 A = 2
20 B = 3
30 SUM =
40 STOP
50 Print

A + B

SUM

EXPLANATION

This program will execute up to
line 40. At Line 40 there is a
break. To continue, the user
enters a CONT command. The program
execution continues at line 50 and
displays the value of the variable
SUM.

2-9

DATA

DATA Form of Statement

100 DATA constant, constant, •..

DESCRIPTION

The DATA statement is a nonexecutable statement that stores
either numeric or string constants. The constants in a DATA
statement are accessed by means of READ statements in a program.

DATA statements are used in the order of their line number.

A DATA statement may appear anywhere in a program before an END
statement.

String constants in DATA statements must be surrounded by double
quotation marks only if they contain commas, colons, or
significant leading or trailing spaces. Otherwise quotation
marks are not needed.

EXAMPLE

10 READ A, B, H$

90 DATA 5, 10, TOTAL

2-10

EXPLANATION

When run, this program reads the
values for the variables in
statement 10 from the DATA
statement (statement 90).

A is assigned 5, B is assigned 10,
and H$ is assigned the string
constant TOTAL.

DEF FN

DESCRIPTION

DEFFN

Form of Statement

10 DEF FN function name =
function defInition

or

20 DEF FN function name (parameter
list) = function
definition

The function name must follow the rules for variable naming. If
the function defined is numeric, the function name must be a
valid numeric variable name. If a string function is defined,
the function name must be a valid string variable.

The function name is always directly preceded by FN and is
limited to one line.

The variables that appear in the function definition are used
only to define the function. They do not affect program
variables that may have the same name. When the function is
called, the arguments in the calling statement are exchanged on a
one-for-one basis with the parameters in the function-defining
statement.

A DEF FN statement must be executed before the function it
defines can be called. If a function is called before it is
defined, an error message occurs. DEF FN is illegal in direct
mode.

EXAMPLE

40 DEF FNABC (X,Y) = X*Y
50 COST FNABC (RATE,TIME)
60 AREA = FNABC (H,W)

EXPLANATION

Statement 40 defines a function,
FNABC, to be the value of X
multiplied by Y.

Statement 50 assigns to the
variable COST the value of the
function using the variables
RATE and TIME. COST equals the
value of RATE multiplied by TIME.

Statement 60 assigns AREA the
value of H multiplied by W.

2-11

DEF

DEF

DESCRIPTION

Form of Statement

10 DEF variable ~, initial
letter(s) of variables included in
the declaration or range(s) of
letters --

The DEF statement declares variable types.

Type must be:

INT for integer variables
SNG for single precision variables
DBL for double precision variables
STR for string variables

DEF statements may declare a range of variables to be a
particular type by including the initial letters of these
variables in the DEF statement.

If no type-declaration statements are encountered, all variables
without declaration characters are assumed to be single-precision
variables.

EXAMPLE

20 DEFDBL A-G

40 DEFSTR X

50 DEFINT A-C, w-z

2-12

EXPLANATION

Defines all variables beginning
with the letters A through G as
double precision.

Declares that all variables
beginning with the letter X as
string variables.

Declares all variables beginning
with the letters A, B, C, W, X,
Y, or Z as integer variables.

DELETE

DELETE Form of Statement

DELETE line number

or

DELETE line number-line number

or

DELETE -line number

DESCRIPTION

The DELETE command deletes program lines and returns to BASIC
command level. If the line number does not exist, an error.
message results.

EXAMPLE

DELETE 40

DELETE 40 - 80

DELETE - 100

EXPLANATION

Deletes line 40 of program
currently in memory.

Deletes lines 40 through 80 of the
program currently in memory.

Deletes all lines up to and
including line 100 of the program
currently in memory.

2-13

DIM

DIM

DESCRIPTION

Form of Statement

10 DIM array name [array size] ,
array name [array size] •••

The DIM statement specifies the maximum number of elements for an
array.

It sets all elements of the specified numeric arrays to a value
of 0 and all elements of string arrays as having no value.

EXAMPLE

10 DIM A [5]
20 FOR I = 1 to 5
30 READ A [I]
40 NEXT I
50 DATA 5, 6, 8, 10, 100

2-14

EXPLANATION

The DIM statement specifies that
variable A has a maximum of 5
elements.

The remainder of the program
reads the values for each of the
elements.

EDIT

EDIT Form of Statement

EDIT line number

DESCRIPTION

The EDIT command enters edit mode at the specified line number.
In edit mode it is possible to edit portions of a line without
retyping the entire line. Upon entering edit mode, BASIC types
the line number of the line to be edited, then it types a space
and waits for an edit mode subcommand.

Edit mode subcommands move the cursor or insert, delete, replace,
or search for text within a line. The subcommands are not
echoed. Most edit mode subcommands can be preceded by an
integer, which executes the command that number of times. The
default preceding integer is 1.

The subcommands within edit mode allow the user to:

move the cursor
insert text
delete text
find text
replace text
end and restart edit mode

NOTE

In the descriptions that follow, <ch> represents any
character, <text> represents a string of characters of
arbitrary length, [i] represents an optional integer
(the default is 1), and GO represents the GO key.

The subcommands used in the BASIC edit mode are shown in the
following table:

ACTION SUBCOMMANDS

moving the cursor <space>

BACKSPACE

DESCRIPTION OF SUBCOMMAND

Use the space bar to move the
cursor to the right.
[i]<space> moves the cursor i
spaces to the right.
Characters are printed as you
move.

In edit mode, [i] BACKSPACE
moves the cursor i spaces to
the left. Characters are
printed as you move.

2-15

EDIT (Cont.)

ACTION

insert text

delete text

2-16

SUBCOMMANDS

I

x

D

DESCRIPTION OF SUBCOMMAND

inserts text beginning at the
cursor position. I<text> GO
inserts <text> at the current
cursor position. The
inserted characters are
displayed on the screen. To
terminate insertion, press
GO. If RETURN is pressed
during an Insert command, the
effect is the same as
pressing GO and then RETURN.
During an Insert command,
BACKSPACE can be used to
delete characters to the left
of the cursor. If you try to
insert a character that makes
the line longer than the
maximum permitted length,
then the character is
ignored.

inserts text at the end of
the specified line.

The X subcommand is used to
extend the line. X moves the
cursor to the end of the
line, goes into insert mode,
and allows insertion of text
as if an Insert command was
given. When you are finished
extending the line, press
RETURN.

deletes individual
characters. [i] D deletes i
characters to the right of
the cursor. The deleted
characters are echoed between
backslashes, and the cursor
is positioned to the right of
the last character deleted.
If there are fewer than i
characters to the right of
the cursor, iD deletes the
remainder of the line.

ACTION SUBCOMMANDS

delete text (cont.) H

find text S

K

EDIT (Cont.)

DESCRIPTION OF SUBCOMMAND

deletes all characters from
the cursor position to the
end of the line. H deletes
all characters to the right
of the cursor and then
automatically enters insert
mode. H is useful for
replacing statements at the
end of a line.

searches for a specified
character. The subcommand
[i]S<ch> searches for the ith
occurrence of <ch> and
positions the cursor before
it. The character at the
current cursor position is
not included in the search.
If <ch> is not found, then
the cursor stops at the end
of the line. All characters
passed over during the search
are printed.

searches for a specified
character and deletes all
characters ~assed over. The
subcommand Li]S<ch>, except
all characters passed over in
the search are deleted. The
cursor is positioned before
<ch>, and the deleted
characters are enclosed in
backslashes.

2-17

EDIT (Cont.)

ACTION

replace text

end and restart
edit mode

2-18

SUBCOMMANDS

C

RETURN

E

Q

L

A

DESCRIPTION OF SUBCOMMAND

changes next character(s) to
specified character(s). The
Subcommand C<ch> changes the
next character to <ch>. To
change the next i characters,
use the subcommand iC,
followed by i characters.
After the ith new character
is typed, change mode is
exited and you return to edit
mode.

Pressing RETURN prints the
remainder of the line, saves
the changes you made, and
exits edit mode.

The E subcommand has the same
effect as RETURN, except the
remainder of the line is not
printed.

The Q subcommand returns to
BASIC command level, without
saving any of the changes
that were made to the line
during edit mode.

The L subcommand lists the
remainder of the line (saving
any changes made so far) and
repositions the cursor at the
beginning of the line, still
in edit mode. L is usually
used to list the line when
you first enter edit mode.

The A subcommand lets you
begin editing a line over
again. It restores the
original line and repositions
the cursor at the beginning.

EDIT (Cont.)

NOTE

If BASIC receives an unrecognizable command or illegal
character while in edit mode, it sounds an alarm and
the command or character is ignored.

Syntax Errors: When a syntax error is encountered during
execution of a program, BASIC automatically enters edit mode at
the line that caused the error. For example:

10 K = 2(4)
RUN
?Syntax error in 10
10

When you finish editing the line and type RETURN (or the E
subcommand), BASIC reinserts the line, which causes all variable
values to be lost. To preserve the variable values for
examination, first exit edit mode with the Q subcommand. BASIC
returns to command level, and all variable values are preserved.

CODE-A: To enter edit mode on the line you are currently typing,
type CODE-A. BASIC responds with a RETURN, an exclamation point
(1), and a space. The cursor is positioned at the first
character in the line. Proceed by typing an edit mode
subcommand.

EXAMPLE

EDIT 40

NOTE

Remember, if you just entered a line and wish to go
back and edit it, the command "EDIT." enters edit mode
at the current line. (the line number symbol" "
always refers to the current line in BASIC.)

EXPLANATION

Enters edit mode at line 40 of the
program currently in memory.

2-19

END

END Form of statement

900 END

DESCRIPTION

The END statement terminates program execution, closes all files,
and returns to the command level.

EXAMPLE

950 IF NUM = 999 THEN END
960 NUM NUM + I

990 GO TO 950

2-20

EXPLANATION

Statement number 950 tests if the
variable NUM is equal to 999. If
it is, the program terminates.

ERASE

ERASE Form of statement

100 ERASE array name, array
name, •••

DESCRIPTION

The ERASE statement eliminates specified arrays from a program.

Arrays may be redimensioned after they have been eliminated by an
ERASE statement, or the previously allocated array space in
memory can be used for other purposes.

If an attempt is made to redimension an array that was not
erased, an error message results.

EXAMPLE

10 DIM A [20], B[lOO]
20 ERASE B
30 DIM B [5]

EXPLANATION

Arrays A and B are dimensioned with
20 and 100 elements, respectively.

Array B is then eliminated by an
ERASE statement.

Array B is then redimensioned with
5 elements.

2-21

ERR/ERL

ERR/ERL Form of statement

100 ERR errorcode

120 ERL linenumber

DESCRIPTION

The ERR and ERL variables are used during an error-trapping
routine. The variable ERR contains the error code for the error,
and the variable ERL contains the number of the line in which the
error was detected.

The ERR and ERL variables can not be assigned directly by the
user. If you wish to assign a specific integer to a specific
error condition, the ERROR command must be used. Once the
integer is assigned, the ERR and ERL variables can be used to
trap the condition.

The ERR and ERL variables are used in IF ••• THEN statements to
direct program flow in the error-trap routine.

EXAMPLE

110 ON ERROR GOTO 140
120 INPUT "CURRENT COST"; C

130 IF C>BUDGET THEN ERROR 215
135 GOTO 160
140 IF ERR = 215 THEN PRINT

"COST IS OVER BUDGET"
150 IF ERL = 130 THEN RESUME 120
160 END

2-22

EXPLANATION

The user defines an error in
statement 130.
If this error code is
encountered in line 140,
the "cost over budget" message
is displayed.
If error is encountered at
line 130, program execution
resumes at line 120.

ERROR

ERROR Form of statement

20 ERROR integer expression

DESCRIPTION

The ERROR command allows the user to simulate the occurrence of a
BASIC error or create a new error message.

The integer expression of the ERROR command must be greater than
zero and less than 255.

To define a new error message, use a value that is greater than
any used by BASIC's error messages. This user defined error can
then be handled in an error trap routine. See examples below.

EXAMPLE

10 A= 10
20 B = 5
30 ERROR A + B
40 END

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET?";B

130 IF B)5000 THEN ERROR 210

400 IF ERR=210 THEN PRINT
"HOUSE LIMIT IS $5000"

410 IF ERL=130 THEN RESUME 120

EXPLANATION

This program results in the
error message:

Fatal Error: String too long in
line 30.

This is BASIC error message
number 15.

When the value of B is greater
than 5000, the program will go to
the error-trapping routine.

In line 400, the error message'is
printed, and then execution
resumes at line 120.

2-23

FIELD

FIELD Form of Statement

240 FIELD #file number, field width
AS string varIabIe,-----
field width AS
strIng-varIable, . • .

DESCRIPTION

FIELD statements allocate space for variables in a random file
buffer.

FIELD statements must precede GET commands or PUT commands when
using random access files.

The file number is the number under which the file was OPENed.
Field width is the number of characters to be allocated to string
variable.

The total number of bytes allocated in a FIELD statement must not
exceed the record length that was specified when the file was
OPENed, or an error message occurs.

Any number of FIELD statements can be executed for the same file,
and all FIELD statements that were executed are in effect at the
same time.

EXAMPLE

NOTE

Do not use a FIELDed variable name in an INPUT or LET
statement. Once a variable name is FIELDed, it points
to the correct place in the random file buffer. If a
subsequent INPUT or LET statement with that variable
name is executed, the variable's pointer is moved to
string space.

EXPLANATION

240 FIELD #1, 10 AS ID$, 20 AS PR$ Statement 240 allocates
space in the random file
buffer for data to be
moved to/from file 1.

2-24

The statement allocates
the first 10 positions
(bytes) in the random file
buffer to the string
variable ID$. The next 20
positions (bytes) are
allocated to PR$.

FOR ••• NEXT

DESCRIPTION

FOR ... NEXT

Form of Statement

10 FOR variable = initial value TO
final va~ --- ---

20 FOR variable = initial value TO
final value, STEP
I"iiC'r'9m en=r-

FOR ..• NEXT statements allow a series of instructions to be
performed a given number of times.

The initial values and final values may be numbers, expressions
or variables.

The variable is used as a counter and is incremented by the
amount specified by STEP. A check is performed to see if the
value of the counter is greater than the final value. If it is
not greater, BASIC branches back to the statement after the FOR
statement and the process is repeated. If it is greater,
execution continues with the statement following the NEXT
statement.

The default increment is one. If step is negative" the final
value of the counter is set to be less than the initial value.
The counter is decremented each time through the loop and the
loop is executed until this counter is less than the final value.

For •.. Next loops can be nested, but each loop must have a unique
variable name as its counter. Also, the NEXT statement for the
inside loop must appear before the NEXT statement for the outside
loop.

The variables in the NEXT statement can be omitted, in which case
the NEXT statement matches the most recent FOR statement. If a
NEXT is encountered before its corresponding FOR statement, an
error message results.

EXAMPLE

20 FOR INIT = 1 to 5
30 PRINT INIT;
40 NEXT INIT

10 K=10
20 FOR I = 1 to K STEP 2
30 PRINT I;
40 NEXT I

EXPLANATION

The statements in this
FOR •.• NEXT loop display the
values 1 through 5

The statements in this loop
display the numbers 1, 3, 5,
7, 9.

2-25

GET

GET Form of Statement

150 GET #file number

200 GET #file number, record number

DESCRIPTION

A GET statement reads a record from a random disk file into the
random buffer. The file number is the number under which the
file was OPENed.

The record number specifies the record to be read. An invalid
record number results in an error message.

If the record number is not specified, the next record after the
last GET is read into the random buffer.

EXAMPLE

60 GET #1, 24

2-26

EXPLANATION

Statement 60 reads record number 24
from random disk file 1.

GOSUB ... RETURN

GOSUB ••• RETURN Form of Statement

150 GOSUB line number

line number

410

420 SUBROUTINE

430

440 RETURN

DESCRIPTION

The GOSUB command causes program execution to branch to the
subroutine that starts at the line number indicated in the
statement. When the statements in .the subroutine are completed
and the RETURN instruction is met, execution of the program
continues at the line number that follows the nearest GOSUB
statement.

EXAMPLE

10 GOSUB 50
20 PRINT "THESE STATEMENTS":
30 PRINT "WILL BE DISPLAYED";
40 PRINT "ON REENTRY TO PROGRAM"
45 END
50 PRINT "YOU HAVE JUST";
60 PRINT "ENTERED A SUBROUTINE"
70 RETURN

EXPLANATION

This example branches to line
50 and displays:

YOU HAVE JUST ENTERED A
SUBROUTINE

Control then transfers back to
line 20 and displays the
message:

THESE STATEMENTS WILL BE
DISPLAYED ON REENTRY TO PROGRAM

2-27

GOTO

GOTO Form of Statement

10 GOTO line number

DESCRIPTION

The GOTO causes control to branch to the indicated line number.
Program action then proceeds from that point in the program
sequence.

EXAMPLE

10 SUM = 0
20 NUM = 1
30 SUM = NUM + SUM
40 PRINT SUM
50 IF SUM>lO GOTO 70
60 GOTO 20
70 END

2-28

EXPLANATION

This example calculates and displays
the value of the variable SUM.
If the value is greater than 10,
the program terminates. Statement
60 transfers control back to statement
20, and the sequence of calculating and
displaying SUM continues. .

IF ••• THEN

IF ••• THEN ••• ELSE

IF ••• GOTO

IF ••• GOTO ••• ELSE

DESCRIPTION

IF ... THEN

Form of Statement

20 IF expression THEN statement

30 IF eXEression THEN line number

40 IF eXEression THEN statement ELSE
statement

50 IF eXEression THEN line number
ELSE line number

60 IF eXEression GOTO line number

70 IF expression GO TO line number
ELSE statement

80 IF expression GOTO line number
ELSE line number----

IF statements conditionally direct the flow of a program. When
the expression evaluated in the statement is true, the statement
or line number following the THEN or GOTO portion of the
statement is executed. If the expression evaluated is not true,
control passes to either the next executable statement or to the
ELSE portion of the statement, if it exists~ THEN and ELSE
statements may use a combination of statements and line numbers.

Nesting of IF Statements:

IF ••• THEN ••• ELSE statements can be nested. Nesting is limited
only by the length of the line. For example,

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not contain the same
number of ELSE and THEN clauses, then each ELSE is matched with
the closest unmatched THEN. For example,

IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "A<>C"

does not print "A<>C" when A<>B.

2-29

IF ... THEN (Cont.)

If an IF ••• THEN statement is followed by a line number in direct
mode, an "Undefined line" error message results unless a
statement with the specified line number was previously entered
in the indirect mode.

NOTE

When using IF to test equality for a value that
is the resul t of a floating-point computation,
remember that internal representation of the
value cannot be exact. Therefore, the test
should be against the range over which the
accuracy of the value can vary. For example, to
test a computed var iable A against the value
1.0, use:

IF ABS (A-l.0)<1.0E-6 THEN

This test returns true if the value of A is 1.0 with a relative
error of less than 1.0E-6.

EXAMPLE

60 IF A>B THEN PRINT "A is
GREATER THAN B" ELSE PRINT "A is
LESS THAN OR EQUAL TO B"

2-30

EXPLANATION

This statement evaluates the
expression A is greater than B
(A>B). If true, the message,
"A is GREATER THAN B" is
displayed. If not true, the
other portion of the statement
displays:

A is LESS THAN OR EQUAL TO B

INPUT

DESCRIPTION

INPUT

Form of Statement

10 INPUT variablel, variable2, •••

or

20 INPUT "Prompt message";
variablel, variable2,.

The INPUT statement causes the program to pause while the user
enters the variables requested in the statement. The INPUT
statement causes a question mark to appear on the video display.

When the form of the INPUT includes a prompt message, such as
statement 20 above, the message is displayed before the question
mark.

The variables in the list can be numeric or string variable names
including subscripted variables. The type of each data that is
input must correspond with the type specified by the variable
name.

Responding to INPUT with too many or too few items, or with the
wrong type of value (for example, numeric instead of string),
causes the message "?Redo from start" to be printed. No
assignment of input value is made until an acceptable response is
given.

EXAMPLE EXPLANATION

10 INPUT VAR1,VAR2
20 SUM=VAR1+VAR2
30 PRINT SUM

10 INPUT "ENTER TWO VALUES";
VAR1,VAR2

20 SUM=VAR1+VAR2
30 PRINT "THE SUM IS";SUM

This program prompts the user with
a question mark. When the user'
enters two numbers, the values are
assigned to VAR1 and VAR2
respectively. The program then
displays their sum.

This program produces the same
result as the program above but
prompts the user ENTER TWO VALUES.
The result is preceded by:

THE SUM IS

2-31

INPUT#

INPUT'

DESCRIPTION

Form of Statement

100 INPUT # file number, variablel,
varIable2, •

The INPUT # statement reads data from a sequential disk file.
The values read from the indicated file number are assigned to
the variables which are listed as part of the statement. The
file number must agree with the file number of the OPEN
statement.

The data items in the file should appear just as they would if
data were being typed in response to an INPUT statement. With
numeric values, leading spaces, RETURN's, and BOUND's are
ignored. The first character encountered that is not a space,
RETURN, or BOUND is assumed to be the start of a number. The
number terminates on a space, RETURN, BOUND, or comma.

If BASIC is scanning the sequential data file for a string item,
then leading spaces, RETURNs, and BOUNDS are also ignored. The
first character encountered that is not a space, RETURN, or BOUND
is assumed to be the start of a string item. If this first
character is a quotation mark ("), then the string item consists
of all characters read between the first quotation mark and the
second. Thus, a quoted string cannot contain a quotation mark as
a character. If the first character of the string is not a
quotation mark, then the string is an unquoted string, and
terminates on a comma, RETURN, or after 255 characters are read.
If end of file is reached when a numeric or string item is being
INPUT, the item is terminated.

EXAMPLE

210 OPEN "I", #1, "DATA"
220 INPUT #1, A, B, C

2-32

EXPLANATION

Statement number 220 reads three
values from file number 1 and assigns
them to the program variables A, B,
and C. The file number (#1) is the
file opened in statement 210.

KILL

KILL Form of Statement

50 KILL "filename"

DESCRIPTION

The KILL statement deletes a file from the disk. The "filename"
can be a program file or a sequential or random access data file.
The KILL statement may only be used to delete a disk file not
currently open.

An error message results if a KILL statement is given for a file
currently open or for a nonexistent file.

EXAMPLE

400 KILL "MYDATA1"

EXPLANATION

This statement deletes the file
MYDATA1 from the disk.

