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The study of error-correcting codes is now more than forty years
old. There are several excellent texts on the subject, but they were
written mainly by coding theorists and are based on a rigorous math-
ematical approach. This book is written from a more intuitive, practical
viewpoint. It is intended for practicing engineers who must specify,
architect, and design error-correcting code hardware and software. It is
an outgrowth of a series of seminars presented during 1981 and 1982 on
practical error-correction design.

An engineer who must design an error-control system to meet data
recoverability, data accuracy, and performance goals must become familiar
with the characteristics and capabilities of different types of EDAC codes
as well as their implementation alternatives, including tradeoffs between
hardware and software complexity, speed/space/cost, etc. The goal of this
book is to provide this information in a concise manner from a practical
engineering viewpoint. Numerous examples are used throughout to develop
familiarity and confidence in the methods presented. - Most proofs and
complex derivations have been omitted; these may be found in theoretical
texts on error correction coding.
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PREFACE

The study of error-correcting codes is now more than forty years old. There are
several excellent texts on the subject, but they were written mainly by coding theorists
and are based on a rigorous mathematical approach. This book is written from a more
intuitive, practical viewpoint. It is intended for practicing engineers who must specify,
architect, and design error-correcting code hardware and software. It is an outgrowth
of a series of seminars presented during 1981 and 1982 on practical error-correction

design.

An engineer who must design an error-control system to meet data recoverability,
data accuracy, and performance goals must become familiar with the characteristics and
capabilities of different types of EDAC codes as well as their implementation alterna-
tives, including tradeoffs between hardware and software complexity, speed/space/ cost,
etc. Our goal is to provide this information in a concise manner from a practical
engineering viewpoint. Numerous examples are used throughout to develop familiarity
and confidence in the methods presented. Most proofs and complex derivations have
been omitted; these may be found in theoretical texts on error correction coding.

We would like to thank our friends for their assistance and advice. The engineers
attending DST’s seminars also deserve thanks for their suggestions.
Neal Glover
Trent Dudley

Broomfield, Colorado
August 1988



ABOUT CIRRUS LOGIC - COLORADO

Cirrus Logic - Colorado was originally founded in 1979 as Data System Technology
(DST) and was sold to Cirrus Logic, Inc., of Milpitas, California, on- January 18, 1990.
Cirrus Logic - Colorado provides error detection and correction (EDAC) products and
services to the electronics industries. We specializes in the practical implementation of
EDAC, recording and data compression codes to enhance the reliability and efficiency of
data storage and transmission in computer and communications systems, and all aspects
of error tolerance, including framing, synchronization, data formats, and error manage-

ment.

Cirrus Logic - Colorado also develops innovative VLSI products that perform
complex peripheral control functions in high-performance personal computers, worksta-
tions and other office automation products. The company develops advanced standard
and semi-standard VLSI controllers for data communications, graphics and mass storage.

Cirrus Logic - Colorado was a pioneer in the development and implementation of
computer-generated codes to improve data accuracy. These codes have become widely
used in magnetic disk systems over the past few years and are now defacto standards
for 5% inch Winchester drives. Cirrus Logic - Colorado developed the first low-cost
high-performance Reed-Solomon code integrated circuits; the codes implemented therein
have become worldwide standards for the optical storage industry. EDAC codes produ-
ced by Cirrus Logic - Colorado have become so associated with high data integrity that
many users include them in their lists of requirements when selecting storage subsys-

tems.

Cirrus Logic - Colorado licenses EDAC software and discrete and integrated circuit
designs for various EDAC codes, offers books and technical reports on EDAC and recor-
ding codes, and conducts seminars on error tolerance and data integrity as well as
EDAC, recording, and data compression codes.

PRODUCTS
¢ Error tolerant controller designs for magnetic and optical storage.
¢ Turnkey integrated circuit development.
¢  Low-cost, high-performance EDAC integrated circuit designs.

¢ Discrete and integrated circuit designs for high-performance Reed-
Solomon codes, product codes, and computer-generated codes.

e Universal encoder/decoder designs for Reed-Solomon codes including
bit-serial, time slice, and function sharing designs.

e  Multiple-burst- EDAC designs for high-end storage devices with high-
speed parallel interfaces, supporting record lengths beyond 100,000
bytes.
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EDAC designs supporting QIC tape formats.

Software written for  a number of processors to support integrated
circuits implementing Cirrus Logic - Colorado’s EDAC technology.

Practical Error Correction Design for Engineers, a book on EDAC
written especially for engineers. '

Cirrus Logic - Colorado develops polynomials for use in storage
products.

CONSULTING SERVICES
Consulting services are offered in the following areas:

Semiconductor memories and large cache memories
Magnetic disk devices
Magnetic tape devices

Optical storage devices using read-only, write-once, and erasable
media

Smart cards

Communications

Consulting services offered include:

Code selection
Design of discrete hardware and integrated circuits
Design of software

Advice in the selection of synchronization, header, and defect man-
agement strategies

Complex MTBF computations
Analysis of existing codes and/or designs
Establishing EDAC requirements from defect data

Assistance in system integration of integrated circuits implementing
Cirrus Logic’s EDAC technology.
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PROLOGUE
THE COMING REVOLUTION
IN ERROR CORRECTION TECHNOLOGY

By: Neal Glover

Presented at ENDL’s 1988 Disk/Test Conference

INTRODUCTION

The changes that are occurring today in error detection and correction, error tol-
erance, and failure tolerance are indeed revolutionary. Two major factors are driving
the revolution: need and capability. The need arises from more stringent error and
failure tolerance requirements due to changes in capacity, through-put, and storage
technology. The capability is developing due to continuing increases in VLSI density
and decreases in VLSI cost, along with more sophisticated error-correction techniques.
This preface discusses the changes in requirements, technology, and techniques that are
presently occurring and those that are expected to occur over the next few years.

Some features of today’s error-tolerant systems would have been hard to imagine a
few years ago.

Some optical storage systems now available are so error tolerant that user data is
correctly recovered even if there exists a defect situation so gross that the sector
mark, header and sync mark areas of a sector are totally obliterated along with dozens

of data bytes.

Magnetic disk - drive array systems under development today are so tolerant to
errors and failures that simultaneous head crashes on two magnetic disk drives would
neither take the system down nor cause any loss of data. Some of these systems will
also be able to detect and correct many errors that today go undetected, such as tran-
sient errors in unprotected data paths and buffers and even software errors that result
in the transfer of the wrong sector. Some magnetic disk drive array systems specify
mean time between data loss (MTBDL) in the hundreds of thousands of hours.

The contrast with prior-generation computer systems is stark. Before entering de-
velopment I spent some time on a team maintaining a large computer at a plant in Cali-
fornia that developed nuclear reactors. I will never forget an occasion when the head
of computer operations pounded his fist on a desk and firmly stated that if we saw a
mushroom cloud over Vallecito it would be the fault of our computer. The mainframe’s
core memory was prone to intermittent errors. The only checking in the entire com-
puter was parity on tape. Punch card decks were read to tape twice and compared.
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By the mid-seventies, the computer industry had come a long way in improving
data integrity. I had become an advisory engineer in storage-subsystem development,
and in 1975 I was again to encounter a very unhappy operations manager when a micro-
code bug, which I must claim responsibility for, intermittently caused undetected erro-
neous data to be transferred in a computer system at an automobile manufacturing plant.
Needless to say, the consequences were disastrous. This experience taught me the im-
portance of exhaustive firmware verification testing and has influenced my desire to
incorporate data-integrity features in Cirrus Logic’s designs that are intended to detect
and in some cases even correct for firmware errors as well as hardware errors.

Changes in hardware and software data-integrity protection methods are occurring
today at a truly revolutionary rate and soon the weaknesses we knew of in the past and
those that we live with today will be history forever.

THE CHANGING REQUIREMENTS

Requirements for error and failure tolerance increase with capacity and through-
put, and changing storage technology. Over the years, many storage systems have
specified their non-recoverable read error rate as 1.E-12 events per bit. In many cases
this is no longer acceptable. As more sophisticated applications require ever faster
access to ever larger amounts of information, system integrators will demand that
storage system manufacturers meet much higher data-integrity standards.

As an example of how capacity influences error tolerance requirements, consider a
hypothetical write-once optical storage device employing removable 5 gigabyte cartrid-
ges. Twenty-five such cartridges would hold 1.E+12 bits, so a non-recoverable read
error rate of 1.E-12 would imply the existence of a non-recoverable read error on about
one in twenty-five cartridges. Is this acceptable? Would one non-recoverable read
error in every 250 platters be acceptable? .

As an example of how through-put influences error tolerance requirements, con-
sider a magnetic disk array subsystem which is designed to transfer data simultaneously
from all drives and has no redundant drives. The through-put of ten 10-megabit-per-
second magnetic disk drives operating with a ten percent read duty cycle would be
8.64E+11 bits per day. A 1.E-12 non-recoverable read error rate would imply one non-
recoverable read error every eleven days. Is this acceptable? Would one non-recover-
able read error per year be acceptable?

For new storage technologies, it is often not practical to achieve the low media
defect event rates which we have been accustomed to handling in magnetic storage.
New techniques have been and must continue to be developed and implemented to
accommodate higher defect rates and different defect characteristics.
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THE CHANGING TECHNOLOGY

VLSI density continues to increase, allowing us to incorporate logic on a single in-
tegrated circuit today that a few years ago would have required several separate boards.
This allows us to implement very complex data-integrity functions within a single IC.
Cirrus Logic’s low-cost, high-performance, Reed-Solomon code IC’s for optical storage
devices are a good example. As VLSI densities increase, such functions will occupy a
small fraction of the silicon area of a multi-function IC. The ability to place very
complex functions on a single IC and further to integrate multiple complex functions on
a single IC opens the door for greater data integrity. Our ability to achieve greater
data integrity at reasonable cost is clearly one of the forces behind the revolution in

error and failure tolerant technology.

Even with the development of cheaper, higher density VLSI technology, it is often
more economical to split the implementation of high-performance EDAC systems between
hardware and software. Using advanced software algorithms and buffer management
techniques, nearly "on-the-fly" correction performance can be achieved at lower cost
than using an all-hardware approach.

CHANGES IN ERROR CORRECTION

For single-burst correction, Cirrus Logic - Colorado still recommends computer-
generated codes. Most new designs employing computer-generated codes are using
binary polynomials of degree 48, 56, and 64. In many cases, implementations of the
higher degree polynomials include hardware to assist in performing on-the-fly correction.

Economic and technical factors are driving the industry to accommodate higher
defect rates to which single-burst error-correction codes are not suited. Consequently,
Reed-Solomon codes, a class of powerful codes which allow efficient correction of
multiple bursts, are currently being designed into a wide variety of storage products
including magnetic tape, magnetic disk, and optical disk. Reed-Solomon codes were
discovered more than twenty-five years ago but only recently have improved encoding
and decoding algorithms, along with decreased VLSI costs, made them economical to
implement. Using software decoding techniques running on standard processors, Cirrus
Logic - Colorado now routinely achieves correction times for Reed-Solomon codes that
were difficult to achieve with bit-slice designs just a few years ago.

IBM has announced a new version of its 3380 magnetic disk drive that employs
multiple-burst error detection and correction, using Reed-Solomon codes, to achieve
track densities significantly higher than realizable with previous technology. Single-
burst error correction can handle modest defect densities, but defect densities increase
exponentially with track density. On-the-fly, multiple-burst error correction and error-
tolerant synchronization are required to handle these higher defect densities. On earlier
models of the 3380, IBM corrected a single burst in a record of up to several thousand
bytes. Using IBM’s 3380K error-correction code, under the right circumstances it would
be possible to correct hundreds of bursts in a record. A unique feature of the 3380K
code is that it can be implemented to perform on-the-fly correction with a data delay

that is roughly 100 bytes.



The impact of this IBM announcement, coupled with the general push toward high-
er track densities, the success of high-performance error detection and correction on
optical storage devices, and the availability of low-cost, high-performance EDAC IC’s,
will stimulate the use of high-performance EDAC codes on a wide range of magnetic
disk products. Cirrus Logic - Colorado itself is currently implementing double-burst
correcting, Reed-Solomon codes on a wide range of magnetic disk products, ranging
from low-end designs which process one bit per clock edge to high-end designs which
process sixteen bits per clock edge.

CHANGES IN ERROR DETECTION

When an error goes undetected, erroneous data is transferred to the user as if it
were error free. The transfer of undetected erroneous data can be one of the most
catastrophic failures of a data storage system. Some causes of undetected erroneous
data transfer are listed below.

e Miscorrection by an error-correction code. .
® Misdetection by an error-detection or error-correction code.

¢ Synchronization failure in an implementation without synchronization
framing error protection.

¢ Intermittent failure in an unprotected data path on write or read.

o Intermittent failure in an unprotected RAM buffer on write or read.

e A Softwa:e error resulting in the transfer of the wrong sector.

¢ Failed hardware, such as a failed error latch that never flags an error. A

It is important to understand that no error-correction code is perfect; all are
subject to miscorrection when an error event occurs that exceeds the code’s guarantees.
However, it is also important to understand that the miscorrection probability for a
code can be reduced to any arbitrarily low level simply by adding enough redundancy.
As VLSI costs go down, more redundancy is being added to error-detection and error-
correction codes to achieve greater detectability of error events exceeding code guaran-
tees. New single-burst error-correction code designs use polynomials of degree 48, 56,
and 64 to accomplish the same correctability achieved with degree 32 codes several
years ago, but with significantly improved detectability. If correctability is kept the
same, detectability is improved more than nine orders of magnitude in moving from a
degree 32 code to a degree 64 code.

Error-detection codes are not perfect either; they are subject to misdetection.
Like miscorrection, misdetection can be reduced to any arbitrarily low level by adding
enough redundancy. Unfortunately, the industry has not, in general, increased the level
of detectability of implemented error-detection codes significantly in the last twenty-
five years. Two degree 16 polynomials, CRC-16 and CRC-CCITT, have been in wide use
for many years. For many storage device applications, there are degree 16 polynomials
with superior detection capability, and moreover, the requirements of many applications
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would be better met by error-detection polynomials of degree 32 or greater.

In the last few years, the industry has been doing a better job of avoiding pattern
sensitivities of error-detection and error-correction codes. Cirrus Logic - Colorado
avoids using the Fire code because of its pattern sensitivity, and we use 32-bit auxiliary
error detection codes in conjunction with our Reed-Solomon codes in order to overcome

their interleave pattern sensitivity.

Auxiliary error-detection codes that are used in conjunction with ECC codes to en-
hance detectability have special requirements. The error-detection code check cannot
be made until after correction is complete. It is undesirable to run corrected data
through error-detection hardware after performing correction due to the delay involved.
It is also not feasible to perform the error-detection code check as data is transferred
to the host after correction, since some standard interfaces have no provision for a
device to flag an uncorrectable sector after the transfer of data has been completed.
To meet these requirements, some error-detection codes developed over the last few
years are specially constructed so that their residues can be adjusted as correction
occurs. When correction is complete, the residue should have been adjusted to zero.
Cirrus Logic - Colorado has been using such error-detection codes since 1982, and such
‘a code is included within Cirrus Logic - Colorado Reed-Solomon code IC’s for optical
storage. IBM’s 3380K also uses such an auxiliary error-detection code.

As the requirements for data integrity have increased, Cirrus Logic - Colorado has
tightened its recommendations accordingly. One of the areas needing more attention in
the industry is synchronization framing error protection. To accomplish this protection,
Cirrus Logic - Colorado now recommends either the initialization of EDAC shift regist-
ers to a specially selected pattern or the inversion of a specially selected set of EDAC
redundancy bits.

The magnetic disk drive array segment of the industry is making significant gains
in detectability. Some manufacturers are adding two redundant drives to strings of ten
data drives in order to handle the simultaneous failure of any two drives without losing
data. The mean time between data loss (MTBDL) for such a system computed from the
MTBF for individual drives may be in the millions of hours. In order for these systems
to meet such a high MTBDL, all sources of errors and transient failures that could
dominate and limit MTBDL must be identified, and means for detection and correction of
such errors and failures must be developed. For these systems, Cirrus Logic - Colorado
recommends that a four-byte error-detection code be appended and checked at the host
adapter. We also recommend that the logical block number and logical drive number be
included in this check. This allows the detection with high probability of a wide vari-
ety of errors and transient failures, including the transfer of a wrong sector or transfer
of a sector from the wrong drive.

CHANGES IN TRACK-FORMAT ERROR TOLERANCE

In many of today’s single-burst-correcting EDAC designs, tolerance to errors is
limited by the ability to handle errors in the track format rather than by the capability
of the data-field EDAC code. In upgrading such designs, it is pointless to change from
single-burst to multiple-burst error correction without also improving track-format error
tolerance. In the future, all magnetic disk products will use error-tolerant synchroniza-
tion and header strategies.
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The optical storage industry has already proved the feasibility of handling error
rates as high as 1.E-4 through track-format error tolerance as well as powerful data-
field EDAC codes. Optical track-format error tolerance has been achieved using multi-
ple headers, error-tolerant sync marks, and periodic resynchronization within data fields.
Some systems now available are so error tolerant that user data is correctly recovered
even if there exists a defect situation so gross that the sector mark, header, and sync
mark areas of a sector are totally obliterated along with dozens of data bytes.

CHANGES IN DEFECT MANAGEMENT

As track densities increase in magnetic recording, and as erasable optical technol-
ogy becomes more common, many companies will implement defect skipping to handle
higher defect densities without significantly affecting performance. This technique is
not applicable to write-once optical applications, where sector retirement and reassign-
ment will be used. Such techniques also work well within dynamic defect management
strategies. Combining the two will allow the full power of the EDAC code to be used
for margin against new defects. Dynamic defect management will become more common,
especially for write-once and erasable optical technologies subject to relatively high new
defect rates and defect growth.

As more complex and intelligent device interfaces and controllers are implemented,
more responsibility for defect management will be shifted from the host to the device
controller.

CHANGES IN SELF-CHECKING

As data integrity requirements increase, it becomes very important to detect tran-
sient hardware failures. New designs for component IC’s for controller implementations
are carrying parity through the data paths of the part when possible, rather than just
checking and regenerating parity. Cirrus Logic - Colorado sees this as a step forward,
but we also look beyond, to the day when all data paths are protected by CRC as well.

It is especially important to detect transient failures in EDAC hardware. Some
companies have implemented parity-predict circuitry to contmuously monitor their EDAC
shift registers for proper operation.

When possible, Cirrus Logic - Colorado has incorporated circuitry to divide codew-
ords on write by a factor of the code generator polynomial and check for zero remaind-
er. This function is performed as close to the recording head as possible.

Cirrus Logic - Colorado’s 8520 IC uses dynamic cells for the major EDAC shift
registers. To detect transient failures in the shift registers themselves, we incorporated
a feature whereby the parity of all bits going into a shift register is compared with the
parity of all bits coming out of the shift register.

CHANGES IN VERIFICATION AND TESTING
The traditional diagnostic technique for storage-device EDAC circuitry uses write
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long and read long. For write-once optical media, this technique has two problems.
Since these are high error rate devices, real errors may be encountered along with
simulated errors. Also, each writc long operation uses up write-once media. Cirrus
Logic - Colorado incorporates a special diagnostic mode in its EDAC IC’s that allows
the EDAC hardware to be tested without writing to or reading from the media.

The introduction of complex, high-performance hardware and software algorithms
for error correction and track-format error tolerance introduce new verification and
testing challenges. Cirrus Logic - Colorado verifies its error-correction software for
optical storage devices against millions of test cases. To verify the track-format error
tolerance of optical storage devices, Cirrus Logic - Colorado recommends a track format
simulator that allows all forms of errors to be simulated, including slipped PLL cycles.
Cirrus Logic - Colorado plans to market such a track simulator in the future. Cirrus
Logic - Colorado also recommends programmable buggers to allow all forms of errors to
be simulated during the performance of a wide range of operational tasks on real devi-

ces.

CHALLENGES FOR THE FUTURE

Many of the factors shaping the future of error correction and error tolerance
have already been discussed. One of the most significant will be carry-through error
detection that will be generated and checked for each sector at the host adapter. The
redundancy for this overall check will include the logical block number and the logical
drive number and will cover the entire path from the host adapter to the media and
back. A logical next step will be for hosts to provide an option for carrying all or
part of the overall check code redundancy through host memory when data is being
moved from one device to another. Looking further into the future, we may also see
the redundancy for the overall check maintained in host memory for those sectors that
are to be updated. In this case, an updatable error-detection code will be used and the
error-detection redundancy will be adjusted for each change made to the contents of

the sector.

An area that needs more attention is verification that we will be able to properly
read back all the data that we write. To avoid adversely impacting performance, we
must be able to accomplish this without following each write with a verify read. At the
closest possible point to the head we need to verify that the written user write data
and associated redundancy constitute a valid codeword. A good forward step in this
direction would be to decode the write encoded RLL bits back to data bits and to divide
this data stream by the code generator polynomial or compare it to the write data
stream going into the encoder.
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CHAPTER 1 - INTRODUCTION

1.1 INTRODUCTION TO ERROR CORRE:
1.1.1 A REVIEW OF PARITY

A byte, word, vector, or data stream is said to have odd parity if the number of
'I’s it contains is odd. Otherwise, the byte, word, vector, or data stream is said to
have even parity. Parity may be determined with combinational or sequential logic.

The panty of two bits may be determined with an EXCLUSIVE-OR (XOR) gate.
The circled ’ +’ symbol is understood to represent XOR throughout this book.

dl I odd

di odd
D - SO
a0 = ¢

Parity across a nibble may be determined with a parity tree.

as 2 as
odd E—-—f a2 0dd
]DD -OR- — -OR- dl::@——-—
a1
:)D oG @_T =

Parity of a bit stream may be determined by a single shift register stage and one
XOR gate. The shift register is assumed to be initialized to zero. The highest num-

bered bit is always transmitted and received first.

d3 d2 d1 do

—

®

—_— s p

=d3 +d2 +dl +d0 or P =d3 & d2 @ d1 @ 40



The circuit below determines parity across groups of data stream bits.

dé d5 d4 d3 d2 d1l 4o

(+)e « -

(N
PO = do + d3 + d6
P1 = d1 + d4
P2 = d2 + d5

Note that each bit is included in only one parity check.

The circuit below will also determine parity across groups of data stream bits.

dé d5 d4 43 dz2 d1 doyf:\ ; _ﬂJ
PO = d4 + d3 + d2 + doO
Pl1 = d5 + d2 + d1 + do
P2 = d6 + d3 + d2 + d1

>

The contribution of each data bit to the final shift register state is shown below.
Each data bit affects a unique combination of parity checks.

Contribution
Data Bit P2 P1 PO
deé 100
ds 010
d4 001
d3 101
d2 111
d1i 110
do 011

The contributions to the final shift register state made by several strings of data
bits are shown below.

Contribution
String P2 P1 PO
de,d4 => 101
d3,d2,d0 => 001

d4,do => 010
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CHAPTER 1 - INTRODUCTION

1.1 INTRODUCTION TO ERROR CORRECTION
1.1.1 A REVIEW OF PARITY

A byte, word, vector, or data stream is said to have odd parity if the number of
1’s it contains is odd. Otherwise, the byte, word, vector, or data stream is said to
have even parity. Parity may be determined with combinational or sequential logic.

The parity of two bits may be determined with an EXCLUSIVE-OR (XOR) gate.
The circled ’ +’ symbol is understood to represent XOR throughout this book.

di odd ai odd
B R oL
30 - do

— f

Parity across a nibble may be determined with a parity tree.

5 Roa o
a1 X d1
D Re 2]

Parity of a bit stream may be determined by a single shift register stage and one
XOR gate. The shift register is assumed to be initialized to zero. The highest num-

bered bit is always transmitted and received first.

d3 42 41 do

O-F

— » p

P=d3 +d2 +dl +d0 or P=d3 © d2 & d1 & 40



The circuit below determines parity across groups of data stream bits.

dé d5 d4 d3 d2 d1 4o ,:\< . . L<J
2
PO = dO0 + d3 + d6
Pl = dl + d4
P2 = d2 + d5

Note that each bit is included in only one parity check.

The circuit below will also determine parity across groups of data stream bits.

dé d5 d4 43 d2 d1 d07<z> ) ::

PO = d4 + d3 + d2 + 40

Pl ds + d2 + d1 + 4o

dé + d3 + d2 + 41

P2

The contribution of each data bit to the final shift register state is shown below.
Each data bit affects a unique combination of parity checks.

"Contribution
Data Bit P2 Pl PO
dé 100
ds 010
d4 001
d3 101
d2 111
dil 110
do 011

The contributions to the final shift register state made by several strings of data
bits are shown below.

Contribution
String P2 P1 PO
de,ds4 => 101
d3,d2,d0 = 001

d4,do => 010



The contribution to the final shift register state by each string is the XOR sum of
contributions from individual bits of the string, because the circuit is linear. For a
linear function f:

£(x+y) = £(x)+£(y)
The parity function P is linear, and therefore
P(x+y) = P(x)+P(y)

Circuits of this type are the basis of many error-correction systems.



1.1.2 A FIRST LOOK AT ERROR CORRECTION

This discussion presents an introduction to single-bit error correction using a code
that is intuitive and simple. Consider the two-dimensional parity-check code defined

below.

Check-Bit Generation Syndrome Generation
PO =d0 + d4 + d8 + dil2 SO0 =d0o + d4 + 48 + di2 + PO
Pl =dl1 +d5 + d9 + di3 Sl1=dl +d5 + d9 + 413 + P1
P2 = d2 + d6 + dl0 + dl4 S2 =d2 + d6 + d10 + di4 + P2
P3 =d3 + 47 + dl1l1 + dis S3 =d3 + d7 + dil1 + 415 + P3
P4 = d12 + di13 + dl14 + dis S4 = d12 + di13 + di4 + dl15 + P4
P5S = d8 + d9 + 410 + dl1l S5 =d8 + d9 + dl0 + dl1 + P5
P6 =d4 + d5 + dé6 + 4z S6 =d4 + d5 + d6 + d7 + Pé
P7 =d0o + d1 + d2 + d3 S7 =d0 +d1 + d2 + d4d3 + P7

do |d1l |d2 |d3 P7
d4 |d5 |de |d7 P6
ds |d9 |diojdll P5
d12]d13{d14{d15 P4

[Po [P1 [P2 [P3 ]
Column Checks

Row Checks

One of the eight required check/syndrome circuits is shown below.

do

a1 1

'@ —O—>S7=do+d1+d2+d3+P7
—
2 1

d I | P7

ds3

On write, each row check bit is selected to make the parity of its row even.
Each column check bit is selected to make the parity of its column even. The data bits
and the parity bits together are called a codeword.

On read, row syndrome bits are generated by checking parity across each row,
including the row check bit. Column syndrome bits are generated in a similar fashion.
Syndrome means symptom of error. For this code, syndrome bits can be viewed as the
XOR differences between read checks and write checks. If there is no error, all syndr-
ome bits are zero.

When a single-bit error occurs, one row and one column will have inverted syndro-
me bits (odd parity). The bit in error is at the intersection of this row and column.

The circuit above shows the logic necessary for generating the write-check bit and
the syndrome bit for one row. For parallel decoding, this logic is required for each
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|
row and column. Also, 16 AND gates are required for detecting the intersections of
inverted row and column syndrome bits. In addition, 16 XOR gates are required for
inverting data bits. The correction circuit for one particular data bit is shown below.

Raw Data Bit dilo0 Corrected d10

1D -

S2
S5
ALLOW CORRECTION

Two data bits in error will cause either two rows, two columns, or both to have
inverted syndrome bits (odd parity). This condition can be trapped to give the code the
capability to detect double-bit errors in data.

All single check-bit errors are detected, but not all double check-bit errors. One
row and one column check bit in error will result in miscorrection (false correction). If
an overall check bit across data is added, the code is capable of detecting all double-bit
errors in data and check bits. This includes the case where one data bit and one parity
bit are in error. The overall check bit can be generated by forming parity across all
row or all column check bits. With the overall check bit added, all double-bit errors

are detectable but uncorrectable.

Miscorrection occurs when three bits are in error on three corners of a rectangle.
For example: ‘

Row Checks

[T T T 1 [] overall Check
Column Checks

The three errors which are illustrated above cause the decoder to respond as if
there were a single-bit error at location m. Miscorrection does not result for all
combinations of three bits in error, only for those where there are errors on three

corners of a rectangle.

Miscorrection probability for three-bit errors is the ratio of three-bit error com-
binations that result in miscorrection to all possible three bit-error combinations.



Misdetection (error condition not detected at all) occurs when four-bits are in
error on the corners of a rectangle. For example:

Row Checks

| | | 111 ] overall check
Column Checks

This error condition leaves all syndrome bits equal to zero.

Misdetection does not result for all combinations of four bits in error, only those
where there are errors on four corners of a rectangle. Misdetection probability for
four-bit errors is the ratio of four-bit error combinations that result in misdetection to
all possible four-bit error combinations.

This discussion introduced the following error-correction concepts:

- Check bits

- Syndromes

- Codeword

- Correctable error

- Detectable error

- Miscorrection

- Misdetection ,

- Miscorrection probability
- Misdetection probability



PROBLEM.

1. Write the parity check equations for the circuit below.

dé d5 d4 d3 d2 d1 do

o + ) -
-/

— PO

> Pl

2. Write the parity check equations for the circuit below.

dé d5 d4 d3 d2 d1 do ~ —‘_®‘ . .

> + )e
O/

L—— Po =

» Pl =

3. Generate a chart showing- the contribution of each data bit to the final shift
register state for the circuits shown above.

If the data stream is zeros except for d3 and dl1, what is the final shift register
state?



1.2 MATHEMATICAL FOUNDATIONS
1.2.1 SOME DEFINITIONS, THEOREMS AND ALGORITHMS FOR INTEGERS

Definition 1.2.1. When we say an integer a divides an integer b we mean a divides
b with zero remainder. "a divides b" is written as a|b. "a does not divide b" is written

as a/b.
Examples: 3|6, 3}4, 2/1

ng@ition 1.2.2. An integer a is called prime if a is greater than 1 and there are
no divisors of a that are less than a but greater than 1. If an integer a greater than 1
is not prime, then it is called composite. '

Examples: 2, 3, and 5 are prime
4, 6, and 8 are composite

Definition 1.2.3. The greatest common divisor (GCD) of a set of integers
{ay,ap,+++,ag} is the largest positive integer that divides each of aj,ap,++-+,ap. The
greatest common divisor may be written as GCD(aj,ap, * * *,ap)-

Algorithm 1.2.1. To find GCD(ay,a),+ « +,ap), express each integer as the product of
prime factors. Form the product of their common factors. For repeated factors, in-
clude in the product the highest power that is a factor of all the given integers. The
GCD is the absolute value of the product. If there are no common factors, the GCD is

one.
Examples: GCD(@3,9,15) = GCD(3,3%,3*5) =3
GCD(-165,231) = GCD(-3*5*11,3*7*11) = 33
GCD(105,165) = GCD(3*5*7,3*5*11) =15
GCD(45,63,297) = GCD(3%*5,32¥7,33*11) = 9

The GCD can also be found using Euclid’s Algorithm.

Definition 1.2.4. The least common multiple (LCM) of a set of integers {aj,ap-
,***,ap} is the smallest positive integer that is divisible by each of aj,ap,«-+,ap. The
least common multiple may be written LCM(aj,a2,* * *,ap). .

Algorithm 1.2.2. To find LCM(aj,ap, - *,ay), express each integer as a product of
prime factors. Form the product of primes that are a factor of any of the given in-
tegers. Common factors between two or more integers are included in the product only
once. For repeated factors, include in the product the highest power that occurs in any
of the prime factorizations. The LCM is the absolute value of the product.

Examples: - LCM(6,15,21) =LCM(2%3,3*5,3%7) = 210

LCM(30,42,66) =LCM(2*3*5,2*3*7,2*¥3*11) = 2310
LCM(-15,21,11)=LCM(-3*%5,3*7,11) 1155
LCM(45,63,297)=LCM(32#5,32%¥7,33%11) = 10395



Theorem 1.2.1. Every integer a>1 can be expressed as the product of primes, (with
at least one factor).

Examples: 3 =3
6 =2%3
15 =3%*5

Definition 1.2.5. Integers a and b are relatively prime if their greatest common
divisor is 1.

Examples: 3, 7
3, 4
15, 77

Theorem 1.2.2. Let integers a, b, and ¢ be relatively prime in pairs, then a*b*c
divides d if, and only if, each of a, b, and ¢ divide d.

Examples: 3|15, 5|15, 7}15, therefore, (3*5*7)f15
3|210, 5|210, 7]210, therefore, (3*5*7)|210

Theorem 1.2.3. Let an integer a be prime, then a divides b*c*d if, and only if, a
divides b or c or d.

Examples: 3|6, therefore, 3|(6*5*7)
345, 347, 3}11, therefore, 3f385

Definition 1.2.6. Let x be any real number. The integer function of x, written as
INT(x), is the greatest integer less than or equal to x.

Examples: INT(1/2) = 0
INT(/3) = 1
INT(-1/2) = -1

Definition 1.2.7. Let x and y be any real numbers. x modulo y, written as x MOD
y, is defined as follows:

xMODy = x - y*INT(x/y)
Examples: SMOD3 = 2
IMOD3 =0
-SMOD7 = 2



1.2.2 SOME DEFINITIONS, THEOREMS AND ALGORITHMS FOR POLYNOMIALS

Definition 1.2.8. A polynomial is said to be monic if the coefficient of the term
with the highest degree is 1.

Definition 1.2.9. The greatest common divisor of two polynomials is the monic
polynomial of greatest degree which divides both.

Definition 1.2.10. The least common multiple of a(x) and b(x) is some c(x) divisible
by each of a(x) and b(x), which itself divides any other polynomial that is divisible by
each of a(x) and b(x).

Definition 1.2.11. If the greatest common divisor of two polynomials is 1, they are
said to be relatively prime.

Definition 1.2.12. A polynomial of degree n is said to be irreducible if it is not
divisible by any polynomial of degree greater than 0 but less than n.
Theorem 1.2.4. let a(x), b(x), and c(x) be relatively prime in pairs, then
a(x) » b(x) - c(x) divides d(x) if, and only if, a(x) and b(x) and c(x) divide d(x).
Theorem 1.2.5. Let a(x) be irreducible, then a(x) divides b(x)-c(x)+d(x) if, and only
if, a(x) divides b(x) or c(x) or d(x).
y Definition 1.2.13. A function is said to be linear if the properties stated below
hold:
a. Linearity: f(a-x) = a+f(x)
b. Superposition: f(x+y) = f(x)+£(y)

-10 -



1.2.3 THE CHINESE REMAINDER METHOD

There are times when integer arithmetic in a modular notation is preferred to a
fixed radix notation. The integers are represented by residues modulo a set of relative-
ly prime moduli.

Example: Assume integers are represented by residues modulo the |

moduli 3 and 5.

Integer(k) Residues(r0,rl)

0 0 0

1 1 1

0 2 2 2

3 0] 3

4 1 4

0 5 2 0

4 1 6 0 1

7 1 2

8 2 3

2 1 3 2 9 0 4

10 1 0

MODULUS = 3 MODULUS = 5 11 2 1

. 12 0 2

13 1 3

14 2 4

15 0 0

16 1 1

Notice that the integer k has a unique representation in residues from k=0 through
k=14. The integer k=15 has the same representation as k=0. In this case, the total
number of integers that have unique representation is 15. In general, the total number
of integers n having unique representation is given by the equation:

n = LCM(ep,eq,°* * *)
where the ej are moduli.

There are also times when an integer d must be determined if its residues modulo
a set of moduli are given. This can be accomplished with the Chinese Remainder Me-
thod. This method is based on the Chinese Remainder Theorem. See any number theory
text.

11 _



METHOD

ej = Moduli (The ej must be relatively prime in pairs)
n = LCM (eqg,e1,°**)

mj = n/ej

Aj = Constants such that (Aj*mj) MOD ej =1

ri = Residues

d = desired integer = (Ag*mgp*rg + Aj*my*r; + +++) MOD n

EXAMPLE

ei = 3,5 (eg=3, e1=5) -

n = LCM(3,5) = 15

mg = n/eg = 15/3 =5
. This calculation
m; = n/e; = 15/5 = 3 — 1is performed at
development time.
Apg*5 MOD 3 = 1, therefore Ag = 2
A,1*3 MOD 5 = 1, therefore Ay = 2

d = (10*rg + 6*r;y) MOD 15

If rg,r1 = 2,3 thend = 8 — This calculation
— is performed at
If ro,r3 = 1,3 then d = 13 — execution time.

A PROCEDURE FOR PERFORMING THE CHINESE REMAINDER METHOD
WITHOUT USING MULTIPLICATION

Frequently, the Chinese Remainder Method must be solved on a processor that
does not have a multiply instruction. A procedure using only addition and compare
instructions is described below.

The integer d is to be determined where d is the least integer such that:

dMOD ey =1y and simultaneously d MODe; =

or equivalently,
d ro ) d ry
—eB- = ng + 53 and simultaneously ;—l- =ny + gi-

12 -



Rearranging gives
d = np*eg + rg and simultaneously d = nj*e; +rp
or,
d = ng*eQ + rg = ny*e; +ry
Multiplication can be expressed as repeated addition. Therefore,

d=ro+e +e + -+ =1 +e +e +-

ng times n; times

A procedure for finding d based on the relationship above is detailed in the fol-
lowing flowchart.

dg>d; do<d;

< dy =dy + e1 [+ dp:d; > dg = dg + eg -

-13-



1.2.4 MULTIPLICATION BY SHIFTING, ADDING, AND SUBTRACTING

Many 8-bit processors do not have a multiply instruction. This discussion de-
scribes techniques to minimize the complexity of multiplying a variable by a constant,
when these processors are used. — These techniques provide another alternative for
accomplishing the multiplications required in performing the Chinese Remainder Method.

On an 8-bit processor any shift that is a multiple of 8 bits can be accomplished
with register moves. Therefore, multiplying by a power of 2 that is a multiple of 8 can
be accomplished by register moves. Any string of ones in a binary value can be repre-
sented by the power of 2 that is just greater than the highest power of 2 in the string
minus the lowest power of 2 in the string. These results can be used to minimize the
complexity of multiplying a variable by a constant using register moves, shifts, adds and
subtracts.

Examples: In all examples, x is less than 256. The results are shown in a
form where register moves and shifts are identifiable.
y = 255%x
= (28-1)*x
= 28xx-x

y = 257%x
= (28+1)*x
= 28xx+x

y = 992%x
= (29+28+27+426+25) »x
= (210_25)*x
= 210xx-25%x

32131%x

= (21442134212421142104284274214+20) xx
= (215-29-27421420) *x

2154x-29%x-27 kx+214x+20%x

28% (27 xx) = (27*x) -28% (21xx) + (214x) +x

<
]

In the last example, only two unique shift operations are required even though
the original constant contains nine powers of 2. This particular example is from the
Chinese Remainder Method when moduli 255 and 127 are used.
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10.
11.

12.

13.

P NS v D

PROBLEMS
Find the GCD of 70 and 15.
Find the GCD of 70 and 11.
Find the LCM of 30 and 42.
Find the LCM of 33 and 10.
Express 210 as a pfoduct of primes.
Are 70 and 15 relatively prime?
Are 70 and 11 relatively prime?
Determine a
INT(7/3)
-INT(1/3)
INT(-1/3)
10MOD 3

-3MOD 15
254 MOD 255

1 T I T

[ I I - ]
1T T

Is 2-x2 + 1 a monic polynomial?
Write the residues modulo the moduli 5 and 7 of the integer 8.

The residues for several integers modulo 5 and 7 are listed below. Compute the Aj
of the Chinese Remainder Method. Then use the Chinese Remainder Method to
determine the integers.

aMOD5=4,aMOD7 =6, a="?
aMOD5=3,aMOD7 =5, a="?
aMODS5=0,aMOD7=4, a="?

What is the total number of unique integers that can be represented by residues
modulo 5 and 7?

Define a fast division algorithm for dividing by 255 on an 8-bit processor that does
not have a divide instruction. The dividend must be less than 65536.

What is the total number of unique integers that can be represented by residues
modulo 4 and 11?
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1.3 POLYNOMIALS AND SHIFT REGISTER SEQUENCES
1.3.1 INTRODUCTION TO POLYNOMIALS

It is convenient to consider the symbols of a binary data stream to be coefficients
of a polynomial in a variable x, with the powers of x serving as positional indicators.
These polynomials can be treated according to the laws of ordinary algebra with one
exception: coefficients are to be added modulo-2 (EXCLUSIVE-OR sum). The '+’ opera-
tor will be used to represent both ordinary addition and modulo-2 addition; when used
to represent modulo-2 addition, it will usually be separated from its operands by a
preceding and a following space.

As with polynomials of ordinary algebra, these polynomials have properties of
associativity, distributivity, and commutativity. These polynomials also factor into prime
or irreducible factors in only one way, just as do those of ordinary algebra.

For now, the value of coefficients will be either '1’ or ’0’ depending on the value
of the corresponding data bit. Such polynomials are said to have binary coefficients or
to have coefficients from the field of two elements. Later, polynomials with coeffi-
cients other than ’1’ and ’0’ will be discussed. When transmitting and receiving polyno-
mials, the highest order symbol is always transmitted or received first.

MULTIPLICATION OF POLYNOMIALS

Multiplication is just like ordinary multiplication of polynomials, except the addi-
tion of coefficients is accomplished with the XOR operation (modulo-2 addition).

Example #1: x3 -or- 1000
e x3 + x + 1 « 1011
x6 + x4 + x3 1000
1000
1000
1011000
Example #2: X '+ 1 -or- 11
e X3 + x + 1 . 1011
x4 + x3 11
x2 + x 11
X + 1 11
x4+ x3 + %2 +1 11101

In example #2, unlike in ordinary polynomial multiplication, the two x terms cancel.

- 16 -



DIVISION OF POLYNOMIALS

Division is just like ordinary division of polynomials, except the addition of coeffi-
cients is accomplished with the XOR operation (modulo-2 addition).

Example #1:

x2 +1 101

x3 + x+1 | X2 + 1 -OR- 1011 | 100001
x3 + x3 + x2 1011

x3 + x2 +1 1101

x3 + x+1 1011

X2 + x 0110

Example #2:

x2 + 1 101

x3 + x+1 | X2+ x2 + 1 -OR- 1011 I 100101
x3 + x3 + x2 1011

x3 +1 1001

x3 + x + 1 1011

X 0010

-17 -



1.3.2 INTRODUCTION TO SHIFT REGISTERS

A lmear sequentxal circuit (LSC) is constructed with three building blocks. Any
connection is permissible as long as a single output arrow of one block is mated to a
single input arrow of another block.

> > MEMORY CIRCUITS (LATCHES).
Single input, single output.
— _ ,
MODULO-2 ADDITION (XOR GATES).
@———» Single output, no restriction
} on the number of inputs.

—la ) ———— CONSTANT MULTIPLIERS.

Single input, single output.

Latches are clocked by a synchronous clock. The output of a latch at any point
in time is the binary value that appeared on its input one time unit earlier.

The output of a modulo-2 adder at any point in time is the modulo-2 sum of the
inputs at that time.

For now, a constant multiplier *~a’ will be either ’<1’ or ’+0’. If such a constant

multiplier is *+1°’, a connection exists. No connection exists for a constant multiplier of
.0,

AN EXAMPLE OF AN LSC

B

A linear sequential circuit of the above form is also called a linear feedback shift
register (LFSR), a linear shift register (LSR) or simply a shift register (S/R).

V - - -

[ |
~o{ FH Fo{F
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SHIFT REGISTER IMPLEMENTATION OF MULTIPLICATION
Polynomial multiplication can be implemented with a linear shift register.
The circuit below will multiply any input bit stream (input polynomial) by (x + 1).
The product appears on the output line. The number of shifts required is equal to the
sum of the degrees of the input polynomial and the multiplier polynomial plus one.
OUTPUT

-

~— %0 |

INPUT

Example #1: Assume the input polynomial to be 3 +x3 + 1).

Input Shift Reg Output
Bit State Bit

1 (x5) 1 1 (x5)
0 0 1 (x3)
1 (x3) 1 1 (x4)
0 0 1 (x3)
0 0 0

1 (1) 1 1 (x)
0 0 1 (1)

Example #2: Assume the input polynomial to be x3.

Input Shift Reg Output
Bit State Bit
1 (x3) 1 1 (x4)
0 0 1 (x3)
0 0 0

0 0 0

0 0 0

NOTE: The shift register state is shown after the indicated input bit is clocked.
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The circuits below will multiply any input bit stream (input polynomial) by
(x3 +x + 1).

OUTPUT
] %2 e %1 < O |«
T Ak
INPUT
Shift Register "a"
OUTPUT

>

r

@« %2 e x1 ,._®*_ %0 |«

INPUT T T

Shift Register "B"
Example #1: Assume the input polynomial to be x3.
Input Shift Req Output

_Bit  ’B’State Bit
1(x3) o011 1(x5)
0 110 0

0 100 1%
0 000 1(x3)
0 000 0

0 000 0

0 000 0

Example #2: Assume the input polynomial to be (x + 1).
Input ShiftReq ~  Output

Bit  'B’State Bit
1(x) o011 1(x%
1) 101 1(x3)
0 010 1 (x2)
0 100 0

0 000 1Q)

NOTE:  The shift register state is shown after the indicated input bit is clocked.
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A GENERAL MULTIPLICATION CIRCUIT
OUTPUT

[ >
@ i i .<_®<_..._x1_._6t.)._xo

CH) ‘ho)
T T

INPUT

The circuit shown above multiplies any input polynomial D(x) by a fixed polynomial
P(x). The product appears on the output line.

P(x) = hij+xi + hi.q+xi! + hjp+xi2 + ..+ hyex + hy

The number of shifts required is equal to the sum of the degrees of the input
polynomial and multiplier polynomial, plus one.

MULTIPLY CIRCUIT EXAMPLES
OUTPUT

(:)«—-xl ] %0 |

INPUT T

Multiply by x2 + 1

OUTPUT
@ x3r<—®ﬁx2 <« x1 %0
A
INPUT T
Multiply by x% + x3 + 1
OUTPUT

@*— x4 e x3 -<—®<—— x2 + x1 %0 fe
INPUT I T T

Multiply by x3 + x3 + x2 + 1
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SHIFT REGISTER IMPLEMENTATION OF DIVISION

Polynomial division can be implemented with an LSR.

The circuit below will divide any input bit stream by (x + 1). One shift is re-
quired for each input bit. The quotient appears on the output line. The final state of
the LSR represents the remainder.

OUTPUT
SENO

INPUT I

Example #1: Assume the input polynomial to be
O+ +x4+x3+x+1

Input Shift Reg  Output

Bit State Bit

1 x5 1) 0

1 (x9) 0 1(5)
1% 1Q1) 0

1 (x3) 0 1(x3)
0 0 0

1 (%) 1(1) 0
1() 0 1()

Example #2: Assume the input polynomial to be (x4 +x3 + D).
Input  Shift Reg Output

Bit State Bit
1(x4 1) 0
1(x3) 0 1(x3)
0 0 0
0 0 0
1(1) 1) 0

NOTE: The shift register state is shown after the indicated input bit is clocked.
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The circuit below will divide any input bit stream by x3 +x + 1.

OUTPUT
—] %2 | x1+@¢_xo~_® |

INPUT I

Example #1: Assume the input polynomial to be (x5 + 1).
Input  Shift Reg Output

_Bit State Bit
1(x3 001 Q1) 0
0 010 (x% 0
0 100 (x©) 0
0 o011 (x+1) 1 (x2)
0 110 (x2+x) 0

1(1)  110(x2+x) 1(1)
Example #2: Assume the input polynomial to be x0.

Input Shift Reg Output
Bit State Bit

1(x6) 001 (1) 0
010 (x 0
100 (x4) 0
Ol (1) 1
110 (x +x) 0
111 (x2+x+1) 1
101 (x2+1) 1

SOOCOOoO

NOTE: The shift register state is shown after the indicated input bit is clocked.
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A GENERAL DIVISION CIRCUIT

f 1 1 1 1
= 5
|

OUTPUT

L) >

xi-1

INPUT

The circuit above divides any input polynomial D(x) by a fixed polynomial P(x).
The quotient appears on the output line. The remainder is the final shift register state.

P(x) = gixi + gi-lxi“l +...+g1x+go

The number of shifts required is equal to the degree of the input polynomial plus
one.

DIVIDE CIRCUIT EXAMPLES

OUTPUT

I .
-0

INPUT I

Divide by x2 + 1
OUTPUT

, I [ >
5 O

INPUT l

Divide by x4 + %2 + 1
OUTPUT

>

PPy

INPUT

e—p + ) «—

Divide by x% + x5 + x% + x3 + 1
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SHIFT REGISTER IMPLEMENTATION OF SIMULTANEOUS

MULTIPLICATION AND DIVISION

It is possible to use a shift register to accomplish simultaneous multiplication ang
division. The circuit below wil] multiply any input bit stream (input polynomial) by x
and simultaneously divide by (x° + x + 1). The number of shifts required is equal to
the degree of the input polynomial plus one. The quotient appears on output line. The
remainder is the final state of shift register.

OUTPUT

@-‘—xzw x1 + %0 [
INPUT l

Example #1: Assume the input polynomial to be & + 1).

Input Shift Reg Output

_Bit State Bit
1(x3) 01l (x+1) 1(xd)
0 110 (x2+x) 0

0 111 (x2+x+1) 1 (x3)
0 101 (x2+1) 1 (x2)
0 001 (1) 1(%)
1) 0011 1)

Example #2: Assume the input polynomial to be x6.

Input Shift Reg Output
Bit State Bit

1% o011 (x+1) 1@x6
0 110 (x2+1) 0
0 111 2 +x+1) 1 (x4
0 101 (x2+1) ~1(J)
0 001 (1) 1(x%)
0 010 (x) 0
0 100 (x2) 0

NOTE: The shift register state is shown after the indicated input bit is clocked.
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A CIRCUIT TO MULTIPLY AND DIVIDE SIMULTANEQUSLY

A general circuit to accomplish simultaneous multiplication by a polynomial h(x) of
degree three and division by a polynomial g(x) of degree two is shown below. The
multipliers are all *» 1’ (connection) or * -0’ (no connection). ‘

()
| |
@@«@«*é

To multiply by x3, set h3=1 and set all other multipliers to 0.

To multiply by 1 and divide by x3 + x + 1), set hp=1, gp=1 and g1=1 and set all
other multipliers to 0.

To multiply by x3 and divide by (x3 + x + 1), set h3=1 gg=1, and g =1 and set all
other multipliers to 0. This is a form of simultaneous multiplication and division that is
encountered frequently in error-correction circuits.

To multiply by (x + 1) and divide by x3, set hg=1 and hj=1 and set all other
multipliers to 0.
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A GENERAL CIRCUIT FOR SIMULTANEOUS MULTIPLICATION AND DIVISION

y

OUTPUT

ceo e 4 xl

%
<;),_.xi-1
D

¢
9 o
oG-

L6)1-0-G)-

INPUT

The circuit above multiplies any input polynomial by P1(x) and simultaneously divides by
P2(x).

P1(x) = hixl + hj_1xi1 + hj_ox1"2 + ... + hix + hy
P2(x) = gixi + gi_lxi'l + gi._zxi'z + ... + g1x + gg

The number of shifts required is equal to the degree of the input polynomial plus one.

EXAMPLES OF CIRCUITS TO MULTIPLY AND DIVIDE SIMULTANEQUSLY
OUTPUT
A O OO

INPUT T T

Multiply by x> + 1 and divide by x% + x2 + 1

OUTPUT
| L |

INPUT T

Multiply by x% + 1 and divide by x5 + x3 + x2 + 1
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- SIMULTANEQUS MULTIPLICATION AND DIVISION
WHEN THE MULTIPLIER POLYNOMIAL HAS A HIGHER DEGREE

The circuit below shows how to construct a shift register to multiply and divide
simultaneously when the multiplier polynomial has a higher degree. The number of
shifts required is equal to the degree of the input polynomial, plus the degree of the
multiplier polynomial, minus the degree of the divider polynomial, plus one. Register
- states are labeled below for the multiply polynomial and above for the divide polynomial.

OouTPUT
x2 X I 1 1

INPUT x4 x3 x2 X 1

7' 3
/'

Multiply by x5 + 1 and divide by x3 + x + 1



SHIFT REGISTER IMPLEMENTATION TO COMPUTE A SUM OF PRODUCTS

A single shift register can be used to compute the sum of the products of dif- .
ferent variable polynomials with different fixed polynomials e.g. a(x)®h(x) + b(x)®hy(x).

The circuit below will multiply an input polynomial a(x) by a fixed polynomial x3 +
x + 1 and simultaneously multiply an input polynomial b(x) by the fixed polynomial x2 +
1 and sum the products. The sum of the products appears on the output line. The
number of shifts required is equal to the sum of the degrees of the input polynomial of
the highest degree and the fixed polynomial of the highest degree plus one.

OUTPUT

x2 —ﬂ—(—l}— xl xo

a(x)

b(x)

Example #1: Assume a(x) to be x3 and b(x) to be (x5 +x3 4 1).
a(x) b(x) Shift Req Output

Input Input State Bit

0 1 (xd) 101 0

0 0 010 1(x7)
1(x3) 1) 010 1 (x6)
0 0 100 0

0 0 000 1%
0 1(1) 101 0

0 0 010 1(x2)
0 0 100 0

0 0 000 1(1)

NOTE: The shift register state is shown after the indicated input bit is clocked.
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SHIFT REGISTER IMPLEMENTATION TO COMPUTE A SQM OF PRODUCTS
MOD ULO A DIVISOR

: A smgle shift register can be used to compute the remamder of the sum of pro-
ducts of different variable polynomials with different fixed polynomlals when d1v1ded by
another polynomlale g [a(x) hi(x) -+ b(x) h2(x)] MOD g(x) el

. The c1rcu1t below w111 muluply an mput polynomlal a(x) by a ﬁxed polynomlal x2
+ x + 1 and simultaneously multiply an input polynomial b(x) by § fixed polynomxal X
+ 1 and sum the products The sum of the products is reduced modulo x + X + ‘

' The shxft reglster contents at the end of the operatton is the result The number
of shifts required is equal to the degree of the input polynomial of the hlghest degree
plus one.

OUTPUT

a(x)

Example #1: Assume a(x) to be x3 and b(x) to be (x5 +x3 + 1).
a®@  b(x)  ShiftReq

Input  Input State

0 1) 101

0 0 001

163) 1) 000

0 0 000

0 0 000

0. 1() - 101(2+1) -

NOTE: The shift register state is shown after the indicated input bit is clocked.
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OTHER FORMS OF THE DIVISION CIRCUIT

The circuit examples below are implemented using the internal-XOR form of shift
register.

OUTPUT OUTPUT

Faon  lmEone
O OO

Premultiply by x3 and
divide by x3 + x + 1 Divide by x3 + x + 1

The circuit shown below can accomplish the circuit function of either of the
circuits shown above. If the %ate is enabled for }he entire input polynomial, the circuit
function is to premultiply by x° and divide by (x> + x + 1). However, if the gate is
disabled for the last m (rg is 3 in this case) bits of the input polynomial, the circuit
function is to divide by (x° + x + 1) without premultiplying. In the following general
discussion, g(x) is the division polynomial and m is the degree of the division polyno-
mial.

OUTPUT

>

GATE ENABLED DURING LAST m BITS OF INPUT POLYNOMIAL

The circuit function is premultiply by x™ and divide by g(x). The quotient appears
on the output line. The remainder is taken from the shift register.
GATE DISABLED DURING LAST m BITS OF INPUT POLYNOMIAL

The circuit function is to divide by g(x) without premultiplying by xM™. The quo-
tient appears on the output line up to the last m bits of the input polynomial. The

remainder appears on the output line during the last m bits of the input polynomial.
The remainder can also be taken from the shift register.
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EXTERNAL-XOR FORM OF SHIFT REGISTER DIVIDE CIRCUIT

There is another form of the shift register divide circuit called the external-XOR
form that in many cases can be implemented with less logic than the internal-XOR form.
An example is shown below.

External XOR form of shift register divide circuit

[_.xo B %1 e xz_‘_< ~—

A
[coo]
A

INPUT
OUTPUT
NOTE: The odd circuit is a parity tree.
This circuit is sometimes drawn as shown below.
{ +)
o/ l
] %0 [+ T x1 e x2‘-<-—( [~ O
ity - +
INPUT T
OUTPUT

The external-XOR form of the shift register can be implemented two ways.

1. The shift register input is enabled during the entire read of the input polynomial.
In this case, the circuit function is premultiply by x™ and divide by g(x).

2. The shift register input is disabled during the last m bits of the input polynomial.
In this case, the circuit function is divide by g(x).
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Example #1, Input to shift register enabled during entire read of input polynomial.

Circuit function_= a(x)“xm/g(g)
where a(x) = x? and g(x) = x° + x + 1

B

i

« xl—x2 e |

wllw/
4 4

o

INPUT

QUTPUT

Clocks with gate enabled during read, to get quotient.

DATA S/R  OUTPUT
001
010
101
011
111
110

Quotient = %6 + %3 + %2 + x

coococop
ORRFHOR

~— LSB
Clocks with gate disabled after read, to get remainder.

S/R QUTPUT

100 0
000 1 ] Remainder = x
000 0 -«— LSB

Output
1. During read, the output is the quotient.

2. After read is complete, disable the gate and clock m more times to place the
remainder on the output line. :

x5 + x3 + x2 + x

x3 + x + 1 %8 (x® because of premultiply)

x8 + %6 + x5
x6 + x5

x8 + x4 + %3
x2 + x4 + x3
x3 + x3 + %2
x4 + %2

x4+ x% + x
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Exampie #2. Input to shift register disabled during iast m bits of input poiynomiai.

Circuit function_= a(x)/g(x)
where a(x) = x? and g(x) = x° + x + 1

‘_xo i Al ok

INPUT

OUTPUT

DATA S/R cuTruT

1 001 1
0 010 0 ] Quotient = x2 + 1
0 101 1 -— LSB
Gate disabled at this point.
0 010 1
0 100 1 ] Remainder = x2 + x + 1
0 000 1 -— LSB
Output

1. Up to the last m bits, the output is the quotient.

2. During the last m bits, the output is the remainder.

x2 + 1

x3 +x+ 1| x5 .
X2 + x7 + x<
x3 + x?
x3 + x + 1
%2 + x + 1
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PERFORMING POLYNOMIAL MULTIPLICATION AND DIVISION
WITH COMBINATORIAL LOGIC

Computing parity across groups of data bits using the circuit below was previously
studied.

a(x) = d6+x% + d5.x3 + d4.x% + d3-x3 + d2+x2 + dil-x + 4o
INPUT l
@‘ x2 e 2 (e %0

— PO
» P1
» P2

d4 + d3 + d2 + do
d5 + d2 + d1 + do
dé + d3 + 42 + 41

Now that polynomials have been introduced, the function of this gircuit can be
restated. It premultiplies the input polynomial by x° and divides by x° + x + 1).
Obviously, the parity check equations can be implemented 'with combinatorial logic.
Therefore, the circuit function can be implemented with combinatorial logic.

d4 ds deé ’
d3 d2 ds

— PO — P1 — P2
dz di dz
do do di

The combinatorial logic circuit above computes the remainder from premultiplying a
7-bit input polynomial by x and dividing by &3 +x+1).
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THE SHIFT REGISTER AS A SEQUENCE GENERATOR

Consider the circuit below:

] %2 [+ xl—q—®<—x0 -

If this circuit is initialized to ’001° and clocked, the sequence below will be gener-
ated.

The sequence repeats every seven shifts. The length of the sequence is seven.
The maximum length that a shift register can generate is 2M-1, where m is the shift
register length.  Shift registers do not always generate the maximum length sequence.
The sequence length depends on the implemented polynomial. It will be a maximum
length sequence only if the polynomial is primitive.

- 36 -



1.3.3 MORE ON POLYNOMIALS

Reciprocal Polynomial. The reciprocal of a polynomial P(x) of degree m with
binary coefficients,

P(X) = pp*x™ + Pm-l’xm-l + ¢+ * + Pp1°x + pPo
is defined as:

XMeP(1/x) = poex™ + pp+x™1 + « o« + ppgex + pp
i.e., the coefficients are flipped end-for-end. "Reverse" is a synonym for "reciprocal.”

Self-Reciprocal Polynomial. A polynomial is said to be self-reciprocal if it has the
same coefficients as its reciprocal polynomial.

Forward Polynomial. A polynomial is called the forward polynomial when it is
necessary to distinguish it from its reciprocal (reverse) polynomial. This applies only to
polynomials which are not self-reciprocal.

Polynomial Period. The period of a polynomial P(x) is the least positive integer e
such that (x® + 1) is divisible by P(x).

Reducible. A polynomial of degree m is reducible if it is divisible by some polyno-
mial of a degree greater than O but less than m,

Irreducible. A polynomial of degree m is said to be irreducible if it is not divi-
sible by any polynomial of degree greater than O but less than m. "Prime" is a synonym
for "irreducible."

The reciprocal polynomial of an irreducible polynomial is also irreducible.

Primitive Polynomial. A polynomial of degree m is said to be primitive if its
period is 2M-1,

A primitive polynomial is also irreducible.

The reciprocal polynomial of a primitive polynomial is also primitive.
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A PROPERTY OF RECIPROCAL POLYNOMIALS

The reciprocal polynomial can be used to generate a sequence in reverse of that genera-
ted by the forward polynomial.

Example: Shift register "A" below implements 3+ x + 1) and shifts left. Shift register
*B" implements (x> + x2 + 1), the reciprocal of (x3 + x + 1), and shifts right.

Initialize shift register "A" to 001’ and clock four times.

l Clock Contents
- 001
%2 e x1 + %0 1 010
2 100
3 011
Shift Register "a" 4 110

Transfer the contents of shift register "A" to shift register "B" and clock four times.

l Clock Contents
- 110
— xO0 |— xl——@—r-xz > 1 011
2 100
3 010
Shift Register "B" 4 001

Shift register "B" retraces in the reverse direction the states of shift register "A".

The property of reciprocal polynomials described above will be used later for decoding
some types of error-correcting codes.
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DETERMINING THE PERIOD OF AN IRREDUCIBLE POLYNOMIAL
WITH BINARY COEFFICIENTS

The algorithm described below for determining the period of an irreducible polyno-
mial g(x) with binary coefficients requires a table. The table is used in determining the
residues of powers of x up to (2M-1),

m-1 '

The table is a list of residues of x,x2,x4,- . -,x2 modulo g(x), where m is the
degree of the g(x). Each entry in the table can be computed by squaring the prior
entry and reducing modulo g(x). The justification is as follows.

x2*a MOD g(x) = (x@-x3) MOD g(x)

= {[x® MOD g(x)]-[x® MOD g(x)]} MOD g(x)

[x2 MOD g(x)]2 MOD g(x)

The example below illustrates the use of the table for determining the residue of
x90 modulo g(x).

x50 MoD g(x) = [x32+16+2] MoD g(x) = [x32.x16.x2] MOD g(x)

= ([x32 MOD g(x)]-[x!® MOD g(x)]-[x? MOD g(x)]) MOD g(x)
[

1
Select these residues from the table.

The period of an irreducible polynomial of degree m must be a divisor of (2M-1).

For each e that is a divisor of 2™-1, compute the residue of x® modulo g(x) by
multiplying together and reducing modulo g(x) an appropriate set of residues from the
table.

The period of the por}?'nomial is the least e such that the residue of x® modulo
g(x) is one. If the period is 2™-1, the polynomial is primitive.
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DETERMINING THE PERIOD OF A COMPOSITE POLYNOMIAL
WITH BINARY COEFFICIENTS

Let f;(x) represent the irreducible factors of f(x). If,
fx)=(f1(x) - f2(x) * f3(x)+....)
and there are no repeating factors, the period e of f(x) is given by:
e = ILCM(ej,€e3,€3,....),

where the ej are périods of the irreducible factors.

Example: The period of (x3 + 1) = (x + 1)+ (x2 + x + 1) is 3.

If f(x) is of the form:
£(x) = [£1(x) "]+ [£2(x) 2] [£3(x)"3) ] -

where the m; are powers of repeating irreducible factors, then the period e of f(x) is
given by:

e = k*ILCM(ej1,e3,e3,°**)

where k is the least power of two which is not less than any
of the m;.

Example: The period of (x3 +x2+x+ D=+ 1)3 is 4.

A SIMPLE METHOD OF COMPUTING PERIOD

A simple method for computing the period of a polynomial is as follows: Initialize
a hardware or software shift register implementing the polynomial to ’00..+01’. Clock
the shift register until it returns to the ’00---01’ state. The number of clocks required
is the period of the polynomial.

This method can be used to compute the period of composite as well as irreducible
polynomials. However, it can be very time consuming when the period is large.



NUMBER OF PRIMITIVE POLYNOMIALS OF GIVEN DEGREE

m_
The divisors (factors) of (x2 1 + 1) are the polynomials with period 2™M-1 or
whose period divides 2™-1. This may include polynomials of degree less than or greater
than m.

m. g

The divisors (factors) of (x2 + 1) that are of degree m are the primitive poly-

nomials of degree m.

The number n of primitive polynomials of degree m with binary coefficients is
given by:

n = -2(20-1)

m

where U(x) is Euler’s phi function and is the number of positive integers equal to or
less than x that are relatively prime to x:

o) = T T ()%™  (pi-1)
1
where
pi = The prime factors of x

ei = The powers of prime factors pj

Example: There are 30 positive integers that are equal to or less than 31 and rela-
tively prime to 31. Therefore, there are 6 primitive polynomials of degree
5.
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SHIFT REGISTER SEQUENCES USING A NONPRIMITIVE POLYNOMIAL

Previously, a maximum length sequence generated by a primitive polynomial was

studied. Nonprimitive polynomials generate multiple sequences.

The state sequence diagram shown below is for the irreducible nonprimitive polyno-

mial

—
0001

0010
0100
1000

1111
| —

x¥ + x3 + x2 4+ x+1

—

0011
0110
1100
0111

1110
| —

f
0101
1010

s 1011

1001

1101
L

0000
 —

The state sequence diagram shown below is for the reducible polynomial

xt+ x3 + %2+

—
0011
0110
1100
0101 4
1010
1001
1111
—

Each of the four sequences directly above contain states with either an odd num-
ber of bits or an even number of bits, but not both.

factor.

—
0001
0010
0100
1000 4
1101
0111
1110
—

= (x + 1)+ (x3 + x + 1)

I
00?0 A

I
10}1

-42 -
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REDUCTION MODULO A FIXED POLYNOMIAL

It is frequently necessary to reduce an arbitrary polynomial modulo a fixed polyno-
mial!alor it may be necessary to reduce the result of an operation modulo a fixed poly-
nomial,

The arbitrary polynomial could be divided by the fixed polynomial and the remain-
der retained as the modulo result.

Another method is illustrated below. Assume the fixed polynomial to be &3 +x+
1). Reduce all terms of the arbitrary polynomial by repeated application of the follow-
ing relationship.

.- Suppose the arbitrary polynomial is x4, Then, using the relationship above with
i=1 gives:

x? = x2 + x.
Other examples of arbitrary polynomials reduced modulo x3 + x + 1) are shown
below.

x4 + x2 = (x2 + x) + x2

= x
x? = x7 + xb
= (x5 + x%) + %x“ + x3)
= x5 + %3
= (x3 + x2) + :’F3
= x2 !
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DIVIDING BY A COMPOSITE POLYNOMIAL

Sometimes it is necessary to divide a received polynomial C’(x) by a composite
polynomial p(x) = pl(x)p2(x)*p3(x)++++, where pl(x),p2(x),p3(x),* - are relatively prime,
in pairs. Assume the remainder is to be checked for zero.

The remainder could be checked for zero after dividing the received polynomial by
the composite polynomial. However, dividing the received polynomial by the individual
factors of the composite polynomial and checking all individual remainders for zero
would be equivalent. '

Example #1: p(x) = p1(x)*p2(x)

x4+ x3 +x2 +1 = (x + 1)+(x3 + x + 1)
Composite Remainder r(x) Individual Remainder rj(x)
[)(3-4@4-)(2 + x1—<-x0¥-@ sz*xl—@*)(o«@
INPUT T INPUT T
Individual 1
Remainder xOH+
ra(x)

At other times, when the generator polynomial is composite, individual remainders
are required for computation.

The received polynomial could be divided directly by each factor of the composite
polynomial to get individual remainders. However, the following two-step procedure
would be equivalent.

1. Divide the received polynomial by the composite polynomial to get a
composite remainder.

2. Divide the composite remainder by factors of the composite poly-
nomial to get individual remainders.

Step 2 could be accomplished by software, sequential logic or combinatorial logic.

In many cases, a slower process can be used in step 2 than in step 1 because
fewer cycles are required in dividing the composite remainder.



The diagram below shows an example of computing individual remainders from a
_composite remainder using combinatorial logic.

Example #2

Composite Remainder r(x

‘l x3 %2 lxl i xO { +

x2 X 1

[H

ry(x) - ra(x)
L ]

Individual Remainders

It is also possible to compute a composite remainder from individual remainders, as
shown below.
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Example #3

Individual Individual

Remainder rj (x) Remainder rjp(x)

<« %2 e x1 + x0 + <%0 +
+ + + +
x3 x2 X 1

Composite Remainder r(x)

In the examples above, the factors of the composite polynomial are assumed to be
relatively prime. If this is the case, the Chinese Remainder Theorem for polynomials
guarantees a one-to-one mapping between composite remainders and sets of individual
remainders.

To understand how the connections in circuit Examples #2 and #3 were determined,
study the mappings below. To generate the first mapping, the individual remainders
corresponding to each composite remainder are determined by dividing each possible
composite remainder by the factors of the composite polynomial. For the second mapp-
ing, the composite remainder corresponding to each set of individual remainders is
determined by rearranging the first mapping.

The boxed areas of the first mapping establish the circuit connections for Example
#2. The boxed areas of the second mapping establish the circuit connections for Ex-
ample #3. There are other ways to establish these mappings. The method shown here
has been selected for simplicity. However, in a practical sense it is limited to polyno-
mials of a low degree.



