
PRACTICAL ERROR CORRECTION

DESIGN FOR ENGINEERS

REVISED SECOND EDmON

~ CUIER

ZERO
DETECT

dl + CORRECTED dl

Neal Glover and Trent Dudley

PRACTICAL ERROR CORRECTION
DESIGN FOR ENGINEERS

Neal Glover and Trent Dudley
CIRRUS LOGIC - COLORADO

The study of error-correcting codes is now more than forty years
old. There are several excellent texts on the subject, but they were
written mainly by coding theorists and are based on a rigorous math­
ematical approach. This book is written from a more intuitive, practical
viewpoint. It is intended for practicing engineers who must specify,
architect, and design error-correcting code hardware and software. It is
an outgrowth of a series of seminars presented during 1981 and 1982 on
practical error-correction design.

An engineer who must design an error-control system to meet data
recoverability, data accuracy, and performance goals must become familiar
with the characteristics and capabilities of different types of EDAC codes
as well as their implementation alternatives, including tradeoffs between
hardware and software complexity, speed/space/cost, etc. The goal of this
book is to provide this information in a concise manner from a practical
engineering viewpoint. Numerous examples are used throughout to develop
familiarity and confidence in the methods presented. Most proofs and
complex derivations have been omitted; these may be found in theoretical
texts on error correction coding.

CIRRUSLQGIC-COLORADO
INTERLOCKEN BUSINESS PARK

100 Technology Drive, Suite 300
Broomfield, Colorado 80021

Telephone (303) 466-5228
FAX (303) 466-5482

If you wish to receive updates to this book, please copy this form, complete it and
send it to the above address.

Please add my name to your permanent mailing list for

updates to the book: PRACTICAL ERROR CORRECTION DESIGN

FOR ENGINEERS (Revised Second Edition)

Name

Title

Organization ________________________ ~ ______ ~ ______ _

Address ______________________________________ --------

Phone ____________________________________ ~ ________ __

Other Areas of Interest ____________________________ ___

PRACTICAL ERROR CORRECTION

DESIGN FOR ENGINEERS

REVISED SECOND EDmON

PRACTICAL ERROR CORRECTION

DESIGN FOR ENGINEERS

REVISED SECOND EDmON

Neal Glover and Trent Dudley

Published By:

Cirrus Logic - Colorado

Broomfield, Colorado 80020

(303) 466-5228

Cirrus Logic believes the information contained in this book to be accurate. However,
neither Cirrus Logic nor its authors guarantees the accuracy or completeness of any
information published herein and neither Cirrus Logic nor its authors shall be respon­
sible for any errors, omissions or damages arising out of use of this information. Cirrus
Logic does not assume any responsibility or liability arising out of the application or
use of any software, circuit, method, technique, or algorithm described herein, nor does
the purchase of this book convey a license under any patent rights, copyrights, tradem­
ark rights, or any other of the intellectual property or trade secret rights of Cirrus
Logic or third parties.

This work is published with the understanding the Cirrus Logic and its authors are
supplying information but are not attempting to render engineering or other professional
services. If such services are required, the assistance of an appropriate professional
should be sought.

Second Edition Revision 1.1

Copyright © 1991 by CIRRUS LOGIC, INC.

Revised Second Edition COPYRIGHT © 1991. Second Edition COPYRIGHT © 1988. First
Edition COPYRIGHT © 1982. ALL RIGHTS RESERVED.

No part of this book maybe reproduced in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage and re­
trieval system, without the prior written permission of DATA SYSTEMS TECHNOLOGY,
CORP. or CIRRUS LOGIC, INC.

Published by:

CIRRUSLOGIC-COLORADO
INTERLOCKEN BUSINESS PARK
100 Technology Drive, Suite 300
Broomfield, Colorado 80021
Phone (303) 466-5228 FAX (303) 466-5482

Second Printing 1990.
ISBN #0-927239-00-0

To my children,

Rhonda, Karen, Sean, and Robert

Neal Glover

To the memory of my parents,

Robert and Constance

Trent Dudley

PREFACE

The study of error-correcting codes is now more than forty years old. There are
several excellent texts on the subject, but they were written mainly by coding theorists
and are based on a rigorous mathematical approach. This book is written from a more
intuitive, practical viewpoint. It is intended for practicing engineers who must specify,
architect, and design error-correcting code hardware and software. It is an outgrowth
of a series of seminars presented during 1981 and 1982 on practical error-correction
design.

An engineer who must design an error-control system to meet data recoverability,
data accuracy, and performance goals must become familiar with the characteristics and
capabilities of different types of EDAC codes as well as their implementation alterna­
tives, including tradeoffs between hardware and software complexity, speed/space/ cost,
etc. Our goal is to provide this information in a concise manner from a practical
engineering viewpoint. Numerous examples are used throughout to develop familiarity
and confidence in the methods presented. Most proofs and complex derivations have
been omitted; tllese may be found in theoretical texts on error correction coding.

We would like to thank our friends for their assistance and advice. The engineers
attending DST's seminars also deserve thanks for their suggestions.

v

Neal Glover
Trent Dudley

Broomfield, Colorado
August 1988

ABOUT CIRRUS LOGIC - COLORADO

Cirrus· Logic - Colorado was originally founded in 1979 as Data System Technology
(DST) and was sold to Cirrus Logic, Inc., of Milpitas, California, on January 18, 1990.
Cirrus Logic - Colorado provides error detection and correction· (BDAC) products and
services to the electronics industries. We specializes in the practical implementation of
EDAC, recording and data compression codes to enhance the reliability and efficiency of
data storage and transmission in computer and communications systems, and all aspects
of error tolerance, including framing, synchronization, data formats, and error manage­
ment.

Cirrus Logic - Colorado also develops innovative VLSI products that perform
complex peripheral control functions in high-performance personal computers, worksta­
tions and other office automation products. The company develops advanced standard
and semi-standard VLSI controllers for data communications, graphics and mass storage.

Cirrus Logic - Colorado was a pioneer in the development and implementation of
computer-generated codes to improve data accuracy. These codes have become widely
used in magnetic disk systems over the past few years and are now defacto standards
for 5 t.4 inch Winchester drives. Cirrus Logic - Colorado developed the first low-cost
high-performance Reed-Solomon code integrated circuits; the codes implemented therein
have become worldwide standards for the optical storage industry. EDAC codes produ­
ced by Cirrus Logic - Colorado have become so associated with high data integrity that
many users include them in their lists of requirements when selecting storage subsys­
tems.

Cirrus Logic - Colorado licenses EDAC software and discrete and integrated circuit
designs for various EDAC codes, offers books and technical reports on EDAC and recor­
ding codes, and conducts seminars on error tolerance and data integrity as well as
EDAC, recording, and data compression codes.

PRODUcrS

• Error tolerant controller designs for magnetic and optical storage.

• Turnkey integrated circuit development.

• Low-cost, high-performance EDAC integrated circuit designs.

• Discrete and integrated circuit designs for high-performance Reed­
Solomon codes, product codes, and computer-generated codes.

• Universal encoder/decoder designs for Reed-Solomon codes including
bit-serial, time slice, and function sharing designs.

• Multiple-burst EDAC designs for high-end storage devices with high­
speed parallel interfaces, supporting record lengths beyond 100,000
bytes.

vi

• EDAC designs supporting QIC tape formats.

• Software written for· a number of processors to support integrated
circuits implementing Cirrus Logic - Colorado's EDAC technology.

• Practical E"or Co"ection Design for Engineers, a book on EDAC
written especially for engineers.

• Cirrus Logic - Colorado develops polynomials for use in storage
products.

CONSULTING SERVICES

Consulting services are offered in the following areas:

• Semiconductor memories and large cache memories

• Magnetic disk devices

• Magnetic tape devices

• Optical storage devices using read-only, write-once, and erasable
media

• Smart cards

• CommUlrications

Consulting services offered include:

• Code selection

• Design of discrete hardware and integrated circuits

• Design of software

• Advice in the selection of synchronization, header, and defect man-
agement strategies

• Complex MTBF computations

• Analysis of existing codesand/or designs

• Establishing EDAC requirements from defect data

• Assistance in system integration of integrated circuits implementing
Cirrus Logic's EDAC technology.

vii

PROLOGUE
THE COMING REVOLUTION

IN ERROR CORRECTION TECHNOLOGY

By: Neal Glover

Presented at ENDL's 1988 Disklfest Conference

INTRODUcnON

The changes that are occurring today in error detection and correction, error tol­
erance, and failure tolerance are indeed revolutionary. Two major factors are driving
the revolution: need and capability. The need arises from more stringent error and
failure tolerance requirements due to changes in capacity, through-put, and storage
technology. The capability is developing due to continuing increases in VLSI density
and decreases in VLSI cost, along with more sophisticated error-correction teChniques.
This preface discusses the changes in requirements, technology, and techniques that are
presently occurring and those that are expected to occur over the next few years.

Some features of today's error-tolerant systems would have been hard to imagine a
few years ago.

Some optical storage systems now available are so error tolerant that user data is
correctly recovered even if there exists a defect situation so gross that the sector
mark, header and sync mark areas of a sector are totally obliterated along with dozens
of data bytes.

Magnetic disk drive array systems under development today are so tolerant to
errors and failures that simultaneous head crashes on two magnetic disk drives would
neither take the system down nor cause any loss of data. Some of these systems will
also be able to detect and correct many errors that today go undetected, such as tran­
sient errors in unprotected data paths and buffers and even software errors that result
in the transfer of the wrong sector. Some magnetic disk drive array systems specify
mean time between data loss (MTBDL) in the hundreds of thousands of hours.

The contrast with prior-generation computer systems is stark. Before entering de­
velopment I spent some time on a team maintaining a large computer at a plant in Cali­
fornia that developed nuclear reactors. I will never forget an occasion when the head
of computer operations pounded his fist on a desk and firmly stated that if we saw a
mushroom cloud over Vallecito it would be the fault of our computer. The mainframe's
core memory was prone to intermittent errors. The only checking in the entire com­
puter was parity on tape. Punch card decks were read to tape twice and compared.

viii

By the mid-seventies, the computer industry had come a long way in improving
data integrity. I had become an advisory engineer in storage-subsystem development,
and in 1975 I was again to encounter a very unhappy operations manager when a micro­
code bug, which I must claim responsibility for, intermittently caused undetected erro­
neous data to be transferred in a computer system at an automobile manufacturing plant.
Needless to say, the consequences were disastrous. This experience taught me the im­
portance of exhaustive firmware verification testing and has influenced my desire to
incorporate data-integrity features in Cirrus Logic's designs that are intended to detect
and in some cases even correct for firmware errors as well as hardware errors.

Changes in hardware and software data-integrity protection methods are occurring
today at a truly revolutionary rate and soon the weaknesses we knew of in the past and
those that we live with today will be history forever.

THE CHANGING REQUIREMENTS

Requirements for error and failure tolerance increase with capacity and through­
put, and changing storage technology. Over the years, many storage systems have
specified their non-recoverable read error rate as l.E-12 events per bit. In many cases
this is no longer acceptable. As more sophisticated applications require ever faster
access to ever larger amounts of information, system integrators will demand that
storage system manufacturers meet much higher data-integrity standards.

As an example of how capacity influences error tolerance requirements, consider a
hypothetical write-once optical storage device employing removable 5 gigabyte cartrid­
ges. Twenty-five such cartridges would hold l.E+ 12 bits, so a non-recoverable read
error rate of l.E-12 would imply the existence of a non-recoverable read error on about
one in twenty-five cartridges. Is this acceptable? Would one non-recoverable read
error in every 250 platters be acceptable?

, As an example of how through-put influences error tolerance requirements, con­
sider a magnetic disk array subsystem which is designed to transfer data simultaneously
from all drives and has no redundant drives. The through-put of ten lO-megabit-per­
second magnetic disk drives operating with a ten percent read duty cycle would be
8. 64E + 11 bits per day. A l.E-12 non-recoverable read error rate would imply one non­
recoverable read error every eleven days. Is this acceptable? Would one non-recover­
able read error per year be acceptable?

For new storage technologies, it is often not practical to achieve the low media
defect event rates which we have been accustomed to handling in . magnetic storage.
New techniques have been and must continue to be developed and implemented to
accommodate higher defect rates and different defect characteristics.

ix

mE CHANGING TECHNOLOGY

VLSI density continues to increase, allowing us to incorporate logic on a single in­
tegrated circuit today that a few years ago would have required several separate boards.
This allows us to implement very complex data-integrity functions within a single IC.
Cirrus Logic's low-cost, high-performance, Reed-Solomon code Ie's for optical storage
devices are a good example. As VLSI densities increase, such functions will occupy a
small fraction of the silicon area of a multi-function IC. The ability to place very
complex functions on a single IC and further to integrate multiple complex functions on
a single IC opens the door for greater data integrity. Our ability to achieve greater
data integrity at reasonable cost is clearly one of the forces behind the revolution in
error and failure tolerant technology.

Even with the development of cheaper, higher density VLSI technOlogy, it is often
more economical to split the implementation· of high-performance EDAC systems between
hardware and software. Using advanced software algorithms and buffer management
techniques, nearly "on-the-fly" correction performance can be achieved at lower cost
than using an all-hardware approach.

CHANGES IN ERROR CORRECFlON

For single-burst correction, Cirrus Logic - Colorado still recommends computer­
generated codes. Most new designs employing computer-generated codes are using
binary polynomials of degree 48, 56, and 64. In many cases, implementations of the
higher degree polynomials include hardware to assist in performing on-the-fly correction.

Economic and technical factors are driving the industry to accommodate higher
defect rates to which single-burst error-correction codes are not suited. Consequently,
Reed-Solomon codes, a class of powerful codes which allow efficient correction of
multiple bursts, are currently being designed into a wide variety of storage products
including magnetic tape, magnetic disk, and optical disk. Reed-Solomon codes were
discovered more than twenty-five years ago but only recently have improved encoding
and decoding algorithms, along with decreased VLSI costs, made them economical to
implement. Using software decoding techniques running on standard processors, Cirrus
Logic - Colorado now routinely achieves correction times for Reed-Solomon codes that
were difficult to achieve with bit-slice designs just a few years ago.

IBM has announced a new version of its 3380 magnetic disk drive that employs
multiple-burst error detection and correction, using Reed-Solomon codes, to achieve
track densities significantly higher than realizable with previous technology. Single­
burst error correction can handle modest defect densities, but defect densities increase
exponentially with track density. On-the-fly, multiple-burst error correction and error­
tolerant synchronization are required to handle these higher defect densities. On earlier
models of the 3380, IBM corrected a single burst in a record of up to several thousand
bytes. Using IBM's 3380K error-correction code, under the right circumstances it would
be possible to correct hundreds of bursts in a record. A unique feature of the 3380K
code is that it can be implemented to perform on-the-fly correction with a data delay
that is roughly 100 bytes.

x

The impact of this IBM announcement, coupled with the general push toward high­
er track densities, the success of high-performance error detection and correction on
optical storage devices, and the availability of low-cost, high-performance EDAC IC's,
will stimulate the use of high-performance EDAC codes on a wide range of magnetic
disk products. Cirrus Logic - Colorado itself is currently implementing double-burst
correcting, Reed-Solomon codes on a wide range of magnetic disk products, ranging
from low-end designs which process one bit per clock edge to high-end designs which
process sixteen bits per clock edge.

CHANGES IN ERROR DETECTION

When an error goes undetected, erroneous data is transferred to the user as if it
were error free. The transfer of undetected erroneous data can be one of the most
catastrophic failures of a data storage system. Some causes of undetected erroneous
data transfer are listed below.

• Miscorrection by an error-correction code.

• Misdetection by an error-detection or error-correction code.

• Synchronization failure in an implementation without synchronization
framing error protection.

• Intermittent failure in an unprotected data path on write or read.

• Intermittent failure in an unprotected RAM buffer on write or read.

• A software error resulting in the transfer of the wrong sector.

• Failed hardware, such as a failed error latch that never flags an error.

It is important to understand that no error-correction code is perfect; all are
subject to miscorrection when an error event occurs that exceeds the code's guarantees.
However, it is also important to understand that the miscorrection probability for a
code can be reduced to any arbitrarily low level simply by adding enough redundancy.
As VLSI costs go down, more redundancy is being added to error-detection and error­
correction codes to achieve greater detectability of error events exceeding code guaran­
tees. New single-burst error-correction code designs use polynomials of degree 48, 56,
and 64 to accomplish the same correctability achieved with degree 32 codes several
years ago, but with significantly improved detectability. If correctability is kept the
same, detectability is improved more than nine orders of magnitude in moving from a
degree 32 code to a degree 64 code.

Error-detection codes are not perfect either; they are subject to misdetection.
Like miscorrection, misdetection can be reduced to any arbitrarily low level by adding
enough redundancy. Unfortunately, the industry has not, in general, increased the level
of detectability of implemented error-detection codes significantly in the last twenty­
five years. Two degree 16 polynomials, CRC-16 and CRC-CCITT, have been in wide use
for many years. For many storage device applications, there are degree 16 polynomials
with superior detection capability, and moreover, the requirements of many applications

xi

would be better met by error-detection polynomials of degree 32 or greater.

In the last few years, the industry has been doing a better job of avoiding pattern
sensitivities of error-detection and error-correction codes. Cirrus Logic - Colorado
avoids using the Fire code because of its pattern sensitivity, and we use 32-bit auxiliary
error detection codes in conjunction with our Reed-Solomon codes in order to overcome
their interleave pattern sensitivity.

Auxiliary error-detection codes that are used in conjunction with ECC codes to en-
hance detectability have special requirements. The error-detection code check cannot
be made until after correction is complete. It is undesirable to run corrected data
through error-detection hardware after performing correction due to the delay involved.
It is also not feasible to perform the error-detection code check as data is transferred
to the host after correction, since some standard interfaces have no provision for a
device to flag an uncorrectable sector after the transfer of data has been completed.
To meet these requirements, some error-detection codes developed over the last few
years are specially constructed so that their residues can be adjusted as correction
occurs. When correction is complete, the residue should have been adjusted to zero.
Cirrus Logic - Colorado has been using such error-detection codes since 1982, and such
a code is included within Cirrus Logic - Colorado Reed-Solomon code IC's for optical
storage. IBM's 3380K also uses such an auxiliary error-detection code.

As the requirements for data integrity have increased, Cirrus Logic - Colorado has
tightened its recommendations accordingly. One of the areas needing more attention in
the industry is synchronization framing error protection. To accomplish this protection,
Cirrus Logic - Colorado now recommends either the initialization of EDAC shift regist­
ers to a specially selected pattern or the inversion of a specially selected set of EDAC
redundancy bits.

The magnetic disk drive array segment of the industry is making significant gains
in detectability. Some manufacturers are adding two redundant drives to strings of ten
data drives in order to handle the simultaneous failure of any two drives without losing
data. The mean time between data loss (MTBDL) for such a system computed from the
MTBF for individual drives may be in the millions of hours. In order for these systems
to meet such a high MTBDL, all sources of errors and transient failures that could
dominate and limit MTBDL must be identified, and means for detection and correction of
such errors and failures must be developed. For these systems, Cirrus Logic - Colorado
recommends that a four-byte error-detection code be appended and checked at the host
adapter. We also recommend that the logical block number and logical drive number be
included in this check. This allows the detection with high probability of a wide vari­
ety of errors and transient failures, including the transfer of a wrong sector or transfer
of a sector from the wrong drive.

CHANGES IN TRACK-FORMAT ERROR TOLERANCE

In many of today's single-burst-correcting EDAC designs, tolerance to errors is
limited by the ability to handle errors in the track format rather than by the capability
of the data-field EDAC code. In upgrading such designs, it is pointless to change from
single-burst to multiple-burst error correction without also improving track-format error
tolerance. In the future, all magnetic disk products will use error-tolerant synChroniza­
tion and header strategies.

xii

The optical storage industry has already proved the feasibility of handling error
rates as high as l.E-4 through track-format error tolerance as well as powerful data­
field EOAC codes. Optical track-format error tolerance has been achieved using multi­
ple headers, error-tolerant sync marks, and periodic resynchronization within data fields.
Some systems now available are so error tolerant that user data is correctly recovered
even if there exists a defect situation so gross that the sector mark, header, and sync
mark areas of a sector are totally obliterated along with dozens of data bytes.

CHANGES IN DEFECT MANAGEMENT

As track densities increase in magnetic recording, and as erasable optical technol­
ogy becomes more common, many companies will implement defect skipping to handle
higher defect densities without significantly affecting performance. This technique is
not applicable to write-once optical applications, where sector retirement and reassign­
ment will be used. Such techniques also work well within dynamic defect management
strategies. Combining the two will allow the full power of the EDAC code to be used
for margin against new defects. Dynamic defect management will become more common,
especially for write-once and erasable optical technologies subject to relatively high new
defect rates and defect growth.

As more complex and intelligent device interfaces and controllers are implemented,
more responsibility for defect management will be shifted from the host to the device
controller.

CHANGES IN SELF-CHECKING

As data integrity requirements increase, it becomes very important to detect tran­
sient hardware failures. New designs for component IC's for controller implementations
are carrying parity through the data paths of the part when possible, rather than just
checking and regenerating parity. Cirrus Logic - Colorado sees this as a step forward,
but we also look beyond, to the day when all data paths are protected by CRC as well.

It is especially important to detect transient failures in EOAC hardware. Some
companies have implemented parity-predict circuitry to continuously monitor their EOAC
shift registers for proper operation.

When possible, Cirrus Logic - Colorado has incorporated circuitry to divide codew­
ords on write by a factor of the code generator polynomial and check for zero remaind­
er. This function is performed as close to the recording head as possible.

Cirrus Logic - Colorado's 8520 IC uses dynamic cells for the major EOAC shift
registers. To detect transient failures in the shift registers themselves, we incorporated
a feature whereby the parity of all bits going into a shift register is compared with the
parity of all bits coming out of the shift register.

CHANGES IN VERIFlCA TlON AND TESTING

The traditional diagnostic technique for storage-device EDAC circuitry uses write

xiii

long and read long. For write-once optical media, this technique has two problems.
Since these are high error rate devices, real errors may be encountered along with
simulated errors. Also, each write long operation uses up write-once media. Cirrus
Logic - Colorado incorporates a special diagnostic mode in its EDAC IC's that allows
the EDAC hardware to be tested without writing to or reading from the media.

The introduction of complex, high-performance hardware and software algorithms
for error correction and track-format error tolerance introduce new verification and
testing challenges. Cirrus Logic - Colorado verifies its error-correction software for
optical storage devices against millions of test cases. To verify the track-format error
tolerance of optical storage devices, Cirrus Logic - Colorado recommends a track format
simulator that allows all forms of errors to be simulated, including slipped PLL cycles.
Cirrus Logic - Colorado plans to market such a track simulator in the future. Cirrus
Logic - Colorado also recommends programmable buggers to allow all forms of errors to
be simulated during the performance of a wide range of operational tasks on real devi­
ces.

CHAUENGES FOR THE FUTURE

Many of the factors shaping the future of error correction and error tolerance
have already been discussed. One of the most significant will be carry-through error
detection that will be generated and checked for each sector at the host adapter. The
redundancy for this overall check will include the logical block number and the logical
drive number and will cover the entire path from the host adapter to the media and
back. A logical next step will be for hosts to provide an option for carrying all or
part of the overall check code redundancy through host memory when data is being
moved from one device to another. Looking further into the future, we may also see
the redundancy for the overall check maintained in host memory for those sectors that
are to be updated. In this case, an updatable error-detection code will be used and the
error-detection redundancy will be adjusted for each change made to the contents of
the sector.

An area that needs more attention is verification that we will be able to properly
read back all the data that we write. To avoid adversely impacting performance, we
mUst be able to accomplish this without following each write with a verify read. At the
closest possible point to the head we need to verify that the written user write data
and associated redundancy constitute a valid codeword. A good forward step in this
direction would be to decode the write encoded RLL bits back to data bits and to divide
this data stream by the code generator polynomial or compare it to the write data
stream going into the encoder.

xiv

CONTENTS

Preface

About Cirrus Logic - Colorado .

Prologue.

CHAPTER 1 - INTRODUCTION.

1.1 Introduction to Error Correction

1.2 Mathematical Foundations. . .

1.3 Polynomials and Shift Register Sequences .

CHAPTER 2 - EDAC FUNDAMENTALS.

2.1 Detection Fundamentals .

2.2 Correction Fundamentals.

2.3 Decoding Fundamentals.

2.4 Decoding Shortened Cyclic Codes.

2.5 Introduction to Finite Fields

2.6 Finite Field Circuits ..

2.7 Subfield Computation .

CHAPTER 3 - CODES AND CIRCUITS

3.1 Fire Codes.

3.2 Computer-Generated Codes

3.3 Binary BCH Codes ..

3.4 Reed-Solomon Codes .

3.5 b-Adjacent Codes. . .

xv

. v

. vi

viii

1

1

8

.16

.49

.49

.56

.67

.82

.87

103

129

135

135

140

145

158

. 205

CHAPTER 4 - APPLICATION CONSIDERATIONS.

4.1 Raw Error Rates and Nature of Error

4.2 Decoded Error Rates

4.3 Data Recoverability .

4.4 Data Accuracy . . .

4.5 Performance Requirements.

4.6 Pattern Sensitivity

4.7 K-Bit-Serial Techniques.

4.8 Synchronization

, .

4.9 Interleaved. Product and Redundant Sector Codes.

CHAPTER 5 - SPECIFIC APPLICATIONS .

5.1 Evolution of EDAC Schemes. . .

5.2 Application to Large-Systems Magnetic Disk.

5.3 Application to Small-Systems Magnetic Disk.

5.4 Application to Mass-Storage Devices

CHAPTER 6 - TESTING OF ERROR-CONTROL SYSTEMS .

6.1 Microdiagnostics.

6.2 Host Software Diagnostics.

6.3 Verifying an ECC Implementation

6.4 Error Logging

6.5 Hardware Self-Checking.

xvi

.,

· 213

· 213

· 215

· 223

· 230

.240

· 241

· 243

· 250

.270

· 274

.274

· 278

· 293

· 350

· 364

· 364

· 365

· 365

· 366

· 367

CHAPTER 1 - INTRODUCTION

1.1 INTRODUCTION TO ERROR CORRECTION

1.1.1 A REVIEW OF PAIUIY

A byte, word, vector, or data stream is said to have odd parity if the number of
'l's it contains is odd. Otherwise, the byte, word, vector, or data stream is said to
have even parity. Parity may be determined with combinational or sequential logic.

The parity of two bits may be determined with an EXCLUSIVE-QR (XOR) gate.
The circled ' +' symbol is understood to represent XOR throughout this book.

dl Odd =)u=..
dO

-OR- dl~
dO t

Parity across a nibble may be determined with a parity tree.

d3 ~ d3 'D en d2 d2 l

~D}~ ~~ ==0 Odd
-OR- -OR- •

dl0J dl t
dO dO ~

Parity of a bit stream may be determined by a single shift register stage and one
XOR gate. The shift register is assumed to be initialized to zero. The highest num­
bered bit is always transmitted and received first.

d3 d2 dl dO .~. p

p = d3 + d2 + dl + dO or P = d3 e d2 e dl e dO

- 1 -

The circuit below determines parity across groups of data stream bits.

d6 d5 d4 d3 d2 d1 dO

Note that each bit is included in only one parity check.

PO = dO + d3 + d6

P1 = d1 + d4

P2 d2 + d5

The circuit below will also determine parity across groups of data stream bits.

d6 d5 d4 d3 d2 d1 dO ~
------------------~~~

PO = d4 + d3 + d2 + dO

P1 = d5 + d2 + d1 + dO

P2 = d6 + d3 + d2 + d1

The contribution of each data bit to the finaI shift register state is shown below.
Each data bit affects a unique combination of parity checks.

Data Bit

d6
d5
d4
d3
d2
d1
dO

contribution
P2 P1 PO

100
010
001
101
111
110
all

The contributions to the f'mal shift register state made by several strings of data
bits are shown below.

string
contribution

P2 P1 PO

d6,d4 => 101
d3,d2,dO => 001
d4,dO => 010

- 2 -

SUPPLEMENTARY PROBLEMS

APPENDIX A. PRIME FACTORS OF 2K 1 .

APPENDIX B. METHODS OF FINDING LOGARITHMS AND
EXPONENTIALS OVER A FINITE FIELD.

ABBREVIATIONS.

GLOSSARY ...

BIBLIOGRAPHY.

INDEX

xvii

.370

.374

· 375

· 403

.404

· 419

· 463

CHAPTER 1 - INTRODUCTION

1.1 INTRODUCTION ro ERROR CORRECI'ION

1.1.1 A. REYIEWOF PARITY

A byte, word, vector, or data stream is said to have odd parity if the number of
'l's it contains is odd. Otherwise, the byte, word, vector, or data stream is said to
have even parity. Parity may be determined with combinational or sequential logic.

The parity of two bits may be determined with an EXCLUSIVE-OR (XOR) gate.
The circled '+' symbol is understood to represent XOR throughout this book.

dl Odd

=)~
dO

-OR- dl~
dO t

Parity across a nibble may be determined with a parity tree.

d3 ~ d3 lD} en d2 d2 ~
d2 D Odd ~~ =0 Odd

• -OR- -OR- •
dl

=)D d1&I dl t
dO dO ~

Parity of a bit stream may be determined by a single shift register stage and one
XOR gate. The shift register is assumed to be initialized to zero. The highest num­
bered bit is always transmitted and received first.

d3 d2 dl dO ~. p

P = d3 + d2 + dl + dO or P = d3 $ d2 $ dl $ dO

- 1 -

The circuit below determines parity across groups of data stream bits.

d6 d5 d4 d3 d2 d1 dO

PO = dO + d3 + d6

P1 = d1 + d4

P2 = d2 + d5

Note that each bit is included in only one parity check.

The circuit below will also determine parity across groups of data stream bits.

d6 d5 d4 d3 d2 d1 dO ~
------------------~.~

PO = d4 + d3 + d2 + dO

P1 = d5 + d2 + d1 + dO

P2 = d6 + d3 + d2 + dl

The contribution of each data bit to the final shift register state is shown below.
Each data bit affects a unique combination of parity checks.

Data Bit

d6
d5
d4
d3
d2
d1
dO

contribution
P2 P1 PO

100
010
001
101
111
110
011

The contributions to the fInal shift register state made by several strings of data
bits are shown below.

string
contribution

P2 P1 PO

d6,d4 => 101
d3,d2,dO => 001
d4,dO => 010

- 2 -

The contribution to the final shift register state by each string is the XOR sum of
contributions from individual bits of the string, because the circuit is linear. For a
linear function f:

f(x+y) = f(x)+f(y)

The parity function P is linear, and therefore

P(x+y) = P(x)+P(y)

Circuits of this type are the basis of many error-correction systems.

- 3 -

1.1.2 A FIRSI WOK AT ERROR CORRECIJON

This discussion presents an introduction to single-bit error correction using a code
that is intuitive and simple. Consider the two-dimensional parity-check code defined
below.

Check-Bit

PO dO + d4
P1 d1 + d5
P2 d2 + d6
P3 = d3 + d7
P4 d12 + d13
P5 dB + d9
P6 = d4 + d5
P7 = dO + d1

Generation

+ dB + d12 SO =
+ d9 + d13 Sl =
+ d10 + d14 S2 =
+ dll + d15 S3
+ d14 + d15 S4 =
+ d10 + d11 S5
+ d6 + d7 S6 =
+ d2 + d3 S7 =

dO d1 d2 d3
d4 d5 d6 d7
dB d9 d10 dll
d12 d13 d14 d15

Ipo IPl Ip2 Ip3
Column Checks

S~ndrome Generation

dO + d4 + dB + d12
d1 + d5 + d9 + d13
d2 + d6 + d10 + d14
d3 + d7 + d11 + d15
d12 + d13 + d14 + d15
dB + d9 + d10 + d11
d4 + d5 + d6 + d7
dO + d1 + d2 + d3

J!il Row Checks
P4

One of the eight required check/syndrome circuits is shown below.

dO

:-l
:0 ---r-~-'_ + -- S7 =

_d_2_......It L-§--1
dO + d1 + d2 + d3 + P7

d3

+ PO
+ P1
+ P2
+ P3
+ P4
+ P5
+ P6
+ P7

On write, each row check bit is selected to make the parity of its row even.
Each column check bit is selected to make the parity of its column even. The data bits
and the parity bits together are called a codeword.

On read, row syndrome bits are generated by checking parity across each row,
including the row check bit. Column syndrome bits are generated in a similar fashion.
Syndrome means symptom of error. For this code, syndrome bits can be viewed as the
XOR differences between read checks and write checks. If there is no error, all syndr­
ome bits are zero.

When a single-bit error occurs, one row and one column will have inverted syndro­
me bits (odd parity). The bit in error is at the intersection of this row and column.

The circuit above shows the logic necessary for generating the write-check bit and
the syndrome bit for one row. For parallel decoding, this logic is required for each

- 4 -

row and column. Also, 16 AND gates are required for detecting the futersections of
inverted row and column syndrome bits. In addition, 16 XOR gates are required for
inverting data bits. The correction circuit for one particular data bit is shown below.

Raw Data Bit dlO
--------------~) D Corrected dlO •

S2
S5

ALLOW CORRECTION

Two data bits in error will cause either two rows, two columns, or both to have
inverted syndrome bits (odd parity). This condition can be trapped to give the code the
capability to detect double-bit errors in data.

All single check-bit errors are detected, but not all double check-bit errors. One
row and one column check bit in error will result in miscorrection (false correction). If
an overall check bit across data is added, the code is capable of detecting all double-bit
errors in data and check bits. This includes the case where one data bit and one parity
bit are in error. The overall check bit can be generated by forming parity across all
row or all column check bits. With the overall check bit added, all double-bit errors
are detectable but uncorrectable.

Miscorrection occurs when three bits are in error on three comers of a rectangle.
For example:

CJ overall Check
Column Checks

The three errors which are illustrated above cause the decoder to respond as if
there were a single-bit error at location m. Miscorrection does not result for all
combinations of three bits in error, only for those where there,are errors on three
comers of a rectangle.

Miscorrection probability for three-bit errors is the ratio of three-bit error com­
binations that result in miscorrection to all possible three bit-error combinations.

- 5 -

Misdetection (error condition not detected at all) occurs when four-bits are in
error on the comers of a rectangle. For example:

CJ Overall Check
Column Checks

This error condition leaves all syndrome bits equal to zero.

Misdetection does not result for all combinations of four bits in error, only those
where there are errors on four comers of a rectangle. Misdetection probability for
four-bit errors is the ratio of four-bit error combinations that result in misdetection to
all possible four-bit error combinations.

This discussion introduced the following error-correction concepts:

Check bits
Syndromes
Codeword
Correctable error
Detectable error
Miscorrection
Misdetection
Miscorrection probability
Misdetection probability

- 6 -

PROBLEMS

1. Write the parity check equations for the circuit below.

d6 d5 d4 d3 d2 dl dO

'------.. PO =

~----------... Pl =

2. Write the parity check equations for the circuit below.

d6 d5 d4 d3 d2 dl dO

PO =

~-----------... Pl =

~-------------------------- P2

3. Generate a chart showing· the contribution of each data bit to the fmal shift
register state for the circuits shown above.

If the data stream is zeros except for d3 and dl, what is the fmal shift register
state?

- 7 -

1.2 MATHEMATICAL FOUNDATIONS

1.2.1 SOME DEFlNmONS. THEOREMSAND ALGORlTHMS FOR INTEGERS

Dginition 1.2.1. When we say an integer a divides an integer b we mean a divides
b with zero remainder. "a divides b" is written as alb. "a does not divide bl! is written
as a,fb.

Examples: 316, 3i4, 2il

Dginition1.2.2. An integer a is called prime if a is greater than 1 and there are
no divisors of a that are less than a but greater than 1. If an integer a greater than 1
is not prime, then it is called composite.

Examples: 2, 3, and 5 are prime

4, 6, and 8 are composite

Dginidon 1.2.3. The greatest common divisor (GCD) of a set of integers
{alta2,· ... ,an} is the largest positive integer that divides each of al,a2,··· ,an. The
greatest common divisor may be written as GCD(a 1 ,a2, ••• ,an>.

Algorithm 1.2.1. To find GCD(alta~, ••• ,an>, express each integer as the product of
prime factors. Form the product of thelr common factors. For repeated factors, in­
clude in the product the highest power that is a factor of all the given integers. The
GCD is the absolute value of the product. If there are no common factors, the GCD is
one.

Examples: GCD(3,9,15) = GCD(3,32,3*5) =3
GCD(-165,231) = GCD(-3*5*11,3*7*11) = 33

GCD(105,165) = GCD(3*5*7,3*5*11) = 15

GCD(45,63,297) = GCD(32*5,32*7,33*11) = 9

The GCD can also be found using Euclid's Algorithm.

Dginition 1.2.4. The least common multiple (LCM) of a set of integers {al,a2-
, ••• ,an} is the smallest positive integer that is divisible by each of al ,a2,· •• ,an. The
least common multiple may be written LCM(al,a2,· •• ,an>.

Algorithm 1.2.2. To fmd LCM(al,a2,··· ,an>, express each integer as a product of
prime factors. Form the product _ of primes that are a factor of any of the given in­
tegers. Common factors between two or more integers are included in the product only
once. For repeated factors, include in the product the highest power that occurs in any
of the prime factorizations. The LCM is the absolute value of the product. .

Examples: LCM(6, 15,21) = LCM(2*3,3*5,3*7) = 210

LCM(30,42,66) =LCM(2*3*5,2*3*7,2*3*11) = 2310

LCM(-15,21 ,1 I) = LCM(-3*5,3*7 ,II) = 1155

LCM(45,63,297)=LCM(32*5,32*7,33*11) = 10395

- 8 -

Theorem 1.2.1. Every integer a>1 can be expressed as the product of primes, (with
at least one factor).

Examples: 3 = 3
6 =2*3

15 =3*5

Dtifinition 1.2.5. Integers a and b are relatively prime if their greatest common
divisoris 1.

Examples: 3, 7
3, 4

15, 77

Theorem 1.2.2. Let integers a, b, and c be relatively prime in pairs, then a*b*c
divides d if, and only if, each of a, b, and c divide d.

Examples: 3115,5115, 7%15, therefore, (3*5*7)%15

31210,51210,71210, therefore, (3*5*7)1210

Theorem 1.2.3. Let an integer a be prime, then a divides b*c*d if, and only if, a
divides b or c or d.

Examples: 316, therefore, 31 (6*5*7)

3%5, 3%7, 3%11, therefore, 3%385

Definition 1.2.6. Let x be any real number. The integer function of x, written as
INT(x), is the greatest integer less than or equal to x.

Examples: INT(l/2) = 0
INT(5/3) = 1

INT(-l/2) = -1

Definition 1.2.7. Let x and y be any real numbers. x modulo y, written as x MOD
y, is defined as follows:

Examples: 5 MOD 3 = 2
9MOD3 = 0

-5 MOD 7 = 2

x MOD Y = x - y*INT(x/y)

1.2.2 SOME DEFINmONS. TlIEOREMSAND ALGORITHMS FOR POLYNOMIALS

Definition 1.2.8. A polynomial is said to be monic if the coefficient of the term
with the highest degree is 1.

Definition 1.2.9. The greatest common divisor of two polynomials is the monic
polynomial of greatest degree which divides both.

Dt;/inition 1.2.10. The least common multiple of a(x) and b(x) is some c(x) divisible
by each of a(x) and b(x) , which itself divides any other polynomial that· is divisible by
each of a(x) and b(x).

Dt;/inition 1.2.11. If the greatest common divisor of two polynomials is 1, they are
said to be relatively prime.

Definition 1.2.12. A polynomial of degree n is said to be irreducible if it is not
divisible by any polynomial of degree greater than 0 but less than n.

Theorem 1.2.4. Let a(x) , b(x) , and c(x) be relatively prime in pairs, then
a(x)' b(x)' c(x) divides d(x) if, and only if, a(x) and b(x) and c(x) divide d(x).

Theorem 1.2.5. Let a(x) be irreducible, then a(x) divides b(x)' c(x) • d(x) if, and only
if, a(x) divides b(x) or c(x) or d(x). .

Definition 1.2.13. A function is said to be linear if' the properties stated below
hold: .

a. Linearity: f(a· x) = a' f(x)

b. Superposition: f(x+y) = f(x)+f(y)

- 10 -

1.2.3 THE CHINESE REMAINDER METHOD

There are times whIm integer arithmetic in a modular notation is preferred to a
fixed radix notation. The integers are represented by residues modulo a set of relative­
ly prime moduli.

Example: Assume integers are represented by residues modulo the
moduli 3 and 5.

Integer(k} Residues(rO,r1}

0 0 0
1 1 1

0 2 2 2

0 '
3 0 3
4 1 4

0 5 2 0

20, 4 6 0 1
7 1 2
8 2 3

3 2 9 0 4
10 1 0

MODULUS = 3 MODULUS 5 11 2 1
12 0 2
13 1 3
14 2 4
15 0 0
16 1 1

Notice that the integer k has a unique representation in residues from k =0 through
k=14. The integer k=15 has the same representation as k=O. In this case, the total
number of integers that have unique representation is 15. In general, the total number
of integers n having unique representation is given by the equation:

n = LCM(eo,e I, •••)

where the ei are moduli.

There are also times when an integer d must be determined if its residues modulo
a set of moduli are given. This can be accomplished with the Chinese Remainder Me­
thod. This method is based on the Chinese Remainder Theorem. See any number theory
text.

1 1 _

METHOD

ei = Moduli (The ei must be relatively prime in pairs)

Ai Constants such that (Ai*mi) MOD ei = 1

ri = Residues

d desired integer = (AO*mO*rO + Al*ml*rl + •••) MOD n

EXAMPLE

ei 3,5 (eO=3, el=5)

n = LCM(3,5) = 15

mO = n/eO 15/3 = 5

ml n/el 15/5 3

AO*5 MOD 3 1, therefore

Al*3 MOD 5 1, therefore

d = (10*rO + 6*rl) MOD 15

If rO,rl = 2,3 then d = 8

If rO,rl 1,3 then d = 13

AO = 2

Al 2

}-

This calculation
is performed at
development time.

This calculation
is performed at
execution time.

A PROCEDURE FOR PERFORMING THE CHINESE REMAINDER METHOD

WITHOUT USING MULTIPLICA TION

Frequently, the Chinese Remainder Method must be solved on a processor that
does not have a multiply instruction. A procedure using only addition and compare
instructions is described below.

The integer d is to be determined where d is the least integer such that:

d MOD eo = ro and simultaneously d MOD el = rl

or equivalently,

d rO d
- = nO +
eO eO

and simultaneously

- 12 -

Rearranging gives

d = no*eo + ro and simultaneously d = n1 *e1 +r1

or,

d = no*eo + ro = n1 *e1 +r1

Multiplication can be expressed as repeated addition. Therefore,

d = ro + eo + eO + • • • = r1 + e1 + e1 +
I ~I ____________ ~

nO times n1 times

A procedure for finding d based on the relationship above is detailed in the fol­
lowing flowchart.

dO = do + eO

- 13-

1.2.4 MULTIPLICATION BY SHIFIlNG, ADDING, AND SUBTRACl7NG

Many 8-bit processors do not have a' multiply instruction. This discussion de­
scribes techniques to minimize the complexity of multiplying a variable by a constant,
when these processors are used. These techniques provide another alternative for
accomplishing the multiplications required in performing the Chinese Remainder Method.

On an 8-bit processor any shift that is a multiple of 8 bits can be accomplished
with register moves. Therefore, multiplying by a power of 2 that is a multiple of 8 can
be accomplished by register moves. Any string of ones in a binary value can be repre­
sented by the power of 2 that is just greater than the highest power of 2 in the string
minus the lowest power of 2 in the string. These results can be used to minimize the
complexity of multiplying a variable by a constant using register moves, shifts, adds and
subtracts.

Examples: In all examples, x is less than 256. The results are shown in a
form where register moves and shifts are identifiable.

y 255*x

= (2 8-1)*X

= 28*x-x

y 257*x

y

= (2 8+1)*x

= 2 8*x+x

= 992*x

= (29+28+27+26+25)*x

= (2 1O-25)*x

= 2 1O*x-25*x

y 32131*x

= (214+213+212+211+210+28+27+21+20)*x

(215_29_27+21+20)*x

= 215*x-29*x-27*x+21*x+2o*x

= 28*(27*x)-(27*x)-28*(21*x)+(21*x)+x

In the last example, only two unique shift operations are required even though
the original constant contains nine powers of 2. This particular example is from the
Chinese Remainder Method when moduli 255 and 127 are used.

- 14 -

PROBLEMS

1. Find the GCD of 70 and 15.

2. Find the GCD of 70 and 11.

3. Find the LCM of 30 and 42.

4. Find the LCM of 33 and 10.

5. Express 210 as a product of primes.

6. Are 70 and 15 relatively prime?

7. Are 70 and 11 relatively prime?

8. Determine a

a = INT(7/3) =
a = -INT(1I3) =
a = INT(-1I3) =
a = 10 MOD 3 =
a = -3 MOD 15 =
a = 254 MOD 255 =

9. Is 2· x2 + 1 a monic polynomial?

10. Write the residues modulo the moduli 5 and 7 of the integer 8.

11. The residues for several integers modulo 5 and 7 are listed below. Compute the Ai
of the Chinese Remainder Method. Then use the Chinese Remainder Method to
determine the integers.

aMOD5 = 4, aMOD7 = 6, a =?
a MOD 5 = 3, a MOD 7 = 5, a = ?
a MOD 5 = 0, a MOD 7 = 4, a = ?

What is the total number of unique integers that can be represented by residues
modulo 5 and 7?

12. Define a fast division algorithm for dividing by 255 on an 8-bit processor that does
not have a divide instruction. The dividend must be less than 65536.

13. What is the total number of unique integers that can be represented by residues
modulo 4 and II?

- 15 -

1.3 POLYNOMIALS AND SHIFf REGISTER SEOUENCES

1.3.1 INTRODUcnON TO POLYNOMIALS

It is convenient to consider the symbols of a binary data stream to be coefficients
of a polynomial in a variable x, with the powers of x serving as positional indicators.
These polynomials can be treated according to the laws of ordinary algebra with one
exception: coefficients are to be added modulo-2 (EXCLUSIVE-OR sum). The' +' opera­
tor will be used to represent both ordinary addition and modulo-2 addition; when used
to represent modulo-2 addition, it will usually be separated from its operands by a
preceding and a following space.

As with polynomials of ordinary algebra, these polynomials have properties of
associativity, distributivity, and commutativity. These polynomials also factor into prime
or irreducible factors in only one way, just as do those of ordinary algebra.

For now, the value of coefficients will be either '1' or '0' depending on the value
of the corresponding data bit. Such polynomials are said to have binary coefficients or
to have coefficients from the field of two elements. Later, polynomials with coeffi­
cients other than '1' and '0' will be discussed. When transmitting and receiving polyno­
mials, the highest order symbol is always transmitted or received first.

MULTIPLICATION OF POLYNOMIALS

Multiplication is just like ordinary multiplication of polynomials, except the addi­
tion of coefficients is accomplished with the XOR operation (modulo-2 addition).

Example #1: x3
• x3 + x + 1

x6 + x4 + x3

Example #.2: x + 1 . x3 + x + 1
x4 + x3

x2 + x
x +

x4 + x3 + x2 + 1

-or-

-or-

1

1000
• 1011

1000
1000

1000

1011000

11
• 1011

11
11

11

11101

In example 12, unlike in ordinary polynomial multiplication, the two x terms cancel.

- 16 -

DIVISION OF POLYNOMIALS

Division is just like ordinary division of polynomials. except the addition of coeffi-
cients is accomplished with the XOR operation (modulo-2 addition).

Exarogle U:
x2 + 1 101

x3 + x + 1 x5 + 1 -OR- 1011 100001

x5 + x3 + x2 1011

x3 + x2 + 1 1101

x3 + x + 1 1011

x2 + x 0110

Exarogle i2:
x2 + 1 101

x3 + x + 1 x5 + x2 + 1 -OR- 1011 100101

x5 + x3 + x2 1011

x3 + 1 1001

x3 + x + 1 1011

x 0010

- 17 -

1.3.2 INTRODUcnON TO SHIff REGISTERS

A linear sequential circuit (LSC) is constructed with three building blocks. Any
connection is permissible as long as a single output arrow of one block is mated to a
single input arrow of another block.

+
GI--_~

t

MEMORY CIRCUITS (LATCHES).
Single input, single output.

MODULO-2 ADDITION (XOR GATES).
Single output, no restriction
on the number of inputs.

CONSTANT MULTIPLIERS.
Single input, single output.

Latches are clocked by a synchronous clock. The output of a latch at any point
in time is the binary value that appeared on its input one time unit earlier.

The output of a modulo-2 adder at any point in time is the modulo-2 sum of the
inputs at that time.

For now, a constant multiplier ' ·a' will be either ' ·1' or ' ·0'. If such a constant
multiplier is '. 1', a connection exists. No connection exists for a constant multiplier of
, ·0'.

AN EXAMPLE OF AN LSC

A linear sequential circuit of the above form is also called a linear feedback shift
register (LFSR), a linear shift register (LSR) or simply a shift register (SIR).

ANEQUlVALENTCIRCUITWHEREaJ - Q.lI2 - 1.«3 - I

- 18-

SHIFT REGISTER IMPLEMENTATION OF MULTIPLICATION

Polynomial multiplication can be implemented with a linear shift register.

The circuit below will multiply any input bit stream (input polynomial) by (x + 1).
The product appears on the output line. The number of shifts required is equal to the
sum of the degrees of the input polynomial and the multiplier polynomial plus one.

OUTPUT

I •

~ INPUT

Example #1: Assume the input polynomial to be (x5 + x3 + 1).

Input Shift Reg Output
Bit State Bit

1 (x5) 1 1 (x6)
0 0 1 (x5)
1 (x3) 1 1 (x4)
0 0 1 (x3)
0 0 0
1 (1) 1 1 (x)
0 0 1 (1)

Example #2: Assume the input polynomial to be x3.

Input Shift Reg Output
Bit State Bit

1 (x3) 1 1 (x4)
0 0 1 (x3)
0 0 0
0 0 0
0 0 0

NOTE: The shift register state is shown after the indicated input bit is clocked.

- 19 -

3 The circuits below will multiply any input bit stream (input polynomial) by
(x + x + 1).

INPUT

Shift Register "A"

OUTPUT
•

OUTPUT

I •

~ INPUT t t ~
Shift Register "B"

Example #1: Assume the input polynomial to be x3.

Input Shift Req Output
Bit 'B'State Bit

1 (x3) 011 l(x~
0 110 0
0 100 1 (X;)
0 000 l(x)
0 000 0
0 000 0
0 000 0

Example #2: Assume the input polynomial to be (x + 1).

Input
Bit

1 (x)
1(1)
o
o
o

ShiftReq
'B'State

011
101
010
100
000

Output
Bit

1 (x;)
1 (x2)
1 (x)
o
1 (1)

NOTE: The shift register state is shown after the indicated input bit is clocked.

- 20 -

A GENERAL MULTIPLICATION CIRCUIT
OUTPUT

The circuit shown above multiplies any input polynomial D(x) by a fixed polynomial
P(x). The product appears on the output line.

P(x) = hi-xi + hi-l o xi-l + hi-2 0 xi-2 + ... + hi-x + hO

The number of shifts required is equal to the sum of the degrees of the input
polynomial and multiplier polynomial, plus one.

MULTIPLY CIRCUIT EXAMPLES

OUTPUT

I
0~ INPUT1~
Multiply by x2 + 1

OUTPUT

. I
G~~

INPUT 1 1 ~
Multiply by x4 + x3 + 1

OUTPUT

I
G~

INPUT 1 1 ~
Multiply by x5 + x3 + x2 + 1

- 21 -

SHIFT REGISTER IMPLEMENTATION OF DIVISION

Polynomial division can be implemented with an LSR.

The circuit below will divide any input bit stream by (x + 1). One shift is re­
quired for each input bit. The quotient appears on the output line. The final state of
the LSR represents the remainder.

INPUT

Example #1: Assume the input polynomial to be

x6 + x5 + x4 + x3 + x + 1.

Input Shift Reg Output
Bit State Bit

1 (x~) 1 (1) 0
1 (x) 0 1 (x5)
1 (x~) 1 (1) 0
1 (x) 0 1 (x3)
0 0 0
1 (x) 1 (1) 0
1 (1) 0 1 (1)

OUTPUT

Example #2: Assume the input polynomial to be (x4 + x3 + 1).

Input Shift Reg Output
Bit State Bit

1 (x~) 1 (1) 0
1 (x) 0 1 (x3)
0 0 0
0 0 0
1 (1) 1 (1) 0

NOTE: The shift register state is shown after the indicated input bit is clocked.

- 22 -

The circuit below will divide any input bit stream by (x3 + x + 1).

INPUT

Example #1: Assume the input polynomial to be (x5 + 1).

Input
Bit

1 (x5)
o
o
o
o
1 (1)

Shift Reg
State

001 (1)
010 (x)
100 (x2)
011 (x+1)
110 (x2+x)
110 (x2+x)

Output
Bit

o
o o .
1 (x2)
o
1 (1)

Example #2: Assume the input polynomial to be x6.

Input
Bit

Shift Reg
State

Output
Bit

1 (x6) 001 (1) 0
o 010 (x~ 0
o 100 (x) 0
o 011 (xiI) 1 (x3)
o 110 (x +x) 0
o 111 (x2+x+1) 1 (x)
o 101 (x2 + 1) 1 (1)

OUTPUT

NOTE: The shift register state is shown after the indicated input bit is clocked.

- 23 -

A GENERAL DIVISION CIRCUIT

t I
~~

l

I
@

l

I
C20

l

OUTPUT

I
®

l

INPUT

The circuit above divides any input polynomial D(x) by a fixed polynomial P(x).
The quotient appears on the output line. The remainder is the final shift register state.

P(x) = gixi + gi_l xi-1 + ... + glx + gO

The number of shifts required is equal to the degree of the input polynomial plus
one.

DIVIDE CIRCUIT EXAMPLES

OUTPUT

~
INPUT I

Divide by x2 + 1
OUTPUT

~~
INPUT I

Divide by x4 + x2 + 1
OUTPUT

INPUT r
Divide by x6 + x5 + x4 + x3 + 1

- 24 -

SHIFT REGISTER IMPLEMENTATION OF SIMULTANEOUS

MULTIPLICATION AND DIVISION

It is possible to use a shift register to accomplish simultaneous multiplication ang
division. The circuit below wi~ multiply any input bit stream (input polynomial) by x
and simultaneously divide by (x + x + 1). The number of shifts required is equal to
the degree of the input polynomial plus one. The quotient appears on output line. The
remainder is the (mal state of shift register.

~
INPUT j

Example #1: Assume the input polynomial to be (x5 + 1).

Input
Bit

Shift Reg
State

Output
Bit

1 (x5) 011 (x + 1) 1 (x5)
o 110 (x2+x) 0
o 111 (x~+x+l) 1 (x~)
o 101 (x + 1) 1 (x)
o 001 (1) 1 (x)
1 (1) 001 (1) 1 (1)

Example #2: Assume the input polynomial to be x6.

Input
Bit

Shift Reg
State

Output
Bit

1 (x6) 011 (xt 1) 1 (x6)
o 110 (x + 1) 0
o 111 (X~+X+l) 1 (xj)
o 101 (x +1) 1 (x2)
o 001 (1) 1 (x)
o 010 (x~ 0
o 100 (x) 0

OUTPUT

NOTE: The shift register state is shown after the indicated input bit is clocked.

- 25 -

A CIRCUIT TO MULTIPLY AND DIVIDE SIMULTANEOUSLY

A general circuit to accomplish simultaneous multiplication by a polynomial hex) of
degree three and division by a polynomial g(x) of degree two is shown below. The
multipliers are all'· l' (connection) or '·0' (no connection).

OUTPUT

INPUT

To multiply by x3, set h3 = 1 and set all other multipliers to O.

To multiply by 1 and divide by (x3 + x + 1), set 110=1, gO=1 and gl =1 and set all
other multipliers to O.

To multiply by x3 and divide by (x3 + x + 1), set h3=1 gO=I, and gl =1 and set all
other multipliers to O. This is a form of simultaneous multiplication and division that is
encountered frequently in error-correction circuits.

To multiply by (x + I) and divide by x3, set hO=1 and hI =1 and set all other
multipliers to O.

- 26 -

A GENERAL CIRCUIT FOR SIMULTANEOUS MULTIPLICATION AND DIVISION

OUTPUT

f (5 ... (±) (3)' C20
! ! !

.......

Q
1 r

INPUT

The circuit above multiplies any input polynomial by Pl(x) and simultaneously divides by
P2(x).

Pl(x) = hiXi + hi_1Xi-l + hi_2Xi-2 + ... + hlx + ho

P2(X) = gixi + gi_lxi-l + gi_2xi- 2 + ... + glx + go

The number of shifts required is equal to the degree of the input polynomial plus one.

EXAMPLES OF CIRCUITS TO MULTIPLY AND DIVIDE SIMULTANEOUSLY

OUTPUT

4W
INPUT r
Multiply by x 3 + 1 and divide by x4 + x2 + 1

OUTPUT

I I I I
~ INPU~

Multiply by x5 + 1 and divide by x 5 + x 3 + x 2 + 1

- 27 -

. SIMULTANEOUS MULTIPLICATION AND DIVISION

WHEN THE MULTIPLIER POLYNOMIAL HAS A HIGHER DEGREE

The circuit below shows how to construct a shift register to multiply and divide
simultaneously when the multiplier polynomial has a higher degree. The number of
shifts required is equal to the degree of the input polynomial, plus the degree of the
multiplier polynomial, minus the degree of the divider polynomial, plus one. Register

. states are labeled below for the multiply polynomial and above for the divide polynomial.

I x 2 x I 1 I
INPUT

Multiply by x5 + 1 and divide by x3 + x + 1

OUTPUT

SHIFT REGISTER IMPLEMENTATION TO COMPUTE A SUM OF PRODUCTS

A single shift register can be used to compute the sum of the products of dif­
ferent variable polynomials with different fixed polynomials e.g. a(x)·ht (x) + b(x)·h2(x).

The circuit below will multiply an input polynomial a(x) by a fixed polynomial x3 +
x + 1 and simultaneously multiply an input polynomial b(x) by the fixed polynomial x2 +
1 and sum the products. The sum of the products appears on the output line. The
number of shifts required is equal to the sum of the degrees of the input polynomial of
the highest degree and the fixed polynomial of the highest degree plus one.

OUTPUT

a(x)

b(x)

Examl!le #1: Assume a(x) to be x3 and b(x) to be (x5 + x3 + 1).

a(x) b(x) Shift Req Output
Inl!ut Input State Bit

0 1 (x5) 101 0
0 0 010 1 (x~)
1 (x3) 1 (x3) 010 1 (x)
0 0 100 0
0 0 000 1 (x4)
0 1 (1) 101 0
0 0 010 1 (x2)
0 0 100 0
0 0 000 1 (1)

NOTE: The shift register state is shown after the indicated input bit is clocked.

- 29 -

" " -.
SHIFT REGISTER IMPLEMENTATION TO COMPUTE A SUM OF PRODUCTS

MODULOA DIVISOR

A single shift register can be used to compute the remainder of the sum of pro­
ducts of different variable polynomials with different fixed polynomials when divided by
another polynomial e. g. [a(x). hi (x), + b(x) .h2(x)lMOD g(x).

The J,:ircJJ!tbelo\V. will !llultlply an input polynomial a(x) bya fixed polynomial x2
+ x + 1 and simultaneously multiply an input polynomial b(x) by th~ fixed polynomial x2
+ 1 and sum the prod:ucts.Thesum of the products is reduced modulo x +x +1.

The shift register contents at th~ end of the ope~tion is the result.·· The number
of shifts required is equal to the degree of the input polynomial of the highest degree
plus one.

OUTPUT

a(x}

b(x}

Example #1: Assume a(x) to be x3 andb(x) to be (x5 + x3 + 1).

a(x) b(x) Shift Req
Input Input State

0 1 (x5) 101
0 0 001
J (x3) 1 (x3) 000
0 0 000
0 0 000
0 1 (1) 101 (x2+1)

NOTE: The shift register state is shown after the indicated input bit is clocked.

- 30 -

OTHER FORMS OF THE DIVISION CIRCUIT

The circuit examples below are implemented using the internal-XOR form of shift
register.

OUTPUT OUTPUT

~.

r
~
t

Premultiply by x3 and
divide by x3 + x + 1 Divide by x3 + x + 1

The circuit shown below can accomplish the circuit function of either of the
circuits shown above. If the gate is enabled for ~e entire input polynomial, the circuit
function is to premultiply by x"3 and divide by (x + x + 1). However, if the gate is
disabled for the last m (~ is 3 in this· case) bits of the input polynomial, the circuit
function is to divide by (x + x + 1) without premultiplying. In the following general
discussion, g(x) is the division polynomial and m is the degree of the division polyno­
mial.

OUTPUT

GATE ENABLED DURING LASTm BITS OF INPUT POLYNOMIAL

The circuit function is premultiply by xm and divide by g(x). The quotient appears
on the output line. The remainder is taken from the shift register.

GATE DISABLED DURING LASTm BITS OF INPUT POLYNOMIAL

The circuit function is to divide by g(x) without premultiplying by xm. The quo­
tient appears on the output line up to the last m bits of the input polynomial. The
remainder appears on the output line during the last m bits of the input polynomial.
The remainder can also be taken from the shift register.

- 31 -

EXTERNAL-XOR FORM OF SHIFT REGISTER DIVIDE CIRCUIT

There is another form of the shift register divide circuit called the external-XOR
form that in many cases can be implemented with less logic than the internal-XOR form.
An example is shown below.

External XOR form of shift register divide circuit

0-
INPUT

OUTPUT

NOTE: The odd circuit is a parity tree.

This circuit is sometimes drawn as shown below.

INPUT
OUTPUT

•

The external-XOR form of the shift register can be implemented two ways.

1. The shift register input is enabled during the entire read of the input polynomial.
In this case, the circuit function is premultiply by xm and divide by g(x).

2. The shift register input is disabled during the last m bits of the input polynomial.
In this case, the circuit function is divide by g(x).

- 32 -

Example #1. Input to shift register enabled during entire read of input polynomial.

Circuit function_= a(x)Uxffi/g(x)
where a(x) = x::l and g(x) = xJ + x + 1

INPUT
OUTPUT

Clocks with gate enabled during read. to get quotient.

DATA SIR OUTPUT
1 001 1
0 010 0
0 101 1

1
Quotient x 6 + x 3 + x 2 + x

0 011 1
0 111 1
0 110 0 - LSB

Clocks with gate disabled after read, to get remainder.

SIR
100
000
000

OUTPUT

~] Remainder
- LSB

1. During read, the output is the quotient.

x

2. After read is complete, disable the gate and clock m more times to place the
remainder on the output line.

x 5 + x 3 + x 2 + x

x3 + x + 1 (x8 because of premultiply)

+ x 5
+ x4 + x 3

+ x4 + x 3
+ x 3 + x 2

+ x 2
+ x 2 + x

x

- 33-

E;"ample #2. Input to shift register disabled during iast m bits of input poiynomiaL

Circuit function..= a(x)/g(x) ~
where a(x) = x.) and g(x) = x" + x + 1

INPUT
OUTPUT

OAT.:;' SIR OUTPUT
1 001 1] 0 010 0 Quotient = x2 + 1
0 101 1 - !.SB

Gate disabled at this point.
0 010 1] 0 100 1 Remainder = x2 + x + 1
0 000 1 - !.SB

Output

1. Up to the last m bits, the output is the quotient.

2. During the last m bits, the output is the remainder.

x2 + 1

x3 + x + 1 x5
x5

.., ~

+ X" + X"

x3 + x2
x3 + x + 1

x2 + x + 1

- 34-

PERFORMING POLYNOMIAL MULTIPLICATION AND DIVISION

WITH COMBINATORIAL LOGIC

Computing parity across groups of data bits using the circuit below was previously
studied.

a(x) = d6·x6 + d5·x5 + d4·x4 + d3·x3 + d2·x2 + di·x + dO

INPUT

~--? PO = d4 + d3 + d2 + dO
~---------------? Pi = d5 + d2 + di + dO

~-----------------------? P2 d6 + d3 + d2 + di

Now that polynomials have been introduced, ~e function of this ~ircuit can be
restated. It premultiplies the input polynomial by x and divides by (x + x + 1).
Obviously, the parity check equations can be implemented with combinatorial logic.
Therefore, the circuit function can be implemented with combinatorial logic.

d4 d5 d6 ----,

d3 d2 d3
- PO - Pi - P2

d2 di ------ d2

dO ----' dO ----' di

The combinatorial IOjic circuit above ~mputes the remainder from premultiplying a
7-bit input polynomial by x and dividing by (x + x + 1).

~:.35 -

THE SHIFT REGISTER AS A SEQUENCE GENERATOR

Consider the circuit below:

If this circuit is initialized to '001' and clocked, the sequence below will be gener­
ated.

The sequence repeats every seven shifts. Tfle length of the sequence is seven.
The maximum length that a shift register can generate is 2m-I, where m is the shi ft
register length. Shift registers do not always generate the maximum length sequence.
The sequence length depends on the implemented polynomial. It will be a maximum
length sequence only if the polynomial is primitive.

- 36 -

1.3.3 MORE ON POLYNOMIALS

Reciprocal Polynomial. The reciprocal of a polynomial P(x) of degree m with
binary coefficients,

P(x) = Pmoxm + Pm_loXm-l + 0 0 0 + PlOX + Po

is defined as:

xmoP(l/x) = Pooxm + PloXm- l + 0 0 0 + Pm-lOX + Pm

i.e., the coefficients are flipped end-for-end. "Reverse" is a synonym for "reciprocal."

Self-Reciprocal Polynomial. A polynomial is said to be self-reciprocal if it has the
same coefficients as its reciprocal polynomial.

Forward Polynomial. A polynomial is called the forward polynomial when it is
necessary to distinguish it from its reciprocal (reverse) polynomial. This applies only to
polynomials which are not self-reciprocal.

Polynqmial Period. The period of a polynomial P(x) is the least positive integer e
such that (xe + 1) is divisible by P(x).

Reducible. A polynomial of degree m is reducible if it is divisible by some polyno­
mial of a degree greater than 0 but less than m.

Irreducible. A polynomial of degree m is said to be irreducible if it is not divi­
sible by any polynomial of degree greater than 0 but less than m. "Prime" is a synonym
for "irreducible."

The reciprocal polynomial of an irreducible polynomial is also irreducible.

Primitive Polynomial. A polynomial of degree m is said to be primitive if its
period is 2m-I.

A primitive polynomial is also irreducible.

The reciprocal polynomial of a primitive polynomial is also primitive.

- 37 -

-..,

A PROPERTY OF RECIPROCAL POLYNOMIALS

The reciprocal polynomial can be used to generate a sequence in reverse of that genera­
ted by the forward polynomial.

Example: Shift register" A" 3belo~ implements (x3 + x + J) and shifts left. Shift register
"B" implements (x + x + 1), the reciprocal of (x + x + 1), and shifts right.

Initialize-shift register" A" to '001' and clock four times.

Shift Register "A"

Clock

1
2
3
4

contents

001
010
100
011
110

Transfer the contents of shift register" A" to shift register "B" and clock four times.

~
Clock contents

110
1 011
2 100
3 010

Shift Register "B" 4 001

Shift register "B" retraces in the reverse direction the states of shift register" A " .

The property of reciprocal polynomials described above will be used later for decoding
some types of error-correcting codes.

- 38 -

DETERMINING THE PERIOD OF AN IRREDUCIBLE POLYNOMIAL

WITH BINARY COEFFICIENTS

The algorithm described below for determining the period of an irreducible polyno­
mial g(x) with binary coefficients requires a table. The table is used in determining the
residues of powers of x up to (2m-I).

The table is a list of residues of x,x2,x4, - - - ,x2m-I modulo g(x), where m is the
degree of the g(x). Each entry in the table can be computed by squaring the prior
entry and reducing modulo g(x). The justification is as follows.

x2*a MOD g(x) = (xaoxa) MOD g(x)

= ([xa MOD g(x)]-[xa MOD g(x)]} MOD g(x)

[xa MOD g(x)]2 MOD g(x)

50 The example below illustrates the use of the table for determining the residue of
x modulo g(x).

x50 MOD g(x) = [X32+16+2] MOD g(x) = [X32_x16·x2] MOD g(x)

= {[f32 MOD g(Xl]o[f16 MOD g(Xl]·[f2 MOD g(xl]} MOD g(x)

I I I
Select these residues from the table.

The period of an irreducible polynomial of degree m must be a divisor of (2m-I).

For each e that is a divisor of 2m-I, compute the residue of xe modulo g(x) by
multiplying together and reducing modulo g(x) an appropriate set of residues from the
table.

The period of the pognomial is the least e such that the residue of xe modulo
g(x) is one. If the period is 2 -1, the polynomial is primitive.

- 39 -

DETERMINING THE PERIOD OF A COMPOSITE POLYNOMIAL

MTH BINARY COEFRCfflNTS

Let fi(x) represent the irreducible factors of f(x). If,

f(x) =(fl (x) ° f2(x) ° f3(x) ° ••••)

and there are no repeating factors, the periode of f(x) is given by:

where the ei are periods of the irreducible factors.

Example: The period of (x3 + 1) = (x + 1) ° (x2 + x + 1) is 3.

If f{x) is of the form:

f{x) = [flCX)ml)o[f2CX)m2)o[f3{X)m3»)ooo

where the mi are powers of repeating irreducible factors, then the period e of f(x) is
given by:

e = k oLCM(el,e2,e3,ooo)

where k is the least power of two which is not less than any
of the mi.

Example: The period of (x3 + x2 + x + 1) = (x + 1)3 is 4.

A SIMPLE METHOD OF COMPUTING PERIOD

A simple method for computing the period of a polynomial is as follows: Initialize
a hardware or software shift register implementing the polynomial to '00 0 • ·01'. Clock
the shift register until it returns to the '00 0 • ·01' state. The number of clocks required
is the period of the polynomial.

This method can be used to compute the period of composite as well as irreducible
polynomials. However, it can be very time consuming when the period is large.

- 40 -

NUMBER OF PRIMITIVE POLYNOMIALS OF GIVEN DEGREE

The divisors (factors) of (x2m-I + 1) are the polynomials with period 2m-lor
whose period divides 2m-I. This may include polynomials of degree less than or greater
than m.

The divisors (factors) of (x2m-I + I) that are of degree m are the primitive poly­
nomials of degree m.

The number n of primitive polynomials of degree m with binary coefficients is
given by:

where U(x) is Euler's phi function and is the number of positive integers equal to or
less than x that are relatively prime to x:

where

<I> (x) = I I (Pi) ei-1 • (Pi -1)
i

Pi = The prime factors of x
ei = The powers of prime factors Pi

Example: There are 30 positive integers that are equal to or less than 31 and rela­
tively prime to 31. Therefore, there are 6 primitive polynomials of degree
5.

- 41 -

SHIFT REGISTER SEQUENCES USING A NONPRIMITIVE POLYNOMIAL

Previously, a maximum length sequence generated by a primitive polynomial was
studied. Nonprimitive polynomials generate multiple sequences.

The state sequence diagram shown below is for the irreducible nonprimitive polyno­
mial

X4 + x 3 + x 2 + x + 1

0101 oofol
1010 LJ
1011
1001
1101

The state sequence diagram shown below is for th,e reducible polynomial

x4 + x 3 + x 2 + 1 = ex + 1)·eX3 + x + 1)

0011 0001 ooE) 10E]
0110 0010
1100 0100
0101 1000
1010 1101
1001 0111
1111 1110

Each of the four sequences directly above contain states with either an odd num­
ber of bits or an even number of bits, but not both. This is caused by the (x + 1)
factor.

- 42 -

REDUCTION MODULO A FIXED POLYNOMIAL

It is frequently necessary to reduce an arbitrary polynomial modulo a fixed polyno­
mial, or it may be necessary to reduce the result of an operation modulo a fixed poly-
nomial. .

The arbitrary polynomial could be divided by the fixed polynomial and the remain-
der retained as the modulo result. .

Another method is illustrated below. Assume the fixed polynomial to be (x3 + x +
1). Reduce all terms of the arbitrary polynomial by repeated applica~on of the follow­
ing relationship.

xi+3 = xi +1 + xi

Suppose the arbitrary polynomial is x4. Then, using the relationship above with
i=1 gives:

X4 = x2 + x.

Other examples of arbitrary polynomials reduced modulo (x3 + x + 1) are shown
below.

X4 + x2 = (x2 + x) + x2

= x

x9 = x7 + x6

~x4 = (x5 + x4) + + x3)
= x5 + x3

+ f3 = (x3 + x2)
= x2

- 43-

DIVIDING BY A COMPOSITE POLYNOMIAL

Sometimes it is necessary to divide a received polynomial C'(x) by a composite
polynomial p(x) = pI (x)· p2(x) • p3(x)' ••• , where pl(x),p2(x),p3(x),'" are relatively prime,
in pairs. Assume the remainder is to be checked for zero.

The remainder could be checked for zero after dividing the received polynomial by
the composite polynomial. However, dividing the received polynomial by the individual
factors of the composite polynomial and checking all individual remainders for zero
would be equivalent.

Example #1: p(x) = pl(x)'p2(x)

(x + 1) .(x3 + x + 1)

Composite Remainder rex) Individual Remainder r1(x)

~ ~
INPUT r INPUT I

Individual @
Remainder xO +

r2 (x)

At other times, when the generator polynomial is composite, individual remainders
are required for computation.

The received polynomial could be divided directly by each factor of the composite
polynomial to get individual remainders. However, the following two-step procedure
would be equivalent.

1. Divide the received polynomial by the composite polynomial to get a
composite remainder.

2. Divide the composite remainder by factors of the composite poly­
nomial to get individual remainders.

Step 2 could be accomplished by software, sequential logic or combinatorial logic.

In many cases, a slower process can be used in step 2 than in step 1 because
fewer cycles are required in dividing the composite remainder.

- 44 -

The diagram below shows an example of computing individual remainders from a
"composite remainder using combinatorial logic.

Example #2

Composite Remainder r(x~ ,

x 1 1

Individual Remainders

It is also possible to compute a composite remainder from individual remainders, as
shown below.

- 45 -

Example #3

IndivIdual
Remainder rl(x)

x

Individual
Remainder r2(x)

1

Composite Remainder rex)

In the examples above, the factors of the composite polynomial are assumed to be
relatively prime. If this is the case, the Chinese Remainder Theorem for polynomials
guarantees a one-to-one mapping between composite remainders and sets of individual
remainders.

To understand how the connections in circuit Examples #2 and #3 were determined,
study the mappings below. To generate the first mapping, the individual remainders
corresponding to each composite remainder are determined by dividing each possible
composite remainder by the factors of the composite polynomial. For the second mapp­
ing, the composite remainder corresponding to each set of individual remainders is
determined by rearranging the first mapping.

The boxed areas of the first mapping establish the circuit connections for Example
#2. The boxed areas of the second mapping establish the circuit connections for Ex­
ample #3. There are other ways to establish these mappings. The method shown here
has been selected for simplicity. However, in a practical sense it is limited to polyno­
mials of a low degree.

- 46 -

FIRST MAPPING

Composite
Remainder

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Corresponding
Individual
Remainders

000 a
001 1
010 1
011 0
100 1
101 0
110 0
111 1
011 1
010 0
001 0
000 1
111 0
110 1
101 1
100 0

SECOND MAPPING

Individual
Remainders

000 0
000 1
001 0
001 1
010 0

010 1
011 0
011 1
100 0
100 1
101 0
101 1
1100
1101
111 0
111 1

- 47 -

Corresponding
Composite
Remainder

0000
1011
1010
0001
1001

0010
0011
1000
1111
0100
0101
1110
0110
1101
1100
0111

PROBLEMS

1. Write the sequence for the circuit below.

2. Write the polynomial for the circuit above.

3. Perform the multiplication operations below.

x3 + x + 1
x + 1

x 3 + x2 + x + 1
X3 + 1

x5 + 1
x3 + x + 1

4. Perform the division operations below. Show the quotient and the remainder.

x3 + x + 1 I x6 + x + 1 x3 + x + 1 I x3 + x

5. Determine the period of the following polynomials:

x3 + 1, x3 + x 2 + 1

6. Show a circuit to multiply by (x3 + 1).

7. Show a circuit to divide by (x3 + 1).

8. Show a circuit to compute a remainder modulo (x3 + x2 + I) using combinatorial
logic. The input polynomial is 7 bits in length.

9. Is (x2 + x + 1) reducible?

10. Compute the reciprocal polynomial of(x4 + x + 1).

11. How many primitive polynomials are of degree 4?

- 48 -

CHAPTER 2 - ERROR DETECTION
AND CORRECTION FUNDAMENTALS

2.1 DETECTION FUNDAMENTALS

MORE ON POLYNOMIAL SHIFT REGISTERS

The shift register form below is used frequently for error detection and correction.
This circuit multiplies by xm and divides by g(x), where m is the degree of g(x) and
also the shift register length. g(x) is the generator polynoDJial of the error detect­
ion/correction code being implemented. For this example, g(x) = x3 + x + 1 and m=3.

OUTPUT

Two properties of this form of shift register are discussed below.

PropertY #1

If the shift register above is recelvmg a stream of bits, the last m. bits (in this
case three) must match the shift register contents in order for the final shift register
state to be zero. This is because a difference between the input data bit and the high
order shift register stage causes at least the low order stage to be loaded with '1'.

Assume an all-zeros data record. Any burst of length m or fewer bits will leave
the shift register in a nonzero state~ If an error burst of length greater than m bits is
to . leave the shift register in its zero state, the last m bits of the burst must match the
shift register contents created by the error bits which preceded the last m bits of the
burst.

PropertY #2

Assume the shift register is zero. Receiving an error burst of length m or fewer
bits has the same effect as placing the shift register at the state represented by the
sequence of error bits.

When reading an all-zeros data record, an error burst of length m or fewer bits
sets the shift register to a state on its sequence that is b shifts away from the state
representing the error burst, where b is the length of the burst.

- 49 -

SELECI'ING CHECK BITS

Property #1 implies that for all-zero data, any burst of length m or fewer bits is
guaranteed to be detected. Property #2 indicates that for all-zero data, it may be
possible to correct some bursts of length less than m bits by clocking the shift register
along its sequence until the error burst is contained within the shift register. .

Clearly, we must find a way to extend these results to cases of nonzero data if
they are to be of any use. The following discussion describes intuitively how check bits
must be selected so that on read, the received polynomial leaves the shift register at
zero in the absence of error.

Assume a shift register configuration that premultiplies by xm and divides by g(x).
On write, after clocking for all data bits has been completed, the shift register will
likely be in a nonzero state if nonzero data bits have been processed. If we transmit
as check bits following the data bits, the contents of the shift register created by
processing the data bits, then on read in the absence of error, the received data bits
will create the same pattern in the shift register, and the received check bits will
match this pattern, leaving the shift register in its zero state.

The concatenation of the data bits and their associated check bits is called a
codeword polynomial or simply a codeword. A codeword C(x) generated in the manner
outlined above by a shift register implementing a generator polynomial g(x) has the
property:

C(x) MOD g(x) = 0

This is a mathematical restatement of the condition that processing a codeword
must leave the shift register in its zero state.

Theorem 2.1.1. The Euclidean Division Algorithm. If D(x) and g(x) are polynomials
with coefficients in a field F, and g(x) is not zero, there exists polynomials q(x) (the
quotient) and rex) (the remainder) with coefficients in F such that:

D(x) = q(x)' g(x) + rex)

where the degree of rex) is less than the degree of g(x); rex) may in fact be zero.

- 50 -

The Euclidean Division Algorithm provides a formal justification for the method of
producing check bits outlined above. By the Euclidean Division Algorithm,

where

Rearranging gives

D(x) = q(x) • g(x) + r(x)

D(x) = Data polynomial
g(x) = Generator polynomial
q(x) = Quotient polynomial
r(x) = Remainder polynomial

O(x) + rex) = q(x)
g(x)

This shows that in order to make the data polynomial itself divisible by g(x) , r(x)
would have to be EXCLUSIVE-OR-ed against D(x). However, this would modify the last
m bits of the data polynomial, which is not desirable.

Appendinlfu the remainder bits to the input data bits has the effect of premultiply­
ing D(x) by x and then dividing by g(x). Then by Euclidean Division Algorithm we
have,

xm·O(x) = q(x)·g(x) + rex)

or equivalently,

xm·O(x) + rex)
g(x) = q(x)

This shows that if r(x) is EXCLUSIVE-OR-ed against the data polynomial premult­
iplied by xm, the resulting polynomial will be divisible by g(x). This is equivalent to
appending r(x) to the end of the original input data polynomial, since coefficients of all
x terms of xm.D(x) are zero for i<m. The original data polynomial is not modified
when check bits are added with this method.

NOTATION

The following symbology will be used in our discussion of error detection and
correction codes:

D(x) = Data polynomial
k = Number of information symbols = degree of D(x) + 1

g(x) = Code generator polynomial
m = Number of check symbols = degree of g(x)

W(x) =Write redundancy (check) polynomial
= xm. D(x) MOD g(x)

C(x) =Transmitted codeword polynomial
=xm·D(x) + W(x) = xtn.D(x) + [xm.D(x) MOD g(x)]

n = Record length = degree of C(x) = k + m
E(x) = Error polynomial

C'(x) = Received codeword polynomial
=C(x) + E(x)

- 51 -

An implementation of the encoding process using the intemal-XOR ~orm of shift
regis,r circuit is shown below. This particular example premultiplies by x and divides
by (x + x + 1).

DATA

MUX

WRITE DATA/CHECK BITS

After all DATA bits have been clocked into the shift register, the CHECK­
_BIT_TIME signal is asserted. The AND gate then disables feedback, allowing the check
bits to be shifted out of the shift register, and the MUX passes the check bits to the
device.

An implementation using the extemal-XOR form of shift register circuit shown
below performs the same function. It writes the same check bits for a given data
record.

DATA

o
D
D

MUX

L...-----t-___to-ll WRITE DATA/

I---------&----' 0 CHECK BITS

After all DATA bits have been clocked into the shift register, the CHECK­
_BIT_TIME signal is asserted. The upper AND gate then disables feedback and the
lower AND gate blocks extraneous DATA input to the ODD parity tree, whose output
the MUX passes as check bits to the device.

- 52 -

SINGLE-BURST DETECflON SPAN FOR AN ERROR-DETECfION CODE

The single-burst detection span for a detection-only code is equal to the shift
register length. This is obvious from Pro~!1Y #1 discussed earlier. Assume a shift
register configumtion that premultiplies by xm and divides by g(x). Assume the shift
register to be initialized to zero and assume an all zeros data record. The only '1' bits
to enter the shift register will be from an error burst. The first bit of the burst sets
certain shift register bits to 1, including the low order bit.

In order to set the shift register to zero, the next m error burst bits must match
the shift register contents. Therefore, in order for an error burst to set the shift
register to zero, it must be longer than the length of the shift register.

This can be also be demonstmted mathematically. It must be shown that the
length of an error burst required to leave the shift register at zero is greater than m
bits. For an error burst to leave the shift register at zero, it must be divisible by the
genemtor polynomial. It must be shown that to be divisible by the polynomial, a burst
must be greater than m bits in length.

Let E(x) contain a single error burst of length m or fewer bits. Let the lowest­
order nonzero coefficient of E(x) be the coefficient of the xl term of C'(x). Then:

E(x) = xjob(X)

where the lowest-order nonzero coefficient of b(x) is that of x~ and the length of the
burst is equal to the degree of b(x) plus one. It is clear that xl and g(x) are relatively
prime, so if g(x) is to divide E(x) it must divide b(x). This is impossible, since if the
burst is of length m or fewer bits, b(x) is a polynomial of degree at most (m-I) and is
clearly not divisible by g(x), which is of degree m.

- 53 -

THEOREMS FOR ERROR-DETECTION CODES

Theorem 2.1.2. All single-bit errors will be detected by any code whose generator
polynomial has more than one term. The simplest example is the code generated by the
polynomial (x + 1).

Theorem 2.1.3. All cases of an odd number of bits in error will be detected by a
code whose generator polynomial has (XC + 1) where c is greater than zero, as a factor.

The check bit ~enerated by (x + 1) is simply an overall parity check. All polyno­
mials of the form (x + 1) are divisible b! (x + 1). Therefore, any code whose generator
polynomial has a factor of the form (x + 1) automatically includes an overall parity
check.

Theorem 2.1.4. A code will detect all single- and double-bit errors if the record
length (including check bits) is no greater than the period of the generator polynomial.

Theorem 2.1.5. A code will detect all single-, double-, and triple-bit errors if its
generator polynomial is of the form (xC + 1). P(x) and the record length (including check
bits) is no greater than the period of the generator polynomial.

Theorem 2.1.6. A code generated by a polynomial of degree m detects all single
burst errors of length no greater than m. Note that a burst of length b is defined as
any error pattern for which the number of bits between and including the first and last
bits in error is b.

Theorem 2.1.7. A code with a generator polynomial of the form (xC + 1)·P(x) has
a guaranteed double-burst detection capability provided the record length (including
check bits) is no greater than the period of the generator polynomial. It will detect
any combination of double bursts when the length of the shorter burst is no greater
than the degree of P(x) and the sum of the burst lengths is no greater than (c+ 1).

This theorem allows selection of a code by structure for accomplishing double-burst
detection. Codes which do double-burst detection can also be selected by a computer
evaluation of random polynomials.

Theorem 2.1.8. The misdetection probability Pmd, defined as the fraction of error
bursts of length b>m where m is the degree of the generator polynomial, that go un­
detected is:

Pmd -1 if b > (m+l)
2m

1 if b = (m+l) =--
2m- 1

When all errors are assumed to be possible and equally probable, Pmd is given by:

Pmd :::: -1
2m

If some particular error bursts are more likely to occur than others (which is
generally the case), then the misdetection probability depends on the particular poly­
nomial and the nature of the errors.

- 54 -

MULTIPLE-SYMBOL ERROR DETECfION

An error-detection code can be constructed from the binary BCH or Reed-Solomon
codes to achieve multiple-bit or multiple-symbol error detection. See Sections 3.3 and
3.4.

CAPABILITY OF A PARTICULAR ERROR-DETECfION CODE: CRC-CCITF CODE

The generator polynomial for the CRC-CCITT code is:

x16 + x12 + x5 + 1 = (x + 1).(x15 + x14 + xl3 + x12 + x4 + x3 + x2 + x + 1)

The code's guaranteed capability as determined by its structure is defmed below:

a) Detects all occurrences of an odd number of bits in error. (fheorem 2.1.3)

b) Detects all single-, double- and triple-bit errors if the record length (in­
cluding check bits) is no greater than 32,767 bits. (fheorem 2.1.5)

c) Detects all single-burst errors of sixteen bits or less. (fheorem 2.1.6)

d) Detects 99.99695% of all possible bursts of length 17, and 99.99847% of all
possible longer bursts. (Theorem 2.1.8). This property assumes that all errors
are possible and equally probable.

The CRC-CCITT polynomial has some double-burst detection capability when used
with short records. This capability cannot be determined by its structure. Computer
evaluation is required.

When the code is used with a 2088-bit record, it has a guaranteed detection capa­
bility for the following double bursts:

Length of
First Burst

1
2
3
4
5
6

Length of
Second Burst

1to6
1to5
1to4
1to4
1 to 2

1

- 55 -

2.2 CORRECTION FUNDAMENfALS

This section introduces single-bit and single-burst error correction from the view­
point of shift register sequences.

The examples given use very short records and small numbers of check bits. How­
ever, the same techniques apply to longer records and greater numbers of check bits as
well.

SINGLE-BIT ERROR CORRECI'ION

The circuit shown below can be used to correct a single-bit error in a seven-bit
record (four-data bits and three-check bits). Data bits are numbered d3 through dO.
Check bits are numbered p2 through pO. Data and check bits are transmitted and
received in the following order:

d3 d2 dl dO p2 pl po

Both the encode and $ecode shift registers premultiply by xm and divide by g(x).
Again m is three and g(x) = x + x + 1.

ENCODE CIRCUIT

WRITE DATA

d3 d2 dl dO
MUX

WRITE DATA/CHECK BITS

d3 d2 dl dO p2 pl pO

For encoding, the shift register is first cleared. Data bits d3, d2, dl, and dO are
processed and simultaneously passed through the MUX to be sent to the storage device
or channel.

After data bits are processed, the gate is disabled and the MUX is switched from
data bits to the high order shift register stage. The shift register contents are then
sent to the storage device or channel as check bits.