2-33

LET

LET Form of Statement

10 LET variable = expression

or

20 variable = expression

DESCRIPTION

The LET statement assigns the value of an expression
variable. The LET portion of the statement is optional.
variable, equal sign, and expression are sufficient
assignment statements.

to a
The
for

EXAMPLE

10 LET A=lO
20 LET B = 5
30 LET SUM=A+B

100 A=lO
120 B=5
130 SUM=A+B

2-34

EXPLANATION

Each of these statements assigns a
value to a variable.

Statement 10 assigns the value 10 to
the variable A.

Statement 20 assigns the value 5 to
the variable B.

Statement 30 assigns a value that
results from the expression A + B to
the variable SUM. In this example,
SUM is assigned the value 15.

Statements 100, 120, and 130 perform
the same actions.

LINE INPUT

DESCRIPTION

LINE INPUT

Form of Statement

110 LINE INPUT string variable

III LINE INPUT "prompt string";
string variable

The LINE INPUT statement inputs an entire line (up to 254
characters) and assigns it to a string variable. The second form
of the LINE INPUT statement provides a message on the video
display before the line to be entered.

A LINE INPUT can be escaped by typing CANCEL. BASIC returns to
command level and types "OK". Typing CONT resumes execution at
the LINE INPUT.

EXAMPLE

10 REM USING THE LINE INPUT statement
20 LINE INPUT "ENTER CUSTOMER

INFORMATION"; A$
30 PRINT A$

EXPLANATION

This program displays the
following message at the
video display:

ENTER CUSTOMER INFORMATION

The user can then enter
the required customer
information in the form:

ABC CORP ACCOUNT NO. 1234

All this information is
assigned to the string
variable A$.

Statement 30 displays:

ABC CORP ACCOUNT NO. 1234

2-35

LINE INPUT#

LINE INPUT I

DESCRIPTION

Form of Statement

230 LINE INPUT # file number,
string variable

The LINE INPUT # statement reads an entire line (up to 254
characters) from a sequential disk file and assigns it to a
string variable.

The.file number must agree with the file number of the OPEN
statement.

EXAMPLE

10 OPEN "0",#1, "ACCTS"
20 LINE INPUT "ENTER

CUSTOMER INFORMATION",A$
30 PRINT #1, A$

40 CLOSE #1
50 OPEN "I",#l,"ACCTS"
60 LINE INPUT #l,B$
70 PRINT B$
80 CLOSE #1

2-36

EXPLANATION

This example creates the
sequential file ACCTS. The user
then asked in statement 20 to
ENTER CUSTOMER INFORMATION. The
following is an example entry
that is assigned to variable A$.

ABC CORP, ACCOUNT NO. 1234

This information is then written
to sequential file number 1 under
the file name ACCTS.

The file is closed in statement
40 and reopened in statement 50
so that it can be read.

Statement 60 reads the entire
line of information and assigns
it to the string variable B$.
The following is displayed when
line 70 is executed.

ABC CORP, ACCT NO 1234

Statement 80 closes the
sequential file.

LIST

LIST Form of Statement

LIST

LIST line number

LIST line number - line number

LIST line number-

LIST -line number

DESCRIPTION

The LIST command lists all or part of a program currently in
memory.

The first form lists the entire program.

The second form lists a specified line number.

The third form lists the program lines in the specified range.
If only the first number of the range is specified, that line and
all following program lines are listed. If only the second
number of the range is specified, all lines from the beginning of
the program up to and including the line specified are listed.

BASIC always returns to command level after a LIST is executed.

EXAMPLE

LIST

LIST 100

LIST 100 - 500

LIST 100 -

LIST - 500

EXPLANATION

Lists the entire program.

Lists line 100 of the program.

Lists line 100 through 500 of the
program

Lists all lines from statement 100
to the end of the program.

Lists all lines from the beginning
statement up to and including line
500 of the program.

2-37

LLIST

LLIST Form of statement

LLIST

LLIST line number

LLIST line number - line number

LLIST line number-

LLIST -line number ------

DESCRIPTION

The LLIST command lists all or part of a program currently in
memory on the line printer.

The first form lists the entire program on the line printer. The
second form lists only the specified line number on the line
printer. The third form lists the specified range of program
lines on the line printer.

If only the first number of the range is specified, that line and
all following program lines are listed. If only the second
number of the range is specified, all lines from the beginning of
the program up to and including the line specified are listed.

LLIST assumes 132 character wide printer and always returns to
command level after an LLIST is executed.

EXAMPLE

LLIST

LLIST 100

LLIST 100 - 500

LLIST 100 -

LLIST - 500

2-38

EXPLANATION

Lists the entire program on the
line printer.

Lists line 100 of the program on
the line printer.

Lists lines 100 through 500 of the
program on the line printer.

Lists all lines from statement 100
to the end of the program on the
line printer.

Lists all lines from the beginning
statement up to and including line
500 of the program on the line
printer.

LOAD

LOAD Form of Statement

LOAD "filename"

or

LOAD "filename", R

DESCRIPTION

The LOAD command brings a program from disk into memory. This
option closes all open files and deletes all variables and
program lines currently residing in memory before it loads the
designated program.

If the second form of the command is used, the program is run
immediately after it is brought into memory. This option also
keeps all open data files open. LOAD, with option R, may be used
to chain programs.

EXAMPLE

LOAD "MYPROG"

LOAD "MYPROG", R

EXPLANATION

Brings the program MYPROG into
memory.

Brings the program MYPROG into
memory and runs the program once it
is loaded.

2-39

LPRINT

LPRINT Form of statement

150 LPRINT

150 LPRINT list of expressions

DESCRIPTION

The LPRINT statement prints data on the line printer. The values
may be numeric or string. String expressions must be enclosed in
quotation marks.

LPRINT assumes that the printer width is 132 characters but can
be modified by the use of the WIDTH command.

LPRINT with no variables or expressions listed prints a blank
line.

EXAMPLE

10 A=5
20 B=lO
30 LPRINT A,B,A+B

2-40

EXPLANATION

This displays the values of vari
ables A and B and the value which
results from the expression A + B

The result of statement 30 would be
5 10 15

LPRINT USING

DESCRIPTION

LPRI NT USI NG

Form of Statement

200 LPRINT USING "formatting expression";
list of expressions

The LPRINT USING statement prints data on the line printer using
a user-supplied format.

The formatting options are the same as those for the PRINT USING
command. See the PRINT USING section for a listing of formatting
expressions and instructions for their use.

EXAMPLE

10 A=lO
20 B=5.8
30 LPRINT USING "##.##";

A,B,A+B

EXPLANATION

Statement 30 displays the values of
variables A and B and also the
results of the expression A+B on
the line printer. These values are
displayed in the specified format.

The result of statement 30 is in
the format:

10.00 5.80 15.80

2-41

LSET AND RSET

LSET and RSET

DESCRIPTION

Form of Statement

150 LSET string variable
expression

180 RSET string variable
expression

string

string

Both the LSET and the RSET commands are used to move data into a
random file buffer before being stored in a random access file.

LSET left-justifies the string variable in the field allocated in
the buffer.

RSET right-justifies the string variable in the field allocated
in the buffer.

If the string is too long for the field, characters are dropped
from the right. Numeric values must be converted to strings
before they are LSET and RSET by using the MKI$, MKS$ and MKD$
functions. LSET and RSET can also be used with a nonfielded
string variable to left- or right-justify a string in a given
field.

EXAMPLE

100 N$ = "JANE DOE"
110 A$ = SPACE$(20)
120 rset A$=N$
130 PRINT A$

10 N$ = "BASIC REFERENCE MANUAL"
20 A$ = SPACE$(20)
30 RSET A$=N$
40 PRINT A$

150 LSET A$=MKS$ (RECVBL)

2-42

EXPLANATION

This example right-justifies
the string "JANE DOE" in a 20-
character field.

This example right-justifies
the string N$ and truncates it
as follows:

BASIC REFERENC MANUAL

This statement performs the
required conversion of a
numeric variable (RECVBL) to
a string and then moves the
resulting string variable A$
to the random buffer and left
justifies it.

MERGE

MERGE Form of Statement

MERGE "file name"

DESCRIPTION

The MERGE sta~ement merges the specified disk file into the
program currently in memory. If any of the line numbers of the
disk file are the same as the line numbers of the program in
memory, the lines from the disk file replace the program lines.
Lines different from the program statement numbers are merged
according to line number order.

The "file name" is the name used when the file was SAVEd. The
file must have been SAVEd in ASCII format, or an error message
results.

BASIC always returns to command level after executing a f1ERGE
command.

EXAMPLE

MERGE "ADDON"

EXPLANATION

This statement merges the disk file
ADDON with the program currently in
memory.

2-43

MID$

MID$

DESCRIPTION

Form of Function

10 MID$ (string variablel,
beginning position in string
of replacement) = string
variable2

20 MID$ (string variablel,
beginning position in string
of replacement, number of
of characters from string
variable2 to be used)
string variable2

The MID$ function returns a character string which is a portion
of the string expression specified in the function.

If the beginning position specified is greater than the length of
the furnished string expression, the function returns a null
string.

See LEFT$, RIGHT$, and the MID$ command.

EXAMPLE: MID$ Function

10 W$
20 D$

2-44

IS unMonTueWedThuFriSat"
MID$(W$,D,3)

MID$

DESCRIPTION

MID$

Form of Statement

10 MID$ (string variablel, beginning
position in string of replacement)
= string variable2

20 MID$ (string variablel, beginning
position in string of replacement,
number of characters from string
variable2 to be used)
string variable2

The MID$ command replaces a portion of one string expression with
another string expression. When the number of characters from
the second string value is not entered the entire second string
is used up to the length of the original string expression.

See LEFT$, RIGHT$, and the MID$ function.

EXAMPLE

10 A$ = "SALEM, OR"
20 MID$ (A$,8)="MA"
30 PRINT A$

100 A$="SOUTH DAKOTA"
110 MID$(A$,1,3)="NORTH"
120 PRINT A$

EXPLANATION

Statement 20 replaces the
portion of the original string
beginning in the eighth position with
the entire new string.

Statement 30 now displays:

SALEM, MA

Statement 110 replaces the portion of
the original string beginning in the
first position with the new string
for 3 characters. Statement 120 now
displays NORTH DAKOTA.

2-45

NAME

NAME

DESCRIPTION

Form of Statement

NAME "old file name" A$
"new file name"

The NAME command renames a file that has been saved on disk. The
old file name must exist and the new file name must not exist to
change file names.

EXAMPLE

NAME "MYFILE"AS"LEDGER"

2-46

EXPLANATION

This command renames the file
called MYFILE to a new file called
LEDGER. All file characteristics
other than the name remain the
same.

NEW

NEW Form of Statement

NE\{

DESCRIPTION

The NEW command deletes a program from memory and returns BASIC
to command level.

EXAMPLE

LOAD "MYPROG"
OK
AUTO
10* <CANCEL)
NEW
AUTO
10

EXPLANATION

The program MYPROG is loaded in
memory. When the AUTO command is
entered, 10* indicates that this
line number was already in memory.
AUTO is then cancelled and memory
is cleared with the NEW command.
The AUTO command now begins
numbering program lines with 10.

2-47

ON ERRORGOTO

ON ERROR GOTO Form of Statement

10 ON ERROR GO TO line number

DESCRIPTION

The ON ERROR GOTO statement directs program flow to the first
line of an error-handling routine. All subsequent errors shift
program action to the error-handling routine.

To disable error trapping, execute an ON ERROR GO TO O.
Subsequent errors print an error message and halt program
execution. An ON ERROR GOTO 0 statement that appears in an
error-trapping subroutines causes BASIC to stop and print the
error message for the error that caused the trap. It is
recommended that all error-trapping subroutines execute an ON
ERROR GOTO 0 if an error is encountered for which there is no
recovery action.

EXAMPLE

NOTE

If an error occurs during execution of an
error-handling subroutine, the BASIC error
message is printed and execution terminates.
Error trapping does not occur within the
error-handling subroutine.

EXPLANATION

50 ON ERROR GOTO 1500 When an error is encountered,
control shifts to line 1500, the
first line of an error-handling
routine.

2-48

ON ••• GOSOB

DESCRIPTION

ON ... GOSUB

Form of Statement

100 ON expression GOSUB line
number list

The ON ••. GOSUB command causes a program to branch to one of the
specified subroutines. Each line number iri the statement must
refer to the first line of a subroutine.

The expression controls which line number from the list of line
numbers will be the object of the branch. If the expression is
the integer 3, control passes to the third line number in the
list.

When the expression is a fraction, it is rounded to the nearest
integer. If the expression is 0 or greater than the number of
entries in the line number list, control passes to the next
executable statement. If the value of the expression is
negative, or greater than 255, an error message results.

EXAMPLE

40 ON A GOSUB 100,300,550,1400

EXPLANATION

If A equals 1, control transfers
to line 100
If A equals 2, control transfers
to line 300
If A equals 3, control transfers
to line 550
If A equals 4, control transfers
to line 1400

When the subroutine has been
executed, control returns to the
statement immediately following
the ON GOSUB statement.

2-49

ON ... GOTO

ON ••• GOTO

DESCRIPTION

Form of Statement

10 ON expression GOTO
line numoer list

The ON ... GOTO command branches the program to one of the
specified line numbers.

The expression controls which line number the program will branch
to. If the expression is the integer 2, control passes to the
second line number in the list of line numbers.

When the expression is a fraction, it is rounded to the nearest
integer. If the expression is 0 or greater than the number of
entries in the number list, control passes to the next
executable statement. If the value of the expression is negative
or greater than 255, an error message results.

EXAMPLE

50 M=4
55 N=2
60 ON M-N GOTO 100,200,300

2-50

EXPLANATION

Statement 60 evaluates the
expression M-N.

The resulting integer 2 transfers
control to statement number 200.

OPEN

OPEN

Form of Statement

100 OPEN "mode", #file number,
"file name"

200 OPEN "mode", #file number,
"file name",
record length

DESCRIPTION

The OPEN statement must precede any input or output using disk
files.

The mode must be one of the following:

"A" Output is to be appended to a sequential file

"0" Output is to a sequential file

"I" Input is from a sequential file

"R" Output to or input from a random access file

When using "R" mode, each record is written to the disk
before the next program statement is executed

"B" Output to or input from a random access file

When using "B" mode, each record is written to the disk
file some time before the file is closed, but not nec
essarily before the next program statement is executed.

"s" Input is from a random access file.

When using "s" mode, more than one program may use the
disk file at the same time.

The file number is an integer expression whose value is between
one and 15. The number is then associated with the file for as
long as it is open.

"filename" is a string variable having a maximum of 50
characters.

An optional record length may be specified for random access
files. The default record length is 128 characters. To change
the default record length, refer to "Invoking BASIC" in Section
1.

2-51

OPE N (Cont.)

EXAMPLE

100 OPEN "A",#2,"LEDGER"
200 OPEN "0",#1 ,"PAYABLE"
300 OPEN "I",#5,"RECEIVABLE"
400 OPEN "R",#3,"CUSTOMERS"
500 OPEN "S",#4,"MAIL LIST",248

2-52

EXPLANATION

Statement 100 opens a sequential
disk file LEDGER with file
number 2, so that data may be
appended to its existing
contents. Statement 200 opens
a sequential disk file PAYABLE
with fi Ie number one, so that
data may be written to i 1;. If
the file PAYABLE contains data,
it will be Ibst. Statement 300
opens a sequential disk file
RECEIVABLE with file number 5.
So that data may be read from
it.

Statement 400 opens random file
#3 named CUSTOMERS, for input or
output • The maximum record
length by default is 128
characters (bytes).

Statement 500 opens random file
#4, named MAIL LIST, for input.
The maximum record length is set
at 248 character (bytes).

OPTION BASE

OPTION BASE Form of Statement

10 OPTION BASE 1

20 OPTION BASE 0

DESCRIPTION

The OPTION BASE command sets the minimum value for array
subscripts. The default value is option base O.

Given the following dimension statement:

DIM A[5]

OPTION BASE 1 reserves space for these locations:

A[l] A [2] A[3] A[4] A [5]

OPTION BASE 0 reserves space for these locations:

A [0] A [1] A[2] A[3] A [4] A [5]

EXAMPLE EXPLANATION

10 OPTION BASE 1
20 DIM A[20],B[5]

Statement 10 sets the minimum
value for the subscripts in arrays
A and B at 1.

NOTE

Refer to the section that discusses the CHAIN
command for the effect chaining has upon
OPTION BASE.

2-53

OPTION COMMA

OPTION COMMA Form of Statement

10 OPTION COMMA [,S$]

DESCRIPTION

The input and output of numeric data lists during program
execution, OPTION COMMA changes the physical representation of
the following items:

1. Logical input delimiter, which separates data items in
the INPUT and WRITE statements

2. Logical comma, which is used by the -PRINT USING
statement when formatting numbers

3. Logcal currency symbol, which is used by the PRINT
USING statement when formatting numbers

4. Logical decimal point, which separates the integer and
fractional parts of floating-point numbers

If the optional string parameter is omitted or is the null
string, OPTION COMMA resets the above items to the following new
default values

Old Value New Value

Logical input delimiter
Logical comma
Logical currency symbol
Logical decimal point

comma
comma
dollar
period

slash
period
dollar
comma

If the optional string parameter is included and is not a null
string, OPTION COMMA resets the above items based on the first
four characters in the S$. If S$ contains fewer than four
characters, the new default values are used for the unspecified
items.

EXAMPLE

10 OPTION COMMA
20 INPUT X,Y
30 PRINT USING "$$##,##.##";X,Y
40 PRINT X,Y
50 WRITE X,Y

2-54

EXPLANATION

If the input was
12345,67/76543,21 then the
output will be $12.345,67
$76.543,21
12345,67 76543,21
12345,67 / 76543,21

OUT

DESCRIPTION

Form of Statement

100 OUT"B", port number,integer
expresslon

or

200 OUT"W", port number, integer
expression

OUT

The OUT command has two forms. OUT"B" s~nds a byte to a byte
port. In this form the port number must be an integer in the
range of a to 65535, and the integer expression must be in the
range of 0 to 255.

The second form of this command, OUT"W", sends a word to a word
port. Both the port number and the integer expression must be in
the range of 0 to 65535, and the port number must be even.

EXAMPLE

100 OUT "B",32,100
200 OUT "W",64,&HFFFF

EXPLANATION

statement 100 sends the byte
information to byte port 32.

Statement 200 sends the word
information concerning the
hexadecimal integer to port number
64.

2-55

POKE

POKE

DESCRIPTION

Form of Statement

100 POKE"B", single precision
pointer, integer
expression

200 POKE"\{", single precision
pointer, integer
expression

The two POKE statements differ in the value range of the integer
expression.

The first form, which writes a byte into the memory location
specified by the pointer, has an integer expression in the range
of 0 to 255.

The second form, which writes a word into the memory location
specified by the pointer, has an integer expression in the range
of 0 to 65535.

Both integer expressions are the data to be poked into the
specified memory location.

EXAMPLE

100 POKE"B",PTR(M%),&HFF
200 POKE"\{" ,PTR(N%) ,&HFFFF

2-56

EXPLANATION

Statement 100 "pokes" the byte
representation of the hexadecimal
variable into the memory location
specified by the pointer.

Statement 200 "pokes" the word
representation of the hexadecimal
variable into the memory location
specified by the pointer.

PRINT

PRINT Form of Statement

SO PRINT list of expressions

DESCRIPTION

The PRINT statement ouputs values to the video display. The
values may be numeric or string. String expressions must be
enclosed in quotation marks.

The list of expressions may be separated with commas or
semicolons.

Separating by semicolons displays each value immediately after
the last value. Separating by commas displays each value to be
displayed in the print zones. BASIC divides the line into print
zones of 14 spaces each. If the list of expressions is omitted,
a blank line is printed.

A question mark (?) can be used in place of the word "print" in a
Print statement.

EXAMPLE

10 A=S
20 B=lO
30 PRINT "THE SUM IS"iA+B

10 X = S
20 PRINT X+S,X-S,X>(-S} ,XXS
30 END

10 FOR X=l TO 3
20 J=J+S
30 K=K+IO
40 PRINT JiKi
SO NEXT X

EXPLANATION

This example displays the
following:

THE SUM IS lS

In this example, the commas print
each value at the beginning of the
next print zone

10 0 -1 0

In this example, the semicolons
print each value immediately after
the preceding value.

5 10 10 20 IS 30

2-S7

PRINT USING

PRINT USING

DESCRIPTION

Form of statement

20 PRINT USING "formatting expression";
list of expressions

The PRINT USING statement displays data using a format supplied
by the user. The formatting options are applied to either
numeric or string variables.

String fields may be formatted using one of the following
characters:

\n spaces\

&

Specifies that only the first character in the
given string is to be printed.

Specifies that 2+n characters from the string
are to be printed. If the backslashes are typed
with no spaces, two characters are printed; with
one space, three characters are printed, and so
on. If the string is longer than the field, the
extra characters are ignored. If the field is
longer than the string, the string is left
justified in the field and padded with spaces on
the right.

Specifies a variable length string field. When
the field is specified with "&", the string is
output exactly as input.

Numeric fields may be formatted using the following special
characters:

2-58

Represents each digit position. Digit positions
are always filled. If the number to be printed
has fewer digits than positions specified, the
number is right-justified (preceded by spaces)
in the field.

Can be inserted at any position in the field.
If the format string specifies that a digit is
to precede the decimal point, the digit always
is printed (as 0 if necessary). Numbers are
rounded as necessary.

PRINT USING (Cont.)

PRINT USING (Cont.)

+

**

$$

**$

At the beginning or end of the format string~
prints the sign of the number (plus or minus)
before or after the number.

At the end of the format field, prints negative
numbers with a trailing minus sign.

At the beginning of the format string, fills
leading spaces in the numeric field with
asterisks. The ** also specifies positions for
two more digits.

Prints a dollar sign to the immediate left of
the formatted number. The $$ specifies two more
digit positions, one of which is the dollar
sign. The exponential format cannot be used
with $$. Negative numbers cannot be used unless
the minus sign trails to the right.

At the beginning of a format string, combines
the effects of the above two symbols. Lead ing
spaces are filled with asterisks and a dollar
sign is printed before the number. **$
specifies three more digit positions, one of
which is the dollar sign.

To the left of the decimal point in a formatting
string, prints a comma to the left of every
third digit to the left of the decimal point. A
comma that is at the end of the format string is
printed as part of the string. A comma
specifies another digit position. The comma has
no effect if used with the exponential (A A A A)
format.

Can be placed after the digit position
characters to specify exponential format. The
four carats (or up-arrows) allow space for E+xx
to be printed. Any decimal point position can
be specified. The significant digits are left
justified, and the exponent is adjusted. Unless
a leading + or trailing + or - is specified, one
digit position is used to the left of the
decimal point to print a space or a minus sign.

2-59

PRI NT USI NG (Cont.)

PRINT USING (Cont.)