FIRST MAPPING

Corresponding

Composite Individual

Remainder Remainders
0000 000 O
0001 001 1
0010 010 1
0011 011 O

[ o100 100 1 |
0101 101 O
0110 110 O
0111 111 1

[ 1000 011 1 |
1001 010 O
1010 001 O
1011 000 1
1100 111 O
1101 110 1
1110 101 1
1111 100 O

SECOND MAPPING
Corresponding

Individual Composite

Remainders Remainder
000 O 0000
000 1 1011
001 O 1010
001 1 0001

[ 010 O 1001 |
010 1 0010
011 O 0011
011 1 1000

[[100 0 1111 |
100 1 0100
101 O 0101
101 1 1110
110 O 0110
110 1 1101
111 O 1100
111 1 0111
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10.
11.

PROBLEMS

Write the sequence for the circuit below.

I

%3 e x2 e x1 + %0 [

Write the polynomial for the circuit above.
Perform the multiplication operations below.

x3 +1 x3+x2 +x+1 x2
x 3

+ X +1
+ 1 x3 + 1 + X

+ 1

Perform the division operations below. Show the quotient and the remainder.

x3 +x+1 | x6+x+1 x3+x+1lx3+x

Determine the period of the following polynomials:

x3 + 1, x3 + x2 + x + 1, x3 +x2+1
Show a circuit to multiply by @3 +1).

Show a circuit to divide by (x3 + 1.

Show a circuit to compute a remainder modulo (x3 + x2 + 1) using combinatorial

logic. The input polynomial is 7 bits in length.
Is (x2 + x + 1) reducible?
Compute the reciprocal polynomial of (x4 +x+1).

How many primitive polynomials are of degree 4?
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CHAPTER 2 - ERROR DETECTION
AND CORRECTION FUNDAMENTALS

2.1 DETECTION FUNDAMENTALS

MORE ON POLYNOMIAL SHIFT REGISTERS
The shift register form below is used frequently for error detection and correction.

This circuit multiplies by x™ and divides by g(x), where m is the degree of g(x) and

also the shift register length. g(x) is the generator polynomial of the error detect-

ion/correction code being implemented. For this example, g(x) = x° + x + 1 and m=3.

OUTPUT
+ x2 e x1 ~t-®~4— x0 e

INPUT ’

Two properties of this form of shift register are discussed below.

Property #1

If the shift register above is receiving a stream of bits, the last m .bits (in this
case three) must match the shift register contents in order for the final shift register
state to be zero. This is because a difference between the input data bit and the high
order shift register stage causes at least the low order stage to be loaded with "1°.

Assume an all-zeros data record. Any burst of length m or fewer bits will leave
the shift register in a nonzero state. If an error burst of length greater than m bits is
to leave the shift register in its zero state, the last m bits of the burst must match the
shift register contents created by the error bits which preceded the last m bits of the
burst.

Property #2

Assume the shift register is zero. Receiving an error burst of length m or fewer
bits has the same effect as placing the shift register at the state represented by the
sequence of error bits.

When reading an all-zeros data record, an error burst of length m or fewer bits
sets the shift register to a state on its sequence that is b shifts away from the state
representing the error burst, where b is the length of the burst.
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SELECTING CHECK BITS

Property #1 implies that for all-zero data, any burst of length m or fewer bits is
guaranteed to be detected. Property #2 indicates that for all-zero data, it may be
possible to correct some bursts of length less than m bits by clocking the shift register
along its sequence until the error burst is contained within the shift register. :

Clearly, we must find a way to extend these results to cases of nonzero data if
they are to be of any use. The following discussion describes intuitively how check bits
must be selected so that on read, the received polynomial leaves the shift register at
zero in the absence of error.

Assume a shift register configuration that premultiplies by x™ and divides by g(x).
On write, after clocking for all data bits has been completed, the shift register will
likely be in a nonzero state if nonzero data bits have been processed. If we transmit
as check bits following the data bits, the contents of the shift register created by
processing the data bits, then on read in the absence of error, the received data bits
will create the same pattern in the shift register, and the received check bits will
match this pattern, leaving the shift register in its zero state.

The concatenation of the data bits and their associated check bits is called a
codeword polynomial or simply a codeword. A codeword C(x) generated in the manner
outlined above by a shift register implementing a generator polynomial g(x) has the

property:
Cx)MOD g(x) =0

This is a mathematical restatement of the condition that processing a codeword
must leave the shift register in its zero state.

Theorem 2.1.1. The Euclidean Division Algorithm. If D(x) and g(x) are polynomials

with coefficients in a field F, and g(x) is not zero, there exists polynomials q(x) (the
quotient) and r(x) (the remamder) with coefficients in F such that:

D(x) = q(x)-g(x) + r(x)

where the degree of r(x) is less than the degree of g(x); r(x) may in fact be zero.
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The Euclidean Division Algorithm provides a formal justification for the method of
producing check bits outlined above. By the Euclidean Division Algorithm,

D(x) = q(x)-g(x) + r(x)
where

D(x) = Data polynomial

g(x) = Generator polynomial

q(x) = Quotient polynomial

r(x) = Remainder polynomial

Rearranging gives

D!Xg! (-;)rgx) = q(x)

This shows that in order to make the data polynomial itself divisible by g(x), r(x)
would have to be EXCLUSIVE-OR-ed against D(x). However, this would modify the last
m bits of the data polynomial, which is not desirable. '

Appendin§n the remainder bits to the input data bits has the effect of premultiply-
ing D(x) by x™ and then dividing by g(x). Then by Euclidean Division Algorithm we
have,

xMeD(x) = q(x)-g(x) + r(x)
or equivalently,

xMeD(x) + r(x)
g(x)

This shows that if r(x) is EXCLUSIVE-OR-ed against the data polynomial premult-
iplied by x™, the resulting polynomial will be divisible by g(x). This is equivalent to
a?pending r(x) to the end of the original input data polynomial, since coefficients of all
x! terms of xM.D(x) are zero for i<m. The original data polynomial is not modified
when check bits are added with this method.

NOTATION

= q(x)

The following symbology will be used in our discussion of error detection and
correction codes:

D(x) =Data polynomial
k =Number of information symbols = degree of D(x) +1
g(x) =Code generator polynomial
m =Number of check symbols = degree of g(x)
W(x) =Write redundancy (check) polynomial
=xM.D(x) MOD g(x)
C(x) =Transmitted codeword polynomial
=xM.D(x) + W(x) = xI1.D(x) + [xM.D(x) MOD g(x)]
n =Record length = degree of C(x) = k+m
E(x) =Error polynomial
C’(x) =Received codeword polynomial
=C() + E(x)
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An implementation of the encoding process using the internal-XOR form of shift
register circuit is shown below. This particular example premultiplies by x° and divides
by (x? + x + 1).

() x?
MUX

%0 [

> -]._l WRITE DATA/CHECK BITS

0
CHECK_BIT_TIME TI

After all DATA bits have been clocked into the shift register, the CHECK-
_BIT_TIME signal is asserted. The AND gate then disables feedback, allowing the check
bits to be shifted out of the shift register, and the MUX passes the check bits to the
device.

An implementation using the external-XOR form of shift register circuit shown
below performs the same function. It writes the same check bits for a given data
record.

(o}
D |
] x0 |- x1 e %2 D |e
| , MUX
> _1_] WRITE DATA/
+—o \ >
DATA ] 1 0| CHECK BITS
CHECK_BIT_TIME

After all DATA bits have been clocked into the shift register, the CHECK-
_BIT_TIME signal is asserted. The upper AND gate then disables feedback and the
lower AND gate blocks extraneous DATA input to the ODD parity tree, whose output
the MUX passes as check bits to the device.
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INGLE-BURST DETECTION SPAN FOR AN ERROR-DETECTIQON CODE

The single-burst detection span for a detection-only code is equal to the shift
register length. This is obvious from Property #1 discussed earlier. Assume a shift
register configuration that premultiplies by x™ and divides by g(x). Assume the shift
register to be initialized to zero and assume an all zeros data record. The only ’1’ bits
to enter the shift register will be from an error burst. The first bit of the burst sets
certain shift register bits to 1, including the low order bit.

In order to set the shift register to zero, the next m error burst bits must match
the shift register contents. Therefore, in order for an error burst to set the shift
register to zero, it must be longer than the length of the shift register.

This can be also be demonstrated mathematically. It must be shown that the
length of an error burst required to leave the shift register at zero is greater than m
bits. For an error burst to leave the shift register at zero, it must be divisible by the
generator polynomial. It must be shown that to be divisible by the polynomial, a burst
must be greater than m bits in length.

Let E(x) contain a single error burst of length m or fewer bits. Let the lowest-
order nonzero coefficient of E(x) be the coefficient of the xJ term of C’(x). Then:

E(x) = xj *b(x)

where the lowest-order nonzero coefficient of b(x) is that of x0 and the length of the
burst is equal to the degree of b(x) plus one. It is clear that xJ and g(x) are relatively
prime, so if g(x) is to divide E(x) it must divide b(x). This is impossible, since if the
burst is of length m or fewer bits, b(x) is a polynomial of degree at most (m-1) and is
clearly not divisible by g(x), which is of degree m.
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THEOREMS FOR ERROR-DETECTION CODES

Theorem 2.1.2. All single-bit errors will be detected by any code whose generator
polynomial has more than one term. The simplest example is the code generated by the
polynomial (x+1).

Theorem 2.1.3. All cases of an odd number of bits in error will be detected by a
code whose generator polynomial has (x¢+ 1) where ¢ is greater than zero, as a factor.

The check bit generated by (x+1) is simply an overall parity check. All polyno-
mials of the form (x®+1) are divisible bg' (x+1). Therefore, any code whose generator
polynomial has a factor of the form (x* + 1) automatically includes an overall parity
check.

Theorem 2.1.4. A code will detect all single- and double-bit errors if the record
length (including check bits) is no greater than the period of the generator polynomial.

Theorem 2.1.5. A code will detect all single-, double-, and triple-bit errors if its
generator polynomial is of the form (x¢ + 1)+P(x) and the record length (including check
bits) is no greater than the period of the generator polynomial.

Theorem 2.1.6. A code generated by a polynomial of degree m detects all single
burst errors of length no greater than m. Note that a burst of length b is defined as
any error pattern for which the number of bits between and including the first and last
bits in error is b.

Theorem 2.1.7. A code with a generator polynomial of the form (x¢ + 1)+P(x) has
a guaranteed double-burst detection capability provided the record length (including
check bits) is no greater than the period of the generator polynomial. It will detect
any combination of double bursts when the length of the shorter burst is no greater
than the degree of P(x) and the sum of the burst lengths is no greater than (c+1).

This theorem allows selection of a code by structure for accomplishing double-burst
detection. Codes which do double-burst detection can also be selected by a computer
evaluation of random polynomials.

Theorem 2.1.8. The misdetection probability Pmd, defined as the fraction of error
bursts of length b>m where m is the degree of the generator polynomial, that go un-
detected is: _

Ppg = — if b > (m+l)
= Sa

=—L if b= (m+1)
2111-1

When all errors are assumed to be possible and equally probable, Py,{ is given by:
Ppg ® _2—15

If some particular error bursts are more likely to occur than others (which is
generally the case), then the misdetection probability depends on the particular poly-
nomial and the nature of the errors.
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MULTIPLE-SYMBOL ERROR DETECTION

An error-detection code can be constructed from the binary BCH or Reed-Solomon
goges to achieve multiple-bit or multiple-symbol error detection. See Sections 3.3 and

CAPABILITY OF A PARTICULAR ERROR-DETECTION CODE: CRC-CCITT CODE
The generator polynomial for the CRC-CCITT code is:
x16 4+ x12 4 xS 1=+ DS +x14 4+ x13 4+ x12 4 x4+ x3 4+ x24+x+1)
The code’s guaranteed capability as determined by its structure is defined below:
a) Detects all ocburrences of an odd number of bits in error. (Theorem 2.1.3)

b) Detects all single-, double- and triple-bit errors if the record length (in-
cluding check bits) is no greater than 32,767 bits. (Theorem 2.1.5)

¢) Detects all single-burst errors of sixteen bits or less. (Theorem 2.1.6)

d) Detects 99.99695% of all possible bursts of length 17, and 99.99847% of all
possible longer bursts. (Theorem 2.1.8). This property assumes that all errors
are possible and equally probable.

The CRC-CCITT polynomial has some double-burst detection capability when used
with short records. This capability cannot be determined by its structure. Computer
evaluation is required. .

When the code is used with a 2088-bit record, it has a guaranteed detection capa-
bility for the following double bursts:

Length of Length of
First Burst Second Burst

1t06
to5

=T ¥ NRICT
Pt ek ekt
[ =g

888
SRS
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2.2 CORRECTION FUNDAMENTALS

This section introduces single-bit and single-burst error correction from the view-
point of shift register sequences.

The examples given use very short records and small numbers of check bits. How-

ever, the same techniques apply to longer records and greater numbers of check bits as
well.

SINGLE-BIT ERROR CORRECTION

The circuit shown below can be used to correct a single-bit error in a seven-bit
record (four-data bits and three-check bits). Data bits are numbered d3 through do0.
Check bits are numbered p2 through p0. Data and check bits are transmitted and
received in the following order:

d3 d2 dl do p2 pl poO

Both the encode and (&ecode shift registers premultiply by x®@ and divide by g(x).
Again m is three and g(x) = x° + x + 1.

ENCODE CIRCUIT

/ l \
WRITE DATA /[
x2 < xl —O—-@Q—— xo

+
d3 d2 d1 do A

MUX

> ql WRITE DATA/CHECK BITS

»-

~{0| d3 d2 d1 do p2 pl po

CHECK_BIT TIME

For encoding, the shift register is first cleared. Data bits d3, d2, d1, and dO are

processed and simultaneously passed through the MUX to be sent to the storage device
or channel.

After data bits are processed, the gate is disabled and the MUX is switched from
data bits to the high order shift register stage. The shift register contents are then
sent to the storage device or channel as check bits.
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DECODE CIRCUIT
RAW DATA

CORRECTED
—

DATA

» 7 BIT FIFO BUFFER |

+ ) xzw x1—1—®-

—0 BUFFER
UNLOAD
CYCLE

Decoding takes place in two cycles; the buffer load cycle and the buffer unload
cycle. A syndrome is generated by the shift register circuit as the buffer is loaded.
Correction takes place as the buffer is unloaded. The shift register is cleared just
prior to the buffer load cycle.

HOW CORRECTION WORKS

Since g(x) is primitive, it has two sequences: a sequence of length seven and the
zero sequence of length one.

] I

001 000 4
010 L

100
011 4
110
111

101
| —

Assume an all-zeros data record. Assume data bit d1 is in error. The contents of
the decode shift register during buffer load would be as shown below.

Clock Error  Shift Register

Number  Bits Contents
Initialize 000
d3 000
d2 000
d1 1 011
do 110
p2 111
pl 101
p0 001

Notice that after the error is processed, the shift register clocks through its
sequence until the end of the record is reached. The final shift register state for this
example is ’001°. This is the syndrome.
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The syndrome remains in the shift register as the buffer unload cycle begins. The
shift register is clocked as data bits are unloaded from the buffer. As each clock
occurs, the shift register clocks through its sequence. Simultaneously, the gate mon-
itors the shift register contents for the '100° state. Correction takes place on the next
clock after the "100’ state is detected.

The shift register contents during the buffer unload cycle is shown below.

Clock Shift Register
Number Contents

After Read 001
d3 010
d2 100 *
d1 011 **
do 110
p2 111
pl 101
po 001

* The three-input gate enables after this clock because the 100’ state is det-

ected. '
** Correction takes place on this clock.

Consider what happens on the shift register sequence during the buffer load cycle.

1
010

100

011 dl clock Forces S/R to this point on the sequence.

. 110 dO0 clock Advances S/R to this point on the sequence.
111 p2 clock "

101 pl clock "

001 pO clock: The final state of the S/R = the syndrome.
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Since the data record is all zeros, the shift register remains all zeros until the
error bit d1 is clocked. The shift register is then set to the 011" state. As each new
clock occurs, the shift register advances along its sequence. There is an advance for
do, p2, pl, and p0. After the pO clock, the shift register is at state '001’. This is the
syndrome for the assumed error.

When the error bit occurs, it has the same effect on the shift register as loading
the shift register with 100’ and clocking once. Regardless of where the error occurs,
the first nonzero state of the shift register is *011°.

Error displacement from the end of the record is the number of states between the
’100° state and the syndrome. It is determined by the number of times the shift reg-
ister is clocked between the error occurrence and the end of record.

Consider what happens on the shift register sequence during the buffer unload
cycle. The number of states between the syndrome and 100’ state represents the error
displacement from the front of the record. To determine when to correct, it is suffi-
cient to monitor the shift register for state '100’. Correction occurs on the next clock
after this state is detected.

[ 1
001 The syndrome: initial state of the S/R for unload.

010 d3 clock Advances S/R to this point on the sequence.
100 d2 clock The gate is enabled by this S/R state.

4 011 d1 clock Correction takes place.

110

111

1?1

Consider the case when the data is not all zero. The check bits would have been
selected on write such that when the record (data plus check bits) is read without
error, a syndrome of zero results. When an error occurs, the operation differs from the
all-zeros data case, only while the syndrome is being generated. A given error results
in the same syndrome, regardless of data content because the code is linear. Once a
syndrome is computed, the operation is the same as previously described for the all-
zeros data case.

The code discussed above is a single-error correcting (SEC) Hamming code. It can
be implemented with combinatorial logic as well as sequential logic.
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SINGLE-BIT ERROR CORRECTION AND DOUBLE-BIT ERROR DETECTION

If an (x + 1) factor is combined with the polynomial of the previous example, the
resulting polynomial

g(x) = (x+ 1)e(x3 +x+1) =xt+x3+x2+1
can be used to correct single-bit errors and detect double-bit errors on seven-bit rec-
ords (three data bits and four check bits). Double-bit errors are detected regardless of
the separation between the two error bits.

g(x) has four sequences; the two sequences of length one and two sequences of
length seven.

SEQ A SEQ B
] ] ] ]
0001 0011 0000 4 1011 T
0010 0110 L  —
0100 1100
1000 4 0101 4
1101 1010
0111 1001
1110 1111
| — | I—

If a single-bit error occurs, the syndrome will be on sequence A. If a double-bit
error occurs, the syndrome will be on sequence B. This gives the code the ability to
detect double-bit errors.

The circuit below could be used for decoding. Encoding would be performed with
a shift register circuit premultiplying by x™ and dividing by g(x).

RAW DATA —— CORRECTED
7 BIT FIFO BUFFER -—————4::)—»-0 of——m
‘ DATA
0 GATE B c

— ]

x3 x2 x1 ‘['

BUFFER
UNLOAD
CYCLE

GATE A




Gate A detects the 1000’ state on the clock prior to the clock that corrects the
error. Gate B blocks the shift register feedback on the clock following detection of the
1000’ state. This causes the shift register to be cleared.

If a double-bit error occurs, the syndrome is on sequence B. The shift register
travels around sequence B as it is clocked during the buffer unload cycle. Since the
’1000° state is not on this sequence, gate A will not enable and correction will not take
place. Since correction does not occur, the shift register remains nonzero. Since the
shift register is nonzero at the end of the buffer unload cycle a double error is as-
sumed.

If three bit-errors occur, the syndrome will be on sequence A. During the buffer
unload cycle, the shift register state '1000° is detected and a data bit is falsely cleared
or set. This is miscorrection because the bit affected is not one of the bits in error.

This code corrects a single-bit error. It detects all occurrences of an even num-
ber of bits in error. When more than one bit is in error and the total number of bits
in error is odd, miscorrection results.

This code is a single-error correcting (SEC), double-error detecting (DED) Hamming
code. It can be implemented with combinatorial logic or with sequential logic.

BURST LENGTH-TWO CORRECTION

The polynomial of the previous example can also be used for burst length-two
correction. The circuit is identical except that AND gate A detects *1x00’.

If a burst of length one occurs, the syndrome will be on sequence A. Gate A
enables on state *1000°. If a burst of length two occurs, the syndrome will be on
sequence B. Gate A enables on state '1100°. When the shift register is clocked from
the *1100° state it goes to *1000°, due to the action of gate B. Gate A remains enabled.
On the next clock, the shift register is cleared due to the action of gate B. Gate A is
enabled for two consecutive clock times and therefore two adjacent bits are corrected.
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CORRECTION OF LONGER BURSTS

" The concepts discussed above can be extended to correction of longer bursts as
well.

To construct such a code, select a reducible or irreducible polynomial meeting the
following requirements.

1. Each correctable burst must be on a separate sequence.

2. The sequence length must be equal to or greater than the record length (in
bits, including check bits) for sequences containing a correctable burst.

3. Any burst that is to be guaranteed detectable must not be on a sequence
containing a correctable burst.

Assume a polynomial with multiple sequences and that the bursts '1’, ’11°, ’101°,
and '111° are all on separate sequences of equal length. There may be other sequences
as well:

] ] ] ]
0++-0001 0---0011 0++-0101 0--+0111 L R

Such a code has at least the following capability: Its correction span can be
selected to be one, two, or three bits. In either case, its detection span is guaranteed
to be at least three.

Primitive polynomials can also be used for single-burst correction. In this case,
the polynomial requirements are:

1. The polynomial period must be equal to or greater than the record length (in
bits, including check bits).

2. Correctable bursts must be separated from each other on the sequence by a
number of states equal to or greater than the record length (in bits, including
check bits).

3. Any burst that is to be guaranteed detectable must be separated from correc-
table bursts by a number of states equal to or greater than the record length
(in bits, including check bits).

It is also possible to state more general requirements for a single-burst correcting
code. Any polynomial satisfying either of the two previous sets of requirements would
satisfy the more general requirements. Many other polynomials would meet the general
requirements as well.
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The more general requirements for a single-burst correcting code are:

1. If more than one correctable burst is on a given sequence, these bursts must
be separated by a number of states equal to or greater than the record
length (in bits, including check bits).

2. If one or more bursts that are to be guaranteed detectable are on a sequence
with one or more correctable bursts, they must be separated from each cor-
rectable burst by a number of states equal to or greater than the record
length (in bits, including check bits).

3. The sequence length must be equal to or greater than the record length (in
bits, including check bits) for sequences containing a correctable burst.

ACHIEVING DOUBLE-BURST DETECTION

In order for a computer-generated code to have double-burst detection capability,
the following inequality must hold for all i,j, and k such that 0 < i,j,k < nandi # j:

[x1by(x) + xI+bp(x)] MOD g(x) # [xK:b3(x)] MOD g(x)

Where

n is the record length (in bits) including check bits

d is the double-burst detection span

s is the single-burst correction span

by (x) is any burst of length L] such that0 < Lj <d

b2(x) is any burst of length Ly such that 0 < Ly <d

b3(x) is any burst of length L3 such that 0 < L3 <'s

g(x) is the code generator polynomial

Additionally, if i>j then we require i>(j+s-Ly) and i>(+Lp), while if i<j then we require
i2(-Lq) and i< (j-s+Lp).

DST uses special hardware and software to find codes that satisfy these require-
ments.
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SINGLE-BURST CORRECTION VIA STRUCTURED CODES

Fire codes achieve single-burst correction capability by their structure.  These
codes are generated by the general polynomial form:

g(x) = c(x) p(x) = (x° + 1)p(x)

where p(x) is any irreducible polynomial of degree z and period e, and e does not divide
c. These codes are capable of correcting single bursts of length b and detecting bursts
of length d>b provided z>b and c>(d+b-1). The maximum record length in bits, including
check bits, is the least common multiple (LCM) of e and c¢. This is also the period of
the generator polynomial g(x).

The structure of Fire code polynomials causes them to have multiple sequences.
Each correctable burst is on a separate sequence. Burst error correction with polyno-
mials of this type was discussed earlier in this section. See Section 3.1 for more infor-
mation on Fire codes.

SINGLE-BURST CORRECTION VIA COMPUTER-GENERATED CODES

The single-burst correction capability of computer-generated codes is achieved by
testing.

‘These codes are based on the fact that if a large number of polynomials of a par-
ticular degree are picked at random, some will meet previously defined specifications,
provided these specifications are within certain bounds.

There are equations that can be used to predict the probability of success when
searching polynomials of particular degree against a particular criteria.

The advantage these codes have over Fire codes is less pattern sensitivity. If
miscorrection is to be avoided on certain short double bursts, this can be included as an
additional criterion for the computer search. See Section 3.2 for more information on
computer-generated codes.

SINGLE-BURST DETECTION SPAN FOR A BURST-CORRECTING CODE

Let n represent the record length in bits (including check bits). Let m represent
the shift register length in bits. Assume an all-zeros data record. Assume a shift
‘register configuration that premultiplies by x™ and divides by g(x).

An error burst, m bits or less in length, has the same effect as loading the shift
register with the burst. Therefore, a particular error burst will place the shift register
at a particular point in the sequence.

If the point in the sequence is far away from any correctable pattern, the shift
register will not sequence to a correctable pattern in n shifts and there is no. possibility
of miscorrection. However, if the particular error burst places the shift register at a
point in the sequence that is near a correctable pattern, the correctable pattern may be
detected in n shifts and miscorrection will result. It follows that the error bursts of
length m or less that have the exposure of miscorrection, are those bursts that force
the shift register to points in the sequence near correctable patterns.
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The result of having a particular pattern (or state) in the shift register is the
same as if the same pattern were an input-error burst. It follows that the list of shift
register states near the correctable patterns also represents a list of error bursts, of
length m or less, that may result in miscorrection.

The search software shifts a simulated shift register more than n times forward
and reverse from each correctable pattern. After each shift, the burst length in the
shift register is determined. One less than the minimum burst length found over the
entire process represents the single-burst detection span.

PROBABILITY OF MISCORRECTION

Let
b = correction span
n = record length including check bits
m = number of check bits

The total number of possible syndromes is then 2M. The total nurgbfr of valid syn-
dromes must be equal to the total number of correctable bursts, which is n-29-1,

Assume that all error bursts are possible and equally probable and that when
random bursts are received, one syndrome is just as likely as another. If all syndromes
have equal probability and there are n+2b-1" valid syndromes out of 2M total possible
syndromes, then the probability of miscorrection for bursts exceeding the code’s guaran-
teed detection capability is:

ne zb-l
2m

Pmc =

This equation provides a measure for comparing the effect that record length,
correction span, and number of check bits have on miscorrection probability.

One must be careful using this equation. A very simple assumption is made, which
is that all error bursts are possible and equally probable. This is unlikely to be the
case except for particular types of errors such as synchronization errors. To accurately
calculate the probability of miscorrection requires a detailed knowledge of the types of
errors that occur and detailed information on the capability and characteristics of the
polynomial.
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PATTERN SENSITIVITY OF A BURST-CORRECTING CODE

Some burst-correcting codes have pattern sensitivity. The Fire code, for example,
has a higher miscorrection probability on short double bursts than on all possible error
bursts.

Pattern sensitivity is discussed in greater detail in Sections 4.4 and 4.6.



2.3 DECODING FUNDAMENTALS

The following pages show various examples of decoding single-burst-error-correct-

ing codes. These points will help in understanding the examples.

1.

10.

11.

Forward displacements are counted from the first data bit to the first bit in error.
The first data bit is counted as zero.

Reverse displacements are counted from the last check bit to the first bit in error.
The last check bit is counted as zero.

If a negative displacement is computed, add the record length (seven in all ex-
amples) to the displacement. If a displacement greater than the record length
minus one is computed, subtract the record length from the displacement.

Shift register states are shown after the indicated clock.

For all examples, the final error pattern is in the register from left to right. The
left-most bit of pattern represents the first bit in error from the front of the
record.

In these simple examples, check bits are corrected as well as data bits.

In these examples, only the read decode circuit is shown. The write circuit always
premultiplies by x™ and divides by g(x).

Each suffix A example is the same as the prior example, except that a different
error has been assumed.

In examples 1 through 4A, it is not necessary to have additional hardware that
detects shift register nonzero at the end of a read. In examples 5 through 8A,
this additional hardware is required.

In these simple examples, if an error occurs that exceeds the correction capability
of the code, miscorrection results. In a real world implementation, excess redun-
dancy would be added to keep miscorrection probability low.

The following abbreviations are used in the decoding examples.

CLK - Clock FIFO - Firstin, first out
CNT - Count S/R - Shift register
ERR - Error
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Example #1:

- Internal-XOR form of shift register.
- g(x)=x3+x+1.
- Detect zeros in right-most bits of shift register.

- Premultiply by x3.

RAW DATA

Correction in hardware, forward clocking.
Single-bit-correcting code, single-bit error, data all zeros.
Spaced data blocks, on-the-fly correction (data delay = 1 block).

Y

7 BIT FIFO BUFFER -————————»(:)—»—

CORRECTED

e
DATA

i
O

+ }e %2 < x1 < %0 1
o
GATE 'A'
READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (BUFFER_UNLOAD)
ERR S/R S/R
010 *
a3 o 000 das 100 **
az 1 011 az 011 %%
di o0 110 di 110
do o 111 do 111
p2 0 101 p2 101
p1 o0 001 pl 001
po o0 010 po 010

*  Shift register contents at start of correction cycle.
**  Gate A enables after the d3 clock.
***  Correction takes place on d2 clock.
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Example #2:

- Correction in hardware, forward clocking.

- Single-bit-correcting code, single-bit error, data all zeros.

- Spaced data blocks, on-the-fly correction (data delay = 1 block).
- Internal-XOR form of shift register.

-g(x)=x3+x+ 1.

- Detect zeros in left-most bits of shift register.

- No premultiplication.
RAW DATA CORRECTED
» 7 BIT FIFO BUFFER DQ—m
DATA

1 |
2] xl_.._@, xo.,.@

t
BUFFER UNLOAD CYCLE
'
0
GATE 'A'
READ CYCLE CORRECT CYCLE
(BUFFER_LOAD) (BUFFER UNLOAD)
ERR  S/R S/R
111 *
d3 o 000 ds 101 k%
d2 1 001 dz 001 ‘%
dli o 010 dil 010
do o 100 do 100
p2 0 011 p2 011
pl o0 110 pl 110
po 0 111 po 111

*  Shift register contents at start of correction cycle.
**  Gate A enables after the d2 clock.
*xx  Correction takes place on d2 delayed clock.
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Example #3:

- Correction in hardware, forward clocking.

- Burst length-two correcting code, two-adjacent error, data all zeros.
- Spaced data blocks, on-the-fly correction (data delay = 1 block).

- Internal-XOR form of shift register.
g =+ D@ +x+D)=xt+x3+x2+1.
- Detect zeros in right-most bits of shift register.

- Premultiply by x4,

RAW DATA

7 BIT FIFO BUFFER

I

!

CORRECTED
+ D Qf———
DATA
C

k%
k%%
kkkk

+><-— x3
3
GATE 'A‘ I
::::)—v BUFFER
) UNLOAD
L. CYCLE
GATE 'B'
READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (BUFFER UNLOAD)
ERR S/R S/R
0110 *
d2 o 0000 a2 1100 **
dlr 1 1101 di 1000 %%
do 1 1010 do 0000 k%%
p3 © 1001 p3 0000
p2 o0 1111 p2 0000
pl1 © 0011 pl 0000
po o 0110 po 0000

Shift register contents at start of correction cycle.
Gates A and B enable after the d2 clock.

Bit d1 is corrected on the d1 clock.
Bit d0 is corrected on the dO clock.
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Example #3A:

- Correction in hardware, forward clocking.

- Burst length-two correcting code, single-bit error, data all zeros.
. - Spaced data blocks, on-the-fly correction (data delay = 1 block).

- Internal-XOR form of shift register.

g =+ D@ +x+D)=x*+x3+x2+ 1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x4,
RAW DATA CORRECTED
7 BIT FIFO BUFFER 4:5)—»-0 QF—————
‘ DATA
1 1 Lk
OEOFOEE A
GATE 'A' T
::::)—v BUFFER
UNLOAD
= CYCLE
GATE 'B'
READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (BUFFER UNLOAD)
ERR S/R S/R
0010 *

az o 0000 dz 0100 **

dl1 o 0000 di 1000 ***

do 1 1101 do 0000 *¥**

p3 o0 0111 p3 0000

p2 © 1110 p2 0000

pl1 © 0001 pl © 0000
po o0 0010 po 0000

*  Shift register contents at start of correction cycle.
**  Gate A enables after the d2 clock.
***¥  Gate B enables after the dl clock. No correction takes place on the dl
clock because gate B is disabled at the time of the clock.
****  Bit d0 is corrected on the dO clock.
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Example #4:

- Correction in hardware, forward clocking.

- Burst length-two correcting code, two adjacent error, data all zeros.
- Consecutive data blocks, on-the-fly correction (delay = 1 block).

- Internal-XOR form of shift register.

g =+ D& +x+D=x*+x3 +x2+ 1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x4,

RAW DATA CORRECTED
7 BIT FIFO BUFFER + D Qp——
DATA

A

W fe— o —
N [e— o
B e . —
O [¢— o

X X + H X+ e X —]
GATE 'A'
—0}
———]
ATE 'B'
READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (BUFFER UNIOAD)
ERR S/R N S/R
) 0110 *
d2 o 0000 dz2 , 1100 **
dl 1 1101 dl 1000 *%%
do 1 1010 do 0000 *%%x%x
p3 O 1001 p3 0000
p2 O 1111 p2 0000
Pl O 0011 pl 0000
po O 0110 poO 0000

*  Shift register contents at start of correction cycle.
**  Gates A and B cnable after the d2 clock.
**x*  Bit dl is corrected on the d1 clock.
**%*x  Bit d0 is corrected on the dO clock.
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Example #4A:

- Correction in hardware, forward clocking.

- Burst length-two correcting code, single-bit error, data all zeros.
- Consecutive data blocks, on-the-fly correction (delay = 1 block).
- Internal-XOR form of shift register.

g =@+ D@ +x+D)=x*+x3+x2+ 1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x4,
RAW DATA CORRECTED
7 BIT FIFO BUFFER @—-— DQ—
DATA

A

| l l -
Sy

W le— o
le— o —
P e .

% %2 <+ Jerxtperx Vl
GATE 'A’
1>
By
GATE 'B'
READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (BUFFER UNLOAD)
ERR S/R S/R
0100 *
d2 o 0000 d2 - 1000 **
dli 1 1101 d1 0000 ***
do o 0111 do 0000
p3 0 1110 p3 0000
p2 O 0001 p2 0000
pL o0 0010 pl 0000
po 0 0100 po 0000

*  Shift register contents at start of correction cycle.
** Gate B enables after the d2 clock.
***  Bit dl is corrected on the d1 clock.
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Example #5:

- Correction in hardware, forward clocking, software assist.

- Burst length-two correcting code, two adjacent error, data all zeros.
- Time delay required when an error occurs.

- Internal-XOR form of shift register.

-g(x)=(x+1)-(x3+x+ l)=x4+x3+x2+ 1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x4,

RAW DATA

» RAM BUFFER

| l [

GATE 'A! uP SAMPLE LINE
—Of FOR DISPLACEMENT
*\CALCULATION
O >
S/
GATE 'B'

\ ECC ERROR FLAG TO uP

a__/ -

SOFTWARE CORRECTION ALGORITHM

1. Clock the shift register in a software loop until high output on gate B.
2. Forward displacement to first bit in error is clock count plus one.
3. Pattern is in left-most two bits of shift register.
4. Use pattern and displacement to correct RAM buffer.
READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (CORRECT BUFFER)
ERR S/R SOFTWARE CLK CNT S/R
d2 0 0000 - 1001 *
di 0 0000 0 1111
do 0 0000 1 0011
p3 0 0000 2 0110
P2 1 1101 3 1100 **
pl 1 1010
po 0 1001

*  Shift register contents at start of software algorithm.
**  Qate B enables, software stops clocking.
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Example #5A:

- Correction in hardware, forward clocking, software assist.

- Burst length-two correcting code, single-bit error, data all zeros.
- Time delay required when an error occurs.

- Internal-XOR form of shift register.
-g(x)=(x+1)-(x3+x+ 1)=x4+x3+x2+1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x4,
RAW DATA
- ~| RAM BUFFER
.@«—xaa@«_xz_.@..rxl “ XOJ
GATE 'A' uP SAMPLE LINE
0 FOR DISPLACEMENT
::::)—V"—‘\CALCULATION
0] ) >
GATE 'B'
o~ ECC ERROR FLAG TO pP

SOFTWARE CORRECTION ALGORITHM

1. Clock the shift register in a software loop until high output on gate B.
2. Forward displacement to first bit in error is clock count plus one.
3. Pattern is in left-most two bits of shift register.
4, Use pattern and displacement to correct RAM buffer.
READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (CORRECT BUFFER)
ERR S/R SOFTWARE CLK CNT S/R
d2 0 0000 - 1110 =*
dl 0 0000 0 0001
do 0 0000 1 0010
p3 0 0000 2 0100
p2 1 1101 3 1000 **
pl 0 0111
po 0 1110

*  Shift register contents at start of software algorithm.
**  Gate B enables, software stops clocking.
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Example #6:

- Correction in hardware, forward clocking, software assist.

- Burst length-two correcting code, two adjacent error, data all zeros.
- Time delay required when an error occurs.

- Internal-XOR form of shift register.

-gx) =x+ 1)-(x3+x+ 1)=x4+x3+x2+1.

- Detect zeros in left-most bits of shift register.

- No premultiplication.

RAW DATA
| RAM BUFFER

l l |
ORI L O LA S

uP SAMPLE LINE
GATE 'A! FOR DISPLACEMENT

Y CALCULATION
—0 >
a_/
—Q \ ECC ERROR FLAG TO uP
4 .

SOFTWARE CORRECTION ALGORITHM

1. Clock the shift register in a software loop until high output on gate A.
2. Forward displacement to first bit in error is clock count minus one.
3. Pattern is in right-most two bits of shift register.
4. Use pattern and displacement to correct RAM buffer.
READ CYCLE CORRECT CYCLE
(BUFFER_LOAD) (CORRECT BUFFER)
ERR S/R SOFTWARE CLK CNT S/R
d2 0 0000 - 0101 *
d1i 0 0000 0o 1010
do 1 0001 1 1001
p3 1 0011 2 1111
p2 0 0110 3 0011 **
pl 0 1100
po 0 0101

*  Shift register contents at start of software algorithm.
**  Gate A enables, software stops clocking.
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Example #6A:

- Correction in hardware, forward clocking, software assist.

- Burst length-two correcting code, single-bit error, data all zeros.
- Time delay required when an error occurs.

- Internal-XOR form of shift register.

-g(x) = (x + l)o(x3+x+ 1)=x4+x3+x2+ 1.

- Detect zeros in left-most bits of shift register.

- No premultiplication.

RAW DATA
| RAM BUFFER

l l |
{3 @«r %2 _@.._ x1

A
»
o

uP SAMPLE LINE
GATE 'A! FOR DISPLACEMENT
~\ CALCULATION

L/
-—”___*\.ECC ERROR FLAG TO uP

q__/

SOFTWARE CORRECTION ALGORITHM

1. Clock the shift register in a software loop until high output on gate A.
2. Forward displacement to first bit in error is clock count minus one.

3. Pattern is in right-most two bits of shift register.

4. Use pattern and displacement to correct RAM buffer.

READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (CORRECT BUFFER)
ERR S/R SOFTWARE CLK CNT S/R
d2 0 0000 - 0111 *
di 1 0001 0 1110
do 0 0010 1 0001
p3 0 0100 2 0010 **
p2 0 1000
p1l 0 1101
po 0 0111

*  Shift register contents at start of software algorithm.
**  Gate A enables, software stops clocking.
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Example #7:

- Correction in hardware, reverse clocking, software assist.

- Burst length-two correcting code, two adjacent error, data all zeros.
- Time delay required when an error occurs.

- Internal-XOR form of shift register.

-gx) =(x + 1)-(x3 +x+1) =x4+x3+x2+1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x4,
RAW DATA
1 ~| RAM BUFFER
x3 + ) x2 + e 3l e %0 |
1 1 1 1
[»_ r l ’ l X Y 4P SAMPLE LINE
x9 x1 %2 |+ %3 - FOR DISPLACEMENT
~\CALCULATION
d__/catE 'a

- ECC ERROR
)FLAG TO upP

SOFTWARE CORRECTION ALGORITHM

1. Clock the shift register in a software loop until high output on gate A.
2. Reverse displacement to first bit in error is clock count.
3. Pattern is in left-most two bits of shift register.
4. Use pattern and displacement to correct RAM buffer.
READ CYCLE CORRECT CYCLE
(BUFFER LOAD) .(CORRECT BUFFER)
ERR . S/R SOFTWARE CLK CNT S/R
d2 0 0000 - 1001 *
di 0 0000 0 1010
do 0 0000 1 0101
p3 0 0000 2 1100 **
p2 1 1101
pl 1 1010
po 0 1001

*  Shift register contents at start of software algorithni.
**  Gate A enables, software stops clocking.
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Example #7A: .

- Correction in hardware, reverse clocking, software assist.

- Burst length-two correcting code, single-bit error, data all zeros.
- Time delay required when an error occurs.

- Internal-XOR form of shift register.

g =+ D +x+D=x*+x3+x2+1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x4,

RAW DATA
] 1 RAM BUFFER

A

x3+@xz + )] x1 xo..l

[’_ y ’ l ‘ Y uP SAMPLE LINE
%0 + %1 %2 | x3 | FOR DISPLACEMENT
—Or—\CALCULATION

0———//6ATE ‘Al

ECC ERROR

\FLAG TO uP
_/

»-

SOFTWARE CORRECTION ALGORITHM

1. Clock the shift register in a software loop until high output on gate A.
2. Reverse displacement to first bit in error is clock count.
3. Pattern is in left-most two bits of shift register.
4. Use pattern and displacement to correct RAM buffer.
READ CYCLE CORRECT CYCLE
(BUFFER I1.0OAD) (CORRECT BUFFER)
ERR S/R SOFTWARE CILK CNT S/R
d2 0 0000 . - 1110 *
dl 0 0000 0 0111
do 0 0000 1 1101
p3 0 0000 2 1000 **
p2 1 1101
pl 0 0111
po 0 1110

*  Shift register contents at start of software algorithm.
*¥*  Gate A enables, software stops clocking.
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’ Example #8f

- Correction in hardware, reverse clocking, software assist.

- Burst length-two correcting code, two adjacent error, data all zeros.
- Time delay required when an error occurs.

- Internal-XOR form of shift register.

g =&+ D +x+D)=x*+x3 +x2 + 1.

- Detect zeros in left-most bits of shift register.

- No premultiplication.

RAW DATA

» RAM BUFFER

wa3i,_é>¢xz___é>‘x1 « xo+é

l [ [ 1 ¢
| I | I
e L ! ! \
¥ ¥ ¥ ¥
xO x1 x2 - x3 ' uP SAMPLE LINE
FOR DISPLACEMENT
O\ CALCULATION
o_/catE 'ar
| ECC ERROR
é FLAG TO uP
\®

SOFTWARE CORRECTION ALGORITHM

1. Clock the shift register in a software loop until high output on gate A.
2. Reverse displacement to first bit in error is clock count plus two.
3. Pattern is in right-most two bits of shift register.
4. Use pattern and displacement to correct RAM buffer.
READ CYCLE CORRECT CYCLE
(BUFFER IOAD) (CORRECT BUFFER)
ERR S/R SOFTWARE CLK CNT S/R
d2 0 0000 - 1100 *
d1 0 0000 0 0110
do 0 0000 1 0011 **
p3 1 0001
p2 1 0011
pl 0 0110
po 0 1100

*  Shift register contents at start of software algorithm.
**  Gate A enables, software stops clocking.
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Example

A:.

- Correction in hardware, reverse clocking, software assist.

- Burst length-two correcting code, single-bit error, data all zeros.
- Time delay required when an error occurs.
- Internal-XOR form of shift register.
@ =+ D +x+D=xt+x3+x2+1.
- Detect zeros in left-most bits of shift register.

- No premultiplication.
RAW DATA
»~ RAM BUFFER
v
%3 %2 NEY +®
| I | | $
! | | I
| ! ! |
L v ¥ v ¥ ¥
x0 1 x1 —»@n %2 v x3 b uP SAMPLE LINE
FOR DISPLACEMENT
~\ CALCULATION
o_/GATE 'a"
| ECC ERROR
\FLAG TO uP

SOFTWARE CORRECTION ALGORITHM

bl el i

*%

READ CYCLE
(BUFFER TLOAD)

d2
dl
do
p3
p2
pl
po

ERR

[eNeNol NoloNe]

S/R

0000
0000
0000
0001
0010
0100
1000

Clock the shift register in a software loop until high output on gate A.
Reverse displacement to first bit in error is clock count plus two.

Pattern is in right-most two bits of shift register.
Use pattern and displacement to correct RAM buffer.

CORRECT CYCLE
(CORRECT BUFFER)

(0]
1

SOFTWARE CLK CNT S/R

1000 *
0100
0010 *%*

Shift register contents at start of software algorithm.
Gate A enables, software stops clocking.
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2.4 DECODING SHORTENED CYCLIC CODES

In the decoding examples of the previous section, the record length was equal to
the polynomial period. The method discussed in this section allows forward clocking to
be used in searching for the correctable pattern when the record length is shorter than
the polynomial period. Shortening does not change code properties.

The method assumes that the error pattern is detected when it is justified to the
high order end of the shift register. If this is not the case, the method must be mod-

ified.

Let,
g(x) = the code generator polynomial
g'(x) = reciprocal polynomial of g(x)
Pruit®) = Premultiply polynomial for decoding
n = number of information plus check bits
m = number of check bits [the degree of g(x)]
e = the period of g(x)

Use a shift register to multiply and divide simultaneously. On write, premultiply
by xM and divide by g(x). On read, premultiply by Pmyi(x) and divide by g(x).
Pmuit(%) is computed using either of the following equations:

Ppult(x) = x®™7*M MOD g(x)
or

¥x"~1l.F(1/x) where F(x) = x"~1 MOD g'(x)

Prult (X)

i.e. Ppuit(x) is the reciprocal polynomial of [(the highest power of x in a codeword)
modulo (the reciprocal polynomial of the code generator polynomial)].
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EXAMPLES OF COMPUTING THE MULTIPLIER POLYNOMIAL
FOR SHORTENED CYCLIC CODES

g(x) =x* + x + 1,

g'(x) = x* +

x3 +1

Tables of xT MOD g(x) and xF¥ MOD g' (x)

r x¥ MOD g(x)

0001
0010
0100
1000
0011
0110
1100
1011
0101
1010
10 0111
11 1110
12 1111
13 1101
14 1001

VCONONTId»WNERO

Example #1: n=10, m=4, e=15

or

Ppult

Ppult

wowoun

x€~n+M Mop g (x)
x2 MoD (x4 + x + 1)
x3 + x

x®~l.F(1/x) where F(x)
x3 F(léx where F(x)
+ 1)

x3 o (x~
X7 + X

Example #2: n=8, m=4, e=15

or

Pnult

Ppult

= xe~n+tm Mop g(x)

x11 MoD (x% + x + 1)
x3 + %2 + x

%3 o (x~ + 1)

x3 + x2 + x

xm l.Fr(1/x) where F(x)
x3 -F(léx where F(x)
+ %~

_R3 -

x¥ MOD g' (x)

VoNOUAWNRO | K

xN-1 Mo
x2 MOD

xN-1 Mop
x/ MOD (

0001
0010
0100
1000
1001
1011
1111
0111
1110
0101
1010
1101
0011
0110
1100

D (x)
3

( + x3 + 1)

(X)
x% + x3 + 1)



CORRECTION EXAMPLE FOR A SHORTENED CODE

The code is single-bit correcting only.

Interlaced sectors are assumed.

g) =x +x + 1

gm =xr+x0+1

n=8 m=4,e=15

Pmult=x3+x2+x

> 8 BIT FIFO BUFFER + D Q

< X3 -« r. X2 - < r xl < xo *
BUFFER
UNLOAD
CYCLE
GATE A
READ SECTOR SKIPPED SECTOR
(READ CYCLE) (CORRECT CYCLE)
ERR SR 0010
d3 o 0000 das 0100
d2 o 0000 a2 1000 *
dl 1 1110 dl 0011 **
do 0 1111 4ao 0110
p3 O 1101 p3 1100
p2 O 1001 p2 1011
pl 0 0001 pl 0101
po o0 0010 po 1010

*  GATE A gate enables.
**  Correction takes place on d1 clock.
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CORRECTION EXAMPLE FOR A SHORTENED BURST LENGTH-TWQO CODE

The code of this example corrects bursts of length one or two.

Interlaced sectors assumed.

g(x) =(x+l)-(x4+x+1)=x5+x4+x2+1

g’(x)=x5+x3+x+l

n=9e=15m=35

Pouit®®) = x3 + x2 + x

Tables of x¥ MOD g(x) and xT MOD g'(x)

r x¥ MOD g(x) r xT¥ MOD g'(x)
0 00001 0 00001
1 00010 1 00010
2 00100 2 00100
3 01000 3 01000
4 10000 4 10000
5 10101 5 01011
6 11111 6 10110
7 01011 7 00111
8 10110 8 01110
9 11001 9 11100
10 00111 10 10011
11 01110 11 01101
12 11100 12 11010
13 01101 13 11111
14 11010 14 10101

-85 -



»1 9 BIT FIFO BUFFER

GOt RGO <2

| |

READ SECTOR

{(READ CYCLE)
ERR S/R
d3 0 00000 a3
d2 1 01110 d2
dl 1 10010 dl
do 0 10001 do
P4 0 10111 P4
P3 0 11011 P3
P2 0 00011 P2
Pl 0 00110 Pl
PO 0 01100 PO
*  Gates A and B enable on this clock.
**  Bit d2 is corrected on the d2 clock.
***x  Bit dl is corrected on the d1 clock.
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SKIPPED SECTOR
CORRECTION CYCLE

01100
11000
10000
00000
00000
00000
00000
00000
00000
00000

*
* %
%% %




2.5 INTRODUCTION TO FINITE FIELDS

A knowledge of finite fields is required for the study of many codes, including
BCH and Reed-Solomon codes.

~ Before discussing finite fields, the definition of a field must be stated. This def-
inition is reprinted from NTIS document AD717205.

DEFINITION OF A FIELD. A field is a set F of at least two elements together with a
pair of operations, (+) and (+), which have the following properties:

a. Closure: Forallxandy € F,
(x+y)eF and (x*y) e F
b. Associativity: Forallx,y,andz € F,
x+y)+z=x+(y+2z) and (X*y)°z =x+(y+2)
c. Commutativity: Forallxandy € F,
X+y=y+xand x.y =y-x
d. Distributivity: Forallx,yandz € F,
Xy +2) = (x*y) + (x+2)

e. Identities: There exist an additive identity, zero (0), and a multiplicative
identity, one (1), € Fsuch that forall x € F,

x+0=xand x-1=x
f. Inverses: For each x € F, there exists a unique elementy € F such that
x+y=0
and for each non-zero x € F, there exists a unique elementy e F such that
xy=1
The set of positive and negative rational numbers together with ordinary addition
and multiplication comprise a field with an infinite number of elements, therefore it is
called an infinite field. The set of positive and negative real numbers together with

ordinary addition and multiplication and the set of complex numbers together with
complex addition and multiplication also comprise infinite fields.
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FINITE FIELDS

Fields with a finite number of elements are called finite fields. These fields are
also called Galois fields, in honor of the French mathematician Evariste Galois.

The order of a finite field is the number of elements it contains. A finite field of
order pl, denoted GF(pD), exists for every prime p and every positive integer n. The
prime p of a finite field GF(p®) is called the characteristic of the field. The field
GF(p) is referred to as the ground field and GF(p®) is called an extension field of
GF(p). The field GF(p®) can also be denoted GF(q), where q=p".

Let B represent an arbitrary field element, that is, an arbitrary power of a@. Then
the order e of g is the least positive integer for whicli B¢ = 1. More simply, the order
of B is the number of terms in the sequence (8,8 ,33,- «+) before it begins to repeat.
Elements of order 20-1 in GF(2D) are called primitive elements. They are also called
generators of the field. Do not confuse the order of a field element with the order of
a field, which is defined in the previous paragraph.

Two fields are said to be isomorphic if one can be obtained from the other by
some appropriate one-to-one mapping of elements and operations. Any two finite fields
with the same number of elements (the same order) are isomorphic. Therefore, for
practical purposes there is only one finite field of order pZ.

FIELDS OF CHARACTERISTIC TWO

Most error-correcting codes of a practical interest are defined over fields of
characteristic two. Such fields have interesting properties. First, every element is its
own additive inverse i.e. x + x = 0. Secondly, the square and square root functions
are linear i.e.

f(x +y + eoc ) = £(x) + £(y) + ¢--
Therefore, in a field of characteristic two the following identities hold.
(X +y + oo )2 =%x2 4+ y2 + «.o
(X +y+ o0 )% = x5 4 y% 4 oen

k k k
(x+y+-.- )2 =x2 +Y2 4+ oo

k k k
(x+y+o¢o )1/2= xl/z +Y1/2 4+ eece

l’ll‘hese identities will be helpful in performing finite field computations in fields
GF(2D).
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. GENERATION OF A FIELD

The finite field GF(2) has only two elements (0,1). Larger fields can be defined by
polynomials with coefficients from GF(2).

Let p(x) be a polynomial of degree n with coefficients from GF(2). Let a be a
root of p(x). If p(x) is primitive, the powers of a up through 20-2 will all be unique.
Appropriately selected operations of addition and multiplication together with the field
elements:

n.
0,1,a,a2,++,a% 2
define a field of 22 elements GF(2D).

Assume a finite field is defined by p(x) = x3 + x + 1. Since a is a root of p(x),
p(a)=0. Therefore,

a3 +a+1=0 and a3 =a + 1

The field elements for this field are:

0 MOD (a3 + a + 1) =0

a0 » " =a0 =1

al w " = ol

a2 n " = a2

a3 w " a + 1

ad w " ara3 = as(a_+ 1) = a2 _+ ol

ad " arat = a2 +a) =ad + a2 =92 +al +1
ab w " caS =g (@2 +a+1) =ad3+e2+a=0a2+1
al w " = o9

a8 » " = ol

The elements of the field can be represented in binary fashion by using one bit to
represent each of the three powers of a whose sum comprises an element. For the field
constructed above, we generate the following table:

a2 01 ao
0 0 0 O
%l 0o o0 1
al | o 1 o
a2 |1 0 o
a3 o 1 1
a4 |1 1 o
|1 1 1
a® |1 0 1
Figure 2.5.1
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This list can also be viewed as the zero state plus the sequential nonzero states of
a shift register implementing the polynomial

x3 + x+ 1

The number of elements in the ﬁelc!§ of Figure 2.5.1, including the zero element, is
eight. This field is called GF(8) or GF(2°).

OPERATIONS IN A FIELD GF(2") (Examples use GF(Z2))__

+ Addition: Form the modulo-2 (EXCLUSIVE-OR) sum of the components of the
addends to obtain the components of the sum, e.g.:

'001' ® '011°
'o10'
al

a® + o3

wwn

- Subtraction: In GF(2D), subtraction is the same as addition, since each ele-
ment is its own additive inverse. This is not the case in all finite fields.

e Multiplication: If either multiplicand is zero, the product is zero. Otherwise
add exponents modulo seven (the field size minus one) e.g.:

0.at =0
a3.a® = (3+5) mod 7
= al

/ Division: If the divisor is zero, the quotient is undefined. If the dividend is
zero, the quotient is zero. Otherwise subtract exponents modulo seven e.g.:

a(5‘3) = 02

a(3-5) = a-z
2(=2+7) = &5

05/03

a3/a5

By convention, multiplication and division take precedence over addition and sub-
traction except where parentheses are used.

LOG Logarithm: Take the logar_ithm to the base «a, e.g.:
LOG(aM) = n
ANTILOG Antilogarithm: Raise a to the given power, e.g.:

ANTILOG(n) = aft
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FINITE FIELD COMPUTATION

From the list of field elements above, a3 re gents the vector '011’ and o rep-
resents the vector *111°. The integer 6 is the exponent ofa

The log function in this field produces an exponent from a vector while the an-
tilog function groduces a vector from an exponent. The log of ot (110’) is 4. The
antilog of 3 is a” ("011°). The familiar properties of logarithms hold.

. Finite field computation is frequently performed by a computer. At times, field

clements are stored in the computer in vector form. At other times, the logs of field
elements are stored instead of the field elements themselves. For example, consider
finite field math implemented on a computer with an eight-bit wide data path. Assume
the finite field of Figure 2.5.1. If a memory location storing a* is examined, the binary
value 0000 0110’ is observed. This bma?' value represents the vector '110° or o + a.
If a memory location storing the log of is examined, the binary value 0000 0100’ As
observed. This value represents the integer 4 which is the exponent and log of «
Finite field computers frequently employ log and antilog tables to convert from one
representation to the other.

Finite field addition t;?r this field is 5modulo—2 add btlon (bit-wise EXCLUSIVE-OR
operatgn) The sum of «* (’110°) and «” (’111’) is aV (001’). The sum of a° (011°)
and a® ('101') is o ('110°). Subtraction in this field, as in all finite fields of char-
acteristic two, is the same as addition. The '+’ symbol will be used to represent
modulo-2 addition (bit-wise EXCLUSIVE-OR operation). The *+' symbol will also con-
tmue to be used for ordinary addition, such as adding exponents. In most cases, when
'+’ represents modulo-2 addition, it will be preceded and followed by a space, and when
used to represent ordinary addmon, its operands will immediately precede and follow it.
Usage should be clear from the context.

There are two basic ways to accomplish finite field multiplication for the field of
Figure 2.5.1. The vectors representing the field elements can be multiplied and the
result reduced modulo (x° + x + 1). Alternatively, the product may be computed by
first taking logs of the finite field elements being multiplied; then taking the antilog of
the sum of the logs modulo 7 (field size minus one). The -’ symbol will be used to
represent finite field multiplication. The ’*’ symbol will be used to represent ordinary
multiplication, such as for multiplying an exponent, which is an ordinary number and not
a finite field element, by another ordinary number.
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The examples below multiply ot ('110°) times o’ (’111’) using the methods described
above. ~ '

Example #1

1. Multiply the vectors *110’ (a4) and ’'111° (as) to get the vector 10010°.

2. Reduce the vector *10010’ modulo a3 + a + 1 to get the vector *100’ (a2).
Example #2

1. Take the logs base a of a%and a3 to get exponents 4 and 5.

2. Add exponents 4 and 5 modulo 7 to get the exponent 2.

3. Take the antilog of the exponent 2 to get the vector o2 ('100°).

Division is accomplished by inverting (multiplicative inversion) and multiplying.

gil:rf: nirll)\;::rse of any element in the field of Figure 2.5.1, other than the zero element, is

L _ 4(~3) MoD 7
al

The inverse of the zero element is undefined. a9 is its own inverse.

Inversion Examples:

Il
R
>

a(=3) Mop 7

-1
o3

]
R
)

a(-1) Mop 7

-1
ol

Division Examples:

2
Q% _ 2.1 _ 42,44 = o6
a3 (13

e

Q% _ a4-2 - 2

a2
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Examples of finite field computation in the field of Figure 2.5.1 are shown below.
To provide greater insight, some examples use different approaches than others with
various levels of details being shown. Note that all operations on exponents are per-
formed modulo 7 (field size minus one).

y =a3 + ot y = al.at
= '011' + '110' = '010'+'110"
= '101° = (al)+ (a2 + al)
= @b = a3 + a2

= (a + 1) + a2
=e2 + a+1

= '111' = o3
y—_—az-as y:—%
a
= o(2+6)MOD 7
L = o(-4) MOD 7
= a
= a3
a? 0 1 2 0 4 ol 0.ql
y=—-g (x + aY)e(x + a*) = x4 + (a” + a*)*x + a“+a
a

(2-5) MoD 7 = x% 4 adx + ol
—-a -

= ot
The modulo operations shown above for adding and subtracting exponents are

understood for finite field computation and will not be shown for the remainder of the
book.
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Other examples are:

= a2.46 = ol 2
Yy = a¢-a Y =a + a
= 216 = o
= ol
y = LOG a” Yy = LOG, 23
“[as] “[as]
= LOGq (a2~5) = LOGq(a2)-LOGy (a5)
= LOGq (a?) = (2-5) MOD 7
= 4 = 4
3
a
y = —%¢ y = (a3)3
a2 (at + a3)
= o3*3
_ a3 = q2
ol
= o3-1
=a2

y=(x+ a%«(x + al).(x + a?)
=x3 + (@0 + al + a2)x2 + (a%-al + a%:a2? + al:a?):x + a0:al.a?

=x3 + a%:x2 + ab.x + 3
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FIELD PROPERTY EXAMPLES

ASSOCIATIVITY
(x + V) + z = X + (y + 2)

(@2 + @3)  + ot = a2 + (a3 + a?)
('100' + '011') + '110' = '100' + ('0Ol1l' + '110')
‘111! + '110' = '100' + ‘101"
'ool! = tool!

(x+y) -~z =x - (y = 2)

(a4 . 05) )
2 (4+5 MOD 7) . .6

= a4 . (a5 . a6)
o4 . g(5+6 MOD 7)

a2 « a® = ot . at
2 (2+6 MOD 7) _ ,(4+4 MOD 7)
ol - ol
COMMUTATIVITY
X + Yy = y + X
a3 + ot = ot 4+ o3
'o11' + '110' = '110' + 'O11'
‘101! = '101'
X . Y = y . X
@5 + o = o6 . oS
o (5+6 MOD 7) _ ,(6+5 MOD 7)
at = at
DISTRIBUTIVITY
x (y + 2) = (x «y) + (x + z)
at . (a® + af) = (et « @) + (et - 9)
et . ('111' + '101') = o (4+5 MOD 7) , ,(4+6 MOD 7)
at . 010" = a? + a3
at . al = 100" + 011"
a(4+1 MOD 7) '111"
QS = a5
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SIMULTANEQUS LINE4R EQUATIONS IN A FIELD

" Simuitaneous linear equations in GF(2D) can be solved by determinants. For ex-
ampie, given:

a*x + by
dex + ey

c
£

where x and y are independent variables and a, b, ¢, d, €, and f are constants. then:

c b

f e cee + bef
x = =

a b ase + bed

d e

a ¢

d £ a*f + c-d
y = =

a b ase + bed

d e

POLYNOMIALS IN A FIELD

Polynomials can be written with variables and coefficients frca GF(2%) and manip-
ulated in much the same manner as poiynomiais involving rational or rez. aumbers.

Polynomial Multiplication Example:

atex? + a5:x + «a
X + a

aS.x2 + ab.x + a?
adex3 + @5-x2 + alex

atex3 + aSex + a?

Polvnomial Division Example:

abex + a2

x3 + a%x + a2 | abex? + @2.x3 + a%ex? + al.ex + @2
ab.x + a3-x2 + al.x

a2.x3 + ab.x2
a2.x3 + ab.x

+ o+
R
[ 8]

abex2 + abex + «
Thus

(ab.x* + aex3 + atex? + alex + az) MOD (x3 + atex + a?)
= a%+'x¢ + a°*x + «a
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QUADRATIC SOLUTION DIFFICULTY IN A FIELD OF CHARACTERISTIC 2

The correlation between finite field, of characteristic 2, algebra and algebra in-
volving real numbers does not include the quadratic formula:

-b + /b2 - sac
2a

X =

The 2 in the denominator must be interpreted as an integer, but:
Qa=a+a=20

and division by zero is undefined.

DIFFERENTIATION IN A FIELD OF CHARACTERTISTIC 2
The derivative of x in GF(2D) is:

where n is interpreted as an integer, not as a finite field ekzmiszt. Thus the derivative
of any even power is zero and the derivative of any odd power is x{%~1). For example,

d(x2)/dx

2x = X + X =0

d(x3)/dx = 3x2 = x2 + %2 + x2 = x2

etc.
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FINITE FIELDS AND SHIFT REGISTER SEQUENCES

The shift register below implements the polynomial x3 + x + 1, which defines the
field of Figure 2.5.1.

xl < Xo

A
A

%2

A

Figure 2.5.2

This shift register has two sequences, a sequence of length seven and the zero se-
quence of length one.

STATE NUMBER SHIFT REGISTER CONTENTS

—
—-—— 000 4
| —

—
001
010
100
011 4
110
111

101
—

AT WNERO

Notice the similarity of the sequences above to the field definition of Figure 2.5.1.
The consecutive shift register states correspond to the consecutive list of field ele-
ments. The state numbers correspond to the exponents of powers of a.

Advancing the shift register once is identical to multiplying its contergs by a.
Advancing the shift register twice is identical to multiplying its contents by a<, and so
on.
COMPUTING IN A SMALLER FIELD

We have been representing‘ powegs of a by components. For example4 in the_field
of Figure 2.5.1, the components of a” are a and 1. The components of a™ are o? and e.
An arbitrary power of a can also be represented by its components. Let X represent
any arbitrary power of a from the field of Figure 2.5.1; then

X = Xp°a2 + Xp°a + Xg

The coefficients X2, X1, and X( are from GF(2), the field of two elements, 0 and

In performing finite field operations in a field such as GF(23), it is frequently
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necessary to perform multiple operations in a smaller field such as GF(2). For example,
multiplication of an arbitrary field element X by a, might be accomplished as follows:

Y = a*X
= a+(Xz+a? + X3+a + Xgq)
= Xp+a3 + X1+a2 + Xg-a
But a3 = a + 1, so
Y = X (¢ + 1) + X1°a2 + Xp-a

Xl-az + (X3 + Xg)ea + X3

The result Y can also be expressed in component form, therefore:
Yora? + Yyea + ¥Yg = X1°a2 + (X3 + Xg)a + X
Equating coefficients on like powers of a gives
Yo = X3
Y1 = X3 + Xg
Yo = Xy
These results have been used to design the combinatorial logic circuit shown below.

This circuit uses a compute element (modulo-2 adder) from GF(2) to construct a circuit
to multiply any arbitrary field element from the field of Figure 2.5.1 by a.

a
| 1
X2 —r_r—' Y2
X X1 —]—" > Y4 Y = a*X
&
Xo — Yo
+ = Finite field addition in GF(2)
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ANOTHER LOOK AT THE SHIFT REGISTER

The shift register of Figure 2.5.2 has been redrawn below to show that it contains
a circuit to multiply by a. '

1

x2 pa—{x1 <—®c—-xo

Original Circuit

2
L
+/~
Y

A

Same circuit redrawn

-MORFE ON FIELD GENERATION

Let B represent the primitive element o2 from the field of Figure 2.5.1. The field
can be redefined as follows:

R
N

R
=

R
(=]

w
N
HOOKRRMHOO

FRROROOO
HFHROROORKO

All the properties of a field still apply. A multiply example:

ﬁz'ﬁ4 = ('110') - ('010')

(@2 + a) - (a)

=a3 + a2

a+ 1, so

But, a3

p2:p% = a2 + a + 1

('111')

ﬂﬁ
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This definition of the field could be viewed as having been generated by the
circuit below.

8
ghiime — E——

A similar redefinition of the field could be accomplished by letting 8 represent any
primitive element of the field of Figure 2.5.1.

DEFINING FIELDS WITH POLYNOMIALS OVER FIELDS LARGER THAN GF(2

A polynomial over GF(q) where q=p® is a polynomial with coefficients fgom GF(q).
So far, we have worked with a field GF(8) that is defined by the polynomial x° + x + 1
over GF(2). It is also possible to define a field by a polynomial over GF(4) or GF(8),
and so on.

A primitive polynomial of degree m over GF(2D) can define a field GF(2M*n),
Fields GF(22*D) are particularly interesting. Operations in these fields can be ac-

complished by performing several simple operations in GF(2M). These fields will be
studied in Section 2.7.
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COMPUTING IN GF(2)

Consider the field of two elements.

0 0
a0 1

An element of this field is either 0 or 1. The result of a multiplication is either 0
or 1. The result of raising any element to a power is either 0 or 1, and so on.

Let B represent an arbitrary element of this field; then,
BB =B (B)3 =8
()2 =8 ;)" =8

Let a and b represent arbitrary elements of this field; then,

a*b =0 if either a =0o0or b =0
a*b =1 if botha=1and b=1

Clearly, multiplication in GF(2) can be accomplished with an AND gate:
a —
BE
b PR

Letb represent the logical NOT of b; then, in GF(2),

a + a*b

a*(1 + b)

= aos

a — —
E b ’—a-b—a+a-b
b |

Let V represent the INCLUSIVE-OR operation; then, in GF(2)

a+ab+b=avVvVb

coa .
:D—aVb=a+a-b+b
b .
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2.6 FINITE FIELD CIRCUITS FOR FIELDS OF CHARACTERISTIC 2

This section introduces finite field circuits for finite fields of characteristic 2 with
examples. The notation for various GF(8) finite field circuits is shown below. The field
of Figure 2.5.1 is assumed.

x =
®=’ Y =x + al Fixed field element adder

oi =
v =

®=’ Yy =W+ X Arbitrary field element adder
x =
x v‘-al‘ y = alex Fixed field element multiplier
X = => y = a~il.x Fixed field element multiplier
w =+ GF(8) | . . . .
x =»{Multiplier > y = WeX Ar}?ltrary field element multi

plier

_.] GF(8) | B o ) , )
X =*3 Inverter » Yy = 1/x% Mul"clpllcatlve inversion

= GF(8) L ) . .
X =3 ==r Yy = X Square an arbitrary field ele-

Square ment
< =>4 GF(8) =—> y = x3 Cube an arbitrary field element
Cube

—,4 GF(8) | - Compute log, of an arbitrary

*™ Log > 3 = 109a(X)  fie]1d element

- 103 -



GF(8) - . . Compute antilog, of an
Antilog Y = antilogq(J) arbitrary integer
— ' Compute the remainder from
dividing D(x) by (x + al)
Yy <:(i) y = D(x) MOD (x+ai)

Binary | K = i+3 Add logs of finite field

Adder = 173 elements modulo the field
size minus one
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COMBINING FINITE FIELD CIRCUITS
Finite field circuits can be combined for computing. For illustration, assume that:

X + W3
Y =

w3

must be computed. This can be accomplished with the circuit below:

X + W3
Multiply w3
]
A
W =»]3 GF >3 GF ——
Cube Invert

Another circuit solution becomes obvious when the equation is rearranged as
follows:

X+ W X X
Y = =—+1=—+al
w3 w3 W
X GF — »y =% 4 o0
Multiply w3
L] "
A ao
W =p3 GF > GF |
Cube Invert

Another example of combining finite field circuits in GF(23) is shown below.