- 56 -

DECODE CIRCUIT

RAW DATA CORRECTED
7 BIT FIFO BUFFER DQ~----

DATA
C

Decoding takes place in two cycles; the buffer load cycle and the buffer unload
cycle. A syndrome is generated by the shift register circuit as the buffer is loaded.
Correction takes place as the buffer is unloaded. The shift register is cleared just
prior to the buffer load cycle.

HOW CORRECTION WORKS

Since g(x) is primitive, it has two sequences: a sequence of length seven and the
zero sequence of length one.

001
010
100
Oll
110
III
101

OE}

Assume an all-zeros data record. Assume data bit dl is in error. The contents of
the decode shift register during buffer load would be as shown below.

Clock Error Shift Register
Number Bits Contents

Initialize 000
d3 000
d2 000
dl 1 011
dO 110
p2 111
pI 101
pO 001

Notice that after the error is processed, the shift register clocks through its
sequence until the end of the record is reached. The final shift register state for this
example is '001'. This is the syndrome.

- 57 -

The syndrome remains in the shift register as the buffer unload cycle begins. The
shift register is clocked as data bits are unloaded from the buffer. As each clock
occurs, the shift register clocks through its sequence. Simultaneously, the gate mon­
itors the shift register contents for the '100' state. Correction takes place on the next
clock after the '100' state is detected.

The shift register contents during the buffer unload cycle is shown below.

Clock
Number

Shift Register
Contents

After Read
d3
d2
d1
dO
p2
pI
pO

001
010
100 *
011 **
110
111
101
001

* The three-input gate enables after this clock because the '100' state is det­
ected.

** Correction takes place on this clock.

Consider what happens on the shift register sequence during the buffer load cycle.

010
100
011 d1 clock Forces SIR to this point on the sequence.
110 dO crock Advances SIR to this point on the sequence.
111 p2 clock "
101 p1 clock "
001 pO clock: The final state of the SIR = the syndrome.

- 58-

Since the data record is all zeros, the shift register remains all zeros until the
error bit dt is clocked. The shift register is then set to the 'OIl' state. As each new
clock occurs, the shift register advances along its sequence. There is an advance for
dO, p2, pI, and pO. After the pO clock, the shift register is at state '001'. This is the
syndrome for the assumed error.

When the error bit occurs, it has the same effect on the shift register as loading
the shift register with '100' and clocking once. Regardless of where the error occurs,
the first nonzero state of the shift register is '011'.

Error displacement from the end of the record is the number of states between the
'100' state and the syndrome. It is determined by the number of times the shift reg­
ister is clocked between the error occurrence and the end of record.

Consider what happens on the shift register sequence during the buffer unload
cycle. The number of states between the syndrome and '100' state represents the error
displacement from the front of the record. To determine when to correct, it is suffi­
cient to monitor the shift register for state '100'. Correction occurs on the next clock
after this state is detected.

001 The syndrome: initial state of the SIR for unload.
010 d3 clock Advances SIR to this point on the sequence.
100 d2 clock The gate is enabled by this SIR state.
011 d1 clock Correction takes place.
110
111
101

Consider the case when the data is not all zero. The check bits would have been
selected on write such that when the record (data plus check bits) is read without
error, a syndrome of zero results. When an error occurs, the operation differs from the
all-zeros data case, only while the syndrome is being generated. A given error results
in the same syndrome, regardless of data content because the code is linear. Once a
syndrome is computed, the operation is the same as previously described for the all­
zeros data case.

The code discussed above is a single-error correcting (SEC) Hamming code. It can
be implemented with combinatorial logic as well as sequential logic.

- 59 -

SINGLE-BIT ERROR CORRECTION AND DOUBLE-BIT ERROR DETECTION

If an (x + 1) factor is combined with the polynomial of the previous example, the
resulting polynomial

g(x) = (x + 1)·(x3 + x + 1) = x4 + x 3 + x 2 + 1

can be used to correct single-bit errors and detect double-bit errors on seven-bit rec­
ords (three data bits and four check bits). Double-bit errors are detected regardless of
the separation between the two error bits.

g(x) has four sequences; the two sequences of length one and two sequences of
length seven.

SEQ A SEO :a
0001 0011 ooE] 10E]
0010 0110
0100 1100
1000 0101
1101 1010
0111 1001
1110 1111

If a single-bit error occurs, the syndrome will be on sequence A. If a double-bit
error occurs, the syndrome will be on sequence B. This gives the code the ability to
detect double-bit errors.

The circuit below could be used for decoding. Encoding would be performed with
a shift register circuit premultiplying by xm and dividing by g(x).

RAW DATA CORRECTED
7 BIT FIFO BUFFER D QI-----_

DATA
C

GATE A

- 60 -

Gate A detects the '1000' state on the clock prior to the clock that corrects the
error. Gate B blocks the shift register feedback on the clock following detection of the
'1000' state. This causes the shift register to be cleared.

If a double-bit error occurs, the syndrome is on sequence B. The shift register
travels around sequence B as it is clocked during the buffer unload cycle. Since the
'1000' state is not on this sequence, gate A will not enable and correction will not take
place. Since correction does not occur, the shift register remains nonzero. Since the
shift register is nonzero at the end of the buffer unload cycle a double error is· as­
sumed.

If three bit-errors occur, the syndrome will be on sequence A. During the buffer
unload cycle, the shift register state '1000' is detected and a data bit is falsely cleared
or set. This is miscorrection because the bit affected is not one of the bits in error.

This code corrects a single-bit error. It detects all occurrences of an even num­
ber of bits in error. When more than one bit is in error and the total number of bits
in error is odd, miscorrection results.

This code is a single-error correcting (SEq, double-error detecting (OED) Hamming
code. It can be implemented with combinatorial logic or with sequential logic.

BURST LENGTH-TWO CORRECTION

The polynomial of the previous example can also be used for burst length-two
correction. The circuit is identical except that AND gate A detects '1 xOO' .

If a burst of length one occurs, the syndrome will be on sequence A. Gate A
enables on state '1000'. If a burst of length two occurs, the syndrome will be on
sequence B. Gate A enables on state '1100'. When the shift register is clocked from
the '1100' state it goes to '1000', due to the action of gate B. Gate A remains enabled.
On the next clock, the shift register is cleared due to the action of gate B. Gate A is
enabled for two consecutive clock times and therefore two adjacent bits are corrected.

- 61 -

CORREC/'JON OF LONGER BURSTS

The concepts discussed above can be extended to correction of longer bursts as
well.

To construct such a code, select a reducible or irreducible polynomial meeting the
following requirements.

1. Each correctable burst must be on a separate sequence.

2. The sequence length must be equal to or greater than the record length (in
bits, including check bits) for sequences containing a correctable burst.

3. Any burst that is to be guaranteed detectable must not be on a sequence
containing a correctable burst.

Assume a polynomial with multiple sequences and that the bursts '1', '11', '101',
and ' 111' are all on separate sequences of equal length. There may be other sequences
as well:

0···0001 o· • ·0011 o· . ·0101 0···0111

Such a code has at least the following capability: Its correction span can be
selected to be one, two, or three bits. In either case, its detection span is guaranteed
to be at least three.

Primitive polynomials can also be used for single-burst correction. In this case,
the polynomial requirements are:

1. The polynomial period must be equal to or greater than the record length (in
bits, including check bits).

2. Correctable bursts must be separated from each other on the sequence by a
number of states equal to or greater than the record length (in bits, including
check bits).

3. Any burst that is to be guaranteed detectable must be separated from correc­
table bursts by a number of states equal to or greater than the record length
(in bits, including check bits).

It is also possible to state more general requirements for a single-burst correcting
code. Any polynomial satisfying either of the two previous sets of requirements would
satisfy the more general requirements. Many other polynomials would meet the general
requirements as well. .

- 62 -

The more general requirements for a single-burst correcting code are:

1. If more than one correctable burst is on a given sequence, these bursts must
be separated by a number of states equal to or greater than the record
length (in bits, including check bits).

2. If one or more bursts that are to be guaranteed detectable are on a. sequence
with one or more correctable bursts, they must be separated from each cor­
rectable burst by a number of states equal to or greater than the record
length (in bits, including check bits).

3. The sequence length must be equal to or greater than the record length (in
bits, including check bits) for sequences containing a correctable burst.

ACHIEVING DOUBLE-BURST DETECTION

In order for a computer-generated code to have double-burst detection capability,
the following inequality must hold for all i,j, and k such that 0 5 i,j,k < nand i" j:

[x i .bl(X) + xj.b2(X)] MOD g(x) " [xk .b3(X)] MOD g(x)

Where

n is the record length (in bits) including check bits

d is the double-burst detection span

s is the single-burst correction span

bl (x) is any burst of length LI such that 0 < LI 5 d

b2(x) is any burst of length L2 such that 0 < L2 5 d

b3(x) is any burst of length L3 such that 0 < L3 5 s

g(x) is the code generator polynomial

Additionally, if i>j then we require i>(j+s-LI) and i~(j+LV, while if i<j then we require
i~(j-Lt> and i<(j-s+L2).

DST uses special hardware and software to find codes that satisfy these require­
ments.

- 63 -

SINGLE-BURST CORRECI'ION VIA STRUCTURED CODES

Fire codes achieve single-burst correction capability by their structure. These
codes are generated by the general polynomial form:

g(x) = c(x)"p(x) = (xc + l)"p(x)

where· p(x) is any irreducible polynomial of degree z and period e, and e does not divide
c. These codes are capable of correcting single bursts of length b and detecting bursts
of length d>b provided z>b and c>(d+b-l). The maximum record length in bits, including
check bits, is the least common multiple (LCM) of e and c. This is also the period of
the generator polynomial g(x).

The structure of Fire code polynomials causes them to have multiple sequences.
Each correctable burst is on a separate sequence. Burst error correction with polyno­
mials of this type was discussed earlier in this section. See Section 3.1 for more infor­
mation on Fire codes.

SINGLE-BURST CORRECI'ION VIA COMPUTER-GENERATED CODES

The single-burst correction capability of computer-generated codes is achieved by
testing.

These codes are based on the fact that if a large number of polynomials of a par­
ticular degree are picked at random, some will meet previously defined specifications,
provided these specifications are within certain bounds.

There are equations that can be used to predict the probability of success when
searching polynomials of particular degree against a particular criteria.

The advantage these codes have over Fire codes is less pattern sensitivity. If
miscorrection is to be avoided on certain short double bursts, this can be included as an
additional criterion for the computer search. See Section 3.2 for more information on
computer-generated codes.

SINGLE-BURST DETECI'ION SPAN FOR A BURST-CORRECI'ING CODE

Let n represent the record length in bits (including check bits). Let m represent
the shift register length in bits. Assume an all-zeros data record. Assume a shift
register configuration that premultiplies by xm and divides by g(x).

An error burst, m bits or less in length, has the same effect as loading the shift
register with the burst. Therefore, a particular error burst will place the shift register
at a particular point in the sequence.

If the point in the sequence is far away from any correctable pattern, the shift
register will not sequence to a correctable pattern in n shifts and there is no possibility
of miscorrection. However, if the particular error burst places the shift register at a
point in the sequence that is near a correctable pattern, the correctable pattern may be
detected in n shifts and miscorrection will result. It follows that the error bursts of
length m or less that have the exposure of miscorrection, are those bursts that force
the shift register to points in the sequence near correctable patterns.

- 64 -

The result of having a particular pattern (or state) in the shift register is the
same as if the same pattern were an input-error burst. It follows that the list of shift
register states near the correctable patterns also represents a list of error bursts, of
length m or less, that may result in miscorrection.

The search software shifts a simulated shift register more than ntimes forward
and reverse from each correctable pattern. After each shift, the burst length in the
shift register is determined. One less than the minimum burst length found over the
entire process represents the single-burst detection span.

PROBABILITY OF MISCORRECIION

Let
b = correction span
n = record length including check bits
m = number of check bits

The total number of possible syndromes is then 2m. The total numbfr of valid syn­
dromes must be equal to the total number of correctable bursts, which is n· 2 - .

Assume that all error bursts are possible and equally probable and that when
random bursts are received, one syndrome istjust as likely as another. If all syndromes
have equal probability and there are n· 2b- valid syndromes out of 2m total possible
syndromes, then the probability of miscorrection for bursts exceeding the code's guaran­
teed detection capability is:

PIne
n'2b - 1

~ =-=--

This equation provides a measure for comparing the effect that record length,
correction span, and number of check bits have on miscorrection probability.

One must be careful using this equation. A very simple assumption is made, which
is that all error bursts are possible and equally probable. This is unlikely to be the
case except for particular types of errors such as synchronization errors. To accurately
calculate the probability of miscorrection requires a detailed knowledge of the types of
errors that occur and detailed information on the capability and characteristics of the
polynomial.

- 65 -

PATTERN SENSITIVITY OF A BURST-CORRECI'ING CODE

Some burst-correcting codes have pattern sensitivity. The Fire code, for example,
has a higher miscorrection probability on short double bursts than on all possible error
bursts.

Pattern sensitivity is discussed in greater detail in Sections 4.4 and 4.6.

- 66 -

2.3 DECODING FUNDAMENTALS

The following pages show various examples of decoding single-burst-error-correct­
ing codes. These points will help in understanding the examples.

1. Forward displacements are counted from the first data bit to the first bit in error.
The first data bit is counted as zero.

2. Reverse displacements are counted from the last check bit to the first bit in error.
The last check bit is counted as zero.

3. If a negative displacement is computed, add the record length (seven in all ex-
amples) to the displacement. If a displacement greater than the record length
minus one is computed, subtract the record length from the displacement.

4. Shift register states are shown after the indicated clock.

5. For all examples, the final error pattern is in the register from left to right. The
left-most bit of pattern represents the first bit in error from the front of the
record.

6. In these simple examples, check bits are corrected as well as data bits.

7. In these examples, only the read decode circuit is shown. The write circuit always
premultiplies by xm and divides by g(x).

8. Each suffix A example is the same as the prior example, except that a different
error has been assumed.

9. In examples 1 through 4A, it is not necessary to have additional hardware that
detects shift register nonzero at the end of a read. In examples 5 through 8A,
this additional hardware is required.

10. In these simple examples, if an error occurs that exceeds the correction capability
of the code, miscorrection results. In a real world implementation, excess redun­
dancy would be added to keep miscorrection probability low.

11. The folh)wing abbreviations are used in the decoding examples.

CLK - Clock
CNT - Count
ERR - Error

FIFO
SIR

- First in, first out
- Shift register

- 67 -

Example #1:

- Correction in hardware, forward clocking.

- Single-bit-correcting code, single-bit error, data all zeros.

- Spaced data blocks, on-the-fly correction (data delay = 1 block).

- Internal-XOR form of shift register.

- g(x) = x3 + x + 1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x3.

RAW DATA CORRECTED
7 BIT FIFO BUFFER D Qf------..

DATA
C

GATE 'A'

READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (BUFFER UNLOAD)

ERR SIR SIR
010 *

d3 0 000 d3 100 **
d2 1 011 d2 011 ***
d1 0 110 d1 110
dO 0 111 dO 111
p2 0 101 p2 101
p1 0 001 p1 001
pO 0 010 pO 010

* Shift register contents at start of correction cycle.
** Gate A enables after the d3 clock.

*** Correction takes place on d2 clock.

- 68 -

Example #2:

- Correction in hardware, forward clocking.

- Single-bit-correcting code, single-bit error, data all zeros.

- Spaced data blocks, on-the-fly correction (data delay = 1 block).

- Internal-XOR form of shift register.

- g(x) = x3 + x + 1.

- Detect zeros in left-most bits of shift register.

- No premultiplication.

RAW DATA
7 BIT FIFO BUFFER

CORRECTED

DATA
D Qt-----­

C

BUFFER UNLOAD CYCLE

*
**

READ CYCLE
(BUFFER LOAD)

ERR SIR

d3 a 000
d2 1 001
d1 a 010
dO a 100
p2 a all
pI a 110
pO a 111

GATE 'A'

CORRECT CYCLE
(BUFFER UNLOAD)

SIR
111 *

d3 101 **
d2 001 ***
d1 010
dO 100
p2 all
pI 110
po 111

Shift register contents at start of correction cycle.
Gate A enables after the d2 clock.
Correction takes place on d2 delayed clock.

- 69 -

Example #3:

- Correction in hardware, forward clocking.

- Burst length-two correcting code, two-adjacent error, data all zeros.

- Spaced data blocks, on-the-fly correction (data delay = 1 block).

- Intemal-XOR form of shift register.

- g(x) = (x + 1). (x3 + x + I) = x4 + x3 + x2 + 1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x4.

RAW DATA CORRECTED
7 BIT FIFO BUFFER D QI-----...

DATA
C

GATE 'A' J t
'---"-....... BUFFER

~----~L--/ UNLOAD
CYCLE

GATE 'B'

READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (BUFFER UNLOAD)

ERR SIR SIR
0110 * d2 a 0000 d2 1100 **

d1 1 1101 d1 1000 ***
dO 1 1010 dO 0000 ****
p3 a 1001 p3 0000
p2 0 1111 p2 0000
pI 0 0011 pI 0000
pO a 0110 pO 0000

* Shift register contents at start of correction cycle.
** Gates A and B enable after the d2 clock.

*** Bit dl is corrected on the dl clock.
**** Bit dO is corrected on the dO clock.

- 70 -

Example #3A:

- Correction in hardware, forward clocking.

- Burst length-two correcting code, single-bit error, data all zeros.

- Spaced data blocks, on-the-fly correction (data delay = 1 block).

- Internal-XOR form of shift register.

- g(x) = (x + 1)· (x3 + x + 1) = x4 + x3 + x2 + 1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x4.

RAW DATA CORRECTED
7 BIT FIFO BUFFER D Qt-----......

DATA
C

GATE 'B'

*
**

READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (BUFFER UNLOAD)

ERR SIR SIR
0010 *

d2 0 0000 d2 0100 **
d1 0 0000 d1 1000 ***
dO 1 1101 dO 0000 ****
p3 0 0111 p3 0000
p2 0 1110 p2 0000
p1 0 0001 p1 0000
pO 0 0010 pO 0000

Shift register contents at start of correction cycle.
Gate A enables after the d2 clock.
Gate B enables after the d1 clock. No correction takes place on the dl
clock because gate B is disabled at the time of the clock.
Bit dO is corrected on the dO clock.

- 71 -

Example #4:

- Correction in hardware, forward clocking.

- Burst length-two correcting code, two adjacent error, data all zeros.

- Consecutive data blocks, on-the-fly correction (delay = 1 block).

- Intemal-XOR form of shift register.

- g(x) = (x + 1)· (x3 + x + 1) = x4 + x3 + x2 + 1.

- Detect zeros in right-most bits of shift register.

- Pr~multiply by x4.

RAW DATA CORRECTED
7 BIT FIFO BUFFER D Q/-----...

*
**

C

.'

GATE 'A'

GATE 'B'

READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (BUFFER UNLOAD)

ERR SIR SIR
0110 *

d2 0 0000 d2 1100 **
d1 1 1101 d1 1000 ***
dO 1 1010 dO 0000 ****
p3 0 1001 p3 0000
p2 0 1111 p2 0000
p1 0 0011 p1 0000
pO 0 0110 pO 0000

Shift register contents at start of correction cycle.
Gates A and B enable after the d2 clock.
Bit dl is corrected on the dl clock.
Bit dO is corrected on the dO clock.

- 72 -

DATA

Example #4A:

- Correction in hardware, forward clocking.

- Burst length-two correcting code, single-bit error, data all zeros.

- Consecutive data blocks, on-the-fly correction (delay = 1 block).

- Internal-XOR form of shift register.

- g(x) = (x + 1)· (x3 + x + 1) = x4 + x3 + x2 + 1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x4.

RAW DATA CORRECTED
7 BIT FIFO BUFFER D QI-----.....

DATA
C

GATE 'A'

GATE 'B'

*
**

READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (BUFFER UNLOAD)

ERR SIR SIR
0100 * d2 a 0000 d2 1000 ** d1 1 1101 d1 0000 ***

dO a 0111 dO 0000
p3 a 1110 p3 0000
p2 a 0001 p2 0000
p1 a 0010 p1 0000
pO a 0100 pO 0000

Shift register contents at start of correction cycle.
Gate B enables after the d2 clock.
Bit dl is corrected on the dl clock.

- 73 -

Example #5:

- Correction in hardware, forward clocking, software assist.

- Burst length-two correcting code, two adjacent error, data all zeros.

- Time delay required when an error occurs.

- InternaI-XOR form of shift register.

- g(x) = (x + 1)· (x3 + x + 1) = x4 + x3 + x2 + 1.

- Detect zeros in right-most bits of shift register.
- Premultiply by x4.

RAW DATA
RAM BUFFER

J.£P SAMPLE LINE
FOR DISPLACEMENT

I-+r----.. CALCULATION

GATE IBI

ECC ERROR FLAG TO J.£P

SOFTWARE CORRECI'ION ALGORITHM

1. Clock the shift register in a software loop until high output on gate B.
2. Forward displacement to first bit in error is clock count plus one.
3. Pattern is in left-most two bits of shift register.
4. Use pattern and displacement to .correct RAM buffer.

*
**

READ CYCLE CORRECT CYCLE
(BUFFER LOAD.) (CORRECT BUFFER)

ERR SIR SOFTWARE CLK CNT
d2 0 0000
d1 0 0000 0
dO 0 0000 1
p3 0 0000 2
p2 1 1101 3
pI 1 1010
pO 0 1001

Shift register contents at start of software ~gorithm.
Gate B enables, software stops clocking. .

- 74 -

SIR
1001
1111
0011
0110
1100

*

**

Example #SA:

- Correction in hardware, forward clocking, software assist.

- Burst length-two correcting code, single-bit error, data all zeros.

- Time delay required when an error occurs.

- Internal-XOR form of shift register.

- g(x) = (x + 1). (x3 + x + 1) = x4 + x3 + x2 + 1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x4.

RAW DATA
RAM BUFFER

GATE 'A' p.P SAMPLE LINE
FOR DISPLACEMENT

'-r--_ CALCULATION

GATE 'B'

L--_.J:========~===D ECC ERROR FLAG TO p.p.

SOFTWARE CORRECI'JON ALGORITHM

1. Clock the shift register in a software loop until high output on gate B.
2. Forward displacement to first bit in error is clock count plus one.
3. Pattern is in left-most two bits of shift register.
4. Use pattern and displacement to correct RAM buffer.

READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (CORRECT BUFFER)

ERR SIR SOFTWARE CLK CNT SIR
d2 0 0000 1110 * dl 0 0000 0 0001
dO 0 0000 1 0010
p3 0 0000 2 0100
p2 1 1101 3 1000 ** pl 0 0111
pO 0 1110

* Shift register contents at start of software algorithm.

** Gate B enables, software stops clocking.

- 75 -

Example #6:

- Correction in hardware, forward clocking, software assist.

- Burst length-two correcting code, two adjacent error, data all zeros.

- Time delay required when an error occurs.

- Internal-XOR form of shift register.

- g(x) = (x + 1)· (x3 + x + 1) = x4 + x3 + x2 + 1.

- Detect zeros in left-most bits of shift register.

- No premultiplication.

RAW DATA
RAM BUFFER

GATE 'A'
J.1.P SAMPLE LINE
FOR DISPLACEMENT
CALCULATION

L---~========~===D ECC ERROR FLAG TO J.1.P ~
SOF1WARE CORRECTION ALGORITHM

1. Clock the shift register in a software loop until high output on gate A.
2. Forward displacement to first bit in error is clock count minus one.
3. Pattern is in right-most two bits of shift register.
4. Use pattern and displacement to correct RAM buffer.

READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (CORRECT BUFFER)

ERR SIR SOFTWARE CLK CNT SIR
d2 0 0000 0101 *
d1 0 0000 0 1010
dO 1 0001 1 1001
p3 1 0011 2 1111
p2 0 0110 3 0011 **
p1 0 1100
pO 0 0101

* Shift register contents at start of software algorithm.

** Gate A enables, software stops clocking.

- 76 -

Example #6A:

- Correction in hardware, forward clocking, software assist.
- Burst length-two correcting code, single-bit error, data all zeros.

- Time delay required when an error occurs.

- Internal-XOR form of shift register.
- g(x) = (x + 1)· (x3 + x + 1) = x4 + x3 + x2 + 1.

- Detect zeros in left-most bits of shift register.
- No premultiplication.

RAW DATA
RAM BUFFER

GATE 'A'
ILP SAMPLE LINE
FOR DISPLACEMENT
CALCULATION

ECC ERROR FLAG TO ILP

SOF1WARE CORRECl'ION ALGORITHM

1. Clock the shift register in a software loop until high output on gate A.
2. Forward displacement to first bit in error is clock count minus one.
3. Pattern is in right-most two bits of shift register.
4. Use pattern and displacement to correct RAM buffer.

READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (CORRECT BUFFER)

ERR SIR SOFTWARE CLK CNT SIR
d2 0 0000 0111 *
d1 1 0001 0 1110
dO 0 0010 1 0001
p3 0 0100 2 0010 ** p2 0 1000
p1 0 1101
pO 0 0111

* Shift register contents at start of software algorithm.
** Gate A enables, software stops clocking.

- 77 -

Example #7:

- Correction in hardware, reverse clocking, software assist.

- Burst length-two correcting code, two adjacent error, data all zeros.

- Tinie delay required when an error occurs.

- Internal-XOR form of shift register.

- g(x) = (x + 1)· (x3 + x + 1) = x4 + x3 + x2 + 1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x4.

RAW DATA
RAM BUFFER

,",P SAMPLE LINE
FOR DISPLACEMENT

~.--- CALCULATION

r-----;-~--~ GATE 'A'

SOF7WARE CORRECTION ALGORITHM

1. Clock the shift register in a software loop until high output on gate A.
2. Reverse displacement to first bit in error is clock count.
3. Pattern is in left-most two bits of shift register.
4. Use pattern and displacement to correct RAM buffer.

READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (CORRECT BYFFER)

ERR SIR SOFTWARE CLK CN~
d2 a 0000
d1 a 0000 a
dO a 0000 1
p3 a 0000 2
p2 1 1101
p1 1 1010
pO a 1001

* Shift register contents at start of software algorithm.
** Gate A enables, software stops clocking.

- 78 -

~
1001
1010
0101
1100

*

**

Example #7A:

- Correction in hardware, reverse clocking, software assist.

- Burst length-two correcting code, single-bit error, data all zeros.

- Time delay required when an error occurs.

- Internal-XOR form of shift register.

- g(x) = (x + 1)· (x3 + x + 1) = x4 + x3 + x2 + 1.

- Detect zeros in right-most bits of shift register.

- Premultiply by x4.

RAW DATA
RAM BUFFER

p.P SAMPLE LINE
FOR DISPLACEMENT

I-r"---' CALCULATION

r-----;-~~--~ GATE 'A'

O ECC ERROR

~ ______ ~========~======== .FLAG TO HP

SOF7WARE CORRECTION ALGORITHM

1. Clock the shift register in a software loop until high output on gate A.
2. Reverse displacement to first bit in error is clock count.
3. Pattern is in left-most two bits of shift register.
4. Use pattern and displacement to correct RAM buffer.

READ CYCLE CORRECT CYCLE
(BUFFER LOAD) (CORRECT BUFFER)

ERR SIR SOFTWARE CLK CNT

*
**

d2 0 0000
d1 0 0000 0
dO 0 0000 1
p3 0 0000 2
p2 1 1101
pl 0 0111
pO 0 1110

Shift register contents at start of software algorithm.
Gate A enables, software stops clocking.

- 79 -

SIR
1110
0111
1101
1000

*

**

•

Example #8:

- Correction in hardware, reverse clocking, software assist.

- Burst length-two correcting code, two adjacent error, data all zeros.

- Time delay required when an error occurs.

- Internal-XOR form of shift register.

- g(x) = (x + 1)· (x3 + x + 1) = x4 + x3 + x2 + 1.

- Detect zeros in left-most bits of shift register.

- No premuItiplication.

RAW DATA
RAM BUFFER

J1.P SAMPLE LINE
FOR DISPLACEMENT

r---------+------+-ar-~CALCULATION

r---------+---------+-----~~L_~ GATE 'A'

O ECC ERROR

~ ______ ~========~======== FLAG TO J1.P

SOF7WARE CORRECTION ALGORITHM

1. Clock the shift register in a software loop until high output on gate A.
2. Reverse displacement to first bit in error is clock count plus two.
3. Pattern is in right-most two bits of shift register.
4. Use pattern and displacement to correct RAM buffer.

READ CYCLE CORRECT CYCLE
{BUFFER LOAD} (CORRECT BUFFER)

ERR SIR SOFTWARE CLK CNT SIR
d2 a 0000 1100 *
d1 a 0000 a 0110
dO a 0000 1 0011 **
p3 1 0001
p2 1 0011
p1 a 0110
pO a 1100

* Shift register contents at start of software algorithm.

** Gate A enables, software stops clocking.

- 80 -

Example #8A:

- Correction in hardware, reverse clocking, software assist.

- Burst length-two correcting code, single-bit error, data all zeros.

- Time delay required when an error occurs.

- Internal-XOR form of shift register.

- g(x) = (x + 1)· (x3 + x + 1) = x4 + x3 + x2 + 1.

- Detect zeros in left-most bits of shift register.

- No premultiplication.

RAW DATA
RAM BUFFER

J.l.P SAMPLE LINE
FOR DISPLACEMENT

r-------~------~~--~ CALCULATION

r---------+---------+------+-oL-~ GATE 'A'

O ECC ERROR

~ ______ ~~======~======== .FLAG TO HP

SOF1WARE CORRECJ'JON ALGORITHM

1. Clock the shift register in a software loop until high output on gate A.
2. Reverse displacement to first bit in error is clock count plus two.
3. Pattern is in right-most two bits of shift register.
4. Use pattern and displacement to correct RAM buffer.

*
**

READ CYCLE CORRECT CYCLE
(BUFFER LOAD} (CORRECT BUFFER}

ERR SIR SOFTWARE CLK CNT
d2 a 0000
d1 a 0000 a
dO a 0000 1
p3 1 0001
p2 a 0010
pI a 0100
pO a 1000

Shift register contents at start of software algorithm.
Gate A enables, software stops clocking.

- 81 -

SIR
1000
0100
0010

*
**

2.4 DECODING SHORTENED CYCUC CODES

In the decoding examples of the previous section, the record length was equal to
the polynomial period. The method discussed in this section allows forward clocking to
be used in searching for the correctable pattern when the record length is shorter than
the polynomial period. Shortening does not change code properties.

The method assumes that the error pattern is detected when it is justified to the
high order end of the shift register. If this is not the case, the method must be mod­
ified.

Let,

g(x)
g'(x)
Pmult(X)
n
m
e

= the code generator polynomial
= reciprocal polynomial of g(x)
= Premultiply polynomial for decoding
= number of information plus check bits
= number of check bits [the degree of g(x)]
= the period of g(x)

Use a shift register to multiply and divide simultaneously. On write, premultiply
by xm and divide by g(x). On read, premultiply by Pmult(x) and divide by g(x).
Pmult(x) is computed using either of the following equations:

Pmult(x) = xe - n+m MOD g(x)

or

Pmult(x) = xm-1·F(1/x) where F(x) = xn- 1 MOD g'(x)

i.e. Pmult(x) is the reciprocal polynomial of [(the highest power of x in a codeword)
modulo (the reciprocal polynomial of the code generator polynomial)].

- 82 -

EXAMPLES OF COMPUTING THE MULTIPLIER POLYNOMIAL

FOR SHORTENED CYCLIC CODES

g(x) = x4 + x + 1, g' (x) = x4 + x 3 + 1

Exam2 le

Pmult

or

Pmult

Tables of xr MOD g(x)

r xr MOD g(x)

0 0001
1 0010
2 0100
3 1000
4 0011
5 0110
6 1100
7 1011
8 0101
9 1010

10 0111
11 1110
12 1111
13 1101
14 1001

ill: n=10, m=4, e=15

=

=

xe- n+m MOD g(x)

x 9 MOD (x4 + x + 1)

x3 + x

Xm- 1 ·F(1/X)
x 3 • F(l/x)
x 3 • (x-2 + 1)
x3 + x

where F(x)
where F(x)

Exam21e il2: n=8, m=4, e=15

or

Pmult = x e - n+m MOD g(x)

x 11 MOD (x4 + x + 1)

x 3 + x 2 + x

and xr MOD g' (x)

r xr MOD g'(x)

0 0001
1 0010
2 0100
3 1000
4 1001
5 1011
6 1111
7 0111
8 1110
9 0101

10 1010
11 1101
12 0011
13 0110
14 1100

=
=

xn - 1 MOD q' (x)
x 9 MOD (x~ + x 3 + 1)

Pmult where F(x) = x n - 1 MOD q' (x)
where F(x) = x 7 MOD (x~ + x 3 + 1)
+ 1)

- sn -

CORRECTION EXAMPLE FOR A SHORTENED CODE

The code is single-bit correcting only.

Interlaced sectors are assumed.

g(x) = x 4 + x + 1

g'(x) = x4 + x3 + 1

n = 8, m = 4, e = 15

3 2
Pmult = x + x + x

8 BIT FIFO BUFFER

READ SECTOR SKIPPED SECTOR
(READ CYCLE) (CORRECT CYCLE)

ERR SR 0010
d3 0 0000 d3 0100
d2 0 0000 d2 1000
d1 1 1110 d1 0011
do 0 1111 dO 0110
p3 0 1101 p3 1100
p2 0 1001 p2 1011
pI 0 0001 pI 0101
pO 0 0010 pO 1010

* GATE A gate enables.
** Correction takes place on dl clock.

- 84 -

D Q ~

C

GATE A

*
**

CORRECI'ION EXAMPLE FOR A SHORTENED BURSfLENGTH-1WO CODE

The code of this example corrects bursts of length one or two.

Interlaced sectors assumed.

g(x) = (x + l)o(x4 + x + 1) = x5 + x4 + x2 + 1

g'(x) = x5 + x3 + x + 1

n = 9, e = 15, m = 5

Pmult(x) = x3 + x2 + x

Tables of xr MOD g(x) and xr MOD g'(x)

r xr MOD g(x) r xr MOD g' (x)

0 00001 0 00001
1 00010 1 00010
2 00100 2 00100
3 01000 3 01000
4 10000 4 10000
5 10101 5 01011
6 11111 6 10110
7 01011 7 00111
8 10110 8 01110
9 11001 9 11100

10 00111 10 10011
11 01110 11 01101
12 11100 12 11010
13 01101 13 11111
14 11010 14 10101

- 85 -

9 BIT FIFO BUFFER D ~

C

BUFFER UNLOAD CYCLE

READ SECTOR SKIPPED SECTOR
(READ CYCLE) (CORRECTION CYCLE)

ERR SIR 01100
d3 0 00000 d3 11000 *
d2 1 01110 d2 10000 **
d1 1 10010 d1 00000 ***
do 0 10001 dO 00000
P4 0 10111 P4 00000
P3 0 11011 P3 00000
P2 0 00011 P2 00000
P1 0 00110 P1 00000
PO 0 01100 PO 00000

* Gates A and B enable on this clock.
** Bit d2 is corrected on the d2 clock.

*** Bit dl is corrected on the dl clock.

- 86 -

2.5 INTRODUcnON TO FINITE FIELDS

A knowledge of finite fields is required for the study of many codes, including
BeH and Reed-Solomon codes.

Before discussing finite fields, the definition of a field must be stated. This def­
inition is reprinted from NTIS document AD717205.

DEFINITION OF A FIELD. A field is a set F of at least two elements together with a
pair of operations, (+) and (0), which have the following properties:

a. Closure: For all x and y E F,

(x + y) E F and (Xoy) E F

b. Assodativity: For all x, y, and z E F,

(x + y) + z = x + (y + z) and (xoy)oz = xo(yoz)

c. Corrunutativity: For all x and y E F,

x + Y = Y + x and x 0 y = yo x

d. Distributivity: For all x, y and z E F,

xo(y + z) = (xoy) + (xoz)

e. Identities: There exist an additive identity, zero (0), and a multiplicative
identity, one (1), E F such that for all x E F,

x + 0 = x and xol = x

f. Inverses: For each x E F, there exists a unique element y E F such that

x+y=O

and for each non-zero x E F, there exists a unique element y E F such that

x·y = 1

The set of positive and negative rational numbers together with ordinary addition
and multiplication comprise a field with an infinite number of elements, therefore it is
called an infinite field. The set of positive and negative real numbers together with
ordinary addition and multiplication and the set of complex numbers together with
complex addition and multiplication also comprise infinite fields.

- 87 -

FINITE FlEWS

Fields with a (mite number of elements are called (mite fields. These fields are
also called Galois fields, in honor of the French mathematician Evariste Galois.

The order of a (mite field is the number of elements it contains. A finite field of
order .pD, denoted GF{pD) , exists for every prime p and every positive integer n. The
prime p of a (mite field GF{pD) is called the characteristic of the field. The field
GF(p) is referred to as the ground field and· GF{pD) is called an extension field of
GF(p). The field GF{pD) can also be denoted GF(q), where q=pD.

Let Il represent an arbitrary field element, that is, an arbitrary power of Q. Then
the order e of Il is the least positive integer for whic~ Il~ = 1. More simply, the order
of Il is the number of terms in the sequence (fl ,Il ,Il , •••) before it begins to repeat.
Elements of order 2n-l in GF(2n) are called primitive elements. They are also called
generators of the field. Do not confuse the order of a field element with the order of
a field, which is defined in the previous paragraph.

Two fields are said to be isomorphic if one can be obtained from the other by
some appropriate one-to-one mapping of elements and operations. Any two finite fields
with the same number of elements (the same order) are isomorphic. Therefore, for
practical purposes there is only one (mite field of order pD.

FlEWS OF CHARACTERISTIC 1WO

Most error-correcting codes of a practical interest are defined over fields of
characteristic two. Such fields have interesting properties. First, every element is its
own additive inverse i.e. x + x = o. Secondly; the square and square root functions
are linear i.e.

f(x + Y + •••) = f(x) + fey) + •••

Therefore, in a field of characteristic two the following identities hold.

(x + y +

(x + y +

(x + y +

(x + y + •••

)2 = x2 + y2 + •••

)~ = x~ + y~ + ~ ••
k k 2k

)2 = x2 + Y +

)1/2k= xl/2k + yl/2k +

These identities will be helpful in performing finite field computations in fields
GF(2n).

- 88 -

GENERATION OF A FlEW

The rmite field GF(2) has only two elements (0,1). Larger fields can be dermed by
polynomials with coefficients from GF(2).

Let p(x) be a polynomial of degree n with coefficients from GF(2). Let a be a
root of p(x). If p(x) is primitive, the powers of a up through 2n-2 will all be unique.
Appropriately selected operations of addition and multiplication together with the field
elements:

2 2n-2 O,l,a,a ,ooo,a

derme a field of2n elements GF(2n).

Assume a finite field is defined by p(x) = x3 + x + 1. Since a is a root of p(x),
pea) =0. Therefore,

a 3 + a + 1 = 0 and a 3 = a + 1

The field elements for this field are:

0 MOD (a3 + a + 1) 0
a O " a O = 1
a 1 " = a 1
a 2 " = a 2
a 3 " a + 1
a 4 " a oa 3 = ao(a + 1) = a 2 + a 1
a 5 " a oa 4 = ao(a2 + a) = a 3 + a 2 = a 2 + a 1 + 1
a 6 " a oa 5 = a o(a2 + a + 1) = a 3 + a 2 + a = a 2 + 1

a 7 " " = a O
as " " = a 1

The elements of the field can be represented in binary fashion by using one bit to
represent each of the three powers of a whose sum comprises an element. For the field
constructed above, we generate the following table:

a 2 a 1 a O

0 0 0 0
a O 0 0 1
a 1 0 1 0
a 2 1 0 0
a 3 0 1 1
a 4 1 1 0
a 5 1 1 1
a 6 1 0 1

Figure 2.5.1

- 89-

This list can also be viewed as the zero state plus the sequential nonzero states of
a shift register implementing the polynomial

x3 + x + 1

The number of elements in the field of Figure 2.5.1, including the zero element, is
eight. This field is called GF(8) or GF(23).

OPERA TIONS INA FlEW ani') (Examples use Gnr))

+ Addition: Form the modulo-2 (EXCLUSIVE-OR) sum of the components of the
addends to obtain the components of the sum, e.g.:

a O + a 3 = '001'$ '011'
= '010'
= a 1

Subtraction: In GF(2n), subtraction is the same as addition, since each ele­
ment is its own additive inverse. This is not the case in all (mite fields.

Multiplication: If either multiplicand is zero, the product is zero. Otherwise
add exponents modulo seven (the field size minus one) e.g.:

0·a4 = 0

a3.a5 = a(3+5) mod 7
= a 1

I Division: If the divisor is zero, the quotient is undefined. If the dividend is
zero, the quotient is zero. Otherwise subtract exponents modulo seven e.g.:

a5/a3 = a(5-3) = a 2

= a(3-5) = a-2
= a(-2+7) = a 5

By convention, multiplication and division take precedence over addition and sub­
traction except where parentheses are used.

LOG Logarithm: Take the logarithm to the base a, e.g.:

LOG (an) = n

ANTILOG Antilogarithm: Raise a to the given power, e.g.:

ANTILOG(n) = an

- 90-

FINITE FIELD COMPUTATION

From the list of field elements above, a 3 repre&ents the vector '011' and a5 rep­
resents the vector 'Ill'. The integer 6 is the exponent of a .

The log function in this field produces an exponent from a vector while the an­
tilog function ~roduces a vector from an exponent. The log of a4 ('110') is 4. The
antilog of 3 is a (,011 '). The familiar properties of logarithms hold.

Finite field computation is frequently performed by a computer. At times, field
elements are stored in the computer in vector form. At other times, the logs of field
elements are stored instead of the field elements themselves. For example, consider
finite field math implemented on a computer with an eight-bit wide data path. Assume
the finite field of Figure 2.5.1. If a memory location storing a4 is examined, the 2binary
value '0000 0110' is observed. This b~ value represents the vector '110' or a + a.
If a memory location storing the log of a is examined, the binary value '0000 0100' js
observed. This value represents the integer 4 which is the exponent and log of a .
Finite field computers frequently employ log and antilog tables to convert from one
representation to the other.

Finite field addition t;rr this field is JIlodu10-2 addbtion (bit-wise EXCLUSIVr-OR
operation). The sum of a (' 110') and a' (' 111') is a ('001 '). The sum of a (,011 ')
and at> (,101 ') is a4 ('110'). Subtraction in this field, as in all finite fields of char­
acteristic two, is the same as addition. The' +' symbol will be used to represent
modulo-2 addition (bit-wise EXCLUSIVE-OR operation). The' +' symbol will also con­
tinue to be used for ordinary addition, such as adding exponents. In most cases, when
, +' represents modulo-2 addition, it will be preceded and followed by a space, and when
used to represent ordinary addition, its operands will immediately precede and follow it.
Usage should be clear from the context.

There are two basic ways to accomplish finite field multiplication for the field of
Figure 2.5.1. The vec~rs representing the field elements can be multiplied and the
result reduced modulo (x + x + 1). Alternatively, the product may be computed by
first taking logs of the finite field elements being multiplied; then taking the antilog of
the sum of the logs modulo 7 (field size minus one). The'·' symbol will be used to
represent finite field multiplication. The ,*, symbol will be used to represent ordinary
multiplication, such as for multiplying an exponent, which is an ordinary number and not
a finite field element, by another ordinary number.

- 91 -

The examples below multiply a4 (' 11 0') times as (' 111') using the methods described
above. .

Example #1

1. Multiply the vectors '110' (a4) and '111' (a5) to get the vector '10010'.

2. Reduce the vector '10010' modulo a3 + a + 1 to get the vector '100' (a2).

Example #2

1. Take the logs base a of a4 and a5 to get exponents 4 and 5.

2. Add exponents 4 and 5 modulo 7 to get the exponent 2.

3. Take the antilog of the exponent 2 to get the vector a2 (' 100').

Division is accomplished by inverting (multiplicative inversion) and multiplying.
The inverse of any element in the field of Figure 2.S.1, other than the zero element, is
given by:

~ = a(-j) MOD 7
aj

The inverse of the zero element is undefmed. aO is its own inverse.

Inversion Examples:

1 -=

Division Examples:

a2 = a2 .-.!
a3 a3

- 92 -

Examples of finite field computation in the field of Figure 2.5.1 are shown below.
To provide greater insight, some examples use different approaches than others with
various levels of details being shown. Note that all operations on exponents are per­
formed modulo 1 (field size minus one).

y = a 3 + a 4 y = a 1 ·a4

= '011' + '11O' = '010'·'110'

= '101' = (a1).(a2 + a 1)

= a 6 = a 3 + a 2

= (a + 1) + a 2

= a 2 + a + 1

= 'Ill' = a 5

y a 2 ·a6 1 = Y =-
a 4

= a(2+6)MOD 7
= a(-4) MOD 7

= a 1
= a 3

a 2
(x + aO).(x + a 1) x2 + (aO + a1)·x + aO o a 1 y =- =

a 5
= X2 + a 3x + a 1

= a (2-5) MOD 7

= a 4

The modulo operations shown above for adding and subtracting exponents are
understood for finite field computation and will not be shown for the remainder of the
book.

- 93 -

Other examples are:

Y = a 2 ·a6 Y = a 1 + a 2
= a 2+6 = a 4
= a 1

2 2
Y = LOGa [:5] y = LOGa [:5]

= LOGa (a2- 5) = LOGa (a2)-LOGa (a5)

= LOGa (a4) = (2-5) MOD 7

= 4 = 4

Y
a 3

(a3)3 = y =
a 2 • (a4 + a 3)

a 3*3 =

a 3 = a 2
=--

a 1

a 3- 1

= a 2

y = (x + aO)·(x + al).(x + a 2)

= x 3 + (aO + a 1 + a 2).x2 + (aO.a l + a O.a2 + a 1 .a2).x + a O·al ·a2

x 3 + a 5 .x2 + a 6 .x + a3

- 94-

FIELD PROPERTY EXAMPLES

(x + y)

(a2 + (3)

ASSOCIATIVITY

+ z

+ a 4

+

+
(1100 1 + 10111) + 1110 1 1100 1 + (10111 + 1110 1)

x

a 4 ·
a 4 ·
a 4 ·
a 4 ·

11111

(x .
(a 4 .

+ 1110 1

10011

y) · z
as) · a 6

=

1100 1 +
10011

x (y

a 4 · (as

1101 1

. z)

. (6)

a(4+5 MOD 7) · a 6 a 4 · a(5+6 MOD 7)

a 2 · a 6 a 4 · a 4

a(2+6 MOD 7) a(4+4 MOD 7)

a 1 a 1

COMMUTATIVITY

x + y

a 3 + a 4

10111 + 1110 1

1101 1

x y
as a 6

a(5+6 MOD 7)

a 4

=

y + x

a 4 + a 3

1110 1 + 10111

1101 1

y x

a 6 as

a(6+5 MOD 7)

a 4

DISTRIBUTIVITY

(y + z) (x • y)

(a 4 . as)
a(4+5 MOD 7)

+ (x' z)

(as + (6)

(11111 + 1101 1)

1010 1

a 1

a 2

1100 1

+ (a4. (6)

+ a(4+6 MOD 7)

+
+

a 3

10111

a(4+1 MOD 7)
as

11111

as

- 95 -

SIMULTANEOUS LINEAR EOUATIONS IN A FIELD

Simuitaneous linear equations in GF(2n) can be solved by determinants. For ex­
ampie. given:

a'x + b·y = C
d'x + e·y = f

where x and y are independent variables and a, b, c, d, e, and f are constants. then:

c b
f e c'e + b·f

x = ---- =-----

y =

POLYNOMIALS IN A FIELD

a b
d e

a c
d f

a b
d e

=-----

Polynomials can be written with variables and coefficients frc-::J. GF(2n) and manip­
ulated in much the same manner as polynomials involving rational or rea, numbers.

Polynomial Multiplication Example:

x +
a 5 ·x2 ... a 6 ·x +

a 4 ·x3 ... a5 .,,2 + al·x

a 4 ·x3 + a 5 ·x +

Polvnomial Division Example:

Thus

a

a2

a 2

+ a 4 .x2 + a l ." + a 2
+ a 3 .x2 + al·x

a2 ."J + a 4 .,,2 + al.x + a 2) MOD (,,3 + a 4 .x + a2)
= a 6 ·x2 + a 6 ." + a

- 96 -

QUADRA TIC SOLUTION DIFFICULTY IN A FlEW OF CHARACTERISTIC 2

The correlation between finite field, of characteristic 2, algebra and algebra in­
volving real numbers does not include the quadratic formula:

-b ± ./b2 - 4ac
x = 2a

The 2 in the denominator must be interpreted as an integer, but:

2a = a + a = 0

and division by zero is undefmed.

DIFFERENTIATION IN A FlEW OF CHARAcrERTISTIC 2

The derivative of xn in GF(2n) is:

nx(n-l)

where n is interpreted as an integer, not as a fmite field el~mi{lt. Thus the derivative
of any even power is zero and the derivative of any odd power is x{n-). For example,

d(x2)/dx = 2x = x + x = 0

etc.

- 97 -

FINITE FIELDS AND SHIFT REGISTER SEQUENCES

The shift register below implements the polynomial x3 + x + 1, which defines the
field of Figure 2.5.1.

Figure 2.5.2

This shift register has two sequences, a sequence of length seven and the zero se­
quence of length one.

STATE NUMBER

o
1
2
3
4
5
6

SHIFT REGISTER CONTENTS

oE}
001
010
100
011
110
111
101

Notice the similarity of the sequences above to the field definition of Figure 2.5.1.
The consecutive shift register states correspond to the consecutive list of field ele­
ments. The state numbers correspond to the exponents of powers of a.

Advancing the shift register once is identical to multiplying its conte~ by a.
Advancing the shift register twice is identical to multiplying its contents by a , and so
on.

COMPUTING IN A SMAUER FlEW

We have been representirig power of a by components. For example4 in the2 field
of Figure 2.5.1, the components of a are a and 1. The Components of a are a and a.
An arbitrary power of a can also be represented by its components. Let X represent
any arbitrary power of a from the field of Figure 2.5.1; then

X = X2oa2 + X10a + Xo

1.
The coefficients X2, Xl, and Xo are from GF(2), the field of two elements, 0 and

In performing (mite field operations in a field such as GF(23), it is frequently

- 98 -

necessary to perform multiple operations in a smaller field such as GF(2). For example,
multiplication of an arbitrary field element X by a, might be accomplished as follows:

Y = aoX

a o (X2 oa 2 + Xloa + Xo)

= X2oa3 + Xloa2 + XOoa

But a 3 a + 1, so

Y = X2° (a + 1) + Xloa2 + XOoa

= Xloa2 + (X2 + XO)oa + X2

The result Y can also be expressed in component form, therefore:

Y2oa2 + Yloa + Yo = Xloa2 + (X2 + Xo)oa + X2

Equating coefficients on like powers of ex gives

Y2 = Xl

Yl = X2 + Xo

Yo = X2

These results have been used to design the combinatorial logic circuit shown below.
This circuit uses a compute element (modulo-2 adder) from GF(2) to construct a circuit
to multiply any arbitrary field element from the field of Figure 2.5.1 bya.

°a

X2 Y2

X Xl Yl Y aoX

Xo Yo

+ = Finite field addition in GF(2}

- 99 -

ANOTHER LOOK ATTHE SHIFT REGISTER

The shift register of Figure 2.5.2 has been redrawn below to show that it contains
a circuit to multiply by a.

Original Circuit

Same circuit redrawn

MORE ON FIELD GENERATION

Let {3 represent the primitive element a2 from the field of Figure 2.5.1. The field
can be redermed as follows:

a 2 a 1 a O

0 0 0 0
{30 0 0 1
{31 1 0 0
{32 1 1 0

{3! 1 0 1

{3s 0 1 0

{36 0 1 1
{3 1 1 1

All the properties of a field stilI apply. A multiply example:

{32.{34 ('110') . (' 010')

(a2 + a) . (a)

= a 3 + a 2

But, a 3 = a + 1, so

{32 • {34 a2 + a + 1

= (, Ill')

= {36
- tOO-

This defmition of the field could be viewed as having been generated by the
circuit below.

A similar redefinition of the field could be accomplished by letting p represent any
primitive element of the field of Figure 2.5.1.

DEFINING FlEWS WITH POLYNOMIALS OVER FlEWS LARGER THAN GF£2J

A polynomial over GF(q) where q =pD is a polynomial with coefficients ffm GF(q).
So far, we have worked with a field GF(8) that is defined by the polynomial x + x + 1
over GF(2). It is also possible to defme a field by a polynomial over GF(4) or GF(8) ,
and soon.

A primitive polynomial of degree mover GF(2n) can define a field GF(2m*n).

Fields GF(22*n) are particularly interesting. Operations in these fields can be ac­
complished by performing several simple operations in GF(2n). These fields will be
studied in Section 2.7.

- 101 -

COMPUTING IN GF(2)

Consider the field of two elements.

QO

~O rT
An element of this field is either 0 or 1. the result of a multiplication is either 0

or 1. The result of raising any element to a power is either 0 or 1, and so on.

Let p represent an arbitrary element of this field; then,

Let a and b represent arbitrary elements of this field; then,

aob = 0 if either a = 0 or b = 0

aob 1 if both a = 1 and b = 1

Clearly, multiplication in GF(2) can be accomplished with an AND gate:

ba~ ~aob

Let b represent the logical NOT ofb; then, in GF(2),

a + aob = ao(l + b)

: ~--- aob = a + aob

Let V represent the INCLUSIVE-OR operation; then, in GF(2)

a + aob + b = a V b

: --'l)~.-~ a V b ~ a + a ° b + b

- 102 -

2.6 FINITE FIELD CIRCUITS FOR FIELDS OF CHARAcrnRISTIC 2

This section introduces flnite fleld circuits for (mite flelds of characteristic 2 with
examples. The notation for various GF(8) flnite fleld circuits is shown below. The fleld
of Figure 2.5.1 is assumed.

w~

0=~Y=w+x
x=:t

x =~e=~ y = ai·x

x =~0=~ y = a-i.x

~ y = W·X
w =~ GF(8)
x =~ Multiplier

X =~:
GF(8)

=~ Y = l/x Inverter

P>j GF(8) ~> Y x2
Square

x->j GF(8) r=> y = x3
Cube

~>j x GF(8) r=> j = loga(x) Log

Fixed field element adder

Arbitrary field element adder

Fixed field element multiplier

Fixed field element multiplier

Arbitrary field element multi­
plier

Mul~iplicative inversion

Square an arbitrary field ele-
ment

Cube an arbitrary field element

Compute loga of an arbitrary
field element

- 103-

j =~
GF(8)

~ Y = antiloga (j) Antilog

~ ~ y = O(x) MOD (x +

O(x)

i =~ Binary
~ k = i+j

j =~ ,---=A.:.:d::.:d::.:e::;.:r,,----,

- 104 -

Compute antiloga of an
arbitrary integer

compute the remainder f:rom
dividing O(x) by (x + a 1)

a i)

Add logs of finite field
elements modulo the field
size minus one

COMBINING FINITE FIELD CIRCUITS

Finite field circuits can be combined for computing. For illustration, assume that:

X + W3
y =

must be computed. This can be accomplished with the circuit below:

X =====:., l=====~ GF I=~ Y =

w =~

Another circuit
follows:

X

=-j W GF
Cube

solution

Y =

GF
Invert

becomes obvious

X + W3 X

Multiply
II

" II

when the equation

X
= + 1 = + a O

W3 W3 W3

~ GF 0~
Multiply

~o
" a

GF II ~-j Invert

Y

is rearranged

= 2L + a O
W3

Another example of combining fmite field circuits in GF(23) is shown below.

X lr-G=G=~ Y = aoX + X
~ t = (a + 1) oX 1.b::====:::lJ_ = a 3 0 X

as

This example shows how a c~cuit to multiply by the fixed field element a 3 can be
constructed using two other GF(2) circuits: a circuit to add two arbitrary field ele­
ments and a circuit to multiply an arbitrary field element by a. Later, circuits will be
shown that accomplish this type of operation with GF(2) circuits.

- 105 -

Still another example of combining fmite field circuits follows:

w ====;r=G=;r==
w

x2-----+----------~------~
""""r--..J

x xl-----+------~H
""""r--..J

xo

xo· (w)

I!:::::===== +)==---0==. y = w· x

This circuit is called an array multiplier and is based on the following finite field
math:

y = x·w

- 106 -

IMPLEMENTING GFf81 FINITE FlEW CIRCUITS WITH GF£21 CIRCUITS

Fixed field element adder:

Y = x + a 3
= (X2oa2 + x1° a + xo) + (a + 1)
= X2oa2 + (xl + l)oa + (xO + 1)

But, Y can also be expressed in component form, therefore:

Y = Y2 oa2 + Y1 0a + YO = X2 oa2 + (Xl + l)oa + (xo + 1)

Equating coefficients on like powers of a gives:

Y2 = x2
Yl = xl + 1
Yo = Xo + 1

This is realized by the following circuit:

x2 -0 • Y2

x Xl

f ~ G=:: Xo

f
0 1 1

I

a 3

A simpler fixed field element adder:

Y = x + a3
= (X2oa2 + x1°a + xo) + (a + 1)
= X2oa2 + (Xl + l)oa + (xo + 1)

I

But (Xl + 1) = xl and (xO + 1) = xo, so:

Y = X2 oa2 + x1° a + Xo

Again expressing y in component form, we have:

Y2oa2 + Y1° a + Yo = X2 oa2 + x1° a + Xo

and equating coefficients of like powers of a gives:

Y2 = x2
Y1 = xl
Yo = Xo

- 107-

Y = x + a 3

which is realized by the following circuit:

x2 Y2

x xl [>0 YI Y = x + a3

Xo [>0 YO

The arbitrary finite field adder:

x2 Y2

x xl Yl Y x + w

Xo YO

I
w2 wI Wo

I

W

may be implemented using bit-serial techniques:

x I I I ~
0-1 I I I Y = x + W

W I I I ~

- 108 -

Fixed field element multiplier to multiply by a.

Y = aox

= a o (x2 oa2 + x1a + xO)

= X2 oa3 + X1 oa2 + xOoa

But, a 3 = a + 1, so:

Y = X1 oa2 + (x2 + xO)oa + x2

Expressing y in component form:

Y2oa2 + Y1° a + Yo = X1 oa2 + (x2 + xo)oa + x2

Equating coefficients of like powers of a:

x

Y2 = xl

Y1 = x2 + Xo

Yo = x2

Y2

Y1

'----.... YO

Y = aox

- 109-

Fixed field element multiplier to multiply by a-I.

Y = a-lox

= a 60 x

= a 6°cx2 oa 2 + xloa + xO)

= X2oa8 + xl oa7 + xo oa 6

= xo oa 2 + x2° a + (xl + xO)

Expressing y in component form:

Y2oa2 + Yloa + Yo = xo oa2 + x2° a + (xl + xo)

Equating coefficients:

x

Y2 = Xo

Yl = x2

Yo = xl + Xo

oa- l

Y2

Yl

1---.- Yo

- lID-

Fixed field element multiplier to Tultiply by a2. The finite field math for this circuit
is similar to the math for the a and a- multipliers above.

------~--~ + r-----. Y2

Yl

~--------~-? Yo

Fixed field element multiplier to multiply by a 2 using two circuits that multiply by a:

Y2

Yl Y = a2 ·x

Xo ~---+' YO

- 111 -

Fixed field element multiplier to multiply by a using bit serial techniques.

Y = a'X

~r... .. t----~
r

PROCEDURE:

1. Clear the Y register.
2. Load the X register.
3. Apply three clocks. In GF(2n) apply n clocks.
4. Accept the result from the Y register.

Fixed field4eleme.nt multiplier to multiply by a4. To understand the input connections,
recall that a = a2 + a.

Y = a 4 ·X

PROCEDURE:

Same as above.

- 112 -

Finite field circuit to compute Y = a· X + a4• W using bit serial techniques.

Y = a·X + a 4 ·W

~ 113-

Arbitrary field element multiplier using combinatorial logic.

X

Xo

W Wl --+-r--r--------+-+--r------~~--T_-----

Wo

Y = X·W

Yo
I

Y = X·W
= (X2· a2 + Xl·a + XO)·(W2· a2 + Wl·a + Wo)
= (X2· W2)·a4 + (X2·Wl + Xl·W2)·a3

+ (X2· WO + Xl·Wl + XO·W2)·a2 + (Xl·WO + XO·Wl)oa + XO·Wo

But a 4 = a2 + a and a 3 = a + 1, so

Y = (X2·W2 + X2°WO + Xl·Wl + XooW2)·a2

+ (X2· W2 + X2· Wl + Xl·W2 + Xl·WO + XO·Wl)·a
+ (X2 oWl + XloW2 + XO·WO)

Expressing Y in component form and equating coefficients on
like powers of a gives:

Y2 = x2ow2 + X2·wO + XloWl + XO·W2
Yl = X2·W2 + X2"Wl + Xl·W2 + XloWO + XOoWl

YO = X20Wl + XloW2 + Xo·Wo

- 114-

Array multiplier - another arbitrary field element multiplier using combinatorial logic.

W2

W WI

Wo

X2

X Xl

Xo ..,

Y2

Yl Y

Yo

Y =:: XoW

(X2 oa2 + Xloa + Xo)oW

X2 oa 2o W + XloaoW + XOoW

=:: X2 0 (a 2 oW) + Xl- (a-W) + (W)

- 115 -

Arbitrary field element multiplier using bit serial techniques.

Y = X-w

The X register is a shift register. The W register is composed of flip-flops that hold
their value until reloaded.

PROCEDURE:

1. Clear the Y register
2. Load the W register with multiplicand.
3. Load the X register with multiplier. .
4. Clock the circuit three times. For GF(2n), clock n times.
5. Accept the result from the Y register.

DEVELOPMENT

Y x-w

= (X2-a2 + Xl-a + Xo)-W

X2- a2 -W + Xl-a-W + xo-w

- 116 -

Another arbitrary field element multiplier using bit serial techniques.

y = Xow

PROCEDURE

1. Clear the Y register.
2. Load the W register with multiplicand.
3. Load the X register with multiplier.
4. Clock the circuit three times. For GF(2n), clock n times.
5. Accept the result from the Y register.

DEVELOPMENT

y X·W

= (X2oa2 + Xla + XO)oW

= X2 oa 2o W + XloaoW + XOoW

= X2o(a 2o W) + Xlo(aoW) + XOo(W)

- 117-

Arbitrary field element multiplier using log and antilog tables.

x -@to, BINARY ADDER 1=== .. , ANTILOG 1==
ROM MOD (2n-l)* ROM

.. Y = X'W

OUTPUT ENABLE
ZERO n DETECT

)
ZERO U DETECT

W .. = LOG
ROM

DEVELOPMENT

Y = X'W

IF (X=O) OR (W=O) THEN

Y 0

ELSE

Y = ANTILOGa [LOGa(XoW)]

= ANTILOGa [(LOGa(X)+LOGa(W» MOD (2n-l)*]

END IF

* For n-bit symbols, 2n is the field size of GF(2n), so (2n-l) is the field size
minus one.

- 118-

Circuit to cube an arbitrary field element.

Xo --------~--------~

DEVELOPMENT

Y = X3

= (X2"a2 + Xl"a + XO)3

Yo

= (X2"a2 + Xl"a + XO)2"(X2"a2 + Xl"a + XO)
= [(X2"a2)2 + (Xloa)2 + (XO)2]"(X2"a2 + Xl"a + XO)

= (X2"a4 + Xl"a2 + XO)"(X2"a2 + Xl"a + XO)

= X2"a6 + Xl"X2oa5 + XO"X2"a4 + Xl"X2"a4

+ Xl"a3 + XOOXl"a2 + XO"X2"a2 + XO"Xl"a + Xo
= X2"(a2 + 1) + XloX2 o(a2 + a + 1) + XO"X2"(a2 + a)

+ XlOX2"(a2 + a) + Xl"Ca + 1) + XOOXl" (a2)

+ XO"X2o(a2) + XOoXl(a) + Xo
= (X2 + XOoXl)oa2

+ (XO"X2 + Xl + XO"Xl)oa

+ (X2 + XloX2 + Xl + XO)

Expressing Y in component form and equating components of like powers of A gives:

Y2 = X2 + XOXI
Yl = XO"X2 + Xl + XO"XI =XooX2 + Xl"(l + XO)

= XO"X2 + Xl"XO
Yo = X2 + Xl"X2 + Xl + Xo = (X2 v Xl) + Xo

where v is the INCLUSIVE-OR operator.

- 119-

IMPLEMENTING GF(~) FINITE FIELD CIRCUITS WITH ROMS

In many cases, ftnite fteld circuits can be implemented with ROMs. For example, a
GF(256) inverter is an 8-bit-in, 8-bit-out function and can be implemented with a 256:8
ROM.

Other examples:

1. The square function in GF(256) can be implemented with a 256:8 ROM. The
same is true for any power or root function in GF(256).

2. A GF(16) arbitrary fteld element multiplier can be implemented with a 256:4
ROM. A GF(256) arbitrary fteld element multiplier can be implemented with a
65536:8 ROM. It is also possible to implement a GF(256) multiplier with four
256:4 ROMs and several ftnite fteld adders. (See Section 2.7.)

3. A GF(256) ftxed fteld element multiplier can be implemented with a 256:8
ROM.

When back-to-back functions are required, it is sometimes possible to combine
them in a single ROM. For example, the equation:

Y = [l/X]3. a2

in GF (256) can be solved for Y when X is known with a single 256:8 ROM.

- 120 -

SOLVING FINITE FIELD EQUATIONS

Finding a power of a fmite field element results in a single solution, but the same
solution may be obtained by raising other finite field elements to the same power.

Finding the root(s) of a fmite field element may result in a single solution, multi­
ple solutions or no solution.

Finding the root(s) of a finite field equation may result in a single solution, multi­
ple solutions or no solution.

FINDING ROOTS OF FINITE FIELD EQUATIONS

In decoding the Reed-Solomon and binary BCH codes, it is frequently necessary to
find the roots of nonlinear equations whose coefficients are from a finite field. These
roots provide error-location information. The degree of the equation and the number of
roots are equal to the number of errors that occur. Examples of these equations are
shown below:

x + °1 0

x2 + °l'x + °2 0

x3 + 01'X2 + °2'x + °3 0

x4 + °l'X3 + 02'X2 + °3'x + °4 0

One way to find the roots of such an equation is to substitute all possible finite
field values for x. The equation evaluates to zero for any finite field elements that are
roots.

Two methods which perform the substitution will be discussed. The first method
uses "brute force", and is shown only to illustrate the idea of substitution.

The second method is the Chien search. This is a practical method that can be
used to find the roots of equations of a low degree or high degree.

After discussing the Chien search, alternatives will be explored for finding roots of
nonlinear equations of a low degree.

- 121 -

SUBSTITUTION METHOD - BRUTE FORCE

Assume the roots of X3 + 01X2 + 02X + 03 = 0 must be found. The circuit below
could be used:

~1 SQUARE ~~ MULTIPLY

+

~1 ZERO DETECT ~

Each possible finite field value must be substituted for x while checking the output
of the zero detector.

This circuit is easy to understand, although it is not practical because of circuit
complexity.

- 122 -

SUBSTITUTION METHOD - CHIEN SEARCH

Assume the roots of

X3 + al'X2 + a2'x + a3 = 0

must be found. The Chien search circuit below could be used:

1

L-____ '~_

~i ZERO DETECT I--
Thea circUIt IS initialized as shown. If the zero detect output is immediately as­

seJted, a is a root. The circuit is clocked. If the zero detect output is then asserted,
a l is a root. The circuit is clocked again. If the zero detect output is then active, a2
IS a root. Operation continues as described until all finite field values have been
substituted and all roots recorded.

This method uses less complex circuits than the "brute force" method.

The example circuit above finds roots of finite field equations of degree three.
The circuit can be extended in a logical fashion to find the roots of equations of a
higher degree.

- 123 -

RECIPROCAL ROOTS

There are times when the reciprocals of roots of finite field equations are re­
quired. If

X3 + Gl'X2 + G2'X + G3 0

is an equation for which reciprocal roots are required, then

G3'X3 + G2'X2 + Gl'X + 1 = 0

is an equation whose roots are the reciprocals of the roots of the first equation. The
Chien search circuit below can be used to find reciprocal roots.

L-______ ~+---------Jr~
L~r--Z-E-R-O-D-E-T-E-C-T--,~

In this circuit, the inputs to the XOR rircuit are from the multipliers instead of
the registers because the equation is evaluated at a first.

- 124 -

FINDING ROOTS OF EQUATIONS OF DEGREE 2

AN EXAMPLE

We illustrate the method by generating a quadratic table for solving y2 + y = C in
the field GF(23) generated by the polynomial x3 + x + lover GF(2).

First generate the antilog table for the field. Next construct a table giving C
when y is known. Then construct a table giving y when C is known (Table A below).

Antilog
Exponent

o
1
2
3
4
5
6

'y' is
...:L-
000
001
010
011
100
101
110
111

Table A.
~
000
001
010
011
100
101
110
111

Table
vector

000
001
010
100
011
110
111
101

known
~
000
000
110
110
010
010
100
100

leI is known
y

000,001
No solution

100,101
No Solution

110,111
No Solution

010,011
No Solution

We may verify the validity of Table A by using it to solve the following equations:

y2 + Y = a 2 => y = 110,111

y2 + Y a 5 => y = No Solution

- 125-

FINITE FlEW PROCESSORS

Finite field processors are programmable or microprogrammable processors, which
are designed especially for (mite field computation. An example for computing in
GF(256) is shown below. Except where noted, all paths are eight bits wide.

1

LOG
ROM

8-BIT BINARY ADDER
MOD 255

- 126 -

Adding two finite field elements from the work buffer consists of the following
steps.

1. Transfer the first element to the A register.

2. Transfer the second element to the B register.

3. XOR the contents of the A and B registers and set the result in the C reg­
ister.

4. Transfer the C register to the work buffer.

Each of these steps can be a separate instruction or part of a single instruction.

Multiplying finite field elements from the work buffer consists of the following
steps:

1. Transfer the first element to the D register.

2. Transfer the second element to the E register.

3. Add logs of the finite field elements and place the antilog of the results in
the F register.

4. Transfer the F register to the work buffer.

As in finite field addition, each step can be a separate instruction or part of a
single instruction.

If either multiplication operand is zero, the result must be zero. Since the log of
zero is undefined, this case must receive special attention. It is handled by the zero-­
detect circuits connected to the D and E registers and controlling the gate at the input
of the F register.

For the processor under consideration, logs must be added modulo 255. Eight-bit
binary adders add .modulo 256. They can be used to add modulo 255 by connecting
"carry out" to "carry in". For the antilog table, the contents of location 255 are the
same as location zero.

Finite field division is accomplished with the same steps used for finite field mult­
iplication, except logs are subtracted.

The log operation could be implemented as follows:

1. Load the finite field value in register G.

2. Move the log of the finite field value from the ROM tables to register H.

3. Store register H in the work buffer.

There are many design options available when designing a finite field processor.
The options selected depend on the logic family to be used, cost, performance and other
design considerations. The options selected for an LSI design would differ from those
selected for a discrete design.

- 127 -

A partial list of operations that have been implemented on real world finite-field
processors is shown below.

- Finite field addition

- Finite field multiplication

- Finite field division

- Logarithm

- Antilogarithm

- Fetch one root of the equation y2 + y + C = 0

- Take cube root

- Compare finite field values

- Branch unconditional

- Branch conditional

Non-finite-field operations that may be implemented include:

- Binary addition and subtraction

- Logical AND and inclusive-OR operations

- Operations for controlling error-correction hardware.

A finite field processor implementing subfield multiplication is shown in Section 5.4.

- 128 -

2.7 SUBFIELD COMPUTATION

In this section, a large field. GF(22*n), generated by a smail field, GF(2n), is dis­
cussed. Techniques are developed to accomplish operations in the large field by per­
formmg several operations in the smail field.

Let elements of the smail field be reDresented by powers of 11. Let elements of
the large tield be represented by powers of a. .

The small field is' defmed by a specially selected polynomial of degree n over
GF(:!). The iarge tield is detined by the polynomial:

x2 + x + 11

over the smail field.

Each element of the large field. GF(22*n), can be representeci by a pair of ele­
ments from the small field. GF(2n). Let x represent an arbitrary element from the large
field. Then:

where Xl and XO are elements from the smail field. GF(2n). The element x from the
large field can be represented by the pair of elements (x 1 ,X() from the small field.
This is much like representing an element from the field of Figure 2.5.1 with three
elements from GF(2), (x2,xloXO).

Let :l be any primitive root of:

x2 + x + 11

Then:

a2 + a + 11 0

Therefore:

- 129 -

The elements of the large field GF(22*n), can be defined by the powers of a. For
example:

o 0

a2 = a + f3

a3 a·a2
a'(a + (3)
a2 + a·f3
a + f3 + a·f3
(f3 + 1)' a + f3

This list of elements can be denoted

o 0 0
a O 0 1
a1 1 0
a 2 1 f3
a3 f3+1 f3

The large field, GF(22*n), can be viewed as being generated by the following shift
register. All paths are n bits wide.

This shift register implements the polynomial x2 + x + f3 over GF(2n).

Methods for accomplishing finite field operations in the large field by performing
several simpler operations in the small field are developed below.

- 130 -

ADDITION

Let x and w be arbitrary elements from the large field. Then:

y = x + W

= (xl·a + xo) + (wl·a + wo)

(xl + wl)·a + (xO + wo)

MULTIPLICATION

The multiplication of two elements from the large field can be accomplished with
several multiplications and additions in the small field. This is illustrated below:

y X·W

(xl·a + XO) • (wl·a + wo)

Xl·Wl·a2 + xl·wO·a + xO·wl·a + xO·wO

But, a 2 = a + ~, so

= Xl·wl·(a + ~) + wO·xl·a + xO·wl·a + XOwO

(xl·wl + wO·xl + xO·wl)·a + (Xl·Wl·~ + xo·wo)

Methods for accomplishing other operations in the large field can be developed in
a similar manner. The method for several additional operations are given below without
the details of development.

INVERSION

y = l/x

Xl Xl + Xo
--------------------·a + ----------------------
(Xl)2.~ + xl·xO + x02 (Xl)2.~ + xl·xO + xo2

- 131 -

LOGARITHM

L = LOGa(x)

Let,

J = LOG~[(XI)2o~ + xloxO + X02]

K = 0 if xI=O

= I if xI~O and xO=O

= fl(xO/xI) if xI~O and xO~O

Then,

L = (the integer whose residue modulo (2n-l) is J and whose
residue modulo (2 n+l) is K}

This integer can be determined by the application of the Chinese Remainder
Method. See Section 1.2 for a discussion of the Chinese Remainder Method. '

The function fl can be accomplished with a table of 2n entries which can be gen­
erated with the following algorithm.

BEGIN

Set table location fl (0) =0

FOR 1=2 to 2n

Calculate the GF(22*n) element Y = a l = Y 1 ° a + YO

Calculate the GF(2n) element YO/Y 1

Set ft(YO/Y1) =1

NEXT I

END

- 132 -

ANTILOGARITHM

x = ANTlLOGaCL)

= ANTlLOG~CINTCL/(2n+l» if [L MOD (2n+1)]=O

= [ANTlLOG~(INTCL/(2n+l»].a if [L MOD (2n+1)]=1

= xloa + Xo if [L MOD C2n+1)]>1

where x 1 and X() are determined as follows. Let

a = ANTlLOG~[L MOD (2n-1)

b = f2[(L mod (2~1»-2]

Then,

xl = [b2 +ab + ~]1/2

Xo = box1

The function f2 can be accomplished with a table of 2n entries. This table can be
generated with the following algorithm.

BEGIN

Set f2(2n-l)=0

FOR 1=0 to 2n-2

Calculate the GF(22 *n) element Y = a(l + 2) = Y loa + YO

Calculate the GF(2n) element Y O/Y 1

Set f2(1) = YO/Yl

NEXT 1

END

- 133 -

APPLICATIONS

In this section, techniques were introduced for performing operations in a large
field, GF(2z*n), by performing several simpler operations in a small field, GF(2n).

One application of these techniques is for computing in a very large finite field.
Assume that it is necessary to perform computation in GF(65536). A multiplication
operation might be accomplished by fetching logs from a log table; adding logs modulo
65535; and fetching an antilog. The log and antilog tables would each be 65536 loca­
tions of 16 bits each. The total storage space required for these tables would be one
quarter million bytes. An alternative is to define GF(65536) as described in this section
and to perform operations in GF(65536) by performing several simpler operations in
GF(256). These GF(256) operations could be performed with 256 byte log and antilog
tables.

Another application is for performing finite field multiplication di!fntly with ROMs
for double-bit-memory c~ection. Instead of using one ROM with 2 n locations, use
four ROMs each with 2 n locations. An example application to multiplier ROMs is
shown below.

A GF(256) MULTIPLIER USING A SINGLE ROM

16 total input [X 8
address lines

W
8

65536:8
ROM 8

y - X·W] 8

A GF(256) MULTIPLIER USING FOUR SMALLER ROMS

- 134 -

output
lines

CHAPTER 3 - CODES AND CIRCUITS

3.1 FIRE CODES

Fire cOdes are linear cyclic single-burst-correcting codes defined by generator
polynomials of the form:

g(x) = c(x)·p(x) = (xc + l)·p(x)

where

Let:

c = Degree of the c(x) factor of g(x)
p(x) is any irreducible polynomial with period e, and e does not

divide c.

z = Degree of the p(x) factor of g(x)
m = Degree of g(x) = total number of check bits = c + z
n = Record length in bits including check bits; nSLCM(e,c)
b = Guaranteed single-burst correction span in bits
d = Guaranteed single-burst detection span in bits

The maximum record length in bits, including check bits, is equal to the period of
g(x) , which is the least common multiple of e and c. The guaranteed single-burst
correction and detection spans for the Fire codes are subject to the following ine­
qualities:

b S z
b S d

b+d S c+1

These inequalities provide a lower bound for d. When the record length is much
less than the period of the polynomial, this bound for d is conservative. In this case,
the true detection span should be determined by a computer search.

Given a fixed and limited total number of check bits, selecting the degrees of p(x)
and c(x) will be involve a tradeoff. Increasing the degree of p(x) will provide more
protection against miscorrection on double-bit errors (less pattern sensitivity), while
increasing the degree of c(x) will provide a greater correction span andlor detection
span. The degree of c(x) should not be used to adjust the period of a Fire code unless
the effects of pattern sensitivity are fully understood.

