P

s

6

i

A |

i

a6

“

MANUAL CC-74 DMA-SCSI
INTERFACE MODULE

VERSION 1.3 January 1986

Copyright

Copyright (c) 1986 by COMPCONTROL B.V.. All rights reserved. No part of this
publication may be reproduced, transmitted., transcribed, stored in a retrieval system.
or translated into any language or computer language, in any form or by any means.
electronic, mechanical., magnetic. optical. chemical., manual or otherwise. without the
prior written permission of COMPCONTROL B.V., Post Office Box 193, 5600 AD
EINDHOVEN-HOLLAND.

Disclaimer

The information in this document has been carefully checked and is believed to be
entirely reliable. However, no responsebility is assumed for inaccuracies. Compcontrol
B.V. makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any
particular purpose. Furthermore. Compcontrol B.V. reserves the right to make changes to
any product herein to improve reliability. function or design, without obligation of
Compcontrol B.V. to notify any person of such revision or changes. Compcontrol B.V.
does not assume any liability arising out of applications or use of any product or
circuit described herein: neither does it convey any license under its patent rights
nor the rights of others.

F R & wm

| B)

f» ¥®¥ F 9P XY ¥ fF F* KPR F R PR F

| - &

CHAPTER

.

=
WN

CHAPTER

2.1
2.2

CHAPTER

WWWwWwww
oW

.

CHAPTER

. .

N

.

N L
ONOUWNNDNHE

CHAPTER 5

. .

gaooaaauoo,o o a
OO UIxWNE

N

CC-74 DMA-SCSI INTERFACE MODULE

TABLE OF CONTENTS

GENERAL INFORMATION

Introduction
Features
General Description

SPECIFICATION

VMEbus Options
SCSI Bus Options

INSTALLATION INSTRUCTIONS

Introduction

Address Selection

DMA Clock Selection

SCSI ID Address Selection
External DMA Devices

SCSI Bus Termination

THEORY OF OPERATION

Introduction

DMA Controller

MPU Mode

DMA Mode

VMEbus Interface
Address Decoding

DTB Requester
Interrupter

External DMA Devices
SCSI Interface

PROGRAMMING CONSIDERATIONS

Introduction
Memory Map

Reset

Interrupts

Bus Request

Control Register

AM Code Generation

Programming the CC74 Module

Programming The DMA Controller
Programming The SCSI Protocol Controller

PAGE

=
!
N =

sbbblbsbi?lhsbubobib
WWWNNNKFE

U\U’lUlLﬂU\U’I(ﬂ(ﬂU‘l(in
| I T S N R I B |
AP WWWN

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

CERGUHIQHMEMOOW®»

Block Diagram

Schematic Diagram
Component Layout

List of Components
Connector Pin Assignments
Memory Map

DMA Controller Registers
SCSI Controller Registers
Control Register

CC74 Program Example

Data Sheet 68450 DMAC
Data Sheet 5385/6 SCSI Controller

A R R T N I
[Y e L

CERUHIZIQMmMOO W

F e

L B F =

i

B [- [§

& o

!
)

CHAPTER 1

GENERAL INFORMATION

1.1 Introduction

The CC74 module interfaces the VMEbus and Small Computer System
Interface (SCSI) with each other. This manual gives a full
description of the hardware and software for users and system
programmers. For specific details about the VMEbus, SCSI Dbus,
SCSI protocol Controller or DMA controller, the following
documents may also be consulted.

- VMEbus specification manual

- SCSI specification manual (ANSC X3T9.2)

- SCSI protocol controller user's guide (see appendix L)
- SCSI protocol controller data sheet (see appendix L)

- DMA controller data sheet (see appendix K)

1.2 Features

The CC74 VME-SCSI interface module features the high-performance
68450 DMA Controller and the NCR 5386 SCSI Protocol Controller.
The SCSI Protocol Controller conforms to the ANSC X3T9.2 Small
Computer System Interface standard. ’

SCS1I features:

- Asynchronous data transfer up to 1.5 MByte/s
- Supports both Initiator and Target role

- Parity generation with optional checking

- Supports Arbitration and Reselection

- Controls all bus signals, including Reset

- DMA or programmed I/0 transfers

- Block transfers up to 16 MByte

VME features:

- DMA Controller supports I1/0 to memory, memory to I/O
and memory to memory transfers

- Optimal bus width utilization for mixed byte and word
transfers

- Programmable Interrupt and Bus Request levels

- Programmable Interrupt vectors

- Interrupts VMEbus when SCSI bus requires service

- 23 bit addresses, 16 data lines and 6 AM code lines

- Highly reliable data transfer by error detect, error
interrupt vector and exception features

Manual CC74 Ver 1.3 1-1 January 1986

All SCSI 1I/0 signals are available on the I/0 pins of the P2

connector and also on a SCSI-compatible 50-pin flat cable
connector.

1.3 General Description

The Small Computer System Interface (SCSI) is a de facto industry
standard and is used to interconnect small computers with each
other and with intelligent peripherals such as hard disks,
flexible disks, magnetic tape devices etc. The standard defines
the bus protocol, the bus drivers, cables and connectors and the
command set. The CC74 module is a full implementation of the SCS1I
standard and may act as an Initiator or Target on the SCSI bus.
The 8-bit data transfers between the SCSI bus and the VMEbus can
be handled by any DTB master or by the local DMA controller. The
DMA controller can also be used for memory to memory transfers on
the VMEbus and may be used by a RAM disk routine. The CC74 has a
four-level Bus Requester and a seven-level Interrupter, which are
both software programmable. The normal and error interrupt vector
can also be dynamically installed.

Manual CC74 Ver 1.3 1-2 January 1986

¥ a

[I ¥ n

L F n

¥ e

e

Fr 2 FR KD

i

oA

&l
-y

B

1

CHAPTER 2

SPECIFICATION

2.1 VMEbus Options
Data transfer options:

- DTB MASTER A24,Al16; D16,D8
- DTB SLAVE A24,A16; D16,D8

Requester options:

- Any one of R(O) R(1) R(2) R(3) (DYN)
- RWD

Interrupter options:

- Any one of I(1l) I(2) I(3) I(4) I(5) 1I(6) I(7) (DYN)
- Normal interrupt vector (DYN)
- Error interrupt vector (DYN)

Environmental conditions:

- operating temperature O0-70 degrees C
- max operating humidity 90 %

Power supply requirements:
- 3.0 A max (2.7 A typ) at 5 vVDC
Physical configuration options:

- NEXP

2.2 SCSI Bus Options
The following options are implemented on the CC74 module.

- Supports ANSC X3T9.2 SCSI standard

- Supports Arbitration and Reselection

- Single-ended drivers and receivers

- Non-shielded cable option

- Performs both Initiator and Target role
- Parity generation with optional checking
- Controls all SCSI bus signals

Manual CC74 Ver 1.3 2-1 January 1986

LB [. | S | as | . | S | | | . [S | . | W | S] 4B & 5 a s [4a 5 | W] | W | S | [§

‘j

i .

|

CHAPTER 3

INSTALLATION INSTRUCTIONS

3.1 Introduction

This chapter gives all necessary preparation and installation
instructions for the CC74 VME-SCSI interface module. The module
can be wused in VMEbus systems and configuration options are
selected by jumpers and switches. All settings are illustrated as
seen from the component side with both VMEbus connectors
downwards. Jumper blocks are drawn using 'o' for each pin except
pin 1 which is identified as '*'.

3.2 Address Selection

Jumper blocks JBl1 and JB2 are used for the address modifier
selection. JBl1l when installed will make the CC74 module respond
to supervisory access only.

*

JB1l: supervisory or
o non-privileged access
*

JB1: | supervisory-only access
o

JB2 is used to select standard or short address decoding.
JB2: *-w-0 o---0 standard addressing
JB2: * o---0 o short addressing

Switches S1-S4 are hexadecimal switches used to select +the base
address of the module. S1 selects the most significant nibble, so
the address 1lines A23-A20 are selected by S1, Al19-Al1l6 by S2,
Al5-Al1l2 by S3 and Al1-A9 are selected by S4. Note that S4 selects
3 address lines and thus has only 8 significant positions (only
even numbers). Also note that S1 and S2 are not significant when
JB2 is installed for short addressing.

Manual CC74 Ver 1.3 3-1 January 1986

3.3 DMA Clock Selection

Jumper JB3 is used to select the DMA clock input. When an 8 MHz
DMAC 1s used, a derivative of the system clock can be used. When
a 10 MHz DMAC is used, the SCSI Controller clock may be used and
for other <clock rates the optional oscillator Ul8 must be
installed. Jumper JB3 must be set according to the installed DMAC
type.

*---0
JB3: o o DMA clock rate defined by U1l8
o) o)
* o
JB3: o---0 8 MHz DMA clock rate
o o
* o
JB3: o o 10 MHz DMA clock rate
o---0

3.4 SCSI ID Address Selection

Any Initiator or Target module on the SCSI bus must have a unique
ID-bit. Eight ID bits are defined and can be selected with jumper
JB4. Only one jumper must be placed at JBA4.

_ID bit 7 6 5 4 3 2 1 0

JB4: |

ID bit 2 selected

3.5 External DMA Devices

The jumpers involved with external DMA devices are JB5, JB6 and
JB7. The programmable control 1lines can be used for input or
output. JB5 is used to select the direction of the PCL2 control
line.

Manual CC74 Ver 1.3 3-2 January 1986

-—=u—

-

¥ | £ =

F e

¥ §F» F® F R ¥R ¥R ¥R ¥R KPR

i

=

JB5: | l PCL2 configured as input
o o
*---0

JB5: PCL2 configured as output
o---0

JB6 selects the direction of the PCL3 control line.

* o

JB6: l | PCL3 configured as input
o o
*---0

JB6: PCL3 configured as output
o---0

JB7 is used to select the direction of the DONE signal.

* o .

JB7: | | DONE configured as input
o o :
*---0

JB7: DONE configured as output
o---0

Jumpers JB5, JB6 and JB7 can be removed when not using the option
for external DMA devices. When using this option it is necessary
that there shall be no conflicts between the programmed direction
and the installed jumper settings of the control lines.

3.6 SCSI Bus Termination

The SCSI bus consists of a 50-pole flat cable which may be 'daisy
chained' to a maximum of eight Initiator and/or Target devices.
Both devices at the ends of the cable should have installed
terminating networks and all other devices must not have these
networks. The CC74 module has the two relevant resistor networks,
RN1 and RN2Z, installed in sockets, and these networks must be
removed when the module is not at the end of the daisy chain.

In some SCSI bus systems, the power of the terminating networks
is supplied by a 'Terminating Power Supply' via pole 26 of the
SCSI cable. This pin is referred to as 'TRMPWR'. Jumper JB8 is
used to select the power source for the on-board resistor
networks.

Manual CC74 Ver 1.3 3-3 January 1986

JB8:

JBS8:

Manual CC74 Ver 1.3

VMEbus power connected to on-board
resistor networks

SCSI bus 'TRMPWR' connected to on-board
resistor networks

3-4 January 1986

- m

~Fm

F = | ¥ =B

L SN]

F a2 F¥®

¥R F ¥ FR®T K09 Y2

¥

|

| Y

e

CHAPTER 4

THEORY OF OPERATION

4.1 Introduction

This chapter gives a global explanation of the functional blocks
as shown 1in appendix A. The schematic diagrams are given in
appendix B. The main functions of the CC74 module are performed
by the 68450 DMAC and the NCR 5386 SCSI Protocol Controller.
These two parts are fully described in the manufacturers
documentation included in appendix K and L.

4.2 DMA Controller

The 68450 DMAC has three modes of operation.

In the MPU mode, the DMAC is selected by an external bus master,
through a chip select or interrupt acknowledge. The bus master is
writing or reading the contents of the DMAC internal registers.
In the DMA mode, the DMAC is the current bus master and is
transferring data or preparing for the data transfer.

In the IDLE mode, the DMAC is in a state other than MPU or DMA
mode. A Read/Write access or transfer request will change the
mode into MPU or DMA respectively.

4.2.1 MPU Mode

In MPU mode, an access is made to one of the DMAC internal
registers. The registers can be accessed by byte or word. There
are 64 bytes defined per channel and each channel has 17
registers. There are four channels available, so the DMAC takes
256 Dbytes in the memory map. The address lines Al through A7 and
the data strobes determine which register will be selected.

When an interrupt acknowledge cycle is performed the DMA
controller puts the contents of the normal or error interrupt
vector register of the highest channel requesting an interrupt on
the data bus. The DMAC wuses a multiplexed address/data bus,
demultiplexing is done by U7-Ul0 with the control signals DDIR
(Data DIRection), DBEN (Data Bus ENable) and UAS (Upper Address
Strobe).

4.2.2 DMA Mode

When in DMA mode, the - DMAC 1is the current VMEbus master and
activates the OWN line; this will enable the buffers of the

VMEbus interface. Transfer modes used for DMA are defined as
follows:
Manual CC74 Ver 1.3 4-1 January 1986

Dual addressing with auto request:
- transfer byte or word from memory to holding register.
- transfer byte or word from holding register to memory.

Single addressing with request acknowledge handshake:
- transfer byte from SCSI PC to memory (using DO-D7).
- transfer byte from SCSI PC to memory (using D8-D15).
- transfer byte from memory to SCSI PC (using DO-D7).
- transfer byte from memory to SCSI PC (using D8-D15).

Timing and control signals are generated by U1l5, Ul6 and U29.

4.3 VMEbus Interface

The main part of the interface to the VMEbus is given in the
schematic diagram (Appendix B, sheet 1). The address and data
lines are shown with their respective buffers to the VMEbus. The
control signals for these buffers are; GVME to enable the data
buffer on the VMEbus, FROMVME to control the data direction of
the data buffers, and OWNL wich is used to enable the address
buffers. These control signals are generated by U29 (sheet 7).
The multiplexing of the address and data lines is performed by
the DMAC using the signals UAS (Upper Address Strobe), DDIR (Data
DIRection) and DBEN (Data Bus ENable). The control lines on the
VMEbus are buffered by Ul4, U26 and U27 (sheet 4). The generation
of DTACK (when in MPU mode) is performed by Ul5 (sheet 7) and
buffered by U24 and U30. A shift register U52 is wused for the
DTACK timing.

4.4 Address Decoding

The address decoder is given in the schematic diagram of sheet 2
and uses the address lines A9-A23 and AM code lines AMO-AM5. The
LIACK signal is wused to inhibit address decoding when an IACK
cycle is performed. Jumper JB2 is used to enable standard or
short addressing, and JBl1 to select supervisory-only or
non-privileged access. The remaining modifier codes select data
I/0 access.

4.5 DTB Requester

The onboard DTB requester consists of two parts, the requester
logic U20 and the chaining logic U21. The bus request logic, when
activated by LDBR (Local DMA Bus Request) will assert one of the
BRx outputs depending on the installed request level (REQLVO,
REQLV1). Now it will wait for a Bus Grant (BGT) from the chaining
logic. The chaining logic checks the incoming BGxIN signals from
the VMEbus and determines if the incoming signals must be chained
to BGxXOUT or should be used 1locally. Latch Ul9 is used to
guarantee a valid BGxIN signal for the chaining logic. The 1level
of bus request is software-selectable and is discussed in chapter
5.5.

Manual CC74 Ver 1.3 4-2 January 1986

Fu ¥ u

L

[S]

Fn

fF @ ¥ % F WM F R B R @R KON

fF R F @ ¥R KON

L S |

| B s

8

&

il

6 .

4

4.6 Interrupter

The Interrupter U22 (sheet 3) uses the latched VMEbus signals.
This circuit asserts one of the seven VMEbus interrupt signals
(IRQ1-IRQ7) when a local DMA interrupt (LIRQDMA) is received. The
interrupt 1level 1is determined by IRQLVO-IRQLV2 and is software
selectable (see chapter 5.4). When an interrupt has been asserted
the interrupter waits for an Interrupt acknowledge cycle on the
VMEbus. Then the interrupt level will be checked and when a match
is found IACKSEL will be asserted, otherwise IACKOUT is asserted.
The DMA controller will generate the proper interrupt vector,
when necessary. When an interrupt acknowledge cycle for the DMAC
is performed, the interrupter releases the VMEbus IRQ 1line and
will only respond to another IRQDMA, after negation of LIRQDMA
for at least two clock cycles (125 ns).

4.7 External DMA Devices

The 68450 is a four channel DMAC and only two channels are used
by the SCSI interface. The control 1lines of the two unused
channels are connected to the P2 connector. The direction of
these signals can be selected by jumpers. The two channels may
therefore be used by other devices on other modules via control
lines on the P2 connector. Care should be taken here to prevent
conflicts with the VMEbus specification; however, relatively
simple I/0 modules may take advantage of these DMA channels.

4.8 SCSI Interface

The SCSI protocol controller used is the NCR 5385 (or NCR 5386).
Sheet 5 of the schematic diagrams shows the complete interface.
SCSI bus buffering is performed by U42 through U47. Units U40 and
U41 are used for driving one of the eight data lines on the SCSI
bus during arbitration. JB4 selects which data line will be
driven during arbitration, the so called ID address. U36 encodes
the JB4 setting into three ID signals IDO, ID1 and ID2, used by
the SCSI PC. U39 (sheet 6) is a 10 MHz clock oscillator for the
SCSI PC clock. Connector P3 is a flat cable connector which has
the proper SCSI bus pin definitions. Connector P2 is the standard
VMEbus I/0 connector which has also all SCSI bus signals
connected. An optional module CC85 is available to interface a
50-pin SCSI bus flat cable to the P2 connector.

Manual CC74 Ver 1.3 4-3 January 1986

-

-__mw

wn_»

un =

w"_B

u._u

u"_» | -

| .

a_»

a s

_R

¥

L .

| B

i L5 L3

|

& & 0 u

i

B S

CHAPTER 5

PROGRAMMING CONSIDERATIONS

5.1 Introduction

This section contains all necessary information for system
programmers to take full advantage of the features of the CC74
module. Additional information may be found in the respective
data sheets of the SCSI protocol controller (NCR 5385/6) and the
DMA controller (68450). For system programmers who want to write
their own CC74 driver software, a full wunderstanding and
experience is required. The source code of a sample driver
routine for this module is found in Appendix J.

5.2 Memory Map

The memory map 1is given in Appendix F. The module takes $200
(=512) byte locations, starting at the selected base address. The
first 256 locations are used for the DMA controller and the
second block is partially used by the SCSI controller (16 bytes)
and the local control register (1 byte). Both the SCSI controller
and the control register are 8 bits wide and are accessed at odd
memory locations. Both are duplicated an arbitrary number of
times in the memory map. The recommended address 1locations for
use by system programmers are given below.

B_DMAC equ CC74 BASE+0 base address for DMAC
CNTREG equ CC74 BASE+$100 address of control reg.
B _SCsI equ CC74 BASE+S$120 base address for SCSI PC

CC74_BASE depends on the address select switches S1-S4. Note that
the byte wide registers respond at odd addresses only. The
registers 'within the DMAC and SCSI PC can be accessed by using
B DMAC and B_SCSI as the respective register base addresses and
declaring each register as an offset from these addresses (see
Appendices G and H)

5.3 Reset

The SYSRES* signal from the VMEbus will reset the DMAC, SCSI PC,
DTB Requester and the 1local Control Register. When the DMAC
recognizes Reset, it relinquishes the bus, clears the GCR and
resets the DCR, OCR, SCR, CCR, CSR, CPR and CER of all channels.
The interrupt vector registers are set to SOF (uninitialized
interrupt vector number). When SYSRES* is active, the SCSI
Protocol Controller is forced into a reset state. All current
operations are terminated and internal storage elements
(registers, counters etc.) are cleared. A 'chip reset command'

Manual CC74 Ver 1.3 5-1 January 1986

loaded into the SCSI PC performs the same operation as the
hardware reset. The DTB Requester falls into the idle state after
reset, which means that all output signals are negated (no bus
requests active). The local control register will be cleared
after reset and all output lines will be low. This disables the
interrupt request level, the bus request level will be O and the
SCSI reset signal will NOT be activated. The SCSI reset signal
when activated (by a write instruction to the Control register)
will reset the SCSI PC, which will then release all bus signals
within a 'bus clear delay'. The Interrupt handler attached to the
CC74 module can be informed about the SCSI Reset condition with

an interrupt request. The PCL1 line of the DMAC is used for this
purpose.

5.4 Interrupts

All interrupts from the CC74 module are generated by the DMAC.
These interrupts can be caused by several conditions such as
channel operation complete, PCL transition or Bus error. Each
channel may generate its own normal interrupt vector or an error
interrupt vector. An error interrupt vector is generated when a
DMA transfer is terminated by a bus error response or when an
address error occurs. In the case of an error, the present wvalues
of the Memory Address, Device Address and Base Address registers,
the Memory Transfer and Base Transfer counters, and Control,
Status and Error registers will be available. The interrupt
signal of the SCSI PC is connected to the PCLO input of the DMAC
and may also cause an interrupt on the VMEbus. The interrupt
signal from the DMAC is sent to the Interrupter which will assert
the proper interrupt request 1line. The interrupt 1level is
selected by the Control Register outputs IRQLVO, IRQLV1 and
IRQLV2 (3 binary encoded level outputs).

IRQLVZ2 1IRQLV1 IRQLVO INTERRUPT LEVEL
0 0 0 (disabled)
0] 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Bit 3 of the Control Register may be used to disable the DMAC IRQ
line. This bit is used by the interrupt routine as follows.
-disable IRQ line (set bit 3).

-process the normal interrupt routine.

-disable IRQ 1line (clear bit 3).

This procedure is necessary to guarantee the proper working of
the Interrupter. '

Manual CC74 Ver 1.3 5-2 January 1986

rs L B | ¥ F u [T u ' m = m & m [-= -m

F 9 F§® £ 31 R ¥ K12

Qe

g .

(W

a &

5.5 Bus Request

When the DMA controller needs control of the bus it will generate
a DMA Bus Request to the DTB requester. The level on which the
DTB requester will generate a Bus Request on the VMEbus depends
on the REQLVO, REQLV1 outputs of the control register (2 binary
encoded level outputs).

REQLV1 REQLVO BUS REQUEST LEVEL
o) 0 0
0 1 1
1 0 2
1 1 3

The DMAC controls VMEbus utilization and request interval timing.
The Burst Transfer Mode, Cycle Steal Mode with or without hold,
Burst time and Bandwidth Ratio are also under software control.

5.6 Control Register

The Control Register performs several functions. It is used to
select the levels for the DTB Requester and the Interrupter and
to enable/disable the DMA IRQ 1line. It is also used for
monitoring the SCSI Reset 1line (LRSTI) and may be wused to
activate the SCSI Reset 1line (LRSTO). Note that when LRSTI is '1'
and LRSTO was written as '0O', means that another device on the
SCSI bus is asserting the reset line. The following table shows
the bit assignments of the Control Register.

BIT READ WRITE FUNCTION
0 IRQLVO IRQLVO
1 IRQLV1 IRQLV1 Interrupt Request Level
2 IRQLV2 IRQLV2
3 ENIRQ ENIRQ Enable DMA IRQ
4 REQLVO REQLVO DTB Request Level
5 REQLV1 REQLV1
6 Spare Spare Not used
7 LRSTI LRSTO SCSI Reset

5.7 AM Code Generation

When the DMA Controller is in the DMA mode, it will generate
Function Codes on its FCO-FC2 lines. These 1lines are software
programmable for source, destination and base address access (see
chapter 5.8.1). A translation of these lines is made to generate
the six Address Modifier code lines on the VMEbus. The following
table shows the translation and function of the respective lines.

Manual CC74 Ver 1.3 5-3 January 1986

FC2 FCl1l FCO AMS5 AM4 AM3 AM2 AM1 AMO FUNCTION

NeXeXeX=)

o e
e

HERHOFKFKFO

N
HHOOKHKOO
OO0OrRKFHOOKH
0]
T
(o]
H
t
Lo/
H
(8
<
[
Ny
(o]

5.8 Programming the CC74 Module

Programming the CC74 module can be divided into two main
sections: programming the DMAC, and programming the SCSI Protocol
Controller. It is also necessary to program the desired interrupt
and bus request 1level as discussed in chapter 5.4 and 5.5
respectively. In chapter 5.8.1 the programming of the DMAC is
discussed. Chapter 5.8.2 discusses the programming of the SCSI
PC. A programming example is given in Appendix J.

5.8.1 Programming The DMA Controller

The 68450 DMAC has internal control registers and performs the
' required operation by means of control words written in these

registers by the MPU. A normal programming sequence can be
divided into three phases.

The Initiation phase: MPU sets up control registers, transfer
address and transfer counts.

The Transfer Phase: DMAC receives requests and transfers data.
The DMAC writes the transfer status into the error

register and the internal status register after the
completion of the transfer.

The Termination Phase: The MPU checks the post—trahsfer status.

The internal registers are shown in Appendix G and a short
description is given below.

The Device Cchtrol Register designates an external I/0 device. It
will set the external request generation method, the

device type, the device port size, and PCL line
operation.

The Operation Control Register designates the transfer operation.
It designates the data transfer direction, the operand
size, the chain operation types, and the request
generation method.

Manual CC74 Ver 1.3 5-4 January 1986

MR & m & =

" = & |

Fm ¥ m .

f 2 ¥R F R §HN

» £ » F® @ ¥R FR® ¥R K1

W

The

The

The

The

The

The

The

Sequence Control Register designates the increment/decrement

sequence of both memory and device (source and
destination) addresses.

Channel Control Register designates the channel operation. It

designates operation start, the continuous-operation
setting, HALT, abort, and the interrupt enable/disable.

Channel Status Register contains the channel status. It shows

channel operation completion, block transfer completion,
normal termination, the error status, the channel active
state, and PCL signal line information.

Channel Error Register indicates what error types have

occurred.

Channel Priority Register determines the priority of the

channel.

Memory Transfer Counter is a 16-bit register to hold transfer

counts. The block size (transfer count) is written when
one data block is transferred. When multiple blocks are
transferred in Continuous Mode or Chaining Modes, the
next block size is automatically loaded in the MTC after
completion of the previous block transfer.

Base Transfer Counter is used in Continuous Mode and Array

Chaining Mode. In Continuous Mode the first block size is
stored in the MTC and the second block size in the BTC.
The content of the BTC is copied into the MTC after
completion of +the first block transfer. When more than
two blocks are transferred in this mode, the BTC and BAR
(described 1later) are rewritten and the CNT bit in the
CSR is set again during the second (or third) block
transfer. 1In Array Chaining Mode, the BTC holds the
number of blocks being transferred.

The Memory Address Register contains the memory address being

The

output for each transfer cycle. In block transfer, the
beginning address of the block is written in the MAR as
an initial wvalue. And the content of the MAR varies
according to the contents of the OCR and the SIZE bits in
the SCR after one operand transfer. In Continuous Mode
and Chain Modes, the MAR is rewritten according to the
BAR or the array information in memory when a block
transfer completes.

Device Address Register is used to address an 1I/0 device (or

to address memory, in memory-to-memory transfer). The DAR
is used only in Dual Addressing Mode, and changes its
content according to the SCR and according to the SIZE
bits in the OCR.

The Base Address Register is used in Continuous Mode and Chain

Modes. In Continuous Mode, the start address of the
second block is written in the BAR. This BAR is wused in

Manual CC74 Ver 1.3 5-5 January 1986

the same way as the BTC. In Chain Modes, it keeps the
address where the information of the next block 1is
contained.

The Memory Function Code, Device Function Code, and Base Function
Code Registers are used together with the MAR, DAR, and
BAR respectively. The MFC, DFC, and BFC are used with the
same purpose as the FC outputs from the MPU. This makes
it possible to transfer data between supervisor program
area and user data area, for example. A translation is
made to generate VMEbus AM codes from the Function Codes,
this is discussed in section 5.7.

The Normal and Error Interrupt Vectors keep the vector numbers
outputted in the vector number fetch cycle (Interrupt
Acknowledge Cycle). When no error has occurred (ERR bit
of CSR is not set), the DMAC outputs the NIV contents.
When an error has occured (ERR=1), the DMAC outputs the
EIV contents.

The General Control Register is common to all four channels and
determines the DMAC's bus use ratio and sample interval
in 1limited Rate Auto-Request Mode. In Maximum Rate
Auto-Request Mode, the DMAC takes the bus mastership and
transfers all operands until they are exhausted. In this
mode, when the higher priority channels request transfer,
the channel with the Maxixmum Rate Auto-Request stops its
transfer temporarily and the higher priority channel is
serviced. The Maximum Rate channel resumes its transfer
after the priority channel has been serviced.

After the DMAC is properly initialized, a transfer is started by
setting the STR bit in the Channel Control Register. When the
DMAC completes a transfer operation, the COC (Channel Operation
Complete) bit in the CSR is set. If an error occurs during the
transfer, the ERR bit is also set. If the INT (Interrupt Enable)
bit has been set, the DMAC will issue an interrupt request when
the COC bit is set. If Interrupts are disabled, the MPU should
poll the COC bit. The transfer termination routine should check
for errors. Error routines should be programmed case by case
according to their applications. For bus error and address error,
the CER (Channel Error Register) can show which address register
caused the error and the address where the error occurred is kept
in the address register. The CER also shows which of the transfer
counters between the MTC and BTC caused the error.

5.8.2 Programming The SCSI Protocol Controller

The SCSI Protocol Controller has a set of 13 internal 8 bit
registers, which are used to read or write data, status and
control information. A summary of the SCSI registers is given in
appendix H. Note that some registers are read only. A normal
programming sequence where the CC74 module act as an Initiator on
the SCSI bus is as follows.

Manual CC74 Ver 1.3 5-6 January 1986

-—

-

[}

Fa ¥ =

P ¥? ¥ @ % @F® f®% F R B R KPR WM

| W

i

Arbitration phase; Initiator arbitrates for the bus.
Selection phase; Initiator selects a Target.
Prepare SCSI chip and DMAC for data transfer.
Message-In phase (optional).

Command phase; give command to Target.

Data phase; transfer data (optional).

Status phase; get status from Target.

Receive command complete message.

Wait for disconnection.

Check for errors.

CWVWONNOULTEBWNKF

[

When the CC74 module acts as a Target, the programming sequence
can be as given below.

1. Wait for selection.

2. Initiate a Message-In phase (optional).

3. Command phase; get command from Initiator.
4. perform command.

5. Data phase; transfer data (optional).

6. Status phase; send status to Initiator.

7. Message phase; send message to Initiator.
8. Disconnect initiator.
9. Idle mode.

Before any operations are performed, an Internal Diagnostic
Command should be given and status information checked for
succesful completion. After power-on Reset, the Internal
Diagnostic Command is automatically executed.

Manual CC74 Ver 1.3 5-7 January 1986

P -_» -_m- - - -_- | | | | - _m | S | W "= | W | | . | W | | W | | . | LB | W | | S | W] i

A

Al

@

[S

Y

il

WP Y

&

APPENDIX A

BLOCK DIAGRAM

SCS1 CONNECTOR VMEbus P2
SCSI BUS
]
ADDRESS CONTROL SCS1
DECODER
~ REGISTER INTERFACE
IR -]
68458 BUS CONTROL
DATA &
OMAC ADDRESS LOCAL DATA BUS
8US
BUFFERS |—
ACORESS BUS
| ADORESS BUS DATA BUS CONTROL BUS DTB REQUESTER
% BUFFER BUFFER BUFFER INTERRUPTER
I
| | | | -1 ||
VMEbus
Appendix CC74 A-1 January 1986

u_ =

w__B n_N

2 _F 8 B

5. »

| .]

R F & B

i 5 & F 0o F 313 04 F B

&

§ | 6

+ & 4

& B4

Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet

WO kWNHE

el
N O

Appendix CC74

APPENDIX B

SCHEMATIC DIAGRAM

DMAC-VMEbus interface

Chip select 1logic

Interrupter / Bus requester
VMEbus interface

SCSI interface

SCSI-DMA transfer & control logic
Local data path

68450 DMAC / NCR 5386

SCSIbus connector / power supply
Decoupling

VMEbus connector P1

VMEbus connector P2

B-1 January 1986

L m w. m wm ® w. m =W .5 ®w 5 u 5§ ® § ® 5 ® 5B § 5 & 53 L 53 § 53 § 3 EER L E ALBE B&LE ®LAE G

R & B | &

| R

g

i =

&

&

_

G [£] 1 I B 1 A
7615373 TLELL
R1Y 5v \ \ AB-A23
e e Gy ute o ewy U2 '
~—{ RN7 —{ RNL)
3 18— = 19 2 L AN
A23/015 T 0 & Vi 5 > 1W— A23
A22/D1% T T - > V¢ A22
A21/013 152 - < 3 T > 19— A1
A28/012 33 T e r > V7 A28 | |
A19/011 o 3 5 : > 1Vl A19
A18/018 o < 3 3 > W7 ST
A17/09 o 3 3 T > 1vl— A2
A16/08 N > 2v A16
2
UAS 61 5| 1 l\ 6
L Juss 7415373 7LF244 .
FALSBL -
U1 1 1
o BN U9 91N U3
0 EN2
4 18 = 19 2 18
A15/07 o 0> v 5 I A1S
A1&/06 Ho 3 T; ,. > 293¢ AL |3
A13/05 s S e > v A13
A12/D4 > 2V A12
45 | N 14 15 6 14
A11/03 Y3 \ 7 3 3 > 1V 7 At
A18/02 5 3 - > 2V A
2 8 12
A9/D1 et 3 3 = > Vi AR9 1
AB/D@ > 2v A8B
3, 4 ___
TES OUNL .
741584
— | 68 1 k2
1
OuN M OMNH
700586 FLLS6LS FLALSELSA-1 | |
oy 19 gy U7 svaE — 9 alg3 US
JENT W—Eacm
\ ; L 3en2 Ejeuz
RNL e e TR L s
N___ A23/015 F’ S— LD15 — 015
A22/014 8 PRI 8 12 1t
N___A21/013 7 131013 7 13 013 ¢
NG A28/012 3 14 1012 \J_ 6 14 012
AN A18/D11 S 15 Lp11t N} S 15 o
A18/018 L i6__L018 & 16 018
A17/09 3 17 LD9 3 17 089
A16/08 2 18 LD8 2 18
63 < 0@8
OBEN 3
FLLS6LS FLALSEASA-1
+SY
‘ . 13 63 us GVHE 2 al63 ué
RNL LBEM FROHVHE Lazm
— | 64] JEN2 3EN2
poIR) L
9 ;} 3 o 9 ;71 3 — 11 oy
A15/07] L07 . >l A8 I oe?
AT1L/06 8 12 L06 8 12 251 nes i
A13/05 7 13 s 7 13 e ooe ‘
A12/0k 3 1. L0& 3 A ;5 ope 7
A11/03 5 15 LD03 5 15 i ops |
N A18/02 i 16 LD2 A 16 —4A3 082
A9/01 3 17 LD1 3 17 —_IAZ oo :
OMAC A8/0@ 2 18 LDG\ 2 18 —{M oo |
68458 — -
.siv L08-L015
T [
RTBYTE |22 RTBYTE
REV.- DATE COMPANY
; . COMPCONTROL B-V.
1-8 -85-8 EINDHOVEN-HOLLAND
1.2 7-38-85
TITLE
1.3 11-28-85 DMAC-VMEbus
INTERFACE
MOOULE SHEET QF
Cc74 21 12
F [3

] | 2] 3] [5 | 6 | 7 1 8 | 9
7415688
A I Tomp A
TAS —= G
AN® ——————————f—a b
o ———) V12|
AlD 3 ,
AR —- 1 18 LLs688
] A2 ————ps ' — TonP 8
I QS § — 1
AT Y A ————— = 6t
AtS -V 1peohtd SELLOW 1% U13 PAL 2
15V |1, 5V 3 @ TTAEK 6
8 | eff2 5T 5 10N AM1] ule6 19 [
IE 77 s 1] >° ' Vi HLOAOR
St L 9 9 . AM3 13 OUNT —— ey ENSTRE
1 812 0 aM2 —12 15 (038 —3 Ve TEVSEL
| aff2 61k AMS 7], P osT — Y 0TS
H— GIE .16 181 3 1P=0 : I DTATK —
S3 4 3 18], 5V —i—@ TURTTE — ME
VA 7 Atk — v
AL 3 BN —5 MaE
4 iz] >o A0 — M)
« T X/Y v ' 4
S FPLA
H RN6 18], 825153
- 1, - « BTACRV |
BERRV
L 7415688 1 P1 As06
@8 [(30}
1 o1 COMP TATKSEL
0 A6 Lo b 0
3 utt
- .mé._. ,SV
A19 - K P . 9 1
A20 . {_RN7_]
- A21] -
A22 —05 SETHIGH
A23 e 19 [~
(31 \ 3 3 1P.0Q —EJ N[‘J m[] (_‘D @
8
5 af]2 5 5
f T HIE 77 €
i 9 9
i § 12 0 AML "
| ef[2 61k
3 Lo16
S L 7 18
= /18 !
4 REV. OATE COMPANY
(OMP(ONTROL B.V-
Tan -8 8-81-84 E INDHOVEN-HOLLAND
5 1.2 7-30-85
. TITLE
¥ ! 1.3 11-28-85 (HIP SELECT LOGIC
MODULE SHEET of
(crs a2 12
i] 2 I 3] [5
? ¥ % F% Ff % fF % % fFR fFR2 F R R fF R @R " &0 &2 Fm &M s m & m ==

-w

& | | | | | | T L L . | W R i [i . | i u & . & " @ - -
! I 2 [3 | b | 5 I 6 | 7 i] T 9
+5v Py
. '; s U17 7LLS6LT-T {Az2] 1acrouts
0
PALS : 10 ’? 63 UZL ' R
A 1 o 3 b2 R IENY
COTATK
(LK16 "—“—>ﬁ\ U22 035 7LF7A 3“‘2 J
1
_["'"“fl"’ H 741504 U23 | 1 ?2 3 9
19 1 POTACR b 190
o, Vb IROLVE N a»—-r““ BTAT 71> 16¢ ot ,
CTRTRTR —2— 1 18 IROLVI —— 6 2 1 e 3 7 |
] (TROOHA —2—] v IROLV2 —3— 2 2 IRO2%
| 12 14 Q0
CAST —] 10, 29 0x 3 1RO3x
' 16 CTRGOHE ! 15 ’ 1ROAN
LA 10, 206 - TTRGOAR ==& 4 T >
6 | [5 1o 1ROSE
LA2 10, 2vh—12 TATKSEL 5 7 3
Y ——— 10, 20 pth 6 6 T 3 1RO6R .
8 1ROLVE —— b2 7 IRO7%
IRoLV? 8 v*’n 7LLS130 S
PRCTER (s ——5ar PALS 19 U25- |
- 1ROLV2 1 Jens u2e _FEgz'“
L h ‘ N2
2 v ="
87 <
¢ 2 1 10, 20012 LBYa ”r > ‘BRex (
WL = R1
—_LOBR g i gz‘ 6] LBR2 16 A
LDBGACK 6 N (BRI, 15 BRIN
REOLVO : 10, 201> = oad
| REQLV! ! :ggg 3 [: i
L3 1o Lm i
Ih 2 pUP
PALTGRE 1 PAL 7
0 LRESET (K16 ——D61)5 g 0
11 aJEn2
4 c ‘
(LT v 5T
ke —2 >0 CBRT 2 |, o
u) (BR? 2 10, 29 :g X u
ey U119 LBR3 : 10, 29 p—17 85] BGROUTx
Py ml C N > , 10,290 B7 | BG10UT
BOY Nk [BL] 2l D e g 5 10, 292 89 | BG20UTH
BG! INX [B6 J 10, 29 B11) B630UTX]
t 4 ! 9 10, 29 p2d
BG2INK [88 ¢ : ; .
BGIINK [B10 £ 8 12
[3 I v
m%:_% 2y 7 UATKIN [Th 10 5V PALIGRE V14
0BR —————— ! g o5% L_Ju3s !
- i
OBGALK —————7 To] (OBEACK ThLs0 REV. 0ATE COMPANY
[TATK ——] CTRGER COMPCONTROL B-V-
AM29821 ” '-e 1-85-85 E INDHOVEN - HOLL AND
1.2 7-30-85
12 D TITLE
F Q\H 1.3 11-27-85 INTERRUPTER
enirg — 3 V30 BUS REQUESTER
74538
HODULE SHEET of
(c7s 93 12
L ! I 2 I 3] L] 5

1 I 2] 3 i I 5 6 I 7 | 8] 9
W5V
f
TLF244 _ [y 7415373
e 19 AMB- AMS e 1 1
AN P z EN OWNH —————rl o gy
| Utk ™ u27 Py a—
] [P ? — - - o
LAMB—%%—— 5Ty 2 BT6] AM@ i T B ,v—-}: WRITEX 'g 5 v TIk
FO1 3 > vl B17] AMI o T] o 07 = ; LA7
Fi2 -2 I B18] AM2 o T o ABS h L LAG
LAne —L > Y A73] AM4 T B v ABS - > LAS
QJBrs] an3 ARG > . LAk
(14 AMS AB3 3 5 LA3
L— pup B2 = 3 LA2
A1 N G LAY
15V
1 .
4152744 5 7415244 7LF244
[+ 4
19 1 1
OWNH e 19 af gy N BUNT ENY
uz2é 2 ™ u2e 009 gy, U93
P -) P — ~ = —
0sia [Ri2 o T 2 {51 BCLAX [B2 L% v-'~2—- {(BTLR WRITEX \—12——v1 3 n—%,—/ (WRTTE
0sex Ay 1o—{I___ b v+ toca SYSCLK [A18 Lo VS (ki o1 Nivz s a2 o
Ask [ATB -3 > Vg A% SYSRESK (12 eI b Vi AB6 .\—-—-5 v a 11———-/‘5 “LAG
["*.D' 1 V= PUP iy D> V f—e ABS e v2 «a n 5 /] LAS
ABL e e 4] < '3 LAL
e Nt a2 a3
AQ2 \J—%——vn = a5 w2
w L 51 vy
7LF244 7615244
ENSTRE LN 19 afen
IREA [uz27
18 = g — il 17 2 = J—
osin QT "3 <} 057 BERRN [C11 L P FERRV
LN ——<’ [038_ OTACKK [AT8 ST > vl OTACKY
s NS e ASOMA IACKx [AZD s T o CTACK
v PUP T b v
TOTATR
? REV- 0ATE COMPANY :
(OMPCONTROL B.V.
& ' 1-85-85 E INDHOVEN- HOL L AND
1. 7-30-85
aDQ] 1 B TITLE
2 |u3e Q\6 1. 11-25-85 VMEbus INTERFACE
I RIVIT u3e
7483
74538
MODULE SHEET of
(74 as 12
1 | 2 | 3 ; [5

2 FY F % % £} 'R FR PR R FR FR R R EMN

[|

-

| W

B . &

& i

F | 3 | | C] 8 1 A
TRMPUR
«SY 1
t
\ 2 U“D Ok 3/ 74L5688-1
8 AN
9 7415248 19 uL?2 X o L
[N
, Gy H W oo e 4 £ 08 N2
" LN P H IENT
35 E{9: £n2 U37 use Usen2
9 —
12 e 2 . F—55te] P Ot L4517 4 '8 P3 P2
3 7 3 use - NEM 2. B
3 P g LA e .) 3 A NEEMLLIN =1 . gg“
TR [el = -081
ol I 7] s v 2 S 51 P Ok v o p— I NEFIOLTIN ooy vy DS
EERR g < S r > v ;" 1 uu[) ;f e 12 \’5\"‘::: 139 AL | -083
s 3 3% . & 3 5 AS | -0BL
s QT e § 8 rF—p I 8l LI [O3 = :; ”Ax::: 12 { A6 | -0BS |2
16 l ,98 N L & . 9 T T8 ANT JLu A7 | -086
G L b ohs — " 16 | AB | -087
0 - 1 ur > 6/
. 9 PUP2
1 PUP2 2 :Ng u38 e P Oh8 B
' [ITY] ; ‘D Q\B S AN1 P3 P2
7415125 o B N1 03 {18 [A9] -08P
s L P3 P2
U36 s oo 2 o i g e |
ARD
T \\%?—ﬁa/ua ep—21—141 708 s88 S 1 oD Ok s o mwp P2 P2
n R/ ST - SB1 ! L . > Li [A22] -sEL
12 =D /712 1 101 $B2 B
1
13 2_=h/213 83 12 : P3 P2
Ty NSRRI P LB YRRy SB& 13 boohn Lu,me g [A28] -RST
s 2 7 — & 1 uL3 /
/215 — o 85 R LRSTO
16 \\——"p/216 T8 p—rv SB6 14 74538
17 Nt bz |, u3s SB? o § lg SLS 7415248 ‘
5 ~lEn 2T R 1 BSYOUT REIN
O vig SELOUT EX juss !
SBP 12 (111 Ly N YLk
FLLS1LE 1es | v EN2
724181 18 =1 -
3 . 25 ’2 Vi a 1L——/f -o8P
soe > ue BSYIN {2 vi_a_ _u—=] -ssv
SO D1 SELIN DS e S g Ry
1 12 8/
sD2 o 02 7415208 LRST! Livia -RST
S03 w03 19 | vz 9 a1
SoL 59 e |28 17 3 vz 9w >
T p— SBER 7 %
S06 06 1 P
= > 3 P2
so7 07 ack |12 2] Ok 3 25 RN2 S Ta19] -ack
LA g A8 LD ol s N2 3 P2 B
LA2 A1 5 3 N LIS _AT
LA3 :;Z A2 ATN ues 32 JA16] -ATN
LAL A3
&
o1 | NERs3es 74538 .
STS1ES s 1 P3 P
1] &3 13 3 S _RN2 Z
BTk e Hus
I P3 P2
1D 6 L RN2
u ATENTR 271 Tacx o B I < L6 R
NCRST - ReSET N 9 > 3 b2
NCRCLK £LK 3
. 9 8 Ok 8 3, RN2 =5 _uSG
7uL52L8 s N uLe
19 JEn uL? " :g D Ok 18 ANz 23 P2 5
5 15 29 R0 N usé 4 <2 o
SCSIREQ ‘T{V < ‘U.IW OREQ
SCSUHINT v < his INT 18 74538 N
L] £ é", l""e 7405248
185 28 9 v 8 1 ‘LE_;‘ gL7
7415125 18 5 a2 -0 :
Lv Q n__l‘_./ :
- =1 -uo
—T‘V <)8 3 -MSG -
— 2 a3 _reo :
REV- DATE COMPANY]
COMPCONTROL B-V.
— 1.8 1-85-85 EINDHOV
EN-HOLLAND
1. 7-38-85
_— TITLE
. 11-27-
| 27-85 SCS1 INTERFACE
i
2 MOOULE SHEET OFf
| 74 12
_ I - Cc 85 2

| 2 | 3] 4] 5] | 7 1 | 9
V5V
s — 6%
A A
74LS26b .
1 1 1 1 1 =
1 N 3
m ~ ~ m ™ ~ USB
= E = x = =
o« @ 4 = I3 o ; 16 Ly et} P2
L s Ts T3 T3 T2 s g9 | REG2 57 A Y A27] [ATGZ |
e i ATK? 5= o N A28] EACK?
086 1 86 ATkl v DA (28] EACK3
BGACK 3| BGATK V5 A
o e
B ups 1 i
[GTACK :; TACK 8
o [WATTE MY
TSOWA I
- 6 JBS
sl ho etz 2 9 G i
l [u3s . 5V P2
741506 o U28 3 0.l U28 L 9 155 ‘ ,. [A29) 102
] ; o 3 +5Y
& [
TCLSTh l TLLS74 2 9 187
] 33% 0ONE 0, Gz
ASO o
8 a, o
e L2 | e v
: sy FTItR 20 | ek 1 74524k
68458 19 0
57 m EN
1% '
v[‘[ue t:; 56 :; OMAC z use
' 8 LAz —2— a3 . 7t o~
L YO (AL —22 1l 1 3 4 T
- LAy —23 1 s REO3 5 31 -
GND (re —21 46 7t T = o L
Lr 783 (a7 =27 o1e o g . —
. +
15V -6
| Tz 5 1
‘ 19 RNL 186
12 U1 7 9 (LKB) OMACLK mﬁ 5 a e 4
IS ER y &7
[LK16 Tandy | P2
10 8 6 £, o {t29] £PLL3
EINN
| TLETh l
REV. DATE COMPANY
+5V (OMP(ONTROL B.V.
| U39 -9 1-85-85 E INDHOVEN- HOL LAND
it 1.2 7-30-85
F JAne ok B NCRCL e
K 1.3 11-27-85 SCSI-OMA TRANSFER
GND & (ONTROL LOGIC
7
HODULE SHEET of
(c74 26 12
[I 2 I 3 T i 1 E]
? Ff» ¥ ¥R KR K12 'F " F R €©£ % F R ¥fu FR FE R s&Fu &nu am =m =m

I W T TR S & ; B _ i B ; W & R oy R i R i W sy W U ®w & W a4 [- P

! | 2 1 3 I 3 1 5 I 6 | 7 I 8 9
ATSVR
A g | SRGe PAL 3 L {3
STRT ————=IR us? e 7615645 —Ii
(K6 ——3—Driss 2
. Eq - OUNL —! v il X o [T u33 7415273
{058 | FRASTST 1
e al I ” __% (058 2 o2l mETIER — HE Ti::: K >“ U3
m 20 — 1
g 3 v TS 2 19
| 6 [g A 500 191 19 IRoLY@
19 Loe b 70— : 70 ;
10 7 v STSTRD 3 JROLY1
T ASONA —¢ ' Lot — 16 502 AN B 16 oL
B 12 ASD — vpld s7ETy tgg s :2 s;. N ': 55 tnIRo
12 TKe —-2] & REOLVO
— ALKR — vpll_ WTSHD Lob —5 13 5 AN I t Rrorvs
7405164 070 — LDS —ef 3
‘ LAs —3] [T R— 06 —oaol 12 6 13 SPARE
14 v MISWR — 9 11 7 [9 N\ LRSTO
TVRITE —] 07 — o] < J
B [1 | {OTACK —= 14 oS repE
EVAE \ o N2 13 o N 12
us! us! PALZ0LE
. EnTi3g' hn,U' 18
us 1
7LLS1e " 7hLS14 7415645 7415645
19
PAL & PAL 1 TATEH —'—%—*63 U3k TSRO f63 1Y)
- — FRHSTST —Ipy3tw ;::;
Us9 u29 22 IEN2
\ v neRstT GVNT———;—-l v STRT 2 o " o S
OUNT —1—11 18 058 —2 PR —
ST N Ve tosT — v ASOHA L8 ——31: b 79— | S0 500 \"SE > 2v:1ﬁ/ 4oL ve
] - BE — —Z] S0 IR Narees oo
0 e VB BE(e R 5 V:;r—-m FROWVAE e] 1 § 502 502 }% e L
CF > Vi Bt & : $03 s03 03 NEEYY ErTerY)
CHESET —— BEVSEL 19 Lot > X
BR —— | vp B ATACK —1— VR PSS o1z —2 £ sou s0i t : g
7 KD —o]] N 0% REOLV!
LRST | 14 X 18 L013 NE N iy’
| ENSTRE —o— Vpg— LAKe OBEN — v GVwE (01e —3=e ENET 506 Q— 2/ spat
BERRY — ubrtd ame A0 — 2 [— L015 —eef s07 s07 2o UL
i " i1 v EHTGH =\ ;
pup {10 NI FTACKY — |
VP LRSTI BERRV —] [TR—
PALI6LBA-2 HIBYTE "% v:, L
¢ - pup —23414 o8 $08-507
FALZOLE
R REV- DATE COMPANY
(OMPCONTROL B.V.
e 1-85-85 EINDHOVEN- HOLL AND
1.2 7-30-85
. TITLE
f 1.3 11-27-85 LOCAL DATA PATH-
HODULE SHEET of
(C74 a7z
i I 7 I 3 T T I g ,

] I 2 | 3 I 4 | 5 I 6] 7 I 8 T 9
A A
s02 ——{ 02 - vee 22 sy 45V REGS ; RE03 90TR ’:; L
S01 —5— 0! 03— $03 ' o FEOT REaz 3 REGZ DBEN 2 0BEN
- s0@ —— 08 04—~ SOb RNL —1 REaT ATBYTE HTBYTE -
NCRST —— RESET 05— S5 STSTREA =1 RE0@ UAS 2 as
ATN —2—| ATN 06 5~ S06 (I} — P03 N OuN
165 —— 165 07 —5~ S07 PT2 - P12 BR — 08R
1/0 —— 1/0 BSYOUT |—74— BSYOUT LRSTT 5 P 86 2 086
B (/0 —5— ¢/0 $B7 —r5~ S87 SCSTINT 5 PeLo Al — LAY 8
MSG —5— MSG 586 [—o— SB6 OBGACK T BOATK Ut A2 2o LA2
ALK ——1 ALK U3g ses —55 58S [R{ Ti o7t A3 1 LA3
REQ —=— REQ B4, [—35~ SB4 (oTAtK 77— OTATK AL o3 LAb
14(‘]_2 NE L__Z‘ S83 35 SB3 LOSY 3 uns AS B LAS
H 107 —i— 101 NCR - SB2 (32 582] i1 (08 Ab i LA§ -
108 —— 108 o396 SB! 5 B! ASOMA 1 & voo 35 1y
ARB —2—| ARB 588 53— $B@ CvRT = R7U A7 2 - LA7
NCRCLK =5 (LK sBP |—37- SBP GND = VS5 vss GND
BSYIN —z— BSYIN SELOUT |—3F SELOUT cs 5 3 A8/00 |— AB/08
C SELIN —o— SELIN RO 55~ SCSTRO 5 5— voo A9/01 A9/01 C
INT o INT R 55— SCSTHR OMACLK o] Lk A19/02 2 A18/02,
SBEN ~57— SBEN OREQ [—5=— DREQ DTACK 7 TACK A11/03 2 A11/03
SCSTS 55— TS 168 —55— 16 LT} > RS A2/0b o A12/04
LAY =551 A@ OATK |55 ACKNCR gont 3 OONE A13/05 f—po————— A13/05
- LAZ =5 Al A3 (32— LA ACK3 T A6/06 i A14/06 —
GND A2 52— LA] AtK2 3 AtK2 A15/07 o A15/07
v AUKT A16/08 }— A16/08
ATKD ATXO A17/09 A17/09
W5y 11¥] ; CI{¥] A18/018 A18/018
0 BECT 75— BECT A9/011 52 A19/011 0
: 8 BEC@ 30 BECO A20/D12 [—5e———— A20/012
RN ¢ 37 Fe2 A21/013 |52 A21/D13
RN g 7 U A22/014 S A22/014
RN3 Fce A23/015 p—— 423/015
F(e FC1 FC2 684580
€ t
-
REV- DATE COMPANY
COMPCONTROL B-V-
'8 1-85-85 EINDHOVEN-HOLLAND
1.2 7-30-85
TITLE
f 1.3 11-28-85 68L50 DMAC
NCR 5386
MOOULE SHEET of
(74 08
2 3
k| | A] L] f£2 | I i s L] s T ra e e [] Fm [¥ . [- =

R i g8 8 o8 R s & R R R TR iR T m A R ok wm s

+5V
P3
F 0 20l ! 20l 20l 20' 20! 20l 20[20' 20' nl 20‘ 20| 25[zol 20
B! 18— hee U2 U3 UL U5 U6 U7 UB U9 U1B UMT U12 U13 UL U16 U1S U28 US3
3 4 BA—— -081 fe, e, 1@, 1@, 1@, 18, 18, 18, 1@, 18, 18, 18, 18, 1@, 12, 189 19,
- a5 6 G—— -082
a7 8 G -083 201 200 20! 20l 28l 200 2! 2al 20l 20! 20l 20l 20! 20l 26! 20l 2l
a9 10 B———— -084 U21 U22 U24 U25 U26 U27 U29 U3t U32 U333 U34 U337 UL2 ULL UL? ULY9 USH
£ o 120 085S te) 1@, 1@, 1@, 18, 18, 12, 18, 18, 18, 18, 18, 18, 18, 1@, 1@, 19,
€13 14 ———— -DB6
= €15 16 3——— -087 . H‘l 1LI 1#' 15' IL] 1LI ‘IL’ “ol “" 'LI] 16[16' ' ZEI lkl |Ll
217 18 B 08P U17 U28 U3@ U35 ULB UL1T UL3 ULS UL6 ULSB U23 U36 U19 us1 U52
7 7 7 7 7 7 7 7 7 7)) 2 7 7
a1 - - L L | | | | | | | | | | l Y2y | |
0 1
a2 228-—— GND puP
PUP
£123 24 B———— GND ‘ [
6
- —ta 266)88 o 7;'1' P oL s
) 38
027 28 34— GND ! 1 74538
, ‘ 9 1o A8
029 30 3-f——— GND % wlol 051
(4 74Ls1L PUP2
831 328-4—— -ATN RN1 RN2
833 3LB— N T PUP2 2D Ol e
- . L—— TRMPUR L7 uLs
Skt 12 b ol
a37 38 B——— - ACK . s m ; ULs
839 L@B—— -RST 17 _) 74538
B a4 02 GH—— -MSG
€43 W B—— -SEL
45 46 B—4—— -/
047 L8 B——— -REQ REV. DATE COMPANY oMb CONTROL B. V.-
€149 503—+—— -1/0 1.3 11-27-85 EINDHOVEN-HOLLAND
- TITLE
A SCSIbus CONNECTOR
POWER SUPPLY's
MODULE SHEET of
CC74 29

!] 2 | 3 I L] 5 I 6 1 7 I 8 I 9
W5V
A A
1 1 1 1 1 IR iR i 1 ‘I
—_—u T T—0 T8 @9 018 T T—(12 T—03 T (s
|| F] 2 F] 2 2 lz |
8 B
1 1 1 1 1 1 1 1 1 1 i I 1 iR 1
TT6 (17 IS (18 (19 (28 (21 (22 (23 (2 (25 — (26 /(27 (28 T —(29 ——(3@
n 2 2 [7] 2 7 lz 2 2 |
((
! ! ! ! N 1 ! At ik A J_' iR ! 1 i
DT I (32 DS (33 IS (36 S35 T (36 (37 TS — (38 (39 = — (40 (61 T (W2 TS (A3 TS (kk TS (45
||]‘2 2 2 [2 2 2 2 2 [7 2 '2 2 [2 2 2]
0 0
1 1 1 1 1 1 1 1 li ‘I ’1 1 ll
el Y el 8 :‘J_;ua =49 :_1__:50 ——(51 (52 — (53 ——cst (55 56 €57 cs8 ._J_::.css 1]
n 2 2 2 z 2 ’z ,z 2 [7 F ’2 lz lz 2 T u
£ -1 €
REV. DATE COMPANY
COMPCONTROL B-V-
-8 1-85-85 £ INDHOVEN- HOLL AND
1.2 7-38-85
TITLE
f 1.3 11-29-85 DECOUPL ING
MOOULE SHEET oF
S (74 10 12
! I 2 I 3] L I 3

[

-

| S [3

¥y

¥

& . u

|

T 0 I T] 1 A
‘ P1A P18 P1C ‘
' 15 pee ! ta sesve — 15 oes
- 2 _la oe 2 16 sLRe 2 _1g oe9 -
3 1o oe2 21 e atraiLx 3 1o g1e
L 1o oe3 L 1o sgaina L ig on
2 5 5 5 :
—3 15 pee L5 8600UTX e 012
& 1o oes 6 1o aciine E 1o 013
L — 19 oes I 1o serouTs I 1o on -
—8 15 oer 8 1o sc2ins 8 15 o5
9 Lo GaD 9 1o se0uTs 9 1o N
’ 18 1o syscux 18 1 & 863INg A8 Le syseaiLa ’
L 11 15 se3ouTe 15 seree
- 12 L6 osix 12 16 pros 12 L& sysresx -
3 Lo psex 13 1o srie L2 1La Luorox
1 1o wRiTER 1t 1o sraa L
¢ LN B 15 15 sr3 15 1g a2 ¢
16 15 oTacks 16 15 ane 16 1g a2
- 17 15 6N 17 1 an LN W RV -
18 o ase 18 1o an2 18 15 ae
19 L5 6N 19 Lo am3 19 15 a9
° 28 1o iackx 28 | o N0 28 Lo a8 °
21 Lo atkins 2 15 sercix 2L L
— 22 L5 jackouTs 22 1 & serpaTx 22 1o a16 -
23 15 ame 23 | 5 gno 23 1o oas
2L L ae? 2t L& irovx 2L Ly an
¢ 25 15 g6 25 Lo iro6x 5 1y a3 ’
261 5 aes 26 | & irosx 26 15 a1z
- 27 g ase 2 1 iroex 2L L A . H
28 1 5 ae3 28 L o iro3x 28 L5 aie
2 1o ag2 2 15 iro2x 2 1o aey
! 38 1o et 38 Lo irotx 38 Lo aes ’
! A la v A 18 .sv stosy A la gy
:——- 32 15 v 32 La .oy 32 1 sy -
;
3 §
: REV. DATE COMPANY
; COMPCONTROL 8- V-
. -e 2-8-85 EINDHOVEN-HOLLAND
f TITLE
19 VMEbus CONNECTOR P1 g
H
MODULE SHEET oF
; (7 11 12

| £ 0 1 C | 8 [
! P2A P28 P2C '
! 1o -ose — 1 +SV ! -€1 GND
L 2 1g .08 2 1o N0 2 1 o) -
i lg -082 2 1lg 3 1g ono
Lt 1o .83 MU) L 1o oo
: S 1o -ose NI) S 1o oo ?
¢ 1o -oss L1 S 1o oo
- I g -086 L 1g I La on -
8 1o -os7 Llg 8 GND
3 g o8P 2 1g 3 GND .
’ 12 Lo 6w KL) 18 15 ono i
LIS IS N) LL T Wy
- 12 Lo 6N 12 1o ono 12 1o onp -
TRMPUR 13 TRHPUR 13 1o .5y U I
LI I LI) L IS
¢ LE- W MR) 15 Lo oo ‘
16 1 g _atx SIS) LI
- LA 2 1g LIS WS -
18 Lo _ssy RLEE P 8 1o oo
19 1o ik REA) 9 1o oo
° 28 1o gst 28 L 28 15 GND °
2L 18 _usG AN 2! 15 oo
- —22 1a -seL 22 15 gap 22 GND -
8B la e 2 L q 23 Lo gno
L 1o reo 2t g 2k |5 6D
¢ 5B 1a i/0 B g s 5 1la oo ?
26 15 .5y FLER) 26 L g .oy
- 27L& ERea? 2 1y 2 1o meas -
28 | o Facx2 28 1y 28 |5 f@accs
2 g e B g 2 | o e
; 38 | & Foowe L.) 38 1o e ’
, 31 15 6w EATE IS 3N Lo ano
32 g 32 1o sy 2 g !
'a 5
REV IATE COMPANY
i COMPCONTROL B-V-
— '-8 2-8-85 EINDHOVEN-HOLLAND
i 1.3 11-27-85
TITLE
VMEbus CONNECTOR P2
‘ MCOULE SHEET oF
by (7L 12 12
T E

£ 3 f3 £3 £ F¥2 £ F3 3 F£R FR FR R oER

[s | -, -Tm - m -

- | Fm

APPENDIX C
COMPONENT LAYOUT

(o]
[00]
o
ld ’d —
o o o o] >
0000000000000 0000000000000000000O0 000000000000 00000000000000000000Q r
0000000000000 000000000000000000CO0 O—u OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO_|V a
0000000000000 0000D000CO000000000000 @ ° Q0000000000000 000000000000000000 u
+
: zar iar <]
: T Woooooooooooooooooooooooo_ 1.“
Eu 1-5979517¢ Dv 9¥91Vd Du 889S19¢ Du _-:ow._:,.m : 000000000000000000000000
i 9n > ven |, e = ven |l eer Ed
: o "INy 6XE - .
15599519 1ese |} AR ELes1L|[h 139205] sesvs ([LA0sY[]h 812517L
_M_wo SN Do 9zn Do €n Eo .:_Do _zzDo sq0 _M_o [Ny Do 990
- 8ESTL @92517¢
b e) meane | et |[h 192404 Du BESae [Seiste H
MDO s2n Do n Do 70 _uo 31 e _M_o 870 _M_o 990 Do L
: 2y {QEEF
1zeszuy ([} 7925144 8895194 [l €51528Y144 s |[h 8EsnL BESTL o °
Duo 61N Eo £2n _M_uo zin Do 9in Do SEN Do L0 Do e b iom__d
: o o
94914 N 88957174 BES YL []p e [Jp tren9sine
Dw azn Do n Dw 8en ° Lin o zmn D
: 13130S i
,__M_u §19510¢ [l 9%t I) 14 _Du 81021vd ‘i 9BESHIN ., ﬂ.
Bl o SNY INY o Sin {efr D . gEN m, O
M N ”
WDV $19519L _M_w 8ELS1YL Dv anzsne| L
N (v}
o 8n Noasd Does) Dzs sl o Ezn ° LEN Hor140°
: nar
: g gin
N o o
§19579¢ €LESTNL €LESTNL ALY) Y92819¢ 8715194
Duo €N Dvo e Do 6N Do 8zn Do asn Do 9€n %
. ol 3] ear
A Ny
: 139205
_ 579517¢ 74914 715718 191571¢ cor [39)
MDU ZEN _M_V zzn DV Len _M_V 2sn - @ 5189 .
;) o () o U "
H 81821vd §995 104 Z-va1911vd €£259¢ m
P p p b T
b e Sl e al o —TS— -«
ENY b~
O €1 A3y 14)) O O O 3)
T I : 1 _ 8]
"
w
B
——2 L 1 0
&
<

= = - m * m T ma 7 ®w TR T ®W T®W TR @ T®@R TR TR TR 0N

a8 a s

aBs

a6 F 4N

a3 48 0LE 0N @

APPENDIX D

LIST OF COMPONENTS

INTEGRATED CIRCUITS

Ul HD68450-8
U2 74S244, AS244, F244
U3 745244, AS244, F244
v4 74LS373
us 74ALS645A-1
89) 74ALS645A-1
u7 74ALS645
us 74ALS645
U9 74LS373
Ul0 74LS373
Ull 74LS688, AMD2521
Ul2 74LS688, AMD2521
Ul3 74LS688, AMD2521
Ul4 74S244, AS244, F244
Uls PAL20L8A-2
Ul6 FPLA82S153
U1l7 74F74
Uls XTAL Oscillator (optional)
uUl9 AM29821, 74AS821
u20 PAL16R6A-2
U2l PAL16R6A-2
U22 PAL16R4A-2
U23 74LS138
U24 74LS641-1
U25 74LS641-1
U26 74LS244, ALS244, AS244
u27 74LS244, ALS244, AS244
U28 74LS74
U29 PAL20L8A-2
u30 74S38
U31 74LS273
Uu32 74LS645
U33 74LS645
U34 74LS645
U35 74LS04
U36 ‘ 74LS148
u37 74LS240
u38 NCR5386
U39 XTAL Oscillator (10 Mc)
u40 74S38
u41 74S38
U422 74LS640-1
u43 74S38
u44 74LS240
u45s 74S38
u46 74S38
u47 74LS240
Appendix CC74 D-1

January 1986

u48
u49
uso
US1
us2
uUs3

RESISTOR NETWORKS

RN1
RN2
RN3
RN4
RNS
RN6
RN7
RNS

MISCELLANEOUS

R1
R2
Cl
C5
02-056
Sl
S2
s3
sS4
Pl
P2
P3
JB1
JB2
JB3
JB4
JB5
JB6
JB7

74LS125

PAL16L8A-2

74LS244, ALS244, AS244
74LS14

74LS164

74F244, AS244, S244
220/330 Ohm

220/330 Ohm

3.9 K 10 Pin SIP
3.9 K 10 Pin SIP

390 10
390 10

Pin SIP
Pin SIP

3.9 K 10 Pin SIP
3.9 K 10 Pin SIP

Resistor 330 Ohm

Resistor 330 Ohm

Elco 47uF 16V

Capacitor 220 pF

Decoupling Capacitor 0.1 uF

Binary
Binary
Binary
Binary
96 Pin
96 Pin
50 Pin
2 Pin
4 Pin
3 Pin
16 Pin
4 Pin
4 Pin
4 Pin

NOTE: Some parts may have been

Appendix CC74

Coded Hex Switch
Coded Hex Switch
Coded Hex Switch
Coded Hex Switch
DIN41612 Connector
DIN41612 Connector
Jumper Block (2

>
N
(8]
~

Jumper Block (1 X 2)
Jumper Block (1 X 4)
Jumper Block (1 X 3)
Jumper Block (2 X 8)
Jumper Block (2 X 2)
Jumper Block (2 X 2)
Jumper Block (2 X 2)

replaced by their equivalent types.