X===-®=> Yi a*X + X
3 —(g;l)-x
L =ao

This example shows how a cgcuit to multiply by the fixed field element a3 can be
constructed using two other GF(2°) circuits: a circuit to add two arbitrary field ele-
ments and a circuit to multiply an arbitrary field element by a. Later, circuits will be
shown that accomplish this type of operation with GF(2) circuits.
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Still another example of combining finite field circuits follows:

w » <E§> a-w<25> alew
X2 > Gate
x | xp | Gate x2¢ (a2ew)
xXo— Gate X1° (a°w)
x0° (W)
@ G Yy = Wex

This circuit is called an array multiplier and is based on the following finite field
math:

Yy = X°w

(xz-oz2 + x1°0 + Xg)°w

= Xp+a2.W + Xjea'w + Xgow

xzo(az-w) + x3(a-w) + xg° (W)
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IMPLEMENTING GF(8) FINITE FIELD CIRCUITS WITH GF(2) CIRCU,

Fixed field element adder:

x + a3
(x;_»-rz2 + X7°a + xXg) + (a + 1)
x3+a2 + (x] + 1)ea + (X9 + 1)

b4

But, y can also be expressed in component form, therefore:

Y = y2°a2 + y1ea + yg = x2¢a2 + (X7 + 1)ea + (xg + 1)

Equating coefficients on like powers of « gives:

Y2 = X3
Y1 =x31 +1
Yo = X0 + 1

This is realized by the following circuit:

Xz—@ > Y2

4
X X1 r@ >~ Y1
o lf LD vo
0 1 1 '
| ]
a3

A simpler fixed field element adder:

X + a3
(x2°a2 + x3°a + Xg) + (@ + 1)
X3+a2 + (x] + 1)ea + (xg + 1)

Yy

But (x3 + 1) = x7 and (xg + 1) = Xg, so:
Y = x3+a2 + X1°a + Xg

Again expressing y in component form, we have:
y2+a? + yjee + yo = x3°a2 + Xj-a¢ + Xg

and equating coefficients of like powers of a gives:

Y2 = X2
Y1 = X3
Yo = Xo
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which is realized by the following circuit:

X2 - Y2

X | x1 >C Y1
X0 >G Yo

The arbitrary finite field adder:

Xz—’@ g £

'y ™\
X | x1 '\‘;j * Y1
N I '@4 N
W2 W1 Wo
w

may be implemented using bit-serial techniques:

' B
One
. |
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Fixed field element multiplier to multiply by a.

y = a-x

as (x3°a? + xja + xq)
= x2-¢x3 + xloaz + Xg°a
But, a3 =a + 1, so:

x1°a2 + (X3 + Xg)+a + X

Y

Expressing y in component form:

y2:a2 + yyca + yo = x3°a2 + (X3 + Xg)+@ + X

Equating coefficients of like powers of a:

Y2 = X3
Y1 = X2 + X
Yo = X2

‘a

—
- -
L T
x X1—r—‘, » Y1 | Y = a*x
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Fixed field element multiplier to multiply by al,

a-l.x

b4

= ab.x

ab: (x3:a2 + x3°a + xq)
= xz'(x8 + xl-a7 + xooa6
= xo-az + Xzca + (X1 + Xq)
Expressing y in component form:

y2:°a2 + yyra + yg = xgp*a? + x3+a + (X1 + Xp)

Equating coefficients:
Y2 = X0
Y1 = x2

Yo = X1 + Xo

.a"l
1
X2 _l > Y2
X X ’ > » =a"lex
1 l Y1 b4
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Fixed field element multiplier to limltiply by a2. The finite field math for this circuit

is similar to the math for the a and a™! multipliers above.
[ az
| |
X2 '\'+ ) > Y2
Y
X0 — T > Yo

Fixed field element multiplier to multiply by a2 using two circuits that multiply by a:

va2
I 1
r .
G S o NN gt
X Xl ‘_‘r—-_" > l ‘ > yl y = azox
O O
Xp — Yo
L ] L J
‘Q ‘a
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Fixed field element multiplier to multiply by e using bit serial techniques.
Y = aX
a? a 1 1
—{ ¥y | Yy -*-@*- Yo+
T

a2 a 1
X2 X1 Xo
PROCEDURE:

1. Clear the Y register.

2. Load the X register.

3. Apply three clocks. In GF(2™) apply n clocks.
4. Accept the result from the Y register.

Fixed field elemint multlpher to multiply by a%. To understand the input connections,
recall that a% = o

Y = at.x
a2 a l 1

a2 a 1
X2 X1 X0
PROCEDURE:

Same as above.
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Finite field circuit to compute Y = a+X + at-w using bit serial techniques.

Y = a'X + a%-w

a2 a 1

fy2*®<—yl ~<—Y°‘

a2 a 1
X2 X1 Xo
a2 a 1

< Wy [ Wi+ Wo
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Arbitrary field element multiplier using combinatorial logic.

X
I 1
- X2 X1 Xo
Wo 1 1
0 s s
WaXo WaX3 Wa+Xo
WiWqp ! 1
Wy-X2 W1+Xy W1-Xo
Wo 1 1 1
Y = XW

= (X3+a? + Xj+a + Xg)*(Wp+a? + Wy+a + Wp)
= (X3°Wp)-e? + (X3+Wp + X1°Wp)-a3
+ (Xp°Wg + Xq°Wp + Xo'Wz)'a2 + (X1°Wg + Xg°Wy1)+a + Xg*Wq

Buta4=a2+aanda3=a+1,so

Y =  (Xp+Wp + Xp°Wg + X1°Wp + Xg°Wp)+a?
+ (Xg*Wy + Xp°Wp + X1°Way + Xj°Wg + Xg*°W3)
+ (X3°W3 + X3°Wa + Xp°Wp)
Expressing Y in component form and equating coefficients on
like powers of a gives:
Y2 = X3°*Wy + Xo*Wg + Xq1°W3 + Xg°Wap
Y1 = X3°*Wy + Xp°Wp + Xq1°*Wy + Xj3°Wo + Xp°Wq
Y0 = Xp°Wy + X1°Wp + Xp*Wq
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Array multiplier - another arbitrary field element multiplier using combinatorial logic.

L
f—’f

Xo —{ GATE

Yy Y Y

/)

—
J_@ f__@
> GATE
»— GATE
I /:\L\ ><E>' > Yo
© O s

XW

(Xz'a2 + Xq+a + Xg) W

L

Xg+a2 W + X1-a*W + Xg*W

Xoe (@2+W) + Xpe+(a*W) + (W)
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Arbitrary field element multiplier using bit serial techniques.

Y = XW

a2 a I 1

i
0

A

a2 ! 1

~— Wy Wi Wo

a2 a 1

) X2 X1+ X0

The X register is a shift register. The W register is composed of flip-flops that hold
their value until reloaded.

PROCEDURE:

1. Clear the Y register

2. Load the W register with multiplicand.

3. Load the X register with multiplier.

4. Clock the circuit three times. For GF(2D), clock n times.
5. Accept the result from the Y register.

DEVELOPMENT

Y = XW

(Xp+02 + Xq+a + Xg) W

Xp+a2 W + Xq+a*W + Xg*W

[(Xp*W)+a + X1 *W]ea + Xg*W
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Another arbitrary field element multiplier using bit serial techniques.

Y = X*W

2 dled
A

I
A

<+ Wy [+ Wl"‘“@v Wo!""l

a2 a 1
Xa X1 1 Xo
PROCEDURE

1. Clear the Y register.

2. Load the W register with multiplicand.

3. Load the X register with multiplier.

4. Clock the circuit three times. For GF(2D), clock n times.
5. Accept the result from the Y register.

DEVELOPMENT
Y = XW

(X5+a2 + Xqa + XO0) W
2 1

Xg+a2+W + Xj+a*W + Xg*W

Xge (@2+W) + X1+ (a*W) + Xg° (W)
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Arbitrary field element multiplier using log and antilog tables.

BINARY ADDER
MOD (2N-1)*

ANTILOG > Y =
ROM

OUTPUT ENABLE

IF (X=0) OR (W=0) THEN

Y=0

ELSE

Y

END IF

X i LOG F=»r{
ROM
ZERO
DETECT
ZERO ’
DETECT
1] LOG
ROM
DEVELOPMENT
Y = XW

ANTILOGy[ LOGg(X+W) ]

ANTILOGy[ (LOGg(X)+LOGq(W)) MOD (2M-1)* ]

* For n-bit symbols, 27 is the field size of GF(2D), so (20-1) is the field size

minus one.
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Circuit to cube an arbitrary field element.

-
X2 v(E)——’ Y2

Xo Yo
DEVELOPMENT
Y = x3

= (Xg-a? + X3+¢ + Xg)3
(X2~a2 + Xqea + Xo)z'(Xz'a2 + Xj1°a + Xg)
= [(X3°a2)2 + (X1°a)2 + (Xg)2]*(X3:a2 + X3°a + Xg)
(Xg+a% + X3:a2 + Xg)* (X3+a2 + X3.a + Xp)
Xz'a6 + Xl-xz-a5 + Xo'X2'04 + Xl'Xz'a4
+ X1~a3 + X0°X1°a2 + Xo‘Xz‘dz + Xg*Xy1°a + Xg
Xpe (a2 + 1) + X1°X3+(a2 + a + 1) + Xg-Xa+ (a2 + a)
+ X1°Xz+ (a2 + @) + X1+(a + 1) + Xg+Xp-(a?)
+ Xg-Xp+(a2) + Xg*X1(a) + Xg
(X2 + Xg+Xp) -a?
+ (Xp*Xy + X3 + Xg°X1) -
+ (X + X3°X2 + X3 + Xq)

I

I

Expressing Y in component form and equating components of like powers of A gives:

Yo = X5 + XpX3

Yy Xp*X2 + X3 + Xp°X3 = Xg°X2 + X3°(1 + Xp)
Xo*X2 + X1°Xo

Yo = X2 + X3°X3 + X9 + Xg = (X3 Vv X1) + Xg

where v is the INCLUSIVE-OR operator.
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IMPLEMENTING GF(2") FINITE FIELD CIRCUITS WITH ROMS

In many cases, finite field circuits can be implemented with ROMs. For example, a
G(l;(256) inverter is an 8-bit-in, 8-bit-out function and can be implemented with a 256:8
ROM.

Other examples:

1. The square function in GF(256) can be implemented with a 256:8 ROM. The
same is true for any power or root function in GF(256).

2. A GF(16) arbitrary field element multiplier can be implemented with a 256:4
ROM. A GF(256) arbitrary field element multiplier can be implemented with a
65536:8 ROM. It is also possible to implement a GF(256) multiplier with four
256:4 ROMs and several finite field adders. (See Section 2.7.)

3. A GF(256) fixed field element multiplier can be implemented with a 256:8
ROM.

When back-to-back functions are required, it is sometimes possible to combine
them in a single ROM. For example, the equation:

Y = [1/X]3 - o2
in GF (256) can be solved for Y when X is known with a single 256:8 ROM.
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SOLVING FINITE FIELD EQUATIONS

Finding a power of a finite field element results in a single solution, but the same
solution may be obtained by raising other finite field elements to the same power.

Finding the root(s) of a finite field element may result in a single -solution, multi-
ple solutions or no solution.

Finding the root(s) of a finite field equation may result in a single solution, multi-
ple solutions or no solution.

FINDING ROQTS OF FINITE FIELD EQUATIONS

In decoding the Reed-Solomon and binary BCH codes, it is frequently necessary to
find the roots of nonlinear equations whose coefficients are from a finite field. These
roots provide error-location information. The degree of the equation and the number of
roots are equal to the number of errors that occur. Examples of these equations are
shown below:

X + 01 =0
X2 + 01X + 03 =0
x3 + 01'X2 + 0o*Xx + 03 =0

X4 + 01-x3 + 02‘X2 + 03X + 04 0

One way to find the roots of such an equation is to substitute all possible finite
field values for x. The equation evaluates to zero for any finite field elements that are
roots.

Two methods which perform the substitution will be discussed. The first method
uses "brute force", and is shown only to illustrate the idea of substitution.

The second method is the Chien search. This is a practical method that can be
used to find the roots of equations of a low degree or high degree.

After discussing the Chien search, alternatives will be explored for finding roots of
nonlinear equations of a low degree.

- 121 -



SUBSTITUTION METHOD - BRUTE FORCE

Assume the roots of X3 + 01X2 + 09X + 03 = 0 must be found. The circuit below
could be used:

X 01 o2 03
v
1 MULTIPLY
y
»4 SQUARE »4 MULTIPLY
A
CUBE
A\ 4 \ 4
[ > + <

ZERO DETECT [—»

A4

Each possible finite field value must be substituted for x while checking the output
of the zero detector.

This circuit is easy to understand, although it is not practical because of circuit
complexity.

- 122 -



SUBSTITUTION METHOD - CHIEN SEARCH

Assume the roots of
X3 + 01‘X2 + 0p*Xx + 03 = 0
must be found. The Chien search circuit below could be used:

1 o1 (o) g3

y

»-

v
+
A

ZERO DETECT [—»

v

The _circuit is initialized as shown. If the zero detect output is immediately as-
selrted, a0 is a root. The circuit is clocked. If the zero detect output is then asserted,
a* is a root. The circuit is clocked again. If the zero detect output is then active, o
is a root. Operation continues as described until all finite field values have been
substituted and all roots recorded.

This method uses less complex circuits than the "brute force" method.
The example circuit above finds roots of finite field equations of degree three.

The circuit can be extended in a logical fashion to find the roots of equations of a
higher degree.
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RECIPROCAL ROOTS

There are times when the reciprocals of roots of finite field equations are re-
quired. If

x3 + 01+%%2 + 09X + 03 =0
is an equation for which reciprocal roots are required, then
03°X3 + 02°X2 + o1°x +1=20

is an equation whose roots are the reciprocals of the roots of the first equation. The
Chien search circuit below can be used to find reciprocal roots.

o3 b)) o1 ﬁ
> >3 >
l l
+ - <

ﬂ=>= ZERO DETECT [(—»

In this circuit, the inputs to the XOR ?ircuit are from the multipliers instead of
the registers because the equation is evaluated at o first.
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FINDING ROOTS QF EQUATIONS OF DEGREE 2
AN EXAMPLE

We illusérate the method by generating_a quadratic table for solving y2 +y=Cin
the field GF(2”) generated by the polynomial x3 + x +1 over GF(2).

First generate the antilog table for the field. Next construct a table giving C
when y is known. Then construct a table giving y when C is known (Table A below).

Antilog Table
Exponent Vector

——— 000
0 001
1 010
2 100
3 011
4 110
5 111
6 101

'y' is known

A <
000 000
001 000
010 110
011 110
100 010
101 010
110 100
111 100

Table A. 'C' is known
[of \'4
000 000,001
001 No solution
010 100,101
011 No Solution
100 110,111
101 No Solution
110 010,011

111 No Solution

We may verify the validity of Table A by using it to solve the following equations:

y2 +y=a2 =>y = 110,111

No Solution

]
R
(M)

y2 +y =>y
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FINITE FIELD PROCESSORS

Finite field processors are programmable or microprogrammable processors, which
are designed especially for finite field computation. An example for computing in
GF(256) is shown below. Except where noted, all paths are eight bits wide.

} 1

4 A

SYNDROME BUFFER WORK BUFFER SEQUENCER
|
y \ Y
G A B
y
ROM TABLES
y 4 y
H Z-DETf— D Z-DETH— E C
1 y /1 J I I |
y 1l
LOG ROM
LOG
ROM
y y y
NOR COMPLEMENTER
,Ll y 4 y

8-BIT BINARY ADDER
MOD 255

y

ANTILOG ROM

> GATE
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Adding two finite field elements from the work buffer consists of the following
steps.

1. Transfer the first element to the A register.
2. Transfer the second element to the B register.

3. XOR the contents of the A and B registers and set the result in the C reg-
ister.

4. Transfer the C register to the work buffer.
Each of these steps can be a separate instruction or part of a single instruction.

Multiplying ﬁnite field elements from the work buffer consists of the following

1. Transfer the first element to the D register.
2. Transfer the second element to the E register.

3. Add logs of the finite field elements and place the antilog of the results in
the F register.

4. Transfer the F register to the work buffer.

As in finite field addition, each step can be a separate instruction or part of a
single instruction.

If either multiplication operand is zero, the result must be zero. Since the log of
zero is undefined, this case must receive special attention. It is handled by the zero--
detect circuits connected to the D and E registers and controlling the gate at the input
of the F register.

For the processor under consideration, logs must be added modulo 255. Eight-bit
binary adders add modulo 256. They can be used to add modulo 255 by connecting
"carry out" to "carry in". For the antilog table, the contents of location 255 are the
same as location zero.

Finite field division is accomplished with the same steps used for finite field mult-
iplication, except logs are subtracted.

The log operation could be implemented as follows:
1. Load the finite field value in register G.
2. Move the log of the finite field value from the ROM tables to register H.
3. Store register H in the work buffer.
There are many design options available when designing a finite field processor.
The options selected depend on the logic family to be used, cost, performance and other
design considerations. The options selected for an LSI design would differ from those
selected for a discrete design.
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A partial list of operations that have been implemented on real world finite-field
processors is shown below.

- Finite field addition

- Finite field multiplication

- Finite field division

- Logarithm

- Antilogarithm

- Fetch one root of the equation y2 +y+C=0

- Take cube root

- Compare finite field values

- Branch unconditional

- Branch conditional ‘
Non-finite-field operations that may be implemented include:

- Binary addition and subtraction

- Logical AND and inclusive-OR operations

- Operations for control'ling error-correction hardware.

A finite field processor implementing subfield multiplication is shown in Section 5.4.
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2.7 SUBFIELD COMPUTATION

In this section, a large field, Gl"'(22 ), generated by a small field, GF(2M), is dis-
cussed. Techniques are developed to accomplish operations in the large field by per-
forming severai operations in the smail field.

Let elements of the smail field be represented by powers of 8. Let elements of
the large field be represented by powers of a.

The small field is defined by a specially selected polynomial of degree n over
GF(2). The iarge field is defined by the polynomiai:

x2 + x+ 8
over the smail field.

Each element of the large field, GF(22*D), can be represented by a pair of ele-
ments from the small field, GF(2%). Let x represent an arbitrary element from the large
field. Then:

X = X1°a@ + Xq
where x| and xq are elements from the smail field, GF(2®). The element x from the
large field can be represented by the pair of elements (Xxj,xg) from the smail field.

This is much like representing an element from the field of Figure 2.5.1 with three
elements from GF(2), (x2,X1,XQ).

Let z be any primitive root of:
X2 + x+ 8
Then:
al + a+ g =
Thererore:

a2 =a + g
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The elements of the large field GF(22*n), can be defined by the powers of . For
example:

0=0
al = ¢0
al = ol
az—a+ﬁ
a3 = g+
= a:(a + B)
= a2 + a-f
=a+ B + a*B
= (B+ 1)a+p

This list of elements can be denoted

al ozo
0 0 o
a9 0 1
al 1 0
a2 1 B
a3 | p+1 B

The large field, GF(22™ 1), can be viewed as being generated by the following shift
register. All paths are n bits wide.

v

| <D,
—lxl =<=@= <0 uJ

This shift register implements the polynomial x2 + x + B over GF(2D).

Methods for accomplishing finite field operations in the large field by performing
several simpler operations in the small field are developed below.
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ADDITION

Let x and w be arbitrary elements from the large field. Then:

y=XxX+Ww
= (xX3°a + Xg) + (Wwi°a + wg)
= (X1 + w1)*a + (Xg9 + Wp)
MULTIPLICATION

The multiplication of two elements from the large field can be accomplished with
several multiplications and additions in the small field. This is illustrated below:

Yy = X°w
= (x1°a + Xg) * (Wi*a + wq)
= X1°w1+@2 + Xj-Wgea + Xg Wi°a + Xg°Wp

But, a2 =a + B, so

Xy1°wWy*(a + B) + woeXj°a + Xgewica + XqgWp
= (X1°w1 + Wo°*X) + Xg°W1)°+a + (x13°W1°f + Xg°*Wo)
Methods for accomplishing other operations in the large field can be developed in

a similar manner. The method for several additional operations are given below without
the details of development.

INVERSION
Yy = 1/x%
X1 X1 + Xg
= a +
(X1)2:8 + X1°Xg + Xg2 (x1)2+B + X1°%Xg + Xq2
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LOGARITHM
L = IbGa(x)
Let,
J = LOGg[(x1)2+B + x1°X0 + X0?]
K=0 if x1=0
=1 if x77#0 and xg=0

f1(xo/%x1) 1if x1#0 and xp#0

1}

Then,

L = (the integer whose residue modulo (2M-1) is J and whose
residue modulo (2M+1) is K)

This integer can be determined by the application of the Chinese Remamder
Method. See Section 1.2 for a discussion of the Chinese Remainder Method.

The function fj can be accomplished with a table of 20 entries which can be gen-
erated with the following algorithm.
BEGIN
Set table location f1(0)=0
FORI=21t0 21
Calculate the GF(22*D) element Y = ol = Yj:a + Yg
Calculate the GF(2™) element Yg/Y1
Set f1(Yo/Y1)=I
NEXTI
END
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ANTILOGARITHM

X

ANTILOGq (L)

ANTILOGg (INT(L/ (2R+1)) if [L MOD (2M+1)]=0

[ANTILOGg (INT(L/(2™+1))]+a if [L MOD (2M+1)]=1

X1°a + Xqg if [L MOD (2M+1)]>1

where x1 and xq are determined as follows. Let

a = ANTILOGg[ L MOD (2P-1) ]
b = fa[ (L mod (2M+1))-2 ]
Then,
1/2
Xy = | —2—
b2 + b + B
Xg = b'x;

The function f) can be accomplished with a table of 27 entries. This table can be
generated with the following algorithm.
BEGIN
Set f5(20-1)=0
FOR 1=0to 20-2
Calculate the GF(22*D) element Y = «0+2) = .0 + Yy
Calculate the GF(2™) element Yo/Y1
Set fo(l) = Yo/Yq
NEXTI
END
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APPLICATIONS

In th'hs* section, techniques were introduced for performing operations in a large
field, GF(2<™D), by performing several simpler operations in a small field, GF(2D).

One application of these techniques is for computing in a very large finite field.
Assume that it is necessary to perform computation in GF(65536). A multiplication
operation might be accomplished by fetching logs from a log table; adding logs modulo
65535; and fetching an antilog. The log and antilog tables would each be 65536 loca-
tions of 16 bits each. The total storage space required for these tables would be one
quarter million bytes. An alternative is to define GF(65536) as described in this section
and to perform operations in GF(65536) by performing several simpler operations in
GII;‘I(256). These GF(256) operations could be performed with 256 byte log and antilog
tables.

Another application is for performing finite field multiplication directly with ROMs
for double-bit-memory ¢ tion. Instead of using one ROM with 2%1 Jocations, use
four ROMs each with 2<°0 locations. An example application to multiplier ROMs is

shown below.

A GF(256) MULTIPLIER USING A SINGLE ROM

X —f—b—
16 total input -8 65536:8 /> Y = X'W | g output
address lines ROM 8 lines
W —Ff—
8
A_GF(256) MULTIPLIER USING FOUR SMALLER ROMS
X1 | 256:4 ROM
X >
Xo -
"] 256:4 ROM + Yy
.| 256:4 ROM Y = X-W
W1 —-CB
w > .
¥o "] 256:4 RoM ——@——» Yo |

See Section 5.4 for details of a GF(28) multiplier constructed from four GF(2%)
multipliers. '
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CHAPTER 3 - CODES AND CIRCUITS

3.1 FIRE CODES

Fire codes are linear cyclic single-burst-correcting codes defined by generator
polynomials of the form:

g(x) = c(x)+p(x) = (x€ + 1) p(x)

where
c= Degree of the c(x) factor of g(x)
p(x) is any irreducible polynomial with period e, and e does not
divide c.

Let:

Degree of the p(x) factor of g(x)

Degree of g(x) = total number of check bits = c+z
Record length in bits including check bits; n<LCM(e,c)
Guaranteed single-burst correction span in bits
Guaranteed single-burst detection span in bits

Q.G‘EBN
(R

The maximum record length in bits, including check bits, is equal to the period of
g(x), which is the least common multiple of e and c¢. The guaranteed single-burst
correction and detection spans for the Fire codes are subject to the following ine-
qualities:

b <z
b<d
b+d £ c+1

These inequalities provide a lower bound for d. When the record length is much
less than the period of the polynomial, this bound for d is conservative. In this case,
the true detection span should be determined by a computer search.

Given a fixed and limited total number of check bits, selecting the degrees of p(x)
and c(x) will be involve a tradeoff. Increasing the degree of p(x) will provide more
protection against miscorrection on double-bit errors (less pattern sensitivity), while
increasing the degree of c(x) will provide a greater correction span and/or detection
span. The degree of c(x) should not be used to adjust the period of a Fire code unless
the effects of pattern sensitivity are fully understood.

Overall miscorrection probability for a Fire code for bursts exceeding the guaran-
teed detection capability is given by the equation below, assuming all errors are pos-
sible and equally probable:

~ nx2b-1

P ~
mc om

Miscorrection probability for double-bit errors separated by more than the guaran-
teed detection span, assuming all errors of this type are possible and equally probable,
is given by: '
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(b=1)*2 , __n
c c*(22-1)

Ppedb ®

This equation is applicable only when the product of Ppedp and the number of possible
double-bit errors is much greater than one. When this is not true, a computer search
should be used to determine the actual Pycdp.

An advantage of the Fire Code is simplicity. A disadvantage is pattern sensitivity.
The (x¢ + 1) factor of the Fire Code generator polynomial causes the code to be sus-
ceptible to miscorrection on short double-bursts. The Ppcdp equation given above
provides a number for this susceptibility for one particular short double-burst (the
double-bit error). For more information on the Fire code’s pattern sensitivity see
Sections 4.4 and 4.6.

The pattern sensitivity of the Fire Code can be reduced to any arbitrary level by
adding sufficient redundancy to the p(x) factor. ‘

There are at least five ways to perform the correction step:
1. Clock around the full period of the polynomial.

2. Shorten the code by performing simultaneous multiplication and division of
‘ the data polynomial. A computer search may be required to minimize the
complexity of feedback logic. The period after shortening can be selected to

be precisely the required period.

3. Select a nonprimitive polynomial for p(x). This method yields a less complex
feedback structure than method 2. However, it is only possible to select a
period that is close to the required period. A computer search is required.

4. Perform the correction function with the reciprocal polynomial. This requires
that either a self-reciprocal polynomial be used, or that the feedback terms
be modified during correction. In addition, the contents of the shift register
must be flipped end-for-end before performing the corrections.

This method differs from methods 1 through 3 because the maximum number
of shifts during correction depends on the record length instead of the poly-
nomial period. Therefore, correction is faster for the case when the record
length is shorter than the polynomial period.

5. Decode using the Chinese Remainder Method. This method requires only a
fraction of the number of shifts required by the other methods. Thus, sig-
nificant improvements in decoding speed can be obtained. :

Any of the methods above may be implemented in hardware or software. However,
for software, methods 4 and 5 are the most applicable. Methods 4 and 5 are more
flexible for handling variable record lengths than the other methods.

The Fire Code may be implemented with bit-serial, byte-serial or k-bit-serial logic.
Sec Section 4.7 for k-bit serial techniques.
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BIT SERIAL

Fire-code circuit implementations using bit-serial techniques are less complex than
those using byte-serial techniques.

Less logic is required for the shift register as well as for detecting the correctable
pattern.

Polynomial selection is easier for the bit-serial implementation.

The disadvantage of bit-serial circuit implementations is shift rate limitations.
BYTE SERIAL

Byte-serial circuit implementations have speed as their advantage.

One disadvantage is greater logic complexity compared to bit-serial implementa-
tions. More logic is required to implement the shift register and to detect the correc-
table pattern. Pattern detection is more complex because the pattern is never justified
to one end of the shift register. The problem is to determine within one shift (byte
time), if a pattern unjustified in several byte-wide registers is of length b bits or less.

Another disadvantage of byte-serial implementations is that a computer search may
be required for polynomial selection if the feedback logic is to be minimized.

Both bit-serial and byte-serial logic may be implemented in either hardware or

software.  Byte-serial implementations in software usually require look-up tables (for
effective speed).
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DECODING ALTERNATIVES FOR THE FIRE CODE

The Fire code can be decoded with the methods described in Section 2.3. Two ex-
amples of real world decoding of the Fire code are discussed in Sections 5.2.2 and 5.2.3.

The internal-XOR or external-XOR forms of shift registers may be used for im-
plementing Fire codes. The decoding methods of Section 5.2 apply to the Fire code as
well as to computer-generated codes.

In many cases, logic can be saved by using sequential logic to determine if the
shift register is nonzero at the end of a read.

It is possible to use a counter to detect the correctable pattern. The counter
counts the number of zeros preceding the error pattern. For the internal-XOR form of
shift register the counter can monitor the high order shift register stage. A one clears
the counter. A zero bumps the counter. The counter function can also be accomplished
by a software routine commanding shifts and monitoring the high order shift register
stage.

It is harder to detect the correctable pattern for byte-serial implementations than
for bit-serial implementations. The second flowchart of Section 5.3.3 shows a software
algorithm for detecting the correctable pattern for a byte-serial software implementa-
tion. The following page shows a method for accomplishing this for a byte-serial
hardware implementation.
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CORRECTABLE PATTERN FOUND

Figure 3.1.1 Byte-serial Hardware Correction

Correction span is assumed to be eight bits. =~ When the correctable pattern
first appears in the shift register, at least one bit of the pattern will be in the
low order byte.
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3.2 COMPUTER-GENERATED CODES

Computer-generated codes are based on the fact that if a large number of poly-
nomials of a particular degree are picked at random, some will meet previously defined
specifications, provided the specifications are within certain bounds.

There are equations that predict the probability of success when evaluating poly-
nomials against a particular specification.

For computer-generated codes, correction and detection spans are determined by
computer evaluation. Overall miscorrection probability, assuming all errors possible and
equally probable, is given by:

where,
b = Guaranteed single burst correction span in bits
n = Record length in bits including check bits
m = Total number of check bits

In some cases, tens of thousands of computer-generated polynomials have been
evaluated in order to find a polynomial with particular characteristics.

Properly selected computer-generated codes do not have the pattern sensitivity of
the Fire code. It is possible to select computer-generated codes that have a guaranteed
double-burst-detection span. The miscorrecting patterns of these codes are more ran-
dom than those of the Fire code.

The decoding alternatives for the computer-generated code are the same as those
previously described for the Fire code.
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COMPUTER SEARCH RUN

This run evaluates polynomials for use with 512-byte records and correction spans
to 8 bits. This run is for illustration only. The polynomials below which have a good
single-burst detection span may not test well against other criteria.

Single-burst detection
spans for given

Polynomial correction span of:
(octal) 1 2 3 4 5 6 7 8
40001140741 18 18 18 16 16 16 16 12
41040103211 19 19 19 15 14 14 13 13
42422242001 19 19 19 17 17 12 12 12
42010100127 21 21 16 16 16 15 15 12
42200301203 20 20 19 17 17 15 12 12
40110425041 19 19 17 17 17 17 10 10
40442115001 18 18 18 18 17 16 16 14
44104042501 19 19 16 16 12 12 10 10
40030201415 18 18 18 15 15 13 13 13
40030070211 19 19 18 18 13 11 11 11
40006241441 20 19 18 18 15 15 15 14
40430250401 15 15 15 15 15 13 12 11
44401144041 20 20 20 16 16 14 14 13
41442001203 22 21 20 18 17 16 14 11
44431120001 17 17 17 17 16 15 11 11
40056110021 20 20 15 1515 9 9 9
40200211701 20 20 20 18 18 9 9 9
40001201163 18 18 18 15 15 14 12 12
40410423003 21 18 17 16 16 16 14 12
42000027421 17 17 17 16 13 13 13 13
40001741005 18 17 17 17 11 11 11 11
42000045065 20 20 17 16 14 14 14 10
41114210201 20 19 19 18 18 16 16 14
44011511001 20 20 18 18 16 13 13 11
41200103203 18 18 15 15 15 15 15 14
43140224001 18 18 18 18 17 7
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COMPUTER SEARCH RUN (CONTINUED)

Single-burst detection
spans for given

Polynomial correction span of:
(octal) 1 2 3 4 5 6 7 8
40000074461 14 14 14 14 14 13 13 13
40527200001 16 16 16 16 16 16 16 10
40342100221 19 18 18 18 18 16 11 11
40400264411 16 16 16 16 16 13 13 13
44001140305 17 17 17 17 17 13 13 13
41450040051 19 19 18 18 18 16 14 14
40060405013 20 19 19 19 17 14 13 10
41030210031 18 18 18 18 17 17 17 9
40201202131 17 17 17 17 16 16 16 15
41024021025 21 19 19 19 16 12 12 12
40006052403 18 18 18 18 16 15 13 12
40152014401 19 19 18 18 14 14 14 13
46200002341 19 19 19 19 17 14 14 10
44501404011 19 19 16 16 14 14 13 13
40250002053 20 20 18 18 17 17 15 14
43012104011 19 18 18 18 18 17 12 12
42012430201 21 17 17 17 15 15 12 12
42114023001 21 21 20 16 16 11 11 10
43300020241 15 15 15 15 14 14 14 13
40001403207 18 18 18 18 17 16 9 9
40214020503 20 20 20 16 16 16 10 10
40260302005 20 20 19 18 17 7
40252200241 20 20 20 13 13 13-12 12
40004560111 16 16 16 16 14 14 14 14
40000404347 15 15 15 15 15 15 14 13
42200036011 15 15 15 15 11 11 11 10
42202210241 20 18 18 17 10 10 10 10
40504100431 16 16 15 15 15 12 12 12
42012401111 19 17 17 15 15 14 14 14
43041105001 21 20 17 17 17 14 14 12
40022044225 18 18 18 11 11 11 11 11
40500001465 19 18 18 15 15 15 15 14
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SPECTRUM OF DETECTION SPANS FOR COMPUTER SEARCH RUN

12

11

HZaQon
o]

DET SPAN 4 4

2 2

0

7 8 9 10 11 12 13 14 15 16 17
CORRECTION SPAN 6: AVERAGE DETECTION SPAN = 13.7

12

10

1
0] 0 —

7 8 9 10 11 12 13 14 15 16 17
CORRECTION SPAN 7: AVERAGE DETECTION SPAN = 12.9

13

11

10

1
0 0 ] 0 0

7 8 9 10 11 12 13 14 15 16 17
CORRECTION SPAN 8: AVERAGE DETECTION SPAN = 11.9
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MOST PROBABLE DETECTION SPAN

The equatioh below gives an approximation for the most likely single-burst detec-
tion span of a single polynomial picked at random.

1n(-1n(1-(n*2P)/2m))

d = 0.5287 - 0.6932 +1
where,
b = Single-burst correction span
d = Single-burst detection span
n = Number of information plus check bits

m = Number of check bits

PROBABILITY OF SUCCESS

The equation below gives an approximation for the probability that a single poly-
nomial picked at random will meet specified criteria.

n*2b ]Zd'l

Psz[l— on

where n, m, b, and d are as defined above.
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3.3 BINARY BCH CODES

Binary BCH codes correct random bit errors. Coefficients of the data polynomial
and check symbols are from GF(2) i.e. they are binary 0’ or 'l’, but computation of
error locations and values is performed using w-bit symbols in a finite field GF(2V),
where w is greater than one.

BINARY BCH CODE SUMMARY

Let:
w = Number of bits required to represent each element of GF(2W), the field
wherein computations are performed.
n = Selected record length in bits, including check bits
t = Number of bits the code is capable of correcting
d = Minimum Hamming distance
m = Degree of code generator polynomial
= Number of check bits .
mj(x) = Minimum polynomial in GF(2) of a! in GF(2%)
g(x) = Code generator polynomial
= LCM[mj(x),m3(x),...,mp*1(x)]
k = Number of factors of g(x) [typically t]
D(x) = Data polynomial
W(x) = Write redundancy polynomial = [xM.D(x)] MOD g(x)
C(x) = Transmitted codeword polynomial = xM«D(x) + W(x)
E(x) = Error polynomial = xLl + xL2 +oee
C'(x) = Received codeword polynomial = C(x) + E(x)
Then the following relationships hold:
n<2%-1
d =2*%t+1
Al
m < wkt wafs T
THE GENERATOR POLYNOMIAL

The generator polynomial for a t-error-correcting binary BCH code is:

g(x) = LCM[mj(x),m3(X),...,m*;.1 (x)] '
where m;(x) is the minimum polynomial in GF(2) of ol in GF(2™); see the glossary for
the definition of a minimum polynomial. The LCM function above accounts for the fact
that if the minimum polynomials of two or more powers of a are identical, only one

copy of the polynomial is multiplied into g(x). In most cases no duplicate polynomials
exist, and g(x) is the product of them all:

g(x) = m1(x) e m3(x) ... m*_1(X)
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ENCODING

Encoding for a binary BCH code can be performed with a bit-serial shift register
implementing the generator polynomial of the form shown below. All paths and storage
elements are bit-wide. Multipliers comprise either a connection or no connection.

GATE

*Im-1 ‘Im-2 C‘D

> :I WRITE DATA/CHECK BITS

WRITE
1]
DATA

MUX

For applications such as error correction on semiconductor memory, an encoder im-
plementing combinatorial logic is preferable to one implementing sequential logic. Such
an encoder includes a parity tree for each bit of redundancy. The parity tree for a
coefficient Wi of the x!' term of the write redundancy polynomial W(x) includes each
data bit Dj for which the coefficient of the x! term of

[xM. xi] MOD g(x)

is one.

PARITY TREES

Dp-m-1 — I
Dn-m-2 —*

Wp-1 * * * Wo

An example of a combinatorial-logic encoder is given in the BINARY BCH CODE
EXAMPLE below.
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DECODING
Decoding generally requires S steps:

Generate the syndromes.

Calculate the coefficients of an error locator polynomial.

Find the roots of the error locator polynomial to determine error location
vectors.

Calculate logs of error location vectors to obtain error locations.

Invert bits in error.

SYNDROME GENERATION

Nk B

The syndromes contain information about the locations of errors:
I Lz

Sl=a + 4+ e o
S3 = a3l 4 o3%2 4 ...
Ss = as*Ll + as*Lz 4+ oo
Sk = ak*Ll + ozk*:r"2 + ese

It is possible to compute the syndromes directly from the received codeword poly-
nomial C’(x) with the following equation.

S; = C'(al)
The above equation can be implemented with either sequential or combinatorial logic.

‘The syndromes can also be computed by computing the residues of the received
codeword when divided by each factor or the generator polynomial. Let:

ri(x) = C' (x) MOD m;(x)
then the resulting residues may be used to compute the syndromes:
Si = ri(a)

The above equations can be implemented sequentially, combinatorially, or with a mixture
of sequential and combinatorial logic.

An example of each of the above methods is shown in the BINARY BCH CODE EX-
AMPLE below.
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COMPUTING COEFFICIENTS OF ERROR LOCATOR POLYNOMIALS

The error locator polynomial has the following form.

e L

[T (x+ a'1l) =x® + 01x®1 + ¢ev 4 gguq + 0o = O
i=1

The coefficients of the error locator polynomial are related to the syndromes by
the following system of linear equations, called Newton’s identities.

o1 = 53
01°Sy + 02°S7 + 03 = S3
01°S4 + 03°S3 + 03°Sy + 04°S] + 05 = S5
01°Sat-2 + e + 02¢-2°51 = Sat-1

For error locator polynomials of low degree, the coefficients of the error locator
polynomial are computed by solving Newton’s identities using determinants. For error
locator polynomials of high degree, the coefficients are computed by solving Newton’s
identities with Berlekamp’s iterative algorithm.

FINDING THE ROOTS OF ERROR LOCATOR POLYNOMIALS

The roots of error locator polynomials are error location vectors. The logs of
error location vectors are error locations.

The error locator polynomial of degree one is:
X + g1 =0
The single root of this equation is simply:
X =01
The error locator polynomial of degree two is:
x2 + 01°X + 03 =0
This equation can be solved using a precomputed look-up table by first applying a
substitution to transform it into following form (see Sections 2.6 and 3.4 for more
details):
y2 +y+c=0

There are similar approaches to solving other low degree error locator polynomials.
The Chien search is used to solve error locator polynomials of high degree.

- 148 -



BINARY BCH CODE EXAMPLE

Assume a two-error-correcting code over GF(24). The generator polynomial is:

g(x) = my(x)m3(x) = (x} + x + 1) (x% + x3 + x2 + x + 1)

x8 + x7 + %6 + x4 +1

The codeword length is limited to 24-1=15 bits, so the code may be used protect a
seven-bit data polynomial.

SEQUENTIAL LOGIC ENCODER

GATE

D(x) RN

COMBINATORIAL LOGIC ENCODER

The write-redundancy polynomial coefficients are given by the following parity
trees. Each coefficient W; is formed as the XOR sum of those coefficients Dj whose
row contains a "1’ in Wj’s cofumn.

X7 XG XS X4 X3 X2 Xl Xo
Dg : [x8-x6)J MODg(x) : |1 1 1 0 1 0 0 O
Dg : [x8-x5] MOD g(x) : | 0 1 1 1 0 1 0 O
Dy : [x8.x4]7 MODg(x) : | 0O 0 1 1 1 0 1 O
D3 : [x8-x3J MODg(x) : | 0O 0 0 1 1 1 0 1
D, : [x8x2J MODg(x) : |1 1 1 0 0 1 1 O
D; : [x8-x}JMOoDg(x) : |0 1 1 1 0 0 1 1
Do : [x8-x0] MOD g(x) 11 0 1 0 0 0 1

W7 Wg Wg Wy W3 Wy Wp Wo
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SYNDROME GENERATION

SEQUENTIAL CIRCUIT FOR S1

s1 = ri(@) = [C'(0 MOD my(x)] |,

PSR

C'(x)

SEQUENTIAL CIRCUIT FOR S3

S3 = r3(a3) = [C'(x) MOD m3(X)]la3

PN

¢! (x) !
S3=r3(a3)

¢

»a?

»~Q
—]

ALTERNATIVE SEQUENTIAL CIRCUIT FOR S3

S3 = C'(a3)

36 56 b

c'(x)
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COMBINATORIAL LOGIC SYNDROME CIRCUITS

The parity tree for a coefficient Sij of the xi term of syndrome Si includes each
received codeword bit Cg for which the coefficient of the xJ term of

[xk*i] MOD mj(x)

is one.

S —
. +  PARITY
O D = |

C1' — TREES

Vo

Si(w-1)*++8i3 Sip

COMPUTING THE COEFFICIENTS OF THE TWO-ERROR LOCATOR POLYNOMIAL

For the two-error case the system of linear equations below must be solved.
These equations follow from Newton’s identities.

()01 + (0)e0p = S3

(S2)+01 + (S1)°03 = S3

S, 0

S3 83 (51)2
0'1 = = = Sl

1 0 Sq

Sy S3

1 Sy 3

Sy S3 S3 + S1°Sy  S3 + S1°(S1)2 S3 + (S571)
gy = = = =

1 0 S Sy Sa

S2 53
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FINDING ROOTS OF THE TWO-ERROR LOCATOR POLYNOMIAL

The algorithm below defines a fast method for finding roots of the error locator
polynomial in the two-error case. This algorithm can be performed by a finite field
processor. For double bit memory correction is performed by combinatorial logic.

The two-error locator polynomial is
x2 + 01°X +t0p =0
where
(81)3 + 83
01 =85, and 09 = ——

53
Substitute

X = 01°y = S1°Y

to obtain
g2
v2 +y + =y2+y+C=0
(01)2
where
P (s1)3 + 83
C = =
(01)2 (s1)3

Fetch Y1 from TBLA (see Section 2.6) using C as the index. Then form
Yo = Y3 + af

Apply reverse substitution of
Y = x/01

to obtain

L1 - 01°Y¥y = S3°Y; and Xp = aL2 = 03°¥y = S1°¥Yy

X, = a
Finally, calculate the error locations
Ly = LOGq(X1)

Ly

LOGq (X2)

For a binary BCH code, the error values are by definition equal to *1°.
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BCH CODE DOUBLE-BIT MEMORY CORRECTION - EXAMPLE #1

W
7
S1 s13 LOG(S13)
CUBE LOG
- LOG(S3%
-LO0G(517)
BINARY ANTILOG
ADDER*
S3 +
AL LOG
LOG(S3)
ZERO-DETECT [O GATE
S3
3
y 51
| C
=0 ALARM
TABLE >
Y1
I
*Binary addition modulo LoG LOG LOG
field size minus one. T
+ + o+ +

BINARY BINARY
ADDER* ADDER*

b

Ly Ly

This example is shown in a form that is easier to understand. Example #2 uses
the same approach but combines some of the functions.
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BCH CODE DOUBLE-BIT MEMORY CORRECTION - EXAMPLE #2

LOG
51w LOG(513)
# CUBE/LOG
- LOG(Sj3 %
-LOG(S17)
BINARY ANTILOG
ADDER*
S3 +
/,W ! LOG -
LOG(S3)
ZERO-DETECT O GATE
S3
S 13
ALARM
. =0 =0 ORf—
*Binary addition TABLE TABLE
modulo field
size minus one. LOG(Y2) LOG(Y1)
+ + + +
BINARY BINARY
ADDER#* ADDER*
L2 I

This example uses the same approach as Example #1 but several functions have
been combined.
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BCH CODE DOUBLE-BIT MEMORY CORRECTION - EXAMPLE #3

51 4 1/5,3
ML | CUBE/INVERT S3
813
GF MULTIPLIER )
S3 =0 ALARM
A a0 TABLE
Y2 Y1

GF MULTIPLIER

GF MULTIPLIER

X2 = o2
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BCH CODE DOUBLE-BIT MEMORY CORRECTION - EXAMPLE #4

1/(s1)3

CUBE/INVERT

GF MULTIPLIER

a0 ——J TABLE

ALARM

Y1l

GF MULTIPLIER
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BCH CODE DOUBLE-BIT MEMORY CORRECTION - EXAMPLE #5
The mathematical basis for this example is developed by opcfating on the crror
locator polynomial:
x2 + 01°x + 07 =0
First substitute for a1 and oy7 using expressions developed above:

(s1)3 + s3

2 0 ————— I
X¢ + Sp°x + 51 0

Next multiply by Sy:
S1°%2 + (51)2°x + (51)3 + 83 =0
Add zero in the form of (x3 + x3):

(x3 + x3) + 87°%x2 + (81)2:x + (S1)3 + 83 =0

Finally, rearrange and combine the underlined terms to obtain a useful relation:

(s1 + x)3 + (s3 + x3) =0

(s + o)
———_—————_—-CUBER-_——l

@- ZERO-DETECT
(s3 + (@h)?) !

CORRECTED DATA BITS

O ,

RAW DATA BITS

One such circuit is required for each bit of the memory word.
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3.4 REED-SOLOMON CODES

Reed-Solomon codes are random single- or multiple-symbol error-correcting codes
operating on symbols which are elements of a finite field. The coefficients of the data
polynomial and the check symbols are elements of the field, and all encoding, decoding,
and correction computations are performed in the field. Reed-Solomon codes are in-
herently symbol oriented and the circuits implementing them are typically clocked once
per data symbol, although bit-serial techniques are also employed. p

We shall use the Galois field with eight elements (i.e., GF(8) or GF(23)), introduced
in Section 2.5 in illustrating the properties and implementation of Reed-Solomon codes.
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REED-SOLOMON CODE SUMMARY

A®X)
G(x)
gi(x)
D(x)
W)
C(x)
E(x)
C'®
R(x)
S

Number of bits per symbol; each symbol ¢ GF(2W)
Degree of generator polynomial = number of check symbols
Selected record length in symbols, including check symbols

= Minimum Hamming distance of the code

1

Number of symbol errors correctable by the code
Selected number of symbol errors to be corrected
Number of symbol errors which the code is capable of de-
tecting beyond the number selected for correction

= Burst length in bits
Number of bursts correctable by the code

= Any polynomial in the field
The code generator polynomial
Any of the m factors of G(x) =(Xx + ai) when m0=0
Data polynomial

= Write redundancy polynomial = [xM.D(x)] MOD G(x)
Transmitted codeword polynomial = xM.D(x) + W(x)

= Error polynomial =e1 ‘xLl + ez-xL2 + oo

= Received codeword polynomial = C(x) + E(x)

Remainder polynomial = C'(x) MOD G(x)
ith syndrome = C'(x) MOD gj(x)

Then the following relationships hold:

< 2W1

= m+]

< = INT[(d-1)/2] = INT[m/2]
=  dpin-2*c-1 =m-2%

< (ec-1)*w + 1

ec/(1 + INT[(b+w-2)/w])
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REED-SOLOMON CODE SUMMARY (CONT.)

A(x)
A(x)

C(x)
C(x)
R(x)

MOD gj(x) = [A(x) MOD G(x)] MOD gj (x)

MOD gj(x) = A(X)|,i = A(al)
MOD G(x) = O
MOD gj(x) = 0
= C'(x) MOD G(x)
= [C(x) + E(x)] MOD G(x)
= E(x) MOD G(x)
i = C'(x) MOD gj (x)

= [C(x) + E(x)] MOD gj (x)
= E(x) MOD gj (x)
= El-al*L1 + Epea
= [E(x) MOD G(x)] MOD gj (x)
= R(x) MOD gj (x)

i*Ly +

{by
{by

{by
{by
{by
{by
{by
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CONSTRUCTING THE CODE GENERATOR POLYNOMIAL

The generator polynomial of a Reed-Solomon code is given by:
m-1 +i
G(x) = | | (x+ a™0"h
i=0

where m is the number of check symbols and mq is an offset, often zero or one. In
the interest of simplicity, we take mq equal to zero for the remainder of the discussion.
Note that many expressions derived below must be modified for cases where mO is not
zero. Let m=4; the code will be capable of correcting:

t = INT(m/2) = 2
symbol errors in a codeword. The generator polynomial is:

G(x) = [3| (x + al)
1=0
(x + ao) (x + al) (x + az) (x + a3)
x4 + (2 + al + a2 + a3).x3
+ (e9%1 + a%2 + o%3 + ele? + alad + a2e3)-x2
+ (a%le? +a%la3 +a%2a3 +ala2e3).x + (alalaa3d)

= x4 + a2.x3 + a5%x2 + a%x + af

VERIFYING THE CODE GENERATOR POLYNOMIAL

The code generator polynomial evaluates to zero at each of its roots. This fact
can be used to prove the computations used in generating it:

G(x) =a0% + a2 +a®+ad+ab® =0
a0

G(x) 1 - a% (al)4 + a2-(al)3 + o5:(a1)2 + a5:al + a® =0
a

Gx)| = a% (a2)%4 + a2:(a?)3 + a3+ (a2)2 + a%:a2 + b =0
a

G(x) 3" a%:(a3)4 + a2-(a3)3 + a5-(a3)2 + a%-a3 + a® =0
a
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FINITE FIELD CONSTANT MULTIPLIERS
To design a constant multiplier to implement
y=all-x
in GF(2VY), fill in the diagram below with the binary representations of

al o+l ... on+w-1

- Xy-1 ontw-1
Xyg=2 gn+wW=2
X - . . . . . . .
X1 ontl
L xg o
Yw-1 Yw-2 Y1 Yo
| I
y = allex

Then construct parity trees down columns. The parity tree for a given y bit
includes each x bit with a *1” at the intersection of the corresponding column and row.

Example: Using the field of Figure 2.5.1, construct a constant multiplier to compute:

y = a3.x

X3 | 1 1 1 ad

x x1 |1 1 0 ot

Xo | O 1 1 a3

Y2 Y1 Yo

L____t___J

y = a3.x
y2 = X1 + X3
Y1 = X0 + x1 + X2
Yo = X0 + X3
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ENCODING OF REED-SOLOMON CODES

Encoding is typically, but not always, performed using an internal-XOR shift regis-
ter with symbol-wide data paths, implementing the form of generator polynomial shown
above. Other encoding alternatives will be discussed later in this section.

The following circuit computes C(x) for our example field and code in symbol-serial
fashion:

DS |
i
@- x3rf—®<—x2-<—®-—1x +<—1-—J

1| C(x) = xM.D(x) + [xMD(x)] MOD G(x)
D(x) >

The circuit above multiplies the data polynomial D(x) by x™ and divides by G(x).
All paths are symbol-wide (three bits for this example). The AND gate and the MUX
are fed by a signal which is low during data time and high during redundancy time.

The circuit below performs the same function.

iase
B RN e Wl W W W B

MUX | C(x) = xM.D(x) + [xM+D(x)] MOD G(x)
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DECODING OF REED-SOLOMON CODES
Decoding generally requires five steps:

Compute syndromes.

Calculate the coefficients of the error locator polynomial.

Find the roots of the error locator polynomial. The logs of the roots are the
error locations.

Calculate the error values.

Ll e S

The following circuit computes the syndromes for our example field and code in
symbol-serial fashion:

Sj = C'(x) MOD gj(x) = C'(x) MOD (x + ai)

oao

So

c'(x)

e

Zué

L
JL

0
N
—*A)

)

S3 +

This circuit computes the syndromes by dividing the received codeword C’(x) by
the factors of G(x). All paths are symbol-wide (three bits for this example). After all
data and redundancy symbols have been clocked, the registers contain the syndromes S;.
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COMPUTING COEFFICIENTS OF ERROR LOCATOR POLYNOMIALS

Recall the syndrome equations derived above:
S;=Ej-al Il 4 Byugitl2+ o

These form a system of nonlinear equations with error values and error location
vectors as unknowns. More easily solved is the error locator polynomial, which contains
only error location information. Error locator polynomials have the following form:

e .
| 1| (x + oli) = xe + 01°x8"1 + vt + go1°x + 0g = 0
1=

where e is the number of errors. The coefficients of the error locator polynomial are
related to the syndromes by the following system of linear equations, called Newton’s
generalized identities:

So'de + Sl'Oe_l + e + Se_l'al = Se

S1°0e + S2°0e-1 + *** + Se*01 = Set1

Sm-e-1°0e + Sm-e*Oe-1 + °** + Sp-2°01 = Sp-3
where m is the number of syndromes.

When computation of the error location polynomial is begun, the number of errors,
and thus the degree of the error locator polynomial, is unknown. One method of com-
puting coefficients of the error locator polynomial first assumes a single error. If this
assumption is found to be incorrect, the number of assumed errors is increased to two,
and so on. This method is fastest for the least number of errors. This is desirable
because in most cases few errors are more likely than many.

For error locator polynomials of low degree, the coefficients oj are computed by
directly solving the above system of equations using determinants. Examples are worked
out below.

For error locator polynomials of high degree, the coefficients oj are computed by

solving the system of equations above using Berlekamp’s iterative algorithm. One ver-
sion of the iterative algorithm is outlined, and an example is worked out, below.
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ITERATIVE ALGORITHM

(0) Initialize a table as shown below; the parenthesized superscript on o(x) is a
counter and not an exponent.

n o (D) (x) dn Ln n-Ln
-1 1 1 0 -1

0 1 So 0 0

1 . . . .

The table will be completed in the steps below.
Initialize n to zero.

(1) If dy=0 thenset Ly41 = Ly, set 6@+ D(x) = oM (x), and go to Step (3).

(2) Find a row k where k<n and dg#0, such that k-Li (the last column of row k
in the table) has the largest value. Compute:

Ly+1 = MAX[Ly, Ly + (k)]
o+ x) = xIn+1-Ln, o@(x)-(dg/dy) - e (x)

(3) If n+1=m (or n+1=t+Ln+1)* then exit; o(“’*’])(x) is the desired error locator
polynomial.

* t+L, iterations are required to satisfy the basic guarantees of the code;
terminating on this second criterion is sufficient for generating the proper
error locator polynomial for correctable error cases, but may sacrifice some
protection against miscorrection of uncorrectable error cases.

(4) Compute:
Ln+1

dn+1 = \£° U{n+1) *Sn+1-i
i=0

then set n = n+1 and go to Step (1).
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FINDING ERROR LOCATIONS USING THE LOCATOR POLYNOMIAL

Methods for solving the error locator polynomial for cases of one and two errors
are developed below. A method for solving the three-error case is given in Section 5.4.
Methods for directly solving the four-error case are also known, but we shall not
discuss them.

For cases of more than four errors, the Chien search is typically used to find the
roots of the error locator polynomial. The Chien search could be used to find the roots
of the error locator polynomial for cases of fewer errors, but it is slower and in most
cases requires more logic.

COMPUTING ERROR VALUES

Once error location vectors are known, the syndrome equations become a system of
linear equations with the error values as unknowns. Determinants can be used to solve
the syndrome equations when the number of errors is low. The following method can
be used to solve the syndrome equations when the number of errors is high:

E: = z(l/aLiL-aLi
e Ly, Lj
[T 1+ (3707
j=1
Jj#L
where,
e = number of errors
i=1,2,°¢°,e
Lj = error locations
aLi = error location vectors

gi = coefficients of the error locator polynomial.

z (1/al1)

1

+

Ls ]e=1
+ (Sp + 01)*(1/a71) =2
+ (51 + 01°Sp + 02)'(1/0!1'1)2
+ (Sy + 0151 + 02+5g + 03)+(1/a"i)3

4+ o o
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THE REED-SOLOMON SINGLE ERROR CASE

ERROR LOCATOR POLYNOMIAL
1 Li
o(x) = [ ] (x+a'l)=x+0 (1)

i=1
SYNDROME EQUATIONS NEWTONS IDENTITIES
Sg = E (2) Sp*0 = S, (6)
S; = Eeal (3) S1+0 = Sy (7)
S, = E-a2l (4) Sp+0 = S3 (8)
S3 = E-a3L (5)

Solving equation (6) gives a simple expression for o:
o = S1/Sp

o may then be substituted into equations (7) and (8) for verification. The location L is
given as the log of o from equation (1) and the value E is given as Sg from equation

2).

THE REED-SOLOMON TWO ERROR CASE
ERROR LOCATOR POLYNOMIAL

2
o(x) = | | (x+ aLi) = x2 + g1°x + 0g (1)

i=1
SYNDROME EQUATIONS NEWTONS IDENTITIES
So = E1 + Ejp (2) Sg*03 + Sy°01 = S3 (6)
Sy = Eprall + Ej-al2 (3) S§1°05 + Sp3+01 = S3  (7)
Sy, = El'QZLl + Ez‘QZLz (4)
S3 = E;+a°rl + Ey-a3l2  (5)

The syndrome equations are a set of simultaneous non-linear equations which are
difficult to solve. Newton’s identities are a set of simultaneous linear equations which
can be solved by determinants for o1 and o) in terms of the syndromes.  Once we have
computed o1 and 09, we must solve (1) for Lj and Ly. From (1) we have: i

= aLl + aLz
o (L1tL2)

o1

gy =
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FINDING ROOTS OF THE TWO-ERROR LOCATOR POLYNOMIAL
One method for finding the roots of the two-error locator polynomial:.
x2 + 03°x + 03 =0 (1)
is to employ the substitution:
x = 01°y, C=0z/(01)%  (8)
to transform equation (1) into the form:
y2+y+C=0 (9)

Equation (9) can be solved by using C as an index into a table of roots:

Once roots Y1 and ‘Y2 of (9) have been found, roots X1 and X7 of (1) can be com-
puted by reverse substitution of equation (8). Then Lj and Ly may be computed as the
logs of X1 and X».

DETERMINING ERROR VALUES FOR THE TWQ-ERROR CASE

When Lj and Ly are known, the syndrome equations become a set of linear simul-
taneous equations in Ej and E5 and we can solve:

Sp = Eq + Ep (2)
s; = aP1.E; + oP2:E,  (3)

by determinants to obtain E1 and Ej.
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ONE- AND TWO-ERROR CORRECTION ALGORITHM
A) Assume a single error exists.

1) If SO=0 or S1=0, go to the two error case.

2) Compute a=S1/Sg.

3) Verify S9 = S1+0 and S3 = Sp-0. If either test fails, go to the two error
case.

4) Compute L=LOG(o) and E=S.
5) If the symbol at L is data, XOR value E at location L.
6) Exit.

B) Assume two errors exist.
1) Compute
Sp*S3 + S1°Sa (S2)2 + S1°+83

oy = and gy = >
Sp*S2 + (51)2 Sp*S2 + (51)

If the denominator or either numerator is zero, post an uncorrectable error
flag and exit.

2) Compute C=02/(01)2 and fetch Y; and Y2 from the root table. If C does not
correspond to a valid pair of roots, post an uncorrectable error flag and exit.

4) Compute X1=01+Y] and Xp=01:Y2
5) Compute L1 =LOG(X1) and Ly =LOG(X?2)
6) Compute
al2.50 + 5,
E1=m;— and E; = Sg + E;

7) if the symbol at Ly is data, XOR value E{ at location Ll, if the symbol at Ly
is data, XOR value Ej at location Lj.

8) Exit.
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CODEWORD EXAMPLE

Data Symbols Redundant Symbols
L | I I [ | |

Assume the data symbois are (in order of transmission) a2, al, and o3. Then the
data polynomial is:

D®X) = aZex2 + olex + o3

The redundant symbols can be computed using one of the encoder circuits shown
above. A trace of the contents of the registers is shown below:

data x3 x2 X 1
init 0 0 0 0
a2 at a0 Y ol
al a3 0 a3 al
a3 0 a3 al 0
The transmitted codeword is:

c(x) = a2+.x6 + alex5 + a%.x% + 0:%3 + a3:x2 + alex + 0
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SINGLE ERROR EXAMPLE

C(x) = a2:x8 + al-x5 + @5x% + 0:x3 + a3.x2 + alx + 0

E(x) = a2.x4
c'(x) = a2+x% + alex5 + a3.x% + 0:%x3 + a3:x2 + alex + 0
COMPUTE SYNDROMES

C' (x) So Sy Sy S3

INIT 0 0 (0] 0
a2 a? a2 a2 a2
al at a0 a2 ab
a3 ab a0 ab a3
0 ab al al al
a3 al a3 ) ab
al a2 ad al al
0 a2 ab a3 Y

COMPUTE ¢

o = 831/Sg = azs/az2 = at
VERIFY NEWTONS IDENTITIES

Sj-0 2 Sa
ab.at 2 o3
a(6+4 MOD 7) 2 ,3
a3 = o3

Sp+0
a3.at
o (3+4 MOD 7)
a0

COMPUTE ERROR LOCATION AND VALUE

L = LOG(0o) = LOG(a%) = 4

E =

Sg =
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TWQ ERROR EXAMPLE
Cc(x) = a2+x6 + @lex5 + @5.x4 + 0-x3 + a3+x2 + alx + 0
E(x) a2.x5 + alex?
Cc'(x) a?-x8 + a%.x5 + a5-x% + 0-x3 + a%%2 + alex + 0

COMPUTE SYNDROMES

C'(x) So S1 Sz S3

INIT 0 0 0 0
a2 a2 a2 a2 a?
at al ab 0 af
ad ab at a3 a2
0 ab a3 a0 a3
a0 a2 a2 a$ a3
al a4 ao 0 (15
0 at al 0 al

COMPUTE o

6 = 831/Sg = aljat = ot
VERIFY NEWTONS IDENTITIES

J

~Sy0 = 52
at.at 2 o3
«(4+4 MOD 7) 2 ,3

al # a3 => TWO ERRORS
COMPUTE ERROR LOCATIONS

Sp*S3 + S1°S2 3 (S2)2 + s1°83
gy = > = Q oy = > =
S0*S2 + (S1) S0*Sz + (S1)
C = 03/(01)2 = al
Y = a2 Yy, = ab
X] = 01°¥1 = a3:a? = a5 X3 = 07:¥; = a3:a® = a2
L; = LOG(X1) = 5 Ly = LOG(X3) = 2
COMPUTE ERROR VALUES
a 2'80 + Sq '
E] = —————— = a2 E; = Sg + E = ol
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ITERATIVE ALGORITHM EXAMPLE
Use the iterative algorithm to generate o(x) for the case above.

So S 52 S3

at al 0 al

TABLE GENERATED BY ITERATIVE ALGORITHM

n o (M) (x) dp  In  n-Ip
=1 1 1 0 -1

0 1 a4 0 0

1 x + ot 0 1 0

2 x + at a3 1 1

3 x2 + atex + al at 2 1

4 X2 + a7 *x + ao

TRACE OF ITERATIVE ALGORITHM
n=0 . ... (1) dg=a%<>0 => Go to (2).

(2) k = -1. dg/d-1 = a%/1 = 4. L; = MAX[0,0+0-(-1)] = 1.
o(1)(x) = x1e(1) + a4 (1) = x + a?.
(3) (n+l):m => 1<4 => Continue.
(4) dy = 0g*Sy + 01°Sg = 1+al + a%.a? = 0.
n=0+1=1. Go to (1).
n=1 (1) d1=0 => Ly = L; = 1. 0(2)(x) = a(1)(x) = x + o?.
Go to (3).
(3) (n+l):m => 2<4 => Continue.
(4) dy = 0g*Sy + 07°S; = 10 + at-al = a5.
n=1+1 = 2. Go to (1).
=2 (1) dy=ad<>0 => Go to (2).
(2) k =0. dy/dg = a@/a% = al. L3 = MAX[1,0+2-0] = 2.
0(3)(x) = xe(x + a%) + el (1) = x2 + a%:x + al.
(3)° (n+l):m => 3<4 => Continue.
(4) d3 = 0g*S3 + 01°Sy + 02°S1 = 1:al + a%4.0 + al-al = 4.
n=2+1 =3, Go to (1).
n=3 (1) dz=a%<>0 => Go to (2).
(2) k = 2. d3/dy = a%/a® = ab. 1, = MAX[2,1+3-2] = 2.
0(4) (x) = x0-(x2 + a%+x + al) + ab.(x + a?)
= x2 + a3.x + a0.
(3) (n+l):m => 4=4 => Stop
=4 og(x) = 0(4)(x) = x2 + a3:x + a%; same as case above.
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UNCORRECTABLE ERROR EXAMPLE

c(x) = a2:x6 + alex5 + a5%x4 + 0:%x3 + @3-x2 + alex + O

E(x) = a2.x% + a2.x4 + alex2

c'(x) = a2+x5 + a%ex3 + a3.x% + 0:x3 + a%x2 + alex + 0
COMPUTE SYNDROMES

C'(x) So S1 Sy S3

INIT 0 0 0 0
o2 2 o2 o2 a2
ad al a® 0 a0
a3 a9 al a3 0
0 a0 a? ad 0
a0 0 al 0 a9
ol al  of ol O
0 ol ad a3 a3

COMPUTE o

o = 851/Sgo = a5/a1 = ot

VERIFY NEWTONS IDENTITIES
Sq°0 2 Sa
aSeat 2 o3
a(5+4 MOD 7) 2 ,3
a2 # a3 => TWO ERRORS
COMPUTE ERROR LOCATIONS
Sg*S3 + S1°S3  (52)2% + sy+83

gy = = (13 gy = = (ZG
2 2
Sp*Sy + (S7) Sp*Sa2 + (S7)

C = 03/(01)2 = a® => UNCORRECTABLE ERROR
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MISCORRECTION EXAMPLE

C(x) = a2+x6 + alex5 + a%:x% + 0+x3 + a3x2 + 2lex + 0
E(x) = - a2.x5 + al.x? + at
C'(x) = a2.x6 + a%4+x5 + a5x% + 0:x3 + a0-x2 + alex + ot

COMPUTE SYNDROMES

C' (x) So S1 Sz S3

INIT 0 0 0 0
a? a2 a2 a2 a2
at al ab 0 a0
a3 ab al ad a2
0 ab a3 a® ad
a0 a2 a2 ab a3
al at a9 0 a5
at 0 a2 at a2

COMPUTE o

So = 0 => TWO ERRORS

COMPUTE ERROR LOCATIONS
Sp*S3 + S1°Sy (Sz)2 + S51°S3
gy = = a2 oy = = o5
S0°S2 + (S1)2 S0°S2 + (S1)2
C = 03/(01)% = ol
Y, = a2 Yy = ab
X1 = 01°Yy = a2.q2 = o4 Xy = 01°¥y = 02'06 = ol
L; = LOG(X1) = 4 Ly = LOG(X2) =1
COMPUTE ERROR VALUES '
al2.59 + 57
Ej = ———— = a° E; = Sg + E7 = af

all + oF2
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REFERENCE TABLE,

MULTIPLICATION TABLE
a 4 a 5 a 6

a% ol o2 o3
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ADDITION TABLE
0 a% al a2 a3 a4 a5 af
0 [a®|al|a2|a3|at|ad|ab
a%l0 [a3|ab|al|ad|at|a?
alla3{o |a%|a®|a2|ab|a®
a2|ab|at|0 [aB|al|a3|al®
a3|al{a%la5(0 [ab|a?|at
a?la%(a2]|al]|ab|0 |a0]a3
adlat|abla3|a2|a®|0 |al
ab|a2|a3|al|a|a3|al|0

ROOT TABLE

c Yy Yy

0] 0] a0

a9 - -

al a2 a®

a2 al ad

a3 - -

at al a3

a5 _— -

o« | —= | --




AN INTUITIVE DISCUSSION OF THE SINGLE-ERROR CASE

The following discussion provides an intuitive description of how the Reed-Solomon
code single-error case works. A particular example is used in order to make the discus-
sion more understandable. Finite field theory is intentionally avoided.

Consider a single-error correcting Reed-Solomon code operating on 8-bit symbols
and employing, on read, the binary polynomials:

PO = (x8 +1)
PL = (x8 + x6 + x5 + x4 + 1)

The correction algorithm requires residues of a function of the data, f(data),
modulo PO and P1 where: '

=
|
)

for Py, f£(DATA) = Dj (x)

N

(-
1]
o

=
|
[

for P, f(DATA) = xip; (x)

[
Il
o

N

and m is the number of data bytes. Di represents the individual data byte polynomials.
DO is the lowest order data byte (last byte to be transmitted or received).