%

EXAMPLE

120 PRINT USING
150 PRINT USING
180 PRINT USING
210 PRINT USING
260 PRINT USING
280 PRINT USING
310 PRINT USING
320 PRINT USING
330 PRINT USING
340 PRINT USING
350 PRINT USING
360 PRINT USING

An underscore in the format string causes the
next character to be output as a literal
character.

The literal character itself can be an
underscore by placing n n in the format string.

If the number to be printed is larger than the
specified numeric field, a percent sign is
printed in front of the number. If rounding
causes the number to exceed the field, a percent
sign is printed in front of the rounded number.

EXPLANATION

n##.##n; 10.5 Video Display Shows: 10.50
n$$###.##n; 210.15 Video Display Shows: $210.15
n####,.##n; 1234.5 Video Display Shows: 1,234.50
n##.#-n;-10.5 Video Display Shows: 10.5-
n##.## n;234.56 Video Display Shows: 2.35E+02
n+##.#n; 10.5 Video Display Shows: +10.5
n+##.## n;-68.95 Video Display Shows: -68.95
n**#.#n;12.39 Video Display Shows: *12.4
n**$##.##n;2.34 Video Display Shows:***$2.34
n####,.##n;1234.5 Video Display Shows: 1,234.50
n1##.##1 n ;n12.34 n Video Display Shows: -1
n##.##n;111.22 Video Display Shows: %111.22

10 A$=nLOOKn:B$=nOUT n Video Display Shows:
30 PRINT USING n1 n ;A$;B$ LO
40 PRINT USING n\ \n;A$;B$ LOOK OUT
50 PRINT USING n\ \n;A$;B$;n11 n LOOK OUT 1 1

10 A$=nLOOKn:B$=nOUT n
20 PRINT USING n1 n iA$; Video Display Shows: LOUT
30 PRINT USING n&n;B$

2-60

PRINT#

PRINTi

DESCRIPTION

Form of Statement

180 PRINT # file number,list of
expressions

The PRINT# statement writes data to a sequential disk file.

The file number must agree with the file number used in the OPEN
statement for the specified file.

PRINT# writes data to a disk file just as it would appear on the
video display when a PRINT statement is used.

PRINT# does not compress data on the disk. An image of the data
is written to the disk, just as it would be displayed on the
video display with a PRINT statement. For this reason, take care
to delimit the data on the disk so that it is input correctly
from the disk.

In the list of expressions, numeric expressions should be
delimited by semicolons. For example,

PRINT#l,AiBiCiXiYiZ

(If commas are used as delimiters, the extra blanks that are
inserted between print fields are also written to disk.)

String expressions must be separated by semicolons in the list.
To format the string expressions correctly on the disk, use
explicit delimiters in the list of expressions.

For example, let A$="CAMERA" and B$="93604-1". The statement

PRINT#l,AiB

would write CAMERA93604-1 to the disk. Because there are no
delimiters, this could not be input as two separate strings. To
correct the problem, insert explicit delimiters into the PRINT#
statement as follows:

PRINT#l,A$i","iB$

2-61

PRI NT# (Cont.)

PRINT# (Cont.)

The image written to disk is

CAMERA, 93604-1

which can be read back into two string variables. If the strings
themselves contain commas, semicolons, significant leading
blanks, RETURN's, or BOUND's, write them to disk surrounded by
explicit quotation marks, CHR$(34).

For example, let A$="CAMERA, AUTOMATIC" and B$="
statement

PRINT#1,A$;B$

writes the following image to disk:

CAMERA, AUTOMATIC 93604-1

The statement

INPUT#1,A$,B$

93604-1 " • The

inputs "CAMERA" to A$ and "AUTOMATIC 93604-1" to B$. To separate
these strings properly on the disk, write double quotes to the
disk image using CHR$(34). The statement

PRINT#1,CHR$(34);A$;CHR$(34);CHR$(34);B$;CHR$(34)

writes the following image to disk:

"CAMERA, AUTOMATIC"" 93604-1"

The statement

INPUT#1,A$,B$

inputs ".CAMERA, AUTOMATIC" to A$ and. " 93604-1" to B$.

The PRINT# statement can also be used with the USING option to
control the format of the disk file. For example:

PRINT#1,USING"$$###.##,";J;K;L

2-62

EXAMPLE

10 A = 2
20 B = 3
30 PRINT #1, A; B; A+B

10 A$ = ACCOUNTS
20 B* = PAyABLE
30 PRINT #2, A$; ","; B$

PRI NT# (Cont.)

EXPLANATION

This program segment outputs
the following information to
sequential file number 1:

235

Notice that a later INPUT#
statement cannot separate the
three values.

This program writes the
following image to sequential
file number 2

ACCOUNTS,PAYABLE

If the comma enclosed in quotation
marks had been omitted, the image
ACCOUNTSPAYABLE would have been
written to the disk. This could
not be recovered as the two
variables A$ and B$.

2-63

PRI NT# USI NG

PRINT# USING

DESCRIPTION

Form of Statement

200 PRINT# file number USING
"formatting expression";
list of expressions

The PRINT# USING statement writes data to a sequential disk file
using a specified format.

All of the formatting expressions used in the PRINT USING
statement may be used with the PRINT# USING command.

See the PRINT USING section of this manual for a listing of
formatting expressions.

EXAMPLE EXPLANATION

230 OPEN "0", #2, "MYFILE"
240 A = 240
250 B = 860
260 C = 10.5
270 PRINT #2, USING "$$###.##"; A;B;C

2-64

This program writes the
following image to
sequential file number 2:

$240.00 $860.00 $10.50

PUT

PUT Form of Statement

250 PUT #file number

260 PUT #file number, record number

DESCRIPTION

The PUT statement takes a record from the random buffer and
writes it to a random disk file.

The file nu,mber of the PUT statement must agree with the file
number used in the OPEN statement for the specified file.

When the first form of the PUT statement is used, the record is
assigned the next available record number.

When the second form of the PUT statement is used, the record is
assigned the record number specified in the statement. The
maximum possible record number is 32767.

EXAMPLE

260 PUT #1, CODE

EXPLANATION

Writes a record to random disk file
number 1.

The record number for this record
is the value of CODE.

2-65

RANDOMIZE

RANDOMIZE Form of Statement

10 RANDOMIZE

20 RANDOMIZE seed value expression

DESCRIPTION

The RANDOMIZE command is used to establish a beginning point
(seed) for the random number generator. RANDOMIZE is used with
the RND function. Changing the seed value is necessary if a
random sequence of numbers is to be obtained.

If the seed value is not changed, the RND function returns the
same sequence of random numbers each time the program is run.

When the RANDOMIZE command is used without a seed value
expression, as in statement 10 above, BASIC asks for a seed value
by displaying the message:

RANDOM NUMBER SEED (-32768 to 32767)?

The use of the seed value expression allows the user to change
the sequence of random numbers generated during program
execution.

EXAMPLE

10 RANDOMIZE
20 PRINT RND

10 FOR I = 1
20 RANDOMIZE
30 PRINT RNDi
40 NEXT I

2-66

to 5
I

EXPLANATION OF EXAMPLES

This program first displays the message
RANDOMIZE NUMBER (-32768 to 32767)?

This program varies the seed value
from 1 to 5 and produces a random
number sequence.

READ

DESCRIPTION

READ

Form of statement

10 READ variable1, variable2,
varIabre~ .. ---------

The READ statement must be used along with DATA statements.

READ statements assign values to variables from DATA statements
in the order in which they occur in the DATA statement. If.a
program has more than one DATA statement, the statements are read
in order of their statement numbers.

READ statements assign numeric or string values to program
variables. Variables named in the READ statement must be the
same type as the value in the DATA statement, or an error message
results.

If the number of variables exceeds the number of elements in the
DATA statements, an error message results.

EXAMPLE

10 READ A, AB$, B
90 DATA 3.5, "CUSTOMER ACCT.

NO.", 1000

EXPLANATION

This program assigns the value
3.5 to variable A, the value
CUSTOMER ACCT. NO. to the variable
AB$, and the value 1000 to variable
B.

2-67

REM

REM Form of Statement

10 REM programmer-supplied remarks

20 REM 'programmer-supplied remarks

DESCRIPTION

The REM statement allows the programmer to enter explanatory
remarks in a program. REM statements have no effect on program
execution. When a program containing REM statements is run, the
remarks are not displayed. REM statements appear only in the
listing of the program.

REM statements may be used anywhere in a BASIC program. They can
aid p~ogrammers by labeling programs and program sections for
easy identification. They can also be used to comment on
particular statements within a program, by using a single
quotation mark instead of :REM at the end of a line.

EXAMPLE

10 REM THIS PROGRAM CALCULATES
THE MONTHLY

20 REM PAYMENTS ON LOANS
USING DIFFEREN

30 REM INTEREST RATES AND DIFFERENT
40 REM LOAN TERM
50 INPUT "ENTER THE INTEREST RATE";A

'A = Interest rate

2-68

EXPLANATION

These four REM statements
appear only in the program
listing. When this
program is run, the first
message the user sees is:

ENTER THE INTEREST RATE

RENUM

DESCRIPTION

RENUM

Form of Statement

RENUM

RENUM first line number to be used
in new --sequence-;--line nuiiiber
where renumbering is to
begin, increment

The RENUM command is used to renumber program lines. When
program line numbers are changed, all references to them are also
changed. For example, any line number references in GOSUB, GOTO,
ON .•. GOSUB, ON .•. GOTO, or ERL statements are changed.

When RENUM is used without declaring the first line number to be
used, renumbering begins with 10.

When RENUM is used without stating the line number where
renumbering is to begin, the entire program is renumbered.

When the interval of the line numbers is not specified, each line
number increases by 10.

RENUM cannot change the order of program lines, nor can it create
I ine numbers greater than 65529. An error message results in
both cases.

EXAMPLE

RENUM

RENUM 100, 10, 50

RENUM 300,20

EXPLANATION

Renumbers the entire program. The
first line is statement number 10,
and each following statement number
is incremented by 10.

This command renumbers the existing
program beginning at line number
10. This line is renumbered as
line number 100. Each following
line number is incremented by 50.

This command renumbers the existing
program. The first new line number
is 300 and increments each
following line by 20.

2-69

RESTORE

RESTORE Form of Statement

210 RESTORE

220 RESTORE line number

DESCRIPTION

The RESTORE command moves the data stack pointer to a specified
line. When no line number is used, the data stack pointer is
moved to the first value in the first DATA statement. Program
READ statements begin reading at this point and continue to read
values in the usual order. When a line number is specified in
RESTORE statements, the data stack pointer moves to the first
value in the line specified.

EXAMPLE

10 READ A,
20 RESTORE
30 READ G,
40 DATA 2,
50 DATA 8,

2-70

B, C, D,

H, I, J,
4, 6
10, 12

E, F

K, L

EXPLANATION

This program assigns the values
2, 4, 6, 8, 10, 12 to A, B, C, D,
E, F respectively. The RESTORE
command moves the data stack
pointer back to statement 40, and
the same sequence of values is
assigned to the variables G, H, I,
J, K, L.

RESUME

DESCRIPTION

Form of Statement

10 RESUME

20 RESUME 0

30 RESUME NEXT

40 RESUME line number

RESUME

The RESUME command is used in error-handling routines. It
continues program execution after an error recovery procedure.

A RESUME statement not in an error-handling routine displays the
error message RESUME without error.

The RESUME command may direct program flow in three ways:

1. When the form is RESUME or RESUME 0, program execution
resumes at the statement that caused the error.

2. When the form is RESUME NEXT, program execution resumes at
the statement that immediately follows the one that
caused the error.

3. \lhen the form is RESUME line number, program execution
resumes at the specified line number.

EXAMPLE

10 ON ERROR GOTO 500

500 IF ERR = 230 THEN PRINT
"Your ENTRY is TOO LARGE"

510 RESUME 80

EXPLANATION

On encountering an error, this
program segment transfers control
to line number 500.

If the error is error 230, the
message "Your ENTRY is TOO LARGE"
is displayed.

Control then transfers back to line
80 as directed in the RESUME
statement.

2-71

RUN

RUN Form of Statement

RUN

RUN line number

RUN IIfilename ll

RUN IIfilename ll
, R

DESCRIPTION

The RUN command may be used to execute a program currently in
memory or to load a program from a disk into memory and execute
it.

Used alone, the RUN command executes the program currently in
memory beginning at the lowest statement number.

The RUN line number statement executes the program currently in
memory beginning at the line number specified.

RUN IIfilename ll loads a program from disk into memory and executes
it. Before doing this, memory is cleared and all open files are
closed.

The RUN IIfilename ll
, R form has the same action as RUN IIfilename ll

but all data files remain open.

EXAMPLE

RUN

RUN 1001

RUN IIMYPROG II

2-72

EXPLANATION

This command runs the program
currently in memory from the
beginning.

This statement runs the program
currently in memory beginning
executing at line 1001.

This statement deletes the contents
of memory, closes all files, and
executes the program MYPROG.

SAVE

SAVE Form of Statement

SAVE "filename"

SAVE "filename", A

DESCRIPTION

The SAVE command saves a program on disk in one of three forms:

1. SAVE "filename" saves the file in a compressed binary
format. This format makes efficient use of disk space,
but certain commands require ASCII format. The MERGE
command in BASIC requires ASCII format as does the B 20
executive command TYPE. If a file is to be edited using
the B 20 Editor, it must be saved in ASCII format.

2. SAVE "filename", A saves the program in ASCII format.

3. SAVE "filename", P saves the program in an encoded
binary format. This format allows the program to be
used with the RUN or LOAD commands, but LIST or EDIT
commands will fail.

EXAMPLE EXPLANATION

SAVE "MYPROG"

SAVE "MYPROG", A

SAVE "MYPROG",P

Saves the program MYPROG
compressed binary format.

in

Saves the program MYPROG in ASCII
format.

Saves the program MYPROG in encoded
binary format.

2-73

STOP

STOP Form of Statement

40 STOP

DESCRIPTION

The STOP command halts program execution. STOP may be used
anywhere in a program. When STOP is encountered, the message
"BREAK IN LINE line number" is printed. Program execution may be
resumed by using the CONT command.

The STOP command does not close data files as the END statement
does.

EXAMPLE

10 DIM A [5J
20 FOR I = 1 to 5
30 READ A [IJ
40 NEXT I
50 STOP

900 DATA 2, 4, 6, 8, 10
RUN
BREAK IN 50
PRINT A [1J

2-74

EXPLANATION

This section of a program reads the
five elements of any array A. When
STOP is encountered, the message
BREAK IN LINE 50 is printed at the
video and program execution stops.
At this point, the user may wish to
check an array value with a direct
mode statement such as PRIN~ A [1J.

If the user checks this value
successfully, program execution
may be resumed with a CONT command.

SWAP

SWAP Form of Statement

20 SWAP variable, variable

DESCRIPTION

The SWAP statement exchanges the values of any two variables.
The variables may be any type (INTEGER, STRING, or SINGLE
PRECISION), but both variables must be the same type or an error
message results.

EXAMPLE

10 A$ = "OVER"
20 B$ = "LOOK"
30 C$ = "THIS REPORT"
40 PRINT B$ A$ C$
50 SWAP A$, B$
60 PRINT B$ A$ C$

EXPLANATION

When this program is executed,
it first displays:

LOOK OVER THIS REPORT

At Line 50 the values of variables A$
and B$ are exchanged and the same
display statement now causes
OVER LOOK THIS REPORT to be displayed.

2-75

SYSTEM

SYSTEM Form of statement

10 SYSTEM

DESCRIPTION

The SYSTEM command exits from the program. During input the same
action may be accomplished by pressing the FINISH key twice.

EXAMPLE

10 DIM B$ [10]
20 INPUT A$

30 IF A$ = "END" THEN SYSTEM
40 B$ [1] = LEFT$ (A$, 1)

2-76

EXPLANATION

This section of a program prompts
for the input of a string
variable. If the user enters the
character string END, the SYSTEM
command causes BASIC to be exited.
Otherwise, the program continues.

TRON/TROFF

TRON/TROFF Form of Statement

TRON

TROFF

DESCRIPTION

The TRON command traces the execution of program statements by
printing the program statement line numbers as they are executed.
The line numbers appear enclosed in square brackets. Variables
output with print statements are printed at the point of
execution.

The tracing action of the TRON command may be stopped by entering
a TROFF command.

The TRON and TROFF commands are used from the BASIC command
level.

EXAMPLE

OK
LIST
10 VAR1 = 2
20 FOR I = 1 to 2
30 VAR2 = VAR1+2
40 PRINT I; VAR1; VAR2
50 VAR1 = VAR1 +10
60 NEXT I
70 END

OK
TRON
RUN

t~g~ t~g~ t~g~ t!g~ ~ ~2414
OK
TROFF
RUN
124
2 12 14

EXPLANATION

The example first lists a short
program. The TRON command is
entered and the program is executed
with the RUN command.

The video output is shown. The
bracket numbers are the statement
numbers presented in the order or
their execution.

Stopped the trace by entering a
TROFF command, and the program is
rerun.

2-77

WAIT

WAIT

DESCRIPTION

Form of statement

WAIT"B", port number, integer
expression1, integer expression2

\fAIT"W", port number, integer
expression1, integer expression2

The WAIT command has two forms. WAIT "B" is used to suspend
program execution while monitoring the status of an 8086 byte
port. The port number must be in the range of 0 to 65535, and
integer expressions 1 and 2 must be in the range of 0 to 255.

WAIT "W" is used to suspend program execution while monitoring
the status of an 8086 word port. The port number as well as the
integer expressions 1 and 2 must be in the range 0 to 65535, and
the port number must be even.

The WAIT statement suspends execution until a specified machine
input port develops a specified bit pattern. The data read at
the port is exclusive ORed with the integer expression2 and then
ANDed with integer express ion 1 • If the result is 0, then BASI C
loops back and reads the data at the port again. If the result
is nonzero, execution continues with the next statement. If
integer expression2 is omitted, it is assumed to be O.

In the second format, an error message ocurs if the port number
is odd.

CAUTION

It is possible to enter an infinite loop with
the WAIT statement.

EXAMPLE

100 WAIT "B" ,32,2
200 WAIT "W", 3033,&HFFFF,14

2-78

EXPLANATION

Program execution is suspended
while the specified 8086 ports are
monitored. In statement 100 a byte
port, 32, is monitored while in
statement 200 a word port, 3033, is
monitored.

WHILE ... WEND

WHILE ••• WEND Form of statement

10 WHILE expression

STATEMENTS

50 WEND

DESCRIPTION

The WHILE ••• WEND statement allows the conditional repetition of
statements while the expression is true. When the evaluated
expression is not true, program execution transfers to the
statement following the WEND statement.

The WHILE statement must precede the matching WEND statement. If
WHILE statements are nested, the inner WEND statement must appear
before the outer WEND statement. WHILE ••• WEND loops can be
nested to any level.

EXAMPLE

10 NUM = 10
20 WHILE NUM<lOO
30 FOR I = 1 to 10
40 PRINT "NUMBER"; NUM,
50 NUM = NUM + 20
60 NEXT I
70 WEND

EXPLANATION

This program executes the
FOR ••• NEXT loop 10 times. The
value of NUM is printed only when
its value is less than 100.

2-79

WIDTH

WIDTH

DESCRIPTION

Form of Statement

\lIDTH number of characters per line

WIDTH LPRINT number of characters
~ Iln~

The WIDTH command sets the width of the printed line at the video
display. The WIDTH LPRINT command sets the width of the printed
line at the line printer.

The number of characters per line must be in the range of 15 to
132 for the video display. For WIDTH LPRINT, however, the number
of characters per line depends on the characteristics of the
printer. If the value is not wi thin the specified range (15-
132), no action occurs. If your video display has a width of 80
characters, which is the width for a B 21, a width greater than
80 is ignored.

When you print a string longer than the width you have declared,
the extra characters are continued on the next line.

EXAMPLE

10 PRINT "HOW \lIDE IS MY SCREEN?"
RUN
HOW WIDE IS MY SCREEN?
OK
WIDTH 15

OK
RUN
Ok
HOW WIDE IS MY
SCREEN?
OK

2-80

EXPLANTION

Statement 10 prints the
message HOW WIDE IS MY SCREEN?
This message is 22 characters
long (counting spaces and the
question mark).

When the WIDTH command
specifies that only 15
characters may be printed on a
line, the message is changed
as shown.

WRITE

DESCRIPTION

WRITE

Form of Statement

30 WRITE
40 WRITE list of expressions

separated by commas

The .WRITE statement outputs data on the video display. When the
WRITE statement is not followed by a list of expressions, a blank
line is displayed. WRITE statements may be used with either
numeric .or string variables.

The WRITE statement differs from the PRINT statement in that it
prints numeric values followed by a comma and prints string
variables enclosed in quotation marks.

EXAMPLE

10 A = 10
20 B = 15
30 C$ = "CUSTOMER"
40 PRINT A,B,C$
50 WRITE A,B,C$

EXPLANTION

This program assigns values to
variables A, B, and C$. It then
outputs results using a PRINT
statement and a WRITE statement.

Statement 40 outputs the following:

10 15 CUSTOMER

Statement 50 outputs as:

10,15,"CUSTOMER"

Notice the difference in the output
format.

2-81

WRITE#

WRITE#

DESCRIPTION

Form of Statement

250 WRITE# !il~nu~er, list of
expressions separated
by commas

The WRITE# command writes data to the sequential file specified
by the filenumber. The filenumber must agree with the filenumber
of the OPEN statement for the specified file.

The expressions and variables in the list may be either numeric
or string.

The URITE# statement differs from the PRINT# in two ways. First,
it uses a comma to separate the values that are output. Second,
it writes string variables enclosed in quotation marks. WRITE#
offers the advantage of not requiring the user to insert specific
delimiters when writing to sequential files.

EXAMPLE

5 OPEN, "0",#1 ,"DATA"

10 A$ = "ACCOUNTS"
20 B$ = "PAYABLE"
30 PRINT #1, A$; B$
40 WRITE #2, A$, B$

2-82

EXPLANTION

Statement 30 outputs the following
to file 1:

ACCOUNTSPAYABLE.

This cannot be read as two
variables with an INPUT# statement.

Statement 40 outputs the following
to file 2:

ACCOUNTS, PAYABLE

SECTION 3

BASIC FUNCTIONS

This section defines all the BASIC functions that are
supported by the BASIC Interpreter. Each function is listed
alphabetically and is presented with the following information:

• an example of the general form in which the function is used

• a description that explains how each function works

• an example of the function in a program

• an explanation of the example describing the action caused
by the function

3-1

ABS

ABS Form of Function

10 ABS (numeric expression)

DESCRIPTION

The ABS function returns the absolute value of the numeric
expression.