D-2 January 1986

| | - | [e] - -

¥ a

[] Fa

L B | Fa

'® F®» % ¥F® D ¥R IR KR M1

| -

W i &

APPENDIX E

CONNECTOR PIN ASSIGNMENTS

Pin Assignments P1

CC74

B e e p—

ROW A
SIGNAL
MNEMONIC

GND
SYSCLK
GND
DS1*
DSO*
WRITE*
GND
DTACK*
GND
AS*
GND
IACK*
IACKIN*
IACKOUT*
AM4
AQ7
AQO6
AQO5
AO4
AQO3
A02
AO1

+5 Volts

ROW B
SIGNAL
MNEMONIC

BGOIN*
BGOOUT*
BG1IN*
BG1lOUT*
BG2IN*
BG20UT*
BG3IN*
BG30UT*
BRO*
BR1*
BR2*
BR3*
AMO
AM1

AM2
AM3
GND

GND

IRQ7*
IRQ6*
IRQS5*
IRQ4*
IRQ3*
IRQ2*
IRQ1*

+5 Volts

ROW C
SIGNAL
MNEMONIC

BERR*
SYSRESET*

AMS
A23
A22
A21
A20
Al9
Al8
Al7
Al6
AlS5
Al4
Al3
Al2
All
Al0
AQ9
AQOS8

+5 Volts

Appendix CC74

January 1986

-Pin Assignments P2 CC74
ROW A ROW B ROW C
PIN SIGNAL SIGNAL SIGNAL
NUMBER MNEMONIC MNEMONIC MNEMONIC
1 -DBO ~ +5 Volts GND
2 -DB1 GND GND
3 -DB2 GND
4 -DB3 GND
5 -DB4 GND
6 -DB5 GND
7 -DB6 GND
8 -DB7 GND
9 -DBP GND
10 GND GND
11 GND GND
12 GND GND GND
13 TRMPWR +5 Volts
14 GND GND
15 GND GND
16 -ATN GND
17 GND GND
18 -BSY GND
19 -ACK GND
20 -RST GND
21 -MSG GND
22 ~ -SEL GND GND
23 -C/D : GND
24 -REQ GND
25 -1/0 ‘ GND
26 +5 Volts +5 volts
27 REQ2 REQ3
28 ACK?2 ACK3
29 PCL2 PCL3
30 DONE ' DTCP2
31 GND GND GND
32 _ +5 Volts
Appendix CC74 E-2 January 1986

| |

[.] [| ¥y .

| . e [I] []

[B]

F R

R 'R ¥R R F¥F ©FE @R F R & F &1

.

a6 .

Note : All odd pins are connected to

Pin Assignments P3

e e ————————————— ————————— — ——— ———

Pin 25 is not connected.

Appendix CC74

TRMPWR
GROUND
GROUND
-ATN
GROUND
-BSY
-ACK
-RST
-MSG
-SEL
-C/D

ground, except pin 25.

January 1986

-__-

- | S

w"n_=

B a_Bn

«a 5§ § F § 3 & 3 & 8 0L E RB 0L

| S | S

L&

&

& .

APPENDIX F

MEMORY MAP

All addresses are offset from the hardware installed base adrress
of the CC74 module.

$000

SOFF
$100
S11F
$120
S13F
$140
$15F
$160
$17F
$180
S19F
$1A0
$1BF
$1CO0
S1DF
$1EO

S1FF

Appendix CC74

DMA CONTROLLER
REGISTERS

—— - ——— - - ——— - -—————— - w———

—— - = - —— — = -

—— - - ————— - ———————————

one 8 bit register,
16 times duplicated
at odd addresses.

sixteen 8 bit

registers at odd
addresses.

January 1986

t w w w ®w wm wm . m w.s w s w s w5 u S u 8§ u 5 W3 1L 53 U3 & F &3 L3 UL BB LB G

il

B

| Y

B . & .

i .

s00

S3E
$40

S7E
$80

SBE

SCO

SFE

APPENDIX G

DMA CONTROLLER REGISTERS

- - - —— —— - - ——— . e we - - -

—— - —————— - ——

s01

S3F
$41

$7F
s81

SBF

SCl1

SFF

Note: The General Control Register only resides at address SFF

The following table shows the register arrangement of channel O.

Each register can be accessed by byte or word.
bit in CCR is set, only byte access is possible.

$00
$02
$04
s06
s08
SOA

Appendix CC74

high low

CSR 0 | CER O

DCR O | OCR O

SCR O 1 CCR O
MTC O

Table continued on next page

However when STR

$01
$03
$05
$07
$09
SOB

January 1986

sOC
SOE
$10
$12
$14
$16
$18
S1A
s1cC
S1E
$20
$22
$24
$26
$28
$2A
$2c
S2E
$30
$32
$34
$36
$38
$3A
$3C
S3E

Appendix CC74

DMAC Register Table continued

MAR O (H)

———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————
———————————————————————————

- ———— ————————————— —— ——— —— ————

$0D
SOF
$11
$13
$15
S$17
$19
$1B
$1D
S1F
$21
$23
$25
$27
$29
$2B
$2D
S2F
$31
$33
$35
$37
$39
$3B
$3D
$3F

January 1986

[] [e}

¥Fa

fF n § N

f 2 3 FR K2

T rs 1}

Yy

i1 . & & & .

| -

DMA CONTROLLER REGISTER DEFINITIONS

CSR
CER
DCR
OCR
SCR
CCR
NIV
EIV
CPR
MFC
DFC
BFC
MTC
BTC
MAR
DAR
BAR
GCR

Appendix CC74

Channel Status Register
Channel Error Register
Device Control Register
Operation Control Register
Sequence Control Register
Channel Control Register
Normal Interrupt Vector
Error Interrupt vector
Channel Priority Register
Memory Function Codes
Device Function Codes
Base Function Codes
Memory Transfer Counter
Base Transfer Counter
Memory Address Register
Device Address Register
Base Address Register
General Control Register

January 1986

- _»

- =

u_B»

[.

| -

a B

a_B

a3 4 R § B & 8 R R U B LB RB I

APPENDIX H

SCSI CONTROLLER REGISTERS

All addresses are offset from the base address of the CC74 module.

$120 ' DATNCR1 A $121
~comncr $123
onmner §125
" DESIDNCR §127
AURNCR $129
CINeR $128
 IRONCR $12D
* SRCIDNCR $12F
 paTNcR2 $131
praeNcR §133
------------- $135
------------- $137
© TCHINCR $139
© ToMINcR s138
© TCLONCR $13D
$13E 'RESERVED $13F

- ——————————————— ———————————

P .

Appendix CC74

H-1

January 1986

NCR 5385/6 REGISTER DEFINITIONS

DATNCR1
COMNCR
CNTNCR
DESIDNCR
AUXNCR
IDNCR
IRQONCR
SRCIDNCR
DATNCR2
DIAGNCR
TCHINCR
TCMINCR
TCLONCR

Appendix CC74

DATA REGISTER 1

COMMAND REGISTER

CONTROL REGISTER
DESTINATION ID REGISTER
AUXILIARY STATUS

ID REGISTER

INTERRUPT REGISTER

SOURCE ID REGISTER

DATA REGISTER 2 (NCR 5386 only)
DIAGNOSTIC STATUS

TRANSFER COUNTER HIGH BYTE (MSB)
TRANSFER COUNTER MIDDLE BYTE
TRANSFER COUNTER LOW BYTE (LSB)

H-2 January 1986

[s] [.] [] - m

F =

Fu e

f " § 12

? F% F % R IR IR OB ¥ R 7 12

| S—] - W -

Y

| Sy

| S

i

B =

| W

|

& .

i,
o
'

COMMAND REGISTER
7 6 5 4 3210

L1

L1 11

00000
00001
00010
00011
00100
00101

01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101

INTERNAL REGISTERS

Command Code

Chip Reset
Drsconnect

Pause

Set ATN

Message Accepted
Chip Disabled

Select w/ATN

Select w/o ATN

Reselect

Diagnostic Data Turnaround
Receive Command

Recerve Data

Recerve Message Out
Recetved Unspecified into Out
Send Status

Send Data

Send Message In

Send Unspecified Info in
Transfer Info

Transter Pad

Reserved (MUST BE A ZERO)

Single Byte Transfer

1D REGISTER
7 6 5 4 3 2 10

ololefojo] | | |
LI 1

Device iD

INTERRUPT REGISTER
7 6 543 2 10

HECEEEEE

L Function Complete
Bus Sernce
b Disconnected
Selected
Reselected

{Used tor Testabulity)
invahg Command
Not Used

SOURCE 1D REGISTER

7 6 54 3 210

LL1-1-T-[-1 111

Source ID
1D Vahd

DIAGNOSTIC STATUS REGISTER

7 6 5 4 3 2 1

[-1]

!

[TL)

DMA Mode
CONTROL REGISTER
7 6 5 4 3 2 10
(I-T-T T 111]
Select Enable I
Reselect Enable
Party Enable
Phase Valid on REQ"

Reserved for

Synchronized Operation®

DESTINATION ID REGISTER
7 6 54 3 210

LI-I-1-1-1 11

AUXILIARY STATUS REGISTER
7 6 5 4 3 2 10

| |

' vo
Cc/D
L mse

Partty Error

*NCR 5386 ONLY

Destination 1D

Parity Thru Enabie*

L Data Register |l Full*

L__. Transter Counter Zero
Paused

Data Register | Full ~

Setlf-diagnostic Status

000 Successful Compieton

001 Unconditionai Branch Fail
010 Data Reg. Full Faled

011 Initial Conditons incorrect
100 Initial Command Bits incomrect
101 Diagnostic Flag Fasded

110 Data Tumaround Falled

111 Not Used

Diagnostic Command Status

001 Tumaround Miscompare (Inttial)
010 Turnaround Miscompare (Final)
011 Tumaround Good Parnty

100 Tumaround Bad Parity

Self-diagnostic Complete

A3 A2 A1 A0
1 1

1 1

1 1

TRANSFER COUNTER

SELECTED BYTE
Most Significant Byte
Middie Byte

Least Signficant Byte

o
o - O

Appendix CC74

January 1986

i.m wm.m wm. m wm. m w. .S w 3 u 5§ W 5 uw § W §F U 8§ E §F T F § B B 3 0 B3 §.F LF LI LI B6L_

& .

APPENDIX I

CONTROL REGISTER

CONTROL REGISTER (bit)

L

stor | [| [| [| I |
l l --- IRQLVO
—————— IRQLV1 IRQ LEVEL

--------- IRQLV2

———————————— ENIRQ IRQ ENABLE

——————————————— REQLVO REQUEST LEVEL

—————————————————— REQLV1
————————————————————— spare

———————————————————————— LRST SCSI RESET

Appendix CC74 I-1 January 1986

|-)

u s | W

aBs

a s 0B

e« & 5 &5 &3 B F B3 MBI

Appendix CC74

APPENDIX J

CC74 PROGRAM EXAMPLE

January 1986

L. | S - . | W] | W | W | I | "B | S | W | | | B | W | S | | S a s | . | | & B [|

PROGRAM EXAMPLE FOR CC-74

DMA-SCSI INTERFACE MODULE

The programs included in this manual are provided for
users and system programmers who want to write their own
SCSI driver routines for the CC-74 module. The two program
listings which are given in this document are; a program
with test routines, and a complete device driver for the
0S-9/68K* operating system. Both programs are written in
assembler and use the systype.d file for the global system
definitions.

Users are free to use this information as it is, or make
changes to the programs as seem appropriate to fit their
application. ’

Compcontrol disclaims any implied warranties and assumes
no responsibility for inaccuracies.

* - 0S-9/68K is a registered trademark of Microware
Systems Corporation.

- | as LB | . 63 a_B & B L | | . R B B as | W | S | B N | W a = a s &

wl

.

01/23/86 18:11

* System definition for CompControl CC74

opt -1

® & ® & & & & &

* Edition History
date

01/04/85

systype.d

comments

first implementation CC74 system equates

* board base address
CC74_BASE equ $fffe00

* hardware control register cc-74
CONTROL74 equ $101 offset from cc-74 base

* NCR 5385 register offset def's

data register to scsi bus
command register

control register

destination id register
auxiliary status register

id register

interrupt register

source id register

diagnostic status register
transfer counter register
transfer counter most sign. byte
transfer counter middle byte
transfer counter least sign. byte

68450 device definitions
channel status register
channel error register
device control register
operation control register

sequence control register

CHCR equ 7 channel control register
$A memory transfer counter
$C memory address register
$14 device address register

$1A base transfer register

$1C base address register

$25 normal interrupt vector

$27 error interrupt vector

DATNCR equ $121
COMNCR equ $123
CNTNCR equ $125
DESIDNCR equ $127
AUXNCR equ $129
IDNCR equ $12B
IRQNCR equ $12D
SRCIDNCR equ $12F
DIAGNCR equ $133
TFRNCR equ $139
TCMONCR equ $139
TCMINCR equ $13B
TCLENCR equ $13D
* DMA 68450 base address
CHNLO equ $00
CHNL1 equ $40
CHNL2 equ $80
CHNL3 equ $CO
GENCR equ CHNLO+S$FF
* DMA

CSR equ O

CER equ 1

DCR equ 4

OCR equ 5

SCR equ 6

MTC equ

MAR equ

DAR equ

BTR equ

BAR equ

NIV equ

EIV equ

CPR equ

$2D channel priority register

Page

SCSI interface board (DMA)

1

01/23/86 18:11 systype.d Page

MFC equ $29 memory function codes
DFC equ $31 device function codes
BFC equ $39 base function codes

* device control register (R/ﬁ)

BurstMod equ $00 burst transfer mode
StealMod equ $80 cycle steal mode without hold
StealHld equ $CO cycle steal mode with hold

Dev68000 equ $00 68000 compatible device. explicitly addressed
Devc6800 equ $10 6800 compatible device, explicitly addressed
DevAck equ $20 device with *ACK, implicitly addressed

DevAckRy equ $30 device with *ACK and *READY. implicitly addressed

Dev8Bit equ $00 device port 8 bit
Dev16Bit equ $08 device port 16 bit
DevSiz_B equ 3 bit number of device port size

Statlnp equ
Statlnpl equ
StartPls equ

status input - peripheral ctl line
status input with interrupt

start pulse, negative 1/8 clk
abort input

w N O

AbortInp equ

page
*

* Operation control register (R/W)
*

MemToDev equ $00 transfer from memory to device
DevToMem equ $80 transfer from device to memory
XfrDir B equ 7 transfer direction bit number

ByteSize equ $00 operation size = byte
WordSize equ $10 operation size = word
LongSize equ $20 operation size = long

ChainDis equ $0 chain operation disabled
ChainArr equ $8 array chaining enabled
ChainLnk equ $C linked chaining enabled

AuReqLim equ
AuRegMax equ
ReglInit equ
ReqgInitA equ

auto request at rate set by GCR

auto request at maximum rate)

*REQ line intitiates all operand transfers
auto request first xfr. *REQ for all others

W N = O

* Sequence Control Register (R/W)
*

MemNoCnt equ 0 memory address register does not count
MemCntUp equ 4 memory address register counts up

| .

L

¥ 3 X

"R R R R KPR DR

g i

& i

01/23/86

MemCntDn
DevNoCnt

DevCntUp
DevCntDn

18:11 systype.d

equ

equ
equ
equ

8 memory address register counts down

0 device address register does not count
1 device address register counts up
2 device address register counts down

* Channel Control Register (R/W)

NoOpPend
StartOp
Start_B

NoContin
ContinOp
Contin_B

OpNoHalt
OpHalted
Halted B

NoAbort
OpAbort
Abort_B

IntrptDi
IntrptEn
Intrpt_B

page
*

equ
equ
equ

equ
equ
equ

equ
equ
equ

equ
equ
equ

equ
equ
equ

$00 no operation is éending
$80 start operation
7 bit number of start operation bit

$00 no continue operation is pending
$40 continue operation
6 bit number of continue op bit

$00 operation not halted
$20 operation halted
5 bit number of halted op bit

$00 operation not aborted
$10 operation aborted
4 bit number of abort op bit

0 interrupts disabled
8 interrupts enabled
3 bit number of interrupt enable

* Channel Status Register (R/W)

®

hd writing a one into any bit clears that status
* any written zero bits do not affect the status
*

OpNoComp
OperComp
OpComp_B

BlkNoCmp
BlkComp
BlkCmp_B

DevTrmAb
DevTrmNo
DevTrm_B

ErrorSet
Error_B

ActiveCh

equ
equ
equ

equ
equ
equ

equ
equ
equ

equ
equ

equ

$00 operation incomplete
$80 operation complete
7 bit number of operation complete bit

$00 block transfer incomplete
$40 block transfer complete

6 bit number of block transfer complete bit

$00 device termination abnormal
$20 device termination normal
5 bit number of device termination status

$10 error occurred and is noted in CER
4 bit number of error flag bit

8 channel considered active

Page

3

01/23/86

Active B

PCLTrans
PCLTrn_B

PCLLow

PCLHigh
PCLSts_B

18:11

systype.d

3 bit numdber of active channel flag bit

2 transition occurred on *PCL
1 bit number of PCL transition flag bit

0 *PCL line low
1 *PCL line high
0 bit number of *PCL status bit

* Channel Error Register (R only)

ErConfig
ErOpTimg

ErAdrMem
ErAdrDev
ErAdrBas

ErBusMem
ErBusDev
ErBusBas

ErCntMem
ErCntDev
ErCntBas

ErEAbort
ErSAbort

page
*

equ
equ

equ
equ
equ

equ
equ
equ

equ
equ
equ

equ
equ

$01
$02

$05
$06
$07

$09
$OA
$OB

$OD
$OE
$OF

$10
$11

configuration error
operation timing error

memory address error
device address error
base address error

memory bus error
device bus error
base bus error

memory count error
device count error
base count error

external abort
software abort

* Channel Priority Register (R/W)

ChPrior0
ChPriorl
ChPrior2
ChPrior3

*

equ
equ
equ
equ

0 channel priority of zero

1 channel priority of one

2 channel priority of two

3 channel priority of three

* Function Code Registers (R/W)

UserData
UserProg
SupvData
SupvProg

equ 1 user data address access

equ 2 user program address access

equ 5 supervisor data address access
equ 6 supervisor program address access

Page

4

-

[

[| []

Fa fu [B]

P F® F® F % @f% F® R FR FR KPR F 2

01/23/86 18:11 systype.d

* General Control Register (R/W)
*

BurstTim equ $C mask for burst time
BandwRat equ $3 mask for bandwidth ratio

opt 1
* end of file

Page

S

+ ™ ®m » wm. W wm. s = 8 ®E 5§ ® 5 W N u 5 u § . 3 1§ ®u F & F L3 &L F LB RBRBP LIE LS L

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 1
tstscsi.a
tstncr - 0S-9/68000 CC-74 Test Routines

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046

00047

00048

00049

00050

00051

00052

00053

00054

Created
Created

» » % » 5 » »

00000001
00000101
00008000

00000020
00000020
00000004
00000004
0000000a
0000000a
00000000
00000001
00000002
0000004a
0000004c

00000000
0000000a
0000000b
0000000e
0000000f
00000010
00000011
00000012
00000112
00000116

00000000
*

nam
ttl

tstncr
05-9/68000 CC-74 Test Routines

Testing CC-74 with NCR 5385 with Xebec controller S 1410-A
using DMA controller 68450 and non standard Irq routine

at: 08 january 1985
by: D. J. Bosma gnd N. Noordam

Edition

Typ_Lang
Attr_Rev

SPACE
space
CR

cr

LF

1f
Stdln
Stdout
StdErr
EscFlg
SavSts

Char_Buf:
HD_cmd:
HD psn:
HD_blk:
HD ctrl:

HD_status:

HD msg:

HD_buffer:

HD_sense:
Drive_no:

use

set
set
set

psect

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

vsect

ds.b
ds.b
ds.b
ds.b
ds.b
ds.b
ds.b
ds.b
ds.b
ds.b
ends

defsfile

1
(Prgrm<<8)+0Objct
(ReEnt<<8)+0"

tstncr.Typ_Lang.Attr_Rev. Edition,100,Start

$20

$20

$0d

$04d

$0a

$0a

0

1

2
CHNL1+MTC Use this registers for irq communication
CHNL1+MAR

S T)

256
4
1

* Start of program, display menu

*

0000 2a7c

Start:

00£££fe00

0006 6100
05d0
000a 6400
001a
000e 41fa
Ocfa
0012 303c
0001
0016 223c

00000019

001c=4e40
0000
0020 4281

movea.l #CC74 BASE.a5 get base addres of CC-74

bsr

bcc

lea

move.w

move.l

os9

clr.1

Init74 init cc-74

Menu no error's

msg2(pc) . a0l

#stdout, do

#szmsg2,dl

ISWrite print "init cc-74 error”

d1

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47

tstscsi.a
tstncr - 0S-9/68000 CC-74 Test Routines
00055 0022=4e40

00056
00057
00058
00059
00060

00061
00062

00063
00064
00065

00066
00067

00068
00069

00070
00071

00072
00073

00074
00075

00076
00077

00078
00079

00080
00081

00082
00083

00084
00085

00086
00087

00088
00089

00090
00091

00092

0026

002a

002e

0038

003c
003e

0000
41fa
0b36
303c
0001
223c

Menu:

000001ac
0034=4e40

0000
303c
0000
7202
4lee
0000

0042=4€40

0046

004a

004e
0050

0054
0056

005a
005c¢

0060
0062

0066
0068

006¢c
006e

0072
0074

0078
007a

007e
0080

0084
0086

008a
008c

0090
0092

0096
0098

009c

0000
102e
0000
b03c
0031
6606
6100
0176
6040
b03c
0032
6606
6100
026¢c
60c4
b03c
0033
6606
6100
02ca
60b8
b03c
0034
6606
6100
0328
60ac
b03c
0035
6606
6100
0386
60a0
b03c
0036
6606
6100
03f£2
6094
b03c
0037
6606
6100
045e
6088

Menul

Menu2

Menu3

Menu4

Menu5

Menué

os9
lea
move.w
move.1l
os9
move.w

moveq
lea

os9
move.b
cmp.b

bne.s
bsr

bra.s
cmp.b

bne.s
bsr

bra.s
cmp.b

bne.s
bsr

bra.s
bne.s
bsr
bra.s
bne.s
bsr
bra.s
bne.s
bsr

bra.s
cmp.b

bne.s
bsr

bra.s

FS$Exit stop test prog
msgl(pc) . a0

#StdOut . do

#szmsgl . dl

ISWrite print menu
#StdIn.do

#2.d1
Char_Buf (a6).a0

I$ReadLn get one character
Char_Buf(a6).d0
#'1',4d0

Menul
Testl

Menu
#'2',d0

Menu2
Test2

Menu
#'3'.d0

Menu3
Test3

Menu
#'4'.,40

Menu4
Test4

Menu
#'5',40

Menu5
Test5

Menu
#'6'.40

Menué
Testé6

Menu
#'7°.40

Menu7
Test?7

Menu

Page

-

[]

F =

¥ n

Fa [A

Fu ¥ n

| 3

f® Ff® R KR §F R K12

B |

| -

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

00093 009e b03c Menu7 cmp.b #'8'.,40
0038

00094 00a2 6608 bne.s Menu8

00095 00a4 6100 bsr Test8
O4bc

00096 00a8 6000 bra Menu
££7c

00097 00ac bO3c Menu8 cmp.b #'9'.40

" 0039

00098 00bO 6608 bne.s Menu9

00099 00b2 6100 bsr Test9
0518

00100 00b6 6000 bra Menu
ffée

00101 00ba 0200 Menu9 andi.b #$df.do make upper case
oodf

00102 0Obe bO3c cmp.b #'A',d0
0041

00103 00c2 6608 bne.s MenuA

00104 00c4 6100 bsr Buffl
0046

00105 00c8 6000 bra Menu
f£5c

00106 00cc b03c MenuA cmp.b #'B'.d0
0042

00107 0040 6608 bne.s MenuB

00108 0042 6100 bsr Buff2
00be

00109 0046 6000 bra Menu
ffde

00110 00da b03c MenuB cmp.b #'C'.d0
0043

00111 00de 6608 bne.s MenuC

00112 00e0 6100 bsr Askid
0818

00113 00e4 6000 bra Menu
££40

00114 00e8 bO3c MenuC cmp.b #'D',4d0
0044

00115 OOec 6608 bne.s MenuD

00116 OOee 6100 bsr Askdn
0856

00117 00£f2 6000 bra Menu -
££32

00118 00f6 41fa MenuD lea msg4 (pc) . a0
0c52

00119 00fa 303c move.w #StdOut, do
0001

00120 00fe 223c move.1l #szmsg4.dl
00000009

00121 0104=4e40 0s9 ISWrite print "What?"
0000

00122 0108 6000 bra Menu
ffic

00123 *

00124 * Buffl

00125 * Show the HD buffer

00126 *

00127 010c 6100 Buffl: bsr wrcrlf
009¢

00128 0110 43ee lea HD_buffer(aé).al HD_buffer start buffer

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 4
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

00129

00130

00131

00132
00133

00134

00135
00136

00137

00138

00139

00140

00141

00142
00143

00144
00145

00146

00147

00148

00149

00150

00151

00152

00153

00154

00155

00156

00157

00158
00159

00160

00161

00162
00163

0012
0114 243c
0000000¢
0lla 263c buffill
0000000t
0120 41lee bufri2
0000
0124 5688
0126 10bc
0020
012a 113c
0020
012e 1a19
0130 283c
00000001
0136 1c05 buffl3
0138 e88d
013a 0206
000f
013e dc3c
0030
0142 bc3c
0039
0146 6304
0148 dc3c
0007
0l4c 1106 buffil4
0l4e 51cc
ffeb
0152 303c
0001
0156 223c
00000004
015c=4e40
0000
0160 51cb
ffbe
0164 6100
0044
0168 51ca
££b0
016c 6100
003c
0170 41fa
0c29
0174 303c
0001
0178 223c
0000000e
017e=4e40
0000
0182 303c
0001
0186 7201
0188 41lee
0000
018c=4e40
0000
0190 4e75

]

* Buff2

move.l

move.l

lea

addq.1l
move.b

move.b

move.b

move.b

1sr.1l

andi.b

add.b

cmp.b

bls.s
add.b

move.b
dbra

move.w

move.l

os9

dbra

bsr

dbra

bsr

lea

move.w

move.1l

os9

move.w

moveq.1l
lea

os9

rts

#15,42 Number of line's (16)
#15,43 Number of bytes/line
Char_Buf(a6).a0 start output buffer

#3.a0
#8820, (a0)

#$20,-(a0) put two spaces in outputbuffer

(al)+.d5 get first byte
#1.44 number of nibbles

d5,dé use d3 as scratch

#4.45 get nibble for next loop
#$£.4d6

#$30.46

#$39.4d6

buffl4
#7.46

d6, -(al)
d4.buffl3 next nibble

#StdOut, do

#4.41 number of bytes
ISWrite

d3,buffl2 next byte
wrcrlf

d2.buffll next line
wrcrlf

msg7(pc) . a0

#StdOut.do

#szmsg7.d1

I$Write

#StdOut, do0

#1.d1
Char_Buf (a6).a0

ISReadln

F s ¥

Fa Fn

F u E R

¥

¥ n

¥ e [S | F 2

¥ u g = ¥F u Fu ¥ B fF B

| .

| S]

™

i

|

& =

Pl

& !

Y

]

6 .

o

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page
tstscsi.a
tstncr - 0S-9/68000 CC-74 Test Routines
00164 * Fill HD_buffer with constant
00165 *
00166 0192 6100 Buff2: bsr AskCon get constant, return in 40
0724
00167 0196 6510 bes.s buff22 error, leave
00168 0198 4lee lea HD_buffer(aé6).a0
0012
00169 019c 223c move.l #63.d41 HD_buffer size divided by 4
0000003f
00170 0la2 20cO buff2l move.l do0, (a0)«+ £ill with constant
00171 0Ola4 51c9 dbra dl.buff21
fffc
00172 0la8 4e75 buff22 rts
00173 *
00174 * CR/LF
00175 * print cr/1f
00176 *
00177 Olaa 4lee wrcrlf lea Char_Buf(a6),a0
0000
00178 Olae 5288 addq.1 #1,a0
00179 01b0 10bc move.b #$0d. (a0)
0004
00180 01b4 113c move.b #$0a,-(a0)
000a
00181 01b8 303c move.w #StdOut.do
0001
00182 O01bc 223c move.l #2.41
00000002
00183 01c2=4e40 os9 I$Write write CR/LF
0000
00184 0l1c6 4e75 rts
00185 *
00186 * TEST1 : internal diagnostic
00187 * ram test
00188 * init drive characteristics
00189 *
00190 01c8 2d7c Testl: move.l #0,HD_cmd(a6é) clr psn
00000000
000a
00191 014d0 102e move.b Drive_no(a6).do
0116
00192 01d4 812e or.b d0,HD_psn(a6)
000b
00193 0148 1d7c move.b #$e4 HD_cmd(aé) diagn cmd
00e4000a
- 00194 Olde 43ee lea HD_cmd(aé).al cmd ptr
000a
00195 0le2 323c move .w #6.d1 get count
0006
00196 Ole6 6100 bsr NCRcmd
045a)
00197 Olea 6530 bcs.s testllex
00198 Olec 47ee lea HD_status(aé), a3
0010
00199 01£f0 6100 bsr NCRstatus
O4ea
00200 01f4 47ee lea HD_msg(aé).a3
0011
00201 01f£8 6100 bsr NCRmsg
0500
00202 Olfc 082e btst #1,HD_status(a6)

5

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page
tstscsi.a
tstncr - 08-9/68000 CC-74 Test Routines

00010010

00203 0202 6700 beq testl2 skip if no error
001a

00204 0206 41fa lea emsgl (pc). a0
obt9

00205 020a 303c move.w #StdOut.do
0001

00206 020e 223c move.l #szemsgl.dl
00000025

00207 0214=4e40 o089 I$Write write error message
0000

00208 0218 6100 bsr senstat
060a

00209 021c 4e75 testllex rts

00210

00211 * start of ram test

00212 02le 1d7c testl2: move.b #$e0.HD_cmd(aé)
00e0000a

00213 0224 43ee lea HD_cmd(aé).al cmd ptr
000a

00214 0228 323c move.w #6.d1 count
0006

00215 022c 6100 bsr NCRcmd
0414

00216 0230 6530 bcs.s testl2ex

00217 0232 47ee lea HD_status(a6).a3
0010

00218 0236 6100 bsr NCRstatus
04a4

00219 023a 47ee lea HD_msg(aé6).a3
0011

00220 023e 6100 bsr NCRmsg
04ba

00221 0242 082e btst #1.HD_status(aé)
00010010

00222 0248 6700 beg test13 skip if no error
001a

00223 024c 41fa lea emsg2(pc).a0
0Obds

00224 0250 303c move.w #StdOut,do
0001

00225 0254 2239 move.l szemsg2.dl
0000001a

00226 025a=4e40 0s9 ISWrite
0000 .

00227 025e 6100 bsr senstat

' 05c4

00228 0262 4e75 testllex rts

00229

00230 * start init drive parameters

00231 0264 1d7c testl3: move.b #$0c_ HD_cmd(a6) init drive param
000c000a

00232 026a 43ee lea HD_cmd{(aé).al
000a

00233 026e 323c move.w #6,d1
0006

00234 0272 6100 bsr NCRcmd
03ce

00235 0276 653c bcs.s testl3ex

00236 0278 45fa lea HD_par88(pc).a2 get param table
08dc

6

|] []

[B] [S]]

e

F 2 & n &N

T F®» F®» F®» 2} R FR f % 1

R &

&

-3

e i

.

Microware 05S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47

tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

00237 027c 343c
0008
00238 0280 6100
052a
00239 0284 47ee
0010
00240 0288 6100
0452
00241 028c 47ee
0011
00242 0290 6100
0468
00243 0294 082e
00010010
00244 029a 6700
001a
00245 029e 41fa
Obal
00246 02a2 303c
0001
00247 02a6é 223c
00000027
00248 02ac=4e40
0000
00249 02b0 6100
0572
00250 02b4 4e75 testl3ex
00251
00252 02b6 41fa testi4
0aéb
00253 02ba 303c
0001
00254 02be 223c
00000027
00255 02c4=4e40
0000
00256 02c8 4e75
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267 02ca 2d7c Test2:
00000000
000a
00268 02d2 102e
0116
00269 0246 81l2e
000b
00270 02da 1d7c
0000000a
00271 02e0 43ee
000a
00272 02e4 323c
0006
00273 02e8 6100

Test2

Input :

Exit

» * * *» » » #* »

move.w

bsr

lea

bsr

lea

bsr

btst

beq

lea

move.w

move.l

os9

bsr

rts

lea

move.w

move.l

os9

rts

move.l

move.b

or.b

move.b

lea

move.w

bsr

#8.42

NCRdatwr
HD_status(a6).a3
NCRstatus

HD _msg(a6).a3
NCRmsg
#1,HD_status(aé)
testl4
emsg3(pc) . a0
#5tdout, 4o
#szemsg3.d1l
ISWrite

senstat

msg3(pc).al
#StdOut,do
#szmsg3.dl

ISWrite

Test drive ready command

#0.HD_cmd(aé) clr psn

Drive_no(aé).d0

d0.HD_psn(aé)

Page

#$00,HD_cmd(a6) Test drive ready cmd

HD_cmd(a6).al cmd ptr
#6,d1 get count

NCRcmd

7

Microware 08-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page

tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

00274 O2ec
00275 02ee

00276 022

00277 02£6

00278 02fa

00279 O2fe

00280 0304

00281 0308

00282 030c

00283 0310

0358
6530
47ee
0010
6100
03e8
47ee
0011
6100
03fe
082e
00010010
6700
00la
41fa
Ob5d
303c
0001
223c
00000022

00284 0316=4e40

00285 031a

00286 031le
00287 0320

00288 0324

00289 0328

0000

6100

0508

4e75 test2ex
41fa test2l
0a0l1

303c

0001

223c
00000027

00290 032e=4e40

00291 0332
00292
00293
00294
00295
00296
00297
00298
00299 0334

* % % * ¥ % »

00300 033c

00301 0340

00302 0344

00303 034a

00304 034e

00305 0352

00306 0356
00307 0358

00308 035c¢

0000
4e75

Test3

Format Drive

Input :

Exit

2d7c Test3:
00000000
000a
102e
0116
812e
000b
1d7c
0004000a
43ee
000a
323c
0006
6100
02ee
6530
47ee
0010
6100
037e

bcs.s
lea

bsr
lea
bsr
btst
beq
lea
move.w
move.l
os9
bsr

rts
lea

move.w
move.l
os9

rts

move.l

move.b
or.b
move.b
lea
move.w
bsr

bes.s
lea

bsr

test2ex
HD_status(a6).a3

NCRstatus

HD_msg(a6) . a3

NCRmsg

#1.HD_status(a6)

test21 skip if no error
emsg4 (pc) . a0

#Stdout,.do

fszemsg4.dl

ISWrite write error message

senstat

msg3(pc) .al
#Stdout,do
#szmsg3,d1l

ISWrite

#0.HD_cmd(a6) clr psn

Drive_no(aé6),d0

d0.HD_psn(aé)

#$04 ,HD_cmd(a6é) Format Drive cmd
HD_cmd(a6).al cmd ptr

#6.d1 get count

NCRcmd

test3ex
HD_status(a6).a3

NCRstatus

e - m - m

[

|] =

¥ a .

¥ 2

7 F® F® FR R ¥R K12 fF 8 F R KN

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page
tstscsi.a
tstncr - 0S-9/68000 CC-74 Test Routines

00309

00310

00311

00312

00313

00314

00315

" 00316

00317

00318
00319

00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336

00337

00338
00339

00340
00341
00342

00343

0360 47ee lea
0011

0364 6100 bsr
0394

0368 082e btst
00010010

036e 6700 beq
001a

0372 41fa lea
OblS

0376 303c move.w
0001

037a 223c move.l
0000001 £

0380=4e40 os9
0000

0384 6100 bsr
049e

0388 4e75 test3ex rts

038a 41fa test3l lea
0997

038e 303c move.w
0001

0392 223c move.l
00000027

0398=4e40 os9
0000

039c 4e75 rts

*

* Test4

* Drive Diagnostic

* Input :

*

* Exit

*

039e 2d7c Test4: move.l
00000000
000a

03a6 102e move.b
0116

03aa 812e or.b
000b

03ae 1d7c move.b
00e3000a

03b4 43ee lea
000a

03b8 323c move.w
0006

03bc 6100 bsr
0284

03c0 6530 bes.s

03c2 47ee lea
0010

03c6 6100 bsr
0314

03ca 47ee lea
0011

03ce 6100 bsr
032a

03d2 082e btst
00010010

HD_msg(aé6).a3

NCRmsg

#1,HD_status(aé)

test3l skip if no error
emsg5(pc) . a0

#Stdout,do

#szemsg5.dl

ISWrite write error message

senstat

msg3(pc).al
#StdOut . do
#szmsg3.dl

ISWrite

#0.HD_cmd(aé) clr psn

Drive_no(a6),do0

d0.HD_psn(aé)

#$e3,HD_cmd(a6) Drive Diagnostic cmd
HD_cmd(a6).al cmd ptr

#6.41 get count

NCRcmd

testdex
HD_status(aé),a3

NCRstatus
HD_msg(aé) . a3
NCRmsg

#1.HD_status(a6)

9

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 10
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

00344 0348 6700 beq test3l skip if no error
££b0
00345 03dc 41fa lea emsg6 (pc) . a0
Oaca
00346 03e0 303c move.w #StdOut.do
0001
00347 03e4 223c move.l #szemsg6.dl
00000022 _
00348 03ea=4e40 o089 ISWrite write error message
0000
00349 03ee 6100 bsr senstat
0434
00350 03f2 4e75 testdex rts
00351 03f4 41fa test4l lea msg3(pc) . a0
0924 ’
00352 03£8 303c move.w #StdOut.do
0001 -
00353 03fc 223c move.l #szmsg3,dl
00000027
00354 0402=4e40 os9 ISWrite
0000
00355 0406 4e75 rts
00356 *
00357 * TestS
00358 * Read One Sector
00359 * Input :
00360 *
00361 * Exit
00362 *
00363 0408 6100 TestS5: bsr AskPsn return in 40
058a
00364 040c 6570 becs.s test52 error in PSN
00365 040e 2440 move.l d0.HD cmd(a6é) store psn
000a ’
00366 0412 102e move.b Drive_no(a6).do0
0116
00367 0416 8l12e or.b d0.HD_psn(aé)
000b
00368 041a 1d7c move.b #$08.HD_cmd(a6) Read sector(s) cmd
0008000a
00369 0420 43ee lea HD_cmd(a6).al cmd ptr
000a
00370 0424 323c move.w #6,d1 get count
0006 ‘
00371 0428 6100 bsr NCRcmd
) 0218
00372 042c 653c bcs.s testSex
00373 042e 343c ' move.w #$100,d2
0100
00374 0432 45ee lea HD_buffer(aé).a2
0012
00375 0436 6100 bsr NCRdatrd
02fc
00376 043a 47ee lea HD_status(a6).a3
0010
00377 043e 6100 bsr NCRstatus
029c¢
00378 0442 47ee lea HD_msg(a6).a3
0011
00379 0446 6100 bsr NCRmsg
02b2

-TR

-

[| - =

/.

F . F m []

rﬂ‘ﬁnnf_lrwlﬁhnﬂ‘nﬁ

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page

tstscsi.a
tstncr - 0S-9/68000 CC-74 Test Routines

00380

00381

00382

00383

00384

00385

00386

00387
00388

00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400

00401
00402

00403

00404

00405

00406

00407

00408

00409
00410

00411

00412

00413

00414

00415

O44a 082e btst
00010010

0450 6700 beq
001a

0454 41fa lea
Oa74

0458 303c move.w
0001

045c 223c move.l
00000021

0462=4e40 os9
0000

0466 6100 bsr
03bc

046a 4e75 testSex rts

046c 41fa testS1 lea
08b5

0470 303c move.w
0001

0474 223c move.l
00000027

047a=4e40 os9
0000

047e 4e75 testS52 rts

®

* Testé6

* Write One Sector

* Input :

*

* Exit

®

0480 6100 Testé6: bsr
0512

0484 6570 becs.s

0486 2440 move.l
000a

048a 102e move.b
0116

048e 812e or.b
000b

0492 1d7c move.b
000a000a

0498 43ee lea
000a

049c 323c move.w
0006

04a0 6100 bsr
01a0 '

04a4 653c bes.s

04a6 343c move.w
0100

O4aa 45ee lea
0012

O4ae 6100 bsr
02fc

04b2 47ee lea
0010

04b6 6100 bsr
0224

04ba 47ee lea
0011

#1.HD_status(a6)

test51 okip if no error
emag7 (pc) . a0

#Stdout, a0

#szemsg7.d1

ISWrite write error message

senstat

msg3(pc) . a0
#Stdout ., a0
#szmsg3,dl

ISWrite

AskPsn return in 40

test62 error in PSN
d0.HD_cmd(a6) store psn

Drive_no(a6).d0

d0.HD_psn(a6)

#$0a,HD_cmd(a6) Write sector(s) cmd
HD_cmd(a6).al cmd ptr

#6.41 get count

NCRcmd

testéex
#$100,42

HD_buffer(a6).a2
NCRdatwr
HD_status(aé),a3
NCRstatus

HD_msg(a6).a3

e AR | 8 < - x

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47

tstscsi.a)
tstncr - 0S-9/68000 CC-74 Test Routines

00416

00417

00418

00419

00420

00421

00422

00423

00424
00425

00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437

00438
00439

00440

00441

00442

00443

00444

00445

00446
00447

00448

00449

00450

00451

O4be 6100
023a
04c2 082e
00010010
04c8 6700
001a
O4cc 41fa
Qald
04d0 303c
0001
0444 223c
00000022
0O4da=4e40
0000
04de 6100
0344
04e2 4e75 testbex
O4e4 41fa testé6l
083d
04e8 303c
0001
O4ec 223c
00000027
04f2=4e40
0000
04£6 4e75 test62

Test?7
Seek to Sector

Input :

Exit

*» % % » ® » »

04f8 6100 Test7:
049a
04fc 6562
O4fe 2440
000a
0502 102e
0116
0506 812e
000b
050a 1d7c
000b000a
0510 43ee
000a
0514 323c
0006
0518 6100
0128
051c 652e
05l1e 47ee
0010
0522 6100
01b8
0526 47ee
0011
052a 6100
Olce
052e 082e
00010010

bsr

btst

beq

lea

move.w

move.l

os9

bsr

rts
lea

move.w

move.l

os9

rts

command

bsr

move.l

move.b

or.b

move.b

lea

move.w

bsr

becs.s
lea

bsr

lea

bsr

btst

NCRmsg

#1.HD_status(aé)

test6l skip if no error
emsg8(pc) ., a0

#Stdout.do

#s8zemsg8,dl

ISWrite write error message

senstat

msg3(pc) . a0

#Std0ut.do

#szmsg3.d1l

ISWrite

AskPsn return in 40
test72 error in PSN

d0.HD_cmd(a6é) store psn
Drive_no(aé).do0

d0.HD_psn(a6)

#$0b.HD_cmd(a6é) Seek sector cmd
HD_cmd(aé).al omd ptr

#6.41 . get count

NCRcmd

test7ex
HD_status(a6).a3

NCRstatus
HD_msg(aé).a3
NCRmsg

#1.HD_status(aé)

Page

¥ m - m [_man - m -

F | I | | . ¥ m " a

L

fF ' KX

P F3 F R f£% F% FR F R KPR

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 13
tstscsi.a

tstncr - 08-9/68000 CC-74 Test Routines

00452 0534 6718 beq.s test71 skip if no error
00453 0536 41fa lea emsg9(pc).al
0945
00454 053a 303c move.w #StdOut.do
0001
00455 053e 223c move.l #szemsg9.dl
00000020
00456 0544=4e40 os9 ISWrite write error message
0000
00457 0548 6100 bsr senstat
02da
00458 054c 4e75 test7ex rts
00459 054e 41fa test71 lea msg3(pc).al
0743
00460 0552 303c move.w #StdOut.do
0001
00461 0556 223c move.l #s8zmsg3,dl
00000027
00462 055c=4e40 os9 ISWrite
0000
00463 0560 4e75 test72 rts
00464 *
00465 * Test8
00466 * Recalibrate command
00467 * Input :
00468 *
00469 * Exit
00470 *
00471 0562 2d7c Test8: move.l #0.HD_cmd(a6) clr psn
00000000
000a
00472 056a 102e move.b Drive_no(aé6).do
0116
00473 056e 812e or.b d0.HD_psn(aé)
000b
00474 0572 1d7c move.b #$01,HD_cmd(a6) Recalibrate cmd
0001000a
00475 0578 43ee lea HD_cmd(aé).al omd ptr
000a
00476 057c 323c move.w #6.41 get count
] 0006
00477 0580 6100 bsr NCRcmd
’ 00cO
00478 0584 6530 becs.s test8ex
00479 0586 47ee lea HD_status(aé).a3
0010 . '
00480 058a 6100 bsr NCRstatus
' 0150
00481 058e 47ee lea HD_msg(a6),a3
0011
00482 0592 6100 bsr NCRmsg
0166
00483 0596 082e btst #1.HD_status(a6)
00010010
00484 059c 6700 beq test8l skip if no error
001a
00485 05a0 41fa lea emsglO(pc).a0
098b
00486 05a4 303c move.w #StdOut,do
0001

00487 05a8 223c move.1l #8zemsgl0,d1l

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

00000014

00488 OS5ae-4ed0 os9 ISWrite write error message
0000

00489 05b2 6100 bsr senstat
0270

00490 05b6 4e75 testBex rts

00491 05b8 41fa test8l lea msg3(pc) . a0

. 0769

00492 05bc 303c move.w #StdOut.do
0001

00493 05c0 223c move.l #szmsg3.dl
00000027

00494 05c6=4e40 os9 ISWrite
0000

00495 O5ca 4e75 rts

00496 *

00497 * exit routine test9

00498 *

00499 000005cc Test9 equ *

00500 05cc 08ad bclr #3,CONTROL74(a5) disable irqg
00030101

00501 0542 4281 clr.l a1

00502 05d4=4e40 os9 FSExit return to os9
0000

00503

00504 *

00505 * Init74:

00506 *

00507 * Following is the Initialise routine

00508 *

00509 * The NCR chip and the SCSI bus are reset

00510 *

00511 * entry: a5 = base address of CC-74

00512 * a6 = static storage pointer

00513 * exit : carry set on error

00514 * NCR diagnostic register in a3

00515 *

00516 05d8 08ed Init74: bset #7.CONTROL74 (a5) Reset SCSI bus
00070101

00517 05de 08ad belr #7 .CONTROL74 (a5) clr reset bit
00070101

00518 05ed 1b7c move.b #0,COMNCR(a5) NCR chip reset
00000123

00519 05ea 203c move.l #350,40 Init timout
0000015e

00520 05f0 51c8 Init741 dbra d0.Init744 Time Out?
0004

00521 05f4 6046 bra.s Init742 yes

00522 05f6 0824 Init744 btst #7 .DIAGNCR(a5) wait for command ready
00070133

00523 05fc 67f2 beq.s Init741

00524 O05fe 162d move.b DIAGNCR(a5) .d3 get diagnostic results
0133

00525 0602 bé63c cmp.b #$80.4d3
0080

00526 0606 6634 bne.s Init742

00527 0608 41fa lea IrgEntry(pc).a0
049a

00528 060c 23c8 move.l a0,$200
00000200

00529 0612 1b7c move.b #0 ,DESIDNCR(a5) set default target id

14

|] [s] [[- - m - m -y

| | & B

F e

f® F R R R FR KR §FDXQ

1

1 r

|

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 15
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

00530

00531
te

00532
00533
00534

00535

-00536

00537
00538

00539
00540
00541
00542
00543
00544
00545
00546
00547
00548
00549
00550
00551
00552

00553

00554

00555

00556

00557

00558

00559

00560

00561

00562
00563

00564

00565

00566

00567
00568

00569

0618

06le

0624

062a

0630

0636

063a

063c

0640

* % B % # % ®» » B

0642
0644

0648

064c

0652

0656

00000127
1d7c
00000116
1d7c

00c5000¢
1d7c
0001000e
1b7¢
00360101
08ed
00030101
023c
00fe
4e75

003c Init742
0001
4e75

move.b

move.b

move.b

bset

andi.b

rts

ori.b

rts

start of subroutines

#0.Drive_no(aé) set default drive nr.

#$c5.HD_ctrl(aé) init control field. retries and step-ra

#1 HD blk(a6) init block count, always one block
#$36.CONTROL74(a5) set bus request level 3, irq level 6

#3,CONTROL74(a5) enable irg

#$fe.ccr clear carry no error

#1l.ccr set carry. error occured

NCRcmd : give the NCR5385 a command
entry : al cmd pointer

a5 base address CC74

a6 static storage
dl byte count (word)

3f01 NCRcmd:
4224
0139
4224
013b
1b7c
00££013d
6100 ncmdO
0246
66fa

ncmdl

move.w
clr.b

clr.b

move.b

bsr

bne.s

* move.b #$04.COMNCR(a5)

0658

065e

0662

0666
0668

066c

0670

0674

0678
067a

067e

1b7c
00090123
6100

0244

0cO01

0001

670c

0cO1

0004

6700

003a

6000

0050

6100 ncmdc
022e

321¢

1b41l

0134

6100 ncmd2
021a

move.b

bsr

cmpi.b

beq.s
cmpi.b

beg

bra

bsr

move.w
move.b

bsr

'Soft reset ??°

o 3k e

NP

i
d1.-(sp) save byte count i
TFRNCR(a5)

TFRNCR+2(a5)
#Sff. TFRNCR+4(a5) arbitration time out
Testlrq is there an interrupt pending

ncmdO yes reset by reading irqg again

#$09,COMNCR(a5) select XEBEC

WaitlIrg bit #0 'function complete' should be set

#1.4d1

ncmdc 'function complete' was set

#4.41

Timouterr 'disconnected set' no response

Invalirgq ‘some bit set’ i
Waitlrg bit #1 'bus service' should be set

(sp)+.dl restore byte count

dl.TFRNCR+4(aS) init transfer count

TestIrqg is there an interrupt pending

Microware 05-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 16

tstscsi.a
tstncr - 0S-9/68000 CC-74 Test Routines
00570 0682 66fa

00572
00573

00574
00575

00576
00577
00578

00579
00580

00581
00582
00583
00584

00585
00586
00587

00588
00589

00590
00591
00592
00593

00594
00595

00596
00597

00598

00599
00600
00601
00602
00603
00604
00605

bne.s ncmd2 Yes reset by reading irq again
00571 0684 1b7c move.b #814.COMNCR(a5) transfer info cmd
00140123
068a 1024 ncmd3 move.b AUXNCR(a5).do
0129
068e 0800 btst #7.40
0007
0692 66£6 bne.s ncmd3 wait for data reg full = 0
0694 0800 btst #1.40
0001
0698 6608 bne.s ncmd4 transfer count zero?
069a 1019 move.b (al)+.do no, do another byte
069c 1b40 move.b dO.DATNCR (a5)
0121
06a0 60e8 bra.s ncmd3
06a2 303c ncmd4 move.w #0,d0
0000
06a6 4e75 rts
Timouterr:
06a8 41fa lea emsgl4d (pc).al
08f8
O6ac 303c move.w #StdOut.do
0001
06b0 223c move.l #szemsgl4,dl
0000001a
06b6=4e40 os9 I$Write
0000
0O6ba 321f move.w {sp)+,d1 restore byte count
06bc=003c ori.b #Carry.ccr
0000
06c0 4e75 rts
Invalirg:
06c2 41fa lea emsgl5(pc) . a0
08£8
06c6 303c move.w #Stdout.do
0001
06ca 223c move.l #szemsgl5.dl
00000025
0640 321f move.w (sp)+.d1 restore byte count
06d2=4e40 os9 ISWrite
0000 .
06d6=003c ori.b #Carry.ccr
0000
06da 4e75 rts
*
* NCRstatus : get status byte
* entry : a3 status ptr
* a5 base address
* aé static storage
*
06dc 1b7c NCRstatus: move.b #1.TFRNCR+4 (a5) transfer count is 1

00606
00607
00608
00609

00610

00611

00010134

Nstatusl

* bsr TestIrg Is there an interrupt

06e2 1b7c move.b #$14.COMNCR(a5) transfer info cmd
00140123

06e8 6100 bsr TestIrq Is there an interrupt
01b0

O6ec 0800 btst #7.40 test if data full ncr

[B |] | . [|

¥

s

£ R ¥ 2 F2 ¥R % F R 2 ©§R EBR §M

7 F'R §

| =

s &

r

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 17
tstscsi.a

tstncr - 08-9/68000 CC-74 Test Routines

00612
00613

00614
00615
00616
00617
00618
00619
00620
00621
00622
00623

00624
00625

00626
00627

00628
00629

. 00630

00631

00632

00633
in
00634

00635
00636

00637
00638

00639

00640
00641
00642
00643
00644
00645
00646
00647
00648
00649
00650
00651

00652
00653

00654

00655

00656

0007
06£0 6710
062 1024
0121
06£6 1680
06£8 4e75

» » ®» B » »

06fa 1b7c NCRmsg:
00010134
NCRmsgl
0700 1024
0123
0704 6706
0706 1b7c
00040123
NCRmsg2

beq.s Nstatusl No data received
move.b DATNCR(a5).d0

move.b 40, (a3)
rts

NCRmsg : get message byte
entry : a3 message ptr
a5 base address
a6 static storage

move.b #1,TFRNCR+4(a5) transfer count is 1

move.b COMNCR(a5).d0 test if command register is 00

beq.s NCRmsg2
move.b #504,COMNCR (a5) message accepted cmd

* bsr TestIrq Is there an interrupt

070c 1b7c move.b #$14 ,COMNCR(a5) transfer info cmd
00140123
0712 6100 bsr TestIrg Is there an interrupt
0186
0716 0800 btst #7.4d0 test if data full ncr
0007
071a 67e4 beq.s NCRmsgl No data received, try to give command aga
071c 1024 move.b DATNCR(a5).do0
0121
0720 1680 move.b 40, (a3)
0722 1b7c move.b #$04,COMNCR(a5) message accepted cmd
00040123
NCRmsg3
0728 6100 bsr Waitlrg SCSI should be disconnected
017a ‘
072c 0cO01 cmpi.b #4.41
0004 i
0730 66f6 bne.s NCRmsg3 Irq not from disconnect
0732 4e75 rts
*
* NCRdatrd : get data bytes
* entry : a2 data pointer
* a5 base address
* a6 static storage
* d2.w count
*
0734 3602 NCRdatrd: move.w d2.d43 save for later
0736 1b42 move.b d2,TFRNCR+4 (a5) least sign. byte transfer count
013d
073a e04a lsr.w #8.42 most sign. byte
073c 1b42 move.b d2,TFRNCR+2(a5) store it
013b
0740 3b7c move.w #$00,EscFlg(a5) clear escflag
0000004a
0746 1b7c move.b #(StealHld+DevAck+Dev8Bit+StatInpI),DCR+CHNLO(a5)
00e10004
074c 1b7c

move.b # (DevToMem+ByteSize+ChainDis+ReqInit).OCR+CHNLO (a5)

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 18
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

00657

00658

00659

00660

00661

00662

00663

00664

00665

00666

00667
rq

00668

00669

00670

00671
00672
ed

00673
00674
00675
00676
00677
00678
00679
00680
00681
00682
00683
00684

00685
00686

00687

00688

00689

00690

00691

00692

0752

0758

075e

0764

076a

0770

0776

077¢

0780

0788

078c

0792

0796

079c¢

07a2

07a4

07a8
07aa

* % % * % » »

07ac
07ae

07b2
07b4

07b8
07be
07c4
07ca
0740

0746

00820005

1b7¢ move.b
00040006

1b7c move.b
00800025

1b7c move.b
00800027

1b7c . move.b
00010031

1b7c move.b
00010029

1b7¢c move.b
00000024

1b7c move.b
00££0000

2b4a move.l
000c

2b7¢c move.l
00ff£f21

0014

3b43 move.w
000a

1b7c move.b
00880007

6100 bsr
0106

1b7¢c move.b
00940123

082d datrdl btst
00070000

6606 bne.s
3024 move.w
004a

67£2 beq.s
4e75 datrd2 rts

NCRdatwr : send data bytes
entry : a2 data pointer

a5 base address
aé static storage
d2.w count

3602 NCRdatwr: move.w

1b42 move.b
0134

e04a lsr.w
1b42 move.b
013b

3b7c move .w
0000004a

1b7¢c move.b
00e10004

1b7c move.b
00020005

1b7c move.b
00040006

1b7¢ move.b
00800025

1b7¢ move.b
00800027

(MemCntUp+DevNoCnt), SCR+CHNLO (a$)
#$80,NIV+CHNLO (a5) User vector $80
#3880 ,EIV+CHNLO(a5) User vector $81
#UserData.DFC+CHNLO(a5)
#UserData,MFC+CHNLO (a5)
#ChPrior0Q.CPR+CHNLO (a5)
#$££.CSR+CHNLO(a5) clear all bits
a2.MAR+CHNLO(a5)

#(CC74_BASE+DATNCR) , DAR+CHNLO (a5)

d3,MTC+CHNLO(a5)

#(StartOp+IntrptEn),CHCR+CHNLO(a5) don't start., enable i

TestIrq read irq

#894,COMNCR(a5) give command, irq occurs
#0pComp_B.CSR+CHNLO (a5) operation completed
datrd2 yes, branch

EscFlg(a5).d0 set in Irq routine if no data phase occur

datrdl no error

dz,d3 save for later
d2,TFRNCR+4 (a5) least sign. byte transfer count

#8.d2 most sign. byte
d2, TFRNCR+2(a5) store it

#$00,EscFlg(a5) clear escflag
#{StealHld+DevAck+Dev8Bit+StatInpl).DCR+CHNLO (a5)

(MemToDev+ByteSize+ChainDis+ReqInit),OCR+CHNLO(a5)
#(MemCntUp+DevNoCnt) , SCR+CHNLO (a5)

#$80 ,NIV+CHNLO(a5) User vector $80

#$80.EIV+CHNLO(a5) User vector $81

-F

| A] [[] [. -,

¥ B

F R S

P £ ®» ¥ fF % F R FRT fF R ¥R 1

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 19
tstscsi.a
tstacr - 0S-9/68000 CC-74 Test Routines
00693 074c 1b7c

00694
00695
00696
00697

00698

00699

00700
rq

00701
00702
00703
00704
00705
ed

00706
00707
00708
00709
00710
00711
00712
00713
00714
00715
00716
00717
00718
00719

00720

00721
00722

00723
00724
00725
00726
00727

00728

07e2

07e8

07ee

0714

0728

0800

0804

080a

080e

0814

081a

081c

0820
0822

» » » % » »

0824
082a
0830
0834
0838

083c
083e

0842
0846
084a
O84e
0852

0856

Entry:

00010031
1b7c
00010029
1b7c
00000024
1b7c
00££0000
2b4a
000c
2b7c
ooreer2l
0014
3b43
000a
1b7c

00880007
6100

008e

1b7c
00940123
082d datwrl
00070000
6606

3024

004a
67£2
4e75 datwr2

move.

move.

move.

move.

move.

move.

move.

bsr

move.

btst

b

b

b

bne.s

move.

beq.s
rts

Sense Status command

#UserData,DFC+CHNLO (a5)

#UserData, MFC+CHNLO (a5)
#ChPrior0,.CPR+CHNLO (a5)
#S£2,CSR+CHNLO (a5) clear all bits
a2,MAR+CHNLO (a5)

#(CC74_BASE+DATNCR) . DAR+CHNLO (a5)

d3,.MTC+CHNLO (a5)

#(StartOp+IntrptEn) ,CHCR+CHNLO (a5) don't start. enable i

TestIrq read irq

#$94 . COMNCR(a5) give command., irq occurs
#0pComp_B.CSR+CHNLO (a5) operation completed
datwr2 yes. branch

EscFlg(a5).d0 set in Irq routine if no data phase occur

datwrl no error

Should be called if another command returns with an error

1d7c senstat:

0003000a
022e
001£000b
43ee
000a
323c
0006
6100
fe08
655a
343c
0004
45ee
0112
6100
feec
47ee
0010
6100
fe8c
47ee
0011
6100
fea2

a5 base address
a6 static storage

move.b

andi.b

lea

move.w

bsr

bcs.s

move.w

lea

bsr

lea

bsr

lea

bsr

#$03,HD_cmd(aé) Set command byte
#$1f . HD_psn(aé) clear drive bit
HD_cmd(a6).,al

#6,d1

NCRcmd Execute command

sens2
#4.42

HD_sense(aé6).a2
NCRdatrd
HD_status(a6).a3
NCRstatus
HD_msg(a6).a3

NCRmsg

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 20
tstscsi.a :

tstncr - 0S-9/68000 CC-74 Test Routines

00729

00730
00731

00732

00733

00734

00735

00736

00737

00738

00739
00740

00741

00742

00743

00744
00745
00746
00747
00748
00749

00750

00751
00752
00753
00754
00755
00756
00757
00758

00759

00760
00761

00762

00763
00764
00765
00766
00767
00768
00769
00770

085a 082e btst #1.HED_status(a6)
00010010

0860 6624 bne.s sensl

0862 41fa lea
057c

0866 303c move.w #StdOut.do
0001

086a 223c move.l #szemsg0.dl
00000021

0870=4e40 o089 ISWrite
0000

0874 222e move.l HD_sense(a6).dl
0112

0878 303c move.w #StdOut.do
0001

087c 4lee lea Char_Buf(aé6).a0
0000

0880 6100 bsr Outhex
Olea

0884 6012 bra.s sens2

0886 41fa sensl lea emsgll(pc).a0
06c2

088a 303c move.w #StdOut,do
0001

088e 223c move.l #szemsgll. dl
0000001e

0894=4e40 089 I$Write
0000

0898 4e75 sens2 rts

*

* Testlrq

®

089a 1024 TestIrgqg: move.b
0129

089e 1224 move.b
0124

08a2 4e75 rts

*

* Waitlrg

*

* Poll IRQ line NCR chip via DMA controller

*

08a4 1024 Waitlrqg: move.b CSR(a5).d0 get
0000

08a8 0800 btst #0.d0 irg
0000 ’

08ac 66f6 bne.s Waitlrg no.