The residues are computed by hardware implementing the logical circuits shown
below. These logical circuits are clocked once per byte.

o 58 o Ea o [ e [

O=aNWSsVIONN

OO F o 0 [0 F O-FO- (70
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The shift register for PO computes an XOR sum of all data bytes including the
check bytes. Since P1 is primitive, its shift register generates a maximum length se-
quence (255 states). When the P1 shift register is non-zero, but its input is zero, each
clock sets it to the next state of its sequence.

CORRECTION ALGORITHM

Consider what happens when the data record is all zeros and a byte in error is
received.

Both shift registers will remain zero until the byte in error arrives. The error
byte is XOR’d into the PO and PI1 shift registers. Since the PO shift register preserves
its current value as long as zeros are received, the error pattern remains in it until the
end of record. XOR’ing the error byte into the P1 shift register places the shift reg-
ister at a particular state in its sequence. As each new byte of zeros is received the
P1 shift register is clocked along its sequence, one state per byte.

The terminal states of the PO and Pl shift registers are sufficient for determining
displacement. To find displacement, it is necessary to determine the number of shifts
of the Pl shift register that occurred between the occurrence of the error byte and the
end of record.

To better understand the correction algorithm, consider a sequence of 255 states as
represented by the circle in the drawing on the following page. Let S1 be the ending
state of the Pl shift register and let SO be the ending state of the PO shift register (SO
is also the initial state of the Pl shift register). Let Sr be the reference state 0000
0001°. The number of states between SO and S1 must be determined. There are several
ways to do this. In this description a table method is used.

Refer again to the diagram on the following page. What we need to know is the
number of states between SO and S1. We construct a table. The table is addressed by
SO and S1, and contains the distance along the P1 sequence between the reference state
and any arbitrary state Sx.

First, SO is used to address the table to fetch distance dl. Next, S1 is used to
address the table to fetch distance d2. The desired distance (d), distance between SO
and S1 is computed as follows:

d = d2-dl; ifd<Othend = d+255

The distance d is the reverse displacement from the end of the record. The
forward displacement can be computed by subtracting the reverse dispiacement from the
record length minus one. The error pattern is simply the terminal state of PO, which is
S0. .
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Consider the case when the data is not all zeros. The check bytes would have
been selected on write, such that on read, when the entire record (including check
bytes) is processed by the PO and P1 shift registers, residues of zero resuit.

When an error occurs, the operation differs from the all-zeros data case only while
residues are being generated. A given error condition results in the same residues,

regardless of data content. Once residues have been generated, the operation is the
same as previously described for the all-zeros data case.

THE P1 SEQUENCE
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ALTERNATIVE ENCODING AND DECODING METHODS
FOR THE REED-SOLOMON CODE

There are many encoding and decoding alternatives for the Reed-Solomon code.
The best alternative for a given application depends on such factors as:

- Cost requirements

- Speed requirements

- Space requirements

- Sharing of circuits and resources

Some of these alternatives are described below.

ENCODING ALTERNATIVES

Encoding can be accomplished with the external-XOR form of shift register as well
as the internal-XOR form. An encoder circuit example using the external-XOR form of
shift register is shown below:

gx) = (x +a%(x + al) = x2 + a?.x + P

O
CONC

x1 -*——CB__ @

| %0
4 MUX
1| C(x)
D(x)
0
CHECK_SYMBOL_TIME
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Another encoding alternative is illustrated by the following example.

STANDARD ENCODER

AN _EQUIVALENT ALTERNATIVE ENCODER

! l ! | "
HAD-OIAD-OAD- OO
b ol e oS 9 . 405

b= o = Lo LA L
2169 2179 25 184 179
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BIT-SERIAL ENCODING

Encoding can be accomplished with bit-serial techniques. We illustrate using the
encoder implementing the external-XOR form of shift register introduced above. Rear-
ranging to place low-order to the right, we have:

4 3
i GATE I I
y
[+ > 3 L g2 ] %1 o 50 |
0| C(x)
D(x) L
MUX

All paths are symbol-wide (three bits for this example) and the GATE and MUX
are controlled by a signal which is asserted during clocks for data symbols. The field
GF(8) is generated by the polynomial:

3 +x+1
over GF(2). The code generator polynomial over GF(23) is:
G(x) = (x + a9 «(x + al)+(x + a2)(x + a3)
=x% + a2.x3 + a%.x2 + &9+x + af

The external-XOR form of shift register requires the computation of the sum of

four products of variable field elements with fixed field elements. Bit-serial multipliers

were introduced in Section 2.6. The circuit below shows a bit-serial implementation of
the encoder.
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BIT-SERIAL

MULTIPLIER
A b«
B <
Cle
z DI
GATE x2 x1 %0
y y Y
012—'® > Hol1|2—o|1]2 ol1]2
x3 MUX
0| C(x)
D(x)
1

The bit-serial multiplier circuit accomplishes in three clocks what the four multi-
pliers of the symbol-serial encoder accomplish in one clock. The Z register is initially
cleared, then on eve?' third clock it is again cleared and what would have been shifted
in is clocked into the x° register.

oQw»

4

v,
—17Z0 + 27 —*Q/ 722
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DECODING ALTERNATIVES

The standard form of syndrome circuit is:

C' (x) T

This circuit computes the syndromes:
S; = C'(x) MOD (x + al)

It is also possible to use the circuit form below:

G

C' (x)

This circuit computes modified syndromes:
S{' = al+Sj = al+[C'2(x) MOD (x + al)]
When this circuit form is used, the correction algorithm must be adjusted accordingly.

Decoding can also be accomplished with bit-serial multiply-and-sum techniques like
those discussed in Section 2.6 and implemented above for encoding.
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SHARING CIRCUITRY BETWEEN ENCODER AND DECODER

It is possible to share circuitry between the encoder and the decoder in several
different ways. Recall the general case of the generator polynomial, write redundancy
polynomial, and syndromes of a Reed-Solomon code of degree m:

G(x)

[ 0l gj(x) = | 0l (x + «07d)
J= J=

W(x) = xMeD(x) MOD G(x)
55 = C'(x) MOD g5 (x)

As we have seen, the processes of generating W(x) and generating S; each require
a different circuit configuration and a different set of finite field multipliers. Cost
motivates us to find some means for reducing hardware by sharing circuitry in perform-
ing these two functions.

One method for sharing circuitry is to use the encoder on read to assist with syn-
drome generation by feeding it the received codeword to generate the composite read
remainder:

R(x) = C'(x) MOD G(x)

The individual remainders (syndromes) can then be generated by dividing the composite
remainder by each factor of the generator polynomial. This second step can be ac-
complished with sequential logic, combinatorial logic, or software. In many cases, more
time can be allotted for the processing of each symbol during the second step than
during the first step due to the difference in degrees between the composite remainder
and the full received codeword.

Another method for sharing circuitry is to use the syndrome circuits for encoding.
The validity of the following approach is guaranteed by the Chinese Remainder Theorem
for polynomials.

Consider the set of parameters:
Pj = D(x) MOD gj(x) = D(x) MOD (x + ™0*})
which are the contents of registers of a set of circuits for j=0 to m-1 like the one

shown below, after clocking in a data polynomial D(x). We use Pj here to distinguish
from the syndromes S;, which are produced by similar circuits but have a received

codeword C’(x) polynomial as input.
—
Pj I ( :)

D(x) ¥
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Now observe that:
pj = o ™0+, [xm. p(x) MOD gi(o)]
Since gj(x) is a factor of G(x), we know that:
xM.D(x) MOD g;j(x) = [x™-D(x) MOD G(x)] MOD gj(x)
and so by definition of W(x), we have:
P = o™ 0%, [w(x) MOD gi(x)]
By noting that:

(x) = = W(a™0*3
W(x) MOD gj(x) W(x) amO"’j W(a )

we may expand in terms of the coefficients W; of W(x) to obtain:

m=1
P. = \O a(i_m)*(m0+j) .wi

These equations give the parameters P; in terms of the write redundancy coeffi-
cients Wi and a matrix of constants which dre powers of a that depend only on i, j, m
and mg. Inverting this matrix gives the write redundancy coefficients Wj in terms of
the parameters Pj and a set of transform constants Kj which also depend only on i, j,
m, and mg:
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To aid in understanding the implementation of the above equations, we first discuss
the following circuit, which is equivalent to the conventional form of encoder circuit
discussed previously.

CHECK_SYMBOL_TIME

When the CHECK_SYMBOL_TIME signal is asserted, the OUTPUT bus is fed back
into the dashed portion of the circuit by the MUX. The input to the multipliers is then
zero, so the contents of the registers, the write redundancy polynomial W(x), are not
altered as they are shifted out and appended to the data polynomial D(x) to form the
codeword C(x).
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The circuit below illustrates the method for sharing circuitry.

CHECK_SYMBOL_TIME

D(x) —

A
| ~(*K3,3 |
|

OUTPUT L o o _____

Note that in practice it is necessary to implement only the multipliers correspond-
ing to Kp-1j. To understand this, observe that from the development above it is clear
that given the same input data polynomial D(x), the dashed portions of both the con-
ventional and shared-circuitry methods will produce the same OUTPUT for Wp,_1, the
coefficient of the high-order term of the write redundancy polynomial W(x). Since the
portion outside the dashed box of each circuit is the same, and Wy,_1 is fed back in the
same manner for each circuit, they will produce the same output for Wp,.1, etc. Math-
ematical proof is left as an exercise for the reader.

The registers are labeled Sj because this same circuitry can be used to generate

the syndromes on read by presenting C'(x) at the input and not asserting the CHECK-
_SYMBOL_TIME signal. The OUTPUT bus is simply ignored, and the syndromes may be
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loaded from the registers after the last symbol of the received codeword has been
clocked in.

It is possible to take the input to the Kpy-g J multipliers from the input to the S;
registers instead of from their output. If this is”done, a register must be inserted in
the OUTPUT path before the MUX ogreserve clocking. It is also possible to take the
multipliers from the output of the multipliers.  If this is done, the values of the
Km-1,j multipliers are changed to:

& .o Km-1,3
m-1 = 0

rJ amo+j
to remove the extra factor of o ™0 +J.

Finally, it is also possible to. implement the shared circuitry method using the mod-
ified form of the syndrome circuit introduced above:

55 J—Camo'D)

The appropriate set (Kp-1,j or Km-l ;) of multiplier values is used on write,
depending on where their inputs™are taken. For the general case where mq7#0, using
this form of syndrome circuit on read produces modified syndromes:

M= M0+ .
Sj—a SJ

D(x)

and correction algorithms must be modified accordingly.
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EXTENDED REED-SOLOMON CODES

It is possible to extend certain Reed-Solomon codes by one or two symbols. The
additional symbols may be used as data in which case the minimum distance of the
extended code is the same as that of the original code, or as additional redundancy in
which case the minimum distance, and hence the correction power, of the extended code
is greater than that of the original code. When a Reed-Solomon code over w-bit sym-
bols is extended by two symbols, the maximum codeword size is 2¥+1 symbols. We il-
lustrate using g basic code of degree m=2t=2. Let us use our example field, GF(8)
generated by (x° + x + 1), and let the generator polynomial of the basic code be

2 .
6(x) = | | (x+ al)
i=1

(x + al)°(x + az)

x2 + (al + a2)+ex + al.a?
=x2 + atex + a3
ENCODING OF EXTENDED REED-SOLOMON CODE

Proceed in the usual fashion for the basic code:

W(x) [x2-D(x) MOD G(x)] = Wix + Wo
C(x) = x2.D(x) + W(x)

and form two extension symbols:
Notice that the extension polynomials

= 3
X3 C(x) MOD (x + a7) are identical to polynomials we would
_ 0 use to expand G(x) by one factor on
Xp = C(x) MOD (x + av) each end of its set of factors.

which may be transmitted following C(x):

DATA REDUNDANT EXTENSION

Dg | D3 | D2 | Dy | Do | W1 | Wo | X3 | Xpo

SYMBOLS SYMBOLS SYMBOLS

The unextended degree four code discussed above and this extended degree two
code each have four redundant symbols per codeword and each can correct two symbols
in error per codeword, but the former has three data symbols per seven-symbol code-
word while the latter has five data symbols per nine-symbol extended codeword.
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ENCODING CIRCUITRY FOR EXTENDED REED-SOLOMON CODE

D(x) 1t —'®~

——eee—ept
REDUN_TIME c(x)
00| x2.C(x) + X3°X + Xp
>4 01 —
git
——7@——»— X3
—~(D1%
X0_TIME !
X3_TIME
SIGNAL DEFINITIONS
ID4ID.3ID2|D1IDOIW1IWOIX3JXOI
I | | 1 I I I | | I
s I
REDUN_TIME I
X3_TIME II .
X0_TIME 1
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DECODING CIRCUITRY FOR EXTENDED REED-SOLOM DE

x2.C'(x) + X3°x + Xg S,
V@—v-o

1
: 781
o
T
N (I
) 0
X3_TIME T
. 1
A s3
—{(+ }— 0|
X0_TIME

g




DECODING OF EXTENDED REED-SOLOMON CODE

: Compute the syndromes for the basic code over the received codeword C'(x) in the
usual fashion:

S, = C'(x) MOD (x + a2)

C'(x) MOD (x + al)

S1
and compute two more syndromes using the received extension symbols X3 and X():
S3 = X3 + [C'(x) MOD (x + a3)]

So = Xg + [C'(x) MOD (x + a9))

CORRECTION OF EXTENDED REED-SOLOMON CODé'

The four syndromes of the extended code allow correction of up to two symbols in
error. When no error falls into either extension symbol, the decoding process produces
the same syndromes as for the degree four code shown above, and correction proceeds
in exactly the same manner.

When at least one error falls into an extension symbol, we have two cases: those
in which one or two errors occur and all errors fall into the extension symbols, and
those in which two errors occur and one of the errors falls into a data symbol or one
of the redundant symbols of the basic code and one of the errors falls into an exten-
sion symbol.

When errors occur only in the extension symbols, S; and Sp will both be zero.
This cannot occur for any correctable error pattern, so we know within the power of
the code that no error in the basic codeword exists.

When one error falls in a data symbol or one of the redundant symbols of the
basic code and one error falls into an extension symbol, both Sy and Sy and either Sp
or S3 will be the same as for the degree four code shown above. We may solve for the
location and value of the first error using S; and Sp by a process similar to that used
above, and the fact that either Sg or Sj3 satisfies Newton’s identities is sufficient to
confirm within the power of the code that the computed location and value of the
single error in the basic codeword are valid.
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EXTENDED DECODING OF REED-SOLOMON CODE

Extended decoding refers to techniques that allow successful correction of many
error situations which exceed the basic guaranteed correction capability of a Reed-
Solomon code. This is distinct from and not to be confused with the concept of an
extended Reed-Solomon code introduced above. Several extended decoding techniques
are discussed below. .

ERASURE CORRECTION WITH EXTERNAL OR INTERNAL POINTERS

A Reed-Solomon code can correct higher raw error rates if error pointer informa-
tion is available from some external source. External pointer sources include modula-
tion-code run-length violations, marginal timing, and marginal amplitude. If signal drop-
out is the predominant type of error and if the burst length distribution shows a high
probability of long defects, modulation-code run-length violations can be an excellent
pointer source. When a block-modulation code is used with byte or nibble boundaries,
run-length violation pointers will accurately identify bytes in error. When a (2,7)-like
code is used, a run-length violation pointer may flag a byte adjacent to the byte in
error. This error location uncertainty can be overcome to some extent in the decoding
algorithms.

A simple method for transferring pointers from a storage device to its controller is
to implement a special read command that places pointer flags on the data line (or bus).
These flags replace data field bytes (data and redundancy) only; all track format infor-
mation bytes (sync, resync, etc.) are transferred as for a normal read command. When
the correction algorithm encounters an uncorrectable sector, it returns to the calling
routine with a flag requesting that pointers be read. The calling routine executes the
special read command for the required sector and pointer flags are placed on the data
line (or bus) and buffered at the controller. The calling routine returns control to the
correction routing, which uses the pointers to assist correction. No support hardware is
required at the controller to support this technique. If modulation-code run-length
violations are the only pointer source, the only support hardware required at the drive
is a multiplexer to switch between the data line and the invalid-decode line from the
modulation decoder.

The capability of an interleaved Reed-Solomon code can be extended by using error

locations from adjacent correctable interleaves as erasure pointers for an interleave that
is uncorrectable without the use of erasure pointers.
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Described below is a well-known algorithm for erasure correction. More efficient
algorithms do exist, but this one was chosen for inclusion for its instructional value.

1) Generate an erasure-locator polynomial from the known (or suspected) erasure

locations:
n .
r(x) = | ] (x + a 1)
i=1
=xM + ryex"1 + oo + P_qex + 'y
where

n = the number of available erasure pointers
P; = the location specified by erasure pointer number i

2) Generate (m-n) modified syndromes Tj from the m raw syndromes S; and the
coefficients of the erasure-locator polynomial:

n

Tjen = \:o Fy+5i-5
=0

for i=n to m-1, where m is the degree of the code’s generator polynomial.

3) Generate the coefficients of the error locator o(x) from the modified syn-
dromes Tj.

4) Find error locations using the error locator polynomial.

5) Compute error values using the raw syndromes S; and the erasure pointers
and error locations.

The error value for a false erasure pointer will be zero, so a false erasure pointer
will not necessarily cause miscorrection, but each false erasure pointer decreases the
remaining correction capability, and increases the chance of miscorrection, by decreasing
by one the number of available modified syndromes.
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ERASURE CORRECTION EXAMPLE

[This example uses the same field and polynomials
as the uncorrectable error example shown above.]

c(x) = a2:x% + alex® + @5ex% + 0-x3 + 23%x2 + alex + 0
E(X) = aZ.XS + a2.x4 + a1°x2
C'(x) a2.x6 + a%.x5 + o5.x% + 0-%x3 + a0-x2 + olex + 0

COMPUTE SYNDROMES

C'(x) So Sq Sy S3

INIT 0 0 0 0
a? a? a? a? a2
at a2 a2 a2 a2
a3 0 a3 al a3
0 0 ab a3 ab
af al a3 ab at
al al ot al a0
0 al a3 a3 a3

POINTERS
n=2
P =4
P, =5

COMPUTE ERASURE LOCATOR i(x)

n pa
O(x) = | | (x+ ai
i=1

(x + a)+(x + ad)
x2 + (e + ad)x + a%:0d
a0.x2 + o0ex + @2
I."()'X2 + I'1°x + Ty
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GENERATE MODIFIED SYNDROMES

-n_ .

Tij-n = \:o rj*8j-y for i = n to m-1
j=0

Tg = I'g*Sy + I'1*S3 + I'x°Sp

ad®

= a0.03 + ¢0:05 + 2.0l

Tq = I'g*S3 + I'1*Sy + I'x*Sy
= a%a3 + a%-a3 + @2:a5 = of

COMPUTE ERROR LOCATOR (x)

o =Ty/Tg = a%/a5 = @2
COMPUTE ERROR LOCATION
L = log(og) = 2
COMPUTE ERRATA VALUES

(The following equations are from Section 5.4.)

Xy = aL = o2
Xy = apl = o4
X3 = a¥2 = o5
S2+S7°* (Xa+X3)+Sg* X2 X3
E1= =al
(X1+X2) * (X1+X3)
Sp*X3+51+E;7* (X1+X3)
Ey = = 2
Xo+X3
E3 = Sg+Ej+Ejp = @2
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EXTENDED CORRECTION ALGORITHMS

It is possible to extend the correction capability of a Reed-Solomon code by using
algorithms that decode beyond the basic code guarantees without using erasure correc-
tion. Examples of error situations which, though not guaranteed to be handled by
extended decoding techniques, have a certain probability of being handled include:

(a) A single long burst where the number of bytes in error in a codeword ex-
ceeds the basic guarantees of the code.

(b) Multiple long bursts, or a long burst in combination with random byte-errors,
where the total number of bytes in error in a codeword exceeds the basic
guarantees of the code.

(¢©) A number of random byte-errors in a codeword which exceeds the basic
guarantees of the code.

AN EXAMPLE OF EXTENDED DECODING

Assume a code with generator polynomial G(x) over GF(28) of degree 16, distance
d=17, guaranteed to correct t=8 symbols in error in a codeword. Recall some definitions
- for Reed-Solomon codes:

G(x) = The V§enerator polynomial of  a Reed-Solomon code over
GF(2V%).
n = The length of a codeword; n<2W-1.
m = The degree of the generator polynomial G(x).
d = The minimum distance of a Reed-Solomon code with generator

polynomial of degree m; d=m+1.

The maximum number of symbols in error guaranteed correc-
table by a Reed-Solomon code with generator polynomial of
degree m; t=INT[m/2].

t

I

We first illustrate decoding beyond code guarantees without erasure pointers with a
method for case (a) above. Consider a single error burst which is thirteen bytes in
length and affects the last thirteen bytes of the received codeword. The error poly-
nomial is:

Clearly, the sixteen-byte remainder:
R(x) = E(x) MOD G(x) = E(x)

contains three consecutive high-order bytes that are all zeros followed by thirteen low-
order bytes that constitute the error pattern.
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Now consider a single thirteen-byte error burst that ends J bytes prior to the end
of the received codeword. The error polynomial is:

E(x) = EJ+12°XJ+12 + eee + EJ+1'XJ+1 + EJ'XJ

and nothing can be guaranteed about the zero/nonzero status of the coefficients of the
sixteen byte remainder:

R(x) = E(x) MOD G(x)
However, if we premultiply R(x) by x~J and form a new remainder:
Ry(x) = x"J+-R(x) MOD G(x)
x~J.[E(x) MOD G(x)] MOD G(x)
x"J.E(x) MOD G(x)
x"JE(x)
Eg+12°%12 + <+ + Egy1°x + Eg

1

we again obtain a remainder which contains three consecutive high-order bytes that are
all zeros followed by thirteen low-order bytes that constitute the error pattern.

The equation above is the basis for the decoding method. We count and record
the number of consecutive high-order zero coefficients in the initial remainder, record-
ing the low-order coefficients if the number of consecutive high-order zero coefficients
is sufficiently high. Then we compute:

R1(®) = x"1+R(x) MOD G(x)

and repeat the counting/recording process. This process is performed n-1 times, where
n is _the length of the codeword, to compute Ry(x) through Rp_1(x) and account for all
possible ending locations of the long burst. The pattern containing the highest number
of consecutive high-order zero coefficients will be that of the long burst itself, which
will have been segregated at the low-order end of the remainder.

The detection of some minimum number of consecutive high-order zero bytes (three
for the given code operating on a full-length codeword, as shown below) can be used to
flag the existence of a single long burst. The necessary number of consecutive high-
order zero coefficients is established by the required miscorrection probability.
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MISCORRECTION
For a codeword of length n, the miscorrection probability (units: miscorrected

codewords per uncorrectable codeword) for a conventional decoding method against all
combinations of random errors which exceeds the capability of the code is:

n
& 1] L
-\ 255
Ppc1 = -
A 256t+l

where,

n!
[;] B r!(n-r)!

The miscorrection probability (units: miscorrected codewords per uncorrectable
codeword) of the extended decoding method outlined above when used to decode a single
burst of up to L bytes is roughly:

Ppea = 1-[1-256~(m~L)n

For a full-length (n=255) codeword with t=8, we have:

3 [255}
e i .
\ - 2551
p = = 2.1E-5
mel 4—3 2568+1
1=

while for n=255, m=16, and L=13, we have:

Ppcz = 1-[1-256731255 = 1.sE-5
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Thus the extended decoding method outlined above could be used to correct a
single burst of up to thirteen bytes in a full-length codeword with a miscorrection
probability comparable to that of a conventional decoding method against all combina-
tions of random errors.

It is important to note that for high-performance ECC applications, an auxiliary
error detecting code is usually implemented to improve data accuracy. In some cases,
the dedicated error detection code may provide most of the protection against the
transfer of undetected erroneous data.

INTERLEAVING

When interleaving is used, the maximum length of a decodable single burst is
mulitiplied by the number of interleaves. Consider the same code described above but
impiemented with ten-way interieaving in sectors of 1040 data bytes; each interieave
contains n=(1040/10+16)=120 bytes. The conventional miscorrection probability (units:
miscorrected codewords per uncorrectable codeword) against all combinations of random

errors is:
= [1] ...
_\ 2551

3 = m—g22" & 4 4E-8
mel 4—3 2568+1
1=

while for I=10, m=16, and L=12, the miscorrection probability for this extended decoding
method is:
Ppe2 = 1-[1-256"4]120 ~ 2 gE-8

Thus the method outlined above will allow successful decoding of a single burst of
up to I*L=120 bytes in a ten-way interleaved sector of 1040 data bytes with a miscor-
rection probability comparable to that achieved using a conventional decoding method in
decoding all combinations of random errors.
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A SECOND EXAMPLE

We next illustrate decoding beyond code guarantees without erasure pointers with a
method for case (b) above, also for a ten-way interleaved sector of 1040 data bytes.
Consider an error burst which is 100 bytes in length (ten consecutive bytes in error in
each of the ten interleaves) that ends J bytes prior to the end of an interleave, to-
gether with other error burst(s) or random byte error(s) which affect no more than one
byte in any one interleave. The error polynomial for an interleave is:

E(x) = EA'XA + EJ+9.XJ+9 4+ eee 4 EJnxJ

where A is the location of the single byte in error, which may either precede or follow
the long burst. If we premultiply by x™ then the sixteen byte remainder is:

Ry(x) = x"J-E(x) MOD G(x)
= [Ep*xA™J MOD G(x)] + [Eg+9-X2 + <+« + Eg]

All of the sixteen coefficients of the first term are nonzero, while the six high-
order coefficients of the second term are equal to zero. Methods are known for decod-
ing directly from the remainder without computing the conventional syndromes, and it is
possible to solve for the location and value of a single error using two of the six high-
order remainder coefficients, leaving four for verification. Once the location and value
of the single byte in error have been computed and verified, its contribution to the ten
low-order coefficients of the remainder can be removed, leaving just the error pattern
of the long burst.

The decoding method for case (b) is similar to that for case (a) above. We at-
tempt to decode some restricted number of bytes in error (one for this particular ex-
ample) using the first few high-order coefficients of the initial remainder, count and
record the number of consecutive high-order coefficients which are consistent, and
record the low-order coefficients if the number of consecutive consistent high-order
coefficients is sufficiently high (six for this particular example). Then we compute:

R1(x) = R(x) MOD G(x)

and repeat the decoding/counting/recording process. This process is repeated n-1 times,
where n is the length of the codeword, to compute Rj(x) through Rp-1(x) and account
for all possible ending locations of the long burst. The low-order coefficients of the
remainder containing the highest number of consecutive consistent high-order coeffi-
cients can be adjusted to remove the contribution of the decoded and verified errors,
leaving the pattern of the long burst, which will have been segregated at the low-order
end of the remainder.

The detection of some minimum number of consecutive consistent high-order coef-
ficients can be used to flag the existence of a single long burst together with up to
some maximum number of other bytes in error in a codeword. The necessary number of
consecutive high-order zero coefficients is again established by the required miscorrec- -
tion probability.
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The miscorrection probability for each remainder Rj(x) for this method when used
on n-byte codewords to decode a long burst contributing L consecutive bytes in error
together with up to K other bytes in error per codeword, where K<INT[(m-L)/2], is:

H
1] 2ss5i

_K_

\
P. =
med T 256M-L

i=0

and the total miscorrection probability (units: miscorrected codewords per uncorrectable
codeword) for all n values of J is:

Pncsa = 1-[1-Ppc3]?

For m=16, L=10, K=1 in a ten-way interleaved sector of 1040 data bytes, the
miscorrection probability at each value of J is:

[120]
1 2551

2565

% 1.09E-10

and the total miscorrection probability is:
Ppc4 = 1-[1-1.09E-10]120 = 1.3E-8

Thus this method would allow successful decoding of a long burst of up to I*L=100
bytes in combination with up to one other byte in error per interleave with a miscor-
rection probability comparable to that achieved using a conventional decoding method in
decoding all combinations of random errors.

Note that a logical extension of the decoding method for both cases (a) and (b)
for an interleaved code is to require consistency across interleaves in the decoded
location of the long burst.

CONCLUDING REMARKS

The techniques discussed above were selected for ease of understanding and are by
no means the best or only methods which exist for extending the correction power of
long-distance Reed-Solomon codes. It is possible, with or without erasure pointers, to
efficiently decode multiple long-burst errors and combinations of long-burst errors and
random byte-errors which exceed the basic guarantees of a code. Long-distance Reed-
Solomon codes possess much greater correction power against both long-burst and
random byte-errors than has traditionally been understood.
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3.5 b-ADJACENT CODES

The b-Adjacent codes are parity check codes constructed with symbols from
GF(Zb), b>1. A subset of these codes is similar to the Reed-Solomon codes, but in many
cases encoding for a b-adjacent code is less complex than encoding for a Reed-Solomon
code with an equivalent capability.

Check symbols are generated on write and appended to data. On read, check
symbols are generated and compared with the write check symbols. The XOR differen-
ces between the read check symbols and write check symbols determine the syndromes.
The syndromes are used to compute error pattern and displacement information. Errors
within the check bytes must be detected with special tests.

The IBM 3370, 3375, and 3380 magnetic disk drives employ b-Adjacent code techni-
ques. Several of these techniques are described below.

EXAMPLE #1 - A CODE TO CORRECT A SINGLE WORD ERROR

Consider a b-Adjacent code using two 16-bit shift registers, Py and P, defined by
the polynomials below:

P = (x16 + 1)
P = (x16 + x12 4+ %3 + x + 1) [Primitive]

The properties of these polynomials enable the code to correct a single word (16
bits) in error in a 65,535 word record.

The write and read check words (CO and Cl) are generated by taking residues of a
function of the data, f(data), modulo PO and P1, where:

=
i
=

for Pg, f(DATA) = Dj (x)

(=
1l
o

N

.]\/|E
o |l
(o)

(=
I
o

for Py, £(DATA) = x1.pj (x)

and m is the number of data words. Dj(x) are the individual data word polynomials. Dg
is the lowest order data word (last data word to be transmitted and received).
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The residues are computed by hardware implementing the logical circuits shown in

figure 3.4.1 below. These logical circuits are clocked once per word. The Pg shift
register computes an XOR sum of all data words. The Pj shift register computes a
cyclic XOR sum of all data words. Since Py is primitive, its shift register generates a
maximum length sequence (65,535 states). When the Py shift register is nonzero, but its
input is zero, each word clock sets it to the next state of its sequence.

On read, the check words read from media are XOR-ed with the computed check

words to obtain syndromes SO and S1.

y
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G
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Figure 3.5.1
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65,535-d

Figure 3.5.2

Figu:e 3.5.3
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CORRECTION ALGORITHM

Consider what happens when the data record is all zeros and a word in error is
received.

Both shift registers will remain zero untl the word in error arrives. The error
word is XOR-ed into the Py and Pp shift registers. Since Pg preserves its current value
as long as zeros are received, the error pattern remains until the end of record. XOR-
ing the error word into Py, places it to a particular state in its sequence. This state
will be referred to as the initial state. As each new word of zeros is received the Py
shift register is clocked along its sequence, one state per word.

The terminal state of Pq is the error pattern. The terminal states of P and Py
together establish error displacement.

To find displacement, it is necessary to determine the number of shifts of the Py
shift register that occurs between the occurrence of the error word and the end of

record.

To better understand the correction algorithm, consider a sequence of 65.535 states
as represented by the circle of Figure 3.5.2.

Let Sy be the terminal state of the P; shift register and let Sg be the terminal
state of the Pg shift reglster Sg is also the initial state of the Py shift register.

The number of states between S and S; must be determined. There are several
ways to do this. For this simple example an impiementation is assumed that clocks Sy
forward along the Pj sequence until a match is found with Sg. The number of clocks
subtracted from 65,535 is the displacement from the end of data counting the last data

word as one.

Consider the case when the data is not all-zeros. The check words are selected
on write such that residues of zero result on read, when the entire record is processed
by the Pg and Pj shift registers. When an error occurs, the operation differs from the
all-zeros data case only while residues are being computed. A given error condition
results in the same residues, regardless of data values. Once residues have been com-
puted. the operation is the same as previously described for the all-zeros data case.

If there is a single word in error in the record and it is check word Cg, then Sj
will be zero and SO will be nonzero. However, if check word C; is the word in error,
Sg will be zero, and S will be nonzero.
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EXAMPLE #2 - SINGLE-WORD ERROR CORRECTION IN TWO INTERLEAVES

The code of example #1 could be implemented in multiple interleaves.

Consider a code with two interleaves. Assume four shift registers Pg, P;, P and
P3.

The Pg shift register computes an XOR sum of all even data words. Pj computes
an XOR sum of all odd data words. P2 and P3 compute cyclic XOR sums of even and
odd data words respectively. '

Pp and P determine the pattern and displacement for the even interleave. Pj and
P3 determine the pattern and displacement for the odd interleave.

This code can be used to correct a single word error in an even interleave and a
single word error in an odd interleave. The error words need not be adjacent. How-
ever, correction can be restricted to double word adjacent errors by requiring a par-
ticular relationship between interleave displacements.

If the record length is even, then the odd interleave displacement (from the end of
the record) must be either equal to, or one greater than the even interleave displace-
ment.

A double adjacent word error starting on an even word will cause interleave
displacements to be equal. A double adjacent word error starting on an odd word will
cause the odd interleave displacement to be one greater than the even interleave dis-
placement.
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EXAMPLE #3 - SINGLE-WORD ERROR CORRECTION
USING A NONPRIMITIVE POLYNOMIAL

The polynomial Py of example #1 is primitive. Therefore, it generates two sequen-
ces; a sequence of length one when initialized to zero; a sequence of length 65,535
when initialized to any nonzero state.

Consider another code where Py is degree 16 and irreducible but nonprimitive. As-
sume that P; has a period of 257. Then it would have 256 sequences, the zero sequence
of length one and 255 sequences of length 257. The operation of the code and dis-
placement computation would be identical to the code of example #1 except that the
record length, including check words would be limited to 257.

The operation of the code is unaffected by the fact that P has multiple sequen-
ces. However, it is very important that all sequences of Pj are of an equal length,
excepting the zero sequence. This condition is met by all 1rreduC1b1e polynomials. The
condition is also met by some composite polynomials, but not all.

EXAMPLE #4 - A CODE TO COMPUTE DISPLACEMENT MODULO SOME INTEGER

The code of Example #3 could be part of a larger code. For example, instead of
computing error displacement for a 257-word record, displacement modulo 257 could be
computed for a larger record.

In this case, if the data record is all-zeros and an error is received, the Pjp shift
register could traverse its sequence many times before the end of record is reached.
See Figure 3.5.3.

Another part of the overall code might compute displacement modulo some other
integer that is relatively prime to 257. The overall displacement then would be com-
puted using the Chinese Remainder Method.

EXAMPLE #5 - A CODE TO CORRECT DOUBLE-WORD ADJACENT ERRORS

The interleave code of Example #2 uses four shift registers. Its capability includes
the correction of double-word adjacent errors.

Consider a code using only three shift registers (Pg, Py, P2) that corrects most
double-word adjacent errors.

The Pg shift register computes an XOR sum of all even data words. The Pj shift
register computes an XOR sum of all odd data words. The Pj shift register processes
all data words (odd and even). Its definition and operation are identical to that of the
Py shift register in the previous examples.
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Assume the data to be all zeros. Assume that a double word adjacent error oc-
curs. The two adjacent words in error will be XOR-ed into the Pg and Py shift regis-
ters. Which shift register receives the first word in error depends on whether the
error starts on an odd or even word. When the first error word is received, it is XOR-
ed into the Py shift register, after which Py is advanced one state along its sequence.
Next, the second error word is XOR-ed into P3. Pp is again advanccd one state along
its sequence.

Py continues to be advanced along its sequence once per data word until the end
of record is reached.

The final states of shift registers Pg, Py, P2 are syndromes Sg, Sj, S3.

So and S are the error pattern. Assume that it is known from another part of an
overall code, that the error started in an even word. Then, the error displacement can
be found by advancing Sy along the Py sequence until a k’th state is found, such that,
zero results when Sg is XOR-ed with the k’th state and the result is advanced one state
along the P sequence and XOR-ed with S;. The procedure for finding displacement
would be slightly different if the error started on an odd word.

This code would not allow correction of all double word adjacent errors. If the
second word in error is equal to the first word in error shifted once along the Pp
sequence, the error is not detected at all and correction cannot be accomplished.

Using two codes of this type will overcome the problem, providing the Py polyno-
mials of the two codes are different and satisfy a particular criteria.
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USING FINITE FIELD MATH WITH THE b-ADJACENT CODE

Let powers of a represent the elements of a field. Let reverse displacement mean
the displacement from the last data word to the first word in error, counting the last
data word as one.

In example #1, displacement is computed by shifting S1 forward along the Pj
sequence until a match is found with SO. In terms of finite field math, j must be
determined, where:

Si+ad +S9 =0

The reverse displacement is then (-j) MOD 65,535.

For example #5, j must be determined where if the double-word error starts in an
even word:

(Sz-aj + Sg)-a = S1
and if the double-word error starts in an odd word:

(S2+of + S1)-a =Sp
The reverse displacement is then (j) MOD 65,535.
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CHAPTER 4 - APPLICATION CONSIDERATIONS

4.1 RAW ERROR RATES AND NATURE OF ERROR

Error rates and the nature of error must be characterized before designing and test-
ing a real-world error-control system. The error characteristics should be determined
by a combination of measurement and estimation. The estimation should be based on
experiences with similar products and technologies. Data typically required is listed
below.

1. Defect distribution (number of defects per media of each defect length).

2. Soft-error distribution (number of soft errors versus total bits transferred
for each error burst length).

3. Methods of defect identification at the time of manufacture.

4. Percentage of defects and percentage of soft errors that result in loss of
sync.

5. Probability that a loss of sync results in the phase lock loop (PLL) staying
off frequency.

Probability of sync framing error.
Probability of false sync detection.

Change in defect rate versus media usage and storage time.

¥ 0 N &

Change in soft error rate versus media usage and storage time.
10. Information on any clustering of defects or soft errors, such as:

. High probability of multiple bursts.

. High probability of long bursts.

. Higher error rate at particular tracks.
. Periodic misregistration.

. Interference from another function.
Weak areas of media.

. Media deformity.

. Contamination.

ge O A0 O

11. Other recovery means that may be used and their effectiveness. Some re-
covery techniques used on prior storage products are listed below.

a. Head offset.

b. Detection window shift.

¢. VFO bandwidth change.
d. Detector threshold change.
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12.

13.

14.

15.

Relationship between decoded bits in error and encoded bits in error for
the read/write modulation method used.

Available pointer information that can be used for erasure correction.
Some sources of pointer information on prior storage products are listed
below.

a. Excessive phase shift.
- b. Excessive amplitude deviations.

¢. Invalid code found by the modulation method.

d. Error locations from adjacent interleaves.

Information on usage. For example, expected bits read per day and ex-
pected accesses per day.

Record sizes.
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4.2 DECODED ERROR RATES

Error correction is used in communication systems to improve channel throughput.
It is used in storage device subsystems to improve data recoverability. Part of the
design of every error control system is determining code performance. The block (or
decoded) error rate for a specified raw error rate is one measure of performance.

The equations and tables below and on the following pages can be used to deter-
mine the block error rate when raw error rate and the number of errors corrected per
block are known. A block error exists if, after performing error correction, the data
is erroneous. The block error rate is the ratio of block occurrences to blocks trans-
ferred. Raw error rate for the equations is the ratio of raw error occurrences to a
unit of data transfer. The unit of data transfer is specified in each case. The raw
error rate for the tables is the ratio of raw error occurrences to bits transferred. An
error may be a bit, symbol, or burst error. Errors are assumed to be random; the
equations and tables give erroneous results if they are not.

In the equations, the following notation represents the number of ways to chose r
out of n without regard to order.
n| _ n! _ —I——T—r—l (n-3j)
[r] T rl*(n-r)! 3=0 (r-3)
Some of the probability equations given on the following pages can be reduced in
complexity by using the following relationships when applicable.
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BIT-ERROR PROBABILITIES

Let Pe be the raw-bit-error rate. Let the raw-bit-error rate be defined as the
ratio of bit error occurrences to total bits transferred; that is, bit errors per bit. The
equations below give probabilities for various numbers of bit errors occurring in a block
of n bits. '

PROBABILITY OF EXACTLY r BIT ERRORS IN A BLOCK OF n BITS

pr =[] *(Pe)T*(1-Pe) 7

PROBABILITY OF ZERO BIT ERRORS IN A BLOCK OF n BITS

Pg = [g]*(Pe)o*(l-Pe)n = (1-Pg)N

PROBABILITY OF ONE BIT ERROR IN A BLOCK OF n BITS

Py = [2]*<Pe)1*<1—Pe>““1

PROBABILITY OF AT LEAST ONE BIT ERROR IN A BLOCK OF n BITS

Pr = P1+Py+++++Pp = 1-Pg

a1 —
N
o

PROBABILITY OF TWO OR MORE BIT ERRORS IN A BLOCK OF n BITS

Pr = Pp+P3+--++Pp = 1-Pgp-P;
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R
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=
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DECODED ERROR PROBABILITIES FOR A BIT-CORRECTING CODE

Block length in bits

=
]

Number of bits corrected per block
0 for an error-detection-only code

i

Pe = Raw bit error probability (units: bit errors per bit)

_n_
BLOCK ERRORS _ \ _ [n i1 o yn-i
BLOCK ~ ! [i] * (Pe) * (1 Pe)

BLOCK ERRORS _
BIT

2
S
*

(3] *per ixa-peyn-t

~ )__(i+é)* 2]*(Pe)i*(1-Pe)n“i

BIT ERRORS
BLOCK

BIT ERRORS

BIT (i+e)*[1;:|*(Pe)i*(l_pe)n-i
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BURST-ERROR PROBABILITIES

Let Pe be the raw burst-error rate, defined as the ratio of burst error occurrences
to total bits transferred, with units of burst errors per bit. The equations below give
the probabilities for various numbers of burst errors occurring in a block of n bits. It
is assumed that burst length is short compared to block length.

PROBABILITY OF EXACTLY r BURST ERRORS IN A BLOCK OF n BITS

pr = [7]*(Pe)T*(1-pe) "7

PROBABILITY OF ZERO BURST ERRORS IN A BLOCK OF n BITS

Po = [3]*(Pe>°*(1—Pe>“ = (1-Pe) "

PROBABILITY OF ONE BURST ERROR IN A BLOCK OF n BITS

Py = [2]*(Pe)l*(1‘Pe)n_l

PROBABILITY OF AT LEAST ONE BURST ERROR IN A BLOCK OF n BITS

-

Pr = P+Py+++++P, = 1-P

al
v
o

PROBABILITY OF TWO OR MORE BURST ERRORS IN A BLOCK OF n BITS

Pr = Py+P3+++++Pp = 1-Pp~P1

b

2]
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[ay
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DECODED ERROR PROBABILITIES FOR A BURST-CORRECTING CODE

n = Block length in bits
e = Number of bursts corrected per block
= ( for an error-detection-only code
Pe = Raw burst error probability

(units: burst errors per bit)

BLOCK ERRORS _, n 1 -1
BLOCK ~ \f [i] * (Pe) 1 (1‘Pe) n-i
i>e

.

_n_
BLOCK ERRORS _ 1 ,\ [n iy 1_m yn-i
BIT ~ H *f [i]*(Pe) *(l Pe)
i>e
n
BURST ERRORS _ \ n iy ra_m =i
BLOCK |/ (1+e)*[i]*(Pe) *(1-Pe)
i>e
n
BURST ERRORS _ 1 . n ; -
SRS w L u)  (ive) [} ¥ (pe) ix(1-pe) i
i>e
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SYMBOL-ERROR PROBABILITIES

Let Pe be the raw-symbol-error rate, defined as the ratio of symbol error occur-
rences to total symbols transferred, with units of symbol errors per symbol. The equa-
tions below give probabilities for various numbers of symbol errors occurring in a block
of n symbols.

PROBABILITY OF EXACTLY r SYMBOL ERRORS IN A BLOCK OF n SYMBOLS

pr = [B]*(pe)** (1-pg) "7

PROBABILITY OF ZERO SYMBOL ERRORS IN A BLOCK OF n SYMBOLS

Po = [g]*(Pe)o*(l‘Pe)n = (1-Pe)"

PROBABILITY OF ONE SYMBOL ERROR IN A BLOCK OF n SYMBOLS

Py = [2]*(Pe)1*<1-Pe)n‘1

PROBABILITY OF AT LEAST ONE SYMBOL ERROR IN A BLOCK OF n SYMBOLS

Pr = Pj+Pp+++++Pp = 1-Pg

b

al
v
o

PROBABILITY OF TWO OR MORE SYMBOL ERRORS IN A BLOCK OF n SYMBOLS

Pr = Py+P3+++++P = 1-Pg-Py

M
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DECODED ERROR PROBABILITIES FOR A SYMBOL-CORRECTING CODE

=
I

Pe

Block length in symbols

Number of bits corrected per block
0 for an error-detection-only code

Raw symbol error probability

(units: symbol errors per symbol)

w = Symbol width in bits

_n_
BLOCK ERRORS _ \  [n],(p yig(q_p yn-i
i>e ¢
n
BLOCK ERRORS _ 1 ,\ [n i n-i
~ = % 1 & *(1-
SYMBOL n ¥/ [1} (Pe) ** (1-Pe)
i>e
n_
BLOCK ERRORS . 1 .\ [n i n-i
~ * .| * * -
BIT w*n / [1] (Pe) **(1-Pe)
i>e
| _n_
SYMBOL ERRORS _ \ . n iy 1o \n-i
BLOCK ® (1+e)*[i]*(Pe) *(1-Pe)
i>e
_n_ _
SYMBOL ERRORS _ 1 ,\ n iy 1o \n-i
SYMBOL ¥n ¥ (l+e)*[1_*(Pe) *(1-Pe)
i>e
n_ .
SYMBOL ERRORS _ 1 . n i -
BTN & on ) (ie) | ] %(Pe) T (1-Pg) N1
i>e
* —— b
BIT ERRORS _ 1 ,\ . n i n-i
BIT  ~ 2*n '/ (1+e)*[i_*(Pe) *(1-Pe)
i>e

* Assuming a symbol error results in k/2 bit errors.
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DECODED ERROR PROBABILITIES FOR A SYMBOL-CORRECTING CODE
WHEN ERASURE POINTERS ARE AVAILABLE FOR SYMBOL ERRORS

n = Block length in symbols

e = Number of bits corrected per block
= () for an error-detection-only code

Pe

Il

Raw symbol error probability
(units: symbol errors per symbol)

w = Symbol width in bits

n
BLOCK ERRORS n 1 -1
RS Y [i]*(Pe)l*u-Pe)n i
i>e
_n_ _
BLOCK ERRORS _ 1 ,\ n i n-i
~ = % 3 -
SYMBOL n / [1_*(Pe) *(1-Pe)
i>e
'-n- -
BLOCK ERRORS 1.\ n i n-i
~ * ME *(1-
BIT w*n { _l] (Pe) (1 Pe)
i>e
n
SYMBOL ERRORS _ \ .,[n iera-b vn-i
BLOCK ~ ( 1 [i]*(Pe) *(1 Pe)
i>e
_n_
SYMBOL ERRORS _ 1 ,\ .,[n i n-i
N = % |1 % *(1-
SYMBOL nty 1 [1} (Pe) 7* (1-Pe)
i>e
_n_
SYMBOL ERRORS _ 1 .\ ..[n], i4(1-p yn-i
BIT ~ w*n *{ 1 I:i:l (Pe) (1 Pe)
i>e
N n
BIT ERRORS 1.\ ., [n i n-i
~ * x| % *(1-
ERR m ) (D*[]]*Ee)ix(1-pe)
i>e

* Assuming a symbol error results in k/2 bit errors.
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4.3 DATA RECOVERABILITY

Error correction is used in storage device subsystems to improve data recover-
ability. There are other techniques that improve data recoverability as well. Some of
these techniques are discussed in this section. System manufacturers may want to
include data recovery techniques on their list of criteria for comparing subsystems.

DATA RECOVERY TECHNIQUES

Some storage device subsystems attempt data recovery with the techniques below
when ECC is unsuccessful.

. Head offset.
. Detection window shift.
. VFO bandwidth change.
. Detector threshold change.
. Rezero and reread.
Remove and reinsert media then reread.
. Move media to another device and reread.

oA o

DATA SEPARATOR

The design of the data separator will have a significant influence on data recover-
ability. - Some devices have built-in data separators. Other devices require a data
separator in the controller.

Controller manufacturers should consult their device vendors for recommendations
when designing a controller for devices which require external data separators.

Circuit layout and parts selection are very important for data separators. Even if
one has a circuit recommended by a drive vendor, it may be advisable to use a highly
experienced read/write consultant for the detailed design and layout.

WRITE VERIFY

Another technique that can improve the probability of data recovery is write verify
(read back after write). Write verify can be very effective for devices using magnetic
media due to the nature of defects in this media. One may write/read over a defect
hundreds of times without an error. An error will result only when the write occurs
with the proper phasing across the defect. Once the error occurs, it may then have a
high incidence rate until the record is rewritten. Hundreds of writes may be required
before the error occurs again.
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When an error is detected by write verify, the record is rewritten or retired or
defect skipping is applied. This reserves error correction for errors that develop with
time or usage. Since it affects performance, write verify should be optional.

DEFECT SKIPPING

Defect-skipping techniques include alternate-sector assignment, header move func-
tions, and defect skipping within a data field. These techniques are used to handle
media defects detected during formatting and persistent errors detected on read.

Under alternate-sector assignment, a defective sector may be retired and logically
replaced with a sector physically located elsewhere. Space for alternate sector(s) may
be reserved on each track or cylinder, or one or more tracks or cylinders may be
reserved exclusively for alternate sectors. The header contains an alternate-sector
assignment field; when a sector is retired, this field in its header is written to point to
the alternate sector which is to logically replace it. An assigned alternate: sector
typically has a field which points back to the retired sector that it is replacing.

When a header-move function is implemented, a defect falling in a header is avoid-
ed by moving the header further along the track. Space may be allotted in the track
format to allow a normal-length data field to follow a moved header, or the moved
header may contain a field pointing to an assigned alternate sector. In the latter case,
since the data field following a moved header is not used, it need not be of normal
length; it may or may not actually be written, depending on implementation alternatives.

Defect skipping within a data field is used in some high-capacity magnetic disk
subsystems employing variable-length records as a means of handling known defects.
Each record has a count field which records information on the locations of defects
within the track. Writing is interrupted when the current byte displacement from the
index corresponds to the starting offset of a skip as recorded in the count field. When
the recording head passes beyond the known length of the defect, a preamble pattern
and sync mark are written, then writing of data re-commences. Some IBM devices allow
up to seven defects per track to be skipped in this manner.

Defect skipping within a data field is also used on magnetic devices employing
fixed-length records. In this case, each sector header records displacement information
for defects in that sector. Some implementations write a preamble pattern and sync
mark at the end of a skip as discussed above for variable-length records while others
do not. The former practice handles defects which can cause loss of sync. If a pre-
amble pattern and sync mark are not written, some other method must be used to map
out defects which can cause loss of sync.
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Devices employing defect skipping within a data field must allocate extra media
area for each sector, track, or cylinder, depending on whether or not embedded servoing
is used and on other implementation choices. In devices using embedded servoing, the
space allotted for each sector must allow room for the maximum-length defect(s) which
may be skipped. In devices not using embedded servo techniques, the track format need
accommodate only some maximum number of skips per track, which may be much less
than one per sector.

When defect-skipping techniques are used and skip or alternate-sector information
is stored in headers, care must be taken to make sure that the storage of information
in headers other than track and sector number does not weaken the error tolerance of
the headers. A different method for alternate-sector assignment, which avoids this
complication, is sector slipping. Each track or cylinder contains enough extra area to
write one or more extra sectors. When a sector must be retired, it and each succeeding
sector are slipped one sector-length along the track or cylinder. This method has the
additional advantage that sectors remain consecutive and no additional seek time is
required to find an alternate sector at the end of the track or cylinder, or on a dif-
ferent track or track or cylinder. This method is discussed in more detail under A
HEADER STRATEGY EXAMPLE below.

ERROR-TOLERANT TRACK FORMATS

Achieving error tolerance in the track format is a major consideration when ar-
chitecting a storage device and controller for high error rate media. All special fields
and all special bytes of the track format must be error-tolerant. This includes but is
not limited to preambles, sync marks, header fields, sector marks, and index marks.

Experience shows that designing an error-tolerant track format (one that does not

dominate the uncorrectable sector event rate) to support high defect densities can be
even more difficult than selecting a high performance ECC code.

SYNCHRONIZATION

For high defect rate devices, it is essential that the device/controller architectures
include a high degree of tolerance to defects that fall within sync marks. There are
several synchronization strategies that achieve this. The selection will be influenced by
the nature of the- device and the nature of defects (e.g., length distribution, growth
rate, etc.). Both false detection and detection failure probabilities must be considered.
Synchronization is discussed in detail in Section 4.8.1; some high points are briefly
covered below.

Gne method for achieving tolerance to defects that fall within sync marks is to
employ error-tolerant sync marks. Error-tolerant sync marks have been used in the
past that can be detected at the proper time even if several small error bursts or one
large error burst occurs within the mark. See Section 4.8.1 for a more m—depth discus-
sion of synchronization codes. .
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Another strategy is to replicate sync marks with some number of bytes between.
The number of bytes between replications would be determined by the maximum defect
length to be accommodated. A different code is used for each replication so that the
detected code identifies the true start of data. The number of replications required is
selected to achieve a high probability of synchronization for the given rate and nature
of defects. Mark lengths, codes, and detection qualification criteria are selected to
achieve an acceptable rate of false sync mark detection.

If synchronization consists of several steps, each must be error-tolerant. If sector
marks (also called address marks) and preambles precede sync marks they must also be
error tolerant. Today, in some implementations correct synchronization will not be
achieved if an error occurs in the last bit or last few bits of a preamble. Such sen-
sitivities must be avoided. Section 4.8.1 discusses how error tolerance can be achieved
in the clock-phasing step of synchronization as well as in the byte-synchronization step.

MAINTAINING SYNCHRONIZATION THROUGH LARGE DEFECTS

Obviously, it is desirable to maximize the defect length that the PLL can flywheel
through without losing synchronization.  Engineers responsible for defect handling
strategy will want to influence the device’s rotational speed stability and PLL flywheel-
ing characteristics. One technique that has been used to extend the length of bursts
the PLL can flywheel through is to coast the PLL through defects by using some cri-
teria (run-length violation, loss of signal amplitude, etc.) to temporarily shut off updat-
ing of the PLL’s frequency and phase memory.

FALSE SYNC MARK DETECTION

The false detection of a sync mark can result in synchronization failure. The
probability of false mark detection must be kept low by careful selection of mark len-
gths, codes, and qualification criteria.

In some architectures, once data acquisition has been achieved, sync mark detec-
tion is qualified with a timing window in order to minimize the probability of false
detection. In such an architecture, it is desirable to generate the timing window from
the reference clock; if the timing window is generated from the data clock and the PLL
loses sync while clocking over a large defect in a known defective sector, the following
good sector may be missed due to the subsequent mispositioning of the timing window.
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HEADERS

For high error-rate devices, header strategy is influenced by defect event rates,
growth rates, length distributions, performance requirements, and write prerequisites.

One header strategy requires replication. A number of contiguous headers with
CRC are written, then on read one copy must be read error-free. Another strategy is
to allow a data field to be recovered even if its header is in error. This requires that
headers consist solely of address information such as track and sector number. If a
header is in error, such information can be generated from known track orientation.
Some devices combine this strategy with header replication in order to minimize the
frequency at which address information is generated rather than read. In any case,
devices using high error-rate media must be insensitive to defects falling into the
headers of several consecutive sectors. When address information is generated rather
than read, the data field can be further qualified by subsequent headers.

Using error correction on the header field as well as the data field will increase
the probability of recovering data. However, one must either be able to store and
correct both a header and the associated data field, or provide a way to space over a
defective header in order to recover the associated data field on a succeeding revolu-
tion.

An alternative to correcting the header is to keep only address information in the
header and to provide a way to space over a defective header. When a defective header
is detected, record address is computed from track orientation. A disadvantage of this
method is that it does not allow flags to be part of the header field.

Some devices also include address information within the highly protected data
field to use as a final check that the proper data field was recovered. This check must
take place after error correction. The best time to perform it may be just before
releasing the sector for transfer to the host.

A HEADER STRATEGY EXAMPLE

A typical error-tolerant header and sector-retirement strategy might be: Store in
the header only track and sector address information. Reserve K sectors at the end of
each cylinder for spare sectors. When a sector must be retired, slip all data sectors
down the cylinder by one sector position and write a special "sector-retired" flag in
place of the sector number in the header of the retired sector. On searches if a head-
er is read error-free and the "sector-retired" flag is found instead of a sector number,
adjust the sector number in the known orientation and continue searching.
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If a header-in-error is encountered during a search then it is either the header of
a sector that had been previously retired or it is a header containing a temporary error
or a new hard defect. The sector number sequence encountered in continuing the
search can be used to determine which is the case. If the header-in-error was that of
an already-retired sector, the sector number sequence should be adjusted and the search
continued.  Otherwise the search should still be continued unless the header-in-error
was that of the desired sector, in which case the search should be interrupted and a
re-read attempted. If the error is not present on re-read, assume it was a temporary
error and proceed to read the data field. If the error persists- on re-read, assume a
new hard defect: orient on the preceding sector, skip the header-in-error, and read the
desired data field. A sector whose header contains a new hard defect should be retired
as soon as possible.

Note that the error-tolerant header strategy outlined above will not work if it is
necessary to store control data, such as location information for defect skipping, within
headers.

SERVO SYSTEMS

In many devices, the ability to handle large defects is limited by the servo sys-
tem(s). [Engineers responsible for defect handling strategy must understand the limits of
the servo system(s) relative to defect tolerance. In particular, any testing of defect
handling capabilities should include the servo system(s).

MODULATION CODES

The modulation code selected will affect EDAC performance by influencing noise--
generated error rates, the extension of error bursts, the ability to acquire synchroniza-
tion, the ability to hold synchronization through defects, the ability to generate erasure
pointers, and the resolution of erasure pointers.

The following summarizes the results of an analysis of the error propagation
performance of the (2,7) code described in U.S. Patent #4,115,768, inventors Eggenberger
and Hodges, assignee IBM (1978). Analysis was confined to cases of single-bit errors
defined below:

Drop-in: A code-bit '1' where '0' was encoded
Drop-out: A code-bit '0' where 'l' was encoded
Shift: A code-bit 'l' where '0' was encoded, coincident
. with an adjacent code-bit '0' where 'l1' was encoded

Error propagation length is defined as the inclusive number of data-bits between
the first data-bit in error and the last data-bit in error caused by a given code-bit
error case.

Random fifteen-data-bit sequences were generated and encoded using the encoder
described in the patent. Drop-in, drop-out, and shift errors were created in turn in the
twelfth through the eighteenth bits of the resulting code-bit sequences. The corrupted
code-bit sequences were decoded using the decoder described in the patent, the result-
ing data-bit sequences were analyzed, and the error propagation lengths recorded.
Results of 2000 trials are shown below:
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ERROR ERROR PROPAGATION LENGTH
TYPE 0 1 2 3 4 5  TOTAL
wo [ 7m0 ] 2] 1] 8] =
DROP-OUT i 201 | 1258 | 776 | 448 92 0| 2775
SHIFT i 15g 19?2 1423 12;3 508 12; 5476
TOTAL ,ﬁ 3025 | 8222 | 3492 | 1885 | 727 | 125 | 17476
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4.4 DATA ACCURACY

Data accuracy is one of the most important considerations in error correction
system design. The following discussion on data accuracy is concerned primarily with
magnetic disk applications. However, the concepts are extendable to many other error
correction applications.

The transfer of undetected erroneous data can be one of the most catastrophic
failures of a data storage system; consider the consequences of an undetected error in
the money field of a financial instrument or the control status of a nuclear reactor.
Most users of disk subsystems consider data accuracy even more important than data
recoverability. Nevertheless, many disk subsystem designers are unaware of the factors
determining data accuracy.

Some causes of undetected erroneous data transfer are listed below.

- Miscorrection by an error-correcting code.
- Misdetection by an error-detecting or error-correcting code.

- Synchronization framing errors in an implementation without synchronization
framing error protection.

- Occasional failure on an unprotected data path on write or read.

- Occasional failure on an unprotected RAM buffer within the data path on
write or read. '

- A software error resulting in the transfer of the wrong sector.
- A broken error latch which never flags an error; other broken hardware.

Some other factors impacting data accuracy are discussed below.
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POLYNOMIAL SELECTION

In disk subsystems, the error-correction polynomial has a significant influence on
data accuracy. Fire code polynomials, for example, have been widely used on disk con-
trollers, yet they provide less accuracy than carefully selected computer-generated
codes.

Many disk controller manufacturers have employed one of the following Fire code
polynomials:

2! + Dexll +x2 + 1) or (k2! + Dex!l +x9 + 1)

The natural period of each polynomial is 42,987. Burst correction and detection
spans are both eleven bits for record lengths, including check bits, no greater than the
natural period. These codes are frequently used to correct eleven-bit bursts on record
lengths of 512 bytes.

When used for correction of eleven-bit bursts on a 512-byte record, these codes
miscorrect ten percent of all possible double bursts where each burst is a single bit in
error. With the same correction span and record length, the miscorrection probability
for all possible error bursts is one in one thousand. The short double burst, with each
burst a single bit in -error, has a miscorrection probability two orders of magnitude
greater.

Such codes have a high miscorrection probability on other short double bursts as
well. Double bursts are not as common as single bursts. However, due to error clus-
tering, they occur frequently enough to be a problem.

The data accuracy provided by the above Fire codes for all possible error bursts is
comparable to that provided by a ten-bit CRC code. The data accuracy for all possible
double-bit errors is comparable to that provided by a three-bit or four-bit CRC code.

Fire codes are defined by generator polynomials of the form:
g(x) = c(x)*p(x) = (x° + 1)*p(x)

where p(x) is any irreducible polynomial of degree z and period e, and e does not divide
c.

The period of the generator polynomial g(x) is the least common multiple of ¢ and
e. For record lengths (including check bits) not exceeding the period of g(x), these
codes are guaranteed to correct single bursts of length b bits and detect single bursts
of length d bits where d>b, provided z>b and c2(d+b-1).

The composite form of the generator polynomial (g(x)) is used for encoding.
Decoding can be performed with a shift register implementing the composite generator
polynomial (g(x)) or by two shift registers implementing the factors of the generator
polynomial (c(x) and p(x)). Code performance is the same in either case.

The p(x) factor of the Fire code generator polynomial carries error displacement
information. The c(x) factor carries error pattern information. It is this factor that is
responsible for the Fire code’s pattern sensitivity. To understand the pattern sen-
sitivity, assume that decoding is performed with shift registers implementing the in-
dividual factors of the generator polynomial. For a particular error burst to result in
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miscorrection, it must leave in the c(x) shift register a pattern that qualifies as a
correctable error pattern. A high percentage of short double bursts do exactly that.
For example, two bits in error, (c+1) bits apart, would leave the same pattern in the
c(x) shift register as an error burst of length two. The same would be true of two bits
in error separated by any multiple of (c+ 1) bits.

If p(x) has more redundancy than required by the Fire code formulas, the excess
redundancy reduces the miscorrection probability for short double bursts, as well as the
miscorrection probability for all possible error bursts.

The overall miscorrection probability (Pyc) for a Fire code is given by the follow-
ing equation, assuming all errors are possible and equally probable.

P n*2 (b-1)
mc & ° '_zm

(1)

where,
n
b
m

record length in bits including check bits.
guaranteed single burst correction span in bits.
total number of check bits.

For many Fire codes, the miscorrection probability for double bursts where each
burst is a single bit in error is given by the following equation, assuming all such
errors are possible and equally probable.

. 2*n*(b-1)
Ppcdap * > (2)
ce*(22-1)
where,

n and b are as defined above.
c = degree of the c(x) factor of the Fire code polynomial.
z = degree of the p(x) factor of the Fire code polynomial.

This equation is unique to the Fire Code. It is applicable only when the product
of Pmedp and the number of possible double-bit errors is much greater than one. When
this is not true, a computer search should be used to determine Ppcdp.

The ratio of Ppedp to Py provides a measure of pattern sensitivity for one par-
ticular double burst (each burst a single bit in error). Remember that the Fire code is
sensitive to other short double bursts as well.

Properly selected computer-generated codes do not exhibit the pattern sensitivity
of Fire codes. In fact, it is possible to select computer-generated codes that have a
-guaranteed double-burst detection span. The miscorrecting patterns of these codes are
more random than those of Fire codes. They are selected by testing a large number of
random polynomials of a particular degree. Provided the specifications are within
certain bounds, some polynomials will satisfy them. :

There are equations that predict the number of polynomials one must evaluate to
meet a particular specification.

In some cases, thousands of computer-generated polynomials must be evaluated to
find a polynomial with unique characteristics.
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For a computer-generated code, correction and detection spans are determined by
computer evaluation. Overall miscorrection probability is given by Equation #1.

To increase data accuracy, many disk controller manufacturers are switching from
Fire codes to computer-generated codes.

ERROR RECOVERY STRATEGY

Error recovery strategies also have a significant influence on data accuracy. A
strategy that requires data to be reread before attempting correction provides more
accurate data than a strategy requiring the use of correction before rereading.

An equation for data inaccuracy is given below:

Pued ® Pe*Pc*Pmc 3

where,

Pyed = Probability of undetected erroneous data

Ratio of undetected erroneous data occurrences to total bits transferred.
This is a measure of data inaccuracy.

Pe = Raw burst error rate
Ratio of raw burst error occurrences to total bits transferred.
Pc = Catastrophic probability

Probability that a given error occurrence exceeds the guaranteed
capabilities of a code.

Pmc= Miscorrection probability

Probability that a given error occurrence, exceeding the guaran-
teed capabilities of a code, will result in miscorrection, assuming
all errors are possible and equally probable.

It is desirable to keep the probability of undetected erroneous data (Pyeq) as low
as possible. The burst error rate, catastrophic probability or miscorrection probability
must be reduced to reduce Pyeq. (See Equation #3).

Miscorrection probability (Pp¢) can be reduced by decreasing the record length
and/or the correction span, or by increasing the number of check bits. Catastrophic
probability (P¢) can be reduced by increasing the guaranteed capabilities of the code, or
by reducing the percentage of error bursts that exceed the guaranteed code capabilities.

Burst error rate (Pe) can be reduced by using reread. Most disk products exhibit
soft burst error rates several orders of magnitude higher than hard burst error rates.
Rereading before attempting correction makes Pe (in Equation #3) the hard burst error
rate instead of the soft burst error rate, reducing Pued by orders of magnitude.
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Rereading before attempting correction provides additional improvement in Pyeq
due to the different distributions of long error bursts and multiple error bursts in hard
and soft errors.

Another strategy that reduces Pyeq is to reread until an error disappears, or until

there has been an identical syndrome for the last two reads. Correction is then at-
tempted only after a consistent syndrome has been received.
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DESIGN PARAMETERS

For data accuracy, a low miscorrection probability is desirable. = Miscorrection
probability can be reduced by decreasing the record length and/or correction span, or
by increasing the number of check bits.

For most Winchester media, a five-bit correction span has been considered ade-
quate. A longer correction span is needed if the drive uses a read/write modulation
method that maps a single encoded bit in error into several decoded bits in error, such
as group coded recording (GCR) and run-length limited (RLL) codes.

For several years, 32-bit codes were considered adequate for sectored Winchester
disks provided that the polynomial was selected carefully, record lengths were short,
correction span was low, correction was used only on hard errors, and the occurrence
rate for hard errors exceeding the guaranteed capability of the code was low.

More recently, most disk controller developers have been using 48-, 56- and 64-bit
codes in their new designs. Using more check bits increases data accuracy and provides
flexibility for increasing the correction span when the product is enhanced. Using more
check bits also allows other error-recovery strategies to be considered, such as
on-the-fly correction.

Disk controller developers are also implementing redundant sector techniques and

Reed-Solomon codes. Redundant sector techniques allow very long bursts to be cor-
rected. Reed-Solomon codes allow multiple bursts to be corrected.

ECC CIRCUIT IMPLEMENTATION

Cyclic codes provide very poor protection when frame synchronization is lost, i.e.,
when synchronization occurs early or late by one or more bits.

One way to protect against this type of error is to initialize the shift register to
a specially selected nonzero value. The same initialization constant must be used on
read and write. Another method is to invert a specially selected set of check bits on
write and read. Each method gives the ECC circuit another important feature - nonzero
check bits are written for an all-zeros data record. This allows certain logic failures to
be detected before inaccurate data is transferred. See Section 4.8.2 for further discus-
sion of synchronization framing errors.

Still, some ECC circuit failures can result in transferring inaccurate data. If the

probability of ECC logic failure contributes significantly to the probability of transferr-
ing inaccurate data, include some form of self-checking. See Section 6.5.
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DEFECT MANAGEMENT STRATEGY

All defects should have alternate sectors assigned, either by the drive manufacturer
or subsystem manufacturer, before the disk subsystem is shipped to the end user.

There are problems with a philosophy that leaves defects to be corrected by ECC
on each read, instead of assigning alternate sectors. First, if correction before reread
is used, a higher level of miscorrection results. This is because a soft error in a sector
with a defect results in a double burst. Once a double burst occurs that exceeds the
double-burst-detection span, miscorrection is possible. In the second case, if reread
before correction is used, revolutions will be lost each time a defective sector is read.

ERROR RATES

Clearly, disk drive error rates also significantly influence data accuracy. If errors
exceeding the guaranteed capability of the code never occurred, inaccurate data would
never be transferred.

When a data separator is part of the controller, its design affects error rate and
therefore data accuracy. While most drive manufacturers provide recommended data
separator designs, there are also well-qualified consultants who specialize in this area.

SPECIFYING DATA ACCURACY

The probability of undetected erroneous data (Pyeq) is a measure of data inac-
curacy. Sophisticated developers of disk subsystems are now targeting 1.E-20 or less
for Pued.

Even when Pe and P; are high, one can still achieve any arbitrarily low Pyeq by
carefully selecting the correction span, record length, and number of check bits. (See
Equations #1 and #3).