Overall miscorrection probability for a Fire code for bursts exceeding the guaran­
teed detection capability is given by the equation below, assuming all errors are pos­
sible and equally probable:

n*2b- 1
Pmc ~ =-=-=--

2m

Miscorrection probability for double-bit errors separated by more than the guaran­
teed detection span, assuming all errors of this type are possible and equally probable,
~~~ . 

- 135 -



P _ (b-l)*2 * n 
mcdb -

c c* (2z-1) 

This equation is applicable only when the product of Pmcdb and the number of possible 
double-bit errors is much greater than one. When this is not true, a computer search 
should be used to determine the actual Pmcdb. 

An advantage of the Fire Code is simplicity. A disadvantage is pattern sensitivity. 
The (xC + 1) factor of the Fire Code generator polynomial causes the code to be sus­
ceptible to miscorrection on short double-bursts. The Pmcdb equation given above 
provides a number for this susceptibility for one particular short double-burst (the 
double-bit error). For more information on the Fire code's pattern sensitivity see 
Sections 4.4 and 4.6. 

The pattern sensitivity of the Fire Code can be reduced to any arbitrary level by 
adding sufficient redundancy to the p(x) factor. 

There are at least five ways to perform the correction step: 

1. Clock around the full period of the polynomial. 

2. Shorten the code by performing simultaneous multiplication and division of 
the data polynomial. A computer search may be required to minimize the 
complexity of feedback logic. The period after shortening can be selected to 
be precisely the required period. 

3. Select a nonprimitive polynomial for p(x). This method yields a less complex 
feedback structure than method 2. However, it is only possible to select a 
period that is close to the required period. A computer search is required. 

4. Perform the correction function with the reciprocal polynomial. This requires 
that either a self-reciprocal polynomial be used, or that the feedback terms 
be modified during correction. In addition, the contents of the shift register 
must be flipped end-for-end before performing the corrections. 

This method differs from methods 1 through 3 because the maximum number 
of shifts during correction depends on the record length instead of the poly­
nomial period. Therefore, correction is faster for the case when the record 
length is shorter than the polynomial period. 

5. Decode using the Chinese Remainder Method. This method requires only a 
fraction of the number of shifts required by the other methods. Thus, sig­
nificant improvements in decoding speed can be obtained. 

Any of the methods above may be implemented in hardware or software. However, 
for software, methods 4 and 5 are the most applicable. Methods 4 and 5 are more 
flexible for handling variable record lengths than the other methods. 

The Fire Code may be implemented with bit-serial, byte-serial or k-bit~serial logic. 
See Section 4.1 for k-bit serial techniques. 

- 136 -



BIT SERIAL 

Fire-code circuit implementations using bit-serial techniques are less complex than 
those using byte-serial techniques. 

Less logic is required for the shift register as well as for detecting the correctable 
pattern. 

Polynomial selection is easier for the bit-serial implementation. 

The disadvantage of bit-serial circuit implementations is shift rate limitations. 

BITE SERIAL 

Byte-serial circuit implementations have speed as their advantage. 

One disadvantage is greater logic complexity compared to bit-serial implementa­
tions. More logic is required to implement the shift register and to detect the correc­
table pattern. Pattern detection is more complex because the pattern is never justified 
to one end of the shift register. The problem is to determine within one shift (byte 
time), if a pattern unjustified in several byte-wide registers is of length b bits or less. 

Another disadvantage of byte-serial implementations is that a computer search may 
be required for polynomial selection if the feedback logic is to be minimized. 

Both bit-serial and byte-serial logic may be implemented in either hardware or 
software. Byte-serial implementations in software usually require look-up tables (for 
effective speed). 

- 137 -



DECODING ALTERNATIVES FOR THE FIRE CODE 

The Fire code can be decoded with the methods described in Section 2.3. Two ex­
amples of real world decoding of the Fire code are discussed in Sections 5.2.2 and 5.2.3. 

The internal-XOR or external-XOR forms of shift registers may be used for im­
plementing Fire codes. The decoding methods of Section 5.2 apply to the Fire code as 
well as to computer-generated codes. 

In many cases, logic can be saved by using sequential logic to determine if the 
shift register is nonzero at the end of a read. 

It is possible to use a counter to detect the correctable pattern. The counter 
counts the number of zeros preceding the error pattern. For the internal-XOR form of 
shift register the counter can monitor the high order shift register stage. A one clears 
the counter. A zero bumps the counter. The counter function can also be accomplished 
by a software routine commanding shifts and monitoring the high order shift register 
stage. 

It is harder to detect the correctable pattern for byte-serial implementations than 
for bit-serial implementations. The second flowchart of Section 5.3.3 shows a software 
algorithm for detecting the correctable pattern for a byte-serial software implementa­
tion. The following page shows a method for accomplishing this for a byte-serial 
hardware implementation. 

- 138 -



I 

~IRECTION OF SHIFT , , , 
. . . . . . . I 

tJ Q 
OR GATE I j 9 

I 9 .... 

j y 
~ 9 

\( 
,9 

NOR GATE I 
CORRECTABLE PATTERN FOOND 

Figure 3.1.1 Byte·serial Hardware Correction 

Correction span is assumed to be eight bits. When the correctable pattern 
first appears in the shift register, at least one bit of the pattern will be in the 
low order byte. 

- 139 -



3.2 COMPUTER-GENERATED CODES 

Computer-generated codes are based on the fact that if a large number of poly­
nomials of a particular degree are picked at random, some will meet previously defined 
specifications, provided the specifications are within certain bounds. 

There are equations that predict the probability of success when evaluating poly­
nomials against a particular specification. 

For computer-generated codes, correction and detection spans are determined by 
computer evaluation. Overall miscorrection probability, assuming all errors possible and 
equally probable, is given by: 

where, 
b = Guaranteed single burst correction span in bits 
n = Record length in bits including check bits 
m = Total number of check bits 

In some cases, tens of thousands of computer-generated polynomials have been 
evaluated in order to fmd a polynomial with particular characteristics. 

Properly selected computer-generated codes do not have the pattern sensitivity of 
the Fire code. It is possible to select computer-generated codes that have a guaranteed 
double-burst-detection span. The miscorrecting patterns of these codes are more ran­
dom than those of the Fire code. 

The decoding alternatives for the computer-generated code are the same as those 
previously described for the Fire code. 

- 140 -



COMPUTER SEARCH RUN 

This run evaluates polynomials for use with 512-byte records ~d correction spans 
to 8 bits. This run is for illustration only. The polynomials below which have a good 
single-burst detection span may not test well against other criteria. 

Single-burst detection 
spans for given 

Polynomial correction span of: 
(octal) 1 2 3 4 5 6 7 8 

40001140741 18 18 18 16 16 16 16 12 
41040103211 19 19 19 15 14 14 13 13 
42422242001 19 19 19 17 17 12 12 12 
42010100127 21 21 16 16 16 15 15 12 
42200301203 20 20 19 17 17 15 12 12 
40110425041 19 19 17 17 17 17 10 10 
40442115001 18 18 18 18 17 16 16 14 
44104042501 19 19 16 16 12 12 10 10 
40030201415 18 18 18 15 15 13 13 13 
40030070211 19 19 18 18 13 11 11 11 
40006241441 20 19 18 18 15 15 15 14 
40430250401 15 15 15 15 15 13 12 11 
44401144041 20 20 20 16 16 14 14 13 
41442001203 22 21 20 18 17 16 14 11 
44431120001 17 17 17 17 16 15 11 11 
40056110021 20 20 15 15 15 9 9 9 
40200211701 20 20 20 18 18 9 9 9 
40001201163 18 18 18 15 15 14 12 12 
40410423003 21 18 17 16 16 16 14 12 
42000027421 17 17 17 16 13 13 13 13 
40001741005 18 17 17 17 11 11 11 11 
42000045065 20 20 17 16 14 14 14 10 
41114210201 20 19 19 18 18 16 16 14 
44011511001 20 20 18 18 16 13 13 11 
41200103203 18 18 15 15 15 15 15 14 
43140224001 18 18 18 18 17 7 

- 141 -



COMPUTER SEARCH RUN (CONTINUED) 

Single-burst detection 
spans for given 

Polynomial correction span of: 
(octal) 1 2 3 4 5 6 7 8 

40000074461 14 14 14 14 14 13 13 13 
40527200001 16 16 16 16 16 16 16 10 
40342100221 19 18 18 18 18 16 11 11 
40400264411 16 16 16 16 16 13 13 13 
44001140305 17 17 17 17 17 13 13 13 
41450040051 19 19 18 18 18 16 14 14 
40060405013 20 19 19 19 17 14 13 10 
41030210031 18 18 18 18 17 17 17 9 
40201202131 17 17 17 17 16 16 16 15 
41024021025 21 19 19 19 16 12 12 12 
40006052403 18 18 18 18 16 15 13 12 
40152014401 19 19 18 18 14 14 14 13 
46200002341 19 19 19 19 17 14 14 10 
44501404011 19 19 16 16 14 14 13 13 
40250002053 20 20 18 18 17 17 15 14 
43012104011 19 18 18 18 18 17 12 12 
42012430201 21 17 17 17 15 15 12 12 
42114023001 21 21 20 16 16 11 11 10 
43300020241 15 15 15 15 14 14 14 13 
40001403207 18 18 18 18 17 16 9 9 
40214020503 20 20 20 16 16 16 10 10 
40260302005 20 20 19 18 17 7 
40252200241 20 20 20 13 13 13 12 12 
40004560111 16 16 16 16 14 14 14 14 
40000404347 15 15 15 15 15 15 14 13 
42200036011 15 15 15 15 11 11 11 10 
42202210241 20 18 18 17 10 10 10 10 
40504100431 16 16 15 15 15 12 12 12 
42012401111 19 17 17 15 15 14 14 14 
43041105001 21 20 17 17 17 14 14 12 
40022044225 18 18 18 11 11 11 11 11 
40500001465 19 18 18 15 15 15 15 14 

- 142 -



SPECI'RUM OF DETECI'ION SPANS FOR COMPUTER SEARCH RUN 

C 
o 
U 
N 
T 

DET SPAN 

2 2 

5 
4 

12 
11 

9 
8 

4 

7 8 9 10 11 12 13 14 15 16 17 
CORRECTION SPAN 6: AVERAGE DETECTION SPAN = 13.7 

12 
-

10 
9 r-

r-

7 
r-

5 5 
4 

3 -
r---

1 
0 0 =-:-J 
7 8 9 10 11 12 13 14 15 16 17 

CORRECTION SPAN 7: AVERAGE DETECTION SPAN = 12.9 

13 

11 
10 

9 
8 

4 

1 
o o o o 

7 8 9 10 11 12 13 14 15 16 17 
CORRECTION SPAN 8: AVERAGE DETECTION SPAN = 11.9 

- 143 -



MOST PROBABLE DETECTION SPAN 

The equation below gives an approximation for the most likely single;'burst detec­
tion span of a single polynomial picked at random. 

d ~ 0.5287 - In(-ln(1-(n*2b )/2m» +1 
0.6932 

where, 

b = Single-burst correction span 
d = Single-burst detection span 
n = Number of information plus check bits 
m = Number of check bits 

PROBABILITY OF SUCCESS 

The equation below gives an approximation for the probability that a single poly­
nomial picked at random will meet specified criteria. 

where n, m, b, and d are as defined above. 

- 144 -



3.3 BINARY BCH CODES 

Binary BCH codes correct random bit errors. Coefficients of the data polynomial 
and check symbols are from GF(2) i.e. they are binary '0' or '1', but computation of 
error locations and values is performed using w-bit symbols in a fmite field GF(2W), 
where w is greater than one. 

BINARY BCH CODE SUMMARY 

Let: 
w = Number of bits required to represent each element of GF(2W), the field 

wherein computations are performed. 
n = Selected record leng$ in bits, including check bits 
t = Number of bits the code is capable of correcting 
d = Minimum Hamming distance 
m = Degree of code generator polynomial 

= Number of check bits 
mi(x) = Minimum polynomial in GF(2) of a i in GF(2W) 
g(x) = Code generator polynomial 

= LCM[ml(x),m3(x), ... ,m2*t-l(X)] 

k = Number of factors of g(x) [typically t] 

D(x) = Data polynomial 

W(x) = Write redundancy polynomial = [xm.D(x)] MOD g(x) 

C(x) = Transmitted codeword polynomial 

E(x) = Error polynomial 

C'(x) = Received codeword polynomial 

Then the following relationships hold: 

n ~ 2w-l 

d = 2*t+ 1 

m~ w*t 

THE GENERATOR POLYNOMIAL 

= xm. D(x) + W(x) 

= xLI + xL2 + ••• 

= C(x) + E(x) 

The generator polynomial for a t-error-correcting binary BCH code is: 

g(x) = LCM[ml(x),m3(x), ... ,m2*t-l(X)] 

where mi(x) is the minimum polynomial in GF(2) of a i in GF(2W); see the glossary for 
the defmition of a minimum polynomial. The LCM function above accounts for the fact 
that if the minimum polynomials of two or more powers of a are identical, only one 
copy of the polynomial is multiplied into g(x). In most cases no duplicate polynomials 
exist, and g(x) is the product of them all: 

g(x) = ml (x)· m3(x)· .... m2*t-l (x) 

- 145 -



ENCODING 

Encoding for a binary BCH code can be performed with a bit-serial shift register 
implementing the generator polynomial of the form shown below. All paths and storage 
elements are bit-wide. Multipliers comprise either a connection or no connection. 

GATE 

o WRITE DATA/CHECK BITS 

----+---~1 

WRITE 

DATA 
MUX 

For applications such as error correction on semiconductor memory, an encoder im­
plementing combinatorial logic is preferable to one implementing sequential logic. Such 
an encoder includes a farity tree for each bit of redundancy. The parity tree for a 
coefficient Wi of the x term of the write redundancy polynomial W(x) includes each 
data bit Dj for which the coefficient of the Xl term of 

[xm • x.i] MOD g(x) 

is one. 

PARITY TREES 

Dn- m-1 =:i I' 1 I Dn- m-2 . . . . . . . 
D1 : I 1 1 I DO 

I I 
Wm-1 Wo 

An example of a combinatorial~logic encoder is given in the BINARY BCH CODE 
EXAMPLE below. 

- 146 -



DECODING 

Decoding generally requires 5 steps: 

1. Generate the syndromes. 
2. Calculate the coefficients of an error locator polynomial. 
3. Find the roots of the error locator polynomial to determine error location 

vectors. 
4. Calculate logs of error location vectors to obtain error locations. 
5. Invert bits in error. 

SYNDROME GENERATION 

The syndromes contain information about the locations of errors: 

Sl aLl + a L2 + ... 
S3 = a 3*Ll + a 3*L2 + 

S5 = 5*Ll a + 5*L2 a + 

k*Ll k*L2 = a + a + 

It is possible to compute the syndromes directly from the received codeword poly­
nomial C' (x) with the following equation. 

Si = C' (ai) 

The above equation can be implemented with either sequential or combinatorial logic. 

The syndromes can also be computed by computing the residues of the received 
codeword when divided by each factor or the generator polynomial. Let: 

ri(x) = C' (x) MOD mi(x) 

then the resulting residues may be used to compute the syndromes: 

Si = ri(a i) 

The above equations can be implemented sequentially, combinatorially, or with a mixture 
of sequential and combinatorial logic. 

An example of each of the above methods is shown in the BINARY BCH CODE EX­
AMPLE below. 

- 147 -



COMPUTING COEFFICIENTS OF ERROR LOCATOR POLYNOMIALS 

The error locator polynomial has the following form. 

The coefficients of the error locator polynomial are related to the syndromes by 
the following system of linear equations, called Newton's identities. 

a1 Sl 

a1 oS 2 + a2 oS 1 + a3 S3 

a1oS4 + a2 oS 3 + a3 oS 2 + a4 oS 1 + a5 = S5 

a1 0 S2t-2 + + a2t-2 0 Sl = S2t-1 

For error locator polynomials of low degree, the coefficients of the error locator 
polynomial are computed by solving Newton's identities using determinants. For error 
locator polynomials of high degree, the coefficients are computed by solving Newton's 
identities with Berlekamp's iterative algorithm. 

FINDING THE ROOTS OF ERROR LOCATOR POLYNOMIALS 

The roots of error locator polynomials are error location vectors. The logs of 
error location vectors are error locations. 

The error locator polynomial of degree one is: 

The single root of this equation is simply: 

x = a1 

The error locator polynomial of degree two is: 

x 2 + alex + a2 = 0 

This equation can be solved using a precomputed look-up table by first applying a 
substitution to transform it into following form (see Sections 2.6 and 3.4 for more 
details): 

y2 + Y + c = 0 

There are similar approaches to solving other low degree error locator polynomials. 
The Chien search is used to solve error locator polynomials of high degree. 

- 148 -



BINARYBCHCODEEX4MPLE 

Assume a two-error-correcting code over GF(24). The generator polynomial is: 

g(x) = m1(x)·m3(x) = (x4 + x + 1)·(x4 + x3 + x2 + x + 1) 

= x8 + x7 + x6 + x4 + 1 

The codeword length is limited to 24_1 =15 bits, so the code may be used protect a 
seven-bit data polynomial. 

SEQUENTIAL LOGIC ENCODER 

GATE 

o C(x) 
D(x) 
---~---I1 

MUX 

COMBINATORIAL LOGIC ENCODER 

The write-redundancy polynomial coefficients are given by the following parity 
trees. Each coefficient Wj is formed as the XOR sum of those coefficients Di whose 
row contains a '1' in Wi's column. 

D6 [x8 .x6 ] MOD g(x) 
Ds [X8 ·xS] MOD g(x) 
D4 [X8 .x4 ] MOD g(x) 
D3 [X8 .x3 ] MOD g(x) 
D2 [X8 ·x2 ] MOD g(x) 
D1 [X8 ·x1 ] MOD g(x) 
Do [x8 .xO] MOD g(x) 

1 
0 
0 
0 
1 
0 
1 

- 149 -

1 
1 
0 
0 
1 
1 
1 

1 0 
1 1 
1 1 
0 1 
1 0 
1 1 
0 1 

1 0 0 0 
0 1 0 0 
1 0 1 0 
1 1 0 1 
0 1 1 0 
0 0 1 1 
0 0 0 1 



SYNDROME GENERATION 

C' (x) 

SEQUENTIAL CIRCUIT FOR Sl 

C' (x) 

SEQUENTIAL CIRCUIT FOR S3 

L------------------------4------ra2 
L-----------------------------------+-----~a 

'-------.-1 

ALTERNATIVE SEQUENTIAL CIRCUIT FOR S3 

S3 = C' (a 3 ) 

- 150 -

C' (x) 



COMBINATORIAL LOGIC SYNDROME CIRCUITS 

The parity tree for a coefficient Sij of the :d term of syndrome Si includes each 

received codeword bit Ck for which the coefficient of the :d term of 

[xk*i] MOD mi(x) 

is one. 

PARITY 

TREE5 

Co' 

COMPUTING THE COEFFICIENTS OF THE 1WO-ERROR LOCATOR POLYNOMIAL 

For the two-error case the system of linear equations below must be solved. 
These equations follow from Newton's identities. 

(1)0°1 + (0) 0(72 = 51 

(52)0°1 + (51) 0(72 53 

51 0 
53 51 (Sl)2 

°1 = =--= Sl 
1 0 Sl 
52 Sl 

1 Sl 
52 53 53 + 51 05 2 S3 + 51 0 (51)2 53 + (51)3 

°2 = = 
1 0 51 51 51 
52 51 

- 151 -



FINDING ROOTS OF THE TWO-ERROR LOCATOR POLYNOMIAL 

The algorithm below defines a fast method for fmding roots of the error locator 
polynomial in the two-error case. This algorithm can be performed by a finite field 
processor. For double bit memory correction is performed by combinatorial logic. 

The two-error locator polynomial is 

x 2 + alex +a2 = 0 

where 

a1 = S1 and a2 

Substitute 

to obtain 

where 

y2 + y + C 

a2 (Sl)3 + S3 
C = = 

(a1) 2 (Sl) 3 

o 

Fetch Y 1 from TBLA (see Section 2.6) using C as the index. Then form 

Y2 = Y1 + a O 

Apply reverse substitution of 

y = x/a1 

to obtain 

Xl = aLl = aleYI = SleY1 and X2 = a L2 = al eY2 = SleY2 

Finally, calculate the error locations 

L1 LOGa (Xl) 

L2 LOGa (X2) 

For a binary BCH code, the error values are by defmition equal to '1'. 

- 152 -



BCH CODE DOUBLE-BIT MEMORY CORRECfION - EXAMPLE #1 

w 

LOG(S3) 
-LOG(S13) 

BINARY~--------~ 

ADDER* 

ZERO-DETECTHr--------------------~ 

a O ----r------.\. 

*Binary addition modulo 
field size minus one. 

+ 

BINARY 
ADDER* 

Yl 

BINARY 
ADDER* 

=0 ALARM 

This example is shown in a form that is easier to understand. Example #2 uses 
the same approach but combines some of the functions. 

- 153 -



BCB CODE DOUBLE-BIT MEMORY CORRECTION - EXAMPLE #2 

-+'-'-~ CUBE/LOG 
LOG(S3~ 

-LOG(Sl ) 
BINARYr---------~ 

ADDER* 

ZERO-DETECT~------~ 

*Binary addition 
modulo field 
size minus one. LOG(Y2) 

+ + 

BINARY 
ADDER* 

S3 

813 

=0 

LOG (Y1) 

+ + 

BINARY 
ADDER* 

ALARM 
OR 

This example uses the same approach as Example #1 but several functions have 
been combined. 

- 154 -



BCH CODE DOUBLE-BIT MEMORY CORRECTION - EXAMPLE #3 

--F=-4--I CUBE/ INVERT 

w .---'--.=0 ALARM 

Y2 Yl 

GF MULTIPLIER 

- 155 -



BCH CODE DOUBLE-BIT MEMORY CORRECTION - EXAMPLE #4 

--F-~ CUBE/INVERT 

w .-----'----, = 0 ALARM 

YI 

+--------;.f + 

1 
Xl X2 

- 156 -



BCN CODE DOUBLE-BIT MEMORY CORRECl'ION - EXAMPLE #5 

The mathematical basis for this example is developed by operating on the error 
locator polynomial: 

x2 + 01·x + 01 = 0 

First substitute for 01 and 0Y2 using expressions developed above: 

(S1)3 + S3 
x2 + S1·x + = 0 S1 

Next multiply by SI: 

S1·x2 + (S1)2· x + (S1)3 + s3 = 0 

Add zero in the form of (x3 + x3): 

(x3 + x3) + S1·x2 + (S1)2. x + (S1)3 + S3 = 0 

Finally, rearrange and combine the underlined terms to obtain a useful relation: 

(S1 + x)3 + (S3 + x3) = 0 

ICUBER~ 
ZERO-DETECT 

_RA_W __ D_A_T_A __ B_I_T_S ________________________ --w~~ CORRECTED DATA BITS~ 

One such circuit is required for each bit of the memory word. 

- 157 -



3.4 REED-SOWMON CODES 

Reed-Solomon codes are random single- or multiple-symbol error-correcting codes 
operating on symbols which are elements of a finite field. The coefficients of the data 
polynomial and the check symbols are elements of the field, and all encoding, decoding, 
and correction computations are performed in the field. Reed-Solomon codes are in­
herently symbol oriented and the circuits implementing them are typically clocked once 
per data symbol, although bit-serial techniques are also employed. 

We shall use the Galois field with eight elements (i.e., GF(8) or GF(23», introduced 
in Section 2.5 in illustrating the properties and implementation of Reed-Solomon codes. 

- 158 -



REED-SOLOMON CODE SUMMARY 

Let 

w 

m 

n 

d 

t 

b 

c 
A(x) 

G(x) 

gi(x) 

D(x) 

W(x) 

C(x) 

E(x) 

Cl(x) 

R(x) 

Si 

= Number of bits per symbol; each symbol £ GF(2W) 

= Degree of generator polynomial = number of check symbols 

= Selected record length in symbols, including check symbols 
~ 

= Minimum Hamming distance of the code 

= Number of symbol errors correctable by the code 

= Selected number of symbol errors to be corrected 

= Number of symbol errors which the code is capable of de-

tecting beyond the number selected for correction 

= Burst length in bits 

= Number of bursts correctable by the code 

= Any polynomial in the field 

= The code generator polynomial 

= Any of the m factors of G(x) 

= Data polynomial 

= Write redundancy polynomial 

= Transmitted codeword polynomial 

= Error polynomial 

= Received codeword polynomial 

= Remainder polynomial 

= ith syndrome 

= (x + a i) when mO=O 

= [xm 0 D(x)] MOD G(x) 

= xmoD(x) + W(x) 

= eloxLI + e2oxL2 + 000 

= C(x) + E(x) 

= C I (x) MOD G(x) 

= C I (x) MOD gi(x) 

Then the following relationships hold: 

n S 2w-l 

d = m+l, 

ec S t = INT[(d-l)/2] = INT[m/2] 

ed = dmin - 2*ec - 1 = m - 2*ec 

b S (ec-1)*w + 1 

c = ec/(1 + INT[(b+w-2)/w]) 

- 159 -



AR 
AR 
AR 
AR 
AR 
REED-SOLOMON CODE SUMMARY (CONT.) 

A(x) MOD gi(x) = [A(x) MOD G(x)] 

A(x) MOD gi(x) = A(x) la i = A(a i ) 

C(x) MOD G(x) = 0 

C(x) MOD gi(x) = 0 

R(x) = CI (x) MOD G(x) 

= [C(x) + E(x)] MOD G(x) 
= E(x) MOD G(x) 

Si = CI(X) MOD gi(x) 

= [C(x) + E(x)] MOD gi(x) 
= E(x) MOD gi(x) 

i*Ll i*L2 = Eloa + E2 0a + 000 

= [E(x) MOD G(x)] MOD gi(x) 
= R(x) MOD gi(X) 

MOD gi(x) 

{by definition of CI} 
{by equation (3)} 

{by definition of CI} 
{by equation (4)} 

{by equation (2)} 
{by equation (l)} 
{by equation (5)} 

- 160 -

(1) 

(2) 

(3) 

(4) 

(5) 



CONSTRUcrING THE CODE GENERATOR POLYNOMIAL 

The generator polynomial of a Reed-Solomon code is given by: 

m-l 
G(x) = I I (x + a mo+i ) 

i=o 

where m is the number of check symbols and 1DQ is an offset, often zero or one. In 
the interest of simplicity, we take II1() equal to zero for the remainder of the discussion. 
Note that many expressions derived below must be modified for cases where mO is not 
zero. Let m=4; the code will be capable of correcting: 

t = INT(m/2) = 2 

symbol errors in a codeword. The generator polynomial is: 

3 
G(x) = I I (x + ai, 

i=o 

(x + aD) (x + a l ) (x + a 2 ) (x + a 3 ) 

x4 + (aO + a l + a 2 + a 3 ).x3 

+ (aOa l + a Oa 2 + a Oa 3 + a l a 2 + a l a 3 + a 2a 3 ) ·x2 

+ (aOa l a 2 +aOa l a 3 +aOa 2a 3 +a l a 2a 3 ).x + (aOa l a 2a 3 ) 

= x4 + a 2 .x3 + a 5 .x2 + a 5 .x + a 6 

VERIFYING THE CODE GENERA TOR POLYNOMIAL 

The code generator polynomial evaluates to zero at each of its roots. This fact 
can be used to prove the computations used in generating it: 

G(x) a O.(al )4 + a 2 .(al )3 + a 5 .(al )2 + a 5 .al + a 6 ° a l 

G(x) = a O.(a2 )4 + a 2 .(a2 )3 + a 5 .(a2 )2 + a 5 .a2 + a 6 = ° a 2 

G(x) a O.(a3 )4 + a 2 .(a3)3 + a 5 .(a3 )2 + a 5 .a3 + a 6 = ° a 3 

- 161 -



FINITE FIELD CONSTANT MULTIPLIERS 

To design a constant multiplier to implement 

y=an·x 

in GF(2W), fill in the diagram below with the binary representations of 

a n an + 1 ••• an + w-l , " . 

xw-l an+w- l 

xw-2 

x 

Yw-l Yw-2 YI Yo 

~ 
Y = an·x 

Then construct parity trees down columns. The parity tree for a given y bit 
includes each x bit with a '1' at the intersection of the corresponding column and row. 

Example: Using the field of Figure 2.5.1, construct a constant multiplier to compute: 

Y = a3 ·x 

I I I 

I I 0 

0 1 I 

Y2 YI YO 

t 
Y a 3 ·x 

Y2 Xl + x2 
YI Xo + Xl + x2 
YO Xo + x2 

- 162 -



ENCODING OF REED-SOLOMON CODES 

Encoding is typically, but not always, performed using an intetllal-XOR shift regis­
ter with symbol-wide data paths, implementing the form of generator polynomial shown 
above. Other encoding alternatives will be discussed later in this section. 

The following circuit computes C(x) for our example field and code in symbol-serial 
fashion: 

1 C (x) Xm·D(X) + [xm·D(x)] MOD G(x) 
D(x) 
---~--...,o 

MUX 

The circuit above multiplies the data polynomial D(x) by xm and divides by G(x). 
All paths are symbol-wide (three bits for this example). The AND gate and the MUX 
are fed by a signal which is low during data time and high during redundancy time. 

The circuit below performs the same function. 

1 
D(x) 

----..-10 

MUX C(x) 

- 163 -



DECODING OF REED-SOLOMON CODES 

Decoding generally requires five steps: 

1. Compute syndromes. 
2. Calculate the coefficients of the error locator polynomial. 
3. Find the roots of the error locator polynomial. The logs of the roots are the 

error locations. 
4. Calculate the error values. 

The following circuit computes the syndromes for our example field and code 
symbol-serial fashion: 

Si = c' (x) MOD 9i(x) C' (x) MOD (x + Qi) 

Q:5 1 
0 So oj 

C' (x) 

QB S1 oj ~ 

QB 1 
8 S2 oj 

QB S3 oj ~ 

in 

This circuit computes the syndromes by dividing the received codeword C'(x) by 
the factors of G(x). All paths are symbol-wide (three bits for this example). After all 
data and redundancy symbols have been clocked, the registers contain the syndromes Si. 

- 164 -



COMPUTING COEFFICIENTS OF ERROR LOCATOR POLYNOMIALS 

Recall the syndrome equations derived above: 

i*L i*L + Si = E 1 • a 1 + E2· a 2 

These form a system of nonlinear equations with error values and error location 
vectors as unknowns. More easily solved is the error locator polynomial, which contains 
only error location information. Error locator polynomials have the following form: 

e 
I I (x + aLi) = xe + 01·Xe-1 + ••• + 0e-1·x + 0e = 0 
i=l 

where e is the number of errors. The coefficients of the error locator polynomial are 
related to the syndromes by the following system of linear equations, called Newton's 
generalized identities: 

Sm-e-1· oe + Sm-e· oe-1 + 

where m is the number of syndromes. 

Se+1 

Sm-1 

When computation of the error location polynomial is begun, the number of errors, 
and thus the degree of the error locator polynomial, is unknown. One method of com­
puting coefficients of the error locator polynomial first assumes a single error. If this 
assumption is found to be incorrect, the number of assumed errors is increased to two, 
and so on. This method is fastest for the least number of errors. This is desirable 
because in most cases few errors are more likely than many. 

For error locator polynomials of low degree, the coefficients 0i are computed by 
directly solving the above system of equations using determinants. Examples are worked 
out below. 

For error locator polynomials of high degree, the coefficients 0i are computed by 
solving the system of equations above using Berlekamp's iterative algorithm. One ver­
sion of the iterative algorithm is outlined, and an example is worked out, below. 

- 165 -



ITERA TIVE ALGORITHM 

(0) Initialize a table as shown below; the parenthesized superscript on a(x) is a 
counter and not an exponent. 

n 

-1 
o 
1 

a (n) (x) 

1 
1 

1 
So 

The table will be completed in the steps below. 
Initialize n to zero. 

o 
o 

n-Ln 

-1 
o 

(1) If dn =0 then set Ln + 1 = Ln, set a(n + l)(x) = a(n)(x), and go to Step (3). 

(2) Find a row k where k<n and dIdO, such that k-Lk (the last column of row k 
in the table) has the largest value. Compute: 

Ln+l = MAX[Ln,Lk+(n-k)] 

a(n + l)(x) = xLn + I-Ln. a(n)(x)-(dfi/d0 • a(k)(x) 

(3) If n+l=m (or n+l=t+Ln+l)* then exit; a(n+l)(x) is the desired error locator 
polynomial. 

* t+Ln iterations are required to satisfy the basic guarantees of the code; 
terminating on this second criterion is sufficient for generating the proper 
error locator polynomial for correctable error cases, but may sacrifice some 
protection against miscorrection of un correctable error cases. 

(4) Compute: 

Ln+1 

dn+1 = )0 aln+1 )'Sn+1-i 

i=o 

then set n = n + 1 and go to Step (1). 

- 166 -



FINDING ERROR LOCATIONS USING THE LOCATOR POLYNOMIAL 

Methods for solving the error locator polynomial for cases of one and two errors 
are developed below. A method for solving the three-error case is given in Section 5.4. 
Methods for directly solving the four-error case are also known, but we shall not 
discuss them. 

For cases of more than four errors, the Chien search is typically used to fmd the 
roots of the error locator polynomial. The Chien search could be used to find the roots 
of the error locator polynomial for cases of fewer errors, but it is slower and in most 
cases requires more logic. 

COMPUTING ERROR VALUES 

Once error location vectors are known, the syndrome equations become a system of 
linear equations with the error values as unknowns. Determinants can be used to solve 
the syndrome equations when the number of errors is low. The following method can 
be used to solve the syndrome equations when the number of errors is high: 

z(l/aLi ).aLi 
Ei = ---e--~~~~~~-----

I I [1 + (aLjjaLi )] 
j=l 
jli 

where, 

e = number of errors 
i 1,2,···,e 

Li error locations 

aLi error location vectors 

Gi coefficients of the error locator polynomial. 

e=3 

+ • • • 

- 167 -



THE REED-SOLOMON SINGLE ERROR CASE 

ERRORLOCATORPOL~OMML 

1 
o (x) = I I 

i=l 
L' (x + a 1) = X + 0 (1) 

S~DROME EQUATIONS NEWTONS IDENTITIES 

So E (2) SOoo = Sl (6) 

Sl = EoaL (3) Sl° o = S2 (7) 

S2 E oa 2L (4) S2° 0 = S3 (8) 

S3 = E oa 3L (5) 

Solving equation (6) gives a simple expression for 0: 

o = Sl/S0 

o may then be substituted into equations (7) and (8) for verification. The locution L is 
given as the log of 0 from equation (1) and the value E is given as So from equation 
(2). 

So 

Sl 

S2 

S3 

THE REED-SOLOMON 1WO ERROR CASE 

ERROR LOCATOR POL~OMIAL 

2 L 
o(x) = -r-r- (x + a i) = x2 + 0l°x + 02 (1) 

i=l 

S~DROME EQUATIONS NEWTONS IDENTITIES 

= E1 + E2 (2) SOo02 + Sl o01 = S2 

= E1 oa L1 + E2 oa L2 (3) Sl o02 + S2 00 1 = S3 

= 2L1 E1 0a + E2 0a 2L2 (4) 

= 3L1 E1 0a + E2 0a 3L2 (5) 

(6) 

(7) 

The syndrome equations are a set of simultaneous non-linear equations which are 
difficult to solve. Newton's identities are a set of simultaneous linear equations which 
can be solved by determinants for 01 and 02 in terms of the syndromes .. Once we have 
computed 01 and 02, we must solve (1) for Ll and L2. From (1) we have: 

- 168 -



FINDING ROOTS OF THE TWO-ERROR LOCATOR POLYNOMIAL 

One method for rmding the roots of the two-error locator polynomial:. 

x2 + a1°x + a2 = 0 (1) 

is to employ the substitution: 

x = aloy, c=a2/(a1)2 (8) 

to transform equation (1) into the form: 

y2 + Y + C = 0 (9) 

Equation (9) can be solved by using C as an index into a table of roots: 

C Yl Y2 

o 0 a O 

-- --
a 2 a 6 

a 4 a 5 

-- --
a l a 3 

-- --
-- --

Once roots Yl and Y2 of (9) have been found, roots Xl and X2 of (1) can be com­
puted by reverse substitution of equation (8). Then LI and L2 may be computed as the 
logs of XI and X2. 

DETERMINING ERROR VALUES FOR THE TWO-ERROR CASE 

When LI and L2 are known, the syndrome equations become a set of linear simul­
taneous equations in Eland E2 and we can solve: 

So = (2) 

Sl = aLloEl + aL2oE2 (3) 

by determinants to obtain EI and E2. 

- 169 -



ONE- AND 1WO-ERROR CORRECTION ALGORITHM 

A) Assume a single error exists. 

1) If SO=O or SI =0, go to the two error case. 

2) Compute a=SI/S0. 

3) Verify S2 = S loa and S3 = S2° a. If either test fails, go to the two error 
case. 

4) Compute L=LOG(a) and E=SO. 

5) If the symbol at L is data, XOR value E at location L. 

6) Exit. 

B) Assume two errors exist. 

I) Compute 

SOoS3 + SloS2 

sOos2 + (Sl)2 
and 

If the denominator or either numerator IS zero, post an uncorrectable error 
flag and exit. 

2) Compute C=a2/(al)2 and fetch Yl and Y2 from the root table. If C does not 
correspond to a valid pair of roots, post an uncorrectable error flag and exit. 

4) Compute Xl =al° Yl and X2=al 0 Y2 

5) Compute Ll =LOG(Xl) and L2=LOG(X2) 

6) Compute 

aL20so + 51 

aLl + aL2 
and 

7) if the symbol at L 1 is data, XOR value E 1 at location L 1; if the symbol at L2 
is data, XOR value E2 at location L2. 

8) Exit. 

- 170 -



CODEWORD EXAMPLE 

Data Symbols 

I I 
Redundant Symbols 

I I 

Assume the data symbols are (in order of transmission) a 2, ai, and a 5. Then the 
data polynomial is: 

The redundant symbols can be computed using one of the encoder circuits shown 
above. A trace of the contents of the registers is shown below: 

data x 3 x 2 x 1 

init 0 0 0 0 

a 2 a 4 a O a O a l 

a l a 5 0 a 3 a l 

a 5 0 a 3 a l 0 

The transmitted codeword is: 

C(x) = a 2 ·x6 + a l ·x5 + a 5 ·x4 + o·x3 + a 3 ·x2 + al·x + 0 

- 171 -



C(x) = a 2 ·x6 

E(x) = 
C' (X) = a 20 x 6 

Sl oa 

a 6 ·a4 

a(6+4 MOD 

S.INGLE ERRQR EXAMPU 

+ a 1 ·xS + a s ·x4 + 0·x3 + a 30 x 2 + a 10 x + 0 

a 20 x 4 

+ a 1 ·xS + a 30 x 4 + OoX3 + a 30 x 2 + a 10 x + 0 

COMPUTE SYNDROMES 

C' (x) So Sl S2 S3 

INIT 0 0 0 0 
a 2 a 2 a 2 a 2 a 2 
a 1 a 4 a O a 2 a 6 
a 3 a 6 a O a 6 as 
0 a 6 a 1 a 1 a 1 
a 3 a 4 as 0 a 6 
a 1 a 2 as a 1 a 4 
0 a 2 a 6 a 3 a O 

COMPUTE a 

a = Sl/S0 = a 6/a2 = a 4 

VERIFY NEWTONS IDENTITIES 

? 
S2 S2 0a ? 

S3 :0:: :0:: 

? a 3 a 30 a4 ? a O :0:: :0:: 

7) ? a 3 a(3+4 MOD 7) ? a O :0:: :0:: 

a 3 = a 3 a O = a O 

COMPUTE ERROR LOCATION AND VALUE 

L = LOG(a) = LOG(a4 ) = 4 

E = So = a 2 

- 172 -



7WO ERROR EXAMPLE 

C(x) = a 2 ·x6 + a 1 ·x5 + a 5 ·x4 + 0·x3 + a 3 ·x2 + a 1 ·x + 0 

E(x) a 2 ·x5 + a 1 ·x2 

C'(x) a 2 ·x6 + a 4 ·x5 + a 5 ·x4 + 0·x3 + a O·x2 + a 1 ·x + 0 

COMPUTE SYNDROMES 

C' (x) So S1 S2 S3 

INIT 0 0 0 0 
a 2 a 2 a 2 a 2 a 2 
a 4 a 1 a 6 0 a O 
a 5 a 6 a 4 a 5 a 2 
0 a 6 a 5 a O a 5 
a O a 2 a 2 a 6 a 3 
a 1 a 4 a O 0 a 5 
0 a 4 a 1 0 a 1 

COMPUTE a 

a = S1/S0 = a 1/a4 = a 4 

VERIFY NEWTONS IDENTITIES 

Sl oa ? 
S2 :: 

a 40 a 4 ? 
a 3 :: 

a(4+4 MOD 7) ? a 3 :: 

a 1 ,. a 3 => TWO ERRORS 

COMPUTE ERROR LOCATIONS 

SOoS3 + Si oS2 (S2)2 + Sl oS3 
a1 = = a 3 a2 = = a O 

SOoS2 + (Sl) 2 SO'S2 + (Sl) 2 

C a2/(a1)2 = a 1 

Y1 = a 2 Y2 = a 6 
Xl a1' Yl = a 3 ·a2 = a 5 X2 = al oY2 = a 3 ·a6 = a 2 
L1 = LOG (Xl) = 5 L2 = LOG (X2) = 2 

COMPUTE ERROR VALUES 

- 173 -



lTERA11YE ALGORJ11/M EXAMPLE 

Use the iterative algorithm to generate o(x) for the case above. 

n 

-1 

° 1 
2 
3 
4 

TABLE GENERATED BY ITERATIVE ALGORITHM 

o(n) (x) dn Ln n-Ln 

1 1 0 -1 
1 a 4 0 ° x + a 4 ° 1 ° x + a 4 a 5 1 1 

x2 + a 4 ·x + a 1 a 4 2 1 
x2 + a 3 ·x + aO 

TRACE OF ITERATIVE ALGORITHM 

n=O .- (1) do=a4<>0 => Go to (2). 

n=l 

(2) k = -1. do/d_1 = a4/1 = a4 . L1 = MAX[O,O+O-(-l») 1. 

0(1) (x) = xl. (1) + a4 • (1) = x + a 4 . 

(3) (n+1) :m => 1<4 => continue. 

(4) d1 = °O'Sl + °l' S O = 1·a1 + a 4 ·a4 = O. 

n = 0+1 = 1. Go to (1) . 

(1) d1=0 => L2 = L1 = 1. 0(2) (x) = o(l)(x) 

Go to (3) . 

(3) (n+1) :m => 2<4 => continue. 

(4) d2 = 00'S2 + 0l'Sl = 1·0 + a 4 ·a1 = a 5 . 

n = 1+1 = 2. Go to (1). 

x+ a4 . 

n=2 (1) d2=a5<>0 => Go to (2). 

n=3 

(2) k = O. d2/dO = a 5/a4 = a 1 • L3 = MAX[1,O+2-0) = 2. 

0(3) (x) = x1 .(x + ( 4 ) + a 1 '(1) = x2 + a 4 .x + a 1 • 

(3) (n+1) : m => 3<4 => continue. 

(4) d3 = GO'S3 + 01'S2 + 02'Sl = 1·a1 + a 4 ·0 + a 1 ·a1 a 4 . 

n = 2+1 = 3. Go to (1). 

(1) d3=a4<>0 => Go to (2). 

(2) k = 2. d3/d2 = a 4/a 5 = a 6 . L4 = MAX[2,1+3-2) 

0(4) (x) = x O'(x2 + a 4 .x + ( 1 ) + a 6 .(x + ( 4 ) 

= x2 + a3 .x + aD. 

(3) (n+1):m => 4=4 => stop 

2. 

n=4 o(x) = 0(4) (x) = x2 + a 3 ·x + aD; same as case above. 

- 174 -



C(x) = 
E(x) = 

C' (x) 

UNCORRECIABLE ERROR EXAMPLE 

(X 20 x 6 + (X 10 x S + (XSox4 + Oox3 + (X3 0x2 + (X 10 x + 0 

(X 20 x S + (X 20 x 4 + (X10 x 2 

(X 20 x 6 + (X4 0xS + (X3 0x4 + Oox3 + (XOox2 + (X10 x + 0 

COMPUTE SYNDROMES 

C' (x) So Sl S2 S3 

INIT 0 0 0 0 
(X2 (X2 (X2 (X2 (X2 
(X4 (Xl (X6 0 (XO 
(X3 (XO (Xl (X3 0 
0 (XO (X2 (XS 0 
(XO 0 (Xl 0 (XO 
(Xl (Xl (X4 (Xl (XO 
0 (Xl (XS (X3 (X3 

COMPUTE a 

a = Sl/S0 = (XS/(X1 = (X4 

VERIFY NEWTONS IDENTITIES 

Sl oa ? 
S2 :::: 

(XS.(X4 ? (X3 :0:: 

(X(S+4 MOD 7) ? (X3 :0:: 

(X2 Y. (X3 => TWO ERRORS 

COMPUTE ERROR LOCATIONS 

SOoS3 + SloS2 
------= (X3 

- 175 -

(S2)2 + 51.53 

SOoS2 + (Sl)2 



MISCORREcnON EXAMPLE 

C(x) = a 2 ·x6 + a 1 ·x5 + a 5 ·x4 + Oox3 + a 30 x 2 + a 10 x + ° 
E (x) = a 20 x 5 + a 10 x 2 + a 4 

C' (x) = a 20 x 6 + a 40 x 5 + a 50 x 4 + Oox3 + aO ox 2 + a 10 x + a 4 

COMPUTE SYNDROMES 

C' (x) 50 51 52 53 

INIT ° ° ° ° a 2 a 2 a 2 a 2 a 2 
a 4 a 1 a 6 ° aO 
a 5 a 6 a 4 a 5 a 2 

° a 6 a 5 aO a 5 
aO a 2 a 2 a 6 a 3 
a 1 a 4 aO ° as 
a 4 ° a 2 a 4 a 2 

COMPUTE (1 

50 = o => TWO ERROR5 

COMPUTE ERROR LOCATIONS 

50 053 + 51 05 2 
= a 2 

(52)2 + 51 053 
a 5 (11 (12 = 

50. 5 2 + (51) 2 50 05 2 + (51) 2 

c = (12/«(11)2 = a 1 

Y1 = a 2 Y2 = a 6 
Xl = (11° Y1 a20a2 = a 4 X2 = (11° Y2 a 2 ·a6 a 1 
L1 LOG (Xl) = 4 L2 = LOG(X2) = 1 

COMPUTE ERROR VALUES 

aL2050 + 51 
= aO a O E1 = E2 = 50 + E1 = 

aLl + aL2 

- 176 -



REFERENCE TABLES 

0 0 0 

0 0 1 

0 1 0 

1 0 0 

0 1 1 

1 1 0 

1 1 1 

1 0 1 

MULTIPLICATION TABLE 

o a O a 1 a2 a3 a4 a5 a6 

0 0 0 0 0 0 0 0 

0 aO a 1 a2 a3 a4 a5 a6 

0 a 1 a2 a3 a4 a 5 a6 aO 

0 a2 a 3 a4 a5 a6 aO a 1 

0 a3 a4 a5 a6 aO a 1 a2 

0 a4 a5 a6 aO a 1 a2 a3 

0 a5 a6 aO a 1 a2 a 3 a4 

0 a6 aO a 1 a2 a3 a4 a5 

- 177 -

ADDmON TABLE 

o aO a 1 a2 a3 a4 a5 a6 

0 aO a 1 a2 a3 a4 a 5 a6 

aO 0 a 3 a6 a 1 a 5 a 4 a2 

a 1 a3 0 a4 aO a2 a6 a 5 

a2 a6 a4 0 a5 a 1 a 3 aO 

a3 a 1 aO a 5 0 a6 a 2 a4 

a4 a5 a2 a 1 a6 0 aO a3 

a5 a4 a6 a3 a2 aO 0 a1 

a6 a2 a5 aO a 4 a3 a 1 0 

ROOT TABLE 

0 aO 

-- --
a2 a6 

a4 a5 

-- --
a 1 a 3 

-- --
-- --



AN INTUITIVE DISCUSSION OF THE SINGLE-ERROR CASE 

The following discussion provides an intuitive description of how the Reed-Solomon 
code single-error case works. A particular example is used in order to make the discus­
sion more understandable. Finite field theory is intentionally avoided. 

Consider a single-error correcting Reed-Solomon code operating on 8-bit symbols 
and employing, on read, the binary polynomials: 

PO (x8 +1) 

PI (x8 + x6 + x5 + x4 + I) 

The correction algorithm requires residues of a function of the data, f(data), 
modulo PO and PI where: 

for PO, f(OATA} 

for PI, f(OATA} 

m-I 
)0 xiOi(X} 
i=o 

and m is the number of data bytes. Di represents the individual data byte polynomials. 
DO is the lowest order data byte (last byte to be transmitted or received). 

The residues are computed by hardware implementing the logical circuits shown 
below. These logical circuits are clocked once per byte. 

7 

5 
4 .. 
2 
1 
ft 

- 178 -



The shift register for PO computes an XOR sum of all data bytes including the 
check bytes. Since PI is primitive, its shift register generates a maximum length se­
quence (255 states). When the PI shift register is non-zero, but its input is zero, each 
clock sets it to the next state of its sequence. 

CORRECJION ALGORITHM 

Consider what happens when the data record is all zeros and a byte in error IS 

received. 

Both shift registers wiJ1 remain zero until the byte in error arrives. The error 
byte is XOR'd into the PO and PI shift registers. Since the PO shift register preserves 
its current value as long as zeros are received, the error pattern remains in it until the 
end of record. XOR'ing the error byte into the PI shift register places the shift reg­
ister at a particular state in its sequence. As each new byte of zeros is received the 
PI shift register is clocked along its sequence, one state per byte. 

The terminal states of the PO and PI shift registers are sufficient for determining 
displacement. To find displacement, it is necessary to determine' the number of shifts 
of the PI shift register that occurred between the occurrence of the error byte and the 
end of record. 

To better understand the correction algorithm, consider a sequence of 255 states as 
represented by the circle in the drawing on the following page. Let SI be the ending 
state of the PI shift register and let SO be the ending state of the PO shift register (SO 
is also the initial state of the PI shift register). Let Sr be the reference state '0000 
000 I' . The number of states between SO and S I must be determined. There are several 
ways to do this. In this description a table method is used. 

Refer again to the diagram on the following page. What we need to know is the 
number of states between SO and S1. We construct a table. The table is addressed by 
SO and S I, and contains the distance along the PI sequence between the reference state 
and any arbitrary state Sx. 

First, SO is used to address the table to fetch distance dl. 
address the table to fetch distance d2. The desired distance Cd), 
and S 1 is computed as follows: 

d = d2-dl; ifd<O then d = d+255 

Next, S 1 is used to 
distance between SO 

The distance d is the reverse displacement from the end of the record. The 
forward displacement can be computed by subtracting the reverse displacement from the 
record length minus one. The error pattern is simply the terminal state of PO, which is 
SO. 

- 179 -



Consider the case when the data is not all zeros. The check bytes would have 
been selected on write, such that on read, when the entire record (including check 
bytes) is processed by the PO and PI shift registers, residues ofzero result. 

When an error occurs. the operation differs from the all-zeros data case only while 
residues are being generated. A given error condition results in the same residues, 
regardless of data content. Once residues have been generated, the operation is the 
same as previously described for the all-zeros data case. 

THE PI SEQUENCE 

- 180 -



ALTERNA TlVE ENCODING AND DECODING METHODS 

FOR THE REED-SOLOMON CODE 

There are many encoding and decoding alternatives for the Reed-Solomon code. 
The best alternative for a given application depends on such factors as: 

- Cost requirements 
- Speed requirements 
- Space requirements 
- Sharing of circuits and resources 

Some of these alternatives are described below. 

ENCODING ALTERNATIVES 

Encoding can be accomplished with the external-XOR form of shift register as well 
as the internal-XOR form. An encoder circuit example using the external-XOR form of 
shift register is shown below: 

g(x) = (x + aD) ·(x + all = x2 + aa· x + ab 

MUX 

~--+--1...-l 1 C (x) 
D(X) 

--------------------------~~----~~~D 
CHECK SYMBOL TIME - -

- 181 -



Another encoding alternative is illustrated by the following example. 

GATE 

STANDARD ENCODER 

I 
GATE0000~0 

I 0 

1 

I I I I I 

AN EQUIVALENT ALTERNATIVE ENCODER 

- 182 -

e _ a179 
a - a 184 

I 
~ 



BIT-SERIAL ENCODING 

Encoding can be accomplished with bit-serial techniques. We ~llustrate using the 
encoder implementing the external-XOR form of shift register introduced above. Rear­
ranging to place low-order to the right, we have: 

GATE 

° C(x) 
O(x) 

----i.----H 1 

MUX 

All paths are symbol-wide (three bits for this example) and the GATE and MUX 
are controlled by a signal which is asserted during clocks for data symbols. The field 
GF(8) is generated by the polynomial: 

x3 + x + 1 

over GF(2). The code generator polynomial over GF(23) is: 

G(x) = ex + aO)·(x + al)·ex + a 2)·ex + a 3) 

= x4 + a 2 .x3 + a5 .x2 + a 5 .x + a 6 

The extemal-XOR form of shift register requires the computation of the sum of 
four products of variable field elements with fixed field elements. Bit-serial multipliers 
were introduced in Section 2.6. The circuit below shows a bit-serial implementation of 
the encoder. 

- 183 -



BIT-SERIAL 
MULTIPLIER 

A~--------------------------------------------------, 

B~--------------------------------------~ 
C~---------------------------, 
O~--------------~ 

MUX 

o C(x) 
O(x) 

-----....&-------11 

The bit-serial multiplier circuit accomplishes in three clocks what the four multi­
pliers of the symbol-serial encoder accomplish in one clock. The Z register is initially 
cleared, then on evefJ third clock it is again cleared and what would have been shifted 
in is clocked into the x register. 

z 

- 184 -

A 
B 
C 
D 



DECODING ALTERNATIVES 

The standard form of syndrome circuit is: 

C' (x) 
.... 

This circuit computes the syndromes: 

Si = C' (x) MOD (x + (Xi) 

It is also possible to use the circuit form below: 

This circuit computes modified syndromes: 

si'= (Xi.Si = (Xi. [C '2(x) MOD (x + (Xi)] 

When this circuit form is used, the correction algorithm must be adjusted accordingly. 

Decoding can also be accomplished with bit-serial multiply-and-sum techniques like 
those discussed in Section 2.6 and implemented above for encoding. 

- 185 -



SHARING CIRCUITRY BE1WEEN ENCODER AND DECODER 

It is possible to share circuitry between the encoder and the decoder in several 
different ways. Recall the general case of the generator polynomial, write redundancy 
polynomial, and syndromes of a Reed-Solomon code of degree m: 

m-l m-l 
G(x) I I gj (x) =IT (x + amo+j ) 

j=o j=o 

W(x) xm'D(x) MOD G(x) 

S· J = C' (x) MOD gj(x) 

As we have seen, the processes of generating W(x) and generating Sj each require 
a different circuit configuration and a different set of finite field multipliers. Cost 
motivates us to find some means for reducing hardware by sharing circuitry in perform­
ing these two functions. 

One method for sharing circuitry is to use the encoder on read to assist with syn­
drome generation by feeding it the received codeword to generate the composite read 
remainder: 

R(x) = C ' (x) MOD G(x) 

The individual remainders (syndromes) can then be generated by dividing the composite 
remainder by each factor of the generator polynomial. This second step can be ac­
complished with sequential logic, combinatorial logic, or software. In many cases, more 
time can be allotted for the processing of each symbol during the second step than 
during the first step due to the difference in degrees between the composite remainder 
and the full received codeword. 

Another method for sharing circuitry is to use the syndrome circuits for encoding. 
The validity of the following approach is guaranteed by the Chinese Remainder Theorem 
for polynomials. 

Consider the set of parameters: 

Pj = D(x) MOD gj(x) = D(x) MOD (x + a1Il()+j) 

which are the contents of registers of a set of circuits for j = 0 to m-l like the one 
shown below, after clocking in a data polynomial D(x). We use Pj here to distinguish 
from the syndromes Sjt which are produced by similar circuits 15ut have a received 
codeword C'(x) polynonual as input. 

D(X) 

- 186-



Now observe that: 

*( +') Pj = a -m IIl() J • [xm • D(x) MOD 8j(X)) 

Since 8j(X) is a factor of G(x) , we know that: 

xm. D(x) MOD 8j(x) = [xm • D(x) MOD G(x)] MOD 8j(X) 

and so by defInition of W(x) , we have: 

-m*(ID()+J') Pj = a • [W(x) MOD 8j(X)] 

By notin8 that: 

we may expand in terms of the coeffIcients Wi ofW(x) to obtain: 

m-l 
p, = \0 a(i-m)*(mo+j).w. 

J L::.- ~ 
i=o 

These equations give the parameters Pj in terms of the write redundancy coeffI­
cients Wi and a matrix of constants which are powers of a that depend only on i, j, m 
and ID(), Inverting this matrix gives the write redundancy coeffIcients Wi in terms of 
the parameters Pj and a set of transform constants Kij which also depend only on i, j, 
m, and ID(): 

m-l 
W, = )0 K. ,.p, 
~ ~, J J 

j=o 

- 187 -



To aid in understanding the implementation of the above equations, we first discuss 
the following circuit, which is equivalent to the conventional form of encoder circuit 
discussed previously. 

CHECK SYMBOL TIME - -

C(x) 

- 1 

D(X) 
----.--10 

1 

OUTPUT L - - - - _ J 

When the CHECK_SYMBOL_TIME signal is asserted, the OUTPUT bus is fed back 
into the dashed portion of the circuit by the MUX. The input to the multipliers is then 
zero, so the contents of the registers, the write redundancy polynomial W(x), are not 
altered as they are shifted out and appended to the data polynomial D(x) to form the 
codeword cex). 

- 188 -



The circuit below illustrates the method for sharing circuitry. 

C(x) 

-------l 

D(X) 
-----11 

o 

OUTPUT 

Note that in practice it is necessary to implement only the multipliers correspond­
ing to Km-I j. To understand this, observe that from the development above it is clear 
that given the same input data polynomial D(x) , the dashed portions of both the con­
ventional and shared-circuitry methods will produce the same OUTPUT for W m-I, the 
coefficient of the high-order term of the write redundancy polynomial W(x). Since the 
portion outside the dashed box of each circuit is the same, and W m-I is fed back in the 
same manner for each circuit, they will produce the same output for W m-I, etc. Math­
ematical proof is left as an exercise for the reader. 

The registers are labeled Sj because this same circuitry can be used to generate 
the syndromes on read by presenting C I (x) at the input and not asserting the CHECK­
_SYMBOL_TIME signal. The OUTPUT bus is simply ignored, and the syndromes may be 

- 189 -



loaded from the registers after the last symbol of the received codeword has been 
clocked in. 

It is possible to take the input to the Km-l j multipliers from the input to the Sj 
registers instead of from their output. If this is' done,a register must be inserted in 
the OUTPUT path before the MUX preserve clocking. It is also possible to take the 
multipliers from the output of the a1 multipliers. If this is done, the values of the 
Km-l,j multipliers are changed to: 

, l<m-l,j 
Km-l,j - mo+j 

a 
+. 

to remove the extra factor of a mo J. 

Finally, it is also possible to implement the shared circuitry method using the mod­
ified form of the syndrome circuit introduced above: 

~Sj~®=(b 
D(X) t 

The appropriate set {Km-l j or K~-l} of multiplier values is used on write, 
depending on where their inputs' are taken. ' For the general case where mofO, using 
this form of syndrome circuit on read produces modified syndromes: 

+. 
Sj' = a llO J.Sj 

and correction algorithms must be modified accordingly. 

- 190 -



EXTENDED REED-SOLOMON CODES 

It is possible to extend certain Reed-Solomon codes by one or two symbols. The 
additional symbols may be used as data in which case the minimum distance of the 
extended code is the same as that of the original code, or as additional redundancy in 
which case the minimum distance, and hence the correction power, of the extended code 
is greater than that of the original code. When a Reed-Solomon code over w-bit sym­
bols is extended by two symbols, the maximum codeword size is 2w + 1 symbols. We il­
lustrate using ~ basic code of degree m=2t=2. Let us use our example field, GF(8) 
generated by (x + x + 1), and let the generator polynomial of the basic code be 

2 
G(x) = I I (x + ail 

i=l 

(x + al).(x + ( 2 ) 

x2 + (a l + ( 2).x + a l ·a2 

x2 + a4 .x + a 3 

ENCODING OF EXTENDED REED-SOLOMON CODE 

Proceed in the usual fashion for the basic code: 

W(x) [X2 ·D(X) MOD G(x)] = Wlx + Wo 

C(x) X2 ·D(X) + W(x) 

and form two extension symbols: 

C(x) MOD (x + ( 3 ) 

C(x) MOD (x + aO) 

which may be transmitted following C(x): 

DATA 

SYMBOLS 

1 
Notice that the extension polynomials 
are identical to polynomials we would 
use to expand G(x) by one factor on 
each end of its set of factors. 

REDUNDANT EXTENSION 

SYMBOLS SYMBOLS 

The unextended degree four code discussed above and this extended degree two 
code each have four redundant symbols per codeword and each can correct two symbols 
in error per codeword, but the former has three data symbols per seven-symbol code­
word while the latter has five data symbols per nine-symbol extended codeword. 

- 191 -



ENCODING CIRCUITRY FOR EXTENDED REED-SOLOMON CODE 

D(X) 

C(x) 
+------------to-fOO x 2o C(x) + X3°X + Xo 

REDUN TIME 

r-~01~----------------~ 

10 

SIGNAL DEFINITIONS 

ID41D31D21D11DOIW11WOIX31XOI 

.---,...---" I 
REDUN_TIME ______ -J 

r-Li X3 _TIME ------------------

XO TIME I n 

- 192 -



DECODING CIRCUITRY FOR EXTENDED REED-SOLOMON CODE 

2 " X -C'(X) + X3"X + Xo 

X3 TIME 

XO TIME 

- 193 -



DECODING OF EXTENDED REED-SOLOMON CODE 

Compute the syndromes for the basic code over the received codeword C' (x) in the 
usual fashion: 

S2 = C' (x) MOD (x + a2 ) 

Sl C'(x) MOD (x + a1 ) 

and compute two more syndromes using the received extension symbols X:3 and XO: 
S3 X3 + [C' (x) MOD (x + a3 )] 

So = Xo + [C' (x) MOD (x + aO)] 

CORRECTION OF EXTENDED REED-SOLOMON CODE 

The four syndromes of the extended code allow correction of up to two symbols in 
error. When no error falls into either extension symbol, the decoding process produces 
the same syndromes as for the degree four code shown above, and correction proceeds 
in exactly the same manner. 

When at least one error falls into an extension symbol, we have two cases: those 
in which one or two errors occur and all errors fall into the extension symbols, and 
those in which two errors occur and one of the errors falls into a data symbol or one 
of the redundant symbols of the basic code and one of the errors falls into an exten­
sion symbol. 

When errors occur only in the extension symbols, SI and S2 will both be zero. 
This cannot occur for any correctable error pattern, so we know within the power of 
the code that no error in the basic codeword exists. 

When one error falls in a data symbol or one of the redundant symbols of the 
basic code and one error falls into an extension symbol, both SI and S2 and either So 
or S~ will be the same as for the degree four code shown above. We may solve for the 
locatIon and value of the first error using S 1 and S2 by a process similar to that used 
above, and the fact that either So or S3 satisfies Newton's identities is sufficient to 
confirm within the power of the code that the computed location and value of the 
single error in the basic codeword are valid. 

- 194 -



EXTENDED DECODING OF REED-SOLOMON CODES 

Extended decoding refers to techniques that allow successful .correction of many 
error situations which exceed the basic guaranteed correction capability of a Reed­
Solomon code. This is distinct from and not to be confused with the concept of an 
extended Reed-Solomon code introduced above. Several extended decoding techniques 
are discussed below. 

ERASURE CORRECTION WITH EXTERNAL OR INTERNAL POINTERS 

A Reed-Solomon code can correct higher raw error rates if error pointer informa­
tion is available from some external source. External pointer sources include modula­
tion-code run-length violations, marginal timing, and marginal amplitude. If signal drop­
out is the predominant type of error and if the burst length distribution shows a high 
probability of long defects, modulation-code run-length violations can be an excellent 
pointer source. When a block-modulation code is used with byte or nibble boundaries, 
run-length violation pointers will accurately identify bytes in error. When a (2,7)-like 
code is used, a run-length violation pointer may flag a byte adjacent to the byte in 
error. This error location uncertainty can be overcome to sQme extent in the decoding 
algorithms. 

A simple method for transferring pointers from a storage device to its controller is 
to implement a special read command that places pointer flags on the data line (or bus). 
These flags replace data field bytes (data and redundancy) only; all track format infor­
mation bytes (sync, resync, etc.) are transferred as for a normal read command. When 
the correction algorithm encounters an uncorrectable sector, it returns to the calling 
routine with a flag requesting that pointers be read. The calling routine executes the 
special read command for the required sector and pointer flags are placed on the data 
line (or bus) and buffered at the controller. The calling routine returns control to the 
correction routine, which uses the pointers to assist correction. No support hardware is 
required at the controller to support this technique. If modulation-code run-length 
violations are the only pointer source, the only support hardware required at the drive 
is a multiplexer to switch between the data line and the invalid-decode line from the 
modulation decoder. 

The capability of an interleaved Reed-Solomon code can be extended by using error 
locations from adjacent correctable interleaves as erasure pointers for an interleave that 
is uncorrectable without the use of erasure pointers. 

- 195 -



Described below is a well-known algorithm for erasure correction. More efficient 
algorithms do exist, but this one was chosen for inclusion for its instructional value. 

1) Generate an erasure-locator polynomial from the known (or suspected) erasure 
locations: 

where 
n = the number of available erasure pointers 

Pi = the location specified by erasure pointer number i 

2) Generate (m-n) modified syndromes Ti from the m raw syndromes Si and the 
coefficients of the erasure-locator polynomial: 

for i=n to m-l, where m is the degree of the code's generator polynomial. 

3) Generate the coefficients of the error locator a(x) from the modified syn­
dromes Ti. 

4) Find error locations using the error locator polynomial. 

5) Compute error values using the raw syndromes Si and the erasure pointers 
and error locations. 

The error value for a false erasure pointer will be zero, so a false erasure pointer 
will not necessarily cause miscorrection, but each false erasure pointer decreases the 
remaining correction capability, and increases the chance of miscorrection, by decreasing 
by one the number of available modified syndromes. 

- 196 -



ERASURE CORRECJ10N EXAMPLE 

[This example uses the same field and polynomials 
as the uncorrectable error example shown above.] 

C(x) a 2 ·x6 + a 1 ·x5 + a 5 ·x4 + 0·x3 + a 3 ·x2 + a 1 ·x + ° 
E(X) 

C· (x) 

COMPUTE SYNDROMES 

C' (x) So 
---
INIT ° a 2 a 2 

a 4 a 2 
a 5 ° ° ° aO a 1 
a 1 a 1 

° a 1 

sl 

° a 2 
a 2 
a 5 
a 6 
a 3 
a 4 
a 5 

POINTERS 

n 2 
P1 4 
P2 5 

S2 S3 

° ° a 2 a 2 
a 2 a 2 
a 1 a 3 
a 3 a 6 
a 6 a 4 
a 1 aO 
a 3 a 3 

COMPUTE ERASURE LOCATOR ii(x) 

n 
r(x) -r-r- (x + a Pi ) 

i=l 

(x + a4 ) .(x + a5 ) 

x2 + (a 4 + a 5 ).x + a4 ·a5 

a O.x2 + aO.x + a 2 

ro·x2 + r1· x + r2 

- 197 -



GENERATE MODIFIED SYNDROMES 

----D-

Ti-n = )0 rjOSi_j for i = n to m-l 

j=O 

TO = rO os2 + rlosl + r2 os0 
aOoa3 + aOoa5 + a20al a 5 

TI rO os3 + rl os2 + r2 os 1 
= aOoa3 + aOoa3 + a2oa5 = a O 

COMPUTE ERROR LOCATOR I(x) 

a = TI/TO = a O/a 5 = a 2 

COMPUTE ERROR LOCATION 

L = log(a) = 2 

COMPUTE ERRATA VALUES 

(The following equations are from Section 5.4.) 

Xl = a L a 2 

X2 a PI = a4 

X3 = aP2 a5 

S2+Slo(X2+X3)+SooX2oX3 

(XI+X2) ° (XI+X3) 

SooX3+SI+EloCXI+X3) 

X2+X3 

- 198 -



EXTENDED CORRECTION ALGORITHMS 

It is possible to extend the correction capability of a Reed-Solomon code by using 
algorithms that decode beyond the basic code guarantees without using erasure correc­
tion. Examples of error situations which, though not guaranteed to be handled by 
extended decoding techniques, have a certain probability of being handled include: 

(a) A single long burst where the number of bytes in error in a codeword ex­
ceeds the basic guarantees of the code. 

(b) Multiple long bursts, or a long burst in combination with random byte-errors, 
where the total number of bytes in error in a codeword exceeds the basic 
guarantees of the code. 

(c) A number of random byte-errors in a codeword which exceeds the basic 
guarantees of the code. 

AN EXAMPLE OF EXTENDED DECODING 

Assume a code with generator polynomial G(x) over GF(28) of degree 16, distance 
d=17, guaranteed to correct t=8 symbols in error in a codeword. Recall some definitions 

. for Reed-Solomon codes: 

G(x) = The Jenerator polynomial of - a Reed-Solomon code over 
GF(2 ). 

n = The length of a codeword; n$2w -1. 
m = The degree of the generator polynomial G(x). 
d = The minimum distance of a Reed-Solomon code with generator 

polynomial of degree m; d =m + 1. 
t = The maximum number of symbols in error guaranteed correc­

table by a Reed-Solomon code with generator polynomial of 
degree m; t=INT[m/2]. 

We first illustrate decoding beyon~ code guarantees without erasure pointers with a 
method for case (a) above. Consider a single error burst which is thirteen bytes in 
length and affects the last thirteen bytes of the received codeword. The error poly­
nomial is: 

E(x) = E12ox12 +'Ellox11 + 000 + EloX1 + Eo 

Clearly, the sixteen-byte remainder: 

R(x) = E(x) MOD G(x) = E(x) 

contains three consecutive high-order bytes that are all zeros followed by thirteen low­
order bytes that constitute the error pattern. 

- 199 -



Now consider a single thirteen-byte error burst that ends J bytes prior to the end 
of the received codeword. The error polynomial is: 

E(X) = EJ+12°XJ+12 + 000 + EJ+loxJ+1 + EJoxJ 

and nothing can be guaranteed about the zero/nonzero status of the coefficients of the 
sixteen byte remainder: 

R(x) = E(x) MOD G(x) 

However, if we premultiply R(x) by x-J and form a new remainder: 

RJ(x) x-JoR(X) MOD G{x) 

= x-Jo[E(X) MOD G(x)] MOD G(x) 
x-JoE(x) MOD G(x) 
x-JoE(X) 

= EJ+12ox12 + 000 + EJ+l°x + EJ 

we again obtain a remainder which contains three consecutive high-order bytes that are 
all zeros followed by thirteen low-order bytes that constitute the error pattern. 

The equation above is the basis for the decoding method. We count and record 
the number of consecutive high-order zero coefficients in the initial remainder, record­
ing the low-order coefficients if the number of consecutive high-order zero coefficients 
is sufficiently high. Then we compute: 

R I (x) = x-I ° R(x) MOD G(x) 

and repeat the counting/recording process. This process is performed n-I times, where 
n is the length of the codeword, to compute R I (x) through Rn-l (x) and account for all 
possible ending locations of the long burst. The pattern containing the highest number 
of consecutive high-order zero coefficients will be that of the long burst itself, which 
will have been segregated at the low-order end of the remainder. 

The detection of some minimum number of consecutive high-order zero bytes (three 
for the given code operating on a full-length codeword, as shown below) can be used to 
flag the existence of a single long burst. The necessary number of consecutive high­
order zero coefficients is established by the required miscorrection probability. 

- 200 -



MISCORREC1'lON 

For a codeword of length n, the miscorrection probability (units: miscorrectcd 
codewords per uncorrectable codeword) for a conventional decoding method against all 
combinations of random errors which exceeds the capability of the code is: 

-L [~] 255 i 
Pmc1 = \ 

1- 256t +i 
i=o 

where, 

[~J 
n! 

r! (n-r) ! 

The miscorrection probability (units: miscorrected codewords per uncorrectable 
codeword) of the extended decoding method outlined above when used to decode a single 
burst of up to L bytes is roughly: 

Pmc2 = 1-[1-256-(m-L)]n 

For a full-length (n=255) codeword with t=8, we have: 

Pmc1 

_8_ 

= \ 
1-
i=o 

2.1E-5 

while for n=255, m= 16, and L= 13, we have: 

Pmc2 = 1-[1-256-3 ]255 ~ 1.5E-5 

- 201 -



Thus the extended decoding method outlined above could be. used to correct a 
single burst of up to thirteen bytes in a full-length codeword with a miscorrection 
probability comparable to that of a conventional decoding method against all combina­
tions of random errors. 

It is important to note that for high-performance ECC applications. an auxiliary 
error detecting code is usually implemented to improve data accuracy. In some cases, 
the dedicated error detection. code may provide most of the protection against the 
transfer of undetected erroneous data. 

INTERLEA VING 

When interleaving is used, the maximum length of a decodable single burst is 
multiplied by the number of interleaves. Consider the same code, described above but 
impiemented with ten-way interleaving in sectors of 1040 data bytes; each interleave 
contains n=(1040/1O+16)=120 bytes. The conventional miscorrection probability (units: 
miscorrected codeword$ per uncorrectable codeword) against all combinations of random 
errors is: 

Pmcl 

_8_ 

= \ 
L­
i='o 

4.4E-8 

while for 1=10, m = 16, and L= 12, the miscorrection probability for this extended decoding 
method is: 

Pmc2 = 1-[1-256-4 )120 ~ 2.8E~8 

Thus the method outlined above will allow successful decoding of a single burst of 
up to I*L= 120 bytes in a ten-way interleaved sector of 1040 data bytes with a miscor­
recti on probability comparable to that achieved using a conventional decoding method in 
decoding all combinations of random errors. 

- 202 -



A SECOND EXAMPLE 

We next illustrate decoding beyond code guarantees without erasure pointers with a 
method for case (b) above, also for a ten-way interleaved sector of 1040 data bytes. 
Consider an error burst which is 100 bytes in length (ten consecutive bytes in error in 
each of the ten interleaves) that ends J bytes prior to the end of an. interleave, to­
gether with other error burst(s) or random byte error(s) which affect no more than one 
byte in anyone interleave. The error polynomial for an interleave is: 

E(x) = EAoXA + EJ+9oxJ+9 + 000 + EJoxJ 

where A is the location of the singf byte in error, which may either precede or follow 
the long burst. If we premultiply by x- then the sixteen byte remainder is: 

RJ(x) = x-JoE(X) MOD G(x) 

[EAoXA- J MOD G(x)] + [EJ+9ox9 + 000 + EJ] 

All of the sixteen coefficients of the first term are nonzero, while the six high­
order coefficients of the second term are equal to zero. Methods are known for decod­
ing directly from the remainder without computing the conventional syndromes, and it is 
possible to solve for the location and value of a single error using two of the six high­
order remainder coefficients, leaving four for verification. Once the location and value 
of the single byte in error have been computed and verified, its contribution to the ten 
low-order coefficients of the. remainder can be removed, leaving just the error pattern 
of the long burst. 

The decoding method for case (b) is similar to that for case (a) above. We at­
tempt to decode some restricted number of bytes in error (one for this particular ex­
ample) using the first few high-order coefficients of the initial remainder, count and 
record the number of consecutive high-order coefficients which are consistent, and 
record the low-order coefficients if the number of consecutive consistent high-order 
coefficients is sufficiently high (six for this particular example). Then we compute: 

R 1 (x) = R(x) MOD G(x) 

and repeat the decoding/counting/recording process. This process is repeated n-l times, 
where n is the length of the codeword, to compute R 1 (x) through Rn-l (x) and account 
for all possible ending locations of the long burst. The low-order coefficients of the 
remainder containing the highest number of consecutive consistent high-order coeffi­
cients can be adjusted to remove the contribution of the decoded and verified errors, 
leaving the pattern of the long burst, which will have been segregated at the low-order 
end of the remainder. 

The detection of some minimum number of consecutive consistent high-order coef­
ficients can be used to flag the existence of a single long burst together with up to 
some maximum number of other bytes in error in a codeword. The necessary number of 
consecutive high-order zero coefficients is again established by the required miscorrec- . 
tion probability. 

- 203 -



The miscorrection probability for each remainder RJ(x) for this method when used 
on n-byte codewords to decode a long burst contributing L consecutive bytes in error 
together with up to K other bytes in error per codeword, where K<INT[(m-L)/2], is: 

Pmc3 

-L 
\ 
1-
i=o 

and the total miscorrection probability (units: miscorrected codewords per uncorrectable 
codeword) for all n values of J is: 

Pmc4= 1-[1-Pmc3]n 

For m=16, L=IO, K=l in a ten-way interleaved sector of 1040 data bytes, the 
miscorrection probability at each value of J is: 

Pmc3 

-L 
\ 
1-
i=o 

and the total miscorrection probability is: 

~ 1. 09E-IO 

Pmc4 = 1-[1-1.09E-IO]120 = 1.3E-8 

Thus this method would allow successful decoding of a long burst of up to I *L = 100 
bytes in combination with up to one other byte in error per interleave with a miscor­
rection probability comparable to that achieved using a conventional decoding method in 
decoding all combinations of random errors. 

Note that a logical extension of the decoding method for both cases (a) and (b) 
for an interleaved code is to require consistency across interleaves in the de<;oded 
location of the long burst. 

CONCLUDING REMARKS 

The techniques discussed above were selected for ease of understanding and are by 
no means the best or only methods which exist for extending the correction power of 
long-distance Reed-Solomon codes. It is possible, with or without erasure pointers, to 
efficiently decode multiple long-burst errors and combinations of long-burst errors and 
random byte-errors which exceed the basic guarantees of a code. Long-distance Reed­
Solomon codes possess much greater correction power against both long-burst and 
random byte-errors than has traditionally been understood. 

- 204 -



3.5 b-ADJACENT CODES 

The b-Adjacent codes are parity check codes constructed with symbols from 
GF(2b), b> 1. A subset of these codes is similar to the Reed-Solomon codes, but in many 
cases encoding for a b-adjacent code is less complex than encoding for a Reed-Solomon 
code with an equivalent capability. 

Check symbols are generated on write and appended to data. On read, check 
symbols are generated and compared with the write check symbols. The XOR differen­
ces between the read check symbols and write check symbols determine the syndromes. 
The syndromes are used to compute error pattern and displacement information. Errors 
within the check bytes must be detected with special tests. 

The IBM 3370, 3375, and 3380 magnetic disk drives employ b-Adjacent code techni­
ques. Several of these techniques are described below. 

EXAMPLE #1 - A CODE TO CORRECT A SINGLE WORD ERROR 

Consider a b-Adjacent code using two l6-bit shift registers, Po and PI, defined by 
the polynomials below: 

Po (x16 + 1) 

P1 (x16 + x 12 + x 3 + x + 1) [Primitive] 

The properties of these polynomials enable the code to correct a single word (16 
bits) in error in a 65,535 word record. 

The write and read check words (CO and Cl) are generated by taking residues of a 
function of the data, f(data), modulo PO and PI, where: 

for PO, f(DATA) 

for P1, f(DATA) 

m-1 

)0 Xi.Di(X) 

i=o 

and m is the number of data words. Di(x) are the individual data word polynomials. DO 
is the lowest order data word (last data word to be transmitted and received). 

- 205 -



The residues are computed by hardware implementing the logical circuits shown in 
figure 3.4.1 below. These logical circuits are clocked once per word. The Po shift 
register computes an XOR sum of all data words. The PI shift register computes a 
cyclic XOR sum of all data words. Since PI is primitive, its shift register generates a 
maximum length sequence (65,535 states). When the PI shift register is nonzero, but its 
input is zero, each word clock sets it to the next state of its sequence. 

On read, the check words read from media are XOR-ed with the computed check 
words to obtain syndromes SO and S 1. 

Figure 3.5.1 

- 206 -



65,535-d 

Figure 3.5.2 

d 

Figure 3.5.3 

- 207 -



CORRECI'ION ALGORITHM 

Consider what happens when the data record is all zeros and a word in error is 
received. 

Both shift registers will remain zero until the word in error arrives. The error 
word is XOR-ed into the Po and PI shift registers. Since Po preserves its current value 
as long as zeros are received, the error pattern remains until the end of record. XOR­
ing the error word into PI, places it to a particular state in its sequence. This state 
will be referred to as the initial state. As each new word of zeros is received the PI 
shift register is clocked along its sequence, one state per word. 

The terminal state of Po is the error pattern. The terminal states of Po and PI 
together establish error displacement. 

To fmd displacement, it is necessary to determine the number of shifts of the PI 
shift register that occurs between the occurrence of the error word and the end of 
record. 

To better understand the correction algorithm. consider a sequence of 65.535 states 
as represented by the circle of Figure 3.5.2. 

L.et SI be the terminal state of the PI shift register and let So be the terminal 
state of the Po shift register. So is alsothe initial state of the PI shift register. 

The number of states between So and S 1 must be determined. There are several 
ways to do this. For this simple example an impiementation is assumed that clocks S 1 
forward along the PI sequence until a match is found with SO. The number of clocks 
subtracted from 65,535 is the displacement from the end oi data counting the last data 
word as one. 

Consider the case when the data is not all-zeros. The check words are selected 
on write such that residues of zero result on read. when the entire record is processed 
by the Po and PI shift registers. When an error occurs. the operation differs from the 
all-zeros data case only while residues are being computed. A given error condition 
resul~ in the same residues. regardless of data values. Once residues have been com­
puted. the operation is the same as previously described for the all-zeros data case. 

If there is a single word in error in the record and it is check word CO, then S 1 
will be zero and SO will be nonzero. However, if check word C 1 is the word in error, 
So will be zero, and SI will be nonzero. 

- 208 ~ 



EXAMPLE #2 - SINGLE-WORD ERROR CORRECI'ION IN 1WO INTERLEA YES 

The code of example #1 could be implemented in multiple interleaves. 

Consider a code with two interleaves. Assume four shift registers PO, Pl, P2 and 

The Po shift register computes an XOR sum of all even data words. PI computes 
an XOR sum of all odd data words. P2 and P3 compute cyclic XOR sums of even and 
odd data words respectively. . . 

Po and P2 determine the pattern and displacement for the even interleave. PI and 
P3 determine the pattern and displacement for the odd interleave. 

This code can be used to correct a single word error in an even interleave and a 
single word error in an odd interleave. The error words need not be adjacent. How­
ever, correction can be restricted to double word adjacent errors by requiring a par­
ticular relationship between interleave displacements. 

If the record length is even, then the odd interleave displacement (from the end of 
the record) must be either equal to, or one greater than the even interleave displace­
ment. 

A double adjacent word error starting on an even word will cause interleave 
displacements to be equal. A double adjaCent word error starting on an odd word will 
cause the odd interleave displacement to be one greater than the even interleave dis­
placement. 

- 209 -



EXAMPLE #3 - SINGLE-WORD ERROR CORRECTION 

USING A NONPRIMITIVE POLYNOMIAL 

The polynomial PI of example #1 is primitive. Therefore, it generates two sequen­
ces; a sequence of length one when initialized to zero; a sequence of length 65,535 
when initialized to any nonzero state. 

Consider another code where PI is degree 16 and irreducible but nonprimitive. As­
sume that PI has a period of 257. Then it would have 256 sequences, the zero sequence 
of length one and 255 sequences of length 257. The operation of the code and dis­
placement computation would be identical to the code of example #1 except that the 
record length, including check words would be limited to 257. 

The operation of the code is unaffected by the fact that PI has multiple sequen­
ces. However, it is very important that all sequences of PI are of an equal length, 
excepting the zero sequence. This condition is met by all irreducible polynomials. The 
condition is also met by some composite polynomials, but not all. 

EXAMPLE #4 - A CODE TO COMPUTE DISPLACEMENT MODULO SOME INTEGER 

The code of Example #3 could be part of a larger code. For example, instead of 
computing error displacement for a 257-word record, displacement modulo 257 could be 
computed for a larger record. 

In this case, if the data record is all-zeros and an error is received, the PI shift 
register could traverse its sequence many times before the end of record is reached. 
See Figure 3.5.3. 

Another part of the overall code might compute displacement modulo some other 
integer that is relatively prime to 257. The overall displacement then would be com­
puted using the Chinese Remainder Method. 

EXAMPLE #5 - A CODE TO CORRECT DOUBLE-WORD ADJA CENT ERRORS 

The interleave code of Example #2 uses four shift registers. Its capability includes 
the correction of double-word adjacent errors. 

Consider a code using only three shift registers (PO, PI, P2) that corrects most 
double-word adjacent errors. 

The Po shift register computes an XOR sum of all even data words. The PI shift 
register computes an XOR sum of all odd data words. The P2 shift register processes 
all data words (odd and even). Its definition and operation are identical to that of the 
PI shift register in the previous examples . . 

- 210 -



Assume the data to be all zeros. Assume that a double word adjacent error oc­
curs. The two adjacent words in error will be XOR-ed into the Po and PI shift regis­
ters. Which shift register receives the first word in error depends on whether the 
error starts on an odd or even word. When the first error word is received, it is XOR­
ed into the P2 shift register, after which P2 is advanced one state along its sequence. 
Next, the second error word is XOR-ed into P2. P2 is again advanced one state along 
its sequence. 

P2 continues to be advanced along its sequence once per data word until the end 
of record is reached. 

The final states of shift registers PO, PI, P2 are syndromes SO, SI, S2. 

So and S 1 are the error pattern. Assume that it is known from another part of an 
overall code, that the error started in an even word. Then, the error displacement can 
be found by advancing S2 along the P2 sequence until a k'th state is found, such that, 
zero results when So is XOR-ed with the k'th state and the result is advanced one state 
along the P2 sequence and XOR-ed with SI. The procedure for fmding displacement 
would be slightly different if the error started on an odd word. 

This code would not allow correction of all double word adjacent errors. If the 
second word in error is equal to the first word in error shifted once along the P2 
sequence, the error is not detected at all and correction cannot be accomplished. 

Using two codes of this type will overcome the problem, providing the P2 polyno­
mials of the two codes are different and satisfy a particular criteria. 

- 211 -



USING FINITE FlEW MATH WITH THE b-ADJACENT CODE 

Let powers of a represent the elements of a field. Let reverse displacement mean 
the displacement from the last data word to the first word in error, counting the last 
data word as one. 

In example #1, displacement is computed by shifting SI forward along the PI 
sequence until a match is found with SO. In terms of (mite field math, j must be 
determined, where: 

SI·ai + So = 0 

The reverse displacement is then (-j) MOD 65,535. 

For example #5, j must be determined where if the double-word error starts in an 
even word: 

(S2 • ai + SO)· a = S 1 

and if the double-word error starts in an odd word: 

(S2 • ai + S 1) • a = So 

The reverse displacement is then (-j) MOD 65,535. 

- 212 -



CHAPTER 4 - APPLICATION CONSIDERATIONS 

4.1 RAW ERROR RATES AND NATURE OF ERROR 

Error rates and the nature of error must be characterized before designing and test­
ing a real-world error-control system. The error characteristics should be determined 
by a combination of measurement and estimation. The estimation should be based on 
experiences with similar products and technologies. Data typically required is listed 
below. 

1. Defect distribution (number of defects per media of each defect length). 

2. Soft-error distribution (number of soft errors versus total bits transferred 
for each error burst length). 

3. Methods of defect identification at the time of manufacture. 

4. Percentage of defects and percentage of soft errors that result in loss of 
sync. 

5. Probability that a loss of sync results in the phase lock loop (PLL) staying 
off frequency. 

6. Probability of sync framing error. 

7. Probability of false sync detection. 

8. Change in defect rate versus media usage and storage time. 

9. Change in soft error rate versus media usage and storage time. 

10. Information on any clustering of defects or soft errors, such as: 

a. High probability of multiple bursts. 
b. High probability of long bursts. 
c. Higher error rate at particular tracks. 
d. Periodic misregistration. 
e. Interference from another function. 
f. Weak areas of media. 
g. Media deformity. 
h. Contamination. 

11. Other recovery means that may be used and their effectiveness. Some re-
covery techniques used on prior storage products are listed below. 

a. Head offset. 
b. Detection window shift. 
c. VFO bandwidth change. 
d. Detector threshold change. 

- 213-



12. Relationship between decoded· bits in error and encoded bits in error for 
the read/write modulation method used. 

13. Available pointer information that can be used for erasure correction. 
Some sources of pointer information on prior storage products are listed 
below. 

a. Excessive phase shift. 
b. Excessive amplitude deviations. 
c. Invalid code found by the modulation method. 
d. Error locations from adjacent interleaves. 

14. Information on usage. For example, expected bits read per day and ex­
pected accesses per day. 

15. Record sizes. 

- 214-



4.2 DECODED ERROR RATES 

Error correction is used in communication systems to improve channel throughput. 
It is used in storage device subsystems to improve data recoverability. Part of the 
design of every error control system is determining code performance. The block (or 
decoded) error rate for a specified raw error rate is one measure of performance. 

The equations and tables below and on the following pages can be used to deter­
mine the block error rate when raw error rate and the number of errors corrected per 
block are known. A block error exists if, after performing error correction, the data 
is erroneous. The block error rate is the ratio of block occurrences to blocks trans­
ferred. Raw error rate for the equations is the ratio of raw error occurrences to a 
unit of data transfer. The unit of data transfer is specified in each case. The raw 
error rate for the tables is the ratio of raw error occurrences to bits transferred. An 
error may be a bit, symbol, or burst error. Errors are assumed to be random; the 
equations and tables give erroneous results if they are not. 

In the equations, the following notation represents the number of ways to chose r 
out of n without regard to order. 

r-l 
[nJ n! 
r = r!*(n-r)! = I I 

j=o 

(n-j) 
(r-j) 

Some of the probability equations given on the following pages can be reduced in 
complexity by using the following relationships when applicable. 

(l+Pe)n-r :::: 1 if Pe«l 

if n»r 

- 215-



BIT-ERROR PROBABILITIES 

Let Pe be the raw-bit-error rate. Let the raw-bit-error rate be defined as the 
ratio of bit error occurrences to total bits transferred; that is, bit errors per bit. The 
equations below give probabilities for various numbers of bit errors occurring in a block 
ofn bits. 

PROBABILITY OF EXACILY r BIT ERRORS IN A BLOCK OF n BITS 

PROBABILITY OF ZERO BIT ERRORS IN A BLOCK OF n BITS 

PROBABILITY OF ONE BIT ERROR IN A BLOCK OF n BITS 

PROBABILITY OF AT LEAST ONE BIT ERROR IN A BLOCK OF n BITS .. 

-IL 
\ Pr 
1-
r>O 

l-PO 

PROBABILITY OF TWO OR MORE BIT ERRORS IN A BLOCK OF n BITS 

-IL 
\ Pr 
1-
r>l 

- 216-



DECODED ERROR PROBABILITIES FOR A BIT-CORRECTING CODE 

n = Block length in bits 

e = Number of bits corrected per block 
= 0 for an error-detection-only code 

Pe = Raw bit error probability (units: bit errors per bit) 

BLOCK ERRORS 
BLOCK 

BLOCK ERRORS 
BIT 

BIT ERRORS 
BLOCK 

BIT ERRORS 
BIT 

~ 

~ ~ [~J*(Pe)i*(l-Pe}n-i 
i>e 

~ 

~ ~ *~ [~J*(Pe)i*(l-Pe)n-i 
i>e 

n 

~ ~(i+e)*[~J*(Pe)i*(l-Pe)n-i 
i>e 

~ 

~ ~ *~ (i+e)*[~J*(Pe)i*(l-Pe)n-i 
i>e 

- 217-



BURST-ERROR PROBA BILITIES 

Let Pe be the raw burst-error rate, defined as the ratio of burst error occurrences 
to total bits transferred, with units of burst errors per bit. The equations below give 
the probabilities for various numbers of burst errors occurring in a block of n bits. It 
is assumed that burst length is short compared to block length. 

PROBABILITY OF EXACTLY r BURST ERRORS IN A BLOCK OF n BITS 

PROBABILITY OF ZERO BURST ERRORS IN A BLOCK OF n BITS 

PROBABILITY OF ONE BURST ERROR IN A BLOCK OF n BITS 

PROBABILITY OF ATLEAST ONE BURST ERROR IN A BLOCK OF n BITS 

-.!L 

\ Pr 
1-
r>O 

l-P O 

PROBABILITY OF TWO OR MORE BURST ERRORS IN A BLOCK OF n BITS 

-.!L 

\ Pr 
1-
r>l 

- 218 -



DECODED ERROR PROBABILITIES FOR A BURST-CORRECTING CODE 

n = Block length in bits 

e = Number of bursts corrected per block 
= 0 for an error-detection-only code 

Pe = Raw burst error probability 
(units: burst errors per bit) 

BLOCK ERRORS 
BLOCK 

BLOCK ERRORS 
BIT 

BURST ERRORS 
BLOCK 

BURST ERRORS 
BIT 

-1L 

~ ~ [~J*(Pe)i*(l-Pe)n-i 
i>e 

-1L 

~ ~ *~ [~J*(Pe)i*(l-Pe)n-i 
i>e 

-1L 

~ ~ (i+e)*[~J*(Pe)i*(l-Pe)n-i 
i>e 

-1L 

~ ~ *~ (i+e)*[~J*(Pe)i*(l-Pe)n-i 
i>e 

- 219-



SYMBOL-ERROR PROBABILITIES 

Let Pe be the raw-symbol-error rate, defined as the ratio of symbol error occur­
rences to total symbols transferred, with units of symbol errors per symbol. The equa­
tions below give probabilities for various numbers of symbol errors occurring in a block 
of n symbols. 

PROBABILITY OF EXACTLY r SYMBOL ERRORS IN A BLOCK OF 11 SYMBOLS 

PROBABILITY OF ZERO SYMBOL ERRORS IN A BLOCK OF 11 SYMBOLS 

PROBABILITY OF ONE SYMBOL ERROR IN A BLOCK OF 11 SYMBOLS 

PROBABILITY OF AT LEAST ONE SYMBOL ERROR IN A BLOCK OF 11 SYMBOLS 

~ 

\ Pr 
1-
r>O 

l-P O 

PROBABILITY OF TWO OR MORE SYMBOL ERRORS IN A BLOCK OF 11 SYMBOLS 

~ 

\ Pr 
1-
r>l 

- 220-



DECODED ERROR PROBABILITIES FOR A SYMBOL-CORRECTING CODE 

n = Block length in symbols 

e = Number of bits corrected per block 
= 0 for an error-detection-only code 

Pe = Raw symbol error probability 
(units: symbol errors per symbol) 

w = Symbol width in bits 

BLOCK ERRORS 
BLOCK 

BLOCK ERRORS 
SYMBOL 

BLOCK ERRORS 
BIT 

SYMBOL ERRORS 
BLOCK 

SYMBOL ERRORS 
SYMBOL 

SYMBOL ERRORS 
BIT 

* BIT ERRORS 
BIT 

--ll-

~ ~ *L [~J*(Pe)i*(l-Pe)n-i 
i>e 

--ll-
~ 

1 
w*n 

*\ 
1-

[~J * (Pe ) i* (l-Pe ) n-i 

i>e 

--ll-
~ \ (i+e) * [~J * (Pe ) i* (l-Pe ) n-i 1-

i>e 

--ll-
~ 

1 *\ (i+e) * [~J * (Pe ) i* (l-Pe ) n-i -n 1-
i>e 

--ll-
~ 

1 *\ (i+e) * [~J * (Pe ) i* (l-Pe ) n-i w*n 1-
i>e 

--ll-
~ 

1 *\ (i+e)*[~J*(Pe)i*(l-Pe)n-i 2*n 1-
i>e 

* Assuming a symbol error results in kl2 bit errors. 

- 221 -



DECODED ERROR PROBABILITIES FOR A SYMBOL-CORRECTING CODE 

WHEN ERASURE POINTERS ARE AVAILABLE FOR SYMBOL ERRORS 

n = Block length in symbols 

e = Number of bits corrected per block 
o for an error-detection-only code 

Pe = Raw symbol error probability 
(units: symbol errors per symbol) 

w = Symbol width in bits 

BLOCK ERRORS 
BLOCK 

BLOCK ERRORS 
SYMBOL 

BLOCK ERRORS 
BIT 

SYMBOL ERRORS 
BLOCK 

SYMBOL ERRORS 
SYMBOL 

SYMBOL ERRORS 
BIT 

* BIT ERRORS 
BIT 

.-!L 

~ ~ [~J*(Pe)i*(l-Pe)n-i 
i>e 

.-!L 

~ ~ *~ [~J*(Pe)i*(l-Pe)n-i 
i>e 

.-!L 

~ w;n *~ [~J*(Pe)i*(l-Pe)n-i 
i>e 

.-!L 

~ ~ i*[~]*(Pe)i*(l-Pe)n-i 
i>e 

.-!L 

~ ~ *~ i*[~J*(Pe)i*(l-Pe)n-i 
i>e 

.-!L 

~ w;n *~ i*[~J*(Pe)i*(l-Pe)n-i 
i>e 

.-!L 

~ 2;n *~ (i)*[~J*(Pe)i*(l-Pe)n-i 
i>e 

* Assuming a symbol error results in kl2 bit errors. 

- 222-



4.3 DATA RECOVERABILITY 

Error correction is used in storage device subsystems to improve data recover­
ability. There are other techniques that improve data recoverability as well. Some of 
these techniques are discussed in this section. System manufacturers may want to 
include data recovery techniques on their list of criteria for comparing subsystems. 

DATA RECOVERY TECHNIQUES 

Some storage device subsystems attempt data recovery with the techniques below 
when ECC is unsuccessful. 

a. Head offset. 
b. Detection window shift. 
c. VFO bandwidth change. 
d. Detector threshold change. 
e. Rezero and reread. 
f. Remove and reinsert media then reread. 
g. Move media to another device and reread. 

DATA SEPARATOR 

The design of the data separator will have a significant influence on data recover-
ability. Some devices have built-in data separators. Other devices require a data 
separator in the controller. 

Controller manufacturers should consult their device vendors for recommendations 
when designing a controller for devices which require external data separators. 

Circuit layout and parts selection are very important for data separators. Even if 
one has a circuit recommended by a drive vendor, it may be advisable to use a highly 
experienced read/write consultant for the detailed design and layout. 

WRITE VERIFY 

Another technique that can improve the probability of data recovery is write verify 
(read back after write). Write verify can be very effective for devices using magnetic 
media due to the nature of defects in this media. One may write/read over a defect 
hundreds of times without an error. An error will result only when the write occurs 
with the proper phasing across the defect. Once the error occurs, it may then have a 
high incidence rate until the record is rewritten. Hundreds of writes may be required 
before the error occurs again. 

- 223-



When an error is detected by write verify, the record is rewritten or retired or 
defect skipping is applied. This reserves error correction for errors that develop with 
time or usage. Since it affects performance, write verify should be optional. 

DEFECT SKIPPING 

Defect-skipping techniques include alternate-sector assignment, header move func­
tions, and defect skipping within a data field. These techniques are used to handle 
media defects detected during formatting and persistent errors detected on read. 

Under alternate-sector assignment, a defective sector may be retired and logically 
replaced with a sector physically located elsewhere. Space for alternate sector(s) may 
be reserved on each track or cylinder, or one or more tracks or cylinders may be 
reserved exclusively for alternate sectors. The header contains an alternate-sector 
assignment field; when a sector is retired, this field in its header is written to point to 
the alternate sector which is to logically replace it. An assigned alternate sector 
typically has a field which points back to the retired sector that it is replacing. 

When a header-move function is implemented, a defect falling in a header is avoid­
ed by moving the header further along the track. Space may be allotted in the track 
format to allow a normal-length data field to follow a moved header, or the moved 
header may contain a field pointing to an assigned alternate sector. In the latter case, 
since the data field following a moved header is not used, it need not be of normal 
length; it mayor may not actually be written, depending on implementation alternatives. 

Defect skipping within a data field is used in some high-capacity magnetic disk 
subsystems employing variable-length records as a means of handling known defects. 
Each record has a count field which records information on the locations of defects 
within the track. Writing is interrupted when the current byte displacement from the 
index corresponds to the starting offset of a skip as recorded in the count field. When 
the recording head passes beyond the known length of the defect, a preamble pattern 
and sync mark are written, then writing of data re-commences. Some IBM devices allow 
up to seven defects per track to be skipped in this manner. 

Defect skipping within a data field is also used on magnetic devices employing 
fixed-length records. In this case, each sector header records displacement information 
for defects in that sector. Some implementations write a preamble pattern and sync 
mark at the end of a skip as discussed above for variable-length records while others 
do not. The former practice handles defects which can cause loss of sync. If a pre­
amble pattern and sync mark are not written, some other method must be used to map 
out defects which can cause loss of sync. 

- 224-



Devices employing defect skipping within a data field must allocate extra media 
area for each sector, track, or cylinder, depending on whether or not embedded servoing 
is used and on other implementation choices. In devices using embedded servoing, the 
space a]]otted for each sector must allow room for the maximum-length defect(s) which 
may be skipped. In devices not using embedded servo techniques, the track format need 
accommodate only some maximum number of skips per track, which may be much less 
than one per sector. . 

When defect-skipping techniques are used and skip or alternate-sector information 
is stored in headers, care must be taken to make sure that the storage of information 
in headers other than track and sector number does not weaken the error tolerance of 
the headers. A different method for alternate-sector assignment, which avoids this 
complication, is sector slipping. Each track or cylinder contains enough extra area to 
write one or more extra sectors. When a sector must be retired, it and each succeeding 
sector are slipped one sector-length along the track or cylinder. This method has the 
additional advantage that sectors remain consecutive and no additional seek time is 
required to find an alternate sector at the end of the track or cylinder, or on a dif­
ferent track or track or cylinder. This method is discussed in more detail under A 
HEADER STRATEGY EXAMPLE below. 

ERROR-TOLERANT TRACK FORMATS 

Achieving error tolerance in the track format is a major consideration when ar­
chitecting a storage device and controller for high error rate media. All special fields 
and all special bytes of the track format must be error-tolerant. This includes but is 
not limited to preambles, sync marks, header fields, sector marks, and index marks. 

Experience shows that designing an error-tolerant track format (one that does not 
dominate the uncorrectable sector event rate) to support high defect densities can be 
even more difficult than selecting a high performance ECC code. 

SYNCHRONIZA TION 

For high defect rate devices, it is essential that the device/controller architectures 
include a high degree of tolerance to defects that fall within sync marks. There are 
several synchronization strategies that achieve this. The selection will be influenced by 
the nature of the' device and the nature of defects (e.g., length distribution, growth 
rate, etc.). Both false detection and detection failure probabilities must be considered. 
Synchronization is discussed in detail in Section 4.8.1; some high points are briefly 
covered below. 

One method for achieving tolerance to defects that fall within sync marks is to 
employ error-tolerant sync marks. Error-tolerant sync marks have been used in the 
past that can be detected at the proper time even if several small error bursts or one 
large error burst occurs within the mark. See Section 4.8.1 for a more in-depth discus­
sion of synchronization codes. 

- 225-



Another strategy is to replicate sync marks with some number of bytes between. 
The number of bytes between replications would be determined by the maximum defect 
length to be accommodated. A different code is used for each replication so that the 
detected code identifies the true start of data. The number of replications required is 
selected to achieve a high probability of synchronization for the given rate and nature 
of defects. Mark lengths, codes, and detection qualification criteria are selected to 
achieve an acceptable rate of false sync mark detection. 

If synchronization consists of several steps, each must be error-tolerant. If sector 
marks (also called address marks) and preambles precede sync marks they must also be 
error tolerant. Today, in some implementations correct synchronization will not be 
achieved if an error occurs in the last bit or last few bits of a preamble. Such sen­
sitivities must be avoided. Section 4.8.1 discusses how error tolerance can be achieved 
in the clock-phasing step of synchronization as well as in the byte-synchronization step. 

MAINTAINING SYNCHRONIZATION THROUGH LARGE DEFECTS 

Obviously, it is desirable to maximize the defect length that the PLL can flywheel 
through without losing synchronization. Engineers responsible for defect handling 
strategy will want to influence the device's rotational speed stability and PLL flywheel­
ing characteristics. One technique that has been used to extend the length of bursts 
the PLL can flywheel through is to coast the PLL through defects by using some cri­
teria (run-length violation, loss of signal amplitude, etc.) to temporarily shut off updat­
ing of the PLL's frequency and phase memory. 

FALSE SYNC MARK DETECTION 

The false detection of a sync mark can result in synchronization failure. The 
probability of false mark detection must be kept low by careful selection of mark len­
gths, codes, and qualification criteria. 

In some architectures, once data acquisition has been achieved, sync mark detec­
tion is qualified with a timing window in order to minimize the probability of false 
detection. In such an architecture, it is desirable to generate the timing window from 
the reference clock; if the timing window is generated from the data clock and the PLL 
loses sync while clocking over a large defect in a known defective sector, the following 
good sector may be missed due to the subsequent mispositioning of the timing window. 

- 226-



HEADERS 

For high error-rate devices, header strategy is influenced by defect event rates, 
growth rates, length distributions, performance requirements, and write prerequisites. 

One header strategy requires replication. A number of contiguous headers with 
CRC are written, then on read one copy must be read error-free. Another strategy is 
to allow a data field to be recovered even if its header is in error. This requires that 
headers consist solely of address information such as track and sector number. If a 
header is in error, such information can be generated from known track orientation. 
Some devices combine this strategy with header replication in order to minimize the 
frequency at which address information is generated rather than read. In any case, 
devices using high error-rate media must be insensitive to defects falling into the 
headers of several consecutive sectors. When address information is generated rather 
than read, the data field can be further qualified by subsequent headers. 

Using error correction on the header field as well as the data field will increase 
the probability of recovering data. However, one must either be able to store and 
correct both a header and the associated data field, or provide a way to space over a 
defective header in order to recover the associated data field on a succeeding revolu­
tion. 

An alternative to correcting the header is to keep only address information in the 
header and to provide a way to space over a defective header. When a defective header 
is detected, record address is computed from track orientation. A disadvantage of this 
method is that it does not allow flags to be part of the header field. 

Some devices also include address information within the highly protected data 
field to use as a final check that the proper data field was recovered. This check must 
take place after error correction. The best time to perform it may be just before 
releasing the sector for transfer to the host. 

A HEADER STRATEGY EXAMPLE 

A typical error-tolerant header and sector-retirement strategy might be: Store in 
the header only track and sector address information. Reserve K sectors at the end of 
each cylinder for spare sectors. When a sector must be retired, slip all data sectors 
down the cylinder by one sector position and write a special "sector-retired" flag in 
place of the sector number in the header of the retired sector. On searches if a head­
er is read error-free and the "sector-retired" flag is found instead of a sector number, 
adjust the sector number in the known orientation and continue searching. 

- 227-



If a header-in-error is encountered during a search then it is either the header of 
a sector that had been previously retired or it is a header containing a temporary error 
or a new hard defect. The sector number sequence encountered in continuing the 
search can be used to determine which is the case. If the header-in-error was that of 
an already-retired sector, the sector number sequence should be adjusted and the search 
continued. Otherwise the search should still be continued unless the header-in-error 
was that of the desired sector, in which case the search should be interrupted and a 
re-read attempted. If the error is not present on re-read, assume it was a temporary 
error and proceed to read the data field. If the error persists on re-read, assume a 
new hard defect: orient on the preceding sector, skip the header-in-error, and read the 
desired data field. A sector whose header contains a new hard defect should be retired 
as soon as possible. 

Note that the error-tolerant header strategy outlined above will not work if it is 
necessary to store control data, such as location information for defect skipping, within 
headers. 

SERVO SYSTEMS 

In many devices, the ability to handle large defects is limited by the servo sys­
tem(s). Engineers responsible for defect handling strategy must understand the limits of 
the servo system(s) relative to defect tolerance. In particular, any testing of defect 
handling capabilities should include the servo system(s). 

MODULATION CODES 

The modulation code selected will affect EDAC performance by influencing noise-­
generated error rates, the extension of error bursts, the ability to acquire synchroniza­
tion, the ability to hold synchronization through defects, the ability to generate erasure 
pointers, and the resolution of erasure pointers. 

The following summarizes the results of an analysis of the error propagation 
performance of the (2,7) code described in U.S. Patent #4,115,768, inventors Eggenberger 
and Hodges, assignee IBM (1978). Analysis was confmed to cases of single-bit errors 
defmed below: 

Drop-in: 
Drop-out: 
Shift: 

A code-bit '1' where '0' was encoded 
A code-bit '0' where '1' was encoded 
A code-bit '1' where '0' was encoded, coincident 
with an adjacent code-bit '0' where '1' was encoded 

Error propagation length is defined as the inclusive number of data-bits between 
the first data-bit in error and the last data-bit in error caused by a given code-bit 
error case. 

Random fifteen-data-bit sequences were generated and encoded using the encoder 
described in the patent. Drop-in, drop-out, and shift errors were created in tum in the 
twelfth through the eighteenth bits of the resulting code-bit sequences. The corrupted 
code-bit sequences were decoded using the decoder described in the patent, the result­
ing data-bit sequences were analyzed, and the error propagation lengths recorded. 
Results of 2000 trials are shown below: 

- 228-



ERROR 
TYPE 

DROP-IN 

DROP-OUT 

SHIFT 

TOTAL 

# 
% 

# 
% 

# 
% 

# 
% 

o 

2674 
29 

201 
7 

150 
3 

3025 
17 

ERROR PROPAGATION LENGTH 
123 4 5 TOTAL 

5009 1220 195 127 0 9225 
54 13 2 1 0 

1258 776 448 92 0 2775 
45 28 16 3 0 

1955 1496 1242 508 125 5476 
36 27 23 9 2 

8222 3492 1885 727 125 17476 
47 20 11 4 1 

- 229-



4.4 DATA ACCURACY 

Data accuracy is one of the most important considerations in error correction 
system design. The following discussion on data accuracy is concerned primarily with 
magnetic disk applications. However, the concepts are extendable to many other error 
correction applications. 

The transfer of undetected erroneous data can be one of the most catastrophic 
failures of a data storage system; consider the consequences of an undetected error in 
the money field of a financial instrument or the control status of a nuclear reactor. 
Most users of disk subsystems consider data accuracy even more important than data 
recoverability. Nevertheless, many disk subsystem designers are unaware of the factors 
determining data accuracy. 

Some causes of undetected erroneous data transfer are listed below. 

- Miscorrection by an error-correcting code. 

- Misdetection by an error-detecting or error-correcting code. 

- Synchronization framing errors in an implementation without synchronization 
framing error protection. 

- Occasional failure on an unprotected data path on write or read. 

- Occasional failure on an unprotected RAM buffer within the data path on 
write or read. 

- A software error resulting in the transfer of the wrong sector. 

- A broken error latch which never flags an error; other broken hardware. 

Some other factors impacting data accuracy are discussed below. 

- 230-



POLYNOMIAL SELECTION 

In disk subsystems, the error-correction polynomial has a significant influence on 
data accuracy. Fire code polynomials, for example, have been widely used on disk con­
trollers, yet they provide less accuracy than carefully selected computer-generated 
codes. 

Many disk controller manufacturers have employed one of the following Fire code 
polynomials: 

(x21 + 1).(xll + x2 + 1) or (x21 + 1).(xll + x9 + 1) 

The natural period of each polynomial is 42,987. Burst correction and detection 
spans are both eleven bits for record lengths, including check bits, no greater than the 
natural period. These codes are frequently used to correct eleven-bit bursts on record 
lengths of 512 bytes. 

When used for correction of eleven-bit bursts on a 512-byte record, these codes 
miscorrect ten percent of all possible double bursts where each burst is a single bit in 
error. With the same correction span and record length, the miscorrection probability 
for all possible error bursts is one in one thousand. The short double burst, with each 
burst a single bit in error, has a miscorrection probability two orders of magnitude 
greater. 

Such codes have a high miscorrection probability on other short double bursts as 
well. Double bursts are not as common as single bursts. However, due to error clus­
tering, they occur frequently enough to be a problem. 

The data accuracy provided by the above Fire codes for all possible error bursts is 
comparable to that provided by a ten-bit CRC code. The data accuracy for all possible 
double-bit errors is comparable to that provided by a three-bit or four-bit CRC code. 

Fire codes are defined by generator polynomials of the form: 

g(x) = c(x).p(x) = (xC + 1).p(x) 

where p(x) is any irreducible polynomial of degree z and period e, and e does not divide 
c. 

The period of the generator polynomial g(x) is the least common multiple of c and 
e. For record lengths (including check bits) not exceeding the period of g(x) , these 
codes are guaranteed to correct single bursts of length b bits and detect single bursts 
of length d bits where d~b, provided z~b and c~(d+b-l). 

The composite form of the generator polynomial (g(x» is used for encoding. 
Decoding can be performed with a shift register implementing the composite generator 
polynomial (g(x» or by two shift registers implementing the factors of the generator 
polynomial (c(x) and p(x». Code performance is the same in either case. 

The p(x) factor of the Fire code generator polynomial carries error displacement 
information. The c(x) factor carries error pattern information. It is this factor that is 
responsible for the Fire code's pattern sensitivity. To understand the pattern sen­
sitivity, assume that decoding is performed with shift registers implementing the in­
dividual factors of the generator polynomial. For a particular error burst to result in 

- 231 -



miscorrection, it must leave in the c(x) shift register a pattern that qualifies as a 
correctable error pattern. A high percentage of short double bursts do exactly that. 
For example, two bits in error, (c+ 1) bits apart, would leave the same pattern in the 
c(x) shift register as an error burst of length two. The same would be true of two bits 
in error separated by any multiple of (c+ 1) bits. 

If p(x) has more redundancy than required by the Fire code formulas, the excess 
redundancy reduces the miscorrection probability for short double bursts, as well as the 
miscorrection probability for all possible error bursts. 

The overall miscorrection probability (Pmc) for a Fire code is given by the follow­
ing equation, assuming all errors are possible and equally probable. 

Pmc 

where, 

n*2 (b-1) 
~ 

n record length in bits including check bits. 
b = guaranteed single burst correction span in bits. 
m = total number of check bits. 

(1) 

For many Fire codes, the miscorrection probability for double bursts where each 
burst is a single bit in error is given by the following equation, assuming all such 
errors are possible and equally probable. 

Pmcdb 

where, 

~ 2*n*(b-1) 
c 2* (2z-1) 

nand b are as defined above. 
c = degree of the c(x) factor of the Fire code polynomial. 
z = degree of the p(x) factor of the Fire code polynomial. 

(2) 

This equation is unique to the Fire Code. It is applicable only when the product 
of Pmcdb and the number of possible double-bit errors is much greater than one. When 
this is not true, a computer search should be used to determine Pmcdb. 

The ratio of Pmcdb to Pmc provides a measure of pattern sensitivity for one par­
ticular double burst (each burst a single bit in error). Remember that the Fire code is 
sensitive to other short double bursts as well. 

Properly selected computer-generated codes do not exhibit the pattern sensitivity 
of Fire codes. In fact, it is possible to select computer-generated codes that have a 
guaranteed double-burst detection span. The miscorrecting patterns of these codes are 
1llore random than those of Fire codes. They are selected by testing a large number of 
random polynomials of a particular degree. Provided the specifications are within 
certain bounds, some polynomials will satisfy them. 

There are equations that predict the number of polynomials one must evaluate to 
meet a particular specification. 

In some cases, thousands of computer-generated polynomials must be evaluated to 
find a polynomial with unique characteristics. 

- 232-



For a computer-generated code, correction and detection spans are determined by 
computer evaluation. Overall miscorrection probability is given by Equation #1. 

To increase data accuracy, many disk controller manufacturers are switching from 
Fire codes to computer-generated codes. 

ERROR RECOVERY STRATEGY 

Error recovery strategies also have a significant influence on data accuracy. A 
strategy that requires data to be reread before attempting correction provides more 
accurate data than a strategy requiring the use of correction before rereading. 

An equation for data inaccuracy is given below: 

(3) 

where, 

Pued = Probability of undetected erroneous data 

Ratio of undetected erroneous data occurrences to total bits transferred. 
This is a measure of data inaccuracy. 

P e = Raw burst error rate 

Ratio of raw burst error occurrences to total bits transferred. 

Pc = Catastrophic probability 

Probability that a given error occurrence exceeds the guaranteed 
capabilities of a code. 

Pmc = Miscorrection probability 

Probability that a given error occurrence, exceeding the guaran­
teed capabilities of a code, will result in miscorrection, assuming 
all errors are possible and equally probable. 

It is desirable to keep the probability of undetected erroneous data (Puect} as low 
as possible. The burst error rate, catastrophic probability or miscorrection probability 
must be reduced to reduce Pued. (See Equation #3). 

Miscorrection probability (Pmd can be reduced by decreasing the record length 
and/or the correction span, or by increasing the number of check bits. Catastrophic 
probability (Pc) can be reduced by increasing the guaranteed capabilities of the code, or 
by reducing the percentage of error bursts that exceed the guaranteed code capabilities. 

Burst error rate (P e) can be reduced by using reread. Most disk products exhibit 
soft burst error rates several orders of magnitude higher than hard burst error rates. 
Rereading before attempting correction makes Pe (in Equation #3) the hard burst error 
rate instead of the soft burst error rate, reducing Pued by orders of magnitude. 

- 233-



Rereading before attempting correction provides additional improvement in Pued 
due to the different distributions of long error bursts and multiple error bursts in hard 
and soft errors. 

Another strategy that reduces Pued is to reread until an error disappears, or until 
there has been an identical syndrome for the last two reads. Correction is then at-
tempted only after a consistent syndrome has been received. 

- 234-



DESIGN PARAMETERS 

For data accuracy, a low miscorrection probability is desirable. Miscorrection 
probability can be reduced by decreasing the record length and/or correction span, or 
by increasing the number of check bits. 

For most Winchester media, a five-bit correction span has been considered ade­
quate. A longer correction span is needed if the drive uses a read/write modulation 
method that maps a single encoded bit in error into several decoded bits in error, such 
as group coded recording (GCR) and run-length limited (RLL) codes. 

For several years, 32-bit codes were considered adequate for sectored Winchester 
disks provided that the polynomial was selected carefully, record lengths were short, 
correction span was low, correction was used only on hard errors, and the occurrence 
rate for hard errors exceeding the guaranteed capability of the code was low. 

More recently, most disk controller developers have been using 48-, 56- and 64-bit 
codes in their new designs. Using more check bits increases data accuracy and provides 
flexibility for increasing the correction span when the product is enhanced. Using more 
check bits also allows other error-recovery strategies to be considered, such as 
on-the-fly correction. 

Disk controller developers are also implementing redundant sector techniques and 
Reed-Solomon codes. Redundant sector techniques allow very long bursts to be cor­