08ae 1024 move.b AUXNCR(a5).d0 get
0129

08b2 1224 move.b IRQNCR(a5).d1 get
0124

08b6 4e75 rts

*

* AskCon

* Ask for the fill constant

* Input : none

* Exit : d0.1 fill constant
* Carry clr if no error

08b8 41fa AskCon:

lea

emsgO(pc) .a0 start of "Error code”

AUXNCR(a5) .,d0 get auxiliary register NCR

JIRONCR(a5).d1 get interrup register NCR

msg6(pc).al

status register dma channel 0
NCR occurred

try again
auxiliary register NCR

interrup register NCR

- [-y

& |

E m

f " R F B WM Fm § R

P F® 3§ % FfFR FR K¥QR K12

e

-

i .

i .

i .

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page
tstacsi.a '

tstncr - 0S-9/68000 CC-74 Test Routines

O4ba

00771 08bc 303c

00772

00773

00774

00775
00776

00777

00778

00779

00780

00781

00782

00783

00784
00785

00786
00787
00788
00789
00790
00791
00792
00793

00794

00795
00796

00797

00798
00799

00800

00801
00802

00803
00804

00805
00806

0001
08c0 223c
00000027
08c6=4e40
0000
08ca 303c
0000
08ce 7209
08d0 4lee
0000
08d4 6100
0106
08d8 6400
001a
08dc 41fa
06a2
08e0 303c
0001
08e4 223c
00000022
08ea=4e40
0000
O8ee 003c
0001
08f2 4e75
08f4 023c askconl
00fe
08f8 4e75
®

* Askid
L]
08fa 41fa Askid:
O4ad
O8fe 303c
0001
0902 223c¢
0000001a
0908=4e40
0000
090c 303c
0000
0910 7202
0912 41lee
0000
0916=4e40
0000
091a 6516
091c 102e
0000
0920 0400
0030
0924 650c
0926 0c00
0007
092a 6206
092¢c 1b40
0127
0930 4e75
0932 41fa Askid3

move.w

move.l

os9

move.w

moveq
lea

bsr

bece

lea

move.w

move.l

os9

ori.b

rts
andi.b

rts

lea

move.w

move.l

os9

move.w

moveq
lea

os9

bes.s
move.b

subi.b

bcs.s
cmpi.b

bhi.s
move.b

rts
lea

#StdOut . do
f#azmsg6.dl
ISWrite Print 'give con’
#StdIn.ao0

#9.d41
Char_Buf (a6).a0

Inhex

askconl

emsgl3(pc).a0

#Stdout, 40

#szemsgl3,dl

Iswrite Print error message

#1l.ccr

#$fe.ccr

msg8(pc).al
#stdout.do
#szmsg8.d1l
ISWrite Print ‘'give target id’

#StdIn.do

#2.41
Char_Buf (a6),a0

I$ReadLn get idnr

Askid3
Char_Buf (a6).,do0

#$30,40

Askid3 negative result <0
#$07.40

Askid3
d0,DESIDNCR(a5)

emsglé6(pc),al

21

Microware 05-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 22
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

06ad
00807 0936 303c move.w #StdOut,d0
0001
00808 093a 223c move.l #szemsgl6.dl
0000001e
00809 0940=4e40 os9 ISWrite
0000
00810 0944 4e75 rts -
00811 * -
00812 * Ask Drive no
00813 *
00814 0946 41fa Askdn: lea msg9(pc) . a0
047b
00815 094a 303c move.w #StdOut.do
0001 ’
00816 094e 223c move.l #szmsg9.dl
00000014
00817 0954=4e40 os9 ISWrite Print 'give drive number: '
0000
00818 0958 303c move.w #Stdin,do
0000
00819 095c 7202 moveq #2.41
00820 095e 4lee lea Char_Buf(a6),a0
0000
00821 0962=4e40 os9 ISReadLn get drivenr
0000
00822 0966 6518 bcs.s Askdn3
00823 0968 102e move.b Char_Buf(aé6).d0
0000
00824 096c 0400 - subi.b #$30,40
0030
00825 0970 650e bes.s Askdn3 negative result <0
00826 0972 0c00 cmpi.b #$01.4d0
0001
00827 0976 6208 bhi.s Askdn3
00828 0978 eb08 1sl.b #5.40
00829 097a 1440 move.b d0.Drive_no(aé)
0116
00830 097e 4e75 rts
00831 0980 41fa Askdn3 lea emsgl7(pc).al
067d N
00832 0984 303c move.w #StdOut,do
0001
00833 0988 223c move.l fiszemsgl7.d1
00000021
00834 098e=4e40 os9 Is$Write
0000
00835 0992 4e75 " rts
00836 *
00837 * AskPsn
00838 * Ask for the Physical Sector number
00839 * Input : none
00840 * Exit : d0.1 O0O0XXXXXX.XXXXXXXX.XXXXXXXX .XXXXXXXX PSN
00841 * Carry clr if no error
00842 0994 41fa AskPsn: lea msg5(pc) . al
03bd
00843 0998 303c move.w #StdOut.do
0001
00844 099c 223c move.l #szmsg5.dl
00000021
00845 09a2=4e40 os9 ISWrite Print ‘'give psn’

| o

[2

£ R ¥R R R R &R

) ¥ F® F£F% FY R R PR KN

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 23
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

00846

00847
00848

00849

00850

00851

00852

00853

00854

00855

00856
00857

00858

00859
00860
00861
00862
00863
00864
00865
00866
00867
00868
00869
00870
00871
00872
00873

00874

00875
00876
00877
00878
00879
00880
00881

00882
00883
00884
00885
00886
00887
00888

00889
00890

0000

09a6 303c move.w #Stdln.d0
0000

09aa 7209 moveq #9.41

09ac 4lee lea Char_Buf(aé6).a0
0000

09b0 6100 bsr Inhex
002a

09b4 6400 bcc askpsnl
001a

09b8 41fa lea emsgl2(pc).a0
O5ae

09bc 303c move.w #StdOut.do
0001

09c0 223c move.1l #szemsgl2.dl
00000018

09c6=4e40 os9 ISWrite
0000

09ca 003c ori.b #1.ccr
0001

09ce 4e75 rts

0940 0280 askpsnl andi.l #S1£££££.40
OO1fffff

09d6 023c andi.b #8fe.ccr
00fe

09da 4e75 rts

*

Print error message

clear drive nr

* Following are the special hex input and output routines not found in 0S9

save used registers

yes, leave routine with carry set
a0 ptr to start buffer

al ptr to end buffer

set hex output to zero
skip leading zero's

bump input pointer

we got some character
convert ascii to hex

error occured if set

®
:
* Inhex:
E
* input : d0.w path number
* dl.l1 max number of bytes to read inclusief <cr>
* (a0) start address of input buffer
* exit : dO0.1 hex long word padded with zero's
* carry set on error
*
09dc 48e7 Inhex: movem.l al,-(sp)
0040 ’)
09e0=4e40 os9 I$Readln get ascii string
0000
09e4 6402 bcc.s Inhex1 see if error
09e6 603c bra.s Inhex5
09e8 2248 Inhexl move.1l a0,al
09ea 5381 subi.l #1.41 discard <cr>
09ec d3cl add.1l dl.,al
09ee 4281 clr.1l a1
09f0 0cl0 Inhex2 cmpi.b #space, (a0)
0020
09f4 6608 bne.s Inhex3 was it space
09f6 5288 - addqg.1l #1,a0
09£8 b3c8 cmpa.l a0.al last?
09fa 671c beqg.s Inhex4 yes, leave
09fc 60f2 bra.s Inhex2 get next
09fe 1010 Inhex3 move.b (a0).d0
0a00 6100 bsr Aschex
002e
0al04 651e bes.s Inhex5
0a06 €989 1s1.1 #4.41

shift d1 for next nibble

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 24
tstscsi.a
tstncr - 0S-9/68000 CC-74 Test Routines

00891

00892
00893
00894
00895
00896
00897
00898

00899

00900
00901
00902

00903

00904
00905
00906
00907
00908
00909
00910
00911
00912
00913

00914
00915

00916
00917

00918

00919
00920

00921
00922

00923
00924

00925
00926
00927
00928

00929
00930
00931

00932
00933
00934
00935
00936
00937

Oal8

Oale
0al0
Oal12
Oald
Oalé6
0al8
Oala

Oale

0a22

Oa24

0a26

Oa2a

Oa2e
®

cObc

0000000¢

d280
5288
b3c8
6702
60e6
2001
4cdf
0200
023c
00fe
4e75
2001
4cdf
0200
003c
0001
4e75

* Aschex:

*
*
*
*
*
0a30
0a32

0a36
0a38

Oa3c
Oa3e

Oa42

0a46
0a48

Oadc
Oade

0a52
0a54

0a58
OaSa
OaSc
OaSe

0a62
Oa64
0a66

Oaéa
*

input :
exit

2£00
b03c
0061
6d0a
b03c
0066
6204
0200
00df
0400
0030
651c
0c00
0009
630e

Inhex4

Inhex$

d0 ascii character

Aschex:

Aschexl

0c00

0011
6510
0c00
0016
620a
5£00
588f
023c
00fe
4e75
201f
003c
0001
4e75

Outhex

Aschex2

Aschex3

and.1l

add.l
addq.1l
cmpa.l
beq.s
bra.s
move.l
movem.l

andi.b
rts
move.l
movem.1l

ori.b

rts

: d0 converted to hex
carry set if error

move.l
cmp.b

blt.s
cmp.b

bhi.s
andi.b

subi.b

becs.s
cmpi.b

bls.s
cmpi.b

becs.s
cmpi.b

bhi.s

subi.b
addqg.1
andi.b

rts
move.l

ori.b

rts

*
*
* input: d0.w path number
*

#80¢£ .40

40,41
#1.a0
a0,al
Inhex4
Inhex3
41,40
(sp)+.al

#$fe, ccr
d1.,d0
(sp)+.al

#1.ccr

if no error

40, -(sp)
#'a’',do0

Aschexl
#'£'.,40

Aschexl
#sdf,do

#$30,40

Aschex3
#$09,4d0

Aschex2
#$11,40

Aschex3
#$16,40

Aschex3
#$7.40
#4.s8p
#$fe,.ccr

(sp)+.d0
#1l.ccr

(a0) start address of buffer

mask to be sure
set lowest nibble
bump pointer
last?

Yes, leave

get next

leave with no error

leave with error

save for a while
check for lower case

was lower case, make upper case

first step to hex value

negative result, is not numerical hex

test if in range 0-9

test if >9 en <A

test if in range A-F

discard saved d0 on stack

no error, clear carry

get original character
error, not hex, set carry

fFa Fa e Fa ¥ ra Fa Fa F L S] ¥

fFa ¥R

| BN] ¥Fa

¥ n 5 n Fu F

R Em

¥y

Sl

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 25
tstscsi.a
tstncr - 0S-9/68000 CC-74 Test Routines

a long word to output

* exit : d1 number of bytes written

00938
00939
00940
00941
00942

00943
00944

00945
00946
00947
00948

00949

00950
00951

00952
00953

00954
00955
00956

00957
00958
00959
00960
00961
00962
00963
00964
00965
00966

00967
00968

00969
00970

00971

00972
00973

00974
00975
00976

00977
qQ's

00978

00979

movem.l d2/43,-(sp)

#7.a0
#7.42

d1.d3
#4.d1
#$£.43
#$30.43

#$39.43

Outhex2
#7.43

d3,-(a0)
d2.0uthexl

#s8.41

ISWrite

(sp)+.d2/d3

save used registers

set to end of buffer to write
set loop count is eigth

use d3 as scratch

get nibble for next loop in position
mask lowes nibble

get to range 0-9

is it higher

no
get to range A-F

store byte in write buffer
get next until all eigth done

number of bytes

a0 set to start

This routine becomes enabled in the NCRdatrd and NCRdatwr
It checks the NCR chip for the 'Bus Phase' and initiate
the 'Transfer Info command' until the bus phase is the
data phase. Then the DMA is enabled and we wait for the

movem.l d0-d4/a0-a5.-(sp) save registers

movea.l #CC74_BASE.a5

* carry set if error

*

Oa6c 48e7 Outhex:
3000

0a70 Se88 addq.1l

0a72 243c move.l
00000007

0a78 2601 Outhexl move.l

Oa7a €889 1sr.1l

0a7c 0203 andi.b
000f

0a80 d63c add.b
0030

0a84 b63c cmp.b
0039

0a88 6304 bls.s

Oa8a d63c add.b
0007

Oa8e 1103 Outhex2 move.b

0a90 51ca dbra
ffeb

0a94 223c move.l
00000008

Oa9a=4e40 os9
0000

Oa9e 4cdf movem.1l
000c

Oaa2 4e75 rts

®

* Irq routine

*

*

L 4

*

* 'gtatus phase’

®

Oaa4 48e7 IrgEntry:
f8fc

0aa8 2a7c
00£££e00

Oaae 0824 btst
00030101

Oab4 6710 beq.s

0ab6 102d move.b
0000

Oaba 0800 btst
0007

Oabe 6676 bne.s

OacO 0800 btst
0000

Oac4 6710 beq.s

irgenO

O0acé 4cdf movem. 1
3f1f

Oaca 4879 pea.l
00000200

0ad0 4ef9 jmp
00083230

irgenl

#3,.CONTROL74 (a5)

irgen0

CHNLO+CSR(a5).d0

#0pComp_B, d0

irgen3

#PCLSts_B,d0

irgenl

Irq from dma pcl line occured

(sp)+.d0-d4/a0-a5

$200

$83230

do the same as o0s9 does for unexpected ir

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 26
tstscsi.a
tstncr - 0S-9/68000 CC-74 Test Routines

00980

00981

00982

00983

00984

00985
00986
00987
00988

00989

00990

00991
00992

00993
00994

00995
00996

00997

00998
00999

01000

01001
01002

01003

01004
01005

01006

01007

01008

01009
01010
01011
01012
01013
01014
01015
01016
01017
01018
01019
01020

0adé
Oadc
Oae2
Oaeb
Oaea
Oafo
Oaf2
Oaf4
Oaf6
Oafa

Oafe

0b02
0b04

0bo8
ObOa

0bOe
0bl10

Oblé

Obla
Oblc

0b22

0b28
Ob2a

0b30

0b34
0b36

Ob3c
0b42
0b48

Ob4c
*

08ad

00030101

1b7¢

00££0000

1024
0129
1224
0124
08ed

00030101

1600
el8b
4600
3b43
004c
0200
0038
b03c
0000
6718
b03c
0008
6712
b03c
0018
6726
1b7¢c

00940123

4cdf
3f1f
4e73
1b7c

irgen2

00940123

082d

00030000

6606
08ed

00070007

4cdf
3f1f
4e73
1b7c

irgend

irgen3

00e00004

08ad

00030007

1b7c

00££004a

4cdf
3f1f
4e73

* parameter table

*

Obde
Ob4f
0b50
0b51

0b52 -

0b53
0b54

01
b8
06
00
10
00
80

HD_par85

belr
move.b
move.b
move.b
bset
move.b
1sl1l.1
add.b
move.w
andi.b

cmp.b

beq.s
cmp.b

beq.s
cmp.b

beq.s
move.b

movem.1l

rte
move.b

btst

bne.s
bset

movem.1l

rte
move.b

bclr
move.b
movem.1l

rte

[}
a
o ovuovyo

#3.CONTROL74 (a5) toggle ENIRQ
#8££,CHNLO+CSR(a5) clear interrupt cause
AUXNCR (a5) . d0

IRQNCR(a5) .d1

#3.CONTROL74 (a5)

do.d3

#8.43

d0.4a3
d3.SavSts(a5)

#838.d0 mask off msg, c/d and i/o line
#$00,4d0 test Data Out phase

irgen2

#508.4d0 test Data In phase

irgen2

#$18.d0 test Status phase

irgen3

#$94 . COMNCR(a5) give transfer info command, dma

{sp)+.d0-d4/a0-a5

#894 ,COMNCR(a5) give transfer info command. dma
#Active_B,CHNLO+CSR(a5) test if channel already started

irgen4d yes, started
#Start_B.CHNLO+CHCR(a5) enable dma controller

(sp)+.d0-d4/a0-a5

#(StealHld+DevAck+Dev8Bit+StatInp) ,CHNLO+DCR(a5)
#Intrpt_B,CHNLO+CHCR(a5)
#S££f.EscFlg(a5)

(sp)+.d0-d4/a0-a5

$01
$B8
$06
$00
$10
$00
$80

Fm Fm F

| I | F e Fa |

f " &R §F DN f f£ 2 ¥ R R FR I~§HN

2 Fa N

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 27
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

01021
01022
01023
01024
01025
01026
01027
01028
01029
01030
01031
01032
01033
01034
- 01035
01036
01037
01038
01039

01040
01041
01042

01043
01044

01045
01046

0b55

0b56
0bs57
0b58
0b59
ObSa
Ob5b
0bSc
ob5d

*

odb

HD_par8s
02
64
04
02
64
00
80
ob

* messages

*

ObSe
0b60
0b62

0b94
0b96
0b9s

ObcO
Obc2

Obdb
Obdd

01047 Obf2
01048 Obf4

0d0a msgl
0d0a
5465
7374696e
67204343
2d373420
6d6£6475
6c652077
69746820
4e435235
33383520
616e6420
58454245
43205331
34313041
0d0a
0d0a
2020
20202031
203a2069
6e697469
616c697a
6520636f
6e74726f
6c6c6572
20616e64
20647269
7665
0d0a
2020
20202032
203a2074
65737420
64726976
65207265
616479
0d0a
2020
20202033
203a2066
6£7264d61
74206472
697665
0d0a
2020

dc.b

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

o v oo ocovooT

dc.b
dc.
dc.b

o

dc.b
dc.b
dc.b

dc.b

dc.b
dc.b

dc.b
dc.b

$0B

$02
$64
$04
$02
$64
$00
$80
$0B

CR.LF
CR.LF
"Testing CC-74 module with NCR5385 and XEBEC S1410A"

CR.LF
CR.LF

" 1 : initialize controller and drive"

CR.LF
" 2 : test drive ready”

CR.LF
" 3 : format drive"

CR.LF

" 4 : drive diagnostic”

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

01049
01050

01051
01052

01053
01054

01055
01056

01057
01058

01059
01060

01061
01062

01063
01064

0co0d
OcOf

0c27
0c29

0c42
Oc44

Oc5b
0c5d

0c71
0c73

0c80
0c82

0c96
0c98

Ocba
Ocbc

20202034
203a2064
72697665
20646961
6766273
746963
0d40a
2020
20202035
20322072
65616420
6£6e6520
73656374
6£72
0d0a
2020
20202036
203a2077
72697465
206f£6e65
20736563
746£72
0d40a
2020
20202037
203a2073
65656b20
746£2073
6563746f
72

0d0a
2020
20202038
203a2072
6563616¢c
69627261
7465
0d0a
2020
20202039
203a2065
786974
0doa
2020
20202061
203a2073
686£7720
62756666
6572
0d0a
2020
20202062
203a2066
696c6¢c20
62756666
65722077
69746820
636f6e73
74616e74
0d0a
2020

dc.b
dc.b

dc.b
dc.b

dc.b
dc.b

dc.b
dc.b

dc.b
dc.b

dc.b
dc.b

dc.b
dc.b

dc.b
dc.b

CR.LF

CR,LF

CR,LF

CR.LF

CR.LF

CR,LF

CR.LF

CR.LF

5 : read one sector"

6 : write one sector"

7 : seek to sector”

8 : recalibrate”

9 : exit"

‘a : show buffer”

b : fill buffer with constant”

¢ : change target id"

28

I - -

| BN] [T m

s

F =

| 2]

F s IR B

£ 2 T3

T R N

| " [|

|

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

01065
01066

01067
01068
01069

01070
01071
01072
01073

01074
01075
01076
01077
01078

01079
01080
01081
01082
01083

01084
01085
01086
01087
01088
01089

20202063
20322063
68616e67
65207461
72676574
206964
0OcdS 040a
0cd? 2020
20202064
20322063
68616e67
65206472
69766520
6756462
6572
Oct3 0d0a
Oct5 0d0a
Ocf7 2020
20202074
65737420
6e7564a62
6572203f
20
000001ac szmsgl

0d0a 0d0a msg2

0d0c 2a2a
20434337
3420696e
69742065
72726£72
202a2a

0421 0doOa

00000019 szmsg2

0423 0d0a msg3

0425 5375
63636573
7366756¢c
6c20636f
6d706c65
74696f6e
206£6620
74686973
20746573
74

0448 0d0a

00000027 szmsg3

0d4a 0d0a msg4
0d4c 5768
61743f
0451 0do0a
00000009 szmsg4

0453 0d0a msgS

0455 0d0a

0457 4769
76652050
68797369
63616c20

dc.b
dc.b

dc.b
dc.b
dc.b

dc.b
dc.b

dc.b

dc.b
dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b
dc.b

CR.LF
" d : change drive number"

CR.LF
CR.LF

test number ? "

*-nsgl

CR.LF
"*%* CC74 init error **-

CR.LF
*-msg2

CR.LF

"Successfull completion of this test"

CR.LF
*-msg3

CR.LF
“"What?"

CR.LF
*-msg4

CR.LF
CR.LF
"Give Physical Sector Number: "

29

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

01090
01091
01092
01093
01094

01095
01096
01097
01098
01099

01100
01101
01102
01103
01104

01105
01106
01107
01108
01109

01110
01111
01112
01113
01114
01115
01116

01117 00000021 szemsgO

53656374
6£72204e
756436265
723220
00000021 szmsg5

0474 0d40a msg6

0476 0d40a

0478 4769
76652063
6£6e7374
6167420
746£2066
696c6c20
62756666
65722077
6974683a
20

00000027 szmsg6

0d9% 0d0a msg7

0494 0d0a

049f 436f
6e74696e
75653a20

0000000e szmsg?

0da9 0d0a msg8

0dab 0d0a

Odad 4769
76652074
61726765
74206964
20283024
37293a20

0000001a szmsg8

0dc3 0d40a msg9

0dc5 040a

0dc7 4769
76652064
72697665
206e7564
62657220
28302431
293a20

00000014 szmsg9

*

* error messages

*

0de0 0d0a emsgO

Ode2 0dOa

Ode4 2a2a
2053656e
73652053
74617475
73206572
726£7220
636£6465
203a20

equ
dc.b

dc.b
dc.b

equ

dc.b
dc.b
dc.b

equ
dc.b

dc.b
dc.b

equ
dc.b

dc.b
dc.db

equ

dc.b
dc.b
dc.b

equ

*-msg5
CR.LF

CR.LF
"Give constant to fill buffer with: "

*-msgb
CR.LF

CR.LF
"Continue: "

*-msg7
CR.LF

CR,LF
"Give target id (0-7): "

*-msg8
CR.LF

CR.LF
"Give drive number (0-1): "

*..msgg

CR.LF
CR.LF
"%** Sense Status error code : " -

*-emsg0

- 30

-1

[]

F s | S] | | Fm

| B] ¥l ru

£

F 2T ¥R K2 ¥R @R KR EFR KR KN

' a

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page 31
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

01118
01119 0Oe01 0d0a emsgl dc.b CR.LF
01120 0e03 0dOa dc.b CR.LF
01121 0e05 2a2e dc.b "** Internal diagnostic error **"

20496274

65726e61

6c206469

61676e6¢f

73746963

20657272

6£72202a

2a
01122 0e24 0dOa dc.b CR.LF
01123 00000025 szemsgl equ *-emsgl
01124
01125 0e26 0d0a emsg2 dc.b CR.LF
01126 0e28 0dOa dc.b CR.LF
01127 Oe2a 2a2a dc.b "** Ram test error **"

20526164

20746573

74206572

726£7220

2a2a
01128 Oe3e 0d0a dc.b CR.LF
01129 0000001a szemsg2 equ *-emsg2
01130
01131 Oe40 040a emsg3 dc.b CR.LF
01132 Oe42 0d0a dc.b CR.LF
01133 Oed44 2a2a dc.b "%#% Tnit drive parameters error ¥**"

20496e69

74206472

69766520

70617261

64657465

72732065

72726£72

202a2a
01134 0Oeb65 0d0a dc.b CR.LF
01135 00000027 szemsg3 equ *-emsg3
01136
01137 0Oe67 0d0a emsg4d dc.b CR.LF
01138 0e69 0d0a dc.b CR.LF
01139 Oe6b 2a2a dc.b "** Test Drive Ready error **"

20546573

74204472

69766520

52656164

79206572

726£7220

2a2a
01140 0e87 0d40a dc.b CR.LF
01141 00000022 szemsg4 equ *-emsg4
01142
01143 0e89 0d0a emsg5 dc.b CR.LF
01144 Oe8b 0d0a dc.b CR.LF
01145 Oe8d 2a2a dc.b "** Pormat Drive error **"

20466£72

64617420

44726976

65206572

726127220

microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page

tstscsi.a
tstncr - 0S-9/68000 CC-74 Test Routines

01146
01147
01148
01149
01150
01151

01152
01153
01154
01155
01156
01157

01158
01159
01160
01161
01162
01163

01164
01165
01166
01167
01168
-01169

01170
01171
01172
01173
01174
01175

202a2a
Oeaé 0d0a
0000001f szemsgS

Oea8 0d0a emsg6

Oeaa 0d40a

Oeac 2ala
20447269
76652044
6961676e
6£737469
63206572
726£7220
2a2a

Oec8 0d0a

00000022 szemsgé

Oeca 0d0a emsg7

Oecc 0d0a

Oece 2a2a
20526561
64204f6e
65205365
63746£72
20657272
6£72202a
2a

Oee9 0d0a

00000021 szemsg?7

Oeeb 0d0a emsgs

Oeed 0d0a

Oeef 2a2a
20577269
7465204f
6e652053
6563746f
72206572
726£7220
2a2a

0f0b 0d0a

00000022 szemsg8

0£f04 040a emsg9

0f0f 0d0a

0f11 2a2a
20536565
6b20746¢F
20536563
746£7220
6572726%
72202a2a

0f2b 0d0a

00000020 szemsg9

0f2d 0d0a emsglO

0f2f 0dOa

0£31 2a2a
20526563
616c6962
72617465

dc.b
equ

dc.b
dc.b
dc.b

dc.b

dc.b
dc.b
dc.b

dc.b

dc.b
dc.b
dc.b

dc.b

dc.b
dc.b
dc.b

dc.b

dc.b
dc.b
dc.b

CR.LF
*-emsg5

CR.LF
CR.LFP
"** Drive Diagnostic error **"

CR.LF
*_.emsgb

CR.LF
CR.LF
"%** Read One Sector error ***

CR.LF
*-emsg7

CR.LF
CR.LF

"** Write One Sector error **"

CR.LF
*_emsg8

CR.LF
CR.LF

"** Seek to Sector error **"

CR.LF
*_emsg9

CR.LF
CR.LF

"*%* Recalibrate error **"

32

[

" oo | - .

[]

7 % F® %@ f 2 F R f % fFR fF R F R R R R 2 &2 &=

| I | S

)

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page
tstscsi.a

tstncr - 0S-9/68000 CC-74 Test Routines

01176
01177
01178
01179
01180
01181

01182
01183
01184
01185
01186
01187

01188
01189
01190
01191
01192
01193

01194
01195
01196
01197
01198
01199

01200
01201
01202
01203
01204
01205

20657272
6£72202a
2a
0£48 040a
00000014 szemsglO

Of4a 040a emsgll

Of4c 040a

Ofde 2a2a
2053656e
73652053
74617475
73204572
726£7220
2a2a

0£66 0d0a

0000001e szemsgll

0f68 0d0a emsgl2
0f6a 0dOa
0f6c 2a2a
20457272
6£722069
~ 6€205053
4e202a2a
0f7e 040a
00000018 szemsgl2

0f80 0d0a emsgl3

0f82 0d40a

0f84 2a2a
20457272
6£722069
62206669
6c6c2063
6£6e7374
616e7420
2a2a

0fa0 0d0a

00000022 szemsgl3

0fa2 0d0a emsgl4

0fa4 0dOa

0fa6 2a2a
20546964
65206£75
74206572
726£7220
2a2a

Ofba 0d0a

0000001a szemsgl4

Ofbc 0d40a emsgls

Ofbe 0d0a

0fcO0 2a2a
20496c6c
6567616¢c
20696e74
65727275
7074206¢
63637572

dc.b

dc.b
dc.b
dc.b

dc.b
equ

dc.b
dc.b
dc.b

dc.b

dc.b
dc.b
dc.b

dc.b

dc.b
dc.b
dc.b

dc.b

dc.b
dc.b
dc.b

CR.LF
®-emsgll

CR.LF
CR.LF
"%t Sense Status Error **"

CR.LF
*-emsgll

CR.LF
CR.LF
"*% Error in PSN *#**

CR.LF
*-emsgl2

CR.LF
CR.LF
"%*%* Error in fill constant **"

CR.LF
*-emsgl3

CR.LF
CR.LF

"%** Time out error **-

CR.LF
*_emsgld

CR.LF
CR.LF
"*%* Jllegal interrupt occured **"

33

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 17:47 Page

tstscsi.a

tstncr - 08-9/68000 CC-74 Test Routines
6564202a
2a

01206 0fdf 040a

01207 00000025 szemsglS

01208

01209 Ofel 0d0a emsglé

01210 O0fe3 0d0a

01211 OfeS 2a2a
20457272
6£722069
6€207461
72676574
20696420
2a2a

01212 0ffd 0d0a

01213 0000001e szemsglé

01214

01215 Offf 0d0a emsgl7

01216 1001 0dOa

01217 1003 2a2a
20457272
6£722069
6206472
69766520
67564362
6572202a
2a

01218 10le 040a

01219 00000021 szemsgl?7

01220

01221 00001020

dc.b

dc.b
dc.b
dc.b

dc.b

dc.b
dc.b
dc.b

dc.b
equ

ends

CR.LF
t-emsgl5

CR.LF
CR.LF
“** Error in target id **"

CR.LF
t-emsglé

CR.LF
CR.LF
“** Error in drive number **"

CR.LF

*-emsgl?

34

-

- [

F m S m & m

[B |

9 ¥ % F® F 1 F£ 3 F®% FR F R &3 &% "o |

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:18 Page 1
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00001 nam Disk Driver

00002 ttl Device Driver For CC74 VME scsi controller
00003 * Editon History

00004

00005 * ¢& Date Comments By
00006 ® -~ cc-cecece cccccecccecececcesccccccecmecccccccoccssscsensas ==
00007 * 00 85/01/21 Fist attempt to complete new set up N.N.
00008 * Uses scsi NCR 5385 and dmac MC68450.

00009 * 01 85/05/22 Added code to use Xebec 1401 controller wvv
00010 * 02 85/07/30 Added some error exits, some cleanup.

00011 * added drive # init at 'init drive' subr.

00012 * added second error table for 1401.

00013 * added direct command in 'PutStat’' subr.

00014 * Tested with xebeq 1410, 1410a, 1401 and SCSI

00015 * chip NCR 5385(E) as target. N.N.
00016 * 03 85/10/11 Changed code for 1401 to CC-80 NN
00017

00018 00000003 Edition equ 3 current edition number
00019

00020 00000e01 Typ_Lang set (Drivr<<8)+0bjct Device Driver In Assembly Language
00021 00008000 Attr_Rev set (ReEnt<<8)+0

00022

00023 psect Ncr.Typ_Lang.Attr_Rev,Edition.0,DiskEnt
00024

00025 use defsfile

00007

00008

00026 ** Edition 2 changes

00027 *

00028 * these equates are usefull in de direct command mode

00029 * they refer to the block structure used, if this

00030 * block structure is changed. be sure these are also

00031 * updated

00032 *

00033 00000000 CMD_PTR equ 00 4 bytes

00034 00000004 CMD_S1Z equ 04 2 bytes

00035 00000006 DATA_PTR equ 06 4 bytes

00036 0000000a DATA_SIZ equ 10 2 bytes

00037 0000000c STAT_PTR equ 12 4 bytes

00038 00000010 STAT_SI1Z equ 16 2 bytes

00039 00000012 MSG_PTR equ 18 4 bytes

00040 00000016 MSG_SIZ equ 22 2 bytes

00041 00000018 ERR_PTR equ 24 4 bytes

00042 0000001c ERR_SIZ equ 28 2 bytes

00043 0000001e CNT_DAT equ 30 2 bytes

00044

00045 ** 3NN start change

00046 *

00047 * Mode offset equates., useful in accessing Mode byte's
00048 * for descripter cc-80

00049 * Offset in initialization tables for floppy's

00050

00051 00000000 M_ResO - equ 0 reserved

00052 00000001 M_Type equ 1 media type 00=01=5"ss 02=5"ds 80=81=8"ss 82=8"ds
00053 00000002 M_Res2 equ 2 reserved

00054 00000003 M_B1kL equ 3 length of blok list (= 16)

00055

00056 00000004 M_DensO equ 4 density code track 0 00=01-sd 02=dd

00057 00000005 M_NoBO equ S number of blocks track 0

00058 00000008 M_Res8 equ 8 reserved

00059 00000009 M_B1kSO equ 9 block size track 0

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:18 Page 2
rbc74x10c80.a -

Disk Driver - Device Driver For CC74 VME scsi controller

00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120

density code track !0
number of blocks track !0
reserved

block size track 10

gap length track 0

gap length format track 0
gip length track !0

gap length format track !0
step rate

head load time

head unload time

motor on timing

motor off timing

starting sector number
starting cilinder number
highest block address
retry count for read
retry count for write
retry count for format
reserved

AR E R R R R R R R R R R AR R R R R AR R R R LR R RN R R AR AR AR AR R ER A E R E R AR AR AR AR AR R N

0000000c M_Densl equ 12
00000004 M_NoB1 equ 13
00000010 M_Reslé equ 16
00000011 M_B1kS1 equ 17
00000014 M_Gap0 equ 20
00000015 M_FGapO equ 21
00000016 M_Gapl equ 227
00000017 M_Fgapl equ 23
00000018 M_Step equ 24
00000019 M_Hilt equ 25
0000001a M_Hut equ 26
0000001b M_MotOn equ 27
0000001d M_MotOff equ 29
0000001f M_Sect equ 31
00000020 M_Cil equ 32
00000021 M_MaxBlk equ 33
00000024 M_RetryR equ 36
00000025 M_RetryW equ 37
00000026 M_RetryF equ 38
00000027 M_Res39 equ 39
% Edition 2 end changes
* CC74 Definitions
*
* board base address
00£££fe00 CC74_BASE equ $fffe00
* hardware control register cc-74
00000101 CONTROL74 equ $101
* NCR 5385 register offset def's
00000121 DATNCR equ $121
00000123 COMNCR equ $123
00000125 CNTNCR equ $125
00000127 DESIDNCR equ $127
00000129 AUXNCR equ $129
0000012b IDNCR . equ $12B
00000124 IRQNCR equ $12D
0000012f SRCIDNCR equ $12F
00000133 DIAGNCR equ $133
00000139 TFRNCR equ $139
00000139 TCMONCR equ $139
0000013b TCMINCR equ $13B
00000134 TCLENCR . equ $13D
* DMA 68450 base address
00000000 CHNLO equ $00
00000040 CHNL1 equ $40
00000080 CHNL2 equ $80
000000c0 CHNL3 equ $CO
000000£f GENCR equ CHNLO+SFF
* DMA 68450 device definitions
00000000 CSR equ 0
00000001 CER equ 1
00000004 DCR equ 4
00000005 OCR equ 5

offset from cc-74 base

data register to scsi bus
command register

control register

destination id register
auxiliary status register

id register

interrupt register

source id register

diagnostic status register
transfer counter register
transfer counter most sign. byte
transfer counter middle byte
transfer counter least sign. byte

channel status register
channel error register
device control register
operation control register

-

¥R

[]

fF "M &R NF R FR

[.

¥

fF 8 F 2 F R R ¥R FR FfFR®R @3 & T FRmR §&Nh

| W

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:18 Page 3
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158

00000006
00000007
0000000a
0000000c
00000014
00000012
0000001c

00000025
00000027
00000024

00000029
00000031
00000039

*

SCR
CHCR

££3

BTR

NIV
EIV

3

3

DFC
BFC

equ
equ
equ
equ
equ
equ
equ

equ
equ
equ

equ
equ
equ

6

7
SA
8C
$14
$1A
$1C

$25
$27
$2D

$29
$31
$39

* device control register (R/W)

*

00000000
00000080
000000cO

00000000
00000010
00000020
00000030

00000000
00000008
00000003

00000000
00000001
00000002
00000003

BurstMod
StealMod
StealHld

Dev68000
Devc6800
DevAck

DevAckRy

Dev8Bit
Dev16Bit
DevSiz B

StatInp

StatInpl
StartPls
AbortInp

equ
equ
equ

equ
equ
equ
equ

equ
equ
equ

equ
equ
equ
equ

$00
$80
$CO

$00
$10
$20
$30

$00
$08

w N = O

sequence control register
channel control register
memory transfer counter
memory address register
device address register
base transfer register
base address register

normal interrupt vector
error interrupt vector
channel priority register

memory function codes
device function codes
base function codes

burst transfer mode
cycle steal mode without hold
cycle steal mode with hold

68000 compatible device, explicitly addressed
6800 compatible device, explicitly addressed
device with *ACK, implicitly addressed

device with *ACK and *READY, implicitly addressed

device port 8 bit
device port 16 bit
bit number of device port size

status input - peripheral ctl line
status input with interrupt

start pulse, negative 1/8 clk
abort input

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:18 Page 4
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
" 00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218

*

* Operation control register (R/W)

00000000
00000080
00000007

00000000
00000010
00000020

00000000
00000008
0000000c

00000000
00000001
00000002
00000003

MemToDev
DevToMem
XfrDir B

ByteSize
WordSize
LongSize

ChainDis
ChainArr
ChainLnk

AuReqLim
AuRegMax
Reqlnit

ReqlInitA

* Sequence Control

00000000
00000004
00000008

00000000
00000001
00000002

* Channel

00000000
00000080
00000007

00000000
00000040
00000006

00000000
00000020
00000005

00000000
00000010
00000004

00000000
00000008
00000003

MemNoCnt
MemCntUp
MemCntDn

DevNoCnt
DevCntUp
DevCntDn

equ
equ
equ

equ
equ
equ

equ
equ
equ

equ
equ
equ
equ

$00
$80

$00
$10
$20

$0
$8

W N = O

Register (R/W)

equ
equ
equ

equ
equ
equ

>

[

Control Register (R/W)

NoOpPend
StartOp
Start_B

NoContin
ContinOp
Contin_B

OpNoHalt
OpHalted
Halted_B

NoAbort
OpAbort
Abort B

IntrptDi
IntrptEn
Intrpt_B

equ
equ
equ

equ
equ
equ

equ
equ
equ

equ
equ
equ

equ
equ

$00
$80

$00
$40

$00
$20

$00
$10

[+

transfer from memory to device
transfer from device to memory
transfer direction bit number

operation size = byte
operation size = word
operation size = long

chain operation disabled
array chaining enabled
linked chaining enabled

auto request at rate set by GCR

auto request at maximum rate

*REQ line intitiates all operand transfers
auto request first xfr, *REQ for all others

memory address register dces not count
memory address register counts up
memory address register counts down

device address register does not count
device address register counts up
device address register counts down

no operation is pending
start operation
bit number of start operation bit

no continue operation is pending
continue operation
bit number of continue op bit

operation not halted
operation halted
bit number of halted op bit

operation not aborted
operation aborted
bit number of abort op bit

interrupts disabled
interrupts enabled
bit number of interrupt enable

T [] -TTTER

| ¥ = ¥ . & .

e

s BN

3T % ¥ §® f£% FR® @R PR KFR KON

Microware 05S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:18 Page S
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00220 ¢

00221 * Channel Status Register (R/W)

00222 *

00223 * writing a one into any bit clears that status

00224 * any written zero bits do not affect the status

00225 *

00226

00227 00000000 OpNoComp equ $00 operation incomplete

00228 00000080 OperComp equ $80 operation complete

00229 00000007 OpComp_B equ 7 bit number of operation complete bit
00230

00231 00000000 BlkNoCmp equ $00 block transfer incomplete

00232 00000040 BlkComp equ $40 block transfer complete

00233 00000006 BlkCmp_B equ 6) bit number of block transfer complete bit
00234 '

00235 00000000 DevTrmAb equ $00 device termination abnormal

00236 00000020 DevTrmNo equ $20 device termination normal

00237 00000005 DevTrm_B equ 5 bit number of device termination status
00238

00239 00000010 ErrorSet equ $10 error occurred and is noted in CER
00240 00000004 Error_B equ 4 bit number of error flag bit

00241

00242 00000008 ActiveCh equ 8 channel considered active

00243 00000003 Active B equ 3 bit number of active channel flag bit
00244

00245 00000002 PCLTrans equ 2 transition occurred on *PCL

00246 00000001 PCLTrn_B equ 1 bit number of PCL transition flag bit
00247

00248 00000000 PCLLow equ 0 *PCL line low

00249 00000001 PCLHigh equ 1 *PCL line high

00250 00000000 PCLSts_B equ 0 bit number of *PCL status bit
00251

00252

00253 *

00254 * Channel Error Register (R only)

00255 *

00256

00257 00000001 ErConfig equ $01 configuration error

00258 00000002 ErOpTimg equ $02 operation timing error

00259

.00260 00000005 ErAdrMem equ $05 memory address error

00261 00000006 ErAdrDev equ $06 device address error

00262 00000007 ErAdrBas equ $07 base address error

00263

00264 00000009 ErBusMem equ $09 memory bus error

00265 0000000a ErBusDev equ $OA device bus error

00266 0000000b ErBusBas equ $O0B base bus error

00267

00268 00000004 ErCntMem equ $OD memory count error

00269 0000000e ErCntDev equ $OE device count error

00270 0000000f ErCntBas equ SOF base count error

00271

00272 00000010 ErEAbort equ $10 external abort

00273 00000011 ErSAbort equ $11 software abort

00274

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:18 Page
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00315

* Channel Priority Register (R/W)
*

00000000 ChPrior0 equ
00000001 ChPriorl equ
00000002 ChPrior2 equ
00000003 ChPrior3 equ

channel priority of zero
channel priority of one
channel priority of two

W N = O

* Function Code Registers (R/W)
*

00000001 UserData equ
00000002 UserProg equ
00000005 SupvData equ

user data address access

O 0N M-

00000006 SupvProg equ supervisor program address access
®

* General Control Register (R/W)

]

0000000c BurstTim equ s$C mask for burst time

00000003 BandwRat equ $3 mask for bandwidth ratio

* end CC74 definitions

21 22222222 222222222222 2222222222 i3 2222222222223 2222322233222

00000000 True equ 0

00000001 False equ 1

*ListExec set True list only Exec

00000001 ListExec set False list entire file

channel priority of three

user program address access
supervisor data address access

[] -e

s

ra Fa

F R &N

9 ¥R F® R O1OR

¥

| B

B E

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:18 Page 7

rbc74x10c80.a
Disk Driver - Device Driver For CC74 VME scsi controller
Controller Commands

00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
80

00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346

*
*
*
*

* Bit equates DD_FMT

00000000 Side Bit equ
00000001 Dens_Bit equ
00000001 ErrStat equ
* Number Of Drives Supported
00000008 NumDriv equ
00000100 BuffSize equ

Class O

00000000
00000001
00000003
00000004
00000005
00000006
00000007
00000008
0000000a
0000000b
0000000c
00000015

00000004

00000001
00000030

commands

CSTRDY
CSRSTR
CSRDET
CSFRMT
CSCHKF
CSFTRK
CSFBAD
C$RBLK
CSWBLK
C$SEEK
C$MINI
C$MODE

CSRDLN

C$SBLKCNT
CS$BRQLVL

equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

equ

® N O Ve WK+ O

N e
N O

[
w

1
(3<<4)

256

Test For Drive Ready

Restore Head To Track 00

Request Error Detail (Request sense status)
Format All Blocks

Check Track Format

Format Track

Format Bad Track

Read Block

Write A Block

Seek To Track Containing Block

Set Mini Format (Initialize drive parameters)
Set Mode Format (Initialize drive parameters) CC-

Read Length Of Error Burst
Number of blocks to read
DMA bus request level 0 - 3.
Side bit

Density bit

bit 1 of status byte form controller

size of sector 0 buffer

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:18 Page 8
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller
(3232233222222 322122 1222222222222 2223232322323 233333333232322123]

00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373

*

. Static Storage Definitions ‘ *

L A A A AR 2222222 2222222222222 24 322332222223 22222222]

00000000 VBuffer
00000100 V_BufRsv
00000900 V_VBuff
00000904 HD_cmd
00000905 HD_psn
00000908 HD_blk
00000909 HD_ctrl
0000090a HD_status
0000090b HD_msg
0000090c HD_sense
00000910 V_CurDrv
* 3NN change
00000908 V_All
00000912 V_IntBuf
0000093a V_TroO
0000093b V_Frmt
0000093c V_Initflg
00000000

<
[
o
- 0
(24

SEEEEEEEEES
[- N < N - N - N - S - N - A o

64 Verify Buffer
(BuffSize/4)*NumDriv Total reserved for Sector 0's

1 Pointer to verify buffer
1
3
1
1
1
1
4
1 current drive
HD_blk
10 Initialize buffer for floppy
1 ‘off' track O flags
ready to format flag
1 global init flag, indicate drive par's init.

g m §F @ §F B FR ¥R FA R &§Fm &u

~2 @M ¥R ¥R ¥ 3 FR ©F3 1N fFn

i z

B & & un 3

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:18 Page 9
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller
LI A XX AR 2 X222 2222222222222 0222222222222 XX 322222232z}

00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388

L]

*

.

hd Long Branch And IRQ Polling Table's

*

(23 3212222223222 222 X2 2332223222313 1332223232222 22228232]

0000 000c DiskEnt
0002 00ec
0004 0152
0006 01b6
0008 01b8
000a O1fc

dc.w
dc.w
dc.w
dc.w
dc.w
dc.w

Init
Read
Write
GetStat
PutStat
Term

Initialize Storage

Read A Sector

Write A Sector

Return No Get Status Supported
Set Status (Format And Restore)
Shut Down Device

Microware 05S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:18 Page 10
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller
00390 *

00391 * Init:
00392 * Initialize device and its static storage area

00393 * note: Prior to being called., the device permanent storage will be
00394 * Cleared (set to zero) except for V_PORT which will contain the
00395 * device address. The driver should initialize each drive table
00396 * appropriately for the type of disk the driver expects to be
00397 * used on the corresponding drive.
00398 *
00399 * Input : (al) = Address Of Device Descriptor Module
00400 * (a2) = Address Of Statics Storage
00401 * (a6) = system global data pointer
00402 * Output: none
00403 * Error output :(cc) = Carry Set 1f Error
00404 * (dl.w) = Error Code If Error
00405 *
00406
00407 *
00408 * Init Static Storage
00409 *
00410 Init
00411 000c 7008 moveq #NumDriv.do Number Of Drives
00412 000e=1540 move.b d0.V_NDRV(a2)
0000
00413 0012 72f¢f moveq #$FF.d1 Init Fake Media Size
00414 0014 1541 move.b dl,V_CurDrv(a2) Init high drive §
0910
00415 0018=41ea lea DRVBEG(a2).a0 Point at first table
0000
00416 001c 47ea lea V_BufRsv(a2).a3 Point at sector zero buffer
0100
00417 0020=1141 Initlo0 move.b d1.DD_TOT(a0) Init to nom zero
0000
00418 0024=1141 move.b dl,V_TRAK(a0)
0000
00419 0028=214b move.l a3.V_ScZero(al)
0000
00420 002c 47eb lea BuffSize(a3).a3 point to next buffer
0100
00421 0030=41e8 lea DRVMEM(a0).a0 Move To Next Table
0000
00422 0034 5300 subg.b #1.40 last drive?
00423 0036 66e8 bne.s Initl0 branch if not
00424 *
00425 * get verify buffer
00426 *
00427 0038 4lea lea VBuffer(a2).,al
0000
00428 003c 2548 move.l a0,V_VBuff(a2) save pointer for later use
0900
00429 *
00430 * Reset controller and interface
00431 * -
00432 0040=266a movea.l V_PORT(a2).a3 point to port
0000
00433 0044 0O8edb bset #7.CONTROL74 (a3) Reset SCSI bus
00070101
00434 * Edition 2 change
00435 004a 303c move.w #SEfff,do
12444
00436 004e 51c8 Initls dbra d0,Initl5

-~

- m -

[

F . & n

| S |

2 % F§ £ % F® FfF® F W ©FR FR ©W®

= - ~ - -

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:18 Page 11
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

ftfe
00437 * Edition 2 change end
00438 0052 O8ad beclr #7.CONTROL74(a3) clr reset bit
00070101
00439 0058 177c move.b #0,COMNCR(a3) NCR chip reset
00000123
00440 005e 203c move.l #350.d0 Init timout
0000015e -
00441 0064 51c8 Init20 dbra d0,Init30 Time Out?
0004
00442 0068 6072 bra.s Init40 yes Something wrong
00443 006a 082b Init30 btst #7 ,DIAGNCR(a3) wait for command ready
00070133
00444 0070 67f£2 beq.s Init20
00445 0072 162b move.b DIAGNCR(a3).d3 get diagnostic results
0133
00446 0076 b63c cmp.b #$80,d3
0080
00447 007a 6660 bne.s Init40 Something wrong with NCR chip
00448 007c=1029 move.b MS$IRQLvl(al),.d0 get irqg level
0000
00449 0080 0000 ori.b #CSBRQLVL.d0 get bus request level
0030
00450 0084 1740 move.b d0,CONTROL74(a3) set bus request level & irqg level
0101
00451 0088 0O8ebd bset #3.CONTROL74 (a3) enable irg
00030101

00452 * Init DMA Controller

00453 * 1 Sequense control register : Memory counts up : device does not count

00454 008e 177c move.b #(MemCntUp+DevNoCnt),SCR+CHNLO(a3)
00040006
00455 * 2 Device function code : User data
00456 0094 177c move.b #UserData,DFC+CHNLO(a3)
00010031
00457 * 3 Memory function code : User Data
00458 009a 177c move.b #UserData,MFC+CHNLO (a3)
00010029
00459 * 4 channel priority register : channel 0 highest priority
00460 00a0 177c¢ move.b #ChPrior0,CPR+CHNLO(a3)
00000024 ‘
00461 * 5 Device address register : Data register from ncr chip -
00462 00a6 4beb lea DATNCR(a3).a5
0121
00463 00aa 2744 move.l a5,DAR+CHNLO (a3)
0014
00464 * 6 Normal interrupt vector : from device descriptor
00465 00ae=1769 v move.b MS$Vector(al) .NIV+CHNLO(a3) Normal vector
00000025 ‘
00466 * 7 Error Interrupt vector : from device descriptor
00467 00b4=1769 move.b M$Vector(al).EIV+CHNLO(a3) Error vector
00000027

00468 * Edition 2 change
00469 * 8 Device Control Register : Steal Hold , 8 bits device with ack . pcl inp

00470 OOba 177c move.b #(StealHld+DevAck+Dev8Bit+StatInpl).DCR+CHNLO(a3)
00e10004

00471 * Edition 2 end change

00472 *

00473 ¢

00474 * Put Device on The Polling Table

00475 *

00476 00c0=1029 move.b M$Vector(al) .do

microware US-9/68000 Resident Macro Assembler V1.5 86/01/23 18:18 Page
rbc74x10¢c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00477

00478
00479

00480

00481

00482
00483
00484
00485
00486

00487
00488

00489
00490
00491

00492
00493

0000
00c4 0c00
0040
00c8 6518
00ca=1229
0000
00ce 41fa
Ol4a
0042=4e40
0000
0046 650e
0048 7200
00da 4e75

00dc=323c
0000
00e0 6004
00e2=323c
0000

00eé6 003c
0001
00ea 4e75

Init40

InitS0

Init60

cmpi.b

blo.s
move.b

lea
os9
becs.s
moveq
rts

move.w

bra.s
move.w

ori

rts

#64.40

Init50

is it a legal vector

branch if not

M$Prior(al).dl get priority level

IrqgEntry(pcr).a0 Point To IRQ Routine

FSIRQ

Inité60

#0.d1

#ESNotRdy.dl

Inité60
#E$Unit.d1

#1,.ccr

Get On The Table

Error
clear carry

set carry

exit with error

12

-

[]

L SN

[

£ ¥ 1N

F e I

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 13
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller
00495 *

00496 * Read:
00497 * Read a 256 byte sector

00498 * note: Whenever logical sector zero is read. the first part is
00499 * copied into the appropriate drive table. PD_DTB contains a
00500 ¢ pointer to the proper drive table entry. The number of bytes
00501 * to copy is DD_SIZ. .
00502 * :
00503 * Input: (al) = Address Of The Path Delcripibr
00504 * (a2) = Address Of The Device Static Storage
00505 * (ad4) = Process descriptor pointer
00506 * (a5) = caller's register stack pointer
00507 * (a6) = system global data storage pointer
00508 * (d2.1) = Disk logical sector number to read
00509 *
00510 * Qutput: sector in sector buffer
00511 *
00512 * Error output: (CC) = Carry Set If Error
00513 * (dl.w) = Error Code If Error
00514 *
00515 *
00516 Read
00517 0OOec 6100 bsr InitDriv
03ca
00518 00f0 655e bcs.s Read90 error occured
00519
00520 Readl0
00521 00f2 4a82 tst.1l d2 reading sector zero?
00522 00f4 670a beq.s Read20 branch if so
00523 00£6=2a69 movea.l PD_BUF(al).a$
0000
00524 00fa 6100 bsr RdSector Execute Read sector and exit
0536
00525 00fe 6050 bra.s Read90
00526
00527 * Here If Sector 0 Being Read
00528
00529 0100=2069 Read20 movea.l PD _DTB(al).a0 get drive table pointer
0000
00530 0104 7800 moveq #0,d44 read once on floppy
00531 0106=4a29 tst.b PD_TYP(al) hard disk ?
0000
00532 010a 6ala bpl.s Read25 ..no, don't use sector 0 buffer
00533 010c=4a28 tst.b V_ZeroRd(a0) - sector zero been read?
0000
00534 0110 6628 bne.s Read60 branch if so
00535 0112 383c move.w #20000,d4 try several times (in case not spun up)
4e20 _
00536 0116=2a68 Read25 move.l V_ScZero(a0).a5 point to buffer
0000
00537 0lla 6100 Read30 bsr RdSector Execute do the read
0516
00538 0Olle 6406 bece.s Read40 if no error move data
00539 0120 Slcc dbra d4.Read30 try again
£££8
00540 0124 602a bra.s Read90 exit with error
00541 0126=117c Read40 move.b #1.V_ZeroRd(a0) flag sector zero has been read
00010000
00542 012c=323c move.w #DD_SIZ-1.d1 UpDate Drive Table
fefe

00543 0130 11b5 Read50 move.b (a5.dl1.w), (a0.dl.w)

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

10001000
00544 0136 51c9 dbra d1,Read5so branch if not
1444]
00545
00546 013a=2068 Read60 movea.l V_ScZero(a0).a0
0000 _
00547 Ol3e=2a69 movea.l PD BUF(al),a
0000 -
00548 0142 323c move.w #63,d1 " move 256 bytes
003f
00549 0146 2ad8 Read?70 mnove.l (a0)+. (a5)+
00550 0148 51c9 dbra dl,Read70
tffc
00551 0l4c 7200 Reads8O moveq #0.41 No Errors
00552 Ol4e 4e75 rts
00553
00554 0150 4e75 Read90 rts Leave with carry set
00555

14

[. F R "mm am o | F m - m " m |

[

[|

¥ Fa .

F 2R F R F R §FDQN

i |

-

g i

i

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 15
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574

00575

00576

00577
00578

00579
00580
00581
00582
00583
00584

00585

00586
00587

00588

00589

00590

00591
00592

00593
00594
00595

00596
00597
00598

00599

00600
00601

Address Of The Path Descriptor
Address Of The Device Static Storage

Process descriptor pointer

caller's register stack pointer
system global data storage pointer

= Disk logical sector number to write

(CC) = Carry Set If Error
(dl.w) = Error Code If Error

InitDriv

Write90 error occurred

PD_BUF(al).a$5

d2,-(a7) save sector number
WrSector Execute The Command
(a7)+,d2 retreive sector number
Write90 Leave If Error

daz2 was it sector 0
WritelO branch if not

PD_DTB(al).a0 get drive table pointer
V_ZeroRd(a0) flag sector zero writen
PD_VFY(al) Verify ?

Write20 No, Leave
PD_BUF(al).-(a7) save buffer pointer

V_VBuff(a2).PD_BUF(al) substitute verify buffer

Read Re-Read The Written Block
(a7)+,a0 recover buffer pointer
sr,-(a7) save cc

a0,PD_BUF(al)

(a7)+.sr restore cc

Write80 exit with error

V_VBuff(a2).a3

#(BuffSize/4)-1.40 get # of long words to check
(a0)+, (a3)+ is data the same?

Write80 branch if not

d0,Verifyl0 - last word?.branch if not

dl No Errors

*

* Write:

. Write a 256 byte sector

*

* Input: (al) =

* (a2) =

. (ad) =

* (a5) =

* (a6) =

* (d2.1)

-«

* Qutput: sector buffer is written on disk

L]

* Error output:

*

*

Write

0152 6100 bsr
0364

0156 6500 bcs
0058

0l15a=2a69 movea.l
0000

015e 2£02 move.l

0160 6100 bsr
052e

0164 4cdf movem. 1l
0004

0168 6546 becs.s

016a 4a82 tst.1l

016c 6608 bne.s

016e=2069 movea.l
0000

0172=4228 clr.b
0000

0176=4a29 WritelO tst.b
0000

017a 662c bne.s

017c=2£29 move.l
0000

0180=236a move.l
09000000

0186 6100 bsr
£f£64

018a 4cdf movem. 1
0100

018e 40e7 move.w

0190=2348 move.l
0000

0194 46df move.w

0196 6514 bcs.s

0198 266a movea.l
0900

019¢c 303c move.w
003f

01a0 b788 VerifylO cmpm. 1l

0la2 6608 bne.s

0la4 51c8 dbra
fffa

01a8 4241 Write20 clr.w

Olaa 4e75 rts

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page

rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00602

00603 Write80

00604 0Olac=323c
0000

00605 01b0=003c Write90
0000

00606 01b4 4e75

00607

00608

move.w

ori

rts

#ESWrite. 41

#Carry.ccr

flag write error

flag error

A & m & ®m W&

[

'Tﬂnf”‘lnhﬁnﬂﬁr"‘ﬁr“nr“‘rﬂ-rﬁ-

| S

B

]

4

Microware 08-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00610 *

00611 * GetStat:

00612 * Get device Status

00613 *

00614 * Input: (al) = Address Of The Path Descriptor

00615 * (a2) = Address Of The Device Static Storage
00616 * (a4) = Process descriptor pointer

00617 * (a5) = caller's register stack pointer
00618 * (a6) = system global data storage pointer
00619 * (d0.w) = status code

00620 *

00621 * Output: Depends on status code

00622 * Error Output: (CC) = C bit set if error

00623 * (dl.w) = Apropriate error code

00624 *) '

00625 GetStat

00626 01b6 4e75 rts Not supported
00627

17

© et st A gt &

!

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 18
rbc74x10c80.a

Disk Driver - Device Driver Por CC74 VME scsi controller

00629
00630
00631
00632
00633
00634
00635

00636

00637
00638
00639
00640
00641
00642
00643
00644
00645

00646

00647
00648

00649
00650
00651

00652
00653

00654
00655
00656

00657
00658

00659
00660
00661
00662

00663

00664
00665
00666

00667
00668
00669

00670
00671

PutStat

Input:

*
*
*
*
*
*
*
®
*
*
*
*
®
*

01b8=266a
0000
01bc=0c40
0000
01cO 6608
0lc2 6100
0176
01c6 6428
01c8 602c
Olca=0c40
0000
Olce 6608
01d0 6100
010a
0144 641a
0146 60le
01d8=0c40
0000
0l1dc 66fa
0lde 6100
024a
0le2 640c
Ole4 6010

0le6=323c
0000
0lea=003c
0000
Olee 4e75

01£0 323c
0000
01£f4 4e75

01£6=003c
0000
0lfa 4e75

Error Output:

.
.