EXAMPLE

10 A = 10
20 B = 15
30 PRINT A-B, ABS(A-B)

3-2

EXPLANATION

Statement 30 prints

- 5 5

ASC

ASC Form of Function

10 ASC (string expression)

DESCRIPTION

The ASC function returns the decimal representation of the
ASCII code equivalent to the first character of the string
expression. If the string expression is null, an error message
results.

EXAMPLE

10 A$= "ARITHMETIC"
20 PRINT ASC(A$)

EXPLANATION

Statement 20 prints 65, the
ASCII value of A.

3-3

ATN

ATN

DESCRIPTION

Form of Function

20 ATN (numeric expression in
radians)

The ATN function returns the arctangent of the numeric
expression. The numeric expression must be in radians, and the
function returns values in the range of -pi/2 to pi/2.

The evaluation of the ATN function is always performed in
single precision.

EXAMPLE

10 A = 3
20 PRINT ATN(A)

3-4

EXPLANATION

Statement 20 prints 1 .249046,
the arctangent of 3 radians.

COBl

CDBL Form of Function ---------
10 CDBL (numeric e~pre~sion)

DESCRIPTION

The CDBL function converts a numeric expression to a double
precision value.

EXAMPLE

10 A = 454.67
20 PRINT CDBL(A)

EXPLANATION

This program displays the
value 454.6699829101563.

3-5

CHR$

CHR$ Form of Function

10 CHR$ (ASCII code number)

DESCRIPTION

The CHR$ function returns the string equivalent of the
specified ASCII number. The CHR$ function is often used to
display special characters on the VDU screen.

EXAMPLE

10 PRINT CHR$(65)

3-6

EXPLANATION

This statement displays A, the
equivalent of ASCII code 65.

CINT

CINT Form of Function

10 CINT (numeric expression)

DESCRIPTION

The CINT function converts a decimal numeric expression to an
integer by rounding the fraction portion of the number. The
numeric expression must be in the range -32768 to 32767. An
error message results if it is not.

EXAMPLE

10 PRINT CINT(48.33)
20 PRINT CINT(48.67)

EXPLANATION

The integer 48 is displayed.
The integer 49 is displayed.

3-7

cos

cos Form of Function

10 COS (numeric expression in radians)

DESCRIPTION

The COS function returns the cosine of the numeric expression.
The input to the function is in radians. The Bvaluation of the
COS function is always performed in single precision.

EXAMPLE

10 X = 3
20 PRINT COS(X)

3-8

EXPLANATION

Statement 20 displays the value
-.9899926, which is the cosine
equivalent of 3 radians.

CSNG

CSNG Form of Function

10 CSNG (numeric expression)

DESCRIPTION

The CSNG function converts a numeric expression to a single
precision value.

EXAMPLE

10 A# = 987.654321
20 B% = 2
30 PRINT A#;CSNG(A#);

B%;CSNG(B%)

EXPLANATION

Statement 30 displays the double
precision value and its single
precision equivalent and then
displays the integer and its
single-precision equivalent.
The screen displays:

987.654321 987.6543 2 2

3-9

CVI, CVS, CVD

CVI, CVS, CVD Form of Function

10 CVI (2 byte string)

20 CVS (4 byte string)

30 CVD (8 byte string)

DESCRIPTION

CVI, CVS, and CVD convert string values to numeric expressions.
When numeric values are read from a random disk file, they must
first be reconverted to numeric values using these functions.

CVI converts a two-byte string to an integer value.

CVS converts a four-byte string to a single-precision value.

CVD converts an eight byte string to a double-precision value.

Also see the subsections on MKI$, MKS$, and MKD$.

EXAMPLE

10 OPEN "R", #1, "MYFILE"
20 FIELD #1, 4 AS A$
30 GET #1, 32
40 PRINT CVS(A$)

3-10

EXPLANATION

This program opens random file 1
and gets record num~er 32 from
the random buffer.
The print statement displays the
reconverted number by using the CVS
function.

CVS is used because the variable A$
is a 4-byte, string as can be seen
in the FIELD statement.

EOF

EOF Form of Function

10 EOF (file number)

DESCRIPTION

The EOF function returns an evaluation of true when the end of
a sequential file is encountered. This allows the user to read a
sequential file of unknown length and branch when the end of the
file is encountered.

EXAMPLE

5 DIM VAR[lOOO]
10 OPEN "I",#l,IMYDATA"
20 FOR I = 1 to 1000
30 IF EOF(l)GOTO 60
40 INPUT #l,VAR(I)
50 NEXT I
60 STOP

EXPLANATION

This program segment reads
values for the array VAR.
The loop allows for 1000 input
repetitions. If the end of the
file is encountered before the
1000th record is read, control
transfers to line 60.

3-11

EXP

EXP Form of Function

10 EXP (numeric expression)

DESCRIPTION

The EXP function returns the value of e (e=2.71828) to the
power of the numeric expression. The numeric expression must be.
less than or equal to 88.02969.

EXAMPLE

10 X = 4
20 PRINT EXP(X)

3-12

EXPLANATION

Statement 20 displays 54.59815.

FIX

FIX Form of Function

10 FIX (numeric expression)

DESCRIPTION

The FIX function returns the integer part of the numeric
expression. The fractional portion of the number is ignored. No
rounding of values occurs.

EXAMPLE

10 X = 54.38
20 PRINT FIX(X)

EXPLANATION

The print statement displays
54, the integer portion of the
number 54.38.

3-13

FRE

FRE

DESCRIPTION

Form of Function

10 FRE (0)

20 FRE (II II)

The FRE function returns the number of bytes in memory that are
not being used by BASIC.

The second format forces a garbage collection before returning
the number of free bytes. This can take 1 to 1 1/2 minutes
because BASIC does not initiate garbage collection until all free
memory is used.

EXAMPLE

150 PRINT FRE(O)

3-14

EXPLANATION

This statement returns the amount
of free memory (in bytes).

GETRA

GETRA Form of Function

10 GETRA (pointer)

DESCRIPTION

The GETRA function returns the relative address of a pointer.
The pointer is a function that returns the address of the first
byte of data of a variable.

EXAMPLE

10 I = 1
20 PRINT GETRA(PTR (I))

EXPLANATION

Statement 20 displays the relative
address of variable I.

3-15

GETSA

GETSA Form of Function

10 GETSA (Eointer)

DESCRIPTION

The GETSA function returns the segment address of the pointer.
The pointer of the variable is returned by the PTR function.

EXAMPLE

10 I = 1
20 PRINT GETSA(PTR(I))

3-16

EXPLANATION

Statement 20 displays the segment
address of variable I.

HEX$

HEX$ Form of Function

10 HEX$ (numeric expression)

DESGRIPTION

The HEX$ function returns the string that is the hexadecimal
equivalent of the numeric expression. The numeric expression is
rounded to an integer before the hexadecimal string is obtained.

EXAMPLE

10 A = 32
20 PRINT AiHEX$(A)

EXPLANATION

Statement 20 displays 32 and 20,
the decimal value and its
hexadecimal equivalent.

3-17

INP

INP

DESCRIPTION

Form of Function

10 INP ("B",~t number)

.20 INP ("W", port number)

The INP function returns either the byte read from the
specified port (form 1) or the word read from the specified port
(form 2).

The port number must be an integer in the range of 0 to 65535
for form 1.

The port number must be an even integer in the range of 0 to
65534 for form 2. An illegal function call error results if an
odd-number port is used in form 2.

EXAMPLE

10 I = INP("B",255)
20 PRINT I

10 I = INP("W",3000)
50 PRINT I

3-18

EXPLANATION

This program segment displays the
byte read from port 255.

Statement 50 displays the word
read from port 3000.

INPUT$

INPUT$ Form of Function

10 INPUT$ (number~trin~characters)

20 INPUT$ (number of string character~),
#file number)

DESCRIPTION

The INPU~$ function returns a string of characters of the
specified number. When the function is inputting from the
keyboard (form 1), the characters entered are not displayed on
the video and all control characters except CANCEL may be used.
CANCEL interrupts the execution of the function.

The INPUT$ function may also return strings of characters from
sequential files by specifying the file number.

EXAMPLE

100 PRINT "TYPE CONTINUE
TO GO TO NEXT LESSON"

110 X$= INPUT$(8)
120 IF X$<>"CONTINUE"THEN 999

999 END

10 OPEN "1",#1 ,"DATA"
20 IF EOF(1) THEN 50
30 PRINT HEX$(ASC (INPUT$(1 ,#1)));
40 GOTO 20
50 PRINT "END OF FILE"
60 END

EXPLANATION

The user responds to the
prompt displayed at the
video by statement 100. If
the user does not type
CONTINUE, the program
terminates.

This example lists the
contents of a sequential
file, "DATA", in hexadeci
malone character at a
time.

3-19

INSTR

INSTR Form of Function

10 INSTR (stringl, string2)

20 INSTR (position for starting search,

stringl, string2)

DESCRIPTION

The INSTR function searches for the first occurrence of string
2 in string 1. The value it returns is the position at which the
match occurs.

The second form of the function allows the user to specify the
position at which the search begins. The position for starting
search must be in the range 0 to 255. If the position is greater
than the length of stringl, or if stringl is null, or if string2
cannot be found, then INSTR returns O. Stringl and string2 can
be string variables, string expressions or string literals.

EXAMPLE

10 A$= "CZECHOSLOVAKIA"
20 B$= "OSLO"
30 PRINT INSTR(A$,B$)
40 PRINT INSTR (8,A$,B$)

3-20

EXPLANATION

The function searches for string
OSLO. The print statement in line
30 displays 6, the position at which
OSLO begins. The print statement in
line 40 displays 0 because "OSLO"
was not found.

INT

INT Form of Function

10 INT (numeric expression)

DESCRIPTION

The INT function returns the largest integer less than or equal
to the numeric expression.

EXAMPLE

10 PRINT INT(85.98)
20 PRINT INT(-85.98)

EXPLANATION

This statement displays 85.
This statement displays -86.

3-21

LEFT$

LEFT$ Form of Function

10 LEFT$ (string e~press~'?.~_!!~mber
of characters of the string)

DESCRIPTION

The LEFT$ function returns the specified number of characters
beginning at the left. The number of characters must be in the
range of 0 to 255.

If the number of characters specified in the LEFT$ function is
greater than the length of the string expression, the entire
expression is returned. If it is zero, the null string is
returned.

EXAMPLE

10 A$= "IJIASSACHUSETTS"
20 B$= LEFT$(A$,2)
30 PRINT B$

3-22

EXPLANATION

Statement 30 displays MA, the 2
leftmost characters of
Iv'IASSACHUSETTS.

LEN

LEN Form of Function

10 LEN (string expression)

DESCRIPTION

The LEN function returns the number of characters in a string.
All characters including blanks are counted.

EXAMPLE

10 A$= "JOHN DOE"
20 PRINT LEN(A$)

EXPLANATION

This program displays 8, the number
of letters including the space in
JOHN DOE.

3-23

Loe

LOC Form of Function

10 LOC (file number)

DESCRIPTION

The LOC function returns the record number of the next record
in a random access file. The next record number is the record
number of the last record used with a GET or PUT statement plus
1 •

EXAlVIPLE

1200 IF LOC(1»150 THEN
PRINT "LAST ENTRY ON
THIS DISK"

3-24

EXPLANATION

This statement can be used when
writing to a random file.
It displays the message:

LAST ENTRY ON THIS DISK

when the 150th record is read or
written.

LOF

LOF Form of Function

10 LOF (file number)

DESCRIPTION

The LOF function returns the record number of the last record
of a random access file. This allows the user to determine the
end of a random disk file.

EXAMPLE

10 OPEN "S",#1 , "MYFILE"
20 FOR I = 1 TO LOF(1)
30 GET #1
40 NEXT I

EXPLANATION

These statements open a random
file named MYFILE and read each
record of the file from beginning
to end. Notice that this is done
by using the LOF function as the
final value in the FOR statement.

3-25

LOG

LOG Form of Function

10 LOG (numeric expression)

DESCRIPTION

The LOG function returns the natural logarithm of the numeric
expression as a single precision value.

EXAMPLE

10 PRINT LOG(5 + 8/2)

3-26

EXPLANATION

This statement displays 2.197225,
the natural logarithmic equivalent
of (8/2 plus 5).

LPOS

LPOS Form of Function

10 LPOS (any numeric expression)

DESCRIPTION

The LPOS function returns the current position of the print
head in the line printer buffer. This is not necessarily the
actual physical position of the print head.

The numeric expression is a dummy argument and may be any value
since it does not affect the function.

EXAMPLE

240 IF LPOS(X»120 THEN
PRINT CHR$(7)

EXPLANATION

This statement causes the bell to
sound when the print head is beyond
the 120th position in the buffer.

3-27

MAKEPOINTER

MAKEPOINTER

DESCRIPTION

Form of Function

10 MAKEPOINTER (relative address integer,
segment address integer)

The MAKEPOINTER function returns the pointer that represents
the location of the relative address and segment address
specified.

EXAMPLE

10 PRINT MAKEPOINTER(O,O)

3-28

EXPLANATION

This statement displays the pointer
corresponding to relative address
0, segment address 0.

MID$

DESCRIPTION

Form of Function

10 MID$ (string expression,

beginning position)

or

MID$

20 MID$ (string expression,

beginning position, length

of character string)

The MID$ function returns a character string that is a portion
of the string expression specified in the function. The
beginning position and length of character string values are
integers in the range of 0 to 255.

If the beginning position specified is greater than the length
of the furnished string expression, the function returns a null
string.

The length of the character string to be returned is not
specified; the function returns the portion of the string
expression starting at the beginning position to the end.

EXAMPLE

10 A$= "ACCOUNTS "
20 B$= "PAYABLE RECEIVABLE"
30 PRINT A$;MID$(B$,1,8)
40 PRINT A$;MID$(B$,9,10)

EXPLANATION

Statement 30 displays ACCOUNTS
PAYABLE.
Statement 40 displays ACCOUNTS
RECEIVABLE.

3-29

MKI$ MKS$ MKD$

MKI$ MKS$ MKD$

DESCRIPTION

Form of Function

10 MKI$ (~l];.!~~~expression)

20 MKS$ (singl.e-precision expression)

30 MKD$ (double-precision expression)

These functions convert numeric values to string values. When
numeric values are to be placed in a random buffer with an LSET
or an RSET statement, they must first be converted to string
values using these functions.

MKI$ converts an integer to a two-byte string.

MKS$ converts a single precision number to a four-byte string.

MKD$ converts a double precision number to an eight-byte
string.

See also subsections on CVI, CVS, and CVD.

EXAMPLE

10 OPEN "R", #1 , "MYFILE"
20 FIELD #1,4 AS A$
30 LSET A$= MKS$(AMOUNT)
40 PUT #1

3-30

EXPLANATION

This program opens random file
number 1 and places in the buffer a
single-precision variable AMOUNT.
AMOUNT is first converted to a
four-byte string variable.

The four-byte string variable A$ is
fielded in statement 20.

aCTS

OCT$ Form of Function

10 OCT$ (numeric expression)

DESCRIPTION

The OCT$ function returns the string that is the octal
equivalent of the numeric expression. The numeric expression is
rounded to an integer before the octal string is obtained.

EXAMPLE

10 A = 10
20 B = 9.9
30 PRINT A,OCT$(A),B,OCT$(B)

EXPLANATION

Statement 30 prints:

10 12 9.899999 12

Notice that the octal values are
equivalent for the two variables.
This is because variable B is
rounded before its octal value is
returned.

3-31

PEEK

PEEK Form of Function

10 PEEK ("B", single-precision pointer)

or

20 PEEK ("W", single-precision pointer)

DESCRIPTION

The PEEK "B" form returns the byte read from the memory
location specified by the pointer. The byte value is a decimal
in the range of 0 to 255.

The PEEK "W" form returns the word read from the memory
location specified by the pointer. The word value is a decimal
in the range of 0 to 65535.

PEEK is the complementary function of POKE.

EXAMPLE

5 J% = 10858
10 A = PEEK("B",PTR(J%))
20 B = PEEK("W",PTR(J%))
30 PRINT AiB

3-32

EXPLANATION

Statement 30 displays the byte and
the word read from the memory
location specified by the pointer
of the variable J:

106 10858

POS

DESCRIPTION

Form of Function

1 b pos ("X")

20 POS("Y")

P~S

The POS function returns ,the position of the cursor in terms of
line and column location.

POS("X") returns the cursor column position. The leftmost
position is O.

POS("Y") returns the cursor line position. The top position
is O.

EXAMPLE

10 IF POS("X"»60 THEN
PRINT CHR$(35).

20 IF POS("Y"»28 THEN
PRINT CHR$(36).

EXPLANATION

If the cursor position is beyond
column 60, # is displayed.
If the cursor position is beyond
line 28, $ is displayed.

3-33

PTR

PTR Form of Function

10 PTR(variable name or array name)

DESCRIPTION

The PTR function returns the address of the first byte of data
assigned to the variable specified. The variable specified in
the PTR statement must have been assigned a value before the
execution of the PTR function.

PTR is often used to obtain the address of a variable or array
when a non BASIC procedure is called.

All variables should be assigned values before a PTR function
is used to obtain the address of an array. This is because array
addresses change when variables are assigned values.

EXAMPLE

10 A% 2
20 PRINT PTR(A%)

3-34

EXPLANATION

Statement 20 displays the address
of the variable A%.

PWA

PWA Form of Function

10 PWA (single-precision pointer)

DESCRIPTION

The PWA function returns a pointer to word-aligned data given
P, where P is a pointer (single-precision number). If the
relative address (ra) portion of the parameter is even (that is,
it points to a word boundary), the parameter is simply returned.
Otherwise, a pointer to the next word boundary is returned.

Whenever a pointer to word-aligned data is used, a data area
that is at least one byte longer than normal is required. This
ensures that the data area is large enough in the case where it
is addressed by a word-aligned pointer.

EXAMPLE

10 DIM BUFFER%[512]
20
30 .
40 ERC%=OPENDAFILE •.• ,

PWA(PTR(BUFFER%[O])) .•••)

EXPLANATION

Statement 10 allocates a 1026-byte
buffer where only 1024 bytes are
really needed. Statement 40
ensures that BUFFER%[O] starts on
a word-aligned boundary, as
required by the OPENDAFILE call.

3-35

RIGHT$

RIGHT$

DESCRIPTION

Form of Function

10 RIGHT$ (string expression, number of
characters of the string)

The RIGHT$ function returns a string consisting of the number
of characters specified beginning at the right of the string.
The number of characters must be in the range of 0 to 255.

If the number of characters specified is greater than or equal
to the length of the string expression, the entire expression is
returned. If it is zero, the null string is returned.

EXAMPLE

10 A$= "BASIC LANGUAGE TRAINING"
20 PRINT RIGHT$(A$,8)

3-36

EXPLANATION

Statement 20 displays

TRAINING

RND

RND Form of Function

10 RND

20 RND (numeric expression)

DESCRIPTION

The RND function returns a random value between 0 and 1.

The sequence of random numbers generated is the same each time
the program is run if the random number generator is not reseeded
using the RANDOMIZE command.

EXAMPLE EXPLANATION

10 FOR I = 1 TO 5 When this program is run it
20 PRINT RND displays a sequence of random
30 NEXT I numbers. The sequence will be the

same for each run.

5 RANDOMIZE When this program is run it
1 5 FOR I = 1 TO 5 displays a sequence of random
25 PRINT RND numbers that will be different for
35 NEXT I each run.

3-37

SGN

SGN Form of Function

10 SGN(numeric expression)

DESCRIPTION

The SGN function returns the sign of the numeric expression.
When the expression is greater than 0, the function returns a
value of 1.

When the expression is equal to 0, the function returns o.
When the expression is less than 0, the function r~turns a value
of -1 .

EXAMPLE

10 A = 2
20 ON SGN(A)+2 GOTO 100,200,300

100 PRINT "THIS IS A NEGATIVE VALUE"

200 PRINT "THIS VALUE IS ZERO"

300 PRINT "THIS IS A POSITIVE VALUE"

3-38

EXPLANATION

The SGN function in
this program returns a
value of 1. This value
+2 transfers control to
the third statement
number in the GOTO
portion of line 20.
The displayed message
is:

"THIS IS A POSITIVE VALUE"

SIN

SIN Form of Function

10 SIN (numeric expression in radians)

DESCRIPTION

The SIN function returns the sine of the numeric expression.
The numeric expression must be in radians.

The evaluation of the SIN function is always performed in
single-precision.

EXAMPLE EXPLANATION

10 PRINT SIN(1 .7) The value displayed (.9916648) is
the sine of 1.7 radians.

3-39

SPACE$

SPACES Form of Function

10 SPACES (numeric expression)

DESCRIPTION

The SPACES function returns a string of spaces of the length
specified by the numeric expression. The numeric expression must
be in the range of 0 to 255. Any fractional values are rounded
before the function returns the string of spaces.

EXAMPLE

10 WIDTH 30
20 A$ = SPACE$(12)
30 PRINT A$;"CENTER"

3-40

EXPLANATION

This PRINT statement places
the word CENTER in the middle
of the declared WIDTH.

SPC

SPC Form of Function

10 SPC(numeric expression)

DESCRIPTION

The SPC function returns a string of blanks. The SPC function
differs from the SPACE$ function in that it may be used only with
PRINT and LPRINT commands.

The numeric expression must be in the range of 0 to 255.
Fractional values are rounded.

EXAMPLE

5 WIDTH 30
10 PRINT SPC (12); "CENTER"

EXPLANATION

This PRINT statement places the
word CENTER in the middle of the
declared screen width.

3-41

SQR

SQR Form of Function

10 SQR(numeric expression)

DESCRIPTION

The SQR function returns the square root of the numeric
expression, which must be greater than or equal to O.

EXAMPLE

10 FOR I = 4 TO 8
20 PRINT I;SQR(I)
30 NEXT I

3-42

EXPLANATION

This program displays:

4 2
5 2.236068
6 2.44949
7 2.645751
8 2.828427

This is the number and its square root.

STR$

STR$ Form of Function

10 STR$ (numeric expression)

DESCRIPTION

The STR$ function returns the string representation of the
numeric expression.

EXAMPLE

10 INPUT "ENTER ANY NUMBER";
ANYVAL

20 ANYVAL$= STR$(ANYVAL)
30 X = LEN(ANYVAL$) -1

EXPLANATION

These statements tell the user to
enter any number. The number's
string representation is assigned
toANYVAL$ in line 20. X would be
equal to the length of the number.