rected. Reed-Solomon codes allow multiple bursts to be corrected. 

ECC CIRCUIT IMPLEMENTATION 

Cyclic codes provide very poor protection when frame synchronization is lost, i.e., 
when synchronization occurs early or late by one or more bits. 

One way to protect against this type of error is to initialize the shift register to 
a specially selected nonzero value. The same initialization constant must be used on 
read and write. Another method is to invert a specially selected set of check bits on 
write and read. Each method gives the ECC circuit another important feature - nonzero 
check bits are written for an all-zeros data record. This allows certain logic failures to 
be detected before inaccurate data is transferred. See Section 4.8.2 for further discus­
sion of synchronization framing errors. 

Still, some ECC circuit failures can result in transferring inaccurate data. If the 
probability of ECC logic failure contributes significantly to the probability of transferr­
ing inaccurate data, include some form of self-checking. See Section 6.5. 

- 235-



DEFECI' MANAGEMENT STRATEGY 

All defects should have alternate sectors assigned, either by the drive manufacturer 
or subsystem manufacturer, before the disk subsystem is shipped to the end user. 

There are problems with a philosophy that leaves defects to be corrected by ECC 
on each read, instead of assigning alternate sectors. First, if correction before reread 
is used, a higher level of miscorrection results. This is because a soft error in a sector 
with a defect results in a double burst. Once a double burst occurs that exceeds the 
double-burst-detection span, miscorrection is possible. In the second case, if reread 
before correction is used, revolutions will be lost each time a defective sector is read. 

ERROR RATES 

Clearly, disk drive error rates also significantly influence data accuracy. If errors 
exceeding the guaranteed capability of the code never occurred, inaccurate data would 
never be transferred. 

When a data separator is part of the controller, its design affects error rate and 
therefore data accuracy. While most drive manufacturers provide recommended data 
separator designs, there are also well-qualified consultants who specialize in this area. 

SPECIFYING DATA ACCURACY 

The probability of undetected erroneous data (Pued) is a measure of data inac­
curacy. Sophisticated developers of disk subsystems are now targeting 1.E-20 or less 
forPued· 

Even when Pe and Pc are high, one can still achieve any arbitrarily low Pued by 
carefully selecting the correction span, record length, and number of check bits. (See 
Equations #1 and #3). 

ACHIEVING HIGHER DATA INTEGRITY 

The following first appeared in slightly different form in the March 1988 issue of 
the ENDL Newsletter. 

Horror stories about the consequences of a storage subsystem transferring un­
detected erroneous data have been circulating since the dawn of the computer age. As 
the computer industry matures, data integrity requirements for storage subsystems have 
increased along with capacity, throughput, and uptime requirements. To meet these 
higher demands, both the probability of uncorrectable error and the probability of 
transferring undetected erroneous data must decrease. As more and more powerful 
error detection and correction systems are implemented to protect data from higher 
media-related error rates, errors arising in other areas of the subsystem will come to 
dominate unless equivalent protection is provided. The most powerful media EDAC 
system is useless against errors occurring anywhere in the write path from the host 
interface to the input of the EDAC encoder or in the read path from the output of the 
EDAC decoder to the host interface. 

- 236-



One example of undetected erroneous data which the media EDAC system is power­
less to detect is a single-bit soft error occurring in an unprotected data buffer after 
the EDAC system has corrected the data but before the data are transferred to the 
host. Another example is a subtle subsystem software error which causes a request for 
the wrong sector to be executed. The actual sector fetched may contain no . media­
related errors and so be accepted as correct by the media EDAC system, yet it is not 
the data which the host requested. 

Data Systems Technology, Corp. (DST) has proposed a method to combat errors not 
covered by the media EDAC system. DST recommends that the host append a CRC 
redundancy field to each logical sector as it is sent to the storage subsystem and 
perform a CRC check on each logical sector as it is received from the storage subsys­
tem. DST further recommends that a logical identification number containing at least 
the logical sector number, and perhaps the logical drive number as well, be placed 
within each logical sector written to a storage subsystem and that this number be 
required to match that requested when each logical sector is received from· the storage 
subsystem. 

It is possible to combine these two functions so that only four extra bytes per 
logical sector are needed to provide both thirty-two-bit CRC protection and positive 
sector/drive identification. Three methods are outlined below; whatever method is 
chosen for implementing the two functions, it must be selected with multiple-sector 
transfers in mind. 

(1) Append to each logical sector within the host's memory a four-byte logical 
sector number field. Design the host adapter so that as each logical sector of a multi­
ple-sector write is fetched from the host's memory, four bytes of CRC redundancy are 
computed across the data portion of the logical sector and then EXCLUSIVE-OR summed 
with the logical sector number field and transferred to the storage subsystem im­
mediately behind the data. During a multiple-sector read, the host adapter would com­
pute CRC redundancy over the data portion of each received logical sector and EX­
CLUSIVE-OR sum it with the received sum of the logical identification number and CRC 
redundancy generated on write, then store the result after the data portion of the 
logical sector in the host's memory. The host processor would then have to verify that 
the result for each logical sector of a multiple-sector transfer matches the identification 
number of the respective requested logical sector. If an otherwise undetected error 
occurs anywhere in a logical sector anywhere beyond the host interface which exceeds 
the guarantees of the host CRC code, including the fetching of the wrong sector, the 
logical identification number within the host's memory will be incorrect with probability 
1-(2.33E-1O). 

(2) Keep data contiguous in the host's memory by instead recording the identifica­
tion numbers of all of the logical sectors in a multiple sector transfer within the host 
adapter's memory, but process the data and identification numbers for the CRC code in 
the same manner as in (1). The host adapter would have the responsibility for checking 
that identification numbers match those requested. Equivalent error detection is achiev­
ed. 

(3) Initialize the CRC shift register at the host interface with the identification 
number of each logical sector before writing or reading each logical sector of a multi­
ple-sector transfer. The host adapter would require that on read the CRC residue for 
each logical sector be zero. Again equivalent error detection is achieved. 

- 237-



To implement the CRCnn field approach toward achieving higher data integrity, 
computer builders will have to support the generation and checking of the extra four 
bytes of CRC redundancy. Storage subsystem suppliers accustomed to sector lengths 
which are powers of two will have to accommodate sector lengths which are greater by 
four bytes. If the storage subsystem architecture includes its own auxiliary CRC field 
of thirty-two or fewer bits, an option to disable it should be provided in order to 
minimize overhead when the storage subsystem is connected to a host which implements 
the CRC/ID field. The scope of coverage of the host CRC/ID field is much greater 
than that of an equivalent-length auxiliary CRC field which protects only against media 
errors, so data integrity can be greatly improved at no increase in overhead if the 
subsystem auxiliary CRC code is disabled and the host CRCnn field is used instead. 

Procedures like those outlined above can have a profound impact on data integrity 
in computer systems. They allow the computer builder to be in control of the integrity 
of data throughout the entire system without being concerned with the detailed designs 
of the storage subsystems connected to the system. 

- 238-



SUMMARY 

When designing error correction for a disk controller, keep data accuracy high by 
using the techniques listed below: 

- Use a computer-generated code to avoid pattern sensitivity. 

- Reread before attempting error correction. 

- Use the lowest possible correction span meeting the requirements of supported 
drives. 

- Ensure that the Eee circuit provides adequate protection from sync framing 
errors. 

- Design the Eee circuit to generate nonzero check bits for an all-zeros data 
record. 

- Include self-checking, if it is required to meet the specification for prob­
ability of undetected erroneous data {Pue<f}. 

- Use a manufacturer recommended data separator or get assistance from a 
consultant who specializes in this area. 

- Assign alternate sectors for known defects. 

- Establish a target for Pued. Determine Pe and Pc by the manufacturer spec-
ification, measurement, and estimation. Select the number of check bits to 
meet the target for Pued. In computing Pued, derate Pe and Pc to account 
for error clustering and marginal drives. 

- 239-



4.5 PERFORMANCE REOUIREMENTS 

Below are some of the parameters that should be specified for an error-control 
system. 

DATA RECOVERABILITY 

Specify permissible decoded hard error rate. For storage devices this specification 
is likely to be I.E-13 or less. 

DATA ACCURACY 

Specify allowable undetected erroneous data rate. For storage devices this spec­
ification is likely to be 1. E-15 or less. 

OPERA TlNG SPEED 

Specify data transfer rates that the error-control system must support. 

DECODING SPEED 

Specify allowable error-correction decoding times. These are times allowed for 
computing patterns and displacements when errors occur. 

SELF-CHECKING 

Specify the form of self-checking to be used, such as: 

- Duplicated circuits 
- Parity predict 
- Periodic microcode or software testing. 

This determination may have to be made after a code has been selected and the 
design is in progress. Use the reliability of circuit and packaging technologies along 
with parts counts to determine the reliability of the error-correction circuits. If the 
probability of error-correction circuit failure in a design contributes significantly to the 
probability of transferring undetected erroneous data, self-checking should be added to 
the design. 

Once error rates and the nature of errors have been characterized and the perfor-: 
mance requirements established, code selection can begin. 

- 240-



4.6 PATTERN SENSITIVITY 

When selecting a code for a particular application it is important to consider 
Opattern sensitivity. 

Some error detecting and error correcting codes are more likely to misdetect or 
miscorrect on certain classes of error patterns than others. This is· called pattern 
sensitivity. If these classes of errors are also the most likely to occur, then protection 
provided by these codes may not be as good as expected. In this section several ex­
amples of pattern sensitivity are discussed. 

PATTERN SENSITIVITY OF ERROR DETECI'ION CODES 

Some error detection codes have pattern sensitivity. Consider for example, the 
error detection code defmed by the circuit below. 

~'--1-6---B-I-T-SH-I-F-T-R-E-G-I-S-T-E-R-~ 
i 

The polynomial for this circuit is (x16 + 1). Of all possible error bursts, this 
circuit will fail to detect one out of 65,536. Any degree 16 polynomial would have the 
same misdetection probability for all possible error bursts. However, this circuit has a 
pattern sensitivity. It will fail to detect one out of every sixteen possible error pat­
terns, consisting of two bits in error, separated by more than sixteen bits. 

To understand the pattern sensitivity, consider reading a data record that is zeros 
except for two bits in error, sixteen bits apart. The shift register will be all zeros 
until the first error bit arrives. After arrival of the first error bit, the shift register 
will contain '0 ..... 01 ' . After receiving the fifteen zeros separating the error bits, the 
shift register will contain ' 10 ..... 0' . After receiving the second error bit, the shift reg­
ister will again contain all zeros, due to the cancellation of the high-order bit by the 
second error bit. 

This· circuit is 4000 times more likely to fail to detect an error pattern consisting 
of two bits in error, separated by more than sixteen bits, than it is to fail to detect a 
pattern consisting of many random bits in error. 

The pattern sensitivity of this circuit is obvious. Nevertheless, it was implemented 
by a large computer manufacturer on the 2314 magnetic disk device in the mid 1960's. 
After the product was in the field, additional checking was installed to correct the 
problem. 

- 241-



PAITERN SENSITIVITY OF ERROR CORRECTION CODES 

The Fire code is used for single burst correction. Many Fire codes have a high 
pattern sensitivity for short double bursts. See Section 4.4 for a discussion of the Fire 
code's pattern sensitivity. 

Many interleaved error correcting codes have a pattern sensitivity for multiple 
short bursts. The 3370 code (see Section 5.2) is such a code. It uses a single symbol 
error correcting, double symbol error detecting Reed-Solomon code interleaved to depth 
three. Symbols are one byte wide. Its miscorrection probability is 2.2E-16 for all 
possible error bursts. However, the miscorrection probability is 2.6E-3 for all possible 
errors exceeding code guarantees and affecting a single interleave. 

OTHER FORMS OF PA ITERN SENSITIVITY 

Many codes are sensitive to the error patterns caused by circuit or power supply 
failures. For example, if the line supplying data bits to a magnetic-disk error correc­
tion circuit fails, the failure may not be detected by these circuits. One way to protect 
against this form of pattern sensitivity is to make sure nonzero check bytes are guaran­
teed for an all zeros data record. See also Section 4.4 and Chapter 6. 

A semiconductor memory error correction circuit may not detect the error when a 
word of all zeros (data and check bits) is erroneously read from memory, due to a 
circuit or power supply failure. Again, a solution is to cause nonzero check bits to be 
generated for an all zeros data word. 

- 242-



4.7 K-BIT-SERIALTECHNIQUES 

Clocking error-correction circuits once per data bit limits operating speed. To 
operate at higher speeds, it is necessary to clock these circuits once per symbol. A 
symbol is some convenient cluster of bits, for example a byte or word. 

There are at least two ways to do this. A code such as the Reed-Solomon code 
can be selected that inherently operates on symbols; or the shift-register for a code 
such as the Fire code can be transformed from bit-serial to k-bit-serial. The k-bit­
serial shift register operates on k input bits and accomplishes k bit shifts per clock. A 
special case ofk-bit-serial is byte-serial (k=8). 

The higher operating speed of k-bit-serial shift registers is attained at the expense 
of added complexity. 

There are two methods for implementing k-bit-serial shift register divide circuits. 
The first me~od adds the necessary XOR gates to shift k bits per clock. The second 
method uses 2 :k bit tables to accomplish k bit shifts per clock. 

For both k-bit serial methods discussed in this section, circuitry is shown for 
computing the remainder only. If the quotient is required, additional circuitry must be 
added. 

XOR GATE METHOD 

The transformation discussed here is for the intemal-XOR form of shift register. 
Extension to the extemal-XOR form of shift register is straightforward. 

The procedure for this transformation was developed intuitively as follows. Assume 
the shift register below is to be transformed. 

Recognize that in k shifts of the bit-serial shift register, the bits influencing the 
new shift register contents via the feedback network, are the high order k bits. To 
determine the contribution of anyone of these bits, bit j for example, do the following. 
Clear the shift register, set bit j to 1, and shift k times. The resulting 1 bits in the 
shift register is the contribution of bit j. 

The other contributor to the new state of each bit, when the shift register IS 
shifted k times, is the bit itself shifted k bits to the right. 

The result of this intuitive development is the basis for the following procedure. 

PROCEDURE 

- 243-



Let i represent the polynomial degree and k the desired numQer of shifts per 

clock. The following steps transform a bit-serial shift register into a k-bit-serial shift 

register. 

Simulate the bit-serial shift register. Initialize the high-order bit of the simulated 

shift register to 1 and clear the remaining bits. Shift k times. After each shift, record 

the new state of the shift register. 

The first state in the sequence recorded is the contribution of shift register stage 

xi-k to the feedback network. The second state is the contribution of stage xi-k + 1, and 

so on. The last state in the sequence is the contribution of shift register stage xi-t. 

The next step is to add circuitry for the k information bits. It will be clear from 

the examples how this is done. 

The last step is to minimize logic. 

- 244-



EXAMPLE'. 

1 

000010001 
000100010 
001000100 

BIT-SERIAL SHIFT REGISTER 

Premultiply by x9 and divide by x9 + x4 + 1 

PROCEDURE FOR k=3 

contribution of x6 
contribution of x7 
contribution of x8 

k-BIT-SERIAL SHIFT REGISTER, k=3 

- 245-



EXAMPLE #2 

1 

01100011 
11000110 
11101111 

BIT -SERIAL SHIFT REGISTER 

Divide by x8 + x6 + x5 + x + 1 

PROCEDURE FOR k=3 

contribution of x5 
contribution of x6 
contribution of x7 

k-BIT-SERIAL SHIFT REGISTER, k=3 

(Logic has not been minimized) 

H----+--IO 

M-------------I 2 

- 246-



TABLE METHOD OF k-BIT-SERIAL IMPLEMENTATION 

This ~ethod will be illustrated by example. The circuit of this example premul­
tiplies by x and divides by: 

0~ 

INPUT 
DATA 

g(x)=x32 + x28 + x26 + x19 + x17 + x10 + x6 + x2 + 1 

k-BIT SERIAL SHIFT REGISTER. k=8 

I II II 

" " " 
x31 x23 ~ x15 ~ x7 

~=0 ~=0 

x24 x16 x8 xO 

PROCEDURE FOR GENERATING THE TABLES 

I 

" 

.J 

To generate the tables for the circuit above, simulate a left shifting bit-serial shift 
register (internal-XOR form) in software using the polynomial above. For each address 
of the tables (0-255), place the address in the eight most significant (left-most) bits of 
the shift register and clear the remaining bits. Shift eight times, then store the four 
bytes of shift register contents in tablgi T1 through T4 at the location indexed by 
current address. The coefficient of x is stored as the high-order bit of T1; the 
coefficient of xO is stored as the low-order bit of T4. . Tables for the above shift 
register and polynomial are shown on the following pages. Each table is 256:8 bits. 

The circuit above can be modified to divide by g(x) without the premultiply: move 
the input XOR circuit to the input of the low order k-bits. 

A similar procedure could be used to implement a right shifting k-bit serial shift 
register. Extension to external XOR k-bit serial shift registers is straightforward. 

Implementation examples for the above polynomial are given in Section 5.3, where 
byte-serial tables are used for decoding by reverse clocking using its reciprocal poly­
nomial. 

- 247-



BYTE-SERIAL TABLE T1 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

00 00 14 28 3C 50 44 78 6C AO B4 88 ·9C FO E4 08 CC 
10 54 40 7C 68 04 10 2C 38 F4 EO DC C8 A4 BO 8C 98 
20 A9 BO 81 95 F9 ED 01 C5 09 10 21 35 59 40 71 65 
30 FO E9 05 Cl AD B9 85 91 50 49 75 61 00 19 25 31 
40 46 52 6E 7A 16 02 3E 2A E6 F2 CE OA B6 A2 9E 8A 
50 12 06 3A 2E 42 56 6A 7E B2 A6 9A 8E E2 F6 CA DE 
60 EF FB C7 03 BF AB 97 83 4F 5B 67 73 IF OB 37 23 
70 BB AF 93 87 EB FF C3 07 IB OF 33 27 4B 5F 63 77 
80 80 99 A5 Bl DO C9 F5 El 20 39 05 11 70 69 55 41 
90 09 CD Fl E5 89 90 Al B5 79 60 51 45 29 3D 01 15 
AO 24 30 OC 18 74 60 5C 48 84 90 AC B8 04 CO FC E8 
BO 70 64 58 4C 20 34 08 lC DO C4 F8 EC 80 94 A8 BC 
CO CB OF E3 F7 9B 8F B3 A7 6B 7F 43 57 3B 2F 13 07 
DO 9F 8B B7 A3 CF DB E7 F3 3F 2B 17 03 6F 7B 47 53 
EO 62 76 4A 5E 32 26 lA OE C2 06 EA FE 92 86 BA AE 
FO 36 22 IE OA 66 72 4E 5A 96 82 BE AA C6 02 EE FA 

BYTE-SERIAL TABLE T2 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

00 00 OA 14 IE 28 22 3C 36 50 5A 44 4E 78 72 6C 66 
10 AA AO BE B4 82 88 96 9C FA FO EE E4 02 08 C6 CC 
20 54 5E 40 4A 7C 76 68 62 04 OE 10 lA 2C 26 38 32 
30 FE F4 EA EO 06 DC C2 C8 AE A4 BA BO 86 8C 92 98 
40 A3 A9 B7 BO 8B 81 9F 95 F3 F9 E7 ED DB 01 CF C5 
50 09 03 10 17 21 2B 35 3F 59 53 40 47 71 7B 65 6F 
60 F7 FO E3 E9 OF 05 CB Cl A7 AD B3 B9 8F 85 9B 91 
70 50 57 49 43 75 7F 61 6B 00 07 19 13 25 2F 31 3B 
80 46 4C 52 58 6E 64 7A 70 16 lC 02 08 3E 34 2A 20 
90 EC E6 F8 F2 C4 CE DO OA BC B6 A8 A2 94 9E 80 8A 
AO 12 18 06 OC 3A 30 2E 24 42 48 56 5C 6A 60 7E 74 
BO B8 B2 AC A6 90 9A 84 8E E8 E2 FC F6 CO CA 04 DE 
CO E5 EF Fl FB CD C7 09 03 B5 BF Al AB 90 97 89 -83 
DO 4F 45 5B 51 67 60 73 79 IF 15 OB 01 37 3D 23 29 
EO Bl BB A5 AF 99 93 80 87 El EB F5 FF C9 C3 DO 07 
FO IB 11 OF 05 33 39 27 20 4B 41 5F 55 63 69 77 70 

- 248-



BYTE-SERIAL TABLE T3 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

00 00 04 08 OC 11 15 19 10 22 26 2A 2E 33 37 3B 3F 
10 40 44 48 4C 51 55 59 50 62 66 6A 6E 73 77 7B 7F 
20 80 84 88 8C 91 95 99 90 A2 A6 AA AE B3 B7 BB BF 
30 CO C4 C8 CC 01 05 09 DO E2 E6 EA EE F3 F7 FB FF 
40 04 00 OC 08 15 11 10 19 26 22 2E 2A 37 33 3F 3B 
50 44 40 4C 48 55 51 50 59 66 62 6E 6A 77 73 7F 7B 
60 84 80 8C 88 95 91 90 99 A6 A2 AE AA B7 B3 BF BB 
70 C4 CO CC C8 05 01 DO 09 E6 E2 EE EA F7 F3 FF FB 
80 08 OC 00 04 19 10 11 15 2A 2E 22 26 3B 3F 33 37 
90 48 4C 40 44 59 50 51 55 6A 6E 62 66 7B 7F 73 77 
AO 88 8C 80 84 99 90 91 95 AA AE A2 A6 BB BF B3 B7 
BO C8 CC CO C4 09 DO 01 05 EA EE E2 E6 FB FF F3 F7 
CO OC 08 04 00 10 19 15 11 2E 2A 26 22 3F 3B 37 33 
DO 4C 48 44 40 50 59 55 51 6E 6A 66 62 7F 7B 77 73 
EO 8C 88 84 80 90 99 95 91 AE AA A6 A2 BF BB B7 B3 
FO CC C8 C4 CO DO 09 05 01 EE EA E6 E2 FF FB F7 F3 

BYTE-SERIAL TABLE T4 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

00 00 45 8A CF 14 51 9E DB 28 60 A2 E7 3C 79 B6 F3 
10 15 50 9F OA 01 44 8B CE 3D 78 B7 F2 29 6C A3 E6 
20 2A 6F AO E5 3E 7B B4 F1 02 47 88 CD 16 53 9C 09 
30 3F 7A B5 FO 2B 6E A1 E4 17 52 90 08 03 46 89 CC 
40 11 54 9B DE 05 40 8F CA 39 7C B3 F6 20 68 A7 E2 
50 04 41 8E CB 10 55 9A OF 2C 69 A6 E3 38 70 B2 F7 
60 3B 7E B1 F4 2F 6A A5 EO 13 56 99 DC 07 42 80 C8 
70 2E 6B A4 E1 3A 7F BO F5 06 43 8C C9 12 57 98 DO 
80 22 67 A8 EO 36 73 BC F9 OA 4F 80 C5 1E 5B 94 01 
90 37 72 BO F8 23 66 A9 EC 1F 5A 95 DO OB 4E 81 C4 
AO 08 40 82 C7 1C 59 96 03 20 65 AA EF 34 71 BE FB 
BO 10 58 97 02 09 4C 83 C6 35 70 BF FA 21 64 AB EE 
CO 33 76 B9 FC 27 62 AO E8 1B 5E 91 04 OF 4A 85 CO 
00 26 63 AC E9 32 77 B8 FO OE 4B 84 C1 1A SF 90 05 
EO 19 5C 93 06 00 48 87 C2 31 74 BB FE 25 60 AF EA 
FO OC 49 86 C3 18 50 92 07 24 61 AE EB 30 75 BA FF 

- 249-



4.8 SYNCHRONIZATION 

4.8.1 SYNCHRONIZATION CODES 

In order to recover data, we must be able to determine where the data are re­
corded on the medium, or equivalently, when data begin and end in the read bit stream; 
this is called data framing or frame synchronization. This is normally accomplished by 
detecting a special pattern called a sync mark. This process is called byte synchroniza­
tion and it is preceded by frequency and phase lock. Several types of synchronization 
errors arise. A synchronization failure occurs when it is known that we have been 
unable to establish initial synchronization; this is a serious error situation but one 
which is detected. A synchronization framing error occurs when we erroneously believe 
we have established correct synchronization; this is worse than synchronization failure 
in that undetected erroneous data could be transferred, as many error detection and 
correction codes have a weakness for this type of error. A loss of synchronization 
occurs when synchronization has been achieved and is later lost; the ease and speed of 
re-synchronization are heavily implementation-dependent. 

It is common for data storage device track formats to include a sector mark and 
one or more sync marks in front of each sector for achieving initial synchronization. 

A sector mark is used to establish coarse synchronization to a sector. The sector 
mark is unique and very different from data. It may be chosen so that it is impossible 
for data to emulate it and very difficult for a defect to emulate it. Sector marks are 
generally detected before data acquisition and therefore must be detected asynchronous­
ly. After coarse synchronization has been established, the general location of the sync 
mark is known and the search for the sync mark can be restricted to a window spann­
ing the time around which it is expected to occur. 

Ideally, the sync mark is unique and we are assured that no combination of valid 
channel bits can emulate it. To achieve this, the sync mark might include a run-length 
violation or an invalid decode. An invalid decode is a sequence which satisfies the run­
length constraints but which cannot be emulated by any valid combination of channel 
words. When the sync mark is unique, the misdetection probability in the absence of 
error is zero. In some cases, the sync mark is not unique and there is a valid data bit 
sequence which can emulate it, but with sufficiently low misdetection probability. In 
such a case there would generally be additional sync mark detection qualification criter­
ia. 

In selecting a sync mark strategy, it is desirable to minimize overhead yet maxi­
mize the probability of successful decoding and minimize the probability of false decod­
ing. These conflicting goals require that trade-offs be made in selecting sync mark 
parameters. Typical parameters include: 

- Detection window width 
- Error tolerance of the mark 
- Mark length 
- Mark pattern 

- 250-



Detection window width and error tolerance of the mark may be changed for retry 
reads. A narrow detection window is desirable in order to minimize the probability of 
false detection. However, if the detection window is established by a counter running 
off a reference clock then spindle speed variations, eccentricity, and mechanical oscilla­
tions will influence timing accuracy and will therefore influence window width as well. 

Increasing the error tolerance of the sync mark while keeping its length constant 
increases the probability of successful decoding but also increases the possibility of 
false decoding. 

Increasing the sync mark length decreases the probability of false decoding but in­
creases overhead. 

The sync mark pattern is selected to minimize the probability of false decoding 
when defects exist within and/or preceding the sync mark. To accomplish this, the 
pattern is selected to maximize the number of error bits and/or the error burst length 
that are required to cause a sync mark to be falsely detected in front of the true mark. 
This selection can be accomplished with a computer. 

If we assume that the bit stream preceding and following a mark is random, we 
are motivated to use a sequence which does not resemble itself when shifted one or 
more bits, so that it is impossible for a small number of errors to cause false detection. 
As an illustration, consider a sequence of all 'I 'so If the bit immediately preceding is 
random, there is a 50 % chance of falsely detecting this sequence one bit early. 

The autocorrelation function of a sequence is used to measure the degree to which 
a sequence resembles itself. Conceptually, one copy of the sequence is "slid past" 
another. At each offset i, the autocorrelation R(i) is the number of corresponding bits 
which are identical minus the number which differ. R(O) is of course equal to the 
number of bits in the sequence, n; the maximum value of R(i) is n-I ii, with lower values 
being preferred. The class of sequences called Barker codes has the so-called "perfect" 
property 1 R(i) 1 ~ 1 for i;!O. Only eight Barker codes are known to exist, with lengths 2, 
3,4,5,7,11, and 13. 

BARKER CODES 

-1L Seguence* Autocorrelation (i=O to n-1) 
2 10 2,-1 
3 110 3, 0,-1 
4a 1101 4, -1, 0, 1 
4b 1110 4, 1, 0,-1 
5 11101 5, 0, 1, 0, 1 
7 1110010 7, 0,-1, 0,-1, 0,-1 

11 11100010010 11, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1 
13 1111100110101 13, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 

* Including reversals and complements 

- 251 -



Barker codes can be combined to form longer codes which have good, though not 
"perfect" autocorrelations. To construct such a combined Barker code, each bit of a 
Barker code is replaced with the entire sequence of another (possibly the same) Barker 
code, the sequence being inverted if the bit being replaced is zero. Longer sequences 
with autocorrelations which are nearly as desirable (Barker-like codes) also exist. 

In practice, a sync mark is detected by counting the number of matching bits, 
without subtracting the number of mismatched bits. The sync mark is considered de­
tected when the count of matching bits meets or exceeds a threshold, which may be 
variable so that it can be changed for read retries. In discrete designs, an efficient 
implementation may include PROM circuits; in integrated designs, logic gates may be 
preferable. 

Window width can be increased and misdetection can be reduced by writing a 
known bit pattern (preamble) preceding the mark. A mark pattern is then selected for 
minimum correlation with the preamble and with itself. This preamble-sync mark com­
bination is equivalent to a sync mark which is detected by searching only for its last 
half. An example is 16 zero-bits followed by the 16-bit mark '0001111100110101' (3 zero 
bits followed by the 13-bit Barker code) and followed by random data. When detected 
in a window from 16 bits before the position of the mark up to 5 bits after and requir­
ing 13 bits (out of 16) to match, this pattern is guaranteed to be detected and guaran­
teed not to be falsely detected when not more than 3 random bits (out of 16) are in 
error or when a single error burst of length 3 bits or less exists. There are other 
patterns besides this one which have the same error tolerance using the same detection 
method. 

Note that a preamble of all one-bits could be used as well, in which case each bit 
of the mark would be inverted. The preamble need not be all zero-bits or all one-bits; 
satisfactory codes can be selected for any given preamble pattern. 

An extension of the above technique would be to write known patterns both pre­
ceding and following the sync mark. Selecting the pattern following the mark for 
minimum correlation with the sync mark would increase the acceptable window width 
after the position of the mark. 

Sync marks can be decoded in either the data-bit domain or the channel-bit do­
main; the error propagation of the RLL decoding process motivates us to decode in the 
channel bit domain when possible, particularly if the detection criteria have been re­
laxed to achieve error tolerance. The desire to have error tolerant clock phasing also 
motivates us to decode in the channel-bit domain. In this case clock phasing and byte 
synchronization are established simultaneously with the detection of the sync mark. 

- 252-



Some implementations do not detect sync marks using a bit-by-bit comparison, but 
by comparing groups of bits. This reduces the circuitry required to implement majority­
vote detection. Such a code has been proposed for use in optical disk. The 48 chan­
nel-bit mark is made up of 12 groups of 4 bits, each group containing a single one-bit. 
The whole mark obeys (2,7) run-length constraints and is preceded by the highest­
frequency (2,7) pattern. The mark is detected in the channel bit domain using 4-bit 
groups. The correlation function for the sync mark sequence against the preamble-sync 
mark-random data sequence on a 4-bit basis, counted as the number of matches (Plus 
the number of possible matches when correlating with random data at positive offsets) 
is 

Offset: -15 •••••••.••.•• -1 0 1 ••••••••• 11 
4-bit: 2 3 3 4 4 0 4 4 3 2 2 3 4 0 0 12 0 0 5 4 3 2 5 5 4 4 5 

If a detection threshold of 9 is used, 4 groups-in-error are required before failure 
to detect is possible, while 5 groups-in-error are required before false detection is 
possible. If a detection threshold of 8 is used, 5 groups-in-errors are required before 
failure to detect is possible, while 4 groups-in-error are required before false detection 
is possible. This suggests the following strategy for sync mark detection: on the first 
try, using a threshold of 9 will insure that the mark will not be falsely detected, while 
on read re-try, using a threshold of 8 will insure that those cases of 4 groups-in-error 
that fail on the first try will be detected, subject to only a low probability of early 
false detection. 

In the general case, 4 groups-in-error could be caused by an error burst of 10 
channel bits, but analysis of the specific correlation bit patterns for this code reveals 
that this detection scheme handles any error burst of not more than 12 channel bits in 
length on the first pass, and will very likely handle any error burst of 16 channel bits 
or less on retry. This is the same performance which would be obtained using a bit-by­
bit majority vote criterion of 42 channel bits (out of 48; there is a peak correlation of 
35 bits at an offset of -3) but with much lower implementation cost. 

- 253-



CHANNEL BITS 

~ 48-BIT SHIFT REGISTER 

VARIABLE 
THRESHOLD 

COMPARE SYNC DETECTED 

One possible decoding alternative for the X3Bll data field sync code. 

- 254-



As another example consider a 32 data-bit sync mark that is composed of four 8-
bit groups A, B, C, and D, preceded by all zeros and followed by random data, to be 
detected in the data-bit domain when anyone of the pairs A-B, C-D, or A-D is de­
tected. It is possible to construct a mark which will be detected in the presence of a 
burst of not more than 9 data bits (out of 32 data bits) and will not be falsely detected 
in the presence of a burst of not more than 10 data bits (out of 32 data bits) in length 
when detected in a window from 16 bits before to 16 bits after the mark. 

Using the same pair-wise detection method in the channel bit domain, it is possible 
to construct a 32 channel-bit mark subject to a (1,7) run-length constraint and preceded 
by 32 bits of the maximum-frequency (1,7) pattern which will be detected and will not 
be falsely detected in the presence of a burst of not more than 9 channel bits (out of 
32 channel bits) when detected in the channel-bit domain in this pair-wise fashion. 
Similarly, 32-bit marks have been constructed using a (2,7) run-length constraint which 
will be detected in the presence of a burst of not more than 9 channel bits (out of 32 
channel bits) and will not be falsely detected in the presence of a burst of not more 
than 8 channel bits (out of32 channel bits) in length. 

For a given detection method, it is possible to use a computer to select mark 
patterns which satisfy the desired error tolerance requirements, if such patterns exist. 
The most straightforward method is to successively generate random patterns (using 
run-length constraints, if the mark is to be detected in the channel-bit domain), analyze 
them, and record the best performers. 

RESYNC MARKS 

When the probability of loss of synchronization is high, due for example to long 
defects, some applications require one or more sync marks preceding each sector and 
resync marks interspersed at regular intervals within each sector. The sync marks are 
used for achieving initial clock phasing and byte synchronization and the resync marks 
are used for restoring clock phasing and byte synchronization after a loss of sync 
(when the PLL has slipped cycles). 

Many resync marks may be required per sector, so it is very important to minimize 
resync mark length to minimize overhead. In clever implementations it is not necessary 
for each resync mark to be detected, so the resync mark itself need not be error 
tolerant. To minimize the false detection of resync marks, their detection window is 
made very narrow. In addition they are typically assigned a channel bit pattern that 
cannot be emulated by a channel-bit sequence encoded from data. This guarantees that 
correct data will never emulate a resync mark. 

- 255 -



4.8.2 SYNCHRONIZATION FRAMING ERRORS 

In order to properly frame data, a read system must know where data begins. This 
is normally accomplished by detecting a sync mark, a process called byte synchroniza­
tion. A defect can emulate a sync mark at an incorrect position on the media. It is 
possible (depending on windowing, etc.) for this to result in an incorrect assumption 
about the starting position of data. This is called a synchronization framing error. The 
probability of a sync framing error increases as sync mark length decreases, as sync 
mark error tolerance increases, and as the length of the sync mark detection window 
increases. A sync framing error may be detected as an uncorrectable error or it may 
incorrectly cause data to appear correctable or error-free. If the data appears correc­
table or error free, the transfer of undetected erroneous data may result which could 
have disastrous consequences. 

In order to keep the probability of transferring undetected erroneous data low it is 
very important to detect sync framing errors with high probability. In some systems 
the responsibility for detecting such errors is placed on the error detection and correc­
tion circuitry. 

Most codes used for error detection and correction in data storage systems for 
computers are shortened cyclic codes. Cyclic codes are linear codes with the property 
that each cyclic (i.e. wraparound) shift of each codeword is also a codeword. Shortened 
cyclic codes are not truly cyclic. However, the codewords of a shortened cyclic code 
when shifted (left or right) a few symbol positions will either form another shortened 
codeword or form a sequence that differs from another shortened codeword in only a 
few symbol positions. This property of shortened cyclic codes causes them to have poor 
detection capability for sync framing errors. 

Shortened cyclic codes are often modified by some method in order to increase 
their capability to detect sync framing errors. The degree to which capability of the 
modified code to detect sync framing errors is increased depends highly on the specific 
method of modification selected. 

Ideally, a code modification method will assure that all sync framing errors result 
is an error pattern that exceeds correction guarantees but not detection guarantees of 
the code. If this cannot be achieved, then as a very minimum it is desirable that the 
probability of transferring undetected erroneous data be no greater for sync framing 
errors than for all other types of errors that exceed detection guarantees. 

Some frequently used codes for performing error detection and/or correction are 
listed below. In some cases these codes are cyclic codes but most often they are 
shortened cyclic codes. Problem analysis and the selection of a method for code mod­
ification is similar between the different types of codes. 

- 256-



• Error detection codes using a polynomial with binary coefficients. 

• Single-burst error correcting codes using a polynomial with binary coeffi­
cients. 

• Single- and multiple-burst error correcting Reed-Solomon codes. 

• Interleaved Reed-Solomon codes. 

Binary error detection/correction codes operate on single-bit symbols while Reed­
Solomon codes operate on multiple-bit symbols, typically byte-wide (eight-bit) symbols. 
Reed-Solomon codes are cyclic but only on a symbol basis: cyclic rotation of a Reed­
Solomon codeword by a number of bits which is not a multiple of the symbol width does 
not generally produce another codeword; an obvious counter-example is the all-zeros 
Reed-Solomon codeword. This property allows us to discuss binary codes and non­
interleaved Reed-Solomon codes together. We shall then apply similar methods to 
interleaved Reed-Solomon codes. 

Let us use the following notation to represent a non-interleaved codeword of a 
binary code or a Reed-Solomon code: 

···pppddd···dddrrr···rrrggg··. 

where 'p' is a preamble/sync symbol,. 'd' is a data symbol, 'r' is a redundancy symbol, 
and 'g' is a gap symbol. '0' will represent a symbol whose bits are all zeros, '1' will 
represent a symbol whose bits are all ones, and 'X' will represent a symbol whose bits 
are neither. In the case of a Reed-Solomon code, each symbol is a group of w bits. In 
the case of a binary error correction code, each symbol is one bit (w= 1). 

LATE SYNCHRONIZATION IN UNMODIFIED SHORTENED CYCLIC CODES 

Consider the case of late synchronization by one symbol. There are four combina­
tions for the values of the data symbol skipped and the gap symbol read. 

Codeword read 
I 

I I 
1) ••• pppOdd· •• dddrrr· •• rrrOgg· •• 

The pattern read is a multiple of the codeword written. This is also a codeword, 
so the pattern read appears to be error free and the sync framing error is not detected. 

Codeword read 
I I I 

2 ) ••• pppXdd· •• dddrrr· •• rrrOgg· •• 

- 257 -



The pattern read is a multiple of the codeword written with a symbol in error at 
symbol -1 of the codeword (Le. the symbol before the first data symbol of the code­
word). When shortened codewords are used, the error appears to be outside the bounds 
of the codeword and the correction algorithm will post it as uncorrectable. 

In random data the probability that the first symbOl of a codeword is zero is 2-w, 
so from the 1) and 2) above analyses we conclude that this is also the probability that 
the read pattern will appear to be error free when synchronization occurs late by one 
symbol and a zero symbol is read following the codeword. By similar reasoning, if 
synchronization occurs late by k symbols and the first k gap symbols are all zeros then 
the codeword read will appear to be error free if the first k symbol~ ,v.f)the codeword 
written were all zeros. This should occur in random data with probability 2-tK w . 

If synchronization occurs late by k symbols, the first k gap symbols are all zeros, 
and the first k symbols of the codeword written were not all zeros, then there will 
appear to be an error burst of length k or fewer symbols preceding the codeword read. 
If the guaranteed detection capability of the code is equal to or greater than the ap­
parent error created by the pattern of non-zero symbols missed, then there will appear 
to be an error burst of length k or fewer symbols preceding the codeword read and the 
correction algorithm will post the error as uncorrectable, since the error burst appears 
to be beyond the bounds of the shortened codeword. If in the same situation the 
apparent error created by the pattern of non-zero symbols missed exceeds the guaran­
teed detection and correction capabilities of the code, then the error will appear to be 
correctable with probability Pmc, where Pmc is the miscorrection probability of the 
code. Equivalently, the error will appear to be uncorrectable with probability I-Pmc. 

Codeword read 
I I I 

3) ••• pppOdd· •• dddrrr· •• rrrXgg· •• 

The pattern read is that of a multiple of the codeword written with a symbol in 
error in the last symbol position. A code which performs only error detection will 
therefore detect the sync framing error, but an error correction code will not. 

Codeword read 
I I I 

4 ) ••• pppXdd· •• dddrrr· •• rrrXgg· •• 

The read remainder will be that of two symbols in error, one at the symbol before 
the first symbol of the codeword and one at the last symbol of the codeword. If this 
double-burst error is within the detection guarantees of the code, then an uncorrectable 
error will be posted by the error correction algorithm. If this error pattern exceeds 
the detection guarantees of the code, then the error will appear to be correctable with 
probability Pmc and will appear to be uncorrectable with probability I-Pmc. 

- 258-



By similar reasoning, if synchronization occurs late by k symbols, the first k gap 
symbols are not all zeros, and the guaranteed correction capability of the code is equal 
to or greater than the number of non-zero gap symbols, then the codeword read wiIl 
appear to be correctable if the first k symbols Qf* the codeword written were all zeros. 
This should occur in random data with probability 2-\K w). 

If synchronization occurs late by k symbols, the first k gap symbols are not all 
zeros, and the first k symbols of the codeword written were not all zeros, then there 
will appear to be an error burst preceding the codeword read and an error burst at the 
end of the codeword. If this double-burst error is within the detection guarantees of 
the code, then an uncorrectable error will be posted by the error correction algorithm. 
If this error pattern exceeds the detection guarantees of the code, then the error will 
appear to be correctable with probability Pmc and will appear to be uncorrectable with 
probability I-Pmc. 

EARLY SYNCHRONIZATION IN UNMODIFIED SHORTENED CYCLIC CODES 

Consider the case of early synchronization by one symbol. Again there are four 
combinations for the values of the preamble/sync symbol read and the redundancy 
symbol missed. 

Codeword read 
I I I 

1) ••• ppOddd· •• dddrrr· •• rrOggg· •• 

The pattern read is a multiple of the codeword written. The sync framing error 
will not be detected. 

Codeword read 
I I I 

2 ) ••• ppOddd· •• dddrrr· •• rrXggg· •• 

The read remainder wiIl be that of a single symbol in error at a location cor­
responding to the first symbol of the full-length codeword. Since this is beyond the 
bounds of the shortened codeword, the error correction algorithm will post an uncorrec­
table error. Given random data, the probability that the last redundancy symbol is zero 
is 2-w, so this is also the probability that the read pattern will appear to be error free 
when synchronization occurs early by one symbol and a zero symbol is read preceding 
the codeword read. By similar reasoning, if synchronization occurs early by k symbols 
and the last k preamble/sync symbols are all zeros then the codeword read will appear 
to be error free if the last k symbols of th:f. ~odeword written were all zeros. This 
should occur in random data with probability 2o -(k: w,. 

- 259-



If synchronization occurs early by k symbols, the last k preamble/sync symbols are 
all zeros, and the last k symbols of the codeword written were not all zeros, then on 
read there will appear to be an error burst of length k or fewer symbols near the 
beginning of the full-length codeword. If the guaranteed detection capability of the 
code is equal to or greater than the apparent error created by the pattern of non-zero 
symbols missed, then the correction algorithm will post an uncorrectable error since the 
errors appear to be outside the bounds of the shortened codeword. If the apparent 
error created by the pattern of non-zero symbols missed exceeds the guaranteed detec­
tion capability of the code, then the error will appear to be correctable with probability 
Pmc and will appear to be uncorrectable with probability I-Pmc. 

If synchronization occurs early by k symbols, the last k preamble/sync symbols are 
not all zeros and the correction capability of the code is equal to or greater than the 
number of non-zero preamble/sync symbols read, then the codeword read will appear to 
be correctable if the last k symbols of the codeword written were all zeros. This 
should occur in random data with probability 2-(k*w). 

If synchronization occurs early by k symbols, the last k preamble/sync symbols are 
not all zeros, and the last k symbols of the written codeword were not all zeros, then 
on read there will appear to be two error bursts, one near the beginning of the full­
length codeword and one near the beginning of the shortened codeword. If this double­
burst error is within the detection guarantees of the code, then an uncorrectable error 
will be posted by the error correction algorithm. If this error pattern exceeds the 
detection guarantees of the code, then the error will appear to be correctable with 
probability Pmc and will appear to be uncorrectable with probability I-Pmc. 

Codeword read 
I I I 

3 ) ••• ppXddd' •• dddrrr' •• rrOggg· •• 

The pattern read is that of a multiple of the codeword written with a symbol in 
error at the first symbol of the codeword read. A code used only for error detection 
would therefore detect the sync framing error while an error correction code would not. 

Codeword read 
I I I 

4) ••• ppXddd· •• dddrrr' •• rrXggg· •• 

The read remainder will be that for two symbols in error, one at the first symbol 
of the full-length codeword and one at the first symbol of the shortened codeword. If 
this double-burst error is within the detection guarantees of the code, then an uncor­
rectable error will be posted by the error correction algorithm. If this error pattern 
exceeds the detection guarantees of the code, then the error will appear to be correc­
table with probability Pmc and will appear to be uncorrectable with probability I-Pmc. 

- 260-



By similar reasoning, if synchronization occurs early by k symbols, the last k pre­
amble/sync symbols are not all zeros, and the guaranteed correction capability of the 
code equals or exceeds the number of non-zero preamble/sync symbols read, then the 
codeword read will appear to be correctable if the last k symbols of the c~~word 
written were all zeros. This should occur in random data with probability 2-(k wJ. If 
the last k symbols of the codeword written were not all zeros, then on. read there will 
appear to be an error burst at the beginning of the full-length codeword and an error 
burst at the beginning of the shortened codeword. If this double-burst error is within 
the detection guarantees of the code, then an uncorrectable error will be posted by the 
error correction algorithm. If this error pattern exceeds the detection guarantees of 
the code, then the error will appear to be correctable with probability Pmc and will 
appear to be uncorrectable with probability I-Pmc. 

INITIALIZING THE ECC SHIFT REGISTER TO ALL ONES 

One method of code modification that is used to improve the detectability of sync 
framing errors is to initialize the Eee shift register that implements the error correct­
ing code to all ones prior to any write or read. This is equivalent to inverting the 
first m symbols, where m is the degree of the code, before they are processed by the 
Eee shift register. Let us modify our representation by showing symbols which appear 
to be inverted to the Eee shift register in uppercase: 

Codeword written 
I I I 

···pppDDD···DDDddd···dddrrr···rrrggg··· 
I I I 

m inverted symbols 

If there is no sync framing error on read then the inversions cancel: 

Codeword read 
I I I 

···pppddd···dddddd···dddrrr···rrrggg··· 
I I I 

m re-inverted symbols 

If a sync framing error occurs then read inversions will cancel write inversions 
except at the end points of the inversion. 

- 261 -



In the case of late synchronization by one symbol, after read inversion the pattern 
read is: 

Codeword read 
I I I 

···pppDdd···dddDdd···dddrrr···rrrggg··· 
I I I 

m re-inverted symbols 

The read remainder will reflect one error at symbol m-l of the codeword read, and 
may reflect errors at the symbol before the ftrst data symbol and at the last symbol of 
the codeword read, depending on the value of the ftrst symbol of the codeword written 
and the value of the gap symbol read as part of the codeword read, respectively. . 

Let us examine the four combinations for late synchronization by one symbol when 
the ECC shift register is initialized to all ones. 

- 262 -



1) 

Codeword read 
I I I 

00 o pppOdd 0 0 odddDddo o odddrrroo orrrOggo 00 

I' I I 
m re-inverted symbols 

1 non-re-inverted symbol 

When the bits of the skipped data symbol were all ones, the inversion caused it to 
appear as a zero on write, so the read remainder reflects only the symbol in error at 
symbol m-l of the codeword read. The sync framing errorwi11 go undetected by an 
error correction code. 

Codeword read 
I I I 

2) 00 opppXddo 0 odddDdd o• odddrrro 0 orrrOggoo 0 
, I I 

rn re-inverted symbols 

When the bits of the skipped data symbol were not all ones then the inversion 
causes the read remainder to appear to be that of two symbols in error, one at symbol 
-1 and one at symbol m-l of the codeword read. If this double-burst error pattern is 
within the detection guarantees of the code, then an uncorrectable error will be posted 
by the error correction algorithm. If this error pattern exceeds the detection guaran­
tees of the code, then the error will appear to be correctable with probability Pmc and 
will appear to be uncorrectable with probability I-tJuc. For random data all bits of the 
first data symbol will be ones with probability 2- and therefore this is the probability 
that late synchronization by one symbol will be undetected by a code guaranteed to 
detect a double-bu~~ efJ"or when a zero gap symbol is read. Under similar assumptions 
the probability is 2-Vc W) that late synchronization by k symbols will be undetected. 

3) 

Codeword read 
I ' I 

o o opppOddo 0 odddDddo •• dddrrro oorrrXggooo 

I' I I 
m re-inverted symbols 

1 non-re-inverted symbol 

When the bits of the skipped data symbol were all ones and the first gap symbol is 
non-zero, the inversion causes the read remainder to appear to be that of two symbols 
in error, one at symbol m-l and one at the last symbol of the codeword. If this 
double-burst error pattern is within the detection guarantees of the code, then an 
uncorrectable error will be posted by the error correction algorithm. If this error 
pattern exceeds the detection guarantees of the code, then the error will appear to be 
correctable with probability Pmc and will appear to be uncorrectable with probability 
I-Pmc· 

Codeword read 
I I I 

3) •• 0pppXddooodddDddooodddrrro··rrrXggoo. 
, I I 

rn re-inverted symbols 

- 263 -



When the bits of the first data symbol were not all ones and the first gap symbol 
is non-zero, the inversion causes the read remainder to appear to be that of three 
symbols in error, one at symbol -1, one at symbol m-I, and one at the last symbol of 
the codeword. If this triple-burst error pattern is within the detection guarantees of 
the code, then an uncorrectable error will be posted by the error correction algorithm. 
If this error pattern exceeds the detection guarantees of the code, then the error will 
appear to be correctable with probability Pmc and will appear to be uncorrectable with 
probability I-Pmc. Late synchronization by k symbols can be analyzed in a similar man­
ner. 

In the case of early synchronization by one symbol, after read inversion the pat­
tern read is: 

Codeword read 
I I I 

···ppPddd···ddDddd···dddrrr···rrrggg··· 
I I 

I 
m re-inverted symbols 

The read remainder will reflect one error at symbol m of the codeword read, and 
may reflect errors at symbol 0 and at the first symbol of the full-length codeword, 
depending on the value of the preamble/sync symbol . read as part of the codeword read 
and the value of the written redundancy symbol, respectively. 

Analysis of early synchronization when the Eee shift register is initialized to all 
ones is affected in much the same way as that of late synchronization. It is left as an 
exercise for the reader. 

INVERTING REDUNDANCY SYMBOLS 

Inverting the redundancy symbols is another method of code modification that is 
used to improve the detectability of sync framing errors. This method is essentially the 
mirror image of initializing the Eee shift register to all ones. Its effect on reducing 
the probability of undetected sync framing errors is the same as that of initializing the 
Eee shift register to all ones. 

INITIALIZING THE ECC SHIFT REGISTER 

WITH A SPECIALLY SELECTED PATTERN 

An approach which is capable of providing much better detectability for sync 
framing errors than those discussed above is initializing the Eee shift register with a 
pattern including both ones and zeros. If the pattern is carefully selected, an early or 
late sync slippage of one or more symbols will produce a remainder on read which 
differs significantly from that of any correctable codeword, enhancing the probability of 
detecting sync framing errors even in the presence of data errors within the record. 

We are motivated to use for the initialization pattern a sequence which does not 
resemble itself when shifted one or more symbols, so that many errors result when read 
inversions are not perfectly aligned with write inversions as a result of a sync framing 
error. Pattern selection is influenced by the symbol patterns written immediately before 
(preamble/sync symbols) and after (gap symbols) the codeword symbols. Assuming no 
errors other than those causing the sync framing error it is possible to use simulation 

- 264-



to determine for each candidate initialization pattern and given conditions an integer k 
such that all sync framing errors caused by synchronizing up to k symbols early or late 
will be detected. k will be a function of the candidate initialization pattern, the poly­
nomial, the symbol patterns written immediately before a codeword (preamble/sync 
symbols) and after a codeword (gap symbols), and the record lengths. It is also possible 
to find integers k and b for each candidate initialization pattern and given conditions 
such that all sync framing errors caused by synchronizing up to k symbols early or late 
will be detected even if there is a burst of length b or fewer symbols anywhere within 
the codeword, or to fmd integers k and e such that all sync framing errors caused by 
synchronizing up to k symbols early or late will be detected even if there are e random 
symbols in error. 

INVERTING A SPECIALLY SELECTED SET OF REDUNDANCY SYMBOLS 

Another good approach for providing better detectability of sync framing errors is 
inverting a specially selected set of redundancy symbols. Again, this approach is essen­
tially the mirror image of initializing the ECC shift register to a specially selected 
pattern and it provides equivalent protection against sync framing errors. Pattern 
selection would be accomplished in about the manner. 

INTERLEA VED REED-SOLOMON CODES 

We shall illustrate with three-way interleaving. Let us use the following notation 
to represent the set of interleaved Reed-Solomon codewords: 

••• pppdef ••• defrst 0 0 0 rstggg 0 0 0 

where 'p' is a preamble/sync symbol, 'd', 'e', and 'f' are data symbols of the three 
codewords, 'r', 's', and 't' are redundancy symbols of the three codewords, and 'g' is a 
gap symbol. 

Consider the case of late synchronization by one symbol: 

Codewords read 
I I I 

o 0 0 pppdef 00 0 defrst 000 rstggg 0 0 0 

The second and third Codewords written are read as the first and second Codewords and 
contain no errors caused by the sync framing error. The first codeword written is read 
as the third codeword. The same analysis performed above for late synchronization by 
one symbol of a single codeword applies to the apparent third codeword. 

Consider the case of early synchronization by one symbol. 

Codewords read 
I I I 

ooopppdefooodefrstooorstgggooo 

The first and second codewords written are read as the second and third codewords and 
contain no errors caused by the sync framing error. The third codeword written is read 
as the first codeword. The same analysis performed above for early synchronization by 
one symbol of a single codeword applies to the apparent first codeword. 

- 265-



Analysis of late or early synchronization by any number of bits can be performed 
in a similar fashion; there is no qualitative difference in the effect on individual code­
words between the interleaved and non-interleaved cases given the same amount of sync 
slippage per codeword. 

INITIALIZING THE ECC SHIFT REGISTER TO ALL ONES 

The effect of initializing the ECC shift register to all ones can be extrapolated 
from the non-interleaved to the interleaved case in the same way: 

Codewords written 
I I I 

···pppDEF···DEFdef···defrst···rstggg··· 
I I I 

3*m inverted symbols 

If there is no sync framing error on read then the inversions cancel: 

Codewords read 
I I I 

···pppdef···defdef···defrst···rstggg··· 
I I I 

3*m re-inverted symbols 

If a sync framing error occurs then read inversions will cancel write inversions 
except at the end points of the inversion. 

In the case of late synchronization by one symbol, after read inversion the pattern 
read is: 

Codewords read 
I 

I I 
···pppDef···defDef···defrst···rstggg··· 

I I I 

3*m re-inverted symbols 

Aside from misidentification, two of the codewords are not affected by the sync 
framing error. The read remainder for the other will reflect one error at symbol m-l 
of the codeword read, and may reflect errors at the symbol before the first data symbol 
and at the last symbol of the codeword read, depending on the value of the first symbol 
of the codeword written and the value of the gap symbol read as part of the codeword 
read, respectively. The rest of the analysis is identical. 

In the case of early synchronization by one symbol, after read inversion the pat­
tern read is: 

Codewords read 
I I I 

···ppPdef···deFdef···defrst···rstggg··· 
I I I 

3*m re-inverted symbols 

- 266 -



Again aside from misidentification, two of the codewords are not affected by the 
sync framing error. The read remainder for the other will reflect one error at symbol 
m of the codeword read, and may reflect errors at symbol 0 and at the first symbol of 
the full-length codeword, depending on the value of the first symbol of the preamble­
/sync symbol read as part of the codeword read and the value of the written redundan­
cy symbol, respectively. The rest of the analysis is identical. 

Analysis of late or early synchronization by any number of bits can be performed 
in a similar fashion; there is no qualitative difference in the effect on individual code­
words between the interleaved and non-interleaved cases given the same amount of sync 
slippage per codeword. 

Initializing the ECC shift register to all ones (or inverting all redundancy symbols) 
has no qualitative difference between the interleaved and non-interleaved cases, and use 
of a specially selected pattern is called for. When a high degree of interleaving or a 
code of high degree is used, it might be permissible to initialize a selected set of 
symbol-wide registers to all ones (or to invert a selected set of redundancy symbols). 
However, best results would be achieved if each bit of the ECC shift register could be 
independently initialized to one (or a selected set of redundancy bits could be inverted). 

RANDOMIZING DATA 

More complete protection against sync framing errors Can be achieved by im­
plementing a shift register which generates a pseudo-random sequence, which is initial­
ized to a known state before writing or reading each data record. The EXCLUSIVE-OR 
sum of the data-bit stream and the pseudo-random-bit sequence is fed to the ECC shift 
register instead of the data bit stream itself. Again an all-zeros data record produces 
non-zero redundancy, and if no sync framing error occurs the effects of the pseudo­
random bit sequence on write and read cancel out. A sync framing error of any number 
of bits except the period of the pseudo-random sequence can be guaranteed to produce 
errors throughout the data record in excess of the correction capability of the EDAC 
code, so a sync framing error is no more subject to misdetection than any other uncor­
rectable error. 

PROTECTING THE SYNC MARK WITH THE ERROR DETECTION/CORRECTION CODE 

A different method for enhancing sync framing error protection is to include the 
sync mark in the symbols protected by the error detection/correction code. The effec­
tiveness of this approach decreases as the length of the sync mark decreases. 

Consider the case where the sync mark is protected by the error detection/correc­
tion code and synchronization occurs late by one or more symbols. If the gap symbols 
read due to the slippage are all zeros, the pattern read will appear to be that of a 
multiple of the codeword written plus some error pattern of about the same length as 
the sync mark at a location which includes the symbols of the assumed sync mark plus 
one or more symbols before the assumed sync mark. If the gap symbols read due to the 
slippage are not all zeros, the read remainder will reflect the same error burst as above 
plus an error burst in the redundancy symbols. In the former case if the error pattern 
does not exceed the correction guarantees of the code, the correction algorithm will 
detect the presence of error in the assumed sync mark or outside the bounds of the 
shortened codeword and raise an uncorrectable error flag. In either case, if the error 
pattern exceeds the correction guarantees but not the detection guarantees of the code, 

- 267-



the correction algorithm will still raise an uncorrectable error flag. If the error pat­
tern exceeds all correction and detection guarantees of the code, the sync framing error 
wiII appear to be correctable with probability Pmc and wiII appear to be uncorrectable 
with probability I-Pmc. As the amount of synchronization slippage increases, the length 
of the apparent error burst(s) also increases. 

Consider the case where the sync mark is protected by the error detection/correc­
tion code and synchronization occurs early by one or more symbols. The pattern read 
wiII appear to be that of a multiple of the codeword written plus some error pattern. of 
about the same length as the sync mark at a location which includes the symbols of the 
assumed sync mark plus one or more symbols following the assumed sync mark. If the 
error pattern does not exceed the correction guarantees of· the code, the correction 
algorithm will detect the presence of· error in the assumed sync mark and raise an 
uncorrectable error flag since an error at the location of the sync mark implies that 
the original detection of the sync mark was mistaken and a sync framing error must 
have occurred. If the error pattern exceeds the correction guarantees but not the 
detection guarantees of the code, the correction algorithm will still raise an uncorrec­
table error flag. If the error pattern exceeds all correction and detection guarantees of 
the code, the sync framing error will appear to be correctable with probability Pmc and 
wiII appear to be uncorrectable with probability I-Pmc. As the amount of synchroniza­
tion slippage increases, the length of the apparent error burst also increases. 

- 268-



CONCLUSIONS 

Based on the material presented above DST recommends that all cyclic and shor­
tened cyclic error detection and correction codes be modified by either: 

(1) Initializing the ECC shift register to a specially selected pattern prior to each 
write and read, or 

(2) EXCLUSIVE-OR-ing a specially selected pattern against the redundancy bits 
on each write and read. 

(3) Feeding the ECC shift register with the EXCLUSIVE-0R sum of data and a 
pseudo-random sequence on each write and read. 

Including the sync mark in the bits covered by the error detection/correction code 
and insuring that codewords are preceded and followed by non-zero symbOls could 
provide additional protection. 

The measures (a), (b), and (c) below have been used in the past to provide in­
creased sync framing error protection. If economic reasons dictate the use in new 
designs of existing IC's or other hardware for which it is not feasible to implement (1), 
(2) or (3) above, DST recommends the use of all of provisions for sync framing error 
protection (a)-(c) below whose implementation is possible: 

(a) Initializing ECC shift register to all ones prior to each write or read. 

(b) Inverting redundancy on each write and read. 

(c) Including the sync mark within the ECC check on each write and read. 

(d) Insuring that codewords are preceded and followed by non-zero symbols. 

- 269-



4.9 INTERLEAVED, PRODUcr, AND REDUNDANT-SEcroR CODES 

4.9.1 INTERLEAVED CODES 

Interleaving is a technique used to geographically disperse data for each codeword 
over a larger area of media in order to spread error bursts over multiple codewords. In 
this way, the error contribution to anyone codeword from a long defect is minimized. 

As an example, consider a two-dimensional array with C bytes per row and N bytes 
per column, in which each column is a codeword of a Reed-Solomon code. As bytes are 
written to the media, they are also processed by the redundancy-generating circuitry. 
Bytes 0, C, 2C, etc. are processed by the circuitry for interleave O. Bytes 1, C + 1, 2C + 1, 
etc. are processed by the circuitry for interleave 1, and so on. As bytes are read, 
operation is identical except that syndromes are generated rather than redundancy. If 
necessary, the correction algorithm is performed, after which the data is released to the 
host. In this example, any error burst must span more than C bytes before affecting 
more than one byte from anyone codeword (interleave). 

DO Dl D2 ' . DC-l 

DC DC+l ' . , . · . 
K data bytes · . · . · . · . · . 
per codeword 

· . · . · . · . · . 
RO Rl R2 · . RC-l 

RC RC+l · . · . · . 
N-K redundant · . · . · . · . · . 

bytes/codeword 

C codewords 

There are many interleaving techniques. Selection of a technique for a particular 
application involves tradeoffs between cost, code performance, transfer rate, block size, 
and correction time. 

- 270-



4.9.2 PRODUCT CODES 

Product codes perform error correction on a block of data in more than one 
dimension. Consider an array of symbols organized into rows and columns, with each 
row treated as a codeword of some code CI and each column as a codeword of another 
(possibly the same) code C2. The resulting overall code is called a product code. It is 
common to see Reed-Solomon codes used as the component codes of product codes. 

There are many techniques for loading and unloading the array of product code. 
As an example, consider an array which on write is loaded one row at a time from the 
source. After all redundancy in both dimensions has been calculated, the array is 
unloaded diagonally to the device. On read, the data from the device is loaded diagon­
ally, then after correction, the array is unloaded one row at a time to the destination. 
The diagonal unloading and loading accomplishes geographical dispersion of data in a 
manner that minimizes the number of error bytes that a long burst can contribute to 
any codeword in either dimension. 

ROW 
• REDUNDANCY • 

L- ~O~--·--+-C-H-E-C-K-S-O-N--I 
~E~U~D~_C_Y __ ~R_E_D_U_N_D_AN_C_Y~ 

There are many decoding techniques for product codes, one of which is to correct 
rows first, then correct columns. Another technique is to iterate row and column 
correction; errors in an uncorrectable codeword from one dimension may belong to 
correctable codewords in the other dimension, and after they are corrected, the uncor­
rectable codeword may become correctable. Another technique is to combine 
row/column iteration with erasure correction; the row [column] numbers of codewords in 
error are used as erasure pointers for column [row] correction. There are other decod­
ing techniques for product codes as well. The correction capability of product codes is 
very dependent on the precise decoding techniques used. 

Product codes have been popular with the Japanese companies and have been 
implemented on a number of digital audio products, including both optical disk and 
magnetic tape products for consumer and commercial use. 

4.9.3 REDUNDANT-SECTOR CODES 

Redundant-sector codes can handle very long error bursts. As an example, con­
sider an implementation with one redundant sector for each K data sectors. Each 
sector has its own sync field, and uses CRC for error detection. Each byte of the 
redundant sector is generated by EXCLUSIVE-OR-ing together the corresponding bytes 
of the K data sectors i.e. computing a parity sector. If on reading a data sector, a 
CRC error is detected, its contents can be regenerated by EXCLUSIVE-OR-ing the 

- 271 -



remammg data sectors with the redundant sector. This technique can correct even a 
long burst which wipes out a sync mark. 

DATA SECTOR #1 

SYNC DATA SECTOR #K CRC 

SYNC PARITY SECTOR #1 CRC 

An extension of this technique is to use interleaving e.g. one redundant sector for 
even sectors and another for odd sectors. This will allow correction of a long burst 
spanning any two adjacent sectors, or correction of any two random sectors in error 
provided that one is even and the other is odd. 

ODD 
SECTORS 

SYNC 

SYNC 

SYNC 

SYNC 

SYNC 

SYNC 

DATA SECTOR U 

DATA SECTOR #2 

DATA SECTOR #2*K-l 

DATA SECTOR #2*K 

PARITY SECTOR U 

PARITY SECTOR #2 

CRC 

CRC 

EVEN 
SECTORS 

CRC 

CRC 

CRC 

CRC 

A more powerful technique is to implement a Reed-Solomon code across the cor­
responding bytes of the K data sectors, allowing the correction of multiple sectors in 
error within a codeword-long set of sectors. CRC error information can be used as 
erasure pointers by the Reed-Solomon correction algorithm, so the number of redundant 
sectors needed is just the number of errors to be corrected, not twice this number. 

DATA SECTOR #1 

SYNC DATA SECTOR #K CRC 

SYNC REDUNDANT SECTOR #1 CRC 

- 272-



Redundant-sector techniques can be combined with other ECC techniques to form a 
more powerful EDAC scheme. For example, the CRC shown for each sector can be re­
placed with an ECC code which can correct single (or multiple) small bursts at the 
sector level, and redundant-sector techniques. can be used to correct the much lower 
rate of long bursts. This is in effect a product code, with the individual sectors com­
prising the row codewords and corresponding bytes from the individual sectors compris­
ing the column codewords. 

Redundant-sector techniques have been used on Bernoulli disks, read-only optical 
disks, and numerous tape devices. 

- 273-



CHAPTER 5. SPECIFIC APPLICATIONS 

5.1 EVOLUTION OF EDAC SCHEMES 

5.1.1 EVOLUTION OF OEM MAGNETlCDISK EDAC SCHEMES 

In the early 1970's, 32-bit Fire codes were widely used for error correction in 
OEM magnetic disk devices. These codes were easy to define and required a moderate 
amount of hardware to implement. However, their sensitivity to multiple short bursts 
posed a serious data accuracy problem. Some error recovery procedures in use at the 
time performed correction on soft as well as hard errors; this worsened the problem. 
By the late 1970's, many companies had dropped 32-bit Fire codes in favor of 32-bit 
computer-generated codes that were selected to be insensitive to multiple short bursts. 
They also changed their error recovery procedures to correct hard errors only, and had 
taken other steps to achieve better data accuracy. As the 5 1,4 inch hard disk industry 
developed, form factor pressure on controller builders pushed implementation efficiency 
to the point where 32-bit computer-generated codes were implemented using just five 
and one-half standard TTL IC's. 

Over the last four or five years, many hard disk developers have implemented the 
(2,7) RLL modulation code. The error-propagation properties of this code necessitates a 
larger correction span, which has prompted many companies to switch to more powerful 
48-bit, 56-bit and 64-bit computer-generated ECC codes to maintain good data accuracy. 
Several hard disk controller IC's developed during this period implement programmable 
polynomial generators that support 48-bit codes, and at least one supports codes up to 
64 bits in length. 

Hard disk controller IC developers (including Cirrus Logic) are now incorporating 
two symbol error correcting Reed-Solomon codes in their new designs in order to handle 
higher raw-error-rate media by correcting two independent error bursts within a sector. 

5.1.2 EVOLUTION OF IBM MAGNETIC DISK EDAC SCHEMES 

In 1970, IBM introduced the 3330 magnetic disk drive, which uses a 56-bit Fire 
code to correct single II-bit bursts in variable length records of up to approximately 
13,000 bytes. This code's generator polynomial was selected to allow fast computation 
of error location using the Chinese Remainder Theorem. However, the structure that 
permitted fast correction also introduced a pattern sensitivity to multiple short bursts. 

The IBM 3340 (the first drive using Winchester technology) and 3350 magnetic disk 
drives were introduced in 1973 and 1975, respectively. They use the same 48-bit Fire 
code to correct single bursts (up to 4 bits for the 3340, 5 bits for the 3350) in variable 
record lengths (up to 19,000 bytes for the 3350). 

In 1979, IBM introduced the 3370 magnetic disk drive, which employs a three-way 
interleaved, Reed-Solomon code on fixed-length sectors of 512 bytes. Three redundancy 
bytes are used in each of the three interleaves, giving single symbol (byte) error cor­
rection and double symbol error detection in each interleave. IBM uses this code to 
guarantee the correction of any single burst of 9 bits or less, the detection of any 

- 274-



single burst of 41 bits or less, and the detection of any two bursts, each of 17 bits or 
less. 

This code has a high miscorrection probability for cases in which multiple short 
bursts cause a single interleave to have more than two symbols in error. The existence 
of this pattern sensitivity is clear when one considers that for all possible errors, a 
sector has nine bytes of redundancy protecting it from miscorrection, versus only three 
bytes of redundancy for single-interleave errors. 

In 1980, IBM introduced the 3380 magnetic disk drive, which employs a 
Reed-Solomonlike, two-way interleaved code to correct single bursts in variable length 
records of up to approximately 48,000 bytes. Operating on 16-bit symbols, this code 
will correct any single burst contained within two contiguous symbols and detect any 
single burst contained within three contiguous symbols. Twelve bytes of redundancy are 
used; four bytes are associated with each interleave, and an additional four bytes are 
shared between the two interleaves. This sharing of redundancy between interleaves 
reduces the miscorrection probability for single-interleave errors. 

In 1987, IBM announced the 3380K magnetic disk drive, which employs a novel 
multiple-burst error correcting code that dedicates more than six percent redundancy to 
error detection and correction and accommodates a raw error rate much higher than for 
earlier versions of the 3380. Other features of the code include minimum data delay 
and a unique supplementary error detection method. The higher track densities achieved 
by the 3380K may have motivated IBM to use multiple-burst correction. DST expects to 
see even more powerful codes of the same class implemented on future high-end mag­
netic (and possibly optical) devices. 

5.1.3 EVOLUTION OF IBM MAGNETIC TAPE EDAC SCHEMES 

In 1973, IBM introduced the 3420 (models 4, 6, and 8) Group Code Recording (GCR) 
magnetic tape drives. These employ a Reed-Solomon-like code over nine tracks to 
correct errors in one track without erasure pointers or two. tracks with erasure 
pointers. 

In 1984, IBM introduced the 3480 eighteen track magnetic tape cartridge drive. It 
employs a code which uses parity on bit-vectors in three dimensions (vertical, left 
diagonal, and right diagonal). The eighteen tracks are divided into two nine-track sets. 
Each set contains seven data tracks, its own vertical parity track, and a diagonal parity 
track which is shared with the other set. The code is capable of correcting the fol­
lowing error situations: 

- Up to two tracks in error with a pointer, or one track in error without a 
pointer, in each of the two sets 

- Up to two tracks, one of which has a pointer, in one set, and up to one track 
without a pointer in the other set 

- Up to three tracks with pointers in one set, and up to one track with a pointer 
in the other set 

Since the 3480 ECC employs redundancy sharing between the two sets of nine 
tracks, it is more powerful than that of the 3420 models 4, 6, and 8, even though both 
employ the same percentage of redundant tracks. The 3480 ECC is also the simpler and 

- 275-



less expensive of the two methods. We expect IBM to continue to use this code as new 
versions of the 3480 are offered. Other companies developing eighteen-track magnetic 
cartridge tape products are likely to use it as well. 

5.1.4 HIGH-PERFORMANCE EDAC SCHEMES FOR MAGNEr/C DISK 

As mentioned above, several hard-disk controller IC's developed recently, as well 
as others currently under development, employ Reed-Solomon codes for correction of 
random single and double symbol errors. There is also a segment of the industry inter­
ested in employing more powerful Reed-Solomon codes to allow the use of so-called 
"horrible" media containing hundreds of defects per platter. 

Digital Equipment Corporation implemented a very powerful Reed-Solomon code in 
its UDA-50 magnetic disk controller. This code corrects up to eight to-bit symbols in 
error within a 512-byte record. The UDA-50 also employs error-tolerant headers and 
sync marks. Other companies in the same market have implemented similar codes. 

We at Data Systems Technology feel that magnetic disk drive manufacturers which 
develop products in the future will be making trade-offs between media costs and the 
cost of high-performance ECC IC's. The optical storage industry has proven the techni­
cal feasibility of using high error-rate media; the magnetic storage industry is likely to 
follow suit, using ECC parts developed for optical products. 

5.1.5 HIGH-PERFORMANCE EDAC SCHEMES FOR OPl1CAL DISK 

There are three major types of optical media: read-only, write-once, and erasable. 
Each type has different ECC requirements, but all require high performance ECC. 

For stamped media, there is no possibility of sector retirement. Therefore all 
initial defects as well as end-of-life defects must be handled by the ECC. This requires 
higher performance ECC and more geographic dispersion of data than would be neces­
sary if retirement were possible. 

Since the mastering of stamped optical media is performed only once for each 
unique set of data, the ECC redundancy generation process can be more complex than 
for the other two types of media. Since the full content of each track is known at the 
time of mastering, greater geographic dispersion is possible than for the other two types 
of media, where each data sector may be written at different times. 

Product codes have been popular for stamped media; the CD digital audio players 
and CD-ROM digital data storage devices employ product codes. One stamped-media 
device employs a three-dimensional product code over each track, geographically dispers­
ing each sector over the entire track. 

A number of companies in the U.S. and Japan support the use of single-dimension 
interleaved Reed-Solomon codes (also referred to as long distance Reed-Solomon codes 
(LDC» for ECC on 90 mm and 130 mm, WORM and rewritable optical media. Such a 
code has been approved by the U.S. Accredited Standards Committee X3Bll. Several 
companies have developed or are developing LSI parts using DST's ECC technology to 
support this code. 

- 276-



DST expects to continue to be at the forefront of BDAC technology for optical 
storage. We support the use of long distance Reed-Solomon codes for 90 mm and 130 
mm, WORM and rewritable optical and developed our NG-8510, NG-8520, and CL-SH8530 
IC's especially for this application. The NG-8510/8520 approach splits the error correc­
tion task between logic within the IC and logic within support software. The 
CL-SH8530 performs correction real-time in hardware. 

- 277-



5.2 APPLICATION TO LARGE-SYSTEMS MAGNETIC DISK 

5.2.1 CAPABILITY OF DISK CODES 

(See glossary for definitions) 

3330 

ECC Bits 56 

Rec Length (Bits) 104240 

Correction Span 11 

Detection Span 
Before Correction 56 

Published Det. 
Span After Corr. 22 

Actual Det. Span 
After Correction 28 

Pmc * 1.5E-9 

3340 3350 

48 48 

70320 152552 

3 4 

48 48 

11 10 

30 26 

1.E-9 4.3E-9 

OEM 

32 

4644 

11 

32 

32 

13 

1.lE-3 

Pmd * 1.4E-17 3.6E-15 3.6E-15 2.3E-I0 

* Assuming all errors are possible and equally probable. 

POLYNOMIALS 

3330 

3370 

72 

4168 

9 

65 

16 

41 

2.2E-16 

2.1E-22 

(x22 + I).(xll + x7 + x6 + xl + 1). (x 11 + x9 + x7 + x6 + x5 + xl + 1) 

• (xI2 + xlI + xlO + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + xl + 1) 

3340/3350 

(xI3 + 1). (x35 + x23 + x8 + x2 + 1) 

(x21 + l).(x11 + x2 + 1) 

Field Generator: x8 + x6 + x5 + x4 + 1 

Code Generator: (x + a~. (x + a 1) • (x + a3-1) 

- 278-



5.2.2 THE 3330 MAGNETIC DISK CODE 

CODE DEFINITION 

The 3330 code is a generalized Fire code. It has a single-burst correction span of 
11 bits and a single-burst detection span of 22 bits. Decoding uses the Chinese Re­
mainder Method for displacement calculation. This method requires only a fraction of 
the shifts required by clocking around a sequence. The code is dermed by the following 
polynomial: 

g(x) = x 56 + x 55 + x 49 + x 45 + x4l + x 39 + x 38 + x 37 

+ x 36 + x 3l + x 22 + x 19 + x 17 + x16 + x15 

+ x14 + x12 + xll + x 9 + x 5 + x + 1 

g(x) has the following relatively prime factors: 

PO(x) = x 22 + 1 

Pl(x) xll + x 7 + x 6 + x + 1 

P2(x) = x12 + xll + x lO + x9 + x8 + x7 + x 6 

+ x 5 + x4 + x 3 + x 2 + x + 1 

P3 (x) = xll + x 9 + x7 + x 6 + x 5 + x + 1 

Each of the factors has a different period as shown below. 

IMPLEMENTATION 

FACTOR 
Po(x) 
Pl (x) 
P2 (x) 
P3 (x) 

PERIOD 
22 
89 
13 
23 

Encoding is performed by a shift register implementing: 

g(x) = PO(x)· PI (x) • P2(x) • P3(x) 

The shift register premultiplies by x56 and simultaneously divides by g(x). The re­
mainder is inverted and appended to the data as check bytes. 

For decoding, the hardware is modified to divide the received data polynomials by 
each of the factors of g(x) independently. There are four independent shift registers 
generating four independent syndromes. The shift registers are named PO, PI, P2 and 
P3, according to the factor of the generator polynomial implemented. There is no 
premultiplying during decode. 

On read, if all four syndromes are zero, the data is considered to be correct. If 
there are both zero and non-zero syndromes, the error exceeds the guaranteed correc­
tion capability of the code. If all four syndromes are non-zero, correction is attempted 
using the Chinese Remainder Theorem. 

- 279-



CORRECTION PROCEDURE 

(1) Shift Po until the 11 high order bits of the shift register are zeros and the 
lowest order bits of the shift register are nonzero. Save the shift count 
(no). If the above alignment is not achieved in less than 22 shifts, the error 
is uncorrectable. 

(2) Shift PI (with feedback) until a match with Po is achieved. Save the shift 
count (nO. If a match is not found in less than 89 shifts, the error is 
uncorrectable. 

(3) Shift P2 (with feedback) until a match with Po is achieved. Save the shift 
count (n2). If a match is not found in less than 13 shifts, the error is 
uncorrectable. 

(4) Shift P3 (with feedback) until a match with Po is achieved. Save the shift 
count (n3). If a match is not found in less than 23 shifts, the error is 
uncorrectable. 

The error pattern is in PO. The error displacement, measured from the last 
check bit to the last error bit Oow order of PO) is given by: 

d == [-(ko*no+kl *nl +k2*n2 +k3*n3)] MOD e 

where, 

ko = 452,387 
kl = 72,358 
k2 = 315,238 
k3 = 330,902 
e = 585,442 = LCM(22,89,13,23) 

HARDWARE SELF-CHECKING 

Self-checking of the shift registers is performed with parity predict circuits. See 
Section 6.5 for information on parity predict. 

SYNC FRAMING ERROR PROTECTION 

The inversion of check bytes provides protection against sync framing errors. This 
also provides protection for some types of hardware failures by making the check bytes 
nonzero for an all-zeros record. 

-280 -



5.2.3 THE 3350 MAGNETIC DISK CODE 

CODE DEFINITION 

The 3350 code is a shortened Fire code. It is defined by the following generator 
polynomial: 

g(x) = x48 + x36 + x35 + x23 + x21 + x15 + x13 + x8 + x2 + 1 

The polynomials below are factors of g(x): 

c(x) = x13 + 1 

p(x) = x35 + x23 + x8 + x2 + 1 

The c(x) factor is composite and has a period of 13. The p(x) factor is irreducible 
and has a period of 34,359,738,367. The period of g(x) is the least common multiple of 
the periods of c(x) and p(x), which is 446,676,598,771. Fire codes are discussed in 
Section 3.1. Decoding of shortened codes is discussed in Section 2.4. 

CODE CAPABILITY 

When the 3350 code is used for detection only, any single burst not exceeding 48 
bits in length is guaranteed to be detected. In addition, any combination of double 
bursts is guaranteed to be detected provided the sum of the burst lengths is no greater 
than 14. This number comes from the Fire code theory and is a lower bound only. It 
is very conservative since record length is very short compared to the period of g(x) 
(see Section 3.1). Misdetection probability for bursts exceeding the code guarantees is 
3.55E-15. 

In the 3350 implementation, the code is used to correct bursts through four bits in 
length on records up to 19,069 bytes in length. With this correction span and record 
length, the code is guaranteed to detect any single burst not exceeding 26 bits in 
length. This number was determined by a computer search. The Fire code theory gives 
the detection span as only ten bits. For 19,069 byte records, the miscorrection prob­
ability is 4.3E-9 for error bursts exceeding code guarantees, assuming all errors are 
possible and equally probable. 

CODE DESCRIPTION 

The 3350 code is shortened by the premultiplication of the data polynomial. This 
requires a shift-register circuit that multiplies and divides simultaneously. These cir-
cuits are discussed in Section 1.3.2. 

The multiplier polynomial is determined by computing the reciprocal of the polyno­
mial that is the residue of: 

(xI56352-1 +48) MOD g' (x) 

where g' (x) is the reciprocal polynomial of g(x). 

- 281 -



The multiplier polynomial is: 

x47 + x39 + x35 + x32 + x30 + x25 + x21 + x20 

+ x17 + x15 + x13 + x9 + x7 + x6 + x2 

The multiplier polynomial is used only during read, since shortening of the code 
applies only to the read case. 

The logical shift-register configurations used for write and read are shown in 
Figures 5.2.3.1 and 5.2.3.2 respectively. Although the write and read configurations are 
shown separately, the physical implementation is a single 48-bit shift register. As seen 
in Figure 5.2.3.2, there are three separate groups of bits feeding the XOR gates of the 
shift register in the read configuration: .. 

B (BOTH): Feedback terms that are common to both the multiplier 
polynomial and the generator polynomial. 

I (INPUT): Feedback terms unique to the multiplier polynomial. 

F (FEEDBACK): Feedback terms unique to the generator polynomial. 

Figure 5.2.3.3 shows a circuit equivalent to that shown in Figure 5.2.3.2. This 
circuit is easier to understand. It is shown in the same form as circuits performing 
simultaneous multiplication and division in Section 1.3.2. A close comparison of the 
circuits of Figures 5.2.3.2 and 5.2.3.3 reveals that splitting the read configuration feed­
back logic into three parts is a way to save logic. The feedback logic for the write 
configuration can be obtained from the feedback logic for the read configuration by 
OR'ing the BOTH and FEEDBACK lines and adding gating functions. 

WRITE OPERATION 

There are two write modes: 

a. WRITE DATA BITS 
b. WRITE CHECK BITS 

During the WRITE DATA BITS mode, serial data bits are written to the disk. 
Simultaneously, the ECC shift register, with write feedbacks enabled, receives the serial 
data bits and calculates write check bits. During the WRITE CHECK BITS mode, the 
feedbacks are disabled and check bits are shifted out of the register, complemented, and 
written to the disk. 

READ OPERATION 

There are three read modes: 

a. READ DATA BITS 
b. READ CHECK BITS 
c. CORRECTION 

During the READ DATA BITS mode, the ECC shift register, with read feedbacks 
enabled, receives serial read data bits. A syndrome is partially computed. During the 

-282 -



READ CHECK BITS mode, read feedbacks remain enabled. The complements of check 
bits are received by the ECC shift register and the computation of the syndrome is 
completed. After processing the read check bits, the ECC shift register should be all 
zeros if no error occurred and nonzero if a detectable error occurred. 

The CORRECTION mode is entered at the end of a read when the ECC shift 
register contents (syndrome) is found to be nonzero. The shift register is shifted with 
read feedbacks enabled, until bits 4-47 are zero. When this occurs, the error pattern is 
in bits 0-3. Shifting continues to the next byte boundary to place the error pattern in 
byte alignment. The shift count is used to calculate an error displacement. The error 
is uncorrectable if all zeros are not found in bits 4-47 of the shift register within 
156,352 (19,544*8) shifts. 

MICROCODE CORRECTION ALGORITHM 

Part of the 3350 correction algorithm is implemented in microcode at the storage 
control unit. When correction is required, the microcode initializes a counter to 19,544. 
As the ECC shift register is shifted during the CORRECTION mode, a flag is raised to 
the storage control unit microcode once every eight shifts. The microcode decrements 
its counter by one. When ECC hardware finds bits 4-47 of the shift register zero, the 
microcode is alerted at the next byte boundary. The microcode counter then contains 
the error displacement in bytes from the last check byte to the first byte in error. 
The error pattern is obtained from bits 0-15 of the ECC shift register. 

HARDWARE SELF-CHECKING 

The 3350 employs parity predict for self-checking of error correcting circuits. 
These techniques are discussed in Section 6.5. 

- 283 -



I I I I ! I I 
36 35 23 21 15 13 8 

48-bit ECC shift register. Note: each feedback line feeds 
an .XOR gate preceding the numbered shift register stage. 

WRITE DATA BITS 

FIGURE 5.2.3.1 WRITE CONFIGURATION 

READ DATA BITS 

I 

'0 B 

y47 39 36 35 32 30 25 23 21 20 17 .15 13 9 8 7 6 2 o~ 

T=INPUT B=BOTH F=FEEDACK 

FIGURE 5.2.3.2 .READ CONFIGURATION 

--147 39 36 35 32 30 2523 212017 .15 .13 98 76 20' 

tEAD DATA BITS 

FIGURE 5.2.3.3 ACIRCUTT EQUIVALENT TO THE .READ CONFIGURATION 

-284-

F 



5.2.4 TilE 3370 MAGNETIC DISK CODE 

INTRODUcrlON 

The 3370 magnetic-disk code is a single-error correcting, double-error detecting 
extended Reed-Solomon code interleaved to depth three. There are three logical circuits 
(interleaves), each sharing the same physical hardware. Each logical circuit protects 
one third of the data. The interleave protecting a particular byte is determined by its 
byte count modulo three. 

Byte Count 

o 
1 
2 
3 
4 
5 
6 
7 
8 

Byte count 
modulo y 

o ... 
1 ... 
2 ... 
o ... 
1 ... 
2 ... 
o ... 
1 ... 
2 ... 

-
-

-
-

r-

r-

Interleave 0 
Interleave 1 
Interleave 2 

For the 512-byte data fields, there are nine check bytes, three for each interleave. 
Two interleaves contain 171 data bytes each and the remaining interleave contains 170 
data bytes. 

ID fields are protected by a three-byte detection-only code that is a subset of the 
data field code. 

The check bytes are stored in a memory organized logically into three areas re­
ferred to as RAMI, RAM2 and RAM3. 

Interleave 0 Interleave 1 Interleave 2 

RAMl Gl (x) Gl (x) Gl(x) 
MEM LOC 0 MEM LOC 1 MEM LOC 2 

RAM2 G2(x) G2(x) G2 (x) 
MEM LOC 3 MEM LOC 4 MEM LOC 5 

RAM3 G3 (x) G3(x) G3 (x) 
MEM LOC 6 MEM LOC 7 MEM LOC 8 

- 285-



OVERALL CODE CAPABILITY 

The three syndromes of the 3370 imple~entation give the code a minimum distance 
of four, which is sufficient to correct single errors and detect double errors. 

The single-error correction and double-error detection interleaved to depth three 
results in the following overall capability for the code. 

CAPABILITIES (See glossary for definitions) 

1. Guaranteed correction span: 9 bits 

NOTE: The structure of the 3370 code provides the capability to correct any 
single burst up to 17 bits in length. However, the correction span as imple­
mented is limited to nine bits. 

2. Guaranteed detection span without correction: 65 bits 

3. Guaranteed detection span with correction: 

Single-burst: 41 bits 
Double-burst: 17 bits 

4. Misdetection probability (Pmd) = 2.IE-22 

5. Miscorrection probability (Pmc) = 2.2E-16 

ENCODING 

Normally, the encoding for a Reed-Solomon code with the capability of the 3370 
code would be accomplished with circuits implementing the following encode equation: 

G(x) = (x + a-1).(x + aD). (x + a+ 1) 

However, in the 3370 implementation, each write check byte is generated separately 
by dividing the data polynomial by each factor of G(x). 

In the 3370 implementation, a is defmed by the primitive polynomial 

x8 + x6 + x5 + x4 + 1. 

- 286-



SYNDROME GENERATION 

On read, the encoding process is repeated. Syndromes are the XOR sum of check 
bytes generated on write and check bytes generated on read. The single-error syndrome 
equations are shown below: 

So = EI 

SI = El.aLl 

S-1 = El.a-Ll 

where, 

El = Error value 

L1 = Error location (displacement from the end of an interleave; the 
last data byte of an interleave is location zero). 

HARDWARE IMPLEMENTATION 

The figures on the following page show the 3370 hardware implementation. The 
operation is as follows: 

WRITE DATA: 

SRI,RAMI = D(x) MOD (x + aD) 

SR2,RAM2 = D(x) MOD (x + a I) 

SR3,RAM3 = D(x) MOD (x + a-I) 

WRITE CHECK BYTES: 

Nine check bytes are written via the MUX in the following order: 

- 3 bytes from RAMI 
- 3 bytes from RAM2 
- 3 bytes from RAM3 

READ DATA: 

Same as write data above. 

READ CHECK BYTES: 

The nine check bytes read are added modulo-2 (XOR) to the nine check bytes 
generated (the contents of the RAM's). The resulting syndromes are stored 
in the RAM's. 

- 287 -



3370 ECC HARDWARE 

SRI 
.D LOAD 

r.=======~===========~ 
'-----' 

~C:V====~ 

SR2 

=D=A=T=A~~====~~~=========~~_~ 

e====~ 

:~0F========~~S_R_3~ 
7 0 

Note: The bus is flipped 
end-far-end at this point 

o 

1 

2 

o 

2 

o 

2 

°a CIRCUIT oa- I CIRCUIT 

o 
1 

2 

3 

4 

5 
6 

7 

o 

1 

2 

3 

4 
5 

6 
7 

o 
1 --t----_+ 

2 
3 

4 

5 

6 

7 

- 288-

RAM 1 

M 
r;=====j U ~ 

X 

RAM 3 

o 
1 
2 

3 

4 

5 

6 
7 



CORRECI'ION ALGORITHM 

In the 3370 implementation, each interleave is decoded separately. The patterns 
and displacements within each interleave are analyzed to compute a single pattern and 
displacement within the 512-byte data block. 

Interleave Correction Algoritlun 

Single-Error Correction: The correction algorithm for each interleave is simple and 
fast. When there is a single-symbol error, the syndrome equations form a system of 
equations in two unknowns, error value El and error location Ll. 

So = El 

sl = El o a Ll 

S-l= El o a-Ll 

The error value is SO. The error location can be determined by substituting So for 
E1 in the equation for S 1. 

El So 

Ll = LOGa (Sl)-LOGa (So) 

In the 3370 implementation the LOGa function is accomplished with a ROM table. 

Double-Error Detection: Double errors can be detected by verifying that: 

Sl So 
-+--=0 
So S-l 

This relationship will not be zero if a double error occurs. 

To do the test above requires finite field division capability. The test below is 
equivalent and requires only the use of a log table. This version of the test is imple­
mented on the 3370. 

If the relationship above is true, a single error is assumed. If it is not true, a 
double error is assumed. 

- 289-



OVERAU CORRECl'ION ALGORITHM 

Functions of the overall correction ro\ltine inc'ud~: 

1. Comparing displacements for the three interleaves to determine if a single 
error burst occurred . 

2. . Comparing displacements to determine which interleave conUtins the first byte 
of error pattern. 

3. Converting the patterns and displacements within each 
pattern and displacement within th~ 512-byte 9ata block. 

interleave to a single 

3370 LOG TABLE (INPUT IS an, OUTPUT IS n) 

0 1 2 3 4 5 6 7 8 9 A B C D E: F 

00 00 01 E7 02 CF E8 3B 03 23 DO 9A E9 14 3C B7 
19 04 9F 24 42 D1 76 9B FB EA F5 15. OB 3D 82 B8 92 
20 05 7A AO 4F 25 71 43 6A D2 EO 77 DD 9C F~ FC 20 
30 EB D5. F6 87 16 2A OC ~C 3E E3 83 45 B9 SF 93 5E 
40 06 46 7B C3 A1 35 50 A7 26 6D 72 CB 44 33 6B 31 
50 D3 28 E1 BD 78 6F DE FO 9D 74 F3 80 FD Cp 21 1,;2 
60 EC A3 D6 62 F7 37 88 66 17 5.2 2B B1 on A9 8D 59. 
70 3F 08 E4 97 84 48 4G DA BA 7D GO C8 94 (:5 5F AF,! 
80 07 96 47 D9 7C C7 C4 AD A2 61 36 65 5~ BO 1\8 58 
90 27 BC 6E EF 73 7F CC 11 45 C~ 34 A6 6C CA ~2 30 
AO D4 86 29 8B E2 4A BE 5.D 79 4F,! 70 69 DF DC F1 1F 
BO 9E 41 75 FA F4 QA 81 91 FE E6 CF,! ~A 22 99 13 B6 
CO ED OF A4 2E D7 AB 63 56 F8 8F :38 B4 89 5B 67 1D 
DQ 18 19 53 1A 2C 54 B2 1B OE 2D AA 55 8E B3 5A 1C 
EO 40 F9 09 90 E5 39 98 B5 85 8A 49 5C 4D 68 pB IE 
FO BB EE 7E 10 C1 A5 C9 2F 95 D8 C6 AC 60 64 AF 57 

-290" 



SIMULA TION OF 3370 ECC IMPLEMENTATION 

ERROR CASE 

BEGIN READ DATA PART OF SIMULATION 
(DATA PART OF RECORD IS ALL ZEROS EXCEPT FOR ERROR) 
(CHECK BYTES ARE '00 FF FF 00 08 08 00 A3 A3 ') 

BYTE MOD ERROR ---RAM i--- ---RAM 2--- ---RAM 3---
CNT 3 

FF FF 00 FF FF 00 FF FF 00 
0 
/ MOD(X+aO) MOD (x+a1 ) MOD (x+a-1 ) 
/ I I I I I I 

501 0 FF FF 00 01 B8 00 FE 7F 00 
502 1 FF FF 00 01 01 00 FE FE 00 
503 2 FF FF 00 01 01 00 FE FE 00 
504 0 FF FF 00 02 01 00 E1 FE 00 
505 1 FF FF 00 02 02 00 E1 E1 00 
506 2 OF FF FF OF 02 02 1E E1 E1 FD 
507 0 FF FF OF 04 02 1E DF E1 FD 
508 1 FF FF OF 04 04 1E DF DF FD 
509 2 FF FF OF 04 04 3C DF DF E7 
510 0 FF FF OF 08 04 3C A3 DF E7 
511 1 FF FF OF 08 08 3C A3 A3 E7 

I I I I I 
1 t I I I 

FINISHED DATA, NOW READ CHECK BYTES f f 
INTERLEAVE 2,1, 0 

BYTE MOD ERROR ---RAM 1--- ---RAM 2--- ---RAM 3---
CNT 3 

512 2 FF FF OF 08 08 3C A3 A3 E7 
513 0 00 FF OF 08 08 3C A3 A3 E7 
514 1 00 00 OF 08 08 3C A3 A3 E7 
515 2 00 00 OF 08 08 3C A3 A3 E7 
516 0 00 00 OF 00 08 3C A3 A3 E7 
517 1 00 00 OF 00 00 3C A3 A3 E7 
518 2 00 00 OF 00 00 3C A3 A3 E7 
519 0 00 00 OF 00 00 3C 00 A3 E7 
520 1 00 00 OF 00 00 3C 00 00 E7 

END OF CHECK BYTES, BEGIN CORRECTION ALGORITHM 

CORRECTABLE ERROR AT DISPLACEMENT 5 FROM END OF RECORD, 
COUNTING LAST DATA BYTE AS O. 
CORRECTABLE PATTERN IS 'OF 00 00' 

END OF SIMULATION 

- 291 -



SIMULATION OF 3370 ECC IMPLEMENTATION 

NO ERROR CASE 

BEGIN READ DATA PART OF SIMULATION 
(DATA PART OF RECORD IS ALL ZEROS) 
(CHECK BYTES ARE '00 FF FF 00 08 08 00 A3 A3 ') 

BYTE MOD ERROR ---RAM 1--- ---RAM 2--- ---RAM 3---
CNT 3 

FF FF 00 FF FF 00 FF FF 00 
0 
/ MOD (x+aO) MOD(x+a1 ) MOD(x+a-1 ) 
/ 

501 0 FF FF 00 01 B8 00 FE 7F 00 
502 1 FF FF 00 01 01 00 FE FE 00 
503 2 FF F.F 00 01 01 00 FE FE 00 
504 0 FF FF 00 02 01 00 E1 FE 00 
505 1 FF FF 00 02 02 00 E1 E1 00 
506 2 FF FF 00 02 02 00 E1 E1 00 
507 0 FF FF 00 04 02 00 OF E1 00 
508 1 FF FF 00 04 04 00 OF OF 00 
509 2 FF FF 00 04 04 00 DF OF 00 
510 0 FF FF 00 08 04 00 A3 DF 00 
511 1 FF FF 00 08 08 00 A3 A3 00 

FINISHED DATA, NOW READ CHECK BYTES 

BYTE MOD ERROR ---RAM 1--- ---RAM 2--- ---RAM 3---
CNT 3 

512 2 FF FF 00 08 08 00 A3 A3 00 
513 0 00 FF 00 08 08 00 A3 A3 00 
514 1 00 00 00 08 08 00 A3 A3 00 
515 2 00 00 00 08 08 00 A3 A3 00 
516 0 00 00 00 00 08 00 A3 A3 00 
517 1 00 00 00 00 00 00 A3 A3 00 
518 2 00 00 00 00 00 00 A3 A3 00 
519 0 00 00 00 00 00 00 00 A3 00 
520 1 00 00 00 00 00 00 00 00 00 

END OF CHECK BYTES, BEGIN CORRECTION ALGORITHM 

SYNDROME ALL ZEROS, NO ERROR DETECTED 

END OF SIMULATION 

- 292-



5.3 APPLICATION TO SMALL-SYSTEMS MAGNETIC DISK . 

This section describes a discrete error-correction implementation that for several 
years was ideal for small-systems magnetic-disk controllers. It is part of many existing 
controller designs in both discrete and LSI form. The code discussed in this section 
employs a 32-bit polynomial. However, new designs are likely to employ polynomials of 
degree 48, 56 or 64. 

Methods for hardware and software implementation are described. Included are 
unique methods for 

(a) realizing the divide circuit 
(b) detecting the error and 
(c) passing the syndrome to software. 

All real time operations are performed by the error-correction hardware. Com­
putation of the error pattern and the displacement is performed by software. Two 
software algorithms, bit-serial and byte-serial, are described. Approximately 120 in­
structions are required to implement the software algorithms on the Z80 and similar 
8-bit processors. In addition, lK bytes of table space are required if the byte-serial 
software algorithm is selected. 

For the Z80 and similar microprocessors, typical correction time is four mil­
liseconds, (eight maximum), if the byte-serial software algorithm is used. If the 
bit-serial algorithm is used, typical correction time for the Z80 is 30 milliseconds, 60 
maximum. These correction times are for a 256 byte record. For longer records, divide 
the record length by 256 and multiply the result by the times given. If, as recom­
mended, correction is used only on hard errors, the bit-serial software algorithm will be 
fast enough for most applications. Bit slice implementations are typically four to five 
times faster than the Z80. 

The polynomial used in this implementation is a computer-generated polynomial, 
selected for its insensitivity to short double bursts, good detection span and eight feed­
back terms. It was optimized for correction spans of five and eight bits on record 
lengths of 256 and 512 bytes, although its capabilities exceed this. 

The forward polynomial is: 

x32 + x28 + x26 + x19 + xl7 + xlO + x6 + x2 + xO 

The reciprocal polynomial is: 

x32 + x30 + x26 + x22 + xl5 + xl3 + x6 + x4 + xO 

- 293-



5.3.1 POLYNOMIAL CAPABIL1TIES 

The capabilities specified below represent the extremes for which the polynomial 
has been tested. Further testing is required if the polynomial is to be used beyond 
these extremes. 

If you plan to use this polynomial, read Section 4.4 DATA ACCURACY to under-
stand miscorrection probability (number 8 below) before selecting the correction span. 

1. Maximum record length (r) = 8*1038 bits (including check bits) 

2. Maximum correction span (b) = 11 bits. 

3. Degree of polynomial (m) = 32. 

4. Single-burst detection span when the code is used for error detection only = 
32 bits. 

5. Single-burst detection span (d) when the code is used for error correction: 

= 20 bits for b=5 and r=8*270 
= 14 bits for b=8 and r=8*270 

13 bits for b=11 and r=8*270 
= 19 bits for b=5 and r=8*526 
= 14 bits for b=8 and r=8*526 
= 12 bits for b=11 and r=8*526 
= 11 bits for b=11 and r=8*1038 

6. Double-burst detection span when the code is used for error correction: 

= 4 bits for b=5 and r=8*270 
= 2 bits for b=8 and r=8*270 
= 3 bits for b=5 and r=8*526 
= 2 bits for b=8 and r=8*526 

7. Nondetection probability = 2.3E-I0 

8. Miscorrection probability: 

= 8.00E-6 for b=5 and r=8*270 
= 6.40E-5 for b=8 and r=8*270 
= 5.12E-4 for b=11 and r=8*270 
= 1.57E-5 for b=5 and r=8*526 
= 1. 25E-4 for b=8 and r=8*526 
= 1.00E-3 for b=11 and r=8*526 
= 2.01E-3 for b=11 and r=8*1038 

- 294 -



5.3.2 HARDWARE IMPLEMENTAll0N 

Several examples of encoder and decoder circuits are described below. Although they 
are shown separately, circuitry can obviously be shared between encoder and decoder. 

BIT-SERIAL ENCODER USING THE INTERNAL-XOR FORM OF SHIFT REGISTER 

REDUN GATE 
~ 

., 

r 1 
DATA 

~31 o~ + I I 
L _ J 

MUX L ;--

4- 1 WRITE DATA/CHECK BITS I xi ~xi-ll 
0 

T 

The shift register has an XOR gate feeding the input of each stage which has a 
non-zero coefficient in the generator polynomial (except stage 0). For initialization 
considerations, see Section 4.8.2. 

After all DATA bits have been clocked into the shift register, REDUN_GATE is as­
serted. The AND gate then disables feedback, allowing the check bits to be shifted out 
of the shift register, and the MUX passes the check bits to the device. 

- 295-



BIT-SERIAL ENCODER USING THE EXTERNAL-XOR FORM OF SHIFT REGISTER 

-
r 1 0 

-1 0 L 
D F<iI= 

I I 31 D 
-

L _ J 

IXi-1~ xi I J-~-
REDUN_GATE MUX 

,--

1 WRITE DATAl 
DATA 

0 CHECK BITS 

T 

The shift register is tapped at the output of each stage which has a non-zero 
coefficient in the generator polynomial. For initialization considerations, see Section 
4.8.2. 

After all DATA bits have been clocked into the shift register, REDUN_GATE is as­
serted. The upper AND gate then disables feedback and the lower AND gate blocks 
extraneous DATA input to the ODD parity tree, whose output the MUX passes as check 
bits to the device. 

- 296-



CIRCUITS TO GENERATE SYNDROMES TO BE USED IN SOFTWARE CORRECTION 

CASE 1: SYNDROME IS OUTPUT BEIDND DATA 

BIT-SERIAL DECODER USING THE INTERNAL-XOR FORM OF SHIFT REGISTER 

DATA ~ '31 , 
MUX 
~ 

-.- 1 WRITE DATA/CHECK BITS 

0 

T - ECC_ERROR 

T )--J Q 

K 
-

Or-

The shift register has an XOR gate feeding the input of each stage which has a 
non-zero coefficient in the generator polynomial (except stage 0). The shift register 
must be initialized to the same state used before write. 

After all DATA bits have been clocked into the shift register, REDUN_GATE is as­
serted. The upper AND gate then disables feedback, allowing the check bits to be 
shifted out of the shift register, and the MUX passes the syndrome bits to the buffer. 
The lower AND gate allows any non-zero syndrome bit to latch the JK flip-flop, assert-
ing the ECC_ERROR signal. . 

- 297-



BIT-SERIAL DECODER USING THE EXTERNAL-XOR FORM OF SHIFT REGISTER 

.---
0 

~O l 
D 1::<11= 

31 D 
'---

D-
MUX 

REDUN_GATE -
1 WRITE DATAl 

DATA 
0 CHECK BITS 

T 

] )-.-r-- ECC_ERROR 
J Q 

K 
'---

The shift register is tapped at the output of each stage which has a non-zero 
coefficient in the generator polynomial. The shift register must be initialized to the 
same state used before write. 

After all DATA bits have been clocked into the shift register, REDUN_GATE is as­
serted. The upper AND gate then disables feedback and the lower AND gate blocks 
extraneous DATA input to the ODD parity tree, whose output the MUX passes as syn­
drome bits to the buffer. The bottom AND gate allows any non-zero syndrome bit to 
latch the JK flip-flop, asserting the ECC_ERROR signal. 

- 298-



CASE 2: SYNDROME IS FETCHED FROM SHIFT REGISTER 

BIT-SERIAL DECODER USING THE INTERNAL-XOR FORM OF SHIFT REGISTER 

REDUN GATE 

J 
DATA J., 131 O~ 1 

- ECC ERROR ) )--JQ - K 
-

The shift register has an XOR gate feeding the input of each stage which has a 
non-zero coefficient in the generator polynomial (except stage 0). The shift register 
must be initialized to the same state used before write. 

After all DATA bits have been clocked into the shift register, REDUN_GATE is as­
serted. The upper AND gate then disables feedback. The upper-most path, leading from 
the XOR gate to stage 0, allows the shift register to collect the syndrome bits for later 
retrieval. The lower AND gate allows any non-zero syndrome bit to latch the JK flip­
flop, asserting the ECC_ERROR signal. 

- 299-



DETAILED IMPLEMENTATION EXAMPLE #1 

The hardware of Figure 5.3.2.1 is used on write to generate check bits and on read 
to generate an error syndrome. The error syndrome is stored in memo~ via the de­
serializer during check bit time. It has the following format, where x is the high 
order bit of the first byte stored: 

Lowest memory address xO - x 7 

x8 _ xiS 

x16 _ x23 

Highest memory address x24 - x31 

This format assumes that the high-order bit of a byte is serialized and deserial­
ized first. The bits are numbered here for the software flow chart. Bits numbered 0-7 
above are bits 31-24 of the syndrome from hardware. 

As the data is written, data bits are directed to pin 10 via the 2: 1 circuit. At the 
same time, check bits are generated in the shift register in a transformed format. 
During write checkbit time, the transformed check bits in the shift register are con­
verted to true check bits (some inverted) by the odd circuit and are directed to pin 10 
via the 2: 1 circuit. 

As the data is read, data bits are directed to pin 9 via the 2: 1 circuit. At the 
same time, syndrome bits are generated in the shift register in a transformed format. 
During read check-bit time, the transformed syndrome bits in the shift register are 
converted to true syndrome bits by the odd circuit and are directed to pin 9 via the 2: 1 
circuit. 

During read check-bit time, the flip-flop (LS74) will be clocked to its error state 
if any of the syndrome bits are nonzero. At the end of any read, pin 11 will indicate 
if an error occurred. 

- 300 -



i r r * EVEN P .....-
32-BIT LEFT-SHIFTING SHIFT A T .....-

REGISTER (74LS164 1 S) ** R R .....-. 
ODD I E :J xO x31 T E 

Y .....-
SHIFT INPUT ENABLE 

2 

CLEAR 
3 CHECK/SYNDROME BITS 

READ/WRITE DATA 
1 -------------------r~r--r--r_--------------------------------~ 

WRITE DATA/CHECK BITS 
-- 2:1 

'-----t-i LS 157 H'--____________________ _ 
READ DATA/SYNDROME BITS 

CHECK_BIT_TIME 
5 

CLEAR ERROR 
7 

~ ECC ERROR ~r READ D Q 
4 0 

LS74 
CLOCK 

6 C 

Y 

NOTES: * There is one feedback line for each non­
zero coefficient term of the forward poly­
nomial except the x32 term. 

** The 1 1' state of the shift register outputs 
is the low voltage state. 

FIGURE 5.3.2.1 HARDWARE FOR METHOD 1 

- 301 -

10 

9 

11 



DETAILED IMPLEMENTATlQN EXAMPLE' 2 

The hardware of Figure 5.3.2.2 is similar to that for method 1 except that. ECC 
error is detected by software. After a record and syndrome have been read and stored, 
software fetches the four byte syndrome and checks for zero. If the syndrome is 
nonzero, an error has occurred and the software ECC algorithm must be performed. 

In summary. if method 2 is used, software performs the function that the flip-flop 
(LS74) performed in method 1. 

IMPLEMENTATION SUBTLETIES 

Listed below are some points that have been misunderstood by engineers imple­
menting the hardware. 

1. There is a shift register stage for xO through x31 . There is no shift register 
stage for x:.i2. 

2. The inputoend of the shift register is labeled x31 and the direction of shift is 
towards x. This is not an arbitrary assignment. It is required for this par­
ticular form of the polynomial shift register. 

3. There is a feedback path from the shift register to the pari~ tree for each 
nonzero coefficient term of the forward polynomial except for the x term. 

4. The forward polynomial is implemented in hardware and the reverse poly­
nomial is implemented in software. 

5. The read/write data line (pin 1 of Figures 5.3.2.1 and 5.3.2.2) must be inac­
tive while writing check bytes. 

6. After activating the clear line of Figures 5.3.2.1 and 5.3.2.2, the circuit should 
not be clocked until the first bit is ready to be processed. 

- 302 -



2 

3 

1 

5 

r r 1 * EVEN P r-
32-BIT LEFT-SHIFTING SHIFT A T I--

REGISTER (74LSI64'S) ** R R 1--' 
ODD I E ~ xO x31 T E 

Y r--
SHIFT INPUT ENABLE 

CLEAR 
CHECK/SYNDROME BITS 

READ/WRITE DATA 

WRITE DATA/CHECK BITS 
10 4-:- 2:1 -t 