ACHIEVING HIGHER DATA INTEGRITY

The following first appeared in slightly different form in the March 1988 issue of
the ENDL Newsletter.

Horror stories about the consequences of a storage subsystem transferring un-
detected erroneous data have been circulating since the dawn of the computer age. As
the computer industry matures, data integrity requirements for storage subsystems have
increased along with capacity, throughput, and uptime requirements. To meet these
higher demands, both the probability of uncorrectable error and the probability of
transferring undetected erroneous data must decrease. As more and more powerful
error detection and correction systems are implemented to protect data from higher
media-related error rates, errors arising in other areas of the subsystem will come to
dominate unless equivalent protection is provided. The most powerful media EDAC
system is useless against errors occurring anywhere in the write path from the host
interface to the input of the EDAC encoder or in the read path from the output of the
EDAC decoder to the host interface.
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One example of undetected erroneous data which the media EDAC system is power-
less to detect is a single-bit soft error occurring in an unprotected data buffer after
the EDAC system has corrected the data but before the data are transferred to the
host. Another example is a subtle subsystem software error which causes a request for
the wrong sector to be executed. The actual sector fetched may contain no media-
related errors and so be accepted as correct by the media EDAC system, yet it is not
the data which the host requested.

Data Systems Technology, Corp. (DST) has proposed a method to combat errors not
covered by the media EDAC system. DST recommends that the host append a CRC
redundancy field to each logical sector as it is sent to the storage subsystem and
perform a CRC check on each logical sector as it is received from the storage subsys-
tem. DST further recommends that a logical identification number containing at least
the logical sector number, and perhaps the logical drive number as well, be placed
within each logical sector written to a storage subsystem and that this number be
required to match that requested when each logical sector is received from the storage
subsystem.

It is possible to combine these two functions so that only four extra bytes per
logical sector are needed to provide both thirty-two-bit CRC protection and positive
sector/drive identification. = Three methods are outlined below; whatever method is
chosen for implementing the two functions, it must be selected with multiple-sector
transfers in mind.

(1) Append to each logical sector within the host’s memory a four-byte logical
sector number field. Design the host adapter so that as each logical sector of a multi-
ple-sector write is fetched from the host’s memory, four bytes of CRC redundancy are
computed across the data portion of the logical sector and then EXCLUSIVE-OR summed
with the logical sector number field and transferred to the storage subsystem im-
mediately behind the data. During a multiple-sector read, the host adapter would com-
pute CRC redundancy over the data portion of each received logical sector and EX-
CLUSIVE-OR sum it with the received sum of the logical identification number and CRC
redundancy generated on write, then store the result after the data portion of the
logical sector in the host’s memory. The host processor would then have to verify that
the result for each logical sector of a multiple-sector transfer matches the identification
number of the respective requested logical sector. If an otherwise undetected error
occurs anywhere in a logical sector anywhere beyond the host interface which exceeds
the guarantees of the host CRC code, including the fetching of the wrong sector, the
logical identification number within the host’s memory will be incorrect with probability
1-(2.33E-10).

(2) Keep data contiguous in the host’s memory by instead recording the identifica-
tion numbers of all of the logical sectors in a multiple sector transfer within the host
adapter’s memory, but process the data and identification numbers for the CRC code in
the same manner as in (1). The host adapter would have the responsibility for checking
that identification numbers match those requested. Equivalent error detection is achiev-
ed.

(3) Initialize the CRC shift register at the host interface with the identification
number of each logical sector before writing or reading each logical sector of a multi-
ple-sector transfer. The host adapter would require that on read the CRC residue for
each logical sector be zero. Again equivalent error detection is achieved.
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To implement the CRC/ID field approach toward achieving higher data integrity,
computer builders will have to support the generation and checking of the extra four
bytes of CRC redundancy. Storage subsystem suppliers accustomed to sector lengths
which are powers of two will have to accommodate sector lengths which are greater by
four bytes. If the storage subsystem architecture includes its own auxiliary CRC field
of thirty-two or fewer bits, an option to disable it should be provided in order to
minimize overhead when the storage subsystem is connected to a host which implements
the CRC/ID field. The scope of coverage of the host CRC/ID field is much greater
than that of an equivalent-length auxiliary CRC field which protects only against media
errors, so data integrity can be greatly improved at no increase in overhead if the
subsystem auxiliary CRC code is disabled and the host CRC/ID field is used instead.

- Procedures like those outlined above can have a profound impact on data integrity
in computer systems. They allow the computer builder to be in control of the integrity
of data throughout the entire system without being concerned with the detailed designs
of the storage subsystems connected to the system.
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SUMMARY

When designing error correction for a disk controller, keep data accuracy high by
using the techniques listed below:

- Use a computer-generated code to avoid pattern sensitivity.
- Reread before attempting error correction.

- Use the lowest possible correction span meeting the requirements of supported
drives.

- Ensure that the ECC circuit provides adequate protection from sync framing
errors.

- Design the ECC circuit to generate nonzero check bits for an all-zeros data
record.

- Include self-checking, if it is required to meet the specification for prob-
ability of undetected erroneous data (Pye().

- Use a manufacturer recommended data separator or get assistance from a
consultant who specializes in this area.

- Assign alternate sectors for known defects.
- Establish a target for Pyeqd. Determine Pe and P; by the manufacturer spec-
ification, measurement, and estimation. Select the number of check bits to

meet the target for Pyeqd. In computing Pyeq, derate Pe and Pc to account
for error clustering and marginal drives.
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4.5 PERFORMANCE REQUIREMENTS

Below are some of the parameters that should be specified for an error-control
system.

DATA RECOVERABILITY

Specify permissible decoded hard error rate. For storage devices this specification
is likely to be 1.E-13 or less.

DATA ACCURACY

Specify allowable undetected erroneous data rate. For storage devices this spec-
ification is likely to be 1.E-15 or less.

OPERATING SPEED

Specify data transfer rates that the error-control system must support.

DECODING SPEED

Specify allowable error-correction decoding times. These are times allowed for
computing patterns and displacements when errors occur.

SELF-CHECKING
Specify the form of self-checking to be used, such as:

- Duplicated circuits
- Parity predict
- Periodic microcode or software testing.

This determination may have to be made after a code has been selected and the
design is in progress. Use the reliability of circuit and packaging technologies along
~ with parts counts to determine the reliability of the error-correction circuits. If the

probability of error-correction circuit failure in a design contributes significantly to the
probability of transferring undetected erroneous data, self-checking should be added to
the design.

Once error rates and the nature of errors have been characterized and the perfor-
mance requirements established, code selection can begin.
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4.6 PATTERN SENSITIVITY

When selecting a code for a particular application it is important to. consider
Opattern sensitivity.

Some error detecting and error correcting codes are more likely to misdetect or
miscorrect on certain classes of error patterns than others.  This is called pattern
sensitivity.  If these classes of errors are also the most likely to occur, then protection
provided by these codes may not be as good as expected. In this section several ex-
amples of pattern sensitivity are discussed.

PATTERN SENSITIVITY OF ERROR DETECTION CODES

Some error detection codes have pattern sensitivity. Consider for example, the
error detection code defined by the circuit below.

16-BIT SHIFT REGISTER [+

The polynomial for this circuit is (x16 + 1). Of all possible error bursts, this
circuit will fail to detect one out of 65,536. Any degree 16 polynomial would have the
same misdetection probability for all possible error bursts. However, this circuit has a
pattern sensitivity. It will fail to detect one out of every sixteen possible error pat-
terns, consisting of two bits in error, separated by more than sixteen bits.

To understand the pattern sensitivity, consider reading a data record that is zeros
except for two bits in error, sixteen bits apart. The shift register will be all zeros
until the first error bit arrives. After arrival of the first error bit, the shift register
will contain ’0.....01°. After receiving the fifteen zeros separating the error bits, the
shift register will contain ’10.....0°’. After receiving the second error bit, the shift reg-
ister will again contain all zeros, due to the cancellation of the high-order bit by the
second error bit.

This circuit is 4000 times more likely to fail to detect an error pattern consisting
of two bits in error, separated by more than sixteen bits, than it is to fail to detect a
pattern consisting of many random bits in error.

The pattern sensitivity of this circuit is obvious. Nevertheless, it was implemented
by a large computer manufacturer on the 2314 magnetic disk device in the mid 1960’s.
After the product was in the field, additional checking was installed to correct the
problem.
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PATTERN SENSITIVITY OF ERROR CORRECTION CODES

The Fire code is used for single burst correction. Many Fire codes have a high
pattern ‘sensitivity for short double bursts. See Section 4.4 for a discussion of the Fire
code’s pattern sensitivity.

Many interleaved error correcting codes have a pattern sensitivity for multiple
short bursts. The 3370 code (see Section 5.2) is such a code. It uses a single symbol
error correcting, double symbol error detecting Reed-Solomon code interleaved to depth
three. Symbols are one byte wide. Its miscorrection probability is 2.2E-16 for all
possible error bursts. However, the miscorrection probability is 2.6E-3 for all possible
errors exceeding code guarantees and affecting a single interleave.

OTHER FORMS OF PATTERN SENSITIVITY

Many codes are sensitive to the error patterns caused by circuit or power supply
failures. For example, if the line supplying data bits to a magnetic-disk error correc-
tion circuit fails, the failure may not be detected by these circuits. One way to protect
against this form of pattern sensitivity is to make sure nonzero check bytes are guaran-
teed for an all zeros data record. See also Section 4.4 and Chapter 6.

A semiconductor memory error correction circuit may not detect the error when a
word of all zeros (data and check bits) is erroneously read from memory, due to a
circuit or power supply failure. Again, a solution is to cause nonzero check bits to be
generated for an all zeros data word.
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4.7 K-BIT-SERIAL TECHNIQUES

Clocking error-correction circuits once per data bit limits operating speed. To
operate at higher speeds, it is necessary to clock these circuits once per symbol. A
symbol is some convenient cluster of bits, for example a byte or word.

There are at least two ways to do this. A code such as the Reed-Solomon code
can be selected that inherently operates on symbols; or the shift-register for a code
such as the Fire code can be transformed from bit-serial to k-bit-serial. The k-bit-
serial shift register operates on k input bits and accomplishes k bit shifts per clock. A
special case of k-bit-serial is byte-serial (k=8).

The higher operating speed of k-bit-serial shift registers is attained at the expense
of added complexity.

There are two methods for implementing k-bit-serial shift register divide circuits.
The first method adds the necessary XOR gates to shift k bits per clock. The second
method uses 2X:k bit tables to accomplish k bit shifts per clock.

For both k-bit serial methods discussed in this section, circuitry is shown for

computing the remainder only. If the quotient is required, additional circuitry must be
added.

XOR GATE METHOD

The transformation discussed here is for the internal-XOR form of shift register.
Extension to the external-XOR form of shift register is straightforward.

The procedure for this transformation was developed intuitively as follows. Assume
the shift register below is to be transformed.

<~ x8 | x7 [x0|x3| x4 ‘<—®¢—‘x3 x2 [x1]x0 (<

Recognize that in k shifts of the bit-serial shift register, the bits influencing the
new shift register contents via the feedback network, are the high order k bits. To
determine the contribution of any one of these bits, bit j for example, do the following.
Clear the shift register, set bit j to 1, and shift k times. The resulting 1 bits in the
shift register is the contribution of bit j.

The other contributor to the new state of each bit, when the shift register is
shifted k times, is the bit itself shifted k bits to the right.
The result of this intuitive development is the basis for the following procedure.

PROCEDURE

-243 -



Let i represent the polynomial degree and k the desired number of shifts per
clock. The following steps transform a bit-serial shift register into a k-bit-serial shift

register.

Simulate the bit-serial shift register. Initialize the high-order bit of the simulated
shift register to 1 and clear the remaining bits. Shift k times. After each shift, record
the new state of the shift register.

The first state in the sequence recorded is the contribution of shift register stage
x’K to the feedback network. The second state is the contribution of stage xi*k+1 ang

so on. The last state in the sequence is the contribution of shift register stage xi-1,

The next step is to add circuitry for the k information bits. It will be clear from
the examples how this is done.

The last step is to minimize logic.
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EXAMPLE #1
BIT-SERIAL SHIFT REGISTER

Premultiply by x9 and divide by x + x4 + 1

[

[ 81765 x4.<__<::}__.x3 %2 | x1

PROCEDURE FOR k=3

1
000010001 contribution of x©

000100010 contribution of x’
001000100 contribution of x8

k-BIT-SERIAL SHIFT REGISTER, k=3

5

)

|

4
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EXAMPLE #2
BIT-SERIAL SHIFT REGISTER

Dividebyx8+x6+x5+x+l
<+~ x’ x6~—@<—x5 x4 [x3|x2 xl-*-@-—xo‘*—@

PROCEDURE FOR k=3

1

01100011 contribution of x>
11000110 contribution of x6
11101111 contribution of x’

k-BIT-SERIAL SHIFT REGISTER, k=3

(Logic has not been minimized)
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TABLE METHOD OF k-BIT-SERIAL IMPLEMENTATION

This :{Bethod will be illustrated by example. The circuit of this example premul-
tiplies by x”4 and divides by:

g()=x32 + x28 4 x26 4+ x19 4 x17 4+ x10 4 x6 4 x2 4+ 1

k-BIT SERIAL SHIFT REGISTER, k=8

L)
v v v v
1l _in Il |
T1 T2 T3 T4
x31 , %23 x15 %7

U
O == =0 F=— |-

INPUT
DATA

PROCEDURE FOR GENERATING THE TABLES

To generate the tables for the circuit above, simulate a left shifting bit-serial shift
register (internal-XOR form) in software using the polynomial above. For each address
of the tables (0-255), place the address in the eight most significant (left-most) bits of
the shift register and clear the remaining bits. Shift eight times, then store the four
bytes of shift register contents in tablgi T1 through T4 at the location indexed by
current address.  The coefficient of x°' is stored as the high-order bit of T1; the
coefficient of xV is stored as the low-order bit of T4. Tables for the above shift
register and polynomial are shown on the following pages. Each table is 256:8 bits.

The circuit above can be modified to divide by g(x) without the premultiply: move
the input XOR circuit to the input of the low order k-bits.

A similar procedure could be used to implement a right shifting k-bit serial shift
register. Extension to external XOR k-bit serial shift registers is straightforward.

Implementation examples for the above polynomial are given in Section 5.3, where

byte-serial tables are used for decoding by reverse clocking using its reciprocal poly-
nomial.
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BYTE-SERIAL TABLE T1

0] 1 2 3 4 5 6 7 8 9 A B C D E F
00 00 14 28 3C 50 44 78 6C A0 B4 88 9C FO E4 D8 CcCcC
10 54 40 7C 68 04 10 2C 38 F4 EO DC C8 A4 BO 8C 098
20 A9 BD 81 95 F9 ED D1 C5 09 1D 21 35 59 4D 71 65
30 FD E9 D5 C1 AD B9 85 91 5D 49 75 61 OD 19 25 31
40 46 52 6E 7A 16 02 3E 2A E6 F2 CE DA B6 A2 9E 8A
50 12 06 3A 2E 42 56 6A 7E B2 A6 9A 8E E2 F6 CA DE
60 EF FB C7 D3 BF AB 97 83 4F 5B 67 73 1F 0B 37 23
70 BB AF 93 87 EB FF C3 D7 1B OF 33 27 4B 5F 63 77
80 8D 99 A5 Bl DD C9 F5 El1 2D 39 05 11 7D 69 55 41
90 D9 CD F1 E5 89 9D Al B5 79 6D 51 45 29 3D 01 15
A0 24 30 OC 18 74 60 5C 48 84 90 AC B8 D4 CO FC ES8
BO 70 64 58 4C 20 34 08 1C DO C4 F8 EC 80 94 A8 BC
co CB DF E3 F7 9B 8F B3 A7 6B 7F 43 57 3B 2F 13 07
DO 9F 8B B7 A3 CF DB E7 F3 3F 2B 17 03 6F 7B 47 53
EO 62 76 4A 5E 32 26 1A OE C2 D6 EA FE 92 86 BA AE
FoO 36 22 1E OA 66 72 4E 5A 96 82 BE AA C6 D2 EE FA
BYTE-SERIAL TABLE T2

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 00 OA 14 1E 28 22 3C 36 50 5A 44 4E 78 72 6C 66
10 AA A0 BE B4 82 88 96 9C FA FO EE E4 D2 D8 C6 CC
20 54 5E 40 4A 7C 76 68 62 04 OE 10 1A 2C 26 38 32
30 FE F4 EA EO D6 DC C2 C8 AE A4 BA BO 86 8C 92 98
40 A3 A9 B7 BD 8B 81 9F 95 F3 F9 E7 ED DB D1 CF C5
50 09 03 1D 17 21 2B 35 3F 59 53 4D 47 71 7B 65 6F
60 F7 FD E3 E9 DF D5 CB Cl1 A7 AD B3 B9 8F 85 9B 91
70 5D 57 49 43 75 7F 61 6B OD 07 19 13 25 2F 31 3B
80 46 4C 52 58 6E 64 7A 70 16 1C 02 08 3E 34 2A 20
90 EC E6 F8 F2 C4 CE DO DA BC B6 A8 A2 94 O9OE 80 8A
A0 12 18 06 OC 3A 30 2E 24 42 48 56 5C 6A 60 7E 74
BO B8 B2 AC A6 90 9A 84 B8E E8 E2 FC F6 CO CA D4 DE
Cco E5 EF F1 FB CcD C7 D9 D3 B5 BF Al AB 9D 97 89 83
DO 4F 45 5B 51 67 6D 73 79 1F 15 0B 01 37 3D 23 29
EO Bl BB A5 AF 99 93 8D 87 El1 EB F5 FF C9 C3 DD D7
FO 1B 11 OF 05 33 39 27 2D 4B 41 5F 55 63 69 77 7D
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BYTE-SERIAL TABLE T3

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 00 04 08 OC 11 15 19 1D 22 26 2A 2E 33 37 3B 3F
10 40 44 48 4C 51 55 59 5D 62 66 6A 6E 73 77 7B 7F
20 80 84 88 8C 91 95 99 9D A2 A6 AA AE B3 B7 BB BF
30 CO C4 €8 CC D1 D5 D9 DD E2 E6 EA EE F3 F7 FB FF
40 04 00 OC 08 15 11 1D 19 26 22 2E 2A 37 33 3F 3B
50 44 40 4C 48 55 51 5D 59 66 62 6E 6A 77 73 7F 7B
60 84 80 8C 88 95 91 9D 99 A6 A2 AE AA B7 B3 BF BB
70 C4 CO CC C8 D5 D1 DD D9 E6 E2 EE EA F7 F3 FF FB
80 08 0oC 00 04 19 1D 11 15 2A 2E 22 26 3B 3F 33 37
90 48 4C 40 44 59 5D 51 55 6A G6E 62 66 7B 7F 73 77
A0 88 8C 80 84 99 9D 91 95 AA AE A2 A6 BB BF B3 B7
BO cC8 CC CO C4 D9 DD DI D5 EA EE E2 E6 FB FF F3 F7
Cco ocC 08 04 00 1D 19 15 11 2E 2A 26 22 3F 3B 37 33
DO 4C 48 44 40 5D 59 55 51 6E 6A 66 62 T7F 7B 77 73
EO 8C 88 84 80 9D 99 95 91 AE AA A6 A2 BF BB B7 B3
FO CC C8 C4 CcO DD D9 D5 D1 EE EA E6 E2 FF FB F7 F3
BYTE-SERIAL TABLE T4

0 1 2 3 4 5 6 7 8 9 A B c D E F
00 00 45 B8A CF 14 51 ©9E DB 28 6D A2 E7 3C 79 B6 F3
10 15 50 9F DA 01 44 8B CE 3D 78 B7 F2 29 6C A3 E6
20 2A 6F A0 E5 3E 7B B4 Fl1 02 47 88 CD 16 53 9C D9
30 3F 7A B5 FO 2B 6E Al E4 17 52 9D D8 03 46 89 CC
40 11 54 9B DE 05 40 8F CA 39 7C B3 F6 2D 68 A7 E2
50 04 41 8E CB 10 55 9A DF 2C 69 A6 E3 38 7D B2 F7
60 3B 7E Bl1 F4 2F 6A A5 EO 13 56 99 DC 07 42 8D C8
70 2E 6B A4 El1 3A 7F BO F5 06 43 8C C9 12 57 98 DD
80 22 67 A8 ED 36 73 BC F9 OA 4F 80 C5 1lE 5B 94 D1
20 37 72 BD F8 23 66 A9 EC 1F 5A 95 DO OB 4E 81 C4
A0 08 4D 82 C7 1C 59 96 D3 20 65 AA EF 34 71 BE FB
BO 1D 58 97 D2 09 4C 83 C6 35 70 BF FA 21 64 AB EE
co 33 76 B9 FC 27 62 AD E8 1B 5E 91 D4 OF 4A 85 CO
DO 26 63 AC E9 32 77 B8 FD OE 4B 84 Cl1 1A 5F 90 D5
EO 19 5C 93 D6 0D 48 87 C2 31 74 BB FE 25 60 AF EA
FO 0OC 49 86 C3 18 5D 92 D7 24 61 AE EB 30 75 BA FF
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4.8 SYNCHRONIZATION
4.8.1 SYNCHRONIZATION CODES

In order to recover data, we must be able to determine where the data are re-
corded on the medium, or equivalently, when data begin and end in the read bit stream;
this is called data framing or frame synchronization. This is normally accomplished by
detecting a special pattern called a sync mark. This process is called byte synchroniza-
tion and it is preceded by frequency and phase lock. Several types of synchronization
errors arise. A synchronization failure occurs when it is known that we have been
unable to establish initial synchronization; this is a serious error situation but one
which is detected. A synchronization framing error occurs when we erroneously believe
we have established correct synchronization; this is worse than synchronization failure
in that undetected erroneous data could be transferred, as many error detection and
correction codes have a weakness for this type of error. A loss of synchronization
occurs when synchronization has been achieved and is later lost; the ease and speed of
re-synchronization are heavily implementation-dependent.

It is common for data storage device track formats to include a sector mark and
one or more sync marks in front of each sector for achieving initial synchronization.

A sector mark is used to establish coarse synchronization to a sector. The sector
mark is unique and very different from data. It may be chosen so that it is impossible
for data to emulate it and very difficult for a defect to emulate it. Sector marks are
generally detected before data acquisition and therefore must be detected asynchronous-
ly. After coarse synchronization has been established, the general location of the sync .
mark is known and the search for the sync mark can be restricted to a window spann-
ing the time around which it is expected to occur.

Ideally, the sync mark is unique and we are assured that no combination of valid
channel bits can emulate it. To achieve this, the sync mark might include a run-length
violation or an invalid decode. An invalid decode is a sequence which satisfies the run-
length constraints but which cannot be emulated by any valid combination of channel
words. When the sync mark is unique, the misdetection probability in the absence of
error is zero. In some cases, the sync mark is not unique and there is a valid data bit
sequence which can emulate it, but with sufficiently low misdetection probability. In
such a case there would generally be additional sync mark detection qualification criter-
ia.

In selecting a sync mark strategy, it is desirable to minimize overhead yet maxi-
mize the probability of successful decoding and minimize the probability of false decod-
ing.  These conflicting goals require that trade-offs be made in selecting sync mark
parameters. Typical parameters include:

- Detection window width

- Error tolerance of the mark
- Mark length

- Mark pattern
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Detection window width and error tolerance of the mark may be changed for retry
reads. A narrow detection window is desirable in order to minimize the probability of
false detection. However, if the detection window is established by a counter running
off a reference clock then spindle speed variations, eccentricity, and mechanical oscilla-
tions will influence timing accuracy and will therefore influence window width as well.

Increasing the error tolerance of the sync mark while keeping its length constant
increases the probability of successful decoding but also increases the possibility of
false decoding.

Increasing the sync mark length decreases the probability of false decoding but in-
creases overhead.

The sync mark pattern is selected to minimize the probability of false decoding
when defects exist within and/or preceding the sync mark. To accomplish this, the
pattern is selected to maximize the number of error bits and/or the error burst length
that are required to cause a sync mark to be falsely detected in front of the true mark.
This selection can be accomplished with a computer.

If we assume that the bit stream preceding and following a mark is random, we
are motivated to use a sequence which does not resemble itself when shifted one or
more bits, so that it is impossible for a small number of errors to cause false detection.
As an illustration, consider a sequence of all '1’s. If the bit immediately preceding is
random, there is a 50% chance of falsely detecting this sequence one bit early.

The autocorrelation function of a sequence is used to measure the degree to which
a sequence resembles itself. Conceptually, one copy of the sequence is "slid past"
another. At each offset i, the autocorrelation R(i) is the number of corresponding bits
which are identical minus the number which differ. R(0) is of course equal to the
number of bits in the sequence, n; the maximum value of R(i) is n-|i|, with lower values
being preferred. The class of sequences called Barker codes has the so-called "perfect"
property |R@)|<1 for i#0. Only eight Barker codes are known to exist, with lengths 2,

4,5,17,11, and 13.

BARKER CODES

n Sequence* Autocorrelation (i=0 to n-1)

2 10 2,-1

3 110 3, 0,-1

4a 1101 4,-1, 0, 1

4b 1110 4, 1, 0,-1

5 11101 5, 0, 1, 0, 1

7 1110010 7, 0,-1, 0,-1, 0,-1

11 11100010010 11, o,-1, 0,-1, 0,-1, 0,-1, 0,-1

13 1111100110101 3, 0, 1, 0, 1, O, 1, O, 1, O, 1, O, 1

* Including reversals and complements
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Barker codes can be combined to form longer codes which have good, though not
"perfect” autocorrelations. To construct such a combined Barker code, each bit of a
Barker code is replaced with the entire sequence of another (possibly the same) Barker
code, the sequence being inverted if the bit being replaced is zero. Longer sequences
with autocorrelations which are nearly as desirable (Barker-like codes) also exist.

In practice, a sync mark is detected by counting the number of matching bits,
without subtracting the number of mismatched bits. The sync mark is considered de-
tected when the count of matching bits meets or exceeds a threshold, which may be
variable so that it can be changed for read retries. In discrete designs, an efficient
implementation may include PROM circuits; in integrated designs, logic gates may be
preferable.

Window width can be increased and misdetection can be reduced by writing a
known bit pattern (preamble) preceding the mark. A mark pattern is then selected for
minimum correlation with the preamble and with itself. This preamble-sync mark com-
bination is equivalent to a sync mark which is detected by searching only for its last
half. An example is 16 zero-bits followed by the 16-bit mark *0001111100110101° (3 zero
bits followed by the 13-bit Barker code) and followed by random data. When detected
in a window from 16 bits before the position of the mark up to 5 bits after and requir-
ing 13 bits (out of 16) to match, this pattern is guaranteed to be detected and guaran-
teed not to be falsely detected when not more than 3 random bits (out of 16) are in
error or when a single error burst of length 3 bits or less exists. There are other
patterns besides this one which have the same error tolerance using the same detection
method.

Note that a preamble of all one-bits could be used as well, in which case each bit
of the mark would be inverted. The preamble need not be all zero-bits or all one-bits;
satisfactory codes can be selected for any given preamble pattern.

An extension of the above technique would be to write known patterns both pre-
ceding and following the sync mark. Selecting the pattern following the mark for
minimum correlation with the sync mark would increase the acceptable window width
after the position of the mark.

Sync marks can be decoded in either the data-bit domain or the channel-bit do-
main; the error propagation of the RLL decoding process motivates us to decode in the
channel bit domain when possible, particularly if the detection criteria have been re-
laxed to achieve error tolerance. The desire to have error tolerant clock phasing also
motivates us to decode in the channel-bit domain. In this case clock phasing and byte
synchronization are established simultaneously with the detection of the sync mark.
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Some implementations do not detect sync marks using a bit-by-bit comparison, but
by comparing groups of bits. This reduces the circuitry required to implement majority-
vote detection. Such a code has been proposed for use in optical disk. The 48 chan-
nel-bit mark is made up of 12 groups of 4 bits, each group containing a single one-bit.
The whole mark obeys (2,7) run-length constraints and is preceded by the highest-
frequency (2,7) pattern. The mark is detected in the channel bit domain using 4-bit
groups. The correlation function for the sync mark sequence against the preamble-sync
mark-random data sequence on a 4-bit basis, counted as the number of matches (plus
the number of possible matches when correlating with random data at positive offsets)
is

Offset: =15 . . ¢« ¢ ¢ ¢« ¢ ¢« o ¢ o o » ol1l. .. .. ... .11
4-bit: 23 344044322340 2005432554475

If a detection threshold of 9 is used, 4 groups-in-error are required before failure
to detect is possible, while 5 groups-in-error are required before false detection is
possible. If a detection threshold of 8 is used, S groups-in-errors are required before
failure to detect is possible, while 4 groups-in-error are required before false detection
is possible. This suggests the following strategy for sync mark detection: on the first
try, using a threshold of 9 will insure that the mark will not be falsely detected, while
on read re-try, using a threshold of 8 will insure that those cases of 4 groups-in-error
that fail on the first try will be detected, subject to only a low probability of early
false detection.

In the general case, 4 groups-in-error could be caused by an error burst of 10
channel bits, but analysis of the specific correlation bit patterns for this code reveals
that this detection scheme handles any error burst of not more than 12 channel bits in
length on the first pass, and will very likely handle any error burst of 16 channel bits
or less on retry. This is the same performance which would be obtained using a bit-by-
bit majority vote criterion of 42 channel bits (out of 48; there is a peak correlation of
35 bits at an offset of -3) but with much lower implementation cost.
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One possible decoding alternative for the X3B11 data field sync code.
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As another example consider a 32 data-bit sync mark that is composed of four 8-
bit groups A, B, C, and D, preceded by all zeros and followed by random data, to be
detected in the data-bit domain when any one of the pairs A-B, C-D, or A-D is de-
tected. It is possible to construct a mark which will be detected in the presence of a
burst of not more than 9 data bits (out of 32 data bits) and will not be falsely detected
in the presence of a burst of not more than 10 data bits (out of 32 data bits) in length
when detected in a window from 16 bits before to 16 bits after the mark.

Using the same pair-wise detection method in the channel bit domain, it is possible
to construct a 32 channel-bit mark subject to a (1,7) run-length constraint and preceded
by 32 bits of the maximum-frequency (1,7) pattern which will be detected and will not
be falsely detected in the presence of a burst of not more than 9 channel bits (out of
32 channel bits) when detected in the channel-bit domain in this pair-wise fashion.
Similarly, 32-bit marks have been constructed using a (2,7) run-length constraint which
will be detected in the presence of a burst of not more than 9 channel bits (out of 32
channel bits) and will not be falsely detected in the presence of a burst of not more
than 8 channel bits (out of 32 channel bits) in length.

For a given detection method, it is possible to use a computer to select mark
patterns which satisfy the desired error tolerance requirements, if such patterns exist.
The most straightforward method is to successively generate random patterns (using
run-length constraints, if the mark is to be detected in the channel-bit domain), analyze
them, and record the best performers.

RESYNC MARKS

When the probability of loss of synchronization is high, due for example to long
defects, some applications require one or more sync marks preceding each sector and
resync marks interspersed at regular intervals within each sector. The sync marks are
used for achieving initial clock phasing and byte synchronization and the resync marks
are used for restoring clock phasing and byte synchronization after a loss of sync
(when the PLL has slipped cycles).

Many resync marks may be required per sector, so it is very important to minimize
resync mark length to minimize overhead. In clever implementations it is not necessary
for each resync mark to be detected, so the resync mark itself need not be error
tolerant. To minimize the false detection of resync marks, their detection window is
made very narrow. In addition they are typically assigned a channel bit pattern that
cannot be emulated by a channel-bit sequence encoded from data. This guarantees that
correct data will never emulate a resync mark.
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4.8.2 SYNCHRONIZATION FRAMING ERRORS

In order to properly frame data, a read system must know where data begins. This
is normally accomplished by detecting a sync mark, a process called byte synchroniza-
tion. A defect can emulate a sync mark at an incorrect position on the media. It is
possible (depending on windowing, etc.) for this to result in an incorrect assumption
about the starting position of data. This is called a synchronization framing error. The
probability of a sync framing error increases as sync mark length decreases, as sync
mark error tolerance increases, and as the length of the sync mark detection window
increases. A sync framing error may be detected as an uncorrectable error or it may
incorrectly cause data to appear correctable or error-free. If the data appears correc-
table or error free, the transfer of undetected erroneous data may result which could
have disastrous consequences.

In order to keep the probability of transferring undetected erroneous data low it is
very important to detect sync framing errors with high probability. In some systems
the responsibility for detecting such errors is placed on the error detection and correc-
tion circuitry.

Most codes used for error detection and correction in data storage systems for
computers are shortened cyclic codes. Cyclic codes are linear codes with the property
that each cyclic (i.e. wraparound) shift of each codeword is also a codeword. Shortened
cyclic codes are not truly cyclic. However, the codewords of a shortened cyclic code
when shifted (left or right) a few symbol positions will either form another shortened
codeword or form a sequence that differs from another shortened codeword in only a
few symbol positions. This property of shortened cyclic codes causes them to have poor
detection capability for sync framing errors.

Shortened cyclic codes are often modified by some method in order to increase
their capability to detect sync framing errors. The degree to which capability of the
modified code to detect sync framing errors is increased depends highly on the specific
method of modification selected.

Ideally, a code modification method will assure that all sync framing errors result
is an error pattern that exceeds correction guarantees but not detection guarantees of
the code. If this cannot be achieved, then as a very minimum it is desirable that the
probability of transferring undetected erroneous data be no greater for sync framing
errors than for all other types of errors that exceed detection guarantees.

Some frequently used codes for performing error detection and/or correction are
listed below. In some cases these codes are cyclic codes but most often they are
shortened cyclic codes. Problem analysis and the selection of a method for code mod-
ification is similar between the different types of codes.
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¢ Error detection codes using a polynomial with binary coefficients.

e Single-burst error correcting codes using a polynomial with binary coeffi-
cients.

¢ Single- and multiple-burst error correcting Reed-Solomon codes.
¢ Interleaved Reed-Solomon codes.

Binary error detection/correction codes operate on single-bit symbols while Reed-
Solomon codes operate on multiple-bit symbols, typically byte-wide (eight-bit) symbols.
Reed-Solomon codes are cyclic but only on a symbol basis: cyclic rotation of a Reed-
Solomon codeword by a number of bits which is not a multiple of the symbol width does
not generally produce another codeword; an obvious counter-example is the all-zeros
Reed-Solomon codeword. This property allows us to discuss binary codes and non-
interleaved Reed-Solomon codes together. We shall then apply similar methods to
interleaved Reed-Solomon codes.

Let us use the following notation to represent a non-interleaved codeword of a
binary code or a Reed-Solomon code:

ooopppdddooodddmooomgggooo
where ’p’ is a preamble/sync symbol, 'd’ is a data symbol, 'r’ is a redundancy symbol,
and ’g’ is a gap symbol. ’0’ will represent a symbol whose bits are all zeros, 1’ will
represent a symbol whose bits are all ones, and 'X’ will represent a symbol whose bits

are neither. In the case of a Reed-Solomon code, each symbol is a group of w bits. In
the case of a binary error correction code, each symbol is one bit (w=1).

LATE SYNCHRONIZATION IN UNMODIFIED SHORTENED CYCLIC CODES

Consider the case of late synchronization by one symbol. There are four combina-
tions for the values of the data symbol skipped and the gap symbol read.

cOdeviord read

r 1
1) .o 'ppp0dd' e« edddrrr- - .rrrOggc oo

The pattern read is a multiple of the codeword written. This is also a codeword,
so the pattern read appears to be error free and the sync framing error is not detected.

Codex;lord read

r 1
2) ++-pppXdd--+dddrrre--rrrogg---.
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The pattern read is a multiple of the codeword written with a symbol in error at
symbol -1 of the codeword (i.e. the symbol before the first data symbol of the code-
word). When shortened codewords are used, the error appears to be outside the bounds
of the codeword and the correction algorithm will post it as uncorrectable.

In random data the probability that the first symbol of a codeword is zero is 27V,
so from the 1) and 2) above analyses we conclude that this is also the probability that
the read pattern will appear to be error free when synchronization occurs late by one
symbol and a zero symbol is read following the codeword. By similar reasoning, if
synchronization occurs late by k symbols and the first k gap symbols are all zeros then
the codeword read will appear to be error free if the first k symbolzk of the codeword
written were all zeros. This should occur in random data with probability 2~ w),

If synchronization occurs late by k symbols, the first k gap symbols are all zeros,
and the first k symbols of the codeword written were not all zeros, then there will
appear to be an error burst of length k or fewer symbols preceding the codeword read.
If the guaranteed detection capability of the code is equal to or greater than the ap-
parent error created by the pattern of non-zero symbols missed, then there will appear
to be an error burst of length k or fewer symbols preceding the codeword read and the
correction algorithm will post the error as uncorrectable, since the error burst appears
to be beyond the bounds of the shortened codeword. If in the same situation the
apparent error created by the pattern of non-zero symbols missed exceeds the guaran-
teed detection and correction capabilities of the code, then the error will appear to be
correctable with probability Ppc, where Ppc is the miscorrection probability of the
code. Equivalently, the error will appear to be uncorrectable with probability 1-Ppyc.

Codev:zord read

| 1
3) e+e++ppp0dd-+-dddrrre-rrrxgge--
The pattern read is that of a multiple of the codeword written with a symbol in
error in the last symbol position. A code which performs only error detection will
therefore detect the sync framing error, but an error correction code will not.

Codex::ord read

I |
4) +-+pppXdd-:-dddrrr:--rrrxgg- - -

The read remainder will be that of two symbols in error, one at the symbol before
the first symbol of the codeword and one at the last symbol of the codeword. If this
double-burst error is within the detection guarantees of the code, then an uncorrectable
error will be posted by the error correction algorithm. If this error pattern exceeds
the detection guarantees of the code, then the error will appear to be correctable with
probability Py and will appear to be uncorrectable with probability 1-Ppye.
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By similar reasoning, if synchronization occurs late by k symbols, the first k gap
symbols are not all zeros, and the guaranteed correction capability of the code is equal
to or greater than the number of non-zero gap symbols, then the codeword read will
appear to be correctable if the first k symbols &f* Ltse codeword written were all zeros.
This should occur in random data with probability 2" W),

If synchronization occurs late by k symbols, the first k gap symbols are not all
zeros, and the first k symbols of the codeword written were not all zeros, then there
will appear to be an error burst preceding the codeword read and an error burst at the
end of the codeword. If this double-burst error is within the detection guarantees of
the code, then an uncorrectable error will be posted by the error correction algorithm.
If this error pattern exceeds the detection guarantees of the code, then the error will
appear to be correctable with probability Ppc and will appear to be uncorrectable with
probability 1-Ppye.

EARLY SYNCHRONIZATION IN UNMODIFIED SHORTENED CYCLIC CODES
Consider the case of early synchronization by one symbol. Again there are four
combinations for the values of the preamble/sync symbol read and the redundancy

symbol missed.

Codexilord read

I I
1) +++pp0ddd-:--dddrrre-+rroggg: -

The pattern read is a multiple of the codeword written. The sync framing error
will not be detected.

Codevlvord read

I 1
2) +++pp0ddd--+dddrrr---rrxggg---

The read remainder will be that of a single symbol in error at a location cor-
responding to the first symbol of the full-length codeword. Since this is beyond the
bounds of the shortened codeword, the error correction algorithm will post an uncorrec-
table error. Given random data, the probability that the last redundancy symbol is zero
is 2°W, so this is also the probability that the read pattern will appear to be error free
when synchronization occurs early by one symbol and a zero symbol is read preceding
the codeword read. By similar reasoning, if synchronization occurs early by k symbols
and the last k preamble/sync symbols are all zeros then the codeword read will appear
to be error free if the last k symbols of &1;. codeword written were all zeros. This
should occur in random data with probability 2-(K*W),
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If synchronization occurs early by k symbols, the last k preamble/sync symbols are
all zeros, and the last k symbols of the codeword written were not all zeros, then on
read there will appear to be an error burst of length k or fewer symbols near the
beginning of the full-length codeword. If the guaranteed detection capability of the
code is equal to or greater than the apparent error created by the pattern of non-zero
symbols missed, then the correction algorithm will post an uncorrectable error since the
errors appear to be outside the bounds of the shortened codeword. If the apparent
error created by the pattern of non-zero symbols missed exceeds the guaranteed detec-
tion capability of the code, then the error will appear to be correctable with probability
P and will appear to be uncorrectable with probability 1-Ppyc.

If synchronization occurs early by k symbols, the last k preamble/sync symbols are
not all zeros and the correction capability of the code is equal to or greater than the
number of non-zero preamble/sync symbols read, then the codeword read will appear to
be correctable if the last k symbols of t?l?* codeword written were all zeros. This
should occur in random data with probability 2~ W),

If synchronization occurs early by k symbols, the last k preamble/sync symbols are
not all zeros, and the last k symbols of the written codeword were not all zeros, then
on read there will appear to be two error bursts, one near the beginning of the full-
length codeword and one near the beginning of the shortened codeword. If this double-
burst error is within the detection guarantees of the code, then an uncorrectable error
will be posted by the error correction algorithm. If this error pattern exceeds the
detection guarantees of the code, then the error will appear to be correctable with
probability Pyc and will appear to be uncorrectable with probability 1-Ppyc.

Codetjvord read

| 1
3) e«+eppXddd--e-+dddrrree-rroggge---
The pattern read is that of a multiple of the codeword written with a symbol in
error at the first symbol of the codeword read. A code used only for error detection
would therefore detect the sync framing error while an error correction code would not.

Codex:lord read

T 1
4) «++ppXddd---dddrrre--rrXggg---

The read remainder will be that for two symbols in error, one at the first symbol
of the full-length codeword and one at the first symbol of the shortened codeword. If
this double-burst error is within the detection guarantees of the code, then an uncor-
rectable error will be posted by the error correction algorithm. If this error pattern
exceeds the detection guarantees of the code, then the error will appear to be correc-
table with probability Py and will appear to be uncorrectable with probability 1-Pye.
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By similar reasoning, if synchronization occurs early by k symbols, the last k pre-
amble/sync symbols are not all zeros, and the guaranteed correction capability of the
code equals or exceeds the number of non-zero preamble/sync symbols read, then the
codeword read will appear to be correctable if the last k symbols of the cgdgwo
written were all zeros. This should occur in random data with probability 2-(k If
the last k symbols of the codeword written were not all zeros, then on read there will
appear to be an error burst at the beginning of the full-length codeword and an error
burst at the beginning of the shortened codeword. If this double-burst error is within
the detection guarantees of the code, then an uncorrectable error will be posted by the
error correction algorithm. If this error pattern exceeds the detection guarantees of
the code, then the error will appear to be correctable with probability Ppe and will
appear to be uncorrectable with probability 1-Ppc.

INITIALIZING THE ECC SHIFT REGISTER TO ALL ONES

One method of code modification that is used to improve the detectability of sync
framing errors is to initialize the ECC shift register that implements the error correct-
ing code to all ones prior to any write or read. This is equivalent to inverting the
first m symbols, where m is the degree of the code, before they are processed by the
ECC shift register. Let us modify our representation by showing symbols which appear
to be inverted to the ECC shift register in uppercase:

Codev[vord written

I ]
o+ +pppDDD:+ ¢ «DDDAdd« « *dddrrre s srrrggge--
e
m inverted symbols
If there is no sync framing error on read then the inversions cancel:

Codeyord read

] |
++ epppddd- *» +dddddd- ¢ +dddrrre - srrrggge- -
m re-inverted symbols

If a sync framing error occurs then read inversions will cancel write inversions
except at the end points of the inversion.
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q In the case of late synchronization by one symbol, after read inversion the pattern
read is:

Codelword read

I 1
e+ +pppDdd- ¢ *dddDdd e « *dddrrre - srrrggg- -

m re-inverted symbols

The read remainder will reflect one error at symbol m-1 of the codeword read, and
may reflect errors at the symbol before the first data symbol and at the last symbol of
the codeword read, depending on the value of the first symbol of the codeword written
and the value of the gap symbol read as part of the codeword read, respectively.

Let us examine the four combinations for late synchronization by one symbol when
the ECC shift register is initialized to all ones.
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Codev[vord read

! ]
1) +++ppp0dd- - -dddDdd+ « *dddrrre - *xrrrogg-- -

m re-inverted symbols
1 non-re-inverted symbol

When the bits of the skipped data symbol were all ones, the inversion caused it to
appear as a zero on write, so the read remainder reflects only the symbol in error at
symbol m-1 of the codeword read. The sync framing error will go undetected by an
error correction code.

Code‘lvord read

| ]
2) ««+pppXdd- ¢ -dddDdd- « -dddrrr- s rrrogg- -
m re-inverted symbols

When the bits of the skipped data symbol were not all ones then the inversion
causes the read remainder to appear to be that of two symbols in error, one at symbol
-1 and one at symbol m-1 of the codeword read. If this double-burst error pattern is
within the detection guarantees of the code, then an uncorrectable error will be posted
by the error correction algorithm. If this error pattern exceeds the detection guaran-
tees of the code, then the error will appear to be correctable with probability Py and
will appear to be uncorrectable with probability 1-Pye. For random data all bits of the
first data symbol will be ones with probability 2°W and therefore this is the probability
that late synchronization by one symbol will be undetected by a code guaranteed to
detect a double-burst error when a zero gap symbol is read. Under similar assumptions
the probability is 2-X"W) that late synchronization by k symbols will be undetected.

Codev{lord read

I 1
3) e+ eppp0dd- + +dddDdd« ¢ edddrrr- s srrrxgge--
e

m re-inverted symbols
1 non-re-inverted symbol

When the bits of the skipped data symbol were all ones and the first gap symbol is
non-zero, the inversion causes the read remainder to appear to be that of two symbols
in error, one at symbol m-1 and one at the last symbol of the codeword. If this
double-burst error pattern is within the detection guarantees of the code, then an
uncorrectable error will be posted by the error correction algorithm. If this error
pattern exceeds the detection guarantees of the code, then the error will appear to be
correctable with probability Pype and will appear to be uncorrectable with probability

1-Pyyc.

Code'word read

- 1
3) e+ +pppXdd-. - +dddDdd- * *dddrrre- - crrrxgg---
m re-inverted symbols
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When the bits of the first data symbol were not all ones and the first gap symbol
is non-zero, the inversion causes the read remainder to appear to be that of three
symbols in error, one at symbol -1, one at symbol m-1, and one at the last symbol of
the codeword. If this triple-burst error pattern is within the detection guarantees of
the code, then an uncorrectable error will be posted by the error correction algorithm.
If this error pattern exceeds the detection guarantees of the code, then the error will
appear to be correctable with probability Py, and will appear to be uncorrectable with
probability 1-Pp,c. Late synchronization by k symbols can be analyzed in a similar man-
ner. :

In the case of early synchronization by one symbol, after read inversion the pat-
tern read is:

Codeyord read

I ]
e+ +ppPddd- * +ddDddd "« * *dddrrre -+ srrrggge -

m re-inverted symbols

The read remainder will reflect one error at symbol m of the codeword read, and
may reflect errors at symbol O and at the first symbol of the full-length codeword,
depending on the value of the preamble/sync symbol read as part of the codeword read
and the value of the written redundancy symbol, respectively.

Analysis of early synchronization when the ECC shift register is initialized to all

ones is affected in much the same way as that of late synchronization. It is left as an
exercise for the reader.

INVERTING REDUNDANCY SYMBOLS

Inverting the redundancy symbols is another method of code modification that is
used to improve the detectability of sync framing errors. This method is essentially the
mirror image of initializing the ECC shift register to all ones. Its effect on reducing
the probability of undetected sync framing errors is the same as that of initializing the
ECC shift register to all ones.

INITIALIZING THE ECC SHIFT REGISTER
WITH A SPECIALLY SELECTED PATTERN

An approach which is capable of providing much better detectability for sync
framing errors than those discussed above is initializing the ECC shift register with a
pattern including both ones and zeros. If the pattern is carefully selected, an early or
late sync slippage of one or more symbols will produce a remainder on read which
differs significantly from that of any correctable codeword, enhancing the probability of
detecting sync framing errors even in the presence of data errors within the record.

We are motivated to use for the initialization pattern a sequence which does not
resemble itself when shifted one or more symbols, so that many errors result when read
inversions are not perfectly aligned with write inversions as a result of a sync framing
error. Pattern selection is influenced by the symbol patterns written immediately before
(preamble/sync symbols) and after (gap symbols) the codeword symbols. Assuming no
errors other than those causing the sync framing error it is possible to use simulation
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to determine for each candidate initialization pattern and given conditions an integer k
such that all sync framing errors caused by synchronizing up to k symbols early or late
will be detected. k will be a function of the candidate initialization pattern, the poly-
nomial, the symbol patterns written immediately before a codeword (preamble/sync
symbols) and after a codeword (gap symbols), and the record lengths. It is also possible
to find integers k and b for each candidate initialization pattern and given conditions
such that all sync framing errors caused by synchronizing up to k symbols early or late
will be detected even if there is a burst of length b or fewer symbols anywhere within
the codeword, or to find integers k and e such that all sync framing errors caused by
synchronizing up to k symbols early or late will be detected even if there are e random
symbols in error.

INVERTING A SPECIALLY SELECTED SET OF REDUNDANCY SYMBOLS

Another good approach for providing better detectability of sync framing errors is
inverting a specially selected set of redundancy symbols. Again, this approach is essen-
tially the mirror image of initializing the ECC shift register to a specially selected
pattern and it provides equivalent protection against sync framing errors.  Pattern
selection would be accomplished in about the manner.

INTERLEAVED REED-SOLOMON CODES

We shall illustrate with three-way interleaving. Let us use the following notation
to represent the set of interleaved Reed-Solomon codewords: :

o0 opppdefo . odefrsto . orstgggc e
where ’p’ is a preamble/sync symbol, ’d’, ’e’, and ’f’ are data symbols of the three
codewords, ’r’, ’s’, and 't’ are redundancy symbols of the three codewords, and ’g’ is a
gap symbol.

Consider the case of late synchronization by one symbol:

Code\;lords read

I |
0 opppdefn sedefrste e rstgggo )
The second and third codewords written are read as the first and second codewords and
contain no errors caused by the sync framing error. The first codeword written is read
as the third codeword. The same analysis performed above for late synchronization by
one symbol of a single codeword applies to the apparent third codeword.
Consider the case of early synchronization by one symbol.

Codeyords read

[ |
. -pppdef- sedefrste- orstgggn .

The first and second codewords written are read as the second and third codewords and
contain no errors caused by the sync framing error. The third codeword written is read
as the first codeword. The same analysis performed above for early synchronization by
one symbol of a single codeword applies to the apparent first codeword.
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Analysis of late or early synchronization by any number of bits can be performed
in a similar fashion; there is no qualitative difference in the effect on individual code-
words between the interleaved and non-interleaved cases given the same amount of sync

slippage per codeword.

INITIALIZING THE ECC SHIFT REGISTER TO ALL ONES

The effect of initializing the ECC shift register to all ones can be extrapolated
from the non-interleaved to the interleaved case in the same way:

COdeyords written

r ]
¢+« pppDEF* « +DEFdef -+ *defrst---rstggge--
3*m inverted symbols
If there is no sync framing error on read then the inversions cancel:

Codeﬁ:ords read

| I
++epppdef-+-defdef--+defrste+rstggge--

3*m re-inverted symbols

If a sync framing error occurs then read inversions will cancel write inversions
except at the end points of the inversion.

In the case of late synchronization by one symbol, after read inversion the pattern
read is:

Code|words read

r 1
e+ epppDef-++defDef+++defrste- rstggge--

3*m re-inverted symbols

Aside from misidentification, two of the codewords are not affected by the sync
framing error. The read remainder for the other will reflect one error at symbol m-1
of the codeword read, and may reflect errors at the symbol before the first data symbol
and at the last symbol of the codeword read, depending on the value of the first symbol
of the codeword written and the value of the gap symbol read as part of the codeword
" read, respectively. The rest of the analysis is identical.

In the case of early synchronization by one symbol, after read inversion the pat-
tern read is:

COdelwords read

I 1
+« +ppPdef. - +deFdef-++defrste+rstggge--

3*m re-inverted symbols
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Again aside from misidentification, two of the codewords are not affected by the
sync framing error. The read remainder for the other will reflect one error at symbol
m of the codeword read, and may reflect errors at symbol O and at the first symbol of
the full-length codeword, depending on the value of the first symbol of the preamble-
/sync symbol read as part of the codeword read and the value of the written redundan-
cy symbol, respectively. The rest of the analysis is identical.

Analysis of late or early synchronization by any number of bits can be performed
in a similar fashion; there is no qualitative difference in the effect on individual code-
words between the interleaved and non-interleaved cases given the same amount of sync
slippage per codeword.

Initializing the ECC shift register to all ones (or inverting all redundancy symbols)
has no qualitative difference between the interleaved and non-interleaved cases, and use
of a specially selected pattern is called for. When a high degree of interleaving or a
code of high degree is used, it might be permissible to initialize a selected set of
symbol-wide registers to all ones (or to invert a selected set of redundancy symbols).
However, best results would be achieved if each bit of the ECC shift register could be
independently initialized to one (or a selected set of redundancy bits could be inverted).

RANDOMIZING DATA

More complete protection against sync framing errors can be achieved by im-
plementing a shift register which generates a pseudo-random sequence, which is initial-
ized to a known state before writing or reading each data record. The EXCLUSIVE-OR
sum of the data-bit stream and the pseudo-random-bit sequence is fed to the ECC shift
register instead of the data bit stream itself. Again an all-zeros data record produces
non-zero redundancy, and if no sync framing error occurs the effects of the pseudo-
random bit sequence on write and read cancel out. A sync framing error of any number
of bits except the period of the pseudo-random sequence can be guaranteed to produce
errors throughout the data record in excess of the correction capability of the EDAC
code, so a sync framing error is no more subject to misdetection than any other uncor-
rectable error.

PROTECTING THE SYNC MARK WITH THE ERROR DETECTION/CORRECTION CODE

A different method for enhancing sync framing error protection is to include the
sync mark in the symbols protected by the error detection/correction code. The effec-
tiveness of this approach decreases as the length of the sync mark decreases.

Consider the case where the sync mark is protected by the error detection/correc-
tion code and synchronization occurs late by one or more symbols. If the gap symbols
read due to the slippage are all zeros, the pattern read will appear to be that of a
multiple of the codeword written plus some error pattern of about the same length as
the sync mark at a location which includes the symbols of the assumed sync mark plus
one or more symbols before the assumed sync mark. If the gap symbols read due to the
slippage are not all zeros, the read remainder will reflect the same error burst as above
plus an error burst in the redundancy symbols. In the former case if the error pattern
does not exceed the correction guarantees of the code, the correction algorithm will
detect the presence of error in the assumed sync mark or outside the bounds of the
shortened codeword and raise an uncorrectable error flag. In either case, if the error
pattern exceeds the correction guarantees but not the detection guarantees of the code,
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the correction algorithm will still raise an uncorrectable error flag. If the error pat-
tern exceeds all correction and detection guarantees of the code, the sync framing error
will appear to be correctable with probability Py and will appear to be uncorrectable
with probability 1-Ppc. As the amount of synchronization slippage increases, the length
of the apparent error burst(s) also increases.

Consider the case where the sync mark is protected by the error detection/correc-
tion code and synchronization occurs early by one or more symbols. The pattern read
will appear to be that of a multiple of the codeword written plus some error pattern of
about the same length as the sync mark at a location which includes the symbols of the
assumed sync mark plus one or more symbols following the assumed sync mark. If the
error pattern does not exceed the correction guarantees of -the code, the correction
algorithm will detect the presence of error in the assumed sync mark and raise an
uncorrectable error flag since an error at the location of the sync mark implies that
the original detection of the sync mark was mistaken and a sync framing error must
have occurred. If the error pattern exceeds the correction guarantees but not the
detection guarantees of the code, the correction algorithm will still raise an uncorrec-
table error flag. If the error pattern exceeds all correction and detection guarantees of
the code, the sync framing error will appear to be correctable with probability Py and
will appear to be uncorrectable with probability 1-Ppe. As the amount of synchroniza-
tion slippage increases, the length of the apparent error burst also increases.
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CONCLUSIONS

Based on the material presented above DST recommends that all cyclic and shor-
tened cyclic error detection and correction codes be modified by either:

(1) Initializing the ECC shift register to a specially selected pattern prior to each
write and read, or

(2) EXCLUSIVE-OR-ing a specially selected pattern against the redundancy bits
on each write and read.

(3) Feeding the ECC shift register with the EXCLUSIVE-OR sum of data and a
pseudo-random sequence on each write and read.

Including the sync mark in the bits covered by the error detection/correction code
and insuring that codewords are preceded and followed by non-zero symbols could
provide additional protection.

The measures (a), (b), and (c) below have been used in the past to provide in-
creased sync framing error protection. If economic reasons dictate the use in new
designs of existing IC’s or other hardware for which it is not feasible to implement (1),
(2) or (3) above, DST recommends the use of all of provisions for sync framing error
protection (a)-(c) below whose implementation is possible:

(a) Initializing ECC shift register to all ones prior to each write or read.
(b) Inverting redundancy on each write and read.
(¢) Including the sync mark within the ECC check on each write and read.

(d) Insuring that codewords are preceded and followed by non-zero symbols.
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4.9 INTERLEAVED, PRODUCT, AND REDUNDANT-SECTOR CODES

4.9.1 INTERLEAVED CODES

Interleaving is a technique used to geographically disperse data for each codeword
over a larger area of media in order to spread error bursts over multiple codewords. In
this way, the error contribution to any one codeword from a long defect is minimized.

As an example, consider a two-dimensional array with C bytes per row and N bytes
per column, in which each column is a codeword of a Reed-Solomon code. As bytes are
written to the media, they are also processed by the redundancy-generating circuitry.
Bytes 0, C, 2C, etc. are processed by the circuitry for interleave 0. Bytes 1, C+1, 2C+1,
etc. are processed by the circuitry for interleave 1, and so on. As bytes are read,
operation is identical except that syndromes are generated rather than redundancy. If
necessary, the correction algorithm is performed, after which the data is released to the
host. In this example, any error burst must span more than C bytes before affecting
more than one byte from any one codeword (interleave).

— | Do Dy Dy .. |Dc-1

Dc |Dc+1| - .o -

K data bytes — . .. . . .

per codeword

Re [Re+1] -- oo .o

N-K redundant — . . . . .
bytes/codeword
C codewords : . ! .o L !

There are many interleaving techniques. Selection of a technique for a particular
application involves tradeoffs between cost, code performance, transfer rate, block size,
and correction time.
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4.9.2 PRODUCT CODES

Product codes perform error correction on a block of data in more than one
dimension. Consider an array of symbols organized into rows and columns, with each
row treated as a codeword of some code Cy and each column as a codeword of another
(possibly the same) code Cp. The resulting overall code is called a product code. It is
common to see Reed-Solomon codes used as the component codes of product codes.

There are many techniques for loading and unloading the array of product code.
As an example, consider an array which on write is loaded one row at a time from the
source.  After all redundancy in both dimensions has been calculated, the array is
unloaded diagonally to the device. On read, the data from the device is loaded diagon-
ally, then after correction, the array is unloaded one row at a time to the destination.
The diagonal unloading and loading accomplishes geographical dispersion of data in a
manner that minimizes the number of error bytes that a long burst can contribute to
any codeword in either dimension.

Do
D3
D2
- . . Row .
. . « REDUNDANCY -
COLUMN CHECKS ON
REDUNDANCY REDUNDANCY

There are many decoding techniques for product codes, one of which is to correct
rows first, then correct columns. Another technique is to iterate row and column
correction; errors in an uncorrectable codeword from one dimension may belong to
correctable codewords in the other dimension, and after they are corrected, the uncor-
rectable codeword may become correctable. Another technique is to combine
row/column iteration with erasure correction; the row [column] numbers of codewords in
error are used as erasure pointers for column [row] correction. There are other decod-
ing techniques for product codes as well. The correction capability of product codes is
very dependent on the precise decoding techniques used.

Product codes have been popular with the Japanese companies and have been
implemented on a number of digital audio products, including both optical disk and
magnetic tape products for consumer and commercial use.

4.9.3 REDUNDANT-SECTOR CODES

Redundant-sector codes can handle very long error bursts. As an example, con-
sider an implementation with one redundant sector for each K data sectors. Each
sector has its own sync field, and uses CRC for error detection. Each byte of the
redundant sector is generated by EXCLUSIVE-OR-ing together the corresponding bytes
of the K data sectors i.e. computing a parity sector. If on reading a data sector, a
CRC error is detected, its contents can be regenerated by EXCLUSIVE-OR-ing the
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remaining data sectors with the redundant sector. This technique can correct even a
long burst which wipes out a sync mark.

SYNC DATA SECTOR #1 CRC

SYNC DATA SECTOR #K CRC

SYNC PARITY SECTOR #1 CRC

An extension of this technique is to use interleaving e.g. one redundant sector for
even sectors and another for odd sectors. This will allow correction of a long burst
spanning any two adjacent sectors, or correction of any two random sectors in error
provided that one is even and the other is odd.

— | SYNC DATA SECTOR #1 CRC
obD SYNC DATA SECTOR #2 CRC| —
SECTORS
. . . . . EVEN

SECTORS
— | SYNC DATA SECTOR #2*K-1 |CRC

SYNC DATA SECTOR #2*K CRC| —

— |SYNC PARITY SECTOR #1 CRC

SYNC PARITY SECTOR #2 CRC -J

A more powerful technique is to implement a Reed-Solomon code across the cor-
responding bytes of the K data sectors, allowing the correction of multiple sectors in
error within a codeword-long set of sectors. CRC error information can be used as
erasure pointers by the Reed-Solomon correction algorithm, so the number of redundant
sectors needed is just the number of errors to be corrected, not twice this number.

SYNC DATA SECTOR #1 CRC

SYNC DATA SECTOR #K CRC

SYNC| REDUNDANT SECTOR #1 CRC

SYNC|REDUNDANT SECTOR #N-K |CRC
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Redundant-sector techniques can be combined with other ECC techniques to form a
more powerful EDAC scheme. For example, the CRC shown for each sector can be re-
placed with an ECC code which can correct single (or multiple) small bursts at the
sector level, and redundant-sector techniques can be used to correct the much lower
rate of long bursts. This is in effect a product code, with the individual sectors com-
prising the row codewords and corresponding bytes from the individual sectors compris-
ing the column codewords.

Redundant-sector techniques have been used on Bemoulli disks, read-only optical
disks, and numerous tape devices.
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CHAPTER 5. SPECIFIC APPLICATIONS

5.1 EVOLUTION OF EDAC SCHEMES
5.1.1 EVOLUTION OF OEM MAGNETIC DISK EDAC SCHEMES

In the early 1970’s, 32-bit Fire codes were widely used for error correction in
OEM magnetic disk devices. These codes were easy to define and required a moderate
amount of hardware to implement. However, their sensitivity to multiple short bursts
posed a serious data accuracy problem. Some error recovery procedures in use at the
time performed correction on soft as well as hard errors; this worsened the problem.
By the late 1970’s, many companies had dropped 32-bit Fire codes in favor of 32-bit
computer-generated codes that were selected to be insensitive to multiple short bursts.
They also changed their error recovery procedures to correct hard errors only, and had
taken other steps to achieve better data accuracy. As the 5% inch hard disk industry
developed, form factor pressure on controller builders pushed implementation efficiency
to the point where 32-bit computer-generated codes were implemented using just five
and one-half standard TTL IC’s.

Over the last four or five years, many hard disk developers have implemented the
(2,7 RLL modulation code. The error-propagation properties of this code necessitates a
larger correction span, which has prompted many companies to switch to more powerful
48-bit, 56-bit and 64-bit computer-generated ECC codes to maintain good data accuracy.
Several hard disk controller IC’s developed during this period implement programmable
polynomial generators that support 48-bit codes, and at least one supports codes up to
64 bits in length.

Hard disk controller IC developers (including Cirrus Logic) are now incorporating
two symbol error correcting Reed-Solomon codes in their new designs in order to handle
higher raw-error-rate media by correcting two independent error bursts within a sector.

5.1.2 EVOLUTION OF IBM MAGNETIC DISK EDAC SCHEMES

In 1970, IBM introduced the 3330 magnetic disk drive, which uses a 56-bit Fire
code to correct single 11-bit bursts in variable length records of up to approximately
13,000 bytes. This code’s generator polynomial was selected to allow fast computation
of error location using the Chinese Remainder Theorem. However, the structure that
permitted fast correction also introduced a pattern sensitivity to multiple short bursts.

The IBM 3340 (the first drive using Winchester technology) and 3350 magnetic disk
drives were introduced in 1973 and 1975, respectively. They use the same 48-bit Fire
code to correct single bursts (up to 4 bits for the 3340, S bits for the 3350) in variable
record lengths (up to 19,000 bytes for the 3350).

In 1979, IBM introduced the 3370 magnetic disk drive, which employs a three-way
interleaved, Reed-Solomon code on fixed-length sectors of 512 bytes. Three redundancy
bytes are used in each of the three interleaves, giving single symbol (byte) error cor-
rection and double symbol error detection in each interleave. IBM uses this code to
guarantee the correction of any single burst of 9 bits or less, the detection of any
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single burst of 41 bits or less, and the detection of any two bursts, each of 17 bits or
less.

This code has a high miscorrection probability for cases in which multiple short
bursts cause a single interleave to have more than two symbols in error. The existence
of this pattern sensitivity is clear when one considers that for all possible errors, a
sector has nine bytes of redundancy protecting it from miscorrection, versus only three
bytes of redundancy for single-interleave errors.

In 1980, IBM introduced the 3380 magnetic disk drive, which employs a
Reed-Solomonlike, two-way interleaved code to correct single bursts in variable length
records of up to approximately 48,000 bytes. Operating on 16-bit symbols, this code
will correct any single burst contained within two contiguous symbols and detect any
single burst contained within three contiguous symbols. Twelve bytes of redundancy are
used; four bytes are associated with each interleave, and an additional four bytes are
shared between the two interleaves. This sharing of redundancy between interleaves
reduces the miscorrection probability for single-interleave errors.

In 1987, IBM announced the 3380K magnetic disk drive, which employs a novel
multiple-burst error correcting code that dedicates more than six percent redundancy to
error detection and correction and accommodates a raw error rate much higher than for
earlier versions of the 3380. Other features of the code include minimum data delay
and a unique supplementary error detection method. The higher track densities achieved
by the 3380K may have motivated IBM to use multiple-burst correction. DST expects to
see even more powerful codes of the same class implemented on future high-end mag-
netic (and possibly optical) devices.

5.1.3 EVOLUTION OF IBM MAGNETIC TAPE EDAC SCHEMES

In 1973, IBM introduced the 3420 (models 4, 6, and 8) Group Code Recording (GCR)
magnetic tape drives. These employ a Reed-Solomon-like code over nine tracks to
correct errors in one track without erasure pointers or two tracks with erasure
pointers.

In 1984, IBM introduced the 3480 eighteen track magnetic tape cartridge drive. It
employs a code which uses parity on bit-vectors in three dimensions (vertical, left
diagonal, and right diagonal). The eighteen tracks are divided into two nine-track sets.
Each set contains seven data tracks, its own vertical parity track, and a diagonal parity
track which is shared with the other set. The code is capable of correcting the fol-
lowing error situations:

- Up to two tracks in error with a pointer, or one track in error without a
pointer, in each of the two sets

- Up to two tracks, one of which has a pointer, in one set, and up to one track
without a pointer in the other set

- Up to three tracks with pointers in one set, and up to one track with a pointer
in the other set

Since the 3480 ECC employs redundancy sharing between the two sets of nine

tracks, it is more powerful than that of the 3420 models 4, 6, and 8, even though both
employ the same percentage of redundant tracks. The 3480 ECC is also the simpler and
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less expensive of the two methods. We expect IBM to continue to use this code as new
versions of the 3480 are offered. Other companies developing eighteen-track magnetic
cartridge tape products are likely to use it as well.

5.1.4 HIGH-PERFORMANCE EDAC SCHEMES FOR MAGNETIC DISK

As mentioned above, several hard-disk controller IC’s developed recently, as well
as others currently under development, employ Reed-Solomon codes for correction of
random single and double symbol errors. There is also a segment of the industry inter-
ested in employing more powerful Reed-Solomon codes to allow the use of so-called
"horrible" media containing hundreds of defects per platter.

: Digital Equipment Corporation implemented a very powerful Reed-Solomon code in
its UDA-50 magnetic disk controller. This code corrects up to eight 10-bit symbols in
error within a 512-byte record. The UDA-50 also employs error-tolerant headers and
sync marks. Other companies in the same market have implemented similar codes.

We at Data Systems Technology feel that magnetic disk drive manufacturers which
develop products in the future will be making trade-offs between media costs and the
cost of high-performance ECC IC’s. The optical storage industry has proven the techni-
cal feasibility of using high error-rate media; the magnetic storage industry is likely to
follow suit, using ECC parts developed for optical products.

5.1.5 HIGH-PERFORMANCE EDAC SCHEMES FOR OPTICAL DISK

There are three major types of optical media: read-only, write-once, and erasable.
Each type has different ECC requirements, but all require high performance ECC.

For stamped media, there is no possibility of sector retirement. Therefore all
initial defects as well as end-of-life defects must be handled by the ECC. This requires
higher performance ECC and more geographic dispersion of data than would be neces-
sary if retirement were possible.

Since the mastering of stamped optical media is performed only once for each
unique set of data, the ECC redundancy generation process can be more complex than
for the other two types of media. Since the full content of each track is known at the
time of mastering, greater geographic dispersion is possible than for the other two types
of media, where each data sector may be written at different times.

Product codes have been popular for stamped media; the CD digital audio players
and CD-ROM digital data storage devices employ product codes. One stamped-media
device employs a three-dimensional product code over each track, geographically dispers-
ing each sector over the entire track.