Set device Status

(al) = Address Of The Path Descriptor
(a2) = Address Of The Device Static Storage

(a4) = Process descriptor pointer

(a5) = caller's register stack pointer
(a6) = system global data storage pointer

(d0.w) = status code

Output: Depends on status code
(CC) = C bit set if error

(dl.w) = Apropriate error code

PutStat

PutStatl0

PutStat20

PutStat30

PutStat80

PutStat90

movea.l V_PORT(a2).a3

cmpi.w

bne.s
bsr

bece.s
bra.s

cmpi.w

bne.s
bsr

bcc.s
bra.s

cmpi.w

bne.s
bsr

bcc.s
bra.s

move.w

ori

rts

move.w

rts

ori

#SS_WTrk,do

PutStatl10
WriteTrk

PutsStatso
Putstat90
#SS_Reset.do0

PutStat20
Restore

PutStat80
PutStat90
#SS_DCmd.do

PutStat20
DirectCmd

PutStat80
PutStat90

#E$UnkSvc,dl

#Carry.ccr

#0.41

#Carry.ccr

is it a Write Track call?

branch if so

no error

is it a restore call?

branch if so

no error

is it a direct command?

branch if so

no error

flag unknown service code

flag error

| gam] ", - m -

[. |

¥ m

7 @ F® £33 F® F® f£ R f R F8% £33 ©£® &1 ¥

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 19
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00673
00674
00675
00676
00677
00678
00679
00680
00681
00682
00683
00684
00685
00686
00687

00688
00689
00690

00691
00692

00693

00694
00695

00696
00697

Input:

*
.
*
*
*
*
]
* Output:
*
*
*
*

Olfc=4a6a
0000
0200 6708
0202 7001
0204=4e40
0000
0208 60f2
020a=1029
0000
020e=1229
0000
0212 91c8
0214=4e40
0000
0218 4e75

Terminate:
Terminate Device

(al) = Adress of the device descripter module
(a2) = Address Of Device Static Storage
System global static storage

(a6) =

none

Error Output:

Term

TermlO

Term20

(CC) = Carry Set If Error
(dl.w) = Error Code 1f Error

tst.w
beq.s
moveq

os9

bra.s
move.b

move.b

suba.l
os9

rts

V_WAKE(a2)
Term20
#1.40
F$Sleep

Term
M$Vector(al).do

M$Prior(al).dl

a0.,a0l
FSIRQ

See if I/0 busy
Yes

give up slice
I/0 should be done within 1 slice

Delete Entry

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 20
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00699
00700
00701
00702
00703
00704
00705
00706
00707
00708
00709
00710
00711
00712
00713
00714
00715
00716
00717

00718
00719

00720

00721
00722

00723
00724
00725
00726
00727
00728

00729
00730

00731
00732
00733
00734

00735

00736
00737

00738

00739
00740

00741
00742

00743
00744

*
* IRQ service routine
. Service device interrupts
*
* Inputs: (a2) static storage address
* (a3) port address
* (a6) system global static storage
* Qutput: (CC) = cleared
*
* It checks the NCR chip for the 'Bus Phase' and initiate
* the 'Transfer Info command' until the bus phase is the
* data phase. Then the DMA is enabled and we wait for the
* ‘status phase’
*
* Note: Although this is an IRQ routine it's called as a subroutine
* 80 we leave with RTS
*
IrgEntry
021a 082b btst #3.CONTROL74 (a3) Check if irqg enabled
00030101
0220 6710 beq.s irqen05
0222 102b move.b CHNLO+CSR(a3).d0
0000
0226 0800 btst #0pComp_B,d0
0007
022a 665e bne.s irqen50 Operation completed
022¢c 0800 btst #PCLSts_B.d0
0000
0230 6706 beq.s irqenl0 Irq from dma pcl line occured
irgen05
0232 003c ori.b #1.ccr
0001
0236 4e75 rts Return as quick as possible
irgenl0
0238 08ab beclr #3,.CONTROL74 (a3) disable irg
00030101
* Edition 2 changes
023e 177c move.b #303,CSR+CHNLO(a3) clear irq cause
00030000
0244 08eb bset #3.CONTROL74 (a3) enable irg
00030101
* Edition 2 end changes
irgenl5
024a 102b move.b AUXNCR(a3).d0
0129
024e 122b move.b IRQNCR(a3) .d1
0124
* bne.s irgenl5 still irqg's .
0252 0200 andi.b #$38.,40 mask off msg, c/d and i/o line
0038
0256 b03c cmp.b #$00,d0 test Data Out phase
0000
025a 6716 beq.s irqen20
025¢c b03c cmp.b #$08.4d0 test Data In phase
0008
0260 6710 beq.s irgen20
0262 b03c cmp.b #$18.4d0 test Status phase
0018
0266 6754 beq.s irgen30
0268 177c move.b #$94 ,COMNCR(a3) give transfer info command., dma
00940123

“m -

[BN [S] [] [] [L

| . ¥ e

| S

F R ER KR

2 ¥R F R KF R E§ %

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 21
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00745 * Edition 2 change

00746 * bset #3.CONTROL74(a3) enable irg

00747 * Edition 2 end changes

00748 026e 7200 moveq #0.41 no error
00749 0270 4e75 rts
00750 irqen20

00751 * Edition 2 change
00752 * move.b #$03,CSR+CHNLO(a3) clear irq cause
00753 * bset #3,CONTROL74(a3) enable irqg

*

00754 Edition 2 end changes

00755 0272 082b btst #Active_B.CHNLO+CSR(a3) test if channel already started
00030000

00756 0278 6606 bne.s irqen40 yes, started

00757 027a 08eb bset #Start_B.CHNLO+CHCR(a3) enable dma controller
00070007

00758 irqen40

00759 0280 177c move.b #$94,COMNCR(a3) give transfer info command., dma
00940123

00760 0286 7200 moveq #0.d1 no error

00761 0288 4e75 rts

00762 irgen50

00763 028a 08ab beclr #3,CONTROL74 (a3) disable irg
00030101

00764 irgenS55

00765 0290 102b move.b AUXNCR(a3).d0 read until no more irq's pending
0129

00766 0294 122b move.b IRONCR(a3).d1
0124

00767 0298 66f£6 bne.s irgen55 :

00768 029a 082b btst #XfrDir_B.OCR+CHNLO(a3) Are we reading?
00070005

00769 02a0 661la bne.s irgen30 ..yes

00770 02a2 0200 andi.b #$38.40 mask off msg., c/d and i/o line
0038

00771 02a6 b03c cmp.b #$18.4d0 test Status phase
0018

00772 02aa 6710 beq.s irqgen30

00773 02ac 177c move.b #0perComp.CSR+CHNLO (a3) clear irq COC bit.
00800000

00774 02b2 08eb bset #3,CONTROL74(a3) enable irg
00030101

00775 02b8 7200 moveq #0.dl Irq serviced

00776 O2ba 4e75 rts

00777 irqgen30

00778 02bc 08ab beclr #Intrpt_B.CHNLO+CHCR(a3) disable interrupts
00030007

00779 02c2 08eb bset #3.CONTROL74 (a3) enable irqg
00030101

00780 02c8=302a move.w V_WAKE(a2).,d0 waiting for irgq
0000

00781 02cc 670a beq.s irqgen90 branch if not

00782 02ce=426a clr.w V_WAKE(a2) flag irq serviced
0000

00783 02d2=7200 moveq #SSWake.d1 wake up waiting process

00784 02d4=4e40 os9 F$Send send signal
0000

00785

00786 02d8 7200 irgen90 moveq #0.41 Interrupt Serviced

00787 02da 4e75 rts

00788

00789

microware US-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 22
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller
00791 *

00792
00793
00794
00795
00796
00797
00798
00799
00800
00801
00802
00803
00804
00805
00806
00807
00808

00809
00810
00811
00812

00813
00814

00815
00816
00817
00818

L]
*
*
*
L]
*
*
*
*
*
*
*
*
*

Restore:

Called from PutStat

Input:

(a1)
(a2) =
(ad) =
(a5) =
(a6) =
(d0.w)

Error Output :

Restor

* 3NN change
02dc=1229

02e0
02e2
02e4
02e6

02ea
02ec

02£0
02f£2
02f4

0000
e409
660e
7400
6100
0140
6508
6100
0008
6002
7000 Rest80
4e75 Rest90

Address Of The Path Descriptor
Address Of The Device Static Storage

Process descriptor pointer

caller's register stack pointer
system global data storage pointer

= gtatus code

Output: head assembly restored
(CC) = carry set if error

(dl.w) = Error code if error

move.b

1sr.b
bne.s
moveq
bsr

bcs.s
bsr

bra.s
moveq
rts

PD_DRV(al).dl

#2.d1
Rest80
#0.42
InitDriv

Rest90
Recal

Rest90
#0.d0

get drive number

make controller number
it is CC-80

take sector 0

Init Controller

error
execute recalibrate

F m S m & 8

-

-

¥ u

¥ a fF a Fa T u

| I | F N

F ¥ ¥F u

| S |

§F n F B

| A

(-

it .

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00820
00821
00822
00823
00824
00825
00826
00827
00828
00829
00830
00831
00832
00833
00834
00835
00836

00837

00838
00839

00840
00841

00842
00843

00844
00845

* Recalibrate
®* Input:

0216

02fa

0300

0304

0308

030c

0310

(a2) = static storage

123c
0001
243c

Recal

00000000

163c
0001
6100
03e2
323c
0006
4bea
0904
6100
045a

* Edition

0314
0316

031a

031le

0322

6522
4bea
090a
6100
04c2
4bea
090b
6100
0446

* Edition

0326

032c
032e

0332

082a

2 change

2 change

0001090a

6706
6100
05e6
4e75

0334 323c Recalll

0000

0338 4e75 Recall$s

move.b

move.l

move.b

bsr

move.w

lea

bsr

becs.s

lea

bsr

lea

bsr

btst

beq.s
bsr

rts
move.w

rts

#CSRSTR.d1
#0, 42
#C$BLKCNT. d3
SetUp

#6,d41
HD_cmd(a2).a5

NCRcmd

Recall5

Recalibrate cmd

fake Psn

get count -

cmd ptr

HD_status(aé).aS

NCRstatus

HD_msg(a2).a5

NCRmsg

#ErrStat . HD_status(a2)

Recalll
senstat

#0.41

skip if no error

Page

23

it A AT 5

¢ e S ————— A PEOBA U 511

microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 24
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller
00847 *

00848 * WriteTrk:
00849 * Format a track

00850 * note: Currently no format track is supported., instead a compleet
00851 * drive format is done. For definition of R$dA# see I$SetStt call
00852 * Input: (al) = Address Of The Path Descriptor
00853 ¢ (a2) = Address Of The Device Static Storage
00854 * (a4) = Process descriptor pointer
00855 * (a5) = caller's register stack pointer N
00856 * (a6) = system global data storage pointer
00857 * (d0.w) = status code
00858 *
00859 WriteTrk
00860 033a 4a2a tst.b V_Frmt (a2) ready to format ?
093b
00861 033e 6600 bne WritTk20 ..yes
0020
00862 0342=2869 movea.l PD_RGS(al).,ad4 point to users reg stack
0000
00863 0346=242c move.l R$d2(a4).,d2 track zero get track #
0000
00864 034a 6600 bne WrtTrkEx exit if not
00a0
00865 034e=122c move.b R$d3+2(a4).dl is it side 0
0002
00866 0352 6600 bne WrtTrkEx exit if not
0098
00867 0356 157c move.b #1.V_Frmt(a2) ready to format next time
0001093b
00868 035c 6000 bra WrtTrkEx
008e
00869
00870 WritTk20
00871 0360 422a clr.b V_Frmt (a2)
093b
00872 0364 7400 moveq #0.42 track O
00873 0366=2069 move.l PD_DTB(al).a0 get drive table pointer
0000
00874 036a=2869 movea.l PD RGS(al).a4 point to users reg stack
0000
00875 036e=116c move.b R$d3+3(a4) .DD_FMT(a0) .
00030000
00876 0374 6100 bsr InitDriv
0142
00877 0378 6500 becs WrtTrkEr ..error
0076
00878 037c 48e7 movem.l d2/a4.,-(a7)
2008
00879 0380=266a move.l V_PORT(a2).a3 get Port Address
0000
00880 0384 2542 move.l d2,HD_cmd(a2) store logical sector number
0904
00881 0388 157c move.b #CSFRMT.HD_ cmd(a2) store command
00040904
00882 038e=1429 move.b PD_DRV(al).d2 get drive #
0000
00883 0392 e40a 1sr.b #2.42 make it controller number
00884 0394 670c beq.s WritTk22 it is 1410
00885 0396 157c¢ move.b #Se5,HD_cmd+2(a2) set filler byte
0050906
00886 039c 157c move.b #0_HD_cmd+3(a2) clr msb byte interleave

N Wm & m & =m0

[]

-] [.] [B] ¥ n |

Fu

9 F3 rF1 fr3 F3 £ % £33 FR OO0 @W®

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00887

00888

00889

00890
00891

00892

00893

00894

00895

00896

00897
00898

00899
00900

00901
00902

00903

00904

00905
00906
00907
00908
00909

00910
00911
00912

00000907
0382=156c WritTka2
00030908
03a8-1429
0000
03ac 0202
0003
03b0 ebla
03b2 842a
0905
03b6 1542
0905
03ba=1569
00000909
03c0 022a
00b£0909
03c6 6100
002e
03ca 4cdt
1004
03ce 641c
03d0=b23c
0000
03d4 661a
03d6 242a
090c
03da 6ail4
03dc 0282
001f£ffel
03e2 0682
00000020
03e8 6000
££76

03ec 7200 WrtTrkEx
03ee 4e75

03f0=003c WrtTrkEr
0000
03f4 4e75

move.b

move.b

andi.b

1sl.b
or.b

move.b

move.b

andi.b

bsr

movem.l

bcc.s
cmp.b

bne.s
move.l

bpl.s
andi.l

addi.l

bra

moveq

rts

ori

rts

R$d4+3(ad).HD_blk(a2) store interleave
PD_DRV(al).d2 get drive #
#803,a2 isolate drive number

#5.42 . adjust it
HD_psn(a2).d2 or into MSB's of address

d2,HD_psn(a2) store it
PD_STP{(al).HD_ctrl(a2) load the éption byte
#$BF.HD_ctrl(a2) clear 'a’' retry bit
Form execute the command

(a7)+.d2/a4

WrtTrkEx exit if no errors
#ES$Seek,d1 can we continue?
WrtTrkEr branch if not

HD_sense(a2).d2 valid controller address?

WrtTrkEr branch if not
#S001FFFEO,d2 get even track #

#32.42 continue with next track
WritTk20 do command again

#0.41 clear error

#Carry.ccr flag error

Microware 08-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page

rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00914 *
00915
00916
00917
00918
00919 Form
00920 0326 323c

0006
00921 03fa 4bea

0904
00922 03fe 6100

036c
00923 * Edition 2 change
00924 0402 6524
00925 0404 4bea

090a
00926 0408 6100

0344
00927 040c 4bea

090b
00928 0410 6100

03e8
00929 * Edition 2 change
00930 0414 082a

0001090a
00931 041a 6700

0008
00932 04l1le 6100

04f£6
00933 0422 4e75
00934 0424 323c FormlO

0000
00935 0428 4e75 Forml5
00936

Format Drive

Input:

(a2) = static storage

move.w

lea

bsr

lea

bsr

lea

bsr

btst

#6.41 get count
HD_cmd(a2).a5 e ptr
NCRcmd

Forml5

HD_status(a2).a5
NCRstatus

HD_msg(a2).a$

NCRmsg

#ErrStat .HD_status(a2)
Forml0 skip if no error

senstat

#0.41

26

Microware 08-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 27
rbc74x10c80.a
Disk Driver - Device Driver For CC74 VME scsi controller

* Edition 2 changes
(2322222222 222R22 220221}

00938
00939
00940
00941
00942
00943
00944
00945
00946
00947
00948
00949
00950
00951
00952
00953
00954
00955
00956
00957
00958
00959
00960
00961
00962
00963
00964
00965
00966

00967

00968

00969

00970

00971

00972
00973

00974

00975

00976

00977

00978

00979

00980

00981
00982

00983

* Direct command

042a=2869

0000

042e=42ac

0000

0432=286c

0000

0436 4lea

0904

043a 266¢

0000

043e 303c

0442
0444

0448

044c

0005

.10db

51c8
fffc
323c
0006
4bea
0904

0450=266a

0454

0458

045¢

0460

0464
0466

046a

0000
6100
0316
6500
0058
342c
001le
0802
0001
671a
2a6c
0006
322c

block

bytes)
bytes)
bytes)
bytes)
bytes)
bytes)
bytes)
bytes)
bytes)
bytes)
bytes)

. % » »

used in this implementation of direct cmd.

else CC=clr
DirectCmd

movea.l PD_RGS(al).a4

clr.l R$d0(a4)

movea.l RS$SalO(a4)

.a4

lea HD_cmd(a2).a0

* R$a0O(PD_RGS(al)) = ptr to sasi cmd

*®

* (a0) ->00 command block ptr (4

* 04 niz; of command block (2

* 06 data block ptr (4

* 10 size of data block (2

* 12 status block ptr (4

* 16 size of status block (2

* 18 message block ptr (4

. 22 size of message block (2

* 24 error block ptr 4

* 28 size of error block (2

* 30 control word (2

* bit 0 = 0 from <mem> to <(dev>
* 1 from <dev)> to <mem>
* bit 1 = 0 no data phase expected
* 1 data phase expected
*

* (*) not

®

* return: if ERROR then CC=set and (dl.w)=Error-code
*

point to user reg. stack.

assume no error.

point to command block struct

movea.l OCMD PTR(a4).a3 point to command block

move.w #5.40

Dcmnd05 move.b (a3)+!(a0)o
dbra d0,Dcmnd05

move.w #$6.d1

lea HD_cmd(a2).a5

movea.l V_PORT(a2).a3

bsr NCRcmd

bcs Dcmndl5

move.w CNT_DAT(a4).d2

btst #1.42

beq.s Dcmnd25

copy command to static storage

no data phase

movea.l DATA PTR(a4).a5 get data block pointer

move.w DATA_SIZ(a4).dl get size

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 28
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

00984

00985

00986
00987

00988

00989

00990

00991

00992

00993
00994

00995
00996

00997

00998

00999

01000
01001

01002

01003
01004
01005
01006
01007

O46e

0472

0476
0478

047c

0480

0484

0488

048c

000a
103c
0000
0802
0000
6704
103c
0080
6100
03b4
4bea
090a
6100
0358
4bea
090b
6100
036¢c

* Edition

0490

0496
0498

049c

04a0

04a4

04a8
O4aa

082a

Dcmnd20

Dcmnd25

2 change

0001090a

671c
6100
047c
266¢c
0018
303c
0003
4lea
090c
1648
51c8
fffc

04ae=003c

0000

04b2 4e75

04b4

7000

04b6 4e75
** Edition 2 end change

Dcmndl0

Dcmndl5
Dcmnd90

move.b

btst

beq.s
move.b

bsr

lea

bsr

lea

bsr

btst

beqg.s
bsr

movea.l

move.w

lea

move.b
dbra

ori
rts

moveq.l
rts

#MemToDev.d0 assume <mem> to <dev)>
#0.42

Dcmnd20
#DevToMenm, d0

NCRdma

HD_status(a2).a5

NCRstatus

"HD_msg(a2).a5

NCRmsg

#ErrStat.HD_status(a2)

Dcmnd90
senstat

ERR_PTR(a4).a3 point to error block
#$3.40
HD_sense(a2).a0

(a0)+, (al3)+ copy error details
d0,Dcmndl0

#Carry.ccr

leave with carry set and D1 with error code

#0.d0

leave with carry clear. d0 also clr.

=

[

¥ u

¥ n

B g n | S] C

s |

“@ §¥ ' F QD ¥FmR Fu ¥Fu §Fu 3w

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 29
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

01009 *

01010 (XXX 2223222322222 2222222222222 22217]

01011 *

01012 *INIDRV

01013 *

01014 *Initialise controller from drive parameters in path descriptor
01015 ¢

01016 *Input: (al) = path descriptor

01017 * (a2) = Static storage

01018 *

01019 * 3NN changes

01020 InitDriv

01021 04b8 7200 moveq #0.41 clear all of dil

01022 04ba=1229 move.b PD_DRV(al).dl get drive number
0000) ’

01023 04be 4a82 tst.l d2 sector 0?

01024 04cO0 6716 beq.s IniDrv10 ..yes

01025 04c2=4a29 tst.b PD_TYP(al) hard disk?
0000

01026 04c6 6b0O bmi IniDrv90 ..yes., no action
00e4d

01027 0O4ca=b469 cmp.w PD_TOS(al).,d2 in track 0?
0000

01028 O4ce 6446 bcc.s IniDrv20 ..no

01029 0440 032a btst d1.vV_Tro0(a2) already on track 0?
093a

01030 0444 6700 beg IniDrv90 ..yes, no action
0046

01031

01032 IniDrvi0

01033 * Going to track 0 or going to sector 0 of hard disk

01034 04d8=4a29 tst.b PD_TYP(al) hard disk ?
0000

01035 04dc 6a00 bpl IniDrvi5 ..no
0030

01036 04e0 48e7 movem.l d0/d2-d7/a0-a6.-(a7)
bffe

01037 0O4e4=2a69 movea.l PD_DEV(al).a5 get device table pointer
0000

01038 04e8=2a6d movea.l VSDESC(a5).a5 point to descriptor
0000

01039 O4ec 7000 moveq #0.40

01040 O4ee=3024 move.w M$SDevCon(a5).d0 get offset to init bytes
0000

01041 04f2 5440 addq #2.40 point past byte count

01042 04f4 dbcO adda.l do, a5 set up pointer to init bytes

01043 04£6 49ea lea V_IntBuf(a2).a4 point to buffer
0912

01044 04fa 7007 moveq #7.40 number of bytes -~ 1

01045 0O4fc 18dd IniDrvl2 move.b (a5)+.(a4)+

01046 O4fe 51c8 dbra dO0,IniDrvi2 do all bytes
fffc

01047 0502 6100 bsr Doinit do the command
00ac

01048 0506 4cdf movem.l (a7)+.d0/d2-d7/a0-aé
7££d

01049 050a 6000 bra IniDrv95
00a2

01050 050e 03aa IniDrvl5 bclr d1.vV_TrO(a2) say on track 0
093a

01051 0512 6000 bra IniDrv25

Microware 05-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 30
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

01052
01053
01054
01055
01056
01057
01058

01059

01060
01061

01062
01063
01064

01065

01066
01067

01068
01069
01070
01071

01072
01073

01074
01075

01076
01077

01078
01079

01080
01081
01082
01083
01084
01085
01086

01087
01088

000s

IniDrv20
0516 0O3ea
093a
051a 6600
0090
051e 48e7 IniDrv25
bffe
0522=2069
0000
0526=2a69
0000
052a=2a64d
0000
052e 7000
0530=3024d
0000
0534 5440
0536 dbcO
0538 49ea
0912
053¢ 103c
0027
0540 18dd IniDrv30
0542 51c8
fffc
0546 4bea
0912
054a 1024
0001
054e 0200
00£0
0552=0828
00000000
0558 6706
055a 0000
0002
055e 6004
0560 0000 IniDrv40
0001
0564 1b40 IniDrv50
0001
0568=0828
00010000
056e 6612
0570 2bé6d
0004000c
0576 2bé6d
00080010
057c 3béd
00140016
IniDrvé0
0582 7c00
0584=3c29
0000
0588=0828
00000000
058e 6702
0590 e34e
IniDrvé6l

bset

bne

movem.l

movea.l

movea.l

movea.l

moveq
move.w

addg
adda.l
lea

move.b

move.b
dbra

lea

move.b

btst

beq.s
ori.b

bra.s
ori.b

move.b

btst

bne.s
move.l

move.l

move.w

moveq

move.w

btst

beq.s
1sl.w

d1.V_Tr0(a2) already off track 07 (set flag if not)
IniDrv90 ..yes, no action

40/42-d7/a0-aé. - (a7)

PD_DTB(al).a0 point to current drive table
PD_DEV(al).a5 get device table pointer
VSDESC(a5).a5 point to descriptor

#0.4a0
MS$DevCon(a5) ,d0 get offset to init bytes

#2.40 point past byte count
do0.a5 set up pointer to init bytes
V_IntBuf(a2).a4 point to buffer

#39.4d0 number of bytes

(a5)+. (a4)+ copy descriptor to buffer
d0.IniDrv30

V_IntBuf(a2).a5 point to Init buffer again
M _Type(a5).d0 get number of sides from table
#$£0,d0 '~ clear number of heads

#Side_Bit,.DD_FMT(a0) double sided?

IniDrv40 ..no
#$02.4d0 double sided
IniDrv50

#$01.40 single sided

d0.M_Type(aS) restore number of heads in table
#Dens_Bit.DD_FMT(a0) double density?

IniDrv60 ..yes
M _DensO(a5).M_Densl(a5) Rest of media is like track 0

M_Res8(a5).M_Resl6(a5) Copy param's
M_Gap0O(a5) .M_Gapl(a5)

#0,d6 calculate Aumber of sectors
PD_CYL(al).d6é get number of cyl's
#Side_Bit.DD_FMT(a0) double sided?

IniDrvél no —
#1.,4d6 double cyl's

[

&/ m

|] | .

L Fe [[g] e

F 'y &%

R £ R FR K1}

| -1 | S |

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

01089
01090

01091
01092
01093
01094
01095
01096
01097
01098
01099
01100
01101
01102
01103
01104
01105
01106
01107
01108
01109
01110
01111
01112
01113
01114
01115

01116

01117
01118

01119
01120

01121

01122

01123

01124

01125

01126

01127

0592 5386 subqg.l
0594 cced mulu.w
000e
0598 dcé6a add.w
0006
059c 3b46 move.w
0022
05a0 6100 bsr
000e
05a4 4cdf movem.l
7££d
05a8 6000 bra
0004
IniDrv90
05ac 7200 moveq
O5ae 4e75 IniDrv95 rts
* 3NN end changes
* Init Drive
®
* 3NN changes
Doinit
05b0 48e7 movem.1l
bfte
05b4=266a movea.l
0000 '
05b8 157c move.b
000c0904
05be=1029 move.b
0000
05c2 e408 1sr.b
05c4 670c beq.s
05¢c6 157c move.b
00150904
05cc 157¢ move.b
00280908
Doinl0
* Edition 2 change
05d2=1029 move.b
0000
0536 0200 andi.b
0003
05da eb08 1s1.b
05dc 1540 move.b
0905
* Edition 2 end change
05e0 4bea lea
0904
05e4 323c move.w
0006
05e8 6100 bsr
0182
05ec 6500 bcs
003e
05f0 4bea lea
0912
05£4 323c move.w
0008
05£8=1029 move.b
0000
05fc e408 1sr.b

#1.46 ignore track 0
M_NoBl+1(a$).d6 we have it almost

M_NoBO+1(a5).d46 add count from track 0
46.M_MaxBlk+1(a5) save on max blocks
Doinit do the command
(a7)+.d0/d2-d7/a0-a6

IniDrv95

#0.41 clear carry

d0/d2-d7/a0-a6, - (a7)

V_PORT(a2).a3 point to port
#CSMINI . HD_cmd(a2) init drive params
PD_DRV(al).do0

#2.40 make it controller number
Doinl0 was 1410

#CSMODE . HD_cmd(a2) is CC-80

#40.V_Al1(a2)

PD_DRV(al).d0

#$03.4d0

#5.d0

d0.HD_psn(a2)
HD_cmd(a2).a5

#6.d41 byte count
NCRcmd

Doinit20

V_IntBuf(a2).,a5

#8.41 byte count
PD_DRV(al).d0

#2.,40 make it controller number

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

01128
01129

01130
01131

01132

01133

01134

01135

01136
01137

01138
01139

01140

01141
01142
01143
01144

01145
01146
01147
01148

0S5fe

0600

0604

0608

060c

0610

0614

6704
323c
0028

6100
0248
4bea
090a
6100
0140
4bea
090b
6100
Oled

* Edition

0618

O6le
0620

0624

0628

062a
062c

0630

082a

Doin20

2 change

0001090a

670a
6100
02£4
4cdf
7ffd
4e75

7200
4cdf
7ffa
4e75

Doinit10
Doinit20

* 3NN end changes

beq.s

bsr

lea

bsr

lea

bsr

btst

beq.s
bsr

movem.l

rts

moveq
movem. 1l

rts

Doin20 was 1410
#440. 41 byte count
NCRwr

HD_status(a2).a5
NCRstatus
HD_msg(a2).a5

NCRmsg

#ErrStat . HD_status(a2)

Doinit10 ..no error
senstat

(a7)+.d0/d2-d7/a0-aé

#0.41
(a7)+,d40/d2-4d7/a0-aé

32

Fa [_ShS | [|

| . |

Fa

fFf 2 FER N

D 2 % fR MR FR F R F R F1X

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

01150
01151
01152
01153
01154
01155
01156
01157
01158
01159
01160
01161
01162
01163
01164
01165
01166
01167
01168
01169
01170
01171

01172
01173

01174

01175
01176

01177

01178

01179

01180
01181

01182
01183

01184

01185
01186

01187

01188
01189

01190

*
* Read One Sector
*
* Input: (al.l) = path descriptor
hd (a2.1) = device static storage
* (a5.1) = buffer pointer
. (d2.1) = Logical Sector Number
*
* Exit (cc) = Carry set on error else cleared
* (d1.w) = Error code if error else cleared
*
RdSector
0632 48e7 movem.l a5,-(sp)
0004
0636 123c move.b #CSRBLK.d1l Read sector(s) cmd
0008
063a 6100 bsr SetUp
00ac
063e=266a move.l V_PORT(a2).a3
0000
0642 323c move.w #6.41 get count
0006
0646 4bea lea HD_cmd(a2).a5 omd ptr
0904
064a 6100 bsr NCRcmd
0120
* Edition 2 change
064e 653a becs.s RdSec90
0650 323c move.w #$100.d41 should calculate number
0100
0654 2a57 move.l (sp).as
0656 103c move.b #DevToMem, d0
0080
065a 6100 bsr NCRdma
01d6
* bsr NCRrd
065e 4bea lea HD_status(a2).a5
090a
0662 6100 bsr NCRstatus
017a
0666 4bea lea HD_msg(a2).a5
090b)
066a 6100 bsr NCRmsg
018e
* Edition 2 change
066e 082a btst #ErrStat.HD_status(a2)
0001090a
0674 670a beq.s ‘RdSecl0
0676 6100 bsr senstat
029e
067a 4cdf movem.l (sp)+.a5
2000
067e 4e75 rts
0680 323c RdSecl0 move.w #0.d1
0000
0684 4cdf movem.l (8p)+.as
2000
0688 4e75 rts
068a 4cdf RdSec90 movem.l (sp)+.aS
2000
068e 4e75 rts

33

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 . Page
rbc74x10¢80.a

Disk Driver - Device Driver For CC74 VME scsi controller
01191

34

| amn | TR ¥ m F a Fm

fF " F R EW

B | N Fa Fa Fa Fa Fu Fa Fa F

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page

rbc74x10c80.a
Disk Driver - Device Driver For CC74 VME scsi controller

01193
01194
01195
01196
01197
01198
01199
01200

‘01201

01202
01203
01204
01205
01206
01207
01208
01209
01210
01211
01212
01213
01214
01215

01216

01217
01218

01219

01220
01221

01222
01223
01224

01225
01226

01227
01228

01229

01230
01231

01232

01233
01234

Input:

Exit

*
*
*
*
*
*
*
*
*
*

0690 48e7
0004
* Edition

Write One Sector

(al1.1) =
(a2.1) =
(a5.1) =
(d2.1) =

path descriptor
device static storage
buffer pointer
Logical Sector Number

(cc) = Carry set on error else cleared

(dl.w) =

WrSector

2 change

Error code if error else cleared

movem.l a5.-(sp)

* bcs.s WrSec90 error

0694 123c
000a
0698 6100
004e
069c=266a
0000
06a0 323c
0006
06a4 4bea
0904
06a8 6100
00c2
* Edition
O6ac 6534
O6ae 323c
0100
06b2 2a57
06b4 103c
0000
06b8 6100
0178

2 change

* bsr NCRwr

06bc 4bea
090a
06c0 6100
Ollc
06c4 4bea
090b
06c8 6100
0130
* Edition
06cc 082a

2 change

0001090a

06d2 670a
0644 6100
0240
0648 4cdf
2000
06dc 4e75
06de 323c
0000
06e2 4cdf
2000
06e6 4e75

WrSeclO

WrSec90

move.b #CSWBLK, d1 Write sector(s) cmd
bsr SetUp

move.l V_PORT(a2).a3

move.w #6.41 get count
lea HD_cmd(a2).a5 omd ptr
bsr NCRcmd

bcs.s WrSec90
move.w #$100.41

move.l (sp).a5
move.b #MemToDev,d0

bsr NCRdma

lea HD_status(a2).aS

bsr NCRstatus .
lea HD_msg(a2).a5

bsr NCRmsg

btst #ErrStat ,HD_status(a2)

beq.s WrSecl0
bsr senstat

movem.l- (sp)+.aS

rts
move.w #0.d1

movem.l (sp)+.,a5

rts

Microware 08-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 36
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

01236 *

01237 ¢ Set Up Command Buffer

01238 ¢

01239 ¢ This subroutine sets up the command buffer using the

01240 * regs passed by the caller.

01241 ¢

01242 * Input:

01243 * (a2) = address of static storage _

01244 * (d1.b) = Command Code

01245 ¢ (d2.1) = Physical Sector #

01246 * (d3.b) = Block count / Interleave

01247 * Edition 2 change

01248 * (d3.b) = no longer needed. no more interleave.

01249 * Returns: Nothing

01250 *

01251 SetUp

01252 06e8 163c move.b #1.d3 assume one block to read
0001

01253 O6ec=4a29 tst.b PD_TYP(al) Hard Disk ?
0000

01254 * 3NN change .

01255 06£0 6b48 bmi.s SetUp25 ..yes

01256 06£2 48e7 movem.l dé6/a5.-(a7)
0204

01257 06£6=2a69 movea.l PD _DEV(al).,a5 get device table pointer
0000 .

01258 06fa=2a6d movea.l VSDESC(a5).a5 get descriptor
0000 '

01259 06fe 7c00 moveq #0.d6

01260 0700=3c2d move.w MS$DevCon(a5).d6 offset to init bytes
0000

01261 0704 5446 addq #2.4d6 past byte count

01262 0706 dbcé adda.l d6.a5 point to mode bytes

01263 0708=b469 cmp.w PD_TOS(al).d2 in Track 0 ?
0000

01264 070c 65la becs.s SetUpl0 ..yes.always single Density

01265 070e=2069 move.l PD_DTB(al).a0 get drive table
0000

01266 0712=0828 btst #Dens_Bit.DD_FMT(a0) double Density ?
00010000

01267 0718 670e beq.s SetUpl0 ..no B

01268 071a Oc6d cmpi.w #256.M_B1kSO+1(a5) IBM ??
0100000a

01269 0720 6714 beq.s SetUp20 no

01270 0722=3469 add.w PD_TOS(al).d2 add Track 0 Sectors
0000

01271 0726 600e bra.s SetUp20

01272 SetUpl0 ‘

01273 0728 0c6d cmpi.w #256,M_B1kSO+1(a5) IBM ??
0100000a

01274 072e 6706 begq.s SetUp20 no

01275 0730 e38a 1s81.1 #1.42 double sector number

01276 0732 163c move.b - #2.d3 two sectors/block
0002

01277 0736 4cdf SetUp20 movem.l (a7)+.,d6/as
2040

01278 * 3NN end changes

01279

01280

073a 2542 SetUp25 move.l d2,HD_cmd(a2) buffer the logical sector #
0904

073e 1541 move.b dl1.HD_cmd(a2) buffer command
0904

¥l g n Fm [] Fa [. |

F

¥ n £ Fa s | I] Fa Fa ¥ [B ' L

Fa

Microware 08-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 37
rbc74x10c80.a

Disk Driver - Device

01281

01282

01283
01284

01285
01286

01287

01288
01289

01290

01291

01292
01293
01294
01295
01296

0742-1569
00000909
0748 0cO1
0008
074c 6706
074e 022a
00b£0909
SetUp30
0754=1229
0000
0758 0201
0003
075¢c eb09
075e 822a
0905
0762 1541
0905
0766 1543
0908
SetUpEx
076a 4e75
* 3NN end change

move.b

cmpi.b

beq.s

andi.b

move.b

andi.b

1s1.b
or.b

move.b

move.b

rts

Driver For CC74 VME scsi controller

PD_STP(al) .HD_ctrl(a2) Load The Standard Option Byte
#CSRBLK. 41 is it a read command ?

SetUp30 ..Yes

#$BF.HD ctrl(a2) clear 'a’ retry bit on other than read
PD_DRV(AI)I&I get drive #

#$03.41 clear higher bits

#5.41 adjust drive #
HD_psn(a2).dl Or Into MSB's Of Address

dl.HD_psn{a2)

d3,HD_blk(a2) Number of blocks/ Interleave

Return

Microware 08-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 38
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

01298
01299
01300
01301
01302
01303
01304
01305
01306
01307

01308
01309
01310
01311
01312
01313

01314

01315
01316

01317
01318
01319

01320
01321

01322
01323

01324
01325
01326

01327
01328

01329
01330

01331
01332

01333
01334

01335
01336
01337
01338
01339

» % ®» ® & » @°

076¢
076e

0772

0776

077a

077e

3101
422b
0139
323c
2710
038b
013b
6100
0282
66fa

* Edition

*ncmdl move.b #$04,COMNCR(a3)

0780=1029

0784
0786

078a
0790
0794

0798
079%a

079e
07a0

07a4
07a8
07ac

07b0
07b2

07b8
07bc

07¢c0
07c2

07¢6
07c8
07cc
07ce
0740

0742

0000
e408
1740
0127
177¢

NCRcad : give the NCRS5385 a command
entry : a5 omd pointer

a3 base address CC74
a2 static storage
dl.w byte count

RCRcmd:

ncmd0

2 change

00090123

6100
0288
0801
0000
6738
6100
027e
321¢f
422b
0139
422b
013b
1741
0134
6100
0250
66fa
177c

ncmd2

00140123

102b
0129
0800
0007
66£6
0800
0001
6606
1754
0121
60ea
7200
4e75

321¢

ncmd3

ncmd4

nccmd9

move.w
clr.b

move.w

movep.w

bsr

bne.s

move.b

1sr.b
move.b

move.b

bsr

btst

beg.s
bsr

move.w
clr.b

clr.b

move.b

bsr

bne.s
move.b

move.b

btst

bne.s
btst

bne.s
move.b

bra.s
moveq

rts

move.w

da1.-(sp) save byte count
TFRNCR (a3) timout = 10000 * 1024 * Clock period NCR
#10000.41 (Which is 100 nsec)

d1,TFRNCR+2(a3) Timout = 1 sec.
Testirg is there an interrupt pend:ng

ncmd0 yes reset by reading irqg again

'Soft reset ?2?°
PD_DRV(al).d0 get drive nr.

#2,40 make it controller number
d0.DESIDNCR(a3) set target id

#$09,COMNCR(a3) select XEBEC

WaitIrqg bit #0 'function complete' should be set
#0.41 is it set ?

nccemd9 ..no, not ready

Waitlrg bit #1 'bus service' should be set
(sp)+.d1l restore byte count

TFRNCR(a3)

TFRNCR+2(a3)

dl.TFRNCR+4(a3) init transfer count

.TestIrq is there an interrupt pending

ncmd2 yes reset by reading irq again
#$14 .COMNCR(a3) transfer info cmd

AUXNCR(a3) .d0

#7.40

ncmd3 wait for data reg full = O
#1.d0

ncmd4 transfer count zero?

(a5)+.DATNCR(a3) no. do another byte

ncmd3
#0.41

(sp)+.41 restore stack

¥ 2 n h

Fa

TN

Fu

Fs ¥

¥ s

F s KD

o

3 B B

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page

rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

01340 0744-323c
0000

01341 0748=003c
0000

01342 07dc 4e75

01343

01344

move.w

ori

rts

#E§NotRdy.dl

#Carry.ccr

flag unit not ready

it At ik

ricroware 05S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

01346
01347
01348
01349
01350
01351
01352

01353

01354

01355

01356
01357

01358
01359
01360

07ea

07ee

07¢2
0714

07£8

NCRstatus :
entry : a5

get status byte
status ptr

a3 base address

a2 static storage

177¢c NCRstatus:
00010134

177c Nstatusl
00140123

6100

0212

0800

0007

67£0

laadb

0121

4e75

move.b

move.b

bsr

btst

beqg.s
move.b

rts

#1, TFRNCR+4 (a3) transfer count is 1

#814,COMNCR(a3) give transfer command

Testlirq testif irq pending
#7.40 test if data full ncr
Nstatusl No data received

DATNCR(a3), (a5) read status

40

[]

F R []

[

¥ nm

. T T

£R K9 ¥ 3 F R MR

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 41
rbc74x10c80.a

Disk Driver - Device Driver Por CC74 VME scsi controller

01362 *

01363 * NCRmsg : get message byte

01364 * entry : a5 message ptr

01365 * a3 base address

01366 * a2 static storage

01367 *

01368 07fa 177c NCRmsg: move.b #1,TFRNCR+4 (a3) transfer count is 1

00010134

'01369 0800 102b NCRmsgl move.b COMNCR(a3),d0 test if command register is 00

0123

01370 0804 6706 beq.s NCRmsg2

01371 0806 177c move.b #$04 ,COMNCR(a3) message accepted cmd
00040123

01372 080c 177c NCRmsg2 move.b #$14,COMNCR(a3) transfer info cmd
00140123 T

01373 0812 6100 bsr Testlrqg Is there an interrupt
Olea

01374 0816 0800 btst #7.40 test if data full ncr
0007

01375 08la 67e4 beq.s NCRmsgl No data received, try to give command again

01376 081c laab move.b DATNCR(a3), (a5)
0121

01377 * Edition 2 change

01378 0820 177c move.b #$04 ,COMNCR(a3) message accepted cmd
00040123

01379 NCRmsg3

01380 0826 6100 bsr WaitIrq SCSI should be disconnected
01£2

01381 082a 0c01 cmpi.b #$04.d1
0004

01382 082e 66f6 bne.s NCRmsg3

01383 0830 4e75 rts

01384 * Edition 2 end change

01385

01386

rucroware US-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 42
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

01388 ¢

01389 * NCRAma : get data bytes

01390 * entry : a5 data pointer

01391 ¢ a3 base address

01392 ¢ al path descriptor

01393 ¢ a2 static storage

01394 * d0.b transfer direction

01395 * dl.w count

01396 *

01397 NCRdma

01398 0832 038d movep.w d1,TFRNCR+2(a3) store tansfer count
013b

01399 0836 0000 ori.b #(ByteSize+ChainDis+Reqlnit),d0 Output control register
0002

01400 083a 1740 move-.b d0,O0CR+CHNLO (a3)
0005

01401 083e 2744 move.l a5,MAR+CHNLO(a3) store memory address
000c

01402 0842 3741 move.w d1 ,MTC+CHNLO(a3) store number of bytes to transfer
000a

01403 0846 6100 admaO5 bsr TestIrqg clear hanging interrupts
01b6

01404 084a 6600 bne ama05
fffa

01405 084e 177c dmal6 move.b #5894 ,COMNCR(a3) give tranfer info command (with DMA) to NCR chip
00940123

01406 * move.w #100,40
01407 *a@ma07 dbra 40,.dma07

01408 0854 6100 bsr Testlrq clear possible interrupt
0la8

01409 0858 6600 bne dma06
f££f4

01410 085c 177c move.b #$££f ,CSR+CHNLO(a3) clear status register
00££0000

01411 * Edition 2 change

01412 0862=356a move.w V_BUSY(a2).V_WAKE(a2) init sleep
00000000

01413 0868 177c move.b # (IntrptEn+StartOp) ,CHCR+CHNLO(a3) start dma. enable irq
00880007

01414 086e 7000 Amall moveq #0.d0 sleep forever

01415 0870=4e40 os9 F$Sleep wait until V_WAKE
0000

01416 0874=4aba tst.w V_WAKE(a2) valid?
0000

01417 0878 66f4 bne.s dmal0

01418 087a 082b btst #Error_B.CSR+CHNLO(a3) error occured
00040000

01419 0880 660c bne.s dma90 yes

01420 0882 177c move.b #$ff CSR+CHNLO(a3) clear irq cause
00££0000

01421 0888 323c move.w #0.d41
0000

01422 088c 4e75 rts

01423 088e 003c dma%0 ori.b #l.ccr
0001

01424 0892 4e75 rts

01425

- -

fF "M S m S m & .

¥ n

g n

Fn [B [Fu

Fa &N

2 R §FR 1

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 43
rbc74x10c80.a

Disk Driver - Device Driver PFor CC74 VME scsi controller

01427
01428
01429
01430
01431
01432
01433
01434

01435
01436

01437
01438

01439

01440

01441
01442

01443

01444

01445
01446

01447
01448
01449
01450

01451
01452

01453
01454

01455

01456

01457

01458
01459

*

2 » ® » ® @

0894

entry :

NCRrd : get data bytes
a5 data pointer

a3 base address

a2 static
dl.w count

038b RCRrd
013b

* Edition 2 change

0898

089c
08a2
08a6

08aa
O8ac

08b0

08b4

08b8
08bc
08be
08c0
08c2

08c6
08c8

08cc
08ce

08d2
08d6

08da
08dc

6100 datrad0d
0180
bne.s
177c datrdl
00140123
6100 datrd2
015a
6700
0010
1600
0203
0038
0c03
0018
6700
0026
ncrrd40
0800
0001
6610
4a01
66da
0800
0007
67da
laeb
0121
6044
laeb datrd3
0121
102b
0129
0800
0007
66£2
4e75 ncrrd90

storage

movep.w dl,TFRNCR+2(a3) store transfer count

bsr

datrdo
move.b

bsr

move.b
andi.b

cmpi.b

beq

btst

bne.s
tst.b
bne.s

btst

beqg.s
move.b

bra.s
move.b

move.b

btst

bne.s
rts

Waitlrq Clear pending interrupts
#$14,COMNCR(a3)

Testirg Is there an Irqg?

ncrrd40 ..no

do.da3 save aux. status

#$38.43 isolate msg c/d and i/o
#$18.a3 status phase ?

ncrrd90 ..yes, exit

#1.40 test if last byte

datrd3 ~ was last

a1l See if command still accepted
datrdl Interrupt occured, restore command
#7.40 test if data register full
datrd2

DATNCR(a3), (a5)+

datrd2
DATNCR(a3). (a5)+ move last byte too

AUXNCR(a3) ,d0
#7.40

datrd3

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page “
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scasi controller

01461 ¢

01462 * NCRwr : send data bytes

01463 * entry : a5 data pointer

01464 * a3 base address

01465 * a2 static storage

01466 * dl.w count

01467 *

01468 08de 038b NCRwr movep.w dl,TFRNCR+2(a3) store transfer count
013b)

01469 * Edition 2 change

01470 08e2 6100 datwrO bsr Waitlrqg Is there an Irq pending
0136

01471 * bne.s datwr0 Irq register not clear

01472 08e6 177c datwrl move.b #814,COMNCR(a3)
00140123

01473 08ec 6100 datwr2 bsr Testlrq Is there an Irq?
0110

01474 08£0 670c beq.s ncrwr40 ..no

01475 08£2 1600 move.b d0.43 save aux. status

01476 08f4 0203 andi.b #838.43 isolate msg c¢/d and i/o
0038

01477 08£8 0c03 cmpi.b #$18.43 status phase ?
0018

01478 08fc 6716 beq.s datwr3 ..yes, exit

01479 ncrwr40

01480 08fe 0800 btst #1.40 test if last byte
0001

01481 0902 6610 bne.s datwr3 was last

01482 0904 4a01 tst.b dli See if command still accepted

01483 0906 66de bne.s datwrl Interrupt, restore command

01484 0908 0800 btst #7.40 test if data register empty
0007

01485 090c 66de bne.s datwr2

01486 090e 1754 move.b (a5)+,DATNCR({a3)
0121

01487 0912 6048 bra.s datwr2

01488 0914 4e75 datwr3 rts

01489

-y

[

[2 |

¥ e

¥ n

s " R FRA §F R §n

| I]

Fa 2N

L I

R R F 31 FR® §©1N

S

£

A

A

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

01491
01492
01493
01494
01495
01496
01497

01498

01499

01500

01501

01502

01503

01504

01505

01506

01507

01508

01509

01510
01511

01512
01513

01514

01515

01516
01517
01518

01519
01520
01521

01522
01523
01524

01525
01526
01527
01528
01529

01530
01531
01532

* Sense Status command

* Should be called if another command returns with an error

®* Entry: (e2) static storage

* HD_psn. HD_blk, and HD_cntl should not have changed
.

0916 157c senstat move.b #CSRDET.HD_cmd(a2) Set command byte

00030904
091c 4bea lea HD_cmd(a2).a5
0904
0920 323c move.w #6.d41
0006
0924 6100 bsr NCRcmd Execute command
fed6
* Edition 2 change
0928 6568 bcs.s sens95
092a 323c move.w #4.41
0004
092e 4bea lea HD_sense(a2).a5
090c
0932 6100 bsr NCRrd
££60
0936 4bea lea HD_status(a2).a5
090a
093a 6100 bsr NCRstatus
fea2
093e 4bea lea HD_msg(a2).a5
090b
0942 6100 bsr NCRmsg
feb6
* Edition 2 change
0946 082a btst #ErrStat HD_status(a2)
0001090a
094c 663c bne.s sens90
094e 102a move.b HD_sense(a2).d0 Get The Error Code
090c
0952 0200 andi.b #$3F.,d0 Mask Out Address Valid
003f
0956 b03c cmp.b #$18.4d0 correctable error?
0018
095a 672c beq.s sens40 branch if so
* Edition 2 changes
095¢c=1229 move.b PD_DRV(al).dl get drive nr.
0000 '
0960 e409 1sr.b #2.41 make it controller nr
0962 6606 bne.s sens05 it is CC-80 controller
0964 4bfa lea ErrorTbl(pcr).a5 Point At The Error Table
002e '
0968 600e bra.s sens20
. sens05
096a 4bfa lea Error2Tbl(pcr).ab
0058
096e 6008 bra.s sens20
* Edition 2 end changes
0970 b001 senslO cmp.b d1.d40 do error codes match?
0972 6708 beq.s sens30 branch if so
0974 4bed lea 2(a5).a5 skip to next entry
0002
0978 1215 sens20 move.b (a5).d1 get controller error #
097a 6af4 bpl.s sensl0 branch if not end of table
097c 1224 sens30 move.b 1(a5).d1 move errorcode to dl

Microware 08-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 46

rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller

0001
01533 0980 0241
oore
01534 0984-003c
0000
01535 0988 4e75
01536
01537 098a=323c
0000
01538 098e=003c
0000
01539 0992 4e75
01540

sens40

sens90

sens95

andi.w #82f. 41 clear msb of error word
ori #Carry.ccr flag error
rts

move.w #ESNotRdy.d1 What to do if Senstat returns with error?
ori.b #Carry.ccr

rts

[

T ¥ u [¥ u F .

Fa ¥Fa

. [

F R F R F R ¥R R §FRn §Fum 1 T n

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 47

rdbc74x10c80.a
Disk Driver - Device Driver For CC74 VME scsi controller
01542 tescstsetntttne
01543 * Error translation table xebeq 1410
01544 * The first byte being the SASI 1410 controller code & the
01545 * second byte is the corresponding 0S-9 error code.
01546
01547 00000994 ErrorTbl equ *
01548 0994=0000 dc.b $00,ESNotRdy
01549 0996=0100 dc.b 8§01, ESNotRdy B
01550 0998=0200 dc.b $02,ESSeek no seek complete from dsk drv
01551 099a=0300 dc.b $03,ESWP write fault from dsk drv
01552 099c=0400 dc.b $04 .ESNotRdy drive not ready
01553 099e=0600 dc.b $06 .E$Seek track 00 not found
01554 0920=0800 dc.b $08 ,ESSeek drive still seeking
01555 09a2=1000 dc.b $10,ESRead ID field read error
01556 09a4=1100 dc.b "$11 _ES$Read uncorrectable data error
01557 09a6=1200 dc.b $12,E$Seek address mark not found
01558 09a8=1400 dc.b $14 E$Seek not found
01559 09aa=1500 dc.b $15,E$Seek seek error
01560 09ac=1900 dc.b $19,E$Seek bad track flag detected
01561 09%ae=1a00 dc.b $1A,E$SBTyp format error
01562 09b0=1c00 dc.b $1C.ESSeek illegal alt. tk access
01563 09b2=1d00 dc.b $1D,E$Seek bad alternate track
01564 09b4=1e00 dc.b $1E,E$Seek not an alternate track
01565 09b6=1£00 dc.b $1F ,ESSeek alt. tk same as bad
01566 09b8=2000 dc.b $20,ES$Unit invalid command
01567 09ba=2100 dc.b $21,E$Sect illegal disk address
01568 09bc=3000 dc.b $30,E$DevBsy ram diagnostic failure :
01569 09be=3100 dc.b $31,E$DevBsy program memory checksum err i
01570 09c0=3200 dc.b $32.E$DevBsy ecc diagnostic failure %
01571 09c2=££00 dc.b $FF,ESWP flag for end of table
01572
01573 ** 2NN start changes changes
01574 ** 3NN changes
01575 1322222222223 221
01576 * Error translation table CC-80
01577 * The first byte being the SASI CC-80 controller code & the
01578 * second byte is the corresponding 0S-9 error code.
01579
01580 000009c4 Error2Tbl equ *
01581 09c4=0000 dc.b $00, ESNotRdy
01582 09c6=0200 dc.b $02,ES$Seek Seek timeout ‘
01583 09c8=0400 dc.b $04 ESNotRdy drive not ready %
01584 09ca=0600 dc.b $06 ,E$Seek track 00 not found %
01585 09cc=0700 dc.b $07.ESNotRdy Door open
01586 09ce=0800 dc.b $08.ESNotRdy No head loaded
01587 0940=1000 dc.b $10,E$Read ID field read error
01588 09d42=1100 dc.b $11,E$Read DataEr
01589 09d4=1200 dc.b $12,ESWP write fault from dsk drv
01590 09d6=1300 dc.b $13.E$Read ID missing
01591 09d8=1400 dc.b $14 . E$Seek sector not found
01592 09da=1500 dc.b $15.E$Seek seek error
01593 09dc=1600 dc.b $16.E$NotRdy fault
01594 09de=1700 dc.b $17 ,ESWP read only
01595 09e0=1900 dc.b $19,E$BTyp format error
01596 09e2=1a00 dc.b $1A ES$Read wrong data mark
01597 09e4=1b00 dc.b $1B,E$Read Transfer length error
01598 09e6=1400 dc.b $1D.ES$Read Lost data in fdc
01599 09e8=1e00 dc.b $1E,E$Read Data CRC error
01600 09ea=1a00 dc.b $1A. E$SRead wrong data mark
01601 09ec=1£00 dc.b 8$1F .E$NotRdy Fdc busy error
01602 09ee=2000 dc.b $20.ESBTYp invalid command

Microware 08-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 48
rbc74x10¢80.a)

Disk Driver - Device Driver Yor CC74 VME scsi controller

01603
01604
01605
01606
01607
01608
01609
01610
01611
01612
01613
01614

09£0=2100 4c.b
09£2=2200 4c.b
09£4=2300 dc.b
09£6=3000 dc.bd
09£8-3100 dc.b
09£a=3200 dc.b
09fc=££00 dc.b
®*¢ 2NN And 3NN end changes

$21.E8Sect
$22,E8BTYD
$23,E$BTYP
$30,.E8DevBsy
$31.E$DevBey
$32.E$DevBsy
$FF,ESWP

{llegal block address
invalid drive init.

invalid drive number

rem diagnostic failure
program memory checksum err
ecc diagnostic failure
flag for end of table

o -TER

| B] | ¥

[I

'

L

9 % ¥® F® F% @R R KFR F 1R [S |

Microware 0S-9/68000 Resident Macro Assembler V1.5 86/01/23 18:19 Page 49
rbc74x10c80.a

Disk Driver - Device Driver For CC74 VME scsi controller
01616 *

01617 * Testirqg

01618 * Input:

01619 * (a3) = base address of cc-74

01620 *

01621 TestIrq

01622 09fe 102 move.b CSR(a3).d0 get status register dma channel 0
0000 .

01623 0a02 0800 btst #0.40 ~ irq NCR occurred ?
0000

01624 0a06 660a bne.s TstIrqlO ..no, just read auxilary status

01625 0a08 102b move.b AUXNCR(a3),d0 get auxiliary register NCR
0129

01626 0alc 122b move.b IRQNCR(a3).d1 get interrupt register NCR
0124

01627 0al0 4e75 rts

01628 TstIrqlO

01629 0al2 102b move.b AUXNCR(a3),d0 get auxiliary register NCR
0129

01630 0alé 7200 moveq #0.d1 no interrupt

01631 0al8 4e75 rts

01632

01633

01634 *

01635 * WaitIrg

01636 *

01637 * Poll IRQ line NCR chip via DMA controller

01638 * Input: ;

01639 * (a3) = base address cc-74

01640 * .

01641 Oala 102b WaitlIrg move.b CSR(a3).do0 get status register dma channel 0
0000

01645 Oale 0800 btst #0.40 irg NCR occurred
0000

01643 0a22 66f6 bne.s WaitIrg no, try again

01644 0a24 102b move.b AUXNCR(a3).d0 get auxiliary register NCR
0129

01645 0a28 122b move.b IRQONCR(a3).dl get interrup register NCR
0124

01646 Oa2c 4e75 rts

01647

01648 00000az2e ends

e N 5B nn uns BN L 5 B L & B n_n s L a_N | W u_B a“_n u"_». an a_ s .

&l

il

| S

& ¥ B

Appendix CC74

APPENDIX K

DATA SHEET 68450 DMAC

January 1986

(. - » a = | W | | | | W | | B | T | W | | W anm | aBs as | | W | | S | - |

B s

HITACHI MICROCOMPUTER SYSTEM
HD68450-4, HD68450-6, HD68450-8

DMAC (Dnrect Memory Access Controller)

DIRECT MEMORY ACCESS CONTROLLER

Microprocessor implemented systems are becoming increas-
ingly complex, particularly with the advent of high-performance
16-bit MPU devices with large memory addressing capability. In
order to maintain high throughput, large blocks of data must be
moved within these systems in a quick, efficient manner with
minimum intervention by the MPU itself.

The HD68450 Direct Memory Access Controller (DMAC)
is designed specifically to complement the performance and
architectural capabilities of the HD68000 MPU by provxdmg the
following features:

® HMCS68000 Bus Compatible

©® 4 independent DMA Channels

® Memory-to-Memory, Memory-to-Device, Device-to-Memory
Transfers

MMU Compatible

Array-Chained and Linked-Array-Chained Operations
On-Chip Registers that allow Complete Software Control by
the System MPU

Interface Lines that Provide for Requesting, Acknowledging,
and Incidental Control of the Peripheral Devices

Transfers to/from HMCS68000 or HMCS6800 Peripherals
Variable System Bus Bandwidth Utilization

Programmable Channel Prioritization

2 Vectored interrupts for each Channel

Auto-Request and External-Request Transfer Modes

Up to 4 Megabytes/Second Transfer Rates

+5 Voit Operation

The DMAC functions by transferring a series of operands
(data) between memory and device; operand sizes can be byte,
word, or long word. A block is a sequence of operations; the
number of operands in a block is determined by a transfer
count. A singlechannel operation may involve the transfer of
several blocks of data between memory and device.

& DMAC ACCESSIBLE REGISTERS

e St Pur
Therwer

HD684504, HD68450-6,
HD684508.

{DC-64)

® PIN ARRANGEMENT

F Z An/Du
FCoE2 E3 A33/Dis

(Top View)

© HITACHI

HD68450-4 HD68450-6. HD68450-8

® ABSOLUTE MAXIMUM RATINGS

Item

Symbol Value Unit
Supply Voltage ; Vee! : 03~+70 v
Input Voltage x V' -0.3~+70 \"
Operating Temperature Range : Topr ? 0~ +70 °c
Storage Temperature i Teg L -55 ~ +150 °c

* With respect to Vgg (SYSTEM GND)

(NOTE) Permanent LS| damage may occur if maximum ratings are exceeded. Normal operation should be under recomrnended operating conditions.

1f these conditions are exceeded, it could affect reliability of LSI.