~~~LSI57 ~-------------------­ 9 
READ DATA/SYNDROME BITS

NOTES: * There is one feedback line for each
non-zero coefficient term of the for­
ward polynomial except the x32 term.

* The '1' state of the shift register
outputs is the low voltage state.

FIGURE 5.3.2.2 HARDWARE FOR METHOD 2

- 303-

5.3.3 SOflWARE IMPLEMENTATION

ERROR DETECTION

At the completion of a read, the existence of any non-zero bit in the syndrome
indicates the existence of an error or errors. A non-zero syndrome is typically, and
most efficiently, detected with sequential logic as shown above. However, if a shift
register of the intemal-XOR form with a separate path to stage 0 (see the circuit for
Case 2 above) is used, it is possible (and has been done in the past) to use com­
binatoriallogic (e.g., a 48-input OR gate) rather than the AND gate/JK latch shown.

ERROR CORRECTION

When a non-zero syndrome indicates the presence of an error, correction is ac­
complished by shifting the syndrome until the error pattern is found. This shifting may
be done bit-serially or byte-serially, in hardware or by software. Bit-serial and byte­
serial software algorithms are given below. For discussion of byte-serial hardware
implementations Section 4.7.

The required shifting may be performed either forward along the code's shift­
register sequence using the code's generator polynomial, or reverse along the code's
shift register sequence using the reciprocal of the c~e's generator polynomial.

When forward shifting is implemented, pre-mUltiply must be used to shorten the
code. For a discussion of code-shortening, see Section 2.4. Use the following expres­
sion for the pre-multiply polynomial:

Pmult(x) = xm-l • F(l/x)

where

F(x) = xn-l MOD g I (x)

Forward shifting requires either the use of a different Pmult(x) for each sector length,
or that Pmult(x) must be selected for the largest sector-length to be used. In the
latter case extra shifts are required for the shorter sector-lengths.

When reverse shifting using the reciprocal polynomial is implemented, then if the
shift register shifts left [right] during read, then either

a) The shift register must shift right [left] during correction or

b) The syndrome must be flipped end-for-end before correction, and the shift
register must continue to shift left [right] during correction.

- 304-

DETERMINING ERROR PATTERN AND LOCATION

The error pattern is found by shifting until a given number of consecutive zeros
appears in one end of the shift register. When this occurs, the error pattern is aligned
with the other end of the shift register. Which end of the shift register is aligned
with the error pattern is a matter of implementation choice. See Sections 2.3 and 2.4
for examples of pattern alignment.

Error displacement is calculated by counting the number of shifts executed while
locating the error pattern. The details of displacement calculation depend on which end
of the shift register is used to align the error pattern.

The detection of consecutive zeros to indicate that a valid error pattern has been
found can be accomplished using either combinatorial or sequential logic. Combinatorial
logic would consist of a many-input OR gate.

Sequential logic circuitry for an intemal-XOR shift register implementation would
include a counter that is incremented by each '0' that appears at the output of the
high-order stage and is reset by any '1' that appears. When the counter reaches the
given threshold, the error pattern has been found.

It is also possible to simulate such a counter in software; the software would
control an output line to initiate each shift of the hardware shift register and receive
the output of the high order stage. The software can simultaneously simulate the dis­
placement counter.

OTHER CONSIDERATIONS

1) The detection of consecutive zeros that surround the error pattern is more
complex when error correction is performed using byte-serial hardware or
software. See Figure 3.1.1 for an example of byte-serial hardware. A byte­
serial software algorithm is given below.

2) When error correction is performed in hardware, the internal-XOR form os
shift register is typically used. However, it is also possible to perform error
correction in hardware when the external-XOR form is shift register is used.

3) Feedback could be left enabled during redundancy time. If the reverse-shift­
ing correction method is used, the error location process would then require
48 additional shifts. If the forward-shifting correction process is used, a
different Pmult(x) would be used.

- 305-

SOFTWARE ALGORITHMS

The software algorithms use the syndrome to generate the correction pattern and
displacement for correctable errors, or to detect uncorrectable errors.

In the correction algorithms, a simulated shift register implements the reciprocal
polynomial. The simulated shift register is loaded with the syndrome and shifted until a
correctable pattern is found or the error is determined to be uncorrectable. Flow
charts of the correction algorithms are shown at the end of this section.

The maximum record length for this polynomial is 1038 bytes (including check
bytes). The flow charts and software listings have been designed so that the record
length can be varied by changing a single constant (Kl).

The flow charts cover the algorithms through determination of pattern and dis­
placement. Both forward (FWD) and reverse (REV) displacements are computed. FWD
displacement starts at the beginning of the record counting the first byte as zero.
REV displacement begins with the end of the record counting the last byte as zero.

The pattern is in R2, R3, and R4. R2 is XOR'd with the record byte indicated by
byte displacement. R3 is XOR'd with the byte one address higher than the byte dis­
placement. R4 is XOR'd with the byte two addresses higher than the byte displacement.

If the correction span selected is nine bits or less, the pattern is in R2 and R3.
No action is required for R4.

Once an error pattern and displacement have been computed, there are several
special displacement cases that must be handled. For example, the error may be in
check bytes or it may span data and check bytes. The error may be a header field or
a data field. Some formats combine header information with the data field. The data
field in this case, has several overhead bytes, containing header information, preceding
data. This adds additional special displacement cases.

The software routines defined in this section contain logic for separate and
combined header and data fields.

- 306-

The procedures below handle the special displacement cases of four overhead bytes.
In a particular implementation there may be more, less, or even no overhead bytes.

FORWARD DISPLACEMENT LESS THAN 4

0-1 Error burst in overhead bytes. Correct overhead bytes in RAM. If overhead
bytes are not contiguous in RAM, handle the boundaries.

2 Error burst spans overhead bytes and data. XOR R2 with next to last over­
head byte. XOR R3 with last overhead byte. XOR R4 with first data byte.

3 Error burst spans overhead bytes and data. XOR R2 with last overhead byte,
XOR R3 with first data byte. XOR R4 with second data byte.

REVERSE DISPLACEMENT LESS THAN 6

0-3 Error burst in check bytes. No action required.

4 Error burst spans data and check bytes. XOR R2 with last data byte. No
action required for R3 or R4.

5 Error burst spans data and check bytes. XOR R2 with next to last data byte.
XOR R3 with last data byte. No action required for R4.

FORWARD DISPLACEMENT EQUAL OR GREATER THAN 4 AND REVERSE
DISPLACEMENT EQUAL OR GREATER THAN 6

Error burst in data bytes. Correct data bytes in RAM. If the data is not
contiguous in RAM, handle the boundaries. Generate displacement from the
first data byte to the first byte in error by subtracting the number of over­
head bytes from the forward displacement. XOR R2 with the data byte
indicated by the displacement just computed. XOR R3 with the data byte one
address higher than the displacement. XOR R4 with the data byte two ad­
dresses higher than the displacement.

- 307 -

LOAD SYNDROME
R1 x O-x7
R2 = x8 _x15
R3 = x16_x23
R4 = x24 _x31

INITIALIZE
J = K1 *

ALGN FLAG = 0

BIT-SERIAL SOFTWARE ALGORITHM
FOR POLYNOMIAL '42402402105'

=0 J=J+8
r--=-t.., R1=R2, R2=R3

R3=R4,R4=0

Shift R1-R4 right one bit. ** If the bit shifted out
of the low-order bit of R4 is '1', do the following:
R1 = R1 + 138, R2 = R2 + 5, R3 = R3 + 2, R4 = R4 + 34

=0
t

CORRECTABLE

- 308-

NOTES FOR BIT-SERIAL CORREcrJON ALGORITHM

* Kl = Record length in bits minus 25. Record length includes all bits covered
by ECC including the check bits.

** When shifting, the low-order bit of a register is shifted into the high-order
bit of the next higher-numbered register. '+' here means EXCLUSIVE-OR; the
constants are a form of the reciprocal polynomial in decimal.

*** Mask for given correction span:

Span Mask R2:R3

1 01111111:11111111
2 00111111:11111111
3 00011111:11111111
4 00001111:11111111
5 00000111:11111111
6 00000011:11111111
7 00000001:11111111
8 00000000:11111111
9 00000000:01111111

10 00000000:00111111
11 00000000:00011111

**** On correctable exit, J is the forward bit displacement and J/8 is the forward
byte displacement. The reverse byte displacement is (Kl +25-1)/8-1. The error
pattern is in R2:R3:R4.

- 309 -

LOAD SYNDROME
R1 xO-x?
R2 = x 8_x15
R3 = x16_x23
R4 = x24 _x31

INITIALIZE
J = K1 *

.-__________ ~10

=0

BYTE-SERIAL SOFTWARE ALGORITHM
FOR POLYNOMIAL '42402402105'

J=J+1
R1=R2,R2=R3
R3=R4,R4=0

Set A = R4 then do the following XORs:
R4 R3 + T4(A), R3 R2 + T3(A)
R2 = R1 + T2(A), R1 = T1(A)

=0

UNCORRECTABLE

o

Copy R2:R3:R4
into RA:RB:RC

=0

CORRECTABLE

- 310-

=1

=0

Shift RA:RB:RC
left one bit **

NOTES FOR BITE-SERIAL CORRECTION ALGORITHM

* Kl = Record length in bytes minus 4. Record length includes all bytes
covered by Eee including the check bytes.

** When shifting, the high-order bit of a register is shifted into the· low-order
bit of the next higher-lettered register.

*** Mask for given correction span:

Span Mask RA:RB

1 01111111:11111111
2 00111111:11111111
3 00011111:11111111
4 00001111:11111111
5 00000111:11111111
6 00000011:11111111
7 00000001:11111111
8 00000000:11111111
9 00000000:01111111

10 00000000:00111111
11 00000000:00011111

**** On correctable exit, J is the forward byte displacement. The reverse byte
displacement is (Kl +3-1). The error pattern is in R2:R3:R4.

- 311 -

POLYNOMIAL - '42402402105' (OCTAL)
Z80 CODE FOR BIT-SERIAL ALGORITHM

THIS ROUTINE PERFORMS ALL THE FUNCTIONS OF THE
BIT-SERIAL ALGORITHM (SEE FLOWCHART)

TIMING IN THE 'SHIFT AND XOR' AREA OF THE CODE IS CRITICAL.

EXECUTE THIS ROUTINE AFTER ATTEMPTING
REREADS AND FINDING THE SAME SYNDROME ON 2
CONSECUTIVE READS.

;--

P1
P2
P3
P4

K1
K2

OV

CSM1

IMPLEMENTATION CONSTANTS

DEFINE
EQU
EQU
EQU
EQU

DEFINE
EQU
EQU

DEFINE
EQU

DEFINE
EQU

POLYNOMIAL - DECIMAL CONSTANTS, SEE FLOW CHART
138
5
2
34

CONSTANTS K1 AND K2 (SEE FLOW CHART)
iINSERT DATA FIELD CONSTANT K1

~--- iINSERT HEADER FIELD CONSTANT K2
NUMBER OF OVERHEAD BYTES

iINSERT # OF OVERHEAD BYTES
CORRECTION SPAN MASK

iINSERT APPROPRIATE MASK BELOW
CORR SPAN 1 MASK '01111111'

2 '00111111'
3 '00011111'
4 '00001111'
5 '00000111'
6 '00000011'
7 '00000001 '
8 '00000000'
9 '00000000'

10 '00000000'
11 '00000000'

CSM2 EQU iINSERT APPROPRIATE MASK BELOW
CORR SPAN 1 MASK '11111111'

2 '11111111'
3 '11111111'
4 '11111111'
5 '11111111'
6 '11111111'
7 '11111111'
8 '11111111'
9 '01111111'

10 '00111111'
11 '00011111'

;--

- 312-

i INITIALIZE PSEUDO SHIFT REGS AND SHIFT COUNT (J)
o ,
INIT

INIT05

LD HL, (nn)
LD B,L
LD C,H
LD HL, (nn)
LD D,L
LD E,H
LD A, (FLDFLG)
OR A

;FETCH 1ST 2 SYNDROME BYTES
;SYNDROME BITS xO-x7
iSYNDROME BITS x8-x15
iFETCH 2ND 2 SYNDROME BYTES
;SYNDROME BITS x16-x23
;SYNDROME BITS x24-x31
; LOAD FIELD FLAG

JP NZ,INIT20 ;JP TO INIT20 IF CORRECTING HEADER
i INITIALIZE FOR DATA FIELD
INIT10 LD HL,nn-OV iSAVE DATA BUFFER ADDRESS

LD (BUFFADR),HL i MINUS NUMBER OF OVERHEAD BYTES
LD HL,(K1+25)/S-1;SAVE
LD (RLBMO),HL ; DATA FIELD LENGTH IN BYTES-1
LD HL,K1 iLOAD J WITH K1 (CONST FOR DATA)
JP CALGN

i INITIALIZE FOR HEADER FIELD
INIT20 LD HL,nn : SAVE

i

o ,
CALGN

LD (BUFFADR),HL i HEADER BUFFER ADDRESS
LD HL,(K2+25)/S-liSAVE
LD (RLBMO),HL i HEADER LENGTH IN BYTES MINUS 1
LD HL,K2 iLOAD J WITH K2 (CONST FOR HEADER)

CLEAR ALGN-FLAG

XOR
LD

A
(ALGNFLG) , A

iCLEAR A
;CLEAR ALGN-FLAG

; LEFT JUSTIFY FIRST NON-ZERO SYNDROME BYTE IN 'B'

JUST XOR
OR
JP
LD
ADD
LD
JP
INC

JUST10 LD
LD
LD
LD
JP

A
B
NZ,SHIFT
A,L
8
L,A
NC,JUST10
H
B,C
C,D
D,E
E,O
JUST

iTEST 'B' FOR ZERO
;BRANCH ON NONZERO

;J=J+S

SHIFT PSEUDO SHIFT REG UNTIL CORRECTABLE PATTERN FOUND
o ,
SHIFT SRL

RR
RR

B
C
D

o. ,
:SHIFT RIGHT

, - 313 -

RR
JP
LD
XOR
LD
LD
XOR
LD

SHIFT05 LD
XOR
LD
LD
XOR
LD

SHIFT10 LD
OR
JP

SHIFT20 XOR
OR
JP
OR
JP
JP

SHIFT30 DEC
JP

E
NC,SHIFT1O
A,E
P4
E,A
A,D
P3
D,A
A,C
P2
C,A
A,B
Pl
B,A
A,B
A
Z,PTRNTST
A
L
NZ,SHIFT30
H
NZ,SHIFT30
UNCORR
HL
SHIFT

. ,
;BRANCH IF NO BIT SHIFTED OUT

. ,
;XOR DECIMAL CONSTANTS

(SHIFT REG FEED-BACK)

~UNCORRECTABLE

~DECREMENT SHIFT COUNT ('J')

TEST FOR CORRECTABLE PATTERN

PTRNTST LD A, (ALGNFLG) ~LOAD ALGN-FLAG
OR A
JP NZ,PTRNTST5 ~BRANCH IF ALGN-FLAG NONZERO
OR E
JP NZ,SHIFT20 ~BRANCH IF CORR PTRN NOT YET FOUND
LD A,C
AND CSMl ~SEE DEFINITION OF CSMl ABOVE
JP NZ,SHIFT20 ~BRANCH IF CORR PTRN NOT YET FOUND
LD A,D
AND CSM2 ;SEE DEFINITION OF CSM2 ABOVE
JP NZ,SHIFT20 ;BRANCH IF CORR PTRN NOT YET FOUND

GET HERE TO START BYTE ALIGNMENT
LD A,l
LD (ALGNFLG) , A ;SET ALGN-FLAG TO NONZERO

PTRNTST5 LD A,L
AND 7 ;TEST 'J' MODULO 8
JP NZ,SHIFTJO ~JP IF BYTE ALIGN NOT COMPLETE

- 314-

. , CORRECT BYTES IN ERROR . ,
CORRECT LD

LD
LD
LD

CORR10 SRL
RR
DEC
JP

B,C
C,D
D,E
A,3
H
L
A
NZ,CORR10

; MOVE
i PATTERN . ,

;
;DIVIDE BIT DISPLACEMENT BY 8
; TO GET FWD BYTE DISPLACEMENT

COMPUTE
SCF
CCF

REV BYTE DISPLACEMENT

PUSH DE
EX DE,HL
LD HL,(RLBMO)
SBC HL,DE
POP DE

TEST REVERSE DISPLACEMENT CASES
LD A,H
OR A
JP NZ,CORR40
LD A,L
CP 6
JP NC,CORR40
CP 5
JP Z,CORR25
CP 4
JP Z,CORR30

GET HERE IF ERROR IN
CORR20 JP EXIT

;BR IF HI BYTE OF REV DISP NONZERO

;BR IF REV DISP EQ OR GTH THAN 6

;BR IF REV DISP EQ 5

;BR IF REV DISP EQ 4
CHECK BYTES

; GET HERE IF ERROR STARTS
;IGNORE CORR ERR IN CHECK BYTES
IN NEXT TO LAST DATA BYTE

CURR25 LD A, (nn)
XOR B iCORRECT NEXT TO LAST DATA BYTE
LD (nn),A
LD B,C

GET HERE IF ERROR STARTS IN LAST DATA BYTE
CORR30 LD A, (nn)

XOR B ;CORRECT LAST DATA BYTE
LD (nn),A
JP EXIT ; DONE

; RECOMPUTE FWD BYTE DISPLACEMENT
CORR40 SCF

CCF
PUSH
EX
LD
SBC
POP

DE
DE,HL
HL, (RLBMO)
HL,DE
DE

- 315 -

TEST FWD DISPLACEMENT CASES
LD A,H
OR A
JP NZ,CORR45 ;BR IF HI BYTE OF FWD DISP NONZERO
LD
CP
JP
CP
JP
CP
JP
JP

GET HERE
CORR45 PUSH

LD
CORR50 ADD

A,L
4
NC,CORR45 ;BR IF FWD DISP EQ OR
3
Z,CORR60 ;BR IF FWD DISP EQ 3
2
Z,CORR55 ;BR IF FWD DISP EQ 2
CORR70

IF ERROR IN DATA BYTES
DE
DE, (BUFFADR)
HL,DE

;LOAD BUFFER ADDRESS
;ADD DATA BUFFER

GTH THAN 4

; ADDR TO DISPLACEMENT
POP
LD
XOR
LD
INC
LD
XOR
LD
INC
LD
XOR
LD
JP

DE
A, (HL)
B
(HL) ,A
HL
A, (HL)
C
(HL),A
HL
A, (HL)
D
(HL) ,A
EXIT

;CORRECT 1ST DATA BYTE IN ERROR

;CORRECT 2ND DATA BYTE IN ERROR

;CORRECT 3RD DATA BYTE IN ERROR

;OONE

; ERROR STARTS IN NEXT TO LAST OVHD BYTE
CORR55 LD A, (nn)

XOR B ;CORRECT NEXT TO LAST OVHD BYTE
LD (nn),A
LD B,C
LD C,D
LD D,O

ERROR STARTS IN LAST OVHD BYTE
CORR60 LD A, (nn)

XOR B ;CORRECT LAST OVERHEAD BYTE
LD (nn),A
LD A, (nn)
XOR C ;CORRECT FIRST DATA BYTE
LD (nn),A
LD A, (nn)
XOR D ; CORRECT 2ND DATA BYTE
LD (nn),A
JP EXIT ;OONE

- 316 -

GET HERE
CORR70 PUSH

LD

IF ERROR IN OVERHEAD BYTES
DE

JP
DE,nn
CORR50

UNCORRECTABLE ERROR EXIT
;
UNCORR NOP

CORRECTION COMPLETE EXIT
i
EXIT NOP

WORK STORAGE

ALGNFLG
RLBMO
BUFFADR

FLDFLG

DEFS
DEFS
DEFS

DEFS

1
2
2

1

;OVERHEAD BYTES BUFFER ADDRESS
;JOIN COMMON PATH

;BRANCH TO ERR PATH IN MAIN PGM

iBRANCH BACK TO MAIN PGM

iALIGNMENT FLAG - SEE FLOW CHART
iRECORD LENGTH IN BYTES MINUS 1
iBUFFER ADDRESS - EITHER,
i -DATA BUFF ADDR MINUS

OF OVERHEAD BYTES
i -HEADER BUFFER ADDRESS
iFIELD FLAG - SET BY CALLING PGM
i-ZERO FOR DATA FIELD
; - NONZERO FOR HEADER FIELD

- 317-

POLYNOMIAL - J42402402105' (OCTAL)
zao CODE FOR BYTE-SERIAL ALGORITHM

THIS ROUTINE PERFORMS ALL THE FUNCTIONS OF THE
BYTE-SERIAL ALGORITHM (SEE FLOWCHART)

TIMING IN THE 'SHIFT AND XOR' AREA OF THE CODE IS CRITICAL.

EXECUTE THIS ROUTINE AFTER ATTEMPTING
REREADS AND FINDING THE SAME SYNDROME ON 2
CONSECUTIVE READS.

FLOWCHART REGISTER ASSIGNMENTS
Rl=D
R2=E
R3=H
R4=L
'A'=C

i--

K1
K2

OV

CSM1

CSM2

IMPLEMENTATION CONSTANTS

DEFINE CONSTANTS
EQU
EQU

DEFINE NUMBER OF
EQU

DEFINE CORRECTION
EQU

EQU

K1 AND K2 (SEE FLOW CHART)
iINSERT DATA FIELD CONSTANT K1
iINSERT HEADER FIELD CONSTANT K2

OVERHEAD BYTES
iINSERT # OF OVERHEAD BYTES

SPAN MASK
;INSERT APPROPRIATE MASK BELOW

CORR SPAN 1 MASK '01111111'
2 '00111111'
3 '00011111'
4 '00001111'
5 '00000111'
6 '00000011'
7 '00000001'
a '00000000'
9 '00000000'

10 '00000000'
11 '00000000'

;INSERT APPROPRIATE MASK BELOW
CORR SPAN 1 MASK '11111111'

2 '11111111'
3 '11111111'
4 '11111111'
5 '11111111'
6 '11111111'
7 '11111111'
a '11111111'
9 '01111111'

10 '00111111'
11 '00011111'

- 318-

INITIALIZE PSEUDO SHIFT REGS AND SHIFT COUNT (J)
i
INIT LD

OR
JP

i INITIALIZE
INITIO LD

MINUS 1

LD
LD
LD

LD
JP

i INITIALIZE
INIT20 LD

LD
LD
LD
LD

INIT30 LD
COUNT

. ,

EXX
LD
LD
LD
LD

A, (FLDFLG) iLOAD FIELD FLAG
A
NZ,INIT20 iJP TO INIT20 IF CORRECTING HEADER
FOR DATA FIELD
HL,nn-OV ;SAVE DATA BUFFER ADDRESS
(BUFFADR),HL i-NUMBER OF OVERHEAD BYTES
HL,K1+3 ; SAVE

(RLBMO),HL DATA FIELD LENGTH IN BYTES

HL,K1 ;LOAD J WITH Kl (CONST FOR DATA)
INIT30
FOR HEADER FIELD
HL,nn
(BUFFADR) ,HL
HL,K2+3
(RLBMO),HL
HL,K2

BC,65535

HL, (nn)
D,L
E,H
HL, (nn)

iSAVE
; HEADER BUFFER ADDRESS
; SAVE
i HEADER LENGTH IN BYTES-l
;LOAD J WITH K2 (CONST FOR HEADER)

;CONSTANT FOR DECREMENTING SHIFT

iFETCH 1ST 2 SYNDROME BYTES
;SYNDROME BITS XO-X7
iSYNDROME BITS X8-X15
iFETCH 2ND 2 SYND BYTES (X16-X3I)

LEFT JUSTIFY FIRST NON-ZERO SYNDROME BYTE IN 'B'
. ,
JUST XOR A

OR 0 ;TEST 'RI' FOR ZERO
JP NZ,SHIFT05 iBRANCH ON NONZERO
EXX
LD A,L
ADD 1 iJ=J+1
LD L,A
JP NC,JUST9
INC H

JUST9 EXX
JUSTIO LD D,E

LD E,H
LD H,L
LD L,O
JP JUST

- 319 -

. , SHIFT PSEUDO SHIFT REG UNTIL' CORRECTABLE PATTERN FOUND

SHIFT
SHIFT05

EXX
LD B,O iINIT TO POINT TO TABLE (T4)

iLOAD 'A' INDEX (SEE FLOW CHART)
(SEE FLOW CHART)

i

LD C,L
R4=R3 'XOR' T4(A)

LD A, (BC)
XOR H
LD L,A
INC B · ,

R3=R2 'XOR' T3(A) (SEE FLOW CHART)
LD A, (BC)
XOR E
LD H,A
INC B

i

· ,

R2=Rl 'XOR' T2(A) (SEE FLOW CHART)
LD A, (BC)
XOR D
LD E,A
INC B

Rl=Tl(A)
LD

(SEE FLOW CHART)

LD
TEST LOW

OR
JP

DECREMENT

A, (BC)
O,A

ORDER 8 BITS
A
Z,PTRNTST

SHIFT COUNT

· ,
OF SHIFT REG FOR ZERO

· ,
· ,

AND TEST FOR ZERO
SHIFT10 EXX i

ADD
JP
EXX
JP

HL,BC
C,SHIFT

UNCORR

;BC= , FFFF , FOR DECREMENTING HL BY 1
iNO CARRY IF HL WAS 0 BEFORE ADD

- 320 -

TEST FOR CORRECTABLE PATTERN

PTRNTST LD
JP ;BRANCH IF CORR PTRN NOT YET FOUND

SAVE SHIFT
PTRNTST2 LD

A,L
NZ,SHIFT10
REG CONTENTS
(nn),HL ;SAVE HL

EX
PTRNTST3 LD

DETERMINE
PTRNTST4 BIT

JP
SLA
RL
RL
JP

PTRNTST5 LD
AND
JP
LD
AND
JP

CORR PTRN
PTRNTST7 LD

EX
LD
JP

GET HERE
PTRNTST8 LD

EX
LD
LD
LD
LD
EXX
LD
EXX
LD

DE,HL ;SAVE DE
(nn) ,HL ;

IF PTRN IN E,H AND L IS CORRECTABLE
7,E
NZ,PTRNTST5
L
H
E
PTRNTST4
A,H
CSM2
NZ,PTRNTST7
A,E
CSMl
Z,PTRNTST8

NOT YET FOUND,
HL, (nn)
DE,HL
HL, (nn)
SHIFT10

iSEE DEFINITION OF CSM2 ABOVE
iBRANCH IF CORR PTRN NOT YET FOUND

iSEE DEFINITION OF CSMl ABOVE
iBRANCH IF CORR PTRN FOUND
RESTORE SIR, RETURN TO SHIFTING
i
iRESTORE DE (SAVED AT PTRNTST3)
iRESTORE HL (SAVED AT PTRNTST2)

IF CORR PTRN FOUND
HL, (nn)
DE,HL
HL, (nn)
C,E
D,H
E,L

(nn) ,HL

HL, (nn)

iRESTORE DE (SAVED AT
iRESTORE HL (SAVED AT
iPLACE PTRN IN REGS

EXPECTED BY
NEXT ROUTINE

iSAVE HL

PTRNTST3)
PTRNTST2)

iRESTORE HL SAVED 2 STEPS UP

- 321.,

.
I

CORRECT BYTES IN ERROR

CORRECT LD
LD
LD

B,C ~ ;MOVE
C,D ; PATTERN
D,E ;

COMPUTE
SCF
CCF

REV BYTE DISPLACEMENT

PUSH DE
EX DE,HL
LD HL,(RLBMO)
SBC HL,DE
POP DE

TEST REVERSE DISPLACEMENT CASES
LD A,H
OR A
JP NZ,CORR40 ;BR IF HI BYTE OF REV DISP NONZERO
LD A,L
CP 6
JP NC,CORR40 ;BR IF REV DISP EQ OR GTH THAN 6
CP 5
JP Z,CORR25
CP 4
JP Z,CORR30

; GET HERE IF ERROR IN
CORR20 JP EXIT

;BR IF REV DISP EQ 5

;BR IF REV DISP EQ 4
CHECK BYTES

; GET HERE IF ERROR STARTS
; IGNORE CORR ERR IN CHECK
IN NEXT TO LAST DATA BYTE

CURR25 LD A, (nn)

BYTES

XOR B ;CORRECT NEXT TO LAST DATA BYTE
LD (nn) ,A
LD B,C

GET HERE IF ERROR STARTS IN LAST DATA BYTE
CORR30 LD A, (nn)

XOR B ;CORRECT LAST DATA BYTE
LD (nn) ,A
JP EXIT ; DONE

RECOMPUTE FWD BYTE DISPLACEMENT
CORR40 SCF

CCF
PUSH
EX
LD
SBC
POP

DE
DE,HL
HL, (RLBMO) .
HL,DE
DE

- 322 -

TEST FWD
LD
OR
JP

DISPLACEMENT CASES
A,H
A
NZ,CORR45 ;BR IF HI BYTE OF FWD DISP NONZERO

LD A,L
4 CP

JP NC,CORR45 ;BR IF FWD DISP EQ OR GTH THAN 4
3 CP

JP Z,CORR60 ;BR IF FWD DISP EQ 3
2 CP

JP
JP

Z,CORR55 ;BR IF FWD DISP EQ 2
CORR70

~ GET HERE IF ERROR IN DATA BYTES
CORR45 PUSH

LD
CORR50 ADD

POP
LD
XOR
LD
INC
LD
XOR
LD
INC
LD
XOR
LD
JP

DE
DE, (BUFFADR)
HL,DE

DE
A, (HL)
B
(HL) ,A
HL
A, (HL)
C
(HL) ,A
HL
A, (HL)
D
(HL) ,A
EXIT

;LOAD BUFFER ADDRESS
~ADD DATA BUFFER ADDR TO
; TO DISPLACEMENT

;CORRECT 1ST DATA BYTE IN ERROR

~CORRECT 2ND DATA BYTE IN ERROR

~CORRECT 3RD DATA BYTE IN ERROR

;OONE

~ ERROR STARTS IN NEXT TO LAST OVHD BYTE
CORR55 LD A, (pn)

XOR B ;CORRECT NEXT TO LAST OVHD BYTE
LD (nn),A
LD B,C
LD C,D
LD D,O

ERROR STARTS IN LAST OVHD BYTE ,
CORR60;LD A, (nn)

XOR B ;CORRECT LAST OVERHEAD BYTE
LD (nn),A
LD A, (nn)
XOR C ;CORRECT FIRST DATA BYTE
LD (nn),A
LD A, (nn)
XOR D ;CORRECT 2ND DATA BYTE
LD (nn),A
JP EXIT ; DONE

- 323 -

GET HERE IF ERROR IN OVERHEAD BYTES
CORR70 PUSH DE

LD DE,nn ;OVERHEAD BYTES BUFFER ADDRESS
JP CORR50 ;JOIN COMMON PATH

UNCORRECTABLE ERROR EXIT

UNCORR NOP

CORRECTION COMPLETE EXIT

EXIT NOP

WORK STORAGE

ALGNFLG
RLBMO
BUFFADR

FLDFLG

DEFS
DEFS
DEFS

DEFS

1
2
2

1

;BRANCH TO ERR PATH IN MAIN PGM

;BRANCH BACK TO }~IN PGM

;ALIGNMENT FLAG - SEE FLOW CHART
;RECORD LENGTH IN BYTES MINUS 1
;BUFFER ADDRESS - EITHER,
; -DATA BUFF ADDR MINUS

OF OVERHEAD BYTES
; -HEADER BUFFER ADDRESS
;FIELD FLAG - SET BY CALLING PGM
; - ZERO FOR DATA FIELD
; - NONZERO FOR HEADER FIELD

RECIPROCAL POLYNOMIAL TABLES

;CONSTRUCT THE RECIPROCAL POLYNOMIAL TABLES AT THIS POINT.
:THE TABLES MUST BE ALIGNED TO AN ADDRESS BOUNDARY THAT
:IS DIVISIBLE BY 256. THE TABLES MUST BE CONTIGUOUS IN THE
:FOLLOWING ORDER 'T4,T3,T2,Tl'. SEE SECTION 5.3.7 FOR A
:DEFINITION OF THE RECIPROCAL POLYNOMIAL TABLES.

-m-

5.3.4 DIAGNOSTICS AND TESIING

The diagnostic routines for the small-systems magnetic-disk code should be devel­
oped using the techniques of Chapter 6 TESTING OF ERROR-CONTROL SYSTEMS.

One of the diagnostic approaches described in Chapter 6, requires a test record
that causes check bytes of zero to be generated. For the code described in this section
such a record can be constructed as follows. Set the first four bytes to hex 'OC 06 03
C3'. Set the last four bytes to hex 'F3 F9 FC 3C'. Clear the remaining bytes to zero.

For design debug, write the test record defined above. Debug the write path until
the write check bytes written for this record are zero. Next, debug the read path until
this record can be read without error. Finally, run diagnostics as defined in Chapter 6.

5.3.5 PROTEcrION FOR SYNC FRAMING ERRORS

Protection for sync framing errors is built into circuits of Figures 5.3.2.1 and
5.3.2.2. First, the '1' state of each shift register stage is the low-voltage state.
Therefore, the clear function sets the shift register to all ones. Secondly, degating the
shift register input during ECC time forces '1 's into the high order stage. This is
equivalent to inverting certain groups of bits of the check bytes. Today's data integrity
requirements dictate greater protection for sync framing errors than provided by the
method discussed here. See Section 4.8.2 for a detailed discussion of sync framing
errors.

5.3.6 SIMULATION RUNS

The following pages contain simulations of the hardware and software algorithms
for several correctable errors. Each step of the algorithm, hardware, and software, is
included in the simulation.

The test record for each simulation is the test record defined in Section 5.3.4.

Simulation run 1 is a dummy run that illustrates the first 40 shifts for each of the
remaining simulation runs. Runs 2 through 4 simulate the bit-serial software algorithm.
Runs 2 and 3 simulate error bursts in the data field, while run 4 simulates a single bit
error in a check byte. Runs 5 through 7 simulate the byte-serial software algorithm
and are similar to runs 2 through 4.

- 325 -

READ SIMULATION RUN. ~.

THTS PAGE SHOWS FIRST 40 SHIFT~.FOR EACH SIMULATION RUN

BEGIN HOW PART OF SIf1ULATION
(SHIFTING LEFT, EXTERNAL 'XOR' FORM OF SHIFT REG)

BIT DATA ERROR
NO. BITS BURST

e
:1.
2
:3
4
5
6
7
8
9

:1.13
:1.:1.
12
:1.3
:1.4
15
16
17
18
19
213
2:1
22
23
24
2S
26
27
28
29
313
31.
32
33
34-
35
36
37
38
39

1.
:1.

1
1

1
1
1
1

:1.
:1.

R1. R2 R3 R4

o .~
X X

BYTE
NO.

11:1.11:1.1:1. 1:11111~ ~~11:1.1. ~1.11110 0
11:1.11.11:1. 1111.~1.1. ~111111 1.11~1100 0
1.11.1.1.111 1~1.11.111 ~1111. 1.1111000 0
1111111:1 1:1:1~1~ ~:11:11.1~ :11.:110900 0
111:1.11:1.:1 1~:1:1:1:1 1:1:1111:1:1 1.1109900 0
:1.111111:1 :1:1:11:1:11:1 :1.111~1 11900999 0
11111111 :1.11~1~ 11:1:11111 10000900 0
11:1.11111 11111~1 ~111~1 00000000 0
1:1.111111 111:11111 11111110 00000990 1
11:1.11111 111~111 ~1100 90000000 1
:1.111111:1. 11~111 ~111000 90000990 1
11111111 111111~ 11~9090 00000000 1
:1.1111111 ~111 ~100000 00000090 1
:1.11:1.1111 111~:1:1 ~000000 00000990 1
111111~ 11111111 10900000 00099990 1
11111111 :1.11:1:1111 00999900 00000000 1
11111111 11111110 00900000 00000000 2
11111111 :1.1111190 00000000 00000000 2
:1.1111:1.11 111:1:1999 00990900 00990000 2
11111:1.11 :1.1110990 139900000 900000002
11:1.11111 11199999 09090009 90999999 2
1:1.1111:1.:1. :1.1909909 99999999 90099999 2
:1.:1:11111:1. 19990009 90090000 90099000 2
:1.11:1.111:1. 90990999 09999990 09000900 2
:1.11:1.1119 90999990 90000900 00999000 3
11111199 90990909 90000900 00000090 3
11111000 90099990 90909900 90000099 3
:1.1119099 90999909 00900900 00090000 3
11199999 90900999 90900909 00000000 3
:1.:1.990900 90009990 90090900 00900000 3
10000900 90900099 99000000 00000000 3
90909999 09009999 09999999 09999999 3
99999999 99999999 99900000 00009999 4
139900990 990130999 99999999 99999900 4
99999999 99999009 00099090 00009000 4
999901399 99999009 00000090 90000000 4
90909~99 90099990 99999000 00000000 4
90999909 00990900 00000000 00990099 4
99999999 9999geee 99000009 00000009 4
90999999 99999990 99999909 00099999 4

~ 326 -

RE~D SIMUL~TIO~ RUN * 2

SIMULATION OF HARDWARE AND SOFTWARE

BEGIN HOI" PART OF SIMULATION
<SHIFTING LEFT. EXTERNAL XOR FORM OF SHIFT REG)

SIT DATA ERROR R1. R2 R3
NO. BITS BURST

e .. ,. ,:SEE SIMULATION RUN 11. FOR :1.ST 40 SHIFTS)
, < R I S RECORD LEN IN SITS INCLUDING .CHK AND
,.

0
X

R-96 000130131313 00000000 000001300
R-95 0000013013 00000000 000001300
R-SlT4 01313131301313 000000130 1300000013
R-93 001300000 00000000 00000000

~-9t
13001313131313 00131313000 00013131300

~-9 000000130 00000000 000130000
R-'9~ 1 000001300 00000000 000001300
R-F.l9 1 000130000 013000000 130000000
R-S$ 0001313000 1300000013 0001300013
R-F.l7 1 0000001313 00000000 00000000
R-86 00000000 00000000 00000000
R-85 000000130 00000000 00000000
R-S4 00000000 00000000 00000000
R-83 0000130013 00000000 00000000
R-82 00000000 000130000 00000001
R-e~ 00e00000 00000000 00000011
R'I'"S9 00000000 00000000 00000110
R-79 000001300 00000000 00001.1.01.
R-7S 001300000 00000000 0001.1.01.1.
R-77 00000000 00000000 001.:1.01.1.1.
R-76 0000013013 00000000 011.01.:1.1.1.
R-7~ 130013001313 00000000 1.1131.1:1.10
R-74 00000000 00000001 :1.01.11.1.01
R-('3 0000013130 000013011 01111010
R-72 00000000 00000110 :1.1110:1.00
R-71 000000013 00001101 :1.110:1.001
R-70 000013000 00131101:1. 1113:1.13010
R-6~ 0013000130 00:1.101.:1.1. :1.01.001.131.
R..,.';;S 13131313130130 01.1.01.1.1.1. 0:1.001.01.0
~-'::7 00000000 1.1.01.1.1.1.0 :1.00:1.01.00
R-66 00000001. :1.131.1.1.:1.131. 00:1.01.000
R-65 013013001.1. 01.1.1.1.01.13 01.0:1.0001.
R-64 ~ 000001.1.0 1.1.:1.:1.01.00 1.01.0001.0
R-63 1. 00001.1.131. 1.1.1.13100:1. 01.0001.131.
R-tS2 1. 130131.1.131.1. 1.1.131.001.0 :1.0001.131.1
R-6:1. 1 001101.1.1. :1.01.0131.131. 000:1.01.1.1.
R-60 01.1.131.1.1.1 01.0131.01.0 001.01.1.1.1
R-;59 1.101.1.1.1.0 11301.0:1.00 0101.1.11.0
R-'38 1. 101.11.1.01. 1301.01.000 :1.01.11100
R-~7 1 01.1.1.1.01.0 01.1310001. 01.1.11.1301.
R-';i6 i 1.1.1.1.01.130 :1.131.0001.0 11.1:1.01311.
R-55 1 1.11.131001 01.0001.01. 1.1.1.001.113
R-S4 :1. 11.01.0010 1.1313131.131.1. 11.0131.1.1313

- 327 -

R4 BYTE
NO.

OVERHD)

3:1.
X

00000000 -11
01300001313 -:1.:1.
000001300 -11
00000131313 -11
0013000013 -11
00000000 -:1.:1.
00000013:1. -:1.1
000000:1.:1. -1:1.
00000:1.:1.0 -:1.13
0000:1.:1.13:1. -:1.0
0001:1.13:1.:1. -:1.0
001101:1.1 -10
01:1.01:1.11 -10
11011:1.10 -:1.13
1011110:1. -:1.0
011:1.10:1.0 -:1.0
1.1:1.10:1.00 -9
:1.11.0:1.001. -9
11.01.0010 -9
101.013:1.01. -9
01.001.01.0 -9
:1:0010100 -9
013:1.01000 -9
010Hl001 -9
101000:1.0 -S
0100010:1. -8
113130:1.011 -8
131301.0:1.1.:1. -8
001.011.:1.1. -8
01.01.1.1.:1.0 -8
1.131.1.1.1.00 --8
01.1.1.1.001. -8
:1.1.1.1.0011. -7
1.11.001.1.13 -7
11.1301.1.013 -7
1.13131.1.1301. -7
001.1.001.1. -7
011.001.1.1 -7
11.0011.1.0 -7
1.001.1.1.00 -7
001.11.1300 -6
01.1.10000 -6
1.1.10130131. -6

SIMULATION RUN NO. 2 CONTINUED

R-S2
R-52
R-!5:1.
R-51!l
R-49
R-48
R-47
R-46
R-45
R-44
R-42
R-42
R-41.
R-40
R-39
R-~8
R-37
R-3'6
R-s5
R-3:4
R-~3

1.
1.

1.
:I.
:I.
:I.
:I.
1
:I.

1
1
1.
1

1.0:1.001.01. 0001.0:1.:1.:1. ~091.:1.90:1. 1.1.9999:1.:1. -5
01.09:1.0:1.0 991.91.:1.:1.1. 991:1.09:1.:1. :1.9090:1.1.0 -6
1.90:1.01.00 9:1.01.:1.1.1.0 0:1.:1.09:1.1.1. 9090:1.1.0:1.~6
99:1.01.999 1.01.:1.:1.:1.90 1:1.99:1.:1.1.0 900:1.:1.0:1.:1. -6
0:1.9:1.900:1. 01.:1.:1.1.00:1. 1.091.:1.:1.00 00:1.:1.0:1.:1.:1. -6
:1.0:1.090:1.0 1.:1.:1.:1.99:1.:1. 99:1.:1.1.990 9:1.:1.9:1.:1.:1.0 -5
9:1.009:1.0:1. 1.1.:1.09:1.:1.0 9:1.:1.:1.9909 1.:1.0:1.:1.:1.00 -5
:1.000:1.0:1.:1. 1.1.90:1.:1.00 :1.:1.:1.0990:1. :1.0:1.:1.:1.99:1. -5
999:1.9:1.:1.:1. :1.99:1.:1.09:1. 1.:1.9990:1.:1. 9:1.:1.:1.00:1.0 -5
99:1.01:1.:1.:1. 99:1.:1.90:1.:1. 1.9909:1.:1.9 1.1.:1.99:1.00 -5
0:1.0:1.:1.:1.:1.0 0:1.:1.00:1.:1.:1. 0090:1.:1.0:1. 1.1.091001 -5
:1.01:1.:1.:1.00 1:1.99:1.:1.:1.0 990:1.:1.9:1.1 :1.09:1.09:1.1 -5
0:1.:1.:1.:1.00:1. :1.00:1.:1.:1.90 00:1.:1.9:1.:1.:1. 90:1.09:1.:1.:1. -5
1:1.:1.1001:1. 991:1.:1.999 01:1.9:1.:1.:1.0 0:1.09:1.:1.:1.:1. -4
:1.:1.:1.09:1.10 01.:1.:1.9990 1:1.0:1.1:1.00 :1.001:1.1:1.0 -4
1100:1.:1.00 1:1.:1.0000:1. 10:1.1:1.00:1. 00:1.:1.:1.:1.00 -4
:1.00:1.:1.00:1. 119009:1.:1. 01:1.10010 0:1.:1.:1.:1.000 -4
00:1.:1.00:1.:1. 10000:1.:1.0 1.1:1.00:1.00 :1.:1.:1.10000 -4
01:1.90:1.:1.:1. 0000:1.:1.9:1. :1.:1.90:1.00:1. :1.:1.:1.0009:1. -4
:1.:1.00:1.:1.:1.0 099:1.:1.91:1. :1.00:1.99:1.1 :1.:1.9990:1.0 -4
:1.00:1.:1.:1.09 001.19:1.:1.:1. 90:1.00:1.:1.1 10000:1.0:1. -4

FINISHED READING DATA BYTES. NOW READ CHECK BYTES.
INPUT TO SHIFT REGISTER NOW DEGATED. PIN 9 OUTPUT
IS GATED TO DESERIALIZER TO BE STORED AS SYNDROME.