A number of companies in the U.S. and Japan support the use of single-dimension
interleaved Reed-Solomon codes (also referred to as long distance Reed-Solomon codes
(LDC)) for ECC on 90 mm and 130 mm, WORM and rewritable optical media. Such a
code has been approved by the U.S. Accredited Standards Committee X3B11. Several
companies have developed or are developing LSI parts using DST’s ECC technology to
support this code.
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DST expects to continue to be at the forefront of EDAC technology for optical
storage. We support the use of long distance Reed-Solomon codes for 90 mm and 130
mm, WORM and rewritable optical and developed our NG-8510, NG-8520, and CL-SH8530
IC’s especially for this application. The NG-8510/8520 approach splits the error correc-
tion task between logic within the IC and logic within support software.  The
CL-SH8530 performs correction real-time in hardware.
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5.2 APPLICATION TO LARGE-SYSTEMS MAGNETIC DISK

5.2.1 CAPABILITY OF DISK CODES

(See glossary for definitions)

3330 3340 3350 OEM 3370
ECC Bits 56 48 48 32 72
Rec Length (Bits) 104240 70320} 152552 4644 4168
Correction Span 11 3 4 11 9
Detection Span
Before Correction 56 48 48 32 65
Published Det.
Span After Corr. 22 11 10 32 16
Actual Det. Span
After Correction 28 30 26 13 41
Pmc* 1.5E-9 1.E-9} 4,.3E-9 1.1E-3| 2.2E-16
Pmd* 1.4E-17|3.6E-15|{3.6E-15| 2.3E-10| 2.1E-22

* Assuming all errors are possible and equally probable.

POLYNOMIALS
3330

G2+ 1) +x7 +x0 4+ xl + 1)e(xll + 59 +x7 +x6+x3 +x1 + 1)

-()(12+x11+x10+x9+x8+x7+x6 +x5+x4+x3+x2+x1+1)

3340/3350

GB+) P +xB+x8+x2+1)

OEM

2l + el +x2 + 1)

3370

Field Generator: x8 + x0 + x5 + x4 + 1
Code Generator: (x + aO)-(x + al)-(x + a3‘1)
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5.2.2 THE 3330 MAGNETIC DISK CODE
CODE DEFINITION

The 3330 code is a generalized Fire code. It has a single-burst correction span of
11 bits and a single-burst detection span of 22 bits. Decoding uses the Chinese Re-
mainder Method for displacement calculation. This method requires only a fraction of
the shifts required by clocking around a sequence. The code is defined by the following
polynomial:
g(x) = x56 + x55 + x49 4+ x45 4 x41 4 x39 4 38 4 437
+ %36 4+ %31 4+ %22 4+ x19 4+ x17 4 x16 4 x15

+ x14 + %12 4+ x11 4+ 9 + x5 +x +1
g(x) has the following relatively prime factors:

Po(x) = x22 + 1

Pr(x) = x11 + x7 +x6 +x +1

Py(x) = x12 + x11 + x10 4+ x9 + x8 + x7 + x6
+x3 + x4 +x3 +x2+x +1

x11 + x99 +x7 +x6 +x5+x +1

P3(x)

Each of the factors has a different period as shown below.

FACTOR PERIOD
Po (x) 22
Py (x) 89
Pp(x) 13
P3(x) 23

IMPLEMENTATION

Encoding is performed by a shift register implementing:
g(x) = Po(x) + P1(x) - P2(x) - P3(x)

The shift register premultiplies by x96 and simultaneously divides by g(x). The re-
mainder is inverted and appended to the data as check bytes.

For decoding, the hardware is modified to divide the received data polynomials by
each of the factors of g(x) independently. There are four independent shift registers
generating four independent syndromes. The shift registers are named Py, Pj, P2 and
P3, according to the factor of the generator polynomial implemented. There i1s no
premultiplying during decode.

On read, if all four syndromes are zero, the data is considered to be correct. If
there are both zero and non-zero syndromes, the error exceeds the guaranteed correc-
tion capability of the code. If all four syndromes are non-zero, correction is attempted
using the Chinese Remainder Theorem.
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CORRECTION PROCEDURE

(1) Shift Pg until the 11 high order bits of the shift register are zeros and the
lowest order bits of the shift register are nonzero. Save the shift count
(ng). If the above alignment is not achieved in less than 22 shifts, the error
is uncorrectable.

(2) Shift Py (with feedback) until a match with Pg is achieved. Save the shift
count (ny). If a match is not found in less than 89 shifts, the error is
uncorrectable. - B ' ‘ ‘

(3 Shift Pp (with feedback) until a match with Pg is achieved. Save the shift
count (n). If a match is not found in less than 13 shifts, the error is
uncorrectable.

(4) Shift P3 (with feedback) until a match with Pg is achieved. Save the shift
count (n3). If a match is not found in less than 23 shifts, the error is
uncorrectable, '

The error pattern is in Pg. The error displacement, measured from the last
check bit to the last error bit (low order of Pg) is given by:

d = [-(ko*ng+k1 *n] +ka*np +k3*n3)] MOD e

where,
kg = 452,387
k1 = 72,358
ky = 315,238
k3 = 330,902
e = 585,442 = LCM(22,89,13,23)
HARDWARE SELF-CHECKING

Self-checking of the shift registers is performed with parity predict circuits. See
Section 6.5 for information on parity predict.
SYNC FRAMING ERROR PROTECTION

The inversion of check bytes provides protection against sync framing errors. This

also provides protection for some types of hardware failures by making the check bytes
nonzero for an all-zeros record.
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5.2.3 THE 3350 MAGNETIC DISK CODE
CODE DEFINITION

The 3350 code is a shortened Fire code. It is defined by the following generator
polynomial:

g(x) = 48+x36+x35+x23+x_21+x15+x13+x8+x2+l
The polynomials below are factors of g(x):
c) = x13+1
pRx) = %35 +x23 +x8 +x2 41
The c(x) factor is composite and has a period of 13. The p(x) factor is irreducible
and has a period of 34,359,738,367. The period of g(x) is the least common multiple of

the periods of c(x) and p(x), which is 446,676,598,771. Fire codes are discussed in
Section 3.1. Decoding of shortened codes is discussed in Section 2.4.

CODE CAPABILITY

When the 3350 code is used for detection only, any single burst not exceeding 48
bits in length is guaranteed to be detected. In addition, any combination of double
bursts is guaranteed to be detected provided the sum of the burst lengths is no greater
than 14. This number comes from the Fire code theory and is a lower bound only. It
is very conservative since record length is very short compared to the period of g(x)
(seée5 Section 3.1). Misdetection probability for bursts exceeding the code guarantees is
3.55E-15.

In the 3350 implementation, the code is used to correct bursts through four bits in
length on records up to 19,069 bytes in length. With this correction span and record
length, the code is guaranteed to detect any single burst not exceeding 26 bits in
length. This number was determined by a computer search. The Fire code theory gives
the detection span as only ten bits. For 19,069 byte records, the miscorrection prob-
ability is 4.3E-9 for error bursts exceeding code guarantees, assuming all errors are
possible and equally probable.

CODE DESCRIPTION
The 3350 code is shortened by the premultiplication of the data polynomial. This
requires a shift-register circuit that multiplies and divides simultaneously. These cir-

cuits are discussed in Section 1.3.2.

The multiplier polynomial is determined by computing the reciprocal of the polyno-
mial that is the residue of:

(x156352'1 +48) MOD g'(x)

where g (x) is the reciprocal polynomial of g(x).
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The multiplier polynomial is: v
+x17 4+ x15 4 x13 4+ 59 +x7 +x6 +x2

The multiplier polynomial is used only during read, since shortening of the code
applies only to the read case.

The logical shift-register configurations used for write and read are shown in
Figures 5.2.3.1 and 5.2.3.2 respectively.  Although the write and read configurations are
shown separately, the physical implementation is a single 48-bit shift register. As seen
in Figure 5.2.3.2, there are three separate groups of bits feeding the XOR gates of the
shift register in the read configuration:

B (BOTH): Feedback terms that are common to both the multiplier
polynomial and the generator polynomial.

I (ANPUT): Feedback terms unique to the multiplier polynomial.
F (FEEDBACK): Feedback terms unique to the generator polynomial.

Figure 5.2.3.3 shows a circuit equivalent to that shown in Figure 5.2.3.2. This
circuit is easier to understand. It is shown in the same form as circuits performing
simultaneous multiplication and division in Section 1.3.2. A close comparison of the
circuits of Figures 5.2.3.2 and 5.2.3.3 reveals that splitting the read configuration feed-
back logic into three parts is a way to save logic. The feedback logic for the write
configuration can be obtained from the feedback logic for the read configuration by
OR’ing the BOTH and FEEDBACK lines and adding gating functions.

WRITE OPERATION
There are two write modes:

a. WRITE DATA BITS
b. WRITE CHECK BITS

During the WRITE DATA BITS mode, serial data bits are written to the disk.
Simultaneously, the ECC shift register, with write feedbacks enabled, receives the serial
data bits and calculates write check bits. During the WRITE CHECK BITS mode, the
feedbacks are disabled and check bits are shifted out of the register, complemented, and
written to the disk.

READ OPERATION

There are three read modes:
a. READ DATA BITS
b. READ CHECK BITS
c. CORRECTION

During the READ DATA BITS mode, the ECC shift register, with read feedbacks
enabled, receives serial read data bits. A syndrome is partially computed. During the
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READ CHECK BITS mode, read feedbacks remain enabled. The complements of check
bits are received by the ECC shift register and the computation of the syndrome is
completed.  After processing the read check bits, the ECC shift register should be all
zeros if no error occurred and nonzero if a detectable error occurred.

The CORRECTION mode is entered at the end of a read when the ECC shift
register contents (syndrome) is found to be nonzero. The shift register is shifted with
read feedbacks enabled, until bits 4-47 are zero. When this occurs, the error pattern is
in bits 0-3. Shifting continues to the next byte boundary to place the error pattern in
byte alignment. The shift count is used to calculate an error displacement. The error
is uncorrectable if all zeros are not found in bits 4-47 of the shift register within

156,352 (19,544*8) shifts.

MICROCODE CORRECTION ALGORITHM

Part of the 3350 correction algorithm is implemented in microcode at the storage
control unit. When correction is required, the microcode initializes a counter to 19,544.
As the ECC shift register is shifted during the CORRECTION mode, a flag is raised to
the storage control unit microcode once every eight shifts. The microcode decrements
its counter by one. When ECC hardware finds bits 4-47 of the shift register zero, the
microcode is alerted at the next byte boundary. The microcode counter then contains
the error displacement in bytes from the last check byte to the first byte in error.
The error pattern is obtained from bits 0-15 of the ECC shift register.

HARDWARE SELF-CHECKING

The 3350 employs parity predict for self-checking of error correcting circuits.
These techniques are discussed in Section 6.5.
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48-bit ECC shift register. Note: each feedback line feeds
an XOR gate preceding the numbered shift register stage.

WRITE DATA BITS

FIGURE 5.2.3.1 WRITE CONFIGURATION

READ DATA BITS

v

O—— : s

y y y Y y ¥y 3 Y ¥ Y Y Y Y Y Y

~+—47 39 36 35 32 30 25 23 21 20 17 15 13 9 8 7 6 2 O«

I=INPUT =BOTH F=FEEDACK

FIGURE 5.2.3.2 READ CONFIGURATION
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READ DATA BITS

FIGURE 5.2.3.3 A CIRCUIT EQUIVALENT TO THE READ CONFIGURATION
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5.2.4 THE 3370 MAGNETIC DISK CODE
INTRODUCTION

The 3370 magnetic-disk code is a single-error correcting, double-error detecting
extended Reed-Solomon code interleaved to depth three. There are three logical circuits
(interleaves), each sharing the same physical hardware. Each logical circuit protects
one third of the data. The interleave protecting a particular byte is determined by its
byte count modulo three.

Byte count
Byte Count modulo y
«—y—— Interleave 0
< Interleave 1
Interleave 2

e s ONOOITdWNEO
e s VR ONRKFRFONMNEKRO

For the 512-byte data fields, there are nine check bytes, three for each interleave.
Two interleaves contain 171 data bytes each and the remaining interleave contains 170

data bytes.

ID fields are protected by a three-byte detection-only code that is a subset of the
data field code.

The check bytes are stored in a memory organized logically into three areas re-
ferred to as RAM1, RAM2 and RAM3.
Interleave 2

Interleave 0 Interleave 1

RAM1 G1(x) G1(x) G1l(x)
MEM LOC 0 MEM LOC 1 MEM LOC 2

RAM2 G2(x) G2(x) G2 (x)
MEM LOC 3 MEM LOC 4 MEM LOC 5

RAM3 G3(x) G3(x) G3 (x)
MEM LOC 6 MEM LOC 7 MEM LOC 8
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OVERALL CODE CAPABILITY

The three syndromes of the 3370 implementation give the code a minimum distance
of four, which is sufficient to correct single errors and detect double errors.

The single-error correction and double-error detection interleaved to depth three
results in the following overall capability for the code.

CAPABILITIES (See glossary for definitions)

1. Guaranteed correction span: 9 bits
NOTE: The structure of the 3370 code provides the capability to correct any
single burst up to 17 bits in length. However, the correction span as imple-
mented is limited to nine bits.

2. Guaranteed detection span without correction: 65 bits

3. Guaranteed detection span with correction:

Single-burst: 41 bits
Double-burst: 17 bits

4. Misdetection probability (Pmd) = 2.1E-22
5. Miscorrection probability (Pmc) = 2.2E-16

ENCODING

Normally, the encoding for a Reed-Solomon code with the capability of the 3370
code would be accomplished with circuits implementing the following encode equation:

G =Gx+ael)x+ad)x+atl

However, in the 3370 implementation, each write check byte is generated separately
by dividing the data polynomial by each factor of G(x).

In the 3370 implementation, « is defined by the primitive polynomial

x84+x6+x0 +x4+1.
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SYNDROME GENERATION

On read, the encoding process is repeated. Syndromes are the XOR sum of check
bytes generated on write and check bytes generated on read. The single-error syndrome
equations are shown below:

So = El

S; = El.o"!

S = El.aMl
where,

El1 = Error value
L1 = Emor location (displacement from the end of an interleave; the

last data byte of an interleave is location zero).
HARDWARE IMPLEMENTATION

The figures on the followmg page show the 3370 bhardware 1mplementat10n The
operation is as follows:

WRITE DATA:
SR1,RAM1 = D(x) MOD (x + a0)
SR2,RAM2 = D(x) MOD (x + al)
SR3,RAM3 = D(x) MOD (x + 1)

WRITE CHECK BYTES:

Nine check bytes are written via the MUX in the following order:
- 3 bytes from RAM]1
- 3 bytes from RAM?2
- 3 bytes from RAM3
READ DATA:
Same as write data above.
READ CHECK BYTES:
The nine check bytes read are added modulo-2 (XOR) to the nine check bytes

generated (the contents of the RAM’s). The resulting syndromes are stored
in the RAM’s.
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3370 _ECC HARDWARE

0
SR1 1 1
,f:\ LOAQ_ ; RAM 1
\—/
SHIFT
Lo :
SR2 3 1
DATA LOAD RAM 2
V-O >3 2
N/
L_ SHIFT
0 7 SR3 »3 1
LOAD RAM 3
— Y x=>® E 2
7 0
Note: The bus is flipped
end-for-end at this point
<@ CIRCUIT -a~1 cIRrCUIT
0 — 0 —
1 > 0 1 >~ 0
1 2 > 1
3 > 2
O —
.
. Ot
s () <
.
— s oD
s (D s |
5 > 4
‘ - (D)
7 > 6 > 6
s 7 L 7
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CORRECTION ALGORITHM

In the 3370 implementation, each interleave is decoded separately. The patterns
and displacements within each interleave are analyzed to compute a single pattern and
displacement within the S12-byte data block.

Interleave Correction Algorithm

Single-Error Correction:  The correction algorithm for each interleave is simple and
fast. When there is a single-symbol error, the syndrome equations form a system of
equations in two unknowns, error value E1 and error location L1.

Sp = El1
Sy = El'aLl
S_1= El-a Pt

The error value is Sg. The error location can be determined by substituting Sg for
E1 in the equation for S1.

El = Sp
Ll = LOGg(S1)~LOGq (So)

In the 3370 implementation the LOG,, function is accomplished with a ROM table.

Double-Error Detection: Double errors can be detected by verifying that:

S1  Sp

So ts717°

This relationship will not be zero if a double error occurs.

To do the test above requires finite field division capability. The test below is
equivalent and requires only the use of a log table. This version of the test is imple-
mented on the 3370.

LOG(S1)-LOG(Sp) = LOG¢(S0)-LOG(S-1)

If the relationship above is true, a single error is assumed. If it is not true, a
double error is assumed.
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OVERALL CORRECTION ALGORITHM
Functions of the overall correction routine include:

1. Comparing displacements for the three interleaves to determine if a single
error burst occurred.

2. Comparing displacements to determine which interleave contains the first byte
of error pattern.

3. Converting the patterns and displacements within each interleave to a single
pattern and displacement within the 512-byte data block.

3370 LOG TABLE (INPUT IS al, OUTPUT IS n)

0 1 2 3 4 5 6 7 8 9 A B C D E

F

00 | == 00 01 E7 02 CF E8 3B 03 23 DO 9A E9 14 3C
10 | 04 9F 24 42 D1 76 9B FB EA F5 15 OB 3D 82 B8
20 | 05 7A A0 4F 25 71 43 6A D2 EO 77 DD 9C F2 FC
30 | EB D5 F6 87 16 2A 0C 8C 3E E3 83 4B B9 BF 93
40 | 06 46 7B C3 Al 35 50 A7 26 6D 72 CB 44 33 6B
50 | D3 28 E1 BD 78 6F DE FO 9D 74 F3 80 FD CD 21
60 | EC A3 D6 62 F7 37 88 66 17 52 2B Bl OD A9 8D
70 | 3F 08 E4 97 84 48 4C DA BA 7D CO C8 94 C5 5F
80 | 07 96 47 D9 7C C7 C4 AD A2 61 36 65 51 BO A8
90 | 27 BC 6E EF 73 7F CC 11 45 C2 34 A6 6C CA 32
A0 | D4 86 29 8B E2 4A BE 5D 79 4E 70 69 DF DC F1
BO | 9E 41 75 FA F4 OA 81 91 FE E6 CE 3A 22 99 13
CO | ED OF A4 2E D7 AB 63 56 F8 8F 38 B4 89 5B 67
DO | 18 19 53 1A 2Cc 54 B2 1B OE 2D AA 55 B8E B3 5A
EO | 40 F9 09 90 E5 39 98 BS5 85 8A 49 5C 4D 68 DB
FO | BB EE 7E 10 Cl1 A5 C9 2F 95 D8 C6 AC 60 64 AF
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SIMULATION OF 3370 ECC IMPLEMENTATION

ERROR CASE

BEGIN READ DATA PART OF SIMULATION
(DATA PART OF RECORD IS ALL ZEROS EXCEPT FOR ERROR)
(CHECK BYTES ARE ’00 FF FF 00 08 08 00 A3 A3’)

BYTE MOD ERROR -—-RAM l--- -=-RAM 2--- =---RAM 3~--
CNT 3

FF FF 00 FF FF 00 FF FF 00
0
/ MOD (x+a9) MOD (x+al)  MOD(x+a~1)
/ I 10 r ]
501 0 FF FF 00 01 B8 00 FE 7F 00
502 1 FF FF 00 01 01 00 FE FE 00
503 2 FF FF 00 Ol 01 00 FE FE 00
504 0 FF FF 00 02 01 00 E1 FE 00
505 1 FF FF 00 02 02 00 E1 E1 00
506 2 OF FF FF OF 02 02 1E E1 E1 FD
507 0 FF FF OF 04 02 1E DF E1 FD
508 1 FF FF OF 04 04 1E DF DF FD
509 2 FF FF OF 04 04 3C DF DF E7
510 0 FF FF OF 08 04 3C A3 DF E7
511 1 FF FF OF 08 08 3C A3 A3 E7

, | i 1
A
FINISHED DATA, NOW READ CHECK BYTES
INTERLEAVE 2,1, O

BYTE MOD ERROR -—-RAM 1--- =---RAM 2--- ---RAM 3-—-
CNT 3
512 2 FF FF OF 08 08 3C A3 A3 E7
513 0 00 FF OF 08 08 3C A3 A3 E7
514 1 00 00 OF 08 08 3C A3 A3 E7
515 2 00 00 OF 08 08 3C A3 A3 E7
516 0 00 00 OF 00 08 3C A3 A3 E7
517 1 00 00 OF 00 00 3C A3 A3 E7
518 2 00 00 OF 00 00 3C A3 A3 E7
519 0 00 00 OF 00 00 3C 00 A3 E7
520 1 00 00 OF 00 00 3C 00 00 E7

END OF CHECK BYTES, BEGIN CORRECTION ALGORITHM
CORRECTABLE ERROR AT DISPLACEMENT 5 FROM END OF RECORD,

COUNTING LAST DATA BYTE AS 0.

CORRECTABLE PATTERN IS ’OF 00 00’

END OF SIMULATION
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SIMULATION OF 3370 ECC IMPLEMENTATION
NO ERROR CASE
BEGIN READ DATA PART OF SIMULATION

(DATA PART OF RECORD IS ALL ZEROS)
(CHECK BYTES ARE *00 FF FF 00 08 08 00 A3 A3’)

BYTE MOD ERROR ~=-RAM 1-=-= ===RAM 2=== =—--RAM 3---
CNT 3
FF FF 00 FF FF 00 FF FF 00

0

/ MOD (x+a0) MOD(x+al)  MoD(x+a"1)
/
501 0 FF FF 00 01 B8 00 FE 7F 00
502 1 FF FF 00 01 01 00 FE FE 00
503 2 FF FF 00 01 01 o0 FE FE 00
504 0 FF FF 00 02 01 00 E1 FE 00
505 1 FF FF 00 02 02 00 E1 E1 00
506 2 FF FF 00 02 02 00 E1 E1 00
507 0 FF FF 00 04 02 00 DF E1 00
508 1 FF FF 00 04 04 00 DF DF 00
509 2 FF FF 00 04 04 00 DF DF 00
510 0 FF FF 00 08 04 00 A3 DF 00
511 1 FF FF 00 08 08 00 A3 A3 00

FINISHED DATA, NOW READ CHECK BYTES

BYTE MOD ERROR ---RAM l1--- ---RAM 2-~-- -=--RAM 3---
CNT 3

512 2 FF FF 00 08 08 00 A3 A3 00
513 0 00 FF 00 08 08 00 A3 A3 00
514 1 00 00 00 08 08 00 A3 A3 00
515 2 00 00 OO0 08 08 00 A3 A3 00
516 0 00 00 OO0 00 08 00 A3 A3 00
517 1 00 00 00 00 00 OO0 A3 A3 00
518 2 00 00 00 00 00 00 A3 A3 00
519 0 00 00 00 00 00 00 00 A3 00
520 1 00 00 00 00 00 00 00 00 00

END OF CHECK BYTES, BEGIN CORRECTION ALGORITHM
SYNDROME ALL ZEROS, NO ERROR DETECTED
END OF SIMULATION
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5.3 APPLICATION TO SMALL-SYSTEMS MAGNETIC DISK .

This section describes a discrete error-correction implementation that for several
years was ideal for small-systems magnetic-disk controllers. It is part of many existing
controller designs in both discrete and LSI form. The code discussed in this section
employs a 32-bit polynomial. However, new designs are likely to employ polynomials of
degree 48, 56 or 64.

Methods for hardware and software implementation are described. Included are
unique methods for

(a) realizing the divide circuit
(b) detecting the error and
(c) passing the syndrome to software.

All real time operations are performed by the error-correction hardware. Com-
putation of the error pattern and the displacement is performed by software. Two
software algorithms, bit-serial and byte-serial, are described. = Approximately 120 in-
structions are required to implement the software algorithms on the Z80 and similar
8-bit processors. In addition, 1K bytes of table space are required if the byte-serial
software algorithm is selected.

For the Z80 and similar microprocessors, typical correction time is four mil-
liseconds, (eight maximum), if the byte-serial software algorithm is used. If the
bit-serial algorithm is used, typical correction time for the Z80 is 30 milliseconds, 60
maximum. These correction times are for a 256 byte record. For longer records, divide
the record length by 256 and multiply the result by the times given. If, as recom-
mended, correction is used only on hard errors, the bit-serial software algorithm will be
fast enough for most applications. Bit slice implementations are typically four to five
times faster than the Z80.

The polynomial used in this implementation is a computer-generated polynomial,
selected for its insensitivity to short double bursts, good detection span and eight feed-
back terms. It was optimized for correction spans of five and eight bits on record
lengths of 256 and 512 bytes, although its capabilities exceed this.

The forward polynomial is:

x32 4 x28 4+ x26 4 x19 4+ x17 4 x10 4 56 4 52 4+ X0

The reciprocal polynomial is:

x32 4+ x30 4 x26 4 x22 4 x15 4 x13 4 x6 4 x4 + X0
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5.3.1 POLYNOMIAL CAPABILITIES

The capabilities specified below represent the extremes for which the polynomial
{Jﬁas been tested. Further testing is required if the polynomial is to be used beyond
ese extremes.

If you plan to use this polynomial, read Section 4.4 DATA ACCURACY to under-
stand miscorrection probability (number 8 below) before selecting the correction span.

1. Maximum record length (r) = 8*1038 bits (including check bits)
2. Maximum correction span (b) = 11 bits.

3. Degree of polynomial (m) = 32.
4

. Single-burst detection span when the code is used for error detection only =
32 bits.

5. Single-burst detection span (d) when the code is used for error correction:

20 bits for b=5 and r=8%*270
14 bits for b=8 and r=8#%270
13 bits for b=11] and r=8*270
bits for b=5 and r=8%*526
14 bits for b=8 and r=8+%526
12 bits for b=11 and r=8%*526
11 bits for b=11 and r=8%1038

wmnuwununuwn
[
0

6. Double-burst detection span when the code is used for error correction:

4 bits for b=5 and r=8+%270
2 bits for b=8 and r=8#%270
3 bits for b=5 and r=8%526
2 bits for b=8 and r=8%*526

7. Nondetection probability = 2.3E-10
8. Miscorrection probability:

8.00E-6 for b=5 and r=8+%270
6.40E-5 for b=8 and r=8#*270
5.12E-4 for b=11 and r=8%*270
1.57E-5 for b=5 and r=8*526
1.25E-4 for b=8 and r=8%*526
1.00E-3 for b=11 and r=8%526
2.01E-3 for b=11 and r=8+*1038

o wwwunn
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5.3.2 HARDWARE IMPLEMENTATION
Several examples of encoder and decoder circuits are described below. Although they
are shown separately, circuitry can obviously be shared between encoder and decoder.

BIT-SERIAL ENCODER USING THE INTERNAL-XOR FORM OF SHIFT REGISTER

REDUN_GATE

DATA

1 | | o

> +

)
r y y ) 4 y y y rr-v-.]

3

MU

X |
TI WRITE DATA/CHECK BITS xi —-@-xi'l

The shift register has an XOR gate feeding the input of each stage which has a
non-zero coefficient in the generator polynomial (except stage 0). For initialization
considerations, see Section 4.8.2.

After all DATA bits have been clocked into the shift register, REDUN_GATE is as-
serted. The AND gate then disables feedback, allowing the check bits to be shifted out
of the shift register, and the MUX passes the check bits to the device.
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BIT-SERIAL ENCODER USING THE EXTERNAL-XOR FORM OF SHIFT REGISTER

. s
r{na o
< D Fe=
o | | 31+L D
0—.
L
i,
xi-1 ‘_T xi (J__
REDUN_GATE MUX
> Tl WRITE DATA/
DATA >
> ‘(,)J CHECK BITS

The shift register is tapped at the output of each stage which has a non-zero
coefficient in the generator polynomial. For initialization considerations, see Section
4.8.2.

After all DATA bits have been clocked into the shift register, REDUN_GATE is as-
serted. The upper AND gate then disables feedback and the lower AND gate blocks
extraneous DATA input to the ODD parity tree, whose output the MUX passes as check
bits to the device.
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CIRCUITS TO GENERATE SYNDROMES TO BE USED IN SOFTWARE CORRECTION
CASE 1: SYNDROME IS OUTPUT BEHIND DATA
BIT-SERIAL DECODER USING THE INTERNAL-XOR FORM OF SHIFT REGISTER

REDUN_GATE
D)
DATA y y 4 \d | 4 y ¥y v
w~ 31 0
MUX

f_l—l WRITE DATA/CHECK BITS

] ‘?_J
> ECC_ERROR
)"*‘ JQF———m/mm

The shift register has an XOR gate feeding the input of each stage which has a
non-zero coefficient in the generator polynomial (except stage 0). The shift register
must be initialized to the same state used before write.

After all DATA bits have been clocked into the shift register, REDUN_GATE is as-
serted. The upper AND gate then disables feedback, allowing the check bits to be
shifted out of the shift register, and the MUX passes the syndrome bits to the buffer.
The lower AND gate allows any non-zero syndrome bit to latch the JK flip-flop, assert-
ing the ECC_ERROR signal. ‘
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BIT-SERIAL DECODER USING THE EXTERNAL-XOR FORM OF SHIFT REGISTER

REDUN_GATE

0 31
0O—

ooo
A

1>

DATA

> T] WRITE DATA/

v‘(l)_l CHECK BITS

> ECC_ERROR
J Qf——

K

The shift register is tapped at the output of each stage which has a non-zero
coefficient in the generator polynomial. The shift register must be initialized to the

same state used before write.

After all DATA bits have been clocked into the shift register, REDUN_GATE is as-
serted. The upper AND gate then disables feedback and the lower AND gate blocks
extrancous DATA input to the ODD parity tree, whose output the MUX passes as syn-
drome bits to the buffer. The bottom AND gate allows any non-zero syndrome bit to

latch the JK flip-flop, asserting the ECC_ERROR signal.
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CASE 2: SYNDROME IS FETCHED FROM SHIFT REGISTER
BIT-SERIAL DECODER USING THE INTERNAL-XOR FORM OF SHIFT REGISTER

REDUN_GATE
D,
y y y y y y y 4
DATA i @ 1 5 _J
> ECC_ERROR
' K

The shift register has an XOR gate feeding the input of each stage which has a
non-zero coefficient in the generator polynomial (except stage 0). The shift register
must be initialized to the same state used before write.

After all DATA bits have been clocked into the shift register, REDUN_GATE is as-
serted. The upper AND gate then disables feedback. The upper-most path, leading from
the XOR gate to stage 0, allows the shift register to collect the syndrome bits for later
retrieval. The lower AND gate allows any non-zero syndrome bit to latch the JK flip-
flop, asserting the ECC_ERROR signal.
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DETAILED IMPLEMENTATION EXAMPLE #1

The hardware of Figure 5.3.2.1 is used on write to generate check bits and on read
to generate an error syndrome. The error syndrome is stored in memong via the de-
serializer during check bit time. It has the following format, where xV is the high
order bit of the first byte stored:

Lowest memory address x0 - x7
x8-x15
Highest memory address x24 - x31

This format assumes that the high-order bit of a byte is serialized and deserial-
ized first. The bits are numbered here for the software flow chart. Bits numbered 0-7
above are bits 31-24 of the syndrome from hardware.

As the data is written, data bits are directed to pin 10 via the 2:1 circuit. At the
same time, check bits are generated in the shift register in a transformed format.
During write checkbit time, the transformed check bits in the shift register are con-
verted to true check bits (some inverted) by the odd circuit and are directed to pin 10
via the 2:1 circuit.

As the data is read, data bits are directed to pin 9 via the 2:1 circuit. At the
same time, syndrome bits are generated in the shift register in a transformed format.
During read check-bit time, the transformed syndrome bits in the shift register are
converted to true syndrome bits by the odd circuit and are directed to pin 9 via the 2:1
circuit.

During read check-bit time, the flip-flop (LS74) will be clocked to its error state
if any of the syndrome bits are nonzero. At the end of any read, pin 11 will indicate
if an error occurred.
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L] L] L] * *
EVEN |P -
32-BIT LEFT-SHIFTING SHIFT —~¢ A Tpe
REGISTER (74LS164'S) #*% . |R R
¥ - ODD |I Ep<«
x0 x31 T E «—J
Y <
SHIFT INPUT ENABLE
2
CLEAR
3 CHECK/SYNDROME BITS
READ/WRITE DATA
1
[*_ WRITE DATA/CHECK BITS
2:1 10
— 1LS157 9
READ DATA/SYNDROME BITS
CHECK_BIT_ TIME
5
CLEAR ERROR
' ) —
—0 ECC_ERROR
READ ——ODO— D O 11
4 O
LS74
CLOCK
6 C
NOTES: * There is one feedback line for each non-

* %

zero coefficient term of the forward poly-

nomial except the x32 term.

The '1l' state of the shift register outputs

is the low voltage state.

FIGURE 5.3.2.1 HARDWARE FOR METHOD 1
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DETAILED IMPLEMENTATION EXAMPLE# 2

The hardware of Figure 5.3.2.2 is similar to that for method 1 except that ECC
error is detected by software. After a record and syndrome have been read and stored,
software fetches the four byte syndrome and checks for zero.

nonzero, an error has occurred and the software ECC algorithm must be performed.

In summary, if method 2 is used, software performs the function that the flip-flop

(LS74) performed in method 1.

IMPLEMENTATION SUBTLETIES

Listed below are some points that have been misunderstood by engineers imple-

menting the hardware.

1.

There is 15 shift register stage for x0 through x31,  There is no shift register
stage for x 2,

The input end of the shift register is labeled x31 and the direction of shift is
towards x0. This is not an arbitrary assignment. It is required for this par-
ticular form of the polynomial shift register.

There is a feedback path from the shift register to the parity tree for each
nonzero coefficient term of the forward polynomial except for the x4 term.

The forward polynomial is implemented in hardware and the reverse poly-
nomial is implemented in software.

The read/write data line (pin 1 of Figures 5.3.2.1 and 5.3.2.2) must be inac-
tive while writing check bytes.

After activating the clear line of Figures 5.3.2.1 and 5.3.2.2, the circuit should
not be clocked until the first bit is ready to be processed.
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. *

32-BIT LEFT-~SHIFTING SHIFT
REGISTER (74LS164'S) **

EVEN

4

x0

SHIFT

CLEAR

READ/WRITE DATA

%31

INPUT ENABLE

CHECK/SYNDROME BITS

oDD

D

<KBHXPY

CHECK_BIT TIME

2:1

LS157

WRITE DATA/CHECK BITS
10

9

READ DATA/SYNDROME BITS

NOTES: * There is one feedback line for each
non-zero coefficient term of the for-
ward polynomial except the x32 term.

* The '1l' state of the shift register
outputs is the low voltage state.

FIGURE 5.3.2.2 HARDWARE FOR METHOD 2
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5.3.3 SOFTWARE IMPLEMENTATION
ERROR DETECTION

At the completion of a read, the existence of any non-zero bit in the syndrome
indicates the existence of an error or errors. A non-zero syndrome is typically, and
most efficiently, detected with sequential logic as shown above. However, if a shift
register of the internal-XOR form with a separate path to stage O (see the circuit for
Case 2 above) is used, it is possible (and has been done in the past) to use com-
binatorial logic (e.g., a 48-input OR gate) rather than the AND gate/JK latch shown.

ERROR CORRECTION

When a non-zero syndrome indicates the presence of an error, correction is ac-
complished by shifting the syndrome until the error pattern is found. This shifting may
be done bit-serially or byte-serially, in hardware or by software. Bit-serial and byte-
serial software algorithms are given below. For discussion of byte-serial hardware
implementations Section 4.7.

The required shifting may be performed either forward along the code’s shift-
register sequence using the code’s generator polynomial, or reverse along the code’s
shift register sequence using the reciprocal of the code’s generator polynomial.

When forward shifting is implemented, pre-multiply must be used to shorten the
code. For a discussion of code-shortening, see Section 2.4. Use the following expres-
sion for the pre-multiply polynomial:

Proutt®) = x®-1.F(1/x)
where

F(x) = x0-1 MOD g (x)
Forward shifting requires either the use of a different Pmult(x) for each sector length,
or that Pmult(x) must be selected for the largest sector-length to be used. In the
latter case extra shifts are required for the shorter sector-lengths.

When reverse shifting using the reciprocal polynomial is implemented, then if the
shift register shifts left [right] during read, then either

a) The shift register must shift right [left] during correction or

b) The syndrome must be flipped end-for-end before correction, and the shift
register must continue to shift left [right] during correction.
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DETERMINING ERROR PATTERN AND LOCATION

The error pattern is found by shifting until a given number of consecutive zeros
appears in one end of the shift register. When this occurs, the error pattern is aligned
with the other end of the shift register. Which end of the shift register is aligned
with the error pattern is a matter of implementation choice. See Sections 2.3 and 2.4
for examples of pattern alignment.

Error displacement is calculated by counting the number of shifts executed while
locating the error pattern. The details of displacement calculation depend on which end
of the shift register is used to align the error pattern.

The detection of consecutive zeros to indicate that a valid error pattern has been
found can be accomplished using either combinatorial or sequential logic. Combinatorial
logic would consist of a many-input OR gate.

Sequential logic circuitry for an internal-XOR shift register implementation would
include a counter that is incremented by each ’0’ that appears at the output of the
high-order stage and is reset by any ’1’ that appears. When the counter reaches the

given threshold, the error pattern has been found.

It is also possible to simulate such a counter in software; the software would
control an output line to initiate each shift of the hardware shift register and receive
the output of the high order stage. The software can simultaneously simulate the dis-
placement counter.

OTHER CONSIDERATIONS

1) The detection of consecutive zeros that surround the error pattern is more
complex when error correction is performed using byte-serial hardware or
software. See Figure 3.1.1 for an example of byte-serial hardware. A byte-
serial software algorithm is given below.

2) When error correction is performed in hardware, the internal-XOR form os
shift register is typically used. However, it is also possible to perform error
correction in hardware when the external-XOR form is shift register is used.

3) Feedback could be left enabled during redundancy time. If the reverse-shift-
ing correction method is used, the error location process would then require
48 additional shifts. If the forward-shifting correction process is used, a
different Pmult(x) would be used.
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SOFTWARE ALGORITHMS

The software algorithms use the syndrome to generate the correction pattern and
displacement for correctable errors, or to detect uncorrectable errors.

In the correction algorithms, a simulated shift register implements the reciprocal
polynomial. The simulated shift register is loaded with the syndrome and shifted until a
correctable pattern is found or the error is determined to be uncorrectable.  Flow
charts of the correction algorithms are shown at the end of this section.

The maximum record length for this polynomial is 1038 bytes (including check
bytes). The flow charts and software listings have been designed so that the record
length can be varied by changing a single constant (K1).

The flow charts cover the algorithms through determination of pattern and dis-
placement. Both forward (FWD) and reverse (REV) displacements are computed. FWD
displacement  starts at the beginning of the record counting the first byte as zero.
REYV displacement begins with the end of the record counting the last byte as zero.

The pattern is in R2, R3, and R4. R2 is XOR’d with the record byte indicated by
byte displacement. R3 is XOR’d with the byte one address higher than the byte dis-
placement. R4 is XOR’d with the byte two addresses higher than the byte displacement.

If the correction span selected is nine bits or less, the pattern is in R2 and R3.
No action is required for R4.

Once an error pattern and displacement have been computed, there are several
special displacement cases that must be handled. For example, the error may be in
check bytes or it may span data and check bytes. The error may be a header field or
a data field. Some formats combine header information with the data field. The data
field in this case, has several overhead bytes, containing header information, preceding
data. This adds additional special displacement cases.

The software routines defined in this section contain logic for separate and
combined header and data fields.
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The procedures below handle the special displacement cases of four overhead bytes.
In a particular implementation there may be more, less, or even no overhead bytes.

FORWARD DISPLACEMENT LESS THAN 4

0-1 Error burst in overhead bytes. Correct overhead bytes in RAM. If overhead
bytes are not contiguous in RAM, handle the boundaries. -

2 Error burst spans overhead bytes and data. XOR R2 with next to last over-
head byte. XOR R3 with last overhead byte. XOR R4 with first data byte.

3 Error burst spans overhead bytes and data. XOR R2 with last overhead byte,
XOR R3 with first data byte. XOR R4 with second data byte.

REVERSE DISPLACEMENT LESS THAN 6
0-3 Error burst in check bytes. No action required.

4 Error burst spans data and check bytes. XOR R2 with last data byte. No
action required for R3 or R4.

5 Error burst spans data and check bytes. XOR R2 with next to last data byte.
XOR R3 with last data byte. No action required for R4.

FORWARD DISPLACEMENT EQUAL OR GREATER THAN 4 AND REVERSE
DISPLACEMENT EQUAL OR GREATER THAN 6

Error burst in data bytes. Correct data bytes in RAM. If the data is not
contiguous in RAM, handle the boundaries. Generate displacement from the
first data byte to the first byte in error by subtracting the number of over-
head bytes from the forward displacement. XOR R2 with the data byte
indicated by the displacement just computed. XOR R3 with the data byte one
address higher than the displacement. XOR R4 with the data byte two ad-
dresses higher than the displacement.
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BEGIN
[
LOAD SYNDROME
Rl = x%-x
R2 = X8—X15
R3 = x16-x23
R4 = x24-yx31
INITIALIZE
J = K1 *
ALGN FLAG = 0

BIT-SERIAL SOFTWARE ALGORITHM
FOR POLYNOMIAL '42402402105"

TEST =

R1

%0

0

J=J+8
R1=R2,R2=R3
R3=R4,R4=0

shift R1-R4 right one bit. **
of the low-order bit of R4 is '1l', do the following:
Rl = R1 + 138, R2 = R2 + 5, R3 = R3 + 2,

If the bit shifted out

= R4 + 34

=J-1

UNCORRECTABLE

¥ kkkk

ALGN_FLAG=1

CORRECTABLE
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NOTES FOR BIT-SERIAL CORRECTION ALGORITHM
* K1 = Record length in bits minus 25. Record length includes all bits covered
by ECC including the check bits.

** When shifting, the low-order bit of a register is shifted into the  high-order
bit of the next higher-numbered register. ’+’ here means EXCLUSIVE-OR; the
constants are a form of the reciprocal polynomial in decimal.

**x Mask for given correction span:

Span Mask R2:R3

01111111:11111111
00111111:11111111
00011111:11111111
00001111:11111111
00000111:11111111
00000011:11111111
00000001:11111111
00000000:11111111
00000000:01111111
00000000:00111111
00000000:00011111

HFOWVURNOULEWN R

=

*¥x¥ On correctable exit, J is the forward bit displacement and J/8 is the forward
byte displacement. The reverse byte displacement is (K1+25-J)/8-1. The error
pattern is in R2:R3:R4.
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BEGIN BYTE-SERIAL SOFTWARE ALGORITHM
| FOR POLYNOMTIAL '42402402105"

LOAD SYNDROME
Rl = x9-x
R2 = x8-x15
R3 — x16-x23
RA — x24-x31
INITIALIZE
J = KL *
IN 1
- F=J+1
_ J=J+
(7//Tg§T =0, | R1=R2, R2=R3
,\\\ R3=R4,R4=0
%0

Set A = R4 then do the following XORs:
R4 = R3 + T4(A), R3 = R2 + T3(A)
R2 = R1 + T2(A), Rl = T1(A)

Copy R2:R3:R4 -
into RA:RB:RC l

Shift RA:RB:RC
left one bit **

L

////TEST

RA:RB under
mask ***

0 -

T=g-1 #0," TEST

~ L P
=0 e
=0
*hkk
UNCORRECTABLE CORRECTABLE
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NOTES FOR BYTE-SERIAL CORRECTION ALGORITHM

* KI = Record length in bytes minus 4. Record length includes all bytes
covered by ECC including the check bytes.

** When shifting, the high-order bit of a register is shifted into the -low-order
bit of the next higher-lettered register.

*** Mask for given correction span:

Span Mask RA:RB

01111111:11111111
00111111:11111111
00011111:11111111
00001111:11111111
00000111:11111111
00000011:11111111
00000001:11111111
00000000:11111111
00000000:01111111
00000000:00111111
00000000:00011111

POV WN R

R

**** On correctable exit, J is the forward byte displacement. The reverse byte
displacement is (K1+3-J). The error pattern is in R2:R3:R4.
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POLYNOMIAL - '42402402105' (OCTAL)
280 CODE FOR BIT-SERIAL ALGORITHM

THIS ROUTINE PERFORMS ALL THE FUNCTIONS OF THE
BIT-SERIAL ALGORITHM (SEE FLOWCHART)

TIMING IN THE 'SHIFT AND XOR' AREA OF THE CODE IS CRITICAL.
EXECUTE THIS ROUTINE AFTER ATTEMPTING

REREADS AND FINDING THE SAME SYNDROME ON 2
CONSECUTIVE READS.

N6 N Ne N6 Mo Ne “e N Ne e W No wo

© o o o s > e s  —  — —— — —— — - - — - - —— - T~ ——— - . > W ———— —————————— ——— - —

IMPLEMENTATION CONSTANTS

H DEFINE POLYNOMIAL - DECIMAL CONSTANTS, SEE FLOW CHART

Pl EQU 138

P2 EQU 5

P3 EQU 2

P4 EQU 34

i DEFINE CONSTANTS K1 AND K2 (SEE FLOW CHART)

K1 EQU ——— ;INSERT DATA FIELD CONSTANT K1

K2 EQU ——— ¢ INSERT HEADER FIELD CONSTANT K2

H DEFINE NUMBER OF OVERHEAD BYTES

ov EQU —-——— ;INSERT # OF OVERHEAD BYTES

H DEFINE CORRECTION SPAN MASK

CSM1 EQU ——— ; INSERT APPROPRIATE MASK BELOW

i CORR SPAN 1 - MASK '01111111'

2 - '00111111°
3 - '00011111"°
4 - '00001111"
5 - '00000111"
6 - '00000011"
7 - ‘00000001
8 - '00000000"'
9 - '00000000"'
10 - '00000000"
11 - '00000000"'

CSM2 EQU ———— INSERT APPROPRIATE MASK BELOW

- MASK 'l11111111'
- '11111111°
- '11111111"
- '11111111"°
- 11111111
'11111111°
- '11111111°
- '11111111°
- '01111111"
- '00111111"
- '00011111"

CORR SPAN

Ne Ne Ne Ne e We Ve We Ve Ne N We We Ve Ne We e We “e ws “e wo

HFOWVWONMOd WP
|

e
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; INITIALIZE PSEUDO SHIFT REGS AND SHIFT COUNT (J)
’
INIT LD HL, (nn) ;FETCH 1ST 2 SYNDROME BYTES
LD B,L ; SYNDROME BITS x0-x7
LD c,H ; SYNDROME BITS x8-x15
LD HL, (nn) ;FETCH 2ND 2 SYNDROME BYTES
LD D,L ; SYNDROME BITS x16-x23
LD E,H ;SYNDROME BITS x24-x31
INITO5 LD A, (FLDFLG) ;LOAD FIELD FLAG
OR a
JP NZ, INIT20 ;JP TO INIT20 IF CORRECTING HEADER
; INITIALIZE FOR DATA FIELD
INIT10 LD HL, nn-0V ;SAVE DATA BUFFER ADDRESS
LD (BUFFADR) ,HL. ; MINUS NUMBER OF OVERHEAD BYTES
LD HL, (K14+25) /8-1;SAVE
LD (RLBMO) , HL ; DATA FIELD LENGTH IN BYTES-1
LD HL, K1 ;LOAD J WITH K1 (CONST FOR DATA)
Jp CALGN
; INITIALIZE FOR HEADER FIELD
INIT20 LD HL,nn ;SAVE
LD (BUFFADR) ,HL. ; HEADER BUFFER ADDRESS
LD HL, (K2+25) /8~1;SAVE
LD (RLBMO) , HL ; HEADER LENGTH IN BYTES MINUS 1
LD HL, K2 ;LOAD J WITH K2 (CONST FOR HEADER)
; CLEAR ALGN-FLAG
CALGN XOR A ;CLEAR A
LD (ALGNFLG) ,A  ;CLEAR ALGN-FLAG
; LEFT JUSTIFY FIRST NON-ZERO SYNDROME BYTE IN 'B'
’
JUST XOR A
OR B ;TEST 'B' FOR ZERO
Jp NZ, SHIFT ;BRANCH ON NONZERO
LD A, L
ADD 8 ;I=J+8
LD L,A
Jp NC,JUST10
INC H
JUST10 LD B,C
LD c,D
LD D,E
LD E,0
JP JUST
; SHIFT PSEUDO SHIFT REG UNTIL CORRECTABLE PATTERN FOUND
SHIFT SRL B ;-
RR c ;SHIFT RIGHT
RR D ;
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SHIFTO5

SHIFT10

SHIFT20

SHIFT30

E
NC,SHIFT10

PN POmO»OQY>»O

NZ ,SHIFT30
H
NZ,SHIFT30
UNCORR

HL

SHIFT

i
;BRANCH IF NO BIT SHIFTED OUT

XOR DECIMAL CONSTANTS
(SHIFT REG FEED-BACK)

Ne Ne We We We We we Ne we e “wo

{UNCORRECTABLE
;DECREMENT SHIFT COUNT ('J')

’

TEST FOR CORRECTABLE PATTERN

H
H
i
PTRNTST LD

; LOAD ALGN-FLAG
iBRANCH IF ALGN-FLAG NONZERO
;BRANCH IF CORR PTRN NOT YET FOUND

;SEE DEFINITION OF CSM1 ABOVE
7BRANCH IF CORR PTRN NOT YET FOUND

;SEE DEFINITION OF CSM2 ABOVE
;BRANCH IF CORR PTRN NOT YET FOUND
;SET ALGN-FLAG TO NONZERO

;TEST 'J' MODULO 8

A, (ALGNFLG)

OR A

JP NZ , PTRNTST5

OR E

Jp NZ,SHIFT20

LD A,C

AND CSM1

JP NZ,SHIFT20

LD A,D

AND csM2

Jp NZ,SHIFT20
; GET HERE TO START BYTE ALIGNMENT

LD a1l

LD (ALGNFILG) ,A
PTRNTST5 LD AL

AND 7

JP NZ,SHIFT30

+JP IF BYTE ALIGN NOT COMPLETE
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H
CORREC!

CORR10

CORR20

.
’

CURR25

r

CORR30

.
’

CORR40

CORRECT BYTES IN ERROR
T LD B,C sMOVE
LD c,D ; PATTERN
LD D,E H
LD A,3
SRL H H
RR L ;DIVIDE BIT DISPLACEMENT BY 8
DEC A ; TO GET FWD BYTE DISPLACEMENT
JP NZ,CORR10
COMPUTE REV BYTE DISPLACEMENT
SCF
CCF
PUSH DE
EX DE, HL
LD HL, (RLBMO)
SBC HL, DE
POP DE
TEST REVERSE DISPLACEMENT CASES
LD AH
OR A
JP NZ,CORR40 ;BR IF HI BYTE OF REV DISP NONZERO
LD A,L
CP 6
JP NC, CORR40 sBR IF REV DISP EQ OR GTH THAN 6
CP 5 .
Jp Z,CORR25 ;BR IF REV DISP EQ 5
CP 4
Jp Z,CORR30 ;BR IF REV DISP EQ 4
GET HERE IF ERROR IN CHECK BYTES
JP EXIT ;IGNORE CORR ERR IN CHECK BYTES
GET HERE IF ERROR STARTS IN NEXT TO LAST DATA BYTE
LD A, (nn)
XOR B ;CORRECT NEXT TO LAST DATA BYTE
LD (nn) ,A
LD B,C
GET HERE IF ERROR STARTS IN LAST DATA BYTE
LD A, (nn)
XOR B ;CORRECT LAST DATA BYTE
LD (nn) ,A
JP EXIT ; DONE
RECOMPUTE FWD BYTE DISPLACEMENT
SCF
CCF
PUSH DE
EX DE, HL
LD HL, (RLBMO)
SBC HL,DE
POP DE
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; TEST FWD DISPLACEMENT CASES

LD AH

OR A

JP NZ,CORR45 ;BR IF HI BYTE OF FWD DISP NONZERO
LD A,L :

Ccp 4

JP NC, CORR45 ;BR IF FWD DISP EQ OR GTH THAN 4
CP 3

Jp Z,CORR60 ;BR IF FWD DISP EQ 3

cp 2

JP Z ,CORR55 ;BR IF FWD DISP EQ 2

JP CORR70

. e

; GET HERE IF ERROR IN DATA BYTES
CORR45 PUSH DE

LD DE, (BUFFADR) ;LOAD BUFFER ADDRESS
CORR50 ADD HL,DE ;ADD DATA BUFFER
; ADDR TO DISPLACEMENT
POP DE
LD A, (HL)
XOR B ;CORRECT 1ST DATA BYTE IN ERROR
LD (HL) ,A
INC HL
LD A, (HL)
XOR (o] ;CORRECT 2ND DATA BYTE IN ERROR
LD (HL) ,A
INC HL
LD A, (HL)
XOR D ;CORRECT 3RD DATA BYTE IN ERROR
LD (HL) ,A
Jp EXIT ; DONE
H ERROR STARTS IN NEXT TO LAST OVHD BYTE
CORR55 LD A, (nn)
XOR B ;CORRECT NEXT TO LAST OVHD BYTE
LD . (nn) ,A
LD B,C
LD c,D
LD D,0
r
; ERROR STARTS IN LAST OVHD BYTE
CORR60 LD A, (nn)
XOR B ; CORRECT LAST OVERHEAD BYTE
LD (nn) ,A
LD A, (nn)
XOR C ;CORRECT FIRST DATA BYTE
LD (nn) ,A
LD A, (nn)
XOR D ;CORRECT 2ND DATA BYTE
LD (nn) ,A
JP EXIT ; DONE

- 316 -



; GET HERE IF ERROR IN OVERHEAD BYTES

’
CORR70 PUSH DE
LD DE, nn ;OVERHEAD BYTES BUFFER ADDRESS

Jp CORR50 iJOIN COMMON PATH

UNCORRECTABLE ERROR EXIT

NCORR NOP ;BRANCH TO ERR PATH IN MAIN PGM
CORRECTION COMPLETE EXIT
XIT NOP :BRANCH BACK TO MAIN PGM

WORK STORAGE

o ~o ~o o ~o [T se we so CSe Ne we e Se s

4
ALGNFLG DEFS 1 iALIGNMENT FLAG - SEE FLOW CHART
RLBMO DEFS 2 {RECORD LENGTH IN BYTES MINUS 1
BUFFADR = DEFS 2 iBUFFER ADDRESS - EITHER,

: —-DATA BUFF ADDR MINUS

;7 # OF OVERHEAD BYTES

; —-HEADER BUFFER ADDRESS
FLDFLG DEFS 1 ;FIELD FLAG - SET BY CALLING PGM

i — ZERO FOR DATA FIELD

i — NONZERO FOR HEADER FIELD
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POLYNOMIAL - '42402402105' (OCTAL)
Z80 CODE FOR BYTE-SERIAL ALGORITHM

THIS ROUTINE PERFORMS ALL THE FUNCTIONS OF THE
BYTE-SERIAL ALGORITHM (SEE FLOWCHART)

TIMING IN THE 'SHIFT AND XOR' AREA OF THE CODE IS CRITICAL.

EXECUTE THIS ROUTINE AFTER ATTEMPTING
REREADS AND FINDING THE SAME SYNDROME ON 2
CONSECUTIVE READS.

FLOWCHART REGISTER ASSIGNMENTS --
R1i=D
R2=E
R3=H
R4=L
IA'=C

N6 N6 Ve Ve N8 N6 Ne Ve N6 Se Se Ne Ve Ne “Ne “e o we we

IMPLEMENTATION CONSTANTS

~e Neo Se ~o

DEFINE CONSTANTS K1 AND K2 (SEE FLOW CHART)

K1 EQU ———- +INSERT DATA FIELD CONSTANT K1

K2 EQU ——— :INSERT HEADER FIELD CONSTANT K2

H DEFINE NUMBER OF OVERHEAD BYTES

ov EQU —— ;INSERT # OF OVERHEAD BYTES

; DEFINE CORRECTION SPAN MASK

CSM1 EQU ——— ; INSERT APPROPRIATE MASK BELOW
; CORR SPAN 1 - MASK '01111111'
H 2 - '00111111"
; 3 - '00011111"
H 4 - '00001111'
H 5 - '00000111"
; 6 - '00000011"
H 7 - '00000001"
i 8 - '00000000"
H 9 - '00000000"
i 10 - '00000000"
i 11 - '00000000'"

CSM2 EQU ——— ;INSERT APPROPRIATE MASK BELOW

: ; CORR SPAN 1 - MASK '11111111'

i 2 - '11111111°
H 3 - '11111111"
H 4 - '11111111°
; 5 - '11111111°
i 6 - '11111111°
H 7 - '11111111°
H 8 - '11111111"
H 9 - '01111111"
; 10 - '00111111"
; 11 - '00011111°
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INITIALIZE PSEUDO SHIFT REGS AND SHIFT COUNT (J)

i
INIT LD A, (FLDFLG) ;LOAD FIELD FLAG

OR A

JP NZ,INIT20 ;JP TO INIT20 IF CORRECTING HEADER
; INITIALIZE FOR DATA FIELD .
INIT10 LD HL,nn-0V ;SAVE DATA BUFFER ADDRESS

LD (BUFFADR) ,HL ; - NUMBER OF OVERHEAD BYTES

LD HL,K1+3 :SAVE

LD (RLBMO) ,HL ; DATA FIELD LENGTH IN BYTES
MINUS 1

LD HL,K1l ;LOAD J WITH K1 (CONST FOR DATA)

JpP INIT30
; INITIALIZE FOR HEADER FIELD
INIT20 LD HL,nn ;SAVE

LD (BUFFADR) ,HL ; HEADER BUFFER ADDRESS

LD HL, K2+3 ;SAVE

LD (RLBMO) ,HL H HEADER LENGTH IN BYTES-1

LD HL, K2 ;LOAD J WITH K2 (CONST FOR HEADER)
INIT30 LD BC, 65535 ;CONSTANT FOR DECREMENTING SHIFT
COUNT

EXX

LD HL, (nn) ;FETCH 1ST 2 SYNDROME BYTES

LD D,L ;SYNDROME BITS X0-X7

LD E,H ;SYNDROME BITS X8-X15

LD HL, (nn) ;FETCH 2ND 2 SYND BYTES (X16-X31)
; LEFT JUSTIFY FIRST NON-ZERO SYNDROME BYTE IN 'B'
JUsT XOR A

OR D ;TEST 'R1' FOR ZERO

Jp NZ,SHIFTO05 ;BRANCH ON NONZERO

EXX

LD A, L

ADD 1 ;J=J+1

LD L,A

JP NC,JUST9

INC H
JUST9 EXX
JUST10 LD D,E

LD E,H

LD H,L

LD " L,0

Jp JUST
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SHIFT PSEUDO SHIFT REG UNTIL CORRECTABLE PATTERN FOUND

~e wo o

SHIFT EXX

SHIFTO5 LD B,0 ;INIT TO POINT TO TABLE (T4)
LD c,L ;LOAD 'A' INDEX (SEE FLOW CHART)
: R4=R3 'XOR' T4(A) (SEE FLOW CHART)
LD A, (BC) ;
XOR H ;
LD L,A ;
INC B ;
; R3=R2 'XOR' T3(A) (SEE FLOW CHART)
LD a, (BC) :
XOR E :
LD H,A :
INC B :
; R2=R1 'XOR' T2(A) (SEE FLOW CHART)
LD A, (BC) ;
XOR D ;
LD E,A :
INC B ;
; R1=T1(A) (SEE FLOW CHART)
LD A, (BC) ;
LD D,A ;
; TEST LOW ORDER 8 BITS OF SHIFT REG FOR ZERO
OR A :
JP %, PTRNTST :

; DECREMENT SHIFT COUNT AND TEST FOR ZERO

’

SHIFT10 EXX H
ADD HL,BC ;BC='FFFF' FOR DECREMENTING HL BY 1
JP C,SHIFT sNO CARRY IF HL WAS 0 BEFORE ADD
EXX H
JP UNCORR H
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TEST FOR CORRECTABLE PATTERN

i
H
i
PTRNTST LD A,L

’
Jp NZ,SHIFT10 ;BRANCH IF CORR PTRN NOT YET FOUND
i SAVE SHIFT REG CONTENTS
PTRNTST2 LD (nn) ,HL ;SAVE HL
EX DE, HL ;SAVE DE
PTRNTST3 LD (nn) ,HL ;

H DETERMINE IF PTRN IN E,H AND L IS CORRECTABLE
PTRNTST4 BIT 7,E

JP NZ, PTRNTST5
SIA L
RL H
RL E
Jp PTRNTST4
PTRNTST5 LD AH
AND csM2 ;SEE DEFINITION OF CSM2 ABOVE
JP NZ,PTRNTST7  ;BRANCH IF CORR PTRN NOT YET FOUND
LD AE
AND CSM1 ;SEE DEFINITION OF CSM1 ABOVE
JP Z, PTRNTSTS ;BRANCH IF CORR PTRN FOUND
: CORR PTRN NOT YET FOUND, RESTORE S/R, RETURN TO SHIFTING
PTRNTST7 LD HL, (nn) ;
EX DE, HL ;RESTORE DE (SAVED AT PTRNTST3)
LD HL, (nn) ;RESTORE HL (SAVED AT PTRNTST2)
Jp SHIFT10 ;
; GET HERE IF CORR PTRN FOUND
PTRNTST8 LD HL, (nn) :
EX DE, HL ;RESTORE DE (SAVED AT PTRNTST3)
LD HL, (nn) ;RESTORE HL (SAVED AT PTRNTST2)
LD c,E ;PLACE PTRN IN REGS
LD D,H ; EXPECTED BY
LD E,L ; NEXT ROUTINE
EXX
LD (nn) ,HL ;SAVE HL
EXX
LD HL, (nn) ;RESTORE HL SAVED 2 STEPS UP
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’
H CORRECT BYTES IN ERROR
’
CORRECT LD B,C * ;MOVE
LD c,D H PATTERN
LD D,E H
H COMPUTE REV BYTE DISPLACEMENT
SCF
CCF
PUSH DE
EX DE,HL
LD HL, (RLBMO)
SBC HL,DE
POP DE
; TEST REVERSE DISPLACEMENT CASES
LD A,H
OR A
Jp NZ,CORR40 sBR IF HI BYTE OF REV DISP NONZERO
LD A,L
CcP 6
JP NC,CORR40 ;BR IF REV DISP EQ OR GTH THAN 6
CP 5
JP Z,CORR25 +sBR IF REV DISP EQ 5
CcP 4
JP Z,CORR30 sBR IF REV DISP EQ 4
; GET HERE IF ERROR IN CHECK BYTES
CORR20 JP EXIT ;IGNORE CORR ERR IN CHECK BYTES
H GET HERE IF ERROR STARTS IN NEXT TO LAST DATA BYTE
CURR25 LD A, (nn)
XOR B ;CORRECT NEXT TO LAST DATA BYTE
LD (nn) ,A
LD B,C
H GET HERE IF ERROR STARTS IN LAST DATA BYTE
CORR30 LD A, (nn)
XOR B ;CORRECT LAST DATA BYTE
LD (nn) ,A
JP EXIT ;s DONE
; RECOMPUTE FWD BYTE DISPLACEMENT
CORR40 SCF
CCF
PUSH DE
EX DE,HL
LD HL, (RLBMO) .
SBC HL,DE
POP DE
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; TEST FWD DISPLACEMENT CASES

LD AH
OR A

JP NZ, CORR45 ;BR IF HI BYTE OF FWD DISP NONZERO
LD AL

cp 4

JP NC, CORR45 ;BR IF FWD DISP EQ OR GTH THAN 4
cp 3

JP Z, CORR60 ;BR IF FWD DISP EQ 3

cP 2

Jp 2% ,CORR55 ;BR IF FWD DISP EQ 2

Jp CORR70

H
; GET HERE IF ERROR IN DATA BYTES
CORR45 PUSH DE

LD DE, (BUFFADR) ;LOAD BUFFER ADDRESS
CORR50 ADD HL,DE ;ADD DATA BUFFER ADDR TO
; TO DISPLACEMENT
POP DE
LD A, (HL)
XOR B ;CORRECT 1ST DATA BYTE IN ERRCR
LD ~ (HL) ,A
INC HL
LD A, (HL)
XOR c ;CORRECT 2ND DATA BYTE IN ERROR
LD (HL) ,A
INC HL
LD A, (HL)
XOR D ;CORRECT 3RD DATA BYTE IN ERROR
LD (HL) ,A
Jp EXIT ;DONE
H ERROR STARTS IN NEXT TO LAST OVHD BYTE
CORRS55 LD A, (nn)
XOR B ;CORRECT NEXT TO LAST OVHD BYTE
LD (nn) ,A
LD B,C
LD c,D
LD D,0
H ERROR STARTS IN LAST OVHD BYTE
CORR60 LD A, (nn)
XOR B ;CORRECT LAST OVERHEAD BYTE
LD (nn) ,A
LD A, (nn)
XOR c ;CORRECT FIRST DATA BYTE
LD (nn) ,A
LD A, (nn)
XOR D ;CORRECT 2ND DATA BYTE
LD (nn) ,A
JP EXIT ; DONE
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; GET HERE IF ERROR IN OVERHEAD BYTES

CORR70 PUSH DE
LD DE,nn ;OVERHEAD BYTES BUFFER ADDRESS

JP CORR50 ;JOIN COMMON PATH

UNCORRECTABLE ERROR EXIT

I ~e ~e ~o Clne Se Se Se e Se

- ZERO FOR DATA FIELD
- NONZERO FOR HEADER FIELD

NCORR  NOP ;BRANCH TO ERR PATH IN MAIN PGM
CORRECTION COMPLETE EXIT
XIT NOP ;BRANCH BACK TO MAIN PGM
;
;
; WORK STORAGE
H
ALGNFLG DEFS 1 ;ALIGNMENT FLAG - SEE FLOW CHART
RLBMO DEFS 2 ;RECORD LENGTH IN BYTES MINUS 1
BUFFADR DEFS 2 ' ;BUFFER ADDRESS - EITHER,
; -DATA BUFF ADDR MINUS
H # OF OVERHEAD BYTES
: -HEADER BUFFER ADDRESS
FLDFLG DEFS 1 ;FIELD FLAG - SET BY CALLING PGM
:

RECIPROCAL POLYNOMIAL TABLES

Se e weo we

;CONSTRUCT THE RECIPROCAL POLYNOMIAL TABLES AT THIS POINT.
;THE TABLES MUST BE ALIGNED TO AN ADDRESS BOUNDARY THAT

;IS DIVISIBLE BY 256. THE TABLES MUST BE CONTIGUOUS IN THE
s FOLLOWING ORDER 'T4,T3,T2,T1'. SEE SECTION 5.3.7 FOR A
sDEFINITION OF THE RECIPROCAL POLYNOMIAL TABLES.
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5.3.4 DIAGNOSTICS AND TESTING

The diagnostic routines for the small-systems magnetic-disk code should be devel-
oped using the techniques of Chapter 6 TESTING OF ERROR-CONTROL SYSTEMS.

One of the diagnostic approaches described in Chapter 6, requires a test record
that causes check bytes of zero to be generated. For the code described in this section
such a record can be constructed as follows. Set the first four bytes to hex '0C 06 03
C3’. Set the last four bytes to hex 'F3 F9 FC 3C’. Clear the remaining bytes to zero.

For design debug, write the test record defined above. Debug the write path until
the write check bytes written for this record are zero. Next, debug the read path until
this record can be read without error. Finally, run diagnostics as defined in Chapter 6.

5.3.5 PROTECTION FOR SYNC FRAMING ERRORS

Protection for sync framing errors is built into circuits of Figures 5.3.2.1 and
5.3.2.2. First, the ’1’ state of each shift register stage is the low-voltage state.
Therefore, the clear function sets the shift register to all ones. Secondly, degating the
shift register input during ECC time forces ’'l’s into the high order stage. This is
equivalent to inverting certain groups of bits of the check bytes. Today’s data integrity
requirements dictate greater protection for sync framing errors than provided by the
method discussed here. See Section 4.8.2 for a detailed discussion of sync framing
errors.

5.3.6 SIMULATION RUNS

The following pages contain simulations of the hardware and software algorithms
for several correctable errors. Each step of the algorithm, hardware, and software, is
included in the simulation.

The test record for each simulation is the test record defined in Section 5.3.4.

Simulation run 1 is a dummy run that illustrates the first 40 shifts for each of the
remaining simulation runs. Runs 2 through 4 simulate the bit-serial software algorithm.
Runs 2 and 3 simulate error bursts in the data field, while run 4 simulates a single bit
error in a check byte. Runs 5 through 7 simulate the byte-serial software algorithm
and are similar to runs 2 through 4.
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RERD SIMULATION RUN # 1

THTS PAGE SHOWS FIRST 48 SHIFTS FOR EACH SIMULATION RUN

BESIN HDW PART OF SIMULATION .
CSHIFTING LEFT, EXTERNAL “XOR‘ FORM OF SHIFT REG)>

BIT DATA
NO. BITS

WONTAEWNR S
B

WA YN VRV (VY V]
B 05 ~1 G0 B g
RERRp

b 1o L) [O
(V]
[l o

)
)

2}
$ 1)

.

-

i)

-

.
g

ERROR
BURST

R1

%)

b

14111111
111114141
11141414
111111113
11144113
11141111
14141411
114114114
11114114
11114111
141111441
11114114
14114114
11114411
144144131
14141144
114111141
11114111
1411131111
11111441
14114114
111141134
14111111
141141141
111141108
111111060
11111600
1111608006
11186609
11860000
10820360
BBRBEBRY
(5125 al5 ]2 5 %)
%0517 5% [2]2)
98036680
aln a7 e ()
AaRBRARA
B6060300
0062600
86260009

R2

11111443
41111111
11441144
11114111
111141444
111411414
11441114
114411443
114131443
111414414
111411414
114414141
11114414
11144414
11111111
11411444
11111116
111111066
111116060
11116060
1116860808
11088900
189806060
BOBABABS
808680848
BABVRBOO
86068380
ARBB60A0
8BBBRBABH
20088360
880066849
88066000
80088088
ABBR30866
880688006
BAR0BOBA
88882380
veBABAE0o
80888323
8069808668

R

14411111
14141111
11411411
11444444
114411114
11411144
11141111
114431144
114411118
11411160
11111600
1111606608
11166060
11666686
16600068608
30608000
80000000
86008600
80020000
39066080
88610680
51212151515 5 ]7)
B8B8RBBB0
PABBBNGBB
806606006
866068886
8BBBvBnBo
80080006
880680838
20066000
506006000
88000000
80860860
808006008
80880090
86306008
880800006
68060000
82000000
86000000
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R4

-31

X
1141141109
111111606
11111060
11110960
111606980
11606800
10000080
800000080
0800606908
080006008
98060600
(515 ]5]% 15151 ]1%)
28000660
06060009
$B00BB000
00080000

860068000 -

06080009

80806200 .