8 RECOMMENDED OPERATING CONDITIONS

"
m
Item Symbol i min typ max Unit n
Supply Voltage Vee! ! 475 5.0 5.25 % E
*] .
input Voltage Vin < : 2.0 - Vee v
Vi 0.3 - 08 v E
Operating Temperature Topr 0 25 70 °c
¢ With respect to Vgg (SYSTEM GND)
s ELECTRICAL CHARACTERISTICS C
® DC CHARACTERISTICS (Vg =5V 5%, Vgs = 0V, Ta = 0~ +70°C, unless otherwise noted.)
Item ; Symbol Test Condition min typ max | Unit :
Input ““High” Volitage Vin 20 - Vee v
Input “Low” Voltage Vie Vgs-0.3 - 0.8 \
CS, IACK, BG, CLK, C
Input Leakage Current BEC, ~ BEC; bin - - 10 HA
REQ, ~ REQ3;
Ay~ Aq, Do ~Dys/Ag ~ Ags, E
AS, UDS, LDS, R/W, UAS, |
f:'efgfj’r‘r;i?“ State) | 5TACK, BGACK,OWN, DTC. ;| Irs | - - 10 | pA
pu HIBYTE, DDIR, DBEN, ; : .
FCo ~ FC, ; E
Open Drain (Off State) | ——— — . : ‘
Input Current { IREQ, DONE % loo' - - 20 uA
| A~ A, Do ~Dys/Ag ~ Ass, 'lr .
AS, UDS, LDS, R/W, UAS, | ! \
Output “High” Voltage %CH%FBY—Q%C;E-D—BI% 8—\%\7 z Vou ‘ lon = -400 uA 24 - - Vv
ACK, ~ ACK;, PCL, ~PCL;, !
FCo ~ FC, :
A, ~ A, FCy ~FC, 3 VOL . 'OL =3.2mA - - 05
| Do ~Dys/Ag ~ Ay, AS, UDS, | |
. LDS, R/W, DTACK, BR. = ; .
Output “Low"” Voltage ' OWN, DTC, HIBYTE,DDIR, | VoL ' loL=5.3mA - - 05 @V -
DBEN, ACK, ~ ACK;, UAS, !
| PCL, ~PCL;, BGACK, | - | :
" TREQ, DONE Vo. loL=89mA A — | o5 | .
Power Dissination Po . f=8MHz = 1.0 175 - w .
Capacitance Cin : Tan= 25°C. f=1MHz | b= 15 | pF C
-
[]
2 ® HITACHI \
"

S

B o

LOAD A LOAD B
+5V +Sv
Test 5000 1.11kQ Test
Point Point
o0—4
130pF
130pF ——

{REQ, DONE

3__.{

il

LOAD C

6.0kQ

+5V

7100

152074 ®
or
Equivalent

D. D"/A. ~A,..I§ m m
DTACK. BR, OWN, BTC,

R/W,

HIBYTE, DOIR, DBEN, ACK, ~ ACK;,

HDE68450-4 HDEB450-6 HD88450-8

Figure 1 Test Loads UAS, PCL, ~PCL,;, BGACK
® AC ELECTRICAL SPECIFICATION (Vcc = 5.0V 5%, Vgg = OV, Tq =0~ +70°C)
T 4 MH2 6 MHz 8 MHz .
No. Item Symbol Co nd.::i on [mim pov pe pp ey a Unit
Frequency of Operation £ 2 4 2 6 2 8 MHz
1 | Clock Period teye 250 | 500 | 167 | S00 | 125 | 500 ns
2 | Clock Width “Low” teL 115 | 250 75 | 250 5 | 250 ns
3 | Clock Width ““High" tcH 115 | 250 75 | 250 §5 | 250 ns
4 | Clock Fall Time tey - 10 - 10 - 10 ns
§ | Clock Rise Time ter - 10 - 10 - 10 ns
6 Asynchronous input Setup Time tas) 30 - 25 - 20 - ns
7 | Datainto OSin “Low’ to10SL 0 - o - 0 - ns
8 Dsta in to Clock “‘Low’’ (Setup Time) toicL 0 - 25 - 15 - ns
9 | DS in “High" to Data In Valid tosHO! 0 - 0 - 0 - as
10 | Clock “High” to DDIR ““High” Impedance Off tCHDRZO - 120 - 100 - 80 ns
11 | Clock “High" to DBEN ‘*High’* Impedance Otf tcHDBZO - 120 - 100 - 80 n
12 | Clock “High” to DDIR ““Low’* (MPU Write) tCHDRLM - 90 - 80 - 70 ns
13 | Clock “High'* to DDIR "High'' (MPU Write) tCHDRHM - 90 - 80 - 70 ns
14 | Clock “Low’ to DBEN "Low (MPU Cycle) tcLoBLM - 90 - 80 - 70 ns
15 | Clock 'Low" to DBEN *“High”’ (MPU Cycie) tCLDBHM - 90 - 80 - 70 ns
—= 16 | DS In “*High* to DOTR “High"" Impedance toSHDR2 - 120 - 100 - 80 ns
~— 17 | DS In “High" to DBEN ""High"" Impedance tDSHDBZ - 120 - 100 - 80 ns
—— 18 | Clock “High’ to Data Out Valid (MPU Read) tcHDVM - 140 - 120 - 100 ns
19 | DS In “High" to Data ““High" impedance tpsHpz | Fig.2~6] - 160 - 140 - 120 ns
20 | Clock “Low" to DTACK “Low” teLpTL - %0 | - 80 - 70 ns
=— 21 | DS In "“High" to DTACK “'High" tDSHDOTH - 90 - 80 - 70 ns
22 | DS In “High” to DTACK "High" Impedance toSHDTZ - 220 - 200 - 180 ns
23 | DTACK “Low" to DS In “High" toTLOSH 0 - 0 - (1} - ns
24 | REQ Width “Low" treaL 20 - 20 - 2.0 — | Clk. Per
25 | Clock ""High” to BR “Low" tCHBRL - 90 - 80 - 70 ns
26 | Clock "High” to BR “High" tCHBRH - 90 - 80 - 70 s
27 | BR “Low’ 10 BG “Low" tBRLBGL 0 - 0 - o - ns
28 | BR “Low" to MPU Cycle End {AS in “High"") tBRLASH 0 - o - o - ns
29 | MPU Cycle End {AS In “High") to BGACK “Low’ tASHBL 45 55 45 §5 ! 45 5.5 | Cik. Per.
30 Clock ““High* to BGACK “‘Low’* tcHBL - 90 - 80 - 70 ns
31 | Clock “High" to BGACK “High"” teHBH - 90 - 80 - 70 ns
32 | REQ ''Low’ to BGACK “Low" tREQLBL 120 - 12.0 - 12.0 - | Cik.Per.
33 Clock ““Low’* to BGACK “High” Impedance tcLsz - 120 - 100 - 80 ns
—— 34 Clock ‘"High’ to Address/FC Valid tCHAV - 140 - 120 - 120 ns
- 35 Clock “*High’* to Address/FC/Data "“Nigh'* Impedance | tcyazx - 120 - 100 - 80 ns
36 Clock ““High'* to Address/FC/ Dsta Invslid tCHAZN 0 - 0 - 0 - ns
37 Clock “Low’* to Address ‘‘High’’ Impedance teLAZ - 120 - 100 - 80 ns
38 | UAS “High” 1o Address Invalid {tUHAL 50 - 40 - 30 - ns
(to be continued)
@ HITACHI 3

HD68450-4 HD68450-6 HD68450-8

No. Item Symbol Tast L @N: 6 MH2z 8 MMz Unt
Condition| min - max | min | max | min | max
3 | AS, DS “High" to Address/FC/Data lavalid ISHAZ O . - 40 - D - s
40 | Address/FC Valid to AS, BS “Low"" (Read) tavsL S0 - 40 - 30 - ns
41 | Clock “High" to UAS “"Low" teHUL - 1 90 - 80 - 70 ns
42 | Clock “High"” to UAS “Migh" teHUH - 90 - 80 - 70 as
43 | Clock ““Low’ to UAS ““High" impedancs teLuz - 120 - 100 - 80 ns
— 44 | Clock “High” to AS, DS “Low" teMsL - 80 - 70 - 60 ns
45 | Clock “Low" to AS, DS “High" toLsH - 90 - 80 - 70 ns
48 | Clock "Low" to AS, D5 ""High” Impedance teLsz - 120 - 100 - 80 ns
— 47 | Clock “Low™ to DS “Low" (Write) tcLOSL - 80 - 70 - 60 ns
48 | AS Width “Low"” tasL 545 - 350 - 255 - ns
49 DS Width “Low"’ tosL 420 - 265 - 190 - ns
50 | DS “High to R/W "High" tsSHAM 60 - 50 - 40 - ns
51 | Clock “High” to R/W “Low" ICHAL - 90 - 80 - 70 ns
52 Clock *“High” to R/W “High"’ tCHRH - 90 - 80 - 70 ns
63 | Clock “Low" to R/W “High" Impedance teLRZ - 120 - 100 - 80 ns
54 | Address/FC Valid to R/W “Low" tavRL 110 - S0 25 - ns
65 | R/MW “Low" to DS “Low" (Write) tRLSL 285 - 170 - 120 - ns
568 | Clock “Low" to OWN “Low" tcLoL - 90 - 80 < 70 ns
57 | Clock “Low’ to OWN “High" tcLOH - 90 - 80 - 70 ns
58 | Clock “High to OWN ""Migh” Impedance tcHOZ - 120 - 100 - 80 ns
59 | Clock “High to DDIR “Low’ (Read) tCHDRL - 90 - 80 - 70 ns
60 | Clock “High” to DDIR “High" tcHDRH - 90 - 80 - 70 ns
61 | Clock ““Low™ to DDIR "High" Impedance tCLORZ - 120 - | 100 | - 80 ns
62 | Clock “Low" to DBEN “Low"” teLosL - 90 - 80 - 70 ns
63 | Clock “Low’ to DBEN “High” tcLDBH - 90 - 80 - 70 ns
64 | Clock “Low” to DBEN ““High”’ Impedance tcLosz |Fig.2~6 | - 120 - 100 - 80 ns
65 | Clock “High” to HIBYTE “Low" tCHHIL - 90 - 80 - 70 ns
66 | Clock ““High” to HIBYTE "‘High” tCHHIN - 90 - 80 - 70 ns
67 | Clock “Low" to HIBYTE “Low" teLHIL - 90 - 80 - 70 ns
68 | Clock “Low’” to HIBYTE “High” Impedance teLHIZ - 120 - 100 - 80 ns
69 | Clock "High" to ACK ““Low" tcHACL I 90 - 80 - 70 ns
70 | Clock “High™ to ACK “"High" tCHACH [90 - 80 - 70 s
71 | Clock “Low” to ACK “Low’ tcLACL Po- 90 - 80 - 70 ns
75 | Clock “High to DTC “Low" tCHDTL - % | - 80 - 70 ns
76 | Clock “High” w DTC “High” teHOTH [90 - | 80 - 70 ns
77 | Clock “Low” to DTC *"High"* Impedance teLDTZ - 120 - 100 - 80 ns
78 | DTC Width “Low" toTeL 1.0 - 10 - 10 — | Clk.Per.
81 | Clock “Low" to PCL “Low" (1/8 Clock) tcLprL - 90 - 80 - 70 ns
82 | Clock “Low" to PCL “High" {1/8 Clock) teLPH - 90 - 80 - 70 ns
83 | PCL Width “Low" (1/8 Clock) tecLL 40 - 4.0 - 40 - | Cik.Per.
84 | DTACK “Low” to Data In (Setup Time) tDALDI - 180 - 120 - 90 ns
.85 Data In to Clock “Low" (Setup Time) tpicL 30 - 25 - 15 - ns
86 DS ““High” to Data Invalid (Hold Time) tSHDI 0. - 0 - 0 - ns
87 | DS “High" to DTACK “‘High” t'SHDAH 0 : 240 0| 160 o | 12 ns
88 ﬁ_Ef “Low” to m “Low'’ tgeCDAL S0 - 50 - 50 - ns
89 | BEC Width “Low™ tgecL i20 - 20 - 20 - ! Clk.Per.
90 | OWN “Low” to UAS “Low" ;80 I — 40 - 30 - i ns
91 | DDIR “Low” to DBEN “Low” ! ©s0 . - 40 - 30 - s
92 | DBEN "High” to DDIR “High” 1 50, - | 40 - 30 - 1 s
93 | DTACK Width “High” toTH | P10 - 10 - 1 0 - ns
—
4 ©® HITACHI

-Tm [s

[e |

n F = F m ¥ m

Fa

Fa

D F® F» " " & R FR K12

| - | - | S | | | 18

i

| | _ | | S | -

| N

HD68450-4 HD68450-6, HD68450-8

|

Figure 2 Input Clock Waveform

1 2 3 4 5 8 26 25 26 27 28 29 30 31 32 v 2 3 4 S 6 7 19 20 21 22 23 24 25 26
Ry B W W W W W W Wl Ve Wi
e A o
A=A MPU READ CYCLE — MPU WRITE CYCLE
as 1® . 5 .

gl

.J

L e

@ |
>
©

v . 9
DDIR : " a — [.§’..F}
— kg " = al
DBEN ¥ o ~\ =,
As/Do~ 4@ r L
A23/D1s W‘k - TE=
Data in 53 —) >
— 38 8 —
BTACK! <5 71 f \ F & s .. =

Figure 3 AC Electrical Waveforms — MPU Read/Write

I8 !

REQ ‘) : —

{Fatling Edge Pick-up) | 2 L =

BR i \ x : S

| S8~ ; i
5 i \ . ‘ /"
lg Y i
—9

BGACK) ‘;- s
BUS Cycle] MPU Cycie T = 3 £ WA Cyoe >———MPU
H 4 Cycie

»

O

ol
)]

(NOTES) 1) Setup time for the asynchronous inputs 8G, BGACK, BEC, ~ BEC,, CS, IACK, AS, UDS, LDS, and R/W guarantees their recognition
at the next falling edge of the clock. Setup time for m ~ REQ;, PCLy ~ PCL,, DTACK, and DONE guarantees their recognition
at the next rising edge of the clock.

2) Timing measurements for Input pins are referenced to and from a low volitage of 0.8 volts and a high voitage of 2.0 voits.
Timing measurements for Output pins are referenced to and from a low vojtage of 0.5 voits and a high voltage of 2.4 volts.

3) These waveforms should only be referenced in regard to the edge-to-dge measurement of the timing specifications. They are not
intended as a functional description of the input and output signals. Refer to other functional descriptions and their reiated diagrams
for device operation.

Figure 4 AC Electrical Waveforms — Bus Arbitration

© HITACHI 5

HD68450-4 HD68450-6, HD68450-8

BGACK__[——\

FCo~FCa)
A~ Ay >

—
As/Do~" 1\

of

A23/D18 s
Uas \

o

AS \

A

UDS \—nx
s |

RW.

Ll e

Jl e

oww [\

DDIR

lel_ |®

DBEN

. HIBYTE

DTACK /

I

DTC

ACKo

e

ACK,

DONE

—

ol L Llle

IREQ

) N LN

Figure 5 AC Electrical Waveforms — DMA Read/Write (Single Cycle)

O HITACHI

e e | |

Fa T

| S]

s

e

L A |

Fa

Fa | .

¥

e

L I e | B

s

sl

HD68450-4, HD88450-6, HD68450-8
1 3 4 8 1 2 3 &4 85 8 1 9 10
L VAWAWAYW A WAWAWAWAWAWAWAWA WAWAW
Ll A T \—
FCo~FC:) 4 Read Cycle X Write Cycle > <
Arv~Ay ,‘ { X } /
A23/D18§ o/) S R 4 AN / \
Data in --...< c———
—_— . 5,
UAs |/ & — —
as. \ S _\ 1 j“‘—__
uos_____/_—""\ / \ T\
tos \ S T\ / \ T \—
RW -/ T \—
own__/_\-—\ X e ®'f_ﬂ
DDIR / -\) e
DBEN —/ Y Py ‘t A
) ==]
HIBYTE / p =\
DTACK / \ N \ i
DTC / \ [_J__
ACK] \ @ / e
PCL w 9 —%}"—
—} - a -]]
BEC
Figure 6 Electrical Waveforms — DMA Read/Write (Dual Cycle)

©® HITACHI

HD68450-4 HD68450-6 HD68450-8

® GENERAL DESCRIPTION

This document defines the HD68450, a four channel DMA
Controller. The operation of each channel is independent of the
other channels. The controller supports single-address or dual-
address transfers. The controller supports unchained, array
chained, or link chained operations. The device interface in-
cludes lines for requesting, acknowledging, and providing in-
cidental control for the device.

The DMAC functions by transferring a series of operands
between memory and device; operand sizes can be byte, word,
or long word. A block is a sequence of operands; the number of
operands in a block is determined by the transfer count. A
single channel operation may involve the transfer of several
blocks of data between memory and device.

NOTE:

Throughout the specification, signals are discussed using the
terms active and inactive or asserted or negated independent
of whether the signal is active in the logic one state or the logic
zero state.

® SIGNAL DESCRIPTION
The following section identifies the signals used in connect-
ing to the HMCS68000 bus and peripherals using the DMA

controller. Each signal has a basic definition of its use, a detailed
description of the operation of each signal is contained in sub-
sequent sections. Specific timing information is also contained
in subsequent sections. .

In the following definitions,**MP'J mode™ refers to the state
when the DMAC is chip selected. The term “DMA mode” refers
to the state when the DMAC assurnes ownership of the bus.
The DMAC is in the “IDLE mode™ at all other times.

® ADDRESS DATA BUS (A. ,Do thfough Az;/st)

lnput/Output
Active high

Three-statable

These lines are time multiplexed for data and address leads.
The lines DDIR, DBEN, UAS and OWN are used to control the
demultiplexing of the data/address lines with external gating.
This is explained in a later section.

The bi-directional data lines (Dy ~- Dy¢) are used to transfer
data between the MPU, DMAC, memory and peripheral devices.
Address lines are outputs to address memory and peripheral
devices. .

® ADDRESS BUS (A, through A,)

input/Output Three-statable
Vecl2) CLOCK Atnes o
Ass/) In the MPU mode, the low order seven address lines specify
Ag—Az3/ — which of the internal registers is accessed. The address map for
Do~D1s - REQo these registers is shown in Table 1. During a DMA bus cycle,
Ar-A; — ———ACKo A, ~ A, are outputs containing the low order address bits of
s PCLo the location being accessed.
DS REQ, ® FUNCTION CODES (FC, through FC,)
l'.‘JD,WS - - - é—\g—{(‘l Output Three-statable
BTACK Active high
BR REQz These output signals provide the function codes during DMA
BG ACK: bus cycles. They are three-stated whie in MPU mode or IDLE
BGACK—=—"" fo——— PCL2 mode.
IRQ f———— REQ3 ® CLOCK (CLK)
IACK —————ACK3
S pe———— PCL3 Input
Hla%g-—-——— This is the HMCS68000 system clock and must not be gated
DBEN———— off at any time. Transferring to or from the DMAC registers,
DDIR——— DONE sampling of channel request lines, and gating of all control
lines are done intemnally in conjunction with the CLK input.
BECo— —
BEC,— ® CHIP SELECT (CS)
BEC:—] DTC
input
;C:o Active low
1
FC2 This input signal is used to select the DMAC for programmed
transfers to and from the DMAC. The DMAC is deselected when
l [the CS input is inactive. If the CS input is asserted during a bus
GND(2) cycle which is generated by the DMAC, the DMAC internally
terminates the bus cycle, signals an address error, but does not
perform an operation. This protects DMAC registers during
. bus cycles which are generated by irself. However, bus cycles
Figure 7 Input and Output Signals ,
8 @ HITACHI

[| ¥R ¥ m []

.

[A]

LB .

¥F &R &=

F:R £ ® &N

F R ¥R §¥DMQ

generated by any other bus masters, including other DMACs,
may address and change the DMAC's internal registers and.
consequently, the operation of the DMAC.

¢ ADDRESS STROBE (AS)

Input/Qutput Three-statable

Active low

In the MPU or IDLE modes, this signal is monitored by the
DMAC if it is requesting, and has been granted, permission to
become bus master. In the DMA mode, this signal is an output
indicating that the DMAC has placed a valid address on the bus.

e UPPER ADDRESS STROBE (UAS)

Output Three-statable

Active low

This line is an output to latch the upper address bits on the
multiplexed data/address lines. Further explanation is given in
later sections and diagrams. It is three-stated during the MPU
mode and the IDLE mode.

¢ OWN (OWN)

Output Three-statable

Active low

This line is asserted by the DMAC during DMA mode. It is
used to control the output of the transparent latch used to
latch the address lines. This line may also be used to control
the direction of bi-directional buffers when the loads on
AS, ILDS, UDS, R/W and other signals exceed the drive of the
DMAC pins. It is three-stated during the MPU mode and the
IDLE mode.

® DATA DIRECTION (DDIR)

Output Three-statable

This line controls the direction of data through .a bidirec-

" tional buffer on the data bus. It is three-stated during the IDLE

mode.
e DATA BUS ENABLE (DBEN)

Output
Active low

Three-statable

This line controls the output of bidirectional buffers on the
multiplexed data/address bus. It is three-stated during the IDLE
mode.

® HIGH BYTE (HIBYTE)

Output
Active low

Three-statable

This line is used when the operand size is byte in the implicit
addressing operation. It is asserted when data is present on the
upper eight bits of the data bus. It is three-stated during the
MPU mode and the IDLE mode.

HD68450-4 HD68450-6.HD68450-8

o READ/WRITE (R/W)

Input/Output Three statable

Active low

Read/Write (R/W) is an input in the MPU mode and an out-
put during the DMA mode. In the MPU mode, it is used to
control the direction of data flow through the DMAC's input/
output data bus interface. In the DMA mode, R/W is an output
to memory and 1/O controllers. It is held three-stated during
IDLE mode.

® UPPER DATA STROBE (UDS)

lnput/Output Three-statable

Active low
® LOWER DATA STROBE (LDS)

Input/Output Threestatable

Active low

These lines are sxtensions of the address lines indicating
which byte or bytes of data (LSB, MSB) of the addressed word
are being addressed

® DATA TRANSFER ACKNOWLEDGE (DTACK)

Input/Output Three-statable

Active low

In the MPU mode DTACK is an output indicating that the
DMAC has completed the requested data transfer (read or
write).

In the DMA mode, the DMAC monitors DTACK to deter-
mine when a data transfer has completed. In the event that a
preemptory bus exception occurs prior to or concurrent with
DTACK, the DTACK response is ignored and the bus exception
honored. In the IDLE mode, this signal is held in three-state.

® BUS EXCEPTION CONTROLS (BEC, through BEC,)

Input
Active low

These lines provide an encoded signal indicating some excep-
tional bus condition. See Page 35 for details on bus exceptions.

® BUS REQUEST (BR)

Output
Active low

The Bus Request (BR) output is generated by the DMAC to
request ownership of the bus.

® BUS GRANT (BG)

Input
Active low

The Bus Grant (BG) input indicates to the DMAC that it
is to be the next bus master. This signal is originated by the
MPU and propagated via a daisy chain or other arbitration
mechanism. The DMAC cannot assume ownership until both

® HITACHI 9

HD68450-4 HD68450-6 HDEB450-8

AS and BGATK become inactive. Once the DMAC acquires
the bus, it does not continue to monitor the BG input.

® BUS GRANT ACKNOWLEDGE (BGACK)

Input/Output
Active low

Bus Grant Acknowledge (BGACK) is a bidirectional control
line. As an output, it is generated by the DMAC to indicate
that it is the bus master.

As an input, BGACK is monitored by the DMAC in order
to determine whether or not the current bus master is a DMA
device or not. BGACK must be inactive before the DMAC may
assume ownership of the bus.

Three-statable

e INTERRUPT REQUEST (iRQ)

Output
Active low

Open drain

Interrupt Request (IRQ) is used to interrupt the MPU.
e INTERRUPT ACKNOWLEDGE (fACK)

input
Active low

Interrupt acknowledge (IACK) is an input to the DMAC
indicating that the current bus cycle is an interrupt acknowl-
edge cycle. By the MPU, the DMAC responds with the contents
of the normal or exception interrupt vector register of the
highest priority channel requesting an interrupt. TACK is not
serviced if the DMAC has not generated IRQ.

® CHANNEL REQUEST (REQ, through REQ;)

Input
Falling edge or active low

The four REQx inputs (REQ, ~REQ3;) are falling edge sen-
sitive inputs when the request mode is cycle steal. The REQx
inputs are low level sensitive when the request mode is burst.

® CHANNEL ACKNOWLEDGE (ACK, through ACKj;)

Output
Active low

Non-three-statable

The four ACKx lines (ACK, ~ ACK};) indicate to a request-
ing peripheral device that the bus has been acquired and that
the requested bus cycle is beginning. The ACKx line may be
used as part of the enable circuit for bus interface to the pe-
ripheral.

® PERIPHERAL CONTROL (PCL, through PCL;)

Input/Output
Active iow

Three-statable

The four PCLx lines (PCL, ~ PCL;) are multi-purpose lines
which may be individually programmed to be a START output,
an Enable Clock, READY, ABORT, STATUS, or INTERRUPT
input.

o DONE (DONE)

Input/Output
Active low

Ogpen drsin

~ The one DONE output is normally high and goes low concur-
rent with ACKx if that channel's operation is completed as a
result of that transfer. As an input, it allows the device to indi-
cate a normal termination of the operation.

® DEVICE TRANSFER COMPLETE (DTC)

Output

Active jow

Three-statable’

The single device transfer complete output is normally high
and goes low to signal to the device that the data transfer is
complete. On a write to memory operation, it indicates that
the data has been successfully stored. On a read from memory

operation, it indicates that the data is present at the device and
should be latched.

8 INTERNAL ORGANIZATION
The DMAC has four largely independent DMA channels.
Each channel has its own set of channel registers. These registers

define and control the activity of the DMAC in processing a
channel operation.

One Set Per Channel

One Per DMAC > E,::-E' {GCR)

Figure 8 Internal Registers

® REGISTER ORGANIZATION

The internal accessible register organization is represented in
Table 1. Address space not used within the address map is
reserved for future expansion. A read from a reserved location
in the map results in a read from the “null register”. The null
register returns all ones for data and results in a normal bus
cycle. A write to one of these locatiorns results in 2 normal bus
cycle but no write occurs. Unused bits of a defined register read
as zeros.

10 @ HITACHI

9 f % F® f31 £ 2 FR F® F3 @3 N

- -

-TTR

¥ m

| [B [

Teble 1 DMAC Register Addressing Assignments
Addres Bits

Register 7 6 5 4 3 2 10 Mode
Channel Status Register cc 000000 RMW
Channel Error Register c¢c 000001 R
Device Control Register c¢c 000100 RMW
Operstion Control Register cc 000101 RW
Sequence Control Register cc 000110 RMW
Channel Control Register cc 0001111 RW
Memory Transter Counter cc 00 101b RW
Memory Address Register cc 001 1s s RMW
Devics Address Register cc 010 1s s RMW
Base Transter Counter ccO01101b RW
Bass Address Register cc 01113 s RW
Normal Interrupt Vector cc 100101 RMW
Error Interrupt Vector cc 00111 RMW
Channe! Priority Register cc 101 01 BRMW
Memory Function Codes cc 101001 RMW
Device Function Codes cc110001 RW
Base Function Codes c e 111001 RMW
General Control Register 11111111 RW

cc: 00 — Channel #0, 01 — Channel #1
10 — Channel #2, 11 — Channel #3
s: 00 — High-order, 01 — Upper middie,
10 — Lower middle, 11 — Low-order
b: 0 — High-order, 1 — Low-order
* See Channe! Status Register on Page 31.

® DEVICE CONTROL REGISTER (DCR)

The DCR is 2 device oriented control register. The XRM bits
specifies whether the channel is in burst or cycle steal request
mode. The DTYP bits define what type of device is on the
channel. If the DTYP bits are programmed to be a HMCS6800
device the PCL definition is ignored and the PCL line is an
Enable clock input. If the DTYP bits are programmed to be a
device with READY, the PCL definition is ignored and the PCL
line is a ready input (active low). The DPS bit defines what
port size the device has. The PCL bits define the function of
the PCL line. When the content of the DTYP bits_implies
HMCS6800 compatible device, or Device with ACK and
READY, the content of the PCL bits is disregarded. The XRM
bits are ignored if an iuto request mode in the OCR is selected.

7 6 5 4 3 2 1 0

XRM DTYP |DPS| O PCL
XRM External Request Mode
' 00 Burst Transfer Mode
01 (undefined, reserved)
10 Cycle Steal Mode without Hold
11 Cycle Steal Mode with Hold
DTYP Device Type
00 HMCS68000 compatible device, explicitly addressed
01 HMCS6800 compatible device, explicitly addressed
10 Device with ACK, implicitly addressed
11 Device with ACK and READY, implicitly address
DPS Device Port Size
0 8 Bit Port
1 16 Bit Port
PCL Peripheral Control Line

00 Status Input (can be read by reading CSR)

HD68450-4 HD68450-6,. HD68450-8

01 Status Input with Interrupt
10 Start Pulse, Negative 1/8 CLK
11 Abort Input

0 Bit 2 Not Used

¢ OPERATION CONTROL REGISTER (OCR)

The OCR is an operation oriented register. The DIR bit
defines the direction of the transfer, to or from memory. The
SIZE bits define the size of the operand and how the transfer
count and address registers are to be handled. The CHAIN bits
tells the DMAC if any or what type of chaining is to be per-
formed. The REQG bits define how requests for transfers are
generated. Chaining and requests are discussed in a later section.

7 6 5 4 3 2 1 0
DIR] O SIZE CHAIN REQG

DIR Direction
0 Transfer from memory to device
1 Transfer from device to memory

0 Bit 6 Unused

SIZE Operation Size
00 Byte
01 Word
10 Long word

11 (undefined, reserved)

CHAIN Chaining Operation
00 Chain operation is disabled
01 (undefined, reserved)

10 Array chaining
11 Linked chaining

DMA Request Generation Method
00 Auto-request at rate limited by General Control
Register (GCR)
01 Auto-request at maximum rate
- 10 REQ line injtiates an operand transfer
11 Auto-request the first operand, external request
for subsequent operands

REQG

® SEQUENCE CONTROL REGISTER (SCR)
The SCR is used to define the sequencing of memory device
addresses.

7 6 5 4 3 2 1 0

0 0 o MAC DAC
0 Bits 7, 6,5, 4 Not Used _
MAC Memory Address Count
00 Memory address register does not count
01 Memory address register counts up
10 Memory address register counts down
11 (undefined, reserved)
DAC Device Address Register Count

00 Device address register does not count
01 Device address register counts up

10 Device address register counts down
11 (undefined, reserved)

Q© HITACHI 11

HD68450-4 HD68450-6 HD68450-8

® CHANNEL CONTROL REGISTER (CCR)

The CCR is used to start or terminate the operation of a
channel. The register also determines if an interrupt is to be
generated at the termination of an operation (normal or error
termination). Setting the STR bit causes immediate activation
of the channel; the channel will be ready to accept requests
immediately. The STR and CNT bits of the register may not
be reset by a write to the register. The software abort bit
(SAB) may be used to terminate the operation. Setting the SAB
bit will reset STR and CNT. Setting the HLT bit will halt the
channel, and resetting the HLT bit will resume the operation.

7 6 5 4 3 2 1 0
STRICNT| HLT{SAB| INT| O o 0

STR Start Operation
0 No operation is pending
1 Start operation
CNT Continue Operation
0 No continuation is pending
1 Continue operation
HLT Halt Operation
0 Operation not halted
1 Operation halted

SAB Software Abort
0 Channel operation not aborted
1 Abort channel operation

INT Interrupt Enable
0 No interrupts enabled
1 Interrupts enabled

o Bits 2, 1, 0 Not Used

® CHANNEL STATUS REGISTER (CSR)
The CSR is a register containing the status of the channel.

7 6 5 4 3 2 1 o
COC|BTC|NDT|ERR| ACT| O | PCT|PCS

COC Channel Operation Complete
0 Channel operation incomplete
1 Channel operation complete

BTC Block Transfer Complete
0 Block transfer incomplete
1 Block transfer complete

NDT = Normal Device Termination

0 No normal device termination

1 Device terminated operation normally
ERR Error Bit

0 No errors
1 Error as coded in CER

ACT Channel Active
0 Channel not active
1 Channel active

PCT PCL Transition
0 No PCL transition occurred

1 PCLhigh
0 Bit 2 Not Used
® CHANNEL ERROR REGISTER (CER)
The CER is an error condition status register. The ERR bit

of CSR indicates if there is an error or not. Bits 0—4 indicate
what type of error occurred.

7 6 5 4 3 2 1 0
0 0 o ERROR CODE

0 Bits 7, 6, 5 Not Used

ERROR CODE
00000 No error
00001 Configuration error

- 00010 Operation timing error

00011 (undefined, reserved)
001rr Address error
010rr Bus error
0llmr Count error
10000 External abort
10001 Software abort

IT register or counter code
01 Memory address or memcry counter
10 Device address
11 Base address or base counter

¢ CHANNEL PRIORITY REGISTER (CPR)
The CPR is used to define the priority level for each channel.

7 6 5 4 3 4 1 0
0 o o (o} 0 ce

cp Channel Priority

These two bits determine the priority (0—3) of the
channel.

0 Bits 7, 6,5, 4, 3, 2 Not Used

® GENERAL CONTROL REGISTER (GCR)
The GCR is used to define what portion of the bus cycles is
available to the DMAC for limited rate auto-request generation.

7 6 5 4 3 2 1 0
0) 0 0 BT BR

BT Burst Time
The number of DMA clock cycles per burst that the
DMAC allows in the auto-recuest at a limited rate of
transfer is controlled by these two bits. The number
is 2** (BT+4) (two to the BT+4 power).

BR Bandwidth Ratio
The amount of the bus bandwidth utilized by the auto-
request at a limited rate transfer is controlled by these
two bits. The ratio is 2** (BR+1) (two to the BR+]

1 PCL transition occurred power).

PCS The State of the PCL Input Line 0 Bits 7, 6, 5, 4 Not Used
0 PCLlow

12 ® HITACH!

[|

[i |

Fm ¥

2 F® FQ® FfF R fF % R F R F3% FR FR f R @R R R §FR &R

& | | S

B s B &

B

| -

® ADDORESS REGISTERS

Three 32-bit registers are utilized to implement the Memory
Address Register, Device Address Register, and the Base Address
Register. Due to packaging limitations. only the least significant
twenty-four bits are connected to the address output pins.

® FUNCTION CODE REGISTERS

Each address register has a function code register associated
with it. The function code registers are three bits wide and are
loaded via the lowest three bits of the data bus.

® TRANSFER COUNT REGISTERS

Two sixteen bit counters per channel are provided to imple-
ment the Memory Transfer Counter and the Base Transfer
Counter.

® INTERRUPT VECTOR REGISTERS
Each channel has an interrupt vector register and an error
interrupt vector register, each consisting of eight bits.

8 OPERATION DESCRIPTION
® GENERAL DESCRIPTION

A DMAC channe] operation proceeds in three principal
phases. During the initialization phase, the MPU configures the

ax ML
1234586 23242526272829303132
Ar—-A2
\ -
L \} /A
CS or IACK L\ s Vi \
RW -
UDsS |\ — ¥ B
s 1) r—
ODIR —_— "7 N~
BN —— TN g
Do~0n ——>————
XDo-XD1s ——
DTACK -- « f—
cLK —--
123456 23242526272829303132

Figure 9 MPU Read from DMAC — Word

(NOTES)

1) The TS equation includes data strobe.

2) De ~Dis represent the multiplexed address/data pins which are
used for data only during MPU mode.

3) XDy ~ XDy is the external or 68000 system data bus, i.e. on the
system side of the dsta buffers.

4) Cycle lengths reflect the response of the current HD68000 MPU.

5) In the MPU resd from DMAC mode, the DMAC will not give
TBTACTK until the data is guaranteed valid on the system data bus for
one half clock. :

8) During the MPU read, the DMAC must remove signals within one
cdock after is negated. -

7) The DMAC will negats DTACK within one clock after AS is ne-

gated.
8) During the MPU writs to DMAC, the DDIR line will be driven low
to direct the data buffers toward to DMAC before the buffers are

enabled.

9) The DMAC will Istch the data (MPU write 10 OMAC) before sssert-
ing DTACK. Oncs the data is latched the DMAC will negate DBEN
and DDIR in the proper order.

10) &S will be removed within one clock after AS is negated.

11) Nots thst DDIR and must drive out of tristats when CS is
detected and then must be re-tristated at the end of the cycle.

12) The clock reference shown in this diagram is the CPU clock.

HD68450-4 HD68450-6 HD68450-8

channel control registers, sets initial addresses, and starts the
channel. During the transfer phase, the DMAC accepts requests
for data operand transfers, and provides addressing and bus
controls for the transfers. The termination phase occurs after
the operation is completed when the DMAC reports the status
of the operation. Refer to Figure 9 through Figure 11 for MPU,
DMAC communication timings.

This section describes DMAC operation. A brief description
of the device/DMAC communication is given first. Next, the
transfer phase is covered, including how the DMAC recognizes
requests and how the DMAC arranges for data transfer. Follow-
ing this, the initialization phase is described. The termination
phase is covered, introducing chaining, error signaling, and bus
exceptions. A description of the channel priority scheme rounds
out the section.

The MPU reads and writes the DMAC internal registers to
control the operations. Figure 9 indicates the timing diagram
when the MPU reads the contents of the DMAC internal regis-
ter. the MPU outputs A, ~ Aj,, AS, R/W, UDS, and IDS and
accesses the internal register. The DMAC outputs data on the
bus, the buffer control signals (DDIR and DBEN), and DTACK.
Read cycle consists of sixteen clocks. Figure 10 shows the timing
of the MPU writes to the DMAC. Write cycle consists of thirteen
clocks.

A:: _1_& 345678 555181920212223242526‘_«
S T 1 r—— .
RW W ——- n

Do-Dus -—— D
XDo~XD1§ ——————— @ »—
DTACK -— -~ I
(=13

123456 78 ~181920212223242528
Figure 10 MPU Write to DMAC — Word

Figure 11 indicates the DMAC bus arbitration timing. The
DMAC_asserts BR to request the bus mastership. The MPU
issues BG to grant the ownership in the next bus cycle. After
the end of the current cycle, the DMAC starts its own bus cycle
accompanied with the dead cycles.

@ HITACHI 13

HD68450-4 HD68450-6 HD68450-8

e LU MU L UL L Lurure

BR "\) . /
S] / : -
BEACR) T, . |
ovaLES . _— T Ty
OWN - "\ . - - ST —
CONTROS . -

—————Non DMAC —}——Dead——

- - ‘F- . - T
SUL 0 N I I U I I s Y e Y O o O

{NOTES) 1) Note the timing of

DMAC Cycles ————}—— Dead ——Non DMAC

the OWN signal. 1t will drive active one half clock prior to the start of the first DMAC cycle. It will drive inactive one

haif clock stter the end of the last DMAC cydle. At this same time, all other control signais will tristate. One hatf clock after this, the

signal will tristate.

2) CONTROL BUS refers to the control pins such ss DBEN, AS, ATK, etc. on the DMAC.

3) BR signal will be negated one clock after

signal is asserted.

Figure 11 DMAC Bus Arbitration Timing

® DEVICE/DMAC COMMUNICATION

Communication between peripheral devices and the DMAC
is accommodated by five signal lines. Each channel has a request
(REQ), an acknowledge (ACK), and a peripheral control line
(PCL). The last two lines, the DONE and DTC lines, are shared
among the four channels.

{1) REQUEST (REQ)
A channel can make a request for service by asserting the
individual channel request line.

(2) ACKNOWLEDGE (ACK)

Each channel has an acknowledge line which is activated
during transfers to or from the device. This line is used to
implicitly address the device which is transferring the data.
It may also be used to control the buffering circuits between
the device and the HMCS68000 bus.

{3) PERIPHERAL CONTROL LINE (PCL)

Each channel has a peripheral control line. The function of
this line is quite flexible, and is determined by the programmed
state of DCR.

The DTYP bits of the DCR define what type of device is
on the channel. If the DTYP bits are programmed to be a
HMCS6800 device, the PCL definition is ignored and the PCL
line is an Enable clock input. If the DTYP bits are programmed
to be a device with READY, the PCL definition is ignored and
the PCL line is a ready input. S

The PCL line is active at all times when the PCL line is pro-
grammed as a Status input, Interrupt input, a Ready input, or
an Enable input. When programmed to be an Abort input it is
only active after the channel has been started.

PCL AS A STATUS INPUT

The PCL line may be programmed as a status input. The
status level can be determined by reading the PCS bit in the
CSR. If a negative transition occurs and remains stable for two
DMAC cdock cycles on the PCL line, the PCT bit of the CSR
is set. This bit is cleared by resetting the DMAC or writing to

14

the PCT bit of the Channel Status Register.

PCL AS AN INTERRUPT

The PCL line may also be programmed to generate an inter-
rupt on a negative transition. This enables an interrupt which
is requested if the PCT bit of the CSR is set.

PCL AS A STARTING CLOCK PULSE

The PCL line may be programmed to output a single pulse.
The duration of the active low pulse is eight clock cycles, and
starts when the channel is activated.

PCL AS AN ABORT INPUT
The PCL line may be programmed to be an negative transi-
tion abort inpyt which terminates an operation by signaling the
abort _error. n this function has been programmed,
line is only active after the chanrel has been start e

negative transition must remain stable in a low level for a
minimum of two DMAC dock cycles.

PCL AS AN ENABLE INPUT

If the DTYP bits are programmed tc be a HMCS6800 device,
the PCL definition is ignored and the PCL line is an Enable
clock input. The Enable clock downtime must be as long as
five clock cycles, and must be high for a minimum of three
DMAC clock cycles, but need not be synchronous with the
clock.

PCL AS A READY INPUT

If the DTYP bits are programmed to be a_device with
READY, the PCL definition is ignored and the PCL line is a
READY input. The READY is an active low input.

(4)_DONE

DONE is an active low signal which is asserted when the
memory transfer count is exhausted, and there are no more
links te pick up in a chaining operation or the continue bit is
not set. It is asserted and negated coincident with the acknowl-
edge signal of the last operand part.

© HITACHI

S

|

¥ m

Fa | | | Fa ¥ u | .

¥ n

n | | | [S |

[g] e

|]

[. F e

Fa

&l

B

B i

&

The DMAC also monitors the state of the DONE line while
acknowledging a device. If the device asserts DONE, the DMAC
will terminate the operation after the transfer of the current
operand. The DMAC terminates the operation by clearning the
ACT bit of the CSR, and setting the COC and NDT bits of the
CSR. If both the DMAC and the device asserts DONE, the
device termination is not recognized, but the channel operation
does terminate.

{5) DATA TRANSFER COMPLETE

DTC is an active low signal which is asserted when the actual
data transfer is accomplished. If data is being transferred from
the device, DTC is asserted to indicate that the data is valid at
the device, and should be latched. If a preemptory bus excep-
tion terminates the bus cycle, is not asserted. DTC is an
active signal whenever the DMAC is a bus master. It is asserted
for both memory and peripheral DMAC initiated transfers.
® REQUESTS

Requests activate the DMAC to transfer an operand. The
REQG bits of the OCR determine the manner in which requests
are generated. Requests may be externally generated by cir-
cuitry in the device, or internally generated by the auto-request
mechanism. Usually a single operation uses only one method
of request generation, but an operation can auto-request the
first transfer and then wait for the device to request further
transfers.

(1) AUTO-REQUEST TRANSFERS

The auto-request mechanism proyides generation of requests
within the DMAC. These requests can be generated at either
of two rates: maximum-rate, so that the channel always has a
request pending, or limited-rate. The limited rate auto-request
feature functions by monitoring the bus utilization.

AUTO-REQUEST BUS UTILIZATION

The DMAC monitors bus utilization to control the limited-
rate auto-request (LRAR) feature. This monitoring is also used
to determine when an external request device has paused.

The DMAC divides time into equal length sample intervals
by counting clock cycles. The end of one sample interval marks
the beginning of the next. During a sample interval, the DMAC
notes bus and channel activity. At the end of the interval,
decisions are made which affect channel operations during the
next sample interval, as shown in Figure 12.

TIME -
Previous Current Next
Sample Interval Sample Interval Sampile interval
; LRAR
i intervel

Figure 12 DMAC Sample Intervals

Based on the DMA activity during a sample interval, the
DMAC allows limited-rate auto-requests for some initial portion
of the next sample interval. The length of the sample interval,
and the portion of the sample interval during which limited
rate auto-requests can be made are controlled by the BT and
BR parameters in the GCR. The length in clock cycles of the
subinterval during which the DMAC allows limited-rate auto-
requests is controlled by the BT. The number is 2** (BT+4).
For example, if BT equals TWO and the DMA utilization of
the bus was low during the previous sample interval, then the

HD68450-4 HD68450-6.HD68450-8

DMAC generates as many suto-request transfers as is possible
during the first 64 clock cycles of the current sample interval.
The ratio of the length of the sample interval to the length
of the limited-rate auto-request interval is controlled by the
BR bits. This same parameter is used to determine the level
of DMA bus utilization during the sample interval. If the frac-
tion of DMA clock cycles during a sample interval exceeds
the programmed utilization level, the DMAC will not allow
limited-rate auto-requests during the next sample interval
Either ratio is 2** (BR+1) (2 raised to the BR+1 power). For
example, if BR equals THREE, then at most one out of 16
clock cycles during a sample interval can be a DMA cycle, and
still the DMAC would allow limited-rate auto-requests during
the next sample interval. The DMAC monitors
during each clock cycle to determine whether or not that clock
cycle is used by a DMA device. If the BGACK input is active,
the DMAC assumes that that clock cycle is for a DMA device.
If it is inactive, the DMAC assumes that it is not a DMA cycle.
The sample interval length is not a direct parameter, but s
equal to 2** (BT+BR+5) clock cycles. Thus the sample interval
can vary from 32 10 2048 clock cycles.

AUTO-REQUEST

If the REQG bits in the OCR indicate auto-request at the
maximum rate, the DMAC acquires the bus after the operation
is started and transfers data until channel termination. The
DMAC does not relinquish the bus until termination. If a
request is made by another channel of equal or higher priority,
the DMAC services that channel and then resumes the auto-
request sequence.

If the REQG bits indicate auto-request at a limited rate,
the channel generates requests only during the limited rate
auto-request interval and then only when the bus utilization
was below the required threshould during the previous sampie
interval. As a consequence, if an auto-request at maximum rate
transfer is started, no limited rate auto-requests are generated
before the termination of the maximum rate auto-request
operation. .

The ACK, PCL and DTC lines are held inactive during an
auto-request operation if the device type is HMCS68000 com-
patible. Consequently, any channel may be used for the auto-
request function in addition to its normal application without
disturbing any peripheral devices connected to that channel.

Refer to Figure 13 for more specific timing diagrams.

(2) EXTERNAL REQUESTS

If the REQG bits of the OCR indicate that the REQ line
generates requests, the transfer requests are generated exter-
nally. The request line associated with each channel allows the
device to externally generate requests for DMA transfers. When
the device wants an operand transferred, it makes a request by
asserting the request line. The external request mode is deter-
mined by the XRM bits of the DCR, which allows both burst
and cycle steal request modes. The burst request mode allows
a channel to request the transfer of multiple operands using
consecutive bus cycles. The cycle steal request mode allows
a channel to request the transfer of a single operand.

BURST REQUEST RECOGNITION

In the burst request mode, the REQ line is an active low
input. The device requests an operand transfer by asserting
REQ. The DMAC services the request by arbitrating for the
HMCS68000 bus, obtaining the bus, and notifying the peripher-
al by asserting the acknowledge line. If the request line is active

@ HITACHI 15

HD68450-4 HD68450-6.HD68450-8

when the DMAC asserts acknowledge, and remains active at
least until the DMAC asserts device transfer complete. the
DMAC recognizes a valid request for another operand. which
will be transferred during the next bus cycle if the channel has
priority. If the request line is negated before the DMAC asserts
device complete, the DMAC determines there is no valid request
for an operand transfer, and no transfers are generated for that
channel. Channels of the same or higher priority within the
same DMA Controller may have DMA operand transfer requests
serviced during this mode.

If the request is negated before the first transfer cycle has
started, the cycle will terminate with the DMAC returning the
bus.

Refer to Figure 14 for more specific timing diagrams.

CYCLE STEAL REQUEST RECOGNITION

In the cycle steal request mode, the device requests an
operand transfer by generating a falling edge on the REQ line.
The DMAC services a request by arbitrating for the bus, obtain-
ing the bus and notifying the peripheral by asserting the ac-
knowledge line.

After an request edge has been asserted it must remain at
the assertion level at least two clock cycles. The request line
must be inactive at least one clock cycle before a request is
made. If another request from the channel is received before
the first operand part of a former request is acknowledged,
the second request is not recognized.

After the DMAC completes the transfer, it may service
another channel, relinquish the bus, or hold the bus and wait
for another request. If there are pending requests from other
channels, one of the requesting channels is serviced. If there
are no requests, the XRM bits determine whether the DMAC

will relinquish the bus. or retain ownership.

If the XRM bits specify cycle steal with hold, the DMAC will

retain ownership. The bus is not given up for arbitration until
the channel operation terminates or until the device pauses.
The device is determined to have paused if it does not make
any requests during the next full sample interval. The sample
interval counter is free running and is not reset or modified by
this mode of operation. The sample mnterval counter is the same
counter that is used for Limited Rate Auto Request and is
programmed via the GCR.

If the XRM bits specify cycle steal without hold, the DMAC
will relinquish the bus. If the device generates a request before
DMAC asserts DTC for the last operand part, the DMAC will
retain ownership of the bus, and that request will be serviced
before the DMAC relinquishes the bus.

Refer to Figure 15 and Figure 16 for more specific timing
diagrams.

REQUEST RECOGNITION IN DUAL-ADDRESS TRANS-
FERS

In a following section dual-address transfers are defined. Dual
address transfer is an exception to the request recognition
rules in the previous paragraphs. Refer to the Explicitly Ad-
dressed Device section for information.

(3) MIXED REQUEST GENERATION

A single channe! can mix the two request generation meth-
ods. By appropriately programming the REQG bits of the OCR,
when the channel is started, the DMAC auto-requests the first
transfer. Subsequent requests are then generated externally
by the device. The ACK and PCL lines perform their normal
functions in this operation.

1 2 3 45 6 7 8 9 1011121314151617 181920 212223 24 2526272828

Feo~FC: Y[X XIC X0
Aa-a_XII X X /-
As—Azs ADDRESS OUT DATA IN ADDRESS OUT DATA OUT ADDRESS OUT DATA IN
Do~Dss
xoo~xDwJIIID—T__________ID—0 m——_ir—
vasT W[W/ W_7 Y
AT W [W

OWN

DDIR “3 tz,
DBEN ‘S& lz; ‘S&

HIBYTE

DTACK m lz; &

—T m—

DTC \“ l”

W7 W 7

ACK

el MMM M1 My yuyuyuyuyuyry
T 23 456 78 9107112731415 16717 187920 212223 2425 26 27 2829

Read Write . Read - ™
from Memory to Memory from Memory
(NOTE) 1) Note that ACK, DONE, DTC, and HIBYTE are always inactive in this mode. For comments on the other signals, see notes on the dual
addressing mode with 8 bit device as source.
Figure 13 DMAC Auto Request Read — Write — Read Cycles
16 © HITACHI

F " F R FR Fw

&/

e F

[

fm

Fe e e Fa

' Ke R ¥R ¥ B §FDH

HD68450-4 HD68450-6, HD68450-8

w JUUL UUvvvvuvuvvvvuuuy nuUuuvuuyu
Reo'\ I v__T
B8R\ I AR
86\ / | N |
BGACK \ [T
BUS D (T

CYCLES]

ACK / “ ﬂ J, “____0

oTe W

-Non DMAC ~+—Dead —=———DMAC Cycles——t—Other Master —~—DMAC—— Idie —
and Rearbitration Cycles

(NOTE) 1) Note that in the diagrams showing request timing it is sssumed that only one channel is active.

Figure 14 DMAC Burst Mode Request Timing

BRT\ [| |
‘ <> hd -——-,'_—-—_
BGAzi A\ / 4 Clocks —- “\' —/\

Micro Cleanup

-Non DMAC ——{~—Dead —- DMAC Cycles———=4— Other Master —=———DMAC Cycles ——
and Rearbitration

(NOTES) 1) In this mode the device must re-assert REQ one clock before the assertion edge of DTC of the last bus cycle or lose the bus.
The REQ signal is edge triggered.
2) The time labeled “micro cleanup” is the time it takes for the internal sequencer to start another bus cycle if no other channel has
requests pending.

Figure 15 DMAC Cycle Steal Mode Request Timing

rRea ___[_/) —
B_R—-—\ J -
86 T\ / ~
BGACK) \ [

oTT—- ARRY SEEEn Y ¥
DONE - / “ ﬂ
Ul UUuuvuvuvurrvryuruuuuuuuuul

-Non DMAC———Dead ——— DMAC Cycles

; !
=Last Cycle
{xfer cnt=0)

Figure 16 DMAC Cycle Steal-Hold Mode Request Timing

® HITACHI 17

HD68450-4 HD68450-6 HD68450-8

® DATA TRANSFERS
(1) DEVICE PROTOCOLS
All DMAC data transfers are assumed to be between mem-
ory and another device. The word “memory” means a 16-dit
HMCS68000 bus compatible device. By programming the DCR,
the chanacteristics of the device may be assigned. Each channel
can communicate using any of the following protocols.
DTYP Device Type
00 HMCS68000 compatible devia} Dual .
01 HMCS6800 compatible device Addressing
10 Device with ACK . .
11 Device with ACK and READY | Single Addressing

DUAL ADDRESSING

HMCS68000 and HMCS6800 compatible devices may be
explicitly addressed. This means that before the peripheral
transfers data, a data register within the device must be address-
ed. Because the address bus is used to address the peripheral,
the data cannot be directly transferred to/from the memory
because the memory also requires addressing. Instead, the data
is transferred from the source to the DMAC and held in an
internal DMAC holding register. A second bus transfer between
the DMAC and the destination is then required to complete
the operation. Because both the source and destination of the
transfer are explicitly addressed, this protocol is also called
dual-addressed.

Request Recognition in Dual-Address Transfers

The request recognition protocols defined in a previous sec-
tion apply to dual-address operations. Requests are recognized
during the transfer to/from the DMAC holding register and the

peripheral as described in the request protocol section. This
tocol requires the request to be asserted before the signal

is asserted, to have request recognition for the next cycle.
During the portion of the operaticn when the operand or
operand part is transferred between the DMAC holding register

and memory, requests are also recognized. During the transfer

between memory and the holding register, DTC is not asserted,
%0 it may not be used as reference point for request recognition
during this portion of the operation. However, requests will be
recognized if they are asserted prior to the portion of the cycle
where DTC would have been asserted. This point is one half
clock cycle before the upper and lower data strobes are negated.

HMCS688000 Compatible Device Transfurs

In this operation, when a request is received, the bus is
obtained and the transfer completed using the HMCS68000 bus
protocol as shown in Figures 17 and 18. Refer to Figures 19
through 22 for timing information.
HMCS6800 Compatible Device Transfers

When a channel is programmed to perform HMCS6800
compatible transfers, the PCL line for that channel is defined
as an Enable clock input. The DMAC performs data transfers
between itself and the device using the HMCS6800 bus protocol,
with the ACK output providing the valid memory address
signal. This operation is necessary since the HMCS6800 bus
is synchronous and the HMCS68000 bus is asynchronous.
Figure 23 illustrates this protocol. This operation provides
DMAC compatibility with existing HMCS6800 and other
synchronous devices. Refer to Figures 24 and 25 for timing
information. Figure 44 illustrates a sample circuit diagram of
a two-6800 device system.

DMAC HMCS 68000 Devics
Address Device
1) Set R/W to Read
3) Place Function Codes on
FCe ~FC,
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe
(UDS) and Lower Data
Strobe (LDS)
6) Assert Acknowiedge (ACK)
| .
-
Present Data_
1) Decode Address
2) Place Dataon Dy ~ D)y
3) Assert Data Transfer
AcknoModT (DTACK)
{
Acquirs Dsta
1) Load Data into Holding
Register
2) Assert Device Transfer
Complete (DTC)

3) Negats UDS and LDS
4) Negate AS, ACK and DTC
1

1

Terminate Cycle
1) Remove Data from Dy ~ Dis
2) Negate DTACK

- |

r

Start Next Cycle

Figure 17 Word Read Cycle Flowchart HMCS68000 Type Device
18 Q@ HITACHI

-

-

[|

[

¥ =

fn [g

F 2R § 0%

" IR KN

|

i

& .

HD68450-4 HD68450-6 HDE8B450-8

DMAC HMCSE8000 Device
Address Device
1) Place Addresson A, ~ A,,
2) Place Function Codes on
FC. -~ FC; - -
3) Assert Address Strobe (AS)
4) Set R/W to Write
S) Place Dataon Dy ~ D,
6) Assert Acknowiedge (ACK) «—
7) Assert Upper Data Strobe
{UDS) and Lower Data
Strobe (LDS)
- 1
Accept Data
1) Decode Address
2) Store Data on Dy ~Dys
3) Assert Data Transfer
Acknowiedge (DTACK)
J
r
Terminate Output Transfer
1) Assert Device Transfer
Complete (DTC)
2) Negate UDS and LDS
3) Negate AS, ACK and DTC
4) Remove Data from D ~ D5
S) Set R/W to Read
L
1
Terminate Cycle
1) Negate DTACK
J
r
Start Next Cycle
Figure 18 Word Write Cycle Flowchart HMCS68000 Type Device
CLK
12 5 7 9 1011121314151617 18 19 212223
FCo~FC: X1 X X
Ar~A; i // Xl NI
ADDRESS OUT DATA IN ADDRESS OQUT DATA OUT
fa—ha T XIL
Do—~D1s
x0o-x0vs I JIINIT>
UAs W W7 W07
A _ W W N/
DS 1/ \\ 1 R\ i})\
RW N 1/ —
OWN
DOIR A\ 7
DBEN ‘SS ﬂ; “S [”
HIBYTE :
DTACK ﬂ; m ﬂ; “S ﬂ;
[) (o \//j |\ W'/
ACK A\ /.
DONE W 1
T2 34 5 6 7 9 1011121314 1516 1718 1920 2122 23
Read - Write '
from Memory to Dewvice
(1ast xfer ; xfer cnt=0)
(NOTE) 1) This mode is identical to the dual address with 8 bit device as destination except that the device has a 16 bit port;

i.e. both data strobes are asserted and data is on both haives of the bus. See the notes on the dual addressing mode

with 8 bit device as source.

Figure 19 Dual Addressing Mode with 16 Bit Device as Destination (Read-Write Cycles)

O HiITACHI 15

HD68450-4 HD68450-6 HD6B450-8

ax

1 3 [?] 11121314 1818 V7 19 N

FCo-FC,

/S /| R |/
NP // A /| S |/

Aa- Ay ADDORESS OUT DATA IN_ADDRESS OUT__DATA OUT ,
d-on — NI X I I i
XDo ~ XD Hb—qu HHH ;
s T W00 W
& _ W)\ o
ues _ W m W[
ws _ @O w0 W
RW A\ m
OWN
som W
o' . WO W[
WIBYTE
BYACK [17)\ m L\ 11
oY W N

CcLK
12 345 7 9 111213141516 1718 1920 212
~— Resd Writs +
o from Dewce Bl to Memory o

iast xfer ; xfer cnt=0

(NOTE) 1) This mode is identical to the dual address with 8 bit device as source except that the device has 8 ‘|6 bit port;
i.e. both data strobes are asserted and data is on both halves of the bus. See the notes on the dual sddressing mode
with 8 bit device as source.

Figure 20 Dual Addressing Mode with 16 Bit Device as Source {Read-Write Cycles)
CLK
1 3 5 7] 111213141516 17 18 19 pal 23 25 272829
FCo~FC2 I X X7 XIIL
Av~A; NI Rl ﬂ” m]
As~Azz/ ADDRESS OUT DATA IN ADDRESS OUT DATA IN ADDRESS OUT DATA OUT
Do~D1s
T — mD———— ————————
VAS T[T A\ W W_7
L/ \\\ o)\ /R i \\
WS |\ W/ S \}
= " L7
RW A\ I/
OWN
1171 S |\ ¥/ R\ I
HIBYTE
o1C 7 A |-/ W__77
ARk T W N/ /)
CLK
l 12346586 7 '_Js 9 L‘juo 1 zuvz 13u14 15"‘6’1 17"6,1 wl—éz 21‘3‘3" 23|'2'J4 2sl3Js 27L:zTarz—sl%r
—— Read e Read : Write -
from Device from Device to Memory
(NOTES) 1) In this mode the devics is the source and memory is the destination.

20

2) In the dual addressing mode HIBY TE is not used since the DMAC will put the dsta on_the correct half of the dat2 bus.

3) The ACK timing is similar to the single addressing mode ACK. The Read from Device ACK is asserted one clock into the cycle,
and negated during the first CLK after the cycle has terminated. The Write to Device ACK is asserted on¢ and one half ciocks into
the cycle (to avoid buffer conflicts) and removed the first CLK after the cycle has terminated. (See Figure 22)

4) Note that where Data Out is shown (clock 22) the data must be valid on the external data bus by the encl of clocx 23.

General Notes on Dual Addressing Mode

1) maa Kb_om' are used in this mode with DBEN always changing on falling edge of CLK and DDIR always changing on rising

2) Note that for consecutive reads from device or memory, DDIR need not be returned to the inactive (high) state between cycles.

3) Dsta In shouid be latched on the last CLK in the cycle (17 above).

Figure 21 Dual Addressing Mode with 8 Bit Device as Source (Read-Write Cycles)
® HITACHI

i - -,

[

[

[gam |

F .

|

F a2 F R FNM

R R R R R R 2

F

CLK

1011121314 161617 18 19 20 212223 24 26 2728

HD68450-4 HD68450-6,HD68450-8

FC -FC: X1 Nl

a-a I X

ADDRESS OUT DATA IN ADDRESS QUT DATA OUT

As - Az
Do~Dw

ADORESS OUT

DATA OUT

9 AR

xoo-xon I JID——@ ———— ID——@r 1D

™ W[y W

W/

0
—

g8

RW .\

||\ Y/ A W |

/I \ o
I

I\

LEEEE

BTC W7 W7 o
ACK J\ I W 1]
12 4 6 8 10111213 14151617 1819 20212223 24 25 262728 30
-+ Read +- Write — Write -
from Memory to Device to Device

(NOTES) 1) These cycles are similar to the dual addressing mode 8 bit device as source with the exception that the devics is now the destination.

See the comments that refer to the dual mode 8 bit source.

2) Shown above in the Write to Device, the data strobes are not asserted until clock A15 (and A25) to allow data setup and travel time.

Figure 22 Dual Addressing Mode with 8 Bit Device as Destination (Read-Write Cycles)

DMAC (MASTER)

Initiate Cycle
1) Start a normal Read or Write
Cycle
2) Monitor Enable until it is low

3) Assert Acknowledge (ACK)

HMCS6800 Devics

Transter Dara

1) Wait until Enable is active
2) Transfer the Data

Terminate Cycle
1) The master waits until Enable
goes low.
2) Assert Device Transfer Complete
(DTC) (On a Read cycle the

data is latched as clock goes low
when DTC is asserted.)

3) Negate AS, UDS, LDS, ACK
and

Start Next Cycie

Figure 23 HMCSE6800 Cycle Flowchart

© HITACHI

21

HD68450-4 HD68450-6.HD68450-8

1

FCo~FC; X X
Ai-A; D ' X
Ao-An ADD OUT DATA IN ADD QUT
Do-Ds [VT Y/, ' |
XDo- XD N1 ——
uas TS AYS
5 _r\ | —
Uos i
[I\ r—
RW
OWN
DOR T\ I
S8R [\ A
HIBYTE
BYACK a
ATk LY I
oTc L\

PCL IN(E) J l | | |

10 111213 14151617181 21 22

——=t+—Syncon PCL —=+

(NOTES) 1) The DMAC should latch the data during clock 19.
logic should allow back to back operations on successive E pulses is possible.

fow to E high time should be at least 250 ns worst case.
4) The clock reference shown above is the DMAC clock.

2) The
3) The

5) The E clock duty cycle shown above is an example. A 40% duty cycle is acceptable (4 up, 6 down like HD68000).

The E clock must be low for a minimum of 5 clock cycles.

22

Read
from 6800 Dewvice

Figbre 24 6800 Compatible Dual Addressing Mode (Read Cycle)

cLK
12 3 45 6 7 8 91011121314 15161718 192021 22 23 24 2526 27 28
FCo~FC2 D) A _
A~ A, Y D /A
ADD QUT DATA OUT
As-A -
Do-Dos XX —
x0o-x0:s —{II__D— _D—
UAS \W/j T
AS T\ 1
UDS
ios /R I
RW _—"“ —
OWN
DDR 7
DBEN J A\ I~
HIBYTE
DTACK
Ack \ T I\ o~
B7c Y W

PCL IN(E! | ’ | ! ‘

1 2 3 45 6 7 8 9 1011121314151617 18192021 2223242526 27 28

Sync on PCL

Write
to 8800 Device

Figure 25 6800 Compatible Dual Addressing Mode (Write Cycle)

© HITACHI

- m - m -

[|

F " s m =u

|] e ¥ m

¥ a

Fa

fF R R FDR

. fFn R R F1N

B

W

An Example of a Dual Address Transfer

This section contains an example of a dual address transfer
using Table 7 of Dual-Address Sequencing. The table is repro-
duced here as Table 2. The transfer mode of this example is the

following:

> W —-

. Device Port size = 8 bits
Operand size = Long Word (32 bits)
. Memory to Device Transfer

. Source (Memory) Counts up, Destination (Device) Counts
Down

S. Memory Transfer Counter = 2

HD68450-4 HD68450-6.HD68450-8

In this mode, a data transfer from the source (memory) &

Table 3 shows the data transfer sequence.

The memory map of this example is shown in Table 4. The
operand consists of BYTE A through BYTED in memory
of Tabie 4. Prior to the transfer, MAR and DAR are set to0

done according to the 6th row of Table 2, since the port size
of the memory is always 16-bits. A data transfer to the destina-
tion (device) is done according to the 3rd row of Table 2.

00000012 and 00000108 respectively. The operand is trans-

ferred to the 8 bit port device according to the order of transfer

number in Table 3.

Table 2 Dual-Address Sequencing {Table 7)

14
Row No. Port Size Operand Size Part Size Operand Part Addresses " Address Incremen
1 8 BYTE BYTE A | 42 0 -2
i
2 8 v WORD BYTE A, A+2 +4 0 -2
3 8 LONG BYTE A A+2, A4, A+6 | 48 0 8
; *4 *3 5 *7 °8 *10
4 16 BYTE | PACK A +P 0 -+
5 16 WORD WORD A +2 0 -2
® 16 LONG WORD A, A+2 +4 0 -4
i .2 Q1 ls lg
Table 3 An Example of a Data Transfer for One Operand
SRC: Source {Memory), DST Destination (Device), HR: Holding Register (DMAC Internal Reg.)
| . DMAC Registers after Transfer
Tr;n:fer Data Transfer gi‘:::: : D:;aaslﬁe MAR . DAR Comment
o | - - - 00000012, 00000108 Initial Register Setting
SRC - HR 00000012 WORD 00000014 00000108 Higher order 16 bits of operand is
! R 1 2 ‘ fetched.
2 HR — pST | 00000108 BYTE 00000014 0000010A
'3 ‘4 Higher order 16 bits of operand is
* transferred.
3 ; HR - DST 00000101.\5 BYTE . 00000014 00000‘!0910
4 SRC - HR 00000014 WORD 00000016 0000010C Lower order 16 bits of operand is
*6 "2 *9 fetched
- 0000010C | BYTE | 00000016 0000010E
> HR ~DST ! ‘7 ‘4! Lower order 16 bits of operand is
T +
! i 1 transferred.
6 HR -DST | 0000010§8 BYTE ! 00000016 00000 910
6 _ * 00000016 00000110 MAR, DAR are pointing the next

operand addresses when the
transfer is complete.