3-43

STRING$

STRING$

DESCRIPTION

Form of Function

10 STRING$ (character string length,
ASCII code)

or

20 STRING$ (character string length,
string expression)

The STRING$ function returns a string of the length specified.
The elements of the string are the equivalent of the ASCII code
specified (form 1) or the first character of the string
expression given. (form 2)

EXAMPLE EXPLANATION

10 X$= "-" This program prints:
20 A$= STRING$(10,45)
30 B$= STRING$(10,X$) ----------MONTHLY REPORT----------
40 PRINT A$;"MONTHLY REPORT";B$

3-44

Notice that A$ andB$ have the
same effect. A$ uses the
ASCII code form.

SYSERC

SYSERC Form of Function

SYSERC()

DESCRIPTION

The SYSERC function returns the system status code associated
with the last BASIC disk-access procedure. This allows the user
to get more information about BASIC errors. The status codes
returned by the SYSERC function are described in the B 20
Software Operations Guide.

The following example illustrates the use of SYSERC() in an
error-trapping routine. The program deletes an old (possibly
nonexistant) file and opens a new file of the same name. If the
old file does not exist, a system error results. Since the
program does not care if the old file exists or not, the error is
trapped, the message printed out, and execution continued in the
normal manner. (Remember that the BASIC error number is not the
same as the system error number.)

EXAMPLE

10 ON ERROR GOTO 120
20 KILL "TIMEFILE"

30 OPEN "A",#1 ,"TIMEFILE"

1 00 CLOSE #1

110 END
120 PRINT "SYSTEM ERROR

IS";SYSERC()
130 IF ERR = 53 THEN

RESUME NEXT

EXPLANATION

10 Set up error trap
20 Remove (possibly nonexistant)

old file
30 Open new file

100 Close file opened in statement
30

110 End execution
120 Display system status code

130 If BASIC error is "file not
found", then continue from line
following error

3-45

TAB

TAB Form of Function

10 TAB (print position)

DESCRIPTION

The TAB function moves to the display or print position
specified by the numeric expression. If the position specified
in the TAB function is before the current position, TAB moves to
the next line.

The range of values for the numeric expression is 1 to 255.
Fractions are rounded.

TAB may be used only with PRINT and LPRINT commands.

TAB is useful in formatting tables and reports.

EXAMPLE EXPLANATION

10 PRINT TAB(1);"CUSTOMER"; This PRINT statement displays:
TAB(12)j"ACCOUNT NO."

CUSTOMER ACCOUNT NO.

3-46

TAN

TAN Form of Function

10 TAN (numeric expression in radians)

DESCRIPTION

The TAN function returns the tangent of the specified numeric
expression.

The numeric expression must be in radians.

The evaluation of the TAN function is always performed in
single precision.

EXAMPLE EXPLANATION

10 PRINT TAN(1.7) The value displayed is -7.696595,
the tangent of 1.7 radians.

3-47

VAL

VAL Form of Function

10 VAL (string expression)

DESCRIPTION

The VAL function returns the numerical value of a string
representation of a number. If the first character of the string
expression is not a plus or minus sign, or a digit, the function
returns the value O.

EXAMPLE

10 X$= "10"
20 Y = 5

NOTE

The percent sign (%) cannot be used
within a VAL statement. An error
message is displayed when it occurs
within the string expression.

EXPLANATION

Line 40 displays 15.

30 X = VAL(X$)
40 PRINT X+Y

The string representation
of 10 must be converted to a numeric
variable before the calculation.

3-48

SECTION 4
BASIC ERROR MESSAGES

CROSS-REFERENCE TO RUN-TIME ERRORS

Message

Bad file mode

Bad file name

Bad file number

Bad record number

Can't continue

Direct statement in file

Disk full

Disk I/O error

Division by zero

Duplicate definition

Field overflow

File already exists

File already open

File not found

FOR without NEXT

Function called as procedure

Illegal direct

Illegal function call

Input past end

Number

54

64

52

63

17

66

61

57

11

10

50

58

55

53

26

36

12

5

62

4-1

Cross Reference to Run-Time Errors (Cont.)

Message

Internal error

Invalid parameter

Line buffer overflow

Malformed record

Missing operand

Pointer required

Nesting limit exceeded

NEXT without FOR

NO RESUME

Not a random file

Not readable as a random file

Out of data

Out of memory

Out of string space

Overflow

Procedure called as function

Read/write beyond EOF

Record does not exist

Record size mismatch

RESUME without error

RETURN without GOSUB

4-2

Number

51

31

23

72

22

38

37

1

19

71

68

4

7

14

6

35

73

70

69

20

3

Cross Reference to Run-Time Errors (Cont.)

Message Number

String formula too complex 16

String too long 15

Subscript out of range 9

Syntax error 2

Too little parameter data 34

Too many files 67

Type mismatch 13

Unknown procedure 32

WEND without WHILE 30

WHILE without WEND 29

Undefined line 8

Unprintable Error 21

4-3

RUN TIME ERRORS

Number

1

Number

2

4-4

Message

NEXT without FOR

A variable in a NEXT statement does not
correspond to any variable in a FOR
statement.

Check:

• to make 'sure that each NEXT statement
references a FOR statement.

• that the index variable of the FOR
statement matches the variable in the
NEXT statement.

• that the loop was not entered after
the FOR statement.

Message

Syntax Error

The indicated program line contains an
error. This error does not allow this
line to be executed.

Check:

• the spelling of the BASIC command
used in the line.

• that the punctuation used with the
BASIC statement is correct.

• the use of spaces in the BASIC
sta tement.

• that the number of open parentheses
"(" is equal to the number of closed
parentheses ")".

• that reserved words have not been
used as variable names.

Number

3

Number

4

Run Time Errors (Cont.)

~essage

RETURN without GOSUB

The program has encountered a RETURN
statement for which there was no
previous GOSUB statement.

Check:

• that the RETURN is used to end a
valid subroutine.

• that the line number specified in the
GOSUB statement is correct.

• that the subroutine has not been
entered accidently (trace the program).

Message

Out of data

A READ statement in the program has been
executed, but there are no remaining
DATA statements.

• Trace the program to check the
sequence of READ statements.

• If the READ statements occur in
program loops, check that the loop
executes the desired number of times.

• If a trailing data value is used to
end the reading of values, test that the
exit condition is met.

4-5

Run Time Errors (cont.)

Number

5

Number

6

4-6

Message

Illegal function call

The value passed to a function is not in
an acceptable range.

• Check that the values used within the
parenthesis portion of the function are
acceptable entries.

• If the program calls a user defined
function, make sure the function has
been properly defined before it is
called.

Message

Overflow

The result of a calculation is too large
to be represented in BASIC number
format.

Check:

• the order of the arithmetic operators
used in the calculations.

• that any variable used in the
calculation has the proper intermediate
value. Print these variables before the
calculation.

Number

7

Number

8

Run Time Errors (Cont.)

~essage

Out of memory

A program is too large, has too many FOR
• •• NEXT loops or GOSUB's, too many
variables, or expressions that are too
com p 1 i cat ed •

• Check to see that FOR • • • NEXT
loops are not nested unnecessarily.
Check the entry to subroutines to
ensure that subroutines are not nested
unnecessarily.

• If the program is too large, consider
using subprograms with the CHAIN
command.

Message

Undefined line

A nonexistent line has been referenced
in a BASIC statement.

• Check the line number specified in
GOTO, GOSUB, or IF. • • THEN. •• ELSE
statements.

4-7

Run Time Errors (Cont.)

Number

9

Number

10

4-8

Message

Subscript out of Range

An array element is referenced with a
subscript that does not agree with the
dimensions of the array.

• Check that the dimensions of the
array are correct.

• If the array element is a program
calculated variable, check the
intermediate value of the subscript
before referencing the array.

Message

Duplicate Definition

Two DIM statements are given for the
same array, or a DIM statement is given
for an array that has already been used
with the default dimension.

Check:

• the names of arrays used in different
program segments.

• the DIM statements in each subprogram
if a CHAIN command has been used.

Number

11

Number

12

Run Time Errors (Cont.)

Message

Division by zero

A division by zero has been encountered
in an expression.

Check:

• intermediate values in calculations.

• the order of the arithmetic operators
used.

Message

Illegal direct

A statement that is illegal in direct
mode has been entered as a direct mode
command.

• Check that INPUT, DEF FN, GET, or
DATA statements have not been used in
a direct mode statement.

4-9

Run Time Errors (Cont.)

Number

13

Number

14

4-10

Message

Type mismatch

A string variable name is assigned a
numeric value or a numeric variable is
assigned a string value.

A function that expects a numeric value
is given a string value or vice versa.

• If a form of the DEF command has been
used, check variable names.

• When using LOAD or SAVE commands,
make sure the file name is enclosed in
quotation marks.

Message

Out of string space

String variables caused BASIC to exceed
the amount of free memory remaining.

• Check to see if some of the string
variables created could be formed using
BASIC string functions.

Number

15

Number

16

Run Time Errors (Cont.)

Message

S tr i ng too long

An attempt is made to create a string
more than 32K characters long.

• Check any string manipulations per
formed, especially any concatenations.

Message

String formula too complex

A string expression is too long or too
complex.

• Break the string expression into
smaller expressions.

4-11

Run Time Errors (Cont.)

Number

17

Number

19

4-12

Message

Can't continue

An attempt is made to continue (CONT) a
program that halted due to an error,
was modified during a break in
execution, or does not exist.

• If the program was edited during the
break in execution, rerun the entire
program.

• Make sure the program is still in
memory.

Message

NO RESUME

An error-trapping routine has been
entered, but it contains no RESUME
statement.

• Check that the flow in the error
trapping routine does not branch
illegally.

Number

20

Number

21

Run Time Errors (Cant.)

Message

RESUME without error

A RESUME statement has been encountered
before an error trapping routine was
entered.

• Trace program to ensure that the
error-handling routine has not been
entered accidently.

Message

Unprintable error

An error message is not available for
the error condition that exists.

• Check that any ERROR has a properly
defined error code.

4-13

Run Time Errors (Cont.)

Number

22

Number

23

4-14

Message

Missing operand

An expression contains an operator with
no operand following it.

Check:

• the placement of parentheses in
statements using arithmetic and/or
relational operators.

• that no operators have been used as
variable names.

Message

Line buffer overflow

An attempt has been made to input a
line that has too many characters.

• If the INPUT function has been used,
check the number of characters in the
entered line.

Number

26

Number

29

Run Time Errors (Cont.)

Message

FOR without NEXT

A FOR statement has been encountered
without a matching NEXT statement.

Check:

• that each FOR statement is paired
with a NEXT statement.

• that the index of the FOR statement
matches the variable in the NEXT
statement.

Message

WHILE without WEND

A WHILE statement is encountered
without a matching WEND.

• Check that each WHILE statement is
paired with a WEND statment.

4-15

Run Time Errors (Cont.)

Number

30

Number

31

4-16

Message

WEND without WHILE

A WEND statement is encountered without
a matching WHILE.

• Check that each WEND statement is
paired with a WHILE statement.

• Check to see that the WHILE statement
was not accidently bypassed in the
program.

• Trace the execution of the program.

Invalid parameter

The value (parameter) does not evaluate
to an integer or single precision
number.

Check:

• that the numbers you are using were
input as numerics.

• that numeric values have not been
converted to their string equivalents.

Number

32

Number

33

Run Time Errors (Cont.)

Message

Unknown procedure

The procedure name following a CALL
command is unknown to BASIC.

Check:

• the spelling of the called procedure.

• punctuation of the CALL statement.

Message

Too much parameter data

BASIC passed more parameter data than
the called procedure requires.

Check:

• the arguments of the CALL statement.

• the punctuation in the CALL
statement.

4-17

Run Time Errors (Cont.)

Number

34

Number

35

4-18

Message

Not enough parameter data

BASIC passed less parameter data than
the called procedure requires.

Check:

• the arguments of the CALL statement.

• the punctuation in the CALL
statement.

Message

Procedure called as function

A non-value-returning procedure was
invoked in an expression.

• Use the CALL command to invoke the
procedure.

Number

36

Number

37

Run Time Errors (Cont.)

Message

Function called as procedure

A value-returning procedure was invoked
with a CALL statement.

• Invoke the procedure in an
expression.

Message

Nesting limit exceeded

In using procedures as parameters of
other procedures, you nested too deeply.

• Assign the results of one of the
procedures to a variable and use the
variable as a parameter in the other
procedure.

4-19

Run Time Errors (Cont.)

Number

38

Number

39

4-20

Message

Pointer required

The BASIC command or function requires
a pointer variable as a parameter.

• Check that a pointer has been created
with a BASIC statement.

• Trace program to be sure that you did
not branch around the pointer creation.

Message

System error

The system has detected an error.

• Check system status code.

Number

50

Number

51

Run Time Errors (Cont.)

Message

Field overflow

When using a random access file, the
FIELD statement is trying to allocate
more space (bytes) than is allowed.

• Check that the FIELD statement
allocates the proper space for each
variable.

• In the OPEN statement, change the
record length option.

Message

Internal error

An internal malfunction has occurred on
the specified disk.

• If this error occurs frequently,
change the disk.

4-21

Run Time Errors (Cont.)

Number

52

Number

53

4-22

Message

Bad file number

A statement references a file with an
unopened file number.

• Check that an OPEN statement has been
executed.

Message

File not found

A KILL or OPEN statement references a
file that does not exist on the current
disk.

Check:

• the disk file contents.

• that the file in question is not a
restricted-access file.

Number

54

Number

55

Run Time Errors (Cont.)

Message

Bad file mode

An attempt has been made to use PUT,
GET, or LOC with a sequential file.
These statements are restricted to
random files.

A file was OPENed with a file mode
other than I, 0, A, R, S, or B.

• Check the OPEN statement in question
for file mode specification.

Message

File already open

A sequential output mode OPEN was used
for a file that is already open.

Check:

• that sequential files in I or A mode
have been closed before being reopened
in 0 mode.

• that a KILL command was not used with
an open file.

4-23

Run Time Errors (Cont.)

Number

57

Number

58

4-24

Message

Disk I/O error

An input/output error occurred on a
disk.

Check:

• to see if the floppy disk you are
using is damaged.

• that the disk is write-enabled if you
are writing to a floppy disk.

Message

File already exists

The file name specified in a NAME
statement is identical to a file name
already in use on the disk.

• Choose a new file name.

Number

61

Number

62

Run Time Errors (Cont)

Message

Disk full

All disk storage space is in use.

• If using a floppy disk, change to a
new disk.

• If using the. Winchester disk, output
to a floppy or delete files no longer
desired.

Message

Input past end

An INPUT statement has been executed
after all the data in a sequential file
was input.

• Check to make sure that the file from
which data are input is not an empty
(null) file.

• Use the EOF function when you are not
sure of the size of a sequential file.

4-25

Run Time Errors (Cont.)

Number

63

Number

64

4-26

Message

Bad record number

In a PUT or GET statement, the record
number is greater than the maximum
allowed (32767) or equal to o.

If the record number is a variable
assigned a value during program
execution, check the values of this
variable before the PUT or GET
statement.

Message

Bad file name

An illegal form has been used for the
file name.

• Check that the file name is not a
BASIC reserved word.

Number

66

Number

67

Run Time Errors (Cont.)

Message

Direct statement in file

A statement without a line number has
been encountered while loading an ASCII
format file. The LOAD operation has
been terminated.

Check:

• that each BASIC statement is preceded
by a line number.

• that the file being loaded is not a
data file.

Message

Too many files

An attempt has been made to create a new
file when all 255 directory entries are
full.

• Reexecute program with a new disk
mounted.

4-27

Run Time Errors (Cont.)

Number

68

Number

69

4-28

Message

Not readable as a random file

An attempt to open a random file has
failed because the file contains
variable length records.

• Check to make sure that the disk file
is a random access file.

Message

Record size mismatch

An attempt to open a random file has
failed because the record size
specified in the OPEN statement is
different from the record size
specified when the file was created.

• Check the record size specified for
the original random file and correct
the record length specification in the
OPEN statement.

Number

70

Number

71

Run Time Errors {Cont.)

Message

Record does not exist

An attempt to read a record from a
random file has failed because the
record does not exist.

Check:

• the GET statement to make sure that
the record specified is a record number
that exists in the random file.

• the number of records in the random
file using the LOF function.

Message

Not a random file

An attempt to open a random file has
failed because the file is not in the
proper format.

• Check that the disk file is a random
access file.

4-29

Run Time Errors (Cont.)

Number

72

Number

73

4-30

Message

Malformed record

An attempt to read or write a record in
a random file has failed because the
file structure cannot be verified.

• Use the MAINTAIN FILE utility to
check the data file.

Message4

Read/write beyond EOF

An attempt to open a random file has
failed either because the file is not in
Standard Access Method format or because
an internal error has occurred.

• Check to make sure that the file
being opened was created as a random
access file.

APPENDIXA

CONTROL OF THE VIDEO DISPLAY

CONTROL OF THE VIDEO DISPLAY

This appendix describes how to control the video display by
using a series of special commands. B 20 BASIC can control the
following video display features:

• character attributes (reverse video, underlining, half
brightness, and blinking)

• screen attributes (half brightness and reverse video)

• cursor positioning and visibility

• line scrolling

• pausing between frames of information

• the keyboard LED indicators.

In addition, B 20 BASIC allows you to:

• fill in various size rectangles with a specified character

• erase information in lines or frames.

Each of these features is described in this section. First
the statement and an explanation of the statement are presented,
then an example of the statement is provided.

A-1

CONTROLLING CHARACTER ATTRIBUTES

B 20 BASIC allows you to display characters on the screen
using:

• reverse video
• underlining
• half-brightness
• blinking

Each of these features may be used alone or in combination
with one or more other features. For example, B 20 BASIC allows
you·to display characters that are in half-brightness and
underlined.

To control the display of characters, a special form of the
CHR$ function is used. All character attributes are controlled
by entering CHR$(255) plus specified letters to control the video
display. Table A-1 gives a summary of the character attribute
controls. An X in a column of the table indicates the character
attribute that is activated by each entry.

Table A·1 . Character Attribute Control

REVERSE HALF-
BLINKING VIDEO UNDERLINING BRIGHTNESS

CHR$(255) + "AA"

CHR$(255) + "AB" X

CHR$(255) + "AC" X

CHR$(255, + "AD" X X

CHR$(255) + "AE" X I
CHR$(255} + "AF" X X

CHR$(255) + "AG" X X I
CHR$(255) + "AH" X X X I

I
CHR$(255) + "AI" X I

!
CHR$(255) + "AJ" X X I

I
CHR$(255) + "AK" X X I
CHR$(255) + "AL" X X X I

I
!

CHR$(255) + "AM" X X I
I

CHRS(255) + "A N" X X x i
CHR$(255) + "AO" X X X i

ICHR$(255) + " AP " x x x x

A-2

For example, the following statement is used to activate the
underlining of a character or characters:

120 PRINT CHR$(255)+"AC"

All PRINT statements after this statement underline the
information displayed. To turn off the underlining option,
enter: .

PRINT CHR$(255)+"AZ"

or

PRINT CHR$(255)+"AA"

Example

The following BASIC statements assign character attribute
controls to string variables. When each of these string
variables is used in a PRINT statement, the character attribute
is activated.

10 REVERSE$=CHR$(255)+"AE"
20 UNDERLINE$=CHR$(255)+"AC"
30 FLASH$=CHR$(255)+"AI"
40 HALFBRIGHT$=CHR$(255)+"AB"
50 NORHAL$=CHR$(255)+"AA"
60 PRIN'.r REVERSE$;"This is displayed in reverse video."
70 PRINT UNDERLINE$;"This information is underlined."
80 PRINT FLASH$;"This information is flashing."
90 PRINT HALFBRIGHT$;"This information is displayed in

half-brightness."
1 00 PRINT NORf1AL$; "The screen is returned to normal."

The information in each of the PRINT statements is displayed
using the specified character attribute. Statement 70, for
example, underlines the sentence that follows it.

Notice that each time a character attribute is activated, the
previous character attribute control is ignored. To use the
character attributes in combination, refer to Table A-1 for the
proper control characters.

A-3

CONTROLLING SCREEN ATTRIBUTES

B 20 BASIC allows you to control the entire screen of your
computer. Using a special form of the CHR$ function, you can
reverse the entire screen or control the brightness of the
information displayed. Unlike the character control features,
the screen control attributes may be used together. You may use
the appropriate command to reverse the video of the entire screen
and then change the reversed display to half-brightness using a
second command. The screen attribute controls also allow you to
turn off the reverse video and half-brightness features.

To reverse the video on the screen, the statement used is:

CHR$(255)+"RN"

When this statement is executed, the entire screen is
reversed. To return the screen to its original format, use the
statement:

CHR$(255)+"RF"

Both of these screen attribute control statements must be
executed in a PRINT statement before they are activated.

To set the screen at half-brightness, the statement used is:

CHR$(255)+"HN"

When this statement is executed, the entire screen displays
information at half its original brightness. To return the
screen to its original brightness, use the statement:

CHR$(255)+"HF"

Again, both of these statements must be executed in a PRINT
statement before they are activated.

A-4

EXAMPLE

The following BASIC statements assign screen attribute
controls to the string variables, A$, B$, C$ and D$

10 A$:::CHR$(255)+"RN"
20 B$:::CHR$(255)+"RF"
30 C$:::CHR$(255)+"HN"
40 D$:::CHR$(255)+"HF"
50 PRINT"This is a sample"
60 PRINT" of "
70 PRINT"B 20 screen control"

When this program is executed, it displays:

This is a sample
of

B 20 screen control

Direct mode PRINT statements are now used to change the
screen attributes.

Statement Action

PRINT A$ The entire screen reverses.

PRINT C$ The reversed screen is reduced to half-brightness.

PRINT B$ The screen returns to a positive image
but remains at half-brightness.

PRINT D$ The screen returns to full brightness.

A-5

CONTROLLING CURSOR POSITION AND VISIBILITY

B 20 BASIC allows for the control of both cursor position and
its visibility. A special form of the CHR$ function is used for
this purpose.

To control the cursor position use the following statement:

CHR$(255)+IIC II + CHR$(column position of cursor)+

CHR$ (row position of cursor)

Both the column and the row positions are integers and must
be within the range of your B 20 system screen size. If the row
column number you enter is greater than the screen size of your
system, the control of the cursor is ignored.

To deactivate the display of the cursor, use the following
statement:

CHR$(255)+IIVF II

To make the cursor visible, use the statement:

CHR$(255)+IIVN II

EXAMPLE

10 PRINT CHR$(12)
20 PRINT CHR$(255)+IIC II +CHR$(30)+CHR$(15);
30 PRINT CHR$(255)+IIVF";
40 INPUT IIEnter a number here ll

; A

When these statements are executed, the screen clears, the
cursor is moved to column 30, row 15, and the following is
displayed:

Enter a number here

Notice that the cursor is not visible. To display the cursor
in future statements you must use the command:

CHR$(255)+IIVN II

A-6

CONTROLLING LINE SCROLLING

B 20 BASIC allows you to scroll down a portion of a screen
and fill the upper portion of the screen with blanks. It also
allows for scrolling up a portion of the screen and filling the
lower portion with blanks.