R-32 001.:1.:1.000 01:1.011.:1.0 01.001.:1.1.1 00091.01:1. -3
R-3:1. 0:1.1.10090 11011109 10011110 900:1.0:1.:1.1 -3
R-30 :1.1:1.0009:1. 101:1.1091 00:1.:1.:1.:1.00 00:1.0:1.1:1.:1. -3
R-;oQ :1.:1.0000:1.:1. 8:1.:1.109:1.0 01:1.:1.:1.000 010:1.:1.:1.1:1. -3
R-28 :1.0000110 1:1.:1.00100 1:1.:1.:1.0000 :1.0:1.:1.:1.:1.:1.:1. -3
R-27 0000:1.:1.0:1. ~:l.00:1.00:1. :1.:1.:1.0009:1. 9:1.:1.:1.:1.:1.:1.:1. -3
R-26 090:1.:1.0:1.:1. :1.90100:1.:1. 110090:1.9 1.:1.:1.:1.:1.:1.1.:1. -3
R-25 90:1.:1.011:1. 09:1.00:1.:1.:1. 19000:1.0:1. 1.1:1.:1.:1.:1.:1.:1. -3
R-24 91:1.9:1.1.10 0:1.00:1.:1.:1.1. 0000:1.0:1.1 1.1:1.:1.:1.1:1.1 -2
R-23 1:1.91:1.1.09 100:1.:1.:1.10 099:1.01:1.:1. :1.:1.11:1.:1.:1.:1. -2
R-"';- :1.011:1.00:1. 00:1.:1.:1.:1.00 00:1.01:1.:1.:1. :1.:1.1:1.:1.:1.1:1. -2
R-21 0:1.:1.:1.00:1.0 01:1.1:1.000 0:1.0:1.1:1.:1.:1. 1.:1.:1.:1.1:1.:1.:1. -2
R-20 1:1.:1.00:1.00 1:1.:1.:1.0000 :1.9:1.:1.:1.:1.:1.1 11:1.1:1.1:1.:1. -2
R-:l9 1:1.00:1.001 1.:1.:1.00001 01:1.:1.:1.:1.:1.1. :1.:1.1:1.:1.:1.:1.:1. -2
R-18 :1.00:1.00:1.:1. :1.:1.0000:1.0 :1.:1.1.:1.1.:1.1.:1. :1.:1.:1.:1.:1.:1.1:1. -2
R-~(00100:1.:1.:1. :1.0900:1.0:1. 1:1.:1.:1.:1.:1.:1.:1. :1.1:1.:1.:1.:1.:1.:1. -2
R-16 0:1.00:1.:1.1.1. 0000101.:1. 11.:1.:1.1.1.:1.1 1.1.1.1.11.:1.:1. -1
R-15 10011.:1.1.0 0001.01.:1.1. 1.1:1.1.:1.11.1. 1.1.1.1.1.1.1.1. -:I.
R-14 001.:1.:1.:1.0000:1.01.1.1:1. :1.:1.:1.:1.1.:1.1.1. :1.1.:1.:1.1.:1.1.1 -:I.
R-13: 0:1.:1.1.1000 01.0:1.1.:1.1:1. :1.:1.1.1.1.:1.:1.:1. :1.:1.1.:1.1.1.:1.:1. -:I.
R-:12 :1.:1.1.:1.0000 :10:1.:1.:1.:1.:1.:1. :1:1.:1.:1.1:1.:1.1. :1.1:1.1.1.:1.1.1. -1
R-:1:1. :1.:1.1.0000:1. 01.:1.:1.1.:1.:1.:1. :1.:1.:1.1.:1.:1.:1.1. 11.:1.:1.:1.:1.:1.:1. -:I.
R-10 :1.:1.8000:1.0 :1.:1.:1.:1.:1.:1.1.:1. :1.1:1.:1.1.1.:1.:1. 1:1.:1.:1.:1.:1.1:1. -:I.
R -9 10000:1.0:1. :1:1.1.:1.:1.:1.:1.:1. :1.:1.1.:1.1.:1.11. 1:1.:1.:1.:1.:1.:1.:1. -:I.
R -8 0000:1.0:1.1. :1.:1.:1.:1.:1.:1.:1.:1. :1:1.:1.:1.:1.:1.:1.:1. :1.:1.:1.:1.:1.:1.:1.:1. 0
R -7 000:1.0:1.:1.1. :1.:1.:1.:1.:1.:1.:1.:1. :1.1:1.:1.:1.:1.:1.:1. :1.1.1.1.1:1.:1.:1. 0
R -6 001.0:1.:1.:1.:1. :1.:1.:1.:1.:1.:1.:1.:1. :1.:1.:1.1:1.:1.:1.:1. :1.:1.:1.:1.:1.:1.:1.:1. 0
R -5 0:1.0:1.:1.:1.:1.:1. 1:1.:1.:1.:1.:1.:1.:1. :1.:1.:1.:1.:1.:1.1.:1. :I.~:I.:I.:I.1. 0
R -4 :1.0:1.:1.:1.:1.:1.1 :1.:1.:1.:1.1:1.:1.:1. :1.:1.1.:1.1:1.:1.:1. :1.:1.:1.:1.:1.:1.:1.:1. 0
R -3 0:1.:1.:1.:1.:1.:1.:1. :1.:1.:1.:1.1:1.:1.:1. :1.1.:1.:1.1.:1.:1.:1. 1.1.:1.:1.:1.:1.1:1. 0
R -2 1.1:1.:1.:1.:1.:1.:1. :1.:1.:1.:1.:1.:1.:1.:1. :1:1.:1.1.:1.:1.:1.1. :1.:1.:1.:1.1:1.:1.:1. 0
R -1 :1.:1.:1.1:1.:1.:1.:1. :1.:1.:1.:1.:1.:1.:1.:1. :1.:1.:1.:1.:1.:1.:1.1 :1.:1.:1.:1.:1.:1.:1.:1. 0

HDI4 PARt ~IOW COMPLETE - S'T'NDOME HAS BEEN STORED.

- 328 -

PIN 9= 8
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN 9= 1
PIN 9= :I.
PIN 9= 0
PIN 9= 1
PIN 9= 0
PIN 9= 8
PIN 9= 1
PIN 9= 1
PIN 9= 8
PIN 9= 8
PIN 9= 8
PIN 9= 0
PIN 9= :I.
PIN 9= 0
PIN 9= 0
PIN 9= 1
PIN 9= :I.
PIN 9= :I.
PIN 9= :I.
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN 9= :I.
PIN 9= 0
PIN 9= 13
PIN 9= :I.
PIN 9= 0

~IMIJL.ATION RUN.. 2 CONTINUED

SIMULATION OF CORRECTION PROCEDURE
BEGJN SHI FTING SYNDROME
THIS PART SIMULATES INTERNAL XOR FORM OF SHIFT REG
(SHIFTING RIGHT WITH SOFTWARE)

R-25
R-26
R-2i
R-28
R-29
R-30
R-:U
R-32
R-33:
R-34
R-35
R-36
R-37
R-:$8
R-39
R-40
R-41
R-42
R-43
R-44
R-45
R-46
R-47
R-48
R-4:9
R-50
R-51
R-S2
R-S3
R-54
R-55
R-56
R-57
R-S8
R-59
R-60
R-61
R-62
R-63
R-64
R-6S
R-66
R-67
R-6S
R-69
R-7e)
R-71
R-72
~-73
R-74
R-75
R-76
R-77'

o n
X X
00000011 01001100 00100111 10001001 -3
10001011 10100011 00010001 11100110 -3
01000101 11010001 10001000 11110011 -3
10101000 11101101 11000110 01011011 -3
11011110 01110011 11100001 00001111 -3
11100101 00111100 11110010 10100101 -3
11111000 10011011 01111011 01110000 -3
01111100 01001101 10111101 10111000 -3
00111110 00100110 11011110 11011100 -4
00011111 0001001101101111 01101110 -4
00001111 10001001 10110111 10110111 -4
10001101 11000001 11011001 11111001 -4
11001100 11100101 11101110 11011110 -4
01100110 01110010 11110111 01101111 -4
10111001 00111100 01111001 10010101 -4
11010110 10011011 00111110 11101000 -4
01101011 01001101 10011111 01110100 -5
00110101 10100110 11001111 10111010 -5
00011010 11010011 01100111 11011101 -5
10000111 01101100 10110001 11001100 -5
01000011 10110110 01011000 11100110 -5
00100001 11011011 00101100 01110011 -5
10011010 11101000 10010100 00011011 -5
11000111 01110001 01001000 00101111 -5
11101001 10111101 10100110 00110101 -6
11111110 11011011 11010001 00111000 -6
01111111 01101101 11101000 10011100 -6
00111111 10110110 11110100 01001110 -6
00011111 1101101~ 01111010 00100111 -6
10000101 11101000 10111111 00110001 -6
11001000 11110001 01011101 10111010 -6
01100100 01111000 10101110 11011101 -6
10111000 00111001 01010101 01001100 -7
01011100 00011100 10101010 10100110 -7
00101110 00001110 01010101 01010011 -7
10011101 00000010 00101000 10001011 -7
11000100 10000100 00010110 01100111 -7
11101000 01000111 00001001 00010001 -7
11111110 00100110 10000110 10101010 -7
01111111 00010011 01000011 01010101 -7
10110101 10001100 10100011 10001000 -8
01011010 11000110 01010001 11000100 -8
00101101 01100011 00101000 11100010 -8
00010110 10110001 10010100 01110001 -8
10000001 01011101 11001000 00011010 -8
01000000 10101110 11100100 00001101 -8
10101010 01010010 01110000 00100100 -8
01010101 00101001 00111000 00010010 -8
00101010 10010100 10011100 00001001 -9
10011111 01001111 01001100 00100110 -9
01901111 10100111 10100110 90010011 -9
10101101 11010110 11010001 00101011 -9
11011100 11101110 01101010 10110111 -9

- 329-

SII1ULATION RUN NO. 2 CONTINUED

R-78
R-79
R-80
R-81.
R-82
R-83
R-84
R-8~
R-86
R-87
R-88
R-89
R-ge

1.1.1.001.00 01.1.1.001.0 e01.1.01.1.1. 01.1.1.1.001. -9
1.1.1.1.1.000 001.1.1.1.00 0001.1.001. 1.001.1.1.1.0 -9
01.1.1.1.1.00 0001.1.1.1.0 00001.1.00 1.1.001.1.1.1. -9
1.01.1.01.00 00001.01.0 000001.00 01.0001.01. -1.0
1.1.01.00e0 aaaa0000 a0000000 00e0ae00 -1.0
01.1.01.0e0 a000000e a0e00000 0a000e0e -1.0
ae11.01.00 e0eeeee0 00aeeeee aeee0See -10
e001.1010 000eee0e e0eeee0e 0eeee00e -1.0
0eee1.101. 00e00000 00000000 a000000e -10
00ee0110 1e0e00ee 00000000 000e00e0 -10
00000011 010000e0 0000e00S e0000000 -10
000e00e1. 1010e0e0 e0000000 000000ee -11
0ee0ee00 11.010000 000e00e0 0000e00e -11.

CORRECTABLE PATTERN FOUND, -90 IS BIT DISPLACEMENT.
NOl.J BEGIN BYTE ALIGNMENT.

R-91. 00000000 011.01e0e 0e00eee0
R-92 e0raee00e e011.01.0e e0000000
R-9Z 00ra00eee eee1.101e 0ee0eeee
R-94 000eeeee 00001.1.01 e0000000
R-95 00ra00000 00000110 10000000
R-96 00ee0000 0000001.1 01.000000

B'nE ALIGNMENT C0l1PLETE - SIMULATION COMPLETE
B'T'TE DISPLACEMENT IS 1.1.
COUNTING FROM END OF RECORD. LAST BYTE IS ZERO.

- 330-

00e0000e -1.1
0e000ra00 -1.1.
eeeee0ee -11
0000e000 -11.
e0e0000e -11
ee00e0e0 -11.

REA~ SU1ULRTION RUN" 3

SU1IJLATION OF HARDWARE AND SOFTWARE

BEG~N HOW PART OF SU1ULATION
(SHIFTING LEfT, EXTERNAL XOR FORM OF 5HIFT REG)

BIT DFITA ERROR R1. R2 R3 R4
NO BITS BURST

0 ..
" (SEE $IMULATION RUN #1. FOR l.ST 4(3 SHIFTS)
" (R IS RECORD LEN IN BITS INCLUDING CHK AND OVERHO)

" (3 31.
X X

R-91S 000e00e(3 00012100e0 eel2le0eee eee0e00e
R-95 e(3e0e000 e1300eeee eeeeeeee eeeeeee0
R-94 (3e0eeeee 00eeeeee eeeee00e 0e0eeeee
R-91 eeeeeeee eee13eee13 eeeeeeee eeeeeeee
R-92 e0eeeeee eeeeeee0 eeeee13ee eeeeeeee
R-9~ e0eeeeee ee0eeeee eeeeeeee eeeeeeee
R-90 eeeeee0e eeeeeeee 0ee0e00e e0ee0eee
R-89 0ee00e00 eeee0eee 0eeeee0e e0eeeeee
R-BB eee0eeee ee0eee00 0000eeee eeeeeeee
R-S7 0eeeeeee eeeeeeee eeeeeeee eeeeeeee
R-S6 e0eee0e0 ee0eeeee eeeeeeee e0e0eeee
R-85 00eeeeee 0eee0eee ee0ee00e e0eee0ee
R-S4 :1 eeeee0e0 0e0ee0ee eee0e0ee ee00e0e1.
R-9l eeeeee0e 0000000e 0e0eeee0 eeeee01.0
R-i32 1. 0e0eeee0 0e0ee0e0 eeeeeeee eeeee1.e1.
R-i3:1 1- 0e0ee0ee eeeeeeee eeee0eee 0ee01.e1.1.
R-sa 00eee0ee eeeee0ee ee0eeeee eee:101.1.1.
R-79 0eeee000 e0eeeeee e000e0ee ee1.01.1.1.e
R-78 00eeeeee e0eee0ee 0eeeeeee e:1e1.1.1.ee
R-77 eeeeeeee eeeeeeee eeeeeeee 1.01.:11.ee1.
R-76 eeeeeeee 0eeeeeee eeeeeee1. (31.:11.ee1.e
R-75 eeeee0e0 (3eeeee(3e eeeeee1.e 1.1.1.e01.e1.
R-74 0e000eee 13e013eeee ee013e1.e1. l.1.ee1.e:11.
R-n (3ee0eeee 00eeeeee eeee1.e1.1. 1.ee1.01.1.1.
R-72 ee00e00e e0e0ee0e eee:1e1.1.1. 0e1.e1.1.:1e
R-71. eeeeeeee 0ee0eeee ee1.e1.1.1.e e1.e1.1.1.131.
R-70 000ee0ee e0eeeeee e1.01.1.1.ee l.e1.1.1.e1.1.
R-';~ 0000eeee 0ee0eeee 1.101.1.1.0101. e1.1.1.e1.1.e
R-68 e0e0eeee 0e0eeee1. 01.1.1.001.e l.1.1.e1.1.ee
R-67 e0eeeeee 0eeeee1.e 1.1.1.1001.101. 1.1.01.1.eee
R-66 0e0e000e 0e0ee1.01. 1.1.0101.01.1. 1.01.1.eeee
R-65 000ee0ee oeee1.01.1. l.ee1.e1.1.1. e1.1.eeeee
R-64 1. ee00eoe0 eee1.e1.1.1. ee1.01.1.1.e :11.0eeee1.
R-63 1. 0eeeeee0 0e1.e1.1.1.e e1.e1.1.1.e1. 1.eeeee1.1.
R-62 1 eeeee0ee 01.e1.1.1.0e 101.1.1.e1.1. eeeee1.1.0
R-61. :1 eeeeee0e 1.e1.1.1.ee1 e1.1.1.e1.1.0 oeee1.1.ee
R-60 eeeeeee1. e1.1.1.e(31.e 1.1.1.e1.:1ee 0ee1.1.eee
R-59 eeeeee1.e 1.1.1.(3(31.01. :1:1(31.1.eee oe1.1.eee1.
R-58 1. oeeee1.e1. l.1.e(31.(31.1. l.(31.1.eeee 01.1.(3(3(31.(3
R-57 1. ee0e1.01.1. :10e1.e1.1.1. e1.1.ee0ee 1.1.e001.e1.
R-'56 1. 0ee1.01.1.1. 001.01.1.1.e 1.1.0eeee1. 1.0ee1.01.1.
R-55 1. oe1.e1.1.1.e e1.e1.1.1.e1. 1.0e0ee1.1. e001.e1.1.1.
R-S4 ~

(31.(31.1.1.(3e 1.01.1.1.01.1. 00ee01.1.e e(31.(31.1.1.1.

- 331 -

BYTE
NO.

-1.1.
-1.1.
-1.1.
-1.1.
-1.1.
-1.1.
-1.1.
-1.1.
-1.13
-1.e
-1.e
-1.13
-1.0
-1.0
-:10
-1.e
-9
-9
-9
-9
-9
-9
-9
-9
-8
-8
-8
-8
-8
-8
-8
-8
-7
-7
-7
-7
-7
-7
-7
-7
-6
-6
-6

SIMULATION RUN NO. ~ CONTINUED

R-S:!
R-S2
R-S1
R-S~
R-49
R-4f;
R-47
R-46
R-45
R-44
R-4:;
R-42
R-41
R-413
R-:$9
R-38
R-~7
R-36
R-s5
R-~4
R-3:?

:t
1

1
1
1
1
1
1
1

1.
1
1
1

1011.1.901 91.1.10110 ge00:1:1.00 01011.:1.1.0 -6"
9111.0019 ~01.1.90 999:1.1.999 1.011.1191 -6
11.199191 11911999 091.1.0001. 91:L1.1.910 -6
11.991011 19119900 011.0901.0 11.11.91.91. -6
19010111 01100000 11999191 :1.1.19101.9 -6
991011.10 11009001 10901911 110191.91 -S
01.911.1.01 19999911. 9991.01.1.1. 1.91.01911. -S
10111911 00999119 09191.1.1.1. 9101.911.9 -S
01110110 09091190 01911110 10191109 -S
111.011.00 09011090 1011.1101 0101.1091 -5
11.011000 00110001 011.1.101.0 1.0110011 -S
10110090 91100010 11119101 91100111 -5
01100000 11090101 111.01010 11001119 -5
11009001 10901011 11.010101 10011.101 -4
10900811 00010111. 10101011 001.11010 -4
00000110 a0101111 01010118 01110101 -4
00081180 01011118 10101100 11101010 -4
00011000 10111101 01011901 11010101 -4
00110891 01111010 10110011 1.0101010 -4
01190010 11110101 01100111 010101.91 -4
11080101 11101019 1.1001110 101.0191.0 -4

F I m SHED READ I NG DATA BYTES. NOW READ CHECK BYTES.
INPUT TO SHIFT REGISTER NOW DEGATED. PIN 9 OUTPUT
IS GATED TO DESERIALIZER TO BE STORED AS SYNDROME.

R-32
R-31
R-::;(t
R-:;"=O

R-2:3
R-27
R-26
R-25
R-24
R-23
R-22
R-21
R-20
R-19
R-1.8
R-17
R-1.6
R-1.~
R-14
R-l.::
R-1.2
R-t1
R-tO
R -9
R -8
R -7
R -6
R -5
R -4
R -3
R -2
R.-1

10001.811 11010101 100111.01 01.010101 -~
0001011.1. 10181011. 001.1.1.01.0 1019101.1 -~
001.01.111 01.91.011.0 01.11.0:UU 0:1.01011.1 -3
0191.1110 10191190 1.1.1.0191.9 191.91111 -3
1011.1.191 0191.1091 11010101 01.91.1111. -3
81.1.1.1.818 1011891.1 10101810 1011.11.1.1 -3
11.110101 01100111. 81010101 81.11111.1 -3
11.191819 1109111.0 101.01.918 111111.11 -3
1.1.01.0101' '10911.101 91.010101. 11.11.1.111 -2
101.81.01.1. 0011.1010 10101011. 11111111 -2
0101011.0 01119181 0101011.1. 1.111111.1 -2
101.01100 11101.010 1.0101.11.1. 111111.11 -2
01011001 1.1010101 01.f.l1111.1 11111111 -2
101.1.0011 10191919 10111111 111.11111 -2
01100111 91919101 01111111 11111111 -2
1100111.0 19191010 11111111 11111111 -2
10911191. 91918191 :11.111111 1.1111111 -1
001.11019 10101011 11111111 11111111 -1
01110101 91010111 1111.1111. 1111.1.111 -1
111010101910111.1 11111.111 11111111 -1
11910101 01011111 11.111111 111111.11 -1
10101910 10111111 111.1111.1 11111111 -1
01910101 01111111 11111111 11111111 -1
10191010 11111111 1111111.1 11111111 -1
01910101 11111111 11111111 11111111 0
10101011 11111111 11111111 1.1111111 0
01910111 11111111 111111.11 11111111. 0
10101111 11111111 11111111 1.1111111 0
01011111 11111111 11111111 11.11.1.11.1 0
1011.1111 11111111. 11.1.1111.1 11111111 0
0111111.1. 1.111.1.1.1.1. 11.1.1.111.1 1.1.1.1.1111 0
11.11.1111. 11.111.1.11 11111.111 1111.1111 0

Hr,l·t PART Nm4 COMPLETE - SYNDm1E HAS BEEN STORED.

- 332 -

PIN 9= 1
PIN 9= J.
PIN 9= J.
PIN 9= 0
PIN 9= 1
PIN 9= 1
PIN 9= 1
PIN 9= 1
PIN 9= J.
PIN 9= 1
PIN 9= 13
PIN 9= 13
PIN 9= 1
PIN 9= 0
PIN 9= 1
PIN 9= 9
PIN 3= 1
PIN 3= 1
PIN 9= 1
PIN 9= 1
PIN 9= 9
PIN 9= 1
PIN 9= 13
PIN 9= 1
PIN 9= 9
PIN 9= 1
PIN 9= 0
PIN 9= 13
PIN 9= 0
PIN 9= 0
PIN 9= 13
PIN 9= 1

51 MIJLATION RUN * 3 CONTI NUED

SntlJLATION OF CORRECTION PROCEDURE
BEGIN SHIFTING SYNDROME
THIS PART SIMULATES INTERNAL XOR FORM OF SHIFT REG
(SH I FTI NG RIGHT WITH SOFTWARE)

R-25
R-26
R-27
R-28
R-29
R-39
R-31
R-32
R-3~
R-34
R-3S
R-~6
R-37
R-3S
R-39
R-40
R-41
R-42
R-43
R-44
R-4S
R-46
R-4i
R-4S
R"';'49
R-~0
R-51
P..,52
R-53
R-54
R-55
R-S6
R-57
R-S8
R-59
R-60
R-61
R-62
R-63
R-64
R-6S
R-66
R-67
R-68
R-69
R-79
R-71
R-72
R-73
R-74
R-f'5
R-76
R-77

8 ~
X X
11111191 11199999 91111999 199139919 -3
91111119 11119999 99111199 91999991 -3
19119191 91111191 99911199 999139919 -3
91911919 19111119 ~9991119 99999991 -3
19199111 81811819 131888181 981138818 -3
81918911 18191181 98198919 18819891 -3
181980.:~ 1191991:1. 18919911 81191910 -3
91918~01 11191991 11981991 19119191 -3
18100019 11119981 11189119 11111998 -4
91819981 91111999 11118911 91111199 -4
99181999 19111199 91111991 19111119 -4
98919198 91911119 98111199 11811111 -4
19909988 98191919 99911189 91991191 -4
11081919 09918999 99981188 8891391139 -4
91198191 88881999 88898118 881389919 -4
89119918 19988199 9989881:1. 99999891 -4
19919911 91888111 98998811 18189919 -5
91991981 19188811 19998891 11819981 -5
18181118 11818189 11998919 11891919 -5
91919111 91191919 91198991 91199191 -5
10199981 18118888 99119918 19819899 -5
91919989 11811089 98911091 91991989 -5
99181999 91191199 89891189 19189199 -5
99919199 98119119 99999119 91919819 -5
90991919 99911011 991399911 99191001 -6
19991111 99991998 ~9998911 18119119 -6
81989111 19998199 91988991 11911811 -6
19191981 11988111 89198919 11991111 -6
111311119 11199119 19918811. 911398191 -6
11198191 911191113 91091011 18999099 -6
91119919 19111911 98198191 11998999 -6
98111991 91911181 19818818 11199999 -6
88811188 18191119 118811381 81119988 -7
88991119 81919111 91198198 19111999 -7
99999111 981911311 18118918 1319111139 -7
99999911 10919191 11911991 991131119 -7
9£11380991 11981910 11191199 18910111 -7
10991919 11199999 91118189 81191891 -7
111391111 91110191 99111990 99019110 -7
91109111 19111919 19911199 99991911 -7
10111901 11911999 01091199 99199111 -8
11919110 11191891 90199198 98118981 -8
11199991 91119991 ~ge19999 99111918 -8
91119999 19111999 11091099 99911191 -8
19119919 91911981 91199119 99191199 -8
9191~981 09191199 19119811 89919119 -8
99191199 19919119 91911991 19991911 -8
19911189 81991119 139191119 11199111 -9
11999189 98199819 99819191 91919991 -9
~1191999 99919199 991391999 19991919 -9
91119199 98991919 139999199 91999191 -9
19119999 99999999 99999999 90999999 -9
91911999 99999099 99999999 99999999 -9

- 333 -

SIfollJLATION RUN t-~O. 3 CONTINUED

R-7B
R-79
R-80
R-81.
R-92
R-83
R-94

ee~0~~ee eeeeeeee eeeeeeee eeeeeeee -9
0ee~e~~e eeeeeeee eeeeeeee eeeeeeee -9
eeee~0~~ ee00e000 e000e000 0eeee0ee -9
000ee1.01 10eeee0e 0ee0e000 00ee0e00 -~e
0eeee01.0 ~0eeeee eeeeeeee eeee0eee -~e
131301301301 e11eeeee 00ee000e 00eee00e -10
0eeeeeee 1011ee00 ee0ee0ee 0e00e000 -~e

CORRECTABLE PATTERN FOUND, -84 IS BIT DISPLACEMENT.
NOI·' BEGIN BYTE ALIGNMENT.

R-85
R-86
R-87
R-88

eeeeeeee e1e110ee eeeeeeee eeeeeeee -~e
eeee0eee ee101~0e eeeeeeee eee0e0ee -~e
1301300000 0e01e~~e ee0e0eee eeeeeeee -1e
1301313013130 0e0e10~~ eeeee00e 000e0000 -~0

8'T'TE ALIGNMENT CO/'lPLETE - SIMULATION COMPLETE
B'-r'TE DISPLACEMENT IS 19.
COUNTING FRON END OF RECORD. LAST BYTE IS ZERO.

- 334-

READ 5 INULATION RUN # 4

5If'1ULATION OF HARDWARE AND SOFTWARE

BEG I N HOI·J PART OF S I MULATI ON
(SH I FTI NG LEFT I E>-~TERNAL XOR FORM OF SH I FT REG)

BIT
NO.

o
.'

...

R-96
R-95
R-94
R-93:
R-92
R-91
R-90
R-89
R-88
R-B7
R-86
R-B5
R-84
R-8:
R-82
R-81
R-80
R-79
R-78
R-77
R-76
R-75
R-74
R-7:$
R,..72
R-71
R-7e
R-69
R-68
R-67
R-66
R-65
R-64
R-63
R-62
R-61
R-60
R-59
R-'58
R-57
R-56
R-55
R-54

DATA
BITS

ERROR
BURST

R:1 R2 R3 R4

(SEE SH1ULATION RUN #:1 FOR :1ST 40 SHIFTS)
(R IS RECORD LEN IN BITS INCLUDING CHK AND OVERHD)

1.
1.
1.
:1

1.
1.
1.
:1
1.

o 3:1
X :~
00000000 00000000 00000000 000000130
000000013 00000000 000000130 1313000000
00000000 0000130130 00000000 000001300
00000000 000000130 00000000 00000000
13131301301313 0013000013 1313013131300 00000000
0130013000 00000000 00000000 00000000
13130000013 00000000 00000000 013000000
131313130000 01301300130 013131300013 00000000
000013000 00000000 00000000 000000013
00000000 00000000 00000000 00000000
000130000 001301313013 00000000 1300000013
0130001300 00000000 000130000 130000000
1301300000 00000000 00000000 00000000
000000013 000130000 0013001300 1300130000
000001300 013131313000 0001301300 1313131300130
0001301300 00000000 1300130000 000130000
000000013 000000130 13013131313013 0131313013130
00000000 000130131313 0131313001313 0131313013130
00000000 000001300 00000000 000000130
00000000 00000000 000000130 00013013130
13001313000 000130000 000000130 01301301300
1300001300 130000000 001300000 001300000
00000000 00130001313 01301301300 130013130013
0130000130 013130001313 0131300000 00000000
00000000 00000000 000001300 0001300013
00131301300 13130001300 0130130131313 0001300013
13013000013 130000000 130000000 130000000
00000000 000013000 01300013013 01313000013
1300001300 000130000 000130000 0000013130
01300130013 013000000 000013000 000000130
00000000 001300000 00000000 130013130013
00000000 000001300 000000013 000000013
0000130130 130001313130 000130000 000130001.
0001301300 0013000013 000000130 00000131.1.
130000000 1300130000 130000000 0130001.1.1.
0130130000 000001300 00013131300 e00e1.1~:1
00000000 00000000 0000130013 00011.~~:1
0001301300 000000013 00000000 0131.1:11.:11.
00000000 00000000 00000000 01.~1:1~~1
013000000 000000013 00000000 1.~~1.1.~11
00013130013 01313130000 0000130131. :11.1:1:1:111
000013000 1301300000 000001311 1.1.~1~~1:1
000001300 000130000 0000011.~ :1~~1.~1.1:1

BYTE
NO.

-11
-11
-:1:1
-1:1
-1.1.
-:1:1
-11
-1.:1
-:10
-113
-:10
-1.0
-:10
-10
-1.0
-1~1

-9
-9
-9
-9
-9
-9
-9
-9
-8
-8
-8
-8
-8
-8
-8
-8
-7
-7
-7
-7
-7
-7
-7
-7
-6
-6
-6

SUIULATION RUN NO. 4 CONTINUED

R-'53
R-S2
R-51
R-se
R-49
R-48
R-47
R-46
R-4S
R-44
R-4::
R-42
R-41
R-40
R-39
R-:;:;e
R-?7
R-36
R-?5
R-34
R-Z3

FINISHED
INPUT TO
IS GATED

R-32
R-31
R-30
R-29
R-.~8
1(-27
R-2t5
R-25
R-24
R-2J.
R-?':;-

R-21
R-2'3
R-19
R-i8
R-:17
R-16
R-15
R-.14
R-l?,
R-12
R-ll
R-10
R -9
R -8
R -7
R -6
R -5
R -4
R -.:.­
R -2
R -1

1.
1.

1.
1
1.
1
1.
1
1

1
1
1
1

ee00e000 0e0ee000 e0S0~ ~1.1.~1. -6
eS000000 000001300 e0S1.~1. ~11.1.~ -6
eeS00S00 S0000000 001.111.~ 1.1.11.1.1.11. -6
e000e000 0000S0e0 01.1.1.1.1.~ 1.1.1.1.111.1 -6
eS00e00e 00e000e0 L1.1.1.1.1.1.1. 11.1.1.1.1.1.1 -6
0e00S000 S0S00001 11.1.1.1.1.1.1. 111.1.1.1.11 -5
0000S000 00000011. 1~1.1.1.1.1. 1.1.11.1111 -5
0e00S0e0 e00e0111. 1.11.1.1.1.1.1. 1.1.1.1.1111 -5
00000000 00e01.111 111111.11 11111.111 -5
00000000 00011111 1111.1.1.1.1. 1.1111.111 -5
00000000 00111111 1111.11.1.1 1.1.1.1.1111 -5
00eeeeee 91.111.111 11111111. 1.11111.11 -5
90000090 111.11111 11111.1.11. 1111.1111 -5
00900001 11111.1.11 11111111 11111111 -4
00000011 11111111 111~111 1.1.111.111 -4
00900111 11111111 111.1.1111 11111111 -4
00001111 11111111 11111111 11111111 -4
00011111 11111111 1111.1.111 11111111 -4
00111111 11111111 11111111 1111.1111 -4
011.11111 11111111 11111111 11111111 -4
111111.11 11111111 11111111 1.1.1.11111 -4

READ 1 NG DATA BYTES. NOW READ CHECK BYTES.
SHIFT REGISTER NOW DEGATED. PIN 9 OUTPUT
TO DESERIALIZER TO BE STORED AS SYNDRor1E.

11111111 111.11.111 1111111.1 11111111 -3
11111111 11111111 1111.1111 1.1111111 -3
111.11111 11111111 11.11111.1 11111111 -3
11111111 11111.111 11.11.1.111 1.1.111.111. -3
11111111 11.111111. 111.1111.1 11.111111 -3
1.1.111111 11111111 1111.1111. 11111111 -3
11111111 11111.11.1. 11111111 11.111111 -::;
11111111 1111.1111 11111111 11111111 -3
11111111 111.11111 11.1.1.1.111 11.1.1111.1. -2
111.1.1111 1111.1.111 111.11.11.1 1.1.111111 -2
1.1111111 1111.1.11.1. 11.11.111.1 1.1.111.11.1 -2
11.11111.1 11.1.111.1.1 1.111.1.1.1.1 1.1111.1.1.1 -2
11.111111 11111111. 1.1.1.1.1111 11.1.1.1.1.1.1 -2
1.1.111111 11.11111.1 11.1.1111.1. 1.1.111.1.11 -2
11111111 11111111 11111.111 1.1111111 -2
11.111111 11111111 1111.1.11.1 11111111 -2
1111.1111 11111111 11111111 11111111 -1
11111111 11111.111 1111111.1 11111111 -1
11.111111111111.1.1 11111.1.1.1 11111.111 -1.

1. 1111111.1 111111.11 1111111.1 11.111111 -1
1.111111.1 11111111 111.11111 11.111111 -1
11.11111.1 1111111.1 11111.111 11111111 -1
11111111 1111.1111 11.111.111. :U.l1111.1 -1
11111111 111.1.1111 11.11111.1 1:1.111111 -1
11111111 11111111 11111.111 11111111 0
111.11111 11111111 1111.1.111 11111111 0
11111111 11111111 11111111. 11.111111 13
11111111 .11.111111 1111:1.11:1. 11111:1.11 0
1111.1:1.11 11111111 11111111 111.11:1.:1.1 0
111111:1.1 111:1.1111 111:1.1.111. 11111111 0
11111111 11111111 11111.111 11111111 0
11111111 11111111 111111:1.1 11111111 0

HOI" PART NOW COl'1PLETE - SYNI)Ol'lE HAS BEEN STORED.

PIN 9= 13
PIN 9= 0
PIN 9= 13
PIN 9= 0
PIN 9= 13
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN :3= 0
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN 9= 1
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN 9= 0
PIN 9= 13
PIN 9= 0
PIN 9= 0
PIN 9= 13
PIN 9= 13
PIN 9= 13
PIN 9= 13
PIN 9= 13

SIMULATION RUN.. 4 CONTINUED

S IfotULATI ON OF CORRECTI ON PROCEDURE
BEGIN SHIFTING SYNDROME
THIS PART SIr1ULATES INTERNAL XOR FORM OF SHIFT REG
(SHIFTING RIGHT WITH SOFTWARE)

0 31.
X X

R -9 01313131.13130 0001300013 13001313131313 1313013131300
R-1.e 1301313131.00 1313013131300 001301301313 eeeee9ge
R-1:1 013131313131.0 0900013130 131301313000 1300000130
R-:12 013000091. 1301300000 131313013131313 00131301300
R-.13 000000130 :10000000 13130130000 e0ee0e00

CORRECTABLE PATTERN FOUND, -1.3 IS BIT DISPLACEMENT.
NOW BEGIN BYTE ALIGNMENT.

-1.
"";1.
-1.
-1.
-1.

R-14
R-:15
R-:16

e0eeeeee 131.13131301313 1313131313131313 131313131313013 -1.
13131313131300 013:113013130 1313131313131313 13009131300 -:1
1300013000 1313131.091313 131301301300 1301313131300 -1.

B'T'TE ALIGNt-lENT COMPLETE - SIMULATION CONPLETE
BYTE DISPLACEt'IENT IS 1..
COUNT! NG FRON END OF RECORD. LAST BYTE I S ZERO.

_ 'l'l7 _

READ SIMULATION RUN. S

SH1ULATION OF HARDWARE AND SOFTWARE

BEGIN HDI.J PART OF SIMULATION
(SHIFTING LEFT. SERIAL E:'~TERNAL XOR FORM OF SHIFT REG)

BIT
NO.

DATA
BITS

ERROR
BURST

R:1. R2 R3 R4 BYTE
NO.

o .. ' (SEE SINULATION RUN .. i FOR FIRST 40 SHIFTS)
(R IS RECORD LEN IN BITS INCLUDING CHK AND OVERHD) .'

.'

R-96
R-95
R-94
R-9~
R-Q':;'

~-

R-9:1
R-90
R-89
R-88
R-87
R-86
R-;'35
R-84
R-8::
R-82
R-8:1
R-:30
R-79
R-78
R-77
R-76
R-75
R-,4
R-73
R-72
R-7i
R-70
R-69
R-68
R-67
R-66
R-65
R-64 :1.
R-63 :1.
R-62 :1.
R-6:1 :1.
R-60
R-59
R-58 :1.
R-57 :1.
R-56 :1.
R-55 :1.
R-54 :1
R-53 :1

:1.
:1.

:1.

o
:~
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00008000
00000000 00008000
00000000 00000000
00000000 00008000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00800000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 0000000:1
00000000 000080:1.:1.
00000000 00000:1.:10
00000000 0000:1.:1.0:1
00000000 000:1.:1.0:1.:1.
00000000 00:1.:1.0:1:1.:1.
00000000 0:1.:1.0:1.:1:1.:1
00000000 :1.:1.0:1.:1:1:1.0
00000001 :1.0:1:1.:1:10:1.
000000:1:1. 0:1:1.:1:1.0:1.0
00000:1:1.0 :1.:1.:1.:1.0:1.00
0000:1:1.0:1. :1.:1.:1.0:1.08:1.
000:1.:1.0:1.:1. :1:1.0:1.00:1.0
90:1.:1.0:1.:1.:1. :1.0:1.90:1.0j.
0:1.:1.0:1:1.:1.:1. 9:1.90:10~B
:1.:10:1.:1.:1.:10 :1.90:1.9:1.90
:1.0:1:1.:1.:1.9:1. 00:1.0:1.090
0:1.:1.:1.:1.0:1.0 0:1.0:1.000:1.
:1.:1.:1.:1.0:1.00 :1.0:1.009:1.0
:1.:1.:1.0:1.00:1. 0:1.000:1.9:1.
:1.:1.0:1.09:1.0 :1.099:1.0:1.:1.
:10:1.09:1.0:1. 090:1.0:1.:1:1

3:1.
X

09009900 00099000
00000000 09009000
00000000 00000000
90000000 00000000
00000000 00900000
00000000 00090099
09009999 9999900:1
00000000 900000:1.:1
00009000 09000:1.:1.0
90000000 9000:1.:1.0:1.
00000090 000:1.:1.0:1.:1.
00000009 00:1.i0i:1.:1.
90009000 0:1.:1.0:1.:1.:1.:1.
90900900 :1.:1.0:1.:1.:1.:1.9
0000000:1. :1.0:1.:1.:1.:1.0:1.
009099:1.:1. 0:1.:1.:1.:1.0:1.0
00000:1:1.9 :1.:1.:1.:1.0:1.00
0009:1.19:1. ~i0i00i
000:1.:1.0:1.:1. :1.:1.0:1.90:1.0
00:1.:1.0:1.:1.:1. i0:1.00:1.9i
0:1.:1.0:1.:1.:1.:1. 9:1.00:1.9:1.0
i:1.0:1.:1.:1.:1.0 :1.90:1.9:1.90
:1.0:1.:1.:1.:1.0:1. 09:1.9:1.000
0:1.:1:1.:1.0:1.0 0:1.0:1.000:1.
:1.:1.:1.:1.9:1.00 :1.0:1.900:1.0
:1.:1.:1.0:1.09:1. 9:1.900:1.9:1.
:1.:1.0:1.09:1.0 :1.999:1.0:1.:1.
:1.0:1.09:1.0:1. 099:1.0:1.:1.:1.
0:1.00:1.0:1.0 00:1.0:1.:1.:1.:1.
:1.00:1.0:1.00 0:1.0:1.:1.:1.:1.0
00:1.0:1.000 :1.0:1.:1.:1.:1.00
0:1.0:1.090:1. 0:1.:1.:1.:1.09:1.
:1.0:1.000:1.0 :1.:1.:1.:1.00:1.:1.
0:1.000:1.0:1 :1.:1.:1.00:1.:1.0
1.0001.0:1.:1. :1.::1.00:1.1.00
eeO:1.0:1.:1.:1. :1.00:1.:1.00:1.
00:1.0:1.:1.:1.:1. 00:1.:1.00:1.:1.
0:1.0:1.:1.:1.:1.0 0:1.:1.00:1.:1.:1.
:1.0:1.:1.:1.:1.00 :1.:1.00:1.:1.:1.0
0:1.:1.:1.:1.00:1. :1.00:1.:1.:1.00
i:1.:1.:1.00:1.:1. 00:1.:1.:1.000
:1.:1.:1.00:1.:1.0 0:1.:1.:1.0000
i:1.00:1.:1.00 :1.:1.:1.0000:1.
i00:1.:1.00:1. :1.:1.0000:1.:1.

- 338 -

-:1.:1.
-:1.:1.
-:1.:1.
-i:1.
-:1.:1.
-:1.:1.
-:1.:1.
-:1.:1.
-:1.0
-:1.0
-:1.9
-:1.0
-:1.0
-:1.0
-~0
-:L1!l
-9
-9
-9
-9
-9
-9
-9
-9
-8
-8
-8
-8
-8
-8
-8
-8
-7
-7
-7
-7
-7
-7
-7
-7
-6
-6
-6
-6

SIMULATION RUN NO. 5 CONTINUED

R-52
R-51.
R-S9
R-49
R-48
R-47
R-46
R-45
R-44
R-43
R-42
R-41.
R-49
R-39
R-38
R-37'
R-36
R-35
R-34
R-3Z

1.

1
1
1
1
1
1.
1

1.
1
1.
1

01.001.01.9 001.011.11 001.1.091.1 1.0000110 -6
1.001.91.00 01.01.11.10 01.1.001.1.1 00001101. -6
00101000 101.1.11.00 1.1001.1.10 0001.1.011. -6
0101.0001. 01.1.11.001. 1.001.1.1.00 0011.01.11. -6
1.91.0001.0 1.1.1.1.001.1. 001.11.000 01.1.01.1.1.0 -5
010001.01. 1.11.001.1.0 01.1.10000 1.1.01.1100 -5
1.0001.01.1. 1.1.001.1.00 1.1100901. 1.011.1.001 -5
0001.01.1.1 1001.1001 11000011 011.10010 -5
0010111.1. 001.1.0011. 1.00901.1.0 11.100100 -5
01.01.1.1.1.0 01.1.00111. 000011.01 1.1.001001 -5
1.91.1.1.100 11.0011.10 0001.1.01.1. 1.001001.1. -5
011.1.1.001. 1001.1.100 0011.01.1.1. 001.001.1.1. -5
1.111.001.1. 001.1.1.000 01.1.01.1.1.0 01.001.1.1.1 -4
11.1.00110 011.1.9000 1101.11.00 1001.111.0 -4
1.1001190 11.1.09001. 1011.1001 0011.1.1.00 -4
10011091. 11.900011 01110019 01111.000 -4
0011001.1. 100001.10 111901.00 1.1.1.1.0000 -4
911.091.11. 09001101. 11001.001 11100001 -4
11.001.1.10 00011.011 1001.0011 1.1.90001.0 -4
10011100 001101.11. 001.001.1.1. 1.0000101 -4

FIN I SHED READING DATA BYTES, NOW READ CHECK BYTES,
INPUT TO SHIFT REGISTER NOW DEGATED. PIN 9 OUTPUT
IS GATED TO DESERIALIZER TO BE STORED AS SYNDROME.

R-3;2 90111.099 011011.19 01001111 00001011. -3
R-Zl 0111.9000 1.1.011100 1.1301.1.1.1.0 0001.0:1.1.1 -3

R-30 11100001 1011.10131 0011.11.00 00101:1.11 -3
R-':;OQ 1.1130001.1 01~1.0010 0:1.1:1.11300 0191.1:1.11 -3

R-28 1000011.0 111.00100 1.1.1.10000 :1.0:1.:1.1111 -3

R-17 00001.1.01. 1.1001001. 11.1.00001 011.11.1.11. -3

R-26 9001.1.01.1 :1.001.001.1 :1.1.00001.9 11.1.1.1.:1.1.1. -3

R-25 0011.01.11. 001.13011.1 113000101 1111.11.11. -3

R-24 011011.10 01.0011.1.1. 00001.01.1. 111.1.1.1.1.1. -2

R-23 11011.1.00 :1.001.1.110 0001.0111. 11.11.111.1 -2

R-22 10111901. 001.1.1.1.00 00:1.0111.1. 1.1.1.1.1.11.1 -2

R-21. 01.1.1901.9 ~1.11.1.000 01.01.1.1.1.1. 1.1.1.1.1.11.1. -2

R-20 1.1.:1.001.09 :1.1.1.1.0099 191.1.1.1.1.1. 1.1.1.1.1.1.1.1. -2
R-:1.9 11.00100:1. :1.1100001. 01.:1.11.11.1. 111.:1.:1.1.11. -2

R-18 1.9010011 :1.1000131.0 11:1.1.1:1.1.1 :1.1.:1.1.:1.1.1.1 -2

R-17 001.9131.1.1 1.13131313101. 1.111.1.1.1.1 :1.1.1.1:1.:1.1.1 -2

R-:1.6 13:1.00111.:1. 09001.011. 111.1.1111. 1.1.1.1.11.11. -:1.

R-:1.5 1.0011.11.0 000101.1.1 111.1.1.11.1. :1.1.1.1.1.1.1.1. -1.

R-:1.4 001.1.11.00 001.0:1.11.1. 11.1.1.11.11. 11.1.11.1.11. -:1.
R-'13: 0111.1.000 01.01.1111. 111.11.11.1. 11.11.11.1.1. -1.

R-12 11.1.10000 101.1.1.1.1.1. 1111.1.1.1.1. :1.1.1.1.111.1 -1.

R-:1.:1. :1.1.1.00001 01.1.1111.1. :1.1111.11.1. 11.1.111.11. -1

R-10 11000010 111.11.1.1.1 111~1.11.1 1.1.1.11111 -1
R -9 10000101 1111.1.111 11111.111. 111111.11 -1
R -8 00001.011 11.11.1.11.1. 111.11.1.11. 11.1.1111.1. 9

R -7 9901.01.1.1. 11.11.11.1.1. 11.11.11.1.1. 11.11.11.1.1. 0
R -6 90101.1.1.1 11.111.11.1 1111.1.1.1.1 111.1.111.1. 0

R -5 01.011.1.1.1 111.11.11.1. 11.1.11.1.1.1. 1.1.1111.1.1. 0

R -4 101.1.1.1.1.1. 1.11.1.1.1.11 1.1.1.1.1.1.1.1 1.11.1.1.1.1.1. 0

R -3 01111.11.1. 1.11.11.11.1. 1.111.1.1.11. 1.1.11.11.1.1. 0

R -2 11.1.1.11.1.1. 1.1.1.1.1.1.1.1 11.1.1.1.1.1.1. 1.1.111.11.1. 0

R -1. 1.1.1.1.1.1.1.1. 1.1.1.11.1.1.1. 11.111.1.1.1 1.1.1.1.1.1.1.1. 0

HDW PART NOW COMPLETE - SYNDOl'lE HAS BEEN STORED.

- 339 -

PIN 9= 13
PIN 9= 0
PIN 9= 0
PIN 9= 13
PIN 9= 0
PIN 9= 1
PIN 9= 1.
PIN 9= 0
PIN 9= 1
PIN 9= 0
PIN 9= 0
PIN 9= :1.
PIN 9= 1.
PIN 9= 0
PIN 9= 13
PIN 9= 0
PIN 9= 0
PIN 9= :1.
PIN 9= 0
PIN 9= 0
PIN 9= 1
PIN 9= 1
PIN 9= 1
PIN 9= 1
PIN 9= 9
PIN 9= 0
PIN 9= 0
PIN 9= 1.
PIN 9= 0
PIN 9= 0
PIN 9= 1
PIN 9= 0

SHIULATION RUN tt· 5" CONTINUED

SIMULATION OF CORRECTION PROCEOURE
BEGIN SHIFTING SYNOROME
THIS PART SIMULATES INTERNAL XOR FOR!'1 OF SHIFT REG
(SHIFTING RIGHT WITH SOFTWARE 8 BITS AT A TIME)

-0 31.
X X

R-::;2 01.1.111.00 01.001.101. 1.01.1.1.1.01. 101.1.1.000
R-40 1.1.01.01.10 10011.01.1. 001.11.1.1.0 1.1.1.01.000
R-48 1.1.0001.11. 01.11.0001 01.001.000 001.01.1.1.1.
R-'5b 131.1.001.130 01.11.1.000 1.131.01.1.1.0 1.1.01.1.1.01.
R-';4 01.1.1.1.1.1.1. 0001.001.1. 01.00001.1. 01.01.01.131.
R-,2 01.01.01.01. 1301.01.001. 001.1.1.000 0001.0131.0
R-80 131.:1.:1.1.:1.130 00011.:1.1.0 139001.1.00 1.1.0011.11.
R-88 12100121013:1:1 0:101210000 130000000 00000000
R-9~ 00(11219013121 00000011. 01.00012100 00000000

CORRECTABLE PATTERN FOUND.

B'r'TE DISPLACEMENT IS 13. ..
COUNTING FRON END OF RECORD. LAST BYTE IS ZERO.

S r l'lULAT I ON COr1PLETE.

- 340 -

-3
-4
-5
-6
-7
-9
-9
-1.0
-:11.

READ SIMULATION RUN # 6

SINlILATION OF HARDWARE AND SOFTWARE

BEGIN HDl.J PART OF S mULATI ON
(SHIFTING LEFT, SERIAL EXTERNAL XOR FORM OF SHIFT REG)

BrT
NO.

DATA ERROR
BITS BURST

R:1. R2 R4

13
" (SEE SII'1ULATION RUN # :1. FOR FIRST 413 SHIFTS)

(R IS RECORD LEN IN BITS INCLUDING CHK AND OVERHD)

13 3:1.
X X

R-96 1313131313131313 13e'i:l1313eee 131313013131313 1313131013131313

R-95 1313131313131313 1313131313101313 1313131313131313 1313131313131313

R-94 1313131313131313 1310131013101310 1313131313131313 100131313131313

R-93: 1313131313131310 1313131313131313 1313131013131313 13131301313130

R-92 130131313131313 0130013131313 00130001013 01300013130

R-91 001300131313 131301313131313 013013131000 131301313131313
R-913 13131313131300 130000000 1300100000 0000131300
R-89 0013130131013 131313130000 1301300000 0000013013
R-88 01300001313 131000001313 13001000130 00101001300
R-87 13013013131313 1313131313131313 131313013131313 13001313131313
R-86 1313131313131313 1313131313131313 131300131300 1013013013130
R-85 131310131301313 131313013131313 1301313131300 13013131313130
R-84 1. 130131313131313 13131300131313 131313131313013 13131301313131.
R-8? 1313131313131313 013131313131313 130013001313 130000131.13
R-82 1 131313013131313 1300130131313 13131313013013 13131313131.131.
R-81 :1. 131313130131313 130131313131313 131313131313130 13131313:1.13:1.:1.
R-80 13131313131300 1301300131313 1300131313013 1313131.131.:1.1.
R-79 13013013131313 13131313013130 13001313131313 13131.131.1.1.13
R-78 1313131313131313 013131313131313 1313131313131313 131.0:1.1.1.1313
R-77 1313131313131313 1313131313131313 1313131313131313 :1.131.1.:1.13131.
R-76 1313131313131313 1313131313131313 13131313131301. 131.1.:1.13131.13
R-75 1313131313131313 1313131313131313 01313131313:1.13 :1.:1.:1.13131.13:1.
R-74 1300131301313 1313131313131313 13131313131.13:1. 1.:1.13131.01.:1.
R-73 013013013010 1313131313131313 131313131.131.1. 1.13131.131.1.:1.
R, 1313131313131313 1313131313131313 1313131.131.:1.:1. 13131.131.1.1.13 -'0:.
R-71 1313131313131313 1313131313131313 1313:1.13:1.:1.113 13:1.01.:1.10:1.
R-7e 13001313131313 1313013013130 131.0:1.:1.:1.1313 1.01.:1.1.01.1.
R-69 131313001300 13130131313130 101.:1.:1.1301. 01.1.1.01.1.0
R-r::8 131313131313130 130130130131. 0:1.1.1.13131.13 1.1.1.1311.013
R-67 13130130131313 001313013:1.0 1.:1.:1.13131.131. 1:1.13:1.:1.13013
R-;':;;':; 1313131313131313 13131313131.13:1. 1.:1.0131.13:1.:1. 113:1.:1.13131313
R-65 13131301313013 131313131.131.:1. :1.13131.13:1.:1.:1. 13:1.:1.1313131313
R-64 1. 1313131313131310 ~ee1e11.1. 013:1.131.:1.:1.13 1.:1.130131313:1.
R-6? 1. 1313131313131310 13101.101.1.:1.13 13:1.101.:1.1.13:1. 1.1313101313:1.1.
R-r::2 1. 131313013101313 131.1311.1.1313 1.01.~1.e1.1. 1313130131.:1.13
R-61 1 1313131313131313 1.1311.1.13131. 131.1.1.131.1.13 131313101.11313
R-60 13131313131313:1. 13:1.1.1.1313113 1.1.:1.131.:1.1313 1313131.:1.131313
R-59 131313131313113 1.1.1.1313:1.0:1. :1.1.131.1.131313 13131.:1.131313:1.
R-58 :1. 1301313131.13:1. :1.:1.131310:1.:1. 1.131.1.13131313 13:1.1.1313131.13
R-57 :1. 13131313:1.131.:1. 1.13131.131.:1.:1. 0:1.:1.131301313 1.:1.131313:1.0:1.
R-56 1. 130131.131.1:1. 130:1.13:1.1.:1.0 :1.:1.1313131313:1. :1.13131310:1.:1.
R-55 1. 1313:1.13:1.:1.1.13 13:1.13:1.:1.1131. 11313131313:1.:1. 131313:1.131.1.:1.
R-54 1. 131.13111.1313 1.13:1.:1.:1.13:1.:1. 1313131313:1.:1.13 1313:1.13:1.:1.1.:1.
R-53 :1. 1.e~:1.1ee:1. 13:1.:1.:1.131:1.13 13131313:1.1.1313 13:1.13:1.:1.:1.:1.13

- 341 -

BYTE
NO.

-1.1.
-1.:1.
-1.:1.
-:1.:1.
-1.:1.
-1.:1.
-:1.:1.
-1.:1.
-:1.0
-1.0
-1.13
-1.13
-1.0
-:1.0
-1.0
-1.13
-9
-9
-9
-9
-9
-9
-9
-9
-8
-8
-8
-8
-8
-8
-8
-8
-7
-7
-7
-7
-7
-7
-7
-7
-6
-6
-6
-6

SIf>1IJLATION RUN NO. 6 CONTINUED

R-S2 :1. 91~199:1.9 ~101108 900:1.:1.909 :1.0:1.:1.:1.19:1. -6
R-Sl :1.:1.~8e~01 :1.:1.0:1.:1.00e 001~9991 0~01e -6
R-513 11001011 101:1.0000 0:1.:1.09010 :1.:1.:1.:1.9:1.0:1. -6
R-49 1 10e1a1~~ 01:1.09000 11009191 1:1.:1.0~010 -6
R-48 1 00101110 ~1000e01 1000101:1. 1:1.0:1.0~01 -5
R-47 1 01e1110~ 1999001:1. 090~01:1.:1. 1010:1.0:1.:1. -5
R-46 :1. 101:1.:1.0:1.:1. 00000:1.:1.0 00:1.0:1.:1.:1.:1.9:1.0:1.0:1.10 -5
R-45 ~ 0:1.:1.101:1.0 0009:1.:1.09 9:1.9:1.:1.:1.:1.9 :1.0:1.0:1.:1.99 -5
R-44 :1. :1.1:1.01:1.00 990:1.1000 :1.0:1.:1.:1.:1.9:1. 9:1.0~00:1. -5
R-43: 1 :1.101:1.000 00110001 0:1.:1.:1.:1.9:1.0 19:1.:1.00:1.:1. -5
R-42 :1.0110000 0:1.109010 1:1.:1.~019~ 01109111 -5
R-41. 91100000 L1000:1.01 :1.:1.101010 11001:1.:1.0 -5
R-40 11000001 1000101:1. :1.:1.010:1.0~ :1.00:1.1:1.9~ -4
R-Z9 10000011 000~0:1.:1.:1. 10:1.010:1.:1. 00:1.:1.:1.010 -4
R-!8 1 000901.10 e010:1.:1.~:1. 0:1.0:1.0:1.10 0:1.:1.:1.0:1.0~ -4
R-37 1 0090:1.100 0:1.0:1.:1.1:1.0 1019:1.:1.00 1110:1.010 -4
R-36 1 00011000 10111:1.01 0:1.01100:1. 11010:1.01 -4
R-35 1 001~0001 011:1.:1.0:1.0 10110011 101010:1.9 -4
R-34 01100019 ~1110101 0:1.~001:1.1 010:1.0101 -4
R-:n 11000101 1:1.:1.01010 ~1001110 :1.0:1.9:1.0~0 -4

FINISHED READING DATA BYTES. NOW READ CHECK BYTES.
INPUT TO SHIFT REGISTER NOW DEGATED. PIN 9 OUTPUT
IS GATED TO DESERIALIZER TO BE STORED AS SYNDROME.

R-32 1909:1.01~ 1:1.0:1.010~ :1.00:1.:1.:1.01 0:1.0:1.0:1.0~ -3 PIN 9= 1
R-Z:1. 00010111 1010191:1. 001~0:1.0 10:1.0:1.81:1. -3 PIN 9= 1
R-30 90101111 01e~011e 01:1.10101 010:1.0111 -3 PIN 9= 1
R-29 01@11110 10101100 1:1.~0:1.010 :1.0:1.0:1.:1.:1.:1. -3 PIN 9= 0
R-28 101~119~ 010~~001 :1.10:1.0~01 0:1.011~:1.1 -3 PIN 9= 1
R-27 01111010 101~001~ 10101010 ~01~~111 -3 PIN 9= 1
R-26 11110101 0110011i 010:1.0~01 01~11~11 -3 PIN 9= :1.
R-.~S 11191910 11901110 ~0101910 11~~1:1.~1 -3 PIN 9= :1.
R-24 11010101 10011101 0:1.019101 111:1.1111 -2 PIN 9= 1
R-23: 10101911 001~101e ~0101011 11111111 -2 PIN 9= 1
R-.22 011310119 91110101 01010111 111:1.1~:1.1 -2 PIN 9= 0
R-21 10101100 11101010 10~011:1.:1. 111~1:1.11 -2 PIN 9= 0
R-20 01011001 11010101 0:1.0111:1.1 11:1.~:1.1:1.~ -2 PIN 9= 1
R-19 10110011 ~0~01010 10~:1.1:1.:1.1 111:1.:1.:1.~1 -2 PIN 9= 0
R-18 01100111 010~0101 01111:1.:1.:1. :1.:1.11:1.1:1.:1. -2 PIN 9= 1
R-ti" 11001110 10101010 11:1.~:1.~:1.~ 1:1.1:1.~~1~ -2 PIN 9= 0
R-16 1.9911.191 91910191 1.11:1.111:1. 1111~111 -1 PIN 9= ~
R-1.5 90111019 101019:1.1 11:1.:1.~11:1. 1:1.1:1.:1.:1.11 -1 PIN 9= 1
R-1.4 01~10101 0:1.0:1.011:1. ~1111:1.:1.:1. 11:1.:1.:1.:1.:1.:1. -1 PIN 9= 1
R-13 1119:1.010 10:1.0:1.:1.:1.:1. 1:1.:1.:1.:1.11:1. :1.1:1.1:1.:1.:1.1 -1 PIN 9= 1
R-12 11010101 0:1.0:1.1:1.1:1. :1.11:1.1111 1:1.:1.:1.:1.:1.:1.1 -1 PIN 9= 0
R-·11. 10~0:1.010 ~01:1.:1.1:1.1 11:1.:1.:1.:1.:1.:1. :1.11:1.:1.1:1.:1. -1 PIN 9= 1
R-1.0 01010101 0:1.:1.~111:1. ~1:1.111:1.:1. 11~:1.:1.1:1.1 -1 PIN 9= 0
R -9 19191010 111:1.:1.11~ 1.:1.:1.~1:1.:1.:1. 1:1.:1.:1.1:1.1:1. -1 PIN 9= 1
R j':' -.' 01019101 1:1.~~:1.~~1 1:1.:1.1:1.:1.~:1. :1.:1.:1.:1.:1.:1.:1.:1. 9 PIN 9= 9
R -(1010~0~~ 1:1.:1.:1.:1.:1.~1 :1.:1.:1.:1.:1.:1.:1.:1. 1:1.:1.~:1.:1.:1.:1. 9 PIN 9= ~
R-'; 0:1.010111 1:1.:1.11:1.:1.:1. 11:1.:1.1:1.:1.:1.. :1.:1.:1.:1.:1.:1.:1.:1. 9 PIN 9= 0
R -S 19:1.0:1.1:1.:1. ~:1.1:1.:1.:1.:1.:1. :1.:1.:1.:1.:1.:1.:1.:1. 1:1.:1.~:1.:1.:1.1 9 PIN 9= 9
R -4 0:1.0~~~~~ 1.:1.:1.:1.:1.~:1.:1. 11:1.1:1.11:1. 1:1.1:1.1:1.:1.1 9 PIN 9= 0
R -3 1e1~1~1~ 1~:1.1111:1. 1:1.:1.~:1.:1.:1.:1.. :1.:1.:1.:1.:1.~:1.~ 9 PIN 9= 0
R -2 011~~:1.11 1:1.1~1:1.:1.1 1111:1.:1.:1.:1. 11i:1.1111 9 PIN 9= 0
R -1 1:1.:1.:1.:1.11~ 11:1.:1.:1.:1.:1.:1. 11~:1.:1.:1.:1.:1. 1:1.:1.:1.:1.~:1.:1. 0 PIN 9= :1.

HD"I PART NOW COMPLETE - SYNDOME HAS BEEN STORED.

- 342 -

SIMULATION RUN.. 6 CONTINUED

SI:f"1IJLATION OF CORRECTION PROCEDURE
BEGIN SHIFTING SYNDROME
THIS PART SIMULATES INTERNAL XOR FORf1 OF SHIFT REG
(SHIFTING RIGHT WITH SOFTWARE 8 BITS AT A TIME)

0 31.
X X

R-Z2 131.81.81381. 1.1.1.81.881. 1.1.001.801. 1.131.1.81.81.
R-48 13131.1.13131.13 1.0eee1.0e 013131313131.1. 13131313013131.
R-48 1313131.131.1313 ee1.1.e1.1.B 1313131301.1.13 !31.01.eB1.0
R-56 001.1.1.1381. 01.01.1.1.81. 1.1301.001.0 1.1.1.013131313
R-64 01.1.13131.1.1. 1.131.1.1.131.13 1.13131.1.1.013 131313131.131.1.
R-72 l.el<:t1.1.1.ee 01.13131.1.1.0 0131.01.1.1.0 1.1.1.1301.1.1.
R-se 13131301.01.1. ee000e013 eeeee013B eeBe0eB13
R-88 e0Beoeee e0ee1.01.1. 01300ee13e 000eee00

CORI':ECTABLE PATTER~J FOUND.

B'T'TE DISPLACEMENT IS 1.13.
COUNTING FRot1 END OF RECORD. LAST BYTE IS ZERO.

SIf'1ULATION CONPLETE.

- 343 -

-3
-4
-5
-6
-7
-8
-9
-1.0

READ SIMULATION RUN. 7

SHIULATION OF HARDloIARE AND SOFTWARE

BEGIN HDW PART OF SIMULATION
(SHIFTING LEFT~ SERIAL ~ATERNAL XOR FORM OF SHIFT REG)

BIT DATA ERROR
NO. BITS BURST

R1. R2 R3 R4 BYTE
NO.

13
.# (SEE SIMULATION RUN tt :1 FOR FIRST 49 SHIFTS)

(R IS RECORD LEN IN BITS INCLUDING CHK AND OVERHD)

9 31.
X X

R-96 139999090 90999000 00000900 00999999 -11.

R-95 90999999 999139999 99999999 99999099 -1.1.

R-94 13139913999 99999999 99999999 999139909 -1.1.

R-93 90999999 99999999 99999999 99999999 -11.

R-92 90999999 99999999 99099999 99999999 -:11.

R-91 90099999 99099999 09999099 999999913 -11

R-99 90999999 99999999 90999990 99999990 -11

R-89 90999999 99999999 99999999 99999099 -11

R-8B 09999999 99999990 999999099999091313 -19

R-87 99999999 99999999 99999999 90900090 -1.0

R-86 09099999 99999909 999999913 99990999 -:19

R-B5 130999999 991399990 9999131399 99999099 -19

R-B4 9991391399 99999999 1399139990 9991391399 -19

R-83 99999999 90999999 99999999 999139999 -:19

R-82 991399999 99999999 139099999 09099099 -19

R-8:1 99909990 09090909 99090099 09999999 -:19

R-89 00000090 99990990 999139999 99999999 -9

R-79 909001399 99913131399 90999999 990909139 -9

R-713 99099999 99990999 99999999 99S90999 -9

R-77 909139090 99099999 99999999 99990990 -9

R-76 00999090 99999999 99999090 999139000 -9

R-75 gege9990 139999090 99999099 99999999 -9

R-74 99999990 99999999 99990999 99999099 -9

R-t:3 99090999 99999999 99099999 99999999 -9

R-72 99999999 139990999 90990999 99990999· ·-8

R-71 99099909 99000009 99909090 1391399099 -8

R-70 999001300 99999999 999139999 139999999 -8

R-69 990099a9 90909009 90999999 99909099 -8

R-6S 13913990913139090999 99099999 99999099 -8

R-67 9999131399 9991391399 99099999 99999999 -8

R-66 09131391399 99999999 99099999 99999999 -8

R-"::5 99990999 99999999 99999099 99909099 -8

R-64 1. 99909090 099991300 99999909 9999900:1 -7

R-63 1 13913991309 99990900 99999990 9991391311. -7

R-"::2 :1 9913991300 99099999 09099099 091399:111. -7
R-61 1 900091390 09999999 139009909 90991.:111. -7
R-60 99999990 90999999 99009999 99911.111. -7
R-S9 990130909 99999999 99990090 901.1~11 -7
R-58 1 091399009 90909990 90990999 9111111.1 -7
R-S7 :1 990091399 139999090 90990999 :11.111111 -7
R-56 1 009909013 990990ge 90009991 11111111 -6

R-'55 1 000130990 09090090 e9999911 111111:11 -6
R-~4 "1 0ge90090 09999099 e9999111 11111111 -6
R-'5:; 1. 00090900 e9009ge0 00991111 11~11111 -6

- ~44-

SIMULATION RUN NO. 7 CONTINUED

R-52 :1 0131313013130 00131313131313 131391.1.1.1.1. :11.1.1.1.1.1.1.
R-5:t 0013130131313 0eeeeeee 13131.:11.1.1.1. 1.1.:11.1.1.1.:1.
R-se 913139139913 13999913913 91.:1.:1.1.1.1.1. 1.1.1.:1.1.1.:11.
R-49 1. 131313131313813 138989099 1.1.1.1.:11.1.1. 1.1.1.1.1.1.:11.
R-48 1 139889998 8989913131. 1.1.1.1.1.1.1.1. 1.:1:1:11.1.1.1.
R-47 1 99139131389 1399990:11. 1.1.1.1.1.1.1.1. 1.1.1.:11.1.1.1.
R-46 :1 1313989988 139999:11.1. 1.1.1.:11.1.1.1. 1.1.1.1.1.1.1.1.
R-4S 1 1389998139 8980:1:11.1. 1.1.:11.1.:1.1.1. 1.1.1.1.1.1.:11.
R-44 1 09991391313 899:11.:11.:1. :1:1:11.1.:1:11. 1.1.1.1.1.11.1.
R-43 :1 099139999 8911.1.:11.1. 1.1.1.1.1.1.1.1. 1.1.:11.1.:11.:1
R-42 9913139888 131.1.:11.:1.1.1. 1.1.1.1.:11.1.1. :11.:1.1.1.1.1.1.
R-4:l. 1399139989 :1:1:1:1:1:1:1:1 :11.:11.:1:11.:1 1.1.1.1.:11:1:1
R-48 899131399:1 :11.1.:11.1.1.:1 :11.1.1.:1:1:1:1 1.1.:11.:1:11.:1
R-39 13913988:1:1.1.1.1.:1:1:11.1. 1.1.:11.1.1.1.1. 1.1.1.1.1.1.1.1.
R-38 1. 99998:1:1:1 :1:1:1:11.:11.1. :11.1.:11.:1:11. :11.1.1.1.1.1.:1
R-37 :1 913901.:1:11. 1.:1.1.1.1.:11.:1. :1:1:1.1.:1.:1.:1.:1. :1.:1.:1:1:11.:1.1.
R-36 1. 9991.:1:11.1. 1.:1.1.:1.1.1.1.1. :11.1.1.1.1.1.1. 1.1.1.:11.1.1.1.
R-sS :1 99:1:1.:1:11.:1 :11.:11.1.1.1.:1 :1:1:11.1.1.1.1. 1.1.1.1.:11.1.:1
R-34 91.11.1.:1:11. :11.1.:1:1.1.1.1. 1.:11.1.1.1.:11. 1.1.1.:1.:1.1.1.1.
R-33 1.1.:11.:1:11.:1 :11.:11.1.1.1.:1. 1.1.1.1.1.1.1.1. 1.1.:1.1.1.1.:1:1

FINISHED READING DATA BYTES. NOW READ CHECK BYTES.
INPUT TO SHIFT REGISTER NOL4 DEGATED. PIN 9 OUTPUT
IS GATEr· TO OESER I ALIZER TO BE STORED AS SYNDROME.

R-32 1.1.:1:1.1.1.1.1. 1.1.:1.1.:1.:1.1.:1. 1.:1.:1:1:1.1.:1.1. 1.:1.1.1.1.11.1.
R-31 1.:1.:1.:1.1.1.:1.:1. 1.:1.1.:1.:1.:1.:1.:1. :1.:1.1.1.:1.1.:11. :11.:11.:1:1:1:1
R-3e :1.:1:1:1.1.:11.1 1:1.1.11.1.:1.:1 :11.1.:11.1.1.1. 11.1.1.1.1.:11.
R-29 1.1.:11.:1:1:1:1 t1.1.:11.:11.1. 1:1:1:1:1:1:1:1. :1:1.1.:11.1.:11.
R-28 1.:1.:1:1.1.1.11. 1.1.1.:1:1:1.:1:1 1.:1:1.1.:11.1.1. 1.1.1.1.1.1.1.1.
R-27 :11.1.1.1.1.:11. 1.1.1.1.1.:1:1.1. :1:1:11.1.1.:1:1 :11.:11.:1111.
R-26 11.1.1.1.1.1.:1 1:11.1.1.:1:1:1 :1:1:1:1.:1:1:1:1 :1:1:1:11.1.1.1.
R-2S :11.1.:11:111 1:11:1:1.:1:1.:1 1.:11.:1.:11:1:1 :1:1:1.:1.:11:1.:1
R-24 1.:1:11.11.11 11.:1:111.1.1. 11.1.1.1.:1:1:1 1.1.1.1.1.11.1.
R-23: 1.:1:11.1.1.:1:1 11.1:1:11.1.:1 1:1:1:11.1.:11. 1.1.:11.1.11.1.
R-22 11.1.:1:1:1:1:1 .11.:11.1.:1.1.1. 1.:11.1.:11.:11. :1:1.1.:11.11.1.
R-21 :11.1.:11.1.:11 1:1:1:11.1.:11. 1.1.:11.:1:1:11. 1:1:11.:1:11.1.
R-20 :1:1:1:111.1.1. 11.1.:11.:1:1:1 1:11.:1:1:1:1.:1 1.:1:11.:11.:1:1
R-19 1.1.:1:1:11.1.1. 1.1.1.1.1.1.1.:1. :11.:1:1:11.1.1. 1.:1.:1:1:11.1.1
R-18 :1.11.1.1111 111.:1:11:1:1 11.1.:1:1:1:1:1 1.:1:11.1111
R-17 1:1:111.111 1:1.:111.1.:1:1 111.:11.:11.:1. :1:11.1.1:1:1:1
R-16 :1:11111:11 1:1:1:1:1.:1.:11. 1:1:1:1:11.1.:1 :11:1.1.:11:11
R-:15 1.1:1:1:111.:1 1:1:1:1:1:11.:1 1:11.:1.:11.:11. :1:1.:1.1.:1:1:1:1
R-14 111:1:1111 1:1:1:11.11.:1. 1.1:1:1:1:1:11. 1:1.1.1:1.1:11.
R-:i3 1 1.:111.1.1.:11 1.:1.1.:1.:1.:1.:1.:1. :1:1.1.:1:1.:11.:1. 1.1.:1.:11.1:1:1
R-12 1.:1:1.11111 :1:1.1:1:11.:1.:1. :1:11.1.:1:1.:1:1. 1:1.1.:1:1:11.:1
R-11 1.1.:111:1:1.1. 1:1.:11.1.:1:1.1. 1:1.1:1.:1:11.:1 11.1.:11.1.:1.1
R-10 1.:1.:1.:1.1.1:1.1 11:1:1.1.1:1.:1. 1.:1.1.:1.11.1.i 1.1.1.111.11.
R -9 1.1.11:1.111 1111.1.111 :111.1:1.1.:11 111.:11.:1:1.:1.
R -8 1:1.111:1.:1.1 1.11.1111:1 1:11.:1.1:111 :1:11.:111:1:1.
R -7 11.1:1:11.11 111.1.1:1.:11 1.:1.1.:1.:1111 :11.:1.1:11.:1.:1
R -6 111:1:1:11.1. t1.11.:1:1.:1.:1 1.1.:1:1.11.:11. 1.1.1.1.:1:11.:1
R -5 1.1:1.:1:1:11.1 11111.1.11. 1.1.1.1.:1.1.:11 1:11:1:11.:11.
R -4 1:1:1:1:111.1 11.1.1:11.1.1. 111.1.1111. 11.11.1.:11:1
R -3 11.1:11.111 11111111 11.:11.1:111. 111.:11:11.1
R -2 111111.11 1:1:1:11:111. :11.:111:111 :111.:1:1:11.1
R -1 1.1:1.111.:11 1.1.1.:1111.1. 1.111111.1 11111111.

HOW PART NOW CO/'1PLETE - SYNDOr-tE HAS BEEN STORED.

- 345 -

-6
-6
-6
-6
-5
-5
-5.
-5
-5
-5
-5
-5
-4
-4
-4
-4
-4
-4
-4
-4

-3 PIN 9= 0
-3 PIN 9= 0
-3 PIN 9= e
-3 PIN 9= 0
-3 PIN 9= e
-3 PIN 9= 13
-3 PIN 9= e
-3 PIN 9= 13
-2 PIN 9= 13
-2 PIN 9= 0
-2 PIN 9= e
-2 PIN 9= 0
-2 PIN 9= e
-2 PIN 9= 0
-2 PIN 9= 0
-2 PIN 9= 13
-1. PIN 9= e
-:1. PIN 9= 0
-:1 PIN 9= 13
-:1 PIN 9= 1.
-1. PIN 9= 8
-:1 PIN 9= 0
-1. PIN 9= e
-1. PIN 9= 121
9 PIN 9= e
9 PIN 9= 13
9 PIN 9= 13
9 PIN 9= 13
9 PIN 9= 13
e PIN 9= 13
9 PIN 9= 9
9 PIN 9= 9

5 I NULATI ON RUN If 7 CONTINUED

SUIULATION OF CORRECTION PROCEDURE
BEGIN SHIFTING SYNDROME
THIS PART SIMULATES INTERNAL XOR FORM OF SHIFT REG
(SHIFTING RIGHT WITH SOFTWARE SBITS AT A TIME)

e ~
X X

R-16 eeeeeeee eee~eege eeeeeeee aaeeaeee -1

CORRECTABLE PATTERN FOUND.

BYTE 0 ISPLACEMENT I S ~.
COUNTING FROM END OF RECORD. LAST BYTE IS ZERO.

SINIJLATION COMPLETE.

- 346 -

5.3.7 RECIPROCAL POLYNOMIAL TABLES

The byte-serial software algorithm requires four, 256-byte tables. These tables are
listed on the following pages. Since data entry is error prone, the tables should be
regenerated by computer.

To regenerate the tables, implement a right-shifting intemal-XOR serial shift
register in software, using the reciprocal polynomial. For each address of the tables
(0-255), place the address in the eight most significant (right-most) bits of the shift
register and clear the remaining bits. Shift eight times, then store the four bytes of
shift register contents in tabled T1 through T4 at the location indexed by the current
a~1ress. The coefficient of x is stored as the high-order bit of T1; the coefficient of
x is stored as the low-order bit of T4. Check the resulting tables against those on
the following pages.

- 347-

RECIPROCAL POLYNOMIAL TABLE T1

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

00 00 14 28 3C 50 44 78 6C AO B4 88 9C FO E4 08 cC
10 54 40 7C 68 .04 10 2C 38 F4 EO DC C8 A4 BO 8C 98
20 A8 BC 80 94 F8 EC DO C4 08 1C 20 34 58 4C 70 64
30 FC E8 D4 CO AC B8 84 90 5C 48 74 60 ·OC 18 24 30
40 45 51 6D 79 15 ·01 3D 29 E5 Fi CD D9 BS Ai 9D 89
50 11 05 39 2D 41 55 69 7D B1 A5 99 8D Ei FS c9 DD
60 ED F9 C5 D1 BD A9 95 81 4D 59 65 71 1D 09 35 21
70 B9 AD 91 85 E9 FD C1 D5 19 00 31 25 49 5D 61 75
80 8A 9E A2 B6 DA CE F2 E6 2A 3E 02 16 7A 6E 52 46
90 DE CA F6 E2 8E 9A A6 B2 7E 6A 56 42 2E 3A 06 12
AO 22 36 OA 1E 72 66 5A 4E 82 96 AA BE D2 C6 FA EE
BO 76 62 5E 4A 26 32 OE 1A D6 C2 FE EA 86 92 AE BA
CO CF DB E7 F3 9F 8B B7 A3 6F 7B 47 53 3F 2B 17 03
DO 9B 8F B3 A7 CB DF E3 F7 3B 2F 13 07 6B 7F 43 57
EO 67 73 4F 5B 37- 23 1F OB C7 D3 EF FB 97 83 BF AB
FO 33 27 1B OF 63 77 4B 5F 93 87 BB AF C3 D7 EB FF

RECIPROCAL POLYNOMIAL TABLE T2

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 04 09 OD 12 16 18 1F 24 20 20 29 36 32 3F 3B
10 42 46 4B 4F 50 54 59 5D 66 62 6F 6B 14 10 7D 19
20 84 80 8D 89 96 92 9F 9B AO A4 A9 AD B2 B6 BB BF
30 C6 C2 CF CB 04 DO DO D9 E2 E6 EB EF FO F4 F9 FD
40 02 06 OB OF 10 14 19 1D 26 22 2F 2B 34 30 3D 39
50 40 44 49 4D 52 56 5B 5F 64 60 60 69 76 72 7F 7B
60 86 82 8F 8B 94 90 9D 99 A2 A6 AB AF BO B4 B9 Bo
70 C4 CO CD C9 D6 D2 DF DB EO E4 E9 ED F2 1"6 FB FF
80 05 01 OC 08 17 13 1E 1A 21 25 28 2C 33 37 3A 3E
90 47 43 4E 4A 55 51 5C 58 63 67 6A 6E 71 75 18 7C
AO 81 85 88 8C 93 97 9A 9E A5 A1 At AS 87 B3 BE BA
BO C3 C7 CA CE D1 D5 D8 DC E7 E3 EE EA F5 F1 Fe F8
CO 07 03 OE OA 15 11 1C 18 23 27 2A iF.! 31 35 38 3C
DO 45 41 4C 48 57 53 5E SA 61 65 68 6C 73 77 7A 7E
EO 83 87 8A 8E 91 95 98 9C A7 Aj AE AA B5 B1 BC B8
FO C1 C5 C8 CC 03 D7 DA DE E5 E1 EC E8 F1 F3 FE FA

RECIPROCAL POLYNOMIAL TABLE T3

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 82 04 86 09 8B OD 8F 12 90 16 94 IB 99 IF 9D
10 21 A3 25 A7 28 AA 2C AE 33 Bl 37 B5 3A B8 3E BC
20 42 CO 46 C4 4B C9 4F CD 50 D2 54 D6 59 DB 5D DF
30 63 El 67 E5 6A E8 6E EC 71 F3 75 F7 78 FA 7C FE
40 81 03 85 07 88 OA 8C OE 93 11 97 15 9A 18 9E lC
50 AO 22 A4 26 A9 2B AD 2F B2 30 B6 34 BB 39 BF 3D
60 C3 41 C7 45 CA 48 CE 4C Dl 53 D5 57 D8 5A DC 5E
70 E2 60 E6 64 EB 69 EF 6D FO 72 F4 76 F9 7B FD 7F
80 02 80 06 84 OB 89 OF 8D 10 92 14 96 19 9B ID 9F
90 23 Al 27 A5 2A A8 2E AC 31 B3 35 B7 38 BA 3C BE
AO 40 C2 44 C6 49 CB 4D CF 52 DO 56 D4 5B D9 5F DD
BO 61 E3 65 E7 68 EA 6C EE 73 Fl 77 F5 7A F8 7E FC
CO 83 01 87 05 8A 08 8E OC 91 13 95 17 98 lA 9C IE
DO A2 20 A6 24 AB 29 AF 2D BO 32 B4 36 B9 3B BD 3F
EO Cl 43 C5 47 C8 4A CC 4E D3 51 D7 55 DA 58 DE 5C
FO EO 62 E4 66 E9 6B ED 6F F2 70 F6 74 FB 79 FF 7D

RECIPROCAL POLYNOMIAL TABLE T4

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 51 A2 F3 44 15 E6 B7 88 D9 2A 7B CC 9D 6E 3F
10 55 04 F7 A6 11 40 B3 E2 DD 8C 7F 2E 99 C8 3B 6A
20 AA FB 08 59 EE BF 4C ID 22 73 80 Dl 66 37 C4 95
30 FF AE 5D OC BB EA 19 48 77 26 D5 84 33 62 91 CO
40 11 40 B3 E2 55 04 F7 A6 99 C8 3B 6A DD 8C 7F 2E
50 44 15 E6 B7 00 51 A2 F3 CC 9D 6E 3F 88 D9 2A 7B
60 BB EA 19 48 FF AE 5D OC 33 62 91 CO 77 26 D5 84
70 EE BF 4C ID AA FB 08 59 66 37 C4 95 22 73 80 Dl
80 22 73 80 Dl 66 37 C4 95 AA FB 08 59 EE BF 4C ID
90 77 26 D5 84 33 62 91 CO FF AE 5D DC BB EA 19 48
AD 88 D9 2A 7B CC 9D 6E 3F 00 51 A2 F3 44 15 E6 B7
BO DD 8C 7F 2E 99 C8 3B 6A 55 04 F7 A6 11 40 B3 E2
CO 33 62 91 CO 77 26 D5 84 BB EA 19 48 FF AE 5D DC·
DO 66 37 C4 95 22 73 80 Dl EE BF 4C ID AA FB 08 59
EO 99 C8 3B 6A DD 8C 7F 2E 11 40 B3 E2 55 04 F7 A6
FO CC 9D 6E 3F 88 D9 2A 7B 44 15 E6 B7 00 51 A2 F3

- 349-

5.4 APPLICATION TO MASS STORAGE DEVICES

This section describes an interleaved Reed-Solomon code implementation that is
suitable for many mass storage devices. It is a composite of several real world im­
plementations, including the implementation described in U.S. Patent #4,142,174, Chen, et
al. (1979).

The implementation has triple-symbol error-correction capability and is interleaved
to depth 32. Symbols are one byte wide.

Key features of the implementation are:

- Corrects up to 3 random symbol errors in each interleave.

- Corrects a single burst up to 96 bytes in length.

- The data format includes a resync field after every 32 data bytes. This limits
the length of an error burst resulting from synchronization loss.

The media data format is shown below. Data is transferred to and from the media
one row at a time. Checking is performed in the column dimension.

65
DATA

SYMBOLS

6
CHECK

SYMBOLS

32 INTERLEAVES RESYNC
r-I -----1.1-----,1 FIELDS
o 1 ••• 30 31 I

-t-
-t-

-t-
-t-

- 350-

The following pages show, for the implementation:

- The write encoder circuit.

- The syndrome circuits.

- The finite field processor.

An algorithm for determining the number of errors occurring and for gene­
rating coefficients of the error locator polynomial.

- Algorithms for fmding the roots of the error locator polynomial in the
single-, double-, and triple-error cases.

- Algorithms for determining error values for the single-, double-, and triple­
error cases.

- ROM tablts for taking logarithms and antilogarithms, for finding the roots of
equation y + y + c =0, and for taking the cube root of a finite field element.

- 351 -

ENCODE POLYNOMIAL

(x + l)~(X + a)·(x + a 2).(x + a 3).(x + a4).(x + a 5)

= x6 + a94 .x5 + a 10 .x4 + a 136 .x3 + a15 .x2 + a104.x + a 15

WRITE ENCODER

GATE

WRITE DATA/CHECK BYTES

WRITE DATA

SYNDROME CIRCUITS

There are six circuits (i =0 to 5) and each circuit is interleaved to depth 32.

READ DATA/CHECK BYTES

- 352 -

FINITE FIELD PROCESSOR

Except where noted, all paths are eight bits wide.

1

LOG
ROM

8-BIT BINARY ADDER
MOD 255

- 353-

DETERMINE NUMBER OF ERRORS AND GENERATE ERROR LOCATOR POLYNOMIAL

YES

°1=SloSl+S00S2
u1=(SloS2+S00S3)/01
U2=(SloS3+S2oS2)/01
°2=S4+a1oS3+a2oS2

NO YES

YES

0=SOoS3+S1 oS2
a1=(SloS3+S00S4)/0
a2=(S2° (S3+a1oS2)+SO° (SS+a1 oS4»/0
a3=(S3+a1os2+a2oS1)/SO

a1=S3/S2
a2=(S4+a1 oS3)/S2
a3=(SS+u1oS4+a2oS3)/S2

(a1) '=(a2~s3+a1oS4+SS)/02
(a2) '=(a1)'oa1+(SloS3+S00S4)/01
(a3) '=(a1)'oa2+(SloS4+S2oS3)/01

NO

NO

NO

UNCORRECTABLE

- 354-

a1=(a1) ,
a2=(a2) ,
a3=(a3) ,

COMPUTE ERROR LOCATIONSAND ERROR VALUES

ry y y
IXl = aLl = (11 C = (12/(112 1 K= «(11)2+(12

C = K3

«(11 0 (12+(13)2
ILl LOGa(Xl) I = '11 = TBLA6C)

I '12 = 'll+a

Vl = TBLA(C)

aLl
Ul = Vlo«(1l°(12+(13)

Xl = = (11 0 '11

I X2 = a L2 = (11 0 '12

Tl = TBLB~Ul)
T2 = Tloa 5

Ll = LOGa (Xl) T3 = T2 oa85
L2 = LOGa (X2)

I

Xl = Ll = (1l+Tl+K/Tl aL
X2 = a 2 = (1l+T2+K/ T2
X3 = a L3 = (1l+T3+K/ T3

I

Ll = LOGa(Xl)
L2 = LOGa (X2)
L3 = LOGa (X3)

I

1 E = So I X2 oS0+Sl S2+Slo(X2+X3)+SOoX2oX3
El = El =

Xl+X2 (Xl+X2)° (Xl+X3)

E2 = El+SO SOoX3+Sl+Elo (Xl+X3)
E2 =

X2+X3

E3 = SO+El+E2

!
I FINISHED I

- 355 -

SOLVING THE THREE-ERROR LOCATOR POLYNOMIAL IN GF(~)

The three-error locator polynomial is

x 3 + al ox2 + a2°x + a3 = 0

First, substitute w = x + al to obtain

w3 + «al)2 + a2)ow + (al oa2 + a3) = 0

Second, apply the substitution

w = t + «ul)2 + u2)/t

to obtain

t 3 + (al oa2 + a3) + «al)2 + a2)3/t3 = 0

and thus

t 6 + (al oa2 + a3)ot3 + «al)2 + a2)3 = 0

Third, substitute u = t3 to obtain

u 2 + (a1 oa2 + a3)ou + «a1)2 + a2)3 = 0

Finally, substitute

v = u/(a1 oa2 + a3)

to obtain

«al)2 + a2)3
v 2 + v + ------ = 0

(a1 oa2 + a3)2

Now fetch a root V 1 from the table developed for the two-error case:

[
«a1)2 + a2)3]

V1 = TBLA
(a1 oa2 + a3)2

Next, apply the reverse substitution

u = v o(a1 oa2 + a3)

to obtain

U1 = V1o(a1 oa2 + a3)

Apply the reverse substitution t = (u)1I3 to obtain

T1 = (V1o(a1 oa2 + a3»1/3
- 356 -

TI may be fetched from a table of cube roots in GF(28):

Tl = TBLB[Vlo(al oa2 + a3)]

Each element in GF(28) which has a cube root has three cube roots; the other two may
be computed:

T2 = Tloak

T3 = T2 0 a k

where k = (2 8-1)/3 850

Now reverse the substitution

w = t + «al)2 + a2)/t

to obtain

(al)2 + a2
Tl + Tl

(al)2 + a2
T2 +

T2

And finally. apply the reverse substitution

to obtain the roots of the original three-error locator polynomial:

aLl = Tl +
(al)2 + a2

Xl =
Tl

+ al

a L2
(al)2 + a2

X2 = T2 + + al T2

a L3 = T3 +
(al)2 + a2

X3 = T3 + al

The error locations L}. L2. and L3 are the logs base a of X }. X2. and X3. respectively.