86006000
96060600
90086800
121515 215 121)
980868060
00080000
80080069
200608080
86000889
80800600
80060000
88086000
80000600
80606080
606000000
80600660
88060800
80860000
86060680
150512051205 1)
80000600

AA:-&&A&Awwwwwwwwmmmmm'mmmp»m—sppﬁpao@s&aom

BYTE
NO.



READ SIMULATION RUN # 2

SIMULATION OF HARDWARE AND SOFTWARE

BEGIM HDM PART OF SIMULATION

¢SHIFTING LEFT, EXTERNAL XOR FORM OF SHIFT REG>

BIT
NO.

ALY

R-96
R-95
R-9¢
R-9X
R-9%

R-5@
R—-29
R-88
R-87
R-8&
R—-85
R-84¢
rR-23
R-22
R-81
R—-806
R-79%
R~78
R-77
R-7€
R-75
R-7T4
R-72
R-72
R=-71
R-78
R-€2
R=58
R~-&7
R-6¢&
R-55
R~34
R-53
R-52
R-51
R-58
R-29
R-98
R-57
R-9

R-33
R-54

DPATA
BITS

CSEE SIMUL
(R 1% RECOR

O

BRPRRP

ERROR
BURST

R1

R2

R3

ATION RUN #1 FOR 1ST 40 SHIFTS)

B

e

R

806860080
80080000
809880880
89860090
008806200
20000000
28080000
10886080
80880000
90880800
80880300
86082080
20086000
BRBBBAGS
080880V9066
080086600
80080000
60082800
280006000
86080000
89000000
20086060
ala]a[5]s]a 1% 1)
ala]alalals s
80068100
A0008008
80000000
80080000
80080000
V0880000
80088001
80000011
00000110
00001101
90611011
080110111
9110611141
11611110
164111061
91111010
11116100
11191001
11816016

88080060
28880000
806000008
290060000
80080000
/BBBOABA
0080006080
09600600
28880800
060002060
[5]% 151715 212 17]
06800000
00806000
08606600
[5]=15]% 05 ]5]% %)
08000803
£50060008
00066000
20606000
806000000
00620000
80006000
08890001
00060011
80800110
80601101
800110611
801106111
91164111
116111108
10111161
9111106106
11116160
11101001
11016010
10100101
81001010
186101060
001961800
81010001
1816500810
81200101
16601011

D LEN IN BITS INCLUDING CHK AND

38650800
ABBVB000
8BABNB00
8R060000
80080000
66006060
000608000
9BAB0R00
[5la]5l% 2 ]a]]%)
20600000
[2]5]al%]% (515 ]7)
0060000
[5]a]5]5 ]2 (=15 ]7)
(s]a]a]s]% 51517
80008001
10060611
30000110
800011041
00911611
60110111
91161111
110611116
161111061
61111610
11110180
111610861
116166010
161688101
91981610
10010100
801610006
91010001
101600010
91660101
1606106011
60610111
/9184111
9168111106
16111100
01111601
11110011
11166110
116011808
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R4

OVERHD>

31
bl

23618900
$BRBBB00
90800008
00800000
08980080
80808V
20606831
86060011
8000061106
00001191
86011011
09011060111
91161111
118411118
101111061
01111016
111161060
11161601
11916810
10100101
91601010
166101606
00101800
81019601
10106616
916860191
16091611
960106111
896191111
91011110
101111060
01111601
11110011
11100110
11061100
10611001
80110011
91160111
116611106
1006111206
001110006
91110600
11160001

BYTE
NO.

-11
-11
-11
-11
-11
-11
-11
-11
-10
-10
-10
-10
-10
-10
-10
-16
-a

-9

-9

-

-9
-

-5
-Q

-8
-8
-8
-8
-8
-8

-8

-8
-7
-7
-7
-7
-7
-7
-7
-7
-6
-

-0



SIMULATION RUN NO.

R-52
R-52
R-51
R-Sa
R-49
R—-48
R—47
R-46
R-45
R-44
R—-42
R—42
R—41
R—-3&1
R-Z2
R-Z3

1
1

FPRERRRR

TN TRTON

2 CONTINUED

16160101
01601810
10010100
00161000
01010691
161080010
810600101
16001011
86810111
00161111
010111106
10111166
81111001
11116611
11166119
iiveiioe
106116061
801108911
01160111
110911108
160111608

FINISHED READIMG DATA BYTES.
INFUT TO SHIFT REGISTER NOW DEGRTED.
IS SATED TO DESERIALIZER TO BE STORED

R-I2
R-21
R-ZB
R-23
R-25
R-Z7
R-26
R-25
R-24
R-22
R-22
R-21
R-261
R-1%2
R-18
R-17
R-1¢&
R-1S
R-14
R-13
R-12
R-11
R-113
-9
-2
7

1

A

=
-3

-4

J

-2
-1

BABIZDODDD

801116866
81110000
11180801
116860011
18866110
8evo11601
00611611
60110111
911061110
118111606
181110801
011160108
11108160
118816061
186160811
8180111
91091111
166111106
09111160
91111960
111106680
111600641
11806619
10060101
09001611
000106111
801611114
91611111
ie141411
041111141
114111114
111411419

08810111
80161111
816811119
161111060
811110601
111106011
111061106
11661160
108011661
00116011
91196111
116061119
10811160
00111600
81116000
111660091
11608011
160001106
89981101
06011011
861161114

10011001
00116811
21166111
1160611106
100111006
00111000
91116000
11106086061
11060011
10689061106
88601161
88611611
80116111
31161119
11611160
1611106061
51116019
11100160
11691001
16810011
90160111

11000011
10600119
00601101
00011911
99116111
61161119
110111606
161110061
91116010
11108190
116016091
106018011
801006111
/1661111
16911116
606111196
01111060
11116060
11166061
11968016
166801061

NOW READ CHECK BYTES.
PIN 9 OUTPUT
AS SYNDROME.

61161110
11611166
10111601
91110610
11106160
11691061
10016611
00160111
91601111
100111106
£01111606
91111006
11110000
11100861
11000010
10006101
/0901011

88016111

00101111
81611114
16111111
91114114
14141234
14114111
141141431
11114111
11414414
11111111
14414111
111114111
14144144
1441434141

pi601111
106111108
81111606
1111103606
111106808
11166001
11648016
166068101
866016011
B8v16111
00101111
81641111
18111441
811411111
11114144
14111144
11114111
11111111
11111111
111411414
14141443
11411143
11411141
14114141
14111141
11144144
14144444
11411113
11444444
141114111
11111441
11111111

80601811
800121141
96161111
61611144
1641414441
81141141
11111411
11111144
144414114
11141111
11144111
14441141
114441411
14411143
114113111
111444141
14444411
11441441
14111444
11441111
11141111
11111411
114114141
1141411141
1144114411
11444141
11144141
11111411
114441111
114141141
11441111
14114111

HOW PART MOW COMPLETE - SYNDOME HAS BEEN STORED.
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-6
-G
-6
-6
]
-5

-5
-5
-5
-5
-5
-4
-4
-4
-4
-4
-4
-4
-4

00O ®

PIN
PINMN
PIM
PIM
PIN
PINM
PINM
PIN
PIN
PIN
PIM
PIN
PIN
PINM
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIM
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

G LD L

L T T T T T T T T T T T T T TR T T T T

WD W WO W W0 WD WD \D WD WD A L0 L0 W LD LD LD LD WD D LD Y

SPOSPOOOHFPFRPOGHISSSHFIORORLRIOEOS



SIMULATION RUM # 2 CONTINUED

SIMULATION OF CORRECTION PROCEDURE
BEGIMN SHIFTING SYNDROME
THIS PRART SIMULATES INTERNAL XOR FORM
(SHIFTING RIGHT WITH SOFTWARE)

R-25
R-26
R-27
R-28
R-29
R-320
R-21
R-3Z
R-32
R-34
R-35
R-36
R-37
R-38
R-39
R-40
R-41
R-42
R-43
R-44
R-45
R-46
R-47
R-48
R-48
R-50
R-51
R-52
R-53
R-54
R-55
R-56
R-57
R-52
R-59
R-50
R-61
R-52
R-63
R-G4
R-65
R-56
R-57
R-63
R-59
R-70
R-71
R-72
R-73
R-7\

R-75
R-76
R-77

o

X

000608011
16061811
81000101
101681000
119111106
111660101
11111060
0911111060
89111110
800811111
ove61111
16001161
116861180
811901106
16111601
116161106
8i101611
p0110101
888110106
16886111
219080011
80168301
18911910
11006111
111061001
11111140
81111111
00111111
/BA11111
10600181
11601600
911950160
18111660
819611100
pRA101118
160611101
11860120
111010060
11111110
81114111
168119161
91011910
891611061
60010110
1006060061
91080060
101010610
81610101
80101010
10011414
010901111
101011061
1190111060

01001100
161006011
116106001
1141911061
61110011
Ba111100
180110611
¥16061101
80100110
60010011
18001601
11008801
11100101
7111060106
00111160
160119141
810611061
16160110
116106011
811611006
16110116
119110911
11101680
2311168601
19111101
1i8iielil
811681101
10110110
1i611611
11101600
11116601
0111108066
801110061
8051110606
200011106
00200010
16680100
29190680111
86100110
000160011
16601100
11600110
01166011
18116001
81011101
10101110
01010010
00191001
10016100
81601111
10100114
1191061106
11101110

OF SHIFT

801600111
80210601
160061000
11006110
11100601
111160610
911411011
18111161
110111106

Bpi161114

18110111
11011601
111011106
11116111
681111601
00111110
16011111
118061111
01160114
19119001
81611300
861011008
10016160
51891600
18100110
11810001
11181660
1111981606
61111610
16114111
f1g111061
161011106
01616101
161016010
010161061
90161000
28010110
806001601
16600110
91800811
10106011
alsiasel
V8121106
100106100
11601000
111060100
81119600
901110006
106111606
01891100
19100110
11610601
01101610
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REG

31
X

16091001
11100110
11116614
81011611
oov01111
10160101
91110000
16111660
11911160
01161119
16119141
1111106091
116111106
6iiei111
10810161
11101000
01119160
16111010
1168111061
11601180
11160110
91116611
80011011
98161111
08110101
09111660
16011100
010011106
80100111
801106001
101110610
116111061
910011600
10166110
016160141
16661914
81180111
2810001
16101310
01619181
10001000
119606100
111680610
811160001
00011010
80001161
0016001060
000810010
80081001
60100110
80616011
060101011
10110111

-3
-3
-3
-3
-3
-3
-3
-3
-4
-4
-4
-4
-4
-4
-4
-4
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-6
-6
-6
-0
-6
-6
-7
-7
-7
-7
-7
-7
-7
-7
-8
-8
-8
-8
-8
-8
-8
-8
-9
-9
-9
-9
-9



SIMULATION RUN NO.

R-78
R-79
R-30
R-31
R-32
R-83
R-34
R-8%5
R-26
R-37
R-28
R-33
R-29

CORRECTABLE PATTERM FOUMND,

2 CONTINUED

11160100
111110060
91111100
1911961060
11010000
01161000
601106160
86811018
8060811061
860896110
00000011
8069809.L
80000009

MOl BEGIN BYTE ALIGNMENT.

R-91
R-92
R-93
R-24
R-35
R-96

" 08000000

888B8A6H
80660900
86080000
88680060
080000V00

011106010
00111100
0008111106
00061010
00000000
86000000
80006000
80820000
808600000
10068600
8166000008
18108860
11616060

-98 IS BIT

81161000
88116169
88811010
20001161
806661106
V0066011

/01106111
80011001
00001100
000008100
20000000
880000008
08008000
80000000
80008000
600000006
06068000
20060000
80000000

811116061
16011110
11601111
01060101
00308000
90060000
200000006
806000800
800800080
80608600
80808896
80600600
80060300

DISPLACEMENT.

80600000
880668600
806804006
20006000
106080600
8100660060

BYTE ALIGNMEMNT COMPLETE - SIMULATION COMPLETE
BYTE DISPLACEMENT IS 11,

COUMNTING FROM END OF RECORD. LAST BYTE IS ZERO.
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80a86B0A
880686800
80820888
BOOBRCO0
BBABBBBA
80886600

-9

-9

-9

-10
-106
-108
-10
-10
-10
-19
-10
-11
-11

=11
=11
-11
=11
-11
=11



READ SIMULATION RUN # 3

SIMULATION OF HARDWARE AND SOFTWARE

BEGIN HDW PART O
¢SHIFTING LEFT,

BIT
NQ

L Y

R-9&
R-95
R-24
R-932
R-92
R-31
R-36
R-89
R-88
R-87
R-86
R-23
R-84
R-83
R-32
R-31
R-80
R-79
R-78
R-77
R-76
R-7S
R-74
R-73
R-72
R-7T1
R-79
R-58
R-68
R-67
R-36
R-55
R-G4
R-%3
R-62
R-61
R-50
R-59
R-58
R-57
R-56
R-55
R-54

DATA
BITS

F SIMULATION
EXTERNAL XOR FORM OF SHIFT REGY

R1

R2

RZ
=

¢SEE SIMULATION RUM #1 FOR 1ST 40 SHIFTS)
¢R IS RECORD LEN IN BITS INCLUDIMNG CHK AND

e

PRBRR

0

¥

Q000600
00RAR0AR
ABENE000
90000000
e e
PORDOPOO
000EOD00
PREEEOE0
80020900
90000000
A000A00
00009200
90E2AR00
POAGRBA
00039000
QABD0000
60008000
09300000
00000000
ARARNA0D
00000003
P00POR0D
2Ra00000
Pty 2 e
23000000
02200600
0RADOAA0
20099000
2RBPNGO0D
00200000
0090001
Tt e 2
0Pa00000
BeDERARE
AP0000RD
ABP0AAB0
80000001
00000010
0BERE1a1
AB601011

. po018114

081061118
91611168

BOaRAE0E
20608590
B0080000
5200BO00
85009000
26620000
90660300
B00PA000
ABPBB0A0
20006000
ABBOR000
60080057
B8U00BRO0
60000000
2830000
90030000
e o
A000PANG
2B0PAD0Y
2008RR00
200AB00D
9D9EAO00
@DePEBan
ABDBAO00
60056900
0000e2RY
20000000
89303000
00030081
ABBoBR10
00088101
689001611
00810111
00101110
01011100
19111001
01110010
11100161
11001611
19010111
99161110
01011101
19111041

BoaBoRBon
09060800
800000006
860078080
falslalslalals
80800000
8066886000
AB8B6000
B98V0000
806A0BD0
ABRVOABA
A6060000
80680600
avensaRe
890616810
80800000
80020008
ARnRBB0Aa
80830008
89600000
20060001
80660010
$08RB101
28001011
90910111
890181116
81691110808
19111881
81118810
11168191
11681611
16018111
901611106
91611101
101141011
91110110
1110911806
11611660
16116000
811000600
116008601
16000011
800001108
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R4

OVERHD >

31
®

29960803
80008300
88008000
80890000
30600000
80806800
2000000
8908020000
98050000
PEBOBIBO
80a360008
20188300
90000081
80000610
00880101
83801911
90016111
061911106
91611100
161116001
911160010
11198101
11601911
19616111
99101116
916114161
16111011
91116110
11181160
11611060
161166068
011660260
11060861
10600011
80000110
00081169
80011060
001160001
9116000106
11000101
160010611
90616111
99101111

BYTE
NO.

-11
-11
-11
-11
-11
-11
-11
-11
-19
-10
-10
-1
-16
-16
-10
-10
-9

-2

-9
-9
-9
-9
-9
-9
-3
-8
-8
-8
-8
-8
~8
-8
-7
-7
-7
-7
-7
-7
-7
-7
-6
-6
-5



STMULATION RUN NO.

R-53
R-52
R-51
R-5@
R-49
R-4&
R-47
R—d45
R-45
R-44
R-43
R-42
R-41
R-4@
R-39
R-38
R-37
R-3&
R-25
R-34
R-33

1
1

BPRRPBRRBRRE

Pk b b

3 CONTINUED

161116641
011196010
11109101
11001011
1091064111
00191110
01011101
168111611
01119118
11181100
119118009
18118803
81166800
11866801
109600011
868664115
088091180
006116060
600116891
81196318
1160601061

FINISHED READING DRTA BYTES
INPLUIT TO SHIFT REGISTER NOW DEGRTED.
IS GATED TO DESERIALIZER TO BE STORED

R-32
R-31

10601611
80910111
90101111
81811110
10111161
811116816
11116161
11101819
iieiaie1
16181611
91616119
19161169
81811601
161166811
81186111
11091113
10811191
Bo1i11a10
211161601
111618108
11316161
10161010
91310161
18191619
816816181
16101611
81910111
18101111
01911111
10141114
91111144
111411114

011106110
111011060
116110080
101166060
311600060
1106006001
10006911
28000110
80001100
80011060
20116001
01160018
11600161
18881011
000106111
vBiBidiii
31811119
181111061
01111010
111106181
1110109108

880011606
800116008
861186061
911000610
11600101
10061011
00010111
80161111
01811110
16111101
6111106108
111101061
11106108106
118106101
16161811
61616116
161681168
916110061
101106011
61160111
116911106

01611110
10111101
91111010
1111010641
111061018
11610101
101901011
916101106
161081100
216119061
16110611
81160111
11061119
166111041
86111010
51416461
11161610
118191061
10161810
91810191
16181618

NOW READ CHECK BYTES.
PIN 9 OUTPUT
AS SYNDROME.

119106101
161681611
91610110
1816811238
Bigiio0a1
181108011
21100111
11961110
180811104
801110618
81110161
111916108
11916101
18181810
81616101
121610108
81316101
101341011
31616111

19104111

81614144
191111411
vil141441
111111114
11414441
11114113
11411414
11414411
11411414
141111113
111144144
14111441

100811161
001110106
ali1i10104
11191610
1168101081
1610619106
81010101
19161610
816161081
168101611
01816111
16181111
elh11141
19111111
814111414
11111141
11111144
11141443
111143444
14114441
11111111
11111341
111314441
1411111414
144314411
11111111
11414441
111411113
141141111
14111411
114114114
141111114

81910161
10101611
91316414
18191114
21911111
18111114
91141444
11141114
144111414
111114141
11111411
1114114131
11111111
14114114
14444141
1444111131
114414141
1114141131
111144111
11411111
114411131
11111111
11111111
11441411
114431314
11441411
11111111
14414411
14144141
11444414
11441411
11141111

HDIM PART NOW COMPLETE - SYNDOME HAS BEEM STORED.

- 332 -

PIM
PIN
PIM
PIM
PIN
PIM
PIN
PIM
PIN
PIN
PIN
PIN
PIM
PIN
PIM
PIN
PIN
PIM
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

gOlS R VRV RTVEY Y R

O DD LG W DD D D LD DD

Wwp:e
LI T T T TR TR T

FOOOOOHOHOFOFRPFRFIFOROORRRERRE DR R

W
]

L RY N (]
Waun



SIMULATION RUN # 3 CONTINUED

SIMULATION OF CORRECTION PROCEDURE

BEGIM SHIFTING SYNDROME
THIS PART SIMULATES INTERMAL XOR FORM

¢SHIFTIMG RIGHT WITH SOFTWARE)

%]
x .
R-295 11111101 11160006
R-2¢& $1111110 111160080
R-27 19116101 91111101
R-28 01011010 10111118
R-29 10196111 616110818
R-30 91010011 16161101
R-31 1010071 11616011
R-32 91010091 111910081
R-3Z 10160016 11110001
R-34 21916001 611116600
R-Z3 00101000 10111166
R-36 00010106 01911118
R-37 16000000 600161016
R-38 116010180 990160000
R-=8 01190101 60061804
R-40 00116010 10000169
R-41 10016611 91600111
R-42 91201061 10100811
R-43 161611160 11016100
R—<4 91016111 81161019
R-4S 123160001 10116600
R-4& 910160000 110116880
R-47 9A1681068 81161100
R-48 29016109 69116114
R-42 80901816 BB011011
R-T9 10661111 60631900
R-51 @1866111 166230109
R-52 19101001 11000111
R-523 11611110 11160116
R-54 11186101 91116116
R-55 91116016 16111311
R-5€ 5@111901 01611101
R-57 00011166 16161116
R-52 09e91116 Alpl1al11l
R-5% Apave111 90101811
R-5B /peRs011 10616101
R-51 A@anARnl 11801910
R-%2 10951318 11198600
R-53 119891411 81118191
R-od /1196111 1814115160
R-65 161110601 11611600
R-G& 11618118 111619801
R-67 11166881 81110001
R-&8 21118086 16111006
R-53 1611060168 01011091
R-72 91011601 AG101169
R-v1 801911068 10019118
R-72 10911100 A19B1116
R-73 11089199 60100019
R-74 11101680 BOA10100
R-75 911164106 08601910
R-7€& 10116900 2BBBOBAA
R-77 010911008 96ABRB0A

OF SHIFT

91111600
90111106
$6011100
106011106
216086101
P3100010
10018611
11601601
111001160
11116911
061111001
80111100
66611100
200011060
PEO00116
PEGRBG11
PORERB11
10800001
11006016
91160001
PB116916
88911001
PABB1160
POPBB110
2BPR6811
16000811
91006001
70100010
10810611
91091611
B2196191
10016810
11001581
1190160
19116010
11011001
11161160
91110106
AR111008
166111606
a1091186
BE106100
16910660
11081060
31106110
10110611
f10110861
60191116
80919161
80031000
ABBB0:100
00800080
APBOONO0

- -333 -

REG

31
b
16060019
91000061
90680010
90000001
20100010
19810001
9110610918
161106181
11111660
91111100
161111106
11611111
91801181
006000180
00068210
80006001
161660010
11916061
1160010910
91130161
16010028
916015648
101001008
916160108
8581910801
16118118
119110611
11981111
V1660161
19600860
11600308
111006908
91110009
18111600
816511190
991411168
166168111
81191641
90016110
89081011
8160111
¥8118801
86111010
00011161
001611060
00010110
106016011
11160111
91016061
16001010
21600101
90986000
2p000060

-3
-3

-3

-3
-3
-2
-3
-3
-4
-4
-4
-4
-4
-4
-4

-5
=-S5
-5
-5
-5
-5
-5
-5
-5
-6
-5
-6
-6
-5
-5
-6
-7
-7
-7
=7
=7
-7
-7
=7
-8
-8
-8
-8
-8
-8
-8
-8
-9
-9
-9
-9
-9



SIMULATION RUN MNO.

R—78

R-78
R-30
R-31
R-22
R-£23
R-24

CORRECTRBLE PATTERN

3 CONTINUED

80191160 0BBOBA0H
20010110 000008
00081011 009800600
10000101 10000909
£0000010 11000000
89086V81 01100008
28200000 16110600

FOUND, -84 IS BIT

MOWM BEGIM BYTE ALIGNMENT

R-83
R—-SE
R-E7
R-23

28800005 31611600
08080009 30101169
88000VE6 10816110
8009360013 V601911

808080000 0000000
00000000 00DOBVBO
20600000 BOBABOB0
90000000 00V00000
70000000 C0000B000
20000000 0B000BVA0
8000000D B0BOVBBA0

DISPLACEMENT.

06000380 BBBBBOO0
BEN0BB0N VBBBBBVY
2900060 BBOBV0A0
Y00000Y0 0PBVBBBO

BYTE ALIGNMEMT COMPLETE - SIMULATIOM COMPLETE

BYTE DISFLACEMENT IS

1Q.

COUNTING FROM END OF RECORD. LAST BYTE IS ZERO.

- 334-

-9
-9
-9
-10
-10
-10
-10

-108
-18
-1
-10



RERD SIMULATION RUN # 4

SIMULRTION OF HARDWARE AND SOFTWARE

BEGIMN HDM PART OF SIMULATION
CSHIFTING LEFT, EXTERMAL XOR FORM OF SHIFT REG>

BIT DATH ERROR R1 R2 R3
NQ. BITS BURST
e
’ ({SEE SIMULATION RUN #1 FOR 1ST 40 SHIFTS)
‘ ¢R IS RECORD LEMN IM BITS INCLUDIMG CHK ANMD

=

~
R-9 GREPanEe APBREDODR BYOEBH0R
R—23% HRAB0E0R FBOBEBAN BONIBRE8
R-34 ABBEOANR ABSBDRE JBACBEDY
R-8Z A000ENBE BBBYONAE BERBIIVE
R-52 20PBANDY ABBABREB BABBVBEVE
R-321 A00a0A0E BOENBBBE NEBYBEOY
R-98 APROPERE ABEEB8BH ABBOBOBY
R-29 PORDHEVE PBKBNBYA HDORBBAD
R-218 GBREPOEA BBABRREH REVHEEEY
R-87 ABBAGHEE BREDHH6 ABRBOBOD
R—-8n /PRBONAE BREHHBBH BACIOR0E
R-85 aan00ra0 BPARBRAH AXBBBIND
R~24 BERADORNE BBEBBBAE ABBHHONBG
R=-82 HPBEsHAS 0BEBENEs AORDORDS
R~-82 PRABRABE BERBBDEE FEBRORBO
R-31 PO000060 BROBBBRNY BBEYBYREA
R-2a HA00EBBA B000ENRAH BBHYHR00
R-79 NBEBERRAA EROPRBYBY A3VAGLBE
R-72 98060008 PBPPYEVY VRBBBBYD
R-77 HO0BEBNE PEXBBOBE ADBBERYO
R-7& SO0VDENY DORVVBNA 3BVB0OVD
R-7S QPPOERBE PBERBYEE BBLOBYOO
R-74 PO0PRERE BORNBSED ABOBOVLYO
R-7Z HOODOBVE BBBBBBYA ABVOBDBD
R~72 AIADRNDE GODBBBVE BEBBBYVE
R~71 PUPPRAGE BOEROBDO RBLODBEYY
R-v@ V83APE00 VBRBONBH IINNABBH
R-59 600REOBR ABPBEBBB AABBLHDY
R-58 AEBAEBRE BPPBAVBH ABBBBOBA
R-S7 avevacoRE BBLBRBRO BBEDIBEOOA
R-55 A0KOoBBE 0RBBBOBA KOBBBANY
R—-&S PBPBEONBE BBEBRBOB 3B0BHBBS
R-64 1 fAPBVBBBB BROBVDBD BBBOBBBY
R-53 1 9PrO0BA0 ABBONEEE DPBENBVB
R-52 1 BEEBARGE GPLBTIDYIY BOBBBROO
R-51 1 PUPRBD0E PBOYPEBE VVBOBVVE
R-=8 00EBEYR0 PHOHBONB6 BBKBBuLo
R-59 £O0DEBO0 AVDBBVYE B3KaBABE
R-52 1 H00D0BE0 BVOBB00E PROBBIVY
R-57 i fPADNEA0H ABRKORB6 AOLBYIVD
R-5& 1 POERONED ABRBBBBE YIABBBBL
R-5S 1 60030008 60BN0BBB PBBVVYB11L
R-54 1 /8RONGBRE BYOYVBOOS PBBBAL11

212K _

R4

OVERHD»

21

%
PRDHBEOD
PDEHODD
BEEHHBBE
PEEBAADD
PDDBEBE0
POOEB3OE
e ]
6E00EDHE
HEARDEDE
DOAHHEND
DEOIBAE0
PODBIDHD
PROBADHE
]
BERGGERD
AEERDEDS
e )
PDBROOBD
0OOEDRED
PBEBHAED
POER0BB0
20000200
0030630
20ED0BH0
BEBAOBO
POBEDEOED
PROEHODA
9REBOORN
PEHEBGHB
POEVBHEO
e L
30030801
60000811
90096111
@091111
80G11:111
op111111
@1111111
11111111
11111141
11111111
11141114

BYTE
MNO.

-11
-11
-11
-11
-11
-11
-11
-11
-18
-10
-1@
-19
-16
-18
-1@
-18
-2

-9

-9

-3

-Q

-9
-9
-8
-8
-8
-8
-8
-8
-8
-8
-7
-7
-7
-7
-7
-7
-7
-7
-5
-6
)



SIMULATION RUN MO.

R-53
R-52
R-S1
R-59
R—4&
R—-48
R-47
R-46
R—45
R—td
R-4Z
R—42
R-41
R—463
R-33
R-38
R-27
R-36
R-35
P—-

R-I7

1
1

FRRPRRER

PRPR

4 CONTINUED

860800009
088680000
0880866000
60000V09
866606800
86000009
7 1ala 215 e 1]
8v808000
86600010
80880006
806VBRoL
033660911
096886009
820933001
86886611
08389111
8ABB1111
80811111
vo111114
Bi1111111
11411143

FIMISHED READIMNG DRTA BYTES

INPUT TO SHIFT REGISTER NOW
IS GATED TO DESERIALIZER TO

R=-22
R-21
R-20

=

=
-
V

]
B (VRN I 1

AIJIJIDDVTOD
1

11144114
111111341
1111311441

C41111141

11111141
111114431
11111411
11141114
11114111
111411141
11141444
11441144
11441144
111411114
11111114
11111144
11144144
114114131
11111444
11141144
111144431
1111411431
11411144
111414314
11114114
111111131
11114111
11111414
11141144
11141111
11111414
11114144

80008000
806861600
88088000
80006000
2800000V
000000061
B8600011
080v8111
898681111
v8v11141
B8111114

86001111 14411111

300141111
88111411
81111111
11141144
14114141
111414144
11441144
11111411
111443111
111414111

81411141
11114411
111434334
11444441
111111141

11144111
11111444
11144444
141432144
14111111

141111431
14114114
144114144
11411144
11211341

11141141
11414444
11111144
14144443
11111114

11414411
11144111
11141111
11114111
114414131
11441411
14141111
14144413
14144111
14141111
11441111
111413111
14344444
1114144131
14444111
11444111
11411111
14414111
11144111
114414441

NOW READ CHECK BYTES
PIM 3 OUTPUT
RS SYHNDROME.

DEGRATED.
BE =TORED

144314111
11144141
11111141
14114111
14111414
11111414
11111111
1111141131
11141411
11141141
114441441
11114411
11144114
11414441
114441431
114411441
114314444
11111141
114413111
144114131
1114141431
1144411411
11144111
11444141
14144141
14441111
144111411
14144444
1111411431
11441411
11141144
11111141

111314444
111443144
111311141
14444144
14411431
141441421
114111114
114414144
11141113
114444431
1114114431
11114444
14441414
11111141
11114144
1111314431
11114414
114111431
141414431
144444431
114114143
111113141
11111343
114414241
141431443
111411113
114144413
11114111
11111144
11114141
141114311
11111141

11444114
11414111
14411414
14114114
1144143111
111411131
144114111
11141131
11441143
11111111
1111414431
11414441
14444444
11111411
11141441
11114141
11444414
1131311411
11111111
11444141
11411444
11144111
111441141
14114111
11111111
11111414
11114414
111141441
111414111
11144411
11111114
111441111

HDW FART NOW COMPLETE - SYNODOME HRS BEEN STORED.

[
(SRS RS RS Y

UL T I |
SRS R VR (VRRS IS Y 2]

1
n

-2

PIM
PIM
PIN
PIN
PIM
PIN
PIM
PIM
PIM
PIM
PIN
PIN
PIN
PIM
PIN
PIM
PIN
PIMN
PIN
PIN
PIN
PIM
PIN
PIN
PIN

" PIN

PIN
PIN
PIM
PIN
PIN
PIN

\DAD 4G LD WD WD WD LD A0 LD L LD D

DAL AD WO \D O W

Doy

WD 4
1} TR

0w

QQ@Q@\S}QQ&Q@@P&@@GQ&@@QI}UQ@E“S‘@&GJISHSI



SIMULATIOMN RUN # 4 COMTINUED

SIMULATION OF CORRECTION PROCEDURE
BEGIN ZHIFTING SYMNDROME

THIS PART SIMULATES INTERMAL XOR FORM
(SHIFTING RIGHT WITH SOFTWARE)

a

b
R -9 00001000 ABO3BRA0
R-10 80008100 0BEVOBVA
R-11 806606918 ARERBDVO
R-12 00000081 BBOOBRBE
R-1Z= 00000000 106060V86

CORRECTRELE PATTERN FOUND, -13 IS BIT
MOW REGIM BYTE ALIGNMENT.

R-14 80VBB3BVE B1080084
R=-15 806060000 03166884
R-1& 80000800 AYB1V808

OF SHIFT REG

31

b
89000000 BBVBVYBOB0
80000000 VBBV
BRABVAOB BBOBOBRD
A3A00008 BBBRBABEA
88an668a JVBVVNO0

DISPLACEMENT.
BRaERRRa BRBOBADA

BEABKEE0 BBBABEL
V80BNt BHEVYSAY

BYTE ALIGMNMEMNT COMPLETE - SIMULATION COMPLETE

BYTE DISPLACEMENT IS 1.

COUNTING FROM END OF RECORD. LRST BYTE IS ZERO.

- 2?7 .

-1
-1
-1
-1
-1

-1
-1
-1



READ SIMULATION RUN # 5

SIMULATION OF HARDWARE AND SOFTWARE

BEGIM HDW PART OF SIMULATION
¢SHIFTING LEFT, SERIAL EXTERNAL XOR FORM OF SHIFT REG>

BIT DRTA ERROR R1 " R2 R3 R4 BYTE
MNO. BITS BURST NO.
a

PRpR

i

B

]
%
80603000
8093000
86080000
680806850
80098903
anngRona
B0AARARA
BYRABBBO
(5 1a]al5 %1505 1)
632302680
anaenaneons
80080009
33360600
(5lalals]alnle]%]
90806009
ABRA0AAA
202005808
falzlalxals]a])
3ABAARAR
AnaBRanG
[al5lalals a0z )
2 [a]a a5 1a0s s
alalalzla] s 2]
80622188
faraBsoog
80830600
al5]1alalaln o)
8rvRBBAB
86000080
slalslalsla]als
20608301
a8REvB11
90609113
8280611601
a9B8141811
001104111
911601411
11611114
10111161
811119610
11116188
11191661
1191008108
141681061

(al%]5 %15 1307 [
jalalsla sl e o
860200800
890078006
280600300
alalalalalz ]l
39880860
366006006
PBYBDBOAB
el [5]a a6 ]2 o)
8899A0R0H
HBa0BHIBA
HBB80ARRH
30600600
aBavsRABA
lalzlals]a]s 1)
[a]z[5 15 %15 2 1)
800061398
[5]=]a]alala 0o )
900800680
89003092
HBreABBY
998600001
$B0060011
800601109
098891161
16011611
89116111
911041111
11611118
19114161
811115108
11119108
11161061
116168106
10160101,
91001618
165196169
823161060
/16168961
16180010
316800161
10061811
88010111

80aBBvY
90968806
80000800
88890800
30080RA0A
HD0BBBBY
96028600
690686008
28600808
B00BBABHE
jalalslzs 2151210
$5B608008
o] lsla]a]s]5]7)
B0BBBBR0B
80908201
26006611
30036110
30381101
96911611
90116114
914161114
11911110
16111101
511116810
111161006
11161001
1161680106
1616601681
81001010
100161080
50161660
916168601
16108060108
8106081061
10921011
26616111
$39101111
91011110
1611110690
91111601
111160611
111601106
116861140
10611601

- 338 -

{SEE SIMULATION RUM # 1 FOR FIRST 48 SHIFTS)
¢R IS RECORD LEM IN BITS INCLUDIMNG CHK AND OVERHD>

31

b
80868060
PB6BOBOA
808660060
20606600
15]a]5 51215 5 ]c)
Ba0600006
90800831
08000011
YBPvo110
000011981
00611011
08110111
01101111
119411106
16111101
911116106
1111061606
11161091
116816018
1916006101
91601019
108101906
961816008
p19106601
16106010
81000101
16601911
98010111
99161111
91611110
1911116006
91111601
11116011
11166110
116611060
16061160601
96116011
/11600111
11001110
160611100
86811160006
911108090
111086681
1166006011

-11
-11
=11
-11
-11
-11
-11
-11
=10
-106
-10
-10
-18
-16
-19
-i9
-9
-9
-9
-9
-9
-9
-9
-9
-8
-8
-8
-8
-8
-8
-8
-8
-7
-7
-7
-7
-7
-7
-7
-7

-6
-6



SIMULATION RUN NO.

R-52
R-51
R-5@
R—-42
R-48
R-47
R-46
R—-4S5
R—44
R-42
R—42
R-<41
R-40
R-3%
R-38
R-37V
R-3&
R-3%5
R-=4
R-3=

FINISHED READING DATA BYTES.

1

PRARRRR

N

S CONTINUED

91001010
160106100
80101008
91816801
191806810
891660101
16081011
90516111
op161411
91011110
16111160
811141001
111168811
111606110
11201160
168611001
0811080611
p1i166111
11961110
109111600

INPUT TO SHIFT REGISTER NOW
IS GATED TO DESERIALIZER TO

R-Z2
R-Z1
R-3
R-22
R-22
R-27
R-26
R-29
R—24
R-2Z=
R-22
R-21
rR-2&
R-12
R—-1&
R=-17
R-1¢&
R-15
R-14
R-1Z
R-1Z
R-11
R-18
-
-8
-7
-
-5
-
-2
-2
-1

DOADRDDDDDA

@0811106a
91110000
11108501
110680911
10680110
88801101
89a11011
691106111
91161110
11811160
16111661
911102108
111680160
11801821
10318811
ao100111
91381111
i881i111@
99111100
811116860
111160604
1118060041
1160082310
19800101
808081011
00016111
90101111
61611111
164131111
61111111
144341411
11141411

801611141
910111106
161111066
01111961
111416411
111001106
116061100
10811661
801106611
911806111
11601116
166111606
801116608
81110000
111660081
11666311
180606110
80001161
00811611
06116111

00116011
91160111
11681110
106111608
811168606
911160008
111006001
11086011
16600110
08601161
600110411
99116111
01161110
11911160
16111601
91116018
11106100
115010601
190160611
80160111

16060110
68061101
90011011
00118111
911011198
11011160
10111601
9111606108
111060100
11061061
109160011
90190111
91661111
166111106
991111606
91111260
11110060
111960431
11606610
18606101

NOW READ CHECK BYTES
PIN @ OQUTPUT

BE STORED AS SYMDROME.

DEGRTED.

81161118
11091110806
1681110891
911180106
11160194
11981981
19916811
60196111
51601111
18611118
8961111608
B1111.606
11116000
111086061
11068316
1606081041
00031611
00616111
83161111
81611111
16111111
91141111
11414411
14444111
114144111
11441414
14111111
1431431114
14141411
111414411
14144411
11411111

91981111
19611116
29111198
91111689
11116080
11108001
11680210
19808161
ala]z] M2k &N
89916111
fe1041111
91011111
10114141
1144441
141441441
11441441
11144111
11144141
131441414
11144111
11141441
14144441
14114441
14144141
11441411
14414111
11114111
141441141
111121114
141111141
1444441431
14444111

008010311
00016111
89191111
916811111
10114111
61114111
14414111
14414111
14141111
11111111
111144111
11414111
11141114
14111111
11114141
14144141
11444111
14114141
11114111
14144111
14141111
14414111
111141131
141441141
14141111
11141111
11444111
14111111
143111111
11144111
14114111
14411111

HDW FART NOW COMPLETE - SYNDOME HAS BEEN STORED
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-6
-6
-6
-5
-5
-5
-5
-5
-5
-5
-5
-5
-4
-4
-4
-4
-4
-4
-4
-4

PIN
PIMN
PIM
PIN
PIM
PIM
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PINM
PIN
PIM
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

GO O L0 LD D LB DL OGO L0\ LD LD LD
LI T T T (O T T T T T T T I T T I |} Eki?\l‘l)lrll‘l?i?fl?l?llll’
QPOIPIOOIPHFPELPOIFOOOOPFOIOROFPFIIIDIE
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SIMULATION RUN # S CONTINUED

SIMULATION OF CORRECTION PROCEDURE

BEGIM SHIFTING SYMDROME
THIS PART SIMULATES INTERNAL XOR FORM OF SHIFT REG

(SHIFTING RIGHT WITH SOFTWARE 8 BITS AT R TIME>

R-22
R-42
e
R-955
R-=4
R-7Z
R—2&
R-28
R—3¢

‘8

X

011111060
11016119
11600111
911608189
81111111
818161061
BiiiiiBvn
BB9A30011
8a030803

CORRECTABLE PATTERMN FOUND.

BYTE DISFLACEMENT IS 14.

COUNTIMNG FROM END OF RECORD

SIMULATION COMPLETE.

61601101
106110611
31116001
311116606
86010011
16161601
¥o0iiiie
81699080
p2B0B311

16111161
00111110
316081369
1810611106
313606141
$61116606
80801100
P0B0BBBH
91686080

31

X
161116060
111010060
99181111
116111061
916106191
86610810
11961111
51211211215 1%)
BBBBBBVo

LAST BYTE IS ZERO.
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-3
-4
-5
-5
-7
-8
-9
-10
-11



READ SIMULATION RUN # 6

SIMULATION OF HARDWARE AND SOFTWARE

BEGIM HDW PART OF SIMUL
¢SHIFTING LEFT,

DATA
BITS

BIT
MO.

SERIAL

R1

ATION
EXTERNAL XOR FORM OF SHIFT REG)

R2

R

(Y]

R4

BYTE

NO.

a
7 (SEE SIMULATION RUM # 1 FOR FIRST 48 SHIFTS)
+ (R IS RECORD LEN IN BITS INCLUDING CHK AND OVERHD>

4

R-2%
R-9%
R—-94
R-9%
R-92
R-21
R-32@
R-89
R-38
R-27
R-86
R-8%
R-E4
R-&Z=
R-8Z
R—-81
R-26
R-79
R-78&
R-V7
R-7E&
R-75
R-v4
R-7TZ
R-72
R-71
RrR-7A
R-59
R-=8
R-&7
R-&n
R-&3
R—-5
R—-6Z
R-R2
R-51
R-&1
R-59
R-58
R-37
R-5¢&
R-55
R-54
R-53

Sl

BRERRR

%)
X
80080000
80860204
ap830800
zjualals lals]s]
[a]a]alala ala]a]
808RAAB3AD
03300008
jalalals ol s 7]
alalalslalnle)
20800000
200080600
afalzlalalalnle)
PAAARBA
200RBARGD
00026010
2]5]s lnlulnlo)
(z]a]al s lala ]
899800234
[s]s]alalalslale)
B8Y80A0D
22603000
20800030
BRAO0HAD
afalalslalalale)
BRABBOB
[slslal=lal51=]5]
0002382300
80606000
[=1al=]ala 205 1)
(% [slalals lals o]
00983080
BOBA0BRAD
286088060
88306020
zalalels o lna)
ulslalslalslal]
80900001
/VBBO3010
@90001061
80001011
89916111
90101110
01911108
12111001

[5]a]al5 3161 o)
5808800
808V08B00
130000000
alalalsin]als o)
860ABA0A
360000008
fallalals 9] )
23808039
uialalslaluls )
26600000
98806000
alalzlalale]s o)
90802000
80660000
20880000
A000BABE
(515 ]5]51%15]%1%]
o]z [s]1% 2 lal)
(551517 512 )
80800000
(515]5]%[5]51% %)
8066000
26808000
pBOBBABA
80080600
88808000
80000000
30080001
00066810
1e0B0101
82091011
RBai1e111
£010111@
316111606
10111601
91116010
11100101
11004011
16010111
00161110
21011191
16111011
81110110

88600000
alalalalzlnlely)
80800000
alalaia]a]5]%]o]
AR3REA300
/K0610800
AB0vB0Bo
80088880
AABB00R0
30060660
8eRA38000
20830000
80080000
8860088000
20080000
83800000
[alalalzlola s o]
806000868
30800ADA
806806000
29000301
A008Vv10
Vpevo101L
80091311
806810111
80181110
91611106
1681110061
811100610
1116861061
1108106011
19616111
ag181116
916111061
19111611
21116110
11161100
11911060
101106600
81166000
11000001
186060011
80000110
800011006

- 341 -

31

bl
89080000
[5]a05]5]% 1% o
¥BBOOA0O
[a]a]a]% nla sl
08908a00
88060000
0680060020
pB0BA00
8800000
28060030
28600000
8a820000
[5]al5]% 217170 8
88000016
RB0e1LA1
29991011
868010111
06191110
910111060
19111681
91116010
11160101
11661911
18610111
091911168
91011101
191411611
91119110
11161160
11511660
16110000
91100009
11600001
10680011
88668119
80001100
00011080
00110001
91106010
11600181
10001011
90010111
201091111
91611110

-11
-11
-11
-11
-11
-11
-11
-11
-10
-10
-10
-168°
-18
-19
-106
-10
-9
-9
-9
-9
-9
-9
-9
-9
-8
-8
-8
-8
-8
-8
-8
-8
-7
-7
-7
-7
-7
-7
-7
-7
-6
-5
-6
-6



SIMULATION RUN NO.

R-52
R-S1
R-52
R—d43
R-48
R—47
R-46
R-45
R4
R—43
R-42
R-41
R~-46
R-29
R-I2

FIMISHED RERDING DATA BYTES.

1

PRERBR R

PRRR

6 CONTINUED

811160610
11166191
110091911
10916111
e0i011108
918111061
161411011
81110110
11181106
116811900
161160890
81100600
11033061
16200011
/8raRg1L1a
00001190
80011960
00118061
3116000814
11366181

INPUT TO SHIFT REGISTER NOW
IS GATED TO DESERIALIZER TO

R-zZ2
R-Z1
R-Z@&
R-23

199261611
vp3le111
28161111
Aa1n111109
10111194
V1111619
11119181
111381019
11816104
10101011
12316116
i10i61108
alaii601
185118011
alinai1i1d
11661116
136811191
ae11101A4
911161061
111016818
11816181
161081818
616106101
101610618
0109161041
10101611
916160111
16191111
91011111
10111111
91111111
11114111

111061160
110116906
16119068
91106000
116668901
16000011
20608116
00001160
80011000
Av1160a1
811860619
11986061091
10861611
680916111
881614111
81811119
191111061
91111610
111106161
1118106108

86011060
08118001
91160860106
1160001061
186610611
20010111
08161111
81011110
181111061
01111010
111106191
11101810
1181061061
16101611
01618110
10101169
816110061
161106611
A1100111
11661116

161111061
91111010
11116161
11101010
11816101
16101811
01916110
16101100
91011601
1611060611
61106111
110661110
16011101
901110618
91116101
11161610
11610161
101010610
816101981
161916106

NOW READ CHECK BYTES.
PIN 2 OUTPUT
BE STORED AS SYMNDROME.

DEGRTED.

11516101
18191811
813161106
19151100
181148061
101106811
91100111
11091110
166411161
80111618
911106101
111813816
1168161081
ieig916810
31616161
198131010
31310191
19161611
91616111
18191111
V1611111
19111111
691111441
11444111
141141131
11441411
14111411
14411111
11141111
11411111
144141113
14411111

106111061
80111810
8911198181
11181618
11961061061
161816810
816106101
16101610
81616101
19191011
81610111
19161111
61811111
101141411
681111111
11111444
111111114
14111111
114413414
141411144
1131411114
111111141
14111111
111114114
1111414311
11111411

141141414

11111413
11111113

11111411

11111114
14111114

910161061
16161611
816816111
16161111
91011111
16111141
/814141114
11141111
11111141
114414111
11111111
14111141
1121414431
111411111
11111111
11444411
1114311141
111114141
11111111
11114111
141411141
1441114131
11111111
11411144
11411441
11144111
11114111
11111141
14114411
11141111
11111111
111131141

HDW PART MNOW COMPLETE - SYMNDOME HRS BEEN STORED.
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-0
-6
-6
-5
-5
-5
-5
-5
-5
-5
-5
-4
-4
-4
-4
-4
-4
-4
-4

<

<

OO0

PIN
PIN
PINM
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIMN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
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SIMULATION RUN # 6 CONTINUED

SIMULATION OF CORRECTION PROCEDURE
BEGIN SHIFTIMG SYMDROME
THIS PART SIMULATES INTERMNAL XOR FORM OF SHIFT REG
(SHIFTING RIGHT WITH SOFTWARE & BITS AT A TIMED

F-Z2
R-4@
R-48
R-5¢&
R-54
R-7T2
R-28
R-28

a
X
01010001
061100106
800161060
8991116061
61166111
16811160
202616811
BRBBBBRA

CORRECTRELE PATTERM FOUND

BYTE DISPLACEMENT IS 16,

COUNTIMG FROM END OF RECORD.

SIMULATION COMPLETE

111016061 11621661
19000150 58688611
£0110110 68606110
81911161 16610010
161110106 18511160
91101110 60181110
980088808 AVEBOBAY
£00B1811 066BBBAB

31
b

161161061
00800001
01018016
11160060
80081011
11109111
80806V006
98680000

LAST BYTE IS ZERO.
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-5
-5
-7
-8
-9
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REARD SIMULATION RUN # ¢

STHMULATION OF HARDWARE AND SOFTWARE
BEGIN HDW PART OF SIMULATION

{SHIFTING LEFT.

DATA
BITS

BIT -

NO.
%)

¢ ¢SEE SIMULATIOM RUN
© (R IS RECORD LEN IN

R—-3%
R—-25
R—24
rR=-32
R~-32
rR-21
R-94
R—-29
R-22
R-27
R—-28&
R-235
R—-24
R-8%3
R-22
R-21
R—-26
R-79
R-72
R-7
R—-7&
R=73
R-74
R-7Z
rR-72
P-71
R=71
R-=3
R—-=8
R-=7
R—-=S
R==5
R—rd
R=53
R—~2
R—-s1
R—-58
R-39
R-58
R-57
R-5%
R-5%
R-54
R-9Z

PrpE

PRERBR

R1

8

X

900688363
B9ABRDAY
BvRBBR6A
B8aaRRNAAA
/BBRBBR0A
PARRBA0AH
860300608
8080093689
fABNRBBReo
B80a33806
80ABBNRBO
BOABBNAA
ABARBA0A
30300230
803863010
BOARABBI
ABKBAZBA
aRRARR
203000080
1300803
anABrGRA
ABREHORAO
BORBRABBA
80386090
215 lalala a1 ]5)
BAEBBIBA
alalalala]a]s )
B0330a00
2ABRABRA
BO3A0000
200600080
800BRBHA
80020804
BBEBBIBAR
o]zl [ Ts lals
B20AAB00A
02020000
20688000
£36aA230
80380088
8a23aR28a
80008280
80360200

SERIAL EXTERNAL XOR FORM

R2

88VV0BAB
99320080
08000300
30028029
380800899
9068008009
980660008
(o] ls 1715115 05)
20000889
38620060
o]als 4150515 00)
HBOBARBA
5151213150210
$8083882
3080033
PBYBARAN
08006100
(3]s ]5 ]z a]v e 5]
58060000
(s]u]alslale e o]
RARBABBBA
3B00ABAA
[5]a]sla a1z iz o]
38080301
39600320
PB0ABBER
$B008Y000
36000002
Islaaie ]z lals o)
00008384
2[5 5]z ala 5 1o
RPO0BBBAA
28808230
59098309
00600003
06000020
ola ol s als s
00006000
360086020
ABA0000A
20080000
B0RE0BB0
80800080
BA0ABRBAH

- 344 -

R3

8080BnaY
jolalalalalsl2ls
68900000
90990860
80088000
83080BA038
2000000
280800028
[z]a]als a5 110
200000606
99530800
28008000
YBBVYBBNA
80636600
[z]5]als 515 210
902380088
[5]%]a % o] % 210
AAD800006
PB6NBBBA
86008300
[ola]a]5]a]5 115
/8030004
80800306
800000808
20600000
86080000
80000030
86000000
20000080
0006000
000000060
H0000600
$BOBBABB
66030000
falnlaln lzlo e 1)
8000608
00060000
80600008
PA0B0020
80060000
80800001
36060011
80600111
80801111

OF SHIFT REG)

R4 BYTE
NO.

# 1 FOR FIRST 48 SHIFTS)
BITS INCLUDING CHK AND OVERHD>

31

%
08900009
0OPBRARE0
e L)
00BA0N0s
90000000
b L)
00820000
00020000
9000000
00600009
00000000
POOBORRO
206000
90020000
POBO0R00
20000300
20080000
90VBDn00o
20RENARA
200BBROA
/06000
20300000
@88BEE00
0OBBERE0

90808008

YBvvenI0
o2 [= o]0 50
98006080
806000060
90600000
980008000
1251151550505
9BB0BDoL
vovooell
oBr60111
20061111
90014411
90141111
91111111
11411111
11114114
14414111
111444111
11111141

-11
-11
-11
-11
=11
-11
-11
-11
-18
-108
-10
-106
-10
-19
-10
-10
-9

-9

-9

-a

-9
-9
-9
-9

-8

-8
-8
-8
-8
-8
-8
-8
-7

-

-7
-7
-7
-7
-7
-7
-6
-5
-6
-6



SIMULATION RUN NO.

R-52
R-351
R~-50
R—-49
R—482
R—-47
R—-4€
R-43
R—-44¢
R-42
R-42
R—-41
R-40
R-29
R-28
R-37
R-2€
R-35
R-34
R-33

FINISHED READING DATR BYTES.

1

FRRERPR

Y TY TN

7 CONTINUED

06880060
88008108
088680068
80800060
80000000
080200800
200890089
80800000
8800080
80000068
88008335
08060000
80860001

06088011

00809111
89001111
06611111
001411114
611141111
11141111

INPUT TQ SHIFT REGISTER NOW
IS GATED TO DESERIALIZER TO

R-22
RrR-21
R-28
R-29
R~-22
R-27
R~-2¢
R-25
R=-24
R-2Z=
rR-22
R-21
‘R=-20a
R-19
RrR-18
R=-17
R-1¢
R-15
R-14
R-12
R-12
R-11
R-1iB
-9
-8
-7
-6
-5
-4
-3
-2
-1

ABADDBDDVDTD

41441111
11111144
111411141
11413111
11114111
11444411
1111444141
11111111
11111441
14411141
11141411
111441141
141141411
11114114
11111111
111113141
11114411
11134411
11111144
11114431
14111441
11411141
1111114144
111111411
11411111
111111144
11111111
114111114
11441114
11411111
11414111
1114111314

688966680
88686600
808660300
30600000
20086001
80000011
06080111
26001111
866141111
06111111
81111111
11114111
141114431
11411141
14144141
14444141
14141411
114111141
144414441
11111111

60611411
808111114
811141141
11111111
11414141
141411414
114144141
11141111
11144111
1114111414
11111441
11111114
11114141
111443144
11444443
111411141
1114114111
11114414
11111114
11141113

11141111
14111411
141141411
14441411
14114141
11411411
11114111
11414334
11121111
11144411
1411444414
11414114
14111141
11444111
14111441
11411111
11111111
11111411
11141111
11414111

NOW READ CHECK BYTES.
PIN 9 OUTPUT
BE STORED AS SYNDROME.

DEGATED.

111411114
11144111
11114141
11414111
111112414
11111144
11144111
11411111
11111141
14144111
111411411
14111111
14111113
111441441
111414441
141441141
11141411
11114443
11144141
11141414
111111131
141141431
111114441
14414141
11111444
11414441
11114114
11141414
114131144
111113144
11144441

11411444

11111111
11111111
111114144
1113111394
14144414
111414149
11144441
11111141
11141113
111411114
11111411
11141141
11111113
11111441
11441141
111111114
11111443
111411419
11414111
111144414
111111314
11114141
11141149
11141141
11111241
11144111
11144413
11131111
111141414
11111111
11444113
11414111

111144131
11111111
14141411
11111414
141114411
14114441
11111111
14414111
11111111
14114111
144441411
11114411
11141111
14441411
11111411
11441441
144131411
14141111
14141111
14411414
11141111
11411114
14111111
11141111
11141111
11111111
11411111
141141114
11411144
111141114
14141111
11111111

HDW PART NOW COMPLETE - SYNDOME HAS BEEM STORED

- 345 -

-5
-6
-6
-5
-5
-5

-S.

-5
-5
-5
-5
-5
-4
-4
-4
-4
-4
-4
-4
-4

OO ®

PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

WA L0 DI L0 WD L0 DL DA ID LG L 1 L D LG L0 LD D LD L ! '
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SIMULARTION RUN # 7 COMTINUED

SIMULATION OF CORRECTION PROCEDURE

BEGIN SHIFTING SYNDROME
THIS PART SIMULATES INTERNAL XOR FORM OF SHIFT REG

<SHIFTIMG RIGHT WITH SOFTWARE 8 BITS AT R TIME)

o .

X X
00000000 VOV10OVE BOOOB00D 0PGBBBO -1

31

R-1¢&
CORRECTABLE PATTERN FOUND.

BYTE DISPLRACEMENT IS 1.

COUNTING FROM END OF RECORD. LAST BYTE IS ZEROD.

SIMULATION COMPLETE.
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5.3.7 RECIPROCAL POLYNOMIAL TABLES

The byte-serial software algorithm requires four, 256-byte tables. These tables are
listed on the following pages. Since data entry is error prone, the tables should be
regenerated by computer.

To regenerate the tables, implement a right-shifting internal-XOR serial shift
register in software, using the reciprocal polynomial. For each address of the tables
(0-255), place the address in the eight most significant (right-most) bits of the shift
register and clear the remaining bits. Shift eight times, then store the four bytes of
shift register contents in tables T1 through T4 at the location indexed by the current
aﬁress. The coefficient of xV is stored as the high-order bit of T1; the coefficient of
x°1 is stored as the low-order bit of T4. Check the resulting tables against those on
the following pages.
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RECIPROCAL POLYNOMIAL TABLE T1

0 1 2 3 4 5 6 7 8 9 A B ¢ D E F
00 00 14 28 3C 50 44 78 6C A0 B4 88 9C FO E4 D8 cCcC
10 54 40 7C 68 04 10 2C 38 F4 EO DC C8 A4 BO 8C 98
20 | A8 BC 80 94 F8 EC DO C4 08 1C 20 34 58 4C 70 64
30 FC E8 D4 CO AC B8 84 90 5C 48 74 60 O0OC 18 24 30
40 45 51 6D 79 15 -01 3D 29 E5 F1 CD D9 B5S5 Al 9D 89
50 11 05 39 2D 41 55 69 7D Bl A5 99 8D E1 F5 C9 DD
60 ED F9 C5 D1 BD A9 95 81 4D 59 65 71 1D 09 35 21
70 B9 AD 91 85 E9 FD C1 D5 19 OD 31 25 49 5D 61 75
80 8A 9E A2 B6 DA CE F2 E6 2A 3E 02 16 7A 6E 52 46
90 DE CA F6 E2 8E 9A A6 B2 7E 6A 56 42 2E 3A 06 12
A0 22 36 OA 1E 72 66 5A 4E 82 96 AA BE D2 C6 FA EE
BO 76 62 5B5E 4A 26 32 OE 1A D6 C2 FE EA 86 92 AE BA
co CF DB E7 F3 9F 8B B7 A3 6F 7B 47 53 3F 2B 17 03
DO 9B 8F B3 A7 CB DF E3 F7 3B 2F 13 07 6B 7F 43 57
EO 67 73 4F 5B 37 23 1F 0B C7 D3 EF FB 97 83 BF AB
FO 33 27 1B OF 63 77 4B SF 93 87 BB AF €3 D7 EB FF
RECIPROCAL POLYNOMIAL TABLE T2

0 1 2 3 4 5 6 7 8 9 A B ¢ D E F
00 00 04 09 OD 12 16 1B 1F 24 20 2D 29 36 32 3F 3B
10 42 46 4B 4F 50 54 59 5D 66 62 6F 6B 74 70 7D 79
20 84 80 8D 89 96 92 9F 9B A0 A4 A9 AD B2 B6 BB BF
30 C6 C2 CF CB D4 DO DD D9 E2 E6 EB EF FO F4 F9 FD
40 02 06 OB OF 10 14 19 1D 26 22 2F 2B 34 30 3D 39
50 40 44 49 4D 52 56 5B 5F 64 60 6D 69 76 72 7F 7B
60 86 82 8F 8B 94 90 9D 99 A2 A6 AB AF BO B4 B9 BD
70 C4 CO CD C9 D6 D2 DF DB EO E4 E9 ED F2 F6 FB FF
80 05 01 oOoC 08 17 13 1E 1A 21 25 28 2C 33 37 3A 3E
90 47 43 4E 4A 55 51 5C 58 63 67 6A 6E 71 75 78 7C
AOQ 81 85 88 8C 93 97 9A O9E A5 A1l AC A8 B7 B3 BE BA
BO C3 C7 CA CE D1 D5 D8 DC E7 E3 EE EA F5 Fl1 FC FS8
co 07 03 OE o0A 15 11 1C 18 23 27 2A 2E 31 35 38 3C
DO 45 41 4C 48 57 53 S5E 5A 61 65 68 6C 73 77 7A 7E
EO 83 87 8A 8E 91 95 98 9C A7 A3 AE AA B5 Bl BC B8
FO Cl C5 Cc8 CC D3 D7 DA DE E5 El1 EC E8 F7 F3 FE FA
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RECIPROCAL POLYNOMIAL TABLE T3

0 1 2 3 4 5 6 7 8 9 A B € D E F
00 00 82 04 86 09 8B OD 8F 12 90 16 94 1B 99 1F 9D
10 21 A3 25 A7 28 AA 2C AE 33 Bl 37 B5 3A B8 3E BC
20 | 42 CO 46 C4 4B C9 4F CD 50 D2 54 D6 59 DB 5D DF
30 | 63 E1 67 E5 6A E8 6E EC 71 F3 75 F7 78 FA 7C FE
40 | 81 03 85 07 88 O0A 8C OE 93 11 97 15 9A 18 9E 1C
50 | AO 22 A4 26 A9 2B AD 2F B2 30 B6 34 BB 39 BF 3D
60 | C3 41 C7 45 CA 48 CE 4C D1 53 D5 57 D8 5A DC S5E
70 | E2 60 E6 64 EB 69 EF 6D FO 72 F4 76 F9 7B FD 7F
80 | 02 80 06 84 OB 89 OF 8D 10 92 14 96 19 9B 1D O9F
90 | 23 Al 27 A5 2A A8 2E AC 31 B3 35 B7 38 BA 3C BE
A0 40 C2 44 C6 49 CB 4D CF 52 DO 56 D4 5B D9 5F DD
BO 61 E3 65 E7 68 EA 6C EE 73 Fl1 77 F5 7A F8 7E FC
co | 83 01 87 05 8A 08 8E OC 91 13 95 17 98 1A 9C 1E
DO | A2 20 A6 24 AB 29 AF 2D BO 32 B4 36 B9 3B BD 3F
EO | C1 43 C5 47 C8 4A CC 4E D3 51 D7 55 DA 58 DE 5C
FO | EO 62 E4 66 E9 6B ED 6F F2 70 F6 74 FB 79 FF 7D
RECIPROCAL POLYNOMIAL TABLE T4

0 1 2 3 4 5 6 7 8 9 A B c D E F
00 00 51 A2 F3 44 15 E6 B7 88 D9 22 7B CC 9D 6E 3F
10 | 55 04 F7 A6 11 40 B3 E2 DD 8C 7F 2E 99 C8 3B 6A
20 | AA FB 08 59 EE BF 4C 1D 22 73 80 D1 66 37 C4 95
30 | FF AE 5D OC BB EA 19 48 77 26 D5 84 33 62 91 CO
40 11 40 B3 E2 55 04 F7 A6 99 C8 3B 6A DD 8C 7F 2E
50 | 44 15 E6 B7 00 51 A2 F3 CC 9D 6E 3F 88 D9 2A 7B
60 | BB EA 19 48 FF AE 5D 0C 33 62 91 CO 77 26 D5 84
70 | EE BF 4C 1D AA FB 08 59 66 37 C4 95 22 73 80 D1
80 | 22 73 80 D1 66 37 C4 95 AA FB 08 59 EE BF 4C 1D
90 77 26 D5 84 33 62 91 CO FF AE 5D 0OC BB EA 19 48
A0 88 D9 2A 7B CC 9D 6E 3F 00 51 A2 F3 44 15 E6 B7
BO DD 8C 7F 2E 99 C8 3B 6A 55 04 F7 A6 11 40 B3 E2
co 33 62 91 CO 77 26 D5 84 BB EA 19 48 FF AE 5D 0C
DO 66 37 C4 95 22 73 80 D1 EE BF 4C 1D AA FB 08 59
EO | 99 €8 3B 6A DD 8C 7F 2E 11 40 B3 E2 55 04 F7 A6
FO | CcC 9D 6E 3F 88 D9 2A 7B 44 15 E6 B7 00 51 A2 F3
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5.4 APPLICATION TO MASS STORAGE DEVICES

This section describes an interleaved Reed-Solomon code implementation that is
suitable for many mass storage devices. It is a composite of several real world im-
plementations, including the implementation described in U.S. Patent #4,142,174, Chen, et
al. (1979).

The implementation has triple-symbol error-correction capability and is interleaved
to depth 32. Symbols are one byte wide.

Key features of the implementation are:
- Corrects up to 3 random symbol errors in each interleave.
- Corrects a single burst up to 96 bytes in length.

- The data format includes a resync field after every 32 data bytes. This limits
the length of an error burst resulting from synchronization loss.

The media data format is shown below. Data is transferred to and from the media
one row at a time. Checking is performed in the column dimension.

32 INTERLEAVES RESYNC
— L 1 FIELDS
0 1 =+ « « 30 31 |

: : 1
65 . —+
DATA —
SYMBOLS . . . . . .
: : +
: : +
6
CHECK -— . . . . . .
SYMBOLS
: : +
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The following pages show, for the implementation:

The write encoder circuit.
The syndrome circuits.
The finite field processor.

An algorithm for determining the number of errors occurring and for gene-
rating coefficients of the error locator polynomial.

Algorithms for finding the roots of the error locator polynomial in the
single-, double-, and triple-error cases.

Algorithms for determining error values for the single-, double-, and triple-
€rTOoT Cases.

ROM tablfs for taking logarithms and ‘antilogarithms, for finding the roots of
equation y~ + y + c¢=0, and for taking the cube root of a finite field element.
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ENCODE POLYNOMIAL

(X + 1)+ (X + @)+ (x + @)+ (x + a3)+(x + a%)+(x + af)

= x6 + 094.%x5 + ol0.yx4 4 o136.43 , 415.42 4 ol04.y4 4+ o15

WRITE ENCODER

GATE

»3aM
U
X

>

ca94

|
C+ <5 =<=@.= x4

@m

F<

|

©-

x3

WRITE DATA/CHECK BYTES

WRITE DATA

SYNDROME CIRCUITS

There are six circuits (i=0 to S) and each circuit is interleaved to depth 32.