To scroll down the screen, use the following command:

CHR$(255)+"S"+CHR$(first line) + CHR$(last line) +
CHR$(count)+ liD"

When this command is executed, the screen scrolls down
beginning at the line number entered as the first line and
continues up to the line number entered as the last number. The
number of lines scrolled is the number entered for the variable
count in this command. The top "count" lines of the screen are
left blank.

To scroll up the screen use the following command:

CHR$(255)+"S"+CHR$(first line)+CHR$(last line) +
CHR$(count) +"U"

When this command is executed the screen scrolls up beginning
at the last line and continuing up to the first line.

EXAMPLE

PRINT CHR$(255)+"SI+CHR$(1)+CHR$(10)+CHR$(9)+ II D"

This statement scrolls down the screen and leaves the top 9
lines of the screen blank.

A-7

CONTROLLING PAUSES BETWEEN FRAMES

With B 20 BASIC you can control the pausing between full
screens of information. When the pausing feature is activated,
the computer pauses and displays the following message when
information is about to be scrolled off the screen:

Press NEXT PAGE to continue

The display of information is continued by pressing the NEXT
PAGE key.

To activate pausing between frames, use the following
statement:

CHR$(255)+"PN"

Once this statement has be,en executed the pause message is
displayed as each screen fills with information. The NEXT PAGE
key must be pressed to continue the display of information.

To discontinue the display of the pause message, the
following statement is used:

CHR$(255)+"PF"

EXAMPLE

10 PRINT CHR$(255)+"PN"
20 FOR I = 48 TO 125
30 PRINT CHR$(I)
40 NEXT I

When these statements are executed, a column of letters,
numbers, and symbols is displayed. As the screen fills with
information, the last line displayed is:

Press NEXT PAGE to continue.

,When the NEXT PAGE key is pressed, the display of information
continues.

A-8

CONTROLLING THE KEYBOARD LED INDICATORS

B 20 BASIC allows you to light the LED indicators on the
keyboard. To light one or more of the LED indicators, a special
form of the CHR$ function is used. The form of the statement to
turn on an LED indicator is:

CHR$(255)+"I number or letter Nil

The number or letter controls which of the LED indicators is
lighted. Table A-2 shows the code for controlling each of the
LED indicators.

TABLE A-2. CONTROL CODES FOR LED INDICATORS

CODE

1
2
3
8
9
o
T

KEY

F1
F2
F3
F8 I
F9 1

F10~ OVERTYPE

~------------------------

To turn off an LED indicator the following statement is used:

CHR$(255)+ "I number or letter F"

The number or letter is the code for the LED indicator as
listed in Table A-2.

EXAMPLE

PRINT CHR$(255)+"I1N"

This statement turns on the LED on the F1 key.

A-9

DIRECTING VIDEO DISPLAY OUTPUT
B 20 BASIC allows you to direct video output to a particular

frame of the video display. To do this, use the following
statement:

CRR$ (255) + "X" =CRR$«frame»

<frame> indicates which frame to direct the output to and should
be a value between 0 and 7.

Note that when BASIC is invoked, frame 0 is defined as the
entire video display and no other frame exists. This command is
meaningful only after a call to the Video Display Manager
InitVidFrame operation has been made to define new frames. See
the ~TOS Oper~ting System. Manual for details.

EXAMPLE

10 PRINT CRR$ (255) + "X" + CRR$ (0)

This statement directs the video output to frame O.

FILLING A RECTANGLE

To fill in a rectangle using B 20 BASIC, a special form of
the CHR$ function is used. The following statement is used to
fill in a rectangle of a specified size:

CHR$(255)+"F"+"any character"+ CHR$(column number)+
CHR$(row number)+CHR$(width)+ CHR$(height)

Any standard character may be used, and the rectangle of the
specified width and height may be placed in any column and row
position on the screen.

EXAMPLE

PRINT CHR$(255)+"F"+"*"+ CHR$(10)+ CRRS(10)+CHR$(40)+ CHR$(5)

This statement displays a rectangle, the top left edge of
which begins in row 10, column 10. The rectangle displayed is
40 characters wide and 5 characters high. In this example, a
rectangle of asterisks (*) is displayed.

A-10

ERASING TO THE END OF THE LINE OR FRAME

B 20 BASIC allows you to erase to the end of the line or to
the end of a frame. To erase to the end of a line, use the
following statement:

CHR$(255)+"EL"

To erase to the end of a frame, use the following statement:

CHR$(255)+"EF"

Erasing turns off all previously specified character
attributes.

EXAMPLE

10· PRINT CHR$(255)+"C"+CHR$(1) + CHR$(1)
20 PRINT CHR$(255)+"EF"

These statements move the cursor to row 1, column 1, and then
erase from that point to the end of the frame.

A-11

DISPLAYING SPECIAL CHARACTERS LITERALLY
B 20 BASIC enables you to display literal characters, and to

also disable the literal display of characters. To enable the
literal display of characters, use the following statement:

CRR$(255) + "LN"

To disable the literal display of special character, use the
following statement:

CRR$ + "LF"

EXAMPLE

10 PRINT CRR$ (255) + "LN" + CRR$(7)
20 PRINT CRR$ (255) + "LF" + CRR$(7)

Statement 10 enables the user to display the special
character for the hex value 7, which is a bell. Statement 20
disables the display special characters, and thus sounds a bell.
For a list of the video display characters, refer to the B 20
Software Operations Guide.

A-12

APPENDIXB

PRINTING WITH THE PRINTER SPOOLER

vlhen writing BASIC programs on a B 20 system that uses the
Spooler utility to print, a special defining function (DEFLPRINT)
must be used. Before an LPRINT or LPRINT USING command is
executed, a DEFLPRINT function must be defined. After the
printing command has been executed, a second DEFLPRINT function
must be defined to print the file from the print queue.

The DEFLPRINT function is defined with the print queue name used
by your B 20 system. There are three forms of DEFLPRINT
function.

ERC% DEFLPRINT(II[SPL]II)
ERC% DEFLPRINT(" SPLB]")
ERC% = DEFLPRINT(" NUL]")

DEFLPRINT("[SPL]") is used for B 20 systems that use parallel
printers.

DEFLPRINT("[SPLB]") is used for B 20 systems that use serial
printers.

DEFLPRINT (II [NUL] II) is used to print a BASIC program result that
has been placed in the print queue by an LPRINT or LPRINT USING
command.

LPRINT AND LPRINT USING

The following statements print the upper-case letters of the
alphabet. Notice the placement of the two DEFLPRINT functions.
The first DEFLPRINT specifies that the system printer is a
parallel printer .•

10 ERC% = DEFLPRINT("[SPL]")
20 FOR I = 65 TO 90
30 LPRINT CHR$(I)
40 NEXT I
50 ERC% = DEFLPRINT("[NUL]")

If the system printer is serial, the first DEFLPRINT function
(statement 10) is:

10 ERC% = DEFLPRINT("[SPLB]")

The remaining statements are the same.

B-1

LLIST

You need the following statements to list a program on the
printer:

ERC% = DEFLPRINT("[SPL]")
LLIST
ERC% = DEFLPRINT("[NUL]")

Again, if the system printer is a serial printer, the first
DEFLPRINT function reads:

ERC% = DEFLPRINT("[SPLB]")

B-2

APPENDIXC

DISK INPUT/OUTPUT

Disk input/output procedures for the beginning BASIC user
are examined in this appendix. If you are getting disk-related
errors, read through these procedures and program examples to
make sure you are using all the disk statements correctly.

Wherever a file name is required in a disk command or
statement, use a name that conforms to the BTOS requirements for
file names (see the subsection on OPEN in Section 3).

PROGRAM FILE COMMANDS

The following commands and statements are used- in program
file manipulation.

SAVE "filename"[,A]

Writes to disk the program that is currently residing in memory.
Optional A writes the program as a series of ASCII characters.
(Otherwise, BASIC uses a compressed binary format.)

LOAD "filename"[,R]

Loads the program from disk into memory. Optional R runs the
program immediately. Load always deletes the current contents of
memory and closes all files before LOADing. If R is included,
however, open data files are kept open. Thus, programs can be
chained or loaded in sections and access the same data files.

RUN "filename"[,R]

RUN "filename" loads the program from disk into memory and runs
it. RUN deletes the current contents of memory and closes all
files before loading the program. If the R option is included,
however, all open data files are kept open.

MERGE "filename"

Loads the program from disk into memory but does not delete the
current contents of memory. The program line numbers on disk are
merged with the line numbers in memory. If two lines have the
same number, only the line from the disk program is saved. After
a MERGE command, the "merged" program resides in memory and BASIC
returns to command level.

C-1

KILL "filename"

Deletes the file from the disk. "filename" can be a program file
or a sequential or random access data file.

NAME "oldfile" AS "newfile"

To change the name of a disk file, execute the NAME statement,
NAME "oldfile" AS "newfile". NAME can be used with program
files, random files, or sequential files.

PROTECTED FILES

If you wish to save a program in an encoaed binary format,
use the "Protect" option with the SAVE command. For example:

SAVE "MYPROG",P

A program saved this way can not be listed or edited.

There are two types of disk data files that can be created
and accessed by a basic program: sequential and random access.

Sequel1tial Files

Sequential files are easier to create than random files but
are limited in flexibility and speed when it comes to accessing
the data. The data written to a sequential file is stored, one
item after another (sequentially), in the order it is sent and is
read back in the same way.

The statements and functions used with sequential files are:

OPEN
CLOSE
PRINT#
PRINT# USING
INPUT#
LINE INPUT#
WRITE#
EOF

The following program steps are required to create a
sequential file and access the data in the file:

1. OPEN the file in "0" mode.

OPEN "0",#1 ,"DATA"

C-2

2. Write data to the file using the PRINT# statement.
(WRITE# can be used instead.)

PRINT#l,AiBiC$

3. To access the data in the file, you must CLOSE the file
and reOPEN it in "I" mode.

CLOSE #1
OPEN "I",#l,"DATA"

4. Use the INPUT# statement to read data from the sequential
file into the program.

INPUT#l,X$,Y$,Z$

Figure C-l is a short program that creates a sequential
file, "DATA", from information you input at the video display.

10 OPEN "O",#1,"DATA"
20 INPUT "NAME"iN$
25 IF N$="DONE" THEN END
30 INPUT "DEPARTMENT "iD$
40 INPUT "DATE HIRED "iH$
50 PRINT #1,N$i","iD$;",";H$
60 PRINT: GOTO 20

NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.

Figure C-l. Creating a Sequential Data File.

C-3

Now look at Figure C-2. It accesses the file nDATA n that was
created in the program of Figure C-l and displays the name of
everyone hired in 1978.

10 OPEN nIn,#l,nDATAn
20 INPUT #l,N$,D$,H$
30 IF RIGHT$(H$,2)=n78 n THEN PRINT N$
40 GO TO 20
EBENEEZER SCROOGE
SUPER MANN
Fatal Error: Input past end in line 20

Figure C-2. Accessing a Sequential File

The program in Figure C-2 sequentially reads every item in
the file. When all the data is read, line 20 causes an "Input
past end n error message. To avoid getting this error message,
insert line 15, which uses the EOF function to test for end-of
file:

15 IF EOF(l) THEN END

and change line 40 to GOTO 15.

A program that creates a sequential file can also wirte
formatted data to the disk with the PRINT# USING statement. For
example, the statement

PRINT#l,USINGn####.##,n;A,B,C,D

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string serves to
separate the items in the disk file.

When used with a sequential file, the LOC function returns
the number of sectors that were written to or read from the file
since it was OPENed. A sector is a 128-byte block of data.

Adding Data to a Sequential File

If you have a sequential file residing on disk and later
want to add more data to the end of it, you simple open the file
in nAn mode and start writing data.

C-4

Random Files

Creating and accessing random files requires more program
steps than sequential files, but there are advantages to using
random files. One advantage is that random files require less
room on the disk, because BASIC stores them in a packed binary
format. (A sequential file is stored as a series of ASCII
characters.)

The biggest advantage to random files is that data can be
accessed randomly, that is, anywhere on the disk; it is not
necessary to read through all the information, as with sequential
files. This is possible because the information is stored and
accessed in distinct units, called records, and each record is
numbered.

The· statements and functions used with random files are:

OPEN
FIELD
LSET/HSET
GET
PUT
CLOSE
LOC
MKI$
Iv'lKS$
MKD$
CVI
CVS
CVD
LOF

Creating a Random File

The following program steps are required to create a random
file.

1. OPEN the file for random access ("H" mode). This
example specifies a record length of 32 bytes. The
default record length is 128

OPEN "H",#1 ,"FILE",32

2. Use the FIELD statement to allocate space in the random
buffer for the variables that are to be written to the
random file.

FIELD #1 20 AS N$, 4 AS A$, 8 AS P$

C-5

3. Use LSET to move the data into the random buffer.
Numeric values must be made into strings when placed in
the buffer. To do this, use the "make" functions: MKI$
to make an integer value into a string, MKS$ for a
single-precision value, and MKD$ for a double-precision
value.

LSET N$=X$
LSET A$=MKS$ (AMT)
LSET P$=TEL$

4. write the data from the buffer to the disk using the PUT
statement.

PUT #l,CODE%

Look at the program in Figure C-3. It takes information
that is input at the video display and writes it to a random
file. Each time the PUT statement is executed, a record is
written to the file. The 2-digit code input in line 30 becomes
the record number.

Note: Do not use a FIELD string variable in an INPUT or LET
statement. This causes the pointer for that variable to point
into string space instead of the random file buffer.

10 OPEN "R",#l,"FILE"
20 FIELD #1,20 AS N$, 4 AS A$, 8 AS p$
30 INPUT "2-Digit code"iCODE%
35 IF CODE%=99 THEN END
40 INPUT "NAME";X$
50 INPUT "AMOUNT"iAMT
60 INPUT "PHONE"iTEL$:PRINT
70 LSET N$=X$
80 LSET A$=MKS$(AMT)
90 LSET P$=TEL$
100 PUT #l,CODE%
110 GOTO 30

Figure C-3. Creating a Random File.

Accessing a Random File

The following program steps are required to access a random
file:

1. OPEN the file in "R" mode.

OPEN "R",#1,"FILE",32

C-6

2. Use the FIELD statement to allocate space in the random
buffer for the variables that are to be read from the
file.

FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$

NOTE

In a program that performs both input and output on
the same random file, you can often use just one
OPEN statement and one FIELD statement.

3. Use the GET statement to move the desired record into
the random buffer.

GET #1,CODE%

4. The data in the buffer can now be accessed by the
program. Numeric values must be converted back to
numbers using the "convert" functions: CVI for
integers, CVS for single-precision values, and CVD for
double-precision values.

PRINT N$
PRINT CVS(A$)

The program shown in Figure C-4 below accesses the random
file "FILE" that was created in Figure C-3. By entering the 3-
digit code at the video display, the information associated with
that code is read from the file and displayed.

10 OPEN "R", #1 , "FILE"
20 FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-Digit code";CODE%
40 GET #1, CODE%
50 PRINT N$
60 PRINT USING "$$###.##";CVS(A$)
70 PRINT P$: PRINT
80 GOTO 30

Figure C-4. Accessing a Random File.

The LOC function, with random files, returns the "current
record number." The current record number is one plus the last
record number that was used in a GET or PUT statement. For
example, the statement

IF LOC(1 »50 THEN END

ends program execution if the current record number in file#1 is
higher than 50.

C-7

The program shown in Figure C-5 is an inventory program that
illustrates random file access. In this program, the record
number is used as the part number, and it is assumed the
inventory contains no more than 100 different part numbers.
Lines 900 to 960 initialize the data file by writing CHR$(255) as
the first character of each record. This is used later (lines
270 and 500) to determine whether an entry already exists for
that part number.

Lines 130 to 220 display the different inventory functions
that the program performs. When you type in the desired function
number, line 230 branches to the appropriate subroutine.

C-8

1200PEN"R",#1,"INVEN.DAT",39
125 FIELD#1,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS P$
130 PRINT:PRINT "FUNCTIONS:" :PRINT
135 PRINr 1,"INITIALIZE FILE"
140 PRINT 2,"CREATE A NEW ENTRY"
150 PRINr 3,"DISPLAY INVENTORY FOR ONE PART"
160 PRINT 4, "ADD TO STCCK"
170 PRINT 5," SUBTRACT FROM STOCK"
180 PRINT 6, "DISPLAY ALL ITEMS BELOW REORDER LEVEL"
220 PRINT:PRINT:INPUT"FUNCTION";FUNCTION
225 IF (FUNCTION<1)OR(FUNCTION>6) THEN PRINT

"BAD FUNCTION NUMBER" :GOTO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOI'O 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$)<>255 THEN INPt1l'"OVEmoiRITE"iA$:IF A$<>"Y".THEN RETURN
280 LSET F$=CHR$(O)
290 INPt1l' "DESCRIPTION" iDESC$
300 LSET D$=DESC$
310 I NPt1l' "QUANT ITY IN STCCK" i Q%
320 LSET Q$=MKI$ (Q%)
330 INPt1l' "REORDER LEVEL" i R%
340 LSET R$=MKI$ (R%)
350 INPt1l' "UNIT PRICE"iP
360 LSET P$=MKS$ (P)
370 Pur#1,PART%
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$)=255 THEN PRINT "NULL ENTRY": RETURN
420 PRINT USING "PART NUMBER ###" i PART%
430 PRINT 0$
440 PRINT USING "QUANTITY ON HAND #####"iCVI(Q$}

Figure C-S. Inventory (Sheet 1)

450 PRINT USING "REORDER LEVEL #####";CVI (R$)
460 PRINT USING "UNI'r PRICE $$##.##";CVS(P$)
470 RETURN
4 80 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$)=255 THEN PRINT "NULL ENTRY": RETURN
510 PRINT D$:INPUT "QUANTITY TO ADD ";A%
520 Q%=CVI(Q$)+A%
530 LSET Q$=MKI$ (Q%)
540 PUT#l, PART%
550 RETURN
560 REM REMOVE FRCM STOCK
570 GOSUB 840
580 IF ASC(F$)=255 THEN PRINT "NULL ENTRY": RETURN
590 PRINT D$
600 INPUT "QUANTITY TO SUBTRACT";S%
610 Q%=CVI(Q$)
620 IF (Q%-S%)<O THEN PRINT "ONLY";Q%; " IN STOCK":GOTO 600
630 Q%=Q%-S%
640 IF Q%=>CVI(R$) THEN PRINT "QUANTITY NOW"; Q%;" REORDER LEVEL";CVI(R$)
650 LSET Q$=MKI$ (Q%)
660 PUT #1 , PART%
670 RETURN
680 DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR I=l TO 100
710 GET#l,I
720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;.

" QUANTITY" ;CVI (Q$) ;TAB(50); "REORDER LEVEL"; CVI (R$)
730 NEXT I
740 RETURN
840 INPUT "PART NUMBER";PART%
850 IF(PART%<l)OR(PART%>100) THEN PRINT "BAD PART NUMBER":

GOTO 840 ELSE GET#l, PART%:RETURN
890 END
900 REM INITIALIZE FILE
910 INPUT "ARE YOU SURE";B$:IF B$<>,i~i" THEN RETURN
920 LSET F$=CHR$(255)
930 FOR I=l TO 100

\ 940 PUT#l, I
950 NEXT I
960 RETURN

Figure C-S. Inventory (Sheet 2)

C-9

APPENDIX D

MATHEMATICAL FUNCTIONS

Mathematical functions not intrinsic to BASIC can be calculated
as follows:

Functlon

SECANT

COSECANT

COTANGENT

INVERSE SINE

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

HYPERBOLIC COSINE

HYPERBOLIC TANGENT

HYPERBOLIC SECANT

HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE

INVERSE HYPERBOLIC COSINE

INVERSE HYPERBOLIC TANGENT

INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

BASIC Equivalent

SEC(X)=1/cos (x)

CSC(X)=1/SIN(X)

COT (X)=1/TAN (x)

ARCSIN(X)=ATN(X/SQR(-X*X+1»

ARCCOS(X)=-ATN(X/SQR(-X*X+l»+1.5708

ARCSEC(X)=ATN(X/SQR(X*X-1»+SGN(SGN(X)-1)*1.S708

ARCCSC(X)=ATN(X/SQR(X*X-l»+(SGN(X)-1)*1.5708

ARCCOT(X)=ATN(X)+1.S708

SINH(X)=(EXP(X)-EXP(-X»/2

COSH(X)=(EXP(X)+EXP(-X»/2

TANH(X)=EXP(-X)/EXP(X)+EXP(-X»*2+1

SECH(X)=2/(EXP(X)+EXP(-X»

CSCH(X)=2/(EXP(X)-EXP(-X»

COTH(X)=EXP(-X)/(EXP(X:-EXP(-X»*2+1

ARCSINH(X)=LOG(X+SQR(X*X+1»

ARCCOSH(X)=LOG(X+SQR(X*X-1)

ARCTANH(X)=LOG«1+X)/(1-X»/2

ARCSECH(X)=LOG«SQR(-X*X+1)+1)/X)

ARCCSCH(X)=LOG«SGN(X)*SQR(X*X+l)+l)/X

ARCCOTH(X)==LOG((X+l)/(X-l))/2

D-1

APPENDIX E
CALLING NON-BASIC PROCEDURES

OVERVIEW
BASIC can directly call procedures compiled or assembled

into standard object module format. Hence, you can access
procedures written in Pascal, FORTRAN, or assembly language.
Using this facility, you can directly call the BTOS Operating
System, Burroughs software products such as Forms, ISAM, and

'Sort/Merge, and your own non-BASIC procedures. You must
specially configure a BASIC program that calls non-BASIC
procedures.

You invoke a non-BASIC procedure by its name. If the
procedure does not return a value, use the CALL statement. If
the procedure returns a value, the procedure name can appear in
any numeric expression. Non-BASIC procedures can return byte,
integer, or single-precision values. In addition, calls on
value-returning procedures can be nested as parameters to other
non-BASIC procedures.

To call non-BASIC procedures, create a run file (Basic. run)
that contains the BASIC Interpreter, a lookup table (rg
Procedures), and the non-BASIC procedures. The process of
creating a new Basic.run is described in detail in "Configuring
BASIC," below.

BASIC provides several checks to detect incorrect procedure
calls. For example, the number of bytes of parameter data passed
by BASIC must match the number required by the procedure. See
the "Error Detection" section later in this appendix for more
details.