- 357-

ANTILOG TABLE
(INPUT IS n, OUTPUT IS an)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

00 01 02 04 08 10 20 40 80 71 E2 B5 IB 36 6C 08 Cl
10 F3 97 5F BE 00 lA 34 68 00 01 03 07 OF CF EF AF
20 2F 5E BC 09 12 24 48 90 51 A2 35 6A 04 09 C3 F7
30 9F 4F 9E 40 9A 45 8A 65 CA E5 BB 07 OE lC 38 70
40 EO Bl 13 26 4C 98 41 82 75 EA A5 3B 76 EC A9 23
50 46 8C 69 02 05 OB C7 FF 8F 6F OE CO EB A7 3F 7E
60 FC 89 63 C6 FO 8B 67 CE EO AB 27 4E 9C 49 92 55
70 AA 25 4A 94 59 B2 15 2A 54 A8 21 42 84 79 F2 95
80 5B B6 10 3A 74 E8 Al 33 66 CC E9 A3 37 6E OC C9
90 E3 B7 IF 3E 7C F8 81 73 E6 BO OB 16 2C 58 BO 11
AO 22 44 88 61 C2 F5 9B 47 8E 60 OA C5 FB 87 7F FE
BO 80 6B 06 00 CB E7 BF OF IE 3C 78 FO 91 53 A6 30
CO 7A F4 99 43 86 70 FA 85 7B F6 90 4B 96 50 BA 05
00 OA 14 28 50 AO 31 62 C4 F9 83 77 EE AO 2B 56 AC
EO 29 52 A4 39 72 E4 B9 03 06 OC 18 30 60 CO Fl 93
FO 57 AE 20 5A B4 19 32 64 C8 El B3 17 2E 5C B8 01

LOG TABLE
(INPUT IS an, OUTPUT IS n)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

00 00 01 E7 02 CF E8 3B 03 23 00 9A E9 14 3C B7
10 04 9F 24 42 01 76 9B FB EA F5 15 OB 30 82 B8 92
20 05 7A AO 4F 25 71 43 6A 02 EO 77 00 9C F2 FC 20
30 EB 05 F6 87 16 2A OC 8C 3E E3 83 4B B9 BF 93 5E
40 06 46 7B C3 Al 35 50 A7 26 60 72 CB 44 33 6B 31
50 03 28 El BO 78 6F OE FO 90 74 F3 80 FO CO 21 12
60 EC A3 06 62 F7 37 88 66 17 52 2B Bl 00 A9 80 59
70 3F 08 E4 97 84 48 4C OA BA 70 CO C8 94 C5 5F AE
80 07 96 47 09 7C C7 C4 AO A2 61 36 65 51 BO A8 58
90 27 BC 6E EF 73 7F CC 11 45 C2 34 A6 6C CA 32 30
AO 04 86 29 8B E2 4A BE 50 79 4E 70 69 OF OC Fl IF
BO 9E 41 75 FA F4 OA 81 91 FE E6 CE 3A 22 99 13 B6
CO EO OF A4 2E 07 AB 63 56 F8 8F 38 B4 89 5B 67 10
00 18 19 53 lA 2C 54 B2 IB OE 20 AA 55 8E B3 5A lC
EO 40 F9 09 90 E5 39 98 B5 85 8A 49 5C 40 68 OB IE
FO BB EE 7E 10 Cl A5 C9 2F 95 08 C6 AC 60 64 AF 57

- 358-

QUADRATIC SOLUTION TABL~
FOR FINDING SOLUTION TO Y + y + C· = °
(INPUT IS C, OUTPUT IS YI; YI =0 => NO SOLUTION, ELSE Y2 = YI + a<»

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 01 DB 8F 55 8D 57 03 D9 00 00 00 00 00 00 00 00
10 89 53 07 DD 05 DF 8B 51 00 00 00 00 00 00 00 00
20 00 00 00 00 00 00 00 00 C3 19 4D 97 4F 95 Cl IB
30 00 00 00 00 00 00 00 00 4B 91 C5 IF C7 ID 49 93
40 00 00 00 00 00 00 00 00 09 D3 87 5D 85 5F DB Dl
50 00 00 00 00 00 00 00 00 81 5B OF D5 OD D7 83 59
60 CB 11 45 9F 47 9D C9 13 00 00 00 00 00 00 00 00
70 43 99 CD 17 CF 15 41 9B 00 00 00 00 00 00 00 00
80 FF 25 71 AB 73 A9 FD 27 00 00 00 00 00 00 00 00
90 77 AD F9 23 FB 21 75 AF 00 00 00 00 00 00 00 00
AO 00 00 00 00 00 00 00 00 3D E7 B3 69 Bl 6B 3F E5
BO 00 00 00 00 00 00 00 00 B5 6F 3B El 39 E3 B7 6D
CO 00 00 00 00 00 00 00 00 F7 2D 79 A3 7B Al F5 2F
DO 00 00 00 00 00 00 00 00 7F A5 Fl 2B F3 29 7D A7
EO 35 EF BB 61 B9 63 37 ED 00 00 00 00 00 00 00 00
FO BD 67 33 E9 31 EB BF 65 00 00 00 00 00 00 00 00

CUBE ROOT TABLE
(INPUT IS an, OUTPUT IS anl3; EXCEPT FOR aO, OUTPUT=O => NO ROOT)

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 DB 00 EC 00 98 00 00 02 00 00 00 00 00 OD lC
10 00 45 36 34 00 00 00 00 A9 00 80 00 00 00 00 00
20 00 00 00 00 00 00 00 00 41 00 00 00 9A 00 D5 00
30 00 82 69 D9 00 D8 10 00 00 00 00 Dl 00 00 4F 00
40 04 00 A2 Bl 00 00 00 00 00 00 48 00 00 97 00 00
50 00 00 3B 70 51 24 A5 46 00 00 8C 00 00 00 IB 40
60 00 00 00 00 00 00 00 BC 00 00 00 07 00 00 F7 00
70 IA 00 76 00 D4 DO 00 00 38 00 EO 00 00 00 00 BB
80 00 9E 00 00 00 00 00 00 8A 00 5F 00 D7 00 CA 00
90 6C 00 00 00 00 00 4C 00 68 00 00 00 12 00 00 F3
AD 00 00 00 00 00 00 00 AF 00 D3 00 09 00 00 00 00
BO 00 00 90 00 00 00 6A 00 00 00 00 00 00 4D 00 00
CO 23 20 00 00 00 E5 5E 00 00 00 00 DE 00 00 00 00
DO 71 00 00 00 00 OF 00 E2 00 Cl 00 00 00 00 EF 00
EO 00 D2 08 9F 00 BE 00 00 00 C3 00 00 00 00 EA B5
FO 00 00 35 00 00 65 26 00 00 75 13 00 2F 00 00 CF

- 359-

AN ALTERNATIVE FINITE FIELD PROCESSOR DESIGN

The ftnite fteld processor shown below could be used instead of the one shown
earlier in this section. It uses subfteld multiplication; see Section 2.7 for more informa­
tion. the timing for ftnite fteld mUltiplication includes only one ROM delay. This path
for the other processor included two ROM delays and a binary adder delay. Inversion is
accomplished with a ROM table.

GF(256)SUBFIELD
MULTIPLIER

USING 4 ROMS:
SEE SECTION 2.7

The following pages show, for this alternative ftnite fteld processor:

- A ROM table for the four multipliers comprising the GF(256) subfteld multi-
plier.

- A ROM table for accomplishing inversion.

- ROM tables for taking logarithms and antilogarithms.

- A ROM table for ftnding roots of the ftnite field equation y2 + y + c = o.

- A ROM table for ftnding cube roots.

- 360·

SUBFIELD MULTIPICATION TABLE
(INPUT IS TWO 4-BIT NIBBLES, OUTPUT IS ONE 4-BIT NIBBLE)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 A B C 0 E F
2 0 2 4 6 8 A C E 9 B 0 F 1 3 5 7
3 0 3 6 5 C F A 9 1 2 7 4 0 E B 8
4 0 4 8 C 9 0 1 5 B F 3 7 2 6 A E
5 0 5 A F 0 8 7 2 3 6 9 C E B 4 1
6 0 6 C A 1 7 0 B 2 4 E 8 3 5 F 9
7 0 7 E 9 5 2 B C A 0 4 3 F 8 1 6
8 0 8 9 1 B 3 2 A F 7 6 E 4 C 0 5
9 0 9 B 2 F 6 4 0 7 E C 5 8 1 3 A
A 0 A 0 7 3 9 E 4 6 C B 1 5 F 8 2
B 0 B F 4 7 C 8 3 E 5 1 A 9 2 6 0
C 0 C 1 0 2 E 3 F 4 8 5 9 6 A 7 B
0 0 0 3 E 6 B 5 8 C 1 F 2 A 7 9 4
E 0 E 5 B A 4 F 1 0 3 8 6 7 9 2 C
F 0 F 7 8 E 1 9 6 5 A 2 0 B 4 C 3

INVERSE TABLE FOR ALTERNATIVE FINITE FIELD PROCESSOR
(INPUT IS aD, OUTPUT IS 1/aD)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

00 01 OC 08 06 OF 04 OE 03 00 OB OA 02 09 07 05
10 CC CO 6A 6C 58 50 08 05 FA F5 8E 86 3E 3D 76 71
20 66 07 60 OA 35 F3 36 FC E4 B5 EA BE A4 47 AE 43
30 44 56 53 40 F2 24 26 FO A8 C3 CF A2 3F 10 lC 3C
40 33 52 AF 2F 30 57 A5 20 DE 72 BO 9E 03 75 B6 97
50 BB 6F 41 32 69 BO 31 45 14 5C 92 84 59 15 8C 9B
60 22 DB E3 CA ED C6 20 06 Bl 54 12 60 13 6B BA 51
70 77 IF 49 OF 02 40 IE 70 B9 F7 C8 90 94 C4 F8 B2
80 DO AD El FE 5B 93 IB 8F DO A7 EF Fl 5E 9A lA 87
90 AA E7 5A 85 7C C5 B7 4F E9 AO 80 5F C9 7B 4B BC
AO 99 E8 3B CE 2C 46 01 89 38 C2 90 E6 DC 81 2E 42
BO 55 68 7F F9 E5 29 4E 96 F6 78 6E 50 9F 4A 2B EB
CO 11 CD A9 39 70 95 65 EC 7A 9C 63 E2 10 Cl A3 3A
DO 88 A6 74 4C 09 17 67 21 16 04 23 61 AC 80 48 73
EO FF 82 CB 62 28 B4 AB 91 Al 98 2A BF C7 64 FO SA
FO EE 8B 34 25 FB 19 B8 79 7E B3 18 F4 27 37 83 EO

- 361 -

ANTILOG TABLE FOR ALTERNATIVE FINITE FIELD PROCESSOR
(INPUT IS n, OUTPUT IS an)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

00 01 10 12 32 16 72 5E BA IF E2 C5 91 8B 39 A6 CO
10 11 02 20 24 64 2C E4 A5 FO 27 54 lA B2 9F 6B DC
20 13 22 04 40 48 C8 41 58 OA 73 4E A8 20 F4 B7 CF
30 31 26 44 08 80 89 19 82 A9 3D E6 85 09 43 78 FE
40 17 62 4C 88 09 90 9B 2B 94 DB 63 5C 9A 3B 86 E9
50 75 2E C4 81 99 OB BO BF 4F B8 3F C6 Al BO 6F 9C
60 5B EA 45 18 92 BB OF FO F7 87 F9 67 lC 02 F3 C7
70 Bl AF 50 8A 29 B4 FF 07 70 7E 9E 7B CE 21 34 76
80 IE F2 07 A3 90 4B F8 77 DE EO E5 B5 EF 15 42 68
90 EC 25 74 3E 06 B3 8F 79 EE 05 50 5A FA 57 2A 84
AO C9 51 4A E8 65 3C F6 97 EB 55 OA AD AD 70 AE 4D
BO 98 IB A2 8D 59 CA 61 7C BE 5F AA OD DO 03 E3 D5
CO 83 B9 2F D4 93 AB ID C2 El F5 A7 DD 03 30 36 56
DO 3A 96 FB 47 38 B6 DF 23 14 52 7A DE 33 06 60 6C
EO AC 6D BC 7F 8E 69 FC 37 46 28 A4 ED 35 66 OC CO
FO Cl Dl C3 Fl E7 95 CB 71 6E 8C 49 D8 53 6A CC 01

LOG TABLE FOR ALTERNATIVE FINITE FIELD PROCESSOR
(INPUT IS an, OUTPUT IS n)

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 11 CC 22 99 DD 77 33 44 AA 55 EE BB 88 66
10 01 10 02 20 08 80 04 40 63 36 IB Bl 6C C6 80 08
20 12 70 21 D7 13 91 31 19 E9 74 9E 47 15 2C 51 C2
30 CD 30 03 DC 7E EC CE E7 D4 OD DO 4D A5 39 93 5A
40 23 26 8E 3D 32 62 E8 03 24 FA A2 85 42 AF 2A 58
50 9A Al D9 FC lA A9 CF 90 27 B4 9B 60 4B 72 06 B9
60 DE B6 41 4A 14 A4 ED 6B 8F E5 FD IE DF El F8 5E
70 78 F7 05 29 92 50 7F 87 3E 97 OA 7B B7 AD 79 E3
80 34 53 37 CO 9F 3B 4E 69 43 35 73 OC F9 B3 E4 96
90 45 OB 64 C4 48 F5 01 A7 BO 54 4C 46 5F 84 7A ID
AO AB 5C B2 83 EA 17 OE CA 2B 38 BA C5 EO AC AE 71
BO 56 70 lC 95 75 8B 05 2E 59 Cl 07 65 E2 50 B8 57
CO EF FO C7 F2 52 OA 5B 6F 25 AD B5 F6 FE OF 7C 2F
DO BC Fl 60 BO C3 BF 94 82 FB 3C 28 49 IF CB DB D6
EO 89 CB 09 BE 16 8A 3A F4 A3 4F 61 A8 90 EB 98 8C
FO 67 F3 81 6E 2D C9 A6 68 86 6A 9C D2 E6 18 3F 76

- 362-

QUADRATIC SOLUTION TABL~ FOR ALTERNATIVE FINITE FIELD PROCESSOR
FOR FINDING SOLUTION TO Y + y + C = 0
(INPUT IS C, OUTPUT IS YI; YI =0 => NO SOLUTION, ELSE Y2 = YI + a<»

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 01 OB 11 1B 13 19 03 09 1D 17 OD 07 OF 05 1F 15
10 B5 BF A5 AF A7 AD B7 BD A9 A3 B9 B3 BB B1 AB A1
20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ' 00 00
60 3D 37 2D 27 2F 25 3F 35 21 2B 31 3B 33 39 23 29
70 89 83 99 93 9B 91 8B 81 95 9F 85 8F 87 8D 97 9D
80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
AO CF C5 DF D5 DD D7 CD C7 D3 D9 C3 C9 C1 CB D1 DB
BO 7B 71 6B 61 69 63 79 73 67 6D 77 7D 75 7F 65 6F
CO F3 F9 E3 E9 E1 EB F1 FB EF E5 FF F5 FD F7 ED E7
DO 47 4D 57 5D 55 5F 45 4F 5B 51 4B 41 49 43 59 53
EO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

CUBE ROOT TABLE FOR AL/!.RNATIVE FINITJ! FIELD PROCESSOR '
(INPUT IS an, OUTPUT IS an ; EXCEPT FOR a ,OUTPUT=O => NO ROOT)

a 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 OB 00 09 00 08 00 00 02 00 00 00 00 00 00 04
10 00 00 00 00 94 CF 00 00 22 20 E2 85 48 4C 00 00
20 5E 00 91 00 00 00 00 00 00 00 00 00 BA 00 1A 00
30 00 11 10 00 4E 00 00 3B 00 00 00 00 82 24 26 6B
40 00 00 00 00 00 00 00 00 8B 00 19 00 E4 00 A6 00
50 00 00 00 99 00 00 90 00 39 D9 00 13 27 41 12 00
60 63 00 00 00 00 00 E9 00 00 00 00 C5 00 5C 00 00
70 DA 00 00 00 00 00 00 F4 00 00 00 73 43 00 00 00
80 00 00 00 17 89 00 54 40 00 00 00 16 81 00 9A 44
90 A5 00 00 00 FD 00 00 00 00 B2 00 00 00 2D 00 00
AO 3D 00 00 00 86 00 00 00 00 00 78 00 00 00 E6 00
BO 00 00 00 00 58 00 2B 00 00 00 00 00 00 DC 00 9F
CO 00 75 00 00 00 00 00 C8 00 00 00 C4 00 72 00 00
DO 00 00 00 FE 62 00 00 00 00 64 00 00 00 00 DB 00
EO 00 00 32 00 00 B7 00 00 00 00 00 A9 31 00 00 00
FO 00 2E A8 00 CD 88 00 00 00 00 80 9B 00 1F 2C 00

- 363-

CHAPTER 6 - TESTING OF ERROR-CONTROL SYSTEMS

This chapter is concerned primarily with diagnostic capability for storage device
applications. However, the techniques described are adaptable to semiconductor memory,
communications, and other applications.

6.1 MICRODIAGNOSTICS

There are several approaches for, implementing diagnostics for storage device er­
ror-correction circuits. Two approaches are discussed here. The first approach requires
the implemeptation of "read long" and "write long" commands in the controller.

The "read long" command is identical to the normal read command except that
check bytes are read as' if they were data bytes. The "write long" command is identical
to the normal write command except that check bytes to be written are supplied, not
generated. They are supplied immediately behind the data bytes.

Use the "read long" command to read a known defect-free data record and its
check bytes. XOR into the record a simulated error condition. Write the modified data
record plus check bytes back to the storage device using the "write long" command. On
read back, using the normal read command, an ECC error should be detected and the
correction routines should generate the correct response for the error condition simu­
lated. Repeat the test for several simulated error conditions, correctable and uncorrec­
table.

It is often desirable to reserve one or more diagnostic records for the testing of
error-correction functions. It is important for any diagnostic routines testing these
functions to first verify that the diagnostic record is error free.

In some cases, hardware computes syndromes but is not involved in the correction
algorithm. The correction algorithm is totally contained in software. In this case, it is
easy to get a breakdown between hardware and software failures by testing the software
first. Supply syndromes to the software, for which proper responses have been record­
ed.

Using the second diagnostic approach, the hardware is designed so that, under
diagnostic control, data records can be written with the check bytes forced to zero. A
data record is selected that would normally cause all check bytes to be zero. Simulated
error conditions are XOR'd into this record. The record is then written to the storage
device under diagnostic control and check bytes are forced zero. On normal read back
of this record, an error should be detected and the proper responses generated.

- 364-

These techniques apply to error-control systems employing very complex codes as
well as those employing simple codes. They apply to the interleaved Reed-Solomon code
as well as the Fire code.

6.2 HOST SOFIW ARE DIAGNOSTICS

Host testing of error-correction functions can be accomplished by implementing at
the host software level either of the diagnostic approaches discussed in Section 6.1.

If the controller corrects data before it is transferred to the host, the host diag­
nostic software must check that the simulated error condition is corrected in the test
record. The entire test record must be checked to verify that the error is corrected
and that correct data is not altered. Alternatively, the controller could have a diagnos­
tic status or sense command that transfers error pattem(s) and displacement(s) to the
host for checking. However, this is not as protective as checking corrected data.

6.3 VERIFYING AN ECC IMPLEMENTATION

Error-correction implementations should be carefully verified to avoid incorrect
operation and the transfer of undetected erroneous data under subtle circumstances.
This verification should be performed at the host software level using host level diag­
nostic commands.

FORCING CORRECJ'ABLE ERROR CONDITIONS

Use the "read long" command to read a known error free data record and its
check bytes. XOR into this record a simulated error condition that is guaranteed to be
correctable. Write the data record plus check bytes back to the storage device using
the "write long" command.

Read back the record just written using the normal read command. Verify that
the controller corrected the simulated error condition. Repeat, using many random
guaranteed-correctable error conditions.

Some nonrandom error conditions should be forced as well. Select a set of error
conditions that is known to test all paths of the error-correction implementation.

- 365-

FORCING DETECI'ABLE ERROR CONDITIONS

Repeat the test defined under FORCING CORRECTABLE ERROR CONDITIONS,
except use simulated error conditions that exceed guaranteed correction capability but
not guaranteed detection capability. An uncorrectable error should be detected for each
simulated error condition.

FORCING ERRORS THAT EXCEED DETECI'ION CAPABILITY

Repeat the test defined under FORCING CORRECTABLE ERROR CONDITIONS,
except use simulated error conditions that far exceed both the guaranteed correction
and guaranteed detection capabilities. Count the number of correctable and uncorrec­
table errors reported by the error-correction implementation. The ratio of counts
should be approximately equal to the miscorrection probability of the code. Repeat for
error conditions known to have a higher miscorrection probability.

6.4 ERROR LOGGING

For implementations where the data is actually corrected by the controller, it may
be desirable to include an error-logging capability within the controller. A minimum er­
ror-logging capability would count the errors recovered by reread and the errors recov­
ered by error correction. Logging requires the controller to have a method of signaling
the host when the counters overflow and a command for offloading counts to the host.

A more sophisticated error log would also store information useful for:

- Reassigning areas of media for repeated errors.

- Retiring media when the number of reassignments exceeds a threshold.

- Isolation of devices writing marginal media. This may require that the physi-
cal address of the writing device be part of each record written.

- Hardware failure isolation.

It may be desirable to reserve space fot error logging on each storage device.

- 366-

6.5 SELF-CHECKING

HARDWARE SELF-CHECKING

Hardware self-checking can limit the amount of undetected erroneous data trans­
ferred when error-correction circuits fail.

Self-checking should be added to the design if the probability of error-correction
circuit failure contributes significantly to the probability of transferring undetected
erroneous data. One self-checking method duplicates the error-correction circuits and,
on read, verifies that the error latches for both circuits agree. No circuits from the
two sets of error-correction hardware share the same Ie package. This concept can be
extended by having separate sources and/or paths for clocks, power, and ground.

Another self-checking method is called parity predict. It is used for the
self-checking of shift registers that are part of an error-correction implementation. On
each clock, new parity for each shift register is predicted. The actual parity of each
shift register is continuously monitored and at each clock, is compared to the predicted
parity. If a difference is found, a hardware check flag is set.

The diagrams below define when parity is predicted to change for four shift-regis­
ter configurations.

DIVIDE BY g(x). ODD NUMBER OF FEEDBACKS

~_....L--l ~l Hb
DATA r

The parity of the shift register will flip each time the data bit is '1'.

DIVIDE BY g(r). EVEN NUMBER OF FEEDBACKS

~r--------'---,l Hb
DATA r

The parity of the shift register will flip if a '1' is shifted out of the shift regis­
ter, or (exclusive) if the data bit is '1'.

- 367-

MULTIPLY BY:xl1!AND DIVIDE BY glI). ODD # OF FEEDBACKS

DATA .&"----L--l -L--I ;J
The parity of the shift register will flip if the data bit is '1'.

MULTIPLY BY:xl1!AND DIVIDE BY g(x). EVEN # OF FEEDBACKS

The parity of the shift register will flip if a '1' is shifted out of the shift regis-
ter.

An m-bit shift register circuit using parity predict for self-checking is shown on
the following page. An odd number of feedbacks and premultiplication by xm is as­
sumed. It is also assumed that the feedbacks are disabled during write check-bit time
but not during read check-bit time. While writing data bits, reading data bits, and
reading check bits, parity of the shift register is predicted to change for each data bit
that is '1'. While writing check bits, parity is predicted to change for each '1' that is
shifted out of the shift register.

WRITE

DATA

1

o

MUX

1----.---1 J Q

K

- 368-

.
PARITY TREE

J Qt------.....

K
PARITY
PREDICT
ERROR

Another technique that aids the detection of error-correction hardware failures is
to design the circuits so that nonzero check bytes result when the data is all zeros.

SELF-CHECKING WITH MICROCODE AND/OR SOFTWARE

Periodic microcode and/or software checking is another approach that can be used
to limit the amount of undetected erroneous data transferred in case of an error-cor­
rection circuit failure. Diagnostic microcode or software could be run on a subsystem
power-up and during idle times. These routines would force ECC errors and check for
proper detection and correction. In some cases, this approach is the only form of
self-checking incorporated in an implementation, even though it is not as protective as
self-checking hardware. In other cases, this approach is used to supplement self-check­
ing hardware.

- 369-

SUPPLEMENTARY PROBLEMS

1. Write the syndrome equations for a three-error-correcting Reed-Solomon code.

2. Write out the error-locator polynomi~ for errors 1t locations 0, 3, and 5 for a
Reed-Solomon code operating over GF(2) dermed by x + x + 1.

3. Show a Chien search circuit to solve the error-locator polynomial from problem 2.

4. Once error locations for a Reed-Solomon code are known, the syndrome equations
become a system of simultaneous linear equations with the error values as un­
knowns. The error-location vectors are coefficients of the unknown error values.
Solve this set of simultaneous linear equations for the two error case.

5. Write out 4the encode polrnomial for a two-error-correcting Reed-Solomon code
using GF(2) generated by x + x + 1.

6. G1ven a small field generated by the rule p3 = P + 1 and a large field generated by
a = a + p, develop the rule for accomplishing the square of any element in the
large field by performing computation in the small field.

7. Show a complete decoder (on-the-fly, spaced data blocks) lor a bu~t length 2
correcting, shortened cyclic code, using the polynomial (x + 1)· ex + x + 1).
Record length is 20 bits, including check bits. Data and check bits are to be
buffered in a 2Q-bit FIFO (first in first out) circuit.

8. Find a polynomial for a code of length 7 that has single-, double-, and triple-bit
error detection.

9. For detection of random bit errors on a 32-bit memory word, would it be better to
place parity on each byte or use a degree four error-detection polynomial across
the entire 32-bit word?

10. A device using a 2048 bit record, including 16 check bits, has a random bit error
rate of lE-4. The 16 check bits are defined by the polynomial below. Can the
device meet a lE-I5 specification for Pued (probability of undetected erroneous
data)?

xI6 + xI2 + x5 + 1

= (x + 1)· (xI5 + x14 + x13 + x12 + x4 + x3 + x2 + x + 1)

11. Compute the probability for three or more error bursts in a block of 256 bytes
when the raw burst error rate is 1 E-7 .

- 370-

12. Compute the block error probability for a channel using a detection only code
when the raw burst error rate is IE-IO.

13. Design a circuit to sojve the equation y2 + y + C = 0 for Y when C is given. The
field is generated by x + x + 1.

14. There is a Fire code in the industry defmed by

x24 + x17 + x14 + xlO + x3 + 1

a) For a correction span of four, determine the detection span using the ine­
qualities for a Fire code.

b) Determine the miscorrection probability for correction span four and record
length 259 bytes, (data plus check bytes.)

15. For an error-detection code using the shift register below for encoding and decod­
ing of 2048 byte records:

DATA .~r--3-2---B-I-T-S-H-I-F-T-R-E-G-I-S-T-E-R--,;J
a) Determine the misdetection pr~babi1ity for all possible error bursts.

b) Determine the misdetection probability for all possible double-bit errors.

16. Which of the pairs of numbers below are relatively prime?

15 , 45
9 , 31
7 , 11

14 , 127

17. Write the integer 18 as residues of moduli 5 and 7.

18. Listed below are residues for several integers modulo 5 and 9. Compute the Ai
and mi of the Chinese Remainder Method. Then use the Chinese Remainder
Method to determine the integers.

a) aMOD5 = 4, aMOD9 = 6, a = ?
b) aMOD5 = 3, aMOD9 = 5, a = 1
c) aMOD5 = 0, aMOD9 = 4, a = 1

What is the total number of unique integers that can be represented by residues
modulo 5 and 91

- 371 -

19. DefiJ;le a fast division algorithm for dividing by 2S5 on an 8-bit. processor that
does not have a divide instruction. The dividend must be less than 65,536.

20. What is the total number of unique integers that can be represented by residues
modulo 6 and 8?

21. Which of the finite field functions listed below are linear?

Log
Cube
Sixth Power
Modulo

Square
Square Root
Eight Root

Antilog
Cube Root
Inverse

22; Determine the period of the following polynomials:

a) x43 + 12
b) x + x + x + 1

23. Con:pute the reciprocal polynomial ofx3 + x + 1.

24. How many primitive polynomials are of degree eight?

25. Compute the residue of x 7 MOD x3 + x + 1.

26. For a small-systems magnetic disk,list sevel'al factors influencing data accuracy.

27. Is it possible for. a polynomial with an. <Xl~ number of terms to have a factor of
the form (XC + I)? Why?

28. Describe the difference between error locations and error-location vectors. Which
are roots of an error-locator polynomial?

29. What method is used to solve error-locator polynomials of a high degree?

30. What is the difference between errata, errors, and erasures?

31. If g(x) divides (x255 + I), what can be said about the period of g(x)?

32. Given a field generated by x4 + x + I, show circuits to multiply an arbitrary field
element by the following fixed field elements:

a) a O
b) a1
c) a2

-372 -

33. For a symbol-error-correcting code (symbol size eight bits) used with a 128 symbol
(byte) record, what must the symbol-correcting capability be to have a block error
rate less than lE-8 for a raw symbol error rate of lE-4? The block error rate is
the ratio of block errors to blocks transferred.

34. Show a circuit to implement the equation below in GF(28).

R2 = Rl + aO

35. In a Reed-Solomon code implementation, it may be necessary to test an equality
similar to the one below for true:

Suggest an equivalent test that would not require finite field multiplication or
division.

36. Write log and antilog tables for the field generated by x3 + x + 1.

37. Consider' a Reed-Solomon code implementation where data is read from a storage
device into a buffer. The data is corrected in the buffer and then transferred to
a host. Deime a way of loading and unloading the buffer such that the imite
field processor does not have to take logs of error-location vectors before making
corrections to the buffer.

38. Deime an algorithm for computing the square root in a field of 15 elements using
log and antilog tables.

39. Remember that miscorrection probability is the ratio of valid syndromes to all
possible syndromes. Generate a miscorrection formula for a two-symbol-correcting
Reed-Solomon code using GF(28). The symbol size is eight bits. The record
length is 255 bytes, including check bytes.

40. List the first ten entries in an antilog table for a large field. The small field is
g~erated by the rule {33 = {3 + 1 and the large field is generated by the rule
a = a + {3.

- 373 -

APPENDIX A. PRIME FACTORS OF 2n-1

n Factors of 2n -1

3 7
4 3 5
5 31
6 3 3 7
7 127
8 3 5 17
9 7 73

10 3 11 31
11 23 89
12 3 3 5 7 13
13 8191
14 3 43 127
15 7 31 151
16 3 5 17 257
17 131071
18 3 3 3 7 19 73
19 524287
20 3 5 5 11 31 41
21 7 7 127 337
22 3 23 89 683
23 47 178481
24 3 3 5 7 13 17 241
25 31 601 1801
26 3 2731 8191
27 7 73 262657
28 3 5 29 43 113 127
29 233 1103 2089
30 3 3 7 11 31 151 331
31 2147483647
32 3 5 17257 65537

- 374 -

APPENDIXB

The following paper is included in slightly modified form.

METHODS FOR FINDING LOGARITHMS AND EXPONENTIALS

OVER A FINITE FIELD

Neal Glover
DATA SYSTEMS TECHNOLOGY. CORP.

A Subsidiary of Cirrus Logic. Inc.
INTERLOCKEN BUSINESS PARK

100 Technology Drive, Suite 300
Broomfield, Colorado 80021

Phone (303) 466-5228 FAX (303) 466-5482

I.S. Reed, J.P. Huang
Department of Electrical Engineering

UNIVERSITY OF SOUTHERN CALIFORNIA
Los Angeles, California 90007

T.K. Truong
COMMUNICATIONS SYSTEM RESEARCH

Jet Propulsion Laboratory
Pasadena, California 91103

This work was supported in part by NASA contract No. NAS 7-100, in part by the U.S.
Air Force Office of Scientific Research, under grant AFOSR-80-0151.

- 375-

ABSTRACT

Let GF(q) be a fmite field, where q =pDl and p is prime. Multiplications are per­

formed often using log and antilog tables of pm-l non-zero field elements. It is shown

in this paper that forq =p2n and pD+ 1 a prime, that the log and the antilog of a field

element can be found with two substantially smaller tables of pD + 1 and pD-l elements,

respectively. The method is based on a use of the Chinese Remainder theorem. This

technique results in a significant reduction in the memory requirements of the problem.

It is shown more generally that for:

where, mi=(p/i for 1 SiS k, tables of ml elements, m2 elements, ... , and mk elements

also can be used to fmd logs and antilogs over GF(q). In the later method, further

reductions in the memory requirements are achieved, however, at the expense of a

greater number of operations.

- 376-

I. lNTRODUcnON

In order to efficiently encode and decode BCH and RS codes over a finite field

GF(q) , each symbol of GF(q) is representable as a power of a selected primitive element

in GF(q), i.e., a=1 i for a, 1 € GF(q) where r is primitive.

To multiply two field elements a,p € GF(q) , where a=r i and P=1j, one only needs

to add i and j modulo (q-l) to obtain the resulting exponent k. That is,

.. (i+J·) mod (q-l) k aop = 110 1J = 1 = 1 •

In the actual implementation of this multiplication process, a log table can be used to

find the exponents. If the field elements are represented in the binary representation,

binary addressing is used to locate a logarithm in the table. After the addition of the

exponents modulo (q-l) , an antilog table is used to find the binary representation of 1k.

The exponent k serves as the address of the antilog table. If q is large for many

applications, such log and antilog tables may be prohibitively large.

In the next section it is shown that for a q of form p2n where pfi+ 1 is a prime

that substantially smaller tables of sizes pO+ 1 and pO-I can be used to find the log and

antilog of a field element. Since q-l = p2n_l = {pfi+ 1)· (pO-I) and (pfi+l,pO-l) = 1, the

Chinese Remainder theorem can be used to decompose the tables of p2n_l elements into

smaller ones of pO+ 1 elements and pO-I elements respectively. The results obtained

from the tables of pfi+ 1 elements and pO-I elements can be recombined to yield the

desired log table of p2n_l elements. A similar reduction can be made for the antilog

table. The memory requirements of this new method for finding the log and antilog are

reduced from 2(p2n-l) to 2[pO+ I +pO-l] = 4pO memory elements.

In Section III a more involved method is developed that yields the logarithm with

a minimum memory requirement but with a greater number of operations. Suppose:

where Pi is prime and mi=(p/i for 1 ~ i ~ k, (mi,mj)=1 for i t j. Then the Chinese

Remainder theorem can be used to decompose tables of p2n_l elements into k smaller

ones of ml elements, m2 elements, ... and mk elements, respectively. The log and

antilog of a field element can be found by utilizing these k tables.

- 377-

II. A LOG AND AN17LOG ALGORITHM OVER GFrp2nj

Let P be a primitive element in GF(pD) and x € GF(pD). Also let m be the least

integer such that x=pm.

Definition 1. m is called the logarithm ofx to base p, i.e., m=logpx.

Theorem 1. Let P be a primitive element in GF(pD) such that the polynomial

p(x)=x2+x+p is irreducible in this field. Also let a € GF<j>2n) , where GF(p2n) is an

extension field of GF(pD). If a is a root of p(x), i.e., p(a)=O, and pD+I a prime, then a

is primitive in GF<j>2n).

Proof. If a is a root of p(x) , its conjugate a is also a root of p(x) , where

a=apD. Thus:

It follows that:

a+a = 1, a·a = p

and:

(1)

Now (p2o-I)=(pD+1).(pD-I) and pO+1 is a prime by hypothesis. Hence, any number r

such that rlp2n-1 implies that rlpO-l. Then, from (2):

(3)

Since p is primitive over GF(pD), pO-I is least integer such that p(pD-I)/r = 1. Hence:

p(pn_1)/r t 1 unless r=l.

- 378-

Thus, by (2) opP"-l)/r + 1 unless r=l. Therefore, the order of a is p2n_l and a

is primitive in GF(p2n).

Q.E.D.

The above theorem guarantees the root ex to be primitive in the extension field

only when p"+ 1 is a prime. To show that the theorem is not generally true for p"+ 1

not a prime, consider the following counter example: Let GF{ll2) be the extension field

of GF(U). It is verified readily that 13=112 € GF(ll) and is a primitive element in this

field. Also:

p(x)=x2-x+ 112

is irreducible in GF(ll). Suppose a is a solution to p(x) and ex € GF(l12). Then

a2-a+1I2=O. From this equation it is seen that a4=-1I4=117 € GF(11). Since

a4 € GF(11), (a4)10= 1. Thus, a40 = 1 and ex is not a primitive element in GF(1l2).

Definition 2. For a € GF(p2n) and a+exb € GF(p2n), where a,b € GF(p") , the norm

ofa+ab is:

I la+abl I = (a+ab)· (a+ab)

Using the results of Theorem 1 and Definition 1 and Definition 2, the following

theorem is demonstrated.

Theorem 2. Let f3 be a primitive element in GF(p") such that the quadratic poly­

nomial x2 + x + 13 is irreducible over GF(p"). Suppose that p" + 1 is prime. Next let a be

the root of this polynomial in the extension field GF(p2n) = {a + exb I a,b € GF(pn)} of

GF(p"). Suppose exm= a+ab € GF(p2n). The following holds:

(The proof is given in Section V.)

- 379-

By Theorem 2 one can construct a logp table of p11 - 1 elements by storing the

value ml = m mod(p11-l), where:

1 S ml S p11-l,

at location a2 +ab+b2p such that crm= a+crb. Then with a and b known, one can find ml

using the logp table. A logp table is given in Section VI for p11-l =15. Similarly, the

antilogp table is constructed by storing the binary representation of a2 +ab+b2p at loca­

tion m 1 such that crm = a + crb and:

An antilogp table is also given in Section VI for p11-1 = 15. Next, the constructions of

tables of p11 + 1 elements is shown.

1heorem 3. Let l' =crp11-1 £ GFw2n) , where cr is primitive in GF(p2n). Suppose

crm= a+crb £ GFw2n) for some a,b £ GF(p11). Then:

[
a+ab 1 log1' ---- = m mod(pn+l)
a+crb

(The proof is given in Section V.)

Using the results of Theorem 3, let:

(a/b)+a a+ab
f(a/b) = 1'm = =

(a/b)+cr a+crb

- 380-

(4)

To construct the log.,. table, notice that when a=O:

and m=1. For m2 == mod (pfi+ 1), one has m2=1 when a=O. When b=O:

a+O
f (alb) = -- = 1.

a+O

Thus, m=O and m2=0. The remaining part of the log.,. table can then be constructed by

storing the value m2==m mod(pfi+l) at location alb for am= a+ab, where 2Sm2spfi. A log.,.

table for pD+ 1 = 17 is given in Section VII. Also, given there is an antilog.,. table for

pfi+l=17. It is constructed by storing the binary representation of (alb) e {pl,p2, •• • pI5}

at the corresponding location i=m2 for 2SiS16. Thus:

(5)

From (4) and (5) the following two simultaneous equations need to be solved for a and

b in order to reconstruct am= a+ab:

= x
{6}

- 381 -

Relations (6) yield the following solution:

(7)

a = boy (8)

For b € GFWO) it is verified readily that:

[
lOgPZ] b = antilogp 2 (9)

where:

z = _-"x=--
y2+y+p

Now, the logarithm of am=a+ab € GF(p2n), where a,b € GF(pO) and a € GP(p2n) is

primitive, can be found in terms of ml and m2 by using the tables of pn-l elements and

pn+ 1 elements, respectively. Then the Chinese Remainder theorem warrants that:

(10)

where:

- 382-

and (nttt and (nv- t are the smallest numbers such that:

To recapitulate, the following algorithms for the log and antilog are given:

(~ THE LOG ALGORITHM

Given am= a+ab fmd m as follows:

y = alb

2. Use the 10813 table to fmd mt = 10gJ3(x) and the log,. table to fmd

m2= log,.(y) for aiO, biO.

- 383 -

3. By equation (10):

(b) THE ANTILOG ALGORITHM

Given m, recover a m= a+ab as follows:

1. Compute: ml = m mod(pfi-I) and m2= m mod(pfi+ I).

2. Use the antilog tables to find:

antilog T (m2) = y = alb, for m2 + 0,1.

3. Use the equation (9):

where:

Then:

a = boy

To illustrate the above procedures, the following examples are given over GF(28).

- 384-

Example 1:

Example 2.

Given a l27 =(0,1, 1 ,0)+a(l, 1,1,0) E GF(28). Then, a=(O,I,1 ,0) and b=(l, 1,1,0).

By the WG algorithm:

(1,1,1,0)

y = alb = (1,1,1,1)

Now use Tables VI.1 and VI.3 to fmd ml and m2, respectively. The results

are ml=7 and m2=8. For this example, nl=17, n2=15, (nlt1=8, (n2t l =8,

n 1· (nt}-1 = 136 and n2· (n2f 1 = 120. By equation (10):

= 127

Given m=127, find a127 = a+ab E GF(28). Using the ANTILOG algorithm:

ml = m mod (pfi-l) = 7

m2 = mmod(pfi+l) = 8

Then use Tables VI.2 and VI.4 to find x and y, respectively. The results are:

x = (1,1,1,0) and y = (1,1,1,1).

Thus:

x
z = --- (0,0,1,1)

- 385-

By equation (9):

_ [lOgP2 (z)]
b = antilogp = antilogp

and:

b = (1,1,1,0)

Thus:
a = bey = (0,1,1,0)

Therefore:
a127 = (0,1,1,0) + a(1,t,l,O).

- 386-

III. A GENERALALGORrrHM FOR FlNDINGWGAND AN11WG OYER GF(q)

Consider a Galois field GF(q) and suppose that:

where Pi is prime and ni =(p/i for l~i~k. Let a ~ GF(q) be primitive. Then any field

element of GF(q) can be represented by ai for some i, where l~i~q-l. By the Chinese

Remainder theorem an exponent i is mapped onto (it mod nI, i2 mod n2, ... , ik mod nJ.;).

Then a primitive element a is expressed in the notation of the Chinese Remainder

theorem as follows:

a1 = a(l mod n1, 1 mod n2,"',1 mod nk)

(1,0,0, ... ,0) (0,1,0 ..• ,0) (0,0, ..• ,0,1) (11) a ,a , ... ,a

Here:

_(0,0, ... ,0,1,0, •.• ,0) s
... Tj (12)

where the integer 1 in the exponent is in the location j. Element Tj is an nj-th root

of unity. It follows from (11) that:

for all integers m where Tj is a primitive Dj-th root ofUDity.

where:

By (12) and the reconstruction of the Chinese Remainder theorem:

m' • (m') -1
Tj = a J J

- 387 -

(14)

and:

nj omj=q-l (15)

Now, suppose one computes Cam)mjocmjtl for any j such that l:sj:sk. Observe by (15)

that one has:

where Cj ;: m mod nj for l:sj:sk and m=Cj t~anj for sOIne integer a. Then, by (14) it

follows that:

m mJ·· (mJ') -1 (a) _ [~mj 0 (mj) -lJ Cj mod q-1

= (fj) Cj

Therefore, by the use of equation (17) one can compute (fj)Cj from am for l:sj:sk.

(17)

Note that k small tables, each containing the value Cit for l:Si:snj, at location

(fj}Ci. for l:sj:sk, can be used to find the k exponents Cl,C2 ,Ck. respectively. Once

the Cj are found, the Chinese Remainder th~orem is used to compute the logarithm of

am as follows:

m = [/ Ci omi 0 (mi) -1] mod q-1

~=1

(18)

- 388 -

By (13), (14), (16), and (17), the antilog ofm is computed as:

(19)

where Ci = m mod ni for 1~i~k. Tables of (1j) Ci fOr 1~j~3 for

q-1 = 255 3x5x17 = n1'n2°n3 are given in section VII.

Example 3: To demonstrate the general algorithm above, the logar­

ithm of a 20 is computed for a,a20 E GF(2 8) where a sat­

isfies x8+x4+x3+x 2+1. with an exponent of 20 given, the

antilog a 20 is recovered. In this case, n1=3, n2=5,

n3=17, m1'(m1)-1= 85, m2'(m2)-1= 51, and m3 o (m3)-1=120.

LOGARITHM

Using the tables in Section VII, one finds Cl, C2, and C3 from the following

computations:

Thus, CI =2, C2=0, and C3=3. The logarithm m is obtained by:

m = (2.85+0 0 51+3 0 120) mod 255

=20.

- 389-

ANTILOG

From m=20, one computes:

C1 E 20 mod 3 = 2

C2 = 20 mod 5 0

C3 = 20 mod 17 3

Using the tables in Section VII gives:

Then the antilog of m=20 is recovered as:

= a(170+0+105) mod 255

- 390 -

IV. eONaUS/ON

To find the log and antilog of an element in a finite field GF(q) , it q =p2n for

some prime p, the technique shown in Section II can be used to reduce the table mem­

ory requirement from 2(p2n_l) elements to 4pll elements. A further memory reduction

can be achieved, i.e. from (q-l) elements to:

elements, by using the general method shown in Section III, however, at the expense of

a greater number of operations.. A comparison of the number of operations needed in

these methods is given in Table IV.l. It is evident from Table IV.l that the number of

multiplications required in the general case can be prohibitively large in some situations.

Thus, the technique shown in Section II has a better potential than the general method

for many practical applications.

- 391 -

No. of

Multiplication

Additions

Table Look-Ups

Modulus
operations

-1 * mj • (mj) == 1 mod nj

Table IV. 1

A Complexity Comparison of the

Alternative Approaches for Computing

Logs and Antilogs over GF(q).

when ~-1=p2n-l General Method for
and p +1 is prime q-l=nl n2 ... nk

LOG ANTILOG LOG ANTILOG

--1L
7 5 k+ \ m' • em') -1 * L- J J k-l

j-l

4 2 k-l 0

2 4 k k

0 2 1 k

- 392-

v. PROOF OF THEOREMS

Proof of Theorem 2. Since x2+x+,8 is irreducible over GF(pn), it has roots a and

~=apn in the extension field GF(p2n). By theorem 1, a is primitive in GF(p2n). By

Definition 2 and relations (1) and (2), one has the following:

I la+abl I = (a+ab) (a+ab)

= (a+ab) (a+ab)

(V.1)

If c+ad is any other element in GF(p2n) and c,d € GF(pD), then:

n n
(a+ab) (c+ad) = (a+ab)P (c+ad)P

(V.2)

Thus, by (V.2) and the definition of the norm, one has:

I I (a+ab) (c+ad) I I = (a+ab) (c+ad) (a+ab) (c+ad)

= I la+abl I ~ I Ic+adl I (V. 3)

Observe next by (2) that:

I I a I I = a~a = ,8

so that the theorem is true for m = 1. For purposes of induction, assume that:

II akll = ,8k (V. 4)

- 393-

for all k such that l~k~m. Then by (V.3), for k=m+ 1:

Hence, the induction is complete and (V.4) is true for all k.

Represent am by a+ab for some a,b € GF(pD). Then, by (V. I) and (V.4):

The theorem follows by the definition of the logarithm and the fact that 13 has order

pn-I.

Q.E.D.

Proof of Theorem 3. Since a is primitive in GF(p2n) and r=apn- 1 , the order of r

is pO + 1. By the definition of the norm, one has:

(V.6)

For purposes of induction, assume that:

(V. 7)

for l~k~m. Then, by (V.3) for m=m+ 1:

Hence, the induction is complete and (V. 7) is true for all k.

- 394-

Representing am by a+ab for some a,b E GF(pD), it follows from (V.6) that:

Multiplying both sides of (V. 8) by (a + ab)2 yields:

Therefore, from the definition of the norm:

II a+ab II (a+ab) 2

I la+abl 12

(V.8)

(V.9)

The theorem follows by the definition of the logarithm and the fact that the order of

Tis pn+1.

Q.E.D.

- 395-

VI. Let p(x)=x4+x3+1 be irreducible over GF(2) and fJ € GF(24) is a solution of p(x).

Then:

fJl
fJ2
/33

/3 4 = /33+1
/35 = /33+/3+1

/36 = /33+/32+/3+1

/3 7 = /32+/3+1

/38 = /3 3+/3 2+/3

/39 = /3 2+1
/310 = /33+/3

/311 = /33+/32+1

/312 = /3+1

/313 = /3 2+/3

/314 = /33+/32

/315 = 1

- 396 ..

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

Table VI.l
Logp

Location ~ontent

o 0 1 3

0 1 0 2

0 1 1 14

1 0 0 1

1 0 1 10

1 1 0 13

1 1 1 8

0 0 0 15

0 0 1 4

0 1 0 9

0 1 1 11

1 o 0 12

1 0 1 5

1 1 0 7

1 1 1 6

- 397 -

0 0

0 0

0 0

0 0

0 1

o 1

0 1

0 1

1 0

1 0

1 0

1 0

1 1

1 1

1 1

1 1

Table VI.2
Antilog.B

Location Content

0 0 0 0 0

0 1 0 1 0

1 0 0 0 1

1 1 0 o 0

0 0 1 0 0

0 1 1 1 0

1 0 1 1 1

1 1 1 1 1

o 0 0 1 1

0 1 1 0 1

1 0 0 1 0

1 1 1 0 1

0 0 1 1 0

0 1 0 1 1

1 0 001

0

0

0

1

1

1

1

0

1

0

1

1

0

0

1

1 1 1 0 o 0

- 398 -

For the .,. table, note the following:

i) lfa=O:

Thus, m=l and m2=1.

ii) Ifb=O:

Thus, m=O and m2=O.

- 399-

Table VI. 3
Antilog,

Location Content
0 0 0 1 14

0 0 1 0 12

o 0 1 1 6

0 1 0 0 2

0 1 0 1 10

0 1 1 0 4

0 1 1 1 9

1 0 0 0 16

1 0 0 1 3

1 0 1 0 5

1 0 1 1 11

1 1 0 0 15 ,.'

1 1 0 1 7

1 1 1 0 13

1 1 1 1 8

- 400 -

Table VI.4
Antiloqr

Location ~ontent

0 0 1 0 0 1 0 0

0 a 1 1 1 a a 1

0 1 a a a 1 1 0

0 1 a 1 1 a 1 0

a 1 1 0 a a 1 1

a 1 1 1 1 1 a 1

1 a 0 0 1 1 1 1

1 0 0 1 a 1 1 1

1 0 1 0 a 1 0 1

1 0 1 1 1 0 1 1

1 1 0 a a a 1 a
1 1 0 1 1 1 1 a
1 1 1 0 a 0 0 1

1 0 0 0 1 1 0 a
1 0 0 0 0 1 a 0 a

- 401 -

VIT. Tables for ml =3, m2=5, and m3=17, where m=255=ml'm2'm3, when

a 8+a4+a3+a2+1=O,

(fl)m1 m2 (f2)m2 m2

1 (0 0 0 0 0 0 0 1) 0 1 (0 0 0 0 0 o 0 1) 0

a 85 (0 1 1 0 1 0 1 1) 1 a51 (0 0 0 0 0 1 0 1) 1

a 170 (1 1 1 o 0 1 0 1) 2 a102 (0 0 1 o 0 0 1 0) 2

a 153 (0 1 0 0 1 0 0 1) 3

a204 (1 1 1 0 o 0 o 0) 4

(f3)m3 m3

1 (0 0 o 0 0 0 0 1) 0

a 120 (1 0 0 1 0 0 1 1) 1

a 240 (0 0 0 1 0 1 1 0) 2

a 105 (0 o 0 0 1 1 0 1) 3

a 225 (0 1 1 1 0 1 1 0) 4

a 90 (1 1 1 0 0 0 0 1) 5

a 210 (1 0 1 0 0 0 1 0) 6

a 75 (1 o 0 0 1 0 0 1) 7

a 195 (0 0 1 1 0 0 1 0) 8

a 60 (1 1 0 1 o 0 1 0) 9

a 180 (0 1 0 0 1 0 1 1) 10

a 45 (1 1 1 0 1 1 1 0) 11

a 165 (1 1 0 0 0 1 1 0) 12

a 30 (0 0 1 1 0 0 0 0) 13

a 150 (1 0 1 0 0 1 0 0) 14

a 15 (0 0 1 0 0 1 1 0) 15

a 135 (1 1 0 1 1 0 1 0) 16
- 402 -

ABBREVIATIONS

BCH Bose-Chaudhuri-Hocquenghem (code)

BER Bit-Error Rate

CLK Clock

CNT Count

CRC Cyclic Redundancy Check (code)

DBER Decoded Bit-Error Rate

DEC Double-Error Correction

DED Double-Error Detection

ECC Error Correcting Code

EDAC Error Detection And Correction

FBSR Feedback Shift Register

FEC Forward Error Correction

FWD Forward

GF Galois Field

LFSR Linear Feedback Shift Register

LSC Linear Sequential Circuit

LSR Linear Shift Register

LRC Longitudinal Redundancy check

RS Reed-Solomon (code)

REV Reverse

SR Shift Register

SEC Single-Error Correction

TED Triple-Error Detection

VRC Vertical Redundancy Check

- 403-

GLOSSARY

ALARM

Any condition detected by a correction algorithm that prevents correction, such as

error-correction capability exceeded. In some cases, alarms will cause the error-control

system to try another approach, for example using a different set of pointers.

BINARY SYMMETRIC CHANNEL

A channel in which there is equal probability for an information bit being 1 or O.

BLOCK CODE

A block code is a code in which the check bits cover only the immediately preceding

block of information bits.

BURST ERROR RATE

The number of burst-error occurrences divided by total bits transferred.

BURST LENGTH

The number of bits between and including the first and last bits in error; not all of the

bits in between are necessarily in error.

CATASTROPHIC ERROR PROBABILITY (Pc)

The probability that a given defect event causes an error burst which exceeds the

correction capability of a code.

CHARACTERISTIC

See Ground Field.

-404-

CODE POLYNOMIAL

See Codeword.

CODE RATE

See Rate.

CODE VECTOR

See Codeword.

CODEWORD

A set of data symbols (i.e. information symbols or message symbols) together with its

associated redundancy symbols; also called a code vector or a code polynomial.

CONCATENATION

A method of combining an inner code and an outer code, to form a larger code. The

inner code is decoded first. An example would be a convolutional inner code and a

Reed-Solomon outer code.

CONVOLUTIONAL CODE

A code in which the check bits check information bits of prior blocks as well as the

immediately preceding block.

CORRECTABLE ERROR

One that can be corrected without rereading.

CORRECTED ERROR RATE

Error rate after correction.

-405,.

CORRECTION SPAN

The maximum length of an error burst which is guaranteed to be corrected by a burst­

correcting code.

CYCLIC CODE

A linear code with the property that each cyclic (end-around) shift of each codeword is

also a codeword.

CYCLIC REDUNDANCY CHECK (CRe)

An error-detection method in which check bits are generated by taking the remainder

after dividing the data bits by a cyclic code polynomial.

DEFECT

A permanent fault on the media which causes an error burst.

DEFECT EVENT

A single occurrence of a defect regardless of the numbe~ of bits in error caused by the

defect.

DEFECT EVENT RATE (Pe)

The ratio of total defect events to total bits, having the units of defect events per bit.

DETECTION SPAN

For a single-burst detection code, the single-burst detection span is the maximum length

of an error burst which is guaranteed to be detected.

For a single-burst correction code, the single-burst detection span is the maximum

length of an error burst which is guaranteed to be detected without possibility of

miscorrection.

-406 -

If a correction code has a double-burst detection span, then each of two bursts is

guaranteed to be detected without possibility of miscorrection, provided neither burst

exceeds the double-burst detection span.

DISCRETE MEMORYLESS CHANNEL

A channel for which noise affects each transmitted symbol independently, for example,

the binary symmetric channel (BSC).

DISTANCE

See Hamming Distance.

ELEMENTARY SYMMETRIC FUNCTIONS

Elementary symmetric functions are the coefficients of the error locator polynomial.

ERASURE

An errata for which location information is known. An erasure has a known location,

but an unknown value.

ERASURE CORRECTION

The process of correcting errata when erasure pointers are available. A Reed-Solomon

code can correct more errata when erasure pointers are available. It is not necessary

for erasure pointers to be available for all errata when erasure correction is employed.

ERASURE LOCATOR POLYNOMIAL

A polynomial whose roots provide erasure-location information.

ERASURE POINTER

Information giving the location of an erasure. Internal erasure pointers might be de­

rived from adjacent interleave error locations. External erasure pointers might be

derived from run-length violations, amplitude sen~ing. timing sensing. etc.

-407 -

ERRATA LOCATOR POLYNOMIAL

A polynomial whose roots provide errata-location information.

ERRATUM

Either an error or an erasure.

An errata for which location information is not known. In general, an error represents

two unknowns, error location and value. In the binary case, the only unknown is the

location.

ERROR BURST

A clustered group of bits in error.

ERROR LOCATION OR DISPLACEMENT

The distance by some measure (e.g., bits or bytes) from a reference point (e.g., beginn­

ing or end of sector or interleave) to the burst. For Reed-Solomon codes, the error

location is the log of the error-location vector and is the symbol displacement of the

error from the end of the codeword.

ERROR LOCA nON VECTOR

Vector form of error location (antilog of error location).

ERROR LOCATOR POLYNOMIAL

A polynomial whose roots provide error-location information.

ERROR VALUE

The error value is the bit pattern which must be exclusive-or-ed (XOR-ed) against the

data at the burst location in order to correct the error.

-408 -

EXPONENT

See Period.

EXTENSION FIELD

See Ground Field.

Refer to Section 2.8 for the definition of a field.

FINITE FIELD

A field with a finite number of elements; also called a Galois field and denoted as GF(n)

where n is the number of elements in the field.

FORWARD-ACTING CODE

An error-control code that contains sufficient redundancy for correcting one or more

symbol errors at the receiver.

FORW ARD POLYNOMIAL

A polynomial is called the forward polynomial when it is necessary to distinguish .it

from its reciprocal polynomial.

GROUND FIELD

A finite field with q elements, GF(q) , exists if, and only if, q is a power of a prime.

Let q =pfi where p is a prime and n is an integer, then GF(p) is referred to as the

ground field and GF{pll) as the extension field of GF(p).

The prime P is called the characteristic of the field.

-409-

GROUP CODE

See Linear Code.

HAMMING DISTANCE

The Hamming distance between two vectors IS the number of corresponding symbol

positions in which the two vectors differ.

HAMMING WEIGHT

The Hamming weight of a vector is the number of nonzero symbols in the vector.

HARD ERROR

An error condition that persists on re-read; a hard error is assumed to be caused by a

defect on the media.

IRREDUCIBLE

A polynomial of degree n is said to be irreducible if it is not divisible by any polyno­

mial of degree greater than zero but less than n.

ISOMORPHIC

If two fields are isomorphic they have the same structure. That is, one can be obtained

from the other by some appropriate one-to-one mapping of elements and operations.

LINEAR (GROUP) CODE

A code wherein the EXCLUSIVE-OR sum of every pair of codewords is also a codeword.

LINEAR FUNCTION

A function is said to be linear if the properties below hold:

a. Linearity: f(a-x) = a-f(x)

b. Superposition: f(x +y) = f(x)+f(y)

-410-

LINEARLY DEPENDENT

A set of n vectors is linearly dependent if, and only if, there exists a set of n scalars

Ci, not all zero, such that:

LINEARLY INDEPENDENT

A set of vectors is linearly independent if they are not linearly dependent. See Linear­

ly Dependent.

LONGITUDINAL REDUNDANCY CHECK (LRC)

A check byte or check word at the end of a block of data bytes or words, selected to

make the parity of each column of bits odd or even.

MAJORITY LOGIC

A majority logic gate has an output of one if, and only if, more than half its inputs are

ones.

MAJORITY LOGIC DECODABLE CODE

A code that can be decoded with majority logic gates. See Majority Logic.

MINIMUM DISTANCE OF A CODE

The minimum Hamming distance between all possible pairs of codewords. The minimum

distance of a linear code is equal to its minimum weight.

MINIMUM FUNCTION

See Minimum Polynomial.

- 411 -

MINIMUM POLYNOMIAL OF Qi

The monic polynomial m(x) of smallest ~egree with coefficients in a ground field such

that m(Qi) =0, where Qi is any element of an extension field. The minimum polynomial of

Qi is also called the minimum function of Qi.

MINIMUM WEIGHT OF A CODE

The minimum weight of a linear (group) code's non-zero codewords.

MISCORRECTION PROBABILITY (pmc)

The probability that an error burst which exceeds the guaranteed capabilities of a code

will appear correctable to a decoder. In this case, the decoder actually increases the

number of errors by changing correct data. Miscorrection probability is determined by

record length, total redundancy, and correction capability of the code.

Pmc usually represents the miscorrection probability for all possible error bursts, assum­

ing all' errors are possible and equally probable. Some codes, such as the Fire Code,

have a higher miscorrection' probability for particular error bursts than for all possible

error bursts.

MISDETECTION PROBABILITY (pmd)

The probability that an error burst which exceeds the correction and detection capabil­

ities of a code will cause all syndromes to be zero and thereby go undetected. Mis­

detection probability is determined by the total number of redundancy bits, assuming

that all errors are possible and equally probable.

MONIC POLYNOMIAL

A polynomial is said to be monic if the coefficient of the highest degree term is one.

(o.k) CODE

A block code with k information symbols, n-k check symbols, and n total symbols

(information plus check symbols).

- 412-

A convolutional code with constant length n, code rate R (efficiency), and information

symbols k=Rn.

Number of combinations of n objects taken r at a time, without regard to order.

n! = r!(n-r)!

n-TUPLE

An ordered set of n field elements ai, denoted by (al,a2,' •• ,an)'

ORDER OF A FIELD

The order of a field is the number of elements in the field. The number of elements

may be infinite (infinite field) or finite (finite field).

ORDER OF A FIELD ELEMENT

The order e of a field element f3 is the least positive integer for which f3e=1. Elements

of order 2n-l in GF(2n) are called primitive elements.

PARITY

The property of being odd or even. The parity of a binary vector is the parity of the

number of ones the vector contains. Parity may be computed by summing modulo-2 the

bits of the vector.

- 413-

PARITY CHECK CODE

A code in which the encoder accepts a block of information bits and computes for

transmission, a set of modulo-2 sums (XOR) across .various of these information bits and

possibly information bits in prior blocks. A decoder at the receiving point reconstructs

the original information bits from the set of modulo-2 sums. Every binary parity-check

code is also a linear, or group code. See also Block Code and Convolutional Code.

PERFECT CODE

An e error correcting code over GF(q) is said to be perfect if every vector is distance

no greater than e from the nearest codeword. Examples are Hamming and Golay codes.

PERIOD

The period of a polynomial P(x) is the least positive integer e such that xe+ 1 is divi­

sible by P(x).

POINTER

Location information for an erasure. This information is normally provided. by special

hardware.

POLYNOMIAL CODE

A linear block code whose codewords can be expressed in polynomial form and are

divisible by a generator polynomial. This clas~ of codes includes the cyclic and shor­

tened cyclic.codes.

POWER SUM SYMMETRIC FUNCTIONS

The power sum symmetric functions are the syndromes.

PRIME FJELD

A field is called prime if it possesses no. sub fields except that consisting of the whole

field.

~414 -

PRIME SUBFIELD

The prime subfield of a field is the intersection of all sub fields of the field.

PRIME POLYNOMIAL

See Irreducible.

PRIMITIVE POLYNOMIAL

A polynomial is said to be primitive if its period is 2m-I, where m is the degree of the

polynomial.

RANDOM ERRORS

For the purposes of this book, the term 'random errors' refers to an error distribution

in which error bursts (defect events) occur at random intervals and each burst affects

only a single symbol, usually one bit or one byte.

The code rate, or rate (R) of a code is the ratio of information bits (k) to total

bits (n); information bits plus redundancy. It is a measure of code efficiency.

R =.k.
n

RA W BURST ERROR RATE

Burst error rate before correction.

READABLE ERASURE

A suspected erasure that contains no errors.

- 415-

RECIPROCAL PoLYNOMIAL

'The reciprocal ofa poiynomial F(Jt) is defined as

where III is the degree ofF(x).

····RECURRENTCOI>E

..... See Collvolutional Code.

RErr(JCIBLE

A"pOlynoIlliar'ofdegree nissrudto'be redliCIble if itisdi~isibleby's'omi'polyn()filial of

adegreegreatetthan o but lesktliait n .

. RELATIVEi.yPRIME

1r; the greatest'corilmon divisorof'i~oP61yri6niials: is ,. 1,': th'~y are' ~aid to;!6e:r~j~ti ~ely
prime.

:SELF,cRECIPROCALPOLYNOMIAL

SHORTENiHiCYCLICCODE

.Alillearcodeformedbydeleting 'leadihginfohtiatloh'digiisfr()Ill the~Ode words ofa

cyClic code. Sh6rtened c},cHc cOdes are no{cydic.

SOFT ERROR

An -error tnatt1isappears orbecomescort~ttabj~ :bo :ie5~~d; a soft errorjs'a~su;;;~d to

'be ,due ,atll~ast iilpart,t()aTdln'sientcau~e sudlis~le2fiic~lridi~e.

SUBFIELD

A subset of a field which satisfies the defmition of a field. See Section 2.8 for the

definition of a field.

SYNC FRAMING ERROR

When synchronization occurs early or late by one or more bits.

SYNDROME

A syndrome is a vector (a symbol or set of symbols) containing information about an

error or errors. Some codes use a single syndrome while others use multiple syndromes.

A syndrome is usually generated by taking the EXCLUSIVE-OR sum of two sets of

redundant bits or symbols, one set generated on write and one set generated on read.

SYSTEMATIC CODE

A code in which the codewords are separated into two parts, with all information

symbols occurring first and all redundancy symbols following.

UNCORRECTABLEERROR

An error situation which exceeds the correction capability of a code. An uncorrectable

error caused by a soft error on read will become correctable on re-read.

UNCORRECTABLESECTOR

A sector which contains an uncorrectable error.

UNCORRECTABLE SECTOR EVENT RATE

. The ratio of total uncorrectable sectors to total bits, having the units of uncorrectable

sector events per bit.

- 417-

UNDE.TECTED ERRONEOUS DATA PROBABILITY (Pued)

The probability that erroneous data will be transferred and not detected, having the

units of undetected erroneous data events per bit. Pued for a code that does not have

pattern sensitivity is the product of miscorrection probability (pmc) of the error COr­

recting code (if present). the misdetection probability (pmd) of the error detectiIlg code

(if present), and the probability of having an error that exceeds guaranteed capabilities

of the code (Pe*Pc).

A code with pattern sensitivity will have two undetected erroneous data rates: one for

all possible error bursts, and a higher one for the sensitive patterns.

UNREADABLE ERASURE

A suspected erasure that actually contains an error.

UNRECOVERABLE ERROR

Same as hard error.

VERTICAL REDUNDANCY CHECK NR.C)

Check bit(s) on a byte or word selected to make total byte or word parity odd or even.

WEIGHT

The weight of a codeword is the number of non-zero symbols it contains.

- 418-

BIBLIOGRAPHY

BOOKS

Abramson, N., InfomUJtion Theory and Coding, McGraw-Hili, New York, 1963.

Aho, A., et. al., The Design and Analysis of Computer Algorithms, Addison-Wesley,
Massachusetts, 1974.

Albert, A., Fundamental Concepts of Higher Algebra, 1st ed., University of Chicago
Press, Chicago, 1956.

Artin, E., Galois Theory, 2nd ed., University of Notre Dame Press, Notre Dame, 1944.

Ash, R., InfomUJtion Theory, Wiley-Interscience, New York, 1965.

Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, New York, 1968.

Berlekamp, E. R., A Survey of Algebraic Coding Theory, Springer-Verlag,
New York, 1970.

Berlekamp, E. R., Key Papers in The Development of Coding Theory, IEEE Press,
New York, 1974.

Bhargava, V., et. aI., Digital Communications by Satellite, Wiley, New York, 1981.

Birkhoff, G. and T. C. Bartee., Modem App/ied Algebra, McGraw-HilI, New York, 1970.

Birkhoff, G. and S. MacLane, A Survey of Modem Algebra, 4th ed., Macmillan,
New York,1977.

Blake, I. F., Algebraic Coding Theory: History and Development, Dowden, Hutchinson &
Ross, Pennsylvania, 1973.

Blake, I. F. and R. C. Mullin, The Mathematical Theory of Coding, Academic Press,
New York, 1975.

Burton, D. M., Elementary Nwnber Theory, Allyn & Bacon, Boston, 1980.

Cameron, P. and J. H. Van Lint, Graphs, Codes and Designs, Cambridge University Press,
Cambridge, 1980.

Campbell, H. G., Linear Algebra With Applications, 2nd ed., Prentice-HaIl,
New Jersey, 1980.

Carlson, A. B., Communication Systems, 2nd ed., McGraw-Hill, New York, 1968.

Clark, Jr., G. C. and 1. B. Cain, Error-Correction Coding for Digital Communications,
Plenum Press, New York, 1981.

Cohen, D. I. A., Basic Techniques of Combinatorial Theory , Wiley, New York, 1978.

- 419 -

Crouch, R. and E. Walker, Introduction to Modem Algebra and Analysis, Holt, Rinehart
& Winston, New York, 1962.

Davies, D. W. and D. L. A. Barber, Communication Networks for Computers, Wiley,
New York, 1973.

Davisson, L. D. and R. M. Gray, Data Compression, Dowden, Hutchinson & Ross,
Pennsylvania, 1976.

Doll, D. R., Data Communications: Facilities, Networks, and Systems Design, Wiley,
New York, 1978.

Durbin, J. B., Modem Algebra: An Introduction, Wiley, New York, 1979.

Feller, W., An Introduction to Probability Theory and Its Applications, 2nd ed., Wiley,
New York, 1971.

Fisher, J. L., Application-Oriented Algebra, Harper & Row, New York, 1977.

Folts, H. C., Data Communications Standards, 2nd ed., McGraw-HilI, New York, 1982.

Forney, Jr., G. D., Concatenated Codes, M.LT. Press, Massachusetts, 1966.

Gallager, R. G., Injo171Ultion Theory and Reliable Communication, Wiley, New York, 1968.

Gere, J. M. and W. W. Williams, Jr., Matrix Algebra for Engineers, Van Nostrand,
New York, 1965.

Gill, A., Linear Sequential Circuits, McGraw~HiI1, New York, 1967.

Gill, A., Applied A 1gebra for the Computer Sciences. Prentice-Han, New Jersey, 1976.

Golomb, S., et. aI., Digital Communications with Space Applications, Peninsula Publishing,
Los Altos, California, 1964.

Golomb, S., et. al., Shift Register Sequences, Aegean Park Press, Laguna Hills, Cali­
fornia, 1982.

Gregg, W. D., Analog and Digital Communication, Wiley, New York, 1977.

Hamming, R. W., Coding and Injo171Ultion Theory, Prentice-Hall, New Jersey, 1980.

Hardy, G. and E. M. Wright, An Introduction to the Theory of Nwnbers, 5th ed.,
Clarendon Press, Oxford, 1979.

Herstein, LN., Topics in Algebra, 2nd ed., Wiley, New York, 1975.

Jayant, N. S., Wavefonn Quantization and Coding, IEEE Press, New York, 1976.

Jones, D. S., Elementary Info171Ultion Theory, Clarendon Press, Oxford, 1979.

Kaplansky, I., Fields and Rings, 2nd ed., The University of Chicago Press, Chicago, 1965.

-420 -

Khinchin, A. I., Mathematical Foundations of Information Theory, Dover, New York,
1957.

Knuth, D. E., The An of Computer Programming, Vol. I, 2nd ed., Addison-Wesley,
Massachusetts, 1973.

Knuth, D. E., The An of Computer Programming, Vol. 2, Addison-Wesley, Massachusetts,
1969.

Knuth, D. E., The An of Computer Programming, Vol. 3, Addison-Wesley, Massachusetts,
1973.

Kuo, F. F., Protocols and Techniques for Data Communication Networks, Prentice-Hall,
New Jersey, 1981.

Lathi, B. P., An Introduction to Random Signals and Communication Theory, Interna­
tional Textbook Company, Pennsylvania, 1968.

Lin, S., An Introduction to Error-Correcting Codes, Prentice-Han, New Jersey, 1970.

Lipson, J. D., Elements of Algebra and Algebraic Computing, Addison-Wesley,
Massachusetts, 1981.

Lucky, R. W., et. al., Principles of Data Communication, McGraw-Hill, New York, 1968.

MacWilliams, F. J. and N. J. A. Sloane, The Theory of Error-Correcting, Vol. 16, North-
Holland, Amsterdam, 1977.

Martin, J., Communications Satellite Systems, Prentice-Hall, New Jersey, 1978.

Martin, J., Telecommunications and the Computer, Prentice-Hall, New Jersey, 1969.

McEliece, R. J., The Theory of Infonnation and Coding, Addison-Wesley, Massachusetts,
1977.

McNamara, J. E., Technical Aspects of Data Communication, Digital Press, Massachusetts,
1978.

Niven, I., An Introduction to the Theory of Numbers, 4th ed., Wiley, New York, 1960.

Owen, F. E., PCM and Digital Transmission Systems, McGraw-Hill, New York, 1982.

Peterson, W. W., and E. J. Weldon, Jr., Error-Correcting Codes, 2nd ed., MIT Press,
Massachusetts, 1972.

Pless, V., Introduction to the Theory of Error-Correcting Codes, Wiley, New York, 1982.

Rao, T. R. N., Error Coding for Arithmetic Processors, Academic Press, New York, 1974.

Sawyer, w. W.,A Concrete Approach to Abstract Algebra, Dover, New York, 1959.

Sellers, Jr., F. F., et. aI., Error Detecting Logic for Digital Computers, McGraw-Hill,
New York, 1968.

- 421 -

Shanmugam, K. S., Digital and Analog Communication Systems, Wiley, New York, 1979.

Shannon, C. E. and W. Weaver, The Mathematical Theory of Communication, University
of Illinois Press, Chicago, 1980.

Slepian, D., Key Papers in The Development of Infonnation Theory, IEEE Press,
New York, 1974.

Spencer, D. D., Computers in Nwnber Theory, Computer Science Press, Maryland, 1982.

Stafford, R. H., Digital Television: Bandwidth Reduction and Communication Aspects,
Wiley-Interscience, New York, 1980.

Stark, H. M, An Introduction to Nwnber Theory, The MIT Press, Cambridge, 1970.

Tanenbaum, A. S., Computer Networks, Prentice-Hall, New Jersey, 1981.

Viterbi, A. J., Principles of Digital Communication and Coding, McGraw-Hili, New York,
1979.

Wakerly, J., Error Detecting Codes, Self-Checking Circuits and Applications, North­
Holland, New York, 1978.

Wiggert, D., Error-Control Coding and Applications, Artech House, Massachusetts, 1978.

Ziemer, R. E., and W. H. Tranter, Principles of Communications: Systems, Modulation,
and Noise, Houghton Mifflin, Boston, 1976.

- 422 -

IBM TECHNICAL DISaoSURE BUUETlN

(Chronologically Ordered)

D. C. Bossen, et. at., "Intermittent Error Isolation in a Double-Error Environment."
15 (12), 3853 (May 1973).

W. C. Carter, "Totally Self-Checking Error for K Out of N Coded Data." 15 (12),
3867-3870 (May 1973).

L. R. Baht and D. T. Tang, "Shortened Cyclic Code With Burst Error Detection and
Synchronization Recovery Capability." 16 (6),2026-2027 (Nov. 1973).

L. R. Bahl and D. T. Tang, "Shortened Cyclic Code With Burst Error Detection and
Synchronization Recovery Capability." 16 (6),2028-2030 (Nov. 1973).

P. Hodges, "Error Detecting Code With Enhanced Error Detecting Capability." 16 (11),
3749-3751 (Apr. 1974).

D. M. Oldham and A. M. Patel, "Cyclical Redundancy Check With a Nonself-Reciprocal
Polynomial." 16 (11), 3501-3503 (Apr. 1974).

G. H. Thompson, "Error Detection and Correction Apparatus." 17 (1), 7-8 (June 1974).

R. A. Healey, "Error Checking and Correction of Microprogram Control Words With a
Late Branch Field." 17 (2), 374-381 (July 1974).

A. M. Patel, "Coding Scheme for Multiple Selections Error Correction." 17 (2), 473-475
(July 1974).

D. C. Bossen and M. Y. Hsiao, "Serial Processing of Interleaved Codes." 17 (3), 809-810
(Aug. 1974).

K. B. Day and H. C. Hinz, "Error Pointing in Digital Signal Recording." 17 (4), 977-978
(Sept. 1974).

W. C. Carter and A. B. Wadia, "Contracted Reed-Solomon Codes With Combinational
Decoding." 17 (5), 1505-1507 (Oct. 1974).

W. D. Brodd and R. A. Donnan, "Cyclic Redundancy Check for Variable Bit Code Widths."
17 (6), 1708-1709 (Nov. 1974).

T. A. Adams, et. al., "Alternate Sector Assignment." 17 (6),1738-1739 (Nov. 1974).

W. C. Carter, et. al., "Practical Length Single-Bit Error Correction/Double-Bit Error
Detection Codes for Small Values of b." 17 (7), 2174-2176 (Dec. 1974).

I. E. Dohermann, "Defect Skipping Among Fixed Length Records in Direct Access
Storage Devices." 19 (4),1424-1426 (Sept. 1976).

R. E. Cummins, "Displacement Calculation of Error Correcting Syndrome Bytes by Table
Lookup." 22 (8b), 3809-3810 (Ian. 1980).

- 423 -

R. C. Cocking, et. al., "Self-Checking Number Verification and Repair Techniques."
22 (to), 4673-4676 (Mar. 1980).

P. Hodges, "Error-Detecting Code for Buffered Disk." 22 (12), 5441- 5443 (May 1980).

F. G. Gustavson and D. Y. Y. Yun, "Fast Computation of Polynomial Remainder
Sequences. " 22 (12), 5580-5581 (May 1980).

V. Goetze, et, al., "Single Error Correction in CCD Memories." 23 (1), 215-216 (June
1980).

J. W. Barrs and J. C. Leininger, "Modified Gray Code Counters." 23 (2), 460-462 (July
1980).

J. L. Rivero, "Program for Calculating Error Correction Code." 23 (3), 986-988 (Aug.
1980).

N. N. Nguyen, "Error Correction Coding for Binary Data." 23 (4), 1525-1527 (Sept. 1980).

J. C. Mears, Jr., "High-Speed Error Correcting Encoder/Decoder." 23 (4), 2135-2136 (Oct.
1980).

G. W. Kurtz, et. al., "Odd-Weight Error Correcting Code for 32 Data Bits and 13 Check
Bits." 23 (6), 2338 (Nov.1980).

J. R. Calva, et. al., "Distributed Parity Check Function." 23 (6),2451-2456 (Nov. 1980).

J. R. Calva and B. J. Good, "Fail-Safe Error Detection With Improved Isolation of 110
Faults." 23 (6),2457-2460 (Nov. 1980).

S. G. Katsafouros and D. A. Kluga, "Memory With Selective Use of Error Detection and
Correction Circuits." 23 (7a), 2866-2867 (Dec. 1980).

R. A. Forsberg, et. al., "Error Detection for Memory With Partially Good. Chips. "
23 (7b), 3272-3273 (Dec. 1980).

R. H. Linton, "Detection of Single Bit Failures in Memories Using Longitudinal Parity.·
23 (8), 3603-3604 (Jan. 1981). .

C. L. Chen, "Error Correcting Code for Multiple Package Error Detection." 23 (8),
3808-3810 (Jan. 1981).

D. C. Bossen, et. al., "Separation of Error Correcting Code Errors and Addressing
Errors. " 23 (9), 4224 (Feb. 1981).

G. S. Sager and A. J. Sutton, "System Correction of Alpha-Particle- Induced Uncorrec­
table Error Conditions by a Service Processor. " 23 (9), 4225-4227 (Feb. 1981).

W. G. Bliss, et. al., "Error Correction Code." 23 (10),4629-4632 (Mar. 1981).

W. G. Bliss, "Circuitry for Performing Error Correction Calculations on Baseband
Encoded Data to Eliminate Error Propagation." 23 (10), 4633-4634 (Mar. 1981).

- 424 -

P. A. Franaszek, "Efficient Code for Digital Magnetic Recording.· 23 (11), 5229:.5232
(Apr. 1981).

C. L. Chen, "Error Checking of ECC Generation Circuitry." 23 (11), 5055-5057 (Apr.
1981).

C. L. Chen and B. L. Chu, "Extended Error Correction With an Error Correction Code."
23 (11), 5058-5060 (Apr. 1981).

G. G. Langdon, Jr., "Table-Driven Decoder Involving Prefix Codes." 23 (12), 5559-5562
(May 1981).

D. F. Kelleher, "Error Detection for All Errors in a 9-Bit Memory Chip." 23 (12), 5441
(May 1981).

S. W. Hinkel, "Utilization of CRC Bytes for Error Correction on Multiple Formatted Data
Strings. " 24 (lb), 639-643 (June 1981).

D. A. Goumeau and S. W. Hinkel, "Error Correction as an Extension of Error Recovery
on Information Strings." 24 (lb), 651-652 (June 1981).

J. D. Dixon, et. al., "Parity Mechanism for Detecting Both Address and Data Errors."
24 (lb), 794 (June 1981).

A. M. Patel, "Dual-Function ECC Employing Two Check Bytes Per Word." 24,(2),
1002-1004 (July 1981).

D. Meltzer, "CCD Error Correction System." 24 (3), 1392-1396 (Aug. 1981).

I. Jones, "Variable-Length Code-Word EncoderIDecoder." 24 (3), 1514-1515 (Aug. 1981).

D. B. Convis, et. al., "Sliding Window Cross-Hatch Match Algorithm for Spelling Error
Correction. " 24 (3), 1607-1609 (Aug. 1981).

N. N. Heise and W. G. Verdoom, ·Serial Implementation of b-Adjacent Codes." 24 (5),
2366-2370 (Oct. 1981). .

S. R. McBean, "Error Correction at a Display Terminal During Data Verification." 24 (5),
2426-2427 (Oct. 1981).

D. T. Tang and P. S. Yu, "Error Detection With Imbedded Forward Error Correction."
24 (5), 2469-2472 (Oct. 1981).

R. W. Alexander and J. L. Mitchell, "Uncompressed Mode Trigger." 24 (5), 2476-2480
(Oct. 1981).

V. A. Albaugh, et. al., "Sequencer for Converting Any Shift Register Into a Shift
Register Having a Lesser Number of Bit Positions.· (Oct. 1981).

A. R. Barsness, W. H. Cochran, W. A. Lopour and L. P. Segar, "Longitudinal Parity
Generation for Single- Bit Error Correction." 24 (6),2769-2770 (Nov. 1981).

S. Lin and P. S. Yu, "Preventive Error Control Scheme.· 24 (6), 2886-2891 (Nov. 1981).

- 425 - I

D. T. Tang and P. S. Yu, "Hybrid Go-Back-N ARQ With Extended Code Block." 24 (6),
2892-2896 (Nov. 1981). .

F. Neves and A. K. Uht, "Memory Error Correction Without ECC." 24 (7a) , 3471 (Dec.
1981).

E. S. Anolick, et. aI., "Alpha Particle Error Correcting Device. " 24 (8), 4386 (Jan. 1982).

W. H. McAnney, "Technique for Test and Diagnosis of Shift-Register Strings." 24 (8),
4387-4389 (Jan. 1982).

F. J. Aichelmann, Jr. and L. K. Lange, "Paging Error Correction for Intermittent Errors. II

24 (9), 4782-4783 (Feb. 1982).

R. E. Starbuck, "Self-Correcting DASD." 24 (10), 4916 (Mar. 1982).

W. H. Cochran and W. A. Lopour, "Optimized Error Correction! Detection for Chips
Organized Other Than By-I." 24 (10),5275-5276 (Mar. 1982).

S. Bederman, et. aI., "Codes for Accumulated- Error Channels." 24 (lla), 5744-5748 (Apr.
1982).

M. P. Deuser, et. aI., "Correcting Errors in Cached Storage Subsystems. II 24 (lla),
5347-6214 (Apr. 1982).

P. T. Burton, "Method for Enhancement of Correctability of Recording Data Errors in
Computer Direct-Access Storage Devices." 24 (lIb), 6213 (Apr. 1982).

A. R. Barsness, et. aI., "ECC Memory Card With Built-in Diagnostic Aids and Multiple
Usage." 24 (lIb), 6173 (Apr. 1982).

- 426 -

NATIONAL TECHNICAL INFORMATION SERVICE

Altman, F. J., et. aI., "Satellite Communications Reference Data Handbook." AD-746 165,
(July 1972).

Assmus, Jr., E. F. and H. F. Mattson, Jr., "Research to Develop the Algebraic Theory of
Codes." AD-678 108, (Sept. 1968).

Assmus, Jr., E. F., et. aI., "Error-Correcting Codes." AD-754234, (Aug. 1972).

Assmus, Jr., E. F., et. aI., "Cyclic Codes." AD-634989, (Apr. 1966).

Assmus, Jr., E. F., et. aI., "Research to Develop the Algebraic Theory of Codes."
AD-656 783, (June 1967).

Bahl, L. R., "Correction of Single and Multiple Bursts of Error. " AD-679 877,
1968).

Benelli, G., "Multiple-Burst-Error-Correcting-Codes." N78-28316, (Apr. 1977).

(0 c t.

Benice, R. J., et. aI., "Adaptive Modulation and Error Control Techniques." AD-484 188,
(May 1966).

Brayer, K., "Error Patterns and Block Coding for the Digital High-Speed Autovon
Channel. " AD-A022 489, (Feb. 1976).

Bussgang, J. J. and H. Gish, "Analog Coding." AD-721 228, (Mar. 1971).

Cetinyilmaz, N., "Application of the Computer for Real Time Encoding and Decoding of
Cyclic Block Codes. " AD/A-021 818, (Dec. 1975).

Chase, D., et. aI., "Troposcatter Interleaver Study RepOrt." AD/A-008 523, (Feb. 1975).

Chase, D., et. aI., "Coding/MUX Overhead Study." AD/A-009 174, (Mar. 1975.

Chase, Dr., D., et. aI., "Multi-Sample Error Protection Modulation Study." AD/A-028 985,
(May 1976).

Chase, Dr. D., et. aI., " DemodlDecoderIntegration. " AD/A-053 685, (Apr. 1978).

Chien, R. T. and S. W. Ng., "L-Step Majority Logic Decoding." AD-707 877, (June 1970).

Chien, R. T., et. aI., "Hardware and Software Error Correction Coding." AD/A-OI7 377,
(Aug. 1975).

Choy, D. M-H., "Application of Fourier Transform Over Finite Fields to Error-Correcting
Codes." AD-778 102, (Apr. 1974).

Covitt, A. L., "Performance Analysis of a Frequency Hopping Modem." AD-756 840, (Dec.
1972).

DonnaIly, W., "Error Probability in Binary Digital FM Transmission Systems."
AD/A-056 237, (Feb. 1978).

- 427 -

Ellison, J. T., "Universal Function Theory and Galois Logic Studies." AD-740 849, (Mar.
1972).

Ellison, J. T. and B. Kolman, "Galois Logic Design." AD-717 205, (Oct. 1970).

Forney, Jr" G., "Study of Correlation Coding." AD-822 106, (Sept. 1967).

Gilhousen, K. S., et. al., "Coding Systems Study for High Data Rate Telemetry Links."
N71-27786, (Jan. 1971).

Gish, H., "Digital Modulation Enhancement Study." AD-755 939, (Jan. 1973).

Hamalaninen, J. R. and E. N. Skoog, "Error Correction Coding With NMOS Micropro­
cessors: a 6800-Based 7,3 Reed-Solomon Decoder.· AD/A-073 088, (May 1979).

Horn, F. M., "Design Study of Error-Detecting and Error-Correcting Shift Register."
N65-21302, (Apr. 1965).

Janoff, N. S., "Computer Simulation of Error-Correcting Codes." AD-777 198, (Sept.
1973).

Kindle, J. T., "Map Error Bit Decoding of Convolutional Codes." AD/A-061 639, (Aug.
1977).