Mode: Port size = 8, Operand size = Long Word, Memory to Device, Source (Memory) Counts Up, Destination {Device) Counts Down

© HITACHI

23

HD68450-4 HD68450-6,HD68450-8

Table 4 Memory Map for the Example of the Data Transfer

ADDRESS | ADDRESS

00000010 [00000011

00000012 BYTE f; [evTe B | 00000013

00000014 BYTE 95 [BYTE .g 00000015

00000016 [00000017
|

Source (Memory)

SINGLE ADDRESSING MODE

Implicitly addressed devices do not require addressing of
data register before data may be transferred. Transfers between
memory and these devices are controlled by the request/ac-
knowledge protocol. Such peripherals require only one bus
cycle to transfer data between themselves and memory, and the
DMAC internal holding register is not used. Because only the
memory is addressed during a data transfer, this protocol is
also called single-address.

Device with ACK Transfers

Under this protocol, the device is not explicitly addressed and
communication is performed with a two signal request/acknowl-
edge handshake. When a request is generated using the request

ADDRESS

00000106 | 00000107
Oooooto8| BYTE A | 00000109
0000010Af BYTE 8 | 00000108
oooootoc| BYTE C 1 00000100
0000010E BYTE D 1 0000010F
00000110 | 00000111

1

Destination (Device)

method programmed in the control registers, the DMAC obtains
the bus and responds with acknowledge. The DMAC asserts
all HMCS68000 bus control signa's needed for the transfer.

When the transfer is from memory to a device, data is valid
when DTACK is asserted and remains valid until the data
strobes are negated. The assertion of DTC from the DMAC may
be used to latch the data, as the data strobes are not removed
until 1/2 clock after the assertion of DTC.

When the transfer is from device to memory, data must be
valid on the HMCS68000 bus before the DMAC asserts the data
strobes. The data strobes are asserted one clock period after
ACK is asserted. Further definition of this protocol is explained
in Figures 26, 27 and timing diagrams in Figures 28 and 29.

DMAC Memory ACK Device
Address Memory
1) Set RAW to Read
2) Place Address on A, ~ A,y
3) Place Function Codes on FC, ~ FC,
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UDS)
and Lower Data Strobe (LD3)
6) Assert Acknowledge (ACK)
1
Present Data
1) Decode Address
2) Place Data on Dy ~ D¢
3) Assert Data Transfer Acknowledge
{DTACK)
1
Acquire Data
1) Load Data
}

€
Terminate Transfer

1) Assert Device Transfer Complete
(DTC)
2) Negate UDS and TDS
3) Negate AS, ACK and DTC
|

Terminate Cycle

1)} Negate DTACK
3

Start Next gm

Figure 26 Word from Memory to Device with ACK
24 ® HITACHI

-

¥

| B]

. ¥ a

¥a

f Fa

Fa

|

3 'R R ¥R F R KN

| S | B

| Y

OMAC

Address Memory
1) Placs Address on A, ~ A;,

2) Place Function Codes on FCy ~

3) Agert Address Strobe (AS)
4) Set R/W 10 Write
5) Assert Acknowl:dw (ACK)

FC,

HD68450-4, HD68450-6. HD68450-8

ACK Device

v

Present Oata
1) Plece Dataon Dy ~ Dy

{
Enable Data

1) Assart Upper Data Strobe (UDS)

and Lower Data Strobe (CDS)
L

1
Accept Data

1) Decode Address
2) Load Data

3) Assert Data Transfer Acknowiedge

(DTACK)

Terminate Transfer

1) Assert Device Transter Complete (DTC)

2) Negate UDS and LDS
3) Negate AS, ACElnnd DpTC

Terminate Cycle
1) Negate DTJ'ATC—K'

Start Next Cycle

Figure 27 Word from Device with ACK to Memory

e ML
R e e
FCo~FC2 XIT7 Y11 X7
Ai-Ar X1 X1 D (/-
Mohs =y ———A -
XDo—XDhs DIl)/
Uas W W7 W
AS 1/ R\ [/ SR\ o
s _ T W L\
RW ™ I
OWN
ODIR
DBEN
HIBYTE ;
DTACK I/ R\\ /A \ U
ACKA I\Y i
ACRE T Vi
oTC W Wi
CLK

1 234 56 78 97011121314 15161718 1920 21

———=+=— Memory to Device
Channei A

Device to Memory
Channel B

4 Cycle Word Transfer S Cycie Word Transfer

1) These cycles are identical to the 8 bit transfers with the exception that all transfers are 16 bits {word) so that both data strobes are
always asserted and HIBYTE is always inactive. See the comments on single addressing mode with 8 bit devices.
2) The A and B on the ACK signalis are there to distinguish two different channeis. The actual channel numbers could be any of O to 3.

(NOTES)

Figure 28 Single Addressing Mode with 16 Bit Devices as Sources and Destinations (Read-'Write Cycles)
© HITACHI 25

HD68450-4 HD68450-6.HD68450-8

CcLK | l
1 3 5 7 9 1112 1314 15 17 19 2122 23 25

BGACK j_;.__ﬂ 4[_;_—
FCo-FC: }—— (] B/l| —
PV S— | XTI A
TRV S ;s S T
x0o~x0vs JIIID—U_[i—101 o
UAS ————___[I] W_/ —
U6 N [—
ibs \Y—m——" 11\ i |
RW —m—/ A\ n———

OWN . —

ODR —0m8m ——/)

DBEN —— e
HBYTE ____ / A\ mn—
oTack ___[J] L\ //////1 /1] [/ /// /1111

bTC S R
ACKA W\ 1]
ACKB T m
1 2 3 4 56 7 8 9101112131415161718 1920 21222324 25
~}— idle——— Memory to Device —————— Device to Memory —————ldle ——~—Next Master
Channel A Channel B
Byte from Do~D> Byte to Dg~D1s
4 Cycle 5 Cycle
{NOTES)

26

1) Any signal change shown before clock 4 is due to the previous master (MPU or other DMAC).
2) All signals except OWN tristate during the clock 2 after the end of the last DMAC cycle. OWN tristates one half clock later.
3) DDIR and DBEN remain in the inactive state during single address mode cycles.
4) A four (4) cycle transfer is the minimum cycle length for a Memory to Device transfer.
5) A five (5) cycle transfer is the minimum cycle iength for a Device to Memory transfer.
6) HIBYTE (when used as fold signal) is used to gate the high bus data to the low bus during a Memory to Cievice transfer, and
low bus data to the high bus during a Device to Memory transfer.
7) Note that if the transfer is 8 bits wide, only one data strobe (and possibty HIBYTE) is asserted.
8) Address bits 8 through 23 are shown in tristate beginning clock 8 {and 16). In this mode only they can be driven similar to A,
through A, if need be.
The followings are notes on the Memory to Device transfer.
9) ACK is not asserted until one clock into the cycle {clock 7) due to the fact that it may have just been negated (clock 5).
It must remain negated for at least one clock.
10) DTC is asserted one clock before the end of the cycie to signal the peripheral that the data is valid and should be latched at
this time. It aiso indicates that a successful transfer is being completed (no Berr, Retry, etc.).
The followings are notes on the Device to Memory transfer. _
11) ACK cannot be asserted until one and one haif clocks into the cycle (clock 16) to allow the R/W signal to settle in the write
mode (clock 15). R/ cannot be asserted until one clock into the cycle {clock 15) because of buffer collisions.
12) The data strobes cannot be asserted until clock 18 to allow the data to become valid at the memory {data setup).

13) The A and 8 on the ACK signals are there to distinguish two different channels. The actual channel numbers could be any of O to 3.

Figure 29 Single Addressing Mode with 8 Bit Devices as Sources and Destinations

© HITACHI

[|

| I] ¥Fn [] []

Fa

Fa

Fa e

s

Fa §F 8§ § 1

F 2 ¥R F1®I R 1M

I N B

g

E

Device with ACK and READY Transfens

Under this protocol, the device is not explicitly addressed
and communication is performed using a three signal request/
acknowledge/ready handshake. The ready input to the DMAC
is provided by the PCL line, the use of this protocol forces it
to be an active low input. When a request is generated using
the request method programmed in the control registers, the
DMAC obtains the bus and asserts acknowledge to notify the
device that the transfer is to take place. The DMAC asserts all
HMCS68000 bus control signals needed for the transfer and
holds them until the device responds with READY. After

HD68450-4 HD68450-6 HD68450-8

READY is received the bus cycle terminates normally.

When the transfer is from memory to s device, data is valid
when DTACK is asserted and is valid until the data strobes
are negated. The assertion of DTC from the DMAC may be used
to latch the data, as the data strobes are not removed until
1/2 clock after the assertion of DTC.

When the transfer is device to memory, data must be valid
on the HMCS68000 bus before the DMAC asserts the data
strobes. The data strobes are held asserted until the device
asserts READY. Further definition of this protocol is explained
in Figures 30, 31 and the timing diagrams in Figure 32.

DMAC Memory ACK and READY Device o
Address Memory -
1) Set R/W to Read
2) Place Address on A, ~ A,y
3) Place Function Codes on FCq ~ FC,
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe {(UDS)
and Lower Data Strobe (LDS) -
6) Assert Acknowleldge (ACK)
1
Present Data
1) Decode Address
2) Place Dstaon Dy ~ D5
3) Assert Data Transfer
Acknowledge (DTACK)
L
Acquire Data
1) Load Dats

2) Assert READY
f

Terminate Transfer
*1) Assert Device Transfer Complete
(DTC)
2) NegateUDS and LDS
3) Negate AS, ATKIOMW

Terminate

1

1) Negats DTACK
J

1
Start Next Cycle

Figure 30 Word from Memory to Device with ACK and READY

@ HITACHI 27

HD68450-4 HD68450-6 HD68450-8
DMAC Memory ACK snd AEADY Device
Address Memory

1) Place Address on A, ~ A,

2) Place Function Codes on FCq ~ FC,
3) Assert Address Strobe {AS)

4) Set R/W to Write

5) Assert Acknowiedge (ATR)

P_r_'mm Dsts

1) Place Dataon D, ~ Dy
2) Assert READY
J

Enasble Data .

1) Assaert Upper Data Strobe (UDS)
and Lower Data Strobe {LDS)

1
Accept Data
1) Decode Address
2) Load Data
3) Assert Data Transfer
Acknowiedge (DTACK)

Terminate Transfer
1) Assert Devics Transfer Complete
{tDTC)
2) Negate UDS and [0S
3) Negate AS, ACK and DTC
i

1
Terminate Cycle

1) Negate DTACK
J

r
Start NextCycle Figure 31 Word from Device with ACK and READY to Memory

1 2 34 56 7 9 10111213 141516 17 1819 2021 22 23 2425 26 27 28

FCo~FC2 X7 X777 1E
Ai-A; B /1 777 X
!/

/1o

W

S /= -
xoo-x0is M [——IT

UAS W7 W77

A _ W /" /I

s _ff] ! Nl

rRWw I J\\Y ar—
OWN
DDIR
DBEN
HIBYTE RV a—
DTACK /g Jiij |\
PCL (READV) A\ // A\ I
oTC A/ /| W/ A
CLK
1 2 3 4 5 6 7 8 9 1011121341516 17 181792021 22232425 262728
Memory to Device Device to Memory —_
Byte from Do~ D7 Byte from Dg~D1s

(NOTES) 1) With the exception of the notes below, these cycles are identical to the normal single addressing mode cycles. See the comments on
the 8 bit single addressing mode transfer.

2) In the Memory to Device transfer only, the READY (PCL) line is used as a “second DTACK" i.e. both READY and DTACK are
required to terminate the cycle.

3) In the Device to Memory transfer, the READY input is used to delay the assertion of the data strobes. Onc: READY is detected,
the data strobes are asserted and DTACK is sampled to terminate the cycle. AS is asserted at the beginning of the cycle as usual.

Figure 32 Single Addressing Mode with 8 Bit Devices as Sources and Destinations with PCL Used as a REACY Input {Read-Write Cycles)
28 O HITACHI

[] [|

¥R

[)

[.] | B ¥ n []

[S

f s & £N

2 ¥R F 3 F 3 R % F R KO

B i

- | W

(2) OPERANDS AND ADDRESSING
Three factors enter into how the actual data is handled:
port size, operand size and address sequencing.

PORT SIZE
The DCR is used to program the device port size

DPS Device Port Size
0 8 bit port
1 16 bit port
The port size is the number of bits of data which the device
can transfer in a single bus cycle. During a DMAC bus cycle,
a 16-bit port transfers 16 bits of data on Dy ~D,s, while an
8-bit port transfers 8 bits of data, either on Dy ~ D, oron Dg
~ D, s. The memory is always assumed to have a port size of 16.

OPERAND SIZE
OCR is used to program the operand size.

HD68450-4 HD68450-6.HD68450-8

SIZE Operand Size
00 Byte
01 Word
10 Long word .
11 (undefined, reserved) -

The operand size is the number of bits of data to be trans-
ferred to honor a single request. Multiple bus cycles may be
required to transfer the operand through the device port. A
byte operand consists of 8 bits of data, a word operand consists
of 16 bits of data, a long word operand consists of 32 bits of
data. The transfer counter counts the number of operands
transferred. ‘

For single-address operations, the port size and the operand
size must be the same. 68000 and 6800 type devices may not
use byte operands when the port size is 16 bits and the request
generation method is the request pin. (REQG = 10 or 11)

| S | S

b

Table 5 Operation Combinations

. . Operand
Addressing Device Type Port *
Byte Word Lw REQG
Dual 68000, 6800 8 Yes Yes Yes 00, 01, 10, 11
Dual 68000, 6800 16 Yes Yes Yes 00, 01
Dual 68000, 6800 16 No Yes Yes 10, 11
Single with ACK or B Yes No No 00, 01, 10, 11
ACK & READY 16 No Yes No 00, 01, 10, 11

*Refer to Page 11.

ONLY DEVICE BUS CYCLES ARE SHOWN IN THESE TIMING DIAGRAMS

BUS CYCLES xX— X X X J——
REQ _f S\ /o J \ /] o\ /
ACK \ M\ L N\ I\ I
DONE U
oTC I A W

2 Operand gize = 8 3and Port Size = 8
Operand Size = 16 and Port Size = 16
L‘Snmp!e for New Requests during This Period

BUS CYCLES — X X X)
REQ | [LTI /
_ACK A A I\ /\ /
DONE . —
bTC

A A W

‘b,wsansmrmsm-s
Operand Sure = 32 and Port Size = 16
Sempie for New Raquesw during This Period

cLK |ﬂnnﬂﬂnﬂﬂﬂ:ﬂﬂnﬂﬂnnﬂﬂﬂﬂnﬂﬂﬂﬂﬂﬂnﬂr
BUS CYCLES ad X X X —<
REQ LLLURTRARLAARTALARRARLAALAARRT T

ACK L I\ I\ I\ /
ooNE , A
pre U o J J

(c) Operand Size = 32 and Port Size= 8

(NOTES) 1) The above cycles reflect both dual and single addressing mode.

2) lncthe dual addressing case, the memory references are not shown sbove, only the device referances. Thersfore all cycies have
ACK asserted.

3) Note that when the operand size exceeds the port size, the DMAC should sample the request pins (new priority check) until the
DTC of the last bus cycle has occurred.

Figure 33 Request and Acknowledge Generation vs. Operand Size
® HITACHI 29

HD68450-4 HD68450-6 HD68450-8

ADDRESS SEQUENCING

The sequence of addresses generated depends upon the port:

size, operand size, whether the addresses are to count up, down,
or not change and whether the transfer is explicitly or implicitly
addressed. The Sequence Control Register is used to program
the memory address count method and the device address count
method.

MAC Memory address count
00 Memory address register does not count
01 Memory address register counts up
10 Memory address register counts down
11 (undefined, reserved)

Device address register count

00 Device address register does not count
01 Device address register counts up

10 Device address register counts down
11 (undefined, reserved)

Single-Address Transfers

Single-address transfers require the device port size and the
operand size to be equal. Address sequencing is determined
by the port size and the sequence control register as shown
in Table 6. If the operand size is byte, the memory address
increment is one (1). If the operand size is word, the memory
address increment is two (2). If the memory address register
does not count, the memory address is unchanged after the
transfer. If the memory address counts up, the increment is
added to the memory address; if the memory address counts
down, the increment is subtracted from the memory address.
The memory address is changed after the operand is transferred.

DAC

Table 6 Single Address Sequencing

Duai-Address Transters

In dual-address operations, the operand size need no match
the port size: Thus the transfer of an operand may require
several transfers between device and memory. Each pair of
transfers, between memory and DMAC and between DMAC and
device, transfers a portion of the operand, called the operand

The addresses of the operand parts are in a linear increasing
sequence. The step between the addresses of parts is two (2).
The size of the parts is the minimum of the port size and
operand size. The number of parts is the operand size divided
by the port size. The address increment is added or subtracted
after the operand is transferred.

If the port size is 16 bits, the operand size is byte, and the
request generation method is auto request or auto request at
a limited rate, the DMAC packs consecutive transfers. This
means that word transfers are made from the associated address
with an address increment of two (2). If the initial source ad-
dress location contains a single byte, the first transfer is a byte
transfer to the internal DMAC holding register, and subsequent
transfers from the source are word transfers. If the initial
destination location contains a single byte, the first transfer is
a byte transfer from the internal DMAC holding register, and
any remaining byte remains in the holding register. Likewise,
if either the final source or destination location contains a single
byte, only a byte transfer is done. Packing is not performe
if the address does not count; each byte is transferred by a
separate access to the same location.

{3) ADDRESS REGISTER OPERATION

The DMAC has three 32-bit address registers per channel:
the memory address register (MAR), the device address register
(DAR), and the base address register (BAR).

)) Memory Address Increment The MAR is used in all operations because of the assumption
Port Size | Operand Size l - - that all operations are between memory and a device. The MAR
: P 3 is sequenced as previously described. This register is either
8 Byte P - initialized before the channel operation is started, or is loaded
16 Word] +2 0 -2
Tabie 7 Dual-Address Sequencing
. X . Operand Part Address Increment

Port Size Operand Size Part Size Address S - -

8 Byte Byte A +2 0 -2

8 Word Byte A, A+2 +4 0 -4

8 Long Byte A, A+2, A+4, A+6 +8 0 8

16 Byte Pack A +P 0 P

16 Word Word A +2 V] -2

16 tLong Word A, A+2 +4 0 -4

P = 1if packing is not done

= 2 if packing is done

during chaining or continue operations which are defined in a
later section.

The DAR is used to address devices or memory in dual-
address operations. It is initiated before starting the channel
operation, and is sequenced as previously described.

The BAR register is used only in chaining or continue opera-
tions. It is sequenced only in regard to chaining operations.

(4) FUNCTION CODE REGISTER OPERATIONS
There are three function code registers per channel: the

memory function code register, the device function code regis-
ter, and the base function code register. The function code
registers correspond to the address registers and are output on
FCoy ~ FC, when the corresponding address register provides
the address for a DMA bus cycle.

(5) TRANSFER COUNT REGISTER OPERATION

The DMAC has two 16-bit transfer counter registers per
channel: the memory transfer counter, and the base transfer
counter.

The memory transfer counter is used in all operations to
count the number of operands transferred in a block. The mem-

30 © HITACHI

f "R F B NER F R SFE &u

| 28 |

| . |

Fa Fa Fa

| I]

i T Fa Fn B] Fa Fn | B] | |

ory transfer counter is decremented by one as each operand is
transferred. This register is either initialized before the channel
operation is started, or is loaded during chaining or continue
operations.

Both the memory transfer counter and the base transfer
counter have a terminal count of zero (0). If either register is
initialized or loaded with a terminal count when the channel is
configured to use that register, 3 count error is signaled.
® INITIATION AND CONTROL OF CHANNEL OPERATION

The Channel Control Register provides mechanisms for
starting, continuing, halting, or aborting an operation. It also
controls the enabling of interrupts from a channel.

{1) OPERATION INITIATION

To initiate the operation of a channel the STR bit of the
CCR is set to start the operation. Setting the STR bit causes
the immediate activation of the channel, the channel will be
ready to accept requests immediately. The channel initiates
the operation by cleaning the STR bit and setting the channel
active bit in the CSR. Any pending requests are cleared, and the
channel is then ready to receive requests for the new operation.
If the channel is configured for an illegal operation, the config-
uration error is signaled, and no channel operation is run. The
illegal operations include the selection of any of the options
marked “(undefined, reserved)”. If the operation is dual-address,
the device address register should have been previously initial-
ized. The channel cannot be started if any of the ACT, COC,
BTC, NDT or ERR bits is set in the CSR. In this case, the chan-
nel signals the operation timing error.

If the operation is unchained, the memory address register
and the memory transfer counter should have been previously

If the operation is chained, the base address register, and the
base transfer counter should have been previously initialized.

(2) OPERATION CONTINUATION

The continue bit (CNT) allows multiple blocks to be trans-
ferred in unchained operations. The CNT bit is set in order
to continue the current channel operation. If an attempt is
made to continue a chained operation, a configuration error
is signaled. The base address register and base transfer counter
should have been previously initialized.

The continue bit may be set as the channel is started or while
the channel is still active. The operation timing error bit is
signaled if a continuation is otherwise attempted.

(3) HALT

The CCR has a halt bit which allows suspension of the opera-
tion of the channel. If this bit is set, a request may still be
generated and recognized, but the DMAC does not attempt to
acquire the bus or to make transfers for the halted channel.
When this bit is reset, the channel resumes operation and serv-
ices any request that may have been received while the channel
was halted.

(4) SOFTWARE ABORT

The CCR has a software abort bit (SAB) which allows the
current operation of the channel to be aborted. The writing
of a one (1) into the SAB bit causes a channel abort error to
be signaled. When the CCR is read, the SAB always reads as
zero (0).

(5) INTERRUPT ENABLE
The CCR has an interrupt enable bit (INT) which allows the

HD68450-4 HDE8450-6. HDE8B450-8

channel to request interrupts on the completion of block trans-
fers or on the termination of channel operations. If INT is set,
the channel can request interrupts. If it is clear, the channel
may not request interrupts.

® BLOCK TERMINATION -

As part of the transfer of an operand, the DMAC decrements
the memory transfer counter. If this counter is decremented to
the terminal count, the transfer counter is exhausted and the
operand is the last operand of the block. The channel operation
is complete if the operation is unchained and there is no coa-
tinuation, or if the operation is chained and the chain is ex-
haused. The DMAC notifies the device of channel completion
via the DONE output. When the transfer has been completed,
the ACT bit of the CSR is cleared, and the COC bit is set.

The occurrence of a bus exception during a bus cycle being
run for a channel, or the occurrence of some error in the chan-
nel terminates the block transfer and the channel operation.
The bit of the CER corresponding to the error being signal is
set. The ACT of the CSR is cleared and the COC and ERR bits
are set.

{1) CHANNEL STATUS REGISTER

The channel status register contains the status of the channel.
The register is cleared by writing a one (1) into each bit of the
register to be cleared. Those bits positions which contain a
zero (0) in the write data remain unaffected.

cocC

The channel operation complete bit is set if the DMA trans-
fer has completed. The COC bit is set following the termination,
whether successful or not, of any DMA operation. This bit must
be cleared in order to start another channel operation. This bit
is cleared only by writing the channel status register or resetting
the DMAC.

PCS

The peripheral status bit reflects the state of the PCL 1/O line
regardless of its programmed function. This bit is unaffected
by write operations.
PCT

The peripheral control transition bit is set if an falling edge
transition has occurred on the PCL line. This bit is cleard only
by writing the channel status register or resetting the DMAC.

BTC

Block transfer complete is set when the memory transfer
count is exhausted, the operation is unchained, and the con-
tinue bit is set. This bit must be cleared before another continu-
ation is attempted, otherwise an operation timing error is signal-
ed. This bit is cleared only by writing the channel status register
or resetting the DMAC.

NDT

Normal device termination is set when the device terminates
the channel operation by asserting the DONE line while the
device was being acknowledged. This bit is cleared only by
writing the channel status register or resetting the DMAC.

ERR

This bit is used to report the occurrence of error conditions.
It is set if any errors have been signaled. This bit is cleared only
by writing the channel status register or resetting the DMAC.
ACT

This is the channel active bit. It is asserted after the channel
has been started. The bit remains set until the channel operation
terminates. This bit is unaffected by write operations.

@ HITACHI 31

HD68450-4 HD68450-6.HD6E8B450-8

(2) INTERRUPTS

The INT bit of the CCR determines if an interrupt can be
generated. The interrupt request is generated if INT is set and
the bits COC or BTC are set in the CSR or the PCT bit is set
and the PCL line is programmed to be an interrupt input.

If a channel has an interrupt request, the DMAC makes an
interrupt request by asserting the output. If the DMAC
has an interrupt request pending, and receives an TACK from
the MPU the DMAC provides an interrupt vector. If multiple
channels have interrupt requests pending, the determination
of which channel presents its interrupt vector is made using

cewe

CLK

the same priority scheme defined for channel operations.

The interrupt vector returned to the MPU comes from
either the normal or the error interrupt vector register. The
normal interrupt register is used uniess the ERR bit of CSR is
set, in which case the error interrupt vector register is used.
The content of the interrupt vector register is placed on Dy ~
D,, and DTACK is asserted to indicate that the vector is on the
data bus. If a reset bus exception occurs, all interrupt vector
registers are set to SOF (binary 00001111), the value of the
uninitialized interrupt vector.

12 3 456 23 24 25 26 27 28 29 30 3132

Ar~A;

—
AS B\ L
A\

cee wa

3 3

Cc
O
(7]

|

r~
O
(7]

DBEN
De~D1s

Y,?'al
| Pr

Efjg bl

Do"‘D‘y. coae

XDo~XD1s .- «
DTACK .
CLK =
12 34568 23 24 25 26 27 28 29 30 31 32

* MPX A,~A,,/D,~D,, pins
Interrupt Vector Register is Output.

(NOTES) 1) This cycle is similar to the chip select cycle except it is triggered by |ACK. See the notes on the chip select cycle.

2) 1ACK will be negated within one clock after
3) The clock referenced above is the CPU clock.

is negated.

Figure 34 MPU |ACK Cycle to DMAC

32 © HITACHI

[]

Fa []

e

Fa 1 L Fa . [I] [] Fm e

FR2 F® &N

R R e r§n

& B

' sl

B

&

m

)

o

|-

HD68450-4 HD68450-6 HD68450-8

(3) MULTIPLE BLOCK OPERATION

When the memory transfer counter is exhausted. there are
further blocks to be transferred if the channel is chained and the
chain is not exhausted. The DMAC provides the reinitiaiization
of the memory address register and the memory transfer count-
er in these cases.

CONTINUED OPERATIONS

When the memory transfer counter is exhausted and the con-
tinue bit of the CCR is set, the DMAC performs a continuation
of the channel operation. The base address, base function code,
and base transfer count registers are copied into the memory
address, memory function code, and memory transfer count
registers. The block transfer complete (BTC) bit of the CSR
is set, the continue bit is reset, and the channel begins a new
block transfer. If the memory transfer counter is loaded with
a terminal count, the count error is signaled.

ARRAY CHAINING

This type of chaining uses an array in memory consisting of
memory addresses and transfer counts. Each entry in the array
is six bytes long and, consists of four bytes of address followed
by two bytes of transfer count. The beginning address of this
array is in the base address register, and the number of entries in
the array is in the base transfer counter. Before starting any
block transfers, the DMAC fetches the entry currently pointed
to by the base address register. The address information is
placed in the memory address register, and the count informa-
tion is placed in the memory transfer counter. As each chaining
entry is fetched, the base transfer counter is decremented by
one. After the chaining entry is fetched, the base address
register is incremented to point the next entry. When the
base transfer counter reaches a terminal count, the chain is
exhausted, and the entry just fetched determines the last block
of the channel operation.

The memory format for supporting the Array Chaining is
shown in Figure 35. The array must start at an even address,
or the entry fetch results is an address error. If a terminal count
is loaded into the memory transfer counter, the count error
is signaled. Since the base registers may be read by the MPU,
appropriate error recovery information is available should the
DMAC encounter an error anywhere in the chain.

LINKED CHAINING

This type of chaining uses a list in memory consisting of
memory address, transfer counts, and link addresses. Each entry
in the chain list is ten bytes long, and consists of four bytes of

- memory address, two bytes of transfer count and four bytes of

link address. The address of the first entry in the list is in the
base address register, and the base transfer counter is unused.
Before starting any block transfers, the DMAC fetches the
entry currently pointed to by the base address register. The
address information is placed in the memory address register,
the count information is placed in the memory transfer counter,
and the link address replaces the current contents of the base
address register. The channel then begins a new block transfer.
As each chaining entry is fetched, the update base address
register is examined for the terminal link which has all 32 bits
equal to zero. When the new base address is the terminal ad-
dress, the chain is exhausted, and the entry just fetched detes-
mines the last block of the channel operation.

The memory format for this type of chaining is shown in
Figure 36. This type of chaining allows entries to be easily
removed or inserted without having to reorganize data within
the chain. Since the end of the chain is indicated by a terminal
link, the number of entries in the array need not be specified
to the DMAC. All entries in the array must start at even address,
or the entry fetch results in an address error. If a terminal count
is loaded into the memory transfer counter, the count error is
signaled. Becaused the MPU can read all of the DMAC registers,
all necessary error recovery information is available to the
operating system.

Table 8 Chaining Mode Address/Count Information

.. Base Addr. | Completed
Chaining Mode Register Base TC When
No. of
Array Chaining BA of Array | Entries ‘B:Oase ‘:’ransfg r
In Array unter —
Linked Chaining | BA of Array - Pointer = 0

© HITACHI 3

HD68450-4 HD68450-6 HDE8450-8

34

Memory
HMCS88000 -
e Block D
Array RAM Supplies.
(List) Device Address
Base Address
Bsse Transfer Count
r Memory
Address A (4 bywes)
Memory
Count A {2 bywes)
Memory Block B
‘g’ | gmc HDE8450
2 I : DMAC
4o | g
L Count D g dlock C
o
g
;{ Block A

Base Address

Memory
HMCS68000
Array RAM Supplies:
{List) Device Address ‘2’ Block C
Base Address 3
o
Memory o
Address A (4 bytes))
Fiemor g Block A
Count A {2 bytes) -
) >
B (4 bytes)
I Wemory]
Address C HD68450
 Memory]
emory DMAC
Count C
~0—
{Terminator) / \
/ 55 |
H 2
[Wemory | SIS 5
ress B S8 2
emory Q o Block B
1 B8
Z’“ to Device
or
Memory

Figure 36 Linked Array Chain Transfer
@ HITACHI

Fa e F

Fa

¥R [A

e e

e

f e e

| B]

e | S |

R fF 2

| S | S

| S

(4) BUS EXCEPTION CONDITIONS

The DMAC has three lines for bus exception conditions.
A priority encoder can be used to generate these signals. In
order to guarantee relisble decoding, the DMAC verifies that
the incoming code has been stable for two DMAC dock cycles
before acting on it. The lines are encoded in the following

manner (0 = active).
BEC 210

1 1 1 — No exception condition
110 — Halt
1 01 — Buserror
1 0 0 — Retry
0 1 1 — Relinquish bus and retry
0 1 0 — (undefined, reserved)
0 0 1 — (undefined, reserved)
0 0 0 — Reset

These signals indicate the presence of bus exceptions. All
bus exceptions except halt are preemptory. The occurrence
of a preemptory bus exception during a DMAC bus cycle forces
the DMAC to terminate the bus cycle in an orderly manner.
The preemptory bus exception must arrive prior to or in coin-
cidence with DTACK in order to be recognized as an abnormal
bus termination. Here coincident means meeting the same set
up requirements for the same sampling edge of the clock. The
DMAC does not generate any bus cycles if a bus exception

ANY STATE | gsT

HD68450-4 HD68450-6. HD68450-8

condition exists, and thus will not honor any requests until
it is removed. However, the DMAC still recognizes requests.
The reserved bus exceptions are not used by the DMAC, they
should not be asserted during DMAC operations, as the resuit
may be unpredictable.

HALT
The halt exception causes the DMAC to compiete the opera-
tion in progress and three-state the bus. It does not rearbitrate
for the bus until this exception is removed. When halt is ne-
gated, the DMAC resumes normal operation.
Refer to Figure 38 for more specific timing diagram.

BUS ERROR

The bus error exception is generated by external circuitry
to indicate the current transfer cannot be successfully com-
pleted and is to be aborted. The recognition of this exception
during 8 DMAC bus cycle signals the internal bus error con-
dition for the channel for which the current bus cycle is being
run.
Refer to Figure 39 for more specific timing diagram.

RETRY
The retry exception causes the DMAC to terminate the
present operation and retry that operation when retry is re-

RESETTING
ALL CHANNELS
NON
MLT, BER, RTY. RRT
DTATK & HLT (DTCT)
{ IDLE MODE IDLE MODE
WAITING FOR
NON BER _ libLE MODE I
_.] BET CLEAR WAITING FOR :RO;"
BEC CLEAR
TO RETRY
DMAC YIELDS BUS
DMAC OWNS BUS
REQ | REQN ‘ HLT, RRT RAT, HLT RRT, HLT
DMA MODE . DMA MODE BER &rﬁaxg% "
AITINGFOR
r;ectcsmve NON BEC CLEAR BEC CLEAR
TO RETRY
BER, RTY
BER NON
START
RTY
NON
DTACK & NON DMA MODE
4BUS CYCLE ACTIV
(0TC)
DTACK & HLT (DTO)
/(Figure 37 Bus Exception Flow Diagram

© HITACHI 35

HD68450-4 HD68450-6 HD68450-8

moved. The bus is not relinquished for rearbitration and the
operation is reinitiated when retry is removed.
Refer to Figure 40 for more specific timing diagram.

RELINQUISH AND RETRY B
The relinquish and retry exception causes the DMAC to
three-state all bus master controls and when the exception is
removed, rearbitrate for the bus to retry the previous operation.
Refer to Figure 41 for more specific timing diagram.

RESET

The reset exception provides a means of resetting and ini-
tializing the DMAC from an external source. If the DMAC is
bus master when the reset is received, the DMAC relinquishes
the bus. Reset clears GCR, DCR. OCE, SCR, CCR, CSR, CPR,
and CER for all channels. This resets STR, CNT, ACT and the
interrupt generation bits and clears the status and error registers.
The interrupt vector registers are set to SOF, the HD68000
uninitialized interrupt vector number.

CLK
1 2 3 4 58 7 8 9101112131415161718 1920212223 24252627282930313233
ADBUS T —- X—
W, —— s
s 7\ F~—%___ 1
s W T\
s _J W ——"" 7
RW -7\
OWN —--—
DOR 1 N——
DBER —™ W = 7 ~—— 7
HIBYTE N+ e/
oAk __ /. | WY
pTC |\ 7
AR T /S W
___ Ay TN 7 '
{BECo—~BEC2)*
BGACK ﬂ\"'_—\
BR A/
- BG "\ ”'—_"
12346506 7 8 9101112131415181771 19202122232425ztsz7mzs3a':r;l':;‘z'rs-sl
- Read - _'*Othe;master_%‘ Write -
from Device Rearbitration to Memory
Halt Asserted ~+— DMA — Continue ——
" Halted

* BEC, ~ BEC,; = Halt Code
(NOTES) The following notes refer to all bus exceptions.

1) The Bus E xception will be acted upon if it is detected INTERNALLY before or at the same time as DTACK. ____

2) The Bus Exception pins must be stable for two clocks before the GMAC will take any action. in addition, if the BEC pins are moving
but are not stable, and 8 DTACK is also received, the DMAC will wait for the BEC pins to resoive {remain statile for two clocks)
before terminating the cycie. If the BEC pins resolve to an exception code, the DMAC will act accordingly. If they resolve to the
normal mode, the DMAC will terminate if a DTACK is received and will continue normal operation.

NOTE: As long as the BEC pins are moving the DMAC will not start another cycle.
3) If possible, the DMAC should allow exceptions to be honored if they are assertec after DTACK is asserted but before the cycle has

finished terminating.

4) 1If a cycle is not running, the Retry and Berr exceptions will be ignored except that no bus cycles are started as long as anything is

detected on the BEC pins.
The following refer to the Halt exception only.

§) If halt is received during a cycle, it does not terminate the operation. DTACK is still required.
6) If halt is received when no bus cycle is running, the DMAC will simply give up the bus if it owns it.
7) The DMAC will not sttempt to re-acquire the bus until HALT has been necated.

Figure 38 Halt Operation
36 @ HITACHI

1

[B

¥ s

s ¥ e

Fa

e

L B Fe |

F 2R R F2 FR FR®R F1 32 12

f & E X

[

|

| .

HD68450-4 HD68450-6.HD68450-8

123 4 8 7 91011 1213141816817 1819 3132333613838)7

D

&
-

-

-

L -3

(S S

-]

il I

ACK T\ Y | 7
serr IO 77 :

CLK
1 2 3 45 6 7 8 9 1011121314151617 1819 31 32 33 34 35 36 37
. = x Error,
——————Berr on Write LLIL {—Qther
to Device Recovery Channels
Cycle

* BEC, ~ BEC, = Bus Error Code
** Single and Dual Cycie Source Address Error — 24 clocks
Dual Cycile Destination Address Error — 28 clocks

(NOTES) 1) In the case of preemptory bus exception, the bus cycle will always terminate immediately, but normally ; i.e. it will sequence off as if
a DTACK had been received. DTC will not be asserted.
2) In the case of a Berr, the DMAC will not terminate the cycie until the BEC pins have been stable in the Berr code for at Jeast two clocks,
even if a DTACK is also received.
3) See the bus exception comments beiow the Hait diagram.

Figure 39 Berr Operation

@ HITACHI 37

HD68450-4 HD68450-6 HDEB450-8

CLK
1 17 1
A/ D BUS
gas W1 W_ W_7
A _ [W i T 1
oos [0 i |\ W I
s __[I L\ _r |\ U /A
RW 1\)/ R\ /.
OWN .
DDIR
DBEN 0\t /i R\ o
AIBYTE
= (Y] S // A |\ \\ |\ L\ LA LR A \\\ /| —
DTC , _[l/
ACK \\Y I/ T o

rerry (IIIIIGN 7

12 3456 7 91011 121314151617 192021 23 24 25 2627 29 30 31

- Write -+ Bus Idle ——}————— Write Retry -t
to Device

Retry Asserted

{NOTES) 1) Inthecaseofas mptory bus exception, the bus cycle should always terminate immedistely, but normally ; i.e. it should sequence
off ssifa had been recsived. i
2) lnthuaaofnRoug,moDMACmunott-rmimmcydcunﬁlthoEE‘Cpimhm been stable in the Retry code for st lesst
one clock, even if 8 is also received.
3) See the bus exception comments below the Halt diagram.

Figure 40 Retry Operation

38 ® HITACHI

[

[BN]

[] [] | .

[B

F e

s | B |

s

F R F 2 s

e

| Y | -

&

¥

&

[W

&

&

R . | | 3

R

8 3

CLK

R T L T Oaan'!uﬂjuTJHLIJ 193021 37 23 74 26 38 27 38 20 30 3

& 1] ?
\ W 4
4\

Y A \

I\

. fF w__ I\
TN 7
r——
7
\

f —

12 3 456 7 8 91011121314151817 18 1920 21 22 23 24 25 26 27 28 29 30 31

—t Read

3

Relinquish and Retry

Asserted

* BEC,~BEC, = Relinquish and Retry Code

(NOTES) 1) inthe case of a
offsifa

——Other .
Master and

Rearbitration

Read Retry ——t——

ptory bus exception, the bus cycle should siways terminats immediately, but normally; is. it should ssquence
had been received.

HD68450-4 HD68450-6 HDE8450-8

2) Inﬂne.ooftﬂdinquishmdRotry.thoDMACshouldmtumimﬁncydounﬁlmmmmmmilnhcRolhquid\
is als0 received.
3) See the bus exception comments below the Hait disgram.

and Retry code for st least two clocks, even if 3

Figure 41 Relinquish and Retry Operation

@ HITACHI

39

HD68450-4 HD68450-6.HD68450-8

BEC CONTROLS

If the BET controls are asserted to a state that is undefined/
reserved, this version of the DMAC will enter a wait state and
resume operation when the exception is removed.

(3) ERROR CONDITIONS

When an error is signaled on a channel, all activity on that
channel is stopped. The ACT bit of the CSR is cleared, and the
COC bit is set. The ERR bit of the CSR is set, and the error
code indicated in the CER All pending operations are cleared,
3o that both the STR and CNT bits of CCR are cleared.

SOURCES OF ERRORS

Enumerated below are the error signals and their sources.
Configuration Error

A configuration error is signaled if chaining is programmed
and the continue bit is also set. Configuration error is signaled
if DTYP specifies a single-address transfer, and the device port
size is not the same as the operand size. Configuration error is
signaled if DTYP is 68000 or 6800, DPS is 16 bits, SIZE is 8
bits, and REQG is 10 or 11 (request pin). Setting an undefined
configuration will signal a configuration error. The undefined
configurations are: XPM =01, MAC =11, DAC =11, CHAIN =
01, SIZE=11.

Operation Timing Error

An operation timing error is signaled if an attempt is made
to continue an operation without STR being simultaneously
set or if the channel is not active. Operation timing error is
signaled if an attempt to set STR is made with ACT, COC,
BTC, NPT, or ERR asserted. Operation timing error is signaled
if an attempt to write to the DCR, OCR, SCR, GCR, MAR,
DAR or MTC is made with STR or ACT asserted. Operation
timing error is signaled if an attempt to assert CNT is made
when CHAIN is 10 or 11 (chaining modes). Operation timing
error is signaled if an attempt to assert CNT is made when BTC
and ACT are asserted.

Address Emror

Address error is signaled if an odd address operation is at-
tempted with word or long word operands or if CS or IACK is
asserted while the DMAC is bus master. The address error is
asserted after the odd address is encountered, this is consistent
with the processor operation.

Bus Error
A Bus error occurred during the last bus cycle generated by
the channel. v

Count Error

A count error is signaled if the memory or base transfer
count registers are initialized with terminal count. A count
error is signaled if a terminal count is encountered during con-
tinue or chain processing.

Abort
An abort error is signaled if the PCL line was configured as
an abort input and made an active transition, or if the channel
operation was aborted by the SAB bit of the CCR.
Note: When the PCL line is used as an abort input, the PCT
bit should be cleared prior to starting the channel. If the
PCT bit is set prior to the channel being started, the
DMAC will recoguize this as an external abort when the
channel is started.
When the transfer mode is set to dual addressing
mode, the transfer direction is set to 1/O device to mem-
ory, and PCL signal is set to external about input mode,

40

the external abort for that channel will be ignored after
a DONE input from the 1/O device is received during the
channel's 1/0 device-to-memory data transfer cycle.
After the DONE input, the channel will accept external
abort wken the channel is properly reinitialized and is
restarted. ~X-

ERROR RECOVERY PROCEDURES

If an error occurs during a DMA transfer, appropriate infor-
mation is available to the operating system to allow a “soft
failure” operation. The operating system must be able to
determine how much data was transferred, where the data was
transferred to, and what type of error occurred.

The information available to the operating System consists of
the present values of the Memory Address, Device Address and
Base Address Registers, the Memory Transfer and Base Trans-
fer Counters, and control, status, and error registers. After the
successful completion of any transfer, the memory and device
address registers points to the location of the next operand to
be transferred and the memory transfer counter contains the
number of operands yet to be transferred. If an error occurs
during a transfer, that transfer has not completed and the reg-
isters contain the values they had before the transfer was
attempted. If the channel operation uses chaining, the Base
Address Register points to the next chain entry to be serviced,
unless the termination occurred while attempting to fetch an
entry in the chain. In that case, the Base Address Register points
to the entry being fetched.

MULTIPLE ERRORS X

The DMAC will log the first error encountered in the channel
error resister. If an error is pending in the error register and
another error is encountered the second error will not be logged.
This is true in the case of an error pending and an attempt is
made to set the STR bit. In this case the Operation timing error
is not logged in the error register but the error is recognized
internally and the channel is not started.

® CHANNEL PRIORITIES

Each channel has a priority level, determined by the contents
of the Channel Priority Register (CPR). The priority of a chan-
nel is a number from 0 to 3, with O being the highest priority
level. When multiple requests are pending at the DMAC, the
channel with the highest priority receives first service. The
priority of a channel is independent of the device protocol or
the request mechanism for that channel. If there are several
requesting channels at the highest priority level, a round-robin
resolution is used, that is, as long as these channels continue to
have requests, the DMAC does operand transfers in rotation.

8 APPLICATIONS INFORMATICON

This section contains examples of how to interface various
1/0 devices to 2 HMCS68000/DMAC based system.

Figure 42 shows an example of how to demultiplex the ad-
dress/data bus.)

Figure 43 indicates the example of how to latch the data,
when the DMAC has two channels which operate in 6800 mode.

Figure 44 indicates the example of inter-device connection
in the HMCS68000 system.

© HITACHI

| |

Fa [i

| ¥Fa [.] |]

F 2 F R FR @2 F2 FR @R DN

% R TN

HD68450-4 HD68450-6. HD68450-8

! ! 7 o0
HD88450 2 2 s

m IOIR

L] 7aus2e4s | 20=Ov

OMA
CONTROLLER
Figure 42 Required Multiplexed Data/Address Hardware for the Bus Control Logic

o
: w
De~D,
6800 Type
Device
A¢~A,)m— 8
V" | Decoder
B ¢
s l_
De~D,)
v @800 Type
§— £ %
3 g Af~Aqgy >m— &
- v Decoder
s
i = ‘
1
ik,
l .
ACTK,
5 6 b—lw
! ; — RW
3 ' HDBBASO
| OMAC
i ! —E
; i G
74L373
L*__:\
~ 10 10
De ~Ds A0, Kol a0 >.us (A:IAD.::ID.,
CONTROL
LOGIC

A A

< Dy ~ Dy > (Frgure 42)

A —

-)

Figure 43 An Example of Connection with Peripheral Devices in 6800 Mode
@ HITACHI 41

HD68450-4 HD68450-6 HDE88450-8

a B
i 3
-
Do~Dw ™M ™
Data & Address
Bus Interface As—Azs :>
35
<9 -
1
ERERE 12 =
(g Channel A“'A7<,L ::>
— e | #0 cg__E§ =N
R — .
—_— Decoder
REQ: Channe! L0S] 1
—ACK: #1 UDS W
— HD68450 R/W .
DMAC ‘
oMA | —drEm; DTACK -
Device £ Channel 3
ce { —{ACKz %2 FCo—~FCal—+ - —
— iRQ
REQ:)
— BEC: ~ BEC:
DTC
| Zoowe _ [g
l:’é Control]
CLK Eg Q EE E
CPG]
FCo~FC: 3/
Do~015<:‘:> O —
ooo A1~Az3]
HD68450" i _:>_]
MPU (Ds W
upDs bt
RW —
DTACK 1
VPA —
VMA —
—_— E M
IPLo~IPL2

42

L

||

| Bus Control

Do~Dss

Ar~Aa;

Memory &
Memory Control Unit
AS

ibs
UDS

R/W

DTACK

ERROR

3 Do~D1s

DS

R/W

DTACK

TACK

CS 68000
RS Peripheral

Lsi
RES

— IRQ

o

Do~D7

CS

RS

6800
Peripheral LS!
R/W

IRQ

—

——

b~/

Figure 44 An Example of Inter-device Connection in the HMCS68000 System

© HITACHI

- [

f m = wm

e

¥

Fa | i |

F R

£

¥ R FR F R E R

1 FR &N

|

&

& §

¥

Page

Hitachi Microcomputer Device Technical Information
September, 1982

Revision of HD68450 Data Sheet

Content

Replace the mnemonic for pin 21. “IREQ™ with “IRQ".

Revise the value of “*Power Dissipation™.

Before: Revised:

1.0W typ.. 1.75W max. 1.4W typ.. 2.0W max. :
at Ta = 25 degrees Cand Vo =50

3 Revise the following items of *“AC Electrical Specification™.
No. 94 and 95 are newly added.
» ; Revised Value (ns)
No. Item : Symbol : -
- i 4MHz . 6MHz ; 8MHz
: min | max min max . min @ max
16 DS In “High” to DDIR . t DSHDRZ ' 160 140 120
““High”" Impedance : : j
17 DS In “High" to DBEN - t DSHDBZ i 160 - 140 | 120
*High"" Impedance : ! : } ?
18 Clock “High” to Data - tCHDVM I 240 . 170 . 130
Out Valid {(MPU Read) : :
21 " DS In “High” to DTACK - t DSHDTH f 140 - 130 110
- “High” ' : v i
34 Clock “High” to t CHAV . 160 . 140 120
Address/FC Valid : ; ‘ :
35 Clock “High” to Address/FC/ t CHAZx 140 120 ¢ 100
Data “High” Impedance ’ : g .
94 Address In to AS t AIASL 0 0 ©0
In “Low” : ' l ’
95 AS, DS In “High” to t SIHAIV 0 L0, 0
Address Invalid : i 5 :
5 Ignore indices “91” and **92” in *‘Figure 3, AC Electrical Waveforms-MPU Read/Write™.
) Replace index “25°" with “23”" in “Figure 3. AC Electrical Waveforms-MPU Read/Write”’.
14 Delete the following sentence from the paragraph titled “PCL AS AN ABORT INPUT:
When this function has been programmed, the PCL line is only active after the channel has been
started.
35 Add the following comment to ““Figure 37. Bus Exception Flow Diagram”™:
When the DMAC is in “IDLE MODE WAITING FOR BEC CLEAR”, (BER or RTY is asserted"
in this state) the MPU cannot access the DMAC registers. BER or RTY must be negated before
the MPU accesses the DMAC. The MPU can access the DMAC registers while HLT or RRT is
asserted.
40 Add the following sentence after the 6th line from the top of the right column (ending with* . ..

and is restarted.”™):
In order to detect an external abort of the above kind. the user is advised to examine the PCT
bit of the channel status register (CSR) along with the ERR bit. If the PCT bit is set and ERR bit
is reset, then he can conclude that an external abort has occured in the DONE cycle and take an
appropreate action.

HITACHI reserves the right to make changes to any products herein to improve functioning or design. Although the informa-
tion in this document has been carefully reviewed and is believed to be reliable, HITACHI does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights
nor the rights or others.

40 Replace the content of the section titled “MULTIPLE ERRORS™ with the following sentence:
The DMAC detects and services multiple errors. however the content of CER (channel error
register) retains the first error that the channel has encountered regardless of what type of c
errors occur after the first onc.
41 The following change has to be made on “Figure 43 An Example of Connection with Peripheral
. Devices in 6800 Mode™
The AND gate input to OE of 74LS373 should be changed to a NAND gate.
Changc “*Ag~ AnT o A~ AT
Change “D. ~ D-"t0 *Dy ~ D-"
42 Replace HD 68450 with HD 68000
MPU MPU
(Lower left block of page)

¥ = . [.]

Fa ¥ m

e

Fa Fa ¥ N

@ HITACHI

HITACHI-EUROPE HITACHI-EUROPE HITACHI-EUROPE HITACHI-EUROPE HITACHI-EUROPE

MUNCHEN,HEADQUARTER DUSSELDORF .STUTTGART PARIS MILANO

Hitachi Electronic Components Hitachi Electronic Components HRachi Electronic Components Hitachi Electronic Components Hitachi Electronic Cormoot

Europe GmbH Europe GmbH Europe GmbH Europe GmbH Europe GmbH .

Hans-Pinsel-StraBe 3 Kdnigsallee 6 FabrikstraBe 17 Bureau de Représentation en France Via B. Davanzati. 27 F

8013 Haar b. Manchen 4000 Dasseldorf 1 7024 Filderstadt 95-101, Rue Charles-Michels 1—20158 Milano i

= (089) 46 14-0 2 (0211) 84995 : 2 (0711} 772011 F-83200 Saint Denis 2 02-3763024

Telex: 5-22593 Telex: 8-584 536 Telex: 7-255267 01-8216015 Telex: 320343

Teletax: (089) 463151 Telefax: (0211) 324612 Télex: 611387 Telefax: 02-6837 30
Télefax: 01-2436997 :

HITACHI-UNITED KINGDOM HITACHI—UNITED KINGDOM . '

LONDON, HEADQUARTER STOCKHOLM P

Hitachi Electronic Components Hitachi Electronic Components

(UK) Lid. (UK) Ltd.

Hitec House, Box 1602, 16311 Spanga

221-225 Station-Road Hankadalsgatan 10 Kista

Harrow, Middlesex, HA1 2XL = 0046-87510035

®01-8611414 Telex: 14 106 (Hitecst S)

Telex: 936293 Telefax: 08-7515073

Teletax01-8636646

\.
A-12-82-06.UP450 Pnanted in West-Germany

™ IR 2 N

| -

&

| WY

Appendix CC74

APPENDIX L

DATA SHEET 5385/6 SCSI CONTROLLER

January 1986

u_»

u_»

u_B

e.n

| .

¥ |

s an

|

an

L B i &

NCR 5385E SCSI
Protocol Controller

Data Sheet

il

& | I & & & & ¥ ® & . & . i
.

& = & =

NIC R

Microelectronics Division, Colorado Springs

Y & & i

Copyright © 1985, by NCR Corportation
Dayton, Ohio
All Rights Reserved Printed in U.S.A.

This document contains the latest information available at the time of publication. However,
NCR reserves the right to modify the contents of this material at any time. Also, all features.
functions and operations described herein may not be marketed by NCR in all parts ol the
world. Therefore, before using this document, consult your NCR representative or NCR olfice
for the information that is applicable and current.

o

.

TABLE OF CONTENTS
SECTION PAGE
1. GENERAL DESCRIPTION. ..ot e e e et i et a st 3
2. PIN DES C RIPTION . . oot e e ettt ettt ettt sttt 5
21 Microprocessorinterface Signalst it 5
2.2 SCSlinterface Signalsot e e 6
3. ELECTRICAL CHARACTERISTICS ... oot it ettt et et e ettt 8
4, INTERNAL REGISTERS. ..ottt it i sttt e ettt e ettt teinananea 9
4.0 General . . . et 9
41 Data Register e i e et 9
4.2 Command Register. i i it e et 9
4.3 Control Register. i e i e e 10
44 DestinationIDRegister 11
45 Auxiliary Status Register.o i i i e 11
4.6 D ReGiSter. .. i e e e e e 13
4.7 Interrupt Register.o i i i e 14
4.8 SourcelD Register. e 16
4.9 Diagnostic Status Register. 17
4.9.1 Self-DiagnosticStatusCodeSummarycoiiiiiiiiinenennn.. 18
410 Transfer Counter i e 18
5. COMMAND S L. i i e ettt e e e 19
5.1 Command Format i i it e et 19
5.2 ComMMaANA TY P .ot i e e e 20
5.3 Invalid Command. i et e 21
5.4 CoOMMaAND SUMIMIANY « .ottt ittt ittt et ee e e ta e tie e ten e anenaannns 21
5.5 Command Definitionso e e 22
5.5.1 CRIP RESEt ... e e 22
B5.5.2 DiSCONNECE. ... i e e, 22
58,3 PaAUSE. ... e 22
B5.5.4 St ATN . .. o e e e 23
555 Message AcCepted i e e 23
556 ChipDisable e e e e 23
5.5.7 SeleCtWIATN e 24
5.5.8 SelectW/o ATN ... e 24
5.5.9 ReseleCt 25
5.5.10 DiagnosticDataTurnaround it 26
5511 Receive COmMMaANAS ... ittt it ittt et et e ettt ettt iaanans 27
5.5.12 Send ComMMaANAS ...ttt ittt e e 28
B5.5.18 Transferinfo e 29
B5.5.14 Transfer Pado it e e et 30
1

6 BUS INITIATED FUNCTIONS ... i e s et et 31
6.1 Selection e e e et e et e i, 31

6.2 ReseleCtion e et 31

7. INTT AL ZA T ION L i i et e e e e e ettt et e 32
8. EXTERNAL CHIP TIMINGS ... e e et 33
8.1 Microprocessorinterface i i i i e 33

8.1.1 oK - i e e e 33

8.1.2 RSt . . e 33

8.1.3 MPUWII e . e e e e e e et s 34

8.1.4 MPU REad. ... i 34

8.15 DMAWTIIte .. 35

8.1.6 DMA REAd ... i i e e e e, 35

8.1.7 I I U . e e e e 36

8.2 SCS Nt face. . o oot e e 37

8.2.1 Selection (Initiator) 37

8.2.2 Selection (Target). e 39

8.2.3 Reselection (Initiator). i i 40

8.2.4 Reselection (Target) i e e 41

8.2.5 Information Transfer Phase Input (Initiator) 43

8.2.6 Information Transfer Phase input (Target) 44

8.2.7 Information Transfer Phase Qutput(Initiator) 45
8.2.8 Information Transfer Qutput (Target)........, 46

8.2.9 Bus Release From Selection (Initiator) i, 47
8.2.10 Bus Release From Selection(Target)cciiiiiiiiiiiiian... 48
8.2.11 Bus Release From Information Phase (Initiator) 49
8.2.12 Bus Release From Information Phase (Target) 50
2

o

f "

¥ e

F R &N

N

FaR ¥ a

L] s

¥ =

.

L]

.

[

i

hJ

| B

i .

-

(R |

SECTION 1

GENERAL DESCRIPTION

The NCR SCSI Protocol Controller (SPC) is designed to accomodate the Small Computer Systems
Interface (SCSI) as defined by the ANSI X3T79.2 committee. The SPC operates in both the Initiator and
Target roles and can therefore be used in host adapter and control unit designs. This device supports
arbitration, including reselection, and is intended to be used in systems that require either open collector

or differential pair transceivers.
The NCR 5385E SCSI Protocol Controller communicates with the system microprocessor as a
peripheral device. The chip is controlled by reading and writing several internal registers which may be
addressed as standard or memory mapped 1/O. A 24-bit Transfer Counter and the appropriate handshake
signals accommodate large DMA transfers with minimal processor intervention. Since the NCR 5385E
interrupts the MPU when it detects a bus condition that requires servicing, the MPU is freed from polling
or controlling any of the SCSI bus signals.
Below is a list of important features:
SCSI INTERFACE MPU INTERFACE
*Supports ANSI X3T79.2 SCSI Standard *Versatile MPU Bus Interface
- Asynchronous data transfers to 1.5 MBPS - Memory or /O mapped MPU interface
- Supports both Initiator and Target roles - DMA or programmed /O transfers
- Parity generation with optional checking - 24-bit Internal Transfer Counter
- Supports arbitration - Programmable (Re)Selection timeouts
- Controls all bus signals except Reset - Interrupts MPU on all bus conditions
- Doubly-buffered Data Register requiring service
DMA _IDRE Qa— SCSI DATA BUS 02 b Veo
CONTROL |DACK— w/ &AR!TY DI O 0
e e—BSY IN 0@ 0 D4
RO—o —=-B3Y OUT RESET 0 D5
WR——t —SEL IN ATN 0 D6
REGISTER ‘XR —>=SEL OUT I6S h 07
ADDRESSING | 40 F*>ATN | SCS|CONTROLS 1/0 b BSYOUT
| —] NCR s ACK W/O RESET C/D P SB7
Ao 5385E - REQ MSG D SBo
oy p— SPC - MSG ACK 1 SBS
A a—>C /D REQ 0SB4
pata Bus (T /0 D2 b SB3
CLK— | i 7 5 B
MASTER ﬂRST——> —®= TGS BUS GATING ARB 0 SB@
SIGNALS VCC —e=SBEN CLK o SBP
lenD —=ARB BSY IN 0 SELOUT
— SELIN 38 3p RD
} * INT Q9 30p WR
INT Dz, HIDSTR SBEN 20 29P DREQ
50 OSTRAP s i 28h TGS
AQ 422 270 DACK
Al 23 60 A3
GND T24 250 A2
FIG. 1.1 FUNCTIONAL PIN GROUPING FIG. 1.2 PINOUT
3

—
ATN =
BSYIN —» REQ ____L.RE__Q___- L =DREQ
- - K
mT [} o SV »{ LATCH t——DACK
SELOUTe—| SPEED|, 1 e—A3
ok ~CONTROLK——) [0S IC A2
REQ -y E i v LOGIC _§ﬂh_,. A N " A SS A M'AQ - A'
ACK - Z ,J. . - DECOOE jt——r—— |e—AaQ
MSG == | ™lcHance § 38 © REGISTERS [*¢ RD ORWR t— D
C/D =a WINARB | W KNaxg 2 » NS INT OUT e—WR
- SIES - {RL} g [
PARITY) , I o —RE-
ENE RATOR K ?
. At »
N O
H
B0 E PRIORITY f 2y
- (@) O w
i] ~ 3 98
A % H 9 oo« 2 0@ -07 R
2 — N k=00-07
IGS e f n HARDWARE
168] ELECT s < DECODE
ASEB:N S a ‘ CLK
1D = REGISTER jug—— GND
55 N SEL. @ LOGIC
s E —] mas« T RD tBF.G_QEQQQE
(@]
D2 "ol g PARITY
GENERATOR
CHIP 1D
FIG.1.3 NCR5385E
BLOCK DIAGRAM
! ‘ "-\

"3 €9 F® F® F% FR FR R FfR FR fFR fFR F3 F R F2 &8 &8 &= == == -—

B & B | o | -

B &~ B g

&

e

et L P VT S - e

SECTION 2
PIN DESCRIPTION

2.1 MICROPROCESSOR INTERFACE SIGNALS

CLK

RESET

D0-D7

INT

AO-A3

DREQ

16

3-1
47-43

19

30

31

21

Symmetrical square wave signal which generates internal chip timing.
Maximum frequency is 10 MHz.

When high (1), this signal forces the chip into a reset state. All current
operations are terminated. Internal storage elements are cleared and
self-diagnostics are performed.

These signals comprise an active high data bus. It is intended that thése
signals be connected to the microprocessor data bus.

This signal is used to interrupt the microprocessor for various bus
conditions that require service. INT is set high for request and cleared
when the chip is reset or the Interrupt Register is read.

Write pulse (active low) is used to strobe data from the data bus into an
internal register which has been selected.

Read pulse (active low) is used to read data from an internal register
that has been selected. The contents of the register is strobed onto
the data bus.

When low (0), this‘signal enables reading from or writing to the internal
register which has been selected.

22,23, 25, 26 These signals are used in conjunction with CS, to address all the

29

27

internal registers.

Data request. When high (1), this signal indicates that the internal Data
Register has a byte to transfer (inputting from the SCSI bus) or needs a
byte to transfer (outputting to the SCSI bus). This signal becomes
active only if the DMA mode bit in the Command Register is on. It is
cleared when DACK becomes active.

Data acknowledge. When low (0), this signal resets DREQ and selects
the Data Register for input or output. DACK acts as a chip select for the
Data Register when in the DMA mode. DACK and CS must never be
active at the same time.

2.2 SCSIINTERFACE SIGNALS

SB0-SB7,SBP

BSYIN

BSYOUT
SELIN

SELOUT
ATN

ACK

REQ

MSG, C/D, /IO

IGS

TGS

14-12

34-41,33

17

42
18

32

10

1

9,8,7

28

These active low signals determine the three-bit code of the SCSI bus
ID assigned to the chip. External pullup resistors are required only if
tied to switches or straps.

Active high data bus. These signals comprise the SCSI data bus and are
intended to be connected to the external SCSI| bus transceivers.

When high (1), this signal indicates to the chip that the SCSI BSY signal
is active.

When high (1), the chip is asserting the BSY signal to the SCSI bus.

When high (1), this signal indicates to the chip that the SCS! SEL signal
is active.

When high (1), the chip is asserting the SEL signal to the SCSI bus.

INITIATOR ROLE: The chip asserts this signal when the microprocessor
requests the attention condition or a parity error has been detected in
a byte received from the SCSI bus.

TARGET ROLE: This signal is an input which indicates the state of the
ATN signal on the SCSli bus.

INITIATOR ROLE: The chip asserts this signal in response to REQ for
a byte transfer on the SCSI bus.