The following BASIC statements demonstrate calls to non
BASIC procedures. In the first example, the program calls
Initialize, passing the contents of integer i%, and NoOp, passing
no arguments.

100 CALL Initialize(i%)
110 CALL NoOp

In the second example, a call is made to the BTOS CloseFile
operation, passing the integer constant 7. The returned status
code is stored in the integer variable erc%.

100 erc% = CloseFile(7)

E-1

In the third example, a call is made to the BTOS OpenFile
operation, and the returned status code is stored in erc%. The
first parameter is a pointer to the BASIC variable fh%. OpenFile
uses this pointer to store back the file handle of the opened
file. The second and third parameters are string constants.
BASIC accepts string variables and string constants as parameters
to non-BASIC procedures. When a string parameter is used, BASIC
passes a pointer to the string (pb) followed by the length of the
string (cb). The final parameter is an integer whose two bytes
represent the ASCII characters "mm", for mode modify.

100 fh% = 0
110 Filespec$ = "TestFile"
120 Password$ = ""
130 mode% = &h6d6d
140 erc% = OpenFile(PTR(fh%),

PTR(Filespec$) ,
LEN(Filespec$) ,
PTR(Password$) ,
LEN(Password$) ,
mode%)

In the fourth example, PrimeNumber returns 255 if the
integer parameter is prime, and 0 otherwise. The expression
j%+12 is evaluated before it is passed. If the parameter is
prime, the THEN clause executes.

100 IF PrimeNumber(j%+12) THEN •••

The final example constructs a pointer to the beginning of
the BASIC data segment. GETSA returns an integer representing
the sa (segment address) portion of a pointer; MAKEPOINTER
returns the pointer whose ra (relative address) and sa are given
as parameters. This algorithm works because the BASIC variable
i% is in the BASIC data segment.

100 i% = 0
110 pBasicDS! = MakePointer(0, GetSa(PTR(i%»)

E-2

INVOKING VALUE-RETURNING PROCEDURES
Forma t: Procedure name([parameter list])

NOTE

Parentheses are always required.

Purpose: To call a value-returning non-BASIC procedure.

Remarks: Procedure invocation transfers program control
to a value-returning procedure. The name of the
procedure must be in rgProcedures, a lookup table
defined in BasGen.Obj.

The procedure can return either a byte, an integer, or a
single-precision number. A byte is stored as an integer and
ranges in value from zero to 255. The type of value that the
procedure returns is specified by rgProcedures.

Procedure invocations can appear in any numeric expressions
including parameter lists of other non-BASIC procedures. In this
case BASIC restricts the level of nesting to three. For example,
flip(flip(flip(l))) is permitted, but flip(flip(flip(flip(l))))
is not.

If the procedure requires no parameters, the parameter must
be null.

CAUTION

If you omit the parentheses, BASIC
allocates a new variable and
returns a value of zero rather than
invoking the non-BASIC procedure.

The "Parameter Passing" section below describes the
parameter list in detail.

Example: 100 erc% = CloseFile(fh%)

PARAMETER PASSING
A parameter list is a sequence of parameters separated by

commas. Valid parameters are strings, pointers, and numeric
expressions. You cannot pass arrays and double-precision
numbers directly; however, you can pass pointers to these
variables; pointers are stored as single-precision numbers.

E-3

BASIC passes parameters by value. If the parameter
evaluates to an integer, a word is pushed onto the stack. If the
parameter evaluates to a single-precision number, two words are
pushed. The first word pushed represents the most significant
bits of the value. If the parameter is a pointer, this
corresponds to a segment address.

Modifying BASIC Variables from Non-BASIC Procedures

Because BASIC passes parameters by value, non-BASIC
procedures must take pointers as parameters to all data to be
modified by the procedure. The following example shows how a
BASIC variable to be modified is passed to the OpenFile
operation.

100 fh% = 0
110 erc% = OpenFile (PTR(fh%) , •••)

Array Parameters

You pass an array by passing a pointer to its first element.
Arrays typically serve as working areas or buffers. The
following example shows how you pass an array as a working area
to a Direct Access Method operation.

100 DIM Dawa%[31] 'allocates 64bytes
110 'actually, 32 words
120 erc% = OpenDaFile(PTR(Dawa%[O]) , •••)

Word-Aligned Data

Some non-BASIC procedures, such as OpenDaFile, require word
alignment for buffers., Since BASIC does not guarantee word
alignment of data, pointers mayor may not point to word
boundaries. However, you can always create a pointer to word
align data using the BASIC PWA function.

The PWA function returns a pointer to word-aligned data,
given a pointer parameter. If the parameter is even (that is,
points to a word boundary), the parameter is simply returned;
otherwise, a pointer to the next word boundary is returned.

Whenever word alignment is needed, the data area should be
at least one byte longer than normally required. This ensures
that the data area is large enough in the case where it is
addressed by a word-aligned pointer. The following example shows
how a word-aligned buffer is passed.

E-4

100 DIM Buffer%[256]
110

'allocates 514 bytes
, (only need 512
'bytes) 120

130 erc% OpenDaFile(••• ,Pwa(PTR(Buffer[O])), 512, •••)

CAUTION

Pointers generated by PWA do not always
point to the beginning of a BASIC
variable, since BASIC variables are not
always word-aligned. If a non-BASIC
procedure modifies a BASIC variable
using such a pointer, BASIC may not be
able to reference the modified data
correctly.

PROGRAMMING RECOMMENDATIONS

Follow these recommendations when calling non-BASIC
procedures.

Recommendation 1

Allocate all variables before using pointers. When new
variables are allocated, BASIC can reorganize memory,
invalidating any pointers that were saved.

Allocate variables by assigning initial values. You can
also allocate an array with the DIM statement.

Recommendation 2

Do not use the INPUT statement to store a value directly
into an array. If you do this, BASIC reorganizes memory,
invalidating any pointers that were saved.

INPUT the value into a simple variable, then ~ssign the
variable to the array. For example, use:

100 INPUT X
110 A[l] = X

rather than:

100 INPUT A[l]

Recommendation 3

Use brackets rather than parentheses to subscript arrays.
By using brackets, you improve BASIC performance. You also
improve program readability by distinguishing between arrays and
value-returning procedures.

E-5

CONFIGURING BASIC

Creating Basic.run

To reconfigure BASIC in which non-BASIC procedures can be
called, create a run file that contains the BASIC Interpreter, a
lookup table (rgProcedures) defining the non-BASIC procedures,
and the actual non-BASIC procedures. The process of creating a
new Basic.run is described below.

To create Basic.run:
1. Copy the files contained on the distribution diskette within
directory BAIBLD to your desired directory.

Copy
[FO]<BAIBLD>*
[SYS]<directory name>*
y

File from
File to
[Overwrite OK?]
[confirm each]

Press GO

2. If you are simply configuring in Burroughs software, skip
this step.

If you are configuring in your own non-BASIC procedures,
invoke the Editor or Word Processor to modify BasGen.asm, the
assembly language module that defines rgProcedures.

Add an entry to rgProcedures for each of your non-BASIC
procedures, using an existing entry as a template. The format of
rgProcedures is described in detail below.

3. Assemble BasGen.asm to produce BasGen.obj. (See the B 20
Assembly Language Manual for details on invoking the assembler.)
During assembly, the assembler asks questions of this type:

Are you calling BTOS File Management ,(press y or n)?

Are you calling BTOS Memory Management (press y or n)?

Are you calling Forms (press y or n)?

Are you calling Sort/Merge (press y or n)?

Are you calling ISAM (press y or n)?

If you answer y (for yes) to a question, the assembler
creates an entry in rgProcedures for each procedures in the
corresponding Burroughs package. This enables BASIC to call the
non-BASIC procedures.

E-6

To create the packaged Basic.run, answer yes to the
following options:

Forms
ISAM
Video Access Method
Video Display Manager
Memory Management
Task Management/Contingency Management
Openfile/Closefile
File Management/Disk Management
Keyboard Management
Timer Management
Queue Management
Parameter Management

4. Submit the file StartBasicLink.sub.

Submit
StartBasicLink.sub

To create a swapping Basic.run, press GO. To create a
resident Basic.run, type "RES" on the [Parameter] line, then
press GO.

In general, the swapping version of the Basic.run is
preferable to the resident version, because it requires less
memory, with only a small performance degradation.

After pressing GO, the following link command will be
displayed with the following information filled in. Since the
packaged version is a swapping one, the example's fields contain
information necessary to build a swapping version of Basic.run.

Link
Object Module
Run file
[List file]
[Public?]
[Line numbers?]
[Stack Size]
[Max memory array size]
[Min memory array size]
System build?]
[Vers ion]
[Libraries]
<Sys)Forms.lib
[Disk allocation?]
[Symbol file]

Basgen.obj Basic.lib(•••
Basic.run
Basic.map

63600
6000

'Basic 4.0'
<Sys)ISam.lib

Basic.sym

E-7

The cursor will be positioned in the [Libraries] field. If
you choose other options when assembling Basgen.asm, add the
appropriate library files to this line. Remember that these
libraries should be taken from the 4.0 Operating System language
disk. CTOS.lib is automatically called; Therefore, do not type
it on this line. Press GO.

5. Copy Basic.run to [Sys]<Sys>Basic.run (see the Executive
Manual for details).

You can now invoke BASIC in the normal manner and call non
BASIC procedures.

ERROR DETECTION
BASIC detects several errors while invoking non-BASIC

procedures. These include:

• invalid parameters,

• unknown nonvalue-returning procedures,

• too much or too little parameter data,

• invoking a value-returning procedures with a CALL
statement or a non value-returning procedure in an
expression, and

• exceeding the nesting limit when using procedures as
parameters to other procedures.

Section 4 fully describes these errors.

Sample Program

The following example program ties together the concepts and
procedures given in this section. Follow these directions to run
this program:

1 . Create a directory Sort.

Copy the sort/merge program (on pages E~9 and E-10) and file
Files.lst on page E-11 onto this directory.

2. Reconfigure Basic to include packages Sort/Merge and SAM
(follow the directions on E-6 and E-7).

(Note: Answer yes to SAM and Sort/Merge during assembly of
Basgen.asm.) One must copy this Basic.run to
[Sys]<Sys>Basic.run.

E-8

3. Invoke the BASIC Command and fill its subform as follows:

Basic
[Initial program]
[Maximum number of open files]
[Maximum random record length]

Press GO.

Sort. bas

4. This program prints file Files.lst, then file Files.out.
Files.out is the sorted version of Files.lst.

For details see the B 20 Sort/Merge manual.

1 """"""""""""""""""""""""""""""
2 '
3 ' This program illustrates how to call the Sort/Merge object
4 ' modules from BASIC. The sorted records are assumed to be
5 ' 65 bytes long and are read from the SAM file 'files.lst'.
6 'The sorted records are output to the file 'files.out'.
7 ' This file will also be a SAM file.
S '
10 DIM RGBBUFFERIN%[512]
20 DIM RGBBUFFEROUT%[512]
30 DIM BSIN%[65]
40 DIM BSOUT%[65]
50 DIM RGBWORKAREA%[4096]
60 DIM PREPARESORTBLOCK%[112]
70 DIM KEYDESCRIPTOR%[S]
SO DIM RGWSORTSTATUSBLOCK%[2]
90 RECORD$ = SPACE$(65)
100 DEF FNQUAD(WHIGH%,WLOW%)=CVS(MKI$(WLOW%)+MKI$(WHIGH%))
1 05 WF1 $ = "\fF1"
110 VlF2$ = "\fF2"
115 PW$ = ""
120 IN$ = "FILES.LST"
130 OUTPUTS = "FILES.OUT"
140 SSORTWORKFILECREATE% = 1024
150 SWORKFILEINCREMENT% = 512
160 SRECORDMAX% = 65
170 SRECORD% = 65
1S0 MODEREAD% = ASC("m")*&h100 + ASC("r")
190 MODEWRITE% = ASC("m")*&h100 + ASC("w")
200 ERC% = 0
210 W% = 0
220 SSORTWORKAREA% = S192
221 ' Initialize key descriptor.
222 ' 2 keys are used.
223 ' The first key is of type character, is 6 bytes long, has
224 ' an offset of 6 bytes from the beginning of the record,
225 ' and is sorted in ascending order.

E-9

230 KEYDESCRIPTOR%[O] 2
240 KEYDESCRIPTOR%~1] 6
250 KEYDESCRIPTOR% 2] 6
260 KEYDESCRIPTOR% 3J 2
270 KEYDESCRIPTOR% 4] = &HFFFF
271 ' The second key is of type character, is 6 bytes long,
272 'has an offset of 26 bytes from the beginning of the
273 ' record, and is sorted in ascending order.
280 KEYDESCRIPTOR%!5j = 26
290 KEYDESCRIPTOR% 6 = 6
300 KEYDESCRIPTOR% 7 = 2
310 KEYDESCRIPTOR% 8] = &HFFFF
320 ERC% = OPENBYTESTREAM(PTR(BSIN%[O]),IN$,PW$,

MODEREAD%,PWA(PTR(RGBBUFFERIN%[0])),1024)
330 IF ERC% <> 0 THEN GOTO 640
340 ERC% = OPENBYTESTREAM(PTR(BSOUT%[O]),OUTPUT$,PU$,

MODEWRITE%,PWA(PTR(RGBBUFFEROUT%[0])),1024)
350 IF ERC% <> 0 THEN GO TO 640

.360 ERC% =
BASICPREPAREKEYSORT(PTR(PREPARESORTBLOCK%[0]),WF1$,PW$,

WF2$,PW$,FNQUAD(0,SSORTWORKFILECREATE%),SWORKFILEINCREMEN
T%,

[0]) ,
FNQUAD(O,SSORTWORKAREA%),SRECORDMAX%,O,PTR(KEYDESCRIPTOR%

PWA(PTR(RGBWORKAREA%[O])),PTR(RGWSORTSTATUSBLOCK%[O]))
370 IF ERC% <> 0 THEN GOTO 630
380 PRINT "RELEASE RECORDS"
390 ERC% = READBSRECORD(PTR(BSIN%[O]),PTR(RECORD$),

SRECORD%,PTR(W%))
400 IF ERC% <> 0 THEN GOTO 440
410 ERC% = RELEASERECORD(PTR(SRECORD%),PTR(RECORD$),

PTR(RGWSORTSTATUSBLOCK%[O]))
420 IF ERC% <> 0 THEN GOTO 630
425 PRINT LEFT$(RECORD$,64)
430 GOTO 390
440 IF ERC% <> 1 THEN GOTO 630
450 PRINT "DO SORT"
460 ERC% = DOSORT (PTR (RG\vSORTSTATUSBLOCK%[0]))
470 IF ERC% <> 0 THEN GOTO 630
475 PRINT "RETURN RECORDS"
480 ERC% = RETURNRECORD(PTR(SRECORD%),PTR(RECORD$),

PTR(RGWSORTSTATUSBLOCK%[O]))
490 IF ERC% <> 0 THEN GOTO 540
500 ERC% = WRITEBSRECORD(PTR(BSOUT%[O]),PTR(RECORD$),

SRECORD%,PTR(W%))
520 IF ERC% <> 0 THEN GOTO 630
525 PRINT LEFT$(RECORD$,64)
530 GO TO 480
540 IF ERC% <> 3404 THEN GOTO 630
550 ERC% = CONCLUDESORT(PTR(RGWSORTSTATUSBLOCK%[O]))
560 IF ERC% <> 0 THEN GOTO 630
570 ERC% = CLOSEBYTESTREAM(PTR(BSIN%[O]))

E-10

580 IF ERC% <> 0 THEN GOTO 630
590 ERC% = CLOSEBYTESTREAM(PTR(BSOUT%[O]))
600 IF ERC% <> 0 THEN GOTO 630
610 PRINT "SORT CONCLUDED SUCCESSFULLY"
612 PRINT
615 INPUT "END OF PROGRAM - PRESS 'RETURN' TO END", A$
616 IF A$<>"" THEN GOTO 615
620 END
630 W% = TERMINATESORT(PTR(RGWSORTSTATUSBLOCK%[O]))
640 PRINT "ERROR"
650 PRINT "ERROR CODE n;ERC%
660 STOP
Emp# 456789 6 Dep Mares, May Marysville, CA M
Emp# 123456 3 Dep Black, Jack Hackensack, NJ M
Emp# 246802 0 Dep Jensen, Jon Jackson, MI S
Emp# 012345 7 Dep Calem , Carl Salem, OR M
Emp# 246802 8 Dep Sacks , Jack Sacramento, CA M
Emp# 375573 5 Dep Pitts, Paul Pittsburgh, PA H
Emp# 012345 4 Dep Looney, Larry Looneyville, LA H
Emp# 456789 2 Dep Keyes, Keith Key West, FL M
Emp# 123456 9 Dep Johns, John Johnstown, NC M
Emp# 375573 1 Dep Alton, Allen Altoona, PA S

E-11

APPENDIX F
PROGRAMMING HINTS

This appendix presents programming hints which will assist
in using BASIC. The hints cover four areas:

~.' Using SamGenAll with BASIC
2. Single- and Double-Precision Numbers in BASIC
3. Accessing the System Date and Time using BASIC
4. Miscellaneous

USING SAMGENALL WITH BASIC
The Basic.run file is configured with the following byte

streams: Spooler [SPL], Video [VID], Keyboard [KBD], Null [NUL],
Serial Line Printer [PTR], and Parallel Printer [LPT]. In order
to use the Communication [COMM] byte stream, Basic.run must be
reconfigured. The following is a step-by-step procedure:

1. Create the directory BTOS on a hard disk and copy the
following files to the directory BTOS:

SamGenAll.obj
Basic.Lib
Forms.Lib

ISAM.Lib
StarBasicLink.sub
BasGen.asm

2. Rename the file SamGenAll.obj to Bas-SamGen.obj.

3. Edit BasGen.asm. Change the entry "sSamBuffer dw 512" to
read "sSamBuffer dw 1024".

4. Invoke the LIBRARIAN to add the object module Bas-SamGen.obj
into the Basic.Lib (see example).

Command LIBRARIAN
Librarian

Library file
[File to add]
[Modules to delete]
[Modules to extract]
[Cross-reference file]
[Suppress confirmation?]

Basic.Lib
Bas-SamGen.obj

When the message "Bas-SamGen already exists. Replace?
(Press GO to confirm, CANCEL to deny)" is displayed, press GO.

F-l

5. Assemble BasGen.asm (see example).

Are
Are
Are
Are
Are
Are
Are
Y
Are
Are
Are

Command ASSEMBLE
Assemble

Source Files
Errors only?]
GenOnly, NoGen, or Gen]
Object file]
List file]
Error file]
List on pass I?]

BasGen.asm

Answer y (yes)to the following questions:

you calling FORMS (y or n)? y
you y calling ISAM (y or n)?
you calling the Sequential Access Method (y or n)?
you calling the Video Access Method (y or n)? y
you calling CTOS Memory Management (y or n)? y
you calling CTOS Task Management (y or n)? Y
you calling CTOS OpenFile or CloseFile Management

you calling CTOS File Management (y or n)? Y
you calling CTOS Keyboard Management (y or n)? Y
you calling CTOS Timer Management (y or n)? Y

Y

(y or n)?

Note: Answer Y to Queue Management and Parameter Management
for 4.0 Operating system.

6. Submit StartBasicLink.sub to link BasGen.obj. Change the
version to reflect the addition of the COMM byte streams and add
the following libraries: ISAM.Lib, and Forms.Lib (see example).

F-2

Command LINK
Link

Object modules
samgen)
Run file
List file]
Publics?]
Line numbers?]
Stack size]
Max memory array s~ze]
Min memory array s~ze]
System build?]
Version]

lLibrarieS]
DS allocation?]
Symbol file]

BasGen.obj Basic.Lib(bas-

Basic.run
Basic.map

64360
6000

'Basic with COMM'
ISAM.Lib Forms.Lib

Basic.Sym

The following program transmits a COMM byte stream out of
the COMM B port.

10 ERC% = OEFLPRINT("[COMM]B")
20 IF ERC% <> 0 THEN PRINT "ERROR.
30 FOR I = 16 TO 254
40 PRINT CHR$(I)i
50 LPRINT CHR$(I);

. 60 NEXT I
70 END

ERC _II. - , ERC%: GOTO 70

To test the new Basic.run with the above source:

Create the configuration file "COMMBConfig.Sys" using the
default parameters. Perform a COpy from [COMM]B to [VID] on the
receiving B20. Run this program on the transmitting B20. The
receiving B20 should display the complete ASCII character set.

SINGLE- AND DOUBLE-PRECISION NUMBERS IN BASIC
There are some real numbers in BASIC that cannot be

represented as floating-point numbers; when they are converted
to decimal the "wrong" answer is returned. This problem is
caused by rounding errors in the conversion between a numeric
constant and its floating-point representation and the subsequent
conversion from floating-point back to a numeric constant. A way
to prevent the incorrect printout of these values is to use the
PRINT USING or LPRINT USING commands. These commands round the
real numbers to the desired amount of decimal places and thus
give a correct printout of the values. Some examples of these
are shown below:

Example 1:

10 A# = .0865
20 B# = .0962
30 PRINT TAB(lO); AI; TAB(40);
40 PRINT USING "#.####"; A#
50 PRINT
60 PRINT TAB(lO); BI; TAB (40);
70 PRINT USING "#.####"; B#
80 END

When this BASIC program is run, the values printed are shown
below. The first column printed uses the PRINT command and the
second column used the PRINT USING command.

8.6499996483325960-02
9.6199996769428250-02

0.0865
0.0962

F-3

Note that the "wrong" value is also displayed when a list of
the program is done with the BASIC Editor as shown below.

10 A# = 8.649999648332596D-02
20 B# = 9.619999676942825D-02
30 PRINT TAB(10); A#; TAB(40);
40 PRINT USING "#.####"; A#
50 PRINT
60 PRINT TAB(10); B#;TAB (40);
70 PRINT USING "#.####"; B#
80 END

Example 2:

10 ERC% = DEFLPRINT("[SPLB]")
20 FOR I = 1 TO 5 STEP 0.1
30 LPRINT TAB(10); I; TAB(25);
40 LPRINT USING "#.#"; I
50 NEXT I
60 ERC% = DEFLPRINT("[NUL]")
70 END

The following is a printout of the above program using
BASIC. The values printed range from one to five and are
incremented by a value of 0.1. Note also that not all the values
are printed incorrectly. The first column uses the LPRINT
command and the second column uses the LPRINT USING command.