=g

53

=.=G’}>

READ DATA/CHECK BYTES
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FINITE FIELD PROCESSOR

Except where noted, all paths are eight bits wide.

y

y y

X

8-BIT BINARY ADDER

MOD 255

ANTILOG ROM

- GATE

SYNDROME BUFFER WORK BUFFER SEQUENCER
l
4 4
G A B
y
*———-—
ROM TABLES
y \ y
H Z-DETI— D Z-DET— E C
1/ /1 J v I |
1 1
LOG ROM
LO
ROM
Y Y 4
NOR COMPLEMENTER
1 y y y
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DETERMINE NUMBER OF ERRORS AND GENERATE ERROR LOCATOR POLYNOMIAL

BEGIN

NO

0=81/So

=1

D1=5871°S1+Sg°*S2
01=(S1°S2+Sp*S3) /D1
02=(S1°53+52°52) /Dy
Dy=S4+0q°53+03°S3

D=5p°*S3+S1°Sy

01=(S1°S3+S0*S4)/D

02=(S2* (53+01°52)+Sg* (S5+01°S4))/D
03=(S3+01°S2+02°51)/So

NO

4‘&!%=I'>YES

NO

e=2 e=

01=83/S2

02=(S4q+01°53)/S2
03=(S5+07°54+02°53) /82| (03) '=(01) '+02+(S1°54+S2+53) /Dy

(01) '=(02°S3+01°S4+S5) /D2
(02) '=(01) '*01+(51°S3+S0p*S4) /D1

e=3

| UNCORRECTABLE

[
01=(01)"’
02=(02)"'
03=(03)"'

=3
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COMPUTE ERROR LOCATIONS AND ERROR VALUES

e=1 e=2 e=3
Xy = aLl =0 C = 02/012 K= (01)2+02
3
co_ K
(01°02+03)2
Ly = LOGy(X3) ¥ = TBLA&C)
Yy = ¥Yj+a
V, = TBLA(C)
T Uy = Vy+(01°02+03)
X3 = aLl = 01°¥Y1
X2 = a 2 = g1°Yo
Ty = TBLBéUl)
Ty = Ty 5
Ly = LOGq(X1) T3 = T-a85
Ly = LOGy(X2)
X, = Ly _
1 =05 = 01+T1+K/T1
Xz = ay? = 01+T2+K/T
X3 =a 3 = 01+T3+K/T3
Ly = LOGqg(X3)
Lz = LOGq(X2)
L3 = LOGq(X3)
E = Sg X2+Sp9+S1 So+S7° (X2+X3)+Sg°X2°X3
Eq = —— Ey =
X1+X2 (X1+X32) * (X1+X3)
E; = E1+Sq . Sg*X3+S1+E1+ (X1+X3)
2 =
Xo+X3
E3 = So+E1+E2
y A\ r
y
FINISHED
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SOLVING THE THREE-ERROR LOCATOR POLYNOMIAL IN GF (25)
The three-error locator polynomial is

%3 + 01°%2 + 03°x + 03 =0
First, substitute w = x + o7 to obtain

w3 + ((01)2 + 03)*w + (01°03 + g3) =0
Second, apply the substitution

w=1t+ ((61)2 + g3)/t
to obtain

t3 + (01°05 + 03) + ((01)2 + 03)3/t3 =0
and thus

t6 + (01°05 + 03)+t3 + ((01)2 + 03)3 =0
Third, substitute u = t3 to obtain

u + (01702 + 03)-u + ((01)2 + 03)3 =0
Finally, substitute

v = u/(01°03 + 03)
to obtain

Ve vs ((01)2 + a3)3 o

(01°02 + 03)2

Now fetch a root V from the table developed for the two-error case:

v - TBLA[ ((01)2 + 03)3 ]

(01°02 + 03)2
Next, apply the reverse substitution
u = ve (o103 + 03)
to obtain
Uy = Vi°(01°02 + 03)
Apply the reverse substitution t = @173 to obtain

T) = (V1+(01°02 + 03))1/3
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T1 may be fetched from a table of cube roots in GF(28):
Ty, = TBLB[ V3°(03°03 + 03) ]

Each element in GF(28) which has a cube root has three cube roots; the other two may
be computed:

Ty = Tp° ok
T3 = Ty-ak
where k = (28-1)/3 = s5.
Now reverse the substitution

w=¢t+ ((61)2 + g3)/t

to obtain
(01)2 + dgo
Wy =T + ——
1 1 T,
. . (61)2 + o3
= o—
2 2 T,
(61)2 + o3
Wy = T3 + ———
3 3 T3

And finally, apply the reverse substitution
X =W+ 0q

to obtain the roots of the original three-error locator polynomial:

Ly (01)2 + o3

X = a =Tq + ————TI———— + 01
L (01)2 + o3

X9 = 2 = Ty + ————EE———— + 0,
Ly (01)2 + 03

X3 = « = T3 + ————Es———— + 01

The error locations L1, Ly, and L3 are the logs base a of X1, X2, and X3, respectively.
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ANTILOG TABLE
(INPUT IS n, OUTPUT IS o)

0 1 2 3 4 5 6 7 8 9 A B Cc D E F
00 |01 02 04 08 10 20 40 80 71 E2 B5 1B 36 6C D8 C1
10 F3 97 5F BE OD 1A 34 68 DO D1 D3 D7 DF CF EF AF
20 2F BE BC 09 12 24 48 90 51 A2 35 6A D4 D9 C3 F7
30 O9F 4F 9E 4D 9A 45 8A 65 CA E5 BB 07 OE 1C 38 70
40 EO Bl 13 26 4C 98 41 82 75 EA A5 3B 76 EC A9 23
50 46 8C 69 D2 D5 DB C7 FF 8F 6F DE CD EB A7 3F 7E
60 FC 89 63 C6 FD 8B 67 CE ED AB 27 4E 9C 49 092 55
70 AA 25 4A 94 59 B2 15 2A 54 A8 21 42 84 79 F2 95
80 5B B6 1D 3A 74 E8 Al 33 66 CC E9 A3 37 6E DC (9
90 E3 B7 1F 3E 7C F8 81 73 E6 BD OB 16 2C 58 BO 11
A0 22 44 88 61 C2 F5 9B 47 8E 6D DA C5 FB 87 7F FE
BO 8D 6B D6 DD CB E7 BF OF 1E 3C 78 FO 91 53 A6 3D
co 7A F4 99 43 86 7D FA 85 7B F6 9D 4B 96 5D BA 05
DO OA 14 28 50 A0 31 62 C4 F9 83 77 EE AD 2B 56 AC
EO 29 52 A4 39 72 E4 B9 03 06 O0C 18 30 60 CO F1 93
FO 57 AE 2D 5A B4 19 32 64 C8 E1 B3 17 2E 5C B8 01
LOG TABLE
(INPUT IS o, OUTPUT IS n)

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 -- 00 01 E7 02 CF E8 3B 03 23 DO 9A E9 14 3C B7
10 04 9F 24 42 D1 76 9B FB EA F5 15 0B 3D 82 B8 92
20 05 7A A0 4F 25 71 43 6A D2 EO 77 DD 9C F2 FC 20
30 EB D5 F6 87 16 2A O0C 8C 3E E3 83 4B B9 BF 93 S5E
40 06 46 7B C3 Al 35 50 A7 26 6D 72 CB 44 33 6B 31
50 D3 28 E1 BD 78 6F DE FO 9D 74 F3 80 FD CD 21 12
60 EC A3 D6 62 F7 37 88 66 17 52 2B Bl 0D A9 8D 59
70 3F 08 E4 97 84 48 4C DA BA 7D CO C8 94 C5 O5F AE
80 07 96 47 D9 7C C7 C4 AD A2 61 36 65 51 BO A8 58
90 27 BC 6E EF 73 7F CC 11 45 C2 34 A6 6C CA 32 30
A0 D4 86 29 8B E2 4A BE 5D 79 4E 70 69 DF DC Fl1 1F
BO | 9E 41 75 FA F4 OA 81 91 FE E6 CE 3A 22 99 13 B6
co ED OF A4 2E D7 AB 63 56 F8 8F 38 B4 89 5B 67 1D
DO 18 19 53 1A 2C 54 B2 1B OE 2D AA 55 B8E B3 5A 1C
EO 40 F9 09 90 E5 39 98 B5 85 8A 49 5C 4D 68 DB 1E
FO BB EE 7E 10 Cl1 A5 C9 2F 95 D8 C6 AC 60 64 AF 57
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QUADRATIC SOLUTION TABL

5,

FOR FINDING SOLUTIONTO y2 +y + C'=
(INPUT IS C, OUTPUT IS Y1; Y1=0'=> N SOLUTION ELSE Y2 = Y1 + o0)

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 01 DB 8F 55 8D 57 03 D9 00 00 OO0 OO0 OO 00 00 OO
10 89 53 07 DD 05 DF 8B 51 00 00 OO0 00 OO 0O 0O OO
20 00 00 00 00 OO0 OO0 OO0 00 C€C3 19 4D 97 4F 95 Cl1 1B
30 00 00 00 00 OO0 00 OO 00 4B 91 ¢C5 1F C7 1D 49 093
40 00 00 00 OO0 OO0 OO0 OO OO0 09 D3 87 5D 85 S5F OB D1
50 00 00 O0O OO0 OO0 00 OO0 OO 81 5B OF D5 OD D7 83 659
60 CB 11 45 O9F 47 9D C9 13 O00 00 00 OO0 OO 00 00 OO
70 43 99 CD 17 CF 15 41 9B 00 00 00 OO0 OO0 00 00 OO
80 FF 25 71 AB 73 A9 FD 27 00 00 00 00O OO0 00 00 OO0
90 77 AD F9 23 FB 21 75 AF 00 00 00 00 OO0 OO 00 OO
A0 00 00 OO0 00 OO0 OO0 OO0 00 3D E7 B3 69 Bl 6B 3F E5
BO 00 00 OO0 00 OO0 OO0 00 OO0 B5 6F 3B E1 39 E3 B7 6D
Cco 00 00 00 00 OO0 00 00 OO0 F7 2D 79 A3 7B Al F5 2F
DO 00 00 00 00 00 OO 00 OO0 7F A5 Fl1 2B F3 29 7D A7
EO 35 EF BB 61 B9 63 37 ED 00 00 OO0 OO0 OO0 00 00 OO
FO BD 67 33 E9: 31 EB BF 65 00 00 00 OO0 00 00 00 OO0
CUBE ROOT TABLE
(NPUT IS off, OUTPUT IS oV/3; EXCEPT FOR ¥, OUTPUT =0 => NO ROOT)

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 00 DB 00 EC 00 98 00 00 02 00 00 OO 00 00 OD 1cC
10 00 45 36 34 00 00 00 00 A9 00 80 00 00 OO0 OO0 oOO
20 00 00 00 00 00 00O OO 00 41 00 00 OO0 9A oO00 D5 0O
30 00 82 69 D9 00 D8 10 00 00 00O OO0 D1 OO0 OO0 4F 0O
40 04 00 A2 Bl 00 00 00 00 00 OO0 48 00 00 97 00 OO
50 00 00 3B 70 51 24 A5 46 00 00 8C 00 00 00 1B 40
60 00 00 00 00 00 00 OO BC 00 OO0 00 07 00 OO0 F7 OO
70 1A 00 76 00 D4 DO OO0 00 38 00 EO 00 00 00 00 BB
80 00 9E 00 00 00 OO0 OO OO0 8A 00 S5F 00 D7 00 cCcA 0O
90 6C 00 OO0 OO0 00 OO0 4C 00 68 00 00 00 12 00 00 F3
A0 00 00 00 00 00 00 OO AF 00 D3 00 09 00 o00 00 OO
BO 00 00 90 00 00 00 6A 00 OO0 OO0 OO 00 00 4D 00 OO
COo 23 20 00 00 00 E5 B5E 00 00 OO0 00 OE 00 ©00 00 oOO
DO 71, 00 00 00 OO0 DF 00 E2 00 Cl1 OO OO0 OO0 00 EF OO
EO 00 D2 08 9F 00 BE 00 00 00 €3 00 00 OO OO EA BS
FO 00 00 35 00 65 26 00 00 75 13 00 2F OO0 OO0 CF

00
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AN ALTERNATIVE FINITE FIELD PROCESSOR DESIGN

The finite field processor shown below could be used instead of the one shown
earlier in this section. It uses subfield multiplication; see Section 2.7 for more informa-
tion. The timing for finite field multiplication includes only one ROM delay. This path
for the other processor included two ROM delays and a binary adder delay Inversion is
accomplished with a ROM table.

Y y y
SYNDROME BUFFER WORK BUFFER SEQUENCER
Y Y y JV Yy Y Yy Y y Y
G D E A B
A\ 4
ROM TABLES GF (256 ) SUBFIELD :
. MULTIPLIER l
USING 4 ROMS:
4 SEE SECTION 2.7 c
! I
A 2 -
F

The following pages show, for this alternative finite field processor:

- A ROM table for the four multipliers comprising the GF(256) subfield multi-
plier.

- A ROM table for accomplishing inversion.

- ROM tables for taking logarithms and antilogarithms.

- A ROM table for finding roots of the finite field equation y2 + y + ¢ = 0.
- A ROM table for finding cube roots.
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SUBFIELD MULTIPICATION TABLE
(INPUT IS TWO 4-BIT NIBBLES, OUTPUT IS ONE 4-BIT NIBBLE)

0 1 2 3 5 6 7 8 9 A B C D E F
0 0 0 0 0 0 0 0] 0 0 0 0 0 0. 0 0 0
1 0 1 2 3 4 5 6 7 8 9 A B C D E F
2 0 2 4 6 8 A C E 9 B D F 1 3 5 7
3 0 3 6 5 C F A 9 1 2 7 4 D E B 8
4 0 4 8 C 9 D 1 5 B F 3 7 2 6 A E
5 0 5 A F D 8 7 2 3 6 9 C E B 4 1
6 0 6 C A 1 7 D B 2 4 E 8 3 5 F 9
7 0 7 E 9 5 2 B C A D 4 3 F 8 1 6
8 0 8 9 1 B 3 2 A F 7 6 E 4 C D 5
9 o 9 B 2 F 6 4 D 7 E c 5 8 1 3 A
A 0 A D 7 3 9 E 4 6 c B 1 5 F 8 2
B 0 B F 4 7 C 8 3 E 5 1 A 9 2 6 D
C 0 (o] 1 D 2 E 3 F 4 8 5 9 6 A 7 B
D 0 D 3 E 6 B 5 8 C 1 F 2 A 7 9 4
E 0 E 5 B A 4 F 1 D 3 8 6 7 9 2 C
F 0 F 7 8 E 1 9 6 5 A 2 D B 4 C 3
INVERSE TABLE FOR ALTERNATIVE FINITE FIELD PROCESSOR
(INPUT IS o™, OUTPUT IS 1/a®)

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 -- 01 OC 08 06 OF 04 OE 03 OD OB OA 02 09 07 05
10 CC CO 6A e6C 58 5D D8 D5 FA F5 8E 86 3E 3D 76 71
20 66 D7 60 DA 35 F3 36 FC E4 B5 EA BE A4 47 AE 43
30 44 56 53 40 F2 24 26 FD A8 C3 CF A2 3F 1D 1C 3cC
40 33 52 AF 2F 30 57 A5 2D DE 72 BD 9E D3 75 B6 97
50 BB 6F 41 32 69 BO 31 45 14 5C 92 84 59 15 8C 9B
60 22 DB E3 CA ED C6 20 D6 Bl 54 12 6D 13 6B BA 51
70 77 1F 49 DF D2 4D 1lE 70 B9 F7 C8 9D 94 C4 F8 B2
80 DD AD E1 FE 5B 93 1B 8F DO A7 EF Fl1 S5E 9A 1A 87
90 AA E7 5A 85 7C C5 B7 4F E9 A0 8D 5F C9 7B 4B BC
A0 99 E8 3B CE 2C 46 D1 89 38 C2 90 E6 DC 81 2E 42
BO 55 68 7F F9 E5 29 4E 96 F6 78 6E 50 9F 4A 2B EB
co 11 ¢b A9 39 7D 95 65 EC 7A 9C 63 E2 10 Cl1 A3 3A
Do 88 A6 74 4C D9 17 67 21 16 D4 23 61 AC 80 48 73
EO FF 82 CB 62 28 B4 AB 91 Al 98 2A BF C7 64 FO 8A
FO EE 8B 34 25 FB 19 B8 79 7E B3 18 F4 27 37 83 EO
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ANTILOG TABLE FOR ALTERNATIVE FINITE FIELD PROCESSOR
(INPUT IS n, OUTPUT IS ™

0 1 2 3 A B C D F
00 01 10 12 32 16 72 5E BA 1F E2 C5 91 8B 39 A6 CD
10 11 02 20 24 64 2C E4 A5 FD 27 54 1A B2 9F 6B DC
20 13 22 04 40 48 C8 41 58 DA 73 4E A8 2D F4 B7 CF
30 31 26 44 08 80 89 19 82 A9 3D E6 85 D9 43 78 FE
40 17 62 4C 88 09 90 9B 2B 94 DB 63 5C 9A 3B 86 E9
50 75 2E C4 81 99 OB BO BF 4F B8 3F C6 Al BD 6F 9C
60 5B EA 45 18 92 BB OF FO F7 87 F9 67 1C D2 F3 C7
70 Bl AF 5D 8A 29 B4 FF 07 70 7E 9E 7B CE 21 34 76
80 1E F2 D7 A3 9D 4B F8 77 OE EO E5 B5 EF 15 42 68
90 EC 25 74 3E D6 B3 8F 79 EE 05 50 5A FA 57 2A 84
A0 C9 51 4A E8 65 3C F6 97 EB 55 OA A0 AD 7D AE 4D
BO 98 1B A2 8D 59 CA 61 7C BE 5F AA OD DO D3 E3 D5
co 83 B9 2F D4 93 AB 1D C2 ‘'El F5 A7 DD 03 30 36 56
DO 3A 96 FB 47 38 B6 DF 23 14 52 7A DE 33 06 60 6C
EO AC 6D BC 7F 8E 69 FC 37 46 28 A4 ED 35 66 0C CO
FoO Cl Dl C3 Fl1 E7 95 CB 71 6E 8C 49 D8 53 6A CC 01
LOG TABLE FOR ALTERNATIVE FINITE FIELD PROCESSOR
(INPUT IS oft, OUTPUT IS n)

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 -- 00 11 CC 22 99 DD 77 33 44 AA 55 EE BB 88 66
10 01 10 02 20 D8 8D 04 40 63 36 1B Bl 6C C6 80 08
20 12 7D 21 D7 13 91 31 19 E9 74 9E 47 15 2C 51 C2
30 CD 30 03 DC 7E EC CE E7 D4 OD DO 4D A5 39 93 5A
40 23 26 8E 3D 32 62 E8 D3 24 FA A2 85 42 AF 2A 58
50 9A Al D9 FC 1A A9 CF 9D 27 B4 9B 60 4B 72 06 B9
60 DE B6 41 4A 14 A4 ED 6B 8F E5 FD 1E DF El1 F8 SE
70 78 F7 05 29 92 50 7F 87 3E 97 DA 7B B7 AD 79 E3
80 34 53 37 €O 9F 3B 4E 69 43 35 73 0C F9 B3 E4 96
90 45 OB 64 C4 48 F5 D1 A7 BO 54 4C 46 5F 84 7A 1D
A0 AB 5C B2 83 EA 17 OE CA 2B 38 BA C5 EO0O AC AE 71
BO 56 70 1C 95 75 8B D5 22E 59 Cl1 07 65 E2 5D B8 57
co EF FO C7 F2 52 OA 5B 6F 25 A0 B5 F6 FE OF 7C 2F
DO BC Fl1 6D BD C3 BF 94 82 FB 3C 28 49 1F CB DB D6
EO 89 C8 09 BE 16 8A 3A F4 A3 4F 61 A8 90 EB 98 8C
FO 67 F3 81 6E 2D C9 A6 68 86 6A 9C D2 E6 18 3F 76
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QUADRATIC SOLUTION TABLE FOR ALTERNATIVE FINITE FIELD PROCESSOR
+y+C=0
(INPUT IS C, OUTPUT IS Y1; Y1=0'=> NO SOLUTION, ELSE Y2 = Y1 + o0)

FOR FINDING SOLUTION TO y
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0 1 2 3 4 5 6 7 8 9 A B C D E F
00 01 OB 11 1B 13 19 03 09 1D 17 oOD 07 OF 05 1F 15
10 B5 BF A5 AF A7 AD B7 BD A9 A3 B9 B3 BB Bl AB Al
20 00 00 OO0 00 00 00O OO OO OO0 00O 00 00 OO0 00 OO OO
30 00 00 OO0 OO0 00 00O OO OO OO OO0 0O 00 OO0 00 00 OO
40 00 00 00 00O 00 00 00 OO0 OO OO 00 OO0 OO0 00 OO0 OO
50 00 00 00 00 OO 00 OO OO0 OO OO 00 OO0 OO 00 00 OO
60 3D 37 2D 27 2F 25 3F 35 21 2B 31 3B 33 39 23 29
70 89 83 99 93 9B 91 8B 81 95 9F 85 8F 87 8D 97 9D
80 00 00 00 00 00 00 OO OO OO0 OO0 00 00 OO0 00 00 OO
90 00 00 00 00 00 00 OO OO OO OO0 00 OO 00 00 OO0 OO
A0 CF C5 DF D5 DD D7 CD C7 D3 D9 C3 C9 Cl CB D1 DB
BO 7B 71 6B 61 69 63 79 73 67 6D 77 7D 75 7TF 65 6F
co F3 F9 E3 E9 E1 EB Fl1 FB EF E5 FF F5 FD F7 ED E7
DO 47 4D 57 5D 55 5F 45 4F 5B 51 4B 41 49 43 59 53
EO 00 00 00 00 00 00O OO OO OO0 OO0 00 OO0 0O ©O0O0 00 OO
FO 00 00 00 00 00 00 OO OO OO 00 00 00 OO0 00 OO0 OO
CUBE ROOT TABLE FOR AL’/%ERNATIVE FINITE FIELD PROCESSOR ‘
(INPUT IS e, OUTPUT IS o!V2; EXCEPT FOR aV, OUTPUT=0 => NO ROOT)

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 00 OB 00 09 00 08 00 00 02 00O 00 OO OO0 OO OO oO4
10 00 00 00 00 94 CF 00 00 22 20 E2 85 48 4C 00 0O
20 5E 00 91 00 00 00 00 OO0 00 OO OO OO BA OO0 1A OO
30 00 11 10 00 4E 00 00 3B 00 00 00 00 82 24 26 6B
40 00 00 00 00 00 00 00 OO0 8B 00 19 00 E4 OO0 A6 OO
50 00 00 00 99 00 00 90 00 39 D9 00 13 27 41 12 00
60 63 00 00 00 00 00 E9 00 OO OO OO0 C5 00 5C 00 OO
70 DA 00 00 00 00 00 OO F4 00 00 OO0 73 43 00 00 OO
80 00 00 00 17 89 00 54 40 O00 00 00 16 81 00 9A 44
920 A5 00 00 00 FD 00 00 OO OO B2 00 OO OO 2D 0O OO
A0 3D 00 00 00 86 00 00 OO OO OO 78 00 OO0 00 E6 OO
BO 00 00 00 00 58 00 2B 00 00 00 00 00 OO DC OO0 O9F
co 00 75 00 00 OO0 00 OO C8 00 00 OO C4 0O 72 OO0 OO
DO 00 00 00 FE 62 00 OO0 00 OO 64 00 00 OO 00 DB 0O
EO 00 00 32 00 00 B7 OO OO0 00 OO 00 A9 31 00 OO0 OO
-FO 00 2E A8 00 CD 88 00 OO OO0 OO 80 9B 00 1F 2C OO



CHAPTER 6 - TESTING OF ERROR-CONTROL SYSTEMS

This chapter is concerned primarily with diagnostic capability for storage device
applications. However, the techniques described are adaptable to semiconductor memory,
communications, and other applications.

6.1 MICRODIAGNOSTICS

There are several approaches for. implementing diagnostics for storage device er-
ror-correction circuits. Two approaches are discussed here. The first approach requires
the implementation of "read long” and "write long" commands in the controller.

The "read long" command is identical to the normal read command except that
check bytes are read as if they were data bytes. The "write long" command is identical
to the normal write command except that check bytes to be written are supplied, not
generated. They are supplied immediately behind the data bytes.

Use the "read long" command to read a known defect-free data record and its
check bytes. XOR into the record a simulated error condition. Write the modified data
record plus check bytes back to the storage device using the "write long" command. On
read back, using the normal read command, an ECC error should be detected and the
correction routines should generate the correct response for the error condition simu-
lated. Repeat the test for several simulated error conditions, correctable and uncorrec-

table.

It is often desirable to reserve one or more diagnostic records for the testing of
error-correction functions. It is important for any diagnostic routines testing these
functions to first verify that the diagnostic record is error free.

In some cases, hardware computes syndromes but is not involved in the correction
algorithm. The correction algorithm is totally contained in software. In this case, it is
easy to get a breakdown between hardware and software failures by testing the software
first. Supply syndromes to the software, for which proper responses have been record-
ed.

Using the second diagnostic approach, the hardware is designed so that, under
diagnostic control, data records can be written with the check bytes forced to zero. A
data record is selected that would normally cause all check bytes to be zero. Simulated
error conditions are XOR’d into this record. The record is then written to the storage
device under diagnostic control and check bytes are forced zero. On normal read back
of this record, an error should be detected and the proper responses generated.
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These techniques apply to error-control systems employing very complex codes as
well as those employing simple codes. They apply to the interleaved Reed-Solomon code
as well as the Fire code.

6.2 HOST SOFTWARE DIAGNOSTICS

Host testing of error-correction functions can be accomplished by implementing at
the host software level either of the diagnostic approaches discussed in Section 6.1.

If the controller corrects data before it is transferred to the host, the host diag-
nostic software must check that the simulated error condition is corrected in the test
record. The entire test record must be checked to verify that the error is corrected
and that correct data is not altered. Alternatively, the controller could have a diagnos-
tic status or sense command that transfers error pattern(s) and displacement(s) to the
host for checking. However, this is not as protective as checking corrected data.

6.3 VERIFYING AN ECC IMPLEMENTATION

Error-correction implementations should be carefully verified to avoid incorrect
operation and the transfer of undetected erroneous data under subtle circumstances.
This verification should be performed at the host software level using host level diag-
nostic commands.

FORCING CORRECTABLE ERROR CONDITIONS

Use the "read long" command to read a known error free data record and its
check bytes. XOR into this record a simulated error condition that is guaranteed to be
correctable. Write the data record plus check bytes back to the storage device using
the "write long" command.

Read back the record just written using the normal read command. Verify that
the controller corrected the simulated error condition. Repeat, using many random
guaranteed-correctable error conditions.

Some nonrandom error conditions should be forced as well. Select a set of error
conditions that is known to test all paths of the error-correction implementation.
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FORCING DETECTABLE ERROR CONDITIONS

Repeat the test defined under FORCING CORRECTABLE ERROR CONDITIONS,
except use simulated error conditions that exceed guaranteed correction capability but
not guaranteed detection capability. An uncorrectable error should be detected for each
simulated error condition.

FORCING ERRORS THAT EXCEED DETECTION CAPABILITY

Repeat the test defined under FORCING CORRECTABLE ERROR CONDITIONS,
except use simulated error conditions that far exceed both the guaranteed correction
and guaranteed detection capabilities. Count the number of correctable and uncorrec-
table errors reported by the error-correction implementation. The ratio of counts
should be approximately equal to the miscorrection probability of the code. Repeat for
error conditions known to have a higher miscorrection probability.

6.4 ERROR LOGGING

For implementations where the data is actually corrected by the controller, it may
be desirable to include an error-logging capability within the controller. A minimum er-
ror-logging capability would count the errors recovered by reread and the errors recov-
ered by error correction. Logging requires the controller to have a method of signaling
the host when the counters overflow and a command for offloading counts to the host.

A more sophisticated error log would also store information useful for:

- Reassigning areas of media for repeated errors.
- Retiring media when the number of reassignments exceeds a threshold.

- Isolation of devices writing marginal media. This may require that the physi-
cal address of the writing device be part of each record written.

- Hardware failure isolation.

It may be desirable to reserve space for error logging on each storage device.
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6.5 SELF-CHECKING
HARDWARE SELF-CHECKING

Hardware self-checking can limit the amount of undetected erroneous data trans-
ferred when error-correction circuits fail.

Self-checking should be added to the design if the probability of error-correction
circuit failure contributes significantly to the probability of transferring undetected
erroneous data. One self-checking method duplicates the error-correction circuits and,
on read, verifies that the error latches for both circuits agree. No circuits from the
two sets of error-correction hardware share the same IC package. This concept can be
extended by having separate sources and/or paths for clocks, power, and ground.

Another self-checking method is called parity predict. It is used for the
self-checking of shift registers that are part of an error-correction implementation. On
each clock, new parity for each shift register is predicted. The actual parity of each
shift register is continuously monitored and at each clock, is compared to the predicted
parity. If a difference is found, a hardware check flag is set.

The diagrams below define when parity is predicted to change for four shift-regis-
ter configurations.

DIVIDE BY g(x), ODD NUMBER OF FEEDBACKS

DATA

The parity of the shift register will flip each time the data bitis ’1°.
DIVIDE BY g(x), EVEN NUMBER OF FEEDBACKS

Y

|
= -0
o ]

DATA

The parity of the shift register will flip if a ’1’ is shifted out of the shift regis-
ter, or (exclusive) if the data bitis '1°.
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MULTIPLY BY X AND DIVIDE BY g(x), ODD # OF FEEDBACKS

DATA

The parity of the shift register will flip if the data bit is "1°.

MULTIPLY BY X™* AND DIVIDE BY g(x), EVEN # OF FEEDBACKS

DATA

The parity of the shift register will flip if a ’1’ is shifted out of the shift regis-
ter.

An m-bit shift register circuit using parity predict for self-checking is shown on
the following page. An odd number of feedbacks and premultiplication by x™ is as-
sumed. It is also assumed that the feedbacks are disabled during write check-bit time
but not during read check-bit time. While writing data bits, reading data bits, and
reading check bits, parity of the shift register is predicted to change for each data bit
that is ’1’. While writing check bits, parity is predicted to change for each ’1’ that is
shifted out of the shift register.

WRITE |
CHECK_BIT_TIME , {>c —~
DATA |

,uf+ ) m-BIT SHIFT REGISTER

. . e o o . . .

m=-BIT PARITY TREE

1 1
1 0 PARITY

K K PREDICT
MUX ERROR
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Another technique that aids the detection of error-correction hardware failures is
to design the circuits so that nonzero check bytes result when the data is all zeros.

SELF-CHECKING WITH MICROCODE AND/OR SOFTWARE

Periodic microcode and/or software checking is another approach that can be used
to limit the amount of undetected erroneous data transferred in case of an error-cor-
rection circuit failure. Diagnostic microcode or software could be run on a subsystem
power-up and during idle times. These routines would force ECC errors and check for
proper detection and correction. In some cases, this approach is the only form of
self-checking incorporated in an implementation, even though it is not as protective as
self-checking hardware. In other cases, this approach is used to supplement self-check-
ing hardware.
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SUPPLEMENTARY PROBLEMS

1.
2.

10.

11.

Write the syndrome equations for a three-error-correcting Reed-Solomon code.

Write out the error-locator polynomiai for errors gt locations 0, 3, and 5 for a
Reed-Solomon code operating over GF(2%) defined by x* + x + 1.

Show a Chien search circuit to solve the error-locator polynomial from problem 2.

Once error locations for a Reed-Solomon code are known, the syndrome equations
become a system of simultaneous linear equations with the error values as un-
knowns. The error-location vectors are coefficients of the unknown error values.
Solve this set of simultaneous linear equations for the two error case.

Write out the encode polynomial for a two-error-correcting Reed-Solomon code
using GF(24) generated by x* + x + 1.

Given a small field generated by the rule ﬁ3 = B + 1 and a large field generated by
a“ = a + B, develop the rule for accomplishing the square of any element in the
large field by performing computation in the small field.

Show a complete decoder (on-the-fly, spaced data blocks) for a buist length 2
correcting, shortened cyclic code, using the polynomial (x4 + DeE* + x + 1).
Record length is 20 bits, including check bits. Data and check bits are to be
buffered in a 20-bit FIFO (first in first out) circuit. -

Find a polynomial for a code of length 7 that has single-, double-, and triple-bit
error detection.

For detection of random bit errors on a 32-bit memory word, would it be better to
place parity on each byte or use a degree four error-detection polynomial across
the entire 32-bit word?

A device using a 2048 bit record, including 16 check bits, has a random bit error
rate of 1E-4. The 16 check bits are defined by the polynomial below. Can the
device meet a 1E-15 specification for Pued (probability of undetected erroneous
data)?
x16 4+ x12 4 x5 + 1

=@+ Dex!d + x14 4 x13 4+ x12 4 x4 4 3 + x2 + x4+ 1)

Compute the probability for three or more error bursts in a block of 256 bytes
when the raw burst error rate is 1E-7.
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12.

13.

14.

15.

16.

17.
18.

DATA
—'@<— 32-BIT SHIFT REGISTER [+

Compute the block error probability for a channel using a detection only code
when the raw burst error rate is 1E-10.

Design a circuit to s ive the equatnon y2 +y + C = 0 for Y when C is given. The
field is generated by x° + x

There is a Fire code in the industry defined by
x24 ¢ x17 4 x14 4+ x10 4 x3 + 1

a) For a correction span of four, determine the detection span using the ine-
qualities for a Fire code.

b) Determine the miscorrection probability for correction span four and record
length 259 bytes, (data plus check bytes.)

For an error-detection code using the shift register below for encoding and decod-
ing of 2048 byte records:

a) Determine the misdetection probability for all possible error bursts.
b) Determine the misdetection probability for all possible double-bit errors.

Which of the pairs of numbers below are relatively prime?

, 45
9 , 31
7, 11
14 , 127

Write the integer 18 as residues of moduli 5 and 7.

Listed below are residues for several integers modulo 5 and 9. Compute the A;j
and mj of the Chinese Remainder Method. Then use the Chinese Remainder
Method to determine the integers.

a) aMODS5 =4, aMOD9 =6, a =?
b) aMODS5 =3, aMOD9 =35, a =1?
¢) aMODS5 =0, aMOD9 =4, a =1?

What is the total number of unique integers that can be represented by residues
modulo 5 and 9?
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19.
20.

21.

22,

23.
24.
25.
26.
27.

28.

29.
30.
31.
32.

Define a fast division algorithm for dividing by 255 on an 8-bit processor
~ does not have a divide instruction. The dividend must be less than 65,536.

that

What is the total number of uniqué integers that can be represented by residues

modulo 6 and 8?
Which of the finite field functions listed below are linear?

Log
Cube

Sixth Power

Modulo

Square
Square Root
Eight Root

Antilog
Cube Root
Inverse

Determine the period of the following polynomials:

a) x4 + 1

b)x3+x2+x+l

Corrpute the reciprocal polynomial of x3 4+ x + 1.

How many primitive polynomials are of degree eight?

Compute the residue of x’MODx3 + x + 1.

For a small-systems magnetic disk, list several factors influencing data accuracy.

Is it possible for a polynomial with an odd number of terms to have a factor of

the form (x¢ + 1)? Why?

Describe the difference between error locations and error-location vectors.

are roots of an error-locator polynomial?

What method is used to solve error-locator polynomials of a high degree?
What is the difference between errata, errors, and erasures?

If g(x) divides (x255 + 1), what can be said about the period of g(x)?

Which

Given a field generated by x4 4+ x + 1, show circuits to multiply an arbitrary field
element by the following fixed field elements:

"
b)
c)

ao
al
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33.

34,

35.

36.
37.

38.

39.

For a symbol-error-correcting code (symbol size eight bits) used with a 128 symbol
(byte) record, what must the symbol-correcting capability be to have a block error
rate less than 1E-8 for a raw symbol error rate of 1E-4? The block error rate is
the ratio of block errors to blocks transferred.

Show a circuit to implement the equation below in GF(28).
R2 = Rl + o0

In a Reed-Solomon code implementation, it may be necessary to test an equality
similar to the one below for true:

(Sp? = (Sp-(S-1)

Suggest an equivalent test that would not require finite field multiplication or
division.

Write log and antilog tables for the field generated by x3 4+ x+ 1.

Consider ‘a Reed-Solomon code implementation where data is read from a storage
device into a buffer. The data is corrected in the buffer and then transferred to
a host. Define a way of loading and unloading the buffer such that the finite
field processor does not have to take logs of error-location vectors before making
corrections to the buffer.

Define an algorithm for computing the square root in a field of 15 elements using
log and antilog tables.

Remember that miscorrection probability is the ratio of valid syndromes to all
possible syndromes. Generate a_miscorrection formula for a two-symbol-correcting
Reed-Solomon code using GF(28). The symbol size is eight bits. The record
length is 255 bytes, including check bytes.

List the first ten entries in an antilog table for a large field. The small field is
gsnerated by the rule B3 =8 + 1 and the large field is generated by the rule
ac =a + B.
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APPENDIX A. PRIME FACTORS OF 2n-1

Factors of 2N-1

13

19

31

13

113

31

73

41

17 241

127

151 331

n

3 7

4 3 5

5 31

6 3 3 7

7 127

8 3 5 17

9 7 73

10 3 11 31

11 23 89

12 3 3 5 7
13 8191

14 3 43 127

15 7 31 151

16 3 5 17 257
17 131071

18 3 3 3 7
19 524287
20 3 5 5 11
21 7 7 127 337
22 3 23 89 683
23 47 178481
24 3 3 5 7
25 31 601 1801
26 3 2731 8191
27 7 73 262657
28 3 5 29 43
29 233 1103 2089
30 3 3 7 11
31 2147483647

32 3 5 17 257 65537
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ABSTRACT

Let GF(q) be a finite field, where q=p™ and p is prime. Multiplications are per-
formed often using log and antilog tables of p™-1 non-zero field elements. It is shown
in this paper that for g=p?1 and p+1 a prime, that the log and the antilog of a field
element can be found with two substantially smaller tables of p"+1 and pP-1 elements,
respectively. The method is based on a use of the Chinese Remainder theorem. - This
technique results in a significant reduction in the memory requirements of the problem.
It is shown more generally that for:

a1 =@ @2 @* = my-mp- - -my,

where, mi=(pi)ri for 1 <i <k, tables of mj elements, mp elements, ... , and my elements
also can be used to find logs and antilogs over GF(q). In the later method, further
reductions in the memory requirements are achieved, however, at the expense of a
greater number of operations.
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1. INTRODUCTION

In order to efficiently encode and decode BCH and RS codes over a finite field
GF(q), each symbol of GF(q) is representable as a power of a selected primitive element
in GF(q), i.e., a=11 for a, 1 € GF(q) where 7 is primitive.

To multiply two field elements a,8 € GF(q), where a=rl and B=rj, one only needs
to add i and j modulo (g-1) to obtain the resulting exponent k. That is,

aef = 1ierd = o (1¥3) mod (a-1) _ k.

In the actual implementation of this multiplication process, a log table can be used to
find the exponents. If the field elements are represented in the binary representation,
binary addressing is used to locate a logarithm in the table. After the addition of the
exponents modulo (g-1), an antilog table is used to find the binary representation of 7K,
The exponent k serves as the address of the antilog table. If q is large for many
applications, such log and antilog tables may be prohibitively large.

In the next section it is shown that for a q of form p2! where p2+1 is a prime
that substantially smaller tables of sizes p?+1 and p™-1 can be used to find the log and
antilog of a field element. Since g-1 = p28-1 = (pR+1)+(p"-1) and (p"+1,p"-1) = 1, the
Chinese Remainder theorem can be used to decompose the tables of p2“-1 elements into
smaller ones of p%+1 elements and p™-1 elements respectively. The results obtained
from the tables of pl+1 elements and p-1 elements can be recombined to yield the
desired log table of p2“-1 elements. A similar reduction can be made for the antilog
table. The memory requirements of this new method for finding the log and antilog are
reduced from 2(p2P-1) to 2[p™+1+pB-1] = 4p" memory elements.

In Section III a more involved method is developed that yields the logarithm with
a minimum memory requirement but with a greater number of operations. Suppose:

q-l = (pl)rl.(pz)rz. . o(pk)rk = mlumzo . .mk’

where pj is prime and mj=(pp" for 1 <i <k, (mj,mj)=1 for i # j. Then the Chinese
Remainder theorem can be used to decompose tables of p2“—1 elements into k smaller
ones of mj elements, m) elements, ... and my elements, respectively. The log and
antilog of a field element can be found by utilizing these k tables.
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I. ALOGAND ANTILOG ALGORITHM OVER GF (p2")

Let g be a primitive element in GF(p®) and x € GF(pD). Also let m be the least
integer such that x=gm,

Definition I. m is called the logarithm of x to base g, i.e., m=logpx.

Theorem 1. Let B be a primitive element in GF(p®) such that the polynomial
p(x)=x2+x+8 is irreducible in this field. Also let @ € GF(p2D), where GF(p2D) is an
extension field of GF(p™). If « is a root of p(x), i.e., p(a)=0, and p?+1 a prime, then «
is primitive in GF(p2D).

Proof. If a is a root of p(x), its conjugate a is also a root of p(x), where
a@=aP". Thus:

(x+a) * (x+a) = x2+(a+a)x+aa

= x2+x+p
It follows that:
et = 1, a*a = B (1)
and:
aP+1=p @

Now (p20-1)=(pR+1)(pP-1) and p2+1 is a prime by hypothesis. Hence, any number r
such that r|p2D-1 implies that r|p?-1. Then, from (2):

o (P?P-1)/r _ PN+, (PP-1)/x
n_
_ g1/ (3)
. e . . P2-1)/r_ .
Since g is primitive over GF(p), pP'-1 is least integer such that 8 =1. Hence:

ﬁ(pn—l)/r # 1 unless r=1.
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Thus, by (2) a(2pn -D/r # 1 unless r=1. Therefore, the order of a is p2“-1 and «a
is primitive in GF(p2M).
Q.E.D.

The above theorem guarantees the root a to be primitive in the extension field
only when p2+1 is a prime. To show that the theorem is not generally true for p2+1
not a prime, consider the following counter example: Let GF(112) be the extension field
of GF(11). It is verified readily that 8=1/2 ¢ GF(11) and is a primitive element in this
field. Also:

p(x)=x2-x+1/2
is irreducible in GF(11). Suppose a is a solution to p(x) and a € GF(112). Then
a2-a+1/2=(_). From this equation it is seen that o4=-1/4=1/7 ¢ GF(11). Since

o4 € GF(11), @*10=1. Thus, «#0=1 and « is not a primitive element in GF(112).

Definition 2. For a € GF(pzn) and a+ab € GF(pzn), where a,b € GF(pD), the norm
of a+ab is:

| Jatab|| = (a+ab) - (a+ab)

Using the results of Theorem 1 and Definition 1 and Definition 2, the following
theorem is demonstrated.

Theorem 2. Let B be a primitive element in GF(p™) such that the quadratic poly-
nomial x2+x+g is irreducible over GF(pR). Suppose that pP+1 is prime. Next let a be
the root of this polynomial in the extension field GF(p?®) = {a+abja,b € GF(pY)} of
GF(ph). Suppose aM= a+ab e GF(p2l). The following holds:

logg(a2+ab-+b2p) = m mod (p-1).

(The proof is given in Section V.)
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By Theorem 2 one can construct a logg table of p? - 1 elements by storing the
value mj = m mod(p®-1), where: ‘

1 <mp <p"1,

at location a2+ab+b2/3 such that «@= a+ab. Then with a and b known, one can find mj
using the logg table. A logg table is given in Section VI for p-1=15. Similarly, the
antilogg table is constructed by storing the binary representation of a2+ab +b2,6 at loca-
tion my such that @M= a+ab and:

antilogg(mj) = a2+ab+b2p = x (4)
An antilogg table is also given in Section VI for pt-1=15. Next, the constructions of

tables of p+ 1 elements is shown.

Theorem 3. Let 'r=apn'1 € GF(p21), where o is primitive in GF(p2D). Suppose
aM= a+ab e GF(p2D) for some a,b ¢ GF(pD). Then:

a+ab
logy = m mod (pN+1)
a+ab

(The proof is given in Section V.)

Using the results of Theorem 3, let:

(a/b)+a  a+ab
f(a/b) = I = =
(a/b)+a a+ab
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To construct the log, table, notice that when a=0:
f(a/b) = 0 = apn'1=r

and m=1. For mp = mod (p"+1), one has mp=1 when a=0. When b=0:

a+0

i
o
.

f (a/b) =
a+0

Thus, m=0 and m»=0. The remaining part of the log, table can then be constructed by

storing the value mp=m mod(pP+1) at location a/b for a= a+ab, where 2<my<p®. A log,
table for p?+1=17 is given in Section VII. Also, given there is an antilog, table for

p+1=17. It is constructed by storing the binary representation of (a/b) e {81,682, .- ﬂls}
at the corresponding location i=mj for 2<i<16. Thus:

Antilogy(my) = a/b = y. (5)

From (4) and (5) the following two simultaneous equations need to be solved for a and
b in order to reconstruct a™@= a+ab:

a2+ab+b2p = x
(6)
a/b =y
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Relations (6) yield the following solution:

x 1/2
b = [ 2 ] (7)
ye+y+B

a=b-y (8)

Forb e GF(pD) it is verified readily that:

. loggz
b = antilogg > (9)

where:

X

z =
y2+y+B

Now, the logarithm of aM=a+ab e GF(p2M), where a,b ¢ GF(pD) and @ ¢ GF(p2D) is
primitive, can be found in terms of m| and my by using the tables of p"-1 elements and
p™+1 elements, respectively. Then the Chinese Remainder theorem warrants that:

m = my +nq+(a)"1+ my-np- ()1 (10)

where:

p20-1 = (P+1)- (p"-1)
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and (111)'l and (nz)’1 are the smallest numbers such that:
x.'qo(nl)'l =1 mod np
0+ ()"l =1 mod ng
To recapitulate, the following algorithms for the log and antilog are given:
(a) THE LOG ALGORITHM
Given a™= a+ab find m as follows:
1. Compute: x = a2+ab+b2.6
y =a/b

2. Use the logg table to find mj= logg(x) and the logs table to find
mp= logy(y) for a$0, b$0.
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3. By equation (10):
m = mp -np+ @) +my-np@p)L.
(b): THE ANTILOG ALGORITHM
Given m, recover a= a+ab as follows:
1. Compute: mj= m mod(p?-1) and my= m mod(p?+1).
2. Use the antilog tables to find:
antilog,g(ml) =X = a2+ab+b2ﬁ, and
antilog,;(mp) =y = a/b, formp #0,1.

3. Use the equation (9):

loggz
b = antilogg
2

where:

z = X

y2+y+B

Then:

a=b-y

To illustrate the above procedures, the following examples are given over GF(28).
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Example 1:  Given al27=(0,1,1,0)+a(1,1,1,0) € GF(28). Then, a=(0,1,1,0) and b=(1,1,1,0).
By the LOG algorithm:

x = a+ab+b2g

(1,1,1,0)

Il

Yy a/b = (1,1,1,1)

Now use Tables VI.1 and VI3 to find mj; and mj, respectively. The results
are m{=7 and mp=8. For this example, nj=17, n3=15, (nl)’1=8, (n2)'1=8,
nj+(@p)! =136 and ny+ (np)"1=120. By equation (10):

m = (136+mj +120-my) mod (28-1)

=127

Example2.  Given m=127, find a127= a+ab ¢ GF(28). Using the ANTILOG algorithm:

Il
<

m mod (p?-1)

mj

]
o0

m) m mod (p2+1)

Then use Tables V1.2 and VI.4 to find x and y, respectively. The results are:

x = (11,00andy = (1,1,1,1).
Thus:
X
zZ = = (0,0,1,1)
y2+y+B
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By equation (9):

. logg(z)
b = antilogg - [ B — ] = antilogg
and:
b = (1,1,1,0)
Thus:
a = b-y=(,1,10)
Therefore:
o127 = (0,1,1,0) + a(1,1,1,0).
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III. A GENERAL ALGORITHM FOR FINDING LOG AND ANTILOG OVER GF(q)

Consider a Galois field GF(q) and suppose that:
q—l = (pl) rl.(p2r2. . .(pk)rk=nl 0n20 . onk

where pj is prime and ni=(pi)ri for 1<i<k. Let @ € GF(qQ) be primitive. Then any field
element of GF(q) can be represented by al for some i, where 1<isg-1. By the Chinese
Remainder theorem an exponent i is mapped onto (iy mod ny, i mod ny, ..., iy mod ng).
Then a primitive element « is expressed in the notation of the Chinese Remainder

theorem as follows:
al = a(l med ny, 1 mod nz,+++,1 mod ny)

@(1/0,0,.02,0) /(0,1,0...,0)  (0,0,...,0,1) (11)

Here:
2(0/0s+44,0,1,0,...,0) _ 5 (12)

where the integer 1 in the exponent is in the location j. Element 7j is an pj-th root
of unity. It follows from (11) that:

a® = (1) (r2)", ..., (TR)T (13)
for all integers m where 7; is a primitive nj-th root of unity.
By (12) and the reconstruction of the Chinese Remainder theorem:
amj-(mj)'l (14)

T4 =

where:

mj+(mj)~! = 1 mod nj
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and:
ny - mj=q-1 15)

<o (m)-1
Now, suppose one computes (™)™ (mj) for any j such that 1<j<k. Observe by (15)
that one has:

m-mj-(mj)‘l = (Cj+a-nj)-mj-(mj)'1 mod g-1
= cj'mj'(mj)'l mod g-1 . (16)

where Cj = m mod pj for 1<j<k and m=C;j+a®n; for some integer a. Then, by (14) it

follows that:

(@ B3 * (@) 71 [c}mj'mj)‘l]cn' mod g-1

(17)

(r4) €
Therefore, by the use of equation (17) one can compute (rj)cj from o™ for 1<j<k.

Note that k small tables, each containing the value Cj, for 1<i<pj, at location
(5 ‘ for 1<j<k, can be used to find the k exponments C;,Cj,...,C, respectively. Once
the Cj are found, the Chinese Remainder theorem is used to compute the logarithm of

oM as follows:

x_

m = \ C"m'o(m°)"1 mod g-1
/ i°m3 i q
i=1

(18)
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By (13), (14), (16), and (17), the antilog of m is computed as:

where Cj
g-1 = 255

Example 3:

LOGARITHM

a® = (11)%1e(15)%K, ..., (1) Gk (19)

m mod nj for 1<icgk. Tables of (Tj)ci,for 1<j<3 for
3x5x17 = nj*ny+*n3 are given in Section VII.

To demonstrate the general algorithm above, the logar-
ithm of @20 is computed for a,a20 ¢ GF(28) where ¢ sat-
isfies x8+x%+x3+x2+1. With an exponent of 20 given, the
antilog «20 is recovered. In this case, n3=3, ny=5,
n3=17, mp-(mp) 1= 85, my-(my) 1= 51, and m3-(m3) 1=120.

Using the tables in Section VII, one finds Cy, Cp, and C3 from the following

computations:

(a20)85 = (a85)20 = (11)20 mod 3 _ (11)2
(020)51 = (051)20 = (72)20 mod 5 _ (12)0

(a20)120 = (a120)20 = (13)20 mod 17 _— (13)3

Thus, C; =2, C2=0, and C3=3. The logarithm m is obtained by:

m = (2:85+0+51+3-120) mod 255

= 20.
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ANTILOG
From m=20, one computes:

Ci1 =20 mod 3 =2

[l
o

Cy = 20 mod 5

C3 = 20 mod 17

[l
w

Using the tables in Section VII gives:
(11)2 = o170
(12)0 = a°
(r3)3 = 105
Then the antilog of m=20 is recovered as:
(11)2+(72)0¢ (13)3 = @170.40.4105

«(170+0+105) mod 255

]
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IV.  CONCLUSION

To find the log and antilog of an element in a finite field GF(qg), it q=p2n for
some prime p, the technique shown in Section II can be used to reduce the table mem-
ory requircment from 2(p2“-l) elements to 4p" elements. A further memory reduction
can be achieved, i.e. from (q-1) elements to:

nj

o /
I l\ lr:
'—l

1

“elements, by using the general method shown in Section III, however, at the expense of
a greater number of operations. . A comparison of the number of operations needed in
these methods is given in Table IV.1. It is evident from Table IV.1 that the number of
multiplications required in the general case can be prohibitively large in some situations.
Thus, the technique shown in Section II has a better potential than the general method
for many practical applications.
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TableIV.1

A Complexity Comparison of the
Alternative Approaches for Computing

Logs and Antilogs over GF(q).
when g-1=p2n-1 General Method for
and p™+1 is prime | g-1=nj ny <°° ng
No. of LOG ANTILOG LOG ANTILOG
k
Multiplication 7 5 k+\: m - (mj)"l"r k-1
j-1
Additions 4 2 k-1 o]
Table Look-Ups 2 4 k k
Modulus
Operations 0 2 1 k

* mj-(mj)'1 = 1 mod n;
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V. PROOF OF THEOREMS

nProof of Theorem 2. Since x2+x+ﬁ is irreducible over GF(p™), it has roots a and
a=aP in the extension field GF(p2M). By theorem 1, a« is primitive in GF(p2R). By
Definition 2 and relations (1) and (2), one has the following:

I

| |a+ab] | (a+ab) (a+ab)

(a+ab) (a+ab)

a2+ab+b2p (V.1)

Il

If c+ad is any other element in GF(pzn) and c,d € GF(p), then:

Il

(atab) (cFad) = (a+ab)P" (c+ad)P”

(a+ab) (ct+ad) (V.2)

Il

Thus, by (V.2) and the definition of the norm, one has:

|| (a+ab) (ct+ad) | | (a+ab) (c+ad) (a+ab) (c+ad)

|latab|| 2 ||c+ad] | (V.3)

Observe next by (2) that:
lel| = a2a = B
so that the theorem is true for m=1. For purposes of induction, assume that:

[laK|| = gK (V.4)
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for all k such that 1<k<m. Then by (V.3), fork=m+1:

[ 1™ ] = []e®]|2]|e|] = g™*1.

Hence, the induction is complete and (V.4) is true for all k.

Represent o™ by a+ab for some a,b € GF(p™). Then, by (V.1) and (V.4):

[la®]| = g™

The theorem follows by the definition of the logarithm and the fact that g has order

p-1.

Q.E.D.

n_
Proof of Theorem 3. Since « is primitive in GF(pzn) and 7=oP 1 , the order of 7

is p+1. By the definition of the norm, one has:

n

[la]| = a2 = 102
For purposes of induction, assume that:
[la¥|] = r*a®*
for 1<k<m. Then, by (V.3) for m=m+1: ‘
[1a™2 ] = 1™ 2] ]e] |

(TMa2M) (1a2)

- Tm+1a2 (m+1)

Hence, the induction is complete and (V.7) is true for all k.
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Representing ™ by a+ab for some a,b ¢ GF(pD), it follows from (V.6) that:
[ |a+ab]| = t®(a+ab)? (v.8)

Multiplying both sides of (V.8) by (a+ab)? yields:

| |a+ab|| (a+ab)2 = tM(at+ab)2 (a+ab)2

|

0| |a+ab]| |2

Therefore, from the definition of the norm:

m | |atab]| (a+ab)?
T =
| |atab]| |2
_ atab
" atab (V.9)

The theorem follows by the definition of the logarithm and the fact that the order of
ris p+1. '
Q.E.D.
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VI. Let p(x)=x4+x3+1 be irreducible over GF(2) and 8 € GF(24) is a solution of p(x).
Then:

ﬁl

BZ

ﬁ3

gt = p3+1
g5 = p3+p+1

e = B3+p2+p+1
B7 = B2+p+1

B8 = p+p24p
B9 = g1
pLO = p3+p
ﬁll = ﬁ3+ﬁ2+1
pgl2 = p+1

p13 = p2+p
ﬂ14 = p3+52
p15 =1
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Table VI.1
Logﬁ

Location Content
1 3
2
14
1
10
13
8
15
4
9
11
12
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Table VI.2
Mﬁ

Location Content

00 000
01 010
10 001
11 000
00 100
01 110
10 111
11 111
00 011
01 101
10 010
11 101
00 110
01 011
10 001
11 100
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For the r table, note the following:

i) If a=0:
= ng = apn-l =7
Thus, m=1 and mp=1.
ii) If b=0:
= —fL =1

Thus, m=0 and mp=0.
iii) If 40, b40, for a,b € GF(24)
a,b e (p1,p82,.--,815)

and a/b € (p1,82,...,815)
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Table VI.3

—_————l e O

Antilog

Location Coptent
1 14
12

10

16

11

15

13

H O P O O +H O K OFP O KL O
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Location Content

Table VI.4
Antilog

H M OPFPOPFPOORUMPEPEPOMPNWOUGRO
O P OMH OORFRKFKHMKHOOI ROHBK
© OO H KM HKHKOUKIHMORHBKMELIPR O

- 401 -

0

© O O OK KR PFEPHEKFEPEPLOOHO



VII. Tables for mp=3, mp=5, and m3=17, where

1
85

a8+ad+a3+a2+1=0.

(fl)ml my
(000000O0O0 1) 0
(0 11010011) 1

@l70 (11100 101) 2
(r3)™3 | m3
(000000O0O0 1) 0
(L0010011) 1
(0001011 0) 2
(00001101) 3
(01110110) 4
(1110000 1) 5
(L0100010) 6
(L00O0O1001) 7
(00110010) 8
(L1010010) 9
(01001011) [ 10
(11101110) | 11
(11000110) | 12
(0 0110000) |13
(10100100) | 14
(00100110) | 15
(L1011010) | 16
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2102
2153

2204

m=255=mj-mj-m3,

when

(r2)™2 | mp
(0 00 oco1) | o
(0 00 101) | 1
(001 o010 | 2
(010 oco1) | 3
(111 0o0o0) | 4



BCH
BER
CLK
CNT
CRC
DBER
DEC
DED
ECC
EDAC
FBSR
FEC
FWD
GF
LFSR
LSC
LSR
LRC
RS
REV
SR
SEC
TED
VRC

ABBREVIATIONS

Bose-Chaudhuri-Hocquenghem (code)
Bit-Error Rate

Clock

Count

Cyclic Redundancy Check (code)
Decoded Bit-Error Rate
Double-Error Correction
Double-Error Detection

Error Correcting Code

Error Detection And Correction
Féedback Shift Register
Forward Error Correction
Forward

Galois Field

Linear Feedback Shift Register
Linear Sequential Circuit
Linear Shift Register
Longitudinal Redﬁndancy check
Reed-Solomon (code)

Reverse

Shift Register

Single-Error Correction
Triple-Error Detection

Vertical Redundancy Check
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GLOSSARY

ALARM
Any condition detected by a correction algorithm that prevents correction, such as
error-correction capability exceeded. In some cases, alarms will cause the error-control

system to try another approach, for example using a different set of pointers.

BINARY SYMMETRIC CHANNEL

N

A channel in which there is equal probability for an information bit being 1 or 0.
BLOCK CODE

A block code is a code in which the check bits cover only the immediately preceding
block of information bits.

BURST ERROR RATE

The number of burst-error occurrences divided by total bits transferred.

BURST LENGTH

The number of bits between and including the first and last bits in error; not all of the
bits in between are necessarily in error.

CATASTROPHIC ERROR PROBABILITY (P¢)

The probability that a given defect event causes an error burst which exceeds the
correction capability of a code.

CHARACTERISTIC

Sce Ground Field.



CODE POLYNOMIAL

See Codeword.

CODL RATE

See Rate.

CODE VECTOR

See Codeword.
CODEWORD

A set of data symbols (i.e. information symbols or message symbols) together with its
associated redundancy symbols; also called a code vector or a code polynomial.

CONCATENATION
A method of combining an inner code and an outer code, to form a larger code. The
inner code is decoded first. An example would be a convolutional inner code and a

Reed-Solomon outer code.

CONVOLUTIONAL CODE

A code in which the check bits check information bits of prior blocks as well as the
immediately preceding block.

CORRECTABLE ERROR

One that can be corrected without rereading.

CORRECTED ERROR RATE

Error rate after correction.
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CORRECTION SPAN

The maximum length of an error burst which is guaranteed to be corrected by a burst-
correcting code.

CYCLIC CODE

A linear code with the property that each cyclic (end-around) shift of each codeword is
also a codeword.

CYCLIC REDUNDANCY CHECK (CRC)

An error-detection method in which check bits are generated by taking the remainder
after dividing the data bits by a cyclic code polynomial.

DEFECT
A permanent fault on the media which causes an error burst.

DEFECT EVENT

A single occurrence of a defect regardless of the number of bits in error caused by the
defect.

DEFECT EVENT RATE (Pe)
The ratio of total defect events to total bits, having the units of defect events per bit.
DETECTION SPAN

For a single-burst detection code, the single-burst detection span is the maximum length
of an error burst which is guaranteed to be detected.

For a single-burst correction code, the single-burst detection span is the maximum

length of an error burst which is guaranteed to be detected without possibility of
miscorrection.
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If a correction code has a double-burst detection span, then each of two bursts is
guaranteed to be detected without possibility of miscorrection, provided neither burst
exceeds the double-burst detection span.

DISCRETE MEMORYLESS CHANNEL

A channel for which noise affects each transmitted symbol independently, for example,
the binary symmetric channel (BSC).

DISTANCE

See Hamming Distance.

ELEMENTARY SYMMETRIC FUNCTIONS

Elementary symmetric functions are the coefficients of the error locator polynomial.
ERASURE

An errata for which location information is known. An erasure has a known location, .
but an unknown value.

ERASURE CORRECTION

The process of correcting errata when erasure pointers are available. A Reed-Solomon
code can correct more errata when erasure pointers are available. It is not necessary
for erasure pointers to be available for all errata when erasure correction is employed.
ERASURE LOCATOR POLYNOMIAL

A polynomial whose roots provide erasure-location information.

ERASURE POINTER

Information giving the location of an erasure. Internal erasure pointers might be de-
rived from adjacent interleave error locations.  External erasure pointers might be
derived from run-length violations, amplitude sensing, timing sensing, etc.
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ERRATA LOCATOR POLYNOMIAL

A polynomial whose roots provide errata-location information.

ERRATUM

Either an error or an erasure.

ERROR

An errata for which location information is not known. In general, an error represents
two unknowns, error location and value. In the binary case, the only unknown is the
location.

ERROR BURST

A clustered group of bits in error.

ERROR LOCATION OR DISPLACEMENT

The distance by some measure (e.g., bits or bytes) from a reference point (e.g., beginn-
ing or end of sector or interleave) to the burst. For Reed-Solomon codes, the error
location is the log of the error-location vector and is the symbol displacement of the
error from the end of the codeword.

ERROR LOCATION VECTOR

Vector form of error location (antilog of error location).

ERROR LOCATOR POLYNOMIAL

A polynomial whose roots provide error-location information.

ERROR VALUE

The error value is the bit pattern which must be exclusive-or-ed (XOR-ed) against the
data at the burst location in order to correct the error.
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EXPONENT

See Period.

EXTENSION FIELD

See Ground Field.

FIELD

Refer to Section 2.8 for the definition of a field.
FINITE FIELD

A field with a finite number of elements; also called a Galois field and denoted as GF(n)
where n is the number of elements in the field.

FORWARD-ACTING CODE

An error-control code that contains sufficient redundancy for correcting one or more
symbol errors at the receiver.

FORWARD POLYNOMIAL

A polynomial is called the forward polynomial when it is necessary to distinguish it
from its reciprocal polynomial.

GROUND FIELD
A finite field with q elements, GF(q), exists if, and only if, q is a power of a prime.
Let q=p" where p is a prime and n is an integer, then GF(p) is referred to as the

ground field and GF(p™) as the extension field of GF(p).

The prime P is called the characteristic of the field.



GROUP CODE
See Linear Code.

HAMMING DISTANCE

The Hamming distance between two vectors is the number of corresponding symbol
positions in which the two vectors differ.

HAMMING WEIGHT

The Hamming weight of a vector is the number of nonzero symbols in the vector.

HARD ERROR

An error condition that persists on re-read; a hard error is assumed to be caused by a
defect on the media.

IRREDUCIBLE

A polynomial of degree n is said to be irreducible if it is not divisible by any polyno-
mial of degree greater than zero but less than n.

ISOMORPHIC

If two fields are isomorphic they have the same structure. That is, one can be obtained
from the other by some appropriate one-to-one mapping of elements and operations.

LINEAR (GROUP) CODE

A code wherein the EXCLUSIVE-OR sum of every pair of codewords is also a codeword.
LINEAR FUNCTION
A function is said to be linear if the properties below hold:

a. Linearity: f(a-x) = a-f(x)

b. Superposition: f(x+y) = f(x)+f(y)
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LINEARLY DEPENDENT

A set of n vectors is linearly dependent if, and only if, there exists a set of n scalars
Cj, not all zero, such that:
Ci*vp + Co*vp + e+« + Cnxvy =0

i

LINEARLY INDEPENDENT

A set of vectors is linearly independent if they are not linearly dependent. See Linear-
ly Dependent.

LONGITUDINAL REDUNDANCY CHECK (LRC)

A check byte or check word at the end of a block of data bytes or words, selected to
make the parity of each column of bits odd or even.

MAIJORITY LOGIC

A majority logic gate has an output of one if, and only if, more than half its inputs are
ones.

MAJORITY LOGIC DECODABLE CODE

A code that can be decoded with majority logic gates. See Majority Logic.
MINIMUM DISTANCE OF A CODE

The minimum Hamming distance between all possible pairs of codewords. The minimum
distance of a linear code is equal to its minimum weight.

MINIMUM FUNCTION

See Minimum Polynomial.
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MINIMUM POLYNOMIAL OF of

The monic polynomial m(x) of smallest degree with coefficients in a ground field such
that m(al)=0, where a! is any element of an extension field. The minimum polynomial of
ol is also called the minimum function of al.

MINIMUM WEIGHT OF A CODE

The minimum weight of a linear (group) code’s non-zero codewords.

MISCORRECTION PROBABILITY (Pmc)

The probability that an error burst which exceeds the guaranteed capabilities of a code
will appear correctable to a decoder. In this case, the decoder actually increases the
number of errors by changing correct data. Miscorrection probability is determined by
record length, total redundancy, and correction capability of the code.

Pmc usually represents the miscorrection probability for all possible error bursts, assum-
ing all errors are possible and equally probable. Some codes, such as the Fire Code,
have a higher miscorrection probability for particular error bursts than for all possible
error bursts.

MISDETECTION PROBABILITY (Pmd)

The probability that an error burst which exceeds the correction and detection capabil-
ities of a code will cause all syndromes to be zero and thereby go undetected. Mis-
detection probability is determined by the total number of redundancy bits, assuming
that all errors are possible and equally probable.

MONIC POLYNOMIAL

A polynomial is said to be monic if the coefficient of the highest degree term is one.

(n,k) CODE

A block code with k information symbols, n-k check symbols, and n total symbols
(information plus check symbols).
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A convolutional code with constant length n, code rate R (efficiency), and information
symbols k=Rn.

Number of combinations of n objects taken r at a time, without regard to order.

n!

(2] - ader

n-TUPLE
An ordered set of n field elements a;, denoted by (ag,a,* « *,ap).
ORDER OF A FIELD

The order of a field is the number of elements in the field. The number of elements
may be infinite (infinite field) or finite (finite field).

ORDER OF A FIELD ELEMENT

The order e of a field element B is the least positive integer for which g€=1. Elements
of order 20-1 in GF(2D) are called primitive elements.

PARITY
The property of being odd or even. The parity of a binary vector is the parity of the

number of ones the vector contains. Parity may be computed by summing modulo-2 the
bits of the vector.
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PARITY CHECK CODE

A code in which the encoder accepts a block of information bits and computes for
transmission, a set of modulo-2 sums (XOR) across various of these information bits and
possibly information bits in prior blocks. A decoder at the receiving point reconstructs
the original information bits from the set of modulo-2 sums. Every binary parity-check
code is also a linear, or group code. See also Block Code and Convolutional Code.

PERFECT CODE

An e error correcting code over GF(q) is said to be perfect if every vector is distance
no greater than e from the nearest codeword. Examples are Hamming and Golay codes.

PERIOD

The period of a polynomial P(x) is the least positive integer e such that x®+1 is divi-
sible by P(x).

POINTER

Location information for an erasure. This information is normally provided by special
hardware.

POLYNOMIAL CODE

A linear block code whose codewords can be expressed in polynomial form and are
divisible by a generator polynomial. This class of codes includes the cyclic and shor-
tened cyclic codes.

POWER SUM SYMMETRIC FUNCTIONS

The power sum symmetric functions are the syndromes.

PRIME FIELD

A field is called prime if it possesses no subfields except that consisting of the whole
field.
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PRIME SUBFIELD
The prime subfield of a field is the intersection of all subfields of the field.
PRIME POLYNOMIAL

See Irreducible.

PRIMITIVE POLYNOMIAL

A polynomial is said to be primitive if its period is 2M-1, where m is the degree of the
polynomial.

RANDOM ERRORS

For the purposes of this book, the term ’random errors’ refers to an error distribution
in which error bursts (defect events) occur at random intervals and each burst affects
only a single symbol, usually one bit or one byte. '

RATE

The code rate, or rate (R) of a code is the ratio_ of information bits (k) to total
bits (n); information bits plus redundancy. It is a measure of code efficiency.

R=F%
n
RAW BURST ERROR RATE

Burst error rate before correction.

READABLE ERASURE

A suspected erasure that contains no errors.
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' RECIPROCAL POLYNOMIAL

“The reciprocal of a polynomial F(x) is defined as
“xM<F(1/x)

-+ where m is the degree of F(x).

“ RECURRENT CODE

See Convolutional Code.
"REDUCIBLE

. A"polynomial ‘of degreé’ n is ‘said ‘to"be reducible if it is divisible by some polynomial of
-a‘degreé greater than 0 but less than n.

RELATIVELY PRIME

“If the:: greatest common- divisor ‘of two’ polynomlals is 1 they are sald to be relatlvely
'prime.

“SELF-RECIPROCAL POLYNOMIAL

“A polynomial which is eqial o its reciprocal polynomial.

'SHORTENED.CYCLIC CODE

‘A ‘linear ‘code ‘formed by deletmg leadmg mformatlon dlglts from the code words of a
cyclic code. -Shortened cyclic codes are not cycllc

-iSOET:ERROR

‘An ‘error that drsappears or becomes correctable on re read a soft error is assumed to
be due, at least in part, to a {ransient cause stchas electrical noise.
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SUBFIELD

A subset of a field which satisfies the definition of a field. See Section 2.8 for the
definition of a field.

SYNC FRAMING ERROR
When synchronization occurs early or late by one or more bits.
SYNDROME

A syndrome is a vector (a symbol or set of symbols) containing information about an
error or errors. Some codes use a single syndrome while others use multiple syndromes.
A syndrome is usually generated by taking the EXCLUSIVE-OR sum of two sets of
redundant bits or symbols, one set generated on write and one set generated on read.

SYSTEMATIC CODE

A code in which the codewords are separated into two parts, with all information
symbols occurring first and all redundancy symbols following.

UNCORRECTABLE ERROR

An error situation which exceeds the correction capability of a code. An uncorrectable
error caused by a soft error on read will become correctable on re-read.

UNCORRECTABLE SECTOR
A sector which contains an uncorrectable error.

UNCORRECTABLE SECTOR EVENT RATE

‘The ratio of total uncorrectable sectors to total bits, having the units of uncorrectable
sector events per bit.
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UNDETECTED ERRONEQOUS DATA PROBABILITY (Pued)

The probability that erroneous data will be- transferred and not detected, having the
units of undetected erroneous data events per bit. Pued for a code that does not have
pattern sensitivity is the product of miscorrection probability (Pmc) of the error cor-
recting code (if present), the misdetection probability (Pmd) of the error detecting code
(if present), and the probability of having an error that exceeds guiaranteed capabilities
of the code (Pe*Pc). ‘

A code with pattern sensitivity will have two undetected erroneous data rates: one for
all possible error bursts, and a higher one for the sensitive patterns.

UNREADABLE ERASURE

A suspected erasure that actually contains an error.
UNRECOVERABLE ERROR

Same as hard error.

VERTICAL REDUNDANCY CHECK (VRC)

Check bit(s) on a byte or word selected to make total byte or word parity odd or eéven.
WEIGHT

The weight of a codeword is the number of non-zero symbols it contains.
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Sclf-checking logic, 280, 283, 367-369
Shift register, 403
External-XOR, 32-35, 68-81, 138, 181, 243, 296,
298, 301, 303
Internal-XOR, 31, 52, 138, 181, 243, 247, 295, 297,
299
Sequences, 16, 36, 42, 56-63, 98
Shortened codcs, 82-85, 281, 416
Soft errors, 213, 234, 416
Subficld
Computation, 129-134
Dcfinition of, 417
Sync framing error, 213, 239, 256-269, 280, 325, 417
Syndrome, 4-6, 57-65, 126, 147-151, 159, 164-165,
167-176, 185-198, 203-206, 211, 234, 270, 279-319,
351-353, 360, 364, 370, 373, 417

Triple-error detection, 403

Uncorrectable error, 417

Uncorrectable sector, 195, 225, 417
Uncorrectable sector event rate, 225, 417
Undetected erroncous data probability, 418
Unreadable erasure, 418

Unrecoverable error, 418

Verticle redundancy check, 403, 418

Weight, 418
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