TARGET ROLE: This signal is an input which, when active, indicates a
response to the REQ signal.

INITIATOR ROLE: This signal is an input which, when active, indicates
that the Target is requesting a byte transfer on the SCS| bus.

TARGET ROLE: Asserted by the chip to request a byte transfer on the
SCSI bus.

INITIATOR ROLE: These signals are inputs which indicate the current
SCSI bus phase.

TARGET ROLE: The chip drives these signals to indicate the current
bus phase.

Initiator Group Select. When high (1), this signal indicates to the external
SCSi drivers that the chip is controlling in the Initiator role. its purpose
is to enable the external drivers for ATN and ACK.

Target Group Select. When high (1), this signal indicates to the external
SCSI drivers that the chip is controlling in the Target role. Its purpose
is to enable the external drivers for REQ, MSG, C/D, and 1/O.

¥ u | | [Fa e

Fa a Fa . Fa

Fa

2 Fa fF R O

¥ a

B

4 . I -
e e s B S S A1V AU i i e A L e : . C e e cemmiem o as

SBEN 20 SCSI data Bus Enable. When low (0), this signal directly enables the
external SCSI data bus drivers.

ARB 15 Arbitration phase. When high (1), this signal enables the external
circuitry to place the ID bit on the SCSI bus for the Arbitration phase.

POWER SIGNALS

VCC 48 + 5V input

GND 24 Signal reference input

SECTION 3
ELECTRICAL CHARACTERISTICS

OPERATING CONDITIONS

PARAMETER SYMBOL MIN MAX UNITS
Supply Voltage VDD 4.75 5.25 voc
Supply Current DD 300 mA
Ambient Temp. TA 0 70 °'C

INPUT SIGNAL REQUIREMENTS
PARAMETER CONDITIONS MIN MAX UNITS
High-level Input, V|4 2.0 5.25 voc
Low-level Input, V| -0.3 0.8 vbC
High-level Input Current, {|H ViH =5.25V 10 MA
Low-level Input Current, I ViL=0V -10 MA

OUTPUT SIGNAL REQUIREMENTS

(Except SBEN , IGS, and TGS)

PARAMETER CONDITIONS MIN MAX
High-level Output Voltage, VOH VDD =4.75V @ 24 — VbC
I0H= -400 uA
Low-level Output Voltage, VOL VDD=4.75V @ 0.4 voc
loL=2.0mA —
SBEN, IGS, and TGS SIGNALS
PARAMETER CONDITIONS MIN MAX UNITS
High-level Output Voitage, VOH VDD=4.75V @ 24 — Voc
10H = -4004A
Low-level Output Voitage, VoL VDD =4.75V @ 0.4 voc
loL=4.0mA —
PRELIMINARY
Notice: This is not a final specification.
Some p ic limits are subject to change.
8

R
)

F & &N

FE R [¥ n

' Fr i Ir_‘ fR R @ ¥R KON

¥R | -m - - -

L A ol
Vet T s e e - ——— e D e - . - -

SECTION 4
INTERNAL REGISTERS

4.0 GENERAL

The NCR SCSiI Protocol Controller has a set of internal registers which are used by the microprocessor
to direct the operation of the SCSI bus. These registers are read (written) by activating CS with an ad-
dress on A3-A0 and then issuing a RD/(WR) pulse. They can be made to appear to a microprocessor as
standard |1/O ports or as memory-mapped l/O ports depending on the external circuitry that controls
CS. The following sections describe the operation of these internal registers.

REGISTER SUMMARY
A3 A2 A1 A0 RW REGISTER NAME
0 0 O O RW Data Register
0O 0 O 1 RW Command Register
o O 1 0 RW Control Register
0 O 1 1 RW Destination ID
0 1 0 0 R Auxiliary Status
0 1 0 1 R ID Register
0 1 1 0 R Interrupt Register
0 1 1 1 R Source ID
1 0 O 1 R Diagnostic Status
1 1 0 0 RW Transfer Counter (MSB)
1 1 0O 1t RW Transfer Counter (2nd BYTE)
1 1 1 0 RW Transfer Counter (LSB)
1 1 1 1 RIW Reserved for Testability

4.1 DATA REGISTER

The Data Register is used to transfer SCSI commands, data, status and message bytes between the
microprocessor data bus and the SCSI bus. This is an eight-bit register which is doubly-buffered in order
to support maximum throughput. In the non-DMA mode, the microprocessor reads from (writes to) the
Data Register by activating CS with A3-A0 =0000 and issuing a RD/(WR) pulse. A bit has been included
in the Auxiliary Status Register to indicate when the Data Register is full. In the DMA mode, the DMA
logic reads from (writes to) the Data Register by responding to DREQ with DACK and issuing a RD/(WR)
pulse. The SCSI bus reads from or writes to the Data Register when the chip is connected as an Initiator
or Target and the bus is in one of the Information Transfer Phases.

4.2 COMMAND REGISTER _
The Command Regi'ster is an eight-bit register used to give commands to the SCSI chip. The micro-

- processor can write to (read from) the Command Register by activating CS with A3-A0 = 0001 and

issuing a WR/(RD) pulse. Writing to the Command Register causes the chip to execute the command
that is written. The Command Register can be read; however, the chip resets the Command Register
when it sets an Interrupt. Therefore, one cannot guarantee that the data in the register will be correct
after loading an interrupting command or enabling selection or reselection. To be safe, a copy of the
last command issued should be stored in the microprocessor’'s memory. Immediate commands are not
stored.

The contents of the Command Register are described in a later section (See page 19, COMMANDS).

4.3 CONTROL REGISTER

This eight-bit read/write register is used for enabling certain modes of operation for the SCSI Protocol
Controller. The microprocessor reads from (writes to) the Control Register by activating CS with A3-A0
=0010 and issuing a RD (WR) pulse.

— Select Enable
Reselect Enable
Parity Enable
BIT 7-3 Reserved
BIT 2 Parity Enable When the parity enable bit is a ‘“1”, the chip generates and

checks parity on all transfers on the SCSI bus. When the
parity enable bit is a “‘0”, the chip generates but does not check
parity on bus transfers.

BIT 1 Reselect Enable When this bit is a “1”, the chip will respond to any attempt by
a Target to reselect it. When the bit is a ‘0", the chip will ignore
all attempts to reselect it.

BIT O Select Enable . When this bit is a “1”, the chip will respond to alitempt to select
it as a Target. When it is a ““0”, the chip will ignore all selections.

NOTE: After being reset and completing self-diagnostics, the control register will contain all zeros.

10

¥y u | g

¥ = Fn

B]

F e [s

R

&l

|

B

T

f .58 .

i .

4.4 DESTINATION ID REGISTER

The Destination 1D Register is an eight-bit register that is used to program the SCSI bus address of the
destination device prior to issuing a Select or Reselect command to the chip. Bits 0-2 specify the address
and bits 3-7 are always zeroes. The ID register is written (read) by activating CS with A3-A0 equal to
“0011" and then pulsing YVR (RD).

Destination ID

4.5 AUXILIARY STATUS REGISTER

The Auxiliary Status Register is an eight-bit read-only register. it contains bits which indicate the status
of the chip’s operational condition. Some of these bits are used to determine the reason for interrupts.
Therefore, the Auxiliary Status Register should always be read prior to reading the Interrupt Register
when servicing interrupts. After the Interrupt Register is read, the Auxiliary Status Register bits needed

to service the interrupt may change.

The Auxiliary Status Register is read by activating CS with A3-A0 = 0100 and then pulsing RD. The
individual bits of the Auxiliary Status Register are defined below.

76 5 4 3 2 10

Not Used

Transfer Counter Zero
Paused

{10

—CI/D

MSG

Parity Error

Data Register Full

11

BIT 7

BIT 6

BIT 35

Data Register Full

Parity Error

110, C/ID, MSG

This bit indicates the status of the Data Register and must be
monitored by the microprocessor during non-DMA mode com-
mands that use the Data Register. When the DMA mode bit in the
Command Register is off (0) and the command being executed is
one of Send, Receive or Transfer info commands (refer to Section
5.0 page 19, COMMANDS), data is transferred to (from) the chip
by writing (reading) the Data Register. Data Register Full is set
on (1) when data is written and turned off (0) when data is read.
Therefore, Data Register Full should be on before taking data
from the chip, and off when sending data to the chip.

The Data Register Full bit is always reset (to 0) at the time an
interrupting type command is loaded into the Command
Register. Therefore, when issuing such commands, the Com-
mand Register should be loaded prior to loading the Data
Register and monitoring the Data Register Full flag.

When this bit is one, it indicates that the chip has detected a
parity error on a byte of data received across the SCSI bus. It
can be set when the chip is executing one cf the Receive
commands or the Transfer Info command (when the transfer is
an input). This bit is reset after the Interrupt Register is read.

These bits indicate the status of the SCSI 1/0, C/D, and MSG
signals at all times. They define the Information Phase type being
requested by the Target. These signals are significant when
servicing interrupts and the chip is logically connected to the
bus in the Initiator role. An interrupt will occur with any phase
change. This allows the Initiator to prepare for the next phase
of data transfer. These bits are only held while INT is active.
The bits are coded as follows:

110 C/D MSG BUS PHASE

0 0 0 DataOut
0 0 1 Unspecified Info Out
0 1 0 Command
0 1 1 Message Out
1 0 0 Dataln
1 0 1 Unspecified Info In
1 1 0 Status
1 1 1 Message In
12

R

-

-

[

F

FR Ffu &w

Fn

Fa2 &§na

F R KN

P fY OfFY OrR orw g

| S

- B S

"

E

e

R s

B

| S

&

I

&

& : -8 @

& i

BIT 2 Paused

-BIT 1 Transfer Counter Zero

BIT O Not Used

When on (1), this bit indicates that the chip has aborted the
command being executed in response to the Pause command.
it is turned off when the interrupting type command code is
loaded into the Command Register.

‘This bit is provided to indicate the status of the 24-bit Transfer

Counter. When on (1), it indicates that the Transfer Counter is
equal to zero. It is intended to facilitate interrupt servicing.

NOTE: The Auxiliary Status Register will contain the following pattern after a Reset and self-diagnos-

tics: 00xxx010.

4.6 ID REGISTER

The ID Register is an eight-bit read-only register that indicates the logical SCSI bus address occupied by
the chip. Bit 0-2 directly reflect the logical inversion of the chip ID input signals ID0-1D2. The ID Register
is active high whereas the ID input signals are active low. The ID Register allows the microprocessor to
read the chip’s SCSI bus address which would normally be strapped in hardware. Bits 3-7 of the ID
Register will always be zeroes. The ID Register is read by activating CS with A3-A0 = 0101 and then

pulsing RD.

I l l Device ID

13

4.7 INTERRUPT REGISTER

The Interrupt Register is an eight-bit read-only register. It is used in conjunction with the Auxiliary Status
Register to determine the reason for an interrupt condition. This register is read by activating CS with
A3-A0 = 0110 and then pulsing RD. When the Interrupt Register is read, it automatically resets itseif
. (after the read is complete) and enables the chip for a new interrupt condition. Since the Parity Error
bit in the Auxiliary Status Register is reset after a read of the Interrupt Register, and since 1/O, C/D, and
MSG are only held while INT is active, the Auxiliary Status Register should always be read prior to reading
the Interrupt Register.

If a Selected or Reselected interrupt occurs after issuing a command that would normally cause an
interrupt, the chip will ignore the last command issued. This allows the microprocessor to service the
Selected or Reselected interrupt prior to proceeding with the other operation. An example of this
situation is when the microprocessor issues a command to select a Target at about the same time
another Target reselects the chip. If the chip sees the reselection first, the microprocessor will receive
an interrupt for the reselection, and the chip will ignore the Select command, which would now be invalid
since the chip is now logically connected on the SCSI bus to another device.

Individual interrupt conditions are described below. (Note: that for all cases, an interrupt condition is
on, when the corresponding bit is a one (1), and off when zero (0).)

76 5 43 210

L Function Complete
Bus Service
Disconnected

Selected

Reselected

(Used for Testability)

Invalid Command

Not Used

14

L~

N an BN |

| I | ¥ u ¥F Fa LI

Fu Fa

Fa

Fa

Fa

Fa

| B | [B]

e

Fa Fa

n

T

. e s X bt R. B meF £ ..

~-er

P e T R VG NP SR B e e e i e e e v e

BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT O

Not Used

Invalid Command

Not Used

Reselected *

Selected *

Disconnected

Bus Service

Function Complete

»

May be either (1) or (0).

When on (1), this bit indicates that the last command loaded
into the Command Register is not valid.

(Reserved for testability)

This interrupt will be on (1) when the chip has been reselected
by another SCSI device. After setting this interrupt, the chip is
logically connected to the bus in an Initiator role and is waiting
for the Target to send REQ or disconnect from the bus.

This interrupt will be on (1) whenever the chip has been selected
by another SCSI device.

After setting this interrupt, the chip is logically connected to
the bus in the Target role and is waiting for a command to be
loaded into the Command Register.

The chip will become selected (reselected) only if the ID data
byte put on the SCSI bus during the Selection (Reselection)

Phase has good parity and not more than one ID other than the

chip’sown ID is on.

This interrupt will be set on (1) when the chip is connected to
the bus in the Initiator role and the Target disconnects or when
the chip is executing a Select or Reselect command and the
destination device does not respond before the Transfer Counter
times out.

When the chip is logically connected to the bus.in the Initiator
role, this bit will be set on (1) whenever the Target sends a REQ
which the chip cannot automatically handle. This happens when
the first REQ for connection is received or when the chip is
executing a Transfer Info or Transfer Pad command and either
the Transfer Counter is zero or the Target changes the In-
formation Phase type.

A Bus Service interrupt may also be set if a phase change occurs
before REQ is seen. This early notification will allow the Initiator
extra time to prepare for a phase change in some unbuffered
systems. (Note: that the chip may generate Bus Service
Interrupts for phases that never request transfers. This is not
an error condition, merely transitional status of /O, C/D, and MSG.)

If the chip is logically connected in the Target role, this bit
will be set on (1) whenever the Initiator asserts ATN. When
indicating ATN the Bus Service interrupt may occur by itself,
with a Selected interrupt, or with a Function Complete interrupt.

When this bit is on (1), it indicates that the last interrupting
command has completed. It is the normal successful completion
interrupt for Select, Reselect, Send and Receive commands
(Refer to Section 5.0 page 19, COMMANDS). During any of the
Receive commands, it is set on (1) along with the parity error
bit as soon as a parity error is detected. A Bus Service Interrupt
may also occur simultaneously with the Function Complete if
an ATN signal was activated during a Send or a Receive command.

The Function Complete interrupt is also generated at the end
of a Message In phase for a Transfer Info command. (See
TRANSFER INFO command, page 29 for details.)

15

e e e

4.8 SOURCE ID REGISTER

The Source ID Register is an eight-bit read-only register which contains the three-bit encoded ID of the
last device which Selected or Reselected the chip. The following is the format of the Soutce 1D Register.

7 6 5§ 4 3 2 10

Source ID
ID Valid

The ID Valid bit indicates that the source device placed its own ID bit on the SCSI bus during the Selection
Phase. The SPC chip has encoded the source ID and placed it in bits 2-0. This inforrnation remains
valid until the chip disconnects from the SCSI bus, at this time the ID Valid bit is reset.

16

¥ e

[.

e |

¥

| B]

¥

¥

| B |

F R

F® K2 []

Fa

4.9 DIAGNOSTIC STATUS REGISTER

The Diagnostic Status Register is an eight-bit read-only register which indicates the result of self-
diagnostics and the last diagnostic command issued to the chip. The format of the Diagnostic Status
Register is shown below.

7 6 5 4 3 2 10

Self-diagnostic Status

000 Successful Completion

001 Unconditional Branch Fail

010 Data Reg. Full Failed

011 Initial Conditions Incorrect
100 Initial Command Bits Iincorrect
101 Diagnostic Flag Failed

110 Data Turnaround Failed

111 Not Used

Diagnostic Command Status

001 Turnaround Miscompare (Initial)
010 Turnaround Miscompare (Final)
011 Turnaround Good Parity

100 Turnaround Bad Parity

Self-Diagnostic Complete

Bit 7 = 1 indicates that self-diagnostics have been completed. (NOTE: A reset will clear bits 6-3 if
possible). After a reset to the chip, the microprocessor should make sure that the Diagnostic Status
Register contains the following pattern before attempting any commands: 10000000. This code indicates
self-diagnostics are complete and no errors were detected. After a diagnostic command has been
executed, bits 6-3 will contain the resulting status, but bit 7 and bits 2-0 are not affected.

The microprocessor may read the Diagnostic Status Register by activating CS with A3-A0 = 1001 and
issuinga RD pulse. '

If an error is detected during self-diagnostics, the proper status is loaded into the Diagnostic Status
Register and the chip halts until a Reset command or a Reset signal is asserted. Refer to the Self-
Diagnostic Status Code Summary for an explanation of the individual codes.

When a diagnostic command is issued to the chip, the chip will attempt to perform the function, load
a status into bits 6-3, and initiate a Function Complete Interrupt.

17

4.9.1 SELF-DIAGNOSTIC STATUS CODE SUMMARY

000 - Successful Completion. The chip executed all self-diagnostics following a reset and detected
no errors.
001 - Unconditional Branch Failed. The chip’s internal sequencer attempted an unconditional

branch and failed to reach the desired location.

010 - Data Register Full Failed. The chip attempted to set and reset the Data Register Full status bit
in the Interrupt Register and failed.

011 - Initial Conditions Incorrect. The chip detected one of its internal initial conditions in the
wrong state.

100 - Initial Command Bits Incorrect. The chip tested bits 6,4,2,1 and 0 of the Command Register
and found at least one was not zero.

101 - Diagnostic Flag Failed. The chip failed in its attempt to set and reset its internal diagnostic flag.

110 - Data Turnaround Failed. During self-diagnostics the chip attempts to flush several bytes of

data through its internal data paths. it also attempts to set and reset the Parity Error bit in the
Interrupt Status Register. This status indicates that one of these operations failed.

4.10 TRANSFER COUNTER (THREE EIGHT-BIT COUNTERS)

The Transfer Counter is comprised of three, eight-bit register/counters. It is used by the chip for Send,
Receive and Transfer commands that require more than a single byte of data to be transferred. It may
also be used with Select and Reselect commands to set a timeout for no response. To write to (read from)
the Transfer Counter, CS is activated with A3-A0 selecting a byte and then pulsing WR (RD). The
Transfer Counter is addressed as shown below.

A3 A2 A1 A0 SELECTED BYTE
1 1 0 0 Most Significant Byte
1 1 0 1 Middle Byte
1 1 1 0 Least Significant Byte

For Send, Receive and Transfer commands with single-byte not specified, the Transfer Counter specifies
to the chip the maximum number of bytes to be sent or received before interrupting. The Transfer
Counter must be loaded prior to issuing the command. When single-byte is specified, the chip neither
uses nor alters the Transfer Counter. To facilitate servicing interrupts for commands that use the
Transfer Counter, a bit is provided in the Auxiliary Status Register to indicate when the Transfer Counter
is zero.

For Select and Reselect commands, the Transfer Counter specifies the number of time intervals (1024
CLK periods) that the chip will wait before automatically aborting the command due to no response
(BSY) from the destination device. The Transfer Counter must be loaded prior to issuing the command.
If the Transfer Counter is loaded with all zeroes, the timeout logic in the chip will be disabled, and the
chip will not automatically abort the command due to no response.

| S |

¥

F s

f

.

s]

¥R KX

F: ¥R FR FDR2

18

o et ikiner ~ - E O O (VU S DU G S SV A SO

SECTION 5
COMMANDS

This section defines command format, types, codes and operation. Comménds are given to the chip by

loading the Command Register.

5.1 COMMAND FORMAT

The bits in the Command Register are defined as follows.

7 6 5 4 3 2 10

00000
00001
00010
00011
00100
00101

01000
01001
01010
01011
01100
01101
01110
01111
10000
10001

10011
10100
10101

10010~

L1 T [| Command Code

Chip Reset
Disconnect

Pause

Set ATN

Message Accepted
Chip Disabled

Select w/ATN

Select w/o ATN

Reselect

Diagnostic Data Turnaround
Receive Command

Receive Data

Receive Message Out
Received Unspecified Info Out
Send Status

Send Data

Send Message In

Send Unspecified Info In
Transfer Info

Transfer Pad

Reserved (MUST BE A ZERO)
Single Byte Transfer

DMA Mode

19

—

_BIT 7 DMA Mode This bit is applicable only for commands that use the Data
Register. When this bit is on (1), it indicates that data will be
transferred to (from) the Data Register using the DMA signals
DREQ and DACK. When it is off (0), the microprocessor must
monitor the state of the Data Register Full flag in the Auxiliary
Status Register. Data is then transferred by using the appropriate
input/output command.

BIT 6 Single Byte Transfer When on (1), this bit indicates that only one byte of data is to be
transferred for this command. The Transfer Counter will not be
used or altered by the chip. Therefore, for common single byte
message and status transfers, the Transfer Counter does not
need to be loaded prior to issuing a command with this bit set.
When this bit is off (0). the Transfer Counter is used by the chip
to determine the length of the transfer for the command.

BIT 5 Reserved This bit is not used and should always be programmed off (0).

BIT 4-0 Command Code These bits are used to specify the command to be executed.

5.2 COMMAND TYPES

There are two types of commands; Immediate and Interrupting. All of the Immediate commands, except
for Pause, cause immediate results within three clock cycles from the time the Command Register is
loaded. The Pause command is explained in a later section (See page 22, PAUSE). Interrupting commands
do not result in immediate action. Their completion is always flagged by an interrupt.

Command codes 00000-00111 specify Immediate commands. Immediate commands that are listed as
reserved, will be ignored if issued to the SPC chip. Command codes 01000-10101 specify Interrupting
commands. When one of these codes is loaded into the Command Register, a second Interrupting com-
mand code should not be loaded until after the interrupt has occurred for the first command. However,
an Immediate type command may be loaded before the interrupt for an Interrupting command occurs.
If a reserved Interrupting command code is issued, the chip will respond with an Invalid Command
interrupt.

20

1

F R F B &% KN

¥R

[]

|]

e | .

L] ¥ R =»

F£% s

B2 KR

|

-

& &

5.3 INVALID COMMANDS

The user of the chip can be in one of three states at any particular time: Disconnected, connected as an
Initiator, or connected as a Target. Commands are valid only in specified states. If an invalid Immediate
command is issued, the chip will ignore the command. If an Interrupting command is issued in an invalid
state, or a reserved Interrupting command code is issued, an invalid Command interrupt will result. The
exceptions are described below:

The microprocessor must never issue any interrupting type command when the chip is not expecting
such a command. Unpredictable results will occur in this case. The following is a list of user states in
which the chip is not expecting an interrupting command:

1. The chip is currently processing an Iinterrupting type command and has not yet set the interrupt to
signal the completion.

2. The chip is currently processing an Interrupting type command, a Pause command has been issued
but the Paused bit in the Auxiliary Status Register has not been set.

3. Thechip is connected as an Initiator, but the Target has not yet requested an Information Transfer.

4. The chip has completed a Transfer Info or Transfer Pad command and the Target has not requested
additional information or has not changed the information Phase.

In user states three and four, described above, the microprocessor must wait for a Bus Service, Dis-
connected, or Function Complete interrupt.

I an interrupting command is illegitimately issued in these states, no interrupt will occur forit,and it is
likely that the current function will be altered.

5.4 COMMAND SUMMARY

Below is a summary that lists all commands. In the table the following abbreviations are used.

INT = INTERRUPTING D = DISCONNECTED | = CONNECTED AS AN INITIATOR
IMM = IMMEDIATE T = CONNECTED AS ATARGET

COMMAND CODE COMMAND TYPE VALID STATES
00000 Chip Reset IMM DT
00001 Disconnect IMM LT
00010 Paused IMM D,T
00011 Set ATN IMM |
00100 Message Accepted IMM |
00101 Chip Disable IMM DIT

00110-00111 Reserved IMM
01000 Select w/ATN INT D
01001 Select w/o ATN) INT D
01010 Reselect INT D
01011 : Diagnostic INT D
01100 Receive Command INT T
01101 Receive Data INT T
01110 Receive Message Out INT T
01111 Receive Unspecified Info Out INT T
10000 Send Status INT T
10001 Send Data INT T
10010 Send Message In INT T
10011 Send Unspecified Info In INT T
10100 Transfer info INT |
10101 Transfer Pad INT [

10110-11111 Reserved INT

21

5.5 COMMAND DEFINITIONS
5.5.1 CHIP RESET

Chip Reset immediately stops any chip operation and resets all registers, counters, etc. on the chip.
It performs the same operation as the hardware “reset” input.

5.5.2 DISCONNECT

Upon receipt of this command, the chip immediately releases all SCSI bus signals and returns to a
Disconnected idle state. For the Target role, this is the normal method of disconnecting from the bus
when a transfer is complete. For the Initiator role, Disconnect may be used to release the bus signals
as a result of a timeout condition. in this case, the chip ignores the Target and is left in the Disconnected
state. For the Disconnected state, it is not valid to issue a Disconnect command. If issued, the chip will
ignore this command.

5.5.3 PAUSE

Pause is an Immediate command that is valid in the Disconnected state or when logically connected to
the bus as a Target device. Pause is not valid when connected as an Initiator.

When connected as a Target, the Pause command provides a means of halting a Send or Receive com-
mand without having to wait for the transfer to complete. When Pause is issued, it immediately sets a
flag in the chip. Within one byte transfer cycle, the chip recognizes the flag, aborts the Send or Receive
operation, and then sets the Paused status bit in the Auxiliary Status Register. At this time, the chip is
still connected to the bus in the Target role, and it is waiting for another command.

The Pause command stops the Send or Receive command in an orderly manner leaving the Transfer
Counter in a valid state that indicates the remaining number of bytes to be transferred. Also no REQ or
ACK is asserted on the bus and no data is left in the chip waiting to be transferred. An operation that is
paused may be resumed, if desired, simply by reloading the original command into the Command
Register. (Note: after issuing the Pause while executing Send or Receive, it is necessary to continue
transferring data with the chip (due to double-buffering) until the Paused status bit is set or an interrupt
occurs.)

When in the disconnected state, Pause may be issued to abort a Select or Reselect command. After a
Select or Reselect command is issued and before an interrupt occurs, a Pause command may be issued
to abort the operation. The Pause command immediately sets an internal flag. If the chip has not yet won
arbitration, it sets the Paused bit in the Auxiliary Status Register and waits in the disconnected state for
another command. If the chip has won arbitration, it releases the bus by dropping the two ID bits with
SELOUT on for a minimum of 100 us, checks for no BSYIN, and then releases the bus. After this pro-
cedure, it sets the Paused bit in the Auxiliary Status Register and waits for another command in the
Disconnected state.

Since Pause is an Immediate command, it does not cause an interrupt. As previously noted, the chip
sets the Paused status bit to indicate that is has been executed. If an interrupt-causing event occurs
before the chip sees the pause flag set, the chip will set the interrupt. In this case, the Paused status bit
is not set by the chip either before or after the interrupt. In all cases, an interrupt-causing event will
take precedence over Pause. For example, in the Target role if ATN is on when Pause is issued, a Bus
Service interrupt will occur and the Paused status bit will not be set.

If the Pause command is issued when the chip is Disconnected, the Paused status bit will be set by the
chip, provided it has not already detected a Selection or Reselection.

22

ra L I | | g |

-

[

Tl |

Fa

F 1 F 2 F R R §1N

' FR® ¥R R 12

i

&

(R

R - B i

&

5.5.4 SETATN

The Set ATN command causes ATN to be asserted immediately if the chip is connected as an Initiator.
This command is invalid and ignored if issued when the chip is Disconnected or is operating in a Target
role. The ATN signal is de-asserted in a Message Out phase when the transfer count becomes zero or
one byte has been transferred (in a one-byte transfer command) during the execution of a Transfer Info
command.

The chip automatically sets ATN in two cases:
1. lfaSelect wW/ATN command is issued and arbitration is won.

2. Ifaparity erroris detected on an input byte during execution of a Transfer info command.

5.5.5 MESSAGE ACCEPTED

The Message Accepted command is an Immediate command that is valid only when connected as an
Initiator. It is used after a Transfer Info or Pad command (See pages 29,30 TRANSFER INFO and
TRANSFER PAD) to indicate to the chip that ACK can be de-asserted for the last byte.

When an Initiator receives a message, a Transfer command is used. If the transfer is an input (/O = 1) and
the information is a message (MSG = 1, C/D = 1), the chip interrupts after receiving the last byte with
a Function Complete interrupt. For this one special case, the chip also leaves ACK asserted on the bus.
By interrupting and leaving ACK asserted, the chip gives the microprocessor a chance to interpret the
message and set ATN, prior to ACK being de-asserted. This allows the chip to properly request a Message
Out phase if the Initiator wants to send a “‘Reject Message’ to the Target.

Message Accepted must always be issued after a Transfer Info for a Message In phase, whether or not
Set ATN is issued, in order to have the chip de-assert ACK. If the Initiator wants to reject the message,
Set ATN would be issued first followed by Message Accepted. If the message is not to be rejected, only
Message Accepted is issued. (Note: until Message Accepted is issued, the Target will not send
another REQ since ACK is still asserted.)

5.5.6 CHIP DISABLE

Chip Disable immediately stops all chip operations and logically disconnects it from the circuit. All out-
puts will be placed in a high impedance state and the chip will not respond to any commands (other than
chip reset). The chip will also not respond to any activity on the SCSI bus. The only way to exit this
condition is to activate the “‘reset” input or issue a Reset command.

23

5.5.7 SELECT w/ATN

This command causes the chip to attempt to select a Target. it may only be used if the microprocessor
is in the Disconnected state. Any attempt to issue this command in another state will result in an Invalid
Command interrupt. Before issuing this command, the microprocessor must load the Transfer Counter
for a timeout on the Target's response. This value is computed according to the following formula:

Transfer Counter = Desired Timeout/ (1024 x Clock Period)

If the Transfer Counter is loaded with the value zero, the chip will wait indefinitely for a response from the
Target being selected. :

The microprocessor must also load the Destination ID Register with the three-bit code of the Target to be
selected before issuing the Select w/ATN command.

When the chip detects the Select w/ATN command, it begins by attempting to arbitrate for control of the
SCSI bus. If, at any time during arbitration the chip becomes selected or reselected, the Select w/ATN
is aborted and forgotten and the chip will interrupt with one of the following conditions:

1. Selected
2. Selected and Bus Service
3. Reselected

If arbitration is won, the chip places the SCSI bus in the Selection phase with ATN asserted, and uses
the Destination ID Register to identify the desired Target. At the same time, the chip begins a timer based
on the value computed above. If the Target does not respond within the timeout period, the chip will
disconnect from the bus and interrupt with the Disconnected flag set in the Interrupt Register. (Note:
The microprocessor should never monitor the Transfer Counter Zero flag in the Auxiliary Status Register
to determine when a timeout has occurred.) If the Target responds within the allotted time, the chip will
interrupt with a Function Complete status. Control of the SCSI bus then belongs to the selected Target
and after the interrupt status has been read, another interrupt may occur indicating either that the Target
has disconnected or is requesting a transfer.

If the timeout is disabled and the Target does not respond, or if arbitration is not won, the only way to
abort the Select w/ATN command is to issue the Pause command. After the Pause comrnand is issued,
it is still possible that the Function Complete or Disconnect interrupts may occur. This happens if one
of the interrupts get set before the chip detects the Pause command, or if the Target responds while the
chip is sequencing off the SCSI bus in a timeout condition. If the chip does not set either interrupt, it will
set the Paused bit in the Auxiliary Status Register. If the microprocessor detects this bit after issuing the
Pause command, then it is assured that the chip aborted the Select w/ATN command and no connection
exists.

5.5.8 SELECT w/0 ATN

The Select w/o ATN is identical to the Select w/ATN command except that the ATN signal is not asserted
during the Selection phase.

24

[| [

¥ [B | Fa M

Fa ¥

Fa

T e §w

F 2

1 Fmn K3

5.5.9 RESELECT

~This command causes the chip to attempt to reselect an Initiator. It may only be used if the micro-

processor is in the Disconnected state. Any attempt to issue this command in another state will result
in an Invalid Command interrupt. Before issuing this command, the microprocessor must load the
Transfer Counter for a timeout on the Initiator’s response. This value is computed according to the fol-
lowing formula:

Transfer Counter = Desired Timeout/ (1024 x Clock Period)

If the Transfer Counter is loaded with the value zero, the chip will wait indefinitely for a response from the
Initiator being reselected.

The microprocessor must also load the Destination ID Register with the three-bit code of the Initiator to
be reselected before issuing the Reselect command.

When the chip detects the Reselect command, it begins by attempting to arbitrate for control of the
SCSI bus. If, at any time during arbitration, the chip becomes selected or reselected, the Reselect is
aborted and forgotten and the chip will interrupt with one of the following conditions:

1. Selected
2. Selected and Bus Service
3. Reselected

If arbitration is won, the chip places the SCSI bus in the Reselection phase using the Destination ID
Register to identify the desired Initiator. At the same time, the chip begins a timer based on the value
computed above. If the Initiator does not respond within the timeout period, the chip will disconnect
from the bus and interrupt with the Disconnected flag set in the Interrupt Register. (Note: The micro-
processor should never monitor the Transfer Counter Zero flag in the Auxiliary Status Register to
determine when a timeout has occurred.) If the Initiator responds within the allotted time, the chip will
interrupt with a Function Complete status. The chip (acting as the Target) is then in control of the SCSI
bus, and waits for the Interrupt Register to be read by the microprocessor. After it has been read, the chip
waits for a command from the microprocessor or ATN from the Initiator. If the ATN occurs, the chip
will set the Bus Service interrupt. This interrupt may happen immediately after a command has been
issued due to internal timing. In this case, the chip waits for the Interrupt Register to be read and the
command is ignored. The chip then waits for a new command.

If the timeout is disabled and the Initiator does not respond, or if arbitration is not won, the only way to
abort the Reselect command is to issue the Pause command. After the Pause command is issued, it is
still possible that the Function Complete or Disconnected interrupts may occur. This happens if one
of the interrupts get set before the chip detects the Pause command, or if the Initiator responds while
the chip is sequencing off the SCSI bus in a timeout condition. If the chip does not set either interrupt,
it will set the Paused bit in the Auxiliary Status Register. |f the microprocessor detects this bit after
issuing the Pause command, then it is assured that the chip aborted the Reselect command and no
connection exists.

25

5.5.10 DIAGNOSTIC (DATA TURNAROUND)

This Interrupting command causes the chip to attempt to turn a data byte around through its internal
data paths. When the command is loaded into the Command Register the Data Register IFull bit is reset.
The microprocessor then writes one byte into the Data Register. The chip moves the byte to another
register and compares the contents of the Data Register. The byte is then moved to a third register (the
SCSI output register) and good parity is generated if bit 6 of the command is off (0); bad parity is generated
if bit 6 is on (1). Finally, the chip moves the byte back to the Data Register and compares it with the con-
tents of the second register. Based on these comparisons and parity checking, the chip stores a result
into the Diagnostic Status Register and sets the Function Complete interrupt. After reading the Interrupt
Register, the microprocessor should make sure the Data Register Full bit is on (1) and read the contents
of the Data Register. If the Data Register Full bit is not on (0), then an error has occurred. The following

is a list of codes which are loaded into bits 6-3 of the Diagnostic Status Register as a result of this
command.

BIT 6543 RESULT
0001 Data Miscompare (INITIAL)
0010 Data Miscompare (FINAL)
0011 Good Parity Detected
0100 Bad Parity Detected
26

F u | s | B

|

TR &

Fa Fu e Fa

s R FKF1N

5.5.11 RECEIVE COMMANDS

The Receive commands are Interrupting commands that are valid only when connected as a Target device.
They are used by the Target to receive commands, data, and message information from an Initiator.

The Receive commands transfer data; therefore, the Single Byte Transfer and DMA mode bits in the
Command Register are valid for these commands. If the Single Byte Transfer bit is off (0), the Transfer
Counter must be loaded before a Receive command is issued to the chip. In this case, the chip uses
the Transfer Counter to determine the number of bytes to receive.

When a Receive command is issued, the chip immediately resets the Data Register Full bit in the
Auxiliary Status Register. The chip then drives the /O, C/D, and MSG outputs for the proper information
phase as follows.

COMMAND NAME 110 C/D MSG

Receive Command

Receive Data

Receive Message Out
Receive Unspecified Info Out

[eNeNole
O = O =
- 4+ OO0

The chip then proceeds to request and receive the specified number of information byies. The DMA
mode bit in the Command Register determines how the chip transfers these bytes from its Data Register
to the microprocessor.

When a Receive command is terminated, the chip generates an interrupt. The following two events
can cause termination:

1. The operation completes successfully; the Transfer Counter is zero. This event results in é Function
Complete interrupt with the Parity Error bit in the Auxiliary Status Register off (0). If the initiator
activated ATN during the operation, the Bus Service bit will also be on.

2. A Parity Error occurs. The last byte transferred is the byte that caused the error. This event causes
a Function Complete interrupt with the Parity Error bit in the Auxiliary Status Register on (1). If the
Initiator activated ATN during the operation, the Bus Service bit will also be on.

After any of the interrupts, the chip is always left in the connected Target state. The Transfer Counter
indicates the number of bytes remaining to be transferred (zero if completed successfully, and the Data
Register is empty (the last byte received is sent to the microprocessor). Also, ACK and REQ are inactive
on the bus.

(Note: if a Bus Service interrupt alone occurs after issuing a Receive command, the Initiator activated
ATN before the chip began executing the command. In this case, the command is ignored by the chip.)

A Receive command may be stopped prior to an interrupt causing event by issuing a Pause command.
Operation of the Pause command is explained in an earlier section (See page 22, PAUSE). In the event
the Initiator does not respond, or stops responding, the chip is left in a state where it cannot respond
to a Pause command. For this case, a Disconnect command can be used to abort the command and
the connection. The Disconnect command is explained in an earlier section (See page 22, DISCONNECT).

27

5.5.12 SEND COMMANDS

The Send commands are Interrupting commands that are valid only when connected to the bus in the
Target role. They are used by a Target to send status, data, and message information to an Initiator.

The Send commands transfer data, and therefore, the Single Byte Transfer and DMA mode bits in the
Command Register are valid for these commands. If the Single Byte Transfer bit is off (0), the Transfer
Counter-must be loaded before a Send command is issued to the chip. In this case, the chip uses the
Transfer Counter to determine the number of bytes to send.

When a Send command is issued, the chip immediately resets the Data Register Full bit in the Auxiliary
Status Register. Therefore, the first byte of data for the transfer cannot be put into the Data Register until
after a Send command is loaded into the Command Register.

in executing a Send command, the chip drives the /0O, C/D, and MSG outputs for the proper information
phase. These lines are logically driven for each Send command as shown below.

COMMAND NAME]e) C/D MSG
Send Status 1 1 0
Send Data 1 0 0
Send Message In 1 1 1
Send Unspecified Info In 1 0 1

After resetting Data Register Full and driving /O, C/D, and MSG, the chip then proceeds to monitor
Data Register Full, take the data from the Data Register, and send it to the Initiator. The DMA mode bit
in the Command Register specifies how the data is loaded into the chip.

After interrupting, the chip is left in the connected Target state, and ACK and REQ are inactive on the
bus. When the transfer is complete, the chip interrupts with a Function Complete Interrupt. If the
Initiator activated ATN during the transfer, a Bus Service bit will also be set by the chip.

(Note: if a Bus Service interrupt alone occurs after issuing a Send command, the Initiator activated ATN
before the chip began executing the command. In this case, the command is ignored by the chip.)

A Send command may be stopped prior to an interrupt causing event by issuing a Pause command.
Operation of the Pause command is explained in an earlier section (See page 22, PAUSE). In the event the
Initiator does not, or stops responding, the chip is left in a state where it cannot respond to a Pause
command. For this case, a Disconnect command can be used to abort the command and the connection.
The Disconnect command is explained in an earlier section (See page 22, DISCONNECT).

28

. —

)

FR '@ 8

F s x

¥Fn

F e FR s

fF R R KN

1

" 1 ¥R R R F R PR PR EBR KN

W

5.5.13 TRANSFERINFO

The Transfer Info command is an Interrupting command that is valid only when connected to the bus
in the Initiator role. It is used by the Initiator for all information transfers across the SCSI bus.

A Transfer Info command is issued by an Initiator in response to a Bus Service interrupt. The Bus Service
interrupt, as explained in a previous section (See page 14, INTERRUPT REGISTER), is received by the
connected Initiator upon the following conditions: receiving the first REQ from a Target, a previous
command has completed and the Target changes phases, the Target changes phases before termination,
or when a previous command has completed and the Target is requesting more information. It is not
valid to issue a Transfer Info command without having a Bus Service interrupt, because the Target re-
quests and controls all transfers. The chip will only permit one Transfer Info or Transfer Pad per Bus
Service interrupt.

After an Initiator receives a Bus Service interrupt, and prior to issuing a Transfer Info command, the 1/O,
C/D, and MSG bits from the Auxiliary Status Register (read prior to reading the Interrupt) should be ex-
amined to determine the type of information phase and the direction of transfer requested by the
Target. The Initiator then prepares for the transfer. if the Single Byte Transfer bit is not going to be set
in the Command Register, the Transfer Counter must be loaded prior to issuing the Transfer Info com-
mand. This is done in order to specify to the chip the maximum number of bytes to be transferred.

When a Transfer Info is issued, the chip immediately resets the Data Register Full bit in the Auxiliary
Status Register. For this reason, the first byte of data for an output operation cannot be loaded into the
Data Register until after the command is loaded into the Command Register. The chip then proceeds
with the transfer, expecting data to be read from (input), or written to (output), its Data Register as in-
dicated by the DMA Mode bit in the Command Register. The chip automatically detects the direction of
the transfer from the 1/O bit which is stored in the Auxiliary Status Register.

The chip continues a transfer until an interrupt causing event occurs. The following four events will
cause the chip to terminate and interrupt.

1. The maximum number of bytes specified have been transferred and the Target activated REQ or
the Information Phase changed. This event results in a Bus Service Interrupt. Either single byte
transfer was specified or the Transfer Counter is zero as indicated by a bit in the Auxiliary Status
Register. The Target may or may not have changed the information phase type. The 1/O, C/D, and
MSG bits in the Auxiliary Status Register need to be examined at the time of the interrupt to determine
what phase the Target is requesting.

(Note: due to early notification of the phase change, a phase may be selected spuriously and not
transfer any data. The microprocessor should not consider this an error condition.)

2. The Target changes the information phase type before the maximum number of bytes are transferred.
This event also causes a Bus Service interrupt. The new information phase may be determined by
examining the /O, C/D, and MSG bits in the Auxiliary Status Register. The Transfer Counter may be
read at the time of the interrupt to determine the number of bytes remaining to be transferred. When
this interrupt occurs for an output transfer, the chip may take one more byte from the microprocessor
than it transfers, because of pre-fetching. However, the Transfer Counter still reflects the number
of bytes remaining to be transferred. '

3. The Target releases the bus by dropping BSY. This event results in a Disconnected interrupt.
Following this interrupt, the chip is no longer in the Initiator role. It now remains in the Disconnected
state.

4. The last byte of a Message Input phase has been received. This event results in a Function Complete
interrupt. For this case, ACK is left active on the bus to allow the microprocessor to Set ATN for the
purpose of rejecting the message. After this interrupt is received and a Set ATN is issued (if desired),
a Message Accepted must be issued to turn off ACK for the last byte of the Message In phase.

29

For input transfers (I/0 = 1), the chip checks parity for each byte received if the Parity Einable bit in the
Control Register is on. When checking parity and the parity error occurs, the chip activates ATN prior to
deactivating ACK for the byte that causes the error. It also turns on the Parity Error bit in the Auxiliary
Status Register. The parity error, however, does not result in an interrupt. The chip waits for one of the
four events listed above before interrupting. Therefore, the Parity Error bit should be examined-when
servicing any interrupt after issuing Transfer Info command for an input transfer.

If ATN is asserted by the chip, either because of a parity error or because a SET ATN command is issued,
the ATN will remain asserted until the end of the connection, or until a Message Out is transferred.
Therefore, during each cycle of a Transfer Info operation for output, the chip checks for a message phase
(C/ID = 1, MSG = 1) and also either a single byte transfer or the Transfer Counter set at zero. If these
conditions exist, the chip turns off ATN prior to activating ACK for the last byte of the message.

As previously stated, a Transfer Info normally terminates with an interrupt. If a Transfer Info command
must be aborted, possibly because of a timeout violation, either a Chip Reset or a Disconnect command
can be used. It is noted, however, that although these commands will force the chip into a disconnected
state, the Target device is left on the bus. A SCSI bus reset, which is not a chip function, is the only way
an Initiator can force a Target to disconnect.

5.5.14 TRANSFERPAD

The Transfer Pad command is an Interrupting command that is valid only when connected to the bus as
an Initiator. It is similiar to the Transfer Info command except that the data transfer between the chip
and the microprocessor bus will be different.

Transfer Pad can be used by an Initiator to continue handshaking with a Target without giving data to,
or taking data from, the chip. This may be useful if the Target requests an invalid Information Transfer
Phase. The chip operates in the same manner as it does for a Transfer Info command, except that for
output transfers it takes only one byte of data from the microprocessor and sends the same byte repeat-
edly until the transfer terminates. For input transfers, it accepts data from the SCSI bus but does not
check parity or send it to the microprocessor. Though data is not exchanged with the microprocessor
bus, the Transfer Counter is still used by the chip so that a maximum number of pad bytes c¢an be specified.

Protocol for using a Transfer Pad command is the same as the Transfer Info except that the DMA Mode
bit has significance only for output transfers. The Transfer Pad terminates because of the same four
events that cause a Transfer Info command to terminate. Also, similar to the Transfer Info command,
Chip Reset and Disconnect can be used to abort the command.

30

F . w1

s |] | B e " '”L

| B R

Fe N

L I

FR R KB

¥R ¥R KN

Y

& &

& &

E o

SECTION 6
BUS INITIATED FUNCTIONS

6.1 SELECTION

If the Select Enable bit in the Control Register is on, the chip may be selected by another SCSI device to
be a TARGET for an I/O operation. Selection occurs in the chip only if all the following conditions exist:
SELOUT = 0,BSYIN = 0,SELIN = 1,1/0 = 0, the chip’s ID bit is asserted by the selecting device on the
data bus, no more than one other ID bit (the Initiator’s) is asserted on the data bus and data bus parity
is good. ’

When all of these conditions exist, the chip is selected. It then encodes the Initiator’s ID and loads it
into bits 2-0 of the Source ID Register. The chip also detects whether or not the Initiator asserted its ID
during selection, and either sets or resets the ID Valid bit in the Source ID Register.

The chip then asserts BSYOUT, waits for SELIN to turn off, and proceeds to take one of the following
actions as a result of being selected:

1. If ATN is not asserted by the Initiator during selection, the chip generates a Selected interrupt
indicating that the chip is connected as a Target.

2. If ATN is asserted, the chip simultaneously generates Selected, and Bus Service interrupts, indicating
that the chip is connected as a Target and ATN is asserted.

6.2 RESELECTION

If the Reselect Enable bit in the Control Register is on, the chip may be reselected by a SCSI Target
device. Reselection occurs only if SELOUT = 0, SELIN = 1,BSYIN = 0,1/0 = 1, the chip’s ID bit and the
Target’s ID bit are asserted on the data bus, no other ID bits are asserted, and data bus parity is good.

When all of these conditions exist, the chip is reselected. It then encodes the Target’s ID and loads it into
the Source ID Register. The chip also sets the ID Valid bit in the Source ID Register.

The chip then asserts BSYOUT and waits for SELIN to be released by the Target. When the chip
detects SELIN = 0, it de-asserts BSYOUT and then generates a Reselected interrupt.

Reselection is now complete and the chip is in the connected Initiator state.

31

-

g
L.
SECTION 7 e
INITIALIZATION .
"
. N
The SCSI device may be initialized by asserting RST for a period of at least 100ns, or by issuing a Chip .
Reset command to the device. The NCR 5385E will respond to the RST puise or the Chip Reset h
command, by immediately disconnecting from the SCSI bus, initializing all storage elements and exe-
cuting an internal self-diagnostic program. The self-diagnostic is explained in a previous section (See
page 17, Diagnostic Status Register). The following table lists the status of all registers after the E
initialization procedure.
76543210 E
DataRegistert X X X X X X X X
CommandRegister................c ... 0000O0O0O0O .
ControlRegister..............oiiiiiiiiinan... 000000O00O0
Destination IDRegister 000000O0OO .
Auxiliary Status Register........................ 00xxx010
IDREGISter. .. .\t .00 000 x x X s
Interrupt Register.cooiiiiniinnann. 00000000 -
SourceRegister............. ..t 00000111
Diagnostic Status Register...................... 1 XX X X X X X .
Transfer Counter (MSB).......... e 00000000O -
TransferCounter{2nd)cooa... 00000O0O00O0 ,
TransferCounter (LSB). . ..o ovoeeie .. 00000000 " -
x = Unknown -

TABLE7.1 REGISTER INITIALIZATION

E R [B

The controlling processor should loop on reading the Diagnostic Status Register until the Self-Diagnostic

Complete bit (bit 7) is on (1). This should take approximately 5350 clock cycles after reset occurs. The pro- f

cessor should then check the remaining bits in this register for all zeroes (no errors), ard then load the -

Control Register enabling the proper bits to begin operation. The SCSI Protocol Controller is now

connected to the SCSI bus in a disconnected state. It is ready to receive commands from the controlling -

processor or respond to (re) selection attempts. .
.
-

32

R R R K1 e

& &

B

| -

B

—— ——— s e S e ks bt e 4 B 8 AT Wewem e e e e e ommm e e e . C .

SECTION 8
EXTERNAL CHIP TIMING

Timing requirements must be over the operating temperature (0-70°C) and voltage (4.75 to 5.25V) ranges.
Loading for all output signals, except SBEN, is assumed to be four low-power Schottky inputs, including
50 pF capacitance. Loading for SBEN is assumed to be ten low-power Schottky inputs, including
100 pF capacitance.

8.1 MICROPROCESSOR INTERFACE

8.11 CLK
NAME DESCRIPTION MIN MAX UNITS
tcp Clock Period 100 200 ns
tcH Clock High .45 tcp .55 tcp
tcL Clock Low A5tcp .55 tcp
ec- tce
CLK /|
< — t CH tcu

8.1.2 RESET
NAME DESCRIPTION MIN TYP MAX UNITS

tRST Reset Pulse Width 100 ns

r URST

RST 7

33

8.1.3 MPUWRITE

NAME DESCRIPTION MIN TYP MAX UNITS
tASW Address Set-up Time 0 ns
twR WR Puise Width 95 ns
tow Data-to WR High 50 ns
tAHW Address Hold Time 0 ns
tDHW DataHoild Time 20 ns
twey WR Off to WR or RD On 125 ns

DACK

CS, A0-A3 _%X' K

— tASW‘? t WR AHW; 1

WR L = twcveTﬁ—

D0-D7

X
k——— 1DW ———— j&——— t DHW
8.1.4 MPUREAD

NAME DESCRIPTION MIN TYP MAX UNITS
tASR Address Set-up Time to RD 0 ns
tRD RD Pulse Width 125 ns
tDR RD to Data 90 ns
tAHR Address Hold Time 0 ns
tDHR DataHold Time - 10 ns
tRCY RD Off to WR or RD On 125 ns

DACK

CS, AG-A3 | &

L —> tASRféé— - t anRD

RD

N wé— t RCY —J\—-
DO-D7 X 'L
et on——al —3 t DHRIE———

34

[

Fm

Fa

Fa ¥ n Fa Fu

¥F 2 Fa

Fa F Fa Fa

Fa

1 R KN

& |- B

&

8.1.5 DMA WRITE

NAME ~ DESCRIPTION MIN TYP MAX UNITS
tocRQL | DACK to DREQLow 0 40 | ns
tocw DACK to WR 0 ns
twR WR Pulse Width 95 ns
twDC WR High to DACK High 0 ns
tDHW Data Hold Time 20 ns
tpw Data to WR High . 50 ns
cs
prea —/ Y
lDCHQL—'—-Bl
DACK \j /[
be— tocw— —>{ 1WOC he—
WR x{e twr ﬁ;?_——"-
DO-D7 D& I
ln&-tow——) j<—l torw

8.1.6 DMAREAD

NAME DESCRIPTION MIN TYP MAX UNITS
tDCRQL DACK to DREQ Low 0 40 ns
tDCR DACKtoRD 0 ns
tRD RD Pulse Width 95 ns
tRDC RD High to DACK High 0 ns
tDHR Data Hold Time 10 ns
tDR . RD to Data | 80 ns

DREQ / \

<— t DCRQL —>>{

DACK \ 4

_ f<— tDCR—3 —> tROC ke

RD \ﬁ trRD

DO-D7 X D

p=—— ton——)’ —3>{ tDHR LE—

35

8.1.7 INTERRUPT
NAME ~ DESCRIPTION MIN TYP MAX UNITS
tiR INT to RD 0 ns
tRD RD Pulse Width 95 ns
tRi RD High to INT Low 125 ns
ticy INT Off to INT On 125 ns

INT 4
tiR

J— t RO

t_\;r:tc—_;]/

V

36

¥ n Fn ¥Fa = Fu [o l‘)‘l . [|

¥R R ¥R EFR

Fa ra Fn

s

ra

8.2 SCSIINTERFACE

8.2.1 SELECTION (INITIATOR)

" NAME DESCRIPTION MIN TYP MAX UNITS
tBF Bus Free 385 ns
tBIA(5) BSYIN low to ARB high 1.2 2.6 us
tsLA SELOUT high to ARB low & ID bit Disabled 3.2 us
tBIBO (5) BSYIN low to BSYOUT high 1.2 2.8 us
tBCD Bus Clear Delay 225 ns
taAD Arbitration Delay 3.0 us
tpc Priority check to SELOUT 0 ns
tBID (5) BSYIN low to ID bit high 1.2 2.9 us
tapv Arbitration Data Valid to Priority Check 0 ns
tsi SELOUT to IGS 2.0 us
tipBL Target ID high to BSYOUT low 1.1 us
tBOBI BSYOUT low to BSYIN low 0 400 ns
tBsSL BSYIN high to SELOUT low 800 ns
tpiD SBEN active to Bus enabled 150 ns

NOTES:

1. The chip ensures that the bus remains free (BSYIN and SELIN inactive) for tBF before
attempting arbitration.

2. If SELIN becomes active at any time during arbitration, the chip must deassert BSYOUT
within tBCD. '

3. The chip waits (tAD), and then checks to see if arbitration is won (tPC). The chip then
asserts SELOUT if arbitration is won.

4. One of the data bits is assigned as an 1D bit by the IDO-ID2 signals. During Bus Free,
the chip places all of the data bits, including ID, in a high impedance state. During
arbitration the chip enables its ID bit and drives it high, but the remainder of the data
bits remain in the high impedance state for reading.

5. To verify these timings in a test environment, the user must allow a minimum of 45

clock cycles after the select command has been issued before the device begins to
check for BSYIN low.

37

8.2.1 SELECTION (INITIATOR)

[g |

-

T m

R F R ¥wm

Fa

= sn#’] —> [E— tSLA

ARB /4
' > -2 r‘ tsosi

BSYIN N\ 7 \/

k< t8FBO .
BSYOUT \\ A]

ag!} taco}<— > je=tisL
f LA 4
SELIN \| ¥ L
-t ADS™ tpCjE— tasL->m =
SELOUT ®
t BID -5n
SBUD) Z///, e 1l N/
@ [=—
SB0-7,SBP”////, weun //////Xvauoaneun W'TARGEHD(OUTPUD 42222
(Except ID) t ADV S b b=t 51 S =~ t 1AH
IGS
—> € towo
TGS
ACK (NPUT) '\ {OUTPUT)
ATN (INPUT) I((OUTPUT)
SBEN
- € to

38

e

Fa Fa2 §EN

" R R R E® 1N

]

e

8.22 SELECTION (TARGET)

&

NAME DESCRIPTION MIN TYP MAX UNITS
TsBI SELIN high to BSYIN low 50 ns
1{[s]:]} ID’s valid to BSYIN low 0 ns
tiosl 1/0 low to BSYIN low 0 ns
tBIBO BSYIN low to BSYOUT high 0 2.0 us
tBODH BSYOUT high Data Hold 0 ns
tBOSH BSYOUT high SELIN Hold 0 ns
tASI ATN high to SELIN low 0 ns
tsio SELIN low to Phase signals Enabled 150 ns
toT Phase signals enabled to TGS High 150 ns
tpBD SBEN low to Data Bus Enabled 150 ns
ARB
BSYIN ___/
j<— t Si—=x 1t BIBO jp=—
BSYOUT
= t BOSH —2>»
SELIN
e{ tioBl p=— t BODH f=—

sB0-7, SBP™////////X BatteRs e X7/ wet 777X
=N tsig |je

TGS /

as > e,

t 081 p=—
110 §SS§§§§E§§| (INPUT) K outpur

<t s
ATN |
CID, MSG weun ///////7///P—< outeur
SBEN —=] toso F_'

39

8.2.3 RESELECTION (INITIATOR)

NAME DESCRIPTION MIN TYP MAX UNITS
tsBl SELIN high to BSYIN low 50 ns
tipsli ID's valid to BSYIN low 0 ns
tios! I/0 high to BSYIN low 0 ns
tBIBO BSYIN low to BSYOUT high 0 2.0 us
tBODH BSYOUT high Data Hold 0 ns
tBOSH BSYOUT high SELIN Hold 0 ns
tBOIH BSYOUT high 1/0 hold 0 ns
tsiBO SELIN low to BSYOUT low 0 ns
tsaA SELIN low to ACK & ATN enabled 750 ns
tAAIl ACK & ATN enabled to IGS high 150 ns
tipB 1/0 low to SBEN low 0 ns
tpDBD SBEN low to Data Bus Enabled 150 ns

ARB

BSYIN \ /

= tSBI->» t BIBO je=-
BSYOUT &
=—t BOSH—2x{t SIBO <
SELIN.
t 1081 > - -S4t BODH}=—
sB0-7, SBP///// /X Wacti st o XA/ /1K .
<~ t DBD
TGS
=™ |etsaa
IGS
=3 tiosijE -39 tBoH p&-
110
-

ATN (INPUT) -; s {ouTPUT)

ACK (INPUT) ,-P (OUTPUT)

SBEN N

¢ tioB >

40

| B]

F R ¥ R e

i] s e

rE e

il)

| - B W

&

8.2.4 RESELECTION (TARGET)
NAME DESCRIPTION MIN TYP MAX UNITS
tBF Bus Free 1 385 ns
tBIA (5) BSYIN low to ARB high 1.2 2.6 us
tsLA SELOUT high to ARB low & ID bit Disabled 3.2 us
tBIBO (5) | BSYIN low to BSYOUT high 1.2 2.8 us
tecD Bus Clear Delay 225 ns
taD Arbitration Delay 3.0 us
tpC Priority check to SELOUT 0 ns
tBID (5) BSYIN low to ID bit high 1.2 29 us
taDv Arbitration Data Valid to Priority Check 0 ns
tso SELOUT Phase signals Enabled & SBEN Low 2.4 us
toT Phase Signals Enabled to TGS High 150 ns
tpip SBEN low to Bus Enabled 150 ns
tipBL INITIATOR ID high to BSYOUT low 2.7 us
teoB!I BSYOUT low to BSYIN 0 400 ns
tBIBO BSYIN high to BSYOUT high 0.7 2.0 us
tBSL BSYOUT high to SELOUT low 450 ns

NOTES:

1. The chip ensures that the bus remains free (BSYIN and SELIN inactive) for TBF before
attempting arbitration.

2. If SELIN becomes active at any time during arbitration, the chip must deassert BSYOUT
within tBCD.

3. The chip waits (tAD), and then checks to see if arbitration is won ({PC). The chip then
asserts SELOUT if arbitration is won.

4. One of the data bits is assigned as an ID bit by the IDO-ID2 signals. During Bus Free,
the chip places all of the data bits, including ID, in a high impedance state. During
arbitration the chip enables its ID bit and drives it high, but the remainder of the data
bits remain in the high impedance state for reading.

5. To verify these timings in a test environment. the user must allow a minimum of 45

clock cycles after the select command has been issued before the device begins to
check for BSYIN low.

41

8.24 RESELECTION (TARGET)

j=— tBIA —_
ARB |/
®

=— tSLA

—>> I€-— t BoB!

>{ teF
BSYIN w IE-W

< {BIBO ->»

\—L tBIBO

BSYOUT OB \
) > t BCBF—— HIDBL S—b
SELIN i L
SELOUT = té tPT t BSL j)é—
SB(ID) 7//// (uneum Y/ - (!)UTPUTl) w@Z
et/ S/), Gk ("o X7
TGS
-3 tso —™ — tgr
C/D, MSG, (INPUT) OUTPUT
REQ |
1o A R A AN
§§Eﬁ toi
||
42

B ¥ . ¥Fa ¥ [B J F e

f R F R 'R EE

F 2 FIe

[B |

T e Iy

8.2.5 INFORMATION TRANSFER PHASE INPUT (INITIATOR)
NAME DESCRIPTION MIN TYP MAX UNITS
tDVRH Data Valid to REQ high 0 ns
tgRI Phase Valid to REQ high 100 ns
tRAH REQ high to ACK high 0 ns
tRAL REQ low to ACK low 0 ns
tAA ATN high to ACK low 100 ns
tsg SELIN low to Phase change 0 ns
tgH Phase hold from ACK low 20 ns
tADH Data hold from ACK high 0 ns
tARL ACK high to REQ low 35 ns
tiops I/0 high to SBEN high 50 ns
tDZDB Data Bus disable from SBEN high 10 ns
tARH ACK Low to REQ High 35 ns
NOTE 1: If the chip detects a parity error it must assert ATN at least toapbefore it de-asserts ACK.
4 \ r -
REQ J,‘<———— t Ran ———— L——J
tRaL—> &=
—>¢ be— tovan ® € tar SYtgn <
ATN £
€t ADHA
ACK j - t ARH—
js—— t AA
SBO-7, SBPIIIIIIII— VALID DATA (INPUT) XU
SELIN) m o
BSYIN
IGS
TGS
- tse
<< 1t @RI
110 L
c/D XXX
|
MSG NN AN
-] j=—t 1008
SBEN \
ARB

43

8.2.6 INFORMATION TRANSFER PHASE INPUT (TARGET)

MIN TYP MAX UNITS

NAME DESCRIPTION

tsg SELIN low to Phase Change 0 ‘ ns
tgrRO Phase Change to REQ out 500 ns
tRAH REQ high to ACK high 35 ns
tARL ACK high to REQ low 0 ns
tDVA Data Valid to ACK high 0 ns
tRAL REQ Iow to ACK low 35 ns
tARH ACK low to REQ high 0 ns
tRLDH REQ low Data Hold 0 ns
tgHA Phase Hold from ACK low 0 ns
tpBIO SBEN high to 1/0 low 0 ns
tpzDB Data Bus disable to SBEN high 0 ns

REQ | | E /[
t gro —> tRAH=2eS— t ARL tRAL=3 tARH he—

ACK \
ATN [/////'/7/4{1/{4/;‘/////////4/#&/é{D/H///ﬂ
SBO0-7, SBP { vaio XN 77777777
SELIN]

BSYOUT

TGS

1o \;91\ \j&—-lsﬂ‘ > - t ZHA /
o) W\

MSG NN

SBEN >{| = toso

ARB e tome

44

" m

r‘"‘i fF'R KR FR @R R FR @R KX

¥ a .