Lee, L., "Concatenated Coding Systems Employing a Unit-Memory Convolutional Code
and a Byte-Oriented Decoding Algorithm." N76-31932, (July 1976).

Liu, K. Y., et. al., "The Fast Decoding of Reed-Solomon Codes Using High-Radix Fermat
Theoretic Transforms." N77-14057.

Martin, A. F., "Investigation of Bit Interleaving Techniques for Use with Viterbi
Decoding Over Differentially Coded Satellite Channels." ADIA-003 807, (July 1974).

Marver, J. M., "Complexity Reduction in Galois Logic Design." AD/A-056 190, "(Dec.
1977).

Massey, J. L., "Joint Source and Channel Coding." AD/A-045 938, (Sept. 1977).

Mitchell, M. E., "Coding for Turbulent Channels." AD-869-973, (Apr. 1970).

Mitchell, M. E. and Colley, L. E., "Coding for Turbulent Channels." AD-869 942, (Apr.
1970).

Mitchell, M. E., et. al., "Coding for Turbulent Channels. " AD-869 941, (Apr. 1970).

Morakis, J. C., "Shift Register Generators and Applications to Coding." X-520-68-133,
(Apr. 1963).

Muggia, A., "Effect of the Reduction of the Prandtl in the Stagnation Region Past an
Axisymmetric Blunt Body in Hypersonic Flow. " AD-676 388, (July 1968).

McEliece, R. J., et. al., "Synchronization Strategies for RFI Channels. " N77-21123.

- 428 -

Nesenbergs, M. "Study of Error Control Coding for the U. S. Postal Service Electronic
Message System." PB-252 689, (May 1975).

Oderwalder, 1. P., et. al., "Hybrid Coding Systems Study Final Report." N72-32206, (Sept.
1972).

Paschburg, R. H., "Software Implementation of Error-Correcting Codes." AD-786 542,
(Aug. 1974).

Pierce, 1. N., "Air Force Cambridge Research Laboratories." AD-744 069, (Mar. 1972).

Reed, I. S., "kth-Order Near-Orthogonal Codes." AD-725 901, (1971).

Reed, I. S. and T. K. Truong, "A Simplified Algorithm for Correcting Both Errors and
Erasures ofR-S Codes." N79-16012, (Sept.lOct. 1978).

Roome, T. F., "Generalized Cyclic Codes Finite Field Arithmetic." AD/A-070 673, (May
1979).

Rudolph, L. D., "Decoding Complexity Study." AD/A-002 155, (Nov. 1974).

Rudolph, L. D., "Decoding Complexity Study II." AD/A-039 023, (Mar. 1977).

Sarwate, D. V., "A Semi-Fast Fourier Transform Algorithm Over GF(2m)." AD/A-034982,
(Sept. 1976).

Schmandt, F. D., "The Application of Sequential Code Reduction." AD-771 587, (Oct.
1973).

Sewards, A., et. al., "Forward Error-Correction for the Aeronautical Satellite Commun­
ications Channel." N79-19193, (Feb. 1979).

Skoog, E. N., "Error Correction Coding with NMOS Microprocessors: Concepts. "
AD/A-072 982, (May 1979).

Solomon, G., "Error Correcting Codes for the English Alphabet and Generalizations."
AD-774 850, (July 1972).

Solomon G. and D. J. Spencer, "Error Correction/Multiplex for Megabit Data Channels."
AD-731 567, (Sept. 1971).

Solomon, G., et. al., "Error Correction. Multiplex for Megabit Data Channels."
AD-731 568, (Sept. 1971).

Stutt, C. A., "Coding for Turbulent Channels." AD-869979, (Apr. 1970).

Tomlinson, M. and B. H. Davies, "Low Rate Error Correction Coding for Channels with
Phase Jitter." AD/A-044 658, (Feb. 1977).

Viterbi, A. J., et. aI., "Concatenation of Convolutional and Block Codes" N71-32505,
(June 1971).

- 429 -

Welch, L. R., et. aI., "The Fast Decoding of Reed-Solomon Codes Using Fermat Theoretic
Transforms and Continued Fractions." N77-14056.

Wong, J. S. L., et. aI., "Review of Finite Fields: Applications to Discrete Fourier Trans­
forms and Reed-Solomon Coding. " N77-33875, (July 1977).

· ,"Coding Investigation for Time Division Multiple Access Communications."
AD-76654O, (July 1973).

· ,"Feedback Communications." ADIA-002 284, (Oct. 1974).

· ,"Majority Decoding Apparatus for Geometric Codes.", AD-D003 369, (Oct. 1976).

- 430 -

A UDTO ENGINEERING SOCTErr PREPRINTS

Adams, R. W., "Filtering in the Log Domain." 1470 (B-5), (May 1979).

Doi, T. T., "Channel Codings for Digital Audio Recordings." 1856 (1-1), (Oct.lNov. 1981).

Doi, T. T., "A Design of Professional Digital Audio Recorder." 1885 (G-2), (Mar. 1982).

Doi, T. T., et. at., "Cross Interleave Code for Error Correction of Digital Audio
Systems." 1559 (H-4), (Nov. 1979).

Doi, Dr. T. T., et. at., "A Long Play Digital Audio Disc System." 1442 (G-4), (Mar. 1979).

Doi, T. T., et. at., "A Format of Stationary-Head Digital Audio Recorder Covering Wide
Range of Application." 1677 (H-6), (Oct.lNov. 1980).

Engberg, E. W., "A Digital Audio Recorder Format for Professional Applications."
1413 (F-1), (Nov. 1978).

Fukuda, G. and T. Doi, "On Dropout Compensation of PCM Systems-Computer Simulation
Method and a New Error-Correcting Code (Cross Word Code)." 1354 (E-7) , (May
1978).

Fukuda, G., et. at., "On Error Correctability of EIAJ-Format of Home Use Digital Tape
Recorders." 1560 (G-5), (Nov. 1979).

Furukawa, T., et. at, "A New Run Length Limited Code." 1839 (1-2), (Oct.lNov. 1981).

Inoue, T., et. aI., "Comparison of Performances Between IPC Code and RSC Code When
Applied to PCM Tape Recorder." 1541 (H-5), (Nov. 1979).

Ishida, Y., et. at., "A PCM Digital Audio Processor for Home Use VTR'S." 1528 (G-6) ,
(Nov. 1979).

Kosaka, M., et. at, "A Digital Audio System Based on a PCM Standard Format."
1520 (G-4), (Nov. 1979).

Lagadec, Dr. R., et. aI., "A Digital Interface for the Interconnection of Professional
Digital Audio Equipment." 1883 (G-6), (Mar. 1982).

Locanthi, B. N. and M. Komamura, "Computer Simulation for Digital Audio Systems."
1653 (K-4), (May 1980).

Muraoka, T., et. aI., "A Group Delay Analysis of Magnetic Recording Systems."
1466 (A-5), (May 1979).

Nakajima, H., et. at., "A New PCM Audio System as an Adapter of Video Tape
Recorders." 1352 (B-l1), (May 1978).

Nakajima, H., et. al., "Satellite Broadcasting System for Digital Audio." 1855 (L-8) ,
(Oct.lNov. 1981).

- 431 -

Odaka, K., et. al., "LSls for Digital Signal Processing to be Used in "Compact Disc
Digital Audio" Players." 1860 (G-5), (Mar. 1982).

Sadashige, K. and H. Matsushima, "Recent Advances in Digital Audio Recording Tech­
nique." 1652 (K-5), (May 1980).

Seno, K., et. al., "A Consideration of the Error Correcting Codes for PCM Recording
System." 1397 (H-4), (Nov. 1978).

Tanaka, K., et. al., "2-Channel PCM Tape Recorder for Professional Use." 1408 (F-3) ,
(Nov. 1978).

Tanaka, K., et. al., "Improved Two Channel PCM Tape Recorder for Professional Use."
1533 (G-3), (Nov. 1979).

Tanaka, K., et. al., "On a Tape Format for Reliable PCM Multi-Channel Tape Recorders. "
1669 (K-l), (May 1980).

Tanaka, K., et. aI., "On PCM Multi-Channel Tape Recorder Using Powerful Code
Format." 1690 (H-5), (Oct.lNov. 1980).

Tsuchiya, Y., et. al., "A 24-Channel Stationary-Head Digital Audio Recorder." 1412 (F-2) ,
(Nov. 1978).

Van Gestel, W. J, et. al., " A Multi-Track Digital Audio Recorder for Consumer Applica­
tions." 1832 (1-4), (Oct. 1981).

Vries, L. B., "The Error Control System of Philips Compact Disc." 1548 (G-8), (Nov.
1979).

Vries, L. B., et. aI., "The Compact Disc Digital Audio System: Mudulation and Error­
Correction." 1674 (H-8), (Oct. 1980).

White, L., et. al., "Refinements of the Threshold Error Correcting Algorithm."
1790 (B-5), (May 1981).

Yamada, Y., et. al., "Professional-Use PCM Audio Processor With a High Efficiency Error
Correction System." 1628 (G-7), (May 1980).

- 432 -

PATENTS

2,864,078, "Phased, Timed Pulse Generator," Seader, (1958).

2,957,947, "Pulse Code Transmission System," Bowers, (1960).

3,051,784, "Error-Correcting System," Neumann, (1962).

3,162,837, "Error Correcting Code Device With Modulo-2 Adder and Feedback Means,"
Meggitt, (1964).

3,163,848, "Double Error Correcting System," Abramson, (1964).

3,183,483, "Error Detection Apparatus," Lisowski, (1965).

3,226,685, "Digital Recording Systems Utilizing Ternary, N Bit Binary and Other Self-
Clocking Forms, " Potter, et al., (1965).

3,227,999, "Continuous Digital Error-Correcting System," Hagelbarger, (1966).

3,242,461, "Error Detection System," Silberg, et al., (1966).

3,264,623, "High Density Dual Track Redundant Recording System," Gabor, (1966).

3,278,729, "Apparatus For Correcting Error-Bursts In Binary Code," Chien, (1966).

3,281,804, "Redundant Digital Data Storage System," Dirks, (1966).

3,281,806, "Pulse Width Modulation Representation of Paired Binary Digits," Lawrance,
et al., (1966).

3,291,972, "Digital Error Correcting Systems," Helm, (1966).

3,319,223, "Error Correcting System, " Helm, (1967).

3,372,376, "Error Control Apparatus, " Helm, (1968).

3,374,475, "High Density Recording System," Gabor, (1968).

3,387,261, "Circuit Arrangement for Detection and Correction of Errors Occurring in
the Transmission of Digital Data, " Betz, (1968).

3,389,375, "Error Control System," (1968).

3,398,400, "Method and Arrangement for Transmitting and Receiving Data Without
Errors," Rupp, et al., (1968).

3,402,390, "System for Encoding and Decoding Information Which Provides Correction of
Random Double-Bit and Triple-Bit Errors," Tsimbidis, et al., (1968).

3,411,135, "Error Control Decoding System," Watts, (1968).

3,413,599, "Handling OfInformation With Coset Codes, " Freiman, (1968).

- 433 -

3,416,132, "Group Parity Handling," MacSorley, (1968).

3,418,629, "Decoders For Cyclic EiTar-Correcting Codes," (1968).

3,421,147, "Buffer Arrangement," Burton, et al., (1969).

3,421,148, "Data Processing Equipment," (1969).

3,423,729, "Anti-Fading Error Correction System," Heller, (1969).

3,437,995, "Error Control Decoding System," Watts, (1969).

3,452,328, "Error Correction Device For Parallel Data Transmission System," Hsiao,
et al., (1969).

3,457,562, "Error Correcting Sequential Decoder," (1969).

3,458,860, "Error Detection By Redundancy Checks," Shimabukuro, (1969).

3,465,287, "Burst Error Detector," (1969).

3,475,723, "Error Control System," Burton, et al., (1969).

3,475,724, "Error Control System," Townsend, et al., (1969).

3,475,725, "Encoding Transmission System," Frey, Jr., (1969).

3,478,313, "System For Automatic Correction Of Burst-Errors, " Srinivasan, (1969).

3,504,340, "Triple Error Correction Circuit," Allen, (1970).

3,506,961, "Adaptively Coded Data Communications System," Abramson, et aI., (1970).

3,508,194, "Error Detection and Correction System," Brown, (1970).

3,508,195, "Error Detection and Corrections Means," Sellers, Jr., (1970).

3,508,196, "Error Detection and Correction Features, " Sellers, Jr., et al., (1970).

3,508,197, "Single Character Error and Burst-Error Correcting Systems Utilizing
Convolution Codes," (1970).

3,508,228, "Digital Coding Scheme Providing Indicium AT Cell Boundaries Under
Prescribed Circumstances to Facilitate Self-Clocking, " Bishop, (1970).

3,519,988, "Error Checking Arrangement for Data Processing Apparatus," Grossman,
(1970).

3,533,067, "Error Correcting Digital Coding and Decoding Apparatus," (1970).

3,534,33 t, "Encoding-Decoding Array," Kautz, (1970).

- 434 -

3,542,756, "Error Correcting," Gallager, (1970).

3,557,356, "Pseudo-Random 4-Level m-Sequences Generators," Baiza, et at., (1971).

3,559,167, "Self-Checking Error Checker for Two-Rail Coded Data," (1971).

3,559,168, "Self-Checking Error Checker for k-Out-of-n Coded Data," (1971) ..

3,560,925, "Detection and Correction of Errors in Binary Code Words," Ohnsorge,
(1971).

3,560,942, "Clock for Overlapped Memories With Error Correction," Enright, Jr., (1971).

3,562,711, "Apparatus for Detecting Circuit Malfunctions, " Davis, et al., (1971).

3,568,148, "Decoder for Error Correcting Codes," Clark, Jr., (1971).

3,573,728, "Memory With Error Correction for Partial Store Operation," Kolankowsky,
et al., (1971).

3,576,952, "Forward Error Correcting Code Telecommunicating System," VanDuuren,
et at., (1971).

3,577,186, "Inversion-Tolerant Random Error Correcting Digital Data Transmission
System," Mitchell, (1971).

3,582,878, "Mltiple Random Error Correcting System," (1971).

3,582,881, "Burst-Error Correcting Systems," Burton, (1971).

3,585,586, "Facsimile Transmission System," Harmon, et al., (1971).

3,587,090, "Great Rapidity Da~ Transmission System, " Labeyrie, (1971).

3,601,798, "Error Correcting and Detecting Systems," Haize, (1971).

3,601,800, "Error Correcting Code Device for Parallel-Serial Transmissions," Lee, (1971).

3,662,337, "Mod 2 Sequential Function Generator for Multibit Binary Sequence." (1972).

3,622,982, "Method and Apparatus for Triple Error Correction," Clark, Jr., et al., (1971).

3,622,984, "Error Correcting System and Method, " (1971).

3,622,985, "Optimum Error-Correcting Code Device for Parallel-Serial Transmissions in
Shortened Cyclic Codes," Ayling, et aI., (1971).

3,622,986, "Error-Detecting Technique for Multilevel Precoded Transmission,· Tang,
et al., (1971).

3,623,155, "Optimum Apparatus and Method for Check Bit Generation and Error Detec­
tion, Location and Correction, " (1971).

- 435 -

3,624,637, "Digital Code to Digital Code Conversions," Irwin, (1971).

3,629,824, "Apparatus for Multiple-Error Correcting Codes, • Bossen, (1971).

3,631,428, "Quarter-Half Cycle Coding for Rotating Magnetic Memory System," King,
(1971).

3,634,821, "Error Correcting System," (1972).

3,638,182, "Random and Burst Error-Correcting Arrangment with Guard Space Error
Correction, " Burton, et al., (1972)

3,639,900, "Enhanced Error Detection and Correction for Data Systems," Hinz, Jr.,
(1972).

3,641,525, "Self-Clocking Five Bit Record-Playback System," Milligan, (1972).

3,641,526, "Intra-Record Resynchronization," Bailey, et ai. (1972).

3,648,236, "Decoding Method and Apparatus for Bose-Chaudhuri- Hocquenghem Codes,"
Burton, (1972).

3,648,239, "System for Translating to and From Single Error Correction-Double Error
Detection Hamming Code and Byte Parity Code," (1972).

3,649,915, "Digital Data Scrambler-Descrambler Apparatus for Improved Error Perform­
ance," Mildonian, Jr., (1972).

3,662,337, "Mod 2 Sequential Function Generator for Multibit Binary Sequence," Low,
et aI., (1972).

3,662,338, "Modified Threshold Decoder for Convolutional Codes," (1972).

3,665,430, "Digital Tape Error Recognition Method Utilizing Complementary Infor­
mation," Hinrichs, et aI., (1972).

3,668,631, "Error Detection and Correction System with Statistically Optimized Data
Recovery," Griffith, et aI., (1972).

3,668,632, "Fast Decode Character Error Detection and Correction System," Oldham III,
(1972).

3,671 ,947, "Error Correcting Decoder," (1972).

3,675,200, "System for Expanded Detection and Correction of Errors in Parallel Binary
Data Produced by Data Tracks," (1972).

3,675,202, "Device for Checking a Group of Symbols to Which a Checking Symbol is
Joined and for Determining This Checking Symbol," Verhoeff, (1972).

3,685,014, "Automatic Double Error Detection and Correction Device," (1972).

- 436 -

3,685,016, "Array Method and Apparatus for Encoding, Detecting, and/or Correcting
Data, " (1972).

3,688,265, "Error-Free Decoding for Failure-Tolerant Memories," (1972).

3,689,899, "Run-Length-Limited Variable-Length Coding with Error Propagation Limita­
tion," Franaszek, (1972).

3,697,947, "Character Correcting Coding System and Method for Deriving the Same,"
(1972).

3,697,948, "Apparatus for Correcting Two Groups of Multiple Errors," Bossen, (1972).

3,697,949, "Error Correction System for Use With a Rotational Single-Error Correction,
Double-Error Detection Hamming Code," (1972).

3,697,950, "Versatile Arithmetic Unit for High Speed Sequential Decoder," (1972).

3,699,516, "Forward-Acting Error Control System," Mecklenburg, (1972).

3,701,094, "Error Control Arrangement for Information Comparison," Howell, (1972).

3,714,629, "Double Error Correcting Method and System," (1973).

3,718,903, "Circuit Arrangement for Checking Stored Information," Oiso, et al., (1973).

3,725,859, "Burst Error Detection and Correction System," Blair, et al., (1973).

3,728,678, "Error-Correcting Systems Utilizing Rate 112 Diffuse Codes," (1973).

3,742,449, "Burst and Single Error Detection and Correction System," Blair, (1973).

3,745,525, "Error Correcting System," (1973).

3,745,526, "Shift Register Error Correcting System," Hong, et al., (1973).

,3,745,528, "Error Correction for Two Tracks in a Multi-Track System," Patel, (1973).

3,753,227, "Parity Check Logic for a Code Reading System," Patel, (1973).

3,753,228, "Synchronizing Arrangement for Digital Data Transmission Systems," Nickolas,
et al., (1973).

3,753,230, "Methods and Apparatus for Unit-Distance Counting and Error-Detection,"
Hoffner II, (1973).

3,755,779, "Error Correction System for Single-Error Correction, Related-Double-Error
Correction and Unrelated- Double-Error Detection, " (1973).

3,764,998, "Methods and Apparatus for Removing Parity Bits from Binary Words,"
Spencer, (1973).

- 437 -

3,766,521, "Multiple B-Adjacent Group Error Correction and Detection Codes and
Self-Checking Translators Therefor," (1973).

3,768,071, "Compensation for Defective Storage Positions," Knauft, et al., (1973).

3,771,126, "Error Correction for Self-Synchronized Scramblers," (1973).

3,771,143, "Method and Apparatus for Providing Alternate Storage Areas on a Magnetic
Disk Pack," Taylor, (1973).

3,774,154, "Error Control Circuits and Methods," Devore, et al., (1973).

3,775,746, "Method and Apparatus for Detecting Odd Numbers of Errors and Burst
Errors of Less Than a Predetermined Length in Scrambled Digital
Sequences," Boudreau, et aI., (1973).

3,777,066, "Method and System for Synchronizing the Transmission of Digital Data
While Providing Variable Length Filler Code," Nicholas, (1973).

3,780,271, "Error Checking Code and Apparatus for an Optical Reader," (1973).

3,780,278, "Binary Squaring Circuit," Way, (1973).

3,781,109, "Data Encoding and Decoding Apparatus and Method," Mayer, Jr., et aI.,
(1973).

3,781,791, "Method and Apparatus for Decoding BCH Codes," Sullivan, (1973).

3,786,201, "Audio-Digital Recording System," (1974).

3,786,439, "Error Detection Systems, " McDonald, et al., (1974).

3,794,819, "Error Correction Method and Apparatus," Berding, (1974).

3,794,821, "Memory Protection Arrangements for Data Processing Systems," (1974).

3,798,597, "System and Method for Effecting Cyclic Redundancy Checking," Frambs,
et al., (1974).

3,800,281, "Error Detection and Correction Systems," Devore, et al., (1974).

3,801,955, "Cyclic Code Encoder/Decoder," Howell, (1974).

3,810,111, "Data Coding With Stable Base Line for Recording and Transmitting Binary
Data, " (1974).

3,814,921, "Apparatus and Method for a Memory Partial-Write of Error Correcting
Encoded Data," Nibby, et al., (1974) ..

3,818,442, "Error-Correcting Decoder for Group Codes," (1974).

3,820,083, "Coded Data Enhancer, Synchronizer, and Parity Remover System," Way,
(1974).

- 438 -

3,825,893, "Modular Distributed Error Detection and Correction Apparatus and Method,"
(1914).

3,828,130, "Data Transmitting System," Yamaguchi, (1914).

3,831,142, "Method and Apparatus for Decoding Compatible Convolutional Codes, " (1974).

3,831,143, "Concatenated Burst-Trapping Codes," Trafton, (1914).

3,832,684, "Apparatus for Detecting Data Bits and Error Bits In Phase Encoded Data,"
Besenfelder, (1914).

3,842,400, "Method and Circuit Arrangement for Decoding and Correcting Information
Transmitted in a Convolutional Code," (1914).

3,843,952, "Method and Device for Measuring the Relative Displacement Between Binary
Signals Corresponding to Information Recorded on the Different Tracks of a
Kinematic Magnetic Storage Device," Husson, (1914).

3,851,306, "Triple Track Error Correction," (1914).

3,858,119, "Error Detection Recording Technique," (1974).

3,859,630, "Apparatus for Detecting and Correcting Errors in Digital Information
Organized into a Parallel Format by Use of Cyclic Polynomial Error Detec­
ting and Correcting Codes," Bennett, (1915).

3,863,228, "Apparatus for Detecting and Eliminating a Transfer of Noise Records to a
Data Processing Apparatus," Taylor, (1975).

3,866,110, "Binary Transmission System Using Error-Correcting Code," Verzocchi, (1915).

3,868,632, "Plural Channel Error Correcting Apparatus and Methods," Hong, et aI.,
(1915).

3,872,431, "Apparatus for Detecting Data Bits and Error Bits in Phase Encoded Data,"
Besenfelder, et al., (1975).

3,876,978, "Archival Data Protection," (1975).

3,818,333, "Simplex ARQ System," Shimizu, et al., (1915).

3,882,457, "Burst Error Correction Code," En, (1975).

3,891,959, "Coding System for Differential Phase Modulation," Tsuji, et aI., (1975).

3,891,969, "Syndrome Logic Checker for an Error Correcting Code Decoder,"
Christensen, (1975). . \

3,893,070, "Error Correction and Detection CirCuit With Modular Coding Unit," (1975).

3,893,071, "Multi Level Error Correction System for High Density Memory," (1975).

- 439 -

3,893,078, "Method and Apparatus for Calculating the Cyclic Code of a Binary
Message," Finet, (1975).

3,895,349, "Pseudo-Random Binary Sequence Error Counters," Robson, (1975).

3,896,416, "Digital Teleccommunications Apparatus Having Error-Correcting Facilities,"
Barrett, et al., (1975).

3,903,474, "Periodic Pulse Check Circuit, " (1975).

3,909,784, "Information Coding With Error Tolerant Code, " Raymond, (1975).

3,913,068, .iError Correction of SeriaI Data Using a Sub field Code," (1975).

3,920,976, "Information Storage Security System," Christensen, et aI., (1975).

3,921,210, "High Density Data Processing System," Halpern, (1975).

3,925,760, "Method of and Apparatus for Optical Character Recognition, Reading and
Reproduction," Mason, et aI., (1975).

3,928,823, "Code Translation Arrangement," (1975).

3,930,239, "Integrated Memory," SaIters, et aI., (1975).

3,938,085, "Transmitting Station and Receiving Station for Operating With a Systematic
Recurrent Code," (1976).

3,944,973, "Error Syndrome and Correction Code Forming Devices," Masson, (1976).

3,949,380, "Peripheral Device Reassignment Control Technique," Barbour, et aI., (1976).

3,958,110, "Logic Array with Testing Circuitry," Hong, et al., (1976).

3,958,220, "Enhanced Error Correction, " (1976).

3,982,226, "Means and Method for Error Detection and Correction of Digital Data,"
(1976).

3,983,536, "Data Signal Handling Arrangements," Telfer, (1976).

3,988,677, "Space Communication System for Compressed Data With a Concatenated
Reed-Solomon-Viterbi Coding Channel," Fletcher, et aI., (1976).

3,996,565, "Programmable Sequence Controller," Nakao, et aI., (1976).

3,997,876, "Apparatus and Method for A voiding Defects in the Recording Medium within
a Peripheral Storage System," Frush, (1976).

4,001,779, "Digital Error Correcting Decoder," Schiff, (1977).

- 440 -

4,009,469, "Loop Communications System with Method and Apparatus for Switch to
Secondary Loop," Boudreau, et al., (1977).

4,013,997, "Error Detection/Correction System, " Treadwell III, (1977).

4,015,238, "Metric Updater for Maximum Likelihood Decoder," (1977).

4,020,461, "Method of and Apparatus for Transmitting and Receiving Coded Digital
Signals," Adams, et al., (1977).

4,024,498, "Apparatus for Dead Track Recovery," (1977).

4,030,067, "Table Lookup Direct Decoder for Double-Error Correcting Correcting (DEC)
BCH Codes Using a Pair of Syndromes, " Howell, et al., (1977).

4,030,129, "Pulse Code Modulated Digital Audio System," (1977).

4,032,886, "Concatentation Technique for Burst-Error Correction and Synchronization,"
En, et al., (1977).

4,035,767, "Error Correction Code and Apparatus for the Correction of Differentially
Encoded Quadrature Phase Shift Keyed Data (DQPSK)," Chen, et al., (1977).

4,037,091, "Error Correction Circuit Utilizing Multiple Parity Bits," (1977).

4,037,093, "Matrix Multiplier in GF(2m), " (1977).

4,044,328, "Data Coding and Error Correcting Methods and Apparatus, " Herff, (1977).

4,044,329, "Variable Cyclic Redundancy Character Detector, " (1977).

4,047,151, "Adaptive Error Correcting Transmission System, " Rydbeck, et al., (1977).

4,052,698, "Multi-Parallel-Channel Error Checking," (1977).

4,054,921, "Automatic Time-Base Error Correction System," (1977).

4,055,832, "One-Error Correction Convolutional Coding System," (1977).

4,058,851, "Conditional Bypass of Error Correction for Dual Memory Access Time
Selection," Scheuneman, (1977).

4,063,038, "Error Coding Communication Terminal Interface," Kaul, et aI., (1977).

4,064,483, "Error Correcting Circuit Arrangement Using Cube Circuits, " (1977).

4,072,853, "Apparatus and Method for Storing Parity Encoded Data from a Plurality of
Input/Output Sources," Barlow, et al., (1978).

4,074,228, "Error Correction of Digital Signals, " (1978).

4,077,028, "Error Checking and Correcting Device,· Lui, et al., (1978).

- 441 -

4,081,789, "Switching Arrangement for Correcting the Polarity of a Data Signal
Transmitted With a Recurrent Code," (1978).

4,087,787, "Decoder for Implementing an Approximation of the Viterbi Algorithm Using
Analog Processing Techniques," (1978).

4,092,713, "Post-Write Address Word Correction in Cache Memory System," Scheuneman,
(1978).

4,099,160, "Error Location Apparatus and Methods," (1978).

4,105,999, "Parallel-Processing Error Correction System," Nakamura, (1978).

4,107,650, "Error Correction Encoder and Decoder," Luke, et al., (1978).

4,107,652, "Error Correcting and Controlling System," (1978).

4,110,735, "Error Detection and Correction, " Maxemchuk, (1978).

4,112,502, "Conditional Bypass of Error Correction for Dual Memory Access Time
Selection," Scheuneman, (1978).

4,115,768, "Sequential Encoding and Decoding of Variable Word Length, Fixed Rate Data
Codes," Eggenberger, et al., (1978).

4,117,458, "High Speed Double Error Correction Plus Triple Error Detection System,"
(1978).

4,119,945, "Error Detection and Correction," Lewis, Jr., et al., (1978).

4,129,355, "Light Beam Scanner with Parallelism Error Correction," Noguchi, (1978).

4,138,694, "Video Signal Recorder/Reproducer for Recording and Reproducing Pulse
Signals, " (1979).

4,139,148, "Double Bit Error Correction Using Single Bit Error Correction, Double Bit
Error Detection Logic and Syndrome Bit Memory," (1979).

4,141,039, "Recorder Memory With Variable Read and Write Rates," Yamamoto; (1979).

4,142,174, "High Speed Decoding of Reed-Solomon Codes," Chen, et al., (1979).

4,145,683, "Single Track Audio-Digital Recorder and Circuit for Use Therein Having
Error Correction," Brookhart, (1979).

4,146,099, "Signal Recording Method and Apparatus," Matsushima, et al. (1979).

4,146,909, "Sync Pattern Encoding System for Run-Length Limited Codes," Beckenhauer,
et al., (1979).

4,151,510, "Method and Apparatus for an Efficient Error Detection and Correction
System," Howell, et al., (1979).

- 442 -

4,151,565, "Discrimination During Reading of Data Prerecorded in Different Codes,"
Mazzola, (1979).

4,156,867, "Data Communication System With Random and Burst Error Protection and
Correction, " Bench, et al., (1979).

4,157,573, "Digital Data Encoding and Reconstruction Circuit," (1979).

4,159,468, "Communications Line Authentication Device, " Barnes, et al., (1979).

4,159,469, "Method and Apparatus for the Coding and Decoding of Digital Information,"
(1979).

4,160,236, "Feedback Shift Register," Oka, et al., (1979).

4,162,480, "Galois Field Computer," (1979).

4,163,147, "Double Bit Error Correction Using Double Bit Complementing," (1979).

4,167,701, "Decoder for Error-Correcting Code Data," Kuki, et al., (1979).

4,168,468, "Radio Motor Control System," Mabuchi, et al., (1979).

4,168,486, "Segmented Error-Correction System," (1979).

4,175,692, "Error Correction and Detection Systems, " (1979).

4,181,934, "Microprocessor Architecture with Integrated Interrupts and Cycle Steals
Prioritized Channel," Marenin, (1980).

4,183,463, "Ram Error Correction Using Two Dimensional Parity Checking," (1980).

4,185,269, "Error Correcting System for Serial by Byte Data," (1980).

4,186,375, "Magnetic Storage Systems for Coded Numerical Data with Reversible
Transcoding into High Density Bipolar Code of Order N," Castellani, et aI.,
(1980).

4,188,616, "Method and System for Transmitting and Receiving Blocks of Encoded Data
Words to Minimize Error Distortion in the Recovery of Said Data Words,"
Kazami, etaI., (1980).

4,189,710, "Method and Apparatus for Detecting Errors in a Transmitted Code," Iga,
(1980).

4,191,970, "Interframe Coder for Video Signals," Witsenhausen, et aI., (1980).

4,193,062, "Triple Random Error Correcting Convolutional Code, " En, (1980).

4,196,445, "Time-Base Error Correction," (1980).

4,201,337, "Data Processing System Having Error Detection and Correction Circuits,"
Lewis, etal., (1980).

- 443 -

4,201 ,976, "Plural Channel Error Correcting Methods and Means Using Adaptive
Reallocation of Redundant Channels Among Groups of Channels, " (1980).

4,202,018, "Apparatus and Method for Providing Error Recognition and Correction of
Recorded Digital Information," Stockham, Jr., (1980).

4,204,199, "Method and Means for Encoding and Decoding Digital Data," Isailovic,
(1980).

4,204,634, "Storing Partial Words in Memory," (1980).

4,205,324, "Methods and Means for Simultaneously Correcting Several Channels in Error
in a Parallel Multi Channel Data System Using Continuously Modifiable
Syndromes and Selective Generation of Intemal Channel Pointers,· (1980).

4,205,352, "Device for Encoding and Recording Information with Peak Shift Compen-
sation," Tomada, (1980).

4,206,440, "Encoding for Error Correction of Recorded Digital Signals," Doi, et aI.,
(1980).

4,209,809, "Apparatus and Method for Record Reorientation Following Error Detection
in a Data Storage Subsystem,· Chang, et al., (1980).

4,209,846, "Memory Error Logger Which Sorts Transient Errors From Solid Errors,"
Seppa, (1980).

4,211,996, "Error Correction System for Differential Phase-Shift-Keying," Nakamura,
(1980).

4,211,997, "Method and Apparatus Employing an Improved Format for Recording and
Reproducing Digital Audio,· Rudnick, et aI., (1980).

4,213,163, "Video-Tape Recording," Lemelson, (1980).

4,214,228, "Error-Correcting and Error-Detecting System, " (1980).

4,215,402, "Hash Index Table Hash Generator Apparatus," Mitchell, et al., (1980).

4,216,532, "Self-Correcting Solid-State Mass Memory Organized by Words for a
Stored-Program Control System," Garetti, et al., (1980).

4,216,540, "Programmable Polynomial Generator," McSpadden, (1980).

4,216,541, "Error Repairing Method and Apparatus for Bubble Memories," Clover, et aI.,
(1980).

4,223,382, "Closed Loop Error Correct,· Thorsrud, (1980).

4,225,959, "Tri-State Bussing System," (1980).

4,234,804, "Signal Correction for Electrical Gain Control Systems," Bergstrom, (1980).

- 444 -

4,236,247, "Apparatus for Correcting Multiple Errors in Data Words Read From a
Memory," Sundberg, (1980).

4,238,852, "Error Correcting System, " Iga, et al., (1980).

4,240,156, "Concatenated Error Correcting System, " (1980).

4,241,446, "Apparatus for Performing Single Error Correction and Double Error
Detection," Trubisky, (1980).

4,242,752, "Circuit Arrangement for Coding or Decoding of Binary Data," Herkert,
(1980).

4,249,253, "Memory With Selective Intervention Error Checking and Correcting Device,"
Gentili, et al., (1981).

4,253,182, "Optimization of Error Detection and Correction Circuit," (1981).

4,254,500, "Single Track Digital Recorder and Circuit for Use Therein Having Error
Correction," Brookhart, (1981).

4,255,809, "Dual Redundant Error Detection System for Counters, " Hillman, (1981)

4,261,019, "Compatible Digital Magnetic Recording System," McClelland, (1981).

4,271,520, "Synchronizing Technique for an Error Correcting Digital Transmission
System," (1981).

4,275,466, "Block Sync Signal Extracting Apparatus, " (1981).

4,276,646, "Method and Apparatus for Detecting Errors in a Data Set," Haggard, et al.,
(1981).

4,276,647, "High Speed Hamming Code Circuit and Method for the Correction of Error
Bursts," Thacker, et al., (1981).

4,277 ,844, "Method of Detecting and Correcting Errors in Digital Data Storage
Systems," (1981).

4,281,355, "Digital Audio Signal Recorder," Wada, et al., (1981).

4,283,787, "Cyclic Redundancy Data Check Encoding Method and Apparatus," (1981).

4,291,406, "Error Correction on Burst Channels by Sequential Decoding," (1981).

4,292,684, "Format for Digital Tape Recorder," Kelley, et al., (1981).

4,295,218, "Error-Correcting Coding System," Tanner, (1981).

4,296,494, "Error Correction and Detection Systems," Ishikawa, et al., (1981).

4,298,981, "Decoding Shortened Cyclic Block Codes," Byford, (1981).

- 445 -

4,300,231, "Digital System Error Correction Arrangement,· Moffitt, (1981).

4,306,305, "PCM Signal Transmitting System With Error Detecting and Correcting
Capability," Doi, et al., (1981).

4,309,721, "Error Coding for Video Disc System," (1982).

4,312,068, "Parallel Generation of Serial Cyclic Redundancy Check, • Goss, et al., (1982).

4,312,069, "Serial Encoding-Decoding for Cyclic Block Codes," Ahamed, (1982).

4,317,201, "Error Detecting and Correcting RAM Assembly," Sedalis, (1982).

4,317,202, "Circuit Arrangement for Correction of Data, " Markwitz, (1982).

4,319,356, "Self-Correcting! Memory System,· Kocol, et al., (1982).

4,319,357, "Double Error Correction Using Single Error Correcting Code," Bossen,
(1982).

4,320,510, "Error Data Correcting System, • Kojima, (1982).

4,328,580, "Apparatus and an Improved Method for Processing of Digital Information,"
Stockham, Jr., et al., (1982).

4,330,860, "Error Correcting Device, " Wada, et. ai, (1982).

4,334,309, "Error Correcting Code System," Bannon, et. ai, (1982).

4,335,458, "Memory Incorporating Error Detection and Correction," Krol (1982).

4,336,611, "Error Correction Apparatus and Method," Bernhardt, et aI., (1982).

4,336,612, "Error Correction Encoding and Decoding System," Inoue, et. aI, (1982).

4,337,458, "Data Encoding Method and System Employing Two-Thirds Code Rate with
Full Word Look-Ahead," Cohn, et al., (1982).

4,344,171, "Effective Error Control Scheme for Satellite Communications," Lin, et aI.,
(1982).

4,345,328 "ECC Check Bit Generation Using Through Checking Parity Bits," White,
(1982).

4,355,391, "Apparatus and Method of Error Detection and/or Correction in a Data Set,"
Alsop IV, (1982).

4,355,392, "Burst-Error Correcting System," Doi, et al., (1982).

4,356,566, "Synchronizing Signal Detecting Apparatus," Wada, et al., (1982).

4,357,702, "Error Correcting Apparatus,OI Chase, et aI., (1982).

- 446 -

4,358,848, "Dual Function ECC System with Block Check Byte,· Patel, (1982).

4,359,772, "Dual Function Error Correcting System,· Patel, (1982).

4,360,916, "Method and Apparatus for Providing for Two Bits-Error Detection and
Correction, " Kustedjo, et at., (1982).

4,360,917, "Parity Fault Locating Means," Sindelar, et al., (1982).

4,365,332, "Method and Circuitry for Correcting Errors in Recirculating Memories,"
Rice, (1982).

4,368,533, "Error Data Correcting System, • Kojima, (1983).

4,369,510, "Soft Error Rewrite Control System," Johnson, et al., (1983).

4,375,100, "Method and Apparatus for Encoding Low Redundancy Check Words from
Source Data," Tsuji, et at., (1983).

4,377 ,862, "Method of Error Control in Asynchronous Communications," Koford, et al.,
(1983).

4,377,863, "Synchronization Loss Tolerant Cyclic Error Checking Method and
Apparatus, " Legory, et al., (1983).

4,380,071, "Method and Apparatus for Preventing Errors in PCM Signal Processing
Apparatus,· Odaka, (1983).

4,380,812, "Refresh and Error Detection and Correction Technique for a Data
Processing System,· Ziegler II, et at., (1983).

4,382,300, "Method and Apparatus for Decoding Cyclic Codes Via Syndrome Chains, "
Gupta, (1983).

4,384,353, "Method and Means for Internal Error Check in a Digital Memory, "
Varshney, (1983).

4,388,684, "Apparatus for Deferring Error Detection of Multibyte Parity Encoded Data
Received From a Plurality of Input/Output Data Sources," Nibby, Jr., et al.,
(1983).

4,393,502, "Method and Apparatus for Communicating Digital Information Words by
Error-Correction Encoding, " Tanaka, et at., (1983).

4,394,763, "Error-Correcting System," Nagano, et at., (1983).

4,395,768, "Error Correction Device for Data Transfer System,· Goethats, et at., (1983).
,

4,397,022 "Weighted Erasure Codec for the (24,12) Extended Golay Code," Weng, et al.,
(1983).

- 447 -

4,398,292, "Method and Apparatus for Encoding Digital with Two Error-Correcting
Codes," Doi, et al., (1983).

4,402,045, "Multi-Processor Computer System," Krol, (1983).

4,402,080 "Synchronizing Device for a Time Division Multiplex System," Mueller, (1983).

4,404,673, "Error Correcting Network, " Yamanouchi, (1983).

4,404,674, "Method and Apparatus for Weighted Majority Decoding of FEC Codes Using
Soft Detection," Rhodes, (1983).

4,404,675, "Frame Detection and Synchronization System for High Speed Digital Trans­
mission Systems, " Karchevski, (1983).

4,404,676, "Partitioning Method and Appartus Using Data-Dependent Boundary-Marking
Code Words," DeBenedictis, (1983).

4,412,329, "Parity Bit Lock-On Method and Apparatus," Yarborough, Jr., (1983).

4,413,339, "Multiple Error Detecting and Correcting System Employing Reed-Solomon
Codes," Riggle, et al., (1983).

4,413,340, "Error Correctable Data Transmission Method," Odaka, et aI., (1983).

4,414,667, "Forward Error Correcting Apparatus," Bennett, (1983).

4,417,339, "Fault Tolerant Error Correction Circuit," Cantarella, (1983).

4,418,410, "Error Detection and Correction Apparatus for a Logic Array," Goetze, et aI.,
(1983).

4,425,644, "PCM Signal System," Scholz, (1984).

4,425,645, "Digital Data Transrriission with Parity Bit Word Lock-On," Weaver, et aI.,
(1984).

4,425,646, "Input Data Synchronizing Circuit," Kinoshita, et aI., (1984).

4,429,390, "Digital Signal Transmitting System," Sonoda, etal., (1984).

4,429,391, "Fault and Error Detection Arrangement," Lee, (1984).

4,433,348, "Apparatus and Method for Requiring Proper Synchronization of a Digital
Data Flow," Stockham, Jr., et aI., (1984).

4,433,415, "PCM Signal Processor," Kojima, (1984.)

4,433,416, "PCM Signal Processor," Kojima, (1984).

4,434,487, "Disk Format for Secondary Storage System," Rubinson, et aI., (1984).

4,435,807, "Orchard Error Correction System," Scott, et aI., (1984).

- 448 -

4,441,184, "Method and Apparatus for Transmitting a Digital Signal," Sonoda, et al.,
(1984).

4,447,903, "Forward Error Correction Using Coding and Redundant Transmission,"
Sewerinson, (1984).

4,450,561, "Method and Device for Generating Check Bits Protecting a Data Word,"
Gotze, et al., (1984).

4,450,562, "Two Level Parity Error-Correction System,· Wacyk, et al., (1984).

4,451,919, "Digital Signal Processor for Use in Recording and/or Reproducing
Equipment," Wada, et al., (1984).

4,451,921, "PCM Signal Processing Circuit," Odaka, (1984).

4,453,248, "Fault Alignment Exclusion Method to Prevent Realignment of Previously
Paired Memory Defects, " Ryan, (1984).

4,453,250, "PCM Signal Processing Apparatus," Hoshimi, et al., (1984).

4,453,251, "Error-Correcting Memory with Low Storage Overhead and Fast Correction
Mechanism," Osman, (1984).

4,454,600, "Parallel Cyclic Redundancy Checking Circuit," LeGresley, (1984).

4,454,601, "Method and Apparatus for Communication of Information and Error
Checking," Helms, et al., (1984).

4,455,655, "Real Time Fault Tolerant Error Correction Mechanism," Galen, et al., (1984).

4,456,996, "Parallel/Series Error Correction Circuit," Haas, et al., (1984).

4,458,349, "Method for Storing Data Words in Fault Tolerant Memory to Recover
Uncorrectable Errors," Aichelmann, Jr., et al. (1984).

4,459,696, "PCM Signal Processor with Error Detection and Correction Capability
Provided by a Data Error Pointer," Kojima, (1984).

4,462,101, "Maximum Likelihood Error Correcting Technique," Yasuda, etal., (1984).

4,462,102, "Method and Apparatus for Checking the Parity of Disassociated Bit Groups,"
Povlick, (1984).

4,464,752, "Multiple Event Hardened Core Memory, " Schroeder, et al., (1984).

4,464,753, "Two Bit Symbol SECIDED Code," Chen, (1984).

4,464,754, "Memory System with Redundancy for Error Avoidance," Stewart, et al.,
(1984).

- 449 -

4,464,755, "Memory System with Error Detection and Correction," Stewart, et al.,
(1984).

4,468,769, "Error Correcting System for Correcting Two or Three Simultaneous Errors
in a Code," Koga, (1984).

4,468,770, "Data Receivers Incorporating Error Code Detection and Decoding," Metcalf,
et al., (1984).

4,472,805, "Memory System with Error Storage," Wacyk, et al., (1984).

4,473,902, "Error Correcting Code Processing System," Chen, (1984).

4,476,562, "Method of Error Correction," Sako, et al., (1984).

4,477,903, "Error Correction Method for the Transfer of Blocks of Data Bits, a Device
for Preforming such a Method, A Decoder for Use with such a Method, and
a Deyice Comprising such a Decoder, " Schouhamer Immink, et al., (1984).

4,494,234, "On-The-Fly Multibyte Error Correcting System," Patel, (1985).

4,495,623, "Digital Data Storage in Video Format," George, et aI., (1984).

4,497,058, "Method of Error Correction," Sako, et al., (1985).

4,498,174, "Parallel Cyclic Redundancy Checking Circuit," LeGresley, (1985).

4,498,175, "Error Correcting System," Nagumo, et al., (1985).

4,498,178, "Data Error Correction Circuit," Ohhashi, (1985).

4,502,141, "Circuits for Checking Bit Errors in a Received BCH Code Succession by the
Use of Primitive and Non-Primitive Polynomials," Kuki, (1985).

4,504,948, "Syndrome Processing Unit for MuItibyte Error Correcting Systems," Patel,
(1985).

4,506,362, "Systematic Memory Error Detection and Correction Apparatus and Method,"
Morley, (1985).

4,509,172, "Double Error Correction - Triple Error Detection Code," Chen, (1985).

4,512,020, "Data Processing Device for Processing Multiple-Symbol Data-Words Based on
a Symbol-Correcting Code and Having Multiple Operating Modes," Krol,
et al., (1985).

4,519,058, "Optical Disc Player," Tsurushima, et al., (1985).

4,525,838, "Multibyte Error Correcting System Involving a Two-Level Code Structure,"
Patel, (1985).

- 450 -

4,525,840, "Method and Apparatus for Maintaining Word Synchronization After a
Synchronizing Word Dropout in Reproduction of Recorded Digitally Encoded
Signals," Heinz, et al., (1985).

4,527,269, "Encoder Verifier," Wood, etal., (1985).

4,538,270, "Method and Apparatus for Translating a Predetermined Hamming Code to an
Expanded Class of Hamming Codes," Goodrich, Jr., et al., (1985).

4,541,091, "Code Error Detection and Correction Method and Apparatus," Nishida, et al.,
(1985).

4,541,092, "Methtxl for Error Correction," Sako, et al., (1985).

4,541,093, "Method and Apparatus for Error Correction," Furuya, et al., (1985).

4,544,968, "Sector Servo Seek Control," Anderson, et al., (1985).

4,546,474, "Method of Error Correction," Sako, et al., (1985).

4,549,298, "Detecting and Correcting Errors in Digital Audio Signals," Creed, et al.,
(1985).

4,554,540, "Signal Format Detection Circuit for Digital Radio Paging Receiver," Mori,
et al., (1985).

4,555,784, "Parity and Syndrome Generation for Error Detection and Correction in
Digital Communication Systems," Wood, (1985).

4,556,977, "Decoding of BCH Double Error Correction - Triple Error Detection
(DEC-TED) Codes," Olderdissen, et al., (1985).

4,559,625, "Interleavers for Digital Communications," Berlekamp, et al., (1985).

4,562,577, "Shared EncoderlDecoder Circuits for Use with Error Correction Codes of an
Optical Disk System," Glover, et al., (1985).

4,564,941, "Error Detection System," Woolley, et al., (1986).

4,564,944, "Error Correcting Scheme," Arnold, et al., (1986).

4,564,945, "Error-Correction Code for Digital Data on Video Disc," Glover, et al.,
(1986).

4,566,105, "Coding, Detecting or Correcting Transmission Error System," Oisel, et al.,
(1986).

4,567,594, "Reed-Solomon Error Detecting and Correcting System Employing PipeIined
Processors," Deodhar, (1986).

4,569,051, "Methods of Correcting Errors in Binary Data," Wilkinson, (1986).

4,573,171, "Sync Detect Circuit," McMahon, Jr., et al., (1986).

- 451 "'

4,583,225, "Reed-Solomon Code Generator," Yamada, et al., (1986).

4,584,686, "Reed-Solomon Error Correction Apparatus," Fritze, (1986).

4,586,182, "Source Coded Modulation System," Gallager, (1986).

4,586,183, "Correcting Errors in Binary Data," Wilkinson, (1986).

4,589,112, "System for Multiple Error Detection with Single and Double Bit Error
Correction," Karim, (1986).

4,592,054, "Decoder with Code Error Correcting Function," Namekawa, et al., (1986).

4,593,392, "Error Correction Circuit for Digital Audio Signal," Kouyama, (1986).

4,593,393, "Quasi Parallel Cyclic Redundancy Checker,· Mead, et al., (1986).

4,593,394, "Method Capable of Simultaneously Decoding Two Reproduced Sequences,"
Tomimitsu, (1986).

4,593,395, "Error Correction Method for the Transfer of Blocks of Data Bits, a Device
and Performing such a Method, A Decoder for Use with such a Method, and
a Device Comprising such a Decoder," Schouhamer Immink, et al., (1986).

4,597,081, "Encoder Interface with Error Detection and Method Therefor," Tassone,
(1986).

4,597,083, "Error Detection and Correction in Digital Communication Systems,"
Stenerson, (1986).

4,598,402, "System for Treatment of Single Bit Error in Buffer Storage Unit,"
Matsumoto, et al., (1986).

4,604,747, "Error Correcting and Controlling System," Onishi, et al., (1986).

4,604,750, "Pipeline Error Correction, " Manton, et al., (1986).

4,604,751, "Error Logging Memory System for Avoiding Miscorrection of Triple Errors,"
Aichelmann, Jr., et al., (1986).

4,606,026, "Error-Correcting Method and Apparatus for the Transmission of Word-Wise
Organized Data," Baggen, (1986).

4,607,367, "Correcting Errors in Binary Data,· Ive, et al., (1986).

4,608,687, "Bit Steering Apparatus and Method for Correcting Errors in Stored Data,
Storing the Address of the Corrected Data and Using the Address to
Maintain a Correct Data Condition," Dutton, (1986).

4,608,692, "Error Correction Circuit," Nagumo, et al., (1986).

- 452 -

4,617,664, "Error Correction for Multiple Bit Output Chips," Aichelmann, Jr., et al.,
(1986).

4,623,999, "Look-up Table Encoder for Linear Block Codes," Patterson, (1986).

4,627,058, "Code Error Correction Method," Moriyama, (1986).

4,630,271, "Error Correction Method and Apparatus for Data Broadcasting System,"
Yamada, (1986).

4,630,272, "Encoding Method for Error Correction," Fukami, et at, (1986).

4,631,725, "Error Correcting and Detecting System," Takamura, et al., (1986).

4,633,471, "Error Detection and Correction in an Optical Storage System," Perera,
et al., (1986).

4,637,023, "Digital Data Error Correction Method and Apparatus," Lounsbury, et at,
(1987).

4,639,915, "High Speed Redundancy Processor," Bosse, (1987).

4,642,808, "Decoder for the Decoding of Code Words which are Blockwise Protected
Against the Occurrence of a Plurality of Symbol Errors within a Block by
Means of a Reed-Solomon Code, and Reading Device for Optically Readable
Record Carriers, n Baggen, (1987).

4,646,301, "Decoding Method and System for Doubly-Encoded Reed-Solomon Codes,"
Okamoto, et at, (1987).

4,646,303, "Data Error Detection and Correction Circuit," Narusawa, et at, (1987).

- 453 -

PERIODICALS

Abramson, N., "Cascade Decoding of Cyclic Product Codes." IEEE Trans. on Comm.
Tech., Com-16 (3),398-402 (June 1968).

Alekar, S. V., "M6800 Program Performs Cyclic Redundancy Checks." Electronics, 167
(Dec. 1979).

Bahl, L. R. and R. T. Chien, "Single- and Multiple-Burst-Correcting Properties of a Class
of Cyclic Product Codes." IEEE Trans. on Info. Theory, IT-17 (5), 594-600 (Sept.
1971).

Bartee, T. C. and D. I. Schneider, "Computation with Finite Fields." Info. and Control,
6, 79-98 (1963).

Basham G. R., "New Error-Correcting Technique for Solid-State Memories Saves
Hardware. " Computer Design, 110-113 (Oct. 1976).

Baumert L. D. and R. J. McEliece, "Soft Decision Decoding of Block Codes." DSN
Progress Report 42-47,60-64 (July/Aug. 1978).

Beard, Jr., J., "Computing in GF(q)." Mathematics of Comp., 28 (128), 1159-1166 (Oct.
1974).

Berlekamp, E. R., "On Decoding Binary Bose-Chaudhuri-Hocquenghem Codes." IEEE Trans.
on Info. Theory, IT-l1 (4),577-579 (Oct. 1965).

Berlekamp, E. R., "The Enumeration of Information Symbols in BCH Codes." The Bell
Sys. Tech. J., 1861-1880 (Oct. 1967).

Berlekamp, E. R., "Factoring Polynomials Over Finite Fields." The Bell Sys. Tech. J.,
1853-1859 (Oct. 1967).

Berlekamp, E. R., "Factoring Polynomials Over Large Finite Fields." Mathematics of
Comp., 24 (111), 713-735 (July 1970).

Berlekamp, E. R., "Algebraic Codes for Improving the Reliability of Tape Storage."
National Computer Conference, 497-499 (1975).

Berlekamp, E. R., "The Technology of Error-Correcting Codes." Proceedings of the IEEE,
68 (5), 564-593 (May 1980).

Berlekamp, E. R. and J. L. Ramsey, "Readable Erasures Improve the Performance of
Reed-Solomon Codes." IEEE Trans. on Info. Theory, IT-24 (5), 632-633 (Sept.
1978).

Berlekamp, E. R., et. al., "On the Solution of Algebraic Equations Over Finite Fields."
Info. and Control, 10, 553-564 (1967).

Blum, R., "More on Checksums." Dr. Dobb's J., (69), 44-45 (July 1982).

Bossen, D. C., "b-Adjacent Error Correction." IBM J. Res. Develop., 402-408 (July 1970).

- 454 -

Bossen, D. C. and M. Y. Hsiao, "A System Solution to the Memory Soft Error Problem. "
IBM J. Res. Develop., 24 (3),390-397 (May 1980).

Bossen, D. C. and S. S. Yau, "Redundant Residue Polynomial Codes." Info. and Control,
13, 597-618 (1968).

Boudreau, P. E. and R. F. Steen, "Cyclic Redundancy Checking by Program." Fall Joint
Computer Conference, 9-15 (1971).

Brown, D. T. and F. F. Sellers, Jr., "Error Correction for IBM 800-Bit-Per-Inch Magnetic
Tape." IBM J. Res. Develop., 384-389 (July 1970).

Bulthuis, K., et. aI., "Ten Billion Bits on a Disk. " IEEE Spectrum, 18-33 (Aug. 1979).

Burton, H. 0., "Some Asymptotically Optimal Burst-Correcting Codes and Their Relation
to Single-Error-Correcting Reed-Solomon Codes." IEEE Trans. on Info. Theory,
IT-17 (1), 92-95 (Jan. 1971).

Burton, H. O. "Inversionless Decoding of Binary BCH Codes." IEEE Trans. on Info.
Theory, IT-17 (4), 464-466 (July 1971).

Carter, W. C. and C. E. McCarthy, "Implementation of an Experimental Fault-Tolerant
Memory System." IEEE Trans. on Computers, C-25 (6), 557-568 (June 1976).

Chen, C. L. and R. A. Rutledge, "Error Correcting Codes for Satellite Communication
Channels." IBM J. Res. Develop., 168-175 (Mar. 1976).

Chien, R. T., "Cyclic Decoding Procedures for Bose- Chaudhuri-Hocquenghem Codes."
IEEE Trans. on Info. Theory, 357-363 (Oct. 1963).

Chien, R. T., "Block-Coding Techniques for Reliable Data Transmission." IEEE Trans. on
Comm. Tech., Com-19 (5), 743-751 (Oct. 1971).

Chien, R. T., "Memory Error Control: Beyond Parity." IEEE Spectrum, 18-23 (July 1973).

Chien, R. T. and B. D. Cunningham, "Hybrid Methods for Finding Roots of a
Polynomial-With Application to BCH Decoding." IEEE Trans. on Info. Theory,
329-335 (Mar. 1969).

Chien, R. T., et. ai., "Correction of Two Erasure Bursts." IEEE Trans. on Info. Theory,
186-187 (Jan. 1969).

Comer, E., "Hamming's Error Corrections." Interface Age, 142-143 (Feb. 1978).

Davida, G. I. and J. W. Cowles, "A New Error-Locating Polynomial for Decoding of BCH
Codes." IEEE Trans. on Info. Theory, 235-236 (Mar. 1975).

Delsarte, P., "On Subfield Subcodes of Modified Reed-Solomon Codes." IEEE Trans. on
Info. Theory, 575-576 (Sept. 1975).

Doi, T. T., et. aI., "A Long-Play Digital Audio Disk System." Journal of the Audio
Eng. Soc., 27 (12), 975-981 (Dec. 1979).

- 455 -

Duc. N. Q., "On the Lin-Weldon Majority-Logic Decoding Algorithm for Product Codes."
IEEE Trans. on Info. Theory, 581-583 (July 1973).

Duc, N. Q. and L. V. Skattebol, "Further Results on Majority-Logic Decoding of Product
Codes." IEEE Trans. on Info. Theory, 308-310 (Mar. 1972).

Forney, Jr., G. D., "On Decoding BCH Codes." IEEE Trans. on Info. Theory, IT-ll (4),
549-557 (Oct. 1965).

Forney, Jr., G. D., "Coding and Its Application in Space Communications." IEEE
Spectrum, 47-58 (June 1970).

Forney, Jr., G. D., "Burst-Correcting Codes for the Classic Bursty Channel." IEEE Trans.
on Comm. Tech., Com-19 (5), 772-781 (Oct. 1971).

Gorog, E., "Some New Classes of Cyclic Codes Used for Burst-Error Correction."
IBM 1., 102-111 (Apr. 1963).

Greenberger, H., "An Iterative Algorithm for Decoding Block Codes Transmitted Over a
Memoryless Channel." DSN Progress Report 42-47,51-59 (July/Aug. 1978).

Greenberger, H. J., "An Efficient Soft Decision Decoding Algorithm for Block Codes."
DSN Progress Report 42-50, 106-109 (Jan.lFeb. 1979).

Gustavson, F. G., "Analysis of the Bedekamp-Massey Linear Feedback Shift-Register
Synthesis Algorithm." IBM J. Res. Develop., 204-212 (May 1976).

Gustlin, D. P. and D. D. Prentice, "Dynamic Recovery Techniques Guarantee System
Reliability." Fall Joint Computer Conference, 1389-1397 (1968).

Hartmann, C. R. P., "A Note on the Decoding of Double- Error-Correcting Binary BCH
Codes of Primitive Length." IEEE Trans. on Info. Theory, 765-766 (Nov. 1971).

Hellman, M. E., "Error Detection in the Presence of Synchronization Loss." IEEE Trans.
on Comm., 538-539 (May 1975).

Herff, A. P., "Error Detection and Correction for Mag Tape Recording." Digital Design,
16-18 (July 1978).

Hindin, H. J., "Error Detection and Correction Cleans Up Wide-Word Memory Act."
Electronics, 153-162 (June 1982).

Hodges, D. A., "A Review and Projection of Semiconductor Components for Digital
Storage." Proceedings of the IEEE, 63 (8), 1136-1147 (Aug. 1975).

Hong, S. 1. and A. M. Patel, "A General Class of Maximal Codes for Computer
Applications." IEEE Trans. on Computers, C-21 (12), 1322-1331 (Dec. 1972).

Hsiao, M. Y. and K. Y. Sih, "Serial-to-Parallel Transformation of Linear-Feedback
Shift-Register Circuits." IEEE Trans. on Elec. Comp., 738-740 (Dec. 1964).

Hsu, H. T., et. al, "Error-Correcting Codes for a Compound Channel." IEEE Trans. on
Info. Theory, IT-14 (1), 135-139 (Jan. 1968).

- 456 -

Imamura, K., "A Method for Computing Addition Tables in GF(pD)." IEEE Trans. on Info.
Theory, IT-26 (3),367-368 (May 1980).

Iwadare, Y., "A Class of High-Speed Decodable Burst-Correcting Codes." IEEE Trans. on
Info. Theory, IT-18 (6),817-821 (Nov. 1972).

Johnson, R. C., "Three Ways of Correcting Erroneous Data." Electronics, 121-134 (May
1981).

Justesen, J., "A Class of Constructive Asymptotically Good Algebraic Codes." IEEE Trans.
Info. Theory, IT-18, 652-656 (Sept. 1972).

Justesen, J., "On the Complexity of Decoding Reed-Solomon Codes." IEEE Trans. on Info.
Theory, 237-238 (Mar. 1976).

Kasami, T., and S. Lin, "On the Construction of a Class of Majority- Logic Decodable
Codes." IEEE Trans. on Info. Theory, IT-17 (5), 600-610 (Sept. 1971).

Kobayashi, H., "A Survey of Coding Schemes for Transmission or Recording of Digital
Data. " IEEE Trans. on Comm. Tech., Com-19 (6), 1087-1100 (Dec. 1971).

Koppel, R., "Ram Reliability in Large Memory Systems-Improving MTBF With ECC."
Computer Design, 196-200 (Mar. 1979).

Korodey, R. and D. Raaum, "Purge Your Memory Array of Pesky Error Bits." EDN,
153-158 (May 1980).

Laws, Jr., B. A. and C. K. Rushforth, "A Cellular-Array Multiplier for GF(2m)." IEEE
Trans. on Computers, 1573-1578 (Dec. 1971).

Leung, K. S. and L. R. Welch, "Erasure Decoding in Burst-Error Channels." IEEE Trans.
on Info. Theory, IT-27 (2), 160-167 (Mar. 1981).

Levine, L. and W. Meyers, "Semiconductor Memory Reliability With Error Detecting and
Correcting Codes." Computer, 43-50 (Oct. 1976).

Levitt, K. N. and W. H. Kautz, "Cellular Arrays for the Parallel Implementation of
Binary Error-Correcting Codes." IEEE Trans. on Info. Theory, IT-15 (5), 597-607
(Sept. 1969).

Liccardo M. A., "Polynomial Error Detecting Codes and Their Implementation." Computer
Design, 53-59 (Sept. 1971).

Lignos D., "Error Detection and Correction in Mass Storage Equipment." Computer
Design, 71-75 (Oct. 1972).

Lim, R. S. and J. E. Korpi, "Unicon Laser Memory: Interlaced Codes for Multiple­
Burst-Error Correction." Wescon, 1-6 (1977).

Lim, R. S., "A (31,15) Reed-Solomon Code for Large Memory Systems." National
Computer Conf., 205-208 (1979).

- 457 -

Lin, S. and E. J. Weldon, "Further Results on Cyclic Product Codes." IEEE Trans. on
Info. Theory, IT-16 (4), 452-459 (July 1970).

Liu, K. Y., "Architecture for VLSI Design of Reed-Solomon Encoders." IEEE Transactions
on Computers, C-31 (2), 170-175 (Feb. 1982).

Locanthi, B., et. al., "Digital Audio Technical Committee Report." J. Audio Eng. Soc.,
29 (112), 56-78 (Jan'/Feb. 1981).

Lucy, D., "Choose the Right Level of Memory-Error Protection." Electronics Design,
ss37-ss39 (Feb. 1982).

Maholick, A. W. and R. B. Freeman, "A Universal Cyclic Division Circuit." Fall Joint
Computer Conf., 1-8 (1971).

Mandelbaum, D., "A Method of Coding for Multiple Errors." IEEE Trans. on Info. Theory,
518-521 (May 1968).

Mandelbaum, D., "On Decoding of Reed-Solomon Codes." IEEE Trans. on Info. Theory,
IT-17 (6), 707-712 (Nov. 1971).

Mandlebaum, D., "Construction of Error Correcting Codes by Interpolation. H IEEE Trans.
on Info. Theory, IT-25 (1), 27-35 (Jan. 1979).

Mandelbaum, D. M., "Decoding of Erasures and Errors for Certain RS Codes by
Decreased Redundancy." IEEE Trans. on Info. Theory, IT-28 (2), 330-335 (Mar.
1982).

Massey, J. L., "Shift-Register Synthesis and BCH Decoding." IEEE Trans. on Info.
Theory, IT-15 (1), 122-127, (Jan. 1969).

Matt, H. J. and J. L. Massey, "Determining the Burst-Correcting Limit of Cyclic Codes."
IEEE Trans. on Info. Theory, IT-26 (3),289-297 (May 1980).

Miller R. L. and L. J. Deutsch, "Conceptual Design for a Universal Reed-Solomon
Decoder." IEEE Trans. on Comm., Com-29 (11), 1721-1722 (Nov. 1981).

Miller, R. L., et. aI., "A Reed Solomon Decoding Program for Correcting Both Errors and
Erasures." DSN Progress Report 42-53, 102-107 (July/Aug. 1979).

Miller, R. L. et. al. B "An Efficient Program for Decoding the (255, 223) Reed-Solomon
Code Over GF(2) with Both Errors and Erasures, Using Transform Decoding." IEEE
Proc., 127 (4), 136-142 (July 1980).

Morris, D., "ECC Chip Reduces Error Rate in Dynamic Rams." Computer Design, 137-142
(Oct. 1980).

Naga, M. A. E., "An Error Detecting and Correcting System for Optical Memory."
Cal. St. Univ., Northridge, (Feb. 1982).

Oldham, I. B., et. aI., "Error Detection and Correction in a Photo-Digital Storage
System." IBM J. Res. Develop., 422-430 (Nov. 1968).

- 458 -

Patel, A. M., "A Multi-Channel CRC Register." Spring Joint Computer Conf., 11-14
(1971).

Patel, A. M., "Error Recovery Scheme for the IBM 3850 Mass Storage System." IBM J.
Res. Develop., 24 (I), 32-42 (Jan. 1980).

Patel A. M. and S. J. Hong, "Optimal Rectangular Code for High Density Magnetic
Tapes." IBM J. Res. Develop., 579-588 (Nov. 1974).

Peterson, W. W., "Encoding and Error-Correction Procedures for the Bose-Chaudhuri
Codes. " IRE Trans. on Info. Theory, 459-470 (Sept. 1960).

Peterson, W. W. and D. T. Brown, "Cyclic Codes for Error Detection." Proceedings of the
IRE, 228-235 (Jan. 1961).

Plum, T., "Integrating Text and Data Processing on a Small System." Datamation, 165-175
(June 1978).

Pohlig, S. C. and M. E. Hellman, "An Improved Algorithm for Computing Logarithms
Over GF(p) and Its Cryptographic Significance." IEEE Trans. on Info. Theory, IT-24
(1), 106-110 (Jan. 1978).

Poland, Jr., W. B., et. aI., "Archival Performance of NASA GFSC Digital Magnetic Tape."
National Computer Conf., M68-M73 (1973).

Pollard, J. M., "The Fast Fourier Transform in a Finite Field." Mathematics of Compu­
tation, 23 (114), (Apr. 1971).

Promhouse, G. and S. E. Tavares, "The Minimum Distance of All Binary Cyclic Codes of
Odd Lengths from 69 to 99." IEEE Trans. on Info. Theory, IT-24 (4), 438-442 (July
1978).

Reddy, S. M., "On Decoding Iterated Codes." IEEE Trans. on Info. Theory, IT-16 (5),
624-627 (Sept. 1970).

Reddy, S. M. and J. P. Robinson, "Random Error and Burst Correction by Iterated
Codes." IEEE Trans. on Info. Theory, IT-18 (1), 182-185 (Jan. 1972).

Reed, I. S. and T. K. Truong, "The Use of Finite Fields to Compute Convolutions."
IEEE Trans. on Info. Theory, IT-21 (2),208-213 (Mar. 1975).

Reed, I. S. and T. K. Truong, "Complex Integer Convolutions Over a Direct Sum of
Galois Fields." IEEE Trans. on Info. Theory, IT-21 (6), 657-661 (Nov. 1975).

Reed, I. S. and T. K. Truong, "Simple Proof of the Continued Fraction Algorithm for
Decoding Reed-Solomon Codes." Proc. IEEE, 125 (12), 1318-1320 (Dec. 1978).

Reed, I. S., et. aI., "Simplified Algorithm for Correcting Both Errors and Erasures of
Reed-Solomon Codes." Proc. IEEE, 126 (10), 961-963 (Oct. 1979).

Reed, I. S., et. aI., "The Fast Decoding of Reed-Solomon Codes Using Fermat Theoretic
Transforms and Continued Fractions." IEEE Trans. on Info. Theory, IT-24 (I),
100-106 (Jan. 1978).

- 459 -

Reed, I. S., et. aI., "Further Results on Fast Transforms for Decoding Reed-Solomon
Codes Over GF(2n) for n=4,5,6,8.· DSN Progress Report 42-50, 132-155 (Jan.lFeb.
1979).

Reno, C. W. and R. J. Tarzaiski, "Optical Disc Recording at 50 Megabits/Second."
SPIE, 177, 135-147 (1979).

Rickard, B., "Automatic Error Correction in Memory Systems.· Computer Design, 179-182
(May 1976).

Ringkjob, E. T., "Achieving a Fast Data-Transfer Rate by Optimizing Existing Tech­
nology." Electronics, 86-91 (May 1975).

SanyaI, S. and K. N. Venkataraman, "Single Error Correcting Code Maximizes Memory
System Efficiency." Computer Design, 175-184 (May 1978).

Sloane, N. J. A., "A Survey of Constructive Coding Theory, and a Table of Binary Codes
of Highest Known Rate." Discrete Mathematics, 3, 265-294 (1972).

Sloane, N. J. A., "A Simple Description of an Error-Correcting Code for High-Density
Magnetic Tape." The Bell System Tech. J., 55 (2), 157-165) (Feb. 1976).

Steen, R. F., "Error Correction for Voice Grade Data Communication Using a
Communication Processor." IEEE Trans. on Comm., Com-22 (10), 1595-1606 (Oct.
1974).

Stiffler, J. J., "Comma-Free Error-Correcting Codes." IEEE Trans. on Info. Theory,
107-112 (Jan. 1965).

Stone, H. S., "Spectrum of Incorrectly Decoded Bursts for Cyclic Burst Error Codes."
IEEE Trans. on Info. Theory, IT-17 (6), 742-748 (Nov. 1971).

Stone, J. J., "Multiple Burst Error Correction." Info. and Control, 4, 324-331 (1961).

Stone, J. J., "Multiple-Burst Error Correction with the Chinese Remainder Theorem.·
J. Soc. Indust. Appl. Math., 11 (1), 74-81 (Mar. 1963).

Sundberg, C. E. W., "Erasure and Error Decoding for Semiconductor Memories." IEEE
Trans. on Computers, C-27 (8),696-705 (Aug. 1978).

Swanson, R., "Understanding Cyclic Redundancy Codes." Computing Design, 93-99 (Nov.
1975).

Tang, D. T. and R. T. Chien, "Coding for Error Control." IBM Syst. J., (1),48-83 (1969).

Truong, T. K. and R. L. Miller, "Fast Technique for Computing Syndromes of B.C.H. and
Reed-Solomon Codes." Electronics Letters, 15 (22), 720-721 (Oct. 1979).

Ullman, J. D., "On the Capabilities of Codes to Correct Synchronization Errors." IEEE
Trans. on Info. Theory, IT-13 (1), 95-105 (Jan. 1967).

- 460 -

Ungerboeck, G., "Channel Coding With Multilevel/Phase Signals." IEEE Trans. on Info.
Theory, IT-28 (1),55-67 (Jan. 1982).

Van Der Horst, I. A., "Complete Decoding of Triple-Error-Correcting Binary BCH Codes."
IEEE Trans. on Info. Theory, IT-22 (2), 138-147 (Mar. 1976).

Wainberg, S., "Error-Erasure Decoding of Product Codes." IEEE Trans. on Info. Theory,
821-823 (Nov. 1972).

Wall, E. L., "Applying the Hamming Code to Microprocessor-Based Systems." Electronics,
103-110 (Nov. 1979).

Welch, L. R. and R. A. Scholtz, "Continued Fractions and Berlekamp's Algorithm." IEEE
Trans. on Info. Theory, IT-25 (1), 19-27 (Ian. 1979).

Weldon, Ir., E. I., "Decoding Binary Block Codes on Q-ary Output Channels." IEEE
Trans. on Info. Theory, IT-17 (6), 713-718 (Nov. 1971).

Weng, L. I., "Soft and Hard Decoding Performance Comparisons for BCH Codes." IEEE,
25.5.1-25.5.5 (1979).

White, G. M., "Software-Based Single-Bit 110 Error Detection and Correction Scheme."
Computer Design, 130-146 (Sept. 1978).

Whiting, I. S., "An Efficient Software Method for Implementing Polynomial Error
Detection Codes." Computer Design, 73-77 (Mar. 1975).

Willett, M., "The Minimum Polynomial for a Given Solution of a Linear Recursion."
Duke Math. I., 39 (1), 101-104 (Mar. 1972).

Willett, M., "The Index of an M-Sequence." Siam I. Appl. Math., 25 (1), 24-27 (July
1973).

Willett, M., "Matrix Fields Over GF(Q)." Duke Math. I., 40 (3), 701-704 (Sept. 1973).

Willett, M., "Cycle Representations for Minimal Cyclic Codes." IEEE Trans. on Info.
Theory, 716-718 (Nov. 1975).

Willett, M., "On a Theorem of Kronecker." The Fibonacci Quarterly, 14 (1), 27-30 (Feb.
1976). .

Willett, M., "Characteristic m-Sequences." Math. of Computation, 30 (134), 306-311 (Apr.
1976).

Willett, M., "Factoring Polynomials Over a Finite Field." Siam I. Appl. Math., 35 (2),
333-337 (Sept. 1978).

Willett, M., II Arithmetic in a Finite Field." Math. of Computation, 35 (152), 1353-1359
(Oct. 1980).

Wimble, M., "Hamming Error Correcting Code." BYTE Pub. Inc., 180-182 (Feb. 1979).

- 461 -

Wolf, J .• "Nonbinary Random Error-Correcting Codes." IEEE Trans. on Info. Theory,
236-237 (Mar. 1970).

Wolf, J. K., et. al., "On the Probability of Undetected Error for Linear Block Codes."
IEEE Trans. on Comm .• Com-30 (2),317-324 (Feb. 1982).

Wong, J.. et. al., "Software Error Checking Procedures for Data Communication
Protocols. " Computer Design, 122-125 (Feb. 1979).

Wu, W. W., "Applications of Error-Coding Techniques to Satellite Communications."
Comsat Tech. Review, 1 (1), 183-219 (Fall 1971).

Wyner, A. D., • A Note on a Class of Binary Cyclic Codes Which Correct Solid-Burst
Errors." IBM J .• 68-69 (Jan. 1964).

Yencharis, L., "32-Bit Correction Code Reduces Errors on Winchester Disks.· Electronics
Design, 46-47 (Mar. 1981).

Ziv, J., "Further Results on the Asymptotic Complexity of an Iterative Coding Scheme."
IEEE Trans. on Info. Theory, IT-12 (2), 168-171 (Apr. 1966).

- 462 -

Accuracy, data, 230-239, 274, 372
Alarm, 153-156,404

INDEX

Anlilogarilhm, 90-92, 104, 118, 125-134,351,358,360,
362, 376-398

b-Adjacent codes, 205-212
BCH code, 121, 145-157,377,403
Bit-crror ratc, 216, 403
Berlckamp's iterativcalgorithm, 148, 165-166, 174
Binary symmctric channel, 404
Burst error correction, 56, 61-64, 135-144, 231-232,

242
Burst error rate, 233, 404
Burst length,54, 61, 65, 70-81, 85, 159, 195, 213,

218,251,281,370,404
Byte serial, 137-139,243-249

Catastrophic error probability (Pc)' 404
Characteristic ofa field, 88, 91, 97,103,404,409
Check bits, 4-6, 50-67, 282-283, 294-298, 300-301,

309,368,370,404-406,418
Chien search, 121-124, 148, 167,370
Chinese Rcmaindcr Method, 11-17, 46, 132, 210,

274-280
Code

Block,404
Cyclic, 82-83,406
Linear, 410
RLL,274
Systematic, 3, 417

Code polynomial, 64, 231-232, 405
Code rate, 405
Code vector, 405
Codeword, 4, 6, 50-51, 82, 145-171, 186-204, 256-273,

405
Computer-gcneratcd codes, 63-64, 140-144, 231-233,

274,293
Concatenation, 50, 405
Convolutional code, 405
Correctable error, 5-6, 62-65, 82, 161, 166, 170, 175,

194, 197, 232, 291, 306, 308, 310, 325, 365-366,
405

Corrected error rate, 405
Correction algorithm, 56-63, 74-81, 178-179, 185, 190,

195, 199,258-272,280,283,289,290-292,306-324
Correction span, 61-62, 65, 135, 139-144, 231-239,

274, 278-279, 281, 286, 293-294, 306, 309,
311-312,406

CRC codes, 49-55
Cyclic redundancy check (CRC), 227, 231, 237-238,

271-273,403,406

- 463 -

Dccoded bit-error ratc, 403
Decoded error ratcs, 215-222
Dccoding, 4, 38, 57, 60, 67-82, 121, 136·140, 147, IS!!.

164-170, 181, 185, 193-204, 231, 250-252, 271.
279,281,371

Defect, 406
Defect event, 406
Defect event rate (Pe), 406
Defect skipping, 224-225, 228
Detectable error slip,
Detection span, 53-54, 62-65, 135, 140-144, 231-236.

278-279,281,286,293-294,371,406
Diagnostics, 325, 364-369
Discrete memorylcss chalmcl, 407
Division circuits, 22-24, 31
Double-error correction, 403
Double-error dctection, 54-55, 61, 286, 289, 403

EDAC, 403
Elementary symmetric functions, 407
Erasure, 195-204,214,222,228,271-272.275,372
Erasure, dcfinition of, 407
Erasure correction, 195-196,222,228,271-272.407
Erasure locator polynomial, 407
Erasure pointer, 195-196,222,228,271-272,275,407
Errata, defmition of, 408
Errata locator polynomial, 408
Erratum, 408
Error burst, 408
Error correction, 4-6, 146, 170, 209-210, 223-224,

227,230,230,242,257-261,263,264,271
Single bit, 56-61, 274, 289
Burst, 61-63,135-144,231-232,242
Multiple bit, 145-157
Multiple symbol, 158-204,274-276,350,373

Error corrccting code, 275
Error, dcfmition of, 408
Error detection, 49-55, 202, 236-237, 241, 250, 256,

257-258, 260, 267-269, 271. 274-275', 286, 289,
294,304,370

Error displacemcnt, 57-59, 208, 210-211, 231, 208,
283,289-290,305-324

Error location, 145-149, 152, 164-176, 195-198, 214,
274,287,289,305,355,357,370,372,408

Errorlocation vector, 147-148, 164, 167,408
Error locator polynomial, 408
Error logging, 366
Error rates, 195,213-222,228,233,236,240
Error values, 61, 138-139, 152, 164-170, 173, 176, 196,

208,351,355,370,408
Euclidean division algorithm, 8, 50-51

Feedback shift register, 18, 280, 282-284, 295-305,
367-368, 403

Field,409
Finite field

Circuits, 103-128, 134
Computation in, 91-97,129-133
Definition of, 87, 409
Extension, 88,407,409
Ground, 88, 409
Order, 88, 413
Processor, 126-128, 152,351,353,360
Roots of equations, 121-125, 148, 167

Fire code, 64, 66, 135-149, 231-233, 242-243, 274,
279,365,371

Forward-acting code, 409
Forward error correction, 304-305, 403
Forward polynomial, 37-38, 293,301,409

Galois field, see finite field
Greatest common divisor

Integers, 8
Polynomials, 10

Ground field, 409

Hamming code, 59, 61
Hamming distance, 145, 159,410
Hamming weight, 410
Hard error, 235, 240, 274, 293, 410

Integer function, 9
Interleaving, 202, 265-267, 270, 272, 285, 350
Inversion, 92, 103, 131,261-264,266,280,360
Isomorphic, 88, 410

k-bit serial, 136, 243-249

Least common multiple, 64
Integers, 8
Polynomials, 10,281

Linear feedback shift register, 18, 403
Linear function, 3, 10,410
Linear sequential circuit, 18, 403
Linear shift register, 18-19, 403
Linearly dependent, 411
Linearly independent, 411
Logaritlun,9~91, 103, 128, 132,351,358,360,362
Longitudinal Redundancy Check (LRC), 403, 411

Magnetic disk, 205, 224, 230-239, 241, 274-349, 372
Majority logic, 411
Majority logic decodable code, 41 I
Mass storage devices, 35~363
Minimum function, 41 I
Minimum polynomial of ai, 412

- 464 -

Minimum weight of a code, 412

Miseorrection, 5, 6, 61, 64~7, 135-136, 166, 176, 196,
201, 202-204, 23~236

Probability, 5, 65~7, 135-136, 140, 200-204,
231-235, 242, 258, 275, 281, 286, 294, 366, 371,
373,412

Misdetection, 5, 6, 230, 252, 267
Probability,6,54, 241,250,281,286,371,412

Modulo function, 9, 372
Monic polynomial, 9-10, 15,412
Multiplication circuits, 19-21,281-284

Nibble, I, 195,361

On-the-fly correction, 68-73, 235, 370
Order

of a finite field, 88, 413
of a fmite field element, 88, 413

Parity,1-7,32,35,52,54,275,370,413
Parity check code, 205, 414
Parity predict, 240, 280, 283, 367-369
Parity sector, 272
Parity tree, 146, 149, 151, 162
Pattern sensitivity, 64~, 135-136, 140, 230-232, 239,

241-242,274-275
Perfect code, 414
Period,414
Pointer, 214, 222, 228, 271-272, 274-275, 414
Polynomials, 10, 16-17, 29-30, 35-48, 135, 140-141,

145,186,197,205,210-211,231-232
Binary, 16,37,178
Code, 414
Defmitions, 10,37, 101
Division, 17
Error locator, 147-148, 151-152, 157, 164-170, 196,

351,354-357,370
Irreducible, 10, 16,37-42,62-64,135,210,231,410
Monic, 9-10, 15
Multiplication, 16,281-282,304
Non-Primitive, 136,210
Period,37,39-40,62,82,136,414
Primitive,37,41-48,62,101,286,372,384,415
Reciprocal, 37-38, 48, 82, 136, 247, 281, 293, 304,

306,324,347-349,372,416
Self-reciprocal,37, 136,416

Power sum symmetric functions, 414.
Prime fields, 414
Prime subfields, 414
Probability

Miscorrcction, 5~, 16, 65-71, 135-136, 140,
2~204, 222, 231-235, 242, 258, 275, 281, 286,
294,366,371,373

Misdetection, 6, 54, 241, 250, 278, 281, 286, 371
Undetected erroneous data, 230, 233, 236, 239, 240,

250,256,370,418

Random errors, 201-202, 204, 415
Raw burst error rate, 233, 415
Readable erasure, 415
Recovcrability, data, 215, 223-230, 240
Recurrent code, 415
Reed-Solomon code, 55, 87, 158-204, 257, 265, 270,

274,276-277,370,377,403
Relatively prime, 416

Integer, 9, 371
Polynomial, 10,279,416

RS Codes, (see Reed-Solomon code)

Self-checking logic, 280, 283, 367-369
Shift register, 403

Extemal-XOR, 32-35, 68-81, 138, 181, 243, 296,
298,301,303

Intemal-XOR, 31, 52, 138, 181, 243, 247, 295, 297,
299

Sequences, 16,36,42,56-63,98
Shortened codes, 82-85, 281, 416
Soft errors, 213, 234, 416
Subfic1d

Computation, 129-134
Dcfmition of, 417

Sync framing error, 213, 239, 256-269, 280, 325, 417
Syndrome, 4-6, 57-65, 126, 147-151, 159, 164-165,

167-176, 185-198, 203-206, 211, 234, 270, 279-319,
351-353,360,364,370,373,417

Triple-error detection, 403

Uncorrectable error, 417
Uncorrectable sector, 195, 225, 417
Uncorrectable sector event rate, 225, 417
Undctected erroneous data probability, 418
Unrcadable erasure, 418
Unrecoverable error, 418

Verticle redundancy check, 403, 418

Weight, 418

- 465 -

Neal Glover is widely recognized as
one of the world's leading experts
on the practical application of
error correcting codes and holds
several patents in the field.

Trent Dudley is involved in a broad
range of development projects at
Cirrus Logic - Colorado. His broad
knowledge of electrical engineering,
computer science, error correcting
codes, and recording codes has
contributed substantially to Cirrus
Logic - Colorado's success.

· ABOUT CIRRUS LOGIC - COLORADO·

Cirrus Logic - Colorado was origiDally founded in 1979 as Data System Technology
(DS1) and was sold to Cirrus Logic, Inc., of Milpitas, California, on January 18, 1990.
Cirrus Logic - Colorado provides . error detection and correction (EDAC) products and
services to the electronics industries.. We specializes in the practical implementation of
EDAC, recording and data compression codes to enhance the reliability and efficiency of
data storage and transmission in computer and communications systems, and all aspects
of error tolerance, including framing, synchronization, data formats, and error manage­
ment.

Cirrus Logic - Colorado also develops innovative VLSI products that perform
complex peripheral control functions in high-performance personal computers, worksta­
tions and other office automation products. The company develops advanced standard
and semi-standard VLSI controllers for data communications, graphics and mass storage.

Cirrus Logic - Colorado was a pioneer in the development and implementation of
computer-generated codes to ~prove data accuracy. These codes have become widely
used in magnetic disk systemS over the past few years and are now defacto standards
for 51,4 inch Winchester drives. Cirrus Logic - Colorado developed the first low-cost
high-performance Reed-Solomon ,code integrated circuits; the codes implemented therein
have become worldwide standards for the optical storage industry. EDAC codes produ­
ced by Cirrus Logic - Colorado have become ~o associated with high data integrity that
many users include them in their lists of requirements when selecting storage subsys­
tems.

, Cirrus Logic - Colorado licenses BDAC software and discrete and integrated circuit
designs for various BDAC codes, offers books and technical reports on EDAC and recor­
ding codes, and conducts seminars on error tolerance and data integrity as well as
EDAC, recording, and data compression code.'!.

ISBN 0-927239-00-0

ABOUT CIRRUS LOGIC - COLORADO

Cirrus Logic - Colorado was originally f011llded in 1979 as Data System Technology
(DST) and was sold to -·Cirrus Logic, Inc., of Milpitas, California, on January 18, 1990.
Cirrus Logic - Colorado provides error detection and correction (EDAC) products and
services to the electronics industries. We specializes in the practical implementation qf
EDAC, recording and data compression codes to enhance the reliability and efficiency./of
data storage and transmission in computer and communications systems, and all aspects
of error tolerance, including framing, synchronization, data formats, and error manage­
ment.

Cirrus Logic - Colorado also develops innovative VLSI products that perform
complex peripheral control functions in high-performance personal computers, worksta­
tions and other office automation products. The company develops advanced standard
and semi-standard VLSI controllers for data communications, graphics and mass storage.

Cirrus Logic - Colorado was a pioneer in the development and implementation of
computer-generated codes to improve data accuracy. These codes have become widely
used in magnetic disk systems over the past few years and are now defacto standards
for 5 1,4 inch Winchester drives. Cirrus Logic - Colorado developed the first low-cost
high-performance Reed-Solomon code integrated circuits; the codes implemented therein
have become worldwide standards for the optical storage industry. EDAC codes produ­
ced by Cirrus Logic - Colorado have become so associated with high data integrity that
many users include them in their lists of requirements when selecting storage subsys­
tems.

Cirrus Logic - Colorado licenses EDAC software and dis~rete and integrated circuit
designs for various EDAC codes, offers books and technical repOrts on EDAC and recor­
ding codes, and conducts seminars on error tolerance and data integrity as well as
EDAC, recording, and data compression code .. ;.

ISBN 0-927239-00-0