F-4

1 1.0
1.1 1.1
1.2 1.2
1.3 1.3
1.4 1.4
1 .5 1.5
1.6 1.6
1.7 1.7
1.8 1.8
1.9 1.9
2 2.0
2.1 2.1
2.2 2.2
2.3 2.3
2.4 2.4
2.5 2.5
2.6 2.6
2.7 2.7
2.8 2.8
2.9 2.9
2.999999 3.0
3.099999 3·1
3.199999 3.2
3.299999 3.3

3.399999 3.4
3.499999 3.5
3.599999 3.6
3.699999 3.7
3.799999 3.8
3.899999 3.9
3.999999 4.0
4.099999 4.1
4.199999 4.2
4.299998 4.3
4.399998 4.4
4.499998 4.5
4.599998 4.6
4.699998 4.7
4.799998 4.8
4.899998 4.9
4.999998 5.0

ACCESSING THE SYSTEM DATE AND TIME USING BASIC

Most applications occasionally need to include the current
date and/or time in their processing. There are several
procedural calls available in ETOS to allow the user to retrieve
the date and time field from the system and expand it into a
readable day, date, and time.

There are two basic structures involved with date and time
manipulation in ETOS. The date and time is kept internally in
system memory as a three-word field containing the count of 50 or
50Hz clock ticks, the count of 100ms periods elapsed since the
last second, the count of seconds since midnight or noon, and the
count of 12-hour periods since March 1, 1952. (See the E20
operatinr System (ETOS) Reference Manual, the "Timer Management"
section'. The last two words are returned to the program when
the date/time is requested; the first word can be examined when
precise timings are needed. The expanded date and time format is
a four-word structure with the year, month, day of month, day of
week, hour, minute, and second embedded in it.

The compact system format can be used to time-stamp records,
for example, while occupying only a four-byte field. The format
of the compacted date also makes it useful for date calculations.
For example, the date of 30 days from now can be obtained by
adding 60 (12-hour periods) to the count, which specifies days in
the system format, then expand it from there. If two dates are
subtracted, the result divided by two is the number of days apart
the two are. The day-of-week field can also be examined in a
program (it is returned initially as a number: O=Sun to 6=Sat)
to perhaps look for the next business day after thirty days from
now.

F-5

The following calls are available in BTOS to access the
system date/time structure and are documented in the BTOS
Operating System Manual.

CompactDateTime

ExpandDateTime

GetDateTime

SetDateTime

Converts the expanded date/time format to the
system format.

Expands the system format to the expanded
date/time format.

Returns the current date and time in the
system format.

Sets the date and time for the system.

Analyzing the expanded date/time format using these routines
can be tricky in high-level language. The expanded date is
returned to the program as a 64-bit data type, for which few of
the languages have a built-in structure. However, the facilities
are available for the information to be extracted.

On page F-7 is an example of a BASIC program that obtains
the system date and time and expands it. The route displays the
day of the week, the date, and the time obtained from the system.

Included in the release of BASIC is function "DATETIME$",
which returns a string containing a date and/or time.
"DATETIME$" accepts one parameter that is a string template
specifying the format of the date and time to be returned. For
example:

10 PRINT DATETIME$(!*w! !*n! !*d! !*y! at !*h!:!Om! !AA!."}

generates "Thursday April 21, 1983 at 11:11 AM". In a BASIC
program run via the BASIC Interpreter, the "DATETIME$" function
call is not available, but the procedural calls, "GetDateTime",
"ExpandDateTime", etc., are available to the interpretive
program.

If "GetDateTime" and "ExpandDateTime" are to be used in a
BASIC program, the 64-bit expanded date and time can be returned'
to an array of four integers, each one word in length. The year
is then equal to the first element of the array (line 250).
Next, the byte fields must be extracted from the field. To do
this, make a pointer to the desired word and "PEEK" at a byte of
it (line 270). Note that the month is stored in zero-to-11
format, so using "GETRA" and "GETSA" (lines 290 and 300), the
offset portion may then be incremented. Finally, use
"MAKEPOINTER" (line 320) remembering that in a program such as
this with interpretive BASIC using pointers, all variable names
should be declared at the beginning of the program.

F-6

10 DATETIME = 0
20 ERC% = 99
30 YEAR% = 1999
40 MONTH% = 9
50 DAY% = 99
60 DAYNBR% = 9
70 HOUR% = 99
80 MIN% = 99
90 SEC% = 99
100 DIM D%[4]
120 1% = 99
130 J% = 99
140 DIM DAYOFWK$[7]
150 DAYOFWK$ 01 = "SUN"
160 DAYOFUK$ 0 = "MON"
170 DAYOF\fK$ 0 = "TUE"
180 DAYOF\lK$ 0 = "\fED"
190 DAYOF\lK$ 0 = "THU"
200 DAYOF\fK$ [0] = "FRI II
210 DAYOF\lK$[O] = "SAT"
230 ERC% = GETDATETIME(PTR(DATETIME))
240 ERC% = EXPANDDATETIME(DATETIME,PTR(D%[O]))
250 YEAR% = D%[O]
260 P = PTR(D%[O])
270 MONTH% = PEEK("B",P)
280 MONTH% = MONTH% + 1
290 1% = GETRA(P)
300 J% = GETSA(P)
310 1% = 1% + 1
320 P = MAKEPOINTER(I%,J%)
330 DAY% = PEEK("B",P)
340 P = PTR(D%[2])
350 DAYNBR% = PEEK(IIBII,P)
360 P = PTR(D%[2])
370 1% = GETRA(P)
380 J% = GETSA(P)
390 1% = 1% + 1
400 P = MAKEPOINTER(I%~J%)
410 HOUR% = PEEK{"B",P)
420 P = PTR(D%[3])
430 MIN% = PEEK("B",P)
440 1% = GETRA(P)
450 J% = GETSA(P)
460 1% = 1% + 1
470 P = MAKEPOINTER(I%,J%)
480 SEC% = PEEK("B",P)
490 PRINT "DAY OF WEEK IS "; DAYOFWK$[DAYNBR%]
500 PRINT "DATE IS "; MONTH% "/"; DAY%; "OF THE YEAR"; YEAR%
510 PRINT "TIME IS "; HOUR%; II:"; MI:&'% ":"; SEC%

Miscellaneous

Graphics:

Passing real parameters to graphics procedures must be of
8087 format. Use the procedure Convertto8087 to create these
parameters.

To reconfigure BASIC to include graphics procedures, you
must:

1 • Edit file Basgen.asm.

2. Remove the characters ,,%'" from in front of each table entry
that you want added to BASIC.

3. Answer yes to the question "Are you calling Graphics",
within the assembly of file Basgen.asm.

The BASIC Interpreter can be customized to operate with 3.0
Graphics on a 4.0 operating system. However, during the
customization process, the following error statements may
appear (depending on your hardware and system
configuration). They can be ignored by the user.

1. Multiply defined symbol QO in file
[SYS]<SYS>graphics.lib (grfheap1)

2. Multiply defined symbol LOADCOLORSTYLERAM in file
[SYS]<SYS>CTOS.lib (COLOR)

3. Multiply defined symbol SETSTYLERAM in file
[SYS]<SYS>CTOS.lib (COLOR)

4. \iarning: Proc near 0000 in [SYS]<SYS>CTOS.lib (awsron)
doesn't follow CALL/RET conventions

If the BASIC Interpreter is configured with Graphics, the
EASY application is unsupported.

LINKING WITH NONSTANDARD SEGMENTS
BASIC depends on a particular ordering of segments in memory

for correct operation. (The Linker Manual describes segment
ordering.) If you are calling object modules created with
FORTRAN or Pascal compilers, the required segment order is
guaranteed.

However, if you are calling object modules produced by the
Assembler, the required segment ordering is guaranteed only if
you restrict segment class names to "data", "stack", "const",
"heap", or "code".

F-8

APPENDIXG

INSTALLATION PROCEDURES

The following are installation procedures for invoking the
Install.sub and XElnstall.sub for the BASIC Interpreter. (For
Dual Floppy Standalone, see Appendix H.)

HARD DISK INSTALLATION
Boot the system from the master or cluster where the installation
of BASIC Interpreter i~ desired. The software is installed in
the system files of the system directory.

• Insert the BASIC Interpreter diskette in floppy drive
[fO] •

Do not press the RESET button.

• Enter the SOFTWARE INSTALLATION command on the command
line and press GO.

• Follow the instructions displayed on the screen.

• When installation is complete, remove the distribution
diskette and store it in a safe place.

XE 520 INSTALLATION
Boot the cluster workstation being used for the installation from
the XE520.

• Power off all other cluster workstations.

• Log onto user ADMIN.

• Insert the BASIC Interpreter diskette in floppy drive
[fO] •

Do not press the RESET button.

• Enter the SUBMIT command on the command line and press
RETURN. The following parameter appears on the sc~een:

SUBMIT
File List [fO]<sys>XEInstall.sub

Press GO to invoke the SUBMIT command.

G-I

G-2

• Follow the instructions displayed on th~ screen.

• When installation is complete, remove the distribution
diskette and store it in a safe place.

APPENDIX H
DUAL FLOPPY STANDALONE INSTALLATION

To install the dual Floppy Standalone configuration, insert
Disk One of the 4.0 Standalone Operating System into [FO] and
power on the system. After signing on, you can load BASIC from
drive [FO]. To do this, insert the distribution diskette into
[FO], then enter BASIC and press GO.

If you wish to load BASIC from [Fl], you must first modify
your .user file on your system disk to access the Sys.Cmds file
on this drive before loading BASIC. Instructions for this
modification are given in the B 20 Systems Operating System
(BTOS) Reference Manual (form 1171675).

HELPFUL HINTS FOR DUAL FLOPPY

STANDALONE SYSTEMS

After performing the installation, you can remove the disk
and insert a source disk into [Fl].
Type "Load [Fl] <Sys)programname" , then press <RETURN).

Note that unless a volume name is specified, all actions are
routed to [FO] unless you have changed this default before
entering BASIC. This means that "unspecified" files are created
on [FO]. For example: if you are calling a form, and the open
call did not specify disk [Fl], the system looks for the form on
[FO] •

It is suggested that you copy all the files needed for
execution of a program (except the actual program) on one disk.
When needed, insert that disk into [FO]. For example, when
printing from BASIC to a parallel or serial printer, the system
looks for Lptconfig.sys or ptrbconfig.sys (depending on the
printer) on [FO].

It is also suggested that you copy Exec.run from the first
disk of the Operating System package to the disk described in the
previous paragraph. This enables you to come back to the system
after finishing a Basic session. Otherwise, you are'prompted to
"Please mount a system volume in [sys], Then Press GO". Copying
Exec.run enables one to come back to the system. Doing this
provides you with the commands such as COPY, DELETE, etc.

ISAM: If you are creating a data set (unspecified), the
files will be created on the disk in [FO]. If you are reading or
modifying a data set (unspecified), the files must be on [FO].

H-l

ISAM INSTALLATION 4.0

Dual Floppy Standalone:

Insert disk B26IF4-1 into [FO]. Type "ISAM Install", then
press <RETURN). The following subform will be displayed:

Isam Install
[No. of ISAM users (default from OS configuration)]
[Configuration file ([Sys] <Sys)Isam.Config)]

Fill in the parameters with the appropriate values, then
press <RETURN). See B 20 Systems Indexed Sequential Access
Method (ISAM) Reference Manual (form 1168465) for more
information.

Accessing ISAM from Basic is the same for 4.0 and 3.1, but
ISAM 4.0 contains some new calls, as described in its manual.

H-2

ABS function, 3-2
Accessing

a random file, C-6

INDEX

the system date and time using BASIC, F-5
Adding data to sequential files, C-4
Arithmetic operators, 1-16
Array

parameters, E-4
variables, 1-13

ASC function, 3-3
ATN function, 3-4
AUTO command, 2-2
BASIC

accessing the system date and time using, F-5
configuring, E-6
invoking, 1-2
using SamGenAll with, F-l

Basic.run
creating, E-6

Brackets and parentheses, 1-13
CALL command, 2-3
Calling non-BASIC procedures, E-l
CDBL function, 3-5
CHAIN command, 2-4
Character attributes

controlling, A-2
Character set, 1-7
CHR$ function, 3-6
CINT, 3-7
CLEAR command, 2-6
CLOSE command, 2-7
Commands, 2-1

AUTO, 2-2
CALL, 2-3
CHAIN, 2-4
CLEAR, 2-6
CLOSE, 2-7
COMMON, 2-8
CONT, 2-9
DATA, 2-10
DELETE, 2-13
EDIT, 2-15
ERROR, 2-23
GOSUB ••• RETURN, 2-27
LIST, 2-37
LLIST, 2-38, B-2

1

Commands (continued)
LOAD, 2-39
LSET, 2-42
MID$, 2-45
NAME, 2-46
NEW, 2-47
ON ••• GOSUB, 2-49
ON ••• GOTO, 2-50
OPTION BASE, 2-53
OPTION COMMA, 2-54
OUT, 2-55
RANDOMIZE, 2-66
RENUM, 2-69
RSET, 2-42
RESTORE, 2-70
RESUME, 2-71
RUN, 2-72
SAVE, 2-73
STOP, 2-74
SYSTEM, 2-76
TRON/TROFF, 2-77
WAIT, 2-78
WIDTH, 2-80
WRITE# command, 2-82

COMMON command, 2-8
Configuring BASIC, E-6
Constants, 1-10

fixed-point, 1-10
floating-point, 1-10
hexadecimal, 1-11
integer, 1-10
octal, 1-11

CaNT command, 2-9
Control

characters, 1-8
functions, 1-8
of the video display, A-I

Controlling
character attributes, A-2
cursor position and visibility, A-6
keyboard LED indicators, A-9
line scrolling, A-7
pauses between frames, A-8
screen attributes, A-4

COS function, 3-8
Creating

a random file, C-5
Basic.run, E-6

2

CSNG function, 3-9
Cursor position and visibility

controlling, A-6
CVD function, 3-10
CVI function, 3-10
CVS function, 3-10
DATA command, 2-10
DEF FN statement, 2-11
DEF statement, 2-12
DELETE command, 2-13
Descriptions of fields, 1-2
Detection of errors, E-8
DIM statement, 2-14
Directing video display output, A-lO
Direct mode, 1-4
Disk input/output, C-l
Displaying special characters literally, A-12
Double-precision

form for numeric constants, 1-11
numbers in BASIC, F-3

Dual floppy standalone installation, H-l
Edit command, 1-6, 2-15
END statement, 2-20
EOF function, 3-11
ERASE statement, 2-21
Erasing to the end of the line or frame, A-II
ERR/ERL variables, 2-22
ERROR command, 2-23
Error

detection, E-8
messages, 4-1

EXP function, 3-12
Expressions, 1-16
FOR ••• NEXT statement, 2-25
Field descriptions, 1-2
FIELD statement, 2-24
Filling a rectangle, A-lO
Fixed-point constants, 1-10
FIX function, 3-13
Floating-point constants, 1-10
FRE function, 3-14
Functional operators, 1-22
Functions, 3-1

ABS, 3-2
ASC, 3-3
ATN, 3-4
CDBL, 3-5
CHR$, 3-6

3

Functions (continued)
CINT, 3-7
COS, 3-8
'CSNG, 3-9
CVD, 3-10
CVI, 3-10
CVS, 3-10
EOF, 3-11
EXP, 3-12
FIX, 3-13
FRE, 3-14
GETRA, 3-15
GETSA, 3-16
HEX$, 3-17
INP, 3-18
INPUT$, 3-19
INSTR, 3-20
INT, 3-21
LEFT$, 3-22
LEN, 3-23
LOC, 3-24
LOF, 3-25
LOG, 3-26
LPOS, 3-27
mathematical, D-1
MID$, 2-44, 3-29
MAKEPOINTER, 3-28
MKD$, 3-30
MKI$, 3-30
MKS$, 3-30
OCT$, 3-31
PEEK, 3-32
POS, 3-33
PTR, 3-34
PWA, 3-35
RIGHT$, 3-36
RND, 3-37
SGN, 3-38
SIN, 3-39
SPACES, 3-40
SPC, 3-41
SQR, 3-42
STR$, 3-43
STRING$, 3-44
SYSERC, 3-45
TAB, 3-46
TAN, 3-47
VAL, 3-48

4

GETRA function, 3-15
GETSA function, 3-16
GET statement, 2-26
GOSUB ••• RETURN command, 2-27
GOTO statement, 2-28
Hard disk installation, G-l
Hexadecimal constants, 1-11
HEX$ function, 3-17
Hints
Hints

for dual floppy standalone systems, H-l
for programming, F-l

IF ••• THEN statement, 2-29
Indirect mode, 1-5
INP function, 3-18
Input editing, 1-6
INPUT statement, 2-31
INPUT$ function, 3-19
INPUT# statement, 2-32
Input/Output

disk, C-l
Installation

of dual floppy standalone configuration, H-l
of hard disk, G-l
of ISAM (4.0), H-2
of XE520, G-l

INSTR function, 3-20
INT function, 3-21
Integer constants, 1-10
Integer division, 1-17
Invoking

BASIC, 1-2
value-returning procedures, E-3

ISAM installation (4.0), H-2
Keyboard LED indicators

controlling, A-9
KILL statement, 2-33
LEFT$ function, 3-22
LEN function, 3-23
LET statement, 2-34
Line

format, 1-5
numbers, 1-6

LINE INPUT statement, 2-35
LINE INPUT # statement, 2-36
Line or frame

erasing to the end of the, A-II

5

Line scrolling
controlling, A-7

Linking with nonstandard segments, F-8
LIST command, 2-37
LLIST command, 2-38, B-2
LOAD command, 2-39
LOC function, 3-24
LOF function, 3-25
LOG function, 3-26
Logical operators, 1-19
LPOS function, 3-27
LPRINT statement, 2-40, B-1
LPRINT USING statement, 2-41, B-1
LSET command, 2-42
MAKEPOINTER function, 3-28
Mathematical functions, D-l
Memory

organization, 1-4
requirements, 1-3

MERGE statement, 2-43
Messages, 4-1
MID$ command, 2-45
MID$ function, 2-44, 3-29
MKD$ function, 3-30
MKI$ function, 3-30
MK$ function, 3-30
Modes of operation, 1-4
Modifying BASIC variables from non-BASIC procedures, E-4
Modulus arithmetic, 1-17
NAME command, 2-46
NEW command, 2-47
Non-BASIC procedures

calling, E-l
modifying BASIC variables from, E-4

Nonstandard segments
linking with, F-8

Octal constants, 1-11
OCT$ function, 3-31
ON ERROR GOTO statement, 2-48
ON ••• GOSUB command, 2-49
ON ••• GOTO command, 2-50
OPEN statement, 2-51
Operation

modes of, 1-4
Operations

string, 1-22

6

Operators, 1-16
arithmetic, 1-16
functional, 1-22
logical, 1-19
relational, 1-18

OPTION BASE command, 2-53
OPTION COMMA command, 2-54
Organization of memory, 1-4
OUT command, 2-55
Overflow and division by zero, 1-18
Parameter passing, E-3
Parentheses and brackets, 1-13
Pauses between frames

controlling, A-8
PEEK function, 3-32
Pointer variables, 1-13
POKE statement, 2-56
POS function, 3-33
PRINT statement, 2-57
PRINT USING statement, 2-58
PRINT# statement, 2-61
PRINT# USING statement, 2-64
Printer spooler

printing with the, B-1
Printing with the printer spooler, B-1
Program file commands, C-l
Programming

hints, F-l
recommendations, E-5

Protected files, C-2
PTR function, 3-34
PUT statement, 2-65
PWA function, 3-35
Random files, C-5

accessing, C-6
creating, C-5

RANDOMIZE command, 2-66
READ statement, 2-67
Recommendations for programming, E-5
Rectangle

filling a, A-IO
Relational operators, 1-18
REM statement, 2-68
RENUM command, 2-69
Requirements

memory, 1-3
RIGHT$ function, 3-36
RSET command, 2-42

7

RESTORE command, 2-70
RESUME command, 2-71
RND function, 3-37
RUN command, 2-72
Sample program, E-8
SAVE command, 2-73
Screen attributes

controlling, A-4
Sequential files, C-2

adding data to, C-4
Set of characters, 1-7
SGN function, 3-38
SIN function, 3-39
Single-precision

form for numeric constants, 1-11
numbers in BASIC, F-3

SPACE$ function, 3-40
SPC function, 3-41
Special characters

displaying (literally), A-12
SQR function, 3-42
Statements

DEF, 2-12
DEF FN, 2-11
DIM, 2-14
END, 2-20
ERASE, 2-21
FIELD, 2-24
FOR ••• NEXT, 2-25
GET, 2-26
GOTO, 2-28
IF ••• THEN, 2-29
INPUT, 2-31
INPUT#, 2-32
KILL, 2-33
LET, 2-34
LINE INPUT, 2-35
LINE INPUT #, 2-36
LPRINT, 2-40, B-1
LPRINT USING, 2-41, B-1
MERGE, 2-43
ON ERROR GOTO, 2-48
OPEN, 2-51
POKE, 2-56
PRINT, 2-57
PRINT USING, 2-58
PRINT#, 2-61
PRINT# USING, 2-64

8

Statements (continued)
PUT, 2-65
READ, 2-67
REM, 2-68
SWAP, 2-75
WHILE ••• WEND, 2-79
WRITE, 2-81

STOP command, 2-74
STR$ function, 3-43
STRING$ function, 3-44
String operations, 1-22
SWAP statement, 2-75
SYSERC function, 3-45
SYSTEM command, 2-76
System date and time

accessing the, F-5
TAB function, 3-46
TAN function, 3-47
TRON/TROFF command, 2-77
Type conversion, 1-14
Using

BASIC to access the system date and time, F-5
SamGenAll with BASIC, F-1

VAL function, 3-48
Value-returning procedures

invoking, E-3
Variable names and declaration characters, 1-12
Variables, 1-12

array, 1-13
ERR/ERL, 2-22
pointer, 1-13

Video display
control of the, A-I
special characters, 1-9

Video display output
directing, A-lO

Visibility
controlling cursor position and, A-6

WAIT command, 2-78
WHILE ••• WEND statement, 2-79
WIDTH command, 2-80
Word-aligned data, E-4
WRITE statement, 2-81
WRITE# command, 2-82
XE520 installation, G-l
Zero

overflow and division by, 1-18

9

Documentation Evaluation Form

Title: B 20 Systems BASIC Interpreter

Reference Manual Release 4.0

Form No:~1~1~8~0~15~5~ __________ __

Date: Apri1 1985

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be utilized
in ensuing revisions to improve this manual.

Please check type of Comment/ Suggestion:

o Addition o Deletion o Revision o Error o Other

Comments:

From:

Name __ __

Title
Company __ __

Address

Phone Number ____________________________ Date ----______ _

Remove form and mail to:

Burroughs Corporation
Corporate Product
Information East

209 W. Lancaster Ave.
Paoli, PA 19301 U.S.A.