Fu

F a2 §Xx Fa

|

B | S

| S

8.2.7 INFORMATION TRANSFER PHASE OUTPUT (INITIATOR)
NAME DESCRIPTION MIN TYP MAX UNITS
toRI Phase Valid to REQ high 100 ns
tRAH REQ high to ACK high 35 ns
tRAL REQ low to ACK low 0 ns
tpva Data Valid to ACK high 100 ns
tRLDH REQ low Data hold 0 ns
toH Phase hold from ACK low 20 ns
tARL ACK high to REQ low 0 ns
tioDB 110 low to SBEN low 0 ns
tDBE SBEN low to Data Bus Enable 85 ns
tDBA SBEN low to ACK high 185 ns
tRATL REQ High to ATN low 0 ns
tATLA ATN Low to ACK High 25 ns
tARH ACK Low to REQ High 35 ns

NOTE 1: ATN is only de-asserted in this manner during the last byte of a Message Out Phase.

—

)<— tRATL

REQ

ATN

tRAH —>

S tARL

-\

—

t RAL

t ARH —2

tova ﬂ

¥ tATLA T

=—

—3» t gH

=

/

ACK

sB0-7, sep 21D

—>

tRLDH =

-\

VALID DATA

XUTTIK

BSYIN <— t DB ——>

IGS é———— toBA

TGS

—_—

—>

t @RI
110

724

N

C/D

MSG

'€t 10D8B

SBEN

ARB

4

5

8.2.8 INFORMATION TRANSFER PHASE OUTPUT (TARGET)

NAME DESCRIPTION MIN TYP MAX UNITS
tsg SELIN low to Phase Change 0 ns
tiopB I/0 high to SBEN low 500 ns
tDBR SBEN low to REQ out 185 ns
tDvA Data Valid to REQ high 100 ns
tRAH REQ high to ACK high 0 ns
tARL ACK high to REQ low 0 ns
tRAL REQ low to ACK low 0 ns
tARH ACK low to REQ high 0 ns
tgHA Phase hold from ACK low 0 ns
tADH Data hold from ACK low 0 ns
tDBE SBEN low to Data Bus Enabled 85 ns

REQ" y<— toeR

ACK

-jtovnk tRAH] tmm.h t RAL 34
/ \

|

t ARH

ATN AN

507, 557 ITINRR N —

SELIN 7\ —>] toee

—>| e-tapn

-

BSYOUT

TGS

< t PHA

110

C/iD

MSG

I \\\\\\\

SBEN

ARB

46

M

[Fn

Fa

Fa Fa FR2 DN

' Fa

¥ n

Fa ¥

S T

Yoomemem o memm e e e .

3

8.2.9 BUSRELEASE FROM SELECTION (INITIATOR)

4
. NAME -DESCRIPTION MIN TYP MAX UNITS

¥

H tTOD Bus Release Timeout Delay 100 us
tiDpOD IGS & SBEN Turn-off Delay 0 ns

| tsoD SELOUT Turn-off Delay 0 ns

j tpos Driver Turn-off set-up to IGS & SBEN oft . 0 ns

3

]

NOTE 1: If the chip detects BSYIN active by the end of the timeout delay, the bus release sequence
shall be aborted since selection has been successful.

-
E
- BSYIN 0) /77777777777 777777777777 77,
* BSYOUT
]
SELIN —\
SELOUT '
- b= 11000 — 1 soD %
A IGS le———1tt00 — 5 —=utoosies
- SBO'7 SBP (21D's) \ ouT —(IN
= ATN ouT _L IN
- ACK —___W
h SBEN
[]
ARB
3
-
:i
-
|
-
|
-
|
-
.
47

8.2.10 BUS RELEASE FROM RESELECTION (TARGET)

NAME - DESCRIPTION MIN TYP MAX UNITS
tToD Bus Release Timeout Delay 100 us
tpoD TGS & SBEN Turn-off Delay 0 ns
tsoD SELOUT Turn-off Delay 0 ns
tpos Driver Turn-off set-up to TGS & SBEN off - 0 ns

NOTE 1: If the chip detects BSYIN active by the end of the timeout delay, the bus release sequence

shall be aborted since reselection has been successful.

BSYIN ® (7777777777 77777777 777777
BSYOUT

SELIN

SELOUT b= t TDOD ..9‘ t sop

TGS le— ttop —>> > t posle——

SB0-7, 58P OUT(DS) out N
110 out ~ S
MSG, C/D ool ~ -
REQ out gl IN
SBEN

ARB

48

| | ¥ u

Fn

FR ¥ @ R KR EN

i

h
=
1
-

8.2.11 BUS RELEASE FROM INFORMATION PHASE (INITIATOR)
i
[

- NAME DESCRIPTION MIN TYP MAX UNITS
" tiDB IGS & SBEN Turn-off Delay from BSYIN off 225 ns
a‘ tDOS Driver Turn-off set-up to IGS off 0 ns
[4 _

h
-
1
-
1 _—
-1 BSYIN N\
3 BSYOUT
-
SELIN
3
= SELOUT
je=——— t 1DB —1
i IGS }
-
SBO0-7,SBP___OUTORIN —1——< N
3 -e.l toos pe—
- ATN out D s N IN
—>ltDOS o

3 ACK out 3———\ IN
- t DOS pes—
1 SBEN

|
- ARB

1
[

1
.
b
.

q
-

49

8.2.12 BUS RELEASE FROM INFORMATION PHASE (TARGET)

NAME " DESCRIPTION MIN TYP MAX UNITS
tTDB TGS & SBEN Turn-off from BSYOUT off 225 ns
tDOS Driver Turn-off set-up to TGS off 0 ns
BSYIN \
BSYOUT ’\
SELIN
SELOUT
p=— t ToB =
TGS \
$B0-7,SBP OUT oRIN o< IN
—34 t DOS pe—
REQ ouT — IN
—91 t DOS pe=—
110, CID
MSG out 21——-——-\ IN
_ =»{ t DOS je=—
SBEN
ARB
50

Fa

F 2 ¥

L I |

i

F 2 T 8

e

L I

S S S GO N PP UIPU P S - —~— e~

i | S

NCR 5385E/5386 SCSI
Protocol Controller
User's Guide

i

. 2 l F . il ‘ - ' = ‘ £ ‘v.k_jr '. A & = B i i i

e

NICIR

‘q Microelectronics Division, Colorado Springs
-

-

e —— - e e L o b L i v o A v o i et Lo e e s -

Copyright © 1983, by NCR Corporation
Dayton, Ohlo
Al Rights Reserved Printed in U.S.A.

This document contains the latest information available at the ime of pubfication. However, NCR
reserves the right to modify the contents of this material at any time. Also, all features, functions and
operations described herein may not be marketed by NCR in al parts of the worid. Therefore, before
using this document, consult your NCR representative or NCR office for the information that is
applicable and current.

[l | [

'E N E &% KR ¥R EN Q‘I f B &% FR®R FEY EFR ENW

LA

= W’w.

':W’I L l&_lj e r

o &

..._., - %

TABLE OF CONTENTS
SECTION PAGE
1. INTRODUCTION . ..ottt e e e 3
2. INITI AL ZATION . e et e e e 4
3. INITIATOR ROLE e e e 5
3.1 Initiator Role Walkthrough 7
3.2 NO S . . i e e 12
4, TARGET ROLE ... e e e 13
4.1 Target Role Walkthrough i 16
4.2 NOES . . i e e 19
5. INTERRUPT SERVICE ROUTINES (ISR)ot i 20
5.1 GeNEral ... 20
5.2 User Disconnected ISR it e 21
5.3 User Connected as Target ISR i i 22
54 User Connected as Initiator ISR i 24
541 Bus Service Interrupt 25
5.5 Interrupt SuMMary ... 26
6. SCSIBUS INTERFACE e e e e 28

APPENDICES
APPENDIX PAGE
A. NCR 5385 SCSI Protocol Controller Register and Command Summary 34
B. Internal Registersot i i i 35
C. Initiator/Target Role Flowchart i i iaiiianens 36
LIST OF TABLES
TABLE PAGE
5.1 INterrUpPt SUMMIANY i e e 27
LIST OF FIGURES
FIGURE : PAGE
3.1 Initiator Role Flowchart P 5
4.1 Target Role Flowchart. 13
5.1 Auxiliary Status Register. 20
5.2 Interrupt RegiSter. e 20
6.1 Suggested Interface to SCSI Differential Transceivers.t 29
6.2 NCR 8310 Equivalent CirCuit.ot e e 30
6.3 Single-Ended Interface Using the NCR 8310 Driver/ReceiverChip. 31

&1

» n | [

L I] [B] L

B]

F2T ¥R EF R F R W

& &

|

[} i &

|-

|

R USRSV

SECTION 1
GENERAL INFORMATION

The NCR SCSI Protocol Controller is capable of operating as either an Initiator or a Target, and can therefore
be used in host adapter and control unit designs. The purpose of this manual is to-assist the user in the design of
these SCSI bus devices.

Sections 2 through 5 discuss the software required to control the device. Sample flowcharts and step-by-step
walk-through's demonstrate the required routines for both the Initiator and Target roles. Additionally, the interrupt
service routines presented in Section 5 cover all possible interrupting conditions for the Connected as Initiator,
Connected as Target and Disconnected states.

Section 6 describes the inteface required between the NCR 5385E/86 and SCSI bus for both Single-Ended and
Differential-Pair operation, and provides sample schematics for each.

This design manual is not an scsl specification and assumes some prior knowledge of the SCS! proposed stan-
dard. Copies of the proposed standard may be obtained, with a pre-payment of $20, from:

X3 Secretariat, Computer and Business Equipment
Manufacturers Association

311 First Street, NW, Suite 500

Washington, D.C. 20001

Please include a self-addressed mailing label.

1.1 ADDITIONAL DOCUMENTATION
Other documents which may be useful are:
» NCR 5385 SCSI Protocol Controller Data Sheet (MC-704)

e NCR 5380 SCSI Interface Chip Design Manual

e SCSI Engineering Notebook

These documents may be obtained from your local NCR Microelectronics sales representative or from:

NCR Microelectronics

Logic Products Marketing
1635 Aeroplaza Drive
Colorado Springs, CO 80916
(800) 525-2252 or

(303) 596-5612

SECTION 2
INITIALIZATION

The three steps typically performed after the NCR
SCSI Protocol Controller is reset are presented below.
It is assumed that no errors occur.

1. Loop on reading the Diagnostic Status Regis-
ter until the Self-Diagnostic Complete bit is on.
(This should occur within 350 clock cycles after
the reset pulse goes inactive or after the write
pulse for a Chip Reset command.) Never at-
tempt to read the Diagnostic Status Register
while Reset is active, as the data bus is in an
unknown state and the Self-Diagnostic Com-
plete bit may appear asserted.

2. Check the Diagnostic Command Status and
Self-Diagnostic Status bits of the Diagnostic
Status Register for all zeros (no errors).

(At this point, the user may wish to perform
other tests such as loading an invalid com-
mand, performing the Diagnostic Data Turn-
around, etc.)

3. Load the Control Register with the desired
information (Parity Enable, Reselect Enable,
Select Enable).

It should be noted that immediately following step 3,

the chip is in the Disconnected state. If the Reselect -

Enable or Select Enable bits are enabled, an interrupt
can occur prior to issuing any commands to the NCR
SCSI Protocol Controller. A Reselection or Selection
interrupt may also occur even after issuing a Select or
Reselect command to the chip. In this case, a higher
priority device wins arbitration and selects or reselects
the chip, generating a Selected or Reselected interrupt
rather than a Function Complete Interrupt. The user
must wait until the chip is in the Disconnected state
before reissuing the Select or Reselect command.

For more information concerning Initialization, please
refer to Section 7 of the NCR 5385 SCSI Protocol
Controller Data Sheet (Publication # MC-704), and to
Section 7, Device Note 5 of this document.

2 Fa

Fa

Fa Fa

¥ a Fa

[|

Fa Fa

“m

a

P N

&

& B | & b W

&

SECTION 3

INITIATOR

The Initiator Role is normally associated with the host
adapter, but may also be assumed by a tape controller
performing a disk back-up operation. After selecting a
Target device, the Initiator must respond to the Infor-
mation Transfer Phases controlled by the Target.
Please refer to the latest revision of the draft proposed

ROLE

SCSI standard for a complete description of the In-
itiator Role.

The following partial flowchart illustrates the role of the
SCSI bus Initiator. (Note that the Target portion of this
flowchart appears in Section 4, “Target Role,” and that
the flow chart is presented in its entirety in Appendix
C)

< INITIALIZATION >

INTERRUPT
RECEIVED
?

DISCONNECTED
1DLE LOOP

INITIATOR
SELECTS
TARGET
W/ATN

I' INTERRUPT
RECEIVED

?
YES

FUNCTION

2

! INTERRUPT
RECEIVED
2

YES

BUS
SERVICE
INTERRUPT
B

TARGET
RESELECTION
]

3.1 INITIATOR ROLE FLOWCHART

INITIATOR
SENDS
“IDENTIFY”
MESSAGE

@

INITIATOR
IDLE LOOP

PREPARE CHIP

—1 AND EXTERNAL

CIRCUITRY FOR
NEXT PHASE

Y

UPDATE
WORKING
POINTERS

INTERRUPT

INTERRUPT
RECEIVED
?

RECEIVE
MESSAGE

YES

INTERRUPT
RECEIVED
2

FUNCTION
COMPLETE

COoPY

SEND

RECEIVED
?

NO

"MESSAGE
ACCEPT"

FIGURE 3.1

INITIATOR ROLE (Concluded)

USING THE
CURRENT SOURCE 10,
POINTERS RETRIEVE
TO SAVED SAVED
POINTERS POINTERS
DECODE
OTHER
DISCONNECTED MESSAGES

S

o

e

1 I

| %

| & B

| S

3.1 INITIATOR ROLE WALKTHROUGH

This sample walkthough outlines the steps typically
required to perform a complete 170 function as an
Initiator. It is assumed that both the Initiator and Target
can handle messages and are able to disconnect and
reconnect during the function. To simplify this exam-
ple, it is further assumed that no errors or exceptions
occur during the entire operation.

Note that the steps are grouped under headings that
describe the function each group accomplishes.

N o o &

INITIATOR SELECTS TARGET

. Load the Destination ID Register with the

Target's ID.

Load the Transfer Counter to program the
selection timeout. Write to each of the three
8-bit registers.

Load the Command Register with SELECT
W/ATN.

Wait for an interrupt.
Read the Auxiliary Status Register.
Read the Interrupt Register.

Check for a Function Complete interrupt. (This
indicates the SELECT W/ATN was success-
ful.)

(The NCR 5385 SCSI Protocol Controller is now in the
Connected as Initiator state.)

INITIATOR SENDS “IDENTIFY” MESSAGE

8. Wait for an interrupt.

9. Read the Auxiliary Status Register.

10. Read the Interrupt Register.

11.

12.

13.

14.
15.
16.

17.

18.
19.
20.
21.

(Note
nect”

Check the interrupt. A Bus Service interrupt
should have occurred, indicating that the
Target has initiated an information transfer.

Check the 1/0, C/D, and MSG bits read from
the Auxiliary Status Register. The Target
should be requesting a Message Out phase to
receive the “ldentify” message.

Load the Command Register with a Transfer
Info command. Since the “Identify” message
is a single byte, program the Single Byte
Transfer bit ON (“1”) and the DMA Mode bit
OFF (“0").

Read the Auxiliary Status Register.
Check the Data Register Full bit.

Repeat steps (14) and (15) until Data Register
Full is OFF (*0").

Write the “Identify” message into the Data
Register.

Wait for an interrupt.
Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. Another Bus Service
interrupt should have occurred, indicating that
the Target has again changed the bus phase.

INITIATOR RECEIVES “DISCONNECT*
MESSAGE

that the Target is not required to send a *“Discon-
message and disconnect at this point. It may

request the command before disconnecting, or not

disconnect at all. If the Target does not issue the
message, proceed to step 65.

22.

23.

24.
25.
26.

27.

28.

29.

30.
31.
32.

Check the I/0, C/D, and MSG bits read from
the Auxiliary Status Register. The Target
should be requesting a Message In phase.

Load the Command Register with a Transfer
Info command. The Single Byte Transfer bit
should be ON (“1”), and the DMA Mode bit
OFF (“0").

Read the Auxiliary Status Register.
Check the Data Register Full bit.

Repeat 24 and 25 until Data Register Full is
on.

Read the Data Register.

Check the message. The Target should have
sent a “Disconnect” message, indicating that
it will reconnect later to complete the I/0 func-
tion.

Wait for an interrupt. (Note that a Function
Complete interrupt may occur at any time after
the Transfer Info command is loaded (step
23). To provide for its occurrence during steps
24 through 28, it is suggested that the user set
an interrupt flag in the interrupt service routine,
mask any other interrupts, and then complete
steps 24 through 28.) If a Disconnect interrupt
occurs, it must be serviced immediately.

Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. A Function Complete
should have occurred, indicating that the last
byte of the message has been received. ACK

is left active so that ATN may be asserted if the
message needs to be rejected.

33. Load the Command Register with a Message

Accepted command.

INITIATOR AWAITS DISCONNECTION

34. Wait for an interrupt.

35. Read the Auxiliary Status Register.

36. Read the Interrupt Register.

37. Check the interrupt. The Target should have

disconnected, causing a Disconnect interrupt.

(The NCR 5385 SCSI Protocol Coritroller is now in the
Disconnected state and may start or handle 1/0 func-
tions for any other logical unit. For this 170 function to
continue, the user must wait until the chip is reselected
by the Target while in the disconnected state. Step 38
continues the flow.)

38.
39.
40.
41.

INITIATOR IS RESELECTED
Wait for an interrupt.
Read Auxiliary Status Register.
Read Interrupt Register.

Check the interrupt. Assuming the Target has
reselected the NCR SCSI Protocol Controller
to continue the function, a Reselect Interrupt
should have occurred.

(The user is now in the Connected as Initiator state.)

INITIATOR RECEIVES “IDENTIFY” MESSAGE

42. Wait for an interrupt.

- -

-

¥ a F e

[S] A = | ¥

| B]

¥Fn e

e

s &2

'R R KX

¥ mow

B w | B W & W

A

43.
44.
45.

46.

47.

48.
49.
50.

51.

52.

53.

54.

55.

56.

Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. A Bus Service interrupt
should have occurred, indicating that the
Target has activated REQ for an information
transfer.

Check the 1/0, C/D, and MSG bits read from
the Auxiliary Status Register. The Target
should be requesting a Message In phase to
identify the 1/0.

Load the Command Register with a Transfer
Info command (Single Byte Transfer = 1, DMA
Mode = 0.)

Read the Auxiliary Status Register.
Check the Data Register Full bit.

Repeat 48 and 49 until Data Register Full is
ON (“17).

Read the Data Register.

Check the message. The Target should have
sent an “Identify” message which contains the
logical unit number for the 1/0.

Read the Source ID Register.

Check the contents of the Source ID Register
to determine which device did the reselection.

Having identified the device and logical unit
number, retrieve the command, data and
status pointers for this I/0, and store them in a

working pointer area outside the NCR 5385
chip.

Wait for an interrupt. (Note that a Function

57.
58.
59.

60.

Complete interrupt may occur at any time after
the Transfer Info command (step 47). To pro-
vide for its occurrence during steps 48 through
55, itis suggested that the user set an interrupt
flag in the interrupt service routine, mask any
further interrupts, and then complete steps 48
through 55.) If a Disconnect interrupt occurs, it
must be serviced immediately.

Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. A Function Complete
should have occurred, indicating that the last
byte of the message has been received. ACK
is left active so that ATN may be assertedif the
message needs to be rejected.

Load the Command Register with a Message
Accepted command.

INITIATOR TRANSFERS COMMAND, DATA,

61.
62.
63.
64.

65.

66.

OR STATUS
Wait for an interrupt.
Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. A Bus Service interrupt
should have occurred, indicating that the
Target has initiated another information
phase.

Check the 170, C/D, and MSG bits read from
the Auxiliary Status Register. The Target
should be requesting a Command, Data, or
Status phase.

Prepare circuitry external to the chip for the

67.

68.

69.
70.
71.
72.

73.
74.
75.
76.
77.

requested transfer by using the appropriate
working pointer.

Load the Transfer Counter for the maximum
number of bytes to be transferred. Write to
each of the three 8-bit registers. (This step is
omitted for a Single Byte Transfer.)

Load the Command Register with a Transfer
Info command. Normally, for command or data
transfers, Single Byte Transfer = 0 and DMA
Mode = 1. (For status, these bits might be 1
and 0, respectively.)

If Single Byte Transfer = 0, go to step 74.
Read the Auxiliary Status Register.
Check the Data Register Full bit.

Repeat 70 and 71 until the Data Register Full
bit if OFF (“0").

Read the Data Register (with status byte).
Wait for an interrupt.

Read the Auxiliary Status Register.

Read the Interrupt Register.

Check the interrupt. A Bus Service interrupt
should have occurred, indicating that the
Target has initiated a different information
phase.

INITIATOR UPDATES WORKING POINTER

FOR LAST TRANSFER

78. Ifthe last transfer was a single byte, go to step

82.

79.

Check the Transfer Counter Zero bit in the

_ Auxiliary Status Register.

80.
81.
82.

If Transfer Counter = 0, go to step 82.
Read the Transfer Counter.

Update the working pointer for the last infor-
mation phase. Note that the stored pointer is
not updated at this time. Stored pointers are
updated ONLY when a “Save State” or
“Command Complete” message is received.

INITIATOR CHECKS NEW PHASE TYPE

83.

84.

85.

86.
87.
88.

89.
90.

91.

Check the 170, C/D, and M5G bits read from
the Auxiliary Status Register.

If the Target is requesting a Command, Data
or Status phase, go back to step 66.

INITIATOR RECEIVES MESSAGE

If the Target is requesting a Message In
phase, load the Command Register with a
Transfer Info command (Single Byte Transfer
= 1, DMA Mode = 0).

Read the Auxiliary Status Flegister.
Check the Data Register Full bit.

Repeat steps 86 and 87 until the Data Register
Full is set.

Read the message in the Data Register.

If the message is “Command Complete,” go to
step 113.

Ifthe message is “Disconnect,” go to step 103.

10

[B ¥Fa

Fe

Fa

£ 2 Fa

F a2 §n

B & ~B_ &

"

@ | Y & |- i

|

INITIATOR HANDLES ““SAVE STATE” MESSAGE

92.

93.

94.
95.
96.

97.

98.
99.
100.
101.

In normal operation, the message referred to
in step 89 shouid be “Save State.” In this case,
the user saves the state of the working point-
ers by moving them to the stored pointer area.

Wait for an interrupt. (Note that a Function
Complete interrupt may occur at any time after
‘step 85. To provide for its occurrence during
steps 86 through 92, it is suggested that user
set an interrupt flag in the interrupt service
routine, mask any further interrupts, and pro-
ceed to complete steps 86 through 92.) If a
Disconnect interrupt occurs, it must be ser-
viced immediately.

Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. A Function Complete
should have occurred, indicating that the last
byte of the message was received. ACK is left
active so that ATN may be asserted if the
message needs to be rejected.

Load the Command Register with a Message
Accepted command.

Wait for an interrupt.
Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. A Bus Service interrupt
should have occurred, indicating that the
Target has initiated another information
phase.

102. Go to step 83.

INITIATOR HANbLES “DISCONNECT” MESSAGE

103. Wait for an interrupt. (Note that a Function

104.
105.
106.

107.

108.
108.
110.
111,

Complete interrupt may occur at any time after
step 85. To provide for its occurrence during
steps 86 through 102, it is suggested that the
user set an interrupt flag in the interrupt ser-
vice routine, mask any further interrupts, and
proceed to complete steps 86 through 102.) If
a Disconnect interrupt occurs, it must be ser-
viced immediately.

Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. A Function Complete
should have occurred, indicating that the last
byte of the message has been received. ACK
is left active so that ATN may be asserted if the
message needs to be rejected.

Load the Command Register with a Message
Accepted command. '

INITIATOR AWAITS DISCONNECTION
Wait for an interrupt.

Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. After sending the “Dis-
connect” message, the Target should have
disconnected, resulting in a Disconnected
interrupt.

11

112.

Go to step 38. (The note prior to 38 applies.)

INITIATOR HANDLES “COMMAND COMPLETE”

113.

114.

115.
116.

117

118.

MESSAGE

Save the state of the working pointers by
moving them to the stored pointer area.

Wait for an interrupt. (Note that a Function
Complete interrupt may occur at any time after
step 85. To provide for its occurrence during
steps 86 through 113, it is suggested that the
user set an interrupt flag in the interrupt ser-
vice routine, mask any further interrupts, and
complete steps 86 through 113.) If a Discon-
nect interrupt occurs, it must be serviced im-
mediately.

Read the Auxiliary Status Register.
Read the Interrupt Register.

. Check the interrupt. A Function Complete

should have occurred, indicating that the last
byte of the message has been received. ACK
is left active so that ATN may be asserted if the
message needs to be rejected.

Load the Command Register with a Message
Accepted command.

INITIATOR AWAITS DISCONNECTION

119. Wait for an interrupt.

120.
121.
122.

Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. After sending the “Com-
mand Complete” message, the Target should
have disconnected, resulting in a Discon-
nected interrupt.

(The 170 function is now complete. The user is back in
the Disconnected state.)

3.2 NOTES
1.

Steps 14 through 16, and 70 through 72 can be
omitted if the microprocessor guarantees that
one full clock cycle elapses between loading
the Command Register and loading the Data
Register. The act of loading an Interrupting
command resets the Data Register Full Status
Bit in the Auxiliary Status Register. Therefore,
when a command is issued that requires data
to be put into the Data Register, data may not
be loaded until the Data Register Full Status
Bit is allowed to reset.

. If a Disconnect Command is issued when con-

nected as an Initiator, the Target is left hanging
on the bus. A bus reset may be required to free
the bus.

12

g a [] . | .] [] |] E s

x

_

| S

[

SECTION 4

TARGET ROLE
The Target Role, though normally performed by a The following partial flowchart illustrates the role of the
peripheral, may also be assumed by the host adapter Target on the SCSI bus. The flowchart in Fig. 4.1is a
during host-to-host communications. When selected, continuation of Fig. 3.1 and resumes after the target
the Target controls the bus activity by driving the C/D, has been selected. The flowchart of the Initiator and
170, and MSG signals. Please refer to the latest draft Target Roles is shown in its entirety in Appendix C.

proposed SCSI standard for a complete description of

the Target Role.

SET-UP
NCR 5385
TO RECEIVE
MESSAGE OUT

O~
SEND '
“SAVE STATE") ERROR i
MESSAGE YES
SAVE INITIATOR
ID & DETERMINE
IF RESELECTION
IS SUPPORTED
SET
DISCONNECT
FLAG

INTERRUPT

RECEIVED
?

FUNCTION
COMPLETE
?

DO WE
DISCONNECT
?

4.1 TARGET ROLE FLOWCHART

13

4.1 TARGET ROLE FLOWCHART (Continued)

SEND
“DISCONNECT
MESSAGE"

INTERRUPT
RECEIVED
?

FUNCTION
COMPLETE
?
ERROR

TARGET
RESELECTS
INITIATOR

INTERRUPT

RECEIVED
?

FUNdTION
COMPLETE
?

YES

TARGET
SENDS
“IDENTIFY”
MESSAGE

Sl

INTERRUPT

RECEIVED
2 -

ISSUE
DISCONNECT
COMMAND
TO CHIP

14

||

.

Fa

i
s

FE ¥R R & R s

f R KX

o

) |-

& =

R .

TARGET ROLE FLOWCHART (Continued)

7o)
FUNCTION
COMPLETE
?

XFER OR

RECEIVE

COMMAND
?

TARGET
RECEIVES
COMMANDS
OR XFERS

DATA

SEND
STATUS
BYTE

INTERRUPT
RECEIVED
?

FUNCTION
COMPLETE
?

TARGET
SENDS
“COMMAND
COMPLETE"
MESSAGE

INTERRUPT

RECEIVED
?

FUNCTION

COMPLETE
2

ERROR

15

4.1 TARGET ROLE WALKTHROUGH

This sample walkthrough outlines the steps typically
required to perform a complete I/0 function as a
Target. It is assumed that both the Target and Initiator
can handle messages and are able to disconnect. Itis
also assumed that no errors or exceptions occur dur-
ing the entire operation. The sequence of steps begins
after the chip has been selected as a Target.

Note that the steps are grouped under headings that
describe the function each group accomplishes.

TARGET IS SELECTED
1. Wait for an interrupt.
2. Read the Auxiliary Status Register.
3. Read the Interrupt Register.

4. Check the interrupt. Selected and Bus Service
interrupts should have occurred, indicating
that the chip has been selected as a Target,
and the Initiator has asserted the ATN signal,
respectively.

(The user is now in the Connected as Target state.)

TARGET RECEIVES “IDENTIFY MESSAGE”

5. Load the Command Register with a Receive
Message Out command (Single Byte Transfer
= 1, DMA Mode = 0).

6. Read the Auxiliary Status Register.
7. Check the Data Register Full bit.

8. Repeat steps 6 and 7 until Data Register Full
bit is ON (“17).

9. Read the Data Register.

10. Check the message. The Initiator should have
sent an “ldentify” message which indicates
whether he can disconnect. The message also
contains the logical unit number for the 1/0.

11. Read the Source ID Register.

12. Check the ID Valid bit. If the Initiator has the ~

ability to disconnect, it will be ON. (The user
now has the Initiator ID and the logical unit
number, which uniquely defines an I/0. The
user may record this information and discon-
nect.)

13. Wait for an interrupt. (Note that a Function
Complete may occur at any time after step 9.
To provide for its occurrence during steps 10
through 12, it is suggested that the user set an
interrupt flag in the interrupt service routine,
mask any further interrupts, and complete
steps 10 through 12.) If a Disconnect interrupt
occurs, it must be serviced immediately.

14. Read the Auxiliary Status Register.
15. Read the Interrupt Register.

16. Check the interrupt. A Function Complete
should have occurred, indicating that the 1D
message has completed.

(The user is back in the Connected as Target state. If it
is desired not to disconnect at this point, go to step 43.)

. TARGET SENDS DISCONNECT MESSAGE
AND DISCONNECTS

17. Load the Command Register with a Send

16

| B] |

e Fa L]

"o |

F 2 R §FE KN

F2 K2

18.
19.
20.

21.

22.
23.
24.
25.

26.

Message In command, (Single Byte Transfer
= 1, DMA Mode = 0).

Read the Auxiliary Status Register.
Check the Data Register Full bit.

Repeat steps 18 and 19 until Data Register
Full bit is OFF (“0").

Write the “Disconnect” message into the Data
Register.

Wait for an interrupt.
Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. A Function Complete
interrupt should have occurred, indicating the
message was sent successfully.

Load the Command Register with a Discon-
nect command.

(DISCONNECT immediately breaks the connection,
and the user is in the Disconnected state. When ready
to continue the 1/0 operation, go to step 27.)

27.

28.

29.

30.
31.

TARGET RESELECTS INITIATOR

Load the Destination ID Register with the In-
itiator’s ID.

Load the Transfer Counter to program in the
reselection timeout. Write to each of the three
8-bit registers.

Load the Command Register with a Reselect
command.

Wait for an interrupt.

Read the Auxiliary Status Register.

32. Read the Interrupt Register.

33. Check the interrupt. A Function Complete

interrupt should have occurred, indicating that
the Reselect was successful.

(The user is now in the Connected as Target state.
Note that SCSI protocol requires that the “Identify”
Message be sent immediately following the reselec-
tion. Therefore, the user should continue with steps 34
through 42.)

TARGET SENDS “IDENTIFY” MESSAGE

34. Load the Command Register with a Send

35.
36.
37.

38.

39.
40.
41.
42.

43.

Message In command, (Single Byte Transfer
= 1, DMA Mode = 0).

Read the Auxiliary Status Register.
Check the Data Register Full bit.

Repeat steps 35 and 36 until Data Register
Full bit is OFF (“0”).

Write the “Identify” message into the Data
Register.

Wait for an interrupt.
Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. A Function Complete
interrupt should have occurred, indicating that
the message was sent successfully.

TARGET RECEIVES COMMAND OR
TRANSFERS DATA

Load the Transfer Counter for a command or
data transfer.

17

45.
46.
47.

48.

49.

50.

Load the Command Register with a Receive
Command, Receive Data, or Send Data com-
mand (Single Byte Transfer = 0, DMA Mode =
1).

Wait for an interrupt.
Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. A Function Complete
interrupt should have occurred, indicating that
the transfer was successful.

To do a data transfer, go back to step 43.

If the 1/0 function is complete, go to step 62
and continue through step 80. Otherwise, pro-
ceed to steps 51 through 61 with the intent of
reconnecting later.

TARGET SENDS “SAVE STATE” AND

51.

52.
53.

55.

56.

“DISCONNECT” MESSAGES,
AND DISCONNECTS

Load the Command Register with a Send
Message In command, (Single Byte Transfer
= 1, DMA Mode = 0).

Read the Auxiliary Status Register.
Check the Data Register Full bit.

Repeat steps 52 and 53 until Data Register
Full is OFF (“0”).

Write the “Save State” message into the Data
Register. ’

Wait for an interrupt.

57.

58.

59.

60.

61.

Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. A Function Complete
interrupt should have occurred, indicating the
message was sent successfully.

Repeat steps 51 through 59 for a “Disconnect”
message.

Load the Command Regisier with a Discon-
nect command.

(A Disconnect command immediately breaks the con-
nection, and the NCR SCSI Protocol Controller is in
the Disconnected state. When ready to continue 1/0
operation, go to step 27.)

62.

63.

66.
67.
68.
69.
70.

TARGET SENDS STATUS BYTE

Load the Command Register with a Send
Status command, (Single Byte Transfer = 1
and DMA Mode = 0).

Read the Auxiliary Status Register.

. Check the Data Register Full bit.
65.

Repeat steps 63 and 64 until Data Register
Full bit is OFF (“0”).

Write the status byte into the Data Register.
Wait for an interrupt.

Read the Auxiliary Status Register.

Read the Interrupt Register.

Check the interrupt. A Function Complete
interrupt should have occurred, indicating that
the status byte was sent successfully.

18

i |

)
a

Fa [

2 Fa

Fa

F R §F BN

L B

1 IR §1

7.

72.
73.
74.

75.

76.
77.
78.
79.

TARGET SENDS COMMAND
COMPLETE MESSAGE

Load the Command Register with a Send
Message in command, (Single Byte Transfer
= 1, DMA Mode = 0).

Read the Auxiliary Status Register.
Check the Data Register Full bit.

Repeat steps 72 and 73 until Data Register
Full bit is OFF (“0").

Write the “Command Complete” message
into the Data Register.

Wait for an interrupt.
Read the Auxiliary Status Register.
Read the Interrupt Register.

Check the interrupt. A Function Complete

interrupt should have occurred, indicating that
the message was sent successfully.

80. Load the Command Register with a Discon-
nect command.

(The 170 function is now complete. The user is back in
the disconnected state.)

4.2 NOTES

Steps 18 through 20, 35 through 37, 52 through 54, 63
through 65, and 72 through 74 can be omitted if the
microprocessor guarantees that one full clock cycle
elapses between loading the Command Register and
loading the Data Register.

The act of loading an interrupting command resets the
Data Register Full status bit in the Auxiliary Status
Register. Therefore, when a command is issued that
requires data to be put into the Data Register, the data
may not be loaded until the Data Register Full bit is
allowed to reset.

19

SECTION 5
INTERRUPT SERVICE ROUTINES (ISR)

This section defines all possible interrupt conditions,
and provides suggested responses.

5.1 GENERAL
When interrupted by the NCR SCSI Protocol Con-

7 6 5 4 3 2 1

troller, the users should read and save the Auxiliary
Status Register and the Interrupt Register. (Note that
this is not a requirement for servicing the interrupt for
the Diagnostic command.)

Figures 5.1 and 5.2 depict the Auxiliary Status and
Interrupt Registers.

0

—Not Used
Transfer Counter Zero
Paused

/10

C/ID
MSG

Parity Error

Data Register Full

Figure 5.1 Auxiliary Status Register

7 6 5 4 3 2

10

L__Function Complete
Bus Service
Disconnected

Selected
Reselected

(Used for Testability)

invalid Command

Figure 5.2

Not Used

Interrupt Register

20

e

[B |

f2 2 &R FKF DN

Fa

¥ 2

.

¥l

B s

The act of reading the Interrupt Register disables the
interrupt signal (INT), resets the Interrupt Register,
and resets an internal flag that indicates an Interrupt-
ing command is in progress. For this reason, if a bus
event which also causes an interrupt occurs at the
same time an Interrupting command is loaded into the
Command Register, the command in the Command
Register is not executed. Rather, the bus event is
honored.

The user must always know in which state the device is
operating: Disconnected, Connected as Initiator, or
Connected as Target. (This determines which com-
mands are valid for that state and what the interrupt
service routine should contain.) Interrupt information is
summarized in Table 5.1. The paragraphs following
the table describe the suggested interrupt service
routines for each state.

5.2 USER DISCONNECTED ISR

In the Disconnected state, the user is either currently
logically disconnected from the SCSI bus, or was dis-
connected at the time the last command to the chip
was issued. Valid commands that may have been
issued in this state are:

SELECT W/ATN
Interrupting SELECT W/0 ATN
RESELECT
| diat PAUSE
mmediate CHIP RESET

The seven interrupts that may occur in the Discon-
nected state are numbered and described below.

1. Interrupt Register

(7-0): 0000 1000
Auxiliary Status
Register (7-0): XXXX XXXX

Reason for Interrupt: The user has been
selected as the Target. ATN was not enabled
by the Initiator; therefore, the Target is not
capable of using messages (with the exception
of “Command Complete”), and cannot dis-
connect prior to completing the function.

Suggested Response: Set-up the Transfer
Counter, issue a Receive command, and pro-
ceed with the function through status phase
and “Command Complete” message.

. Interrupt Register

(7-0): 0000 1010

Auxiliary Status

Register (7-0): XXXX XXXX

Reason For Interrupt: The user has been
selected as the Target. ATN was asserted by
the Initiator; therefore, the Target is capable of
using messages.

Suggested Response: Read the Source ID
Register. If the ID Valid bit is not enabled, the
Initiator cannot be disconnected until the func-
tion is completed. Set the Transfer Counter
and issue a Receive Message Out command.
The Identify message can be used to deter-
mine whether the Initiator can disconnect.

. Interrupt Register

(7-0): 0001 0000

Auxiliary Status

Register (7-0): XXXX XXXX

Reason for Interrupt: The user has been re-
selected as the Initiator. It is implied that the
Target has disconnect and control message
capability.

Suggested Response: Wait for another inter-
rupt (either Bus Service or Disconnect).

21

Normally, a Bus Service interrupt is generated
for a Message In phase, allowing an “Identify”
message to be sent.

. Interrupt Register
(7-0): 0000 0001

Auxiliary Status
Register (7-0): XXXX XXXX

Reason for Interrupt: The user command has
been successfully completed. The Select
commands (SELECT W/ATN, SELECT W/0O
ATN) imply that the user is connected to a
Target and is acting as an Initiator, while the
Reselect command implies reconnection to an
Initiator and action is as a Target.

Suggested Response: Proceed with intended
command sequence. After either Select com-
mand, wait for a Bus Service or Disconnect
interrupt. After a Reselect command, issue a
Send Message In to transmit an “Identify”
message.

. Interrupt Register
(7-0): 0000 0100

Auxiliary Status
Register (7-0): XXXX XXXX

Reason For Interrupt: While executing a Select
or Reselect command, no response (BSY)
was received from the destination device
within the specified timeout. The operation
was aborted.

Suggested Response: Retry alimited number
of times.

. Interrupt Register
(7-0): 0100 0000

Auxiliary Status
Register (7-0): XXXX XXXX

Reason For Interrupt: The user issued a
command that is not valid in the Disconnected
state.

Suggested Response: If the command is
valid, either retry or issue a Chip Reset com-
mand and retry.

7. Interrupt Register

(7-0): All Others

Auxiliary Status
Register (7-0): XXXX XXXX

Reason for Interrupt: Chip malfunction.

Suggested Response: Issue chip reset and
retry operation.

5.3 USER CONNECTED AS TARGET ISR

In this state, the user is logically connected on the
SCSI bus in the Target role. Comrnands that may be
issued in this state are:

RECEIVE COMMAND

RECEIVE DATA

RECEIVE MESSAGE OUT

RECEIVE UNSPECIFIED
Interrupting OUTPUT

SEND STATUS

SEND DATA

SEND MESSAGE IN

SEND UNSPECIFIED INPUT

PAUSE
Immediate DISCONNECT
CHIP RESET

In order to service an interrupt in the Connected as
Target state, the user should know the current com-
mand and if the pending command will result in an
interrupt.

22

Fa &N

| e

fF 1 2@ &N

N N A

i . R

|

&

& w

R &

The seven interrupts that may occur in this state are
numbered and described below.

1. Interrupt Register

(7-0): 0000 0010

Auxiliary Status

Register (7-0): XXXX XXXX

Reason for Interrupt: ATN was received from
the Initiator. If this interrupt was received after
issuing an interrupting command, the com-
mand was not and will not be executed by the
chip.

Suggested Response: Issue a Receive Mes-
sage Out command to determine why the In-
itiator enabled ATN. If a command was
aborted, it should be reissued.

. Interrupt Register

(7-0): 0000 0001

Auxiliary Status

Register (7-0): X0XX XXXX

Reason for Interrupt: A Send or Receive
command completed successfully.

Suggested Response: Proceed with function
by issuing any other valid command.

. Interrupt Register

(0-7): 0000 0011
Auxiliary Status
Register (0-7): X0OXX XXXX

Reason for Interrupt: A Send or Receive
command has completed. ATN was enabled
by the Initiator during the transfer.

Suggested Response: Issue a Receive Mes-
sage Out to determine why the Initiator set
ATN.

4. Interrupt Register

(0-7): 0000 0001
Auxiliary Status
Register (0-7): X1XX XXXX

Reason for Interrupt: A Receive command
terminated due to a bus parity error. (ATN is
not enabled.)

Suggested Response: If the error occurred
during a Receive Message Out command,
issue a Send Message In, “Message Parity
Error” followed by a Receive Message Out in
order to retry the message. If the error occur-
red during another Receive command, issue a
Send Message In, “Restore State,” and retry
the entire transmission. In either case, the
number of retries should be limited.

. Interrupt Register

(7-0): 0000 0011

Auxiliary Status

Register (7-0): X1XX XXXX

Reason for Interrupt: A Receive command
terminated due to a bus parity error, and the
Initiator is asserting ATN.

Suggested Response: Similar to previous
interrupt, with an exception: if the error did not
occur on a message, the ATN should be ser-
viced first by issuing a Receive Message Out.

. Interrupt Register

(7-0): 0100 0000

Auxiliary Status
Register (0-7): XXXX XXXX
Reason for Interrupt: The user issued a com-
mand that is not valid in the Connected as
Target state.

23

Suggested Response: If the command is
valid, retry or issue CHIP RESET and retry the
entire operation.

7. Interrupt Register
(7-0): All Others

Auxiliary Status

Register (0-7): XXXX XXXX

Reason for Interrupt: Chip malfunction.

Suggested Response: Issue chip reset and
retry operation.

5.4 USER CONNECTED AS INITIATOR ISR

In the Connected as Initiator state, the user is logically
connected on the SCSI bus in the Initiator role. Com-
mands that may be issued in this state are:

{ TRANSFER INFO
TRANSFER PAD

MESSAGE ACCEPTED
SET ATN
DISCONNECT

CHIP RESET

Interrupting

Immediate

In order to service an interrupt, the user should know
the current command and if the pending command will
resultin an interrupt. The information phase during the
last Transfer command should also be noted. .

The seven interrupts that may occur in the Connected
as Initiator state are numbered and described below.

1. Interrupt Register
(7-0): 0000 0010

Auxiliary Status

Register (0-7): XXXX XXXX

Reason for Interrupt: A REEQ has been re-
ceived from a Target that the chip cannot ser-
vice automatically. This may occur prior to
issuing a Transfer command when a REQ is
received after TC = 0 during a Transfer com-
mand, or when aninformation phase change is
detected by the chip during a Transfer
command.

Suggested Response: Compare I/0, C/D,
and MSG in the Auxiliary Status Register with
the previous information phase to determine if
an information phase change has occurred. If
the phase type changed, read the Transfer
counter and update working pointers for the
old phase, and proceed to set-up for the new
transfer (Refer to section 5.41 Bus Service
Interrupt.) If the phase did not change, a buffer
overflow has occurred, and the Transfer
Counter Zero bit will have been set.

. Interrupt Register

(0-7): 0000 0100

Auxiliary Status

Register (0-7): XXXX XXXX

Reason for Interrupt: The Target discon-

_ nected from the bus. The disconnection may or

may not be expected, depending upon the
previous sequence of events.

Suggested Response: Do housekeeping to
complete Initiator role. :

. Interrupt Register

(0-7): 0000 0001

Auxiliary Status

Register (0-7): XXXX XXXX

Reason for Interrupt: A Transfer command for
a Message In phase has completed. ACK is
left active on the bus.

24

f£f 2 ¥R 2 2 FR% KR K12 I)1 L B | I’A B

t

ra

B |

| B

A

| 6 . | W .

i

| S & .

| S

Suggested Response: Examine the mes-
sage. To reject the message, issue a Set ATN
followed by a Message Accepted command.
To accept the message, issue only the Mes-
sage Accepted command.

. Interrupt Register

(0-7): 0000 0100
Auxiliary Status
Register (0-7): X1XX XXXX

Reason for Interrupt: The Target discon-
nected from the bus when ATN wasonduetoa
parity error.

Suggested Response: Consider this 1/0 in-
valid since the Target never sent a Message
Out to check the parity error. Abort the I/0.

. Interrupt Register

(0-7): 0000 0010

Auxiliary Status
Register (0-7): X1XX XXXX

Reason for Interrupt: A REQ from the Target
cannot be serviced automatically by the chip.
Also, a parity error occurred during the last
Transfer Info command.

The interrupt does not occur at the time of the
parity error, but when TC = 0 or the Target
changes information phases. The chip au-
tomatically sets ATN when the parity error
occurs.

Suggested Response: Use 1/0, C/D, and
MSG to determine if a phase change occurred.
If so, and the new phase is a Message Out,
send either a “Message Parity Error” or an
“Initiator Detected Error” message. (The
choice depends on whether the last phase was
a message phase.) If the new phase is not a
Message Out, service the new phase and

issue a Transfer command. (The chip will keep
ATN on until a Message Out is sent with
TC =0) ‘

If the phase did not change and the TC = 0, a
buffer overflow occurred in addition to the par-
ity error.

6. Interrupt Register
(7-0): 0100 0000

Auxiliary Status
Register (0-7): XXXX XXXX

Reason for Interrupt: The user issued a com-
mand that is not valid in the Connected as
Initiator state.

Suggested Response: If the command is
valid, retry or issue a Chip Reset command,
and retry the entire operation.

7. Interrupt Register
(7-0): All Others

“Auxiliary Status
Register (7-0): XXXX XXXX

Reason for Interrupt: Chip malfunction.

Suggested Response: Issue a Chip Reset
command, and retry the operation.

5.4.1 Bus Service Interrupt

The NCR 5385E is designed to interrupt the user for a
detected phase change, even when REQ is not active.
This offers two advantages: ,

1. Provides early notification to the Initiator for
unbuffered target devices, allowing the In-
itiator to prepare for the nextinformation phase
before it occurs.

2. In high performance systems, this early notifi-
cation allows the Initiator to prepare the chip

25

for a requested phase change and increases
the overall system performance.

When a phase change is detected by the chip, the
phase lines are monitored for 12 clock periods. If the
phase lines have indeed changed, the chip monitors
the BSY line for an additional 12 clock periods to
determine if the chip is still connected. If so, a Bus
Service interrupt occurs, indicating a phase change.
The user must respond to this phase change by issu-
ing either a Transfer Info or Transfer Pad Command
even if this is an unexpected bus phase.

One possible way to handle an invalid or unexpected
bus phase is to program the Transfer Counter to a
value of **1"", and program the Command Register with
a Transfer Pad command. If the Target requests data,

the Transfer Counter goes to zero and the user re-
ceives an interrupt indicating that a REQ has occurred.
The important point is that the Initiator must respond to
all Bus Service Interrupts by issuing either a Transfer
Info or Transfer Pad command to the chip.

The NCR 5386 defaults to NCR 5335E type operation
but may be optionally programmed to ignore phase
changes except when REQ is active. This is accom-
plished by setting Bit 3 (phase valid on REQ) in the
control register.

5.5 INTERRUPT SUMMARY

The information provided in this section is summarized
in the following table.

26

, . \
o) [e ER g] Fa ¥ u [.] 0 e | 2] Fa | F 2 [.] | . |] | .] [) F 2 |

"

R s

&

e

EE WEOSR

- N eaasems i ol Emn et -

ah e -

Table 5.1 Interrupt Summary

Interrupt Auxillary Status
User State Register Register Event
(7-0) (7-0) ;

0000 1000 XXXX XXXX Selected as Target, ATN off.

0000 1010 A XXXX Selected as Target, ATN on.
Reselected as Initiator.

0001 0000 XXX XXXX Select W/ATN, Select W/O

0000 0001 XXX XXXX ATN, or Reselect command

Disconnected completed successfully.

0000 0100 XXXX XXXX No response from Destination
while executing a Select or
Reselect command.

0100 0000 XXXX XXXX Invalid command issued.

All Others XXX XXXX Hardware Error - should not occur.

0000 0010 XXXX XXXX ATN received.

0000 0001 X0XX XXXX Send or Receive command
successfully completed.

0000 0011 XOXX XXXX Send or Receive command
completed: ATN was turned
on during the transfer.

Connected as Target 0000 0001 X1XX XXXX Receive command terminated
due to bus parity error.

0000 0011 X1XX XXXX Receive command terminated
due to bus parity error.

ATN is on.

0100 0000 XXXX XXXX Invalid command issued.

All Others XXX XXXX Hardware Error - shouid not
occur.

0000 0010 XXXX XXXX Service Target request.

0000 0100 X0XX XXXX Message In transfer
completed.

0000 0001 XXXX XXXX Transfer for Message In has
completed.

0000 0100 X1XX XXXX Target disconnected from
bus. Did not respond to ATN

Connected as Initiator due to parity error.

0000 0010 X1XX XXXX Service Target request. A
parity error was previously
detected and ATN turned on.

0100 0000 XXXX XXXX Invalid command issued.

All Others XXX XXXX Hardware error - should not
occur.

27

SECTION 6
SCSI BUS INTERFACE

The NCR SCSI Protocol Controller supports either
differential pair or open-collector operation. Differential
pair operation allows bus devices to be spaced up to
25 meters apart and offers better noise immunity than
the more prominent open-collector interface.

The open-collector or single-ended interface is recom-
mended for in cabinet use and limits bus device
spacing to 6 meters.

Figure 6.1. shows the suggested interface between
the SCSI Protocol Controller and the differential pair
transceivers. A 3-t0-8 decoder, gated by the ARB
signal, is used to enable the driver for the device ID

used during arbitration. At this time, all other data bit
receivers are enabled for reading and the Protocol
Controller drives the appropriate cevice ID data bit
high.

The single-ended interface may be simply implemented:

using the NCR 8310 General Purpose 48 ma Driver/
Receiver Chip. The equivalent circuit for the NCR 8310
is shown in Figure 6.2. Aside from providing 48 ma
sink capability for the SCSI bus, this device may be
used with other common device interfaces that require
48 ma operation. The interface to the NCR SCSI Protocol
Controller is shown in Figure 6.3.

28

| B] n

L B

‘DA Fh ¥R D

PN

AR

- 087
DB

o
-
o
2
]
o
of ~ 3 P
R SRR SRR e 1 c
. 8 8
n] '8 -
.MRA -
| I~roZ]
“ \FE =
| X | M nnv
.Jv 1 [
H-1- I o
~ . =
o] vl= = L D
r 7]
P v %
& o
e P
o 8
%m m
. [e]

o] ol ©o T o o o = . . m
\ m 3 ?%%¢ .lr...lv.v: ve .ﬁ.;..::. 4 -
N m \AAAd Y9YYY Y LA X A J °
|24l5|9.1|-.|¢| GSWQ.UQM Lel
& < ~ - o
ls - : S
b (7]
w. % Q X ") QWWWNNB -
LIRS IS Y B3 1813188801312 181910 0(¢]2181% 51412 o
FEEEEE o 2| s[5 [s[3(s |3 [(2(3 [e[2[5[z [T |8 |2]R|2 o
- PEE - 5
8 lajle 98/358ES o
b HON w

b

S

A LA | . R AN) e T n Foa LA | " LA . L LA T G

29

1
" 3 2‘ 3 .-t -08(7) o
4
6 7 6 4
7 _
1SV 5 9 -3 : 6 - o8ee)
l 4 10 J D 8 'g 8 os DB
13 +-> ®
1 12 u 13 1 L -DB(4)
12] q 12 v v
3 1
0 13 -2 2 3 280y
OB 2|A1 14 s 8 4 6 L. -DB@2),
1]a2 15 8 3 - »
74L5138) 3 o 8 oo DB,
(1490 3 " o8O
(13) T 12 12 +- 220,
= (2) 74L503 1%
(12) 102 (41) SB7 3 r== '1'2"’“"1
ot SE——
(15) ARB__ <+ +— 2 ' 'e/#z :
(40) 86 o o 6 5 ! 1674 !
4 t '
(39) 585 . e)2 5 ">P6 ;
BEN 1 i 10. [
(200 SBEN, ¢ (38)SB4 11 12 : 1 ‘2>:>° !
(1/6) 74LS04 M 1322 L 7
(37)SB3 , 3.2 ! 9 1M1
6)IGS__ 5[N\6 M 1 L T
(> 6 (6 sB2 6 5] 7>#13 |
w 4 T 4]
o (35) SB1= o e%\ 9 | 5>F15 [
v 10 MR]
(34)SB0 ni 12 ! 2> 17
(28) TGS v 13 g S— | 7415240
(2748125 |, oy Lemmmm o
-DB(P
(33)sBP _ 2 2 4+ 08 lo
44— 3
L AAN~ -BSY
- 3 0 {42) BSYOUT 5 8 *o BSvy
(7 1O 2 p——— 9 v 10
<+ T (32) SELOUT 9 8 o Sty
6 c/D > Yo
(8)C/D 4 o 5 R et BN St 13 1" RST
i e 4l 8 . MSG 1? 4+ \ 4
9) MSG 4 o 9 - 44— ‘< N
9 T RE (10) ACK _ 2 3 - ACKa
11) REQ 11 o o FEQ B a4 3 —<:
(1) REQ. _ 12 v Ad 6 ona ~ATN,
“» T (5) ATN . s +o-
[afathatial > - 1
Lo 12 ’5}’1;
+-
] (17) BSYIN (174) 745125
1 4 -
et)
T (18) SELIN
L] 14 6 <
i - i (RESET LOGIC) ,
! 12 '8 h
12 (RESET LOGIC)
o >
(1/2) 745240
Lo
7415240
Figure 6.2 NCR 8310 Equivalent Circuit
S x .
k| [I | | I Fa | B] ¥ s [S | [. [S | g | [B] | B] | g | | .] [] [g] [

le

NCR
5385E/86

| T | S | & B | N | |

(15). ARB (48) @
<4 SB7 (41) 7
<20 SB6 (42) { 5)
<39 SB5 (43) 26;

(38) SB4 (44) 7
L) SB3 (45) 5
<38 sB2 (46) . NCR 29;
‘(35) SB1 (47) > 8310 o0
‘(34) SBO (1) . (19)

(11)

(33) SBP @,

(20) SBEN (34, (18)
U ATN 30, (17)
L9 ACK (26)

6) IGS (12)

(28) TGS (14)

JAC) MSG (27): gf;
<8 C/ID (29), (20)

(7) 110 (36)
< > (23)
PRLL)) REQ (28)’
< (17 BSYIN (25) (16)

(42) BSYOUT @31),
<18 SELIN (24) (15)

(32) SELOUT (32) 19)

RSTIN4—8)
rsTouT —&3) T

(8

Figure 6.3 Single-Ended Interface Using the NCR 8310 Driver/Receiver Chip

:

DB7
DB6

Q

B
B

o
s

4560 B9 s

w

B
B

O
R

ATN
ACK

C/ID
110

BSY

SEL
RST

SCSl
8US

S

R = &

APPENDIX A

NCR 5385E/86 SCSI PROTOCOL CONTROLLER REGISTER AND

0O 0 0O O BRW Data Register |
0O 0 O 1 R/W Command Register
0 0 1 0 RW Control Register
0o 0 1 1 R/W Destination ID
0 1 0O 0 R Auxiliary Status
0 1 0 1 R 1D Register
0 1 1 0 R Interrupt Register
0 1 1 1 R Source ID
1 0O O 0 R Data Register 1™
1 0 O 1 R Diagnostic Status
1 1 0 0 RW Transfer Counter (MSB)
1 1 0 1 R/W Transfer Counter (2nd BYTE)
1 1 1 0 RW Transfer Counter (LSB)
1 1 1 1 R/W Reserved for Testability
*NCR 5386 ONLY COMMAND SUMMARY
INT = INTERRUPTING D = DISCONNECTED

IMM = IMMEDIATE

COMMAND SUMMARY

REGISTER SUMMARY

A3 A2 A1 A0 R/W REGISTER NAME

T = CONNECTED AS A TARGET

| = CONNECTED AS AN INITIATOR

COMMAND CODE COMMAND TYPE VALID STATES
00000 Chip Reset IMM DIT
00001 Disconnect IMM LT
00010 Paused IMM D,T
00011 Set ATN IMM |
00100 Message Accepted IMM |
00101 Chip Disable IMM DT
00110-00111 Reserved IMM
01000 Select w/ATN INT D
01001 Select w/o ATN INT D.
01010 Reselect INT D
01011 Diagnostic INT D
01100 Receive Command INT T
01101 Receive Data INT T
01110 Receive Message Out INT T
01111 Receive Unspecified info Out INT T
10000 Send Status INT T
10001 Send Data INT T
10010 Send Message Out INT T
10011 Send Unspecified Info In INT T
10100 Transfer Info INT |
10101 Transfer Pad INT |
10110-11111 Reserved INT

32

a2 §F

R FR E B

Fa I

¥ a

| |

A & e = u

‘.

| S & | — | |

-l

&

-

&

&

o R B o

o

COMMAND REGISTER
7 6 5 4 3 21

0

L1]

HEEEN

|

APPENDIX B
INTERNAL REGISTERS

Command Code

00000
00001
00010
00011
00100
00101

Chip Reset
Disconnect

Pause

Set ATN

Message Accepted
Chip Disabled

01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101

Seiect w/ATN

Select w/o ATN

Reselect

Diagnostic Data Turnaround
Receive Command

Receive Data

Receive Message Out
Received Unspecified info Out
Send Status

Send Data

Send Message In

Send Unspecified Info In
Transfer info

Transfer Pad

Reserved (MUST BE A ZERO)

Single Byte Transfer

CONTROL REGISTER

DMA Mode

lD:E:‘ST:R 4 32 10
TsTolo[s] T T]
LL 1 e

INTERRUPT REGISTER
76 543210

L =T TTT11

Function Compiete
L——— Bus Service
L Disconnected
Selected

(Used for Testability)
invalid Cc L]
Not Used

SOURCE 1D REGISTER

7 6 5 4 3 2 10

[-1-1--T T 1]

Source 1D
1D Valid

7 6 5 43 210

HEEEEREN

Seilect Enable
Reselect Enable
L Parity Enable
r————————== Phase Valid on REQ"*
Reserved for

Synchronized Operation*

DESTINATION ID REGISTER
7 6 54 3 210

HESECSEEN

Destination ID

AUXILIARY STATUS REGISTER

7 6 5 4 3 2 10
L Data Register Il Fuli*

Transfer Counter Zero
L Paused

Data Register ! Full

"NCR 5386 ONLY

Panty Thru Enable*

DIAGNOSTIC STATUS REGISTER

7 6 54 3 2 1

0

LI-T1 1]

| |

Self-diagnostic Status

000 Successful Completion

001 Unconditional Branch Fail
010 Data Reg. Full Failed

011 Initiai Conditions Incorrect
100 Initial Command Bits incomect
101 Diagnostic Flag Failed

110 Data Turnaround Failed

111 Not Used

Diagnostic Command Status

001 Turnaround Miscompare (lnitial)
010 Turnaround Miscompare {Final)
011 Turnaround Good Parity

100 Tumnaround Bad Party

Self-diagnostic Compiete

(7o) A3 A2 At
c/D 1 10
MSG 1 1 0
Partty Error 1 1 1

TRANSFER COUNTER

A0 SELECTED BYTE
Most Significant Byte
Middie Byte

Least Signdficant Byte

o - O

33

B T N . - PURPE I - -

APPENDIX C
INITIATOR/TARGET ROLE FLOWCHART

)

" DISCONNECTED
IDLE LOOP

INTERRUPT
RECEIVED
2

COMMAND
RECEIVED
K

NO

RESELECTED
INTERRUPT
2

SELECTED
INTERRUPT
?

ERROR
ERROR
YES TARGET NO
CONTROLLER RESELECTION
COMMAND, -

INITIATOR

SELECTS CONTROLLER
DECODE & TancET DECODE &
IMPLEMENT IMPLEMENT
OTHER HOST OTHER HOST
ADAPTER CONTROL ACAPTER
COMMANDS COMMANDS

INTERRUPT
RECEIVED
?

FUNCTION

COMPLETE
?

DISCONNECTED
2

ERROR

INTERRUPT

RECEIVED
2

BUS
SERVICE
INTERRUPT
?

34

[B] -

F a

¥ m ¥ a

| .

Fa

| A

Fa e

.,,4 - ‘ ' 4-,_‘

B

L

B

s

|-

B B

M«"J‘

& v R ¥ B 5 R o B

a .

& o B

INTERRUPT
RECEIVED
?

INITIATOR/TARGET ROLE FLOWCHART

INITIATOR
SENDS
“IDENTIFY"
MESSAGE

O,

INITIATOR
IDLE LOOP

INTERRUPT
RECEIVED

PREPARE CHIP

COMPLETE

SEND

NO

“"MESSAGE
ACCEPT"

1 AND EXTERNAL
CIRCUITRY FOR
NEXT PHASE
UPDATE RECEIVE
WORKING MESSAGE
POINTERS
COMMAND
COMPLETE
?
YES
COPY USING THE
YES CURRENT SOURCE 10,
POINTERS RETRIEVE
TO SAVED SAVED
INTERRUPT POINTERS POINTERS
RECEIVED
?
DECODE
FUNCTION ﬁéggiees

35

INITIATOR/TARGET ROLE FLOWCHART

SEND

“SAVE STATE"

MESSAGE

l

SET
DISCONNECT
FLAG

SET-UP
NCR 5385
TO RECEIVE
MESSAGE OUT

ERROR
YES

SAVE INITIATOR
ID & DETERMINE
IF RESELECTION
IS SUPPORTED

INTERRUPT

RECEIVED
?

FUNCTION

COMPLETE
?

DO WE
DISCONNECT
?

36

¥ e

.

¥ a

F 2R §F® &R KON

TR ¥R

|
wl

|

&

-

il
—

INITIATOR/TARGET ROLE FLOWCHART (Continued)

SEND
“DISCONNECT
MESSAGE"

INTERRUPT
RECEIVED

ISSUE
FUNCTION DISCONNECT
COM!:LET E COMMAND
? TO CHIP
ERROR oc

TARGET
RESELECTS
INITIATOR

FUNCTION
COMPLETE
?
ERROR

TARGET
SENDS
“IDENTIFY”
MESSAGE

NO INTERRUPT
RECEIVED
?

YES

37

INITIATOR/TARGET ROLE FLOWCHART (Continued)

FUNCTION
COMPLETE

DATA

XFER OR

RECEIVE

COMMAND
?

.

TARGET
RECEIVES
COMMANDS
OR XFERS
DATA

74}
FUNCTION
COMPLETE
?

NO

ERROR

r

SEND
STATUS
BYTE

INTERRUPT

RECEIVED
?

FUNCTION

COMPLETE
?

TARGET
SENDS
“COMMAND
COMPLETE"
MESSAGE

INTERRUPT

RECEIVED
?

FUNCTION
COMPLETE

' € O£ A% KX

